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Abstract 

 

Clonal populations of cells exhibit variability in gene expression despite genetic identity. 

Single cell technologies have helped identify various sources of such variability. Intrinsic 

noise in biochemical reactions as well as variability introduced by cell cycle progression and 

division have been suggested to play a significant role. However, there is a paucity of 

experimental platforms that can simultaneously measure gene expression and track cell cycle 

and division through multiple generations in a fully automated fashion. In this thesis I 

describe a microfluidic-based approach for performing such studies which integrate high-

resolution live cell microscopy and automated image analysis to track lineages of multiple 

yeast strains for up to 8 generations in temporally and chemically controlled environments. 

This technology is applied to the quantitative study of non-genetic inheritance of the 

pheromone mitogen activated protein kinase signaling response.  These studies demonstrate 

that the capacity to respond to pheromone is non-genetically passed on to progeny and that 

this response correlation is maintained between cells that are multiple generations apart. 

Deletions in the pheromone pathway were found to affect the strength of these correlations. 

While Δfus3 cells were the most correlated of all screened strains, Δste50 elicited dramatic 

asymmetry in response between mothers and their daughters leading to highly heterogeneous 

phenotype. Comparing expression with cell cycle phase and cell age, we present a previously 

unrecognized role of FUS3 in cell cycle regulation and reveal the pathway’s sensitivity to 

asymmetric division in the absence of STE50. Our results contribute to the understanding of 

the origins of heterogeneity in a monoclonal population and elucidate the role of division 

processes and the cell cycle in giving rise to this cell-to-cell variability.   
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Chapter  1: Introduction 

Synopsis 

In this work I describe the use of a microfluidic platform to study the source of heterogeneity 

in signaling in the pheromone pathway of Saccharomyces Cerevisieae (hereon referred to as 

yeast). In the first chapter I review 3 domains of research that form the foundation of the 

methods used and the hypothesis and questions addressed in the remaining chapters. These 3 

areas are a review of (a) pheromone signaling in yeast, (b) microfluidic and fluorescent 

microscopy technologies used for single cell analysis, and (c) experimental and theoretical 

results in understanding the sources of non-genetic heterogeneity.  

In 1.1 I review important molecular interactions in the pheromone pathway, from initiating 

events at the membrane to downstream activity in the nucleus. While such detailed 

mechanistic understanding highlights the success of classical genetic approaches that use 

bulk measurements, more recent single cell methodologies demonstrate novel insights into 

unattainable with traditional approaches. Fluorescent microscopy and microfluidics 

technologies, such as the platform discussed here, are an integral part of these single cell 

techniques and are reviewed in 1.2. One of the important applications of single cell 

methodologies has been in understanding the sources of non-genetic heterogeneity. 

Fluorescent proteins and microscopy in particular facilitated experimental tractability of this 

topic leading to a large array of studies reviewed in the 1.3.  

Finally the motivation, and hypothesis, for our research and an outline of our results will be 

presented in 1.4.  
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1.1 The yeast mating pathway as a model signaling system 

Mitogen activated protein kinase (MAPK) pathways are three-tiered kinase cascades, 

which carry out information from cell surface to nucleus and orchestrate diverse cellular 

decision making processes. These decisions include differentiation, and survival, with 

downstream effects on central cellular physiology including cell cycle progression, cell 

morphology, gene expression and metabolism. In yeast, the MAPK cascade is implicated in 5 

distinct sensory pathways: mating, nutrient deprivation, osmo-shock, sporulation and cell-

wall integrity 2. The first three pathways share many of their MAPK components in common, 

yet can respond with high fidelity to each pathways’ triggers without spillover in response 

into other sister pathways. The nutrient deprivation induces cells to differentiate into 

elongated cells, which grow rapidly in a connected chain through the medium to forage new 

environments. The osmo-shock pathway responds to high osmolarity in the environment by 

production of glycerol amongst other stress related responses in order to counteract this 

stress. The focus of this study is the mating pathway, which allows haploid cells to mate with 

the opposite mating type to form a diploid cell. 

Yeast exists as both a diploid and a haploid form. Haploid yeast use the mating pathway to 

detect and locate both direction and distance of the opposite mating type. To facilitate this, 

each mating type produces and excretes a short pheromone peptide (termed the alpha-factor 

or the a-factor depending on the mating type of the cell) which act as a ligand for receptors 

on the opposite cell type. The mating pathway network therefore acts as a decision-making 

module, which has to decide on whether or not to produce “shmoo” projections and in what 
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direction to produce these features in order to enhance the likelihood of meeting shmoo 

projections of the opposite cell type. Contact between shmoo projections of opposite haploid 

cell types (termed MAT-a and MAT-alpha) results in the fusion of the two haploid cells into 

one diploid cell 3. Given the high metabolic cost of such a decision, involving transcription 

of hundreds of genes and halting the progression of the cell cycle, intricate genetic regulatory 

motifs have evolved to tune the decision-making process and achieve optimal mating and 

minimal response to spurious signals. These regulatory motifs equip the pathway with a 

number of network properties such as ultrasensitivity* 4, bistability† 5, optimal information 

transfer capacity 6, recovery 7, signal fidelity 8, and regulated variability 9. The relative ease 

with which yeast can be manipulated and studied has facilitated the quantitative study and 

characterization of such features. In addition to providing a readily manipulated and 

measured model of basic network properties, there is high conservation of MAPK 

components and motifs in higher organisms, including mammals, making the yeast 

pheromone pathway an archetype for signaling pathways in higher organisms with relevance 

in normal development and disease.  Thus, the yeast pheromone response pathway has been 

the focus of intense study and is likely the best characterized MAPK signaling pathway.  

Despite these efforts a quantitative and predictive model of the mating pathway remains 

elusive and there are many features of pheromone response, such as cell-to-cell 

heterogeneity, that are unexplained. 

 

                                                

* Property of dose-response curves with a steep transition from an “off” state an “on” state, 
not exhibited in simpler Michelis-Menten type reactions.  
† Property of dynamical systems, where two different steady states can be occupied at a given 
input parameter depending on the system’s history.  
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1.1.1 A run-through of the pheromone pathway in yeast 

At the top of the pathway is a receptor that binds the alpha-factor as a ligand, activating the 

receptor. Then a set of membrane proteins transduce the activated receptor signal to the 

MAPK module that consists of three protein kinases (the MAPKKK, MAPKK and MAPK 

respectively).  Through a series of phosphorylation events these kinases relay the signal 

down to the nucleus where the MAPKs relieve inhibition of the transcription factor 

responsible for activating pheromone responsive elements (PRE). The proteins involved at 

each of these steps are described in detail in this section.  

	  

Figure 1-1 Schematic of pheromone pathway in yeast: Left – the pathway in basal state where no pheromone 

is bound to the receptor Ste2. The G proteins and the kinases are in an unphosphorylated state and no 

transcription takes place. Right – activated pathway upon alpha factor binding to Ste2. Phosphorylation of G-

proteins and kinases relays activity at the membrane to the nucleus resulting in the transcriptional response. 

Hundreds of genes with the pheromone responsive element (PRE) sequence in their promoter region are 

activated, as inhibition on their transcription factor Ste12 is alleviated.  The cell cycle is also halted at G1 

mainly via Far1 inhibition of CDK activity. 	  
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Membrane events 

The	  receptor	  responding	  to	  alpha-‐factor	  is	  Ste2,	  a	  G-‐coupled	  protein	  with	  a	  7-‐

trasnmembrane	  domain.	  Ste2	  undergoes	  conformational	  change	  upon	  binding	  with	  

alpha-‐factor,	  resulting	  in	  the	  release	  of	  its	  inhibition	  of	  the	  adjacent	  G-‐protein.	  The	  G-‐

protein	  involved	  in	  mating	  pathway	  is	  a	  ‘large’	  heterotrimeric	  G-‐protein	  consisting	  of	  3	  

subunits:	  	  α,	  β,	  and	  γ.	  	  Activated	  receptor	  induces	  the	  Gα	  (Gpa1)	  subunit	  of	  the	  G-‐protein	  

to	  exchange	  GDP	  for	  GTP	  and	  in	  doing	  so	  dissociate	  from	  the	  Gγβ	  subunits	  of	  the	  G-‐

protein.	  The	  Gγ	  subunit	  keeps	  the	  Gβγ	  subunit	  bound	  to	  the	  membrane	  by	  covalent	  

interactions	  with	  lipid	  membranes,	  while	  regions	  on	  the	  Gβ	  subdomain	  that	  were	  

covered	  when	  bound	  to	  Gα	  now	  freely	  interact	  with	  a	  number	  of	  different	  effectors	  

which	  help	  to	  carry	  on	  the	  response	  10,11.	  These	  effectors	  are	  the	  Ste5-‐Ste11	  complex,	  

the	  Ste20	  protein	  kinase,	  and	  the	  Far1/Cdc24	  complex.	  These	  interactions	  facilitate	  the	  

spatial	  co-‐localization	  of	  Ste11	  (MAPKKK)	  and	  its	  activator	  Ste20	  near	  the	  active	  

receptors,	  thereby	  connecting	  cytosolic	  signaling	  with	  the	  ligand-‐receptor	  activity	  at	  the	  

membrane	  3.	  	  

The	  scaffold	  protein,	  Ste5,	  acts	  as	  a	  vessel	  for	  Ste11	  to	  bring	  it	  near	  the	  membrane	  

through	  its	  affinity	  for	  Gβ.	  Similarly,	  Far1	  acts	  as	  a	  carrier	  protein,	  which	  strongly	  binds	  

to	  Cdc24,	  and	  through	  interaction	  with	  Gβ,	  brings	  Cdc24	  to	  the	  site	  of	  membrane	  

activity	  12.	  The	  importance	  of	  the	  presence	  of	  Cdc24	  here	  is	  that	  it	  acts	  as	  a	  guanine	  

nucleotide	  exchange	  factor	  (GEF),	  which	  activates	  yet	  another	  G-‐protein	  -‐	  Cdc42.	  This	  

membrane	  bound	  protein	  is	  responsible	  for	  activating	  Ste20,	  which	  is	  central	  to	  

pathway	  activity	  as	  it	  activates	  the	  first	  MAPK	  in	  the	  cascade.	  While	  the	  Far1/Cdc24	  
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activity	  is	  dispensable	  for	  initiating	  signaling	  (due	  to	  the	  presence	  of	  sufficient	  levels	  of	  

basally	  active	  Cdc42),	  it	  is	  essential	  for	  a	  proper	  chemotropic	  response	  13.	  	  

Cytosolic	  events	  and	  the	  MAPK	  module	  

The	  three-‐tiered	  MAPK	  module	  of	  the	  pathway	  consists	  of	  Ste11,	  Ste7	  and	  Fus3	  which	  

acts	  in	  a	  parallel	  role	  to	  Kss1.	  Auto-‐inhibitory	  function	  is	  a	  recurring	  theme	  in	  all	  the	  

kinase	  proteins	  in	  the	  pathway	  (Ste20,	  Ste11,	  Ste7,	  Fus3	  and	  Kss1):	  a	  kinase	  is	  activated	  

when	  the	  auto-‐inhibitory	  domain	  is	  phosphorylated,	  alleviating	  its	  repression	  of	  the	  

kinase	  domain	  of	  the	  protein	  14-‐17.	  Ste11	  activates	  Ste7,	  which	  in	  turn	  activate	  Fus3,	  and	  

Kss1,	  which	  upon	  (either	  single	  or	  dual)	  phosphorylation	  are	  transported	  into	  the	  

nucleus	  where	  they	  yield	  a	  transcriptional	  response.	  	  

	  The	  initial	  phosphorylation	  of	  Ste11	  by	  Ste20	  takes	  place	  with	  the	  aid	  of	  the	  protein	  

Ste50,	  which	  through	  interaction	  with	  Ste11’s	  SAM	  domain	  makes	  the	  activation	  loop	  of	  

Ste11	  more	  accessible	  to	  Ste20,	  thereby	  facilitating	  its	  phosphorylation	  18.	  While	  the	  

mutant	  Δste50 isn’t	  completely	  sterile,	  depending	  on	  the	  strain	  background	  the	  

response	  can	  be	  up	  to	  100	  fold	  reduced	  3.	  As	  mentioned	  above,	  the	  scaffold	  protein	  Ste5	  

facilitates	  activation	  of	  Ste11	  by	  bringing	  it	  closer	  to	  Ste20;.	  It	  also	  facilitates	  the	  

activation	  of	  Ste11’s	  target,	  Ste7,	  by	  co-‐localizing	  the	  two	  proteins	  close	  to	  each	  other	  

on	  itself.	  The	  role	  of	  Ste5	  in	  facilitating	  Ste7	  activation	  by	  Ste11	  is	  essential,	  as	  Ste7	  is	  

unable	  to	  bind	  to	  Ste11	  without	  aid.	  While	  Ste5	  also	  binds	  Fus3	  and	  Kss1,	  contrary	  to	  

Ste11-‐Ste7	  interaction,	  Ste7	  can	  bind	  and	  activate	  these	  proteins	  without	  the	  help	  of	  

Ste5	  with	  high	  affinity	  19.	  The	  role	  of	  Ste5	  interaction	  with	  Fus3	  is	  therefore	  not	  in	  the	  

activation	  of	  Fus3	  or	  even	  the	  sequestration	  of	  the	  signaling	  from	  cross-‐talk	  with	  other	  

pathways	  (which	  share	  the	  Ste11	  component)	  20.	  Instead,	  the	  interaction	  seems	  to	  be	  
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critical	  in	  facilitating	  ultrasensitive	  and	  chemotropic	  response	  of	  the	  pathway	  by	  

modulating	  the	  dynamics	  of	  Fus3	  activity	  4.	  

Nuclear	  events	  and	  transcriptional	  response	  

Phosphorylated	  and	  active	  Fus3	  and	  Kss1	  instigate	  the	  transcriptional	  up-‐regulation	  of	  

more	  than	  100	  genes	  involved	  in	  mating	  21.	  A	  large	  portion	  of	  this	  activity	  is	  mediated	  

by	  the	  transcription	  factor	  Ste12	  which	  is	  known	  to	  be	  required	  for	  activating	  

transcription	  of	  many	  of	  these	  genes.	  Ste12	  binds	  to	  a	  DNA	  motif	  called	  the	  Pheromone	  

Response	  Element	  (PRE)	  22.	  The	  mechanism	  by	  which	  Fus3	  and	  Kss1	  activate	  Ste12	  is	  

currently	  understood	  to	  be	  through	  direct	  phosphorylation	  of	  Ste12	  itself	  and/or	  its	  

inhibitors	  Dig1	  and	  Dig2	  23.	  Both	  Kss1	  and	  Fus3	  are	  able	  to	  activate	  Ste12,	  as	  evidenced	  

by	  the	  observation	  that	  single	  deletions	  of	  either	  gene	  are	  tolerated	  by	  the	  pheromone	  

pathway.	  However,	  only	  Fus3	  is	  capable	  of	  phosphorylation	  of	  Far1	  which	  leads	  to	  

arrest	  in	  cell	  cycle	  and	  is	  necessary	  for	  successful	  mating24.	  	  While	  Far1	  is	  central	  to	  cell	  

cycle	  arrest	  via	  pheromone,	  Far1-‐independent	  mechanisms	  of	  arrest	  have	  also	  been	  

proposed	  (See	  section	  1.1.2.1)	  The	  kinase	  Kss1	  is	  also	  the	  main	  kinase	  involved	  in	  the	  

nutrient	  deprivation,	  or	  “filamentous”	  response,	  where	  under	  nitrogen	  limitation	  the	  

cells	  exhibit	  an	  elongated	  invasive	  growth	  phenotype,	  and	  grow	  in	  a	  chain-‐like	  manner;	  

this	  behavior	  has	  been	  interpreted	  as	  a	  foraging	  mechanism	  that	  allows	  cells	  to	  search	  

for	  richer	  micro-‐environments	  23.	  	  While	  Kss1	  was	  initially	  thought	  to	  serve	  a	  redundant	  

role	  to	  Fus3	  in	  the	  pheromone	  pathway,	  it	  has	  been	  shown	  that	  it	  is	  actually	  important	  

in	  chemotropic	  response	  of	  the	  mating	  pathway	  and	  bi-‐stability	  in	  PRE	  expression	  at	  

lower	  input	  concentrations	  of	  pheromone	  5.	  	  
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Pathway regulation 

Upon pheromone pathway activation both positive as well as negative feedback and feed-

forward loops modulate signaling at various positions along the pathway. This takes place 

both transcriptionally as well as through phosphorylation of regulatory substrates. The 

protease Bar1, which degrades the alpha-factor peptide is transcriptionally up-regulated upon 

pheromone induction, and is secreted to the extracellular space resulting in reduced 

sensitivity of the cell to pheromone. This makes the cells more immune from response to a 

transient or spurious presence of pheromone in the environment 3,25. At the receptor level, 

signal attenuation occurs by phosphorylation, ubiquitination and endocytosis of alpha-factor 

bound receptor Ste2 3,26. Up-regulation of Gα acts as another negative control on the pathway 

27,28. Perhaps the most important regulator of pheromone signaling is Sst2, which acts as a 

GTPase, helping to hydrolyze the GTP to GDP on the alpha subunit of the G-protein, thereby 

inactivating it. Cells lacking Sst2 exhibit hypersensitivity to pheromone 29,30. The up-

regulation of Sst2 makes it the most prominent negative regulator of the pathway, yet it has 

also been shown to play a secondary signal-promoting role that helps align receptor 

occupancy to downstream response 6. Another significant negative regulator of the pathway, 

which plays an essential role in recovery from pheromone response in the absence of mating, 

is the phosphatase Msg5. Unlike the regulatory mechanisms mentioned so far, this action 

occurs lower down in the pathway at the Kss1/Fus3 level. Msg5 (along with the less 

prominent Ptp2/Ptp3) is positively regulated (transcriptionally) upon signaling and is 

responsible for resetting the kinases of the pathway to their ground states 7,31.  While most of 

these regulatory mechanisms were negative in nature, there are positive motifs in the 

pathway as well. For example, the transcription factor Ste12 is known to bind to its own 
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promoter, thereby acting as a positive feedback loop, while Fus3 expression itself is also 

upregulated under pheromone signaling 32.  

Regulation of component localization is also an important regulator of the pathway 33. For 

example, Ste5 is mainly contained to the nucleus in the absence of pheromone and exported 

to the cytosol once the pathway has been activated 34. Far1 localization is similar to Ste5 in 

that it is exported to the cytosol upon pheromone activation 12. Other proteins however such 

as Fus3 and Ste7 exist in both nucleus and cytoplasm at all times 34. On the other hand Ste11 

is mostly kept outside the nucleus while Kss1 is mostly nuclear 34,35.  

Here I reviewed some of the major regulatory motifs in the pheromone response pathway 

mainly to serve as background for the data I will present in the results and discussion 

chapters. Due to space constraints a discussion of many regulatory motifs is not possible 

here. These include, mechanisms of control over nuclear shuttling and degradation of 

pathway components 36, and regulation of Cdc42 by GTPase-activating proteins (GAPs). A 

number of review articles on the pathway can be referred to for further information on these 

facets of the pathway 3,27,33.  

1.1.2 Cell cycle coupling of the pheromone pathway 

For fusion of two haploid cells into a diploid to be successful, cells must ensure synchrony 

and an appropriate number of chromosomes in each cell before they fuse. This requires 

appropriate orchestration of signaling and cell cycle progression. To ensure this, regulatory 

mechanisms have evolved to tightly couple the cell cycle pathway to the pheromone 

pathway. This coupling takes place in both directions, meaning that the cell cycle has 

mechanisms to control the extent of MAPK signaling, while signaling directly influences the 

proliferative capacity of the cell cycle.  
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1.1.2.1 Signaling modulates cell cycle progression 

Pheromone induction results in cells arresting in their cell cycle at START (the G1 to S phase 

transition). The primary mechanism of this arrest is through Far1p, which is thought to 

inhibit the CDK/cyclin complexes’ upon phosphorylation by Fus3p 37-‐39. There has also been 

some evidence for Far1-independent mechanisms of cell cycle arrest 40-42. Unlike Far1-

dependent arrest however, the mechanisms are thought to be less direct, through repression 

of CLN1, CLN2 and CLB5 transcription rather than direct regulation of CDK/Cyclin 

complexes 40.  

In the event that mating does not occur, cells need to eventually release from arrest and 

continue with their regular haploid growth. Negative feedback mechanisms mentioned in the 

previous section play a crucial role in reverting signaling to basal levels, even in the presence 

of pheromone.  In addition to these mechanisms however, direct proliferative regulation of 

the cell cycle also takes place through the signaling pathway. Both Fus3p and Kss1p have 

been found to upregulate CLN3 and PCL2 activity which promote budding 40. Fus3p can also 

up-regulate Mcm1p which is a transcription factor that activates genes required for G1 

progression 40. These interactions are particular to activated forms of Fus3 and Kss1, and 

therefore are functionally implicated in recovery from pheromone response. The inactive 

form of Fus3 has been found to affect cAMP/RAS signaling through interaction with Cdc25 

which indirectly ties Fus3 to cell proliferation 43. This function of Fus3 however is related to 

the stress-response and survival and is therefore not considered central to pheromone 

regulation of the cell cycle.  
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1.1.2.2 Cell cycle inhibits signaling 

All the inhibitory mechanisms noted above act to halt the cell from progressing into DNA 

synthesis phase (S phase) upon stimulation by pheromone. This is done to ensure appropriate 

number of chromosomes upon fusion. For cells that have already committed to DNA 

synthesis at the time of stimulation alternative mechanisms are in place to quench signaling 

and avoid untimely fusion 44. While CDK/Cln2 complexes are found to modify Ste20 in the 

pathway 45, the only mechanism by which cell cycle inhibits signaling has been found to be 

via CDK/CLN phosphorylation of Ste5 46. The localization of this molecule at the membrane 

is essential for its function (see above), and was found to be facilitated via affinity towards 

both Gβγ subunit and with the phospholipids in the plasma membrane 47. It is the latter 

interaction which CDK/Cln hampers: phosphorylation of Ste5 by CDK/Cln at multiple sites 

on the protein, results in accumulation of negative charge inhibiting Ste5 affinity to 

phospholipids of the plasma membrane and therefore signaling 46.  

In summary, the mating pathway in yeast has been heavily studied as a prototype for 

signaling pathways in all eukaryotes. A lot of insight into molecular mechanisms of the 

pathway has been gained using classical approaches and techniques in genetics and 

biochemistry (northern/western blotting, phenotype characterization of mutants, etc.). Most 

of these techniques however are applied at a population level, and ignore variability that 

might exist at a single cell. With the advent and availability of new technologies, single cell 

measurements have become more of a routine. In the next section, the development of 

several of these technologies and their impact on biology and study of signaling is reviewed. 
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1.2 Single cell technologies 

While bulk measurements on cell populations have proved very fruitful and continue to be 

used, a more quantitative and systems level understanding of biology requires probing at a 

single cell resolution. Modern fluorescent microscopy, coupled with genetically encoded 

fluorescent reporters, provides a natural and high-throughput method for quantitative real-

time single-cell analysis. Emergence of several technologies has lead to an increase in the 

throughput and flexibility of such studies. An expanding range of fluorescent proteins and 

probes has provided a means to study molecular events with single cell resolution. Advance 

and availability of image processing and computational resources have made the analysis of 

the data produced from these methods more automated, quantitative and higher in 

throughput. Finally, micro-fabricated devices have allowed for the precise handling and 

immobilization of single cells, as well as dynamic control over their environments. 

Developments in fluorescent microscopy and microfluidics, and their application to single 

cell analysis, will be reviewed here as they form the technological basis of the measurements 

made in this study. 

 

1.2.1 Fluorescent microscopy 

Fluorescence and fluorescent microscopy were not established until early 20th century. While 

much was learned by looking at single cells through microscopes with the aid of various dyes 

and stains, application to understanding of molecular mechanisms and processes within cells 

did not flourish until the discovery, cloning and integration of the green fluorescence proteins 

(GFP) by 1992 48-‐51. The diversification of the color, stability and brightness of these 

proteins, through directed evolution 52-‐56 and the identification of alternative proteins in 
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nature, led to their use in virtually all aspects of cells’ biology. Fluorescent proteins (FP) 

have since been used as quantitative reporters on promoter activity 57, protein localization 58, 

mRNA quantification 59, transient protein-protein interactions 6 and stochastic variations in 

expression 60. FPs have proven indispensible for single cell measurements in platforms 

ranging from basic fluorescent microscopy of cells on glass slides 61 or flat-bottom tubes 62, 

to measurements on microfluidic and cytometry platforms. For example, seminal work by 

Elowitz and colleagues 60 using bacteria growing on glass slides sandwiched by an agar pad 

led to a number of studies (reviewed in the next section) giving way to an experimental 

measurement of noise in gene expression amenable to mathematical analysis. Similar setups 

have been used with yeast to measure non-genetic heritability and its effect on signaling and 

gene expression 63.  

Roger Brent’s group improved on the limited throughput of these simple setups by 

establishing a platform where yeast cells are grown in flat-bottom tubes and subject to 

imaging at high throughput 62. Using this setup they measured time-scales of molecular 

interactions in the pathway 6, counting of molecular numbers with high accuracy 64, and 

quantification and classification of noise in the signaling process 9. These studies have led to 

important insights into biology of pheromone signaling, highlighting the importance of high 

throughput single cell resolution analysis.  

However, difficulty with maintaining cells in a single focal plain as they grow, and the 

impracticality of changing the environmental conditions as the cells are imaged pose serious 

limitations on these methodologies, particularly in the study of signaling dynamics. 

Microfluidic devices can address these problems and are emerging as an important tool in 

probing molecular mechanisms in cell biology. The development of the field of microfluidics 
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as well as some important microfluidic devices used to study signaling in yeast are reviewed 

in the next section.  

 

 

1.2.2 Microfluidic technologies 

Microfluidic devices are miniaturized fluid handling platforms featuring channels and other 

features with length scales typically ranging from ~1-1000 microns.   Building on 

lithographic processing methods developed for the integrated chip industry, the first of these 

devices were made from etching and/or using photolithography techniques on hard glass or 

silicon substrates 65. These devices, while suitable for application such as electrophoresis, 

provide only limited and complexity due to difficulties in the fabrication of sealing valves 

within hard materials.  By comparison, the microfluidics technologies used here are made 

using an alternative moulding technique to create “soft” elastomeric chips.  This method, 

originally pioneered by George Whitesides at Harvard using polydimethylsiloxane (PDMS) 

has now become the most pervasive method of microfluidic fabrication and is referred to as 

the “soft lithography” technique 66-‐68. Briefly, photolithography is used to make a mold on 

silicon wafers using photosensitive “resists”. The mold is then used for fast and cheap 

creation of devices by replica moulding in PDMS.68 PDMS, unlike glass or silicon, is soft, 

gas permeable, and has desirable optical properties for microscopy. In 2000 Unger et al. 

extended this approach by developing multi-layer soft lithography 70,71, allowing for the 

rapid prototyping of devices with integrated membrane valves at densities approaching 

10,000 per square centimeter. Micro-valves allow for much greater control over fluid flow on 

the device and hence higher versatility in design potential and functionality 71-‐73.  Several 
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groups have applied the Soft Lithography and MSL technique to making live-cell imaging 

devices suited to quantitative analysis of various cell types ranging from bacterial to 

mammalian. A subset of these devices and the main biological findings from them are 

discussed below, with emphasis on yeast signaling or studies of non-genetic variability.  

Microfluidic devices for on-chip cell culture 

Balaban et al 74 used a microfluidic device, to monitor bacterial growth and infer the 

stochastic switching of bacteria between a persistent and an anti-biotic sensitive state. Their 

device allowed for restricted growth of bacteria in narrow lanes of PDMS in one layer, and 

dynamic control over their environment through a second layer. They demonstrated 

applicability of microfluidics to the important problem of non-genetic variability in mono-

clonal populations. The Quake lab and Levchenko’s lab also used microfluidics to study 

bacterial growth, but in the context of biofilm formation 75 and quorum sensing 76. 

Altogether, these groups established important facets of single cell microfluidic culturing 

such as the use of PDMS to restrict growth of cells 74, dynamically control the growth media 

74,76, or use of valves and MSL architecture to run multiple experiments on the same device 

75. However, difficulties in the imaging and tracking of cells through time implied that the 

resulting data sets provided information about the whole population rather than individual 

cells.  

Addressing this limitation, the Hasty lab developed a simple one-layer device inspired by 

Tesla’s valvular conduit 77, and exploiting high elasticity of PDMS as in Levchenko’s device. 

They trapped cells in a 4-micron high channel that forces the cells (diameter > 5 microns) to 

stay in a monolayer while they are imaged 76, facilitating automated segmentation and 

tracking of single cells. Similar to Levchenko’s design, an adjacent flow channel (8-microns 
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high) perfused the cell environment with fresh media enabling log phase growth for more 

than 24 hours. They used this device on monitoring expression of fluorescent proteins 

regulated by synthetic genetic networks such as a tunable oscillator 78 and also to measure 

degradation rates of fluorescent proteins with E-coli degradation machinery integrated into 

yeast 79. They also were able to monitor growth and cell cycle progression in single cells and 

determine their influence on the dynamics of protein concentration in a cell 80.  Another 

important contribution was to probe a metabolic pathway in yeast by subjecting it to periodic 

stimulation 81, introducing a new way of studying a system not feasible with traditional 

methods. This ability to attain single cell data under dynamically changing environments 

with microfluidics was soon exploited by other groups.  

Charvin and colleagues made a multi-layer device for yeast similar to what Balaban made for 

bacteria where one layer was used for growth of yeast in a monolayer, while the other used to 

change the media surrounding the cells 82. Furthermore, the authors fused a fluorescent 

molecule to a budneck (septin) protein to help track lineages of cells with the help of 

automated computer segmentation of the images. The authors first used this device to 

characterize production, maturation and degradation rates of a fluorescent protein (Venus) 82. 

They then periodically induced the production of Cln2 (in cln2 mutant cells) and orchestrated 

a synchronized division of the population. Cross, Siggia and colleagues went on to use this 

setup to gain important insights into cell cycle progression in yeast. These included 

demonstration of phase locking of the cell cycle and insights into size control 83-‐85. 

Furthermore, this technique marked an important advance in the capability of microfluidic 

live cell imaging, as lineages in addition to single cells could be tracked. Weitz’s group, also 

inspired by Balaban’s design, made a one-layer device with lanes that would restrict yeast 
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growth to lanes to help with lineage tracking without the aid of fluorescent marker at the bud-

neck 86. They used the device to make a crude measurement of the time-scales of variation in 

a number of different proteins and found them to vary significantly. 

The success of periodic stimulation in understanding regulatory networks was demonstrated 

in the cell cycle by Cross and colleagues, while van Oudenaarden’s lab applied similar 

methodology to the HOG (high osmolarity growth) 87 to elucidate feedback dynamics in that 

pathway. All of these three setups shared the limitation of low throughput.  

The work here is based on devices produced in the Hansen lab that removed this limitation in 

two fundamental ways 1,57. Using a 2-layer architecture with valves, the devices could 

facilitate on-chip culture amenable to imaging in hundreds of chambers at once instead of a 

single chamber. Moreover, this matrix of >100 chambers could be used to culture multiple 

different strains under multiple environmental conditions in the same experimental run. This 

advance allowed for combining benefits highlighted by the microfluidic/single cell platforms 

with methodologies in classical genetic analysis, which typically involve phenotypic 

comparison of large numbers of mutant strains.  

The first version of this device published in Taylor et al57 consisted of 256 cell-trapping 

regions where cells are trapped under an actuated “sieve” valve. A sieve valve refers to a 

valve in MSL that when closed, still allows fluid flow in the channel it’s placed over, yet 

traps (sieves) large particles under it 88,89. An additional improvement in this design 

compared to older devices was its capacity to mix up to 8 different chemicals at the inlet with 

high accuracy and pump it to 32 different rows of cell traps, without cross-contamination. 

These features were used to probe signaling in the pheromone pathway under a number of 

different profiles of pheromone stimulation. Eight different mutant strains were stimulated 
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with pheromone pulses of various length, concentration and frequency while a GFP reporter 

under the pheromone responsive element (PRE) was used as the output of the cell. The 

comparison of different strains’ response profile under different frequencies of stimulation 

reveals frequency-sensitivity of the cascade to the input signal. Taylor et al contend that 

pathway components play a functional role in modulating this frequency-sensitivity and that 

mutant phenotypes of deletion strains are masked in a traditional static stimulation 

experiment. The major drawback of this device was that the sieve valves could not perfectly 

hold cells motionless and therefore long-term tracking was not feasible.  

Falconnet et al 1 revised the architecture to implement a matrix of low-ceiling chambers in 

place of the sieve valves. Moreover, cells were loaded in molten agarose, which was later 

cooled to polymerize on-chip in order to further minimize cell movement during imaging. 

Adjacent channels allowed for diffusion of media into the chamber as in Hasty and 

Levchenko’s devices. This device could assay 8 different strains under 16 different 

conditions simultaneously while tracking cells over long periods of time (>12 hours). 

Through semi-manual lineage tracking of the cells made possible by the automated cell-

tracking, the authors observed evidence for non-genetic inheritance of signaling capacity.  

A slightly modified version of the device published by Falconnet et al 1 is what is used in this 

study for automated lineage tracking of cells (See Methods chapter).  

With these modifications, the device and methodologies used in this study offer all the 

advantages of the devices that have been reported to-date: single cell resolution fluorescent 

measurements, cell tracking, lineage tracking, and dynamic control of cells’ environment at 

high throughput and in multiple strains and conditions.  
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As already mentioned, dynamic control of the environment is an important feature of 

microfluidics platforms. While devices reviewed above demonstrate the importance of 

temporal control over the environment, several other devices have demonstrated the use of 

spatial control over chemical concentration in a microenvironment 4,5,90-‐92. All such devices 

exploit a principle of diffusion, where a linear concentration gradient of solute always forms 

in the space between two areas maintained at different concentrations of a solute. Hasty, 

Levchenko and others have used such a scheme to study the chemotropic growth and 

response of yeast in a gradient of pheromone, unveiling functional roles of Ste5 4, Fus3 4 and 

Kss1 5 in this feature of the pathway.  

In summary, I have reviewed progress in the integration of fluorescent microscopy and 

advances in microfluidic platforms used for time-lapse imaging of cell cultures. With the 

capacity to probe cells at a single cell resolution, the study of the sources of non-genetic 

heterogeneity in biological systems was made possible. A historical overview of important 

developments in this growing area is provided in the next section. 

 

1.3 Non-genetic heterogeneity in biology 

Even before the structure of DNA was known, Delbruck formulated limitations imposed by 

thermal noise on enzymatic activity 93 and Erwin Schrodinger anticipated how this could 

interfere with the function of biological systems that macroscopically appear to operate and 

rely on deterministic processes 94. Jacob and Monod’s work on the lac operon in the 1950’s 

identified the link between stimulus (sugar molecules), genes (the lac operon) and response 

(beta-galactosidase synthesis and activity), giving way to the modern conception of gene 

expression and regulation 95. In parallel with these developments came measurements of 
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beta-galactosidase activity in clonal populations and the observation that despite genetic 

identity there is variability from cell to cell 96,97. By 1976 it was clear that this phenomena 

was not limited to the lac operon and was common to a range of biological phenomena such 

as bacteriophage genes’ expression, cell cycle periods, differentiation, flagellar motion and 

chemotaxis 98. Furthermore, it was acknowledged that neither genetic nor environmental 

variability could be blamed for this phenotypic variability. In response to this a large body of 

literature probing the sources of this variability ensued, consisting of both experimental and 

computational efforts.  

 

1.3.1 Experimental and theoretical studies of variability in expression  

Theoretical work did not initiate until the late 1990’s when gene expression via transcription 

and translation was modeled computationally using the Gillespie algorithm (developed in 

1977 99, and still widely used today) 100,101. The authors found that protein production 

occurred in stochastic bursts and that this random variability could affect downstream 

processes and therefore cellular phenotypes.  

van Oudenaarden’s group obtained the first direct experimental evidence in 2002, relating 

transcription and translation rates to noise in protein levels103. These results supported their 

own theoretical analysis of gene expression in 2001104 as well as those of Arkin et al in the 

90’s100,101. The authors used modifications of the promoter region, and the ribosome-binding 

site (RBS) of the reporter protein as a way to control transcription and translation rates and 

found that increased translational efficiency increases the noise in protein number.  
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Work by Serrano et al 102 further characterized variability in expression by demonstrating the 

reduction in variability using negative feedback control and its amplifications by positive 

feedback.  

 

1.3.2 Dual-reporter experiments and classification of noise 

Elowitz et al provided a general theoretical framework for experimental quantification and 

characterization of noise in an elegant and seminal study in 2002 that kindled wide interest in 

this area 60. The authors put two fluorescent reporters of different colors under the same 

promoter in e-coli cells and measured the co-variation of signal between them. They 

recognized that noise that arises from stochasticity in the transcriptional and translational 

process (therefore ‘intrinsic’ to every cell) could be quantified by the difference between the 

amounts of each reporter within cells.  On the other hand, ‘extrinsic’ variability introduced by 

factors that affect the production of both reporters (e.g. amount of ribosome in a cell), could 

be quantified by measurement of differences in the fluorescence of each reporter between 

different cells. The authors measured intrinsic and extrinsic noise in various different e-coli 

backgrounds to show that genotype can affect these properties.  

These two publications from van Oudenaarden103 and Elowitz’s60 groups set the foundation 

for a large number of similar studies that ensued, linking mechanistic details of expression to 

dynamics and quantity of noise. Blake et al observed that in contrast to bacteria, noise 

appeared to be sensitive to transcriptional rates as well as translation in yeast 105. Later 

O’Shea’s group used the dual-reporter method to complement these results in yeast and 

introduced a model where in addition to rate of transcription and translation, the rate of 

transitioning of the DNA from active to in-active state was taken into consideration 106.  
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Further studies107,108 107,108 confirmed this picture where in eukaryotes variability mainly 

stems from transcriptional bursts as a side product of DNA packing mechanisms and spatial 

organization of the chromosomes in the nucleus. On the other hand, low molecular numbers 

of mRNA and translational bursting sufficiently explained the variation at the protein level in 

prokaryotic systems 109,110. In a study focusing on mRNA levels instead of protein numbers 

however, bacterial transcription was also found to be burst-like suggesting a similarity with 

eukoryotes111.   

The value of these experiments and their comparison with computational models has been in 

their ability to elucidate mechanisms of gene expression. Yet recent theoretical work by 

Paulsson and colleagues has shown that multiple models of expression could produce fits to 

the same experimental results 112. This limitation is particularly characteristic of several 

features of early experimental data that suffered from at least one of the following: 1- Protein 

numbers were measured and not mRNA levels; 2- Protein levels were not measured in terms 

of molecular number but through relative fluorescence; 3- only the standard deviation of the 

distribution and not the distribution of protein abundances itself was used for theoretical fits. 

These limitations are gradually being met by new technologies and methodologies. Absolute 

numbers of proteins have been measured either directly 109,110or indirectly 113. Microfluidics 

has allowed for high throughput and single molecule resolution detection of protein 

expression 109,110 facilitating measurements of protein distributions with high statistical 

accuracy. Finally, fluorescent in-situ hybridization (FISH) 107and MS2 tagging 111 methods 

have been used to measure mRNA levels in addition to proteins.  
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Ultimately these improvements should allow for an unambiguous understanding of the 

source of intrinsic noise and overcome limitations of dual-reporter assays and other existing 

methods 112,114,115.  

 

1.3.3 Non-genetic heritability and extrinsic variability 

While the large body of literature reviewed above has produced much insight into the nature 

and origin of intrinsic noise, extrinsic noise has been much less characterized and understood 

116. Dual-reporter methods have provided quantification of extrinsic noise and a 

characterization of the time scales over which it operates 113. Other studies have 

demonstrated how variability in upstream elements could propagate through a genetic 

network and manifest as extrinsic noise for downstream promoters 117. The lack of insight 

into the sources of extrinsic noise is perhaps due to its dependency on the idiosyncrasies of a 

particular biochemical network, making it intractable to general models. Nevertheless, 

extrinsic noise has been shown to dominate intrinsic variation in the pheromone pathway in 

yeast 9, where cell cycle position and other extrinsic factors account for most of the 

variability in the transcriptional response of the cells to pheromone. A destabilized GAL-

network in yeast was shown to exhibit stochastic transcriptional dynamics that was 

determined by the abundance of a single extrinsic factor: a negative regulator of the pathway 

63. Sorger and colleagues got a similar result where they found the decision for apoptosis was 

dependent on variability in several proteins in the pathway118. Both of these works63,118 also 

showed that the cells’ phenotypes were non-genetically inherited. Another recent study 

investigated the role of mitochondrial activity and mass in determining transcriptional rates 

and variability in expression 119. After ruling out variability in RNA polymerase II as a 
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significant contributor to transcriptional variability, they showed that stochastic division of 

mitochondrial mass at division is correlated to transcriptional variability in the cells. These 

three experiments demonstrate how evaluating the heritability of a phenotype can shed light 

on the sources of extrinsic variability, partly motivating our efforts to quantify heritability of 

the pheromone response capacity in yeast.  

 

1.3.4 Practical implications 

There are practical implications of the study of non-genetic variability, particularly in the 

areas of drug resistance, evolution and the emerging field of synthetic biology. As 

demonstrated by Balaban and colleagues, non-genetic heterogeneity in a bacterial population 

can be responsible for persistence against antibiotics 74,120. Therefore the understanding and 

modulation of this heterogeneity by interventional methods could have obvious application in 

battling infectious bacteria. Sorger and colleagues showed that genetically identical cells 

exhibit variable response to apoptosis-inducing signals 118. This result is directly implicated 

in cancer therapy, as the signaling molecule used there is under clinical trials as a cancer 

treatment 121.The authors suggest how co-drugging could help reduce heterogeneity in 

response to the apoptosis-inducing drug and therefore help remove all, instead of only a 

fraction, of the cancerous cells 118,122. From these studies it is clear that that non-genetic 

traits, just as genetic traits, can be selected for by pressures such as antibiotics and are 

therefore important for in the context of evolution of organisms just as they are in evolution 

of disease. While experiments in synthetic biology played an important role in the 

development of this field, the results will in turn have important implications in development 
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of synthetic circuits which aim to minimize or perhaps exploit it as in some natural systems 

123-‐125.  

 

1.4 Summary 

In this chapter I first reviewed the molecular mechanism of signaling in the pheromone 

pathway as revealed by classical genetic analysis. I then showed how emerging single cell 

technologies are addressing a more detailed understanding of molecular pathways. Finally a 

body of single cell studies aiming to understand the origins of non-genetic variability was 

reviewed. 

 In this study we use automated lineage tracking on a microfluidic device to explore the 

sources of variability in the pheromone mating response in yeast. This goal is motivated by 

the status of the mating pathway in yeast as a prototype for signaling pathways in all 

eukaryotic organisms, and the noted practical implications of understanding non-genetic 

variability in biology.  We hypothesize that quantification and characterization of heritability 

in signaling capacity will reveal the mechanisms underlying the extrinsic variability in 

signaling that remain poorly understood to date. Moreover, by screening 8 different deletion 

strains we aim to probe the role of proteins in the pathway in determining the degree of this 

variability.  

This thesis is organized as follows: Chapter 2 provides details on the microfluidic device, the 

lineage tracking algorithm and some analysis to quantify the throughput and quality of the 

data produced on our platform. Chapter 3 provides results from a screen of 8 different strains 

under a transient stimulation by pheromone. By combining single cell information on 

transcriptional response, cell cycle progression, morphology and lineage, I show that 
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signaling capacity is inherited in yeast. Moreover I reveal that cell cycle progression and 

asymmetry account for a large portion of non-genetic heterogeneity in pheromone signaling 

and are modulated by pathway components. I discuss the implications of these findings and 

conclude in Chapter 4.  
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Chapter  2: Technology and Methods 

 

Synopsis 

A multi-layer microfluidic device, a fluorescent microscopy platform, and a software 

pipeline for automated cell segmentation and lineage tracking form the experimental system 

used in this study and will be described in this chapter. The genetically modified strains of 

yeast used in these studies, as well as the experimental protocols will also be described in 

detail in this chapter.  

 

2.1  Microfluidic device 

The device used for all experiments in this study is the same as that reported in Falconnet et 

al1. For details on device design, fabrication and operation refer to Falconnet et al1. The 

device design and fabrication was based on techniques in multilayer soft lithography using 

poly-dimethylsiloxane (PDMS, RTV-615, Momentive) 71,72. The device has a ‘push-down’ 

geometry where cell chambers and fluidic channels appear in the bottom PDMS layer and the 

control layer with valves in the top PDMS layer. The cell chambers are organized in an array 

of 16 rows and 8 columns. A multiplexer addresses fluids from a single input port into any of 

the 16 rows of the array at a given time. Each column of chambers can be loaded with a 

different strain as each column is separated from the others by a set of valves that are 

actuated upon loading the device with cells.  

There were slight modifications made to the device to facilitate lineage tracking. Chamber 

size was reduced to 434x165x2 microns, in order to fit a single chamber into two fields of 

view of a 63x objective. Fiduciary features were fabricated next to each chamber in order to 
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allow for an auto-focus procedure to be performed on each chamber. Each chamber was 

equipped with 8 pillars to prevent the collapse of the ceiling. The 2-micron ceiling height was 

achieved using SU8-2 photoresist (Microchem.). The device is plasma bonded to a 0.21-mm 

Schott D263 borosilicate glass slide (SI Howard Glass) compatible with 63x objective. 

 

2.2 Experimental protocol 

Yeast strains were cultured overnight in rich media and then diluted in fresh SCD (synthetic 

complete dextrose media with 2% glucose) and grown to exponential phase. Cells were 

centrifuged at 1957 x g for 2 min and concentrated in SCD supplemented with 0.2% BSA 

(bovin serum albumin, Sigma Aldrich) to an OD600 = 1 to 4 depending on the desired seeding 

density. Cells were then mixed 1:1 with a 3% gel of low melting agarose (Sigma Aldrich) 

dissolved in SCD to reach final concentration of 0.1% BSA and 1.5% agarose. We have 

tested that 0.1% BSA still prevented α-factor from adhering to the walls of the PDMS 

channels/chambers and unlike higher BSA concentrations it did not affect growth rate of 

cells. The suspension was vortexed to homogeneity and transferred to the microfluidic device 

according to the protocol described previously 1. Before we opened diffusion valves that 

separate experimental chambers from feeding channels, all channels were primed with SCD 

supplemented with 0.5% BSA to further prevent adhering of chemicals to the PDMS walls. 

100nM α-factor (ZymoResearch) and 250mM hydroxyurea (Sigma Aldrich) were dissolved 

in SCD + 0.1% BSA. All solutions were stored in 2ml custom adapted vials1, connected to 

the device by tubing and pressurized by 2 p.s.i. air. Cells in the chip were grown at room 

temperature and divided approximately every 100 min which is similar to batch cultures at 

30°C. Starting usually from 1 to 10 cells per chamber (OD600 = 1 before mixing with agarose 
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gel) we ran experiments over 13h before cells filled the chamber and began to stack on top of 

each other. 

2.3 Strains 

The list of strains used in this study is in the Table 1. All strains are MATa type and they 

were derived from the diploid strain BY4743 (S288C background). They are deleted for 

BAR1 gene encoding pheromone protease and contain three fluorescent markers:  Cdc10-

YFP fusion protein that localizes in the budneck, PRE-mCherry reporter of pheromone 

pathway activity and ACT1pr-yECFP reporter used for cell segmentation in the image 

analysis.  

BAR1-HphNT1 cassette for BAR1 deletion was amplified from pFA6a-hphNTI vector 126. 

Plasmid pKL973 carrying CDC10-YFP-LEU2 construct was kindly provided by K. Lee 

(NIH). PRE-mCherry-HIS3 cassette was amplified from PRE-mCherry vector which was 

made by swapping GFP in PRE-GFP vector 57 by mCherry from pBS34 plasmid (YRC) 

using PacI and AscI restriction sites. Vector for generation of ACT1pr-yECFP-CaURA3 

cassette was constructed by cloning ACT1 promoter fragment (amplified from BY4741 

genomic DNA ~600bp upstream from ACT1 open reading frame) in PvuII-HindIII 

restriction sites of pKT174 plasmid (EUROSCARF) upstream of yECFP coding sequence 127. 
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Strain name Genotype 

WT(737D) MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 

far1Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 far1Δ::KanMX4 

fus3Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 fus3Δ::KanMX4 

kss1Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 kss1Δ::KanMX4 

msg5Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 msg5Δ::KanMX4 

ptp2Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 ptp2Δ::KanMX4 

ste50Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 ste50Δ::KanMX4 

mpt5Δ MATa met15Δ 0 ura3Δ 0 leu2Δ 0::CDC10-YFP-LEU2 bar1Δ::HphNT2 his3::PRE-

mCherry-HIS3 ho::ACT1pr-yECFP-CaURA3 mpt5Δ::KanMX4 

Table 2-1 Details of the strains used in this study 

pKL973 plasmid, cassettes with fluorescent markers ACT1pr-yECFP-CaURA3 and PRE-

mCherry-HIS3, and BAR1-HphNT1 deletion cassette were first separately transformed in 

BY4743 diploid strain and their proper integration in the genome was verified by PCR and/or 

by fluorescence microscopy. Confirmed clones were sporulated and haploid strains with 

individual markers were selected and consecutively crossed with each other to obtain a 

parental strain 737D with all three fluorescent markers and BAR1 deletion. Additional knock-
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outs of pheromone pathway genes were made by PCR gene replacement with kanMX 

deletion cassette amplified from pFA6a-GFP(S65T)-kanMX6 vector. 

 

2.4 Imaging, segmentation and lineage tracking 

2.4.1 Image acquisition and chip operation 

The device was imaged using a Leica DMIRE2 inverted microscope and 63x oil immersion 

objective (HCX PL APO, NA 1.4-0.60). A Leica EL6000 light source with a high-speed 

shutter and mercury lamp (HXP R 120W/45C VIS, Osram) were used with three different 

filter cubes (Leica “YFP”; Leica “TX2”; Semrock “CFP-2432A-LSC-ZERO”) for 

fluorescence imaging. To minimize photobleaching, the light source was operated at 

minimum intensity and the numerical aperture was maximized (NA 1.4) by fully opening the 

objective’s iris. Bright field images were captured through the YFP filter using a custom-

installed light-emitting diode in place of the halogen lamp to enable quick switching between 

bright field and fluorescence. All images were captured with a ORCA-ER digital camera 

(Hamamatsu) capable of 1344x1024 pixel resolution. The microscope was fitted with a Prior 

Proscan III XY stage (1 mm ball screw, 50 nm encoders), enabling fast and precise scanning 

through the array of imaging chambers on the device, and was kept inside a rigid plastic 

enclosure to keep it isolated from ambient light and high-frequency fluctuations in room 

temperature. 

Time lapse imaging and perfusion of the array were controlled by a PC running LabVIEW 

7.1 (National Instruments). To set up the experiment the user selected a sub-array of 

chambers to be imaged, captured an image of a fiducial to be used as a template for pattern-

recognition, manually located and focused on the fiducials for three chambers in the sub-
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array, and calculated the x/y offset between a chamber and its fiducial. The software would 

then scan through every fiducial in the sub-array and capture a z-stack of bright field images, 

using pattern recognition (IMAQ, National Instruments) to pinpoint the fiducial’s exact xy 

location and autofocusing by selecting the image in the stack with the lowest variance. The x, 

y, and z coordinates of each fiducial were stored for future reference. At this point the user 

could select chambers to be imaged based on the quality of the autofocus and pattern-

recognition results. Typically, over 98% of all chambers in the sub-array were chosen for 

imaging. Finally, the user defined a time-dependent chemical condition for each row and the 

software began simultaneously perfusing and imaging the array. 

Once imaging and perfusion began, the rest of the experiment was fully automated. Before 

each row was imaged, the most recent chemical sent to the row was recorded. The imaging of 

a row began with the YFP filter, through which all bright field and EYFP images were 

acquired. At each fiducial in the row, autofocusing was performed to detect any change in z-

coordinate using a z-stack of 7 images at 0.5 micron spacing, following which the 

corresponding chamber was imaged in bright field and EYFP. The z-coordinate of the 

chamber was inferred by interpolating or extrapolating stored z-coordinates of nearby 

fiducials and offsetting this by the change detected during fiducial autofocusing. Bright field 

images (1x binning) were taken in focus as well as 3.5 microns above and below the focused 

position, and EYFP images were taken in focus at (2x binning, 200 ms exposure). In focus 

images were then taken of the entire row through the CFP filter (2x binning, 100 ms 

exposure), and finally through the TX2 filter (2x binning, 40 ms exposure), before moving on 

to the next row. Through the use of a high-speed shutter, the cells were only exposed to 

excitation light during image capture so as to reduce photobleaching and exposure to 
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potentially damaging high-frequency light. When imaging of the chip finished, the stored 

fiducial z-coordinates were updated to reflect the changes detected during autofocusing and 

re-imaging of the array began immediately. 

 

2.4.2 Segmentation 

The two bright field images (3.5 microns above and below the focus position) were 

normalized independently of each other so their pixel intensities occupied the entire range 

[0,1], and the difference between the two images was calculated. The diffraction patterns 

around the unfocused cells interfered constructively during this step, highlighting the cell 

boundaries while obscuring the background and cell bodies. The difference image was then 

thresholded using Otsu’s method to create a binary image, for which the number of black and 

white pixels were counted. If the image was more than 50% white pixels, a second 

thresholding step was performed. The final thresholded image was subjected to a 

morphological opening to remove small objects and a morphological closing to remove small 

holes, giving a binary image, Bbnd, that represented the cell boundaries.  

Next, the normalized bright field image from above the focus position was used to make a 

mask of the cell colonies. The image was variance-filtered, re-normalized to occupy the 

entire range [0,1], thresholded using 0.5 times the threshold obtained from Otsu’s method, 

and dilated. The background of the resulting image was identified as the largest connected 

object in the complement image, and all black pixels that were not part of the background 

were filled in. The image was then eroded to give Bcol, a mask of the cell colonies. 
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Individual cells were identified using two methods. The first method removed the cell 

boundaries (Bbnd) from the cell colony mask (Bcol). This method produced some false 

negatives where the cell colony mask had failed to include certain cells. The second method 

took the complement of Bbnd after using a flood-fill operation to fill in the background, 

producing false negatives in cases where the boundaries in Bbnd were not completely closed. 

By combining the results of these two methods, a segmentation of all the cells was created. A 

morphological opening was then used to eliminate small or thin objects, and touching cells 

were separated from each other using the watershed of the Euclidean distance function of the 

complement image. The h-maxima transformation was used to prevent over-segmentation. 

The background of the resulting image was identified as the largest connected object in the 

complement image, and all black pixels that were not part of the background were filled in. 

Objects smaller than 30 pixels were removed, and large objects were removed based on a 

pre-defined threshold and a median threshold. This image, BBF, still contained a few false 

positives. 

To eliminate false positives, information from the CFP image was used. The CFP image was 

corrected for uneven illumination by fitting a quadratic surface to the intensity image and 

then subtracting the surface from the image. The pixel intensities were then normalized to 

occupy the entire range [0,1] and the image was thresholded using Otsu’s method. After a 

dilation of the resulting binary image the number of black and white pixels were counted and, 

if the image was more than 75% white pixels, another thresholding step was performed. A 

morphological opening was performed and clumped cells were separated from each other 

using the watershed of the Euclidean distance function of the complement image. The h-

maxima transformation was used to prevent over-segmentation. The resulting binary image is 
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herein referred to as BCFP. Finally, the complement of BBF was flood-filled, using the white 

pixels in BCFP as start locations, and the result was masked with BBF. Any cell, which touched 

the edge of the image, was then removed, so that analysis was only performed on whole 

cells. Additionally, cells within 200 pixels of the left edge (for the left FOV) or 200 pixels 

from the right edge (for the right FOV) were assumed to be trapped under the chamber 

isolation valves and so were also removed from the segmented image. 

 

2.4.3 Cell tracking 

After the cell segmentation was complete for time point t, cells and lineages were tracked 

from time t-1 to time t. From previous iterations, each cell being tracked had already been 

assigned a label I. After assigning a temporary label j to each cell in time point t, the tracking 

problem was posed in terms of combinatorial optimization as the classic assignment problem, 

where the labels from t-1 acted as agents and the labels from t acted as tasks. The cost Cij of 

assigning task j to agent i was taken to be Cij = Dij + 0.25|Sj-Si’| where Dij was the Euclidean 

distance between the centroids of the two cells, Sj was this size of cell j, and Si’ was the 

estimated size of cell i after accounting for cell growth over the course of one time point. 

This size estimation was done by assuming that cells smaller than 75% of the median cell 

size grow by 25% per time point, while the rest of the cells remain the same size. The cost 

matrix C is then modified by giving infinite cost to the following elements: Elements with Dij 

> 25, Elements with Sj/Si’ > 3, Elements with Sj/Si’ < 0.66, Elements for which i is “full 
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grown” and Sj/Si’ > 1.25, Elements for which i is “full grown”‡ and Sj/Si’ < 0.8, Elements for 

which label i has been retired. 

A version of the Hungarian algorithm that was modified to work with rectangular weight 

matrices was used to solve the assignment problem given by the resulting cost matrix. From 

all of the assignments made by the algorithm, the median cost cmed and mean absolute 

deviation of costs cmad were calculated. Every task j that was unassigned by the algorithm 

was then assigned to the agent i which gave the minimum cost if and only if (a) the cost 

satisfied Cij < cmed+3cmad and (b) the agent i was not already assigned. All cells from time t 

that remained unassigned were assumed to be new cells and were given new labels. At this 

point, labels that had been unassigned for three consecutive time points (t, t-1, and t-2) were 

marked as “retired” and were avoided in future time points. The size of each cell and the 

location of its centroid were recorded for use in the next iteration of the tracking algorithm. 

For unassigned labels, the size and centroid location from the previous time point (t-1) were 

recorded instead. 

2.4.4 Lineage tracking 

Once cell tracking was completed for a given time point, information from the YFP image 

was used to perform lineage tracking. The YFP image was corrected for uneven illumination 

by fitting a quadratic surface to the intensity image and then subtracting the surface from the 

image. The pixel intensities were then normalized to occupy the entire range [0,1]. The 

budnecks were segmented using a local comparison and selection segmentation algorithm 

and objects smaller than 5 pixels were removed. 

                                                

‡ A cell was considered to be “full-grown” if it was at least 25% larger than the median cell 
size. 
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For each segmented budneck, the two cells touching it were investigated to see if they 

formed a mother-daughter pair. If one cell was at least 1.5 times the size of the other, then the 

larger cell was proposed as the mother. Otherwise, no pairing was proposed from the given 

budneck. The overlap between the budneck and the proposed daughter was recorded as a 

measure of the confidence in the pairing. The proposed pairing was accepted and recorded 

only if the proposed daughter was not already identified as a mother, the proposed daughter 

appeared after the proposed mother, and the proposed daughter was not already assigned to a 

mother with higher confidence. 

If a segmented budneck touched less than two cells (or more than two cells), up to two 

dilations (or erosions) were performed in an attempt to find exactly two cells that overlapped 

with the budneck. If this was successful, the pairing process was attempted for a second time. 

Otherwise, no pairing was proposed from the given budneck. 

Two notable changes were made to the above algorithm when the first time point was being 

processed. First, proposed mothers were not required to be 1.5 times the size of the daughter; 

merely being larger than the daughter was sufficient. Second, proposed daughters were not 

required to have appeared after their proposed mother. 

In some cases, the methods described above led to new cells which could not be identified as 

mothers or daughters. This was often caused by inadvertent over-segmentation of a hollow 

cell into several pieces when the watershed function was used to separate clumps of cells. It 

is common for a cell to appear hollow when it contains a large vacuole. To deal with this, all 

new non-daughter non-mother cells were slightly dilated to include the cut lines used to 

separate them from their neighbors in the watershed step, effectively re-assembling the over-



 38 

segmented cell. All holes in the segmentation image were then filled before re-doing the 

watershed step, and the cell/lineage tracking routines were repeated for a second and final 

time. 

Post-processing 

Once cells and lineages had been tracked for all time points, the tracking data was inspected 

for errors and the following post-processing steps were used to either correct the suspected 

errors or remove the affected cells from the analysis. 

Removal of transient cells 

Labels that were found in fewer than three frames and not in the final frame were likely a 

result of false positives in the segmentation or inaccurate cell tracking. These labels were 

removed from the data set. 

Connection of cell trajectories 

Errors in cell tracking sometimes caused a cell’s label to change, incorrectly suggesting that 

one cell had disappeared and a different cell had appeared. The Hungarian algorithm was 

used to match disappeared labels with newly-appeared labels to correct this mistake. 

For each frame t, labels which were present in the previous frame t-1 but absent in all frames 

from t onwards acted as agents in the assignment problem. Labels which were present in t, 

absent from all previous frames, and larger than half of the median cell size in t acted as 

tasks. This requirement on cell size ensured that the trajectories of small, newborn cells were 

not falsely connected to the trajectories of pre-existing cells. It was also required that all 

agents and tasks have their centroids at least 50 pixels away from the edges of the image so 

that trajectories of labels which had recently entered or exited the field-of-view were not 

falsely connected. The cost Cij of assigning task j to agent i was taken to be Cij = Dij + 
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0.25(Sj/Si) where Dij was the Euclidean distance between the centroids of the two cells, Sj 

was this size of cell j, and Si was the size of cell i. The cost matrix C is then modified by 

giving infinite cost to the following elements: Elements with Dij > 50, Elements with Sj/Si > 

3, Elements with Sj/Si < 0.66, Elements for which i is “full grown”§ and Sj/Si > 1.25, 

Elements for which i is “full grown” and Sj/Si < 0.8.  

The assignment problem given by the resulting cost matrix was solved using the same 

version of the Hungarian algorithm as was used for cell tracking. For every matching pair of 

labels, i and j, all instances of label j in the data set were replaced by label i, thus connecting 

the two trajectories. 

Removal of large newborn cells and their daughters 

In cases where the segmentation algorithm was unable to resolve large clumps of cells, these 

clumps would appear as one large cell. Cells which, in their first appearance, were greater 

than 1.5 times the median cell size of that frame and whose centroids were not within 50 

pixels of the image edges were suspected to be a result of incorrectly-segmented clumps. 

These cells, along with all daughters that had been assigned to them, were removed from the 

data set. 

Fluorescence quantitation and background correction 

Before quantitation of CFP and TX2 images could be done, the uneven illumination and 

collection efficiency of the microscope needed to be corrected for. For each experiment, the 

user selected a frame with few cells to serve as an illumination and collection efficiency 

                                                

§ A cell was considered to be “full-grown” if it was at least 25% larger than the median cell 

size. 
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template for the entire experiment. The software used linear regression to fit a 4th-degree 

polynomial surface to the pixel intensities in the template image, ignoring regions in the 

image that the user identified as containing cells or high autofluorescence. By sampling this 

surface at the resolution of the fluorescence images and then dividing by the global 

maximum, a correction image was obtained. Two correction images were created, one for 

EYFP and one for TX2, and were used to correct every time point in every chamber for a 

given experiment. 

CFP and TX2 fluorescence intensities were measured for every cell in every frame as the 

mean of the cell’s pixel intensities (after division by the correction image). The background 

intensity of each image was also measured as the mean/median/mode-with-binning of all 

“background” pixels, where the background pixels were identified by thresholding the image 

using Otsu’s method after normalizing the pixel intensities to [0,1]. 

It should be noted that all images which were involved in fluorescence quantitation had 197 

subtracted from them immediately after being read from disk in order to remove the effect of 

the camera’s dark current. 

 

2.5 Quantification and quality of data 

2.5.1 Quantification of data 

After segmentation and tracking was completed, the time series for total mCherry in every 

cell, as well as the lineage information for every cell was then parsed for higher level 

analysis of the data. This step was carried out using multiple custom Python scripts 128.  First, 

data from the whole chip was taken, chambers with shared strain and experimental protocol 

were bundled, background reduction performed on every cell, and finally average 
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fluorescence (total fluorescence divided by cell area) was calculated at every time point 

before data was passed for downstream analyses. These analyses included visualization of 

lineage trees and expression profiles, growth curves and other analyses presented in this and 

future chapters.  

 

Figure 2-1 Distribution of duration of tracking single cells: 14,296 cells were tracked for more than 100 

minutes which is about the length of a full cell cycle, demonstrating the throughput of the cell tracking 

algorithm.  

Figure 2-1 and Figure 2-2 demonstrate the throughput of the cell and lineage tracking of this 

platform based on data from a single experiment. The distribution of lengths of times for 

which a cell is tracked for is shown in Figure 2-1: 14,296 cells were tracked for more than 

100 minutes which is about the length of a full cell cycle. Figure 2-2 shows the distribution 
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of number of generations for which a genealogical tree was tracked. 13,131 cells were 

tracked for more than 2 generations. We have tracked up to 8 generations on our device; this 

is the highest throughput reported to our knowledge.  

 

Figure 2-2 Distribution of lineage depth tracked by the algorithm: 13,131 cells’ lineage was tracked for 

more than 2 generations, demonstrating the throughput of the lineage-tracking algorithm.  

2.5.2 Quality of data 

 

2.5.2.1 Cell-tracking and lineage-tracking errors 

Due to the large throughput of the setup and the relative low occurrence of errors in cell 

tracking, segmentation or lineage tracking it was difficult to get direct estimates of error 

rates; manual tracking of cell lineages is too laborious to be a practical method of 
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comparison. An indirect estimate of error in lineage tracking was however provided by 

counting the number of cells segmented and tracked but not associated with a mother cell. 

Out of the total of about 27,000 cells in the same experiment as presented above, about 9,000 

were mother-less; however, more than 6,000 of these were born in the very last time point in 

the experiment pointing to the increase in rates of error towards the end of the experiment, 

further complicating calculation of a simple measure of rate of error. Therefore out of about 

21,000 cells tracked about 3,000 were not associated with a mother suggesting a ~14% rate 

of failure in detecting lineage. This type of error however is innocuous as it can be assumed 

that a cell appearing in the middle of the experiment without a mother associated with it, is 

either coming from outside of the field of view from the periphery of the chambers or that the 

algorithm was unable to identify a mother despite it being in the field of view. In contrast, 

more problematic mistakes such as mislabeling of a cell mid-tracking, or incorrect mother-

daughter association of two cells, are not obvious and also difficult to quantify. While some 

such errors reveal themselves in downstream analyses as outliers and can be removed, others 

may remain hidden. The low rates of occurrence and the performance of multiple replicate 

experiments on the same device help to mitigate the adverse effects of such errors.  

Even if a cell is correctly segmented and associated with a mother upon birth, the time of its 

birth is subject to technical noise. The recorded time of birth for a cell is the time point when 

a cell is first segmented and labeled as a cell. The fundamental limit on the accuracy of this 

measurement is set by the frequency of imaging which is about 11 minutes or about a tenth 

of a cell cycle. 
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2.5.2.2 Noise in fluorescent measurements 

At every time point the total fluorescent intensity of a cell in both the mCherry and the CFP 

channels are recorded. Other than the number of fluorescent proteins within a cell other 

factors affect the brightness of a single cell. While deviations from the focal plane was 

initially suspected to be a significant source of error, comparison of images from one time 

point to another showed that fluctuations existed even in background fluorescent signal 

which should not be sensitive to z-position of the stage. From this it was suspected that 

fluctuations in the intensity of the excitation beam were contributing to noise in fluorescent 

measurements. According to this hypothesis one would expect that (a) the fluctuations in the 

mCherry and CFP channel within each chamber are correlated and (b) the correlation 

between CFP and mCherry signal of different chambers drop as the time between the 

imaging of the two chambers increases. Figure 2-3 and Figure 2-4 show that both of these 

observations are made experimentally, confirming that fluctuations in the intensity of the 

mercury bulb account for most of the noise in fluorescent measurements.  



 45 

 

Figure 2-3 Fluctuations in mCherry and CFP background signal are correlated within every chamber: 

Each element in the grid corresponds to half a chamber on the device. The color indicates the correlation 

coefficient as indicated by the side bar. The blue elements were chambers that were not analyzed by the 

program. This data is consistent with the hypothesis that fluctuations in imaging from one time point to another 

are due to fluctuations in the excitation beam coming from the mercury lamp.  

 

The matrices in Figure 2-3 and Figure 2-4 represent all fields of view imaged on the chip (16 

columns and 8 rows), where in Figure 2-3 the correlation between the CFP and mCherry 

signal from the same chamber is shown and in Figure 2-4 the correlation between the 

mCherry signal of the top-left chamber with the CFP signal of each of the other chambers is 

shown. The CFP signal from the chambers at the bottom of the chip de-correlates from the 

mCherry signal from chambers at the top as they are imaged at different times. The 



 46 

difference in time between the top-left-most and bottom-right-most chambers is about 11 

minutes, and the fluctuations in bulb intensity are in the order of less than a minute, 

accounting for differences in correlation between rows. Leaving the lamp on and letting it 

stabilize for hours before initiating an experiment can help minimize these fluctuations. 

However, despite being the largest source of noise, the fluctuations are about 10% in 

magnitude and therefore can be tolerated without correction for the purpose of the analyses 

described in this document.  

Other less significant sources of noise exist as well, including imperfect segmentation of cell 

boundary, and subtleties arising from interplay between the narrow depth of focus, point 

spread function (PSF) and variable cell sizes (see supplementary information of Gordon et al. 

62). These are also negligible and not corrected for.  
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Figure 2-4 Fluctuations between mCherry and CFP signal are less correlated between distant chambers: 

The color indicates the correlation between the background mCherry signal in the 0th row and 0th column, 

against the background CFP signal in all other chambers. Since distant chambers are imaged farther apart in 

time, fluctuations in brightness between distant chambers are less correlated than chambers close to each other. 

This further supports that fluctuations from the excitation beam are the primary cause of variation in 

fluorescence measurements. 
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Chapter  3: Results 

Synopsis 

Here I show results derived from monitoring 8 different deletion strains of yeast cells under a 

transient pulse of pheromone and making quantitative single cell measurements of their 

transcriptional, arrest and morphological response while tracking the cells’ lineages. I reveal 

knockouts with drastically different variability and heritability of signaling and using our 

lineage tracking capacity highlight mechanisms behind altered variability upon deletion of 

these pathway components. These mechanisms involve cell cycle regulation of MAPK and 

asymmetric cell division in yeast. 

 

3.1 Single-cell screen of response to pheromone 

The results from this chapter are all from experiments where after loading the cells onto the 

device, the cells are grown under rich media for the period of about 7.5 hours to track 

lineages, after which they are induced by 100nM pheromone for the period of 1 hour before 

the conditions are changed back to rich media for the remainder of the experiment (See 

Figure 3-1). The concentration of 100nM was chosen to be a concentration at which the cells 

are fully responsive according to dose-response curves shown in previously reported works 

6,57 and also confirmed by our experiments (data not shown). 
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Figure 3-1 Experimental condition and sample tree: each horizontal line corresponds to a cell, where the 

position along the horizontal line indicates the time the cell was imaged and the color indicates the average 

mCherry fluorescence in that cell at that time point. Vertical white lines connect a daughters to their mothers 

also indicating the time of birth. The shaded region indicates when the cells were induced by pheromone, and 

during the remainder of the experiment the cells were constantly perfused with rich media. 

 

Cell growth on the device was measured to be the same as off-chip with a doubling time of 

approximately 100 minutes (See Figure 3-2). The growth curves in Figure 3-2 also show that 
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WT cells transiently arrest upon induction before going back to regular growth after the 

removal of pheromone. In contrast, Δfar1 cells, and to a lesser degree, Δfus3 cells show 

reduced capacity to arrest. The comparison of growth rates of different strains will be 

discussed in more depth in the next section. An important technical point to mention is that 

consistent growth rates throughput the experiment was only achieved upon optimization of 

bovine serum albumin (BSA) concentration in the media from 1% to 0.1%. BSA is required 

to prevent alpha factor from sticking to channel walls, but too much BSA likely has the 

unintended effect of titrating nutrients as well as pheromone out of the solution, resulting in 

reduced growth rates.  Indeed at 1% BSA it was observed that cell cycle periods would 

gradually get longer as growth was impeded (data not shown), while 0.1% BSA allowed for 

maintaining steady growth while also keeping pheromone in the solution.   

 

Figure 3-2 Growth curves for WT, Δfus3 and Δfar1: Number of cells is normalized for initial cells and 

plotted on logarithmic scale against time. All strains show a linear trend as expected. The shaded region shows 

the transient alpha factor induction, which is followed by a temporary arrest by WT cells but not Δfar1. The 

Δfus3 mutant exhibits reduced arrest.  
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3.1.1 Transcriptional response 

We measured the response of cells to pheromone stimulation by a mCherry fluorescent 

reporter placed under a PRE promoter (see Methods chapter for details). The mean 

fluorescence intensity in a cell was used as a measure of its signaling response capacity while 

the coefficient of variation in this quantity across the population as a whole was used as a 

measure of variability in response capacity (coefficient of variation = standard deviation 

divided by the mean). The comparison of mean response and variability in response for 8 

different deletion strains are shown in Figure 3-3.  

 

Figure 3-3 Mean and CV of mCherry response in all strains: Top – The average response of the population 

is presented as the mean response of all cells. Response of each cell is measured by the average pixel intensity 

in the mCherry channel. In line with previous reports, Δkss1 and Δmsg5 are hypersensitive, whereas Δste50, 

Δfar1, and Δfus3 are less responsive than WT.  Bottom – The cell-to-cell variability in response is measured by 

the coefficient of variation, which is calculated by dividing the standard deviation by the mean at every time 

point. All strains except Δste50 show a decrease in CV, highlighting abnormally high variability in the Δste50 

mutant.  
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In agreement with previous observations, Δmsg5 and Δkss1 were found to be hypersensitive 

to pheromone whereas Δfus3, Δfar1 and Δste50 on average responded less than the wild type 

strain 1,3,57. The distribution of response at t=540 minutes was found to be significantly 

different in all mutants as compared with WT (KS 2 sample test, p-value < 5e-4, pair-wise 

comparison). Interestingly the basal rate of expression (measured at t=350 minutes) in all 

mutants except Δptp2 and Δfus3 was also found to be different from WT (KS 2 sample test, 

p-value < 1e-8). This is most obvious for Δste50, Δkss1 and Δmsg5. In the case of Δkss1 and 

Δmsg5, the basal expression is increased compared to WT. This is in line with the reported 

functions of these two proteins: Msg5 is a phosphatase which dephosphorylates Fus3 and 

Kss1, the absence of which results in increased phosphorylated Fus3 proteins and hence 

higher transcription under PRE 7,31; whereas Kss1 (in its inactivated form) is known for its 

inhibitory role on Ste12 activity 5,129.  In the case of Δste50, expression is reduced in both 

basal and activated states of the pathway (See Figure 3-4). The role of Ste50 as a facilitator 

of Ste11 phosphorylation near the membrane explains reduced response under pheromone 

stimulation. The reduced basal expression however is a more surprising aspect of the Δste50 

phenotype, since it suggests that even in the absence of pheromone, basal activity at the 

membrane is required and coupled to downstream activity in the nucleus. 
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Figure 3-4 Distribution of mCherry expression in all strains under basal and induced conditions: High 

throughput Single cell resolution imaging allows for measuring response distribution of each population. Note 

that a small subpopulation of Δste50 cells can respond as high as other non-sterile mutants such as Δfus3, 

resulting in high CV in Δste50. 
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Moreover, the single cell resolution of expression measurements allows for the calculation of 

variability in response across each population, which is shown in the bottom panel of Figure 

3-3, where the coefficient of variation (CV) is used as a measurement of heterogeneity. The 

CV is defined as the standard deviation normalized by the average and is commonly used as 

a measure of variability, heterogeneity or “noise” 130.  While all strains show a similar 

decreasing trend of CV over time upon induction, Δste50 stands out as the only mutant for 

which the variation increases relative to basal levels. As shown in the distribution of Figure 

3-4, for Δste50 and also in the time-course density plot of Δste50 in Figure 3-5, for the 

majority of Δste50 cells the fluorescence levels under pheromone are comparable to those at 

basal levels. Only a small subpopulation, appearing as a long tail in the distribution in Figure 

3-4,  show capacity to respond up to levels that match the response of other non-sterile 

mutants such as Δfus3 and Δkss1. The white lines in Figure 3-5 indicate trajectories of 

selected cells that demonstrate the wide range in response capacity in the Δste50 and WT 

strains. It should be noted that, within the limitations of mCherry maturation times, we 

observe that it is the rate of expression that determines the overall responsiveness of the cells, 

and that the rise in signal occurs at about the same time point for all the cells (Figure 3-5, 

Δste50).  



 55 

 

Figure 3-5 Single Cell trajectories of response: The density plots show the single cell trajectories of response 

of all cells in each population. The color indicates the number of cells at a particular response level at each time 

point. White lines in WT and Δste50 show trajectories of select cells. While most Δste50 cells do not respond, a 

small subpopulation exhibit sensitivity to pheromone. 
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3.1.2 Cell cycle arrest 

While there are hundreds of genes which are transcriptionally altered upon pheromone 

induction 21, another major impact of pheromone on a cell is the halting of its regular cell 

cycle progression at START (see Introduction for details). While bulk measurements of cell 

growth can detect dramatic alterations to this arrest response (for example fully arresting vs. 

non-arresting cells), they cannot account for more subtle differences between strains in their 

ability to arrest their cell cycle upon pheromone induction. For example it has been proposed 

that FAR1-independent mechanisms of arrest exist 40 and several genes other than FAR1 

were implicated; however, the limited sensitivity and throughput of conventional arrest 

assays make it difficult to screen different strains for alterations in arresting phenotype.  

There are two characteristics of our platform that address these problems: one is the 

capability to change the environmental conditions dynamically, and the second is the ability 

to measure cell cycle periods, with a resolution of approximately 11 minutes, using 

automated lineage tracking. The latter is made possible by simply noting the period of the 

time that is flanked by two buds off of the cell of interest. We exploited these features to 

develop an assay for arrest whereby a transient pulse of pheromone is applied to the cells, 

temporarily delaying their next division. This produces a more quantitative measurement of 

arrest capacity via quantification of the length of the stretched cell cycle period. Furthermore, 

this assay quantifies the arrest capacity at a single cell resolution unlike conventional 

methods. Figure 3-6 shows the measured distribution of periods under growth media as well 

as under pheromone stimulation for all 8 strains. Lineage tracking is used to distinguish 

between young cells and old cells which are known to have different periods 131.  
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There was no statistically significant difference between periods of old cells of any of the 

strains, with the exception of Δfus3, which had longer periods than any of the other strains. 

(p-value < 7e-3 KS 2 sample test). The periods of young cells weren’t significantly different 

from one strain to another (all p-values of difference were above 1e-2). All mutants except 

Δmpt5, Δ ptp2 and Δkss1 were significantly different in the distribution of the arrested 

periods compared to WT (p-value < 8.8e-3). Most important to point out here is the 

distribution of arrested periods in Δfar1: cells lacking this component have a significantly 

reduced capacity to arrest, however it is also apparent from the distribution that a small 

subpopulation of cells can still arrest despite the absence of FAR1. This corroborates with 

previous speculations that FAR1-independent mechanisms of cell cycle arrest exist in the cell 

40. 
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Figure 3-6 Cell cycle periods under media and induced conditions: Black and grey curves show distribution 

of periods of old and young cells, respectively, under regular growth conditions. Blue curves show distribution 

of periods of induced cells. Since the induction is transient, induced cells will recover after a stretched period 

and divide, allowing for a novel and quantitative measure of pheromone induced arrest.  
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3.1.3 Changes in morphology 

Yeast modify their morphology in response to various stimuli or stresses. As already 

mentioned, in response to high concentrations of pheromone they form projections called 

“shmoo” formations, and at lower concentrations of pheromone they elongate in order to 

reach the opposite mating type which is presumed to be distant. In response to nutrient or 

nitrogen starvation, cells also exhibit a “foraging” phenotype which also involves elongated 

cell morphologies and ‘invasive growth’ into the surrounding medium. Furthermore, various 

mutations in the cell cycle network lead to larger or smaller than normal cell size yielding 

insight into growth mechanism and cell cycle control. It is therefore valuable to have access 

to single cell information about a cell’s morphology and size.  

 

Figure 3-7 Cross-sectional area as a measure of morphology: Cell morphology changes in response to 

pheromone. Pathway components can influence cell size both in the absence and presence of pheromone. The 

oscillations in both mean and CV reflect synchronization of cells as explained in text. Deletions in pathway 

components affect cell size even in the absence of pheromone.  
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Here cross-sectional area of a cell is used as a morphological characteristic of the cells. The 

comparison of cell area in the 8 different strains is shown in Figure 3-7 and Figure 3-8. 

Figure 3-7 shows the mean and CV of cell size in the population during the course of the 

experiment. Even in the absence of pheromone it can be seen that the cell size is affected by 

deletion of pheromone pathway components. Whereas Δfus3, Δkss1 and Δmsg5 have a larger 

size, Δfar1 and Δste50 have smaller than WT cell size.  While FAR1 overexpression has been 

shown to yield larger cell size, the phenotype in the other mutants has not been reported to 

our knowledge. It is important to note that alterations to cell size is not merely a result of 

alterations to signaling capacity of the pathway as both Δfus3 and Δfar1 have identical 

mCherry expression, but dramatically different sizes. The oscillations observed in mean and 

CV of cell size in the population reflect the synchronization of cell cycle and division upon 

pheromone induction: When buds are born in synchrony, the mean population size drops to 

its minimum as the CV increases to its peak. As is clear from Figure 3-7 and Figure 3-8, 

pheromone induction results in cell size increase. This is likely a product of cell cycle arrest, 

where cells remain in G1 and therefore continue to grow in the presence of pheromone. In 

agreement with this, Δfar1 mutants (which do not arrest), do not show significant increase in 

cell size either. It is also interesting to note that after induction (Figure 3-8), the bud size, in 

accordance with the increase in size of the mother cells, also increases. This suggests there is 

a regulatory mechanism that maintains mother-bud size ratio at division. This observation 

also highlights the high resolution and sensitivity of the segmentation algorithm in detecting 

the moment of mother-bud separation.  
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Figure 3-8 Distribution of bud size and mother size at birth: Green line shows the distribution of size of 

buds when they were first segmented and considered born. The blue curve shows the distribution of size of 

these buds’ mothers at this time point. These distributions are for cells growing in rich media. The grey curves 

show how the green and blue distributions shift after pheromone induction, demonstrating that both mothers as 

well as buds increase in size upon signaling. The units of size are pixels in the image that are attributed to the 

cell by the segmentation algorithm. 

WT

Δste50

Δfar1

Δkss1

Δmsg5

Δptp2

Δfus3

Δmpt5



 62 

These results were presented to demonstrate the capacity of the platform to acquire data on 

cell morphology. Even though morphology and pheromone pathway are closely related, the 

focus of this study is on transcriptional response and cell cycle coupling with the pheromone 

pathway. Therefore, the novel observations of abnormal cell morphology mentioned above 

were not pursued further.  

3.2 Signaling capacity is non-genetically inherited 

In the previous section I showed that variability in response is dependent on strain and that 

Δste50 in particular exhibits unusually high levels of variability. In this section I address 

questions surrounding and the origins of this variability and quantify heritability of response 

capacity in the pheromone pathway.  

To do this, we compared response of mother cells to those of their daughters. Mother-

daughter (MD) pairs were chosen where the daughter was born before the induction of 

pheromone, and their response was measured 3 hours after the end of the pheromone pulse. 

Figure 3-9 shows the correlation of daughter response to those of their mothers as a density 

scatter plot. Two major points here should be highlighted: (1) Δste50 exhibits an asymmetric 

scatter plot with daughters exhibiting higher capacity to respond. (2) Amongst the rest of the 

mutants, while the scatters are symmetric around the diagonal, the degree of correlation 

between the MD pairs appears to be different, with Δfus3 exhibiting the highest levels of 

correlation.  
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Figure 3-9 Comparison of mother-daughter pairs' response: The x-axis shows the response of mother cells 

and the y-axis shows the response of their respective daughters. These density scatter plots qualitatively 

demonstrate how different deletions in the pathways result in variations in degree of similarity between mother-

daughter responses. The mutants Δfus3 and Δste50, stand out: Where mother-daughter pairs in Δfus3 are very 

similar in response and symmetric around the diagonal. On the other hand, Δste50 pairs exhibit asymmetry, 

where daughters appear more responsive than their mothers.  

In Δste50 the mean response of young cells, defined as cells that have never before being 

induced, is significantly larger than those of old cells, defined as those that have divided at 

least once before being induced (Figure 3-10) (KS 2 sample test, p-value = 8.23e-3). The 

error bars indicate the standard error of the mean. This data suggests that the enhanced 

heterogeneity in Δste50 presented in Figure 3-3 is is linked to division processes and/or 

aging.  
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Figure 3-10 Comparison of response between young and old cells in Δste50: Cells with higher replicative 

age are less likely to respond in Δste50 cells (KS 2 sample test, p-value = 8.23e-3).  

 

For the rest of the strains that didn’t exhibit such asymmetry we used the spearman (ranked) 

correlation coefficient to quantify the degree of heritability of response capacity. As seen in 

Figure 3-11, the correlation coefficients were different for each strain, quantitating the 

qualitative differences pointed out in Figure 3-9. In order to test whether these values are 

statistically significant we compared them to the correlation coefficient of an equal number 

of randomly selected pairs from the same population. This randomization was repeated one 

thousand times, and each time the correlation coefficient measured. The distribution of these 

correlation coefficients is shown in blue in Figure 3-11. Note that the randomization was 

performed separately for each strain, however since the distributions were the same, only one 

is shown in Figure 3-11 for visual clarity. The 95% confidence intervals (black bars) were 

calculated using Fisher’s Z transformation 132 and a Z-test performed between MD and 

randomized pairs to measure significance of the difference: in all strains MD pairs were 

significantly (p-value < 0.01) more correlated than random pairs. These results show that a 

significant portion of the capacity to respond to pheromone is non-genetically inherited in 
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Yeast, an observation that parallels previously reported accounts of non-genetic heritability 

of cellular state in higher eukaryotes 63,118.  Comparison of strains against each other showed 

that Δfus3, Δptp2, and Δmsg5 were statistically different from WT (p-value < 0.05), while 

Δfus3 was significantly different from any of the other strains (p-value < 1e-4). The reduction 

in correlation in Δmsg5 and Δptp2 relative to WT can be associated with their roles as 

negative regulators of the pathway. It is well understood that negative feedback on a 

signaling cascade improves signal transmission by reducing the variability or “noise” in that 

system 6102. It is therefore predictable that variability of the output of a signaling pathway 

will increase upon removing a negative regulator of the pathway, as is the case with Δptp2, 

and Δmsg5.  This increased variability is reflected in the average difference in response 

between MD pairs and therefore a reduction in the correlation coefficient. In the case of 

Δfus3 however, the underlying mechanism is not as obvious since FUS3 is the main kinase in 

the pathway and responsible for phosphorylating many proteins of various functions. In the 

following section we use the lineage tracking capacity of our platform to measure cell cycle 

periods to address the specific regulatory role of FUS3 that may explain the increased 

heritability of Δfus3 mutant.  
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Figure 3-11 Comparison of response correlation in MD pairs of different strains: Quantification of the 

correlation between mother and daughter response for all strains shows that MD pairs in all strains (black) are 

significantly more correlated than those of random pairs within the population (blue). This implies that the 

capacity to respond to pheromone is non-genetically inherited. Furthermore, deletions in the pathway result in 

differences between the degrees of this correlation. Namely, Δfus3 shows significant increase in heritability 

relative to all other strains. 

3.3 Cell cycle as a source of variability in signaling capacity 

It has previously been reported that cell cycle asynchrony accounts for about half of the 

variability observed in pheromone signaling 9. This variability is associated with CDK28 

inhibition of MAPK signaling after START (see Introduction) 44,46. While previous works 

control for this variability by synchronizing the cells via chemical inhibition of the cell cycle 

6,9,133 our platform allows for in silico synchronization of the cells during the regular course 
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of the cell cycle. This in turn facilitates the screening of various mutants for the role of the 

deleted protein in cell-cycle mediated MAPK suppression.  

Suspecting that the increase in heritability in Δfus3 may be linked to the cell-cycle influence, 

we compared the correlation coefficient of pairs that were induced at progressively longer 

time points into their cell cycle (See Figure 3-12). While WT pairs exhibited a drop in 

correlation as time passed on, Δfus3 cells appear to maintain high correlation irrespective of 

the progression of the two cells further into the cell cycle. Note that for pairs that were 

induced immediately after the pair were born (i.e. the first data point on Figure 3-12), both 

WT and Δfus3 show the same high degree of correlation. This observation suggests that 

heritability in the two strains is the same at division.  However, in WT the progression of the 

cell cycle degrades this initial correlation, whereas Δfus3 seems to be immune to this effect.  

  

Figure 3-12 MD response correlation drops as the cell cycle progresses in WT (blue) while in Δfus3 (red) 

it remains the same: This observation suggests that the high heritability of signaling capacity in Δfus3 may be 

due to its immunity from de-correlative effects of cell cycle progression on signaling observed in WT. The cyan 

and green curves show the correlation of unrelated pairs as control. The error bars measure the 95% confidence 

interval from bootstrapping analysis.  
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As previously mentioned, the periods of old cells in the Δfus3 population were significantly 

longer than any other strain screened, while for the young cells, periods were the same length 

in all strains. The same experiment was run on WT and Δfus3 strains alone, producing more 

data points for the cell cycle measurements, summarized in Figure 3-13. Aside from longer 

periods of old cells under regular growth conditions, Δfus3 periods also differ from WT 

under pheromone condition: while WT shows a bi-modal distribution, where some of the 

cells do not arrest and divide with regular periods; the Δfus3 population is uni-modal and the 

non-arresting population less distinct from the arresting population as is the case in WT (p-

value = 2.3e-6, KS 2 sample test). 

 

Figure 3-13 Comparison of WT and Δfus3 periods under normal and induced conditions: As before, black 

and grey lines show the periods of old and young cells, respectively, under 0nM of pheromone while the blue 

curve shows the periods of cell cycles which experienced a transient pulse of 100nM pheromone. Comparison 

of black and grey lines between WT and Δfus3 cells shows that old Δfus3 cells appear to grow more slowly 

than in WT. Furthermore, comparison of blue curves between the two strains shows that WT cells exhibit a 

more pronounced bi-modality than Δfus3.  
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Given that pheromone signaling is inhibited after START, we hypothesized that the non-

arresting cells in WT must be those that are already committed to START and have initiated 

their S phase. In order to confirm this, we synchronized the cells “in silico” and measured 

response as a function of the cell phase.  The cell phase was measured by the number of 

minutes the cells were into their cell cycle when induced. Figure 3-14 shows the median 

transcriptional response of cells as a function of their cell phase at the time of induction. It is 

clear that there is a transition about 50% of the way through the cell cycle in WT, where 

cells’ response is inhibited. In comparison, Δfus3 cells show a much more uniform level of 

response throughout the cell cycle. 

 

Figure 3-14 Response as a function of cell phase upon induction: Signaling is inhibited by the S phase and 

therefore a reduction in response is expected for cells that are induced later in their cell cycle. However, Δfus3 

cells show reduced inhibition of signaling during this latter phase of the cell cycle as compared to WT. Errors 

bars are standard error of mean at each point.   
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This reduced inhibition of the MAPK during S phase also manifests itself in the arresting 

phenotype of Δfus3. As shown in Figure 3-15, while WT cells fully arrest when induced in 

the first 50% of their cell cycle, they sufficiently suppress pheromone signaling to avoid 

arrest when committed to S phase. Unlike WT, Δfus3 cells still arrest in S phase (although to 

a lesser extent than in G1) as their periods are longer compared to the average period in 

regular growth conditions (dashed lines). These observations account for the noted absence 

of the distinct bimodality of periods in Δfus3 that was seen in WT (Figure 3-15, blue lines). 

 

Figure 3-15 Cell cycle arrest as a function of cell phase upon induction: Signaling is inhibited by the S 

phase implying that arrest only occurs in cells induced in G1 phase (blue curve, WT). In Δfus3 however, cells 

undergo moderate arrest, despite being in the S phase (red curve, >70% through the cell cycle.) The error bars 

signify the standard error of the mean.  
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The combination of data shown in Figure 3-13,  Figure 3-14 and Figure 3-15 suggest that 

FUS3 promotes transition from G1 to S. In the absence of FUS3, this transition is weakened, 

resulting in longer periods in old cells that normally have a shorter G1 period compared to 

young cells (Figure 3-13). This impacts pheromone signaling, as it implies a weaker S phase 

and therefore a less pronounced inhibition of MAPK signaling which normally occurs in S 

phase (Figure 3-14). In the absence of adequate inhibition of MAPK in S phase, more Δfus3 

cells arrest in S phase as a consequence of MAPK signaling (Figure 3-15). Finally, the 

reduction in MAPK inhibition by the cell cycle in Δfus3 cells results in the reduction of 

signaling variability which is imposed by the cell cycle in WT (Figure 3-12), explaining 

increased levels of heritability in Δfus3 cells (Figure 3-11).  

The main role of FUS3 in the context of cell-cycle regulation is thought to be 

phosphorylation and activation of Far1 and therefore the promotion of arrest upon 

pheromone induction 134. However, potential for a parallel proliferative function of FUS3 has 

also been suggested in two previous studies 40,43 which are substantiated by our findings. 
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Chapter  4: Discussion 

Synopsis 

Results described above show not only that the capacity to respond is non-genetically 

inherited in yeast, but that the degree of this heritability is affected by the presence and 

activity of pathway components. In the absence of STE50 there is a dramatic de-correlation 

between the response of mothers and daughters, whereas in the absence of FUS3, the 

heritability is dramatically enhanced. Here I discuss in more detail what the underlying 

mechanisms pertaining to each of these two strains may be. Moreover, I will discuss how our 

data complement the existing framework for non-genetic mechanisms of inheritance in 

eukaryotes.  

 

4.1 FUS3 and the cell-cycle regulation of MAPK pathway 

The increase in correlation in Δfus3 cells was linked to the cell cycle modulation of signaling. 

We found that in the absence of FUS3, even in normal growth conditions, the cell cycles of 

old cells were longer than in WT strain, making them similar to the periods of young cells 

(Figure 3-13). Furthermore, the inhibition of signaling by the cell cycle during S phase was 

attenuated in Δfus3 (Figure 3-14, Figure 3-15). While Figure 3-14 and Figure 3-15 were 

attained by in silico synchronization of the cells, we confirmed these results by doing a 

chemical synchronization of the cells (using hydroxyl urea) prior to pheromone stimulation 

and got the same results (Figure 4-21).  
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Figure 4-1 Chemical synchronization using Hydroxy Urea (HU): (A) HU results in arrest at S phase of 

the cell cycle. Schematic of 5 different experiments aimed to capture synchronized cells in different 

phases of the cell cycle when induced by alpha factor (αF). Induction took place at 0 (red), 58 (cyan), and 

81 minutes (purple) after the end of HU treatment, roughly corresponding to S, G1, and G2/M phases of 

the cell cycle. (B) Confirming previous results from in silico synchronization of cells, WT cells show 

variability in response in different phases of the cell cycle, whereas Δfus3 response is insensitive to the cell 

phase when induced.  

 

Interestingly we only observed S phase inhibition of MAPK in old cells (i.e. cells that have 

divided at least once before induction). As is seen in Figure 4-2 young cells’ transcriptional 

response does not appear to be significantly affected by the cell cycle. Consequently, in the 

absence of FUS3, the response vs. phase profile of old cells is very similar to that of the 

young cells. This similarity between young and old cells, which is a consequence of de-

sensitization of old cells’ signaling to cell cycle progression, manifests as more sustained 
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correlation between mothers and daughters and hence a high degree of heritability in MAPK 

signaling response. In comparing Figure 4-2 with Figure 3-154, it should be noted that the 

measurement of response over the course of growth of a young cell is influenced by the 

significant change in cell size that takes place in young cells. This is due to the fact that 

average mCherry intensity (corresponding to mCherry concentration) is used as our measure 

of response. Since the confounding effects of size affect the measurements in the earlier part 

of the cell cycle, the conclusions above should still hold as they concern relatively high levels 

of expression in the later part of the cell cycle, in S phase.  

 

Figure 4-2 Response as a function of cell phase upon induction in young cells: Unlike old cells, young cells’ 

response to pheromone is not as sensitive to cell phase at induction since the response inhibition in S phase is 

not observed in either WT or Δfus3.  

The increased cell cycle periods in regular growth conditions, and the reduced capacity of S 

phase to suppress pathway activity, point to a potential role of Fus3 protein in the promotion 

Δfus3
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and maintenance of the S phase. While this hypothesis contradicts evidence for the primary 

role of Fus3 as mediating the inhibition of START 86,134, it corroborates evidence for a 

parallel role of FUS3 as a positive regulator of the cell cycle 40,43. In 1999, Cherkasova et al. 

suggest that Fus3p and Kss1p (i.e. active or phosphorylated forms of the species) on the one 

hand promote G1 arrest by inhibition of CLN1, CLN2 and CLB5 cyclins and on the other 

counteract G1 arrest by increasing CLN3 and PCL2 expression that promote budding. They 

propose that this proliferative function of Fus3 is to promote recovery from pheromone 

arrest. We showed that even in the absence of pheromone signaling deletion of FUS3 impacts 

regular cell cycle progression, specifically in old cells.  In 2003, Cherkasova and colleagues 

demonstrated evidence for Fus3 involvement in proliferation 43. However the mechanisms 

they suggested did not require Fus3p (in it’s inactive form), and involved a coupling of the 

MAPK pathway with the Ras/cAMP pathway. They suggest that Fus3 (and Kss1) regulate 

cAMP levels, and that in their absence, cAMP levels rise and long-term survival deteriorates. 

The suggested mechanism of action is through regulation of Cdc25 by Fus3/Kss1, which is a 

guanine nucleotide exchange factor (GEF) for the Ras protein. Our data suggests that cell 

cycle progression is only slowed in the old cells, which provides insight into why only long-

term survival is affected.  

 

4.2 Asymmetric division in yeast and response asymmetry in Δste50 

In Δste50 we observed dramatic heterogeneity in the population that has previously been 

unreported.  While most cells do not respond to pheromone, a small population of cells 

responds as highly as other non-sterile mutants like Δfus3 (Figure 3-5). The comparison of 

response of MD pairs points to the division event and replicative age as the source of this 



 76 

heterogeneity (Figure 3-9 and Figure 3-10). Furthermore, neither a longer stimulation nor 

stimulation with 2 consecutive pulses (with a rest in between) increased response in the old 

population.  While revealing the mechanism of this asymmetry is not within the scope of our 

current data we speculate on two mechanisms that could account for the Δste50 phenotype: 

(1) the inherent asymmetry in cell cycle progression between mothers and daughters, or (2) 

the inherent asymmetry in the distribution of pathway molecules at division.  

The cell cycle inhibits signaling through disruption of the localization of Ste5 at the plasma 

membrane 46. Ste5 is a scaffold protein that brings Ste11 (the first of the 3 MAPK’s) to the 

membrane to be phosphorylated by Ste20 3, while Ste50 promotes affinity between Ste11 and 

Ste20 135. Furthermore, it has been proposed that the delayed G1-phase in daughters is 

maintained due to repression of CLN3 expression by daughter-specific factors Ace2 and 

Ash1 84,136. Thus, reduced CDK activity in young cells may lead to lower cell cycle 

inhibition of the pheromone signaling. The consequence of this for Δste50 cells that already 

have a dramatically reduced Ste11 connectivity to Ste20 may be that only some young cells 

manage to establish connection at the membrane and initiate the cascade. What sets these few 

responsive cells apart from the majority of young cells that do not respond is not clear. The 

up-regulation of Ste11 or Ste20 have been shown to rescue the Δste50 phenotype 135,137. It is 

possible that stochastic variability in the numbers of these molecules accounts for why 

certain Δste50 cells respond while others don’t. This hypothesis is supported by the 

observation that cells with longer periods right before induction had a higher likelihood of 

response (see Figure 4-3). The reasoning is that these cells would have had more time to 

grow their pool of Ste11 or Ste20 via basal production and would therefore be more likely to 

respond. 



 77 

 

Figure 4-3 The length of the last period before induction influences response: Most Δste50 cells do not 

respond to pheromone, irrespective of their replicative age. However, cells with a long cell cycle preceding 

induction, have a higher chance of response (blue curve). Error bars signify standard error of the mean and the 

numbers indicate sample size at each point.  

Alternatively, there is considerable evidence in the literature for asymmetric segregation of 

molecules with a bias towards daughter cells. For example the protein Cdc42, which is 

positioned upstream of Ste50 in the membrane and is implicated in facilitating Ste20 

phosphorylation 135,138, has been shown to be asymmetrically segregated towards the shmoo 

tip and the bud site during division 139. Also, Geyer et al. reported that Cbk1, a protein kinase 

that controls daughter-specific production of several proteins, is functionally restricted to 

daughter cells and interacts with pheromone pathway proteins Ste5 and Ste50 140-‐143. 

Δste50
Δste50
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It is important to note that cell cycle effects and asymmetric segregation of molecules are not 

necessarily independent processes and that one may affect the other.  For instance, daughter-

specific localization of transcription factors result in longer G1-phase in daughters compared 

to mothers as mentioned earlier 84,136. In another example, Gehlen et al. showed that a delay 

in G2/M transition increased plasmid segregation into daughters at division which would be 

otherwise restricted and asymmetric due to nucleus geometry 144.  

4.3 Stochastic expression and heritability 

We showed cell cycle regulation of MAPK and asymmetric division to be important 

contributors to heritability of signaling and variability in signaling at large. Much effort has 

gone into understanding of non-genetic variability from stochastic gene expression as 

reviewed in the introductory chapter. While our methodology did not include dual-reporter 

assays used in many of these studies 60, aspects of our data address such questions. For 

example, mutants Δmsg5 and Δptp2 showed significantly lower correlation between mothers 

and daughters (Figure 3-11), and exhibited higher variability than WT at the population level 

in both pre-induction (basal) and post induction (activated) states (Figure 3-3). Given the role 

of both these proteins as a negative regulator of the pathway, these results echo the well-

known influence of negative feedback as an attenuator of stochastic noise 102. Reduction in 

heritability in these strains may therefore be attributed to increased stochastic variability in 

signaling and expression that act to “scramble” any inherited similarities between two related 

cells.  

While intrinsic noise has been shown to act at time-scales much shorter than a single cell 

cycle 113, extrinsic variation was found to have time-scales that are larger than a cell cycle. 

As a result of this, extrinsic variability amongst a population can be inherited during division, 
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accounting for heritability seen in heterogeneous populations like in our data, or two other 

previous reports 63,118.  Both of these studies, one on the GAL4 network in yeast and the 

other on TRAIL signaling in Hela cells, have argued that stochastic transcriptional bursts 

account for the gradual loss of heritability over multiple generations. Indeed our data also 

capture the reduction in correlation in response between cell pairs, as the genealogical 

distance between them grows larger (Figure 4-4). Recent suggestion that stochastic division 

of molecules can account for observed variability in the population provide an alternative 

mechanism to the stochastic bursting hypothesis 112,114. More detailed experimental 

observations are therefore needed to clarify the relative contribution of each of these possible 

mechanisms. While single molecule, dynamic, live cell imaging has been proposed as the 

experimental solution to this issue 112, there might be potential for our platform to address the 

problem through indirect means as discussed below. 
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Figure 4-4 Correlation drops as genealogical distance grows: The correlation between mother-daughter 

(MD) and mother-grand daughter (MGD) pairs drops linearly with every division in either the ancestor or the 

descendant (x-axis) prior to induction. This is in line with a model where each division introduces some 

stochastic variability to a cell. The data is only shown for Δfus3 where cell cycle effects are minimal. Error bars 

signify standard deviation of distribution of correlation coefficients resulting from bootstrapping. 

Figure 4-4 shows how the correlation between cell pairs drops as the genealogical distance 

between them grows. Note that this data is only shown for Δfus3 in which cell cycle effects 

are minimal compared to other strains and hence the decay in correlation is expected to be 

mainly from stochastic sources. The x-axis indicates the number of divisions either the 

ancestor or the descendent cell underwent before induction and the error bars indicate one 

standard deviation of the distribution of correlation coefficients derived from bootstrapping.  
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It is important to note that the stochastic segregation of molecules at division alone cannot 

account for our observations: In the event that stochastic division of molecules is the primary 

source of variability in a cell population, the correlation between a mother cell and it’s 

daughter would have to be negative. Our data clearly show a positive correlation coefficient 

between mother-daughter pairs. Despite this, the act of division could be indirectly 

responsible for the correlation decay: each division involves the dilution of cellular 

components between the mother and the newly formed bud; this reduction in molecular 

numbers needs to be reverted during cell growth to replenish the levels of each molecule to 

the required concentration. Since expression is an inherently noisy process, this could 

account for reduced correlation with every division. 

The linear drop in correlation coefficient (Figure 4-4) is consistent with this simple model. 

Moreover, the data suggests that when a mother cell undergoes replenishment of its 

components to recover from diluting effects of a division, its impact on the MD correlation is 

not as significant as when a bud replenishes after being born. This can be seen by comparing 

the slope of each line on Figure 4-4 to the distance separating the MD and MGD lines (blue 

and green respectively). While in the MGD pairs, two buds have had to replenish themselves 

after being born, in the MD pairs only one bud was required to do so. Therefore the distance 

between the two lines quantifies the effect of a single bud growth on de-correlation.  The 

slope of each line on the other hand, quantitates the drop in correlation as a result of a mother 

cell undergoing growth/replenishment. The distance between the two lines is about twice as 

large as the slope of the two lines. This difference could be indicative of the larger growth a 

bud needs to undergo relative to a mother cell. The longer time spent in G1, and the larger 
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increase in volume could result in a more significant perturbation to the initial concentration 

than that experienced by a mother cell.  

In light of these observations, the stochastic synthesis models proposed by others before 63,118  

could be elaborated to link stochastic expression with cell cycle progression and cell growth. 

However, to experimentally support such a model would require a control condition where 

cell division is blocked, in order to evaluate whether a dilution at division is necessary for de-

correlation or whether chronological aging alone can account for the de-correlation.  

In summary, our results suggest that aside from cell cycle regulation of the pathway and 

asymmetric division of molecules at division, even stochastic synthesis may be directed and 

influenced by the division process, affecting non-genetic heritability in cells. This 

complements the existing models by recognizing that synthesis in mothers and daughters 

may occur to different extents and therefore affect each cells’ “memory” of it’s state in 

previous generations differently.  

 

4.4 Conclusion 

We have combined large scale microfluidics and time-lapse microscopy with automated 

image analysis to develop a unique platform that enables high-throughput lineage tracking 

and single cell measurements of multiple S. cerevisiae strains. With 128 experimental 

chambers in one device our system allows the tracking of thousands of cells and their 

lineages across 8 different strains exposed to up to 16 different conditions that are mixed 

from up to 8 chemical solutions 1. Moreover, integration of robust high resolution 

microscopy makes our platform suitable for studying dynamic changes in protein 

concentration and subcellular localization across generations 58. In addition to generating 
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single cell data on gene expression and genealogical relationships we can also retrieve 

quantitative information on cell cycle periods and chronological and replicative age. The 

combination of all these features allows for addressing biological questions that were not 

tractable using previously reported platforms57,86,145,146.  

We have applied this lineage tracking technology to investigate sources of cell-to-cell 

variability of the mating response in cell cycle and cell history. We have measured pathway 

activity upon pheromone exposure in thousands of cells and showed that responses of 

mothers and daughters were more correlated than responses between randomly chosen cells 

in all strains suggesting that the response capacity is non-genetically inherited by the next 

generation Figure 3-11. Moreover we showed that deletions in the pheromone pathway 

modulate the degree of this inheritance. On the one hand Δfus3 exhibits heightened 

heritability of response capacity relative to WT and all other strains, while on the other hand, 

Δste50 shows dramatic un-correlated asymmetry between the mothers’ and daughters’ 

response where daughter cells show superior capacity to respond compared to their mothers.  

The source of heterogeneity in monoclonal populations has been subject to heavy 

investigation. Stochastic gene expression 116,147,148 and more recently stochastic segregation 

of molecules at division 112,114 have been used to provide quantitative models of this 

phenomena. There has been less emphasis on studying the role of cell cycle on cell-to-cell 

variability despite reports that the cell cycle accounts for about half of the variability in the 

mating response 9. We’ve shown that deletions in the pathway can impact cell-to-cell 

variability indirectly through modifying the coupling of the signaling network with that of 

the cell cycle and either increasing or decreasing the pathway sensitivity to pre-existing 

variability between the cell cycle states in the population. Furthermore, we observe that the 
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removal of Ptp2 and Msg5, which are two phosphatases that are activated by Fus3 and 

therefore act as a negative feedback loop in the pathway, increase variability between MD 

pairs (Figure 3-11) making them less correlated than WT and other strains.  

There are practical implications of understanding the source of variability in signaling 118,122. 

These range from applications in synthetic biological circuits to heterogeneity in pathological 

populations where noise is often desired to be minimized in order to achieve higher 

predictability or perhaps improved response to a drug 118. As the pheromone pathway is a 

highly homologous prototype for many MAPK signaling pathways in higher organisms 

including humans, our results may implicate future strategies for targeting these pathways for 

therapy 149. 
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