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Abstract

The Donaldson-Thomas (DT) theory of a Calabi-Yau threefold X gives rise
to subtle deformation invariants. They are considered to be the mathemat-
ical counterparts of BPS state counts in topological string theory compact-
ified on X. Principles of physics (see [46], [50]) indicate that the string
theory of a singular Calabi-Yau threefold and that of its crepant resolution
ought to be equivalent, so one might expect that the DT theory of a singular
Calabi-Yau threefold ought to be equivalent to that of its crepant resolution.
There is some difficulty in defining DT when X is singular, but the authors
of [14] have (in some generality) defined DT theory in the case where X is
the coarse moduli space of an orbifold X . The crepant resolution conjec-
ture of [14] gives a formula determining the DT invariants of the orbifold in
terms of the DT invariants of the crepant resolution. In this dissertation,
we begin a program to prove the crepant resolution conjecture using Hall
algebra techniques inspired by those of Bridgeland [12].
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Chapter 1

Introduction

Donaldson-Thomas (DT) theory of a Calabi-Yau threefold X gives rise to
subtle deformation invariants. They are considered to be the mathematical
counterparts of BPS state counts in topological string theory compactified
on X. Principles of physics (see [46], [50]) indicate that the string theory of
a singular Calabi-Yau threefold and that of its crepant resolution ought to
be equivalent, so one might expect that the DT theory of a singular Calabi-
Yau threefold ought to be equivalent to that of its crepant resolution. There
is some difficulty in defining DT when X is singular, but the authors of
[14] have (in some generality) defined DT theory in the case where X is the
coarse moduli space of an orbifold X . The crepant resolution conjecture of
[14] gives a formula determining the DT invariants of the orbifold in terms
of the DT invariants of the crepant resolution. In this dissertation, we begin
a program to prove the crepant resolution conjecture using Hall algebra
techniques inspired by those of Bridgeland [12].

Donaldson-Thomas theory

Let Y be a smooth projective Calabi-Yau threefold. Let K(Y ) be the nu-
merical K-theory of Y , i.e. the quotient of the K-group of coh(Y ) by the
kernel of the Chern character map to cohomology. The Hilbert scheme of
Y , Hilbα(Y ), parametrizes quotients OY → OZ , such that the class of OZ

in K(Y ) is α. The group K(Y ) is filtered by the dimension of the support:

F0K(Y ) ⊂ F1K(Y ) ⊂ F2K(Y ) ⊂ F3K(Y ) = K(Y ).
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In this dissertation, we will focus on curves, i.e., α ∈ F1K(Y ), with ch(α) =
(0, 0, β, n), where β ∈ H4(Y, Z) is a curve class, and n ∈ H6(Y, Z) ∼= Z is
the holomorphic Euler characteristic. In [43], an obstruction theory for this
moduli space is constructed, which produces (by [5]) a virtual fundamental
cycle. Donaldson-Thomas invariants are defined by integrating over the
zero-dimensional virtual fundamental class:

DTα(Y ) =
∫

[Hilbα(Y )]vir

1.

Since the obstruction theory is symmetric, we may also express the in-
variants as the Euler characteristic of Hilbα(Y ) weighted by Behrend’s mi-
crolocal function [3]:

DTα(Y ) =
∑
n∈Z

nχ(ν−1(n)),

where ν : Hilbα(Y ) → Z is Behrend’s function.
Following [35], we assemble the invariants into a partition function

DT(Y ) =
∑

α∈F1K(Y )

DTα(Y )qα.

Remark 1.1. In [29], Donaldson-Thomas invariants are greatly generalized,
from the case of structure sheaves of curves to that of arbitrary sheaves. The
price of admission to this generality is the formidable machinery of Joyce
[24, 25, 26, 27, 28]. An even more ambitious program of generalization is
being lead by Kontsevich and Soibelman [31].

The Donaldson-Thomas crepant resolution

conjecture

We follow [14] in our treatment of the crepant resolution conjecture.
An orbifold CY3 is defined to be a smooth, quasi-projective, Deligne-

Mumford stack X over C of dimension three having generically trivial sta-
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bilizers and trivial canonical bundle,

KX ∼= OX .

The definition implies that the local model for X at a point p is [C3/Gp]
where Gp ⊂ SL(3, C) is the (finite) group of automorphisms of p. The
orbifold CY3s that appear in this dissertation will all be projective and
satisfy the hard Lefschetz condition ([16, definition 1.1]), which in this case is
equivalent ([15, lemma 24]) to the condition that all Gp are finite subgroups
of SO(3) ⊂ SU(3) or SU(2) ⊂ SU(3).

Let X denote the coarse space of X . A crepant resolution of X is a
resolution of singularities π : Y → X such that π∗KX

∼= KY . Lemma 1 and
proposition 1 of [48] prove that

R•π∗OY = OX . (1.2)

The results of [13] and [18] prove that one distinguished crepant resolution
of X is

Y = Hilb[Op](X ), (1.3)

the Hilbert scheme parametrizing substacks in the class [Op] ∈ F0K(X ).
The hard Lefschetz condition implies that the resolution is semi-small (i.e.,
that the fibres of π are zero- or one-dimensional), and that the singular locus
of X is one-dimensional; see [8, 15]. Furthermore, [13] and [18] prove that
there is a Fourier-Mukai isomorphism

Ψ : Db(Y ) → Db(X )

defined by
E 7→ Rq∗p

∗E

where
p : Z → Y, q : Z → X

are the projections from the universal substack Z ⊂ X ×Y onto each factor.
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This isomorphism descends to an isomorphism of K-theory also denoted Ψ :
K(Y ) → K(X ). It does not respect the filtration by dimension. However,
the hard Lefschetz condition implies that the image of F0K(X ) is contained
in F1K(Y ), under the inverse Φ of Ψ. We call the image FexcK(Y ); its
elements can be represented by formal differences of sheaves supported on
the exceptional fibres of π : Y → X. We define the multi-regular part of
K-theory, Fmr(X ), to be the preimage of F1K(Y ) under Ψ. Its elements
can be represented by formal differences of sheaves supported in dimension
one where at the generic point of each curve in the support, the associated
representation of the stabilizer group of that point is a multiple of the regular
representation. The following filtrations are respected by Ψ:

FexcK(Y ) ⊂ F1K(Y ) ⊂ K(Y )

F0K(X ) ⊂ FmRK(X ) ⊂ K(X ).

Define the exceptional DT generating series of Y , the multi-regular gen-
erating series, and degree zero generating series of X to be:

DTexc(Y ) =
∑

α∈FexcK(Y )

DTα(Y )qα,

DTmr(X ) =
∑

α∈FmrK(X )

DTα(X )qα

DT0(X ) =
∑

α∈F0K(X )

DTα(X )qα

We state the crepant resolution conjecture of [14, conjecture 1]:

Conjecture 1.4. Let X be an orbifold CY3 satisfying the hard Lefschetz
condition. Let Y be the Calabi-Yau resolution of X given by equation 1.3.
Then using Ψ to identify the variables, we have an equality

DTmr(X )
DT0(X )

=
DT(Y )

DTexc(Y )
.

This dissertation makes progress towards proving this conjecture.
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π-stable pairs

Objects of the Hilbert scheme may be viewed as two-term complexes,

OY
γ→ G,

where the cokernel of γ must be zero, and where G may be any sheaf ad-
mitting such a map γ. The new invariants introduced in this dissertation,
π-stable pairs, are a modification of this idea. They have been constructed
with a view towards proving the crepant resolution conjecture, and as such,
they depend on a crepant resolution Y

π→ X as described in the previous sec-
tion. The objects of our moduli space allow more variation in our cokernels,
but less in the sheaf G. In particular, a two-term complex

OY
γ→ G

is a π-stable pair (c.f. definition 2.7) if:

1. R•π∗ coker(γ) is a zero-dimensional sheaf on X, and

2. G admits only the zero map from any sheaf P with the property above,
namely that R•π∗P is a zero-dimensional sheaf.

Remark 1.5. These pairs were inspired by, and are a generalization of, the
stable pairs of Pandharipande and Thomas [39]. In fact, when X = Y and π

is the identity map, the above definition reduces to their definition of stable
pairs.

Below, we prove that there is a finite-type algebraic space, π-Hilbα

parametrizing these objects with [G] = α ∈ K(Y ). We may then define
invariants

π-PTα(Y ) =
∑
n∈Z

nχ(ν−1(n)),

where ν : π-Hilbα → Z is Behrend’s microlocal function. Note that if π :
Y → X is the identity, then π-PTα(Y ) = PTα(Y ), the usual Pandharipande-
Thomas invariants of Y . As with Donaldson-Thomas theory, we collect the
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invariants into a generating series,

π-PT(Y ) =
∑

α∈F1K(Y )

π-PTα(Y )qα.

Main result

The following theorem rests the work of Bridgeland [12] and Joyce–Song
[29], and we therefore require our Calabi-Yau threefold Y to satisfy

H1(Y,OY ) = 0.

Theorem 1.6. Let X be a projective Calabi-Yau threefold that is the coarse
space of an CY3 orbifold X that satisfies the hard Lefschetz condition. Let
π : Y → X be the resolution given by equation 1.3. Then the generating
series for the π-stable pair invariants and the DT invariants are related by
the equation

π-PT(Y ) =
DT(Y )

DTexc(Y )
.

The aim of this dissertation is to prove this theorem. We summarize
the chapters below. In chapter 2, we describe a torsion pair (Pπ,Qπ) that is
crucial to our definition of π-stable pairs. We explain the similarities between
π-stable pairs and PT stable pairs and objects of the Hilbert scheme. The
chapter ends by establishing results about the moduli space of π-stable pairs.

In chapter 3, we recall the concept of a stability condition in the sense of
Joyce. We then define the stability condition that we will use through out.
The rest of the chapter is dedicated to proving that we may apply Joyce’s
powerful machinery.

In chapter 4, we introduce the Harder-Narasimhan filtration for our sta-
bility condition, which will be our main tool to prove the relationship be-
tween the stability condition and the torsion pair from chapter 2.

In chapter 5, we introduce the motivic Hall algebra.
In chapter 6, we introduce the infinite-type Hall algebra as a purely

pedagogical tool. It helps us to give the essence of the idea of many re-

6



sults, without having to concern ourselves with convergence issues, which
are handled in the next chapter.

In chapter 7, we introduce the Laurent Hall algebra, address the conver-
gence issues alluded to in the previous chapter, and prove theorem 1.6.

Remark 1.7. To prove the crepant resolution conjecture, we need to prove
that π-PT(Y ) = PT(X ) and then use ([2]) Bayer’s proof of the PT/DT
correspondence on X ,

PT(X ) =
DTmR(X )
DT0(X )

.

The hope is that the Fourier-Mukai isomorphism Ψ takes π-stable pairs (as
an object in Db(Y )) to a PT pair on X .

In his recent article [17], John Calabrese proves a relationship between
the DT invariants of a Calabi-Yau threefold and its flop. This problem
is similar in many respects to the crepant resolution conjecture studied in
this thesis, and Calabrese uses many similar techniques. He constructs a
torsion pair and new counting invariants which he relates to invariants on
the flop via equations in the Hall algebra and the integration map. While
this is very similar to our approach in outline, the actual torsion pair and
counting invariants that Calabrese considers (even when adapted to the
orbifold setting) are quite different from ours. It would be very interesting
to find the precise relationship between the two approaches.
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Chapter 2

π-stable pairs

In this section, we define π-stable pairs, and prove some basic results.

Categorical constructions

Let A be an abelian category. Here we recall the notion of torsion pairs.

Definition 2.1. Let (P,Q) be a pair of full subcategories of A. We say
(P,Q) is a torsion pair if the following conditions hold.

• Hom(T, F ) = 0 for any T ∈ P and F ∈ Q.

• Any object E ∈ A fits into a unique exact sequence,

0 → T → E → F → 0, (2.2)

with T ∈ P and F ∈ Q.

We borrow the following lemma from Toda [45].

Lemma 2.3. Suppose that A is a noetherian abelian category.
(i) Let P ⊂ A be a full subcategory which is closed under extensions and

quotients in A. Then for Q = {E ∈ A : Hom(P, E) = 0}, the pair (P,Q) is
a torsion pair on A.

(ii) Let Q ⊂ A be a full subcategory which is closed under extensions
and subobjects in A. Then for P = {E ∈ A : Hom(E,Q) = 0}, the pair
(P,Q) is a torsion pair on A.

Proof: We only show (i), as the proof of (ii) is similar. Take E ∈ A with
E /∈ Q. Then there is T ∈ P and a non-zero morphism T → E. Since P is
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closed under quotients, we may assume that T → E is a monomorphism in
A. Take an exact sequence in A,

0 → T → E → F → 0. (2.4)

By the noetherian property of A and the assumption that P is closed under
extensions, we may assume that there is no T ( T ′ ⊂ E with T ′ ∈ T . Then
we have F ∈ Q and (2.4) gives the desired sequence. �

Example 2.5. Let

P = {0-dimensional sheaves on Y },

and let
Q = {E ∈ coh(Y ) : Hom(P,E) = 0 for all P ∈ P}.

Lemma 2.3 easily proves that the pair (P,Q) is a torsion pair.

Let C = coh≤1(Y ) denote the full subcategory of coherent sheaves on Y

whose support is of dimension no more than one. We make the following
definitions:

Pπ = {P ∈ C|R•π∗P is a zero-dimensional sheaf on X},

and
Qπ = {F ∈ C| for all P ∈ Pπ,Hom(P, F ) = 0} = P⊥π .

Lemma 2.6. The pair (Pπ,Qπ) is a torsion pair in C.

Proof: By lemma 2.3, it suffices to prove that Pπ is closed under extensions
and quotients.

Let P ′, P ′′ ∈ Pπ, and consider the short exact sequence

0 → P ′ → P → P ′′ → 0.

We are to show that such a P must live in Pπ. Consider now the long exact
sequence,
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0 → π∗P
′ → π∗Pπ → π∗P

′′ → R1π∗P
′ → R1π∗Pπ → R1π∗P

′′ → 0.

Since P ′, P ′′ ∈ Pπ, we know that R1π∗P
′ = 0 and R1π∗P

′′ = 0, so R1π∗P =
0. We also know that π∗P

′ and π∗P
′′ are zero-dimensional sheaves, and so

it is clear then that π∗P must be so as well. This proves that Pπ is closed
under extensions.

Let P ∈ Pπ, and consider the quotient P → B → 0. Denote the kernel
of this map by K. As before, we get a long exact sequence,

0 → π∗K → π∗P → π∗B → R1π∗K → R1π∗P → R1π∗B → 0.

Since P ∈ Pπ, R1π∗P = 0, and so R1π∗B = 0. It remains to show that
π∗B is zero-dimensional. We know that π∗K is zero dimensional, since it is
a subsheaf of (the zero-dimensional sheaf) π∗P . The support of R1π∗K is
contained in the singular locus. Suppose dim supp(R1π∗K) = 1. Then, K

must have been supported in dimension two, however this contradicts the
fact that K ∈ coh≤1(Y ).

Hence R1π∗K is zero dimensional. Now, π∗B is the extension of zero-
dimensional sheaves, so it too is zero-dimensional. This completes the proof
that B ∈ Pπ, and that (Pπ,Qπ) is a torsion pair.

�

Definition 2.7. A map γ : OY → G is a π-stable pair if G ∈ Qπ and
coker(γ) ∈ Pπ.

Remark 2.8. Our notion of π-stable pair is a generalization of the stable
pairs of Pandharipande and Thomas [39]. In the trivial case when X = Y

and π = the identity, we have that (Pπ,Qπ) = (P,Q) of example 2.5, and
the π-stable pairs are exactly PT stable pairs.

Definition 2.9. Two π-stable pairs γ1 : OY → G1 and γ2 : OY → G2 are
isomorphic if there exists a isomorphism of sheaves θ : G1 → G2 making the
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following diagram commute:

OY
γ1

//

γ2
!!CC

CC
CC

CC
G1

θ
��

G2

Remark 2.10. In [12], the tilt of A with respect to the torsion pair (P,Q)
of example 2.5 is denoted A#, and lemma 2.3 of [12] proves that A#-
epimorphisms of the form OY → F are precisely stable pairs. The abelian
category generated by OY and C has a tilt whose epimorphisms of the form
OY → G are precisely π-stable pairs. This is analogous to the tilt used in
[12]. However, since it is not strictly necessary for any of our arguments, we
will not present a proof here.

We associate to every π-stable pair γ : OY → G a short exact sequence

0 → OC → G → P → 0,

where P = coker(γ) ∈ Pπ and OC = OY / ker(γ).

Proposition 2.11. Let G be a non-zero sheaf. If OY → G is a π-stable pair,
then G is not supported exclusively on exceptional curves, and R1π∗G = 0.

Proof: Let
0 → OC → G → P → 0

be the associated short exact sequence. We will first show that R1π∗OC = 0.

Consider the short exact sequence

0 → IC → OY → OC → 0.

Pushing forward yields

0 → π∗IC → π∗OY → π∗OC → R1π∗IC → R1π∗OY → R1π∗OC → 0

which is exact since the dimension of the fibres of Y → X is at most one.
Thus the vanishing of R1π∗OY by equation 1.2 implies that of R1π∗OC .

11



Now consider the following long exact sequence.

0 → π∗OC → π∗G → π∗P → R1π∗OC → R1π∗G → R1π∗P → 0.

From above, we know R1π∗OC = 0. As well, P ∈ Pπ implies R1π∗P = 0.
Thus R1π∗G = 0.

Now, if C consists of only exceptional curves, then π∗OC is zero-dimensional.
This implies that π∗G is the extension of zero-dimensional sheaves, and
therefore zero-dimensional. This means that G ∈ Pπ. By definition of π-
stable pair, G ∈ Qπ. By definition of Qπ the only map from an object of Pπ

to an object of Qπ is the zero map, hence the identity of G is the zero map,
and G is the zero object. �

Let us introduce some terminology and results taken from [12] (modified
for our purposes, since we are only interested in sheaves supported in di-
mension no more than one). Let M denote the stack of objects of coh≤1(Y ).
It is an algebraic stack, locally of finite type over C. Let M(O) denote the
stack of framed sheaves, that is, the stack whose objects over a scheme S

are pairs (E, γ) where E is a S-flat coherent sheaf on S × Y , of relative
dimension no more than one, together with a map OS×Y

γ→ E. Given a
morphism of schemes f : T → S, and an object (F, δ) over T , a morphism
in M(O) lying over f is an isomorphism

θ : f∗(E) → F

such that the following diagram commutes

f∗(OS×Y )

can

��

f∗(γ)
// f∗(E)

θ

��

OT×Y
δ // F.

(2.12)

The symbol “can” denotes the canonical isomorphism of pullbacks.
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There is a natural map

M(O)
q→M (2.13)

sending a sheaf with a section to the underlying sheaf.
The following lemmas are 2.4 and 2.5 of [12].

Lemma 2.14. The stack M(O) is algebraic and the morphism q is repre-
sentable and of finite type.

Lemma 2.15. There is a stratification of M by locally-closed substacks

Mr ⊂M

such that objects F of Mr(C) are coherent sheaves satisfying

dimC H0(Y, F ) = r.

Furthermore, the pullback of the morphism q to Mr is a Zariski fibration
with fibre Cr.

Both of these are proven in [12].

Lemma 2.16. The moduli space of π-stable pairs with a fixed Hilbert poly-
nomial is an algebraic space of finite type.

Proof: Let π-Hilb(β,n) denote the stack of π-stable pairs on Y whose sheaf
G has Chern character (0, 0, β, n). Notice that

π-Hilb(β,n) ⊂M(O).

Lemma 2.14 states that M(O) is an algebraic stack.
Using the forth-coming description of Pπ and Qπ in terms of stability,

and using theorem 4.8 of [26], we know that Pπ and Qπ are algebraic sub-
stacks of M. We use this fact to proven that π-Hilb is an algebraic substack
of M.
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Consider the following cartesian diagram,

Qπ(O) //

��

M(O)

q

��

Qπ
// M.

Since Qπ and M(O) are algebraic stacks, their fibre product, Qπ(O) is an
algebraic stack, too. There is a map of stacks of stack c : Qπ(O) → M
which takes γ : OY → G to the cokernel coker(γ). Since π-Hilb fits into the
following cartesian diagram,

π-Hilb //

��

Pπ

��

Qπ(O) c // M,

we conclude that it too is an algebraic stack.
Now we prove π-Hilb(β,n) is of finite type. In lemma 3.16, we prove that

the sheaves of Chern character (0, 0, β, n) underlying π-stable pairs form a
bounded family. In particular, this means that there exists a coherent sheaf
E such that every sheaf underlying a π-stable pair G of Chern character
(0, 0, β, n) is a quotient of E. Now if we choose a polarization O(1) of Y ,
we have a finite type scheme Quot(E,P ) where P is the Hilbert polynomial
P (t) = β · O(1)t + n. There is a morphism Quot(E,P ) →M that takes a
quotient E → G and sends it to G. This map is of finite type. Consider the
diagram:

T
f

//

f ′

��

Quot(E,P )

q′

��

M(O)
q

// M

where T is the pullback of q′ by q. The image of the map q′ contains all
sheaves underlying π-stable pairs with Hilbert polynomial P . This means
that the image of T in M(O) contains all 2-term complexes [OY → G]
where G is a sheaf underlying a π-stable pair with Hilbert polynomial P .
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In particular, the image of T contains all π-stable pairs. Now since q is of
finite type, so must f be of finite type. The scheme Quot(E,P ) is of finite
type over C, so then we may conclude that T is finite type over C. Thus
the image of T under f ′ is of finite type. The stack of all π-stable pairs is
in this image, hence of finite type.

It remains to prove that this stack is in fact an algebraic space. It
suffices to prove that all closed points of the stack π-Hilb(β,n) have trivial
automorphism.

Let OY → G be a π-stable pair. We will show that it has only the trivial
automorphism. Consider the associated short exact sequence,

0 → OC → G → P → 0.

An automorphism of this π-stable pair leads to a diagram of the form,

0 // OC

id
��

γ
// G

g

��

h // P //

g

��

0

0 // OC
γ

// G
h // P // 0.

We will show that g is the identity map. Consider the following diagram,
obtained by subtracting the identity from the diagram above,

0 // OC

zero

��

γ
// G

g− id

��

h // P

��

//

g−id
��

0

0 // OC
// G

h // P // 0.

(2.17)

Since the left-most vertical arrow is zero, a diagram chase proves that the
dotted morphism exists and commutes with the diagram. However, P ∈ Pπ

and G ∈ Qπ, so this map must be zero. As a consequence, g − id = 0.
Homological algebra then implies that g− id must be the zero map, forcing
g = id.

This proves that closed points of the stack of π-stable pairs have no au-
tomorphisms, and that π-stable pairs form an algebraic space. �
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The Behrend function identity

We state and prove a variation of [12, theorem 3.1] of Bridgeland.

Lemma 2.18. Let γ : OY → G be a π-stable pair. Then there is an equality
of Behrend’s microlocal functions

νM(O)(γ) = (−1)χ(G)νM(G).

Proof: The case when G is a stable pair is taken care of by theorem 3.1
of [12]. Thus, we may assume that the cokernel P of γ : OY → G has
one-dimensional support.

Let OC ⊂ G be the image of γ. It is the structure sheaf of a subscheme
C ⊂ Y of dimension 1. There is a line bundle L on Y such that

H i(Y, G⊗ L) = 0 (2.19)

for all i > 0, and there is a divisor H ∈ |L| such that H meets C at finitely
many points, none of which are in the support of coker(γ). This claim is
verified in lemma 2.22. From here, the proof is identical to Bridgeland’s,
but we include a portion of it to illustrate his ideas.

There is a short exact sequence

0 → OY
s→ L → OH(H) → 0

where s is the section of L corresponding to the divisor H. Tensoring it with
G, and using the above assumptions yields a diagram of sheaves

OY

γ

��

δ

!!B
BB

BB
BB

B

0 // G
α // F

β
// K // 0

(2.20)

where F = G ⊗ L. The support of the sheaf K is zero-dimensional, and
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disjoint from the support of coker(γ). In particular,

HomY (K, F ) = 0. (2.21)

Consider two points of the stack M(O) corresponding to the maps

γ : OY → G and δ : OY → F.

The statement of lemma 2.18 holds for the map δ because lemma 2.15 to-
gether with equation 2.19 implies that

q : M(O) →M

is smooth of relative dimension χ(F ) = H0(Y, F ) over an open neighbour-
hood of the point F ∈ M(C). On the other hand, tensoring sheaves with
L defines an automorphism of M, so the microlocal function of M at the
points corresponding to G and F are equal. To prove the lemma, it suffices
to show that

(−1)χ(G) · νM(O)(γ) = (−1)χ(F ) · νM(O)(δ).

Consider the stack W whose S-valued points are diagrams of S-flat
sheaves on S × Y of the form

OS×Y

γS

��

δS

##FFFFFFFF

0 // GS
αS // FS

βS // KS
// 0.

There are two morphisms

p : W →M(O), q : W →M(O),

taking such a diagram to the maps γS and δS respectively. By passing to
an open substack of W , we may assume that equation 2.21 holds for all
C-valued points of W . It follows that p and q induce injective maps on
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stabilizer groups of C-valued points, and hence are representable.
Recall that Behrend’s microlocal function satisfies the property that

when f : T → S is a smooth morphism of relative dimension d, there is
an identity [3, proposition 1.5]

νT = (−1)df∗(νS).

Using this identity, it will be enough to show that at the point w ∈ W (C)
corresponding to the diagram 2.20, the morphisms p and q are smooth of
relative dimension χ(K) and 0, respectively. For the proof of these facts,
see the [12, pages 11–13]. �

Lemma 2.22. Given a π-stable pair γ : OY → G, we may choose a very
ample divisor H on X such that its pull-back is equal to its proper transform
(we denote both by H̃), it satisfies supp(coker γ) ∩ H̃ = ∅, H̃ ∩ suppG is
0-dimensional, and

H1(Y, G(H̃)) = 0.

Proof: First we collect a little notation. Let E be the exceptional locus of
Y , let E′ be the image of E in X. Define a subset Z to be

Z = {p ∈ X : G|π−1(p) is one dimensional} ⊂ E′.

Notice that Z is a finite collection of points.
Since coker γ ∈ Pπ, we have that π(supp(coker γ)) is zero dimensional.

Moreover, π(supp G) is one dimensional. Thus we may choose an ample
divisor H on X so that

H ∩ π(supp(coker γ)) = ∅

and H ∩ π(supp G) is zero dimensional and does not contain any of the
points in Z. It follows that H̃ ∩ supp(coker γ) is empty, and H̃ ∩ supp(G) is
zero dimensional. Moreover, by Serre vanishing, we may assume that H is
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sufficiently ample on X so that

H1(X, (π∗G)(H)) = 0. (2.23)

We now show that H1(Y, G(H̃)) = 0. By proposition 2.11, we know that
R1π∗G = 0, since OY → G is a π-stable pair. The sequence

0 → G → G(H̃) → G(H̃)| eH → 0

gives
. . . → R1π∗G → R1π∗G(H̃) → R1π∗G(H̃)| eH → 0.

However, we know R1π∗G = 0 and G(H̃)| eH is supported on points so
R1π∗G(H̃)| eH = 0, so R1π∗G(H̃) = 0. Now by the Leray spectral sequence,

H1(Y, G(H̃)) = H1(X, π∗(G(H̃))
= H1(X, π∗(G⊗ π∗OX(H)))
= H1(X, (π∗(G))(H))
= 0,

where the last equality comes from equation 2.23. �
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Chapter 3

Stability conditions

In this section, we define a stability condition on C = coh≤1 Y . We follow
Joyce’s treatment of stability conditions as found in section 4 of [26], though
not in as great generality.

Let N1(Y ) denote the abelian group of cycles of dimension one modulo
numerical equivalence. We begin by quoting lemmas 2.1 and 2.2 of [12].

Lemma 3.1. An element β ∈ N1(Y ) has only finitely many decompositions
of the form β = β1 + β2 with βi effective.

Lemma 3.2. The Chern character map induces an isomorphism

ch = (ch2, ch3) : F1K(Y ) → N1(Y )⊕ Z.

Define
∆ = {[E] ∈ F1K(Y ) : E ∈ C}

to be the positive or effective cone of F1K(Y ).

Definition 3.3. A stability condition on C is a triple (T, τ,≤) where (T,≤)
is a set T with a total ordering ≤, and τ is a map ∆ τ→ T from the effective
cone to T , satisfying the following condition: whenever α+β = γ in ∆, then

τ(α) < τ(γ) < τ(β),

or
τ(β) < τ(γ) < τ(α),

or
τ(α) = τ(γ) = τ(β).
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A triple (T, τ,≤) is called a weak stability condition if it satisfies the
weaker condition that whenever α + β = γ in ∆, τ(α) ≤ τ(γ) ≤ τ(β) or
τ(β) ≤ τ(γ) ≤ τ(α).

Definition 3.4. A non-zero sheaf G is

1. τ -semistable if for all S ⊂ G, such that S 6∼= 0, we have that τ(S) ≤
τ(G/S);

2. τ -stable if for all S ⊂ G, such that S 6∼= 0, we have that τ(S) < τ(G/S);

3. τ -unstable if it is not τ -semistable.

Lemma 3.5. Let F and G be τ -semistable sheaves, and let F
f→ G be a

map of sheaves. Then either τ(F ) ≤ τ(G) or f = 0.

Proof: Consider the inclusion map ι : im(f) → G. Since G is semistable,
we know either im(f) = 0 or τ(im(f)) ≤ τ(G). Consider now the core-
striction of f , cor(f) : F → im(f). Since F is semistable, we know that
either im(f) = 0 or τ(F ) ≤ τ(im(f)). This implies either im(f) = 0 or
τ(F ) ≤ τ(G). �

Now we define a stability condition on C.

Definition 3.6. Let E be the exceptional divisor of π. Choose an ample
divisor H on X, let H̃ denote the total transform of H in Y . Let L be a
very ample line bundle on Y .

Given a sheaf G in C, define the π-slope of G to be

µπ(G) =
(χ(G)

β · H̃
,
χ(G)
β · L

)
∈ (−∞,+∞]× (−∞,+∞],

where (−∞,+∞]× (−∞,+∞] is ordered lexicographically, and β = βG the
homology class associated to the support of G.

Theorem 3.7. The map

µπ : ∆ → (−∞,+∞]× (−∞,+∞]
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defines a weak permissible stability condition.

Unpacking the definitions 4.1 and 4.7 of [26], we see that a weak permis-
sible stability condition is one that satisfies three conditions:

1. (weak seesaw property) for any short exact sequence

0 → A → G → B → 0,

either µπ(A) ≤ µπ(G) ≤ µπ(B) or µπ(A) ≥ µπ(G) ≥ µπ(B),

2. µπ is dominated by a permissible stability condition, and

3. the family of all µπ-stable sheaves of a fixed Chern class is bounded.

We will prove theorem 3.7 by proving the above three properties in lemma 3.8,
corollary 3.10, and lemma 3.16.

Lemma 3.8. The function µπ satisfies the seesaw property.

Proof: Let 0 → A → G → B → 0 be a short exact sequence of sheaves,
and suppose µπ(A) ≤ µπ(G). Less concisely, we are supposing

( χ(A)

βA · H̃
,

χ(A)
βA · L

)
≤

( χ(G)

βG · H̃
,

χ(G)
βG · L

)
,

from which we are to deduce that µπ(G) ≤ µπ(B). Before we start a case-
by-case analysis, notice that χ(G) = χ(A) + χ(B) and βG = βA + βB.

case 1: χ(A)

βA· eH < χ(G)

βG· eH and no denominator is zero.

Then this follows from the observation

a

b
<

a + c

b + d
⇒ a + c

b + d
<

c

d
,

provided b, d > 0. In particular, we assume

χ(A)

βA · H̃
≤ χ(G)

βG · H̃
.
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Rewriting the second term yields

χ(A)

βA · H̃
≤ χ(A) + χ(B)

(βA + βB) · H̃
.

The observation above then proves that

χ(A) + χ(B)

(βA + βB) · H̃
≤ χ(B)

βB · H̃
,

as desired.

case 2: χ(A)

βA· eH = χ(G)

βG· eH , χ(A)
βA·L ≤

χ(G)
βG·L and no denominator is zero.

We are given that χ(A)

βA· eH = χ(G)

βG· eH , so

χ(A)(βG · H̃) = (βA · H̃)χ(G).

Writing everything in terms of A and B,

χ(A)((βA + βB) · H̃) = βA · H̃(χ(A) + χ(B)),

which implies
χ(A)(βB · H̃) = βA · H̃χB.

Since we assume that all denominators are non-zero, we have

χ(A)

βA · H̃
=

χ(B)

βB · H̃
.

So we must show that

χ(G)
βG · L

<
χ(B)
βB · L

.

This follows from the same observation made in case 1.

case 3: βA · H̃ = 0. Then +∞ = χ(A)

βA· eH ≤ χ(A)+χ(B)

(βA+βB)· eH . This implies that
χ(A)+χ(B)

(βA+βB)· eH = +∞, so (βA + βB) · H̃ = 0, and hence βB · H̃ = 0. This
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reduces us to Gieseker stability on Y , which we know satisfies the
seesaw property.

case 4: βG · H̃ = 0. We know β · π∗H = π∗(β · π∗H) = π∗(β) ·H ≥ 0, hence
β · H̃ ≥ 0 for any effective curve class β, so we must have βA · H̃ = 0
and βB · H̃ = 0. This lands us back in the case of Gieseker stability
on Y , and lemma 3.8 is proven.

�

Let us now recall from Joyce the following facts and definitions. A
stability condition τ on C is permissible if:

• C is τ -artinian, i.e. there exists no infinite descending chain · · ·A2 ⊂
A1 ⊂ A in C such that Ai 6= Ai+1, and τ(Ai+1) ≥ τ(Ai/Ai+1) for all i;
and

• the substack of τ -semistable objects of a fixed Chern character of the
stack parametrizing objects of C is a constructible substack of M.

Thankfully, the second condition amounts to showing that the family of µπ-
semistable sheaves of a fixed Chern character is bounded. See the proof of
theorem 4.30 from [26] for details.

Joyce proves that these properties are inherited by domination. Recall
that a stability condition τ̃ is said to dominate τ if for any A,B in C with
τ(A) ≤ τ(B) then τ̃(A) ≤ τ̃(B).

Define the following stability condition:

δ(G) = −dim suppG ∈ Z.

In [26], it is proven that the abelian category coh(Y ) is δ-artinian. To prove
that C = coh≤1(Y ) is µπ-artinian, we will show that µπ is dominated by δ.

Lemma 3.9. The stability condition µπ is dominated by the stability con-
dition δ.
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Proof: Let µπ(A) ≤ µπ(B). We need to show that this implies that δ(A) ≤
δ(B). Expanding, we have that

( χ(A)

βA · H̃
,

χ(A)
βA · L

)
≤

( χ(B)

βB · H̃
,

χ(B)
βB · L

)
.

We proceed with a case-by-case analysis.

case 1: the denominators are non-zero. Since we have restricted our attention
to sheaves supported in dimension ≤ 1, it follows that neither A nor
B is 0-dimensional. Thus, they are both one dimensional, and δ(A) =
δ(B). In particular, δ(A) ≤ δ(B).

case 2: βB · H̃ = 0 and βA · H̃ 6= 0. Then dim suppA ≥ 1 ≥ dim suppB. So
δ(A) ≤ δ(B).

case 3: Both βB · H̃ = 0 and βA · H̃ = 0. Then µπ(A) ≤ µπ(B) amounts to
regular Geiseker stability, which is dominated by δ as demonstrated
by Joyce [26, §4.4].

�

Corollary 3.10. The category C is µπ-artinian.

Proof: As mentioned above, this follows from the previous lemma since it
is inherited by domination. �

To finish the proof that µπ is a permissible weak stability condition,
it remains only to prove the family of all µπ-semistable sheaves of a fixed
Chern class is bounded. This is proven in the next section.

Boundedness

Let us recall the basic results concerning boundedness (cf. [23]).

Definition 3.11. A subcategory U of coh(Y ) is bounded if there exists a
scheme S of finite type and a sheaf U on X × S such that for every object
Ui of U , there exists a closed point si ∈ S such that Ui

∼= U |X×{si}.
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Notice that this definition still makes sense if we have a set of isomor-
phism classes of sheaves instead of a category.

Definition 3.12. Let Y be a scheme, let O(1) be an ample line bundle, and
let m be an integer. A sheaf F on Y is m-regular if, for all i > 0,

H i(Y, F (m− i)) = 0.

A proof for the following may be found in [30], as well as in [37].

Lemma 3.13. If F is m-regular, then the following statements are true:

1. F is m′-regular for all m′ ≥ m.

2. F (m) is globally generated.

3. For all n ≥ 0, the natural map H0(Y, F (m))⊗H0(Y,O(n)) → H0(Y, F (n+
m)) is surjective.

Definition 3.14. The Mumford-Castelnuovo regularity of a sheaf F is the
number reg(F ) = inf{m ∈ Z : F is m-regular }.

Lemma 3.15. Let U be a category of sheaves on Y . The following state-
ments are equivalent.

1. U is bounded.

2. The set of Hilbert polynomials of objects Ui of U is finite, and there
is an integer N such that for all objects Ui of U , reg Ui < N .

3. The set of Hilbert polynomials of objects Ui of U is finite, and there
exists a sheaf F such that each object of U is isomorphic to a quotient
of F .

Proof of this lemma may be found in [20].
Now we prove the boundedness result we require.

Lemma 3.16. The family of π-stable pairs OY
γ→ G with a fixed Chern

class is bounded.
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Proof: To each such π-stable pair there is an associated a short exact
sequence,

0 → OC → G → P → 0,

where OC is the image of the map γ, and P is the cokernel. We will show
that the family of possibilities for OC and the family of possible P s are both
bounded families. Once this is established, it is clear that the family of
sheaves underlying a π-stable pair is a bounded family of sheaves.

First we will consider the family of possibilities for OC . To show that
this family is bounded, we will show:

1. the Hilbert polynomials of this family take on only a finite number of
values; and

2. there exists a single sheaf that surjects onto each member of this family.

The second requirement is trivially satisfied, since each member of this fam-
ily is the structure sheaf of a subscheme of Y , and hence, admits a surjective
maps fromOY . It remains to find upper and lower bounds for the coefficients
of the Hilbert polynomial of a general element from this family.

In contrast to PT -theory, the support of OC is not equal to the support
of G, since P is not necessarily zero-dimensional. However, we still have
βG = βC +βP , where all β are effective. We know that there are only finitely
many decompositions of βG into the sum of two effective curve classes. This
forces an upper and lower bound on the linear coefficient of the Hilbert
polynomial of OC . It remains to find upper and lower bounds for the Euler
characteristic of OC (the constant coefficient of the Hilbert polynomial).

The Leray spectral sequence proves that χ(P ) = χ(R•π∗P ) ≥ 0, the
inequality following from the fact that R•π∗P is zero dimensional. Now,
χ(G) = χ(P ) + χ(OC), and χ(P ) ≥ 0 implies χ(OC) ≤ χ(G). This gives us
an upper bound, since the Chern character, and hence, the Euler character-
istic, of G is fixed. For the lower bound, let αG = (βG, nG) be the Chern
character of G, and let αC = (βC , nC) be the Chern character of C.

In general, if Hilb(β,n) is non-empty (say one of its points represents a
curve J), then dim Hilb(β,n+k) ≥ 3k since we get a 3k-dimensional space
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of curves coming from the curve J with k “wandering points.” This line of
reasoning tells us that

dim Hilb(βC ,nG) ≥ 3(nG − nC).

Rearranging this yields

nC ≥ nG −
1
3

dim Hilb(βC , nG).

This gives us a lower bound for nC , which completes the proof that the
corresponding family is bounded.

Now to show that the family of cokernels is bounded, we will show

1. there is a common upper-bound to the index of regularity; and

2. the Hilbert polynomials of this family take on only a finite number of
values

Using the Leray spectral sequence again, we note that for all P ∈ Pπ,

H1(Y, P ) = H1(X, π∗P ) = 0,

thus, all P ∈ Pπ are 1-regular. To show this family is bounded, it remains
to find upper and lower bounds for the coefficients of the Hilbert polynomial
of a general object.

As above, there are only a finite number of options for the support curve
of P . This yields upper and lower bounds on the linear coefficient of the
Hilbert polynomial.

We know that χ(G) = χ(P ) + χ(OC). Since χ(OC) is bounded, and
χ(G) is fixed, so too must χ(P ) be bounded.

This completes the proof that the sheaves underlying a π-stable pair of
fixed K-class forms a bounded family of sheaves. �

This also completes the proof that µπ is a permissible weak stability
condition.
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Chapter 4

The torsion pair and the

stability condition

In this section, we show that Pπ may be conveniently expressed in terms of
the stability condition, and similarly for Qπ. First we give a rapid intro-
duction to the modern Harder-Narasimhan property, a generalization of the
Harder-Narasimhan filtration of [22].

Definition 4.1. A weak stability condition (T, τ,≤) on C is said to have
the Harder-Narasimhan property if for every sheaf G, there exists a unique
filtration of G

0 = HNτ (G)0 ⊂ HNτ (G)1 ⊂ · · · ⊂ HNτ (G)N−1 ⊂ HNτ (G)N = G

(where the inclusions are strict) such that the quotients

Qi = HNτ (G)i/HNτ (G)i−1

are τ -semistable and
τ(Qi) > τ(Qi+1)

for all i > 0. When it is clear from context, most of the notation will be
suppressed, and we will denote the Harder-Narasimhan filtration of G with
respect to τ by 0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ GN−1 ⊂ GN = G. The Gi are
called the filtered objects of the Harder-Narasimhan filtration, and the Qi

are called the quotient objects.

We borrow the following definition and theorem from Joyce [26]. In [24,
§9], Joyce proves that the category of coherent sheaves satisfies assumptions
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3.7 of [26]. This is enough for us to conclude that the assumptions are also
true of C the category of coherent sheaves supported in dimension one or
less.

Theorem 4.2 ([26], Theorem 4.4). Let (T, τ,≤) be a weak stability con-
dition on an abelian category A. If A is Noetherian and τ -artinian, then
(T, τ,≤) has the Harder-Narasimhan property.

Corollary 4.3. The weak stability condition µπ on C has the Harder-
Narasimhan property.

Proof: The category C is Noetherian because it is a subcategory of the cat-
egory of coherent sheaves, which is Noetherian. Corollary 3.10 proves that
C is µπ-artinian. �

When we refer to the Harder-Narasimhan filtration in what follows, we
will always be referring to the filtration with respect to the stability condition
µπ.

We present some notation before we state and prove the main result of
this section. Recall that our slope function µπ takes values in the lexico-
graphically ordered set (−∞,+∞]×(−∞,+∞]. To avoid awkwardly writing
the ordered pairs (+∞,+∞) and (+∞, 0) through-out, let us denote

∞ := (+∞,+∞),

and
∞
2

:= (+∞, 0).

Given an interval I ⊂ (−∞,+∞] × (−∞,+∞], we define SS(I) ⊂ C to
be the full subcategory of zero objects together with those one-dimensional
sheaves whose Harder-Narasimhan quotients have µπ-value in the interval I.
If a, b ∈ (−∞,+∞]× (−∞,+∞] such that a < b, then we denote the closed
interval between a and b by a ≤ � ≤ b, and similarly for open, half-open,
etc. intervals.
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Lemma 4.4.

Pπ = SS(� ≥ ∞
2

),

and
Qπ = SS(� <

∞
2

).

Proof: First we will show that Pπ ⊂ SS(� ≥ ∞
2 ).

Case 1: let P ∈ Pπ be semi-stable. We will show that P ∈ SS(� ≥ ∞
2 ).

Since P is semi-stable, it suffices to show that µπ(P ) ≥ ∞
2 . Now P ∈ Pπ

implies that χ(P ) ≥ 0. By ampleness of L, we know βP · L ≥ 0. Hence
µπ(P ) ≥ (+∞, 0).

Case 2: Let P ∈ Pπ be general, let the following be its Harder-Narasimhan
(HN) filtration,

0 = P0 ⊂ P1 ⊂ · · · ⊂ PN−1 ⊂ PN = P,

and let Qi = Pi
Pi−1

be the ith quotient; we must show that µπ(Qi) ≥ ∞
2 . Since

PN = P ∈ Pπ and Pπ is closed under quotients, it follows that QN ∈ Pπ.
By definition of the HN filtration, QN is semi-stable, hence µπ(QN ) ≥ ∞

2

and QN ∈ SS(� ≥ ∞
2 ) by the previous case. Another defining property is

that µπ(Q1) > µπ(Q2) > · · · > µπ(QN ). Hence, µπ(Qi) ≥ ∞
2 for all i, in

other words, P ∈ SS(� ≥ ∞
2 ).

Now we will show that SS(� ≥ ∞
2 ) ⊂ Pπ.

Case 1: Let G ∈ SS(� ≥ ∞
2 ) be semi-stable. In this case, G ∈ SS(� ≥

∞
2 ) implies that µπ(G) ≥ ∞

2 . Since (Pπ,Qπ) is a torsion pair, for every sheaf
there exists a uniquely associated short exact sequence,

0 → A → G → B → 0

where A ∈ Pπ and B ∈ Qπ. By the above, we know that A ∈ SS(� ≥ ∞
2 ). If

A itself was semistable, then we could conclude immediately that µπ(A) ≥
∞
2 . Using this argument, and inducting on the length of the HN filtration
of A, we may prove that µπ(Qi) ≥ µπ(Ai) ≥ µπQi+1, where Qi denotes the
ith quotient object of the HN filtration of A, and Ai denotes the ith filtered
object. This implies that µπ(A) ≥ ∞

2 in general.
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We know that µπ(G) ≥ ∞
2 = (+∞, 0) so χ(G) ≥ 0 by non-negativity

of denominators in µπ. Similarly, χ(A) ≥ 0. By the see-saw property and
the semi-stability of G, we know that µπ(A) ≤ µπ(G) ≤ µπ(B), hence
µπ(B) ≥ ∞

2 and as before we have χ(B) ≥ 0.
Notice that G must be supported on a fibre of π because µπ(G) ∈

{+∞} × (0,+∞]. Hence B is also supported on a fibre. We claim that
this forces H0(B) = 0. For suppose there was a non-zero map OY → B.
This would yield non-trivial 0 → OC → B where C is the support of the map
OY → B. From the proof of proposition 2.11, we know that R1π∗OC = 0,
which implies that OC ∈ Pπ which contradicts the definition of Qπ. Hence
H0(B) = 0.

However, χ(B) ≥ 0 so dim H1(B) ≤ 0. This implies that H1(B) = 0,
which implies that R1π∗B = 0 (by the theorem of cohomology and base-
change) and hence B ∈ Pπ. Since B ∈ Qπ we conclude that B = 0 and
G = A ∈ Pπ.

Case 2: Let G ∈ SS(� ≥ ∞
2 ) be general. We need to show that G ∈ Pπ.

Let
0 = G0 ⊂ G1 ⊂ · · · ⊂ GN−1 ⊂ GN = G

be the HN filtration of G, and let Qi = Gi
Gi−1

denote the corresponding
semistable quotients. By assumption, µπ(Qi) ≥ ∞

2 ; notice that G1 = Q1,
so we have that G1 is semistable and µπ(G1) ≥ ∞

2 . The previous case then
proves that for all i, Qi ∈ Pπ, so in particular Q1 = G1 ∈ Pπ. Now consider
the following short exact sequence

0 → G1 → G2 → Q2 → 0

We know G1 ∈ Pπ and Q2 ∈ Pπ hence G2 ∈ Pπ. Proceeding inductively, we
conclude G ∈ Pπ.

This completes the proof that Pπ = SS(� ≥ ∞
2 ).

Now we prove that Qπ = SS(� < ∞
2 ). First, we will show that SS(� <

∞
2 ) ⊂ Qπ.

Case 1: Let G ∈ SS(� < ∞
2 ) be semi-stable. There is a unique short
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exact sequence associated to G

0 → A → G → B → 0

such that A ∈ Pπ and B ∈ Qπ. We will show that A = 0. Since G is
semi-stable, either A = 0 or µπ(A) ≤ µπ(G). Suppose that µπ(A) ≤ µπ(G).
Notice µπ(G) < ∞

2 so µπ(A) < ∞
2 in this case. However, the proof that

Pπ = SS(� ≥ ∞
2 ) tells us that if A ∈ Pπ then either A = 0 or µπ(A) ≥ ∞

2 .
Thus, A = 0.

Case 2: Let G ∈ SS(� < ∞
2 ) be general. As above, we have that each of

the quotients associated to the HN filtration is an element of Qπ. Since Qπ

is closed under extension, we then get that each Gi is in Qπ hence G ∈ Qπ.
Next, we will show that Qπ ⊂ SS(� < ∞

2 ).
Case 1: Let B ∈ Qπ be semi-stable. Assume B 6= 0. We need to

show that µπ(B) < ∞
2 . This is equivalent to showing that either B is not

supported on a fibre, or that χ(B) < 0. Assume that B is supported on a
fibre. As before, in this case H0(B) = 0. Notice that if H1(B) = 0 then
B ∈ Pπ and so B = 0. Since we have assumed B 6= 0, this forces us to
assume H1(B) 6= 0. Hence χ(B) < 0 and µπ(B) < ∞

2 .
Case 2: Let B ∈ Qπ be general. Let

0 = B0 ⊂ B1 ⊂ · · · ⊂ BN−1 ⊂ BN = B

be the HN filtration of B, and let Qi be the associated quotients. By defini-
tion of the HN filtration, B1 = Q1 is semi-stable. Since Qπ is closed under
taking sub-objects, we know that B1 ∈ Qπ. By the previous case, we know
that µπ(B1) < ∞

2 . However, by definition of the HN filtration, we know
that µπ(Q1) > µπ(Q2) > · · · > µπ(QN ). Hence, µπ(Qi) < ∞

2 for all i, i.e.,
B ∈ SS(� < ∞

2 ).
�

Before moving on, let us collect a functorial property of the Harder-
Narasimhan filtration (see [42]). It will tell us something about how it is
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preserved by morphisms.
Let G be a coherentOY -module, let Gi ⊂ G denote the Harder-Narasimhan

subsheaves of G. For α ∈ (−∞,+∞]× (−∞,+∞], we define

G(α) =


Gk if µπ(QG

k ) ≥ α > µπ(QG
k−1)

G if µπ(QG
i ) ≥ α for all i

0 if µπ(QG
i ) < α for all i.

Lemma 4.5. If f : A → G is a map of sheaves on Y , then f(A(α)) ⊂ G(α).

Proof: First, we prove by induction that if f(Ak) ⊂ G` and ` is minimal
with this property, then µπ(QG

` ) ≥ µπ(QA
k ).

For k = 0, there is nothing to prove. For k = 1, suppose we have
f(A1) ⊂ G` where ` is minimal with respect to this property. Then we get
a non-zero map A1 → QG

` . By lemma 3.5, we have that µπ(A1) ≤ µπ(QG
` ).

For general k, suppose we have f(Ak) ⊂ G`, ` minimal. Consider the
following short exact sequences

0 −−−−→ Ak−1
i−−−−→ Ak −−−−→ QA

k −−−−→ 0

f

y
0 −−−−→ G`−1 −−−−→ G`

q−−−−→ QG
` −−−−→ 0.

If the composition q ◦ f ◦ i is zero, then we can define a non-zero map
QA

k → QG
` which implies that µπ(QA

k ) ≤ µπ(QG
` ), as desired.

If the composition q ◦ f ◦ i is non-zero, then we know that f(Ak−1) ⊂ G`

and f(Ak−1) 6⊂ G`; by induction, we conclude that µπ(QG
` ) ≥ µπ(QA

k−1) >

µπ(QA
k ), as desired.

So: f(Ak) ⊂ G`, where ` is minimal with this property, implies that
µπ(QG

` ) ≥ µπ(QA
k ). We will finish proving the lemma using this fact.

Fix an α ∈ (−∞,+∞] × (−∞,+∞]. By definition, A(α) = Ak for
all indices k such that (QA

k ) ≥ α > µπ(QA
k−1). Fix such an index k.

Choose the ` minimal such that f(Ak) ⊂ G`. Notice that we now have
µπ(QG

` ) ≥ µπ(QA
k ) ≥ α, and thus G` ⊂ G(α) by definition. �
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The following lemma will be useful later.

Lemma 4.6. SS(a ≤ � ≤ b) is closed under extension.

Proof: Let A and B ∈ SS(a ≤ � ≤ b). Consider

0 → A
i→ G

j→ B → 0.

First we show that G ∈ SS(a ≤ �). We know that A = A(a), so i(A(a)) =
i(A) ⊂ G(a). If we choose k minimal such that µπ(QG

k ) < a, then we also
know that G(a) = Gk−1. Notice that the possibilities for G

Gk−1
are limited:

either it is the zero sheaf, or it is an element of SS(� < a).
The inclusion i(A) ⊂ Gk−1 implies that B = G

i(A) maps onto G
Gk−1

; denote
the quotient map by ρ. Now consider the chain of inclusions and identities

ρ(B(a)) ⊂
( G

Gk−1

)(a) ⊂ G

Gk−1
= ρ(B);

by assumption, ρ(B(a)) = ρ(B), so all of the inclusions are actually equali-
ties. In particular, ( G

Gk−1

)(a) =
G

Gk−1
,

which means either G
Gk−1

is zero, or it is an element of SS(a ≤ �). By
the above, we see that the only possibility is G

Gk−1
= 0 which means that

G = G(a), i.e. G ∈ SS(a ≤ �).
Now we prove that G ∈ SS(� ≤ b). Let

0 = G0 ⊂ G1 ⊂ · · · ⊂ GN−1 ⊂ GN = G

denote the Harder-Narasimhan filtration of G, and let Qi be the associated
quotients. Since G1 = Q1 and µπ(Q1) > µπ(Qi) for all i > 1, it suffices to
prove that µπ(Q1) ≤ b. Consider the short-exact sequence

0 → A ∩G1 → G1 → j(G1) → 0.

Since the quotients associated to the Harder-Narasimhan filtration are semi-
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stable, and since G1 = Q1, we know that G1 is semi-stable. This implies
that µπ(G1) ≤ µπ(j(G1)), hence it suffices to prove that µπ(j(G1)) ≤ b. Let
B′ be any subsheaf of B; we will show that µπ(B′) ≤ b. We know that for
any c > b,

B′(c) ⊂ B(c) = 0,

which implies that for all c > b, B′(c) = 0. Hence B′ ∈ SS(� ≤ b) and
µπ(B′) ≤ b. This allows us to conclude that µπ(G1) ≤ b.

�
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Chapter 5

The motivic Hall algebra

Here we provide a quick summary of the constructions and results of Bridge-
land’s papers [11], [12] (which came into existence as a gentle introduction
to part of Joyce’s theory of motivic Hall algebras [24], [25], [26], [27] ).

Let S be a stack, locally of finite type over C and with affine stabilizers.

Definition 5.1. The relative Grothendieck group K(St /S) of stacks over S

is the Q-vector space spanned by symbols

[
T

m→ S
]

(where T is a finite-type stack and m is a morphism), subject to the following
relations.

a)
[
T → S

]
=

[
U → S

]
+

[
F → S

]
where U is an open substack of T

and F is the corresponding closed complement.

b)
[
T1

s◦f→ S
]

=
[
T2

s◦g→ S
]
, if T1

f→ B and T2
g→ B are Zariski fibrations1

over B with identical fibres, and B
s→ S is a morphism of stacks.

c)
[
T

a→ S
]

=
[
T ′

b→ S
]

if there exists a commutative diagram

T
c //

a

��
44

44
44

T ′

b

��		
		

		

S

such that the associated map on C-points T (C) c→ T ′(C) is an equiv-
alence of categories.

1a Zariski-local product space
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The vector space K(St /S) is a K(St / Spec C)-module, whose action
we now describe. Let

[
A → Spec C

]
=

[
A

]
∈ K(St / Spec C), and let[

T
m→ S

]
∈ K(St /S). Then we define

[
A

]
·
[
T

m→ S
]

=
[
A×Spec C T

f−→ S
]
,

where f is the composition of the projection A×Spec C T → T and the map
T → S.

We are most interested in the case where S = C, the stack of coherent
sheaves on Y supported in dimension one or less. We denote this stack by
M, and we denote K(St /M) by H(C). The vector space H(C) is the motivic
Hall algebra; let us justify the name by endowing it with the structure of
an algebra. First, we define M(2) to be the stack of short-exact sequence
of sheaves on M. Now, given

[
A → M

]
and

[
B → M

]
we define the

convolution product
[
A →M

]
∗

[
B →M

]
to be

[
Z →M

]
where Z

c◦g→ M
is defined by the following Cartesian diagram:

Z
g−−−−→ M(2) c−−−−→ My y(l,r)

A×B −−−−→ M×M.

The morphisms l, r are the “left hand” and “right hand” morphisms, which
project a short exact sequence to its left-most (resp. right-most) non-zero
entry. The morphism c is the “centre” morphism. Intuitively, given families
of sheaves A → M and B → M their product in the Hall algebra is the
family Z →M parametrizing extensions of objects of B by objects of A.

The motivic Hall algebra is useful tool. It holds enough information to
allow us to retrieve Euler characteristics, yet is flexible enough to produce
decompositions of elements in terms of extensions. We will describe an “in-
tegration” map on H(C) taking values in the ring of polynomials. Equations
among elements of H(C) will be integrated to yield equations of polynomials.
This entire framework will then be souped-up to incorporate Laurent series,
and our theorem will be the result of applying the souped-up integration
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map to equations in the souped-up Hall algebra.
In [11], Bridgeland introduces regular elements. Let K(Var/C) denote

the relative Grothendieck group of varieties over C (cf. definition 5.1). Let
L denote the element [A1 → C], the Tate motive. Consider the maps of
commutative rings,

K(Var/C) → K(Var/C)[L−1] → K(St/C),

and recall from [11] that H(C) is algebra over K(St/C). Define a K(Var/C)[L−1]-
module

Hreg(C) ⊂ H(C)

to be the span of classes of maps [V
f→ M] with V a variety. We call an

element of H(C) regular if it lies in this submodule. The following result is
theorem 5.1 of [11].

Theorem 5.2. The submodule of regular elements is closed under the con-
volution product:

Hreg(C) ∗Hreg(C) ⊂ Hreg(C),

and is therefore a K(Var/C)[L−1]-algebra. Moreover the quotient

Hsc(C) = Hreg(C)/(L− 1) Hreg(C),

is a commutative K(Var/C)-algebra.

Bridgeland equips Hsc(C) with a Poisson bracket, defined by

{f, g} =
f ∗ g − g ∗ f

L− 1
.

The integration map I is defined on Hsc(C). Now we work toward the poly-
nomial ring in which it takes values.

Recall that K(Y ) is the numerical K-theory of Y . Recall ∆ ⊂ F1K(Y )
is the effective cone of F1K(Y ), that is, the collection of elements of the form
[F ] where F is a one-dimensional sheaf. Define a ring C[Γ] to be the vector
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space spanned by symbols xα for α ∈ ∆ and defining the multiplication by

xα · xβ = xα+β.

We equip C[∆] with the trivial Poisson bracket. We are now ready for the
following theorem.

Theorem 5.3 (5.1 of [12]). There exists a Poisson algebra homomorphism

I : Hsc(C) → C[∆]

such that
I(

[
Z

f→Mα

]
) = χ(Z, f∗(ν))xα,

where ν : M→ Z is Behrend’s microlocal function of M, and Mα denotes
the component of M with fixed Chern character α.
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Chapter 6

Equations in the infinite-type

Hall algebra and the fake

proof

For the sake of exposition only, we follow [12] and [17] by introducing an
infinite-type version of the Hall algebra. This has the benefit of allowing
non-finite-type stacks, but the devastating draw-back of not admitting an
integration map. We use it because it will allow us to temporarily work
without having to think about convergence of power series. Also, many of
the arguments will be used again later. We end this chapter with a fake
proof of our main result. It is our hope that this fake proof helps the reader
to navigate the true one in the following chapter.

The infinite-type Hall algebra is defined by considering symbols as in
definition 5.1, but with T assumed only to be locally of finite type over C, and
use relations as before, except that we do not use relation (a). (Admitting
relation (a) in this case would make every infinite-type Hall algebra trivial).
We denote it by H∞(C).

Given a substack N ⊂M, we let

1N = [N i→M]

denote the inclusion i : N → M. Pulling back the morphism (2.13) to
N ⊂ M gives a stack denoted N (O) with a morphism N (O)

q→ N , and
hence an element

1NO = [N (O)
q→M] ∈ H∞(C).
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For example, Pπ and Qπ are full subcategories of C, and define substacks
of M (see lemma 2.16), which we abusively denote with the same letters,
Pπ,Qπ ⊂ M. These substacks define elements of the infinite-type Hall
algebra,

1Pπ , 1Qπ ∈ H∞(C).

Other examples include

H = [Hilb(Y ) →M],

Hexc = [Hilbexc →M],

and
Hπ = [π-Hilb(Y ) →M] ∈ H∞(C),

where Hilbexc denotes the Hilbert scheme of curves supported on fibres of
π, and the map to M is given by taking OY → G to G. Note that all
Hilbert schemes are restricted to the components parametrizing sheaves G

of dimension one.

Lemma 6.1.

1C = 1Pπ ∗ 1Qπ

This lemma reflects the fact that (Pπ,Qπ) is a torsion pair.
Proof: Form the following Cartesian diagram:

Z
f−−−−→ M(2) b−−−−→ My y(a1,a2)

Pπ ×Qπ
i−−−−→ M×M.

(6.2)

By lemma A.1 [11], the groupoid of T -valued points of Z can be described
as follows. The objects are short exact sequences of T -flat sheaves on T ×Y

of the form
0 → A → G → B → 0

such that A and B define families of sheaves on Y lying in the subcategories
Pπ and Qπ respectively. The morphisms are isomorphisms of short exact
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sequences. The composition,

g = b ◦ f : Z →M

sends a short exact sequence to the object G. Since Pπ and Qπ are sub-
categories of C, it follows that the composition factors through C. This
morphism induces an equivalence on C-valued points because of the torsion
pair property: every object G of C fits into a unique short exact sequence of
the form (6.2). Thus, the identity follows from the relations in the infinite
Hall algebra. �

We will need a framed version of the previous lemma.

Lemma 6.3.

1OC = 1OPπ
∗ 1OQπ

.

Proof: Form the following Cartesian diagram:

U
p

//

��

V
j

//

��

M(2)
b //

(a1,a2)

��

M

Pπ(O)×Qπ(O)
q×id

// Pπ ×Qπ(O) // M×M.

Then 1OPπ
∗ 1OQπ

is represented by the composite map b ◦ j ◦ p : U →M.
Note that, by lemma 2.5 of [12], the map Pπ(O) → Pπ is a Zariski fibration
with fibre H0(P ) over a point P ∈ Pπ. By pullback, the same is true of the
morphism p.

The groupoid of T -valued points of V can be described as follows. The
objects are short exact sequences of T -flat sheaves on T × Y of the form

0 → P → G → B → 0

such that P and B define flat families of objects in Pπ and Qπ respectively,
together with a map OT×Y → B. We represent the objects of V as diagrams
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of the form:

OT×Yy
0 −−−−→ P −−−−→ G −−−−→ B −−−−→ 0.

Consider the stack Z from lemma 6.1 with its map Z →M. Form the
diagram

W
h−−−−→ C(O)y q

y
Z

g−−−−→ C.
Since g induces an equivalence on C-valued points, so does h, so that the
element 1OC can be represented by the map q ◦ h.

We represent the objects of W as diagrams of the form:

OT×Yyδ

0 −−−−→ P −−−−→ G
β−−−−→ B −−−−→ 0.

Setting γ = β◦δ defines a map of stacks W → V , which is a Zariski fibration
with fibre an affine model of the vector space H0(P ) over a sheaf P .

Now, since H1(P ) = 0, U → V is a Zariski fibration with fibre H0(P ),
hence they represent the same element of the Hall algebra, namely Qπ. �

Lemma 6.4.

1OC = H ∗ 1C

This is lemma 4.3 of [12]. Intuitively, this amounts to the fact that every
map O γ→ G factors uniquely into a surjection O → im(γ) and an inclusion
im(γ) → G. The following lemma is a restriction of the previous to the
substack Pπ.

Lemma 6.5.

1OPπ
= Hexc ∗ 1Pπ
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Proof: Form the Cartesian diagram:

Z −−−−→ M(2) b−−−−→ My y(a1,a2)

Hexc × Pπ
i−−−−→ M×M.

The groupoid of T -valued points of Z may be described as follows. The
objects are short exact sequences of T -flat sheaves of T × Y

0 → A → G → B → 0

such that B ∈ Pπ, and A is supported on exceptional fibres, together with
an epimorphism OY → A. We can represent these objects as diagrams of
the form

OT×Y

γ

��

0 // A
α // G

β
// B // 0.

Since OY → A is an epimorphism, we know that A is of the form OC for
some one-dimensional subscheme C of Y . By the proof of proposition 2.11,
we know that Rπ∗OC = 0. Since A = OC has exceptional support, it follows
that π∗A is a zero-dimensional sheaf, hence A ∈ Pπ. Since B ∈ Pπ by design,
and since Pπ is closed under taking extensions, we conclude that in any such
short exact sequence, G ∈ Pπ. There is a map h : Z → Pπ(O) sending the
above diagram to the composite map

δ = α ◦ γ : OT×Y → G.

This morphism h fits into a commuting diagram of stacks

Z
h //

b◦f
��

66
66

66
6 Pπ(O)

q
����

��
��

�

M
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We argue that the map h then induces an equivalence on C-valued points.
Suppose OT×Y

δ→ G is an arbitrary map of sheaves, with G defining a family
of sheaves in Pπ. Then we get the following diagram:

OT×Y

γ

��

0 // im(δ) // G // coker(δ) // 0.

Since G ∈ Pπ we know that the one-dimensional component of its sup-
port is exceptional, hence im(δ) is also exceptional, so that OT×Y → im(δ)
defines a family of objects in Hilbexc. As well, we know that Pπ is closed
under taking quotients, so coker(δ) is in Pπ. This completes the proof. �

Morally, the next lemma is similar to lemma 6.4 sinceHπ may be thought
of as the surjections OY → G in a tilt of the abelian category generated by
O and C. We provide a direct proof since we have not constructed this tilt.

Lemma 6.6.

1OQπ
= Hπ ∗ 1Qπ .

Proof: Form the following Cartesian diagram:

Z
f−−−−→ M(2) b−−−−→ My y(a1,a2)

Hπ ×Qπ
i−−−−→ M×M

The groupoid of T -valued points of Z is described as follows. The objects
are short exact sequences of T -flat sheaves on T × Y

0 → A → G → B → 0

with the property that G ∈ Qπ, together with a map OT×Y → A that pulls
back to a π-stable pair OY → At for every t ∈ T . We can represent these
objects as diagrams of the form:
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OT×Y

γ

��

0 // A
α // G

β
// B // 0.

(6.7)

Since A and B are objects of Qπ, and Qπ is closed under extensions, we
conclude G ∈ Qπ. Thus, there is a map h : Z → Qπ(O) sending the above
diagram to the composite map

δ = α ◦ γ : OT×Y → G.

This map h fits into a commuting diagram of stacks

Z
h //

b◦f
��

66
66

66
6 Qπ(O)

q
����

��
��

�

M

(6.8)

The map h then induces an equivalence on C-valued points because of the
following argument. Let OY

σ→ G be an arbitrary map, with G ∈ Qπ. We
need to produce a diagram,

OY

γ

��

0 // A
α // G

β
// B // 0,

with OY → A a π-stable pair, B ∈ Qπ, and α ◦ γ = σ.
Consider the cokernel K of σ. Since (Pπ,Qπ) is a torsion pair, we know

that K fits into a short exact sequence

0 → P → K → Q → 0

where P ∈ Pπ and Q ∈ Qπ. Let G
c→ K be the canonical map from G to

the cokernel K of σ, and let G
d→ Q be the composition of G → K and
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K → Q. Define A to be the kernel of d. Consider the following diagram.

0 // OY

��

= // OY
//

σ

��

0

��

0 // A

��

// G
d //

c

��

Q

=

��

// 0

0 // P

��

// K //

��

Q

��

// 0

0 0 0.

We know that Q ∈ Qπ, and a diagram chase proves that the dotted vertical
morphisms exist and that P is the cokernel of OY → A. The sheaf A is a
subsheaf of G ∈ Qπ, and Qπ is closed under taking subsheaves, so A ∈ Qπ.
This proves that OY → A is a π-stable pair. This proves that the map h

is surjective on C-valued points. It remains to show that h is injective on
C-valued points.

Now let γ : OY → G be an arbitrary map with G ∈ Qπ. Since Qπ is
closed under subobjects, the image of γ is an object of Qπ, im(γ) ∈ Qπ.
Now we can use the description of Qπ in terms of stability to show that

G
im(γ) is also in Qπ. This proves that the map h is injective on C-valued
points. This completes the proof.

�

We end this section by giving a fake proof of theorem 1.6 that depends
on a fake integration map. In fact, no such integration map is known to
exist, but if there was one, the proof our theorem would be simpler. As it
stands, we have a chapter dedicated to convergence issues to get around the
fact that no such integration map exists on the infinite type Hall algebra.
It is our hope that this fake proof will make the true one easier to follow.
Fake proof: By lemma 6.6, we have

Hπ ∗ 1Qπ = 1OQπ
. (6.9)
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Lemma 4.3 of [12] proves
H ∗ 1C = 1OC .

Using lemma 6.1, we may rewrite H ∗ 1C :

H ∗ 1C = H ∗ 1Pπ ∗ 1Qπ .

Lemma 6.3 allows us to write

1OC = 1OPπ
∗ 1OQπ

.

Putting these together yields

H ∗ 1Pπ ∗ 1Qπ = 1OPπ
∗ 1OQπ

.

Applying lemma 6.5

H ∗ 1Pπ ∗ 1Qπ = Hexc ∗ 1Pπ ∗ 1OQπ
.

Using equation 6.9, we get

H ∗ 1Pπ ∗ 1Qπ = Hexc ∗ 1Pπ ∗ Hπ ∗ 1Qπ .

Now, for reasons we will explain in the next section, 1Pπ and 1Qπ are in-
vertible in the Hall algebra. We may therefore cancel the copies of 1Qπ and
isolate H.

H = Hexc ∗ 1Pπ ∗ Hπ ∗ 1−1
Pπ

.

The elements H,Hexc,Hπ all lie in the subalgebra Hreg(C) since they
are represented by schemes. As we will see in the next section, conjugation
by 1Pπ induces a Poisson homomorphism of Hreg(C) of the form: identity
+ terms expressed in the Poisson bracket. Since the Poisson bracket of
the polynomial ring is trivial, these terms vanish when we apply the fake
integration map, and we are left with

I(H) = I(Hexc) · I(Hπ).
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Up to signs arising from lemma 2.18, the “polynomials” I(H), I(Hexc),
and I(Hπ) are the generating series of DT(Y ), DTexc(Y ), and π-PT(Y ),
respectively, and we see that the above equation is the formula claimed in
theorem 1.6.

or
I(H)

I(Hexc)
= I(Hπ)

which is exactly the statement of our theorem. t

The true proof will follow precisely these steps, fully justified, and with
the appropriate convergence arguments. The next chapter describes the
Laurent Hall algebra, which does have an integration map.
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Chapter 7

Equations in the Laurent

Hall algebra and the true

proof

Laurent subsets

In this section, we will formally modify the algebra H(C) and its integration
map so that the modified integration map on the modified algebra takes
valued in power series. This section is a summary of sections 5.2 and 5.3 of
[12].

Definition 7.1. A subset S ⊂ ∆ is Laurent if for all β ∈ N1(Y ), the
collection of elements of the form (β, n) ∈ S is such that n is bounded
below.

Let Φ denote the set of all Laurent subsets. It has the following proper-
ties:

1. if S, T ∈ Φ then so it S + T = {α + β : α ∈ S, β ∈ T}

2. if S, T ∈ Φ, and α ∈ ∆ then there are only finitely many ways to write
α = β + γ such that β ∈ S and γ ∈ T .

Given a ring A graded by ∆, A =
⊕

γ∈∆ Aγ , we can use the Laurent
subset to define a new algebra, which we will denote AΦ. Elements of AΦ

are of the form
a =

∑
γ∈S

aγ
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where S ∈ Φ, and aγ ∈ Aγ ⊂ A. Given an element a ∈ AΦ as above, we
define ργ(a) = aγ ∈ A. (Here, our notation differs from [12], since we are
using the symbol π for the map π : Y → X.) The projection operator ρ

allows us to define a product ∗ on AΦ by:

ργ(a ∗ b) =
∑

γ=α+β

ρα(a) ∗ ρβ(b).

AΦ admits a natural topology that may be identified by declaring a sequence
(aj)j∈N ⊂ AΦ to be convergent if for any (β, n) ∈ ∆, there exists an integer
K such that for all m < n

i, j > K ⇒ ρ(β,m)(ai) = ρ(β,m)(aj).

Lemma 7.2. If A is a C-algebra and a ∈ AΦ satisfies ρ0(a) = 0 then any
series ∑

j≥1

cja
j

with coefficients cj ∈ C is convergent in the topological ring AΦ.

See Lemma 5.3 of [12] for a proof.
Given two ∆-graded algebras A and B, and a morphism f : A → B that

preserves the ∆-grading, we get an induced continuous map

fΦ : AΦ → BΦ

by defining
ργ(fΦ(a)) = f(ργ(a)).

Applying this process to the map of ∆-graded algebras I : Hsc(C) → C[∆]
yields a continuous map IΦ : Hsc(C)Φ → C[∆]Φ. We call Hsc(C)Φ the Laurent
Hall algebra; it, too, is equipped with a Poisson bracket.

Definition 7.3. A morphism of stacks f : W → C is Φ-finite if

a) Wα = f−1(Cα) is of finite type for all α ∈ ∆, and

b) there is a Laurent subset S ⊂ ∆ such that Wα is empty unless α ∈ S.
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A Φ-finite morphism of stacks f : W → C defines an element of Hsc(C)Φ
by the formal sum ∑

α∈S

[Wα
f→ C].

In [12], it is shown that [Hilb → M] is Φ-finite, and hence defines an
element in Hsc(C)Φ.

Lemma 7.4. The maps

Hilbπ → C, Hilb → C, Hilbexc → C,

are Φ-finite. The corresponding elements Hπ,H and Hexc of Hsc(C)Φ satisfy

IΦ(Hπ) =
∑

(β,n)∈∆

(−1)n π-PT(β, n)xβqn = π-PT(Y )(x,−q),

where we have written xβ = q(β,0) and q = q(0,1). Similarly,

IΦ(H) =
∑

(β,n)∈∆

(−1)n DT(β, n)xβqn = DT(Y )(x,−q)

IΦ(Hexc) =
∑

(β,n)∈∆,π∗β=0

(−1)nDT (β, n)xβqn = DTexc(Y )(x,−q).

Proof: Lemma 2.16 proves that π-Hilb is locally of finite type, and is of
finite type once the Chern character is fixed. As well, the set of elements
α ∈ ∆ for which π-Hilbα is non-empty is Laurent. To prove this, it suffices
to show that for any curve class β, there exists an integer N such that for
any n < N , the moduli space π-Hilb(β,n) is empty. Fix a curve class β, and
consider all π-stablepairs OY → G in that class. There is the associated
short exact sequence,

0 → OC → G → P → 0

and since there are only finitely many decompositions β = β1 + β2 of β into
a sum of effective curve classes, we lose no generality in fixing the curve class
of OC and P . Now the structure sheaf OC lives in a Hilbert scheme, and the
set of elements (β1, n1) ∈ ∆ for which Hilb(β1,n1) is non-empty is Laurent, so
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there is a “minimal” Euler characteristic of OC , which we denote by N1. As
for P , the Leray spectral sequence shows that χ(P ) ≥ 0 (see lemma 3.16).
This proves that we may take N = N1, and for any n < N , π-Hilb(β,n) is
empty.

The formulae then follow from lemma 2.18 and Behrend’s description of
DT invariants as a weighted Euler characteristic.

Hilbexc is a subscheme of Hilb, so the desired properties follow from [12,
lemma 5.5]. �

Lemma 7.5. Let I ⊂ (−∞,+∞]× (−∞,+∞] be an interval bounded from
below. Then

1SS(I) → C

is Φ-finite.

Proof: Since this is holds for Gieseker stability ([23, theorem 3.3.7]), it
suffices to prove that for any b = (b1, b2) ∈ (−∞,+∞] × (−∞,+∞] there
exists a number M such that the family of all G with µπ(G) ≥ b satisfies
µ(G) ≥ M . Here, µ stands for Gieseker slope stability, namely

µ(G) =
χ(G)
β · L

.

Case 1: χ(G) > 0

Here, we have

0 <
χ(G)
β · L

= µ(G),

so we may take M = 0 in this case.

Case 2: χ(G) < 0

Now, since β · H̃ ≤ β · L and χ(G) < 0, we have

b1 ≤
χ(G)

β · H̃
≤ χ(G)

β · L
.

In this case, we may take M = b1.
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Case 3: χ(G) = 0

In this case, µπ(G) is either 0 or +∞, so we may take M = 0 in this
case.

Case-by-case analysis reveals that we may use M = min{0, b1}. �

Equations in the Laurent Hall algebra

In this section, following [12] we establish equations in Hsc(C)Φ, and ulti-
mately prove theorem 1.6.

Lemma 7.6. Let µ ∈ (−∞,+∞]× (−∞,+∞] such that µ < ∞
2 . Then the

following equality holds in Hsc(C)Φ:

1SS(µ≤�≤∞) = 1Pπ ∗ 1SS(µ≤�<∞
2

).

Proof: Form the following Cartesian diagram:

Z
f

//

��

M(2)
c //

(l,r)

��

M

Pπ × SS(µ ≤ � < ∞
2 ) // M×M

T -valued points of Z are short exact sequences 0 → A → G → B → 0 of
T -flat sheaves on T × Y such that A defines a family of objects in Pπ and
B a family in SS(µ ≤ � < ∞

2 ). By lemma 4.4, we know ∞
2 ≤ µπ(A) ≤

∞. Now by [12, lemma6.2], we know that G defines a family of objects in
SS(µ ≤ � ≤ ∞).

Now let G ∈ SS(µ ≤ � ≤ ∞). If G ∈ Pπ or SS(µ ≤ � < ∞
2 ) then we are

done, since then G will be an extension where one term is zero (recall that
all SS(a < � < b) include the zero objects). Otherwise, let

0 = G0 ⊂ G1 ⊂ . . . ⊂ GN−1 ⊂ GN = G
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be the Harder-Narasimhan filtration of G, let Qi be the associated quotients.
Then there exists an index j ∈ N, 1 < j < N such that for all i < j, µπ(Qi) ≥
∞
2 and µπ(Qj) < ∞

2 . Finally, by the uniqueness of the Harder-Narasimhan
filtration, we have that Gj ∈ Pπ and G/Gj ∈ SS(µ ≤ � < ∞

2 ).
�

Remark 7.7. The proof of this lemma is strikingly similar to the proof
of Lemma 6.1. This is no coincidence. The above is actually just a minor
refinement of Lemma 6.1 which says that we may cut off the tail end of Qπ

and have the corresponding result still hold. As we go on, we will be less
explicit about the proofs of lemmas when the argument has been already
made in the infinite-type case.

Lemma 7.8. Let µ ∈ (−∞,+∞]× (−∞,+∞]. Then, as µ → −∞, we have

H ∗ 1SS(µ≤�≤∞) − 1OSS(µ≤�≤∞) → 0.

Proof: Fix (β, n) ∈ ∆, and consider (β, m) for m < n. There are only
finitely many decompositions (β, n) = (β1, n1) + (β2, n2) such that both
ρ(β1,n1)(H) and ρ(β2,n2)(1SS(µ≤�≤∞)) are non-zero. This follows from the
fact that there are only finitely many decompositions β = β1 +β2 with both
βi effective. Now for each fixed β, there exist finitely many n such that both
ρ(β1,n1)(H) and ρ(β2,n2)(1SS(µ≤�≤∞)) are non-zero).

By the boundedness of the Hilbert scheme, we may assume that µ is
small enough so that for any of the decompositions, β = β1 + β2, all points
OY → A of Hilb(β1,n1) satisfy A ∈ SS(µ ≤ � ≤ ∞). Consider a diagram of
sheaves,

OY

γ

��

0 // A
α // G

β
// B // 0

(7.9)

with OY → A in Hilb(β1,n1) and ch([G]) = (β, n).
Now G ∈ SS(µ ≤ � ≤ ∞) if and only if B ∈ SS(µ ≤ � ≤ ∞). Since
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Bridgeland proves [12, prop 6.5]

ρ(β,n)(H ∗ 1SS(µ≤�≤∞)) = ρ(β,n)(1
O
SS(µ≤�≤∞)),

the claim is proven. �

Lemma 7.10. Let µ ∈ (−∞,+∞] × (−∞,+∞). Then, as µ → −∞, we
have

Hπ ∗ 1SS(µ≤�<∞
2

) − 1OSS(µ≤�<∞
2

) → 0.

Proof: Fix (β, n) ∈ ∆, and consider (β, m) for m < n. There are only
finitely many decompositions (β, n) = (β1, n1) + (β2, n2) such that both
ρ(β1,n1)(Hπ) and ρ(β2,n2)(1SS(µ≤�<∞

2
)) are non-zero.

By the boundedness of the moduli space of π-stable pairs, we may assume
that µ is small enough so that for any decompositions, β = β1+β2, all points
OY → A of π-Hilb(β1,n1) satisfy A ∈ SS(µ ≤ � < ∞

2 ). Consider a diagram
of sheaves,

OY

γ

��

0 // A
α // G

β
// B // 0

(7.11)

with OY → A in π-Hilb(β1, n1) and [G] = (β, n). Using that SS(I)∗SS(I) ⊂
SS(I), we see that B ∈ SS(µ ≤ � < ∞

2 ) if and only if G ∈ SS(µ ≤ � < ∞
2 ).

Now since A ∈ Qπ and B ∈ Qπ, we have that G ∈ Qπ. Composing the map
OY → A with the map A → G, yields a map OY → G; this represents an
object of 1OQπ

. The proof of lemma 6.6, that

1OQπ
= Hπ ∗ 1Qπ ,

can be easily adapted to now prove that

ρ(β,n)(Hπ ∗ 1SS(µ≤�<∞
2

)) = ρ(β,n)(1
O
SS(µ≤�<∞

2
)),
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using lemma 4.6. This completes the proof that

Hπ ∗ 1SS(µ≤�<∞
2

) − 1OSS(µ≤�<∞
2

) → 0

as µ → −∞. �

Proposition 7.12. We have the following equality in the Laurent Hall
algebra, Hsc(C)Φ:

H ∗ 1Pπ = Hexc ∗ 1Pπ ∗ Hπ.

Proof: Using 1SS(µ≤�≤∞) = 1Pπ ∗ 1SS(µ≤�<∞
2

) and 1OSS(µ≤�≤∞) = 1OP1
π
∗

1OSS(µ≤�<∞
2

), we can rewrite

H ∗ 1SS(µ≤�≤∞) − 1OSS(µ≤�≤∞) → 0

as
H ∗ 1Pπ ∗ 1SS(µ≤�<∞

2
) − 1OPπ

∗ 1OSS(µ≤�<∞
2

) → 0,

as µ → −∞.
Multiplying Hπ ∗ 1SS(µ≤�<∞

2
)− 1OSS(µ≤�<∞

2
) → 0 on the left by 1OPπ

, and
rewriting using 1OPπ

= Hexc ∗ 1Pπ yields

Hexc ∗ 1Pπ ∗ Hπ ∗ 1SS(µ≤�<∞
2

) − 1OPπ
∗ 1OSS(µ≤�<∞

2
) → 0

as µ → −∞. Hence

Hexc ∗ 1Pπ ∗ Hπ ∗ 1SS(µ≤�<∞
2

) −H ∗ 1Pπ ∗ 1SS(µ≤�<∞
2

) → 0

as µ → −∞. Since 1SS(µ≤�<∞
2

) is invertible, we can cancel it from both
sides:

H ∗ 1Pπ = Hexc ∗ 1Pπ ∗ Hπ.

�
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The proof of theorem 1.6

We first collect results. The next proposition is theorem 3.11 of [29], and is a
very deep result whose proof depends on all the full power of the formalism
of [24, 25, 26, 27, 28].

Proposition 7.13. For each slope µ ∈ ((−∞,−∞), (+∞,+∞)], we can
write

1SS(µ) = exp(εµ) ∈ H(C)Φ

with νµ = [C∗] · εµ ∈ Hreg(C)Φ a regular element.

Proof: The proof is identical to that of [12, theorem 6.3]. Bridgeland uses
Joyce’s machinery, which applies in our case just as it does in his. �

The following corollary corresponds to Bridgeland’s 6.4 [12].

Corollary 7.14. For any µ ∈ ((−∞,−∞), (+∞,+∞)], the element 1SS(µ) ∈
H(C)Φ is invertible, and the automorphism

Ad1SS(µ)
: H(C)Φ → H(C)Φ

preserves the subring of regular elements. The induced Poisson automor-
phism of Hsc(C) is given by

Ad1SS(µ)
= exp{ηµ,−}.

Proof: The proof of this is identical to that of corollary 6.4 of [12]. �

Now we can prove theorem 1.6. We have

H ∗ 1Pπ = Hexc ∗ 1Pπ ∗ Hπ.

Rearranging yields

H = Hexc ∗ 1Pπ ∗ Hπ ∗ (1Pπ)−1.

By lemma 4.4, we can write 1Pπ = SS(∞2 ≤ � ≤ ∞), and by lemma 6.2 of
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[12], we can write

SS(
∞
2
≤ � ≤ ∞) =

∏
∞
2
≤µ≤∞

1SS(µ).

In [12, lemma 6.2], it is explained that given an interval J ⊂ (−∞,+∞] ×
(−∞,+∞] that is bounded below, and an increasing sequence of finite sub-
sets

V1 ⊂ V2 ⊂ . . . ⊂ J

the sequence 1SS(Vj) in converges to 1SS(J), where 1SS(Vj) is defined to be∏
v∈Vj

1SS(v),

where the product is taken in descending order of slope. So, letting J denote
the interval of slopes between ∞

2 and ∞, including ∞
2 and excluding ∞, we

can write
H =

Hexc ∗ lim
finite V⊂J

1SS(µN ) ∗ . . . ∗ 1SS(µ1) ∗ Hπ ∗ (1SS(µ1))
−1 ∗ · · · ∗ (1SS(µN ))

−1,

where µi enumerate all the elements of V . Using proposition and corollary ,
we can rewrite

H =

Hexc ∗ lim
finite V⊂J

exp({ηµN , exp{ηµN−1 , . . . exp{ηµ1 ,−} . . .}(Hπ).

Now hitting this equation with the integration map yields

IΦ(H) =

IΦ(Hexc) · IΦ

(
lim

finite V⊂J
exp({ηµN , exp{ηµN−1 , . . . exp{ηµ1 ,−} . . .}(Hπ)

)
.

The integration map commutes with limits since it is continuous, thus

IΦ(H) =
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IΦ(Hexc) · lim
finite V⊂J

IΦ

(
exp({ηµN , exp({ηµN−1 , . . . exp({ηµ1 ,−}) . . .})(Hπ)

)
.

Now, the Poisson bracket is a commutator which is trivial in the ring of
Laurent series, so it vanishes after applying the integration map, and we are
left with

IΦ(H) = IΦ(Hexc) · IΦ(Hπ).

Applying lemma 7.4, we get

DT(Y )(x,−q) = DTexc(Y )(x,−q) · π-PT(Y )(x,−q)

and substituting q for −q yields

DT(Y ) = DTexc(Y ) · π-PT(Y ),

which is what we set out to prove. �
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Chapter 8

Conclusion

Summary of results

In this dissertation, we introduced the notion of a π-stable pair, which may
be thought of as a stable pair whose cokernel is allowed to be one-dimensional
provided it is contained in the exceptional divisor of Y

π→ X and has vanish-
ing higher derived push-forwards.. Following ideas from [12], we described
π-stable pairs in terms of a torsion pair (Pπ,Qπ). Then, we constructed a
stability condition, and established a relationship between the stability con-
dition and the torsion pair. Finally, after reviewing the construction of the
various Hall algebras, we established equations of elements in the Laurent
Hall algebra which integrate to give us the desired equality of generating
series.

Future research

This dissertation is progress toward proving the DT crepant resolution con-
jecture. The complete proof might take the following form. Let us consider
the case of global quotients for simplicity, i.e., stacks of the form X = M/G.
In this case, the derived category of X , Db(X ), is isomorphic to the G-
equivariant derived category of the master space M , Db

G(M). By the cel-
ebrated results of Bridgeland, King, and Reid [13], we know that there is
an equivalence Ψ between the derived category of Y and the G-equivariant
derived category of M . The next step will be to show that this equivalence
(or one closely related) takes π-stable pairs on Y to stable pairs on X .
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