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Abstract 

Energy localization in nearly periodic microsystems can be leveraged to create a 

new sensing paradigm that is orders of magnitude more sensitive than current 

resonant-frequency based systems. In this thesis, the theory which supports this 

claim is independently developed from a mathematical description of a two degree-

of-freedom resonant system. 

A novel proof-of-concept microelectromechanical system (MEMS) was also 

designed and fabricated to support the theoretical claims. The system employed a 

unique resonator design with two different approaches to inducing asymmetry in the 

system which in turn leads to the localization of energy in one of the resonators. The 

system proved the resonant frequency dependence on disorder in the system and 

also showed that the eigenvector sensitivity to disorder was at least an order of 

magnitude greater than the frequency sensitivity. However, the eigenvector 

sensitivity could not be matched with theory. This was likely due to the time-varying 

nature of the coupling spring stiffness (up to a 300% change in magnitude). The 

coupling spring stiffness was time-varying due to the inverse cubic relationship to 

coupling gap distance. The gap distance changes with time since it is practically 

impossible to excite only the common mode, leading to a superposition with the anti-

phase mode. This was partially due to the input signal displaying non harmonic 

tendencies. At the same time, energy localization in the system leads to different 

amplitudes of vibration for each resonator which will also lead to gap distance 

modulation. 
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A three degree-of-freedom system was also examined theoretically with different 

approaches to stiffness perturbation and the resultant sensitivity expressions which 

can be leveraged for improved sensors were developed. The analysis shows that 

three degree-of-freedom systems can yield a 250% improvement over two degree-

of-freedom systems which themselves are practically able to provide three to four 

order of magnitude improvements in sensitivity over resonant-frequency based 

sensors of the same size. 

The tools and insight needed to design for higher degree-of-freedom system are 

also provided in the form of the eigen-derivatives approach to calculating eigenvalue 

and eigenvector sensitivity to disorder in a symmetric system. 
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Chapter  1: Introduction 

1.1 Overview 

The basis of this work is found in a fundamental understanding of the dynamic 

response of coupled resonant systems. The simplest resonant systems are 

analogous to a mass on a spring exhibiting simple harmonic motion. This system 

has a single degree of freedom and, as a result, has a single natural frequency with 

which it will oscillate. In more complex systems with multiple degrees of freedom 

(MDOF), there are multiple natural resonant frequencies, each associated with a 

resonant mode. The simplest example of a coupled system is perhaps two 

pendulums whose motions are linked by a spring. This system has two degrees of 

freedom (2DOF) and thus two resonant frequencies with two associated resonant 

modes. The first mode is the in-phase mode in which the direction of motion of each 

pendulum is the same. In this mode the coupling spring does zero work and 

therefore the frequency of motion is the same as that for a single pendulum 

(providing the coupled pendulums are identical). The second mode is the anti-phase 

mode. In this mode the directions of motion of each pendulum are always opposite 

of each other. In the case of a mechanical spring, the resonant frequency associated 

with this mode will be higher. For an electrostatic coupling, the associated resonant 

frequency for the anti-phase mode will be lower. This will be discussed further in 

Sections 1.2.3 and 2.2.  

In the case that the constituent resonators of the system are not identical, energy 

injected into the system will be confined in a part of the system. This is called “mode 

localization” and is the basic idea on which the sensing paradigm presented here is 
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based. Physically, mode localization appears as a spatial concentration of energy in 

a nearly-periodic system and the term is used synonymously with energy 

localization. For the pendulum example, the amplitudes of vibration can be used as 

the measure of energy.  A portion of this work was presented in February 2012 in 

the UBC Three Minute Thesis Competition in which it received first place in the 

Department of Electrical and Computer Engineering. 

1.2 Historical Background 

The prior research that leads to this work can be split into three time periods. The 

first is concerned with the recognition of a mode localization phenomenon in solid 

state physics and subsequent application to acoustics problems. The second is the 

combination of mode localization with the curve veering aberration (to be explained 

later). The third is the current application of this theory to a sensing paradigm in 

microelectromechanical systems (MEMS). 

1.2.1 Mode Localization in Solid State Physics and Acoustics 

The idea of mode localization was first identified in the context of solid-state physics. 

In a paper from 1958, Anderson describes a physical phenomenon in which wave 

functions of spins or electrons are localized in space within a three dimensional 

lattice [1]. Here the localization occurs due to impurities in the lattice structure which 

prevent transport across some coupling between spin sites [1]. One of the most 

important distinctions that are made in Anderson’s work is that the model of the 

lattice in which this localization occurs cannot be in contact with some external 

energy source (a thermal reservoir in this case) which would force transport and thus 

overpower the phenomenon [1]. 
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Over the following decade, numerous papers built on Anderson’s work but the focus 

was on localization of electrons or magnetizing spins (called Anderson localization in 

the context of condensed matter physics). Some of the most notable advances were 

by N.F. Mott in papers from 1967 [2], 1968 [3], and an empirical demonstration of 

Anderson Localization in 1969 [4]. In fact, Anderson and Mott shared a Nobel Prize 

with van Vleck in 1977 for “their fundamental theoretical investigations of the 

electronic structure of magnetic and disordered systems" [5]. Beginning around the 

early 1970’s, there appeared papers which referenced Anderson’s earlier work and 

investigated localization of physical vibrations in nearly periodic structures [6]. In the 

1980’s several scientists combined the work of Rayleigh and Anderson to focus on 

mode localization in acoustics.  

One of these early papers, published in 1981 and authored by C.H. Hodges, focused 

on using energy confinement in a structure in order to limit the local influence of a 

vibration source which was physically located somewhere else in the system [7]. 

This paper was the first to examine the phenomenon of mode localization in the 

context of acoustics and the author spends a great deal of effort in drawing parallels 

between the work of Anderson and Mott in solid state physics and the wider realm 

which includes structural dynamics. 

Several other papers appeared in the 1980’s including an experimental paper by 

Hodges and Woodhouse which followed up the theory presented in the 1981 paper 

[8]. This paper exhibits mode localization in a system of masses (small beads) along 

a string in which the mass spacing is slightly irregular and compares the measured 

results to the theoretical energy confinement based on a coupled pendulum model 
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[8]. Also in this decade, Pierre et al. built off the work of Hodges in order to describe 

a perturbation approach to predicting the behaviour of localized modes [9].  

At this point, mode localization was a well known phenomenon, even if the 

mathematics of higher order systems were not completely understood. However, 

there remained one more step before mode localization could be extended to use in 

sensing rather than confined for use in understanding the dynamic behaviour of 

structures. 

1.2.2 Eigenvalue Loci Veering 

An extremely important advancement to the theory of mode localization came in 

1988 in another paper by Pierre. In this paper, Pierre was the first to associate 

eigenvalue loci veering with mode localization [10]. In structural dynamics it is not 

uncommon to plot the loci of the eigenvalues of a system against a chosen system 

parameter. This type of plot can exhibit a strange behaviour first explored by Leissa 

in a 1974 paper in the context of plate vibrations [11]. When the loci of two 

eigenvalues approach each other, they do not intersect. Rather, they veer abruptly 

and continue on a path that would have been taken by the other eigenvalue if they 

had intersected [11]. In addition, the mode shapes are swapped in the transition 

zone [10]. The abruptness of the veering is related to the degree of coupling 

between the modes in the system, with a weaker coupling leading to a shorter 

transition zone and thus a more abrupt veering [10].  

This behaviour is shown in Figure 1.1. The three sets of curves (red, blue, and 

green) correspond to different magnitudes of coupling between two degrees of 
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freedom in a system. The red curves1 correspond to the highest coupling magnitude 

(i.e. stiffer coupling spring) and therefore the widest transition zone. The green 

curves correspond to the lowest magnitude of coupling and exhibit an abrupt 

transition zone. In other words, a smaller perturbation in the green system will cause 

a greater degree of energy localization when compared to the red system. The 

system parameter is “disorder”. It is a measure which compares the ratio of a 

change to the stiffness of one resonator to its natural stiffness or equivalently, the 

ratio of the change in mass of one resonator to its natural mass. Therefore ‘0’ 

disorder corresponds to a system of two identical, coupled oscillators. 

 

Figure 1.1: Loci of eigenvalues for a two degree of freedom system with varying magnitudes 

of coupling plotted against a measure of asymmetry in the stiffnesses of the resonators 

                                            

1
 There are two curves of each colour. Each curve is the locus of one of the eigenvalues. Since there 

are two degrees of freedom, there are two eigenvalues and subsequently two loci. 
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In Figure 1.2, it is shown how the eigenvectors change with the disorder parameter 

by plotting three different eigenvectors per locus. In this simple illustration, the 

magnitude in the x-axis of the eigenvector plots represents the amplitude of vibration 

of the first oscillator and the magnitude in the y-axis represents the amplitude of the 

second oscillator. These eigenvector plots demonstrate the swapping of 

eigenvectors at either end of the transition zone. 

 

Figure 1.2: Visualization of eigenvector swapping in the transition zone 

In Pierre’s work and above, the eigenvalue loci are plotted versus a parameter 

representing the degree of disorder in the system (as in Figure 1.1 and Figure 1.2) 

[10]. One way to think about this disorder parameter is to consider two identical 

oscillators. A small perturbation can be introduced to the system in the form of a 

small additional mass on one of the two objects. In this case, the disorder would be 

the magnitude of the additional mass divided by the mass of either oscillator (since 

the masses are equal before the perturbation). Equivalently, the disorder can be 

induced as a stiffness perturbation while the mass of each oscillator remains static. It 
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is essential that when considering a stiffness perturbation it is not confused with 

adjusting the coupling stiffness. Instead, the stiffness perturbation is a small change 

in the stiffness of the spring which links an oscillator to a reference point. This 

distinction will be made clear in Section 2.1 when 2DOF systems are examined in 

greater detail. 

Pierre describes both eigenvalue loci veering and mode localization as “catastrophic 

type phenomena because  small  changes  in the  system  parameters  result  in 

large  variations  in the  eigenvalues and  the  mode  shapes,  respectively.” [10]  

As an addendum to the veering theory, MacKay and Saffman used general results 

for Hamiltonian systems to show a criterion for veering between two eigenvalues, 

termed “avoided collision” in their work [12]. According to this work, when two 

eigenvalues exhibit codirectional coupling (their slopes have the same sign) the 

eigenvalue loci will avoid crossing by veering [12]. This work is elaborated on by 

Mace in 2012 who also notes that the phenomenon is present not only in undamped 

systems, but also in systems in which the damping is similar for each oscillator [13]. 

The veering phenomenon in systems with proportional damping is examined in this 

thesis in Chapter 2. 

Finally, a small correction to Pierre’s view of veering was made by Stephen in 2009 

[14]. In Pierre’s work, veering is only considered possible if the coupling between 

oscillators is “weak”. However, Stephen shows that veering is present for any finite 

(and non-zero) coupling stiffness [14]. However, the width of the transition zone 

grows with increasing coupling stiffness, and therefore the severity of veering is 

reduced. Later in this thesis it will be shown that in order to improve the sensitivity of 
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sensors over current resonant frequency based sensors, a weak coupling is still 

required. The definition of “weak coupling” is also derived. 

1.2.3 Current State of Research 

In the last few years there has been a focus on applying the concept of eigenvalue 

veering in systems that exhibit mode localization for sensing purposes. The basic 

proposal begins with the assumption that the motions of each resonator in an 

identical MDOF system can be observed. When some disorder (a perturbation) 

breaks the symmetry of the system, the motions of each individual resonator will 

change abruptly, even if the perturbation is small. This change in motion leads to a 

sensing paradigm since each unique change can be mapped to a physical quantity 

through an understanding of how that physical quantity can perturb the coupled 

system. 

The first example of this was in 2006 by Spletzer et.al. [15]. In this paper, two 

identical microcantilevers were fabricated with a physical coupling in the form of a 

“coupling overhang” with the intention of sensing changes in mass. When a small 

mass was added to one of the resonators, its amplitude of vibration was severely 

diminished while the amplitude of vibration of the other cantilever increased, 

effectively localizing the system energy in the unperturbed cantilever. The amount by 

which the system changed demonstrated a two order of magnitude improvement 

over frequency shift based resonators of similar size as well as benefits from intrinsic 

common mode error rejection [15]. One drawback of the system as presented is that 

ideal conditions are created. That is, the resonators are studied in a non-damped 

environment (vacuum) and the perturbing mass is placed at the tip of one of the 
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cantilevers. This highly controlled environment leaves room for improvement in 

building sensors which can work in more practical environments. There is also the 

possibility of studying the resonators in a different pass band. In this case, each of 

the cantilevers resonates in its fundamental mode but there is opportunity to observe 

the veering phenomenon when the cantilevers resonate in some higher order 

harmonic mode. 

Subsequent work by the same group coupled 15 micro cantilevers, again for use as 

a mass sensor [16]. This work showed a three order of magnitude improvement over 

a frequency shift based resonator, being able to detect the presence of a 10 pg 

borosilicate sphere [16]. Additionally, they found that the specific cantilever to which 

the mass was applied produced a unique eigenmode shift. It is posited that this 

characteristic can lead to simultaneous detection of multiple analytes at the expense 

of requiring 15 output signals (one for each resonator) [16]. 

In 2008, DeMartini et al. also fabricated and studied a system for mass detection of 

multiple analytes using a slightly different approach than Spletzer et al. [17]. In this 

case, four microcantilevers were coupled to a single shuttle mass with each 

cantilever being sensitive to a different chemical. Each cantilever was also made a 

substantially different length so that their resonant frequencies were distinct. In order 

to make measurements, the common shuttle mass was excited with a large 

bandwidth signal. The motion of the common shuttle mass would then exhibit the 

superposition of four resonant modes, one for each cantilever. When any of the 

cantilevers was bound to by a target molecule, the motion of the common shuttle 

would change. By plotting this motion in the frequency domain, the mass of the 
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molecule, and its type could be determined [17]. This system does not leverage the 

veering phenomenon but is included as an example of a multi-degree of freedom 

sensor. Furthermore, this is a single input-single output (SISO) system which is 

much simpler than a veering system in terms of number of measurements (one 

output signal versus one per resonator for a total of 15 signals in Spletzer’s work) 

but suffers from much worse sensitivity. 

The work by Spletzer et al. demonstrates the power of eigenvalue veering as a 

sensing paradigm but it lacks tunability. A research group from the University of 

Cambridge that includes Woodhouse (the same Woodhouse who performed 

pioneering work mentioned in Section 1.2.1) has also delved into MEMS sensors 

based on eigenvalue veering but have used electrostatic coupling between 

resonators [18]. Electrostatic coupling of resonators is based on electrostatic 

attraction between two surfaces of different DC polarization voltage that are 

separated by a small gap. The attraction exhibits spring-like behaviour but the 

direction of action is opposite that of a mechanical spring. More specifically, the 

strength of the spring falls with the cube of the distance between the resonators 

rather than increasing linearly as with a mechanical spring [18]. This behaviour is 

captured in the following equation [18]. 

 
    

        

  
 

(1.1) 

In (1.1), the coupling is summarized as being proportional to the square of the 

difference between the DC polarization voltages (    , proportional to both the 

permittivity of free space and mutual area (   and  , respectively) and inversely 
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proportional to the cube of the gap distance between the resonators (  ).  The 

derivation of this expression can be found in Appendix A. 

The Cambridge group has also demonstrated two practical sensors, both in 2010. 

The first was an example of a mode-localized mass sensor using the electrically 

tunable coupling principle described by (1) [19]. By utilizing electrostatic coupling, 

the parametric sensitivities of the sensors were tunable by over 400% [19]. This 

mass sensor was based on identical MEMS ring oscillators and showed 

performance improvements of three orders of magnitude over a single uncoupled 

resonator [19].  

The second sensor, also published in 2010, was an example of an electrometer 

based on the coupling of two double-ended tuning fork (DETF) resonators [20]. In 

this case the resonators are mechanically coupled at the base by means of a beam 

[20]. The perturbation is introduced into the system through electrostatic attraction, 

identical in principle to the electrostatic coupling introduced earlier. The force of 

attraction modifies the effective stiffness of one of the resonators. This is done by 

anchoring both ends of one resonator but only one end of the other. The unanchored 

end is suspended on a frame which allows motion only in the axial direction. A 

capacitor is formed between the end of the resonator and a charge input port. When 

a static charge is applied to the input port, an axial strain is generated in the second 

resonator. This strain induces a change in stiffness and subsequently mode 

localization [20]. High performance improvements over single resonator frequency 

based designs are again demonstrated however the advantage for this design is 

slightly less than three orders of magnitude [20]. This may be due to the use of 



12 

 

mechanical coupling which was not tuned optimally to the application rather than a 

tunable electrostatic coupling. 

More recently in 2011, a paper by Gil-Santos et al. investigated a sensing topology 

very similar to that of Spletzer et al. The focus of this investigation was to quantify 

the effects of modifying the separation of microcantilevers, and thus the length of the 

coupling overhang [21].The main takeaway of this work confirmed the findings of the 

Cambridge group. That is, weaker coupling enhances the localization of energy and 

thus improves the sensitivity of the sensor regardless of whether the weak coupling 

is produced through electrostatic attraction, or by long mechanical couplings in 

microcantilever designs. 

1.3 Research Problem 

In this thesis the use of mode-localization will be explored further with an emphasis 

on suitability for inertial sensing applications. Specifically, research into the following 

areas is presented: 

 Mode-localization in a real MEMS 2DOF system using plate resonators and 

electrostatic coupling 

 Two different approaches to inducing a stiffness perturbation (one approach 

based on electrostatic attraction and one approach based on direct 

mechanical linkage) 

 Theoretical approach to 3DOF systems and beyond as a stepping stone to 

future highly sensitive sensors 

The work presented here is general to sensing as an area of research since the 

designs used do not measure any specific quantity. Rather, the veering 
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phenomenon is examined in-depth when a controlled perturbation is applied. In 

theory, this work can be applied to any sensor as long as the physical quantity to be 

measured (e.g. acceleration, mass, angular rate, etc.) causes a perturbation to one 

of the characteristics of the coupled system. 

1.4 Thesis Organization 

The remainder of this thesis will be organized as follows. Chapter 2 will delve more 

deeply into the theory of curve veering and mode localization including a complete 

analytical description derived from first principles for a 2DOF system. The analytical 

work is supported by numerical simulations showcasing the phenomenon. Chapter 3 

focuses on the design of four different MEMS resonator pairs and experimental 

characterization of one of those pairs. This includes a discussion of the design 

choices and implications of those choices as well as experimental results. Chapter 4 

lays the groundwork for later work on chains of three resonators or more. Here it is 

shown analytically that even greater sensitivity improvements can be expected of 

these systems. Chapter 5 summarizes the findings while Chapter 6 suggests several 

avenues for future research that are natural progressions from the work presented 

here. 
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Chapter  2: Two Degree of Freedom Systems 

2.1 Introduction 

An undamped two degree of freedom (2DOF) system is the simplest case in which 

the veering phenomenon can be observed. Analytical expressions for the sensitivity 

of resonant frequencies and eigenstate vectors to stiffness perturbations for 2DOF 

systems have already been developed using a work interpretation without damping 

[18]. Here, a state space approach will be used which supports the results found in 

[18], while also discussing the applicability to a proportionally damped system. As 

has been previously discussed, the veering phenomenon is pronounced in systems 

of periodic (i.e. identical and repeated) coupled structures. The instance of a 3DOF 

system and extensions to higher order systems will be explored in Chapters 4 and 6. 

2.2 Analysis of a 2DOF System 

2.2.1 Schematic and Mathematical Description of System 

The analysis of a 2DOF system is based on the spring-mass-damper system 

depicted in Figure 2.1. This schematic considers two masses (m1 and m2) which are 

grounded by springs k1 and k2 respectively. The two masses exchange energy 

through a coupling spring kc (with associated damping cc). In addition to the 

grounding springs, each resonator section has an associated damping parameter, c1 

and c2 respectively. A perturbation to the symmetry in the system is represented by a 

second ground spring on m2. This spring (Δk), contrary to physical springs, is 

permitted to have a negative spring constant in order to preserve the generality of 

the results for both mechanical springs and the electrostatic couplings which exhibit 

negative spring constants. 
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Figure 2.1: Schematic of a coupled 2DOF spring-mass-damper system 

The equations of motion for this system are as follows: 

                                           (2.1) 

                                              (2.2) 

From this point the system will be assumed symmetric. In other words,       

 ,        , and        . The equations are also rewritten in matrix form. 

              (2.3) 

 
   

  
  

            
       

       
             

       

          
    (2.4) 

2.2.2 Proportional Damping 

For undamped or proportionally damped systems, the undamped modal column 

matrix ( ) diagonalizes all three of the above matrices. A proportionally damped 

system is one in which the damping matrix can be represented as a weighted linear 

combination of the mass and stiffness matrices. The weighting is represented by the 

two weighting factors α and β as in the following equation. 

         (2.5) 

The assumption of proportionally damped systems is valid in this research since the 

physical systems are designed to be symmetric. The dimensions are identical and, 
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as will be discussed in Chapter 3, the geometry of the real system is defined by a 

single mask in a mature fabrication technology (SOIMUMPS). This ensures each 

structure is practically a perfect copy. Furthermore, the resonators have a very small 

spatial separation meaning they operate in an identical environment. This situation 

allows for the assumption that the damping factor will be the same for each 

resonator and thus the definition of proportional damping is met. Essentially, since 

Δk is very small (      ), the damping matrix is simply a weighted version of the 

stiffness matrix. That is, β is some appropriate value based on geometry, 

environment etc. and α is zero. 

The normalized eigenstate vectors of a proportionally damped system are the same 

as that for an undamped system. Therefore the sensitivity equation found here for 

the eigenvectors is applicable to both cases. For the case of normalized 

eigenvalues, the solutions are not identical for undamped and proportionally damped 

systems. In general, damping will change the fundamental frequencies of the 

system’s response. However, in MEMS devices damping is usually very low so for 

the purposes of this research a comparison will be made between the sensitivities of 

the normalized eigenstate vectors (which are applicable to undamped and 

proportionally damped systems) and the sensitivity of the system’s eigenvalues 

(which are only applicable to proportionally damped systems in addition to 

undamped systems if damping is considered to be very low). 

2.2.3 The Eigenvalue Problem and Solution 

Assuming a solution to the displacement vector of the form 

           
                    (2.6) 
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then the description of the undamped system can be rewritten as 

        
       (2.7) 

The subscript ‘ ’ denotes the mode number. Since the system has two degrees of 

freedom, there are two unique modes. This will be discussed next when the 

eigenvalue problem has been fully defined and solved. 

At this point, a modified stiffness matrix is defined as being the original stiffness 

matrix scaled by     . 

 
    

     
       

  where   
  

 
    

  

 
 (2.8) 

If the mass matrix is rewritten as the product of the mass variable ( ) and the 

identity matrix, then the above equation becomes: 

 
     

  
 

   
            (2.9) 

This is an eigenvalue problem with eigenvector    and an associated 

nondimensionalized eigenvalue   . For this 2DOF system there are two solutions to 

this eigenvalue problem (it is quadratic) and they are presented here. 

 
   

 

 
   

       

 
        

        

 
 

  

   
 

 
   

       

 
       

        

 
 

  

 

(2.10) 

 

In the case of a perfectly symmetric system (i.e.    ) then the solutions to the 

eigenvalue problem reduce to: 
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       and                          

  
 

  (2.11) 

The first subscript ‘0’ indicates that these solutions are for the unperturbed state and 

is only used in this special case. The second subscript indicates the mode number 

and in many cases will be the only subscript used. This convention will be consistent 

throughout this thesis. 

2.2.4 Discussion of the Eigenvalue Problem Solution 

This solution of the unperturbed 2DOF system is interpreted physically as 

representing two natural harmonic frequencies and their associated mode shapes. 

For a positive κ (that is, a positive spring constant coupling the two oscillators), the 

lower frequency has an associated in-phase mode shape. This mode shape can be 

described as the sign of displacements x1 and x2 being identical at all times and the 

amplitudes of displacement also being equal. Similarly, a second natural mode (the 

anti-phase mode) exists at a higher frequency in which the amplitudes of 

displacement are still identical but in this mode the signs of displacement are always 

opposite (180° out of phase). This solution for a 2DOF system is well known and 

easily verified. The solution also indicates that for negative spring coupling 

arrangements, such as those found with electrostatic coupling, the eigenvalue 

associated with in-phase motion will remain the same but the eigenvalue associated 

with anti-phase motion will have a magnitude that is smaller by 2κ. This can be 

proven intuitively by considering that for the in-phase mode the coupling spring does 

not do any work and thus the eigenvalue remains the same regardless of the 

magnitude or sign of the coupling spring’s stiffness. 
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2.2.5 Normalized Modal Column Matrix 

The solution eigenvectors are now normalized for unit modal mass. The two 

normalized vectors become the columns of the modal column matrix  . The 

normalization is performed using the equation: 

    
  

    
    

 (2.12) 

The normalized eigenvectors are then: 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

       

 

 

 

 
 

 
 
 

 
       

  

 

    

 

 
 

 
 

 

 

 
 

 
 
  

       

  

 

    

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

       

 

 

 

 
 

 
 
 

 
       

  

 

    

 

 
 

 
 

 

 

 
 

 
 
  

       

  

 

    

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.13) 

For the perfectly symmetric system (   ), the modal column matrix is: 

 
     

 

  
 
   
  

  (2.14) 

From this it is immediately obvious that the magnitudes of the constituent column 

vectors are, in fact, one. 

For the general system including the possibility of stiffness perturbation, the modal 

column matrix is: 
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 (2.15) 

The modal column matrix is then simplified by linearizing in   around the point     

representing small perturbations introduced into a symmetric system.  The linearized 

modal column matrix is: 

 

  
  

 

 
 
 
 
  

  
 

    

  

 

  
 

    

  

  
 

     
  

 

      
 
 
 
 

 
 

  
 
  

 

  

 

  
  

  
 

  

 

  
  

  (2.16) 

2.2.6 General Sensitivity Expressions 

Before a comparison can be made of the relative sensitivities of the eigenvectors 

and the eigenvalues to perturbations in the symmetry of the 2DOF system, 

linearized expressions for the eigenvalues in   around the point      are also 

found. 

 
   

 

 
   

    

 
   

 

 
   (2.17) 

 
   

 

 
   

    

 
   

 

 
      

 

(2.18) 

Now an expression for the relative change in eigenvalues due to a perturbation is 

found for the first mode. 

       (2.19) 
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 (2.20) 

       

   
 

 

 
 

  

  
 (2.21) 

Repeating the process for the second mode, 

          (2.22) 

 
       

 

 
 (2.23) 
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 (2.24) 

So, in general, the sensitivity of the eigenvalues of this 2DOF system can be 

expressed as: 

       

   
 

  

  
 (2.25) 

An expression for the sensitivity of the eigenvectors is found similarly by using the 

columns of the modal column matrix. First, the first mode: 
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And repeating for the second mode: 
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 (2.30) 

         

     
 

 

  
 

  

   
 (2.31) 

So, in general the sensitivity of the eigenvectors of a 2DOF system can be 

expressed as: 

         

     
 

  

   
 (2.32) 

2.2.7 Comparison and Weak Coupling 

By comparing equations (2.25) and (2.32) it is seen that the eigenvectors are more 

sensitive to perturbations than the eigenvalues when the following condition is met: 

 
   

 

 
 (2.33) 

Equation (2.33) is thus the definition of weak coupling that is used throughout this 

thesis and describes the threshold at which improvements in sensitivity can be made 

over traditional resonant frequency tracking approaches. These results agree with 

results found independently in the literature [18]. 

It may have been noticed that when finding the sensitivity of the second eigenvalue 

to a perturbation, the equation was only valid for     .  Above it is stated that it is 

sufficient for the coupling spring stiffness to be half of that of a grounding spring. If it 
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is the case where the coupling spring is half the stiffness of a grounding spring (and 

positive), the sensitivity of the eigenvalue of the second mode is actually 
  

  
 which is 

an even lower sensitivity to perturbation than is found with the simplifying 

assumption. If it is the case where the coupling spring is half the stiffness of 

grounding spring (but negative), the sensitivity of the eigenvalue of the second mode 

is actually 
  

 
 which is twice as sensitive as the analytical expression would indicate 

and requires    
 

 
 for sensitivity improvement with eigenvectors. However, since 

the coupling spring stiffness using electrostatic coupling is generally orders of 

magnitude less than the grounding springs this caveat to be ignored. 

2.3 Practical Measurement Considerations 

In this section one of the practical considerations regarding system design and 

measurements is analyzed. A possible solution to this practical consideration is 

suggested for use in systems which must balance complexity with accuracy. 

2.3.1 Practical Considerations 

In the 2DOF system, a perturbation affects both the eigenvalues and the 

eigenvectors. In Section 2.2.6 a sensitivity expression was developed considering 

the magnitude of the difference between the perturbed eigenvector and the 

unperturbed eigenvector, normalized by the magnitude of the unperturbed 

eigenvector. This approach is applicable when the frequency of the driving signal in 

the system tracks the changes in resonant frequency. That is, an unperturbed 

system is measured while being driven at the unperturbed resonant frequency and 
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subsequent measurements are made when driven at the new resonant frequency. 

Graphically the approach is shown in Figure 2.2. 

Some notes regarding Figure 2.2 must be made. First of all, the basis for the 

coordinate system used is a unit vector representing displacement of the first mass, 

and a unit vector representing displacement of the second mass. Therefore, the 

 

Figure 2.2: Graphical representation of the changes in eigenvectors 

vector u01 represents in-phase motion of equal amplitude. This is expected for the 

unperturbed case. Vector u1 represents the system after a perturbation which 

increases the stiffness or mass of the second resonator. The result, if the system 

has tracked the change in resonant frequency, is a vector of the same magnitude 

but the component that represents the first mass’s displacement is larger than the 

component for the second mass. This indicates energy localization in the first mass. 

x2(t) 

u01 

u1 

x1(t) 

u1-u01 



25 

 

If the driving signal does not track the change in resonant frequency, the magnitude 

of the vector after perturbation is not the same as the unperturbed vector. 

Graphically this can be shown as in Figure 2.3. 

In this case the magnitude of vector u1 is diminished and the error manifests quite 

severely, affecting the accuracy of the measurement. As a result, a different 

approach to examining the eigenvectors must be used when the system does not 

track the resonance frequency. 

 

Figure 2.3: Graphical representation of the eigenvectors when resonant frequency is not 

tracked 

2.3.2 Eigenvector Characterization for Non-Tracking Systems 

Practically, it is more difficult to design a feedback system that tracks the resonant 

frequency. For open-loop systems, the angle of the eigenvectors can be used as a 
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substitute for the method introduced earlier. This method is described graphically in 

Figure 2.4. 

Now the expression used for quantifying perturbations is: 

       

   
 (2.34) 

where    is an angle rather than a mass-normalized eigenvector. The same method 

can be used for the second mode of vibration.  

One warning that must be mentioned when using this method is that exciting the 

system at a frequency different than one of the two natural frequencies will actually 

cause a superposition of both modes. This will affect both the angle and the 

magnitude of the perturbed eigenvector. However, the reduced amplitude of the 

eigenvector is more pronounced than a change in angle therefore the method of  

 

Figure 2.4: Graphical representation of measurement approach when resonant frequency is 

not tracked 
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measuring angle is superior and can be used for small perturbations. To find the 

angle of the eigenvector experimentally, the amplitudes of each mass are measured 

and the arctangent of the quotient of the components is computed. 

2.4 Tunable Coupling Stiffness 

It has been shown that the sensitivity of the eigenvectors to perturbation is inversely 

proportional to the magnitude of coupling. It may appear that the limit of sensitivity is 

then the practical problem of creating very weak springs. However, the expressions 

developed earlier are only applicable within the veering zone. As was explained in 

Section 1.2.2, the width of the veering zone is also dependent on the degree of 

coupling; greater coupling means a wider veering zone and vice versa. Therefore 

there is a tradeoff between sensitivity and the range of perturbations for which the 

technique is valid. In this section, the valid regions for three different degrees of 

coupling are presented graphically along with the associated change in resonant 

frequencies. The advantages of an experimental system with tunable coupling are 

also discussed. 

2.4.1 Veering and Degrees of Coupling 

The following set of figures compares the sensitivities of eigenvectors and 

eigenvalues to perturbations. These figures were produced by using the EIG 

function in MATLAB to find the eigenvalues and eigenvectors of a 2DOF system for 

different degrees of coupling and for a range of disorders. As seen in the figures, 

disorder is again defined as the change in stiffness of one of the masses, normalized 

by the magnitude of stiffness for the unperturbed mass and is denoted by ‘ ’. The 

range of disorder is from -50% to +50%. In addition, a negative coupling coefficient 
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was used to be consistent with electrostatic coupling. This means the first mode of 

vibration (lower frequency) is the anti-phase mode and the second mode of vibration 

(higher frequency) is the in-phase mode. Three distinct degrees of coupling are 

explored; one relatively strong coupling (the coupling stiffness magnitude is 40% of a 

grounding spring), one weak coupling (coupling stiffness magnitude is 10% of a 

grounding spring), and one very weak coupling (coupling stiffness magnitude is 1% 

of a grounding spring). These figures are presented in pairs on the following pages. 
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Figure 2.5: Comparing sensitivities with a coupling stiffness magnitude of 40% of a grounding 

spring. Top plot is the in-phase mode; bottom plot is the anti-phase mode. 
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Figure 2.6: Comparing sensitivities with a coupling stiffness magnitude of 10% of a grounding 

spring. Top plot is the in-phase mode; bottom plot is the anti-phase mode. 
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Figure 2.7: Comparing sensitivities with a coupling stiffness magnitude of 1% of a grounding 

spring. Top plot is the in-phase mode; bottom plot is the anti-phase mode. 
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Figure 2.5 - Figure 2.7 show graphically that the earlier expressions for sensitivity 

have a limited range for which they are valid, and that this range is a function of the 

stiffness of the coupling spring. It is also evident for the in-phase mode that as the 

stiffness of the coupling spring approaches 50% of a grounding spring, the slope of 

the eigenvectors curve becomes tangential to the eigenvalue curve. The same 

behaviour is not exhibited by the anti-phase mode for the reason discussed in 2.2.7. 

When comparing the theoretical results, remember that the anti-phase mode was 

the second mode of vibration in the earlier analysis but in the simulations in this 

section a negative coupling constant was assumed. At this point for the in-phase 

mode, any relative increase in stiffness of the coupling spring would result in higher 

sensitivity by tracking the eigenvalues rather than the eigenvectors.  

Lastly, the eigenvector curves are symmetric about a cusp at the system’s symmetry 

point. Based just on the graphical evidence, it seems as though a sensor leveraging 

this phenomenon is unable to differentiate between perturbations that positively 

affects stiffness and an equal in magnitude perturbation which negatively affects the 

spring. However, a comparison of the amplitudes of vibration for each mass at the 

perturbed state will reveal this additional information. If the amplitude of vibration is 

higher for the second mass, the perturbation decreased the stiffness of the second 

grounding spring and vice versa. The apparent uncertainty is a result of the 

components of the φ2 vector being equal in magnitude for each case, but swapped 

in position. 
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2.4.2 Benefits of Tunable Coupling 

The previous investigation reveals a huge advantage of practical systems with a 

tunable coupling stiffness, such as a MEMS system which uses electrostatic 

coupling, when compared to a fixed coupling system, such as microcantilever 

systems which are coupled through a substrate overhang. The key takeaway is that 

the maximum sensitivity of the system can always be achieved by adjusting the 

coupling magnitude to the smallest value that ensures all perturbations stay within 

the veering zone. For environments which induce small perturbations, a small 

potential is applied across the gap between the resonators. For larger perturbations 

the veering zone can be widened by increasing the potential across the gap while 

maintaining the condition that the coupling magnitude does not exceed half of the 

grounding stiffness magnitude. 
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Chapter  3: Experimental System 

3.1 Introduction to the Experimental System 

The experimental system was designed to build off the previous success of other 

researchers (for example using electrostatic coupling [18]) while introducing several 

novel concepts. First, the resonators in this design are suspended plates driven by 

electrostatic comb actuators. This is the first time this type of resonator has been 

used in a veering system. Second, the method of inducing a stiffness perturbation by 

directly affecting the suspensions is original. The system was designed using 

proprietary MEMS design software (CoventorWare) and fabricated in one of the 

most mature micromachining processes available (SOIMUMPs). 

3.2 Design of System 

Given the nature of micro device fabrication, one full production iteration; consisting 

of design, simulation, fabrication, and testing, could be achieved over the course of 

the project. Since this is the first device of this type at this university, advice on how 

to guide future endeavours based on experience gained in this iteration will be 

discussed in Chapter 6. This section will first explore the design tools and fabrication 

technology used, and then it describes the experimental systems themselves. 

3.2.1 Design Tools - CoventorWare 

The MEMS structures were designed and simulated using CoventorWare 2010. 

CoventorWare can perform three major parts of the design process for micro 

devices: system-level modeling (Architect), mask design and layouts (Designer) and 

numerical analysis (Analyzer). 
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The first step in the design process was to use the Process Editor to define the 

number of layers, the layer thicknesses, and the materials used in the fabrication 

process. Some standard fabrication processes are predefined, including 

SOIMUMPS (see Section 3.2.2). The only change the user must make to the 

predefined SOIMUMPS process flow is adjusting the device layer thickness to the 

25 μm ± 1 μm wafer instead of the default 10 μm wafer. 

 Then, using SaberSketch, system-level macro models of the devices were built from 

the provided parametric libraries of components (see Figure 3.2). These libraries 

contain reduced-order models of common structures like plates and beams and can 

also model electrostatic interactions. Using built-in signal sources (voltage, current, 

force or other domains) the responses of the macro models can be simulated for DC 

operating point, AC analysis, transient analysis and others. It also provides the 

flexibility for looped simulations which sweep variables that can be signals or 

physical dimensions of the structures themselves for analysis of the sensitivity of the 

structures to fabrication tolerances. The advantage of using these macro models is 

greatly reduced simulation time when compared to more intensive numerical 

simulations with reportedly comparable results [22]. Architect also allows 3D 

visualizations of simulation results using Scene3D (refer to Figure 3.1). This is a 

particularly useful visual tool when analyzing the mode shapes of coupled 

resonators. 

The macro models can then be automatically converted into layouts in standard 

formats like GDS and CIF by Coventor’s Designer [23]. Designer is also used to 
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create 3D models that can be meshed and analyzed using Coventor’s Analyzer or 

other third-party FEA software [23]. 

More intensive numerical approaches to device analysis in CoventorWare are 

performed in the Analyzer. There are several approaches to numerical simulation 

depending on the type of analysis desired. For determining the system’s mechanical 

behaviour, the MemMech solver (based on ABAQUS) uses a finite-element method 

(FEM) [24]. For electrostatic interactions, the MemElectro solver uses a boundary-

element method (BEM) [24]. To combine these domains, CoSolveEM (static) and 

HarmonicEM (frequency domain) solvers are used for coupled electromechanical 

analysis [24]. 

 

Figure 3.1: Visualization of the system schematic from Figure 3.2 in Scene3D 
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Figure 3.2: Schematic of a complete macromodel of a coupled resonator system made in Architect 

Suspended plate with comb-drive 
actuator 

Electrostatic coupling gap 
Electrostatic coupling for perturbing suspension 
beams 



38 

 

The ability to use one software package for the entire design process is desired from 

a consistency and reliability standpoint. The capabilities of CoventorWare matched 

what was desired for development of the physical resonator structures and was 

therefore used extensively in the design phase of this project.  

3.2.2 SOIMUMPs and Fabrication 

SOIMUMPs is a mature, 4-mask, silicon-on-insulator (SOI) micromachining process 

offered by MEMSCAP [25].  The chosen SOI wafer has a silicon device layer 

thickness of 25 μm, an insulating oxide thickness of 1 μm and a substrate thickness 

of 400 μm [25]. The tolerances of each layer are ±1 μm, ±0.05 μm, and ±5 μm 

respectively [25]. This process was chosen for several reasons; it has been used 

with success in the past by other members of the research group, the relatively thick 

device layer is amenable to inertial sensors, and the process has been available 

since 2003 with 36 previous successful fabrication runs. This reliability was desired 

to maximize the likelihood of obtaining functional devices. 

The general process flow begins with doping of the device layer by depositing 

phosphosilicate glass (PSG) and annealing [25]. Next, the pad metal (a lamination of 

20 nm of chrome followed by 500 nm of gold) is patterned with a liftoff process [25]. 

This step is for making low resistivity routings and bond pads. The next step is to 

pattern the device layer silicon and then etch it to the insulating oxide layer in order 

to create the mechanical structures [25]. This is followed by a backside etch through 

the substrate in order to create through-holes which free the mechanical structures 

[25]. Another benefit to the backside etch is it dismisses the need for release holes 

in the mechanical structures. This yields two benefits. First larger inertial masses in 
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a given footprint, such as those desired in accelerometers and gyroscopes, can be 

fabricated. Second, a lack of release holes leads to large flat surfaces with high 

reflectivities which are well-suited to laser interferometry. The remaining oxide is 

removed and a final metal layer (this time 50 nm of chromium followed by 600 nm of 

gold) is patterned using a shadow mask and evaporation [25]. This layer can be 

used to create optical quality mirrored surfaces [25]. 

The masks were generated from the macromodels in CoventorWare and fine 

detailing of the layouts was finished with CleWin 4. The masks were submitted to 

CMC Microsystems in October 2011 and were subsequently forwarded to 

MEMSCAP for fabrication in the 37th SOIMUMPs run. Twelve chips were returned in 

68 pin ceramic pin-grid array (CPGA) packages and three chips were returned 

unpackaged in February 2012. 

3.2.3 Designs 

All of the experimental structures share the same basic design; two suspended plate 

resonators that are excited by electrostatic comb drive actuators and are coupled 

electrostatically through a mutual capacitance formed along the adjacent sides of the 

plates. A perturbation is induced into the structure by slightly bending all of the 

suspension beams which support one of the two resonators. This perturbation is 

achieved in one of two ways: electrostatically or mechanically. Photos of each 

design can be seen in Figure 3.3 and Figure 3.4. For ease of discussion, the 

convention will be that the resonators on the left in these figures will be referred to 

as the “first resonator” and the resonator on the right will be referred to as the 

“second resonator”. All perturbation signals are applied to the second resonator. 



40 

 

 

Figure 3.3: Photograph of experimental system which uses an electrostatic perturbation 

Notice the “Dummy Perturbation Structure” in Figure 3.3. This exists only to maintain 

the physical symmetry between the two suspended masses. It can be seen that the 

dummy structure and the suspensions beams are electrically shorted for the first 

resonator but are electrically insulated on the second structure such that a voltage 

can be developed between the perturbation beam and the suspension beams. This 

voltage leads to an electrostatic attraction which will change the shape of the 

suspension beams. The perturbations to the suspension beams on the second 

resonator are also developed by the identical perturbation beam on the bottom of the 

second resonator to maintain symmetry in the suspensions (while simultaneously 

breaking symmetry between the first and second resonator). 
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Figure 3.4: Photograph of experimental system which uses a mechanical perturbation 

For the mechanically perturbed system, the force is still generated by electrostatic 

attraction in the “Comb-drive actuator for perturbations”, but this force is then 

mechanically linked to the suspension beams through the parallelogram structures. 

These structures also serve to translate a force in the y-direction into a force on the 

suspension beams in the x-direction. The perturbations to the suspension beams on 

the second resonator are also developed by the identical comb-drive and 

parallelogram linkage at the top of the second resonator. The first resonator includes 

the parallelogram linkage to maintain symmetry but omits the comb-drive actuators. 

In addition to two different methods of perturbing each system, two sizes of each 

system were also designed. For the small systems, the minimum feature size of 3 

μm is used for the beam widths and the minimum gap size of 2 μm is used for all 

electrostatic coupling. The plates are 110 μm squares and the suspension beams 
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are 200 μm long. The large size uses 6 μm for the beam widths but maintains the    

2 μm gap size. These plates are 210 μm squares and the suspension beams are 

500 μm long. All design parameters can be found in Appendix B. 

For the structures with electrostatic perturbation, a structure that forms a mutual 

capacitance with the suspension beams at their midpoint is the source of a small 

force when a voltage is developed between the structure and the suspension 

beams. The result is to slightly bend the suspension beams inward. Ordinarily a 

straight fixed-guided beam with a load applied at the guided end has an effective 

spring constant defined by   
    

   where E is Young’s modulus of the material, L is 

the length of the beam, w is the width of the beam and t is the thickness. The 

perturbation changes the shape of the beam while also inducing an axial strain due 

to the symmetry of the structure (since there are beams on either side of the plate, 

the total length is fixed). However, additional effects that perturb symmetry will be 

discussed in Section 3.3.  

3.3 System Perturbation 

The key to creating a practical MEMS sensor based on eigenvalue veering is 

creating a scheme which will perturb the symmetry of the 2DOF system. Either a 

mass or stiffness perturbation is equally valid but the design approach depends on 

the quantity to be sensed. As has been shown repeatedly, selective coating on 

microcantilever resonators can be used for chemical detection [26]. Molecules of 

interest adsorb on the surface of the microcantilever and change its resonant 

frequency [26]. This same approach can be used in veering sensors by selectively 

coating one of the two resonators. The resulting adsorption will change the mass of 
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one of the two resonators, thereby breaking symmetry and leading to energy 

localization.  

Other (i.e. nonchemical) quantities of interest may include inertial quantities such as 

acceleration. In order to sense acceleration using veering, the acceleration needs to 

affect either the stiffness or the mass of one of the sensors. One approach could be 

to couple an inertial mass to the suspensions of one resonator such that an external 

acceleration would cause a strain on the suspensions. The strain would break 

symmetry in the system by affecting the stiffness parameter. This approach was 

used successfully for charge sensing in [20] and the principle of operation of this 

sensor was described in the introduction to this thesis. While typically beams are 

extremely stiff when regarded as springs in the axial direction, the sensor in [20] 

proves that veering sensors can be used to detect these incredibly small quantities. 

The systems designed for this thesis also use a controllable stiffness perturbation 

rather than a mass perturbation. In this case, electrostatic comb-driven plates 

suspended by four straight beams are used as resonators. The stiffness perturbation 

is induced by applying a transverse force to the center of each suspension beam on 

one of the resonators. The hypothesis is that bending the beams in such a way will 

lead to increased beam stiffness and therefore a breaking of symmetry. 

3.3.1 Description of the Beam Shape 

It can be useful to have a mathematical description of the shape of the beam when it 

is bent by an applied force. This can be found as a function of two variables: the 

length of the beam ‘L’ and the maximum out-of-line displacement at the center of the 
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beam ‘α’.  These variables in relation to the suspended plate can be seen in Figure 

3.5 below. 

A polynomial ‘      ’ can be found which describes the beam shape as a function of 

position along the beam ‘ ’ and of the variable ‘ ’ subject to some initial conditions. 

The conditions are summarized in the following table. 

Table 3.1: Summary of the boundary conditions needed to solve a mathematical description of 

the perturbed beam's shape. 

Boundary Condition Description 

      n/a 

         Beam displacement at origin is zero 

         Beam displacement at terminal zero 

           Beam displacement in the center is   

          Beam rotation at origin is zero 

          Beam rotation at terminal is zero 

 

 

Figure 3.5: a) Plate suspended by four straight, cantilevered beams, b) Plate suspended by 

four cantilevered beams with a curved profile due to some external force 
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The lowest order polynomial which can satisfy all of the boundary conditions is fourth 

order: 

                  
     

     
  (3.1) 

The first two coefficients are found immediately: 

               (3.2) 

                (3.3) 

The remaining conditions are used to create a system of equations in order to solve 

for the remaining coefficients. 
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Solving the system the final polynomial is found. 

 
       

   

  
   

   

  
   

   

  
   (3.8) 

3.3.2 Finding ‘ ’ for the Mathematical Description of Beam Shape 

Further to determining a mathematical description of the beam shape, the value of   

for a given force can be found. Under static conditions, assuming no deformation of 

the suspended plate, each beam can be considered fixed-fixed since neither end 

can rotate or translate. The deflection of the center of such a beam given a point-

load at the center is well-known and is given by [27]: 
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 (3.9) 

Where E  is Young’s Modulus for the device layer (169 GPa for silicon in the 

SOIMUMPs process) and I  is the area moment of inertia, which for a beam with a 

rectangular cross-section is given by: 

 
  

   

  
 (3.10) 

If the force and dimensions of the beams are known, then it is trivial to determine the 

deflection of the center of the beam, and therefore the deflection at any point along 

the beam can be found. 

3.3.3 Electrostatic Spring Softening 

Originally it was hypothesized that pre-bending the beams in this way before 

excitation would lead to an axial-strain and a resulting increase in stiffness. 

However, simulation of each design and testing data from the electrostatic design 

contests this supposition. Instead, increasing the voltage between the second 

resonator and the perturbation driver (a gap-closing driver in the electrostatic case 

and a comb-drive in the mechanical case) acts to decrease the stiffness and 

therefore decrease the resonant frequency. Figure 3.6 presents the shift in the in-

phase resonant frequency as simulated in CoventorWare and Figure 3.7 depicts the 

same except for the anti-phase resonant frequency. The resonant frequencies show 

a quadratic dependence on perturbation voltage, with the fit passing within the 

margin of error based on the resolution of the simulations (±1.75 Hz). It may also be 

noticed that the in-phase resonant frequency is higher than the anti-phase resonant 

frequency due to the negative coupling. 
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Figure 3.6: Simulated shift in in-phase resonant frequency for the large electrostatically 

perturbed system including quadratic fit to the results. 

 

Figure 3.7: Simulated shift in anti-phase resonant frequency for the large electrostatically 

perturbed system including quadratic fit to the results. 
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The explanation is electrostatic spring softening, an effect that crops up often in 

microsystems. This nonlinear effect will be most easily illustrated in the electrostatic 

design. In the static case when no time-varying signal is applied to the system, there 

will be an electrostatic attraction between the perturbation beam and the suspension 

beam. This electrostatic force is balanced by the beam acting as a spring. If this 

situation is modeled as an example of a parallel-plate capacitor, the magnitude of 

the force of attraction is given by: 

 
   

 

 

    

  
 (3.11) 

Clearly the force is a nonlinear function of the gap distance ‘ ’. When a driving signal 

is applied to the resonators and they respond, the separation between the 

suspension beams and the perturbation beam changes, leading to a time-varying 

force. This is usually written as: 

 
   

 

 

    

      
 (3.12) 

where ‘ ’ is a decrease in gap distance. Performing a Taylor expansion and keeping 

only the linear terms, the electrostatic force can be approximated as: 

 
   

 

 

    

  
   

 

 
   (3.13) 

Spring softening can now be examined by balancing all of the forces in an example 

system. Neglecting damping, the sum of the forces for the oscillatory system in 

Figure 3.8 is:  

 
       

 

 

    

  
   

 

 
     (3.14) 

 



49 

 

 

Figure 3.8: Spring-mass system which forms a parallel plate capacitor through its mutual area 

with another electrode when a potential difference 'V' is applied across the gap 

With simple rearrangement: 

 
       

    

  
   

 

 

    

  
   (3.15) 

Since  ,  ,  , and   are all positive, the mechanical spring constant is reduced by a 

factor    where     
    

  . 

Now the designed systems will be analyzed using the full expression for the 

electrostatic force (not the linearized version). Consider the actual electrostatic 

resonator design in Figure 3.9. Here the balance of the forces is: 

 
             

    

     
   

 
    

     
   

   (3.16) 

In this equation,      is taken to be the entire mechanical contribution of the 

suspension beams to the spring constant. This includes both the inherent spring 

behaviour of a straight beam, and any increase in stiffness due to stresses induced 

by the force from electrostatic attraction. The third and fourth terms account for the 

four electrostatic coupling gaps, one on each side of each of the perturbation beams. 

Multiplying these terms by 
  

  
 yields: 
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      (3.17) 

Therefore: 

 
    

 

  
 

    

        
 

    

        
  (3.18) 

 
    

     

    
    

(3.19) 

 

Figure 3.9: Perturbing the second resonator. A potential difference is developed between the 

thick beams at the top and bottom and the suspension beams, halfway down their length 
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Clearly    will always be negative since the signs of    and     are always the same. 

Additionally, as a result of simulation and data from the electrostatic design,    

seems to overpower the increase in stiffness from the pre-bending of the beams as 

seen in Figure 3.10. 

 

Figure 3.10: Resonant frequency shift simulation including electrostatic physics or for a pure 

mechanical force 

Figure 3.10 was obtained by simulating just one of the resonators from the 

electrostatic system in CoventorWare. Including the electrostatic physics, the 

resonant frequency decreased quadratically with increasing potential. The resonator 

was simulated again but removing the electrostatic physics and applying a pure 

mechanical force to the beams of the same magnitude as generated in the 

electrostatic gap. At this resolution, the mechanical force failed to affect the resonant 

frequency at all. In order to prove the hypothesis that a pure mechanical force 

should lead to an increased resonant frequency by pre-stressing the suspensions, 
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the simulations were rerun but using force magnitudes 100 times greater than are 

generated in the electrostatic gap. The results of this simulation are seen in Figure 

3.11. 

 

Figure 3.11: Resonant frequency shifts with a pure mechanical force as opposed to one that 

includes electrostatic interactions 

This effect is actually the same as that used for the coupling of the resonators in the 

system. The negative nature of    is the negative coupling formed by the mutual 

capacitance between the two plates. Regardless of the method of perturbation, the 

salient fact is that a perturbation is induced, and it is measurable as will be 

demonstrated later in this chapter. 

3.3.4 Perturbation in the Mechanical Design 

The second design which was intended to induce a perturbation by physically linking 

the center of the beams to an electrostatic comb-drive also exhibited a lowered 
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resonant frequency and therefore reduced stiffness when simulated in 

CoventorWare. This result may be somewhat more surprising than with the 

electrostatic design but could still be explained by an electrostatic spring softening 

effect. 

 

Figure 3.12: Mechanically perturbed design. In this design, a potential is developed between 

the anchored combs and those attached to the parallelograms at the top and bottom. 
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Figure 3.13: resonant frequency dependence on perturbation voltage for simulated system 

including electrostatic physics 

Figure 3.12 shows the movable fingers linked to the suspension beams through a 

parallelogram structure. This structure translates the vertical displacement of the 

combs into a horizontal displacement of the center of the suspension beams. Again, 

it was hypothesized that this pre-bending of the suspension beams would dominate, 

and the stiffness of the equivalent spring for the second mass would increase. 

However, since the resonant frequency decreases, there must be another effect in 

play. One solution is that the comb drive not only acts as a linear actuator in the y-

direction, it also acts as a gap-closing actuator since the movable fingers will 

experience a small displacement in the x-direction as the plate oscillates in the x-

direction. This would lead to an almost identical balance of forces as for the 
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electrostatic actuator except the mutual area,  , is much larger in this case, being 

formed on either side of every comb. 

Analysis of the mechanical system with a pure mechanical force also yielded an 

interesting result. When a pure force was applied to the parallelogram structure in 

the same direction as the comb-drive actuator (remember, comb-drive actuators are 

attractive only), the resonant frequency still decreased. When a pure mechanical 

force was applied in the opposite direction (toward the suspended plate from either 

side), the resonant frequency increased. This behaviour can be witnessed in Figure 

3.14. 

 

Figure 3.14: Pure mechanical perturbations on the mechanical system 

Furthermore, the lowest order fit to the simulated data was linear. This behaviour is 

caused by the parallelogram structure itself. When stretched in the y-direction as 

with the comb-drive actuator or the positive mechanical force, the parallelogram 
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creates a softer effective spring in the direction of motion of the plate. When 

compressed in the y-direction, the parallelogram is stiffer due to a reduced effective 

length. It also seems that the parallelogram partially compensates for the quadratic 

dependence on force seen for the electrostatic system, allowing the dependence to 

be linear. 

3.4 Testing 

Experimentation on the fabricated chips took place at the University of British 

Columbia in the spring of 2012. The equipment was available until May 31, 2012, at 

which point the equipment was to be shipped to the manufacturer for hardware 

upgrades. 

3.4.1 Testing Equipment 

The fabricated chips were tested using a Polytec MSA-500 Micro System Analyzer 

with their Planar Motion Analyzer (PMA) software for non-contact, in-plane analysis 

of motion (see Figure 3.15). The MSA-500 consists of several components: the MSA 

Optical Unit, the MSA Processing Unit, and the MSA Software [28]. The optical unit 

has microscope optics with maximum magnification of 20 times. Integrated with the 

microscope optics are an LED for illumination and a progressive scan video camera 

[28]. The data from the video camera are fed to the processing unit, which consists 

of the junction box and the Data Management System; a computer running Windows 

XP with the proprietary Polytec software included [28]. The system is also capable of 

laser interferometry measurements for out-of-plane motion but this capability was 

unnecessary for these experiments [28]. The junction box contains a function 

generator and is where the driving signals for experimentation originate. 
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Figure 3.15: Testing setup. The junction box and DMS are in the cabinet on the left. The optical 

head, power supply, and test fixture are on the table. 

The experiments also used a 20V power supply and 9V batteries. The batteries were 

used to bias the chips without the footprint expense of an additional power supply. 

3.4.2 Video Stroboscopy 

The MSA-500 system using the PMA software uses a video stroboscopy approach 

to in-plane motion measurements. The basic idea behind video stroboscopy is to 

excite the sample and then capture “frozen” images of its motion. By syncing the 

illumination (using an LED) with the excitation signal and processing the digital 

image by checking user-selected marker points, the motion of the sample can be 

determined. Figure 3.16 shows a close-up view of the test fixture under the optical 

head. 
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Figure 3.16: Close-up of 68-pin package in test fixture and optics. 

In Figure 3.17 the user-selected zones can be seen from an actual test on one of the 

systems. It is possible to analyze up to two parts of the frame simultaneously, so the 

motion of both the left and right masses could be captured in each test. In the figure, 

the red boxes represent the stationary point set before the excitation signal is 

applied. The yellow boxes are the current position of that part of the microstructure 

and the green boxes simply enclose and mark the positions where measurements 

are taking place. In this case, both the ‘A’ and ‘B’ reference points have moved left 

and up relative to their initial positions. It is important that prior to applying the 

excitation signal that the user checks to ensure that the red box is completely 

covered by the yellow box. The user must also select a portion of the frame to 

measure which has discernible borders which enable the image to be processed.  

For example, in Figure 3.17, the ‘B’ marker is a box which encloses the corner of the 
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Figure 3.17: Screen capture from a PMA experiment. The left measurement area is marked ‘A’ 

and the right measurement area is marked ‘B’. 

suspended mass. This selection exhibits a border between light gray (the mass) and 

black (empty space) in both the x and y directions allowing the motion to be faithfully 

captured in both axes. 

3.4.3 Experimental Setup and Procedure 

Figure 3.18 provides a schematic of the experimental setup. Four 9V batteries in 

series with the sinusoidal signal (10 Vp-p) from the Polytec system provided the 

excitation to the combs on the first resonator. This resonator is also treated as the 

common ground in the setup. The batteries were tapped at the center and 

connected to the second resonator such that an 18 V potential was developed 

across the coupling gap between the two resonators. The perturbation signal was 

achieved by routing this 18 V line through a variable DC power supply and then to 

each of the perturbation beams on the chip (only one connection is depicted in 
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Figure 3.18). The combs of the second resonator were left floating so that the 

system is actuated single-endedly. 

 

Figure 3.18: Schematic of the experimental setup 

The driving signal generated in the PMA software steps up through a defined 

frequency range in discrete steps indicated by the user. For the experiments on the 

large electrostatic design, the frequency range was 16.8 kHz to 17.6 kHz in steps of 

10 Hz. This isolates the resonant peak associated with the in-phase mode of 

vibration. This mode was selected since damping is higher for the out-of-phase 

mode due to the squeezing of air between the two plates of the coupling gap. Eight 

shots were taken by the camera per excitation signal after a settling period of 500 

ms. 
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Figure 3.19: Voltages on the chip during testing 

To generate one complete data set, the wired connections were made as directed in 

Figure 3.18. The variable source was set to 0V (i.e. VPerturbation = 0 V). This means 

that there is no potential across the gap on the suspension beams on the second 

resonator and therefore no perturbation. Two measurement zones ‘A’ and ‘B’ are 

selected on-screen, similar to Figure 3.17. Then the excitation signal is turned on 

and the system takes over. The system generates a 16.8 kHz sine wave and waits 

500 ms for the system transients to settle. The LED then illuminates the sample 

eight times, synchronized with the driving signal. These 8 frozen images are sent to 
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the Data Management System for later processing. Then, the excitation signal is 

automatically stepped up by 10 Hz and the process repeats. Once the 

measurements for 17.6 kHz have been made, the excitation signal turns off and the 

data is processed using digital image processing techniques to determine the 

amplitudes of motion in both x and y directions for each measurement area (‘A’ and 

‘B’) and for each frequency (16.8 kHz – 17.6 kHz with 10 Hz resolution).  

At this point, the user increases the voltage of the variable supply by 1 V (inducing a 

perturbation) and repeats the process. Perturbations up to 20 V with 2.5 V or smaller 

resolution were performed. An additional set of data for the large electrostatic 

system was obtained but instead of an 18 V potential across the coupling gap, a 23 

V potential was used. The perturbation beams were also fed a signal of 23 V + 

VPerturbation. With a higher coupling potential, the coupling stiffness magnitude is 

higher and the eigenvectors should exhibit a reduced sensitivity to perturbation while 

the eigenvalue sensitivity should remain unchanged. 

3.5 Results 

Three measurement sets were prepared during testing from the large 

electrostatically perturbed system on two different chips; one for an 18 V coupling 

potential on chip one, and one each for an 18 V and 23 V coupling potential on chip 

two. The data points for the magnitude data were fitted in Mathematica assuming a 

second-order system since measurement points were clustered around only one of 

the resonant peaks. The fit function was of the following form: 
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(3.20) 

This fitting process yielded an estimation of the resonant frequency of each mass 

(  ), DC displacement of each mass (   ), and quality factor ( ) of each resonator 

for each of the perturbations. In general, the standard errors in the fitted data were 

more than an order of magnitude smaller than the estimated values. This fact 

coupled with visual confirmation when the fit is plotted with the measurement points 

provides a good degree of confidence in the quality of the fitting procedure. The 

quality factors in general were on the order of 100 which supports the claim in 

Chapter 2 concerning damping in MEMS. An example fit for one set of data is shown 

in Figure 3.20. 

 

Figure 3.20: Example of fitting the data with a second order transfer function in Mathematica 
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3.5.1 Chip 1 with 18 V Coupling: Resonant Frequency Shifts 

The first interesting aspect of Figure 3.21 is that the estimates of the resonant 

frequency for each of the masses are not the same. This suggests some asymmetry 

in the system that is likely a result from the asymmetrical excitation. The inability of 

the excitation signal to excite a single resonant mode leads to a superposition of 

each mode for each mass. Even if the weighting of the in-phase mode is much 

higher than the anti-phase mode, the weightings are not necessarily the same for 

each mass and this can lead to the difference. However, it is validating that the 

general response of the resonant frequency of either mass to a perturbation voltage 

is a decrease in frequency that is roughly second order. This matches the 

expectations from the simulation results earlier in this chapter. 

 

Figure 3.21: Resonant frequency dependence on perturbation voltage for the fits on each of 

the left and right masses 

Another interesting behaviour exhibited in Figure 3.21 is that the difference between 

the resonant frequencies is not constant and it is minimized for the measurement at 
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7.5 V. This suggests that the weightings for the superposition of modes are at least 

partially compensated at this voltage leading to the greatest degree of symmetry in 

the system. Later, 0 V and 7.5 V will each in turn be used as a reference point for 

relative shifts in the system. 0 V is used since this is the designed symmetry point 

and 7.5 V is used due to the reasoning above. 

Using the measure of sensitivity introduced in Chapter 2, the following two plots 

(Figure 3.22 and Figure 3.23) illustrate the percentage shift of the resonant 

frequencies relative to two different resonant frequencies, the resonant frequency for 

0 V and the resonant frequency for 7.5 V. 

 

Figure 3.22: Relative shifts in resonant frequency using the 0 V perturbation data as a 

reference 
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Figure 3.23: Relative shifts in resonant frequency using the 7.5 V perturbation data as a 

reference 

The main conclusion that can be drawn from Figure 3.22 and Figure 3.23 is that the 

magnitudes of the relative shifts in the resonant frequency are about 0.6% for 

maximum perturbation regardless of the chosen reference point. 

3.5.2 Chip 1 with 18 V Coupling: Eigenvector Shifts 

The eigenvector shifts are also calculated as first present in Chapter 2, that is: 

         

     
 (3.21) 

In order to populate the eigenvectors from the analyzed data there are several 

choices. The first is to use the peak values from each of the resonators for each 

perturbation voltage: 

    
     

     
  (3.22) 

However, since the maximum amplitudes for each mass occur at different 

frequencies for each perturbation level, it makes more sense to use the analyzed 
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resonator and the amplitude of vibration for the second resonator at the frequency 

associated with maximum amplitude for the first resonator and vice versa. 

 
   

     

                     
        

                     

     
  (3.23) 

The plots of the relative eigenvector shifts are found in Figure 3.24 and Figure 3.25. 

 

Figure 3.24: Percentage change in eigenvectors using 0 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 

 

Figure 3.25: Percentage change in eigenvectors using 7.5 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 
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It is difficult to discern a trend in the above data though it may be noticed that the 

percentage change in the eigenvectors is generally more than an order of magnitude 

greater than the percentage change in the resonant frequencies. This result will be 

discussed in greater detail at the end of the chapter. 

3.5.3 Chip 2 with 18 V Coupling: Resonant Frequency Shifts 

As with the first chip earlier, the first plot (Figure 3.26) presented here depicts the 

absolute changes in resonant frequency for each of the masses for each 

perturbation voltage. 

 

Figure 3.26: Absolute change in resonant frequency for different perturbation potentials on 

Chip 2 

Again the resonant frequencies trend down as perturbation voltage increases. The 

difference between the left and right mass resonant frequencies was computed and 

it was found that the smallest difference was for an 8 V perturbation. This means 

that two different chips both exhibited the greatest degree of symmetry for this 

excitation method around the same perturbation voltage (7.5 V versus 8 V). For this 
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data, the relative shifts in the resonant frequency were therefore calculated using 0 

V as a reference and with 8 V as a reference. This can be seen in the following two 

plots (Figure 3.27 and Figure 3.28). 

 

Figure 3.27: Relative shifts in resonant frequency using the 0 V perturbation data as a 

reference 

 

Figure 3.28: Relative shifts in resonant frequency using the 8 V perturbation data as a 

reference 
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Figure 3.27 and Figure 3.28 both show that the overall relative frequency shift for 

this chip is about 1.4% regardless of reference point. 

3.5.4 Chip 2 with 18 V Coupling: Eigenvector Shifts 

The same plots that were produced for the first chip are repeated here (Figure 3.29 

and Figure 3.30) but, again, no trend is readily identifiable. Compared with the first 

chip, the relative eigenvector changes are also higher and again are more than an 

order of magnitude greater than the relative shifts in the estimated resonant 

frequencies. 

 

Figure 3.29: Percentage change in eigenvectors using 0 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 
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Figure 3.30: Percentage change in eigenvectors using 8 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 

3.5.5 Chip 2 with 23 V Coupling: Resonant Frequency Shifts 

The second chip was tested a second time with a 23 V potential across the coupling 

gap.  Due to the coupling stiffness dependence on the square of the voltage, this 

would yield about a 60% increase in coupling stiffness with all else being equal. The 

intention of this test was to demonstrate the tunability of the coupling leading to the 

ability to control the range and sensitivity of a sensor based on the veering principle. 

The data was analyzed in the same way as before and can be seen in Figure 3.31, 

Figure 3.32, and Figure 3.33. 
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Figure 3.31: Absolute change in resonant frequency for different perturbation potentials 

For this configuration, the minimum separation between the left and right resonant 

frequencies (greatest symmetry) was for a 5 V perturbation. 

 

 

Figure 3.32: Relative shifts in resonant frequency using the 1 V perturbation data as a 

reference 

 

17120 

17140 

17160 

17180 

17200 

17220 

17240 

17260 

17280 

17300 

0 5 10 15 20 25 

R
e

so
n

an
t 

Fr
e

q
u

e
n

cy
 (

H
z)

 

Perturbation Voltage (V) 

Resonant Frequencies 

Left Mass 

Right Mass 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0 5 10 15 20 25 

P
e

rc
e

n
ta

ge
 c

h
an

ge
 in

 f
re

q
u

e
n

ci
e

s 

Perturbation Voltage (V) 

Relative Frequency Shifts (1V) 

Left Mass 

Right Mass 



73 

 

 

Figure 3.33: Relative shifts in resonant frequency using the 5 V perturbation data as a 

reference 

 

The relative shifts in resonant frequency continue to be about 1%. 

3.5.6 Chip 2 with 23 V Coupling: Eigenvector Shifts 

The analyzed data for the eigenvector shifts continues to be difficult to interpret. 

Ideally, with a stronger coupling a reduced sensitivity to the perturbation voltage 

should have been demonstrated. However, little change is seen in the data (see 

Figure 3.34 and Figure 3.35). It continues to exhibit an undefined trend but still 

shows at least an order of magnitude gain over the shifts in resonant frequency. It 

does not demonstrate a reduced sensitivity. The cause of this will be discussed in 

the next section. 
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Figure 3.34: Percentage change in eigenvectors using 0 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 

 

 

Figure 3.35: Percentage change in eigenvectors using 5 V perturbation as the reference. The 

blue points populate the original vectors with the absolute maximum for the left mass and the 

associated right mass amplitude for that frequency. 

0 

5 

10 

15 

20 

25 

30 

0 5 10 15 20 25 

P
e

rc
e

n
ta

ge
 c

h
an

ge
 in

 v
e

ct
o

rs
 

Perturbation Voltage (V) 

Relative Eigenvector Shifts (1V) 

Left Mass as Max 

Right Mass as Max 

0 

5 

10 

15 

20 

25 

30 

0 5 10 15 20 25 

P
e

rc
e

n
ta

ge
 c

h
an

ge
 in

 v
e

ct
o

rs
 

Perturbation Voltage (V) 

Relative Eigenvector Shifts (5V) 

Left Mass as Max 

Right Mass as Max 



75 

 

3.5.7 Discussion of Results 

Overall it seems that the behaviour of the resonant frequencies was as expected. 

That is, they decreased with increasing perturbation voltage with a definite trend. 

The eigenvector shifts were not so well behaved. In general, the eigenvector shifts 

were an order of magnitude greater than the shifts in frequency but there is not one 

definite trend. This behaviour is attributed to two factors: nonlinearities at high 

perturbation voltages and a time-varying stiffness of the coupling between the two 

resonators. 

The time-varying stiffness is likely the dominant effect since there can be up to a 

300% range in stiffness values between measurements. This is due both to the 

superposition of modes and to the nature of energy localization since both contribute 

to modulate the gap distance in the coupling. In a perfectly symmetric system with 

no perturbation, the coupling gap distance is constant when excited in the in-phase 

mode. This is not realizable practically so even for a symmetric system, the 

contribution of the anti-phase mode in the superposition leads to a time-varying gap. 

Energy localization also leads to a time-varying gap since it is manifested as a 

difference in amplitude of vibration for each resonator even if the resonant frequency 

and phase is identical. In this system, the gap distance is designed to be 2 μm. The 

amplitudes of vibration are on the order of 0.2 μm. This means the range of the gap 

distance is about 1.6 μm (for purely anti-phase at minimum separation) to 2.4 μm 

(for purely anti-phase at maximum separation. Since the coupling magnitude is 

inversely proportional to the cube of gap distance, the coupling stiffness for a 1.6 μm 

gap is more than three times stronger than the coupling stiffness for a 2.4 μm gap. 
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The time-varying nature of the coupling stiffness can then be used to rationalize the 

measured relative shifts of the eigenvector. Since the coupling stiffness is already 

much less than the grounding spring stiffness, the shifts in eigenvectors are 

expected to be larger than the shifts in resonant frequency. This is observed 

(compare ~20% shift in the eigenvectors to a 1.4% shift in the resonant frequencies 

of the second chip for an 18 V coupling). However, a trend in the eigenvector shifts 

was not isolated in this thesis since it is impossible to predict the coupling gap for 

each measurement or to account for its change during the course of a 

measurement. This time-varying nature needs to be addressed in future designs in 

order to better compare the shift in eigenvectors to the theory. 
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Chapter  4: Three Degree of Freedom Systems 

As has been demonstrated theoretically and experimentally, an improvement in 

sensitivity to perturbation can be attained using a 2DOF system when compared to a 

single DOF system. Here the idea is extended to 3DOF systems analytically and 

with simulated results. 

4.1 Introduction 

Similar to Chapter 2, here a 3DOF system free from damping will be analyzed. The 

basic system is described schematically in Figure 4.1. For the 3DOF system, each 

mass is suspended by a grounding spring referred to as ‘kj’ where the subscript ‘j’ 

denotes the mass number. The coupling springs are labeled ‘kj,j+1’ where the 

subscript denotes the two masses which the spring couples.  

 

Figure 4.1: Schematic of the 3DOF spring-mass system 

In the case of the 3DOF system, there are multiple approaches to perturbing the 

system. One option is to perturb any one of the masses. This yields two unique 

approaches since the system is symmetric and therefore a perturbation only on 

mass one is equivalent to a perturbation applied only to mass three. Another option, 

which lends itself to differential sensing, is to perturb the first mass and apply the 
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opposite perturbation to the third mass, for example increasing the stiffness of k1 

while decreasing the stiffness of k3 by the same magnitude. 

4.1.1 Vibration Modes 

In addition to choosing how to perturb the system, it is also important to know what 

the mode shapes look like. The first mode (lowest frequency) is the in-phase mode 

in which all three masses oscillate with the same phase and the same amplitude. 

This differs slightly from the more classic 3DOF spring-mass system in which the 

center mass does not have its own grounding spring. In the classic system, the 

amplitude of vibration for the center mass in the first mode is a factor of    larger 

than either the amplitude of the first or third mass.  

In the second mode, the first and third masses oscillate out-of-phase with each other 

but with the same amplitude and the middle mass remains stationary.  

In the third mode (highest frequency), the first and third mass oscillate in phase with 

each other and the middle mass oscillates out-of-phase with each of the others and 

with an amplitude that is twice as large. These modes are true for positive coupling 

springs, but the first and third modes will be swapped for negative coupling. 

It is important to note that the scheme in which only the middle mass is perturbed 

will have no effect on the system if it is being driven in the second mode since the 

middle mass is motionless in this mode regardless of coupling.  

4.1.2 Veering in 3DOF Systems 

Another difference between 2DOF and 3DOF systems is the number of veering 

zones. A graphical depiction of the veering zones for a 3DOF system with positive 
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coupling can be found in Figure 4.2. Just like in the 2DOF system, the trajectories of 

the loci of the eigenvalues seem to “trade” between modes. 

 

Figure 4.2: Graphical depiction of veering in the 3DOF system with positive coupling 

4.2 Perturbation on the Third Mass 

For 3DOF systems, the approach used in Chapter 2 for solving for the eigenvalue 

and eigenvector sensitivities is unwieldy. Instead, the eigen derivatives method will 

be used. This approach yields the same results for a 2DOF system as the approach 

used earlier which helps validate those findings. This approach was developed by 

Fox and Kapoor [29] and was found referenced in another paper by du Bois, 

Adhikari, and Lieven [30]. Using this method, the sensitivity of the eigenvalues to a 

disorder parameter is given by the following for an undamped system [30]: 

    

  
   

  
  

  
   

  

  
    (4.1) 
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where    is the eigenvalue and    is the mass-normalized eigenvector of the ith 

mode.   and   are the system’s stiffness and mass matrices respectively.  

The eigenvector sensitivity expression is also given [30]: 

 
   

  
  

  
   

  
  

 
    

  
  

  
  

   
  
  

   

    

  

   

 (4.2) 

The definition of      is simply      . The eigen derivatives method is a closed-

form solution for “a self-adjoint, discrete, undamped structural dynamic 

eigenproblem” [30] and is valid for any number of degrees of freedom. Since we 

have high quality factors in MEMS, a good match is expected from this method. 

This approach will now be used in full for this perturbation approach (stiffness 

perturbation on the third mass) in order to find the eigenvalue and eigenvector 

sensitivities as defined in Chapter 2. In the following sections, the results of this 

method will be summarized for the additional perturbation schemes introduced at the 

beginning of this chapter. 

For the 3DOF system as defined earlier, the mass and stiffness matrices for the 

unperturbed system are as follows: 

 
   

        
           

        

         
   
   
   

  (4.3) 

This assumes that            and            and that all of the masses 

are identical. This would be true of a symmetric system. As before, a modified 

stiffness matrix is used which scales the original stiffness matrix by a factor of  
 

 
. 
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 (4.4) 

Using the same definition of the eigenvalue problem as in Chapter 2, the 

eigenvalues and mass-normalized eigenvectors for the 3DOF system are: 

 

      
    

 
 
 
 
 
 
 
 

  
 

  
 

   
 
 
 
 
 
 

 

        
    

 
 
 
 
 
  

  
 
 

   
 
 
 
 

 

             

 
 
 
 
 
 
 

 

  

   

  
 

   
 
 
 
 
 
 

 

 

(4.5) 

These eigenvalues and eigenvectors are the basis for the analysis. At this point, the 

mass and stiffness matrices for the perturbed system need to be defined. For a 

stiffness perturbation applied only to the third mass, these matrices are: 

 
   

      
        
        

         
   
   
   

    
  

 
   

  

 
 (4.6) 

4.2.1 Sensitivity of the Eigenvalue for the First Mode 

Using the eigenvalue derivative equation, the sensitivity of     to the disorder 

parameter is found by simply substituting the relevant vectors and matrices. The 

derivative of the stiffness matrix to the disorder parameter is trivial to solve since the 

perturbation is added to the original stiffness. The derivative of the mass matrix will 

be zero throughout since only a stiffness perturbation is considered here. 
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 (4.7) 

         
    

  
     

 

 
 (4.8) 

 
      

   

 
  

 
 

  

 
 

 

 
 

  

  
 (4.9) 

4.2.2 Sensitivity of the Eigenvalue for the Second Mode 

The same approach applied to the second eigenvalue actuated in the second mode: 

 

    

  
  

  

  
 

 

  
  

   
   
   

 

 
 
 
 
 
  

  
 
 

   
 
 
 
 

 
 

 
 (4.10) 

        
 

 
 (4.11) 

       

   

 
 

 
 

  

  
          (4.12) 

In this thesis the magnitude of the coupling stiffness has normally been regarded to 

be much smaller than for a grounding spring. This simplification will continue to be 

used throughout this analysis. 

4.2.3 Sensitivity of the Eigenvalue for the Third Mode 

And again for the third mode: 
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          (4.15) 

Unlike in the 2DOF system, it is shown that the sensitivity of the eigenvalues is 

different for each mode. 

4.2.4 Sensitivity of the Eigenvector for the First Mode 

Again, using the eigenvector sensitivity equation and making the relevant 

substitutions, the sensitivity of the first eigenvector to the disorder parameter is 

found. 

 

    

  
 

  
 

  
       

   
   
   

 

 
 
 
 
 
 
 

  
 

  
 

   
 
 
 
 
 

       

 
 
 
 
  

 

  
 
 

   
 
 
 
 

 

 
 

  
 

  

  

 

  
  

   
   
   

 

 
 
 
 
 
 
 

  
 

  
 

   
 
 
 
 
 

        

 
 
 
 
 
 
 

 

  

 
  

  
 

   
 
 
 
 
 
 

 

(4.16) 

 

    

  
  

 

      

 
 
 
 
  

 

  
 
 

   
 
 
 
 

 
  

      

 
 
 
 
 
 
 

 

  

 
  

  
 

   
 
 
 
 
 
 

              (4.17) 

Since the length of all of the mass-normalized eigenvector is 1, the sensitivity of the 

eigenvectors as defined in Chapter 2, 
        

     
, is simply the length of the product of   

with (4.17). 

 

        

 
 
 
 
 

 

    
 

  

     
 
 
 
 

 

 
 
 
 
 
 
  

 

     

   

     

 
 

      
 
 
 
 
 
 

 

 
 
 
 
 
 
     

   

   

   

     

    
 
 
 
 
 
 

 (4.18) 
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 (4.19) 

Therefore, the sensitivity of the first eigenvector is about 68% greater than for an 

equivalent 2DOF system (
        

     
     

  

  
 . 

4.2.5 Sensitivity of the Eigenvector for the Second Mode 

Repeating the procedure for the eigenvector of the second mode, the sensitivity is 

found to be: 

         

     
 

   

 

 

 
     

  

  

 (4.20) 

This is an improvement of about 72% over the 2DOF system. 

4.2.6 Sensitivity of the Eigenvector for the Third Mode 

Repeating the procedure a third time for the eigenvector of the third mode, the 

sensitivity is found to be: 

         

     
 

   

    

 

 
     

  

  

 (4.21) 

This is an improvement of about 20% over the 2DOF system. 

4.2.7 Summary of the Perturbation on the Third Mass Scheme 

Comparing the sensitivities of the eigenvectors, it is seen that actuation in the 

second mode yields the greatest sensitivity. It is also trivial to show that for coupling 

stiffnesses         , the sensitivity of the eigenvector when excited in the second 

mode is greater than the sensitivity of the eigenvalue when excited in the second 

mode. This requirement is actually less restrictive than it was in the 2DOF system. 

Finally, all else being equal, it is seen that the sensitivity of the eigenvector in the 

second mode is about 70% better than for a 2DOF at the expense of area of the 

sensor and complexity (signal processing on three output signals rather than two). 
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4.3 Perturbation on the Center Mass 

Another suggested technique was to perturb just the center mass. The results of the 

eigen derivative method are presented here. In this scheme, the mass and stiffness 

matrices for the system are: 

 
   

      
          
      

         
   
   
   

    
  

 
 (4.22) 

4.3.1 Eigenvalue Sensitivities for Center Mass Stiffness Perturbation 
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          (4.25) 

The most interesting thing to notice about this scheme is that the calculated 

sensitivity of the eigenvalue of the second mode is zero. This result can be 

explained intuitively since in the second mode the center mass is stationary, i.e. its 

grounding spring does not do any work. If the spring doesn’t do work, changes to its 

stiffness will not be manifested elsewhere. This will also be true of the eigenvector 

sensitivity of the second mode. 

4.3.2 Eigenvector Sensitivities for Center Mass Stiffness Perturbation 
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Unsurprisingly, given the symmetry of the system when perturbed under this scheme 

the sensitivities of the first and third eigenvectors are identical. 

4.3.3 Summary of the Perturbation on the Center Mass Scheme 

In this approach the second mode has no sensitivity to stiffness (or mass) 

perturbations. The sensitivities are equal for the eigenvectors actuated in either the 

first or third modes with coupling stiffness constraints of          and          

respectively in order to achieve a greater sensitivity than the associated 

eigenvalues. However, these sensitivities are less than can be achieved with a 

2DOF system. Therefore this approach is less suitable for sensing applications but it 

was important for completeness to explore the possibility. 

4.4 Perturbation on the First and Third Masses 

The last suggested technique was investigated since it seems to lend itself well to 

differential sensing. In this case a positive stiffness perturbation is applied to the first 

mass and a negative stiffness perturbation is applied to the third mass. As such, the 

stiffness and mass matrices for this system are as follows: 

 
   

        
        
        

         
   
   
   

    
  

 
 (4.29) 

4.4.1 Eigenvalue Sensitivities 

Somewhat surprisingly, the eigenvalue sensitivities for this approach are the same 

for each mode and are all zero! 

       

   

   (4.30) 
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4.4.2 Eigenvector Sensitivities 

Even though the sensitivities of the eigenvalues are zero for this scheme, the 

sensitivities of the eigenvectors are not. Using the same method as before, the 

sensitivities were found to be: 

         

     
  

 

 

 

 
     

  

  

 (4.31) 

         

     
  

 

 

 

 
     

  

  

 (4.32) 

         

     
  

 

 

 

 
     

  

  

 (4.33) 

4.4.3 Summary of Sensitivities 

Compared to the 2DOF system, all three of the modes exhibit sensitivity 

improvements which range from about 15% to 250% with all else being equal. 

Clearly this approach yields the greatest sensitivity improvement for the increase in 

area if the perturbation signal can be made differential. If, for example, only positive 

influences are available (such as mass adsorption at the surface), the scheme 

presented in Section 4.2 is the best. Since this system exhibited the greatest 

performance, the full mathematical analysis can be examined in Appendix C. 

Perhaps the greatest benefit of this approach is not that the sensitivity improvement 

is the greatest of any system presented, but that the eigenvalues are insensitive to 

the perturbation. This means that the system doesn’t require any feedback control to 

remain at resonance. Once excited in the desired mode (most likely the second 

since it provides the greatest sensitivity) the driving signal can remain constant. This 

is advantageous because of its simplicity and speed. 
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4.5 Comparison with Numerical Approach 

A 3DOF system with a positive coupling was defined in MATLAB in order to 

compare the results of the eigen derivatives analytical method with a numeric 

approximation and show that they are virtually identical for the range of perturbations 

that are ±10% of the unperturbed stiffness. The differential approach to perturbation 

was used. The three modes are depicted in Figures 4.3 – 4.5. 

 

Figure 4.3: Comparison of eigenvector and eigenvalue sensitivities from a numerical analysis 

of the first mode for a 3DOF system with a coupling stiffness magnitude 1/10
th

 of a grounding 

spring stiffness. 
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Figure 4.4: Comparison of eigenvector and eigenvalue sensitivities from a numerical analysis 

of the second mode for a 3DOF system. 

 

Figure 4.5: Comparison of eigenvector and eigenvalue sensitivities from a numerical analysis 

of the third mode for a 3DOF system. 
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The comparison can be made by noticing that the coupling stiffness magnitude is 

10% of the grounding stiffness. Therefore the quantity 
  

  
 becomes    

  

 
 , with 

  

 
 

being the x-axis. The table below compares the analytical results with those found 

from the numerical simulation. 

Table 4.1: Comparison of eigenvector and eigenvalue sensitivities from analytical and 

numerical approaches for 1% perturbation 

 Eigenvalues Eigenvectors 

Mode Analytical Numerical Analytical Numerical 

First 0 0.00066 0.82 0.81 

Second 0 0.00045 0.87 0.86 

Third 0 0.00013 0.29 0.29 

 

Table 4.2: Comparison of eigenvector and eigenvalue sensitivities from analytical and 

numerical approaches for 10% perturbation 

 Eigenvalues Eigenvectors 

Mode Analytical Numerical Analytical Numerical 

First 0 0.048 0.82 0.53 

Second 0 0.028 0.87 0.61 

Third 0 0.013 0.29 0.29 

 

The comparison shows that the analytical eigenvalue sensitivity expression is 

compelling for even a large perturbation of 10%. The analytical eigenvector 

sensitivity expression is only about 1.2% off at worst for a 1% perturbation but this 

rises to about 35% for a 10% perturbation. A designer can make the tradeoff for a 

larger range of perturbations at the expense of accuracy, though error correction 

through the use of lookup tables could also be used. 
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Chapter  5: Conclusion 

This area of research continues to provide a wealth of opportunities for improvement 

and novel discovery. Here it has been confirmed for 2DOF systems that a sensitivity 

improvement over resonant frequency based sensors of the same size is possible 

and is practically limited by the ratio of the grounding spring stiffness to the coupling 

spring stiffness. It has also been shown that 3DOF systems promise to yield even 

greater benefits (250% improvement) than the 2DOF systems. 

It is also evident that another design iteration would be prudent in order to address 

the practical issues apparent in the current MEMS system. Advice for improving the 

existing system and avenues for future work are summarized in the following 

chapter. Still, the current system successfully exhibits the resonant frequency 

dependence of these coupled systems to perturbation while simultaneously 

demonstrating that the eigenvector sensitivity can be an order of magnitude larger 

even if a consistent trend is not readily evident. Since this was the first MEMS 

design to leverage energy localization at this institution, it lays the groundwork for 

the continuation of the area of research at UBC and gives a base off of which future 

researchers can build. 
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Chapter  6: Future Work 

6.1 Further Testing on Existing Systems 

Four experimental systems were designed and fabricated on each chip but only one 

of these systems – the large dimensioned electrostatic perturbation system – 

underwent complete testing. This was due to limited availability of testing equipment 

since the Micro System Analyzer was to be returned to Polytec for hardware 

upgrades over the course of several months in 2012. Therefore the first order of 

business for future work is the characterization of the other three systems, starting 

with the large dimensioned mechanical perturbation system. Since these systems 

were designed as a proof-of-concept for the sensing paradigm and for these specific 

approaches to inducing perturbation, the smaller dimensioned systems are of less 

importance. However, it can be seen that the electrostatic comb drive in the 

mechanically perturbed system could easily be replaced by an inertial mass in order 

to make a practical accelerometer. Therefore characterization of this approach is of 

the most interest. It would also be interesting to see if beam softening is the 

dominant effect in the system as it was in the simulation results. A wideband power 

amplifier may be necessary for characterizing this system since it is stiffer than the 

electrostatic system by design and the Polytec system signal generator is limited to 

±10 V. 

6.2 Account for the Time-Varying Nature of the Coupling Spring 

The time-varying nature of the coupling gap can be compensated for by either a 

geometric design change or through feedback control of the potential across the 

coupling. The geometric design change could have the effective area of the 
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capacitance be a function of the separation gap in such a way that it offsets the 

cubic dependence on the coupling gap in the case of the flat-surfaced gap-varying 

coupling used in this research. 

6.3 3DOF Experimental System 

The next order of business for future work is the design, fabrication, and testing of a 

3DOF system to support the analytical results presented earlier in this thesis. 

Another student in the research group has been taking over in this respect and 

should be able to provide results in several months. 

6.4 Higher Order Systems: Analysis and Experiment 

Since an improvement in sensitivity was found when increasing from single DOF 

sensors to 2DOF sensors, and again when moving to 3DOF sensors, it makes 

sense to explore higher order systems both analytically and experimentally.  The 

most interesting aspect will be to optimize the order of the system for the desired 

sensitivity since the penalty of higher order systems is size and signal processing 

given that the length of the eigenvectors is equal to the number of degrees of 

freedom. Some thought must also be given to the method of measuring the motion 

of the resonators since the MSA can only measure two areas of the frame. One 

possibility is to move to on-chip sensing with capacitance measurements. Higher 

order systems also present an increase in the number of perturbation schemes 

which leads to longer analysis in order to compare the alternatives. 

6.5 Different Perturbation Frequencies 

All analysis in this thesis was performed assuming static perturbation. This was 

assumed valid since, when operated as a sensor, the variations in quantities of 
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interest are typically at a much lower frequency than the resonant modes of the 

oscillators. It may be interesting to explore the possibilities when the perturbation 

frequency approaches that of the oscillation modes. Extending this thought, the 

reaction of the system to perturbation signals which vary much faster than the 

frequency of the oscillators could also be investigated. 

6.6 Generic Architecture 

There are numerous resonator designs and methods of actuation in microsystems. 

Optimizing a generic architecture for sensing specific quantities which could be used 

as building blocks by other designers could prevent a lot of repetition in the design 

process. A well characterized design also reduces opportunities for errors in a 

system. By developing standard architectures, comparison between different 

projects would also be made easier. 

6.7 Energy Domains 

Finally, the veering phenomenon is not constrained to the mechanical energy 

domain. Some research has been started in the group toward creating sensors 

based on resonance in electrical circuits. The electrical domain is exciting since the 

size of a system is minute, and the “amplitudes” of vibration are simply electrical 

signals which can be measured with ease when compared to the physical masses in 

MEMS. The optical domain may be another path of research. 
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Appendices 

Appendix A  Derivation of Electrostatic Spring Equation 

V

 

Capacitance of a parallel plate capacitor is given by with a shrinking of the gap   by amount 

 : 

 
  

  

     
 (A.1) 

The energy stored in a fully charged capacitor is given by the equation: 

 
  

 

 
    

 

 

    

     
 (A.2) 

Force is the derivative of energy: 

 
  

  

  
  

 

 

    

      
 (A.3) 

Taking the first order Taylor series approximation in  : 

 
   

 

 

    

  
   

 

 
   (A.4) 

The term that scales linearly with   is: 

 
    

    

  
 (A.5) 

The equivalent spring constant formed in an electrostatic gap has the following properties: 

1) Negative sign 

2) Inverse cube relationship to displacement 

3) Proportional to the square of the potential difference between the surfaces 

4) Proportional to the mutual area of the two surfaces 

d V 
A 
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Appendix B  Design Parameters 
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Figure B.1: Layout for electrostatically perturbed systems 
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Figure B.2: Layout of mechanically perturbed systems 
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Table B.1: Design parameters for large and small electrostatic systems 

Physical Variable Value for Large System Value for Small System 

plate_x 210 μm 110 μm 

plate_y 210 μm 110 μm 

sus_length 500 μm 200 μm 

beam_width 6 μm 3 μm 

elec_x 50 μm 50 μm 

elec_y 300 μm 200 μm 

electrode_gap 2 μm 2 μm 

finger_length 80 μm 80 μm 

finger_width 6 μm 3 μm 

finger_pitch 16 μm 10 μm 

finger_overlap 40 μm 40 μm 

anchor_width 24 μm 24 μm 

num_combs 10 10 

small_elec 100 μm 25 μm 

 

Table B.2: Design parameters for large and small mechanical systems 

Physical Variable Value for Large System Value for Small System 

plate_x 210 μm 110 μm 

plate_y 210 μm 110 μm 

sus_length 500 μm 200 μm 

beam_width 6 μm 3 μm 

elec_x 50 μm 50 μm 

elec_y 300 μm 200 μm 

electrode_gap 2 μm 2 μm 

finger_length 80 μm 80 μm 

finger_width 6 μm 3 μm 

finger_pitch 16 μm 10 μm 

finger_overlap 40 μm 40 μm 

anchor_width 24 μm 24 μm 

num_combs 10 μm 10 

finger_length2 100 μm 50 μm 

finger_overlap2 70 μm 40 μm 

num_combs2 8 8 
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Appendix C  Analysis of 3DOF System 

This is the full mathematical treatment of the 3DOF system with a positive 

perturbation to the first mass’s stiffness and an equal but negative perturbation to 

the third mass’s stiffness using the eigen derivatives method. 

Unperturbed Solutions 

The unperturbed mass and stiffness matrices for the 3DOF system are: 
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The equations of motion are then summarized as: 

          (C.2) 

Assuming a solution of                            
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     (C.5) 

Now the stiffness matrix is modified by scaling it by 
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 (C.6) 

The eigenvalue problem is then: 
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where    is the nth eigenvalue and    is the associated eigenvector. 
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The solutions to this eigenvalue problem are as follows, noting that the mass-

normalized eigenvectors (    are given, having been solved for by:    
  

   
    

 

 

      
    

 
 
 
 
 
 
 
 

  
 

  
 

   
 
 
 
 
 
 

 

        
    

 
 
 
 
 
  

  
 
 

   
 
 
 
 

 

             

 
 
 
 
 
 
 

 

  

   

  
 

   
 
 
 
 
 
 

 

 

(C.8) 

Applying Perturbations 

For a positive perturbation on the first mass’s stiffness and a negative perturbation 

on the third mass’s stiffness, the modified stiffness matrix and mass matrix are: 

 

   

          
           

          
         

   
   
   

    
  

 
 (C.9) 

Using the eigen derivatives method, changes in the eigenvalues and eigenvectors 

can be found: 
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Perturbed Eigenvalues 

Solving for the sensitivity of the first eigenvalue: 
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Similarly for the second and third eigenvalues: 
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Perturbed Eigenvectors 

Solving for the sensitivity of the first eigenvector 
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(C.16) 
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Since all of the eigenvectors were mass-normalized (and therefore have magnitudes 

of 1), the sensitivity of the eigenvectors are: 
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Similarly for the second and third eigenvectors: 
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