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Abstract 

The work described in the present thesis is related to a series of projects that I worked on toward the 

better understanding of fragmentation phenomena. In the past decades, the science of fragmentation 

has attracted many attentions within the researchers due to its wide range of applications. However, 

because of the complexity of the subject, even its basic concepts need more investigations.    

This thesis starts with an introduction to fragmentation of droplets using experimental or numerical 

approaches. It is discussed that the current mathematical and experimental tools are not able to 

describe all the details. Thus, high performance numerical simulations are the best alternatives to 

study the breakup of droplets. The introduction is followed by a discussion on the numerical method 

and the ranges of the non-dimensional groups. It is described that an adaptive, volume of fluid (VOF) 

method based on octree meshing is used, providing a notable reduction of computational cost. The 

rest of the thesis basically discusses the obtained results using direct numerical simulations. Two 

main geometries are investigated: falling droplets and droplets in a stream. For the case of falling 

droplets, three simulations with different Eötvös numbers are performed. For the case of droplets in a 

stream, two-dimensional and three-dimensional simulations are performed for a range of Weber 

number. The results are compared with the available mathematical theories and it is shown that the 

analysis presented here precisely demonstrates the mechanism of the bag breakup of falling droplets 

and instability growth over the droplets in an external high-speed flow. The outcomes can 

significantly assist the development of the secondary atomization and turbulent two-phase flows 

modelling.   
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Chapter 1 

Introduction 

 

1.1 Fragmentation of Droplets 

The deformation and breakup of liquid droplets is encountered in a wide range of industrial 

applications as well as in natural situations. Engineering examples are found in diesel engines and 

other types of combustion applications, electro-sprayed paint and cosmetics, ink-jet printers, turbines, 

micro-fluidics, cooling systems, etc. In the case of geophysical phenomena, examples abound, 

ranging from volcanic eruption and tephra formation to rain phenomenon. A thorough description of 

fragmentation phenomena for a variety of applications can be found in Villermaux (2007). Depending 

on the circumstances a droplet is dispersed in, the mechanism of the two-phase system can be altered 

from moving in non-stationary surrounding media and free-fall in a quiescent environment due to the 

constant gravity body force. Schematic views of these two situations are shown in figure 1.1. 

 

Fig. 1.1. a) Droplet in an external flow. b) Droplet falling in a constant gravity (acceleration). 

No amount of experimentation can ever prove 

me right; a single experiment can prove me 

wrong. 

Albert Einstein (1879 –1955) 
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 Shock tube and drop tower tests are examples of circumstances a and b in figure 1.1, respectively. 

The main difference between the two mentioned situations is in velocity change. In contrast to step 

velocity change in shock tube tests, droplet accelerates more gradually in drop towers due to gravity. 

However, for the both cases, the mechanism of fragmentation is quite similar. This mechanism can be 

described using the schematic diagram shown in figure 1.2.  

 

 

Fig. 1.2. The algorithm of droplet disintegration and fragments distribution. 

 

Depending on physical properties of the droplet-surrounding media combination, the initial spherical 

droplets can be stable or not. If the initial droplet is relatively stable, it remains spherical or slightly 

deforms into spheroid or cap shapes. In the case of unstable droplets, breakup process occurs. 

However the type of fragmentations might be different depending on physical properties of the 

system.   

To understand the droplet dynamics, several experimental, theoretical, and numerical studies have 

been performed. The majority of the investigations are performed experimentally using different 

techniques including shock tubes, continuous jets, drop towers, and hybrid methods. Pilch & Erdman 
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(1987) described the breakup modes separately for a single drop experiencing an external flow under 

different ranges of the Weber number (see Table 2.1). Based on this experimental study (followed by 

further investigations), droplet breakup can be categorized mainly in five modes: vibrational mode, 

bag mode, Sheet thinning mode, catastrophic, and Multi-mode breakup.  Figure 1.3 demonstrates the 

schematic view of four main breakup modes. 

 

 

Fig. 1.3.. Main modes of droplet breakup.   

 

O’Brian (1961) and Burger et al. (1983), studied the free-fall of oil and gallium drops, respectively 

and presented the different modes of breakup for liquid-liquid two-phase systems. According to their 

results, it could be understood that the classification described by Pilch & Erdman (1987) is also valid 

for liquid-liquid systems.  

Besides the work of Pilch & Erdman (1987), several experimental investigations are performed to 

classify the breakup regimes. Krzeczkowski (1980) made a study of deformation and fragmentation 

of liquid droplets due to an external air stream. Using image processing, Krzeczkowski (1980) 

introduced four main breakup modes in terms of Weber number consisting of bag, bag-jet, transition, 

and shear modes. He also studied the breakup duration and the dependency of this parameter on the 
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viscosity ratio. He found that the viscosity ratio does not affect the mechanism and breakup period 

notably and the most dominant factor is the Weber number. Chou et al. (1997), Chou and Faeth 

(1998), and Dai and Faeth (2001) carried out a series of experimental studies on temporal properties 

of shear, bag, and multimode breakup regimes. Several factors such as deformation, droplet 

velocities, breakup time, critical Weber number and drag coefficient, etc. are systematically presented 

using the shadowgraph method. The multimode regime in the work of Dai and Faeth (2001), is 

divided into two main regimes called bag-plume and plume-shear modes. Cao et al. (2007), using 

high speed camera and shadowgraphs, identified a new mode close to multimode regime called dual-

bag breakup for a liquid droplet in a uniform air jet flow. The mechanism of this mode consists of 

two bag fragmentations of the main drop and the core drop generated in the first breakup. It was 

postulated that the dual-breakup is different from the observation of Krzeczkowski (1980) and Dai 

and Faeth (2001) for the similar Weber range obtained in shock tubes. It was argued that the dual-

breakup mode is due to dissimilar kinds of disturbances made in uniform jet flow. Cao et al. (2007) 

mentioned that bag or bag-stamen modes can be seen for the lower limit of dual-bag regime, as well 

as shear or explosive regimes for higher limit. Recently Guildenbecher et al. (2009) reviewed the 

technical literature for experimental methods and morphology of droplet atomization for Newtonian 

and non-Newtonian fluids. They highlighted that ―the mechanism leading to fragmentation of the bag 

is not well understood‖ while the study of this mode is particularly essential because it ascertains the 

criteria for secondary atomization. They also report a map/table as a function of Weber number for 

different breakup modes and presented a relatively comprehensive description on what we know 

about the mechanism of each mode.  

Recognizing various breakup modes for droplet fragmentation is the basic step for analysing the 

mechanism of breakup. However, what is seen in the experiments for highly unstable regions 

demonstrates that modes are combined and multi-mode-fragmentation happens. Consequently in 

most cases, shear, bag, wave crest, and other modes are included in the entire process of 

fragmentation. To demonstrate the involvedness of the topic, the different breakup regimes of five 

recent studies are demonstrated in figure 1.4. 
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Fig. 1.4. Breakup modes in terms of Weber number. 

 

The overlapping of breakup modes occurs for a wide range of Weber numbers. This issue is 

especially remarkable for the range of 20 80We  , where different types of breakup are reported. It 

should be noted that the studies mentioned here used shock tube or wind tunnel experiments.  

In contrast to drop deformation and breakup in wind tunnel or shock tubes, a smaller number of 

studies can be found investigating falling droplet fragmentation. Reyssat et al. (2007) experimentally 

explored an unstable range of water drops falling in air. They demonstrated an identifiable, specific 

class of bag breakup for drops with diameter much larger than capillary length. The distorted shape of 

such drops consists of a thin aqueous sheet surrounded by air and bounded at the bottom by a torus. 

During the falling process, as the instability intensifies, the sheet ruptures and a deformed toroidal 

rim comes into sight. This high-speed fragmentation is followed by destabilization and breakup of 

liquid bridges due to Savart-Rayleigh-Plateau instability. In the end, a very large drop falling in air 

decays in several stable fragments of individual size smaller than the capillary length. Reyssat et al. 

(2007) extended their work for very large water drops, larger than 3 cm, and showed that multiple 

bags are formed because of Rayleigh-Taylor-like instabilities. A similar scenario including inflation, 

disintegration and destabilization of liquid bridges occurs for each of the unstable fragments.  

A comparable observation of large water drop fragmentation can also be found in the recent paper of 

Villermaux & Bossa (2009). Using a hybrid system including falling tower and ascending stream of 

air, the authors showed that the flattening of the drop into a pancake shape is followed by bag 
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creation. Afterwards, the similar fragmentation cascade observed in the work of Reyssat et al. (2007) 

is perceived. Villermaux & Bossa (2009) stated an imperative argument on uncertainty of the 

experiments performed. They showed that the formation of a bag is not obligatory for the initial drop 

to break up. In some cases, the falling drop deforms into a pancake shape, the torus is made, and 

liquid columns break up into stable daughter droplets. This issue shows the chaotic nature of the 

problem and the concern of how much the deformation modes are related to the operating condition 

of the experiments. Villermaux & Bossa (2009) scrutinized the atomization process by calculating the 

bag growth and distribution of drops. They declared that for moderate Weber numbers ( 6We  ), the 

drop radius oscillates around a mean. However, for large Weber numbers ( 6We  ), the radius 

increases exponentially, approaching the bursting moment. Subsequently, the distribution of 

produced drops is evaluated and compared against Marshall-Plamar exponential distribution of rain 

drops. As a momentous consequence, it is found that ―single-drop fragmentation determines size 

distribution of raindrops.‖ 

In the case of numerical simulations, the studies vary from small deformation of droplets to breakup 

of dispersed phases. Nevertheless, highly unstable situations still need more investigations. Using the 

Lattice Boltzmann method, Fakhri & Rahimian (2009, 2011) presented numerical simulations of 

descending droplets for a variety of Ohnesorge, Archimedes and Eötvös numbers (see Table 2.1). All 

simulations were performed in 2D or axi-symmetric domains. Different shapes of breakup were 

observed and the results of stable, non-fragmented drops were compared with theoretical drag 

formulations for disks and spheres. Some previously established facts like the increase of instabilities 

by enlarging the droplet Archimedes or Eötvös numbers were also shown in the results. At the most 

unstable condition of the study, four fragments are observed after the breakup. Although the proposed 

numerical method is able to capture the shear and bag breakups, no results are presented for highly 

unstable drops, which are essential for a wide range of applications. A comparable attitude is 

followed in the direct numerical simulations of Ni et al. (2006), while the influences of wall repulsion 

are also studied. They also simulated the coalescence of two drops but again no information was 

provided for the breakup of drops.  Recently, Feng (2010) studied the steady-state flow fields inside 

and outside of a deformable liquid drop falling at its terminal velocity using a Galerkin finite element 

method. Different viscosity and density ratios as well as Reynolds and Weber numbers are examined, 

and the drag coefficient is calculated. Although the considered drop was deformable, the breakup was 

not studied. A similar approach can be seen in the work of Gottesdiener (2004) where the velocity of 

a stable falling drop is obtained for different situations and the breakup mechanism is out of the scope 

of the study. Han and Tryggvason (1999), using a finite difference/front tracking method, studied the 
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unsteady motion of falling liquid drops for different fluid-fluid combinations. Results are classified 

for two density ratios, 1.5 and 10, and different Eötvös and Ohnesorge numbers. Bags are shown in 

the simulations for the range of 144Eo  , and results are summarized in six Eo Oh  shape maps. 

Similar to most of the other numerical simulations, outcomes of Han and Tryggvason (1999) are 

limited to deformed shapes and drop velocity variations and no results were presented for breakup.    

 

1.2 Motivation 

Due to the complexity and chaotic nature of the problem, including very small length and time scales, 

three dimensional patterns, gas-liquid interaction, etc., theoretical studies normally require 

simplifying assumptions and approximations. Thus, a purely theoretical explanation of the 

deformation and breakup of the droplets has not, and is not expected to be verified in the near future.  

The paper of Harper et al. (1971) may be the most advanced theoretical investigation of this field. 

Using numerical as well as second-order asymptotic methods, the transient response of an externally 

excited droplet was explored for a range of Bond numbers. Harper et al. (1971) organized a regimes-

map for the dynamic response of drops to an external flow as a conclusion. However, the deformation 

patterns obtained are far from the reality. Theoretical studies are crucial and fundamentally important 

for interfacial science. Nevertheless the mathematical techniques are still ineffective in solving the 

chaotic problems such as fragmentation of liquid drops. 

In the case of experimental investigations, due to three-dimensional occurrences in very small 

temporal and spatial scale (ms and μm, respectively), the current measurement techniques (from 

shadowgraph to high-tech Particle Image Velocimetry) are not accurate enough to show the details of 

the various phenomena during the fragmentation and capture all the characteristics of droplet 

fragmentation. Thus, empirical results are normally limited to deformation shape and breakup modes.  

The story of numerical simulations is different. By using a careful and accurate approach considering 

the properties of the governing equations, even chaotic problems such as turbulent two-phase flows 

can be resolved. The limits of numerical simulations are defined by computational costs. In other 

words, an excessively large number of finite discretized volumes and extensive computational times 

are required to solve these complex problems. Due to limitations described above, the mechanism of 

liquid droplet breakup in small scales has not yet been clarified. However, as mentioned in the review 

paper of Guildenbecher et al. (2009), Direct Numerical Simulation (DNS) of Navier-Stokes equations 

combined with interface tracking is the best known technique for the study of the process. 
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The present study, to our knowledge, is the first attempt for DNS of liquid fragmentation, aiming to 

clarify the mechanism of fragmentation and give a detailed description of fragment properties. In this 

thesis, the deformation and breakup of droplets for two cases of falling droplets in constant 

acceleration and droplets in an external stream are investigated. Direct simulations are performed 

based on appropriate numerical algorithms in the context of the volume of fluid (VOF) method, 

combined with high performance computing techniques.  

 

1.3 Outline of This Thesis 

This thesis primarily discusses the mechanism of fragmentation using DNS. It starts with the details 

of the numerical method we use for the simulations in chapter 2. The next chapter (chapter 3) 

contains the details of the results obtained for the deformation and mechanism behind the breakup of 

falling droplets in constant acceleration. In chapter 4, a comprehensive analysis for characteristics of 

fragments, generated in the breakup of falling droplets, is presented. Chapter 5 deals with 

deformation of droplets in a stream. Our studies for this topic are limited to generation and growth of 

instabilities over the droplets. Subsequently, a summary of the results and conclusions are given.  
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Chapter 2 

Methodology & Non-Dimensional Groups 

 

2.1 Geometries 

As described in chapter 1, two cases are studies in the current thesis: 1) a free-falling droplet and 2) a 

droplet in a stream. For the first case, a spherical droplet of initial diameter D  with density and 

viscosity of d  and d , respectively is considered to fall under the action of gravitational 

acceleration g , with zero initial velocity, 
 *

*

0
0

t
V


  . The quiescent carrier fluid has a viscosity of 

c  and density of c . The computational domain is schematically illustrated in figure 2.1. 

 

The whole of science is nothing more than a 

refinement of everyday thinking.   

Albert Einstein (1879 – 1955) 
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Fig. 2.1. Schematic sketch of the initial condition of simulations for a falling droplet. 

 

The dimensions of the domain and initial position of the droplet are placed so that the boundaries 

exert negligible influence on the fragmentation process. Thus, the conditions of free fall are satisfied. 

No external flow is exerted in the domain and the droplet descends due to constant gravity body 

force. All of the simulations for this case are performed in three dimensions.  

For the second case (single droplet in a stream), a periodic box with the size of (
0 0 05 5 5D D D  ) is 

considered and an initially spherical droplet is placed at the center of the box. The physical problem 

and the computational domain for the 3D simulations are illustrated in figure 2.2.  
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Fig. 2.2. Droplet in a stream. Flow direction is from left to right. 

 

For this case, both 2D and 3D simulations are considered, since the instability initiation and growth 

of instability in the stream-wise direction can also be captured in 2D simulations. For the 2D 

simulations the dimensions are the same but only z  and x directions are considered. Thus, the droplet 

has a circular geometry for the 2D case. The gas part of the domain is initialized with a uniform 

initial velocity,
0U , and the droplet is stationary. It should be mentioned that the passage of the 

shockwave cannot be presented due to incompressible flow solver used here. However, after a very 

short time (no deformation), a smooth divergence-free velocity field is obtained.  

 

2.2 Governing Equations 

The incompressible, variable-density, iso-thermal Navier-Stokes equations with surface tension 

govern the motion of the dispersed and continuous phases.  The set of equations can be written for the 

computational domain as,  
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. 0, u           (2.1)  

 . 0,t   u          (2.2) 

   . . 2t sp          u u u D n g       (2.3) 

 

where ( , , )u v wu is the velocity vector, and ( , )t  x  and ( , )t  x  are respectively the local fluid 

density and the dynamic viscosity.   2ij i j j iD u u   D  is the deformation tensor. The Dirac 

delta ( s ) ensures that the surface tension term is concentrated on the air/droplet interface. In 

equation 2.3,  is the surface tension coefficient, and   and n  are the curvature and normal vector 

with respect to the interface, respectively. 

The density and viscosity are calculated based on the volume fraction of the droplet phase,  ,c tx , 

 

   1 ,d cc c c              (2.4) 

   1 .d cc c c              (2.5) 

 

The advection equation for density can be replaced with an equivalent equation for the volume 

fraction, 

 

 . 0.tc c  u           (2.6) 

 

2.3 Flow Solver (Gerris) 

Gerris is an open source code for the solution of the Navier-Stokes equation. The source code is 

available free of charge under the Free Software GPL license. Gerris is supported by NIWA (National 

Institute of Water and Atmospheric research) in New Zealand and Institut Jean le Rond d'Alembert in 
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France. The code is relatively new, however It solves the time—dependant incompressible variable-

density Euler and Navier-Stokes equations. The main feature of the code (and the main reason we use 

this code) is the adaptive mesh refinement (i.e. the resolution is adapted dynamically to the features 

of the flow). This feature is supported with second-order discretisations in space and time. For 

interface tracking, a Volume of Fluid (VOF) advection scheme is employed in the code.  

 

2.3.1 Temporal Discretisation  

A second-order accurate time discretisation is obtained as follows, using a staggered in time 

discretisation of the parameters: 

 

      1
111 1 1 1 1 1
222 2 2 2 2

. . ,n n
n n s nnn n n n n

p
t

   
     

     
         
      

u u
u u D D n g  (2.7) 

 
1 1

2 2 0,
n n

n n

c c

c
t

 


 


u          (2.8) 

0.n u            (2.9) 

 

Using the Chorin classical time-splitting projection method (Chorin 1969) the system simplifies to, 

 

     *
111 1 1 1 *
222 2 2 2

. . ,n
n s nnn n n nt

   
   

     
        
      

u u
u u D D n g    (2.10) 

 
1 1

2 2 0,
n n

n n

c c

c
t

 


 


u          (2.11) 

1 * 1
1 2
2

,n
n

n

t
p








  u u   1 0.n u        (2.12) 

 This system of equations requires the solution of Poisson equation for pressure: 
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1 *
1 2
2

.
n

n

t
p

 


 
 

    
 
 

u   1 0.n u        (2.13) 

 

The velocity advection term in equation 2.10 is estimated using the robust second-order upwind 

scheme of Bell et al. (1989). This scheme is stable for CFL numbers smaller than one.  

To solve equation 2.11, a piecewise-linear geometrical Volume Of Fluid (VOF) scheme is used. 

Interface reconstruction and interface advection are the two main steps in the geometrical VOF 

scheme. The details of these two steps can be found in the recent paper of Popinet (2009).  

 

2.3.2 Spatial Discretisation  

A quadtree(2D)/octree(3D) spatial discretization method is used. An example of this technique for a 

2D box is illustrated in figure 2.3.  

 

 

Fig. 2.3. Quad-tree grid adaption from level 0 (dotted box) to level 4 (green boxes). 

 

In figure 2.3, the root cell is shown using dotted lines. The root cell has a Level of zero and the level 

increases by one for each successive generation (each parent cell can have zero or four children cells 

for 2D simulations and zero to eight children in 3D) in the tree. The adaption is continued up to the 
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leaf cells (cells without any children).  It should be mentioned that the level of neighboring cells 

(directly or diagonally) cannot differ by more than one. 

The refinements can be done using different criteria. For the falling droplet simulations, since an 

accurate prediction of interface deformation and the influence of the carrier phase on droplet 

dynamics are essential to the breakup process, the radius of curvature and vorticity magnitude are 

considered as refinement criteria. The vorticity magnitude (  curl u ) is also important for resolution 

of the local turbulent eddies generated in continues (gas) phase and close to the interface. For the 

droplets in a stream, the gradient of the stream-wise velocity is also considered for the adaption, as it 

significantly assists in the resolution of the boundary layer over the droplet. For the current 

simulations, adaption is followed reaching level 12. The octree mesh permits a saving up to two order 

of magnitude in computational cost, making these simulations feasible. The adaptive refinement, 

based on the octree mesh, is relatively inexpensive, and sensible to execute in every time step. An 

example of grid refinement for the centre-plane of a 3D simulation of a falling droplet is illustrated in 

figure 2.4. 

 

 

Fig. 2.4. Grids generated for a case of falling droplet ( 0.761   for 216Eo  , 0.05dOh  , 0.05cOh  ,

* 10  ). Left: interface of the drop. Right: cross-section of the drop in 0z  plane; each cell is 

colored by the refinement level-number of the grid. 

 

As shown in figure 2.4, the grids are refined at the interface of the drop and the region around and on 

top of the droplet because of the curvature and vorticity gradients in these areas. The iso-surfaces for 

the grid sizes in a falling droplet simulation (same as figure 2.4, but after the fragmentation) are also 

illustrated in figure 2.5 to show the quality of the grid adaption in three dimensions. 
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Fig. 2.5. Iso-surfaces of grids size for fragments after the fragmentation of a falling droplet. a) 

Dispersed fragments with different shapes for 216Eo  , 0.05dOh  , 0.05cOh  ,
* 10  . b) Iso-

surface for grid size of, *

0
0.5dldl

D
  . c) * 0.2dl  . d) * 0.1dl  . e) * 0.05dl  . 

As is shown in figure 2.5, the fragment cloud is covered layer by layer with different levels of 

refinement. The refinement levels are selected such that very small length scales of fragments (up to 

1/1000 of the initial droplet diameter) can be captured after fragmentation.  

Figure 2.6 demonstrates the grid size Iso-surfaces for the case of single droplet in a stream. 

 

 

Fig. 2.6. Iso-surfaces of grids size for a deformed droplet in a stream. a) * 0.1dl  . b) * 0.05dl  . c) 

* 0.02dl  . d) * 0.005.dl  . 
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A complete description of the discretisation and numerical schemes used can be found in Popinet 

(2003) and Popinet (2009) for Euler and Navier-Stokes solutions, respectively. The open-source code 

used, ―Gerris‖, has been accurately validated for conservation errors and against the linear instability 

theory by Popinet (2003). For the case of surface tension driven fluid flows, the code is validated for 

different common problems; for example, generating a sinusoidal perturbation over a flat interface 

between two fluids initially at rest, Popinet (2009) studied the amplitude of the capillary waves. The 

results were compared with the exact solution of Prosperetti (1981) and a very good agreement was 

observed. Moreover, comparing the relative errors, the higher efficiency of the method in comparison 

with front-tracking methods, etc. is shown. The ability of the code is also checked for two other 

important problems which are essential for the current topic: liquid sheet retraction, Fuster et al. 

(2009), and the Rayleigh plateau instability of a liquid column Popinet (2009). For the latter case, 

obtained results of the interface deformation are compared with the theoretical solutions of Rayleigh 

(1982) and Weber (1931) for inviscid and viscous flows, respectively, and very good agreement was 

observed.  

 

2.4 Non-dimensional Numbers 

A wide range of material properties and physical phenomena affect the droplet fragmentation process. 

In the case of a falling droplet in a motionless medium, the acceleration due to gravity, momentum, 

surface tension between the phases, and viscosity are the main parameters. Considering these 

parameters, different non-dimensional groups are presented by the researchers which govern the 

behaviour of the droplet. A list of important dimensionless numbers can be found in table 2.1. 

. 
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Table 2.1. Non-dimensional numbers studied for the case of falling droplets. 

Dimensionless 

number 
Symbol Definition Range 

Eötvös number Eo  
  2

d cg D 




 144-216 

Ohnesorge number 

(based on droplet 

properties) 

dOh  
 

1
2

d

d D



 

 
0.1 

Ohnesorge number 

(based on continues 

phase properties) 

cOh  
 

1
2

c

c D



 

 
0.1 

Weber number We  
2

c Dv


 - 

Reynolds number Re  
c

c

Dv


 - 

Viscosity ratio 
*  

d

c




 10 

Density ratio 
*  

d

c




 10 

 

Depending on the situations, some of the numbers listed in table 2.1 are more meaningful than others. 

In the circumstance of descending liquid droplets, using Re  and We to categorize the droplet 

behaviour is not suggested due to the time dependent velocity of the droplet and surrounding medium 

(initially zero) as well as the presence of breakup. In fact, Re  and We are useful for the stable 

droplets moving in a given velocity or when the stream velocity of the surrounding medium can be 

controlled. Thus, we used these two numbers for statistical descriptions of the fragmentation when all 

of the drops have a firm shape. The current study aims to clarify the mechanism of breakup and the 

way fragments are created in the atomization process. Thus, all the non-dimensional numbers are 

fixed, except the Eötvös number. Subsequently, Eötvös and Ohnesorge numbers are selected as the 

basic dimensionless factors. These numbers remain constant, as long as the droplet is still intact. Due 

to applicability in real-world applications, Ohnesorge numbers are selected to be less than 0.1 (low 

Oh  region). As Krzeczkowski (1980) found experimentally, the viscosity ratio is negligible for this 

region.  In the presence of breakup, an individual number will be used for each fragment to determine 
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the distribution variation of different parameters in time. Furthermore, to study the temporal 

procedure, time is normalized with respect to the time scale 3
0t D   , (

0

t
t

  ). Based on the 

current non-dimensional numbers for falling droplets, an intense fragmentation in upward bag regime 

is predicted, Han and Tryggvason (1999). The maximum Weber number for the current simulations is 

in the range of 37 59We  , corresponding to bag breakup of droplets, based on experimental 

studies. Considering the air-water system, the current non-dimensional numbers translate to initial 

drop size and falling velocities in the range of 03 6cm D cm   and max8.5 / 11.5 /m s v m s  . 

Comparing with previous studies, the systems we are investigating for falling droplets are more 

unstable. Thus, an intense fragmentation is expected as it occurs in several industrial and natural 

phenomena. The fragmentation that occurs for this range of non-dimensional groups is the main 

subject of our study. 

In aero-breakup of droplets, aerodynamic force deforms the droplet and causes fragmentation, surface 

tension resists the deformation, liquid viscosity delays the deformation and dissipates the stream 

energy exerted on the droplet, and gas viscosity dissipates the energy of the stream. The non-

dimensional groups describing the behavior of the droplet in a stream, accounting the parameters 

described, in addition to the ranges used here are listed in table 2.2. 

 

Table 2.2.  Dimensionless groups for the case of a droplet in a stream

 

Dimensionless number Symbol Definition Range 

Ohnesorge number Oh   
1

2
d d D    0.002-0.01

 
Weber number We  2

0cDU   50-200
 

Reynolds number Re  0c cDU   22300
 

Viscosity ratio 
*  d c   10

 

Density ratio 
*  d c   10

 

 

In table 2.2, Reynolds number can also be presented as 
0.51 0.5 * *Re Oh We  
 . For this case, the 

dimensional time is also normalized using 0 0tU D  . Again, it is significant to say several 

experiments have depicted that the breakup modes are independent of Ohnesorge number for the 

range of 0.2Oh  . The range of dimensionless groups we have, based on the experimental 
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observations, predict a shear breakup of droplets. This mode of fragmentation is the most common 

regime and most complex to analyze. The experimental observations for this range cannot describe 

the mechanisms at the early stages of the breakup due to the small length and time scales of 

deformation and fragmentation. Thus, this regime is selected for our numerical simulations. We aim 

to clarify the mechanism of shear breakup of droplets in a stream focusing on the initiation and 

growth of instability at the early stages of fragmentation.  
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Chapter 3 

Fragmentation of Falling Droplets 

 

3.1 General Description of The Fragmentation Process 

The scope of the present chapter is to simulate and analyze the breakup mechanism of a falling 

droplet in a lighter medium through direct simulations. Therefore, the selected region is chosen based 

on the criterion for the occurrence of breakup. According to the study by Han and Tryggvason 

(1999), the deformation of falling droplets in low  circumstances ( ) can be 

compartmentalized into four main styles in order of increasing : steady deformation, backward-

facing bag, transient mode, and frontward-facing bag. Although no results were reported for the 

breakup of the drop, it could be expected that atomization will occur for high instability regimes 

which in this case mean high . Hence, we decided to cover a more unstable region in comparison 

with the previous studies, to analyze the different modes and phenomena of breakup. It should be 

noted that when  is small, the surface tension is much more essential than viscous stresses. Thus, 

 has little effect on the breakup and  is the controlling factor. Subsequently,  is fixed and 

three different  are selected, as shown in table 2.1.  

A sequential picture of droplet deformation and fragmentation for  is shown in figure 3.1. 

At the preliminary stages, as the droplet falls, we see the deformation of the droplet from the initial 

spherical shape to an oblate ellipsoid followed by bag formation (figure 3.1, a-c). The reason for this 

deformation is the non-uniform distribution of the hydrodynamic pressure around the droplet which is 

set into motion by gravity Han and Tryggvason (1999). A similar fashion of deformation for falling 

drops can be found in the studies of Han and Tryggvason (1999), Ni et al. (2006) and Feng (2010) for 

deformable drops. The deformation is resisted by the surface tension. Nevertheless, this amount is not 

enough to hold the droplet in a stable shape (This balance can be presented by the Weber number and 

Oh 0.05d cOh Oh 

Eo

Eo

Oh

Oh Eo Oh

Eo

288Eo 

All science is either physics or 

stamp collecting. 

Ernest Rutherford (1871 –1937) 
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will be discussed further). Then the bag grows and breaks up, forming the ligaments, liquid bridges 

and daughter droplets. A very thin disk-like core will be left during the bag breakup which will break 

up in a short period of time. Various types of instabilities such as Rayleigh- Plateau, Rayleigh-Taylor, 

and capillary wave instabilities occur throughout the atomization process.  The procedure will 

continue and fragments in each stage break up further until all the fragments reach a stable state. 

 

 

Fig. 3.1. The deformation and fragmentation of a liquid drop for: , , ,

. (a) , (b) 0.1647  , (c) 0.2642  , (d) 0.3575  , (e) 0.4434  , (f) 0.5183  , (g) 

0.5924  , (h) 0.6728  . 

 

Similar behavior is seen in experimental investigations in wind tunnels or shock tubes. Figure 2.2 

represents an example for the fragmentation of a liquid drop in an air stream observed in the 

experimental study of Cao et al., (2007). 

 

288Eo  0.05dOh  0.05cOh 

* 10  0.0 
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Fig. 

3.2. Fragmentation of a liquid water drop in a continuous air jet flow.  and . 

Left: : the green arrow notes one of the liquid bridges generated in the experiment. Purple 

and orange arrows demonstrate the penetrated core and unstable ligaments, respectively. middle: 

: green arrow denotes the fragments created by disintegration of liquid columns. The 

purple and the orange arrows show the deformation and breakup of the core, right: : green 

arrow points to a liquid column made by the breakup of the core. The orange arrow indicates the 

fragments made in the fragmentation. The purple arrow signifies a relatively large fragment generated 

during the core breakup. (the original picture is from Cao et al. 2007.) 

 

It should be mentioned here that the external flow imposed on the droplet in the study of Cao et al. 

(2007) was a continuous air flow, which is very close to the situation of falling drops where the 

droplet, as well as the generated fragments, fall in a continuous range of velocity. After the formation 

and breakup of a thin bag with a rim and a core, Cao et al. (2007) observed that the core will remain 

connected with some ribs and ligaments, which are generated due to the disintegration of the bag. The 

formed liquid columns disintegrate briefly because of the combination of Rayleigh-Plateau and 

aerodynamic instabilities. Afterwards, the core begins to break up. In this stage, another (smaller) bag 

is seen, which is related to a high enough  of the core imposed by the continuous air stream. The 

disintegration of the core continues until small, stable fragments form. The significant points are the 

similarities found between the mechanisms observed in the experiment of Cao et al. (2007) and the 

simulation made in this study. In both cases, the drop initially deformed generating the bag. Then, the 

bag is broken up, forming ligaments and liquid columns, as well as small droplets. The remaining 

core and ligaments continue to disintegrate and the atomization continues until a universal stable state 

is established. 

Through general analysis of the results, we decided to classify the study of the fragmentation process 

in three main categories: bag formation and growth, bag breakup, and droplet number variations and 

distributions. These categories will be discussed in detail in the next sections. 

29We  0.0015dOh 

24.3t ms

35.6t ms

42t ms

We



24 

 

3.2 Drop Deformation and Bag Formation 

The initial deformation of the drop will be followed by formation of the bag during the fall. This 

deformation process is the origin of the breakup. Thus, a complete understanding of the deformation 

characteristics is needed. This section aims to clarify the mechanism of deformation as well as bag 

formation and the influence of   on the behaviour of falling drops before the deformation.  

Figure 3.3 is a sequential picture of drop deformation for . The interface of the liquid phase 

is coloured by the non-dimensional spatial falling velocity (in the y-direction). The velocity 

component is normalized by , where  and .  

 

 

Fig. 3.3. Deformation of an initially spherical liquid drop deformation for: . 

a) 0.0825  , b) 0.137  , c) 0.175  , d) 0.210  , e) 0.244  , f) 0.278  ,  g) 0.317  , h) 

0.358  . Colours demonstrate the vertical velocity of the interface, 
 

* v
V

p gD




 
. Radius and 

height of the drop are illustrated in picture (h). The gravitational acceleration is in the y-direction. 

 

The deformation of the droplet shown in figure 3.3, can be divided into three main parts: slight 

deformation (figure 3.3 a-c), bag formation (figure 3.3 c-f) and bag growth (figure 3.3 g-h). At the 

beginning, the pressure difference causes a smooth deformation starting from the rear part of the 

droplet. As can be seen in figure 3.3 (b and c), the vertical velocity of the upper side (top) of the drop 

is larger than the other parts. So, the rear side of the drop turns into a flat surface while the front side 

remains rounded. The amount of this deformation increases due to the accelerating motion of the drop 

in constant gravity. Therefore, the drop deforms into a bowl-like shape (figure 3.3 d and e). This 

stage is the beginning of bag formation. Up to this point, the diameter of the drop,  increases and 

Eo

216Eo 

 
1 2

p gD    d c     d cp    

216Eo 

a
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the height, h reduces. By formation of the bag, the drop, which is now a continuous liquid sheet with 

non-uniform thickness, is stretched. Therefore, both  and  increase as well as the volume 

occupied by the droplet. In addition, the interaction of recirculation zones, bulk falling velocity and 

the surface tension causes a convex shape at the end of the bag. As it can be observed in figure 3.3 

(h), the velocity in the y-direction for this area is less than in the other parts of the drop. This will 

increase the stretching and thinning of the sheet. The whole progression is followed by bag breakup. 

To investigate the deformation and the behavior of the bag before breakup, the drop characteristics 

are discussed quantitatively. Figure 3.4 demonstrates the variation of the parent drop diameter, 

normalized by initial diameter of the spherical drop, during the falling process for three Eötvös 

numbers.  

 

 

Fig. 3.4. Temporal variation of drop diameter during the falling process.  denotes the slope of the 

linear trendlines interpolated (red for the deformation, blue for the bag growth) for different stages. 

 

Deformation decreases with reducing , and occurs at a slower rate. This fact can be simply 

described by comparing the values of buoyant force and surface tension. In the case of higher , 

the resistant force made by the surface tension is smaller. Thus, the drop deformation is more 

a h

m

Eo

Eo
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pronounced. A similar explanation can be used to elucidate the influence of   on the rate of radius 

variation. As seen in figure 3.4, the rate of changes for each step (deformation and bag growth) 

increases by increasing . Another point is the amplification of rate of radius growth before and 

after the bag formation. As depicted in figure 3.4, for a given , the rate of radius variation is 

notably magnified. This fact is due to the morphology of the bag, which actually is a continuous 

liquid sheet. This liquid sheet, which has a larger surface area, can be deformed much more easily 

than a bulk liquid drop. Similar behaviour is seen in the shock tube experiments by Chou et al. (1998) 

and wind tunnel tests by Cao et al. (2007).  

To consider the parameter  in the deformation rates, the aspect ratio is defined here calculating the 

ratio of temporal radius to height of the droplet. Figure 3.5 demonstrates the variation of aspect ratio 

versus time for different Eötvös numbers. 

 

Fig. 3.5. Temporal aspect ratio of falling droplets. 

 

As it was seen in figure 3.4, the radius of the drop increases monotonically. Before bag formation, 

this happens while the height of the drop decreases. Thus aspect ratio grows as is shown in figure 3.5. 

Just after bag generation, the height of the droplet increases notably and this causes a plateau in 

aspect ratio. After that, by significant expansion of the droplet in the cross-stream direction, the value 

Eo

Eo

Eo

h
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of the aspect ratio increases again, reaching a peak. The aspect ratio decreases once breakup begins. 

The deformation of the drop during the breakup will be discussed later. 

The temporal Reynolds and Weber numbers are calculated to demonstrate the variations of ratio of 

inertia, to viscous and surface tension forces, respectively. For these cases, the length scales, which 

are shown by  in table 2.1, can be fixed or time dependent,  . Both of these conditions are 

considered and the results are depicted in figure 3.6. 

 

 

Fig. 3.6. Left: temporal variations of Reynolds number. Right: temporal variation of Weber number. 

 

For the case of fixed length scales, both  and We  vary with the velocity changes. For a given , 

the velocity increases with time reaching a peak and then reduces. The peak generated here is due to 

formation and growth of the bag. Creation of the bag significantly augments the area of the drop in 

the cross-stream direction. It will magnify the drag force and cause a drop in velocity. An important 

result can be obtained here, comparing the curves of different . Increasing the Eötvös number 

means adding to the ratio of driving force (buoyant force) to surface tension resistance force, which 

means a higher falling velocity as well as larger deformation. In the case of high Eötvös numbers, 

which are investigated here, the effect of driving force is much greater than the surface tension force, 

especially at the beginning of the motion. By formation of the bag, however, we expect higher 

velocities when we increase , the drag force increases and as seen in figure 3.6, the velocities drop. 

The peaks are not observed for the Rea  (time variant length scale) because of the notable influence of 

D a

Re Eo

Eo

Eo
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radius changes, which compensate for the effect of the velocity drop after bag formation. For the aWe  

(time variant length scale), the peaks are still seen. This is due to the second order variation of 

velocity in Weber number, which magnifies the role of falling velocity.  

The other vital outcome that we can deduce from figure 3.6 is the operating range of  and , as 

well as the values of other parameters at the moment of breakup. These values are summarized in 

table 3.1. 

 

Table 3.1. Values of Reynolds and Weber numbers 

         

 59.7 98.1 155 276 37.6 84.2 123 276 

 81.2 138 180 354 47.8 122 125 354 

 106 174 207 396 59 152 154 396 

 

The point which should be mentioned here is that deformation and breakup are continuous 

phenomena. In other words, for falling drops at the moment of  , the drop is completely 

deformed. Thus, calculating the Weber and Reynolds numbers based on a time varying radius will 

help to include the effect of deformation in the estimation of breakup regimes.   

To calculate the ratio of buoyant to inertial forces during the falling process, the following coefficient 

is determined using, 

d

g V
C




 
,

2c v A
        (3.1) 

where v  is the falling velocity, V is the volume of the initial droplet and A is the area projection in 

the direction of fall. Figure 3.7 demonstrates the variation of  versus time for the three 

simulations. 

 

Re eW

max DWe max aWe max DRe max aRe . .B U
DWe . .B U

aWe . .B U
DRe . .B U

aRe

144Eo 

216Eo 

288Eo 

. .B U
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Fig. 3.7. Drag coefficient vs. time. 

 

For a better understanding, equation 3.1 can be rewritten in terms of ,  and the aspect ratio: 

         (3.2) 

As discussed above, both the Weber number and aspect ratio increase as the droplet falls. Therefore, a 

drop in  with time is expected for all cases. Comparing the different Eo  cases, although  

increases proportionally with Eo , the product of increasing parameters in the denominator (with Eo ) 

cause an overall drop in the  curves with respect to Eo . 

After the significant deformation discussed so far, the droplet starts to break up, which is the subject 

of the next section. 
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3.3 Bag Breakup 

The behavior of the droplets before breakup, including deformation and bag generation, was 

discussed in the previous section.  It was seen that the falling droplet significantly deforms into a 

highly unstable, continuous thin sheet. This unstable, curved liquid sheet disintegrates in a relatively 

short time period. Generally speaking, the results demonstrate that the breakup procedure consists of 

three main parts. 1) Initially the bag bursts, generating droplets and filaments as well as the upper rim 

and a flattened core (figure 3.1 d). 2) The core deforms into another torus (figure 3.1 e). 3) The 

rounded or straight liquid columns disintegrate during the falling process generating smaller 

fragments (figure 3.1  g). These three parts are the subjects of this section.  

The bursting and retraction of a liquid sheet are classical topics, investigated analytically through 

instability analysis. After the pioneering studies of Rayleigh (1883) and Taylor (1950), who 

demonstrated the instability of superimposed variable density fluids, Keller & Kolodner (1954) 

extended the solution of Taylor (1950) by taking the influence of surface tension into account. Keller 

& Kolodner (1954), using a first order perturbation, calculated the rate of growth of perturbations 

over the interface. They show that for the case of constant acceleration, this amplification would be 

exponential for the most unstable modes, which are considered responsible for the disintegration of 

the sheet. The dispersion relation obtained by Keller & Kolodner (1954), written in a non-

dimensional form in the recent study of Bermond and Villermaux (2005) is 

 

     (3.3) 

 

where  is the dispersion of the interface,  denotes the wave number of the mode and 

 
1/ 2

2 /c dk gh   is the capillary wave number. Explaining equation 3.3 in terms of the shape 

function of the interface displacement, Bermond and Villermaux (2005) show that (dependent on the 

thickness and the magnitude of the acceleration) the film modulates its thickness and is subsequently 

punctured by numerous holes in different positions. Due to capillary force, the holes generated at the 

interfaces will grow radially, attaching the other punctures in the vicinity. This amalgamation process 

will result in a network of attached ligaments, further disintegrating into several droplets. These 

    
1/ 2

1/ 2
43 2coth 1 1 1 / tanh ( )ck k k k k

               
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processes have been demonstrated in experiments performed in the shock-tube for three different 

Mach numbers. Figure 3.8 shows the holes generated for different Mach numbers in the experiments 

by Bermond and Villermaux (2005).   

 

 

Fig. 3.8. Experimental results by Bermond and Villermaux (2005) for bursting liquid films for a) 

(the arrow shows a ligament formed after attaching of two growing holes), b) , c) 

, scales in each picture show size of a selected hole. (the original picture is from Bermond 

and Villermaux, 2005) 

 

The number of the punctures increases in time for all cases. The important point here is related to the 

variation of the number and perforation rate of holes for different Mach numbers (acceleration). As 

can also be derived by theory, this parameter increases with acceleration or Mach number. However, 

the mean size of the holes notably reduces by adding to the magnitude of the imposed acceleration.  

1.03M  1.07M 

1.21M 
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Despite the apparent differences between a liquid sheet subject to sudden acceleration and a falling 

droplet deformed into a bag, the underlying mechanism is similar.. For the current study, the variation 

of acceleration can be shown in Eötvös number instead of Mach number. It is expected that 

phenomena similar to the ones observed in the experiments of Bermond and Villermaux, (hole 

generations, ligament formation, and breakup into small fragments) happen. Furthermore, a higher 

number of holes and an increased perforation rate is anticipated for larger Eötvös numbers, as 

investigated below. 

 The results obtained in the simulations showed that the behaviors of the droplets in the three 

simulations are different while the mechanisms are the same. In all cases, several holes are generated 

on the bag. The holes grow forming the ligaments. The ligaments then disintegrate and generate small 

fragments, where most of them are stable. Remaining unstable fragments will further crumble after 

some time. By increasing the Eötvös number, the number of generated holes increases, as well as the 

growth rate. Figure 3.9 demonstrates the generated holes and their growth for and  

. 

 

Fig. 3.9. Top views of hole growth for (a-d, ): a) 0.414  , b) 0.427   (the red lines depict 

the boundaries of the holes), c) 0.447   (the transparent red circle shows the area of the upper 

torus), d) 0.463  . (e-h, ): e) 0.267  , f) 0.278  , g) 0.289   (the transparent red circle 

shows the area of the upper torus), h) 0.300  . 

144Eo  288Eo 

144Eo 

288Eo 
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The first issue which should be mentioned here is that, from this point (hole generation and growth) 

deformation and disintegration are three dimensional, and two-dimensional or axi-symmetric 

simulations are not able to correctly predict the growth behavior. As can be seen in figure 3.9, holes 

are formed in different positions, times and shapes. This process is followed by formation of 

ligaments with different characteristics. Our analysis shows that the wave lengths generated over bag 

breakup as well as core breakup (will be shown later) are in good agreement with the range of most 

unstable wave lengths obtained by equation 3.3. For instance, for the droplet in , where the 

average capillary wave number is approximately 0.4ck  , the wave lengths observed in simulation 

are in the range of 0.17 0.31kh  , close to the  
max

0.2kh   obtained by theory. 

By comparing the pictures of and simulations in figure 3.9, it is obvious that the 

higher Eo  case has more holes. To investigate the mechanism of hole formation and growth in more 

detail, the simpler case of  is further studied. Then, the bag breakup in the more complex 

case of  will be studied. 

As was shown in figure 3.9, fewer holes are generated in the case of . By enlarging and 

changing the view in figure 3.9-c and figure 3.10, it is seen that the holes are formed mostly closer to 

the upper rim.  

   

 

Fig. 3.10. Holes positions for . a) Three dimensional shape of the penetrated drop, 

0.447  . b) A cross-section of the drop in the same time: the area denoted by the red circles is the 

liquid torus. The area noted by the blue torus (circles) is the area which the majority of the holes are 

initially generated there. Arrows point to the high-curvature part of the interface. 

216Eo 

144Eo  288Eo 

144Eo 

216Eo 

144Eo 
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The thickness of the bag in the high curvature area is less than the other regions. Therefore, the holes 

are formed close to the upper torus. Subsequently, the holes grow until filaments form between them 

(figure 3.9 –d).  By expansion of the punctures, these filaments morph into liquid bridges, connecting 

the core of the drop to the upper torus. Eventually, these liquid bridges disintegrate into small, stable 

fragments, leaving the flattened core of the drop, as well as the liquid torus. At this moment, the bag 

is completely broken up and a new part of the breakup will begin. 

  Before discussing the torus and core fragmentation, the hole expansions and liquid bridge 

formations, which are the main parts of the bag breakup will be explained for the case. 

Since the number of punctures in the case of is small, investigating the hole enlargement 

and ligament formation is easier. Thus, we have selected a hole to show the quality of the expansion. 

In addition, a neighbouring hole is also considered to show how the liquid bridge is formed. These 

developments are shown in figure 3.11.  

 

 

 

 

 

 

 

 

 

 

 

144Eo 

144Eo 



35 

 

 

Fig. 3.11. a) The holes generated on the drop for at 0.427  . Cross-sections are plotted 

with different colours. b) Expansion of the selected hole. Corresponding times are, 0.411  , 0.419 

and 0.431  , respectively. The rounded edge (rim) of the hole is obvious for the thinner part. The 

sheet has non-uniform, time varying thickness. (The last time step is magnified in a separated box and 

demonstrates small amplitude capillary waves in the thinner part. These waves, as well as the round 

edge are not seen in the thicker part of the hole). c) Growth of two neighbourhood punctures and 

formation of the liquid bridge. Corresponding times are, 0.419  , 0.431  , 0.444  and 0.463  , 

respectively. The rounded edges again are evident for the plane which connects to holes. Some very 

weak capillary waves are seen for this plane while they are not observed for the left and right hand 

side parts that actually show the upper rim. Holes grow until a liquid column, shown by a circular 

cross-section, is formed. This column in fact connects the upper rim to the core of the drop. d) The 

development of the hole in the radial direction and separation of the liquid torus. Corresponding times 

are, 0.411  , 0.419  and 0.431  , respectively. This picture shows the part of the droplet in which 

the upper rim is disconnected from the rest of the bag. By development of the punctures the bag 

vanishes and only the liquid bridges that link the core and the torus would remain. (The necking 

before the hole creation is demonstrated in a box, 0.406  ). 

 

As it can be seen in figures 3.9 and 3.11, retraction of the liquid sheet by several holes generated on 

the droplet interface due to the hydrodynamic instabilities can be considered as the main mechanism 

144Eo 
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of the bag breakup. The basic observations and discussions on the fluid retraction were carried out by 

Dupré (1867) and Rayleigh (1891). Nevertheless, the most basic and foremost studies were 

performed by Taylor (1959) and Culick (1960) who found the constant speed of retraction by 

balancing the rate of change of rim momentum and the force due to surface energy for an inviscid 

film: 

 

         (3.4) 

 

where h  is the thickness of the sheet. The constant Taylor-Culick velocity, TCu ,  is in contrast with 

the accurate experimental results of Debrégeas et al. (1995 & 1998) which exhibit an exponential 

growth of the hole radius. The exponential growth of the hole is related to viscous dissipation during 

the retraction procedure. Brenner & Gueyffier (1999) classified the regimes of retraction in three 

main categories: low viscosity regime ( ), where the rim is followed by capillary waves, 

and high viscosity regime ( ), in which the rim at the edge as well as the capillary waves 

disappear. There is also a transient regime ( ), in which the capillary waves vanish but 

the rim still remains. The above taxonomy was obtained by numerical solution of one-dimensional 

lubrication equations: 

 

          (3.5) 

       (3.6) 

 

Where the mean curvature of the film,  is defined as: 
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         (3.7) 

 

In equations 3.5 to 3.7, subscript x  denotes the differentiation with respect to space and u  is the 

one-dimensional velocity. Brenner & Gueyffier (1999) argued that the one-dimensional nature of 

equations 3.5-3.7 limit the generality of the solution. Thus, the initial exponential regime found by 

Debrégeas et al. (1995) cannot be extracted. However they verified that in all regimes the terminal 

velocities would be close to Taylor-Culick velocity, equation 3.4. Conversely, Savva and Bush 

(2009) analytically demonstrated that the lubrication equations are able to explain the exponential 

expansion of a retracting hole. Using the same equations, equations 3.5-3.7, they presented an 

analytical equation for the case of high , which is able to display the exponential enlargement of 

the hole: 

 

  ,      (3.8) 

 

where the tip velocity ( *u ), time ( *t ) and position ( *x ) are normalized by ,  and , 

respectively. As the author has mentioned, equation 3.8 is strictly valid for the high  regimes. 

This equation can be reduced to the dimensional form of  for the tip velocity.  

The retraction velocity of the tip for the selected hole in figure 3.11 is extracted and compared with 

the analytical results of Savva and Bush (2009), equation 3.8. Results are compared in figure 3.12. 
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Fig. 3.12. Retraction speed for a selected hole in simulation of . 

 

At early times after the hole creation, the retraction speeds from the simulation are comparable to 

values by equation 3.8. After the early stage of the retraction, also called the exponential regime, the 

theory underestimates speed. There are many differences between the assumptions made in the 

theoretical solution of Savva and Bush (2009) and the situations we have in the bag breakup. In the 

theory, the end of the retraction sheet is fixed in a constant height. However, this quantity is not only 

varying in our case, but it is non-uniform. Thus, we have to calculate a mean value for this amount. 

Moreover, equation 3.8 was proposed for early stages of the puncture growth as well as the high  

conditions. These differences may cause the observed underestimation. For the considered hole, using 

the average value for the thickness of the film, the Ohnesorge number was obtained to be, 

. According to the results of Brenner & Gueyffier (1999) and Savva and Bush (2009), 

for the  achieved here, the capillary waves vanish and the rim appears around the tip. 

This is in agreement with what is seen in figure 3.11; where the rim can be seen and the capillary 

waves are very weak.  
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As it was observed above, a few number of holes are generated at the interface of the bag for 

. The number of holes significantly increases with Eötvös number, as it was also expected 

from the results of Bermond and Villermaux (2005) shown in figure 3.8. Rise in the number of cracks 

over the bag will not affect the total mechanism of breakup. However, the number of generated 

ligaments will notably increase. To clarify the differences between the breakup fashions for higher 

Eötvös numbers and lower ones, the disintegration of the bag for will be discussed in detail. 

Figure 3.13 demonstrates the bag breakup for . 

 

 

Fig. 3.13. Bag breakup of the falling droplet . a) 0.377  , b) 0.386  , c) 0.394  ,d) 

0.403  . 

 

Figure 3.13 shows the remarkable similarity between the bag breakup of a droplet with the liquid 

sheet breakup observed in figure 3.8.  The bag is perforated by several punctures, once generated 

grow and form the mesh of the ligaments. Similar to , the upper rim and the flattened core of 

the drop will be left after the bag breakup. The main distinction seen in higher Eötvös numbers is the 

creation of the ligament network that crumbles quickly and forms a number of droplets. This is 

shown in detail in figure 3.14. 
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Fig. 3.14. Bag fragmentation for  1) The web of attached ligaments created by several holes. 

2) Growth and deformation of the ligaments. 3) Increase in the number of holes. (green and yellow 

arrows demonstrate the upper rim and flattened core of the drop, respectively). 4-6) Further 

enlargement of the punctures and detachment of ligaments. (the red box in picture 5 depicts an 

attached ligament into the upper rim.) 7-9) Breakup of ligaments and creation of droplets. (the red 

boxes in pictures 8 and 9 point up a ligament attached to the flattened core and a stable droplet, 

respectively). 

 

As it is seen in figure 3.14, the holes which create the attached ligaments enlarge and finally break 

up, forming the ligaments attached to the upper rim or the flattened core, as well as some stable or 

unstable fragments between them. The unstable fragments will experience another disintegration 

generating smaller droplets. To illuminate the deformation of the interface as well as the creation and 

breakup of the ligaments shown in figure 3.13, a cross-section view of the droplet after the formation 

of the bag is illustrated in figure 3.15.   

216Eo 
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Fig. 3.15. Instability and disintegration of the bag for  1-2) Small amplitude waves at the 

thin sheet. (blue arrows point to some of the waves). Corresponding times are 0.380  and 0.382  , 

respectively. 3) A hole created on the interface. ( 0.384  ) 4) Growth of the generated hole in the 

previous step. ( 0.386  ) (The blue arrow shows a noteworthy deformation close to the core. The 

green arrow highlights the waves generated during the retraction. The yellow arrow shows another 

significant deformation for the part which is attached to the upper rim.) 5) Detachment of the bag 

from the flattened core and formation of other holes. ( 0.3882  ) (The blue arrow shoes the gap 

generated between the bag and the core. The yellow arrows demonstrates the cross section of a 

fragment created by growth of two neighboring holes). 6) Further deformation of the interface and 

enlargement of the gaps. ( 0.3883  ) (Blue arrow depicts the deformation appeared during the 

retraction) 7-8) Necking and formation of another hole which forms more fragments. Corresponding 

times are 0.392  and 0.395  , respectively.  9) Generated fragments which will experience more 

disintegration. ( 0.396  ) (Yellow and green arrows demonstrate a ligament attached to the upper 

torus and the drop core). 

 

As it can be observed in figure 3.15, the liquid sheet that makes up the bag case and then breaks up. 

The waves discussed for the bag breakup of the drop in the  are observable here again. 

Another point is the flattening process of the core which can be seen in figure 3.15 (6-9), after the 

detachment of the bag.  

A phenomenon seen in various stages of the atomization process is the drop formation from a 

ligament. This will happen for some parts of the fragments formed due to the bag breakup, as well as 

216Eo 
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to the ligaments attached to the upper torus or the core. Figure 3.16 illustrates this process for a 

typical ligament selected from the simulation of . 

 

 

Fig. 3.16. Cross-section view of a ligament showing drop formation, . Domain is coloured 

by non-dimensional pressure, . a) The capillary waves grow causing a thicker area in the 

ligament. ( 0.457  ). b-d) Growth of the waves over the ligament. Corresponding times are 0.460 

, 0.461   and 0.464  , respectively.  e) Neck generation. ( 0.466  ). f) Pinch-off occurs and the 

droplet detaches from the ligament. ( 0.468  ). 

 

The mechanism observed in figure 3.16 is very close to droplet formation detected in the numerical 

study of Shinjo and Umemura (2010), who investigated the dynamics of ligaments and droplets in a 

liquid jet, using direct numerical simulations. A detailed explanation is provided in their work on 

wave modes, mode selection and the mechanism of the pinch-off. It was mainly shown that, in most 

cases, droplet formation occurs by the short-wave modes and the pressure inside the ligament 

increases by thinning of the ligaments at the neck. In the current study, the mechanism of drop 

formation from the ligament is the same. Moreover, the multi drop formation from a ligament, or 

drop pinch-off from an attached ligament (to upper torus or core) are seen, as well. More detailed 

investigations can also be found in studies of Ashgriz and Mashayek (1995), Mollot et al. (1993) and 

Li et al. (2008). 

 After the breakup of the bag, three main parts remain: the upper rim, the flattened core, and the 

fragments created between these two. From here the disintegration of the core, deformation of the 

216Eo 
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upper rim, and motions of the fragments will be considered. Figure 3.17 presents a series of pictures 

showing the bursting of the liquid core remaining after the bag breakup.  

 

 

Fig. 3.17. Rupture of the flattened droplet core for . Pictures are captured from bottom view 

and a transparent hollow circle is added to separate the core for clarity. a) Flat core after the bag 

breakup. ( 0.424  ). b) Initial holes and cracks generated on the interface of the core. ( 0.441  ). c) 

Detachment of the ligaments in the generated web. ( 0.444  ). d-e) Growth of the holes and 

development of the crumbling. Corresponding times are 0.447  and 0.450  , respectively.  f) 

Separated ligaments. ( 0.454  ). g) Capillary wave growth over the ligaments and drop formations. (

0.469  ). h) Stable fragments after the core disintegration. ( 0.483  ). (The large volume of the 

fluid observable in pictures e to d is the upper rim, which can be seen from below after the breakup of 

the core). 

 

 Subsequent to the bag breakup, a considerable volume of the original droplet would be left in the 

bottom, named the droplet core here. This core flattens quickly because of the hydrodynamic pressure 

on the bottom of the core (stagnation point). However, only the middle of the core would be 

squeezed, surrounded by a thick torus (figure 3.17-a). Due to instabilities discussed above for the bag 

breakup, the interface of the core begins to rupture (figure 3.17-b). Again a network of ligaments is 

216Eo 
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formed and further disconnected rapidly (figure 3.17-c). The cracks made by the holes expand and 

finally a number of separated ligaments remain, as well as the thick torus (figure 3.17-f). The 

separated ligaments are highly unstable due to rapid growth of the capillary waves (figure 3.17-g). 

The pinch-off modes develop over these ligaments and droplets are formed by the same mechanism 

discussed in figure 3.16. The number of the droplets generated from a ligament depends on the ratio 

of the length of the ligament to the acting wave-length. As an example, three main droplets are 

formed by disintegration of the ligament magnified, in figure 3.17-g. Subsequent to the breakup of 

the ligaments, stable fragments remain. Once these droplets are produced, they will join the ones 

generated by the bag breakup.  

At this stage, the domain of fragmentation includes two liquid tori (upper rim and the torus made 

after the core bursting) as well as the fragments made by the bag and core fractures. In figure 3.18, a 

sequence of the deformations of the tori is illustrated.     

   

 

Fig. 3.18. Deformation of the upper liquid torus and the ring left after the rupture of the flattened 

core. Corresponding times are 0.462  , 0.520  , 0.551  , 0.582  and 0.610  , respectively. 

 

The tori will fall faster than the small fragments. This happens due to two main reasons; the first one 

is the low velocity of the droplets made in bag breakup because of the energy lost due to the 

disintegration. The second one is the higher weight of the tori.  Thus, the relative positions of the 

fragments with respect to the positions of the upper torus change and they will occupy the upper area 

of the tori. During the fall, the upper and lower tori will go under significant deformation specific to 

the tori. This type of deformation is a combination of Rayleigh instability for a torus, Pairam and 

Ferna´ndez-Nieve (2009), and the influence of the gravity (can also be explained by Rayleigh-Taylor 

instability). Thus the waves generated over the tori will be magnified and tend to move into the 

direction of gravity. This fashion of deformation generates the liquid bridges, which connect the 

fragments. These large liquid bridges can be observed in the last steps of figure 3.18.  
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The liquid bridges rapidly disintegrate into fragments. In figure 3.19, a sequential picture of liquid 

bridge column breakdown is shown. 

  

 

Fig. 3.19. Breakup of the liquid bridge made after the deformation of the lower torus. a) the liquid 

column caused by the deformation of the lower torus. ( 0.666  ).  b) the capillary waves grow on the 

liquid bridge. ( 0.692  ). c) the necks appear due to development of the waves. ( 0.721  ).  d) the 

liquid column disintegrates into several small, stable droplets as well as a few unstable ligaments. 

These ligaments will be deformed into stable fragments by further breakup or retractions. ( 0.748  ). 

 

As it can be seen in figure 3.19, the liquid column becomes thinner due to stretching. Meanwhile, the 

capillary waves grow causing the fragmentation. All the liquid columns will break up rapidly into 

small droplets and ligaments due to Rayleigh instability. The ligaments will further breakup or retract 

due to surface tension, forming small, stable droplets. At these stages the fragmentation domain 

includes two main parts. The first one is the stable small fragments created during different stages of 

the fragmentation. The second part consists of larger fragments. These portions can be ligaments, 

deformed drops or small liquid bridges connecting two droplets. Figure 3.20 demonstrates the 

fragments made after the breakup of tori. 
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Fig. 3.20. Different styles of fragments made after the breakups. a) Stable droplets. b) A small liquid 

bridge connecting two droplets. c) Deformed ligaments just before the pinch-off and drop formation. 

d) Larger, deformed fragments. ( 0.886  ). 

 

Most of the stable droplets formed during the bag or core bursts are located on the upper part of the 

fragmentation domain. The larger, heavier pieces are in the lower part of this domain. Depending on 

the size and the velocity of these fragments, they might or might not experience further breakup, 

producing smaller droplets. As an example figure 3.20-b,c depict two different forms of the larger 

fragments, generating smaller droplets. 

Eventually all ligaments and deformed droplets will be in stable conditions with no further 

fragmentation. At these stages, the fragmentation domain consists of a group of small fragments with 

different sizes and characteristics. These characteristics and properties are the topic of the next 

section.    

 

3.4 Number of Fragments  

The mechanisms of drop fragmentation were described in previous sections. As demonstrated, in 

each step of the atomization process droplets broke up into a number of smaller fragments with 

different sizes. In this section, initially we show the variation of fragmentation numbers during the 

atomization. Afterwards, the fragmentation size distribution will be discussed. 
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Figures 3.21 to 3.23 depict the variation of the number of fragments during the falling procedure for 

, , and , respectively.  

 

Fig. 3.21. Variation of number of fragments during the falling process, . 

 

 

Fig. 3.22. Variation of number of fragments during the falling process, . 

144Eo  216Eo  288Eo 
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Fig. 3.23. Variation of number of fragments during the falling process, . 

 

Similar to what was described in the previous sections, the process is divided into four main parts; 

deformation, bag breakup, upper rim disintegration and core fragmentation. The number of droplets 

remains one for the deformation part. After the generation and growth of holes, breakup begins. The 

number of the droplets suddenly grows due to bag breakup. This rise is followed by another 

augmentation, due to upper torus breakup. At the end, the core disintegrates into several fragments 

and all the unstable fragments will further break up. This causes another growth in the diagram. The 

rate of the growth for the number of fragments is relatively larger for the tori breakups, in comparison 

with the bag breakup period. In some parts of diagrams associated to , and the 

number of fragments do not grow. These are the periods of the tori deformations, when no 

fragmentation occurs. For , this time period is very short because of very fast deformation 

and small breakup time scales. In general, increasing the Eötvös number, the fragmentation 

phenomena occurs faster. The time for the bag breakup is found to be 0.282B  , 0.0916B   and

0.0769B   for , , and , respectively. These values for upper torus and the 

core breakups also decrease by Eötvös number. Generally, the number of fragments at the end of the 

atomization process will increase for higher Eötvös number.   

Analysing the curves shown in figures 3.21 to 3.23, it is understood that the number of fragments 

generated in the bag breakup duration is notably less than those produced by the tori breakups. This 

288Eo 
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may be related to the volume occupied by each part. In all the simulations performed here, the 

volume ratio of the bag, upper torus and the core are about ,   and , respectively.  

To compare the fragments size generated in each simulation, the histograms of the non-dimensional 

droplet diameters are shown in figure 3.24.   

 

 

Fig. 3.24. Droplet size distribution for a) , 32 0.00234665d  , 0.00521aved   b)  ,

32 0.00187363d   , 0.00444aved  and c) , 32 0.00168808d  , 0.00412aved  . The lines 

demonstrate the log-normal distribution. 
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A log-normal distribution is fitted for the histograms. As it can be seen from the diagrams shown in 

figure 3.24, the majority of droplets’ diameters in all three cases is less than 0.1 of the initially 

spherical droplet. However, the size distribution of the fragments are not the same. The Sauter mean 

diameter, 32d , and the average diameter of the fragments, aved , are decreased by reducing the value 

of Eötvös number. As seen, the size of the fragments reduces by Eötvös number. On the other hand, 

the majority of the fragment diameters are in the range of . As a conclusion, the 

fragmentation time scale and mean fragment size decrease by Eötvös number. 

The statistical characteristics of the fragments during and after the breakups need more detailed and 

different tools of investigation which is provided in the next chapter. 

  

0.01 0.1fD D 
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Chapter 4 

Statistical Characteristics of Fragments 

 

4.1 An Overview on Droplet Deformation and Breakup 

As described in figure 1.2, the unstable droplet disintegrates into several fragments to balance the 

forces exerting on it (surface tension, drag). Due to the asymmetry of these forces, the droplets do not 

necessarily fragment into spherical ones, and different fashions of topological changes can occur. 

Mainly, after a significant deformation, a hollow thin film forms connecting a torus (on top) and the 

droplet core. This thin film is usually called a bag. Depending on the falling conditions, the bag 

direction can be downward or upward as mentioned in Han and Tryggvason (1999). It is also found 

that for the high Eötvös region 70Eo  , the bag direction is always downward Han and Tryggvason 

(1999). Due to growth of instabilities over the bag, it disintegrates rapidly into several, very small 

droplets leaving the upper torus, and the core of the parent droplets. The torus will break up due to 

Rayleigh-Taylor instability, generating more fragments. At the end, the droplet core will flatten and 

deform into another torus (bottom torus) which fragments further. Subsequently, a cloud of small 

stable fragments with different size are remained in the domain falling down with different velocities. 

Figure 4.1 illustrates the breakup of a droplet and creation of the fragments for 144Eo  .    

 

Every science begins as philosophy and ends 

as art.   

Will Durant (1885 –1981) 
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Fig. 4.1. Droplet disintegration for 144Eo  .  a) Initial spherical droplet. b) Fragments generated after 

the bag breakup and bottom torus deformation. c) Breakup of the droplet core and deformation of the 

remaining large fragments. d) Cloud of fragments. 

 

The knowledge of variation of fragments number and their size and velocity distribution are 

significant for a wide range of applications. Moreover, an accurate presentation of the fragments’ 

characteristics assists further numerical modeling. These issues will be discussed in this chapter. 

 

4.2 Fragment Number Variation 

Naturally, the number of fragments increases by time, while the rate of variation depends on the 

mechanisms of breakup, as well as the properties of the system. Figure 4.2 demonstrates the increase 

of fragment number, fN , for different Eötvös numbers.    
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Fig. 4.2. Fragment number variations for different cases.  a) 144Eo  . b) 216Eo  . c) 288Eo  . 
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The number of fragments remains one for the initial stage of the falling process while the droplet 

deforms and a bag is generated. The number of fragments increases considerably once the bag 

disintegrates. This growth is followed by another increase due to breakup of upper and lower tori. 

Basically, three different types of fragments can be observed at this stage; small stable droplets, 

ligaments and unstable fragments. Ligaments retract or disintegrate producing one or more droplets, 

respectively. Furthermore, the large fragments, usually generated by tori breakup, further break up 

producing more fragments. This cascade continues until all the generated fragments of the cloud 

reach a stable condition.  

Reaching the completely stable cloud of droplets using the numerical simulations requires an 

extremely large number of grids and large CPU times. Using the current adaptive grids, we are able 

to follow very small scales of fragments in our simulations.  Simulations are stopped when no 

considerable changes occur for  fN  and the average diameter of the fragments satisfies 

*
10 0

1

0.045
fN

i f

i

d d D N


  . As demonstrated in figure 4.2, the time of fragmentation decreases with 

increasing Eo . Moreover, the value of fN at the end of the process increases with Eo . These 

observations can be explained using Rayleigh-Taylor Instability where increasing the acceleration 

(Eötvös number), a shorter time is required for dispersion of perturbation. Furthermore, smaller 

wave-lengths are amplified with increasing the acceleration. Thus, smaller droplets (larger fN ) are 

generated for larger Eo . 

Although the number of fragments, fN  is an important factor by itself, no information can be 

obtained about the size, velocity and other characteristics of fragments using figure 4.2. Therefore, 

three different points are selected for each case (also shown in figure 4.2) to analyze the temporal 

variations of fragment characteristics. The first point is selected close to occurrence of bag breakup. 

The second point is chosen after the breakup of the droplet core. Finally, the last stages of the 

simulations are selected as the third points. Fragment characteristics at these points are extracted and 

then compared to show the development of cloud of fragments by time.  
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4.3 Fragment Size and Velocity Distribution 

The distribution of size and velocity of droplets are perhaps the most important factors in 

fragmentation studies. Using experimental techniques, usually a considerable number of droplets are 

missed in measurements. However, all the fragments can be followed easily in the current numerical 

simulations. Thus, an accurate calculation can be performed for distribution of fragment 

characteristics. Figure 4.3 demonstrates the histograms of non-dimensional diameter and velocity for 

different stages of simulations. Since the falling velocity is the characteristic velocity for the 

fragments, only this value is presented here. The most important variation to be considered is the 

peak value in each step. In the case of size distribution, most of the fragments are in the range of 

00.01 0.1fD D   and the peak of the curves increases by time, demonstrating the increase in the 

number of droplets.  

Comparing the size distribution of first and second points, the number of fragments after the tori 

breakup is approximately 7 8  times greater than its value after the bag breakup. The peak of 

probability after the bag breakup for the all three cases is 0/ 0.03fD D  . This value is reasonably 

close to the maximum stable size of the droplets for the present two-phase system. This peak 

separates into two peaks after the tori breakups; one close to the previous diameter with considerably 

more fragments and another one in the range of 00.04 / 0.06fD D  . The lateral range 

demonstrates the larger fragments generates in the process of upper tori and droplet core breakups. 

These relatively large fragments (if unstable) will further disintegrate, producing more droplets in 

different range of diameters. Subsequently, two peaks are remained in size distribution histograms. 

The significant one corresponds to the stable small droplets close to the maximum stable droplet size. 

The second one corresponds to the relatively large fragments remained from the tori breakups. 

In the case of velocities, the behavior of range of variations for each simulation and stage is more 

complicated. This is due to chaotic dynamics of droplet disintegration caused by significant 

morphological changes, different fashions of breakup, and carrier phase flow structures. Basically the 

range of velocity variations expands with Eötvös number due to higher magnitude of the gravitational 

force. For 144Eo  , 216Eo   and 288Eo   these ranges are approximately 00 30fv v  , 

00 33fv v  , and 00 41fv v  , respectively. The peaks of the curves again increase by time 

demonstrating the cascade of breakup and generation of more fragments in the mentioned ranges. 
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Fig. 4.3. Size and velocity distribution of fragments for different stages and Eötvös numbers. a) 

Diameter distribution for 144Eo  . b) Velocity distribution for 144Eo  . c) Diameter distribution for 

216Eo  . d) Velocity distribution for 216Eo  . e) Diameter distribution for 288Eo  . f) Velocity 

distribution for 288Eo  . 
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Since non-dimensional diameter of droplets does not explain the variations of surface areas or volume 

of the fragments, the other types of characteristic diameter representations are obtained using the 

characteristics diameter formula, Mugele and Evans (1951): 
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Where  p  and q  are positive integers and  0 ff D  is the number of fragments probability density 

function and the characteristic diameter is normalized employing the initial diameter of the droplet. 

Normalized Sauter mean diameter (SMD), * 3 2
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mean diameter (also called mass mean diameter, MMD), * 4 3
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 

   are the common 

characteristics diameter in atomization investigations. SMD is the diameter of droplet that 

corresponds to the volume/surface ratio for the entire liquid. MMD is also the average diameter based 

on the unit volume (mass) of a particle. Experimental investigations of Simmons (1997-a and –b) and 

Hsiang and Faeth (1992 and 1993) on secondary atomization of industrial sprays and single droplets 

show a constant rational correlation between SMD and MMD of fragments. (e.g. * *
43 32/ 1.2d d  ) This 

correlation was found to be applicable for different modes of breakups including bag, multimode, and 

sheet thinning. The values of SMD and the ratio of 43
32 /d SMD MMD are illustrated in figure 4.4 

comparing with the mentioned empirical constant relationship. 
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Fig. 4.4. Variations of Sauter mean diameter, *
32d and 43

32d  (Square and circle markers, respectively) 

for different values of Eo . Solid (red) line depicts the empirical relationship. a) 144Eo   b) 216Eo   

c) 288Eo  . 
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The value of *
32d  as well as *

43d  reduce by time demonstrating the disintegration of larger fragments 

into smaller ones. Moreover, the calculated values of 43
32d  obtained by simulations are in agreement 

with the constant relationship achieved in experiments.  

Since the size and velocity distributions at the end of the breakup process, when an stable cloud of 

particles are achieved, are more important, the velocities and diameters of fragments at the third stage 

of all simulations are reproduced in figure 4.5. 

 

 

Fig. 4.5. Histograms of a) size distributions and b) velocity distributions for last step of each 

simulations. 

 

In the case of size distribution, the peaks are close to 0/ 0.03fD D  . These peaks are followed by 

other (less pronounced) peaks for the range of 0/ 0.05fD D  . These larger fragments are usually 

generated in the core and tori breakup stage, and are stable enough to resist further fragmentation. In 

the case of velocity distributions, the peaks are in the range of  02.5 / 7.5fv v   while the tail of the 

distribution extends by increasing Eötvös number. This means higher falling velocities are obtained 

in higher Eo  due to lager body force exerted on the fragments. 

For more details, data obtained at the last step of the simulations are modeled using log-normal 

probability density functions shown in figure 4.5. The validity of log-normal PDF for droplet size 
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distribution is verified and it is usually used in droplet size modeling, Babinsky and Sojka (2002). 

The log-normal formulation used here is as follows, 

 

 
 

 
2
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ln1 1
exp

2 lnln 2

f

f DD
LNf LN

D D
f D

D  

  
     
   

     (4.2) 

 

 where D  and 0D
LN   represent the logarithmic mean size and width of the distribution, 

respectively. In the case of velocity distribution, D  and D
LN  are replaced by V  and v

LN , 

respectively. (Some negligible negative values in falling velocity distributions are obtained due to 

complex fashion of breakups. These values are ignored in calculation of log-normal distributions for 

velocities.) Table 4.1 shows the list of parameters in log-normal PDF for different Eo .  

 

Table 4.1. Parameter in log-normal PDF modelling 

Parameter 144Eo   144Eo   144Eo   

D  0.0428 0.0358 0.0348 

D
LN  2.0279 1.8678 1.8956 

V  6.6224 7.2748 8.3221 

v
LN  1.8634 1.8591 2.1442 

 

Tables 4.1 represent the logarithmic mean size and width of the log-normal distributions. As it is 

clear, the mean size, D , is reduced by increasing Eo .  Moreover, the width of the size distributions, 

D
LN , for 144Eo  , is larger than two other simulations denoting the larger fragments in simulation of 

144Eo  .  These fragments remained in the cloud of droplets the surface tension resistance in this case 

is large enough to avoid breakup. No sensible difference was observed between the widths of  

216Eo  and 288Eo  . For velocity distributions, the logarithmic mean V  is increased by increase of 
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Eo . This shows the growth of fragments’ velocities by adding to Eötvös numbers due to larger 

amount of gravitational force. Moreover the width of log-normal distributions, v
LN , is larger for 

288Eo   which demonstrates the larger range of velocities obtained for this simulation. No sensible 

difference is observed for 144Eo  and 216Eo  , in this case. 

The data analysis we had so far, included the variation of size and velocity of fragments. However, 

for a complete understanding of statistical characteristics of fragments we need the contributions of 

the fragments in volume as well as the correlation of size and velocities. Figure 4.6 demonstrates the 

volumetric fragment Size distributions, finding the value of  
3

0fD DV  for quantiles of the 

normalized diameters.   

 

 

Fig. 4.6. Volumetric fragment size distributions for the simulations. Left axis: V for 144Eo  . Right 

axis: V for 216Eo   and 288Eo  . 

 

The curve in figure 4.6, in fact demonstrates that how much of the volume of the initial drop is 

converted to what range of the fragment size. The first peak in curves shown in figure 4.6 
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corresponds to the large number of medium size fragments ( 00.06 0.08fD D  ) in the domain. This 

peak is approximately 0 0.07fD D   for the both simulations. However, the droplet size distribution 

curves show 0 0.03fD D   as the peak. This is due to particularly small size of the fragments of the 

range 00 0.04fD D   that do not contribute to the volume. The second peak in figure 4.6 (about 

0 0.145fD D  ) depicts the considerable role of larger fragments despite their small probability as 

shown in the FSD curve. This shows a considerable volume of the initial drop is converted to few 

large fragments. The important point in figure 4.6 is the independency of peaks on the Eötvös 

numbers.  
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Fig. 4.7. Scatter plots of velocity-diameter for different simulations and stages. Lines demonstrate the 

conditional probability for each stage of simulation. Top: 144Eo  , Middle: 216Eo  , Bottom: 288Eo 

. 
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To show the correlation of size and velocity, the scatter plots of these parameters as well as the 

conditional distribution of velocity with respect to diameter: 

 

 

 
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f f f f

D D
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D D D D

f

v
V D V D

N v



 
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        (4.3) 

 

are illustrated in figure 4.7. In equation 4.3,  ji
f fD D denotes the range of diameters subsets used to 

calculate |V D . In the present study, this range is fixed at   0.05
ji

f fD D  and   0.1
ji

f fD D   for 

00 / 0.15fD D  , and 00.15 / 1fD D  , respectively.  

The highest probability area for size-velocity distribution in all simulations approximately appears in 

the range of 
0

0

0.02 / 0.1

0 / 15

f

f

D D

v v

  
 

   

. However, the higher range of velocity 010 / 30fv v   in the same 

diameter area has a considerable probability as well. For a given simulation (Eötvös number), the 

manner of changes of |V D  can also describe the disintegration of the droplet.  At the first stage, 

(e.g. A1, B1, or C1), a number of small fragments plus a single large fragment 0/ 0.1fD D  are 

observed. The large fragment is actually the parent droplet remaining after the bag breakup, and the 

small droplets are those generated due to bag breakup. This fashion of distribution makes a three-part 

curve of |V D  including a plateau for small fragments, a peak for the large fragment and a zero 

value between these two parts which demonstrates the considerable difference between the size of the 

fragments generated by bag disintegration and the parent droplet. After the breakup of droplet core, a 

number of large fragments remaine in the domain, expecting to further breakup. These fragments 

relatively have larger falling velocities due to their larger weights. The peaks observed for |V D  

curve at this stage, (beside the plateau of smaller fragments) are the consequence of these fragments. 

By further disintegration of unstable fragments, the number of small droplets increases and large 

fragments disintegrate into several smaller ones. Due to these supplementary breakups, the  |V D  

curve shows a smooth manner increasing by fragment size and a peak occurs at the end for the largest 

fragments. Additional disintegration (is not presented here) of fragments will not change the pattern 

of the curve but slightly the values of the peak (both diameter and velocity). 
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Distributions of size and velocity, individually, do not show the stability of the fragments. This led us 

to calculate the non-dimensional numbers for each fragment to analyze the stability of droplets at 

each stage. 

 

4.4 Variation of Non-Dimensional Groups 

 As it was mentioned in section 2.4, the non-dimensional group governing the dynamics of falling 

droplets consists of Eo , Oh , We , and Re . The values of these groups are calculated for each 

fragment at each stage and presented in this section. 

As described before, Eo  and Oh  represent the charachteristics of a droplet ar rest. For a moving 

droplet, these values have the same meaning, ignoring the influences of surrounding media. (e.g. 

characteristics of  the equal-volume spherical droplet  of each fragment if they begin to fall from the 

rest). Figure 4.8 illustrates the variations of Eötvös versus Ohnesorge number for all stages.  

 

 

Fig. 4.8. Eo  versus Oh  for the last step in different simulations. 

 

Han and Tryggvason (1999) presented a series of numerical simulations for falling droplets with 

different parameters. For the case we are investigating ( 0.05Oh   and 10d c   ) they predicted 

that breakup will start at 50 60Eo  . However, for larger amount of Oh , we need a higher value of 

Eo  for breakup. Thus, ignoring the influences of continuous medium and assuming that all 



66 

 

fragments are spherical and just begin to fall, figure 4.8 can be used to analyze the stability of the 

fragments. Results show that, based on this criterion, all fragments are almost stable at the last step of 

the simulations. However the simulation of 288Eo   may still contain a few number of fragments that 

can be disintegrated to smaller ones. It should be noted that the ratio of Eo  and Oh only depends on 

the size of the droplets (e.g.   5
d d fEo Oh g D     ) producing the charactrisitics lines for 

simulations. These lines are illustrated in a log-log diagram in figure 4.8.  

The analysis above ( Eo  vs. Oh ) does not include the influences of velocities. Thus, to take account 

of the velocity of the fragments, we also obtained the Re  versus We  maps for different stages in the 

simulations. The ratio of  Re cWe v   only depends on velocity of the fragments. However, 

analyzing the scatter plot of (We  vs. Re ) helps to demonstrate the range of variations for these non-

dimensional parameters as well as their correlation (if any). Figure 4.9 depicts the diagrams of  

ReWe  for different simulations. 
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Fig. 4.9. We  versus Re  for different simulations. Diameters of points are proportional to diameter of 

fragments. Top: 144Eo  , Middle: 216Eo  , Bottom: 288Eo  . 
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According to figure 4.9, most of the fragments at the end are in the range of 
0 Re 20

0 7We

  
 

  

. This 

domain is slightly larger for 288Eo  due to stronger body force that generates a lager velocity. Due 

to the same reason, the maximum values of We  and Re  at the last steps (A3, B3 and C3) also 

increase with the initial Eötvös number.  

Up to now, none of the analysis performed in this section provide a good estimation about the 

stability of fragments. To include all the influencing factors to predict the stability of moving 

droplets, we can show the classical diagram of (We  vs. Oh ) for the simulations. This analysis 

considers all the dispersed-phase-continuous-phase combination properties, but the morphological 

changes of the fragments at that stage. So, assuming all the fragments being spherical at each 

moment, using equivalent diameter of the same volume sphere, Weber and Ohnesorge numbers are 

calculated and demonstrated in figure 4.10. 
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Fig. 4.10. We  versus Oh  for different simulations. Diameters of points are proportional to diameter 

of fragments. Breakup modes are shown based on the experimental studies by Hsiang and Faeth 

(1992 and 1993). Top: 144Eo  , Middle: 216Eo  , Bottom: 288Eo  . 
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Diagrams shown in figure 4.10 appropriately explain the fragmentation of droplets in time. For a 

given Eötvös number, a large fragment (parent droplet) with 
0.05

37

Oh

We

 
 

 

 and a number of small 

fragments with 
0.1

12

Oh

We

 
 

 

 remain at the first stage (A1, B1 or C1). Based on map of Hsiang and Faeth 

(1992 and 1993), small fragments will not further disintegrate. However, the large fragment is close 

to bag and multimode regimes. In reality, the remaining large fragment is considerably deformed and 

punctured severely. Nevertheless the prediction of the curve on further breakup is correct but its 

fashion is totally different. (e.g. the multimode or bag can happen for a spherical droplet). At the 

second stage (A2, B2 or C2), the number of unstable fragments, close to the domain of bag and 

multimode, as well as the small stable droplets increase. This is due to breakup of the upper torus and 

the droplet core, which remains some large fragment in the domain. The values of Weber and 

Ohnesorge numbers for the large fragments in this stage are approximately 
0.05 0.1

12 35

Oh

We

  
 

  

 . Based 

on the map, these fragments (the number of them is about 4 to 5) will break up again generating more 

stable droplets. This fact happens and at the third stage (A3, B3 or C3) a cloud of stable droplets are 

remained. Analyzing the data at the last stage shows that about 99.33%, 99.57% and 99.16% of 

fragments for 144Eo  , 216Eo  , and 288Eo  are in oscillation or deformation regimes, respectively. 

This shows that the cloud of droplets created at the end of simulations are quite stable. It should be 

noted that the lateral analysis can underestimate the values of Weber number, neglecting the 

deformation of the fragments. However, based on our comparison the prediction is in good agreement 

with the observations.    
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Chapter 5 

Deformation of Droplet in a Stream 

 

5.1 An Overview on Droplet Dynamics in a Stream 

However, several experimental investigations have tackled the problem using different 

methodologies including shock tubes (Hsiang & Faeth 1993, 1995), continuous jets (Lee & Reitz 

2000, 2001, Zhao et al. 2010), and drop tower (Villermaux & Bossa 2009). In most of these 

experiments, breakup of the droplets is studied analyzing the pictures from shadowgraphs or high-

speed cameras. Empirical results are mostly classified in geometrical categories where the Weber (

2
0 0gWe U D  ) and Ohnesorge (

0d dOh D   ) numbers distinguish the breakup regimes. 

Vibrational, Bag, Multimode, Sheet-thinning, and Catastrophic breakups are the modes observed in 

the experiments with increasing Weber number. However, as it is also mentioned in the review paper 

of Guildenbecher et al. (2009), mode transition is essentially a continuous procedure and different 

studies have reported different geometries as well as values of transition Weber numbers. 

Nevertheless, a review of the empirical results for breakup of droplets reveals that the details of 

fragmentation process still remain elusive. This is due to the high-speed three-dimensional 

occurrences during the deformation and breakup of droplets. Thus, it is extremely problematic to 

capture all the characteristics of droplet fragmentation in a stream using the current experimental 

techniques. 

The alternative approach is numerical simulations where the bottle-neck is the cost. In other words, 

an excessively large number of finite discretized volumes and extensive computational times are 

required to solve these kinds of complex problems. Such simulations need solutions to two-phase, 

unsteady, 3D flow with enough resolution over a wide range of length and time scales. Thus, the 

majority of numerical simulations that represent a time-dependent deformable interface of a droplet 

The laws of nature are but the mathematical 

thoughts of God.   

Euclid (300 BC) 
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are limited to investigations (topological changes) comparable to the drop size (Quan & Schmidt 

2006; Helenbrook & Edwards 2002; Wadhwa et al. 2007; Feng 2010). This corresponds to the low 

Weber and Reynolds numbers regime. However, a large number of instabilities with different length 

scales are expected to occur during the droplet fragmentation in high Weber and Reynolds numbers, 

representing the majority of natural and industrial applications. Another point that has to be 

considered in numerical simulations is the three-dimensionality of the deformations (as it will be 

discussed in this article). However, a few studies can be found in the literature that have considered 

three-dimensional geometry to study the deformation or breakup (Quan & Schmidt 2006; Khosla et 

al. 2006).  

Due to limitations of experimental and numerical studies described above, the mechanisms of liquid 

droplets deformation and breakup in small scales have not been clarified yet and needs more 

developed techniques for further investigations. Meanwhile, reducing the computational costs, by 

using special techniques, Direct Numerical Simulation (DNS) of the Navier-Stokes equations 

combined with interface tracking is the best known technique for the study of the process. In the 

current study, direct simulations are performed in two and three dimensions based on appropriate 

numerical algorithms in the context of the volume of fluid (VOF) method combined with high 

performance adaptive octree meshing methods. High Reynolds number and a range of relatively high 

Weber numbers are chosen addressing the shear breakup of droplets in a stream. The focus of this 

work is to identify the instabilities generating and growing over the droplets that lead to breakup, 

rather than the fragmentation to small droplets. The study of initial deformation, instability generation 

and growth are enormously important because they are the first stage of all aerodynamically-induced-

breakups, considerably affecting the characteristics of the atomization. Therefore, a thorough 

understanding of these processes is crucial to formulate accurate atomization models.  

The results are categorized in two main parts. In the first part (sections 5.2), the results of 2D 

simulations are presented for three Weber numbers. In the next part (section 5.3), a 3D simulation is 

provided to study the instabilities in radial direction. Results in both categories are compared with 

theories. 
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5.2 Two-Dimensional Results 

5.2.1 Grid Tests 

First of all, a grid test is provided for three different tests; 512 512 , 1024 1024 , and adaptive grids up 

to the level 12 (see figure 2.3). The quality of the interface deformations and vorticity domains are 

depicted in figure 5.1. 

 

 

Fig. 5.1. Deformation of the droplet in stream for different tested cartesian grids ( 100We  ) at 

0.97  . Top: Uniform grids of 512 512 (Level 9). Middle: Uniform grids of 1024 1024 (Level 10). 

Bottom: Adaptive grid based on quad-tree meshing. The maximum level of the adaption is 12. 

Vorticity field is normalized using *
0 0D U  . Where rot  u u . 
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Three criteria are employed for the adaption: velocity gradient, vorticity magnitude, and interface 

curvature. Adaption based on these parameters assist to perfectly resolve the boundary layer created 

over the droplet as well as the deformation of the interface due to the gas stream. Moreover, the 

influence of the secondary flows (recirculation regions) on the interface and changes in the carrier 

phase are captured in a better quality, using the adaptive grids. The number of the cells used for these 

simulations, for a specific time, is given in table 5.1. 

 

Table 5.1.  Grid properties at 0.87   

Test number Type Total cells
 

Leaf cells

 
1 Uniform 349525 262144 (512 x 512)

 

2 Uniform 1398101 1048576 (1024 x 1024)
 

3 Adaptive 487379 365458
 

Level 9 = 258694 

Level 10 = 4195 

Level 11= 14627 

Level 12 = 88004 

 

As it is clear, the number of the cells is significantly decreased, using the adaptive grids. 

Nevertheless, more accurate interface tracking is provided due to high resolution of the grids close to 

the interface and circulations. The grid resolution affects the wave-lengths of the Kelvin-Helmholtz 

Instability (KHI), ligament formation, and furthermore, it influences the stretching of the ligaments 

produced by development of the KHI. As shown in figure 5.1, ligaments can be tracked for a longer 

period of time before the disintegration with increasing the resolution of the meshes.  

The influence of grid size is not limited to interface deformation. It also plays an important role in 

boundary layer resolving over the droplet. The velocity profiles on the poles of the droplets and the 

wave-lengths of shear instabilities around the poles are shown in figures 5.2 and 5.3, respectively. 
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Fig. 5.2. Velocity profiles on the poles for 100We  . h  is the height from the interface at pole. 

 

 

Fig. 5.3. Wave-lengths close to the pole for different tested grids. 



76 

 

As it is clear in figure 5.2, the boundary layer thickness is significantly reduced, using the adaptive 

grids. We have 10 finite volume cells in the boundary layer zone for the test with grid adaption, 

allowing for a reasonable resolution. On the other hand, the wave-length of the shear instability 

decreases, increasing the mesh resolution, as depicted in figure 5.3. This considerably assists to 

capture the primary deformation and growth of the instabilities in an acceptable quality. 

Subsequently, the adaptive grid (up to level 12) is used for the 2D and 3D simulations.    

 

5.2.2 Deformation Mechanism 

      The dimensionless groups for the 2D simulations are listed in table 2.2 Three Weber numbers, 

(50, 100, 200) are chosen to find the influence of the surface tension on deformation and instability 

growth. Although changing the surface tension coefficient changes the Ohnesorge number, we always 

meet the condition of 0.001Oh  , that demonstrates the negligible influence of the viscosity. Figure 

5.4 demonstrates the initiation and development of the instabilities for 100We  .  

 



77 

 

  

Fig. 5.4. Numerical results for a 2D simulation ( 100We  ). Arrows demonstrates the observed 

scenarios for the ligaments formed due to growth of shear instablities. a) Initiation of the instabilities 

around the poles due to higher magnitude of the relative velocity. b-f) Amplification of the 

instabilities in the stream generating ligaments. g-i) Further development (stretching) of the 

instabilities (ligaments) under the influence of the secondary flows and main stream.  j-l) 

Fragmentation of the stretched ligaments and droplet (fragment) formation.  m) Magnified view of d. 

n) Magnified view of l. Recirculation zones are highlighted by black circles. 

   

Kelvin-Helmholtz waves are generated over the poles due to higher relative velocity in that region. 

The waves grow forming ligaments. Recirculation zones are produced here due to existence of the 

waves (see figure 5.4-m). The secondary flows at this stage affect the growth of the waves. Basically 

two different scenarios are seen in the simulations: 1) Development, ligament formation, further 

stretching, disintegration and fragments formation (arrows 1 and 3 correspond to this possibility). 2) 



78 

 

Deformation and merging of the waves. This might reproduce a bigger wave that grows further and 

makes a ligament that follows the first scenario (arrow 2 shows an example of this scenario). The 

disintegrated ligaments stretch again repeating the same mechanism. Black arrows, in figure 5.4-l, 

show two of these ligaments.  

During the formation and growth of the waves, the droplet flattens and a wake is generated on the 

rear of the droplet, due to separation of the main stream. This wake affects the rear part of the droplet 

making more spikes. Circles in figure 5.4-i depict two spikes generated due to wake. The topology of 

the wake after the disintegration of the ligaments will also be influenced significantly. Different 

geometries of the waves as well as the different sizes of the deformable moving fragments in that 

region produce more complex patterns as highlighted in figure 5.4-n with the white circle. 

The mechanism of the deformation described above is the same for the simulations with different 

Weber numbers. However, surface tension influences the Kelvin-Helmholtz instability (KHI) and the 

further disintegration. The influence of the Weber number is discussed in the next subsection.      

  

5.2.3 Effect of Weber Number 

The influence of Weber number, changing the magnitude of the surface tension, is studied for three 

cases: 50We  , 100We  , and 200We  . To see the effect of Weber number on geometry and position 

of the parent droplet, the width (see figure 5.4-g) and position of the center-of-mass are depicted in 

figures 5.5 and 5.6, respectively. 
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Fig. 5.5. Variation of width of the parent droplets versus time for differentWe . 

 

 

Fig 5.6. Motion of the droplets in stream-wise direction for differentWe . 
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From figures 5.5 and 5.6, no notable change can be described as the effect of change of Weber 

number. Although, the widths of the droplets are reduced to about half of the initial diameter, no 

specific changes are observed in the position of the droplets. This is due to significant difference 

between droplet relaxation time and instability growth time scale. i.e. the required time to change the 

velocity of the droplet from zero to terminal velocity is much larger than the time needed for 

initiation and growth of instabilities.  However, taking a detailed look on the interfaces, noteworthy 

changes can be seen due to changes of the Weber number. The deformation of the interface for a 

given time ( 0.27  ) is shown in figure 5.7. 

 

 

Fig. 5.7. Interface deformation and growth of the shear instabilities for a) 50We  . a) 100We  . 

and a) 200We  . Snapshots are all in 0.27  and are just shown for the upper half-circles. 

 

As it is observed in figure 5.7, the less the Weber number, the less the growth of the shear 

instabilities. i.e. surface tension damps KHI.  The surface tension has a slight effect on the length of 

the shear instabilities over the droplet. Figure 5.8 demonstrates the values of KHI wave-lengths (  ) 

for different Weber numbers.  
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Fig. 5.8. Wave-lengths close to the poles for different We . 

 

Wave-lengths produced due to shear instabilities are decreased with increasing Weber numbers. This 

is also seen in Rayleigh limit of shear instabilities (compared with experimental observation of co-

axial jets in Marmottant & Villermaux (2004)) for high Weber numbers where the most amplified 

wave-length is not dependent on the surface tension. 

 As described in section above, growth of the ligaments and their fragmentation make complex 

patterns on the wake of the droplet. The deformation of the interface plus the vorticity field are 

illustrated in figure 5.9 to compare the simulations in different Weber numbers.  

 

 

Fig. 5.9. Deformation of the droplets at 1.64   for Left: 50We  , Middle: 100We  , and Right:

200We  . 
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More complex patterns are observed with increasing the Weber number, since smaller fragments and 

irregular ligaments are produced. However, more study is needed for this part to measure the 

complexity generated on droplet wakes.  

Basically, based on the two-dimensional simulations, it is found that the effective shear waves 

(smaller wave-lengths) are produced about the poles due to higher relative velocity. Moreover, 

reducing surface tension (increasing Weber number), larger wave-numbers are generated for KHI. In 

the next subsection, the current results are compared with theories. 

 

5.2.4 Comparison with Theories (Shear Instabilities) 

5.2.4.1 Combination of Potential Flow and Very Thin Vorticity Layer 

Consider a smooth flow past a spherical droplet with the uniform upstream velocity of 0U (see figure 

5.10-a). Neglecting the deformation of the droplet at the initial stages as well as the rotation of the 

carrier phase, the governing equations for the incompressible gas flow reduce to Laplace equation for 

potential flows: 

 

2 0,    (5.1) 

 

where u .The general axisymmetric solution of equation 5.1 obtained by separation of variables 

in the spherical polar coordinates, considering    ,R r      is as follows, 

 

   1

0

cos ,
nn

n n n

n

A r B r P 


 



   
    (5.2) 

 

where nA  and nB  are arbitrary constants and nP  is the Legendre polynomial of degree n . For the 

current problem, considering a uniform flow at  , we have 0 0lim cos
r

U r 


   . Moreover, 

assuming no normal flow across the droplet interface we have 0r   on 0r r  . Assuming the 

solution in the form of     2
1 1 cosA r B r    , the boundary conditions described find the 

constants as 1 0A U  and 
3

1 0 0 2B r U  . Subsequently, the solution for the velocity field can be found 

as (Summer & Fredsøe 2006), 
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u  (5.3) 

 

Considering the shear instabilities, the second element of the velocity (tangent to the interface) is the 

important one for our further analysis. Obviously the maximum amount of the tangent velocity, u , 

is 01.5U on the poles. Since the droplet velocity is negligible in comparison with the gas velocity, 

d gU U , the maximum relative velocity is max
01.5g dU U U U


   . This value for the 2D domain 

(circular cylinder) changes to 02U  since
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u U

r
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. 

 

 

Fig. 5.10. a) A schematic view of a droplet with diameter of 
0 02D r  in a stream. To convert 

the cartesian framework to spherical polar coordinate, let 2 2 2 2r x y z   , so that cosz r  . 

The area in the dotted box is enlarged in picture b. b) Gas flow around the droplet at the 

beginning of the streaming before the deformation. c) Possible scenario for the primary breakup 

of the droplet where the relative velocity, g dU U U    is large enough. 

 

Now consider a horizontal relative velocity over the surface of the droplet (see figure 5.10-b). It is 

well-known that two fluids with different velocities are essentially unstable, producing Kelvin-

Helmholtz instability (hereafter KHI) (see figure 5.10-c).  For small vorticity thickness, negligible 

gravity, and time-independent-velocities, the dispersion relation of the waves in x-direction 

 exp ikx i t   is (Chandrasekhar 1961), 
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Where surface tension stabilizes the shear instabilities for: 
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 Subsequently, for negligible droplet velocity d gU U , and large density ratios g d  , the most 

amplified mode and group velocity are: 
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(5.6) 

 

The constants ,  are  3 2,3 2 and  8 3,2 for 3D (spherical coordinate) and 2D (circular 

cylinder), respectively. Variations of the wave-numbers around the droplet are shown in figure 5.11, 

changing the surface tension (Weber number) and upstream velocity (Reynolds number). 

 

 

Fig. 5.11. Wave-numbers over the droplet from equation 5.6. Left: Influence of Weber number. 

Right: Effect of Reynolds number (curves are for 3D cases). 
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Figure 5.11 demonstrates the nonlinear growth of the wave-numbers from zero to maximum at 

2   (pole). Moreover, increasing Weber number the peak of the wave-number curve increases. 

i.e. shorter wave-lengths of KHI are generated. On the other hand, increasing the upstream velocity 

(Reynolds number), the peak of the wave-number curve is increased due to higher relative velocity 

over the droplets. These variations are similar to our observations in numerical simulations. The 

wave-numbers obtained in the simulations (close to the pole) are compared with the prediction made 

by equation 5.6 as listed in table 5.2. 

 

 

Table 5.2. Comparison of the present direct numerical simulations and equation 5.6. 

Weber Number 0 mD k   (DNS) 0 mD k  (Equation 5.6) Ratio 

50 90 1335 ~14.9 

100 110 2671 ~24 

200 146 5343 ~36.59 

 

Equation 5.6, obtained by combining the potential flow and zero-vorticity layer, shows a good 

qualitative agreement with the numerical simulations. However, assuming zero thickness for the 

vorticity layer is quite unrealistic (only valid for small Weber numbers) and causes a notable 

difference between the results found in the simulations and the theory. This difference is more 

pronounced for larger Weber numbers. Thus, taking the effect of the boundary layer, we compared 

our results with the theories considering linear velocity profiles.     

 

5.2.4.2 Non-Zero Vorticity Layer 

Consider linear velocity profiles for the phases as shown in figure 5.12. Based on the instability 

analysis of Villermaux (1998), followed by Kim et al. (2006), the most amplified mode is a function 

of densities as well as gas boundary layer thickness: 
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 (5.7) 

 

where function F  is expressed as, 
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Fig. 5.12. Linear velocity profile used in Kelvin-Helmholtz instability analysis. 

 

Moreover, for the thick vorticity layer, (Villermaux 1998; Marmottant & Villermaux 2004), 

expanding the Rayleigh approach, the dispersion relation was found as follows: 
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 (5.9) 

 

where       2g d g d g dU U k U U U U      . The temporal analysis of equation 5.9 results in 

a bell-shaped dispersion curve. The dominant mode for g dU U , can be found as, 
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 (5.10) 

 

The group velocity at the wave number represented by equation 5.10, is presented by (Marmottant & 

Villermaux 2004; Dimotakis 1986): 
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A similar instability analysis is provided for co-axial jets, resulting in equations 5.7, 5.10, and 5.11. 

However, the experiments of Marmottant & Villermaux (2004) show an approximately 70% 

difference between the results of the stability analysis and the empirical dominant wave-lengths,  . 

This is due to the linear velocity profile approximation. Thus the wave-number value in the stability 

analysis is larger than (about three times) the once obtained in the experiment. However, in the DNS 

of Kim et al. (2006), the value obtained for the dominant KHI wave length is much closer to the 

stability analysis due to thicker boundary layer ( g  is 4 times larger than the experiments). For the 

current study, we have tried to have a sufficient resolution, using adaptive grids, to capture the gas 

boundary layer (see figure 5.2). The wave-numbers obtained by the simulation and those achieved 

using equations 5.7 and 5.10 are listed in table 5.3 for comparison.  

 

Table 5.3. Comparison of the present direct numerical simulations and equations 5.7 and 5.10. 

0 mD k   (DNS) 0 mD k  (Equation 5.7) – (Ratio) 0 mD k  (Equation 5.10) – (Ratio) 

~(90-146) 314  –  (2.15-3.48) 315.61 – (2.16-3.5) 

 

As it can be obtained from table 5.3, in comparison with zero-vorticity theory, the wave-numbers 

predicted by equation 5.7 and 5.10 are much closer to those achieved in the simulations. However, 

the difference between experimental data and linear stability analysis are observed again. The ratio of 

stability analysis to experimental wave-numbers is reported to be ~3-4 by Marmottant and 

Villermaux (2004), for co-axial jets. This is very close to what we found in our direct simulations.  

In addition to the 2D simulations, a quite expensive three-dimension (3D) simulation is also provided 

to investigate the instabilities behavior having the third dimension (span-wise). The following 

sections include the results obtained for the 3D direct numerical simulation. 

 

5.3 Three-Dimensional Results 

The 3D simulation is performed with the same initial and boundary conditions of the 2D tests. The 

geometry is like figure 2.2 and the spatial discretization (algorithm and criteria) is similar to 2D 
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simulations. An example of the octree meshing for 3D simulation in addition to the vorticity field is 

shown in figure 5.13. 

 

Fig. 5.13. Droplet deformation for 100We   and  time 1.9   for the 3D simulation. a) Droplet 

interface and the generated grids. b) Adaptive meshed and the vorticity field. c) Magnified 

picture of the dotted box in b. 

 

A resolution similar to the 2D simulations is seen for the boundary layer. For the 3D simulation, 

instabilities in the radial direction are also expected, in addition to KHI. The deformation of the 

droplet and growth of instabilities are discussed in the following sections.   

 

5.3.1 Deformation Mechanism 

The generation of instabilities due to shear is similar to the observations in 2D simulations, where 

smaller wave-lengths with faster growth rates are generated close to the pole, due to higher 

magnitude of the relative velocity. However, here in 3D, generated waves form circular geometries in 

the transverse plane, causing the transverse azimuthal modulation due to the acceleration. This can 

also be called the Rayleigh-Taylor Instability (RTI), since a fluid with higher density is accelerated in 

a lighter one.  Figure 5.14 demonstrates the deformation of the droplet, 
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Fig. 5.14. Generation and development of instabilities over the droplets in the 3D simulation. 

Time is from 0   to 1.92   a) Initial spherical droplet. b) Onset of shear instabilities close to 

the pole. c) growth of shear instabilities in the stream-wise direction. d) Azimuthal modulation in 

the plane normal to the flow direction. e-f) Growth of shear and azimuthal waves. g) Formation 

of ligaments and further development of instabilities. h-i) Further stretching of ligaments.        

 

The number of spikes generated due to RTI depends on many factors such as the angle   and the 

amplitude of the wave initially produced from shear instability. Moreover, the interactions of the 

waves including the recirculation zones are more complex than the 2D simulations. To show the 

variation of the number of the spikes, transverse cross-sections of the droplet at different locations are 

illustrated in figure 5.15. 
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Fig. 5.15. a) Radial (transverse) growth of instabilities for planes perpendicular to the external 

stream. Time is 0.58   corresponding to figure 5.14-e. 

 

As seen in figure 5.15, the number of spikes increases approaching the polar cross-section. This 

shows the smaller wave-length (larger wave-numbers) of the RTI for the region with higher relative 

velocities. The higher shear causes a faster growth of the waves that translates into stronger 

acceleration, causing amplification of shorter wave-lengths. By growth of the stream, and span –wise 

instabilities over the droplet, wave-numbers change due to variation of the amplitude of the waves. 

i.e. smaller wave-lengths are observed with increasing the amplitude of the shear waves. These short 

wave-lengths instabilities generate small ligaments and subsequently tiny droplets. An example of 

these waves is shown in figure 5.16. 

 

 



91 

 

 

Fig. 5.16. Short-wave-length RTI generating small fragments. The box in the corner 

demonstrates the magnified view of the same picture. 

 

Similar to 2D simulations, deformation of the droplet, generation of the irregular geometries and 

formation of the ligaments make chaotic patterns in wake. Figure 5.17 depicts two streamlines 

starting from two close points on upstream. (The initial positions 0 0 0, ,x y z  for yellow and red 

particles are  0 02.5 , 0, 0.05D D and  0 02.5 , 0, 0.05D D  , respectively.) 
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Fig. 5.17. 3D patterns on wake of the droplet. Lines show the streamlines at 1.92  .   

 

The patterns formed in the wake might generate more deformation and instabilities over the droplet. 

However, like the 2D test, this topic needs more detailed investigations.  

Essentially, based on the 3D simulation, it is found that the development of instabilities in span-wise 

(radial) direction is dependent on the shear magnitude (i.e. the angle between the flow direction and 

the point over the droplet) and the amplitude of the waves in stream-wise. In the next subsection we 

try to employ the available theories to find a mathematical description for these changes. 

 

5.3.2 Comparison with Theories (Transverse Azimuthal Modulation) 

 After the production and growth of the KHI, generating axisymmetric waves, the transverse 

azimuthal modulations are expected to develop in the radial direction due to Rayleigh-Taylor 

Instability (Marmottant & Villermaux 2004; Kim et al. 2006, Villermaux & Clanet 2002) as 

illustrated in figure 5.18. 
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Fig. 5.18. a) The growth of KHI over the droplet. Blue dotted lines show the arbitrary cutting 

planes. b-d) possible deformation of the interface in the radial direction due to Rayleigh-Taylor 

Instability. A uniform spatial perturbation growth with 4, 6, and 9 spikes are schematically 

shown here.  

 

The Rayleigh-Taylor Instability (RTI) is the instability of an interface between two fluids of different 

densities, occurring when the heavier fluid is accelerated in the lighter fluid. (Marmottant & 

Villermaux 2004; Villermaux & Clanet 2002, Villermaux & Rehab 2000) showed that acceleration 

normal to the interface at the rim causes RTI with wave-length of  . For a planar interface with 

uniform constant acceleration ( g ), the maximum amplified wave-number and growth rate are: 
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for g D   (Chandrasekhar 1961). The maximum gravity in equation 5.12 can be replaced by 

(Marmottant & Villermaux 2004; Kim et al. 2006): 
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 (5.13) 

 

Where a  is the amplitude of the primary wave generated by shear instability. Finding from the 

instability analysis provided in section 5.2.4.1, the dominant wave number for RTI is found as, 
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for the analysis combining the potential flows and very thin vorticity layer. The influences of a  and 

0U  on the RTI wave-number are demonstrated in figure 5.19. 

 

 

Fig. 5.19. Wave-number distribution around the droplet. a) The effect of amplitude of the 

primary (shear) instability. b) The effect of upstream velocity.  

 

Larger wave numbers for RTI are expected around the poles similar to the wave-numbers for KHI. 

Increasing the upstream velocity, the higher value of wave number is again expected to be distributed 

around the droplet due to higher acceleration it causes. Moreover, the influence of the wave 

amplitude on RTI is interestingly shown. Where higher wave-numbers are expected, increasing the 

height of the wave. The outcomes from theory show a good qualitative agreement with our 

observations in the 3D simulations. However, neglecting boundary layer generates a notable 

difference again as shown in table 5.4.  

 

 

 

 

 



95 

 

Table 5.4. Comparison of the present direct numerical simulations and equation 5.14. 

Weber 

Number 



 

0 mD k   (DNS)  0 mD k  (Equation 5.14) Ratio 

100 

~ π/2 ~35-40 1627 ~41-46 

~ π/3 ~29-32 1220 ~38-42 

~ π/4 ~20-24 813 ~33-39 

 

As it can be seen in table 5.4, the value obtained by equation 5.14 is much larger than those achieved 

in direct simulations. This is again due to neglecting the boundary layer over the droplet. To involve 

the role of boundary layer (non-zero vorticity layer) we replaced the KHI wave-numbers from the 

linear stability analysis in section 5.2.4.2. After some algebraic manipulation we have: 
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(21) 

 

based on equations 5.7 and 5.10, respectively. A comparison between the theoretical equations and 

the current numerical simulation is presented using the same wave employed in table 5.4. The results 

are listed in table 5.5. 

 

Table 5.5. Comparison of the present direct numerical simulations and equations 5.15 and 5.16. 

Weber 

Number 

0 mD k   

(DNS)  

0 mD k  (Equation 5.15) – (Ratio) 0 mD k  (Equation 5.16) – (Ratio) 

100 ~35-40 341(8.5-9.75) 342 – (8.5-9.75) 

 

As it can be observed in table 5.5, the predictions provided by equations 5.15 and 5.16 are much 

closer to the simulation results, in comparison with zero-vorticity layer theory. However, a significant 
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difference between the theories and simulations still exist. The difference between the theory above 

and experimental data (even for low Weber numbers) was shown in Marmottant & Villermaux 

(2004). Assuming a linear velocity profile to find the wave-number of primary KH waves as well as 

the assumption of plane interface for equation 5.12 might be two main reasons causing this 

difference. Nonetheless, the effect of different physical parameters are well accounted in the provided 

theories.    
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Chapter 6 

Conclusion 

Deformation, disintegration, and dispersion of fragments of a single falling droplet as well as the 

growth of instabilities over a droplet in an external fluid flow are studied using direct numerical 

simulation.  

For the case of falling droplets (Chapter 3), outcomes are divided into three main parts; at the 

beginning, deformation and bag generation are investigated and the influences of Eötvös number on 

variation of parent drop diameter, aspect ratio, and temporal Weber and Reynolds numbers are 

indicated. Afterwards, the mechanism of bag breakup is studied in detail. The growth of waves over 

the bag and generation of the holes are shown. It is demonstrated that the number of punctures 

increase as the Eötvös number is increased. The generated holes retract by different mechanisms 

depending on the circumstances. The hole generation and retraction speeds are compared with the 

available theories. Studying the mechanism of bag or flattened core, it is shown that the mechanism 

generally includes: punctures generation, retraction of holes, formation of ligaments network, 

detachment of ligaments, disintegration of ligaments, and subsequently stable fragments creation. 

Breakup of bag and core are followed by deformation and disintegration of upper and lower tori due 

to Rayleigh instabilities. Subsequently, stable clouds of fragments are obtained for the simulations.  

The variation of fragments number, distribution of drop size and velocity, correlations between the 

size and velocity of fragments, and distribution of non-dimensional numbers are also studied in 

details as the statistical characteristics of fragments (Chapter 4). It is shown that the average size of 

the fragments is reduced by increasing Eötvös number. Moreover, based on the maps (for non-

dimensional groups) it is described that the fragments are in a stable range. This part of results can 

considerably help to develop the statistical models for secondary atomization. 

For the case of droplets in a stream (Chapter 5), three two-dimensional and one three-dimensional 

study is performed for a range of Weber number corresponding to shear breakup mode. It is shown 

that Kelvin-Helmholtz Instability plays the main role in shear breakup. The wave-lengths of 
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instabilities are obtained for different Weber number and it is shown the wave-length of shear 

instabilities decreases with increasing the Weber number. In the three-dimensional simulation, the 

transverse azimuthal modulation is studied where the Rayleigh-Taylor Instability acts in the radial 

direction. Results for the both types of instabilities are compared with mathematical theories for zero 

and non-zero vorticity layer. The values obtained from the zero vorticity layer theory correctly 

demonstrate the trends of distribution of wave-numbers and their variations versus Reynolds and 

Weber numbers. However, the quantities obtained are far from those achieved in the direct 

simulations. These values are significantly improved using a linear velocity profile (considering the 

boundary layer). Nevertheless, a notable difference between the simulation and n-n-zero vorticity 

layer theory still exists. This difference was seen in the previous experimental studies (with the same 

ratio we obtained).   

To the best knowledge of our knowledge, the results presented in this thesis is the most precise 

simulation studying the deformation and fragmentation of droplets while previous investigations- 

mostly studied the deformation of the droplets in 2D or axisymmetric domains. The obtained results 

can be used in a wide range of natural and engineering applications, from rain phenomenon to 

combustion. 

 

6.1 Future Work 

 Fragmentation of droplets in a turbulence medium happens in several industrial applications. 

As a future study, breakup of droplets in an isotropic homogeneous turbulence can be studies, 

using the same methodology. 

 For the case of a droplet in a stream, we focused on initiation and growth of instability. The 

fragmentation of droplets in a high speed flows can be investigated as a future work. 

 Evaporation is a vital phenomenon in combustion science. As a future study, evaporation of 

the liquid phase and its influence on hydrodynamics instabilities can be studied for falling 

droplets or droplets in a stream. 

 Collision of droplets occurs in several natural and industrial applications. As a future study, 

interaction of two or more droplets in a stream or in free-fall can be studied using the same 

methodology. 

 The obtained results demonstrate a detailed mechanism behind the fragmentation of droplets. 

The current secondary atomization models can be improved using the present findings. 



99 

 

 Droplet tracking is crucial for development of atomization models. Finding an algorithm to 

track the fragments in Eulerian framework and its implementation by developing Gerris 

significantly assist for the further modelling.  

 Employing a high performance parallel computation technique, more complex problems can 

be studied. Thus, improvement of the current parallel computing abilities of Gerris is 

suggested as a future work.         
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