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Abstract

A finite-length topological insulator nanowire, proximity-coupled to an or-
dinary bulk s-wave superconductor and subject to a longitudinal applied
magnetic field is shown to realize a one-dimensional topological supercon-
ductor with an unpaired Majorana fermion localized at each end of the
nanowire. Here we also show that the unpaired Majorana fermions persist
in this system for any value of the chemical potential inside the bulk band
gap of order 300 meV in Bi2Se3 by computing the Majorana number. From
this calculation, we also show that the unpaired Majorana fermions persist
when the magnetic flux through the nanowire cross-section deviates signif-
icantly from half flux quantum. Lastly, we demonstrate that the unpaired
Majorana fermions persist in strongly disordered wires with fluctuations in
the on-site potential ranging in magnitude up to the size of the bulk band
gap. These results suggest this solid-state system should exhibit unpaired
Majorana fermions under accessible conditions likely important for experi-
mental study or future applications.

ii



Preface

Chapter 3 is based on work conducted at UBC by Professor Marcel Franz
and Ashley Cook. I was responsible for generating all numerical data and
performing some of the analytical calculations.

A manuscript based on chapters 1 and 3 has been submitted for pub-
lication. I wrote most of the manuscript. This manuscript also includes
an additional section II. C., ”Majorana state in a finite-wire configuration”
and associated appendix written by Mohammad Vazifeh not included in this
thesis.

Chapter 3 also references small portions of a previously published paper[87]
by Professor Franz and Ashley Cook, specifically those portions of the text
referring to Figures 3.3, 3.4, 3.7, and 3.8, which were originally published in
that paper. I collected all numerical data for this paper.
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Chapter 1

Introduction

1.1 Topological quantum computation

Considerable effort is being made around the world to build a practical quan-
tum computer, since these devices are predicted to dramatically improve
computational power for certain tasks [1]. Significant challenges remain,
however. One of the most serious faced by many proposals is deterioration
of stored information, due to quantum decoherence, too rapid for most ap-
plications [2]. Related schemes using topological quantum computers are
predicted to avoid this difficulty, making them worthy of investigation [3].

In particular, solid state realizations of fermions that are their own an-
tiparticles, called Majorana fermions, have been under intense theoretical
study as a possible platform for this type of fault-tolerant quantum compu-
tation [4, 5].

1.2 Majorana fermions

1.2.1 Background

In 1937, Ettore Majorana first showed that the complex Dirac equation can
be separated into a pair of real wave equations, each of which is satisfied by
real fermionic fields [6]. Such a real fermionic field, denoted by Ψ, satisfies
the property that Ψ = Ψ†. A particle created by this field, known as a
Majorana fermion (MF), is therefore distinguished by the fact that it is its
own antiparticle [7]. Having many properties which make them interesting
from the standpoint of fundamental science, while also being a possible plat-
form for fault-tolerant, scalable quantum computation[4, 5, 8–11], Majorana
fermions are of tremendous interest to the condensed matter community.
After intense effort, some proposals to realize Majorana fermions made in
recent years seem to be bearing fruit, with signatures potentially of Majo-
rana fermions already being reported[12–14]. Of the many devices proposed
for harbouring Majorana fermions [7, 15], however, virtually all face con-
siderable experimental challenges in achieving the conditions necessary for
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1.2. Majorana fermions

Majorana fermion emergence. Additional hurdles are associated with the
control and manipulation of MFs which is necessary for harnessing their
potential for quantum computation. Thus, even if Majorana fermions have
indeed been conclusively observed, there remains a need for more accessible
platforms with which to realize MFs sufficiently robust for applications.

1.2.2 Applications in topological quantum computation

A system of N spatially-separated Majorana fermions is predicted to satisfy
non-Abelian statistics, implying that such a system has an N -quasiparticle
ground state that is degenerate. This degeneracy allows adiabatic inter-
change of the quasiparticles, or braiding, to correspond to unitary operations
on the ground state. For Majorana fermions, it has also been shown that the
only way to perform unitary operations on the ground state - which could
be used for computing - is by braiding, and these operations are dependent
only on the topology of the braid. Since the system is in a topological phase
when Majorana fermions are present, this degenerate ground state is also
separated from the rest of the spectrum by an energy gap known as the
mini-gap. If the temperature is much lower than the mini-gap, and the sys-
tem is weakly perturbed using frequencies much smaller than the gap, the
system evolves only within the ground state subspace [16].

All of these features combined mean that a system of spatially-separated
Majorana fermions could be used as a quantum computer that is immune to
the tremendous obstacle faced by most other proposed platforms for quan-
tum computing known as decoherence [17]. Experimental confirmation of
the existence of Majorana fermions is a crucial first step towards practical
quantum computing, but it is imperative that platforms possessing robust
Majorana fermions under stable conditions be identified and developed.

1.2.3 Existing theoretical proposals for realizing Majorana
fermions

There is no shortage of proposals for realizing Majorana fermions experi-
mentally. Earlier suggestions for physical systems that support Majorana
fermion states include fractional quantum Hall states at filling ν = 5

2 [18]
and Helium-3[19]. These ground-breaking proposals are thought to be ex-
tremely challenging to realize experimentally[20], however. We will discuss
the many other proposals and comment on the experimental challenges they
face below.

2



1.2. Majorana fermions

2D topological insulators have long been proposed as platforms for realiz-
ing Majorana zero-modes, for instance, having the advantages of greatly fa-
cilitating Josephson-based Majorana detection, long considered to be smok-
ing gun confirmation of the presence of Majorana zero-modes[15], as well as
being unaffected by non-magnetic disorder due to time-reversal invariance[21,
22] and, in principle, possessing a large pairing gap exhibited by the par-
ent superconductor[21, 23]. However, of many materials predicted to be
2D topological insulators[24–30], only one, HgTe, has been confirmed ex-
perimentally thus far[31, 32], although there has also been some evidence
recently that InAs/GaSb quantum wells may also exhibit a topological in-
sulator phase[33, 34]. 2D semiconductor heterostructures have also shown
promise as platforms for realizing Majorana zero-modes, but face challenges
due to small spin-orbit energies[35, 36], a need for difficult-to-engineer, high-
quality interfaces, and limited tunability[15].

An innovative proposal for realizing Majorana zero-modes in three di-
mensional topological insulators due to Fu and Kane exists[37], but this
proposal, while ground-breaking, faces considerable challenges given that
time-reversal symmetry must be broken to achieve Majorana zero-modes,
making the device vulnerable to non-magnetic disorder[15]. There have
also been many proposals based on Su2RuO4, but even in the simplest of
these proposals, the mini-gap protecting Majorana zero-modes from excited
states is in the milliKelvin range[15], and a beautiful proposal for realizing
Kitaev’s 1D toy model along an ordinary hc

2e vortex line threading a layered
spinful p+ ip superconductor likely to be Su2RuO4 currently faces the same
problem[15, 38].

There is great interest in realizing Majorana zero-modes in one dimen-
sional systems, because they have generally been predicted to remain sepa-
rated from excited states by a larger energy gap than in other proposals[15].
Conventional 1D wires with sizeable spin-orbit coupling, proximate to s-wave
superconductors, and subject to modest magnetic fields[20, 39] are seen as
very promising platforms for first experimental realization of Majorana zero-
modes[15]. These proposals must overcome numerous issues, however, such
as positioning of the chemical potential in a rather small interval of roughly
1 K over distances long compared to the wire’s coherence length[15]. This
constraint could be relaxed by applying larger magnetic fields, but this in-
troduces other difficulties[15]. Tuning of the chemical potential could likely
be even more difficult due to disorder-induced fluctuations in the chemical
potential, since the topological phase corresponding to the presence of Ma-
jorana zero-modes appears only at finite magnetic fields in these devices, so
Anderson’s theorem does not protect the gap against non-magnetic disorder,
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1.2. Majorana fermions

which is always pair-breaking according to many previous studies[21, 40–47].
Further, since the ratio of Zeeman energy to spin-orbit energy is small for
both wires made of InAs and InSb[48], disorder is likely to play a non-trivial
role[15]. Although there have been efforts to ameliorate this issue by elimi-
nating an applied magnetic field[49, 50] from the device or reducing it[51, 52],
these approaches can also lead to complications that can potentially cause
the Majorana zero-modes to disappear[49, 51].

The above conventional 1D wire proposals further face the challenge that
multiple sub-bands are usually occupied in these wires and gating into the
lowest sub-band regime is potentially non-trivial, especially if these wires are
in close proximity to a superconductor as proposed[15]. Multichannel wires
have been shown to support the 1D topological superconductor state leading
to Majorana zero-modes away from the lowest sub-band limit[43, 46, 53, 54],
but these systems still require some degree of gating, leading to proposals of
increasing complexity involving regular arrays of superconducting islands in
contact with the wire[55–57]. Such work has even led to the ingenious pro-
posal of a chain of quantum dots that would be bridged by superconducting
islands[57], but reaching the regime where only a comparatively small num-
ber of quantum dots would be needed would require very fine-tuning that
would likely suffer from strong randomness[15]. Carbon nanotubes, also
suggested as hosts for Majorana zero-modes, face considerable challenges
in reaching the spinless regime with proximity-induced pairing required[58–
60], while proposals involving half-metallic ferromagnetic wire also face chal-
lenges, such as the need to couple to non-centrosymmetric superconductors
with spin-orbit coupling[61, 62].

Despite these tremendous challenges, there have been promising exper-
imental results for Majorana fermions based on some of these proposals.
Josephson effects at the surface of a variety of 3D topological insulators
with superconducting electrodes have been observed [12, 63–68]. While these
experiments, and related Andreev conductance measurements[69–72] show
interesting and unusual features, these cannot be readily attributed to the
single Majorana zero-mode (typically only one out of 105 modes)[15].

1.2.4 Experimental progress

The nanowire-based proposal of Lutchyn et al. [39] and Oreg et al. [20]
has also led to convincing evidence for a Majorana zero-mode in an InSb
nanowire as reported by Kouwenhoven and his group [13]. If indeed Ma-
jorana zero-modes have finally be observed, however, there still remains a
need for devices in which MFs can be realized under more accessible condi-
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1.2. Majorana fermions

tions, are robust, and can finally be manipulated for topologically-protected
computation, motivating the results we present here on a proposal in which
Majorana fermions occur under a wide-range of accessible conditions ro-
bustly.
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Chapter 2

Setup

2.1 Topological insulators

In an insulator, such as solid argon, an energy gap separates occupied valence
band states from empty conduction band states. The same is true for a
semiconductor, although the energy gap is smaller. These two states are,
in fact, topologically equivalent, in the sense that one could imagine tuning
parameters of the Hamiltonian describing the insulator continuously in order
to produce the Hamiltonian of the semiconductor without closing this energy
gap. If we generalize, and consider states with different numbers of trivial
core bands to be equivalent, then the insulator and semiconductor are further
equivalent to the vacuum in the same sense, which also has an energy gap
for pair production, a conduction band, and a valence band according to
Dirac’s relativistic theory[73].

The topological insulator also possesses an energy gap in the bulk, but
is, in fact, a phase of matter topologically-distinct from the vacuum, mean-
ing that the Hamiltonian describing the topological insulator cannot be de-
formed into the Hamiltonian for the vacuum state by continuous tuning of
its parameters without closing the bulk band gap[73]. As explained more
generally below, closure of the bulk band gap at the boundary between this
topological insulator phase and a phase equivalent to the vacuum, which
is necessary to transition from the former phase to the latter, leads to an
unusual property of topological insulators: While they are insulating in the
bulk, they possess unusual metallic states on their surfaces. These surface
states, it turns out, can be used under certain conditions to construct Ma-
jorana fermions.

2.2 Topological phases and invariants

Depending on the dimension as well as the presence or absence of time rever-
sal symmetry and/or particle-hole symmetry in a given class of Hamiltoni-
ans, in fact, different numbers of topologically distinct phases of matter can
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2.3. Motivation for using topological insulators to realize Majorana fermions

be characterized[73]. There are ten unique classes in all, describing all states
of matter possessing energy gaps (all insulators and also superconductors)[74–
77]. Topological invariants count and distinguish these topologically-distinct
states for each Hamiltonian class. A one-dimensional or two-dimensional
topological insulator, for instance, is characterized by a single Z2 topologi-
cal invariant, meaning that it is characterized by a Hamiltonian which can,
through tuning of its parameters, describe just two topologically-distinct
states of matter. A three-dimensional topological insulator, however, is char-
acterized by four Z2 topological invariants (ν0; ν1ν2ν3), meaning that it is de-
scribed by a Hamiltonian that can be tuned to achieve sixteen topologically-
distinct phases of matter[78–80]. Although this thesis describes a device
that uses a nanowire made of a 3D topological insulator, we will subse-
quently show, in Chapter 3, that the nanowire can be treated theoretically
largely as a one-dimensional system described by a Z2 topological invariant
known also as the Majorana number[81], which is discussed in further detail
as necessary in Chapter 3.

Topological classification of gapped band structures leads to a feature
of topological phases very relevant to this Masters work: The existence
of gapless conducting states at interfaces where the topological invariant
changes. Such edge states are observed at the interface between the integer
quantum Hall state and vacuum[82], and can be understood in terms of
the skipping motion electrons execute as their cyclotron orbits bounce off
the edge. These edge states arise from the requirement that, in order to
transition between two topologically-distinct phases of matter, one must
close the bulk band gap of the system. Otherwise, it is impossible for the
topological invariant to change. Low energy electronic states therefore occur
in the region where the energy gap passes through zero[73].

2.3 Motivation for using topological insulators to
realize Majorana fermions

An operator Ψ satisfying Ψ = Ψ† in a condensed matter setting can be
constructed as a linear combination of an electron creation operator and an-
nihilation operator such as Ψ = (c↑+c

†
↑)/
√

2. (Thus, a Majorana fermion, in
condensed matter systems, can be thought of as a linear combination of an
electron and a hole.) Superconductivity, as well as other phenomena which
induce pairing and condensation of fermions, therefore seem well-suited to
the task of constructing Majorana fermions. In almost all cases, however,
superconductivity results from s-wave pairing of electrons and holes carry-
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2.3. Motivation for using topological insulators to realize Majorana fermions

ing opposite spins. Quasiparticle operators then (schematically) take the

form Φ = uc†↑ + νc↓, for which Φ 6= Φ†. One way to overcome this issue
and construct quasiparticles created by operators such as Ψ is to induce
superconductivity in a spinless metal. By Pauli exclusion, Cooper pair-
ing in such a system must occur with odd parity, which results in p-wave
superconductivity in one dimension. This kind of superconductor realizes
a topological phase that, most relevant to this thesis, supports Majorana
zero-energy modes localized at the boundaries between the 1D topological
p-wave superconducting phase and the vacuum[15].

Localized zero-energy Majorana end-states are expected to appear at
the ends of the nanowire in part because the TI nanowire, modeled as a
1D topological insulator, is in a topological phase while the vacuum border-
ing the nanowire is a non-topological, or trivial, phase of matter[15]. Since
these phases cannot be smoothly connected, the energy gap must close at
each end of the nanowire, allowing for zero-modes to exist in these loca-
tions. Majorana zero-modes in particular are expected at the ends of the
nanowire as a result of a key property of the dispersion of the infinitely-long
1D TI nanowire under the operating conditions of our device, which are
outlined in Chapter 3. In both the topological and trivial phases, Kramer’s
theorem requires that bands of a dispersion be at least two-fold degenerate
for time-reversal invariant momenta such as k = 0 and k = π/a, where
a is the lattice spacing. Away from these points, a spin-orbit interaction
will split the degeneracy. There are two ways in which the states at k = 0
and k = π/a can connect: They can connect pairwise, such that an even
number of bands intersects the chemical potential in the right half of the
Brillouin zone, or an odd number of bands can intersect the chemical po-
tential in the right half of the Brillouin zone[73]. The latter situation occurs
under operating conditions for our device and corresponds, in one dimen-
sion, to topologically-protected end-states, and to the topological phase.
Intersection of the chemical potential by an odd number of bands in the
right half of the Brillouin zone also makes the topological phase a spinless
metal with the potential for generating Majorana fermions once it becomes
superconducting[15].

With this motivation, we can begin to discuss the proposal for realizing
unpaired Majorana fermions based on proximity-coupled topological insula-
tor nanowires in Chapter 3.
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Chapter 3

Proposal For Realizing
Unpaired Majorana Fermions
Based On Proximity-Coupled
Topological Insulator
Nanowires

3.1 Introduction

The focus of this Masters work is a proposal for a new type of solid-state
device that can serve as a host for unpaired Majorana fermions under a
wide range of experimentally accessible conditions. Depicted schematically
in Fig. 3.1, the device consists of a nanowire (wire with nanometer-scale
cross-section) made of a strong topological insulator (STI), such as Bi2Se3

or Bi2Te2Se, placed on top of an ordinary s-wave superconductor (SC), with
an applied magnetic field along the axis of the nanowire. When the magnetic
flux through the nanowire cross-section is close to a half-integer multiple of
the fundamental flux quantum Φ0 = hc/e, the topologically protected sur-
face state realizes a one-dimensional topological superconductor [81] with
Majorana fermions localized near the ends of the wire. We show that MFs
are remarkably stable in this device, making it unique amongst the many
proposals for observing MFs in solid-state systems and a significant advance-
ment towards study of MFs and development of MF-based technology.

We note that Bi2Se3 nanowires and nanoribbons have been synthesized
and can exhibit diverse morphologies controllable by growth conditions[83].
Aharonov-Bohm (AB) oscillations in the longitudinal magneto-resistance
of Bi2Se3 nanoribbons have also been observed, proving the existence of
a coherent surface conducting channel[84]. Studies of magneto-resistance
of Bi2Se3 nanoribbons under a variety of magnetic field orientations also
reveal a linear magneto-resistance that persists to room temperature and is

9



3.1. Introduction

consistent with transport through topological surface states[85]. Lastly, the
superconducting proximity effect and possible evidence for Pearl vortices
has been observed in Bi2Se3 nanoribbons[86]. This experimental progress
suggests our proposed device may be realized experimentally with relative
ease.

Stability is confirmed by showing that the degenerate quasiparticle ground
state is separated from excited states by an energy gap close to the super-
conducting (SC) gap which can be as large as ∼ 10 meV, through study of
a low-energy analytical theory and numerical study of an explicit lattice-
model Hamiltonian. We also compute the topological phase diagram for the
system numerically to show that MFs exist in the system for any value of
the chemical potential in the bulk band gap of the TI (for Bi2Se3, ∼ 300
meV). Furthermore, we find that the topological phase corresponding to the
presence of MFs persists even when the chemical potential is in the bulk
conduction band, although, since we observe rapid collapse of the excitation
gap in this regime, this result is of limited experimental relevance.

These results also support additional explicit numerical studies of the ro-
bustness of MFs against non-magnetic disorder also discussed, which show
that the MFs persist in the presence of fluctuations in the on-site chemi-
cal potential in an explicit lattice model Hamiltonian on the order of the
bulk band gap (300 meV). As such, previous expectations that MFs would
be robust against non-magnetic disorder according to Anderson’s theorem,
because time reversal symmetry (TRS) holds in this device under operating
conditions [87], are here confirmed.

In the most promising of other proposals, the MFs are protected by an
SC gap of at most 1 meV, and the chemical potential must also be tuned to
lie within a window of the same size[20, 39]. Although these requirements are
possible to achieve in experiments on individual wires [13], such fine tuning
will be difficult to replicate in more complex setups, i.e. those containing wire
networks necessary for MF manipulation[91]. Furthermore, other proposals
are not predicted to possess MFs under TR-invariant conditions, meaning
these devices are not expected to be robust against non-magnetic disorder.
Therefore MFs constructed in these proposals might be too delicate to be
useful in practical applications. Our results on the remarkable stability of
MFs in the TI nanowire-based proposal therefore outline a practical route
towards applications based on the physics of Majorana fermions.

10
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B
Bulk s-wave superconductor

TI nanowire

Figure 3.1: Schematic of the proposed device.

3.2 Low-energy theory of a TI nanowire with
magnetic and superconducting order

We begin by presenting the low-energy analytical theory of the device [87]
in greater detail to facilitate later discussion of the novel results on stability,
as this foundation is later used to understand the new results.

First, we motivate the proposal with study of a cylindrical TI nanowire
proximity-coupled to a bulk s-wave SC as the greater symmetry of this
system permits analytical study of the low-energy fermionic excitations on
the surface of the nanowire.

The low-energy fermionic excitations on the surface of the topological
insulator are governed by the Dirac Hamiltonian [92]

h0 =
v

2

[
~∇ · n̂ + n̂ · (p× s) + (p× s) · n̂

]
, (3.1)

where n̂ is a unit vector normal to the surface, p = −i∇ is the momentum
operator and s is the vector of Pauli matrices in the spin space. We will also
include the effect of a magnetic coating on the TI nanowire by adding an
additional term, hm = s ·m, to the Hamiltonian. Later, we will show that
this term is not necessary for Majorana zero-modes to emerge in the device,
but its inclusion will be convenient in calculations.

Let us now consider the specific case of a cylindrical topological insulator
nanowire of radius R with magnetic field B applied along the ẑ-axis as shown
in Fig. 3.2. The unit vector n̂ is then taken to be normal to the curved
surface of the nanowire. To include a flux Φ through the end of the wire
(in the ẑ direction) as proposed, we replace the momentum operator p in
Eq. (3.1) with π = p − (e/c)A, where A = ηΦ0(ẑ × r)/2πr2 is the vector

11
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n̂

ẑ

ŷ

x̂

r

R

Figure 3.2: Schematic of the device simplified for analytical study, in which
a cylindrical TI nanowire is substituted for a more realistic TI nanowire with
square cross-section. Magnetic field B is still applied along the axis of the
wire taken to coincide with the z-direction.

potential and Φ0 is the flux quantum. Therefore, suppressing v~, we now
have the Hamiltonian,

h =
1

2r
I+
(
n̂× π

)
·s + s ·m. (3.2)

Taking m = mẑ, we can rewrite the Hamiltonian in cylindrical coordinates
as

h =
1

2R
I + s1k sin(φ)− s2k cos(φ)− s3

(
i

R
∂φ +

η

R

)
+ms3. (3.3)

To diagonalize this Hamiltonian for an infinitely long wire, we exploit the
translational and rotational symmetries and write a solution ψkl of the form

ψkl(z, ϕ) = eiϕle−ikz
(

fkl
eiϕgkl

)
(3.4)

With this ansatz, our Hamiltonian is

h̃kl = s2k + s3[(l +
1

2
− η)/R+m]. (3.5)

The spectrum Ekl for m = 0, if v~ is reinstated, is then

Ekl = ±v~

√

k2 +
(l + 1

2 − η)2

R2
. (3.6)
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FIG. 2: a) Surface state excitation spectra Ekl for various val-
ues of magnetic flux Φ = ηΦ0. Solid and dashed lines indicate
doubly degenerate and non-degenerate bands, respectively. b)
Kitaev’s Majorana number: M = −1(+1) in shaded (white)
regions. Numerals inside the squares indicate the number of
Fermi points for k > 0. c) A possible shape of SC/magnetic
domain wall. Dashed line shows the exact zero-mode solution
u(z) for this domain wall.

where v is the Dirac velocity and s = (s1, s2, s3) is the
vector of Pauli spin matrices. The magnetic flux is in-
cluded by replacing the momentum operator p = −i�∇
with π = p − (e/c)A, where A = ηΦ0(ẑ × r)/2πr2 is
the vector potential. Φ = ηΦ0 represents the total mag-
netic flux through the cylinder. For a cylindrical surface
with n̂ = (cosϕ, sinϕ, 0) the spectrum of Hamiltonian
(1) reads [19]

Ekl = ±v�

�

k2 +
(l + 1

2 − η)2

R2
. (2)

Here k labels momentum eigenstates along the cylinder
while l = 0,±1, . . . is the angular momentum.

The spectrum in Eq. (2) is clearly periodic in η which
reflects the expected Φ0-periodicity in the total flux. Our
identification of the suitable ‘spinless’ normal state hinges
on the following observation. For η = 0 all branches of
Ekl are doubly degenerate (Fig. 2a). For η �= 0, however,
the degeneracy is lifted and one can always find a value
of the chemical potential µ that yields a single pair of
non-degenerate Fermi points, as illustrated in Fig. 2a.
Pairing induced by the proximity effect in such a state
is then expected to drive the system into a topological
phase.

One can formalize the above argument by considering
Kitaev’s Majorana number M defined as M = (−1)ν ,
where ν represents the number of Fermi points for k > 1.
In the limit of weak pairing, M = −1 indicates the exis-
tence of unpaired Majorana fermions at the ends of the
wire [12]. Fig. 2b shows M calculated from the spectrum

Eq. (2) as a function of µ and η. We observe, specifically,
that when η = 1/2, i.e for the flux equal to half-integer
multiple of Φ0, Majorana fermions will appear for any
value of the chemical potential (as long as it lies inside
the bulk gap). This result is easily understood by not-
ing that for η = 1/2 the gapless l = 0 branch is non-
degenerate while the remaining branches are all doubly
degenerate. Thus, the number of Fermi points for k > 0
is odd for any value of µ. It is also worth noting that, for
the surface state, η = 1/2 represents a T -invariant point
and the above pattern of degeneracies should therefore
be robust with respect to non-magnetic disorder. Be-
low, we will explicitly demonstrate the existence and the
robustness of the Majorana fermions both analytically
within the low-energy theory based on Hamiltonian (1)
and numerically using a minimal lattice model.

Writing the Hamiltonian (1) in cylindrical coordinates
and with the ansatz for the wavefunction

ψkl(z,ϕ) = eiϕle−ikz

�
fkl

eiϕgkl

�
(3)

the spinor ψ̃kl = (fkl, gkl)
T is an eigenstate of

h̃kl = s2k + s3[(l +
1

2
− η)/R + m]. (4)

Here we take v = � = 1 and m represents a magne-
tization along the z-direction, which is not present in
Hamiltonian (1) but we include it here for convenience
in subsequent considerations. To illustrate the emergence
of Majorana fermions in the simplest possible setting we
now focus on the η = 1/2 case and consider chemical
potential |µ| < v�/R, i.e. intersecting only the l = 0
branch of the spectrum Eq. (2). The Hamiltonian for
this branch then becomes hk = (ks2 − µ) + ms3, where
we have explicitly included the chemical potential term.

With this preparation we can now construct the
Bogoliubov-de Gennes Hamiltonian describing the
proximity-induced superconducting order in the nanorib-
bon. In the second-quantized notation it reads H =�

k Ψ†
kHkΨk with Ψk = (fk, gk, f†

−k, g†
−k)T and

Hk =

�
hk ∆k

−∆∗
−k −h∗

−k

�
. (5)

In the following we consider the simplest s-wave pair po-
tential ∆k = ∆0is2 with ∆0 a (complex) constant or-
der parameter, which corresponds to the pairing term

∆0(f
†
kg†

−k−g†
kf†

−k). Introducing Pauli matrices τα in the
Nambu space we can write, assuming ∆0 real,

Hk = τ3(s2k − µ + s3m) − τ2s2∆0, (6)

with eigenvalues Ek = ±[k2 + µ2 + m2 + ∆2 ± 2(k2µ2 +
µ2m2 + m2∆2)1/2]1/2.

In the special case when µ = 0 the spectrum simplifies,

Ek = ±
�

k2 + (m ± ∆0)2. (7)

Figure 3.3: Surface state excitation spectra Ekl for various values of mag-
netic flux Φ = ηΦ0. Solid and dashed lines indicate doubly degenerate and
non-degenerate bands, respectively.

Here k labels momentum eigenstates along the cylinder while l = 0,±1, . . .
is the angular momentum. We see that the spectrum has a gapless branch
for η = n + 1

2 , where n is any integer (η = Φ/Φ0 measures the magnetic
flux through the wire cross section in the units of flux quantum Φ0 = hc/e).
The periodicity η → η + n with n integer in Eq. (3.6) reflects the expected
Φ0-periodicity in the total flux. We now notice that, for η = 0, all branches
of Ekl are doubly degenerate (Fig.3.3). For η 6= 0, however, the degeneracy
is lifted and one can always find a value of the chemical potential µ that
intersects the bands of the dispersion in the right half of the Brillouin zone
(each such intersection is known as Fermi point) an odd number of times.

One can formalize the above argument by considering Kitaev’s Majorana
numberM, defined asM = (−1)ν , where ν represents the number of Fermi
points, or points of intersection between the chemical potential and bands
of the dispersion, for k > 0[81]. In the limit of weak pairing, M = −1
indicates the existence of unpaired Majorana fermions at the ends of the
wire. Fig. 3.4 shows M calculated from the spectrum as a function of µ
and η. We observe, specifically, that when η = 1/2, i.e., for the flux equal to
a half-integer multiple of Φ0, Majorana fermions will appear for any value
of the chemical potential (as long as it lies inside the bulk gap). This result
is easily understood by noting that for η = 1/2 the gapless l = 0 branch
is non-degenerate while the remaining branches are all doubly degenerate.
Thus, the number of Fermi points for k > 0 is odd for any value of µ.
Pairing induced by the proximity effect in such a state is then expected to
drive the system into a topological phase. Thus, while the semiconductor
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FIG. 2: a) Surface state excitation spectra Ekl for various val-
ues of magnetic flux Φ = ηΦ0. Solid and dashed lines indicate
doubly degenerate and non-degenerate bands, respectively. b)
Kitaev’s Majorana number: M = −1(+1) in shaded (white)
regions. Numerals inside the squares indicate the number of
Fermi points for k > 0. c) A possible shape of SC/magnetic
domain wall. Dashed line shows the exact zero-mode solution
u(z) for this domain wall.

where v is the Dirac velocity and s = (s1, s2, s3) is the
vector of Pauli spin matrices. The magnetic flux is in-
cluded by replacing the momentum operator p = −i�∇
with π = p − (e/c)A, where A = ηΦ0(ẑ × r)/2πr2 is
the vector potential. Φ = ηΦ0 represents the total mag-
netic flux through the cylinder. For a cylindrical surface
with n̂ = (cosϕ, sinϕ, 0) the spectrum of Hamiltonian
(1) reads [19]

Ekl = ±v�

�

k2 +
(l + 1

2 − η)2

R2
. (2)

Here k labels momentum eigenstates along the cylinder
while l = 0,±1, . . . is the angular momentum.

The spectrum in Eq. (2) is clearly periodic in η which
reflects the expected Φ0-periodicity in the total flux. Our
identification of the suitable ‘spinless’ normal state hinges
on the following observation. For η = 0 all branches of
Ekl are doubly degenerate (Fig. 2a). For η �= 0, however,
the degeneracy is lifted and one can always find a value
of the chemical potential µ that yields a single pair of
non-degenerate Fermi points, as illustrated in Fig. 2a.
Pairing induced by the proximity effect in such a state
is then expected to drive the system into a topological
phase.

One can formalize the above argument by considering
Kitaev’s Majorana number M defined as M = (−1)ν ,
where ν represents the number of Fermi points for k > 1.
In the limit of weak pairing, M = −1 indicates the exis-
tence of unpaired Majorana fermions at the ends of the
wire [12]. Fig. 2b shows M calculated from the spectrum

Eq. (2) as a function of µ and η. We observe, specifically,
that when η = 1/2, i.e for the flux equal to half-integer
multiple of Φ0, Majorana fermions will appear for any
value of the chemical potential (as long as it lies inside
the bulk gap). This result is easily understood by not-
ing that for η = 1/2 the gapless l = 0 branch is non-
degenerate while the remaining branches are all doubly
degenerate. Thus, the number of Fermi points for k > 0
is odd for any value of µ. It is also worth noting that, for
the surface state, η = 1/2 represents a T -invariant point
and the above pattern of degeneracies should therefore
be robust with respect to non-magnetic disorder. Be-
low, we will explicitly demonstrate the existence and the
robustness of the Majorana fermions both analytically
within the low-energy theory based on Hamiltonian (1)
and numerically using a minimal lattice model.

Writing the Hamiltonian (1) in cylindrical coordinates
and with the ansatz for the wavefunction

ψkl(z,ϕ) = eiϕle−ikz

�
fkl

eiϕgkl

�
(3)

the spinor ψ̃kl = (fkl, gkl)
T is an eigenstate of

h̃kl = s2k + s3[(l +
1

2
− η)/R + m]. (4)

Here we take v = � = 1 and m represents a magne-
tization along the z-direction, which is not present in
Hamiltonian (1) but we include it here for convenience
in subsequent considerations. To illustrate the emergence
of Majorana fermions in the simplest possible setting we
now focus on the η = 1/2 case and consider chemical
potential |µ| < v�/R, i.e. intersecting only the l = 0
branch of the spectrum Eq. (2). The Hamiltonian for
this branch then becomes hk = (ks2 − µ) + ms3, where
we have explicitly included the chemical potential term.

With this preparation we can now construct the
Bogoliubov-de Gennes Hamiltonian describing the
proximity-induced superconducting order in the nanorib-
bon. In the second-quantized notation it reads H =�

k Ψ†
kHkΨk with Ψk = (fk, gk, f†

−k, g†
−k)T and

Hk =

�
hk ∆k

−∆∗
−k −h∗

−k

�
. (5)

In the following we consider the simplest s-wave pair po-
tential ∆k = ∆0is2 with ∆0 a (complex) constant or-
der parameter, which corresponds to the pairing term

∆0(f
†
kg†

−k−g†
kf†

−k). Introducing Pauli matrices τα in the
Nambu space we can write, assuming ∆0 real,

Hk = τ3(s2k − µ + s3m) − τ2s2∆0, (6)

with eigenvalues Ek = ±[k2 + µ2 + m2 + ∆2 ± 2(k2µ2 +
µ2m2 + m2∆2)1/2]1/2.

In the special case when µ = 0 the spectrum simplifies,

Ek = ±
�

k2 + (m ± ∆0)2. (7)

Figure 3.4: Kitaev’s Majorana number: M = −1(+1) in shaded (white)
regions. Numerals inside the squares indicate the number of Fermi points
for k > 0.

wire proposal [20, 39] only possesses Majorana fermions for values of the
chemical potential in a ∼ 1 meV interval, our proposal possesses Majorana
fermions for any value of the chemical potential µ inside the 300 meV bulk
band gap of Bi2Se3. Fine-tuning of the chemical potential is unnecessary
in our device at η = 1/2 due to the specific pattern of degeneracies of the
bands which is in turn protected by the Kramers theorem.

To study the emergence of Majorana fermions in the simplest possi-
ble setting, we now focus on the η = 1

2 case and consider values of the
chemical potential satisfying |µ| < v~

R , i.e. intersecting only the l = 0
branch of the spectrum. The Hamiltonian for this branch then becomes
hk = ks2 − µ+ms3, where we have explicitly included the chemical poten-
tial term. The Bogoliubov-de Gennes Hamiltonian describing the proximity-
induced superconducting order in the nanowire can be written, in the second-
quantized notation, as H =

∑
k Ψ†kHkΨk with Ψk = (fk, gk, f

†
−k, g

†
−k)

T and

Hk =

(
hk ∆k

−∆∗−k −h∗−k

)
. (3.7)

For the surface state, η = 1/2 represents a T -invariant point at which h∗−k =
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1
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Figure 3.5: The normal state dispersion under conditions required for emer-
gence of Majorana fermions for (a) the Rashba-coupled semiconductor quan-
tum wire proposal in [20, 39], where the dispersion is shown without Zeeman
coupling (dashed lines) and with Zeeman coupling, and (b) our topological
insulator nanowire proposal, with doubly-degenerate bands shown as black
and blue dashed lines. Green and pink horizontal lines represent the level
of the chemical potential and a number to the right of a line indicates the
number of Fermi points in the right half of the Brillouin zone at that value
of the chemical potential. Vertical green lines indicate the interval inside
which the chemical potential can be tuned to yield Majorana fermions in
the corresponding SC state.

hk. Therefore, Hk can be written as

Hk =

(
hk ∆k

−∆∗−k −hk

)
. (3.8)

In the following, we consider the simplest s-wave pairing potential ∆k =
∆0is2, with ∆0 a (complex) constant order parameter, which corresponds

to the pairing term ∆0(f †kg
†
−k − g

†
kf
†
−k). It is useful to note that this form

of ∆k actually implies a vortex in the SC order parameter, as can be seen
by transforming Hk back into the original electron basis, i.e. undoing the
transformation indicated in Eq. (3.4). The phase of the order parameter
in this basis winds by 2π on going around the cylinder as required in the
presence of the applied magnetic field whose total flux is Φ0/2.

Introducing Pauli matrices τα in the Nambu space and assuming ∆0 real,
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we can write
Hk = τ3(ks2 − µ) + τ3s3m− τ2s2∆0. (3.9)

(Here we have again taken v = ~ = 1.) The spectrum for this Hamiltonian
is Ek = ±(k2 + µ2 + m2 + ∆2

0 ± 2(k2µ2 + µ2m2 + m2∆2
0)1/2)1/2. We now

consider a special case when µ = 0. The Hamiltonian simplifies, Hk =
τ3s2k + τ3s3m− τ2s2∆0 and the spectrum assumes a simple and suggestive
form

Ek = ±
√
k2 + (m±∆0)2. (3.10)

We observe that the spectrum is fully gapped in the presence of either SC or
magnetic order but has a gapless branch when m = ±∆0. Thus, we expect a
topological phase transition at this point. Consequently, we expect gapless
modes to exist at an interface between SC and magnetic domains in a wire.

z

∆(z)

m(z)

µ(z)

Figure 3.6: A convenient possible choice for the SC/magnetic domain wall
at z = 0. ∆(z) is the SC order parameter and m(z) the magnetic order
parameter. A dashed line shows the zero-mode solution u(z) for this domain
wall. This particular choice of boundary conditions can be used to show
Majorana fermions occur at the ends of the TI nanowire irrespective of
precise boundary conditions.

Now consider spatially varying m(z) and ∆(z) such that m(0) = ∆(0) as
sketched in Fig. 3.6. With these choices for the order parameters, we expect
the spectrum to be gapped far away from the domain wall, but we expect
gapless modes localized near z = 0. To determine if there are any fermionic
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3.2. Low-energy theory of a TI nanowire with magnetic and superconducting order

zero modes, we rotate Hk in s− τ space so that the rotated Hamiltonian is
completely off-diagonal. That is, we work with H̃k = UHkU−1, where

U = e−i
π
4
s2e−i

π
4
τ2 . (3.11)

Then H̃k = τ1s2k + τ1s1m− τ2s2∆, so H̃k is of the form

H̃k =

(
0 Dk

D†k 0

)
, (3.12)

where Dk = s2k + s1m+ is2∆.
We now replace k → −i∂z and look for solutions Ψ̃(z) satisfying

H̃kΨ̃(z) = 0. (3.13)

Taking Ψ̃(z) = (ψ1, ψ2, ψ3, ψ4)T and reinstating v, Eq. (3.13) yields four
independent equations:

(+v∂z +m+ ∆)ψ1 = 0 (3.14)

(−v∂z +m−∆)ψ2 = 0 (3.15)

(+v∂z +m−∆)ψ3 = 0 (3.16)

(−v∂z +m+ ∆)ψ4 = 0 (3.17)

Here we have suppressed the z dependence. The solution u(z) of an equation
of the form

[v∂z + ω(z)]uz = 0, (3.18)

a Jackiw-Rossi zero mode [93], can be written as

u(z) = u0e
−1
v

∫ z
0 dz

′ω(z′). (3.19)

This solution is normalizable provided that ω(z) has a soliton profile, i.e. is
proportional to sgn(z) for large |z|. According to our assumptions, m(z) +
∆(z) > 0 for all values of z, so there is no normalizable solution for ψ1 or
ψ4. With v > 0, there is also no normalizable solution for ψ2, but there is
one for ψ3:

ψ3(z) = u0e
−1
v

∫ z
0 dz

′(m(z′)−∆(z′)). (3.20)

(For v < 0, ψ2 would be the normalizable solution instead.) Thus, for ∆(z),
m(z) as given in Fig. 3.6, our Hamiltonian has a single zero-mode solution of
the form Ψ̃0 = (0, 0, 1, 0)Tu(z) localized near the domain wall at z = 0. This
solution is valid as long as v > 0 and m(z)−∆(z)→ ±const for z → ±∞. To
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see if the zero mode Ψ̃0(z) corresponds to a Majorana fermion, we undo the
unitary rotation and inspect the corresponding solution Ψ0(z) = U−1Ψ̃0(z),
which is

Ψ0(z) =
1

2
(1,−1, 1,−1)Tu(z). (3.21)

In second quantization, the field operator destroying the particle in the state
Ψ0(z) is

ψ̂0 =
1

2

∫
dzu(z)

[
f(z)− g(z) + f †(z)− g†(z)

]
. (3.22)

where f(z), g(z) are real-space versions of the fk, gk operators in Ψk . Since

u(z) is real, it holds that ψ̂†0 = ψ̂0, so Ψ0 represents a Majorana fermion.
With a few additional observations, the above calculation can be used

to show that an additional unpaired Majorana mode exists at the SC end
of the wire irrespective of boundary conditions. First, recall that in a finite
system Majoranas always come in pairs, since they are formed from ordinary
fermions [15]. This second Majorana fermion, being a zero-mode, cannot not
exist in the nanowire bulk where the spectrum is gapped. It cannot exist at
the magnetic end because the magnetic order does not support the requisite
particle-hole mixing. The second MF must therefore be at the SC end
of the nanowire, irrespective of the exact boundary condition. From this,
we can argue that the special conditions used to establish the existence of
unpaired MFs in the device are unnecessary: The zero-modes in fact exist
in the device under generic boundary conditions as confirmed by explicit
numerical study using a lattice model, discussed in section III. A specific
example of Majorana end-states obtained in such a lattice calculation under
general conditions is given in Sec. IV.A below.

3.2.1 Energy gap protecting Majorana zero-modes

As mentioned in [95], in order to detect and manipulate MFs under experi-
mentally accessible conditions it is crucial that they are protected from all
other excitations by a gap. The latter is often refered to as a ‘minigap’
because typically there will be other excitations inside the bulk gap. We
study the minigap in this TI nanowire-based device both analytically and
numerically.

In this section we estimate the minigap for the superconducting TI
nanowire using the analytical low-energy theory. Specifically, we wish to
find the lowest non-zero eigenvalue of H̃k defined in Eq. (3.12). We start by

squaring the Hamiltonian. We find, with k → −i∂z and D†kDk → D†D,

D†D = ∂2
z + ∂z [∆(z)− s3m(z)] + [∆(z)− s3m(z)]2 . (3.23)
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The two independent equations in D†D can more conveniently be written
as (D†D)+ and (D†D)−, where

(
D†D

)
±

= ∂2
z + ∂z [∆(z)∓m(z)] + [∆(z)∓m(z)]2 . (3.24)

To find the energy of the first excited state, we look for solutions ψ satisfying

hψ = εψ, (3.25)

where h = H̃2 and ε > 0. We consider m(z), ∆(z) such that ∆(z) +
m(z) =const for each z, and ∆(z) −m(z) = f(z) having a soliton profile,
e.g. we may take f(z) = ∆0 tanh (z/ξ), as shown in Fig. 3.6. Then (D†D)−
yields no bound states. (D†D)+, however, has the form, with velocity v
restored,

(D†D)+ = −v2∂2
z + v∂zf(z) + f2(z) (3.26)

For bound-state energies much less than ∆0, f(z) can be approximated as
linear in the vicinity of z = 0. With f(z) ' −∆0

z
ξ , where ξ is the length

scale over which the SC order parameter varies near the domain wall, we
then have

(D†D)+ = −v2∂2
z −

v∆0

ξ
+

(
∆0

ξ

)2

z2. (3.27)

This is the Hamiltonian for the harmonic oscillator with the identification
~2
2m = v2, mω2

2 =
(

∆0
ξ

)2
, and ~2ω2 = 4v2 ∆2

0
ξ2

. Therefore, allowed eigenener-

gies of (D†D)+ bounded above by ∆2
0 are

εn = ~ω(n+
1

2
)− v∆0

ξ
=

2~v∆0

ξ
n, (3.28)

where n is any non-negative integer. The energy spectrum of H̃ in this
approximation is then

En = ±√εn = ±
√

2~v∆0

ξ
n. (3.29)

Since ξ is the length scale over which the SC order parameter varies near the
wire end, it is at most the SC coherence length ~v

π∆0
. The minimum energy

of the first excited state E1 is then

E1 = ∆0

√
2π, (3.30)
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3.3. Results on stability of Majorana fermions

which is already greater than ∆0. Therefore, there are no excited states
where the linear approximation holds. There can be some at energies close
to ∆0 and this is consistent with numerical results presented in [87].

We also note that the calculation presented above is valid in the spe-
cial case µ = 0. For non-zero chemical potential the situation is more
complicated and we are not able to find a simple analytic solution for the
excited states in this case. Since the density of states of the underlying Dirac
semimetal grows with increasing energy we expect there to be more low-lying
excited states when µ 6= 0 and thus reduced minigap. This expectation is
indeed confirmed by our numerical simulations discussed below.

3.3 Results on stability of Majorana fermions

3.3.1 Lattice model

We establish the stability of Majorana fermions in the nanowire through
a combination of additional analytical insights and numerical studies using
the same concrete lattice model in [87] for the Bi2Se3 family of materials
[94] given by Fu and Berg [96] regularized on a simple cubic lattice. This
model is defined by a k-space Hamiltonian

hk = Mkσ1 + λσ3(s2 sin kx − s1 sin ky) + λzσ2 sin kz, (3.31)

with Mk = ε − 2t
∑

α cos kα. Here σα represent the Pauli matrices acting
in the space of two independent orbitals per lattice site. For λ, λz > 0
and 2t < ε < 6t the system described by Hamiltonian (3.31) is a TI in Z2

class (1;000), i.e. a strong topological insulator. The magnetic field enters
through the Peierls substitution, replacing all hopping amplitudes as tij →
tij exp [−(2πi/Φ0)

∫ j
i A · dl] and the Zeeman term −gµBB · s/2 where µB =

e~/2mec is the Bohr magneton. In the SC state the BdG Hamiltonian takes
the form of Eq. (3.7) with ∆k = ∆0is2 describing on-site spin singlet pairing.

In the subsequent calculations we consider the above Hamiltonian on
the real-space cubic lattice and in various wire geometries with rectangular
cross sections and both periodic and open boundary conditions along the
length of the wire. We find eigenstates and energy eigenvalues by the exact
numerical diagonalization using standard LAPACK routines and by sparse
matrix techniques in cases where only low-lying states are of interest. Unless
explicitly stated otherwise we use the following set of model parameters in
our subsequent calculations: λz = 2λ, t = λ, ε = 4λ. This places our model
into Z2 class (1;000) and with λ = 150meV produces a bulk bandgap of
300meV, as in Bi2Se3 crystals.
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3.3. Results on stability of Majorana fermions 3

The form of the spectrum above suggests that a local-
ized zero-mode will exist at a boundary between SC and
magnetic domains, i.e. when (m ± ∆0) changes sign.
We thus seek a zero-energy eigenstate HΨ0(z) = 0 of
H = τ3[−s2i∂z + s3m(z)] − τ2s2∆(z) with m(z), ∆(z)
of the form indicated in Fig. 2c. A single Jackiw-Rossi
zero mode [20] indeed exists and has the form Ψ0(z) =
(1,−1, 1,−1)T u(z) with u(z) = u0 exp

� z

0
dz�[∆(z�) −

m(z�)] and u0 a normalization constant. The field op-
erator of the zero mode

ψ̂0 =

�
u(z)[f(z) − g(z) + f†(z) − g†(z)]dz, (8)

has the property ψ̂†
0 = ψ̂0 and represents, therefore, a

Majorana fermion.
The above explicit calculation establishes the existence

of an unpaired Majorana mode at a SC/magnetic do-
main wall in a TI nanoribbon under very special condi-
tions. We now argue that the effect is in fact generic.
First, we reason that the magnetic order, although con-
venient in the derivation, is in fact irrelevant. Consider a
nanoribbon of length L � ξ, the lengthscale of the zero
mode, with the domain wall located near its center. In a
physical system Majoranas always come in pairs. Since
the second Majorana fermion evidently cannot live in the
gapped bulk (or at the magnetic end) we conclude that it
must be localized at the SC end, irrespective of the exact
boundary condition. Second, it is easy to see that the
chemical potential can be moved away from zero without
perturbing the Majoranas. Indeed, with m = 0 the spec-
trum of Eq. (6) reads Ek = ±[(k±µ)2+∆2

0]
1/2 indicating

that the bulk of the wire shows a SC gap ∆0 for any value
of µ. Therefore, Majorana end-states will persist even as
µ is varied away from 0. When the chemical potential
intersects additional bands then each band contributes
a single Majorana end-state. Any even number of these
will pair up to form ordinary fermions (whose energies
will generically be non-zero) but for an odd number of
occupied bands a single unpaired zero-energy Majorana
will remain. This consideration elucidates the physical
meaning of Kitaev’s Majorana number M. We note that
topological nature of the zero mode guarantees its sta-
bility against smooth deformations of the nanoribbon
shape, as long as its bulk remains gapped and the to-
tal magnetic flux seen by the surface state is unchanged.

To explicitly address the existence and robustness of
Majorana end-states we now study the nanoribbon using
a concrete lattice model of Bi2Se3 family of materials
[17]. Specifically, we use the model given by Fu and Berg
[21] regularized on a simple cubic lattice, defined by a
k-space Hamiltonian

hk = Mkσ1 +λσ3(s2 sin kx−s1 sin ky)+λzσ2 sin kz, (9)

with Mk = �−2t
�

α cos kα. Here σα represent the Pauli
matrices acting in the space of two independent orbitals
per lattice site. For λ,λz > 0 and 2t < � < 6t the
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FIG. 3: a) Energy dispersion for a long TI wire with 20 ×
20 base described by lattice Hamiltonian (9) in the normal
state with η = 0.52. For clarity only the low-energy portion
of the spectrum is displayed in a part of the Brillouin zone.
Inset shows the spin expectation values for the gapless state
at small positive k. The length of the arrow is proportional to
the wavefunction amplitude. b) Lines separating regions with
different Majorana number M = −1(+1) extracted from the
spectrum. All energies are in units of λ = 150meV and we use
parameters λz = 2, t = 1, � = 4 and g = 32, corresponding to
the strong TI phase with Z2 index (1;000) and bulk bandgap
2λ = 300meV.

system described by Hamiltonian (9) is a TI in Z2 class
(1;000), i.e. a strong topological insulator. The magnetic
field enters through the Peierls substitution, replacing all

hopping amplitudes as tij → tij exp [−(2πi/Φ0)
� j

i
A · dl]

and the Zeemann term −gµBB·s/2 where µB = e�/2mec
is the Bohr magneton. In the SC state the BdG Hamil-
tonian takes the form of Eq. (5) with ∆k = ∆0is2 de-
scribing on-site spin singlet pairing.

We have solved the problem posed by Hamiltonian (9)
in various wire geometries by exact numerical diagonal-
ization and by sparse matrix techniques. Fig. 3a shows
a typical example of the excitation spectrum in an in-
finitely long wire with W ×W cross-section in the normal
state. We observe that for η close to 1/2 the surface state
is indeed gapless and the low-energy modes exhibit the
expected pattern of degeneracy. Because of the surface
state penetration into the TI bulk the surface electrons
see a slightly smaller magnetic flux than the nominal flux
Φ = BW 2 given by the wire geometry and the gapless
state is shifted to a slightly higher value of η. This is
also seen in Fig. 3b which displays the Majorana num-
ber for the same system. This figure also indicates that
for η = 0.52(2n + 1) the system will be a 1D topological
SC for any value of µ inside the bulk gap.

Superconducting order opens a gap in the electron ex-
citation spectrum as illustrated in Fig. 4a. For an open-
ended wire, crucially, our calculations reveal a pair of
non-degenerate states at ±E0 inside the SC gap whose
energies approach zero for large L as E0 ∝ e−L/ξ. Fig.
4b illustrates this exponential decay (which is in addition
modulated by oscillations at 2kF ). Higher energy eigen-
states approach non-zero values close to ∆0 for large L.
The wavefunctions associated with ±E0 are peaked near

Figure 3.7: a) Energy dispersion for a long TI wire with 20 × 20 base de-
scribed by lattice Hamiltonian (3.31) in the normal state with η = 0.52.
For clarity only the low-energy portion of the spectrum is displayed in a
part of the Brillouin zone. Inset shows the spin expectation values for the
gapless state at small positive k. The length of the arrow is proportional
to the wavefunction amplitude. b) Lines separating regions with different
Majorana number M = −1(+1) extracted from the spectrum. All energies
are in units of λ = 150meV and we use parameters λz = 2, t = 1, ε = 4
and g = 32, corresponding to the strong TI phase with Z2 index (1;000) and
bulk bandgap 2λ = 300meV.

Fig.3.7a shows a typical example of the excitation spectrum in an in-
finitely long wire with W ×W cross-section in the normal state. We observe
that for η close to 1/2 the surface state is indeed gapless and the low-energy
modes exhibit the expected pattern of degeneracy. Because of the surface
state penetration into the TI bulk the surface electrons see a slightly smaller
magnetic flux than the nominal flux Φ = BW 2 given by the wire geometry
and the gapless state is shifted to a slightly higher value of η. This is also
seen in Fig. 3.7b which displays the Majorana number for the same system.
This figure also indicates that for η = 0.52(2n + 1) the system will be a
1D topological SC for any value of µ inside the bulk gap. Superconduct-
ing order opens a gap in the electron excitation spectrum as illustrated in
Fig.3.8a. For an open-ended wire, crucially, our calculations reveal a pair
of non-degenerate states at ±E0 inside the SC gap whose energies approach
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FIG. 4: a) Energy bands for a long TI wire with 6 × 6 base
in the SC state with η = 0.49, µ = 0.09, ∆0 = 0.08 and g = 0
(solid lines), and the energy levels for L = 36 wire with open
boundary conditions (red circles) obtained by exact numer-
ical diagonalization. b) Three lowest positive energy eigen-
values obtained by the Lanczos method as a function of L.
Dashed line represents the envelope function 0.089e−L/ξ with
ξ = 17.5. c) Probability densities of Majorana end-states.
Pa/b(z) represents the particle component of the wavefunc-
tion associated with ±E0 averaged over x-y coordinates. Pa±b

represent the even/odd superpositions of these wavefunctions.

wire’s ends (Fig. 4c). Linear superpositions of these can
be chosen that are localized near one or the other end of
the wire. Their corresponding field operators then sat-

isfy the Majorana condition ψ̂† = ψ̂, and represent, up
to exponentially small corrections in their separation, the
Majorana zero modes.

We conclude with comments on the experimental re-
alization. For the existing Bi2Se3 nanoribbons [13, 14]

with cross-sectional area S ≈ 6 × 10−15m2 the sur-
face level spacing is δE0 � v�

�
π/S � 7meV. At half

flux quantum, which corresponds to the magnetic field
strength B = Φ0/2S � 0.34T, the Zeemann energy scale
δEZ = gπ�2/2meS � 0.6meV (taking v = 5 × 105m/s
and g = 32). There is at present no experimental data on
the proximity effect in Bi2Se3 but the fact that upon dop-
ing by Cu this material itself becomes a superconductor
below 4K [22] suggest good prospects for inducing a sub-
stantial SC gap ∆. In fact given the recent observation
of protected surface states in superconducting CuxBi2Se3

[23] it is possible that that nanoribbons made of this ma-
terial can host Majorana end-states even in the absence
of superconducting substrate. Similar to the situation
in semiconductor wires ∆ must be smaller than ∼ δE0

or otherwise mixing with the higher bands can drive the
system outside the topological phase. Nevertheless, in-
ducing a SC gap of several meV appears conceivable, es-
pecially in thinner wires where δE0 could exceed 10meV.
In such nanoribbons it will be possible to employ scan-
ning tunneling spectroscopy to detect the zero modes in
addition to previously discussed transport measurements
[10–12].

Energy scales inherently higher compared to the ordi-
nary semiconductor wires, significantly reduced require-
ments for the chemical potential control and the expected
protection against disorder afforded by operation in T -
invariant regime should make TI nanoribbons strong can-
didates for the first observation of Majorana fermions.
Our preliminary results indeed support the robustness
against weak disorder [24] but systematic studies of the
effects of disorder and interactions along the lines of re-
cent works [25, 26] constitute an exciting future direction.

The authors are indebted to J. Alicea, P. Brouwer, S.
Frolov, L. Fu, I. Garate, G. Refael, and X.-L. Qi for valu-
able comments and discussions. The work was supported
by NSERC and CIfAR.
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Figure 3.8: a) Energy bands for a long TI wire with 6 × 6 base in the SC
state with η = 0.49, µ = 0.09, ∆0 = 0.08 and g = 0 (solid lines), and the
energy levels for L = 36 wire with open boundary conditions (red circles)
obtained by exact numerical diagonalization. b) Three lowest positive energy
eigenvalues obtained by the Lanczos method as a function of L. Dashed line
represents the envelope function 0.089e−L/ξ with ξ = 17.5.

zero for large L as E0 ∝ e−L/ξ. Fig.3.8b illustrates this exponential decay
(which is in addition modulated by oscillations at 2kF ). Higher energy eigen-
states approach non-zero values close to ∆0 for large L. We have verified
that the appropriate linear superpositions of the wavefunctions associated
with the ±E0 eigenvalues are exponentially localized near the ends of the
wire. The corresponding field operators then satisfy the Majorana condition
ψ̂† = ψ̂, and represent, up to exponentially small corrections in their sepa-
ration, the Majorana zero modes. As a last example of a calculation based
on the lattice model we show in Fig. 3.9 the probablity density of Majorana
end-states in a wire 100 lattice spacings long. We note that in any finite-
length wire there will always be an exponentially small overlap between the
two Majorana end-states. Such an overlap leads to the hybridization and
a small non-zero energy δE for the combined fermionic state which shows
probablity density equally split between the two ends of the wire. An (un-
physical) state with equal probablity density exists at energy −δE. Fig.
3.9 shows how the Majorana end-states can be constructed by taking the
appropriate linear superpositions of the above eigenstates. It is to be noted
that for a finite-length wire the Majorana end-states are not true eigen-
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Figure 3.9: Probability densities of Majorana end-states. Pa/b(z) represents
the particle component of the wavefunction associated with ±E0 summed
over x-y coordinates. Pa±b represent the even/odd superpositions of these
wavefunctions. The wire is 6 lattice sites wide in both the x̂ and ŷ directions
and 100 lattice sites long in the ẑ direction. η = 0.49 in units of the funda-
mental flux quantum, and the chemical potential µ = 0.09λ, where λ = 150
meV.

states of the system; they will mix on a time scale ~/δE which is, however,
exponentially long in the wire length L.

3.3.2 The Majorana number and the topological phase
diagram

The existence of MF at the ends of the wire depends on whether or not
the wire is in the topological phase. For a 1D system the presence of the
topological phase is indicated by Kitaev’s Majorana number [81]M(H). In
Fig.3.4, we showM(H) in different regions of the phase diagram in the limit
∆→ 0 where it reflects simply the parity of the number of the Fermi points
of the underlying normal state in the right half of the Brillouin zone. The
resulting phase diagram in the η-µ plane, for µ inside the bulk bandgap,
consists of diamond-shaped topological regions indicated in Fig. 3.10(a). In
the limit ∆→ 0 the individual diamonds just touch at their apices yielding
a continuous topological phase for a specific value of magnetic flux η close
to 1

2 and for all values of µ inside the band gap. This feature underlies
the key advantage of the present setup: the chemical potential does not
require fine tuning. However, it is also true that when passing between
individual diamond-shaped regions, the system gets arbitrarilly close to the
phase boundary and one thus expect topological order to be rather fragile in
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Figure 3.10: Phase diagrams computed from generalized Majorana number
for the infinitely-long, clean wire with a 10 lattice site by 10 lattice site
cross-section. (a), (b), and (c) are each for a system with a vortex, while
the system with phase diagram (d) lacks a vortex. |∆| is set to 0 and 0.04λ in
(a), (b), respectively, and 0.08λ in both (c) and (d). Chemical potential µ is
in units of λ = 150 meV and η is in units of the fundamental flux quantum.
Blue and pink regions were created by computing the generalized Majorana
number M in steps of at most ∆η = 0.02 and ∆µ = 0.02, colouring these
points blue (M = 1, non-topological phase, no Majorana zero-modes in
system) or pink (M = −1, topological phase, Majorana zero-modes present
in system), respectively, and enlarging these data points to create regions of
solid colour. As well, the phase boundaries were computed (white lines) via
a more efficient algorithm, with error bars at most the size of the symbols.
White lines extend only up to µ = 1 as at larger µ the topological phase
regions break up into small domains and the algorithm used to compute the
phase boundary is only effective for large, simply-connected regions of the
phase diagram.
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3.3. Results on stability of Majorana fermions

these regions. On the other hand, away from the ∆→ 0 limit one intuitively
expects the topological phase to become more robust and indeed this was
suggested by the numerical results presented in Ref. [87]. In the following
we shall elucidate this point and show that indeed for ∆0 > 0 the topological
phase becomes a compact region in the η-µ plane.

We consider a general definition of the Majorana number[81]

M(H) = sgn
[
PfB̃(k = 0)

]
sgn

[
PfB̃(k =

π

a
)
]
, (3.32)

where B̃(k) is the position-space Hamiltonian of the infinite-length, lattice-
model TI wire written in terms of Majorana fermion operators and Fourier-
transformed in the ẑ-direction. a is the lattice-spacing, implying that B̃(k)
is evaluated here at k = 0 and at the edge of the Brillouin zone. Eq. (3.32)
simplifies to the previously-given definition in [87] when |∆| is sufficiently
small.

We consider the phase diagram in two limiting situations: When ∆
winds in phase counterclockwise by 2π around the circumference of the wire,
corresponding to a vortex present along the length of the TI nanowire, and
when ∆ does not wind in phase, meaning there is no vortex in the system.
These two situations are expected to represent the ground state of the system
for the magnetic flux close to Φ0/2 and 0, respectively. The precise value
of the flux at which the vortex enters will depend on details but we show
below that, remarkably, the topological phase diagram is fairly insensitive
to the presence or absence of the vortex.

Fig. 3.10 displays the phase diagram of a rectangular wire with a 10×10
cross section based on Eq. (3.32). As |∆| is increased from zero, we see that
the boundary of the region corresponding to the topological phase smoothes
out, with the region centered close to η = 0.5 and extending through all
values of the chemical potential inside the bulk band gap and also up into
the bulk conduction band. We remark that the topological phase here is
centered near a value of the magnetic flux that somewhat exceeds Φ0/2.
This is because the surface state penetrates slightly into the bulk of the
wire and thus encloses somewhat smaller amount of flux than the geometric
surface area of the wire. For thicker wires this shift will be negligible.

It is also interesting to note that according to Fig. 3.10 the topological
phase persists for µ well into the conduction band (as well as the valence
band, which is not explicitly shown). This finding is potentially important
in view of the fact that most TI crystals naturally grow with the chemical
potential pinned inside the bulk conduction or valence band. We will show
below, however, that although MFs indeed appear in this regime, the mini-
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gap protecting them quickly collapses as µ moves deeper into the bulk band.
Heuristically, one can understand this as follows. With µ inside the conduc-
tion band the bulk of the nanowire becomes metallic. In the presence of SC
order and with the magnetic field applied along its axis there will be a vortex
line running along its center. Such a vortex line will host low-energy core
states with the characteristic energy scale ∆2/EF which quickly becomes
very small as EF increases (here EF is the Fermi energy measured relative
to the bottom of the bulk conduction band). By contrast when the chemical
potential lies inside the bandgap the bulk of the wire remains insulating and
does not contribute any low-energy states.

From study of the phase diagram Fig. 3.10 at ∆ > 0, we begin to un-
derstand the robustness of the Majorana bound states. Consider first the
effect of non-magnetic disorder, modeled by introducing a spatially fluctu-
ating component of the chemical potential µ→ µ̄+ δµ(r). Assume also that
δµ(r) is slowly varying in space so that only variation along the z-direction
are meaningful and µ(z) can be thought of as defining a phase of the wire in
the vicinity of the coordinate z. If the average chemical potential µ̄ and the
flux η are such that the system starts deep inside the topological phase then
it is clear that fluctuations in δµ will not drive the system out of the topo-
logical phase unless they exceed the bulk bandgap. Similarly, fluctuations
in the total magnetic flux η, which can occur e.g. in a wire with a non-
uniform cross section, will not drive the system out of the topological phase
unless they reach a significant fraction of Φ0/2. We demonstrate below by
explicit inclusion of disorder in the lattice model that the heuristic argument
given above remains valid even when disorder potential varies rapidly on the
lattice scale.

The smoothing out of the topological region’s boundary as |∆| is in-
creased can be understood by studying the low-energy analytical theory
again. We start from the Hamiltonian in Eq. (3.8) and let µ = m = 0,
studying how the phase diagram changes for this value of the chemical po-
tential as |∆| is increased from zero. If we now assume that η deviates from
1/2 by a small amount, i.e. η = 1/2 + δη then the spectrum for the l = 0
branch can be written as

Ek = ±
[
k2 +

(
δη

R
±∆0

)2
]1/2

. (3.33)

We know that the system will be in the topological phase when δη = 0
and µ = 0±. To understand the smoothing out of the topological region’s
boundary, we identify when the spectral gap closes for non-zero ∆0 as a
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function of δη, since closing of the gap signifies a phase transition. We
notice that the gap in Eq. (3.33) remains as δη is moved away from 0 until
δη = ±R∆0/v~, where we have restored proper units. Therefore, we see that
at µ = 0, for nonzero ∆0, the topological phase has widened from a point at
η = 1/2 to an interval (1/2−R∆0/v~, 1/2 +R∆0/v~), as observed in the
phase diagrams computed numerically using the more general definition of
the Majorana number.

The absence or presence of a vortex in the TI nanowire makes negligible
differences to the phase diagrams as seen by comparing Figs. 3.10(c) and
3.10(d). However, the presence or absence of a vortex does have a pro-
nounced effect on the quasiparticle excitation gap ∆exc (shown in Fig. 3.11)
in the infinitely-long wire. From Fig. 3.11, we see that ∆exc remains close
in magnitude to |∆| up until µ reaches the bottom of the bulk conduction
band if the SC order parameter winds counter-clockwise in phase by 2π,
while without a vortex ∆exc can be seen to quickly decay with increasing µ.
Clearly, near η = 1/2 the former represents a more physical situation.

If we study the minigap as a function of chemical potential with a vortex
present, shown in Fig. 3.12, we see that, for µ close to zero, the minigap
starts with an amplitude close to the SC gap ∆, in accord with the analytical
theory presented in Sec. III.B. The minigap then continuously decreases
with increasing µ, retaining a respectable value ∼ 0.1∆ at the edge of the
bulk conduction band at µ = 1. As mentioned previously, the minigap then
quickly collapses as the bulk bands are populated but nevertheless persists
over a non-zero range of µ > 1.

3.3.3 Robustness of Majorana fermions against disorder

As mentioned previously, we expect robustness of the Majorana end states
with respect to non-magnetic disorder in the proposed device. There are
two related but logically separate issues that pertain to this problem. First,
we must ensure that SC order induced in the wire is itself robust against
non-magnetic disorder. Since the device can be operated at (or very close
to) the time-reversal invariant point and since we consider a spin-singlet
s-wave SC order we expect this to be the case on the basis of Anderson’s
theorem. Below, we illustrate this aspect of the robustness by performing
a self-consistent numerical calculation on our model in the presence of dis-
order. Second, we must show that Majorana end-states themselves remain
stable in the presence of disorder. To some extent this already follows from
our arguments in the previous subsection based on the study of the topo-
logical phase diagram. Also, stability of MFs follows from the stability of
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Figure 3.11: Quasiparticle excitation gap ∆exc of an infinitely-long wire
without disorder with a 14 lattice site by 14 lattice site cross-section as
a function of chemical potential µ with vortex present (black circles) and
vortex absent (red diamonds). ∆exc and µ are expressed in units of λ = 150
meV. Here |∆| = 0.08λ.

the SC phase in the bulk of the wire argued above. Nevertheless, to ad-
dress this question directly, we perform explicit numerical calculations for
open-ended wires in the presence of non-magnetic disorder and in various
physical regimes. These calculations confirm the expected robustness of MFs
and yield additional insights into the quantitave aspects of this robustness;
specifically they provide information about the minigap magnitude and the
mechanism by which MFs are eventually destroyed in the strong-disorder
limit.

To study these questions, we add a term corresponding to disorder in the
on-site potential to the lattice Hamiltonian, H0, of the clean system. The
Hamiltonian for the system with disorder, Hdis, is therefore

Hdis = H0 +
∑

iα

Uic
†
iαciα′ , (3.34)

where Ui, the random potential at lattice site i, is assigned a value from a
uniform, random distribution ranging from −U

2 to U
2 .
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Figure 3.12: Three lowest energy eigenvalues E2, E1, and E0 of the finite-
length wire, without disorder, with 14 by 14 by 100 lattice sites as a function
of chemical potential µ with vortex present with |∆| = 0.08λ. ∆exc and µ are
expressed in units of λ = 150 meV. Eigenvalues were computed via Lanczos
method and failed to converge for µ > 1.05, resulting in a non-physical spike
to the non-convergent next data point.

As a first step we compute the magnitude of the SC order parame-
ter self-consistently as described in [97] for different disorder strengths and
with periodic boundary conditions along z, i.e. no Majorana end-states.
This calculation assumes the existence of an intrinsic pairing potential V
in the wire and is therefore, strictly speaking, not directly relevant to the
proximity-induced SC state discussed in the rest of this paper. It neverthe-
less illustrates very nicely the robustness of the SC order with respect to
disorder. The key point is that one would expect SC order to be even more
robust when induced by proximity to the bulk superconductor. Fig. 3.13
shows mean SC order parameter magnitude vs. U

2 computed for different
values of the pairing potential V . We observe that |∆|avg first decreases
slightly with increasing U , but at larger U the mean SC order parameter
increases in magnitude. We attribute this increase to the buildup of the
normal density of states at the Fermi level, N(µ), due to disorder. Such a
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buildup is known to occur in other 2D systems with a Dirac spectrum[98]
and it should increase |∆| according to the standard BCS formula[97]

∆ = ~ωce−1/N(µ)V . (3.35)

Here ωc and V are constants. These results suggest the SC order parameter
is not only quite robust against non-magnetic disorder but the latter can
actually enhance it when the chemical potential is close to the Dirac point.

0 0.5 1 1.5 2
U/2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

|∆
| av

g

V = 1.310
V = 1.295
V = 1.290

Figure 3.13: Mean superconducting order parameter magnitude |∆|avg for
three different values of the pairing potential (V = 1.310, V = 1.295, and
V = 1.290) as a function of disorder strength U

2 . |∆|avg is averaged over
every lattice site in a 6x6x6 lattice site nanowire with periodic boundary
conditions in the ẑ-direction with random disorder in the chemical poten-
tial and also further averaged over 10 such randomly-disordered nanowires.
The mean chemical potential for all data points is µavg = 0.09λ. The self-
consistent calculation for each disordered nanowire proceeded until the maxi-
mum difference in the superconducting order parameter magnitude between
the final iteration and the next-to-last iteration of the calculation at any
lattice site was less than 0.001λ.

To address the robustness of Majorana end-states we now study the
finite-length wires. Using sparse matrix techniques, we solved for the av-
erage values of the three lowest, positive eigenvalues of the spectrum, and
plotted these for a range of U , as shown in Fig. 3.14. These calculations are
performed for a constant value of the SC gap, having previously established
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that disorder has only a weak effect on the latter. We see that the energy
of the Majorana bound state remains very close to zero, with no observable
fluctuations. The topological SC is eventually destroyed by the collapse of
the minigap, i.e. lowering of the excited states at some critical value of
disorder strength Uc. It is interesting to note that Uc is rather large, being
expressed in units of λ = 150 meV, exceeding the TI bulk bandgap by more
than a factor of 5. Furthermore, the MFs are robust against disorder at a
wide range of average chemical potential in the bulk band gap, although the
minigap is largest for values close to the middle of the bulk band gap and
smallest for values near the edge of the bulk band gap. We note that the
minigap is roughly the same for mean chemical potential values of 0.09λ,
0.4λ, and 0.8λ if U

2 = λ, suggesting disorder stabilizes the minigap in this
regime. It is also interesting to note that for two larger values of µ disor-
der initially increases the minigap thus making the topological phase more
robust.
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Figure 3.14: Three lowest positive energy eigenvalues E0, E1, and E2 of a
finite-length TI nanowire model with 6 by 6 by 100 lattice sites obtained by
the Lanczos method as a function of disorder strength U

2 for mean chemical
potential values of µ = 0.09 (a), µ = 0.4 (b), and µ = 0.8λ. |∆| = 0.08λ for
each. U

2 and energy E are expressed in units of λ = 150 meV. The error bars
reflect averaging over 10 independent realizations of the random potential.
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3.4 Conclusion and discussion

The main goal of this work was to study the stability of Majorana zero-
modes in the proposal introduced in [87], which consists of a TI nanowire,
proximity-coupled to a bulk s-wave superconductor, with a weak magnetic
field applied along the nanowire’s length. After reviewing the literature
to illustrate the importance of identifying a device in which MFs emerge
under a wide range of accessible conditions, and reviewing the theory behind
the proposed device in greater detail than possible in [87], we studied the
robustness of the topological superconductor phase of the device against
disorder.

As a first step we computed the topological phase diagram of the TI
nanowire numerically in a semi-realistic lattice model. Using a general def-
inition of Kitaev’s Majorana number[81] M(H) we were able to show that
for non-zero values of SC order parameter ∆ the topological phase forms a
set of compact columnar regions in the plane spanned by the magnetic flux
η = Φ/Φ0 and the chemical potential µ, centered around half-integer values
of ν and covering about 50% of the phase diagram (see Fig. 3.10). This form
of the phase diagram confers two principal advantages of our proposed de-
vice as regards future experimental realizations and potential applications:
(i) unlike in the semiconductor wire realizations[13] where significant fine-
tuning of the chemical potential is required to reach the topological phase,
our proposed device produces Majorana end-states for µ anywhere inside
the bulk bandgap of the TI; and (ii) if the average chemical potential of the
nanowire is in the bulk band gap, we can expect the entire nanowire to re-
main in the topological phase even for large disorder strengths, as even then
any local chemical potential value will remain in the topological region of
the phase diagram. We also observe from the phase diagram Fig. 3.10 that
the topological phase persists over a wide range in magnetic flux through
the cross-section of the nanowire. This feature is less critical because the
magnetic field can be easily tuned in a laboratory. Nevertheless understand-
ing the magnetic phase boundary is very useful since changing the magnetic
field strength can be used to tune the wire between topological and normal
phases.

To explicitly ascertain the robustness of the MF with respect to thermal
fluctuations and non-magnetic disorder we studied the system’s minigap by
both analytic and numerical techniques. Minigap, defined as the smallest
non-zero energy level in the system, can be taken as a good proxy for the
robustness of the quantum information encoded in MFs since uncontrolled
excitations of quasiparticles out of the ground state into the low-lying ex-
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cited states would obviously spoil such encoding. Also, large values of the
minigap can aid experimental detection of the Majorana zero mode using
various spectroscopic techniques. We use the low-energy, analytical theory
of [87] to first show that excited states should be close in energy to the
magnitude of the superconducting gap when the chemical potential is close
to the middle of the bulk band gap of the TI nanowire, indicating Majorana
zero-modes in the device should be protected by a sizeable minigap. We
then employ the lattice model and compute the three lowest eigenenergies
of the TI nanowire with disorder to show that the minigap remains signif-
icant even for the disorder strength considerably exceeding the bulk band
gap of the TI. Interestingly, we find that disorder strength comparable to
the magnitude of the bulk bandgap also appears to stabilize the minigap
at a sizeable value over changes in the average chemical potential in the
nanowire, which might be useful in future applications of the device.

Here we make some comments on the experimental realization. For
the existing Bi2Se3 nanoribbons [84, 85] with cross-sectional area S ≈ 6 ×
10−15m2 the surface level spacing is δES ' v~

√
π/S ' 7meV. At half flux

quantum, which corresponds to the magnetic field strength B = Φ0/2S '
0.34T, the Zeemann energy scale δEZ = gπ~2/2meS ' 0.6meV (taking
v = 5 × 105m/s and g = 32) and thus probably negligible. On the other
hand experiments on planar Sn-Bi2Se3 interfaces [88] show induced SC gap
∼ 0.2meV, a significant fraction of the native Sn bulk gap (∼ 0.6meV). It
thus appears conceivable that a pairing gap of several meV could be induced
in Bi2Se3 nanoribbons by using in place of Sn a superconductor with larger
bulk gap, such as NbTiN or MgB2. In such devices it should then be possible
to employ scanning tunneling techniques to detect the zero modes in addi-
tion to previously discussed transport measurements [20, 39, 81]. Another
intriguing possibility is to fabricate nanoribbons from CuxBi2Se3 which be-
comes a superconductor below 4K [89] while simultaneously retaining the
protected surface states in [90].

Before concluding we address the following question: Do MFs predicted
to exist in our device obey non-Abelian exchange statistics? This property
is obviously of paramount importance for any future application in quantum
information processing. Alicea et al. [91] clarified the sense in which MFs in
1D wire networks exhibit non-Abelian statistics upon exchange, considering
semiconductor wires[13, 20, 39], and showed how particle exchanges can be
effected in such a setting. Although superficially similar to these models[20,
39] our proposal is more closely related to the original Fu-Kane vortex at the
interface between a TI and an ordinary superconductor[37]. Indeed consider
a thought experiment in which we take our wire and slowly increase its radius
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a) B Bb) c)

Figure 3.15: Exchange of MFs in a trijunction device. a) The field B is tuned
so that nanowire 1 has flux close to Φ0/2 through its cross section and is thus
in the topological phase with MFs localized near its ends. The flux through
wires 2 and 3 is down by the factor cos(2π/6) = 0.5 and they are thus in the
trivial phase. b) Rotating the direction of B by 30o the flux through wires
1 and 2 becomes cos(2π/12)(Φ0/2) ' 0.866(Φ0/2) and is thus sufficiently
close to Φ0/2 for them both to be in the topological phase according to the
phase diagram in Fig. 3.10. As a result the MF previously located at the
junction (red circle) has now moved to the other end of wire 2 as indicated.
Continuing this process by rotating B further in 30o increments it is easy
to map out the motion of MFs and conclude that after 180o rotation the
system comes back to the original situation with MFs localized on wire 1
but with their order exchanged as illustrated in panel c).

while simultaneously reducing the applied magnetic field so that the total
flux through its cross section remains constant at Φ0/2. We also assume that
all the surfaces of the resulting disk remain covered by a thin SC film. In the
limit when the radius R becomes comparable to the wire length L we have
a bulk disk-shaped TI covered with a SC film. The presence of Φ0/2 flux
and the cylindrical symmetry dictates that a vortex must be present at the
center of each of the flat disk surfaces. Such vortices will contain MFs[37]
and will obey non-Abelian exchange statistics according to the standard
arguments. MFs in our wires are thus adiabatically connected to those
residing in the cores of Fu-Kane vortices and are thus expected to obey
the same non-Abelian exchange statistics when organized into T-junctions
or wire network geometries[91]. In Fig. 3.15 we outline a simple protocol
that implements an exchange of two MFs in a symmetric ‘trijunction’ device
formed by three nanowires joined at a single point. The exchange of two
MFs, initially localized at the ends of one of the wires, is effected simply by
a 180o rotation of the applied magnetic field in the plane of the device.
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We conclude that unpaired Majorana zero-modes are exceptionally sta-
ble in our proposed device, being present over a wide range in magnetic flux,
chemical potential, and disorder strength, with disorder even being expected
to stabilize the MFs to an extent. They obey non-Abelian exchange statistics
by virtue of being adiabatically connected to the Fu-Kane vortex[37] and,
as illustrated above, can be easily manipulated by changing the direction of
the applied magnetic field. On this basis we expect the device architecture
discussed in this work to be useful for future experimental study of MFs and
their potential applications.
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