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Abstract

The road design problem is usually split into the horizontal alignment, the ver-
tical alignment, and the earthwork scheduling problems. Optimizing the vertical
alignment assumes a predetermined horizontal alignment and changes the height of
the road at different points to minimize overall construction costs, while maintain-
ing the design requirements. The problem gets complicated because of the natural
blocks like rivers, mountains, etc., in the road construction area. Existing vertical
alignment models deal with the blocks before the beginning of road construction,
which sometimes results in a non-optimal solution. A substantial portion of the
total construction cost comes from the earthwork operations. As a result, some
existing models only find the optimal earthwork schedule for a predetermined ver-
tical alignment. This research extends a recent mixed integer linear programming
(MILP) model that considers blocks when optimizing earthwork operations.

We propose a novel model of vertical alignment that considers blocks. In the
model, we propose a novel way of incorporating side-slopes of the road to improve
the accuracy of the model. Our numerical results show a considerable improvement
in the accuracy of the model without introducing significant computational burden.
Finally, we propose another novel model using concepts from the network flow
algorithms that gives more that 75% speedup for 87% of the problems for our test
set of 280 problems.
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Chapter 1

Introduction

If you would understand anything,
observe its beginning and its devel-
opment.

Aristotle (384 BC - 322 BC)

The first roadways were the tracks made by travelers and their pack animals
in about 10000 BC. But it was not before 5000 BC when men started construct-
ing roads because of their socioeconomic needs due to the growth of civilization
[Lay93]. Pierre Trésaguet (1716-1796) is recognized to be the first who thought
of designing the road scientifically, although very sophisticated road designs were
found in the Roman Empire. Since Trésaguet, the area of scientific road design has
been enriched by many researchers. In this chapter, we will recall some of these
research results and discuss the importance and the basic concepts of road design.

1.1 Road design

Good communication is the essence of economic development for any country.
As a result, each year the government allocates a significant part of its annual
budget to maintain a high quality road infrastructure. For example, in 2009/10 all
levels of Canadian government spent about 28.9 billion dollars for maintaining the
existing road infrastructure and constructing new roads [Min10b]. Table 1.1 shows
the total expenses of different transportation sectors by all government levels of
Canada from 2005/06 to 2009/10 [Min10a]. A good portion of the transportation
budget is allocated to road construction and maintenance. It is therefore in the
interest of the government to minimize road construction and maintenance cost
as much as possible. At the same time, safety is also a very important factor.
Every year about 142,376 collisions occur with about 2,739 fatalities (2004 – 2008
average [Min10a]). Table 1.2 shows the statistics of road collisions, injuries, and
casualties from 2005 to 2009. Consequently, a scientifically well-designed road
can save not only millions of dollars but also a lot of lives. At the same time, it can
also consider the environmental impacts [Jha03, Aka03] and the socioeconomic

1



1.1. Road design

Table 1.1: Total transportation expenses (in millions of dollars) by all government
levels of Canada, 2005/06-2009/10

Year 2005/06(R) 2006/07(R) 2007/08(R) 2008/09(R) 2009/10(R)

Air 849 890 897 927 1,183

Rail 264 241 326 387 435

Road 17,042 18,444 22,386 26,935 28,934

Notes: 1. R = Revised.

Table 1.2: Casualty collisions, fatalities, and injuries in roads of Canada, 2005-
2009

Year 2005 2006 2007 2008(R) 2009(E)

Casualty collisions 148,154 145,130 141,094 129,816 126,360

Fatalities 2,898 2,884 2,761 2,419 2,200

Injuries 204,764 199,994 192,762 176,433 171,851

Notes:

1. R = Revised. E = Planned and/or estimated.

2. “Casualty collisions” exclude collisions involving property damage only.

3. “Fatalities” include those who died in traffic collision.

4. “Injuries” include all those who suffered any visible injury or complained of pain.

effects [DJ09] of the road construction process. For these reasons, scientific road
design has become an important research topic.

Definition 1.1. Ground profile and road profile. The ground (respectively road)
profile is the vertical profile of the ground before (respectively after) the road is
constructed. See Figure 1.1.

The objective of the road construction procedure is to convert the ground profile
into the road profile ideally using a 3D model. But due to computational limita-
tions, most researchers divide the road design procedure into horizontal and vertical
alignment design [JSJ06, GLA05, GCF88, Fwa89, Sch00].

1.1.1 Horizontal alignment design

Given any two points on earth, the purpose of the horizontal alignment design
is to find the best route among all possible routes to build the road. The projection
of the three-dimensional ground profile on a horizontal plane is analyzed in the
horizontal alignment design procedure. The best route should have the lowest cost
while maintaining all the design requirements. Some constraints of the horizontal

2



1.1. Road design
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Figure 1.1: Ground profile and corresponding road profile (in 2D)

alignment design come from the laws of mechanics and are sometimes determined
empirically. For the basic understanding of the theory of horizontal alignment
design we refer to [AAS04].

1.1.2 Vertical alignment design

Vertical alignment is generally calculated for a predetermined horizontal align-
ment. The input of the vertical alignment is the projection of the three dimensional
ground profile sliced by the horizontal alignment on a vertical plane. The output is
the final road profile.

Cost components of the vertical alignment design

A major cost component of the vertical alignment design is the earthwork cost.
It consists of the earth cutting cost (also known as the excavation cost), the earth
filling cost (also known as the embankment cost), and the earth movement cost
(also known as the hauling cost).

Pavement is defined to be the hard surface of a road. Pavement costs depend
mainly on the thickness and quality of the pavement materials used, both of which
depend on the roadbed soil [Fwa89].

Land acquisition costs may vary along the length of the road depending on the
geographic location, current state of the location, and type of construction (cut or
fill) [Fwa89].

Vehicle operating costs can be divided into primary and secondary vehicle op-
erating costs. The primary vehicle operating cost is the cost of operating the ve-
hicle during the road construction process, while the secondary vehicle operating

3



1.1. Road design

cost is the cost of operating vehicle after the road is constructed (mainly user and
maintenance costs). Both of these costs depend mainly on the slope of the road.

Fwa [Fwa89] also studied the effects of earthwork cost on the overall construc-
tion cost for vertical alignment design. As expected, the overall construction cost
linearly increases with the increase of the earth cutting cost, the earth filling cost,
and the earth movement cost.

Design requirements for the vertical alignment

Fwa [Fwa89] discussed three major design requirements that must be main-
tained for vertical alignment, namely the maximum allowable gradient, curvature
requirements, and the fixed point constraints.

The maximum allowable gradient mainly depends on the type of terrain of a
road, type of vehicles to be operated on the road, and the maximum vehicle speed
[Fwa89].

The curvature requirements depend on the minimal stopping sight distance,
type of vertical curve (crest or sag), and the length of the vertical curve [AAS04].

Definition 1.2. Sight distance. The length of the road visible to the driver when he
is driving is called the sight distance. The minimal sight distance required to stop
a vehicle to prevent an accident is called the minimal stopping sight distance.

The minimal stopping sight distance depends on the maximum speed of a road
and the transportation rules of the region.

Definition 1.3. Crest and Sag vertical curves. A crest vertical curve is a concave
parabolic curve, whereas a sag vertical curve is a convex parabolic curve.

Figure 1.2 shows the two types of vertical curves. If A is the percentage slope
change, L is the length of the vertical curve, S is the sight distance, h1 is the height
of the driver’s eye above roadway surface, and h2 is the height of an object above
the roadway surface then the curvature requirements for the crest vertical curves
are given by the following equations [AAS04, GLA05, Fwa89],

A ≤
100

(√
2h1 +

√
2h2
)2

2S − L
, if L ≤ S, (1.1a)

A ≤
100

(√
2h1 +

√
2h2
)2
L

S2
, if L > S, (1.1b)

and the curvature requirements for the sag vertical curves are

A ≤ 120 + 3.5S

2S − L
, if L ≤ S, (1.1c)

A ≤ L (120 + 3.5S)

S2
, if L > S. (1.1d)

4
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Figure 1.2: Crest and sag vertical curves

It should be noted that the values of h1, h2 are predetermined, and all the lengths
and distances are given in meters. Equations (1.1a) to (1.1d) may slightly vary
depending on the transportation rules of a specific region.

Fixed point constraints enforce that at some points along the road the height of
the road must be fixed. Typically, the elevation at the start and end points of a new
highway is fixed, and when a new highway intersects with an existing highway the
elevation of the intersect points are also fixed.

1.2 Intelligent road design

Intelligent road design refers to the process of planning and designing roads
with the aid of sophisticated computer algorithms. Many researchers are working
in this area, and many techniques have been proposed over the years. In this sec-
tion, we will briefly go through some of these techniques with their advantages and
disadvantages.

1.2.1 Models for optimizing 3D alignment

Three dimensional (3D) alignment optimization is the process of optimizing
horizontal and vertical alignment simultaneously. Because of the complexity of
modeling 3D alignment and computational limitations, not many models of the
3D alignment optimization are found in the literature. Hogan [Hog73] presented a
dynamic programming model named OPTLOC for optimizing 3D alignment, and
later Nicholson, Elms, and Williman [NEW76] proposed a two stage approach
where the first stage was similar to Hogan’s model, and in the second stage refine-

5



1.2. Intelligent road design

ments were computed using discrete variational calculus. The problem with the
dynamic programming approach is that it is very difficult to handle backtracking
alignments and deal with both horizontal and vertical curvatures at the same time.

Chew, Goh, and Fwa [CGF89] proposed a numerical search method that si-
multaneously optimized horizontal and vertical alignment with a 3D cubic spline,
and gave a smooth alignment. They used concepts from optimal control theory.
This formulation does not always guarantee global optimality, because it requires a
differentiable objective function that cannot incorporate discontinuous cost param-
eters like land acquisition cost.

Akay [Aka03] developed a model for 3D alignment of forest roads and used
a simulated annealing algorithm to solve it. He considered environmental require-
ments and safety of the drivers in his model. Cheng and Lee [CL06] proposed a
heuristic approach to solve the 3D alignment of the highways.

Aruga [Aru05] presented a tabu search method for optimizing 3D alignments of
forest roads, and later Aruga et al. [ATSM06] used Dijkstra shortest path method,
cubic splines, and tabu search to create an initial alignment, which could be used
with Aruga’s original model.

Jha [Jha03] employed a criteria-based decision support system for selecting
highway alignments using genetic algorithms and geographic information systems
(GIS) that considered environmental impacts. Jong and Schonfeld [JS03] used an
evolutionary model for optimizing 3D alignment. Kim, Jha, and Son [KJS05] pro-
posed a stepwise genetic algorithm to improve the computational efficiency and the
quality of solutions. Kim et al. [KJSK07] further extended the research to incor-
porate bridges and tunnels in the 3D alignment. More recently, a genetic algorithm
was used to solve a multi-objective optimization problem while considering the
travel time, vehicle operation, accident, earthwork, land acquisition, and pavement
construction costs [MJ09].

Models of the 3D alignment require a large computer memory to run, but most
of the models cannot guarantee global optimality. Consequently, most researchers
compute a horizontal alignment at first, then for a fixed horizontal alignment they
optimize the vertical alignment.

1.2.2 Models for optimizing horizontal alignment

Modeling horizontal alignment is relatively more complex than modeling the
vertical alignment, because it involves political, socioeconomic, and environmental
issues. Calculus of variations, network optimization, and dynamic programming
are the most popular techniques for optimizing horizontal alignments.

Calculus of variations tries to find a curve that connects two points while min-
imizing the integral of a cost function [Wan95]. So, the type of problems that
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calculus of variations usually deals with is very similar to the horizontal align-
ment problem. Howard, Bramnick, and Shaw developed the Optimum Curvature
Principle (OCP) [HBS68] for horizontal alignment using the ideas of calculus of
variations. Shaw and Howard [SH81] proposed two integration methods, namely
arc of circle algorithm and intrinsic equation procedure for applying OCP. Shaw
and Howard [SH82] also applied OCP to find the horizontal alignment of an ex-
pressway. The OCP requires determining the local cost functions and needs some
approximations and assumptions, but the optimal road derived by the OCP is con-
tinuous and globally optimum. Thomson and Skykes [TS88] also used this tech-
nique in transportation.

Network optimization is also a very popular technique for horizontal align-
ment optimization. In this approach, the horizontal alignment problem is modeled
as a network problem, i.e., shortest path problem, max-flow min-cut problem, min
cost flow problem, etc. Then well-developed network optimization algorithms like
Dijkstra’s algorithm [Dij59], Bellman-Ford algorithm [CLR01], Ford-Fulkerson
Algorithm [LRFF62], etc., are used to compute the solution. Turner and Miles
[TM71] developed the Generalized Computer Aid Route Selection (GCARS) sys-
tem. The GCARS system has a grid network that uses a cost model matrix cre-
ated by a linear combination of pavement costs and earthwork costs. The GCARS
system was further improved by allowing diagonal movements of the network
matrix [Tur78]. Later models that used network optimization techniques were
developed by Athanassoulis and Calogero [AC73], Parker [Par77], and Trietsch
[Tri87b, Tri87a]. Although the network models are simple, easy to implement, and
have well-developed algorithms to solve them, the resulting solution is nonsmooth,
and calculations require a large amount of computer memory to run.

Dynamic programming [Bel57] is a popular optimization technique developed
by Richard Bellman. Although dynamic programming is mostly used for optimiz-
ing vertical alignments, some studies like [Tri87b], [OEC73], [JSJ06] discussed
the usage of dynamic programming for horizontal alignment. Similar to network
models, the dynamic programming approach is simple, easy to implement, and has
well-developed algorithms to solve it, but the resulting alignment is nonsmooth.

1.2.3 Models for optimizing the vertical alignment

The vertical alignment problem is a well-defined problem, which does not de-
pend on uncontrollable factors like political issues, socioeconomic concerns, etc.
As a result, this problem is studied more comprehensively than the horizontal align-
ment problem, and there are more existing models.

To model this problem, the length of the potential road is divided into smaller
units called sections. The earthwork allocation problem is the problem of finding

7



1.2. Intelligent road design

an optimal schedule for moving earth between sections. Since earthwork cost is
a significant variable cost in the vertical alignment problem, often vertical align-
ment calculations are performed in two stages. In stage one, the model seeks a
feasible vertical alignment, and in stage two, earthwork operations are optimized.
Thus many researchers focused just on the earthwork allocation problem. The first
attempts to combine both of these stages in a single model can be found in [Bak72]
and later in [Ont84].

Popular techniques to model the vertical alignment problem include numerical
search, dynamic programming, linear programming, mixed integer linear program-
ming, and quadratic programming.

Numerical search

Earlier models for optimizing vertical alignments used numerical search. This
approach exploits a continuous search space, and most of the cost components
and constraints can be modeled directly. But the resulting model becomes very
complex to solve due to the non-linearity and non-convexity of the model.

Hayman [Hay70] used continuous decision variables for the height at each sec-
tion and employed a numerical search algorithm to find the optimal heights that
satisfied all the constraints. Then straight line segments were used to connect these
points to get a piecewise linear vertical alignment. Hayman’s algorithm starts with
an initial guess of the solution, then seeks a feasible search direction, and continues
searching in that direction for a better solution until no such solution can be found.
After that it seeks another feasible search direction and repeats the procedure. Ob-
viously, the global optimum is not guaranteed by this algorithm, and the algorithm
only gives satisfactory results if the initial guess is close to the optimal solution.

The Transportation and Road Research Laboratory (TRRL) in the UK devel-
oped a program named MINERVA [OEC73, Pea73] that utilizes numerical search
to find an optimal vertical alignment. Unlike Hayman’s algorithm, it gives a smoother
solution, since the output alignment consists of straight line segments with a parabolic
curve in between. But it also depends on the initial guess, and the algorithm can be
stuck at a local optima. Pearman [Pea73] suggested a procedure to find an estimate
of the quality of the current solution, compared with the global optimum.

Both Hayman’s algorithm and MINERVA depend on a good initial estimate of
the solution. Robinson [Rob73] presented a program called VENUS that gave a
feasible vertical alignment which could be used as a good initial estimate for any
algorithm. VENUS starts by smoothing the ground profile that is then converted
into a preliminary road profile by fitting straight lines with the use of a least square
process. The alignment is further adjusted to satisfy all the design requirements,
and thus a feasible vertical alignment can be found.
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Goh et al. [GCF88] presented a discrete and a continuous model for optimiz-
ing vertical alignment. In the continuous model, they first formulated the vertical
alignment problem as a calculus of variations problem, which is then converted
into an optimal control problem [GT88]. Their vertical alignment was approxi-
mated by a cubic spline, and the model became a general constrained non-linear
optimization problem that could be solved by any known numerical search algo-
rithm. The problem gets very complicated to solve, when earth movement costs
are considered in the model. This property makes the model inapplicable for some
roads.

Dynamic programming

Dynamic programming [Bel57] is a discrete optimization technique for a multi-
stage decision making process developed by Richard Bellman and further im-
proved by Bellman and Dreyfus [BD62]. The basis of the dynamic programming
algorithm is the principle of optimality [Bel57].

Definition 1.4. Admissible and optimal policies. An admissible policy is a vector
of decision that satisfies all the constraints. An admissible policy that minimizes
the cost function is referred to as an optimal policy.

Theorem 1.5. (Principle of optimality) An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision
[Bel57].

Dynamic programming was first applied to the vertical alignment problem by
Puy Huarte [Hua73]. He developed a two phase model, where in the first phase
dynamic programming was used to generate an optimal vertical profile, but since
the resulting profile is piecewise linear, the alignment is approximated by a set of
cubic polynomial functions in phase two.

To improve the existing roads, Murchland [Mur73] developed a program called
VALOR that minimized the earthwork cost. This program uses a dynamic pro-
gramming algorithm to find the optimal vertical alignment, which is represented
by a quadratic spline.

Goh et al. [GCF88], Fwa [Fwa89], and Goktepe et al. [GLA05] used a sim-
ilar approach to optimize vertical alignment using dynamic programming. They
discretized the search space by horizontal and vertical grid lines, where each of
the horizontal grid lines stood for a state, and each of the vertical grid lines rep-
resented a stage in the multi-stage decision process. Intuitively, the output of this
formulation gives the height along each vertical grid line, which represents a stage.

9



1.2. Intelligent road design

A recent approach of optimizing vertical alignment using dynamic program-
ming can be found in [GAA09]. In the study, the authors integrated the Weighted
Ground Line Method (WGLM) of earthwork optimization with the dynamic pro-
gramming model of vertical alignment.

The advantage of dynamic programming is that it is very simple to implement,
and there are existing well-developed algorithms to solve it. It can work with
nonsmooth, nonconvex, or discontinuous objective functions. The disadvantage is
that this approach gives a piecewise linear alignment rather than a smooth one and
uses a discrete search space. For some formulations, dynamic programming does
not give a realistic solution. In a study ([RL11]), we show that this approach is not
appropriate to fulfill many requirements of the vertical alignment problem.

LP, MILP and QP models

Linear programming (LP) is a popular optimization technique. A linear pro-
gram has a linear objective function and linear constraints in terms of the decision
variables. If there exists integer decision variables in a linear program then it is
called a mixed integer linear program (MILP). Quadratic programming (QP) is a
special type of mathematical optimization problem that has a quadratic objective
function subject to linear constraints.

The idea of using linear programming for earthwork optimization was first dis-
cussed in [SN71]. Later, Mayer and Stark [MS81] developed the model that min-
imizes the earth moving cost while balancing the earth quantities in any section.
A similar model was developed by Nandgaonkar [Nan81]. Oglesby and Hicks
[OH82] used a combination of a graphical method called the mass haul diagram
and linear programming for earthwork optimization.

Easa [Eas88b] extended the model of Mayer and Stark [MS81] and proposed
a numerical search algorithm that searches for a feasible vertical alignment while
optimizing earthwork operations by linear programming as a sub-routine.

Easa [Eas87, Eas88a] suggested that the unit costs for the earthwork operation
are not always constant, and for linear unit costs he proposed a quadratic program-
ming model [Eas88a] of the earthwork operation.

Moreb [Mor96] modeled the vertical alignment and earthwork operation in a
single linear program. Both Easa’s model [Eas88b] and Moreb’s model [Mor96]
give piecewise linear alignments that require post-processing steps to smooth out
the sharp connectivity resulting in a nonoptimal solution for some roads.

Many researchers used polynomials to approximate the road profile to get a
smooth solution. ReVelle, Whitlatch, and Wright [RWW97] developed a model
that approximated the road profile with a fifth order polynomial while using a linear
program to find the optimal coefficients of the polynomial. Aljohani and Moreb
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[AM03] gave a more flexible representation using polynomials of any degree. The
problem with using polynomials is that it limits the number of ups and downs in
the road profile depending on the degree of the polynomial, i.e., this approach will
perform badly for long roads.

Moreb and Aljohani [MA04] found a quadratic spline (a piecewise quadratic)
representation of the road profile that minimizes earthwork cost using linear pro-
gramming to avoid the shortcomings of the polynomial approach. Moreb [Mor09]
improved the previous model by adding some additional constraints that ensure
smoothness at the connectivity of two spline pieces and generalized the technique
with a piecewise polynomial of any degree. Koch and Lucet [KL10] further im-
proved the accuracy of the spline model by changing two constraints and reported
that up to quadratic spline could be used while maintaining the linear structure of
the model. This model can represent the vertical alignment problem very well, but
it does not account for the physical blocks like rivers, mountains, etc., that prevent
earth movement, and at the same time, the model does not consider side-slopes of
the road resulting in an inaccurate model for practical use.

Hare, Koch, and Lucet [HKL11] proposed a mixed integer linear programming
model for earthwork optimization that considers blocks. They also proposed algo-
rithms to speed up the computation.

The issue of finding the optimal number of sections and the optimal length
of each section was addressed in Ji et al. [JSB+10] where a mixed integer linear
programming technique was proposed to solve this problem. At the same time,
they proposed a minimal cost flow formulation of the earthwork problem that can
be solved by standard network flow algorithms.

Other models

Among the other models for the vertical alignment, Goktepe et al. [GLA09]
proposed a genetic algorithm based on a constrained curve-fitting method to opti-
mize vertical alignment. In the study, they also considered soil parameters. This
study also integrates the Weighted Ground Line Method (WGLM) of earthwork
optimization with the genetic algorithm. Garber and Hoel [GH09] used the mass
haul diagram, which is a greedy algorithm, to calculate the earthwork operations
without considering blocks. It is not known whether the mass haul diagram ap-
proach is optimal or not. It can also be solved as a transshipment problem, which
is a special case of the network flow problem.

In our research, we extend the models of Moreb [Mor09], Koch and Lucet
[KL10], and Hare, Koch, and Lucet [HKL11] to formulate the vertical alignment
problem with blocks. We develop a technique to incorporate the side-slopes in the
model and still formulate the model as a mixed integer linear program. We also
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propose a new model using concepts from the network flow techniques. This new
model shows a significant improvement on computational speed over our previous
model.
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Chapter 2

Models for Vertical Alignment
and Earthwork Optimization

What is important is the gradual de-
velopment of a theory, based on a
careful analysis of the facts.

John von Neumann (1903 - 1957)

In this chapter, we present two existing models, namely the spline LP model
for vertical alignment [Mor09] and the MILP model for earthwork optimization
with blocks [HKL11]. These two models are the basis for our research.

For this thesis, we use the notations from [HKL11] with slight modifications.

2.1 Spline LP model for vertical alignment optimization

The idea of approximating the road profile by a spline was first proposed
by Moreb and Aljohani [MA04]. The process was further improved by Moreb
[Mor09], followed by Koch and Lucet [KL10]. The resulting linear programming
(LP) model is explained in this section.

2.1.1 Definitions and model parameters

Definition 2.1. Spline segment. A spline is a piecewise polynomial function, where
each polynomial piece is called a spline segment.

The model approximates the road with a spline. The spline has m spline seg-
ments, which are indexed by the set G = {1, 2, ...,m}. In [KL10], the authors show
that up to a quadratic spline can be used to maintain the linearity of the model. For
all g ∈ G, the equation for a quadratic spline segment is

Pg(x) = ag,1 + ag,2x+ ag,3x
2. (2.1)
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2.1. Spline LP model for vertical alignment optimization

Definition 2.2. Section. The length of a spline segment is further divided into
smaller units called sections.

The gth spline segment (g ∈ G) has ng sections. So, n =
∑

g∈G ng is the total
number of sections. We index these by the set S = {1, 2, ..., n}. The volume of
earth moved from section i to section j is denoted by xij .

Definition 2.3. For all g ∈ G, the set Sg = {1, 2, ..., ng} contains the indexes of
sections for a segment g, and

κ : (G,Sg)→ S (2.2)

maps the section index of a spline segment to the actual section index.

The starting point of the ith section of the gth spline segment is denoted by sg,i,
and the end point is denoted by sg,i+1.

Remark 2.4. For all g ∈ G\{m}, sg,ng+1 = sg+1,1 by definition.

Definition 2.5. Cut and fill. A section is called a cut (respectively fill), if the
volume difference between the ground profile and the road profile at the section is
positive (respectively negative).

The volume of any section i is represented by Vi = V +
i − V

−
i , where V +

i ≥ 0
is the cut volume, and V −i ≥ 0 is the fill volume.

Remark 2.6. For any section i, one of V +
i and V −i must be zero. A cut has V −i =

0, V +
i 6= 0 making Vi = V +

i > 0 and a fill has V +
i = 0, V −i 6= 0 making

Vi = −V −i < 0. If a section is neither a cut nor a fill then both V +
i and V −i are

zero.

Definition 2.7. Borrow and waste pits. Borrow pits are external sections from
which earth can be borrowed, and waste pits are external sections to which earth
can be dumped for additional cost.

Remark 2.8. A borrow pit is always a cut, and a waste pit is always a fill.

There are nb borrow pits, which are indexed by the setB = {n+1, n+2, ..., n+
nb} and nw waste pits, which are indexed by the setW = {n+ nb + 1, n+ nb +
2, ..., n+ nb + nw}. The index set N = S ∪ B ∪W = {1, 2, ..., n+ nb + nw} is
defined to be the set of all the sections, borrow pits, and waste pits indexes. Also

ϑ : B → S (2.3)

maps the borrow pit index to the section index to which it is attached, and

ϕ :W → S (2.4)
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maps the waste pit index to the section index to which it is attached. The distance
from a borrow or waste pit to the associated section is called the dead haul dis-
tance and is denoted by d̃i where i ∈ B ∪ W . The capacity of the ith borrow pit
(respectively waste pit) is denoted by Cbi (respectively Cwi ).

Definition 2.9. For each i ∈ N , the index set N i
→ consists of all indexes j such

that xij is a permitted move,

N i
→ =


j ∈ S ∪W, j 6= i if i ∈ S

j : j ∈ S if i ∈ B
∅ if i ∈ W

 , (2.5)

and the index set N i
← consists of all indexes j such that xji is a permitted move,

N i
← =


j ∈ S ∪ B, j 6= i if i ∈ S

j : j ∈ S if i ∈ W
∅ if i ∈ B

 . (2.6)

Proposition 2.10. For any i, j ∈ N , j ∈ N i
→ if, and only if, i ∈ N j

←.

Proof. By definition of N i
→ and N j

←, i can either be a section or a borrow pit, and
j can either be a section or a waste pit. Since movement from borrow pit to waste
pit is not allowed we need to consider the following cases.

Case I (i is a section and j is a section): Assume, j ∈ N i
→. Since i, j ∈ S and

i 6= j,

j ∈ (S − {i}),
⇒ i ∈ (S − {j}),
⇒ i ∈ (S ∪ B)− {j},
⇒ i ∈ N j

←.

Now assume, i ∈ N j
←. Since i, j ∈ S,

i ∈ (S − {j}),
⇒ j ∈ (S − {i}),
⇒ j ∈ (S ∪W)− {i},
⇒ j ∈ N i

→.

Case II (i is a section and j is a waste pit): Assume, j ∈ N i
→. So, i ∈ S and

j ∈ W implies i ∈ N j
← by the definition of N j

←. Now assume, i ∈ N j
←. Since
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i ∈ S and j ∈ W ,

i ∈ (S − {j}),
⇒ j ∈ (S − {i}),
⇒ j ∈ (S ∪W)− {i},
⇒ j ∈ N i

→.

Case III (i is a borrow pit and j is a section): Assume, j ∈ N i
→. Since i ∈ B

and j ∈ S,

j ∈ (S − {i}),
⇒ i ∈ (S − {j}),
⇒ i ∈ (S ∪ B)− {j},
⇒ i ∈ N j

←.

Now assume, i ∈ N j
←. So, i ∈ B and j ∈ S implies j ∈ N i

→ by the definition of
N i
→.

Definition 2.11. The setN 2 consists of all pairs of indexes (i, j) such that xij is a
permitted move, i.e.,

N 2 =
{

(i, j) : j ∈ N i
→, i ∈ N j

←
}
,

=
{

(i, j) : j ∈ N i
→
}

, [By Proposition 2.10]. (2.7)

Proposition 2.12. N 2 ⊆ N ×N .

Proof. Definition 2.9 and 2.11 complete the proof.

Cost components

Definition 2.13. Excavation, hauling, and embankment cost. The cost for cutting
earth from a section is called the excavation cost, the cost for moving earth from
one section to another section is called the hauling cost, and the cost for filling a
section with earth is called the embankment cost.

For any i ∈ N , the per unit volume excavation cost is represented by pi, the per
unit volume embankment cost is represented by qi, and cij represents the per unit
volume hauling cost from section i to section j. If the constant cost c represents
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the cost for moving one unit of volume of earth by one unit distance, and dij is the
distance between section i and section j then cij = cdij , where

dij =


distance between i and j if i, j ∈ S
dϑ(i)j + d̃i if i ∈ B and j ∈ S
diϕ(j) + d̃j if i ∈ S and j ∈ W .

(2.8)

It should be noted that the model will work with a more sophisticated cost function.
For the details of the cost function, we refer to [Koc10].

Decision variables

The decision variables represent the output of the optimization procedure. The
decision variables for the problem are

– V +
i (for all i ∈ S): the volume of the earth excavated from any section,

– V −i (for all i ∈ S): the volume of earth embanked to any section,

– xij (for all (i, j) ∈ N 2): the volume of earth moved from one section to
another,

– ag,k (for all g ∈ G, k ∈ {1, 2, 3}): the coefficient of the quadratic polynomi-
als,

– ui (for all i ∈ S): the difference in height between the ground profile and
the road profile for any section.

Design parameters

The design parameters represent the input of the optimization procedure, which
will be provided by the end-user. The design parameters for the problem are

– m: the number of spline segments,

– ng (for all g ∈ G): the number of sections per spline segment,

– sg,i (for all g ∈ G, i ∈ Sg): the start and end points of the sections,

– hg,i (for all g ∈ G, i ∈ Sg): the average height of the ground for each section,

– ui and ui (for all i ∈ S): the upper and the lower bound of the variable ui,

– Ai (for all i ∈ S): the area of each section,
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– L (respectively U ): the lower (respectively upper) bound of the slope,

– HA (respectively HB): the starting (respectively ending) elevation,

– H
′
A (respectively H

′
B): the starting (respectively ending) slope,

– pi, qj , and cij (for all i ∈ S ∪B, j ∈ S ∪W): excavation, embankment, and
hauling costs, and

– the locations of the borrow and waste pits.

2.1.2 Objective and constraints

Using the definitions and model parameters explained in Section 2.1.1, we for-
mulate the model of [Mor09] with modifications from [KL10].

Objective function

min
∑
i∈S

(
piV

+
i + qiV

−
i

)
+
∑
i∈B

∑
j∈N i

→

pixij +
∑
i∈W

∑
j∈N i

←

qixji +
∑

(i,j)∈N 2

cijxij .

(2.9a)

Balance constraints

∑
j∈N i

→

xij = V +
i , for all i ∈ S, (2.9b)

∑
j∈N i

←

xji = V −i , for all i ∈ S. (2.9c)

Pit constraints

∑
j∈N i

→

xij ≤ Cbi , for all i ∈ B, (2.9d)

∑
j∈N i

←

xji ≤ Cwi , for all i ∈ W . (2.9e)
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Volume constraints

V +
i − V

−
i = Aiui, for all i ∈ S. (2.9f)

Gap constraints

hg,i − ag,3
(sg,i+1)

2 + sg,i+1sg,i + (sg,i)
2

3
− ag,2

sg,i+1 + sg,i
2

− ag,1 = uκ(g,i),

for all g ∈ G, i ∈ Sg. (2.9g)

Slope constraints

L ≤ ag,2 + 2ag,3sg,i ≤ U , for all g ∈ G, i ∈ {1, ng}. (2.9h)

Smoothness constraints

ag,1 + ag,2sg,1 + ag,3s
2
g,1 = a(g−1),1 + a(g−1),2sg,1 + a(g−1),3s

2
g,1,

for all g ∈ G\{1}, (2.9i)

ag,2 + 2ag,3sg,1 = a(g−1),2 + 2a(g−1),3sg,1, for all g ∈ G\{1}. (2.9j)

Fixed point constraints

a1,1 + a1,2s1,1 + a1,3s
2
1,1 = HA, (2.9k)

am,1 + am,2sm,nm + am,3s
2
m,nm

= HB , (2.9l)

a1,2 + 2a1,3s1,1 = H
′
A, (2.9m)

am,2 + 2am,3sm,nm = H
′
B . (2.9n)
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Bounds

xij ≥ 0, for all (i, j) ∈ N 2, (2.9o)

V +
i ≥ 0, for all i ∈ S, (2.9p)

V −i ≥ 0, for all i ∈ S, (2.9q)

ui ≤ ui ≤ ui, for all i ∈ S, (2.9r)

ag,k ∈ R, for all g ∈ G, k ∈ {1, 2, 3}. (2.9s)

2.1.3 Model discussion

The objective function, represented by Equation (2.9a), minimizes the total of
excavation, embankment, and hauling costs.

The balance constraints, represented by Equations (2.9b) and (2.9c), ensure that
the total volume moved from a section is equal to the volume excavated from that
section, and the total volume moved to a section equals to the volume embanked to
that section.

The pit constraints, represented by Equations (2.9d) and (2.9e), enforce the
excavated volume or embanked volume of a borrow or waste pit to be within its
capacity.

The volume constraints, represented by Equation (2.9f), force the total volume
excavated from or embanked to a section to be equal to the volume difference
between ground profile and road profile of that section. Equation (2.9f) also implies
that ui > 0 for a cut, ui < 0 for a fill, and ui = 0 for a section that is neither cut
nor fill.

Proposition 2.14. Remark 2.6 holds at the optimal solution.

Proof. For eventual contradiction, assume that there exists a section i such that
V +
i = δ+ and V −i = δ− in the optimal solution, where δ+ > 0 and δ− > 0. If
δ+ ≥ δ− (respectively δ+ < δ−) , then V +

i = δ+ − δ− and V −i = 0 (respectively
V +
i = 0 and V −i = δ− − δ+) give the same ui for Equation (2.9f) with a lower

objective value.

For any section i, ui is defined to be the difference between the average height
of the ground and the height of the potential road at that section. This definition
was written as the gap constraints in [Mor09]. For all g ∈ G, i ∈ Sg, the gap
constraints are

hg,i − Pg
(
sg,i+1 + sg,i

2

)
= uκ(g,i). (2.10)
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Equation (2.10) checks the gap at the middle point of a section, which is a source
of inaccuracy. The gap constraints were improved in [KL10] by considering area
gap instead of the height gap. For all g ∈ G, i ∈ Sg, the improved gap constraints
are ˆ sg,i+1

sg,i

hg,idx−
ˆ sg,i+1

sg,i

Pg(x)dx =

ˆ sg,i+1

sg,i

uκ(g,i)dx, (2.11)

resulting in

hg,i(sg,i+1 − sg,i)− ag,3
(sg,i+1)

3 − (sg,i)
3

3
− ag,2

(sg,i+1)
2 − (sg,i)

2

2
− ag,1(sg,i+1 − sg,i) = uκ(g,i)(sg,i+1 − sg,i). (2.12)

Equation (2.9g) is a simplification of Equation (2.12).
The slope constraints imply that the slope of the spline segments must be

bounded. The slope of the polynomial Pg(x) is calculated as

P
′
g(x) = ag,2 + 2ag,3x. (2.13)

It should be noted that the lower (L) and the upper (U ) bounds of the slope are cal-
culated from the curvature requirements and maximum gradient constraints of the
vertical alignment design specifications. Since the spline segments are quadratic,
the slope of each segment is linear. The maximum and the minimum of a linear
function occurs at the boundary points. So, checking the slope constraint at the
beginning point and the end point of each segment is sufficient.

Smoothness constraints enforce the spline segments to be continuous (by Equa-
tion (2.9i)) and differentiable (by Equation (2.9j)) at their joining points. Equations
(2.9i) and (2.9j) are also known as the C0 and C1 continuity constraints respec-
tively.

The fixed point constraints fix the starting and ending elevations (by Equations
(2.9k) and (2.9l)) as well as the starting and ending slope (by Equations (2.9m) and
(2.9n)).

Equations (2.9o) to (2.9s) state the bounds of the decision variables.

Proposition 2.15. (Model size) The LP hasO(n2) continuous variables andO(n)
constraints.

Proof. The total number of continuous variables is 2n + nb + nw + n2 + nbn +
nwn + 3m + n ≤ 8n + 3n2 since n ≥ nb, n ≥ nw, and n ≥ m. Each of
the Equations from (2.9b) to (2.9g) creates O(n) constraints. Slope, Continuity,
and Endpoint constraints are O(m) in number. The total number of constraints is
O(n), since n ≥ m.
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2.1. Spline LP model for vertical alignment optimization

Example 2.16. We optimize the vertical alignment for a 100m long hypothetical
road with no borrow or waste pits. The length of each section is 25m, and the road
width is 3.5m. The cost components and design parameters are

– excavation cost: $3.13 per unit volume,

– embankment cost: $7.05 per unit volume,

– hauling cost: $0.008 per unit volume per unit distance,

– bounds for slope change: L = −0.5, U = 0.5,

– start and end elevations: HA = 22m, HB = 18m,

– station points: s1,1 = 0m, s1,2 = 50m, s2,1 = 50m, s2,2 = 100m, and

– height of the ground for each section: h1,1 = 20m, h1,2 = 25m, h2,1 =
16m, h2,2 = 9m.

The resulting LP is as follows.

min 3.13V +
1 + 3.13V +

2 + 3.13V +
3 + 3.13V +

4 + 7.05V −1 + 7.05V −2
+7.05V −3 + 7.05V −4 + 0.02x12 + 0.04x13 + 0.06x14 + 0.02x21

+0.02x23 + 0.04x24 + 0.04x31 + 0.02x32 + 0.02x34 + 0.06x41

+0.04x42 + 0.02x43 ,

s.t. x12 + x13 + x14 = V +
1 , x21 + x23 + x24 = V +

2 , x31 + x32 + x34 = V +
3 ,

x41 + x42 + x43 = V +
4 , x21 + x31 + x41 = V −1 , x12 + x32 + x42 = V −2 ,

x13 + x23 + x43 = V −3 , x14 + x24 + x34 = V −4 , V
+
1 − V

−
1 = 87.5u1,

V +
2 − V

−
2 = 87.5u2, V

+
3 − V

−
3 = 87.5u3, V

+
4 − V

−
4 = 87.5u4,

20− a11 − 12.5a12 − 208.333a13 = u1,

25− a11 − 37.5a12 − 1458.333a13 = u2,

16− a21 − 62.5a22 − 3958.333a23 = u3,

9− a21 − 87.5a22 − 7708.333a23 = u4,−0.5 ≤ a12 ≤ 0.5,

−0.5 ≤ a12 + 100a13 ≤ 0.5,−0.5 ≤ a22 + 100a23 ≤ 0.5,

−0.5 ≤ a22 + 200a23 ≤ 0.5, a21 + 100a22 + 10000a23 = 18,

a11 = 22, a11 + 50a12 + 2500a13 = a21 + 50a22 + 2500a23,

a12 + 100a13 = a22 + 100a23,−10 ≤ u1, u2, u3, u4 ≤ 10

V +
1 , V

+
2 , V

+
3 , V

+
4 , V

−
1 , V

−
2 , V

−
3 , V

−
4 ≥ 0 .

The LP has 27 variables and 36 constraints. The output is shown in Figure 2.1.
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2.1. Spline LP model for vertical alignment optimization
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(b) Earth movement between the sections.

Figure 2.1: Optimized vertical alignment for a hypothetical road example
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2.2. MILP model for earthwork optimization with blocks

2.2 MILP model for earthwork optimization with blocks

The mixed integer linear programming (MILP) model for earthwork optimiza-
tion with blocks was proposed by Hare, Koch, and Lucet [HKL11]. In this model,
the earthwork operations are optimized for a predetermined vertical alignment. The
output is the optimal schedule for moving earth among the sections.

2.2.1 Definitions and model parameters

In this section, we discuss the definitions and model parameters of this model.

Remark 2.17. Borrow and waste pits are necessary to ensure feasible solutions
exist [Koc10, HKL11] (except for the unlikely case where the sum of the volume
difference between ground profile and road profile of the cut sections is equal to
that of the fill sections). For vertical alignment calculation, borrow pits and waste
pits are introduced to give more flexibility to the solution, whereas for earthwork
optimization without them it is very unlikely a feasible solution exists.

Definition 2.18. Block. A block is an obstacle that needs to be dealt with before
any earth can be moved over the location [Koc10, HKL11]. There are nz blocks,
which are indexed by the set I = {1, 2, ..., nz} and

ς : I → S (2.14)

maps the block index to the section index.

The process is discretized into time-steps to deal with blocks. The set T con-
tains the indexes of the time-steps, and the binary variable ykt represents whether
a block k ∈ I is removed at time-step t (ykt = 1) or not (ykt = 0). It is ensured
that at each time-step at least one block will be removed, i.e., the number of time-
steps will be at most nz + 1. It should be noted that the introduction of the binary
variables ykt, makes the model a mixed integer linear program.

Definition 2.19. Access roads. An access road is defined as a road that gives
access for earthwork to occur to any section to which it is attached. The index set
R = {1, 2, ..., nr} contains the indexes of the access roads and

% : R → S (2.15)

maps the access road index to the section index.

Assumption 2.20. There is a borrow pit and a waste pit attached with each access
road with infinite capacity.
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2.2. MILP model for earthwork optimization with blocks

Remark 2.21. Assumption 2.20 is reasonable in a sense that an access road can be
used to borrow earth from or dump earth to anywhere in the world.

For all k ∈ I, the set N k
b consists of all the pairs (i, j) such that the block k is

in between the sections i and j,

N k
b = {(i, j) : i ≤ ς(k) ≤ j, i ∈ N , j ∈ N , i 6= j}, (2.16)

the set N k1,k2
b consists of all indexes i such that the section i is in between the

blocks k1 and k2,

N k1,k2
b = {i ∈ N : ς(k1) ≤ i ≤ ς(k2)}, (2.17)

the setN←,kb consists of all indexes i such that the section i comes before block k,

N←,kb = {i ∈ N : i ≤ ς(k)}, (2.18)

and the set N k,→
b consists of all indexes i such that the section i comes after block

k,
N k,→
b = {i ∈ N : i ≥ ς(k)}. (2.19)

The set I consists of pairs (k1, k2) such that there is no access road in between the
blocks k1 and k2,

I = {(k1, k2) : k1, k2 ∈ I, r ∈ R, ς(k1) ≤ ς(k2), (%(r) < ς(k1) or ς(k2) > %(r))},
(2.20)

the set I→ consists of blocks that have no access road after them,

I→ = {k ∈ I : %(r) < ς(k), r ∈ R}, (2.21)

and the set I← consists of blocks that have no access road before them,

I← = {k ∈ I : ς(k) > %(r), r ∈ R}. (2.22)

Finally, we define M to be the maximum of total cut volume and total fill volume,

M = max{
∑
i∈S

V +
i ,
∑
i∈S

V −i }. (2.23)

We also use some definitions and model parameters from Section 2.1.1. The
earth movement variables xij are changed in this model with an additional index
for time-step.
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2.2. MILP model for earthwork optimization with blocks

– The total number of section is n, which are indexed by the set S = {1, 2, ..., n}.
The volume of earth moved from section i to section j at time-step t is de-
noted by xijt. The cut and fill volume of a section i are denoted by V +

i and
V −i respectively.

– There are nb borrow pits, which are indexed by the set B = {n + 1, n +
2, ..., n+ nb}, nw waste pits, which are indexed by the setW = {n+ nb +
1, n+ nb + 2, ..., n+ nb + nw},

ϑ : B → S (2.24)

maps the borrow pit index to the section index to which it is attached,

ϕ :W → S (2.25)

maps the waste pit index to the section index to which it is attached. The
dead haul distance of the ith borrow or waste pit is denoted by d̃i, the ca-
pacity of the ith borrow pit (respectively waste pit) is denoted by Cbi (respec-
tively Cwi ), and the set of all the sections, borrow pits, and waste pits indexes
is denoted by N = S ∪ B ∪W = {1, 2, ..., n+ nb + nw}.

Cost components

Cost components for this model are identical to the previous model.

Decision variables

The decision variables are

– xijt (for all (i, j) ∈ N 2, t ∈ T ): the volume of earth moved from one section
to another at a particular time step,

– ykt (for all t ∈ T , k ∈ I): the block removal indicators.

Design parameters

The design parameters for the MILP are

– n: the number of sections,

– nz: the number of blocks,

– V +
i (for all i ∈ S ∪ B): the volume of earth excavated from any section,

26



2.2. MILP model for earthwork optimization with blocks

– V −i (for all i ∈ S ∪W): the volume of earth embanked to any section,

– εs+i (respectively εs−i ): the stockpiling tolerance of a cut (respectively fill)
section,

– pi, qj , and cij (for all i ∈ S ∪B, j ∈ S ∪W): excavation, embankment, and
hauling costs, and

– the locations of the borrow pits, waste pits, blocks, and access roads.

2.2.2 Objective and constraints

Objective function

min
∑
i∈S

(
piV

+
i + qiV

−
i

)
+
∑
i∈B

∑
j∈N i

→

∑
t∈T

pixijt

+
∑
i∈W

∑
j∈N i

←

∑
t∈T

qixjit +
∑

(i,j)∈N 2

∑
t∈T

cijxijt. (2.26a)

Balance constraints

∑
t∈T

∑
j∈N i

→

xijt = V +
i , for all i ∈ S, (2.26b)

∑
t∈T

∑
j∈N i

←

xjit = V −i , for all i ∈ S. (2.26c)

Pit constraints

∑
t∈T

∑
j∈N i

→

xijt ≤ Cbi , for all i ∈ B, (2.26d)

∑
t∈T

∑
j∈N i

←

xjit ≤ Cwi , for all i ∈ W . (2.26e)

Volume constraints

V +
i − V

−
i = Vi , for all i ∈ S. (2.26f)
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2.2. MILP model for earthwork optimization with blocks

Stockpiling constraints

u∑
t=1

∑
j∈N i

→

xijt −
u∑
t=1

∑
j∈N i

←

xjit ≤ Vi + εs+i ,

for all i ∈ S, u ∈ T \{nz + 1}, Vi ≥ 0, (2.26g)

u∑
t=1

∑
j∈N i

→

xijt −
u∑
t=1

∑
j∈N i

←

xjit ≥ Vi − εs−i ,

for all i ∈ S, u ∈ T \{nz + 1}, Vi < 0. (2.26h)

Block constraints

xijt ≤Mykt, for all t ∈ T , k ∈ I, (i, j) ∈ N k, (2.26i)

xijt ≤Myk1t +Myk2t, for all t ∈ T , (k1, k2) ∈ I, (i, j) ∈ N k1,k2 , (2.26j)

u∑
t=0

∑
j∈N ς(k)

→

xς(k)jt −
u∑
t=0

∑
j∈N ς(k)

←

xjς(k)t ≥ ykuVς(k),

for all k ∈ I, u ∈ T , Vς(k) ≥ 0, (2.26k)

u∑
t=0

∑
j∈N ς(k)

→

xς(k)jt −
u∑
t=0

∑
j∈N ς(k)

←

xjς(k)t ≤ ykuVς(k),

for all k ∈ I, u ∈ T , Vς(k) < 0, (2.26l)

∑
k∈I

ykt ≥ t, for all t ∈ T \{nz + 1}, (2.26m)

yk,(t+1) ≥ yk,t, for all k ∈ I, t ∈ T \{nz + 1}. (2.26n)
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2.2. MILP model for earthwork optimization with blocks

Bounds

xijt ≥ 0, for all (i, j) ∈ N 2, t ∈ T , (2.26o)

ykt ∈ {0, 1}. for all k ∈ I, t ∈ T , (2.26p)

2.2.3 Model discussion

In the objective function, represented by Equation (2.26a), the sum of the ex-
cavation, embankment, and hauling cost is minimized.

The balance constraints, represented by Equations (2.26b) and (2.26c), and the
pit constraints, represented by Equations (2.26d) and (2.26e), have the additional
sum over the time-steps.

Unlike the vertical alignment model, the right-hand side of the equation repre-
senting the volume constraints (2.26f) for the earthwork model is a constant, i.e.,
the total volume of a section is predetermined.

Introducing time-steps to the earthwork model generates an interesting phe-
nomenon. In the intermediate time-steps temporary stockpiling of earth in differ-
ent sections occurs. If the stockpiling is not controlled, then temporary blocks may
be created. Stockpiling constraints, represented by Equations (2.26h) and (2.26h),
are introduced to deal with this phenomenon. These constraints allow a cut section
to store an excess of εs+i volume and a fill section to excavate an excess of εs−i
volume.

If there is a block between two sections then no earth movement is allowed
between those sections until the block is removed, which is ensured by Equation
(2.26i). No earth movement is allowed among sections that are in between two
blocks without an access road until one of the blocks is removed, which is en-
forced by Equation (2.26j). Constraints (2.26k) and (2.26l) ensure that when the
required amount of earth is cut or filled for any section with a block, then the block
is considered removed for that section. These constraints are also called the block
removal indicators. Constraints (2.26m) certify that at least one block will be re-
moved at each time-step. After a block is removed at any time-step, it must stay
removed at all the later time-steps. These redundant constraints are enforced by
Equation (2.26n).

Equations (2.26o) to (2.26p) state the bounds for the decision variables.

Proposition 2.22. (Sufficient conditions for feasibility without blocks) Assume Vs =∑
i∈S(V +

i − V
−
i ), Vb =

∑
i∈B V

+
i , and Vw =

∑
i∈W V −i . If there are no blocks,

Vw − Vs ≥ 0, and Vb + Vs ≥ 0, then the MILP always has a solution.
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2.2. MILP model for earthwork optimization with blocks

Proof. Since the conditions imply that the waste pits and the borrow pits provide
sufficient slack, the MILP is always feasible with no blocks.

Proposition 2.23. (Sufficient conditions for feasibility with blocks) Assume Vs =∑
i∈S(V +

i − V
−
i ). If there exists an access road with a borrow pit having volume

Vb and waste pit having volume Vw such that Vw − Vs ≥ 0 and Vb + Vs ≥ 0 holds,
then the MILP always has a solution.

Proof. A feasible solution is to remove the blocks sequentially by borrow and
waste pits attached with the access roads. Then by Proposition 2.22, the MILP
is always feasible.

Corollary 2.24. If there is at least one access road, then Assumption 2.20 ensures
that the MILP always has a solution.

Proposition 2.25. (Model size) The MILP has O(n2nz) continuous variables,
O(n2z) binary variables, and O(n2nz) constraints.

Proof. The total number of continuous variables is (n2 + nbn+ nwn)(nz + 1) ≤
3n2 × 2nz , since n > nb and n > nw. The total number of binary variables is
nz(nz + 1) ≤ 2n2z . Equations (2.26b), (2.26c), (2.26d), (2.26e), and (2.26f) create
3n + nb + nw = O(n) constraints. Equations (2.26g) and (2.26h) create nzn =
O(nzn) stockpiling constraints. Equations (2.26i) and (2.26j) create O(n2nz),
Equations (2.26k) and (2.26l) create O(n2z), Equation (2.26m) creates O(nz), and
Equation (2.26m) createsO(n2z) block constraints. The total number of constraints
is O(n2nz).

Example 2.26. We add a block in Section 3 and an access road in Section 1 to
the vertical alignment calculated in Example 2.16. Then we solve the earthwork
optimization. The output is shown in Figure 2.2.
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Figure 2.2: Optimized earthwork schedule for a hypothetical road example (with
blocks).
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Chapter 3

A Basic MILP Model for Vertical
Alignment Considering Blocks
and Side-slopes1

If I were again beginning my stud-
ies, I would follow the advice of Plato
and start with mathematics.

Galileo Galilei (1564 - 1642)

The spline LP model presented in Section 2.1.2 is an improvement over other
models of vertical alignment, because it approximates the road profile with a piece-
wise polynomial and thus results in a smoother solution. But the model does not
consider blocks or side-slopes of the road.

The MILP model described in Section 2.2.2 considers blocks, but it only op-
timizes earthwork for a predetermined vertical alignment. The structure of this
model leads to automatic stockpiling or roadside stockpiling. Although roadside
stockpiling has theoretical significance, in practice the engineers want to avoid it as
much as possible. The model also assumes that the cost for stockpiling is the same
as the cost for embankment, which is not true since stockpiling cost is less. Incor-
porating this in the model, makes it more complex, and since that scenario occurs
rarely in practice, the model introduced in this chapter will assume that no road-
side stockpiling occurs. We leave the inclusion of roadside stockpiling for future
research. The most common form of stockpiling is called pit stockpiling, which
uses borrow and waste pits for stockpiling. This feature can be easily incorporated
by changing only the input of the model.

In this chapter, we will combine the spline LP model for vertical alignment op-
timization and the MILP model for earthwork optimization with blocks to describe
a spline MILP model for vertical alignment that considers blocks. For this model,
we assume that only pit stockpiling occurs, and we add additional constraints to

1A preliminary patent application was filed in Canada for part of the contents of the current
chapter.
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3.1. Definitions and model parameters

prevent roadside stockpiling. We further extend the model to incorporate side-
slopes.

3.1 Definitions and model parameters

For this model, we use the definitions and model parameters from Sections
2.1.1 and 2.2.1 that are described briefly in this section with some additional defi-
nitions.

– The quadratic spline that represents the road profile has m segments, which
are indexed by the set G = {1, 2, ...,m}. For all g ∈ G the equation for each
segment is

Pg(x) = ag,1 + ag,2x+ ag,3x
2. (3.1)

– The gth spline segment has ng sections, which are indexed by the set Sg =
{1, 2, ..., ng}, n =

∑
g∈G ng is the total number of sections, which are in-

dexed by the set S = {1, 2, ..., n},

κ : (G,Sg)→ S (3.2)

maps the section index of a spline segment to the actual section index. The
volume of earth moved from section i to section j at time-step t is denoted by
xijt, the starting point of the ith section of the gth spline segment is denoted
by sg,i, and the end point is denoted by sg,i+1. The cut and fill volume of a
section i are denoted by V +

i and V −i respectively.

– There are nb borrow pits, which are indexed by the set B = {n + 1, n +
2, ..., n+ nb}, nw waste pits, which are indexed by the setW = {n+ nb +
1, n+ nb + 2, ..., n+ nb + nw},

ϑ : B → S (3.3)

maps the borrow pit index to the section index to which it is attached,

ϕ :W → S (3.4)

maps the waste pit index to the section index to which it is attached. The
dead haul distance of the ith borrow or waste pit is denoted by d̃i, the ca-
pacity of the ith borrow pit (respectively waste pit) is denoted by Cbi (respec-
tively Cwi ), and the set of all the sections, borrow pits, and waste pits indexes
is denoted by N = S ∪ B ∪W = {1, 2, ..., n+ nb + nw}.
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3.1. Definitions and model parameters

– For each i ∈ N , the index set N i
→ consists of all indexes j such that xijt is

a permitted move, the index set N i
← consists of all indexes j such that xjit

is a permitted move, and the setN 2 consists of all pair of indexes (i, j) such
that xijt is a permitted move for all t ∈ T . The set H consists of the fixed
points Hg,i for the ith section of segment g.

– There are nz blocks, which are indexed by the set I = {1, 2, ..., nz}, nr
access roads, which are indexed by the setR = {1, 2, ..., nr},

ς : I → S (3.5)

maps the block index to the section index,

% : R → S (3.6)

maps the access road index to the section index. The set T contains the
indexes of the time-steps, and the binary variable ykt is the block removal
indicator for block k at time-step t. At each time step at least one block will
be removed, i.e., the number of time steps will be at most nz+1. Assumption
2.20 states that there is a borrow pit and a waste pit attached with each access
road with infinite capacity.

– For all k ∈ I, the set N k
b consists of all the pairs (i, j) such that the block k

is in between the sections i and j, the set N k1,k2
b consists of all the indexes

i such that the section i is in between the blocks k1 and k2, the set N←,kb

consists of all the indexes i such that the section i is before block k, the set
N k,→
b consists of all the indexes i such that the section i is after block k,

the set I consists of all the pairs (k1, k2) such that there is no access road
in between the blocks k1 and k2, the set I→ consists of blocks that have no
access road after them, and the set I← consists of blocks that have no access
road before them.

3.1.1 Cost components

For this model, we will use the cost components from Section 2.1.1 that are
described briefly in this section.

– For a section i, the per unit volume excavation cost is pi, and the per unit
volume embankment cost is qi.

– The per unit volume hauling cost from section i to section j is cij = cdij ,
where c represents the cost of moving one unit volume of earth by one unit
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3.1. Definitions and model parameters

distance, and

dij =


distance between i and j if i, j ∈ S
dϑ(i)j + d̃i if i ∈ B and j ∈ S
diϕ(j) + d̃j if i ∈ S and j ∈ W .

(3.7)

3.1.2 Decision variables

The decision variables are

– V +
i (for all i ∈ S): the volume of earth excavated from any section,

– V −i (for all i ∈ S): the volume of earth embanked to any section,

– xijt (for all (i, j) ∈ N 2, t ∈ T ): the volume of earth moved from one section
to another at a particular time step,

– ag,k (for all g ∈ G, k ∈ {1, 2, 3}): the coefficient of the quadratic polynomi-
als,

– ui (for all i ∈ S): the height difference of the ground profile from the road
profile for any section,

– ykt (for all t ∈ T , k ∈ I): the block removal indicators,

– bi (for all i ∈ S): binary variables to ensure that no roadside stockpiling
occurs.

3.1.3 Design parameters

The design parameters for the MILP are

– m: the number of spline segments,

– ng (for all g ∈ G): the number of sections per spline segment,

– sg,i (for all g ∈ G, i ∈ Sg): the start and end points of the sections,

– hg,i (for all g ∈ G, i ∈ Sg): the average height of the ground for each section,

– ui and ui (for all i ∈ S): the upper and lower bound of the variable ui,

– Ai (for all i ∈ S): the area of each section,

– L (respectively U ): the lower (respectively upper) bound of the slope,
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3.2. Model description

– HA (respectively HB): the starting (respectively ending) elevation,

– H
′
A (respectively H

′
B): the starting (respectively ending) slope,

– Hg,i ∈ H: the fixed points,

– nz: the number of blocks,

– Akai ,Bkb
i (for all i ∈ S, ka ∈ {1, 2, ..., k+i }, kb ∈ {1, 2, ..., k

−
i }): area list for

side-slope approximation,

– pi, qj , and cij (for all i ∈ S ∪B, j ∈ S ∪W): excavation, embankment, and
hauling costs, and

– the locations of the borrow pits, the waste pits, the blocks, and the access
roads.

3.2 Model description

3.2.1 The objective function

The objective of this problem is to find the vertical alignment while minimizing
the total excavation cost, embankment cost, and hauling cost. So, the objective
function can be written as the following,

min
∑
i∈S

(
piV

+
i + qiV

−
i

)
+
∑
i∈B

∑
j∈N i

→

∑
t∈T

pixijt

+
∑
i∈W

∑
j∈N i

←

∑
t∈T

qixjit +
∑

(i,j)∈N 2

∑
t∈T

cijxijt. (3.8)

3.2.2 Balance constraints

The cut balance constraints ensure that for all sections the total volume moved
from a section in all time-steps must be equal to the volume excavated from that
section, for all i ∈ S,

∑
t∈T

∑
j∈N i

→

xijt = V +
i . (3.9a)
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3.2. Model description

The fill balance constraints ensures that for all sections the total volume moved to
a section in all time-steps must be equal to the volume embanked to that section,
for all i ∈ S,

∑
t∈T

∑
j∈N i

←

xjit = V −i . (3.9b)

3.2.3 Pit constraints

The borrow pit constraints ensure that the total excavated volume from a bor-
row pit does not exceed its limit. So, for all i ∈ B,∑

t∈T

∑
j∈N i

→

xijt ≤ Cbi . (3.10)

Similarly, the waste pit constraints ensure that the total dumped volume to a waste
pit does not exceed its capacity. So, for all i ∈ W ,∑

t∈T

∑
j∈N i

←

xjit ≤ Cwi . (3.11)

3.2.4 Block constraints

If there is a block between two sections then no earth movement is allowed
among those two sections until the block is removed. So, for all t ∈ T \{1},
k ∈ I, and (i, j) ∈ N k

b we have,

xijt ≤Myk,t−1. (3.12a)

Also, no earth movement is allowed among sections that are in between two blocks
without an access road until one of the blocks is removed. So, for all t ∈ T \{1},
(k1, k2) ∈ I2, and i, j ∈ N k1,k2

b we have,

xijt ≤Myk1,t−1 +Myk2,t−1. (3.12b)

If there is no access road before any block then no earth movement is allowed
among sections before that block until the block is removed. So, for all t ∈ T \{1},
k ∈ I←, and i, j ∈ N←,kb we have,

xijt ≤Myk,t−1. (3.12c)
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3.2. Model description

If there is no access road after any block then no earth movement is allowed among
sections after that block until the block is removed. So, for all t ∈ T \{1}, k ∈ I→,
and i, j ∈ N k,→

b we have,
xijt ≤Myk,t−1. (3.12d)

The difficulty of combining models of Sections 2.1.2 and 2.2.2 appears in con-
straints (2.26k) and (2.26l). Both yku and Vς(k) (for all k ∈ I, u ∈ T ) are decision
variables in the vertical alignment problem with blocks, so constraints (2.26k) and
(2.26l) become quadratic with respect to the decision variables, i.e., the model is
no longer a linear program. We use Lemma 3.1 as described in [Bis09] to solve
this issue.

Lemma 3.1. For any optimization problem, if y ∈ {0, 1}, 0 ≤ x ≤ m, and w ∈ R
are the decision variables then the following constraints ensure that w = xy,

w ≤ my, (3.12e)

w ≤ x, (3.12f)

w ≥ x−m(1− y), (3.12g)

w ≥ 0. (3.12h)

Proof. For y = 0, Equations (3.12e) and (3.12h) imply w = 0, and Equations
(3.12f) and (3.12g) imply 0 ≤ x ≤ m. For y = 1, Equations (3.12f) and (3.12g)
imply w = x, and Equations (3.12e) and (3.12h) imply 0 ≤ x ≤ m. So, for both
cases Equations (3.12e), (3.12f), (3.12g) and (3.12h) imply w = xy and 0 ≤ x ≤
m.

Lemma 3.1 allows us to rewrite the quadratic terms as linear terms by intro-
ducing additional continuous variables. For all k ∈ I and t ∈ T , we introduce
continuous decision variables W+

kt and W−kt such that W+
kt = yktV

+
ς(k) for the cut

sections with blocks and W−kt = yktV
−
ς(k) for the fill sections with blocks. For all

k ∈ I, t ∈ T , the following constraints ensures that W+
kt = yktV

+
ς(k),

W+
kt ≤M

+
ς(k)ykt, (3.12i)

W+
kt ≤ V

+
ς(k), (3.12j)

W+
kt ≥ V

+
ς(k) −M

+
ς(k)(1− ykt), (3.12k)

W+
kt ≥ 0, (3.12l)
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3.2. Model description

and the following constraints ensures that W−kt = yktV
−
ς(k),

W−kt ≤M
−
ς(k)ykt, (3.12m)

W−kt ≤ V
−
ς(k), (3.12n)

W−kt ≥ V
−
ς(k) −M

−
ς(k)(1− ykt), (3.12o)

W−kt ≥ 0. (3.12p)

The block removal indicator constraints ensure that when the required amount of
earth is cut or filled for any section with blocks then the block is removed for that
section. For all k ∈ I, u ∈ T , these constraints are written as follows,

u∑
t=0

∑
j∈N ς(k)

→

xς(k)jt ≥W+
ku, (3.12q)

u∑
t=0

∑
j∈N ς(k)

←

xjς(k)t ≥W−ku. (3.12r)

At least one block must be removed at each time-step. So, for all t ∈ T \{nz + 1},∑
k∈I

ykt ≥ t. (3.12s)

The monotonicity constraints are optional constraints that ensure that if a block is
removed at any time-step then it will stay removed for all the later time-steps. So,
for all k ∈ I, t ∈ T \{nz + 1},

yk,(t+1) ≥ yk,t. (3.12t)

3.2.5 Volume constraints

The volume constraints ensure that the total volume excavated from a section or
embanked to a section must be equal to the volume difference between the ground
profile and the road profile for that section. For all i ∈ S , if the area for is Ai then
the volume constraints can be written as

V +
i − V

−
i = Aiui. (3.13a)

Equation (3.13a) also implies that ui > 0 for a cut, ui < 0 for a fill, and ui = 0 for
a section that is neither cut nor fill.
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Without side-slopes With side-slopes 

 

Figure 3.1: The cross-section of a road with and without side-slopes (for a cut).

 
 

Road Profile 

Ground Profile 
Without side-slopes With side-slopes 

Figure 3.2: The cross-section of a road with and without side-slopes (for a fill).

Side-slopes

Constructed roads must have side-slopes for stability reasons. Not considering
side-slopes in the model introduces significant errors in the volume.

Definition 3.2. Side-slopes. Side-slopes are defined as the gradual decrease (re-
spectively increase) of height from the road profile to the ground profile for a fill
(respectively cut) section.

Figures 3.1 and 3.2 show the cross-section of a road with and without side-
slopes for a cut and a fill respectively. Without side-slopes the cross-section of
a road is a rectangle, and with side-slopes it is typically a trapezoid. So, for a
fixed section length and width the volume of a section is a linear function of the
height of the road when side-slopes are not considered. However, when side-slopes
are considered, the volume becomes a quadratic function of the height for typical
roads, and thus the linear structure of the model is violated. Some real world
examples exist where the constructed road must have very complicated side-slopes.
So, we seek a general way to approximate side-slopes that not only performs very
well for the typical roads but also performs reasonably for worst case scenarios.
Since the cost parameters for this model are estimations with a 5% expected error,
the model will be practical if the approximation of side-slopes is within the error
margin.
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Figure 3.3: Approximation of side-slopes (for a cut).

  
 

 

  
 

 

  
 

 

   

 

Before approximation After approximation 

 

Figure 3.4: Approximation of side-slopes (for a fill).

Approximation of side-slopes

For typical roads with side-slopes, we propose to approximate the trapezoid
shaped cross-sections with k rectangles. We call the height of such a rectangle the
slab-height. Figures 3.3 and 3.4 show the approximation of side-slopes for a cut
and a fill respectively.

The cross-section of a cut section i is approximated by k+i rectangles having

slab-height u1i , u
2
i , ..., u

k+i
i and width w1

i , w
2
i , ..., w

k+i
i where

0 < w1
i < w2

i < ... < w
k+i
i . (3.13b)

So, for the cut section i with section length of L, the volume of these rectangular

bars are A1
iu

1
i , A

2
iu

2
i , ..., A

k+i
i u

k+i
i with

0 < A1
i < A2

i < ... < A
k+i
i (3.13c)

where Aki = wki × L for all k ∈ {1, 2, ..., k+i }.
Similarly, if the side slope of a fill section i with section length of L is ap-

proximated by k−i rectangular bars having slab-height u1i , u
2
i , ..., u

k+i
i and area

B1
i , B

2
i , ..., B

k−i
i with

0 < B1
i < B2

i < ... < B
k−i
i (3.13d)
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3.2. Model description

then the volume of these bars are B1
i u

1
i , B

2
i u

2
i , ..., B

k−i
i u

k−i
i . It should be noted

that uki are negative numbers for all k ∈ {1, 2, ..., k−i }, and Equations (3.13c) and
(3.13d) are the assumptions of the model.

For all i ∈ S, ka ∈ {1, 2, ..., k+i }, and kb ∈ {1, 2, ..., k−i }, the cut and fill area
lists, Akai andBkb

i , are given to the model as a table, which is called a lookup table.
So, a lookup table has k+i entries for cut area information and k−i entries for fill
area information.

First, we will develop the side-slope equations for the cut sections and then
extend the same idea for the fill sections. For a cut section i, V −i = 0, so the
volume constraint (3.13a) becomes

V +
i = Aiui. (3.13e)

If the cut section is approximated by k+i entries from the lookup table then the
volume constraint considering side-slopes can be written as

V +
i = A1

iu
1
i +A2

iu
2
i + ...+A

k+i
i u

k+i
i (3.13f)

where 0 ≤ u1i ≤ u1i , 0 ≤ u2i ≤ u2i , ..., 0 ≤ uk
+
i
i ≤ u

k+i
i , and ui = u1i+u

2
i+...+u

k+i
i .

Proposition 3.3. For any optimal solution to the MILP, if i is a cut section and
u1i +u2i + ...+uki ≤ ui ≤ u1i +u2i + ...+uk+1

i then u1i = u1i , u
2
i = u2i ,..., u

k
i = uki ,

uk+1
i = ui − (u1i + u2i + ...+ uki ), uk+2

i = 0, uk+3
i = 0,..., uk

+
i
i = 0.

Proof. Since V +
i = A1

iu
1
i + A2

iu
2
i + ... + A

k+i
i u

k+i
i is being minimized in the

objective function and 0 < A1
i < A2

i < ... < A
k+i
i , u1i must be equal to u1i if u2i

has a value, otherwise there is another solution with a lower objective value. With
similar logic, u2i , u

3
i , ..., u

k
i must go to their upper bounds, uk+1

i must equal to the
remaining height, and rest must be 0.

Remark 3.4. The above implementation of side slopes introduces k+i + k−i more
continuous variables for each section i.

Lemma 3.5. Given 0 < A1 < A2, consider
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3.2. Model description

(LP1) min
u1,u2

V,

s.t. V = A1u1 +A2u2,

u = u1 + u2,

0 ≤ u1 ≤ u1,
0 ≤ u2 ≤ u2,

(LP2) min
u
V,

s.t. V ≥ A1u,

V ≥ A1u1 +A2(u− u1),

Then (LP2) will give the same result as (LP1).

Proof. (LP2) can be written as,

min V,

s.t. V ≥ max{A1u,A1u1 +A2(u− u1)},
0 < A1 < A2.

Since it is a minimization problem, the optimized output would be

Vopt = max{A1u,A1u1 +A2(u− u1)}.

Case I (u ∈ [0, u1]): For (LP1), since u ∈ [0, u1] by Proposition 3.3 we have
u1 = u and u2 = 0. So,

Vopt = A1u.

For (LP2), since A1 < A2 and u ∈ [0, u1] we have,

Vopt = max{A1u,A1u1 +A2(u− u1)},
= A1u.

Case II (u ∈ [u1, u1 + u2]): For (LP1), since u ∈ [u1, u1 + u2] by Proposition
3.3 we have u1 = u1 and u2 = u− u1. So,

Vopt = A1u1 +A2(u− u1).

For (LP2), since A1 < A2 and u ∈ [u1, u1 + u2] we have

Vopt = max{A1u,A1u1 +A2(u− u1)},
= A1u1 +A2(u− u1).
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3.2. Model description

Theorem 3.6. Given 0 < A1 < A2 < .... < An, the following LP

min V

s.t. V ≥ A1h

V ≥ A1u1 +A2(h− u1)
V ≥ A1u1 +A2u2 +A3(h− u1 − u2)
V ≥ A1u1 +A2u2 +A3u3 +A4(h− u1 − u2 − u3)
.

.

.

V ≥ A1u1 +A2u2 + ...+An−1un−1 +An(h− u1 − u2 − ....− un−1)

is equivalent to

min
u1,u2,...,un

V,

s.t. V = A1u1 +A2u2 + ...+Anun,

u = u1 + u2 + ...+ un,

0 ≤ u1 ≤ u1,
0 ≤ u2 ≤ u2,
.

.

.

0 ≤ un ≤ un.

Proof. If n = 2, then Lemma 3.5 completes the proof. Similar logic can be applied
by using Proposition 3.3.

Remark 3.7. Implementation of side slopes by Theorem 3.6 reduces the number of
continuous variables for side-slopes from k+i + k−i to zero for each section i.

Lemma 3.8. If no roadside stockpiling occurs then the volume constraints (3.13a)
are equivalent to

V +
i ≥ Aiui for all i ∈ S, (3.13g)

V −i ≥ −Aiui for all i ∈ S. (3.13h)
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3.2. Model description

Proof. If i is a cut, V −i = 0 when no roadside stockpiling occurs, which also
satisfies Equation (3.13h) since its right hand side is a negative number, and V +

i =
Aiui since the objective function minimizes V +

i and V +
i ≥ Aiui by Equation

(3.13g). So, V +
i −V

−
i = Aiui− 0 = Aiui. If i is a fill, V +

i = 0 when no roadside
stockpiling occurs, which also satisfies Equation (3.13g) since its right hand side is
a negative number, and V −i = −Aiui since the objective function minimizes V −i
and V −i ≥ −Aiui by Equation (3.13h). So, V +

i − V
−
i = 0− (−Aiui) = Aiui. If

i is neither cut nor fill, V +
i = 0 and V −i = 0 when no roadside stockpiling occurs,

which also satisfy Equations (3.13g) and (3.13h) since their right hand sides are
zero. So, V +

i − V
−
i = 0 = Aiui since ui = 0.

By Lemma 3.8 and Corollary 3.6, we replace the volume constraints (3.13a)
by the following constraints to incorporate side slope, given 0 < A1

i < A2
i < ... <

A
k+i
i and 0 < B1

i < B2
i < ... < B

k−i
i , for all i ∈ S,

V +
i ≥ A

1
iui (3.13i)

V +
i ≥ A

1
iu

1
i +A2

i (ui − u1i ) (3.13j)

V +
i ≥ A

1
iu

1
i +A2

iu
2
i +A3

i (ui − u1i − u2i ) (3.13k)

.

.

V +
i ≥ A

1
iu

1
i +A2

iu
2
i + ...+A

k+i
i (ui − u1i − ...− u

k+i −1
i ) (3.13l)

V −i ≥ −B
1
i ui (3.13m)

V −i ≥ −B
1
i u

1
i −B2

i (ui − u1i ) (3.13n)

V −i ≥ −B
1
i u

1
i −B2

i u
2
i −B3

i (ui − u1i − u2i ) (3.13o)

.

.

V −i ≥ −B
1
i u

1
i −B2

i u
2
i − ...−B

k−i
i (ui − u1i − ...− u

k−i −1
i ). (3.13p)

The compact form of these equations are, for ka ∈ {1, 2, ..., k+i }

V +
i ≥

ka−1∑
k=1

Aki u
k
i +Akai

(
ui −

ka−1∑
k=1

uki

)
, (3.13q)
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Figure 3.5: Convexity of V +
i when 0 < A1

i < A2
i < A3

i .

and for kb ∈ {1, 2, ..., k−i }

V −i ≥ −
kb−1∑
k=1

Bk
i u

k
i −B

kb
i

(
ui −

kb−1∑
k=1

uki

)
. (3.13r)

Remark 3.9. Both V +
i and V −i are represented as a piecewise linear function of

ui. Modeling a piecewise linear function requires binary variables to indicate the
piece to be used for calculation, unless the function is convex. The assumptions

0 < A1
i < A2

i < ... < A
k+i
i and 0 < B1

i < B2
i < ... < B

k−i
i make V +

i and
V −i piecewise linear convex functions (see Figure 3.5 where A1

i , A
2
i , and A3

i are
the slopes of the linear pieces). For non-convex data, approximation is required to
convexify. Our numerical experiments show that less than 1% entries of the lookup
table are non-convex for most of the problems of our test set.

3.2.6 Roadside stockpiling constraints

Roadside stockpiling constraints ensure that no roadside stockpiling occurs. In
that case, for any section i ∈ S at least one of V +

i and V −i must be zero, which
holds for the spline LP model of vertical alignment as shown in the previous chap-
ter. But it may not hold for this model, since both V +

i and V −i of section i depend
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on the earth movement variables and sometimes the earth movement is restricted
by the presence of blocks. We call such sections block dependent sections.

We introduce additional binary variables bi for all i ∈ S to ensure at least one
of V +

i and V −i must be zero. If a section i is a cut then bi = 1 otherwise bi = 0.
So, the roadside stockpiling constraints can be written as

V +
i ≤Mbi, (3.14a)

V +
i ≥ δ

+
i bi, (3.14b)

V −i ≤M(1− bi), (3.14c)

where M is a big number, and δ+i is the smallest possible cut volume for a section
i.

An alternate representation of Equations (3.14), which ensure bi = 1 for a cut,
bi = 0 for a fill, and a section must be either a cut or fill with at least a small δ
volume, can be the following

V +
i ≤Mbi, (3.15a)

V +
i ≥ δbi, (3.15b)

V −i ≤M(1− bi), (3.15c)

V −i ≥ δ(1− bi). (3.15d)

We show that even with the additional n binary variables the performance of the
model will not decrease significantly.

Lemma 3.10. If i is not a block dependent section, 0 ≤ bi ≤ 1 is continuous
(instead of binary), and the roadside stockpiling constraints are represented by
Equation (3.15) , then bi will either be 0 or 1 in the optimal solution.

Proof. If i is not a block dependent section, then either V +
i or V −i or both will be

zero in the optimal solution otherwise we can prove there is another solution with
a lower objective value. If V +

i is zero, then bi must be zero by Equation (3.15b)
since δ > 0. If V −i is zero, then bi must be 1 by Equation (3.15d) since δ > 0. So,
bi will never take a fractional value.

Corollary 3.11. If i is not a block dependent section, bi ∈ {0, 1}, and the roadside
stockpiling constraints are represented by Equation (3.15), then the MILP algo-
rithm will never branch on any bi.

Proof. The branch and bound algorithm for solving MILP make branching deci-
sion based on LP relaxation of the MILP and the algorithm will branch on only
those binary variables which has fractional value on the LP relaxation. By Lemma
3.10, the branch and bound algorithm will never branch on bi. The MILP algorithm
will run as if the binary variable bi never existed.
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Theorem 3.12. If the roadside stockpiling constraints are represented by Equation
(3.15), then the MILP algorithm may only branch on bi if i is a block dependent
section.

Proof. By Corollary 3.11 this theorem holds.

Lemma 3.13. If i is not a block dependent section, 0 ≤ bi ≤ 1 is continuous
(instead of binary), and the roadside stockpiling constraints are represented by
Equation (3.14) , then bi will be 0 when V +

i = 0 and can take any value within the
range 0 < bi ≤ 1 when V +

i 6= 0 in the optimal solution.

Proof. If i is not a block dependent section, then either V +
i or V −i will be zero in

the optimal solution otherwise we can prove there is another solution with a lower
objective value. If V +

i is zero, then bi must be zero by Equation (3.14b) since
δ > 0. If V +

i 6= 0, then bi cannot be zero by Equation (3.14b) since δ > 0. So, bi
may take a fractional value if i is a cut.

Corollary 3.14. If i is not a block dependent section, bi ∈ {0, 1}, and the roadside
stockpiling constraints are represented by Equation (3.14), then the MILP algo-
rithm may branch on bi when i is a cut.

Proof. By Lemma 3.13, the branch and bound algorithm may branch on bi when i
is a cut.

Theorem 3.15. If the roadside stockpiling constraints are represented by Equation
(3.14), then the MILP algorithm may only branch on bi if i is a block dependent
section or a cut.

Proof. By Corollary 3.14 this theorem holds.

Remark 3.16. If the roadside stockpiling constraints are represented by Equation
(3.15), from Theorem 3.12, we see that if a section i is not a block dependent sec-
tion the model will be solved as if bi never existed, and if the roadside stockpiling
constraints are represented by Equation (3.14), from Theorem 3.15, we see that if
a section i is not a block dependent section and a fill the model will be solved as if
bi never existed.

Theorem 3.17. If S0 is the set of sections that are neither cuts nor fills, then the
solution time of a model with Equation (3.15) will be less than or equal to that of
a model with Equation (3.15) with error value

∑
i∈S0 δ ×min{pi, qi}.
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Proof. The more binary variables the branch and bound algorithm branches on,
the longer it takes to solve. By Theorems 3.12 and 3.15, the roadside stockpiling
constraints represented by Equation (3.15) can always be solved as fast as or faster
than the same model with roadside stockpiling constraints represented by Equation
(3.14). If Equations (3.14) are used as the roadside stockpiling constraints then
both V +

i and V −i cannot be zero at the same time. In the situation where both V +
i

and V −i should be zero, the optimizer will choose V +
i = δ if pi > qi and V −i = δ if

pi < qi and thus will introduce δ×min{pi, qi} error in the objective function.

Remark 3.18. If S0 = ∅, then Equations (3.14) and (3.15) are logically equivalent.

Remark. The option of choosing between Equations (3.14) and (3.15) will be ex-
posed to the end-users who can decide whether they want a faster solution or a
more accurate solution.

3.2.7 Gap constraints

The gap constraints ensure that the area gap between the ground profile and the
road profile for any section i, must be equal to the area created by section length
and the height difference between the ground profile and the road profile. For all
g ∈ G, i ∈ Sg the gap constraints can be written as

hg,i − ag,3
(sg,i+1)

2 + sg,i+1sg,i + (sg,i)
2

3
− ag,2

sg,i+1 + sg,i
2

− ag,1 = uκ(g,i).
(3.16)

3.2.8 Slope constraints

The slope constraints (3.17) implies that the slope of the spline segments must
not go beyond a maximum value U or a minimum value L, and since the spline
segments are quadratic checking the slope bounds at the beginning and end point
of the spline segments is sufficient. For all g ∈ G, i ∈ {1, ng} the slope constraints
can be written as

L ≤ ag,2 + 2ag,3sg,i ≤ U . (3.17)

3.2.9 Smoothness constraints

The C0 continuity constraints force the spline segments to be continuous at
their joining points. So, for all g ∈ G\{1}

ag,1 + ag,2sg,1 + ag,3s
2
g,1 = a(g−1),1 + a(g−1),2sg,1 + a(g−1),3s

2
g,1, (3.18a)
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and the C1 continuity constraints force the spline segments to be differentiable or
smooth at their joining points i.e., for all g ∈ G\{1}

ag,2 + 2ag,3sg,1 = a(g−1),2 + 2a(g−1),3sg,1. (3.18b)

3.2.10 Fixed point constraints

The fixed point constraints fix the starting and ending elevations,

a1,1 + a1,2s1,1 + a1,3s
2
1,1 = HA, (3.19a)

am,1 + am,2sm,nm + am,3s
2
m,nm

= HB , (3.19b)

the elevations of the fixed points, for all Hg,i ∈ H

ag,1 + ag,2sg,i + ag,3s
2
g,i = Hg,i, (3.19c)

as well as the starting and ending slopes,

a1,2 + 2a1,3s1,1 = H
′
A, (3.19d)

am,2 + 2am,3sm,nm = H
′
B . (3.19e)

It should be noted that Equations (3.19d) and (3.19e) are optional constraints for
most of the problems.

3.2.11 Bounds

The bounds of the decision variables are as follows, for all (i, j) ∈ N 2, t ∈ T ,

xijt ≥ 0, (3.20a)

for all k ∈ I, t ∈ T ,
ykt ∈ {0, 1}, (3.20b)

for all i ∈ S,

ui ≤ ui ≤ ui, (3.20c)

0 ≤ V +
i ≤M

+
i , (3.20d)

0 ≤ V −i ≤M
−
i , (3.20e)

for all g ∈ G, k ∈ {1, 2, 3},
ag,k ∈ R. (3.20f)
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3.3 Model summary

The summary of the MILP model for the vertical alignment design considering
blocks and side-slopes is stated below.

3.3.1 The objective function

min
∑
i∈S

(
piV

+
i + qiV

−
i

)
+
∑
i∈B

∑
j∈N i

→

∑
t∈T

pixijt

+
∑
i∈W

∑
j∈N i

←

∑
t∈T

qixjit +
∑

(i,j)∈N 2

∑
t∈T

cijxijt. (3.8)

3.3.2 Balance constraints

For all i ∈ S, ∑
t∈T

∑
j∈N i

→

xijt = V +
i , (3.9a)

and for all i ∈ S, ∑
t∈T

∑
j∈N i

←

xjit = V −i . (3.9b)

3.3.3 Pit constraints

For all i ∈ B, ∑
t∈T

∑
j∈N i

→

xijt ≤ Cbi , (3.10)

and for all i ∈ W , ∑
t∈T

∑
j∈N i

←

xjit ≤ Cwi . (3.11)

3.3.4 Block constraints

For all t ∈ T \{1}, k ∈ I, and (i, j) ∈ N k
b ,

xijt ≤Myk,t−1, (3.12a)
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for all t ∈ T \{1}, (k1, k2) ∈ I2, and i, j ∈ N k1,k2
b ,

xijt ≤Myk1,t−1 +Myk2,t−1, (3.12b)

for all t ∈ T \{1}, k ∈ I←, and i, j ∈ N←,kb ,

xijt ≤Myk,t−1, (3.12c)

for all t ∈ T \{1}, k ∈ I→, and i, j ∈ N k,→
b ,

xijt ≤Myk,t−1, (3.12d)

for all k ∈ I, u ∈ T ,

W+
ku ≤M

+
ς(k)yku, (3.12i)

W+
ku ≤ V

+
ς(k), (3.12j)

W+
ku ≥ V

+
ς(k) −M

+
ς(k)(1− yku), (3.12k)

W−ku ≤M
−
ς(k)yku, (3.12m)

W−ku ≤ V
−
ς(k), (3.12n)

W−ku ≥ V
−
ς(k) −M

−
ς(k)(1− yku), (3.12o)

u∑
t=0

∑
j∈N ς(k)

→

xς(k)jt ≥W+
ku, (3.12q)

u∑
t=0

∑
j∈N ς(k)

←

xjς(k)t ≥W−ku, (3.12r)

for all t ∈ T \{nz + 1}, ∑
k∈I

ykt ≥ t, (3.12s)

and for all k ∈ I, t ∈ T \{nz + 1},(
yk,(t+1) ≥ yk,t

)
. (3.12t)

3.3.5 Volume constraints

Given 0 < A1
i < A2

i < ... < A
k+i
i and 0 < B1

i < B2
i < ... < B

k−i
i , for

ka ∈ {1, 2, ..., k+i }

V +
i ≥

ka−1∑
k=1

Aki u
k
i +Akai

(
ui −

ka−1∑
k=1

uki

)
, (3.13q)
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and for kb ∈ {1, 2, ..., k−i }

V −i ≥ −
kb−1∑
k=1

Bk
i u

k
i −B

kb
i

(
ui −

kb−1∑
k=1

uki

)
. (3.13r)

3.3.6 Roadside stockpiling constraints

If the end-user prefers accuracy over speed, then for all i ∈ S,

V +
i ≤Mbi, (3.14a)

V +
i ≥ δ

+
i bi, (3.14b)

V −i ≤M(1− bi), (3.14c)

otherwise, for all i ∈ S,

V +
i ≤Mbi, (3.15a)

V +
i ≥ δbi, (3.15b)

V −i ≤M(1− bi), (3.15c)

V −i ≥ δ(1− bi). (3.15d)

3.3.7 Gap constraints

For all g ∈ G, i ∈ Sg,

hg,i − ag,3
(sg,i+1)

2 + sg,i+1sg,i + (sg,i)
2

3
− ag,2

sg,i+1 + sg,i
2

− ag,1 = uκ(g,i).
(3.16)

3.3.8 Slope constraints

For all g ∈ G, i ∈ {1, ng},

L ≤ ag,2 + 2ag,3sg,i ≤ U . (3.17)

3.3.9 Smoothness constraints

For all g ∈ G\{1},

ag,1 + ag,2sg,1 + ag,3s
2
g,1 = a(g−1),1 + a(g−1),2sg,1 + a(g−1),3s

2
g,1, (3.18a)

ag,2 + 2ag,3sg,1 = a(g−1),2 + 2a(g−1),3sg,1. (3.18b)
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3.4. Model evaluation

3.3.10 Fixed point constraints

a1,1 + a1,2s1,1 + a1,3s
2
1,1 = HA, (3.19a)

am,1 + am,2sm,nm + am,3s
2
m,nm

= HB , (3.19b)

for all Hg,i ∈ H
ag,1 + ag,2sg,i + ag,3s

2
g,i = Hg,i, (3.19c)

and (
a1,2 + 2a1,3s1,1 = H

′
A

)
, (3.19d)(

am,2 + 2am,3sm,nm = H
′
B

)
. (3.19e)

3.3.11 Bounds

For all (i, j) ∈ N 2, t ∈ T ,
xijt ≥ 0, (3.20a)

for all k ∈ I, t ∈ T ,

ykt ∈ {0, 1}, (3.20b)

W+
kt ≥ 0, (3.12l)

W−kt ≥ 0, (3.12p)

for all i ∈ S,

ui ≤ ui ≤ ui, (3.20c)

0 ≤ V +
i ≤M

+
i , (3.20d)

0 ≤ V −i ≤M
−
i , (3.20e)

and for all g ∈ G, k ∈ {1, 2, 3},

ag,k ∈ R. (3.20f)

3.4 Model evaluation

Proposition 3.19. The MILP of Section 3.3 has O(n2nz) continuous variables.
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3.5. Algorithms

Proof. The MILP has n variables for excavation volume, n variables for embank-
ment volume, (n2+nbn+nwn)(nz+1) variables for hauling volume, 2nz(nz+1)
number of W+

ku and W−kuvariables, 3m variables for the spline coefficients, and n
variables for section height. So, the total number of continuous variables is

n+ n+ (n2 + nbn+ nwn)(nz + 1) + 2nz(nz + 1) + 3m+ n

= 3n+ 3m+ (n2 + nbn+ nwn+ 2nz)(nz + 1)

≤ 6n+ (n2 + n2 + n2 + 2nz)(nz + nz)

= 6n+ 6n2nz + 4n2z

since n ≥ nb, n ≥ nw, n ≥ m, and n ≥ nz and assuming nz ≥ 1.

Proposition 3.20. The MILP of Section 3.3 has O(n2z + n) binary variables.

Proof. The total number of binary variables is nz(nz+1)+n ≤ 2n2z+n assuming
nz ≥ 1.

Proposition 3.21. The MILP of Section 3.3 has O(n2n3z) constraints.

Proof. The number of constraints created by different equations of this model are
shown in Table 3.1. The total number of constraints is O(n2n3z).

3.5 Algorithms

In this section, we recall some algorithms to speed up the solution of the model.
These algorithms are studied in more detail in [HKL11, Koc10].

3.5.1 The direct solve (DS) algorithm

The direct solve algorithm is the most basic algorithm that reads the data and
build the model depending on the solver specification. Then it solves the model
and writes the solution. But some models can be ill conditioned. A linear program
or a mixed integer program is called ill conditioned or numerically unstable when
a small change in the input results in a big change in the output. Having very large
or very small numbers as coefficients in the constraint matrix is a source of numer-
ical instability. Constraints (3.16), (3.18a), and (3.19a) make our model numeri-
cally unstable because of the quadratic coefficients. A ill conditioned model can
cause trouble in the pivot selection process of the simplex algorithm. So, for this
sort of numerical instability we have to either scale the constraint matrix or make
the solver use a more conservative pivoting scheme during the basis factorization.
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Equation Number of Constraints (worst case)
(3.9a),(3.9b) 2n

(3.10),(2.26e) nb + nw
(3.12a) 1

4n
2(nz + 1)nz

(3.12b) (n− 1)2(nz + 1)nz(nz−1)
2

(3.12c), (3.12d) 2(n− 1)2(nz + 1)nz
From (3.12i) to (3.12r) 2nz(n− 1)(nz + 1)

(3.12s) nz
(3.12t) n2z

(3.13q), (3.13r)
∑

i∈S(k+i + k−i )
From (3.14a) to (3.14c) 3n
From (3.14a) to (3.14c) 4n

(3.16) n
(3.17) 2m

(3.18a), (3.18a) 2(m− 1)
From (3.19a) to (3.19e) 4 + |H|

Table 3.1: Number of constraints created by different equations of the basic MILP
model

Most commercial solvers have built-in functionality to handle ill conditioned mod-
els. For example, CPLEX has a scale factor that can be used for aggressive scaling
and another parameter named Markowitz tolerance for a more conservative pivot-
ing scheme. A function can be written to scale the constraint matrix if the solver
does not have this functionality. Our preliminary result shows that if the maximum
station number gets bigger than 1000 then the model starts to become ill condi-
tioned.

Algorithm 3.1 DS
Step 0. READ the data and BUILD the model

Step 1.


IF the model is an ill conditioned model

CALL the ill conditioned model handling function
ENDIF

Step 2. SOLVE the model
Step 3. WRITE the solution and RETURN the status of the solution
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Algorithm 3.2 DSS
Step 0. READ the data and BUILD the model

Step 1.


IF the model is an ill conditioned model

CALL the ill conditioned model handling function
ENDIF

Step 2.



SELECT the left most access road
SET yktsuch that it removes

the block closest to the access road at time-step 1
the block second closest to the access road at time-step 2
...

the block farthest to the access road at time-step nb
SOLVE the model with the added constraints

Step 3. USE the solution as a starting point for the original model
Step 4. SOLVE the model
Step 5. WRITE the solution and RETURN the status of the solution

3.5.2 The direct solve with starting point (DSS) algorithm

The direct solve with starting point algorithm starts with a feasible starting
point. While generating a very good feasible starting point is still an active research
area, we use a heuristic to generate a reasonable feasible starting point. The left
most access road is chosen, then variables ykt are set in such a way that the block
closest to the access road is removed first, then the next closest is removed and
so on. With these values of ykt the model is solved and the solution is used as a
feasible starting point.

3.5.3 The maximal movement distance (Mdmaxα) algorithm

Heuristic 3.22. It is better to move earth to a closer section than a farther section.

The idea behind this algorithm is Heuristic 3.22. The algorithm starts with an
initial dmax and sets the values of xijt = 0 for the section that are dmax further
from each other. Then it solves the model and continues to use the solution as a
starting point of the next iteration until dmax is large enough so no xijt is set to
zero. At that iteration, we get the optimal solution.
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Algorithm 3.3 Mdmaxα

Step 0. INPUT dmax ≥ 2, α > 1, READ the data and BUILD the model

Step 1.


IF the model is an ill conditioned model

CALL the ill conditioned model handling function
ENDIF

Step 2.



IF there is a starting point
ADD the starting point to the model

ENDIF
FOR EACH section i, section j, and time-step t

IF |i− j| > dmax
SET xijt = 0

ENDIF
ENDFOR
SOLVE the model with the added constraints

Step 3.



IF dmax > |S|
WRITE the solution and RETURN the status of the solution

ELSE
SET dmaxas α× dmax

ENDIF
GO TO Step 2
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Algorithm 3.4 MTdmaxα

Step 0. INPUT dmax ≥ 2, α > 1, ε > 0, READ the data and BUILD the model

Step 1.


IF the model is an ill conditioned model

CALL the ill conditioned model handling function
ENDIF

Step 2. SOLVE the LP relaxation and SAVE the objective value

Step 3.



IF there is a starting point
ADD the starting point to the model

ENDIF
FOR EACH section i, section j, and time-step t

IF |i− j| > dmax
SET xijt = 0

ENDIF
ENDFOR
SOLVE the model with the added constraints

CALCULATE the mipgap as
∣∣∣Step 3 Obj−Step 2 Obj

Step 2 Obj

∣∣∣× 100

Step 4.



IF dmax > |S|OR mipgap< ε

WRITE the solution and RETURN the status of the solution
ELSE

SET dmaxas α× dmax
ENDIF
GO TO Step 2

3.5.4 The maximal movement distance with mipgap tolerance
(MTdmaxα) algorithm

The maximal movement distance with mipgap tolerance algorithm is an im-
provement over the Mdmaxα algorithm. The optimal solution may occur in any of
the intermediate steps of the Mdmaxα algorithm. Setting xijt = 0 gives the lower
bound for the optimal solution of the original model and the LP relaxation gives
the upper bound. Consequently, this algorithm also checks the mipgap and if it is
within the tolerance then the algorithm terminates.
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Chapter 4

A Quasi-network-flow Model for
Vertical Alignment Considering
Blocks and Side-slopes

Take what you need, act as you must,
and you will obtain that for which
you wish.

René Descartes (1596 - 1650)

In general, a mixed integer linear program is NP-hard. As a result, some MILPs
require smart modeling techniques to solve them in a reasonable time-frame. Hare,
Koch, and Lucet [HKL11] found that the Mdmaxα and MTdmaxα algorithms
solve the problems with large number of sections noticeably faster than other algo-
rithms. Both of these algorithms are based on Heuristic 3.22, which suggests that
it is more probable to have earth movements among nearby sections than among
further sections in an optimal solution. So, these algorithms start with a small max-
imum distance for earth movement, and continue to increase the maximum distance
at each iteration until the optimality conditions are satisfied. These algorithms can
be very efficient, if a good value for the initial maximum distance (dmax) and the
maximum distance increase factor (α) can be calculated, which usually varies de-
pending on the problem.

Heuristic 3.22 motivates us to seek an alternate modeling technique. The model
introduced in this chapter can be visualized as a graph where the sections and pits
are nodes and the arcs represent feasible moves. Additional virtual nodes called
transit nodes are also introduced. The amount of earth moved through an arc is
called flow. There are different types of flows in the model.

– Each section has a load and an unload flow representing fill and cut amount
respectively. Each of the flows are further divided into two for east and west
direction.
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Figure 4.1: A typical section i at time-step t (where ϑ(j) = ϕ(k) = i).

– Each borrow pit has an unload flow representing its cut amount for both
directions. These flows are called borrow flows.

– Each waste pit has a load flow representing its fill amount for both directions.
These flows are called waste flows.

– Each section has an east and a west transit node, each of which has a east
transit flow and a west transit flow representing earth movement from one
section to another.

All these flows are the decision variables of the model. A typical section is shown
in Figure 4.1. This formulation reduces the earth movement variables fromO(n2nz)
to O(nnz).

4.1 Definitions and model parameters

For this model, we use the definitions and model parameters from Section 3.1.

4.1.1 Cost components

The cost components are as follow.

– For a section i, the per unit volume excavation cost is pi, and the per unit
volume embankment cost is qi. The per unit volume hauling cost from sec-
tion i to section i − 1 (respectively i + 1) is represented as cri,i−1 = cdi,i−1
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(respectively cri,i+1 = cdi,i+1), where c represents the cost of moving one
unit volume of earth to one unit distance, and dij is the distance between
section i and j.

– For a borrow pit i, the borrow cost for either direction is cbi = pi + cd̃i.

– For a waste pit i, the waste cost for either direction is cwi = qi + cd̃i.

It should be noted that the model requires the described structure of the cost func-
tion.

Remark 4.1. Borrow pits normally have higher quality materials than other sec-
tions. As a result the embankment cost with the materials from a borrow pit is
lower than other embankment costs. But, after the borrow flows reach the transit
nodes, the model cannot differentiate between borrow materials and other materi-
als. To incorporate this in the model, the difference between general embankment
cost and the borrow embankment cost is subtracted from the borrow excavation
cost, so that the borrowed materials can be treated as normal materials.

4.1.2 Decision variables

The decision variables are

– V +
i (for all i ∈ S ∪ B): the volume of earth excavated from any section,

– V −i (for all i ∈ S ∪W): the volume of earth embanked to any section,

– f ri,i−1,t, f
r
i,i+1,t (for all i ∈ N , t ∈ T ): the flow of earth from one transit

node to the next in both directions,

– f bj,ϑ(j)−1,t, f
b
j,ϑ(j)+1,t (for all j ∈ B, t ∈ T ): the flow of earth to both east

and waste transit nodes from a borrow pit,

– fwϕ(k)−1,k,t, f
w
ϕ(k)+1,k,t (for all k ∈ W, t ∈ T ): the flow of earth from both

east and west transit nodes to a waste pit,

– f li−1,i,t, f
l
i+1,i,t (for all i ∈ N , t ∈ T ): the flow of earth from both east and

west transit nodes to a section (also known as the load flow),

– fui,i−1,t, f
u
i,i+1,t (for all i ∈ N , t ∈ T ): the flow of earth from a section to

both east and west transit nodes (also known as the unload flow),

– ag,k (for all g ∈ G, k ∈ {1, 2, 3}): the coefficient of the quadratic polynomi-
als,

62



4.1. Definitions and model parameters

– ui (for all i ∈ S): the height difference of the ground profile from the road
profile for any section,

– ykt (for all t ∈ T , k ∈ I): the block removal indicators,

– bi (for all i ∈ S): binary variables that ensure that no roadside stockpiling
will occur.

4.1.3 Design parameters

The design parameters for the MILP are

– m: the number of spline segments,

– ng (for all g ∈ G): the number of sections per spline segment,

– sg,i (for all g ∈ G, i ∈ Sg): the start and end points of the sections,

– hg,i (for all g ∈ G, i ∈ Sg): the average height of the ground for each section,

– ui and ui (for all i ∈ S): the upper and lower bound of the variable ui,

– L (respectively U ): the lower (respectively upper) bound of the slope,

– HA (respectively HB): the starting (respectively ending) elevation,

– H
′
A (respectively H

′
B): the starting (respectively ending) slope,

– Hg,i ∈ H: the fixed points,

– nz: the number of blocks,

– Akai ,Bkb
i (for all i ∈ S, ka ∈ {1, 2, ..., k+i }, kb ∈ {1, 2, ..., k

−
i }): area list for

side-slope approximation,

– pi, qj , and crij (for all i ∈ S, j ∈ {i − 1, i + 1}): excavation, embankment,
and hauling costs for a section,

– cbi and cwj (for all i ∈ B, j ∈ W): borrow and waste costs, and

– the locations of the borrow pits, the waste pits, the blocks, and the access
roads.
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4.2 Model description

4.2.1 Objective function

The objective of this problem is to find a vertical alignment such that total ex-
cavation, embankment, and hauling cost will be minimized. The objective function
can be written as

min
∑
i∈S

(piV
+
i + qiV

−
i ) +

∑
t∈T

∑
i∈S

(cri,i−1f
r
i,i−1,t + cri,i+1f

r
i,i+1,t)

+
∑
j∈B

cbj
∑
t∈T

(f bj,ϑ(j)−1,t + f bj,ϑ(j)+1,t) +
∑
k∈W

cwk
∑
t∈T

(fwϕ(k)−1,k,t + fwϕ(k)+1,k,t).

(4.1)

4.2.2 Flow constraints

The transit nodes are virtual points that provide transits for the flows. There-
fore, the sum of the flows coming to a transit node must be equal to the sum of the
flows leaving the node, i.e., for all t ∈ T , i ∈ S , the flow constraints for the east
transit nodes are

f ri−1,i,t + fui,i+1,t +
∑
j∈B

ϑ(j)=i

f bj,i+1,t = f ri,i+1,t + f li−1,i,t +
∑
k∈W

ϕ(k)=i

fwi−1,k,t, (4.2a)

and for the west transit nodes are

f ri+1,i,t + fui,i−1,t +
∑
j∈B

ϑ(j)=i

f bj,i−1,t = f ri,i−1,t + f li+1,i,t +
∑
k∈W

ϕ(k)=i

fwi+1,k,t. (4.2b)

4.2.3 Balance constraints

The section nodes act as the sources and sinks for the flows. So, the total of
unload flows from a section is equal to the cut volume of that section, i.e., for all
i ∈ S, ∑

t∈T
(fui,i−1,t + fui,i+1,t) = V +

i , (4.3a)

and the total of load flows to a section is equal to the fill volume i.e., for all i ∈ S,∑
t∈T

(f li−1,i,t + f li+1,i,t) = V −i . (4.3b)
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4.2.4 Pit constraints

The borrow pits act as the sources of the flows with additional costs, and the
waste pits act as the sinks of the flows with additional costs. The total of the borrow
flows from a borrow pit must not exceed its capacity, i.e., for all j ∈ B,∑

t∈T
(f bj,ϑ(j)−1,t + f bj,ϑ(j)+1,t) ≤ C

b
j , (4.4a)

and the total of waste flows to a waste pit must not exceed its capacity, i.e., for all
k ∈ W , ∑

t∈T
(fwϕ(k)−1,k,t + fwϕ(k)+1,k,t) ≤ C

w
k . (4.4b)

4.2.5 Block constraints

The block constraints must certify that no earth movement will occur over
a block until the block is removed. We consider two cases for this constraints,
namely a block with no borrow pit or waste pit with it and a block with a borrow
and a waste pit with it. Using the two cases we write the block constraints for a
general case.

Theorem 4.2. (Case I) If a section i is a block with no borrow or waste pits as-
sociated with it, then for all t ∈ T , f ri−1,i,t = f li−1,i,t and f ri+1,i,t = f li+1,i,t will
ensure that no earth movement will occur over section i.

Proof. Since f ri−1,i,t = f li−1,i,t and f ri+1,i,t = f li+1,i,t, by Equations (4.2a) and
(4.2a), f ri,i+1,t = fui,i+1,t and f ri,i−1,t = fui,i−1,t hold. Roadside stockpiling con-
straints ensure that one of V +

i and V −i will be 0. By Equations (4.3a) and (4.3b),
one of f ri−1,i,t = f li−1,i,t = f ri+1,i,t = f li+1,i,t = 0 and f ri,i−1,t = fui,i−1,t =
f ri,i+1,t = fui,i+1,t = 0 must hold. This means either a block will be embanked
from both directions or it will be excavated to both directions, i.e., no earth move-
ment will occur over the block.

Since no earth movement occurs until the block is removed, by Theorem 4.2,
for all t ∈ T , k ∈ I, the constraints can be written (for this special case) as,

−
(
f rς(k)−1,ς(k),t − f

l
ς(k)−1,ς(k),t

)
≤Myk,t−1, (4.5a)

f rς(k)−1,ς(k),t − f
l
ς(k)−1,ς(k),t ≤Myk,t−1, (4.5b)

−
(
f rς(k)+1,ς(k),t − f

l
ς(k)+1,ς(k),t

)
≤Myk,t−1, (4.5c)
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f rς(k)+1,ς(k),t − f
l
ς(k)+1,ς(k),t ≤Myk,t−1, (4.5d)

Theorem 4.3. (Case II) If a section i is a block with a borrow pit j and a waste pit
k associated with it, then for all t ∈ T ,

f ri−1,i,t + f b,1j,i+1,t = f li−1,i,t + fw,1i−1,k,t,

f ri,i+1,t + fw,2i−1,k,t = fui,i+1,t + f b,2j,i+1,t,

f ri+1,i,t + f b,1j,i−1,t = f li+1,i,t + fw,1i+1,k,t, and

f ri,i−1,t + fw,2i+1,k,t = fui,i−1,t + f b,2j,i−1,t

will ensure that no earth movement will occur over section i where

f b,1j,i+1,t + f b,2j,i+1,t = f bj,i+1,t,

fw,1i−1,k,t + fw,2i−1,k,t = fwi−1,k,t,

f b,1j,i−1,t + f b,2j,i−1,t = f bj,i−1,t, and

fw,1i+1,k,t + fw,2i+1,k,t = fwi+1,k,t.

Proof. For a block with a borrow pit and a waste pit, the borrow and waste flows
are divided into two flows. Since roadside stockpiling constraints ensure that one of
V +
i and V −i will be 0, by Equations (4.3a) and (4.3b), one of f li−1,i,t = f li+1,i,t = 0

and fui,i−1,t = fui,i+1,t = 0 must hold. So, either f ri−1,i,t + f b,1j,i+1,t = fw,1i−1,k,t
and f ri+1,i,t + f b,1j,i−1,t = fw,1i+1,k,t or f ri,i+1,t + fw,2i−1,k,t = f b,2j,i+1,t and f ri,i−1,t +

fw,2i+1,k,t = f b,2j,i−1,t must hold. This means either a block can be embanked from
both directions or excavated to both directions, i.e., no earth movement will occur
over the block.

Since no earth movement occurs until the block is removed, by Theorem 4.3,
for all t ∈ T , k ∈ I, the constraints can be written (for this special case) as,

f rς(k)−1,ς(k),t + f b,1j,ς(k)+1,t − f
l
ς(k)−1,ς(k),t − f

w,1
ς(k)−1,j,t ≥ −Myk,t−1, (4.5e)

f rς(k)−1,ς(k),t + f b,1j,ς(k)+1,t − f
l
ς(k)−1,ς(k),t − f

w,1
ς(k)−1,j,t ≤Myk,t−1, (4.5f)

f rς(k),ς(k)+1,t + fw,2ς(k)−1,j,t − f
u
ς(k),ς(k)+1,t − f

b,2
j,ς(k)+1,t ≥ −Myk,t−1, (4.5g)
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f rς(k),ς(k)+1,t + fw,2ς(k)−1,j,t − f
u
ς(k),ς(k)+1,t − f

b,2
j,ς(k)+1,t ≤Myk,t−1, (4.5h)

f rς(k)+1,ς(k),t + f b,1j,ς(k)−1,t − f
l
ς(k)+1,ς(k),t − f

w,1
ς(k)+1,j,t ≥ −Myk,t−1, (4.5i)

f rς(k)+1,ς(k),t + f b,1j,ς(k)−1,t − f
l
ς(k)+1,ς(k),t − f

w,1
ς(k)+1,j,t ≤Myk,t−1, (4.5j)

f rς(k),ς(k)−1,t + fw,2ς(k)+1,j,t − f
u
ς(k),ς(k)−1,t − f

b,2
j,ς(k)−1,t ≥ −Myk,t−1, (4.5k)

f rς(k),ς(k)−1,t + fw,2ς(k)+1,j,t − f
u
ς(k),ς(k)−1,t − f

b,2
j,ς(k)−1,t ≤Myk,t−1. (4.5l)

By Theorems 4.2 and 4.3, for all t ∈ T , k ∈ I, the constraints can be written (for
the general case) as,

f rς(k)−1,ς(k),t+
∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)+1,t−f
l
ς(k)−1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)−1,j,t ≥ −Myk,t−1,

(4.5m)
f rς(k)−1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)+1,t−f
l
ς(k)−1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)−1,j,t ≤Myk,t−1,

(4.5n)

f rς(k),ς(k)+1,t+
∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)−1,j,t−f
u
ς(k),ς(k)+1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)+1,t ≥ −Myk,t−1,

(4.5o)
f rς(k),ς(k)+1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)−1,j,t−f
u
ς(k),ς(k)+1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)+1,t ≤Myk,t−1,

(4.5p)
f rς(k)+1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)−1,t−f
l
ς(k)+1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)+1,j,t ≥ −Myk,t−1,

(4.5q)
f rς(k)+1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)−1,t−f
l
ς(k)+1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)+1,j,t ≤Myk,t−1,

(4.5r)
f rς(k),ς(k)−1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)+1,j,t−f
u
ς(k),ς(k)−1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)−1,t ≥ −Myk,t−1,

(4.5s)
f rς(k),ς(k)−1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)+1,j,t−f
u
ς(k),ς(k)−1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)−1,t ≤Myk,t−1.

(4.5t)
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Since the flows from borrow pits and waste pits, which are associated with blocks,
are divided into two flows each, for all t ∈ T , j ∈ B, k ∈ I, ϑ(j) = ς(k),

f b,1j,i+1,t + f b,2j,i+1,t = f bj,i+1,t, (4.5u)

f b,1j,i−1,t + f b,2j,i−1,t = f bj,i−1,t, (4.5v)

and for all t ∈ T , j ∈ W , k ∈ I, ϕ(j) = ς(k),

fw,1i−1,k,t + fw,2i−1,k,t = fwi−1,k,t, (4.5w)

fw,1i+1,k,t + fw,2i+1,k,t = fwi+1,k,t. (4.5x)

The block constraints must also ensure that no earth movement will occur among
sections, borrow pits, and waste pits between two blocks, before the first block, or
after the last block with no access roads until the block is removed. So, there will
be no transit flow between two blocks with no access roads until one of the blocks
is removed, i.e., for all t ∈ T , (k1, k2) ∈ I

2
, ς(k1) ≤ i, i+ 1 ≤ ς(k2),

f ri,i+1,t ≤M(yk1,t−1 + yk2,t−1), (4.6a)

f ri+1,i,t ≤M(yk1,t−1 + yk2,t−1). (4.6b)

There will also be no transit flow after the last block with no access road until the
block is removed, i.e., for all t ∈ T , ς(k) ≤ i, i+ 1 ≤ n, k ∈ I→,

f ri,i+1,t ≤Myk,t−1, (4.6c)

f ri+1,i,t ≤Myk,t−1, (4.6d)

and before the first block with no access road until the block is removed, i.e., for
all t ∈ T , 1 ≤ i, i+ 1 ≤ ς(k), k ∈ I←,

f ri,i+1,t ≤Myk,t−1, (4.6e)

f ri,i+1,t ≤Myk,t−1. (4.6f)

There will be no borrow flow between two blocks with no access roads until one
of the blocks is removed, i.e., for all t ∈ T , (k1, k2) ∈ I

2
, ς(k1) ≤ ϑ(i) −

1, ϑ(i), ϑ(i) + 1 ≤ ς(k2),

f bi,ϑ(i)+1,t ≤M(yk1,t−1 + yk2,t−1). (4.6g)

f bi,ϑ(i)−1,t ≤M(yk1,t−1 + yk2,t−1). (4.6h)
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There will also be no borrow flow after the last block with no access road until the
block is removed, i.e., for all t ∈ T , ς(k) ≤ ϑ(i)− 1, ϑ(i), ϑ(i) + 1 ≤ n, k ∈ I→,

f bi,ϑ(i)+1,t ≤Myk,t−1, (4.6i)

f bi,ϑ(i)−1,t ≤Myk,t−1, (4.6j)

and before the first block with no access road until the block is removed, i.e., for
all t ∈ T , 1 ≤ ϑ(i)− 1, ϑ(i), ϑ(i) + 1 ≤ ς(k), k ∈ I←,

f bi,ϑ(i)+1,t ≤Myk,t−1, (4.6k)

f bi,ϑ(i)−1,t ≤Myk,t−1. (4.6l)

There will be no waste flow between two blocks with no access roads until one
of the blocks is removed, i.e., for all t ∈ T , (k1, k2) ∈ I

2
, ς(k1) ≤ ϕ(i) −

1, ϕ(i), ϕ(i) + 1 ≤ ς(k2),

fwϕ(i)+1,i,t ≤M(yk1,t−1 + yk2,t−1), (4.6m)

fwϕ(i)−1,i,t ≤M(yk1,t−1 + yk2,t−1). (4.6n)

There will also be no waste flow after the last block with no access road until the
block is removed, i.e., for all t ∈ T , ς(k) ≤ ϕ(i)− 1, ϕ(i), ϕ(i) + 1 ≤ n, k ∈ I→,

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6o)

fwϕ(i)−1,i,t ≤Myk,t−1, (4.6p)

and before the first block with no access road until the block is removed, i.e., for
all t ∈ T , 1 ≤ ϕ(i)− 1, ϕ(i), ϕ(i) + 1 ≤ ς(k), k ∈ I←,

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6q)

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6r)

The block removal indicator constraints ensure that when the required amount of
earth is excavated from or embanked to a section with a block, then the block is
considered removed. Similar to the model of Section 3.3, for all k ∈ I, t ∈ T , the
following constraints ensure that W+

kt = yktV
+
ς(k),

W+
kt ≤M

+
ς(k)ykt, (3.12i)

W+
kt ≤ V

+
ς(k), (3.12j)

W+
kt ≥ V

+
ς(k) −M

+
ς(k)(1− ykt), (3.12k)

W+
kt ≥ 0, (3.12l)
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and the following constraints assure that W−kt = yktV
−
ς(k),

W−kt ≤M
−
ς(k)ykt, (3.12m)

W−kt ≤ V
−
ς(k), (3.12n)

W−kt ≥ V
−
ς(k) −M

−
ς(k)(1− ykt), (3.12o)

W−kt ≥ 0. (3.12p)

So, for all k ∈ I, t ∈ T , the block removal indicator constraints can be written as

u∑
t=1

(
fuς(k),ς(k)−1,t + fuς(k),ς(k)+1,t +

∑
j∈W

ϕ(j)=ς(k)

fwj,t

)
≥W+

kt , (4.7)

u∑
t=1

(
f lς(k)−1,ς(k),t + f lς(k)+1,ς(k),t +

∑
j∈B

ϑ(j)=ς(k)

f bj,t

)
≥W−kt . (4.8)

In this model, we redefine these constraints so that the W+
kt and W−kt (for all k ∈

I, t ∈ T ) variables are no longer needed. For all k ∈ I, u ∈ T , these constraints
can be written as,

u∑
t=1

(
fuς(k),ς(k)−1,t + fuς(k),ς(k)+1,t +

∑
j∈W

ϕ(j)=ς(k)

fwj,t

)
+M+

ς(k)(1− yku) ≥ V +
ς(k),

(4.9a)
u∑
t=1

(
f lς(k)−1,ς(k),t + f lς(k)+1,ς(k),t +

∑
j∈B

ϑ(j)=ς(k)

f bj,t

)
+M−ς(k)(1− yku) ≥ V −ς(k).

(4.9b)
It should be noted that Equations (4.9a) and (4.9b) are logically equivalent to Equa-
tions (3.12i) to (3.12p) and (4.7) to (4.8). The remaining block constraints are the
same as Section 3.3, i.e., for all t ∈ T \{nz + 1},∑

k∈I
ykt ≥ t, (3.12s)

and for all k ∈ I, t ∈ T \{nz + 1},(
yk,(t+1) ≥ yk,t

)
. (3.12t)
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4.2.6 Other constraints

The following constraints are exactly the same as in Section 3.3: roadside
stockpiling constraints, volume constraints, gap constraints, slope constraints, smooth-
ness constraints, and fixed-point constraints.

4.2.7 Bounds

The bounds for the decision variables are, for all i ∈ N , t ∈ T ,

f ri,i−1,t ≥ 0, (4.10)

f ri,i+1,t ≥ 0, (4.11)

f li−1,i,t ≥ 0, (4.12)

f li+1,i,t ≥ 0, (4.13)

fui,i−1,t ≥ 0, (4.14)

fui,i+1,t ≥ 0, (4.15)

for all j ∈ B, t ∈ T ,

f bj,ϑ(j)−1,t ≥ 0, (4.16)

f bj,ϑ(j)+1,t ≥ 0, (4.17)

for all k ∈ W, t ∈ T

fwϕ(k)−1,k,t ≥ 0, (4.18)

fwϕ(k)+1,k,t ≥ 0, (4.19)

for all k ∈ I, t ∈ T ,

ykt ∈ {0, 1}, (3.20b)

for all i ∈ S,

ui ≤ ui ≤ ui, (3.20c)

0 ≤ V +
i ≤M

+
i , (3.20d)

0 ≤ V −i ≤M
−
i , (3.20e)

and for all g ∈ G, k ∈ {1, 2, 3},

ag,k ∈ R. (3.20f)
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4.3 Model summary

The summary of the quasi-network-flow model for the vertical alignment de-
sign considering blocks and side-slopes is stated below.

4.3.1 Objective function

min
∑
i∈S

(piV
+
i + qiV

−
i ) +

∑
t∈T

∑
i∈S

(cri,i−1f
r
i,i−1,t + cri,i+1f

r
i,i+1,t)

+
∑
j∈B

cbj
∑
t∈T

(f bj,ϑ(j)−1,t + f bj,ϑ(j)+1,t) +
∑
k∈W

cwk
∑
t∈T

(fwϕ(k)−1,k,t + fwϕ(k)+1,k,t).

(4.1)

4.3.2 Flow constraints

For all t ∈ T , i ∈ S,

f ri−1,i,t + fui,i+1,t +
∑
j∈B

ϑ(j)=i

f bj,i+1,t = f ri,i+1,t + f li−1,i,t +
∑
k∈W

ϕ(k)=i

fwi−1,k,t, (4.2a)

f ri+1,i,t + fui,i−1,t +
∑
j∈B

ϑ(j)=i

f bj,i−1,t = f ri,i−1,t + f li+1,i,t +
∑
k∈W

ϕ(k)=i

fwi+1,k,t, (4.2b)

4.3.3 Balance constraints

For all i ∈ S, ∑
t∈T

(fui,i−1,t + fui,i+1,t) = V +
i , (4.3a)

∑
t∈T

(f li−1,i,t + f li+1,i,t) = V −i . (4.3b)

4.3.4 Pit constraints

For all j ∈ B, ∑
t∈T

(f bj,ϑ(j)−1,t + f bj,ϑ(j)+1,t) ≤ C
b
j , (4.4a)

and for all k ∈ W , ∑
t∈T

(fwϕ(k)−1,k,t + fwϕ(k)+1,k,t) ≤ C
w
k . (4.4b)
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4.3.5 Block constraints

For all t ∈ T , k ∈ I,

f rς(k)−1,ς(k),t+
∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)+1,t−f
l
ς(k)−1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)−1,j,t ≥ −Myk,t−1,

(4.5m)
f rς(k)−1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)+1,t−f
l
ς(k)−1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)−1,j,t ≤Myk,t−1,

(4.5n)

f rς(k),ς(k)+1,t+
∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)−1,j,t−f
u
ς(k),ς(k)+1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)+1,t ≥ −Myk,t−1,

(4.5o)
f rς(k),ς(k)+1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)−1,j,t− f
u
ς(k),ς(k)+1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)+1,t ≤Myk,t−1,

(4.5p)
f rς(k)+1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)−1,t−f
l
ς(k)+1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)+1,j,t ≥ −Myk,t−1,

(4.5q)
f rς(k)+1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f b,1j,ς(k)−1,t− f
l
ς(k)+1,ς(k),t−

∑
j∈W

ϕ(j)=ς(k)

fw,1ς(k)+1,j,t ≤Myk,t−1,

(4.5r)
f rς(k),ς(k)−1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)+1,j,t−f
u
ς(k),ς(k)−1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)−1,t ≥ −Myk,t−1,

(4.5s)
f rς(k),ς(k)−1,t+

∑
j∈W

ϕ(j)=ς(k)

fw,2ς(k)+1,j,t− f
u
ς(k),ς(k)−1,t−

∑
j∈B

ϑ(j)=ς(k)

f b,2j,ς(k)−1,t ≤Myk,t−1.

(4.5t)
for all t ∈ T , (k1, k2) ∈ I

2
, ς(k1) ≤ i, i+ 1 ≤ ς(k2),

f ri,i+1,t ≤M(yk1,t−1 + yk2,t−1), (4.6a)

f ri+1,i,t ≤M(yk1,t−1 + yk2,t−1), (4.6b)

for all t ∈ T , ς(k) ≤ i, i+ 1 ≤ n, k ∈ I→,

f ri,i+1,t ≤Myk,t−1, (4.6c)

f ri+1,i,t ≤Myk,t−1, (4.6d)
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for all t ∈ T , 1 ≤ i, i+ 1 ≤ ς(k), k ∈ I←,

f ri,i+1,t ≤Myk,t−1, (4.6e)

f ri,i+1,t ≤Myk,t−1, (4.6f)

for all t ∈ T , (k1, k2) ∈ I
2
, ς(k1) ≤ ϑ(i)− 1, ϑ(i), ϑ(i) + 1 ≤ ς(k2),

f bi,ϑ(i)+1,t ≤M(yk1,t−1 + yk2,t−1), (4.6g)

f bi,ϑ(i)−1,t ≤M(yk1,t−1 + yk2,t−1), (4.6h)

for all t ∈ T , ς(k) ≤ ϑ(i)− 1, ϑ(i), ϑ(i) + 1 ≤ n, k ∈ I→,

f bi,ϑ(i)+1,t ≤Myk,t−1, (4.6i)

f bi,ϑ(i)−1,t ≤Myk,t−1, (4.6j)

for all t ∈ T , 1 ≤ ϑ(i)− 1, ϑ(i), ϑ(i) + 1 ≤ ς(k), k ∈ I←,

f bi,ϑ(i)+1,t ≤Myk,t−1, (4.6k)

f bi,ϑ(i)−1,t ≤Myk,t−1, (4.6l)

for all t ∈ T , (k1, k2) ∈ I
2
, ς(k1) ≤ ϕ(i)− 1, ϕ(i), ϕ(i) + 1 ≤ ς(k2),

fwϕ(i)+1,i,t ≤M(yk1,t−1 + yk2,t−1). (4.6m)

fwϕ(i)−1,i,t ≤M(yk1,t−1 + yk2,t−1). (4.6n)

for all t ∈ T , ς(k) ≤ ϕ(i)− 1, ϕ(i), ϕ(i) + 1 ≤ n, k ∈ I→,

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6o)

fwϕ(i)−1,i,t ≤Myk,t−1, (4.6p)

for all t ∈ T , 1 ≤ ϕ(i)− 1, ϕ(i), ϕ(i) + 1 ≤ ς(k), k ∈ I←,

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6q)

fwϕ(i)+1,i,t ≤Myk,t−1, (4.6r)

for all t ∈ T , j ∈ B, k ∈ I, ϑ(j) = ς(k),

f b,1j,i+1,t + f b,2j,i+1,t = f bj,i+1,t, (4.5u)
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4.3. Model summary

f b,1j,i−1,t + f b,2j,i−1,t = f bj,i−1,t, (4.5v)

for all t ∈ T , j ∈ W , k ∈ I, ϕ(j) = ς(k),

fw,1i−1,k,t + fw,2i−1,k,t = fwi−1,k,t, (4.5w)

fw,1i+1,k,t + fw,2i+1,k,t = fwi+1,k,t, (4.5x)

for all k ∈ I, u ∈ T ,

u∑
t=1

(fuς(k),ς(k)−1,t+f
u
ς(k),ς(k)+1,t+

∑
j∈W

ϕ(j)=ς(k)

fwj,t)+M+
ς(k)(1−yku) ≥ V +

ς(k), (4.9a)

u∑
t=1

(f lς(k)−1,ς(k),t+f
l
ς(k)+1,ς(k),t+

∑
j∈B

ϑ(j)=ς(k)

f bj,t)+M−ς(k)(1−yku) ≥ V −ς(k), (4.9b)

for all t ∈ T \{nz + 1}, ∑
k∈I

ykt ≥ t, (3.12s)

and for all k ∈ I, t ∈ T \{nz + 1},(
yk,(t+1) ≥ yk,t

)
. (3.12t)

4.3.6 Volume constraints

Given 0 < A1
i < A2

i < ... < A
k+i
i and 0 < B1

i < B2
i < ... < B

k−i
i , for

ka ∈ {1, 2, ..., k+i }

V +
i ≥

ka−1∑
k=1

Aki u
k
i +Akai

(
ui −

ka−1∑
k=1

uki

)
, (3.13q)

and for kb ∈ {1, 2, ..., k−i }

V +
i ≥ −

kb−1∑
k=1

Bk
i u

k
i −B

kb
i

(
ui −

kb−1∑
k=1

uki

)
. (3.13r)
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4.3. Model summary

4.3.7 Roadside stockpiling constraints

If the end-user prefers accuracy over speed, then for all i ∈ S,

V +
i ≤Mbi, (3.14a)

V +
i ≥ δ

+
i bi, (3.14b)

V −i ≤M(1− bi), (3.14c)

otherwise, for all i ∈ S,

V +
i ≤Mbi, (3.15a)

V +
i ≥ δbi, (3.15b)

V −i ≤M(1− bi), (3.15c)

V −i ≥ δ(1− bi). (3.15d)

4.3.8 Gap constraints

For all g ∈ G, i ∈ Sg,

hg,i − ag,3
(sg,i+1)

2 + sg,i+1sg,i + (sg,i)
2

3
− ag,2

sg,i+1 + sg,i
2

− ag,1 = uκ(g,i).
(3.16)

4.3.9 Slope constraints

For all g ∈ G, i ∈ {1, ng},

L ≤ ag,2 + 2ag,3sg,i ≤ U . (3.17)

4.3.10 Smoothness constraints

For all g ∈ G\{1},

ag,1 + ag,2sg,1 + ag,3s
2
g,1 = a(g−1),1 + a(g−1),2sg,1 + a(g−1),3s

2
g,1, (3.18a)

ag,2 + 2ag,3sg,1 = a(g−1),2 + 2a(g−1),3sg,1. (3.18b)

4.3.11 Fixed point constraints

a1,1 + a1,2s1,1 + a1,3s
2
1,1 = yA, (3.19a)

am,1 + am,2sm,nm + am,3s
2
m,nm

= yB , (3.19b)
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4.3. Model summary

for all Hg,i ∈ H
ag,1 + ag,2sg,i + ag,3s

2
g,i = Hg,i, (3.19c)

and (
a1,2 + 2a1,3s1,1 = H

′
A

)
, (3.19d)(

am,2 + 2am,3sm,nm = H
′
B

)
. (3.19e)

4.3.12 Bounds

For all i ∈ N , t ∈ T ,

f ri,i−1,t ≥ 0, (4.10)

f ri,i+1,t ≥ 0, (4.11)

f li−1,i,t ≥ 0, (4.12)

f li+1,i,t ≥ 0, (4.13)

fui,i−1,t ≥ 0, (4.14)

fui,i+1,t ≥ 0, (4.15)

for all j ∈ B, t ∈ T ,

f bj,ϑ(j)−1,t ≥ 0, (4.16)

f bj,ϑ(j)+1,t ≥ 0, (4.17)

for all k ∈ W, t ∈ T

fwϕ(k)−1,k,t ≥ 0, (4.18)

fwϕ(k)+1,k,t ≥ 0, (4.19)

for all k ∈ I, t ∈ T ,

ykt ∈ {0, 1}, (3.20b)

for all i ∈ S,

−h−i ≤ ui ≤ h
+
i , (3.20c)

0 ≤ V +
i ≤M

+
i , (3.20d)

0 ≤ V −i ≤M
−
i , (3.20e)

and for all g ∈ G, k ∈ {1, 2, 3},

ag,k ∈ R. (3.20f)
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4.4. Model evaluation

4.4 Model evaluation

Proposition 4.4. The MILP of Section 4.3 has O(nnz) continuous variables.

Proof. The MILP has n variables for excavation volume, n variables for embank-
ment volume, (2n+2)(nz+1) transit flow variables, 4n(nz+1) variables for load
and unload flow for sections, 4nb(nz + 1) borrow flow variables in the worst case,
4nw(nz + 1) waste flow variables in the worst case, 3m variables for the spline
coefficients, n variables for section height. So, the total number of continuous
variables is

n+ n+ (2n+ 2)(nz + 1) + 4n(nz + 1) + 4nb(nz + 1)

+4nw(nz + 1) + 3m+ n

= 3n+ 3m+ (6n+ 2 + 4nb + 4nw)(nz + 1)

≤ 6n+ (6n+ n+ 4n+ 4n)(nz + nz)

= 6n+ 30nnz

since n ≥ nb, n ≥ nw, and n ≥ m and assuming n ≥ 2 and nz ≥ 1.

Proposition 4.5. The MILP of Section 4.3 has O(n2z + n) binary variables.

Proof. The total number of binary variables is nz(nz+1)+n ≤ 2n2z+n assuming
nz ≥ 1.

Proposition 4.6. The MILP of Section 4.3 has O(nn3z) constraints.

Proof. The number of constraints created by different equations of this model are
shown in Table 4.1. The total number of constraints is O(nn3z).
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4.4. Model evaluation

Equation Number of Constraints (worst case)
(4.2a),(4.2b) 2n(nz + 1)
(4.3a),(4.3b) 2n
(4.4a),(4.4b) nb + nw

From (4.5m) to (4.5x) 8nz(nz + 1) + 2(nb + nw)(nz + 1)

(4.6a), (4.6b) 2(n− 1)(nz + 1)nz(nz−1)
2

(4.6c), (4.6d) 2nz(n− 1)(nz + 1)
(4.6e), (4.6f) 2nz(n− 1)(nz + 1)

From (4.6g) to (4.6l) 2(nb − 2)(nz + 1)nz(nz−1)
2 + 4nz(nb − 2)(nz + 1)

From (4.6m) to (4.6r) 2(nw − 2)(nz + 1)nz(nz−1)
2 + 4nz(nw − 2)(nz + 1)

(4.9a), (4.9b) 2n(nz + 1)
(3.12s) nz
(3.12t) n2z

(3.13q), (3.13r)
∑

i∈S(k+i + k−i )
From (3.14a) to (3.14c) 3n
From (3.14a) to (3.14c) 4n

(3.16) n
(3.17) 2m

(3.18a), (3.18a) 2(m− 1)
From (3.19a) to (3.19e) 4 + |H|

Table 4.1: Number of constraints created by different equations of the quasi-
network-flow model
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Chapter 5

Numerical Results

However beautiful the strategy, you
should occasionally look at the re-
sults.

Winston Churchill (1874 - 1965)

This thesis explains two novel models of vertical alignment, namely a basic
MILP model and a quasi-network-flow model. The basic MILP model is the com-
position of Moreb’s vertical alignment model [Mor09] with Koch and Lucet’s im-
provements [KL10] and the earthwork block removal model of Hare, Koch, and
Lucet [HKL11]. In addition, the basic MILP model introduces a novel way of for-
mulating the side-slopes of the roads. So, for this model, we seek the answers to
the following questions.

– How does the basic MILP model of vertical alignment performs in terms of
robustness and accuracy compared to Moreb’s model for vertical alignment?

– Can we numerically analyze the behavior of the design parameters k+i , k−i ,
and ng, which we believe to be critical to the model, and suggest a good
values for these parameters?

The rationalization for finding a new model is that the basic MILP model starts per-
forming badly as the number of sections increases, since the number of continuous
variables is quadratically related to the number of sections. We therefore introduce
the quasi-network-flow model. So, for this model, we want to ask the following
questions.

– How fast can it solve the problems compared to the basic MILP model?

– Can it maintain the same objective value as the basic MILP model?

In this chapter, we explore these questions numerically.
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5.1. Experimental equipments

Table 5.1: The basic problem set showing the roads, their fixed length for all test
problems, and their fixed section length for most of the test problems

Road Length (km) Section Length (m) Number of Sections
A 1 20 50
B 5 100 50
C 2 20 100
D 3 20 150
E 15 100 150
F 20 100 200
G 9 20 450

5.1 Experimental equipments

The experiments in this chapter were performed in a Dell OptiPlex 980 work-
station with an Intel(R) Core(TM) i7-860 2.80GHz (6 cores) processor, a 16GB
of Random Access Memory (RAM), and a 64-bit Windows 7 Enterprise oper-
ating system. An academic eddition of the IBM ILOG CPLEX Optimizer 12.2
(http://www.cplex.com) was used to solve the problems. CPLEX is a high per-
formance MILP solver that can take advantage of the parallel architecture of the
processor. The models were programmed in the basic C++ programming language,
which was chosen because of its faster execution, platform independence, and eas-
ier integration with the CPLEX Optimizer. Microsoft Visual Studio Professional
2008 was used as the programming platform.

5.2 Basic problem set and parameters

For our experiments, we used 7 distinct road samples, which are provided by
our industrial partner. The data for these roads were generated by their software,
which is used by government and non-government road engineering industries of
many countries. We denote these roads with letters from A to G. We generated our
problem set by changing different parameters of these roads. However, these roads
have fixed section length and number of sections for all the problems. Table 5.1
shows the basic information of these roads. Moreover, all the experiments have the
following parameters,

– Relative MIP gap tolerance: 1%,

– LP feasibility tolerance: 10−06,

– Maximum run time: 2 hrs for each core of the processor totaling 12 hrs,
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5.3. Test configuration 1

– Upper bound for slope change: 0.5,

– Lower bound for slope change: −0.5,

– Maximum fill height: 10m,

– Maximum cut height: 10m.

Other solver and model parameters remain at the default settings.

5.3 Test configuration 1

In this test configuration, we compared the basic MILP model with Moreb’s
vertical alignment model in terms of robustness and accuracy. Moreb’s vertical
alignment model uses rectangular approximation for calculating the volume of a
section as written in Equation (2.9f). Since the height of a section is a design
variable, the appropriate approximation of the volume is highly dependent on the
choice of area of a section for Moreb’s model. But, as the height changes, so does
the appropriate value of area. In other words, Moreb’s vertical alignment model
can be very accurate if we can predict the height for each section before solving
the model. However, if the prediction of heights is far from the actual calculated
heights, then Moreb’s model can produce very bad results. This behavior makes
the model very unstable. To deal with this issue, two strategies are used currently.

The most common strategy is to assume that the output road profile will be very
close to the input ground profile. Of course, assuming this will bias the optimizer
to choose a solution close to the ground profile. While this strategy may perform
well for some examples, for other examples it may perform poorly. We call this
approach the Near Ground Moreb (NGM) approach.

The second approach is to predict the height to be the half way to the maximum
height for both cuts and fills. The quality of this approach also depends on the
initial guess, but since the initial guess is the average of the extreme guesses, this
approach should not perform really bad, at the same time, we should not expect
very good solution from it. We call this approach Average Moreb (AM) approach.

Unlike Moreb’s model, the basic MILP model for vertical alignment does not
depend on any initial guess. From Figures 3.3 and 3.4, we see that as the number
of entries in the lookup table, k+i (for a cut section i) and k−i (for a fill section
i) increases, the approximate volume becomes the actual volume. In addition to
comparing with the two variations of Moreb’s model, we also show the change in
accuracy with respect to the change in the values for k+i and k−i .
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Table 5.2: Problem (R-k, where k is the number of cut and fill entries in the lookup
table, AM or NGM for road R) set summary for Test configuration 1

Road Problems
A A-400, A-200, A-100, A-50, A-40, A-20, A-10, A-5, A-2, A-AM, A-NGM

B B-400, B-200, B-100, B-50, B-40, B-20, B-10, B-5, B-2, B-AM, B-NGM

C C-400, C-200, C-100, C-50, C-40, C-20, C-10, C-5, C-2, C-AM, C-NGM

D D-400, D-200, D-100, D-50, D-40, D-20, D-10, D-5, D-2, D-AM, D-NGM

E E-400, E-200, E-100, E-50, E-40, E-20, E-10, E-5, E-2, E-AM, E-NGM

F F-400, F-200, F-100, F-50, F-40, F-20, F-10, F-5, F-2, F-AM, F-NGM

G G-400, G-200, G-100, G-50, G-40, G-20, G-10, G-5, G-2, G-AM, G-NGM

5.3.1 Reference solution

The reference solution for the experiments should be models with sufficient
large values for k+i and k−i for all sections i. For the experiments of this test
configuration, we use the basic MILP model with k+i = k−i = 400 for all section
i, as the reference solution.

5.3.2 Problem set and parameters

For each of the roads of Table 5.1, we generated 10 problems for 10 different
values of k+i and k−i , as well as 2 problems for the AM and NGM approaches.
It should be noted that a basic MILP model with k+i = k−i = 1 is the same
as a model generated by the Average Moreb (AM) approach. Therefore, for this
test configuration, we generated 11 problems for each of the 7 roads totaling 77
problems with the naming convention R-k, where R is a road from Table 5.1, for
the basic MILP model k represents the value for k+i and k−i for all sections i, and
for Moreb’s model k represents AM or NGM. Table 5.2 summarizes the problem
set. For this test configuration, the other parameters are,

– number of sections per spline segment: ng = 2 for all g ∈ G,

– number of blocks: nz = 0,

– number of access roads: nr = 1.

We add an access road to the first section for each of the problems, with an infinite
borrow pit and an infinite waste pit to ensure feasibility.
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5.3. Test configuration 1

5.3.3 Experiment procedure

We used the following three-steps procedure for each of the problems in Table
5.2 to calculate the accuracy.

– In step 1, we solve the given model and save the output vertical alignment
and the optimal cost. We denote the optimal cost of this step with CR,k.

– In step 2, we generate a model with the same parameters as the given model
except k+i = k−i = 400, then we input the vertical alignment from step
1 to this model, and solve only for the earthwork operations. The optimal
cost of this step is the optimal cost with the corrected volume for the vertical
alignment of step 1. We denote this cost with C400

R,k.

– In step 3, we use the formulas εR,k =
CR,k−C400

R,k

C400
R,k

× 100% to get the percent

relative error and |εR,k| =
|CR,k−C400

R,k|
C400

R,k
× 100% to get the percent absolute

relative error.

We normalized the solution time with respect to the solution times with the model
with k+i = k−i = 400 to accommodate all the roads in the same graph. If tR,k
is the required time for Road R with k+i = k−i = k, then the normalized time is
defined as

tR,k =
tR,k
tR,400

. (5.1)

5.3.4 Results

The raw results of the problem configuration are shown in Tables B.1, B.2, and
B.3. A careful observation of the results reveal that depending on the values of k+i
and k−i the model can introduce significant errors. But, we wanted to know how
the accuracy of the problems changes as the values of k+i and k−i change, at the
same time, we wanted to define a range for k+i and k−i in which the solutions will
be reasonably accurate. For this purpose, we define 3 ranges of accuracies of the
solutions, i.e.,

– |εR,k| ≤ 2% : accurate solution, since the relative MIP gap tolerance is 1%,

– 2% < |εR,k| ≤ 5% : acceptable solution, since up to 5% error is acceptable
to our users, and

– |εR,k| > 5% : unacceptable solution.
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Figure 5.1: Percent absolute relative error for NGM and AM approaches of
Moreb’s model and the basic MILP model with different numbers of cut and fill
entries in the lookup table
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Figure 5.2: Normalized time for NGM and AM approaches of Moreb’s model and
the basic MILP model with different numbers of cut and fill entries in the lookup
table
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In Figure 5.1, we plot the percent absolute relative error for both NGM and AM
approaches of Moreb’s model and the basic MILP model with different numbers
of cut and fill entries in the lookup table. From the plot, we see that for all the
roads both approaches for Moreb’s model generate errors that are unacceptable to
our users. We also see that the error drops very quickly as we increase the number
of entries in the lookup table and for all the roads the error stays in the acceptable
range if we use more than 5 entries in the lookup table. We conclude that given a
reasonable number of entries in the lookup table, the basic MILP model is robust
and accurate.

Similar to Figure 5.1, we plot the timing data in Figure 5.2. We see that both
Moreb’s approaches require almost the same amount of time, which is expected
since both of this approaches have the same number of variables and constraints.
For each additional entries of the lookup table, 2n additional constraints are re-
quired. So, the timing should increase as we increase the number of entries in the
lookup table.

5.4 Test configuration 2

In this test configuration, we analyzed the behavior of another design parameter
of the basic MILP model called the number of sections per spline segment (ng for
all g ∈ G), which we believed to be critical for the model.

5.4.1 Reference solution

Theoretically, the best value for ng, for all g ∈ G, is 1, since it gives the best
objective value. The reason is ng = 1, for all g ∈ G, gives the model the most
flexibility to move the road profile up and down. We set it as the reference solution.

5.4.2 Problem set and parameters

For each of the roads of Table 5.1, we generated problems for different values
of ng. When generating these problems, we made sure that nwas divisible by ng so
that all the segments have the same number of sections. For this test configuration,
we generated 51 problems with the naming convention R-ng, where R is a road
from Table 5.1, and ng is the number of sections per segment, that are shown in
Table 5.3. It should be noted that ng > 10 is rarely used, but we created some
problems with higher ng values for demonstration purpose. The other parameters
for this test configuration are,

– number of entries in the lookup table: k+i = k−i = 200 for all i,
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5.4. Test configuration 2

Table 5.3: Problem (R-ng, where ng is the number of sections per segment for road
R) set summary for Test configuration 2

Road Problems
A A-1, A-2, A-5, A-10, A-25

B B-1, B-2, B-5, B-10, B-25

C C-1, C-2, C-4, C-5, C-10, C-20, C-25

D D-1, D-2, D-3, D-4, D-5, D-6, D-10, D-15, D-25

E E-1, E-2, E-3, E-5, E-6, E-10, E-15, E-25

F F-1, F-2, F-4, F-5, F-8, F-10, F-20, F-25

G G-1, G-2, G-3, G-5, G-6, G-9, G-10, G-15, G-18, G-25

– number of blocks: nz = 0,

– number of access roads: nr = 1.

5.4.3 Experiment procedure

From Test configuration 1, we see that models with k+i = k−i = 200 will
produce accurate enough solutions for practical use. So, for this test configuration
we assume that all the solutions are accurate. Assuming that we want to know how
the cost and timing changes with respect to the parameter ng. We normalized the
solutions with respect to the reference solution to accommodate all the roads in the
same graph. If CR,ng is the optimal cost for Road R with ng sections per segment,
then the normalized cost is defined as,

CR,ng =
CR,ng

CR,1
. (5.2)

If tR,ng is the required time for Road R with ng sections per segment, then the
normalized time is defined as,

tR,ng =
tR,ng

tR,1
. (5.3)

5.4.4 Results

The raw results of this test configuration, as well as, the calculated normalized
cost and timing are shown in Table B.4. In Figure 5.3, we plot the change of
normalized cost with respect to the number of sections per segment for each of the
roads. As expected, we see that the cost continues to increase as the value of ng
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Figure 5.3: The change of normalized cost with respect to the number of sections
per segment for each of the roads
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Figure 5.4: The change of normalized time with respect to the number of sections
per segment for each of the roads
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5.5. Test configuration 3

increases, whereas the time behaves randomly. We conclude that the number of
sections per spline segment should not exceed 2.

5.5 Test configuration 3

In this test configuration, we compare the performance of the quasi-network-
flow model with respect to the basic MILP model. Since the quasi-network-flow
model has O(nnz) continuous variables compared to O(n2nz) continuous vari-
ables of the basic MILP model, we are expecting a significant improvement in
timing. At the same time, we are expecting that both models will report the same
optimal cost for the same problem.

5.5.1 Reference solution

Since we are comparing the performance of the quasi-network-flow model with
respect to the basic MILP model, our reference solution is the basic MILP model
for both timing and optimal cost.

5.5.2 Problem set and parameters

We add (5, 2), (5, 4), (10, 2), and (10, 4) number of (blocks, access roads) to
each of the problems in Table 5.2 generating 280 problems with naming convention
R-k, nz, nr, where R is a road, k = k+i = k−i , nz is the number of blocks, and nr
is the number of access roads. Table 5.4 shows the problem set. For the problems,
the number of sections per spline segment is ng = 2 for all g ∈ G.

5.5.3 Experiment procedure

We solve the same problem with both models. For a problem R-k, nz, nr, we
denote the optimal cost of the basic MILP model with CbR,k,nz ,nr

and that of the
quasi-network-flow model with CnR,k,nz ,nr

. So, the percent difference in optimal
cost is

δR,k,nz ,nr =
CnR,k,nz ,nr

− CbR,k,nz ,nr

CbR,k,nz ,nr

× 100%. (5.4)

Since the relative MIP gap tolerance is 1%, a δR,k,nz ,nr value between −2% and
2% implies that both models give the statistically equivalent optimal cost. For a
problemR-k, nz, nr, we denote the timing of the basic MILP model with tbR,k,nz ,nr

and that of the quasi-network-flow model with tnR,k,nz ,nr
. Since theoretically tnR,k,nz ,nr

≤
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Table 5.4: Problem (R-k, nz, nr, where k = k+i = k−i , nz is the number of blocks,
and nr is the number of access roads for roadR) set summary for Test configuration
3

Road Problems
A A-400,5,2; A-200,5,2; A-100,5,2; A-50,5,2; A-40,5,2; A-20,5,2; A-10,5,2; A-5,5,2;

A-2,5,2; A-1,5,2; A-400,10,2; A-200,10,2; A-100,10,2; A-50,10,2; A-40,10,2; A-20,10,2;

A-10,10,2; A-5,10,2; A-2,10,2; A-1,10,2; A-400,5,4; A-200,5,4; A-100,5,4; A-50,5,4;

A-40,5,4; A-20,5,4; A-10,5,4; A-5,5,4; A-2,5,4; A-1,5,4; A-400,10,4; A-200,10,4;

A-100,10,4; A-50,10,4; A-40,10,4; A-20,10,4; A-10,10,4; A-5,10,4; A-2,10,4; A-1,10,4;

B B-400,5,2; B-200,5,2; B-100,5,2; B-50,5,2; B-40,5,2; B-20,5,2; B-10,5,2; B-5,5,2;

B-2,5,2; B-1,5,2; B-400,10,2; B-200,10,2; B-100,10,2; B-50,10,2; B-40,10,2; B-20,10,2;

B-10,10,2; B-5,10,2; B-2,10,2; B-1,10,2; B-400,5,4; B-200,5,4; B-100,5,4; B-50,5,4;

B-40,5,4; B-20,5,4; B-10,5,4; B-5,5,4; B-2,5,4; B-1,5,4; B-400,10,4; B-200,10,4;

B-100,10,4; B-50,10,4; B-40,10,4; B-20,10,4; B-10,10,4; B-5,10,4; B-2,10,4; B-1,10,4;

C C-400,5,2; C-200,5,2; C-100,5,2; C-50,5,2; C-40,5,2; C-20,5,2; C-10,5,2; C-5,5,2;

C-2,5,2; C-1,5,2; C-400,10,2; C-200,10,2; C-100,10,2; C-50,10,2; C-40,10,2; C-20,10,2;

C-10,10,2; C-5,10,2; C-2,10,2; C-1,10,2; C-400,5,4; C-200,5,4; C-100,5,4; C-50,5,4;

C-40,5,4; C-20,5,4; C-10,5,4; C-5,5,4; C-2,5,4; C-1,5,4; C-400,10,4; C-200,10,4;

C-100,10,4; C-50,10,4; C-40,10,4; C-20,10,4; C-10,10,4; C-5,10,4; C-2,10,4; C-1,10,4;

D D-400,5,2; D-200,5,2; D-100,5,2; D-50,5,2; D-40,5,2; D-20,5,2; D-10,5,2; D-5,5,2;

D-2,5,2; D-1,5,2; D-400,10,2; D-200,10,2; D-100,10,2; D-50,10,2; D-40,10,2; D-20,10,2;

D-10,10,2; D-5,10,2; D-2,10,2; D-1,10,2; D-400,5,4; D-200,5,4; D-100,5,4; D-50,5,4;

D-40,5,4; D-20,5,4; D-10,5,4; D-5,5,4; D-2,5,4; D-1,5,4; D-400,10,4; D-200,10,4;

D-100,10,4; D-50,10,4; D-40,10,4; D-20,10,4; D-10,10,4; D-5,10,4; D-2,10,4; D-1,10,4;

E E-400,5,2; E-200,5,2; E-100,5,2; E-50,5,2; E-40,5,2; E-20,5,2; E-10,5,2; E-5,5,2; E-2,5,2;

E-1,5,2; E-400,10,2; E-200,10,2; E-100,10,2; E-50,10,2; E-40,10,2; E-20,10,2; E-10,10,2;

E-5,10,2; E-2,10,2; E-1,10,2; E-400,5,4; E-200,5,4; E-100,5,4; E-50,5,4; E-40,5,4; E-20,5,4;

E-10,5,4; E-5,5,4; E-2,5,4; E-1,5,4; E-400,10,4; E-200,10,4; E-100,10,4; E-50,10,4;

E-40,10,4; E-20,10,4; E-10,10,4; E-5,10,4; E-2,10,4; E-1,10,4;

F F-400,5,2; F-200,5,2; F-100,5,2; F-50,5,2; F-40,5,2; F-20,5,2; F-10,5,2; F-5,5,2; F-2,5,2;

F-1,5,2; F-400,10,2; F-200,10,2; F-100,10,2; F-50,10,2; F-40,10,2; F-20,10,2; F-10,10,2;

F-5,10,2; F-2,10,2; F-1,10,2; F-400,5,4; F-200,5,4; F-100,5,4; F-50,5,4; F-40,5,4; F-20,5,4;

F-10,5,4; F-5,5,4; F-2,5,4; F-1,5,4; F-400,10,4; F-200,10,4; F-100,10,4; F-50,10,4; F-40,10,4;

F-20,10,4; F-10,10,4; F-5,10,4; F-2,10,4; F-1,10,4;

G G-400,5,2; G-200,5,2; G-100,5,2; G-50,5,2; G-40,5,2; G-20,5,2; G-10,5,2; G-5,5,2; G-2,5,2;

G-1,5,2; G-400,10,2; G-200,10,2; G-100,10,2; G-50,10,2; G-40,10,2; G-20,10,2; G-10,10,2;

G-5,10,2; G-2,10,2; G-1,10,2; G-400,5,4; G-200,5,4; G-100,5,4; G-50,5,4; G-40,5,4; G-20,5,4;

G-10,5,4; G-5,5,4; G-2,5,4; G-1,5,4; G-400,10,4; G-200,10,4; G-100,10,4; G-50,10,4; G-40,10,4;

G-20,10,4; G-10,10,4; G-5,10,4; G-2,10,4; G-1,10,4;
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Figure 5.5: A histogram showing the number of problems solved within different
improvement range

tbR,k,nz ,nr
, we define the percent improvement in timing as

ηR,k,nz ,nr =
tbR,k,nz ,nr

− tnR,k,nz ,nr

tbR,k,nz ,nr

× 100%. (5.5)

We expect 0 ≤ ηR,k,nz ,nr ≤ 100 with a larger value implies larger improvement.
A negative value for ηR,k,nz ,nr implies a negative improvement.

5.5.4 Results

The raw results of this test configuration are shown in Tables B.5, B.6, B.7,
B.8, B.9, B.10, B.11, and B.12. In the tables, a problem name ending with an *
denotes that the basic MILP model either terminated in the middle of the program
execution because of insufficient memory i.e., no timing was recorded, or the solver
could not solve the model within the given time limit. However, the tables records
the best feasible solution value before it ran out of time or memory. In Figure 5.5,
we show a histogram of the number of problems solved within different range of
improvement in timing, as well as, the number of unsolved problems. From the
data, we see that

– the basic MILP model cannot solve 14 problems in the given time limit
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and computer memory, whereas the quasi-network-flow model solves all the
problems,

– the quasi-network-flow model not only solves all the problems faster than
the basic MILP model but also the improvement is significant for most of
the problems, and

– the problems that both model can solve are within the 2% of each other i.e.,
both models give statistically equivalent cost for all the problems.

5.6 Summary of the results

We can summarize the results of this chapter as follows.
For all i, the parameters k+i and k−i are critical for the accuracy of the model,

and the recommended value is 5 or more. The timing can change from a factor
of 0.1 to 1.5, but if the parameter value is less than 20, the solution time remains
relatively unchanged.

For all g ∈ G, the parameters ng are critical for finding the minimum cost, and
the recommended value is 1. These parameters have random effects on solution
time.

The quasi-network-flow model is a noticeable improvement over the basic
MILP model in regards to solution time.

From our observation of the resource monitor of the computer, we suggest the
users to run the basic MILP model on a work station with a larger computer mem-
ory and the quasi-network-flow model on a work station with higher computing
power.
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Chapter 6

Conclusion and Future Work

The important thing is not to stop
questioning, curiosity has its own rea-
son for existing.

Albert Einstein (1879 - 1955)

6.1 Conclusion

Since both Moreb’s vertical alignment model [Mor09] and Hare, Koch, and
Lucet’s earthwork model with blocks [HKL11] are capable of satisfying most of
the requirements of our clients, we have combined both ideas in a single model.
The resulting model is the first model in this research area that can compute the
vertical alignment considering blocks and access roads.

We have further looked into possible improvements for this model. We have
found that the model was generating substantial errors in the volume approxima-
tion from not considering the side-slopes of the roads. So, we have developed a
novel way of implementing side-slopes using lookup table without significantly
increasing the time complexity of the model.

Finally, we have come up with a novel way of reducing the number of earth
movement variables using the ideas from network flow algorithms. Similar idea
has been implemented for the earthwork optimization problem in [HHLM12] and
extended for vertical alignment in this thesis. We call the formulation a quasi-
network-flow model of vertical alignment.

6.2 Future work

6.2.1 The dynamic block extension

The described models assume that no roadside stockpiling will occur. One
possible extension is to change the models to allow roadside stockpiling. When too
much roadside stockpiling occurs in a section, a temporary block may be created
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that did not previously exist. This type of block is called a dynamic block. One of
the important future direction is to handle dynamic blocks in the model.

6.2.2 The multi-material extension

In a multi-material model of a vertical alignment, the different types of materi-
als found in earth, which vary in cost and quality, are taken into account. Consid-
ering multiple materials provides a more realistic solution, because the cost of the
material sometimes depends on the types of materials in the earth, and often some
parts of the road require a specific material type for engineering reasons.

In a multi-material model, every cut section has given volumes for all material
types, which comes from the input ground profile, and every fill section has a user
defined required volumes for all material types. We explored few types of multi-
material models, which are described briefly in this section.

Exact multi-material model

This simple form of multi-material model sub-divide the earth movement vari-
ables for each material. The discussed vertical alignment models of this thesis are
easily extendable to this form. Moreb discussed this approach in [Mor09]. This
approach gives impractical solutions, since it requires a considerable use of the
borrow and waste pits for feasibility. This approach is not acceptable in the road
design field.

Quality based multi-material model

This approach categorizes the materials into different levels of quality, and
a higher quality material can be used in place of a lower quality material. This
approach is more practical. There are two variations of this approach.

– In the first variation, there is no minimum required material quality for a
section. A section can accept any material at any amount, as long as their
quality is better than or same as the required quality.

– In the second variation, a minimum amount of each quality for each section
is specified. After the minimum amount is provided, the section can accept
materials of the same or better quality.

Rule based multi-material model

This is the most generic form of a multi-material model. Instead of defining
the quality of the materials, this method defines some rules that must be followed
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for cutting and filling. The quality based multi-material model is an example of the
rule based multi-material model, where the rule that a higher quality material can
be used in place of a lower quality material with or without a minimum amount is
enforced. Different rules requires different modeling techniques for this approach.

For a detailed explanation of the multi-material extension we refer to [BRLH11],
where we also show an earthwork implementation of the quality based multi-
material model with a required minimum amount. However, extending the earth-
work multi-material model to a vertical alignment model is not trivial and is left
for future research.

6.2.3 Other areas of improvement

Future research can be done on finding the optimal section length, reducing
the number of binary variables, considering the cost of land, and incorporating
retaining walls.

6.2.4 Horizontal alignment

The next step of the research is to model the horizontal alignment and simul-
taneously optimize the horizontal and vertical alignment of a road. Unlike vertical
alignment, the horizontal alignment formulation can have a non-convex or dis-
continuous objective function. The modeling also involves considering political,
socioeconomic, and environmental issues. Discrete modeling techniques like net-
work optimization or dynamic programming seems promising at this stage of the
research.
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Appendix A

Asymptotic Bounds

Definition A.1. Let f and g be real-valued functions. We say that f(n) isO(g(n))
or g is an asymptotically upper bound for f , if there exists constants c and n0 such
that |f(n)| ≤ c |g(n)| for all n > n0.

Example A.2. For any algorithm, the running time T (n) = n3 +10n+1 isO(n3)
because n3 + 10n+ 1 ≤ n3 + 10n3 + n3 ≤ 12n3 for all n > 1.

Definition A.3. Let f and g be real-valued functions. We say that f(n) is Ω(g(n))
or g is an asymptotically lower bound for f , if there exists constants c and n0 such
that |f(n)| ≥ c |g(n)| for all n > n0.

Example A.4. For any algorithm, the running time T (n) = n3 +10n+1 is Ω(n3)
because n3 + 10n+ 1 ≥ n3 for all n > − 1

10 .

Definition A.5. Let f and g be real-valued functions. We say that f(n) is Θ(g(n))
or g is an asymptotically tight bound for f , if and only if f(n) is Ω(g(n)) and
O(g(n)).

Example A.6. For any algorithm, the running time T (n) = n3 +10n+1 is Θ(n3)
by Examples A.2 and A.4.

Theorem A.7. anxn + ...+ a1x+ a0 isO(xn) for any real numbers an, ..., a1, a0
with an 6= 0 and any non-negative number n.

Proof. The proof can be found elsewhere [KvT05].

Theorem A.8. If f1(x) is O(g1(x)) , and f2(x) is O(g2(x)) , then (f1 + f2)(x) is
O(max(g1(x), g2(x))) .

Proof. The proof can be found elsewhere [KvT05].

Theorem A.9. If f1(x) is O(g1(x)) , and f2(x) is O(g2(x)) , then (f1 ∗ f2)(x) is
O(g1(x) ∗ g2(x)) .

Proof. The proof can be found elsewhere [KvT05].
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Theorem A.10. anxn+ ...+a1x+a0 is Θ(xn) for any real numbers an, ..., a1, a0
with an 6= 0 and any non-negative number n.

Proof. The proof can be found elsewhere [KvT05].

Definition A.11. Let f and g be real-valued functions. We say that f(n) is o(g(n))
if f(n) is O(g(n)) but not Θ(g(n)), and f(n) is ω(g(n)) if f(n) is Ω(g(n)) but
not Θ(g(n)).

Example A.12. x is o(x2) and x2 is ω(x).
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Tables

Table B.1: Required time in seconds (tR,ks), normalized time (tR,k), optimal cost
(CR,k), optimal cost with corrected volume (C400

R,k), and percent absolute relative
error (|εR,k|) for the problems (R-k) of Test configuration 1 (Roads-A,B)

R-k tR,k tR,k CR,k C400
R,k

∣∣εR,k

∣∣
A-400 0.61 1.0 12882.6 12882.6 0

A-200 0.75 1.2 12707.4 12936.3 1.8

A-100 0.89 1.5 12726.3 12943.2 1.7

A-50 0.55 0.90 12736.5 12951.8 1.7

A-40 0.36 0.59 12747.9 12952.2 1.6

A-20 0.27 0.44 12878.3 13015.1 1.1

A-10 0.09 0.15 13287.7 13170.8 0.89

A-5 0.08 0.13 14126.1 13459.7 5

A-2 0.06 0.10 16544.3 14144 17

A-AM 0.23 0.38 20408.7 14867.6 37.3

A-NGM 0.23 0.38 10396.8 12997.2 20

B-400 0.51 1.0 246325 246293 0.01

B-200 0.47 0.92 238615 246462 3.2

B-100 0.58 1.1 238612 246422 3.2

B-50 0.23 0.45 238667 246428 3.1

B-40 0.27 0.53 238788 246499 3.1

B-20 0.09 0.18 239592 246587 2.8

B-10 0.08 0.16 242599 247627 2

B-5 0.23 0.45 254468 253048 0.56

B-2 0.16 0.31 304477 271852 12

B-AM 0.11 0.22 386232 292768 31.9

B-NGM 0.08 0.16 185555 255932 27.5
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Table B.2: Required time in seconds (tR,ks), normalized time (tR,k), optimal cost
(CR,k), optimal cost with corrected volume (C400

R,k), and percent absolute relative
error (|εR,k|) for the problems (R-k) of Test configuration 1 (Roads-C,D,E)

R-k tR,k tR,k CR,k C400
R,k

∣∣εR,k

∣∣
C-400 3.8 1.0 415788 415765 0.01

C-200 3.5 0.92 399624 415766 3.9

C-100 2.7 0.71 399637 415766 3.9

C-50 2.1 0.55 399648 415766 3.9

C-40 2 0.53 399707 415766 3.9

C-20 1.2 0.32 400196 415767 3.7

C-10 1.2 0.32 402063 415767 3.3

C-5 0.9 0.24 408086 415811 1.9

C-2 4.3 1.1 463629 417949 10.9

C-AM 3.4 0.89 602781 425284 41.7

C-NGM 5.3 1.4 267501 428078 37.5

D-400 3 1.0 94893 94836 0.06

D-200 3.2 1.1 92278.5 94869.1 2.7

D-100 2.7 0.90 92332.2 94881.8 2.7

D-50 2.1 0.70 92357.7 94889.2 2.7

D-40 1.8 0.60 92410.8 94888.4 2.6

D-20 1.2 0.40 92843.4 95056 2.3

D-10 1 0.33 94529.3 95796.4 1.3

D-5 0.89 0.30 100316 97999.2 2.4

D-2 0.67 0.22 118819 104210 14

D-AM 0.73 0.24 148328 111462 33.1

D-NGM 0.76 0.25 73689.6 96142.2 23.4

E-400 4.1 1.0 1601620 1601610 0

E-200 3.9 0.95 1541690 1602890 3.8

E-100 2.7 0.66 1541640 1602990 3.8

E-50 1.8 0.44 1541940 1603070 3.8

E-40 1.6 0.39 1542320 1603160 3.8

E-20 1.1 0.27 1545260 1603520 3.6

E-10 0.67 0.16 1554970 1605780 3.2

E-5 0.59 0.14 1596920 1618010 1.3

E-2 0.53 0.13 1824600 1691980 7.8

E-AM 0.53 0.13 2304130 1804020 27.7

E-NGM 0.61 0.15 1169080 1708980 31.6
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Table B.3: Required time in seconds (tR,k), optimal cost (CR,k), optimal cost with
corrected volume (C400

R,k), and percent absolute relative error (|εR,k|) for the prob-
lems (R-k) of Test configuration 1 (Roads-F,G)

R-k tR,k tR,k CR,k C400
R,k

∣∣εR,k

∣∣
F-400 7.4 1.0 2078030 2078010 0

F-200 6.1 0.82 2001190 2079570 3.8

F-100 4.7 0.64 2001270 2079670 3.8

F-50 2.9 0.39 2001640 2079820 3.8

F-40 2.4 0.32 2002120 2079910 3.7

F-20 1.5 0.20 2005920 2080570 3.6

F-10 1.2 0.16 2018810 2083480 3.1

F-5 1 0.14 2075680 2100290 1.2

F-2 1.1 0.15 2388580 2203500 8.4

F-AM 0.84 0.11 3008870 2349300 28.1

F-NGM 0.92 0.12 1515610 2196990 31

G-400 38.8 1.0 1049830 1049760 0.01

G-200 44.2 1.1 1009470 1050500 3.9

G-100 39.9 1.0 1009490 1050690 3.9

G-50 26.8 0.69 1009660 1050880 3.9

G-40 24.5 0.63 1009860 1050920 3.9

G-20 21.4 0.55 1011290 1051330 3.8

G-10 17.8 0.46 1017120 1052750 3.4

G-5 13 0.34 1039140 1057940 1.8

G-2 12.5 0.32 1164140 1087030 7.1

G-AM 12.2 0.31 1427720 1136960 25.6

G-NGM 13.2 0.34 728216 1132610 35.7
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Table B.4: Optimal cost (CR,ng ), normalized cost (CR,ng ), required time (tR,ng ),
and normalized time (tR,ng ) for the problems (R-ng) of Test configuration 2

R-ng CR,ng CR,ng tR,ng tR,ng

A-1 8614.45 1.0 1.5 1.0

A-2 12707.4 1.5 2.3 1.5

A-5 23316.4 2.7 2.5 1.6

A-10 93495.4 10.9 5.0 3.3

A-25 133842 15.5 2.4 1.6

B-1 109555 1.0 1.7 1.0

B-2 238615 2.2 2.2 1.3

B-5 502577 4.6 2.7 1.6

B-10 767983 7.0 3.2 1.9

B-25 957011 8.7 2.3 1.3

C-1 399592 1.0 45.3 1.0

C-2 399624 1.0 8.8 0.19

C-4 399592 1.0 34.8 0.77

C-5 400201 1.0 24.0 0.53

C-10 401230 1.0 9.3 0.20

C-20 407700 1.0 8.5 0.19

C-25 404997 1.0 10.5 0.23

D-1 85844.2 1.0 25.7 1.0

D-2 92278.5 1.1 22.1 0.86

D-3 99181.4 1.2 21.0 0.82

D-5 116551 1.4 31.9 1.2

D-6 120897 1.4 27.1 1.1

D-10 237660 2.8 40.3 1.6

D-15 303055 3.5 36.4 1.4

D-25 343509 4.0 69.6 2.7

R-ng CR,ng CR,ng tR,ng tR,ng

E-1 1363880 1.0 23.3 1.0

E-2 1541690 1.1 21.7 0.93

E-3 1752290 1.3 21.2 0.91

E-5 2144850 1.6 40.6 1.7

E-6 2400900 1.8 9.2 0.39

E-10 3035850 2.2 10.5 0.45

E-15 4207050 3.1 15.2 0.65

E-25 5162780 3.8 33.2 1.4

F-1 1816420 1.0 36.4 1.0

F-2 2001190 1.1 33.5 0.92

F-4 2365320 1.3 86.5 2.4

F-5 2639150 1.5 57.2 1.6

F-8 3289100 1.8 46.6 1.3

F-10 3937060 2.2 15.1 0.41

F-20 7933540 4.4 90.5 2.5

F-25 8356650 4.6 554.6 15.2

G-1 1000420 1.0 115.5 1.0

G-2 1009470 1.0 42.8 0.37

G-3 1019870 1.0 395.7 3.4

G-5 1049250 1.0 758.0 6.6

G-6 1058990 1.1 804.9 7.0

G-9 1123460 1.1 131.0 1.1

G-10 1207270 1.2 815.9 7.1

G-15 1357230 1.4 113.9 0.99

G-18 1340080 1.3 1236.7 10.7

G-25 1580330 1.6 637.8 5.5
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Table B.5: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-1)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

A-400,5,2 12997.3 5.2 12997.3 1.7 0.00 67.5

A-200,5,2 12795.7 7.1 12818.7 3.6 0.18 48.5

A-100,5,2 12813.3 9.1 12813.3 4.2 0.00 54.3

A-50,5,2 12823.0 9.2 12833.4 1.2 0.08 87.4

A-40,5,2 12834.8 4.9 12847.1 2.1 0.10 58.1

A-20,5,2 12962.3 5.7 12987.8 1.0 0.20 82.2

A-10,5,2 13373.9 4.3 13373.9 0.89 0.00 79.3

A-5,5,2 14239.2 4.4 14221.3 0.97 -0.13 78.2

A-2,5,2 16669.7 2.6 16658.9 0.47 -0.06 82.0

A-1,5,2 20534.6 6.3 20523.6 0.67 -0.05 89.4

A-400,10,2 13034.7 841.0 13034.7 49.0 0.00 94.2

A-200,10,2 12852.7 378.0 12852.7 37.0 0.00 90.2

A-100,10,2 12870.8 264.0 12870.8 33.0 0.00 87.5

A-50,10,2 12880.0 210.0 12880.0 26.0 0.00 87.6

A-40,10,2 12893.4 270.0 12893.4 23.0 0.00 91.5

A-20,10,2 13021.4 470.0 13021.4 22.0 0.00 95.3

A-10,10,2 13431.1 293.0 13438.0 23.0 0.05 92.2

A-5,10,2 14290.1 429.0 14290.1 22.0 0.00 94.9

A-2,10,2 16731.2 316.0 16752.7 16.0 0.13 94.9

A-1,10,2 20651.1 364.0 20651.1 24.0 0.00 93.4

A-400,5,4 12997.3 5.6 12997.3 1.6 0.00 71.6

A-200,5,4 12795.7 7.4 12818.7 4.7 0.18 36.9

A-100,5,4 12813.3 9.2 12813.3 2.7 0.00 70.2

A-50,5,4 12844.0 3.3 12844.0 2.2 0.00 32.1

A-40,5,4 12856.9 5.3 12834.8 1.4 -0.17 73.4

A-20,5,4 12987.8 5.7 12987.8 0.78 0.00 86.2

A-10,5,4 13399.3 5.0 13388.4 0.56 -0.08 88.7

A-5,5,4 14221.3 2.6 14239.2 0.44 0.13 83.3

A-2,5,4 16669.7 2.7 16669.7 0.58 0.00 78.2

A-1,5,4 20571.9 4.9 20534.6 0.50 -0.18 89.7

A-400,10,4 13011.8 61.7 13006.0 14.6 -0.04 76.4

A-200,10,4 12826.4 149.2 12826.4 24.7 0.00 83.5

A-100,10,4 12844.7 55.1 12844.7 14.5 0.00 73.7

A-50,10,4 12854.9 199.6 12854.9 10.2 0.00 94.9

A-40,10,4 12867.4 73.2 12867.4 7.7 0.00 89.5
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Table B.6: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-2)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

A-20,10,4 12994.3 124.8 12994.3 5.1 0.00 95.9

A-10,10,4 13417.0 102.9 13414.3 9.1 -0.02 91.1

A-5,10,4 14255.6 45.0 14255.6 5.8 0.00 87.2

A-2,10,4 16708.7 25.8 16708.7 5.7 0.00 77.7

A-1,10,4 20623.7 873.0 20623.7 22.2 0.00 97.5

B-400,5,2 248092.0 11.9 248092.0 0.83 0.00 93.1

B-200,5,2 240152.0 13.5 240152.0 1.2 0.00 91.5

B-100,5,2 240204.0 7.2 240154.0 0.95 -0.02 86.8

B-50,5,2 240212.0 10.7 240212.0 0.56 0.00 94.7

B-40,5,2 240331.0 9.3 240331.0 1.0 0.00 89.0

B-20,5,2 241156.0 9.5 241156.0 0.36 0.00 96.2

B-10,5,2 243803.0 9.2 243803.0 0.39 0.00 95.7

B-5,5,2 255556.0 6.2 255556.0 0.25 0.00 95.9

B-2,5,2 306133.0 6.1 307433.0 0.27 0.42 95.7

B-1,5,2 388360.0 6.1 388360.0 1.2 0.00 80.5

B-400,10,2 248092.0 577.5 248092.0 43.2 0.00 92.5

B-200,10,2 240152.0 419.3 240152.0 40.6 0.00 90.3

B-100,10,2 240208.0 233.8 240154.0 12.9 -0.02 94.5

B-50,10,2 240409.0 368.9 240212.0 13.3 -0.08 96.4

B-40,10,2 240472.0 440.5 240357.0 32.6 -0.05 92.6

B-20,10,2 241310.0 329.4 241156.0 33.1 -0.06 89.9

B-10,10,2 244022.0 156.8 243803.0 26.3 -0.09 83.2

B-5,10,2 255732.0 121.0 255556.0 14.8 -0.07 87.8

B-2,10,2 306341.0 106.3 306133.0 28.3 -0.07 73.3

B-1,10,2 388360.0 236.9 388360.0 24.5 0.00 89.7

B-400,5,4 246967.0 4.1 247953.0 2.5 0.40 39.4

B-200,5,4 239245.0 4.6 240427.0 3.3 0.49 28.4

B-100,5,4 239251.0 3.0 240438.0 2.1 0.50 29.3

B-50,5,4 239305.0 1.42 240492.0 1.39 0.50 2.2

B-40,5,4 239420.0 1.5 240606.0 0.90 0.50 38.3

B-20,5,4 240230.0 1.4 241503.0 0.83 0.53 39.1

B-10,5,4 243272.0 1.1 243732.0 0.48 0.19 56.9

B-5,5,4 255199.0 1.3 255556.0 0.62 0.14 51.8

B-2,5,4 305395.0 1.1 306133.0 0.34 0.24 68.6

B-1,5,4 387439.0 1.1 387439.0 0.44 0.00 59.4
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Table B.7: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-3)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

B-400,10,4 247783.0 23.2 247783.0 8.8 0.00 62.1

B-200,10,4 240001.0 32.0 239859.0 14.6 -0.06 54.2

B-100,10,4 239863.0 17.9 239863.0 5.7 0.00 68.2

B-50,10,4 239922.0 20.1 240069.0 5.0 0.06 75.0

B-40,10,4 240045.0 12.6 240185.0 4.7 0.06 62.6

B-20,10,4 240837.0 9.9 240837.0 3.8 0.00 61.8

B-10,10,4 243732.0 12.0 243732.0 2.6 0.00 78.2

B-5,10,4 255556.0 11.9 256988.0 5.8 0.56 51.1

B-2,10,4 306133.0 11.1 306133.0 3.0 0.00 72.8

B-1,10,4 388360.0 12.6 389967.0 3.2 0.41 74.9

C-400,5,2 418176.0 157.0 418176.0 4.0 0.00 97.5

C-200,5,2 400173.0 130.0 401927.0 6.0 0.44 95.4

C-100,5,2 401940.0 74.0 402054.0 4.0 0.03 94.6

C-50,5,2 399767.0 69.0 402065.0 3.0 0.57 95.7

C-40,5,2 402009.0 73.0 402009.0 2.0 0.00 97.3

C-20,5,2 402939.0 47.0 402492.0 2.0 -0.11 95.7

C-10,5,2 404352.0 79.0 404380.0 2.0 0.01 97.5

C-5,5,2 408842.0 47.0 410372.0 1.0 0.37 97.9

C-2,5,2 463228.0 83.0 463228.0 1.0 0.00 98.8

C-1,5,2 606528.0 56.0 606455.0 1.0 -0.01 98.2

C-400,10,2 421207.0 24665.0 421205.0 292.0 0.00 98.8

C-200,10,2 404836.0 15929.0 405458.0 390.0 0.15 97.6

C-100,10,2 404851.0 13407.0 404851.0 240.0 0.00 98.2

C-50,10,2 404864.0 24764.0 406450.0 549.0 0.39 97.8

C-40,10,2 404925.0 34714.0 404925.0 279.0 0.00 99.2

C-20,10,2 405451.0 13802.0 405451.0 309.0 0.00 97.8

C-10,10,2 408996.0 35082.0 407376.0 200.0 -0.40 99.4

C-5,10,2 413550.0 19250.0 413550.0 185.0 0.00 99.0

C-2,10,2 468418.0 30212.0 466963.0 162.0 -0.31 99.5

C-1,10,2 611882.0 17797.0 611882.0 105.0 0.00 99.4

C-400,5,4 415879.0 31.7 415879.0 6.6 0.00 79.0

C-200,5,4 399713.0 29.3 399713.0 8.9 0.00 69.7

C-100,5,4 401940.0 36.0 399725.0 6.6 -0.55 81.7

C-50,5,4 402034.0 29.9 399737.0 3.5 -0.57 88.4

C-40,5,4 402093.0 17.2 399795.0 3.2 -0.57 81.3
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Table B.8: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-4)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

C-20,5,4 402575.0 18.6 400284.0 2.5 -0.57 86.4

C-10,5,4 404435.0 17.1 402150.0 2.3 -0.56 86.6

C-5,5,4 410464.0 16.6 409790.0 1.6 -0.16 90.6

C-2,5,4 463334.0 16.6 460590.0 1.5 -0.59 91.3

C-1,5,4 606477.0 17.8 606477.0 1.2 0.00 93.2

C-400,10,4 421207.0 6952.0 420824.0 182.0 -0.09 97.4

C-200,10,4 404374.0 1307.0 404453.0 163.0 0.02 87.5

C-100,10,4 405311.0 566.0 405365.0 134.0 0.01 76.3

C-50,10,4 404398.0 2550.0 404864.0 100.0 0.12 96.1

C-40,10,4 404458.0 3852.0 404537.0 124.0 0.02 96.8

C-20,10,4 404945.0 3876.0 405933.0 83.0 0.24 97.9

C-10,10,4 406816.0 13933.0 406895.0 43.0 0.02 99.7

C-5,10,4 412972.0 4022.0 413053.0 99.0 0.02 97.5

C-2,10,4 465830.0 5483.0 467195.0 75.0 0.29 98.6

C-1,10,4 609939.0 4680.0 610055.0 116.0 0.02 97.5

D-400,5,2 94893.0 196.0 95028.4 6.0 0.14 96.9

D-200,5,2 92278.5 210.0 92278.5 18.0 0.00 91.4

D-100,5,2 92332.2 161.0 92464.7 5.0 0.14 96.9

D-50,5,2 92357.7 162.0 92493.9 3.0 0.15 98.1

D-40,5,2 92410.8 191.0 92410.8 7.0 0.00 96.3

D-20,5,2 92843.4 138.0 93426.1 2.0 0.63 98.6

D-10,5,2 94529.3 130.0 95125.3 1.0 0.63 99.2

D-5,5,2 100316.0 150.0 100316.0 1.0 0.00 99.3

D-2,5,2 119106.0 121.0 118819.0 1.0 -0.24 99.2

D-1,5,2 149405.0 117.0 148835.0 2.0 -0.38 98.3

D-400,10,2 95492.3 3137.0 95383.4 111.0 -0.11 96.5

D-200,10,2 92662.9 5143.0 92557.1 81.0 -0.11 98.4

D-100,10,2 92672.5 4008.0 92719.1 96.0 0.05 97.6

D-50,10,2 92913.1 1549.0 92635.8 71.0 -0.30 95.4

D-40,10,2 92691.1 3648.0 92532.5 79.0 -0.17 97.8

D-20,10,2 93232.7 5237.0 92964.3 53.0 -0.29 99.0

D-10,10,2 94650.8 5554.0 95037.0 41.0 0.41 99.3

D-5,10,2 100844.0 1651.0 100469.0 38.0 -0.37 97.7

D-2,10,2 119386.0 2809.0 119069.0 45.0 -0.27 98.4

D-1,10,2 148780.0 2299.0 148709.0 42.0 -0.05 98.2
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Table B.9: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-5)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

D-400,5,4 95343.8 35.0 94964.1 5.0 -0.40 85.7

D-200,5,4 92724.3 34.0 92278.5 14.0 -0.48 58.8

D-100,5,4 92780.6 32.0 92332.2 11.0 -0.48 65.6

D-50,5,4 92807.0 29.0 92357.7 2.0 -0.48 93.1

D-40,5,4 92855.8 28.0 92410.8 6.0 -0.48 78.6

D-20,5,4 93294.0 28.0 92912.7 1.0 -0.41 96.4

D-10,5,4 94965.2 28.0 94529.3 1.0 -0.46 96.4

D-5,5,4 100748.0 26.0 100316.0 1.0 -0.43 96.2

D-2,5,4 118819.0 30.0 119241.0 1.0 0.36 96.7

D-1,5,4 148328.0 39.0 148876.0 1.0 0.37 97.4

D-400,10,4 94974.8 224.0 95169.3 8.0 0.20 96.4

D-200,10,4 92346.8 265.0 92485.3 26.0 0.15 90.2

D-100,10,4 92401.3 287.0 92543.3 37.0 0.15 87.1

D-50,10,4 92689.7 172.0 92504.8 19.0 -0.20 89.0

D-40,10,4 92481.1 137.0 92685.3 13.0 0.22 90.5

D-20,10,4 92993.4 166.0 93129.0 3.0 0.15 98.2

D-10,10,4 94595.1 251.0 94677.8 2.0 0.09 99.2

D-5,10,4 100396.0 235.0 100646.0 2.0 0.25 99.1

D-2,10,4 119333.0 168.0 118933.0 3.0 -0.34 98.2

D-1,10,4 148455.0 236.0 149036.0 2.0 0.39 99.2

E-400,5,2 1610000.0 207.0 1610000.0 13.0 0.00 93.7

E-200,5,2 1550000.0 220.0 1550000.0 27.0 0.00 87.7

E-100,5,2 1550000.0 184.0 1550000.0 9.0 0.00 95.1

E-50,5,2 1550000.0 204.0 1550000.0 13.0 0.00 93.6

E-40,5,2 1550000.0 181.0 1550000.0 13.0 0.00 92.8

E-20,5,2 1550000.0 194.0 1550000.0 4.0 0.00 97.9

E-10,5,2 1560000.0 192.0 1570000.0 2.0 0.41 99.0

E-5,5,2 1610000.0 203.0 1610000.0 1.0 0.00 99.5

E-2,5,2 1830000.0 175.0 1830000.0 4.0 0.00 97.7

E-1,5,2 2310000.0 186.0 2320000.0 2.0 0.27 98.9

E-400,10,2 1620000.0 4388.0 1620000.0 204.0 0.00 95.4

E-200,10,2 1560000.0 3267.0 1560000.0 171.0 -0.05 94.8

E-100,10,2 1560000.0 3935.0 1560000.0 109.0 0.00 97.2

E-50,10,2 1560000.0 3160.0 1560000.0 138.0 0.05 95.6

E-40,10,2 1560000.0 3112.0 1560000.0 48.0 0.00 98.5
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Table B.10: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-6)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

E-20,10,2 1560000.0 3746.0 1560000.0 99.0 0.04 97.4

E-10,10,2 1570000.0 2343.0 1570000.0 95.0 -0.20 95.9

E-5,10,2 1620000.0 5143.0 1610000.0 45.0 -0.20 99.1

E-2,10,2 1840000.0 3187.0 1840000.0 35.0 0.08 98.9

E-1,10,2 2320000.0 3808.0 2320000.0 93.0 0.00 97.6

E-400,5,4 1600000.0 166.5 1600000.0 26.5 0.00 84.1

E-200,5,4 1540000.0 185.9 1550000.0 6.1 0.43 96.7

E-100,5,4 1540000.0 163.2 1550000.0 14.3 0.43 91.3

E-50,5,4 1540000.0 139.5 1550000.0 8.1 0.42 94.2

E-40,5,4 1540000.0 151.1 1550000.0 6.6 0.43 95.7

E-20,5,4 1550000.0 149.8 1550000.0 3.5 0.43 97.7

E-10,5,4 1560000.0 144.4 1560000.0 3.6 0.42 97.5

E-5,5,4 1600000.0 149.3 1600000.0 1.0 0.00 99.3

E-2,5,4 1830000.0 142.5 1830000.0 0.92 0.00 99.4

E-1,5,4 2310000.0 126.1 2310000.0 1.2 -0.26 99.1

E-400,10,4 1620000.0 1855.0 1620000.0 63.0 0.00 96.6

E-200,10,4 1560000.0 2220.0 1560000.0 122.0 0.00 94.5

E-100,10,4 1560000.0 909.0 1560000.0 83.0 0.00 90.9

E-50,10,4 1560000.0 894.0 1560000.0 64.0 0.18 92.8

E-40,10,4 1560000.0 1614.0 1560000.0 55.0 0.00 96.6

E-20,10,4 1560000.0 1183.0 1560000.0 51.0 -0.04 95.7

E-10,10,4 1570000.0 1696.0 1570000.0 41.0 -0.04 97.6

E-5,10,4 1610000.0 888.0 1620000.0 26.0 0.21 97.1

E-2,10,4 1850000.0 653.0 1840000.0 30.0 -0.31 95.4

E-1,10,4 2330000.0 1303.0 2330000.0 11.0 -0.13 99.2

F-400,5,2 2080000.0 483.0 2100000.0 26.0 0.63 94.6

F-200,5,2 2000000.0 506.0 2010000.0 28.0 0.33 94.5

F-100,5,2 2000000.0 471.0 2010000.0 16.0 0.33 96.6

F-50,5,2 2010000.0 485.0 2010000.0 13.0 0.17 97.3

F-40,5,2 2010000.0 459.0 2010000.0 14.0 0.00 96.9

F-20,5,2 2010000.0 568.0 2020000.0 7.0 0.33 98.8

F-10,5,2 2020000.0 447.0 2030000.0 6.0 0.17 98.7

F-5,5,2 2080000.0 448.0 2090000.0 3.0 0.29 99.3

F-2,5,2 2390000.0 442.0 2400000.0 1.0 0.29 99.8

F-1,5,2 3010000.0 445.0 3020000.0 0.32 0.25 99.9
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Table B.11: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-7)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

F-400,10,2 2090000.0 12902.0 2090000.0 152.0 -0.17 98.8

F-200,10,2 2010000.0 10836.0 2010000.0 143.0 0.30 98.7

F-100,10,2* 2019872.0 - 2010000.0 146.0 -0.55 -

F-50,10,2 2010000.0 16129.0 2010000.0 106.0 0.00 99.3

F-40,10,2 2010000.0 16037.0 2010000.0 98.0 0.06 99.4

F-20,10,2 2010000.0 8241.0 2020000.0 79.0 0.30 99.0

F-10,10,2* 2018807.1 - 2040000.0 66.0 0.92 -

F-5,10,2 2090000.0 14153.0 2090000.0 72.0 0.17 99.5

F-2,10,2 2410000.0 13049.0 2390000.0 85.0 -0.57 99.3

F-1,10,2* 3190000.0 - 3020000.0 57.0 -5.3 -

F-400,5,4 2090000.0 99.0 2090000.0 23.0 -0.30 76.8

F-200,5,4 2010000.0 102.0 2010000.0 21.0 -0.31 79.4

F-100,5,4 2010000.0 84.0 2010000.0 21.0 -0.31 75.0

F-50,5,4 2010000.0 80.0 2010000.0 8.0 0.00 90.0

F-40,5,4 2010000.0 80.0 2010000.0 6.0 0.00 92.5

F-20,5,4 2020000.0 63.0 2010000.0 5.0 -0.31 92.1

F-10,5,4 2030000.0 64.0 2020000.0 2.0 -0.46 96.9

F-5,5,4 2090000.0 63.0 2080000.0 2.0 -0.29 96.8

F-2,5,4 2400000.0 59.0 2400000.0 1.0 -0.39 98.3

F-1,5,4 3030000.0 61.0 3020000.0 1.0 -0.41 98.4

F-400,10,4 2090000.0 4484.0 2080000.0 61.0 -0.38 98.6

F-200,10,4 2010000.0 2796.0 2010000.0 68.0 0.05 97.6

F-100,10,4 2010000.0 2752.0 2010000.0 48.0 0.05 98.3

F-50,10,4 2010000.0 3477.0 2010000.0 37.0 0.00 98.9

F-40,10,4 2010000.0 3031.0 2010000.0 40.0 0.00 98.7

F-20,10,4 2020000.0 2603.0 2010000.0 32.0 -0.38 98.8

F-10,10,4 2030000.0 2557.0 2030000.0 22.0 0.05 99.1

F-5,10,4 2080000.0 3107.0 2080000.0 17.0 -0.23 99.5

F-2,10,4 2400000.0 2558.0 2390000.0 26.0 -0.17 99.0

F-1,10,4 3020000.0 3627.0 3010000.0 14.0 -0.14 99.6

G-400,5,2 1050000.0 11510.0 1050000.0 83.0 -0.01 99.3

G-200,5,2 1010000.0 12132.0 1010000.0 71.0 -0.01 99.4

G-100,5,2 1010000.0 11710.0 1010000.0 40.0 0.00 99.7

G-50,5,2 1010000.0 11433.0 1010000.0 25.0 0.00 99.8

G-40,5,2 1010000.0 11438.0 1010000.0 32.0 -0.01 99.7
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Table B.12: Cost (Cb
R,k,nz ,nr

) and timing (tbR,k,nz ,nr
) of the basic MILP model, cost

(Cn
R,k,nz ,nr

) and timing (tnR,k,nz ,nr
) of the quasi-network-flow model, percent dif-

ference in cost (δR,k,nz ,nr ), and percent improvement (ηR,k,nz ,nr ) for the problems
(R-k, nz , nr) of Test configuration 3 (Part-8)

R-k, nz , nr Cb
R,k,nz ,nr

tbR,k,nz ,nr
Cn

R,k,nz ,nr
tnR,k,nz ,nr

δR,k,nz ,nr ηR,k,nz ,nr

G-20,5,2 1010000.0 11128.0 1010000.0 13.0 0.00 99.9

G-10,5,2 1020000.0 11191.0 1020000.0 9.0 -0.01 99.9

G-5,5,2 1040000.0 11199.0 1040000.0 6.0 0.00 99.9

G-2,5,2 1170000.0 11352.0 1170000.0 5.0 -0.05 100.0

G-1,5,2 1430000.0 12170.0 1430000.0 14.0 0.00 99.9

G-400,10,2* - 49191.0 1050000.0 750.0 - -

G-200,10,2* - 49148.0 1020000.0 595.0 - -

G-100,10,2* - 49191.0 1020000.0 374.0 - -

G-50,10,2* - 49037.0 1020000.0 482.0 - -

G-40,10,2* - 49194.0 1010000.0 249.0 - -

G-20,10,2* - 49117.0 1020000.0 228.0 - -

G-10,10,2* - 49228.0 1020000.0 231.0 - -

G-5,10,2* - 49171.0 1050000.0 230.0 - -

G-2,10,2* - - 1170000.0 225.0 - -

G-1,10,2* - 49103.0 1440000.0 194.0 - -

G-400,5,4 1050000.0 1456.0 1050000.0 48.0 -0.06 96.7

G-200,5,4 1010000.0 1470.0 1010000.0 72.0 0.00 95.1

G-100,5,4 1010000.0 1424.0 1010000.0 39.0 -0.06 97.3

G-50,5,4 1010000.0 1333.0 1010000.0 24.0 -0.05 98.2

G-40,5,4 1010000.0 1338.0 1010000.0 15.0 -0.06 98.9

G-20,5,4 1010000.0 1301.0 1010000.0 9.0 -0.14 99.3

G-10,5,4 1020000.0 1285.0 1020000.0 6.0 -0.13 99.5

G-5,5,4 1040000.0 1291.0 1040000.0 4.0 0.00 99.7

G-2,5,4 1170000.0 1331.0 1160000.0 4.0 -0.11 99.7

G-1,5,4 1430000.0 1256.0 1430000.0 4.0 0.00 99.7

G-400,10,4 1050000.0 4974.0 1060000.0 153.0 0.06 96.9

G-200,10,4 1010000.0 5886.0 1010000.0 122.0 0.07 97.9

G-100,10,4 1010000.0 4909.0 1010000.0 97.0 0.37 98.0

G-50,10,4 1020000.0 5101.0 1010000.0 79.0 -0.08 98.5

G-40,10,4 1020000.0 4919.0 1020000.0 65.0 0.00 98.7

G-20,10,4 1020000.0 5029.0 1010000.0 16.0 -0.39 99.7

G-10,10,4 1020000.0 12360.0 1020000.0 10.0 0.39 99.9

G-5,10,4 1040000.0 5824.0 1040000.0 9.0 0.05 99.8

G-2,10,4* 1187914.5 - 1170000.0 8.0 -1.5 -

G-1,10,4 1430000.0 6594.0 1440000.0 20.0 0.02 99.7
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