A Novel Statistical Framework for the Accurate Identification of
RNA -edits with Application to Human Cancers

by
Ryan S. Giuliany
B.Sc, The University of British Columbia, 2010
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in

THE FACULTY OF GRADUATE STUDIES

(Bioinformatics)

The University Of British Columbia

(Vancouver)
July 2012

© Ryan S. Giuliany, 2012



Abstract

RNA-editing is the post-transcriptional, enzymatic modification of RNA molecules resulting in an
altered nucleotide sequence. These modifications play a critical role in mammalian tissues and are
essential for proper function of liver and neuronal development, among other processes. The advent
of high-throughput sequencing (HTS) technologies (e.g. Illumina HiSeq) has renewed interest in
RNA-editing discovery due to unprecedented opportunities for simultaneous interrogation of whole
genome and transcriptome sequences. In the past several months a number of studies have been pub-
lished describing methods and results of RNA-editing discovery in HTS data. These methods have
been ad hoc approaches based on repurposing SNP calling tools designed for genome-based variant
detection. However, the statistical properties of RNA-editing warrant specialized analytical strate-
gies that leverage the non-uniform substitution distributions inherent in RNA-editing processes.

A novel statistical framework, called Auditor, that simultaneously analyzes the genomic and
transcriptomic base-counts and infers the likelihood of an RNA-edit at each position in the tran-
scriptome is reported. This model leverages the inherent correlation present in the RNA and DNA
sequence while encoding the non-uniform substitution distributions induced by RNA-editing, con-
ferring increased sensitivity. Further, a Random-Forest based technical artifact removal tool that
accurately identifies sequencing and alignment errors has been implemented, greatly increasing the
specificity of the method. The combination of these approaches leads to a robust, principled method
that accurately detects RNA-edits in the presence of both biological and technical noise.

It is systematically shown, in both a simulation study and on real matched whole genome and
transcriptome data generated from 11 lymphoma samples, that Auditor significantly outperforms
similar, but simpler statistical frameworks, including a Samtools/bcftools based approach that is
similar to a recently published study. Finally by profiling 11 diffuse large B-cell lymphomas and
16 triple negative breast cancers with Auditor, it is shown that RNA-editing is an active process
in human malignancies. Surprisingly, consistent patterns of nucleotide substitutions and regional
enrichment of RNA-edits in 3 UTRs suggests that RNA-editing processes are invariant between
cell lineages and between tumours of similar histological subtypes and even cancers from distinct

tissues of origin.
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Chapter 1

Introduction

The molecular flow of information in biology is well-established: DNA is transcribed into RNA
which in turn is translated into protein products. However, over the past several decades mechanisms
that violate this so-called central dogma have emerged. The discovery of reverse transcriptase,
allowing DNA sequence to be created from an RNA template, in 1970 (1, 2) was initially met with
scepticism and resistance by the scientific community; however, a massive body of research led to
deep understanding of the mechanisms and fundamental importance of the process. In the 1980’s
reports began to emerge of other enzymes that violated the central dogma, breaking the one-to-
one mapping of RNA sequence from a given DNA template, by post-transcriptionally modifying
the primary RNA sequence (3, 4, 5). Unlike reverse transcription, these processes, known as RNA-
editing, were not the subject of wide-spread, coordinated, research efforts and are still comparatively
understudied.

Despite the lack of comprehensive interest, the studies that were conducted led to understanding
of some mechanisms and to identification of the enzymes responsible for the most common forms
of RNA-editing, as well as some of the consequences of sub- or abnormal activity of these processes
(6, 7). However, this research is far from exhaustive, and many aspects of RNA-editing, including
the potential role in tumour pathogenesis, remain unclear or unknown.

Until recently, attempting to identify RNA-editing transcriptome wide has been impractical due
to the cost and labour involved in sequencing the matched whole-genome and whole-transcriptome
of the same sample. However, with the advent of high-throughput sequencing technologies, such
procedures are now practical for not only single samples, but are also possible on the scale of
thousands of samples. The emergence of this data has led to the rapid development of computational
tools designed to align this data to reference genomes and to accurately analyze this data in order
to infer the nucleotide sequence, and individual nucleotide positions that vary from the reference
genome.

Unsurprisingly, there has been a corresponding attempt to use these variant calling methods
to detect RNA-edits from matched DNA/RNA samples. Unfortunately, these attempts have led in
some cases to questionable results, and it has become clear that RNA-editing analyses are affected

by a substantial false positive burden due to technical artifacts. To date, no principled method has



emerged that effectively considers the known properties of RNA-editing and appropriately identifies
technical artifacts.

This thesis seeks to address two primary goals: to demonstrate a method of RNA-editing de-
tection that substantially improves over previous efforts and to apply this method to a set of human
cancer samples to explore the landscape of RNA-editing in human malignancy. To this effect, this

thesis describes the following contributions:

1. A statistical framework that systematically addresses the shortcomings of previous methods
2. The implementation of this framework in a distributable software package

3. The analysis of twenty-seven human cancer samples, resulting in the first landscape of RNA-

editing in diffuse large B-cell lymphoma and triple negative breast cancer

1.1 Mechanisms of RNA-editing

The RNA-editing process is thought to be wide-spread in eukaryotes (8) and universal among meta-
zoans (9). However, among different kingdoms, RNA-editing can result in different modifications.
For example, in Trypanosoma brucei, RNA-editing most commonly appears as the insertion or
deletion of uracil (10). In mammals however, RNA-editing has only been observed in the form
of base substitutions achieved by enzymatic deamination. Despite the potential benefits of bet-
ter understanding indel-based RNA-editing, this thesis focuses on the specific problem of base-

substitution RNA-editing in the context of mammalian samples.

1.1.1 Adenosine Deaminase Acting on RNA (ADAR)

Members of the ADAR gene family have been shown to enzymatically deaminate adenosine (A) to
inosine (I), and are thought to be responsible for more than 90% of RNA-editing events (11, 12).
ADARs require a double-stranded RNA (dsRNA) substrate and are thought to be highly promiscu-
ous with respect to primary sequence motif (5), though there have been reports of weak preferences
for certain bases surrounding the edit site (13, 14, 15).

The patterns of A—I RNA-editing are known to be stochastic (11), further reflecting the promis-
cuity of the ADAR gene family. In general, ADARSs are thought to bind to any appropriate dsRNA
substrate, complete the deamination and release. However, proximity to the same dsRNA substrate
results in a high probability of re-binding the same dsRNA molecule at a new adenosine and repeat-
ing the deamination process. This can repeat until the dsSRNA molecule is sufficiently deaminated to
break the double stranded structure (as inosine does not pair with uracil), or until either the enzyme
or the RNA is removed from proximity (5). Repeat structures such as Alu elements are common
targets of RNA-editing due to their propensity to form secondary structures and RNA-edits within
Alu repeats account for a substantial proportion of known events (16).

Inosine, despite frequently being referred to as a “wobble-base” (because it is incorporated

into tRNA molecules in the third base of the anti-codon), is interpreted by the majority of cellular
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machinery as a guanine (G). Inosine is also observed as a guanine by nucleotide sequencing tech-
nologies, and for the purpose of consistency with experimental observations A—G will be used in
place of A—I hereafter. The effect of inosine substitution depends heavily on the type of RNA
molecule as well as the functional region containing the RNA-edit, but can range in severity from

irrelevant to an amino-acid replaced by a stop codon.

1.1.2 Apolipoprotein B mRNA Editing Enzyme (APOBEC)

The APOBEC family of RNA-editing enzymes, like the ADAR family, are deaminases. Unlike the
ADAR family however, APOBECs act on single-stranded RNA molecules, deaminating cytosine
to uracil. Also, while ADARSs are promiscuous it is thought that APOBECs are accompanied by
motif recognition subunits, leading to a more specific substrate and more control over specific bases
edited (17).

Overall the APOBECs are considered to be responsible for a relatively small number of RNA-
edits across the human transcriptome, but the effects of APOBEC RNA-edits are sometimes more

easily determined (see Section 1.2.1).

1.1.3 Unknown Mechanisms of RNA-editing

Recent studies have presented evidence of the existence of all twelve possible nucleotide substitu-
tions (18). However, others have found little evidence of non-canonical RNA-editing (12, 19), and
peer-reviewed correspondence has refuted the evidence of non-canonical RNA-editing presented in
some cases (20, 21, 22). Currently there is significant debate regarding the existence of these non-
canonical RNA-edits and further research is needed before a suitably confident conclusion can be
drawn. This need for further research is one of the key sources of demand for principled methods
for RNA-editing detection and analysis, and is one of the main needs that the method described here

seeks to address (see Section 1.5).

1.2 Biological Relevance of RNA-editing

In general, the biological relevance of RNA-editing in mammalian contexts is not well understood.
However, it is known that ADAR mediated RNA-editing frequently affects 3° UTR regions (23),
which could affect mRNA stability (and indirectly mRNA abundance) and/or miRNA or protein
binding sites. While it is difficult to quantify such effects, the degree to which many 3’ UTRs are
subject to RNA-editing leads to speculation as to the impact of these modifications. Additionally,
RNA-edits in exonic regions, while less frequent than 3° UTR events, have been shown to result in
amino-acid substitutions (3, 4, 19, 23, 24), thus increasing proteomic diversity in the cell. Further,
in any region, RNA-editing could potentially disrupt RNA secondary structure, leading to changes

in protein binding affinity, translation efficiency and other consequences.



1.2.1 RNA-editing in Healthy Tissues

RNA-editing is known to occur in diverse cell types and across a wide range of developmental stages
(11). Unlike well studied polymorphisms, mutations and splice variants, little is known about the
effects of specific RNA-editing events in the context of healthy tissues. However, despite the lack
of comprehensive study, the effects of double knockouts of ADAR and APOBEC in mice have been
relatively well studied, granting some insight into the importance of RNA-editing.

ADARI1 and ADAR?2 -/- knockout mouse models have been constructed to explore the effects
of ADAR deficiency. The ADAR1 knockout is embryonic lethal, resulting in severe damage and/or
developmental impairment to embryonic hepatic tissue (25). The mechanisms by which ADAR1
deletion causes this effect are unknown, but ADARI is clearly required for normal cell development
and function. ADAR?2 knockout results in lack of critical RNA-editing of GluR-B receptor, caus-
ing strong neuronal abnormalities resulting in epileptic seizures and short life-span (26). Further
Hoopengardner et. al. (27) and Levanon et. al. (28) have reported RNA-editing sites in genes in
human, mouse and chicken that further support a role of RNA-editing in neuronal development and
function.

In some cases, such as the canonical ApoB C—U at position 6666 (mediated by APOBEC1),
RNA-edits recode the codon to result in a STOP (3). The truncated ApoB protein is only expressed
in the small intestine (the full length protein is expressed in the liver), and possesses specialized
roles in lipid absorption and metabolism (29).

While these examples do not represent all known effects of RNA-editing, they are presented as

illustrative examples to demonstrate the importance of RNA-editing for normal cellular processes.

1.2.2 RNA-editing in Pathological Contexts

In the general context of disease, very little is known about the role of RNA-editing. Given the
severe ramifications of double knockouts of ADAR, it is easy to hypothesize as to how reduced
expression of ADAR could lead to acute cellular dysfunction. Similarly, significant overabundance
of ADAR could lead to transcriptome-wide hyper-editing leading to wide-spread stochastic modifi-
cation of the protein ensemble of the affected tissue.

In the context of cancer, both coding and non-coding changes have been reported in a lobular
breast cancer (24). Additionally, hypo-editing of known ADAR targets in tumour samples has
been found (30). Paz er al. (31) explored the expression and targets of the ADAR gene family in
brain tumours. They reported that expression of ADARBI1 correlated with grade of malignancy in
glioblastoma multiforme and that there were differences in the degree of RNA-editing at coding
positions in CYFIP2, FLNA and BLCAP. The functional role of differential expression of ADAR or
variable RNA-editing of these genes is unknown, but the existence of these patterns demonstrates
that further exploration of RNA-editing in cancer is merited.

Until now, no study has attempted to define the transcriptome-wide landscape of RNA-editing
across multiple tumours of the same type, or between tumours of differing tissue of origin. This the-

sis describes the first whole-trancriptome survey of the RNA-editing landscape in multiple cancers



of the same type as well as the first comparison of RNA-editing between cancer types.

1.3 High Throughput Nucleotide Sequencing Data

Generating full genome and transcriptome data has become a standard practice in the study of heri-
table genomic disorders as well as diseases with acquired genomic aberrations such as cancer. Such
data is a powerful tool due to the wide array of analyses that can be performed on a single data set to
interrogate many aspects of the sample. For example, copy number, chromosomal rearrangements,
polymorphisms and somatic mutations can be inferred from a matched healthy/diseased genome
pair from the same individual, providing a comprehensive view of landscape for that particular
disorder. Similarly, from a whole transcriptome sequencing assay, gene expression, gene fusions,
alternative splicing, polymorphisms and expressed mutations can be discovered.

In the past decade a number of technologies, collectively known as high-throughput sequencing
(HTS), have emerged that allow relatively inexpensive nucleotide sequencing on a gigabase scale in
a matter of days (32). The proliferation of HTS has made practical the sequencing of full genomes
and transcriptomes of thousands of individuals and samples in sequencing centers around the world,
and has led to the launch of substantial sequencing and analysis consortia such as the 1000 Genomes
Project (33) and The Cancer Genome Atlas (34).

However, despite the clear potential of HTS, any analysis relies on sophisticated bioinformatics
tools due to the properties of the data. The primary result of an HTS assay is a collection of hun-
dreds of millions of short (e.g. 50-100 bases, dependent on sequencing chemistry) sequences, each
derived from an unknown position in the sequenced sample. Each of these so-called reads must
be either assembled de-novo or aligned to a known reference sequence (e.g. the reference human
genome). Given the number of reads and the vast search space, alignment remains an open prob-
lem with many aligners available with different benefits and limitations. The alignment of RNA
sequences (RNA-Seq) is particularly challenging as sequences that contain exon-exon junctions are
not present in the reference genome. A common method to address this issue is to align to not only
the reference genome, but also a set of known exon-exon junctions, and post-process the results to
map the junction aligned sequences back onto genomic coordinates (35, 36).

Regardless of aligner choice, the result of the alignment process is the digital allelic count at
each position in the genome, including zero-counts when the position is not present in the sequence
data (Figure 1.1). Typically, whole genome sequencing experiments aim to achieve average depths
(where depth refers to the sum of allelic counts at a given position) of thirty or greater across the
genome. The purpose of this redundant sequence is to allow for the accurate typing of each base
since HT'S sequence data is known to be error prone (see Section 1.4.4). Each sequenced base from
each read is accompanied by a number of features recorded or computed by the sequencing appa-
ratus as well as those computed by the alignment software. These features include the confidence
in the base call, the confidence in the alignment, the direction of the sequence, the number of mis-
matches in the read and more. Several software tools exist for the computation of these features

including the popular Samtools (37) and GATK (38) packages. These features, along with the al-



Reference ATGGCCTATTCAAACTTATCAAGG

ATGGCCTATTCAATCTTATC—-———
-—-GGCCTATTCAAACTTATCAACG
-——-GCCTATTCAATCTTATCAACG
-—-——-CCTATTCAAACTTATCAACG

DNA = - CTATTCAAACTTATCAACG
—————— TATTCAATCTTATCAACG

—————— TATTCAATCTTATCAACG

———————— TTCAAACTTATCAACG

————————————— TCTTATCAACG

Allelic A:100000070008840009008800
C:000045000080009000090080

COUHtS G: 002300000000000000000008
T: 010000708800050990900000
Homozygous Heterozygous Homozygous

Match Variant Variant

Figure 1.1: A constructed example of aligned HTS data. For each position, the allelic count
of the reads overlapping a given position are recorded. These counts can be used to
infer whether each position is a match to the reference genome (red), a heterozygous
variant (blue) or a homozygous variant (yellow). Many methods for variant calling exist
(see Section 1.4) and technical artifacts can interfere with accurate classification of some
positions (see Section 1.4.4).

lelic counts at a given position are used to determine the nature of each position in the genome or

transcriptome sample (e.g. matches the reference, mutation/SNP, indel etc).

1.4 Nucleotide Variant Calling from High Throughput Sequencing
Data

Calling single nucleotide differences between the reference sequence and the sample of interest has
become an area of active research and is a critical step in utilizing HTS data for disease research.
Typically variants are determined on the basis of counts of the number of bases at a given position

that match the reference and the count of those that do not. Frequently these counts are scaled



or modified by the base and mapping qualities provided by the sequencer and aligner respectively,
granting additional weight to confident bases and penalizing poor quality data.

The methods by which the determination of variant or non-variant are diverse, and with differing
degrees of accuracy and ease of interpretation. The most straightforward method, also typically the
least accurate, is based on sequential thresholding of various features related to the position in the
HTS data. Due to the lack of principled justification for these methods, statistical models have

emerged as the accepted approach for accurate nucleotide typing.

1.4.1 Thresholding Methods

Thresholding methods are appealing due to their simplicity and ease of implementation. While the
features used vary from method to method, a simple example, Algorithm 1, serves well to illustrate

the concept.

Algorithm 1 Example Thresholding Method

1: function THRESHOLD(bases, bq_thresh,mq_thresh,var_thresh)
2 ref _match <0
3 ref _mismatch < 0
4 for base € bases do
5: bq < base_quality(base) > Get base quality
6 mq < map_quality(base) > Get mapping quality
7 if bg < base_qual thresh then
8 goto next base > Failed bq threshold
o: end if
10: if mg < map_qual thresh then
11: goto next base > Failed mq threshold
12: end if
13: if matches_ref(base) == TRUE then
14: ref_match < ref_match+ 1 > Increment match count
15: else
16: ref_mismatch < ref _mismatch+ 1 > Increment mismatch count
17: end if
18: end for
19: var_ratio <— ref _mismatch/(ref _match+ ref_mismatch)
20: if var_ratio > var_thresh then
21: return TRUE > Variant ratio exceeds threshold
22: else
23: return FALSE > Variant ratio fails threshold
24: end if

25: end function

In this case, only base quality and mapping quality are subject to thresholds. Other common
features include total depth and mappability of the region (for various definitions of mappability).
Thresholding methods, at best, are based on empirically determined appropriate threshold values

for the relevant available features, and on selecting positions that meet these criteria. The fundamen-



tal concern with this approach lies in the fact that surpassing a threshold by a wide margin confers
no advantage over passing minimally. This leads to a lack of associated confidence measures (i.e. a
position is either variant or not, there is no uncertainty), and also leads to sensitivity and specificity
issues with positions that pass or fail a threshold by a small margin. Additionally, these methods are
often used with thresholds set to “intuitive values” or similar non-quantitative criteria, leading to
further lack of confidence in the effectiveness of thresholding-based methods. See Goya et al (39)
a more complete description of the deficiencies of thresholding methods.

Despite the known shortcomings of thresholding methods, several studies investigating RNA-
editing from HTS data have implemented thresholding-based systems for RNA-editing detection
(12, 18, 40). However, the study by Li er al has been questioned in published responses and, in
general, these thresholding methods are being considered as naive, early solutions to this problem,

as shown by studies using less ad-hoc methods (19, 41).

1.4.2 Likelihood Models

An early statistical approach to nucleotide typing was to use log-likelihood ratios, testing a variant
model against that of the non-variant, null, model. This approach was utilized by the popular Sam-
tools variant caller (37), prior to the implementation of bcftools (42), and as such has inspired a
number of methods since. Recently such a likelihood model was used in Bahn er al (19) to classify
RNA-edits from paired DNA/RNA data. However, in this method the genotype was taken as perfect
knowledge, and not associated with any confidence measure. This lack of explicit uncertainty in the
null distribution is a primary limitation of likelihood ratio methods for RNA-editing discovery, and

a significant motivation for more sophisticated statistical methods.

1.4.3 Mixture Models

Mixture models, specifically mixtures of Binomial distributions, have gained popularity and achieved
success in the nucleotide typing field. Examples of this approach include SNVMix2 (39), SOAPSnp
(43), the maq SNP caller (44) and JointSNVMix (45).

SNVMix?2 is a mixture of three Binomial distributions, parameterized to model homozygous
reference, heterozygous reference and homozygous non-reference genotypes. The posterior proba-
bility of each genotype is inferred from the model given the base counts, base and mapping qualities.
This approach gives a confidence for each genotype allowing the user to choose cutoffs depending
on the specific tolerances for false positive and false negatives. An SNVMix2 based approach was
attempted as a pilot study prior to the development of the framwork described in Chapter 2. How-
ever, this approach proved to be ill-suited to the detection of RNA-editing and was abandoned in
favor of the creation of a novel method.

JointSNVMix adds the ability to jointly model two related sequences (e.g. a tumour and a
healthy sample from the same individual). This expands the state space to nine joint genotypes,
and the model borrows statistical strength across samples to increase the specificity of the classifi-

cation. This approach has proved effective in the discovery of somatic mutation in cancer cells (36).



While this model has not been utilized for RNA-editing detection, the joint modelling approach
used by JointSNVMix served as inspiration for the Auditor model described in Chapter 2.

1.4.4 Sequence and Alignment Artifacts

The throughput of HTS technologies is coupled with the cost of high error rates, relative to Sanger
sequencing (46). The extreme density of the nucleotides within the sequencing equipment leads
to errors in interpreting the optical signal of each base during sequencing, and various PCR biases
during library preparation can lead to repeated or underrepresented fragments (47). These artifacts
are largely randomly distributed, but some systematic patterns have been observed, such as a bias
for base-calling errors toward the 3’ end of each read. During alignment, these sequencing errors
can lead to false positioning of the read with respect to the reference, causing wildtype positions to
appear as variant, and leading false positive classifications of these positions by many methods.
Fortunately, many of these artifacts display detectable signatures. A common feature of false
positive variant calls is for all reads containing a variant to be sequenced in a single direction when
the expectation is a mixture of both directions (47). Similarly, a common RNA-Seq alignment arti-
fact arises due to alignment to exon-exon junctions, and by accounting for transcript structure, these
artifacts can be detected. Further, more general confidence scores, such as base and mapping qual-
ity, can be integrated into the detection of these more elaborate signatures. The artifacts described
here represent only a small portion of the known artifacts found in HTS data, but serve to provide
insight into the more general problem of artifact detection. These artifacts can, as described above,
lead to the generation of false signals in the data resulting in the erroneous classification of variants
leading to prohibitive false positive rates if the artifacts are not effectively identified and removed.
However, many methods seeking to exploit these signatures rely on thresholding or other heuris-
tics to identify artifacts. In general, many of the shortcomings of thresholding-based nucleotide
typing methods affect thresholding methods for artifact detection and a more principled approach
is desirable. Discriminative classifiers are emerging as a powerful tool for this purpose (48) and

provide the quantitative rigour that thresholding methods lack.

1.5 Meeting the Need for Principled RNA-Editing Detection

No cohesive principled method has emerged to appropriately address the following known proper-
ties of RNA-editing:

e Base-specific substitution likelihoods
e High-variance in RNA-seq base count evidence (due to stochastic properties)
e RNA dependence on DNA

Additionally, and of equal importance, no published method has yet taken a formal, principled
approach to the detection and removal of sequencing and alignment artifacts that arise in RNA-

editing detection.



By utilizing these properties when modelling RNA-editing, as well as taking a more principled

approach to artifact detection, substantial improvements over existing methods are possible.

1.5.1 Specific Challenges in RNA-Editing Detection

The detection of RNA-edits is subject to an array of challenges that have not arisen in other nu-
cleotide typing problems. First, the base-specific properties of RNA-editing require a shift from
reference/non-reference counts to counts of each base. This requirement leads to a need for strand
correction as a pre-processing step (in order to count the correct base), as well as a larger state space
to accommodate a larger set of possible substitutions. To date, no method has addressed this chal-
lenge. Second, due to the stochastic nature of RNA-editing, RNA-edits may present in RNA-seq
data with allelic ratios that deviate significantly from the expected 50:50 of a heterozygous poly-
morphism. This increase in variance invalidates critical assumptions made by many existing DNA
genotyping methods (e.g. Binomial mixture based methods), and has yet to be accounted for in
published studies. Third, the dependence of RNA on DNA has been largely ignored as a tool for
increasing statistical power when classifying RNA-edits. In cases where a variant allele has been
undersampled, but is still present, in the DNA data, calling a DNA variant on that evidence alone
may not be possible. However, by simultaneously examining the RNA, evidence of the same vari-
ant can be taken into account, and used to appropriately classify the position as a variant and not
an RNA-edit. This approach leads to a theoretical increase in specificity and has not been applied
by published methods. Finally, and possibly the most significant challenge, is the substantial false
positive rate inherent in RNA-edit classification due to sequencing and alignment artifacts. While
accounting for artifacts is standard practice in RNA-editing detection, to date published methods
can all be categorized as thresholding and/or filtering methods. Recent work (48) has demonstrated
the power of discriminative classifiers to address the need for principled artifact detection in sin-
gle nucleotide variation classification, but these approaches have not been utilized in RNA-editing

detection to date.

1.5.2 Proposed Serial Generative and Discriminative Classification of RNA-edits

To address the challenges described in Section 1.5.1, a new computational approach to the de-
tection of RNA-editing sites from an HTS whole genome/whole transcriptome paired dataset is
proposed. This new framework, called Auditor, is tailored specifically to the intrinsic properties
of RNA-editing biology and the systematic artifacts that are expected from comparison of whole
genome sequencing to RNA-seq data. Auditor, is a generative probabilistic model that at once
models the correlation expected between the WGS and RNA based allelic counts due to expressed
SNPs and the non-random substitution distribution over nucleotide-encoded alleles we expect from
RNA-editing enzymatic processes. The allelic counts are modelled using a Polya distribution ac-
counting for base-specific properties rather than the standard Binomial (reference vs non-reference)
allelic counts traditionally used in SNP detection. The substitution distributions are represented

with a transition matrix encoding the expected probability of emitting a particular substitution in
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the transcriptome given the observed alleles in the genome. Finally, to account for systematic arti-
facts, a previously described machine learning approach, called MutationSeq, for somatic mutation
detection (48) tailored to the specifics of the RNA-editing detection problem is used.

By applying this combination of generative and discriminative classifiers, the proposed method
addresses the specific challenges of RNA-editing detection in a principled manner, and represents
a substantial advance over previous methods. In order to determine the benefits of each individual
advance, the proposed method is compared to several simpler methods of similar design, as well as
a modified version of a recently published Samtools/bcftools based detection method. The methods
are compared using a combination of simulated data, Illumina HTS data and SOLiD HTS data to
provide comprehensive analysis of each feature.

Section 2.1 describes the specification of the Auditor generative model, the variants used to
evaluate the advances of Auditor and the simulation of relevant data sets. Section 2.3 demonstrates
that Auditor outperforms simpler variants on simulated data. Chapter 3 reports the application
of Auditor, and MutationSeq, to eleven diffuse large B-cell lymphoma and sixteen triple negative
breast cancer samples. Section 3.2 shows that Auditor achieves superior sensitivity and specificity
on HTS data than simpler variants and a Samtools approach modified from Denecek ef al (41) and
Section 3.3. In Section 3.4 the first landscape of RNA-editing in human cancers is presented and
shows RNA-editing to be remarkably stable despite malignancy. Finally Chapter 4 reflects on the
advances and limitations of the Auditor model and the results of the first large scale RNA-editing
study in human cancers. Also in Chapter 4, possible avenues of future research are briefly explored

to put this thesis in context with potential advances to come.
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Chapter 2

The Auditor Model

Statistical approaches for RNA-editing afford many desirable properties. Perhaps of greatest benefit
is that statistical methods allow for the assignment of principled confidence scores to each classi-
fication. This confidence score is a powerful tool when designing validation experiments as well
as when performing functional analyses as it grants an explicit ranking to the classifications. Fur-
ther, Bayesian methods allow the principled encoding of prior belief, allowing users to encourage
expected/known patterns without preventing novel discovery. In the case of generative models, the
parameters can be trained from unlabelled data allowing novel discovery in the absence of ground-
truth. In a field as poorly understood as RNA-editing these properties are critical. Results will
require secondary validation and priors encouraging common substitutions (e.g. A—G) discourage
false positive calls, increasing confidence in computational predictions.

This chapter describes a statistical framework, called Auditor, that provides these benefits with

sound mathematical foundations.

2.1 Joint Polya Mixture Modelling with a Substitution Specific
Transition Matrix

2.1.1 Description of the Auditor Model

The Auditor model is shown as a probabilistic graphical model in Figure 2.1, with parameters as
described in Table 2.1. The goal of the Auditor model is to identify positions for which the majority
of probability mass (computed as described below) indicates the presence of an RNA-edit. The input
to Auditor is two 4 XN matrices (where N is the number of positions), the first matrix containing the
base counts of A, C, T, and G at each position in the genome and the second matrix containing the
base counts for the transcriptome. The model outputs p(Edit) for each position where p(Edit) > 0.5
(p(Edit) is defined below).

It is assumed that both the genotype, G;, and transcriptotype (mRNA genotype), 7;, consist of
a single paternal and single maternal allele, each drawn from {A,C,G,T}. The cross-product of

alleles then gives 16 possible types for each position in the genome and transcriptome. Palindromic
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A, |62 ~ Dirichlet(4, | d,)
G; | & ~ Multinomial(G; | 1,§)
T, | A, G =g ~ Multinomial(T; | 1,A,)
v | 7q,d¥,Gi =g ~ Polya(b§ | dS,m,)
vl | mp,df, Ty =t ~ Polya(b] | df,m;)

Figure 2.1: Auditor graphical model. Shaded boxes are fixed parameters, shaded circles are
given data and open circles are unknown values modelled as random variables. Directed
arrows indicate conditional dependencies. Boxes surrounding a group of variables repre-
sents an independent set of random variables for each element in the set denoted by the
plate (e.g. i €I). A is a transition matrix encoding the probability of transitioning from a
given genotype to a given transcriptotype. The rows are Multinomially distributed with
Dirichlet prior 0,. G; and T; are 1-of-11 Multinomial distributions over the possible geno-
types and transcriptotypes, respectively. & is the prior over the possible genotypes g € G.
b¢, bl, dF, and dT; are the base counts and total depth of the genome and transcriptome
at position i. T, and 7, are the mixture parameters for the mixture of components g and ¢
of the Polya mixture over G and T'.
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duplicates are disambiguated (e.g. AG, GA) reducing to a state space of size 10. Further, a state
denoted ZZ, representing an unknown type, is added to both the genotype and transcriptotype to
allow the model to avoid making a canonical type call in the presence of multi-allelic (>2) data.
This results in an 11-state space: G;,T; € {AA,AC,AG,AT,CA,CG,CT,GG,GT,TT,ZZ} for each
position i € (1,...,N) in the input data. A constructed example of input and resultant genotype-
transcriptotype outputs is shown in (Figure 2.2).

Polya distributions, also known as Dirichlet-Multinomials, are used to model the state-dependent
base counts at each position in the genome, 7, and transcriptome, 7. The parameterizations
demonstrated below are set such that &g = 77, but these could be independently tuned if necessary.
Additional variance of the Polya distribution leads to significant advantages over the, arguably, more
intuitive Multinomial model as the overdispersion properties of the Polya distributions more closely
model the high variance observed in RNA-Seq data (Figure 2.3). It is the nature of a Multinomial
mixture to move the vast majority of probability mass between classes (e.g. AA—AG) with the
addition or subtraction of only a single base count, resulting in little uncertainty in the Multino-
mial mixture and unduly peaked distributions, whereas Polya mixtures shift probability mass more
gradually (Figure 2.4).

To capture the known process of RNA-editing (DNA is transcribed to RNA, which is subse-
quently enzymatically modified), the transcriptotype is explicitly modelled as a function of the
genotype. To capture the base-modification specific properties of RNA-editing (e.g. A—G repre-
sents the vast majority of known RNA-edits), an 11x 11 transition matrix, A(g,), is used, with each
entry containing p(7; = t|G; = g). Thus, information from the genome is leveraged when calling
the transcriptotype, and visa versa, and the non-uniform substitutions inherent in RNA-editing due
to enzymatic processes can be encoded. Furthermore A(g,¢) takes advantage of the inherent corre-
lation present in the genotype and transcriptotype by simultaneous inference and renders the model
less susceptible to calling expressed germline polymorphisms as RNA-edits. This is not possible
using methods that call variation in the genome and transcriptome independently as has been pre-
viously shown for somatic mutation calling from tumour-normal DNA datasets in cancer (45). The
parameters of A(g,.) are assumed to be Multinomial such that }'7_; A(g,7) = 1 and can, in theory,
be estimated with maximum a posteriori estimation with conjugate Dirichlet priors (2.1). For the
purposes of this study, literature-informed estimates were used due to the intractability of parameter
estimation (this is further explained in Section 2.1.2).

To determine the probability of an RNA-edit at a given position, first the joint genotype and

transcriptotype is inferred according to the conditional probabilities of the model:

p(Gi=g, Ty =1|b%,d° bl . dF . 0) o pbY|ns,d’,Gi=g)

i Y U U
x pGi=g|E)p(Ti=1]Ay)
X p(sz|7tTadtTaT;:t)
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Reference ATGGCCTATTCAAACTTATCAAGG

ATGGCCTATTCAAACTTATC-———
——GGCCTATTCAAACTTATCAACG
———GCCTATTCAATCTTATCAACG
————CCTATTCAAACTTATCAACG
DNA = - CTATTCAAACTTATCAACG
—————— TATTCAAACTTATCAACG
—————— TATTCAAACTTATCAACG
———————— TTCAAACTTATCAACG
————————————— TCTTATCAACG
009008800

bG

HoQ
oo
oo
olole)
(olols)
(ela\e)
olole)
olole)
(elelod)
Q0O

ATGGCCTATTCAAACTTATC--—-
-TGGCCTATTCAAACTTATCAACG
---GCCTGTTCAAACTTATCAACG
---—-CCTGTTCAAACTTATCAACG
RNA -——-CCTGTTCAATCTTATCAACG
—————— TGTTCAATCTTATCAACG
————————— TCAATCTTATCAACG

bT

HOQOQ

AA->AG AT->AT CC->CC

SNP with

o Homozygous
RNA-edit IqNDNA SNP
signal

Figure 2.2: A constructed example of three joint geno-transcriptotypes. In red, an example
RNA-edit is shown, where the variant is present only in the RNA. In blue, a SNP that
would likely require joint modelling to identify as the DNA evidence alone may not
be enough to legitimately classify a SNP; however with the inclusion of the RNA data
the SNP can be identified. In yellow, a homozygous SNP is shown; without the DNA
data (i.e with reference genome alone) this would be indistinguishable from a genuine
RNA-edit.
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Figure 2.3: (A.) The distribution of RNA-Seq variant proportion of known SNPs present in
the DNA of 27 cancer samples with depth of at least 20 in the RNA-Seq. The distribu-
tion is trimodal with peaks at 0, 0.5 and 1.0. (B.) The distribution of RNA-Seq variant
proportion of known RNA-edits detected in 27 cancer samples with depth of at least 20.
The distribution is highly variant with probability mass broadly distributed.

where 0 = {m,,m,&,A, } and

p(b7 | mg.df .Gi=g) = Polya(b |df ) 2.1)
p(! | mr,dl \Ti=1) = Polya(b] |d],m) (22)
where
Polya(x | N, o) = — L% ﬁ Ll + a" 23)
I ) TN+ X o) iy T
where X = (x1,...,xx) discreet counts for each of K classes, N = Y ; x, I is the gamma function
and o = (0, ..., 0x) is the parameterization of the Polya distribution.

After computing and normalizing the posterior joint probabilities are marginalized over the set
of RNA-edit states, definedas R={g € G,t €T : g #tNgi #ZZNt; # ZZ}:

p(Edit) =) p(G Ty =1|b¢,d° bl d",0) (2.4)
gtER

2.1.2 Parameter Learning

The equations and distributions necessary for inference are shown below the graphical model in

Figure 2.1.
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Figure 2.4: The Polya (red solid lines) distribution allows for state transitions over a greater
range of variation in counts, compared to the Multinomial (blue dashed lines). The three
rows of figures are demonstrations of this property at depths of 10, 30, and 100 respec-
tively, top to bottom. In this case, the reference is declared to be A, and the variant to be
T. Across the x-axis of each plot, the number of T’s (out of the total depth of 10, 30 or
100) is increased. From left to right, each plot shows the likelihood of the counts having
been drawn from the AA, AT, or TT distributions of the Polya or Multinomial mixture.
It is clear that in all cases, the Multinomial mixture shifts the majority of the probability
mass between classes with the addition, or subtraction, of a single base, where as the
Polya mixture shift more gradually.
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The transition matrix can be learned via expectation maximization (EM) using the standard

Dirichlet-Multinomial update formula. Specifically:

new _ ZiEN [P(EZI)P(GiZg)+5g,—I]
8 Yiew [Yier [p(Ti=1)p(Gi=x)+ 54 — 1]

EM is allowed to to iterate until the complete data log-likelihood (CLL) converges. The CLL

2.5

for the Audtior model is expressed as:

CLL = g’v Lgé [I; [log(p(Gi =g | ng,dP,b8,&))
+ log(p(Ti=t | mr,d! Ay, Gi Zg)))]”

+ log(p(A]9))

In this framework EM proceeds with monotonically increasing CLL, and converges on a locally
optimal value for A. An example of the values of the transition matrix through iterations of EM on
simulated data is shown in Figure 2.5.

Despite the success of training on simulated data, EM has proved impractically slow to run on
entire HTS data sets. Randomly subsampling from the data to form a training set is an appealing
approach, but it is unlikely that a random subsample small enough to make EM practical would
contain a representative sample of RNA-edits. In the future, when more is known regarding RNA-
editing and commonly edited positions, targeted subsampling may be a feasible approach to training

Auditor in a sample-specific manner.

2.1.3 Parameter Settings

In place of fitting A to each sample, the substitution proportions from Bahn et al (19) is used to
generate the transition matrix. It is demonstrated below that processing putative RNA-edits with
MutationSeq effectively overpowers the transition matrix, and the results support that these settings
are suitable until per-sample training is practical.

The parameters for the Polya mixtures, 7 and 7y were set by empirically examining the na-
ture of various parameterizations. Figure 2.6 shows the behaviour of the three Polya mixtures to
illustrate the rationale behind the selection of the parameters described in Table 2.1. This param-
eterization was selected because it demonstrated appropriate class-switching from homozygous to
heterozygous types (i.e. switching from AA to AT was gradual, but complete). Other parameters
led to mixtures that would shift too abruptly between classes, or to mixtures that never shifted com-
pletely to the heterozygous type. See Section 4.5 for a discussion on training the Polya mixture
parameters from labelled data and why this approach was not used in this thesis and Section 2.2 for
experiments demonstrating the robustness of the Polya distribution in general and the parameters

specified in Table 2.1 specifically.
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Figure 2.5: Example of progression of the Auditor transition matrix during EM iterations.
ITteration 0 (A) shows the starting parameters which were generated uniformly at random.
The 10,000 data points used for this simulation were drawn from the Auditor model
parameterized as in Table 2.1. The transition matrix parameters are shown as a heat map
in (F). Iterations 5 and 6 (C,D) represent intermediate iterations, and iteration 8 (E) is
the final values after EM. EM converges quickly, in 8 iterations, and results in values
representative of the true sampling distribution.
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Figure 2.6: Demonstration of three different parameterizations of a four-count Polya distribu-
tion. The reference is declared to be A, and the variant to be T. Across the x-axis of
each plot, the number of T’s (out of the total depth of 30) is increased. The top row of
plots shows the behaviour of the Polya mixture as parameterized in the Auditor model
(Table 2.1). Transition to heterozygous types begins with the addition of of only one
non-reference base, and the AT type retains substantial probability mass until the num-
ber of T’s is strongly dominant. The second row demonstrates a Polya mixture with more
pronounced peaks, which effectively delays the transition from AA to AT and AT to TT.
The third row shows a Polya mixture with significantly greater uncertainty, resulting in
the AT class never being fully dominant. Given the broadly distributed variant ratios
observed in RNA-editing (see Figure 2.3) the behaviour of the top Polya mixture was
deemed most suitable.
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2.1.4 Variants of the Auditor Model

In addition to the fully featured Auditor model, two simpler variants were implemented in order to
systematically evaluate the properties of the proposed advances.

The first variant independently computes the posterior probability of each genotype and tran-
scriptotype and then generates the final transition posterior by taking the cross-product of the inde-
pendent results. This model is referred to as IndepPolya, and is shown, with relevant conditional
probability distributions in Figure 2.7. IndepPolya allows for analysis without the benefit of the
transition matrix and transcriptomic dependence on the genome, and is used for evaluation of these
properties.

In the second variant,the Polya distributions in the & and 77 mixtures are replaced with Multi-
nomial distributions, 1 and 17, keeping the transition matrix intact and computation of the transi-
tion p(T; = t|G; = g) is equivalent to Auditor. This model is referred to as JointMulti and is shown,
with relevant conditional probability distributions in Figure 2.8. This model was implemented in
order to demonstrate the benefits of the Polya distribution over the Multinomial distribution in iso-
lation.

These models are demonstrated on simulated data in Section 2.3.

2.1.5 Simulated Data Generation

We simulated two-hundred datasets of ten-thousand positions, divided into two groups of one-
hundred, for use in comparing the performance of Auditor and related variants. The first group
was simulated from Auditor itself (hereafter AuditorSet), and the second was simulated from the
JointMulti variant (hereafter MultiSet). In both cases the transition matrix used to simulate the data
was set so that self-transitions (i.e. no RNA-edit) were twenty times more likely than any other tran-
sition. All other transitions were equally likely. For the Polya mixture models, base-counts were set
as shown in Table 2.1. These counts were normalized to generate the parameters for JointMulti.

Depth was simulated using a hyper-variable Poisson distribution:

D ~ Poisson(A) +Uniform(—0.5 x 1,0.5x 1) (2.6)

where A = 40 for the genomic counts and A = 50 for the transcriptomic counts.
Sampling from both Auditor and JointMulti was intended to reduce bias that would be inherent

to one approach over the other.

2.1.6 Implementation.

Auditor is implemented in Python, and has dependencies for Numpy, SciPy, bam-counter (and
consequently pysam), and Matplotlib. Auditor provides three primary commands: syncnt, for con-
verting matched DNA-RNA BAM files into the synchronized count format; classify, to compute
the probability of an RNA-edit for each position in a syncnt file; and train, to train the transition

matrix from a syncnt file using EM (see Section 2.1.2). MutationSeq is implemented in Matlab with
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Figure 2.7: Graphical model for the IndepPolya variant of Auditor and the relevant conditional
probability distributions. IndepPolya breaks the dependence of the transcriptome on the
genome, but all other aspects of the model are help invariant compared to Auditor.
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Figure 2.8: Graphical model for the JointMulti variant of Auditor, and the relevant conditional
probability distributions. JointMulti is identical to Auditor for the purposes of inference,
except that the mixture components, 1) and Ny, are Multinomial distributions rather than

Polya distributions.
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Parameter Description Value

AA AC AG AT CcCc CG CT GG GT TT 77

AA 5000 10.0 1000 10.0 10.0 10.0 10.0 30.0 10.0 10.0 20.0

AC 700 500.0 10.0 10.0 70.0 10.0 10.0 10.0 10.0 10.0 20.0

AG  70.0 10.0  500.0  10.0 10.0 10.0 10.0  70.0 10.0 10.0 20.0

AT 70.0 10.0 10.0  500.0  10.0 10.0 10.0 10.0 10.0 10.0 20.0

5 Pseudo counts in CcC 100 10.0 10.0 10.0  500.0 10.0 70.0 10.0 10.0 20.0 20.0
Dirichlet prior on A CG 100 10.0 10.0 10.0 70.0 5000 10.0  70.0 10.0 10.0 20.0
CT 100 10.0 10.0 10.0 70.0 10.0 5000 10.0 10.0 70.0 20.0

GG  10.0 10.0 10.0 10.0 10.0 10.0 10.0 5000 10.0 10.0 20.0

GT 100 10.0 10.0 10.0 10.0 10.0 10.0  70.0 500.0 70.0 20.0

TT  10.0 10.0 10.0 10.0 10.0 10.0 1000  10.0 10.0 5000  20.0

77 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0  500.0

AA AC AG AT CcC CG CT GG GT TT y#4
AA  0.5208 0.0417 0.3542 0.0130 0.0052 0.0000 0.0000 0.0443  0.0000 0.0000 0.0208
AC 0.0220 0.8811 0.0000 0.0044 0.0220 0.0352  0.0000 0.0000 0.0000 0.0000 0.0352
AG 0.0228 0.0000 0.9132  0.0000 0.0000 0.0046 0.0000 0.0228 0.0000 0.0000 0.0365

Multinomial AT 0.0218 0.0044 0.0044 0.8734 0.0000 0.0000 0.0044 0.0000 0.0349 0.0218 0.0349
A substitution- CC 0.0000 0.0247 0.0000 0.0000 0.8230 0.0247 0.0864 0.0000 0.0000 0.0082 0.0329
specific transition CG 0.0000 0.0045 0.0000 0.0000 0.0227 0.9091 0.0000 0.0227 0.0045 0.0000 0.0364
matrix CT 0.0000 0.0000 0.0000 0.0000 0.0228 0.0046 0.9132 0.0000 0.0000 0.0228  0.0365
GG 0.0083 0.0000 0.0792 0.0000 0.0000 0.0167 0.0000 0.8333 0.0292 0.0000 0.0333
GT 0.0000 0.0000 0.0000 0.0045 0.0000 0.0045 0.0000 0.0227 0.9091 0.0227 0.0364
TT 0.0000 0.0000 0.0000 0.0268 0.0077 0.0000 0.0881 0.0077 0.0728 0.7663  0.0307
77  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
¢ x:;s;‘;:‘;‘ér AA,CC,GG, TT  AC, AG, AT, CG, CT,GT ~ ZZ
P 021 0.021 0.0021
genotype states
G’ Genoj[ype j‘n Inferred
position i
. T. CT1 P
Ti ransanpAtotyApe at Inferred
position i
Count of each base
; A T) at
bf’ ( ’C’g’ .)Aa Observed
position i in
genome
Count of each base
b,g (A’(.:’.G ’T.) 'at Observed
position i in
transcriptome
Depth of coverage
dl.G at position 7 in Observed
genome
Depth of coverage
d,-T at position i in Observed
transcriptome
AA AC AG AT CC CG CTr GG GT TT 27z
Count parameters 4 12 12 12 005 0.05 005 0.05 0.05 0.05
G for genotype Polya 0.05 12 0.05 0.05 4 12 12005 0.05 0.05

0.05 0.05 12 005 0.05 12 0.05 4 12 0.05
0.05 0.05 0.05 12005 005 12 005 12 4

mixture

HQ0»
INIFNNES

Count parameters
nr for transcriptotype Same as 7g
Polya mixture

Table 2.1: Description of the parameters and random variables of the Auditor model. Fixed
values for parameters are given, and inferred or observed values are noted.
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convenience wrappers in Perl.

Additionally a Perl pipeline that takes as input paired DNA/RNA single chromosome BAM
files and executes conversion to counts, classification and MutationSeq post-processing, has been
implemented. The output of this pipeline contains the probability of each substitution, the total
p(Edit), the MutationSeq confidence score and the product of p(Edit) and the MutationSeq score
for all positions where p(Edit) > 0.5.

The entire suite will be publicly available at http://compbio.bccrc.ca/software/

in the near future.

2.2 Assessment of the Robustness of Audtior with Respect to Polya
Parameters

The Polya distribution, as an infinite mixture of Multinomials, is expected to be robust with respect
to parameter settings. However, the robustness of Auditor specifically was examined to ensure that
the model was not overly sensitive to the Polya mixture parameterization.

To determine the sensitivity of Auditor to various parameterizations of the Polya mixtures two
experiments were performed. In the first experiment, ten sets of one-thousand positions were sim-
ulated from a single parameterization of Auditor as described in Table 2.1. These positions were
then classified using an array of different Polya parameters as follows: the four count parameters
of each Polya were reduced to strength and skew, such that for a given class (e.g. AG) nucleotides
present in that class (in this case A and G) were assigned the skew value, and all other elements
were assigned 1. The set of parameters were then scaled by the strength value. For example, if
skew = 50 and strength = 0.1 the AG vector would be {5,0.1,5,0.1}. Skew values ranged between
2 and 200 in steps of 5, while the strength values ranged from 0.01 to 676.4 in 40 steps such that
strength=(0.01) x (1.33)(¢P), This range of strengths was used to adequately explore extreme val-
ues in the parameter space. For each (strength, skew) tuple, the median AUC over the ten datasets
was recorded and is shown in Figure 2.9. The results indicate that any combination of strength and
skew is effective at classifying the data generated by the Auditor model, demonstrating that many
differing parameterizations of the Polya mixture would likely be effective in practice.

Further, using the RNA base counts from the same positions that were used to generate the
RNA-editing varia