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Abstract

The unreliability of wireless mesh networks creates challenge in designing high perfor-

mance wireless networks in terms of network throughput, end-to-end delay, and fairness

provisioning. In this thesis, the goal is to improve the network performance in terms of

these metrics. We explore several techniques such as multipath routing, channel coding,

network coding, and interference alignment. We consider resource allocation both in terms

of average data rate provisioning and scheduling policies in a time slot basis.

First, we propose data rate and channel code rate allocation algorithms for networks

with multiple paths to maximize the network throughput while all users can fairly exploit

the network resources. We study the effect of adaptive and non-adaptive channel coding

schemes. We also consider the end-to-end delay that each network flow experiences for data

transmission. For that purpose, we formulate the problem of decreasing the end-to-end

delay for network flows while improving the network throughput. Simulation results show

that we can decrease the delay at the cost of a slight decrease in network throughput. We

also formulate a data rate allocation problem in networks with network coding. Simulation

results show that considering link reliabilities in the network coding design dramatically

increases the network performance.

Data rate allocation algorithms provide the average data rates at which the source

must transmit data. They do not determine scheduling on a time slot basis. To address

that, we consider transmission scheduling in wireless networks. We also compare the

suggested algorithm with a centralized optimal data rate allocation algorithm to verify that
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Abstract

our algorithm follows the optimal solution. Through simulations, we show that fairness

provisioning leads to higher network performance. We show that the suggested algorithm

outperforms the current algorithms in the literature in terms of both network throughput

and fairness provisioning.

Finally, we consider transmission scheduling in wireless multi-input multi-output (MIMO)

systems. We formulate the problem of joint scheduling, interference alignment, and ad-

mission control in those networks and use Lyapunov stability theory to solve it. We also

develop a heuristic approach to solve the problem in a semi-distributed manner.
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Chapter 1

Introduction

Recent technological advances in wireless communications, digital electronics, and radio

frequency systems have placed wireless networks at the forefront of today’s data trans-

mission systems. Wireless mesh networks are wireless systems in which no central infras-

tructure exists. In these networks, users (mesh nodes) send and receive data to and from

the gateway(s) through possibly multiple hops. Having no central structure, mesh nodes

are responsible for routing and relaying data to the destination nodes. This is in contrary

to the existence of routers and access points in wired and infrastructure based wireless

networks.

Since network users are responsible for routing and relaying in the network wireless

mesh networks are scalable. This means that increasing the number of users (mesh nodes)

will not only maintain the performance of the network, but it may also improve it. That is

because a higher number of nodes (resources) are available for data transmission. Moreover,

because of not relying on infrastructure, wireless mesh networks are inexpensive and easy

to deploy. This makes these networks suitable for certain applications such as disaster

recovery support, urgent applications, and military missions.

Wireless nature and the decentralized structure of the wireless mesh networks makes

them exposed to unreliability. This means that at each instant of time, a packet may

be corrupted because of node outages, weather conditions, and environmental obstacles.

Unreliability degrades the performance of the network especially in applications of high

quality of service (QoS) requirements such as multimedia and realtime applications. An-
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Chapter 1. Introduction

other issue in wireless networks is interference. In the absence of a central node managing

data transmissions in the network, each node needs to use a distributed algorithm to

schedule data transmissions such that no interference occurs among the wireless channels.

Fairness provisioning, admission control, and end-to-end delay are other issues that affect

the performance of wireless mesh networks.

In this thesis, we study the performance improvement in wireless mesh networks. We

develop rate allocation approaches, flow control algorithms, and scheduling policies such

that the performance of the network in terms of network throughput and end-to-end delay

improves while data transmissions remain reliable. We also consider fairness provisioning

while achieving our goals. To this end, we use several techniques such as multipath routing,

channel coding, network coding, and interference alignment. In this chapter, we first discuss

the fairness and reliability in wireless networks. Then, we briefly summarize network

utility maximization, network coding, channel coding, multipath routing, and interference

alignment. After that, we describe the mathematical background that are used in this

thesis. Finally, we itemize our contributions and describe the thesis organization at the

end of this chapter.

1.1 Performance Attributes

1.1.1 Fairness

One important measure for network performance is fairness. Fairness provisioning in the

network allows all users enjoy a fair portion of network resources according to their utility

functions. Without considering fairness in a wireless network, some users may starve while

the others over utilize the resources in the network.

Starvation may have its origins in different layers such as medium access control (MAC)
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layer and transport layer. Shi et al. considered the starvation caused with a one-hop

transmission for a two-hop transmission in [1]. They especially considered the case in

which two users compete for the wireless channel with intially equal contention windows.

After several failures when their contention windows are large enough, one of them gets

successful in transmission and therefore it resets its contention window to the minimum

default size. However, the contention window of the other one remains large and this leads

the previously successful user to send its data more aggressively and makes the other one

starve.

Another origin of starvation is unfair data rate allocation. When the goal is maximiz-

ing the aggregate throughput of the network, sometimes it is promising to devote network

resources completely to some particular users. This leads to starvation. One of the goals

in this thesis is to avoid starvation due to data rate allocation and transmission schedul-

ing. As an appropriate quantitative measure of network performance in terms of fairness

provisioning, we use Jain’s fairness index [2].

Fairness provisioning in wireless networks has been considered [3–10]. Lin and Shroff

considered the impact of imperfect scheduling on performance of the network [3]. Pro-

portional fairness is provided in single hop wireless networks using token counter mecha-

nisms [4]. Fairness provisioning is also studied using back-pressure combined with random

access algorithms [5]. Fairness is provided in the cellular networks, where there is only one

transmitter and all transmissions are one hop [6]. A distributed fair carrier sense multiple

access (CSMA) algorithm is provided in [11] and its convergence under several practical

assumptions is considered [12]. Fair power allocation for cooperative wireless networks is

also considered [13].
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1.1.2 Reliability

Unlike wired networks, links in wireless networks can be unreliable and prone to trans-

mission error due to channel imperfections, background noise, environmental obstacles,

weather conditions, and user mobility [14]. Unreliable links can degrade network perfor-

mance particularly for applications with tight QoS requirements such as voice-over-IP and

video streaming [15]. Therefore, it is crucial to develop efficient strategies in order to

improve the reliability of data transmission in wireless networks [16].

The ability of a network to overcome failures can be characterized through three impor-

tant measures [17]: First, the network ability to perform its designated tasks under certain

conditions with guaranteed performance. Secondly, the ability of network to perform its

tasks at any instance of time, and finally network’s ability to survive some network fail-

ures. In this thesis, we improve the reliability of the network as a combination of the three

measures above. To study the reliability problem in wireless networks, reliability can be

modeled and analyzed as a utility function over the nodes participating in the network.

QoS requirements and constraints need to be jointly considered while optimizing network

behavior.

A good measure for reliability can be the fraction of packets that are successfully

received by the receiver. Another measure may be the mean value of transmission efforts

for each successful transmission [17, 18]. Markov process analysis is used to model and

analyze the end-to-end data transmission in a wireless network, and the tradeoff between

delay and reliability is investigated [19]. Data transmission reliability in wireless mesh

networks is summarized [20]. Varshney et al. [21] considered reliability and survivability

in infrastructure-oriented wireless networks and provided some reliability measures and

modeling.

Different approaches are used to make wireless networks more reliable. They include
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rate allocation [22, 23], channel coding [22], network coding [18, 24], and multipath rout-

ing [25–27]. Many rate allocation approaches are based on variations of the network utility

maximization [28–32].

1.2 Techniques

1.2.1 Network Utility Maximization

Following the work by Kelly et al. [33], network utility maximization (NUM) has been

widely used as a framework to systematically devise resource allocation strategies that

can enhance the network performance subject to various capacity and QoS constraints

[22, 34–36].

Most resource allocation problems can be formulated as NUM problems. The utility

function represents an objective that is to be maximized and the constraints model the

different underlying network characteristics. The NUM approach has been applied in differ-

ent problems, including energy minimization [37], congestion control [38], joint throughput

maximization and power control [39], joint congestion and power control [34], MAC [40, 41]

joint congestion and MAC control [35], and cross-layer optimization [42]. Other rate allo-

cation approaches are also considered. In [43], a rate control protocol with rate mismatch

and queue size feedback has been considered and a control theoretic analysis of the system

has been provided. However, rate allocation approaches do not automatically result in a

packet scheduling and transmission policy.

1.2.2 Network Coding

One approach to increase the network capacity while improving the reliability of the net-

work is network coding. Through network coding, each intermediate node combines the
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received codewords from different neighbor nodes and encodes them into new codewords.

The combined code words are then sent to the next hop on the path. This continues un-

til the destination node receives enough encoded codewords that it can decode them and

obtain the original packets. Network coding can be performed by jointly encoding mul-

tiple packets either from the same source or from different sources. The former is called

intra-session network coding [44] while the latter is called inter-session network coding

[45].

Following the seminal paper by Ahlswede et al. [44], a rich body of work has focused on

developing techniques to improve network performance using network coding. Reliability

in intra-session network coding is studied by Lun et al. in [46]. Network coding has been

shown as a promising approach in communication networking, particularly for maximizing

capacity in wireless networks [47]. Other network coding design objectives include max-

imizing network lifetime [48], minimizing energy consumption [49], and maximizing the

network throughput [50].

1.2.3 Channel Coding

Channel coding (cf. [22, 51]) is commonly used as a tool to leverage reliable transmissions

over lossy wireless links. With channel coding, the transmitter node of each link encodes

the transmitted packets by adding auxiliary or redundant bits, which can increase the

distance among the codewords and decrease the packet error probability. The higher the

number of redundant bits is, the lower is the probability that the packet is corrupted in

the channel such that it cannot be decoded at the receiver. If the number of extra bits is

the same across all links, then channel coding is non-adaptive. On the other hand, if we

change the amount of redundant bits for each link based on its current state, then channel

coding is adaptive. Adaptive channel coding may result in better performance compared to
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non-adaptive channel coding; however, it entails a higher complexity. In general, channel

coding usually introduces a tradeoff between reliability and data transmission rate. In

fact, by changing the code rate, i.e., the ratio of data bits to data plus redundant bits, we

can change the data rate at which the information is transmitted over each wireless link.

In particular, the code rate can be decreased in order to improve (reduce) the probability

of error at the cost of having lower data rates. Similarly, we can increase the code rate to

increase the transmission data rate, but at the cost of increasing the probability of error.

Adaptive channel coding has been used in [22] to enhance the network reliability, when

single-path routing is being used. The rate-reliability tradeoff introduced through channel

coding is studied in [22, 36, 51, 52].

Channel coding schemes fall into two main types: block codes and convolutional codes.

In convolutional codes, the encoded packets do not depend only to the latest data packets

but also to the past encoded data. However, in block codes each codeword depends only

to a number of latest data bits. Golay codes are an example for block codes.

1.2.4 Multipath Routing

Multipath routing can be used to compensate for the data rate reduction due to chan-

nel coding. This is done by distributing the load over multiple routing paths. Multipath

routing can provide fault tolerance against link failures and also achieve load balancing in

order to better utilize the available network capacity [53–55]. Multipath routing brings two

important advantages. One is that data can be sent from the source node with higher data

rate than single-path routing because multiple paths (more resources) are being used simul-

taneously between the source node and the destination node. This gives the opportunity

of using the network resources more efficiently. Second, having multiple paths available,

we can push higher data transmission rate to the paths with higher reliability instead of
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having to use vulnerable paths with high probability of failure. This improves the relia-

bility of the network by adjusting the data rates on different routing paths according to

the state of wireless channels and other data flows in the network. The improvements lead

to reducing network congestion, increasing throughput, and also higher energy efficiency

[56]. The impact of multipath routing on energy consumption is examined in [57]. The

effectiveness of multiple paths in meeting delay constraints is also studied in [58].

Multipath routing has been studied in wired networks [59] and wireless networks [25, 60]

scenarios. Many standard protocols have been introduced for multipath routing in wireless

networks such as ad hoc on-demand distance vector with backup routing (AODV-BR)

[61], multipath source routing (MSR) [62], multipath dynamic source routing (MP-DSR)

[63], split multipath routing (SMR) [64], multipath ad hoc on-demand distance vector

(MAODV) [65], and the work in [66].

1.2.5 Interference Alignment

Multiple-input multiple-output (MIMO) wireless systems are wireless networks in which

transmitters and receivers may have more than one antenna. They offer the possibility

of spatial multiplexing of data streams in addition to time and frequency multiplexing.

Spatial multiplexing leads to capacity increase linear to min(M,N), where M and N

are the number of transmitter and receiver antennas, respectively [67]. The challenge in

designing such MIMO systems, however, is in dealing with interference from concurrent

signal transmissions. In such systems, wireless interference shows up among different sender

antennas at each receiver. Interference alignment is among the several techniques which

has been recently used to overcome this problem.

When the interference is strong, the interfering signal can be decoded as well as the de-

sired signal [68]. This may be at the cost of degradation in the users’ sending rates. On the
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other hand, in case the interference is very weak, it can be treated as noise. More recently,

interference alignment [68] has been suggested for the cases when the strength of interfer-

ence is comparable to the strength of the desired signal. Interference alignment techniques

involve the use of suitable encoding and decoding matrices, at the transmitter and receiver

respectively, such that at each receiver the interference caused by all undesired transmit-

ters is projected onto a separate interference subspace. This permits the receiver to easily

extract the desired signal from the corresponding interference-free subspace. Cadambe and

Jafar have shown that while the per-user sum-rate for an K-user interference channel with-

out interference alignment is 1
K
log(SNR) + O(SNR), where SNR is the signal-to-noise

ratio, the sum-rate per-user can be increased to 1
2
log(SNR) +O(SNR) with interference

alignment [68].

Most of the work in the field of interference alignment is related to determining the

maximum possible degrees of freedom (DoF) as well as studying its feasibility and achiev-

ability through finding optimal encoding and decoding matrices in a (M,N) system with

K users (where K is as small as 2, 3) such that the interference is minimum at undesired

receivers.

The effectiveness of interference alignment in fully connected wireless networks with

more than two users is considered [68, 69]. While global knowledge of channels is required

in the work by Cadambe et al. [68], Gomadam et al. [70] provide a distributed approach

using the reciprocity of wireless networks to make the local channel knowledge adequate.

The achievability of high DoF in wireless networks when instantaneous channel state in-

formation is not available is studied [71].

The feasibility of interference alignment in MIMO systems has been considered in

[72, 73] by relating the problem to the problem of determining the solvability of a multi-

variate polynomial system. In addition to interference alignment which aims at minimizing
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the interference strength projected outside the interference subspace, the work in [74] also

minimizes the signal strength that is spilled inside the interference subspace. Interfer-

ence alignment and cancellation in MIMO systems is shown in [75] to almost double the

throughput of MIMO based wireless local area networks (WLANs). Interference alignment

with the goal of achieving the maximum sum-rate has been considered in MIMO [76] and

cognitive MIMO systems [77].

Interference alignment techniques have also been exploited for downlink cellular systems

where channel state information exchange is not required across base stations of different

cells [78]. Interference alignment has also been used to model and solve other problems

such as network coding [79, 80].

1.3 Mathematical Background

In this section, we provide a brief discussion on mathematical background that is needed

in this thesis.

1.3.1 Convex Optimization

Before presenting the standard form of convex optimization problems [81], we first intro-

duce some related concepts. Set X is convex if for any two points xi, xj ∈ X , the line

segment connecting xi to xj is in set X as well. That is, we have θxi + (1 − θ)xj ∈ X

for θ ∈ [0, 1]. Function f(x) : Rn → R is convex if dom f is a convex set and we have

f(θxi + (1− θ)xj) ≤ θf(xi) + (1− θ)f(xj) for θ ∈ [0, 1].
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A convex optimization problem has the following standard form.

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,

hi(x) = 0, i = 1, . . . , p,

(1.1)

where fi(x), i = 0, . . . , m, are convex functions, and hi(x) = aTi x − bi, i = 1, . . . , p, are

affine functions. Problem (1.1) addresses the problem of finding the optimization variable

x ∈ Rn such that

• inequality constraints are satisfied. That is, fi(x) : R
n → R is less than or equal to

zero for all i = 1, . . . , m,

• equality constraints are satisfied. That is, aTi x = bi, for all i = 1, . . . , p, and

• the objective function f0(x) : R
n → R obtains its minimum value among all x ∈ Rn

that satisfy the above constraints.

A convex optimization problem can be solved through the dual method. The basic idea

in the dual method is combining the weighted equality and inequality conditions with the

objective function in a new function called Lagrangian. The Lagrangian of problem (1.1)

is as follows.

L(x,λ,ν) = f0(x) +
∑m

i=1 λifi(x) +
∑p

i=1 νihi(x). (1.2)

We refer to λ and ν as Lagrangian multipliers corresponding to inequality and equality

constraints, respectively. We define the dual function g(λ,ν) : R
m × R

p → R as the

infimum value of the Lagrangian function over x ∈ X , that is

g(λ,ν) = infx∈X L(x,λ,ν). (1.3)

11



Chapter 1. Introduction

Note that for any λ � 0,ν, g(λ,ν) yields a lower bound for the optimal value of problem

(1.1). As opposed to primal problem (1.1), consider Lagrangian dual problem as follows.

maximize g(λ,ν)

subject to λ � 0.
(1.4)

The optimal value of problem (1.4) yields the best lower bound for the optimal value of

problem (1.1). Under the strong duality conditions, this lower bound equals to the optimal

value of the primal problem. Note that for convex optimization problems, Slater’s condition

is enough for strong duality [81, p. 226]. Slater’s condition requires the existence of at

least one feasible point inside the feasible set of the primal problem.

1.3.2 Geometric Programming

Geometric programming (GP) is a type of non-convex optimization problems that can

be converted to convex optimization problem and be solved accordingly. We first de-

fine a monomial function m(x) : Rn
++ → R as dx

a(1)
1 x

a(2)
2 . . . x

a(n)
n , where d > 0, and

a(i) ∈ R, i = 1, 2, . . . , n. A posynomial is the summation of K monomials as in p(x) =
∑K

k=1 dkx
ak(1)
1 x

ak(2)
2 . . . x

ak(n)
n .

Now, we can introduce the standard form of GP problems [82] as

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m,

hi(x) = 1, i = 1, . . . , p,

(1.5)

where fi(x) =
∑Ki

k=1 d
i
kx

ai
k
(1)

1 x
ai
k
(2)

2 . . . x
ai
k
(n)

n are posynomials for any i = 0, . . . , m, and

hi(x) = dix
ai(1)
1 x

ai(2)
2 . . . x

ai(n)
n are monomials for each i = 1, . . . , p. GP is not convex in

its standard form. However, it can be converted to a convex problem by the logarithmic
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change of its all variables. Having yi = log xi, we have

minimize
∑K0

k=1 exp(b
0
k + a0k(1)y1 + . . .+ a0k(n)yn)

subject to
∑Ki

k=1 exp(b
i
k + aik(1)y1 + . . .+ aik(n)yn) ≤ 1, i = 1, . . . , m,

exp(bi + ai(1)y1 + . . .+ ai(n)yn) = 1, i = 1, . . . , p,

(1.6)

where bik = log dik, for any i = 1 . . .m, k = 1, . . . , Ki. We also have bi = log di, for any

i = 1, . . . , p. Considering that the logarithmic function is an increasing function, we can

take the logarithm of the objective function as well as the constraints and obtain a convex

optimization problem. This is due to the fact that the log-sum-exp function is convex [83].

Therefore a GP can easily be solved by using the techniques to tackle convex optimization

problems.

1.3.3 Non-linear Mixed Integer Programming

Sometimes it is not possible to accept solutions in which some optimization variables are not

integers. This happens for example when we are seeking for the optimal number of people

working in a particular section or the optimal number of wireless links which are active in

one particular time slot. Another important instance of this is in scheduling problems in

which the scheduling variables must be equal to either 0 or 1, which corresponds to whether

a link is off or on. Such problems must be formulated as integer programming problems.

Note that in case there are both integer and non-integer variables in the problem, it is

called a mixed-integer programming problem. The standard form of a mixed integer linear
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programming problem is as follows [84].

minimize
∑N

n=1 cnxn

subject to
∑N

n=1 amnxn ≤ bm, m = 1, . . . ,M,

xn ≥ 0, n = 1, . . . , N,

xi is integer, i ∈ I,

(1.7)

where I is a subset of the set of variables {n = 1, . . . , N}.

In contrast with linear programming, it is not straightforward to solve integer pro-

gramming problems when they are not linear, that is there exist non-linear functions of

optimization variables as the objective function and/or constraints. Some methods are

suggested for solving non-linear (mixed) integer programming problems such as General-

ized Benders Decomposition (GBD) and Outer Approximation (OA) approaches. In the

next section, we introduce the GBD method.

1.3.4 Generalized Benders Decomposition (GBD)

Consider the following non-linear mixed integer programming problem.

minimize
x,y

f(x,y)

subject to hi(x,y) = 0, i = 1, . . . , m,

gi(x,y) ≤ 0, i = 1, . . . , p,

x ∈ X ⊆ Rn,

y ∈ Y = {0, 1}q,

(1.8)

where X is a nonempty, and convex set, hi : R
n × R

q → R for i = 1, . . . , m, is a linear

function for each fixed y ∈ Y , and f : Rn×Rq → R and gi : R
n×Rq → R for i = 1, . . . , p,

are convex functions for each fixed y ∈ Y . We have also set Zy = {z = (z1, . . . , zp) ∈
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Rp : hi(x,y) = 0, gj(x,y) ≤ zj, i = 1, . . . , m, j = 1, . . . , p, for some x ∈ X} is a closed set.

Moreover, for each feasible y ∈ Y , we have either problem (1.8) has a finite solution and

optimal Lagrangian multipliers vector, or problem (1.8) is unbounded.

The GBD method [84] is an iterative algorithm. At each iteration, we formulate two

problems: a primal problem, which yields an upper bound on the optimal value, and a

master problem that yields a lower bound on the optimal value. The primal problem is

formulated by fixing the integer variables in some particular point and solving problem

(1.8) in that point. Consider the following primal problem at the kth iteration.

minimize
x

f(x,yk)

subject to hi(x,y
k) = 0, i = 1, . . . , m,

gi(x,y
k) ≤ 0, i = 1, . . . , p,

x ∈ X ⊆ Rn,

(1.9)

where yk is a feasible point in set Y . Clearly, since the integer variables are fixed, the

optimal value of problem (1.8) is always equal or better (smaller) than the optimal value

of problem (1.9) and therefore, the primal problem provides an upper bound for the optimal

value. In case problem (1.9) is infeasible for y = yk, we formulate a feasibility problem.

Consider the l1-minimization problem at iteration k.

minimize
x, β�0

∑p
i=1 βi

subject to hi(x,y
k) = 0, i = 1, . . . , m,

gi(x,y
k) ≤ βi, i = 1, . . . , p,

x ∈ X ⊆ Rn.

(1.10)

Let M and M′ denote the set of all iterations k such that the primal problems are

feasible and infeasible, respectively. Using the solutions to the primal problems (1.9) and
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(1.10) in all previous iterations and the information on Lagrange multipliers, we formulate

the master problem as follows:

minimize
µ,y

µ

subject to µ ≥ L1(x
k,y,λk,νk), ∀ k ∈ M,

0 ≥ L2(x
k,y,λk,νk), ∀ k ∈ M′,

y ∈ Y = {0, 1}q,

(1.11)

where L1(x,y,λ,ν) = f(x,y) + λTh(x,y) + νTg(x,y) and L2(x,y,λ,ν) = λTh(x,y) +

νTg(x,y). The GBD method works as follows. At the first iteration, the primal problem

(1.9) is solved in an initial point. The initial point must be chosen such that the first primal

problem is feasible. Then, at each iteration, the master problem (1.11) is formulated using

the information obtained in the solution of the previous primal and feasibility problems

and a lower bound is provided. Then, the primal problem (1.9) is formulated by fixing y at

the integer point obtained in the master problem and a new upper bound is obtained. In

case the primal problem is infeasible, feasibility problem (1.10) is formulated instead. This

continues until the upper bound and the lower bound obtained in the primal and master

problems converge together.

1.4 Contributions and Results

In this thesis, we aim to improve performance of wireless mesh networks under reliability

constraints. Our contribution is to develop rate allocation algorithms, scheduling policies,

and flow control solutions with the goal of improving the reliable throughput of the network.

While achieving that goal, we also consider fairness provisioning. In the following, we

describe our results and contributions in summary.
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• In Chapter 2, we consider unreliability of wireless networks due to varying chan-

nel conditions, especially when users are mobile. We formulate a joint max-min

fair channel coding and end-to-end data rate allocation problem in multipath wire-

less networks. We maximize the minimum throughput available among the network

users. To cope with the fast and frequent changes in dynamic environments such

as wireless mesh networks in vehicular environments, we address both adaptive and

non-adaptive channel coding scenarios. We also redesign the adaptive algorithm

to use the available information related to the current optimal solution leading to

a faster convergence. Unlike similar formulations in single-path routing networks,

which involve solving either a convex optimization problem or problems that can

be transformed into a convex optimization problem, in the multipath routing case

we face an optimization problem that is non-convex and is usually difficult to solve.

We tackle non-convexity by using function approximation and iterative techniques

from signomial programming. Simulation results confirm that by using channel cod-

ing jointly with multipath routing, we can significantly improve end-to-end network

performance, compared to the case when only one of them is used in the network.

Non-adaptive channel coding is also shown to achieve high degree of optimality with

much less complexity.

• In Chapter 3, we consider delay in wireless networks with multipath routing and

channel coding. We show that a combination of multipath routing and adaptive

channel coding can improve throughput and reduce delay, and that it is possible to

trade off delay for throughput and vice versa. This is in contrast to the general ex-

pectation that higher throughput can only be achieved with noticeable degradations

in the end-to-end network delay. In this regard, we jointly formulate the end-to-end

data rate allocation and adaptive channel coding (at the physical layer) within the
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general framework of network utility maximization (NUM). Depending on the choice

of the objective function, we formulate two NUM problems: one aiming to maximize

the aggregate network utility; another one aiming to maximize the minimum utility

among the end-to-end flows in order to achieve fairness, which is of interest in certain

vehicular network applications. Simulation results confirm that we can decrease the

average delay significantly at the cost of a small decrease in throughput. This is

achieved by maximizing the aggregate utility in the network when fairness is not the

dominant concern. Furthermore, we also show that even when resource allocation is

performed in order to provide fairness, we can still decrease the maximum end-to-end

delay of the network at the cost of a slight decrease in the minimum throughput.

• In Chapter 4, we focus on inter-session network coding, where multiple unicast ses-

sions jointly participate in network coding. We consider multi-hop unicast sessions

over unreliable links and propose a distributed end-to-end transmission rate adjust-

ment mechanism to maximize the aggregate network utility by taking into account

the wireless link reliability information. This includes an elaborate modeling of end-

to-end reliability. Simulation results show that by taking into account the reliability

information, we can increase the network throughput by up to 100% for some net-

work topologies. We can also increase the aggregate network utility significantly for

various choices of utility functions.

• In Chapter 5, we consider the setting of multihop wireless networks and develop an

online flow control and scheduling algorithm for packet admission and link activation

that achieves high aggregate throughput while providing different data flows with a

fair share of network capacity. For fairness provisioning, we maximize the minimum

throughput provided to flows in the network. We also develop an algorithm that does

not consider fairness provisioning. To cope with different degrees of data reliability
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among the different links in the network, we use different channel code rates as

appropriate. While we expect performance improvement using channel coding and

multipath routing, the main contribution is a joint treatment of network stability,

multipath routing and link-level reliability in meeting the overarching goal of maxmin

fairness. We develop a decentralized, and hence practical, scheduling policy that

addresses various concerns and demonstrate, via simulations, that it is competitive

with respect to an optimal centralized rate allocator. We also evaluate the fairness

provisioning under the proposed algorithm and show that channel coding improves

the performance of the network significantly. Finally, we show through simulations

that the proposed algorithm outperforms a class of existing approaches on fairness

provisioning, which are developed based on utility maximization.

• In Chapter 6, we study scheduling, interference alignment, and packet admission

control in MIMO wireless systems with the goal of maximizing system throughput

subject to stability constraints. We formulate the joint scheduling, packet admission

control, and interference alignment problem as a stochastic network optimization

problem and propose an efficient algorithm. In each time slot, the algorithm schedules

some users to send data among many competing ones. It also determines the optimal

encoding and decoding matrices for those selected users. Packet admission control is

performed in each time slot. We also propose an efficient heuristic. Via simulation,

we evaluate the performance of both the proposed optimal algorithm and heuristic

under different number of users and showed that the heuristic follows the optimal

central solution with some degree of sub-optimality.
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1.5 Thesis Organization

This thesis is organized as follows. We first develop an optimal data rate and channel

code rate allocation algorithm in multipath routing wireless networks with channel coding

in Chapter 2. The goal is to improve the reliability and throughput in the wireless mesh

networks with fairness provisioning. In Chapter 3, we incorporate the end-to-end delay

in the utility function of the problem solved in Chapter 2 and reformulate the problem

of data and channel code rate allocation with the goal of decreasing the end-to-end delay

for network flows. In Chapter 4, we use inter-session network coding for performance im-

provement and obtain the optimal data rate allocation for both routing paths and network

coding schemes. To address the achievability of the rate allocation design obtained in

Chapter 2, we consider transmission scheduling as well as flow control in a time slot based

setting in Chapter 5. In Chapter 6, we study the problem of joint scheduling, interference

alignment, and packet admission in MIMO systems. Finally, the thesis is concluded and

some potential future work is introduced in Chapter 7. Each of the main chapters in this

thesis is self-contained and included in separate journal articles or conference papers. A

review of the related work is given for each chapter accordingly. The notations are defined

separately for each chapter.
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Chapter 2

Optimal Data Transmission and

Channel Code Rate Allocation in

Multipath Wireless Networks

2.1 Introduction

As discussed in Chapter 1, multipath routing and channel coding are promising techniques

for performance improvement in wireless mesh networks. In this chapter, our focus is

to jointly use channel coding and multipath routing in an optimization-based framework

to further improve reliability compared to using only channel coding or only multipath

routing. We are interested in answering the following question: How shall we select the

end-to-end data transmission rates over different paths and per-link channel code rates in

order to achieve the optimal rate-reliability tradeoff in multipath wireless networks?

Our main contribution is a solution to the fair resource allocation problem in networks

that jointly employ multipath routing and link-specific channel coding. In this regard, our

work is closely related to [22]. However, here we introduce three key extensions. First,

Lee et al. in [22] assume that the links in the network are either wired or interference-

free wireless. On the contrary, here we have explicitly incorporated the impact of wireless

interference. Second, unlike the system model in [22] which addresses only single-path
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routing, here we consider the case where there are multiple end-to-end routing paths avail-

able across the network. Clearly, this includes single-path routing as a special case. Third,

we formulate the problem such that the minimum throughput among the individual users

is maximized. This leads to fairness provisioning which is of great importance in certain

applications such as vehicular networks where vehicles frequently switch among stationary

mesh nodes to receive connectivity. In this case, different mesh nodes must be provided

with fair and consistent data rates. The aforementioned three extensions introduce several

challenges in solving the formulated optimization problem and have not been addressed

before. Those are due to various non-convexities that cannot be directly transformed into

a convex optimization problem using the well-known logarithmic change of variables as in

[22]. Although our proposed method is centralized, it may be used in vehicular network

applications such as those in which stationary access points provide connectivity for the

vehicles in their coverage zone. Moreover, it can shed light on how per-link channel coding

can improve end-to-end performance in a multipath routing wireless network. The central-

ized solution may also be used as a benchmark for evaluating distributed approaches which

may be developed in the future. To the best of our knowledge, rate allocation with the

goal of fairness and reliability enhancement using multipath routing and channel coding

has not been addressed in any prior work.

The contributions of this chapter are as follows.

• We formulate max-min fair resource allocation in multipath wireless networks em-

ploying channel coding as an optimization problem. Our system model includes both

adaptive and non-adaptive channel coding.

• We tackle the non-convexity of the formulated optimization problem in two steps.

First, we use function approximations to reformulate the problem as a signomial pro-

gramming problem (which is still non-convex). Next, we develop an iterative algo-
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rithm to solve the signomial programming problem by solving a chain of tractable ge-

ometric programming problems. We introduce a non-adaptive channel coding scheme

with much lower degree of complexity, which can find a sub-optimal solution. We

design our algorithm such that it can quickly find the new solution, whenever there

is a change in the network topology and the number of users.

• To motivate the joint use of multipath routing and channel coding, we show through

simulations that our proposed scheme significantly improves the network performance

when compared to the case with multipath routing, but without channel coding. We

also show that our joint scheme outperforms channel coding in single-path routing

systems.

• We investigate the convergence properties of the proposed algorithm as well as its

efficiency. The latter is studied particularly by evaluating the impact of the approx-

imations made in the derivation of the algorithm.

• We compare the adaptive coding scheme with the non-adaptive coding scheme with

less computational complexity. We evaluate the proposed algorithm in a dynamic

vehicular environment where the data traffic pattern changes due to mobility. Finally,

we study the effects of fading on the performance of the algorithm.

The rest of this chapter is organized as follows. We present the system model and

formulate the joint data rate and channel code rate allocation problem in Section 2.2. In

Section 2.3, we reformulate the problem as a geometric programming problem and propose

a reliability-based rate allocation algorithm to solve it. We also introduce a non-adaptive

channel coding scheme as a sub-optimal solution with lower complexity. Simulation results

are presented in Section 2.4. The chapter is summarized in Section 2.5.
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2.2 System Model And Problem Formulation

2.2.1 System Model

Consider an ad-hoc wireless network. We can model the network topology as a directed

graph G(V, E), where V = {1, 2, . . . , V } is the set of nodes and E is the set of wireless

links. Let I = {1, 2, . . . , I} denote the set of all unicast sessions in the network. For each

session i ∈ I, the source and destination nodes are denoted by si and ti, respectively.

Furthermore, we denote Ki = {1, 2, . . . , Ki} as the set of all available routing paths from

source node si to destination node ti. For each session i ∈ I, each link e ∈ E , and each

k ∈ Ki, we have

aeki =











1, if link e belongs to kth routing path for session i,

0, otherwise.
(2.1)

We assume that static routing is used and the routing information is given a priori.

For each session i∈I, let αki denote the data rate of source si on its kth routing path,

k ∈ Ki. The aggregate transmission rate for session i is obtained as

∑

k∈Ki
αki . (2.2)

Since the packets are retransmitted whenever they are lost in the network, the effective

receiving rate at destination node ti is the same as (2.2).

Channel coding can improve reliability on lossy channels by adding redundant bits to

the data packets transmitted. In this regard, we define Re as the code rate of link e ∈ E ,

i.e., the ratio of the data bits to data plus redundant bits. Notice that if no channel coding

is performed, then Re = 1 as there will be no redundant bits in the packet.
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Let R0e ≤ 1 denote the cut-off rate on wireless link e ∈ E . We assume that the rate

Re of the adopted coding schemes (e.g., convolutional codes) is limited by the cutoff rate

[85]. Given code rate Re ≤ R0e if random coding based on M -ary binary coded signals is

used, we can bound the packet error probability on link e to be less than 2−T (R0e−Re) as

[22, 36, 52, 85]. Therefore, in the worst case, we have

Pe = 1− 2−T (R0e−Re), (2.3)

where Pe is the successful packet transmission probability on link e and T is the coding

block length. In general, the cut-off rate R0e depends on the signal-to-noise ratio (SNR) and

the modulation scheme being used. For example, for a binary phase shift keying (BPSK)

waveform [85], we have

R0e = 1− log2(1 + e−γe), (2.4)

where γe denotes the SNR at the receiver node of wireless link e ∈ E . In particular, we

have

γe = Γe × d−σe × |fe|2, ∀ e ∈ E , (2.5)

where Γe depends only on the SNR at transmitter, de is the distance between the trans-

mitter and receiver of link e, σ is the path loss exponent (e.g., between 2 and 5), and fe is

the small-scale fading gain. Assuming re-transmission after a packet is lost in the network

until reaching a successful transmission, each packet must be sent 1/Pe times on average

over each link e. Given the source transmission rates α = (αki , ∀ i ∈ I, k ∈ Ki), successful

transmission probabilities P = (Pe, ∀ e ∈ E), and the link code rates R = (Re, ∀ e ∈ E),

we can model the aggregate traffic load on link e ∈ E as

ue =
1

RePe

∑

i∈I

∑

k∈Ki
aeki αki . (2.6)
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From (2.6), the smaller the code rate Re, the more redundant data is added to the trans-

mitted packets on link e ∈ E leading to more reliable transmission (i.e., transmission with

lower error probability). However, this will be at the cost of increasing the traffic load on

the link.

We can model the mutual interference among the wireless links in a network by using a

contention graph GC(VC , EC). In the contention graph GC , the set of vertices VC represents

the set of all wireless links E in the network graph G. There exists an edge between any

two vertices in set VC if wireless links corresponding to two vertices mutually interfere

with each other (i.e., the receiver node of one link is within the interference range of the

sender node of the other link). Given the contention graph, each complete subgraph (i.e.,

a subgraph in which all vertices are connected to all other vertices) is called a clique. A

maximal clique is then defined as a clique which is not a subgraph of any other clique [86].

Denote the set of all maximal cliques in contention graph GC by QC . Only one link among

all the links corresponding to the vertices of a maximal clique Q ∈ QC can be active at a

time.

For the data link layer, we assume that time division multiple access (TDMA) is used.

Let ce denote the nominal data rate of link e ∈ E . The ratio ue
ce

denotes the proportion of

time at which link e ∈ E is active when it is used at data rate ce. It is required that

∑

e∈Q

ue
ce

≤ ν, ∀ Q ∈ QC , (2.7)

where ν ∈ (0, 1] is called the clique capacity. Note that if ν = 1, then (2.7) is only

a necessary constraint. It is shown that inequality (2.7) is a sufficient constraint when

ν = 2/3 [87]. Note that we assume all clique information given. This can be achieved in a

central manner having the complete information about the network topology. Distributed

approaches can also be developed which are out of scope of this thesis.
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Figure 2.1: An example downtown area with 25 access points (forming a wireless mesh
infrastructure). The access point at the center serves as the gateway. There are 10 vehicles
in the system, each one uses the nearest access point to connect to the Internet.

Now we show how the provided modeling covers the vehicular environment. Consider

Fig. 2.1 in which an example downtown area is shown. There is an access point in every

other cross section and the one at the center of the area is denoted as the gateway. Access

points correspond to nodes in set V. There is a wireless link e ∈ E between two adjacent

access points. Vehicles move in the streets continuously. Each vehicle at each instant of

time finds the nearest access point and connects to it to transmit data to the gateway.

The access point i∈I which is connected to a vehicle, represents source node si for flow

i. The gateway corresponds to destination node ti. During the time that vehicles move in

the area the set of sources and thus the data traffic pattern changes.
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2.2.2 Problem Formulation

Considering (2.2), (2.3), (2.6), and (2.7), the rate-reliability tradeoff can be explained as

follows. For each link e ∈ E , by increasing the code rate Re we can reduce the traffic

load per transmission on each link. Thus, higher transmission rates will be allowed with

the same clique capacity. However, this is at the cost of less reliability and leads to more

re-transmission attempts as in (2.6). On the other hand, by decreasing the code rate Re,

we can reduce the error probability in (2.3) which leads to higher probability of successful

transmission along each routing path. Therefore, we may select either higher transmission

rates, but with more packets being prone to error, or lower transmission rates, but with

higher percentage of correctly received packets. In this regard, the key question to be

answered is: What transmission rates α and code rates R should be selected to achieve

optimal performance?

To answer the above question, we formulate the following optimization problem.

Max-Min Fairness Problem:

maximize
α�0, 0≺R�R0

minimum
i∈I

∑

k∈Ki
αki

subject to
∑

e∈Q

1

PeRe ce

∑

i∈I

∑

k∈Ki
aeki αki ≤ ν, ∀ Q ∈ Q,

Pe = 1− 2−T (R0e−Re), ∀ e ∈ E ,

(2.8)

where R0 = (R0e, ∀ e ∈ E) denotes the vector of cut-off rates for all links in the network.

The objective function in (2.8) is the minimum receiving rate among all sessions in the

network, where for each session i ∈ I, the receiving rate is as in (2.2). By solving (2.8),

we can find α and R such that the minimum throughput across all sessions is maximized.

Notice that we could also maximize the aggregate network throughput. However, the

aggregate network throughput maximization problem does not take into account any notion
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of fairness as the objective is to maximize the total network throughput. As a result, the

optimal solution may lead to starvation in some sessions. Max-min fairness solution avoids

starving any of the sessions and balances the performance in the network. We will discuss

solving problem (2.8) in Section 2.3.

2.3 Optimal Transmission Rate and Channel Code

Rate Allocation

2.3.1 Adaptive Channel Coding

In this section, we propose an iterative algorithm to solve the max-min fairness optimization

problem to achieve optimal allocation of source transmission rates α as well as optimal

channel code rates R in the network. In general, problem (2.8) is non-convex and difficult

to solve. Note that the non-convexities in problem (2.8) come from the following three

sources: (a) The minimum term in the objective function. (b) The exponential forms in

the equality constraints with respect to error probabilities. (c) The fractional forms in the

inequality constraints with respect to clique capacities.

Most of these challenges are caused by the fact that, unlike many of the existing related

work in the literature on rate-reliability tradeoff (e.g., in [22]), we take into account mul-

tipath routing and wireless interference. For example, if the network is wired such that no

interference occurs among transmissions, then the clique capacity constraints would reduce

to several linear link capacity constraints such that for each link e ∈ E we have

1

PeRe ce

∑

i∈I

∑

k∈Ki
aeki αki ≤ 1 ⇒

∑

i∈I

∑

k∈Ki
aeki αki ≤PeRe ce. (2.9)

However, these techniques are not applicable where multipath routing is used and wireless
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transmissions incur interference. In fact, we need to go through more elaborate steps in

order to be able to solve problem (2.8) in the general case as will be explained in detail

next.

Recall that problem (2.8) is a non-convex optimization problem due to the three reasons

listed earlier, where one of them is the exponential forms in the equality constraints with

respect to error probabilities. We start by tackling this source of non-convexity. First,

we replace this equality with an inequality. This does not degrade the performance of

the algorithm because it overestimates the unreliability in the network. For notational

simplicity, we rewrite the error probability (2.3) as

Pe ≤ 1−Xe exp (Le Re) , ∀ e ∈ E , (2.10)

where Xe = 2−TR0e , and Le = T ln 2.

Recall that for each link e ∈ E , we have 0 < Re ≤ R0e. We use Taylor series expansion

to write inequality (2.10) as

Pe ≤ 1−Xe

∞
∑

n=0

(Le Re)
n

n!
, ∀ e ∈ E . (2.11)

Clearly, for some bounded integer Ne ≫ 1, we have

Pe ≤ 1−Xe

Ne−1
∑

n=0

(Le Re)
n

n!
, ∀ e ∈ E . (2.12)

Unlike the exponential error probability model in (2.10), the model in (2.12) is in polynomial

form. For (2.12) to approximate (2.11) accurately, we need Ne to be large enough such

that (LeRe)
Ne ≪ Ne!. We investigate the value of Ne necessary for obtaining a good

approximation in Section 2.4.4.
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By exploiting the worst-case packet error probability (2.12) in problem (2.8), we rewrite

the max-min fairness problem as

maximize
α≻0, 0≺R�R0,P≻0

minimum
i∈I

∑

k∈Ki
αki

subject to
∑

e∈Q

∑

i∈I

∑

k∈Ki
aeki αki P

−1
e R−1e c−1e ≤ ν, ∀ Q ∈ Q,

Pe
1−Xe

+
Xe

1−Xe

Ne−1
∑

n=1

(LeRe)
n

n!
≤ 1, ∀ e ∈ E .

(2.13)

The objective in (2.13) is to maximize the utility of the transmission session with the mini-

mum value. We can replace the minimum function in the objective function by introducing

a new auxiliary variable t and a set of new constraints as

minimize
t>0, α≻0, 0≺R�R0,P≻0

t−1

subject to t ≤
∑

k∈Ki
αki , ∀ i ∈ I,

∑

e∈Q

∑

i∈I

∑

k∈Ki
aeki αki P

−1
e R−1e c−1e ≤ ν, ∀ Q ∈ Q,

Pe
1−Xe

+
Xe

1−Xe

Ne−1
∑

n=1

(LeRe)
n

n!
≤ 1, ∀ e ∈ E .

(2.14)

The objective function and constraints in problem (2.14) are signomials, i.e., polynomials

with both positive and negative terms. Therefore, we can apply signomial programming

techniques [82] to solve problem (2.14).

Consider the first constraint in (2.14). We follow the signomial programming techniques

[82] to approximate the polynomial on the right-hand side of this inequality, which is a

function of only α, as a monomial, i.e., a polynomial with only one term and positive

multiplier. This approximation can be performed around some initial point α̂. For a
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parameter fs > 1, which is close to 1, we have

∑

k∈Ki
αki ≈

(

∑

k∈Ki
α̂ki

)

∏

k∈Ki

(

αki
α̂ki

)
α̂ki /







∑

k′∈Ki
α̂k

′

i′







, ∀ α ∈ [α̂/fs, fsα̂] ,
(2.15)

for any i ∈ I, where [α̂/fs, fsα̂] is a small neighborhood around initial point α̂. The

closer fs is to 1, the more accurate the approximation of (2.15) will be at the cost of slower

convergence of the algorithm. For simplicity of notation, for any i ∈ I, we define Λ̂i which

only depends on the initial point α̂, as

Λ̂−1i =
∑

k∈Ki
α̂ki . (2.16)

From (2.15) and (2.16), the first constraint can be approximated around the initial point

α̂ as

Λ̂it
∏

k∈Ki

(

αki
α̂ki

)−α̂ki Λ̂i
≤ 1, ∀ i ∈ I. (2.17)

The above constraint is a posynomial, i.e., a polynomial with only positive terms. Replacing

the first constraint in (2.14) with (2.17), the max-min fairness problem becomes

minimize
t>0, α̂/fs�α�fsα̂, 0≺R�R0, P≻0

t−1

subject to Λ̂it
∏

k∈Ki

(

αki
α̂ki

)−α̂ki Λ̂i
≤ 1, ∀ i ∈ I,

1

ν

∑

e∈Q

∑

i∈I

∑

k∈Ki
aeki αki R

−1
e c−1e ≤ 1, ∀ Q ∈ Q,

Pe
1−Xe

+
Xe

1−Xe

Ne−1
∑

n=1

(LeRe)
n

n!
≤ 1, ∀ e ∈ E .

(2.18)

The above problem is a geometric program, which can be converted into a convex problem

(cf. [82, 83]). Thus, problem (2.18) is a tractable optimization problem that can be solved
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efficiently using convex programming techniques such as the interior point method [81]. We

can solve the signomial programming problem (2.14) by iteratively solving (2.18).

We now present Algorithm 2.1 to solve the max-min fairness problem in (2.8). Algo-

rithm 2.1 starts by initializing various system parameters. The initial end-to-end trans-

mission rates α̂ are selected such that problem (2.18) is feasible. Several iterations are

performed, where in each iteration, we solve the geometric programming problem (2.18)

in Line 5 by using the interior point method [81]. Given the optimal transmission rates

αopt in each iteration, we update parameters Λ̂i for any i ∈ I according to (2.16) and

correspondingly reformulate problem (2.18) to be solved again in the next iteration. The

iterations continue until the optimal objective value topt which is obtained in the current

iteration does not change compared to the optimal objective value told in the previous iter-

ation. The convergence of the algorithm in each iteration is guaranteed since the interior

point method is used [88]. The convergence of Algorithm 2.1 is also guaranteed [82, p.

115].

Algorithm 2.1 : Algorithm to solve max-min fair resource allocation problem (2.8).

1: Initialize fs, T , Ne, R0e, Xe, Le, ce, ν, and α̂
k
i for each e ∈ E , i ∈ I, and k ∈ Ki.

2: Set topt := −∞; ǫ := 10−5.
3: repeat
4: told := topt.
5: Solve problem (2.18) to obtain αopt, Ropt, and topt.

6: Update α̂ := αopt and update Λ̂i as in (2.16) for each i ∈ I.
7: until |topt − told| ≤ ǫ.
8: Optimal end-to-end data rates := αopt.
9: Optimal per-link code rates := Ropt.

In case any change happens in the network (e.g., change in the network topology, the

number of network users or the traffic pattern), the input parameters of the formulated

problem are updated and the corresponding new solution is obtained. Clearly, this can be

time consuming if the changes are very frequent. To cope with frequent changes in dynamic

33



Chapter 2. Optimal Data Transmission and Channel Code Rate Allocation

environments, we modify the proposed algorithm such that it updates the last end-to-end

data rate vector αopt to obtain the new initial point α̂ for the new problem. This improves

the convergence speed of the algorithm compared to the case where the existing solution is

ignored and the problem is solved from scratch. The update process is to remove the entries

for the users who left the network and also to add new entries for the new users who have

just joined the network. The new entries must be chosen such that the problem remains

feasible (i.e., small values must be chosen). In case of topology changes, the algorithm

finds new routing paths and updates α̂ accordingly. As mentioned before, the algorithm is

executed in a central node (e.g., the gateway) and the required information (e.g., channel

state information, location of users) is transferred through control messages. In case of the

example vehicular network in Fig. 2.1, the problem is reformulated and solved in specific

time instants in the gateway and the solution is passed on to the access points through

control messages.

We note that Algorithm 2.1 needs to be used to update the code rates as well as

end-to-end data rates whenever new channel measurements are available, particularly in a

fading or mobile environment. We will investigate the impact of our design in a fast fading

environment in Section 2.4.8. Moreover, we will discuss non-adaptive channel coding in

Section 2.3.2 for the case when parameters change faster than the time required for the

algorithm to converge.

2.3.2 Non-adaptive Channel Coding

In this section, we simplify the system model in Section 2.3.1 and assume that the channel

code rate is fixed and is no longer an optimization variable in our design. That is,

Re = R, ∀e ∈ E . (2.19)
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The impact of such an assumption is two-fold. First, it can simplify the clique capacity

constraints in problem (2.8) as for each maximal clique Q ∈ Q, we have

∑

e∈Q

1

RePe ce

∑

i∈I

∑

k∈Ki
aeki α

k
i =

1

RP

∑

e∈Q

∑

i∈I

∑

k∈Ki

aeki
ce

αki ≤ ν

⇒
∑

e∈Q

∑

i∈I

∑

k∈Ki

aeki
ce

αki ≤ R P ν,

(2.20)

which is simply a linear inequality constraint. Second, since we are adding the extra

equality constraints into problem (2.8), any solution we achieve would be sub-optimal. In

the non-adaptive channel coding case, the max-min fair resource allocation problem (2.8)

is reformulated as

maximize
α≻0

minimum
i∈I

∑

k∈Ki
αki

subject to
∑

e∈Q

∑

i∈I

∑

k∈Ki

aeki
ce

αki ≤ RPν, ∀ Q ∈ Q,
(2.21)

where P = 2T (R−R0). By introducing an auxiliary variable t and considering the worst case

for error probabilities, problem (2.21) becomes

maximize
α≻0, t

t

subject to t ≤
∑

k∈Ki
αki , ∀ i ∈ I,

∑

e∈Q

∑

i∈I

∑

k∈Ki

aeki
ce

αki ≤ RPν, ∀ Q ∈ Q,

(2.22)

which is a linear programming problem. To find the best fixed code rate, we can solve

problem (2.22) for different values of R ∈ [0, R0] and choose the solution with the highest

objective value. With non-adaptive channel coding, we significantly decrease the computa-

tional complexity of solving the problem at some cost in performance. This can particularly
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help in dynamic environments where there are frequent changes in the system parameters.

2.4 Performance Evaluation

In this section, we assess the performance of our proposed joint channel coding and trans-

mission data rate allocation algorithm (Algorithm 2.1). In our simulation model, we con-

sider network topologies where V = |V|= m(m − 1) wireless nodes are positioned on an

m×m square grid with randomly selected grid locations. As an example, for the network

in Fig. 2.2, we have m = 5 and V = 20. The network includes m source and destination

pairs, with potentially many available routing paths from the source node to the desti-

nation node. In Fig. 2.2, there are four available routing paths from source node 1 to

destination node 16. They include: {(1, 2), (2, 3), (3, 8), (8, 11), (11, 16)}, {(1, 2), (2, 7),

(7, 8), (8, 11), (11, 16)}, {(1, 6), (6, 7), (7, 8), (8, 11), (11, 16)}, and {(1, 6), (6, 10), (10, 14),

(14, 15), (15, 16)}. Unless stated otherwise, the rest of the system parameters are selected

as follows: T = 10, Ne = 15, fs = 1.1, R0e = 1, ν = 2
3
[87].

Without loss of generality, we choose the link capacity, ce for each link e ∈ E , to be

equal to 1. Therefore, the transmission data rates, α, obtained in the optimal point can

be interpreted as the vector of normalized transmission rates. If the algorithm is being

executed for the first time, we set the initial data rates to be small, i.e., α̂ki = 0.01 for all

i ∈ I and any k = 1, . . . , Ki, in order to guarantee a feasible starting point for Algorithm

2.1, as we already discussed in Section 2.3.1. Otherwise, in case of updating the current

rate vector, we set the new entries for the new routing paths equal to 0.01. To solve the

geometric programming problems, we use MOSEK [89].
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Figure 2.2: A sample network topology with 20 nodes randomly located in a 5 × 5 grid.
The network includes five sessions: 1 → 16, 3 → 13, 2 → 8, 14 → 17, and 6 → 20. There
are 4, 2, 2, 1, and 3 routing paths available for these sessions, respectively.

2.4.1 Multipath vs. Single-path Routing

We first study the performance enhancement achieved by using multipath routing compared

to single-path routing. In the latter case, each source only uses one (out of possibly several)

of the available shortest paths to its corresponding destination. We compare our proposed

algorithm with the one in [22], where both channel coding and transmission rate allocation

is performed in a single-path routing system.

By solving the max-min fair resource allocation problem (2.8) for the single-path routing

(as in [22]) and also for the multipath routing cases (as in our proposed design), the optimal

end-to-end data rates are obtained. Recall that the objective value in problem (2.8) is

the minimum throughput among all five sessions. In Fig. 2.3, each point represents the

averaged performance gain over 50 random topologies. We can see that the performance

gain (i.e., the ratio of the averaged performance under multipath routing to the averaged

performance under single-path routing) directly depends on the number of available (and
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Figure 2.3: Comparison between the performance of adaptive channel coding in single-path
and multipath routing networks in terms of the achieved normalized minimum throughout.

used) routing paths. It monotonically increases as the number of available routing paths

increases. This increase is due to the availability of additional paths, the algorithm can

distribute the load to the paths which experience less interference. Therefore, the sending

rates are increased. In this case, the minimum network throughput can be enhanced by

22% on average when the average number of paths for each session is only two. This

enhancement increases to 40% when the average number of routing paths increases to

three. This is because the algorithm can inject the packets into the paths experiencing less

interference.

2.4.2 Channel Coding vs. No Channel Coding

Next, we study how channel coding can improve the achieved network throughput in

a multipath routing system. Since equality (2.3) models the worst case condition (i.e.,

provides upper bound on the error probability) and the error probability is equal to 1 in

the absence of channel coding, we use the following exact successful packet transmission

38



Chapter 2. Optimal Data Transmission and Channel Code Rate Allocation

probability model for BPSK modulation for the case without channel coding:

Pe =
(

1−Q(
√

2γe)
)T
, (2.23)

where Q(.) denotes the Gaussian Q-function:

Q(x) = 1√
2π

∫∞
x

exp(−u2

2
)du, (2.24)

and γe denotes the SNR at the receiver node of wireless link e ∈ E . For a received SNR

equal to 3 dB, we have Pe = 0.4 for T = 40. Our comparison reveals the minimum

achievable performance gain by the use of channel coding. This is because we use the

exact Pe for the case without channel coding but a lower bound (worst case) for the case

with channel coding. As shown in Fig. 2.4, a major performance gain can be achieved

with channel coding. The achieved performance degrades in both cases when the size of

the network increases. This is because as the number of users increases, the interference

in the network increases. For the results in Fig. 2.4, each point represents the normalized

throughput averaged over 50 randomly generated network topologies.

2.4.3 Convergence Properties of Algorithm 2.1

Recall that each iteration of Algorithm 2.1 includes a function approximation step and

a geometric programming step. Considering the network topology in Fig. 2.2, the con-

vergence of the objective value for problem (2.8), when Algorithm 2.1 is used, is shown

in Fig. 2.5. The objective value for problem (2.8) is the minimum throughput among all

sessions. From the results in Fig. 2.5, Algorithm 2.1 converges after around 50 iterations.

Similar results can be obtained for other network topologies.
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Figure 2.4: Comparison between the performance of multipath routing with and without
per-link channel coding in terms of the achieved normalized minimum throughput among
the end-to-end sessions, when the scale of the network increases and the number of nodes
varies from 6 to 42.
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Figure 2.5: Convergence of Algorithm 2.1 with respect to solving problem (2.8). We can
see that the algorithm converges after 50 iterations.
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Figure 2.6: The impact of the choice of design parameter Ne in approximation (2.12). The
average optimality error decreases as Ne increases. It becomes almost zero for Ne > 12.

2.4.4 Impact of Various Design and System Parameters

Parameter Ne

In Section 2.3, we use the approximation in (2.12) to convert problem (2.8) into a tractable

geometric programming problem as in (2.13). We can improve the accuracy of the approx-

imation in (2.12) by increasing the value of Ne. However, this would be at the cost of

making problem (2.13) more complicated to solve. In this section we are interested in

choosing Ne to obtain a reasonable accuracy with low computational complexity. Con-

sidering 50 random topologies, the simulation results, when Ne varies from 1 to 20, are

shown in Fig. 2.6, where each point indicates the average optimality error observed for all

50 topologies. By obtaining the difference between the achieved network throughput at a

particular choice of Ne and that at Ne = 20 (as the optimal throughput) and computing

the ratio of this difference to the optimal throughput, we can define a measure for assessing

the optimality error. Fig. 2.6 shows that the optimality error approaches zero when Ne is

around 12 or higher.
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Parameter fs

Another approximation in Section 2.3 is the monomial approximation in (2.15). The

approximation is made at each iteration within a close neighborhood of initial point α̂.

The size of the neighborhood is denoted by design parameter fs. In general, although we

can increase the speed of convergence by increasing the value of fs, it would be at the

cost of a lower accuracy in the approximation. Considering such a tradeoff and based on

our simulation results, we select fs = 1.1, for a relatively good performance in terms of

approximation accuracy, with a fast convergence speed.

Parameter T

In general, when we increase the coding block length T for a given code rate, the probability

of error decreases. This can be seen in (2.3). By increasing T , one can allocate a higher

code rate to a wireless link, while achieving the same probability of error, i.e., the same

reliability measure. On the other hand, the more reliable links let the algorithm allocate

higher end-to-end data rates, leading to improved optimal objective values in problem

(2.8). This is shown for three random network topologies in Fig. 2.7, where the coding

block length T varies from 10 to 100. The minimum throughput in the network increases

in all three topologies when the coding block length (and thus the reliability) increases.

2.4.5 Adaptive vs. Non-adaptive Channel Coding

In this section, we show how choosing the code rate for each link individually (i.e., adaptive

channel coding) can lead to different optimality and computational complexity results,

compared to the case when channel coding is non-adaptive. Recall from Section 2.3.2 that

in a non-adaptive channel coding scenario, we assume that all wireless links use the same

code rate R as expressed in (2.19). In this case, for each fixed R, problem (2.8) becomes a

42



Chapter 2. Optimal Data Transmission and Channel Code Rate Allocation

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Coding Block Length T

N
or

m
al

iz
ed

 M
in

im
um

 T
hr

ou
gh

pu
t 

A
m

on
g 

A
ll 

S
es

si
on

s

 

 

Topology Number 1
Topology Number 2 
Topology Number 3 

Figure 2.7: The impact of choosing different coding block lengths T on the network perfor-
mance for three different random topologies. We observe that the performance improves
when the coding block length increases.
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Figure 2.8: Comparison between adaptive and non-adaptive channel coding.
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Figure 2.9: Optimal non-adaptive code rate versus adaptive code rate distribution among
all wireless links of the network topology in Fig. 2.2.

linear programming problem. This can significantly reduce the computational complexity,

but it may result in a loss in performance.

Consider the network topology in Fig. 2.2. Here, we examine various choices of non-

adaptive code rate R within the feasible range [0, R0]. We can see in Fig. 2.8 that by using

non-adaptive channel coding, the highest throughput is achieved when the code rate on all

links is equal to 0.74. At this point, we reach almost the optimal value that is achievable

by using adaptive channel coding. It is also interesting to investigate the distribution of

the optimal adaptive code rates of all wireless links, compared to the optimal non-adaptive

code rate. We can see in Fig. 2.9 that in the adaptive channel coding case, the optimal

code rates for various links can be significantly different. It is interesting to note that the

code rates corresponding to the links which are not in any routing path (i.e., link 21) are

chosen to be 1. Moreover, links which are used in many routing paths have code rates close

to the corresponding non-adaptive channel code rate (0.74).
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2.4.6 The Effect of Dynamic Changes on the System

Performance

In this section, we study the effect of dynamic topology changes as well as changes in

the number of network users on the network performance. As mentioned in Section 2.3.1,

whenever the setting of the network changes, the algorithm solves the new problem by up-

dating the last obtained end-to-end data rate vector, which is used as the new initial point

for faster convergence. This may be beneficial especially in dynamic environments such as

vehicular networks where the vehicles move constantly. Fig. 2.10 shows the convergence

of the algorithm when changes happen in the network and compares it with the case when

the algorithm does not use the available information related to the previous state of the

network. In Fig. 2.10 (a), five randomly chosen links are added to and five random links

are removed from the current topology every 100 time slots. In Fig. 2.10 (b), a new pair

of source-destination nodes is added every 100 time slots while in Fig. 2.10 (c) a pair of

source-destination node is removed from the network. Finally, in Fig. 2.10 (d), a randomly

chosen pair is added and a randomly chosen pair is removed every 100 time slots. Fig.

2.10 shows that using the available information from the previous state of the network

significantly increases the convergence speed of the algorithm.

2.4.7 The Effect of Mobility on the System Performance

In this section, we study the effect of mobility in a vehicular network on the performance

of our proposed design. In a vehicular network, users (i.e., vehicles) are always moving

and in each instant, they connect to the nearest access point (a mesh node) for network

provisioning. This results in dynamic changes in the traffic pattern which in turn leads

to performance degradation in the system. The degree of performance reduction depends

to the coverage area of the access points as well as the speed at which the vehicles move.
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Figure 2.10: Convergence speed for Algorithm 2.1 in presence of dynamic changes in the
network. We compare two cases where the previous solution is exploited and the case
where the previous solution is ignored. Every 100 time slots: (a) five links are added and
five links are removed, (b) a new pair of source-destination nodes is added, (c) a pair of
source-destination node is removed, (d) a random pair is added and another random pair
is removed.

Consider the example downtown area shown in Fig. 2.1. There are ten cars which move in

random directions. In each instant, they connect to the nearest access point to communi-

cate with the gateway. The network recalculates the optimal data rates and channel code

rates every 5 seconds based on the most recent topology characteristics of the network.

Clearly, the higher the speed of the vehicles, the larger will be the changes in the network.

This can lead to a performance degradation. Fig. 2.11 shows the convergence of the adap-

tive scheme compared to the optimal value when the vehicles move with velocities of 20,

40, and 80 km/h. The rates are updated 100 times in a 500 second period. It is shown

in Fig. 2.11 that the number of instants where the performance of the network deviates

from the optimal solution increases when vehicles speed up. It is interesting that while

the vehicles move in the area, the optimal solution does not change. This is because the

destination for all data flows is the gateway and therefore there is a bottleneck around that

node. Thus, although the source nodes change, the bottleneck remains and the achieved

aggregate throughput remains unchanged. However, the allocated rates corresponding to
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Figure 2.11: The convergence of the algorithm is shown for different speeds. Recalculations
occur every 5 seconds if needed.

different access points change such that the minimum throughput also remains optimal.

The average minimum throughput of the network over 20 random scenarios is shown

in Fig. 2.12 when the speed of the vehicles changes from 10 to 100 km/h. We observe that

the average performance degrades when the speed increases under adaptive channel coding

because more changes occur between two successive problem reformulation. However, the

performance remains optimal under non-adaptive channel coding. This is because non-

adaptive channel coding is less complex and converges faster to the final solution.

2.4.8 Impact of Fading

Finally, we study the impact of fading on the system performance when Algorithm 2.1

is used. Recall from Section 2.3.1 that we can incorporate the impact of fading by sepa-

rately solving problem (2.8) for each wireless channel realization with fading gains fe and

corresponding cut-off rates as in (2.4) and (2.5). In this case, Algorithm 2.1 is invoked

every time new channel measurement data becomes available. We refer to each channel

measurement data as one channel snapshot.

Simulation results for the network topology in Fig. 2.2 for 50 different channel snapshots
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Figure 2.12: Performance of the algorithm is studied in the downtown area of Fig. 2.1
when vehicles move with different speeds.

are shown in Fig. 2.13. In our simulation model, we generate the fading gains for each

channel snapshot based on a random realization of the Rayleigh fading distribution. For

the results in Fig. 2.13, we compare the performance of two design scenarios. The first

design is an adaptive channel coding scheme based on the average fading information. That

is, solving problem (2.8) only once by assuming that the fading gains take their average

values within the Rayleigh fading distribution. On the other hand, in our second design, we

solve problem (2.8) once for each channel snapshot. We can see that on average, the latter

case (solid line) can improve the minimum throughput among all end-to-end sessions by a

factor of 6 compared to the former one (dash line). The achieved performance improvement

is at the cost of a significantly higher computational complexity due to the requirement

of solving problem (2.8) for each snapshot, which may not always be desired in practice.

The snapshots in which the minimum throughput among the sessions is zero denote the

scenarios where there is at least one link in all paths of one session that has an instantaneous

cutoff rate which is less than its assigned code rate. This does not happen if the code rates

are updated according to the channel information in each snapshot.

In summary, we showed that the adaptive channel coding approach converges to the op-
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Figure 2.13: Performance trend in a fading channel for 50 channel snapshots.

timal solution in the presence of dynamic changes in the network due to channel variations

and mobility. However, if the changes occur too frequently, the algorithm may fail to follow

the changes fast enough and the performance degrades. On the other hand, we showed

that non-adaptive channel coding is able to follow the dynamic changes and provides a

high performance for the network without substantial sub-optimality.

2.5 Summary

In this chapter, we considered the problem of jointly using per-link channel coding in

wireless networks and multipath routing. In this regard, we focused on per-link channel

code rate selection and end-to-end transmission data rate allocation and formulated a max-

min fairness optimization problem, which is of interest in vehicular network applications

to offer fair and consistent data rates. Unlike the case of single-path routing, solving this

problem in a multipath routing network is hard and involves non-convex programming.

We tackled the non-convexity by using appropriate function approximations and iterative

techniques from signomial programming. We proposed a novel code and data rate selection

algorithm which uses the available information related to the latest optimal solution in
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order to converge faster in highly changing conditions. Moreover, we studied different

variations of our proposed per-link channel code rate selection and end-to-end data rate

allocation algorithm in order to address both adaptive and non-adaptive channel coding and

also the impact of fading. Simulation results confirm that by using channel coding jointly

with multipath routing, we can significantly improve the end-to-end network performance

compared to the case when only channel coding or only multipath routing is used. We

also showed through simulations that as a sub-optimal approach with less complexity, non-

adaptive channel coding achieves a high degree of optimality. Although our algorithm needs

to be executed in a centralized manner, it can be applied in certain applications such as

vehicular networks where stationary mesh nodes provide connectivity for moving vehicles.

The centralized solution can also be used as a benchmark for distributed algorithms.
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Chapter 3

Delay-Throughput Enhancement in

Wireless Networks with Multipath

Routing and Channel Coding

3.1 Introduction

While most of multimedia applications have strict QoS requirements [90], the existing

best-effort traffic delivery model cannot provide any service guarantee with respect to the

minimum throughput and maximum delay of the end-to-end flows. Therefore, it is impor-

tant to design wireless networks with high performance in regard of delay and throughput.

We investigated the trade-off between reliability and throughput in achieving the high-

est possible effective throughput, which is the end-to-end throughput that the receiver is

able to receive in Chapter 2 and [91]. We focused on multipath routing wireless systems,

where adaptive channel coding is also performed at the physical layer. However, we did not

address the issue of delay in Chapter 2. In this chapter, we explicitly incorporate delay in

the utility of each session and propose a joint data rate and coding rate allocation algo-

rithm that leads to maximizing the network aggregate utility across all sessions. Our work

complements the existing results in the literature as follows. The recent work by O’Neill

et al. [92] used NUM with adaptive modulation to determine the optimal sending rates
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and transmit powers that maximize system performance. The trade-off between data rate,

energy consumption, and delay is studied. However, O’Neill et al. did not incorporate

delay into the utility function in their problem formulation [92] and the proposed design

neither minimizes the delay nor provides a bound on end-to-end delay. On the other hand,

Saad et al. [93] used the M/G/1 queueing model to estimate the delay as the summation

of transmission delay and queueing delay. The same authors examined upper bounds on

delay [94] but did not focus on delay reduction. In work by Kallitsis et al. [95], resources

are allocated to maximize the throughput of the network and minimize the delay. Delay

is modeled using network calculus and is incorporated directly into the utility function.

Another research direction focuses on resource allocation to enhance the network perfor-

mance by only minimizing the delay (e.g., Li et al. [38] and Kalyanasundaram et al. [96]).

However, the impact of adaptive channel coding has not been considered in this context.

On the other hand, channel coding is considered in [22]; but no analysis is performed re-

lated to delay. Finally, our problem is closely related to the recent work by Li et al. [51],

which only addresses single-path routing within the context of wired networks or wireless

networks with fixed capacity links. The contributions of this chapter can be summarized

as follows:

• We model a wireless network with several unicast data sessions, multiple routing

paths for each session, and adaptive channel coding at the physical layer. To model

the end-to-end delay, we use the average waiting time in anM/D/1 queueing system

[97]. We then formulate the NUM problem of jointly finding optimal sending rates

and code rates in the network to achieve the maximum network utility as a function

of throughput and delay.

• We formulate two optimization problems with and without fairness provisioning. In

the former one, we aim to maximize the minimum utility in the network. In the latter
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case, we maximize the overall utility of the network. Fair resource allocation is of

particular interest in vehicular networks in which moving vehicles frequently switch

among stationary access points.

• To overcome the non-convexity due to channel coding, multipath routing, delay and

reliability consideration, we introduce new variables, constraints, and approxima-

tions in the original problem and reformulate it as a series of tractable geometric

programming problems [83].

• We develop an iterative algorithm to solve the formulated problem. To the best of

our knowledge, there has been no prior work on jointly improving throughput and

delay in a wireless multipath routing network with channel coding applied at the

physical layer.

• Simulation results for random topologies show that, when fairness is not a concern,

we can decrease the average delay by 60% at the cost of only a marginal (< 0.1%)

degradation in throughput. We also show that if fairness is addressed, we can decrease

the maximum delay across the network by more than 35% with less than 12% decrease

in minimum throughput.

The system model and problem formulation are described in Section 3.2. The delay-aware

optimal data rate and coding rate allocation approach is introduced in Section 3.3. The

numerical results are shown in Section 3.4. The chapter is summarized in Section 3.5.

3.2 System Model

A wireless network is modeled as a directed graph G(V, E), where V represents the set of

nodes and E represents the set of wireless links, as it is shown in Fig. 3.1. For each unicast
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Figure 3.1: A sample topology with five unicast multipath data sessions. Data sessions are
(2 → 15), (7 → 18), (9 → 20), (12 → 23), and (3 → 25). These sessions have 6, 1, 2, 2, and
4 available paths, respectively.

session i ∈ I, where I = {1, 2, . . . , I}, the source and destination nodes are denoted by si

and ti, respectively. We define Ki, with Ki = |Ki|, as the set of all available routing paths

from si to ti. Moreover, for each session i ∈ I, each k = 1, . . . , Ki, and each link e ∈ E , we

define

aeki =











1, if link e ∈ kth routing path for session i,

0, otherwise.
(3.1)

For each session i ∈ I, let αki denote the data rate at source si on its kth routing path,

k = 1, . . . , Ki. Channel coding can improve the reliability over lossy wireless channels by

adding redundant bits to data packets. For each link e ∈ E , we define Re as the link coding

rate, i.e., the ratio of the number of data bits at the input of the encoder to the number of

data plus redundant bits at the output. Notice that if channel coding is not performed on

link e, then Re = 1. Given the data rates at the sources α = (αki , i ∈ I, k = 1, . . . , Ki)
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and the link coding rates R = (Re, e ∈ E), the aggregate traffic load on each link e ∈ E

is ue =
1
Re

∑

i∈I
∑Ki

k=1 a
ek
i αki . The smaller the coding rate Re, the more redundant data is

added to the transmitted packets on link e ∈ E leading to more reliable transmissions, i.e.,

transmissions with lower error probability. However, this will be at the cost of exposing the

link to higher traffic. Let R0 = (R0e, e ∈ E), where R0e ≤ 1 is the cut-off rate on wireless

link e ∈ E , that is an upper bound for the rate Re achievable with certain codes (e.g.,

convolutional codes) [85]. In general, the cut-off rate R0e depends on the received SNR

and the modulation scheme being used. Given coding rate Re ≤ R0e, the error probability

on link e can be modeled as [85]

Pe = 2−T (R0e−Re), (3.2)

where T is the coding block length. Based on the link failure model in (3.2), the probability

that a packet is successfully transmitted along the kth routing path, k = 1, . . . , Ki for

session i ∈ I is given by
∏

e∈E, aeki =1 (1− Pe) =
∏

e∈E
(

1− aeki Pe
)

. From the above equation,

for each session i ∈ I, the aggregate effective throughput at destination ti becomes

∑Ki
k=1 α

k
i

∏

e∈E
(

1− aeki Pe
)

. (3.3)

To obtain the average end-to-end delay, we model each link as a single M/D/1 queue

based on the Kleinrock independence approximation [97]. Here, we assume that the arrival

rates in the source nodes follow a Poisson distribution. Since the transmission times over

all links are deterministic, the number of arrivals for each queue in any time interval can

be assumed to follow a Poisson distribution with rate

λe =
∑

i∈I

Ki
∑

k=1

aeki α
k
i /L, (3.4)
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where L is the packet length. From Little’s Theorem [97], the average waiting time for

each queue e corresponding to link e ∈ E is given by

δQe =
L
∑

i′∈I
∑Ki′

k′=1 a
ek′

i′ α
k′

i′

2ceRe(ceRe −
∑

i′∈I
∑Ki′

k′=1 a
ek′
i′ α

k′
i′ )
, (3.5)

where ce denotes the nominal data rate of link e ∈ E . By adding the waiting time and the

transmission time δTe = L
ceRe

together, we have δe = δQe + δTe for each link e ∈ E . Then,

the average end-to-end delay for each path k = 1, . . . , Ki of session i ∈ I can be written

as

δki =
L

2

∑

e∈E

aeki
ceRe

(

2 +

∑

i′∈I
∑Ki′

k′=1 a
ek′

i′ α
k′

i′

ceRe −
∑

i′∈I
∑Ki′

k′=1 a
ek′
i′ α

k′
i′

)

. (3.6)

To model the mutual interference among the wireless links in the network, we use the

concept of contention graph. In the contention graph GC(VC , EC) corresponding to network

G(V, E), the set of vertices VC represents the set of all wireless links E in the network graph

G. An edge connects any two vertices in set VC if the corresponding wireless links in the

network graph mutually interfere with each other. That is, if the receiver node of one link

is within the interference range of the sender node of the other link. Given the contention

graph, each complete subgraph is called a clique. A maximal clique is a clique which is not

a subgraph of any other clique [86]. We denote the set of all maximal cliques in GC by Q.

In each instant, only one link among all members of a maximal clique Q ∈ Q can be active.

The ratio ue
ce

denotes the portion of time that link e ∈ E is active when it is being used

with data rate ue. It is required that
∑

e∈Q
ue
ce

≤ ν for each clique Q ∈ Q where ν ∈ (0, 1] is

called the clique capacity. Note that ν = 1 is a necessary constraint on the clique capacity.

It may not always be possible to find feasible schedules that achieve a clique capacity of

ν = 1. Shannon showed that ν = 2
3
is a sufficient condition on the clique capacity in order

to obtain a feasible schedule for the links in the clique [87].
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We formulate the problem of jointly allocating coding rates and sending data rates such

that the utility of the network be maximized. The utility of each session i ∈ I is defined

as

Ui(α,R) = (1− w)

Ki
∑

k=1

αki
∏

e∈E

(

1− aeki Pe
)

− w

Ki
∑

k=1

δki , (3.7)

where δki is as in (3.6). Here, the utility of session i is a weighted trade-off between the

session’s aggregate effective throughput and its average delay. It is a trade-off because

it can be increased by either increasing the throughput or decreasing the delay. We can

tune the importance of delay by changing its weight, w. By increasing w, we move on

the trade-off curve towards decreasing delay at the cost of decreasing the throughput. We

define the utility of the network as either the summation of all utilities of data sessions

i ∈ I, or just the one with the minimum value.

Maximizing the Aggregate Utility of the Network

This problem is formulated as

maximize
α�0, 0≺R�R0

(1− w)
∑

i∈I

Ki
∑

k=1

αki
∏

e∈E

(

1− aeki Pe
)

− w
∑

i∈I

Ki
∑

k=1

δki

subject to
∑

e∈Q

∑

i∈I

Ki
∑

k=1

aeki αki R
−1
e c−1e ≤ ν, Q ∈ Q,

δki ≤ δmaxi , i ∈ I, k = 1, . . . , Ki,

(3.8)

where δmaxi is the maximum delay that can be tolerated for each path of session i ∈ I.

The set of constraints declare that the portion of time that all links in a maximal clique

are active must be less than the clique capacity. The expressions for Pe and δ
k
i are as in

(3.2) and (3.6), respectively.
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Maximizing the Minimum Utility of the Network

This problem is formulated as

maximize
α�0, 0≺R�R0

min
i∈I

(1− w)

Ki
∑

k=1

αki
∏

e∈E

(

1− aeki Pe
)

− w

Ki
∑

k=1

δki

subject to
∑

e∈Q

∑

i∈I

Ki
∑

k=1

aeki αki R
−1
e c−1e ≤ ν, Q ∈ Q,

δki ≤ δmaxi , i ∈ I, k = 1, . . . , Ki.

(3.9)

Unlike (3.8), here the design addresses the notion of maxmin fairness among sessions.

3.3 Delay-aware Optimal Data Rate and Coding

Rate Allocation

The optimization problem in (3.8) is non-convex and non-separable due to the product

forms in the objective function with respect to the effective throughput, the fractional

forms in the first set of constraints and in the delay constraints in (3.6), the exponential

forms in the objective function with respect to error probabilities, the non-separability

of reliability and throughput due to multipath routing, and the coupling across variables

because of delay constraints and channel coding. Most of the above properties are due

to the fact that we consider multipath routing and wireless interference. For example, if

we assume there is no interference, which is true for wired networks, the clique capacity

constraints would reduce to linear link capacity constraints for any link e ∈ E :

1

Re ce

∑

i∈I

Ki
∑

k=1

aeki αki ≤ 1, ⇒
∑

i∈I

Ki
∑

k=1

aeki αki −Re ce ≤ 0. (3.10)
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We can also show that the non-convexity due to the product forms in the objective function

can be resolved if there is only a single routing path for each session [22]. However,

all sources of complexity remain in place when multipath routing is used and wireless

transmissions are subject to interference. In the following, we use various techniques to

overcome the complexity of the problem formulation and convert problem (3.8) into a

convex problem.

Consider the exponential form of Pe in (3.2). For notational simplicity, we can rewrite

(3.2) as Pe = Xe exp (Z Re) for each link e ∈ E , where Xe = 2−TR0e and Z = T ln 2. We

can use Taylor series expansion and rewrite the above equation as Pe = Xe

∑∞
n=0

(Z Re)n

n!
.

Clearly, for some bounded integer Ne ≫ 1, we can approximate Pe as Xe

∑Ne
n=0

(Z Re)n

n!
for

each link e ∈ E . We investigate the value of Ne necessary for obtaining a good approx-

imation through simulation. If the error probabilities Pe are small, we can rewrite the

receiving rates in each session as

Ki
∑

k=1

αki
∏

e∈E

(

1− aeki Pe
)

≈
Ki
∑

k=1

αki

(

1−
∑

e∈E
aeki Pe

)

. (3.11)

Due to the polynomial forms in the objective function and the constraints, we can

solve problem (3.8) by using geometric programming techniques. In this respect, using the

approximated value for Pe, we replace (3.11) in the objective function of problem (3.8) and

introduce variable t such that t is a lower-bound for the objective function. That is,

t+ (1− w)
∑

i∈I

Ki
∑

k=1

∑

e∈E

Ne
∑

n=0

αki a
ek
i Xe(ZRe)

n

n!
+ w

∑

i∈I

Ki
∑

k=1

δki ≤ (1− w)
∑

i∈I

Ki
∑

k=1

αki . (3.12)

Then, we follow the signomial programming techniques [83] to approximate the polynomial

in the right-hand side of (3.12), which is only a function of α, as a monomial, i.e., a

polynomial with only one term and positive multiplier. This approximation can be done
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around some initial point α̂. For a parameter fs > 1, which is close to 1, we have

∑

i∈I

Ki
∑

k=1

αki ≈
(

∑

i∈I

Ki
∑

k=1

α̂ki

)

∏

i∈I

Ki
∏

k=1

(

αki
α̂ki

)

α̂ki /









∑

i′∈I

Ki′
∑

k′=1

α̂k
′

i′









, ∀ α ∈ [α̂/fs, fsα̂] ,
(3.13)

where [α̂/fs, fsα̂] is a small neighborhood around initial point α̂. For notational conve-

nience, we define Λ̂, which only depends on the initial point α̂, as Λ̂−1 =
(

∑

i∈I
∑Ki

k=1 α̂
k
i

)

.

Then inequality (3.12) can be approximated around the initial point α̂ as

Λ̂
1−w

(

t + (1− w)
∑

i∈I

Ki
∑

k=1

∑

e∈E

Ne
∑

n=0

αki a
ek
i Xe(Z Re)

n

n!
+w

∑

i∈I

Ki
∑

k=1

δki

)

∏

i∈I

Ki
∏

k=1

(

αki
α̂ki

)−α̂ki Λ̂
≤ 1.

(3.14)

The above constraint is a posynomial, i.e., a polynomial with only positive terms. Posyn-

omials are the building blocks in geometric programming [83]. By minimizing t−1, we

maximize the objective function in (3.8).

To tackle the fractional forms in the delay constraints, we can write (3.6) in an inequality

form

δki ≥ L

2

∑

e∈E

aeki
ceRe















2 +

∑

i′∈I

Ki′
∑

k′=1

aek
′

i′ α
k′

i′

(

ceRe −
∑

i′∈I

Ki′
∑

k′=1

aek
′

i′ α
k′

i′

)















. (3.15)

for each i ∈ I, k = 1, . . . , Ki. It can be shown that (3.15) is always satisfied with equality

for the optimal solution. This can be proved by contradiction. Assume that (3.15) is

not satisfied with equality in the optimal solution for some i and k. Note that δki is not

lower bounded in any other set of constraints. Therefore, we can decrease δki such that

the corresponding constraint is satisfied with equality. This leads to further increasing the

value of the objective function by choosing a solution different than the optimal solution
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which is a contradiction. That is, it is an active inequality constraint. For each link e ∈ E ,

we introduce new variables Ye such that

Y −1e

ce
+
∑

i′∈I

Ki′
∑

k′=1

aek
′

i′
αk

′

i′ R
−1
e

ce
≤ 1, ∀ e ∈ E . (3.16)

We can show that (3.15) is satisfied if (3.16) holds and we have

δki ≥ L

2

∑

e∈E
aeki

(

2

ceRe
+
Ye
∑

i′∈I
∑Ki′

k′=1 a
ek′

i′ α
k′

i′

ceR2
e

)

, ∀ i ∈ I, k = 1, . . . , Ki. (3.17)

Similarly, we can show that (3.16) and (3.17) are always satisfied with equality for the

optimal solution.

By introducing t as in (3.14) and adding constraints (3.16), and (3.17) to the constraints

of problem (3.8), it is equivalent to the problem (3.18) in which the objective is to minimize

t−1 which is equal to maximizing t where t is declared to be a lower bound for the network

utility function in the first set of constraints. The second set of constraints declare the

capacity constraints and the third and fourth set are active constraints (3.17) and (3.16),

respectively. The last set of constraints guarantees all end-to-end delays to be bounded:

minimize
t>0,α̂/fs�α�fsα̂, 0≺R�R0,δ≻0,Y ≻0

t−1

subject to

Λ̂
1−w

(

t + (1− w)
∑

i∈I

Ki
∑

k=1

∑

e∈E

Ne
∑

n=0

αki a
ek
i Xe(ZRe)

n

n!

+w
∑

i∈I

Ki
∑

k=1

δki

)(

∏

i∈I

Ki
∏

k=1

(

αki
α̂ki

)−α̂ki Λ̂
)

≤ 1,
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1

ν

∑

e∈Q

∑

i∈I

Ki
∑

k=1

aeki αki R
−1
e c−1e ≤ 1, ∀ Q ∈ Q,

L

2

∑

e∈E

aeki
ce

(2R−1e +R−2e Ye
∑

i′∈I

Ki′
∑

k′=1

aek
′

i′ α
k′

i′ )δ
k−1

i ≤ 1,

∀ i ∈ I, k = 1, . . . , Ki,

Y −1e

ce
+
∑

i′∈I

Ki′
∑

k′=1

aek
′

i′ R
−1
e αk

′

i′ ≤ 1, ∀e ∈ E ,

δki ≤ δmaxi , ∀ i ∈ I, k = 1, . . . , Ki.

(3.18)

Problem (3.18) is a standard geometric programming problem that can be converted into

a convex optimization problem [83] and can be solved around an initial point. It has

been shown that iteratively solving (3.18) converges to the optimal solution of problem

(3.8) [83]. In each iteration, (3.18) is initialized with the optimal solution of the problem

corresponding to the last iteration. As discussed, we may move on the throughput-delay

trade-off curve by tuning the delay importance weight w. w must be chosen such that the

objective function in problem (3.8) remains positive. Similarly, we can convert problem

(3.9) into a convex optimization problem. Compared to solving problem (3.8), there are

two differences. First, variable t is introduced such that

t ≤(1− w)

Ki
∑

k=1

αki

(

1−
∑

e∈E
aeki Xe

Ne
∑

n=0

(Z Re)
n

n!

)

− w

Ki
∑

k=1

δki , ∀ i ∈ I. (3.19)

As in the earlier case, we use signomial techniques to convert (3.19) into a constraint in

the standard form of geometric programming problems. By applying a similar technique
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in (3.13) this time to
∑Ki

k=1 α
k
i , we can rewrite (3.19) as

Λ̂i
1−w

(

t + (1− w)

Ki
∑

k=1

∑

e∈E

Ne
∑

n=0

αki a
ek
i Xe(Z Re)

n

n!
+ w

Ki
∑

k=1

δki

)

Ki
∏

k=1

(

αki
α̂ki

)−α̂ki Λ̂i
≤ 1, ∀ i ∈ I,

(3.20)

where Λ̂−1i = (
∑Ki

k=1 α̂
k
i ). Second, inequalities (3.16) and (3.17) may not be active anymore

and so inequality (3.15) may not be satisfied with equality. In this case, we are in fact

dealing with the upper bounds of the average end-to-end delay in the objective function.

In this way, the performance of the network is better than what we would expect from the

obtained solution in terms of average delay since the upper bounds on the average delay

are used in the objective function. The rest of the formulation is the same as the one in

(3.18). Again, w must be chosen such that the objective function in problem (3.9) remains

positive.

3.4 Numerical Results

In this section, we numerically solve problem (3.8) to determine the optimal sending and

coding rates such that the utility of the network (i.e., the trade-off between the aggregate

effective throughput and the average delay) is maximized. We show that maximizing the

aggregate network utility leads to higher benefits in the throughput-delay trade-off (i.e., we

obtain lower delays at the cost of lower decrease in throughput), compared to the case of

maximizing the minimum utility in the network. In the former case, no fairness is achieved

and some sessions may be starved. Therefore, we also solve problem (3.9) to determine the

sending rates and coding rates such that the minimum utility of the network is maximized.

We show that at the cost of loosing some gain in the throughput-delay trade-off we can

provide fairness among all sessions. In our set of simulations, we use T = 10, L = 8000

bits, ce = 11 Mbps, Ne = 15, fs = 1.1, R0e = 1, and ν = 2
3
[87]. The proper values for

63



Chapter 3. Delay-Throughput Enhancement

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay Importance Weight w

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
el

ay
 o

f t
he

 N
et

w
or

k

w = 0.0000125

w = 0

Figure 3.2: The average delay decreases as its importance weight in the objective function
increases. Delay values are normalized over the corresponding values for which w = 0. We
observe a decrease of almost 58% when w = 0.5.

parameters Ne and fs are obtained from simulations.

We solve problem (3.8) for different values of w in a feasible range across 50 different

random topologies. Each random topology is a 5× 5 grid topology for which 20 nodes are

placed in random locations. Five pairs of nodes are randomly selected as the source and

destination pairs. We observe that by considering the delay in the objective function, even

with a small weight, we can decrease the average delay by 37% compared to the case with

no delay consideration (Fig. 3.2). We also note that by further increasing the importance

weight of delay in the objective function the average delay decreases by 58%. The more a

link is utilized, the higher will be the queuing delays for that link. Therefore, decreasing

the average delay leads to the use of the intermediate links at a lower rate that in turn leads

to a slight decrease (0.1%) in aggregate throughput. This confirms the delay-throughput

trade-off. We can also see that by decreasing the throughput by a small amount, the

delay decreases dramatically at the starting point. This is because delay is an exponential

function of the utilization rate.

Maximizing the total throughput usually requires sacrificing fairness among sessions.

That is, some sessions may starve while some other sessions use the network with a higher

throughput. For instance after solving problem (3.8) for a sample topology, we observe
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Figure 3.3: The normalized maximum delay among the users in the network decreases as
the corresponding importance weight in the objective function increases. Delay values are
normalized over the values corresponding to w = 0. We observe almost 37% decrease in
the maximum delay in the network when w reaches 0.5.

that sessions 1 and 3 use the network at a rate of 2 Mbps while sessions 2 and 5 starve and

session 4 sends data at a rate of 4.5 Mbps. To provide fairness among sessions, we solve

problem (3.9) to maximize the minimum utility across sessions for different feasible choices

of parameter w and for 50 randomly selected topologies. Maximizing the minimum utility

of the network, we expect that there will be no session with starvation. We can see that the

normalized maximum end-to-end delay in the network among all routing paths decreases

by almost 5% on average when we consider the delay only by a very small weight (Fig. 3.3).

We can further decrease the delay by 37% when w increases. Again, there exists a trade-off

between the maximum end-to-end delay of the network and the aggregate throughput of

the session with the minimum aggregate throughput in Fig. 3.4. By tracing the graph

starting from the upper right corner (w = 0) to the lower-left corner (w = 0.5), we gain a

37% improvement in the maximum delay at a cost of a slight decrease at only 11% in the

minimum throughput when we are in proper points of the curve.

We use Jain’s fairness index to quantitatively measure the fairness of the throughput

attained among different unicast sessions. Let Ψ denote Jain’s fairness index. We have

Ψ =
(
∑

i∈I
xi)

2

|I|∑i∈I
x2i
, where xi denotes the total effective throughput of flow i ∈ I from (3.3).

65



Chapter 3. Delay-Throughput Enhancement

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.88

0.9

0.92

0.94

0.96

0.98

1

Normalized Maximum Delay in the Network

N
or

m
al

iz
ed

 M
in

im
um

 T
hr

ou
gh

pu
t 

in
 th

e 
N

et
w

or
k

w = 0.5

w = 0.27

w = 0.11

w = 0

Figure 3.4: The trade-off between the maximum delay and the minimum throughput in
the network. We may move on the curve by tuning w, the delay importance weight. Delay
and throughput are normalized over their corresponding values at w = 0.
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Figure 3.5: Fairness index is shown for both problem (3.8) (aggregate utility maximization)
and problem (3.9) (maxmin fairness).

We can see in Fig. 3.5 that fairness is improved when the resource allocation is based on

the solution of problem (3.9).

By now, we considered the normalized values of delay over their value when w = 0

(delay is not considered). It is interesting to see how the average maximum delays in

the network change under different delay guarantees. We solve problem (3.9) without

considering the last set of constraints (delay guarantee constraints), and also when δmaxi is

10 ms and 20 ms for all i ∈ I (Fig. 3.6). We can see that the delay is guaranteed to be

less than δmaxi .
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Figure 3.6: Average maximum delay is shown when there is no guarantee on the maximum
delay, there is a guarantee of 10 ms, and 20 ms. Since the guarantee is imposed on the
upper bound of the delay, the delay may not reach the guaranteed value.

As mentioned earlier, the decrease in delay is gained at the cost of decreasing the utility

of the links which in turn leads to a decrease in the overall throughput. This throughput

degradation can be compensated for by using channel coding. To determine the effect of

channel coding, we consider the throughput-delay trade-off in a network in which channel

coding is not performed and we study how this can affect the network performance. We

assume a packet error rate of 30% at each link and solve problem (3.9) without channel

coding to show how it affects the performance. By increasing the weight of delay, we can

only decrease the maximum delay by around 3% at the cost of 22% decrease in minimum

throughput in Table 3.1. w varies in its feasible range. This shows how performance

degrades when channel coding is not used and reveals the importance of channel coding.

Table 3.1: The trade-off between the maximum delay and the minimum throughput in the
network when channel coding is not being used.

w Normalized Maximum Normalized Minimum

Delay Throughput

0 1 1
0.3 0.97 0.78
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3.5 Summary

In this chapter, we considered the trade-off between decreasing the end-to-end delay and

increasing the aggregate throughput in wireless networks with channel coding and showed

that a noticeable enhancement across both design goals is feasible if a combination of

multipath routing and adaptive channel coding are employed. We jointly formulated the

end-to-end data rate allocation and adaptive channel coding within the general frame-

work of network utility maximization (NUM) under two variations. The first problem

is formulated for maximization of the aggregate network utility, i.e., the overall system

performance. The second problem is formulated for maximization of the minimum util-

ity among the end-to-end flows to achieve fairness. Due to non-convexities such as in

product terms and fractional terms in the objective function and the constraints, the for-

mulated optimization problems are non-convex and non-separable, and difficult to solve.

Nevertheless, we introduced an algorithm that can solve the two NUM problems with

low computational complexity. Through our simulation studies, we note that, in many

cases, significant improvement in end-to-end delay can be obtained with marginal decrease

in aggregate throughput, suggesting that satisfying stringent delay requirements can be

achieved if multipath routing and adaptive channel coding are employed. The fair resource

allocation aspect of our proposed design is of interest in vehicular networks where multiple

vehicles share an access point in order to obtain connectivity to the Internet. The central-

ized solution that we have proposed in this chapter can particularly be used in the case

when the stationary access point provides connectivity for all vehicles that it serves. It

can also serve as a benchmark for distributed algorithms which are to be developed in fu-

ture. Nevertheless, a distributed algorithm can support much broader ranges of application

types.
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Chapter 4

Reliability-based Rate Allocation in

Wireless Inter-session Network

Coding Systems

4.1 Introduction

In Chapters 2 and 3, we developed rate allocation algorithms with channel coding and

multipath routing to improve the performance of the network. In this chapter, we focus on

inter-session network coding for multiple unicast sessions in a wireless network. The target

applications are ones that require reliable data transfer (e.g., HTTP, FTP, P2P traffic)

in multi-hop wireless mesh networks. Our objective is to increase the network utility

and the end-to-end reliability of data transmissions by proper allocation of routing and

inter-session network coding rates for each data source in the network. For this purpose,

we use the failure probability of intermediate links to calculate the reliability (i.e., the

probability that data is successfully received) of various routing and network coding paths.

Given the calculated reliability information, we maximize the effective aggregate network

throughput by choosing the optimal rate allocation for network coding paths. We use the

network utility maximization framework developed by Kelly et al. [33]. To the best of

our knowledge, there has been no prior work on improving the end-to-end reliability in an
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inter-session network coding system among unicast sessions.

The contributions of this chapter are as follows:

• We develop a recursive algorithm to calculate end-to-end reliability, i.e., the prob-

ability of correctly delivering a packet, over each routing and network coding path.

This allows us to mathematically model the effective throughput for each unicast

session in the network.

• We formulate a network utility maximization problem for unreliable inter-session

network coding systems. This problem formulation takes into account the network

topology, mutual interference among wireless links, session utility functions, and link

reliability information.

• We propose a distributed algorithm to solve the formulated network utility maxi-

mization problem using the proximal method and gradient projection.

• Simulation results show that by taking into account the reliability information, the

aggregate network throughput can be increased by up to 100% while the aggregate

network utility is also improved significantly.

Unlike intra-session network coding, there is no dominant coding scheme for inter-

session network coding. Our inter-session network coding scheme is similar to the scheme

by Khreishah et al. [50] for wired networks. We, however, extend that model [50] to

the wireless networking case by representing wireless capacity using the contention graph.

Our proposed approach is based on cooperation among all network users. Game theoretic

analysis of inter-session network coding with non-cooperative users is also studied in [98].

The rest of this chapter is organized as follows. The system model is described in Section

4.2. Our algorithm to calculate end-to-end reliability is presented in Section 4.3. We solve

the considered network utility maximization problem in Section 4.4 using a distributed
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algorithm. Simulation results are presented in Section 4.5. A summary is given in Section

4.6.

4.2 System Model

Consider a wireless network modeled as a directed acyclic graph G(V, E), where V is the set

of all nodes in the network and E is the set of all wireless links. We denote e = (u, v) ∈ E

if and only if d(u, v) ≤ dT , where d(u, v) is the Euclidean distance between nodes u and v,

and dT denotes the maximum transmission range. Let S = {1, 2, . . . , S} denote the set of

all unicast sessions in the network. Each session i ∈ S is denoted by a tuple (si, ti), where

si and ti denote the source node and the destination node of session i, respectively.

4.2.1 Pair-wise Inter-session Network Coding

Following the inter-session network coding model in [45], we model the network graph

G(V, E) as a superposition of S routing subgraphs G
(i)
r (V(i)

r , E (i)
r ) for all i∈S and S(S−1)

pairwise inter-session network coding subgraphs G
(i,j)
nc (V(i,j)

nc , E (i,j)
nc ) for all i, j∈S such that

i 6= j. For each session i ∈ S, routing subgraph G
(i)
r includes all routing paths from source

node si to destination node ti. We define P(i)
r as the set of all routing paths Psiti in

graph G
(i)
r , where Psiti denotes a path from source si to destination ti. We also define

N
(i)
r = |P(i)

r |. Furthermore, for each k = 1, . . . , N
(i)
r , we define ǫeki = 1 if link e belongs to

the kth routing path of session i; otherwise, ǫeki = 0.

For any two sessions i, j ∈ S, we define P(i,j)
nc as the set of all triples {Psiti , Psjtj , Psjti}

in graph G
(i,j)
nc such that at most two of the three paths Psiti , Psjtj , and Psjti share the

same link. We define N
(i,j)
nc = |P(i,j)

nc |. For a pair of sessions i and j, we construct subgraph

Glm
ij (V lmij , E lmij ) by the union of the lth triple path in P(i,j)

nc and the mth triple path in P(j,i)
nc .

The graphs Glm
ij can be used to implement inter-session network coding (cf. [45, 50]) as we
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(a) (b)

Figure 4.1: (a) An example directed acyclic network graph with 6 nodes and 7 links. One
data session exists between s1 and t1 and another one exists between s2 and t2. (b) The
corresponding (undirected) contention graph.

explain in the following example.

Consider the network in Fig. 4.1(a), where V = {s1, s2, v1, v2, t1, t2} and E = {e1, e2, e3,

e4, e5, e6, e7}. This network topology is sometimes referred to as the butterfly network

[45, 47–50]. We can see that there is only one routing path from s1 to t1 in Fig. 4.1(a),

denoted by (e1e4e7). Similarly, there is only one routing path from s2 to t2, denoted by

(e2e4e6). Therefore, sets P(1)
r and P(2)

r have only one member and N
(1)
r =N

(2)
r =1. On the

other hand, set P(1,2)
nc has one member, denoted by triple {e1e4e7, e2e4e6, e5}. Similarly, set

P(2,1)
nc has one member, denoted by triple {e2e4e6, e1e4e7, e3}. Therefore, N (1,2)

nc = N
(2,1)
nc = 1.

Furthermore, graphG11
12 = G11

21 = G. To implement network coding, node v1 jointly encodes

packets it receives from source nodes s1 and s2. The encoded packets are then transmitted

to receiver nodes t1 and t2 via node v2. Node t1 can decode the received packets using the

remedy data it receives from node s2 over side link e5. Similarly, node t2 can decode the

received packets using the remedy data it receives from node s1 over side link e3. Notice

that encoding packets at node v1 reduces the required bandwidth on links e4, e6 and e7,

leading to an increase in network throughput.

In a general network, the network coding scheme can be constructed by using the add-up

and reset scheme [45]. Here, we assume that the network coding graphs are predetermined.
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4.2.2 Rate Allocation

For each session i∈S, let αki denote the data rate of source si on the kth routing path in

subgraph G
(i)
r for k = 1, . . . , N

(i)
r . Also let αlmij denote the rate of source si on network

coding subgraph Glm
ij for l = 1, . . . , N

(i,j)
nc and m = 1, . . . , N

(j,i)
nc , where j ∈S\{i}. Clearly,

we must have αlmij = αmlji . The aggregate sending rate of source si is obtained as

∑N
(i)
r

k=1 α
k
i +

∑

j∈S,j 6=i
∑N

(i,j)
nc

l=1

∑N
(j,i)
nc

m=1 α
lm
ij . (4.1)

Notice that since the wireless links are prone to error, the effective receiving rate at the

destination node ti can be different from the above sending rate at source node si. We will

investigate this issue in detail in Sections 4.2.4 and 4.3.

Given the sending rates, we can also model the aggregate traffic load on each wireless

link e ∈ E as [50]:

ue=
∑

i∈S





N
(i)
r
∑

k=1

ǫeki α
k
i +
∑

j>i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij max{Hel
ij , H

em
ji }



, (4.2)

where Hel
ij = 1 if link e belongs to at least one path in the lth triple {Psiti , Psjtj , Psjti}

of set P(i,j)
nc ; otherwise, Hel

ij = 0. For the network in Fig. 4.1(a), ue1 = ue7 = α1
1 + α11

12,

ue2 = ue6 = α1
2 + α11

12, ue3 = ue5 = α11
12, and ue4 = α1

1 + α1
2 + α11

12.

4.2.3 Interference

In a wireless network, where some of the links can interfere with each other, mutual inter-

ference can be modeled using a contention graph G′(V ′, E ′). In a contention graph G′, the

set of vertices V ′ represents the set of all wireless links E in the network graph G. There

exists an edge between any two vertices in set V ′ if the wireless links corresponding to the
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two vertices mutually interfere with each other. That is, if the receiver of one link is within

the interference range of the sender of the other link. Given the contention graph, each

complete subgraph, i.e., a subgraph in which all vertices are connected, is called a clique.

A maximal clique is defined as a clique which is not a subgraph of any other clique. We

denote the set of all maximal cliques in contention graph G′ by Q. Each maximal clique

is denoted by Qn ∈ Q for n = 1, . . . , |Q|. Only one link among all the links corresponding

to the vertices of a maximal clique can be active at a time.

Let ce denote the nominal data rate of link e ∈ E . The ratio ue
ce

denotes the portion of

time that each link e ∈ E would be active. It is required that

∑

e∈Qn
ue
ce

≤ γ, ∀Qn ∈ Q, (4.3)

where γ ∈ (0, 1] is called the clique capacity. It is common practice to select γ = 2
3
[87].

For the network in Fig. 4.1(a), the corresponding contention graph is shown in Fig. 4.1(b).

We can see that the contention graph includes three maximal cliques. They impose three

constraints. For instance, clique Q1 = {e1, e2, e4, e6, e7} requires that u1
c1
+ u2

c2
+ u4

c4
+ u6

c6
+ u7

c7
≤

γ.

4.2.4 Link Failure

In practice, since the wireless channel between any two neighboring nodes u and v is not

perfect due to environmental obstacles and background noise, each link e = (u, v) may have

a probability of failure pe ∈ [0, 1] with which packets sent by node u are corrupted and not

received by receiver node v correctly. We model the wireless channels as binary erasure

channels (BEC) [99, p. 187] and assume that data packets transmitted on link e are received

successfully at the receiver node with probability 1 − pe. The failure probability vector of

all links in the network p = (pe, e ∈ E) is assumed to be known through measurements
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(e.g., by probe transmissions).

Given the link failure probability vector p, we can further obtain the end-to-end failure

probability for each routed or network coded packet. For each session i∈S, let P k
i denote

the end-to-end reliability (i.e., 1 minus failure probability) for a packet that is routed over

the kth routing path, where k = 1, . . . , N
(i)
r . Furthermore, for each pair of sessions i, j ∈ S,

let P lm
ij denote the end-to-end reliability for a network coded packet that is transmitted over

network coding subgraph Glm
ij . The aggregate receiving rate at destination ti is obtained

as
∑N

(i)
r

k=1 α
k
i P

k
i +

∑

j∈S,j 6=i
∑N

(i,j)
nc

l=1

∑N
(j,i)
nc

m=1 α
lm
ij P

lm
ij . (4.4)

We will discuss in detail how the end-to-end reliability can be calculated in Section 4.3.

4.2.5 Network Utility Maximization Formulation

Let us concatenate all sending rates αki and αlmij for all i, j ∈ S, all k = 1, . . . , N
(i)
r , all

l = 1, . . . , N
(i,j)
nc , and all m = 1, . . . , N

(j,i)
nc and denote the resulting vector as α. The

network utility maximization problem for unreliable wireless networks with inter-session

network coding among multiple unicast sessions can be formulated as

max
α�0

∑

i∈S
Ui





N
(i)
r
∑

k=1

αki P
k
i +

∑

j∈S,j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij P
lm
ij





subject to
∑

e∈Qn

ue
ce

≤ γ, ∀ Qn ∈ Q

αlmij = αmlji ,
∀ i, j ∈ S, i 6= j

l=1, . . . , N
(i,j)
nc , m=1, . . . , N

(j,i)
nc ,

(4.5)

where ue for each e ∈ E is as in (4.2), and for each session i ∈ S, Ui(·) denotes a strictly

concave and increasing utility function. For example, utility functions can be logarithmic.

In that case, the utility maximization problem (4.5) becomes a proportionally fair resource
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allocation problem [100]. Also notice that if Ui(x) = x, then problem (4.5) reduces to a

throughput maximization problem.

4.3 End-to-End Reliability

Recall from Section 4.2.4 that the aggregate receiving rate of data at receiver node ti for

each i ∈ S is as in (4.4), where P k
i and P lm

ij are end-to-end reliabilities for all routing and

network coding paths for session i. In this section, we develop an algorithm to obtain these

end-to-end reliability measures.

For each session i ∈ S, consider the kth routing path in graph G
(i)
r for k=1, . . . , N

(i)
r .

The probability that data is transmitted successfully along this path can be obtained as

P k
i =

∏

e∈Er ǫ
ek
i (1− pe) . (4.6)

For the network in Fig. 4.1(a), we have P 1
1 = (1 − pe1)(1 − pe4)(1 − pe7) and P 1

2 =

(1− pe2)(1− pe4)(1− pe6).

Obtaining the end-to-end reliability of pairwise inter-session network coding paths is

more complex due to the overlapping among different paths and the fact that an encoded

packet is successfully received only if the corresponding remedy data is also received suc-

cessfully. To explain our model, let us consider the example network in Fig. 4.1(a). Node

t1 can successfully receive some data in a network coding setting if and only if all of the

following three conditions hold: (a) Intermediate node v1 successfully receives the data

packets from both source nodes s1 and s2 over links e1 and e2, respectively. This happens

with probability (1−pe1)(1−pe2). (b) The encoded packet is successfully received by node

t1 over links e4 and e7. This happens with probability (1− pe4)(1 − pe7). (c) The remedy

packet, corresponding to the data packet, is successfully received by node t1 over link e5.
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This happens with probability (1− pe5). Therefore, we have

P 11
12 = (1−pe5)(1−pe4)(1−pe7)(1−pe1)(1−pe2). (4.7)

Similarly, we can show that

P 11
21 = (1− pe3)(1− pe4)(1− pe6)(1− pe1)(1− pe2). (4.8)

To generalize the idea to an arbitrary network, recall that for each pair i, j ∈ S, any

m=1, . . . , N
(i,j)
nc , and any l=1, . . . , N

(j,i)
nc , inter-session network coding subgraph Glm

ij is con-

structed as the union of the mth triple path in P(i,j)
nc and the lth triple path in P(j,i)

nc . Given

Glm
ij , let ϕv denote the probability that node v∈V lmij receives an original/encoded/remedy

packet correctly. For the simplicity of exposition, we define ϕsi = ϕsj = 1, since the source

nodes si and sj have the correct data with probability one. For the network in Fig. 4.1(a),

ϕv1 =(1− pe1)× ϕs1(1− pe2)ϕs2, ϕv2 = (1− pe4)ϕv1 , and ϕt1 = (1− pe7)ϕv2 × (1− pe5)ϕs2.

We can see that there is a recursive relationship on failure probabilities of neighboring

nodes. This observation motivates our end-to-end reliability calculation for inter-session

network coding algorithm in Algorithm 4.1. For each node v ∈ V lmij , let in(v) denote the

set of in-neighbors (i.e., neighbors with incoming links) of node v in graph Glm
ij . Notice

that in(v) ⊆ V lmij \{v}. For each node u ∈ in(v), the directed wireless link from node u to

node v is denoted by e = (u, v). In this case,

ϕv =
∏

u∈in(v)
(1− pe=(u,v))ϕu. (4.9)

Algorithm 4.1 can be used to obtain end-to-end reliability for any arbitrary inter-session

network coding subgraph.

77



Chapter 4. Reliability-based Rate Allocation with Inter-session Network Coding

Algorithm 4.1 End-to-end reliability calculation for inter-session network coding between
sessions i∈S and j∈S\{i}, executed for any l=1, . . . , N

(i,j)
nc and m=1, . . . , N

(j,i)
nc .

1: Set ϕsi = ϕsj = 1, ϕv = −1 for all v ∈ V lmij \{si, sj}.
2: while ϕti = −1 do
3: Find node v ∈ V lmij \{si, sj} such that ϕv = −1 and ϕu 6= −1 for all neighboring

nodes u ∈ in(v).
4: Set ϕv =

∏

u∈in(v)(1− pe=(u,v))ϕu.
5: end while
6: P lm

ij = ϕti

4.4 Reliability-based Rate Allocation

In this section, we propose a distributed rate allocation algorithm to solve the network

utility maximization problem in (4.5). We define F elm
ij = 1

2
max{Hel

ij , H
em
ji } for notational

simplicity. In that case, for each clique Qn ∈ Q, where n = 1, . . . , |Q|, the clique constraint

in (4.3) becomes

∑

e∈Qn

∑

i∈S





N
(i)
r
∑

k=1

ǫeki
ce
αki +

∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

F elm
ij

ce
αlmij



 ≤ γ. (4.10)

Next, we notice that although the objective function in problem (4.5) is concave, it is

not strictly concave due to the linear terms inside each utility function. Thus, problem

(4.5) may have multiple optimal solutions. This can pose some difficulties if we require a

distributed scheme to solve the optimization problem at hand. To overcome this problem,

we use the proximal method [101]: we add some extra terms to the objective function to
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make it strictly concave. Then problem (4.5) becomes

max
α,β�0

∑

i∈S
Ui





N
(i)
r
∑

k=1

αki P
k
i +
∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij P
lm
ij





−
∑

i∈S

N
(i)
r
∑

k=1

ai
2
(αki − βki )

2 −
∑

i∈S

∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

bi
2
(αlmij − βlmij )

2

subject to
∑

e∈Qn

∑

i∈S





N
(i)
r
∑

k=1

ǫeki
ce
αki +

∑

j>i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

F elm
ij

ce
αlmij



 ≤ γ, ∀ Qn ∈ Q

αlmij = αmlji ,
∀ i, j ∈ S, i 6= j

l=1, . . . , N
(i,j)
nc , m=1, . . . , N

(j,i)
nc ,

(4.11)

where βki and βlmij are auxiliary variables introduced for all i, j ∈ S, l = 1, . . . , N
(i,j)
nc , and

any m = 1, . . . , N
(j,i)
nc . On the other hand, ai and bi are arbitrary positive coefficients.

Notice that if βki = αki and βlmij = αlmij , then the objective function in problem (4.11)

reduces to the original objective function in problem (4.5). For notational simplicity,

we concatenate all βki and βlmij for all i, j ∈ S, k = 1, . . . , N
(i)
r , l = 1, . . . , N

(i,j)
nc , and

m = 1, . . . , N
(j,i)
nc , and denote the resulting vector by β.

To solve the modified problem (4.11) via a distributed scheme, we use duality theory

[81] and obtain the dual Lagrangian function as

L(α,λ,ν,β) =
∑

i∈S
Bi(α,λ,ν,β) +

∑

Qn∈Q
λnγ (4.12)
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where

Bi(α,λ,ν,β) =Ui





N
(i)
r
∑

k=1

αki P
k
i +
∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij P
lm
ij





−ai
2

N
(i)
r
∑

k=1

(αki − βki )
2 − bi

2

∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

(αlmij − βlmij )
2

−
∑

Qn∈Q

∑

e∈Qn

N
(i)
r
∑

k=1

ǫeki
ce
αki λn

−
∑

Qn∈Q

∑

e∈Qn

∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij
F elm
ij

ce
λn

−
∑

j>i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

νlmij α
lm
ij +

∑

j<i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

νmlji α
lm
ij ,

and λ and ν are vectors of Lagrange multipliers corresponding to clique capacity constraints

and equality constraints, respectively. Notice that for each clique constraint
∑

e∈Qn
ue
ce

≤ γ,

where n = 1, . . . , |Q|, the corresponding Lagrange multiplier is denoted by λn. On the

other hand, for each equality constraint αlmij = αmlji , where i, j ∈ S, l = 1, . . . , N
(i,j)
nc , and

m = 1, . . . , N
(j,i)
nc , the corresponding Lagrange multiplier is denoted by νlmij . The dual

problem of the primal problem in (4.11) can be obtained as

minimize
λ�0,ν

Γ(λ,ν), (4.13)

where Γ(λ,ν) = maxα�0L(α,λ,ν,β). In dual problem (4.13), the variables are the La-

grange multipliers. Problem (4.13) can be solved using the gradient projection method [81].

Notice that since primal problem (4.11) is convex and its constraints are linear, strong du-

ality holds [81, p. 226]. Thus, by solving the dual problem (4.13), the optimal solution of

the primal problem (4.11) is readily obtained. However, we want to solve the original net-

work utility maximization problem (4.5). We now explain how the solution to the problem
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(4.5) can be obtained.

Our proposed distributed algorithm to identify the optimal data rates includes two

sub-algorithms which are executed iteratively and alternatively. The first iterative sub-

algorithm is based on the gradient method which is executed in shorter intervals. This

sub-algorithm is used to update the dual variables λ and ν and the primal variables α.

On the other hand, the second iterative sub-algorithm is based on the proximal method

which is executed in larger intervals. This sub-algorithm is used to update the auxiliary

variables β. In our iterative distributed algorithm, the first sub-algorithm forms the inner

loop, while the second sub-algorithm forms the outer loop.

First Sub-algorithm

At each time t = 1, . . . , T , where T denotes the network operation time, source node si for

each session i ∈ S updates its data rates individually as

αi(t+ 1) = argmaxαi�0 Bi(αi,λ(t),ν(t),βi(t)) (4.14)

where αi denotes the vector of all transmission rates of session i. Given the new data rates,

then for each n such that Qn ∈ Q, for n = 1, . . . , |Q|, dual variable λn is updated as

λn(t+ 1)=



λn(t) + δn





∑

i∈S

∑

e∈Qn





N
(i)
r
∑

k=1

ǫeki
ce
αki (t+ 1)

+
∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

αlmij (t+ 1)
F elm
ij

ce



−γ









+

,

(4.15)
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where δn is a small constant step size. Furthermore, for each i, j ∈ S, such that j > i, and

for any l = 1, . . . , N
(i,j)
nc and any m = 1, . . . , N

(j,i)
nc , the dual variable νlmij is updated as

νlmij (t+ 1) = νlmij (t) + σlmij (α
lm
ij (t+ 1)− αmlji (t + 1)), (4.16)

where σlmij is a small constant step size. Notice that the update equations in (4.15) and

(4.16) are based on applying the gradient method to convex problem (4.13). The conver-

gence of (4.14) in our first sub-algorithm follows from the descent lemma [102, p. 639]. In

particular, we can show that the first sub-algorithm converges if the following sufficient

condition holds:





∑

n:Qn∈Q

∑

e∈Qn





∑

i∈S

N
(i)
r
∑

k=1

ǫeki +
∑

i∈S

∑

j 6=i

N
(i,j)
nc
∑

l=1

N
(j,i)
nc
∑

m=1

(F elm
ij )2







 max
n:Qn∈Q

δn + max
i,j>i,l,m

σlmij

< 2min{a1, . . . , aS, b1, . . . bS}.

(4.17)

The key idea is to show that our proposed (joint) distributed algorithm forms a pseudo-

contraction mapping [102, p. 182]. Details are omitted here for brevity. We notice that

for any arbitrary network topology and any arbitrary choice of system parameters, we can

always select step sizes δn and σlmij small enough such that the strict inequality in (4.17)

holds.

Second Sub-algorithm

At larger intervals, i.e., large enough such that the first sub-algorithm converges within

each interval, the second sub-algorithm simply sets

β(t+ 1) = α(t). (4.18)
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After that, the first sub-algorithm is again triggered, but this time based on the new values

of β. We continue alternate operation of the two sub-algorithms until the joint algorithm

converges. The convergence is always guaranteed [102, p.232].

Next, we show that the joint algorithm formed by update equations (4.14)-(4.18) results

in optimal rate allocation. In this regard, we notice that after convergence of the algorithm,

we would have β = α. In that case, the objective value in problem (4.11) reduces to the

objective value in problem (4.5) as all the additional terms will become zero. Thus, the

obtained data rates, which form the optimal solution to the primal problem (4.11), are also

the optimal data rates with respect to the original network utility maximization problem

(4.5). Similar to other distributed algorithms in which the problem is decomposed and

solved by different nodes, our approach also needs message passing among different nodes.

4.5 Performance Evaluation

In this section, we assess the performance of our proposed reliability-based rate allocation

algorithm and compare it with the rate allocation algorithm in [50] which does not con-

sider link reliability. In particular, we evaluate how the performance improves if we take

into account reliability information. In this regard, we simulate ten different randomly

generated wireless topologies. Each topology is randomly selected to include between 10

to 15 wireless nodes. Since, our proposed scheme involves solving a convex optimization

problem, it has polynomial complexity and can be implemented in practical systems and

larger topologies.

In the first experiment, we assume that the utility functions are selected to maximize

the network throughput. That is, Ui(x) = x for all i ∈ S. In each topology, one or two

links are selected randomly as unreliable links. The failure probability of unreliable links

is chosen to be 0.5. This implies that half of the packets transmitted over the unreliable
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Figure 4.2: Aggregate network throughput in all 10 simulated topologies with and without
reliability consideration when the utility functions are selected as Ui(x) = x for all i ∈ S.
Taking reliability information into account increases the throughput by 36.2% on average,
among all ten scenarios.

links experience transmission errors and are not received correctly. Simulation results are

shown in Fig. 4.2. We can see that reliability considerations can significantly increase the

network throughput. Notice that the exact performance gain differs among the topologies.

This particularly depends on which link is selected as unreliable link in each topology. For

example, the performance is improved by more than 100% for the case of topology 8 while

the performance gain is negligible for topology 7. For the latter case, the low performance

gain is due to the fact that the selected unreliable link does not carry any significant traffic

load in an optimal design, even if it is assumed to be reliable. Therefore, its unreliability

does not affect the network performance significantly. On average, among all 10 simulated

topologies, accounting for reliability information increases the throughput by 36.2%.

Next, we study the impact of changes in the link failure probability. We assume that

the failure probability of the unreliable links vary from 0 to 0.5. The former case indicates

having reliable links, while the latter case indicates having unreliable links which lose half

of the packets. Regarding the choice of utility functions, we consider the two important

cases of maximizing the throughput and achieving proportional fairness. For the latter
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Figure 4.3: Comparison between our algorithm (with reliability consideration) and the rate
allocation algorithm which does not use link reliability information: (a) Maximizing the
aggregate network throughput. (b) Maximizing the aggregate network utility when the
utility functions are logarithmic.

case, the utility functions are selected to be logarithmic. Simulation results for the case

of topology number 1 are shown in Fig. 4.3. Results for other topologies are similar. We

can see that as the link failure probability increases, it becomes more important to take

into account the reliability information. From the results in Fig. 4.3(a), if the link failure

probability is 0.5, then reliability consideration can increase the throughput by 50%. From

the results in Fig. 4.3(b), if the link failure probability is 0.5, then reliability consideration

can increase the network utility by 18.4%.

Finally, we assess the impact of the choice of utility function on the achieved perfor-

mance gain. To this end, we consider the following important class of utility functions
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Figure 4.4: The impact of changing the utility parameter ψ on the achieved aggregate
network utility with and without reliability consideration.

[100]:

Ui(x) =











log x, ψ = 1,

x1−ψ

1−ψ , ψ 6= 1,
(4.19)

where ψ > 0 is a utility parameter. Simulation results for the case of the first topology

when ψ varies from 0 to 10, and the link failure probability is chosen to be 0.5, are shown

in Fig. 4.4. Results for the remaining topologies are similar. We can see that reliability

consideration always improves the performance for any choice of utility parameter ψ.

4.6 Summary

In this chapter, we considered the problem of allocating data rates for all sources in a

wireless inter-session network coding system. We focused on a scenario where some of

the wireless links are not reliable, i.e., have non-zero failure probability. Using a simple

algorithm, we calculated the end-to-end reliability measures of all network coding paths

in the network. We then formulated a network utility maximization problem, where the

objective function is the sum of the utility functions of all data sessions. We also proposed

a distributed iterative algorithm to solve the formulated optimization problem. We proved
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the optimality and convergence of our algorithm. Simulation results showed that it is

essential to consider link reliability to achieve high throughput. In our evaluations, the

network throughput is increased by 36.2% on average with up to 100% performance gain

for some scenarios. The proposed scheme also significantly improves aggregate network

utility for various choices of utility functions.
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Chapter 5

Distributed Scheduling in Multihop

Wireless Networks with Maxmin

Fairness Provisioning

5.1 Introduction

In Chapters 2, 3, and 4, we studied rate allocation problems with the goal of improving

the network performance in terms of achieving both high throughput and fairness. While

the previous results provide an upper bound for performance of the network, they do not

address the achievability of the proposed rate allocation solutions through transmission

scheduling policies. In this chapter, we consider transmission scheduling in unreliable

wireless networks. The network is said to be stable if every node only has a finite number

of packets queued for transmission. Stability is subject to the condition that the data

transmission rates lie within the network capacity region, i.e., it is feasible to transmit

all packets with bounded delay. However, wireless links have limited capacity and may

interfere with each other. The variation of the link capacity and network traffic can have

an impact on the stability of the network. Another aspect is that wireless links are not

as reliable as wired connections, and data packets may be corrupted during transmission.

Moreover, without careful resource allocation strategy, certain users may be starved for
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network access whereas others may receive an unfairly large share of the available network

bandwidth (e.g., see [1]). This latter aspect relates to fairness. We propose to address

such problems through a stable and decentralized scheduling mechanism that allocates

resources such that wireless links do not interfere with each other and fairness is provided

while maintaining a high network throughput. We shall begin with a discussion of the key

ideas and highlight our main contributions.

Using a slotted notion of time, we consider link scheduling to determine the active links

in each time slot. Lyapunov stability theory has been used to construct stable and optimal

decentralized scheduling policies [103]. Lyapunov techniques have also been extended to

provide delay guarantee [104]. They are also applicable to throughput maximization [105]

and energy minimization in single hop [106] and multihop [107] networks. A utility optimal

algorithm with delay consideration using the shortest paths is also developed in [108].

Throughput optimal scheduling in ad hoc networks, which is an NP-hard problem [109],

has often been reduced to a rate allocation problem, which only provides an upper bound

on the rates that a network can support. Near optimal scheduling algorithms for mobile

ad hoc networks have been proposed in [110]. However, fairness is not considered in the

above mentioned work.

Fairness provisioning has been considered in literature (see Section 1.1.1). However,

fairness is provided with maximizing the summation of utility functions corresponding to

the individual flows such as in [8]. Our approach is different from all of the above in that

the minimum throughput of the network is directly maximized to provide maxmin notion

of fairness instead of considering utility functions for different users. We achieve this by

using Lyapunov stability theory and constructing virtual queues.

In this chapter, we take the advantage of two opportunities offered by multihop net-

works. First, we employ multiple paths for data flows from the source to the destination.
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Second, we utilize different channel code rates at different links to compensate for variations

in link reliability.

Our work differs from the previous work in the literature in several aspects. While most

of the NUM problems determine the average sending rates [38, 42] at which the objective

function is maximized, we propose an efficient scheduling and link activation policy. Our

work is also novel because in the related work on fair scheduling [3–8], fairness is improved

by maximizing the utility function while we directly maximize the minimum throughput

in the network. We will show how this improves the network performance. Maxmin fair

scheduling is considered in one hop networks with multi-radio receivers [10]. Optimal

maxmin transmission and forwarding rates for sensor networks are studied in [111]. A

maxmin fair scheduling policy for one hop multiple-input and multiple-output (MIMO)

networks is also considered [112]. Our work is different from the above as we propose a

distributed scheduling policy and consider multihop networks with single radio and there-

fore interference effects are incorporated. In addition, the optimality is analytically proved.

While some papers considered channel coding to improve the network throughput [22], no

previous work has considered both multipath routing and channel coding in the joint prob-

lem of code rate assignment, flow control and decentralized scheduling to achieve maxmin

fairness in wireless networks.

The main contributions of this chapter are as follows:

• We propose a decentralized online scheduling and flow control algorithm, which we

call DisF, that aims to provide fairness for each flow by maximizing the minimum

throughput in a multihop wireless network. We integrate the use of multipath routing

and link-dependent channel code rates in our solution approach to utilize resources

better and improve reliability. While we do improve link reliability by using ap-

propriate channel coding, we also assume the use of link-level acknowledgments and
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retransmissions when a node is unable to decode a packet. We demonstrate stability

of the proposed algorithm by applying the Lyapunov stability theory.

• We develop an optimal centralized rate allocation method using geometric program-

ming, which provides an upper bound on the performance of any decentralized

scheduling policy.

• We study the performance of DisF and optimal centralized algorithms through sim-

ulations over multiple random topologies. We show that the DisF algorithm ensures

stability, whenever feasible, and that its performance is comparable to that of the

centralized optimal solution. We also compare DisF with Lyapunov stability-based

algorithms, which do not consider fairness in their design. Next, we show that the

use of different channel code rates can improve the performance of the network. We

also compare DisF with a class of existing approaches which use utility functions to

provide maxmin fairness through simulations [8].

This chapter is organized as follows. The system model is described in Section 5.2.

The decentralized stable algorithm is developed in Section 5.3. The centralized approach

is formulated as a geometric programming problem and it is solved in Section 5.4. In

Section 5.5, the algorithm is evaluated through simulations and the chapter is summarized

in Section 5.6.

5.2 System Model

We model the wireless network with a graph G(N , E), where N represents the set of

N = |N |wireless nodes and E denotes the set of directed wireless links. Link e = (m,n) ∈ E

connects two nodes m, n ∈ N if and only if node n is in the transmission range of node m.

We use the notations e and (m,n) interchangeably. The set of data flows is denoted by F
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and the number of data flows is denoted by F = |F|. The set of source nodes is denoted

by S. Data transmission between a source sf ∈ S and the destination df of flow f ∈ F

can be relayed through multiple hops.

We use multipath routing for data transmission. The set Kf containsKf = |Kf | routing

paths for flow f ∈ F . For each link e ∈ E , path k ∈ Kf , and flow f ∈ F , we define afke = 1

if link e belongs to the kth routing path for flow f , and afke = 0, otherwise. For any node

n ∈ N , each data flow f ∈ F , and any path k ∈ Kf , let i
fk
n and ofkn ∈ E be the input and

output links to and from node n on path k of flow f , respectively. Whenever the context

is clear, we remove the indices n, f, k and denote the input and output links with i and o,

respectively (see Fig. 5.1).

A slotted notion of time is used with time slots t ∈ {1, 2, . . .}. We denote the value

of time-varying parameters at the beginning of each time slot t with the index t. We use

the same parameter without the index t to denote its average value over all time slots. At

each intermediate node n ∈ N , we assume a separate queue for any path k ∈ Kf of flow

f ∈ F . The number of data bits corresponding to path k for flow f , stored in node n is

denoted as Qfk
n (t). We assume Qfk

df
(t) = 0, ∀ t, k ∈ Kf , f ∈ F since the received bits are

transfered to the upper layers at the destination node df . We incorporate all the queue

backlogs in the vector Q(t) = (Qfk
n (t), ∀ n ∈ N , k ∈ Kf , f ∈ F).

We use link-dependent channel code rates to counter channel variations and improve

network reliability. Each source node or intermediate node n ∈ N for any flow encodes

data bits by adding redundant bits and transmitting the resultant codeword of length g.

Hereafter, we assume each packet consists of one codeword and we use the terms packet

and codeword interchangeably. We define the code rate Re(t) as the ratio of the data bits

to the total transmitted bits (data plus redundant bits) on link e ∈ E . We concatenate

code rates for all links e ∈ E in vector R(t) = (Re(t), ∀ e ∈ E). The smaller the code rate
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Figure 5.1: (a) Path k of flow f from node sf to node df which uses node n as a relay

node is shown. It is shown that solid link 1 is active (µfk1 (t) = 1) while dotted links 2 and
3 are not active (µfk2 (t) = µfk3 (t) = 0) in that particular time slot t. Note that links 1 and
2 belong to the mentioned path (afk1 = afk2 = 1) but link 3 does not (afk3 = 0). (b) A relay
node n is shown with its input link i and its output link o corresponding to the kth path
of flow f . The corresponding packets are stored in Qfk

n before they are sent.

Re(t), the greater number of redundant bits is added, and the higher the reliability is. The

reliability is gained at the cost of increased network traffic. When Re(t) is equal to one,

channel coding is not used on link e.

We use R0e ≤ 1 to denote the cut-off rate of wireless link e ∈ E . The cut-off rate is a

channel parameter to which the rate of the adopted coding scheme is always limited [85].

In general, R0e depends on the particular modulation scheme which is being used and also

the signal-to-noise ratio (SNR) in the receiver node. For example, for a binary phase shift

keying (BPSK) waveform [85], we have R0e = 1− log2(1+e
−γe), where γe denotes the SNR

at the receiver node of wireless link e ∈ E . When γe is relatively large, R0e is close to 1.

Given Re(t) ≤ R0e for e ∈ E , we have

Pe(t) ≥ 1− 2−g(R0e−Re(t)), (5.1)
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where Pe(t) is the probability that a codeword of length g is received correctly on link

e with rate Re(t) [85, pp. 392-397]. The vector P (t) = (Pe(t), ∀ e ∈ E) represents the

successful probabilities on all links e ∈ E . For the rest of this chapter, we consider the

worst case in which inequality (5.1) is satisfied with equality. For each transmission on link

e ∈ E , we define ρe(t) = 1 if the packet is transmitted successfully and ρe(t) = 0 otherwise.

We have ρe(t) = 1 with the probability of Pe(t). We define ρ(t) = (ρe(t), e ∈ E) as the

channel state at time slot t.

As mentioned above, a codeword may be corrupted with probability 1− Pe(t) through

a transmission on link e ∈ E . The receiver at link e sends a link-level acknowledgement

(ACK) to the transmitter if the packet is received correctly. The transmitter retransmits

the packet if no ACK is received within a predefined time period. Retransmissions ensure

that packets admitted to the network will be received at their corresponding destination

nodes. This is at the cost of increased network load.

We denote the number of data bits which are admitted to the path k ∈ Kf of flow

f ∈ F at the beginning of time slot t as αkf (t). The vector α(t) = (αkf(t), ∀ k ∈ Kf , f ∈ F).

Suppose all admissions are upper bounded (i.e., αkf(t) ≤ αmax). We assume that all source

nodes are backlogged (i.e., each source node has at least αmax data bits available to send

over each of its routing paths at any time slot). We define the capacity region Λ as

the closure of the set of all sending rate vectors α (considering all possible routing and

scheduling policies), for which the network is stable, that is

Λ =







α | α � 0, lim
t→∞

sup
1

t

t−1
∑

τ=0

∑

k∈Kf , f∈F , n∈N
E{Qfk

n (τ)} < M







, (5.2)

where M is a finite number. Note that α = lim
t→∞

1
t

∑t−1
τ=0 α(τ) is the time average value of

α(t).
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Two links e1, e2 ∈ E mutually interfere with each other if and only if the receiver of

one link is in the transmission range of the sender of the other. At each time slot t, only

one wireless link may be active among those wireless links which are in mutual interference

with each other. We define µfke (t) = 1 if link e is active in data transmission for the kth

routing path of flow f at time slot t, and µfke (t) = 0 otherwise.

We define ce as the number of bits that can be transmitted by link e ∈ E in each time

slot t. ce contains data bits as well as redundant bits due to channel coding. A small

section of the modeled network is depicted in Fig. 5.1.

5.3 Decentralized and Stable Scheduling

In this section, we tackle the problem of online flow control and scheduling for wireless

links. We address maxmin fairness provisioning by maximizing the minimum throughput

in the network. Our goal is to solve the following problem

maximize min
f∈F

αf

subject to α ∈ Λ.

(5.3)

The goal in problem (5.3) is to admit new packets and schedule the transmissions such

that the minimum sending rate αf =
∑

k∈Kf α
k
f over all flows f ∈ F is maximized and

all queues in the network remain stable, that is the number of bits stored in any queue is

bounded. Note that data bits are removed from the queue of the sender node only after

it has received an ACK from the receiver. Therefore, if the queues are stable, the sending

rate of each flow is the same as its throughput at the corresponding destination.

To enhance the minimum throughput of the network, we need to introduce a decision

parameter λ(t) and a set of virtual queues Zf(t), ∀ f ∈ F . We denote Z(t) = (Zf(t), ∀ f ∈
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F). For each virtual queue Zf (t) for flow f at each time slot t, we set
∑

k∈Kf α
k
f (t) as the

service rate and λ(t) as the input rate. Then, we have the following update equation:

Zf(t+ 1) ≤ max



Zf(t)−
∑

k∈Kf

αkf(t), 0



+ λ(t). (5.4)

Suppose λ(t) is upper bounded (i.e., λ(t) ≤ λmax for any time slot t) and its time average

λ = limt→∞
∑t−1
τ=0 E{λ(τ)}

t
exists. We will show later that burstiness in the network increases

when λmax increases. The stability of each virtual queue Zf implies that the time average

of its input rate is less than or equal to that of its service rate. That is

λ ≤∑k∈Kf α
k
f , (5.5)

where αkf = limt→∞
∑t−1
τ=0 E{αkf (τ)}

t
is the time average value of αkf (t). Therefore, if all virtual

queues are stable, maximizing the time average value of λ(t) is equivalent to maximizing

the minimum throughput among all data flows in the network. The goal is to maximize

the time average value of λ(t) such that both real queues (which store the data bits) and

virtual queues remain stable.

We now present some aspects of Lyapunov stability theory [103] that are useful for

developing our scheduling algorithm. Let Lyapunov function L(Θ(t)) be a non-negative

function of any queue vector Θ(t). We define the Lyapunov drift △(Θ(t)) , E{L(Θ(t +

1))− L(Θ(t)) | Θ(t)}.

Proposition 5.1 (Lyapunov Optimization [103]) Let u(t) be a utility function and B > 0,

ǫ > 0, and V > 0 be constants such that for all time slots t and queue vector Θ(t) =
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(Θq(t) | q ∈ ∐ = {1, 2, . . . , |∐|}), we have

△(Θ(t))− V E{u(t) | Θ(t)} ≤ B − ǫ
∑

q∈∐
Θq(t)− V u∗, (5.6)

where u∗ is a target value for utility function u(t), then we have

uinf ≥ u∗ − B/V,

lim
t→∞

sup
1

t

t−1
∑

τ=0

∑

q∈∐
E{Θq(τ)} ≤ B + V (usup − u∗)

ǫ
,

where uinf = limt→∞ inf 1
t

∑t−1
τ=0E{u(τ)} and usup = limt→∞ sup 1

t

∑t−1
τ=0E{u(τ)}.

The proof of the proposition can be found in [103, pp. 82-84]. Note that the expectation

is over random parameters such as channel states and possibly randomized scheduling

policies.

Let u(t) = λ(t). We concatenate the backlog queues and virtual queues in the vector

Θ(t) = (Q(t),Z(t)). Proposition 5.1 states that if condition (5.6) holds under a scheduling

algorithm, then all the queues in Θ(t) are stable and λ will be at most B/V away from

the target value λ∗. Stability of virtual queues Z ensures that λ is always less than or

equal to the minimum throughput of the network. By increasing V , we can get closer to

the target value at the cost of a linear increase in the congestion in the network. Next, we

obtain △(Θ(t)) for any time slot t. We define

L(Θ(t)) =
∑

n∈N , k∈Kf , f∈F

Qfk
n (t)

2

2
+
∑

f∈F

Z2
f (t)

2
. (5.7)

We assume that scheduled transmissions occur at the beginning of each time slot. For an
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intermediate relay node n ∈ N , n 6= sf , any path k ∈ Kf and flow f ∈ F , we have

Qfk
n (t+ 1) ≤ Qfk

n (t)−min[Qfk
n (t), coRo(t)]µ

fk
o (t)ρo(t) + ciRi(t)µ

fk
i (t)ρi(t)

= max[Qfk
n (t)− coRo(t)µ

fk
o (t)ρo(t), Q

fk
n (t)(1− µfko (t)ρo(t))]

+ ciRi(t)µ
fk
i (t)ρi(t).

(5.8)

For source node sf ∈ S, f ∈ F and k ∈ Kf , we have

Qfk
sf
(t + 1) ≤ Qfk

sf
(t)−min[Qfk

sf
(t), coRo(t)]µ

fk
o (t)ρo(t) + αkf(t)

= max[Qfk
sf
(t)− coRo(t)µ

fk
o (t)ρo(t), Q

fk
sf
(t)(1− µfko (t)ρo(t))] + αkf (t).

(5.9)

Lemma 5.1 For any ρ ∈ {0, 1}, U, R, and µ ∈ {0, 1} we have

max[U − Rµρ, U(1− µρ)] ≤ max[U −Rµ, 0] + Rµ(1− ρ). (5.10)

Proof Let µ be equal to one. We verify the inequality in both cases when U ≥ R and

when U < R separately. If U ≥ R, then we have U(1 − ρ) < U − Rρ and both sides of

(5.10) are equal to U − Rρ. On the other hand, if we have U < R, the left hand side of

(5.10) is U(1− ρ) and the right hand side is R(1− ρ) and the inequality is verified. In the

case where µ = 0, inequality (5.10) states that U ≤ max[U, 0], which is true. �

Considering (5.8) and using Lemma 5.1, for a relay node n ∈ N , n 6= sf , k ∈ Kf , and

f ∈ F , we have

Qfk
n (t+ 1) ≤ max[Qfk

n (t)− coRo(t)µ
fk
o (t), 0] + coRo(t)µ

fk
o (t)(1− ρo(t)) + ciRi(t)µ

fk
i (t)ρi(t).

(5.11)
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Considering (5.9) and Lemma 5.1, for any source node sf ∈ S, k ∈ Kf , f ∈ F , we have

Qfk
sf
(t+ 1) ≤ max[Qfk

sf
(t)− coRo(t)µ

fk
o (t), 0] + coRo(t)µ

fk
o (t)(1− ρo(t)) + αkf(t).

(5.12)

We now introduce two lemmas to simplify (5.11) and (5.12). Lemma 5.2 can be found in

[103].

Lemma 5.2 ([103]) For any positive U1, U2, η, and ν, if we have U1 ≤ max[U2−η, 0]+ν,

then

U2
1 ≤ U2

2 + η2 + ν2 − 2U2(η − ν). (5.13)

Proof If U2 > η, then we have U1 ≤ U2 − η + ν. By squaring both sides of this inequality

and adding the positive value of 2νη to the right hand side of the inequality, (5.13) is

verified. If U2 < η, then we have U2
1 ≤ ν2. Since η2 + U2

2 − 2U2(η − ν) ≥ 0, we can add it

to the right hand side of the above and inequality (5.13) is verified. �

Lemma 5.3 For positive U1, U2, O, I, ρ, and ρ
′ ≤ 1 if U1 ≤ max[U2−O, 0]+O(1−ρ′)+Iρ,

then

U2
1 ≤ U2

2 +B − 2U2(Oρ
′ − Iρ),

where B = O2 + ρ2I2 +O2(1− ρ′)2 + 2ρ(1− ρ′)OI.

Proof We proved in Lemma 5.2 that for positive values of U1, U2, η, and ν if U1 ≤

max[U2 − η, 0] + ν, then we have U2
1 ≤ U2

2 + η2 + ν2 − 2U2(η − ν). By substituting η = O

and ν = O(1− ρ′) + Iρ, Lemma 5.3 is proven. �

Using Lemma 5.3 and inequalities (5.11) and (5.12), for any k ∈ Kf and f ∈ F , we
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have

Qfk
n (t + 1)2 ≤ Qfk

n (t)2 +Bfk
n (t)− 2Qfk

n (t)(coRo(t)µ
fk
o (t)ρo(t)− ciRi(t)µ

fk
i (t)ρi(t)),

(5.14)

for any intermediate relay node n ∈ N (n 6= sf) where

Bfk
n (t) = c2oRo(t)

2µfko (t)2 + ρi(t)
2c2iRi(t)

2µfki (t)2 + c2oRo(t)
2µfko (t)2(1− ρo(t))

2

+ 2ρi(t)(1− ρo(t))coRo(t)µ
fk
o (t)ciRi(t)µ

fk
i (t).

Similarly, for source node sf , we have

Qfk
sf
(t+ 1)2 ≤ Qfk

sf
(t)2 +Bfk

sf
− 2Qfk

sf
(t)(coRo(t)µ

fk
o (t)ρo(t)− αkf(t)), (5.15)

where

Bfk
sf
(t) = c2oRo(t)

2µfko (t)2 + αkf (t)
2 + c2oRo(t)

2µfko (t)2(1− ρo(t))
2

+ 2(1− ρo(t))coRo(t)µ
fk
o (t)αkf (t).

From Lemma 5.2 and inequality (5.4), for each virtual queue Zf , f ∈ F , we have

Z2
f (t+ 1) ≤ Z2

f (t) +
(

∑

k∈Kf α
k
f (t)
)2

+ λ2(t)− 2Zf(t)
(

∑

k∈Kf α
k
f (t)− λ(t)

)

.

(5.16)

Now, we can write △Θ(t)− V E{λ(t) | Θ(t)} as

△(Θ(t))− V E{λ(t) | Θ(t)} = E{L(Θ(t + 1))− L(Θ(t)) | Θ(t)} − V E{λ(t) | Θ(t)}

100



Chapter 5. Distributed Scheduling with Maxmin Fairness Provisioning

≤ B −
∑

k∈Kf ,f∈F

(

Qfk
sf
(t)E{coRo(t)µ

fk
o (t)ρo(t)− αkf (t) | Θ(t)}

+
∑

n 6=sf
Qfk
n (t)E{coRo(t)µ

fk
o (t)ρo(t)− ciRi(t)µ

fk
i (t)ρi(t) | Θ(t)}





−
∑

f∈F
Zf(t)E







∑

k∈Kf
αkf(t)− λ(t) | Θ(t)







− V E{λ(t) | Θ(t)}, (5.17)

where B = BQ +BZ , and

BQ = 5NF

(

max
f∈F

Kf

)

max

[

α2
max,max

e∈E
c2e

]

/2, (5.18)

BZ = F

(

(

αmaxmax
f∈F

Kf

)2

+ λ2max

)

/2.

Inequality (5.17) holds under any adopted scheduling algorithm. Note that the expected

values are taken over the random channel state probabilities.

Let λ∗ be the optimal value for λ which can be achieved by an algorithm such that all

backlog and virtual queues remain stable. Since the corresponding sending rates are stably

supported by the network, there exist link data rates for all wireless links that support data

transmission in the network. These data rates can be achieved with a possibly randomized

channel state-only algorithm X . This is proved by projection of link data rates in different

time-varying channel states and then expressing each projection as the convex combination

of corresponding independent sets. Further details can be found in [105]. Assume that

Algorithm X determines the decision parameters (λ(t), Re(t), µ
fk
e (t), and αkf (t) for all

e ∈ E , k ∈ Kf , and f ∈ F) at the beginning of each time slot t such that λ achieves the

optimal value λ∗, virtual queues are stable (i.e., λ <
∑

k∈Kf α
k
f for any f ∈ F) and backlog
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queues are also stable. Note that Algorithm X is a channel state-only algorithm which

makes the decisions only based on the observed channel states at each time slot. Therefore,

it needs a priori knowledge on channel states. The stability of backlog queues implies that

under Algorithm X , for an intermediate relay node n ∈ N and n 6= sf , we have

E{coRo(t) µ
fk
o (t)ρo(t) | Θ(t)} > E{ciRi(t)µ

fk
i (t)ρi(t) | Θ(t)}. (5.19)

For any source node sf , f ∈ F , we have

E{coRo(t)µ
fk
o (t)ρo(t) | Θ(t)} > E{αkf(t) | Θ(t)}. (5.20)

The stability of virtual queues implies that

E{λ(t) | Θ(t)} < E
{

∑

k∈Kf α
k
f (t) | Θ(t)

}

, (5.21)

for all f ∈ F . Then, from (5.17), there exists ǫ > 0 such that

△(Θ(t))− V E{λ(t) | Θ(t)} ≤ B − ǫ
(

∑

n∈N ,k∈Kf ,f∈F Q
fk
n (t) +

∑

f∈F Zf(t)
)

− V λ∗,

(5.22)

under Algorithm X , where B = BQ + BZ as in (5.18). Note that here the expectation is

taken over different random channel states and different randomized decisions.

We now present the distributed fair (DisF) algorithm for maximizing the minimum

throughput in a multihop network with channel coding and multipath routing. The goal

of the algorithm is to select the decision parameters λ(t), Re(t), α
k
f(t) and µfke (t) for all
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e = (ne, n
′
e) ∈ E , k ∈ Kf , and f ∈ F , such that

∑

f∈F

∑

k∈Kf

αkf (t)
(

Zf(t)−Qfk
sf
(t)
)

+
∑

f∈F

∑

k∈Kf

∑

e∈E
afke ceRe(t)µ

fk
e (t)

(

Qfk
ne (t)−Qfk

n′

e

(t)
)

Pe(t)

+ λ(t)
(

V −∑f∈F Zf(t)
)

,

(5.23)

is maximized over all available decision parameters at each time slot t. Before we present

the algorithm in detail, we analyze the performance of the algorithm in Theorem 5.1.

Theorem 5.1 Let Algorithm DisF be an algorithm that maximizes (5.23) over all available

decision parameters at each time slot t. Then, it is throughput-optimal. That is, it stabilizes

the network if any other algorithm can do so and the minimum throughput in the network

is at most B/V away from the optimal value.

Proof Algorithm DisF maximizes (5.23), which can be rewritten as

∑

f∈F

∑

k∈Kf

(

Qfk
sf
(t)
(

coRo(t)µ
fk
o (t)Po(t)− αkf (t)

)

+
∑

n 6=sf

Qfk
n (t)

(

coRo(t)µ
fk
o (t)Po(t)− ciRi(t)µ

fk
i (t)Pi(t)

)





+
∑

f∈F Zf(t)
(

∑

k∈Kf α
k
f (t)− λ(t)

)

+ V λ(t).

(5.24)

Recall from Section 5.2 that for any node n ∈ N , each data flow f ∈ F , and any path

k ∈ Kf , i
fk
n and ofkn ∈ E denote the input and output links to and from node n on path

k of flow f , respectively. We remove the indices n, f, k and denote the input and output

links with i and o in (5.24), respectively. Recall that inequality (5.17) holds under any

algorithm including the DisF algorithm. By maximizing (5.24) at each time slot t, we

minimize the upper bound on △(Θ(t))− V E{λ(t) | Θ(t)} (right hand side of (5.17)) over
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its value under any other algorithm including Algorithm X , that is on the right hand side

of (5.22). Then, under the DisF algorithm, we have

△(Θ(t))− V E{λ(t) | Θ(t)} ≤ B − ǫ
∑

n∈N , k∈Kf , f∈F
Qfk
n (t)− ǫ

∑

f∈F
Zf(t)− V λ∗. (5.25)

This is the condition of Proposition 5.1. �

We must note that while maximizing (5.23) over all possibilities leads to an optimal

solution, it is an NP-hard problem in wireless networks due to interference constraints [113].

In order to solve this problem in a distributed manner and in reasonable time (compared

to the introduced delay and channel variation time due to channel fluctuations), we use the

greedy maximal scheduling (GMS) policy. GMS is sub-optimal and may be implemented

in a distributed manner. It has been shown in[114] that its efficiency ratio is at least

1/2 in the 1-hop interference model. In other words, GMS can achieve at least half of the

throughput achieved by the optimal policy. Algorithm 5.1 shows the DisF algorithm which

aims at maximizing (5.23) at any time slot t in a decentralized manner. This algorithm

has several phases that are performed at the beginning of each time slot t.

Flow Control

Each source node sf checks the backlog queue Qfk
sf
(t) for each path k ∈ Kf of flow f .

If Qfk
sf
(t) ≤ Zf(t), sf schedules αmax new data bits for flow f to be admitted to the

corresponding path (i.e., sets αkf(t) to be equal to αmax) (Lines 2-9).

Scheduling

The candidate set is initialized with all links that have data to send. Each link e = (n, n′) ∈

E , sets its weight we equal to the maximum value of Qfk
n (t)−Qfk

n′ (t) over all paths k ∈ Kf
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Algorithm 5.1Distributed fair (DisF) algorithm for maximizing the minimum throughput
among the entire users in the network, executed at the beginning of each time slot t. The
algorithm is initiated with Z(0) = 0 at t = 0.

1: Initialization: Assign values for αmax, λmax, V .
2: Set α(t) = 0.
3: for each source sf ∈ S, f ∈ F do

4: for each k ∈ Kf do

5: if Q
fk
sf (t) ≤ Zf (t) then

6: sf sets αkf (t) = αmax.
7: end if

8: end for

9: end for

10: Initiate candidate set C of all links that have data to send.
11: for each link e = (n, n′) ∈ C do

12: Set we = max
f,k

(Qfk
n (t)−Q

fk
n′ (t)).

13: Set (f∗e , k
∗
e) = argmax

f,k
(Qfk

n (t)−Q
fk
n′ (t))

14: end for

15: while C is not empty do

16: Set e∗ = argmax
e∈C

we.

17: Set µ
f∗
e∗
k∗
e∗

e∗ (t) = 1.
18: Find Re∗(t) by solving 2−g(R0e∗−Re∗(t)) = 1

1+Re∗ (t)g ln 2 .

19: Remove e∗ and all links that interfere with e∗ from the candidate set C.
20: end while

21: for each source sf ∈ S, f ∈ F do

22: if
∑

f∈F Zf (t) ≤ V then

23: Set λ(t) = λmax.
24: else

25: Set λ(t) = 0.
26: end if

27: end for

28: for each source sf ∈ S, f ∈ F do

29: Zf (t+ 1) = max
[

Zf (t)−
∑

k∈Kf α
k
f (t), 0

]

+ λ(t).

30: Update the other sources with Zf (t+ 1) through control messages.
31: end for
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and flows f ∈ F that use that link. Then the link with the maximum weight is selected to

transmit data for the corresponding path and flow, it is removed from the candidate set

and all links which interfere with that link are also removed from the set. This process

continues until no link remains in the candidate set (Lines 10-20). The scheduling process

(lines 15-20) can be implemented in a distributed manner by making modifications to the

MAC parameters. This is done in [113] by varying contention window parameters CWmin

and CWmax for links to transmit more or less aggressively according to their weights we.

Code Rate Allocation

For each scheduled link e, the optimal code rate that maximizes Re(t)(1 − 2−g(R0e−Re(t)))

is determined by solving 2−g(R0e−Re(t)) = 1
1+Re(t)g ln 2

(Line 18). In case of any change in the

wireless environment, Re(t) is determined according to the new available updates for R0e.

Fairness Provisioning

The source node of each data flow f ∈ F sets λ(t) = λmax if
∑

f∈F Zf(t) ≤ V , and sets

λ(t) = 0 otherwise (Lines 21-27). Virtual queues are updated according to (5.4) (Line

28-31). The value of virtual queues at each time slot is transmitted between the source

nodes through control messages. Next, the scheduled links transmit their packets and new

data bits are admitted in the source node queues.

5.4 Geometric Programming Formulation

In this section, we provide a benchmark for performance of the decentralized scheduling

algorithm for evaluation purposes. We formulate the problem of code rate and sending rate

allocation as a NUM problem and describe a centralized solution approach. We assume

multiple paths are available for data flows. We also allow channel coding to improve the
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reliability and use retransmissions in case of any data loss. In this section, we do not

consider scheduling. The slotted notion of time is not considered and the variables are

time average values.

Recall that the sending rate for the kth path of flow f ∈ F is αkf . Channel coding is

performed on link e ∈ E at a rate of Re. Thus, link e must transmit packets for path

k ∈ Kf of flow f ∈ F with a rate of αkf/Re if all transmissions are successful. Since the

probability of a successful transmission is Pe, each transmission is completed within 1/Pe

attempts on average where Pe = 1− 2−g(R0e−Re) in the worst case. We have

ufke = afke
αkf
RePe

, (5.26)

where ufke is the data rate at which link e is being used to transmit data for the kth path

of flow f ∈ F . We can express the usage of wireless link e ∈ E as

ue =
∑

f∈F

∑

k∈Kf

afke
αkf

ReP
fk
e

. (5.27)

To model the interference in the network, we use a contention graph GC(NC , EC). The

set of vertices NC represents the set of wireless links in graph G. There is a link between

each two vertices if and only if the corresponding links in graph G interfere with each

other. Each complete subgraph in graph GC is called a clique and a maximal clique ω is

one that is not a subset of a larger clique. We define Ω as the set of all maximal cliques in

the network. It is necessary for successful transmissions that the summation of link usages

over all links in each maximal clique be less than the capacity of the clique ζω. This is a

necessary condition for successful transmission and leads to an upper bound on the network

performance.

Now, we can write the problem of fair sending rate and code rate allocation in a
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multihop wireless network to maximize the minimum throughput as

maximize
α,R,σ

σ

subject to σ ≤∑k∈Kf α
k
f , ∀ f ∈ F ,

∑

e∈ω

∑

f∈F

∑

k∈Kf

afke
αkf
RePe

≤ ζω, ∀ ω ∈ Ω,

Pe ≤ 1− 2−g(R0e−Re), ∀ e ∈ E ,

α ≻ 0, 0 ≺ R ≺ R0.

(5.28)

In problem (5.28), the objective is to maximize the throughput of the flow with the min-

imum value. The second set of constraints satisfies the necessary condition for successful

transmissions and leads to an upper bound on the performance. Since retransmissions due

to packet loss are taken into account in the second set of constraints, the total number of

admitted packets will be received at the destination. Therefore, by maximizing the sending

rate of any flow, the received throughput is also maximized.

The objective function in problem (5.28) and the left hand side of the second set

of constraints are posynomials (i.e., polynomials with positive terms). The first set of

constraints has signomials (i.e., polynomials with both positive and negative terms) on the

left hand side. Therefore, we can apply signomial programming techniques [82] to solve

this problem. In this regard, we need to approximate the right hand side of the first set of

constraints with a monomial around an initial point α̂. For a parameter b > 1 very close

to 1, we have

∑

k∈Kf
αkf ≈ Λ̂−1f

∏

k∈Kf

(

αkf
α̂kf

)α̂k
f
Λ̂f

, ∀ α ∈ [α̂/b, bα̂] , (5.29)

where Λ̂−1f =
∑

k∈Kf α̂
k
f . Finally, we tackle the third set of constraints in (5.28). We

can approximate the exponential term using the Taylor series expansion and rewrite the
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constraint as

Pe ≤ 1−X1e

∞
∑

n=0

(X2Re)
n

n!
, (5.30)

where X1e = 2−gR0e and X2 = g ln 2. For large Me, we have

Pe ≤ 1−X1e

Me−1
∑

n=0

(X2Re)
n

n!
. (5.31)

Me must be large enough such that (X2Re)
Me ≪ Me! and can be found through simula-

tions. Now, we can rewrite problem (5.28) in the standard form of geometric programming

problems as

minimize
σ,α,R,P

σ−1

subject to Λ̂fσ
∏

k∈Kf
(α̂kfα

k
f

−1
)α̂

k
f
Λ̂f ≤ 1, ∀ f ∈ F ,

∑

e∈ω

∑

f∈F

∑

k∈Kf
afke α

k
fRe

−1Pe
−1 ≤ ζω, ∀ ω ∈ Ω,

Pe
1−X1e

+
X1e

1−X1e

Me−1
∑

n=1

(X2Re)
n

n!
≤ 1, ∀ e ∈ E ,

α̂/b � α � bα̂,

σ > 0, 0 ≺ R ≺ R0, P ≻ 0.

(5.32)

The above problem is a geometric programming problem that can be solved iteratively

using the interior-point method [82]. In each iteration, we use the solution obtained in the

previous iteration as the new initial point α̂ and use the approximation in (5.29) around

that point. We use the solution of this problem as a benchmark for evaluating the DisF

algorithm.
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5.5 Performance Evaluation

In this section, we evaluate our proposed algorithm through simulations. For simulations,

we use Matlab. First, we compare the performance of the DisF algorithm with the central-

ized approach obtained through solving geometric programming problem. Then, we study

fairness provisioning in the network. For that purpose, we quantitatively measure fairness

under the DisF algorithm in several random topologies and compare it with a Lyapunov-

based algorithm in which the fairness is not considered. Here, we call that algorithm as

DisA algorithm. The goal in DisA algorithm is to maximize the aggregate throughput

of the network (i.e.,
∑

f,k α
k
f) while DisF algorithm maximizes the minimum throughput

in the network (i.e., minf
∑

k α
k
f). We also show how fairness is provided at the cost of

degrading the aggregate throughput in the network. We show the effect of channel cod-

ing on the network performance by comparing with the case when channel coding is not

used. Moreover, we study the effect of algorithm parameter V on the obtained performance

of the DisF algorithm. Finally, we compare the proposed approach with the distributed

utility-based approach presented in [8].

We compare the minimum throughput under the DisF algorithm with the minimum

throughput obtained through solving the geometric programming problem (5.28). We run

the simulations for both approaches in topologies with 30 nodes. The number of flows

varies between 2 and 10. In this set of simulations, we set αmax =2, λmax = 10, V = 50,

and ce = 10 bits for all links e ∈ E . This is because the MOSEK software [89] that we

used to solve the geometric programming problem cannot solve the problem when ce and

consequently Me (see (5.31)) grows. We run the simulations on 50 random topologies. The

DisF algorithm follows the optimal solution as the number of flows in the network grows

(Fig. 5.2). Increasing the number of flows leads to higher load on the network and causes

a degradation in the minimum throughput in the network for both approaches.
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Figure 5.2: The performance of the DisF algorithm is compared with the solution of cen-
tralized geometric programming problem. Each point represents the average performance
obtained over 50 random topologies. The DisF algorithm follows the centralized approach
as the number of flows increases.

Hereafter, we set parameters αmax = 1000, λmax = 5000, V = 250000, and ce = 5000

bits for all links e ∈ E . Next, we study the max-min fair (DisF) algorithm in regards of

fairness provisioning. We run both DisF and DisA algorithms in a sample network topology

(Fig. 2.2) with 20 nodes and 5 data flows. We observe that the achieved throughput, for

the sample topology, is distributed fairly under the DisF algorithm while this is not the

case for the DisA algorithm (see Fig. 5.3).

We also study the fairness provisioning quantitatively on several random topologies.

We use the Jain’s fairness index [2], to measure the fairness among network users. The

fairness index ψ =
(
∑

f∈F
αf )

2

|F|∑f∈F
α2
f

, where αf =
∑

k∈Kf α
k
f denotes the throughput of flow f ∈ F .

For the results in Fig. 5.3, we have ψ = 0.97 under DisF algorithm while ψ decreases to

0.41 under DisA algorithm. Using the DisF algorithm in several random topologies, the

fairness index is always higher than 0.95 while that of DisA algorithm degrades to 0.55

when the number of flows is equal to 10 (see Fig. 5.4).

Improving the minimum throughput in the network is at the cost of degrading the
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Figure 5.3: In a sample topology, fairness is provided under the DisF algorithm while some
flows starve under the DisA algorithm that does not consider fairness.
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Figure 5.4: The performance of DisF and DisA algorithms in regard of fairness provisioning.
Each point represents the average value of the fairness index over 50 random topologies.
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Figure 5.5: The tradeoff between minimum throughput in the network (a) and aggregate
throughput in the network (b) is shown under both DisF and DisA algorithms.

aggregate throughput which is achievable with the entire users in the network. Fig. 5.5

shows the tradeoff between the minimum throughput and aggregate throughput of the

network. It is shown that the minimum throughput (and also the fairness) is improved

via DisF algorithm (Fig. 5.5 (a)). However, that is gained at the cost of degrading the

aggregate throughput of the network (Fig. 5.5 (b)).

Next, we study the effect of channel coding on the performance of the DisF algorithm.

The average performance of the algorithm is shown in Fig. 5.6 when channel coding is used

in the network and it is compared with the case that channel coding is not used. Each

point in Fig. 5.6 represents the average value over 50 random topologies. In this set of

simulations, we assume the probability at which a packet is transmitted successfully over

a wireless link to be 0.8 if channel coding is not used. We observe that the minimum

throughput increases by 28% when the number of flows is 10.

In Fig. 5.7, we study the effect of varying parameter V on both the minimum throughput

and the delay in the network under the DisF algorithm. We used the total backlog in
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Figure 5.6: Performance of the network with channel coding is compared with the case in
which channel coding is not being used.

the network as a measure of the delay. Each point in Fig. 5.7 represents the average

performance of the algorithm for 50 random topologies with 20 nodes and 5 data flows.

We vary V from 0 to 50000 and it is shown that the minimum throughput in the network

increases with increasing V at the expense of a linear increase of delay in the network.

Finally, we compare our approach with the one introduced in [8] as an example of

a class of approaches that use utility functions to provide different notions of fairness

including maxmin fairness. This is comparing to our proposed method which directly

pushes the minimum throughput up instead of using utility functions. In [8], the problem

of maximizing the aggregate network utility for all flows in the network was considered

as maximizing
∑

f u
β
f (αf) subject to α ∈ Λ, where uβf (x) is the utility function (i.e.,

uβf (x) = x1−β/(1−β), β 6= 1, and uβf (x) = log x, β = 1). It was shown that by increasing β

in the above utility functions, the performance of the network converges to maxmin fairness

provisioning. The two algorithms are compared in Figs. 5.8 and 5.9 regarding the minimum

throughput they provide for network users and fairness provisioning. Each point represents

the average of simulation results in 50 random topologies. To make the comparison fair,
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Figure 5.7: The effect of increasing parameter V is shown on the minimum throughput
(a). This is at the expense of increasing the congestion in the network (b).

we assume wireless links are completely reliable. We do not employ multipath routing

and channel coding in the network. Parameter β for the utility function is chosen to be

0, 1, and 100 which is for aggregate throughput maximization, proportional fairness, and

maxmin fairness, respectively. It is verified (Fig. 5.8) that the fairness index is improved

under DisF algorithm compared with the utility-based algorithm when β = 0 and 1. The

fairness index of the utility-based algorithm improves when β increases but at the cost of

the dramatic decrease in the minimum achieved throughput (Fig. 5.9).

5.6 Summary

In this chapter, we studied fairness provisioning in multihop wireless networks. We devel-

oped an online decentralized algorithm to schedule new data packet admission and packet

transmissions such that the minimum throughput of the network is maximized. We consid-
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Figure 5.8: DisF algorithm is compared with the utility-based approach in terms of fairness
provisioning using Jain’s fairness index. It is shown that for large values of β, the utility-
based approach has a better performance comparing with DisF algorithm. This is at the
cost of a decrease in the minimum throughput. (Fig. 5.9)
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Figure 5.9: DisF algorithm is compared with the utility-based approach when different
number of flows are using the network. It is shown that increasing β is at the cost of
decreasing the minimum throughput.
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ered networks with multipath routing and channel coding. We studied the performance of

the algorithm analytically. Through simulations, we showed that the proposed algorithm

followed the optimal centralized approach with under control degree of sub-optimality.

We also showed that the proposed algorithm improves the performance of the network

regarding fairness comparing to the other approaches which ignore fairness provisioning.

Moreover, we showed the effectiveness of channel coding on the performance of the net-

work. Finally, we showed through simulations that our proposed approach has a better

performance in terms of fairness provisioning comparing to the class of utility-based ap-

proaches. Since the proposed algorithm determines the scheduling at each time slot, it can

adapt to the dynamic changes of the wireless environment.

117



Chapter 6

Throughput-Optimal Scheduling and

Interference Alignment for MIMO

Wireless Systems

6.1 Introduction

In this chapter, we study the use of interference alignment techniques for transmission

scheduling in wireless MIMO systems with the goal of improving the network performance.

Multiple antennas can be used for data transmission between the mesh nodes and the end

users and also between the mesh nodes and the gateway. The current work in interference

alignment (see Section 1.2.5) provides signal design for interference wireless networks with

K users, when K is relatively small, by minimizing the interference leakage at each re-

ceiver. Therefore, in each transmission time all users are scheduled to transmit. However,

while in a network with many users it may be impractical for the entire users to transmit

simultaneously even employing interference alignment techniques, there is not enough at-

tention to scheduling the data transmissions in such network settings. Packet admission

control is also not considered in that body of work.

The main issue that needs to be considered in designing any network scheduling al-

gorithm is stability and to this end we apply Lyapunov stability theory. The framework
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of Lyapunov stability theory has been used to establish stable, distributed, scheduling

policies [103] for throughput maximization [105, 115] and energy minimization in single

hop [106] and multihop [107] networks. However, to the best of our knowledge, there is no

prior work on using interference alignment to improve the effective network capacity via

Lyapunov stability theory.

For interference alignment to be practical, one would need to determine a scheduling

policy and an appropriate signal design (i.e., encoding and decoding matrices) such that

the interference caused by undesired signals at each receiver is minimized. Signal design

depends on the channel conditions and the particular set of users scheduled for transmission

at that time instant. In addition, new data packets must be admitted from the upper layer

by the users subject to network stability considerations. The contributions of this chapter

are as follows:

• We formulate a joint scheduling, signal design, and packet admission control problem

with the goal of maximizing the aggregate network throughput and ensuring stability.

We also propose a centralized scheduling and interference alignment (SIA) algorithm

to solve the problem.

• Using Lyapunov stability theory, we transform the problem into a nonlinear mixed-

integer programming (MIP) problem with non-convex constraints for each time slot.

In the problem formulation, we incorporate interference alignment to construct nec-

essary conditions for minimizing the interference.

• We transform the problem with non-convex constraints into a nonlinear MIP with

convex constraints using the coordinate ascent method and semidefinite programming

(SDP) techniques. For solving the MIP problem, we propose an algorithm that is

based on the generalized Benders decomposition (GBD) method.
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• We propose a semi-distributed scheduling and interference alignment (SDSIA) algo-

rithm, which is heuristic and has lower computational complexity than SIA.

• Through simulation, we show that SIA converges to the solution after a few iterations.

We also show that SDSIA, although suboptimal, has a similar performance as SIA.

In addition, we determine the impact of the joint use of interference alignment and

scheduling on the network throughput by comparing the performance of the proposed

algorithm with two other approaches: (a) an interference alignment (IA) algorithm

which employs interference alignment techniques without scheduling and (b) greedy

maximal scheduling (GMS) which uses scheduling techniques without interference

alignment.

This chapter is organized as follows: The system model is presented in Section 6.2.

The joint scheduling, packet admission control, and signal design problem is formulated in

Section 6.3. In Section 6.4, we solve the formulated problem using the GBD method. A

semi-distributed heuristic is provided in Section 6.5. Simulation results are presented in

Section 6.6, and the chapter is concluded in Section 6.7.

6.2 System Model

Consider a single-hop MIMO wireless network. Each link, together with its dedicated

transmitter and receiver nodes, is called a user. Let K = {1, . . . , K} denote the set of

users. We assume that each user’s receiver node can hear every other user’s transmissions.

Time is divided into equal-length slots. Let T = {0, 1, . . . , T − 1} denote the set of time

slots. For each user k ∈ K, we introduce a scheduling variable ρk(t) ∈ {0, 1} such that

ρk(t)=1 if user k transmits data in time slot t, and ρk(t)=0 otherwise. We assume that a

user can send at most one data packet in each time slot.
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Figure 6.1: Network topology for wireless MIMO system with K users.

Consider the network topology shown in Fig. 6.1. User k has Mk antennas at the

transmitter node and Nk antennas at the receiver node. At each time slot t, if user k is

scheduled to transmit, it prepares a data packet xk(t) as a vector of symbols of size dk.

Then, the transmitter node of user k encodes the data packet with an encoding matrix

Vk(t) ∈ C
Mk×dk , where C denotes the set of complex numbers, and transmits the encoded

Mk × 1 vector over its Mk antennas.

For two users k, l ∈ K, the wireless channel between the transmitter node of user k and

the receiver node of user l is modeled by matrix Hlk(t) of size Nl ×Mk. At the receiver

node of user l, the packet is received as an Nl × 1 vector and is decoded using decoding

matrix Ul(t) ∈ CNl×dl . The decoded data packet yl(t) at time slot t can be represented as

yl(t) =
∑

k∈K
ρk(t)U

∗
l (t)Hlk(t)Vk(t)xk(t) +U∗l (t)nl(t), (6.1)

where matrix U∗l (t) is the conjugate transpose of Ul(t) and nl(t) is the additive white

Gaussian noise (AWGN) at the receiver node of user l.

Interference alignment techniques aim at minimizing the projection of the interfering

signal within the interference-free subspace of the receiver. For ideal interference align-
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ment, we need to determine the encoding matrices V1(t), . . . ,VK(t) and decoding matri-

ces U1(t), . . . ,UK(t) such that for each user l there is zero interference from other users

k ∈ K (k 6= l) projected into the interference-free subspace of the receiver node of user l,

and the desired signal is received through a full rank channel matrix, i.e.,

U∗l (t)Hlk(t)Vk(t) = 0, ∀ k, l ∈ K, k 6= l, (6.2)

rank(U∗k(t)Hkk(t)Vk(t)) = dk, ∀ k ∈ K. (6.3)

Note that (6.2) and (6.3) are the interference alignment feasibility conditions [70]. However,

complete suppression of interference at the receiver may not be practical.

Let Il(t) =
∑

k∈K, k 6=l Ilk(t) denote the total interference leakage for any user l ∈ K,

where

Ilk(t) =
1

dk
tr (U∗l (t)Hlk(t)Vk(t)V

∗
k(t)H

∗
lk(t)Ul(t)) (6.4)

denotes the interference leaked by the transmitter of user k at the receiver of user l [70],

and tr(·) denotes the trace of a matrix. Thus, at each time slot t, we aim to keep Il(t) for

any scheduled user l ∈ K below a user specified threshold ǫ. That is,

ρl(t)Il(t) ≤ ǫ. (6.5)

For scheduled user k, the received signal should be larger than the receiver threshold Pth.

That is,

Ikk(t) ≥ Pthρk(t), ∀ k ∈ K. (6.6)

Equations (6.5) and (6.6) ensure that the interference from undesired signals is sufficiently

suppressed at each receiver node l. On the other hand, if the corresponding transmitter
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k is scheduled to transmit, the desired signal is sufficiently strong. To ensure error-free

decoding at the receivers, Pth and ǫ have to be properly chosen. Note that Il(t) in (6.5)

is the summation of the interference received at receiver l from all transmitters including

those not scheduled at time slot t (ρk(t) = 0). Therefore, for (6.5) to be satisfied, we require

elements of the encoding matrices for not scheduled users as well. Including non-scheduled

users has no effect on the final solution.1

Each user’s transmitter node performs admission control and maintains a backlog queue.

Let Qk(t) denote the number of packets that are waiting to be sent in the backlog queue

of user k at time slot t. Let αk(t) denote the number of packets that are admitted into the

queue backlog of user k by the upper layer at time slot t. We assume that the number of

admitted packets in each time slot is bounded by a constant αmax. That is, αk(t) ≤ αmax,

for all k ∈ K.

The backlog at the transmitter node of user k, Qk(t), can be modeled as a queue with

arrival process αk(t) and service process ρk(t). That is,

Qk(t + 1) ≤ max{Qk(t)− ρk(t), 0}+ αk(t), ∀ k ∈ K. (6.7)

We use the notion of strong stability [116]. The network is strongly stable if

lim
T→∞

sup
1

T

∑

t∈T

∑

k∈K
E{Qk(t)} <∞. (6.8)

The expectation is taken over all possible channel states. If the network is stable, then the

admission rate, αk(t) at each transmitter node of user k ∈ K is also the throughput at the

1Note that we can avoid the involvement of the encoding matrices of not scheduled users by adding
the term ρk(t) in the expression of Il(t). However, this formulation does not lead to a tractable problem.
On the other hand, it can be easily shown that the optimal solutions for both formulations are the same
regarding the variables of scheduled users. The obtained solution for the variables of users that are not
scheduled can be ignored.
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corresponding receiver node. The average throughput for user k ∈ K in T time slots is

ᾱk =
1

T

∑

t∈T
E{αk(t)}. (6.9)

The aggregate network throughput is

ᾱ =
∑

k∈K
ᾱk =

1

T

∑

t∈T

∑

k∈K
E{αk(t)} =

1

T

∑

t∈T
E{α(t)}, (6.10)

where α(t) =
∑

k∈K αk(t) denotes the total number of packets that are admitted by the

upper layer at time slot t. Finally, we define Π as the set of all admission rates ᾱ =

(ᾱ1, . . . , ᾱK) that satisfy the inequality in (6.8). That is, the network is stable when

ᾱ ∈ Π.

6.3 Problem Formulation

We now present the joint scheduling, admission control, and signal design problem formu-

lation. The goal is to maximize the aggregate throughput of the network such that all

queues remain stable. The optimization problem can be formulated as follows:

maximize
α(t), ρ(t), U(t), V(t), t∈T

ᾱ

subject to ᾱ ∈ Π, k ∈ K,

Ikk(t) ≥ Pthρk(t), k ∈ K, t ∈ T

ρk(t)Ik(t) ≤ ǫ, k ∈ K, t ∈ T

ρk(t) ∈ {0, 1}, k ∈ K, t ∈ T

0 ≤ αk(t) ≤ αmax, k ∈ K, t ∈ T

(6.11)

where α(t) = (α1(t), . . . , αK(t)) denotes the vector of admitted packets at time slot t,
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ρ(t) = (ρ1(t), . . . , ρK(t)) denotes the scheduling vector, and U(t) and V(t) denote the set

of all matrices Uk(t) and Vk(t) for k ∈ K, respectively. In problem (6.11), the objective

function is the aggregate network throughput over all time slots. The first constraint is

the network stability constraint and ensures that the obtained solution leads to a stable

network. The second and third constraints ensure the scheduling variables as well as the

encoding and decoding matrices are selected such that the admitted data packets can be

transmitted successfully. Note that Pth and ǫ are not independenet. They must be chosen

such that the signal to interference plus noise ratio is greater than a threshold Γth, that

is Pth/(ǫ + σ2
n) ≥ Γth. Instead of solving problem (6.11) to obtain the solutions for all

time slots, we decompose this problem into multiple problems, one for each time slot. The

solution to each problem gives suitable values for the variables in that particular time slot.

We formulate the problems such that their solutions lead to the solution of problem (6.11).

For this purpose, we first present some preliminaries.

We begin by summarizing some aspects of Lyapunov stability theory. Let the Lyapunov

function L(Q(t)) be a non-negative function of a vector Q(t) = (Q1(t), . . . , QK(t)). The

Lyapunov drift is defined as ∆(Q(t)) , E{L(Q(t+ 1))− L(Q(t)) | Q(t)}.

Proposition 6.1 (Lyapunov Optimization [103]) Let α(t) be the utility function at time

t, and A > 0, ε > 0, and Z > 0 be constants such that for all time slots t and queue vectors

Q(t), we have

∆(Q(t))− ZE{α(t) | Q(t)} ≤ A− ε
∑

k∈K
Qk(t)− Zα∗, (6.12)

where α∗ can be any target value for utility function α(t). Then, we have

αinf ≥ α∗ − A/Z, (6.13)
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lim
T→∞

sup
1

T

∑

t∈T

∑

k∈K
E{Qk(t)} ≤ A+ Z(αsup − α∗)

ε
,

where αinf = limT→∞ inf 1
T

∑

t∈T E{α(t)} and αsup = limT→∞ sup 1
T

∑

t∈T E{α(t)}.

The proof of the proposition can be found in [103, pp. 82-84]. Proposition 6.1 implies

that by satisfying inequality (6.12) at each time slot t, we can approach the target point

α∗ while the queue backlogs remain stable. Note that the larger the parameter Z, the

closer we can get to α∗. This is at the expense of a linear increase in the aggregate queue

backlog. Consider Lyapunov function L(Q(t)) = (1/2)
∑

k∈KQ
2
k(t). Before calculating the

Lyapunov drift, we state the following lemma.

Lemma 6.1 For any positive Q1, Q2, ρ, and α, if Q1 ≤ max[Q2 − ρ, 0] + α, then

Q2
1 ≤ Q2

2 + ρ2 + α2 − 2Q2(ρ− α). (6.14)

The proof can be found in [103, 116]. According to Lemma 6.1 and inequality (6.7), we

have

Q2
k(t + 1) ≤ Q2

k(t) + ρ2k(t) + α2
k(t)− 2Qk(t)(ρk(t)− αk(t)), (6.15)

for all k ∈ K. Thus, we can write

∆(Q(t))− ZE{α(t) | Q(t)} = E{L(Q(t + 1))− L(Q(t)) | Q(t)} − ZE{α(t) | Q(t)}

≤ Amax −
∑

k∈K E{Qk(t)(ρk(t)− αk(t)) | Q(t)} − ZE
{
∑

k∈K αk(t) | Q(t)
}

, (6.16)

where Amax = K(1 + α2
max)/2. Note that inequality (6.16) holds for any algorithm.

Now, we present the SIA algorithm. In each time slot t, SIA selects the admission

vector α(t), scheduling vector ρ(t), encoding and decoding matrices V(t) and U(t), such
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that the following problem is solved:

maximize
α(t), ρ(t), U(t), V(t)

∑

k∈K
(Qk(t)ρk(t) + αk(t)(Z −Qk(t)))

subject to Ikk(t) ≥ Pthρk(t), k ∈ K,

ρk(t)Ik(t) ≤ ǫ, k ∈ K,

ρk(t) ∈ {0, 1}, k ∈ K,

0 ≤ αk(t) ≤ αmax, k ∈ K.

(6.17)

Maximizing the objective function of problem (6.17) is equivalent to minimizing the righ

hand side of (6.16). The first set of constraints ensures that the desired signal is received

at the receiver if the corresponding user is scheduled for transmission. The second set of

constraints implies that the interference produced by the other users in the interference free

subspace of any receiver which is scheduled for receiving data is suppressed. In Theorem

6.1, we explain why solving problem (6.17) leads to the optimal solution of problem (6.11).

Theorem 6.1 Let the SIA algorithm solve problem (6.17) in each time slot t. Then, SIA

is throughput-optimal.2 The throughput ᾱ is at most Amax/Z away from the optimal value

α∗.

Before proceeding to the proof, we note that a channel state-only (CSO) algorithm is an

algorithm which makes (possibly random) decisions based on only the observed state of

the channels. CSO algorithms require global knowledge of the channel state.

Proof Suppose there exists a channel state-only (CSO) algorithm which determines ρ(t),

Vk(t) and Uk(t) for k ∈ K, and α(t) for all t ∈ T , such that the network is stable and the

2Throughput optimality means that the algorithm can provide a larger aggregate throughput than any
other algorithm while maintaining stability [117].
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network throughput is equal to the optimal value α∗. Since the network is stable, we have

stable queues at all transmitters and therefore an ε > 0 can be found such that

E{ρk(t) | Q(t)} > E{αk(t) | Q(t)} + ε, ∀ k ∈ K. (6.18)

From (6.16) and (6.18), for the CSO algorithm, we have

∆(Q(t))− ZE{α(t) | Q(t)} ≤ Amax − ε
∑

k∈K
Qk(t)− Zα∗. (6.19)

Recall that (6.16) is true for any algorithm including SIA. The SIA algorithm selects the

variables which solve problem (6.17). Maximizing the objective function in problem (6.17)

in all time slots is equivalent to minimizing the right hand side of (6.16). Thus, for SIA,

the right hand side of inequality (6.16) is smaller than its value for any other algorithm

including the CSO algorithm which in turn is smaller than the right hand side of (6.19).

Therefore, we obtain (6.19) also for the SIA algorithm. This is the necessary condition

(6.12) in Proposition 6.1 and leads to (6.13). Therefore, SIA can support any target value

for the aggregate throughput α∗ that can be achieved with any CSO algorithm. �

Note that Theorem 6.1 assumes that α∗ is an achievable throughput, which implies that

there exists a CSO algorithm that achieves throughput α∗. In fact, the theorem states that

the SIA algorithm is able to achieve any target throughput α∗ that is feasible. Clearly, the

maximum feasible throughput is the optimal value. Note that we can maximize the second

term in the objective function in problem (6.17) independent of the first term by setting

αk(t) = αmax whenever Qk(t) ≤ Z, and αk(t) = 0 otherwise (∀ k ∈ K). Thus, we have the
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following problem:

maximize
ρ(t), U(t), V (t)

∑

k∈K
Qk(t)ρk(t)

subject to Ikk(t) ≥ Pthρk(t), k ∈ K,

ρk(t)Ik(t) ≤ ǫ, k ∈ K,

ρk(t) ∈ {0, 1}, k ∈ K.

(6.20)

In problem (6.20), the objective is to maximize the number of scheduled users where each

user is weighted with its corresponding queue backlog.

6.4 Scheduling and Interference Alignment (SIA)

Algorithm

Problem (6.20) is a nonlinear mixed integer programming (MIP) problem with nonlinear

constraints. The multiplicative terms in Ilk(t) make the problem hard to solve. We use

several techniques to convert problem (6.20) into simpler problems that can be solved

efficiently. Using those techniques may result in a sub-optimality in the obtained solution.

First, to deal with the multiplicative terms Ul(t) and Vk(t) in Ilk(t), we use the coordinate

ascent method [118] and solve problem (6.20) iteratively by solving two separate problems

at the transmitter and receiver sides. The new problems are still non-convex. Then, we

use semidefinite programming (SDP) techniques to convert each problem into a linear MIP

problem. Finally, we use generalized Benders decomposition (GBD) to solve the formulated

MIPs. For the reminder of the discussion, we assume data packet xk(t) to be a scalar, that

is dk = 1 for all users k ∈ K. This means at each time slot, each scheduled transmitter

sends a single symbol stream.

Using the coordinate ascent method [118], problem (6.20) can be separated into prob-

lems at the transmitter and receiver side, respectively. At each side, the signal design
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parameters related to the other side are considered as given input parameters. Since the

problem is non-convex, this may lead to a sub-optimal solution. The problem at the

transmitter side is

maximize
ρ(t),V (t)

∑

k∈K
Qk(t)ρk(t)

subject to V∗k(t)Fkk(t)Vk(t) ≥ Pthρk(t), ∀ k ∈ K,

ρl(t)
∑

k∈K, k 6=l
V∗k(t)Flk(t)Vk(t) ≤ ǫ, ∀ l ∈ K,

ρk(t) ∈ {0, 1}, ∀ k ∈ K,

(6.21)

where Flk(t) = H∗lk(t)Ul(t)U
∗
l (t)Hlk(t). The objective function in problem (6.21) is linear

in ρk(t). It can be shown that V∗k(t)Fkk(t)Vk(t) is convex in Vk(t) for each k ∈ K.3

Therefore, the second set of constraints is convex while the first set is non-convex. To deal

with the non-convexity in the first set of constraints, we use Lemma 6.2.

Lemma 6.2 For any vector a ∈ CN and matrix B ∈ CN×N , we have a∗Ba = tr(BA),

where A = aa∗.

Proof The lemma is proved by simply expanding both sides of the equality. �

We rewrite V∗k(t)Flk(t)Vk(t) as tr(Flk(t)Wk(t)), where Wk(t) = Vk(t)V
∗
k(t). Note

that for this to be true, we need Wk(t) to be a rank one matrix, ∀ k ∈ K. Let W(t) denote

the set of all Wk(t), ∀ k ∈ K.

We also modify the second set of constraints in problem (6.21) to separate admission

3The convexity can be proved by verifying that the corresponding Hessian is positive semidefinite.
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variables ρ(t) from the other variables. Problem (6.21) can be transformed as

maximize
ρ(t),W (t)

∑

k∈KQk(t)ρk(t)

subject to tr(Fkk(t)Wk(t)) ≥ Pthρk(t), ∀ k ∈ K,
∑

k∈K, k 6=l
tr(Flk(t)Wk(t)) ≤ ǫ+B(1− ρl(t)), ∀ l ∈ K,

ρk(t) ∈ {0, 1}, ∀ k ∈ K,

rank(Wk(t)) = 1, ∀ k ∈ K.

(6.22)

In problem (6.22), the objective function and the first two constraints are linear. However,

the rank constraint makes the problem non-convex. The positive constant B is chosen large

enough, and therefore, the second set of constraints has to be satisfied only if ρl(t) = 1.

Nevertheless, (6.22) is a computationally-demanding nonlinear mixed integer optimization

problem.

Similarly, the receiver-side problem can be formulated as

maximize
ρ(t), X(t)

∑

k∈KQk(t)ρk(t)

subject to tr(Gkk(t)Xk(t)) ≥ Pthρk(t), ∀ k ∈ K,
∑

k∈K, k 6=l
tr(Glk(t)Xl(t)) ≤ ǫ+B(1− ρl(t)), ∀ l ∈ K,

ρk(t) ∈ {0, 1}, ∀ k ∈ K,

rank(Xk(t)) = 1, ∀ k ∈ K.

(6.23)

where Glk(t) = Hlk(t)Vk(t)V
∗
k(t)H

∗
lk(t) and Xk(t) = Uk(t)U

∗
k(t) for ∀ k, l ∈ K.

To solve the nonlinear mixed-integer optimization problem (6.22), we use the GBD

method [84]. We decompose the problem into two problems: a primal problem and amaster

problem. The primal problem is a relaxed SDP problem which is a convex optimization

problem with the encoding vectors V(t) as variables when the other variables are fixed
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and it yields an upper bound for the final solution. The master problem is an MIP with

binary variables ρ(t) when the other variables are fixed and it yields a lower bound for the

solution. We iteratively solve primal and master problems until their solutions converge.

In this subsection, since we are discussing the solution of problem (6.22) in one particular

time slot t, for ease of notation, we drop the time index t.

Primal problem (mth iteration)

The input parameters (i.e., constants) include ρ(m) (obtained from the master problem in

the mth iteration). The primal problem is as follows:

minimize
W

−
∑

k∈K
Qkρ

(m)
k

subject to tr(FkkWk) ≥ Pthρ
(m)
k , ∀ k ∈ K,

∑

k∈K, k 6=l
tr(FlkWk) ≤ ǫ+B(1− ρ

(m)
l ), ∀ l ∈ K,

Wk � 0, ∀ k ∈ K.

(6.24)

In problem (6.24), the objective function is a constant. The two sets of constraints are

linear inWk. Problem (6.24) is a standard form SDP and it can be solved by using a convex

optimization solver such as CVX [119]. Note that in problem (6.24), the rank constraint

rank(Wk) = 1, ∀ k ∈ K, is relaxed. Having solved the primal problem, we use eigen-

decomposition to obtain a rank-one approximation of the obtained solutions Wk. Thus,

V
(m)
k =

√
γkqk, where γk is the largest eigenvalue of matrixWk and qk is the corresponding

eigenvector. Note that the rank-one approximation leads to a sub-optimal solution. From

the solver, the corresponding Lagrange multipliers, λ(m) = {λk(m)
1 , λ

l(m)
2 , ∀ k, l ∈ K}, for

the first and second set of constraints in problem (6.24) can also be obtained. The solution

to primal problem W(m) is used as an input to formulate the master problems for the next

iterations.
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Given the input parameters ρ(m), if problem (6.24) is infeasible, then we formulate

an l1-minimization problem (6.25) as in [84] and use its corresponding solution V(m) to

continue to the master problems in the next iterations.

minimize
W�0, β1, β2

∑

k∈K

(

β1
k + β2

k

)

subject to tr(FkkWk) + β1
k ≥ Pthρ

(m)
k , ∀ k ∈ K,

∑

k∈K, k 6=l
tr(FlkWk) ≤ β2

l + ǫ+B(1− ρ
(m)
l ), ∀ l ∈ K,

β1
k , β

2
k ≥ 0, ∀k ∈ K.

(6.25)

Problem (6.25) is an SDP problem and is always feasible. Similar to (6.24), the correspond-

ing Lagrange multipliers λ
k(m)
1 , λ

l(m)
2 , ∀ k, l ∈ K, can be obtained. We define M and M′ as

the set of all iteration numbers at which the primal problem is feasible and infeasible, re-

spectively. Note that similar to (6.24), in (6.25) the rank constraint rank(Wk) = 1, ∀ k ∈ K,

is relaxed. Therefore, we use a similar technique to find a rank-one approximation on the

obtained solutions Wk.

Master problem (mth iteration)

The input parameters are V(n) and λ(n) (obtained from the primal problem), where vector

λ(n) is a concatenation of λ
k(n)
1 , λ

k(n)
2 , for k ∈ K, n ∈ M∪M′. The master problem is

minimize
µ, ρ

µ

subject to µ ≥ Λ
(

ρ,V(n),λ(n)
)

, n ∈ M,

0 ≥ Λ′
(

ρ,V(n),λ(n)
)

, n ∈ M′,

(6.26)
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where

Λ′
(

ρ,V(n),λ(n)
)

=
∑

k∈K
λ
k(n)
1 (Pthρk −V

(n)∗

k FkkV
(n)
k )

+
∑

l∈K
λ
l(n)
2

(

∑

k∈K, k 6=l
V

(n)∗

k FlkV
(n)
k − (ǫ+B(1− ρl))

)

, (6.27)

for all n = 1, . . . , m− 1, and

Λ
(

ρ,V(n),λ(n)
)

= −
∑

k∈K
Qkρk + Λ′

(

ρ,V(n),λ(n)
)

, (6.28)

for all n ∈ M. Problem (6.26) is an MIP that can be solved by an integer program solver

such as MOSEK [89].

GBD algorithm

By weak duality [81, p. 225], in each iterationm, the solution of the master problem (6.26),

µ(m), is a lower bound for the optimum of problem (6.22). Moreover, in each iteration,

the master problem has one additional constraint compared to the one formulated in the

previous iteration and therefore, its optimum is equal to or greater than that of the previous

iteration. Thus, the lower bounds on problem (6.22) achieved through solving the master

problem in each iteration are non-decreasing. Since the integer variables are fixed in primal

problem (6.24), its optimal value is always equal or worse (greater) than the optimal value

of problem (6.22). Therefore, it provides an upper bound for the optimal value of problem

(6.22). However, the order of the obtained upper bounds may be non-decreasing. We set

the upper bound in each iteration equal to the minimum of all upper bounds achieved by

that iteration. We solve master problem (6.26) in each iteration and then solve primal

problem (6.24) given the optimal solution of the master problem. Since problem (6.22)
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is always feasible, monotonicity of the obtained upper bounds and lower bounds causes

the GBD algorithm to converge to the solution. The GBD method solves problem (6.22)

Algorithm 6.1 Generalized Benders decomposition (GBD) method.

1: Initialization: ρ(1), M := ∅, M′ := ∅, and m := 1.
2: Obtain V(m),λ(m) by solving primal problem (6.24).
3: M := M∪{m}.
4: flag := 1.
5: while flag 6= 0 do

6: Set m := m+ 1.
7: Solve master problem (6.26) and obtain ρ(m), and the mth lower bound (LB(m)).
8: Solve primal problem (6.24) and obtain V(m),λ(m), and the mth upper bound (UB(m)).
9: if problem (6.24) is infeasible then

10: Solve problem (6.25) and obtain V(m),λ(m), and UB(m).
11: M′ := M′ ∪ {m}.
12: else

13: M := M∪{m}.
14: end if

15: if |LB(m) − UB(m)| ≤ ξ then

16: flag := 0.
17: end if

18: end while

as shown in Algorithm 6.1. After initialization, in the first iteration, the primal problem

(6.24) is solved given the initial ρ(1) (lines 1-2). The only condition for ρ(1) is that problem

(6.24) must be feasible at the initial point. Since scheduling only one user to transmit

is always possible, the corresponding binary point creates a feasible primal problem and

can be used as an initial point. In the mth iteration (m > 1), master problem (6.26) is

formulated using V(n), λ(n) for n ∈ M ∪ M′ (line 7) and the mth lower bound µ(m) is

obtained. Then, the optimal solution of master problem (6.26), ρ(m), is used to formulate

the primal problem (6.24) and V(m) is obtained as well as the mth upper bound (line 8).

If problem (6.24) is not feasible, l1-minimization problem (6.25) is solved, V(m) and the

mth upper bound are obtained and the iteration number is stored in M′ (lines 9-11). If

problem (6.24) is feasible, the iteration number is stored in M (line 13). In iteration m

when the difference between the mth lower bound and the mth upper bound is less than a
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threshold ξ, the solution is obtained and is equal to V(m), ρ(m) (lines 15-17).

The SIA algorithm is presented in Algorithm 6.2. It is initialized with encoding and

decoding matrices V(0)(t), U(0)(t) (line 1). For each user k ∈ K, if the queue backlog

Qk(t) is less than Z, αmax packets are admitted (lines 2-6). In iteration n > 0, Problem

(6.22) is formulated using U(n−1)(t) as input and the optimal solution V(n)(t) and ρ(n)(t)

is obtained (line 11). Then, using V(n)(t) as given, problem (6.23) is formulated and

the optimal solution U(n)(t) is obtained (line 12). If the difference between the current

solution and the previous solution is less than η, then the obtained solution is equal to

V(n)(t), U(n)(t), and ρ(n)(t) (lines 13-15).

Algorithm 6.2 Efficient scheduling and interference alignment (SIA) algorithm. SIA is
run at each time slot t, and takes the queue backlogsQ(t) and the channel state information
as inputs. It is initialized with Z, η, αmax, Pth, and ǫ.

1: Initialization U(0)(t), V(0)(t), and α(t) := 0.
2: for each k ∈ K do

3: if Qk(t) ≤ Z then

4: αk(t) := αmax.
5: end if

6: end for

7: n := 0.
8: Set flag := 1.
9: while flag 6= 0 do

10: Set n := n+ 1.
11: Formulate problem (6.22) using U(n−1)(t) and solve it with GBD (Algorithm 6.1) to obtain

V(n)(t), ρ(n)(t).
12: Formulate problem (6.23) using V(n)(t) and solve it with GBD (similar to Algorithm 6.1)

to obtain U(n)(t), ρ(n)(t).

13: if
∑

k∈K(||V
(n)
k (t)−V

(n−1)
k (t)|| + ||U(n)

k (t)−U
(n−1)
k (t)||+ |ρ(n)k (t)−ρ

(n−1)
k (t)|) ≤ η then

14: flag := 0. \\ The algorithm is converged.
15: end if

16: end while
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6.5 Semi-Distributed Scheduling and Interference

Alignment (SDSIA) Algorithm

The SIA algorithm presented in the previous section can determine an efficient solution,

but it has a high computational complexity. In this section, we propose a semi-distributed

scheduling and interference alignment algorithm. The proposed SDSIA algorithm has two

parts. The first part is shown in Algorithm 6.3. It is executed at each time slot and has

three phases.

1) Transmission scheduling (lines 2-6, 24-27): The candidate set S is the set of all

users which have at least one packet to send. Then, the user k′ with the largest number

of packets in its queue backlog is considered as a scheduled user (ρk′(t) = 1). The chosen

user is removed from the candidate set. The optimum signal design is obtained and its

feasibility is checked regarding the first two sets of constraints in problem (6.20) through

signal design and feasibility check phases. If the scheduled set is not feasible, then the

most recently added user is removed from the scheduled set (i.e., ρk′(t) = 0). The above

process is repeated until the candidate set is empty.

2) Signal design (lines 7-17): When there is only one user to be scheduled, its cor-

responding matrix Ul(t) is set equal to a preset value U0(t). For the case when more

than one user is scheduled, the signal design is obtained based on interference alignment

techniques. The goal is to minimize the interference leakage Il(t) at all receivers whose

corresponding transmitters are scheduled to transmit in time slot t. Therefore, we need to

set the columns of matrix Ul(t) equal to the vectors spanning the subspace with the least

interference [70]. At each receiver l with ρl(t) = 1, we determine

El(t) =
∑

k∈K,k 6=l, ρk(t)=1

Hlk(t)Vk(t)V
∗
k(t)H

∗
lk(t). (6.29)
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We set Ul(t)=〈El(t)〉dl, where 〈El(t)〉dl is a matrix consisting of the eigenvectors of matrix

El(t) corresponding to its dl smallest eigenvalues. Those vectors span the subspace with

the least interference.

Algorithm 6.3 Semi-distributed scheduling and interference alignment (SDSIA) algo-
rithm. SDSIA is run at each time slot t, and takes the queue backlogs Q(t), and channel
state information as input. It is initialized with αmax, Z, Pth, ǫ, and preset decoding matrix
U0(t).

1: Initialization: Set ρ(t) = 0, V(t).
2: Initialize candidate set S of all users that have data to send.
3: while S 6= ∅ do

4: Set k′ := argmax
k∈S

Qk(t).

5: Set ρk′(t) := 1.
6: S := S\{k′}.
7: for each {l ∈ K | ρl(t) = 1} do

8: El(t) := [0]Nl×Nl .
9: for each {k ∈ K | k 6= l, ρk(t) = 1} do

10: El(t) := El(t) +Hlk(t)Vk(t)V
∗
k(t)H

∗
lk(t).

11: end for

12: if
∑

k∈K ρk(t) = 1 then

13: Ul(t) := U0(t).
14: else

15: Ul(t) := 〈El(t)〉dl .
16: end if

17: end for

18: feasibility := 1.
19: for each {l ∈ K | ρl(t) = 1} do

20: if (Ill(t) < Pth) || (Il(t) > ǫ) then
21: Set feasibility := 0.
22: end if

23: end for

24: if feasibility 6= 1 then

25: ρk′(t) := 0.
26: end if

27: end while

3) Feasibility check (lines 18-23): In each iteration, having obtained the scheduled set

of users and the signal design V(t) and U(t), the feasibility of the design is checked based

on the interference alignment requirements. If the desired signal strength is higher than
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Pth at all receivers (i.e., the first set of constraints in problem (6.20) is satisfied), and the

interference strength is also less than threshold ǫ (the second set of constraints in (6.20) is

satisfied), then the design is feasible.

To be able to implement the signal design and feasibility check phases in a semi-

distributed manner, we have to run the algorithm in both transmitters and receivers in a

receiver-based manner. That is, at the transmitters a similar algorithm as at the receivers

is executed using channel reciprocity. At each time slot t, Algorithm 6.3 is first run at the

receivers where the encoding matrices V(t) are set equal to an initial value and decoding

matrices U(t) as well as ρ(t) are obtained. At the transmitters, using channel reciprocity

and the obtained results for U(t), we set

←
Hkl (t) = H∗lk(t), ∀ k, l ∈ K, (6.30)

←
Vk (t) = Uk(t), ∀ k ∈ K. (6.31)

We use
←
(.) to denote the corresponding variables when the algorithm is run at the trans-

mitter. Then, the algorithm is run at the transmitters in a similar way as at the receivers

and encoding matrices V(t) are obtained by finding
←
U(t). Signal design matrices U(t) and

V(t) and the obtained schedule
←
ρ (t) are then used for data transmission.

In the transmission scheduling phase, we use the greedy maximal scheduling (GMS) pol-

icy [114] to maximize the first term in the objective function of (6.17) in a semi-distributed

manner. GMS is sub-optimal and may be implemented in a distributed manner. It has

been shown in [114] that in the 1-hop interference model, GMS can achieve at least half

of the throughput achieved by the optimal policy. We refer to SDSIA as semi-distributed

because the information related to the queue backlogs, encoding matrices, and design fea-
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sibility must be passed between users via control messages. Then, each phase will be

performed at each user in a distributed manner.

The second part of SDSIA (i.e., admission control) is performed in a distributed manner

in each transmitter. Each user k ∈ K checks if the number of packets waiting to be sent in

its queue Qk(t) is less than design parameter Z. In this case, it admits αmax packets into

the queue.

6.6 Performance Evaluation

We now present the simulation results of the SIA algorithm as well as the heuristic SDSIA

algorithm. First, we show the convergence of the SIA algorithm in one time slot. Then, we

show how the SDSIA algorithm follows the SIA algorithm when the algorithm parameters

Pth and ǫ and the number of users K change. Finally, we compare our heuristic SDSIA

algorithm with two other approaches: (i) an approach that is based only on interference

alignment but without greedy scheduling and (ii) an approach that uses GMS but not

interference alignment. We run the simulations for the network topology shown in Fig.

6.1. We assume that the channel coefficients in matrices Hlk(t), ∀ k, l ∈ K, follow a

complex Gaussian distribution. In our simulations, we set the number of antennas at both

transmitters and receivers to be equal to two. dk is set to be one.

We verify the convergence of the SIA algorithm in one particular time slot and for

one particular channel realization. Fig. 6.2 shows the optimum of primal problem (6.24),

(6.25), and master problem (6.26) in a network with 5 and 10 users. The algorithm is

run in a time slot at which all users have 50 packets in their backlog queues. As shown

in Fig. 6.2, for the case of K = 5, after five iterations the lower bound and upper bound

converge to the value of −150 which corresponds to the solution allowing users 1, 3, and 5

to send their packets. The number of iterations increases with the number of users in the
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Figure 6.2: Convergence of SIA algorithm is shown in one time slot when there are 5 and
10 users in the network.

network. For K = 10, the algorithm converges to the value of −300 after 62 iterations and

schedules users 1, 3, 5, 6, 8, and 10. Note that if the primal problem (6.24) is infeasible in

one iteration, the upper bound gets the value of the last feasible primal problem in that

iteration. We observe that the optimum for the master problem is non-decreasing.

Fig. 6.3 shows the optimum of problem (6.20) in one time slot for the SIA and SD-

SIA algorithms when interference leakage threshold ǫ increases from 0 to 100. During the

increase of ǫ, we also increase the receiver threshold Pth to keep the signal to interference

ratio constant. We set the number of users to be five and, in that particular time slot, each

user has 50 data packets to send. We run the SDSIA algorithm 2000 times for the same

channel realization to make the results independent of the random behaviour of the SDSIA

algorithm. We also run the simulations for both algorithms for 100 different channel real-

izations. We know that when ǫ increases, it is easier to satisfy the second set of constraints

in problem (6.20) leading to an increase in the optimum value. However, the increase in

the interference leakage threshold increases the interference in the receivers. Therefore,
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Figure 6.3: The optimal value of problem (6.20) changes for both the SIA and SDSIA
algorithms when interference leakage threshold ǫ and receiver threshold Pth change.

we need to increase the receiver threshold Pth to maintain the signal to interference ratio

constant which makes it harder to satisfy the first constraint in problem (6.20). This causes

a decrease in the optimum value. The results in Fig. 6.3 show that the optimal value of

problem (6.20) first increases when ǫ increases to an optimal value after which the effect

of increasing Pth dominates and the optimal value of problem (6.20) decreases. It is shown

that the SIA algorithm achieves up to 0.77 transmissions per user (the objective function

is 194) when ǫ = 5. We can also see that the heuristic SDSIA algorithm finds solutions

that are within 85% of optimality.

Fig. 6.4 shows the average number of transmissions per user in one particular time slot

when the number of users changes. The complexity of the SIA algorithm increases with

the number of users. Thus, we consider no more than 10 users for this part of our study.

Again, consider a time slot in which each user has 50 data packets to send. We choose

Pth=10 and ǫ=1 for this set of simulations. We see that for both approaches, the number

of transmissions per user decreases when the number of users increases. We also observe

that the SDSIA algorithm is at least within 70% (90% on average) of optimality.
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Figure 6.4: The number of transmissions per user is shown when the number of users K
increases.

To highlight the effect of the two separate techniques employed in the SDSIA algo-

rithm (interference alignment and greedy maximal scheduling), in Fig. 6.5 we compare

the heuristic with two other algorithms in a wireless MIMO system. The IA algorithm

uses interference alignment and all users transmit in each time slot (no GMS). The GMS

algorithm uses greedy maximal scheduling (no interference alignment). We set Pth = 10,

ǫ=1, and all backlog queues are initially empty. We vary the number of users from 1 to 15.

Each simulation run is for 1000 time slots. Each data point in Fig. 6.5 shows the average

data rate achievable for each user R = 1
K

∑

l∈KRl using each approach and is the aver-

age over several simulation runs. Rl = 1
T

∑

t∈T Rl(t), where Rl(t) = log2 det(1dl×dl +

U∗l (t)HllVl(t)V
∗
l (t)H

∗
ll(t)Ul(t)(1dl×dl +

∑

k 6=lU
∗
l (t)HlkVk(t)V

∗
k(t)H

∗
lk(t)Ul(t))

−1), is the

data rate of user l in time slot t. We can see that for all approaches, the average achievable

data rate decreases when the number of users increases. Clearly, for one user we have the

same performance for all algorithms. When the number of users is two, GMS’s perfor-

mance is decreased to half. This is because the data rate Rl(t) is constant in GMS and
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Figure 6.5: The average per user achievable data rate is shown when the number of users
increases from 1 to 20.

therefore, it cannot schedule both users at the same time using the same rate. However,

interference alignment techniques are able to allow both users to transmit with lower rate

and therefore, SDSIA and IA’s performances are the same and better than that of GMS.

When the number of users increases, the IA algorithm which schedules all users to trans-

mit in each time slot, has the highest number of transmitted packets per user. However,

the interference created by the transmitting users decreases the average data rate. The

SDSIA algorithm which employs both interference alignment and scheduling outperforms

the other two approaches.

6.7 Summary

In this chapter, we considered efficient joint scheduling, packet admission control, and in-

terference alignment in wireless MIMO systems with many users. We formulated the cor-

responding optimization problem as a nonlinear mixed integer programming problem with

non-convex constraints and used a sequence of mathematical tools to solve the problem.
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We also developed a heuristic algorithm, which is computationally efficient. In addition,

in our simulation studies, we observed that the heuristic is within 90% of optimality on

average. We showed through simulations that our approach can dramatically improve the

network performance when compared with systems that employ either only interference

alignment or only scheduling. The presented work suggests, in essence, that network per-

formance can be improved by considering interference alignment and scheduling decisions

in a common framework.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the results and highlight the contributions of this thesis.

We also suggest several topics for future work.

7.1 Research Contributions

• In Chapter 2, we considered data rate and channel code rate allocation in wireless

networks with multipath routing and channel coding. We formulated a network util-

ity maximization problem with the goal of improving network fairness with unreliable

links. We considered both adaptive and non-adaptive coding schemes. We also de-

veloped our rate allocation algorithm such that it can adapt with fast changes in the

network due to varying channel conditions and mobility. We studied the effects of

fast fading on the performance of our algorithm.

• In Chapter 3, we considered the end-to-end delay for network data flows. For this

purpose, we incorporated the end-to-end delay in the network utility function and

solved the problem of data rate and channel code rate allocation with the goal of

decreasing the delay in the network. We considered both maximizing the aggre-

gate network utility and maximizing the minimum network utility through which

the concept of fairness is considered. We showed through simulations that we can

decrease the average delay in the network at the cost of a slight decrease in network

throughput.
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• In Chapter 4, we formulated the problem of data rate allocation for routing paths

as well as network coding paths for a wireless network with unreliable links. We

showed via simulations that considering the reliability of wireless links in our rate

allocation problem leads to better performance compared to the case when reliability

is not considered. This becomes more important when fairness is important to be

provided.

• In Chapter 5, we considered the achievability of our data rate allocation schemes by

providing a transmission scheduling and packet admission algorithm for wireless mesh

networks. We verified that our algorithm follows the performance of a centralized

data rate allocation algorithm. We also compared fairness provisioning under our

proposed algorithm with that under similar algorithms that ignore fairness to observe

the effects of fairness provisioning in network performance. Finally, we compared

the performance of the algorithm with a class of fair algorithms that are based on

maximizing the network utility function.

• In Chapter 6, we formulated the joint problem of interference alignment, admission

control, and transmission scheduling in MIMO systems. The formulated problem is

a non-linear mixed-integer programming problem and therefore, hard to solve. We

used several techniques to break this problem into one convex optimization problem

and one mixed-integer programming problem and solved it through Benders decom-

position method. We also developed a heuristic approach with much less degrees of

complexity to solve the problem in a semi-distributed manner. We showed through

simulations that the heuristic follows the optimal central solution with some degree

of sub-optimality. We also showed that using both scheduling techniques and inter-

ference alignment techniques, we gained better performance comparing with the case

when one of them is being used.
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7.2 Suggestions for Future Work

In the following, we consider several interesting possibilities for extension of the current

work.

1. Delay-optimal transmission scheduling: In Chapter 3, we studied optimal rate

allocation problems with the goal of maximizing the network utility when both

throughput and end-to-end delay were incorporated in the utility function of each

flow. The remaining question would be: “How can we achieve those optimal data

rates in a distributed manner?” An interesting future work is to use stochastic

optimization to design transmission scheduling, admission control algorithms, and

channel code rate allocations to improve the performance of the network in terms of

both the network throughput and the end-to-end delay.

2. Transmission scheduling with network coding: The performance of the network

is improved via network coding. An interesting future work is to use Lyapunov

techniques to develop transmission scheduling and admission control algorithms in

wireless networks in which intersession network coding is enabled. In such network

settings, the weight of each wireless link for data transmission would depend not only

on the data backlog of that particular link, but also on the backlog of the other link

which is going to participate in the network coding scheme. This extra dependency

creates new challenges to be solved.

3. Interference alignment in multihop networks: Interference alignment tech-

niques can also be used in multihop wireless networks with multiple antennas. An-

other future work is to use stability theory and Lyapunov techniques for transmission

scheduling and encoding and decoding matrices design. In such network settings, the

goal is to improve the number of simultaneous transmissions and thus the network
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throughput.

4. Heuristic approaches for interference alignment: The main challenge of using

interference alignment in MIMO systems is that interference alignment is compu-

tationally hard. It requires significant processing capability to compute schedules

and encoding and decoding matrices at each time slot. One direction could be the

investigation of effective heuristics.

149



Bibliography

[1] J. Shi, O. Gurewitz, V. Mancuso, J. Camp, and E. W. Knightly, “Measurement and
modeling of the origins of starvation in congestion controlled mesh networks,” in
Proc. of IEEE Infocom, Phoenix, AZ, Apr. 2008.

[2] R. Jain, W. Hawe, and D. Chiu, “A quantitative measure of fairness and discrimi-
nation for resource allocation in shared computer systems,” DEC Research Report
DEC-TR-301, Sept. 1984.

[3] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-layer conges-
tion control in wireless networks,” IEEE/ACM Trans. on Networking, vol. 14, no. 2,
pp. 302–315, Apr. 2006.

[4] M. Andrews, L. Qian, and A. Stolyar, “Optimal utility based multi-user throughput
allocation subject to throughput constraints,” in Proc. of IEEE Infocom, Miami, FL,
Mar. 2005.

[5] J. Liu, A. Stolyar, M. Chiang, and H. V. Poor, “Queue back-pressure random access
in multihop wireless networks: Optimality and stability,” IEEE Trans. on Informa-
tion Theory, vol. 55, no. 9, pp. 4087–4098, Sept. 2009.

[6] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks using
queue-length-based scheduling and congestion control,” IEEE/ACM Trans. on Net-
working, vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[7] ——, “Joint congestion control, routing, and MAC for stability and fairness in wire-
less networks,” IEEE J. Select. Areas Commun., vol. 24, no. 8, pp. 1514–1524, Aug.
2006.

[8] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for
heterogeneous networks,” IEEE/ACM Trans. on Networking, vol. 16, no. 2, pp. 396–
409, Apr. 2008.

[9] S. Sarkar and L. Tassiulas, “Fair distributed congestion control in multirate multicast
networks,” IEEE/ACM Trans. on Networking, vol. 13, no. 1, pp. 121–133, Feb. 2005.

[10] L. Tassiulas and S. Sarkar, “Maxmin fair scheduling in wireless ad hoc networks,”
IEEE J. Select. Areas Commun., vol. 23, no. 1, pp. 163–173, Jan. 2005.

150



Bibliography

[11] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput and utility
maximization in wireless networks,” IEEE/ACM Trans. on Networking, vol. 18, no. 3,
pp. 960–972, June 2010.

[12] ——, “Approaching throughput-optimality in distributed CSMA scheduling algo-
rithms with collisions,” IEEE/ACM Trans. on Networking, vol. 1, no. 1, p. 1, Apr.
2010.

[13] D. Wang, X. Wang, and X. Cai, “Optimal power control for multi-user relay networks
over fading channels,” IEEE Trans. on Wireless Communications, vol. 10, no. 1, pp.
199–207, Jan. 2011.

[14] C. B. R. Estrello, G. H. Valdez, and F. A. C. Perez, “System-level analysis of mobile
cellular networks considering link unreliability,” IEEE Trans. on Vehicular Technol-
ogy, vol. 58, no. 2, pp. 926–940, Feb. 2009.

[15] B. Wang, Z. He, and Y. Sun, “Distributed rate allocation and performance optimiza-
tion for video communication over mesh networks,” in Proc. of ICIP, San Antonio,
TX, Sept. 2007.

[16] A. Beljadid, A. S. Hafid, and A. Gendreau, “Design of wireless mesh networks:
Expansion and reliability studies,” in Proc. of IEEE Globecom, New Orleans, LA,
Dec. 2008.

[17] A. P. Snow, U. Varshney, and A. D. Malloy, “Reliability and survivability of wireless
and mobile networks,” IEEE Computer Mag., vol. 33, pp. 49–55, July 2000.

[18] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability gain of network coding in lossy
wireless networks,” in Proc. of IEEE Infocom, Phoenix, AZ, Apr. 2008.

[19] T. Issariyakul, E. Hossain, and A. S. Alfa, “End-to-end batch transmission in a mul-
tihop and multirate wireless network: Latency, reliability, and throughput analysis,”
IEEE Trans. on Mobile Computing, vol. 5, pp. 1143–1155, Sept. 2006.

[20] A. Willig and H. Karl, “Data transport reliability in wireless sensor networks. A
survey of issues and solutions,” PIK Journal, vol. 28, pp. 86–92, June 2005.

[21] U. Varshney, A. P. Snow, and A. D. Malloy, “Measuring the reliability and survivabil-
ity of infrastructure-oriented wireless networks,” in Proc. of IEEE Local Computer
Networks, Tampa, FL, Nov. 2001.

[22] J. W. Lee, M. Chiang, and A. R. Calderbank, “Price-based distributed algorithms
for rate-reliability based tradeoff in network utility maximization,” IEEE J. Select.
Areas Commun., vol. 24, pp. 962–976, May 2006.

151



Bibliography

[23] Q. Gao, J. Zhang, and S. V. Hanly, “Cross-layer rate control in wireless networks
with lossy links: Leaky-pipe flow, effective network utility maximization and hop-
by-hop algorithms,” IEEE Trans. on Wireless Communications, vol. 8, no. 6, pp.
3068–3076, June 2009.

[24] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable communi-
cation over packet networks,” Physical Communication, vol. 1, no. 1, pp. 3–20, Mar.
2008.

[25] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A framework for reliable routing in
mobile ad hoc networks,” in Proc. of IEEE Infocom, San Francisco, CA, Apr. 2003.

[26] Y. Fan, J. Zhang, and X. Shen, “Mobility-aware multi-path forwarding scheme for
wireless mesh networks,” in Proc. of IEEE WCNC, Las Vegas, NV, Apr. 2008.

[27] S. Dulman, T. Nieberg, J. Wu, and P. Havinga, “Trade-off between traffic overhead
and reliability in multipath routing for wireless sensor networks,” in Proc. of IEEE
WCNC, New Orleans, LA, Mar. 2003.

[28] J. Huang, Z. Li, M. Chiang, and A. K. Katsaggelos, “Joint source adaptation and
resource allocation for multi-user wireless video streaming,” IEEE Trans. on Circuits
and Systems for Video Technology,, vol. 18, no. 5, pp. 582–595, May 2008.

[29] D. O’Neill, A. Goldsmith, and S. Boyd, “Wireless network utility maximization,” in
Proc. of MILCOM, San Diego, CA, Nov. 2008.

[30] Y. Lin and V. W. S. Wong, “Adaptive tuning of MIMO-enabled 802.11e WLANs
with network utility maximization,” in Proc. of IEEE WCNC, Las Vegas, NV, Apr.
2008.

[31] D. O’Neill, A. Goldsmith, and S. Boyd, “Optimizing adaptive modulation in wireless
networks via utility maximization,” in Proc. of IEEE ICC, Beijing, China, May 2008.

[32] D. O’Neill, E. Akuiyibo, S. Boyd, and A. Goldsmith, “Optimizing adaptive modula-
tion in wireless networks via multi-period network utility maximization,” in Proc. of
IEEE ICC, Cape Town, South Africa, May 2010.

[33] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” Journal of Operations
Research Society, vol. 49, pp. 237–252, Mar. 1998.

[34] M. Chiang, “Balancing transport and physical layers in wireless multihop networks:
Jointly optimal congestion control and power control,” IEEE J. Select. Areas Com-
mun., vol. 23, pp. 104–116, Jan. 2005.

152



Bibliography

[35] L. Chen, S. H. Low, and J. C. Doyle, “Joint congestion control and media access
control design for ad hoc wireless networks,” in Proc. of IEEE Infocom, Miami, FL,
Mar. 2005.

[36] D. O’Neill, B. S. Thian, A. Goldsmith, and S. Boyd, “Wireless NUM: Rate and
reliability tradeoffs in random environment,” in Proc. of IEEE WCNC, Budapest,
Hungary, Apr. 2009.

[37] M. Andrews, A. F. Anta, L. Zhang, and W. Zhao, “Routing for energy minimization
in the speed scaling model,” in Proc. of IEEE Infocom, San Diego, CA, Mar. 2010.

[38] Y. Li, M. Chiang, and A. R. Calderbank, “Congestion control in networks with delay
sensitive traffic,” in Proc. of IEEE Globecom, Washington, DC, Nov. 2007.

[39] E. Jorswieck, H. Boche, and S. Naik, “Energy-aware utility regions: Multiple access
pareto boundary,” IEEE Trans. on Wireless Communications, vol. 9, no. 7, pp.
2216–2226, July 2008.

[40] K. Kar, S. Sarkar, and L. Tassiulas, “Achieving proportional fairness using local
information in ALOHA networks,” IEEE Trans. on Automatic Control, vol. 49, pp.
1858–1862, Oct. 2004.

[41] J. W. Lee, M. Chiang, and A. R. Calderbank, “Utility-optimal medium access control:
Reverse and forward engineering,” in Proc. of IEEE Infocom, Barcelona, Spain, Apr.
2006.

[42] A. H. Mohsenian-Rad and V. W. S. Wong, “Cross-layer fair bandwidth sharing for
multi-channel wireless mesh networks,” IEEE Trans. on Wireless Communications,
vol. 7, no. 9, pp. 3436–3445, Sept. 2008.

[43] T. Voice and G. Raina, “Stability analysis of a max-min fair rate control protocol
(RCP) in a small buffer regime,” IEEE Trans. on Automatic Control, vol. 54, no. 8,
pp. 1908–1913, Aug. 2009.

[44] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information flow,”
IEEE Trans. on Information Theory, vol. 46, pp. 1204–1216, July 2000.

[45] C. C. Wang and N. B. Shroff, “Beyond the butterfly- A graph-theoretic characteriza-
tion of the feasibility of network coding with two simple unicast sessions,” in Proc. of
IEEE ISIT, Nice, France, June 2007.

[46] D. Lun, N. Ratnakar, M. Medard, R. Koetter, D. Karger, T. Ho, E. Ahmed, and
F. Zhao, “Minimum-cost multicast over coded packet networks,” IEEE Trans. on
Information Theory, vol. 52, pp. 2608–2623, June 2006.

153



Bibliography

[47] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the
air: Practical wireless network coding,” in Proc. of ACM SIGCOMM, Pisa, Italy,
Sept. 2006.

[48] V. Shah-Mansouri and V. W. S. Wong, “Maximum-lifetime coding subgraph for mul-
ticast traffic in wireless sensor networks,” in Proc. of IEEE Globecom, New Orleans,
LA, Dec. 2008.

[49] T. Cui, L. Chen, and T. Ho, “Energy efficient opportunistic network coding for
wireless networks,” in Proc. of IEEE Infocom, Phoenix, AZ, Apr. 2008.

[50] A. Khreishah, C. C. Wang, and N. B. Shroff, “Optimization based rate control for
communication networks with inter-session network coding,” in Proc. of IEEE Info-
com, Phoenix, AZ, Apr. 2008.

[51] Y. Li, M. Chiang, A. R. Calderbank, and S. N. Diggavi, “Optimal rate-reliability-
delay tradeoff in networks with composite links,” IEEE Trans. on Communications,
vol. 57, pp. 1390–1401, May 2009.

[52] J. W. Lee, M. Chiang, and A. R. Calderbank, “Distributed algorithms for optimal
rate-reliability tradeoff in networks,” in Proc. of IEEE ISIT, Adelaide, Australia,
Sept. 2005.

[53] S. Huang and B. Mukherjee, “Adaptive reliable multi-path provisioning in WDM
mesh networks,” in Proc. of IEEE ICC, Beijing, China, May 2008.

[54] H. Ma, D. Fayek, and P. H. Ho, “Availability-constrained multipath protection in
backbone networks with double-link failure,” in Proc. of IEEE ICC, Beiging, China,
May 2008.

[55] V. Bui, W. Zhu, A. Botta, and A. Pescape, “An MDP-based approach for multipath
data transmission over wireless networks,” in Proc. of IEEE ICC, Beijing, China,
May 2008.

[56] B. Yahya and J. B. Othman, “REER: Robust and energy efficient multipath routing
protocol for wireless sensor networks,” in Proc. of IEEE Globecom, Honolulu, HI,
Dec. 2009.

[57] D. Quintas and V. Friderikos, “Energy efficient relaying within a cell: Multi path
versus shortest path routing,” in Proc. of IEEE Infocom, San Diego, CA, Mar. 2010.

[58] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations for multi-path
routing with bandwidth and delay constraints,” in Proc. of IEEE Infocom, Rio De
Janeiro, Brazil, Apr. 2009.

154



Bibliography

[59] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of multi-path routing,” IEEE/ACM
Trans. on Networking, vol. 6, pp. 885–896, Dec. 1999.

[60] A. Nasipuri and R. Castaneda, “Performance of multipath routing for on-demand
protocols in mobile ad hoc networks,” ACM Journal on Mobile Networks and Appli-
cations., vol. 6, pp. 339–349, Aug. 2001.

[61] S. J. Lee and M. Gerla, “AODV-BR: Backup routing in ad hoc networks,” in Proc. of
IEEE WCNC, Chicago, IL, Sept. 2000.

[62] L. Wang, L. Zhang, Y. Shu, and M. Dong, “Multipath source routing in wireless
ad hoc networks,” in Proc. of Canadian Conference on Electrical and Computer
Engineering, Halifax, NS, May 2000.

[63] R. Leung, J. Liu, E. Poon, A. L. C. Chan, and B. Li, “MP-DSR: A QoS-aware multi-
path dynamic source routing protocol for wireless ad-hoc networks,” in Proc. of LCN,
Tampa, FL, Nov. 2001.

[64] S. J. Lee and M. Gerla, “Split multipath routing with maximally disjoint paths in
ad hoc networks,” in Proc. of ICC, Beijing, China, May 2001.

[65] M. K. Marina and S. R. Das, “On-demand multipath distance vector routing in ad
hoc networks,” in Proc. of ICNP, Riverside, CA, Nov. 2001.

[66] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient, energy-
efficient multipath routing in wireless sensor networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 5, no. 4, pp. 10–24, Oct. 2001.

[67] S. A. Jafar and M. J. Fakhereddin, “Degrees of freedom for the MIMO interference
channel,” IEEE Trans. on Information Theory, vol. 53, no. 7, pp. 2637 –2642, July
2007.

[68] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of
the K-user interference channel,” IEEE Trans. on Information Theory, vol. 54, no. 8,
pp. 3425–3441, Aug. 2008.

[69] B. Nazer, M. Gastpar, S. A. Jafar, and S. Vishwanath, “Ergodic interference align-
ment,” in Proc. of IEEE ISIT, Seoul, Korea, July 2009.

[70] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “Approaching the capacity of wireless
networks through distributed interference alignment,” in Proc. of IEEE Globecom,
New Orleans, LA, Dec. 2008.

[71] H. Maleki, S. A. Jafar, and S. Shamai, “Retrospective interference alignment,” in
Proc. of IEEE ISIT, Saint-Petersburg, Russia, Aug. 2011.

155



Bibliography

[72] C. M. Yetis, G. Tiangao, S. A. Jafar, and A. H. Kayran, “On feasibility of interfer-
ence alignment in MIMO interference networks,” IEEE Trans. on Signal Processing,
vol. 58, no. 9, pp. 4771–4782, Sept. 2010.

[73] ——, “Feasibility conditions for interference alignment,” in Proc. of IEEE Globecom,
Honolulu, HI, Dec. 2009.

[74] K. R. Kumar and X. Feng, “An iterative algorithm for joint signal and interference
alignment,” in Proc. of IEEE ISIT, Austin, TX, June 2010.

[75] S. Gollakota, A. D. Perli, and D. Katabi, “Interference alignment and cancellation,”
in Proc. of ACM SIGCOMM, Barcelona, Spain, Aug. 2009.

[76] I. Santamaria, O. Gonzalez, R. W. Heath, and S. W. Peters, “Maximum sum-rate
interference alignment algorithms for MIMO channels,” in Proc. of IEEE Globecom,
Miami, FL, Dec. 2010.

[77] H. S. Dhillon and R. M. Buehrer, “On the maximum sum-rate of cognitive MIMO
interference channels,” in Proc. of MILCOM, San Jose, CA, Nov. 2010.

[78] C. Suh, M. Ho, and D. Tse, “Downlink interference alignment,” IEEE Trans. on
Communications, vol. 59, no. 9, pp. 2616–2626, Sept. 2011.

[79] K. A. Das, S. Vishwanath, S. A. Jafar, and A. Markopoulou, “Network coding for
multiple unicasts: An interference alignment approach,” in Proc. of IEEE ISIT,
Austin, TX, June 2010.

[80] A. Ramakrishnan, A. Das, H. Maleki, A. Markopoulou, S. A. Jafar, and S. Vish-
wanath, “Network coding for three unicast sessions: Interference alignment ap-
proaches,” in Proc. of Allerton Conf. on Communication, Control, and Computing,
Monticello, IL, Oct. 2010.

[81] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[82] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, A Tutorial on Geometric
Programming. Springer Science and Business Media, 2007.

[83] M. Chiang, Geometric Programming for Communication Systems. Foundations and
Trends in Networking, 2005.

[84] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-
plications. Oxford University Press, 1995.

[85] J. G. Proakis, Digital Communications. 4th edition, New York: McGraw-Hill, 2001.

156



Bibliography

[86] R. Gupta and J. Walrand, “Approximating maximal cliques in ad-hoc networks,” in
Proc. of IEEE PIMRC, Barcelona, Spain, Sept. 2004.

[87] C. Shannon, “A theorem on coloring the lines in the network,” J. Math. Phys., vol. 28,
pp. 148–151, Sept. 1949.

[88] Y. Nesterov and A. Nemirovsky, Interior point polynomial algorithms in convex pro-
gramming. SIAM, 1994.

[89] “MOSEK software.” [Online]. Available: http://www.mosek.com

[90] D. Ren, Y. T. H. Li, and S. H. G. Chan, “Fast-mesh: A low-delay high-bandwidth
mesh for peer-to-peer live streaming,” IEEE Trans. on Multimedia, vol. 11, no. 8,
pp. 1446 –1456, Dec. 2009.

[91] K. Ronasi, A. H. Mohsenian-Rad, V. W. S. Wong, S. Gopalakrishnan, and
R. Schober, “Optimal data and channel code rate allocation in wireless networks
with multi-path routing,” in Proc. of IEEE ICC, Kyoto, Japan, June 2011.

[92] D. ONeill, A. J. Goldsmith, and S. Boyd, “Cross-layer design with adaptive modu-
lation: Delay, rate, and energy tradeoffs,” in Proc. of IEEE Globecom, New Orleans,
LA, Dec. 2008.

[93] M. Saad, A. Leon-Garcia, and W. Yu, “Optimal network rate allocation under end-
to-end quality-of-service requirements,” IEEE Trans. on Network and Service Man-
agement, vol. 4, pp. 40–49, Dec. 2007.

[94] M. Saad, A. L. Garcia, and W. Yu, “Delay constrained optimal resource utilization
of wireless networks for distributed control systems,” IEEE Communications Letter,
vol. 12, pp. 289–291, Apr. 2008.

[95] M. G. Kallitsis, R. D. Callaway, M. Devetsikiotis, and G. Michailidis, “Distributed
and dynamic resource allocation for delay sensitive network services,” in Proc. of
IEEE Globecom, New Orleans, LA, Dec. 2008.

[96] S. Kalyanasundaram, E. K. P. Chong, and N. B. Shroff, “Optimal resource alloca-
tion in multi-class networks with user-specified utility functions,” Comput. Networks,
vol. 38, pp. 613–630, Apr. 2002.

[97] D. Bertsekas and R. Gallager, Data Networks, 2nd Edition. Prentice Hall, 1992.

[98] A. Mohsenian-Rad, J. Huang, V. Wong, S. Jaggi, and R. Schober, “Game-theoretical
analysis of inter-session network coding,” in Proc. of IEEE ICC, Dresden, Germany,
June 2009.

[99] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience,
1999.

157



Bibliography

[100] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”
IEEE/ACM Trans. on Net., vol. 8, pp. 556–567, Oct. 2000.

[101] D. P. Bertsekas, Nonlinear Programming, second edition. Athena Scientific, 1999.

[102] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
methods. Athena Scientific, 1997.

[103] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and Cross Layer
Control in Wireless Networks,. Foundations and Trends in Networking, 2006.

[104] M. J. Neely, “Delay-based network utility maximization,” in Proc. of IEEE Infocom,
San Diego, CA, Mar. 2010.

[105] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and routing
for time-varying wireless networks,” IEEE J. Select. Areas Commun., vol. 23, no. 1,
pp. 89–103, Jan. 2005.

[106] C. P. Li and M. J. Neely, “Energy-optimal scheduling with dynamic channel acqui-
sition in wireless downlinks,” IEEE Trans. on Mobile Computing, vol. 9, no. 4, pp.
527–539, Apr. 2010.

[107] L. Lin, X. Lin, and N. B. Shroff, “Low-complexity and distributed energy mini-
mization in multihop wireless networks,” IEEE/ACM Trans. on Networking, vol. 18,
no. 2, pp. 501–514, Apr. 2010.

[108] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and algorithms for delay
reduction in back-pressure scheduling and routing,” in Proc. of IEEE Infocom, Rio
de Janeiro, Brazil, Apr. 2009.

[109] L. Chen, S. H. Low, J. C. Doyle, and M. Chiang, “Cross layer congestion control,
routing and scheduling design in ad hoc wireless networks,” in Proc. of IEEE Infocom,
Barcelona, Spain, Apr. 2006.

[110] L. Ying and S. Shakkottai, “Scheduling in mobile ad hoc networks with topology and
channel-state uncertainty,” in Proc. of IEEE Infocom, Rio de Janeiro, Brazil, Apr.
2009.

[111] S. Chen, Y. Fang, and Y. Xia, “Lexicographic maxmin fairness for data collection
in wireless sensor networks,” IEEE Trans. on Mobile Computing, vol. 6, no. 7, pp.
762–776, July 2007.

[112] H. Shirani-Mehr, G. Caire, and M. J. Neely, “MIMO downlink scheduling with non-
perfect channel state knowledge,” IEEE Trans. on Communications, vol. 58, no. 7,
pp. 2055–2066, July 2010.

158



Bibliography

[113] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Back-pressure routing and rate
control for ICNs,” in Proc. of ACM MobiCom, Chicago, IL, Sept. 2010.

[114] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region of the greedy
maximal scheduling algorithm in multihop wireless networks,” in Proc. of IEEE
Infocom, Phoenix, AZ, Apr. 2008.

[115] K. Ronasi, V. W. S. Wong, S. Gopalakrishnan, and R. Schober, “Distributed
scheduling in multihop wireless networks with maxmin fairness provisioning,” IEEE
Trans. on Wireless Communications, vol. 11, pp. 1753–1763, May 2012.

[116] M. J. Neely, Stochastic Network Optimization with Application to Communication
and Queueing Systems. Morgan and Claypool, 2010.

[117] K. Jagannathan, M. Markakis, E. Modiano, and J. N. Tsitsiklis, “Throughput opti-
mal scheduling in the presence of heavy-tailed traffic,” in Proc. of Allerton Conf. on
Communication, Control, and Computing, Monticello, IL, Oct. 2010.

[118] D. P. Bertsekas and J. N. Tsitsiklis, Parallel And Distributed Computation: Numer-
ical Methods. Prentice Hall, 1989.

[119] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 1.21,” http://cvxr.com/cvx, Apr. 2011.

159


