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Abstract

Controlling and eliminating defects, such as macro-ptypsn die casting pro-
cesses is an on-going challenge for manufacturers. Custextégies for eliminat-
ing macro-porosity focus on the execution of pre-set cgstitles, die structure
design or the combination of both. To respond to processbidity and mitigate
its negative effects, advanced process control methogdiag been developed to
dynamically drive the process towards optimal dynamic aticioperational con-
ditions, hence minimizing macro-porosity in the casting.

In this thesis, a Finite Element heat transfer model has Heealoped to pre-
dict the evolution of temperatures and the volume of endapesililiquid in a cast-
ing with a high propensity to form macro-porosity. The models validated by
comparison to plant trial data. A virtual process has theenk#eveloped based
on the model to simulate the continuous operation of a remiqss, for use as a
platform to evaluate a controller’s performance.

Since macro-porosity cannot be measured during castiegediperature has
been used as an indirect indicator of this defect. A modsétanethodology has
been developed to analyze the correlation between die taope and encapsu-
lated liquid volume, a precursor to the formation of macoogsity. This method-
ology is employed to assess the suitability of differentyte die temperatures
for use as indicators of macro-porosity formation. Therptilocations have then
been determined to monitor die temperatures for the purpiasénimizing macro-
porosity.

A nonlinear state-space model, based on data from the Mitaeess, has been
developed to provide a reliable representation of thisugirprocess. The control
variable-driven portion exhibits linear dynamic behawiath nonlinear static gain.



The resulting MIMO state-space model facilitated the desiga controller for this
process.

Finally, the performance of the nonlinear model-based iptigd controller
was evaluated using the virtual process. Independent oinitial state of the
process - i.e. steady state or startup, the controller @gdilbhe capability to au-
tomatically adjust the process toward the dynamic or sigpiimal operational
condition during disturbances examined. The advancedaamiethodology de-
veloped for LPDC provides a novel solution to improve therafienal conditions
in die casting process.
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Chapter 1

Introduction

The automotive industry continues to search for and to éxppportunities to re-
place steel and cast iron components or assemblies withvligight aluminum
castings. Examples include cylinder heads, engine bloskspension compo-
nents, brake components and wheels. High volume castingoa®that operate in
batch mode where parts are produced cyclically, such as tesspre die casting
(LPDC), have facilitated this conversion [1, 2]. The evmlatof the LPDC pro-
cess and its development as a major manufacturing processblean discussed
by a number of authors [3-5]. Currently, the LPDC procesgspém increasingly
important role in the foundry industry as a low-cost and kefficiency precision
forming technique with new applications beyond its typigaé in the production
of automotive wheels [2].

In the LPDC process minimizing defects, including macrad aricro-porosity,
is an on-going production challenge. Defects cause castobe rejected because
of their deleterious effects in two main areas: aesthefi@amnce and mechanical
performance [6]. In the case of macro-porosity or shrinkageosity, these de-
fects form in locations where there is insufficient feedifidigquid metal to offset
the volumetric shrinkage associated with the solid-taitigtransformation. The
current philosophy to reduce the formation of macro-payoisi to promote pro-
gressive solidification and thereby eliminate hot spots.practice, this can be
accomplished by proper die structure design [7] and theutixstof a pre-set cast-
ing cycle that does not vary from cycle to cycle, e.g. usinggpmmable logic



controllers (PLCs) [8]. Progressive solidification reféssan ideal solidification
pattern, which starts and proceeds in continuous fashibieyevthe solidification
front is fed with liquid metal until solidification of the @rg casting is complete. A
die designed with suitable cooling channels along with adatermined sequence
for activating and operating these cooling channels canweage progressive so-
lidification but its is rarely achieved for complex castings

In principle, these two approaches to control defect foionaare straightfor-
ward to implement. However, they lack the ability to adjusthie variations in
the casting process, resulting in defective products durommon process distur-
bances such as varying incoming metal temperature or \@diamopen time. The
incoming metal temperature of the molten aluminum alloy eany depending on
the holding furnace charging schedule and the temperafuitee charged metal.
Die open time refers to the length of time that the dies reropam after ejecting a
casting. In the industrial process, this length of time igally constant from cycle
to cycle, but may vary when an operator has to perform maamies on the die or
must spend time clearing a blockage or releasing a castieg Whlings to the die.
These process disturbances cause the process to deviatédrimtended steady
state operational condition and may result in more macrosgity in the prod-
ucts. To respond to the process variability, research idete develop advanced
process control methodologies to help compensate for iriduprocess dynam-
ics and mitigate their negative effects on the product. Byadyically adjusting
the operational parameters of a cyclic casting processeirpthsence of process
disturbances, it is expected that the overall performatficheoprocess would be
improved.

1.1 Low Pressure Die Casting

Die casting is a high-volume metal casting process whictraips by forcing
molten metal into a mold cavity. This process is capable ofipcing metal parts
with smooth surface finish and dimensional consistency)8.casting technolo-
gies include high pressure die casting, low pressure digngagravity die cast-
ing, vacuum die casting, squeeze die casting among othéesloWw pressure die
casting(LPDC) process, a form of die casting, is the dontingthod for the pro-



duction of automotive aluminum wheels. The LPDC procesgsxéen increasingly

important role in the foundry industry with new applicatidneing developed, over
and above its traditional usage for wheels. The LPDC proaessunts for about
20% of light alloy casting production.

1.1.1 LPDC Process Operation

A typical LPDC process, shown schematically in Figure 1slcamprised of a die
assembly containing one or more die cavities located aboaeatrically heated
furnace, which contains a reservoir of molten metal. A castiycle begins when
the die is closed, creating the casting cavity. Metal entieescavity through a
joint pipe / sprue when the air above the liquid metal in th@dge is pressurized.
The casting solidifies as heat is transferred to the die agnl tihthe environment
surrounding the die or to cooling media (air or water) ciatinlg through the die
with pre-determined cooling cycles. Once solidificationc@nplete, the die is
opened and the casting is removed. Following a brief dela}loav the operators
to perform intermittent maintenance such as touching uptb&ctive coating on
the die surface or cleaning off a piece of flashing, the disedaand the next cycle
begins. Following the casting operation, the castingsyanieally rough-machined,
heat treated, finish-machined and painted.

During casting, if progressive solidification cannot beieebd, areas of liquid
metal may be encapsulated by solid metal. This cuts off thve dbliquid metal
necessary to compensate for the volume contraction that®daring the solid to
liquid phase change. Once encapsulated, these pockegsiidfthetal form macro-
porosity which may result in a defective casting dependingheir location and
severity.

1.1.2 Heat Transfer and Temperature Evolution in LPDC

In the LPDC process, heat is transferred from the castintpe¢adte and then to
the surrounding environment. Dies are fabricated withiogothannels to facili-
tate localized cooling. In practice, a variety of differdnids, including air, water
and/or oil, are used to cool the surface of the cooling chlaniiéae thermophysical
properties of the fluid and the die and their relative temjpeeacombine to have
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Figure 1.1: A Cross-Section of a Typical LPDC Process used to Produce
Wheels [1].

different effects on die temperature. The duration of ecwphvithin a cycle (i.e.
length of time the fluid is flowing in the channel) and the numiifecycles where
the cooling program is active also affect the die tempeeatim general, cooling
with air has a relatively small cooling effect on the die insg proximity to the
cooling channel in each cycle. However, over many cyclesgffects of air cool-
ing can accumulate, causing die temperatures variationalarge region of the
die. In contrast to air cooling, for the same cooling dumatiathin a cycle, cooling
with water has a strong influence on the die temperature wuding the cooling
channel in each cycle due to its higher cooling intensity [9]

The temperature measured in an operating industrial lowspre die during
a plant trial is shown in Figure 1.2a. Each casting cycleltesn an increase in
temperature as the die heats followed by a decrease as this headucted away
from the casting. The combined cyclic temperature histahjlits an oscillatory
response. The cycle-to-cycle variation of the temperatbosvn in Figure 1.2a in-
dicates that the process never reaches cyclic steady gtate the starting and final
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temperatures of a cycle are equal. Initially, this variai®attributed to the start-up
transient in the process, but at longer times there arenmitient disturbances that
affect the cycle-to-cycle temperatures. At 8000s, a laigkidance may be ob-
served which is due to an extended die open time necessanydiotenance. The
somewhat regular variations of cyclic temperatures (e8er§0 cycles) that occur
throughout the casting campaign are due to metal transfietbolding furnace.
The period for adding metal to the holding furnace is denratest in Figure 1.2a
and marked with a double-headed arrow. The period start080s5with a low
cycle-to-cycle temperature caused by the new metal thatdedhinto the furnace.
The metal in the holding furnace gradually heats up, rewylti the subsequent in-
crease in cycle-to-cycle die temperature via heat trarisfer casting to die. The
period ends at 7500s when new metal is added to the holdingdar
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Figure 1.2: (a) The Variation of Multi-cycles Die Temperature Measuied
an Operational Wheel Die and (b) the Variation of Die Tempgeat a
Location for a Single Casting Cycle under Steady state.

These results highlight the sensitivity of the die tempe®ato variations in
the process parameters that are linked to the dynamic imaustvironment. The
operational conditions associated with nominal steadg stee determined in in-

dustry based on historical values. Ideally, the processatg®e where minimal
defects occur, but this is not necessarily the case.



The die temperature variation at a location for a singleimgstycle is pre-
sented in Figure 1.2b. The characteristic temperaturesiaaked in Figure 1.2b,
are Maximum Temperature and Ejection Temperature. Thedbisithe peak tem-
perature reached at a location within a cycle while the dast¢he temperature in
the die upon opening and ejecting the casting. Both temyesiare highly rel-
evant to solidification in the casting. The time when the Maxin Temperature
arises is a complex function of the process. Itis a turningtpghere heat-in rate
equals to heat-out rate. When heat-in rate is greater thandue rate, die tem-
perature at a location will go up, otherwise it would go doweat-in rate here is
the heat transfer rate conducted from the hot liquid mettdramg the die to the
location while heat-out rate is the heat transfer rate achbigecooling convection
and die conduction. The Ejection Temperature is a speaifie ih the casting cy-
cle and should correspond to the time when complete soliiific of the casting is
achieved. When cyclic steady state is reached, the tenupetthe start of a cycle
has the same value as the temperature at the end of the axgtlasjshown in Fig-
ure 1.2h. To achieve steady state, the LPDC operationaineteas must remain
unchanged cycle-to-cycle and the process must not exgerigmy disturbance in
the surrounding environment. In practice, the ideal stesgie operational condi-
tions are impossible to achieve due to continuous procesgridances.

1.1.3 Porosity

Porosity is a common defect that forms during the castingatjpm. Based on the
size of the pores, porosity is classified as either micro- acno-porosity. Micro-
porosity is generally characterized as small dispersedsvét 500um) which
are formed when poor interdendritic feeding causes thelexsio of hydrogen
gas bubbles, while macro-, or shrinkage, porosity arisemglthe solid-to-liquid
transformation when pockets of liquid metal are encapsdlaty solidified mate-
rial. This shrinkage is approximately86 by volume in A356 [10], a common
alloy used for wheel castings.

In comparison to macro-porosity, micro-porosity is morenptex, as the size,
amount and distribution are functions of process and alijables [11]. Macro-
porosity may be relatively easy to avoid by ensuring pragvessolidification,



since feed metal is continually available for the solidifica process. Although
the conditions leading to the formation of macro-porositg straightforward to
identify, the final shape and distribution of macro-popsite difficult to deter-
mine. Thus, there is a focus on identifying the occurrencigafd encapsulation
rather than macro-porosity [1, 12].

In order to assess the impact of techniques to eliminateasrammosity, it is first
necessary to develop an approach to identify and quantifywéttume of macro-
porosity formed during casting. However, on-line or inelinharacterization of
macro-porosity during manufacturing is a major challengreproducers and re-
searchers. Although non-destructive measurement taabsidncluding ultrasonic
inspection and X-ray imaging [13-15] may be used to assesmgaquality, the
use of these methods in an industrial setting to charaetaracro-porosity is costly
and the results tend to be qualitative rather than quamgtaAdditionally, the time
delay associated with performing and processing the meamnts will adversely
affect an operator’s ability to respond in a timely manner.

Liquid encapsulation, a precursor to the formation of mammsity, occurs
when a volume of liquid is surrounded by solid (or near satidtal. The forma-
tion of encapsulated liquid regions is directly relatedhe tasting’s temperature
history during solidification [6. 1.6] which in turn is relatdo die temperatures.
Given this linkage, it is possible to use die temperatureenaadirect indicator of
macro-porosity. This concept is supported by industriglegience which indicates
that proper control of die temperatures is essential fodpeing superior quality
components and yielding high production rates [17, 18]. Ekmv, relatively little
work of investigating the quantitative relationship beéwelie temperatures and
liquid encapsulation has been published.

1.2 Literature Review

As mentioned previously, the traditional approaches fduceng macro-porosity
in LPDC are to optimize die design by promoting progressidiication and
to use preset cycle timing via Programmable Logic Contrsl{@LCs) where the
control parameters remain static during each cycle of thegss. The development
of die design and process operational parameters is tipleased on operational



experience and/or trial-and-error. In recent years, cbntethodologies are being
adapted and applied in the manufacturing industry to imppmrocess performance
[17--19].

In order to develop a control methodology for a hew processparous ex-
periments are performed in an effort to characterize psodgaamics and to test
the performance of the proposed control scheme. It is costlyonduct exper-
iments directly on industrial processes, hence in-plaatstrare not appropriate
until the control methodology has been thoroughly tested. a&esult, there is
a need to develop offline process simulations to develop atichize industrial
process controls.

The following subsections will discuss two main topics: ¢&ss Modeling and
Control Methodologies.

1.2.1 Process Modeling

Most materials-processing operations involve a compleesef steps or unit op-
erations in which the product shape and mechanical pregeatie developed. In
order to meet increasingly stringent product and procgssljectives, detailed
knowledge of the relationship between process variabldsnaaterial properties
must be clearly delineated. Mathematical models of mdsegeocessing opera-
tions have become important tools for engineers to desidrraanbleshoot process
operations and to optimize products [12, 19, 20].

In building a mathematical model of a materials processipgyation, it is im-
portant to bear in mind that all real processes are comptekhance any attempt
to build an exact description of the process is usually imsjibs. Therefore, dif-
ferent types of process modelling techniques are applipdra#ng on the specific
requirements [21]. The internal details of a process amyaal only to the extent
that they are necessary to achieve the desired level ofrpeaface. Models whose
computational time is longer than the time required for apss operation are of
limited value for control-system implementation.

There are many different types of modeling approaches thatbe applied
to understand casting process dynamics and to predict theafon of defects.
Computer-based process models that are based on heatamésspmentum bal-



ances incorporate descriptions of the inner dynamics otcétsting process and
provide high-fidelity predictions of relevant solution iales such as temperature.
The types of processes being modeled, as well as the conypdéxine models, has
increased over time. Repeated runs of these models candbeousmulate a cyclic
operation. These models can be augmented to predict thexfiormof defects.
Process models for use in control solutions tend to ignceesittiremely detailed
and complex information occurring inside the process (fgcheat transfer in the
casting and boundary conditions along the die).

1.2.1.1 High-fidelity Process Modeling

High-fidelity process modelling, a computer based techmidivolves the devel-
opment of a geometrically accurate model that incorpordteselevant physics of
a process through first principles calculations. Usually &@pplied for simulating
complex processes. It can assist in decision making foeagal reactor design
[22] and reducing energy consumption, for example. The Giségb-fidelity pro-
cess modelling can reduce costs by avoiding expensive gsddals.

In the case of die casting, high-fidelity process models camded to pre-
dict temperatures, fluid flow, composition and defects farmering solidification
within both the casting and die where appropriate. Thesestgpmodels have been
used for die structure design [20] and to identify approadbeimproving product
quality from a given process [12]. Numerous studies have Ipeesented in the
literature detailing the application of high-fidelity mdsiéo predict the progress of
solidification in die casting. Zhu et al. [23] developed a iified cellular automa-
ton model and demonstrated its capabilities in modelingrfeeostructure evolu-
tion during solidification of aluminum alloys by simulatimgndritic and nonden-
dritic microstructure evolution in semisolid processirfgn Al-Si alloy. Tin et al.
[24] integrated process models for the various stages efughine disc manufac-
ture to simulate the physical and microstructure transftions occurring within
a nickel-based superalloy throughout the entire manufiagfwoute. It was shown
that the microstructure of the alloy changes significartiptighout the process
chain, the final microstructure and defect distributionaatrestage being related to
those formed in the previous stages.



To develop a high-fidelity model of the heat transfer ocagrrin LPDC, the
governing partial differential equation (PDE) (1.1) foansient heat conduction is
solved. The time varying temperature distribution of thegeiss can be obtained
by seeking "analytical solutions” or "numerical solutiérie Equation (1.1) with
relevant heat flux boundary conditions (BC'’s) (Equatior2))l.initial conditions
(IC’s), material properties and geometry.

d oT 7] oT 7] oT oT
T
q= —ka—ns =h(Ts— To) (1.2)

Analytical solutions are techniques for solving PDE’s ofteased on geomet-
ric and BC simplifications. Stefanescu [25] applied anegltsolutions to describe
non-steady state heat transport and solidification ofrogstiNon-steady state heat
transport is typical for some progressive solidificationgasses such as chill cast-
ing, as well as for the vast majority of casting processeduding sand casting,
die casting, etc. The PDE that describes typical progressilidification processes
can be solved analytically only if further simplifying assptions are involved,
such as assuming solidification occurs at a single temperaather than over a
temperature range and assuming the mold is semi-infinités dtso possible to
develop analytical solutions by simplifying the relevamBE Shadloo et al.| [26]
presented an analytical solution for magnetohydrodynéioigs of viscoelastic
fluids in converging/diverging channels. A similarity tsfiorm was used to reduce
the Navier-Stokes and energy equations to a set of nonrliodinary differen-
tial equations that were solved analytically by means ofitbraotopy perturbation
method.

Numerical solutions are widely applied to heat transfebf@mms which can-
not be simplified to analytical solutions due to nonlinéesit complex geome-
tries and/or complicated BC’s. Early models based on theefdifference method
(FDM) [27, 28] tended to necessarily adopt simplified gesiastand boundary
conditions. In 1988, Hwang and Stoehr [29] used the simgdlififearker and cell

10



method based on the FDM to simulate 2-D molding filling pheanaincluding
the effects of turbulence and wall shear stress. Othersamghlthe finite ele-
ment method (FEM) to tackle complex geometries 30, 31] atdesl problems
subject to sophisticated temporally and spatially depehbeundary conditions
[7,32]. FEM has been used to simulate heat transfer pragesseasting. Ko-
bryn [33] built thermal FEM models to accurately predict thermal history of
Ti-6Al-4V castings. Interface heat-transfer coefficiend§T ) were established as
a function of casting surface temperature using a calitmaturve technique. The
FEM-predicted casting and mold temperatures were founé fasensitive to cer-
tain changes in the hO values but sensitive to others. Rgctéme FEM has been
applied to solve for fluid flow during mold filling and solidifiion of a casting.
Jeong and Yang [34] employed the marker surface method anddaptive grid
refinement technique in a 3-D FEM analysis of the filling stiggedie-casting pro-
cess. By a display technique in which the shaded images quesgally combined
into a final image, the molten metal flow field was effectivelsualized.

Another application of FEM techniques is to model stresehigpment during
the solidification and cooling of a casting. Shabani [35]adeped a new approach
that combines an artificial neural network (ANN) and an FEMdelng technique
to accurately predict the mechanical properties of A356 siits tensile strength
and yield stress.

Chae et al. [36] applied both analytical and numerical teges on the sheet
casting processes in which the flow domain of the system ceaseparated into
two parts based on the flow kinematics. Then they developenlpled approach
for the prediction of the sheet profile, which combines oimeeshsional analytical
methods on the planar elongational flow region and a thneeaional numerical
method on the other region. As a result, the prediction froendeveloped cou-
pled approach was as good as that from three-dimensiona¢nizahsimulation
previously developed.

High-fidelity modelling has been widely used for many apgtiiens [37-41].
The availability of increasingly fast and cheap hardwa&j pdong with the devel-
opment of modeling software packages such as Phoenic,Ftleent, Abaqus,
and Ansys have made it possible to model virtually every redteprocessing op-
eration. Increasingly, current modeling efforts are fezlisn coupling microstruc-
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ture and property prediction into the process-modellimgnriework. The most crit-
ical and most difficult stage in the development of high-figiehathematical mod-
els is their verification. A number of techniques are usedctoewve verification,
including the use of physical models and the applicationrotess sensors or trac-
ers during plant operation.

The execution time of these high-fidelity models is typigafiany times longer
than the real process. Therefore, they are able to be usedflioe process simu-
lations but not feasible for use in a real-time control dolut Usually high-fidelity
models are not suited to act as control models because oftimiticomplexity and
long running time, but they can be used as a virtual procesadwork to assess
the performance of control methods as a high-fidelity modalrein repeatedly to
simulate a continuous cyclic process like a virtual procé&se higher the expected
performance of the control system, the higher the requidaify of the model on
which it is based.

1.2.1.2 Models for Control

Models developed for control purposes usually differ frinoste intended for other
purposes such as process design. These types of models stmiplify a process
to as few equations as possible by only capturing the corgtevant features of the
plant dynamics and plant nonlinearities. As one part ofmbatigorithms, models
for control usually run fast because of their concise exgioes, hence making it
possible to quickly test model-based control methodokgie

Sometimes a first-principles nonlinear model of the plarvigilable to char-
acterize the dynamics of the input-output behaviours. Tits¢firinciples model
contains the equations obtained from knowledge of the Uyidgrphysical pro-
cesses [£3, 44]. If an analytical solution can be obtainethéofirst-principles
model, then this model, called a 'white box’ model, can act asntrol model.

For most complex industrial processes where first-priesiglynamic models
are too difficult and expensive to develop, the problem ofding mathematical
models of dynamic systems is usually dealt with by systemtifieation based
on observed data from the system. Models obtained in thisamayBlack box’
models, which represent only the input-output dynamic biela of the plant, and
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carry no information about its internal structure [45—-4Grey box’ models are
constructed by combining knowledge of the system and exygsrtial data despite
a lack of specific knowledge of what is going on inside theaystThese models
have a number of unknown free parameters that must be estiniaing system
identification [43, 49].

Since real processes are nonlinear and complex, most tortdels are black
box models. A variety of mathematical control models basedystem iden-
tification have been developed to describe the dynamic h&lnasvof processes.
Models can usually be reduced to differential equationat{naous-time)[50, 51],
difference equations (discrete-time)[52, 53], or a coratom of these (hybrid or
sampled-data systems)[54, 55] according to the data sagnplanner. Discrete-
time models are usually chosen for die casting processdsegisate batch pro-
cesses.

In the case of die casting where nonlinearities, complexmgdoes and com-
plicated BC's are involved, the 'black-box’ discrete timedels that are typically
employed are not based on the physical properties of theegsduut rather on cor-
relations between the process inputs and outputs. CompaFdaM and FEM, the
execution time of these control models is much faster. Thezethey are better
suited to be used as the prediction models in advanced nhadeld controllers.

Models formulated through system identification can besdigsl into linear
and nonlinear systems in terms of the input - output relatign Although almost
every real system includes nonlinear features, many sgstambe reasonably de-
scribed, at least within certain operating ranges, by fimeadels. A linearized
model can be developed for a nonlinear system at the neighbod of an equi-
librium point if the principles of superposition and homagé#y are valid in the
operating range of interest [56]. The incentive to try toragpnate a nonlinear
system by a linear model is that the techniques for lineatrobare more devel-
oped and straightforward to apply than they are for nontisgatems [45, 57, 58].
The form of linear model that is adopted does not constragnkthd of test that
should be applied to the plant.

A good example of a linear discrete-time control model aggpion in die cast-
ing is that of Maijer et al. [12], who developed a reduced ostfiate-space model to
predict the approximate input-output behaviour of a lowsptge die casting pro-
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cess simulation. The state-space model, generated by timaéNcal Algorithms

for Subspace State-Space System Identification’ (N4SIDhaoak is described by
Equation (1.3). In the neighbourhood of the equilibrium rapi@g point, the iden-
tified state-space model fit validation data very well and/jgled good prediction
of the input-output behaviour of the casting process sitiargor use in the MPC
controller.

x(k+1) = Axk)+Bu(k)
y(k) = Cx(K) (1.3)

wherek represents the current discrete time st&pB, andC are matrices that
operate on the vectorgk) andu(k) to produce the vectorgk+ 1) andy(k). The
x(k) andx(k+ 1) vectors represent the state variables of the model at thergur
and next time steps, respectively. The vecid) represents all of the model inputs
andy(k) represents all of the model outputs.

Most real-world systems exhibit linear behaviour withinimited operating
range. However, for cases where the system'’s response basptedicted over a
wide operating range that includes nonlinearity, or whieegarinciples of superpo-
sition and homogeneity do not hold in the neighbourhood dagauilibrium point,
a nonlinear model rather than linear model must be used wratety predict the
dynamics of the input-output behaviour.

The techniques for building nonlinear models have not begh@oughly de-
veloped as those for linear models. However, as computbntdagy is increas-
ingly growing, more and more researchers are focusing ordévelopment of
nonlinear models to pursue the higher performance whichdfferd. For nonlin-
ear system models determined via system identificationstdite-space modeling
technique is commonly used mainly because it can deal with biagle-input-
single-output (SISO) and multi-input-multi-output (MIM@onditions. There are
different nonlinear forms of state-space models. Isaletl. [59] performed neu-
ral network black-box modeling to produce a nonlinear nesti@e-space model,
and showed that neural network-based state-space modegistantially more ef-
ficient than their conventional input-output counterpaithe Wiener Model [€0]
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has been applied to a number of different processes, suclodsling electro-
mechanical systems and radio frequency components [51,T6# popularity of
the Wiener Model lies in that it has a convenient block repméstion, transparent
relationship to linear systems, and is easier to implement.

Apart from nonlinear state-space models, there are alswtezgpapplications
of other forms of nonlinear models. Yang et el [9] developeilizzy model to
describe the input-output dynamic behaviour of a high<gures die casting pro-
cess. The empirical knowledge of how experts operate theepsowas modeled
and stored in a fuzzy rule database. The experimental sasoained from a labo-
ratory die casting process simulator indicate that theldpeel fuzzy model-based
control system is capable of adjusting the desired supptpoling water into mul-
tiple cooling lines so that the local temperature distittoutin a die insert is more
homogeneous.

1.2.2 Control Methodologies

Process control is a discipline that incorporates staesisthd engineering concepts
to deal with system architecture, mechanisms and algositinnorder to maintain
the output of a specific process within a desired range. Qfterability to con-
trol a process leads to benefits such as improving produld, yieducing energy
consumption, increasing capacity and improving produetityu Process control
has been extensively used in industry and is an enablingidéady for mass pro-
duction processes such as oil refining, paper manufactuchemical production,
power plants and many other industries [63—65].

Most control methodologies are model-based. They are agipé for regu-
lating systems to known set points or reference trajectorieo accomplish this,
a process control system designer must have a comprehansiegstanding of
how a process operates. This understanding is usually reabin the form of a
mathematical model that is generated by system identificati

The block diagram for the rationale of a model-based cdetrdg illustrated
in Figure 1.3.
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Figure 1.3: Ideal Model-Based Control scheme.

If an accurate model of the process is available, and if iterge exists, then
the process dynamics and static gain can be cancelled bywbeesé model. As
a result, the output of the process will always be equal taltdséred output [21].
Model-based control has the potential to provide perfeotroh However, given
that there are constraints on process operations, modetaiccsome degree of
error, and models are rarely invertible in practice, paréentrol is impossible to
realize. These are the issues that modern control techajoeto address, either
directly or indirectly.

Technological improvements have led to different types oflet-based con-
trol methods that have been applied in the manufacturingsimgl It has been
estimated that in excess of 90% of all controllers curreimtlgperation worldwide
are Proportional+integral+Derivative (PID) controllgi€, 2..]. The tuning pro-
cess for a PID controller requires the development of asefieules such as the
internal model control tuning rules given by Skogestad [@Ble settings of a PID
controller are selected such that the controlled resposifevs a defined trajec-
tory or exhibits stability [67]. However, regular PID cooiters can not deal with
processes which exhibit complex and mostly nonlinear aheriatics. Hence, ad-
vanced control methodologies have been developed for gdsek require some
or all of the following capabilities:

e Control and optimization of MIMO systems
e Automatic adaptive tuning of control parameters while nanimg a process
e Compensation for measured disturbances

e Input and output constraint handling
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Model Predictive Control (MPC) is an advanced control mddiogy that pro-
vides many advantages over a PID controller. An example o€EMPplication is
described in the paper [19] to show the superior performahtiee MPC approach
over PID control. Shang [19] applied MPC to control the terapgre of steel strips
(hot band) immediately after hot rolling and just prior talicmy. In this process,
residence time variation is analogous to variation in fpanstion lag, which is a
destabilizing influence on conventional PID controlleree MPC approach had no
difficulty in these situations as the MPC approach incorfgzra prediction phase
that easily compensates the residence-time variations.MPC approach turned
out to maintain the target values perfectly while the PIDtoater had difficulty
doing so. Although this is a simple example to illustrate eahthe performance
advantages of the MPC approach within the context of a tyjpiedal-processing
example, there are several other points worth mentionirtte MIPC technology
can naturally incorporate constraints on the manipulatetdca other process vari-
ables. Further the MPC approach, with some simple modificatican be en-
hanced to control cooling/heating profiles, whereas, theemonventional control
approaches cannot.

MPC has had a significant and widespread impact on a varieiydofstrial
processes including oil & gas, pulp & paper, chemical andtbatrocesses [12,
68--71]. The widespread industrial acceptance of MPC tdobies has in turn
spawned considerable academic research and industrelbgevent efforts. MPC
provides a simple to understand framework that can be easignded to handle
multivariable processes and constraints on the inputs amputs of a process.
it uses the process model to predict the future responseeopihicess at each
sampling interval. Using this prediction capability, thd®®& controller minimizes
a cost function at each sampling interval to produce therapti process inputs.
By using the process model for prediction, an MPC contralker easily integrate
compensation for measured process disturbances andaiohsindling.

A basic discrete MPC scheme is presented in Figure 1.4. Isithplest case
the input trajectory {(t|k)) is computed so as to bring the predicted value of the
controlled output variabley(f|k)) at the end of the prediction horizon 'Hp’ to the
required value (k+ Hplk), while only executing M’ control moves. Figure 1.4
illustrates the input assumed to vary over the first thrgesstéthe prediction hori-
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zon, but to remain constant thereaftefk 4 2|k) = G(k+3|k) = ..., 0(k+Hp—
1/k), so that there are three 'parameters’ to choogklk, G(k+ 1/k), G(k+2/k). In
Figure 1.4, the algorithm can be shown to split into two phase the first phase,
a prediction is made Hp control intervals into the futuredahen past control ac-
tions and assuming no more will be made in the future. Basdtefree response
prediction ;(t|k)), namely the response that would be obtained if the future in
put trajectory remained at the latest valugc — 1), and the reference trajectory
(r(t|k)), an uncontrolled error trajectory can be calculated. €hier trajectory is
an expression of how the output variabjg is expected to evolve in time should
no more control action be taken. The second phase of the MP@agh involves
the minimization of this realized error trajectory, usydiased on a least-squares
calculation and assuming that Hu control actions are takéote thatH, < H,.
When the model on which the MPC calculations are based iarliaed a conven-
tional least-squares objective is assumed, the unconstraiptimal solution can
be calculated analytically. When the model is nonlinear/@ndonstraints have
been incorporated into the MPC algorithm, then the regyltiptimization prob-
lem must be solved numerically. The notatiafk 1 i|k) here indicates that at time
k a prediction of what the input at time k+i may be; the actuglit at that time,
u(k+1i), will probably be different fromu(k +i|k). Once a future input trajectory
has been chosen, only the first element of that trajectorppdied as the input
signal to the plant. That isj(k) = G(k|k), whereu(k) denotes the actual signal
applied. Then the whole cycle of output measurement piedicand input tra-
jectory determination is repeated one sampling intentat.ld&or a more thorough
introduction to MPC, the reader is referred to the treatm@nMaciejowski [72].
Most control methods are model-based, but there also esisimmodel-based
control methods, one of which is extremum seeking contrd],[Which is a type
of adaptive control that does not fit into the classical paradof model related
schemes. The classical adaptive control approaches &arl[ii4--76] and nonlin-
ear systems [77] are applicable only for regulating systenksmown set points or
reference trajectories. In some applications, the reter¢o-output map exhibits
an extremum (i.e., @ maximum or a minimum) which enables #weldpment of
a controller to maintain the process output at the extremaiorev The uncertainty
in the reference-to-output map makes it necessary to use sornof adaptation to
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Figure 1.4: A Basic Discrete MPC Scheme.

find the set point which maximizes or minimizes the outputisTontrol is called
extremum control or self-optimizing control. The methodsofusoidal perturba-
tion is the most popular of method of seeking the extremuniadn it is the only
method that permits fast adaptation, going beyond numnibricased methods that
require a stable process before optimization.

1.2.3 Batch Process Control

Batch processes are as non-continuous processes whethe®aof product are
produced repeatedly from a process. These types of pracassevidely applied
in many sectors of the chemical, pharmaceutical, food aadrage, polymer, con-
sumer product, and biotechnology industries. Followingadugh literature sur-
vey, the application of control methods to batch processssréceived consider-

19



able attention! [€3, 78—32]. However, very few studies r@te\die casting were
found. The following discussion will present the applioatbf control methodolo-
gies to batch processes in general. The applications ofaanethodologies to
casting processes will then be discussed in the next sidisect

Xaumier et al. [[81] describe the temperature control of @&tba¢actor for a
chemical process where improved product quality was thé ddazmezan et al.
[8C] achieved a significant reduction in cycle time of a batehctor by reducing
the variability of the controlled temperatures. In eachecdise in-cycle reference
trajectories for temperatures were able to be preset duetfixed length of each
cycle. Temperatures were treated as continuous proceisdbbesr within a non-
continuous batch process. These temperatures were thewolszhto follow the
in-cycle reference trajectory using model predictive ooliih both cases.

The dynamic features of some batch processes can be delsbyilbdinearized
control model when the system runs near optimal operaticoadlitions. Lee et
al. [82] assessed the application of Model-based Predi€ntrol for Batch pro-
cesses (BMPC) to linear constrained systems, as well asritemence properties.
MPC techniques can also be applied to processes repressnbelinear control
models. Xaumier et al. [81] described the application oflimear model predic-
tive control (NMPC) to the temperature control of a semiehathemical reactor
equipped with a multi-fluid heating/cooling system. Thetggy of the nonlin-
ear control system was based on a constrained optimizatarigm, which was
solved repeatedly on-line by a step-wise integration ofrdinear dynamic model
and an optimization strategy.

1.2.4 Die Casting Process Control

In the past, various efforts have been made to develop thenarsagement systems
for dies and a number of temperature control methods have designed to help
control the die temperature. A common control approacherdta casting industry
is to define a reference trajectory for die temperature tp bhehieve the goal of
improving the casting quality or reducing the scrap ratelf9,16--18, 83].

A variety of control methods have been developed for HPDGh&mnden et al.
[1€] reduced the temperature variation and the scrap raae iHPDC process by
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applying a temperature feedback controller to manipulatewnflow-rates. In this
work, casting defects were traced to the variability of @mperatures in critical
die sections. This finding suggests that stabilizing dieperatures should reduce
the number of defective casting cycles. Tiebao et al. [9]otesl a fuzzy PID
controller for a high-pressure die casting process to mgerthe temperature dif-
ferences between two adjacent channels in the die. Theotaystem developed
was capable of adjusting the desired supply of cooling wiatermultiple lines so
that the local temperature distribution of the die insers wamogeneous.

Compared to HPDC, there is much less literature on the agijit of control
methodologies in LPDC. Maijer et al. [12] developed and eggpMPC control
to a simulation of wheel casting. The implemented MPC cdietraised a linear
MIMO state-space model to regulate die temperatures fguiihgose of mitigating
the negative effects caused from simulated disturbang®sios, hence improving
the casting quality. This study reported that temperatexéations from the opti-
mum values affected liquid encapsulation in the wheel.

In both low pressure and high pressure die casting, the dipdeatures have
been shown to affect casting quality if they deviate fromspteeference trajecto-
ries. Note that the reference trajectories for die tempesatare predetermined by
either trial and error or empirical knowledge. Therefohese trajectories can only
be qualitatively associated with the ultimate control gaath as casting quality or
scrap rate. In addition, controlling temperature, whileegatable, does not provide
a direct control of the microstructure and properties ofgraduct. Therefore the
best process control is direct product control [19].

1.3 Scope, Objectives and Contributions

1.3.1 Scope of Research Programme

The goal of this research program is to develop a methoddlmggntrol an oper-
ational LPDC process that is capable of minimizing the riegatffects of process
disturbances. To achieve this goal, a process controligoltiiat incorporates the
dynamics of the process is necessary to drive the system optimal operational
condition under both dynamic and static conditions. To @wbi cost and diffi-
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culties associated with the implementation of control raddtogies in an opera-
tional industrial process and to enable extensive assessme testing, a computer
simulation-based approach will be employed in this researc

A critical component in developing the control solution fois research was to
explore the qualitative and quantitative relationshipsvieen die temperature and
the volume of liquid encapsulation which is linked to maparosity formation.
Die temperature will be considered an indirect indicatothaf volume of liquid
encapsulation that occurs during solidification in an exanapsting.

A first-principles mathematical model will be developed tedict the evolu-
tion of temperature in a low pressure die casting procesaguke commercial
finite element software ABAQUS. The casting studied will lesidgned to be sus-
ceptible to macro-porosity. The ABAQUS simulation will forthe core of a vir-
tual process on which experiments will be performed to exptbe relationship
between die temperature and the volume of liquid encapsoland to assess the
benefits of implementing an advanced control solution oncdsting process. A
nonlinear state-space model, based on data from the vigtoakss, will be de-
veloped to predict the input-output behaviour of the virtpeocess. Using the
identified model, a nonlinear model-based predictive aietr (NMPC) will then
be developed to reject disturbances in the process.

Chapter 2 introduces the design and the validation of thegg®model within
ABAQUS and the transformation of this model into a 'virtug@ifocess. Chap-
ter 3 presents both correlation method and linear regnesaigthod for identify-
ing macro-porosity formed during solidification in LPDC. &jtter 4 describes the
preparation and procedure to perform a nonlinear systentifation of the cast-
ing process. In Chapter 5, a NMPC is designed and implemeamtéde comput-
ing software platform MATLAB. Finally, the performance i casting process in
both the controlled and uncontrolled modes are comparexdj tise virtual process
in Chapter 6.

1.3.2 Obijectives of Research Programme

The primary objective of the present study is:

e To develop an advanced control methodology to compensatedmegative
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effects on LPDC caused by process disturbances and to thévprocess
towards its optimal operating point under both dynamic daticsconditions,
thereby minimizing macro-porosity in the casting.

To accomplish the primary objectives, the following suljectives have been
identified:

To developed and validate a mathematical model of an LPD€gssoto act
as a 'virtual process’ for use in testing an advanced prooasol solution;

To formulate a technique that correlates the extent of mporosity with
die temperatures and use this technique to consider thaaldtications to
monitor temperature during LPDC;

To employ system identification to develop a nonlinear stagce model of
the virtual process;

To assess the performance of advanced control methods dAR@ process
using a virtual process framework.

1.3.3 Contributions

The main contributions of this work are summarized as fadlow

1.

A mathematical model of an LPDC process, which was dedigmbe prone

to macro-porosity defect formation, has been developedce rbdel, val-

idated by comparison with experimental data, has been flateul to act

as a virtual process’ for use in developing and testing armaded process
control solution.

. A model-based methodology to analyze the correlatiowéden die tem-

perature and volume of encapsulated liquid has been deatlop linear
regression (LR) expression to calculate the volume of endajed liquid in
a casting using die temperatures from selected locatiotigidie has been
formulated and assessed. The method for correlating dipestures to
liquid encapsulation is an original contribution and a pagescribing this
approach won the 2011 Best Paper Award from the Light Metatgiéh of
the Metallurgical Society of CIM.
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3. The correlation method and the LR approach have been ossdluate and
determine the optimal locations to monitor temperaturdhénexperimental
die. This technique provides industry with a quantitativeams of selecting
and assessing locations to monitor dies and representspamtant develop-
ment over the traditional trial-and-error approach thaypscally used.

4. A state-space model with nonlinear dynamic behaviouliaedr static gain
has been developed to approximate the virtual processghraonlinear
system identification (SI). This easy to understand noalirf®&d approach is
novel and simple to apply.

5. Anonlinear Model-based Predictive Controller (MPC) wasigned to achieve
the goal of minimizing the volume of encapsulated liquidptavious work
on die casting, the goal was to control die temperaturedm@ijies, which
are determined by experience. The nonlinear MPC contrisipiemented
in the current work, automatically drives the system towaygdtimal opera-
tional conditions both dynamically and statically. This\tol methodology
has been formulated in a general manner to allow applicatiather cyclic
casting processes.
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Chapter 2

Virtual Process Model
Development

2.1 Overview

Numerous experiments are necessary to develop, implementeat the perfor-
mance of a control scheme for low pressure die casting. Hemiewould be
very costly and impractical to conduct all the experimentsatly on a real die
casting machine. Therefore, a computer-based die castotgss simulator has
been built to predict the temperature variation throughbetcasting process. The
use of a casting process simulator versus performing pieats provides several
advantages including:

e Asimulator is inherently flexible allowing a wide variety gperational con-
ditions to be evaluated and it can run concurrently to ingast several phe-

Iportions of this chapter have been published in:
e X. Shi, D.M. Maijer and G. Dumont, “Determination of Optimabcation to Monitor Temperature
During Low Pressure Die Casting”, Light Metals 2010 Prodegs, Advances in Materials and Pro-
cesses, COM2010, Vancouver, BC, p.3-13, Oct 2010.
e X. Shi, D.M. Maijer and G. Dumont, “Determination of the Qp#l Location to Monitor Temper-
ature in a Low Pressure Die Casting Process”, Materialsx8eiand Technology, UK, Vol 27, No 6,
p1073-1083, 2011.
e E. Khajeh, X. Shi, D.M. Maijer, “Modeling the Formation of Rsity during Low Pressure Die
Casting (LPDC) of Aluminum Alloy A356”, Shape Casting: 3ndtérnational Symposium 2009,
TMS, pp. 297-304, February 2009.
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nomena at once.

e A simulator can provide temperature information at any (andll) locations
within the model domain whereas measured temperature slditaiied to
the locations where thermocouples were installed in a pieht

e ltis straightforward to analyze and explore the relatigm&etween die tem-
peratures and the amount of liquid encapsulation in a pastegsing oper-
ation using a casting process simulator.

To provide a useful tool for investigating an operationalgass, the simulator
needs to accurately represent the real process and it musiagé multiple cast-
ing cycles. Functioning in this manner, the simulator carcdnesidered a virtual
process. To ensure accuracy, the virtual process must lulatead by comparing
predicted temperatures to the experimental data for atyasfeoperational condi-
tions.

This chapter describes the development of a mathematicaéihod a demon-
stration casting and the transformation of this model int@rtaal process that op-
erates like a real industrial process. The chapter is ozgdras follows: in Section
2.2, the computer-based die casting process model is iteatd The model vali-
dation is presented in Section 2.3. The structure of thealifprocess is detailed
in the last Section 2.4.

2.2 Model Description

In this research, a computer-based, mathematical modetas$ting process was
developed and implemented in the commercial finite-elerpackage, ABAQUS.
A geometrically simple demonstration die, shown in Figuk #vas designed for
this study to provide a test platform to assess cyclic castperations. Contrary to
production castings, this casting process was designédttiétgoal of producing
guantifiable defects - specifically two regions of macroegsdy. A transient heat
conduction model considering the solidifying LPDC castimgl die was developed
to predict the temperature variation throughout eachmgstycle. The governing
equation describing the transient heat transport in therBeldel is presented in

26



Equation (2.1):

o ( 0T o ( 0T o (, 0T dT

whereT is the temperature°C), k is the thermal conductivity (W/m/K)p
is the density (kg/r¥), Cy is the specific heat (J/kg/K},is the time (s) an@ is a
volumetric heat source term (WAyassociated with the latent-heat of solidification
in the casting when appropriate, i.e. during the liquid tadsphase change, and
y andz are directions (m). Equation (2.1) is solved for the temjpges in both the
casting and die subject to the definition of model geometatenmal properties and
appropriate boundary and initial conditions. The model Wwaglemented using
the commercial finite element package ABAQUS. Fluid flow witthe casting
during mold filling has been ignored here; however, whendhgperature is above
the eutectic solidification temperature, the thermal caotidity, k, of the casting
material was intentionally increased to account for enbdricansport of heat due
to natural convection. The approach to used to augrkemtdescribed below in
subsection 2.2.2.

2.2.1 Geometry

By taking advantage of symmetry, the geometry of the casiimd) die were re-
duced to a section to shorten computation times. The die geometry @yel
in the model with overall dimensions of 240mm80mm x 80mm is presented
in Figure 2.1. Four pairs of cooling channels, also shownigufe 2..., were lo-
cated at different heights in the die. In each pair, coolaimtdr water) enters the
die along the channel closest to the casting and returnaghrthe other channel.
The geometry of the casting and die was meshed using 4-noelar ltetrahedral
elements with minimum element edge lengths of 4 mm and 7 msperively.
The mesh contains 11,773 nodes and 50,115 elements. A niioredrenesh was
developed to assess the sensitivity of the model predtimincreased mesh den-
sity. This entailed comparing the results obtained withtthe meshes to assess
any difference. The results indicate that the current mealdéquate for its present
use.
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Figure 2.1: Schematic of g Section of the Die with Cooling Channels, Ther-
mocouple Locations, and Interior Surface Partitions Mdrke

2.2.2 Thermophysical Properties

The die was fabricated from H13 tool steel and A356 aluminilay avas used to
produce the castings. The nominal compositions of thesgsa#ire given in Table
2.1. The thermophysical properties of A356 and H13, inelgdhermal conduc-
tivity, specific heat, density and latent heat (where nerg$sused in the model
were based on a variety of literature sources and are giv&akle 2.2. During the
liquid to solid phase transformation in A356, the latenttleaolidification (397.5
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Table 2.1: The Nominal Compositions of A356 and H1.3 [85].

Composition Si Cu Mg Mn Fe Zn Al
A356 7.0 0.20(max) 0.35 0.10(max)| 0.20(max)| 0.10(max)| balance

Composition C Mn Si Cr Mo \% Fe
H13 0.32-0.45| 0.20-0.50| 0.80-1.20| 4.75-5.50| 1.10-1.75| 0.80-1.20| balance

Table 2.2: Thermophysical Properties for A356 and H13 Used in the Thaérm

Model [86].

. T k T Cp T range L p
Material | ooy | wimik) | ) | (IkgK) ©C) (kJ/kg) | (kgim?)
A356 | 1335 | 14654 963 | 557<T <568 198.75| 2369
1470 | 153.29 568< T <602 | 50.4

159.1 | 154.98 602< T <610 | 148.35

203.9 166.80
316.4 167.47
393.0 166.12
557.0 166.12
610.0 400.0

H13 20 24.60 23 458.80 N/A 7367

200 26.25 200 518.50
500 27.30 400 587.76
600 27.76 600 726.20
800 28.07 700 905.40

850 28.39 760 | 1151.10
900 30.40 800 885.00
1000 31.23 850 792.70
900 747.90
1000 | 733.00

* The thermal conductivity of the liquid metal has been inseghto approximate the effects of
convection[1].

kJ/kg) is released linearly with temperature in three st&pg temperature ranges
and the amount of latent heat released in each step are baskd experimental
results reported by Thompson et al. [84].
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2.2.3 Initial Conditions

The effects of filling on the initial temperature of the cagtiand die have been
neglected in the model based on previous process measuswidanh showed lit-

tle temperature change during filling. Thus, the castingiitsalized at a uniform
temperature of 690C at the start of each cycle. In the die, a uniform initial tem-
perature of 400-440C (specified based on the measured initial die temperatire) i
assumed for the first cycle and in subsequent cycles, theetatupe distribution

at the end of the previous cycle is used as the initial tentpera

2.2.4 Boundary Conditions

A variety of boundary conditions are needed to properly diesdhe flow of heat
from the casting to the die and then to the surrounding enmient. Moving out-
ward from the casting, the first boundary condition encaetés at the interface
between the casting and the die. The heat flux at this ineitadefined as [1]:

oT oT
—kcast% |cast = hi (Tcast— Tdie) = kdie%|die (2-2)

wheren is the outward pointing normal vector of the surface ani the in-
terfacial heat transfer coefficient (W##) describing the resistance to heat flow
across the interface. Based on surface orientation (i.ezdwgal, vertical, or an-
gled), the casting/die interface was partitioned into 8isas marked aS#1— 8
in Figure 2.1. For each section, the maximum and minimumeshf the inter-
facial heat transfer coefficients were defined along withngperature range over
which a linear transition occurs. A trial and error procedwas employed to de-
termine the initial contact heat transfer coefficigmtd = 4000 W/nt/K) and the
subsequent reduction in interfacial thermal resistaneetdwsolidification shrink-
age bmin = 400 to 1200 W/rA/K) for each section. The minimum interfacial heat
transfer coefficient was increased on those sections that expected to maintain
improved contact because of the effects of gravity and flad.flTable 2.3 sum-
marizes the heat transfer coefficients and temperatureesamger which the heat
transfer coefficient was ramped frdmax to hmin for the eight interface sections.

The heat transfer conditions summarized in Table 2.3 wdinattthrough an
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Table 2.3: Heat Transfer Coefficients and Linear Ramp Temperature &ang
Applied Along the Casting/Die Interface Sections.

. T range Prmin Nmax
Interface Sectior Q) (WIMZIK) (WIMZ/K)

1 (trial3*) 540-560 400 4000
1 (trial4*) 565-585 400 4000
1 (trial6*) 540-560 400 4000
2 564-584 1200 4000

3 568-588 1200 4000

4 540-560 1200 4000

5 567-587 400 4000

6 540-560 1200 4000

7 540-560 1200 4000

8 540-560 1200 4000

*“trial 3,4,6 represent trials with different operationahdiions respectively,
detailed in section 2.3

iterative process based on comparison between predictechaasured tempera-
tures and considering the effects of gravity, casting &lage, and casting surface
orientation. The finish and topology of the casting surfageee also considered.
For example, the lowesti, was assigned to interface sections 1 and 5 based on
the expectation that casting contraction and gravity &Sfedgll combine to pro-
duce significant air gaps along these interfaces. The taadfar coefficients were
ramped at a higher temperature range for interface seciamsl 3 compared to 6
and 7 because of vertical location with heat transfer atdrif¢fications decreasing
earlier (i.e. with higher temperatures). Interface sesiahere the casting was
expected to rest on-, or to bulge out toward-, and maintairia@ (sections 2, 3,
4, 6, 7, and 8) were defined with a higher minimum heat traresfefficient (1200
W/m?/K).

To account for the additional heat supplied by the liquidahebntained in the
riser tube, a temperature constraint was set on the suréaresenting the inlet
from the sprue. In the process, the casting remains in comtile this liquid
metal after the die is filled because the filling pressure isxtamed. The casting
machine used to generate data for comparison with the maaelwe-purposed
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unit with a robotic system that removed the die from the hmgjdurnace each cycle.
When this occurs, heat is no longer supplied to the metaldrsgiiue and cooling

occurs to the ambient environment. To represent these toammsli a time-based

temperature constraint was applied to the bottom surfateeaietal in the sprue,

starting at the initial casting temperature (i.e. 890 and linearly decreasing to
600°C between 3s (after the filling process is complete) and 3hgsiivthe furnace

pressure is released) during the casting cycle. The temperdecrease and the
time over which this occurs were based on the trends obsémvbé temperature

measurements.

Although the flow of liquid metal to the die during filling aretincluded in the
model, the heat transfer along the casting / die interfaceimiiated as a function
of height in the die. The height of the liquid metal in the diasnassumed to vary
linearly during filling based on the linear pressure rampliagpduring the plant
trials. Thus the heat transfer across the casting/diefatewas activated based
on whether or not the liquid metal height in the die cavityesaed the interface
height.

Continuing outward from the casting, boundary conditiorsendefined on the
surfaces defining the internal cooling channels in the diadtude the effects of
forced convective (air or water) cooling. Heat transferfficients and cooling me-
dia temperatures were defined based on temperature measiiseamd trial and
error fitting. For comparison with the plant trial data, ti&ng time for cooling
and the duration that cooling is active in the cooling ch#saee defined based on
the experimental conditions. On the exterior surface offieethe boundary con-
ditions used to describe the heat transfer to the ambiemtomment surrounding
the die, considering both convective and radiative efféws the form [1]:

oT
_k% Ir = [Nconv+ hrad] (Tsurt — Tamb) (2.3)

wherel refers to the surface where the BC is applieg,, is the convective heat
transfer coefficienth;aq Is an equivalent radiative heat transfer coeffici@iy, s
is the surface temperature aig, is the ambient environment temperature. The
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Table 2.4: Air Cooling and Exterior Boundary Condition Parameters.

Surface h Ambient Slljrfgc.e Time in a cycle()
(W/m?/K) | T(°C) | emissivity

I side 20 50 0.7 t>0

IMback 20 75 0 t>0

Mop 40 20 07 [t>0

r 20 75 0.7 t <t Ort > tsep
bottont 1000 620 0 tril <t < toep

r 20 75 0.7 t <t Ort > tsep
botton® 100 700 0 til <t < teep

ro 20 200 0 when not active
cooling 200 100 0 when active

IMholder 1000 400 0 t>0

Mo c(S#1—8) 20 50 05 | t>tojen

MN_s 20 50 0.7 t > tsep

e 20 50 0.7 t > teject

Notes:

Surfaces marked with are indicated in Figure 2.1;

I cooling are the cooling channel§h#l — 4,

trin , tsep@ndteject refers to filling, separation, and ejection times which asrked
in Figure 2.2.

equivalent radiative heat transfer coefficient is cal@datsing [1]:
hrag = 0&(T&r ¢ + Tamb) (Tsurt + Tamb) (2.4)

where o is the Stefan-Boltzmann constant (5.668 8W/m?/K4) and ¢ is the
emissivity of the surface. The parameters of the forcedtaaling and exterior
boundary conditions are summarized in Table 2.4. Note treparameter of am-
bient temperature needs to be converted into the Kelviregg@l when used in
Equation (2.4). The cycle timing parameters referencedbier2.4 are defined on
the schematic plot of the die temperature variation durimgxperimental casting
cycle shown in Figurs 2.2.

2.2.5 Liquid Encapsulation Prediction

The predicted casting temperature can be used to calctlatghien liquid en-
capsulation occurs in each casting cycle and the volumegaidithat is encap-
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Figure 2.2: Schematic of Single Cycle Die Temperature Variation in the T

als.

sulated. A post-processing program was developed to detenwvhen a portion

of the casting is isolated from the liquid metal supply of #peue. This involves

performing a search to identify all of the nodes in the geoynetpresenting the
casting, with temperatures higher than a critical tempeedbor feeding, which are
not connected to the sprue(liquid metal source) by a pathteféonnected nodes.
The critical temperature for feeding was assumed to béGéfased on a critical
solid fraction of 0.8 [86]. The nodes identified in this manrepresent a pocket of
encapsulated liquid metal which have the potential to foratm-porosity as the
isolated liquid metal solidifies.

Liquid metal encapsulated is dependent on the both thengeastid die temper-
ature. In the casting used for this study, encapsulatiorbbas observed to occur
in the upper section, in the lower section, and concurranthoth sections. An ex-
ample of liquid encapsulation occurring in the upper secisgpresented in Figure
2.3. In Figure 2.3, the red regions represent metal with &gatpres greater than
the critical temperature and the blue regions represerdlmatetemperatures below
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the critical temperature. The sequence of liquid metal pswated evolves during
a casting cycle and may (or may not) include: i) the encagisal@f a volume of

liquid in the upper section (refer to Figure 2.3a; and ii) elid#fication proceeds,
encapsulation of a volume of liquid in the lower sectionéred Figure 2.3b. The
total volume of encapsulated liquid is the sum of the maxinunlumes in the

upper and lower sections. The volume of each encapsulajed liegion as well

as the summation are calculated for use as an indicator gidtemtial extent of
macro-porosity.

a) b)

Figure 2.3: Predicted Liquid Encapsulation Evolution (a) with InitR&ssage
Block in the Upper Section and (b) with Latter Passage Blaockhe
Lower Section.

2.3 Model Validation

Model validation is an essential task that was completed ataly stage in the re-
search to tune the boundary conditions of the FE model ansisisa the accuracy
of the predictions for temperatures and liquid encapsutatOnce validated, exe-
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cution of the process model was automated through the usee acript wrapper
to create a 'virtual process’ for use in designing and tgséin advanced process
control solution.

2.3.1 Low Pressure Die Casting Trials

To provide the data necessary to fit the boundary conditibtitseeanodel and vali-

date the temperature predictions, a plant trial was coeduetNRCan’'s CANMET-
MTL LPDC facility, previously located in Ottawa, Canada.eTbPDC machine at
this facility was adapted for casting light metals and itsraion is atypical in that
the die lifts off the holding furnace each cycle and rotatethe side prior to ejec-
tion. A casting cycle begins when the die closes and rotatesjng it in contact

with the holding furnace. Metal is forced up a joint pipe antbia sprue to fill the

die when the air above the liquid metal in the holding furnscgressurized. The
casting solidifies as heat is transferred to the die. Afterealgtermined time, the
pressure in the holding furnace is released and the diengthated away from the
holding furnace. The die is opened and the casting is remmatually. Prior to

the start of the next cycle, the die remains open and coolsr ¢aling channels
were placed in the die, in the locations shown in Figure 2. Jrovide cooling to

the die. Air or water could be used as coolant in the cooliranaels depending
on desired cooling rates.

A LabView program was developed to monitor and record theouples and
to control the cycle timing for die cooling. The die was instrented with Type-E
thermocouples at various locations to measure tempesatiineng each casting
cycle. A coolant distribution system, shown in Figure 2.4svfabricated by con-
necting 4 coolant supply lines to a manifold. Each supplg liras split to provide
coolant to each half of the die. The flow of coolant (cycletstiane and duration
of cooling) in the supply lines was controlled with solenvalves that were linked
via a relay board to the control program. Coolant flow raténincooling channel
was preset by regulating a ball valve installed in-line vifitb solenoid valve.

The plant trials conducted for this investigation used abdiged on the geom-
etry shown in Figure 2/1. The die temperatures were measti@tbcations in the
die via Type-E thermocouples mounted 5 mm below the die serféth a sam-
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Figure 2.4: The Manifold Used in the Trials.

pling rate of 1 Hz. A series of 12 casting trials were conddigteopen loop mode
with the casting process-related cycle timing performechuadly. Each casting
trial condition was run until cyclic steady state was acatewhen the measured
die temperatures at the start and end of a casting cycle wigr@i°C (a mini-
mum of 10 shots). When planning the plant trial, a start abtemperature differ-
ence of 0.1C was targeted to define steady state operation. Howeveraatiqe,
the ideal steady state was not achieved. The requiremerrtorm cycle timing
manually and the frequent process disturbances which @ataiuring each trial
made this goal impractical. Figure 2.5a shows the die teatpex history from
one thermocouple. Figure 2.5b presents an enlarged pldéieoi3th cycle’s die
temperature variation which met the steady state condigguirement. Careful
observation of the data shown in Figure 2.5a reveals a siya#-to-cycle fluctu-
ation in the Maximum Temperature as this location approasiteady state. This
variation was likely caused by cycle time variability cadi$sy manual operation.
From the 12 trials, 3 representative trial conditions, swarped in Table 2.5,
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Figure 2.5: (a) A Sample of Die Temperature’s Evolution in a Thermocou-
ple Until Steady State and (b) an Enlarged Plot of a SingldeCée
Temperature Variation at Steady State.

Table 2.5: Experimental Process Parameters.

Die Closed Time(s) Die Open Cooling Channel 1
Trial No. | Pressure | Pressure e op Time Flow rate Shots No.
Time (s) .
on off (s) (L/min)
3 30 90 45 - - 20
4 30 90 60 - - 13
6 30 90 45 120 600 15

* When Pressure is on, the bottom of the casting was connedtiedhe liquid metal supply
of the sprue, and vice versa.

were selected for use in this investigation to examine thectsf of Die Closed
Time, Die Open Time and Cooling Duration (only Cooling Chalnhwas active).

2.3.2 Results

The predicted (red lines) and measured (blue symbols) dipaeatures at 3 of the
8 thermocouple locations are compared in Figure 2.6 foessprtative steady state
casting cycles from casting trials 3, 4 and 6 (refer to Tag@ details of process
parameters). Among the results for each trial conditioa,témperature at TC#2
was the lowest of the three thermocouple locations repdrgeaduse this location
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was both closest to the exterior mounting surface of the tierevheat is lost to the
casting machine and closest to the cooling channel adtivatérial 6. Conversely,
the highest temperatures were measured by TC#5 because fistrzest from the
external surface of the die and in a location surrounded Imgiderable thermal
mass. Considering the effect of operational conditionsafgiven die location,
the subplots in Figure 2.6 indicate that increased Die Opere TTrial 4) and the
activation of forced-air cooling (Trial 6) result in decsed die temperatures. The
largest decrease in die temperature, and the most locaditect, was measured
at TC#2 when forced-air cooling activated because thigilmcavas nearest to the
active cooling channel.

Trial 3 Trial 4 Trial 6
(baseline) (extended open time) (active die air cooling)
—~ * Measured
QL_J/ 550 550 550 Predicted
~ @ - = = Upper Bound
#* 2 500 PN el Lower Bound
o g NG
= o :*}* S -
=3 450 o~
£ ok -
) == <<
|—

400 400 400
0 0

TC#5
Temperature C )

TC#8
Temperature {C)
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0 50 100 150 0 50 100 150 200 0 50 100 150 200

Time (s) Time (s) Time (s)

Figure 2.6: Graphical Comparison of Predicted and Measured Data with th
Consideration of Uncertain Factors.
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Despite attempts to alter the boundary conditions to impitke temperature
predictions, differences still exist between the predidied line) and measured
temperatures (blue symbols) presented in Figure 2.6. Hueepancy between the
predicted and measured data may be due to uncertainty aadiability in the op-
erational conditions achieved in the trial which have narbaccounted for in the
model. In an attempt to assess the sensitivity of the moaeligtions, an uncer-
tainty analysis has been performed. After systematicallying the model input
parameters, potential errors contributing to discrepdratween the predicted and
measured temperatures are:

1. Random errors
(a) uq: the error from varying forced-air cooling heat transfeeffigient (
h=10-20 W/n%/°C).

(b) uo: the error from varying thermocouple position (uncertgimt each
direction+ 2mm).

(c) us: the error from varying contact time between casting andldiéng
the process.

2. Systematic error
(a) ua: the error from cycle timing uncertainty(2s).

Following a statistical approach to estimate the propagatif uncertainty in
this system [87], the combined error due to uncertainty éndentified parameters
can be calculated as the Root Mean Square (RMS) of the thrdepémdent random
error factors, expressed as follows:

Hi3=\/HE+ P2+ g (2.5)

wherep, = /2 + /J§y + M3, and oy, Loy, Hz, are the directional components of
Uz along X, y, and z directions. Based on the composite errob®ibf the random
and systematic errors [87], upper (T(})and lower (T(t)) bounds of the model
predictions have been defined as follows:

T(t)i = T(t)pred + “]_i,g(t) + “it(t) (26)
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whereT (t) pred is the die temperature predicted by the modﬁ‘]) andui(t) are the
positive and negative effects af on the die temperature, as a function of titne
respectively.

The variation of the temperature predictions due to thetified uncertainty
was calculated with Equation (2.6). The lower and upper dewfthe temperature
predictions are plotted in Figure 2.6 as green dashed liResthe most part, the
measured temperatures fall within the temperature ranfjeedeby these curves
indicating that identified uncertainty factors may expltdie differences between
the predicted and measured temperature data. Based omdhjsia and the com-
parison between the predicted and measured temperatoeesiodel is assumed
to adequately describe the casting process enabling itis fisegher analysis.

Following the casting trials, sample castings collectedrduthe trials were
sectioned in half vertically, mounted in epoxy, and the cutace was ground. The
macro-porosity in these samples was quantified by imagieggtbund surface.
Figure 2.7 shows the cross-section of a casting sample wéhaid contours of
the measured porosity distribution for a casting samplenffoial 6. The majority
of the porosity observed in this casting and the others ebdeoccurred due to
liquid encapsulation and shrinkage effects. The size ofeti@apsulated region
and the extent of porosity depend on the coherency of thdisetl region which
block off the incoming liquid and the extent of solidificatiin the overall casting.
The asymmetric distribution of macro-porosity in the uppegion of the casting
shown in Figure 2.7 may be caused be uneven shell thicknasafion due to non-
symmetric heat transfer and process variability. The maorosity distribution is
symmetric in the low section. In the example casting shovsuréace depression,
caused by the internal pressure in the casting, was obsefedformation of the
defect may have influenced the macro-porosity distribuiticthe upper section.

2.4 Virtual Process

The ABAQUS model developed in section 2.2 can be used to gréue evolu-

tion of the casting and die temperature distribution fomala casting cycle. This
section outlines the system developed to transform the AB8Qimulation into a
virtual process. A Perl language-based wrapper script wikewto automate the
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model allowing it to run continuously like an operating @agtprocess. The wrap-
per communicates with and controls the model in a mannetasinoi an industrial
controller and a casting machine. Operating in this marthermprocess model acts
as a virtual process which runs continuously and can be anogyed with varying
input conditions.

2.4.1 Virtual Process Operation Mode

The core component of the system is a Perl script that marthge#tual process’s
communications while repeatedly running the single cycBAQUS simulation.
The virtual process can be operated in two modes: open-l@agoftrolled) and
closed-loop (controlled). The open-loop functionalitysimeen used to assess the
influence of process variables and to perform system ideatiifin, while closed-
loop operation provides a platform to verify the performaot the designed con-
troller. In closed-loop, based on virtual process datactidroller computes the
manipulated (controllable) process inputs and appliesittiethe current cycle’s
simulation. The virtual process operational cycle and datmmunications are
illustrated in Figure 2.8.

As is shown in Figure 2/8, during each cycle the Perl scrigicates the fol-
lowing three major tasks which are described in the subsecezetions:
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Figure 2.8: Data Flow in a Typical Virtual Process Simulation Cycle.

e Retrieve new cycle’s process data for data preparation.
e Compile the input file and run the ABAQUS simulation.

e Extract virtual process data and save the ABAQUS simuladidput files.

The perl wrapper script and examples of the control files eogiged in Ap-
pendix A.

2.4.2 Data Preparation Process

During the data preparation process, the Perl script dsltbe process parameters
necessary to run the simulation for the current cycle. The clallection modes for
both open loop and closed loop are a slightly different. Téramon operation for
both is that, at the beginning of each cycle, data is read fhanfiollowing separate
control files:

1. Simulationmodénput— specifies whether the virtual process operation mode
is open loop or closed loop during each simulation cycle.
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2. Feed forwardinput— specifies the values of the measured disturbances dur-
ing each simulation cycle.

3. Baselineinput— specifies the baseline values of the process outputs during
each simulation cycle.

These control files are text files that list the cycle numbelrtaat cycle’s asso-

ciated parameters on the same lines. At the beginning of @axté the Perl script
parses the control files to determine the parameters forutert cycle. If there is
no definition for the current cycle, the last cycle’s datasedi Thus, input data is
only required for cycles that are different from a previoysle.

The value returned from the simulationmode.input file dpesiwhether the

virtual process operation mode is open or closed loop ana de¢ermines the
source from which the manipulated (controllable) procesameters are read. A
manipulated parameter is defined as the independent \asabject to the con-
troller action.

The data flow in the data preparation process is presenteidund2.9. When

the simulation mode is open loop, there is no controlleroacthvolved. There-
fore manipulated process inputs are directly read from thdgdined controlvari-
ables.input file. When the simulation mode is closed loop nlanipulated process
inputs in the current cycle are computed by the controllerth& end of the last
cycle, the Perl script has written the previous cycle’s psscoutputs that were ex-
tracted from ABAQUS simulation files to the communicatiom filwhen the new
cycle starts, the Perl script extracts the previous cy@exxess outputs from the
communication file and retrieves the new cycle’s baselirkefaadforward inputs
from control files. Once the data are ready, the Perl scrijiegva trigger to notify
the controller running in MATLAB to compute the manipulatgacess inputs.

2.4.3 ABAQUS Process Prediction

ABAQUS employs a text-based input file to describe a singstiicg cycle’s con-
ditions. The input file contains model information abouttggrometries, material
properties and initial conditions. It also contains a sedkanalysis steps that de-
fine the boundary conditions and contact conditions for edabe in the casting
cycle such as die closes or die opens.
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Figure 2.9: Data Flow in the Data Preparation Process.

In order to simulate continuous cycling with the ABAQUS mbdiee simula-
tion parameters in the input file may be changed from cycleg/étecaccording to
the task’s requirement. To facilitate these changes, ipptameters are replaced
with identification "tags” that are replaced when the inple & compiled prior
to running the simulation. A new input file is compiled for bazycle with the
specified simulation parameters. Table 2.6 lists generaksaf tags found in the
'cycle.tag’ file and their corresponding definitions in theglation.

Another tag file, named 'main.tag’, contains the input pagters that define
the cooling channel boundary conditions. The tags for tkee sgbroutind=ILM
as shown in Table 2.7, set the timing for coolant flow in theliogochannels.

2.4.4 Data Extraction Process

At the end of the ABAQUS process simulation for each cycleyraaesponding re-
sults file with a suffix of 'fil’ is generated from the ABAQUS press predictions. It
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Table 2.6: Names of Tags and Their Definitions in the Cycle.tag File.

Tag Name

Definition

< CASTDIETEMPS>

Initial conditions for casting and die temperatures

< SIMPLEBDFORSPRUE-~

Temperature constraint for bottom surface of the sp

< BOUNDARYCASTTEMP>

Incoming casting temperature during the filling time

< DIECLOSEDTIME >

Die closed time

< DIEOPENTIME >

Die open time

rue

Table 2.7: Names of Tags and Their Definitions in the Main.tag File.

Tag's Name

Definition

< HEATCOEFFICIENT1>

Starting time and duration for activated Cooling Chann

ell

< SHEATCOEFFICIENT2>

Starting time and duration for activated Cooling Chann

el2

< HEATCOEFFICIENT3>

Starting time and duration for activated Cooling Chann

el3

< HEATCOEFFICIENT4>

Starting time and duration for activated Cooling Chann

eld

contains the temperature history for all nodes in the arsgtsall times in a cycle.
By running a user-written extraction program, the procagpuis are extracted
from the above results file and saved to output files for laserin system iden-
tification or for input to a controller. The extraction pragn also computes the
extent of liquid encapsulation based on the casting tenyoeravolution during
solidification. The ABAQUS process prediction file is alsahaved to facilitate

additional post-processing.
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Chapter 3

Developing and Applying Die
Temperature - Liquid
Encapsulation Correlations'

In the LPDC process minimizing macro-porosity can be a irgmrproduction
issue since this defect can cause castings to be rejecteth disedeleterious ef-
fect on the mechanical properties and surface quality. Tiléyato identify and
guantify the volume of macro-porosity formed during cagtima pre-requisite for
conducting research on methods to reduce its formation-déstructive measure-
ment techniques such as X-ray imaging have not been usedsineearch due
to their costly uses and inaccurate measures of macroipoessis described in
Chapter 1. Instead die temperatures will be used as an atdidicator of macro-
porosity because of the relative ease with which tempegatata can be obtained
from an operational LPDC process. Most industrial castipgrations monitor
temperature at a variety of locations in the die as part ofstaadard operating

Iportions of this chapter have been published in:
e X. Shi, D.M. Maijer and G. Dumont, “Determination of Optimabcation to Monitor Temperature
During Low Pressure Die Casting”, Light Metals 2010 Prodegs, Advances in Materials and Pro-
cesses, COM2010, Vancouver, BC, p.3-13, Oct 2010.
e X. Shi, D.M. Maijer and G. Dumont, “Determination of the Qp#l Location to Monitor Temper-
ature in a Low Pressure Die Casting Process”, Materialsx8eiand Technology, UK, Vol 27, No 6,
p1073-1083, 2011.
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procedure. It is assumed that the die temperatures will tleae relationship to
liquid encapsulation, a precursor to the formation of mamosity.

This chapter uses the virtual process, described in Chapterdevelop corre-
lation method between die temperature and the volume ofpsntaed liquid and
then to analyze its application. The correlation method thén combine with a
Linear Regression (LR) method to determine the optimal altations to monitor
temperature for the purpose of minimizing macro-poroditpagh controller de-
sign. The virtual process, which simulates an operatioastiicg process, predicts
the temperature distribution of the casting and die in th®CRrocess. A post-
processing program has been developed to calculate therarabliquid that is
encapsulated using the predicted casting temperatuhigthis framework can
be used to conduct multiple simulations with various sefsrotess parameters at
atime.

3.1 Data Generation

Before generating data for use in developing correlationdiduid encapsulation,
it was necessary to determine the largest contributingnpetréc factors to liquid
encapsulation and then to identify the associated opegdtianges through which
these factors can be varied. Following a brief sensitivitslgsis, nine process pa-
rameters that affect the volume of liquid encapsulationensmiected: Die Closed
Time and the operational parameters (Cooling Start TimeGualing Duration)
for the 4 cooling channels. The commonly used techniquesdess the effects of
manipulated parameters on the process are trial-and{dpor factorial design
[8€]. However, full factorial design at 2 levels for 9 parasrs would require 2
different combinations to be simulated with the virtual gges. Each combina-
tion takes more than 10 simulated cycles to reach cyclidgtstate. Since one
simulated cycle consumes one hour using the current comiqmahresources and
version of ABAQUS, the total computational time to perforrfulh factorial anal-
ysis with the virtual process would be at least 5120 hours.

To save on simulation time, the Taguchi method [89-91], quegmental op-
timization method, was applied. In this study, an orthodg@meay containing 16
combinations was designed to investigate the influence eofthnipulated vari-
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ables on the volume of encapsulated liquid. Each combinatigparameters was
simulated sequentially in the virtual process and untildpelic steady state was
achieved before moving to the next parameter combinatidme viblume of lig-
uid encapsulation was computed for each cyclic steady statdition using the
post-processing program described in subsection 2.2.86.rdsults indicated that
turning on the cooling channels-24 increased the volume of liquid encapsulation.
Since cooling from these channels was not effective in miiing liquid encapsu-
lation, they were not considered further. Two variablesedeund to greatly affect
the magnitude of the encapsulated liquid volume: Die CloEete and Cooling
Duration for Channel 1 (when water cooling is consideredentt, these two
variables were identified as control inputs with potentiehid in reducing macro-
porosity. The remaining discussion and analysis presentdds chapter will be
limited to these variables.

To explore the relationship between die temperatures anddiume of encap-
sulated liquid, it was necessary to generate detailed datatloe operational range
of the control parameters identified through the Taguchiyaig The virtual pro-
cess was run for a range of process operational conditigm®tade this data. The
process inputs of Die Closed Time and Cooling Duration waréd from 105 to
205 s in increments of 5 s and from 0 to 24 s in 3 s incrementpeotisely. Die
Open Time was held constant at 60s. The combination of thesemeters repre-
sents 189 (2% 9) operational conditions. For each condition, the virforacess
was run until cyclic steady state was achieved. For thisgouf the study, cyclic
steady state was defined as less than a°Q.@ifference between a cycle’s start
and finish temperatures throughout the die.

From the cyclic steady state result of each process conditie@ volume of en-
capsulated liquid was calculated and the temperaturerpiat@ach thermocouple
location was extracted in a post-processing operation.vohene of encapsulated
liquid, defined as the maximum total amount of encapsulatgddl that occurred
during solidification, was used as an indicator of the paatmxtent of macro-
porosity. The die temperature data was further processexttact two character-
istic temperatures per cycle, the Maximum Temperature l@dEjection Temper-
ature (refer to Figure 1.2b), for correlation with the vokiof encapsulated liquid.
The Maximum Temperature is the peak temperature reachbd die location be-
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ing considered during a cycle, while the Ejection Tempeeatsi the temperature
measured when the die opens to release the casting. Theser&tunes were se-
lected for evaluation because they are representativeésgaithe casting cycle that
are easy to identify. The extracted data were used for fughelysis on the re-
lationship between die characteristic temperatures amgidlume of encapsulated
liquid.

3.2 Correlation Method

A methodology has been developed to analyze the correlagbneen die tem-
peratures and the volume of encapsulated liquid. A Corogldhdex CI) can be
calculated from the die temperature and volume of encaggsulauid data at a
particular die location which represents the average ottreelation value over
the operational range. The Standard Deviati®n) of the Cl has been calculated
as an auxiliary measure of the variability between the digprature and the vol-
ume of encapsulated liquid over the operational range. Tdwrithms for both
approaches are detailed as follows.

In Figure 3.1, the response surfaces of the volume of entapduliquid and
Maximum Temperature are overlaid for an upper and a lowelodigtion (TC #2
and TC #8 in Figure 2/1). The response surface of a paranseteade up of the
contours of the parameter over the operational range. T®ponse surface of the
volume of encapsulated liquid, which is location indepearidexhibits a minimum
of volume when the Die Closed Time is about 190 s and Coolingailan is0 s -
i.e. no cooling. The Maximum Temperature at both thermotmlgrations gen-
erally increases with decreasing Cooling Duration. At thedr die location (TC
#8), the response surfaces of the Maximum Temperature angbthme of encap-
sulated liquid show better correlation in the upper rightrational region above
the diagonal compared to the bottom left operational regielow the diagonal.
However, the response surface of Maximum Temperature @ougiper die loca-
tion (TC #2) exhibits less curvature. Thus, there is only alsregion (along the
diagonal defined by the minimum volume of encapsulateddioysi Die Closed
Time) of good correlation at this location.

The correlation at a specific operating point is calculatedvben the gradient
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Figure 3.1: Response Surfaces (Contours) of Maximum Temperature and
Volume of Encapsulated Liquid for Die Locations Correspogdo TC
#2 and TC#8.

of Maximum Temperature and the negative gradient of themaelof encapsulated
liquid, where the gradient of a scalar field at one point isheatatically defined
as the direction in which the parameter rises most quickly.

The methods for computing the gradient of both Maximum Tenajppee and
the volume of encapsulated liquid are the same. For exatf@eradient angle of
Maximum Temperature at an operating point is cacluated |bs\is,

e Locate the operating point to be considered and its adjgmants on X-Y
coordinates that is covered by the operational range (tefeigure 3.2), and
then label the variables of, Ty, T, o) for the Maximum Temperatures
of the adjacent operating points as shown in Figure 3.2.

¢ Identify which quadrant contains the gradient directiorMaximum Tem-
perature response surface at the operating point by singpiparison be-
tweenTy; and Ty, and betweey; andT,. For example, ifTy, > Ty; and
T > Ta, the gradient direction will fall into the first quadrant.

e Define the temporary angular variabfig,s astan | Iﬁjﬁ |, where Oaps €
0,90].

51



e The gradient anglér, € [0,360, is computed as follows:

Babs, if By € the first Quadrant
) 180— 6aps, if 67 € the second Quadrant
or = 180+ Baps, if By € the third Quadrant
360— Byps, If 67 € the fourth Quadrant

Legend

_.. An operational
point

Coolingl Duration(s)

110 150 190
Die Closed Time (s)

Figure 3.2: Schematic Pot of an operating Point and Its Adjacent Points.

A metric to quantify the correlation between the respongdmth parameters

at an operating point has been develop€drrelationis computed based on the
differences in the local normal of the two response surfatéisis operating point

according to:
[

: 6}
Correlation= (1— E)) x 100

where6), is the angular difference @, and 6}, 6, €[ 0, 180] . 6 is the angle

of negative gradient of the volume of encapsulated liqugboase surface at the
it" operational condition aneiT is the angle of gradient of the die temperature re-
sponse surface at thé€ point, 6} and6k €[ 0, 360] . Specifically,6); is computed

as follows:

(3.1)
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egj:{ -6l | 6; —6,| <180
360— |6y —6,|, if|6,—6,| >180

The quantities calculated are shown graphically in FiguBz Bhe correlation
will result in a calculated value of 100 when the responséasas are identical
at an operating poini,e. where there are no differences between the gradient of
Maximum Temperature and the negative gradient of the volafrencapsulated
liquid.

- i Legend
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Figure 3.3: Schematic Plot of the Response Surfaces for Maximum Tempera
ture and the Volume of Encapsulated Liquid for the Operatfiétegion
and the Normals of the Two Response Surfaces at an operaiing P

The correlation metric can be calculated at every opergioigt. When con-
sidering the entire operational range, the average of ttrelation has been defined
as the "Correlation Index@l), which is expressed as:

N . N 9&
Y Correlation  § (1 15p)

Cl="1 == 3.2

where N is the number of operational conditions.
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A perfectCl (i.e. Cl approaching 100) at a die location indicates that the re-
sponse surfaces for both parameters are identical overtibkewperational range.
Based on the response surfaces considered in developsngrtalysis technique, it
is unlikely that a perfecCl will occur.

The CI calculated at a given die location represents the averagelatons
of the temperature and encapsulated volume responseesidaer the operational
range considered. The standard deviation of the angufereiifces of two surfaces
at a given location can be calculated for use as a measuree ofattiability of
correlations over the operational range. The standarchtieniof the correlations
at a die location over the operational range is computedl@svia

3 (6)— )2

STD= (N=T)

whereu is the mean 09(2| and N is the number of operational conditions.

Contours of the correlation values, computed by Equatiot) (detween the
volume of encapsulated liquid and Maximum Temperature @tatiations corre-
sponding to TC #2 and TC #8 are presented in Figure 3.4. Theelation values
at TC #2 vary from~ 30 to ~ 95 as shown in Figure 3.4a, while the correlation
values at TC #8 vary from 40 to~ 95 as shown in Figure 3.4b. Ti®d andSTD
computed at TC #2 are 77.5 and 23.3 respectively, wdilandSTDat TC #8 are
81.5 and 19.2 respectively.

3.3 Application of the Correlation Method

As mentioned in section 3.2, tli&l andSTDare calculated at a given die location
from the temperature and encapsulated volume responsessirbver the opera-
tional range considered. In this subsecti@Ghanalysis will first be used to evaluate
the 8 thermocouples locations to determine the best foelating die temperature
and the volume of encapsulated liquid. Extending this aggrptheCl andSTD
values will then be calculated for all the die locations tdaab the Cl and STD
distribution over the whole die. The distribution @1 can then be used to help
determine the die location that exhibits the best cori@takietween die tempera-
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Figure 3.4: Contours of Correlations Between the Volume of Encapsdlate
Liquid and Maximum Temperature at Die Locations Corresjpamndo
TC #2 and TC #8.

ture and the volume of encapsulated liquid, while the digtron of STDwill help
determine the die location that has the least correlatioialhidity.

Two die temperatures will be compared from representatistp in the cast-
ing cycle that are easy to identify: Maximum Temperatureakptemperature
reached during a cycle) and Ejection Temperature (measuined the die opens
to release the casting). Two measures of the volume of euleded liquid will be
assessed in this subsection: i) the maximum volume of entapd liquid occur-
ring in the casting (upper and lower sections) and ii) theiwva occurring in the
upper section of the casting.

Cl values at the 8 locations where thermocouples were indtailthe trial die
are summarized in Table 3.1. The data indicate thaCihir the Maximum Tem-
perature is higher than that for the Ejection Temperaturalfdocations except at
TC #8. TheCl calculated with Maximum Temperature shows a trend of grladua
increase from TC #1 to TC #8, whereas tbefor the Ejection Temperature does
not show a consistent trend. Table 3.1 suggests that thddoedion to monitor
temperature for correlation with the volume of encapsdldicpuid, is TC #8 near
the bottom of the die.

The contour plots of th€l calculated throughout the die for the two candidate
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die temperatures: Maximum Temperature and Ejection Teatyer are shown in
Figure 3.5. In Figure 3.5, the entire casting volume of theapsulated liquid was
considered. The Maximum Temperatu@¢ is highest & 84.25) at the bottom
of the die, near the metal inlet on the casting/die interfatese to the parting
line. TheCl decreases with increasing distance from this location eadhes its
lowest value £ 77.00) at the top of the die. Thel calculated for the Ejection
Temperature exhibits a similar variation albeit shiftedawer values Cl ranging
from 70 to 82). Additionally, there is a region of lo@l present on the casting
/ die interface in the lower enlarged section of the die. Fathbcandidate die
temperatures, the highest valuesGifare observed at the bottom of the die, near
the casting inlet.

Table 3.1: Cl Calculated at TC Locations.

TC# Correlation Index
Maximum Temperature Ejection Temperature
1 77.20 75.95
2 77.50 77.14
3 77.78 76.42
4 77.78 75.41
5 78.24 76.86
6 79.91 75.25
7 81.38 74.34
8 81.50 83.84

56



Correlation
Index

82

78

74

70

t inlet

(b)

Figure 3.5: Contour Plots of th&Cl Based on Two Candidate Temperatures:
(a) Maximum Temperature and (b) Ejection Temperature vighTiotal
Volume of Encapsulated Liquid (refer to Figure 2.3).

Figure 3.6 shows the contour plots of the standard deviatid@l for the two
candidate die temperatures. The bottom of the die has thikest&TDof Cl for
both temperatures, which means that@ien this area has the smallest dispersion
over the operational range considered. In other wordsCthet the bottom of the
die is the least sensitive area to variability in the operstl conditions. Thus, the
bottom of the die near the casting/die interface exhibith iwe highesCI and the
smallestSTDindicating this is the best location to monitor temperatiarecorre-
lation to liquid encapsulation within the entire volume létcasting. Considering
the casting geometry, this result is expected since thigtilat is near the metal
inlet which is the most critical location for liquid encafesion in the entire cast-
ing volume. However, the methodology and metric employeabéna quantitative
determination of this location.
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Figure 3.6: Contour Plots of the Standard Deviation 16t Based on Two
Candidate Temperatures: (a) Maximum Temperature and @mtign
Temperature with the Total Volume of Encapsulated Liquigfdr to
Figure 2.3).

If the focus on the region of encapsulated liquid in a casingoved, the op-
timal location to monitor temperature will be changed adoayly. To support this
point of view, the correlation analysis involvingl and STDcould be performed
on a subsection of the casting volume to determine whatteffeany, the region
of interest has on the results. Figure'3.7 shows a contowropl@l for the two
die temperatures where the volume of encapsulated liqusdewaluated in the up-
per (enlarged cross-section) volume of the casting. Indhge, the region of the
highestClI values has moved upward, but remains below the narrow sexdon
region in the middle of the die. The reason for this may liehia fact that the tem-
perature variation for the area below this narrow crossesecegion has a strong
effect on liquid encapsulation in the upper volume of theingshence the highest

58



Cl (computed at steady state) occurs in this area.SHeof the correlations based
on liquid encapsulation in the upper volume (Figure 3.8)datk that the largest
variation in the correlations over the operational rangexisected in the narrow
cross-section region. Thus the correlations in this regidinshow more sensitiv-

ity to changes in operational conditions making the coti@taof die temperature
to volume of encapsulated liquid inaccurate.

Correlation
Index

82
78

74

t inlet
b

)

Figure 3.7: Contour Plots ofCI Based on Two Candidates for Die Temper-
atures: (a) Maximum Temperature and (b) Ejection Tempezattth
the Upper Volume of Encapsulated Liquid (refer to Figurea2.3
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Figure 3.8: Contour Plots of Standard Deviation 16t Based on Two Candi-
dates for Die Temperatures: (a) Maximum Temperature angeafign
Temperature with the Upper Volume of Encapsulated Liquédefr to
Figure 2.3a).

Table 3.2 summarizes thel and standard deviation results for the two can-
didate die temperatures: Maximum Temperature and Eje@&onmperature, based
on the encapsulated liquid occurring in the entire castimlgme. The Maximum
Temperature shows higher over@ll values and smaller standard deviatiorCdf
and therefore is a better indicator of the volume of encapedl!liquid. This in-
dicates that the Maximum Temperature is a better correlatiothe volume of
encapsulated liquid and exhibits the least amount of vitiatvith changes in op-
erational conditions. Based on the above analysis, the iilaxi Temperature is
proposed as an indicator for the volume of macro-porositpoing in the casting.

In summary, a methodology has been developed to computnd STD to
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Table 3.2: Summary ofCl andSTDfor the Two Characteristic Die Tempera-

tures Based on the Encapsulated Liquid Occurring in the&@asting.

Die Temperature

Correlation Index

Standard Deviation
of Correlation Index

maximum | minimum | maximum | minimum
Maximum Temperature  84.25 77.00 44 24
Ejection Temperature| 83.99 69.25 48 26

aid in determining the optimal die location for monitoriregriperature as a proxy
for encapsulated liquid volume. The optimal location waadto be the bottom
of the die, near the metal inlet on the casting/die interfdloe area which was
marked with circle in Figure 3.5a. The next subsection pressan approach to
guantitatively express the volume of encapsulated ligageld on die temperature.

3.4 Linear Regression (LR) Method

Given the Maximum Temperatures at selected die locatitiesamount of encap-
sulated liquid will be quantified by applying a LR expressidine data necessary
to perform this analysis can be collected from a process iramsient state, at
steady state or the combination of both. A least squares Léeiris proposed to

express the linear relationship between Maximum Tempersitand the volume of
liquid encapsulation. A LR model relates dependent vaemlglwith independent

variables x with the following expression,

N
y=ao+ziaa>q (3.3)

=
wherea; are regression coefficients associated withgg is a constant andl is
the number of independent variables. In the current wrrlare the Maximum
Temperatures at die locationsandy is the volume of liquid encapsulation. The
specific value oy anda; can be computed using least squares method by compar-
ing predicted and virtual process volumes of liquid enclgtizn.
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For example, if the Maximum Temperature at 11 locations, aked in Figure
3.9, are selected to relate to the volume of liquid encafisnlainder steady state,
11 sets of Maximum Temperature data at cyclic steady statbdédl .89 operational
conditions and the corresponding volumes of encapsulajatti lare collected for
analysis. The coefficientgy — g in Equation (3.3) can be computed using the
least squares method by comparing predicted and virtuakpsovolumes of liquid

encapsulation.

0.2dm

]

T\ Inlet

Figure 3.9: Schematic of a Section of Die with 11 Selected Locations
Marked.

Figure 3.10 compares the response surfaces of the voluniguad Encapsu-
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lation calculated by the least squares expression and th&lprocess over the
operational range. The difference between the volume giestlby Equation (3.3)
and the volume computed by virtual process appears to bd.siite Fit, based
on Equation (3.4), is estimated to be 92. A higher numbercatds a better Fit
between the virtual process and predicted response ssirfakevalue of 100%
signifies a perfect Fit.

| ly—$il2
Fit — 100x (1— 1YY (3.4)
= Iy

Wherey is the virtual process datg,is the predicted data aryds the mean of
y. || ||z is the Euclidean Norm. This comparison indicates that tesli expression
(Equation (3.3)) based on inputs of Maximum Temperatur@s ft 1 die locations
correctly quantifies the volume of liquid encapsulation.

Fit=92.61; num=11
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Figure 3.10: Contours of Predicted and Virtual Process Volumes of Encaps
lated Liquid over the Operational Range.
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3.5 Selection of Die Monitoring Locations

One difference between the two types of analysis is that dhelation methods
are based on steady state conditions, while the LR methodis fltexible and
can apply to transient or steady state conditions to idette volume of encapsu-
lated liquid. Another difference is that the LR method doffarclear mathematical
expression of the volume of encapsulated liquid using MaxinTemperatures.
Thus, for control purposes, the LR method is better suitedi$e in control model
to generate a model expression with the volume of encagsliiguid as the model
output which is driven by manipulated inputs. Establisténgpntrol model of this
type facilitates the implementation of model-based adedrmontrol methodology
with the goal of minimizing the volume of encapsulated l@juHowever, the se-
lection of die locations for control purposes is a contiiguaallenge in LPDC.

The method of correlation analysis explores the steadg sedationship be-
tween in-cycle die temperatures and the amount of liquicheslation at a die
location. The best location to assess the variation of thenve of encapsulated
liquid by monitoring the Maximum Temperatures is at a dietam with the high-
estCl and the smallessTD. However, it is not sufficient to measure temperature
at a die location for the purpose of controlling the systemmtnimize liquid en-
capsulation due to a lack of an accurate mathematical esiprefor the volume of
encapsulated liquid.

The following analysis is conducted on the virtual procesralize the selec-
tion of die locations for the purpose of obtaining a "besthiilithematical expres-
sion for the volume of encapsulated liquid. A total of 11 diedtions in Figure
3.9, which are evenly distributed along the die-castingrfiate, were used as can-
didates for the selection of die locations. The 11 locatamsshown by 8 thermo-
couple locations marked with black stars and 3 additionehtions marked with
red dots.

Two selection rules for die temperature monitoring loaadiwvill be evaluated.
This first is to choose locations with the high€dtand the second is to select lo-
cations that are evenly distributed along the castingttierfiace. To assess which
location selection philosophy is best, a series of simutatihave been performed
and the results are summarized in Table 3.3. The columnshile Ba3 show the Fit
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Table 3.3: LR Expression Fit Rate Comparison of the Two Candidate Rules
for Die Locations Selection.

Number of Die Locations
1 2 3 5 11
Loc. with highestCl | 41.79| 42.74| 42.77| 87.12 92,61
Loc. evenly distributed 27.48| 59.44 | 77.28 | 88.93 '

Selection rule

of the LR expression for the volume of encapsulated liquidgidifferent numbers
of the die locations considered and the rows show the Fitef R expression for
the volume of encapsulated liquid using the two candidalesrior die location
selection. When only 1 of the 11 die locations (refer to limset marked in Figure
3.9) is selected, the location with high€3thas the higher Fit of 41.79. The evenly
distributed location (middle of the die in this case) hasltheer Fit, which implies
that the location with the highe§ll is best when there is only 1 location. When
2 or more locations are considered, die locations that aelgwistributed along
the die-casting interface exhibit the best Fit.

Table 3.3 also shows that the fit of the LR expression inceeaseéhe number
monitoring locations increases. This can be explained byfdlt that more die
locations are involved and these provide more informatigorédicting the volume
of liquid encapsulation and hence the accuracy of the LResgion improves.

Regarding the selection of die locations, we come to thevialig conclusions:

e Increasing the number of locations were temperatures aratoned will
improve the accuracy of the volume of encapsulated liquidutated with
the LR expression.

e If only one temperature monitoring location is possible, ltication with the
highestCl should be selected.

e For more than one monitoring location, choose die locatthasare evenly
distributed.

Both ClI analysis and the LR expression methods were able to linlediper-
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ature to the volume of liquid encapsulation over an specdi@erational range. In
the remaining chapters which consider the control of thi®CPprocess, evenly
distributed locations along the casting/die interfacd & employed to monitor
the Maximum Temperature.
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Chapter 4

System Identification*

4.1 Overview

Controlling a process using a model-based controller requtnowledge of the
relationship between the process inputs and the procegateufor a multi-input
and multi-output process, a discrete state-space modetste is a good candidate
for predicting the input-output behaviour of the procedse process of finding an
approximate model that fits a set of measured input-outgatiséypically referred
to as System Identification [92]. When the relationship leemvthe multiple in-
puts and multiple outputs are linear, a method, known as '&hgal Algorithms
for Subspace State-Space System Identification’ (N4SIB)) f@n be used to gen-
erate a state-space model derived from the measured infuttalata of a process.
However in the current research, a linear state-space nwoxet suitable since the
relationship between system inputs and outputs is nonlioear the operational
range.

In the previous chapter, a 3D model was developed and veddaith the

IPortions of this chapter have been published or preparepifuiication in:
e X. Shi, D.M. Maijer and G. Dumont, “Assessing Controllatyilof Low Pressure Die Casting using
Process Simulation”, Proceedings of the 7th Pacific Rimrihational Conference on Modeling of
Casting and Solidification Processes 2007, Dalian, Chigd5642, August 2007.
e X. Shi, D.M. Maijer and G. Dumont, “Nonlinear Identificatidar Control of Low Pressure Die
Casting” accepted, American Control Conference 2012, kaht Canada, June 27-29, 2012.
e X. Shi, Eranda Harinath, D.M. Maijer and G. Dumont, “Nonkmeévodel Predictive Control in a
Low Pressure Die Casting Process”, Journal of Process @pstibmitted 2012.
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goal of determining the boundary conditions necessary surilee the process.
The tuning process used to determine the boundary congliicmceeded until the
predicted data of the model were in agreement with measuad ftbom a plant
trial. For system identification and corresponding cotgrodlesign, a 3D model
was not deemed suitable due to its long simulation time, daérias been replaced
by a 2D-axisymmetric model, as shown in Figure 4.1, whicloiporates a similar
casting/die interface geometry and requires the same boyiednditions as those
from the 3D validated model. This replacement was motivatethe belief that
the core control strategy and its performance for the 2D medeld not be greatly
different from those of the 3D model since the 2D-axisymineattodel partially
reproduces the geometry of the 3D model and has the same dryutwhditions
as the 3D model.

This chapter describes the following 8 steps used to perfamniinear system
identification.

1. Determine the process variables.

2. Determine the control variables and operational range.

3. Determine the feedforward variables.

4. Specify the nonlinear state-space model structure.

5. Perform nonlinear system identification for control saies’'(,) model.
6. Perform linear system identification for feedforwardiaales’s) model.
7. Generate a complete augmented State-Space model.

8. Validate the complete nonlinear state-space model.

9. Use LR expression to calculate the area of liquid encafieul
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Figure 4.1: 2D-axisymmetric Model With 9 Selected Locations Markedhwit
Dot.

4.2 Process Variables

The objective for controlling the current LPDC process ie thinimization of
macro-porosity in the casting and thus improve the procedsmnance. The abil-
ity to identify and quantify the presence of macro-porosita casting is therefore
important for any advanced control methodology seekingotarol its formation.
To improve the process performance, the controller mugg diie process vari-
ables of the system toward predetermined trajectories. c&sting processes in
general, it is not easy to set the process variables andptezietermined trajecto-
ries. Fortunately, the current work has led to the develapiroéa LR expression
linking die temperatures with the volume of liquid encapsioin which allows the
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desired trajectories for die temperatures to be indired#itermined while mini-
mizing the volume of liquid encapsulation.

Two characteristic temperatures have been assessed atlieakdtation for
each casting cycle: Maximum Temperature and Ejection Teatpe (refer to
Figure 1.2h). By maintaining the Maximum Temperature aedatation at its op-
timal value, the emphasis is on the time in the casting cytlensolidification is
occurring. Maintaining Ejection Temperatures at theiiropt values emphasizes
the portion of the casting cycle where solidification is heaomplete. The "Cor-
relation Index”, presented in Chapter 3.2, was used to aaalye correlation be-
tween die temperature and encapsulated liquid volume anihiMian Temperature
was shown to be the optimal process variable output basets digh correlation
with the volume of liquid encapsulation. Therefore idenéfion of the state-space
model will be performed using Maximum Temperature procestbles.

As described in the previous chapter, die locations eveistyibuted along the
die-casting interface were selected to measure Maximump&eatures for con-
trol in LPDC. These die locations are selected to surroumdctitical areas of
the casting where choking occurs, motivated by the beliaf ifhthe optimal die
temperature curves in these critical areas can be reprdceaeh cycle, then the
amount of the liquid encapsulation can be reduced or elimthaNine locations
in the die, evenly distributed along the die-casting irstesf shown in Figure 4.1
(marked with dots), were selected. Note that these locatimre selected as close
as possible to the casting / die interface to enhance theagcaf the correlation
between die temperatures and the encapsulated liquid area.

4.3 Control Variables and Operational Range

The control variables must be selected to enable the ctatri maintain the

process variables at their optimum values. The optimumegiln this case should
result in minimal macro-porosity and therefore the contianiables that affect the
macro-porosity should be selected. In the case of a 2D-axistric model, since
the area of liquid encapsulation is the indirect indicatmrthe extent of macro-
porosity and the formation of the area of liquid encapsofais closely linked

with the die temperatures, those variables which affectdibeemperatures will
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initially be considered as the potential candidates fotrmbwariables.

The die casting process is essentially comprised of a heatesdthe casting)
surrounded by a heat sink (the die). The die facilitates riduwesport of heat from
the casting to the surrounding environment. The majoritthefheat from the die
is transferred directly to the surrounding environmenbtgh the cooling channels
when water is used as the coolant. Changes to this activangamn have large ef-
fects on die temperature. Heat is also lost passively frantid to the surrounding
environment via convection and radiation from the extediersurfaces throughout
the casting cycle and from the interior die surfaces wherdibés open after the
casting is ejected. By increasing or decreasing the totdaédime, the amount of
heat transferred from the dies to the surrounding enviranmaél also increase
or decrease respectively. Thus, the total cycle time andtidur of cooling in the
cooling channels are the potential control variables.

By increasing the current cycle’s duration, die tempegsgwturing the next cy-
cle will decrease. Likewise, by decreasing the currentegydooling duration, the
next cycle temperatures will increase. Figure 2.2 show$wbamain cycle timing
parameters: Die Closed Time and Die Open Time. During theldsed time, the
die halves close, the molten aluminum enters the die caafity,the casting solid-
ifies. When the die opens, the casting is ejected and thetopgr@pares for the
next cycle. When preparations are complete, the operagssps a button to signal
that the next cycle can proceed. The process then waitsairtiler expires to start
the next cycle. To modify the total cycle time, one or bothha tycle timing pa-
rameters can be modified. However, because the operatdragdme to prepare
the dies and has final control of the Die Open Time, trying taifyahe Die Open
Time with a controller is not desirable. Therefore the Diesgld Time parameter
should be used as the control variable to vary the overaledyme. Although the
Die Closed Time could be increased indefinitely as requingdhb controller, it
can not be decreased indefinitely. If the Die Closed Timedsiced too much, the
casting will not completely solidify and production woulthg. This introduces a
lower constraint on the control variable.

The amount of heat removed by the forced water in the coolivameels can
be madified in four ways. The first option is to vary the tempae of the water
circulating in the channel. This option is not feasible ie ffrocess because the
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temperature of the incoming water is not controlled. Thesdmption is to vary
the flow rate of the water entering the cooling channel. Unfaately this option is
also not feasible because the flow rate of the circulatingmwatuncontrolled. The
third option is to change the time in each cycle when watemse circulate in
the cooling channel. The fourth option is to vary the duratdtime that water is
flowing through the cooling channel. In the current procéss,possible to adjust
the start time and cooling duration in each of the four captihannels.

Nine parameters (start time, cooling duration for the 4 iogothannels, and
die closed time) were evaluated to assess the effects o kqucapsulation. A
two-level factorial analysis was performed with the vittpeocess to determine the
parameters that influence liquid encapsulation [88]. Ahagbnal array was used
to systematically vary and test the different levels forhreatthe control factors.
This analysis indicated that Die Closed Time and Coolingdiian for cooling
channel 1 had a non-trivial effect on the magnitude of liqeid¢dapsulation mean-
ing that that the area could be increased or decreased degemdthe levels of
these factors. It was found that the minimum are of liquidagscilation occurred
when the start time for cooling in Channel 1 was zero. Thelt®silso showed
that turning on the cooling Channels-2t led to increased area of liquid encapsu-
lation. Thus, changing the start time of cooling Channel aativating cooling in
Channels 2- 4 is counter to the goal of minimizing liquid encapsulatisn,they
have been eliminated as possible control variables. Thealomriables identified
through this analysis and their designations are:

e Die Closed Timedy,)

e Cooling Duration in Cooling Channel 1 (Cooling Durationwy)

While assessing the control variables, the approximateatipaal region was
examined. The response of the process was evaluated inmieots of 10 s be-
tween Die Closed Time from 120 to 160 s and Cooling Duratiatying from O
to 40 s in increments of 10 s, making up 25 combinations ofatpey points. The
virtual process was run for each of these conditions urgittfclic steady state was
reached. The contour plot of the area of liquid encapsulatiier the operational
range is presented in Figure 4.2. The optimal operationadition at cyclic steady
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state has been identified as Die Closed Time equals to 150 €awlthg Dura-
tion equals to 10 s. The other non-control related procesgabtas include Die
Open Time and incoming Metal Temperature where are equdl ®&nd 700C,

respectively.
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Figure 4.2: Contour Plot of the Area of Liquid Encapsulation Across the O
erational Range.

4.4 Feedforward Variables

Feedforward variables are any process inputs that can beumeebbut not manip-
ulated by the controller. Process upsets caused by disitebare typically dealt
with by using feedback to correct the negative effects ofujpget. By measuring
the disturbances and using them as feedforward variabldgiViPC controller,

the effects of the process upset can be predicted and dehlbefiore the distur-
bance propagates through the system. The following feedfal variables have
been identified for LPDC casting:

e Incoming Metal Temperatureif,)
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e Die Open Time (r,)

whereuy, is the temperature of the molten aluminum when it enters ibeatd
the start of the cycle and;, is the length of time that the dies remain open after
ejecting a casting. As discussed in Chapter 1, the incomietaMremperature
can fluctuate in the industrial process due to variation énhtblding furnace tem-
perature and metal transfers. The time the die is open igamngom cycle to
cycle during routine operation of the industrial procesowver, this can vary
when an operator has to perform extra maintenance on the digeriences prob-
lem caused by the previous casting cycle. These upsets taiske to remain
open for a longer than usual time. The virtual process has fmenulated with
input tags corresponding to these feedforward variablesnalate the effects of
deviations from the nominal values.

4.5 Nonlinear State-Space Model Structure

Figure 4.3 shows contour plots of the maximum die tempega#iirsteady state
for the operational range at four randomly selected dietioca along the die-
casting interface. Note that the system is nonlinear oveiofferational range as
the contour lines are not all straight, and adjacent sttdighs linking with the
same temperature span do not have the same distance. Thethostate-space
model should incorporate a nonlinear system structure.
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Figure 4.3: Contour Plots of the System Outputs at Cyclic Steady State ov
the Operational Range at 4 Die Locations.

Since the system has two different types of inputs: contolables and feed-
forward variables, a set of simple simulations were run tplae the superpo-
sition and homogeneity. The virtual process was run for a&lbss condition
(Die Closed Time, Cooling Duration, incoming Metal Tempara, and Die Open
Time equal to 150 s, 10 s, 70C, and 50 s, respectively) until cyclic steady state
was reached. The functiay(as,ay, as,as) with the relative operating point set of
(Auy, = a1, Auy, = ap,Aus, = ag,Aus, = a4) upon the baseline represents outputs’
steady state deviation from the baseline outputs. Noteg(ite®,0,0) = 0.

The virtual process was used to perform a series of simuti@sed on the
combinations of 4 step sequences for 4 variables. The segeld the following
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expressions:

9(07 07 as, O) + 9(07 07 07 a4) ~ 9(07 07 as, a4)
g(ala 07 07 O) + g(07 a2a 07 O) 7& g(a17 a27 07 0)
g(ar,a,a3,a4) ~ g(ay,a2,0,0) +9(0,0,a3,a4)

Note that the control variable-driven systet) (hodel) is nonlinear and does
not meet superposition criteria whereas the feedforwarthbi@s-driven system
(us model) is the opposite. Superposition exists between tingssystems. There-
fore, the entire system outpytcan be regarded as the sum of a control variable
model outputy, and a feedforward variable model outgyt The control variable
system is nonlinear with linear dynamic behaviour and aineal steady state
gain, while the feedforward variable system can be treatesllmear system. The
sampling time for all these discrete-time models is set agkec

The properties and structure of two separated systems @vill e examined
before developing a complete augmented model.

4.6 Nonlinear System Identification for theuy, Model

uy model structure is presented in Equation (4.1), wiigris a diagonal matrix and
By =1 — A,. This subspace model structure is designed to normajize u, and
then to decompose system eigenvalues in the purpose dfdteg the separation
of linear dynamics and nonlinear static gain in the model.

x(k+1) = Axe(K) + (1 —A)u(K)
Wi (k) fi (Xlei (k)7xu\fzi (k)) (4.1)

wherei is the die locationj € [1— 9]k is the current cycle numbeny(k),
xv(K), andyy(Kk) are the control variables, the state vectors, and the systitputs
attime step k, respectively, ,, (K), xu,, (K) are linear expressions (k) with unit
steady state gain fas,, anduy, respectively, representing the dynamic response
from uy, — yy,; anduy, — Yy, respectively. The functiofi expresses the system’s
nonlinear static gain.
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Nonlinear Static Gain Surface ldentification

The functionfi(az,az) with two independent variableg anday in Equation (4.1)
denotes the steady state values ygrwhena; = u,, andaz = uy,. The fitting
functionZ(ay,ay) for fi(az,a2) can be generally expressed as,

p-1g-1
Z(ag,a) = ZJ %&,alaz (4.2)

where the coefficien® makes up the matri® with p x g dimension. Giverp and
g, 6 can be computed using the least-squares method by compaeadigted and
virtual process data. The method is detailed as follows:

First, the elementfyp...... Bp—1q-1) of the matrix© is the local minimum
point of the functionS

n p—-1g-1

S(6oo. - Bp-1q-1) Z Xle)[_;ZJQinyj—f(xi,yj)]z
1=0 =

where, w(x,y) is the weighting function which is set to 1 by default. Hence,
Bypo-..... 6p—1q—1 Must satisfy,

oS
06,

Taking the partial derivative db and moving this term to the right side of the
equation gives,

=0 (ij=00,...,p—1q-1)

(o0, $00) .-~ (P00, Pp-1q-1)

(#p-19-1,900) --- (Pp-19-1,Pp 19q-1)

oo (¢o0, f)
x : = : (4.3)
Bp-19-1 | (¢p-19-1,F)

where,
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$oo =X°, Op-19-1= xPyd-t,

Equation (4.3) can be simplified to,

AxO,=B (4.4)
where,
SRV XY v

A = : :

CxEYET Qs XY

[ 6o
O, =

L epfqul

%
B = :

DR s

The least squares solution of Equation (4.4) provides temehts6; of O,
Matrix. The finalp andq are selected based on the minimization of error according
to an appropriate criteria. In the current work, 2 critergavdnbeen identified,

errorl

N
_Zl\a— f (%, )]
error2 = i(a —f(x,¥1))?

Based on this procedurgy and g equal to 3 and 4, respectively, minimizes
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errorl anderror2 for all 9 die locations. The corresponding error valuestiier
different die locations are shown in Table 4.1.

Table 4.1: Errors of the Fitting FunctioZ (Equation (4.2)) for Different Die
Locations (unit:C).

Loc.# 1 2 3 4 5 6 7 8 9
Errorl | 0.212| 0.320| 0.366| 0.284| 0.269| 0.293| 0.296| 0.205| 0.161
Error2 | 0.005| 0.012| 0.013| 0.007 | 0.005| 0.007 | 0.008| 0.004 | 0.002

The fitting function coefficient@; — @9 (refer to Equation (4.2)), were then
computed for all 9 die locations to define the static gain efltdtal outputs (refer
to Equation (4.1)). Figure 4.4 compares the predicted data the fitting func-
tion Z to the virtual process output data for a randomly selectedatiation over
the operational range. The 2D contours comparison showsheawo contours
surfaces are nearly overlaid, indicating that the functian the model (Equation
(4.1)) is captured correctly by the fitting functi@n
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Figure 4.4: 2D Contours of Maximum Temperature for both Static Gain Pre-
dicted by Equation (4.2) and Virtual Process Steady Stata Dzer the
Operational Range at a Random Die Location.

Linear Dynamic Behaviour Identification

In order to determine the dynamic behaviour, input step eecgs were indepen-
dently executed for the two control variables on the virjp@cess. The dynamic
response of the, system was evaluated at the 9 die locations. Figure 4.5qiese
the system response for thg step sequence. These results show that the system
contains no complex-conjugate poles since the curves aasaoiflating. The same
is true for the system shown in Figure 4.6. Therefore, a shigbut multi-output
(SIMO) model structure with real poles will adequately disethe dynamic be-
haviour fromuy, to y,, and fromu,, to y,,. Considering Figure 4.5 and Figure
4.6, it is apparent that the responses with significant ga@ve time constants of
approximately 5 cycles.

The approach to generate the first part of Equation (4.1) sorie the linear
dynamic behaviour in the model and to obtajp, (k) andx,, (k) for use in the

80



20

T T
Die Closed Time(s
= = = Cooling Duration(s|

151

10 b

Deviations (s)
o
1
]
1
1
1
1
1
]
1
1
1
1
1
1
1

_5 - -
_10k N
_15 - -
-20 1 1 1 1 L L 1

0 10 20 30 40 50 60 70 80
Cycle Number
€Y

| —o— Virtual Process

2 2
2
0 0
-2
-2 -2
0 40 80 0 40 80 0 40 80
(3 2 2
() 2
Ei
g 0 0
<3
IS -2
@) -2 -2
= o 40 80 0 40 80 0 40 80
1 0.2 0.5
0
-1 -0.2 -0.5
0 40 80 0 40 80 0 40 80

Cycle Number

(b)

Figure 4.5: (a) The Step Sequence of Control Variahlg ) for Identification
and (b) the System Response to the Step Sequence.
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second part of the nonlinear static gain function is as ¥ato

e Extracty,, from the virtual process data for input variationsug. Nor-
malize the steady state gainwf for each input condition to 1 and remove
one cycle time delayw, has a one cycle time delay on g|f due to the
implementation).

e Perform a linear system identification on the processedtdajanerate a™
order state-space model with the matricas®C,0). A 2" order model is
used because it is the minimum acceptable order that aetuidentified
the virtual process.

e On the basis of not affecting model dynamics and outputsyarbthe matri-
ces @A, B,C,0) into (A, B,,C,,0) to getA, = eig(A) andB, = | — A,. C, can
be computed as follows:

By similar matrix T transformation [21] A, B,C,0) is converted into diago-
nal matrices Aq, Bq,Cq,0). WhereAq is the diagonal matrixdq = T AT,
Bq = T !B=[B14;Bog], andCq = CT = [Cig Cpq]. The outputy from the
system with the matrice\(B,C, 0) can then be expressed as:

B1d Bod
Y = [C C U
[ 1d><Z_A1d+ 2d><Z_A2d]><

Cid Budg " 1- A +Czd Bod " 1—-Axg
1-Ag Z—Aig 1-Ayg Z-—Ay

= | | xU
1-Ay 1-Axy

= Ja
R Sy Wl A sy vy

| xU

where,

Aad, Aod, B1g, Bog are scalarsCyq,Coq are column vectors.

a=F429 g Quba B —1—qfora+f=1under steady state. A, =
A4, By =1 —Aq4, thenC, = [a 1-— a]. Note that the system?(, B,,C,,0)

has been successfully decoupled from the system statersecto

e The new expression for thg, model is:
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Xl(k—|— 1)
X2(k+ 1)

B a 0 Xl(k)
0 a || %k

Yo (K) = aixa(k) + B x2(k)

where the steady state gdim, — Yy, ) = 1.

e The augmented expression with the combination of one cycle time delay
is:

Xl(k-l- 1) 0 0O O Xl(k) 1
Xg(k—l— l) = l1-a¢ a4 O Xg(k) +10 le(k)
X3(k+1) l-a, 0 a x3(k) 0

Yo (K) = o x2(K) + Bi x3(k) (4.5)

e Applying the same approach for thig, model, an additional state is neces-
sary to account for the time delay (either O or 1) which is rmistant for

Yu,- As aresult, a'd order state-space SIMO system for thg model has
been defined as:

Xa(k+1) a Xa(K) 1-as
xs(k+1) | = a xs(K) |+ | 1—as | W,(K)
Xe(k+1) as | | %(k) 1-as
Yoo (K) = Oanoi Xa(K) + Banoi X5(K) + Yanoi Xs(K) (4.6)
where,

Cu B Coy B Cx B
Qano= ;Ll,d—Allj1 Bano= # 22dd1 Yano = 13EA33;, Oano+t Bano+ Yano= 1 and steady

state gainuy, — Vv, ) = 1.
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Complete Nonlinear State-Spacel, Model

By combining Equation (4.5) and Equaticn (4.6), the congplgt model is ex-
pressed as:

x1(k+1) 0 0 O x1(K)
Xo(k+1) l-ay a1 O X2(K)
x3(k+1) B l-a 0 & x3(K)
xak+1) | ag Xa(K)
xs(k+ 1) y xs(K)
| Xo(k+1) | I as | | Xe(k) |
1 o
0 0
0O O Uy, (K)
* 0 1-a3 [ Uy, (K) ]
0 1-a4
| 0 1-as |
Yu(K) = iy (K), Yo (K))
= (X (K), X (K)) (4.7)

Note thata; anda, are the common eigenvalues for thg model andx,, (k) is
the dynamic response from, — yy,;, With its steady state gain equal to the value
of uy,; similar rationale and explanation apply for thg model.

Validation of the u, Model

The virtual process data has been compared to predictiode wigh theu, model

for uy, anduy, step sequences in Figure 4.7 and Figure 4.8, respectiveigra®,

the responses predicted by tlkanodel match the dynamic behaviour of the virtual
process correctly. The, model appears to inaccurately describe the response to
Control Variable 1 at two die locations. However, a closgauwion of the graphs
reveals that the gain at these locations is small and theisrrelatively small.
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Figure 4.7: Predicted and Virtual Process Temperature Responses theder
Step Sequence of Control Variable,() for Identification.

4.7 Linear System ldentification for theus System

For the linear subspace system identification, the N4SiDRrikgn was applied
to process the data generated with the virtual process. fAleodata had to be
pre-processed to remove the mean value of the data so thddtdevas centred on
zero. No pre-processing was needed on the control and feeatfd variables be-
cause by definition these variables are deviations from Zére process variables
were pre-processed by subtracting the steady state tetuprérom the data. The
steady state temperatures were defined as the temperatmrethe first cycle of
identification before any changes to the inputs were made.

To generate the input-output data for system identifica(®ijy us, andus, step
sequences (refer to Figure 4.9a) were sequentially aptigide virtual process.
The data was then pre-processed to remove the time delagccaysiz,. Using
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the N4SID algorithm [93], a® order linear subspaag model was defined as:

x(k+1) | | an a12] [Xl(k) ]+ [ b1 blZ] [ ur, (k) ]
X2(k+ 1) dp1 aAxo X2(K) b1 boo Ufz(k—l)
- xa(K)
yi(k) = Gy xz(k)]

An alternative expression with augmentedccounting for one time delay is:

87



x1(k+1) a1 app by x1(K) b1y O ut, (K)
X2(k+1) = a axpy by Xo(k) |+ | b1 O [ i ]
xa(k+1) 0 0 0 || xK o 1|Lue®
x1(K)
yi(K) = [Cf 0| xa(k) (4.8)
x3(K)

In response to thay, anduy, step sequences applied to the virtual process, the
virtual process data (blue symbols) and predicted (soticcteve) outputs at 9 die
locations were obtained and compared in Figure 4.9b). Treeagent between the
virtual process and predicted data confirms the excellesuracy of the lineaus
model in describing the;-driven virtual process.
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4.8 Complete Augmented State-Space Model

As described previously, the complete system outgutdn be obtained as the sum
of us system outputy) andu, system outputy). By combining Equation (4.7)

and Equation (4.8), the complete model is expressed as:

xa(k+1) O 0 0
X2(k+ 1) l1-a; ag O
x3(k+1) l-a 0 a
Xa(k+ 1) ag
xs(k+ 1) = a
Xe(K+1) as
x7(k+1) a1 a2 b
xg(k+1) a1 axn by
Xo(k+1) | L 0 0 0 |
SO -
0 0
0 0
0 1—8.3 uVl(k)
vl 0 1-a Uy, (K)
0 1_a ur, (k)
b1y O re(k)
by O
I 0 1
yi(k) = yVi(k)+yfi(k)
x7(K)
= fi(xuw (K), Xz (K) +[Cri O] | xg(k)
Xo(K)

Where,
i is the die locationj € [1—9),
Xui (K) = ot X2(K) + B x3(K),
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Xuy (K) = Oanoi Xa(K) + Banoi Xs(K) + Yanoi X6(K).

The functionf represents the, system’s nonlinear static gaig,, (k) is the
dynamic response from,, — Yy, with its steady state gain equal to the valuegf
andxg,, (K) is the dynamic response from, — Yy, with its steady state gain equal
to the value otu, .

4.9 Nonlinear State-Space Model Validation

To verify if the identified state-space model accurateldfmts the input-output be-
haviour of the virtual process, an input sequence of 4 viagalith 2u, and 2u¢
values, shown in Figure 4.10, was applied to both the idedttate-space model
and the virtual process. For process identification, eaghtiwas changed inde-
pendently while holding the other inputs at their nomindlea. In this validation
step, the inputs were changed concurrently with magnitdiifésrent than those
used for identification. The outputs were then comparedgesasthe accuracy of
the state-space model Equation (4.9) in approximating itiieal process.

The system responses to the input sequence used for vafidag shown in
Figure 4.11. Each subplot corresponds to the output atrdiffalie locations where
the solid red curve represents predicted temperatureshandrtual process tem-
peratures are represented by the blue symbols. The modetdémtage, indicating
how well the process variables of the identified mdeielthe virtual process data
are presented in the title for each subplot. A value of 100%ldvaignify that
the model is a perfect fit to the data. The fit percentages ®Otkie locations
are within the range of 85% to 97% indicating that the dynanutthe process
are captured correctly by the identified nonlinear statespnodel. A small dis-
crepancy exists when comparing the gains shown in Figute, #Bich indicates
that theus-driven virtual process is not exactly linear and that tleady state gain
of the u, model over the operational range is inaccurately exprelsgehe fitting
function Z with parameterg andq set as 3 and 4, respectively.
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Figure 4.10: Concurrent Step Sequences of Control Variables and Feedfor
ward Variables for Validation.

4.10 LR Expression of Liquid Encapsulation

Identification

The data setqy) from 9 die locations including the Maximum Temperatungs (
and liquid encapsulation areg) (s the input-output information necessary to use
the least-squares algorithm to identify a LR model betweemperatures and area
of encapsulation. There are a variety of system input semsetimat can be applied
to determine the different types of process dynamics. Actepge in an input will
show the entire range of frequency response but will empbldke low frequency
dynamics. Testing with the virtual process has shown thafptiocess dynamics
are dominated by low frequency components and thereforemsststem input
sequence was employed for the LR model identification.

Starting from the baseline where,(, u,,us,,us, are equal to 150 s, 10 s,
700°C, and 50 s, respectively), the input sequenogs= £20s, uy, = +10s,uf, =
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Figure 4.11: Predicted and Virtual Process Temperature Responses & 9 Di
Locations under the Concurrent Step Sequences of Contr@bles
and Feedforward Variables for Validation.

+2°C, us, = +20, —30s) were selected fam,, , Uy, , Us, , U, as sequential step change
inputs to the virtual process. To start, the inputdigr (Die Closed Time) was in-
creased by 20 seconds from the baseline for 20 cyalesyas then returned to its
baseline value for 20 cycles to allow the virtual processetom to steady state.
Following this, the input fou,, was decreased by 20 seconds from the baseline
for 20 cycles, and then returned to its baseline value fotham®0 cycles. Sim-

ilar input sequences were employed for the other threeblaga Each input was
changed independently while holding the other inputs at theseline values.
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Figure 4.12: A Schematic Set of the Input Sequences for LR Model Identifi-
cation.

Based on the virtual process output in response to the igguiesnice shown in
Figure 4.12, a data set consisting of the Maximum Tempegrat® die locations
and the area of encapsulated liquid was extracted. ThenioligpLR model was
then obtained:

N
y=45173+ me (4.10)
i=
Where,

a=[0.040 Q091 0021 —0.801 2299 —1.859 1184 —1.931 Q162
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Figure/ 4.13 compares the LR model prediction of area of endafed liquid
with the virtual process data. The difference between the data sets is very
small. The fit was assessed using the following equation:

. lly—9ll2
Fit — 100x (1— (4.11)
= vy

Wherey is the virtual process datg,is the predicted data andis the mean of).
This comparison, with fits is as high as 93.28, indicatesttiat.R model captures
the area of liquid encapsulation very well.

LR expression identification

11 . T T T
Predicted

10| —%— Virtual Process f g

Area(cn‘?)
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Figure 4.13: Predicted and Virtual Process Areas of Liquid Encapsulatio
der the Identified Input Sequences.

Validation

To verify the accuracy of the LR model for the area of liquidt@psulation, it has
been tested on another data set that is different than tledt tosidentify the LR
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model. The input sequence used for this validation, showigare 4.14, includes
cycles where multiple parameters are varied at once.

200 Input
1D — — Baseling
230
a8 WO | — ~ — ]
OF
100 Il Il Il Il
0 20 40 60 80 100
» 20 ‘ ‘ ‘ ‘
£5 |
52 10— —f}- - - — - - -
g
O S
e o
0 20 40 60 80 100
. 720 T T T T
<
3 | ]
© o 700 - - - - ]
2E L
|_ 680 Il Il Il Il
0 20 40 60 80 100
80 T T T T
0§
252 60 E
888 °__1 - — 1 -
40 Il Il Il Il
20 40 60 80 100

Cycle Number

Figure 4.14: A Schematic Set of Input Sequences for LR Model Validation.

Figure 4.15 compares the area of encapsulated liquid peedioy the LR
model with the virtual process data. The of LR model in this application was
computed as 86.75, indicating that the LR model accurataptuces the area of
liquid encapsulation.

In summary, the LR model provides good prediction for theakliquid en-
capsulation hence providing a quantitative expressiomfacro-porosity due to
liquid encapsulation.

In this chapter, a nonlinear state-space model has beefodedeusing data
from the virtual process. The model incorporates the lirdgaramic behaviour
of the feedforward inputs and the nonlinear static gain dué control variable
inputs. Using the virtual process for comparison, the maar state-space model
was shown to accurately reproduce the process dynamicsaowéte variety of
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Figure 4.15: Areas of Encapsulated Liquid Predicted by the LR Model and
Generated by the Virtual Process for the Validation Inpujugaces.

inputs. Also, a least squares expression to predict theadreacapsulated liquid
based on the Maximum Temperature at 9 locations was evdlaate shown to be
accurate.
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Chapter 5

Nonlinear Model-based
Predictive Control?!

This chapter presents the development of a nonlinear nmatsdd predictive con-
troller (NMPC) for use in controlling an operational LPDCopess and its im-
plementation in MATLAB. Section 5.1 reviews the nonlinegaits-space model
developed in Chapter 4 for use in predictive control. Thenigdation of using
the nonlinear state-space model to predict the future belaof the process will
then be presented in Section 5.2. Section 5.3 introducesotdunction approach
that will be employed to optimize the controller operaticfo correct for noise
in process inputs, an observer-based correction has beefoded. Section 5.5
outlines how constraints can be implemented in this NMP@é&aork. Finally,
after defining the necessary components of the controléti@ 5.6 describes its
implementation in MATLAB and subsequent tuning processtmtrol parameters
employed in MPC.

5.1 Nonlinear State-Space Model

In the Chapter 4, a nonlinear discrete-time state-spaceeshwas selected and
developed to represent the virtual process of the demaiostraPDC process.

IPortions of this chapter have been prepared for publicétion
e X. Shi, Eranda Harinath, D.M. Maijer and G. Dumont, “Nonkméviodel Predictive Control in a
Low Pressure Die Casting Process”, Journal of Process @pstibmitted 2012.
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In general, state-space modeling is a well known matheaiagchnique that is
inherently multivariable and can be formulated to repredetrete time (or batch)
processes. For this work, the state-space model with lehgzamic behaviour and
nonlinear static gain is presented in Equation (5.1).

x(k+1) = AxKk)+Bu(k)
(k) +y1 ()
f(x(k)) +Cx(k) (5.1)

<

—
-~

N
I

where the indeX counts discrete time steps aAdandB are matrices that oper-
ate on the vectorg(k) andu(k) to predict the next steg(k+ 1). The A matrix
represents the unforced or natural response of the systémtiviB matrix repre-
sents the forced respong@is a matrix that linearly operates on thg) vector to
represent the system feedforward respong&) and the functionf produces the
nonlinear responsg, (k) based orx(k). Thex(k) andx(k+ 1) vectors represent
the state of the dynamics of the system being modeled at thentand next time
steps, respectively.

The sizes of the matrices, B andC are determined by the sizes of the state-
space model vectorsA is a square matrix with dimensions equal to the length of
the state vectax(k). TheB matrix’s dimensions are related to the vector lengths of
x(k) andu(k) for the row and columns, respectively. While the number afsn
Cis equal to the length of the vectgy (k) and the number of columns is the equal
to the length of vector(k). The functionf generates a vector of the same length
asyy(k) that represents the nonlinear expressions of the statersemter model
outputs at different die locations.

In this work, the basic control sequence of actions at tiraplsts as follows:

1. Measurg/(k) andu(k—1).
2. Compute the required process inpuk).
3. Apply u(k) to the plant.

This sequence shows that there is always a delay betweemnmeagk) and
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applyingu(k). For this reason there is no direct 'feed-through’ frafk) to y(k)

in Equation (5.1). This expression is necessary to simti&computation of the
prediction and optimization equations in the followingtsmts. If the process has
direct feed-through then a number of methods exist to madtiéyoriginal state-

space model to remove the term fraitk) to y(k) [72].

5.2 Prediction

In order to solve the predictive control problem, a meansoohputing the pre-
dicted values of the controlled variablg& 3-i|k) is sought, based the best estimate
of the current state(K|k), and assuming future inputg§K+i|k). The nonlinear
state-space model formulation given in Equation (5.1) Ig aeeful for predicting
the process outputs one time step into the future. The MP@einaork requires
a model that predicts many time steps into the future to fémtewcontrol opera-
tions for the current time. This prediction could be donesitieely as in Equation
(5.1) where the current state and inputs are used to cadhlainext state and then
repeated for as many steps as needed. The next procesdesdab then be de-
termined as the sum of the next state vegtéy multiplied by theC matrix and the
nonlinear functionf of the next state vector at each iteration.

Egn. 5.1 introduces a notation to distinguish between knanah predicted
values. For examples(K+ 1|k) is the predicted state at the next time step. The
""" signifies that this value is a prediction. Tlket 1|k notation indicates that the
prediction is for the time step one cycle into the furthies-"1" and the current time
step is K.

f(kt1k) = AxK)+Ba(klk)
R(k+2k) = Ax(k+1]k)+Ba(k+ 1/k)
R(k+3k) = Ax(k+2/k)+Ba(k+2|K)

(5.2)

This method of iteratively predicting the state vector carabplied if all the
future inputs were known in advance. For MPC, the futurercbrariables will be
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calculated and are therefore currently unknown. In additadthough the current
values for the feedforward variables are known, the futatees must be predicted.
Therefore, the input vectark) must be separated into known and unknown values
and methods to define the unknown values must be developed.

The first step to develop the necessary predictive modebili#pas to separate
the input vectoru(k), into two separate componentgK)andus (k), to represent
the predicted control variables and the current feedfatwariables, respectively.
For the prediction equations that do not use the currentsgatd the feedforward
variables,ut (k+ 1/k) is introduced to represent the predicted feedforward vari-
ables. With the input vector separated, Bimatrix must be separated inBy and
B+ to operate on their respective input vectors. Equatior) a8 then be written
as:

R(k+1k) = Ax(K)+Byly(K|K) +Bsus(K)
R(k+2k) = AR(k+ 1[k) + Bydy(k+ 1K) + Bl (k+ 1K)

R(k+Hplk) = AR(k+Hp—1]k) +Byly(k+Hp — 1|k) + By ls (k+ Hp — 1|k)
(5.3)

In the first line of Equation (5.2)y,(k|k) is used rather than(k), because
u(k) is unknown at the beginning of this calculation. Equatio)tncludes terms
for the unknown future values of the feedforward variabligk + n|k). If the
nature of the disturbances were known, a prediction for theré values of the
feedforward variables could be made. However for simplidilie future values
of the feedforward variables will be assumed to be held emsit the current
measured values. This implies that{ K-+ n|k) = u¢ (k) for all future times stepa.

Additionally, we need to formulate each of the state préalicequations in
terms of the current state(k) which is known. This reformulation is accomplished
by substituting the state prediction equationxtk- 1/k) into thex(k+ 2|k) equa-
tion. This substitution is then repeated gk 3 3|k), X(k+ 4|k), etc. The state-
space model with the modifications made so far is shown in fimqu¢b.4).
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R(k+1k) = Ax(K)+ByGy(KIK) + Brus (k)
R(k+2k) = AR+ 1[k)+ B0y (k+ 1|k) + Bsus (k)
= A%(K) + AByGy(K[K) + ByOy(k+ 1|K) + (A+1)Brus (K)

R(k+Hplk) = AR(k+Hp— 1|k) + Bydy(k+Hp — 1K) + Bus (K)
= AMex(k) + A% 1B, 0y (KIK) 4 - - 4 ByGy (k4 Hp — 1|K)
+(A~ I A 1)Brus (K)
(5.4)

Now recall the assumption that the input will only changeimtes k, k+
1,---, k+Hy—1, whereH, is the control horizon, and will remain constant af-
ter that. Thuspy(k+ilk) = Gy(k+Hy — 1) for Hy <i <Hp—1, whereH, is the
prediction horizon. This leads to Equation (5.5):

R(k+1k) = Ax(K)-+Byly(K|K) +Byus(K)
R(k+2k) = A%(K)+ ABGy(KK) + Bydy(k+ 1|K) + (A4 1)Brug (K)

R(k+Hylk) = Aux(k) +A=1B,Gy(K|K) + - - + Bydy(k+ Hy — 1K)
+(AT o A D Brug (K)

Note: after this pointuy{k+ilk) = Gy(k+Hy—1) for H, <i <Hp—1
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R(k+ Hy + 1/k)

X(k+Hp|k)

+(AH

Pt ...+ A+1)Bsus(K)

Ay (k) 4+ ATB, Gy (K[K) 4 - - - + AByGy (K4 Hy — 1K)
+ByOy (K4 Hy — 1|K) 4+ (A™ -+ A4+ 1)Byu (K)

Aex(k) + A= 1B, Gy (K|K) + - - + AT HuB G (K + Hy — 1]K)
+ A H1B G (K4 Hy — 1]K) + - - 4 By Gy (k+ Hy — 1K)

(5.5)

The state prediction described by Equation (5.5) can beittewrin a matrix-

vector form as:

R(k+1/k) A By 0
R(k+2/k) A2 ABy By
K(k+Hylk) = A I x(k)+ | AulB,  AMu2B,
R(k+Hy +1/k) AHutl AHug,  AMu-lg,
R(k+ Hplk) Afte | Afe-1B, AHb-2B,
By
0 (kJK) ABI+Br
Gv(k+1]k) :
x : +| s tABy
: 0 C
ty(k+Hy — 2K) 2iZoABr
Ov(K+Hy — 1]k) ;
L surrﬁ’(;lAiBf |

0 0

0 0
AB, By
AZB, AB, + B,

AprHulev z:_l)ofHU Ai By |

ur (k)

(5.6)

By introducing two vectorX (k) andU (k) which contain the predicted state
and control variable vectors, respectively, Equation)(Bah be simplified to:
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A B,
A2 AB,
X(k) = At x(k) +
AHu+l
- AHp -
_ B, -
ABs + By
xUy(K)+ | 3/t Ay
Hu ATBy
| suni®, "By |
= Fuyx(Uv(k)
where,
[ R(k+1]K)
R(k+ 2/K)
X(K) = | K(k+Hylk)

Ultimately, the state-space model should be used to préukcarea of liquid
encapsulation in the casting at some time in the future. Matethe area of liquid

R(k+ Hy + 1/K)

X(k+ Hplk)

0
By

AHulev AHu72BV
AHuBV AHulev

i Aprle AHp72BV

Uf(k)

and Uy (k) =

104

0 0
ABy, Bv
A’B, AB, + By

Ao Holg, s AB, |

0,(KK)
Gy(kK+ 1K)

Oy(k+Hy — 2/k)

| Oy(k+Hy—1]k) |




encapsulation occurring in the future can be linearly esged in terms of the
process variables in a future cycl(k). The prediction ofY (k) is based on the
expression foy(k) as follows,

y(k) = yu(k) +y (k) = f(x(k)) +Cx(k)

ThereforeY (k) can be expressed as:

y(k+1]k)
y(k+2/k)

<

—
x

S—
Il

y(k+Hp—1[k)
y(k+Hplk)

f(R(k+ 1K) [ C(R(k+1/K))
f(R(k+2]k)) C(x(k+2]K))

f()?(k+|-.lp—l|k)) C()?(k+|-.|p—1|k))
f(k(k+Hplk)) | | C&(k+Hplk)

= Fxov(X(K) (5.8)

According to the previous chapter, the area of liquid engkai®n can be lin-
early expressed by:

N
areak) = Vo+;% yi(k)
= %+ YK (5.9)

where,

!/

F=ly - w, YK=MK - vk

With Equation [(5.3) and Equation (5.9) théiEA(k) can be computed as fol-
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lows,

areak+1]k) | [ V(k+1]k)
area(k+ 2|k) Y (k+2k)
AREAK) = : =0+l ;
area(k+Hp — 1K) Y (k+Hp—1]k)
area(k+Hplk) | | Y(k+Hplk)

= FroaredY (K) = FroareaFxoy (Fuy—x Uy (K))))

= Fu,oareddyv(K) (5.10)

Note that the functions involved in Equation (5.10) will clge when the non-
linear state-space model, prediction horizon, or contooizon changes.

5.3 Cost Function

The basic principle of predictive control is to compute fietaontrol variables such
that the measured process variables follow future referéragectories. The cost
functionV penalizes deviations of the predicted process variaffles ilk) from

a reference trajectomy(k+i|k) vector. However, this methodology does not work
for the current case because the term to be penalized isg¢heofliquid encapsu-
lation which cannot be measured. However, the area of lign@psulation can be
expressed in terms of other measurable process varidldedie temperature.

The primary goal of the model-based predictive controketoi minimize the
area of liquid encapsulation. A secondary goal of the mbdskd predictive con-
troller is to increase the production rate of the batch medey decreasing Die
Closed Time to effect an overall reduction in cycle time wthstill accomplishing
the primary goal. This translates into minimizing the arefgjuid encapsulation
over the prediction horizon while keeping Die Closed Tima toinimum.

A function that accomplishes the primary and secondarysgbglassigning
'cost’ to the predicted area of liquid encapsulation and Blie Closed Time is
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described in Equation (5.11). The optimal control variabe then calculated by
minimizing the cost function as follows.

HP HP
V(k) = _;\|ar‘ea(k+i|k)||é + _;\|0vl(k+i|k)\|§ (5.11)

whereuy, is the predicted Die Closed Time.

The cost function introduces the weighted Euclidean norhj, @% defined as
HXH% = x"Q x, wherex is a vector an@ is a diagonal matrix. The matric€and
Rweigh the predicted area of liquid encapsulation and ptediDie Closed Time,
respectively. The diagonal eleme$) andR(i) on these weighting matrices are
defined to be dependent on the prediction indéxsequence. This time depen-
dency allows different weights to be applied over diffenagiions of the prediction
horizons. Typically these elements remain constant oveettiire prediction and
control horizons and thiesubscript can be ignored.

The first term of the cost functiomred k+i|k), calculates the weighted norm
of the area of liquid encapsulation. These weighted norrassammed over the
prediction horizon from 1 tdH, to define the cost of the primary goal. The
weighted norms of the Die Closed Timg, (k+i|k), are summed over the predic-
tion horizon from O taH, to define the cost of the secondary goal, i.e. production
rate.

Using the vectors defined previously in Equation (5.7) andefign (5.10), the
cost function equation can be expressed as a functibh:df) as follows,

V(K

Hp . Hp )
i;HAREﬁ(k)H%U) + i;‘|uvl(k+'|k)||§(i)

= ||Fuy—areaUv (k))[I&) + 10v, (K[ (5.12)

The cost function in Equation (5.12) can be reframed as ati@ned opti-
mization problem as follows:
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min f(x)

c(x) <0

Ceq(X) =0

st: Ax<b (5.13)
AegX < beg

lb<x<ub

wherex, b, beg, b andub are vectorsA andAgq are matricesg(x) andceq(x) are
functions that return vectors, aridx) is a function that returns a scaldr(x), c(x)
andceq(X) can be nonlinear functions.

In the current work.f(x) is defined a¥ (u) in Equation (5.12). Note that the
first term ofV (k) is the nonlinear expression fby, .area therefore it can not be
treated with the regular linear Quadratic Programming (@dpyoachl[72]. For this
kind of nonlinear constrained optimization problem, thg@mtial Quadratic Pro-
gramming method (SQP) has arguably become the most sugcessthod since
its popularization in the late 1970s [94]. As with most opaation methods, SQP
is not a single algorithm, but rather a conceptual approaaim fwhich numer-
ous specific algorithms have evolved. SQP is applied by ¢tingea constrained
nonlinear optimization problem into Quadratic Programgnm{@P) subproblems
that can be solved by the active-set method at each iterfg#jn The active-set
method was exploited to compute a quasi-Newton approximab the Hessian
matrix from the Lagrangian function [95]. The active-setthogel has several fea-
tures. First, the iterations remain stable once an inigakible solution has been
found. Second, since it starts from the active set of coim$&rasuccessive itera-
tions continue towards a feasible solution under the sariveaget. The feasible
solution can be evaluated by Karush-Kuhn-Tucker (or KKZ)[technique to ver-
ify that new solution is the global optimum. Finally, theeaif finding a solution
with the active set method is dominated by the speed with lwttits factoriza-
tion can be performed. It is noted that the main iterationhefactive set method
searches among points on the boundary of the feasible region

The algorithm used to solve such a nonlinear constrainathgattion problem
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shown in Equation (5.1.3) is available in the Optimizatiorolbmx in MATLAB.
The functionfmincon in MATLAB can solve for a constrained minimum of a
scalar function of several variables starting at an ing&tlmate. In shorfmincon
uses the SQP method to solve QP subproblems in each iter&ioestimate of
the Hessian matrix of the Lagrangian function is updatedaeh éteration. A line
search is performed using a merit function and the QP sulmrols solved using
an active set strategy [[95, 96]]. Note that based on wharacon starts, it may
terminate at the global minimum or at one of the local minirivathis work, to
ensure that the global minimum is fourfdhincon is first run with multiple preset
starting points. The starting point with the lowest funoti@lue is then selected.

5.4 Constant Output Disturbance Observer

Due to model inaccuracies, noise on the output signals andisturbances in the
output, discrepancies will exist between the state-spamdeimpredicted outputs
calculated with Equation (5.8) and the virtual process aistpT he controller must
account for this discrepancy in order to ensure accuraiqtien of the process
outputs. The technique to compensate for these inaccarecie use an observer
that estimates and corrects the state of the process by comphe predicted
outputs with the virtual process outputs. A simple obsedesign would be to
assume that any error between the predicted and the vintoe¢égs outputs is the
result of a disturbance on the outputs. By assuming thatoihigut disturbance
is constant over the prediction horizon, the future prediatutputs are calculated
by adding the output error to the values predicted by Eqodfiog). This type
of estimation is known as 'deadbeat’ estimation becauselidtarbance estimate
remains the same after only one sample.

The constant output disturbance observer is well suitee&d dith situations
where the output error is mainly due to model inaccuracieswévVer, it is inca-
pable of dealing with inaccuracies caused by 'noisy’ ougighals. If noise is an
issue when the controller is implemented in an industrigirenment, the tempera-
tures could be filtered in the PLC to remove the noise as is&/pif most industrial
controller implementations or a more elaborate state bsauch as a nonlinear
Kalman filter may be required [[97]]. In the case of the viltpeocess studied in
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this research, measurement noise is not simulated andtplitoerrors are due to
discrepancies between the internal process model of theotlen and the virtual
process. Therefore, the constant output disturbance \@yssracceptable.

To integrate the observer into the prediction equationsnple modification to
the predicted output definition of Equation (5.8) is reqadirAs defined previously,
the predicted output of the system is the sum of the predictedrol variables’
responsey, and predicted feedforward variables’ responses. The wdiseorrects
the whole predicted output by adding the output error towllfe predicted values.
The modified equation is given as Equation (5.14) where, (k) is defined as the
difference between the predicted and the virtual procefgzutgiat time stef.

y(k+1/k)
y(k+2[k)
(k) = + Yerr(K)
Y(k+Hp—1/k)
y(k+Hplk)

<>

f(Rk+1K) | [ CRk+1k)
f(X(k+2/k)) C(x(k+2k))
= + +Yerr(k)
f(R(k+Hp—1]k)) C(R(k+Hp—1]k))
f(X(k+Hplk)) | | C(R(k+Hplk))

= Fxy(X(K) + Yerr (K) (5.14)

5.5 Constraints

In this research, a Nonlinear Model-based Predictive @bigrbeing applied to
minimize the cost functiol in Equation (5.12) subject to constraints@nwhich
are defined in Equation (5.13). Based on the formulationgmtesl, the constraints
for the control variables apply only to Die Closed Time. Artidower constraint
is necessary to ensure that the controller does not redecBithClosed Time to
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the extent that the die opens when the casting is still moBased on a sensitivity
analysis with the Virtual process, this constraint showdequal to—40 s. In the-
ory, ’hard’ upper constraints are not necessary because ihaot an upper bound
for Die Closed Time or Cooling Duration. However, operatibranges without
bounds can lead to unanticipated performance issues, sdi lgper constraints
of 40 s and 30 s were imposed on Die Closed Time and Coolingectsely.

Another constraint has been set to limit the rate of contavlable variation
over adjacent cycles. In this research, a nonlinear spteesmodel with linear
dynamics has been developed to capture the nonlinear dgsarifiihe virtual pro-
cess. To ensure model accuracy, the rate of variatianhafs been constrained as
follows,

AU< bag (5.15)

To convert this expression to the global formfaf< by in Equation (5.13), the
procedure is as follows,
Egn. 5.13 implies that,

u(k) — u(k+ 1) < by
—u(K)+ u(k+1) < by

u(k)
u(k+1)

+1 -1
-1 +1

< bAu
bAu
which is the form ofA, < Aby.
In summary, the form of the constrained optimization probfer the LPDC
process studied in this research is as follows,
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min V(u)
u
st: Au<by (5.16)

where the expression dfis given by Equation (5.1.2).

5.6 Controller Implementation and Tuning in MATLAB

5.6.1 Controller Implementation in MATLAB

A MATLAB program was developed to tune and assess the pediocm of the
MPC controller prior to applying it to the virtual processhélprogram was formu-
lated to assess the process response in open and closedddep,rand to examine
the effects of the tuning parameters on the closed loop pedioce. MATLAB
offers convenient functions to implement the control aitpon including the non-
linear state-space model and constraint optimization.MRE performance using
this approach is expected to mimic its performance on thealiprocess when the
nonlinear state-space model accurately represents tli@Mmarocess. A flowchart
of the MATLAB program is shown in Figure 5.1.
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ufk-1) | MPC ugk)
Algorithm © ” Identified
uy(k-1), . U I{;Tonlmear
Read/Write tate space i1
—&Y(k) Data model %Y( )
k=k+1
Next Cycle
In Matlab

Figure 5.1: Data Flow Diagram for MATLAB Program with MPC Involved.

The controller operation shown in Figure 5.1 occurs in tvames. In the %
stage, the MPC Algorithm computes the control inputs fordtae-space model
in the current cycle. Upon collecting the daigk — 1), us(k— 1) andy(k) at
the current time step k, the optimal(k) is computed by solving the constraint
optimization problem shown in Equation 5.16.

In the 2" stage of controller operation, the nonlinear state-spaseefris run
with inputs uy(k) andus (k) to calculate the new process outpk + 1) for use
in the next cycle’s calculations. When a new cycle starts,TMAB activates the
MPC algorithm to compute the updateg(k) again. By repeatedly operating in
this mode, MATLAB simulates the application of MPC to thetaas process rep-
resented with the nonlinear state-space model. The camdsm MATLAB code
for the MPC controller is presented in Appendix.

5.6.2 Controller Tuning

The MPC controller described above must be 'tuned’ to otimhe closed loop
performance of the virtual process. The parameters asedaidth the cost func-
tion in Equation (5.12) are defined as follows:
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e Hp - Prediction Horizon

e H, - Control Horizon

e Q- Predicted Amount of Liquid Encapsulation Weighting Matri

¢ R- Predictedy,, Weighting Matrix

To tune the MPC controller, the closed loop response usiifigreint values of
the tuning parameters was calculated with the MATLAB progr&ach simulation
was started from the steady state operating point (0,0). siM@se disturbance

scenario, shown in Figure 5.2, was imposed on the processhwalsumes a drop

in incoming Metal Temperature in Figure 5.2a coincides withevent that causes
longer Die Open Time in Figure 5.2b. The resulting contrguits and process
output (area of encapsulated liquid) were evaluated tormhéte optimal tuning

parameters.
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Figure 5.2: Worst Case Disturbance Scenario: (a) Metal Temperaturégnd

Die Open Time.
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In the following, the results of each tuning parameter assest will be pre-
sented in figures composed of two graphs. The top graph gsphe changes to
control variables while in closed loop and the bottom grdpbwss the area of the
liquid encapsulation for each casting assuming closed &wpopen loop oper-
ation. The element® andR were set to 1 and 0, respectively, unless otherwise
specified.

Hp Tuning

Hp defines the number of predictions the controller will make ihe future. Usu-
ally the value ofH, is set to be approximately three times as long as the time
constants found during dynamic behaviour testing, suchresepted in Chapter
4, which allows the controller to predict into the future wda¢he process vari-
ables have settled to within at least 95% of their final vallgzssed on the results
presented in Chapter 4, the corresponding time constanthidod die locations
being considered were from 3 - 6 cycles. Félyvalues (5, 10, 15, and 20) were
used with the MATLAB program to assess the effect of the jtémti horizon on
controller performance. AHl, of 2 was used during this assessment.

The responses of the closed loop control variables witlewdifitH, settings are
shown in Figures 5.3a 70 5.6a, and Figures 5.3b to 5.6b préseicorresponding
results for area of encapsulated liquid of the closed loapapen loop operation
of the process. Table 5.1 summarizes the total area of ligpuidpsulation for open
loop and closed loop with differer, settings. WherH, is equal to 5, the total
area of encapsulated liquid in the closed loop mode inccebge26% compared
to open loop (refer to Table 5.1). This poor closed loop permtnce, as shown
in Figure 5.3b, is because the process response at the tiprdiorizon has not
reached its final values based the current process inputs.
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Table 5.1: Summary of the Total Area of Liquid Encapsulation for Open
Loop and Closed Loop with Differerd, Settings.

Closed loop Ky, Hp)
(2,5) | (2,10)| (2,15) | (2, 20)

Open loop

Total area of liquid

. 130.5 | 99.8 92.5 92.5 103.8
encapsulation (cR)

Die Closed Time
= = = Cooling Duration

Time (s)

0 5 10 15 20 25 30 35
Cycle Number

@

10
Closed loop
o = = = Open loo|
= p p
o)
s Of
g
<
O Il Il Il Il Il Il
0 5 10 15 20 25 30 35

Cycle Number
(b)

Figure 5.3: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.and
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oH, = 2 andH, = 5.

WhenHj is equal to 10 (refer to Figure 5.4), the closed loop perforceam-

proves, especially in the longer term performance, leattirag4% reduction in the
area of encapsulated liquid compared with the open loop @srsin Table 5.1.
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Additional improvements are observed whepis increased to 15 (refer to Figure
5.8). In this case, the total area of encapsulated liquiddsiced by 11% in closed
loop mode relative to open loop as presented in Table 5.1seltleee cases indi-
cate that a#i, increases the closed loop performance improves. Howevenw
Hp is increased to 20, as shown in Figure 5.6 and Table 5.1, disedlloop perfor-
mance shows no improvement compared td-arof 15. Based on these results,
Hp was set equal to 15 and this value was applied for the rengpamalysis.
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Figure 5.4: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.and
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oH, = 2 andH, = 10.
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Figure 5.5: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.aad
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oH, = 2 andH, = 15.
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Figure 5.6: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.and
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oH, = 2 andH, = 20.

In conclusion, as shown in Takle 5.1, higher valuesigflead to better per-
formance [72]. Also, a long prediction horizon ensures etbbop stability for
an open-loop stable system, and minimizes the risk of dyittire plant into 'dead
ends’ from which no feasible solution is possitle [72]. Thiusre are good rea-
sons for makingH,, as large as computation speed will allow and performande wil
improve.

Hy Tuning

The control horizonH,, defines the number of changes to the control variables that
the controller will calculate to drive the predicted prazgariables to their desired
trajectories. Because the prediction horizon was chosee b, the control hori-
zon must be chosen to be in the range &f H, < 15. As the control horizon is
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increased, the computed control moves tend to become mgressive and more
computation time is needed. In this research, thigeralues (1, 2, and 3) were
used in the MATLAB program to the effect &f, on the controller performance.
The responses of the closed loop control variables witledfitH,, settings are
shown in Figures 5.7a 10 5.9a, and Figures 5.7b to 5.9b présecorresponding
results for area of encapsulated liquid of the closed loapogen loop operation of
the process. Table 5.2 summarizes the total area of liquidpsulation for open
loop and closed loop with differerd, settings. WherH, is equal to 1 (refer to
Figure 5.7 and Table 5.2), the total area of encapsulatedllig closed loop mode
has decreased by®o compared to open loop. Wheét, is equal to 2 (refer to
Figure 5.8 and Table 5.2), the total area of encapsulatedlliq closed loop mode
is decreased by 19%. As the control horizon is increased from 1 to 2, the freedo
of the controller to perform control moves is increased dadcontroller is able to
respond faster to the process disturbance scenario,ingsintbetter closed loop
performance. However, whéth, is further increased to 3, shown in Figure 5.9 and
Table 5.2, the closed loop performance does not improverdiogdy compared to
the case wittH, set to 2. This reveals that the increased freedom to makeotont
moves resulting from increasdd, does not always bring the better closed loop
performance. By simulating the closed loop performancé ditferent values of
Hy using MATLAB, a control horizon of 2 was found to perform thesb and any
value greater than 2 did not improve the performance. ThezefinH,, of 2 will
be used in the controller and has been applied for the rentpamalysis.

Table 5.2: Summary of the Total Area of Liquid Encapsulation for Open
Loop and Closed Loop with Differe, Settings.

Closed loop Ky, Hp)
(1,15)| (2,15)| (3,15)

Open loop

Total area of liquid

. 95.0 92.5 92.9 103.8
encapsulation (cR)
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Figure 5.7: (a) The Responses of the Closed Loop Control Variables and (b
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Figure 5.8: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.aad
Open Loop When Running NMPC in MATLAB with Tuning Parame-
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Figure 5.9: (a) The Responses of the Closed Loop Control Variables and (b
the Results for Area of Encapsulated Liquid of the Closedp.aad
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oH, = 3 andH, = 15.

Q and R Tuning

The tuning values in th® andR matrices are used to control the emphasis placed
on the two terms in the cost function. Thé& term (refer to Equation (5.12))
considers casting quality and decreases with decreasjuigl lencapsulation. The
2"d term incorporates the effects of production rate and deseaith reduced Die
Closed Time.

Q(i) in Equation (5.12) is the penalty applied to the predictezhaf liquid
encapsulation in time stdp The time steps considered include fromqual to 1
to the prediction horizom,. Q(i) is typically held constant over the prediction
horizon based on the expectation that the importance oidligacapsulation will
not change along the prediction horizon. Since the valug(ofis only important
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relative to the values iR, Q(i) was initially set to be equal to 1.

R(i) defines the penalty applied to the Die Closed Time in time stép the
limiting case, where aR(i) are assigned zero values, no penalty would be applied
to the value of Die Closed Time and therefore the cost functiould be mini-
mized only based on the area of encapsulated liquid. In ther dimiting case,
where allR(i) approach infinity, the penalty placed on Die Closed Time emph
sizes production rate only. In practice, both product dqualnd production rate
are important to industry. If the same importance is spetifie both terms, the
weightsQ andR need to be adjusted to account for the magnitude differenteei
guantities being evaluated. For example, if the predicted af liquid encapsula-
tion is 3 cnt and Die Closed Time is 150 s, the term linked w@tmust be scaled
by a compensation coefficie50x 150)/(3 x 3) = 2500 so that both terms have
the same relative importance. To assess the influen@eaofdR on controller per-
formance, four cases with different cost function weighsirtnave been simulated
in MATLAB. The responses of the closed loop control variablgth differentQ
andR settings are shown in Figures 5.10a to 5.13a, and Figuréd 5dl.5.13b
present the corresponding results for area of encapsulgted of the closed loop
and open loop operation of the process. Table 5.3 summdtieeaverage Die
Closed Time and the total area of liquid encapsulation famoloop and closed
loop with differentQ andR settings.

Table 5.3: Summary of the Average Die Closed Time and the Total Area of
Liquid Encapsulation for Open Loop and Closed Loop with &iéntQ
andR Settings.

Closed loop @, R)
(1,0) | (2500, 1)| (3000, 1)| (0,1)

Open loop

Average of Die
Closed Time §)
Total area of liquid
encapsulation (cR)

37.12 -4.2 11 -39.7 0

92.5 104.2 101.4 184.2 103.8
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In the P case,Q andR, equal to 1 and 0, respectively, have been selected
to emphasize casting quality only at the expense of progluctite. As shown in
Figure 5.10 and Table £.3, the closed loop system reduadisl kepcapsulation by
11%, but the production rate is decreased as the systenresaui average about
37 s longer per cycle compared to the open loop.
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Figure 5.10: (a) The Responses of the Closed Loop Control Variables gnd (b

the Results for Area of Encapsulated Liquid of the Closedp_and
Open Loop When Running NMPC in MATLAB with Tuning Parame-

ters Set oQ =1 andR=0.
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In the 29 caseQ andR are set equal to 2500 and 1, respectively. Both terms of
the cost function are nearly equally weighted with thesaesl The results for this
case, shown in Figure 5.11 and Table 5.3, indicate that tiimge Die Closed Time
has decreased by 4 s compared to open loop, representindlénspravement in

production rate. The total area of liquid encapsulationinsoat unchanged from
open loop.
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Figure 5.11: (a) The Responses of the Closed Loop Control Variables gnd (b
the Results for Area of Encapsulated Liquid of the Closedp_and
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set ofQ = 2500 andR= 1.
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In the 39 case,Q andR are set equal to 3000 and 1, respectively, to change
the weighting in favour of casting quality. In this instapnsbown in Figure 5.12
and Table 5.3, the average Die Closed Time is 1 s compared tm Ghe open
loop which is a small reduction in production rate whereasttital area of liquid
encapsulation has decreased by 2% compared to the open loop.
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Figure 5.12: (a) The Responses of the Closed Loop Control Variables gnd (b
the Results for Area of Encapsulated Liquid of the Closedp_and
Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set ofQ = 3000 andR= 1.

127



In the 4" case,Q andR, equal to 0 and 1, respectively, have been selected
to improve production rate at the expense of casting quadis/shown in Figure
5.13 and Table 5.3, the closed loop system improves pramucite through a 40

s reduction in cycle time, but the area of encapsulateddiinireases by 77%
compared to the open loop.
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Figure 5.13: (a) The Responses of the Closed Loop Control Variables gnd (b
the Results for Area of Encapsulated Liquid of the Closedp_and

Open Loop When Running NMPC in MATLAB with Tuning Parame-
ters Set oQ =0 andR= 1.

Q andR settings can be used to adjust the weightings of two terntseircost
function (Equation (5.12)). In practic® andR are adjusted based on the priorities

of the manufacturer. Since casting quality is a central thamthis research) and
R were set to be 1 and 0 for the remaining analysis.
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Chapter 6

MPC Control of a Virtual
Process

6.1 Preparation

The ultimate goal of this research is to develop a contraltsm for LPDC pro-
cesses that will minimize macro-porosity in castings. THeQvtontroller that has
been developed will be applied in this chapter to controlraual process experi-
encing different scenarios. The tuning parameters appligde MPC controller,
determined in the previous chapter, include the controlmadiction horizonsH,,
andHp) equal to 2 and 15, respectively, and cost function weightefficients Q
andR) equal to 1 and 0, respectively. These settings have beeciselto provide
good cycle to cycle sensitivity and to minimize the area cfagrsulated liquid,
which is being used as an indirect indicator of macro-ptyo3ihe virtual process
used in this chapter is based on the previously describeedx@smmetric formu-
lation of the casting model with boundary conditions addgtem the 3D model
which was validated with plant trial data. The 2D-axisymmeetersion of the FE
model was selected to conduct this analysis because itiexpitocess dynamics
that are similar to the actual process while offering fasterulation speed.

Iportions of this chapter have been prepared for publication
e X. Shi, E. Harinath, D.M. Maijer and G. Dumont, “Nonlinear b Predictive Control in a Low
Pressure Die Casting Process”, Journal of Process Costitmhitted 2012.
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To complete the development of the MPC controller, it wasessary to de-
velop a means of linking the MPC algorithm to the virtual mes. The MPC
algorithm was first implemented in MATLAB and then a commauaitiien protocol
was developed to enable control of the virtual process. Tneesponding data
flow diagram is shown in Figure 6.1.

ufk-1) | MPC ugk)
Algorithm
u.(k-1) u.(k) FE Model
ri simulation
() Read/Write y(H)
——— Data _—
In Matlab In ABAQUS
k=k+1
Next Cycle
In Perl Script

Figure 6.1: Data Flow Diagram for Virtual Process with MPC Involved.

The data flow for MPC control of the virtual process is simitathe MATLAB
implementation described in the previous chapter. The diffgrence in the 2
stage of the controller operation is that the input/outpithenge occurs via ex-
ternal text files used to communicate with the Perl script tipeerates the virtual
process. Upon collecting thg(k— 1), us (k— 1) andy(k) data at the current time
step k, the optimal, (k) is computed by solving the constraint optimization prob-
lem shown in Equation 5.16. In thé®stage of controller operation, the virtual
process acceptg (k) from the MPC algorithm and runs the FE model with updated
process parameters. As a result, the new system outkut 1) is generated for
use in the next cycle’s calculations.

The Perl wrapper script, which enables the continuous tiperaf the virtual
process, reads and writes data to and from various comniigmisdiles at different
stages in the process. When a new cycle starts, the Perl s@iis for the MPC
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algorithm to compute the updategi(k). Once the new data, (k) is computed,
it updates and then runs the new simulation to produce thedaay(k + 1).
Repeatedly operating in this mode simulates the cyclic aijmsr of the virtual
process with MPC.

In this research, the nonlinear state-space model whichdeesloped to re-
produce linear dynamic behaviour does not completely dipre the nonlinear
dynamics of the virtual process throughout the operatiosade examined. This
will affect the model-based predictive control performarmmn the virtual process.
However, the model accuracy is greatly improved if the cyoleycle rate-of-
change of the control variables is limited to a reasonabigeaas the nonlinear
dynamics of the virtual process can be approximated withalirdynamics over
smaller cycle-to-cycle operational ranges. With the aid sefnall sensitivity anal-
ysis on the virtual process, the rate-of-change of the obmériables was limited
to |Auy,, Auy,| < [10s,59 for the remaining analysis of this chapter.

The control solution’s performance has been evaluated bgidering: (1) the
effect of process disturbances, (2) typical operationaldid@mns, (3) its perfor-
mance compared to Linear MPC and (4) the tolerance and resprthe control
solution to process uncertainties.

To evaluate the performance of the control solution in téjgcprocess dis-
turbances, three disturbance scenarios have been appligcttt the open loop
and closed loop virtual process. The scenarios are the sart@se used to test
the controller tuning in Chapter 5. The first scenario is apiag incoming Metal
Temperature input disturbance, which simulates a drop ataharamp back in in-
coming Metal Temperature consistent with the addition @f meetal to the holding
furnace below a casting machine. The second scenario g&slddarge single cy-
cle Die Open Time input disturbance which occurs when a dielid open longer
than normal while the operator performs process maintenanhe final scenario
is a 'worst case’ combination of the incoming Metal Tempematand Die Open
Time disturbances.

The control solution has been evaluated on the virtual E®cdering steady
state and start-up operational conditions to assess fisrpe&mce with the process
in different operation states. The impact of controlling firocess starting at two
different steady state operating points will be analyzest.fifhe three disturbance
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scenarios have been applied to both the open loop and clospdiirtual process
with these initial steady states. The ability of the coénaio improve performance
relative to the open loop case for start-up conditions widrt be assessed using
both the worst case disturbance scenario and no disturbance

The differences between Linear and Non-linear MPC have hssessed using
the virtual process. The worst case disturbance scenatiotwd different initial
steady states will be used for this assessment. The resattsdoth controllers
will be used to demonstrate the advantage of applying Nueali MPC over Linear
MPC on the virtual process.

Finally, the robustness, or stability, of the control siatwhile experiencing
typical process uncertainties that affect heat transfehéndie will be explored.
The two parameters considered in this analysis were thettagetfer coefficients
applied along the casting/die interfadg)(and inside Cooling Channelly). The
heat transfer conditions at these locations are known tp daring casting cam-
paigns in the industrial process [3]. In the industrial @%%; the coating that pro-
tects the die surface from erosion/corrosion by the liquetahdegrades at differ-
ent locations. These areas are intermittently re-coateédeogperator as part of the
cycle-to-cycle checks that are performed during Die OpeneTiThus, the cyclic
variation of the coating thickness is a source of uncedint the interfacial heat
transfer. Likewise, the cooling intensity in the Coolinga@hels varies cycle-to-
cycle with changes in the water pressure and flow rate. A thahsanalysis will
be conducted witlh; andh, to assess the impact of changes in these parameters
on the process performance during closed and open loop.

6.2 NMPC of Steady State Operation

To assess the performance of the NMPC in controlling theainprocess starting
from steady state operation, two steady state operatimgsof Die Closed Time

and Cooling Duration equal to (150 s, 10 s) and (130 s, 30 ¢ selected. Sim-
ulations of open loop and closed loop operation were peidrfor both settings.

The (150 s, 10 s) state was selected because it is a near bpperational con-

dition for the virtual process while (130 s, 30 s) state wdscted because it is a
condition that is away from the optimal operational region.
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Each of the following subsections presents four graphswiea¢ generated by
applying the previously described disturbance scenarib® difference between
the area predictions for open and closed-loop operatiohetirtual process are
used to assess the performance of the control solution. §heesf in each sub-
section are composed of graphs (a) to (d), where (a) and ¢biwer disturbance
variables in the scenario, the graph in (c) displays the ggsimade to the control
variables relative to the baseline operational conditibfi0s, 10s) for the closed
loop and the graph in (d) compares the closed loop and opendaas of encap-
sulated liquid which occurs during each scenario. The rafhdiatted line in (d),
which is defined as the area prediction for the initial stesidye operation, rep-
resents the threshold value for the area of encapsulateid lig the casting. This
threshold represent the maximum acceptable area of enatgabliquid for a cast-
ing, i.e. if the area of encapsulated liquid is below thig#mold, the casting will
be accepted, otherwise this casting is rejected. The 'goasting ratio equal to
the number of acceptable castings over the total numbellaiedlis then reported.
The total area of encapsulated liquid for both open and dis@p operation is
also presented to aid in controller performance assessment

6.2.1 Steady State Operation (150s, 10s)

A series of simulations were executed to assess the penficara the NMPC for
different disturbance scenarios during steady state tipefaased on a Die Closed
Time of 150s and Cooling Duration of 10s. Figures 6.2 to 6aWsthe results for
the different disturbance scenarios. Table 6.1 summatiimesesults that compare
the open loop and closed loop simulations starting fromdstesate operation at
(150 s, 10 s) for the different disturbance scenarios.
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Table 6.1: Comparison of Sum of Area and Good Casting Ratio between
Open Loop and Closed Loop Simulations with initial Steadst&Oper-
ation (150s, 10s) under Different Disturbance Scenarios.

Disturbance Sum of Area (crf) Good Casting Ratio (%

Scenario Open loop| Closed loop| Reduction rate (%) Open loop| Closed loop
Metal Temperature  84.9 78.6 7.5 25.8 48.4
Die Open Time 90.0 81.6 9.4 9.7 48.4
Worst Case 103.7 97.5 7.0 12.9 19.4

Figure 6.2d shows the closed loop and open loop response wvirthal process
to the ramping incoming Metal Temperature disturbance. ddrdrol variables
during closed loop operation, shown in Figure 6.2c, keepingrto mitigate the
negative effect from the disturbance. When the drops innmiog Metal Temper-
ature occur in the'$ and 19" cycles, the area of encapsulated liquid increases in
both the open and closed loop modes. For open loop operitiakes about 11 cy-
cles to return to an area that is below the threshold, while ®nycles are required
in closed loop mode. To achieve this response, the Die Cldsrd steadily in-
creases initially until it saturates at +40 s over the basg]i50 s) and the Cooling
Duration fluctuates between 0 s and -5 s over the baseline) @®the incoming
Metal Temperature changes relative to the nominal valueD6f°C. The perfor-
mance improvement of the closed loop over the open loop &lgleeen in Table
6.1, where the sum of area of encapsulated liquid decreasedd4.9 cm in the
open loop to 78.6 cAin the closed loop, resulting in a 7.5 % reduction; and the
good casting ratio increased from 25.8 % in the open loop 14 48in the closed
loop. The reduced number of cycles necessary to return dearencapsulated
liquid to within the accepted standard highlights the inweb capabilities of the
NMPC to reject the incoming Metal Temperature disturbance.

In the case of a Die Open Time disturbance, the results piexbém Figure
6.3d highlight the faster response of the closed loop psotmedrop the area within
the accepted standard. In this case, the Die Closed Timeguré-i6.3c does not
saturate as in the last case, but rather varies both beforafter the Die Open
Time disturbances and the Cooling Duration exhibits a largege of variation of
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-5sto5s. The sum of area of encapsulated liquid decrease4 8y in the closed
loop process with a value of 81.6 émompared to the open loop case of 90.Fcm
The good casting ratio increases from 9.7 % in open loop # %8in closed loop,
as shown in Table 6.1.

For the worst case scenario, where both the incoming Metapéeature and
the Die Open Time disturbances are concurrent, the closgddgnamic response
of the virtual process is still better than the open loop oasg, as shown in Figure
6.4. The Die Closed Time and Cooling Duration exhibit morgatens over the
sudden drop of Metal Temperature disturbance and suddansmof the Die Open
Time disturbance. The total area of encapsulated liquigkdsiced 7.0 % from
103.7 cn? in the open loop to 97.5 cfrin the closed loop, and good casting ratio
goes up from 12.9 % in open loop to 19.4 % in the closed loo(itef Table 6.1).
Note that worst case disturbance scenario is not the wargidod casting ratio.
The reason is when the process is in the open loop under dietimpe disturbance
scenario, the area at many cycles, shown in Figure 6.3c,riswig above the
threshold, hence decreasing good casting ratio to the mmim

Overall, the performance of the virtual process duringedbl®op operation is
better than in the open loop for all three disturbance séemavhen started from
steady state operation (150s, 10s). In terms of the two atiatu metrics, the
closed loop process exhibits a lower total area and a higheal gasting ratio than
the open loop process ( refer to Table 6.1). It should be nibiceven though the
analysis was started from steady state, based on a Die Clasexof 150s and
the Cooling Duration of 10s, which is close to the static ojali state, total area of
encapsulated liquid was reduced by 6%0% in the three disturbance scenarios.
If the starting point is set far away from the optimal steai@dyes a higher reduction
rate is expected, as will be shown in the following subsectio

6.2.2 Steady State Operation (130s, 30s)

The performance of the NMPC in rejecting the three distucbastenarios when
starting from a steady state point that is far from the optiptént was assessed
in a similar manner to the previous section. In this casesthging steady state
condition was based on a Die Closed Time equal to 130s and inGdauration
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equal to 30s. Figures 6.5 to 6.7 present the results for tiferelt disturbance
scenarios and Table 6.2 summarizes the sum of area of efeigostiquid and

good casting ratio between open loop and closed loop sifongat The relative

values of the starting point are (-20 s, 20 s) compared to &éisellme condition of

(150 s, 10 s). Thus, the initial values of the control vaeabh Figures 6.5¢ 10 6.7¢
start with (-20 s, 20 s).

Table 6.2: Comparison of Sum of Area and Good Casting Ratio between
Open Loop and Closed Loop Simulations with initial Steadst&Oper-
ation (130s, 30s) under Different Disturbance Scenarios.

Disturbance Sum of Area(crf) Good Casting Ratio(%)

Scenario Open loop| Closed loop| Reduction rate (%) Open loop| Closed loop
Metal Temperature  216.2 119.6 45.0 194 77.4
Die Open Time 210.4 113.3 46.1 6.5 77.4
Worst Case 239.6 137.8 42.5 16.1 74.2
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The results presented in Figure 6.5 show the closed loop ped op re-
sponse of the virtual process during the ramping incominggMEemperature dis-
turbance. The control variables change rapidly as the mowart the optimal
operating point in the process at the beginning of the sanahen the Cooling
Duration reduces gradually to approximately -5s where @il to change as a
function of the disturbance. The closed loop process raefgpamuch faster to in-
coming Metal Temperature disturbance than the open loopepsy as shown in
Figure6.5d where the closed loop only takes 6 cycl&$ {8 9" to respond to
the the  drop in incoming Metal Temperature by driving the area ofsgrstlated
liquid below the threshold and the open loop consumed 14sy@ to 17"). The
performance improvement of closed loop operation over dpemis summarized
in Table 6.2. The NMPC controller decreases the total amra #16.2 cr in the
open loop case to 119.6 énn the closed loop case i.e. a.8%6 reduction; and
the good casting ratio increases from 19.4 % in the open lasp to 77.4 % in
the closed loop case. The good casting ratio is significdrigjiier for the closed
loop operation because the reference area of encapsutaiat Wwhich defines the
threshold, is larger for the non-optimal steady stateigtadondition.

The results of for the Die Open Time disturbance scenarie eas presented
in Figure 6.6. In this case, the changes in the control veesabause the area of
encapsulated liquid to decrease below the threshold detospd loop operation
after the 9" cycle and remain their except for one cycle after tAgighpulse in
Die Open Time. This superior performance compared to the tum operation
is further demonstrated in Tahle 5.2, which shows that tted tvea decreases by
46.1% in the closed loop process and the good casting ratiodeertefrom 6.5 %
in the open loop to 77.4 % in the closed loop.

In the worst case disturbance scenario, the closed loopnaign@sponse of
the area of encapsulated liquid continues to be better timopen loop response
(refer to Figure 6.7d). The area of encapsulated liquiddseed by approximately
42.5% in closed loop compared to open loop, and the good casttimrises from
16.1 % in the open loop to 74.2 % in the closed loop (refer tdelLL).
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6.2.3 Discussion and Conclusion

As shown in Tables 6.1 and 6.2, the MPC controller is capablejecting typi-
cal disturbances starting from a variety of steady stateliions. The total area
of encapsulated liquid was reduced between40% compared to the open loop
operation. Also, the good casting ratio increased in theezldoop compared to
the open loop. The level of reduction in the area of encapsdilbquid and the
increase in the good casting ratio are affected by the chufithe steady state
operating point from which the closed loop and open loop @secstarts. Further
away from the optimal operational condition for the chostmting steady state
leads to the more improvement in the closed loop performaridgs is mainly
caused by the poorer open loop response that results frosutimptimal steady
state condition relative to the performance of the closeg lprocess which gets
better as it moves toward the optimal operation conditiomnsiering that the
area of encapsulated liquid is reduced and good castirmisaticreased under all
disturbance scenarios for both starting steady state tiger@onditions, indicates
that the closed loop performance is substantially bettar tpen loop performance
under any disturbance scenario when the process startsteaty state.

It is important to note that regardless of the steady statdition that the anal-
ysis was started from, the control variables are driven éodptimal operational
condition for the virtual process. To highlight this capiitwo additional cases
were considered with the NMPC closed loop virtual proceadiay with steady
state operating points of (140 s, 0 s) and (160 s, 30 s). Cadbivith the ini-
tial cases, the four worst case scenario results from fotar wéh different initial
steady state were analyzed to assess the evolution of threloaariables, as shown
in Figure 6.8. The traces of the control variables for the fases are nearly over-
lapped during the last stages of the scenario (from abdlltc3@le to the end).
This response illustrates two of the inherent benefits ofyamp NMPC. One is
the automated search for the optimal operational condibprcontroller during
both dynamic or static process operation, the other is iga¢ffects from different
starting steady state on the traces searching for the dptipesiational condition
decay over with increasing cycles.
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Figure 6.8: NMPC Control Variables’ Traces with Different Initial Stha
States on the Virtual Process under Worst Case Disturbaremago.

6.3 NMPC During Process Start-Up

The casting process start-up is a significant transienttevbith occurs during

each campaign. Following a preheating operation where ithendy be heated
in an oven or with burners, casting is started often with stamdard operational
parameters including longer die closed times and littlenar cooling for preset
number of cycles. The ability of a casting process to quickhyproach steady
state conditions or to begin producing acceptable casis\gaportant. The use
of NMPC to vary the process conditions during the start-upopemay reduce
its duration and result in more good castings. To assessetiermance of the
NMPC controller during start-up, two preset operating ®iof (160 s, 0 s) and
(130 s, 30 s) were selected to apply initially during thetstigr In these cases,
the virtual process was started with a uniform initial dimperature of 400C in
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the first cycle. In order to generate the required process tastart the NMPC
controller, the first two cycles were run with the preset aienal conditions prior
to enabling the controller. In this analysis, either noufisance scenario or the
worst case disturbance scenario were applied to the clasgadnd open loop
virtual process. Since the virtual process has not reactesdlys state when the
controller is activated, the initial value of the state wect in the Equation (4.9)
is difficult to predict. For the cases presented here, th@lnialues ofxy have
been seky = 0 with the expectation that the controller will determine tiptimal
condition regardless of the starting point.

The figures in each of the following subsections have the sstmetures as
those presented in the previous section 6.2. Each figuraiosrsubfigures (a) to
(d). Figure (a) and (b) displays the two disturbance vagislpplied to the virtual
process respectively. Figure (c) displays the changeset@dhntrol variables in
the closed loop with the relative values compared to (1500ss)1 and Figure
(d) compares the area of liquid encapsulation during cldsed and open loop
operation.

6.3.1 Start-up With Initial Operating Point of (160 s, 0 s)

The performance of the controller during start-up with @itino disturbance or
worst case disturbance scenario was assessed with thal yirtecess for the closed
loop and open loop operation. The preset operating poini@fdbsed Time equal
to 160 s and Cooling Duration equal to 0 s was used for theseagos. This
operational condition is represents (10 s, -10 s) relatvibé baseline operational
condition of (150 s, 10 s). Figures 6.9 and 6.10 show the tefui no disturbance
and worst case disturbance scenarios, respectively. Babkummarizes the total
area of encapsulated liquid and the good casting ratio fenamd closed loop
start-up of the virtual process for both disturbance sdesar
Figure 6.9 shows the closed loop and open loop performanite @frtual pro-

cess without disturbances. The closed loop process takes @bycles to reach the
area threshold and 9 cycles to reach the optimal steadyagiatational condition.
For this analysis, the area threshold has been set equa toeh of encapsulated
liquid that occurs during baseline operation (150 s, 10 $e dpen loop process
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requires 14 cycles to reach steady state operation andgheraeshold. The faster
response of the closed loop process relative to the opendomess results in a
reduced total area of encapsulated liquid (33.6 %) and aeased good casting
ratio of 80.7 % (refer to Table 6.3). The closed loop procéss exhibits similar

improved performance relative to the open loop processh®mtorst case distur-
bance scenario, as shown in Figure 6.10. In this case, tisedllmop response
requires 8 cycles to reach the area threshold compared tgc&sdor the open

loop to reach the threshold. Unlike the no disturbance dhgegontrol variables
vary from cycle-to-cylce during the worst case disturbaswenario.

Table 6.3: Comparison of Sum of Area and Good Casting Ratio between
Open Loop and Closed Loop Simulations with Start-up Opengtl60s,
0s) under Both no Disturbance and worst case Disturbanaea8oe

Disturbance Sum of Area (crf) Good Casting Ratio (%

Scenario Open loop| Closed loop| Reduction rate (%) Open loop| Closed loop
No Disturbance| 262.4 174.2 33.6 38.7 80.7
Worst Case 312.7 210.8 32.6 9.7 67.7
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6.3.2 Start-up With Initial Operating Point of (130 s, 30 s)

The performance of the controller during start-up for aedtéht initial operational
condition (130 s, 30 s) was assessed with no disturbancethandorst case dis-
turbance scenario. This initial operational conditionepresented as (-20 s, 20 s)
relative to the baseline of (150 s,10 s). Figures 6.11. arglghtw the results for no
disturbance and the worst case disturbance scenariocteghe Table 6.4 sum-
marizes the total area of encapsulated liquid and the gosiihgaratio between
open loop and closed loop simulations with a start-up camdiof (130 s, 30 S)
under both no disturbance and worst case disturbance sr®nar

Table 6.4: Comparison of Sum of Area and Good Casting Ratio between
Open Loop and Closed Loop Simulations with Start-up Opengtl30s,
30s) under Both no Disturbance and Worst Case Disturbaneea8o.

Disturbance Sum of Area (crf) Good Casting Ratio (%

Scenario Open loop| Closed loop| Reduction rate (%) Open loop| Closed loop
No Disturbance| 258.2 174.0 32.6 64.5 74.2
Worst Case 310.2 214.0 30.7 0 58.1
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The results of the closed loop and open loop assessment vifrthal process
performance without disturbances and starting with ihdtanditions of (130s,30s)
is shown in Figure 6.11. Compared to the 12 cycles requiretidppen loop pro-
cess, the closed loop process spends 9 cycles from stantrepch the threshold.
This improvement is relatively small compared to the presigtarting condition
examined. This trend is also observed in the good casting, iimmarized in
Table 6.4, where the good casting ratio is 64 % and 74 % for @mehclosed
loop operation, respectively. When considering start+ugh the worst case distur-
bance, the closed loop process shows much better perfoentlaaic the open loop
process, as shown in Figure 6.12. In this case, it take 1®sgyhiring closed loop
operation to reach the threshold from start-up, wheredaaglopen loop operation,
the area of encapsulated liquid never falls below the tliestiuring the start-up
/ disturbance scenario. For the worst case disturbanceasocethe total area of
encapsulated liquid is reduced by 30.7 % and the good casttimis 58.6 % for
the closed loop and 0 for the open loop.

6.3.3 Discussion and Conclusion

The two start-up conditions examined show similar behavioterms of the ben-
efits of closed loop operation for total area reduction. Fahlithe no disturbance
and the worst case disturbance scenarios, the total areaasulated liquid is re-
duced about 30% for the closed loop operation and the godithgaatio is always
larger for the closed loop operation. Thus, based on thesgcsjeoperating the
virtual process with NMPC leads to better performance coethto the open loop
operation during start-up while experiencing typical dibances.

When no disturbances are applied, the control variableleofirtual process
are gradually driven by the NMPC toward the optimal steadiesbperating point.
When the worst case disturbance scenario is applied, theoteariables continue
to varying each cycle, and the optimal steady state opgratint is not achieved.
In all start-up cases examined, the NMPC improves the dparatf the virtual pro-
cess resulting in a reduced number of cycles to reach thefmeshold compared
to the open loop.

The uncertainty in settingp in the Equation (4.9) did not affect the NMPC
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performance partly because its effect on the virtual pbtes been compensated
for with the constant output disturbance observer, andyplagcause the influence
of this initial componenkg on the results decays with increasing cycles.

6.4 Comparison between Nonlinear MPC and Linear
MPC

In most control methodologies, a linear model is used forathalysis and design
of a control algorithm. Linear model predictive control Haeen a popular con-
trol methodology since the 1970s and consequently, lineRCNheory is quite
mature. Important issues such as online computation, teepiay between mod-
elling/identification and control, and stability are wetldeessed [98—100]. How-
ever, many systems are inherently nonlinear and are notdesdribed using linear
models. Nonlinear predictive control, the extension oflwstablished linear pre-
dictive control to nonlinear systems, appears to be a wékdwpproach for the
current problem. In this section, the advantage of appliMPC to the nonlin-
ear virtual process will be assessed by comparing the pesfioce of the virtual
process under both NMPC and LMPC.

Following the same procedure used to develop the nonlinda€ Kontroller,
a linear MPC controller was developed based on a linear-statee model with a
linear static gain function. The procedure applied is deVid,

e p,q are set equal to (2,2) in Equation (4.2), which can be redga to
11 .
Z(ap, &) = 6 a &
22
= 6Boo+6orax+6pa+Biaa (6.1)
e Let 61, =0, then Equation (6.1) is simplified to
Z(a1,a2) = Bpo+ Bor @+ Brp a1 (6.2)

Note that Equation (6.2) is the linear expression of thetion for the two
independent variables anda,.
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e The coefficientfy; and 6, can then be computed using the least-squares
method by comparing predicted and virtual process data.

Figure 6.13 compares the relative change in Maximum Die Estyse using
the linear fitting function Z with data generated from thetwat process at a se-
lected die location across the process operational range. 2D contour of the
predicted data shows that the linear response surface doasatch the variability
exhibited by the virtual process response surface. Thadirtear function Z does
not accurately capture the nonlinear static gain of theiairprocess.
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Figure 6.13: 2D Contours of Maximum Temperature for both Linear Static
Gain Predicted by Equation (6.2) and Virtual Process Stestdye
Data over the Operational Range at a Random Die Location.

The linear state-space model was implemented within the NtB@ework
developed in this research and was used to control the vptaeess experiencing
the worst case disturbance scenario. Initial operationatitions of (150 s, 10
s) and (130 s, 30 s), selected for the same reason descrit&etiion 6.2, were
assessed. The performance of LMPC applied to the virtualgsois compared
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with the NMPC results in Figures 6.14 and 6€.15 for initialestg state conditions
of (150 s, 10 s) and (130 s, 30 s), respectively. Table 6.5 sanmps the total area
of encapsulated liquid and good casting ratio for LMPC andR@\Vi

Table 6.5: Comparison of Sum of Area and Good Casting Ratio between
LMPC and NMPC Simulations under Worst Case Disturbance &ten

Initial Sum of Area(crf) Good Casting Ratio(%
Steady State LMPC | NMPC | Reduction rate (%) LMPC NMPC
(150s,10s) | 171.7 | 97.5 43.2 3.2 194
(130s,30s) | 205.6 | 137.8 33.0 48.4 74.2
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The results in Figure 6.14 compare the LMPC and NMPC perfooaaluring
the worst case disturbance scenario starting from anlistgéady state condition of
(150 s, 10 s). NMPC results in a reduced number of cycles tieeelthe threshold
area compared to LMPC. The NMPC results in cycle-to-cyct@tian of the con-
trol variables throughout the scenario, whereas the covairiables computed by
LMPC, shown in Figure 6.14a and 6.14b, follow an initial s&mt until they sat-
urate at the hard constraints where they remain unchangethiaining cycles. As
a result, the virtual process controlled by LMPC does nothighe area threshold
during the disturbance scenario.

The results in Figure 6.15 present LMPC and NMPC performahcing the
worst case disturbance scenario starting from an initeddy state condition of
(130s,30s). In this case, the area threshold associatbdheitsteady state condi-
tion of (130 s, 30 s) is higher than the previous case becdss 30s) is further
away from the optimal steady state than (150 s, 10 s). Coesdgu both the
NMPC and LMPC controlled virtual process are able to drive phocess below
the area threshold for a large portion of the disturbanceasa® cycles generating
higher good casting ratios than previous case. The NMP®madnce for this
case also exhibits a faster dynamic response than the LMR&Ccdntrol variables
computed in LMPC show similar trajectories the previousoakere they remain
unchanged after reaching the hard constraints.

The improved performance of NMPC over LMPC for controllirig tvirtual
process under worst case disturbance scenario is sumaharizeble 6.5. When
the process starts from a steady state operating point 6§(18s), NMPC reduces
the area of encapsulated liquid by 43.2 % relative to the LMR® of 171.7 cfh
The good casting ratio for NMPC is also larger than that usM&C. For an initial
steady state operating point of (130 s, 30 s), the total dreaaapsulated liquid
is reduced by 33.0 % when NMPC is used and the good castirgisaii4.2 %
for NMPC versus 48.4 % for LMPC. Based on these two evaluatietrics, the
virtual process controlled using NMPC exhibits better parfance than LMPC.

As linear static gain presented in the linear model does cmirately capture
the nonlinear static gain of the virtual process, the modetduracy thus greatly
affects the performance of LMPC on the virtual process. THwa data and anal-
ysis suffice to hold one point - the virtual process does recainon-linear control

159



solution to minimize macro-porosity during the processrapen.

6.5 Robustness of the Control Solution

A control system is robust if it is insensitive to differesdeetween the actual sys-
tem and the model of the system which was used to design theotten These
differences are referred to as model/process mismatchnglysiprocess uncer-
tainty [101]. The sensitivity of the control system to urteerty in the process
is often used as a means of assessing robustness. In terrstafl system per-
formance, it is preferred that the control solution exhiiceful degradation of
performance in the presence of process uncertainty orbitirja

Since the removal of heat from the casting determines thdifscdtion se-
guence, two factors that affect heat transfer in the die baem selected to asses
the robustness of the control solution. The selected pdeamare the heat transfer
coefficient(s) 1) along the die-casting interface and the heat transfefficimaft
(hp) in Cooling Channel 1. As noted, these heat transfer coeffisioften vary in
the industrial environment due to die coating thicknessatians or water pres-
sure variations, respectively. Thus, it is important toenstand how sensitive the
control solution is to uncertainty in these parameters. Stbady state operational
point for Die Closed Time and Cooling Duration equal to 13(hd 80 s, respec-
tively was selected as the initial condition for the analyd8oth closed and open
loop simulations were conducted fby andh, varied by+25% and+10% from
their baseline values described in chapter 2. The worstdisserbance scenario
was used to evaluated the process response to each of tlaeggesh

Figures 6.16 to 6.1.7 show the closed loop and open loop respaf the virtual
process to the variation ¢, while Figures 6.18 to 6.19 show the closed loop and
open loop responses of the virtual process to the variafibp.drables 6.5 and 6.7
summarize the total area of encapsulated liquid and the gastihg ratio for open
and closed loop simulations with varyitg andh,, respectively.
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Figure 6.16: The Responses of the Closed Loop Control Variables of (a) Die
Closed Time and (b) Cooling Duration and (c) the Area of Encap
sulated Liquid to Variation irh; under the Worst Case Disturbance
Scenario with Steady State Operation (130s,30s).
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Table 6.6: Comparison of the Total Area and Good Casting Ratio between
Open Loop and Closed Loop Simulations for Variatiorhinwith Initial
Steady State Operation (130s, 30s) under the Worst Caserliasice
Scenario.

h; varying range —25% | —10% 0 +10% | +25%
Sum of
Closed| Area(cnf)
loop | Good casting
ratio(%o)
Sum of
Open | Area(cn?)
loop | Good casting
ratio(%)

197.18| 158.66| 137.80| 120.90| 129.10

54.84 | 63.52 | 74.20 | 83.87 | 80.65

299.76| 262.63| 239.60| 217.22| 186.00

3.23 3.23 16.1 | 25.81 | 54.84
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Table 6.7: Comparison of the Total Area and Good Casting Ratio betwesn t
Open Loop and Closed Loop Simulations for Variatiorhjrwith Initial
Steady State Operation (130s, 30s) under the Worst Caserliasice
Scenario.

h; varying range —25% | —10% 0 +10% | +25%
Sum of
Closed| Area(cnf)
loop | Good casting
ratio(%o)
Sum of
Open | Area(cnt)
loop | Good casting
ratio(%6)

135.28| 136.61| 137.80| 139.75| 142.73

7419 | 74.19 | 74.20 | 77.42 | 77.42

214.35| 230.62| 239.60| 246.29| 254.23

2581 | 16.13 | 16.10 | 9.68 | 12.90
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Figures 6.16 and 6.17 show the closed and open loop respohties virtual
process to variations ih;. Whenh; is varied, the closed loop responses of both
control variables, Die Closed Time and Cooling Duratiom, iaitially unchanged
from the baseline. This insensitivity occurs as the colgrglushes the processes
towards its optimal operation condition (near 150 s, 10 s3.tl#e process nears
its optimal operational conditions, the control varial#eponses show sensitivity
corresponding to the direction of variationtaf Generally, for increasinky; which
corresponds to improved heat transfer from the castingetdith, Die Closed Time
decreases as the less time is required to cool the castingCaolihg Duration
increases. For decreasitg, Die Closed Time increases and Cooling Duration
decreases until it reaches the constraints. The area adl lepcapsulation during
closed loop operation increases initially due to the disince scenario, but then
decrease below the threshold in all cases, as shown in F&lée, because the
controller drives the process towards its optimal operatioint.

It is interesting to note that with increaség, the open loop response of the
process shows decreased sum of area of liquid encapsutatibimcreased good
casting ratio. This suggests that the baseline behaviotieoprocess could be
improved by enhancing interfacial heat transfer. For daotondition, the closed
loop response is better than open loop, as shown in 6.6. Bsedaloop responses
present constant improvement with increasmgip to the+25% condition. This
discrepancy is caused by the control variable responsewepipears to be incon-
sistent with the baseline response, as shown in Figure Gid&.16D.

The open and closed loop response show little sensitivityat@tions inh,.

In fact, both control variables (Die Closed Time and Coolingration) match the
baseline throughout the scenario, as shown in Figure 6.48%6d8b. The en-
capsulated liquid areas show small deviations from thelin@stor during closed
loop operation and small variations during open loop ojpamafrefer to Figure
6.18¢ and 6.19). During open loop operation, increasingauses increased lig-
uid encapsulation. The effects bf, further summarized in Table 6.7, are clearly
minimal.

Although the control variable responses and the area ofpsatated liquid
appear to be insensitive to variationshiy the temperatures at the 9 locations in
the die (refer to Figure 4.1) monitored during process dpmraexhibit varying
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degrees of sensitivity. The sensitivity to chan@est each location is dependent
on the distance of the location to Cooling Channel 1. To erarttiese effects, the
maximum die temperatures at 2 of the 9 locations (the clamastfarthest away
form Cooling Channel 1) has been plotted in Figure 6.20 fdh lotbosed and open
loop conditions while varyindp,. For the die location closest to Cooling Channel
1, the maximum die temperature varies ©y20— 30°C relative to the baseline
response. The temperature variation at the location fetrfihem Cooling Chan-
nel 1 shows nearly no change Q— 2°C) during the entire disturbance scenario.
Overall, the open loop response at each location, correlépgrio a 30 s cooling
duration, shows larger variations than the closed looporesgp as the NPMC con-
troller decreases the cooling duration to approach thengbtprocess condition.

6.6 Summary and Conclusion

In this chapter, the NMPC controller was applied to conth@ virtual process
through a variety of disturbance scenarios and with diffesarting conditions.
Starting from either a steady state or start-up operatioonatition, the NMPC
exhibits superior performance over the open loop operdtioall conditions. Fur-
ther, it demonstrated an ability to automatically adjusttoal variables from cycle
to cycle to drive the closed loop process towards the optityaamic or static op-
erating point. This automatic adjustment is significantsiim practice the optimal
operational condition will vary depending on the state @f pinocess. NMPC also
shows significantly improved performance compared to LMP& robustness of
the control solution was assessed by evaluating its séhsith changes in the die-
casting interfacial heat transfer and cooling intensityCiwoling Channel 1. The
closed and open loop responses were sensitive to the vasati the interfacial
heat transfer and insensitive to variations in the coolimigrisity of Cooling Chan-
nel 1. In all cases, NMPC was shown to perform better than dpem and to
consistently seek the optimal operation condition.
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Chapter 7

Conclusions

The objective of this research program was to develop amagwebcontrol solution
for a low pressure die casting process to compensate foethetine effects of pro-
cess disturbances and to drive the process towards itsagiperational condition
based on minimizing macro-porosity in the casting. In thespit of this objective,
a 3D FE model of a LPDC demonstration casting, which was malgadesigned
with a high propensity to form macro-porosity, was devetbpsing ABAQUS
and validated with experimental data. This process modadipis temperature
distribution within the casting and die during a castingleyehich is then used to
determine the volume of encapsulated liquid via a post#arogning script. A Perl
language wrapper script has been developed to transforprdlsess model into a
virtual process in which the communications and functidyalf an industrial pro-
cess are emulated. The virtual process was used as a pldtfodaveloping and
testing an advanced process control solution. By devajppimd evaluating the
control solution offline from the industrial process, theenses associated with
the extensive plant trials necessary to develop such ansysia be avoided.

A methodology has been developed to analyze the correladtween die tem-
peratures and the volume of encapsulated liquid over theatipeal range for a
particular die location. The metrics for evaluating theretation, defined as the
Correlation Index (Cl) and the Standard Deviation (STD)haf torrelations, have
been developed. Calculating these metrics at each locatithre die enabled the
determination of the optimal location to monitor die tengtare for correlation to
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liquid encapsulation in the casting. Using this methodglafaracteristic temper-
atures within each casting cycle were evaluated and therivlaxiDie Temperature
was observed to be a good indicator of the volume of encaesliliguid occurring
in the casting. The method for correlating die temperattodigiuid encapsulation
and its application to assess die locations is a new and Baptazontribution from
this research. A linear regression (LR) expression hastesa developed to pre-
dict the amount of encapsulated liquid based on the Maximigi"TBmperatures at
selected locations. The combined use of the Cl and LR metbibeis a means of
selecting and assessing locations to monitor dies andsemi®a major advance-
ment over the traditional trial-and-error approach redylased in industry.

To reduce simulation time, a 2D-axisymmetric version of3Berocess model,
was developed and used for the system identification (SIhefvirtual process.
Using the input-output data from open loop simulations atesspace model with
linear dynamics and nonlinear static gain was identifiede $tate-space model
was shown to accurately predict the temperature responge afie to a range of
varying process inputs. A LR expression was also fit to pteiiie area of en-
capsulated liquid based on the Maximum Die Temperatureslatted locations.
The combination of the state-space model to predict die ¢eatpres and the LR
expression to convert these temperatures to a measure lifufteencapsulation
provides a direct link between process inputs and the arkquid encapsulation.
This nonlinear Sl approach linking a measure of castingityui@ process inputs
is a novel and easy to understand contribution from thisarebe

A nonlinear model-based predictive controller (NMPC) waseloped for use
in controlling an operational LPDC process. A cost functicontaining two
weighting terms for the predicted area of liquid encapsutaind the Die Closed
Time respectively, was included in the NMPC consistent whithcontrol goals of
improving casting quality and increasing production raf@e tuning parameters
associated with the cost function such as prediction hortzg and control hori-
zonH, were adjusted to optimize the closed loop performance. THM@® was
intentionally designed to mitigate the negative effectgasfations in the Incoming
Metal Temperature and Die Open Time on the process.

The performance of the NMPC developed in this research waesasd with
the virtual process. The results of the control solutiondwat#ons highlighted that,
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under any disturbance scenario, starting from either gtetade or start-up within
the operational range considered, the NMPC was able to atiatly adjust the
control variables, driving the process towards optimalaiygit or static operating
points. The automatic adjustment exhibited by this contnethod is important
as the system’s ideal operating point may not be known aiptiothis research,
NMPC was shown to be necessary and to provide improved peafoce compared
to linear MPC. The robustness of the control solution waessed by conducting
a sensitivity analysis on the response of the NMPC to variatin the die-casting
interfacial heat transfer coefficient and the heat transbefficient applied in the
cooling channel. Overall, the controlled process was shovire sensitive to vari-
ations in the interfacial heat transfer, but insensitiveltanges to the heat transfer
in the cooling channel.

This research provides a complete and reliable solutiorthierdevelopment
of an advanced control method for Low Pressure Die Castimgindmize macro-
porosity in a casting by driving the process towards itsroptioperational condi-
tions. The solution provides all of the necessary toolsireduo design a control
methodology offline, from the development of a validated F&del, correlation
analysis and determination of optimal die locations, madr system identification
linked to the LR expression of encapsulated liquid, cofdrdiuning and closed
loop performance evaluation. This closed loop solutiontb@n be applied to the
real casting process to present better performance thap#reloop.

Recommendations for Future Work

The next logical step for this research is the applicatiorthef methodology to
develop a control solution for an operational low pressugecdsting process. This
could be done in a phased approach where initially the cosystem would run in
an advisory mode in parallel with the traditional open logptem to provide the
operator with calculated control variable changes. Fadlligvsatisfactory evalua-
tion in this mode, the next step would be to close the loop atahaatically change
the control variables without operator intervention. Tffeats of operational fail-
ures in the industrial environment on the controller shdwddassessed. For in-
stance, the malfunction or termination of a control therougite signal would have
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a negative effect on the performance of the control solutidasuming the mal-
function of a thermocouple can be determined, it may be pless$d develop a
solution to mitigate the loss of thermocouples.

In this research, the correlation metrics and a LR exprassa&re used to iden-
tify and quantify the volume of macro-porosity formed dgricasting based on die
temperature. This analysis approach may be extended /eatiaptuantitatively
identify other defects such as micro-porosity using diegeratures and other pro-
cess parameters that can be obtained by sensors. The deealopf such an ex-
pression would then enable its use in a control solution timize micro-porosity.

In addition to low pressure die casting, the same basic frarie could be
applied to any other cyclic casting processes which can bdetieal using FEM
simulation software such as ABAQUS or any other high-figietitodels. To en-
able the application of the methodology developed in théselitation to other pro-
cesses, some effort should be spent on determining andimgdihe® number of
model runs required. In this work, no consideration was myiteethe number of
cycles simulated, but to save controller development ¢abigrtening simulation
time and simplifying procedures of developing a contrafieould be considered.
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Appendix A

Virtual Process Code

A.1 Perl Script

#1/usr/bin/perl

use processtagexrefine2D;
use processfiles2D;

use File::Copy;

use File::Path;

use File::Glob;

my $ENDTIMESTEPTIME =0.1;$STEP3=130;$STEP5=30;
my $OPENTIME=50;$OPENTIMESTEPTIME=2;
my $CASTTEMP=700;$DIETEMP=400;

my $HCOEFFICIENT=50;

my $HCVARIABLE=0;

my $PERLMARK=0;

my $MARK1=0;

my $DC11=0;$DC12=0;

my $DC21=301;$DC22=300;

my $DC31=301;$DC32=300;

my $DC41=301;$DC42=300;

($ncycle , $startcyclenum)=@ARGV;
#———Create Directories to store the Log file and Data Files
print "Creating Data Directories\n”;

mkpath (”/tmp/MPCOctCase215inletT/ output”);
mkpath ("/data2/xinmei/MPCOctCase215inletT");
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#———simpath is where to copy the ABAQUS model and simulate.
#datapath is where the simulation definition files are.
$simpath="/tmp/MPCOctCase215inletT/";
$datapath="/data/xinmei/test/”;

#————Change the directory to the specified data path
chdir ($datapath);

#0Open a New Log file

open (CYCLOG, ">cycleMPCOctCase215inletT.log");

open (DATAGET, ">DATAMPCOctCase215inletT .log");

print DATAGET "num,9 pvs,dieclosetime ,dcl-Td, metaltemperature ,dieopentime ,volumemin,
volumemax, starttime , endtime , totalsolidtime\n";

#Copy the model files to the simpath
print "Copying Model Files\n";
@modelfiles = glob (’model2Dof3DJune2bottom /x* ");
foreach (@modelfiles) {
print CYCLOG "$_\n";

copy("$.","$simpath™”);
copy (" $datapath/testl”,” $simpath™);

#All the work is now done in the simpath
chdir ($simpath);

#———Start Cycling through the Simulation
for (my $i = $startcyclenum; $i <= $ncycle; $i++) {
Print CYCLOG "sskskskskskskskoksksksskokskkskstsskok \ N7
print CYCLOG " Start casting cycle #$i of $ncycle\n";
print ”Start casting cycle #$i of $ncycle\n”;

3+

additional 5 step variables setting
($STEP3,$STEP5,$DC11)=(140,10,20); # die closetimel, die closetime2, DCI-Ts.
# ——— ufl,uf2 setting
if  ($i == 11){
$OPENTIME=50+30;
Yelsif ($i == 20){
$OPENTIME=50+20;

telse{
$OPENTIME=50;

it ($i <= 3){
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$CASTTEMP=700;
Yelsif ($i <= 19){
$CASTTEMP=680+($i —4)*2;
Yelsif ($i <= 31){
$SCASTTEMP=680+($i —20)%2;
telse{
$CASTTEMP=700;

#———get parameters from different input files
#-—Get Simulation Mode Parameters
@SIMULATIONMODE = getfileparams (" $datapath/input/simulationmode.input”, $i);

#———Get Setpoints
my @SETPOINTS = getfileparams (”$datapath/input/setpoints9.input”, $i);

#———extract last step number and increment number from previous.sta
$signaltemp2=generatetempdef();

#———Get Process Variables and choke volume
@PROCESSVARS=getprocessvars();
@volume=getchokevolume ();

#———Get Control Variables
@CONTROLVARS = getfileparams (" $datapath/input/controlvariables .input”, $i);

#———Get Feedforward Variables
my @FEEDFORWARDS;
$FEEDFORWARDS[ 0] =$CASTTEMP—700;
$FEEDFORWARDS][ 1] =$OPENTIME—50;

my @PROCESSVARSI=@PROCESSVARS[1,2,3,4,5,6,7,8,9];
#———Writes the variables to the communication file .
writetocommfile ($i, $datapath,\@SIMULATIONMODE, \@PROCESSVARSL, \@SETPOINTS,
\@CONTROLVARS, \@FEEDFORWARDS);

print CYCLOG "the results from getpvs\n”;

print CYCLOG "$PROCESSVARS[1],$PROCESSVARS[2] ,$PROCESSVARS[3] ,$PROCESSVARS[4]\n";
print CYCLOG "$PROCESSVARS[5] ,$PROCESSVARS[6] ,$PROCESSVARS[7] ,$PROCESSVARS [8]

$PROCESSVARS[9]\n";
print CYCLOG "$PROCESSVARS[10],$PROCESSVARS[11],$PROCESSVARS[12]\n";
print CYCLOG "the results from choke\n";
print CYCLOG "$volume[1],$volume[2],$volume[3], $volume[4],$volume[5]\n";

print CYCLOG "the results from simulationmode , setpoint,controlvars ,feedforward\n";

print CYCLOG "@SIMULATIONMODE\n";
print CYCLOG "@SETPOINTS\n";
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print CYCLOG "@CONTROLVARS\n";
print CYCLOG "$FEEDFORWARDS[0] ,$FEEDFORWARDS[1]\n";

#——Read the CV’'s from the controller if it is closed loop
if ($SIMULATIONMODE[O] eq "1") {
@CONTROLVARS = getcontrolvars();
print CYCLOG "getcontrolvars:\n”;
print CYCLOG "@CONTROLVARS\n";

}

#——Writes the variables to their respective output files.
writetooutputfiles ($i, $datapath, \@SIMULATIONMODE, \@PROCESSVARS, \@SETPOINTS,
\@CONTROLVARS, \@FEEDFORWARDS, \@DISTURBANCE);

#—————#Process the Tag File
#——9$DC12 is DCI-Td; $DC31 is DC3-Ts; $DC32 is DC3-Td.

$STEP3=@CONTROLVARS[0]+150;
$DC12=@CONTROLVARS[1]+20+10;

my $return= &compileinputfile($i ,$CASTTEMP,$DIETEMP,$STEP3,$STEP5, $OPENTIME,
$OPENTIMESTEPTIME, $ENDTIMESTEPTIME ) ;
my $returnl= &compilemainfile ($DC11,$DC12,$DC21,$DC22,$DC31,$DC32,$DC41,$DC42);

#———Run the Abaqus simulation
$abaout="‘/opt/abaqus/64 bit/Commands/abq675 j=sim inp=cycle user=main interactive ‘;

#——=Save the .fil and .sta files for starting up the next simulation cycle
copy(”"sim. fil”,”previous. fil ");

copy(”sim.sta”,” previous.sta”");

#Save the .fil and .odb files as our data files
‘gzip sim. fil *;
copy(”sim. fil .gz
‘gzip sim.odb‘;
copy("sim.odb.gz"” ,”output/cycle_$i.odb.gz");
‘gzip sim.sta‘;
copy("sim.sta.gz”,”output/cycle_$i.sta.gz");

output/cycle_$i. fil.gz");

#Delete all of the files from the simulation that we don’t need anymore
unlink(<sim.*>);

ES

print CYCLOG $abaout;
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print CYCLOG "Complete casting cycle #$i of $ncycle\n";

print CYCLOG "skskssksokskok skt \ N\ N

print DATAGET "$i ,$PROCESSVARS[1] ,$PROCESSVARS[2] , $PROCESSVARS [3] ,$PROCESSVARS [4] ,
$PROCESSVARS [5] , $PROCESSVARS [6] , $PROCESSVARS [ 7] , $PROCESSVARS[8] , $PROCESSVARS [9] ,
$STEP3, $STEP5, $CASTTEMP, $OPENTIME, $DC11,$DC12, $volume[1], $volume[2], $volume[3],
$volume [4],$volume[5]\n";

print CYCLOG "execution of programme is done\n”;
close (CYCLOG);
close (DATAGET);

#————Copy the model files to the simpath

print "Copying Result Files to home directory\n”;

@modelfiles = glob (' output/x");

foreach (@modelfiles) {
copy("$.","/data2/xinmei/MPCOctCase215inletT/");

}

copy("cycle_x.tag”,”/data2/xinmei/MPCOctCase215inletT/");

copy("cycle.inp”,”/data2/xinmei/MPCOctCase215inletT/");

copy(”"main_x.tag " ,”/data2/xinmei/MPCOctCase215inletT/");

copy("main.f”  "/data2/xinmei/MPCOctCase215inletT/");

copy(”testl”,”/data2/xinmei/MPCOctCase215inletT/");

copy (" $datapath/ DATAMPCOctCase215inletT .log " ,”/ data2/xinmei/ MPCOctCase215inletT/");

#———delete all the temp files

chdir ("/tmp/”);
‘rm —rf MPCOctCase215inletT *;
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A.2 processtagexrefine2D.pm

package processtagexrefine2D;
require Exporter;

@ISA = gqw(Exporter);

@EXPORT = qw(compileinputfile);

#
#

#Compiles the Input file from the .tag file for Abaqus

sub compileinputfile {
my ($startnumber ,$CASTTEMP, $DIETEMP, $STEP3, $STEP5, $OPENTIME,
$OPENTIMESTEPTIME, $ENDTIMESTEPTIME) = @-_;

open (TAGFILE, "cycle_x.tag”);
open (WRTINP, ">cycle.inp”);

while (<TAGFILE>) {
if (/| <CASTDIETEMPS>/) {
if ($startnumber!=1){
print ”startnumber is $startnumber\n”;
my $step;
my $inc;
open (STAFILE, "previous.sta”);
while(<STAFILE>) {
@STADATA = /(\d+)\D+(\d+)\D+/;
if (length($STADATA[O]) > 0) {
$step = $STADATA[O];
$inc = $STADATA[1];

}

close (STAFILE);

print WRTINP "xINITIAL CONDITIONS, TYPE=TEMPERATURE, FILE=previous,
STEP=$step, INC=$inc\n";
print WRTINP "« INITIAL CONDITIONS, TYPE=TEMPERATURE\n”;
print WRTINP "NCAST, $CASTTEMP\n";
print WRTINP "NSPRUE, $CASTTEMP\n";

telse{
print WRTINP "« INITIAL CONDITIONS, TYPE=TEMPERATURE\n”;

print WRTINP "NCAST, $CASTTEMP\n";
print WRTINP "NSPRUE, $CASTTEMP\n";
print WRTINP "NDIE, $DIETEMP\n";
}
}elsif(/<DIECLOSEDTIMEL>/) {
print WRTINP 0.1, $STEP3, 0.000001, $ENDTIMESTEPTIME\n";
}elsif(/<DIECLOSEDTIME2>/) {

187



print WRTINP "0.1, $STEP5, 0.000001, 2\n";
} elsif(/<DIEOPENTIME>/) {

print WRTINP "0.1, $OPENTIME, 0.000001, $OPENTIMESTEPTIME\n";
} elsif (/ <BOUNDARYCASTTEMP>/) {

print WRTINP "NCAST,  11,, SCASTTEMP\n " ;

print WRTINP "NSPRUE,  11,, $CASTTEMP\n";
} elsif (/ <SIMPLEBDFORSPRUE>/) {

print WRTINP "0.0 ,$CASTTEMP,34.0,600.0\n";

telse{
print WRTINP $_;

close (TAGFILE);
close (WRTINP);
return 1
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A.3 processfiles2D.pm

package processfiles2D;
require Exporter;
@ISA = qw(Exporter);
@EXPORT = gw(compilemainfile getprocessvars getchokevolume generatetempdef
getfileparams getfileparamscomma writefileparams getcontrolvars
writetocommfile writetooutputfiles);
#Compiles the Input file from the .tag file for Abaqus
sub compilemainfile {
my ($D11,$D12,$D21,$D22,$D31,$D32,$D41,$D42) = @-;

open (TAGFILE, "main_x.tag");
open (WRTINP, ">main.f");

while (<TAGFILE>) {

if (/ <HEATCOEFFICIENT1>/) {

print WRTINP "IF ((TIME(2).GE.$D11).AND.(TIME(2).LE.$D12)) THEN\n";
}elsif(/<HEATCOEFFICIENT2>/) {

print WRTINP "IF ((TIME(2).GE.$D21).AND.(TIME (2).LE.$D22)) THEN\n";
}elsif(/<HEATCOEFFICIENT3>/) {

print WRTINP "IF ((TIME(2).GE.$D31).AND.(TIME (2).LE.$D32)) THEN\n";
}elsif(/<HEATCOEFFICIENT4>/) {

print WRTINP "IF ((TIME(2).GE.$D41).AND.(TIME (2).LE.$D42)) THEN\n";

telse{
print WRTINP $_;

close (TAGFILE);
close (WRTINP);
return 1

#———Gets the process variables
#———add getpvs, if no path, means the same folder as testl

sub getprocessvars {
#Execute getpvs.exe to extract the pvs from the previous. fil file
$_="/opt/abaqus/64 bit/Commands/abq675 /data/xinmei/test/getpvs2d"‘;

my @RETURNDATA = split /\s+/;
#We don’t want to return the O element because it is an empty string.

#This results from the way the string returned from getpvs.exe is structured.
return @RETURNDATA[O .. $#RETURNDATA];
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#———Gets the 2 choke volumes

sub getchokevolume {
#Execute getpvs.exe to extract the pvs from the previous. fil file
$_=‘/opt/abaqus/64 bit/Commands/abq675 /data/xinmei/test/choke2d";

my @RETURNDATA = split /\s+/;

return @RETURNDATA[O .. $#RETURNDATA];

#———generate temp.def file
sub generatetempdef {
open (TEMPDEF, ">temp.def”);
my $step;
my $inc;
open(STAFILE, "previous.sta”);
while (<STAFILE>) {
@STADATA = /(\ d+)\D+(\d+)\D+/;
if (length($STADATA[O]) > 0) {
$step = $STADATA[O];
$inc = $STADATA[1];
}
}

close (STAFILE);

print TEMPDEF "$step, $inc\n";
close (TEMPDEF) ;
return 1;

#———generate temp.def file
sub CopyandDel {
copy(”"sim. fil”,”previous. fil ");

copy(”sim.sta”,”previous.sta”);

#Save the .fil and .odb files as our data files
‘gzip sim.fil *;

copy("sim. fil .gz",”output/cycle_$i. fil.gz");
‘gzip sim.odb*;
copy(”"sim.odb.gz"”,” output/cycle_-$i.odb.gz");
‘gzip sim.sta‘;

copy(”sim.sta.gz"”,”output/cycle_$i.sta.gz");
#———Delete all of the files from the simulation that we don’t need anymore

unlink(<sim.*>);
return 1;
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#———This subroutine requires the following parameters
#1. Input Parameter File Name $filename
#2. The Current Cycle Number $cyclenum
#———Simulation Parameters from the specified file
sub getfileparams {

my ($filename, $cyclenum) = @_;

my @RETURNDATA;

open (PARAMFILE, $filename);

while (<PARAMFILE>) {
my @PARAMDATA = split /\s+/;

if (@PARAMDATA[O] <= $cyclenum) {
@RETURNDATA = @PARAMDATA[ 1.. $#PARAMDATA];

close (PARAMFILE) ;
return @RETURNDATA;

#———This subroutine requires the following parameters
#1. Input Parameter File Name $filename
#2. The Current Cycle Number $cyclenum
#———Simulation Parameters from the specified file
sub getfileparamscomma {

my ($filename, $cyclenum) = @_;

my @RETURNDATA;

open (PARAMFILE, $filename);

while (<PARAMFILE>) {
my @PARAMDATA = split /,+/;

if (@PARAMDATA[O] <= $cyclenum) {
@RETURNDATA = @PARAMDATA[ 1.. $#PARAMDATA];

close (PARAMFILE) ;
return @RETURNDATA;
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#———This subroutine requires the following parameters
#1. Output Parameter File Name $filename

#2. The Current Cycle Number $cyclenum

#3. The parameters to be written to the file

#———Simulation Parameters from the specified file
sub writefileparams {
my ($filename, $cyclenum, @PARAMDATA) = @_;

my $nextline = $cyclenum;
foreach (@PARAMDATA) {
$nextline = $nextline.” ".$_;

}

open (PARAMFILE, ">>$filename”);
print PARAMFILE "$nextline\n”;
close (PARAMFILE ) ;

#———Gets the controller variables based on the Controller Mode to the BWDD
sub getcontrolvars {

my @RETURNDATA,;

my $done = 0;

my $cvsready;

until ($done) {
"touch —c /data/xinmei/test/simulationl.comm’;
open (COMMFILE, ”"/data/xinmei/test/simulationl.comm”);
$cvsready = <COMMFILE>;

#1f the CVS are ready then just assign return data to every line
#as the last line is the Control variables.

if (($cvsready == "1") || (1xS$cvsready ==1)) {
$done = 1;

while (<COMMFILE>) {
@RETURNDATA = split /\s+/;

}

}

close (COMMFILE) ;
sleep 1;

return @RETURNDATA;
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#———The format of the COMM file is:
#CVS Ready
#CycleNum
#Simulation Mode
#PVS
#SPS
#FFS
#CVS
sub writetocommfile {
my ($cyclenum, $datapath ,$SIMULATIONMODE, $PROCESSVARS,
$SETPOINTS, $CONTROLVARS, $FEEDFORWARDS) = @_;
#The Arrays are passed as references and hence must be reassigned to the following variables.
@VIODE = @$SIMULATIONMODE;;
@PVS = @$PROCESSVARS;
@SPS = @$SETPOINTS;
@CVS = @$CONTROLVARS;
@FFS = @$FEEDFORWARDS;

"touch —c /data/xinmei/test/simulationl.comm’;
open (COMMFILE, ">$datapath/simulationl.comm”);

#This is the Control Variables Ready Bit.

#Used when retrieving the Control Variables from the Controller.
#The controller must set this to 1 when the CV's are ready.
print COMMFILE "0\n";

print COMMFILE "$cyclenum\n";

foreach (@VODE) {
print COMMFILE $_." ”;

}

print COMMFILE "\n";

foreach (@PVS) {
print COMMFILE $_." ”;

}

print COMMFILE "\n";

foreach (@SPS) {
print COMMFILE $_." ;

}

print COMMFILE "\n";

foreach (@FFS) {
print COMMFILE $_." ;
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}

print COMMFILE "\n";
print COMMFILE "1\n";

foreach (@cvs) {
print COMMFILE $_." ;

}

print COMMFILE "\n";

close (COMMFILE) ;

sub writetooutputfiles {
my ($cyclenum, $datapath, $SIMULATIONMODE, $PROCESSVARS,
$SETPOINTS, $CONTROLVARS, $FEEDFORWARDS, $DISTURBANCE) = @-;

#The Arrays are passed as references.
@VIODE = @$SIMULATIONMODE;;
@PVS = @$PROCESSVARS;
@SPS @$SETPOINTS;
@CVS = @$CONTROLVARS;
@FFS = @$FEEDFORWARDS;
@DIST = @3$DISTURBANCE;

writefileparams (” $datapath/output/simmode. output”, $cyclenum, @WODE);
writefileparams (" $datapath/output/processvariables.output”, $cyclenum, @PVS);
writefileparams (" $datapath/output/setpoints.output”, $cyclenum, @SPS);
writefileparams (" $datapath/output/controlvariables .output”, $cyclenum, @CVS);
writefileparams (” $datapath/output/feedforwards. output”, $cyclenum, @FFS);
writefileparams (” $datapath/output/disturbances.output”, $cyclenum, @DIST);
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A.4 simulationl.comm

1

17

1

499.997 450.173 466.204 510.672 542.953 531.433 530.962 565.298 562.392
494.634 443.000 453.357 508.235 542.530 531.458 531.161 565.087 561.874
60

1

33.9272 —-3.5261
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Appendix B

MATLAB Code

B.1 MPC_controller _deltaU.m

%global software_path;
clc;
clear;
clear global;
close all;
global Al A2 A3 A4 A5 A6 A7 A8 A9 betaSIl alfal betal alfaanol betaanol gamaanol
global A B Cf D num._dist num_cvs uf uv xcurrent kk Hp Hu Q R DataRef yerr%delaysum
9 1. MPC ini setting
% delay is [1 0 0 1];
%——-A,B,C,D setting
load Model2Dof3DdataAug9 . mat;
% ——— — augmented model with delay involved
Au=[0 000 00O

1-all al1 00 0 0

1-a22 0 a22 0 0 O

000a3300

0000 a44 0

00O0O0O0 a55];
Bu=[1 0O
0
0
1-a33
1-a44

0 1-a55];
Af=[Af Bf(:,2)
00 0];

o O o o
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Bf=[Bf(:,1) [0;0]
0 1];

A=diagmx (Au, Af);

B=[Bu zeros(6,2);zeros(3,2) Bf];

Cf=[Cf zeros(9,1)];

D=zeros(9,4);
%—————  parameters setting———
Hu=2;Hp=15;
num_dist=2; num_cvs=2;
Q=1%2500*eye (1);R=0«eye(1l); % casel: focus on minimized vol.

u_lim=[—40,40;

—9.9,30;];
deltau_lim=[10;
515

baseline=[150,10];
%——————inequilities Aine,bine setting
[Aineadd, bineadd]=funABineadd (Hu, deltau_lim);
Aine=Aineadd;
bine=bineadd;

% —————equility Aeq,Beq setting
Aeq=[];beq=[];
vib =[];vub=[];

vibtemp=u_lim (:,1);vubtemp=u_lim (:,2);

for i=1:Hu;
vib=[vlb;vibtemp]; vub=[vub;vubtemp];
end
%:::::::::::::Z_running preparation:::::::::::::::
sim_path = ’'/data/xinmei/test/’;

cycle = 0; % cycle # in matlab, used to compare with real cycle# from perl script.
Cvompute_Act = 0; % activating signal for cv computation.
cv_ready=0; % judge if cv is ready to be sent to perl for merging into inp file.
matlab_run=1; % control matlab running.
totaltime=200;
%————ref baseline:ubaseline=[150,10].
ubase=[150;10];
uv=zeros(totaltime ,2);uf=zeros(totaltime ,2);
ymea=zeros(totaltime ,9);ypre=zeros(totaltime ,9);
xcurrent=zeros(9,totaltime); x0=zeros(2*Hu,1);
Uvpredict=zeros (num_cvsxHu,1);% set initial Uv10,Uv20.
%—————read last time xstate value from xstate.def
FID=fopen ([sim_path, ' xstate .def ']);
if (FID> 0)
fclose(FID);

para = dlmread ([ sim_path,’ xstate.def’]);
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lastNum=para(1);

xcurrent (:,lastNum)=para(2:10);
else

disp (' xstate.def file cannot be found’);
end

0,

2.loop
while (matlab_run==1)

FID=fopen ([ sim_path,’simulationl.comm’]);
if (FID <= 0)
disp (’'simulationl.comm file cannot be found’);
else
fclose(FID);
%——a. read the communications file
comm = dimread ([ sim_path,’simulationl.comm’]);
CycleofPerl=comm(2,1);
SimuMode=comm(3,1);
pv=comm(4 ,1:9);
sp=comm(5,1:9);
ffl=comm(6,1); ff2=comm(6,2);
matlab_run=comm(7,1);
%————b. compute the signal on whether to compute CV-
if ((SimuMode==1) & (cycle < CycleofPerl))
Cvompute_Act=1;

disp(’New Cycle ’); cycle = CycleofPerl

end
%————c. the compution of CV, i needs to be >2
if Cvompute_Act==1
kk=cycle;
ymea(kk,:)=pv—DataRef; yerr=ymea(kk,:)—ypre(kk,:);
uf(kk,:)=[ff1 ff2];

Ycompute uv (i)
qx1=-30:10:10; qyl1=30:—10:—-9.9;
[QX,QY]=meshgrid(gx1,qyl);
temp=size (QX);
Ntotal=temp(1)xtemp(2);
QX=reshape (QX, Ntotal ,1); QY=reshape (QY, Ntotal ,1);
for j=1:Ntotal;
x0(1:2:end)=0QX(j);x0(2:2:end)=QY(j); % initial value for predicted u.
[x(:,])),fval(j),exitflag ,output]=fmincon (@funf,x0,Aine,bine ,Aeq,beq,

vib ,vub, 'LPDCcon ") ;
end

index=find (fval==min(fval));
display ([ 'run #=",num2str (kk)]);
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if mod(length(index),2)==1
Uvpredict=x(:,index((1+end)/2)); % x is predicted u
uv(kk,:)=x(1:num.cvs,index((1+end)/2))";

else

Uvpredict=x(:,index(end/2)); % x is predicted u

uv(kk,:)=x(1:num_cvs,index(end/2))’;

end

bine=[bine (1:end —4);
deltau_lim(1)+uv(kk,1);
deltau_lim(1)—uv(kk,1);
deltau_lim (2)+uv(kk,2);
deltau_lim(2)—uv(kk,2);];

%%bwrite uv(i) into simulationl.comm.
MPC_write_.comm (uv (kk,:) ,sim_path,’simulationl.comm’);

Y%/compute xcurrent(i+1),ypre(i+1)
[ypre(kk+1,:),xcurrent (:,kk+1)]=Simulationmodel (xcurrent (:,kk),uv(kk,:),uf(kk,:));
MPC_write_xstate (kk+1,xcurrent (: ,kk+1),sim_path,’ xstate.def’,’xstatestore.def’);
Cvompute_Act=0;
end
end
pause (1);
end
disp (' finished running’);
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B.2 funf.m

% x is the vector, involving u(k|k)...u(k+Hu—1|k). total number is hux*2.
%x(2«n—1),x(2xn) stand for nth u vectors DC1-Td and DC3-Ts.

function f=funf(x);
global Al A2 A3 A4 A5 A6 A7 A8 A9 betaSIl alfal betal alfaanol betaanol gamaanol
global A B Cf D num_dist num_cvs uf uv xcurrent kk Hp Hu Q R DataRef yerr%delaysum

[num_rows_B,num_cols_.B] = size(B);
B_inputs = B(:,1:num_cols_.B—num_dist);
B_dist = B(:,num_cols_.B—num_dist+1:end);

[Psi,Upsilon, Theta, Xi, Xiuv, C_matrix , Q_matrix , R_matrix] =
get_mpc_matricesXinmei (Hu,Hp,A, B_inputs , B_dist ,Cf,D,Q,R);

8

sqrt(Q_matrix);

SR sqrt(R_-matrix);

uv_predicted=x; %% new
for i=(Hu+1):Hp
uvHu=x (end—num_cvs+1l:end);
uv_predicted=[uv_predicted;uvHu];
end

dist_predicted =[];

dist=uf(kk,:)’;

for i = 1:Hp
dist_predicted = [dist_predicted;dist];
dist(2,1) = 0;

end

%——+—XX(k) compution
XX=Psixxcurrent (:,kk) + Xiuvkuv_predicted+Xixdist_predicted;
%———YY (k) compution
for i=1:Hp
templ=XX(9x*(i —1)+2,1);temp2=XX (9 (i —1)+3,1);
temp4=XX(9x(i —1)+4,1);temp5=XX(9*(i —1)+5,1);temp6=XX(9x(i —1)+6,1);
for j=1:length(alfal);
s=sprintf ('AA=MA%d ;" ,j);
eval(s);
x1lboth(j,1)=alfal (j)*xtempl+betal(j)*temp2;
x2both (j,1)=alfaanol(j)xtemp4+betaanol (j)*temp5+gamaanol(j)xtemp6;
YY1(j,1)=[1 x1lboth(j,1) x1lboth(j,1)"2]xAA...
*[1;x2both(j,1);x2both(j,1)"2;x2both(j,1)"3];
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end

YY2=Cfx[XX(9* (i —1)+7:9%(i —1)+9,1)];
YY=YY1l+DataRef’'+YY2+yerr '; %model output T(9,1) with constant output observer.
VolPre (i)=[1 YY’']xbetaSI;

end

%—————cost function format:

terml=VolPre;

term2=uv_predicted ([1:2:end])+150; % uvl absolute values along Hp horizon.
f=Qxtermlxterml’+Rxterm2’xterm2;

%f=sum(term1);
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B.3 funABineadd.m

function [Aineadd, bineadd]=funABineadd (Hu, deltau_lim);
uvlArray =[]; uv2Array =[];
basicArrayl=zeros(2,Hux*2);
basicArrayl(:,1:3)=[1 0 —1;
—-10 1];

temp=basicArrayl;
for i=1:Hu-1;
uvlArray =[uvl1Array ;temp];
temp=[zeros(2,2) temp(:,1l:end—2)];
end

temp=[zeros(2,1) basicArrayl(:,l:end—1)];
for i=1:Hu-1;
uv2Array =[uv2Array ;temp];
temp=[zeros(2,2) temp(:,1l:end—2)];
end

0,

temp=[1 0;—1 0;0 1;0 —1];
lastArray =[temp zeros(4,Hux2—2)];

0

(6

Aineadd=[uv1Array ;uv2Array;lastArray];

0

if Hu==
bineadd=[deltau_lim(1)*xones(2,1);
deltau_lim(2)xones(2,1);];
else
bineadd=[deltau_lim(1)*ones(Hux2—-2,1);
deltau_lim (2)*ones(Hux2—-2,1);
deltau_lim(1l)*xones(2,1);
deltau_lim(2)xones(2,1);];
end
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B.4 getmpc_matricesXinmei.m

function [Psi,Upsilon,Theta, Xi, Xiuv, C_matrix , Q_matrix , R_matrix] =
get_mpc_matricesXinmei(num_control_moves , prediction_length ,A,B,Bd,C,D,Q,R);

Psi = [];

for i = 1:prediction_length
Psi = [Psi;mpower(A,i)];

end

Upsilon [1;
for i = 1l:prediction_length
temp = zeros(size(B));
for j = 1:i
temp = temp + mpower (A, —1)*%B;
end
Upsilon = [Upsilon;temp];
end

[num_rows_B, num_columns_B] = size(B);
temp_Theta_column = Upsilon;

Theta = [temp_Theta_column];

for i = 2:num_control_-moves
temp_Theta_column = [zeros(num.rows_B,num_columns_B);
temp_Theta_column (1:num_rows_Bx(prediction_length —1),:)];
Theta = [Theta,temp_Theta_column];

end

[num_rows_Bd,num_columns_Bd] = size(Bd);

temp_Xi_column = [];
temp_Xiuv_column = [];%% new

for i =1:prediction_length
temp_Xi_column = [temp_Xi_column ;mpower(A,i—1)xBd];
temp_Xiuv_column = [temp_Xiuv_column ;mpower (A, i —1)xB];%% new
end

Xi = temp_Xi_column;
Xiuv = temp_Xiuv_column;%% new

for i = 2:prediction_length

temp_Xi_column = [zeros(size(Bd));temp_Xi_column];
Xi = [Xi,temp_Xi_column (1:length(Bd)xprediction_length ,:)];
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temp_Xiuv_column = [zeros(size(B));temp_Xiuv_column]; %% new
Xiuv = [Xiuv,temp_Xiuv_column (1:length(B)*prediction_length ,:)];%% new
end

C_matrix = [];
[num_rows_C,num_columns_C] = size(C);

for i = 1l:prediction_length
temp = zeros(num.rows_C,num_columns_Cxprediction_length );
column.index = (1 + (i—21)xnum_columns_C);
temp (1:num_rows_C, column_index:column_index+num_columns_.C—1) = C;
C_matrix = [C_matrix;temp];

end

Q_matrix = zeros(prediction_length=xnum_rows_C, prediction_lengthsnum_rows_.C);

for i = 1:prediction_length

index = 1 + (i—1)xlength(Q);

Q_matrix (index:index+length (Q)—1,index:index+length(Q)—1) = Q;
end

R_matrix = zeros(num_control_movessxnum_columns_B, num_control_moves*xnum_columns_B);
for i = 1:num_control_moves
index = 1 + (i—1)xlength(R);

R_matrix(index:index+length(R)—1,index:index+length(R)—1) = R;
end
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B.5 LPDCcon.m

function [g,ceq]=LPDCcon(x)
g=[I:
ceq=[];
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B.6 Simulationmodel.m

function [yout,xupd]=Simulationmodel(xpre,uinput, udist);
global A1 A2 A3 A4 A5 A6 A7 A8 A9 alfal betal alfaanol betaanol gamaanol
global A B Cf num_dist

[num_rows_B,num_cols_B] = size(B);
B_inputs = B(:,1:num_cols_.B—num_dist);
B_dist = B(:,num_cols_.B—num_dist+1:end);

xupd=Axxpre+B_inputs*uinput’'+ B _distxudist ’;

for j=1:length(alfal);
s=sprintf (CAA=A; ", j);
eval(s);
x1both (j,1)=alfal (j)*xupd(2)+betal(j)*xupd(3);
x2both (j,1)=alfaanol(j)*xupd(4)+betaanol (j)*xupd(5)+gamaanol(j)xxupd(6);
youtl(j,1)=[1 x1lboth(j,1) xlboth(j,1)"2]xAA...
*[1;x2both (j,1);x2both(j,1)"2;x2both(j,1)"3];
end

yout=youtl+Cfxxupd(7:9);
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B.7 MPC_write_comm.m

% MPC_write_.comm(uv(kk),sim_path,’simulationl.comm’);
function MPC_write_.comm(cvs, sim_path, filename)

%read each line in the communications file

FID=fopen ([ sim_path , filename],'r’);

cvs_ready=fgets (FID);
cycle_.num=fgets (FID);
sim_mode=fgets (FID);
pv_read=fgets (FID);
sp_read=fgets (FID);
ff_read=fgets (FID);
matlabrunning_read=fgets (FID);
cv_.read=fgets (FID);
fclose(FID);

%rewrite the communications file with CVS Ready=1, and the new CVS
FID=fopen ([ sim_path , filename], 'w+");

fprintf (FID,’1"); % write cvs ready
fprintf (FID,’\n");

fprintf (FID,cycle_num);

fprintf (FID,sim_mode);
fprintf (FID, pv_read);

fprintf (FID,sp_read);
fprintf (FID, ff_read);

fprintf (FID, matlabrunning.read);
fprintf (FID,num2str(cvs(1)));
fprintf (FID,’\t");

fprintf (FID, num2str(cvs(2)));
fprintf (FID,’\n");

fclose(FID);
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B.8 MPC _write xstate.m

%MPC _write_xstate (kk+1,xcurrent (:,kk+1),sim_path,’xstate.def’,’xstatestore.def’);

function MPC_write_xstate(cycleN,x,sim_path,filenamel, filename2)

% write data into xstate.def.

fid=fopen ([ sim_path, filenamel], 'w+");

data = [cycleN x'];

fprintf (fid, %3.0f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n’,data);
fclose(fid);

% write data into xstatestore.def.

fid=fopen ([sim_path, filename2],’a’);

data = [cycleN x'];

fprintf (fid, %3.0f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n’,data);
fclose(fid);
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