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Abstract

In this thesis, we explore the issue of latent correlation structure in spatial and other

correlated systems. Firstly, we propose a class of prior distributions on decompos-

able graphs, allowing for improved modeling flexibility. While existing methods

solely penalize the number of edges, the proposed work empowers practitioners to

control clustering, level of separation, and other features of the graph. Emphasis

is placed on a particular prior distribution which derives its motivation from the

class of product partition models; the properties of this prior relative to existing

priors is examined through theory and simulation. We then demonstrate the use of

graphical models in the field of agriculture, showing how the proposed prior distri-

bution alleviates the inflexibility of previous approaches in properly modeling the

interactions between the yield of different crop varieties.

Secondly, we describe how spatial dependence can be incorporated into sta-

tistical models for crop yield along with the dangers of ignoring it. In particular,

approaches that ignore this dependence suffer in their ability to capture (and pre-

dict) the underlying phenomena. Prior distributions are developed to accommo-

date the spatial non-stationarity arising from distinct between-region differences in

agricultural policy and practice. As a result, the model developed has improved
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prediction performance relative to existing models, and allows for straightforward

interpretation of climatic effects on the model’s output.

Lastly, we propose a novel approach to modeling nonstationary spatial fields.

The proposed method works by expanding the geographic plane over which these

processes evolve into higher dimensional spaces, transforming and clarifying com-

plex patterns in the physical plane. By combining aspects of multi-dimensional

scaling, group lasso, and latent variable models, a dimensionally sparse projection

is found in which the originally nonstationary field exhibits stationarity. Following

a comparison with existing methods in a simulated environment, dimension expan-

sion is studied on a classic test-bed data set historically used to study nonstationary

models. Following this, we explore the use of dimension expansion in modeling

air pollution in the United Kingdom, a process known to be strongly influenced by

rural/urban effects, amongst others, which gives rise to a nonstationary field.
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Chapter 1

Introduction

While introductory statistics courses often begin with the topic of summarizing and

visualizing single variables, attention inevitably turns to discussion of the relation-

ship between two or more variables. Starting with correlation, focus quickly shifts

to regression, classification, and other techniques. All of these tasks, however, rely

on having several variables which are related in such a way that we can express

their relationship mathematically. Take for example weight and height. If we are

told a person’s height we can not guess their weight exactly, but it allows us to

better estimate a person’s weight. In this way we say that while there is no perfect

formula relating height to weight, the variables are correlated. Formally, we define

the correlation (or more formally, Pearson’s correlation coefficient) between two

random variables X and Y with expected values µX and µY and standard deviations

σX and σY , respectively, as:

ρX ,Y = corr(X ,Y ) =
cov(X ,Y )

σX σY
=

E(X−µX)E(Y −µY )

σX σY
.
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Intuitively, if high values of X correspond to high values of Y , the two variables

will be highly correlated, with a value close to 1. If high values of X correspond to

low values of Y , the two variables will be negatively correlated, with a value close

to −1. If there is no relation between values of X and Y , the correlation coefficient

will be 0.

We may calculate an empirical version of Pearson’s correlation coefficient, of-

ten notated r, by substituting empirical means and standard deviations for the pop-

ulation versions above.

rX ,Y =
1

n−1

n

∑
i=1

(
Xi− X̄

sX

)(
Yi− Ȳ

sY
.

)

Correlation is closely related to the concept of independence, which intuitively

means that the outcome of one event does not influence the outcome of a second

event. In fact, if two random variables X and Y are independent, then ρX ,Y = 0.

Note that while independence implies zero correlation, the converse is not true,

as Pearson’s correlation coefficient only captures linear relationships. While the

explicit definitions above may seem overly pedantic, they are worth stating simply

for the realization that a large portion of methodological development in the field of

statistics (and this thesis!) is focused on this simple notion of correlation, extended

to complex systems.

When dealing with data which arrives sequentially in time, or across a spa-

tial domain, observations will not be independent. For example, the average tem-

perature tomorrow is largely influenced by the temperature today. Likewise in

space, we expect the amount of precipitation which falls at the University of British

Columbia to be related to the amount which falls in downtown Vancouver, as the
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two locations are only 10km apart. As such, observations which are obtained spa-

tially or temporally must be modeled appropriately, as they will not satisfy the

independence assumption required by many methods such as standard linear re-

gression.

1.1 Structure in Correlated Systems

The way in which correlation arises in space and time is structured, a phenomena

which is intuitively obvious. Using again the example of average temperature, the

value tomorrow is likely to be largely influenced by the value today. However, the

temperature tomorrow is likely less influenced by the temperature a year earlier.

In this way, we intuitively understand that the correlation between values in time

decreases as more time separates the observations. In contrast, sometimes patterns

are cyclical. For example, whether a house is decorated with Christmas lights is

uncorrelated with whether that house had Christmas lights a month earlier. How-

ever, it would be highly correlated with whether the house had Christmas lights

365 days earlier. Similarly, whether a person attends a church service on Sunday

is only weakly correlated with whether that person attended church the day before,

on Saturday. A person’s attendance of a Sunday church service would be more

highly correlated with their presence or absence in church a week previous.

Similarly in space, we expect locations which are closer together to have more

similar values. For instance, the temperatures in Seattle, WA and Vancouver, BC,

or Boston, MA and Providence, RI are likely to be quite similar on a given day. In

contrast the temperatures in Seattle, WA and Boston, MA are less likely to be close.

Similarly for Vancouver, BC, and Providence, RI. Likewise with time, correlation

is not always perfectly connected to the amount of spatial separation (as we will
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detail later in our discussions of nonstationarity). For example, we would expect

the proportion of people living in apartments to be more alike in cities separated by

hundreds or thousands of kilometers than a city and one if its neighboring (lower-

density) suburbs.

Several methods exist for mathematically encoding this correlation structure.

The first, through graphical models, allows us to specify which variables (loca-

tions, or time points for instance) are correlated, and which are not. Through a

graphical model we can encode, for example, the knowledge that given all neigh-

boring counties the poverty rate in one county is independent of all other counties.

Another method for mathematically expressing structured correlation is by assign-

ing it functional form. This is the technique often taken in time series, for example

in AR models, which mathematically express the distribution of the current value

given the set of previous values. The two techniques of graphical models and cor-

relation functions actually go hand in hand. Graphical models encode the structure

of zero/non-zero correlation between variables, whereas correlation functions can

express the value of correlation between variables which are correlated.

1.1.1 Graphical Models

Graphical models are a convenient way to encode independence relationships be-

tween variables in a multivariate distribution. This convenience derives from clear

visualization techniques, as well as straight-forward computation of conditional

and marginal densities [55]. Undirected graphical models, or Markov random

fields, have a simple interpretation regarding independence: given a set C, nodes A

and B are conditionally independent if all paths between A and B pass through the
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set C. Formally,

P(A∩B|C) = P(A|C)P(B|C)

This class of graphical models is often used in spatial statistics, imaging, and

physics to represent for example the independence relationships between regions,

pixels, and molecules, respectively. Undirected graphical models used in this way

have a direct correspondence with the inverse covariance matrix, Σ−1, in that a lack

of an edge between these variables in the graphical model (indicating conditional

independence) leads to a zero in the precision matrix Σ−1.

Graphical models may also have directed edges, which allows for the modeling

of more advanced relationship, including causation and deterministic relationships.

For our purposes, however, we focus on undirected graphical models.

We now introduce some notation; see, for example Dawid and Lauritzen [23],

Lauritzen [55]. Let G = (V,E) be a graphical model with vertices or nodes V =

{1, . . . ,n} and pairwise edges E. The pair of nodes {i, j} ∈ V are adjacent or

neighbors if (i, j) ∈ E, and a subset C ⊂V is said to be complete if all its elements

are adjacent to each other. A cycle is a sequence of unique adjacent nodes, where

the first node is connected to the last node. In this way a cycle represents the

path starting at a given node, through a sequence of unique nodes, and returning

to the starting location. A cycle is chordless if all pairs of non-adjacent nodes in

the cycle are not neighbors. In other words, a chordless cycle has no chord, or

shortcut. A graph with no chordless cycles of length greater than two is said to be

chordal, or decomposable. As will be shown in Chapter 2, decomposable graphs

have several unique properties, one of which is that the likelihood of the graphical
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model may be factorized in a computationally efficient way. Specifically, if P

satisfies the conditional independencies implied by a decomposable graph G , then

the likelihood of the graphical model specified by P can be factorized according to

the graph’s cliques and separators

p(y|G ,θ) =
∏

nc
i=1 p(yCi |θCi)

∏
ns
j=1 p(yS j |θS j)

where θ is a quantity parameterizing the graphical model P over the graph G and

satisfying some consistency conditions with respect to G ([23]).

Undirected graphical models often arise in spatial statistics, where one is in-

terested in modeling counts, proportions, or some other quantities in neighboring

regions. Each region, or areal unit, has a measurement attached to it, and corre-

lation is typically modeled through the neighborhood structure. Specifically, re-

gions which are physically neighbors are also neighbors in the undirected graph,

or Markov random field. Hence given its neighbors, a given region is independent

of all other regions.

When conducting Bayesian inference on undirected graphical models, one must

assign a prior distribution over the space of all possible graphs G for a given set of

variables, or nodes V . For a handful of variables, one may assign a prior probability

to each individual graph. However, as the number of graphs scales exponentially

with the number of nodes, automated methods must be found. Current approaches

have been limited in their ability to accommodate varying forms of prior infor-

mation on the graph. For instance, in an effort to encourage interpretable graphs,

the standard approach has been to penalize the number of edges (conditional de-

pendencies) in the graph. However, many situations exist where one might expect
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variables to be clustered together and the graph to exhibit block structure. At the

moment no such prior distribution exists to handle this problem. In Chapter 2, we

propose a class of prior distributions motivated from the class of product partition

models which will allow improved flexibility in the specification of prior informa-

tion on the graph.

1.1.2 Correlation Functions

We may also mathematically encode correlation structure through functional forms.

For example, consider a sequence of observations X1,X2, . . . ,XT , modeled with the

class of autoregressive (AR) models. A simplified AR(p) model may be written as

Xt =
p

∑
i=1

βiXt−i + εt

where β1,β2, . . . ,βp are parameters of the model, and εt is the noise, or error, term.

Through this form, we have implicitly defined a correlation function. For an AR(1)

process, it is

corr(Xt ,Xt−k) = β
k
1 .

Correlation functions describe the correlation between random variables at differ-

ent points in space or time. Typically, as with the AR example above, the correla-

tion decreases with space or time. Or, more generally, the correlation is a function

of distance in space or time, although in space it can be also modeled as a function

of the vector between locations.

In both time-series and spatial modeling, the value of the correlation modeling

becomes particularly obvious when one turns to prediction. Because nearby obser-
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vations in space or time are similar to each other, one may use the values at nearby

points to predict at the unobserved location or time. In Chapter 4, we discuss a

model for crop yield which uses this basic idea to stabilize prediction. Subse-

quently, Chapter 5 explores more complex correlation functions where modeling

correlation as a function of spatial distance is no longer justified.
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Chapter 2

Bayesian Clustering in

Decomposable Graphs1

2.1 Introduction

This chapter is concerned with the inference of the conditional independence graph

G of a multivariate random vector Y of dimension n, a problem sometimes re-

ferred to as structure learning. We focus here on undirected decomposable graphs,

whose popularity is mainly due to the tractable factorization they allow for the

likelihood ([23, 55]); related work for directed graphical models can be found in

[53]. Learning the conditional independence graph G is an onerous task due to

the large number of graphs on a set of n nodes, or variables. It is possible us-

ing optimization methods to find the graph which best fits the data according to

some metric [31, 61, 88]; alternatively Bayesian model averaging may be used to

1A version of Chapter 2 has been published. Bornn, L., Caron, F. (2011) Bayesian Clustering in
Decomposable Graphs. Bayesian Analysis. Vol. 6, No. 4, pages 829-846. [9]
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accommodate uncertainty in the estimated graph, or maximum a posteriori estima-

tion may be used to select a given model from the posterior over graphs. Such an

approach relies on a prior distribution π(G ) over the set of decomposable graphs

of a given size; through Bayes theorem, this prior is updated based on the data to

give an a posteriori estimate of the distribution over graphs.

Current approaches have been limited in their ability to accommodate varying

forms of prior information on the graph. For instance, in an effort to encourage

interpretable graphs, the standard approach has been to penalize the number of

edges (conditional dependencies) in the graph. However, many situations exist

where one might expect variables to be clustered together and the graph to exhibit

block structure. At the moment no such prior distribution exists to handle this

problem. Our contribution in this thesis is to propose a class of prior distributions

motivated from the class of product partition models, which will allow improved

flexibility in the specification of prior information on the graph.

The field of agriculture is particularly susceptible to the application of graph-

ical models. Due to large spatial domains as well as multifarious crop varieties,

it is valuable to have models which both handle the complexity of the biophysical

process as well as allow straightforward interpretation. In particular, one might

examine the set of zero/non-zero correlations between crop varieties’ yields, using

the presence or absence of edges to make decisions regarding crop management,

marketing, and insurance policies. In addition, due to small sample sizes in many

agricultural applications, the choice of prior distribution becomes particularly im-

portant.

10



2.2 Bayesian Inference on Decomposable Graphs

We begin with a brief overview of graphical models, following the exposition in

[23]; see also [55] for further details on graphical models. Let G = (V,E) be

a graphical model with vertices V = {1, . . . ,n} and pairwise edges E. The pair

of nodes {i, j} ∈ V are adjacent if (i, j) ∈ E, and a subset C ⊂ V is said to be

complete if all its elements are adjacent to each other. A complete subgraph that is

maximal (i.e. not contained within another complete subgraph) is called a clique.

An ordering of the cliques of an undirected graph, (C1, . . . ,Cnc) is said to be perfect

if the vertices of each clique Ci also contained in any previous clique C1, . . . ,Ci−1

are all members of one previous clique; that is, for i = 2,3, . . . ,nc

Hi =Ci∩∪i−1
j=1C j ⊆Ch

for some h∈{1,2, . . . , i−1}. The sets Hi, i= 1, . . . ,nc−1 are called separators. We

write S1, . . . ,Sns for the non-empty separators (some might appear multiple times).

If an undirected graph admits a perfect ordering it is said to be decomposable.

We associate to each vertex i a random variable Yi, with realizations yi. For

A ⊆ V , let YA = {Yi|i ∈ A}. A distribution P over V is Markov with respect to G

if, for any decomposition (A,B) of G , XA is independent of XB given XA∩B. The

widespread use of decomposable models is due to the resulting factorization of

densities. Specifically, if P satisfies the conditional independencies implied by a

decomposable graph G , then the likelihood of the graphical model specified by P

can be factorized according to the graph’s cliques and separators

p(y|G ,θ) =
∏

nc
i=1 p(yCi |θCi)

∏
ns
j=1 p(yS j |θS j)

(2.1)
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where θ is a quantity parameterizing the graphical model P over the graph G and

satisfying some consistency conditions with respect to G ([23]).

Traditionally, focus has been on Gaussian graphical models, also known as

covariance selection models ([26]) where P = Nn(µ,Σ) is a n-dimensional multi-

variate Gaussian distribution and θ is the n× n covariance matrix Σ. Conditional

independence structure is represented by the precision matrix Σ−1. If the edge

(i, j) /∈ E, then the variables Yi and Yj are conditionally independent given the re-

maining variables, and Σ
−1
(i, j) = Σ

−1
( j,i) = 0. As such, the Gaussian graphical model

may be factorized as (2.1) with the covariance Σ replacing θ , and the corresponding

likelihood terms written as

p(yB|ΣB) = (2π)−|B|/2 det(ΣB)
−|B|/2 exp[−1

2
tr(SB(ΣB)

−1)] (2.2)

for each complete set B, where |B| denotes the cardinality of B and SB is the em-

pirical covariance matrix of yB.

From a Bayesian perspective, we are interested in the posterior distribution

p(θ ,G |y) ∝ p(y|θ ,G )p(θ |G )π(G ). Much work has been dedicated to specifying

proper priors p(θ |G ), see e.g. ([23, 36]). The main focus of this chapter is the

specification of a prior distribution π(G ) over the space of decomposable graphs.

As this space is very large compared to the number of observations, it is crucial to

add as much prior information as possible on the structure of the unknown graph

G . Moreover, we are generally interested in obtaining sparse graph estimates for

needs of interpretation and prediction. Up until now, the specification of π(G ) has

been limited to the uniform distribution, or priors which penalize the complexity as

measured by the number of edges. This brings us to the focus of this work, namely

12



a class of prior distributions π(G ) which subsumes control over the structure and

features of G .

2.3 Priors on Decomposable Graphs

2.3.1 Previous work

While early work on inference in decomposable models often assumed a uniform

prior over graphs (i.e. [36]), such priors put considerable mass on models of in-

termediate size. In an effort to put more weight on smaller graphs, several authors

have proposed using a binomial prior distribution with parameter ρ on the number

of edges r in the graph. This yields priors of the type [27, 50]

π(G ) ∝ ρ
r(1−ρ)m−r (2.3)

where m = n(n−1)
2 is the maximal number of possible edges on n nodes. When

ρ = 1/2, it reduces to the forementioned uniform prior over graphs. [50] suggest

the use of ρ = 2/(n− 1), motivated from the resulting density’s peak at n edges

in the unconstrained graph. Some authors also consider adding a hierarchical Beta

prior ρ ∼ Be(a,b) ([19]), giving the marginal prior on the graph as

π(G ) =
∫ 1

0
π(G |ρ)π(ρ)dρ ∝

β (a+ k,b+m− k)
β (a,b)

where β (·, ·) is the beta function. [19] suggest a default choice of a = b = 1,

implying a uniform prior on ρ . Interestingly, the resulting prior on G is

π(G ) =
1

m+1

(
m
r

)−1

,

13



which penalizes medium-sized graphs as desired. Such a prior weights each graph

according to the number of graphs in the unrestricted space with the same number

of edges. However, as shown by [3], the space of decomposable graphs can be con-

siderably different than the unrestricted space. To address this, [3] have proposed

a uniform prior on decomposable graphs given the number of edges. However,

calculating the number of decomposable graphs of a given size is an arduous task:

there exists no list in the literature of decomposable graphs and their breakdown in

terms of number of edges, nor are there straightforward ways of computing such

quantities. As a result, [3] proposes an MCMC estimation scheme, testing its ac-

curacy up to 12 nodes, although such a scheme will likely become prohibitive in

higher dimensions.

While the priors in the above references allow one to control the size of the

resulting graphs through the number of edges, often doing so results in undesirable

graph structures, namely those with a high number of separators and long strings

of nodes. Figure 2.1(top) shows random samples from a binomial prior over 20-

node graphs with ρ = 0.1 (closely echoing the choice of [50], namely ρ = 2/(n−

1) ≈ 0.1) and ρ = 0.5 (the uniform prior). We see from this plot that there is

no clustering of the cliques, making interpretation difficult. In addition, the long

strings/trees seen for ρ = 0.1 do not mesh with reality in most cases. Clearly such a

class of priors is not suitable if one suspects clustering amongst the variables, clique

sizes to be upper (or lower) bounded, or nearly full separation between cliques. Our

focus therefore is on moving beyond priors which focus on the number of edges to

priors which focus on graph (clique and separator) structure.
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Clique Sizes: 2(17), 1(2)
Separator Sizes: 1(11)

Clique Sizes: 2(14), 1(4)
Separator Sizes: 1(6)

Clique Sizes: 9, 8, 6, 3
Separator Sizes: 6

Clique Sizes: 9, 6, 3, 2
Separator Sizes: N/A

Clique Sizes: 10, 5, 4, 1
Separator Sizes: N/A

Clique Sizes: 5(2), 4, 3, 2, 1
Separator Sizes: N/A

Clique Sizes: 6, 2(2), 1(10)
Separator Sizes: N/A

Clique Sizes: 4, 3(2), 2 (3), 1(3)
Separator Sizes: N/A

Clique Sizes: 7, 3(2), 1(8)
Separator Sizes: 1

Clique Sizes: 4, 3, 2(3), 1(7)
Separator Sizes: N/A

Clique Sizes: 8(2), 7(3), 6(4), 5(2), 4(2)
Separator Sizes: 7, 6(3), 5(4), 4(2), 3(2)

Clique Sizes: 8, 7(3), 6(5), 5(3), 4
Separator Sizes: 6(3), 5(5), 4(3), 3

Clique Sizes: 8(3), 7, 6(5), 5(3), 4
Separator Sizes: 7(2), 6, 5(5), 4(3), 3

Clique Sizes: 10, 9(4), 7(4), 4(2)
Separator Sizes: 8(4), 6(4), 3(2) 

Clique Sizes: 2(14), 3(2), 1
Separator Sizes: 1(9)

Clique Sizes: 3, 2(8),1(5)
Separator Sizes: 1(4)

Figure 2.1: Four random samples from binomial and product graphical model
(PGM) priors. Clique and separator sizes for each graph are also shown
(“Clique Sizes: 2(3)” implies 3 cliques of size 2). 4 million samples
were generated using Markov chain Monte Carlo, and every millionth
is shown. While the binomial is characterized by large strings and many
separators, the product graphical model allows one to induce clustering
by setting b small.
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2.3.2 A new prior distribution on decomposable graphs

Motivated from the class of product partition models ([7, 8, 42]), we consider prior

distributions of the form

π(G ) ∝
∏

nc
j=1 ψC(C j)

∏
ns
j=1 ψS(S j)

(2.4)

where ψC and ψS are respectively called the clique/separator cohesion functions,

with the convention that ψS( /0) = 1. Evidently one could choose to penalize only

cliques or separators by setting ψC or ψS to constant values. Alternatively, one

could simply penalize clique sizes by setting ψB = a|B|. Motivated from the class

of product partition models, consider the cohesion functions ψC(B) = a(|B|− 1)!

and ψS(B) = 1
b(|B|−1)!, a > 0, b > 0, hence

π(G ) ∝ ancbns
∏

nc
j=1(|C j|−1)!

∏
ns
j=1(|S j|−1)!

(2.5)

The factorial terms result in predilection towards large cliques and small separators

– a desirable trait in terms of interpretability of the resulting graph. For instance,

even if a = b = 1 with 20 nodes, the completely connected graph would be pre-

ferred over the complete independence graph by a factor of 20!. The parameters

a and b respectively tune the number of cliques and separators in the decompos-

able graph. For a small, the prior will favour a small number of large cliques.

Likewise for b, with small values favouring fewer separators. Figure 2.1 (bottom)

shows samples from this prior. Because of its relation to product partition models

(described later), we term this prior the product graphical model prior. To clearly

demonstrate the control the product graphical model prior (2.5) gives relative to the

binomial prior, we set b = 1/1000, highly penalizing the number of separators and
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Figure 2.2: Log ratio of priors over two graphs for product graphical model
prior for various a, b (solid, bottom axis) and binomial prior for various
ρ (dashed, top axis). While the binomial prior allows one to control the
number of edges, for instance choosing G1 over G2, the same parameter
would seldom choose G3 over G4, despite G3 having a sparse covariance
matrix, and G4 having a saturated covariance matrix.

hence resulting in highly separated cliques. In addition, we look at two different

values for a; a = 0.1, resulting in fewer and larger cliques, and a = 10, resulting in

more (but smaller) cliques. Fig. 2.1 demonstrates the ability of the prior to induce

clustering of the cliques, and therefore sparsity in correlation.

We have seen some general properties of the prior (2.5), namely the ability to

control the number of cliques and separators. Figure 2.2 shows log10(π(G )/π(G ′)))

for different graphs G ,G ′. Specifically, decreases in b result in increased prior

probability on models with few separators; in addition we see that as a is increased,

more mass is put on models with many cliques. In contrast, we also plot the same

ratio for the binomial prior (2.3). From this, one can see the limited control such a

prior gives, favouring small models in terms of number of edges, but putting very

little mass on models, for example, which feature clusters of fully-connected nodes

(as in G3) and therefore have sparse covariance matrices.
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Selecting the appropriate cohesion functions in equation (2.4) is a difficult

problem, but one for which we may gain insight from the existing literature on

product partition models ([21, 75, 76]). For instance, one may use Figure 2.2 to

select a and b to best fit with prior intuition regarding the features of the graph, then

verify the choice through generation of Monte Carlo samples from the prior as in

Figure 2.1. Alternatively, cross-validation or related methods may be used to select

a and b; due to the potential computational cost of such methods, sequential Monte

Carlo approaches may be used to speed up prior distribution selection ([12]).

Given that the likelihood decomposes as (2.1) and the prior is of the form

(2.4), the posterior will also be of the form (2.4) with cohesions ψC(C j)p(yC j)

and ψS(S j)p(yS j). The prior admits several other attractive properties and connec-

tions with well-known clustering methods as well. If ψS(S j)→ ∞ for all S j 6= /0,

then Equation (2.4) reduces to the following model

π(G ) ∝

nc

∏
j=1

ψC(C j)

if ns = 0 and 0 otherwise. The resulting prior puts only positive mass on graphs

with no separators. It has been introduced as a prior over partitions by [42] and

[7, 8] under the name of product partition models. In the particular case of (2.4)

with b→ 0, the prior over G reduces to

π(G ) =
ancΓ(a)
Γ(a+n)

nc

∏
j=1

(|C j|−1)!

As shown by [76] (see also [75]), this is the distribution over partitions induced by
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a Dirichlet Process [1, 30]. We also have

E(nc) =
n−1

∑
i=0

a
a+ i

' a log(1+n/a)+ γ, var(nc) =
n−1

∑
i=1

ai
(a+ i)2

where γ is Euler’s constant and

pr(nc = k) = s(n,k)ak
Γ(a)/Γ(a+n)

where the coefficients s(n,k) are the absolute values of Stirling numbers of the first

kind [1]. In this limiting case, the number of cliques increases logarithmically with

the number of nodes.

2.3.3 Extensions

Motivated by the larger class of exchangeable partition functions [54, 70], we can

also consider four-parameter models, allowing more control over the relative sizes

of the cliques/separators

π(G ) ∝
∏

nc
j=1(a2 +a1( j−1))Γ(|C j|−a1)

Γ(1−a1)

∏
ns
j=1(b2 +b1( j−1))Γ(|S j|−b1)

Γ(1−b1)

where a2 >−a1,0≤ a1 < 1, likewise for b1,b2. The above model reduces to (2.5)

when a1 = b1 = 0. We can also consider models that control the maximal number

of cliques/separators

π(G ) ∝
∏

nc
j=1(c1− j+1)Γ(c2+|C j|)

Γ(c2)

∏
ns
j=1(d1− j+1)Γ(d2+|C j|)

Γ(d2)
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where c1,c2,d1,d2 > 0, and c1 > d1 are the maximal number of cliques/separators.

These two models respectively admit as limiting cases the distribution over par-

titions induced by the two-parameter Poisson-Dirichlet distribution and the finite

Dirichlet-multinomial distribution, see e.g. [54] for further details on these distri-

butions. Using such extensions, one is able to both extend the product graphical

model prior to control relative sizes and the maximal number of cliques and sep-

arators, as well as borrow from the wealth of literature on Dirichlet and related

distributions to gain insight into the prior distribution’s characteristics.

2.4 Example: Modeling Agricultural Output of Different
Species

Determining agricultural policies to govern crop production, harvesting, and export

is a challenge fraught with high variability both temporally and spatially. Enabling

effective crop management, handling, and marketing techniques thus requires ac-

curate understanding of crop yield to account for and explain these variations.

While much effort has been made in developing models for predicting single crops

([10, 72]), little effort has been made in understanding statistically the relationship

between crop yield of different crop varieties.

Understanding the connection between yields of different crop varieties is valu-

able for a multitude of reasons. Firstly, because crops are planted and harvested

at different times, the management of one crop might benefit from knowledge ob-

tained from harvesting a similar crop earlier in the year. Additionally, by account-

ing for correlation between different crops, insurers might better cover themselves

against extreme events and better control insurance rates for farmers. Lastly, farm-

ers themselves might wish to ensure some level of stability in their income, and

20



therefore might prefer to plant crops which are uncorrelated in yield. Through

such a practice, a farmer would be proactive in preventing disasters across his en-

tire crop portfolio. Simply by looking at the resulting undirected graph, a farmer

could select two crops which do not have a path connecting them, and are therefore

uncorrelated.

We examine the total production (in thousands of bushels) of 24 crops in the

state of California from the years 1990 to 2009 (20 years). The data is compiled

from the U.S Department of Agriculture website, where a considerable database is

available for viewing and analysis. The 24 crops include, for example, several va-

rieties of wheat, rice, and beans. We use the now-standard Gaussian hyper-inverse

Wishart model: the likelihood of yield is given in (2.1) and (2.2), and the prior

for the covariance matrix Σ is hyper-inverse Wishart, which factorizes similarly to

(2.1), as a ratio of inverse Wishart distributions over cliques and separators ([37]).

To be specific, for each clique C (or, equivalently, separator S), the covariance over

the clique is distributed as ΣC ∼ IW (b,DC), with parameters b and DC and density

π(ΣC|b,DC) ∝ |ΣC|−(b+2|C|)/2 exp
{
−1

2
tr(Σ−1

C DC)

}
.

See [19] for some alternative marginal likelihoods based on fractional Bayes

factors which can help to induce parsimony. The parameters chosen for the hyper-

inverse Wishart distribution are as described in [50]; we focus on the specification

of π(G ). Looking at the list of crops, one would expect that there will be clustering

of the yields according to crop characteristics. For instance, it would be reasonable

to expect the yield of beans to be correlated with each other. We also seek an

interpretable graph, namely one with small complexity (in terms of number of
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edges and/or separators). The first such prior we examine is the binomial prior

of [50] with ρ = 2/(n− 1), chosen due to its prevalence in the literature. While

such a prior allows for penalization on the number of edges, no control is available

over clustering. In contrast, by using the prior (2.5), we can set b = .01 to put

strong penalization on the number of separators (and hence induce separation of

the cliques and therefore sparsity in the correlation matrix), and set a = .01 to

encourage a small number of cliques in the pursuit of simplicity in the resulting

graph.

We run MCMC of length 10 million over the space of decomposable graphs

([36]) for both the binomial and product graphical model priors, thinning to every

100 samples. With both priors, one may save computational resources by making

local moves, merging and splitting cliques within the Markov chain. As a result,

one need not re-determine the structure of the entire graph at each move.

Figure 2.3 shows the 4 graphs with highest posterior probabilities from each

prior. The product graphical model prior results in the top 4 graphs having pos-

terior density values in the range 0.11 to 0.49, whereas for the binomial the range

is 0.04 to 0.06, indicating that the binomial prior spreads mass much more evenly

across distributions relative to the product graphical model prior with a= b= 0.01.

Immediately evident from the figure are the different forms resulting from each

prior. Specifically, the binomial prior induces long strings of nodes with many

separators, whereas the product graphical model posterior reflects our prior beliefs

that variables will cluster together, resulting in sparsity in the correlations between

variables. A commercial farmer desiring to plant two plots with uncorrelated crops

to minimize the risk of loss might reach quite different conclusions from each prior.

Specifically, the large strings of nodes from the Binomial prior suggest correlation
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Crop Varieties
1: wheat (winter)   2: wheat (durum)   3: rice (long grain)   4: rice (medium grain)   5: rice (short grain)   6: corn (grain)   7: corn (silage)  

8: oats   9: barley   10: cotton (upland)   11: cotton (pima)   12: beans (large lima)   13: beans (baby lima)   14: beans (light kidney)  
15: beans (dark kidney)   16: beans (blackeye)   17: beans (other)   18: hay (alfalfa)   19: hay (other)   20: potatoes (winter)  

21: potatoes (spring)   22: potatoes (summer)   23: potatoes (fall)   24: sweet potatoes

Figure 2.3: Four samples with highest posterior probability from crop yield
model using binomial and product graphical model (PGM) priors. We
see the bean yields (nodes 12 through 17) seem to cluster together, as do
summer and fall potatoes (nodes 22 and 23). We also observe that the
product graphical model prior induces separated cliques, whereas the
binomial prior results in long strings and trees of connected variables.
As a result, the product graphical model prior will induce sparsity in the
resulting posterior covariance.

between the majority of crops. The farmer might not plant winter wheat (planted in

late fall) and a strain of beans (harvested in early fall) on his two plots, despite their

very different growing seasons, due to their connection in two of the highest poste-

rior probability graphs in Figure 2.3. In contrast, the separation of cliques from the

product graphical model prior (2.5) would allow these crops to be planted together.

Such decisions could be made from the highest posterior graph, or by conducting

Bayesian model averaging to obtain the expected utility of a given decision.

To gain an understanding of the product graphical model prior’s prediction
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Table 2.1: Log predictive density evaluated on test data using various bino-
mial priors

Distribution: Binomial

Parameters: 2/(24−1) 0.5
Avg. Log Predictive: −688 −707
Avg. Number of Edges: 17.8 29.6

Table 2.2: Log predictive density evaluated on test data using various PGM
priors

Distribution: PGM

Parameters: (0.01,0.01) (0.1,0.1) (1,1)
Avg. Log Predictive: −675 −677 −686
Avg. Number of Edges: 18.1 16.4 20.3

performance, we split the data into a training set (first 12 years) and testing set

(last 8 years). After simulating from the posterior distribution arising from the

binomial and product graphical model priors, we use Bayesian model averaging via

the marginal likelihood evaluated on the test data to judge the model’s prediction

performance. We evaluate the resulting posterior predictive evaluated on the test

set in Tables 2.1, 2.2; indeed, the product graphical model prior provides better

prediction in this example, even over a variety of parameter choices. We also show

the number of edges for each model, indicating that sparsity in terms of edges alone

is not responsible for the improved prediction.

2.5 Example: Modeling 20th Century American Voting
Patterns

In an effort to demonstrate the product graphical model prior in higher dimensions,

we now turn to the modeling of American voting data by state. For each federal
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election from 1904 to 1976, occurring every four years, we measure the proportion

of votes for the republican party in each of the 50 states ([18]). Our goal is to

model and visualize correlation in voting pattern changes over the last century.

Some immediate questions come to mind: “Do certain states have an important

role in determining election outcomes?”, “Are there groups of states which vote

together, operating independently from the US as a whole?”

We proceed by exploring the posterior distribution resulting from the binomial

prior with edge probability 0.1, and the product graphical model prior with param-

eters a = 10,b = 10−3, in an effort to make the overall number of edges resulting

from each model comparable. Figure 2.4 shows the two graphs with highest pos-

terior density from each model. As expected, the binomial graphs contain long

strings of variables, while the product graphical model prior demonstrates cluster-

ing and grouping of variables. While the binomial prior results in similar variables

placed along the same string, the grouping from the product graphical model allows

for clearer interpretation. For instance, we immediately observe that the southern

states (SC, MS, LA, AL, GA, TX, VA, FL) generally vote in a group. Other pat-

terns of interest also arise, including a close connection between AR, NC, and TN.

Also, notice that NY and KS are consistently the single node connecting clusters

of variables. As such, these states might be considered as key indicators of voting

behavior.

2.6 Discussion

The product graphical model’s implementation relies on Markov chain Monte Carlo,

whereby samples of graphs from the posterior distribution are generated and infer-

ence is made from their empirical distribution. Because of the sheer number of
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Figure 2.4: Voting example: two graphs with highest posterior density (HPD)
from binomial and product graphical model priors.
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graphs, one must be careful in interpreting the results of this approximation, hence

our use of model averaging (for prediction) as well as studying a suite of graphs

with high posterior probability. While fast and easily implementable software for

the above models has been generously released by [50], one must still conduct

checks for convergence of the Markov chain. This is exacerbated by the complex-

ity of the space of decomposable models, whereby two highly probable models

might be separated by a series of models of low probability. This is particularly

true for the product graphical model prior; if one chooses a prior which highly pe-

nalizes the number of separators (say, using b very small), transversing the space of

graphs may be difficult, as the fully disconnected graph and fully connected graph

both have no separators (and therefore high probability), but necessarily have a

considerable number of graphs with many separators between them.

While we have focused on the Bayesian approach to covariance selection, sig-

nificant work has also been done in a non-Bayesian framework. A common ap-

proach involves placing an `1 penalization on the precision matrix Σ−1, which leads

to sparse estimates ([31, 61, 88]). Closer to the heart of this chapter, [60] examine

the case of estimating G when clustering is expected, and therefore Σ−1 exhibits

block structure. However, these models are neither decomposable nor generative.

While we have focused in this article on Gaussian graphical models, the prior

defined in this article is far more general and can be used with any type of model for

handling discrete or mixed data, see e.g. [55, 57]. We have also considered the hy-

perparameters a and b to be known constants. Estimating them within the MCMC

sampler would require one to compute the normalizing constant in (2.5), which

is in general not tractable. An exception of interest is the case b→ 0, where we

can assign a gamma prior to a and use the data augmentation algorithm described
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in [86] to update a given the other variables.

In conclusion, the proposed product graphical model prior improves flexibility

in modeling decomposable graphical models and borrows strength from the im-

mense literature on product partition and related models. The product graphical

model prior allows one to encourage (or discourage) clustering of the graphs, and

therefore can induce sparsity in the correlation matrix through clique separation;

consequently, the product graphical model empowers practitioners to encapsulate

their true prior beliefs to build a model more attuned to the problem at hand.

28



Chapter 3

Spatial Statistics and

Nonstationarity

In spatial statistics, the role of correlation plays a particularly crucial role. Here

observations are tied together through coordinates of geographic systems. Appli-

cations range from modeling astrophysical systems by way of their locations within

galaxies, to modeling agricultural output or air pollution over large and diverse re-

gions. The defining characteristic of spatial statistics is that each entity under study

has attached to it a spatial location; how that location is defined, whether latitude/-

longitude or arbitrary coordinates, varies depending on the example at hand.

Our focus is on point-referenced geostatistics and lattice, or areal, data. The

latter are typically modeled using Markov random fields, or undirected graphical

models, as discussed earlier. In contrast, the former is employed to model spatial

processes over continuous domains.
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3.1 Geostatistics

The origins of geostatistics is Kriging, where the goal is to interpolate the value of

a random field at an unobserved location using observations from nearby locations.

Kriging works by computing the best linear unbiased estimator at the unobserved

location, using information about the correlation present in the system. The Krig-

ing estimator is a linear combination of the observed values Z(x1), . . . ,Z(xs) with

weights w1, . . . ,ws,

ˆZ(x0) =
s

∑
i=1

wi(x0)Z(xi).

The weights wi, i = 1, . . . ,s are chosen to minimize the Kriging variance

Var
(
Ẑ(x0)−Z(x0)

)
while maintaining the unbiasedness condition,

E
(
Ẑ(x)−Z(x)

)
=

s

∑
i=1

wi(x0)µ(xi)−µ(x0) = 0

Classically, the correlation in the system was modeled through variograms,

which describe the spatial dependence in a spatial random field through the vari-

ance of the difference between field values at two locations xi,x j:

2γ(xi,x j) = var(Z(xi)−Z(x j))
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or if the field has a constant mean,

2γ(xi,x j) = E(|Z(xi)−Z(x j)|2).

For those more familiar with the notation of Gaussian processes, where covariance

functions are used, variograms may be related as follows:

2γ(xi,x j) =C(xi,xi)+C(x j,x j)−2C(xi,x j)+(E(Z(xi))−E(Z(x j)))
2

For observation z1, . . . ,zs, the empirical variogram is calculated as

γ̂(h) =
1

|N(h)| ∑
i, j∈N(h)

|zi− z j|2

where N(h) is the set of observations within a small tolerance of the distance h. It is

straightforward to see that the empirical variogram provides an unbiased estimate

of the theoretical variogram.

E [γ̂(h)] =
1

2|N(h)| ∑
i, j∈N(h)

E [Z(xi)−Z(x j)]
2

=
1

2|N(h)| ∑
i, j∈N(h)

2γ(x j− xi)

=
2|N(h)|
2|N(h)|

γ(h)

Many variants on Kriging exist. Simple Kriging assumes a constant trend, µ(x) =

0. Ordinary Kriging assumes an unknown, but constant, trend µ(x) = µ , which is

extended by Universal Kriging to polynomial trend models.

By assigning a parameteric form to the variogram and learning the parameters,
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Kriging is able to provide the best linear unbiased estimate of the field at unob-

served locations. While the shape of the parametric variogram may be controlled

by many parameters, the primary parameters of interest are the nugget, which de-

scribes the measurement error, the sill, which describes the limit as the variogram

tends to infinite lag distances, and the range, which describes where the variogram

has nearly reached the sill.

3.2 Lattice Data

The primary goal of areal, or lattice, models is to detect spatial patterns. For ex-

ample, are areas closer to eachother more similar than areas which are far apart?

An additional goal can be to smooth the data. For example, if modeling health

counts, we may have low population in some regions, and as such counts may be

unreliable. As a result, we may wish to smooth observations using counts from

(higher population) neighboring regions. Lastly, we sometimes want to change the

boundaries of areas, or extend the region to include new areas. In this setting, we’d

like to extend the results from the current areas to predict value in the new region.

One of the first steps in areal data is defining the neighborhood structure. This

may be done straightforwardly using graphical models, as discussed in the previous

chapter. Alternatively, or more classically, we may think of a weight matrix W

consisting of elements wi j. Typically, wii = 0 and wi j = 1 if areas i and j are

neighbors. From this weight matrix, we can then calculate the areal analogue of a

variogram, called Geary’s C:

C =
(n−1)∑i ∑ j wi j(Yi−Yj)

2

∑wi j ∑i(Yi−Y )2
.
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For the purposes of the subsequent chapter, however, we model the areal data

as point-referenced data, with the spatial reference point defined from the centroid

of each region.

3.3 Nonstationarity

Informally, if a spatial (or temporal) random process has the same joint probability

distribution at all points in space (or time), it is said to be stationary. Specifically,

suppose {Z(xi)} is a stochastic process defined at points xi, i = 1, . . . ,s with cumu-

lative distribution function F (Z(x1), . . . ,Z(xs)). If for all δ ,

F (Z(x1), . . . ,Z(xs)) = F (Z(x1 +δ ), . . . ,Z(xs +δ )) .

As such, in these situations the field’s mean and variance do not change over time

or space. In fact, if only the first and second moments of the field are constant over

space and time, we say that the process is weak-sense stationary. If this holds, the

semi-variogram (γ) may be represented as a function,

γ(xi,x j) = γ(xi− x j).

Further, if the process is isotropic, then the variogram may be represented solely as

a function of the distance between locations,

γ(xi,x j) = γ(||xi− x j||).
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If the process is stationary, the relationship between variogram and covariance

function is also simplified:

2γ(xi,x j) =C(xi,xi)+C(x j,x j)−2C(xi,x j)

In the following chapter, Chapter 4, we model crop yields in the Canadian

Prairies, and discover that differences between provinces leads to an inherently

nonstationary spatial field. Subsequently, in Chapter 5, we propose a new method-

ology for handling nonstationary spatial fields, whereby nonstationary fields are

expanded into a higher-dimensional space where stationarity holds.
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Chapter 4

Efficient Stabilization of Crop

Yield Prediction in the Canadian

Prairies1

4.1 Introduction

This chapter presents a method for forecasting wheat crop yields in the Canadian

Prairie Provinces – a challenging task due to dramatic variability in yield over

space and time. Its importance, however, should not be understated: wheat is one

of Canada’s primary exports, accounting for 12 percent of wheat and barley traded

in the world market. Thus variation in yield has considerable impact both within

and beyond Canadian borders ([81]). Enabling effective crop management, han-

dling, and marketing thus requires accurate predictions of crop yield that account

1A version of Chapter 4 has been published. Bornn, L., Zidek, J. (2012) Efficient Stabilization
of Crop Yield Prediction in the Canadian Prairies. Agricultural and Forest Meteorology. Vol. 152,
Pages 223-232. [10]
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for and explain these variations. For example, these forecasts are helpful in set-

ting insurance premiums and futures prices as well as in managing grain transport.

Since spatial and temporal climate variability affect crop yields ([84]; [72]), a crop

yield forecasting method must include climate as an essential component if it is to

be successful.

Several process–based models have been successfully used for crop yield pre-

diction including the Agricultural Production Systems Simulator (APSIM) in Aus-

tralia ([51]) as well as a web-based tool developed by the United States’ Southeast

Climate Consortium ([49]). These process–based models typically employ tunable

and user adjustable deterministic and stochastic models to simulate biological and

physical processes related to crop yield. While these models use knowledge per-

taining to the individual processes, they often require significant input from the

user, including a wide range of meteorological and environmental variables which

may be difficult or expensive to obtain.

In contrast to the above, traditional statistical techniques are purely empiri-

cal. While these methods may result in accurate predictions, they typically lack

the interpretability of process–based models ([6]). As a result of this criticism,

recent years have seen the development of statistical models that also provide in-

terpretation of the underlying biophysical process (see, for example, [83], [41]).

One such process knowledge-based approach involves water stress indices ([71],

[72]; [73], [74]), the result of which has been of tremendous use and benefit to

stakeholders, allowing for prediction and understanding of crop yield anomalies.

While these models have improved the prediction of crop yield, there exists scope

for improvement through a) providing an efficient dimension reduction of explana-

tory variables; b) accounting for uncertainty in the estimated technology trend; c)
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modelling spatial correlation between regions.

This chapter describes the results of a project coordinated by Agriculture and

Agri-foods Canada to develop a model that explains and predicts wheat yield and

its relation to climatic variables. With plans for an online implementation in the

future, efficiency was required as a feature of the model, as was the ability to stabi-

lize the effects of noisy measurements. Building on earlier work, we employ a crop

water stress index (SI) to provide explanatory power for a new crop yield predictor

([25]). To improve prediction over existing approaches, we extract a sensitive yet

low-dimensional summary of this stress index, comparing various alternatives and

bases before ultimately selecting principal components. We then demonstrate its

improved prediction performance compared to currently used windowed average

approaches. In contrast to previous work which models each agricultural region

separately, we create a unified model that allows strength to be borrowed from

adjacent and nearby regions, thus stabilizing both inference and prediction. By

employing a spatially-motivated context-specific prior distribution on the param-

eters of interest, we account for and use spatial correlation between sites while

smoothing and consequently improving predictions.

Following this introduction, Section 2 describes the crop yield forecasting prob-

lem and available data. This section works through a series of successively im-

proved models, eventually leading to a Bayesian model in Section 3 which jointly

models all regions simultaneously. Model testing and diagnostics are explored in

Section 4. Lastly, Section 5 concludes the work.
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4.2 Materials and Methods

This chapter models crop yield in the Canadian Prairies as a function of climate-

related explanatory variables. The data include annual wheat yields (in bushels per

acre) along with associated measurements of a crop water stress index and growing

degree day (both described later) for 40 agricultural regions (plotted in Figure 4.1)

across the Canadian Prairies from 1976-2006. The agricultural regions are those

used in the 2006 Canadian Census of Agriculture, through which the data are also

obtained, and are determined from climate and soil information. For each of the 31

years and 40 regions, yield is an aggregated average across the region. Likewise,

stress index and growing degree day are calculated regionally, but on a daily basis

throughout the growing season (April 1 to September 30).

4.2.1 Incorporating soil water

The well recognized influence of soil water on crop yields dictates its inclusion

in any yield prediction model ([25]). However, due to the time-consuming and

costly process of measuring soil water content, in practice its effects must be in-

ferred from more widely available environmental variables such as precipitation,

temperature, and easily measured crop and soil-related factors. A suite of mod-

els have been developed which attempt to understand soil water availability in the

context of these environmental variables. Beginning with simple water balance ap-

proaches that balance precipitation and soil water storage with evapotranspiration

and water runoff, these models have increased in their complexity over the years

([25, 85]). For the reasons given below we focus on budget models, which build on

the premise that above a certain threshold (called the ‘field capacity’), soil cannot

absorb any more water and therefore any additional water is drained off through
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runoff or drainage. Also, if the soil water fails to be replenished through precipita-

tion, irrigation, or other sources, the soil reaches a point where plant roots are no

longer capable of uptaking water. This stage is known as the ‘wilting point’.

Evapotranspiration, which describes the sum of evaporation and plant transpi-

ration, measures the water lost from plants, soil, and other land surfaces into the

atmosphere. There are two key components in the budget model, potential evap-

otranspiration (PET) and actual evapotranspiration (AET). PET represents the at-

mospheric demand for evapotranspiration; specifically, it accounts for the energy

available to evaporate water and transport it into the lower atmosphere. AET is the

actual water content available for evaporation and transpiration, and relies on plant

physiology and soil characteristics for its calculation. When the soil has ample

water, the actual evapotranspiration (AET) can equal the PET. However when the

soil is not at its field capacity, AET will be less than PET. More details on these

concepts and soil science in general may be found in [16].

Budget models are straightforward to implement since they require a minimum

of meteorological data as well as soil field capacities and wilting points. While

more advanced models have been built which include soil hydraulic characteristics

and more complex relationships between soil, plant, and meteorological systems,

these models require considerably more information from the user, including de-

tailed soil and plant characteristics. Because of the additional variables required by

these models, we employ a budget model in the remainder of this work. Our model

uses crop water stress index (SI) over agricultural land, defined as 1-AET/PET

([73, 74]). This quantity will be near 0 when water is plentiful in the soil and near

1 when the plant is stressed by a lack of available moisture. Intuition might sug-

gest directly including precipitation, temperature, soil and plant information into
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the model. However, doing so would add a large number of variables, especially

considering that many of these variables are observed for every day of the grow-

ing season. Using the SI instead provides an economical reduction in the dimen-

sionality of the description space in a way that respects the biophysical processes

involved in soil water movement and availability.

Predicting yield with SI

We begin by detailing the process of fitting a regression model to crop yield using

least squares (LS). First let y j,t , j = 1, . . . ,40 be the yield from region j for years

t = 1976, . . . ,2006. Since SI is a daily value, we create an annual average for each

year and region; let si j,t denote the vector of these means in year t for each region

j. We begin by fitting a common regression model to all regions, specifically

y j,t = β0 +β1t +β2si j,t + ε j,t . (4.1)

Here ε j,t for year t and region j represents a combination of model and measure-

ment error. While previously developed statistical models for crop yield account

for a technology trend by first fitting a regression on time and then modelling the

residuals, such approaches yield little understanding about the uncertainty associ-

ated with forecasting. In particular, while forecasts that use detrended data may be

similar, their associated variances will be biased as uncertainty in the trend model

is ignored. In fact, to properly account for all sources of variability the technology

trend should be an integral part of any forecasting model.

To begin, note that the simple model in Equation 4.1 relies on only 3 parameters

– all regions are described by the same equation. The validity of inference for
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Figure 4.1: Mean residuals from model (1). We observe that the model resid-
uals are spatially correlated.

such a model relies on assumptions including for instance that the errors ε j,t are

stochastically independent for all j, t. To test this assumption, we plot the mean

residual (averaged over the 31 years) for each of the 40 stations in Figure 4.1. This

figure makes it clear that the residuals are spatially correlated. For instance, the

residuals in Alberta (the western-most Prairie Province) are much larger than the

other two provinces, highlighting the fact that the model is biased, particularly in

central Alberta. Considering the mean and standard deviation of crop yield across

the prairies are 30.9 and 8.2 respectively, the average residual value of 13.5 in this

region indicates that the model is consistently underestimating the crop yield there.

To gain descriptive power, researchers have expanded the above model by fit-

ting a different regression model to each region, specifically

y j,t = β0, j +β1, jt +β2, jsi j,t + ε j,t . (4.2)
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The expanded model now accounts for 61% of crop yield variation, compared to

33% for (1), albeit at the expense of additional parameters in its mean structure.

In fact, by assigning a unique parameter to each region, this expanded model has

3× 40 = 120 parameters. By using such models, albeit with potentially modi-

fied/additional explanatory variables, several authors have been able to create fairly

accurate predictions of crop yield ([71]; [74]). It is important to note that the large

number of predictor variables (120) makes this model prone to overfitting; while

some authors have used cross-validation to prevent this (i.e. [74]), others have

sought to further improve model fit by conducting extensive calibration to tune the

explanatory variables (i.e. [71]). It is well understood that smoothed, or penal-

ized, models have better prediction properties than larger, more variable models

([43]). This leads us to prefer the most parsimonious model yielding accurate fore-

casts and to select explanatory variables which provide optimal prediction power

for crop yield. While earlier models have been examined with regards to their

model fit (as measured through R2), a much preferred metric is model prediction

performance (as measured through cross-validation).

While the availability of SIs for every day of the growing season (in our case

April 1 to September 30) means its vector of measured values is of very large

dimension, good modelling practice requires that this dimension be reduced before

introducing the vector into the regression model. At one extreme, we could do

what we did previously, and use just the mean of these daily SI values over the

growing season, a one-dimensional feature, as our explanatory variable. However,

that would oversimplify the SI’s role, since plant growth is influenced more at

certain times than others during the growing season. As an extreme example, if

the crop is harvested in early September, the SI values in late September would
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Figure 4.2: Correlation of SI and yield over time. Correlations smoothed with
Lowess smoothing. From this we see that SI is most correlated with
yield in an intermediate part of the season, namely days 80 through
160.

aid little in predicting crop yield. To find a low-dimensional feature that provides

good predictive power for crop yield, we could average over a reduced window,

that is, exclude SI values early and late in the season ([74]). This reflects the point

just made that SIs early and late in the season may not be correlated with crop

yield. Figure 4.2 shows this correlation between SI and crop yield for each day in

the summer, organized by province. This figure suggests we average over days 80

through 160, rather than the entire growing season. However, this produces only

a modest improvement, 60.72% of crop yield’s variability now being explained

instead of 60.56% using the average over the entire season as before. This plot also

reveals large spatial variability, particularly between provinces. We explore this

issue in more detail later.

There exists considerable scope for tuning this window; for instance [71] select
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unique window start and end points for each region to achieve an excellent fit – over

75% of variation explained. However such tuning entails much attention to detail.

On top of the upper and lower limits for the averaging to take place, [71] calibrate

potential available soil water capacities, the maximum number of sowings and the

rainfall amount triggering planting in each region. In other words, in addition to

the corresponding regression coefficients, this tuning in effect adds 5 additional

parameters per region, which in our case would increase the number of parameters

being fitted in (2) from 120 to 320, leading most likely to serious over-fitting when

considering that such an approach still uses an average SI over the growing season,

not accounting for temporally-varying impact of SI. To quote John von Neumann:

“With four parameters I can fit an elephant and with five I can make

him wiggle his trunk.”

As such, a preferred alternative would be a lower dimensional feature which cap-

tures the key components of the stress index. In addition, we would like to include

information which allows for the impact of SI on yield to vary over the growing

season.

To capture more information from the SI values than would be available from

simple averaging, we extract the principal components and hence main sources of

variation from the stress index. To be more precise, after subtracting the average SI

from each day, the first principal component is the linear combination of growing

season SI values that accounts for the most variability in the SI values. The second,

which is orthogonal to the first, explains the next largest amount of variation, and

so on. Each observation, in this case each region – year combination, also has a

set of loadings that, when multiplied by the corresponding principal components,
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Figure 4.3: Screeplot showing the principal component variances in decreas-
ing order. From this, we see that the first 4 principal components explain
much of the variation in SI.

return the original observation. Figure 4.4 shows the subtracted mean process as

well as the first four principal components that together show the SIs history over

the growing season of our study. Four principal components are chosen as a result

of examining a screeplot of the principal components, see Figure 4.3.

Figure 4.4(a) reveals firstly the primary shape of the stress index, showing that

initially – from April 1 – the stress is moderate, increasing until May, followed by

a gradual decline until it bottoms out in July. It then returns to its highest values by

the end of September. The first component (Figure 4.4(b)), which describes 46.9%

of the variation in SI, captures a valley in the SI cycle around late August. The

second component, which accounts for 14.6% of the variation, shows SI’s decline

into its July valley followed by its rise to its early September peak. The orthog-
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Figure 4.4: Principal components and mean for SI. This figure depicts the
major patterns in the variation of the stress index (unitless) over the
growing season. Observe how the first four principal components pick
up deviations from the overall pattern in (a), and reveal the peaks and
valleys of the stress cycle over the course of the summer induced by
things like patterns in precipitation and temperature. Together these four
components capture most of the variation in stress in a very economical
way and eliminate the need for the high dimensional vector of daily SI
values.
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onality of the first two components is apparent from (b). The third component of

SI’s variation captures its low April start. Altogether, the first 4 principal compo-

nents account for 78.5% of the variation in SI over the growing season. Beyond

4 principal components we observed little in terms of improved modelling fit and

a reduction in prediction performance, as shown in figures 4.5 and 4.6. Thus by

including the loadings for these 4 principal components as explanatory variables,

we have created a 4-dimensional feature which accounts for a large proportion of

variation in the stress index.

Note that the first SI principal components aren’t necessarily the best predictors
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of yield. However, LASSO – a penalized least squares variable selection method

– in fact selects these same four principal components as the best four ([43]). This

choice of feature also has a natural biophysical interpretation. For instance, a large

and positive regression coefficient for the loadings corresponding to principal com-

ponent 3 would imply that a reduction in stress in early April is highly connected

with increased crop yield. By using this approach, the explained variance of the re-

gression model increases from 60.56% from averaging SI over the growing season

to 70.06%. In addition, as discussed above, the inclusion of principal components

allows the user to gain intuition about the effect different seasonal patterns in the

stress index will have on crop yield in a way averaging across the season can not.

Using these principal component loadings, our new model is

y j,t = β0, j +β1, jt +β2, jPC1 j,t + · · ·+β5, jPC4 j,t + ε j,t . (4.3)

where PC1 j,t indicates the loading for principal component 1 in region j and year

t.

Alternative bases and levels of sparsity

Because of their widely documented ability to model complex nonlinear signals

while maintaining sparsity, we briefly explore wavelet bases as an alternative to

principal components ([58]). Specifically, we examine a variety of different wavelet

bases and levels of sparsity both in terms of cross-validated prediction error as

well as R2. Because SI is inherently piece-wise smooth due to the impact of pre-

cipitation resulting in changepoints in the SI values, wavelets provide a valuable

alternative to principle components. Figure 4.5 plots R2 of the yield model for
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Figure 4.5: R2 of the crop yield model for a range of bases and sparsity levels.
From this we notice that principal components (PCA) provide better
model fit for all sparsity levels.
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various bases and levels of sparsity. From this plot we see that principal compo-

nents dominate in terms of model fit. While R2 measures how well a model fits to

data, it is not a good indicator of a model’s prediction abilities. As such, Figure

4.6 plots cross-validation root mean squared error (in bushels per acre) for each

basis and sparsity level. Once again we observe that principal components outper-

form wavelets. From these figures we conclude that principal components lead to a

model with better fit and prediction performance. This example highlights the need

to be selective in the choice of basis to represent stress index and other variables in

such a model. While wavelets excel at representing piece-wise smooth models in

a very sparse way (requiring the storage of only 1 vector – the mother wavelet – as

well as a series of indices), this is also their downfall in some circumstance such as

this one which require a richer representation.

48



Figure 4.6: Cross-validation RMSE (bushels per acre) of the crop yield
model for a range of bases and sparsity levels. From this we notice that
principal components (PCA) provide better prediction than the wavelet
bases for all sparsity levels.
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4.2.2 Incorporating temperature

Temperature affects a plant’s development and growth in a variety of ways, in

particular its photosynthesis and respiration. In general, temperature affects plant

functioning through its action on enzymatic reactions. At low temperatures, en-

zyme proteins are not sufficiently flexible to complete the conformation necessary

for enzymatic reaction. Conversely, high temperatures can coagulate the enzyme

leading to similar barriers to the reaction. Alongside a minimum and maximum

temperature to allow growth, most plants have an optimum temperature to encour-

age growth. For instance, [77] conclude that the minimum and optimum tem-

peratures for wheat are respectively 0 and 20-25 degrees celsius. As a result of

temperature’s influence on plant development, we suspect that its inclusion into

the model will result in prediction performance gains. In addition, by directly in-
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cluding temperature effects interpreting impacts of climate on yield is made more

straightforward.

Growing degree day

While temperature could go directly into the model, its measurement in hourly

or smaller increments creates a considerable amount of data. As a result, some

dimension reduction is needed to limit the number of explanatory variables. One

could do this using just the maximum and minimum daily temperatures or better

still, a one dimensional summary that combines the two. Thus ‘growing degree

day’ (GDD) measures the heat accumulation in a region based on local weather

by taking an average of the daily minimum and maximum and subtracting a base

temperature as follows:

GDD = max
(

0,
Tmax +Tmin

2
−Tbase

)
.

Thus the GDD measures the daily average temperature but in a way that reflects

the extremes more sensitively. The base temperature represents the physiological

temperature below which development would be zero.

A day with a high and low of 30 and 15 degrees celsius and a base temperature

of 10 degrees would have a GDD value of 12.5 degrees celsius. Thus GDD is

a simple, single-dimensional summary for describing the plant’s exposure to heat.

While GDD is a simple heuristic, it is commonly used by horticulturists to estimate

the stages of a plant’s growth. As an example, the maturation of wheat corresponds

to about 1600 GDDs ([28]). Thus GDD provides us with a simple low-dimension

summary of temperature, allowing for comparison of the thermal time available in
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Figure 4.7: Correlation of GDD and Yield over Time. Smoothed with lowess
smoothing. From this we see that a reduced window average may be
appropriate.

different climatic zones.

While SI gives scientific insight into the moisture available for plant growth,

it says little directly about the heat available to the crop. Thus to improve our

model we can also include GDD, which up until now has been used primarily in

this context for tuning the explanatory variables ([72]). Like SI, GDD is a daily

value, and hence can be treated similarly. Thus through the correlations plotted in

Figure 4.7 we look at the time of season where GDD is most correlated with yield.

This figure tells us that an appropriate window would be the one bounded by days

50 through 160. Using a cumulative average over the whole season, the explained

variation in yield increases from 70.06% to 73.20%, with the shortened window

performing similarly. As emphasized by others (see, for instance, [72]), includ-

ing GDD accounts for the biophysical phenology of the crop as well as improves
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interpretability of the model. Hence while the prediction improvements are mini-

mal, the variable’s inclusion is an important step in the development of a crop yield

model. In addition to averaging over the whole season or a shorter window, we can

also use principal components as we did for SI above. While using the first 4 prin-

cipal components only increases this to 76.48%, the additional 120 variables result

in reduced cross-validation prediction performance, hence we prefer using just the

windowed average. We emphasize that this is a user and case-specific choice, and

for alternate purposes different choices may be preferred. The expanded LS model

4.3 then becomes

y j,t = β0, j +β1, jt +β2, jPC1 j,t + · · ·+β5, jPC4 j,t +β6, jGDD j,t + ε j,t , (4.4)

where GDD j,t is the windowed average of GDD in region j, year t. It is worth

noting that temperature is a component of SI; however, the addition of GDD into

the model improves both model fit and prediction, thereby eliminating concerns

about the deleterious effects that collinearity between the two covariates might

introduce.

We compare the previous models as well as those developed later in the chapter

in Table 4.1, showing the features and performance of each successive model.

The traditional regression models represented in Table 4.1, fitted for each re-

gion separately, ignore a considerable amount of information. Specifically, because

of the close spatial proximity of the regions, considerable strength may be gained

by exploiting the correlation among regions. For instance, use of neighbouring

SI values can help stabilize predictions based on SI values, since the latter come

from a small set of regional monitoring stations and hence can be fairly noisy. The
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Table 4.1: Features of various models. We see that while model 4 has the
best fit to the data (R2 = .73), the Bayesian model gives the best predic-
tion performance in terms of cross-validated root mean squared error (in
bushels per acre). Effective parameters is defined as tr(S), where ŷ = Sy,
and may be cosidered a measure of model complexity ([43]).

Model Parameters Effective Parameters R2 CV RMSE

1: Single LS 3 3 .33 6.83
2: LS (SI) 120 120 .61 5.79

3: LS (PCA) 240 240 .70 5.72
4: LS (PCA+GDD) 280 280 .73 5.69

5: Bayes 283 139 .70 5.35

amount of borrowed strength can be considerable when the correlation between

stations is high. In addition, modelling all stations jointly while incorporating spa-

tial information allows us to continue to make predictions even in the presence of

missing or noisy data. If a measuring station goes out of operation temporarily,

its missing values may be inferred from data collected at nearby regions to yield

accurate forecasts. This idea leads into our next section, which focuses on spatial

models that look at all regions together in a unified manner.

4.2.3 A context-specific spatial Bayesian approach

Classical regression methods rely on the assumption that their model residuals are

uncorrelated. Indeed violation of that assumption can have very serious delete-

rious effects on parameter estimates compared, for example, to violations of the

assumption that those residuals have a Gaussian distribution ([24]). In our case the

residuals are most certainly spatially dependent and thus the actual amount of in-

formation in the data can be much less than the assumptions underlying (1) would

suggest. The unwary analyst would then be led to make overconfident forecasts
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with parameter estimates which vary considerably from one region to the next, yet

have unduly small standard errors.

One work-around would model the regions separately. However, this wastes

the benefits spatial dependence provides by borrowing strength, telegraphing in-

formation across the regions through the wires of correlation for the mutual im-

provement of all their forecasts. This progression naturally leads us to a Bayesian

framework for handling this problem, one which jointly models all regions simulta-

neously while accounting for their spatial dependence. Thus we move from the fre-

quency paradigm of classical statistics to the Bayesian paradigm of modern statis-

tics.

These two paradigms, which tend to give similar inferences at least for fairly

large datasets, are very different in concept. Frequentists see data as being gener-

ated by a system governed by some true but unknown parameters. They commonly

seek to estimate these true parameters well in some sense, for a variety of inferen-

tial purposes such as forecasting. The central tenet of their theory is repeated sam-

pling – in the long run the parameters can be estimated to arbitrarily high levels of

precision if the system producing the data were unperturbed. However, Bayesian

statisticians reject the notion of repeated sampling as a fundamental construct in

their theory, recognizing realistically that most systems cannot remain unperturbed

and pump out replicate data over an extended sequence of trials. Although their

models involve uncertain parameters, these parameters like all uncertain objects

such as future data values, are characterized by a probability distribution. Initially

that distribution, called a prior, simply reflects the Bayesian’s own knowledge. An

abundance of such knowledge would mean a prior concentrated around a single

point and a state of near certainty. The information in the data adds to the state
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of knowledge through the celebrated Bayes theorem. The latter relies on the like-

lihood function of the uncertain parameters which captures all the information in

the data. A likelihood tightly concentrated around a single value would mean the

data has eliminated much of the uncertainty about the parameters. However gen-

erally, Bayes rule needs to be applied to get the combined effect of data and prior

knowledge; this yields the Bayesian’s updated prior, or the so-called posterior dis-

tribution. Due to its adaptability and ease of use, Bayesian inference has become

a prominent fixture in modern spatial statistics, and in particular the modelling of

random spatio-temporal fields ([5]; [56]).

Available prior information

Consider, for example, the spatial structure discussed above. Even before estimat-

ing the parameters in equation 4.3, we expect parameters in adjacent regions to

be similar. Thus we would be surprised if the parameters relating GDD to yield

had completely opposite signs in two neighbouring regions. This reflects our prior

beliefs about those parameters, namely that knowledge of one would tell us some-

thing about the other. More simply, we would see them as stochastically dependent

in the language of the probability distribution that characterizes our beliefs about

them. We might even have some idea of their approximate magnitudes. For in-

stance, a magnitude of 100 (bushels per acre/degree celsius) for the coefficients

β6, j for GDD would be completely untenable, since it would mean that chang-

ing one cold day to a warm one (adding, say, 10 GDD over the entire cumulative

season), would increase the yield by roughly 10 bushels per acre. Thus even with-

out formalizing our beliefs in a prior distribution, loose bounds on parameters are

almost always apparent.
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Application of the Bayesian approach starts by characterizing our beliefs about

the parameters in the form of a prior distribution. In the regression models intro-

duced above, this would amount to a joint prior distribution on each β to account

for our belief in their dependence (similarity) for adjoining regions. For simplic-

ity, stack all of the coefficients into a vector βββ , the first 7 coefficients being for

all variables in region 1, the next 7 for region 2, and so on. Assuming a Gaussian

distribution as a convenient prior form, we can explicitly write the prior as follows:

βββ ∼ N (0,Σ0⊗gΩ) . (4.5)

By using such a Kronecker structure, Σ0 models the correlation within a given

coefficient across space, while gΩ corresponds to Zellner’s g-prior ([89]) with Ω

the 7×7 empirical covariance between explanatory variables. As such, this choice

of prior fits within the empirical Bayes paradigm. While specifying the coefficients

(particularly the intercept) to have zero-mean seems restrictive, we note that a priori

it does not seem unreasonable to assume that in the presence of full stress (signaling

the complete absence of water) the crop yield would be zero. We now specify Σ0,

the correlation between regions, as

Σ0 = exp(−D/φ), (4.6)

with a slight abuse of notation where D is the matrix with element (i, j) the Eu-

clidean distance between regions i and j (as measured from the center of the re-

gion). Here φ is a parameter controlling the rate of decay of correlation as distance

increases. In this way, φ controls how spatially smooth the coefficients are, while
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g controls how tight around zero the coefficients are. While we are not convinced

that wheat is planted in more than the southern section of the three northern-most

regions, including the region centers rather than some more southerly geographic

location is conservative, as the true geographic center is further removed from adja-

cent regions, and therefore the correlation expressed through Σ0 is decreased. Oth-

ers have proposed more complex spatially-varying models which rely on Markov

chain Monte Carlo for inference (e.g. [5, 35]); however, our goal of an online

implementation restricts us to models with analytic tractability.

While we suspect neighbouring regions to be similar, Figure 4.2 highlights the

differences between provinces. While one could include an indicator variable to

allow for provincial effects, accounting for provincially-varying coefficients would

involve a considerable number of interaction terms. In fact, the varying irriga-

tion and technology policies in each province result in a sharp boundary between

provinces for several of the mean parameters. As such, it is not entirely logical

to use a stationary prior ([20]) which assigns correlation between regions solely

based on distance without any respect for political boundaries. As a result, we

adjust our prior distribution to have reduced correlation between regions in dif-

ferent provinces. While the obvious approach is to scale down the prior correla-

tion between regions in different provinces with a constant value, this may lead to

non-positive definiteness of Σ0; alternative methods which do not suffer from this

problem are therefore needed. We accomplish this task by deforming the physical

space, in effect pushing neighbouring provinces apart. Motivated by [78], this ar-

tificial distortion of the space results in a stationary prior in the deformed space,

yet a nonstationary one in the original space. The distance d (measured in degrees

latitude/longitude) by which the provinces are pushed apart in the artificial space
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is selected through cross-validation. Searching over the integers from 1 to 10, we

find d = 4 to give the best prediction performance (CV RMSE of 5.35 vs 5.39

for d = 0), intuitively meaning that Alberta and Manitoba are pushed respectively

west and east from Saskatchewan by 4 degrees longitude in the artificial space.

The end result is a reduction in the off-diagonal elements of Σ0 corresponding to

between-province regions while maintaining positive definiteness. Note that the

prior parameters φ , g, and d result in an additional 3 parameters in the Bayesian

model, as reflected in Table 4.1.

Likelihood and posterior distributions

We begin by employing the likelihood corresponding to (4.4), namely

y j,t ∼ N
(
β0, j +β1, jt +β2, jPC1 j,t + · · ·+β5, jPC4 j,t +β6, jGDD j,t ,σ

2) . (4.7)

In keeping with common practice, we also assign an Inverse-Gamma prior distribu-

tion on σ2 with shape and scale parameters a and b set to be highly noniformative.

Before proceeding, we introduce the notation y, the column vector of stacked y j,

and X , the (31×40)×240 block-diagonal matrix of explanatory variables. Using

Bayes theorem to combine our initial knowledge (in the form of prior distributions)

and the information provided by the data (in the form of the likelihood), we can

obtain the posterior distribution of the parameters. Specifically, for the regression

coefficients βββ , the marginal posterior is obtained using Bayes Theorem as follows:

π(βββ |X ,y) ∝

∫
π(y|X ,βββ ,Σ)π(βββ |Σ)π(Σ)dΣ. (4.8)
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Due to the conjugate nature of the prior and likelihood, we are able to analytically

complete this integral. The resulting distribution is a multivariate Student-T,

βββ ∼ T
(
βββ f ,Ψ,n+2a

)
(4.9)

where

βββ f = (XT X +(Σ0⊗gΩ)−1)−1(XT y)

Ψ = (XT X +(Σ0⊗gΩ)−1)(SS+2b)/(n+2a)

SS = yT y−βββ
T
f (X

T X +(Σ0⊗gΩ)−1)βββ T
f .

From this last expression, we get the posterior mean βββ f , which may be used as a

simple estimator for βββ . In fact, comparing βββ f = (XT X +(Σ0⊗ gΩ)−1)−1(XT y)

to the LS estimate (XT X)−1(XT y), we readily see how the prior covariance affects

the parameter estimates. In particular, a diffuse prior distribution adjusts the es-

timate little, whereas an informative prior distribution – one that is fairly tightly

concentrated around zero – shrinks the posterior estimate considerably.

Setting g = 10 and φ = 106, we obtain coefficient estimates as shown in Figure

4.8, which also shows the corresponding least squares estimate using (4). We see

that the spatial information used in the Bayesian model causes the coefficients to be

more correlated across space. In addition, the zero-mean prior distribution leads to

some shrinkage in the coefficient estimates. Interestingly, we notice little shrinkage

in the estimated coefficient for technology trend, suggesting that the data contains

considerable information on this quantity.
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Figure 4.8: Coefficient surfaces for intercept, technology trend, and PC1.
Other coefficients are similarly smoothed.

(a) (b)

(c) (d)

(e) (f)

60



4.3 Results

We proceed by comparing the prediction performance of the least squares and

Bayesian methods. To accomplish this we use leave-one-out cross-validation, re-

moving years one at a time in succession to compare each model’s predictive abil-

ity. More specifically, we successively remove each year in turn, using the remain-

ing years to find the posterior mean, notated β̂ββ
i
if year i is removed. This posterior

mean is then used to perform prediction on the removed year. From this the root

mean squared error (RMSE) is calculated as the square root of the sum of squared

prediction errors for each year and region.

RMSE =

√√√√ 31

∑
i=1

40

∑
j=1

(yi, j−Xi, jβ̂ββ
i
)2/(31×40). (4.10)

Figure 4.9 shows the cross-validation root mean squared error (RMSE) of the pos-

terior mean estimate for various settings of g and φ . As g→ ∞ and φ → 0, the

Bayesian model converges to the least squares solution, as evidenced by converg-

ing cross-validation errors. However, if g is too small, the prior on the regres-

sion coefficients is too informative towards zero, and hence the resulting posterior

means are overly shrunken, resulting in poor prediction (RMSE > 6). While one

could assign prior distributions to these parameters, we prefer finding them through

cross-validation for computational efficiency. Specifically, given the optimal pa-

rameters, the model is conjugate, and hence sequential updating and prediction is

analytic and therefore nearly instant. It is very interesting to note that the optimal

prediction error for the Bayesian model is less than for the least squares model,

indicating that prediction is improved with regularization (provided by the zero-
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Figure 4.9: Cross-validation errors using Bayesian posterior mean. For com-
parison, the least squares error is 5.69. From this, we observe a ridge
of excellent prediction. Hence there is some tradeoff between the two
parameters to be tuned.

mean prior and/or correlation). The area of lowest prediction error occurs along a

diagonal of g and φ and has value approximately 5.35. This is likely due to the fact

that an increase in g results in a more diffuse posterior which regularizes less, while

increases in φ result in increased correlation between regions and hence more reg-

ularization. Hence the optimal prediction seems to occur for moderate amounts of

regularization.

The cross-validation RMSE can also be calculated for each region by summing

only over years. In this way we can gain an improved perspective on the model’s

prediction performance. However, while cross-validation RMSE gives an idea of

the prediction performance of a model, it does little to tell of a model’s bias. To

62



do this we decompose the RMSE into the model’s prediction bias and variance.

Doing this for each region, we obtain Figure 4.10 detailing the prediction RMSE,

bias, and variance of the Bayesian and LS models in each region. From this figure

we observe that, with the exception of one or two individual regions, the Bayesian

model improves RMSE in all areas except for southern Manitoba. Digging deeper,

we see a negative bias in this area. Thus the regularization of the model is perhaps

not useful in this region due to some systematic differences in this area. Specifi-

cally, this section of southern Manitoba is known to use significant irrigation ([34]).

As a result, further model development might be explored in this area to account

for irrigation.

4.4 Conclusion

In this chapter we have examined the role of SI in predicting crop yields, empha-

sizing the need to create a judicious low-dimensional summary in order to improve

prediction. Simply averaging SI over the entire season is inefficient, as yield may

be insensitive to stress in certain parts of the summer. The traditional solution to

this problem is to average over a reduced window of data, hence cutting out those

areas lacking in sensitivity from the analysis. However, this one dimensional fea-

ture is not particularly sensitive to changes in stress indices within that window. For

example, a region which has low SI in June but high SI in July might ultimately

have the same averaged value as another region which had just the opposite trend.

To address this issue, we have implemented principal components analysis to cre-

ate a set of flexible summary statistics which better describe the variations in SI,

and as a result improve prediction considerably. We also demonstrated principal

components’ improved performance over wavelet bases.
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Figure 4.10: Cross-Validation results by region. The Bayesian model im-
proves prediction by all standards in the majority of regions. We plot
root mean squared error (RMSE) as well as the breakdown to bias and
variance for the models.

(a) (b)

(c) (d)

(e) (f)
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We have also shown the importance of incorporating spatial correlation into

crop yield models; ignoring this information can lead to bias both in model identi-

fication and prediction. Specifically, we observed that a common least squares fit of

crop yield on some explanatory variables over the entire region resulted in biased

residual errors, and hence violated the assumptions of the model. To avoid this

problem, we could fit each agricultural region with its own model. The problem,

however, is that this ignores information between crop regions, and as such we ob-

served reduced prediction power and model identifiability. We addressed this issue

through the use of a Bayesian model which modelled all regions together, yet ac-

counted for spatial correlation. This model smooths and stabilizes prediction and

also allows for analytic and therefore efficient updating and prediction. In addi-

tion, we created a non-stationary prior distribution to address the issue of province

to province variability resulting from provincial differences in policy, management,

and other factors affecting yield. Through cross-validation, we demonstrated this

model to achieve improved prediction performance in modelling Canadian wheat

yield over the least squares model which ignores spatial dependence, and hope that

others will attempt to replicate our findings in other contexts based on the promise

seen in this application.
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Chapter 5

Nonstationary Modeling Through

Dimension Expansion1

5.1 Introduction

Recently there has been great interest in using spatial statistical methods to model

environmental processes, with the aim of both gaining an improved understanding

of underlying processes and making predictions at locations where measurements

of a process are not available. The majority of such methods make the assump-

tion that the underlying process is stationary ([20]) which, for many environmental

systems, may be untenable.

In this chapter, we focus on accurately explicating the nonstationary structure

that often arises in measurements of atmospheric, agricultural, and other environ-

mental systems. If these systems share one underlying theme it is complex spatial

1A version of Chapter 5 has been published. Bornn, L., Shaddick, G., Zidek, J. (2012) Mod-
elling Nonstationary Processes Through Dimension Expansion. Journal of the American Statistical
Association. Vol. 107, Pages 281-289. [15]
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structures, being influenced by such features as topography, weather, and other en-

vironmental factors. For example, the air quality characteristics of cities are likely

to be more similar than that of rural areas irrespective of their geographic prox-

imity. Ideally we might model these effects directly; however, information on the

underlying causes is often not routinely available. Hence when modeling environ-

mental systems there exists a need for a class of models that are more complex than

those which rely on the assumption of stationarity.

In the field of atmospheric science, empirical orthogonal functions have been

used to model a nonstationary process as the sum of a stationary isotropic pro-

cess and a set of basis functions with random coefficients representing departures

from nonstationarity ([66, 67]). Current approaches to modeling nonstationary pro-

cesses in the statistical literature broadly comprise those that (i) combine locally

stationary processes to create an overall nonstationary process and (ii) build upon

the framework of ‘image warping’.

A number of approaches for handling nonstationarity assume that over small

enough spatial domains, the effects of nonstationarity are negligible, and hence

locally stationary models may be used. This concept is the basis of kernel ap-

proaches, early examples of which can be found in [39, 40]. The process–convolution

approach ([45, 46]) relies on the notion that a wide range of stationary Gaussian

processes may be expressed as a kernel convolved with a Gaussian white noise

process, with the kernel being allowed to vary spatially to account for nonstation-

arity. The form of the kernel allows for a broad expression of potential covariance

functions, with a Gaussian kernel corresponding to a Gaussian covariance function

and other choices of kernel resulting in other correlation structures. Similarly, [32]

suggested modeling the field as a weighted average of local stationary processes
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within a set of regions, an idea which was later extended to include a continuous

convolution of stationary processes ([33]). Various difficulties still remain in this

class of models, including the lack of a complete and easily interpretable global

model and the choice of local regions and details of the weight structures. An al-

ternative approach proposed by [78] is that of “image warping”, the central idea of

which is that a nonstationary process may be stationary in a deformed, or warped,

version of geographic space. Multi-dimensional scaling (or related methods) can

be used to find the deformed locations with a mapping between the original and

deformed space found using, for example, a thin plate spline.

The principal idea underlying the proposed method is that of embedding the

original field in a space of higher dimension where it can be more straightfor-

wardly described and modelled. Specifically, we shift the dimensionality of the

problem from 2 or 3 dimensions to 4, 5, or more in order to recover stationarity in

the process; we term our methodology “dimension expansion.” Our starting point

is that nonstationary systems may be represented as low-dimensional projections

of high-dimensional stationary systems (see, for example, [68]). The method is

superficially similar to that of image warping; however, it differs fundamentally in

that here the locations in the geographic space are retained, with added flexibility

obtained through the extra dimensions. Additionally, it addresses one of the major

issues with the image warping approach, namely folding of the space. This occurs

in image warping if the estimate of the function that transforms from geographical

to deformed space is not injective. As a result of folding, two geographically dis-

tinct locations may be mapped to the same location, meaning the variation between

them will be incorrectly treated as measurement error and small scale variation (i.e.

the nugget), which is expressly appropriate only for collocated and other proximal
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monitoring sites. In such cases, mapping quantities such as prediction intervals be-

comes particularly challenging both in terms of implementation and interpretation.

The remainder of the chapter is organised as follows: Section 2 introduces the

dimension expansion framework proposed here, including an illustrative example

to demonstrate the fundamental concepts behind the approach. This example is

then used to draw comparisons to image warping. In Section 3, dimension expan-

sion is applied to two real life examples. First, the solar radiation dataset originally

used in [78] and used as a test-bed in various more recent image warping papers is

studied. Second, we study air pollution from seventy-seven monitoring locations

in the United Kingdom which show clear signs of nonstationarity. We highlight the

ability of dimension expansion to accurately model such data as measured through

cross-validated prediction error. Finally, Section 4 provides a discussion and sug-

gestions for future developments.

5.2 Dimension Expansion

While early work ([20]) dealt primarily with stationary models, it is now gener-

ally recognized that many spatial processes {Y (xxx) : xxx ∈ S }, (S ∈ Rd) fail to

satisfy this assumption. Environmental systems might exhibit behaviour that looks

locally stationary, yet when considered over large and heterogenous domains they

very often exhibit nonstationarity. For ease of notation, we consider Y (xxx) to be a

(potentially nonstationary) mean-zero Gaussian process and place our emphasis on

representing the nonstationary structure.

A principal task in spatial statistics is estimating a variogram model (or correla-

tion function) to explain spatial dependencies. The theoretical variogram, defined
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as

2γ(xxxiii,xxx jjj) = E
(
|Y (xxxiii)−Y (xxx jjj)|2

)
is typically modeled using a parametric stationary variogram γφ (hhh) depending only

on hhh = xxxiii− xxx jjj, the difference vector between locations, and the parameter(s) φ . If

the field is nonstationary, such a model will be a misspecification. In response, we

transform the set of observed spatial locations S ∈Rd into one of higher dimen-

sion S ′ ∈ Rd+p, where p > 0 and S is a subset of the dimensions of S ′. Put

plainly, such an approach amounts to allowing extra dimensions for the observed

locations xxx111, . . . ,xxxsss, notated as zzz111, . . . ,zzzsss such that the field Y ([xxx,zzz]) is stationary

with a variogram model γφ ([xxxiii,zzziii]− [xxx jjj,zzz jjj]). Here [xxx,zzz] is the concatenation of the

dimensions xxx and zzz.

Perrin and Meiring [68] explore this idea in the particular case where both the

covariance function and the expansion from xxx to [xxx, zzz] are known. In their motivat-

ing example, they consider the following stationary covariance on the plane:

cov(Y ([xxxiii,zzziii]),Y ([xxx jjj,zzz jjj])) = exp(−|xxxiii− xxx jjj|− |zzziii− zzz jjj|).

By restricting to the set zzz = xxx2 and defining Y ′(xxx) =Y ([xxx,xxx2]), the resulting covari-

ance function on this reduced-dimension field is nonstationary, namely

cov(Y ′(xxxiii),Y ′(xxx jjj)) = exp(−|xxxiii− xxx jjj|)exp(1+ |xxxiii + xxx jjj|).

Perrin and Meiring [68] then consider the reverse problem, proving that a non-

stationary random field indexed by Rd (with moments of order greater than 2)
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can always be represented as second-order stationary in R2d . It is not, however,

necessary to move from Rd to R2d to obtain the existence of a stationary field.

Consider a recent result of Perrin and Schlather [69], which states that a Gaus-

sian random vector can always be interpreted as a realization of a stationary field

in R p, p ≥ 2, subject to moment constraints on the vector, namely that all com-

ponents have equal expectation with the covariance matrix having identical com-

ponents on the diagonal. From this it is straightforward to state that, similarly, a

realization of a Gaussian process in Rd may be interpreted as a realization of a

stationary field in Rd+p, p≥ 2 (similarly, subject to moment constraints), with the

covariance function ignoring the initial d dimensions.

The above results show the existence of higher-dimensional stationary repre-

sentations for nonstationary fields, yet in the vast majority of situations neither a

nonstationary variogram, nor an analytic mapping to higher dimensions, is known.

Here we construct a framework for using higher-dimensional representations to

model nonstationary systems, with the goal of learning the latent dimensions non-

parametrically from information contained within the data.

To learn the expanded, or latent, dimensions zzz111, . . . ,zzzsss we propose

φ̂ ,ZZZ = argmin
φ ,ZZZ′′′

∑
i< j

(v∗i, j− γφ (di, j(
[
XXX ,ZZZ′′′

]
)))2 (5.1)

where v∗i j estimates the spatial dispersion between sites i and j, for example

v∗i j =
1
|τ|∑

τ

|Y (xxxi)−Y (xxx j)|2,

with τ > 1 indexing multiple observations of the system, the handling of which
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is considered in the discussion, and di, j([XXX ,ZZZ]) is the i, jth element of the distance

matrix of the (augmented) locations [XXX ,ZZZ]. Once the matrix ZZZ ∈Rs×R p is found,

a function f is built such that f (XXX) ≈ ZZZ. While a wide range of options exist, we

follow Sampson and Guttorp [78] in using thin plate splines, here one for each

dimension of ZZZ. Thin plate splines are a mapping from one space to another such

that the integral of the squared second order derivatives of the mapping function is

minimized. For d = 2, this corresponds to minimizing

s

∑
i=1
||zzzi− f (xxxi)||2 +λ2

∫
R2

[(
∂ 2 f
∂ 2x1

)2

+2
(

∂ 2 f
∂x1∂x2

)2

+

(
∂ 2 f
∂ 2x2

)2
]

dx1dx2,

and therefore the smoothing parameter λ2 is analogous to λIW , the thin plate spline

parameter in the image warping framework. Setting λ2 = 0 results in an interpo-

lating spline, whereas λ2→ ∞ results in the linear least squares fit. The nonlinear

functions f are therefore linear combinations of basis functions centered at the lo-

cations S ∈ Rd . Once a model is built in the expanded space, f−1 will bring

us from the manifold in Rd+p defined by (XXX , f (XXX)),XXX ∈Rd back to the original

space.

Due to our unique formulation, we have f−1(ZZZ) = XXX , and we need not be con-

cerned with the difficulties associated with ensuring that f is bijective as in earlier

approaches. Thus we may view the originally observed locations XXX as a projection

from a manifold within a higher dimensional space, [XXX ,ZZZ], in which the process is

stationary. As an obvious (and direct) example, a process which is stationary given

both geographical location and elevation may result in a nonstationary field given

only longitude and latitude. Learning the latent dimensions (whether or not they

have a physical meaning, such as elevation) means that a stationary model may be
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used in the expanded space.

In many situations, it is unclear how many additional dimensions are needed

to accurately model the spatial field. One could use cross-validation or a model

selection technique to determine the dimensionality of ZZZ; however, recognizing

that (5.1) might result in overfitting the spatial dispersions, we would also like to

regularize the estimation of ZZZ. As a result, we modify (5.1) by including a group

lasso penalty term on ZZZ, where the groups are the dimensions of ZZZ ([87]). The

resulting objective function is

φ̂ ,ZZZ = argmin
φ ,ZZZ′′′

∑
i< j

(v∗i, j− γφ (di, j(
[
XXX ,ZZZ′′′

]
)))2 +λ1

p

∑
k=1
||ZZZ′′′·,k||1. (5.2)

where ZZZ′′′·,k is the k-th column (dimension) of ZZZ′′′. As a consequence of this revised

objection function, one need only determine a maximum number of dimensions p

and the shrinkage parameter λ1, whereupon the learned augmented dimensions ZZZ

will be both regularized towards zero and sparse in dimension. Hence λ1 can be

viewed as regularizing the estimation of ZZZ and determining the dimension of the

problem, whereas λ2 controls the smoothness of the augmented dimensions; we

suggest learning both through cross-validation, although other model fit diagnos-

tics or prior information may be used as well.

It is relatively straightforward to solve (5.2) using the gradient projection method

of Kim et al. [52], which conducts block-wise updates for group lasso with general

loss functions. Here the blocks are the dimensions of ZZZ, and hence the optimization

is efficient even for a large number of spatial locations. Optimization details are
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given in the appendix. For ease of exposition we use an exponential variogram,

γφ (xxx111,xxx222) = φ1(1− exp(−||xxx111− xxx222||/φ2))+φ3,

which works well in the examples that follow, although the method applies analo-

gously to other variograms.

5.2.1 Illustrative example

We now present an illustrative example to help explain the concepts behind this

proposed dimension expansion approach, as well as demonstrate the inability of

image warping to handle complex nonstationarity. Specifically, we simulate a

Gaussian process with s= 100 locations on a 3-dimensional half-ellipsoid centered

at (0,0,0) such that the projection to the first 2 dimensions is a disk centered at the

origin. Here, as throughout, distances are Euclidean. Figure 5.1 plots the empirical

variograms for the original 3-dimensional space as well as the 2-dimensional pro-

jection, the latter of which results in a highly noisy empirical variogram cloud. Our

goal is to recover the lost dimension through dimension expansion by optimizing

(5.2) with λ1 = 0.5, chosen to induce ZZZ to have one dimension. Here we calculate

the matrix of empirical dispersions v∗i j using 1000 realizations of the Gaussian pro-

cess. Figure 5.2 shows the resulting learned locations as well as the corresponding

empirical variogram, where we see that dimension expansion is capable of recover-

ing the lost dimension, resulting in a variogram that closely reproduces the original.
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Figure 5.1: Empirical variograms from the original process (left) as well as
a 2-D projection (right) on the illustrative ellipsoid example. A fitted
exponential variogram is shown by the solid line.

Figure 5.2: Learned latent locations (left) using λ2 = 10−4 as well as corre-
sponding empirical variogram (right) after dimension expansion is ap-
plied. The fitted exponential variogram is shown by the solid line.
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5.2.2 Image warping and folding

In the image warping approach, Sampson and Guttorp [78] employ non-metric

multidimensional scaling to move the locations along the geographic space, fol-

lowed by fitting of the variogram γφ using traditional variogram fitting methods.

From this, a function f is found to go from the original to the warped locations,

and back via f−1. A number of adaptations of this approach have been proposed.

[82] proposed modeling the covariance function as a linear combination of radial

basis functions using maximum likelihood (as suggested by [59]). [63] and [64]

noted that the multi-stage algorithm of Sampson and Guttorp does not correspond

to a unified optimization problem and instead propose finding the locations and

fitting the variogram using a single objective function, an approach also pursued

by [62]. It is worth noting that [63] also explore mappings from R2 to R3 in

the context of analyzing acid rain data, as the same-dimension mapping was inca-

pable of describing the nonstationarity arising in the observed field. In a similar

vein, [48] propose using simulated annealing to fit the spatial deformation model.

Rather than imposing smoothness on the deformation through thin plate splines,

they use Delauney triangulation to constrain the mapping f from folding on itself.

In order to acknowledge the uncertainty associated with the deformed locations,

[22], [79], and recently [80] have proposed Bayesian implementations of this ap-

proach, the latter additionally using observed covariate information to warp into

higher dimensions.

As described in the introduction, the image warping framework can suffer from

problems of folding, namely of f not being bijective (See Zidek et al. [90] for a

particularly extreme example of folding). Considering the illustrative example of
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Figure 5.3: Warped grid of locations (top) and corresponding variograms
(bottom) for various settings of the thin plate spline parameter λIW using
the image warping technique of Sampson and Guttorp [78].

Section 2.1, admittedly designed to be illustrative of such folding, we apply the

image warping technique ([78]) with f modeled as a thin plate spline. Because the

image warping framework contains no term similar to λ1 to regularize the warped

locations, smoothing must be done through the thin plate spline parameter λIW

(analogous to λ2 in the proposed dimension expansion framework). Figure 5.3

shows the warped grids and resulting empirical variograms for various settings of

λIW applied to the ellipsoid example introduced in Section 2.1. We observe imme-

diately that for a highly penalized f (corresponding to large λIW ) the space does

not fold; however, the variogram fit is very poor. As λIW is relaxed to improve the

fit, the space begins to fold, highlighting a potentially serious problem with the im-

age warping framework – an issue which is addressed in the dimension expansion

paradigm proposed here.

Also related to the proposed dimension expansion method are latent space
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models such as that proposed by Hoff et al. [47]. Here, latent dimensions are used

to help learn a network of relationships between individuals. Recent work in the

field of spatial statistics has also exploited latent dimensions to ensure valid cross-

covariance functions in multivariate fields. Specifically, Apanasovich and Genton

[2] use latent dimensions for the different variables in order to build a class of valid

cross-covariance functions.

5.3 Applications

We now present two applications of dimension expansion applied to the modeling

of nonstationary processes using two real data sets. The first uses the solar radiation

data ([44]) studied in the original image warping paper of Sampson and Guttorp

[78]. The second consists of measurements from a network of air pollution (black

smoke) monitoring sites in the UK, further details of which can be found in [29].

5.3.1 Solar radiation

The data of Hay [44] includes measurements of solar radiation from 12 stations

in the area surrounding Vancouver. Due to the location and elevation of station 1

(Grouse mountain), the field is inherently nonstationary, as exhibited by the sam-

ple variogram (Figure 5.4). This figure shows the original and warped locations

using Sampson and Guttorp’s image warping approach with corresponding vari-

ogram plot. Image warping moves the locations (in particular the station at Grouse

mountain, which is the northernmost location) to achieve something closer to sta-

tionarity. It is worth noting that overfitting may be controlled through the parameter

λIW of the thin plate spline.

Figures 5.4 and 5.5 show the results of applying the dimension expansion ap-
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Figure 5.4: Original locations and empirical variogram for the solar ra-
diation data (left); warped locations and associated empirical vari-
ogram using image warping with λIW = 0.1 (centre); learned loca-
tions with associated empirical variogram using dimension expansion
with λ1 = 0.5,λ2 = 10−4 (right). The units for the semi-variance are
(MJm−2day−1)2, and for distance are km (UTM coordinates, divided
by 1000). The fitted variogram is shown by a solid line, and points as-
sociated with Grouse mountain (station 1) are highlighted using an “X”.

proach using λ1 = 0.5 and λ1 = 0.2, respectively, using a maximum number of

dimensions of p = 5. The original locations are shown, as well as the added di-

mensions (ZZZ). With λ1 = 0.5 (Figure 5.4, right), dimension expansion adds one

additional dimension which primarily serves to push Grouse mountain out of the

plane, reflecting the a priori suggestion that it is elevation that leads to the station’s

spurious correlation pattern. Interestingly, the contours of the learned dimension

closely resemble the elevation contours of the mountains surrounding the Vancou-

ver area. With λ1 = 0.2 (Figure 5.5), 2 extra dimensions are used, and the fit of

the parametric variogram improves marginally. We can therefore see how λ1 in-
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Figure 5.5: Dimension expansion of the solar radiation surface using λ1 =
0.2,λ2 = 10−4. Z here is 5 dimensions, with Z3,Z4, and Z5 set to zero
as a result of the sparsity-inducing penalization. The first two panels
show the learned locations, and the right-most panel shows the associ-
ated empirical variogram (fitted variogram shown in red). The units for
the semi-variance are (MJm−2day−1)2, and for distance are km. Points
associated with Grouse mountain (station 1) highlighted using an “X”.

fluences the number of extra dimensions used, as well as the shrinkage in each

dimension, in order to control the level of fit.

5.3.2 Air pollution

The data consists of annual average concentrations of black smoke (µgm−3) over

a period of sixteen years from 77 locations within the UK operating between April

1978 and March 1993 (inclusive) and was obtained from the Great Britain air qual-

ity archive (www.airquality.co.uk). Sites were selected in areas defined wholly or

partially residential and measurements were aggregated to ward level (based on

the 1991 census) using a geographical information system ([29]). The majority of

wards contained a single site, but where there were more than one, records were

either joined together if the time periods did not overlap or averaged if time peri-

ods of operation were simultaneous. Due to similarities in levels of air pollution

in urban locations, even if they are not geographically close, the field is known
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to be nonstationary. Specifically, we see in Figure 5.8 reduced empirical disper-

sions for distances around 280−290km (the distance between London and Liver-

pool/Manchester), indicating that these urban centers are more similar than their

distances would suggest. Our goal is to uncover and explore this nonstationarity

through the dimension expansion framework.

We begin with cross-validation to learn the optimal setting of the parameters

λ1,λ2 using (5.2) as described in Section 2. Figure 5.6 shows the resulting cross-

validation RMSE for various parameter settings. We can see that moderate values

of both λ1 and λ2 result in the best prediction performance. As λ1 increases to its

highest value (104.5), no dimension expansion occurs, and hence λ2 has no impact.

From this it is straightforward to see that the use of the original geographic space

is a special case of the dimension expansion framework.

Using these parameter values, the dimensionally sparse optimization (5.2) used

by dimension expansion leaves all but one dimension of ZZZ set to zero. This dimen-

sion is shown in Figure 5.7, where we see a strong ridge connecting London, Birm-

ingham, Liverpool, and Manchester. Hence in the extra dimension major cities are

moved closer together while rural areas are pushed further away. The variograms

before and after the dimension expansion are shown in Figure 5.8, where we see

no indications of nonstationarity after dimension expansion is applied.

5.4 Discussion

By augmenting the dimensionality of the underlying geographic space, we have

developed a highly flexible approach for handling the nonstationarity that often

arises in environmental systems. While ostensibly similar to image warping, the

proposed method avoids the issue of folding and allows one to model much more
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Figure 5.6: Leave-10-out cross-validated prediction error of dimension ex-
pansion applied to the UK black smoke data. Here we see optimal pre-
diction for moderate values of both λ1 and λ2.

complex nonstationarity patterns through interdimensional expansions, allowing

the user to perform nonparametric learning of the mapping function. In addition,

through the use of a group lasso penalty, we are able to estimate the number of

augmented dimensions, as well as regularize the optimization problem. Lastly, we

have highlighted the practical application of the dimension expansion approach in

three examples, two of which use data from observed environmental processes. It
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Figure 5.7: Coordinate surface of the learned dimension following dimension
expansion. A strong ridge is visible connecting major cities indicat-
ing closer correlation between these locations than would be suggested
in geographic space. The locations of a selection of major cities are
shown; (1) London, (2) Birmingham, (3) Manchester, (4) Liverpool and
(5) Bristol.

is worth noting that while we have developed the spatial model in terms of vari-

ograms, it could alternatively be expressed in terms of covariances; see, for exam-

ple, Gneiting et al. [38] for a thorough comparison of the two approaches.

In general, models will comprise a spatial mean or trend term together with spa-

tial covariance for deviations from this trend. It is desirable to maximally reflect the
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Figure 5.8: Binned empirical and fitted (solid line) variograms on the UK
black smoke data, following dimension expansion. In the original ge-
ographic space, we see a dip in the empirical variogram at roughly
280km, corresponding to the distance between London and Liverpool/-
Manchester. After dimension expansion is applied, the ridge between
London and Liverpool/Manchester removes this effect of nonstationar-
ity. The units for the semi-variance are (µgm−3)2 and for distance are
km.

variation in the response using the mean function and thus known covariates, but

inevitably the mean function will not be able to capture all of the spatial variation

and thus residual spatial variation must be modeled specifically. When all relevant

covariates are included in the mean term, it is commonly assumed that the resulting

spatial term is stationary. However, as the Karhunen-Loeve expansion shows, the

modeling of spatial trend and covariance are inseparable and misspecification of

the former will induce a second order distortion in the latter, thus violating any as-

sumptions of stationarity in many cases. Due to the complexity of environmentally

processes, misspecification is inevitable because all relevant covariates can never

be known or, even if known, observed. In the air pollution example presented

here, concentrations in cities appeared to be more similar than that of rural areas

irrespective of their geographic proximity. If available, it would be possible to in-
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corporate a measure of rurality in the mean function, possibly produced using a

geographical information system based on population density data. However, even

if such information were available, stationarity would still not be guaranteed and

so there is a need for methods such as that proposed here to allow nonstationary

models to be constructed for the spatial process.

5.5 Optimization of Equation (5.2)

As with traditional multi-dimensional scaling, penalization functions of the form

(5.1) do not have a unique maximum. However, the learned locations are unique

up to rotation, scaling, and sign. The optimization problem (5.2) is more regular-

ized, however, due to the presence of the l1-norm. Specifically, not all rotations

and scalings of the learned locations will have the same l1-norm, and hence the

resulting optimization is unique only up to sign and indices of zero/non-zero di-

mensions. For example, consider finding the location of a single latent location in

2 latent dimensions. The locations (1,0) and
(

1/
√

2,1
√

2
)

fit the objection func-

tion (1) equally well, yet their l1-norms are 1 and
√

2, respectively. Note that since

the end goal is not to learn the dimensions, but rather to find an expanded space in

which the process is stationary, the existence of multiple possible expansions is not

important, so long as one of the projections in the equivalence class is found.

In our experience, traditional optimization procedures such as Nelder-Mead

or the BroydenFletcherGoldfarbShanno method ([65]) work well for a moderate

amount of locations (s < 100) and dimensions (p < 3). For larger problems, it may

be necessary to use purpose-built optimization routines intended for generalized

group lasso. Let Ω(UUU) be the first term in equation 5.2, where UUU = [XXX ,ZZZ]. Then
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column k of the gradient matrix is

∇kΩ(UUU) =
2
p

ΓΓΓ◦
(
UUU ·,k111p×p−111p×pUUUT

·,k
)

111p×1

where

ΓΓΓi, j =
(
γφ (di j(UUU))−ν

∗
i j
) ∂γφ

∂di j
.

Using this gradient information, the gradient projection algorithm of Kim et al.

[52] may be used to optimize (5.2). The algorithm proceeds as follows:

Initialize : UUU0 = 000, α : sufficiently small positive constant

for t = 1, . . . ,T do
Set uuu =UUU t−1−α∇Ω(UUU t−1) and η = {1, . . . , p}

while M j > 0 ∀ j do
For j = 1, . . . , p

M j = I( j ∈ η)×
(
||uuu j||+

M−∑ j∈η ||uuu j||
|η |

)

Set η = { j : M j > 0}

end

Set UUU t−1
·, j = uuu j

M j
||uuu j|| for j = 1, . . . , p

end

Return UUUT

From this, one can alternate between optimizing the parameters of the vari-

ogram and the latent locations. Further algorithmic details, such as the tuning of

M and the setting of the algorithmic parameter α , can be found in Kim et al. [52].
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have expanded the scientific base on latent correlation structures.

Firstly, the proposed product graphical model prior improves flexibility in model-

ing decomposable graphical models, borrowing strength from the immense litera-

ture on product partition and related models. The product graphical model prior

allows one to encourage (or discourage) clustering of the graphs, and therefore can

induce sparsity in the correlation matrix through clique separation; consequently,

the product graphical model empowers practitioners to encapsulate their true prior

beliefs to build a model more attuned to the problem at hand.

Secondly, we have shown the importance of incorporating spatial correlation

into crop yield models; ignoring this information can lead to bias both in model

identification and prediction. Specifically, we observed that a common least squares

fit of crop yield on some explanatory variables over the entire region resulted in bi-

ased residual errors, and hence violated the assumptions of the model. To avoid this
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problem, we could fit each agricultural region with its own model. The problem,

however, is that this ignores information between crop regions, and as such we ob-

served reduced prediction power and model identifiability. We addressed this issue

through the use of a Bayesian model which modelled all regions together, yet ac-

counted for spatial correlation. This model smooths and stabilizes prediction and

also allows for analytic and therefore efficient updating and prediction. In addi-

tion, we created a non-stationary prior distribution to address the issue of province

to province variability resulting from provincial differences in policy, management,

and other factors affecting yield. Through cross-validation, we demonstrated this

model to achieve improved prediction performance in modelling Canadian wheat

yield over the least squares model which ignores spatial dependence, and hope that

others will attempt to replicate our findings in other contexts based on the promise

seen in this application.

Lastly, by augmenting the dimensionality of the underlying geographic space,

we have developed a highly flexible approach for handling the nonstationarity that

often arises in environmental systems. While ostensibly similar to image warping,

the proposed method avoids the issue of folding and allows one to model much

more complex nonstationarity patterns through interdimensional expansions, al-

lowing the user to perform nonparametric learning of the mapping function. In

addition, through the use of a group lasso penalty, we are able to estimate the

number of augmented dimensions, as well as regularize the optimization problem.

Lastly, we have highlighted the practical application of the dimension expansion

approach in three examples, two of which use data from observed environmental

processes.
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6.2 Future Work

6.2.1 Nonstationarity

A Bayesian image warping approach which allows covariate effects to be included

in the correlation structure has recently been suggested by Schmidt et al. [80]. By

treating covariates as analogous to geographic coordinates, they warp the combined

location-covariate space into a deformed space of the same dimension. To achieve

computational efficiency, they consider a special case which restricts the form of

the possible mapping function and assumes the spatial process to be a 2D manifold

with covariates treated as separate values at each location.

In practice, environmental data will often take the form of a number of mea-

surements made over time at each location rather than true spatial replications per

se. In order to try and isolate the purely spatial part of the process, the mean func-

tion may incorporate a temporal component, modelling underlying temporal pat-

terns and allowing the possibility of time-varying covariates, or even space-time

interactions. In the absence of such covariate information, it would be possible to

consider the notion of time-varying nonstationarity structure. For instance, if one

wants to study the changing impact of cities and industrial areas on air pollution

levels, examining changes in stationarity over time would be a valuable way to un-

derstand these changes. The dimension expansion framework is also amenable to

multivariate extensions. We are currently exploring a scenario whereby the dimen-

sion expansion functions and locations have a hierarchical structure, allowing the

dimension expansion to vary for different variables, yet be tied together through

the hierarchy.

We have demonstrated how dimension expansion can be used to perform pre-
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dictions in the transformed, stationary space and mapped back to the original space.

At present the choice of the mapping, learning of latent locations, and prediction

are performed in isolation. As the Sampson and Guttorp (1992) approach was set

within a Bayesian framework by Damian et al. [22] and Schmidt and O’Hagan

[79], setting the current algorithmic approach within such an inferential frame-

work would allow the inherent uncertainty to be accurately reflected in resulting

inferences and this is the goal of current research.

6.2.2 Sparsity and group correlation

In addition to further studies of nonstationarity, we are also developing new work

for modeling sparse multivariate time-series, where dependence is present in the

correlation between successive values, between neighboring variables, and in the

shared sparsity patterns. We propose an original class of flexible Bayesian linear

models for dynamic sparsity modelling. The proposed class of models expands

upon the existing Bayesian literature on sparse regression using generalized multi-

variate hyperbolic distributions. The properties of the models are explored through

both analytic results and simulation studies. We demonstrate the model on a fi-

nancial application where it is shown that it accurately represents the patterns seen

in the analysis of stock and derivative data, and is able to detect major events by

filtering an artificial portfolio of assets. Early work has been released as a technical

report ([17]).

6.2.3 Structural health monitoring

The use of latent structure in modeling correlation is important in a wide variety

of fields, including structural health monitoring (SHM). One of the principal goals
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of SHM is to monitor structures of various sorts for damage. By placing vibration

sensors on a structure and inducing vibration, we can learn the resonant frequen-

cies of the structure in its damaged and undamaged states. We have developed a

set of tools based on support vector regression ([4, 11, 13]), and are currently us-

ing Bayesian graphical models to address the same problem while simultaneously

incorporating knowledge of the correlation structure between vibration sensors.

6.2.4 Monte Carlo

The use of latent structure in modeling often results in partially or fully noniden-

tifiable models, for which Monte Carlo becomes very difficult due to ridges and

multiple modes in the posterior distribution of interest. In addition to developing

Monte Carlo methods for prior sensitivity and cross-validation ([12]), we are also

developing a suite of tools for automated Monte Carlo analysis in complex models,

such as those which attempt to model latent structure. Built on the Wang-Landau

algorithm, we have recently developed a fully automated density exploration al-

gorithm ([14]) and are currently conducting further work to provide practitioners

with a black-box tool for automated density exploration.
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