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Abstract

RNA-editing is the post-transcriptional, enzymatic modification of RNA molecules resulting in an

altered nucleotide sequence. These modifications play a critical role in mammalian tissues and are

essential for proper function of liver and neuronal development, among other processes. The advent

of high-throughput sequencing (HTS) technologies (e.g. Illumina HiSeq) has renewed interest in

RNA-editing discovery due to unprecedented opportunities for simultaneous interrogation of whole

genome and transcriptome sequences. In the past several months a number of studies have been pub-

lished describing methods and results of RNA-editing discovery in HTS data. These methods have

been ad hoc approaches based on repurposing SNP calling tools designed for genome-based variant

detection. However, the statistical properties of RNA-editing warrant specialized analytical strate-

gies that leverage the non-uniform substitution distributions inherent in RNA-editing processes.

A novel statistical framework, called Auditor, that simultaneously analyzes the genomic and

transcriptomic base-counts and infers the likelihood of an RNA-edit at each position in the tran-

scriptome is reported. This model leverages the inherent correlation present in the RNA and DNA

sequence while encoding the non-uniform substitution distributions induced by RNA-editing, con-

ferring increased sensitivity. Further, a Random-Forest based technical artifact removal tool that

accurately identifies sequencing and alignment errors has been implemented, greatly increasing the

specificity of the method. The combination of these approaches leads to a robust, principled method

that accurately detects RNA-edits in the presence of both biological and technical noise.

It is systematically shown, in both a simulation study and on real matched whole genome and

transcriptome data generated from 11 lymphoma samples, that Auditor significantly outperforms

similar, but simpler statistical frameworks, including a Samtools/bcftools based approach that is

similar to a recently published study. Finally by profiling 11 diffuse large B-cell lymphomas and

16 triple negative breast cancers with Auditor, it is shown that RNA-editing is an active process

in human malignancies. Surprisingly, consistent patterns of nucleotide substitutions and regional

enrichment of RNA-edits in 3 UTRs suggests that RNA-editing processes are invariant between

cell lineages and between tumours of similar histological subtypes and even cancers from distinct

tissues of origin.
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Chapter 1

Introduction

The molecular flow of information in biology is well-established: DNA is transcribed into RNA

which in turn is translated into protein products. However, over the past several decades mechanisms

that violate this so-called central dogma have emerged. The discovery of reverse transcriptase,

allowing DNA sequence to be created from an RNA template, in 1970 (1, 2) was initially met with

scepticism and resistance by the scientific community; however, a massive body of research led to

deep understanding of the mechanisms and fundamental importance of the process. In the 1980’s

reports began to emerge of other enzymes that violated the central dogma, breaking the one-to-

one mapping of RNA sequence from a given DNA template, by post-transcriptionally modifying

the primary RNA sequence (3, 4, 5). Unlike reverse transcription, these processes, known as RNA-

editing, were not the subject of wide-spread, coordinated, research efforts and are still comparatively

understudied.

Despite the lack of comprehensive interest, the studies that were conducted led to understanding

of some mechanisms and to identification of the enzymes responsible for the most common forms

of RNA-editing, as well as some of the consequences of sub- or abnormal activity of these processes

(6, 7). However, this research is far from exhaustive, and many aspects of RNA-editing, including

the potential role in tumour pathogenesis, remain unclear or unknown.

Until recently, attempting to identify RNA-editing transcriptome wide has been impractical due

to the cost and labour involved in sequencing the matched whole-genome and whole-transcriptome

of the same sample. However, with the advent of high-throughput sequencing technologies, such

procedures are now practical for not only single samples, but are also possible on the scale of

thousands of samples. The emergence of this data has led to the rapid development of computational

tools designed to align this data to reference genomes and to accurately analyze this data in order

to infer the nucleotide sequence, and individual nucleotide positions that vary from the reference

genome.

Unsurprisingly, there has been a corresponding attempt to use these variant calling methods

to detect RNA-edits from matched DNA/RNA samples. Unfortunately, these attempts have led in

some cases to questionable results, and it has become clear that RNA-editing analyses are affected

by a substantial false positive burden due to technical artifacts. To date, no principled method has
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emerged that effectively considers the known properties of RNA-editing and appropriately identifies

technical artifacts.

This thesis seeks to address two primary goals: to demonstrate a method of RNA-editing de-

tection that substantially improves over previous efforts and to apply this method to a set of human

cancer samples to explore the landscape of RNA-editing in human malignancy. To this effect, this

thesis describes the following contributions:

1. A statistical framework that systematically addresses the shortcomings of previous methods

2. The implementation of this framework in a distributable software package

3. The analysis of twenty-seven human cancer samples, resulting in the first landscape of RNA-

editing in diffuse large B-cell lymphoma and triple negative breast cancer

1.1 Mechanisms of RNA-editing
The RNA-editing process is thought to be wide-spread in eukaryotes (8) and universal among meta-

zoans (9). However, among different kingdoms, RNA-editing can result in different modifications.

For example, in Trypanosoma brucei, RNA-editing most commonly appears as the insertion or

deletion of uracil (10). In mammals however, RNA-editing has only been observed in the form

of base substitutions achieved by enzymatic deamination. Despite the potential benefits of bet-

ter understanding indel-based RNA-editing, this thesis focuses on the specific problem of base-

substitution RNA-editing in the context of mammalian samples.

1.1.1 Adenosine Deaminase Acting on RNA (ADAR)

Members of the ADAR gene family have been shown to enzymatically deaminate adenosine (A) to

inosine (I), and are thought to be responsible for more than 90% of RNA-editing events (11, 12).

ADARs require a double-stranded RNA (dsRNA) substrate and are thought to be highly promiscu-

ous with respect to primary sequence motif (5), though there have been reports of weak preferences

for certain bases surrounding the edit site (13, 14, 15).

The patterns of A→I RNA-editing are known to be stochastic (11), further reflecting the promis-

cuity of the ADAR gene family. In general, ADARs are thought to bind to any appropriate dsRNA

substrate, complete the deamination and release. However, proximity to the same dsRNA substrate

results in a high probability of re-binding the same dsRNA molecule at a new adenosine and repeat-

ing the deamination process. This can repeat until the dsRNA molecule is sufficiently deaminated to

break the double stranded structure (as inosine does not pair with uracil), or until either the enzyme

or the RNA is removed from proximity (5). Repeat structures such as Alu elements are common

targets of RNA-editing due to their propensity to form secondary structures and RNA-edits within

Alu repeats account for a substantial proportion of known events (16).

Inosine, despite frequently being referred to as a ”wobble-base” (because it is incorporated

into tRNA molecules in the third base of the anti-codon), is interpreted by the majority of cellular
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machinery as a guanine (G). Inosine is also observed as a guanine by nucleotide sequencing tech-

nologies, and for the purpose of consistency with experimental observations A→G will be used in

place of A→I hereafter. The effect of inosine substitution depends heavily on the type of RNA

molecule as well as the functional region containing the RNA-edit, but can range in severity from

irrelevant to an amino-acid replaced by a stop codon.

1.1.2 Apolipoprotein B mRNA Editing Enzyme (APOBEC)

The APOBEC family of RNA-editing enzymes, like the ADAR family, are deaminases. Unlike the

ADAR family however, APOBECs act on single-stranded RNA molecules, deaminating cytosine

to uracil. Also, while ADARs are promiscuous it is thought that APOBECs are accompanied by

motif recognition subunits, leading to a more specific substrate and more control over specific bases

edited (17).

Overall the APOBECs are considered to be responsible for a relatively small number of RNA-

edits across the human transcriptome, but the effects of APOBEC RNA-edits are sometimes more

easily determined (see Section 1.2.1).

1.1.3 Unknown Mechanisms of RNA-editing

Recent studies have presented evidence of the existence of all twelve possible nucleotide substitu-

tions (18). However, others have found little evidence of non-canonical RNA-editing (12, 19), and

peer-reviewed correspondence has refuted the evidence of non-canonical RNA-editing presented in

some cases (20, 21, 22). Currently there is significant debate regarding the existence of these non-

canonical RNA-edits and further research is needed before a suitably confident conclusion can be

drawn. This need for further research is one of the key sources of demand for principled methods

for RNA-editing detection and analysis, and is one of the main needs that the method described here

seeks to address (see Section 1.5).

1.2 Biological Relevance of RNA-editing
In general, the biological relevance of RNA-editing in mammalian contexts is not well understood.

However, it is known that ADAR mediated RNA-editing frequently affects 3’ UTR regions (23),

which could affect mRNA stability (and indirectly mRNA abundance) and/or miRNA or protein

binding sites. While it is difficult to quantify such effects, the degree to which many 3’ UTRs are

subject to RNA-editing leads to speculation as to the impact of these modifications. Additionally,

RNA-edits in exonic regions, while less frequent than 3’ UTR events, have been shown to result in

amino-acid substitutions (3, 4, 19, 23, 24), thus increasing proteomic diversity in the cell. Further,

in any region, RNA-editing could potentially disrupt RNA secondary structure, leading to changes

in protein binding affinity, translation efficiency and other consequences.
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1.2.1 RNA-editing in Healthy Tissues

RNA-editing is known to occur in diverse cell types and across a wide range of developmental stages

(11). Unlike well studied polymorphisms, mutations and splice variants, little is known about the

effects of specific RNA-editing events in the context of healthy tissues. However, despite the lack

of comprehensive study, the effects of double knockouts of ADAR and APOBEC in mice have been

relatively well studied, granting some insight into the importance of RNA-editing.

ADAR1 and ADAR2 -/- knockout mouse models have been constructed to explore the effects

of ADAR deficiency. The ADAR1 knockout is embryonic lethal, resulting in severe damage and/or

developmental impairment to embryonic hepatic tissue (25). The mechanisms by which ADAR1

deletion causes this effect are unknown, but ADAR1 is clearly required for normal cell development

and function. ADAR2 knockout results in lack of critical RNA-editing of GluR-B receptor, caus-

ing strong neuronal abnormalities resulting in epileptic seizures and short life-span (26). Further

Hoopengardner et. al. (27) and Levanon et. al. (28) have reported RNA-editing sites in genes in

human, mouse and chicken that further support a role of RNA-editing in neuronal development and

function.

In some cases, such as the canonical ApoB C→U at position 6666 (mediated by APOBEC1),

RNA-edits recode the codon to result in a STOP (3). The truncated ApoB protein is only expressed

in the small intestine (the full length protein is expressed in the liver), and possesses specialized

roles in lipid absorption and metabolism (29).

While these examples do not represent all known effects of RNA-editing, they are presented as

illustrative examples to demonstrate the importance of RNA-editing for normal cellular processes.

1.2.2 RNA-editing in Pathological Contexts

In the general context of disease, very little is known about the role of RNA-editing. Given the

severe ramifications of double knockouts of ADAR, it is easy to hypothesize as to how reduced

expression of ADAR could lead to acute cellular dysfunction. Similarly, significant overabundance

of ADAR could lead to transcriptome-wide hyper-editing leading to wide-spread stochastic modifi-

cation of the protein ensemble of the affected tissue.

In the context of cancer, both coding and non-coding changes have been reported in a lobular

breast cancer (24). Additionally, hypo-editing of known ADAR targets in tumour samples has

been found (30). Paz et al. (31) explored the expression and targets of the ADAR gene family in

brain tumours. They reported that expression of ADARB1 correlated with grade of malignancy in

glioblastoma multiforme and that there were differences in the degree of RNA-editing at coding

positions in CYFIP2, FLNA and BLCAP. The functional role of differential expression of ADAR or

variable RNA-editing of these genes is unknown, but the existence of these patterns demonstrates

that further exploration of RNA-editing in cancer is merited.

Until now, no study has attempted to define the transcriptome-wide landscape of RNA-editing

across multiple tumours of the same type, or between tumours of differing tissue of origin. This the-

sis describes the first whole-trancriptome survey of the RNA-editing landscape in multiple cancers
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of the same type as well as the first comparison of RNA-editing between cancer types.

1.3 High Throughput Nucleotide Sequencing Data
Generating full genome and transcriptome data has become a standard practice in the study of heri-

table genomic disorders as well as diseases with acquired genomic aberrations such as cancer. Such

data is a powerful tool due to the wide array of analyses that can be performed on a single data set to

interrogate many aspects of the sample. For example, copy number, chromosomal rearrangements,

polymorphisms and somatic mutations can be inferred from a matched healthy/diseased genome

pair from the same individual, providing a comprehensive view of landscape for that particular

disorder. Similarly, from a whole transcriptome sequencing assay, gene expression, gene fusions,

alternative splicing, polymorphisms and expressed mutations can be discovered.

In the past decade a number of technologies, collectively known as high-throughput sequencing

(HTS), have emerged that allow relatively inexpensive nucleotide sequencing on a gigabase scale in

a matter of days (32). The proliferation of HTS has made practical the sequencing of full genomes

and transcriptomes of thousands of individuals and samples in sequencing centers around the world,

and has led to the launch of substantial sequencing and analysis consortia such as the 1000 Genomes

Project (33) and The Cancer Genome Atlas (34).

However, despite the clear potential of HTS, any analysis relies on sophisticated bioinformatics

tools due to the properties of the data. The primary result of an HTS assay is a collection of hun-

dreds of millions of short (e.g. 50-100 bases, dependent on sequencing chemistry) sequences, each

derived from an unknown position in the sequenced sample. Each of these so-called reads must

be either assembled de-novo or aligned to a known reference sequence (e.g. the reference human

genome). Given the number of reads and the vast search space, alignment remains an open prob-

lem with many aligners available with different benefits and limitations. The alignment of RNA

sequences (RNA-Seq) is particularly challenging as sequences that contain exon-exon junctions are

not present in the reference genome. A common method to address this issue is to align to not only

the reference genome, but also a set of known exon-exon junctions, and post-process the results to

map the junction aligned sequences back onto genomic coordinates (35, 36).

Regardless of aligner choice, the result of the alignment process is the digital allelic count at

each position in the genome, including zero-counts when the position is not present in the sequence

data (Figure 1.1). Typically, whole genome sequencing experiments aim to achieve average depths

(where depth refers to the sum of allelic counts at a given position) of thirty or greater across the

genome. The purpose of this redundant sequence is to allow for the accurate typing of each base

since HTS sequence data is known to be error prone (see Section 1.4.4). Each sequenced base from

each read is accompanied by a number of features recorded or computed by the sequencing appa-

ratus as well as those computed by the alignment software. These features include the confidence

in the base call, the confidence in the alignment, the direction of the sequence, the number of mis-

matches in the read and more. Several software tools exist for the computation of these features

including the popular Samtools (37) and GATK (38) packages. These features, along with the al-
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ATGGCCTATTCAAACTTATCAAGG 
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-------------TCTTATCAACG 
100000070008840009008800 
000045000080009000090080 
002300000000000000000008 
010000708800050990900000 

Reference!

DNA!

Allelic 
Counts!

A: 
C: 
G: 
T: 

Homozygous 
Match!

Heterozygous 
Variant!

Homozygous 
Variant!

Figure 1.1: A constructed example of aligned HTS data. For each position, the allelic count
of the reads overlapping a given position are recorded. These counts can be used to
infer whether each position is a match to the reference genome (red), a heterozygous
variant (blue) or a homozygous variant (yellow). Many methods for variant calling exist
(see Section 1.4) and technical artifacts can interfere with accurate classification of some
positions (see Section 1.4.4).

lelic counts at a given position are used to determine the nature of each position in the genome or

transcriptome sample (e.g. matches the reference, mutation/SNP, indel etc).

1.4 Nucleotide Variant Calling from High Throughput Sequencing
Data

Calling single nucleotide differences between the reference sequence and the sample of interest has

become an area of active research and is a critical step in utilizing HTS data for disease research.

Typically variants are determined on the basis of counts of the number of bases at a given position

that match the reference and the count of those that do not. Frequently these counts are scaled
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or modified by the base and mapping qualities provided by the sequencer and aligner respectively,

granting additional weight to confident bases and penalizing poor quality data.

The methods by which the determination of variant or non-variant are diverse, and with differing

degrees of accuracy and ease of interpretation. The most straightforward method, also typically the

least accurate, is based on sequential thresholding of various features related to the position in the

HTS data. Due to the lack of principled justification for these methods, statistical models have

emerged as the accepted approach for accurate nucleotide typing.

1.4.1 Thresholding Methods

Thresholding methods are appealing due to their simplicity and ease of implementation. While the

features used vary from method to method, a simple example, Algorithm 1, serves well to illustrate

the concept.

Algorithm 1 Example Thresholding Method

1: function THRESHOLD(bases,bq thresh,mq thresh,var thresh)
2: re f match← 0
3: re f mismatch← 0
4: for base ∈ bases do
5: bq← base quality(base) . Get base quality
6: mq← map quality(base) . Get mapping quality
7: if bq < base qual thresh then
8: goto next base . Failed bq threshold
9: end if

10: if mq < map qual thresh then
11: goto next base . Failed mq threshold
12: end if
13: if matches re f (base) == T RUE then
14: re f match← re f match+1 . Increment match count
15: else
16: re f mismatch← re f mismatch+1 . Increment mismatch count
17: end if
18: end for
19: var ratio← re f mismatch/(re f match+ re f mismatch)
20: if var ratio > var thresh then
21: return TRUE . Variant ratio exceeds threshold
22: else
23: return FALSE . Variant ratio fails threshold
24: end if
25: end function

In this case, only base quality and mapping quality are subject to thresholds. Other common

features include total depth and mappability of the region (for various definitions of mappability).

Thresholding methods, at best, are based on empirically determined appropriate threshold values

for the relevant available features, and on selecting positions that meet these criteria. The fundamen-
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tal concern with this approach lies in the fact that surpassing a threshold by a wide margin confers

no advantage over passing minimally. This leads to a lack of associated confidence measures (i.e. a

position is either variant or not, there is no uncertainty), and also leads to sensitivity and specificity

issues with positions that pass or fail a threshold by a small margin. Additionally, these methods are

often used with thresholds set to ”intuitive values” or similar non-quantitative criteria, leading to

further lack of confidence in the effectiveness of thresholding-based methods. See Goya et al (39)

a more complete description of the deficiencies of thresholding methods.

Despite the known shortcomings of thresholding methods, several studies investigating RNA-

editing from HTS data have implemented thresholding-based systems for RNA-editing detection

(12, 18, 40). However, the study by Li et al has been questioned in published responses and, in

general, these thresholding methods are being considered as naive, early solutions to this problem,

as shown by studies using less ad-hoc methods (19, 41).

1.4.2 Likelihood Models

An early statistical approach to nucleotide typing was to use log-likelihood ratios, testing a variant

model against that of the non-variant, null, model. This approach was utilized by the popular Sam-

tools variant caller (37), prior to the implementation of bcftools (42), and as such has inspired a

number of methods since. Recently such a likelihood model was used in Bahn et al (19) to classify

RNA-edits from paired DNA/RNA data. However, in this method the genotype was taken as perfect

knowledge, and not associated with any confidence measure. This lack of explicit uncertainty in the

null distribution is a primary limitation of likelihood ratio methods for RNA-editing discovery, and

a significant motivation for more sophisticated statistical methods.

1.4.3 Mixture Models

Mixture models, specifically mixtures of Binomial distributions, have gained popularity and achieved

success in the nucleotide typing field. Examples of this approach include SNVMix2 (39), SOAPSnp

(43), the maq SNP caller (44) and JointSNVMix (45).

SNVMix2 is a mixture of three Binomial distributions, parameterized to model homozygous

reference, heterozygous reference and homozygous non-reference genotypes. The posterior proba-

bility of each genotype is inferred from the model given the base counts, base and mapping qualities.

This approach gives a confidence for each genotype allowing the user to choose cutoffs depending

on the specific tolerances for false positive and false negatives. An SNVMix2 based approach was

attempted as a pilot study prior to the development of the framwork described in Chapter 2. How-

ever, this approach proved to be ill-suited to the detection of RNA-editing and was abandoned in

favor of the creation of a novel method.

JointSNVMix adds the ability to jointly model two related sequences (e.g. a tumour and a

healthy sample from the same individual). This expands the state space to nine joint genotypes,

and the model borrows statistical strength across samples to increase the specificity of the classifi-

cation. This approach has proved effective in the discovery of somatic mutation in cancer cells (36).
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While this model has not been utilized for RNA-editing detection, the joint modelling approach

used by JointSNVMix served as inspiration for the Auditor model described in Chapter 2.

1.4.4 Sequence and Alignment Artifacts

The throughput of HTS technologies is coupled with the cost of high error rates, relative to Sanger

sequencing (46). The extreme density of the nucleotides within the sequencing equipment leads

to errors in interpreting the optical signal of each base during sequencing, and various PCR biases

during library preparation can lead to repeated or underrepresented fragments (47). These artifacts

are largely randomly distributed, but some systematic patterns have been observed, such as a bias

for base-calling errors toward the 3’ end of each read. During alignment, these sequencing errors

can lead to false positioning of the read with respect to the reference, causing wildtype positions to

appear as variant, and leading false positive classifications of these positions by many methods.

Fortunately, many of these artifacts display detectable signatures. A common feature of false

positive variant calls is for all reads containing a variant to be sequenced in a single direction when

the expectation is a mixture of both directions (47). Similarly, a common RNA-Seq alignment arti-

fact arises due to alignment to exon-exon junctions, and by accounting for transcript structure, these

artifacts can be detected. Further, more general confidence scores, such as base and mapping qual-

ity, can be integrated into the detection of these more elaborate signatures. The artifacts described

here represent only a small portion of the known artifacts found in HTS data, but serve to provide

insight into the more general problem of artifact detection. These artifacts can, as described above,

lead to the generation of false signals in the data resulting in the erroneous classification of variants

leading to prohibitive false positive rates if the artifacts are not effectively identified and removed.

However, many methods seeking to exploit these signatures rely on thresholding or other heuris-

tics to identify artifacts. In general, many of the shortcomings of thresholding-based nucleotide

typing methods affect thresholding methods for artifact detection and a more principled approach

is desirable. Discriminative classifiers are emerging as a powerful tool for this purpose (48) and

provide the quantitative rigour that thresholding methods lack.

1.5 Meeting the Need for Principled RNA-Editing Detection
No cohesive principled method has emerged to appropriately address the following known proper-

ties of RNA-editing:

• Base-specific substitution likelihoods

• High-variance in RNA-seq base count evidence (due to stochastic properties)

• RNA dependence on DNA

Additionally, and of equal importance, no published method has yet taken a formal, principled

approach to the detection and removal of sequencing and alignment artifacts that arise in RNA-

editing detection.
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By utilizing these properties when modelling RNA-editing, as well as taking a more principled

approach to artifact detection, substantial improvements over existing methods are possible.

1.5.1 Specific Challenges in RNA-Editing Detection

The detection of RNA-edits is subject to an array of challenges that have not arisen in other nu-

cleotide typing problems. First, the base-specific properties of RNA-editing require a shift from

reference/non-reference counts to counts of each base. This requirement leads to a need for strand

correction as a pre-processing step (in order to count the correct base), as well as a larger state space

to accommodate a larger set of possible substitutions. To date, no method has addressed this chal-

lenge. Second, due to the stochastic nature of RNA-editing, RNA-edits may present in RNA-seq

data with allelic ratios that deviate significantly from the expected 50:50 of a heterozygous poly-

morphism. This increase in variance invalidates critical assumptions made by many existing DNA

genotyping methods (e.g. Binomial mixture based methods), and has yet to be accounted for in

published studies. Third, the dependence of RNA on DNA has been largely ignored as a tool for

increasing statistical power when classifying RNA-edits. In cases where a variant allele has been

undersampled, but is still present, in the DNA data, calling a DNA variant on that evidence alone

may not be possible. However, by simultaneously examining the RNA, evidence of the same vari-

ant can be taken into account, and used to appropriately classify the position as a variant and not

an RNA-edit. This approach leads to a theoretical increase in specificity and has not been applied

by published methods. Finally, and possibly the most significant challenge, is the substantial false

positive rate inherent in RNA-edit classification due to sequencing and alignment artifacts. While

accounting for artifacts is standard practice in RNA-editing detection, to date published methods

can all be categorized as thresholding and/or filtering methods. Recent work (48) has demonstrated

the power of discriminative classifiers to address the need for principled artifact detection in sin-

gle nucleotide variation classification, but these approaches have not been utilized in RNA-editing

detection to date.

1.5.2 Proposed Serial Generative and Discriminative Classification of RNA-edits

To address the challenges described in Section 1.5.1, a new computational approach to the de-

tection of RNA-editing sites from an HTS whole genome/whole transcriptome paired dataset is

proposed. This new framework, called Auditor, is tailored specifically to the intrinsic properties

of RNA-editing biology and the systematic artifacts that are expected from comparison of whole

genome sequencing to RNA-seq data. Auditor, is a generative probabilistic model that at once

models the correlation expected between the WGS and RNA based allelic counts due to expressed

SNPs and the non-random substitution distribution over nucleotide-encoded alleles we expect from

RNA-editing enzymatic processes. The allelic counts are modelled using a Polya distribution ac-

counting for base-specific properties rather than the standard Binomial (reference vs non-reference)

allelic counts traditionally used in SNP detection. The substitution distributions are represented

with a transition matrix encoding the expected probability of emitting a particular substitution in
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the transcriptome given the observed alleles in the genome. Finally, to account for systematic arti-

facts, a previously described machine learning approach, called MutationSeq, for somatic mutation

detection (48) tailored to the specifics of the RNA-editing detection problem is used.

By applying this combination of generative and discriminative classifiers, the proposed method

addresses the specific challenges of RNA-editing detection in a principled manner, and represents

a substantial advance over previous methods. In order to determine the benefits of each individual

advance, the proposed method is compared to several simpler methods of similar design, as well as

a modified version of a recently published Samtools/bcftools based detection method. The methods

are compared using a combination of simulated data, Illumina HTS data and SOLiD HTS data to

provide comprehensive analysis of each feature.

Section 2.1 describes the specification of the Auditor generative model, the variants used to

evaluate the advances of Auditor and the simulation of relevant data sets. Section 2.3 demonstrates

that Auditor outperforms simpler variants on simulated data. Chapter 3 reports the application

of Auditor, and MutationSeq, to eleven diffuse large B-cell lymphoma and sixteen triple negative

breast cancer samples. Section 3.2 shows that Auditor achieves superior sensitivity and specificity

on HTS data than simpler variants and a Samtools approach modified from Denecek et al (41) and

Section 3.3. In Section 3.4 the first landscape of RNA-editing in human cancers is presented and

shows RNA-editing to be remarkably stable despite malignancy. Finally Chapter 4 reflects on the

advances and limitations of the Auditor model and the results of the first large scale RNA-editing

study in human cancers. Also in Chapter 4, possible avenues of future research are briefly explored

to put this thesis in context with potential advances to come.
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Chapter 2

The Auditor Model

Statistical approaches for RNA-editing afford many desirable properties. Perhaps of greatest benefit

is that statistical methods allow for the assignment of principled confidence scores to each classi-

fication. This confidence score is a powerful tool when designing validation experiments as well

as when performing functional analyses as it grants an explicit ranking to the classifications. Fur-

ther, Bayesian methods allow the principled encoding of prior belief, allowing users to encourage

expected/known patterns without preventing novel discovery. In the case of generative models, the

parameters can be trained from unlabelled data allowing novel discovery in the absence of ground-

truth. In a field as poorly understood as RNA-editing these properties are critical. Results will

require secondary validation and priors encouraging common substitutions (e.g. A→G) discourage

false positive calls, increasing confidence in computational predictions.

This chapter describes a statistical framework, called Auditor, that provides these benefits with

sound mathematical foundations.

2.1 Joint Polya Mixture Modelling with a Substitution Specific
Transition Matrix

2.1.1 Description of the Auditor Model

The Auditor model is shown as a probabilistic graphical model in Figure 2.1, with parameters as

described in Table 2.1. The goal of the Auditor model is to identify positions for which the majority

of probability mass (computed as described below) indicates the presence of an RNA-edit. The input

to Auditor is two 4×N matrices (where N is the number of positions), the first matrix containing the

base counts of A, C, T, and G at each position in the genome and the second matrix containing the

base counts for the transcriptome. The model outputs p(Edit) for each position where p(Edit)> 0.5

(p(Edit) is defined below).

It is assumed that both the genotype, Gi, and transcriptotype (mRNA genotype), Ti, consist of

a single paternal and single maternal allele, each drawn from {A,C,G,T}. The cross-product of

alleles then gives 16 possible types for each position in the genome and transcriptome. Palindromic
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Figure 2.1: Auditor graphical model. Shaded boxes are fixed parameters, shaded circles are
given data and open circles are unknown values modelled as random variables. Directed
arrows indicate conditional dependencies. Boxes surrounding a group of variables repre-
sents an independent set of random variables for each element in the set denoted by the
plate (e.g. i ∈I). A is a transition matrix encoding the probability of transitioning from a
given genotype to a given transcriptotype. The rows are Multinomially distributed with
Dirichlet prior δg. Gi and Ti are 1-of-11 Multinomial distributions over the possible geno-
types and transcriptotypes, respectively. ξ is the prior over the possible genotypes g∈G.
bG

i , bT
i , dG

i , and dTi are the base counts and total depth of the genome and transcriptome
at position i. πg and πt are the mixture parameters for the mixture of components g and t
of the Polya mixture over G and T .
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duplicates are disambiguated (e.g. AG, GA) reducing to a state space of size 10. Further, a state

denoted ZZ, representing an unknown type, is added to both the genotype and transcriptotype to

allow the model to avoid making a canonical type call in the presence of multi-allelic (>2) data.

This results in an 11-state space: Gi,Ti ∈ {AA,AC,AG,AT,CA,CG,CT,GG,GT,T T,ZZ} for each

position i ∈ (1, . . . ,N) in the input data. A constructed example of input and resultant genotype-

transcriptotype outputs is shown in (Figure 2.2).

Polya distributions, also known as Dirichlet-Multinomials, are used to model the state-dependent

base counts at each position in the genome, πG, and transcriptome, πT . The parameterizations

demonstrated below are set such that πG = πT , but these could be independently tuned if necessary.

Additional variance of the Polya distribution leads to significant advantages over the, arguably, more

intuitive Multinomial model as the overdispersion properties of the Polya distributions more closely

model the high variance observed in RNA-Seq data (Figure 2.3). It is the nature of a Multinomial

mixture to move the vast majority of probability mass between classes (e.g. AA→AG) with the

addition or subtraction of only a single base count, resulting in little uncertainty in the Multino-

mial mixture and unduly peaked distributions, whereas Polya mixtures shift probability mass more

gradually (Figure 2.4).

To capture the known process of RNA-editing (DNA is transcribed to RNA, which is subse-

quently enzymatically modified), the transcriptotype is explicitly modelled as a function of the

genotype. To capture the base-modification specific properties of RNA-editing (e.g. A→G repre-

sents the vast majority of known RNA-edits), an 11×11 transition matrix, A(g, t), is used, with each

entry containing p(Ti = t|Gi = g). Thus, information from the genome is leveraged when calling

the transcriptotype, and visa versa, and the non-uniform substitutions inherent in RNA-editing due

to enzymatic processes can be encoded. Furthermore A(g, t) takes advantage of the inherent corre-

lation present in the genotype and transcriptotype by simultaneous inference and renders the model

less susceptible to calling expressed germline polymorphisms as RNA-edits. This is not possible

using methods that call variation in the genome and transcriptome independently as has been pre-

viously shown for somatic mutation calling from tumour-normal DNA datasets in cancer (45). The

parameters of A(g, .) are assumed to be Multinomial such that ∑T=t A(g, t) = 1 and can, in theory,

be estimated with maximum a posteriori estimation with conjugate Dirichlet priors (2.1). For the

purposes of this study, literature-informed estimates were used due to the intractability of parameter

estimation (this is further explained in Section 2.1.2).

To determine the probability of an RNA-edit at a given position, first the joint genotype and

transcriptotype is inferred according to the conditional probabilities of the model:

p(Gi = g,Ti = t | bG
i ,d

G
i ,b

T
i ,d

T
i ,θ) ∝ p(bG

i | πG,dG
i ,Gi = g)

× p(Gi = g | ξ )p(Ti = t | Agt)

× p(bT
i | πT ,dT

i ,Ti = t)
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ATGGCCTATTCAAACTTATCAAGG 

ATGGCCTATTCAAACTTATC---- 
--GGCCTATTCAAACTTATCAACG 
---GCCTATTCAATCTTATCAACG 
----CCTATTCAAACTTATCAACG 
-----CTATTCAAACTTATCAACG 
------TATTCAAACTTATCAACG 
------TATTCAAACTTATCAACG 
--------TTCAAACTTATCAACG 
-------------TCTTATCAACG 
100000070008870009008800 
000045000080009000090080 
002300000000000000000008 
010000708800020990900000 

ATGGCCTATTCAAACTTATC---- 
-TGGCCTATTCAAACTTATCAACG 
---GCCTGTTCAAACTTATCAACG 
----CCTGTTCAAACTTATCAACG 
----CCTGTTCAATCTTATCAACG 
------TGTTCAATCTTATCAACG 
---------TCAATCTTATCAACG 
------------ATCTTATCAACG 
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100000020007840009008800 
000055000070009000090080 
002300040000000100000008 
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DNA
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bT

RNA
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T: 

RNA-edit
SNP with 
low DNA 
signal

Homozygous 
SNP

AA->AG AT->AT CC->CC

Figure 2.2: A constructed example of three joint geno-transcriptotypes. In red, an example
RNA-edit is shown, where the variant is present only in the RNA. In blue, a SNP that
would likely require joint modelling to identify as the DNA evidence alone may not
be enough to legitimately classify a SNP; however with the inclusion of the RNA data
the SNP can be identified. In yellow, a homozygous SNP is shown; without the DNA
data (i.e with reference genome alone) this would be indistinguishable from a genuine
RNA-edit.
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Figure 2.3: (A.) The distribution of RNA-Seq variant proportion of known SNPs present in
the DNA of 27 cancer samples with depth of at least 20 in the RNA-Seq. The distribu-
tion is trimodal with peaks at 0, 0.5 and 1.0. (B.) The distribution of RNA-Seq variant
proportion of known RNA-edits detected in 27 cancer samples with depth of at least 20.
The distribution is highly variant with probability mass broadly distributed.

where θ = {πg,πt ,ξ ,Agt} and

p(bG
i | πG,dG

i ,Gi = g) = Polya(bG
i | dG

i ,πg) (2.1)

p(bT
i | πT ,dT

i ,Ti = t) = Polya(bT
i | dT

i ,πt) (2.2)

where

Polya(x | N,α) =
N!

∏
K
k=1(xk!)

Γ(∑k αk)

Γ(N +∑k αk)

K

∏
k=1

Γ(xk +αk)

Γ(αk)
(2.3)

where x = (x1, . . . ,xK) discreet counts for each of K classes, N = ∑k xk, Γ is the gamma function

and α = (α1, . . . ,αK) is the parameterization of the Polya distribution.

After computing and normalizing the posterior joint probabilities are marginalized over the set

of RNA-edit states, defined as R = {g ∈ G, t ∈ T : g 6= t ∧gi 6= ZZ∧ ti 6= ZZ}:

p(Edit) = ∑
g,t∈R

p(Gi = g,Ti = t | bG
i ,d

G
i ,b

T
i ,d

T
i ,θ) (2.4)

2.1.2 Parameter Learning

The equations and distributions necessary for inference are shown below the graphical model in

Figure 2.1.
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Figure 2.4: The Polya (red solid lines) distribution allows for state transitions over a greater
range of variation in counts, compared to the Multinomial (blue dashed lines). The three
rows of figures are demonstrations of this property at depths of 10, 30, and 100 respec-
tively, top to bottom. In this case, the reference is declared to be A, and the variant to be
T. Across the x-axis of each plot, the number of T’s (out of the total depth of 10, 30 or
100) is increased. From left to right, each plot shows the likelihood of the counts having
been drawn from the AA, AT, or TT distributions of the Polya or Multinomial mixture.
It is clear that in all cases, the Multinomial mixture shifts the majority of the probability
mass between classes with the addition, or subtraction, of a single base, where as the
Polya mixture shift more gradually.
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The transition matrix can be learned via expectation maximization (EM) using the standard

Dirichlet-Multinomial update formula. Specifically:

Anew
g,t =

∑i∈N
[
p(Ti = t)p(Gi = g)+δ A

g,t −1
]

∑i∈N
[
∑t∈T

[
p(Ti = t)p(Gi = x)+δ A

g −1
]] (2.5)

EM is allowed to to iterate until the complete data log-likelihood (CLL) converges. The CLL

for the Audtior model is expressed as:

CLL = ∑
i∈N

[
∑
g∈G

[
∑
t∈T

[
log(p(Gi = g | πG,dG

i ,b
G
i ,ξ ))

+ log(p(Ti = t | πT ,dT
i ,Ag,t ,Gi = g)))

]]]
+ log(p(A | δ ))

In this framework EM proceeds with monotonically increasing CLL, and converges on a locally

optimal value for A. An example of the values of the transition matrix through iterations of EM on

simulated data is shown in Figure 2.5.

Despite the success of training on simulated data, EM has proved impractically slow to run on

entire HTS data sets. Randomly subsampling from the data to form a training set is an appealing

approach, but it is unlikely that a random subsample small enough to make EM practical would

contain a representative sample of RNA-edits. In the future, when more is known regarding RNA-

editing and commonly edited positions, targeted subsampling may be a feasible approach to training

Auditor in a sample-specific manner.

2.1.3 Parameter Settings

In place of fitting A to each sample, the substitution proportions from Bahn et al (19) is used to

generate the transition matrix. It is demonstrated below that processing putative RNA-edits with

MutationSeq effectively overpowers the transition matrix, and the results support that these settings

are suitable until per-sample training is practical.

The parameters for the Polya mixtures, πG and πT were set by empirically examining the na-

ture of various parameterizations. Figure 2.6 shows the behaviour of the three Polya mixtures to

illustrate the rationale behind the selection of the parameters described in Table 2.1. This param-

eterization was selected because it demonstrated appropriate class-switching from homozygous to

heterozygous types (i.e. switching from AA to AT was gradual, but complete). Other parameters

led to mixtures that would shift too abruptly between classes, or to mixtures that never shifted com-

pletely to the heterozygous type. See Section 4.5 for a discussion on training the Polya mixture

parameters from labelled data and why this approach was not used in this thesis and Section 2.2 for

experiments demonstrating the robustness of the Polya distribution in general and the parameters

specified in Table 2.1 specifically.
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E. F.

Figure 2.5: Example of progression of the Auditor transition matrix during EM iterations.
Iteration 0 (A) shows the starting parameters which were generated uniformly at random.
The 10,000 data points used for this simulation were drawn from the Auditor model
parameterized as in Table 2.1. The transition matrix parameters are shown as a heat map
in (F). Iterations 5 and 6 (C,D) represent intermediate iterations, and iteration 8 (E) is
the final values after EM. EM converges quickly, in 8 iterations, and results in values
representative of the true sampling distribution.
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Figure 2.6: Demonstration of three different parameterizations of a four-count Polya distribu-
tion. The reference is declared to be A, and the variant to be T. Across the x-axis of
each plot, the number of T’s (out of the total depth of 30) is increased. The top row of
plots shows the behaviour of the Polya mixture as parameterized in the Auditor model
(Table 2.1). Transition to heterozygous types begins with the addition of of only one
non-reference base, and the AT type retains substantial probability mass until the num-
ber of T’s is strongly dominant. The second row demonstrates a Polya mixture with more
pronounced peaks, which effectively delays the transition from AA to AT and AT to TT.
The third row shows a Polya mixture with significantly greater uncertainty, resulting in
the AT class never being fully dominant. Given the broadly distributed variant ratios
observed in RNA-editing (see Figure 2.3) the behaviour of the top Polya mixture was
deemed most suitable.
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2.1.4 Variants of the Auditor Model

In addition to the fully featured Auditor model, two simpler variants were implemented in order to

systematically evaluate the properties of the proposed advances.

The first variant independently computes the posterior probability of each genotype and tran-

scriptotype and then generates the final transition posterior by taking the cross-product of the inde-

pendent results. This model is referred to as IndepPolya, and is shown, with relevant conditional

probability distributions in Figure 2.7. IndepPolya allows for analysis without the benefit of the

transition matrix and transcriptomic dependence on the genome, and is used for evaluation of these

properties.

In the second variant,the Polya distributions in the πG and πT mixtures are replaced with Multi-

nomial distributions, ηG and ηT , keeping the transition matrix intact and computation of the transi-

tion p(Ti = t|Gi = g) is equivalent to Auditor. This model is referred to as JointMulti and is shown,

with relevant conditional probability distributions in Figure 2.8. This model was implemented in

order to demonstrate the benefits of the Polya distribution over the Multinomial distribution in iso-

lation.

These models are demonstrated on simulated data in Section 2.3.

2.1.5 Simulated Data Generation

We simulated two-hundred datasets of ten-thousand positions, divided into two groups of one-

hundred, for use in comparing the performance of Auditor and related variants. The first group

was simulated from Auditor itself (hereafter AuditorSet), and the second was simulated from the

JointMulti variant (hereafter MultiSet). In both cases the transition matrix used to simulate the data

was set so that self-transitions (i.e. no RNA-edit) were twenty times more likely than any other tran-

sition. All other transitions were equally likely. For the Polya mixture models, base-counts were set

as shown in Table 2.1. These counts were normalized to generate the parameters for JointMulti.

Depth was simulated using a hyper-variable Poisson distribution:

D∼ Poisson(λ )+Uni f orm(−0.5×λ ,0.5×λ ) (2.6)

where λ = 40 for the genomic counts and λ = 50 for the transcriptomic counts.

Sampling from both Auditor and JointMulti was intended to reduce bias that would be inherent

to one approach over the other.

2.1.6 Implementation.

Auditor is implemented in Python, and has dependencies for Numpy, SciPy, bam-counter (and

consequently pysam), and Matplotlib. Auditor provides three primary commands: syncnt, for con-

verting matched DNA-RNA BAM files into the synchronized count format; classify, to compute

the probability of an RNA-edit for each position in a syncnt file; and train, to train the transition

matrix from a syncnt file using EM (see Section 2.1.2). MutationSeq is implemented in Matlab with
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Figure 2.7: Graphical model for the IndepPolya variant of Auditor and the relevant conditional
probability distributions. IndepPolya breaks the dependence of the transcriptome on the
genome, but all other aspects of the model are help invariant compared to Auditor.
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Figure 2.8: Graphical model for the JointMulti variant of Auditor, and the relevant conditional
probability distributions. JointMulti is identical to Auditor for the purposes of inference,
except that the mixture components, ηG and ηT , are Multinomial distributions rather than
Polya distributions.
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Parameter Description Value

δ
Pseudo counts in

Dirichlet prior on A

AA AC AG AT CC CG CT GG GT TT ZZ
AA 500.0 10.0 100.0 10.0 10.0 10.0 10.0 30.0 10.0 10.0 20.0
AC 70.0 500.0 10.0 10.0 70.0 10.0 10.0 10.0 10.0 10.0 20.0
AG 70.0 10.0 500.0 10.0 10.0 10.0 10.0 70.0 10.0 10.0 20.0
AT 70.0 10.0 10.0 500.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0
CC 10.0 10.0 10.0 10.0 500.0 10.0 70.0 10.0 10.0 20.0 20.0
CG 10.0 10.0 10.0 10.0 70.0 500.0 10.0 70.0 10.0 10.0 20.0
CT 10.0 10.0 10.0 10.0 70.0 10.0 500.0 10.0 10.0 70.0 20.0
GG 10.0 10.0 10.0 10.0 10.0 10.0 10.0 500.0 10.0 10.0 20.0
GT 10.0 10.0 10.0 10.0 10.0 10.0 10.0 70.0 500.0 70.0 20.0
TT 10.0 10.0 10.0 10.0 10.0 10.0 100.0 10.0 10.0 500.0 20.0
ZZ 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 500.0

A

Multinomial
substitution-

specific transition
matrix

AA AC AG AT CC CG CT GG GT TT ZZ
AA 0.5208 0.0417 0.3542 0.0130 0.0052 0.0000 0.0000 0.0443 0.0000 0.0000 0.0208
AC 0.0220 0.8811 0.0000 0.0044 0.0220 0.0352 0.0000 0.0000 0.0000 0.0000 0.0352
AG 0.0228 0.0000 0.9132 0.0000 0.0000 0.0046 0.0000 0.0228 0.0000 0.0000 0.0365
AT 0.0218 0.0044 0.0044 0.8734 0.0000 0.0000 0.0044 0.0000 0.0349 0.0218 0.0349
CC 0.0000 0.0247 0.0000 0.0000 0.8230 0.0247 0.0864 0.0000 0.0000 0.0082 0.0329
CG 0.0000 0.0045 0.0000 0.0000 0.0227 0.9091 0.0000 0.0227 0.0045 0.0000 0.0364
CT 0.0000 0.0000 0.0000 0.0000 0.0228 0.0046 0.9132 0.0000 0.0000 0.0228 0.0365
GG 0.0083 0.0000 0.0792 0.0000 0.0000 0.0167 0.0000 0.8333 0.0292 0.0000 0.0333
GT 0.0000 0.0000 0.0000 0.0045 0.0000 0.0045 0.0000 0.0227 0.9091 0.0227 0.0364
TT 0.0000 0.0000 0.0000 0.0268 0.0077 0.0000 0.0881 0.0077 0.0728 0.7663 0.0307
ZZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

ξ

Multinomial
parameters for
genotype states

AA, CC, GG, TT AC, AG, AT, CG, CT, GT ZZ
0.21 0.021 0.0021

Gi Genotype at
position i

Inferred

T i Transcriptotype at
position i

Inferred

bG
i

Count of each base
(A,C,G,T) at
position i in

genome

Observed

bG
i

Count of each base
(A,C,G,T) at
position i in

transcriptome

Observed

dG
i

Depth of coverage
at position i in

genome
Observed

dT
i

Depth of coverage
at position i in
transcriptome

Observed

πG

Count parameters
for genotype Polya

mixture

AA AC AG AT CC CG CT GG GT TT ZZ
A 4 12 12 12 0.05 0.05 0.05 0.05 0.05 0.05 4
C 0.05 12 0.05 0.05 4 12 12 0.05 0.05 0.05 4
G 0.05 0.05 12 0.05 0.05 12 0.05 4 12 0.05 4
T 0.05 0.05 0.05 12 0.05 0.05 12 0.05 12 4 4

πT

Count parameters
for transcriptotype

Polya mixture
Same as πG

Table 2.1: Description of the parameters and random variables of the Auditor model. Fixed
values for parameters are given, and inferred or observed values are noted.
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convenience wrappers in Perl.

Additionally a Perl pipeline that takes as input paired DNA/RNA single chromosome BAM

files and executes conversion to counts, classification and MutationSeq post-processing, has been

implemented. The output of this pipeline contains the probability of each substitution, the total

p(Edit), the MutationSeq confidence score and the product of p(Edit) and the MutationSeq score

for all positions where p(Edit)> 0.5.

The entire suite will be publicly available at http://compbio.bccrc.ca/software/

in the near future.

2.2 Assessment of the Robustness of Audtior with Respect to Polya
Parameters

The Polya distribution, as an infinite mixture of Multinomials, is expected to be robust with respect

to parameter settings. However, the robustness of Auditor specifically was examined to ensure that

the model was not overly sensitive to the Polya mixture parameterization.

To determine the sensitivity of Auditor to various parameterizations of the Polya mixtures two

experiments were performed. In the first experiment, ten sets of one-thousand positions were sim-

ulated from a single parameterization of Auditor as described in Table 2.1. These positions were

then classified using an array of different Polya parameters as follows: the four count parameters

of each Polya were reduced to strength and skew, such that for a given class (e.g. AG) nucleotides

present in that class (in this case A and G) were assigned the skew value, and all other elements

were assigned 1. The set of parameters were then scaled by the strength value. For example, if

skew = 50 and strength = 0.1 the AG vector would be {5,0.1,5,0.1}. Skew values ranged between

2 and 200 in steps of 5, while the strength values ranged from 0.01 to 676.4 in 40 steps such that

strength=(0.01)×(1.33)(step). This range of strengths was used to adequately explore extreme val-

ues in the parameter space. For each (strength, skew) tuple, the median AUC over the ten datasets

was recorded and is shown in Figure 2.9. The results indicate that any combination of strength and

skew is effective at classifying the data generated by the Auditor model, demonstrating that many

differing parameterizations of the Polya mixture would likely be effective in practice.

Further, using the RNA base counts from the same positions that were used to generate the

RNA-editing variant ratio distribution in Figure 2.3, the parameters for the A→G Polya distribution

were trained with second order gradient descent. The resulting parameters, [2.6903, 0.0357, 1.9304,

0.0239] were converted to skew and strength. Strength was computed by averaging the C and T

components of the vector (strength = 0.0298) and skew was computed by taking the product of the

strength and the average of the A and G components (skew = 77.529). This value is similar to the

strength and skew used for the Auditor parameters (strength = 0.05, skew = 80).

The second experiment covered the same range of strength and skew, but simulated ten sets

of one-thousand positions from an instantiation of Auditor for each strength-skew tuple. For each

data set Auditor, parameterized as shown in Table 2.1, was used to classify each position. The

median AUCs of the ten sets simulated from each parameter setting was recorded and is shown in
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Figure 2.9: The results of classifying ten sets of one-thousand positions, simulated from Au-
ditor as parameterized in Table 2.1 [A], with instantiations of Auditor with varying Polya
parameters (the trained value of the A→G DARNED edits is labelled as [B]). The Polya
parameterization was reduced to strength and skew, such that for a given class (e.g. AG)
nucleotides present in that class (in this case A and G) were assigned the skew value, and
all other elements were assigned 1. The set of parameters were then scaled by the strength
value. Skew values explored were between 2 and 200 in steps of 5, while the strength
values ranged from 0.01 to 676.4 in 40 steps such that strength = (0.01)× (1.33)(step).
Across all values of strength and skew, the various parameterization of the Polya mixture
are effective at classifying positions simulated from the Auditor parameters in Table 2.1.
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Figure 2.10: The results of classifying ten sets of one-thousand positions, simulated from Au-
ditor with a wide range of Polya mixture parameterizations, with an instantiation of
Auditor using parameters as described in Table 2.1 [A] (the trained value of the A→G
DARNED edits is labelled as [B]). The Polya parameterization was reduced to strength
and skew, such that for a given class (e.g. AG) nucleotides present in that class (in this
case A and G) were assigned the skew value, and all other elements were assigned 1.
The set of parameters were then scaled by the strength value. Skew values explored
were between 2 and 200 in steps of 5, while the strength values ranged from 0.01 to
676.4 in 40 steps such that strength = (0.01)× (1.33)(step). Auditor, using the pa-
rameters in Table 2.1 is effective in classifying positions simulated from a wide range
of Polya distributions. This suggests that Auditor is robust to differences between the
Polya mixture parameters and the unknown, true distribution of RNA-edits in HTS data.

Figure 2.10. Auditor performs well on a wide range of strength and skew parameters and shows

weak performance only on highly variable (low strength and skew) data. This suggests that the

parameterization described for Auditor is robust to differences between the parameter settings and

the unknown, true distribution of RNA-edits in HTS data.
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2.3 Systematic Evaluation of Auditor on Simulated Data
The performance of Auditor was evaluated against the variants described in Section 2.1.4 using sim-

ulated data as described in Section 2.1.5 . Posterior marginal probabilities p(Edit) were computed

to obtain the probability of an RNA-edit at each site in the data as described above. The performance

of Auditor, IndepPolya and JointMulti was evaluated for each of the 200 runs with area under the

receiver operator characteristic curve (AUC) statistics. (Figure 2.11B).

AuditorSet/Auditor (0.982)

AuditorSet/JointMulti (0.952)
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Figure 2.11: (A.) Distribution of area under the curve (AUC) for each method on 200 sets of
10,000 (100 simulated from Auditor, 100 simulated from JointMulti) simulated data
points. Classification was performed with three methods: Auditor, JointMulti , and
IndepPolya. On both simulation sets, Auditor is superior to both JointMulti and Indep-
Polya. (B.) A representative example of ROC curves resulting from classification of
two sets of 10,000 simulated data points. The AUC for each method (Auditor in red,
IndepPolya in black and JointMulti in green) is shown in brackets in the legend. The
first set, shown with solid lines, was simulated from Auditor. The second set, shown
with dotted lines, was simulated from JointMulti (see Section 2.1.4).

As expected, Auditor achieved the highest accuracy on both simulation datasets (Figure 2.11A).

Performance was consistent across runs for both datasets despite random generation of the data.

A representative run is shown in Figure 2.11B with full ROC curves. For MultiSet, the median

AUC was was 0.993 for Auditor followed by IndepPolya and JointMulti (median AUC of 0.989 and

0.983, respectively). Similar results were obtained for the AuditorSet where Auditor had a median

AUC of 0.984, followed by IndepPolya and JointMulti (0.980 and 0.953, respectively). These

results indicate that if base counts are generated according to a Multinomial distribution, the Polya

28



Simulation Model Classification Model Mean AUC Median AUC AUC Variance

JointMulti Auditor 0.9927 0.9928 9.41×10-7

JointMulti IndepPolya 0.9888 0.9888 1.51×10-6

JointMulti JointMulti 0.9828 0.9830 2.63×10-6

Auditor Auditor 0.9843 0.9843 1.76×10-6

Auditor IndepPolya 0.9790 0.9790 2.14×10-6

Auditor JointMulti 0.9530 0.9529 4.75×10-6

Table 2.2: Summary statistics of AUCs for classification of 100 data sets per simulation
method/classification method pair.

distributions, encoding greater variance that the Multinomial distributions, confer an advantage over

using the Multinomial itself. Observed differences between all 6 AUC distributions (Table 2.2) were

statistically significant (ANOVA p < 0.0001, Tukey HSD p-values <0.001). This suggests that

Polya distributions are significantly more effective than Multinomials, and adding joint modelling

achieves a similarly significant performance gain. It is notable that all three methods achieve higher

median AUCs on the MultiSet model (0.993 vs. 0.984, 0.989 vs 0.979, 0.983 vs. 0.953, Auditor,

IndepPolya and JointMulti, respectively), likely due to the lower variance generated by Multinomial

distributions. Therefore in the presence of higher variance in the allelic distributions (as is typical

of RNA-edits (Figure 2.3), it is clear that the models that employ Polya distributions will be more

robust than Multinomial based models.
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Chapter 3

Application of Auditor to Human
Cancers

The performance of Auditor, IndepPolya, JointMulti and Samtools/bcftools were compared by clas-

sifying RNA-edits from eleven diffuse large B-cell lymphoma samples (DLBCL), and determining

relative sensitivity and specificity for the four methods. Relative sensitivity and specificity is a semi-

quantitative analysis to determine the rank order of the methods, and has emerged as an acceptable

approach when a suitable, gold-standard data set does not exist (38). The substitution profiles result-

ing from Auditor and Samtools/bcftools classifications were then compared to known properties of

RNA-editing as well as known polymorphic substitution distributions in order to determine which

method generated distributions that most closely resembled the known RNA-editing patterns while

diverging from the polymorphic distribution.

By these metrics, Auditor achieves the best performance and was subsequently applied to six-

teen triple-negative breast cancer (TNBC) genome-transcriptome pairs. In contrast to the Illumina-

based DLBCL data, the TNBC genome data was sequenced using the SOLiD platform. The sub-

stitution distribution of the TNBC samples was computed using Auditor and compared to that of

the DLBCL samples and resulted in substantial similarities between the two cancer types. Fur-

ther, the distribution of RNA-edits over six genomic regions (3’UTR, 5’UTR, introns, splice-sites,

synonymous-exonic and non-synonymous-exonic) was computed for both cancer types. Analysis of

this regional distribution both within and between cancer types suggests that RNA-editing processes

are abundant and stable in both cancer types.

3.1 Feature-Based Classifiers for Modelling Technical Artifacts in
RNA-Seq Data

MutationSeq (48) uses supervised learning techniques to leverage alignment properties and scores,

such as mapping/base quality and strand bias to accurately identify true variants in high-throughput

sequence data. A single-sample, 21 feature variant (Table 3.1) of the original method was imple-

mented and trained for use in filtering putative RNA-edits. The importances of each feature are
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1. number of reads covering or bridging the site
2. number of reference Q13 bases on the forward

strand
3. number of reference Q13 bases on the reverse

strand
4. number of non-reference Q13 bases on the for-

ward strand
5. number of non-reference Q13 bases on the re-

verse strand
6. sum of reference base qualities
7. sum of squares of reference base qualities
8. sum of non-reference base qualities
9. sum of squares of non-reference base qualities

10. sum of reference mapping qualities

11. sum of squares of reference mapping qualities
12. sum of non-reference mapping qualities
13. sum of squares of non-reference mapping quali-

ties
14. sum of tail distances for reference bases
15. sum of squares of tail distance for reference

bases
16. sum of tail distances for non-reference bases
17. sum of squares of tail distance for non-reference

bases
18. P(D | Gi = aa), phred-scaled, i.e., x is trans-

formed to −10log(x)
19. maxGi 6=aa(P(D | Gi)), phred-scaled
20. ∑Gi 6=aa(P(D | Gi)), phred-scaled
21. Distance to nearest known splice site

Table 3.1: The definitions of MutationSeq features x1 to x21. Q13 is defined as base quality
greater or equal to Phred score 13; D represents the three dimensional vector (depth,
number of reference bases and number of non-reference bases) at the current site; Gi ∈
{aa,ab,bb} means the genotype at site i, where a,b ∈ {A,C,T,G} and a is the reference
allele and b is the non-reference allele. These features are constructed from Samtools.

shown in Figure 3.1. MutationSeq was used to evaluate the presence or absence of a variant in

the RNA-Seq data for each putative RNA-edit. After classification with Auditor, resulting putative

RNA-edit positions were analyzed by MutationSeq. A final confidence score for each position was

generated by taking the product of the score from the classifier method and score from MutationSeq.

All variants of the model and the Samtools method were similarly post-processed in this way in the

application to real datasets to ensure the comparability of results.

See Appendix A for a detailed description of the Auditor and Samtools/bcftools workflows

(IndepPolya and JointMulti follow the same workflow as Auditor).

Examples of false positive RNA-edit classifications that require MutationSeq post-processing to

identify are given in Appendix C.

3.2 Auditor Achieves Superior Sensitivity and Specificity than
Variant Models and Samtools/bcftools

3.2.1 Description of Concordance Analyses For Evaluation of Sensitivity and
Specificity

The BWA (49) aligned whole-genome shotgun sequence (WGSS) and whole-transcriptome shotgun

sequence (WTSS, RNA-Seq) from eleven DLBCL samples reported in a recent sequencing project

(35) was obtained. Sample acquisition and preparation are described in the orginal manuscript, and

coverage statistics can be found in Appendix B.

Putative RNA-edits were classified in the DLBCL data using four methods: Auditor, Indep-

Polya, JointMulti and the Samtools/BCFTools variant caller (37). All putative RNA-edits from each
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Figure 3.1: The importance score for each MutationSeq feature is shown. Features pertaining
to non-reference base quality (features 8 and 9), non-reference mapping quality (features
12 and 13) and sum of tail distances of non-reference bases (features 16 and 17) are
the most relevant to identifying technical artifacts. Base quality and mapping quality
directly relate to the confidence in the base call, thus their importance is not surprising.
Features 16 and 17 are effective in removing splicing-related artifacts since such errors
frequently manifest as the beginning or end of a read overhanging a splice site due to
misalignment. Feature 21, despite explicitly encoding the distance to the nearest splice
site is of relatively low importance. This is likely due to insufficient splicing related
artifacts in the training data.

method were post-processed with the modified MutationSeq algorithm to determine the likelihood

that the RNA variant was due to an artifact. The final confidence score for each putative RNA-edit

is the product of p(Edit) from Auditor and the p(variant) from MutationSeq (i.e. the position is an

RNA-edit and there’s a true variant in the RNA).

To assess sensitivity and specificity of each of the methods, the concordance of the putative

RNA-edits predicted by these four methods on two datasets, dbSNP and the RNA-edit database

DARNED (50), was computed. Given the lack of a comprehensively validated RNA-edit sample

set for which there also exists deep DNA and RNA sequence data, these concordance comparisons

were used to generate a comparison of relative sensitivity and specificity. For each method, puta-

tive edits were ranked by confidence and the percent of calls concordant with each external dataset

was computed for the highest n scored RNA-edits, 1 ≤ n ≤ 10,000 . Lower concordance with the

dbSNP positions indicates higher specificity (i.e. a smaller proportion of predictions are known

SNP positions) under the assumption that a position known to be a polymorphic position is signif-

icantly more likely to be an undersampled SNP, causing a false-positive RNA-edit prediction, than

a genuine RNA-editing event. Higher concordance with the DARNED RNA-edits indicates higher
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Auditor IndepPolya JointMulti Samtools

A. B.

Figure 3.2: Concordance of the 10,000 highest confidence RNA-edits predicted by five meth-
ods to dbSNP (A.) and the DARNED RNA-edit set (B.). Lower relative concordance
to the dbSNP positions indicates higher specificity, while higher relative concordance to
the DARNED set indicates higher sensitivity. Auditor achieves superior sensitivity and
specificity.

sensitivity (i.e. a larger proportion of predictions are known RNA-edit sites) due to the relatively

small size of the DARNED position set (42,055 positions). The probability of randomly distributed

technical artifacts inducing a false positive at one of the 42,055 DARNED positions in a space of

approximately 7×107 coding positions is remote and is unlikely to skew the results. For ease of

interpretation, 1-(dbSNP concordance) is reported so that low concordance values indicate high

specificity.

3.2.2 Comparison of Specificities

The relative specificity of each model was examined via the respective concordance to dbSNP at

rank cut-offs of 1000, 5000 and 10,000 (Figure 3.2A; Table 3.2).

Auditor achieves the highest specificity by these metrics. At 1000 calls the Auditor displays

very high specificity of 0.976. The specificity of the IndepPolya is similarly high at 0.974 and
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Rank Auditor IndepPolya JointMulti Samtools

1000 0.9760 0.9740 0.8741 0.9270

5000 0.9644 0.9374 0.8830 0.9255

10,000 0.9601 0.9358 0.9011 0.9265

Table 3.2: 1-(dbSNP concordance) values of Auditor, IndepPolya, JointMulti and Samtools at
top 1000, 5000, and 10000 most confident RNA-edit positions classified from 11 DLBCL
samples.

Samtools also displays high specificity at 0.960. JointMulti, however, somewhat less specific at

0.8741. This is attributed to the peaked nature of the Multinomial mixtures described in Section

2.1.1 and shown in Figure 2.4. This results in false positives when the evidence for a SNP in the

DNA is just under the threshold for the Multinomial to detect and in false negatives when an RNA-

edit has sub-threshold variant proportion (see Section 3.2.3). It is noted that dbSNP is known to

contain a small-number of RNA-editing events (51), and that it is likely that all methods compared

are being penalized for a small portion of false negatives in the dbSNP data.

The specificity ranking of the four compared methods remains consistent at all benchmarks

(Figure 3.2A; Table 3.2), but note that at 10,000 calls the specificity of IndepPolya reduces to 0.934

becoming similar to the specifity of Samtools, 0.926, whereas Auditor remains more consistent with

specificity of 0.960 at the same benchmark. The improvement of Auditor over IndepPolya can be

directly attributed to the simultaneous inference of the genotype and transcriptotype and suggests

that such joint inference results in fewer false positive predictions of expressed polymorphisms.

3.2.3 Comparison of Sensitivities

Next, the relative sensitivities of the methods as determined by concordance to the DARNED data

set are compared (Figure 3.2; Table 3.3).

Auditor, again, achieves the best performance with sensitivity of 0.531 at rank 1000. IndepPolya

and JointMulti demonstrate lower sensitivities of 0.486 and 0.4615, respectively. Samtools displays

the lowest sensitivity by a wide margin, with sensitivity of 0.048 at the rank 1000 benchmark. The

sensitivity of Auditor, IndepPolya and JointMulti decay as calls of lower confidence are included

(0.336, 0.258 and 0.3444 at rank 10,000 respectively), as expected, but consistently remain above

the sensitivity achieved by Samtools. Samtools, despite low dbSNP concordance, achieves low

sensitivity at all rankings suggesting that the calls made by Samtools are neither SNPs nor RNA-

edits.

3.3 Substitution Profiles of Eleven DLBCLs as Classified by Auditor
and Samtools

The emerging canonical substitution profile of RNA-edits is characterized by the overwhelming en-

richment of A→G events at the expense of near-complete depletion of other substitutions (12). The
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Rank Auditor IndepPolya JointMulti Samtools

1000 0.5315 0.4865 0.4615 0.0483

5000 0.4483 0.3756 0.4143 0.0554

10,000 0.3361 0.2578 0.3444 0.059

Table 3.3: Sensitivity of Auditor, IndepPolya, JointMulti and Samtools at top 1000, 5000, and
10000 most confident RNA-edit positions classified from 11 DLBCL samples.

Samtools, DLBCL Samtools, DLBCL
A. B.

Figure 3.3: (A.) Substitution distribution of Samtools-classified RNA-edits of 11 DLBCL
cases as a function of MutationSeq score. (B.) Substitution distribution across the 11
DLBCL cases at a MutationSeq threshold of 0.9. The distribution shows some similarity
to that of known SNPs (red stars), particularly G→A.

substitution profiles generated from the Auditor and Samtools classifications, at a range of Muta-

tionSeq confidence thresholds (0.0 to 0.95 in steps of 0.05), were compared in order to determine to

what extent this known pattern could be reproduced. A critical assumption made in this comparison

is that the greater the proportion of A→G events, the more accurate the method. While this assump-

tion may not be strictly valid, the majority of evidence to date suggests that it is not unreasonable

(11, 12). The substitution profiles are also compared to the known polymorphism substitution distri-

bution, and, in the case of Auditor, the model parameters. Substitution profiles differing from these

two reference profiles further indicates that the phenomenon being observed is not polymorphic nor

a result of parameter bias.

The base substitution distribution across the eleven DLBCL samples as classified by Auditor

and by Samtools was compared. For each method, the substitution distribution of the pooled puta-

tive RNA-edits from all eleven cases was plotted as a function of MutationSeq score (Figures 3.3A
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A. B. Auditor, DLBCLAuditor, DLBCL

Figure 3.4: (A.) Substitution distribution of Auditor-classified RNA-edits of 11 DLBCL cases
as a function of MutationSeq score. As the MutationSeq score increases A→G sub-
stitutions become dominant with 80% of substitutions being A→G at a MutationSeq
threshold of 0.9. (B.) Substitution distribution across the 11 DLBCL cases at a Muta-
tionSeq threshold of 0.9. The distribution shows little similarity to that of known SNPs
(red stars), and diverges strongly from the model parameterization (black dots).

and 3.4A). As the MutationSeq score increases, from 0 to 0.95 in steps of 0.05, the substitution dis-

tribution predicted by Auditor converges toward the known distribution of RNA-edits, dominated by

A→G events (A→G proportion = 0.80) . However, in the Samtools predictions, while A→G events

are enriched as MutationSeq score increases (A→G proportion = 0.45), the enrichment is weaker

than observed in the Auditor calls and further, the G→A frequency remains relatively high (G→A

proportion = 0.13). Indeed, Samtools retains a greater proportion of all non-A→G substitutions than

Auditor at a MutationSeq score of 0.9 (Table 3.4). It is noted that while Auditor is biased by design

toward calling A→G events due to the transition matrix parameterization, MutationSeq harbours no

such bias. Therefore any enrichment of a given base substitution as a function of MutationSeq is

the result of unbiased selection.

The substitution frequencies of the Auditor predictions, at a MutationSeq threshold of 0.9, are

consistent with known RNA-editing distributions and diverge substantially from the original param-

eters (Figure 3.4B). There are strong examples (e.g. C→G) where the final substitution frequency

differs from the initial parameters, and it is concluded that Auditor, post-processed by MutationSeq,

is not inappropriately constrained by the prior knowledge encoded in the model. The substitu-

tion distribution of the Samtools classifications, at the same MutationSeq threshold, much more

closely resemble that of the SNP distribution (Figure 3.3B). This supports the results from concor-

dance analysis and suggests strongly that Samtools predictions are composed substantially of SNPs,
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Substitution Samtools
Mean

Auditor
Mean

Samtools
Median

Auditor
Median Samtools Variance Auditor Variance

AC 0.03 0.01 0.03 0.01 1.01×10-4 2.84×10-5

AG 0.45 0.80 0.47 0.80 0.01 2.97×10-3

AT 0.04 0.01 0.04 0.01 1.50×10-4 2.17×10-5

CA 0.02 0.01 0.01 0.01 3.49×10-5 2.97×10-5

CG 0.02 0.00 0.02 0.00 2.82×10-5 6.43×10-6

CT 0.04 0.03 0.04 0.03 2.20×10-4 1.30×10-4

GA 0.13 0.05 0.14 0.04 8.18×10-4 4.00×10-4

GC 0.06 0.01 0.06 0.01 2.08×10-4 2.34×10-5

GT 0.06 0.01 0.06 0.01 4.36×10-4 3.30×10-5

TA 0.05 0.02 0.04 0.02 2.70×10-4 2.72×10-5

TC 0.07 0.04 0.06 0.05 1.20×10-4 3.78×10-5

TG 0.04 0.01 0.04 0.01 3.03×10-4 4.91×10-5

Table 3.4: Substitution profile statistics resulting from Samtools and Auditor RNA-edit classi-
fication of 11 DLBCL cases. Auditor generates a profile with higher proportion of A→G
substitutions, and lower proportions of all other substutions, consistent with the canonical
distribution.

whereas the more specific predictions of Auditor are more likely to be true RNA-edits.

3.4 Auditor Analysis Reveals RNA-Editing to Be an Abundant and
Stable Process in Human Cancers

With accuracy metrics established on both simulated and real data, Auditor was used to profile two

histologically distinct cancer types for global patterns of RNA-editing. In addition the the DLBCL

data set described above, sixteen triple-negative breast cancer (TNBC) genome-transcriptome pairs

from a recent study (36) were analyzed (sample acquisition and preparation are described in the

original manuscript and coverage statistics can be found in Appendix B).

Using conservative thresholds (MutationSeq probability > 0.9), 6,256 RNA-edits were called in

the 11 DLBCL cases, with a mean of 575.2 RNA-edits per case, affecting 1257 genes, with a mean

of 308.0 genes per case (Figure 3.5A,C). The TNBC cases exhibited 8,023 RNA-edits, with a mean

of 509.1 RNA-edits per case, affecting 2243 genes with a mean of 348.6 genes per case (Figure

3.5B,D).

The substitution distribution in both DLBCL and TNBC was dominated by A→G substitutions

comprising 80% and 65% of events, respectively (Figures 3.4B and 3.6B). This suggests an overall

similarity in RNA-editing processes between the two cancer types (e.g. canonical ADAR-mediated
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DLBCL TNBC

DLBCL TNBC

A. B.

D.C.

Figure 3.5: The distribution of the number RNA-edit affected genes per case for DLBCL (A.)
and TNBC (B.). The distribution of the number of RNA-edits per case for DLBCL
(C.) and TNBC (D.). As expected the two metrics are highly correlated. While there
appears to be non-negligible variance between cases, it is correlated to sequence coverage
(Pearson r = 0.47) suggesting that at least some of the variation can be attributed to
differing amounts of RNA sequence (see Figure B.1).
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Substitution Mean Median Variance

AC 0.02 0.01 3.55×10-5

AG 0.65 0.67 0.01

AT 0.02 0.02 6.75×10-5

CA 0.02 0.02 5.35×10-5

CG 0.02 0.02 2.13×10-5

CT 0.06 0.06 3.44×10-4

GA 0.07 0.07 4.12×10-4

GC 0.01 0.01 2.05×10-5

GT 0.01 0.01 6.85×10-5

TA 0.03 0.02 1.23×10-4

TC 0.08 0.07 3.99×10-4

TG 0.02 0.02 6.84×10-5

Table 3.5: Substitution profile statistics resulting from Auditor RNA-edit classification of 16
TNBC cases. Despite the A→G proportion being lower than that observed in the DL-
BCL cases, it is still dominant over all other substitutions, consistent with the canonical
distribution.

RNA-editing is active in both), but does not discount the possibility of more subtle variations. More-

over, these results indicate that additional enzymatic processes (i.e. C→T deamination by APOBEC

enzymes) play at most a minor role in the landscape of RNA-editing in human cancers. Notably, the

observed substitution distributions were relatively consistent within cases in both DLBCL (Figure

3.4) and TNBC (Figure3.6). The variance for A→G substitutions was 0.3% and 1% in the DLBCL

set and TNBC set, respectively (Tables 3.4 and 3.5).

Each putative RNA-edit called in the DLBCL and TNBC data sets was annotated with snpEff

(52) as one of six classes: 3’ UTR, 5’ UTR, intronic, splice-site, synonymous-exonic, and non-

synonymous-exonic. Next, the distribution of RNA-edits across these categories was examined as

a function of MutationSeq score (Figure 3.7A,C), similarly to the procedure used above for com-

puting substitution distributions. The DLBCL and TNBC data sets show remarkably similar class

distributions with respect to both as collective cancer types (Figure 3.7C,D; Table 3.6) and as indi-

vidual cases (Figure 3.8). Splice-sites, which are likely to be artifacts, are strongly over-represented

with no MutationSeq post-processing, and 3’ UTR events dominate the distribution of each cancer

type with proportions of 0.838 and 0.793 at a MutationSeq threshold of 0.9, DLBCL and TNBC re-

spectively. The modified MutationSeq algorithm is highly effective at removing splice-site artifacts.

This is attributed largely to features 14 and 15 (sum of tail distances for non-reference bases and

sum of squares of tail distances for non-reference bases, respectively) (Table 3.1). Features 14 and

15 are indirectly related as most splice-site artifacts are generated by short overhangs at the begin-
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A. B. Auditor, TNBCAuditor, TNBC

Figure 3.6: (A.) Substitution distribution of Auditor-classified RNA-edits of 16 TNBC cases
as a function of MutationSeq score. Similar to the DLBCL substitution profile, A→G
proportion increases significantly as MutationSeq score increases. (B.) Substitution dis-
tribution across the 16 TNBC cases at a MutationSeq threshold of 0.9. The distribution is
remarkably similar to that of the DLBCL cases and shows little similarity to the known
SNP distribution (red stars) and the model parameterization (black dots).

nings or ends of reads cause by misalignment to junction sequences and subsequent remapping to

the reference genome. The use of MutationSeq for this purpose is emphasized here as a significant

advancement over previous RNA-editing detection methods.

The remainder of a non-negligable number of non-synonymous RNA-edits is noted. Manual

examination suggests that many of them are in fact unlikely to be genuine; many of these non-

synonymous events lie only one or two nucelotides from a splice-site within an exon. However, a

portion of these non-synonymous RNA-edits appear to be genuine and merit further validation.

The depletion of RNA-edits in both conding regions and 5’UTRs is unsurprising given the po-

tential functional consequences of these modifications. Wide-spread stochastic modification of the

protein complement of a cell would likely lead to challenges in regulation and isoform abundance

control. Similarly, 5’UTRs are known to contain signals pertaining to protein binding and transla-

tion initiation (53), and random modification of these sites could lead to fluctuations of mRNA or

protein abundance in the cell.

Overall, the most probable RNA-editing events are those that are A→G and lie within 3’UTRs.

This suggests that the majority of RNA-editing activity is restricted to these properties and future,

targeted analysis seems to be justified. Further, these patterns suggest that exome capture would be

an ill-suited platform for RNA-editing detection due to the lack of 3’UTR sequences captured by

the protocol by design.
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DLBCL
A. B.

TNBCC. D. TNBC

DLBCL

Figure 3.7: Distribution of RNA-edits across genomic regions as a function of MutationSeq
threshold in DLBCL (A.) and TNBC (B.). Splice site RNA-edits decrease sharply as
MutationSeq threshold increases as expected given the artifact-prone nature of splice site
alignments. The total count of events categorized into each region from each data set
is shown in parentheses in the legend of each plot. The distribution of regional propor-
tion across the each of the cancer types are shown in (C.) and (D.), DLBCL and TNBC
respectively. The overall distributions are highly similar and primarily differ in the pro-
portion of remaining splice sites.
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A. B.

Non-synonymous Synonymous Splice site Intronic 5’ UTR 3’UTR

Figure 3.8: The regional distribution for each case in the DLBCL set (A.) and in the TNBC set
(B.). The distributions are highly similar both within and between the two tumour types.

Region DLBCL
Mean

TNBC
Mean

DLBCL
Median

TNBC
Median DLBCL Variance TNBC Variance

3’ UTR 0.84 0.79 0.82 0.79 3.81×10-3 1.97×10-3

5’ UTR 0.01 0.02 0.01 0.02 4.12×10-5 5.85×10-5

INTRON 0.03 0.02 0.04 0.02 1.93×10-4 7.05×10-5

SPLICE 0.07 0.03 0.06 0.03 1.37×10-3 1.69×10-4

SYN 0.02 0.07 0.02 0.07 1.66×10-4 3.98×10-4

NON SYN 0.03 0.06 0.03 0.05 1.45×10-4 5.57×10-4

Table 3.6: Regional Auditor classified RNA-edit distribution of 11 DLBCL and 16 TNBC
cases. The abundance of RNA-edits falling in 3’ UTRs is consistent between both cancer
types as well as with previously reported patterns of RNA-editing.
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Chapter 4

Discussion

This thesis has:

1. Demonstrated of the power of Polya distributions for genotyping in the presence of biological

and technical noise

2. Shown that joint modelling, while beneficial, is of less effect than the use of Polya distribu-

tions for the discovery of RNA-edits

3. Described a novel generative model, Auditor, that, when coupled with sophisticated artifact

detection accurately identifies RNA-edits from paired genome/transcriptome HTS data

4. Demonstrated the necessity of effective artifact removal in RNA-editing detection

5. Described the first landscape of RNA-editing in human cancer, and shown RNA-editing to

be largely invariant in DLBCL and TNBC and that RNA-editing patterns in these tumours

closely reflect the patterns seen in healthy tissues

The current state of the art knowledge regarding RNA-editing, while informative, also empha-

sizes significant shortcomings in the understanding of this process. The advent of high-throughput

sequencing now provides a means by which the scientific community can begin to elaborate on

underexplored aspects of RNA-editing as well as to potentially inspire novel insights into the mech-

anisms and effects of post-transcriptional modification of RNA.

Despite the power of HTS data for this purpose, previously published methods for RNA-edit

discovery have lacked rigour and the results of some studies remain suspect. Auditor paves the way

future studies and discoveries as the first mathematically principled method for RNA-edit classifica-

tion from HTS data. Further, Auditor has provided the first large scale exploration of RNA-editing

in human cancers and found RNA-editing to be remarkably stable inspite of malignancy and cellular

lineage.
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4.1 Auditor is a Principled Method for the Detection of RNA-Edits
Auditor, with the introduction of joint Polya-mixture modelling as well as the base-specific transi-

tion matrix, represents a significant improvement over existing methods. The use of Polya distribu-

tions explicitly encodes the count of each base as well as the increased variance of RNA-seq and

RNA-editing. This approach results in significant improvements over both Multinomial distribution

methods and the Samtools/bcftools software.

Additionally, the joint modelling of genotype and transcriptotype allows the model to borrow

statistical strength between the DNA and RNA samples increasing the specificity of RNA-edit clas-

sifications. While the use of joint modelling does not result in performance gains on the same scale

as the usage of Polya distributions, the improvements are measurable and significant.

4.2 Effective Artifact Removal is Critical to RNA-editing Detection
In this study, in both substitution profiling and regional analysis, only after artifact removal were

the expected patterns generated, demonstrating that sophisticated artifact detection approaches are

a necessary component of RNA-edit detection. It is clear that without such artifact removal, RNA-

editing detection becomes overwhelmed with technical artifacts and no biological conclusions can

be drawn in the face of such a severe false positive burden.

Discriminative modelling of technical artifacts in HTS data has previously proven to be effec-

tive in controlling false positive classifications of somatic mutations (48), and the twenty-one feature

adaptation presented here is highly effective in the context of RNA-editing detection. Given the re-

cent uncertainty in the literature (20, 21, 22), and the overall laxity of statistical rigour in current

artifact detection approaches in published RNA-editing studies (12, 18, 19, 40, 41), use of princi-

pled approaches, such as the modified MutationSeq algorithm presented here, could provide much

needed confidence in the field.

4.3 Preliminary Landscape of RNA-Editing in DLBCL and TNBC
This study represents the first examination of the landscape of RNA-editing in DLBCL and TNBC.

A→G RNA-editing dominates the substitution landscape, and the majority of high-confidence pre-

dictions lie within 3’ UTR regions.

There is striking similarity within and between the DLBCL and TNBC samples, and further the

patterns observed closely match the known patterns found in healthy tissues. There is little evidence

in this study of what, if any, role RNA-editing may play in these cancers, but for these cancer types

it seems that any effects will be the result of fine scale aberrations rather than gross, mechanistic

divergences from normal activity. Further, the evidence presented here suggests the possibility that

RNA-editing mechanisms, as an active and necessary cellular process, is generally invariant across

cell types of differing lineages and even in the presence of malignancy.
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4.4 Limitations
Currently Auditor admits several limitations. The most significant limitation is that the method re-

quires matched DNA and RNA HTS data. However, it is noted that this limitation is shared by all

existing RNA-edit discovery tools. Further, in light of the evidence presented here, and elsewhere

(12), future large scale studies could alleviate the financial and technical burden by performing

targeted sequencing of 3’UTR sequences only. While this approach may fail to elucidate novel

properties of RNA-editing it would capture the significant majority of RNA-editing activity and po-

tentially provide further insights into the consequences of RNA-editing. A second limitation is that

sensitivity is currently reliant solely on count data, whereas specificity is controlled by count data

and the features used by MutationSeq. Finally, it is noted that while the model is theoretically suited

to parameter learning via EM, the process is too computationally intensive, due to the necessity of

large matrix operations, to train on entire data sets.

4.5 Future Directions
Currently Auditor uses a single set of parameters regardless of the functional region currently being

examined. This thesis has described significant biases to the prevalence of RNA-editing in various

genomic regions and region-specific parameters appear to be justified. The structure of Auditor

would easily allow for the creation of separate transition matrices and Polya mixtures for each

functional region, and the annotated region would simply become a known-value indicator variable

that determines which set of parameters are used for any given classification. In a similar sense, the

necessity of RNA secondary structure for ADAR mediated RNA-editing has been established, and

RNA secondary structure prediction could be overlaid as a prior on the parameters to further inform

RNA-edit classification in regions of varying secondary structure.

In addition to secondary structure considerations, ADAR mediated events are known to be spa-

tially correlated; a feature ignored by the current implementation of Auditor. A modelling approach,

such as an HMM, that utilized these patterns could be a powerful tool for detecting RNA-edits aris-

ing from specific processes.

It was demonstrated throughout this study that discriminative classifier based artifact removal

is a necessary and powerful element of the described method. However, the classifier used here

is trained on RNA-Seq based variants only, due to the lack of a comprehensive set of validated

RNA-edits. In the future, once such a set exists, a full MutationSeq framework can be constructed,

simultaneously using features of both the DNA and RNA, and trained on RNA-edits. This would

alleviate the shortcoming of sensitivity relying on base counts alone and further increase the perfor-

mance of the model.

Addressing the final limitation noted above, as new data emerges, it should be possible to train

on a carefully selected subset of positions for improved results. This would allow for discovery

of substitution distributions from entire samples as well as more accurate measurements of RNA-

editing rates on a per-sample basis, which are currently only available as parameter biased post-

45



processing steps. In addition to training the transition matrix, an attempt was also made to train the

Polya mixture distributions from labelled RNA-seq data using second order gradient descent. How-

ever, all training attempts resulted in pseudo-counts of less than one for all parameters encoding the

heterozygous types. When such parameterizations are used, the behaviour of the Polya distribution

becomes ill-suited to nucleotide typing as the probability density becomes concentrated at the edges

of the distributions. This would, for example, manifest as the CT distribution being most likely in

the presence of all C’s or all T’s and unlikely in the presence of an equal mixture. Developing effec-

tive training for the Polya parameters would likely increase performance, but will require significant

further development.

As a final research detection, the repurposing of Auditor for somatic mutation detection is pro-

posed. Audior could be used to simultaneously infer mutational signatures (e.g. substitution pro-

files) and mutated positions from matched healthy and diseased genomic samples. This function-

ality is unavailble in any other tool to date and represents an unexplored area of somatic mutation

research.

4.6 Conclusions
Auditor is the first principled method for RNA-editing detection, and is a clear improvement over

previous methods. The patterns of RNA-editing discovered by applying Auditor to twenty-seven

cancer samples closely match the canonical prototype, demonstrating the effectiveness of the model

and providing the preliminary landscape for RNA-editing in DLBCL and TNBC. RNA-editing in

DLBCL and TNBC was found to be largely invariant within and between the cancer types, sug-

gesting significant stability of the RNA-editing processes in the contexts of both malignancy and

distinct cellular lineages.

Additionally, Auditor will enable future studies of RNA-editing in both healthy and diseased

tissue, and due to the extensible design of the model will only benefit and improve as new data and

insights arise.
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Appendix A

Method Workflows

A.1 Auditor Workflow

Alignment to hg18 Alignment to hg18 + 
junction set

Raw 
WGSS 
Reads

Raw 
WTSS 
Reads

Extract DNA/RNA Base 
Counts

Depth >= 4 in both 
samples

Strand Correct (discard 
position if no annotation)

Compute geno/
transcriptotype likelihoods

Discard position if 
genotype doesn t match 

reference

Process putative RNA-
Edits with MutationSeq

List of RNA-
Edits

Annotate Region with 
SNPeff

Auditor

Figure A.1: Auditor workflow. DNA and RNA NGS data are converted to counts subject to
user-specified constraints (e.g. depth and quality), strand corrected and then the likeli-
hood of an RNA-edit at each position is computed. Positions where p(edit) > 0.5 are
classified with MutationSeq to assess confidence that the RNA variant is genuine.
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A.2 Samtools Workflow
• Published method (41):

– Align DNA and RNA to reference genome with BWA

– Use Samtools on DNA and RNA to call types

– Identify putative RNA-edits by deterministically selecting positions where:

∗ RNA contains a variant

∗ DNA is homozygous for reference

– Realign reads supporting RNA-edits with a junction aware aligner to remove junction

artifacts

– Filter on Samtools p-vals for various artifact categories

• The Samtools/bcftools procedure described in the algorithm is a similar approach but more

principled:

– Align DNA with BWA to reference genome

– Align RNA with BWA to reference genome + known junctions

– Use Samtools on DNA and RNA to call types

– Identify putative RNA-edits by deterministically selecting positions where:

∗ RNA contains a variant

∗ DNA is homozygous for reference

– Use modified MutationSeq using Samtools features, plus ’distance-to-nearest-junction’

– Rank calls by MutationSeq score

The realignment step is replaced with a supplemented set of junction sequences during the

alignment of the RNA-seq data. Additionally, the Samtools-based features used by MutationSeq

are augmented with a ’distance-to-nearest-junction’ feature. Similarly, heuristic filters on Samtools

p-values (for features such as p(strand−bias)), are replaced by the MutationSeq platform, granting

the ability to control the confidence threshold, rather than setting arbitrary cut-offs for these p-

values.
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Appendix B

Sequence Data Coverage Statistics and
Correlation to RNA-edits

Patient ID Genome Library WTSS Library Genome Cover (fold) WTSS Mapped Bases

PatientL A01413 HS0637 51.74 9115713150
PatientJ A01415 HS0926 28.26 2734734350
PatientK A01416 HS0928 24.9 5181143850
PatientF A01418 HS0936 31.91 5369008300
PatientG A01424 HS1462 31.81 6288448875
PatientH A01434 HS2605 32.82 10830100200
PatientI A01453 HS2048 26.42 12120724350
PatientC A03291 HS3105 29.14 9127296000
PatientE HS2702 HS0647 29.76 1828711740
PatientD HS2706 HS1133 40.49 5081588150
PatientM HS2974 HS2051 28.53 10768700700

Table B.1: DLBCL Sequence Coverage Statistics

55



Case Genome Cover (fold) WTSS Mapped Bases

SA028 26.04 4752835350
SA029 20.28 5867238050
SA030 19.69 6217164650
SA052 20.97 5907148250
SA065 15.88 6992404750
SA073 20.43 7361049850
SA219 25.38 6399383450
SA220 30.84 6832277300
SA223 35.28 6643575050
SA224 34.49 14510812300
SA225 42.2 10555014600
SA227 26.67 5676236200
SA231 21.42 3111736850
SA233 28.9 5712104050
SA235 32.89 5756271050
SA236 27.47 6232548250
SA237 27.07 6819030700

Table B.2: TNBC Sequence Coverage Statistics
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Figure B.1: Correlation of the number of putative RNA-edits and the RNA-Seq coverage per
case. A positive correlation is found between the two values with Pearson r = 0.47. This
suggests that at least some of the variance in number of RNA-edits per case is due to
difference in sequence coverage.
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Appendix C

Examples of Technical Artifacts
Identified by MutationSeq

Here three examples of common technical artifacts are presented. In all cases, p(Edit)> 0.9 (com-

puted by Auditor) and p(variant)< 0.15 (computed by MutationSeq).
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DNA

RNA

Figure C.1: A false positive RNA-edit caused by low base quality. All of the C’s in this
example have base quality < 10, which is visualized by high translucency. Without the
MutationSeq classifier, this position would rank among the highest confidence putative
RNA-edits.
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DNA

RNA

Figure C.2: A false positive RNA-edit caused by low mapping quality. The reads containing
a G at the position of interest all have mapping quality < 20. The transparent reads are
non-uniquely mapped, suggesting that this region is repetitive and difficult to accurately
map. Without the MutationSeq classifier this position would rank among the highest
confidence putative RNA-edits.
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DNA

RNA

Figure C.3: A false positive RNA-edit caused by incorrect mapping proximal to an exon-exon
junction. The reads containing a G at the position of interest are misaligned due to
the splice site, and give rise to a high confidence RNA-edit classification. Without the
MutationSeq classifier this position would rank among the highest confidence putative
RNA-edits.
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