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Abstract

Overlooking non-Gaussian and tail dependence phenomena has emerged as an im-

portant reason of underestimating aggregate financial or insurance risks. For mod-

eling the dependence structures between non-Gaussian random variables, the con-

cept of copula plays an important role and provides practitioners with promising

quantitative tools. In order to study copula families that have different tail pat-

terns and tail asymmetry than multivariate Gaussian and t copulas, we introduce

the concepts of tail order and tail order functions. These provide a unified way

to study three types of dependence in the tails: tail dependence, intermediate tail

dependence and tail orthant independence. Some fundamental properties of tail

order and tail order functions are obtained. For multivariate Archimedean copulas,

we relate the tail heaviness of a positive random variable to the tail behavior of the

Archimedean copula constructed by the Laplace transform of the random variable.

Quantitative risk measurements pay more attention on large losses. A good

statistical approach for the whole data does not guarantee a good way for risk as-

sessments. We use tail comonotonicity as a conservative dependence structure for

modeling multivariate dependent losses. By this way, we do not lose too much

accuracy but gain reasonable conservative risk measures, especially when we con-

sider high-risk scenarios. We have conducted a thorough investigation on the prop-

erties and constructions of tail comonotonicity, and found interesting properties

such as asymptotic additivity properties of risk measures. Sufficient conditions

have also been obtained to justify the conservativity of tail comonotonicity.

For large losses, tail behavior of loss distributions is more critical than the

whole distributions. Asymptotic study assuming that each marginal risk goes to in-

finity is more mathematically tractable. However, the asymptotic study that leads
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to a first order approximation is only a crude way and may not be sufficient. To

this end, we study the second order conditions for risk measures of sub-extremal

multiple risks. Some relationships between Value at Risk and Conditional Tail Ex-

pectation have been obtained under the condition of Second Order Regular Vari-

ation. We also find that the second order parameter determines whether a higher

order approximation is necessary.
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Chapter 1

Introduction

1.1 Motivation
“The interviewed firms described some general common lessons learned

from the crisis, of which probably the most commonly mentioned was

the necessity (but difficulty) of capturing tail risks and dependencies

resulting from tail events.”

Developments in Modelling Risk Aggregation

Basel Committee on Banking Supervision, 2010

The research activities on dependence modeling of large losses and their risk

assessment have been sparked by the contagion of the global financial crisis arising

in the year of 2007. There have been tons of articles debating the roots of the crisis

from many perspectives. One common opinion from the viewpoint of researchers

in quantitative fields is that the high-risk scenarios as well as their comovements

in the global financial system have been ignored, which hides the high possibility

of extremal losses that could happen simultaneously. This thesis is not going to

join the discussion, but attempts to contribute to the understanding of quantitative

and/or statistical methodologies that account for the phenomenon of heavy tails of

each individual risk and their dependence as well.

Among many issues of modeling insurance losses or financial returns, esti-

mating, predicting and pricing potential extremal risks are particularly important.
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Moreover, many extremal losses have been observed to have occurred consecu-

tively or simultaneously. The comovement, in the meanwhile, could considerably

increase the entire risk. Thus, the dependence of extremal risks is expected to

play an important role for integrated risk management. Although the statistical

methodologies for studying overall properties of random samples such as means

are relatively mature, sound methodologies for studying the dependence relation-

ship between high quantities are far from being well-developed.

1.2 Notation
The following notation will be used throughout the thesis.

We use bold letters for vectors, such as x := (x1, . . . , xd)
T, where T is the

transpose operation of a matrix. 1d = (1, . . . , 1) with d elements, and then u1d =

(u, . . . , u); Id = {1, . . . , d}.
N+ = {1, 2, . . . }; R := (−∞,∞); R+ := [0,∞); R+ := [0,∞]; R :=

[−∞,∞]; A ⊂ B means that A is a subset (not necessarily a proper subset) of

B; Cartesian product is denoted as [a,b] := [a1, b1] × · · · × [ad, bd]; let x :=

(x1, . . . , xd) and y := (y1, . . . , yd), then x ≤ y means that xi ≤ yi for all i =

1, . . . , d.

[x] = max{t integer : t ≤ x}; ψ(i)(s) is the ith order derivative of ψ evaluated

at s; 1A(x) is the indicator function such that 1A(x) = 1 if x ∈ A, and 1A(x) = 0

if x /∈ A.

For a random variable X , the generalized inverse of its cumulative distribution

function (cdf) is defined as F−1
X (p) = inf{x ∈ R : FX(x) ≥ p}. Also, note that

for all x ∈ R and p ∈ [0, 1], we have (e.g., Dhaene et al., 2002a)

F−1
X (p) ≤ x ⇐⇒ p ≤ FX(x). (1.1)

A random variable is said to be continuous if its cdf is continuous. The survival

function is F j = 1− Fj if Fj is a cdf. For a d-dimensional multivariate cdf F , the

survival function is F = 1 + (−1)|I|
∑
∅6=I⊂{1,...,d} FI , where FI is the cdf for the

I-margin. X d
= Y means X and Y equal in distribution. For a bivariate differen-

tiable cdf F , we write (∂1F )(x1, x2) := ∂F (x1, x2)/∂x1 = F2|1(x2|x1)f1(x1),

2



where f1 = F ′1. Unless otherwise mentioned, a distribution is assumed to be abso-

lutely continuous with respect to Lebesgue measure. Throughout the thesis, we use

R(F1, . . . , Fd) to represent the Fréchet space of all d-dimensional random vectors

with F1, . . . , Fd as the marginal distributions.

Tν(·) is the cdf of the standard univariate Student t distribution with degree

of freedom ν, and tν(·) is the corresponding density function. Tν,Σ(·) is the cdf

of the standard multivariate Student t distribution with degree of freedom ν and

covariance matrix Σ, and tν,Σ(·) is the corresponding density function. Φ(·) is the

cdf of the standard univariate Normal distribution and φ(·) is the density function.

For the standard multivariate Normal distribution, the cdf and density function are

ΦΣ and φΣ, respectively. Throughout this thesis, % will be used to represent a

correlation coefficient and ρ is reserved for the second order parameter of Second

Order Regular Variation (2RV).

The notation C will always represent a copula function, a multivariate cdf with

U(0, 1) univariate margins. The conditional distributions of a bivariate copula are

written as C1|2(u|v) = ∂C(u, v)/∂v and C2|1(v|u) = ∂C(u, v)/∂u. A density

function of copula is written as c(u, v) := ∂2C(u, v)/∂u∂v. Second order partial

derivatives are D22C(u, v) = ∂2C(u, v)/∂2v.

For a copula, say, the Gumbel copula, the corresponding survival copula is

denoted as “s.Gumbel”; that is,“s.” symbolizes the survival copula. A lower tail

dependence parameter is denoted by λL, and an upper tail dependence parameter

is denoted by λU . We use κ for tail order, and κL and κU are lower and upper tail

orders, respectively.

For positive functions f, g, asymptotic equivalence is denoted as f ∼ g if

lim f/g = 1, asymptotic inequality f & g if lim inf f/g ≥ 1, and asymptotic

inequality f . g if lim sup f/g ≤ 1. The notation f(t) % g(t), t → ∞ means

that f is ultimately greater than g; that is, ∃t0 such that t ≥ t0 implies that f(t) ≥
g(t). h(t) = o(g(t)) means limt→t0 h(t)/g(t) = 0, and h(t) = O(g(t)) means

0 ≤ limt→t0 h(t)/g(t) <∞, where −∞ ≤ t0 ≤ ∞ is a given limiting point.

The notation RVα represents the class of functions that are regularly varying

at ∞ with index α ∈ R, and RVα(0+) represents the class of functions that are

regularly varying at 0 with index α ∈ R. MRVd(α) represents the class of d-

dimensional multivariate regularly varying random vectors with α ∈ R the regular

3



variation index. `(x) is used as a slowly varying function.

The letter E represents mathematical expectation, and Var is for variance. Note

that the Var here is different than the notation VaR (Value at Risk) defined in Def-

inition 2.1; the latter is used in insurance and finance. x ∨ y := max{x, y};
x ∧ y := min{x, y}.

1.3 Data examples
In this subsection, we will present some data examples to motivate various pat-

terns of tail dependence and tail asymmetry. The marginal distributions are usually

transformed to a standard Normal distribution to visualize the patterns of upper and

lower tails.

Let us look at a well known dataset in the actuarial literature (Frees and Valdez,

1998). This dataset comprises 1500 general liability claims with Indemnity Pay-

ment (LOSS) representing the amount of payment and Allocated Loss Adjustment

Expenses (ALAE) that are specifically attributable to each claim and may include

legal expenses, investigation expenses, etc. A typical pattern for this dataset is that

the margins are heavy-tailed and the degree of positive dependence between large

values is larger than that between small values. This kind of tail asymmetry pattern

is not clear as one looks at the scatter plot for the original data (left panel of Figure

1.1). In order to visualize the asymmetric tail dependence, we usual transform each

margin to be distributed as univariate standard normal, and then look at the scatter

plot for the transformed pairs (right panel of Figure 1.1); such transformed values

are referred to as normal scores. A stronger upper tail dependence for this dataset

appears, and it makes sense since a claim with a larger loss amount tends to involve

more legal expenses and demands more time and costs for investigation.

The asymmetric tail dependence pattern can also be observed in environmental

data, such as a Florida flood loss dataset. There are 67 counties in Florida. The

dataset comprises the monthly amount of losses for each county from 1977 to 2006,

and it is a part of the Spatial Hazard Events and Losses Database for the United

States (SHELDUS) that is maintained by the Hazards and Vulnerability Research

Institution. We choose randomly 30 counties and add the loss amount among these

counties together to get a monthly aggregate loss for these counties. Then we

4



Figure 1.1: Data examples - LOSS vs Expense (ALAE)
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randomly choose another 30 counties from the rest counties to get the monthly

aggregate loss similarly. The dependence between these two aggregate losses can

be demonstrated by Figure 1.2. It is very clear that the upper tail dependence is

stronger than the lower tail dependence. This phenomenon of stronger upper tail

dependence for aggregate losses is related to a concept of micro-correlation that is

studied in Cooke et al. (2011).

Figure 1.2: Data examples - Florida flood

Florida flood aggregate loss (1977~2006)

Normal score of aggregate loss of 30 counties
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In the natural world or in our human society, there seems to be certain mecha-

nism that drives the happening of clusters of high-risk events. Not only in insurance

practice, but also in the financial market, we may observe such tail asymmetry

phenomena. Figure 1.3 is a scatter plot of normal scores for weekly log returns

between Dow Jones Industrial Average Index (DJI) and FTSE 100 Index (FTSE)

during the period of October 1st, 2005 to June 30th, 2007. The plot illustrates

that the dependence between large losses of two stock markets is higher than the

dependence between large returns.

Figure 1.3: Data examples - DJI vs FTSE

DJI vs FTSE (20051001~20070630, weekly)
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Serial dependence within a univariate financial time series may also appear to

be tail asymmetric. For example, if we take the squared daily log returns as approx-

imations to observed volatilities, then the asymmetric pattern of serial dependence

between such observed volatilities can be illustrated by Figure 1.4. Here we use

NIKKEI 225 Index (N225) during the period of October 1st, 2005 to March 9th,

2009 as an example. The observed volatilities tend to clutter together, which has

already been noticed by many researchers. We refer to Engle (2004), written by

one of the two holders of Nobel Prize of 2003 in economics, for an excellent review

on volatility clustering.

Note that the above scatter plots are simply used to visualize the asymmetric

tail dependence patterns; those are not necessarily meaning that certain bivariate
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Figure 1.4: Data examples - N225(t) vs N225(t+ 1)

NIKKEI 225 (20051001~20090309, daily)
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distributions are ready to be used for fitting those data (or transformed data), as the

data points in the plots may not even be a random sample. For specific questions,

one needs to fully consider the dependence structures that saturate the data of in-

terest to decide where a dependence model such as a copula can be appropriately

applied.

1.4 Relevant practical needs
The term of tail modeling in this thesis is referred to as statistical modeling for

marginal distributional tails and their dependence structure in the tails of the joint

distribution.

Traditional areas that require tail modeling include rate makings for reinsur-

ance, auto insurance, etc., and statistical modeling in finance and various subject

scientific fields such as environmental science and Internet engineering. There are

also some emerging needs for tail modeling in quantitative risk management for

the bank and insurance sectors. For instance, under Basel III – a global regulatory

standard on bank capital adequacy, stress testing and market liquidity risks – oper-

ational risk charges can be calculated based on the so-called Advanced Measure-

ment Approaches (AMA). Operational risk is typically very heavy-tailed (Dutta

and Perry, 2006), and the modeling and risk assessment is actually very challeng-

7



ing (Chavez-Demoulin et al., 2006; Cope et al., 2009). In parallel, under Solvency

II, there are relevant regulatory requirements on operational risks for insurers.

First of all, AMA itself is far from being well developed. Sound methodolo-

gies/strategies for risk assessment and management are in high demand. Secondly,

the developing market of operational risk mitigation products would entail huge

potential for research on tail modeling; for example, how to conduct tail risk secu-

ritization and how to design and price relevant products?

1.5 Overview of literature
Before dealing with any particular models, a fundamental question is how to model

the dependence between various univariate random variables, especially for those

with non-Gaussian distributions. In the past practice of actuarial science, quantita-

tive finance and so on, dependence structures between random variables were often

studied with some summary quantities, such as, correlation coefficient, Kendall’s τ

and Spearman’s ρ. Especially the usage of correlation coefficient has been popular.

It is well known that the maximum correlation of 1 will be reached if and only if

the two random variables have the same distribution up to a linear transformation

(Rodgers and Nicewander, 1988). Shortcomings of using correlation coefficient

to model the dependence for insurance and finance have been observed by many

papers. We refer to Embrechts et al. (2002) for an inspiring reading. Apparently,

every single summary statistic is not able to fully describe the dependence struc-

ture between random variables. Instead, the copula approach becomes more and

more popular for modeling dependence structures of insurance losses or financial

returns where marginal distributions are often heavy-tailed and skewed. We list

here, among many of others, some advantages of copula approaches: (1) the cop-

ula itself is a joint cdf, which captures much more information than any single

quantity; (2) when the univariate margins are all continuous, the copula function

can be uniquely determined, thus fully characterizing the dependence structure; (3)

as a multivariate cdf, copula can be parametrized and is useful for statistical model-

ing and inference; (4) the copula provides a great deal of flexibility for constructing

multivariate distributions.

The copula itself is a joint cdf with Uniform(0, 1) marginal distributions. Let

8



F be the joint cdf, F1, . . . , Fd be the univariate cdfs, and C be a copula, then F

can be written as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

For the insurance loss data in Figure 1.1, if we transform each marginal data via

the corresponding empirical distribution to get data that is approximately uniformly

distributed on [0, 1], then the scatter plot for the pairs of transformed data is Figure

1.5. Roughly speaking, the copula C can be used to fit such transformed data. A

more formal introduction to copulas is in Section 2.2.

Figure 1.5: Copula is a joint cdf of uniform margins
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A pioneer paper on copula theory is Sklar (1959), which established the well

known Sklar’s theorem: there is a copula function for joint distributions and the

copula is unique if the univariate marginal distributions are continuous. Standard

references for dependence modeling and copulas are Joe (1997) and Nelsen (2006).

The former is a very informative monograph on dependence concepts and relevant

statistical modelings, where copula is one fundamental tool for statistical depen-

dence modeling. The latter deals with the concept of copula in a more mathematical

way, and focuses on relevant theories of copulas. For contributions to the classic

statistical issues on copula modeling, such as statistical inference and goodness-of-

fit tests, we refer the reader to the following contributions and references therein:
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Genest and Rivest (1993), Genest and Favre (2007), Genest et al. (2009b) and

Brechmann et al. (2012). Research activities on copula modeling in actuarial sci-

ence and quantitative finance have sparked since Frees and Valdez (1998), and Li

(2000). Two excellent reference books on dependence modeling in actuarial sci-

ence and quantitative risk management are Denuit et al. (2005) and McNeil et al.

(2005). Most recently, Kurowicka and Joe (2011) and Jaworski et al. (2010) have

provided good summaries of copula theories and applications: the former promotes

a relatively new concept of vine copulas, and the latter contains several survey pa-

pers on copulas.

The copula approach is particularly useful for studying tail behavior of mul-

tivariate non-Gaussian distributions (Joe, 2006; Mikosch, 2006). It is extremely

flexible to use copula to construct multivariate distributions that are able to account

for various distributional tails. In the practice of actuarial science and quantitative

risk management, a more relevant task is to model and conduct risk assessment for

the joint tails of dependent losses, especially for large or extremal risks. The classic

univariate extreme value theory provides a sound theoretical ground for building

up useful approaches for assessing univariate marginal tails. Compared with the

univariate extreme value theory, the multivariate extreme value theory has not been

well developed. In parallel with the copula approach, researchers find that trans-

forming the marginal distributions to those having the same power law can be more

convenient in some situations. This approach is referred to as Multivariate Regular

Variation (MRV), and its root, the theory of univariate regular variation has been

nicely developed.

There are some excellent reference books for extreme value theory, and for

regular variation. de Haan and Ferreira (2006) is a nice monograph on theoretical

aspects of extreme value theory and includes some discussion on 2RV, Embrechts

et al. (1997) has become a classic for modeling univariate extremal events, and

Coles (2001) provides a clear and more intuitive introduction to statistical model-

ing of univariate extreme values. The books Beirlant et al. (2004) and Reiss and

Thomas (1997) comprise many interesting topics for statistical modeling of ex-

treme values that include not only univariate but also multivariate extreme values,

and Falk et al. (2010) is a comprehensive monograph on theories and applications

of multivariate extreme values such as multivariate Peaks Over Threshold (POT)
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approaches. For researchers who study the theory of regular variation and who may

use regular variation as a tool, Bingham et al. (1987) should be a must-have and it

provides encyclopedic reference on the theory of univariate regular variation. For

MRV, Resnick (1987) and Resnick (2007) are standard reference books, and the

latter also reflects some recent development of MRV.

The above literature review is about the general idea of copula theory and ex-

treme value theory. More specific literature reviews for concrete topics that belong

to these research themes will be conducted in later chapters when it becomes nec-

essary.

1.6 Summary of main concepts
In this section, we will highlight different concepts for copulas and their joint

tails; this is to emphasize that different copula families have different tail prop-

erties which may have a large effect on inferences such as joint tail probabilities

(chance of simultaneously large losses from different risks) and conditional tail ex-

pectations. The bivariate case will be employed here to explain the basic ideas, and

those ideas can be extended to the multivariate case.

1.6.1 Tail order and strength of dependence in the tails

One theme of the thesis is to study the strength of dependence in the tails. In

statistical modeling, a basic idea is to find a summary quantity that can capture

useful information of interest. Such a quantity should be simple and be able to

account for as much as possible relevant and critical information. If we use a copula

C to model the dependence between two continuous random variables X and Y ,

then the graph of the map u 7→ C(u, u), u ∈ [0, 1] describes the evolution of joint

probabilities ofX and Y . In order to study the tail behavior of the map and thus the

tail dependence betweenX and Y , we hope to have a certain simple function g that

can be used to approximate C(u, u) as u→ 0+; that is, C(u, u) ∼ g(u), u→ 0+.

Such a function g(u) should be bounded by u and go to 0 as u → 0+. Therefore,

a suitable class of functions for g can be the class of regularly varying functions

with the minimum regular variation index being 1, e.g., g(u) = uκ`(u) where

1 ≤ κ and ` is a slowly varying function such as `(u) = (− log u)−1/3. A formal
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introduction to regular variation is in Section 2.3.

For the function g, the term uκ dominates the behavior of g(u) as u→ 0+. So

we choose κ as such a summary quantity that can be used to capture the information

of tail association patterns, and κ is referred to as tail order. A smaller κ means

higher joint probability in the lower corner as u→ 0. Although obviously a single

quantity such as the tail order κ can not capture all the information on the tail, it

provides relevant and critical information of interest, especially when we compare

tail orders of copulas within the same copula family, or when the information of

interest is for a sufficiently small u. Therefore, such a simple quantity may also be

useful in statistical modeling.

When κ = 1, that is, C(u, u) ∼ u`(u), u → 0+, and limu→0+ `(u) = λ, if

0 < λ ≤ 1, it is said that the copula C has lower tail dependence and the limit

λ (if exists) is referred to the tail dependence parameter (some papers use “tail

dependence coefficient” for the same meaning). The concept of tail dependence

has been studied intensively in the literature, e.g., Joe (1997) and Schmidt (2002).

As a special case of the usual tail dependence, the so-called tail comonotonicity

corresponds to that the tail order κ = 1 and the tail order parameter λ = 1 as well.

Tail comonotonicity is the strongest tail dependence structure. In situations where

no sufficient data in the upper tail of certain joint distributions is available and the

statistical inference of interest is aimed at the region beyond a very high threshold,

which is often the situation that one meets in quantitative risk management, tail

comonotonicity may provide a conservative dependence structure.

When 1 < κ < 2, we refer to this case as intermediate tail dependence, and

the limit (if exists) of the slowly varying function ` is referred to as the tail order

parameter.

When κ = 2 and the limit (if exists) of the slowly varying function ` is finite

and nonzero, then we use the notion of tail quadrant independence (Reiss, 1989).

For d-dimensional cases with κ = d > 2, we employ the term of tail orthant

independence.

Note that, in the literature of the extreme value theory, terms of “asymptotic

independence” or “tail independence” have often been used to represent the cases

where κ > 1. However, in this thesis, in order to discriminate the two cases of

1 < κ < 2 and κ = 2, we use the notation of “intermediate tail dependence” and

12



“tail quadrant independence”, respectively. Intermediate tail dependence for the

multivariate case corresponds to 1 < κ < d.

Upper tails can be dealt with similarly: the upper tail behavior of copula

C(u, v) is simply the lower tail behavior of its survival copula Ĉ(u, v) := u +

v− 1 +C(1− u, 1− v). If Ĉ(u, u) ∼ uκ`(u), u→ 0+, then the κ here is referred

to as the upper tail order of the copula C.

For any of the above cases, the limit of the slowly varying function ` can be

referred to as the tail order parameter no matter it is the case of tail dependence,

intermediate tail dependence or tail quadrant independence. For comparing the

strength of dependence in the tails, we first compare tail orders that dominate the

tail dependence pattern. If tail orders are the same, then tail order parameters can

be used.

Examples of lower and upper tail orders for commonly used Archimedean cop-

ulas are listed in Table 1.1, and the contour plots of these copulas are given in Fig-

ures 1.6, 1.7, 1.8, 1.9, 1.10 and 1.11. Note that, the first three examples of Gaussian,

Student t and Frank copulas are all reflection symmetric; that is, the pattern of the

upper tail is the same as the pattern of the lower tail. But tail asymmetry appears in

the contour plots of the other three examples. When tail order κ > 1, such as the

tails of Gaussian copula and the lower tail of the Gumbel, the contour plots look

more round than the contour plots for tails with κ = 1. We refer to Balkema and

Nolde (2010) for sufficient conditions of κ > 1 from a geometric perspective.
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Table 1.1: Tail order of various bivariate copulas

κ of C(u, v) κ of c(u, v)
Copula cdf Lower Upper Lower Upper

Gaussian ΦΣ

(
Φ−1(u),Φ−1(v)

)
; Σ : correlation matrix,Φ : cdf of normal 2

1+%
2

1+%
−2%
1+%

−2%
1+%

Student t Tν,Σ
(
T−1
ν (u), T−1

ν (v)
)

; 0 < ν,Σ : correlation matrix, Tν : cdf of Student t 1 1 -1 -1
Frank − log

(
[1− e−δ − (1− e−δu)(1− e−δv)]/(1− e−δ)

)
/δ; 0 ≤ δ 2 2 0 0

Gumbel exp
{
−
(
(− log u)δ + (− log v)δ

)1/δ}
; 1 ≤ δ 21/δ 1 21/δ-2 -1

MTCJ
(
u−δ + v−δ − 1

)−1/δ
; 0 ≤ δ 1 2 -1 0

BB2 C =
[
1 + δ−1 log

(
eδ(u

−θ−1) + eδ(v
−θ−1) − 1

)]−1/θ
; 0 < θ, 0 < δ 1 2 -1 0
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When the tail order for the copula density function is negative such as Gaussian

copula (Table 1.1), the density at the boundaries (0, 0) and (1, 1) of the copula is

infinity.

The quantities of tail order and tail order parameters only capture the tail be-

havior along the diagonal of the copula. We may use a function b to obtain more

information about limiting behavior of copulas, namely,

lim
u→0+

C(uw1, uw2)/uκ`(u) =: b(w1, w2), w1, w2 > 0.

The b function is referred to as the tail order function of the copula C.

For detailed study on tail order and tail order functions, we refer the reader to

Chapter 3.

Figure 1.6: Contour plots: Gaussian copula + standard normal margins
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1.6.2 Tail order and conditional copula

Now let us look at how tail order will affect conditional copulas of the form

C1|2(u|v) as v goes to 0 or 1. We use C1|2(u|0) and C1|2(u|1) to represent these
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Figure 1.7: Contour plots: Student t copula + standard normal margins

ρ = 0.4, df = 4
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Figure 1.8: Contour plots: Frank copula + standard normal margins
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Figure 1.9: Contour plots: Gumbel copula + standard normal margins
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Figure 1.10: Contour plots: MTCJ copula + standard normal margins
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Figure 1.11: Contour plots: BB2 copula + standard normal margins
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two limits, respectively. Explicit formulas for conditional Gaussian, Student t,

Frank, Gumbel, MTCJ and BB2 copulas are presented in what follows. The limits

for those conditional copulas are summarized in Table 1.2.

For those examples, if 1 ≤ κL < 2, then C1|2(u|0) =: ςL with 0 < ςL ≤ 1.

The limit ςL = 1 for such a κL, except for the conditional Student t copula of

which ςL is strictly less than 1. The case ςL = 1 means that the limit of the

conditional copula degenerates and becomes a single point at 0 as the conditioning

random variable goes to 0. But for the Student t copula that has 0 < ςL < 1, the

limit of the conditional copula degenerates to be two points at u = 0 and u = 1,

respectively, as the conditioning random variable V = v → 0+. Looking at Figure

1.7, one may find that the bivariate Student t copula possesses tail dependence in

all of the four directions, which explains why the limit of the conditional copula

degenerates as two points. In parallel, for upper tails, if 1 ≤ κU < 2, then the

limit C1|2(u|1) degenerates to a single point at u = 1 except that for the Student t

copula, it degenerates into two points at u = 0 and u = 1, respectively.

If κL = 2, that is, if the copula is lower tail quadrant independent, then the limit
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of the conditional copula as V = v → 0+ is still a non-degenerate cdf. Similarly,

if κU = 2, then the limit is a non-degenerate cdf as well.

In the sense of such a limit of conditional copulas, that 1 ≤ κ < 2 indicates

a relatively higher degree of positive association in the tail. This is also a reason

why we want to use different notions to discriminate intermediate tail dependence

(1 < κ < 2) and tail quadrant independence (κ = 2), although in the literature

of the extreme value theory, these two cases are both referred to as asymptotic

independence or tail independence.

Gaussian copula

Let (X1, X2) be standard bivariate Normal with correlation %. Since X1|X2 =

x ∼ Normal(%x, 1− %2), the conditional Gaussian copula is

C1|2(u|v) = Φ

(
Φ−1(u)− %Φ−1(v)√

1− %2

)
.

Thus C(u|0) = 1 for 0 < u ≤ 1, and C(u|1) = 0 for 0 ≤ u < 1.

Student t copula

Let (X1, X2) be standard bivariate Student t distributed with ν the degree of free-

dom and % the correlation coefficient in the correlation matrix. Since by (5.30) of

McNeil et al. (2005),√
ν + 1

ν + x2

X2 − %x√
1− %2

∣∣∣∣∣X1 = x ∼ tν+1(0, 1),

the conditional Student t copula is

C1|2(u|v) = Tν+1

(√
ν + 1

ν + (T−1
ν (v))2

× T−1
ν (u)− %T−1

ν (v)√
1− %2

)
.

Thus C1|2(u|0) = Tν+1

(
%
√
ν + 1/

√
1− %2

)
for 0 < u < 1, and C(u|1) =

Tν+1

(
−%
√
ν + 1/

√
1− %2

)
for 0 < u < 1.
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Frank copula

The conditional Frank copula is straightforward to get, and it is

C1|2(u|v) =
(1− e−δu)e−δv

1− e−δ − (1− e−δv)(1− e−δu)
.

Therefore, C1|2(u|0) = (1 − e−δu)/(1 − e−δ) for 0 ≤ u ≤ 1, and C1|2(u|1) =

((1− e−δu)e−δ)/[(1− e−δ)e−δu] for 0 ≤ u ≤ 1.

Gumbel copula

The conditional Gumbel copula is

C1|2(u|v) =
1

v
exp

(
−
(
ũδ + ṽδ

)1/δ
)[

1 +

(
ũ

ṽ

)δ]−1+1/δ

,

where ṽ := − log v and ũ := − log u. Thus, C1|2(u|0) = 1 for 0 < u ≤ 1, and

C1|2(u|1) = 0 for 0 ≤ u < 1.

MTCJ copula

The conditional Mardia-Takahasi-Cook-Johnson copula (MTCJ) copula is

C1|2(u|v) = (v−δ + u−δ − 1)−1/δ−1v−δ−1,

and C1|2(u|0) = 1 for 0 < u ≤ 1, and C1|2(u|1) = u1+δ for 0 ≤ u ≤ 1.

BB2 copula

The conditional BB2 copula is

C1|2(u|v)

=
[
1 + δ−1 log

(
eδ(v

−θ−1) + eδ(u
−θ−1) − 1

)]−1/θ−1 eδ(v
−θ−1)v−θ−1

eδ(v−θ−1) + eδ(u−θ−1) − 1
.

Thus, C1|2(u|0) = 1 for 0 < u ≤ 1, and C1|2(u|1) = u1+θeδ(1−u
−θ) for 0 ≤ u ≤

1.
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Table 1.2: Tail order and conditional copula

Copula κL C1|2(u|0)

Gaussian 2/(1 + %) 1 for 0 < u ≤ 1

Student t 1 Tν+1

(
%
√
ν + 1/

√
1− %2

)
for 0 < u < 1

Frank 2 (1− e−δu)/(1− e−δ) for 0 ≤ u ≤ 1

Gumbel 21/δ 1 for 0 < u ≤ 1
MTCJ 1 1 for 0 < u ≤ 1
BB2 1 1 for 0 < u ≤ 1

Copula κU C1|2(u|1)

Gaussian 2/(1 + %) 0 for 0 ≤ u < 1

Student t 1 Tν+1

(
−%
√
ν + 1/

√
1− %2

)
for 0 < u < 1

Frank 2 ((1− e−δu)e−δ)/[(1− e−δ)e−δu] for 0 ≤ u ≤ 1
Gumbel 1 0 for 0 ≤ u < 1
MTCJ 2 u1+δ for 0 ≤ u ≤ 1

BB2 2 u1+θeδ(1−u
−θ) for 0 ≤ u ≤ 1

1.6.3 Tail order and Conditional Tail Expectation

Two fundamental conditional specifications that are often useful in more specific

modelings are E[X1|X2 > t] and E[X1|X2 = t]. In actuarial science, these two

quantities are often referred to as certain forms of Conditional Tail Expectation,

and they are useful as risk measures to assessing magnitude of losses. Moreover,

the study of the tail behavior as t→∞ of these two conditional specifications may

also be meaningful when one needs to develop diagnostic plots for discriminating

types of tail dependence, or formulate certain regression models that account for

tail dependence patterns.

The case: E[X1|X2 > t]

Let X1, X2 be non-negative random variables with copula C and the same Pareto

distribution F (x) = 1− (1 +x)−θ, θ > 1. Now we consider the effect of tail order
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on the following conditional specification. Letting v := F (t),

E[X1|X2 > t]

= (1− v)−1

{
1/(θ − 1) +

∫ 1

0
{[−v + C(u, v)] · [f(F−1(u))]−1}du

}
. (1.2)

Similar to that we use regularly varying functions to describe the tail behavior

of copula functions, we may assume that there exists a regularly varying function

g(t) := tβ`(t) such that

E[X1|X2 > t] = g(t) = tβ`(t), t→∞.

Then we can briefly discuss the following three cases:

1. For the usual tail dependence case, β = 1 with some regularity conditions.

The derivation of this form can be conducted through the theory of MRV.

2. For the intermediate tail dependence case, with certain regularity conditions,

0 < β < 1 can be a function of the shape parameter α for the Pareto margins.

3. For the tail quadrant independence case, with some regularity conditions,

β = 0. A special case is whenX1 andX2 are independent, then clearly E[X1|X2 >

t] = E[X1] is a constant and does not rely on t.

In Figure 1.12, a comparison between Gumbel, s.Gumbel and MTCJ copulas

is illustrated. Based on it, we find that when the upper tail order is 1 (Gumbel), the

CTE plot seems to be linear in t on the whole support no matter what θ is. When

the upper tail order is 2 (MTCJ), the CTE becomes very flat. The CTE plots for the

intermediate upper tail dependence with the upper tail order 1 < κ < 2 (s.Gumbel)

are located between the above two cases.

The case: E[X1|X2 = t]

Let X1, X2 be non-negative random variables with copula C and the same Pareto

distribution F (x) = 1−(1+x)−θ, θ > 1. Then we compare the effect of tail order

on the following conditional specification. Letting v := F (t),

E[X1|X2 = t] =

∫ 1

0

{
1− C1|2(u|v)

}
· [f(F−1(u))]−1du.
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Figure 1.12: Tail order and CTE plots of the form E[X1|X2 > t]. The range
of t in each plot was chosen to cover the support of t between the 1%
and 95% quantiles. Gumbel(δ = 2), s.Gumbel(δ = 2) and MTCJ(δ =
1).
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Figure 1.13: Tail order and CTE plots of the form E[X1|X2 = t]. The range
of t in each plot was chosen to cover the support of t between the 1%
and 95% quantiles. Gumbel(δ = 2), s.Gumbel(δ = 2) and MTCJ(δ =
1).
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From Figure 1.13, we can also observe the similar pattern of linearity for the Gum-

bel copula, and that the line for MTCJ copula becomes flat.

Those are just illustrations of the effect of tail order on Conditional Tail Expec-

tation (CTE)s. In Chapter 5, more detailed study will be conducted for comparisons

of CTEs under different dependence in the tails; in Chapter 7, more detailed study

on such CTE plots are presented to illuminate future research on this topic.

1.6.4 Tail order and tail order functions

In this subsection, we briefly introduce the concepts of tail order and tail order

functions for the following three general copula families: extreme value copula,

Archimedean copula and elliptical copula. More detailed study is in Chapter 3.

Extreme value copula

If a copula C satisfies C(ut1, . . . , u
t
d) = Ct(u1, . . . , ud) for any (u1, . . . , ud) ∈

[0, 1]d and t > 0, then we refer to C as an extreme value copula.

For any extreme value copula C, there exists a function A : [0,∞)d → [0,∞)

such that C(u1, . . . , ud) = exp{−A(− log u1, . . . ,− log ud)}, whereA is convex,

homogeneous of order 1 and satisfies max(x1, . . . , xd) ≤ A(x1, . . . , xd) ≤ x1 +

· · ·+ xd.

For the bivariate case, C(u, u) = exp{A(1, 1) log u} = uA(1,1), and the lower

tail order is κL = A(1, 1). Also, C(1 − u, 1 − u) = 2u − 1 + (1 − u)A(1,1)−1 ∼
[2−A(1, 1)]u, u→ 0+. Therefore, the upper order is κU = 1.

Tail order functions for extreme value copulas are relatively easy to get. For

the lower tail, b(w1, w2) = limu→0+ C(uw1, uw2)/uA(1,1) = w
A1(1,1)
1 w

A2(1,1)
2 ,

where Ai = ∂A(x1, x2)/∂xi, i = 1, 2. For the upper tail, b∗(w1, w2) = w1 +

w2 −A(w1, w2).

Archimedean copula

The Archimedean copula studied in this thesis is constructed by a Laplace Trans-

form (LT) ψ of a positive random variable; that is

C(u1, . . . , ud) = ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
.
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This form covers most of the commonly used Archimedean copulas, and it has the

following representation

C(u1, . . . , ud) =

∫ ∞
0

d∏
j=1

Gηj (uj) dFH(η),

where FH is the cdf of the resilience random variableH ,Gj(u) = exp{−ψ−1(u)}
(0 ≤ u ≤ 1) for all j, andψ(s) = ψH(s) =

∫∞
0 e−sηdFH(η) with lims→∞ ψ(s) =

0.

When η becomes larger, the density of the joint distribution
∏d
j=1G

η
j (uj) will

be pushed to the right end of the support; as η goes to a smaller value, the density

of the joint distribution
∏d
j=1G

η
j (uj) will be pushed towards the left end of the

support. Therefore, the behavior of H at∞ will affect the upper tail of the copula,

and the behavior of H at 0 will affect the lower tail of the copula.

For a positive random variable Y with LT ψ, if the maximal non-negative mo-

ment MY := sup{m ≥ 0 : E(Y m) < ∞} is non-integer such that 1 < MY < d,

then the upper tail order ofCψ is κU = MY under some mild regularity conditions;

if 0 ≤ MY < 1, then the upper tail order of Cψ is κU = 1. In other words, the

behavior of ψ(u) as u → 0+ influences the upper tail behavior of the copula Cψ.

The tail behavior of ψ(u) as u → ∞, however, will affect the lower tail behavior

of the copula Cψ.

When tail order of an Archimedean copula has been obtained, we can get the

corresponding tail order functions usually by applying the l’Hôpital’s rule.

Elliptical copula

An elliptical random vector X has the stochastic representation X
d
= RAU, where

A is a deterministic matrix, and R ≥ 0 is independent of U and referred to as

the radial random variable, and U is uniformly distributed on the surface of a unit

ball. The tail behavior of R will affect the tail behavior of corresponding elliptical

copula. If R is in the Maximum Domain of Attraction (MDA) of Fréchet, then the

copula has tail dependence, i.e., κ = 1; if R is in the MDA of Gumbel, then the

tail order κ > 1 and the value of κ relies on both the tail behavior of R and the

associated correlation coefficient %.

25



Tail order functions of elliptical copulas for the first case (R ∈ MDA(Fréchet))

can be calculated directly by considering the above stochastic representation, but

a general form for the second case remains to be an open question. We refer to

Chapter 3 for more detailed arguments about tail order and tail order function for

elliptical copulas.

Inference for tail probability

Tail order functions can be useful for statistical inference on multivariate extremal

events. Let b∗ be the upper tail order function for a copula C, and Ĉ be the corre-

sponding survival copula, then we have Ĉ(uw) ∼ uκ`(u)b∗(w), u → 0+. Since

the term uκ is tractable and dominates the tail behavior, the tail order function

b∗(w) may approximate the tail behavior of the copula C. Tail order functions

are limiting functions and it would be more robust than using the copula itself for

statistical inference on tail events.

1.6.5 Concordance ordering in the tail

Let X and Y be d-dimensional random vectors with distribution function FX

and FY such that Xi
d
= Yi, i = 1, . . . , d. Then X is less concordant than Y if

FX(z) ≤ FY(z) and FX(z) ≤ FY(z) for any z in the support of FX and FY.

The concordance order is an important concept in the theory of stochastic orders

(Joe, 1990). That means small values of Y are more likely to occur together than

those of X, and large values of Y are also more likely to occur together than those

of X. If X is less concordant than Y, then the upper and lower tail orders of the

copula of X are larger than those of the copula of Y, respectively.

For comparisons between tails, especially between tails in a single direction,

the concordance order is a relatively strong condition. Here we actually only need

the conditions such as FX(z) ≤ FY(z) holds ultimately as z is sufficiently small

for comparing the lower tail, and FX(z) ≤ FY(z) holds ultimately as z is suffi-

ciently large for comparing the upper tail.
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1.6.6 Sub-extremes and second order conditions

In real applications of tail modeling, one often has interests not only in the limiting

properties but also in the tail part beyond a high threshold. If the limit is referred

to as an extreme, then the tail part beyond the high threshold will be referred to as

sub-extremes. We use limiting properties – such as tail index for margins and tail

order for dependence structures – as summary quantities for the tail, in hope that

the limiting quantity may provide a reasonable approximation for the extreme and

sub-extremal levels as well.

Apparently, the speed of decay for the convergence involved to get the limiting

quantity may influence the goodness of such an approximation. We will use second

order conditions as a generic term to represent those conditions that may affect

rates of certain convergence. For instance, in Chapter 6, we study second order

conditions in the form of the so-called second order regular variation. For example,

if g(x) := x−2 + x−3, then for any given t > 0, g(xt)/g(x) → t−2 as x → ∞.

Since g(xt)/g(x) − t−2 = (x + 1)−1(t−3 − t−2), the term (x + 1)−1 ∼ x−1

dominates the speed of convergence of g(xt)/g(x)→ t−2. We refer to −1 here as

a second order parameter. When the second order parameter is more negative, the

limiting quantity t−2 becomes a better approximation to g(xt)/g(x) for large x.

1.7 Outline
This thesis is organized as following: In Chapter 2, motivations, definitions and

related known results for some fundamental concepts and technical tools will be

presented. Chapter 3 includes the study of using tail order to quantify the degree

of positive tail association. Some relevant studies on multivariate copulas such as

the Archimedean copula have also been done in this chapter. In Chapter 4, tail

comonotonicity, the strongest tail dependence case will be studied for its funda-

mental properties, constructions and influence on risk measures. Chapter 5 will be

used to report the findings of how tail behavior of copulas affects commonly-used

risk measures, and in particular, of the conservativity of tail comonotonicity. In

Chapter 6, we will study how 2RV affects the performance of risk measures. At

last, in Chapter 7, we will conclude the thesis and propose some relevant topics for

future research.
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1.8 Highlights of selected new results
• A new concept called tail order has been proposed in Definition 3.1, and the

corresponding tail order function is defined by Definition 3.2. A formula for

deriving tail order of a bivariate elliptical copula where the radial random

variable belongs to MDA(Gumbel) is given in Proposition 3.1. Some fun-

damental properties for these two concepts are given in Proposition 3.2 and

3.3.

• In order to study the tail behavior of the Archimedean copula, we first prove

a result in Proposition 3.5 that relates the tail heaviness of a positive random

variable to the Taylor expansion of its LT.

• For the Archimedean copula, we relate the tail heaviness of a positive ran-

dom variable to the tail behavior of the Archimedean copula constructed

from the LT of the random variable, and extend the results of Charpentier

and Segers (2009) for the upper tail in Proposition 3.6. And the correspond-

ing upper tail order function has been proved in Proposition 3.7 as well. For

the lower tail, we study a more concrete form by assuming some mild con-

ditions, and the relevant result is Proposition 3.8.

• A new notion of tail comonotonicity is proposed in Definition 4.1, and rele-

vant results about their construction include Proposition 4.3 and Proposition

4.8.

• Asymptotic additivity of risk measures Value at Risk (VaR) and CTE under

tail comonotonicity is reported in Propositions 4.13, 4.14, 4.15 and 4.16.

• Effect of tail behavior of copulas on E[X1|X2 > t] and E[X1|X2 = t] are

mainly summarized in Propositions 5.1, 5.4 and 5.9, and their corollaries.

• For the study of 2RV, results for asymptotic analysis of CTE and VaR has

been reported in Proposition 6.4 for the univariate case, and in Proposition

6.6 for the multivariate case.

28



Chapter 2

Preliminaries

2.1 Risk measures
Some statistical quantities about a random variable X are often referred to as risk

measures. Among many of them, Value at Risk (VaR) and conditional tail ex-

pectation (CTE) are probably the most popular risk measures. Both of them have

been adopted by regulations of insurers. For example, CTE has been required for

calculating the relevant risks of segregated fund in Canada (OSFI, 2011).

Definition 2.1 Let be given a random variable X the amount of risk, and p ∈
(0, 1) a probability level, then the corresponding VaR, denoted by VaRp(X), is

defined as

VaRp(X) = F−1
X (p) := inf{x ∈ R : FX(x) ≥ p}.

If E[X] <∞, then the corresponding CTE is defined as

CTEp(X) = E[X|X > VaRp(X)]. (2.1)

Note that the VaR defined above is a left-continuous generalized inverse of FX ,

and CTE is a coherent risk measure for continuous random variables (Artzner et al.,

1999), and it can better account for tail heaviness of a loss distribution than VaR

does. We refer to Denuit et al. (2005) for some other relevant risk measures and

their relationships.
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Risk measures are used to help people make decisions through certain decision

principles. For instance, one use risk measures to determine premiums of insurance

products or calculate solvency capital charges. We refer to Goovaerts et al. (2010)

for a comprehensive overview of risk measures and relevant decision principles.

The risk measures mentioned in Definition 2.1 are both quantile-based risk

measures. In this thesis, the emphasis will be risk measures for high-risk scenar-

ios, for which p is close to 1. We will conduct asymptotic comparisons of risk

measures in the sense that, when p is close to 1 what will be the ordering for those

risk measures. For stochastic comparisons of risks, Müller and Stoyan (2002) is

popular reference. Recently, Mainik and Rüschendorf (2012) conduct asymptotic

comparisons for risks of portfolios, where a concept of asymptotic portfolio loss

order is studied.

A classic question in quantitative risk management is to study the so-called

diversification benefit of a portfolio of risks.

Definition 2.2 Let X := (X1, . . . , Xd)
T be a d-dimensional random vector. Then

risk concentration $(X|Qp) of X with respect to a risk measure Qp at level p ∈
(0, 1) is defined as

$(X|Qp) :=
Qp(X1 + · · ·+Xd)∑d

i=1Qp(Xi)
,

where Qp : R → R+ is a risk measure associated with a probability level p. The

corresponding diversification benefit is 1−$(X|Qp).

Here two relevant concepts are subadditivity and superadditivity of risk mea-

sures. If $(X|Qp) ≤ 1, then Qp is said to be subadditive with respect to X, and

$(X|Qp) ≥ 1 superadditive. It is well known that CTE defined in (2.1) is subad-

ditive with respect to continuous margins, but VaR is not necessarily subadditive

for such a general case (e.g., Denuit et al., 2005). In this thesis, we will consider

asymptotic additivity of CTE and VaR in the sense that p→ 1− in the risk concen-

tration $(X|Qp).
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2.2 Copula
The study of tail behavior of random vectors has received increasing attention, es-

pecially in the framework of quantitative risk management. Let X = (X1, . . . , Xd)
T

be a random vector with distribution function F and continuous univariate marginal

distribution functions Fi, i = 1, . . . , d. Due to Sklar’s theorem Sklar (1959),

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.2)

in which the copula function C : [0, 1]d → [0, 1] is uniquely determined by

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud)), (2.3)

where F−1
i is the inverse function of Fi, i = 1, . . . , d. The corresponding survival

function C is defined as C(u1, . . . , ud) = 1 +
∑
∅6=I⊂{1,...,d}(−1)|I|CI(ui, i ∈ I),

where CI is the I-margin of the copula C with |I| the cardinality of the set I .

There exist several related methodologies. The lower tail dependence parame-

ter is defined as

λL = lim
u→0+

u−1C(u, . . . , u),

and the upper tail dependence parameter is defined similarly with the survival func-

tion C. As extensions, Juri and Wüthrich (2002, 2003) studied tail dependence

from a distributional point of view. Klüppelberg et al. (2008) defined the so-called

tail dependence function of X as

λX(x1, . . . , xd) = lim
t→0

t−1P[1− F1(X1) ≤ tx1, . . . , 1− Fd(Xd) ≤ txd],

and Nikoloulopoulos et al. (2009); Joe et al. (2010); Li and Sun (2009) further

studied the properties of the tail dependence function and their applications for

multivariate t copulas, vine copulas and heavy-tailed scale mixtures of multivariate

distributions, respectively. We refer to the above papers for details and properties

of tail dependence functions.

Multivariate Archimedean copulas are widely used in insurance and financial

risk analyses as they can be used for sensitivity analyses to changes in depen-
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dence, tail asymmetry, and lower/upper tail behavior. They are not flexible enough

as models for high-dimensional data but can be extended to more flexible copula

families (Joe and Hu, 1996) based on mixtures of max-infinitely divisible distribu-

tions. In the literature, a d-dimensional Archimedean copula C is often (e.g., Gen-

est and MacKay, 1986; Nelsen, 2006) defined as C(u1, . . . , ud) = φ−1(φ(u1) +

· · · + φ(ud)), (u1, . . . , ud) ∈ [0, 1]d. McNeil and Nešlehová (2009) showed that

d-monotonicity is a sufficient and necessary condition on the Archimedean gener-

ator φ−1 so that the above form is a copula; a real-valued function g defined on

(a, b) with a, b ∈ R is said to be d-monotone (d ≥ 2) if it is differentiable up to

the order d − 2, (−1)kg(k)(x) ≥ 0 for any x ∈ (a, b) and k = 0, . . . , d − 2, and

(−1)d−2g(d−2) is non-increasing and convex in (a, b).

To get a better understanding of tail dependence (intermediate or usual tail de-

pendence), we use the mixture of power or LT representation in Marshall and Olkin

(1988) and Joe (1997); for mixing distribution functions [resp. survival functions],

the power is called resilience [resp. frailty] in Marshall and Olkin (2007). Let

Cψ(u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), (u1, . . . , ud) ∈ [0, 1]d,

(2.4)

where ψ is the LT of a positive random variable. Note that as d ≥ 3 increases,

Archimedean copulas extend less into the region of negative dependence (Joe,

1997, Sections 4.4 and 5.4) and hence the restriction to LTs does not lose much

generality for defining an Archimedean copula. Since a LT is completely mono-

tone, it can be used to construct copulas of any dimension.

In this thesis, we assume that the function ψ is a LT of a positive random

variable; that is, ψ(t) :=
∫∞

0 e−xtFX(dx), where FX is the distribution function

of a positive random variable X . Such choices of ψ cover most of the commonly

used Archimedean copulas.

The tail behavior of a LT function plays a critical role in analyzing the de-

pendence in the tails of the Archimedean copula constructed by the LT func-

tion. Here we list basic properties of a LT ψ : [0,∞) → [1, 0) as follows:

ψ(0) = 1, lims→∞ ψ(s) = 0, ψ is continuous and strictly decreasing, and ψ(s)

is completely monotone; that is, the derivatives ψ(n) exist for n = 0, 1, 2, . . . and
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(−1)nψ(n)(s) ≥ 0 for all s ≥ 0.

If C(u1, . . . , ud) is a copula, then the corresponding survival copula is defined

as

Ĉ(u1, . . . , ud) = 1 +
∑

I⊂{1,...,d}

(−1)|I|CI(1− ui, i ∈ I),

where CI is the I-margin of the copula C with |I| the cardinality of the set I; in

particular, for bivariate case, Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v). If Cψ is an

Archimedean copula constructed by LT ψ, then the corresponding survival copula

is referred to as a survival Archimedean copula constructed by LT ψ. The survival

copula itself is a copula, and it should be distinguished from the survival function

of a copula (denoted as C); for bivariate case, the survival function of a copula C

is C(u, v) = 1− u− v + C(u, v).

Definition 2.3 A copula C is said to be reflection symmetric if the copula is the

same as its survival copula Ĉ; that is, C(u) ≡ Ĉ(u) for any u ∈ [0, 1]d.

Another copula family that will be studied is extreme value copula. If a copula

C satisfies

C(ut1, . . . , u
t
d) = Ct(u1, . . . , ud)

for any (u1, . . . , ud) ∈ [0, 1]d and t > 0, then we refer to C as an extreme value

copula.

When we compare certain properties for different copulas, we usually assume

that those copulas share some common summary quantities such as the following

Blomqvist’s β (Blomqvist, 1950) for the bivariate case.

Definition 2.4 The Blomqvist’s β for a bivariate copula C is defined as β :=

4C(1/2, 1/2)− 1.

So −1 ≤ β ≤ 1; β = 0 holds for the independent copula and a larger positive

β suggests a higher positive dependence. Moreover, β(C) = β(Ĉ) for the bivariate

case.
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Standard references for copula theory are Joe (1997) and Nelsen (2006). For

applications of copulas in actuarial science and quantitative risk management, we

refer to Denuit et al. (2005), McNeil et al. (2005) and Genest et al. (2009a).

2.3 Regular variation
For asymptotic analysis of tail behavior of random variables or equivalently their

distribution functions, the theory of regular variation provides a powerful platform.

Here we only give some most fundamental concepts. More relevant concepts and

results about regular variation will be used throughout the thesis, and will be in-

troduced when they are needed. Standard references on regular variation are Bing-

ham et al. (1987), Resnick (1987), and Geluk and de Haan (1987); Embrechts et al.

(1997) and Resnick (2007) are more relevant for applications in actuarial science,

quantitative finance and risk management.

Definition 2.5 A measurable function g : R+ → R+ is regularly varying at ∞
with index α 6= 0 (written g ∈ RVα) if for any t > 0,

lim
x→∞

g(xt)

g(x)
= tα. (2.5)

If equation (2.5) holds with α = 0 for any t > 0, then g is said to be slowly varying

at∞ and written as g ∈ RV0.

For the lower limit at 0+, if for any t > 0, limx→0+ g(xt)/g(x) = tα, then g is

regularly varying at 0+ and denoted by g ∈ RVα(0+). Note that g(t) ∈ RVα ⇐⇒
g(1/t) ∈ RV−α(0+). Similarly, RV0(0+) is defined. We will use `(x) to represent

a slowly varying function, and a regularly varying function g can be written as

g(x) = xα`(x).

Note that, when we say that a random variable is regularly varying, it actually

means that the survival function of the random variable is regularly varying.

Definition 2.6 A measurable function g : R+ → R+ is rapidly varying at∞ with
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index∞ (written g ∈ RV∞) if for any t > 0,

lim
x→∞

g(xt)

g(x)
= t∞ =


0, if t < 1,

1, if t = 1,

∞, if t > 1.

Similarly, g ∈ RV−∞ if for any t > 0,

lim
x→∞

g(xt)

g(x)
= t−∞ =


∞, if t < 1,

1, if t = 1,

0, if t > 1.

Proposition 2.1 If U ∈ RVα for α ∈ R, then

lim
x→∞

U(tx)/U(x) = tα,

locally uniformly in t on (0,∞). If α < 0, then uniform convergence holds on

intervals of the form (b,∞), b > 0. If α > 0, uniform convergence holds on

intervals (0, b] provided U is bounded on (0, b] for all b > 0.

The following result is the famous Karamata’s theorem. It tells us that if we

write some regularly varying function U(x) = xα`(x) with `(x) slowly varying,

then U(x) behaves like xα in terms of integration.

Theorem 2.2 Suppose α ≥ −1 and U ∈ RVα. Then
∫ x

0 U(t)dt ∈ RVα+1 and

lim
x→∞

xU(x)∫ x
0 U(t)dt

= α+ 1. (2.6)

If α < −1 (or if α = −1 and
∫∞
x U(s)ds < ∞), then U ∈ RVα implies that∫∞

x U(t)dt is finite,
∫∞
x U(t)dt ∈ RVα+1, and

lim
x→∞

xU(x)∫∞
x U(t)dt

= −α− 1. (2.7)

Definition 2.7 A function g : R→ (0,∞) is Γ-varying if it is non-decreasing and

right-continuous, and there exists a measurable function h : R→ (0,∞) such that
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for any t ∈ R

lim
x→∞

g(x+ th(x))

g(x)
= et, (2.8)

where h(·) is called an auxiliary function.

Definition 2.8 A measurable function g : R+ → R is Π-varying if there exits a

function h : R+ → R+ such that for all t > 0,

lim
x→∞

g(tx)− g(x)

h(x)
= log t, (2.9)

where h(·) is called an auxiliary function.

The following is a definition for MRV. Due to the limitation of space, we will

not give more details about MRV here. For interested readers, Resnick (2007) is a

nice reference.

Definition 2.9 A random vector X ≥ 0 is MRV if there exists a Radon measure µ

(i.e., finite on compact sets) on E := [0,∞] \ {0} such that,

lim
t→∞

P[X ∈ tB]

P[||X|| > t]
= µ(B)

for any relatively compact set B ⊂ E with µ(∂B) = 0, where || · || denotes a norm

on Rd.

2.4 Maximum Domain of Attraction
Definition 2.10 A random variable X is said to belong to the MDA of an extreme

value distribution H if there exist normalizing constants σn > 0 and µn ∈ R such

that

(Mn − µn)/σn
d→ H, n→∞,

where Mn := X[1] is the first order statistics (i.e., maximum) of a random sample

of X with the sample size being n. This is written as X ∈ MDA(H).

36



It is well known that there are only three non-degenerate univariate extreme

value distributions: Fréchet,Gumbel and Weibull. Since MDA(Weibull) corre-

sponds to bounded random variables that are irrelevant to quantitative risk man-

agement, we will only consider the first two cases. The following two theorems

characterize the classes of MDA(Fréchet) and MDA(Gumbel), respectively.

Theorem 2.3 A random variable X with cdf F is said to belong to the Fréchet

maximum domain of attraction if and only if F ∈ RV−α, α > 0, and the corre-

sponding Fréchet cdf is exp(−x−α).

Theorem 2.4 A random variable X with cdf F is said to belong to the Gumbel

maximum domain of attraction if and only if there exists a positive auxiliary func-

tion a(·) such that

lim
x→∞

F (x+ ta(x))

F (x)
= e−t, t ∈ R, (2.10)

where a(·) can be chosen as a(x) =
∫∞
x F (t)/F (x)dt.

The concept of MDA(Gumbel) here is closely related to Γ-variation: if g(x) :=

1/F (x) with F satisfying (2.10), then g(x) is non-decreasing and right-continuous,

and satisfies the Γ-variation condition (2.8) with h(·) = a(·) the auxiliary function

in (2.10).

Note that, Marshall and Olkin (1983) has a characterization of MDA of a mul-

tivariate extreme value distribution. This paper also shows that a random vector X

that follows a multivariate extreme value distribution must be associated; that is, for

any real-valued increasing functions g1, g2, E[g1(X)g2(X)] ≥ E[g1(X)]E[g2(X)],

provided that the expectations exist.
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Chapter 3

Tail order and intermediate tail
dependence

3.1 Introduction
For statistical modeling with copulas, properties such as strengths of upper/lower

tail dependence and reflection symmetry or direction of reflection asymmetry are

important in deciding on appropriate copulas. For example, for the tail asymmetry

phenomena of financial markets (Patton, 2006; Okimoto, 2008), copula families

with a variety of tail behavior are useful for statistical modeling. Although the

multivariate Gaussian and t copula families have a wide range of dependence, they

are not appropriate when there is reflection or tail asymmetry. But copulas can be

constructed from other methods to get different joint tail behavior. Then for use of

copulas for inference for joint tail probabilities, sensitivity analysis over different

families can be performed.

For the study of tail dependence behavior of random vectors, we not only have

interest in the cases where the random vector is asymptotically dependent, but also

where asymptotic independence exhibits. Ledford and Tawn (1996) proposed the

following model for a bivariate random vector (X1, X2)T, where X1 and X2 are

unit Fréchet distributed with cdf Fi(x) = e−1/x, x ≥ 0, i = 1, 2, and are non-
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negatively associated,

P[X1 > r,X2 > r] ∼ `(r)r−1/η, r →∞, (3.1)

where 1/2 ≤ η ≤ 1. If we let Ui = Fi(Xi), i = 1, 2, where Fi is the cdf of the

unit Fréchet and r = (− log(u))−1, then clearly

lim
u→1−

P[U1 > u,U2 > u]

(P[U1 > u])κ
= lim

r→∞

P[X1 > r,X2 > r]

(P[X1 > r])κ
(3.2)

= lim
r→∞

`(r)r−1/η

[1− exp(−r−1)]κ
= lim

r→∞

`(r)r−1/η

r−κ
.

Thus the “tail order” κ that we will introduce in Definition 3.1 corresponds to

1/η of Ledford and Tawn’s representation. If η = 1, i.e., κ = 1 and `(r) 9 0,

X1 and X2 are upper tail dependent with upper tail dependence parameter λU =

limr→∞ `(r); if 1/2 < η < 1, they are positively dependent; if η = 1/2 and

`(r) ≥ 1, they are “tail quadrant independence”. A lot of research has been done

following this direction. We refer to Ledford and Tawn (1996, 1997); Coles et al.

(1999); Heffernan (2000); Ramos and Ledford (2009) for further development of

this idea.

The relation (3.1) tells us that the power term 1/η dominates the speed of decay

of the joint tail probability. We believe that the parameter 1/η plays an important

role in the study of tail dependence behavior, and deserves a new name “tail order”

that is explained in Section 3.2.1, based on copula functions. Moreover, analo-

gously to the tail dependence function, we will propose the tail order function,

which includes the information of the convergence along routes other than the di-

agonal.

In this chapter, the emphasis is on the case where the tail order is between 1

and d for a d-dimensional random vector. We refer to this case as “intermediate

tail dependence” under some positive dependence assumptions; this is explained

before Example 3.1.

Our main contributions span the following aspects: 1. We propose the concepts

of tail order and tail order functions as an integrated way to study tail behavior of

multivariate copulas. 2. We relate the tail heaviness of a positive random variable
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to the tail behavior of the Archimedean copula constructed by the LT of the random

variable. In our opinion, it is an insightful way to better understand the tail behavior

of Archimedean copulas. 3. Our theoretical study of tail behavior of Archimedean

copulas leads to a new one-parameter Archimedean copula family, based on the LT

of the inverse Gamma distribution, which shows patterns of upper and lower tails

not seen in commonly used copula families.

The remainder of this chapter is organized as follows. Section 3.2 introduces

the concepts of tail order and tail order functions, and some properties of them.

In particular, some results on relations of tail orders of marginal copulas are given.

Sections 3.3 and 3.4 contain studies of intermediate tail dependence for Archimedean

copulas and copulas constructed by mixture of max-id distributions, respectively.

For multivariate Archimedean copulas, we have a more concrete result than Char-

pentier and Segers (2009) for the lower tail, and new results for the upper tail.

Asymptotic behavior of LTs of positive random variables is studied in Section

3.3.1, and the new Archimedean copula family is presented in Section 3.3.4. Fi-

nally, Section 3.5 concludes with some topics of further research. The main proofs

are put in Section 3.6.

3.2 Tail orders: definitions and properties
In this section, we define the concepts of tail order and tail order functions, indicate

their use for reflection asymmetry and derive some properties.

3.2.1 Multivariate tail order and tail order functions

To avoid technicalities for tail orders, we assume conditions involving regular vari-

ation of tails of copula and other functions.

Definition 3.1 SupposeC is a d-dimensional copula. If there exists some κL(C) >

0 such that, with some `(u) ∈ RV0(0+)

C(u1d) ∼ uκL(C)`(u), u→ 0+,

then we refer to κL(C) as the lower tail order ofC and refer to λL(C) = limu→0+ `(u)

as the lower tail order parameter, provided the limit exists. Similarly, the upper
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tail order is defined as κU (C) such that

C((1− u)1d) ∼ uκU (C)`(u), u→ 0+,

with the upper tail order parameter λU (C) = limu→0+ `(u), provided the limit

exists.

When no confusion arises, we use the notation κ to represent lower or upper tail

orders, and λ for tail order parameters. κL(C) = 1 [resp. κU (C) = 1] and `(u) 9
0 corresponds to the usual definition of upper [resp. lower] tail dependence. We

will assume that lims→0+ `(s) = h ∈ [0,∞]. But h = 0 or h = ∞ correspond to

boundary cases, in which case more care is needed. In these boundary cases, the

“speed” of decrease or increase of `(u) affects the tail dependence behavior. For

example, if `(u) → 0, then a lower speed indicates a stronger tail dependence; if

`(u) → +∞, then a higher speed indicates a stronger tail dependence. Note that

with `(u)→ h, if κ(C) = 1 then 0 ≤ h ≤ 1; if κ(C) > 1 then 0 ≤ h ≤ ∞. Note

also that κL(C) = κU (C) = d for the d-dimensional independence copula. It is

not possible for κ < 1 (refer to Proposition 3.3), but it is possible for κL(C) and

κU (C) to be greater than d for copulas with negative dependence. For example,

as a boundary case, for the bivariate counter-monotonic copula, κL(C) and κU (C)

can be considered as +∞ because C(u, u) and C(1 − u, 1 − u) are zero for 0 <

u < 1/2.

The cases of κ = 1 or d have been well studied in the literature, while not

much research exists for 1 < κ < d. For the bivariate case, 1 < κ < 2 represents

some level of positive dependence in the tail, but not as strong as tail dependence.

For multivariate cases, without any further conditions, the meaning of 1 < κ < d

is complicated. We refer to the case 1 < κ < d as lower [resp. upper] intermediate

tail dependence only when all marginal copulas (ultimately) possess positive lower

[resp. upper] orthant dependence, of which a formal definition will be given in

Definition 3.3. Unless otherwise specified, when a copula is said to possess inter-

mediate tail dependence, the orthant dependence condition is assumed implicitly.

The following is an example of intermediate tail dependence for Gaussian copulas.
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Example 3.1 (Gaussian copula) Consider a multivariate Gaussian copula, con-

structed by

CΦd(u1, . . . , ud) = Φd(Φ
−1(u1), . . . ,Φ−1(ud); Σ), (3.3)

where Φd(·; Σ) is the joint cdf of a standard d-variate Gaussian random vector with

positive definite correlation matrix Σ. The multivariate Gaussian copula defined in

(3.3) has intermediate tail dependence with the tail order κ = 1dΣ
−11T

d , the sum of

all elements of Σ−1. It can be verified by noticing that limu→0+ CΦd(u1d)/u
κ =

limt→−∞Φd(t1d)/[Φ(t)]κ, and as t→ −∞, Φ(t) ∼ φ(t)/|t| and Φd(t1d) is dom-

inated by the exponent term exp(−t21dΣ−11T
d /2) (Hashorva and Hüsler, 2003,

Corollary 4.1).

The bivariate Gaussian copula with % > 0 has intermediate tail dependence

with the tail order κ = 2/(1 + %) and the slowly varying function at 0+ being

`(u) = (− log u)−%/(1+%). A related result without using copula functions has

been given in Ledford and Tawn (1996). For dimension d with constant correlation

%, the tail order is κ = d/[1+(d−1)%]. For the trivariate case with %12 = %23 = %,

we have κ = [3 + %13 − 4%]/[1 + %13 − 2%2].

Gaussian copulas are reflection symmetric and have intermediate tail depen-

dence when correlations are positive. They are a subfamily of the elliptical cop-

ulas. Under some regularity conditions, tail orders of elliptical copulas will be

determined by the tail behavior of corresponding radial random variable R.

Since copula is invariant to a strict increasing transformation on margins, for

the study of elliptical copula, we may omit the location and scale parameters of

joint elliptical distributions, and consider the following representation: let X :=

(X1, X2) be an elliptical random vector such that

X
d
= RAU, (3.4)

where the radial random variable R ≥ 0 is independent of U, U is an bivariate

random vector uniformly distributed on the surface of the unit hypersphere {z ∈
Rk|zTz = 1}, A is a 2 × 2 matrix such that AAT = Σ where Σ11 = Σ22 = 1

42



and Σ12 = Σ21 = % with −1 < % < 1, eg., A =

(
1 0

%
√

1− %2

)
. For such an

elliptical distribution, the margins have the same distribution assumed to be F .

The tail behavior of R may influence the tail order of elliptical copulas. For

the usual tail dependence case, Schmidt (2002) proved that when the radial random

variable R has a regularly varying tail then X1 and X2 are tail dependent, and thus

the tail order of the corresponding elliptical copula is κ = 1.

Example 3.2 (Student t copula) The radial random variable R for Student t distri-

butions is a generalized inverse Gamma distribution such thatR2 follows an inverse

Gamma distribution with the shape and scale parameters being ν/2, where ν is the

degree of freedom. It can be verified that FR ∈ RV−ν (see Example 6.4). So the

tail order for Student t copula is κ = 1.

For the case where R has lighter tails than any regularly varying tails, some

asymptotic study has been conducted for elliptical distributions where R belongs

to the Gumbel Maximum Domain of Attraction. We refer to Hashorva (2007),

Hashorva (2010) and Hashorva (2008) for relevant references.

Here we are ready to present a result that is useful to find the tail order of a

bivariate elliptical copula where the radial random variable R belongs to Gumbel

MDA.

Proposition 3.1 LetC be the copula for an elliptical random vector X := (X1, X2)

constructed as (3.4), and b% =
√

2/(1 + %). If R ∈ MDA(Gumbel), then the up-

per and lower tail orders of C is

κ = lim
r→∞

log (1− FR(b%r))

log (1− FR(r))
, (3.5)

provided the limit exists.

This result is very convenient for us to derive the tail order if we know the tail

behavior of R.

Example 3.3 (Bivariate symmetric Kotz type (Fang et al., 1990) copula) The den-
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sity generator

g(x) = KxN−1 exp{−βxξ}, β, ξ,N > 0,

where K is a normalizing constant. By Theorem 2.9 of Fang et al. (1990), the

density function of R is

fR(x) = 2πxg(x2) = 2Kπx2N−1 exp{−βx2ξ}.

So, the survival function is

1− FR(x) =

∫ ∞
x

2Kπt2N−1 exp{−βt2ξ}dt

=

∫ ∞
βx2ξ

Kπ

ξ
β−N/ξwN/ξ−1 exp{−w}dw

=
Kπ

ξ
β−N/ξΓ(N/ξ, βx2ξ), Γ(·, ·) incomplete Gamma function

∼ Kπ

ξ
β−1x2N−2ξ exp{−βx2ξ}, x→∞.

Then by (3.5), we can easily get that

κ = b2ξ% = [2/(1 + %)]ξ.

Therefore, the tail order for the symmetric Kotz type copula is κ = [2/(1 + %)]ξ.

Gaussian copula belongs to this class with ξ = 1, so its tail order is 2/(1 + %)

which is consistent to what we have obtained.

Definition 3.2 Suppose C is a d-dimensional copula and C(u1d) ∼ uκ`(u), u→
0+ for some `(u) ∈ RV0(0+). The lower tail order function b : Rd+ → R+ is

defined as

b(w;C, κ) = lim
u→0+

C(uwj , 1 ≤ j ≤ d)

uκ`(u)
,

provided the limit function exists. In parallel, if C((1− u)1d) ∼ uκ`(u), u→ 0+

for some `(u) ∈ RV0(0+), the upper tail order function b∗ : Rd+ → R+ is defined
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as

b∗(w;C, κ) = lim
u→0+

C(1− uwj , 1 ≤ j ≤ d)

uκ`(u)
,

provided the limit function exists. If `(u) → h 6= 0, then hb(w;C, 1) and

hb∗(w;C, 1) become the tail dependence functions in Joe et al. (2010).

Note that the copula C that satisfies the conditions of the above definition is

said to be multivariate regularly varying with a limit function b or b∗ (Resnick,

2007). Although the general theory and definitions must accommodate an arbi-

trary slowly varying function `, in specific parametric families of copulas that have

tractable forms, we find that either `(u) is a constant or proportional to a power of

(− log u).

Example 3.4 (Extreme value copula) For any multivariate extreme value copula

CEV , there exists a function A : [0,∞)d → [0,∞) such that

CEV (u1, . . . , ud) = exp{−A(− log u1, . . . ,− log ud)},

where A is convex, homogeneous of order 1 and satisfies

max(x1, . . . , xd) ≤ A(x1, . . . , xd) ≤ x1 + · · ·+ xd.

We refer to Chapter 6 of Joe (1997) for details of multivariate extreme value copu-

las. Thus,

CEV (u1d) = exp{A(1d) log u} = uA(1d).

That is, for any extreme value copula CEV , the lower tail order is κL(CEV ) =

A(1d) and there is intermediate lower tail dependence except for the boundary

cases such as independence copula and comonotonicity copula, where A(1d) = d

and 1, respectively.

In order to get the lower tail order function of extreme value copulas, first
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consider the bivariate case, for which

CEV (uw1, uw2)

= exp{−A(− log uw1,− log uw2)}

= exp

{
(log u)A

(
1 +

logw1

log u
, 1 +

logw2

log u

)}
∼ exp

{
(log u)

[
A(1, 1) +A1(1, 1)

(
logw1

log u

)
+A2(1, 1)

(
logw2

log u

)]}
, u→ 0+

= uA(1,1)w
A1(1,1)
1 w

A2(1,1)
2 ,

whereAi = ∂A/∂xi, i = 1, 2. Therefore, the lower tail order function is b(w1, w2) =

w
A1(1,1)
1 w

A2(1,1)
2 . Similarly, for a d-variate extreme value copula, b(w1, . . . , wd) =

w
A1(1d)
1 . . . w

Ad(1d)
d . By Euler’s formula for homogeneous functions, A(1d) =∑d

i=1Ai(1d). Then it can be verified that b is homogeneous of order A(1d).

In the bivariate case, κU = 1, λU = 2 − A(1, 1), and κL = A(1, 1). That

is, a larger value of the upper tail dependence parameter implies stronger lower

intermediate tail dependence.

Example 3.5 (Elliptical copula) Tail order functions of bivariate elliptical copulas

can be derived as following: for any given 0 < w1, w2 < ∞, as 0 < v < 1 is

sufficiently close to 0,

C(1− vw1, 1− vw2)

= P[F (X1) ≥ 1− vw1, F (X2) ≥ 1− vw2]

= P[X1 ≥ F−1(1− vw1), X2 ≥ F−1(1− vw2)]

= P[R cosϕ ≥ F−1(1− vw1), R[% cosϕ+
√

1− %2 sinϕ] ≥ F−1(1− vw2)]

=
1

2π

∫
θ∈Θ1

P

[
R ≥ F−1(1− vw1)

cos θ
,R ≥ F−1(1− vw2)

% cos θ +
√

1− %2 sin θ

]
dθ,

whereϕ ∼ Uniform(−π, π) and Θ1 := (−π/2, π/2)∩{θ : tan θ ≥ −%/
√

1− %2}.
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Also, letting Θ2 := (−π/2, π/2), as 0 < v < 1 is sufficiently close to 0

v = P
[
R cosϕ ≥ F−1(1− v)

]
=

1

2π

∫
θ∈Θ2

P
[
R ≥ F−1(1− v)

cos θ

]
dθ.

If R ∈ MDA(Fréchet), i.e., R ∈ RV−α for some α > 0, then the margins

X1, X2 ∈ RV−α. Therefore, the map v 7→ F−1(1 − v) ∈ RV−1/α(0+). Then,

by the uniform convergence of regularly varying functions (e.g., Proposition 2.4 of

Resnick (2007))

lim
v→0+

C(1− vw1, 1− vw2)

v

= lim
v→0+

∫
θ∈Θ1

P
[
R ≥ F−1(1−vw1)

cos θ ∨ F−1(1−vw2)

% cos θ+
√

1−%2 sin θ

]
dθ/P

[
R > F−1(1− v)

]
∫
θ∈Θ2

P
[
R ≥ F−1(1−v)

cos θ

]
dθ/P [R > F−1(1− v)]

= lim
v→0+

∫
θ∈Θ1

P
[
R ≥ w

−1/α
1 F−1(1−v)

cos θ ∨ w
−1/α
2 F−1(1−v)

% cos θ+
√

1−%2 sin θ

]
dθ/P

[
R > F−1(1− v)

]
∫
θ∈Θ2

P
[
R ≥ F−1(1−v)

cos θ

]
dθ/P [R > F−1(1− v)]

=

∫
θ∈Θ1

max
{
w1(cos θ)α, w2(% cos θ +

√
1− %2 sin θ)α

}
dθ∫

θ∈Θ2
(cos θ)αdθ

.

The multivariate case is similar (Klüppelberg et al., 2008). However, if R ∈
MDA(Gumbel), a general form of tail order functions of the whole class remains

unsolved.

We next mention how the upper and lower tail orders are useful to establish the

direction of reflection asymmetry. Let Ĉ be the copula of (1 − U1, . . . , 1 − Ud)
when the copula of (U1, . . . , Ud) is C, where Ui’s are standard uniform variables.

Reflection symmetry means that Ĉ ≡ C (Definition 2.3) and otherwise we say that

there is reflection asymmetry. If C(u1d) ≥ Ĉ(u1d) for all 0 < u < u0, for some

0 < u0 ≤ 1/2, then the copula has more probability in the lower tail (reflection

asymmetry with skewness to lower tail). If the inequality is reversed leading to

C(u1d) ≤ Ĉ(u1d), then the copula has more probability in the upper tail (reflec-

tion asymmetry with skewness to upper tail). For most existing parametric families
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of copulas, it is difficult to analytically compare C(u1d) and Ĉ(u1d), so the di-

rection of reflection asymmetry is analytically easier via the upper and lower tail

orders. For example, if κL(C) > κU (C), then C has reflection asymmetry skewed

to the upper tail (smaller κmeans slower convergence to 0), and ifC(u1d) ∼ λLuκ

and Ĉ(u1d) ∼ λUu
κ as u → 0+ with λL > λU > 0, then C has reflection asym-

metry skewed to the lower tail. For many parametric copula families where we

have done numerical computations, u0 can be taken as 1/2.

The following are some elementary properties of the lower and upper tail or-

der functions b and b∗. Obvious properties of tail order for Ĉ are the following:

κL(C) = κU (Ĉ), κU (C) = κL(Ĉ), b(w;C, κ) = b∗(w; Ĉ, κ) and b∗(w;C, κ) =

b(w; Ĉ, κ).

Proposition 3.2 A lower tail order function b(w) = b(w;C, κ) has following

properties:

1. b(1) ≡ 1, and b(w) = 0 if there exists an i ∈ Id with wi = 0;

2. b(w) is increasing in wi, i ∈ Id;

3. for any fixed t > 0,

b(tw) = lim
u→0+

C(tuwj , 1 ≤ j ≤ d)

uκ`(u)

= tκ lim
u→0+

C(tuwj , 1 ≤ j ≤ d)

(tu)κ`(tu)
= tκb(w). (3.6)

Thus, b(w) is homogeneous of order κ.

If b(w) is partially differentiable with respect to each wi on (0,+∞), then by the

Euler’s formula on homogeneous functions, we can write

b(w) =
1

κ

d∑
j=1

∂b

∂wj
wj , ∀w ∈ Rd+.

Remark 3.1 Since C(uw) ∼ uκ`(u)b(w) = b(uw)`(u), u → 0+, the tail order

function b captures the tail behavior of the copula C in different directions.
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3.2.2 Further properties of tail orders

In this subsection, we obtain some general properties of tail orders of multivari-

ate copulas, especially on inequalities on tail orders of marginal copulas. There

is an “obvious” property in terms of concordance. For two joint cdfs H,G ∈
R(F1, . . . , Fd), we say that H is less concordant than G, if H(x) ≤ G(x) and

H(x) ≤ G(x) for any x in the support of H and G. If C1 is less concordant than

C2, then κL(C1) ≥ κL(C2) and κU (C1) ≥ κU (C2).

Next we introduce some concepts of positive dependence, under which multi-

variate copulas may have some particular properties on tail orders. We refer to Joe

(1997), Colangelo et al. (2005) for details.

Definition 3.3 Suppose that F (x) is the cdf of a d-variate random vector X =

(X1, . . . , Xd)
T, then X or F is said to be

1. positive lower orthant dependent (PLOD) if P[Xi ≤ xi,∀i ∈ Id] ≥
∏d
i=1 P[Xi ≤

xi] for any x ∈ Rd;

2. left tail decreasing in sequence (LTDS) if P[Xi ≤ xi|X1 ≤ x1, . . . , Xi−1 ≤
xi−1] is decreasing in x1, . . . , xi−1 for all xi, i ∈ {2, . . . , d};

3. multivariate left tail decreasing (MLTD) if (Xi1 , . . . , Xid) is LTDS for all

permutation (i1, . . . , id) of (1, . . . , d).

Proposition 3.3 Suppose a multivariate copula C(u1, . . . , ud) has a lower tail

order κL(C), then κL(C) ≥ 1. Moreover,

1. if C is (ultimately) positive lower orthant dependent (PLOD), then κL(C) ≤
d;

2. for any S1 ⊂ S2 ⊆ Id with |S1| ≥ 2, κL(CS2)−κL(CS1) ≥ 0. In particular,

if κL(C) = 1, then for any S ⊂ Id with |S| ≥ 2, κL(CS) = 1; if C

is multivariate left tail decreasing (MLTD), then κL(CS2) − κL(CS1) ≤
|S2| − |S1|.

Analogous results hold with κL replaced by κU , and conditions of positive upper

orthant dependence and multivariate right tail increasing.
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Remark 3.2 The above result says that when some regularity condition holds,

marginality will keep the order of tail orders in the sense that margins have smaller

tail orders. However, marginality does not inherit the inequality between tail or-

ders of lower and upper tails. For example, take the trivariate Archimedean copula

with the ψ function in Example 3.6 in Section 3.3.1 below. Then 3α > 1 + α for

0 < α < 1 so that κL(C) > κU (C) (see Table 3.1). But 2α < 1+α for 0 < α < 1

so that for the bivariate margins, κL(CI) < κU (CI) with |I| = 2.

Sometimes partial derivatives and the density have a simpler form than the

copula cdf. We hope to know what tail properties will be inherited if we take

partial derivatives of the copula. For example, for the lower tail, if

C(uw1, . . . , uwd) ∼ uκ`(u)b(w1, ..., wd), u→ 0+,

then we want to differentiate both sides of the above with respect to the wj’s to get:

u
∂C(uw1, . . . , uwd)

∂wj
∼ uκ`(u)

∂b(w1, ..., wd)

∂wj
, u→ 0+,

and higher order derivatives up to:

ud
∂dC(uw1, . . . , uwd)

∂w1 · · · ∂wd
∼ uκ`(u)

∂db(w1, ..., wd)

∂w1 · · · ∂wd
, u→ 0+.

A sufficient condition is ultimate monotonicity of partial derivatives of the copula

(eg: ∂C/∂uj is ultimately monotone in uj at 0+, and similar conditions are suf-

ficient for higher orders). A proof is similar to that in Theorem 1.7.2 (Monotone

density theorem) in Bingham et al. (1987).

As an example of using the density to get the tail order, consider a multi-

variate Gaussian copula with positive definite correlation matrix Σ which satis-

fies CΦ(u1d) ∼ uκ`(u) = uκ(− log u)ζ , u → 0+. Then (as can be shown di-

rectly with the monotone density theorem), this would be equivalent to cΦ(u1d) ∼
huκ−d(− log u)ζ , u→ 0+, where h is a constant. Thus, with φd for the multivari-
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ate Gaussian density,

1 = lim
u→0+

cΦ(u1d)

huκ−d(− log u)ζ
= lim

u→0+

φd
(
Φ−1(u)1d; Σ

)
φd(Φ−1(u))uκ−d(− log u)ζh

= lim
z→−∞

φd (z1d; Σ)

φd(z)[Φ(z)]κ−d[− log(Φ(z))]ζh

= lim
z→−∞

φd (z1d; Σ)

φκ(z)|z|d−κ[− log(φ(z)/|z|)]ζh
(3.7)

Since the exponent terms dominate the numerator and denominator of (3.7), to

cancel the exponent terms, a necessary condition is that κ = 1dΣ
−11T

d , which

turns out to be the tail order of the copula CΦ. Also, to cancel the term of |z| in

(3.7), we need that d− κ+ 2ζ = 0, so ζ = (κ− d)/2.

3.3 Intermediate tail dependence : Archimedean copulas
Archimedean copulas are reflection asymmetric except for the bivariate Frank cop-

ula, and have a variety of tail behavior. In this section, we will study the up-

per/lower tail orders and tail order functions for Archimedean copulas. A new

family of one-parameter Archimedean copulas, that interpolates independence and

comonotonicity, will be given. This copula possesses intermediate upper and lower

tail dependence, and has patterns of tail orders different from existing parametric

families.

Before getting to the main results, we provide some intuition on conditions on

ψ for intermediate upper and lower tail dependence for Cψ.

Let G1, . . . , Gd be univariate cdfs. For η > 0, Gη1, . . . , G
η
d are cdfs, and η

is called a resilience parameter. As the parameter η → 0, then random vari-

ables with distributions Gη1, . . . , G
η
d tend towards the lower endpoint of support of

G1, . . . , Gd, and as η → ∞, random variables with distributions Gη1, . . . , G
η
d tend

towards the upper endpoint of support of G1, . . . , Gd. There is also a parallel for

survival functions and frailty, where the conclusions are reversed when the frailty

parameter goes to 0 or∞.

In this way, an Archimedean copula Cψ has a mixture representation with LT

ψ. That is, Cψ(u1, . . . , ud) =
∫∞

0

∏d
j=1G

η
j (uj) dFH(η), where FH is the cdf of

the resilience random variable H , G(u) = exp{−ψ−1(u)} (0 ≤ u ≤ 1), and
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ψ(s) = ψH(s) =
∫∞

0 e−sηdFH(η). The mixture means that: there are random

variables X1, . . . , Xd such that given H = η, they are conditionally independent

with respective cdfs Gη1, . . . , G
η
d. If the random variable H has heavy tail at ∞,

then there is a “chance” that H = η is large and hence conditionally, X1, . . . , Xd

are all close to their upper endpoints of support (i.e., dependence in the upper tail).

Hence conditions on the heaviness of the upper tail of the distribution of H lead

to intermediate upper tail dependence. For the opposite tail, if the random variable

H has concentration of density near 0, then there is a “chance” that H = η is near

zero and hence conditionally, X1, . . . , Xd are all close to their lower endpoints of

support (i.e., dependence in the lower tail). Hence conditions on the density of the

lower tail of the distribution of H lead to intermediate lower tail dependence.

3.3.1 Laplace transform and univariate tail heaviness

In this subsection, we relate the asymptotic behavior of a LT to the maximal mo-

ment of the positive random variable with the given LT.

Definition 3.4 For a positive random variable Y with LT ψ, the maximal non-

negative moment is

MY = Mψ = sup{m ≥ 0 : E(Y m) <∞}. (3.8)

MY is 0 if no moments exist and MY is∞ if all moments exist. A smaller value

of MY means that Y has a heavier tail at∞.

The next lemma shows that Mψ is related to the behavior of ψ at 0 when 0 <

Mψ < 1. The result for a general non-integer Mψ such that k < Mψ < k + 1 will

be derived subsequently.

Lemma 3.4 Suppose ψ(s) is the LT of a positive random variable Y , with 0 <

MY < 1. If 1− ψ(s) is regularly varying at 0+, then 1− ψ(s) ∈ RVMY
(0+).

Remark 3.3 Even if E(Y ) = ∞, we may also have MY = 1. However, Lemma

3.4 does not hold in general for this case.

Remark 3.4 If we write 1− ψ(s) = sM`(s) and `(s)→ h1 with 0 < h1 <∞ as

s→ 0+, then clearly ψ(s) = 1− h1s
M + o(sM ), s→ 0+.
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Proposition 3.5 Suppose ψ(s) is the LT of a positive random variable Y , with

k < MY < k+ 1 where k ∈ {0}∪N+. If
∣∣ψ(k)(0)−ψ(k)(s)

∣∣ is regularly varying

at 0+, then
∣∣ψ(k)(0)−ψ(k)(s)

∣∣ ∈ RVMY −k(0
+). In particular, if the slowly varying

component is `(s) and lims→0+ `(s) = h′k+1 with 0 < h′k+1 <∞, then s→ 0+,

ψ(s) = 1− h1s+ h2s
2 − · · ·+ (−1)khks

k + (−1)k+1hk+1s
MY + o(sMY ),

(3.9)

where 0 < hi <∞ for i = 1, . . . , k + 1.

The above results can be summarized as follows. If Mψ =∞, the LT ψ(s) has

an infinite Taylor expansion about s = 0. If Mψ is finite and non-integer-valued,

then with some regularity conditions, ψ(s) has a Taylor expansion about s = 0 up

to order [Mψ], and the next term after this has order Mψ.

3.3.2 Upper tail

Based on the results in Section 3.3.1, we derive upper tail orders and corresponding

tail order functions of multivariate Archimedean copulas; the results extend those

of Charpentier and Segers (2009).

Proposition 3.6 Let ψ be the LT of a positive random variable and assume that

ψ satisfies the condition of Proposition 3.5. Assume that k < Mψ < k + 1 with

some k ∈ {1, . . . , d − 1}, then the Archimedean copula Cψ in (2.4) has upper

intermediate tail dependence. The corresponding tail order is κU = Mψ. If ψ(i)(0)

is finite for all i ∈ Id, then the upper tail order κU = d. If ψ′(0) is infinite and

0 < Mψ < 1, then the upper tail order is κU = 1, and particularly for the bivariate

case, λU = 2− 2Mψ .

Remark 3.5 If we know the value of a in (3.22) in the proof of Proposition 3.6,

then the tail order parameter is

lim
u→1−

Cψ(u, u)/(1− u)Mψ = 2a[−ψ′(0)]−1−M (2M − 1)/(1 +M)

= a[−ψ′(0)]−Mψ(2Mψ − 2)/Mψ.
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Example 3.6 Consider the LT of Example 4.2 in Joe and Ma (2000) with param-

eter 0 < α < 1 (see Joe-Ma in Table 1). We refer to this as the normalized

integral of the positive stable LT. Note that m = ψ′(0) = −1/Γ(1 + α−1) is

finite, ψ′′(0) = ∞ and ψ(s) ∼ 1 − s/Γ(1 + α−1) as s → 0+. We can write

ψ(s) = 1 + ψ′(0)s + o(s), s → 0+. Let g(s) = ψ′(s) − ψ′(0) = (1 −
exp{−sα})/Γ(1 + α−1) ∼ sα/Γ(1 + α−1), s → 0+. Then clearly, g(s) ∈
RVα(0+) and can be written as g(s) = sα`(s) with `(s) → 1/Γ(1 + α−1) as

s → 0+. So g(s) = asα + o(sα), s → 0+, with a = 1/Γ(1 + α−1) > 0.

By Proposition 3.6, the copula Cψ has intermediate upper tail dependence when

0 < α < 1. Also, κU = 1 + α and

lim
u→0+

Cψ(1− u, 1− u)

u1+α
=

2[Γ(1 + α−1)]α(2α − 1)

1 + α
.

It can be shown numerically that the d-variate Archimedean copula with this 1-

parameter LT family is decreasing in concordance as α increases. As α → 1−,

numerically, the limit is close to the independence copula; as α → 0+, the limit is

close to the comonotonic copula.

In the next proposition, we state a result for the upper tail order function of

Archimedean copulas.

Proposition 3.7 Let Cψ be a multivariate Archimedean copula with κU = Mψ

being a non-integer in the interval (1, d), and suppose ψ satisfies the condition of

Proposition 3.5. With the notation M = Mψ − [Mψ] and k = [Mψ], the upper tail

order parameter is

λU (Cψ) =
Mh

[−ψ′(0)]Mψ
∏k
j=0(Mψ − j)

∑
∅6=I⊂Id

(−1)|I|+k+1|I|Mψ ,

and the upper tail order function is

b∗(w) =

∑
∅6=I⊂Id(−1)|I|

(∑
i∈I wi

)Mψ∑
∅6=I⊂Id(−1)|I|

∣∣I∣∣Mψ
,

where h = lims→0+ `(s) with |ψ(k)(s)− ψ(k)(0)| = sM`(s) as s→ 0+.
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Remark 3.6 For a d-variate Archimedean copula, the pattern of the upper tail or-

der function also depends on the upper tail order κ. For example, in d = 3, the

homogeneous function b∗ is positively proportional to

−wκ1−wκ2−wκ3 +(w1+w2)κ+(w1+w3)κ+(w2+w3)κ−(w1+w2+w3)κ, 1 < κ < 2;

wκ1 +wκ2 +wκ3−(w1+w2)κ−(w1+w3)κ−(w2+w3)κ+(w1+w2+w3)κ, 2 < κ < 3.

The signs of all terms depend on whether 1 < κ < 2 or 2 < κ < 3. The pattern of

alternating signs extends to d > 3. This pattern, together with Lemma 3.12, also

shows why we don’t have a general form of the tail order function when Mψ is a

positive integer.

Recently, we have noticed that Larsson and Nešlehová (2011) uses survival

copulas for a random vector X := (X1, . . . , Xd)
d
= RSd as another representation

for Archimedean copulas, where R is a radial random variable, the random vector

Sd is uniformly distributed on the simplex {(x1, . . . , xd) ∈ Rd+ :
∑d

i=1 xi = 1},
and R and Sd are independent. In parallel to elliptical copulas that are constructed

based on random vectors that have a similar scale mixture representation, the au-

thors find that the tail behavior of the radial random variable R will affect the tail

dependence patterns of corresponding Archimedean copulas. This representation

provides an alternative way to study the dependence in the tails of Archimedean

copulas.

3.3.3 Lower tail

For intermediate lower tail dependence of Archimedean copulas, a general result

has been obtained in Theorem 3.3 of Charpentier and Segers (2009). We will derive

a more concrete and usable result that involves the slowly varying function `, and

give an interpretation in terms of the (resilience) random variable H which has LT

ψ.

The condition below on the LT ψ(s) as s → ∞ covers almost all of the LT

families in the Appendix of Joe (1997), as well as other LT families that can be
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obtained by integration or differentiation. Suppose

ψ(s) ∼ T (s) = a1s
q exp{−a2s

r}

and ψ′(s) ∼ T ′(s), s→∞, with a1 > 0, a2 ≥ 0, (3.10)

where r = 0 implies a2 = 0 and q < 0, and r > 0 implies r ≤ 1 and q can be

0, negative or positive. Note that r > 1 is not possible because of the complete

monotonicity property of a LT.

The condition can be interpreted as follows. As ψ(s) decreases to 0 more

slowly as s → ∞, then the random variable H with LT ψ has a heavier “tail” at

0. Let z = limη→0 fH(η) ∈ [0,∞], where fH is the density of H and is assumed

well-behaved near 0. As z increases, then the “tail” at 0 is heavier. If z = 0, then

the tail is lighter as the rate of decrease to 0 is faster. If z = ∞, then the tail is

heavier as the rate of increase to∞ is faster. In terms of the LT and the condition

in (3.10), as r increases (with fixed q), the tail of H at 0 gets lighter, and as q

increases (with fixed r), the tail of H at 0 gets heavier.

The next proposition shows that lower tail dependence behavior is influenced

by r.

Proposition 3.8 Suppose a LT ψ satisfies the condition in (3.10) with 0 ≤ r ≤ 1.

If r = 0, then Cψ has lower tail dependence or lower tail order is 1. If r = 1, then

κL(Cψ) = d. If 0 < r < 1, then Cψ has intermediate lower tail dependence with

1 < κL(Cψ) = dr < d, `(u) = dqa1−κ
1 a−ζ2 (− log u)ζ with ζ = (q/r)(1 − dr),

and the tail order function is b(w) =
∏d
i=1w

dr−1

i .

Remark 3.7 Condition (3.10) does not cover all possibilities. It is possible that

as s → ∞, ψ(s) goes to 0 slower than anything of form (3.10). Examples are

given by LT families LTF and LTG in Joe (1997), leading to Archimedean families

such that limu→0+ Cψ(u1d)/u = 1 (for the bivariate case, see families BB2 and

BB3 in Joe and Hu (1996), and Joe (1997)). Note that, for LTF, ψ(s) = [1 +

δ−1 log(1 + s)]−1/θ with δ > 0 and θ > 0 and as s→∞, ψ(s) ∼ δ1/θ(log s)−1/θ;

for LTG, ψ(s) = exp{−[δ−1 log(1 + s)]1/θ} with δ > 0, θ > 1 and as s → ∞,

ψ(s) ∼ exp{−δ−1/θ(log s)1/θ}. We refer to Chapters 4 and 5 for relevant research

on LTF and LTG.
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Remark 3.8 Consider the pair (φ, ψ) of LTs where (a) φ′(0) is finite and ψ(s) =

φ′(s)/φ′(0) or (b)
∫∞

0 ψ(v)dv is finite and φ(s) =
∫∞
s ψ(v)dv/

∫∞
0 ψ(v)dv. For

the upper tail, we get Mψ = Mφ − 1 so that LT ψ has a heavier tail and κU (Cψ)

is smaller (stronger intermediate tail dependence) if κU (Cφ) < d. Proposition

3.8 implies that κL(Cψ) = κL(Cφ). But the second level of tail dependence

strength comes from the slowly varying function `(u) = dqa1−κ
1 a−ζ2 (− log u)ζ .

Since Cψ(u1d) ∼ uκ`(u), u→ 0+, a smaller κmeans stronger intermediate lower

tail dependence at the first level, and a faster `(u) → +∞ or a slower `(u) → 0+

means stronger intermediate lower tail dependence at the second level. For the LT

tail, a1s
q exp(−a2s

r), a smaller r means slower decrease to 0 as s → +∞ and

the resilience random variable has more probability near 0 and Cψ has more de-

pendence in the lower tail. This can be shown by a smaller tail order dr. A larger

q means slower decrease to 0 as s → +∞, which also implies more lower tail

dependence. This is seen from a faster increase of `(u) → +∞ as u → 0+ when

q < 0 and increases, or a slower decrease of `(u) → 0+ as u → 0+ when q > 0

and increases. Note that when u is small enough, (− log u)ζ dominates `(u).

3.3.4 A new parametric Archimedean copula

By applying the LT of the inverse Gamma distribution, we present a new one-

parameter Archimedean copula that exhibits intermediate upper and lower tail de-

pendence, and have essentially a full range of positive dependence from indepen-

dence to comonotonicity.

Example 3.7 (Archimedean Copula based on the Laplace Transform of Inverse

Gamma (ACIG)) Let Y = X−1 have the inverse Gamma (IΓ) distribution, where

X ∼ Gamma(α, 1) for α > 0. Then it is straightforward to derive that MY = α.

The LT of the inverse Gamma distribution:

ψ(s;α) =
2

Γ(α)
sα/2Kα(2

√
s), s ≥ 0, α > 0, (3.11)

where Kα is the modified Bessel function of the second kind. (Please see Section

3.6 for the derivation of (3.11).) It can be shown numerically that the d-variate

Archimedean copula with this 1-parameter LT family is decreasing in concordance
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as α increases, with limits of the independence copula as α→∞ and the comono-

tonic copula as α→ 0.

Proposition 3.9 Let Cψ be an Archimedean copula constructed by (3.11). If α ∈
(0,+∞) is not an integer, then the upper tail order is max{1,min{α, d}}. The

lower tail order is
√
d.

Remark 3.9 For the bivariate case, κU = max{1,min{α, 2}} and κL =
√

2 .

Hence there is reflection asymmetry with skewness to the upper tail for 0 < α <√
2 and skewness to the lower tail for α >

√
2 . Contour plots of this new

Archimedean copula are given in Figure 3.1.

Figure 3.1: Contour plots: ACIG copula + standard normal margins
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To conclude this subsection, we list the tail orders for some Archimedean cop-

ulas that interpolate independence and comonotonicity in Table 3.1. A variety of

tail behavior obtains from known parametric Archimedean families and the new

Archimedean family. Note that the bivariate Frank copula is reflection symmet-

ric. But for d-dimensional Frank copula with d ≥ 3, it can be shown numerically
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that Cψ(1
21d) > Cψ(1

21d) for parameters θ > 0, although the lower tail order and

upper tail order are the same. Some of the results in this table can be found in Char-

pentier and Segers (2009) and Heffernan (2000). For all of the examples in Table

3.1, the upper and lower tail orders decrease or remain constant as the dependence

parameter(s) leads to increased dependence/concordance.

Table 3.1: Tail order of some Archimedean copulas that interpolate indepen-
dence and comonotonicity

Copula/LT family κL κU
Frank; log-series LT −θ−1 log[1− (1− e−θ)e−s] (θ > 0) d d
1MTCJ; gamma LT (1 + s)−1/θ (θ > 0) 1 d

Joe; Sibuya LT 1− (1− e−s)1/θ (θ > 1) d 1
Gumbel; positive stable LT exp{−s1/θ} (θ > 1) d1/θ 1
Joe-Hu; BB1 extension; (1 + s1/δ)−1/θ (θ > 0, δ > 1) 1 1
Joe-Hu; BB7 extension; 1− [1− (1 + s)−1/δ]1/θ (θ > 1, δ > 0) 1 1
Crowder; BB9 extension; exp{−(αθ + s)1/θ + α} (θ > 1) d1/θ d
Joe-Ma;

∫∞
s e−v

α
dv/Γ(1 + α−1) (0 < α < 1) dα 1 + α

ACIG; LT of inverse gamma 2Γ−1(α)sα/2Kα(2
√
s ) (α > 0) d1/2 (d ∧ α) ∨ 1

1. Mardia-Takahasi-Cook-Johnson, (see Cook and Johnson, 1981).

3.4 Intermediate tail dependence: Mixture of max-id
copulas

As an extension of Archimedean copulas, we study in this section the tail orders for

copulas that are constructed with mixtures of max-id copulas. Some results studied

in Joe (1997) are extended to intermediate tail dependence. Let F be a d-variate

cdf. If F t is also a cdf function for all t > 0, then F is max-id (Joe and Hu, 1996).

The class of copulas based on mixture of max-id distributions has led to interesting

classes of bivariate two-parameter copula families with both upper and lower tail

dependence (e.g., labeled as BB1, BB4, BB7 in Joe (1997)). As well, other forms

of intermediate tail dependence behavior are possible. These types of copulas will

give us more flexibility in choices of bivariate linking copulas in vines (Aas et al.,

2009; Joe et al., 2010).
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Here we generalize Theorems 4.13 and 4.16 in Joe (1997) to multivariate ver-

sions and intermediate tail dependence. In the earlier research on copulas, the

analyses determined when tail dependence (tail order κ = 1) can occur for dif-

ferent copula families; in that setting, the tail order occurred within the sufficient

condition in Theorem 4.16 of Joe (1997). Let K be a multivariate max-id copula

and ψ be a LT of a positive random variable, and consider the copulas that are of

the following form

C(u1, . . . , ud) = ψ
(
− logK

(
e−ψ

−1(u1), . . . , e−ψ
−1(ud)

))
(3.12)

Proposition 3.10 Suppose that a copula C be constructed by (3.12).

1. If ψ satisfies the condition of Proposition 3.5 with some k ∈ {1, . . . , d− 1}
and κU (KI) > 1 for any marginal copula KI , then C has upper intermedi-

ate tail dependence and κU (C) = κU (Cψ).

2. If 1 − ψ(s) ∈ RVβ(0+), κU (K) = 1 with marginal copula KI(u1|I|) ∼
u`I(u), u → 0+ such that limu→0+ `I(u) = hI ∈ (0, 1], 0 < h∗I =∑
∅6=J⊂I(−1)|J |−1hJ ≤ 1 and 0 <

∑
∅6=I⊂Id(−1)|I|−1(h∗I)

β ≤ 1, then

κU (C) = 1 with λU (C) =
∑
∅6=I⊂Id(−1)|I|−1(h∗I)

β .

Proposition 3.11 Suppose that a copula C be constructed by (3.12) with 1 ≤ α =

κL(K) ≤ d. If −ψ(s)/ψ′(s) ∈ RVβ with 0 < β ≤ 1, and 1 < α1−β < d,

then the copula C has lower intermediate tail dependence κL(C) = α1−β , and

κL(C) = ξ(α, β) · κL(Cψ) with ξ(α, β) = (α/d)1−β ∈ (0, 1]. Also, κL(K) = 1

implies that κL(C) = 1.

Remark 3.10 Note that κL(C) is less than or equal to both κL(K) and κL(Cψ).

K can be the independence copula or have intermediate lower tail dependence.

The lower tail order of the copula C is increasing in κL(K). One consequence of

Propositions 3.10 and 3.11 is that if κU (K) = d and κL(K) = d then κU (C) =

κU (Cψ) and κL(C) = κL(Cψ). Hence if K is chosen as the parametric Frank

copula family with parameter θ ≥ 0, then C(u1, ..., ud; θ) as given in (3.12) will

be increasing in concordance as θ increases. The parameter θ affects dependence

only, while the LT ψ controls the upper and lower tail orders.

60



When we take K as the independence copula or the Frank copula with positive

dependence, and the LT has tail of the form ψ(s) ∼ a1s
q exp{−a2s

r}, s → ∞,

0 ≤ r < 1, where a1, a2 are some positive constants, then we can construct a new

family of Archimedean copulas that satisfies the condition of Proposition 3.11.

In dimensions d ≥ 3, Archimedean and mixture of max-id copula families

cannot achieve the range of dependence available from vine copulas (Bedford and

Cooke, 2001; Aas et al., 2009; Joe et al., 2010). But for d = 2, the mixture of max-

id approach can lead to more candidates, with a variety of upper and lower tail

behavior, to be used as bivariate linking copulas in vines. For instance, from Table

3.1, the preceding subsections and propositions, the Joe-Ma ψ function, which

is the normalized integral of the positive stable LT, combined with the bivariate

Gaussian copula with % ≥ 0 can lead to a two-parameter family with more flexible

upper and lower tail orders. Note that, the bivariate Gaussian density is Totally

Positive of order 2 if % ≥ 0, and hence max-id (Joe, 1997, Theorem 2.6).

3.5 Discussion
We have shown how the concept of tail order is useful to quantify the strength of

dependence in the upper and lower tails, as well as the direction of reflection asym-

metry. One- and two-parameter families that are Archimedean copulas and mixture

of max-id copulas together can cover a wide range of tail orders. The interpretation

through the latent resilience variable shows why Archimedean copulas can obtain a

full range of tail orders by varying the density of the resilience at 0 and∞. In order

to get our results for Archimedean copulas, we needed Proposition 3.5 which, on

its own, contributes knowledge about LTs.

Archimedean copulas only have exchangeable dependence but their bivariate

versions can be used within vines. Vine copulas (Bedford and Cooke, 2001; Aas

et al., 2009; Joe et al., 2010) in dimension d, which include multivariate Gaussian

and t copulas as special cases, are built from d(d− 1)/2 bivariate linking copulas,

of which d − 1 are bivariate marginal copulas and the remainder are conditional

bivariate copulas with the number of conditioning variables between 1 to d − 2.

By choosing bivariate linking copulas with flexible tail orders and reflecting sym-

metry/asymmetry, we can get vine copulas to cover a wide range of tail behavior,
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as well as dependence structures. The study of tail orders of vine copulas in terms

of the tail orders of the bivariate linking copulas will be studied in future research.

For vine copulas, we are also interested in conditions that retain consistent relation

of upper and lower tail orders for all margins.

3.6 Proofs
Derivation of LT of the inverse Gamma distribution: With Y = X−1 and X ∼
Gamma(α, 1), the LT is derived as

ψ(s) = ψ(s;α) = E(e−sY ) = E(e−s/X) = [Γ(α)]−1

∫ ∞
0

e−s/xxα−1e−xdx.

From the GIG(ν, χ, ϕ) density (McNeil et al., 2005),∫ ∞
0

wν−1 exp{−1
2(χw−1 + ϕw)} dw = 2(χ/ϕ)ν/2Kν(

√
χϕ ).

Note that Kν = K−ν . Hence with χ = 2s, ϕ = 2, ν = α

ψ(s;α) = 2Γ−1(α)(2s/2)α/2Kα(
√

2s · 2 ) = 2Γ−1(α)sα/2Kα(2
√
s ).

�

Proof of Proposition 3.1: Letting r := F−1(1−u) and b% =
√

2/(1 + %), then by

Example 6.2 (i) of Hashorva (2007), as u→ 0+ and thus r →∞,

C(1− u, 1− u)

= P
[
X1 > F−1(1− u), X2 > F−1(1− u)

]
= P[X1 > r,X2 > r]

= (1 + o(1))
(1− %2)3/2

2π(1− %)2
[a(b%r)/r][1− FR(b%r)], (3.13)

where FR is the cdf of R and a(·) is an auxiliary function of R with respect to the

Gumbel Maximum Domain of Attraction in the sense of (2.10). As u → 0+, i.e.,

r → ∞, both a(b%r)/r → 0 (see Theorems 3.3.26 and 3.3.27 of Embrechts et al.

(1997)) and 1 − FR(b%r) → 0. Let G(x) := 1/[1 − FR(x)], then G : R → R+

is increasing and the condition of (2.10) is equivalent to that G ∈ Γ-varying with
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auxiliary function a(·) (de Haan, 1970, Definition 1.5.1). The inverse function

of a Γ-varying function is a Π-varying function (de Haan, 1974, Corollary 1.10).

Therefore, G−1 ∈ Π-varying. Assuming that an auxiliary function ofG−1 is a0(·),

by Lemma 1.2.9 of de Haan and Ferreira (2006), the auxiliary function a0(·) of the

Π-varying function G−1 is slowly varying at ∞. Moreover, a0(t) = a(G−1(t))

(de Haan, 1974, Corollary 1.10). So, a(x) = a0(G(x)). Then in (3.13),

a(b%r)/r = a0(G(b%r))/r = a0(1/[1− FR(b%r)])/r,

while 1− FR(b%r) is rapidly varying in r at∞ due to the fact that G is Γ-varying

and any Γ-varying function is rapidly varying (de Haan, 1970, Theorem 1.5.1).

Therefore,

1− FR(b%r) = 1− FR
(√

2/(1 + %)F−1(1− u)
)

dominates the tail behavior of (3.13) as u→ 0, and thus determines the correspond-

ing tail order of the elliptical copula. By the definition of tail order in Definition

3.1, we may also obtain the upper tail order by the following

κ = lim
u→0+

logC(1− u, 1− u)

log u
= lim

r→∞

log (1− FR(b%r))

log (1− F (r))
.

By Example 6.2 (iii) of Hashorva (2007), as r →∞,

P[X1 > r] = (1 + o(1))(2π)−1/2[a(r)/r]1/2[1− FR(r)].

Due to the similar argument as before, 1 − FR(r) dominates the tail behavior of

P[X1 > r], as r →∞. Therefore, we may write

κ = lim
r→∞

log (1− FR(b%r))

log (1− FR(r))
,

which completes the proof. �

Proof of Proposition 3.3: Assuming C(u1d) ∼ uκL(C)`(u), u→ 0+, with `(u) ∈
RV0(0+), for any copula C and 0 ≤ u ≤ 1, C(u1d) ≤ u. Therefore, κL(C) ≥ 1.
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To prove (1), by the condition of PLOD, we have C(u1d) ≥ ud for any 0 ≤ u ≤ 1

and thus, κL(C) ≤ d.

To prove (2), choosing S1 ⊂ S2 with |S2| − |S1| = j ∈ N+. Let us consider

the case where j = 1 first, for some l ∈ {1, . . . , |S2|} and any 0 ≤ u ≤ 1,

CS2(u1|S2|) = P[Ul ≤ u|U1 ≤ u, . . . , Ul−1 ≤ u, Ul+1 ≤ u, . . . , U|S2| ≤ u]

× P[U1 ≤ u, . . . , Ul−1 ≤ u, Ul+1 ≤ u, . . . , U|S2| ≤ u]

≥ P[Ul ≤ u]× P[U1 ≤ u, . . . , Ul−1 ≤ u, Ul+1 ≤ u, . . . , U|S2| ≤ u]

= uCS1(u1|S1|).

The inequality is due to the MLTD of C. Clearly, κL(CS2)− κL(CS1) ≤ 1. Since

P[Ul ≤ u|U1 ≤ u, . . . , Ul−1 ≤ u, Ul+1 ≤ u, . . . , U|S2| ≤ u] ≤ 1, CS2(u1|S2|) ≤
CS1(u1|S1|) and thus, κL(CS2) − κL(CS1) ≥ 0. An iterated argument will prove

the case for a general j: 0 ≤ κL(CS2) − κL(CS1) ≤ |S2| − |S1|. If κL(C) = 1,

then for any S ⊂ Id with |S| ≥ 2, we have 1 ≤ κL(CS) ≤ κL(C) = 1, which

completes the proof. For κL(C) = 1, note that the MLTD condition is not needed.

�

Proof of Lemma 3.4: Let Z be an exponential random variable, independent of Y ,

with mean 1. Choose any fixed m with 0 < m < 1. Then E(Z−m) = Γ(1 −m),

and if we define Wm = (Y/Z)m, then for any w > 0,

P [Wm ≥ w] = P[Z ≤ Y w−1/m]

=

∫ ∞
0

(
1− exp{−yw−1/m}

)
FY (dy) = 1− ψ(w−1/m),

where FY is the cdf of Y . Therefore, E(Y m) < ∞ implies E(Wm) < ∞ and

limw→∞w[1− ψ(w−1/m)] = 0, i.e.,

lim
s→0+

[1− ψ(s)]/sm = 0. (3.14)

If 1 − ψ(s) is regularly varying at 0+, then we can write 1 − ψ(s) = sα`(s) with

α 6= 0, where `(s) ∈ RV0(0+). Then, (3.14) implies that lims→0+ s
α−m`(s) = 0.

Let ε > 0 be arbitrarily small. If m = MY − ε, then we have E(YMY −ε) <∞ and
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thus lims→0+ s
α−MY +ε`(s) = 0. Therefore, α ≥MY − ε.

Also by a result on page 49 of Chung (1974), (3.14) implies that for any

0 < δ < 1, E
(
Y m(1−δ)) < ∞. If we assume that there exists an ε > 0 with

m = MY + ε such that, lims→0+ s
α−MY −ε`(s) = 0, then for any small δ > 0,

E
(
Y (MY +ε)(1−δ)) < ∞. Then we may choose some δε < ε/(ε + MY ), and get

E
(
Y (MY +ε)(1−δε)

)
< ∞ with (MY + ε)(1 − δε) > MY , which gives rise to a

contradiction. Thus, for any ε > 0, we must have lims→0+ s
α−MY −ε`(s) 6= 0, and

hence, α−MY − ε ≤ 0. So,

MY − ε ≤ α ≤MY + ε,

which completes the proof. �

Proof of Proposition 3.5: This proof extends that in Lemma 3.4, which corresponds

to the case where k = 0. For a positive integer j, let Zj ∼ Gamma(j + 1, 1) so

that E(Z−mj ) = Γ(j + 1−m)/Γ(j + 1) if 0 < m < j + 1. Let Wm,j = (Y/Zj)
m

where Y is independent of Zj . Then for 0 < m < j + 1, E(Wm,j) < ∞ if and

only if E(Y m) < ∞. Next, similar to the proof of Lemma 3.4, if Y has LT ψ and

moments up to order k, for j ∈ {0, 1, . . . , k} and 0 < m < j + 1,

Pr
[
Wm,j = (Y/Zj)

m ≥ w
]

= Pr(Zj ≤ Y w−1/m) =

∫ ∞
0

FZj (yw
−1/m) dFY (y)

=

∫ ∞
0

[
1−

j∑
i=0

yiw−i/m

i!
exp{−yw−1/m}

]
dFY (y)

= 1−
j∑
i=0

w−i/m

i!
(−1)iψ(i)(w−1/m).

Suppose 0 < m < min{j + 1,MY }. Then E(Y m) <∞ implies that

w
[
1−

j∑
i=0

w−i/m

i!
(−1)iψ(i)(w−1/m)

]
→ 0, w →∞,
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i.e.,

s−m
[
1−

j∑
i=0

si

i!
(−1)iψ(i)(s)

]
→ 0, s→ 0+. (3.15)

Assuming ψ has derivatives at zero up to kth order, then for positive integer j ≤ k,

the main term in (3.15) is

1−
j∑
i=0

si

i!
(−1)iψ(i)(s)

= 1−
j−1∑
i=0

si

i!
(−1)i

[ j−i∑
l=0

slψ(i+l)(0)/l! + o(sj−i)
]
− sj

j!
(−1)jψ(j)(s)

= 1−
j−1∑
i=0

si

i!
(−1)i

j∑
l=i

sl−iψ(l)(0)/(l − i)!− sj

j!
(−1)jψ(j)(s) + o(sj)

= 1−
j∑
l=0

ψ(l)(0)
sl

l!

{l∧(j−1)∑
i=0

(−1)i
l!

i!(l − i)!

}
− sj

j!
(−1)jψ(j)(s) + o(sj)

= 1− ψ(0)− ψ(j)(0)
sj

j!

[
−(−1)j

]
− sj

j!
(−1)jψ(j)(s) + o(sj)

= (−1)j−1 s
j

j!

[
ψ(j)(s)− ψ(j)(0)

]
+ o(sj). (3.16)

Hence (3.15) implies that

sj−m
[
ψ(j)(s)− ψ(j)(0)

]
→ 0, s→ 0+,

if j is a non-negative integer less than MY and m < MY . In particular, if k is a

non-negative integer such that k < m < MY < k + 1, then

sk−m
[
ψ(k)(s)− ψ(k)(0)

]
→ 0, s→ 0+.

If
∣∣ψ(k)(0) − ψ(k)(s)

∣∣ is regularly varying at 0+, we write
∣∣ψ(k)(0) − ψ(k)(s)

∣∣ =

sα`(s). For any ε > 0, a similar argument in the proof of Lemma 3.4 will prove

that α ≥ MY − k − ε. Now we prove the other direction. We assume that there
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exists an ε > 0 with m = MY + ε such that,

lim
s→0+

sα+k−MY −ε`(s) = 0, (3.17)

that is, sk−MY −ε
[
ψ(k)(s) − ψ(k)(0)

]
→ 0 as s → 0. Since ψ is completely

monotonic, ψ(k)(0) − ψ(k)(s) is either negative or positive as s → 0+. That is,

(−1)k[ψ(k)(0) − ψ(k)(s)] > 0. The following argument is for an even k, and

similar when k is odd. Then by the Karamata’s theorem (Resnick, 2007), regular

variation of
∣∣ψ(k)(0)− ψ(k)(s)

∣∣ implies that

− ψ(k−1)(x) + ψ(k−1)(0) + xψ(k)(0)

=

∫ x

0

[
ψ(k)(0)− ψ(k)(s)

]
ds ∼ (α+ 1)−1xα+1`(x), x→ 0+. (3.18)

Since
∫ x

0 [ψ(k)(0)− ψ(k)(s)]ds is again regularly varying, we can take the integra-

tion on both sides repeatedly and obtain for j = 0, 1, . . . , k,

−ψ(k−j)(x) +

j∑
i=0

xj−i

(j − i)!
ψ(k−i)(0) ∼

(
α

j∏
i=0

1

α+ i

)
xα+j`(x), x→ 0+.

(3.19)

Multiplying both sides of (3.19) by xk−j

(k−j)!(−1)k−j leads to

LHSj =: − xk−j

(k − j)!
(−1)k−jψ(k−j)(x) +

j∑
i=0

(−1)k−j

(k − j)!(j − i)!
xk−iψ(k−i)(0)

∼ (−1)k−j

(k − j)!

(
α

j∏
i=0

1

α+ i

)
xk+α`(x), x→ 0+. (3.20)

Then we add the left-hand side of (3.20) for j = 0, . . . , k, and after rearranging the

summand, we have

k∑
j=0

LHSj = −
k∑
i=0

xi

i!
(−1)iψ(i)(x) + 1 +

k−1∑
i=0

k∑
j=i

(−1)k−j

(k − j)!(j − i)!
xk−iψ(k−i)(0).

(3.21)
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By the binomial theorem, for each given i ∈ (0, . . . , k−1),
∑k

j=i
(−1)k−j

(k−j)!(j−i)! ≡ 0.

Then, from (3.20) and (3.21) we can conclude that

k∑
j=0

LHSj = 1−
k∑
i=0

xi

i!
(−1)iψ(i)(x) = O

(
xk+α`(x)

)
.

Therefore, multiplying both sides of the above by s−MY −ε and using (3.17),

s−MY −ε
[
1−

k∑
i=0

si

i!
(−1)iψ(i)(s)

]
→ 0, s→ 0+.

Then for any small δ > 0, E
(
Y (MY +ε)(1−δ)) < ∞. Then we may choose some

δε < ε/(ε+MY ), and get E
(
Y (MY +ε)(1−δε)

)
<∞ with (MY + ε)(1− δε) > MY ,

which gives rise to a contradiction to the fact that MY is the maximal moment.

Thus, for any ε > 0, we must have lims→0+ s
α+k−MY −ε`(s) 6= 0, and hence,

α ≤MY − k + ε. Thus, α = MY − k.

To prove the last statement of the proposition, since

1−φ(s) = 1−ψ(k)(s)/ψ(k)(0) =
[
ψ(k)(0)−ψ(k)(s)

]
/ψ(k)(0) ∈ RVMY −k(0

+),

by Remark 3.4, we have

φ(s) = ψ(k)(s)/ψ(k)(0) = 1− h′k+1s
MY −k + o(sMY −k).

Then, by integration, we will have

ψ(s) = 1 + ψ(1)(0)s+ 1
2ψ

(2)(0)s2 + · · ·+ (−1)k+1hk+1s
k+MY −k + o(sk+MY −k)

= 1− h1s+ h2s
2 − · · ·+ (−1)k+1hk+1s

MY + o(sMY ) s→ 0+,

where 0 < hi <∞. The integration is due to Lemma 31 of Breitung (1994). �

Proof of Proposition 3.6: We provide the proof only for the bivariate case. For

d ≥ 3, the intermediate upper tail dependence can be studied analogously, and the

(omitted) proof is similar but with more complicated notation.

Let ψ′(0) = m with −∞ < m < 0, then by Proposition 3.5, as s → 0+,

68



letting M = Mψ − 1,

g(s) = ψ′(s)−m = asM + o(sM ), (0 < a <∞; 0 < M < 1).

Since g′(s) = ψ′′(s) is increasing as s → 0+, if we write g(s) ∼ asM`(s), s →
0+, where `(s) ∈ RV0(0+) and `(s)→ 1 as s→ 0+. Note that

g(s) = ψ′(s)−m =

∫ s

0
ψ′′(x)dx =

∫ s

0
g′(x)dx.

By the Monotone Density Theorem (Bingham et al., 1987, Theorem 1.7.2),

ψ′′(s) = g′(s) ∼ aMsM−1`(s), s→ 0+. (3.22)

Thus, lims→0+ ψ
′′(2s)/ψ′′(s) = 2M−1. Observe that for 0 < ζ < 1,

lim
u→1−

Cψ(u, u)

(1− u)1+ζ

= lim
u→1−

1− 2u+ ψ(2ψ−1(u))

(1− u)1+ζ
= lim

u→1−

−2 + 2ψ′(2ψ−1(u))/ψ′(ψ−1(u))

−(1 + ζ)(1− u)ζ

= lim
u→1−

4ψ′′(2ψ−1(u))/[ψ′(ψ−1(u))]2 − 2ψ′′(ψ−1(u))ψ′(2ψ−1(u))/[ψ′(ψ−1(u))]3

ζ(1 + ζ)(1− u)ζ−1

= lim
s→0+

4ψ′′(2s)/[ψ′(s)]2 − 2ψ′′(s)ψ′(2s)/[ψ′(s)]3

ζ(1 + ζ)(1− ψ(s))ζ−1
(letting s = ψ−1(u))

= lim
s→0+

4m−2ψ′′(2s)− 2m−2ψ′′(s)

ζ(1 + ζ)(1− ψ(s))ζ−1
= lim

s→0+

4m−2 ψ
′′(2s)
ψ′′(s) − 2m−2

ζ(1 + ζ) (1−ψ(s))ζ−1

ψ′′(s)

= lim
s→0+

2m−2(2M − 1)

ζ(1 + ζ) (1−ψ(s))ζ−1

ψ′′(s)

.

By Proposition 3.5, there is a constant h > 0 such that

1− ψ(s) = −ms− hsM+1 + o(sM+1), s→ 0+.
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Then, as s→ 0+,

[1− ψ(s)]ζ−1 ∼ (−m)ζ−1sζ−1.

In addition, it has been shown thatψ′′(s) ∼ aMsM−1`(s) as s→ 0+ and 2m−2(2M−
1) is finite. Hence, the intermediate tail dependence exists if and only if ζ = M

and κU = 1 +M = Mψ.

The proof for the case of k = 0 is similar, by applying Proposition 3.5. �

Lemma 3.12 Let d ≥ 2 be a positive integer and let j be a positive integer that is

less than d. Let

Sdj(w1, . . . , wd) =
∑
∅6=I⊂Id

(−1)|I|−1
(∑
i∈I

wi

)j
. (3.23)

Then Sdj ≡ 0.

Proof of Lemma 3.12: When j = 1, by the binomial theorem, for any n ∈ N+,∑n
i=0(−1)i

(
n
i

)
= 0, so that Sd1 ≡ 0 for d ≥ 2.

For 1 < j < d, Sdj is a symmetric homogeneous function of order j, and its

first order partial derivatives are homogeneous of order j − 1. By recursion with

Euler’s formula for homogeneous functions to the jth order partial derivatives

Sdj(w) =
1

j

d∑
i=1

∂Sdj(w)

∂wi
wi =

1

j(j − 1)

d∑
i1=1

d∑
i2=1

∂2Sdj(w)

∂wi1∂wi2
wi1wi2

=
1

j!

d∑
i1=1

· · ·
d∑

ij=1

∂jSdj(w)

∂wi1 · · · ∂wij
wi1 · · ·wij . (3.24)

We will show that all the jth order partial derivatives are 0. Because of symmetry,

we consider only terms for whichwi1 . . . wij = wn1
1 · · ·w

np
p where 1 ≤ p ≤ j < d,
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n1 > 0, . . . , np > 0 and n1 + · · ·+ np = j. Then

∂jSdj(w)

∂n1w1 · · · ∂npwp
= j!(−1)p−1 +

∑
∅6=J⊂{p+1,...,d}

(−1)p+|J |−1j!

= j!(−1)p−1
(

1 +
∑

∅6=J⊂{p+1,...,d}

(−1)|J |
)

= j!(−1)p−1
d−p∑
i=0

(−1)i
(
d− p
i

)
= 0,

which completes the proof. �

Note that (3.23) is not zero for j = d because (3.24) would include a non-zero

term such as ∂dSdj/∂w1 · · · ∂wd = (−1)d−1d!. In fact, there are d! non-zero terms

in (3.24) when (i1, . . . , id) is a permutation of (1, . . . , d), and Sdd(w1, . . . , wd) =

(−1)d−1d!
∏d
i=1wi.

Proof of Proposition 3.7: Consider

lim
u→0+

P
[⋂

i∈Id{Ui ≥ 1− uwi}
]

uk+M

=
∑
∅6=I⊂Id

(−1)|I|−1 lim
u→0+

P
[⋃

i∈I{Ui ≥ 1− uwi}
]

uk+M
.

By Proposition 3.5, since the function w 7→ 1 − ψ(w) ∈ RV1(0+), then we have

71



w 7→ ψ−1(1− w) ∈ RV1(0+). Thus,

lim
u→0+

P
[⋃

i∈I{Ui ≥ 1− uwi}
]

uk+M

= lim
u→0+

1− ψ[ψ−1(1− uw1) + · · ·+ ψ−1(1− uwd)]
uk+M

= lim
u→0+

1− ψ[ψ−1(1− uw1) + · · ·+ ψ−1(1− uwd)]
{1− ψ[ψ−1(1− u)]}k+M

= lim
u→0+

1− ψ
[
ψ−1(1− u)

(
ψ−1(1−uw1)
ψ−1(1−u)

+ · · ·+ ψ−1(1−uwd)
ψ−1(1−u)

)]
{1− ψ[ψ−1(1− u)]}k+M

= lim
u→0+

1− ψ
[
ψ−1(1− u)

(∑
i∈I wi

)]
{1− ψ[ψ−1(1− u)]}k+M

.

Let s = ψ−1(1− u) and

Q(w) =
∑
∅6=I⊂Id

(−1)|I|−1 lim
s→0+

1− ψ
[
s
(∑

i∈I wi
)]

{1− ψ(s)}k+M
. (3.25)

To obtain the limit in (3.25), we may use the l’Hôpital’s rule. For the first k deriva-

tives of the numerator, for fixed w and ψ(j)(0) finite for j = 1, . . . , k,

lim
s→0

∑
∅6=I⊂Id

(−1)|I|−1ψ(j)
[
s
(∑
i∈I

wi

)](∑
i∈I

wi

)j
= 0, j ∈ {1, . . . , k},

because by Lemma 3.12,

∑
∅6=I⊂Id

(−1)|I|−1
(∑
i∈I

wi

)j
= 0, j ∈ {1, . . . , k}, 1 ≤ k < d.

Then by the l’Hôpital’s rule (k + 1 applications)

Q(w) =
∑
∅6=I⊂Id

(−1)|I|−1×

× lim
s→0+

−ψ(k+1)[s
(∑

i∈I wi
)
]
(∑

i∈I wi
)k+1

/ψ(k+1)(s)

[−ψ(1)(s)]k+1{
∏k
j=0(k +M − j)} (1− ψ(s))M−1/ψ(k+1)(s)

.
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Since g(s) = |ψ(k)(s) − ψ(k)(0)| = hsM + o(sM ) with h > 0, we can write

g(s) ∼ sM`(s), s→ 0+ with a slowly varying function `(s)→ h as s→ 0+. Note

that, g(s) =
∫ s

0 |ψ
(k+1)(x)|dx =

∫ s
0 g
′(x)dx, and g′(s) is monotonic as s → 0+,

then by the Monotone density theorem, |ψ(k+1)(s)| = g′(s) ∼ MsM−1`(s) and

ψ(k+1)(s) ∼ (−1)k+1MsM−1`(s). Therefore,

Q(w) =
Mh

[−ψ(1)(0)]k+M
∏k
j=0(k +M − j)

∑
∅6=I⊂Id

(−1)|I|+k+1
(∑
i∈I

wi

)k+M
.

Then, the upper tail order function is

b∗(w) =
Q(w)

Q(1d)
=

∑
∅6=I⊂Id(−1)|I|

(∑
i∈I wi

)k+M∑
∅6=I⊂Id(−1)|I|

∣∣I∣∣k+M
.

Note that this is a homogeneous function in w of order κU = Mψ = k +M . This

completes the proof . �

Proof of Proposition 3.8: If r = 0, then ψ−1(t) ∼ (t/a1)1/q as t → 0+ (where

q < 0). If r > 0, then for large s and small t, in

logψ(s) = log t ∼ log a1 + q log s− a2s
r, s→∞,

the third term dominates, so that

ψ−1(t) ∼ [(− log t)/a2]1/r, t→ 0+.

Next, consider Cψ(u1d) = ψ(dψ−1(u)).

For r = 0, one gets ψ(dψ−1(u)) ∼ ψ(da
−1/q
1 u1/q) ∼ dqu, as u → 0+, with

dq ∈ (0, 1), so that κL = 1.

For 0 < r < 1, suppose

∆L,κ = lim
u→0+

ψ
(
dψ−1(u)

)
uκ(− log u)ζ

> 0.
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Then by l’Hôpital’s rule,

∆L,κ = lim
u→0+

dψ′
(
dψ−1(u)

)
/ψ′
(
ψ−1(u)

)
κuκ−1(− log u)ζ

= lim
s→∞

dψ′(ds)/ψ′(s)

κ[ψ(s)]κ−1[− logψ(s)]ζ
.

(3.26)

By condition (3.10), the dominating term of ψ′(s) or T ′(s) is

ψ′(s) ∼ −a1a2rs
q+r−1 exp{−a2s

r}, s→∞.

Consider the limit of the right-hand side of (3.26) without the factor d/κ:

ψ′(ds)/ψ′(s) ∼ dq+r−1 exp{−a2(dr − 1)sr}, s→∞;

[ψ(s)]κ−1[− logψ(s)]ζ ∼ [a1s
q]κ−1 exp{−a2(κ− 1)sr} · [a2s

r − q log s− log a1]ζ

∼ aκ−1
1 aζ2s

q(κ−1)+rζ exp{−a2(κ− 1)sr}, s→∞.

Hence κ = dr, q(κ− 1) + rζ = 0 or ζ = (q/r)(1− κ) = (q/r)(1− dr) and

∆L,κ =
ddq+r−1

κaκ−1
1 aζ2

=
dq

aκ−1
1 aζ2

.

So `(u) = ∆L,κ · (− log u)ζ = dqa1−κ
1 a−ζ2 (− log u)ζ .

Under the condition in (3.10), it can be verified that −ψ(s)/ψ′(s) ∈ RV1−r,

which satisfies the condition in Theorem 3.3 of Charpentier and Segers (2009). So

the tail order function is obtained. �

Proof of Proposition 3.9: When 0 < ν < 1,

Kν(s) ∼ 1
2

(
Γ(ν)

(
s/2
)−ν

+ Γ(−ν)
(
s/2
)ν)

. (3.27)

We refer to the website of Wolfram Research Bes for asymptotic behavior of mod-

ified Bessel function of the second kind. For 0 < α < 1,

ψ(s;α) ∼ 1 +
Γ(−α)

Γ(α)
sα, s→ 0+,
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and 1− ψ(s;α) ∼ −sαΓ(−α)/Γ(α) ∈ RVα(0+). This is consistent with Lemma

3.4.

Now, let us consider the case where α is non-integer with α > 1. For an integer

j with 0 < j < α and X ′ ∼ Gamma(α− j, 1),

ψ(j)(s;α) = [Γ(α)]−1(−1)j
∫ ∞

0
e−s/xxα−j−1e−x dx = (−1)j

Γ(α− j)
Γ(α)

E(e−s/X
′
)

= (−1)j2Γ−1(α)s(α−j)/2Kα−j(2
√
s ).

So, φ(s;α, j) = ψ(j)(s;α)/ψ(j)(0;α) is the LT of Z = 1/X ′ ∼ IΓ(α− j, 1) with

MZ = α− j. When ν is non-integer with |ν| > 1, the behavior near 0 of Kν is

Kν(x) ∼ x−|ν|2|ν|−1Γ(|ν|)
[
1 +

x2

4(1− |ν|)

]
.

So, for integer j < α− 1

(−1)jψ(j)(s;α)

= 2Γ−1(α)s(α−j)/2Kα−j(2
√
s ) ∼ Γ(α− j)

Γ(α)

(
1 +

s

1− α+ j

)
, s→ 0;

for k < α < k + 1, where k ∈ N+, then by (3.27)

(−1)kψ(k)(s;α)

= 2Γ−1(α)s(α−k)/2Kα−k(2
√
s ) ∼ Γ(α− k)

Γ(α)
+

Γ(−α+ k)

Γ(α)
sα−k, s→ 0.

Therefore, |ψ(k)(s)−ψ(k)(0)| ∈ RVα−k(0
+), which is consistent with Proposition

3.5. Then, by Proposition 3.5, there is a positive constant hk+1 such that

ψ(s) =1 + ψ(1)(0)s+ 1
2ψ

(2)(0)s2 + · · ·+ (−1)kψ(k)(0)sk/k!+

+ (−1)k+1hk+1s
α + o(sα).

The upper tail order of the d-variate Archimedean copula Cψ follows from Propo-

sitions 3.6 and 3.7. Therefore, if α ∈ (0,+∞) is not an integer, the upper tail order

is max{1,min{α, d}}.
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Next we investigate the lower tail. From Abramowitz and Stegun (1964), p.

378: for large z,

Kν(z) ∼
√

π

2z
e−z
{

1 +
4ν2 − 1

8z
+O(z−2)

}
.

Hence,

ψ(s;α) = 2Γ−1(α)sα/2Kα(2
√
s )

∼ 2Γ−1(α)sα/2
√

π

4s1/2
e−2s1/2 = π1/2Γ−1(α)sα/2−1/4e−2s1/2 , s→∞.

(3.28)

Also, as s→∞,

ψ(1)(s;α) = −2Γ−1(α)s(α−1)/2Kα−1(2
√
s ) ∼ −π1/2Γ−1(α)sα/2−3/4e−2s1/2 .

For the d-dimensional Archimedean copula, then by Proposition 3.8 with a1 =

π1/2Γ−1(α), q = α/2− 1/4, a2 = 2 and r = 1/2 in (3.10), as u→ 0,

ψ
(
dψ−1(u)

)
∼ dα/2−1/4

aκ−1
1 2ζ

(− log u)ζu
√
d ,

a1 = π1/2Γ−1(α), ζ = (α− 1/2)(1−
√
d ).

Thus κL(Cψ) =
√
d. �

Proof of Proposition 3.10: Suppose that K is a multivariate max-id copula such

that, for any index set ∅ 6= I ⊂ Id, KI((1 − s)1|I|) ∼ saI `I(s), s → 0+, with

1 < aI and `I(s) ∈ RV0(0+). Note that

K((1− s)1d) = 1 +
∑
∅6=I⊂Id

(−1)|I|KI

(
(1− s)1|I|

)
, (3.29)

whereKI is the survival function of the I-margin copulaKI and letK{i}(1−s) =

s for any i ∈ Id. Letting s = 1− exp{−ψ−1(u)}, as u→ 1−, i.e., s→ 0+, since

aI > 1 for any ∅ 6= I ⊂ Id, 1 − ds dominates the right-hand side of (3.29), and
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thus,

− logK
(
e−ψ

−1(u)1d

)
= − logK((1− s)1d) ∼ − log (1− ds)

∼ ds = d(1− exp{−ψ−1(u)}) ∼ dψ−1(u).

Therefore,

C(u1d) ∼ ψ
(
dψ−1(u)

)
= Cψ(u1d), u→ 1−.

By Proposition 3.6, we know that C has intermediate upper tail dependence, and

moreover, κU (C) = κU (Cψ). This proves (a).

To prove (b), note from Proposition 3.3 that κU (KI) = 1 for any marginal

copula KI . Assuming `I(s)→ hI ∈ (0, 1] as s→ 0+ and h{i} = 1 for all i,

− logKI

(
e−ψ

−1(u)1|I|

)
= − logKI((1− s)1|I|) ∼ − log (1− h∗Is) ∼ h∗Iψ−1(u),

where h∗I =
∑
∅6=J⊂I(−1)|J |−1hJ . By the construction of (3.12), for any I-margin

copula of C,

CI(u1|I|) = ψ
(
− logKI(e

−ψ−1(u)1|I|)
)
∼ ψ

(
h∗Iψ

−1(u)
)
.

Thus, as s→ 0+, i.e., u→ 1−,

C(u1d) = 1 +
∑
∅6=I⊂Id

(−1)|I|CI(u1|I|)

∼ 1 +
∑
∅6=I⊂Id

(−1)|I|ψ
(
h∗Iψ

−1(u)
)

=
∑
∅6=I⊂Id

(−1)|I|−1
(

1− ψ
[
h∗Iψ

−1(u)
])
.

If 1− ψ(x) ∈ RVβ(0+), then clearly,

C((1− u)1d) ∼ u
∑
∅6=I⊂Id

(−1)|I|−1(h∗I)
β, u→ 0+.

So, κU (C) = 1 and λU (C) =
∑
∅6=I⊂Id(−1)|I|−1(h∗I)

β . �
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Proof of Proposition 3.11: Suppose that a d-variate max-id copula K(s1d) ∼
sα`(s) as s→ 0+ and let s = exp{−ψ−1(u)}. As u→ 0+, thus s→ 0+,

− logK
(
e−ψ

−1(u)1d

)
= − logK(s1d) ∼ − log(sα`(s)) ∼ −α log s = αψ−1(u).

Therefore,

C(u1d) = ψ
(
− logK

(
e−ψ

−1(u)1d
))
∼ ψ

(
αψ−1(u)

)
, u→ 0+.

With some modification of the proof of Theorem 3.3 of Charpentier and Segers

(2009), we can prove the rest. For purpose of notational convenience, we include

the modification in the following. Letting Λ = (α + dν)/(1 + ν) and ω(s) =

−ψ(s)/ψ′(s), then we know that

lim
s→0+

ψ−1(sx)− ψ−1(s)

ω(ψ−1(s))
= − log(x),

and if y(t)→ y ∈ R as t→∞, then

lim
t→∞

ψ(t+ y(t)ω(t))

ψ(t)
= exp(−y).

For any t > 0, write ψ(αψ−1(ut)) = ψ
[
αψ−1(u) + y(u, t)ω(αψ−1(u))

]
, where

y(u, t) =

(
α[ψ−1(ut)− ψ−1(u)]

ω(ψ−1(u))

)
ω(ψ−1(u))

ω(αψ−1(u))
.

As u→ 0+, y(u, t)→ −α log(t)α−β = −α1−β log(t). Therefore,

lim
u→0+

ψ−1(αψ−1(ut))

ψ−1(αψ−1(u))
= exp(α1−β log(t)) = tα

1−β
,

and thus C(u1d) ∈ RVα1−β (0+). We have also known from Theorem 3.3 of Char-

pentier and Segers (2009) that κL(Cψ) = d1−β . This completes the proof. �
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Chapter 4

Tail comonotonicity

4.1 Introduction
Suppose we have bivariate loss data and hope to estimate some high-risk scenarios,

say by VaR or CTE. A widely used method is to fit some parametric models based

on the bivariate Student t or other parametric copula families. Then risk measures

or tail dependence can be derived from these fitted models. Due to model uncer-

tainty, all of these methods are not conservative from the viewpoint of an actuary.

The middle part might influence our estimation more than the important tail part

does. These traditional methods are too sensitive to the middle part which contains

most of the data (Nikoloulopoulos et al., 2012).

Given that we do not have enough information for the joint tail of losses, we

conservatively assume that it is upper tail comonotonic (as defined in Section 4.2),

and the conservativity can be justified in Chapter 5. In this way, we actually give up

estimating the “first order tail parameter” (i.e., the usual tail dependence parameter

λ) by assuming a conservative one (i.e., λ = 1), and let the likelihood of data

contribute to the estimation of the “second order tail parameter”. Since the first

order parameter is only for an asymptotic property, the conservative assumption on

it would not put too much constraint on the model. This approach will give us a

more robust method of measuring risks.

In the literature on actuarial science and quantitative finance, many efforts have

been done to seek finer upper bounds for dependence structures. The concepts of
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comonotonicity, conditional comonotonicity, and most recently, the upper comono-

tonicity have been studied to provide theoretically tractable bounds. However,

these conditions are either too strong or not tailored for the tail, and could lead to an

over-conservative risk measure. Moreover, those dependence structures lack flex-

ible distribution families that can be used to model real data. We refer to Dhaene

et al. (2002a,b); Cheung (2007, 2009) for the reference of these concepts. Tail

comonotonicity, on the other hand, needs a weaker condition and requires that the

degree of positive dependence approaches its maximum only when all the marginal

losses go to infinity. The degree of dependence at the sub-extremal level can still

be estimated from the data. This approach should better balance the requirements

of safety and accuracy for risk management.

Tail comonotonicity is also referred to as asymptotic full dependence or a de-

pendence structure where the tail dependence parameter satisfies λ = 1. Although

such a dependence structure is not new, we find that it has interesting properties,

such as asymptotic additivity of VaR and CTE, that are analogous to the usual

comonotonicity. Moreover, some parametric families illustrate its suitability for

modeling loss data that may appear to have tail dependence. Among many copula

families, Archimedean copulas and copulas constructed from a scale mixture of a

non-negative random vector can be used to provide a tail comonotonic dependence

structure.

This chapter is organized as follows. In Section 4.2, the concept of tail comono-

tonicity, its properties and some parametric examples will be studied. Methods of

constructing copulas with tail comonotonicity or the strongest tail dependence are

given in Section 4.3. Asymptotic additivity of VaR and CTE under the assumption

of tail comonotonicity is shown in Section 4.4. Finally, in Section 4.5, we conclude

the chapter and propose some directions for future research.

4.2 Definitions of tail comonotonicity and properties
Let X = (X1, . . . , Xd)

T be a non-negative random vector, representing amounts

of d losses, and the univariate marginal cdf’s are all continuous and denoted as

F1, . . . , Fd. The Fréchet space containing all the random vectors with these uni-

variate margins is denoted as R(F1, . . . , Fd). For risk management, the joint tail
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probability P[X1 > x1, . . . , Xd > xd] is relevant, especially when x1, . . . , xd are

large values. Cheung (2009) studied an upper comonotonicity structure: roughly

speaking, beyond a finite threshold a∗, the dependence structure becomes comono-

tonicity, while keeping the dependence structure below the threshold flexible; this

means that the distribution is not absolutely continuous. Using the Florida flooding

dataset mentioned in Figure 1.2, the idea of comonotonicity and upper comono-

tonicity can be illustrated by Figure 4.1.

Figure 4.1: Florida flood data - Comonotonicity vs Upper comonotonicity
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Florida flood aggregate loss (1977~2006)

Normal score of aggregate loss of 30 counties
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Under this dependence structure, if x ≥ a∗, then clearly

P[X1 > x1, . . . , Xd > xd] = min{F 1(x1), . . . , F d(xd)}

= 1−max{F1(x1), . . . , Fd(xd)},

which is the upper bound for such a tail probability of any X ∈ R(F1, . . . , Fd).

The upper bound coincides with the tail probability for the usual comonotonicity.

Letting Ĉ be the survival copula of X,

P[X1 > x1, . . . , Xd > xd] = Ĉ(F 1(x1), . . . , F d(xd)).

A proper threshold a∗ might not exist in real applications. However, note that

our aim of proposing a conservative dependence structure will be met if the tail
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probability can be well approximated by the upper bound when x is sufficiently

large; that is,

Ĉ(F 1(x1), . . . , F d(xd)) ≈ min{F 1(x1), . . . , F d(xd)}, xi’s are sufficiently large.

When x is sufficiently large, F i(xi)’s become sufficiently close to 0. But how

xi’s converge to the right end points of their supports will affect the joint tail prob-

ability. Considering that the usual comonotonicity is a copula property and does

not depend on the margins, here we want to define a dependence concept which

will not rely on margins as well. Therefore, letting ui := F i(xi), it suffices to have

that

Ĉ(u1, . . . , ud) ≈ min{u1, . . . , ud}, ui’s are sufficiently small.

To be convenient in real applications, this condition should also be satisfied with

copulas Ĉ that are absolutely continuous. Of course, how ui’s approach 0 will

affect the above approximation. However, as long as the rates of convergence of

ui’s to 0 are comparable (in the sense that ui = uwi for any given 0 < wi < +∞),

the above approximation should be good. Then Ĉ would be what we want if it

satisfies

Ĉ(uw1, . . . , uwd) ∼ min{uw1, . . . , uwd}, u→ 0+, wi, . . . , wd ∈ [0,+∞),

i.e.,

lim
u→0+

Ĉ(uw1, . . . , uwd)

u
= min{w1, . . . , wd}, wi, . . . , wd ∈ [0,+∞), (4.1)

where the trivial case of wi = 0 for some i is also included.

Definition 4.1 A random vector X is said to be upper tail comonotonic if X has

a copula C and its survival copula Ĉ satisfies (4.1); the copula C is said to be an

upper tail comonotonic copula. X is said to be lower tail comonotonic if X has

a copula C that satisfies limu→0+ C(uw1, . . . , uwd)/u = min{w1, . . . , wd}, wi ∈
[0,+∞); the copula C is said to be a lower tail comonotonic copula.
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Remark 4.1 Based on the above definition, tail comonotonicity is a concept about

copula and does not rely on the marginal distributions as long as the conditions

hold. In Definition 4.1, the random vector X is not necessarily continuous and the

right end points of each univariate margin can be finite or infinite.

Remark 4.2 In the framework of multivariate regular variation (MRV), the con-

cept of upper tail comonotonicity is represented by the limit Radon measure (Resnick

2007 Resnick (2007))

ν([0,x]c) = (min{x1, . . . , xd})−α .

So asymptotic full dependence for MRV is a case of upper tail comonotonicity with

the univariate margins being power laws.

Recall from Joe et al. (2010) that, when C is a d-variate copula with the sur-

vival function C, then lower tail dependence means that there exists a non-zero

homogeneous function b of order 1 such that

lim
u→0+

C(uw1, . . . , uwd)/u = b(w1, . . . , wd), wi ∈ [0,+∞), (4.2)

and upper tail dependence means that there exists a non-zero homogeneous func-

tion b∗ of order 1 such that

lim
u→0+

C(1− uw1, . . . , 1− uwd)/u = b∗(w1, . . . , wd), wi ∈ [0,+∞). (4.3)

So, tail comonotonicity simply means that the lower and/or upper tail dependence

functions are min{w1, . . . , wd}. Also, note that for any tail dependence function

b(w), we must have b(w) ≤ min(w1, . . . , wd).

Some relevant properties for upper/lower tail comonotonicity are mentioned

in Beirlant et al. (2004), we give some alternative results in the following two

propositions.

Proposition 4.1 Suppose C is a copula. Then λU (C) = 1 if and only if the up-

per tail dependence function exists and b∗(w1, . . . , wd) = min(w1, . . . , wd). In
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parallel, λL(C) = 1 if and only if the lower tail dependence function exists and

b(w1, . . . , wd) = min(w1, . . . , wd).

Remark 4.3 From Proposition 4.1, we can conclude that the concept of upper/lower

tail comonotonicity is nothing but the tail dependence parameter λ = 1. The des-

ignation of this concept is just consistent with the names of upper/lower tail depen-

dence. If the tail dependence function exists, then it must have the unique form.

It is well known that all pairs of a random vector are comonotonic is equiv-

alent to that the random vector is comonotonic. A parallel result also holds for

upper/lower tail comonotonicity.

Proposition 4.2 Suppose C is a d-variate copula, then any bivariate marginal

copula C{ij}, i 6= j, is upper [resp. lower] tail comonotonic if and only if C is

upper [resp. lower] tail comonotonic.

Next, we give two examples of parametric tail comonotonic copulas that are

two-parameter Archimedean copulas.

Example 4.1 (BB2 in Joe and Hu (1996), Joe (1997)) With LT

ψ(s) = [1 + δ−1 log(1 + s)]−1/θ,

the bivariate Archimedean copula is

Cψ(u, v) =
[
1 + δ−1 log

(
eδ(u

−θ−1) + eδ(v
−θ−1) − 1

)]−1/θ
, θ > 0, δ > 0.

Then as u→ 0+,

Cψ(uw1, uw2)

u
∼
[
1 + δ−1 max{δ((uw1)−θ − 1), δ((uw2)−θ − 1)}

]−1/θ
u−1

= min(w1, w2).

Thus Cψ is lower tail comonotonic. Scatter plots of the BB2 copula with parame-

ters δ = 0.2 and θ = 0.4 or 0.2 are in Figure 4.2 (N = 2000); there is no upper

tail dependence for this copula.
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Figure 4.2: Simulation of BB2 with/without the univariate margins being
transformed to the standard Normal; in the left and middle plots δ = 0.2,
θ = 0.4 and in the right plot δ = 0.2, θ = 0.2

BB2 d= 0.2 th= 0.4  (Uniform margin)
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BB2 d= 0.2 th= 0.4  (Normal margin)
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BB2 d= 0.2 th= 0.2  (Normal margin)
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Example 4.2 (BB3 in Joe and Hu (1996), Joe (1997)) With LT

ψ(s) = exp
{
−[δ−1 log(1 + s)]1/θ

}
,

the bivariate Archimedean copula is

Cψ(u, v) = exp
{
−[δ−1 log(eδũ

θ
+ eδṽ

θ − 1)]1/θ
}
, θ > 1, δ > 0,

where ũ = − log u, ṽ = − log v. Then as u→ 0+,

Cψ(uw1, uw2)

u
∼ exp

{
−[δ−1 log(eδ(− log[umin(w1,w2)])θ)]1/θ

}
u−1 = min(w1, w2).

Thus Cψ is also lower tail comonotonic. Scatter plots of the BB3 copula with

parameters δ = 0.2 and θ = 1.7 or 1.3 are in Figure 4.3 (N = 2000); there is also

upper tail dependence for this copula and λU = 2− 21/θ.

Remark 4.4 Looking at the plots for the lower comonotonic copulas, they appear

suitable as survival copulas to be used to get conservative dependence structure

for joint large losses. Although they are both lower tail comonotonic, there is not

much constraint on the sub-extremal level.
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Figure 4.3: Simulation of BB3 with/without the univariate margins being
transformed to the standard Normal; in the left and middle plots δ = 0.2,
θ = 1.7 and in the right plot δ = 0.2, θ = 1.3

BB3 d= 0.2 th= 1.7  (Uniform margin)
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BB3 d= 0.2 th= 1.7  (Normal margin)
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BB3 d= 0.2 th= 1.3  (Normal margin)
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4.3 Construction of tail comonotonic copulas
In this section, we propose methods to construct tail comonotonic copulas based

on mixing distributions with very heavy tails; “very heavy” means there are no

moments of any positive/negative orders or the corresponding survival function is

slowly varying. Precise conditions will be presented in the following subsections.

4.3.1 Archimedean copulas

In this subsection, we will relate the tail behavior of LTs to upper/lower tail comono-

tonicity of corresponding Archimedean copulas.

The next result says that if the LT ψ is slowly varying at the tails, then Cψ must

have the tail dependence function min(w1, . . . , wd).

Proposition 4.3 Let the Archimedean copula Cψ be based on the LT ψ satisfying

ψ(∞) = 0. If ψ(s) ∈ RV0 then the lower tail dependence function exists and Cψ
is lower tail comonotonic; if 1− ψ(s) ∈ RV0(0+) then the upper tail dependence

function exists and Cψ is upper tail comonotonic.

Remark 4.5 Write the Archimedean copula as the mixture

Cψ(u1, . . . , ud) =

∫ ∞
0

d∏
i=1

Gη(ui)dFH(η),
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where G(u) = exp{−ψ−1(u)} is a cdf on [0, 1] and H is a resilience random

variable with LT ψ. The condition 1−ψ ∈ RV0(0+) means that the density fH(η)

has a very heavy tail as η →∞ so that E[Hm] =∞ for all m > 0. The condition

ψ ∈ RV0 means that the density fH(η) has a very heavy tail as η → 0 so that

E[H−m] =∞ for allm > 0. The implication of the condition of 1−ψ at 0 follows

by the proof of Lemma 3.4. Similarly, we can show the implication of the condition

of ψ at∞ as follows. Suppose to the contrary that E[H−m] <∞ for some m > 0.

Let Wm = (Z/H)m, where Z ∼ Exponential(1), independent of H , and H has

the LT ψ. Then P[Wm ≥ w] = P[Z ≥ Hw1/m] =
∫∞

0 exp(−yw1/m)FH(dy) =

ψ(w1/m). Then E[H−m] < ∞ and Z having all positive moments implies that

E[Wm] < ∞ and thus wP[Wm ≥ w] → 0, as w → ∞; that is, wψ(w1/m) → 0,

or equivalently smψ(s) → 0, as s → ∞. It is well known that if ψ(s) ∈ RV0 and

m > 0, we must have smψ(s)→∞. The contradiction implies that E[H−m] =∞
for all m > 0.

It can be verified that the LTs for BB2 and BB3 are both slowly varying at +∞,

except in the lower boundary case (i.e., θ = 1 for BB3); that is,

ψBB2(s) = [1 + δ−1 log(1 + s)]−1/θ ∈ RV0, θ > 0, δ > 0;

ψBB3(s) = exp
{
−[δ−1 log(1 + s)]1/θ

}
∈ RV0, θ > 1, δ > 0.

Now, consider the tail behavior of the LT studied in (3.10); that is, assume that

a LT η satisfies

η(s) ∼ T (s) = a1s
q exp{−a2s

r}

and η′(s) ∼ T ′(s), s→∞, with a1 > 0, a2 ≥ 0, (4.4)

where r = 0 implies a2 = 0 and q < 0, and r > 0 implies r ≤ 1 and q can be

0, negative or positive. Note that r > 1 or r < 0 is not possible because of the

complete monotonicity property of a LT. This condition covers almost all of the

LT families in the Appendix of Joe (1997), as well as other LT families that can be

obtained by integration or differentiation.

The next result is contained in the Appendix of Joe (1997), where L∗+∞ is the

class of infinitely differentiable increasing functions of [0,∞) onto [0,∞), with
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alternating signs for derivatives. This combines some results from pages 441 and

450 of Feller (1971); the condition on φ implies that it is the LT of an infinitely

divisible random variable.

Lemma 4.4 If φ is a LT such that − log φ ∈ L∗+∞ and η is another LT, then

ψ(s) = η(− log φ(s)) is a LT.

Proposition 4.5 Suppose the LT η(t) satisfies condition (4.4), and take LT of Gamma

φ(s) = (1 + s)−1/θ, thus ψ(s) := η(− log(φ(s))) is also a LT. Then 0 ≤ r < 1

implies that ψ(s) ∈ RV0.

In the literature, risks are compared with respect to some stochastic orders,

say, the usual stochastic order and the increasing convex order (Müller and Stoyan,

2002). In our opinion, the comparisons of risks are more meaningful for high-risk

scenarios. However, the conditions these stochastic orders need to satisfy are too

strong to be flexible for comparing tail risks. To this end, we may define some

new concepts of stochastic order that are particularly used to compare the tails of

univariate/multivariate cdf’s. For example, we may define a stochastic order based

on asymptotic properties of distribution functions as what follows.

Definition 4.2 (Ultimate usual stochastic orders) Let X , Y be random variables,

X is said to be greater than Y in the upper ultimate usual stochastic order if there

exists a finite q such that FX(t) ≥ F Y (t) for all t ≥ q, written as X &st Y . Let X

and Y be random vectors, then X is said to be greater than Y in the upper ultimate

usual stochastic order if there exists a finite threshold q such that FX(t) ≥ FY(t)

for all t ≥ q, written as X &st Y. For lower ultimate usual stochastic order, the

notation is st&. Then X is said to be greater than Y in the lower ultimate usual

stochastic order (written as Xst&Y ) if there exists a finite q such that FX(t) ≥
FY (t) for all t ≤ q, and X is said to be greater than Y in the lower ultimate usual

stochastic order if there exists a finite threshold q such that FX(t) ≥ FY(t) for

all t ≤ q, written as Xst&Y. The relationships can also be symbolized by using

corresponding cdfs, such as, FXst&FY for Xst&Y.

If X,Y represent amounts of losses, then X &st Y implies that X is riskier

than Y . If the right tail of X is heavier than that of Y , then this is a sufficient

condition for X &st Y .
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Proposition 4.6 Let ψ1, ψ2 be given LTs. If ψ−1
1 ◦ ψ2(s) is superadditive for suf-

ficiently large s, then there exists a finite threshold q such that for any u ≤ q,

Cψ1(u) ≥ Cψ2(u), i.e., Cψ1st&Cψ2 .

Note: using notation of Archimedean copula in Nelsen (2006), the generator

should be strict in order to apply Proposition 4.6.

Remark 4.6 From Proposition 4.6, we expect that BB2 is more lower tail positive

dependent than BB3 below a sufficiently low threshold, although they are both

lower tail comonotonic. Let ψ1(s) := ψBB2(s) = [1 + δ−1
1 log(1 + s)]−1/θ1 and

ψ2(s) := ψBB3(s) = exp
{
−[δ−1

2 log(1 + s)]1/θ2
}

, then

g(s) := ψ−1
1 ◦ ψ2(s) = exp{δ1(eθ1(log(1+s)/δ2)1/θ2 − 1)} − 1.

Letting h(s) := log(1 + s)/δ2,

g′(s) = δ1θ1h(s)1/θ2eθ1h(s)1/θ2e
δ1
(
eθ1h(s)

1/θ2−1
)
/(θ2(1 + s) log(1 + s)).

By observing g′(s), we know that g(s) is strictly increasing and ultimately strictly

convex. Assume that g(s) is strictly convex as s ≥ s0, and let y0 := g(s0) and

z(s) := g(s + s0) − y0, then z(s) is superadditive for s ∈ [0,∞). Therefore, for

x, y ≥ 0, z(x+ y) ≥ z(x) + z(y); that is, g(x+ y + s0) + g(s0) ≥ g(x+ s0) +

g(y + s0). Since g(s) is strictly increasing and strictly convex as s ≥ s0, we must

have, when x, y are sufficiently large, g(x + y + 2s0) ≥ g(x + y + s0) + g(s0).

Therefore, ψ−1
1 ◦ ψ2(s) is ultimately superadditive.

4.3.2 Heavy tail mixtures

Consider the heavy tail scale mixture

X = (RT1, . . . , RTd), (4.5)

where R and Ti’s are all non-negative random variables, R is independent of the

Ti’s, and the dependence structure between Ti’s is not specified. This form cov-

ers truncated elliptical distributions. The CTE for such random vectors has been
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studied in Zhu and Li (2012), and more relevant study is in Chapter 6, where R

is assumed to be regularly varying and second order regularly varying in the right

tail, respectively.

The following lemma is often referred to as the Breiman’s Theorem (Breiman

(1965)). Although the proof in Breiman (1965) is not for a general α, it can be

adapted for proving a more general case where 0 ≤ α < +∞. To the best of

our knowledge, we have not found a complete and detailed proof for this case.

So we include a proof in Section 4.6, and emphasize that the result for α = 0

corresponding to slowly variation of Y also holds.

Lemma 4.7 Suppose a random variable R ≥ 0 with FR(y) ∈ RV−α, (0 ≤ α <

+∞). T ≥ 0 is independent of R and E[Tα+δ] <∞ for some δ > 0. Then

lim
y→∞

P[RT > y]

P[R > y]
= E[Tα]. (4.6)

Proposition 4.8 Let X = (RT1, . . . , RTd) be defined as in (4.5). If R ∈ RV0,

E[T δii ] <∞, i = 1, . . . , d, for some δi > 0, then X is upper tail comonotonic.

The above scale mixture can be used to construct upper tail comonotonic cop-

ulas. Note that, the margins Ti’s are not necessarily identical and their dependence

structure is not specified.

An elliptical random vector X can be written as

X
d
= µ +RAU ∼ Ed(µ,Σ, φ), (4.7)

where the radial random variableR ≥ 0 is independent of U, U is an k-dimensional

random vector uniformly distributed on the surface of the unit hypersphere Sk−1
2 =

{z ∈ Rk|zTz = 1}, A is a d × k matrix with rank(A) = k and AAT = Σ that

is positive semidefinite, φ is the characteristic generator. When Σ is positive def-

inite, write ρij := Σij/
√

ΣiiΣjj , and ρij 6= ±1 in the following to avoid trivial

cases. We refer to Fang et al. (1990) for a comprehensive reference for elliptical

distributions.

Now, we are studying whether there exist tail comonotonic elliptical distribu-

tions. Note that the Ti’s in Proposition 4.8 are all non-negative, so it does not cover
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the usual elliptical distributions. For tail dependence of elliptical distributions,

Schmidt (2002), and Hult and Lindskog (2002) study the case where the radial

random variable R has certain tail patterns such as regularly varying right tails.

Frahm et al. (2003) shows that the two different representations of tail dependence

parameters in Schmidt (2002) and Hult and Lindskog (2002) for the regularly vary-

ing case are equivalent. From their results, we know that, with a regularly varying

radial random variable R (tail index −α < 0), the non-degenerate elliptical dis-

tributions have tail dependence parameters that are strictly less than 1. We now

show that, even when P[R > s] is slowly varying in s, tail comonotonicity still

does not hold. The intuitive reasoning for this result is that for bivariate elliptical

distributions that have usual tail dependence, there is tail dependence in all cor-

ners/quadrants, so that the tail dependence in the upper positive quadrant is not

1.

Proposition 4.9 Suppose X is an elliptical random vector as defined in (4.7) with

Σii > 0 for i = 1, . . . , d, if P[R > s] ∈ RV0, then any bivariate margins of

X is upper (and lower) tail dependent, and the tail dependence parameter λij =

1/2 + (1/π) arcsin ρij .

Remark 4.7 In the proof of Theorem 4.3 in Hult and Lindskog (2002), it is claimed

that X d
= RAU implies that

(
Xi

Xj

)
d
= R

 √
Σii 0√

Σjjρjj
√

Σjj

√
1− ρ2

ij

( cosϕ

sinϕ

)
,

where ϕ ∼ Uniform(−π, π). Here we need to make a note that the above claim

is true only when X is bivariate. For a general d-dimensional X (d > 2), radial

random variables for margins will not be the same as the original R for the whole

distribution. We make a more detailed argument about this in what follows.

Due to the Corollary in page 43 of Fang et al. (1990), margins of elliptical

distributions are still elliptical with the same characteristic generator φ. Moreover,

due to Lemma 5.3 of Schmidt (2002), the radial random variable R depends on the

dimension d of the elliptical distribution, and there exists a constant k > 0 such
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that

Rs
d
= kRd

√
B, B ∼ Beta(s/2, (d− s)/2), s < d,

and B is independent of Rd. Since a Beta distribution has moments of all orders,

by Lemma 4.7, Rs inherits the tail behavior of Rd when Rd is regularly varying or

slowly varying, which is why the original proof in Hult and Lindskog (2002) can

still yield a correct conclusion.

Let (U1, U2) follows a bivariate copula, where Ui ∼ Uniform(0, 1), i = 1, 2.

From Embrechts et al. (2009a), the tail dependence parameters in the “North East

(NE)” and “South East (SE)” for the bivariate Student t copula are the following:

λNE := lim
u→1−

P[U2 > u, |U1 > u] =

∫ π/2
(π/2−arcsin ρ)/2(cos t)νdt∫ π/2

0 (cos t)νdt
=: Λ(ν, ρ);

(4.8)

λSE := lim
u→1−

P[U2 ≤ 1− u, |U1 > u] =

∫ π/2
(π/2+arcsin ρ)/2(cos t)νdt∫ π/2

0 (cos t)νdt
=: Λ(ν,−ρ).

(4.9)

Note that λNE +λSE is still a conditional probability and thus 0 ≤ λNE +λSE ≤ 1;

in fact, for the above 0 < Λ(ν, ρ) + Λ(ν,−ρ) < 1 for ν > 0. Moreover, both λNE

and λSE are decreasing in ν: for a bivariate tν copula (Embrechts et al. (2002), Joe

(2011)),

λNE = 2Tν+1

(
−
√

(ν + 1)(1− ρ)/(1 + ρ)
)

; (4.10)

λSE = 2Tν+1

(
−
√

(ν + 1)(1 + ρ)/(1− ρ)
)
, (4.11)

and it can be verified that (4.8) and (4.10) are equivalent, and (4.9) and (4.11) are

equivalent (see Section 4.6 for a direct derivation). Since Tν+1(x) is decreasing in

ν for a fixed x ≤ 0, and Tν+1(x) is increasing in x for a fixed ν, both λNE and λSE

are decreasing in ν.

From Theorem 5.2 of Schmidt (2002), we know that if there exists a bivariate
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tail dependent margin, then we must have

0 < lim inf
x→∞

F (tx)

F (x)
≤ lim sup

x→∞

F (tx)

F (x)
≤ 1, t ≥ 1,

where F (·) is the survival function of the radial random variable R. If R is slowly

varying, then the upper bound in the above necessary condition is reached.

Although we have not proved it for now, we conjecture that there are no tail

comonotonic non-degenerate elliptical distributions and the maximum tail depen-

dence parameter for a bivariate elliptical copula is λ = 1/2 + (1/π) arcsin ρ. As

ν → 0+ in (4.8) and (4.9), the sum converges to [1/2 + (1/π) arcsin ρ] + [1/2 +

(1/π) arcsin(−ρ)] = 1 and this is the maximum possible value of limx→∞ P(|X2| >
x|X1 > x) when X1, X2 have a common distribution. Hence when all corners are

considered, elliptical distributions with a slowly variable radial random variable

have the strongest possible tail dependence. In contrast, note that Archimedean

copulas based on LTs do not have tail dependence on quadrants that have different

signs.

4.3.3 Extreme value copulas

We now show that for extreme value copulas, tail comonotonicity is equivalent to

comonotonicity.

Proposition 4.10 Suppose C is an extreme value copula, then

λU = 1 ⇐⇒ C is a comonotonic copula ⇐⇒ λL = 1.

4.4 Asymptotic additivity of risk measures
As a dependence structure, tail comonotonicity may affect the risk measures of

aggregated losses. In this section, we mainly study impacts of tail comonotonicity

on additivity of commonly used risk measure such as VaR and CTE.

It is well known that VaR and CTE are additive when the loss random variables

are comonotonic (see Dhaene et al. (2006)); that is, if (X1, . . . , Xd) is comono-
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tonic, then for all p ∈ (0, 1),

VaRp

(
d∑
i=1

Xi

)
=

d∑
i=1

VaRp(Xi); CTEp

(
d∑
i=1

Xi

)
=

d∑
i=1

CTEp(Xi).

The additivity property also holds for the upper comonotonicity in the sense of

Cheung (2009) when the probability level p associated with the risk measures is

larger than a threshold specified by the upper comonotonicity structure. A natural

question is whether such an additivity property can be kept asymptotically as p→
1−.

Asymptotic super and/or sub additivity of risk measures has been studied ex-

plicitly or implicitly in several papers. For example, Embrechts et al. (2009b) stud-

ied asymptotic additivity properties of VaR for multivariate (d > 2) dependent loss

random variables that have regularly varying survival functions (with index −β)

and Archimedean dependence structures. It is shown that for a probability level

p < 1 and sufficiently close to 1, whether strict super or sub additivity depends

on whether β < 1 or β > 1. The Archimedean copula has upper tail depen-

dence but the upper tail dependence parameter λ < 1 (since the generator of the

Archimedean copula is assumed to be regularly varying). In Section 3.3 of Alink

et al. (2007), an example of lower tail comonotonic copula has been shown together

with Corollary 2.4 of Embrechts et al. (2009b) that VaR is asymptotically additive

for exchangeable regularly varying dependent random variables that have an upper

tail comonotonic copula.

Analogous to the additivity property of VaR and CTE for a comonotonic ran-

dom vector, we find that, asymptotic additivity of VaR and CTE still holds for a

large class of random vectors that are relevant for quantitative risk management.

We now prove some results for asymptotic additivity of VaR and CTE for ran-

dom variables that are in the maximum domain of attraction (MDA) of Fréchet and

Gumbel, respectively. The case for MDA of Weibull corresponds to loss random

variables that are bounded above, and is not very relevant for actuarial applications,

so we do not consider it here.

Only upper tails of losses are to be studied as they are more relevant for risk

measures; analogous results for lower tails also hold but are omitted here. It suffices
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to consider non-negative random variables to study upper tails, so in the following

the random vector X is assumed to be non-negative. However, for lower tails, we

have simpler notation for tail comonotonicity. Therefore, instead of studying X

directly, in what follows, we always define Y := −X and prove the results based

on Y. The following corresponding assumptions are also assigned on Y, which

have corresponding natural meanings for the non-negative random vector X.

For study of tail behavior of random variables, we always assume that the dis-

tribution function is continuous (or at least continuous in the tail regions). So

P[X < x] coincides with P[X ≤ x] in what follows.

Assumption 4.1 Let Y be a non-positive continuous random vector with marginal

distributions F1, . . . , Fd defined on (−∞, 0] such that Fi(−t) ∈ RV−α with α > 0,

and

lim
t→∞

Fi(−t)/F1(−t) = ki, 0 < ki <∞,

for any i = 1, . . . , d.

Remark 4.8 If Y := −X satisfies Assumption 4.1, thus P[Xi > t] ∈ RV−α, then

each univariate margin of X is in the MDA of Fréchet (Theorem 3.3.7 of Embrechts

et al. (1997)).

The following lemmas are analogous to Lemma 6.1 of Resnick (2007). They

are useful in proving Propositions 4.13 and 4.14. For E ⊂ Rd, denote

M+(E) := {µ : Radon, non-negative measures on the Borel σ-algebra E of E},

and let the lower boundary LB := {(y1, . . . , yd) : some yi = 0} and the upper

boundary UB := {(y1, . . . , yd) : some yi =∞}, then define

E1 := [0,∞] \ LB;

E2 := [−∞,∞] \ UB.
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Lemma 4.11 Suppose µn, µ ∈M+(E1). Then, as n→∞

µn
v→ µ inM+(E1) ⇐⇒ µn([y,∞])→ µ([y,∞])

for any y ∈ [0,∞) \ LB such that µ(∂[y,∞]) = 0.

Remark 4.9 The set E1 excludes the lower boundary, since otherwise rectangles

of the form [y,∞] can not determine the vague convergence. If µ puts mass on

axes such as the usual normalization for asymptotic independence in Section 6.5.1

of Resnick (2007), then µ /∈ M+(E1). The condition µ(∂[y,∞]) = 0 also re-

quires that µ does not put mass on the upper boundary.

Lemma 4.12 Suppose µn, µ ∈M+(E2). Then, as n→∞

µn
v→ µ inM+(E2) ⇐⇒ µn([−∞,y])→ µ([−∞,y])

for any y ∈ (−∞,∞] \ UB such that µ(∂[−∞,y]) = 0.

Proposition 4.13 (Asymptotic additivity of VaR: Fréchet case) Suppose X is non-

negative and upper tail comonotonic, and Y := −X satisfies Assumption 4.1. If

S = X1 + · · ·+Xd, then

VaRp(S) ∼
d∑
i=1

VaRp(Xi), p→ 1−.

Assumption 4.2 Let Y be a non-positive continuous random vector with marginal

distributions F1, . . . , Fd defined on (−∞, 0] and there exists a positive measurable

function a(·) such that

lim
t→∞

Fi(−t+ a(t)s)

Fi(−t)
= es, ∀s ∈ R, (4.12)

and limt→∞ Fi(−t)/F1(−t) = ki with 0 < ki <∞ for any i = 1, . . . , d.

Remark 4.10 Note that the condition Fi(−t)/F1(−t) → ki implies that we can

take ai(t) = a(t) for all i without loss of generality, and a(t) = o(t), t → ∞.

If Y := −X satisfies Assumption 4.2, then due to Theorem 3.3.27 of Embrechts
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et al. (1997), each univariate margin of X is in the MDA of Gumbel; that is FXi(t+

a(t)s)/FXi(t)→ e−s, s ∈ R.

Remark 4.11 A mixture distribution can satisfy the tail equivalence condition

FXi(t)/FX1(t) → ki. Without loss of generality, we can let 0 < ki ≤ 1. For

example, let random variables X1 ∼ Exponential(1) and

X2 =

{
Exponential(1), with probability k2

0, with probability 1− k2.

Then FX2(x)/FX1(x)→ k2.

Proposition 4.14 (Asymptotic additivity of VaR: Gumbel case) Suppose X is non-

negative and upper tail comonotonic, and Y := −X satisfies Assumption 4.2. If

S = X1 + · · ·+Xd, then

VaRp(S) ∼
d∑
i=1

VaRp(Xi), p→ 1−.

The conditions that are studied for asymptotic additivity of VaR satisfy assump-

tions considered in Asimit et al. (2011), which investigates asymptotic proportion-

ality between CTE and VaR. With the help of their results, we may conclude the

asymptotic additivity of CTE in what follows.

Proposition 4.15 (Asymptotic additivity of CTE: Fréchet case) Suppose X is non-

negative and upper tail comonotonic, and Y := −X satisfies Assumption 4.1 with

α > 1. If S = X1 + · · ·+Xd, then

CTEp(S) ∼
d∑
i=1

CTEp(Xi), p→ 1−.

Proposition 4.16 (Asymptotic additivity of CTE: Gumbel case) Suppose X is non-

negative and upper tail comonotonic, and Y := −X satisfies Assumption 4.2. If

97



S = X1 + · · ·+Xd, then

CTEp(S) ∼
d∑
i=1

CTEp(Xi), p→ 1−.

The above asymptotic additivity results suggest that when we use tail comono-

tonicity as the dependence structure for such marginal distributions, we should

expect that the diversification benefit (see Definition 2.2) will decrease to 0 as

p → 1−. However, the speed of decay is unknown by observing the asymptotic

relationship only; that is, we do not know when p is sufficiently close 1 so that the

additivity relationship of the risk measures is sufficiently good. The relevant study

will involve a second order approximation, and it is out of the scope of the thesis.

4.5 Concluding remarks and future research
Tail comonotonicity, like comonotonicity and upper comonotonicity, provides a

bound-like dependence structure, and it is more reasonable to be used to capture in-

formation from data. Tail comonotonicity has some parallel properties of the usual

comonotonicity, such as asymptotic additivity of VaR and CTE. Among many dif-

ferent copula families, Archimedean copulas with a mixing distribution that has

no moments of any positive orders (for upper tail comonotonicity) or no moments

of any negative orders (for lower tail comonotonicity), and copulas based on scale

mixtures with a slowly varying non-negative random variable can be used to con-

struct tail comonotonic copulas. However, elliptical and extreme value copulas

cannot provide useful tail comonotonic copulas.

Since tail comonotonicity is only an asymptotic property, it may or may not

provide a conservative dependence structure for sub-extremal levels of risks. In

Chapter 5, we will study how conservative are risk measures, under the tail comono-

tonic dependence structure.

Although asymptotic additivity properties of VaR and CTE we have proved

has already covered a wide range of random vectors, an elegant proof for a most

general case (if exists; note that additivity of VaR and CTE for the usual comono-

tonicity does not depend on margins) must be welcome. Many other topics, such

as optimal portfolio design, could be studied under the assumption of tail comono-
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tonicity. We think that tail comonotonicity is particularly useful for dealing with

high dimensional data for high-risk scenarios. Due to the curse of dimensionality,

it is very hard (or impossible) to accurately model the tail behavior of aggregate

high dimensional risks. For dependence modeling of multivariate random vari-

ables, vine copula is promising (Bedford and Cooke, 2002; Aas et al., 2009; Joe

et al., 2010). By Proposition 4.2, it is feasible to use bivariate tail comonotonic cop-

ulas to build up a vine copula that is still tail comonotonic. The vine copula with

tail comonotonicity may provide a reasonable cushion for the overall dependence

structure.

4.6 Proofs
Proof of Proposition 4.1: If we take (w1, . . . , wd) = (1, . . . , 1), then it is obvious

that λ = 1. For the other direction, letting w∗ = min(w1, . . . , wd) 6= 0, then

C(uw∗, . . . , uw∗)

u
≤ C(uw1, . . . , uwd)

u
≤ min(uw1, . . . , uwd)

u
= w∗

⇒ w∗ = lim
uw∗→0+

C(uw∗, . . . , uw∗)

uw∗
w∗ ≤ lim inf

u→0+

C(uw1, . . . , uwd)

u

≤ lim sup
u→0+

C(uw1, . . . , uwd)

u
≤ w∗.

Thus, b(w1, . . . , wd) = min(w1, . . . , wd). Similar for the upper tail. �

Proof of Proposition 4.2: By Proposition 4.1, it suffices to prove that λ = 1. We

only state the proof for lower tail comonotonicity here. SupposeUi ∼ Uniform(0, 1)

with joint distribution C. Since

P[U1 ≤ u]−
∑d

i=2 P[U1 ≤ u < Ui]

u
≤ C(u1d)

u
≤ 1,

and pairwise lower tail comonotonicity implies that limu→0+
∑d

i=2 P[U1 ≤ u <

Ui]/u = 0, which implies that C is lower tail comonotonic. The other direction

is due to the fact that if λL(C) = 1, then λL(CI) = 1 for every marginal copula

CI , 1 < |I| < d. �

Proof of Proposition 4.3: By Proposition 4.1, we only need to prove the tail de-
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pendence parameter λ = 1. For the lower tail, letting s := ψ−1(u), then because

ψ(s) ∈ RV0,

λL = lim
u→0+

Cψ(u1d)

u
= lim

u→0+

ψ(dψ−1(u))

u
= lim

s→+∞

ψ(ds)

ψ(s)
= 1.

For the upper tail, by Proposition 4.2, it suffices to prove the bivariate case. Let

s := ψ−1(1− u), then

λU = lim
u→0+

Ĉψ(u, u)

u
= lim

u→0+

[
2 +

ψ(2ψ−1(1− u))− 1

u

]
= lim

s→0+

[
2− 1− ψ(2s)

1− ψ(s)

]
= 1,

which finishes the proof for the upper tail. �

Proof of Proposition 4.5: Clearly, − log(φ(s)) = (1/θ) log(1 + s) ∈ L∗+∞, by

Lemma 4.4, ψ(s) is a LT. Then the conclusion is straightforward by plugging

− log(φ(s)) into η(·) of (4.4) since exp(−[log(1 + s)]r) ∈ RV0 as 0 < r < 1.

�

Proof of Proposition 4.6: Superadditivity of ψ−1
1 ◦ ψ2(s) for sufficiently large s

implies that there exists sufficiently large s0 such that s1 ≥ s0 and s2 ≥ s0 lead to

ψ−1
1 ◦ ψ2(s1 + s2) ≥ ψ−1

1 ◦ ψ2(s1) + ψ−1
1 ◦ ψ2(s2).

Let s1 := ψ−1
2 (u) and s2 := ψ−1

2 (v), then u, v ≤ ψ2(s0) implies that

ψ−1
1 ◦ ψ2(ψ−1

2 (u) + ψ−1
2 (v)) ≥ ψ−1

1 ◦ ψ2(ψ−1
2 (u)) + ψ−1

1 ◦ ψ2(ψ−1
2 (v));

that is, ψ2(ψ−1
2 (u) + ψ−1

2 (v)) ≤ ψ1(ψ−1
1 (u) + ψ−1

1 (v)), which completes the

proof. �

Proof of Lemma 4.7: Choose some b(y), such as y`0(y) for a suitably chosen
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slowly varying function `0(y), satisfying that as y →∞, b(y)→∞, and

bα+δ(y)FR(y)→∞, ∀δ > 0 (4.13)

b(y)/y → 0. (4.14)

Then,

lim
y→∞

P[RT > y]

P[R > y]

= lim
y→∞

∫∞
0 FR(y/t)FT (dt)

FR(y)

= lim
y→∞

∫ b(y)
0 FR(y/t)FT (dt)

FR(y)
+ lim
y→∞

∫∞
b(y) FR(y/t)FT (dt)

FR(y)

= lim
y→∞

∫ ∞
0

1(0,b(y)](t)
FR(y/t)

FR(y)
FT (dt) + lim

y→∞

∫ ∞
b(y)

FR(y/t)

FR(y)
FT (dt)

=: lim
y→∞

I1 + lim
y→∞

I2.

We know 1(0,b(y)](t)
FR(y/t)

FR(y)
≤ 1(0,1](t) + 1(1,b(y)](t)

FR(y/t)

FR(y)
, and also, when t ∈

(1, b(y)], (4.14) implies that as y →∞, y/t→∞. Then as y is sufficiently large,

by the Karamata’s representation of regularly varying function, when t ∈ (1, b(y)],

FR(y/t)

FR(y)
≤ tα+δ.

Since E[Tα+δ] <∞, by the dominated convergence theorem,

lim
y→∞

I1 =

∫ ∞
0

lim
y→∞

1(0,b(y)](t)
FR(y/t)

FR(y)
FT (dt) =

∫ ∞
0

tαFT (dt) = E[Tα].

For I2, we have

I2 ≤
∫ ∞
b(y)

1

FR(y)
FT (dt) ≤

∫ ∞
b(y)

tα+δ

FR(y)bα+δ(y)
FT (dt)→ 0, y →∞,

and the convergence to 0 is due to E[Tα+δ] <∞ and (4.13). �
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Proof of Proposition 4.8: Due to Lemma 4.7, FX1(s) ∼ FXi(s), s→ +∞ for i =

2, . . . , d, thus, s = F
−1
Xi (FXi(s)) ∼ F

−1
Xi (FX1(s)). Since F−1

X1
(t) = F−1

X1
(1− t),

clearly,

F−1
Xi

(FX1(s)) ∼ s, s→ +∞; i = 2, . . . , d. (4.15)

Assuming F is the joint cdf of (T1, . . . , Td), and hi(s) := F−1
Xi

(FX1(s))/s, i =

1, . . . , d, the upper tail dependence parameter

λU = lim
t→1−

P
[
X1 > F−1

X1
(t), . . . , Xd > F−1

Xd
(t)
]

P
[
X1 > F−1

X1
(t)
]

= lim
s→+∞

P
[
RT1 > s, . . . , RTd > F−1

Xd
(FX1(s))

]
/P[R > s]

P[RT1 > s]/P[R > s]

= lim
s→+∞

∫
Rd+

P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]F (dt1, . . . , dtd)/P[R > s]

P[RT1 > s]/P[R > s]
.

(4.16)

Due to Lemma 4.7, lims→+∞ P[RT1 > s]/P[R > s] = 1. For the numerator of

(4.16), choose some b(s) such as s`0(s) with a proper slowly varying function `0
such that, s→∞ implies b(s)→∞, and

bε(s)FR(s)→∞, ∀ε > 0 (4.17)

b(s)/s→ 0. (4.18)
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Denote (b(s)1d,+∞]c := Rd+ \ (b(s)1d,+∞], then

lim
s→+∞

∫
Rd+

P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]
P[R > s]

F (dt1, . . . , dtd)

= lim
s→+∞

∫
Rd+

1(b(s)1d,+∞]c(t1, . . . , td)×

× P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]
P[R > s]

F (dt1, . . . , dtd)

+ lim
s→+∞

∫
Rd+

1(b(s)1d,+∞](t1, . . . , td)×

× P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]
P[R > s]

F (dt1, . . . , dtd)

=: lim
s→+∞

I1 + lim
s→+∞

I2.

Due to (4.15), for any 0 < γ < 1, there exists an s0 <∞ such that, s > s0 implies

that hi(s) > γ for all i. Then s > s0 implies that

1(b(s)1d,+∞]c(t1, . . . , td)
P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]

P[R > s]

≤ 1[0,γ1d)(t1, . . . , td) + 1(b(s)1d,+∞]c\[0,γ1d)(t1, . . . , td)×

× P [R > sγ (max{1/t1, . . . , 1/td})]
P[R > s]

.

It is well known that P[R > s] is slowly varying implies P[R > st]/P[R > s]

converges uniformly in t ∈ [a, b] as s → ∞, where 0 < a, b < ∞ (see Bingham

et al., 1987). Then

P[R > sγ(max{1/t1, . . . , 1/td})]/P[R > s]

converges uniformly in t ∈ (b(s)1d,+∞]c \ [0, γ1d) to 1. Moreover,

t ∈ (b(s)1d,+∞]c \ [0, γ1d)

and (4.18) implies that, as s→ +∞, sγmax{1/t1, . . . , 1/td} → +∞. Then slow
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variation of P[R > s] and dominated convergence theorem implies that

lim
s→+∞

I1

=

∫
Rd+

lim
s→+∞

1(b(s)1d,+∞]c(t1, . . . , td)×

× P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]
P[R > s]

F (dt1, . . . , dtd)

=:

∫
Rd+

lim
s→+∞

1(b(s)1d,+∞]c(t1, . . . , td)Ω(s, t1, . . . , td)F (dt1, . . . , dtd).

Since (4.15), for any 0 < ε1, ε2 < 1, there exists an s1 such that s > s1 im-

plies that 1 − ε1 ≤ hi(s) ≤ 1 + ε2 for all i. Thus, for any t1, . . . , td such that

min{t1, . . . , td} > 0,

1 = lim
s→∞

P[R > s(1 + ε2)/min{t1, . . . , td}]
P[R > s]

≤ lim sup
s1<s→∞

Ω(s, t1, . . . , td)

≤ lim
s→∞

P[R > s(1− ε1)/min{t1, . . . , td}]
P[R > s]

= 1.

Therefore,

lim
s→∞

I1 = 1.

For I2,

1(b(s)1d,+∞](t1, . . . , td)
P [R > s (max{h1(s)/t1, . . . , hd(s)/td})]

P[R > s]

≤ 1(b(s)1d,+∞](t1, . . . , td)
1

P[R > s]
≤ 1(b(s)1d,+∞](t1, . . . , td)

(min{t1, . . . , td})ε

P[R > s]bε(s)
.

Note that, E[T δii ] < ∞ implies that E[(min{T1, . . . , Td})ε] < ∞ for some ε > 0,

because E[(min{T1, . . . , Td})δi ] ≤
∫
Rd+
tδii F (dt1, . . . , dtd) = E[T δii ] < ∞. Since

E[(min{T1, . . . , Td})ε] < ∞, and P[R > s]bε(s) → +∞ (due to (4.17)), by

dominated convergence theorem,

lim
s→+∞

I2 = 0.

Thus, the claim is proved. �
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Proof of Proposition 4.9: The proof in Theorem 4.3 of Hult and Lindskog (2002)

remains valid for this case where R is slowly varying, although in their proof, R is

required to be regularly varying with a tail index −α < 0. �

Proof of equivalence between (4.8) and (4.10): The cdf of tν+1 can be written as a

regularized Beta function as follows: (Press, 2007, page 323)

Tν+1(t) =
1

2
− sign(t)

[
1

2

B
(
x; ν+1

2 , 1
2

)
B
(
ν+1

2 , 1
2

) − 1

2

]
, ν > 0; 0 < x :=

ν + 1

t2 + ν + 1
< 1.

whereB(x; ., .) andB(., .) are incomplete Beta and Beta functions. Using trigono-

metric function representation of Beta functions, we have with t = sin2 θ,

B

(
ν + 1

2
,
1

2

)
=

∫ 1

0
t(ν+1)/2−1(1− t)1/2−1dt = 2

∫ π/2

0
(sin θ)νdθ = 2

∫ π/2

0
(cos θ)νdθ.

Next, withB
(
x; ν+1

2 , 1
2

)
, where t = −

√
(ν+1)(1−%)

1+% and x = ν+1
t2+ν+1

= (1+%)/2,

then

B

(
1 + %

2
;
ν + 1

2
,
1

2

)
=

∫ (1+%)/2

0
s(v−1)/2(1− s)−1/2ds

= 2

∫ arcsin
√

(1+%)/2

0
(sin θ)νdθ = 2

∫ π/2

π/2−arcsin
√

(1+%)/2
(cos θ)νdθ.

Now using the identity cos(2θ) = cos2 θ − sin2 θ, it can be verified that 2(π/2 −
arcsin

√
(1 + %)/2) = π/2 − arcsin % by taking “cos” on both sides and getting

%. Therefore, the claim is proved. �

Proof of Proposition 4.10: By Proposition 4.2, it suffices to prove the bivariate

case. For any multivariate extreme value copula C, there exists a function A :

[0,∞)d → [0,∞) such that C(u1, . . . , ud) = exp{−A(− log u1, . . . ,− log ud)},
where A is convex, homogeneous of order 1 and satisfies that max{x1, . . . , xd} ≤
A(x1, . . . , xd) ≤ x1 + · · ·+ xd. For a bivariate extreme value copula, the function

A(x, y) can be written as A(x, y) = (x + y)B( x
x+y ), where B(·) is convex and
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max{w, 1− w} ≤ B(w) ≤ 1 for 0 ≤ w ≤ 1 (see Joe, 1997, Theorem 6.4).

The upper tail dependence parameter is λU = 2 − A(1, 1). If we let λU = 1,

then B(1/2) = 1/2, also B(w) must be convex, so we have B(w) = max{w, 1−
w}; that is, A(x, y) = max{x, y} and thus

C(u1, u2) = exp{−A(− log u1,− log u2)} = min{u1, u2}.

The other direction is straightforward.

The lower tail order for a bivariate extreme value copula is κ = A(1, 1) (see

Example 3.4). If λL = 1, we must have the lower tail order A(1, 1) = 1. Then the

subsequent argument is the same as for the upper tail. �

Proof of Lemma 4.11: The proof is the same as Lemma 6.1 of Resnick (2007). We

rewrite the proof here for completeness. (⇒) is due to Theorem 3.2 of Resnick

(2007). For (⇐), let g ∈ C+
K(E1), where

C+
K(E1) := {g : E1 → R+, continuous with compact support},

then the support of g must be contained in some [y,∞] such that µ(∂[y,∞]) = 0.

Since convergence on this set holds, supn µn([y,∞]) <∞ and thus,

sup
n
µn(g) ≤ sup

x∈E1

g(x) · sup
n
µn([y,∞]) <∞.

This is true for any g ∈ C+
K(E1), so {µn} is relatively compact due to (3.16) of

Resnick (2007). If µ and µ′ are two subsequential limits, then µ and µ′ agree on the

continuity sets [y,∞]. Additionally, the rectangles of those continuity sets [y,∞]

constitute the π-system which generates B(Ko) the Borel σ-algebra of Ko, where

Ko := {B ⊂ E1 : B is relatively compact , µ(∂B) = 0}. Then µ′ = µ on E1 by

Theorem 3.2 of Resnick (2007) again. �

Proof of Lemma 4.12: The proof here is similar to the proof of Lemma 4.11 by

replacing [y,∞] by [−∞,y]. �

Proof of Proposition 4.13: Let W = −S and Yi = −Xi, i = 1, . . . , d, then

(Y1, . . . , Yd) is lower tail comonotonic, and the map y 7→ P[Yi ≤ −y] ∈ RV−α.
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Moreover, since limt→∞ Fi(−t)/F1(−t) = ki for any i = 1, . . . , d, clearly,

F−1
i (p) ∼ k

1/α
i F−1

1 (p) as p → 0+ (Lemma 2.1 of Asimit et al. (2011), or Propo-

sition 0.8(vi) of Resnick (1987)). It suffices to prove that,

F−1
W (p) ∼ F−1

1 (p)
d∑
i=1

k
1/α
i , p→ 0+.

Also, P[W ≤ −t] ∈ RV−α (Proposition 7.3 of Resnick (2007)) and apply Propo-

sition 0.8(vi) again. Then it suffices to show as t→∞,

P[W ≤ −t] ∼ P[Y1 ≤ −t]

(
d∑
i=1

k
1/α
i

)α
. (4.19)

Under Assumption 4.1, if Y is also lower tail comonotonic, and C is the copula,

then we have for any y ∈ [0,∞) \ LB,

lim
t→∞

P[Y1 ≤ −ty1, . . . , Yd ≤ −tyd]
P[Y1 ≤ −t]

= lim
t→∞

C
(
F1(−ty1)
F1(−t) F1(−t), . . . , Fd(−tyd)

F1(−t) F1(−t)
)

F1(−t)
= min{k1y

−α
1 , . . . , kdy

−α
d },

(4.20)

where the last equality is due to lower tail comonotonicity of C and uniform con-

tinuity of copula functions (Nelsen, 2006, see). Define a measure µ on E1 as

µ([y1,∞]× · · · × [yd,∞]) := min{k1y
−α
1 , . . . , kdy

−α
d }.

This measure µ only puts mass on the line {(y1, . . . , yd) : k1y
−α
1 = · · · = kdy

−α
d }.

If k1y
−α
1 = · · · = kdy

−α
d =: h, then µ([y1,∞]× · · · × [yd,∞]) = h. Clearly, µ is

Radon and every set [y,∞] is a continuity set. Define

µt(·) :=
P [(−Y1/t, . . . ,−Yd/t) ∈ ·]

P[Y1 ≤ −t]
,
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then by Lemma 4.12 and (4.20),

µt(·)
v→ µ(·), t→∞.

where v→ is vague convergence. Define a set

H :=

(
y ∈ [0,∞) \ LB :

d∑
i=1

yi ≥ 1

)
.

Then clearly, µ(∂H) = 0 and H is relatively compact. Thus by Theorem 3.2 of

Resnick (2007),

µt(H)→ µ(H), t→∞.

That is, letting zi := kiy
−α
i , as t→∞,

P[W ≤ −t]
P[Y1 ≤ −t]

= µt(H)→ min
{
k1y
−α
1 , . . . , kdy

−α
d :

d∑
i=1

yi ≥ 1
}

= µLebesgue

(
z :

d∑
i=1

(z/ki)
−1/α ≥ 1

)
=

(
d∑
i=1

k
1/α
i

)α
,

which justifies (4.19), thus finishing the proof. �

Proof of Proposition 4.14: Let W = −S and Yi = −Xi, i = 1, . . . , d, then

(Y1, . . . , Yd) is lower tail comonotonic. Moreover, since

lim
t→∞

Fi(−t+ a(t)s)/F1(−t) = kie
s

for any s ∈ R and i = 1, . . . , d, taking s = − log ki leads to

VaRp(Yi) ∼ VaRp(Y1)− a(−VaRp(Y1)) log ki, p→ 0+ (4.21)
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Then it suffices to show as t→∞,

P

[
W ≤ −dt− a(t)

d∑
i=1

log ki

]
∼ P[Y1 ≤ −t]. (4.22)

Under Assumption 4.2, if Y is also lower tail comonotonic, and C is the copula,

then we have for any y ∈ (−∞,∞] \ UB,

lim
t→∞

P[Yi ≤ −t− a(t) log ki + a(t)yi, i = 1, . . . , d]

P[Y1 ≤ −t]

= lim
t→∞

C
(
Fi(−t−a(t) log ki+a(t)yi)

F1(−t) · F1(−t), i = 1, . . . , d
)

F1(−t)

= lim
t→∞

C
(
kie

yi−log kiF1(−t), i = 1, . . . , d
)

F1(−t)
= min{ey1 , . . . , eyd}, (4.23)

where the last equality is due to lower tail comonotonicity of C and uniform con-

tinuity of copula functions (Nelsen, 2006). Define a measure µ on E2 as

µ([−∞, y1]× · · · × [−∞, yd]) := min{ey1 , . . . , eyd}.

This measure µ only puts mass on the line {(y1, . . . , yd) : ey1 = · · · = eyd}. If

ey1 = · · · = eyd =: h, then µ([−∞, y1] × · · · × [−∞, yd]) = h. Clearly, µ is

Radon and every set [−∞,y] is a continuity set. Define

µt(·) :=
P [((Y1 + t)/a(t) + log k1, . . . , (Yd + t)/a(t) + log kd) ∈ ·]

P[Y1 ≤ −t]
,

then by Lemma 4.12 and (4.23),

µt(·)
v→ µ(·), t→∞.

where v→ is vague convergence. Define a set

H :=

(
y ∈ (−∞,∞] \ UB :

d∑
i=1

yi ≤ 0

)
.
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Then clearly, µ(∂H) = 0 and H is relatively compact. Thus by Theorem 3.2 of

Resnick (2007),

µt(H)→ µ(H), t→∞.

That is, letting zi := eyi , as t→∞,

P[W ≤ −dt− a(t)
∑d

i=1 log ki]

P[Y1 ≤ −t]
= µt(H)

→ min
{
ey1 , . . . , eyd :

d∑
i=1

yi ≤ 0
}

= µLebesgue

(
z > 0 :

d∑
i=1

log z ≤ 0

)
= 1.

which justifies (4.22) and asymptotic additivity holds. �

Proof of Proposition 4.15: It is well known that under Assumption 4.1 with α > 1,

CTEp(Xi) ∼ α
α−1VaRp(Xi), p → 1−, for i = 1, . . . , d (e.g., Zhu and Li, 2012).

By Theorem 2.1 in Asimit et al. (2011), and Proposition 4.13,

d∑
i=1

CTEp(Xi) ∼
α

α− 1

d∑
i=1

VaRp(Xi) ∼
α

α− 1
VaRp(S) ∼ CTEp(S), p→ 1−,

which completes the proof. �

Proof of Proposition 4.16: It is well known that under Assumption 4.2, CTEp(Xi) ∼
VaRp(Xi), p→ 1− (e.g., Section 3.3.3 of Embrechts et al. (1997)). Also, CTEp(S) ∼
VaRp(S), p → 1− (see (2.15) of Asimit et al. (2011)). Therefore, by Proposition

4.14,

CTEp(S) ∼ VaRp(S) ∼
d∑
i=1

VaRp(Xi) ∼
d∑
i=1

CTEp(Xi), p→ 1−,

which completes the proof. �
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Chapter 5

Tail dependence and
conservativity

5.1 Introduction
Dependence modeling with copulas for multivariate random losses plays an im-

portant role in accounting for a nonlinear dependence structure in insurance and

financial data. For example, the dependence between losses and associated ex-

penses often appears to be asymmetric in upper and lower tails for auto insurance

claim data (Frees and Valdez, 1998).

There are several important statistical issues for dependence modeling with

copulas, such as statistical inference, goodness-of-fit testing and model selection.

Among many others, we refer to Joe (1997), Genest and Favre (2007), Genest et al.

(2009b) and Brechmann et al. (2012) for statistical issues in copula modeling.

When introducing various statistical methodologies into the actuarial commu-

nity, an important question that should not be avoided is the sensitivity of com-

monly used risk measures to statistical modeling. As we know, nice properties

of statistical methodologies are often derived based on certain nice assumptions.

Moreover, there are not sufficient approaches that are tailored for tail risks. It is

very challenging for a statistical method to accurately account for tail risks, espe-

cially when data in the tail are sparse and rare events leading to large losses happen

unexpectedly. Due to the nature of the insurance industry, financial security is par-
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ticularly important. Therefore, in practice, actuaries often need to consider more

conservative modeling when there is less certainty, and conduct scenario testing

accordingly.

In Chapter 4, we have studied a concept of tail comonotonicity, which can be a

property for absolutely continuous copulas so it is not as restrictive as the comono-

tonic copula. Upper tail comonotonic copulas have an upper tail dependence pa-

rameter of 1 in the sense of the usual tail dependence (Joe, 1997, section 2.1.10),

and include the comonotonic copula as well as copulas satisfying the properties of

upper comonotonicity (Cheung, 2009) as special cases; we refer to Dhaene et al.

(2002a,b) for the former concept, and Dong et al. (2010) and Nam et al. (2011)

for further study of the latter concept. For upper comonotonicity, there is a con-

straint of comonotonicity beyond a certain threshold. But with tail comonotonicity,

the constraint applies only for the limit and the data can contribute to the likeli-

hood for the whole support of the copula. For joint non-functional-related losses,

tail comonotonicity is a reasonably conservative assumption. The benefit of tail

comonotonicity is that it introduces a balance between accuracy and security for

assessing dependent tail risks; the less information we have and the larger losses

we care about, the more conservative assumptions are adopted. We refer to Chapter

4 for more relevant research on tail comonotonicity.

If X1 and X2 are dependent losses, two fundamental conditional specifications

E[X1|X2 > t] and E[X1|X2 = t] that are relevant to quantitative risk manage-

ment are the emphasis of this chapter. As t → ∞, for fixed margins, dependence

structures will play a role in ordering the above conditional expectations. Sufficient

conditions that lead to such a comparison have been derived for bivariate copulas;

in particular, for Archimedean copula families, tail behavior of their generators

may affect the asymptotic orders, and tail comonotonicity is proved to be conser-

vative in term of the two conditional specifications. For tail comonotonic copulas,

second order conditions determine the degree of conservativity, and we propose

a way to compare the second order conditions. Other than the two conditional

specifications, tail comonotonicity is also conservative in terms of diversification

effects, thus we refer to tail comonotonicity as an asymptotically worst dependence

structure.

Simulations are conducted to further understand the conditions and their influ-
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ence on risk measures; tail comonotonicity is shown to be conservative as high-risk

scenarios are considered. Finally, an absolutely continuous copula model with tail

comonotonicity is applied to an auto insurance claim data; it was used to assess the

magnitude of associated expenses based on the information of loss.

This chapter is organized as following: Section 5.2 reports results on the two

conditional specifications and second order properties of tail comonotonicity. The

asymptotically worst dependence structure is briefly introduced in Section 5.3.

Some findings of the simulation study are presented in Section 5.4, and a data anal-

ysis with tail comonotonicity is conducted in Section 5.5. Section 5.6 concludes

with discussions, and the proofs are collected in Section 5.7.

5.2 Conditional specifications
For risk management in actuarial science or quantitative finance, one often con-

cerns the influence of risks from an individual asset over the whole portfolio. If

(X1, . . . , Xd) are unbounded dependent losses, then conditional tail expectation

of the forms E[
∑d

i=1Xi|Xk > t] or E[
∑d

i=1Xi|Xk = t] can be used as relevant

risk measures, where t is usually a high quantile of Xk. Due to linearity of proba-

bility expectations, it suffices to study the conditional tail expectation of the forms

E[Xi|Xk > t] or E[Xi|Xk = t] for a given pair of i, k ∈ {1, . . . , d}. For notational

convenience, they are written as the following two forms:

E[X1|X2 > t]; (5.1)

E[X1|X2 = t]. (5.2)

Moreover, these forms of conditional specifications may also be used to model

a univariate time series, such as, E[Xi+1|Xi > t] where copulas can be used to

model the serial dependence between Xi and Xi+1 (Patton, 2009).

The study of these two forms in the literature has been mainly on the influence

of dependence and asymptotic analysis for the threshold t in (5.1) or (5.2) goes to

infinity. For example, Landsman and Valdez (2003) has a formula for (5.1) when

(X1, X2) follows a bivariate elliptical distribution; Zhu and Li (2012), and Chap-

ter 6 conduct asymptotic analysis under the condition of (second order) regular

113



variation.

In this section, we will investigate the effects of dependence structures between

X1 andX2 on these two conditional specifications: E[X1|X2 > t] and E[X1|X2 =

t] as t → +∞. In particular, we will study how conservative tail comonotonicity

is for modeling dependent risks. From Chapters 3 and 4, we know conditions for

Archimedean copulas to be tail comonotonic or satisfy other upper/lower tail prop-

erties. Therefore, we illustrate general results in the special case of Archimedean

copulas. In order to illustrate the conservativity of tail comonotonicity, we will

focus on the bivariate case although tail comonotonicity is a multivariate concept.

For multivariate extensions, the conditional specification can be of the following

forms: E[X1|X2 > t1, . . . , Xd > td] or E[X1|X2 = t1, . . . , Xd = td]. These two

forms may be useful in quantitative risk management for portfolios or constructing

models for multiple regression analysis. However, these multivariate extensions

are harder to analyze and are left for future study.

In this section, X1, X2, Y1 and Y2 are assumed to be absolutely continuous

random variables defined on [0,∞), Xi, Yi ∼ Fi, i = 1, 2, written as X,Y ∈
R(F1, F2), the Fréchet space of all bivariate random vectors whose marginal dis-

tributions are F1 and F2, respectively, and F1, F2 are absolutely continuous and

defined on [0,∞). Furthermore, E[Xi] = E[Yi] < ∞, i = 1, 2. Then sufficient

conditions that lead to the following two asymptotic inequalities will be studied.

Relation (I): E[X1|X2 > t] % E[Y1|Y2 > t], t→∞; (5.3)

Relation (II): E[X1|X2 = t] % E[Y1|Y2 = t], t→∞. (5.4)

In our analysis of the above two conditions, the limits of the conditional dis-

tributions of bivariate copulas will appear, specifically C1|2(u|1) and C1|2(u|0) for

0 < u < 1. If (U, V ) ∼ C, these are the limiting distributions of [U |V = v] as

v → 1− or v → 0+. These limiting conditional distributions appear in the tail

dependence results in Cooke et al. (2011).

With this form of dependence in the tails, C1|2(u|1) = 0 for 0 ≤ u < 1 or

[U |V = 1] degenerates at 1 is the strongest upper tail dependence and C1|2(u|0) =

1 for 0 < u ≤ 1 or [U |V = 0] degenerates at 0 is the strongest lower tail depen-

dence. Note that, this tail dependence form is different from the widely-used form
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of tail dependence defined in Joe (1997, section 2.1.10); we refer to the latter as

“usual tail dependence” in this chapter. Next consider the special case of a bivari-

ate Archimedean copula constructed by a LT ψ. The condition C1|2(u|1) = 0 for

0 ≤ u < 1 occurs when ψ′(0) = −∞; this is also the condition to achieve the

usual upper tail dependence. The condition C1|2(u|0) = 1 for 0 < u ≤ 1 occurs

as 0 < r < 1 under the mild assumption ψ(s) ∼ T (s) = a1s
q exp{−a2s

r} with

a1 > 0, a2 ≥ 0, and ψ′(s) = T ′(s), as s→∞; this matches conditions to achieve

either lower tail dependence or intermediate lower tail dependence, i.e., a lower tail

order of 1 ≤ κ < 2.

5.2.1 The case: E[X1|X2 > t]

Proposition 5.1 Suppose X := (X1, X2), Y := (Y1, Y2) and X,Y ∈ R(F1, F2).

(a) If X ∼ C∗(F1, F2), Y ∼ C(F1, F2) and limv→1− [C∗1|2(u|v)/C1|2(u|v)] < 1

for all 0 < u < 1, then Relation (I) holds. (b) If Ĉ∗ and Ĉ are survival copulas of

C∗ and C, X ∼ Ĉ∗(F1, F2), Y ∼ Ĉ(F1, F2), and limv→0+ [1 − C∗1|2(u|v)]/[1 −
C1|2(u|v)] < 1 for all 0 < u < 1, then Relation (I) holds.

For constructing Relations (I) and (II) for Archimedean copulas, the upper and

lower tail behavior of the following function is critical:

Υ(u) :=
ϕ′(ϕ−1(u))

ψ′(ψ−1(u))
, u ∈ [0, 1], (5.5)

where ψ and ϕ are LTs for the copulas or survival copulas of X and Y. Note that

Υ(0) and Υ(1) are defined as the corresponding limits, provided that the limits

exist.

Corollary 5.2 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2), and

their dependence structures are C∗ and C that are bivariate Archimedean copulas

constructed as in (2.4) with LTs ψ and ϕ, respectively. If Υ(1) exists and Υ(u) >

Υ(1) for any 0 < u < 1, then Relation (I) holds.

Remark 5.1 The condition (5.12) in the proof of Proposition 5.1 holds if C∗ is

larger than C in the PQD or concordance ordering (Joe, 1997; Shaked and Shan-

thikumar, 2007). The concordance ordering holds for copulas from a single com-
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monly used 1-parameter bivariate copula family, but Proposition 5.1 and Corollary

5.2 can also be applied to two copulas from two different parametric families, as

shown in Example 5.1.

Remark 5.2 The condition Υ(u) > Υ(1) is the same as ξ′(s) > ξ′(0), where ξ =

ψ−1 ◦ ϕ. For concordance ordering of the two Archimedean copulas, a sufficient

condition is ξ convex or ξ′(s) increasing in s (Joe, 1997, Corollary 4.2). So the tail

comparison here is satisfied with the weaker condition.

Example 5.1 (a) (bivariate MTCJ vs Gumbel). The MTCJ copula is based on

the gamma LT (1 + s)−1/δM for δM > 0 and the Gumbel copula is based on

the positive stable LT exp{−s−1/δG} for δG > 1. Suppose the parameters for

MTCJ and Gumbel copulas are δM and δG, respectively, and the LTs are ϕ and ψ,

respectively. Then Υ(u) = (δG/δM )uδM (− log u)δG−1, and Υ(u) > Υ(1) = 0

for any 0 < u < 1. So if (X1, X2) has an arbitrary Gumbel copula and (Y1, Y2)

has an arbitrary MTCJ copula, and Xi, Yi ∼ Fi, i = 1, 2, Relation (I) must hold.

This case is not surprising as the Gumbel copula has upper tail dependence for any

δG > 1 and the MTCJ has upper tail order of 2 (upper tail independence) for any

δM > 0. That is, the Gumbel copula has more probability in the upper tail and

C
∗
(u, v; δG) ≥ C(u, v; δM ) or equivalently C∗(u, v; δG) ≥ C(u, v; δM ) for (u, v)

in an upper set SδG,δM that can include most of [0, 1]× [v0, 1] for some v0 near 1.

(b) (Joe/B5 vs Gumbel). The Joe/B5 copula is based on the Sibuya LT 1− (1−
e−s)1/δJ for δJ > 1. This also has upper tail dependence so the comparison with

Gumbel requires a careful check of the conditions in Proposition 5.1. Let CJoe

and CGum denote these two copula families. Using the conditional distributions

on page 147 of Joe (1997), as v → 1−,

CJoe1|2 (u|v; δJ)

CGum1|2 (u|v; δG)
∼ (1− u)−δJ+1{1− (1− u)δJ}

u(− log u)−δG+1
· (1− v)δG−δJ .

The limit is 0 if δG > δJ and ∞ if δG < δJ and finite if δG = δJ . In the latter

case, the ratio is shown numerically to be > 1 for 0 < u < 1. Therefore if

δG = δJ = δ > 1 and C∗ = CGum(; δ), C = CJoe(; δ), (X1, X2) ∼ C∗(F1, F2),

(Y1, Y2) ∼ C(F1, F2), then Relation (I) must hold.
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For applications in insurance and finance, we often need to consider a copula

that has upper tail dependence. In Table 5.1, we summarize the comparison in the

sense of Corollary 5.2 for some commonly used upper tail dependent copulas.

Table 5.1: Comparisons between Gumbel, Joe, BB1 and BB7 copula families

Copula Parameter(s) ψ′δ(ψ
−1
δ (u)) Domination term as u→ 1−

Gumbel 1 ≤ δ − 1
δ
u(− log u)1−δ (− log u)1−δ ∼ (1− u)1−δ

Joe 1 ≤ δ − 1
δ
(1− u)1−δ[1− (1− u)δ] (1− u)1−δ

BB1 1 ≤ δ; 0 < θ − 1
θδ
uθ+1(u−θ − 1)1−δ (u−θ − 1)1−δ ∼ θ1−δ(1− u)1−δ

1 BB7 1 ≤ δ; 0 < θ − 1
θδ
(1− u)1−δ[1− (1− u)δ]1+θ (1− u)1−δ

1. The notation of δ, θ is exchanged from their original form in Joe (1997).

Note that the upper tail dependence parameters for all of the copulas in Table

5.1 are 2− 21/δ. The following result tells us how to use Table 5.1. It includes part

(b) of Example 5.1 as a special case.

Corollary 5.3 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2), and

their dependence structures are copulas C∗, C ∈ {Gumbel, Joe,BB1, BB7}. If

δ∗ > δ, that is, the upper tail dependence parameters λ∗ > λ, then Relation (I)

holds.

For modeling dependent risks, we often need to reflect a copula to get its sur-

vival copula. Now we consider the condition in the sense of Corollary 5.2 when

survival Archimedean copulas are used to model the risks.

Proposition 5.4 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),X ∼
Ĉ∗(F1, F2) and Y ∼ Ĉ(F1, F2), where C∗ and C are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If ψ−1 ◦ ϕ(s) is strictly convex

for large s, and in particular, if Υ(u) is strictly decreasing in u near 0, then Rela-

tion (I) holds.

Remark 5.3 The above result is on the ordering in the lower tail of two copulas.

For the concordance ordering of Archimedean copulas Cψ and Cϕ, a sufficient

condition is that ψ−1 ◦ϕ is superadditive (Joe, 1997, Theorem 4.1), which holds if

ψ−1 ◦ ϕ is convex due to ψ−1(ϕ(0)) = 0 (Marshall and Olkin, 2007, Proposition
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A.11). Obviously, when ψ−1 ◦ ϕ is superadditive, Relation (I) must hold. But the

condition in Proposition 5.4 only requires the superadditive inequality where one

argument is large and the other is arbitrary, and this can be checked via the behavior

of Υ(u) as u→ 0+.

From Corollary 5.2 and Proposition 5.4, the tail behavior of ψ′(ψ−1(u)) for

u → 1− and u → 0+ determine the upper and lower tail association in the sense

of Relation (I). So we list in Table 5.2 the conditions for commonly used 1- or

2-parameter Archimedean copulas that appear in Joe (1997). By looking at the

conditions listed in Table 5.2, we can easily compare the conditional tail expecta-

tions in the sense of Proposition 5.4 (or Corollary 5.2). Those conditions will also

be used in the next subsection for establishing Relation (II).

Example 5.2 (BB3 vs BB2) As u → 0+, observed from Table 5.2, the term

e−δ(u
−θ−1) for BB2 and the term e−δ(− log u)θ for BB3 dominate the condition in

Proposition 5.4 for comparing these two copulas. It is clear that the former term

goes to 0 much faster than the latter as u → 0+. Therefore, if C∗ is BB2 and

C is BB3, and Ĉ∗ and Ĉ are copulas for X and Y respectively, then Relation (I)

holds. It is also consistent to the fact that BB2 is more lower tail positive depen-

dent than BB3 below a sufficiently low threshold, although they are both lower tail

comonotonic (see Chapter 4).

Table 5.2 shows that ψ′(ψ−1(0)) ≡ 0 for all of the Archimedean copula fam-

ilies listed, which reminds us of the following fact: suppose ψ(s) is the LT of a

positive random variable, then ψ(n)(s)→ 0 as s→∞ for n = 1, 2, . . . .

The following lemmas are the Monotone Density Theorem (Bingham et al.,

1987; Embrechts et al., 1997) applied to slowly varying functions.

Lemma 5.5 Let ` ∈ RV0 and `(s) =
∫ s

0 `
′(u)du (or `(s) =

∫∞
s `′(u)du). If `′(s)

is ultimately monotone as s→∞, then `′(s) = o(s−1`(s)), s→∞.

Lemma 5.6 Let ` ∈ RV0(0+) and `(s) =
∫ s

0 `
′(u)du. If `′(s) is ultimately mono-

tone as s→ 0+, then `′(s) = o(s−1`(s)), s→ 0+.
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Table 5.2: Condition ψ′(ψ−1(u)) for parametric Archimedean copula fami-
lies

Copula Parameter(s) ψ′(ψ−1(u))

Frank(B3) 0 ≤ δ (1/δ)(1− eδu)
MTCJ(B4) 0 ≤ δ −(1/δ)u1+δ

Joe(B5) 1 ≤ δ −(1/δ)(1− u)1−δ[1− (1− u)δ]
Gumbel(B6) 1 ≤ δ −(1/δ)u(− log u)1−δ

BB1 1 ≤ δ; 0 < θ −(1/(θδ))uθ+1(u−θ − 1)1−δ

BB2 0 < δ, θ −(1/(θδ))u1+θe−δ(u
−θ−1)

BB3 0 < δ; 1 ≤ θ −(1/(θδ))u(− log u)1−θe−δ(− log u)θ

BB6 1 ≤ δ, θ −(1/(θδ))(1− u)1−θ[1− (1− u)θ][− log[1− (1− u)θ]]1−δ
1 BB7 1 ≤ δ; 0 < θ −(1/(θδ))(1− u)1−δ[1− (1− u)δ]1+θ

BB8 0 < δ ≤ 1; 1 ≤ θ −(1/(θδ))(1− δu)1−θ + (1/(θδ))(1− δu)
BB9 0 ≤ α; 1 ≤ θ −(1/θ)u(α− log u)1−θ

BB10 0 < α; 0 ≤ θ ≤ 1 −αu− αθ(1− θ)−1u1+1/α

1. The notation of δ, θ is exchanged from their original form in Joe (1997).

The following two results establish that tail comonotonicity is conservative in

the sense of Relation (I). By Proposition 4.3, the condition 1 − ψ ∈ RV0(0+) in

Corollary 5.7 implies that the Archimedean copula Cψ is upper tail comonotonic,

and the condition ψ ∈ RV0 in Corollary 5.8 implies that the Archimedean copula

Cψ is lower tail comonotonic.

Corollary 5.7 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2), and

their dependence structures are C∗ and C that are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If 1 − ψ ∈ RV0(0+) and

lim infs→0+(−sϕ′(s))/(1− ϕ(s)) > 0, then Relation (I) holds.

Corollary 5.8 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),X ∼
Ĉ∗(F1, F2) and Y ∼ Ĉ(F1, F2), where C∗ and C are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If Υ(u) is ultimately monotone

as u → 0+, ψ ∈ RV0 and lim infs→∞(−sϕ′(s))/(ϕ(s)) > 0, then Relation (I)

holds.
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Remark 5.4 The conditions

lim inf
s→0+

(−sϕ′(s))/(1− ϕ(s)) > 0 (for copula upper tail),

lim inf
s→∞

(−sϕ′(s))/ϕ(s) > 0 (for copula lower tail)

cover tail dependence, intermediate tail dependence and tail orthant independence

cases. For instance, for the case of lower tail, let π := − lims→∞(sϕ′(s))/ϕ(s),

then π = 0 is tail comonotonicity, 0 < π <∞ corresponds to tail dependence and

π =∞ leads to intermediate tail dependence or near independence (tail order κ =

d). We refer to Charpentier and Segers (2009) and Chapter 3 for a comprehensive

study of tail behavior of Archimedean copulas.

5.2.2 The case: E[X1|X2 = t]

In this subsection, we have some parallel results to the previous subsection by

conditioning on X2 = t instead of X2 > t.

Proposition 5.9 Suppose X := (X1, X2), Y := (Y1, Y2) and X,Y ∈ R(F1, F2).

(a) If X ∼ C∗(F1, F2), Y ∼ C(F1, F2) and limv→1− [C∗1|2(u|v)/C1|2(u|v)] < 1

for all 0 < u < 1, then Relation (II) holds. (b) If Ĉ∗ and Ĉ are survival copulas of

C∗ and C, X ∼ Ĉ∗(F1, F2), Y ∼ Ĉ(F1, F2) and limv→0+ [1 − C∗1|2(u|v)]/[1 −
C1|2(u|v)] < 1 for all 0 < u < 1, then Relation (II) holds.

Corollary 5.10 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),

and their dependence structures are C∗ and C that are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If Υ(1) exists and Υ(u) > Υ(1)

for any 0 < u < 1, then Relation (II) holds.

Corollary 5.11 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),X ∼
Ĉ∗(F1, F2) and Y ∼ Ĉ(F1, F2), where C∗ and C are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If ψ−1 ◦ ϕ(s) is strictly convex

for large s, and in particular if for u sufficiently small, Υ(u) is strictly decreasing

in u, then Relation (II) holds.
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Corollary 5.12 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),

and their dependence structures are C∗ and C that are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If 1 − ψ ∈ RV0(0+) and

lim infs→0+(−sϕ′(s))/(1− ϕ(s)) > 0, then Relation (II) holds.

Corollary 5.13 Suppose X := (X1, X2), Y := (Y1, Y2), X,Y ∈ R(F1, F2),X ∼
Ĉ∗(F1, F2) and Y ∼ Ĉ(F1, F2), where C∗ and C are Archimedean copulas con-

structed as in (2.4) with LTs ψ and ϕ, respectively. If Υ(u) is ultimately monotone,

ψ ∈ RV0 and lim infs→∞(−sϕ′(s))/(ϕ(s)) > 0, then Relation (II) holds.

5.2.3 Second order conditions and conservativity

From Example 5.2, we notice that BB2 in general has a stronger positive associa-

tion in the lower tail than BB3, although BB2 and BB3 are both lower tail comono-

tonic. In this subsection, we will study second order conditions under which tail

comonotonicity may appear various strength of lower tail dependence.

Suppose that copula C is lower tail comonotonic, if there exist auxiliary func-

tions A(t), B(t) such that

lim
u→0+

B
(
C(uw1,...,uwd)

u −min(w1, . . . , wd)
)

A(u)
= H(w1, . . . , wd) 6≡ 0, w > 0,

(5.6)

then the speed of convergence can be characterized by the auxiliary functions A(t)

and B(t).

Second order conditions may play an important role in modeling high-risk sce-

narios. We refer to Degen et al. (2010) and Chapter 6 for relevant studies under

the condition of second order regular variation (de Haan and Stadtmüller, 1996).

The idea here is similar to second order regular variation, but the auxiliary func-

tions A(t) and B(t) may have various forms other than a power function as in the

second order regular variation.

Lemma 5.14 Let C be a d-dimensional Archimedean copula constructed with LT

ψ ∈ RV0 as in (2.4). Letting w∗ := min{w1, . . . , wd}, and w∗ is unique in w,
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then as u→ 0+,

C(uw1, . . . , uwd) ∼ uw∗ + ψ′(ψ−1(uw∗))

×
∑

i∈{j:wj 6=w∗}

(
ψ−1(uwi)

)
=: uw∗ + ε(u,w),

where the second order term ε(u,w) = o(u), u→ 0+.

Based on Lemma 5.14, one can obtain concrete forms of second order terms.

The following are examples for the bivariate case of BB2 and BB3, for which the

auxiliary functions have simple forms. The derivation is straightforward by using

Lemma 5.14, thus omitted.

Example 5.3 (BB2) The auxiliary functions for BB2 copula are

A(t) = t−θ, θ > 0,

B(t) = log |t|;

that is,

lim
u→0+

log
∣∣∣Cψ(uw1,uw2)

u −min(w1, w2)
∣∣∣

u−θ
=: H(w1, w2) = −δ|w−θ1 − w

−θ
2 |.

Therefore, θ is the second order parameter that dominates the speed of conver-

gence.

Example 5.4 (BB3) The auxiliary functions for BB3 copula are

A(t) = (− log t)θ−1, θ > 1,

B(t) = log |t|;

that is,

lim
u→0+

log
∣∣∣Cψ(uw1,uw2)

u −min(w1, w2)
∣∣∣

(− log u)θ−1
=: H(w1, w2) = −δθ| logw1 − logw2|.
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So θ is the second order parameter.

For statistical inference with BB2 or BB3 in the lower tail, if we want to reduce

the number of the parameters we can also consider to simply assume δ to be a fixed

number, say δ = 0.01 or δ = 0.1. From computational experiments, we find

that there are some redundancies when we involve the parameter δ. For both BB2

and BB3, when θ is larger, both u−θ and (− log u)θ−1 converges to +∞ faster as

u→ 0+ and the copula has more positive dependence at the lower sub-extreme.

By looking at the auxiliary functions of BB2 and BB3, we may also conclude

that BB2 is more lower tail positive dependent than BB3 below a sufficiently low

threshold, which is consistent to Example 5.2. The reason is due to u−θBB2 goes

to +∞ faster than (− log u)θBB3−1 as u → 0+, and this just implies that the con-

vergence of CBB2(uw1, uw2)/u → min{w1, w2} is faster than the convergence

of CBB3(uw1, uw2)/u→ min{w1, w2}, as u→ 0+.

5.3 Asymptotically worst dependence structures
As we have shown in Section 5.2, tail comonotonicity affects the conditional spec-

ifications. Moreover, tail comonotonicity may also influence risk measures for

aggregate losses. For instance, if Xi
d
= Yi, i = 1, . . . , d, and the dependence struc-

tures of (X1, . . . , Xd) and (Y1, . . . , Yd) are different, then risk measures on
∑
Xi

and
∑
Yi may be different, although they have the same marginal distributions.

In this section, we will briefly study an asymptotically worst dependence concept

brought about by tail comonotonicity.

Let X = (X1, . . . , Xd) be a d-dimensional real-valued random vector, with

univariate cdf’s F1, . . . , Fd. The Fréchet space containing all the random vectors

that possess these margins is denoted as R(F1, . . . , Fd). Suppose g : Rd → R
is an aggregate function, and Qp : R → R+ is a quantile based risk measure,

where p is the probability level and is usually close to 1. Then X is said to have an

asymptotically worst dependence structure in terms of the risk measure Qp and the

aggregate function g, if for any X′ ∈ R(F1, . . . , Fd),

Qp[g(X)] & Qp[g(X′)], p→ 1−. (5.7)

123



Note that, in Mainik and Rüschendorf (2012), an asymptotic ordering called asymp-

totic portfolio loss order has been used to compare the tail probabilities of two

portfolios.

In this section, we will study situations where tail comonotonicity becomes an

asymptotically worst dependence structure. For the choice of risk measures, we

restrict ourself to VaR and CTE.

For aggregate functions, we only consider the case where g(x1, . . . , xd) =∑d
i=1 xi. Then this concept is also relevant to conservative assessments for diver-

sification effects of risk aggregation.

5.3.1 Conditional tail expectation

Assumption 5.1 Let X be an upper tail comonotonic non-negative random vector

with continuous marginal distributions F1, . . . , Fd defined on [0,∞) such that 1−
Fi(t) ∈ RV−α with α > 1, and

lim
t→∞

[1− Fi(t)]/[1− F1(t)] = ki, 0 < ki <∞

for any i = 1, . . . , d.

The next result shows that tail comonotonicity is an asymptotically worst depen-

dence structure for tail equivalent random variables that have regularly varying

upper tails.

Proposition 5.15 If X satisfies Assumption 5.1, then for any X′ ∈ R(F1, . . . , Fd),

CTEp(X1 + · · ·+Xd) & CTEp(X ′1 + · · ·+X ′d), p→ 1−.

In this sense, upper tail comonotonicity provides a conservative dependence

structure.

Assumption 5.2 Let X be an upper tail comonotonic non-negative random vec-

tor with continuous marginal distributions F1, . . . , Fd defined on [0,∞) and there
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exists a positive measurable function a(·) such that

lim
t→∞

1− Fi(t+ a(t)s)

1− Fi(t)
= es, ∀s ∈ R, (5.8)

and limt→∞[1− Fi(t)]/[1− F1(t)] = ki with 0 < ki <∞ for any i = 1, . . . , d.

Due to Proposition 4.16, we also have the following result.

Proposition 5.16 If X satisfies Assumption 5.2, then for any X′ ∈ R(F1, . . . , Fd),

CTEp(X1 + · · ·+Xd) & CTEp(X ′1 + · · ·+X ′d), p→ 1−.

5.3.2 Value at risk

Based on Propositions 4.13 and 4.14, it suffices to find conditions on the depen-

dence structure for X, where the margins are specified by either Assumptions A

or B, so that VaRp becomes subadditive as p is in a left-neighbor of 1. It is well

known that, in general VaR is not subadditive. However, with certain regularity

conditions, VaR may also be subadditive; the study of the regularity conditions has

been an important topic in the literature but is out of the scope of this chapter. In

what follows, some results for asymptotically worst dependence structure in terms

of VaR will be given. Those are based on known facts of situations where VaR

becomes (asymptotically) subadditive.

Proposition 5.17 Let X′ = (X ′1, . . . , X
′
d) ∈ MRVd(−β), β > 1, with identically

distributed margins on [0,∞), and X is upper tail comonotonic withXi
d
= X ′i, i =

1, . . . , d. Then

VaRp(X1 + · · ·+Xd) & VaRp(X ′1 + · · ·+X ′d), p→ 1−.

For marginal distributions that are in the Maximum Domain of Attraction of

Gumbel, subadditivity of VaR may hold for multivariate elliptical distributions

(McNeil et al., 2005, Theorem 6.8). So the following result holds.
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Proposition 5.18 Let X′ = (X ′1, . . . , X
′
d) be a d-dimensional elliptical distribu-

tion where the margins satisfying (5.8) with support (−∞,∞), and X is upper tail

comonotonic with Xi
d
= X ′i, i = 1, . . . , d. Then

VaRp(X1 + · · ·+Xd) & VaRp(X ′1 + · · ·+X ′d), p→ 1−.

5.4 Simulation study
In this section, we report on simulations to illustrate the conservativity of tail

comonotonicity in terms of E[X1|X2 > VaRp(X2)], E[X1|X2 = VaRp(X2)],

VaRp(X1 +X2) and CTEp(X1 +X2) as p→ 1−, respectively.

5.4.1 Conditional specifications

Now we compare the effects on E[X1|X2 > VaRp(X2)] and E[X1|X2 = VaRp(X2)]

for different Archimedean copulas. Comonotonicity and the survival copulas of

BB2, MTCJ, Gumbel and Frank (denoted as s.BB2, s.MTCJ, s.Gumbel and s.Frank)

are used to model the dependence structures of two marginsX1 andX2; that is, the

strength of upper tail positive dependence are different. From Chapter 3, consider-

ing both tail order and tail dependence parameters, the strength of dependence in

the upper tail can be ordered as:

Comonotonicity � s.BB2 � s.MTCJ � s.Gumbel � s.Frank. (5.9)

Choosing parameters for these Archimedean copulas to have the same Blomqvist’s

β (since MLEs for different copula families often lead to a similar Blomqvist’s β),

we can compare the values of E[X1|X2 > VaRp(X2)] or E[X1|X2 = VaRp(X2)]

for different Archimedean copulas. Figures 5.1 and 5.2 contain the plots for the

two conditional specifications, respectively, with p ranging from 80% to 99%; this

range is most relevant for applications. The calculations were based on numerical

integration through Monte Carlo simulations. For both figures, the copula param-

eters used in the simulation were the following: BB2: δ = 2, θ = 0.4; MTCJ:

δ = 1.424; Gumbel: δ = 1.729 and Frank: δ = 3.844. The common Blomqvist’s

β was 0.421.
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From Figure 5.1, it is interesting that, when p is sufficiently large (say, p ≥ 80%

for the plots), the order of the values of E[X1|X2 > VaRp(X2)] is the same as the

order in (5.9). Moreover, the same pattern can be observed regardless of the mar-

gins. The pattern for Figure 5.2 is different than that for E[X1|X2 > VaRp(X2)].

But when p is sufficiently large (say, p ≥ 95% in this example), the rank of

E[X1|X2 = VaRp(X2)] is still kept as the same as (5.9).

Based on these comparisons, the BB2 tail comonotonic copula is reasonable

and better than the usual comonotonicity when considering a relatively lower prob-

ability level p where more data are available. However, as less data are available

when considering a higher probability level, the tail comonotonic copula becomes

more conservative and approaches the upper bound provided by the usual comono-

tonicity. This kind of conservatism makes more sense for quantitative risk man-

agement.

5.4.2 Asymptotically worst dependence structures

To illustrate the idea of applying tail comonotonicity for a reasonably conservative

modeling of high-risk scenarios, we generated a bivariate data with s.BB1 as the

copula and standard Pareto as the margins. We transformed the data to rank scores

and fitted these bivariate rank scores by copulas that possess upper tail dependence,

such as t, Gumbel, s.BB2 and s.BB3 copulas. The estimation was based on max-

imum quasi-likelihood estimation and the margins are assumed to be given. The

Monte Carlo method was then used to approximate the corresponding VaRs and

CTEs, based on the fitted copulas and the known margins.

Table 5.3 and 5.4 present comparisons between different copulas, for the cases

of more dependence and less dependence, respectively. The margins were standard

Pareto distributions with cdf F (x) = 1 − x−3. For each run, the sample size was

105 and “se”, the simulation error for the Monte Carlo method was based on 1, 000

runs. In the tables, “ind” is for the independent case, “s.BB1.o” means s.BB1 is

the true model, and λ is the corresponding upper tail dependence parameter.

Table 5.3 shows that: (1) Overlooking the dependence between margins will

seriously underestimate the aggregate risks. (2) The Gumbel copula has the small-

est AIC, but it underestimates the risks. (3) The BB2 and BB3 copulas overesti-
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Figure 5.1: The value of y-axis is E[X1|X2 > VaRp(X2)]. In the first
plot, X1, X2 have Exponential distributions with cdf F (x) = 1 −
Exp(−x/σ). In the second plot, X1, X2 have Pareto distributions with
cdf F (x) = 1− (1 + x/σ)−θ.
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Figure 5.2: The value of y-axis is E[X1|X2 = VaRp(X2)]. In the first
plot, X1, X2 have Exponential distributions with cdf F (x) = 1 −
Exp(−x/σ). In the second plot, X1, X2 have Pareto distributions with
cdf F (x) = 1− (1 + x/σ)−θ.
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mate the risk a little bit and could provide a reasonable conservative estimate for

this case, especially when the probability level p is very high. (4) The tail depen-

dence parameters seem relevant to the magnitude of the aggregate risks: a higher

tail dependence parameter tends to lead to a larger aggregate risk, especially when

the probability level is quite high. This also suggests that tail comonotonicity is

conservative under some conditions. Comparing Tables 5.3 and 5.4, we can also

find that overestimation arising from tail comonotonicity is milder for the case of

stronger tail dependence than for the case of less tail dependence.

Table 5.3: (More dependence) VaR and CTE for X1 + X2. The MLEs
were based on the whole sample generated from s.BB1 (δ = 1.57, θ =
1.68, λ = 0.77, more dependence) with a sample size of 2000. The bold
AIC value is the smallest.

VaR90 VaR995 CTE90 CTE995 AIC λ

ind 4.084 8.949 5.532 12.631 - -
se <0.001 0.003 0.001 0.010

s.BB1.o 4.270 11.573 6.400 17.369 - 0.77
se <0.001 0.005 0.001 0.017
t 4.269 11.275 6.315 16.842 -2678.4 0.53

se <0.001 0.005 0.001 0.016
Gumbel 4.272 11.537 6.389 17.289 -2887.7 0.73

se <0.001 0.005 0.001 0.016
s.BB2 4.279 11.616 6.419 17.411 -2737.6 1

se <0.001 0.005 0.001 0.017
s.BB3 4.263 11.643 6.416 17.440 -2782.7 1

se <0.001 0.005 0.001 0.016

With the same simulation settings, we repeated the experiment for 40 times.

Table 5.5 is a summary of these simulations. The approach is conservative only

when the probability level is very high (say, > 99%). With a moderately high

probability level, say, 90%, this approach would be not conservative. Moreover,

tail comonotonicity worked better for the case where the original dependence is

actually stronger.
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Table 5.4: (Less dependence) VaR and CTE for X1 + X2. The MLEs were
based on the whole sample generated from s.BB1 (δ = 2, θ = 0.4, λ =
0.42, less dependence) with a sample size of 2000. The bold AIC value
is the smallest.

VaR90 VaR995 CTE90 CTE995 AIC λ

ind 4.083 8.951 5.531 12.641 - -
se <0.001 0.004 0.001 0.010

s.BB1.o 4.252 11.094 6.249 16.515 - 0.42
se <0.001 0.005 0.001 0.015
t 4.262 11.100 6.261 16.465 -2099.0 0.39

se <0.001 0.005 0.001 0.015
Gumbel 4.245 11.417 6.331 17.105 -1946.5 0.65

se <0.001 0.006 0.001 0.015
s.BB2 4.234 11.480 6.345 17.225 -1574.3 1

se <0.001 0.005 0.001 0.016
s.BB3 4.217 11.192 6.220 16.994 -2054.5 1

se <0.001 0.005 0.001 0.017

5.5 Application on a claim dataset
We now illustrate how tail comonotonicity can be used in real applications with the

dataset of Loss (X2) versus Allocated Loss Adjustment Expense (ALAE) (X1) that

has been studied in the literature such as Frees and Valdez (1998), and Klugman

and Parsa (1999). The margins will be fitted by a Pareto distribution with the

following distribution function (same as in Frees and Valdez (1998)) F (x) = 1 −
(1 + x/σ)−θ. Its density and inverse functions are f(x) = (θ/σ) (1 + x/σ)−θ−1

and F−1(x) = σ(1− x)−1/θ − σ. In addition to the Gumbel copula fitted in Frees

and Valdez (1998), we use s.BB2 as a conservative model to fit the dependence

structure as well.

ALAE for auto insurance claims often involves legal expenses that could be

very large. Just like the current dataset, for a relatively small amount of loss, the

ALAE can be very large and there are usually no limits that can be set for the

expense. If one wants to assess the risk of future total loss and expense, one way is

to think that the historical dataset reflects the future claims. However, this method

may be too optimistic and does not account for the uncertainty beyond the historical

dataset.
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Table 5.5: VaR and CTE for X1 + X2. The first 4 columns of values are the
means of corresponding quantities calculated from 40 random samples
generated from the same settings as before. The rest are frequency of
those quantities being greater than those for s.BB1.o. (A: more depen-
dent, large sample size; B: less dependent, large sample size; C: more
dependent, small sample size; D: less dependent, small sample size.
More dependence: δ = 1.57, θ = 1.68, λ = 0.77; less dependence:
δ = 2, θ = 0.4, λ = 0.42. Large sample: N = 2000; small sample:
N = 50.)

VaR90 VaR995 CTE90 CTE995 VaR90 VaR995 CTE90 CTE995
A s.BB1.o 4.270 11.574 6.400 17.365

t 4.266 11.281 6.313 16.845 2 0 0 0
Gumbel 4.270 11.536 6.387 17.303 15 0 0 0

s.BB2 4.277 11.612 6.417 17.423 40 40 40 40
s.BB3 4.249 11.643 6.408 17.490 0 40 33 40

B s.BB1.o 4.251 11.090 6.247 16.510
t 4.257 11.093 6.255 16.488 38 21 35 13

Gumbel 4.243 11.397 6.324 17.085 0 40 40 40
s.BB2 4.230 11.462 6.337 17.198 0 40 40 40
s.BB3 4.219 11.168 6.218 16.960 0 31 1 40

C s.BB1.o 4.270 11.573 6.399 17.355
t 4.263 11.279 6.310 16.818 18 0 0 0

Gumbel 4.270 11.530 6.385 17.293 18 8 10 9
s.BB2 4.274 11.624 6.421 17.439 23 34 34 34
s.BB3 4.253 11.620 6.398 17.459 15 35 24 36

D s.BB1.o 4.251 11.087 6.247 16.499
t 4.255 11.129 6.262 16.527 22 26 26 22

Gumbel 4.248 11.420 6.335 17.120 15 40 40 40
s.BB2 4.236 11.529 6.359 17.298 9 40 40 40
s.BB3 4.228 11.325 6.279 17.062 7 32 25 36

We now remove the data where ALAE is among the 1% largest, pretending

that we have not observed those large values yet. Then we use a Pareto dis-

tribution to fit the margins for the rest of the dataset, and use the Gumbel and

s.BB2 copulas to fit the dependence structure, respectively. Then simulations

based on the two fitted models will be used to assess high senario risks in terms

of E[ALAE|LOSS ≥ VaRp(LOSS)]; the results for the Gumbel, s.BB2 copulas,

and empirical assessement based on the data will be compared. See Figure 5.3 for

a comparison, where calculations were based on the mean of 40 simulations, and
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for each simulation a random sample of size 106 was used. When the number of

simulations was about 40, the mean became stable.

First, we fit the two margins separately and get the estimates (Table 5.6). Com-

pared to the estimates for the original data (replicated from Frees and Valdez

(1998)), the upper tails of both X1 and X2 become a bit lighter (because of larger

θ̂).

Table 5.6: Estimates for margins with/without 1% largest ALAE removed

LOSS(X2) ALAE(X1)
Data Parameters Estimate Standard error Estimate Standard error

1% removed σ 17189 1714 21686 2964
θ 1.310 0.082 3.045 0.323

original σ 14453 1397 15133 1633
θ 1.135 0.066 2.223 0.175

Then we assume that the margins are known as what we have estimated in Table

5.6 and plug them into likelihood functions. Considering there are 31 (originally

34) right-censored loss data (X2), the likelihood contributed by a right-censored

data value (x1, x2) is

f1(x1)− (∂1F )(x1, x2) = f1(x1)
(
1− C2|1(F2(x2)|F1(x1))

)
.

The estimation is reported in Table 5.7, and a comparison for different models

is illustrated in Figure 5.3. From this example, we can observe that, as the prob-

ability level p is very large (eg, 99.5%), “empirical” is not able to extrapolate the

increasing trend from the original data and even gives a counter-intuitive decreas-

ing trend, but s.BB2 leads to a reasonable extrapolation beyond the original data

although s.BB2 was fitted based on the data with the 1% largest removed. The

Gumbel copula seems to be reasonably good as well but has a limited ability in

extrapolation compared with s.BB2. In this particular example, s.BB2 outperforms

the other models and provides reasonable extrapolation into high-risk scenarios.

Furthermore, the choice of δ controls the degree of conservativity of s.BB2.
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Table 5.7: Comparison between the s.BB2 and Gumbel copulas: from the
second order condition of BB2, we know that θ is the second order pa-
rameter that dominates the tail behavior of the copula. If we fit δ, θ of
s.BB2 simultaneously for the data, then the MLE of δ tends to be very
close to 0; that is, s.MTCJ could better fit the data than s.BB2 (since as
δ → 0, BB2 becomes MTCJ). But s.MTCJ will lose the asymptotic full
dependence structure. The aim of this comparison is not to find the best
fitting copula but to study how conservative s.BB2 is. So we fix two val-
ues for the parameter δ for s.BB2 (δ = 0.01, 0.1), and then obtain the
MLEs of θ.

Model Parameters Estimate Standard error Blomqvist’s β
s.BB2(δ = 0.01) θ 0.679 0.041 0.254
s.BB2(δ = 0.10) θ 0.520 0.026 0.226

Gumbel δ 1.399 0.028 0.283

5.6 Discussion
“Essentially, all models are wrong, but some are useful.” (Box and Draper, 1987).

By showing the conservativity of tail comonotonicity and its usage in accounting

for unexpected rare events (especially with the promising result illustrated in Fig-

ure 5.3), we are not conveying the information that tail comonotonicity is better

than other candidate models. Through this study, we hope to be able to raise an

issue that has not been attracted enough attention, but may be useful in dependence

modeling when one has to assess dependent large risks relying on insufficient in-

formation. Since there are very few insurance claim datasets available to the aca-

demic researchers and actuaries, more empirical evidence for the usefulness of tail

comonotonicity must be welcome.

An absolutely continuous copula that is tail comonotonic can provide more re-

alistic conservative bounds on risk measures than the comonotonic copula. Of the

simple 2-parameter bivariate copula families, the BB2 family is the most tail asym-

metric with lower tail comonotonicity and upper tail independence (upper tail order

2). The BB3 copula is also lower tail comonotonic but has upper tail dependence.

As shown in Example 5.2 and Section 5.2.3, BB3 has a slower rate of convergence

to the limiting comonotonic tail dependence function. It is shown that the survival
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Figure 5.3: The value of y-axis is E[ALAE|LOSS ≥ VaRp(LOSS)]. “Empir-
ical” is based on the data with the 1% largest removed; “Empirical0” is
based on the original data.
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BB2 copula family provides conservative bounds as a model for bivariate loss data

if in fact there is upper tail dependence but not tail comonotonicity. The survival

BB3 copula family may also provide bounds if one does not want to use a copula

as conservative as BB2.

When a tail comonotonic copula is used to provide a data-driven conservative

dependence structure, it is suggested to first fit the margins separately then fit the

copula based on the uniform scores derived from the fitted margins. If one wants

to fit the copula and margins simultaneously, misspecification of the copula model

may affect the estimation for margins severely. Moreover, under such a situation,

computation may become more complicated.

For multivariate loss data, one can use multivariate extensions of the BB2 and
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BB3 copulas. The BB2 and BB3 families are bivariate Archimedean copulas based

on LT families given in Examples 4.1 and 4.2, so there is an obvious extension to

exchangeable multivariate Archimedean copulas by the definition. Because the two

LT families belong to RV0, they can be used to get multivariate tail comonotonic

copulas with more flexible non-extremal dependence via the mixture of max-id

copula families (Joe and Hu, 1996).

Although the influence is not large, the choice of the BB2 dependence parame-

ter δ in the data analysis example was arbitrary. The δ can be thought as a parameter

to control the degree of conservativity. For future research, we expect that there are

certain criteria due to statistical and/or economic reasons to get the parameter δ ap-

propriately tuned. Moreover, we will also look more closely at the tail expansions

of E[X1|X2 > t] and E[X1|X2 = t] for different marginal distributions of X1 and

X2. The strength of the dependence in the tail can affect whether the conditional

tail expectation behaves like O(t), O(tγ) for some 0 ≤ γ < 1 as t→∞.

5.7 Proofs
Proof of Proposition 5.1: (a) Write

E[X1|X2 > t;C∗] =

∫ +∞

0
P[X1 > x|X2 > t]dx =

∫ +∞

0

P[X1 > x,X2 > t]

P[X2 > t]
dx

=

∫ +∞

0

1− F1(x)− F2(t) + C∗(F1(x), F2(t))

F 2(t)
dx

= (F 2(t))−1

{
E[X1] +

∫ ∞
0
{−F2(t) + C∗(F1(x), F2(t))}dx

}
.

(5.10)

Since E[X1] <∞, and P[X1 > x,X2 > t] ≤ P[X1 > x], the integral
∫∞

0 {−F2(t)+

C∗(F1(x), F2(t))}dx is finite. The conclusion follows if for all v close to 1 from
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below,∫ ∞
0
{−v + C∗(F1(x), v)}dx =

∫ 1

0
{[−v + C∗(u, v)] · [f1(F−1

1 (u))]−1}du

≥
∫ 1

0
{[−v + C(u, v)] · [f1(F−1

1 (u))]−1}du =

∫ ∞
0
{−v + C(F1(x), v)}dx.

(5.11)

The above follows if for any given 0 < u < 1, there exists a v0 = v0(u) such that

1 ≥ v > v0 implies that

C∗(u, v) ≥ C(u, v). (5.12)

Taking a Taylor expansion for g(v) := C∗(u, v)−C(u, v) about v′ with v < v′ < 1

leads to

C∗(u, v)− C(u, v) ∼ (v − v′)
[
C∗1|2(u|v′)]− C1|2(u|v′)

]
= (v − v′)C1|2(u|v′)

{
C∗1|2(u|v′)
C1|2(u|v′)

− 1

}
.

Then (5.12) holds if limv′→1C
∗
1|2(u|v′)/C1|2(u|v′) < 1. (If the limit of the ratio is

1, then possibly a non-standard second order expansion is needed.)

(b) The copulas for F1, F2 are Ĉ∗(u, v) = u + v − 1 + C∗(1− u, 1− v) and

Ĉ(u, v) = u+ v− 1 +C(1−u, 1− v), so that Ĉ∗1|2(u|v) = 1−C∗1|2(1−u|1− v)

and Ĉ1|2(u|v) = 1− C1|2(1− u|1− v). Now part (a) applies to Ĉ∗1|2 and Ĉ1|2. �

Proof of Corollary 5.2: For any given 0 < u < 1, write

C∗1|2(u|v)

C1|2(u|v)
=
ψ′(ψ−1(u) + ψ−1(v))/ψ′(ψ−1(v))

ϕ′(ϕ−1(u) + ϕ−1(v))/ϕ′(ϕ−1(v))
,

so limv→1− C
∗
1|2(u|v)/C1|2(u|v) < 1 if

lim
v→1−

ϕ′(ϕ−1(v))

ψ′(ψ−1(v)
<
ϕ′(ϕ−1(u))

ψ′(ψ−1(u)
,

or Υ(u) > Υ(1). The conclusion now follows from Proposition 5.1. �

137



Proof of Corollary 5.3: Let ψ = ψδ∗ and ϕ = ϕδ be the LTs for C∗ and C

respectively. By considering the domination term as u→ 1− in Table 5.1, Υ(1) =

k limu→1−(1 − u)δ
∗−δ = 0 where k is a positive constant. Hence Υ(u) > Υ(1)

for 0 < u < 1 and Corollary 5.2 applies. �

Proof of Proposition 5.4: Rather than applying part (b) of Proposition 5.1, we

provide a more direct proof. Because we are using survival copulas, rather than

(5.12), we want to show that for any given 0 < u < 1, there is a v0 such that

Ĉ∗(u, v) ≥ Ĉ(u, v) or C∗(1−u, 1−v) = Cψ(1−u, 1−v) ≥ Cϕ(1−u, 1−v) =

C(1− u, 1− v) for 1 ≥ v > v0. The inequality is the same as

ψ(ψ−1(u1) + ψ−1(v1)) ≥ ϕ(ϕ−1(u1) + ϕ−1(v1)), (5.13)

with u1 = 1 − u and v1 = 1 − v for v1 near 0. Let u1 = ϕ(su) and v1 = ϕ(sv).

Since ψ is decreasing, inequality (5.13) is the same as

ψ−1(u1) + ψ−1(v1) ≤ (ψ−1 ◦ ϕ)(ϕ−1(u1) + ϕ−1(v1))

or

(ψ−1 ◦ ϕ)(su) + (ψ−1 ◦ ϕ)(sv) ≤ (ψ−1 ◦ ϕ)(su + sv).

For s sufficiently large, if ξ(s) := ψ−1◦ϕ(s) is strictly convex, then for anyw > 0,

ξ(s+w)−ξ(s) is strictly increasing in swith limit of∞, since ξ(s) is also a strictly

increasing function. Therefore, for sv large enough, ξ(su + sv)− ξ(sv) > ξ(su).

If Υ(u) is strictly decreasing in u near 0, that is, ξ′(s) = ϕ′(s)/ψ′(ξ(s)) is

strictly increasing for large s by letting s = ϕ−1(u), then ξ(s) is strictly convex

for large s, which completes the proof. �

Proof of Corollary 5.7: Since 1 − ψ(s) =
∫ s

0 −ψ
′(t)dt and −ψ′(t) is strictly

increasing in t as t→ 0+, by Lemma 5.6, −ψ′(s)/(1− ψ(s)) = o(s−1), s→ 0+.

Therefore, by L’Hôpital’s rule,

lim
s→0+

log(1− ψ(s))

log(1− ϕ(s))
= lim

s→0+

[log(1− ψ(s))]′

[log(1− ϕ(s))]′
= lim

s→0+

ψ′(s)/[1− ψ(s)]

ϕ′(s)/[1− ϕ(s)]
= 0,

which implies ϕ(s) approaches 1 faster than ψ(s) as s → 0+, and lims→0+ [1 −
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ψ(s)]/[1− ϕ(s)] =∞. Thus, limu→1− ψ
−1(u)/ϕ−1(u) = 0, and

lim
u→1−

Υ(u) = lim
u→1−

ϕ′(ϕ−1(u))

ψ′(ψ−1(u))
= lim

u→1−

[ψ−1(u)]′

[ϕ−1(u)]′
= lim

u→1−

ψ−1(u)

ϕ−1(u)
= 0.

Then Corollary 5.2 implies the result. �

Proof of Corollary 5.8: Since ψ(s) =
∫∞
s −ψ

′(t)dt and −ψ′(t) is strictly decreas-

ing in t as t→∞, by Lemma 5.5, −ψ′(s)/ψ(s) = o(s−1), s→∞. Therefore, by

L’Hôpital’s rule,

lim
s→∞

logψ(s)

logϕ(s)
= lim

s→∞

[logψ(s)]′

[logϕ(s)]′
= lim

s→∞

ψ′(s)/ψ(s)

ϕ′(s)/ϕ(s)
= 0,

which implies thatϕ(s) goes to 0 faster thanψ(s) as s→∞ and lims→∞ ϕ(s)/ψ(s) =

0. Thus, limu→0+ ϕ
−1(u)/ψ−1(u) = 0. Then write

1

Υ(u)
:=

ψ′(ψ−1(u))

ϕ′(ϕ−1(u))
=
−ψ′(ψ−1(u))ψ−1(u)

ψ(ψ−1(u))
× ϕ(ϕ−1(u))

−ϕ′(ϕ−1(u))ϕ−1(u)
× ϕ−1(u)

ψ−1(u)
.

So there exists a 0 < K <∞, such that

0 ≤ lim
u→0+

1

Υ(u)
≤ lim

s→∞
K
−sψ′(s)
ψ(s)

× lim
u→0+

ϕ−1(u)

ψ−1(u)
= 0.

Then Proposition 5.4 implies the result. �

Proof of Proposition 5.9: We prove only part (a), since part (b) follows from (a) as

in Proposition 5.1. Since E[X1] is finite, E[X1|X2] is finite a.e. F2. Write

E[X1|X2 = t;C∗]

=

∫ +∞

0
P[X1 > x|X2 = t]dx =

∫ +∞

0

f2(t)− (∂2F )(x, t)

f2(t)
dx

=

∫ +∞

0

f2(t)− C∗1|2(F1(x)|F2(t))f2(t)

f2(t)
dx =

∫ +∞

0
{1− C∗1|2(F1(x)|F2(t))}dx,
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The conclusion follows if with v = F2(t) < 1,∫ ∞
0
{C1|2(F1(x)|v)− C∗1|2(F1(x)|v)}dx

=

∫ ∞
0

C1|2(F1(x)|v)

{
1−

C∗1|2(F1(x)|v)

C1|2(F1(x)|v)

}
dx ≥ 0, (5.14)

as t→∞. A sufficient condition is

lim
v→1−

C∗1|2(u|v)

C1|2(u|v)
< 1, 0 < u < 1.

�

Proof of Corollary 5.10: From the assumption,

lim
v→1−

C∗1|2(u|v)

C1|2(u|v)
= lim

v→1−

ψ′
(
ψ−1(u) + ψ−1(v)

)
/ψ′
(
ψ−1(v)

)
ϕ′
(
ϕ−1(u) + ϕ−1(v)

)
/ϕ′
(
ϕ−1(v)

) =
limv→1− Υ(v)

Υ(u)
< 1

so that Proposition 5.9 applies. �

Proof of Corollary 5.11: From part (b) of Proposition 5.9, we want to show that for

fixed 0 < u < 1, limv→0+ [1− C∗1|2(u|v)]/[1− C1|2(u|v)] < 1, or

lim
v→0+

C∗1|2(u|v)/C1|2(u|v) > 1,

i.e.,

lim
v→0+

ψ′
(
ψ−1(u) + ψ−1(v)

)
ψ′(ψ−1(v))

=: g(0) > h(0) := lim
v→0+

ϕ′
(
ϕ−1(u) + ϕ−1(v)

)
ϕ′(ϕ−1(v))

.

(5.15)

The strict convexity condition on ψ−1 ◦ ϕ and the proof of Proposition 5.4 imply

that with u fixed,

ψ(ψ−1(u) + ψ−1(v)) =: G(v) > H(v) := ϕ(ϕ−1(u) + ϕ−1(v)), (5.16)

for v > 0 sufficiently small. Also, G(0) = H(0) = 0, so we must have G′(0) >
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H ′(0) for any 0 < u < 1, thus (5.15) holds. since G′ = g and H ′ = h. �

Proof of Corollary 5.12: The proof is straightforward due to Corollary 5.10 and

the proof of Corollary 5.7. �

Proof of Corollary 5.13: The proof is straightforward due to Corollary 5.11 and

the proof of Corollary 5.8. �

Proof of Lemma 5.14: It can be written that

C(uw1, . . . , uwd) = ψ

ψ−1(uw∗)

1 +
∑

i∈{j:wj 6=w∗}

ψ−1(uwi)

ψ−1(uw∗)

 .

Letting ti(u) := ψ−1(uwi)/ψ
−1(uw∗), since ψ ∈ RV0, ψ−1 ∈ RV∞(0+), and

thus wi > w∗ implies that limu→0+ ti(u) = 0 for any i ∈ {j : wj 6= w∗}. Let

t∗ := (ti)i∈{j:wj 6=w∗}, and define h(t∗) := ψ(s(1 +
∑

i∈{j:wj 6=w∗} ti)). A Taylor

expansion for h(t∗) about 0 leads that

h(t∗) ∼ ψ(s) + sψ′(s)×
∑

i∈{j:wj 6=w∗}

ti. (5.17)

Then choosing s = ψ−1(uw∗) in (5.17) proves the claim, and ε(u,w) = o(u), u→
0+ is due to Lemma 5.5. �

Proof of Proposition 5.15: It is well known that CTE is subadditive for continuous

risks (Denuit et al., 2005); that is, for any X′ ∈ R(F1, . . . , Fd)

CTEp(X ′1 + · · ·+X ′d) ≤
d∑
i=1

CTEp(X ′i), 0 < p < 1.

From Proposition 4.15, for such an X,

CTEp(X1 + · · ·+Xd) ∼
d∑
i=1

CTEp(Xi) =

d∑
i=1

CTEp(X ′i), p→ 1−.
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Thus,

CTEp(X1 + · · ·+Xd) & CTEp(X ′1 + · · ·+X ′d), p→ 1−.

�

Proof of Proposition 5.17: By Theorem 4.3 of Embrechts et al. (2009a), VaRp is

asymptotically subadditive for X′ as p → 1−. Also, X satisfies Assumption 5.1,

and thus VaRp is asymptotically additive for X. So the above asymptotic inequal-

ity holds, and tail comonotonicity becomes an asymptotically worst dependence

structure in this sense. �

Proof of Proposition 5.18: By Theorem 6.8 of McNeil et al. (2005), VaRp is sub-

additive for X′ when 0.5 ≤ p < 1. Also, notice that if the assumption that X is

non-negative in Proposition 4.14 is relaxed, the asymptotic additivity of VaR still

holds. Note that the X here is not elliptical; within elliptical distribution families,

there are not non-trivial tail comonotonic distributions (see Chapter 4). �
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Chapter 6

Second order regular variation
and risk measures

6.1 Introduction
In actuarial science, some statistical quantities about a random variableX are often

referred to as risk measures. Among many of them, value at risk (VaR) and condi-

tional tail expectation (CTE) are the most popular risk measures. For 0 < p < 1

and usually with p > 0.9, VaRp refers to the 100p percentile of loss and CTEp is

a conditional expectation given the loss exceeds VaRp. Both of them have been

adopted by regulations of insurers. For example, CTE has been required for cal-

culating the relevant risks of segregated fund in Canada (OSFI, 2011, Chapter 8).

VaR has been commonly-used for financial and insurance risks while recently CTE

has been suggested to be a more conservative risk measure compared to VaR, es-

pecially when loss distributions are heavy-tailed. We refer to Denuit et al. (2005)

and McNeil et al. (2005) for relevant risk measures and their relationships. More

precisely, the class of heavy-tailed distributions is a very large family and can be

defined as K = {F df on (0,∞) :
∫ +∞

0 eεxdF (x) = ∞ for all ε > 0} (See Fig-

ure 1.4.1 of Embrechts et al. (1997) for the classes of heavy-tailed distributions).

In this chapter, we only study an important subclass of the heavy-tailed distribu-

tions, consisting of distributions that are supported on the positive real line and

have regularly varying survival functions. For narrative convenience, we use the
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term “heavy-tailed distribution” for this subclass of heavy-tailed distributions.

From the viewpoint of risk management, tail behavior of loss random variables

is important. In the literature, much work has been done to better understand the

extremal patterns of aggregate losses by doing asymptotic analysis, such as, Alink

et al. (2004, 2005, 2007); Barbe et al. (2006); Embrechts et al. (2009b). In these

papers, asymptotic behavior of aggregate dependent losses has been studied. We

believe that the asymptotic study on the tail behavior is relevant to understand the

magnitude of large losses and the performance of corresponding risk measures.

The benefit of doing asymptotic analysis on risk measures, on the other hand, may

establish asymptotic relationships between risk measures. For example, as a coher-

ent risk measure, CTE has many advantages over VaR; we refer to Artzner et al.

(1999) for limitations of VaR compared with a coherent risk measure. However,

computing CTE is often more costly than estimating VaR since the former often

involves Monte Carlo simulations for non-closed forms of integrations. To this

end, studying asymptotic relationships between CTE and VaR becomes promising.

Moreover, by studying the asymptotic relationship between CTE and VaR, we will

be able to have better sense of how VaR may underestimate heavy-tailed risks, and

we refer to Figure 6.1 for an example.

Some asymptotic analysis of CTE in terms of VaR has been done most recently

by Zhu and Li (2012). In their paper, the non-negative random vector under study

has the form of X = (T1R, . . . , TdR), where R is non-negative, independent of

T = (T1, . . . , Td) ≥ 0 and has a regularly varying survival function. Zhu and Li

(2012) derived the closed-form first order approximation for CTE of the following

form: E[X1|‖X‖ > VaRp(‖X‖)], as p → 1. Their result is interesting since the

closed-form approximation of CTE only relies on some mild moment conditions on

Ti’s. The results obtained in Zhu and Li (2012) is only a first order approximation

of the relationship between CTE and VaR, as p → 1. The first order property is

useful since we have known more about VaR while the asymptotic relationship will

provide some insights about CTE. However, the limitation is also obvious that the

first order asymptotic approximation may not be good for a sub-extremal threshold.

So, second order properties would be able to provide more insightful information.

On one hand, the second order properties determine the rates of convergence for

the first order approximation, and when the speed of convergence is higher, the
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asymptotic approximation by only the first order term has a better chance to provide

a good approximation for the sub-extremal level; on the other hand, the second

order term itself improves the approximation.

In the asymptotic analysis of CTE, second order regular variation (2RV) pro-

vides a tractable tool for studying second order properties. 2RV was originally

studied in the extreme value theory, to study the speed of convergence of the ex-

treme value condition (de Haan and Ferreira, 2006, Section 2). For a general theory

of 2RV, we refer to de Haan and Ferreira (2006); de Haan and Stadtmüller (1996)

for references. In this chapter, we use 2RV to study the tail behavior of the distribu-

tion function F (x), which is more naturally related to the study of risk measures.

In Geluk et al. (1997), 2RV on survival functions was studied in the context of

convolution and so on. We refer to Degen et al. (2010) for a recent study on risk

concentration and diversification under the assumption of 2RV, which studied risk

concentration and diversification benefit of multiple losses.

In general, we are interested in the behavior of

E[Xi|g(X1, . . . , Xd) > t], t→∞, (6.1)

where g is a loss aggregate function, and (X1, . . . , Xd) has a general dependence

structure and the margins have some particular tail patterns. However, the scale

mixture approach studied in Zhu and Li (2012) provides a wide subset of such ran-

dom vector X. We will follow this approach in this chapter and study the second

order property of (6.1) for the case where g is a homogeneous function of order 1

and the non-negative X is constructed by the scale mixture approach. More specif-

ically, we will study the rates of convergence of asymptotic relationships between

CTE and VaR under the framework of 2RV. Closed-form second order approxi-

mations have been obtained for both the univariate case and the multivariate case

where the random vector is constructed from a scale mixture with a heavy-tailed

non-negative random variable. For both cases, we find that the first order approx-

imation is affected by only the regular variation index −α of marginal survival

functions, while the second order approximation is influenced by both the param-

eters for first and second order regular variation, and the convergence speed is

dominated by the second order parameter only. Many well-known continuous dis-
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tributions for modeling univariate/multivariate losses or financial returns — such as

the Student tν , Burr, multivariate tν , multivariate distributions constructed by reg-

ularly varying margins and some upper tail dependent copulas, and some elliptical

distributions with regularly varying margins — satisfy the second order conditions

that we will study in this chapter. Some side results are second order properties for

the well-known Karamata’s Theorem and Breiman’s Theorem.

This chapter is organized as following: In Section 6.2, notation, preliminary

concepts and results are presented. In Section 6.3, the univariate case with 2RV

conditions is studied to understand the asymptotic relationship between CTE and

VaR. The study on the multivariate case is reported in Section 6.4. Some discussion

of future research is in Section 6.5. Finally, Section 6.6 presents all the proofs.

6.2 Preliminaries
Fundamental knowledge about regular variation has been introduced in Section 2.3.

For the multivariate case to be studied in Section 6.4, we will study positive random

vector X constructed as this form (X1, . . . , Xd) = (RT1, . . . , RTd), where the

tail behavior of product of two random variables plays an important role. The

following result just tells us how the product will inherit the tail behavior of the

random variable that has a heavier tail.

Proposition 6.1 (Breiman’s Theorem) Suppose X is a non-negative random vari-

able such that its survival function F (x) ∈ RV−α with α > 0, and Y ≥ 0 is a

random variable, independent of X , with E[Y α+ε] <∞ for some ε > 0. Then

P[XY > x] ∼ E[Y α]P[X > x], x→∞. (6.2)

That is, if X is regularly varying, then its right tail behavior will be inherited by

the product XY , where Y has a lighter right tail and a finite moment of order

higher than E[Y α]. We refer to Breiman (1965) for a proof of the case where

0 < α < 1, and the proof is also adaptable for proving the case where 0 < α. For

some multivariate versions of Breiman’s Theorem, we refer to Resnick (2007).

The following definition of the second order regular variation comes from

de Haan and Stadtmüller (1996), de Haan and Ferreira (2006) and Geluk et al.
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(1997). See also Neves (2009) for a slightly different version of extended sec-

ond order regular variation and Wang and Cheng (2005) for third and higher order

regular variation.

Definition 6.1 If the survival function of a non-negative random variable X is

F := 1−F and F : [0,∞)→ (0, 1] satisfies that F ∈ RV−α with α > 0. Then F

is said to be of second-order regular variation with parameter ρ ≤ 0, if there exists

a function A(t) that ultimately has a constant sign with limt→∞A(t) = 0 and a

constant c 6= 0 such that

lim
t→∞

F (tx)/F (t)− x−α

A(t)
= Hα,ρ(x) = cx−α

∫ x

1
uρ−1du, x > 0. (6.3)

Then it is written as F ∈ 2RV−α,ρ and A(t) is referred to as the auxiliary function

of F .

It is known from de Haan and Stadtmüller (1996) or a more relevant form in

Geluk et al. (1997) that if Hα,ρ(x) is not a multiple of x−α then ρ < 0 implies that

there exists a c 6= 0 such that

Hα,ρ(x) = cx−α
xρ − 1

ρ
,

|A| ∈ RVρ and no other choices of ρ are consistent with A(t) → 0. Moreover,

convergence in (6.3) is uniform in x on compact intervals of (0,∞). By adjusting

A(t), we can always let c = 1, and unless otherwise specified, c is assumed to be

1. We only study the case where ρ < 0 and α > 1 in this chapter. Also, note that

for second order regular variation, ρ 6= −∞ (Resnick, 2007, page 68). Therefore,

the Pareto distribution with the cdf F (x) = 1− (k/x)α, x ≥ k, where Hα,ρ(x) in

(6.3) would be 0 for any function A(t), does not satisfy the conditions of second

order regular variation and thus will not be studied in this chapter.

To illustrate the main result for the multivariate case, we will use the concept

of Archimedean copula as a mixture.
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6.3 Univariate cases
For the univariate case, a direct application of Karamata’s Theorem (Theorem 2.2)

shows that, for a non-negative random variable X ∈ RV−α with α > 1, CTEp(X)

is finite and

CTEp(X) ∼ α

α− 1
VaRp(X), p→ 1. (6.4)

From (6.4), we know that when p is sufficiently large, CTE and VaR of a regularly

varying random variable have a deterministic relationship that is determined by the

regular variation index −α. However, we do not know how close is the right-hand

side of (6.4) to its left-hand side. In practice, we always choose a level p that is

strictly less than 1 to evaluate risks. To this end, a higher order approximation is

useful. A closed-form second order approximation is ideal. If one can not obtain

the closed-form second order approximation, knowledge about how fast the right-

hand side converges to the left-hand size of (6.4) is also informative. In this section,

we will derive the closed-form second order approximation for the univariate case

assuming that the loss random variable is not only regularly varying with index

−α, but also second regularly varying. This assumption is mild, since some useful

parametric distributions, such as Student tν , satisfy it (see Example 6.3). Moreover,

as a technical tool for our proof, Proposition 6.5 at the end of this section shows

some interesting second order properties with respect to Karamata’s Theorem.

Now, we are ready to give a technical lemma showing that the slowly varying

function involved in the second order regular variation has a certain nice form.

Lemma 6.2 Suppose F ∈ 2RV−α,ρ, α > 0, ρ < 0, then we can write F (t) =

kt−a`(t), t > 0 with some k > 0 and limt→∞ `(t) = 1, and moreover we have

|1− `(t)| ∈ RVρ.

In what follows, we give a result of a uniform inequality for the second order

regular varying survival distribution function. This result is essentially Theorem

2.3.9 of de Haan and Ferreira (2006) and will be useful to prove our subsequent

propositions. We refer to de Haan and Ferreira (2006) and Cheng and Jiang (2001)

for relevant discussion.
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Proposition 6.3 Suppose F ∈ 2RV−α,ρ with α > 0 and ρ < 0, then for any

ε, δ > 0, there exists t0 = t0(ε, δ) such that for all t, tx ≥ t0 and x > 0,∣∣∣∣F (tx)/F (t)− x−α

a(t)
− x−αx

ρ − 1

ρ

∣∣∣∣ ≤ εmax
(
x−α+ρ+δ, x−α+ρ−δ

)
, (6.5)

where a(t) = −ρ[1 − `(t)]/`(t) with F (t) = kt−α`(t), 0 < k < +∞ and

limt→∞ `(t) = 1.

Remark 6.1 From Proposition 6.3, we may choose the A(t) in Definition 6.1 as

A(t) := a(t) = −ρ[1− `(t)]/`(t), and clearly |A(t)| ∈ RVρ.

The following result tells us that the rates of approximation of CTEp(X) to
α
α−1VaRp(X) are determined by the second order parameter ρ and are of the order

of [VaRp(X)]ρ+1. When ρ is smaller (more negative), the speed of convergence is

faster. In other words, when ρ is more negative, the first order term can provide a

better approximation.

Proposition 6.4 Suppose that a non-negative random variableX ∈ 2RV−α,ρ with

α > 1 and ρ < 0, and write its survival function F (t) := kt−α`(t). Then

CTEp(X) ∼ α

α− 1
VaRp(X) + η(VaRp(X)), p→ 1, (6.6)

where

η(t) =
ta(t)

(α− 1− ρ)(α− 1)
, (6.7)

and a(t) can be chosen as a(t) := −ρ[1− `(t)]/`(t).

Remark 6.2 Since |a(t)| ∈ RVρ and thus |ta(t)| ∈ RVρ+1, Equation (6.7) just

shows that the second order term becomes more important as ρ > −1 (because

|ta(t)| is increasing as t → ∞). So we comment that the second order approxi-

mation is especially useful for the case where −1 < ρ < 0, in which the second

order term may not be ignored. In Example 6.5, we will illustrate by an exam-

ple for a multivariate case that the second order term significantly improves the

approximation.
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Remark 6.3 Proposition 6.4 just indicates that the first order term depends on α

only, and the second order term depends on both α and ρ. The proof in Proposi-

tion 6.4 also shows that for α > 1 and ρ < 0, as t → ∞, F (tx)/F (t)−x−α
A(t) con-

verges to x−α x
ρ−1
ρ uniformly in x on any set of the form [x0,∞), where x0 > 0.

Then we can exchange the orders of limit and integral operations in order to get

limt→∞
∫∞
a

P[X>ts]/P[X>t]−s−α
A(t) ds for some a > 0.

Remark 6.4 A necessary condition for the asymptotic relationship between CTE

and VaR is that, the random variable can not be too heavy-tailed; that is, the regular

variation index α should be greater than 1. When α ≤ 1, the tail behavior becomes

much more complicated. In particular, as α < 1, CTEp(X) = ∞,∀p < 1, and

under the current framework, one cannot study the asymptotic relationship between

CTE and VaR.

Example 6.1 (Hall/Weiss class) Suppose X is a random variable with support

[0,∞) and distribution function F such that with x ≥ 1, α > 1, ρ < 0, F (x) =
1
2x
−α(1 + xρ). Then clearly, F ∈ 2RV−α,ρ, and when t := VaRp(X) is big

enough,

CTEp(X) = t+

∫∞
t

1
2x
−α(1 + xρ)dx

1
2 t
−α(1 + tρ)

= t+
t/(α− 1) + tρ+1/(α− 1− ρ)

1 + tρ
,

which implies, with (1 + tρ)−1 ∼ 1− tρ, t→ +∞,

CTEp(X)− α

α− 1
VaRp(X) ∼ ρ

(α− 1− ρ)× (α− 1)
[VaRp(X)]ρ+1, p→ 1.

It means that the rate of convergence is determined by the second order parameter

ρ and is of the order of [VaRp(X)]ρ+1. Figure 6.1 illustrates the effects of ρ.

Example 6.2 (Burr distribution) Consider the Burr distribution with the survival

function F (x) = (1 + xb)−a, x, a, b > 0, and the second order expansion leads to

F (x) = x−ab[1− ax−b + o(x−b)], x→∞,

so that F ∈ 2RV−ab,−b.
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Figure 6.1: Sub-extremal relationships between CTE and VaR (α = 2) for
Hall/Weiss class
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Now we evaluate how large p must be for the second order approximation of

Proposition 6.4 to be decent for the Burr distribution. Assume X ∼ Burr(a, b, σ),

where a, b are the two shape parameters and σ is the scale parameter; that is, X ∼
F (x) := 1 −

(
1 + (x/σ)b

)−a. Write F (x) = (1 + (x/σ)b)−a = σabx−ab`(x),

where `(t) = ((t/σ)−b + 1)−a is a slowly varying function. According to Propo-

sition 6.4, an auxiliary function for the Burr distribution can be chosen as

A(t) := b[1− `(t)]/`(t) = b
[(

1 + (t/σ)−b
)a
− 1
]
.
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Clearly, A ∈ RV−b. Then, letting t := VaRp(X),

CTEp(X) = t+ (1− p)−1

∫ ∞
t

(
1 + (x/σ)b

)−a
dx

= t+
σ

b(1− p)

∫ (1+(t/σ)b)−1

0
(1− y)1/b−1ya−1/b−1dy

= t+
σ

b(1− p)
Beta

(
(1 + (t/σ)b)−1; a− 1/b, 1/b

)
, (6.8)

where Beta(·; a − 1/b, 1/b) is an incomplete Beta function with parameters a −
1/b, 1/b. We can use (6.8) to get the exact calculation, and then compare it to the

second order approximation.

Table 6.1 presents the values of p for which a decent second order approxima-

tion can be obtained. For a given leading parameter (ab) for the tail heaviness, a

larger b leads to a smaller p; that is, the second order parameter (ρ = −b) is more

negative and thus the rates of convergence becomes faster. More interestingly, for a

given b, the second order approximation for a lighter tail (larger α) is not as good as

that for a heavier tail. When the tail becomes very light (say, α ≥ 4), it was hard to

get a good second order approximation within the 5% error band. The smallest p’s

required that are reported in Table 6.1 do not rely on the scale parameter. However,

theoretically, there are infinitely many choices for the auxiliary function A(t). The

smallest p required to get a decent second order approximation heavily rely on the

choice of A(t).

Table 6.1: How large pmust be to get a good second order approximation: the
values are the corresponding p for which the absolute difference between
the second order approximation and the true value is 5% of the true value.

α(= ab)
b 1.1 1.5 2 3

0.5 0.86977 0.98828 0.99859 0.99994
1 0.32947 0.73711 0.88890 0.97825

1.5 0.11240 0.44426 0.65444 0.86267

The next result extends Karamata’s theorem to a second order regular condi-

tion for the case where regular variation index −α < −1. Since some continu-
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ous random variables, such as the Student tν random variable, have closed-form

density functions but do not have closed-form cdf’s, the following result is very

useful to derive second order properties, such as the second order parameter and

the corresponding auxiliary function, for their survival functions from their density

functions.

Proposition 6.5 Let g ∈ 2RV−α,ρ, α > 1, ρ < 0, with an auxiliary function A(x),

and define g∗(t) :=
∫∞
t g(x)dx. Then g∗ ∈ 2RV−α+1,ρ, the corresponding auxil-

iary function is A∗(t) = α−1
α−1−ρA(t), and

g∗(t) ∼ t

α− 1
g(t) +

tA(t)

ρ

(
1

α− ρ− 1
− 1

α− 1

)
g(t), t→∞. (6.9)

Example 6.3 (Student tν distribution) Consider the standard Student tν distribu-

tion with density function

f(x) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, ν > 1.

Then it can be verified that

f(x) ∼ Γ((ν + 1)/2)√
νπΓ(ν/2)

ν(ν+1)/2x−ν−1
(
1− 2−1ν(ν + 1)x−2

)
, x→∞.

That is, f(x) ∈ 2RV−ν−1,−2. By Proposition 6.5, its survival function F ∈
2RV−ν,−2. For the Student tν distribution, the second order parameter is always

that ρ = −2. The second order property can also be obtained from scale mixture

representation of the tν distribution. In Example 6.4 in the next section, we will

derive the same thing from a mixture with a generalized inverse Gamma distribu-

tion.

6.4 Multivariate cases
From the actuarial viewpoint, we are interested in CTEs of the form E[X1|g(X1, ..., Xd) >

t], and in particular E[X1|X2 > t] for the bivariate case, where t is large, and

X1, ..., Xd possess some general dependence structure and are heavy-tailed loss
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random variables (with the same RV index). In Chapter 3, the concept of tail or-

der has been proposed to study the degree of positive tail association that covers

asymptotic dependence and asymptotic independence. In Chapter 3, the upper tail

order of a copula C is denoted as κU (C). And κU (C) = 1 corresponds to the

usual upper tail dependence case and κU (C) > 1 covers asymptotic independence

and even negative dependence cases. For E(X1|X2 > t), some examples and

rough analysis suggests that under some regularity conditions on the copula C of

(X1, X2),

κU (C) = 1⇒ E[X1|X2 > t] = O(t), t→∞;

κU (C) > 1⇒ E[X1|X2 > t] = o(t), t→∞.

However, it is difficult to find sufficient conditions to deduce general results for the

order of t and the leading coefficient. In Chapter 7, we have more discussions on

the tail behavior of the above conditional specifications. The study of second order

terms would depend on developing a theory for the second order tail functions of

copulas (Joe and Li, 2011).

A special example with multivariate regular variation and upper tail depen-

dence is the case of heavy-tailed scale mixtures studied by Zhu and Li (2012).

They obtained E[X1|X2 > t] ∼ at, t → ∞, with a being a constant relying on

some finite moments. In this section, one of our main results is to assume 2RV and

get an extension to Zhu and Li’s result to a second order approximation. We also

show that heavy-tailed scale mixtures with 2RV conditions covers some parametric

distribution families that are commonly used in actuarial science; that is, it is not

too restrictive for applications.

Now, consider bivariate cases first. Let

(X1, X2) = (RT1, RT2),

where (T1, T2) ≥ 0, independent of R ≥ 0. Note here we do not specify the

dependence structure between T1 and T2. This class of distributions covers mul-

tivariate Pareto distributions and truncated multivariate elliptical distributions, etc.

With some regularity conditions on R and moment conditions on T1 and T2, the
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following asymptotic relationship has been derived in Zhu and Li (2012),

E[X1|X2 > VaRp(X2)] ∼ α

α− 1

E[T1T
α−1
2 ]

E[Tα2 ]
VaRp(X2), p→ 1. (6.10)

In this section, we obtain the rate of the convergence of (6.10) and the second order

approximation.

Proposition 6.6 Let (X1, X2) = (RT1, RT2), where (T1, T2) ≥ 0, independent

of R ≥ 0 such that the survival function of R is FR(t) ∈ 2RV−α,ρ with α > 1 and

ρ < 0. If E[T1] <∞, E[T1T
α−1−ρ+ξ
2 ] <∞ for some ξ > 0 and E[Tα−ρ+δ

2 ] <∞
for some δ > 0, then an extension of (6.10) can be represented by

E[X1|X2 > VaRp(X2)] ∼ η1(VaRp(X2)) + η2(VaRp(X2)), p→ 1,

where

η1(t) =
α

α− 1

E[T1T
α−1
2 ]

E[Tα2 ]
t;

η2(t) =
A(t)t

ρ

{
α− ρ

α− 1− ρ
E[T1T

α−1−ρ
2 ]

E[Tα2 ]
− α

α− 1

E[T1T
α−1
2 ]E[Tα−ρ2 ]

(E[Tα2 ])2

}
.

Here, A(t) is the auxiliary function for FR(t).

Remark 6.5 Similarly to the univariate case, the first order term only depends on

α, and the second order term depends on α and ρ. In order to get a higher order

approximation, existence of higher moments of the form E[T1T
α−1−ρ+ξ
2 ] for some

ξ > 0 and E[Tα−ρ+δ
2 ] < ∞ for some δ > 0 are necessary. The speed of conver-

gence is dominated by the second order parameter ρ only. Since |A(t)| ∈ RVρ,

the convergence speed of E[X1|X2 > VaRp(X2)] → α
α−1

E[T1T
α−1
2 ]

E[Tα2 ] VaRp(X2) is

of the order of [VaRp(X2)]ρ+1; that is, when ρ is more negative, the convergence

is faster at the sub-extremal level. It is also consistent with the univariate case.

In Proposition 6.6, we do not specify the dependence structure between T1

and T2. If we have a random vector T ≥ 0 and the conditioning event can be

of the form h(X) > t where h : Rd+ → R+ is homogeneous of order 1, then

h(X) = h(T)R and we can take T2 := h(T).

155



Proposition 6.7 Suppose there is a function h : Rd+ → R+, homogeneous of

order 1, and a random vector X := (RT1, . . . , RTd) where T = (T1, . . . , Td) ≥ 0

independent of R ≥ 0 and FR ∈ 2RV−α,ρ with α > 1 and ρ < 0. If E[T1] < ∞,

E[T1h
α−1−ρ+ξ(T)] <∞ for some ξ > 0 and E[hα−ρ+δ(T)] <∞ for some δ > 0,

then

E[X1|h(X) > VaRp(h(X))] ∼ η1(VaRp(h(X))) + η2(VaRp(h(X))), p→ 1,

where

η1(t) =
α

α− 1

E[T1h
α−1(T)]

E[hα(T)]
t;

η2(t) =
A(t)t

ρ

{
α− ρ

α− 1− ρ
E[T1h

α−1−ρ(T)]

E[hα(T)]
− α

α− 1

E[T1h
α−1(T)]E[hα−ρ(T)]

(E[hα(T)])2

}
.

Remark 6.6 Examples of the homogeneous h function are norms of vectors, such

as the l1-norm and l∞-norm. These two norms correspond to the CTEs of a

marginal riskX1 respectively conditioning on the events that the sum of all marginal

risks and the maximum of all marginal risks are higher than a threshold.

Example 6.4 A d-dimensional elliptical distribution can be constructed by X =

(X1, . . . , Xd) = RD(U1, . . . , Um), where (U1, . . . , Um) is uniformly distributed

on the surface of the unit hypersphere in Rm, D is a d × m matrix with DDT

positive semi-definite, andR is a positive random variable with FR ∈ 2RV−α,ρ and

the auxiliary function is A(x). We may take T = (T1, . . . , Td) = D(U1, . . . , Um),

and T+
i = 0 ∨ Ti for i = 1, . . . , d, then the form X+ = RT+ fits into the study

of this chapter. X+ follows a left-truncated 1 elliptical distribution. Taking the

homogeneous function h in Proposition 6.7 to be the l1 norm, and letting t :=

VaRp
(∑d

i=1X
+
i

)
, then we have for any k ∈ {1, . . . , d},

E

[
X+
k

∣∣∣∣∣
d∑
i=1

X+
i > t

]
∼ η1(t) + η2(t), p→ 1,

1Unless otherwise stated, left-truncated in this chapter refers to left-truncating below zeros for
each element of a random vector.
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where

η1(t) =
α

α− 1

E[Tk(
∑d

i=1 Ti)
α−1]

E[(
∑d

i=1 Ti)
α]

t;

η2(t) =
A(t)t

ρ

{
α− ρ

α− ρ− 1

E[Tk(
∑d

i=1 Ti)
α−1−ρ]

E[(
∑d

i=1 Ti)
α]

− α

α− 1

E[Tk(
∑d

i=1 Ti)
α−1]E[(

∑d
i=1 Ti)

α−ρ]

(E[(
∑d

i=1 Ti)
α])2

}
.

In particular, we may choose a bivariate standard normal random vector (T1, T2)

with identical margins, correlation 0 < % < 1, and let T+
i = 0 ∨ Ti for i = 1, 2,

and R = Y −1/2 with Y following Gamma(ν/2, ν/2) in which ν/2 are both shape

and rate parameters. Then the scale mixture (X1, X2) = (RT1, RT2) is a bivariate

tν distribution, and (X+
1 , X

+
2 ) = (RT+

1 , RT
+
2 ) is a left-truncated bivariate tν

distribution. Note that Y −1 follows an Inverse Gamma distribution with both the

shape and scale parameters being ν/2. Thus the density function for Y −1 is

fY −1(x) =
(ν/2)ν/2

Γ(ν/2)
x−ν/2−1e−x

−1ν/2, x > 0; ν > 0.

Therefore, the density function of R can be derived as

fR(x) = 2fY −1(x2)x = 2
(ν/2)ν/2

Γ(ν/2)
x−ν−1e−x

−2ν/2

∼ 2
(ν/2)ν/2

Γ(ν/2)
x−ν−1(1− x−2ν/2), x→∞.

Then it can be verified that fR(x) ∈ 2RV−ν−1,−2 and the corresponding auxiliary

function AfR(x) = νx−2. Hence FR(x) ∈ 2RV−ν,−2 by Proposition 6.5 and the

corresponding auxiliary function AFR(x) = (ν+1)−1
(ν+1)−1−(−2)AfR(x) = ν2

ν+2x
−2.

Moreover, from (6.25), we know that the product Xi = RTi will inherit the

right tail behavior of R; that is, the univariate Student tν random variable Xi ∈
2RV−ν,−2, which is also consistent to Example 6.3, where the same conclusion is

drawn directly from the density function of the tν distribution. Then more specifi-

cally, letting ν = 2 and t := VaRp(X+
1 +X+

2 ), then for the bivariate left-truncated
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tν distribution,

E
[
X+

1

∣∣X+
1 +X+

2 > t
]
∼ η1(t) + η2(t), p→ 1,

where

η1(t) = 2
E[T+2

1 ] + E[T+
1 T

+
2 ]

E[(T+
1 + T+

2 )2]
t;

η2(t) =

{
−2

3

E[T+
1 (T+

1 + T+
2 )3]

E[(T+
1 + T+

2 )2]
+

E[T+2
1 + T+

1 T
+
2 ]E[(T+

1 + T+
2 )4]

(E[(T+
1 + T+

2 )2])2

}
AFR(t)t.

The higher moments of truncated standard bivariate tν random variables can be

calculated in what follows by some recurrence relations in Shah and Parikh (1964)

or page 313–314 of Kotz et al. (2000). That is,

η1(t) = t;

η2(t) = g(%)AFR(t)t = g(%)t−1. (6.11)

With vr,s := vr,s(%) = E[(T+
1 )r(T+

2 )s] for non-negative integers r, s,

g(%) =
v4,0 + 4v3,1 + 3v2,2

6(v2,0 + v1,1)
=

(1 + %){3[1
2π + arcsin(%)] + (4− %)

√
1− %2 }

3{1
2π + arcsin(%) +

√
1− %2 }

.

g(%) is strictly increasing in % ∈ [−1, 1]. From the equations in (6.11), we know

that for this truncated bivariate standard tν distribution, the convergence speed to

the first order approximation is dominated by [VaRp(X+
1 + X+

2 )]−1. When the

correlation coefficient % is larger — that is, when the dependence between margins

is stronger — the second order approximation is more important. Some relevant

observations for second order approximation of vector-valued CTE have also been

reported in Example 3.2 of Joe and Li (2011). The effect from the tail heaviness of

margins may also have subtle influence on the second order approximation, how-

ever we have to calculate higher moments in this case. A general conclusion about

the effect of marginal heaviness on the second order approximation seems to be

interesting and non-trivial to obtain.

However, following the discussion in Remark 6.2, for the above bivariate t
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distribution, the second order parameter ρ = −2. So the second order term will be

negligible when [VaRp(X+
1 +X+

2 )] is large enough. In the following Example 6.5,

we will illustrate by an example for a case of −1 < ρ < 0 that the second order

term significantly improves the approximation and can not be ignored.

Example 6.5 (Burr scale mixture of normal) Let (X1, X2) := (Z+
1 R,Z

+
2 R),

where (Z+
1 , Z

+
2 ) is left-truncated standard bivariate normal with correlation % =

0.9 and R ∼ Burr(a = 5, b = 0.4) (i.e., FR ∈ 2RV−2,−0.4, refer to Example 6.2)

with a scale parameter 1000. In Figure 6.2, the vertical axis is the ratio of CTE to

VaR

CTE
VaR

:=
E[X1|X1 +X2 > VaRp(X1 +X2)]

VaRp(X1 +X2)
,

defined as a function of p. The true value is approximated based on a Monte Carlo

simulation with a sample size of 107, and the first and second order approximations

are calculated based on Proposition 6.7.

Figure 6.2: First/Second order approximations for Burr scale mixture of nor-
mal

Probability level (p)

C
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E
 / 

V
aR

1.0

1.5
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0.95 0.96 0.97 0.98 0.99 1.00
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true value
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Example 6.6 Suppose T1, T2 are independent and exponentially distributed with

survival function FT1(x) = FT2(x) = 1 − e−x, Q = 1/R and independent of
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T1, T2, FR(x) ∈ 2RV−α,ρ and (X1, X2) := (RT1, RT2). Then

P[X1 > x1, X2 > x2] =

∫ ∞
0

e−(x1+x2)qFQ(dq) = ψQ(x1 + x2), (6.12)

where FQ and ψQ are the distribution function and LT of Q, respectively. Take

x1 = ψ−1
Q (u1) and x2 = ψ−1

Q (u2), and then

P[X1 > ψ−1
Q (u1), X2 > ψ−1

Q (u2)] = ψQ(ψ−1
Q (u1) + ψ−1

Q (u2)) =: CψQ(u1, u2)

(6.13)

Also, we have P[Xi > x] = ψQ(x) for i = 1, 2. Then

E[X1|X2 > t] =

∫ ∞
0

ψQ(x+ t)

ψQ(t)
dx. (6.14)

For a random variable R following the inverse Gamma distribution with a shape

parameter α and a scale parameter β, the density function fR(x) ∈ 2RV−α−1,−1

with an auxiliary function AfR(x) = βx−1. We can derive from the density

function and Proposition 6.5 that FR(x) ∈ 2RV−α,−1 and the auxiliary function

AFR(x) = αβ
α+1x

−1. If we letQ ∼ Gamma(α, 1); that is, α is the shape parameter

and β = 1 is the rate parameter, since for the standard exponential random variable

the a-th moment is Γ(a+ 1), then we can get by Proposition 6.6 that

E[X1|X2 > t] ∼ 1

α− 1
t+

1

α− 1
, t→∞.

In another way, take ψQ(x) = (1+x)−α, the LT of Gamma(α, 1) and from (6.14)

it can be directly verified that E[X1|X2 > t] = 1/(α− 1) + t/(α− 1), which is

consistent with Proposition 6.6.

This example just shows that Proposition 6.6 can also be used for a random

vector where margins possess the tail behavior ofψQ(x) (i.e., P[Xi > x] = ψQ(x))

and the dependence structure is the Archimedean copula constructed by ψQ(x).

This example is interesting since the tail behavior of the LT ψQ(x) affects both the

tail dependence structure and the tails of margins. FR(x) ∈ RV−α implies that

FQ(x) ∈ RVα(0). Then by the Karamata’s Tauberian Theorem (e.g., Theorem
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1.7.1’ in Bingham et al. (1987)), ψQ(x) ∈ RV−α. That is, the margins are all

regularly varying with index −α. Moreover, there is upper tail dependence for

(X1, X2), since ψQ(t) ∈ RV−α, the corresponding copula CψQ has lower tail

dependence (refer to subsection 3.1 of Charpentier and Segers (2009)) and the

copula for (X1, X2) is the survival copula of CψQ .

Based on (6.14), it seems that the second order property of ψQ(x) could also

be related to the second order parameter of FR. We conjecture that under some

conditions, if FR(t) ∈ 2RV−α,ρ and Q := 1/R, then ψQ(t) ∈ 2RV−α,ρ.

6.5 Concluding remarks
Second order regular variation provides a nice theoretical platform for studying

second order approximations of limiting properties, like the asymptotic relation-

ship between CTE and VaR that we have studied in this chapter. More importantly,

many parametric distributions satisfy those theoretical assumptions so that the im-

plementation of the main results is feasible. From the viewpoint of risk manage-

ment, the study on risks at the sub-extremal level is more realistic and important,

and we believe that the study involving the second order condition on asymptotic

analysis for risk measures should be promising for this purpose.

For future research, it will be interesting to study how marginal tail heaviness

and tail dependence structures affect the second order approximations of risk mea-

sures. Also, the second order regular variation we have studied on risk measures

— no matter for the single risk or for the multiple risks — is univariate second

order regular variation. To get a more general result for multiple risks, we need

to study the performance of risk measures under multivariate second order regular

variation. Moreover, whether the second order parameter ρ is greater than −1 is

critical to decide on the necessity of a second order approximation. So it will be

interesting to develop a methodology to test H0 : ρ ≤ −1 verses H1 : ρ > −1.

6.6 Proofs
Proof of Lemma 6.2: Since F ∈ RV−α, we can write F (t) = t−α`(t) where `(t) is

slowly varying and non-negative. By Definition 6.1, there is an auxiliary function
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A and a constant c 6= 0 such that

lim
t→∞

x−α`(tx)/`(t)− x−α

A(t)
= cx−α

xρ − 1

ρ
.

Therefore,

lim
t→∞

`(tx)/`(t)− 1

A(t)
= lim

t→∞

`(tx)− `(t)
A(t)`(t)

= c
xρ − 1

ρ
.

Since the sign of A(t) can be adjusted by changing the sign of c due to Definition

6.1, if c and A(t) have the same sign, then we assume that c > 0 and A(t) > 0,

and thus A(t)`(t) > 0. By Theorem B.2.2 of de Haan and Ferreira (2006), then

limt→∞ `(t) = k with 0 < k < +∞ and k − `(t) ∈ RVρ. So we can rewrite

F (t) = kt−α`(t) with limt→∞ `(t) = 1 and also 1 − `(t) ∈ RVρ. If c and A(t)

have different signs, then let A(t) > 0, −c > 0 and then consider the function

−`(t) instead of `(t). Also by Theorem B.2.2 of de Haan and Ferreira (2006),

limt→∞−`(t) = −k with 0 < k < ∞. So F (t) = kt−α`(t) with limt→∞ `(t) =

1 and also `(t)− 1 ∈ RVρ. �

Proof of Proposition 6.3: From Lemma 6.2, we can write F (t) = kt−α`(t) with

0 < k < +∞ and limt→∞ `(t) = 1. Then by Definition 6.1, with an auxiliary

function A(t) and a constant c 6= 0,

lim
t→∞

F (tx)/F (t)− x−α

cA(t)
= lim

t→∞

x−α`(tx)− x−α`(t)
cA(t)`(t)

= x−α
xρ − 1

ρ
.

That is,

lim
t→∞

`(tx)− `(t)
cA(t)`(t)

=
xρ − 1

ρ
.

If c and A(t) have the same sign, then cA(t)`(t) > 0 and by Theorem B.2.18 of

de Haan and Ferreira (2006), we have for any ε, δ > 0, there exists a t0 = t0(ε, δ)

such that for all t ∧ tx ≥ t0,∣∣∣∣ `(tx)− `(t)
−ρ[1− `(t)]

− xρ − 1

ρ

∣∣∣∣ ≤ εxρ max(xδ, x−δ). (6.15)
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A similar argument can be used for the case where c and A(t) have different signs,

and inequality (6.15) still holds. Multiplying both sides of (6.15) by x−α finishes

the proof. �

Proof of Proposition 6.4: Denote that t := VaRp(X), and the asymptotic relation-

ship of (6.6) without the term η(t) can be easily derived by applying the Karamata’s

theorem. Write F (t) := kt−α`(t) and choose a(t) := −ρ[1− `(t)]/`(t). Then

CTEp(X)

= t+

∫∞
t P[X > x]dx

P[X > t]
= t

(
1 +

∫∞
t P[X > x]dx

tP[X > t]

)
= t

(
1 +

∫ ∞
t

P[X > x]

tP[X > t]
dx

)

= t

(
1 +

∫ ∞
1

P[X > ts]

P[X > t]
ds

)
= t

1 + a(t)

∫ ∞
1

P[X>ts]
P[X>t] − s

−α

a(t)
ds+

1

α− 1


=

α

α− 1
t+

ta(t)

(α− 1− ρ)(α− 1)
+ ta(t)

∫ ∞
1

P[X>ts]
P[X>t] − s

−α

a(t)
− s−α s

ρ − 1

ρ
ds,

(6.16)

where the last equality is due to
∫ +∞

1 s−α s
ρ−1
ρ ds = 1

(α−1−ρ)(α−1) . By Proposition

6.3, when s ≥ 1, for any small ε, δ such that ε > 0 and α− ρ− 1 > δ > 0∣∣∣∣F (ts)/F (t)− s−α

a(t)
− s−α s

ρ − 1

ρ

∣∣∣∣ ≤ εmax
(
s−α+ρ+δ, s−α+ρ−δ

)
= εs−α+ρ+δ.

Since ε is arbitrarily small and s−α+ρ+δ is integrable on [1,∞), by the dominated

convergence theorem and Definition 6.1, the integration term in (6.16) is 0 as t→
∞, which proves the claim. �

Proof of Proposition 6.5: Since g ∈ 2RV−α,ρ, letting x = st,

lim
t→∞

∫∞
t

g(x)
tg(t)dx−

1
α−1

A(t)
= lim

t→∞

∫ ∞
t

g(x)
tg(t) −

x−α

t−α+1

A(t)
dx = lim

t→∞

∫ ∞
1

g(st)
g(t) − s

−α

A(t)
ds

=

∫ ∞
1

lim
t→∞

g(st)
g(t) − s

−α

A(t)
ds =

1

ρ

(
1

α− ρ− 1
− 1

α− 1

)
. (6.17)
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The third equality in (6.17) is due to Remark 6.3. Therefore,∫ ∞
t

g(x)

tg(t)
dx ∼ 1

α− 1
+

1

ρ

(
1

α− ρ− 1
− 1

α− 1

)
A(t), t→∞,

which proves (6.9). Then by (6.9) it is easy to verify that g∗ ∈ 2RV−α+1,ρ. Let

r := (α− ρ− 1)−1 − (α− 1)−1, then as t→∞,

g∗(ty)

g∗(t)
− y−α+1

∼ (α− 1)−1yg(ty) + ρ−1rA(ty)yg(ty)

(α− 1)−1g(t) + ρ−1rA(t)g(t)
− y−α+1

∼
{

1

α− 1

y−α+1(yρ − 1)

ρ
A(t)

+
r

ρ
A(ty)

(
y−a+1(yρ − 1)

ρ
A(t) + y−α+1

)
− r

ρ
A(t)y−α+1

}
(α− 1)

∼
{

1

α− 1

y−α+1(yρ − 1)

ρ
+
r

ρ

A(ty)

A(t)
y−a+1 − r

ρ
y−α+1

}
A(t)(α− 1)

∼
(

1

α− 1
+ r

)
y−α+1(yρ − 1)

ρ
A(t)(α− 1) =

α− 1

α− ρ− 1
A(t)

y−α+1(yρ − 1)

ρ
.

Thus, A∗(t) = α−1
α−ρ−1A(t). �

Proof of Proposition 6.6: Denoting t = VaRp(X2) and following the proof of

Proposition 2.3 of Zhu and Li (2012), we have

E[X1|X2 > t]

=
t

P[X2 > t]

∫
R2
+

{
t1
t2
P
[
R >

t

t2

]
+

∫ ∞
t1
t2

P
[
R >

tw

t1

]
dw

}
FT1,T2(dt1, dt2).

(6.18)

Then it suffices to study the second order approximation of the following two

asymptotic relationships.

D1(t) :=

∫
R2
+

t1
t2

P
[
R > t

t2

]
P[X2 > t]

FT1,T2(dt1, dt2)→ E[T1T
α−1
2 ]

E[Tα2 ]
, t→∞, (6.19)
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and

D2(t) :=

∫
R2
+

∫∞
t1
t2

P
[
R > tw

t1

]
dw

P[X2 > t]
FT1,T2(dt1, td2)→ 1

α− 1

E[T1T
α−1
2 ]

E[Tα2 ]
, t→∞,

(6.20)

where both t1, t2 are positive.

The proof will include three parts: 1. the second order property of the Breiman’s

convergence: P[X2 > t] ∼ E[Tα2 ]P[R > t], t → ∞; 2. the second order property

for (6.19); 3. the second order property for (6.20).

Part 1: The original proof of Breiman’s theorem is referred to Breiman (1965).

Here we need to derive its speed of convergence. Since T2 and R are independent,

P[X2 > t]

P[R > t]
=

P[T2R > t]

P[R > t]
=

∫ ∞
0

FR (t/x)

FR(t)
FT2(dx)

= A(t)

∫ ∞
0

FR(t/x)

FR(t)
− xα

A(t)
FT2(dx) + E[Tα2 ].

Now we claim that if E[Tα−ρ+δ
2 ] <∞ for some δ > 0, then

lim
t→∞

∫ ∞
0

FR(t/x)

FR(t)
− xα

A(t)
FT2(dx) =

∫ ∞
0

xα
x−ρ − 1

ρ
FT2(dx). (6.21)

Let

h(t, x) :=

FR(t/x)

FR(t)
− xα

A(t)
; g(x) := xα

x−ρ − 1

ρ
.

By Proposition 6.3, we can write FR(t) := kt−α`(t) with 0 < k < ∞ and

limt→∞ `(t) = 1. Also, let A(t) = −ρ[1 − `(t)]/`(t) as the one in Proposition

6.3 and write |A(t)| := tρ`A(t), where `A(t) is a slowly varying function, since

|A(t)| ∈ RVρ. Furthermore, for δ > 0 such that E[Tα−ρ+δ] < ∞ and any ε > 0,
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there exists t0 such that for all t, t/x ≥ t0 and x > 0,

|h(t, x)− g(x)| ≤ εmax(xα−ρ+δ, xα−ρ−δ).

Hence, assuming δ < α− ρ, without loss of generality,∫ t/t0

0
|h(t, x)− g(x)|FT2(dx) ≤ ε

∫ t/t0

0
max(xα−ρ+δ, xα−ρ−δ)FT2(dx) ≤ εK1,

(6.22)

where 0 < K1 < ∞ and does not depend on t. When x ∈ (t/t0,∞), we have

xt0 > t and |A(t)| is ultimately decreasing implies that when t is sufficiently large

|A(t)| > |A(xt0)| = xρtρ0|`A(xt0)|; FR(t) = kt−α`(t) and FR(t/x) ≤ 1 imply

that `(t/x) ≤ k−1(t/x)α < k−1tα0 . Together with limt→∞ `(t) = 1, we have

when t is sufficiently large and x ∈ (t/t0,∞),

|h(t, x)| < xα|2k−1tα0 − 1|
xρtρ0|`A(xt0)|

< xα−ρ+δK2, (0 < K2 <∞)

and thus by the dominated convergence theorem, when t is sufficiently large∫ ∞
t/t0

|h(t, x)|FT2(dx) < ε. (6.23)

Also, apparently, for t sufficiently large,∫ ∞
t/t0

|g(x)|FT2(dx) < ε. (6.24)

Combining (6.22), (6.23) and (6.24) implies that, for any ε > 0, when t is suffi-

ciently large,∣∣∣∣∫ ∞
0

h(t, x)FT2(dx)−
∫ ∞

0
g(x)FT2(dx)

∣∣∣∣ ≤ ∫ ∞
0
|h(t, x)− g(x)|FT2(dx)

≤
∫ t/t0

0
|h(t, x)− g(x)|FT2(dx) +

∫ ∞
t/t0

|h(t, x)|FT2(dx) +

∫ ∞
t/t0

|g(x)|FT2(dx)

< (K1 + 2)ε,
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which proves the claim.

Hence, as t→ +∞,

P[X2 > t] ∼ E[Tα2 ]P[R > t] +
A(t)

ρ

(
E[Tα−ρ2 ]− E[Tα2 ]

)
P[R > t]. (6.25)

Part 2: For (6.19), take FR∗(t) := tFR(t), then FR∗(t) ∈ 2RV−α+1,ρ and the

corresponding auxiliary function is A∗(t) = A(t). Let

M2(B) :=

∫
B

∫
R+

t1FT1,T2(dt1, dt2), B ⊂ R+

denote the marginal mean measure induced by T1. Since M2(R+) = E[T1] < ∞,

M2(·) is a finite measure. Since E[T1T
α−1−ρ+ξ
2 ] <∞, then by (6.21) in the proof

of Part 1, applied to FR∗, we have

lim
t→∞

∫
R2
+

t1
t2

FR(t/t2)

FR(t)
FT1,T2(dt1, dt2) = lim

t→∞

∫
R+

FR∗(t/t2)

FR∗(t)
M2(dt2)

= E[T1T
α−1
2 ] +

A(t)

ρ

(
E[T1T

α−1−ρ
2 ]− E[T1T

α−1
2 ]

)
. (6.26)

Also,

lim
t→∞

D1(t) = lim
t→∞

∫
R2
+

t1
t2

P
[
R > t

t2

]
P[X2 > t]

FT1,T2(dt1, dt2)

= lim
t→∞

P [R > t]

P[X2 > t]
× lim
t→∞

∫
R2
+

t1
t2

FR(t/t2)

FR(t)
FT1,T2(dt1, dt2) (6.27)

Part 3: For (6.20), let F ∗R(t) :=
∫∞
t FR(x)dx, since FR(x) ∈ 2RV−α,ρ, then by

Proposition 6.5, F ∗R(t) ∈ 2RV−α+1,ρ and the corresponding auxiliary function is
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A∗(t) = α−1
α−1−ρA(t). Also, letting x = tw/t1,

D2(t) =
P[R > t]

P[X2 > t]

∫
R2
+

∫∞
t1
t2

FR(tw/t1)dw

FR(t)
FT1,T2(dt1, dt2)

=
P[R > t]

P[X2 > t]

∫
R2
+

t1

{∫ ∞
t
t2

FR(x)

tFR(t)
dx

}
FT1,T2(dt1, dt2)

=
P[R > t]

P[X2 > t]

∫
R2
+

t1
F
∗
R(t/t2)

F
∗
R(t)

∫∞
t FR(x)dx

tFR(t)
FT1,T2(dt1, dt2).

Therefore,

lim
t→∞

D2(t) = lim
t→∞

P[R > t]

P[X2 > t]
× lim
t→∞

∫∞
t FR(x)dx

tFR(t)

× lim
t→∞

∫
R2
+

t1
F
∗
R(t/t2)

F
∗
R(t)

FT1,T2(dt1, dt2). (6.28)

From (6.21), applied to F ∗R, because E[T1T
α−1−ρ+ξ
2 ] <∞, as t→∞,∫

R2
+

t1
F
∗
R(t/t2)

F
∗
R(t)

FT1,T2(dt1, dt2)

=

∫ ∞
0

F
∗
R(t/t2)

F
∗
R(t)

M2(dt2)

∼ E[T1T
α−1
2 ] +

A∗(t)

ρ

(
E[T1T

α−1−ρ
2 ]− E[T1T

α−1
2 ]

)
= E[T1T

α−1
2 ] +

A(t)

ρ

α− 1

α− 1− ρ

(
E[T1T

α−1−ρ
2 ]− E[T1T

α−1
2 ]

)
(6.29)

Hence, combining (6.25), (6.26), (6.27), (6.9), (6.28) and (6.29) together, we will

get

E[X1|X2 > t] ∼ α

α− 1

E[T1T
α−1
2 ]

E[Tα2 ]
t

+
A(t)t

ρ

{
α− ρ

α− 1− ρ
E[T1T

α−1−ρ
2 ]

E[Tα2 ]
− α

α− 1

E[T1T
α−1
2 ]E[Tα−ρ2 ]

(E[Tα2 ])2

}
.
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This completes the proof . �

Proof of Proposition 6.7: In Proposition 6.6, replace T2 by h(T) since h(X) =

h(T)R. �
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Chapter 7

Conclusions and future research

7.1 Summary
The topics for the thesis have shown their importance in quantitative modeling in

insurance and finance where the assumption of normality would fail to explain the

rare events and their nonlinear dependence structures.

Two themes of the thesis are strength of dependence in the tails, and influence

of tail patterns on risk measures.

7.1.1 Strength of dependence in the tails

Tail order and intermediate tail dependence

For multivariate insurance and financial data, the degree of positive association

often appears to be higher on the tail than in the middle. To this end, we have

intensively investigated various tail dependence patterns and made contributions to

the development of relevant theories, including characterizing an intermediate tail

dependence structure.

Intermediate tail dependence can be explained as a continuum of strength of

dependence in the tail between the tail quadrant independence (the tail behaves like

the product of the univariate margins) and the usual tail dependence. We introduce

the concepts of tail order and tail order functions for studying copula families that

have various tail patterns, and find a new pattern of intermediate tail dependence
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for upper tails of Archimedean copulas and conditions that lead to such a pattern;

this fills in gaps in the literature. In addition, we have developed theories that relate

tail heaviness of a positive random variable to the tail behavior of the Archimedean

copula constructed with the LT of the random variable, which is an insightful way

to understand the tail behavior of Archimedean copulas.

7.1.2 Tail patterns and risk measures

Study of tail patterns such as tail heaviness and tail dependence plays a critical role

in risk assessment. To this end, we have conducted research in the following two

aspects.

Conservative tail dependence structure

The influence of dependence in the tails on risk measures for multivariate insurance

or financial data has attracted more and more attention of researchers. However,

it is very difficult to give a good estimation of the tail dependence as the data in

the tail is sparse. To deal with this situation, we propose a data-driven conservative

dependence structure to account for the uncertainty in tail dependence.

The conservative dependence structure is referred to as tail comonotonicity.

It is assumed that the strongest dependence appears when losses go to infinity,

while the dependence on the sub-extremal level is characterized by the second-

order parameters that can be estimated using data. The data-driven merit provides

a practical way to obtain a better guess on the worst dependence structure, while the

strongest positive dependence on the tail guarantees that the less information we

have and the larger the losses are, the more conservative assumptions are adopted.

We have conducted a thorough investigation on the properties and constructions of

this dependence structure, and found interesting asymptotic additivity properties

of relevant risk measures. Sufficient conditions have been obtained to justify the

conservativity of tail comonotonicity. In addition to theoretical studies, real data

analysis and intensive simulations suggest that, by assuming tail comonotonicity,

one does not lose much accuracy but gain reasonably conservative risk assessment,

especially for high-risk scenarios.
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Sub-extremal risks

Sub-extremal risks can be referred to as the risks that are higher than a certain high

threshold (e.g., 90% quantile). For modeling sub-extremal losses, an important

question is to understand the probabilistic structures in the sub-extremal level. To

answer this question, we have studied a general second-order tail heaviness struc-

ture and established second-order approximations to conditional tail expectations

(CTE) for both univariate and multivariate dependent risks.

We use 2RV conditions to study the properties of risk measures on the sub-

extremal level. Under some mild conditions that can be easily satisfied, closed-

form second-order approximations for both the univariate and multivariate cases

of CTE have been derived. The results provide a clear and general probabilistic

structure for characterizing the distributional tails, and indicate conditions under

which a second order parameter becomes more important.

7.2 Future research
A couple of research questions that are relevant to the theory contained in this

thesis are presented in what follows.

7.2.1 Tail behavior of CTEs

In Chapter 5, E[X1|X2 > t] and E[X1|X2 = t] have been studied in terms of

asymptotic comparisons under the condition of different tail dependence patterns.

That is, different tail properties of copulas affect the CTEs, and the asymptotic

behavior of E(X1|X2 > t) and E(X1|X2 = t) would be another way to show

how copula families can be differentiated, and to show that the choice of copula

family has a big influence on tail inference.

We first use plots to illustrate comparisons between these three cases of usual

tail dependence (κ = 1), intermediate tail dependence (1 < κ < 2) and tail quad-

rant independence (κ = 2) by Figure 7.1. The Blomqvist’s β for the three columns

of the plots in Figure 7.1 were chosen to be β = 0.3, 0.6, 0.9, respectively. In each

plot, the parameters for Gumbel, s.Gumbel and MTCJ copulas were calculated

based on the same Blomqvist’s β. For the Gumbel copula, δ = 1.434, 2.484, 9.709,
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respectively for each column, and so does the δ for the s.Gumbel copula. For the

MTCJ copula, δ = 0.863, 2.764, 13.513, respectively for each column. The pa-

rameter for the identical Pareto margins were chosen to be the same in each row;

that is, θ = 2, 100, 1.1, respectively.

Based on Figure 7.1, we find that when the upper tail order is 1 (Gumbel),

the CTE plots seem to be linear in t on the whole support no matter what the θ

is. When the upper tail order is 2 (MTCJ), the CTE lines become very flat. The

CTE plots for the intermediate upper tail dependence with the upper tail order

1 < κ < 2 (s.Gumbel) are located between the above two cases. However, if the

Pareto margins are too heavy-tailed with a very small parameter θ (e.g., θ = 1.1

in the last row of Figure 7.1), the CTE plots are not suitable for discriminating the

three cases of tail orders. So, it may suggest to choose a relatively large θ for the

purpose of discriminating the types of tail orders. Moreover, when Blomqvist’s β

is very large (e.g., β = 0.9), it becomes very hard to distinguish tail dependence

and intermediate tail dependence; similarly, when Blomqvist’s β is very small, the

plot may becomes difficult to differentiate intermediate tail dependence and tail

quadrant independence.

In what follows, we will try to keep the arguments suitable to general cases

when discussing the three types of tail behavior, otherwise, concrete examples will

be given to show the possible behavior if a general discussion is not possible at

the moment. The research goal will be to obtain checkable sufficient conditions

to confirm whether CTE behavior is t1`(t), tα`(t) with 0 < α < 1, or t0`(t), as

t→∞.

Usual tail dependence

The linearity in t for the usual tail dependence case can be explained as what fol-

lows. If X1 and X2 have the same regularly varying upper tail and their copula

possess an upper tail dependence function, then (X1, X2) is multivariate regularly

varying (see Weng and Zhang, 2012); let the corresponding intensity measure be

ν. Choosing B := [0,∞] × [1,∞] in Theorem 2.2 (1) of Joe and Li (2011), we
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Figure 7.1: CTE plots for E[X1|X2 > t]. The range of t in each plot was
chosen to cover the support of t between the 1% and 99% quantiles.
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have

E[X1|X2 > t] ∼ t
∫ ∞

0

ν([w,∞]× [1,∞])

νB
dw, t→∞. (7.1)

So the CTE plot should be approximately linear in t when t is sufficiently large,

as long as the integration in (7.1) is finite. Here, an open question is that, for the

Gumbel copula, why the linearity always appears even when t is very small.

Intermediate tail dependence

The relevant theory for the other two cases is more tricky. Now, let us look at the

example of Pareto margins with a survival Gumbel copula more closely, for the

intermediate tail dependence case.

Example 7.1 (Pareto margins and survival Gumbel copula) Suppose X1 and X2

have a copula C that is the survival copula of a Gumbel copula Ĉ, so that the upper

tail order of C is 1 < κ = 21/δ < 2. Then we can write

E[X1|X2 > t]

= [F (t)]−1

∫ ∞
0

Ĉ(F (x), F (t))dx

= [F (t)]−1

∫ ∞
0

exp

{
−
(

[− logF (x)]δ + [− logF (t)]δ
)1/δ

}
dx

= (1 + t)θ
∫ ∞

0
exp

{
−θ
(

[log(1 + x)]δ + [log(1 + t)]δ
)1/δ

}
dx

=

∫ ∞
0

exp

{
sθ − θ

(
yδ + sδ

)1/δ
+ y

}
dy, y := log(1 + x); s := log(1 + t)

= s

∫ ∞
0

exp

{
s

[
θ − θ

(
zδ + 1

)1/δ
+ z

]}
dz, z := y/s

=: s

∫ ∞
0

esg(z)dz,

where g(z) := θ − θ
(
zδ + 1

)1/δ
+ z. As t → ∞, s → ∞, so we may use a

Laplace approximation to evaluate the behavior of
∫∞

0 esg(z)dz as s → ∞. In

order to apply the Laplace approximation, the function g(z) has to satisfy some

regularity conditions (see Small, 2010) as follows.

175



(1) Clearly, g(z) is differentiable on (0,∞), and the global maximum is at-

tained when z = z0 = [θδ/(δ−1) − 1]−1/δ. As θ, δ > 1, 0 < z0 < ∞. While

g′′(z) = (1− δ)θzδ−2(1 + zδ)1/δ−2 < 0 for z ∈ (0,∞) when θ, δ > 1.

(2) Since g(0) = 0, g(∞) = −∞, g(z) is strictly increasing for z ∈ (0, z0]

and g(z) is strictly decreasing for z ∈ [z0,∞), we may choose a 0 < ξ < z0 and

ε = g(z0) − max{g(z0 − ξ), g(z0 + ξ)} > 0 such that g(z) < g(z0) − ε for all

z ∈ (0,∞) ∩ {z : |z − z0| ≥ ξ}.
(3) Also,

∫∞
0 exp{θ − θ

(
zδ + 1

)1/δ
+ z}dz < eθ

∫∞
0 ez(1−θ)dz <∞.

Therefore, as t→∞,

E[X1|X2 > t] ∼ sesg(z0)

√
2π

−sg′′(z0)
= (1 + t)g(z0)

√
2π log(1 + t)

−g′′(z0)
,

and g(z0) = θ −
(
θδ/(δ−1) − 1

)(δ−1)/δ
> 0 affects the behavior of E[X1|X2 > t].

Note that, the Laplace approximation involves a Taylor expansion to the second

order of sg(z) and reweighing of the Gaussian integral for a Gaussian random

variable with the variance being −(sg′′(z0))−1.

Let ξ(θ, δ) := g(z0), then ∂ξ(θ, δ)/∂θ = 1 −
(
1− θ−δ/(δ−1)

)−1/δ
< 0 and

thus ξ(θ, δ) is deceasing in θ. So increasing θ, the parameter for the Pareto margins,

will decrease the speed of E[X1|X2 > t] as t → ∞. Similarly, it can be easily

verified that, for θ, δ > 1, ∂ξ(θ, δ)/∂δ > 0. Therefore, increasing δ will increase

the speed of E[X1|X2 > t] as t → ∞. Those are consistent to the plots in Figure

7.1. Note that, the speed of E[X1|X2 > t] can be roughly compared by comparing

the relative positions of the CTE lines to the “y = x” line.

Tail quadrant independence

From Figure 7.1, we can find that the CTE line for the tail quadrant independence

case (MTCJ) tends to converge to a finite number, if the parameter θ for the Pareto

margins is sufficiently large.

Now, suppose continuous random variables X1
d
= X2 ∼ F supported on

[0,∞) with the copula C. Let g(v) := C(u, v) − v for a given 0 ≤ u ≤ 1.
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Then a Taylor expansion at v = 1 leads to, as v → 1−,

g(v) = (u− 1) + (1− v)[1− C1|2(u|1)] + 2−1D22C(u, 1)(v − 1)2 +R(u, v),

where D22C(u, 1) = ∂2C(u, v)/∂2v|v=1 and the remainder R(u, v) = o((v −
1)2). If there exists a v0 < 1 such that v > v0 implies that

2−1D22C(u, 1)(v − 1)2 +R(u, v) ≤ 0, for u a.e.; (7.2)

that is, g(v) ≤ h(v) := (u− 1) + (1− v)[1− C1|2(u|1)], and let u = F (x), then

C(F (x), v)− v ≤ (F (x)− 1) + (1− v)[1−C1|2(F (x)|1)]. Therefore as v > v0,

E[X1|X2 > t]

= (1− v)−1

{
E[X1] +

∫ ∞
0

[C(F (x), v)− v]dx

}
≤ (1− v)−1

{
E[X1] +

∫ ∞
0

(F (x)− 1) + (1− v)[1− C1|2(F (x)|1)]dx

}
=

∫ ∞
0

[1− C1|2(F (x)|1)]dx.

If

G(x) := lim
v→1−

C1|2(F (x)|v) exists

G(x) is the cdf of Y, and E[Y ] <∞. (7.3)

Then by the dominated convergence theorem,

lim
t→∞

E[X1|X2 > t] = lim
v→1−

∫∞
0 {C(F (x), v)− v + 1− F (x)}dx

1− v

=

∫ ∞
0

lim
v→1−

C(F (x), v)− v + 1− F (x)

1− v
dx

=

∫ ∞
0

{
1− C1|2(F (x)|1)

}
dx.
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That is,

E[X1|X2 > t]→ E[Y ] <∞, t→∞.

Condition (7.3) is easy to verify. From Table 1.2, tail quadrant independent

copulas such as Frank, MTCJ and BB2 all satisfy the condition that G(x) :=

C1|2(F (x)|1) is the cdf of a random variable Y . By appropriately choosing F (x),

we can have E[Y ] < ∞. However, the condition (7.2) or related conditions re-

quire further investigation, and a similar final conclusion could be obtained with

sufficient conditions other than (7.2).

Similar patterns can be observed in Figure 7.2 for the corresponding CTE plots

of E[X1|X2 = t].

Unlike the former case, E[X1|X2 = t] is relatively harder to get the empirical

quantities. So CTE plots for E[X1|X2 > t] have a better potential to be further

developed as a diagnostic tool for the patterns of dependence in the tails.

We now close this subsection by giving an example for the intermediate tail

dependence case.

Example 7.2 (Pareto margins and survival Gumbel copula) Suppose X1 and X2

have a copula C that is the survival copula of a Gumbel copula Ĉ, so that the upper

tail order of C is 1 < κ = 21/δ < 2. Letting y := log(1 + x), s := log(1 + t) and
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Figure 7.2: CTE plots for E[X1|X2 = t]. The range of t in each plot was
chosen to cover the support of t between the 1% and 99% quantiles.
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z := y/s, we can write

E[X1|X2 = t]

=

∫ +∞

0
{Ĉ1|2(F (x)|F (t))}dx

=

∫ +∞

0

1

F (t)
exp

{
−
(

[− logF (x)]δ + [− logF (t)]δ
)1/δ

}
×
[
1 +

(
[− logF (x)]/[− logF (t)]

)δ]−1+1/δ
dx

=

∫ ∞
0

exp

{
sθ − θ

(
yδ + sδ

)1/δ
+ y

}
×
[
1 + (y/s)δ

]−1+1/δ
dy,

= s

∫ ∞
0

exp

{
s

[
θ − θ

(
zδ + 1

)1/δ
+ z

]}
×
(

1 + zδ
)−1+1/δ

dz,

=: s

∫ ∞
0

h(z)esg(z)dz,

where g(z) := θ − θ
(
zδ + 1

)1/δ
+ z and h(z) :=

(
1 + zδ

)−1+1/δ. We may also

use a Laplace approximation. From Example 7.1, the regularity conditions for g(z)

are hold. In addition, h(z) is continuous on (0,∞), and h(z0) 6= 0. Therefore (see

Small, 2010), as t→∞,

E[X1|X2 > t]

∼ sesg(z0)h(z0)

√
2π

−sg′′(z0)
= (1 + t)g(z0)h(z0)

√
2π log(1 + t)

−g′′(z0)
.

7.2.2 Intermediate tail dependence from hidden regular variation

Another relevant topic is the relationship1 between intermediate tail dependence

and Hidden Regular Variation (HRV) (Resnick, 2002).

In Resnick (2007), HRV is defined on the cone

E0 := {s ∈ E : ∃ 1 ≤ i < j ≤ d, si ∧ sj > 0}; (7.4)

1Thanks to Professor Haijun Li for pointing out the connection to Hidden Regular Variation.
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that is, at most d− 2 elements are 0, i.e., removing the axes of E := [0,∞]d \ {0}.
More precisely, if there exist scaling functions b(t), b0(t)→∞, b(t)/b0(t)→

∞ as t→∞, such that as t→∞,

tP
(

X

b(t)
∈ B

)
→ ν(B) (7.5)

for all relatively compact sets B ⊂ Rd+\{0} with ν(∂B) = 0, and

tP
(

X

b0(t)
∈ B

)
→ ν0(B) (7.6)

for all relatively compact setsB ⊆ Rd+\∪di=1{te(i), t ≥ 0} satisfying ν0(∂B) = 0,

then X is said to possess HRV on E0.

The tail order functions (see Definition 3.2) we have studied is closely related

to the concept of HRV. With certain regularity conditions, we can establish the

relationship between tail order functions for the intermediate tail dependence case

to the Radon measure ν0 for the HRV. This is a technical result to be included in a

future publication.

For further research on this topic, it would be interesting to study how the the-

ory of HRV and tail order functions can be used to study the tail behavior of the

conditional specification E[X1|X2 > t] where (X1, X2) is intermediate tail de-

pendent or tail quadrant independent in the upper tails, and how a useful statistical

inference approach can be developed based on these theories to estimating the tail

probability for these cases.
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