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Abstract

Graphene is a flat monolayer of carbon atoms arranged in a two-dimensional

hexagonal lattice. It is the strongest material ever measured with strength

exceeding more than hundred times of steel. However, the strength of

graphene is critically influenced by temperature, vacancy defects (missing

carbon atoms) and free edges. A systematic Molecular Dynamics (MD) sim-

ulation study is performed in this thesis to understand the effects of tem-

perature, free edges, and vacancy defects on the mechanical properties of

graphene. Results indicate that graphene has a positive coefficient of ther-

mal expansion. However, the amplitude of intrinsic ripples (out-of-plane

movement of carbon atoms) increases with increasing temperature, which

reduces the net effect of thermal expansion. This is probably the reason

for negative values of thermal expansion coefficient observed in some exper-

iments. The MD simulations provide significant insights. At higher tem-

peratures the sheets are observed to fail at lower strains due to high kinetic

energy of atoms. Excess edge energy of a narrow graphene sheet is found

to induce an initial strain at equilibrium configuration. Free edges have a

greater influence on the mechanical properties of zigzag sheets compared to

those of armchair sheets. Simulation of sheets with vacancy defects indi-

cates that a single missing atom could reduce the strength by nearly 20%.

It is also found that the calculated strength based on Griffith’s theory falls

below the results from MD simulations. The results obtained in this study

are useful to the design and fabrication of graphene based nano-devices.
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Chapter 1

Introduction

1.1 Nanotechnology

Nanotechnology is the creation and utilization of materials and devices

through the control of matter at the scale of nanometers. Nanometer (nm)

is a one billionth of a meter; diameter of a human hair is 100,000 nm. Con-

trol of matter on the nanoscale has already made a significant advancement

in many scientific disciplines such as physics, chemistry, materials science,

biology, medicine, and engineering [1].

A lecture given by Richard Feynman in 1959 is considered to be the first

scientific discussion on nanotechnology [2]. Invention of scanning tunnelling

microscopy (STM) in 1982 [3] and atomic force microscopy (AFM) in 1986 [4]

accelerated the research at nanoscale. Both STM and AFM were discovered

by a group of researchers IBM, lead by Gerd Binnig. Binnig and Heinrich

Rohrer were awarded the Nobel Prize in Physics in 1986 for the invention

of STM. These inventions gave the researchers ability to observe individual

atoms and manipulate them, which lead Harold Kroto, Robert Curl, Richard

Smalley, and Sean ÓBrien to discover the buckyball, which is a molecule,

resembling a soccer ball in shape, and composed entirely of carbon. The

team was awarded the 1996 Nobel Prize in Chemistry for their discovery [5].

Another great leap in nanotechnology is the discovery of carbon nanotube by

Sumio Iijima in 1991 [6]. Iijima was awarded the Kavli Prize in Nanoscience

in 2008 for this advance in the field.

At nanoscale, the quantum effects become important and material prop-

erties are size-dependent. When particle size aproaches nanoscale, proper-

ties such as melting point, electrical conductivity, magnetic permeability,

and chemical reactivity change as a function of the size of the particle.

1



1.2. Graphene

Nanoscale materials have larger surface area compared to area of the ma-

terial at macroscale for a given volume. The reactivity of the material

increases as surface area increases so that nanomaterial can be effectively

used as catalyst [1].

Nanotechnology has made many advances in biology and medicine. Re-

searchers are working on designing tools, treatments, and therapies that are

more precise than conventional ones [7]. Researchers have discovered that

in photosynthesis, the energy from sunlight is instantly transferred to the

place where photosynthesis occurs by quantum mechanical processes with

nearly 100% efficiency [8]. Growing understanding of nanoscale biomolecu-

lar structures is also impacting other fields than medicine. Some scientists

are looking at ways to use nanoscale biological principles of molecular self-

assembly, self-organization, and quantum mechanics to create novel com-

puting platforms [9–11].

Recently, researchers were able to manipulate a single atom in a way

they want [11, 12], which will lead researchers to fabricate devices by ma-

nipulating atom by atom. Isolation of a single layer graphene sheet from

bulk graphite started a new research front in nanotechnology [13].

1.2 Graphene

Graphene is a flat monolayer of carbon atoms arranged into a two-dimensional

(2-D) hexagonal lattice. One millimetre of graphite consists of three million

layers of graphene, stacked on top of one another. These layers are held

together by weak Van der Waals forces, therefore fairly easy to separate.

Graphene is the basic building block of 0-D fullerene and 1-D carbon nan-

otube. Graphene was presumed not to exist in the free state, until Geim

and Novoselov isolated free-standing graphene for the first time in 2004 [13].

Geim and Novoselov were awarded the 2010 Nobel prize in Physics for this

discovery.

Graphene has been studied for more than sixty years [14]. Graphene has

been found to be the strongest and stiffest material ever measured [15]. It

has been experimentally found that the ultimate tensile strength (σult) of

2



1.3. Nanomechanics

graphene is 130 GPa and its Young’s modulus is 1 TPa [15].The correspond-

ing values of high carbon steel are ≈ 1 GPa and ≈ 200 GPa, respectively.

It is about hundred times stronger and five times stiffer than the strongest

steel. Also, thermal and electrical conductivities of graphene are much bet-

ter than those of diamond and copper, respectively [16]. Researchers have

demonstrated that graphene can be effectively used in structural applica-

tions. As an example, graphene is considered to be an excellent filler for

composite materials [17–21]. There is also a growing interest in graphene as

a base material for nano-electromechanical systems (NEMS) [22–25], given

that lightness and stiffness are the essential characteristics sought in NEMS

for sensing applications. Graphene-based resonators offer low inertial masses

and ultra high frequencies.

Researchers have developed a number of different methods to produce

graphene. Single and few-layer graphene have been grown epitaxially by

chemical vapour deposition of hydrocarbons on metal substrates [26] and

by thermal decomposition of SiC [27]. In the absence of quality graphene

wafers, many researchers are currently using graphene samples obtained

by micromechanical cleavage of bulk graphite, which is the technique that

allowed for the isolation of graphene for the first time [13]. This technique

provides high-quality graphene crystallites of up to 100 µm in size, which is

sufficient for most research purposes.

Fundamental understanding of the mechanical behavior of graphene is

required for successful design and manufacture of devices such as graphene

based resonators. The following section gives an overview of the different

methods available to study the nanoscale materials such as graphene, and

systems such as graphene based transistors.

1.3 Nanomechanics

Nanomechanics is a new area of mechanics which studies the properties and

behaviour of nanoscale materials and structures. A structure with at least

one dimension less than 100 nm is considered to be a nanostructure. A

thorough understanding of the mechanical behaviour of nanoscale materials

3



1.3. Nanomechanics

is necessary to design and fabricate nanostructures. This has been achieved

in nanomechanics by experimental studies and theoretical models. Trans-

mission electron microscope (TEM), scanning electron microscope (SEM),

and atomic force microscope (AFM) are widely used for experiments at

nanoscale. TEM was used to find the ultimate strength of multiwalled car-

bon nanotubes [28]. AFM has been used to investigate the elastic properties

and strength of graphene [15]. Conducting experiments at nanoscale is very

expensive and time consuming. Therefore, theoretical models play a vital

role in nanomechanics.

Nanomechanic models can be divided into three branches, such as ab-

initio approaches, semi-empirical methods, and modified continuum models

as shown in Fig. 1.1. Ab-initio (first principal) approaches, such as Hartree-

Fock method and density functional theory (DFT) are considered to be

more accurate than other methods to obtain the characteristics of nanoscale

structures since these ab-initio approaches start with the basic equation

for the entire system. As an example, Hartree-Fock method starts with

Schrödinger equation of the system, which considers all quantum many-

body interactions [29]. DFT is not as intense as Hartree-Fock method, and

can be used for nanostructures containing up to a couple of hundreds to

thousands of atoms [30] depending on the approximation used in the theory.

However, the analysis of even a couple of hundred of atoms is not possible

without the aid of super computers. Therefore, ab-initio approaches are not

efficient to analyze large nanostructures such as graphene sheets, which can

contain couple of thousand of atoms.

Semi-empirical methods, such as molecular dynamics (MD) and tight-

binding method, are much more computationally affordable compared to ab-

initio approaches and give quite accurate results [31]. MD is the most com-

monly used semi-empirical method. It assumes atoms as interacting classical

particles and the interactions between atoms are described using molecular

mechanics force fields. A detailed description about MD is given in Chap-

ter 2. Tight-binding method uses a linear combination of the wave function

of the neighbouring atoms to obtain the solution of a system of atoms [32].

Even though semi-empirical methods are computationally affordable, it is

4



1.3. Nanomechanics

Nanomechanics 
model 

Ab-initio 
approaches 

Hartree-Fock 
method 

Density 
functional theory 

Semi-empirical 
methods 

Molecular 
dynamics 

Tight-binding 

Modified 
continuum model  

Non-local shell 
model 

Finite element 
method 

Figure 1.1: Some example of nanomechanical models.

expensive to conduct these calculations for all possible cases when designing

nanostructures. To overcome this problem, researchers have used continuum

models for basic level design calculations to get an overall idea of the be-

haviour of nanostructures, and then use semi-empirical methods or ab-initio

calculations depending on the required level of accuracy and the available

computational power.

A number of modified continuum models, such as non-local shell model,

surface elasticity model, and finite element models, have been used to predict

the behaviour of nanostructures. These models are not as accurate as the

semi-empirical methods, but computationally very efficient. Non-local shell

model has been successful in explaining the mechanics of carbon nanotubes,

such as torsional behaviour [33], buckling [34, 35], vibration [36], and wave

propagation [37–39]. The surface elasticity theory has been effectively used

to study the effects of surface energy on the elastic behavior of nanotubes

5



1.3. Nanomechanics

and nanowires [40, 41] and effects on the resonance frequency and surface

buckling of micro cantilever beams [42–45].

Molecular mechanics based finite element models have been used by

researchers to predict the behaviour of nanostructures [46]. In these ap-

proaches, carbon-carbon (C-C) bonds are modelled as spring elements or

beam elements as shown in Fig. 1.2. Mechanical properties of these elements

are evaluated by considering the strain energy equivalence of structural me-

chanics and molecular mechanics [47]. In molecular mechanics, change in

bond angles contribute to the stored strain energy of a system. Researchers

have used various approaches to take this into account in molecular mechan-

ics based finite element models.

C-C bonds: Beam or Spring element

Carbon atoms: Nodes

Graphene sheet

Figure 1.2: Bond based finite element method.

Odegard et al. [48] modelled C-C bond as a translational spring element.

This simple model can only be applied when graphene sheet is subjected to

an infinitesimal deformation. Meo and Rossi [49] modelled the angle between

two adjacent C-C bonds using the relative rotation of the bonds. They

used translational spring elements to model bonds. Nasdala and Ernst [50]

presented a four-node finite element consisting of bond stretch, valence angle

and dihedral angle change of C-C bonds. This element has been applied to

investigate the mechanical behavior of carbon nanotubes, and it was found to

be computationally expensive compared to other molecular mechanics based

finite element methods [51]. Tserpes and Papanikos modelled C-C bonds

6



1.3. Nanomechanics

using three-dimensional elastic beam elements [47]. Length to diameter

ratio of the beam element used in this study is 0.97, which indicates that

the modelling of C-C bonds as beams is not appropriate.

Liu et al. [52, 53] proposed a new molecular mechanics based finite el-

ement method, which they named as atomic-scale finite element method

(AFEM). This method does not have any assumption on the nature of the

bonds and also considers the contributions from nearest and second nearest

neighbouring atoms, which automatically consider the change in bond an-

gles. Two AFEM elements needed to analyse a graphene sheet are shown

in Fig. 1.3. The central atom (labelled as 1) of each element interacts with

three nearest neighboring atoms (2 - 4) and six second nearest neighbors

(5 - 10). Stiffness matrix is obtained from a molecular mechanics force

field [52, 53].
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Figure 1.3: Elements of atomic-scale finite element method.

Continuum mechanics methods are only applicable to study the mechan-

ics of infinitely large systems. However, in a system such as graphene, the

discreteness of atoms and large surface area lead to scale effects, which can-

not be explained using classical continuum mechanical methods [34]. Ge-

ometric effects of graphene, such as edge effects and defects arise due to

finiteness and imperfectness of the atomic lattice. These effects need more

sophisticated analyses to understand the influence on mechanics of graphene.

Mechanics of an infinitely large perfect lattice can be investigated using clas-

sical continuum methods, however these continuum method should take into
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account the discreteness of the atomic lattice and the results should be ver-

ified using a more refined atomistic simulations.

Researchers have used nanomechanics to study the mechanics of carbon

nanotubes and graphene. Detailed literature survey on the use of nanome-

chanics to study the mechanics of geometric effects of graphene will be pre-

sented in the following sections.

1.4 Mechanics of Geometric Defects of Graphene

Edges and defects are the two main geometric effects that alter the mechan-

ical properties of graphene. A thorough understanding of these effects is

required for the design and manufacturing of graphene based nano devices.

1.4.1 Edge Effects

Graphene has two principal edge configurations, namely, armchair and zigzag

as shown in Fig. 1.4. It has been experimentally observed that zigzag edge

is more stable compared to armchair edge due to the edge configuration [54]

due to the bonding environment of the edge atoms. It can be seen in Fig. 1.4

that armchair edge has bonds between two unstable edge atoms, which have

only two C-C bonds. Combinations of these two basic configurations create

a number of other edge configurations. Theoretical studies have indicated

that both electronic and mechanical properties of graphene depend on the

edge configuration [55–57]. Each carbon atom of the zigzag and armchair

edges has an unpaired electron, which makes the edge atoms unstable. These

unstable edge atoms alter the mechanical and electronic properties of the

graphene sheet. Previous theoretical studies have shown that the effects

of edges are prominent at lower widths [58, 59]. Researchers have used

very narrow graphene sheets (width≈ 15 nm) for experiments on graphene

based transistors [60]. Also, it has been suggested that elastic deforma-

tion of graphene can be used to tune the electronic structure and transport

characteristics in graphene based devices [59, 61, 62]. Therefore, a deep un-

derstanding of the effects of edges is essential in order to design graphene
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Armchair edge

Zigzag

 edge

Figure 1.4: Armchair and zigzag edges of a finite graphene sheet.

based electromechanical systems.

Researchers have used various theoretical models, such as DFT, molec-

ular mechanics, MD, and FEM to investigate the effects of edges on the

mechanical properties of finite graphene sheets. Shenoy et al. [63] have

studied the effect of edge stress on warping of graphene sheets, using MD

simulations and a finite element model. They showed that edge stresses in-

troduce ripples in freestanding graphene sheets, even without any thermal

effect. Reddy et al. [64], using MD simulations, showed that the edge effect

strongly influences the elastic properties of graphene with smaller widths

(less than 8 nm). Zhao et al. [58] studied the change in Young’s modulus

of graphene nanoribbons (GNRs) with size and chirality, using the orthog-

onal tight-binding method and MD simulations. Their results indicate that

Young’s modulus of graphene increases with the increasing diagonal size of

an approximately square graphene sheet. They also found that the frac-

ture strain and fracture strength of bulk graphene under uniaxial tension

heavily depend on the chirality. Ricardo et al. [59] studied the mechanical

properties of GNRs using DFT, and found that both Young’s modulus and

shear modulus of GNR decrease with increasing width and attain the val-

ues of graphene. Quing et al. [65] used molecular mechanics simulations to
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determine the effect of edges on the equilibrium configuration. They found

that compressive edge forces could cause GNRs to extend along the longi-

tudinal direction and induce buckling in GNRs. Hao et al. [66] studied the

mechanical behaviour of armchair GNRs using MD simulations. According

to their observation, Young’s modulus increases with width up to 4 nm and

thereafter attains the value that of bulk graphene. Qiang et al. [62] stud-

ied the effect of edge structure on the mechanical behaviour of graphene

sheets using molecular mechanics simulations. They observed that the ini-

tial Young’s modulus decreases with increasing width in both types of GNR

up to 6 nm and then reaches the value of bulk graphene. This observation

is in contradiction to what was observed in [66]. This may be due to differ-

ent potential fields used in the two simulations. Tersoff potential was used

in [66] while reactive empirical bond-order (REBO) was used in [62]. Also,

those simulations were done at difference temperatures. Simulations in [66]

were done at 300 K, while the simulation temperature is 0 K in [62].

Researchers have studied effects of edges on mechanical behaviour of

graphene using different methods as summarized above. However, the effect

of temperature on edges has not been studied.

1.4.2 Defects

As in many crystalline materials, defects play a vital role in the effective ma-

terial properties of graphene. Defects, such as Stone-Wales defect, vacancy

defects, adatoms, dislocations and edge defects degrade the mechanical and

electronic properties of graphene [67]. These defects can arise during the

growth or during device production stages. Vacancy defect is the absence of

carbon atoms in a graphene sheet, and it has been found that vacancy defect

has greater influence on the mechanical properties of graphene compared to

other types of defects [68]. Researchers have observed vacancy defects in

graphene using TEM [69, 70]. The influence of vacancy defects on the me-

chanical properties of graphene has not yet been studied experimentally.

However, a number of theoretical studies have been conducted on the effect

of defects.
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Khare et al. [71] studied the effects of large defects and cracks on the

mechanical properties of carbon nanotubes and graphene sheets using a cou-

pled quantum mechanical/molecular mechanical method. They found that

the weakening effects of holes, slits, and cracks vary only moderately with

the shape of the defect, and instead depend primarily on the cross section of

the defect perpendicular to the loading direction and the atomic structure

near the fracture initiation point. Ansari et al. [68], using molecular dynam-

ics simulations, showed that the presence of defects significantly reduces the

ultimate strength and strain of graphene, while it has a minor effect on

Young’s modulus. They also showed that graphene is stronger in the arm-

chair direction and defects have a lower effect in this direction compared to

zigzag direction. Wang et al. [72] studied the effect of defects on the fracture

strength of graphene sheets using molecular dynamics. They found that va-

cancies can cause significant strength loss in graphene and also concluded

that the fracture strength is affected by temperature and loading directions.

Pugno et al. [73, 74] introduced a new fracture mechanics concept called

quantized fracture mechanics, which substitute the differentials in Griffith’s

energy balance [75] with finite differences in order to take into account the

underlying crystal structure. The examples in [73, 74] show that this new

fracture mechanics concept works well for discrete atomic systems. However,

none of the previous studies [67, 68, 71, 72] have investigated the effect of

the length of a vacancy defect (crack length) on the mechanical properties

of both armchair and zigzag graphene sheets. It is also important to under-

stand the mechanical behaviour of defects at different temperatures, which

has not been investigated yet.

Even though the fracture is a very complex concept at macroscale, cracks

simply propagate by breaking individual bonds at nanoscale. So the study

of the fracture of graphene sheet, which is one atom thick 2-D sheet, may

give an insight into the fracture of brittle materials at macroscale.
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1.5 Scope of Current Work

Based on the above introduction and literature survey, it is seen that a thor-

ough understanding of the mechanics of graphene is required to exploit the

full potential of graphene. Geometric effects such as defects and edge effects

degrade the mechanical properties of graphene. The ability of continuum

models to capture such geometric effects at nanoscale is questionable. This

motivates the use of MD simulations to study the geometric effects.

Two main objectives have emerged based on the literature review. The

first is to investigate the effect of temperature and edges on the mechanical

properties of graphene. The second is to study the effect of defects on

the mechanical properties. Both studies have been conducted using MD

simulations.

Chapter 2 gives a comprehensive description of MD. A detailed descrip-

tion about MD simulator (LAMMPS) and visualizer (VMD) is also pre-

sented. The effect of default cut-off function of reactive empirical bond

order (REBO) potential on the fracture simulations of a graphene sheet is

also investigated. Chapter 3 presents a study of the effects of temperature

and edges on the mechanical properties of graphene. Also, the edge effect of

graphene is compared with the effect of curvature on the mechanical prop-

erties of carbon nanotubes. In Chapter 4, a detailed study of the effects of

vacancy defects on the mechanical properties of graphene at various temper-

atures is presented. Applicability of classical continuum fracture mechanics

to predict the ultimate strength of defective graphene sheets is also inves-

tigated. Chapter 5 summarize the conclusions from the present work and

indicates scope for future work.
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Chapter 2

Molecular Dynamics

Simulations

2.1 Introduction

Molecular dynamics (MD) is a mechanics based computer simulation method

in which the time evolution of a set of interacting atoms is followed by in-

tegrating their equations of motion. The integration is done by solving

Newton’s equations of motion, numerically, and the interactions between

the atoms are defined by molecular mechanics potential fields. The method

was originally conceived by theoretical physicist in the late 1950s [76]. This

chapter reviews the theory behind MD and one of the most commonly used

MD simulators called large-scale atomic/molecular massively parallel simu-

lator (LAMMPS) and a MD visualization software called visual molecular

dynamics (VMD).

2.2 Basic Theory

2.2.1 Equation of Motion

Molecular dynamics can be divided into two basic steps. The first step

involves the determination of the interacting forces between a system of

atoms using molecular mechanics potential field. The second is the tracing

of the movements of atoms by integrating Newton’s equation of motion.

The interacting force between atoms are obtained from the gradient of a

molecular mechanics (MM) potential field. The force acting on atom i (fi)

is given by [31]
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fi = −∂Ei
∂ri

, (2.1)

where Ei and ri are the potential energy and position of atom i, respectively.

Potential energy of atoms is given by a MM potential field. There are a

number of MM potential fields that are suitable to simulate various systems.

Section 2.3 gives an overview of the MM potential fields. Once the force

acting on an atom is known, it is possible to find the acceleration of the

atom using Newton’s second law, which is given by

fi = mi
d2ri
dt2

= miai, (2.2)

where mi, ri, and ai are the mass, position, and acceleration of atom i,

respectively.

A system of atoms are allowed to move under these accelerations for a

time period called time step. The new positions and velocities of the atoms

are obtained using a numerical integration method such as velocity Verlet

method [31]. According to the velocity Verlet method,

v

(
t0 +

∆t

2

)
= v (t0) + a (t0)

∆t

2
, (2.3a)

r (t0 + ∆t) = r (t0) + v

(
t0 +

∆t

2

)
∆t, (2.3b)

v (t0 + ∆t) = v

(
t0 +

∆t

2

)
+ a (t0) ∆t, (2.3c)

where r, v, and a are the position, velocity, and acceleration of an atom,

respectively; t0 is the initial time; ∆t is the time step. Variation in r and v

with ∆t is graphically presented in Fig. 2.1.

Controlling temperature and pressure is necessary in MD simulations in

order to simulate real systems which are under a constant temperature or

pressure. The temperature control is achieved by modifying the velocities

of atoms, while pressure is controlled by adjusting the size of the simulation
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Figure 2.1: Change in positions and velocities of atoms with time. The
changes are marked only for one atom.

box. A review of commonly used technique to control temperature and

pressure follows next.

2.2.2 Temperature Control

Temperature of a system of atoms is defined as the average of kinetic energies

of all particles. The instantaneous temperature can be given as

T =
1

NfkB

∑

i,α

mi(v
α
i )2, (2.4)

where, Nf is the total translational degrees of freedom of the system, kB

is Boltzmann’s constant, mi is the mass of atom i and vαi is the velocity

of atom α in i direction. The value of α can be 2 or 3 depending on the

dimensionality of the system.

It is not possible to keep the temperature at a fixed value during the

simulation due to the fluctuations in velocities. Therefore, only the average

value of temperature can be maintained at a constant value during sim-

ulations. The temperature of a system depends only on the velocities of

atoms as given in Eq. (2.4). Therefore, the temperature of a system can

be controlled by scaling the velocities of atoms, which is achieved using a
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2.2. Basic Theory

thermostat. Anderson, Berendson, and Nosé-Hoover thermostats are the

most commonly used thermostats.

Anderson thermostat [77] is one of the simplest among the many available

thermostats. In this thermostat, the velocity of a randomly selected particle

is replaced by a value chosen from the Maxwell-Boltzmann distribution for

a given temperature. However, Anderson thermostat has not been widely

used since it is computationally expensive [78]. Berendson thermostat [79]

is one of the most commonly used thermostats which is simple and easy to

implement. Berendson thermostat scales the velocities of atoms in such a

way that the total kinetic energy of the system is fixed.

The Nosé-Hoover thermostat, which has been used in this study, is con-

sidered to be one of the best thermostats [80]. Nosé-Hoover thermostat [81–

84] uses a friction factor (µ) to modify the equation of motion, and µ is

defined as

dµ (t)

dt
=
NfkB
Q

(T (t)− T0) , (2.5)

where T0 and T (t) are the desired and the current temperatures, respec-

tively; Q is the effective mass of the thermostat, which determines the

strength of thermostat, and is given as

Q = NfkBT0τ
2
T , (2.6)

where τT is the specified time constant for temperature fluctuations. The

value of τT is generally in the order of hundred time steps to achieve a

smooth temperature transition.

The modified Newton’s equation of motion is given by,

a =
f(t)

m
− µ(t)v(t). (2.7)

2.2.3 Pressure Control

The pressure of a system of atoms is defined as
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P Vij =
1

V

∑

α




N∑

β=1

(
rβi − r

α
i

)
fαβj +mαvαi v

α
j


 , (2.8)

where (i, j) are directional indices and β is an assigned number to the neigh-

bouring atoms that goes from 1 to the number of neighbouring atoms N ;

rαi is the position of atom α along direction i and fαβj is the force along

direction j on atom α due to atom β; mα and vα are the mass and velocity

of atom α, respectively. V is the total volume of the system.

Berendsen barostat [79] and Nosé-Hoover barostat [85] are the most com-

monly used barostats to control pressure in MD simulations. In both these

methods, the system pressure is adjusted by changing the dimensions of

the simulation box during the simulation. However, it has been found

that Berendson’s approach is less reliable compared to Nosé-Hoover ap-

proach [80].

The volume scaling factor (η) in Nosé-Hoover barostat is defined as

dη(t)

dt
=

1

NfkBT0τ2
P

V (t)(P (t)− P0), (2.9)

where P0 and T0 are instantaneous pressures and temperature, respectively;P (t)

is the desired and τP is the specified time constant for pressure fluctuations.

The value of τP is generally on the order of thousand time steps to achieve

a smooth temperature fluctuation. The adjusted volume of the system is

calculated using η as

dV (t)

dt
= [3η(t)]V (t). (2.10)

2.2.4 NPT Ensemble

An ensemble is a collection of all the possible states of a real system. The mi-

crocanonical or constant N, V, and E (NVE) ensemble, the canonical (NVT)

ensemble, and the isothermal-isobaric (NPT) ensemble are commonly used

in MD. The abbreviations N, V, E, T, and P stand for the number of atoms,

volume, energy, temperature, and pressure of the system, respectively and
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these quantities are kept constant during the simulation. As an example,

the number of atoms, temperature, and pressure are constant in the NPT

ensemble. Fig. 2.2 graphically shows the NVE, NVT, and NPT ensembles.

Most of the experiments are being conducted under constant temperature

and constant pressure (isothermal-isobaric) condition, which is represented

by the NPT ensemble.

Figure 2.2: Graphical representation of the microcanonical (NVE) ensemble,
the canonical (NVT) ensemble and the isothermal-isobaric (NPT) ensemble.

Combination of Nosé-Hoover thermostat and barostat generates the NPT

ensemble [86, 87]. The modified equations of motion for the NPT ensemble
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can be expressed as

dµ (t)

dt
=

1

τ2
T

(
T

T0
− 1

)
, (2.11a)

dη(t)

dt
=

1

NfkBT0τ2
P

V (t)(P (t)− P0), (2.11b)

dV (t)

dt
= [3η(t)]V (t), (2.11c)

dr (t)

dt
= v (t) + η (r(t)−R0) , (2.11d)

dv (t)

dt
=
f(t)

m
− [µ(t) + η(t)] v(t), (2.11e)

where R0 is the centre of mass of the system. All other parameters have

been defined earlier.

The procedure of a MD simulation can be summarized as in Fig. 2.3.

Initial positions of atoms should be defined in such a way that atoms are

slightly away from their known equilibrium, so that the atoms will come

to their equilibrium position over the relaxation time. Initial velocities of

atoms are assigned randomly. Those velocities are rescaled by thermostat

during the simulation to obtain the desired temperature. The loop shown in

Fig. 2.3 runs until termination condition is met. The number of iterations

is most commonly used as the termination condition.

2.3 Potential Fields

Potential field is a mathematical description of the potential energy of a

system of interacting atoms. Parameters in potential fields are derived from

both experimental work and high-level quantum mechanical calculations, so

they are empirical in nature. Researchers have defined various potential

fields to simulate various molecular systems such as bio-molecules, hydro-

carbons, etc. The general form of a potential field can be expressed as

Etot = Ecovalent + Enon−covalent, (2.12)
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Calculate forces 
on all atoms 

using potential 
field 	  

Apply thermostat 
and barostat 	  

Update position 
and velocities	  

Initialize 
positions and 

velocities	  

Analyze the 
data	  

Until 
termination 
condition	  

Figure 2.3: Graphical representation of the MD simulation procedure.
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where Etot, Ecovalent, and Enon−covalent are the total energy, covalent energy,

and non-covalent energy, respectively. The components of covalent and non-

covalent energies can be further broken down as,

Ecovalent = Ebond + Eangle + Edihedral + Eout−of−plane, (2.13a)

Enon−covalent = Eelectrostatic + EV an der Waals. (2.13b)

The exact functional form of a potential field depends on the type of

simulation, for which it has been made. All-atom potential fields provide

parameters for every type of atom in a system, while united-atom potential

fields provide parameters only for one or two types of atoms.

Researchers have used Morse potential field, reactive empirical bond or-

der (REBO) potential field and adaptive intermolecular reactive empirical

bond order (AIREBO) potential field to simulate graphene and carbon nan-

otubes [88]. Morse potential field is two body potential field, which does

not represent the systems with many body interaction, such as graphene.

The MD simulations in this study has been conducted using AIREBO and

REBO potentials, which are many body potentials.

2.3.1 AIREBO Potential Field

AIREBO [89] potential field is an extension of the commonly used REBO [90]

potential field. AIREBO addresses some of the short coming in the REBO

potential. Absence of the non-bonded interaction in REBO potential makes

it poorly suitable for systems with significant intermolecular interactions

such as graphite. Even covalent material such as graphene is also benefited

from intermolecular interactions [89]. AIREBO potential field takes non-

bonded interactions into account. It also consider the four-body torsional

interactions, which was not included in REBO potential. This torsional

interaction become important when simulating curved structures such as

carbon nanotubes. AIREBO potential consists of three parts that can be

expressed as,
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EAIREBO =
1

2

∑

i

∑

i 6=j

[
EREBOij + ELJij +

∑

k 6=i,j

∑

l 6=i,j,k
Etorsijkl

]
, (2.14)

where EAIREBO is the total potential energy of a system of atoms and

indices i, j, k, and l refer to individual atoms; EREBOij is the REBO part,

which explains the bonded interaction between atoms; ELJij is Lennard-Jones

potential that considers the non-bonded interactions between atoms; Etorsijkl

includes the torsional interactions between atoms into the total energy.

The REBO part consists of the attractive and the repulsive potentials,

which are combined using the bond order term as given in Eq. (2.15).

EREBOij = f(rij)
(
V R
ij + bijV

A
ij

)
, (2.15)

where EREBOij is the energy stored in the bond between atom i and atom j;

bij is the bond order term, which modifies the strength of the bond depending

on the local bonding environment; V R
ij and V A

ij are the repulsive and the

attractive terms, respectively.

The function f(rij) in Eq. (2.15) is called cut-off function. The pur-

pose of the cut-off function is to limit the interatomic interactions to the

nearest neighbour [90]. However, the cut-off function can cause nonphysical

behaviour in fracture simulation of carbon nanostructures [88, 91].

Cut-off Function

The originally suggested cut-off function in REBO potential field is given

by

f(r) =





1, r < R(1)
[
1 + cos

[
π(r−R(1))

(R(2)−R(1))

]]
/2, R(1) < r < R(2)

0, R(2) < r

(2.16)

where r is the bond length and R(1) and R(2) are cut-off radii, which have
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the values of 1.7 Å and 2 Å, respectively. Researchers have used modified

cut-off radii ranging from 1.9 Å to 2.2 Å [62, 92] to eliminate the nonphysical

behaviour in fracture simulations.

The stress-strain curves of a graphene sheet obtained with default cut-

off function show a strain hardening around strain of 0.2 [56]. However,

experiments [15] and ab initio calculations [93] have given smooth nonlinear

stress-strain curve without any strain hardening. In order to further investi-

gate the effect of cut-off function on the fracture simulations and also to find

a suitable cut-off radii for the fracture simulations of graphene, potential en-

ergy of C-C bond between atoms 1 and 2 in Fig. 2.4 is numerically obtained

with increasing bond length r. The relative positions of other atoms were

kept unchanged. It was found that the non-physical behaviour in force-

strain curve disappears when both the radii (R(1) and R(2)) are equal to 2

Å. The effect of cut-off function on the potential energy-strain curve of the

C-C bond between atoms 1 and 2 in Fig. 2.4 is shown in Fig. 2.5(a). It can

be seen in Fig. 2.5(a) that the default cut-off function alters the potential

energy of the bond around a strain of 0.22. This induces a non-physical

behaviour in the force-strain curve as shown in Fig. 2.5(b).

It has been found that the fracture strength of a covalent material, such

as graphene, primarily depends on the inflection point of the interatomic

energy [88]. According to Fig. 2.5(b), inflection point is located around

strain value of 0.22 with the modified cut-off radius. The inflection point is

around 0.32 for the default cut-off radii due to a spurious strain hardening

initiated around a strain value of 0.22. Therefore, bond breaking takes

place around a strain value of 0.22 with the modified cut-off radius, while

it takes place at a strain of 0.32 for the default radii. Ab-initio calculations

have shown that the ultimate strains of graphene are 0.194 and 0.266 in

armchair and zigzag directions, respectively [93]. On the other hand, the

shape of the force-strain curve with modified cut-off function is similar to

what have been observed in experiments [15] and ab initio calculations [93].

This confirms that the REBO potential with the modified cut-off function is

able to simulate the fracture of a graphene sheet accurately, whereas default

cut-off function is unable to do so.
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r
1

2

1

2

Figure 2.4: The system used to investigate the cut-off effect. The arrows
indicates the straining direction and r is the initial bond length.

In this work, the cut-off function has been modified with a fixed cut-off

radius of 2 Å. The modified cut-off function (f̃(r)) is given as

f̃(r) =

{
1, r < R

0, r > R
(2.17)

where R is the new cut-off radius, which is 2 Å.

Torsional and Non-bonded Interactions

The ELJij term in AIREBO potential takes into account the non-bonded

interactions with a Lennard-Jones (LJ) 12-6 potential [94] as,

ELJij = f(rij)V
LJ
ij (rij), (2.18a)

V LJ
ij (rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.18b)

where the function f(rij) consists of a set of cut-off functions, which limits

the non-bonding interactions to a certain range; εij is the potential barrier;

σij is the finite distance at which the inter-particle potential is zero; rij is

the distance between the atoms.

The last term of the AIREBO potential given in Eq. (2.14), and Etorsijkl ,
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Figure 2.5: Effect of the cut-off function on the fracture simulations of the
C-C bond in Fig. 2.4. (a) Strain energy vs strain (b) The force strain curve.

gives the energy contribution from the four-body torsional interactions which
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is defined as,

Etorsijkl = f(rij , rlk, rkl)V
tors(ωijkl), (2.19a)

V tors(ωijkl) = ε

[
256

405
cos10

(ωijkl
2

)
− 1

10

]
, (2.19b)

where the function f(rij , rlk, rkl) consists of a set of cut-off functions, which

depend on the bond lengths rij , rlk and rkl; ωijkl is the dihedral angle.

It is of interest to compare the contribution from the three parts (EREBO,

Etors, and ELJ) of AIREBO potential field towards the strain energy stored

in a graphene sheet under the uniaxial tensile test. In order to investigate

this, a set of MD simulations were performed on a graphene sheet of size

5 nm × 5 nm. The simulation temperature was 300 K. The time step and

strain rate were 0.5 fs and 0.001 ps−1, respectively. The LAMMPS MD

simulator was used for all the simulations [95].

As shown in Fig. 2.6, the torsional potential (Etors) has a significant

amount of energy compared to non-bonded interaction (ELJ) at unstrained

state. However, neither Etors nor ELJ energies have changed with strain.

The stress on the graphene sheet is calculated using the gradient of strain

energy-strain curve. The thickness of the graphene sheet is assumed to be

3.4 Å. This comparison indicates that both Etors and ELJ do not have an

effect on the stress-strain curve of graphene. In other words, AIREBO and

REBO potentials give a similar stress-strain curve under the uniaxial tensile

test. The torsional effect given by Etors of AIREBO potential might be

significant in curved structures such as carbon nanotubes.

2.4 Molecular Dynamics Parameters

All the parameters mentioned in Section 2.2 except τT and τP are predefined

parameters in MD simulator. In fact τT and τP also depend on the value

of time step, so the user has only a partial control. However some MD

parameters such as time step, strain rate, and boundary conditions are user
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Figure 2.6: Contribution from EREBO, ELJ , and Etors on the strain energy
under uniaxial tensile test. (a) Variation of potential energy. (b) Stress-
strain relation.
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defined parameters. Selection of these parameter has an influence on the

MD simulation results.

2.4.1 Time step

The time step is the length of time between two consecutive iterations in a

MD simulation. Larger time steps increase the computational efficiency and

smaller time steps may increase the accuracy of the simulation. Therefore,

the time step controls the trade-off between accuracy and computational

efficiency in a MD simulation. If a time step is chosen too large, the system

might become unstable.

A time step should be less than 10% of the vibration period of an atom

and, time step of 0.5 fs to 0.8 fs provides good results in carbon nanotube

and graphene simulations [96]. However, researchers have used time steps

from 0.1 fs to 1 fs to simulate uniaxial tensile tests of graphene [92, 97].

In fact, most of them have used AIREBO potential field implemented in

LAMMPS MD simulator for the simulations. Therefore, it is of interest to

investigate the effect of time step on the simulation of the uniaxial tensile

test of graphene. In order to investigate this, a set of MD simulations were

performed on a 5 nm × 5 nm graphene sheet with time steps of 0.1 fs, 0.5

fs, and 1 fs. All other MD parameters were kept at the values mentioned in

Section 2.3.1. The results indicate that the stress-strain curves of graphene

obtained with different time steps are identical as shown in Fig. 2.7. This

confirms that a time step between 0.1 fs and 1 fs could be used to simulate

uniaxial tensile tests of graphene. A time step of 0.5 fs, which is the most

commonly used value in literature, will be used in all the MD simulations

hereafter.

2.4.2 Strain Rate

In MD simulations, a tensile test is performed by applying strain to the

nanostructure at a constant strain rate. Researchers have found that the

failure point of graphene depends on the strain rate [97–99]. At lower strain

rates, the system has more time to relax and reach equilibrium state, and
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Figure 2.7: Stress-strain curve of a graphene sheet obtained from MD sim-
ulations with different time steps.

hence the results would be more accurate. Practical strain rates, used in

experiments, such as 10−2 s−1 is not possible to simulate in MD simulations

due to high computational time. As an example, in order to apply a strain

of 0.1 on a graphene sheet at a strain rate of 10−2 s−1, 2 × 1016 iterations

with a time steps of 0.5 fs are required. Simulating 2 × 1016 iterations for a

graphene sheet of size 5 nm × 5 nm, which is the size of graphene sheet has

been used for the simulations presented in this chapter, could take around

106 years in a Mac with 3.06 GHz Intel Core i3 processor and 4 GB memory.

Even, the use of super computers is not able to increase the computational

speed more than four times of the above speed due to the communication

time between cores. Therefore, in order to become computationally viable,

strain rate of the order of 109 is generally used in MD simulations.

Researchers have used various strain rates ranging from 0.0005 ps−1

to 0.01 ps−1 [97]. In order to investigate the effect of strain rate on the

failure point of graphene, a set of MD simulations were performed on a
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graphene sheet of size 5 nm × 5 nm under the strain rates of 0.01 ps−1,

0.001 ps−1, and 0.0001 ps−1. A quasi-static MD (QSMD) simulation was also

performed on the sheet. There is no strain rate in QSMD simulation [33].

In this method, the graphene sheet, which is under a certain applied strain,

is allowed to reach equilibrium over 30 ps time, and potential energy of

the system is obtained. All other MD parameters were kept at the values

mentioned in Section 2.3.1. Table 2.1 shows that the strain rate does not

affect the Young’s modulus, however the higher strain rates result in higher

ultimate stress (σult) and higher ultimate strains (εult). Even though the

failure point depends on the strain rate, a fixed strain rate can be used

to compare the stress-strain behaviour of graphene sheets under various

conditions. The values of σult, εult, and E at strain rate of 0.0001 ps−1 agrees

quite well with the values obtained from QSMD simulations. However, strain

rate of 0.0001 ps−1 is computationally expensive. QSMD simulations are

also computationally expensive since it required separate simulation at each

strain. A strain rate of 0.001 ps−1 has been used in all the MD simulations

presented hereafter, since it is computationally viable and the values of σult,

εult, and E at this strain rate are within 6% of the values calculated from

QSMD. On the other hand, 0.001 ps−1 is a commonly used strain rate in

literature [58, 97].

Table 2.1: Dependence of mechanical properties of a graphene sheet on the
strain rate.

Strain rate (ps−1) εult σult(GPa) E(TPa)

0.01 0.143 94.9 1.109

0.001 0.133 92.8 1.105

0.0001 0.123 89.8 1.102

0 (QSMD) 0.125 90.5 1.159

2.4.3 Periodic Boundary Conditions

The effects of edges in 2-D systems such as graphene and surfaces in 3-D

systems such as graphite should be eliminated in MD simulations in order

to obtain the bulk properties of these systems. One way of doing this is by
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simulating an extremely large system to ensure that the surfaces and edges

have only a small influence on the properties. However, this approach is

computationally expensive. The most efficient way to simulate an infinitely

large system is the use of periodic boundary conditions (PBC). In PBC, the

cubical simulation box is replicated throughout space to form an infinite

lattice as shown for a 2-D case in Fig. 2.8. During the simulation, when a

molecule moves in the central box, its periodic images in every other box

also move in exactly the same way. Thus, as a molecule leaves the central

box, one of its images will enter through the opposite face. Therefore the

system has no edges.

Figure 2.8: Graphical representation of the periodic boundary conditions of
the middle box. The arrows indicate the velocities of atoms. The atoms in
the middle box can interact with atoms in the neighbouring boxes without
having any boundary effects.

2.5 Overview of LAMMPS

All the MD simulations presented in this thesis have been performed using

large-scale atomic/molecular massively parallel simulator (LAMMPS) [95].
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LAMMPS is a free and open source software developed by Sandia National

Laboratories. It can be used as a parallel particle simulator at the atomic,

meso, or continuum scales [100].

A LAMMPS input script can be categorized into four parts, named as

initiation, atom definition, settings, and running. Units and boundary con-

ditions of the simulation are defined in the initialization part. Different unit

systems, such as SI, cgs, metal, etc. are available in LAMMPS. Metal units

are mandatory if AIREBO or REBO potential field is used for the simula-

tion. In metal units, the units of distance, time and energy are Angstroms,

picoseconds and electron-volts, respectively. Boundary conditions can be

chosen as either periodic or non-periodic. The input file should be named

as in.filename.

Coordinates (x, y and z) of the atoms and the atom types are defined

under atom definition part. Atom coordinates can also be given in a different

file, which is named as data.filename. This file is called when the input file

(in.filename) is executed.

Potential field coefficients, simulation parameters and output options are

defined in the third part. Over 70 potential fields and variations of potential

fields have been implemented in LAMMPS. The basic simulation parame-

ters, such as time step, temperature, pressure, etc. are defined here. Most

of the pressure and temperature controlling methods, such as Berendsen

and Nosé-Hoover methods are implemented in LAMMPS. Microcanonical

(NVE) ensemble, canonical (NVT) ensemble and isothermal-isobaric (NPT)

ensemble are also implemented. NPT ensemble uses Nosé-Hoover thermo-

stat and barostat in order to control the temperature and pressure, respec-

tively. LAMMPS allows to calculate time and spatial averages of physical

quantities, such as temperature, pressure, energies, etc. The user is given the

ability to get these quantities written in to a separate text files at specified

time intervals.

The final part is running the simulation. LAMMPS allows to deform

the simulation box while it is running. A nanostructure, which is being

simulating, is attached to the simulation box. Therefore, the nanostructure

also deforms with the simulation box. This gives user the ability to apply
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strain at a constant strain rate into a nanostructure. Output of the simula-

tion is written to a file named as log.lammps after pre-specified number of

iterations.

2.5.1 Uniaxial Tensile Test in LAMMPS

To demonstrate the simulation procedure of LAMMPS, uniaxial tensile test

has been performed on graphene sheet shown in Fig 2.9. Size of the graphene

sheet is 49.6 Å× 11.2 Å with 252 carbon atoms. The simulation temperature

is 300 K. Graphene sheet is allowed to relax for 30 ps before applying strain.

The strain rate and time step were 0.002 ps−1 and 0.5 fs, respectively.

y

x

Figure 2.9: Graphene sheet used to demonstrate the simulation procedure
in LAMMPS. The dashed box indicates the boundaries of the simulation
box. The arrows indicate the straining direction.

The simulation procedure is graphically shown in Fig. 2.10. LAMMPS

input files in.graphene and data.graphene, and the output file log.lammps

are given in Appendix A.

One of the most important output from MD simulation is the potential

energy of the graphene sheet. Variation of potential energy of the sheet with

time is shown in Fig. 2.11. Potential energy is almost constant during the

relaxation period (up to 30 ps) and then start to increase with the applied

strain with a strain rate of 0.002 ps-1.

2.6 Overview of VMD

Visual molecular dynamics (VMD) [101] has been used for the visualization

of MD simulations presented in this thesis. VMD is a free and open source

33



2.6. Overview of VMD

Calculate forces on all 
atoms using AIREBO 

potential field 	  

Update position and 
velocities according to 
NPT ensemble (Nosé-
Hoover thermostat 
and barostat) and 

strain rate  	  

Compute user defined 
outputs (potential 

energy, stress, atom 
coordinates, etc.)	  

Initiation (units: metal; boundary 
conditions: PBC along y. Fixed 

BC in y and  z) 

Atom definition is given in 
data.graphene file	  

Analyze the data in 
MATLAB.  

Visualize atoms in 
VMD.	  

Run until 
termination 
condition	  

Figure 2.10: Simulation procedure in LAMMPS.

software developed by theoretical and computational biophysics group at

University of Illinois. It supports over 60 molecular file formats including

LAMMPS output files [102]. VMD provides a wide variety of methods for

rendering and colouring a molecule, such as simple points-lines method and
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Figure 2.11: Change in the potential energy with time.

spheres-cylinders method, etc.

VMD was used to animate the trajectories of the MD simulations, which

are given by LAMMPS. Input file to VMD is named as filename.lammpstrj,

which contains the coordinates of atoms at various time steps. The VMD

input file of the MD simulation in Section 2.5.1 is given in Appendix B. Four

different way of rendering the graphene sheet used in Section 2.5.1 is shown

in Fig. 2.12.

2.7 Conclusions

This chapter reviewed the theory behind MD simulations. A set of MD sim-

ulations were done in order to investigate the effect of some MD parameters,

such as potential field, strain rate, and time step on the stress-strain curve of

a graphene sheet. Non-physical behaviour in stress-strain curve, induced by

default cut-off function of REBO potential, could be removed by changing

cut-off radii to 2 Å. Strain rate does not affect Youngs modulus, however
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(a)

(b)

(c)

(d)

Figure 2.12: Various methods of rendering available in VMD.(a) Point,
(b)Bond, (c)CPK and, (d)VDW
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the higher strain rates result in higher ultimate stress and higher ultimate

strains. Time step does not have an influence on the stress-strain curve.

Intermolecular interaction and torsional interactions of AIREBO potential

do not affect the stress-strain curve.
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Chapter 3

Effect of Temperature and

Edges on the Mechanical

Properties of Graphene

Graphene can be subjected to higher temperature at production stage as well

as when graphene based devices operate at higher temperature. Chemical

vapour deposition (CVD), which is one of the most commonly used methods

of graphene production, produces graphene at a temperature around 800 K.

Therefore, understanding the temperature behaviour of graphene helps to

fabricate high quality graphene based devices. On the other hand, under-

standing the effects of temperature on an infinitely large perfect graphene

sheet sets the baseline for studying the geometric effects such as edges and

defects. The ultimate tensile strength (σult) and the ultimate strain (εult) of

an infinitely large armchair graphene sheet heavily depend on the temper-

ature, however the Young’s modulus is not affected by the temperature up

to 1000 K [97]. The effect of temperature on zigzag graphene has not been

previously investigated. The finiteness of graphene sheet also alters the me-

chanical properties of graphene [64, 65]. However, the effect of temperature

on edges has not been studied.

An investigation of the effects of temperature on σult, εult, Young’s mod-

ulus, and third order elastic modulus of infinitely large armchair and zigzag

graphene sheets is presented in Section 3.1. This is followed by a study

of the effects of edges on the mechanical properties of graphene at various

temperatures presented in Section 3.2. Finally, the chapter is concluded

in Section 3.3 with a comparison between the effects of edges of graphene
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and the effect of diameter of carbon nanotubes (CNTs) on the mechanical

properties of the structures.

3.1 Effect of Temperature

In this section, a study of the effect of temperature on the mechanical proper-

ties of an infinitely large armchair and zigzag graphene sheet is presented. It

should be noted that armchair and zigzag graphene sheets indicate graphene

along armchair and zigzag direction. The study has been carried out by per-

forming MD simulations at various temperatures ranging from 1 K to 800

K. Figure 3.1 shows the geometry of the graphene sheet used for the study.

The size of the sheet is 50.26 Å × 50.78 Å with 1008 carbon atoms. The

C-C bond length of graphene is 1.396 Å, which is the equilibrium C-C bond

length of graphene according to AIREBO potential field. Periodic boundary

conditions (PBCs) are used in both in-plane directions (x and y) to eliminate

the effect of the edges. Initially, the graphene sheet is allowed to relax over

a time period of 30 ps. The pressure components in x and y directions are

equal to zero during this time period. The size of time step is 0.5 fs. Poten-

tial energy of the sheet is extracted at the end of each time step. Variation

in the potential energy with the relaxation time is shown in Fig. 3.2 for a

graphene sheet at 300 K. The sudden increase of potential energy at a time

around 3 ps in Fig. 3.2 suggests that there could be a thermal expansion

of the graphene sheet. However, AIREBO potential field is temperature

independent and empirical parameters have been evaluated at 300 K [89].

Therefore, the expansion of the graphene sheet may come from the kinetic

energy of the atoms.

3.1.1 Thermal Expansion

Strain energy stored in a graphene sheet at a particular strain is obtained

by

Uε = Eε − E0, (3.1)
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Figure 3.1: Graphene sheet used to study temperature effects. Outer dashed
line indicates the boundaries of the box. Arrows indicate the armchair and
zigzag directions of graphene.
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Figure 3.2: The variation of the potential energy of a graphene sheet with
relaxation time at 300 K.
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where Uε and Eε are the strain energy and the potential energy at strain ε,

respectively; E0 is the potential energy of the unstrained graphene sheet.

Table 3.1 gives E0, kinetic energy (KE) and the equilibrium size of

graphene sheet at various temperatures. These quantities were taken as

the average values over the last 10 ps of the relaxation period. The area of

the graphene sheet increases by 1.29 % when the temperature increases from

1 K to 800 K. This increase of area results in increasing E0 of the graphene

sheet by 1.38 %. Both KE and E0 of the sheets increase linearly with the

increasing temperature.

Table 3.1: Average physical quantities of graphene at equilibrium.

Temperature (K) E0 (eV) KE (eV) Lx(Å) Ly(Å)

1 -7485.9 0.1 50.29 50.81

100 -7473.2 13.0 50.32 50.85

200 -7460.6 26.0 50.36 50.89

300 -7447.8 39.0 50.40 50.93

400 -7434.9 52.0 50.44 50.97

500 -7422.0 65.2 50.48 51.01

600 -7408.9 78.0 50.52 51.05

700 -7396.1 90.9 50.56 51.09

800 -7382.3 104.6 50.60 51.14

The relationship between the temperature (T ) and the area of the graphene

sheet at temperature T (AT ) can be written as

AT = A0(1 + αT ), (3.2)

where A0 is the area of the graphene sheet at 0 K and α is the coefficient of

thermal expansion (CTE) of the graphene sheet which is defined as

α =
1

A0

dA

dT
. (3.3)

The values of A0 and α are calculated by fitting a linear regression line

between the temperature and the corresponding area of the graphene sheet.

The values of A0 and α are 2554.5 Å2 and 1.6×10−5 K−1, respectively.
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Experimental studies have found that the CTE of graphene is found to

be -6×10−6 K−1 [103] and -7×10−6 K−1 [104] at temperature of 300 K, and

the value of CTE increases from -7×10−6 K−1 to 4×10−6 K−1 as temper-

ature increases from 300 K to 400 K [104]. These anomalies in CTE could

be due to two factors. Firstly, it has been found that substrate interaction

strongly influences the CTE of graphene. Graphene has been suspended

in the experiments in [103, 104], whereas the simulations presented in this

work have been performed on free standing graphene. Jiang et al. [105],

using nonequilibrium Green’s function method, found that the CTE value

of free standing graphene (without substrate) is -6×10−6 K−1 at 300 K,

and can go up to 2×10−5 K−1 with sufficiently strong substrate interaction.

Secondly, surface ripples in graphene sheets have been experimentally ob-

served at room temperatures [104, 106, 107]. These surface ripples, which

are out-of-plane motion of atoms, could cause a contraction in the planar

dimensions of graphene. This reduction of planar dimensions due to ripples

could also be interpreted as a thermal contraction. In order to investigate

this hypothesis, a set of MD simulations were performed with surface ripples

on graphene. The ripples were introduced by giving a small random out-of-

plane perturbation (≈ 0.05 Å) to atoms. This exercise resulted in a CTE of

3.6×10−6 K−1. The ripples reduce the CTE value of graphene by more than

75 %, which suggests that the sufficiently large ripples of graphene could

even cause a negative CTE value as observed in the experiments. A recent

study by Monica et al. [108], using first principle MD simulations, revealed

that the C-C bond length of free standing graphene increases with temper-

ature, and the rate of change is 6.5×10−6 K−1 for a free standing graphene

sheet. This confirms that the area of graphene sheet could increase with the

temperature in the absence of ripples.

Fig. 3.3 shows that the ripples of graphene increase with the temperature.

MD simulations with different random out of plane perturbation (0.05 Å

to 0.25 Å) have shown that the equilibrium area of a graphene sheet is

independent of the initial random out-of-plane perturbation and depends

only on the simulation temperature.

42



3.1. Effect of Temperature

0.5 

-0.5 

0.3 

-0.3 

0.1 

T = 300 K T = 800 K

y

x

z-coordinate

Figure 3.3: Ripples of graphene sheet at 300 K and 800 K. Scale bar indicates
the out-of-plane deformation in Å

3.1.2 Stress Strain Behaviour

Fig. 3.4 shows the variation of normalized strain energy per unit volume

of graphene sheet (U) with the strain (ε) at different temperatures. Strain

energy has been normalized with respect to the maximum strain energy per

unit volume at 1 K, which are 1.10× 1010Jm−3 and 2.13× 1010 Jm−3 for

armchair and zigzag sheets, respectively. It can be observed in Fig. 3.4 that

graphene sheets at higher temperatures store a significantly higher amount

of strain energy at a given strain.

Table 3.2 compares the strain energy stored in graphene sheets under a

strain of 0.078 at different temperatures. Armchair graphene sheet stores

18% higher strain energy at 800 K compared to that at 1K and the corre-

sponding value for zigzag graphene sheet is 20%. This can be due to the fact

that the initial potential energy of graphene sheets is comparatively high at

higher temperatures as shown in Fig. 3.5, due to the thermal expansion of

graphene. It can be seen in Fig. 3.4 that U -ε curves at higher temperatures

attain the linear portion of the curve relatively lower strains. On the other

hand, a particular strain at a higher temperature resembles that of a slightly

higher strain at a lower temperature and this leads the graphene sheets at

higher temperatures to store more strain energy at a given strain. This
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can be further explained by considering the potential energy vs bond length

curve of a C-C bond as shown in Fig. 3.6. The equilibrium bond length at

0 K is 1.396 Å. According to AIREBO potential field, potential energy of a

C-C bond is -4.95 eV. However, at higher temperatures, C-C bond length is

greater than that at 0 K due to the thermal fluctuations arising from kinetic

energy. This leads C-C bonds to store higher potential energy. The equi-

librium bond length at 800 K is 1.408 Å and potential energy is -4.88 eV.

Therefore, the equilibrium bond length at 800 K is under a strain of 0.009

compared to the equilibrium bond length at 0 K. Due to this discrepancy

in the initial configurations, graphene sheet stores higher amount of strain

energy at higher temperatures compared to that at lower temperatures at a

given strain.

Table 3.2: Strain energy and stress of graphene sheets at various tempera-
tures and under a strain of 0.078.

Strain energy (eV) Stress (GPa)

Temperature (K) armchair zigzag armchair zigzag

1 148.4 130.0 66.5 58.8

100 152.7 133.2 67.2 59.6

200 151.6 134.3 66.9 59.7

300 159.8 140.8 68.3 61.0

400 161.4 144.1 68.8 61.5

500 166.8 145.7 69.8 61.7

600 166.3 148.9 69.9 62.4

700 171.7 153.3 71.1 63.2

800 178.7 153.8 72.4 63.4

It is also noticed in Table 3.2 that armchair graphene sheet stores a

higher amount of strain energy compared to zigzag. This can be explained

by considering the arrangement of C-C bonds in the straining directions

of the graphene sheets as shown in Fig. 3.1. In armchair graphene sheet,

there is a row of C-C bonds aligned in the straining direction and these

bonds carry a higher strain compared to inclined ones. The inclined bonds

contribute to carry a significant amount of strain by changing the bond

angles apart from the bond length change. Strain energy from the bond
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Figure 3.4: Variation of the normalized strain energy (U) with strain up
to the fracture of graphene sheet at different temperatures. The simulation
temperatures are given in legends (a) Armchair (b) Zigzag
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Figure 3.5: Variation of the potential energy of an armchair graphene sheet
with strain. Legend gives the simulation temperatures.

extension is much higher than that of bond angle variation [89]. All the C-C

bonds in zigzag graphene are inclined and those carry a significant amount

of strain by changing the bond angles. The extension of a comparatively

large number of bonds in armchair sheet compared to zigzag sheet leads

armchair sheet to store more strain energy compared to zigzag graphene at

a given strain.

Table 3.3 compares the strain energy stored in graphene sheets up to

fracture at different temperatures. Armchair graphene sheet stores only

about 50% of the strain energy stored by zigzag graphene sheet at all tem-

peratures. The fracture of armchair sheet occurs at lower strain compared

to zigzag sheet due to higher extension of C-C bonds in armchair graphene

as explained above. It is also important to notice that the initial configu-

rations of graphene sheet are different at different temperatures as given in

Table 3.1. However, the different initial configuration alone does not explain

the fracture of graphene sheets at lower strain in higher temperatures. As

an example, the difference in equilibrium energies at 1 K and 800 K is 104
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Figure 3.6: (a) Change in potential energy of a bond with bond length at
0 K. (b) Shows the change around equilibrium bond length. The dashed
horizontal line marks the unstrained potential energy of a bond at 800 K.
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3.1. Effect of Temperature

Table 3.3: Strain energy stored in a graphene sheet up to fracture at various
temperatures.

Strain energy (eV )

Temperature (K) armchair zigzag

1 596 1156

100 446 854

200 394 735

300 331 689

400 287 499

500 271 528

600 206 378

700 191 292

800 198 362

eV due to thermal expansion. However, the difference in strain energies at

fracture of zigzag graphene sheet at 1 K and 800 K is 794 eV. The percent-

age reduction of the strain energy at 800 K compared to 1 K is 67% and

69% for armchair and zigzag graphene sheets, respectively.

It has been found that the fracture strength of covalent materials, such

as graphene, primarily depends on the inflection point of the interatomic

energy and is almost independent of the energy required to break bonds

(bond dissociation energy) [88]. Table 3.3 indicates that the fracture of

graphene is independent of the bond dissociation energy which confirms the

findings in [88]. At higher temperatures, local strain can exceed the bond

breaking strain which corresponds to the inflexion point of the potential

due to thermal movements of atoms. Fracture of a single bond leads to

progressive fracture of the graphene sheet.

In order to obtain the stress-strain (σ-ε) relation of graphene, a third

order polynomial is fitted on the strain (ε) and the strain energy per unit

volume (U) data, in the form of

U =
D

3
ε3 +

E

2
ε2 + Cε+K, (3.4)

where D is the third order elastic modulus, E is the Young’s modulus; C
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3.1. Effect of Temperature

takes into account any residual stress in the graphene sheet and K gives full

flexibility to the model. It should be noted that E in this study is slightly

different from the conventional Young’s modulus which is defined as slope of

the linear part of σ-ε curve. However, the σ-ε curve of graphene is nonlinear.

Therefore, E has been defined as the initial slope of the σ-ε curve.

Stress (σ) is obtained by taking the first derivative of the strain energy

in Eq. (3.4) with respect to ε as

σ =
∂U

∂ε
= Dε2 + Eε+ C. (3.5)

The comparison of σ-ε relations of armchair and zigzag graphene sheet in

Fig. 3.7 shows that zigzag sheet is much stronger than armchair sheet. This

can be explained by considering the orientation of C-C bonds in zigzag and

armchair sheets as mentioned above. Zigzag sheet can go up to 64% higher

strain compared to armchair sheet, but it results in only 21% higher ultimate

stress due to the reduction of stiffness of zigzag sheet with increasing strain

as shown in Fig. 3.7.

The σ-ε relations of armchair and zigzag graphene sheets at various

temperatures are shown in Fig. 3.8. It can be observed that sheet at higher

temperatures is under a tensile stress even in an unstrained condition. Ta-

ble 3.4 compares the initial stress of sheets at different temperatures. The

origin of this stress is the thermal expansion, as explained in Section 3.2.3,

causes C-C bonds in graphene to expand. Fig. 3.6(b) indicates that the gra-

dient of U -ε curve, which is stress, is a positive value for the bond lengths

greater than 1.396 Å. This introduces a tensile stress at the equilibrium con-

figuration. However, Table 3.4 indicates that the initial stress of armchair

and zigzag sheets are not equal. This suggest that there is another factor

affecting this initial stress since the initial configurations for both armchair

and zigzag sheets are similar. One possible cause is the continuum stress

interpretation used in this work, which is given in Eq. (3.6). It should be

noted that the initial stress of graphene is dependent on the complete U -ε

relation due to the curve fitting. In order to remove this dependence of

initial stress on the higher stress values, stress at a particular strain was
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Figure 3.7: Comparison of armchair and zigzag graphene sheets at a tem-
perature of 300 K. (a) normalized strain energy, with respect to 1.273 ×
1010Jm−3, which is the maximum strain energy stored in zigzag graphene
sheet. (b)Stress-strain curves.
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3.1. Effect of Temperature

Table 3.4: Initial stress of graphene sheets given by Eq. (3.6) at various
temperatures and under unstrained condition.

Stress (GPa)

Temperature (K) armchair zigzag

1 -2.9 0

100 -1.6 0

200 -1.6 0.4

300 0.6 2.2

400 1.4 3.5

500 2.8 4.0

600 2.9 4.6

700 4.1 5.7

800 5.1 6.3

calculated using finite difference method, which is given by

σε+∆ε/2 =
Uε+∆ε − Uε

∆ε
, (3.6)

where ∆ε is the strain increment which has the value of 0.005.

Initial stress was obtained by fitting a linear regression line between

stress, calculated using Eq. (3.6), and strain up to a strain value of 0.04.

This analysis indicated that initial stress of armchair and zigzag graphene

sheets increases as temperature increases from 1 K to 800 K. It is from

0 to 7.6 GPa and 0.3 to 7 GPa for armchair and zigzag graphene sheets,

respectively. This investigation confirms that the initial stress has been

introduced by the thermal expansion of graphene due to kinetic energy.

However, the kinetic energy of the system is neglected in the continuum

definition of stress. Therefore, an atomistic stress measure, which takes

kinetic energy into account, could be a better stress measure for graphene

sheets at a finite temperature.

Several definitions have been developed to calculate the local atomic

stress [109–114]. Virial stress, which is the most commonly used atomistic

stress measure, takes into account the stress contribution from kinetic en-

ergy. On the other hand, virial stress depends only on the current state of
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Figure 3.8: Stress-strain curves of arm-chair (a) and zigzag (b) graphene
sheets at different temperatures.
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3.1. Effect of Temperature

strain as opposed to the continuum approach. The virial stress has been

developed based on the virial theorem for gas pressure [114–116], which can

be expressed as,

σVij =
1

V

∑

α


1

2

N∑

β=1

(
Rβi −R

α
i

)
Fαβj −mαvαi v

α
j


 , (3.7)

where (i, j) are the directional indices (x, y, and z), β is an assigned number

to neighbouring atoms which goes from 1 to N , Rαi is the position of atom α

along direction i, Fαβj is the force along direction j on atom α due to atom

β. mα is the mass of atom α, vα is thermal excitation velocity and V is

the total volume. It can be observed in Eq. (3.7) that at low temperatures,

the stress contribution from kinetic part (mαvαi v
α
j ) becomes negligible due

to low velocities of atoms.

There was a controversy regarding the kinetic part in virial stress, which

is given by the term mαvαi v
α
j in Eq. (3.7). Zhou argued that the virial stress

definition with kinetic part is not equivalent to Cauchy stress [117]. However,

it has been recently demonstrated that the virial stress with kinetic part is

equivalent to Cauchy stress [118].

Table 3.5 presents the virial stress of a graphene sheet under various tem-

peratures in unstrained state. It shows that there is a residual stress when

kinetic part is being ignored. However, this residual stress has been cancelled

out by the kinetic energy part in the complete virial stress definition. This

observation suggests that the complete virial stress, including kinetic energy,

gives better explanation about the stress state of the graphene sheet com-

pared to the continuum interpretation of stress used in this work. However,

the continuum interpretation used in this work is much similar to the virial

stress measure excluding the kinetic part. Fig. 3.9 shows that virial stress

is equivalent to continuum stress at lower strains (up to ≈ 0.05), but gives

higher stress values as strain increases. It also shows that the contribution

from the kinetic part is a constant value, 0.7 GPa, at all strains.

Figure 3.10 compares the variation of σult and εult with temperature.

It can be seen that the effect of temperature is similar in both zigzag and
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3.1. Effect of Temperature

Table 3.5: Virial stress of a graphene sheet given by Eq. (3.7) at various
temperatures and under unstrained condition.

Virial Stress (GPa)

Temperature (K) With KE Without KE

1 0.00 0.00

100 0.00 0.23

200 0.00 0.48

300 0.00 0.71

400 0.00 0.96

500 0.00 1.20

600 0.00 1.42

700 0.00 1.66

800 0.01 1.92
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Figure 3.9: Comparison of virial stress and continuum stress of a zigzag
graphene sheet at 300 K.
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armchair graphene sheets. Reduction of σult is 23% and 27% and reduction

in εult is 54% and 59% in armchair and zigzag sheets, respectively. It can be

noticed in Fig. 3.11 that the effect of temperature on the Young’s modulus

is not that significant. There is only a slight reduction in Young’s modulus

with increasing temperature in both graphene sheets. However, there is a

significant reduction in the third order modulus (about 10%) of armchair

graphene sheet. The reduction of third order modulus in zigzag direction is

not significant. Another important fact about third order modulus is that

the modulus in zigzag direction is much smaller than the value in armchair

direction. At 300 K, the third order modulus in zigzag direction is 41%

lesser than that in armchair direction, which agrees quite well with the

values obtained from tight binding calculations in [119].

Fracture of armchair graphene sheet occurs always perpendicular to the

straining direction, while diagonal fracture has been observed in zigzag

graphene sheet as shown in Fig. 3.12. Fracture occurs at the bonds, which

carry more load in both graphene sheets. Insets of Fig. 3.12 show the forces

carried by three C-C bonds of a typical atom. Considering the equilibrium

along T1 direction, the relationship between the three forces can be written

as,

T1 = (T2 + T3) cos

(
θ

2

)
. (3.8)

However, T2 = T3 due to symmetry. This reduces Eq. (3.8) to

T1 = 2T2 cos

(
θ

2

)
. (3.9)

When the sheet is unstrained, θ = 1200, so T1 = T2. However, when the

sheets are subjected to a strain, θ becomes less than 1200 for armchair

graphene sheet, which makes T1 > T2, so the fracture occurs at bonds

aligned with the straining direction, and propagates perpendicular to the

straining direction. In the case of zigzag graphene sheet, θ becomes larger

than 1200 so T1 < T2. Therefore, the fracture occurs at the bonds which are

inclined ±300 to the straining direction and propagates at an angle of ±600
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Figure 3.10: Effect of temperature on ultimate stress and strain of graphene
sheets. (a) The ultimate stress values have been normalized by the values
at 1 K that are 97.3 GPa and 113.6 GPa for armchair and zigzag sheets,
respectively. (b) The ultimate strain values have been normalized by the
values at 1 K that are 0.173 and 0.273 for armchair and zigzag sheets,
respectively.
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Figure 3.11: (a) Comparison of the change in Young’s modulus of graphene
sheets with temperature. The Young’s modulii have been normalized by the
values at 1 K, which are 1.15 TPa and 0.89 TPa for armchair and zigzag
sheets, respectively. (b) Comparison of the change in the third order mod-
ulus with the temperature. The third order modulus have been normalized
by the values at 1 K, which are -3.30 TPa and -1.74 TPa for armchair and
zigzag sheets, respectively.
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Figure 3.12: Nucleation of fracture of graphene sheet at 300 K (a) Armchair
(b) Zigzag.

to the straining direction.

3.2 Effect of Edges

Researchers have used very narrow graphene sheets, called nanoribbons

(width≈ 15 nm) for experiments on graphene based transistors [60]. Theo-

retical studies have indicated that both electronic and mechanical properties

of graphene depend on the edge configuration [55–57]. Even though several

researchers have investigated the effect of edges on the mechanical properties

of graphene [62–65], none of these studies have investigated the change of

the effect of edges with temperature. On the other hand, many of the pre-

vious studies have been conducted using ab initio calculations or molecular

mechanics [62, 65, 120–122], which are computationally expensive.

This section presents a study of the effect of edges on the mechanical

properties of finite graphene sheets using MD. The widths of the graphene
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sheets are varied in the range from 0.7 nm to 26.7 nm for armchair and

form 1.1nm to 26.7 nm for zigzag. The smallest sizes of armchair and zigzag

graphene sheets are shown in Fig. 3.13. PBCs have been applied in the lon-

gitudinal direction, while keeping transverse edges free. Lengths of graphene

sheets are 50.26 Å and 50.78 Å for armchair and zigzag sheet, respectively.

Zig zag

Arm  chairPBC PBC

Free            -     edge

Free            -     edge

y

x

Figure 3.13: The smallest graphene sheet used for the study. Arrows indicate
the direction where strain is applied.

3.2.1 Equilibrium Configuration

Initially, graphene sheets are allowed to relax over a time period of 30 ps.

Elongation of sheets along the longitudinal direction has been observed as

the sheets reaches equilibrium configuration. The elongation is significantly

higher for narrow sheets. In order to quantify this, a quantity named initial

strain (εinitial) is introduced.

εinitial =
leq − l0
l0

, (3.10)

where leq is the equilibrium length of the graphene sheet and l0 is the equi-

librium length of the graphene sheet with an infinite width (PBCs in both

longitudinal and transverse directions). The values of l0 for armchair and

zigzag graphene sheets are 50.29 Å and 50.81 Å, respectively.
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Figure 3.14 compares εinitial of armchair and zigzag graphene sheets. The

figure shows that the graphene sheets are subjected to a significant initial

strain in both cases which could be as high as 0.015 at narrow widths.

It also shows that zigzag graphene sheets are subjected to much higher

initial strains compared to that of armchair sheets. This εinitial can also be

calculated theoretically as explained below [64, 65].
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Figure 3.14: Variation of initial strain of graphene sheets with width.

The concept of surface stress of a three-dimensional (2D) crystal, pro-

posed by Cammarata [123], can be used to define the edge stress of a

graphene sheet(2D) [64]. The potential energy per unit length of a finite

graphene sheet of width w subjected to an axial strain ε can be expressed

as

U(ε, w) = U0 + 2τε+ 2
1

2
Esε

2 +
1

2
Eε2w, (3.11)

where U0 is the potential energy at zero strain. E and Es are the bulk

elastic modulus and edge elastic modulus, respectively. τ is the edge stress

of graphene, which arises from the the difference of the energy between edge
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and interior atoms. The second and third terms in (3.11) are related to the

edge effects. The factor of two in these edge terms accounts for the two

free edges of graphene. Stress σ(ε, w) of the graphene sheet can be obtained

from the derivative of Eq. (3.11) with respect to ε as

σ(ε, w) =
2τ

w
+

2Esε

w
+ Eε, (3.12)

where, the effective Young’s modulus (Eeff ) can be defined as

Eeff =
2Es
w

+ E. (3.13)

It can also be noticed in Eq. (3.12) that τ generates an εinitial at zero

stress, which can be expressed as

εinitial =
−2τ

(2Es + Ew)
=
−2τ

wEeff
. (3.14)

Quing et al., using molecular mechanics simulations with REBO poten-

tial field, found that the value of τ is -2.6 nN and -1.36 nN for zigzag and

armchair graphene sheets [65].

When the two transverse edges of a graphene sheet are fixed in order to

prevent initial strain, the graphene sheet buckles as shown in Fig. 3.16.

Fig. 3.17 shows the variation in potential energy with the distance from

the edge. Excess edge energy (γ) of armchair and zigzag graphene sheet can

be calculated as [65]

γac =
2 (Ua1 + Ua2 − 2U0)

3r0
, (3.15a)

γzz =
(Uz1 + Uz2 − 2U0)√

3r0

, (3.15b)

where Ua1, Ua2, Uz1 and Uz2 are the average potential energy of a edge

atoms of armchair and zigzag graphene as demonstrated in Fig. 3.17; U0

is the potential energy of an interior atom; r0 is the equilibrium C-C bond
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Figure 3.15: Comparison of initial strain of graphene sheets with width given
by MD and Eq. (3.14)

length of graphene.

The calculated values of γac and γzz are 11.63 eV/nm and 10.81 eV/nm.

These values of γac and γzz are well within the values reported in literature,

which are given in Table 3.6. The values depend on the potential field and

particular DFT method used for simulation. The values calculated in this

work might give better approximation compared to values presented in [65]

due to the fact that AIREBO potential field used in this work take into

account the non-bonded interactions. According to DFT methods, γzz is

greater than γac, whereas REBO and AIREBO potential fields gives γac is

greater than γzz. However, the values calculated using empirical potential

fields may be more accurate compared to the ones obtained from DFT, due

to the fact that empirical potential fields use experimental data to fit some

parameters of the potential field [90], whereas DFT is purely theoretical.

It can be noticed in Fig. 3.17 that the potential energy of the atoms in
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Fixed

Fixed

Free

Free

T = 0 T = 5 ps

T = 20 ps

Figure 3.16: Buckling of an armchair graphene sheet due to edge force.

Table 3.6: Excess edge energy of graphene sheets by different methods.

Method γac γzz
DFT (GAPW) [120] 9.8 13.2

DFT (VASP) [121] 10.0 12.0

DFT (SIESTA) [122] 12.43 15.33

MM (REBO) [65] 10.91 10.41

MD (AIREBO) [This work] 11.63 10.81

3rd row does not equal to the potential energy of interior atom due to non

bonded interactions. Therefore, the conventional equation for γ given in
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Eq. 3.15 should be modified as

γac =
2 (Ua1 + Ua2 + Ua3 + Ua4 − 4U0)

3r0
, (3.16a)

γzz =
(Uz1 + Uz2 + Uz3 + Uz4 + Uz5 + Uz6 − 6U0)√

3r0

. (3.16b)

Ua1 = -4.990
Ua2 = -7.425
Ua3 = -7.405
Ua4 = -7.425
Ua5 = -7.426

Uz1 = -4.891
Uz2 = -7.348
Uz3 = -7.384
Uz4 = -7.421
Uz5 = -7.425
Uz6 = -7.425
Uz7 = -7.426

Armchair
Zigzag

Figure 3.17: Potential energy variation of the atoms with the distance from
the edge. Ua/z,i is the average potential energy of an atom of armchair/zigzag
graphene sheet in the ith row indicated by a dashed line. Units of Ua,i is
eV.

The values of γac and γzz according to Eq. 3.16 are 11.74 eV/nm and

11.01 eV/nm, respectively.

3.2.2 Stress Strain Behaviour

Fig. 3.18(a) shows that armchair graphene sheets with lower width break

at relatively lower strains. However, at a given strain, armchair graphene

sheets store equal amount of strain energy irrespective to the width. It can

be seen in Fig. 3.18(b) that zigzag graphene sheets with narrow widths store

a significantly higher amount of strain energy compared to the wider ones.

In order to further investigate the effect of edges on the strain energy

storage of narrow graphene sheets, a 50 Å × 50 Å symmetric graphene sheet

was kept under various strains for 50 ps and then the average potential en-

ergy of atoms over last 40 ps of 50 ps was obtained. The free edges are kept
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parallel to y-direction and PBCs were used along y-direction. Potential en-

ergy of atoms of an infinitely large graphene sheet was first obtained and

that sets the baseline for the investigation. Fig. 3.19(a) and Fig. 3.20(a)

show the potential energy variation with x-coordinates of an infinitely large

armchair and zigzag graphene sheets, respectively. Potential energy at a

x-coordinate given in the figures were taken as the average potential energy

of all the atoms with similar x-coordinate, which is 24 atoms in armchair

sheet and 21 atoms in zigzag sheet. As seen in Fig. 3.19(a) and Fig. 3.20(a),

potential energy of atoms do not change near the edges due to the absence

of edges. Fig. 3.19(b) and Fig. 3.20(b) show the variation of potential en-

ergy of finite armchair and zigzag graphene sheets, respectively. The figures

show that the atoms close to edges store a significantly high potential en-

ergy at higher strains. This could be a result of higher change in bond

angles near the edges compared to interior ones. It can also be noticed in

Fig. 3.19(b) that potential energy of edge atoms decrease with increasing

strain in armchair graphene sheets, which could compensate the increased

potential energy of the atoms close to edge, so U -ε curve is not affected by

edge atoms. However, zigzag edge atoms do not contribute to strain en-

ergy as seen in Fig. 3.20(b). Therefore, U -ε curve indicates the increase in

potential energy of atoms which are close to edge.

Stresses in the graphene sheets are calculated using Eq.(1.4). Fig. 3.21

shows the σ-ε relations of graphene sheets with various widths. It can be

observed that narrow zigzag graphene sheets demonstrate a higher σult val-

ues compared to the wider ones, even though they have smaller εult values.

This is due to the fact that atoms close to edges of ziazag graphene sheets

store a higher amount of strain energy as explained above. Influence of edge

atoms becomes greater as the graphene sheet gets thinner, which subjects

narrow zigzag graphene sheets to a higher stress at a given strain.

Fig. 3.22 compares σult and εult of graphene sheets with various widths.

There is a reduction of σult in armchair sheets at narrow widths, while

there is an increase in the σult of zigzag sheets. The εult of zigzag graphene

sheets have not been affected much at narrow widths. However, the effect

on armchair graphene is considerably high. This indicates that width of the
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Figure 3.18: Variation of strain energy with strain of graphene sheet with
different widths at 1 K (a) Armchair (b) Zigzag.
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Figure 3.19: Variation of potential energy of atoms at different strains of (a)
Infinitely large armchair graphene sheet (b) Armchair graphene sheet with
edges . All the simulations are done at 1K.
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graphene sheet has a greater influence on the strength properties of armchair

graphene sheet compared to zigzag graphene sheets.

Fig. 3.23 compares the variation of E andD with width. Zigzag graphene

sheets show a gradual reduction of E with the width. Armchair graphene

sheets do not show any effect of width on E. However, there is a significant

reduction of D value in both configurations of graphene with increasing

width, and the reduction in zigzag graphene sheets is much higher than that

of armchair graphene sheets.

The effective Young’s modulus (Eeff ) of narrow graphene sheets can be

expressed as given in Eq. (3.13). However, this relation has been validated

only for E values calculated at low strains (ε < 0.005) [64]. On the other

hand, in this work Eeff has been calculated by considering nonlinear σ-ε

relation of graphene up to fracture. In order to investigate the validity of

the relation given in Eq. (3.13), the E values of graphene sheets has been

calculated by considering the U − ε relationship up to a strain value of 0.03,

up to which both armchair and zigzag graphene sheets show a similar U − ε
relationships. A quadratic polynomial is fitted on U−ε data as shown below.

U =
E

2
ε2 + Cε+K (3.17)

Figure 3.24 shows that there is a small width effect even in armchair

edges at very low strain. This indicates that E value of graphene is slightly

sensitive to the method of calculation. Therefore, the method of calculation

of E should be considered when comparing various studies.

3.2.3 Effect of Temperature on Edge Effect

Effect of temperature on edges is studied by investigating the variation of

strength and elastic modulii of graphene sheets at temperatures of 300 K .

Fig. 3.25 shows that σ − ε curves become linear at 300 K, due to the fact

that graphene sheets fail at lower strains at higher temperatures as observed

in Section 3.1. E values of zigzag graphene sheets, shown in Fig. 3.27,

demonstrate a similar trend as seen at 1 K with significant fluctuations.

Armchair graphene does not show any edge effect as at 1 K. D value of
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Figure 3.21: Stress strain curves of graphene sheet with different widths at
1 K (a) Armchair (b) Zigzag
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Figure 3.22: Ultimate stress and strain of graphene sheets with different
widths at 1 K (a) Ultimate stresses have been normalized with respect to
values of PBC graphene, which are 97.3 GPa and113.6 GPa in armchair
sheets and zigzag sheets, respectively. (b) Ultimate strains have been nor-
malized with respect to values of PBC graphene. That are 0.173 and 0.273
GPa in armchair sheets and zigzag sheets, respectively.
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Figure 3.23: Change of E and D with width of graphene sheet at 1 K (a) E
value has been normalized by 0.89 TPa for zigzag graphene and 1.15 TPa
by armchair (b) D value has been normalized by -1.74 TPa for zigzag and
-3.3 TPa for armchair
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Figure 3.24: E vs width of graphene sheet at 1 K, where E is calculated
considering strain up to 0.03. E value has been normalized by 0.83 TPa for
zigzag graphene and 0.97 TPa by armchair.
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zigzag graphene shows a significant width effect at 300 K, whereas D value

of armchair graphene doesn’t show a consistent width effect.

3.3 Effect of Curvature on the Strength of

Carbon Nanotubes

Carbon nanotube can be viewed as a rolled form of graphene. Fig. 3.28

shows armchair and zigzag CNTs. Using ab inito methods, Gülseren et

al. [124] and Portal et al. [125] showed that the bond lengths and angles of

armchair and zigzag CNTs converge at a diameter of 7 Å and 6 Å, respec-

tively. This suggest that there should not be an effect of diameter beyond 7

Å for armchair and zigzag CNTs. Using a nonorthogonal tight-binding for-

malism, Hernández et al. [126] showed that smaller diameter has a bigger

influence on the E value of zigzag CNTs compared to armchair CNTs.

The variation of strength properties and elastic moduli of armchair and

zigzag CNTs have been studied in this section, and a comparison of effect

of diameter with the effect of edges of corresponding graphene sheets have

been made. It should be noted that in graphene sheets, strain is applied

along the chiral vector, while it is normal to the chiral vector in CNTs.

Therefore, armchair graphene should be compared with zigzag CNT and

zigzag graphene with armchair CNT.

Fig. 3.29 compares armchair and zigzag CNTs with equal diameters.

Zigzag CNT stores only about 50% of the strain energy stored in armchair

CNT, however the σult of zigzag CNT is around 85% of the σult of the

armchair as seen in the case of graphene. Fig. 3.30(a) shows that zigzag

CNTs with various diameters follow a similar σ-ε curve, however, the curves

of armchair CNTs cross each other as shown in Fig. 3.30(b). Zigzag CNTs

have higher σult and εult compared to that of the armchair graphene sheet.

Both CNTs have a small diameter effect on the modulii as shown in Fig 3.31.

It can be seen in Fig. 3.27 and Fig 3.31, both armchair CNTs and zigzag

graphene sheets show diameter/width effect on E, but the trends are in

reverse order. In zigzag sheets, E decreases with width, while it increases
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Figure 3.25: Stress strain curves of graphene sheet at 300 K (a) armchair
(b) zigzag.
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Figure 3.26: Ultimate stress and strain of graphene sheets with different
widths at 300 K (a) Ultimate stresses have been normalized with respect
to values of PBC graphene. That are 88.5 GPa and 106.8 GPa in armchair
sheets and zigzag sheets, respectively. (b) Ultimate strains have been nor-
malized with respect to values of PBC graphene. That are 0.118 and 0.193
GPa in armchair sheets and zigzag sheets, respectively.
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Figure 3.27: Change of E and D with width of graphene sheet at 300 K (a)
E value has been normalized by 0.90 TPa for zigzag graphene and 1.11 TPa
by armchair (b) D value has been normalized by -1.86 TPa for zigzag and
-3.11 TPa for armchair
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(a) (b)

Figure 3.28: CNTs with a diameter of 24 Å (a) Armchiar (b) Zigzag.

with diameter of armchair CNT. This indicates that the effect of curvature

on E is higher than that of edges. However, E values reach the value of

infinitely large zigzag graphene sheet as width/diameter increases. The value

of D of zigzag graphene and armchair CNT show a similar variation.

3.4 Conclusions

The investigation on the effects of temperature on graphene sheets revealed

that the C-C bond length of graphene increases with temperature and graphene

sheets at higher temperatures fails at lower strains. It has also been observed

that the continuum stress measure is unable to capture stress-strain rela-

tion of graphene at higher temperatures, where as virial stress measure is

accurate at higher temperatures.

A study on the edges of graphene showed that excess edge energy of

graphene sheets induce an initial strain on the graphene sheets. Free edges

has a greater influence on the mechanical properties of zigzag graphene

sheets compared to armchair graphene sheets. Diameter of CNTs do not

have effect on the mechanical properties when diameter is greater than 10

Å.
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Figure 3.29: Comparison of CNTs with diameters of 24 Å (a) Strain energy
versus strain. Strain energy has been normalized with respect to the max-
imum strain energy stored in armchair CNT that is 1.29 × 1010J/m3 (b)
Stress-strain curves. Simulation was done at 300 K
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Figure 3.30: Stress strain curves for CNTs with different diameters (a)
Zigzag (b) Armchair. Simulation was done at 300 K
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Figure 3.31: Change of E and D of CNTs with different diameters (a) E
value has been normalized by 0.90 TPa for armchair CNTs and 1.11 TPa
by zigzag (b) D value has been normalized by -1.86 TPa for armchair and
-3.11 TPa for zigzag

81



Chapter 4

Fracture of Defective

Graphene

4.1 Introduction

As in many crystalline materials, defects are unavoidable in graphene dur-

ing production and device fabrication stages. Researchers have found ex-

perimental evidences for the existence of geometric defects such as vacancy

defects in graphene sheets [69, 127]. Theoretical studies have shown that de-

fects significantly alter the mechanical and electronic properties of graphene

[67, 68, 71, 72, 128–130]. On the other hand, understanding the fracture

of a graphene sheet, which is one atom thick planar sheet, could give an

insight to the fracture of crystalline materials at macroscale. Therefore, it is

of interest to investigate the fracture of defective graphene sheets. The first

part of this chapter presents a study of the effect of vacancy defects on the

strength of graphene sheets. The second part investigates the applicability

of the continuum fracture mechanics to calculate the strength of defective

graphene sheets.

4.2 Effects of Vacancy Defects

Experimental investigations by using an atomic force microscope (AFM)

have revealed that the ultimate tensile strength (σult) and Young’s modulus

of graphene are around 130 GPa and 1 TPa, respectively [15]. However,

vacancy defects could reduce the strength of graphene by around 50% [67,

68, 71, 72, 128–130]. The vacancy defects have a greater influence on the

mechanical properties of graphene compared to other geometric defects such
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4.2. Effects of Vacancy Defects

as StoneWales defects [68]. This section presents a detailed study of the

effect of vacancy defects on mechanical properties of armchair and zigzag

graphene sheets using MD simulations.

Cleri et al. [131] suggested that the size of simulation box should be

greater than 10 times of the crack length in order to avoid finite-size effect.

This rule has been implemented in the simulations of [71, 132]. The MD

simulations presented in this chapter have been conducted with PBCs where

the edges of the graphene sheet do not have any influence on the simulation

results. However, the finiteness of sheet could have an effect on the MD

simulations with cracks. In order to investigate the effect of finiteness, a

set of armchair sheets of various sizes were subjected to uniaxial tensile test

at a temperature of 300 K. A crack of length 1.4 nm has been introduced

in the centre of sheets by removing 9 carbon atoms. Some graphene sheets

used for this investigation are shown in Fig. 4.1.

Effect of the size of sheet on the stress-strain relation of graphene sheets

is shown in Fig. 4.2. Stress of the sheet is obtained using the relationship

between strain energy (U), stress (σ) and strain (ε) given in Eq. (3.4) and

Eq. (3.6). As shown in Fig. 4.2, the 5 nm × 5 nm graphene sheet is less stiff

compared to the larger graphene sheets since the reduction of cross section

due to crack is quite significant at this size. However, the 5 nm × 5 nm

graphene sheet withstands higher strain compared to the larger graphene

sheets, and it stores a higher amount of strain energy up to fracture. As

strain increases, the crack opening increases, and this helps the graphene

sheet to withstand higher strain. It can be seen in Fig. 4.2 that the σ-ε curves

converge as the size of graphene sheet reaches 10 times the crack width,

which is 14.5 nm × 14.5 nm. Therefore, the size of the square graphene

sheets were chosen to be more than 10 times of the crack width for the

simulations presented hereafter.

In order to investigate the effect of crack length on the σult and the

Young’s modulus of graphene sheet, a set of MD simulations were performed

on armchair and zigzag sheets with various crack lengths ranging from 4 Å

to 29 Å. The crack length and crack tip radius of the sheets are defined as

shown in Fig. 4.3. MD simulations were performed for each crack length at
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7.5 nm 5 nm

14.5 nm

Figure 4.1: Different sizes of square graphene sheets used to investigate the
effect of finiteness.
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Figure 4.2: σ-ε relation of square graphene sheets with various sizes and a
crack of width 1.4 nm in the centre.

temperatures of 1 K and 300 K to investigate the effect of temperature on

the mechanical properties of defective sheets.

2a

ρ

2a

ρ

Zigzag Armchair

Figure 4.3: Crack length (2a) and crack tip radius (ρ) graphene sheets.
Arrows indicate the straining direction.
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4.2. Effects of Vacancy Defects

Stress-strain curves of sheets with various crack lengths at 300 K are

given in Fig. 4.4. The results reveal that a single vacancy (one missing

atom) reduces σult in armchair sheet by 15.7% and in zigzag sheet by 23.3%,

which indicates that graphene is very sensitive to defects. Therefore, it is

necessary to produce defects free sheets for structural applications. It can

also be noticed that the Young’s modulus of sheets has not been affected by

the crack length.

As the crack length increases, the rate of reduction in σult decreases as

shown in Fig. 4.5. Khare et al. [71] observed a similar variation in σult with

crack length. They used a coupled quantum mechanical/molecular mechan-

ical method, which is computationally expensive compared to MD. On the

other hand, they have only investigated the effect of crack in zigzag direction.

Figure 4.5 shows that σult of graphene sheet decreases at 300 K, and the

effect of temperature on zigzag sheets are slightly higher compared to that of

armchair sheets. Effect of temperature on the strength of pristine armchair

and zigzag sheets are almost same as shown in Fig. 3.10. This indicates that

vacancy defect enhances the temperature effect on zigzag graphene. On the

other hand, the study in Section 3.2 indicates that edges have greater influ-

ence on the mechanical properties of zigzag sheet. Therefore, zigzag sheet

is more vulnerable to geometric defects compared to armchair sheet.

Figure 4.6 and Fig.4.7 show the fracture of armchair and zigzag sheets,

respectively. The temperature in simulation is 1 K, and both the sheets have

a single vacancy defect at the centre. Size of the sheets are 20 nm × 20 nm

each. Fracture of armchair sheet occurs perpendicular to strain direction,

while that is at an angle of 600 to the strain direction for zigzag sheet as

explained in Section 3.1.

It was also noticed that as strain of the sheet increases, the crack tips

come out of the plane of sheet, which eventually generate ripples in the

sheet. Fig. 4.8 shows the variation in the geometry of a 27 nm × 27 nm

sheet as strain increases. The size of the crack is 2.7 nm. The crack tips

can be considered as free edges, and these free edges get buckled even at the

equilibrium state due to the forces acting on the edge atoms as explained

in Chapter 3. As shown in Fig. 4.8, the out-of-plane deformation of the
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Figure 4.4: Stress - strain curve for graphene sheets with crack length. (a)
and (b) for armchair and zigzag graphene sheets at 300 K, respectively.
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Figure 4.5: Comparison of ultimate strength of graphene at various crack
lengths.

crack tip at equilibrium configuration is localized around the crack tip, and

the average out-of-plane movement of the atoms are almost zero due to the

shape. However, as strain increases up to 0.018, the shape of the crack

tip changes, and the new configuration has a net out-of-plane movement of

atoms, which acts as a localized ripple. As strain increases up to 0.0235,

this localized ripple spreads throughout the graphene sheet.

4.3 Continuum Fracture Mechanics Approaches

The two fundamental theories in fracture mechanics were proposed by Inglis

and Griffith. In 1913, Inglis mathematically derived the stress concentration

around an elliptical hole in a linearly elastic field [133]. This was followed

by the Griffith’s work on the fracture of brittle solid in 1921 [75]. This

section gives an overview of the theories proposed by Inglis and Griffith.
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Figure 4.6: Fracture of armchair graphene sheet. Strain has been applied
along x direction.

In Section 4.3.3, the strength of defective graphene sheets given by the two

theories are compared with the results obtained from MD simulations.

4.3.1 Inglis’ Local Stress

Inglis introduced the concept of stress concentration at an elliptical hole of

a plate, which deforms linear elastically. The length and width of the hole

are taken as 2a and 2b, respectively, as shown in Fig. 4.9. The length and

width of the plate are assumed to be much larger compared to the size of

the elliptical hole. The stress at crack tip (point A) is given by

σA = σ

(
1 +

2a

b

)
. (4.1)

Inglis expressed Eq. (4.1) in terms of the radius of curvature ρ as
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Figure 4.7: Fracture of zigzag graphene sheet. Strain has been applied along
y direction.

σA = σ

(
1 + 2

√
a

ρ

)
, (4.2)

where ρ = b2/a. When a� b, Eq. (4.2) becomes

σA = 2σ

√
a

ρ
. (4.3)

Eq. (4.3) gives an infinite stress at the tip of infinitely sharp crack (ρ ≈ 0).

However, infinitely sharp crack is not possible in real materials. As an

example, metal shows a plastic deformation at the crack tip, which blunts

the crack tip. The smallest possible ρ is in the order of inter atomic distance,

r0. Therefore, the stress concentration at an atomistically sharp crack can
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Figure 4.8: Ripples in defective graphene sheet. Strain has been applied
along y-direction.
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be written as

σA = 2σ

√
a

r0
. (4.4)

Fracture strength, σc, of a bond at atomic scale can be written as [134]

σc =

√
Eγs
r0

, (4.5)

where E is the Young’s modulus and γs is the surface energy.

Combining Eq. (4.4) and Eq. (4.5), the remote stress at failure (σf ) can

be expressed as

σf =

√
Eγs
4a

. (4.6)

2a

2b ρ

σ

σ

A

Figure 4.9: Parameters of an elliptical crack.

4.3.2 Griffith’s Energy Balance

The infinite stress at a tip of a sharp crack in Inglis’ local stress approach

motivated Griffith to develop a fracture theory based on energy [75]. Griffith
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showed that an existing crack can propagate only if such a process causes the

total energy to decrease or remain constant. The theory can be summarized

as below.

The surface energy increase, ∆Es, by propagating a crack with a length

of 2a (Fig. 4.9), can be written as

∆Es = 4aγs, (4.7)

where γs is the surface energy per unit area. The thickness of the plate is

assumed to be unity. It should be noted that the crack of length 2a creates

two free surfaces. Therefore, free surface area is equal to 4a.

In linear elasticity, the change in energy, (∆Ee), due to the advancement

of the crack can be written as

∆Ee = −πσ
2

E
a2, (4.8)

where σ and E are the stress of the plate and the Young’s modulus, re-

spectively. Therefore, the change in the total energy, ∆Etot, due to the

advancement of the crack can be expressed as the summation of Eq. (4.7)

and Eq. (4.8),

∆Etot = 4aγs − π
σ2

E
a2. (4.9)

The stationary point of ∆Etot, which is a maximum, occurs at critical

value of a, ac, given as

ac =
2γsE

πσ2
. (4.10)

When ac > a, ∆Etot get reduced with the reduction of crack length.

This can be achieved by healing the crack, which is not so common. When

ac < a, ∆Etot get reduced with increasing crack length. Therefore, the

failure stress of a sheet, σf , with a crack length of 2a can be expressed as

σf =

√
2γsE

πa
. (4.11)
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According to the Griffith’s model, fracture occurs only when the energy

stored in the structure is sufficient to overcome the surface energy of the

material. However, the fracture occurs by breaking individual bonds. In

order to break individual bonds, the stress of bonds should be greater than

the ultimate strength of bonds. It can be seen in Eq. (4.5) and Eq. (4.11) that

Inglis’ value of σf is 37% less than that of Griffith’s one. The applicability

of Inglis’ theory at atomistic scale is questionable since the shape of crack

alters with the applied strain as seen in Fig. 4.8.

4.3.3 Comparison of Continuum Approaches with MD

The value of γs in Eq. (4.6) and Eq. (4.11) was calculated by dividing the

difference in energy of a graphene sheet before and after fracture by the area

of newly created surface [71], as graphically represented in Fig. 4.10. The

value of γs is similar for both armchair and zigzag graphene sheets since

the distance between two broken C-C bonds are similar in both graphene

sheets. The Young’s modulus was calculated from the σ-ε curve of pristine

graphene sheets.

A comparison of strength of graphene sheets with various crack widths is

given in Fig. 4.11. The strength of graphene sheets are always between the

values given by Inglis’ and Griffith’s approaches, where Griffith’s approach

sets the upper bound for strength. The strength of graphene sheets at

300 K shows a slight fluctuation due to kinetic energy of atoms. Strength of

graphene sheets given by MD simulations and continuum theories asymptote

to a certain value as crack length increases. The curves indicate that the

strength reaches to a stationary value as crack length increases. It should be

noted that the fracture strength predicted by Inglis’s and Griffith’s theories

assume linear elastic material behaviour, whereas graphene is a non-linear

elastic material.

However, it should be noted that the Young’s modulus of graphene is

strain dependent. The strain dependent Young’s modulus of armchair and

zigzag graphene sheets can be expressed as E (ε) = −5.886ε + 1.081 TPa

and E (ε) = −3.504ε + 0.893 TPa, respectively. However, Eq. (4.6) and
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Figure 4.10: Calculation of γs. (a) Potential energy vs strain curve of the
graphene sheet shown in (b).
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Figure 4.11: Comparison of Inglis’ and Griffith’s theories with MD.

Eq. (4.11) assume a constant Young’s modulus. Therefore, the proper value

of the Young’s modulus is the Young’s modulus at fracture. Considering

this fact, Eq. (4.6) and Eq. (4.11) can be modified as

σf =

√
E(εf )γs

4a
and (4.12)

σf =

√
2E(εf )γs

πa
, (4.13)

where E(εf ) is the Young’s modulus at fracture.

Comparison of the strength values given by MD simulations, Eq. (4.12),
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and Eq. (4.13) are compared in Fig. 4.12. It can be seen that Griffith’s theory

gives much closer strength value compared to Inglis’ theory. The strength

of zigzag graphene sheets given by Griffith and MD simulations agree quite

well with each other. However, both Inglis’ and Griffith’s theories have been

derived for a flat plate like structure. Graphene sheet does not remain flat

as shown in Fig. 4.8. On the other hand, both the theories assume the conti-

nuity of the material, which is not the case in graphene. Therefore, a perfect

agreement between continuum theories and MD simulations cannot be ex-

pected. However, MD simulations clearly show a square-root singularity of

the strength values at 1 K as shown in Fig. 4.13. Equations of trend lines are

σult = 120.9 (1/
√
a) + 5.7 (R2 = 1) and σult = 139.7 (1/

√
a) + 4.7 (R2 = 1)

for armchair and zigzag sheets, respectively.

4.4 Conclusions

Finiteness of a defective graphene sheet has a significant influence on the

MD simulations. A crack with length of 2.5 nm reduces the strength of both

armchair and zigzag graphene sheets by around 50%. Strength of graphene

sheets given by Griffith’s theory reasonably agree with strength obtained

from MD simulations. Crack tip shows an out-of-plane deformation at equi-

librium configuration. This deformation propagates with the applies strain

and eventually generate ripples in the sheet. Strength obtained from MD

simulations shows a square-root singularity, which is expected in continuum

fracture mechanics theories.
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Figure 4.12: Comparison of Inglis’ and Griffith’s theories with MD simula-
tions. Tangent modulus of a pristine graphene sheet at the fracture strain
of defective graphene sheet was used for Inglis’ and Griffith’s theories.
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Chapter 5

Summary and Conclusions

5.1 Summary of the Present Work and Major

Findings

1. The effects of temperature on graphene have been investigated. The

results revealed that graphene sheet expands with increasing temperature.

It has also been observed that the amplitude of intrinsic ripples, which are

out-of-plane movements of carbon atoms, in graphene also get increase with

increasing temperature. These ripples reduce the net effect of thermal ex-

pansion. Graphene sheets at higher temperatures fail at lower strains due

to higher kinetic energy of atoms. It has also been found that the contin-

uum stress measure is unable to capture stress-strain relation of graphene

at higher temperatures, whereas virial stress is accurate at higher tempera-

tures.

2. A study on the effect of edges on the mechanical properties of graphene

sheets showed that excess edge energy of a sheet induces an initial strain at

the equilibrium configuration. However, free edges have an influence on the

atoms up to 5 Å normal to the edges. The effect of free edges on mechanical

properties of zigzag sheet is higher than that of armchair sheet.

3. Effect of vacancy defects on the strength of graphene sheets have been

investigated. It was found that finiteness of a defective graphene sheet has

a significant influence on the MD simulations. The length and the width of

the graphene sheet should be longer than 10 times the crack length in order

to eliminate the effect of finiteness. MD simulation results indicated that
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vacancy defect can reduce the strength of graphene sheet by around 60%.

A single vacancy defect (one missing atom) could reduce the strength of

graphene sheet by around 20%. Therefore, it is very important to minimize

the defects in graphene sheets during production stage, specially for sheets

which will be used for structural applications. It has also been observed

that strength of defective sheets calculated by Griffith’s theory reasonably

agree with strength obtained from MD simulations.

5.2 Suggestions for Future Work

1. This thesis is mainly focused on the effect of pristine edges. However, it

has been found that hydrogen passivation of edge atoms make edges much

more stable than the pristine edges. Also, it has been found that at finite

temperatures, armchair edge transforms to a zigzag edge due to stability

of the latter. Therefore, a study of the effect of edge defects such as edge

transformation and hydrogen passivation will give an overall picture of the

effects of edges on mechanical properties of graphene.

2. Continuum stress interpretation is unable to capture the local stress dis-

tribution around a crack of a graphene sheet. In fact, virial stress is also

not a good stress measure to calculate local atomic stresses. Investigation

of stress concentration around the crack tip of a graphene sheet can give a

better understanding of the effect of defects.

3. Griffith’s theory for a linear elastic material is able to predict the strength

of graphene sheet with reasonable accuracy. However, graphene is a non-

linear meterial. Therefore, non-linear fracture mechanics approaches such

as J-integral and crack-tip opening displacement methods will be able to

explain the fracture of graphene sheet better.

101



Bibliography

[1] R. Williams and P. Alivisatos, Nanotechnology Research Directions:
IWGN Workshop Report: Vision for Nanotechnology in the Next
Decade. Cambridge: Springer, 2000.

[2] R. P. Feynman, “There’s plenty of room at the bottom [data
storage],” Microelectromechanical Systems, Journal of, vol. 1, pp. 60
–66, mar 1992.

[3] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by
scanning tunneling microscopy,” Phys. Rev. Lett., vol. 49, pp. 57–61,
Jul 1982.

[4] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,”
Phys. Rev. Lett., vol. 56, pp. 930–933, Mar 1986.

[5] Nobelprize.org, “Nobel lectures in chemistry 1996-2000,” 22 Feb 2012
http://www.nobelprize.org.

[6] S. Iijima, “Helical microtubules of graphitic carbon,” Nature,
vol. 354, no. 6348, pp. 56–58, 1991.

[7] D. Sano, J. M. Berlin, T. T. Pham, D. C. Marcano, D. R.
Valdecanas, G. Zhou, L. Milas, J. N. Myers, and J. M. Tour,
“Noncovalent assembly of targeted carbon nanovectors enables
synergistic drug and radiation cancer therapy in vivo,” ACS Nano,
vol. 6, no. 3, pp. 2497–2505, 2012.

[8] G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming,
“Two-dimensional electronic spectroscopy and photosynthesis:
Fundamentals and applications to photosynthetic light-harvesting,”
Chemical Physics, vol. 386, no. 13, pp. 1 – 22, 2011.

[9] J. Boekhoven, A. Brizard, K. Kowlgi, G. Koper, R. Eelkema, and
J. vanEsch, “Dissipative self-assembly of a molecular gelator by using
a chemical fuel,” Angewandte Chemie, vol. 122, no. 28,
pp. 4935–4938, 2010.

102



Bibliography

[10] C. L. McGuiness, G. A. Diehl, D. Blasini, D.-M. Smilgies, M. Zhu,
N. Samarth, T. Weidner, N. Ballav, M. Zharnikov, and D. L. Allara,
“Molecular self-assembly at bare semiconductor surfaces:
Cooperative substratemolecule effects in octadecanethiolate
monolayer assemblies on gaas(111), (110), and (100),” ACS Nano,
vol. 4, no. 6, pp. 3447–3465, 2010.

[11] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee,
O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y.
Simmons, “A single-atom transistor.,” Nat Nanotechnol, Feb 2012.

[12] T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maci,
N. Katsonis, S. R. Harutyunyan, K.-H. Ernst, and B. L. Feringa,
“Electrically driven directional motion of a four-wheeled molecule on
a metal surface.,” Nature, vol. 479, pp. 208–211, Nov 2011.

[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field
effect in atomically thin carbon films,” Science, vol. 306, no. 5696,
pp. 666–669, 2004.

[14] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71,
pp. 622–634, May 1947.

[15] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the
elastic properties and intrinsic strength of monolayer graphene,”
Science, vol. 321, no. 5887, pp. 385–388, 2008.

[16] K. S. Novoselov, “Nobel lecture: Graphene: Materials in the
flatland,” Rev. Mod. Phys., vol. 83, pp. 837–849, Aug 2011.

[17] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B.
Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff,
“Preparation and characterization of graphene oxide paper.,” Nature,
vol. 448, pp. 457–460, Jul 2007.

[18] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas,
E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S.
Ruoff, “Graphene-based composite materials,” Nature, vol. 442,
pp. 282–286, 07/20/print 2006.

[19] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin,
M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp,

103



Bibliography

X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud Homme,
and L. C. Brinson, “Functionalized graphene sheets for polymer
nanocomposites,” Nat Nano, vol. 3, pp. 327–331, 06//print 2008.

[20] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu,
and N. Koratkar, “Fracture and fatigue in graphene
nanocomposites,” Small, vol. 6, no. 2, pp. 179–183, 2010.

[21] V. Eswaraiah, K. Balasubramaniam, and S. Ramaprabhu, “One-pot
synthesis of conducting graphene-polymer composites and their
strain sensing application,” Nanoscale, vol. 4, pp. 1258–1262, 2012.

[22] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis,
H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer
graphene nanomechanical resonators with electrical readout.,” Nat
Nanotechnol, vol. 4, pp. 861–867, Dec 2009.

[23] J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei,
P. Sheehan, and B. H. Houston, “Wafer-scale reduced graphene oxide
films for nanomechanical devices,” Nano Letters, vol. 8, no. 10,
pp. 3441–3445, 2008.

[24] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank,
D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L.
McEuen, “Electromechanical resonators from graphene sheets,”
Science, vol. 315, no. 5811, pp. 490–493, 2007.

[25] A. Reserbat-Plantey, L. Marty, O. Arcizet, N. Bendiab, and
V. Bouchiat, “A local optical probe for measuring motion and stress
in a nanoelectromechanical system.,” Nat Nanotechnol, vol. 7,
pp. 151–155, March 2012.

[26] T. Land, T. Michely, R. Behm, J. Hemminger, and G. Comsa, “Stm
investigation of single layer graphite structures produced on pt(111)
by hydrocarbon decomposition,” Surface Science, vol. 264, no. 3,
pp. 261 – 270, 1992.

[27] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou,
T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and
W. A. de Heer, “Electronic confinement and coherence in patterned
epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.

104



Bibliography

[28] B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz,
and H. D. Espinosa, “Measurements of near-ultimate strength for
multiwalled carbon nanotubes and irradiation-induced crosslinking
improvements.,” Nat Nanotechnol, vol. 3, pp. 626–631, Oct 2008.

[29] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory. Dover
Publications, 1996.

[30] A. J. Gonis, Theoretical Materials Science: Tracing the Electronic
Origins of Materials Behavior. Cambridge: Materials Research
Society, 2000.

[31] D. C. Rapaport, The Art of Molecular Dynamics Simulation.
Cambridge: Cambridge University Press, 1995.

[32] H. Eschrig, Optimized LCAO Method: and the Electronic Structure
of Extended Systems. Cambridge: Springer, 1989.

[33] F. Khademolhosseini, A. S. Phani, A. Nojeh, and N. Rajapakse,
“Nonlocal continuum modeling and molecular dynamics simulation
of torsional vibration of carbon nanotubes,” Nanotechnology, IEEE
Transactions on, vol. 11, pp. 34 –43, jan. 2012.

[34] Y. Q. Zhang, G. R. Liu, and J. S. Wang, “Small-scale effects on
buckling of multiwalled carbon nanotubes under axial compression,”
Phys. Rev. B, vol. 70, p. 205430, Nov 2004.

[35] L. J. Sudak, “Column buckling of multiwalled carbon nanotubes
using nonlocal continuum mechanics,” Journal of Applied Physics,
vol. 94, no. 11, pp. 7281–7287, 2003.

[36] Y. Q. Zhang, G. R. Liu, and X. Y. Xie, “Free transverse vibrations
of double-walled carbon nanotubes using a theory of nonlocal
elasticity,” Phys. Rev. B, vol. 71, p. 195404, May 2005.

[37] Q. Wang, “Wave propagation in carbon nanotubes via nonlocal
continuum mechanics,” Journal of Applied Physics, vol. 98, no. 12,
p. 124301, 2005.

[38] H. Heireche, A. Tounsi, and A. Benzair, “Scale effect on wave
propagation of double-walled carbon nanotubes with initial axial
loading,” Nanotechnology, vol. 19, no. 18, p. 185703, 2008.

105



Bibliography

[39] Y.-G. Hu, K. Liew, Q. Wang, X. He, and B. Yakobson, “Nonlocal
shell model for elastic wave propagation in single- and double-walled
carbon nanotubes,” Journal of the Mechanics and Physics of Solids,
vol. 56, no. 12, pp. 3475 – 3485, 2008.

[40] S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten,
“Surface tension effect on the mechanical properties of nanomaterials
measured by atomic force microscopy,” Phys. Rev. B, vol. 69,
p. 165410, Apr 2004.

[41] R. Dingreville, J. Qu, and M. Cherkaoui, “Surface free energy and its
effect on the elastic behavior of nano-sized particles, wires and
films,” Journal of the Mechanics and Physics of Solids, vol. 53, no. 8,
pp. 1827 – 1854, 2005.

[42] A. W. McFarland, M. A. Poggi, M. J. Doyle, L. A. Bottomley, and
J. S. Colton, “Influence of surface stress on the resonance behavior of
microcantilevers,” Applied Physics Letters, vol. 87, no. 5, p. 053505,
2005.

[43] L. He, C. Lim, and B. Wu, “A continuum model for size-dependent
deformation of elastic films of nano-scale thickness,” International
Journal of Solids and Structures, vol. 41, no. 34, pp. 847 – 857, 2004.

[44] C. Liu and R. Rajapakse, “Continuum models incorporating surface
energy for static and dynamic response of nanoscale beams,”
Nanotechnology, IEEE Transactions on, vol. 9, pp. 422 –431, july
2010.

[45] C. Liu, R. K. N. D. Rajapakse, and A. S. Phani, “Finite element
modeling of beams with surface energy effects,” Journal of Applied
Mechanics, vol. 78, no. 3, p. 031014, 2011.

[46] J. Wackerfu, “Molecular mechanics in the context of the finite
element method,” International Journal for Numerical Methods in
Engineering, vol. 77, no. 7, pp. 969–997, 2009.

[47] K. Tserpes and P. Papanikos, “Finite element modeling of
single-walled carbon nanotubes,” Composites Part B: Engineering,
vol. 36, no. 5, pp. 468 – 477, 2005.

[48] G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise,
“Equivalent-continuum modeling of nano-structured materials,”

106



Bibliography

Composites Science and Technology, vol. 62, no. 14, pp. 1869 – 1880,
2002.

[49] M. Meo and M. Rossi, “Prediction of youngs modulus of single wall
carbon nanotubes by molecular-mechanics based finite element
modelling,” Composites Science and Technology, vol. 66, no. 11-12,
pp. 1597 – 1605, 2006.

[50] L. Nasdala and G. Ernst, “Development of a 4-node finite element
for the computation of nano-structured materials,” Computational
Materials Science, vol. 33, no. 4, pp. 443 – 458, 2005.

[51] L. Nasdala, G. Ernst, M. Lengnick, and H. Rothert, “Finite element
analysis of carbon nanotubes with stone-wales defects,” Computer
Modeling in Engineering and Sciences, vol. 7, pp. 293–304, MAR
2005.

[52] B. Liu, Y. Huang, H. Jiang, S. Qu, and K. Hwang, “The atomic-scale
finite element method,” Computer Methods in Applied Mechanics
and Engineering, vol. 193, no. 17-20, pp. 1849 – 1864, 2004.

[53] B. Liu, H. Jiang, Y. Huang, S. Qu, M.-F. Yu, and K. C. Hwang,
“Atomic-scale finite element method in multiscale computation with
applications to carbon nanotubes,” Phys. Rev. B, vol. 72, p. 035435,
Jul 2005.

[54] C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski,
L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and
A. Zettl, “Graphene at the edge: Stability and dynamics,” Science,
vol. 323, no. 5922, pp. 1705–1708, 2009.

[55] Y.-W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene
nanoribbons,” Phys. Rev. Lett., vol. 97, p. 216803, Nov 2006.

[56] Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, “Anisotropic
mechanical properties of graphene sheets from molecular dynamics,”
Physica B: Condensed Matter, vol. 405, no. 5, pp. 1301 – 1306, 2010.

[57] K. A. Ritter and J. W. Lyding, “The influence of edge structure on
the electronic properties of graphene quantum dots and
nanoribbons.,” Nat Mater, vol. 8, pp. 235–242, Mar 2009.

107



Bibliography

[58] H. Zhao, K. Min, and N. R. Aluru, “Size and chirality dependent
elastic properties of graphene nanoribbons under uniaxial tension,”
Nano Letters, vol. 9, no. 8, pp. 3012–3015, 2009.

[59] R. Faccio, P. A. Denis, H. Pardo, C. Goyenola, and A. W. Mombru,
“Mechanical properties of graphene nanoribbons,” Journal of
Physics: Condensed Matter, vol. 21, no. 28, p. 285304, 2009.

[60] M. Burghard, H. Klauk, and K. Kern, “Carbon-based field-effect
transistors for nanoelectronics,” Advanced Materials, vol. 21,
no. 25-26, pp. 2586–2600, 2009.

[61] M. Topsakal and S. Ciraci, “Elastic and plastic deformation of
graphene, silicene, and boron nitride honeycomb nanoribbons under
uniaxial tension: A first-principles density-functional theory study,”
Phys. Rev. B, vol. 81, p. 024107, Jan 2010.

[62] Q. Lu, W. Gao, and R. Huang, “Atomistic simulation and continuum
modeling of graphene nanoribbons under uniaxial tension,”
Modelling and Simulation in Materials Science and Engineering,
vol. 19, no. 5, p. 054006, 2011.

[63] V. B. Shenoy, C. D. Reddy, A. Ramasubramaniam, and Y. W.
Zhang, “Edge-stress-induced warping of graphene sheets and
nanoribbons,” Phys. Rev. Lett., vol. 101, p. 245501, Dec 2008.

[64] C. D. Reddy, A. Ramasubramaniam, V. B. Shenoy, and Y.-W.
Zhang, “Edge elastic properties of defect-free single-layer graphene
sheets,” Journal of Applied Physics, vol. 94, no. 10, p. 101904, 2009.

[65] Q. Lu and R. Huang, “Excess energy and deformation along free
edges of graphene nanoribbons,” Phys. Rev. B, vol. 81, p. 155410,
Apr 2010.

[66] H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi, and Z. Ni, “Atomistic
simulations of mechanical properties of graphene nanoribbons,”
Physics Letters A, vol. 373, no. 37, pp. 3359 – 3362, 2009.

[67] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural
defects in graphene,” ACS Nano, vol. 5, no. 1, pp. 26–41, 2011.

[68] R. Ansari, S. Ajori, and B. Motevalli, “Mechanical properties of
defective single-layered graphene sheets via molecular dynamics

108



Bibliography

simulation,” Superlattices and Microstructures, vol. 51, no. 2, pp. 274
– 289, 2012.

[69] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima,
“Direct evidence for atomic defects in graphene layers.,” Nature,
vol. 430, pp. 870–873, Aug 2004.

[70] M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and
A. K. Geim, “Free-standing graphene at atomic resolution.,” Nat
Nanotechnol, vol. 3, pp. 676–681, Nov 2008.

[71] R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C.
Schatz, and T. Belytschko, “Coupled quantum mechanical/molecular
mechanical modeling of the fracture of defective carbon nanotubes
and graphene sheets,” Phys. Rev. B, vol. 75, p. 075412, Feb 2007.

[72] M. Wang, C. Yan, L. Ma, N. Hu, and M. Chen, “Effect of defects on
fracture strength of graphene sheets,” Computational Materials
Science, vol. 54, no. 0, pp. 236 – 239, 2012.

[73] N. M. Pugno and R. S. Ruoff , “Quantized fracture mechanics,”
Philosophical Magazine, vol. 84, no. 27, pp. 2829–2845, 2004.

[74] N. Pugno, A. Carpinteri, M. Ippolito, A. Mattoni, and L. Colombo,
“Atomistic fracture: Qfm vs. md,” Engineering Fracture Mechanics,
vol. 75, no. 7, pp. 1794 – 1803, 2008.

[75] A. A. Griffith, “The phenomena of rupture and flow in solids,”
Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character,
vol. 221, no. 582-593, pp. 163–198, 1921.

[76] B. J. Alder and T. E. Wainwright, “Phase transition for a hard
sphere system,” The Journal of Chemical Physics, vol. 27, no. 5,
pp. 1208–1209, 1957.

[77] H. C. Andersen, “Molecular dynamics simulations at constant
pressure and/or temperature,” The Journal of Chemical Physics,
vol. 72, no. 4, pp. 2384–2393, 1980.

[78] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling
through velocity rescaling,” The Journal of Chemical Physics,
vol. 126, no. 1, pp. 014101–7, 2007.

109



Bibliography

[79] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren,
A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an
external bath,” The Journal of Chemical Physics, vol. 81, no. 8,
pp. 3684–3690, 1984.

[80] P. H. Hnenberger, “Thermostat algorithms for molecular dynamics
simulations,” Advanced Computer Simulation, vol. 173, no. 173,
pp. 105–149, 2005.

[81] D. J. Evans and B. L. Holian, “The nose–hoover thermostat,” The
Journal of Chemical Physics, vol. 83, no. 8, pp. 4069–4074, 1985.

[82] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space
distributions,” Phys. Rev. A, vol. 31, pp. 1695–1697, Mar 1985.
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Appendix A Input Files for

LAMMPS

LAMMPS input file in.graphene to simulate the uniaxial tensile test in Sec-

tion 2.5.1 is given below.

##—————INITIALIZATION——————————-

units metal

dimension 3

boundary f p f

atom style atomic

newton on

##—————ATOM DEFINITION——————————

read data data.grap

##—————SETTINGS———————————

pair style airebo 3.0

pair coeff * * ∼ LAMMPS/lammps-7Apr11/potentials/CH.airebo C

timestep 0.0005

fix 1 all npt temp 300 300 0.05 y 0 0 0.5

thermo 20

compute 1 all stress/atom

compute 2 all pe/atom pair bond

compute 3 all reduce sum c 1[1] c 1[2] c 1[3]
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thermo style custom step temp pe ke etotal lx ly pxx pyy c 3[1] c 3[2] c 3[3]

##—————RUNING-RELAXATION————————————–

run 60000

##—————RUNNING-DEFORMATION————————————–

unfix 1

fix 1 all nvt temp 300 300 0.05

fix 2 all ave/atom 1 1000 1000 c 1[1] c 1[2] c 1[3] c 2 fx fy fz

dump 1 all custom 1000 dump.new.* id type x y z vx vy vz c 1[1] c 1[2] c 1[3]

c 2 f 2[1] f 2[2] f 2[3] f 2[4] f 2[5] f 2[6] f 2[7]

variable srate equal 1.0e9

variable srate1 equal ”v srate / 1.0e12”

fix 3 all deform 1 y erate $srate1 units box remap x

run 600000
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Part of the LAMMPS input file data.graphene to simulate the uniaxial

tensile test in Section 2.5.1 is given below.

252 atoms

1 atom types

Masses

1 12.010000

#simulation box

-1.396000 12.564000 xlo xhi

-0.604486 50.172316 ylo yhi

-2.000000 2.000000 zlo zhi

Atoms

1 1 0.698000 0.000000 0.000000

2 1 0.000000 1.208971 0.000000

3 1 0.698000 2.417943 0.000000

4 1 0.000000 3.626914 0.000000

5 1 0.698000 4.835886 0.000000

6 1 0.000000 6.044857 0.000000

..............................................

.

.

.

250 1 11.168000 47.149887 0.000000

251 1 10.470000 48.358859 0.000000

252 1 11.168000 49.567830 0.000000
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LAMMPS output file log.lammps of the uniaxial tensile test in Sec-

tion 2.5.1 is given below.

Step Temp PotEng KinEng TotEng Lx Ly Pxx Pyy 3[1] 3[2] 3[3]

0 0 -1759.0 0 -1759.0 13.96 50.77 -13041.9 81852.3 0.37e+08 -2.32e+08 0

20 22.7 -1760.5 0.73 -1759.7 13.96 51.01 -23485.6 92940.9 0.67e+08 -2.65e+08 0

40 13.2 -1761.2 0.43 -1760.8 13.96 51.69 -19014.7 -11949.8 0.55e+08 0.34e+8 0

60 13.6 -1760.1 0.44 -1759.6 13.96 52.31 -45878.3 -86754.5 1.34e+08 2.53e+08 0

80 34.3 -1760.4 1.11 -1759.2 13.96 52.41 -14782.4 -97297.1 0.43e+08 2.85e+08 0

.............................................................................................................................

.

.

.
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VMD

Part of the VMD input file graphene.lammpstrj to visualize the uniaxial

tensile test in Section 2.5.1 is give below.

ITEM: TIMESTEP

0

ITEM: NUMBER OF ATOMS

252

ITEM: BOX BOUNDS pp pp ff

-1.396000 12.564000

-0.604486 50.172300

-2.000000 2.000000

ITEM: ATOMS id type x y z

1 0 0.698000 0.000000 0.000000

2 1 0.000000 1.208970 0.000000

3 1 0.698000 2.417940 0.000000

.

.

.

250 1 11.168000 47.149900 0.000000

251 1 10.470000 48.358900 0.000000

252 1 11.168000 49.567800 0.000000

ITEM: TIMESTEP
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1000

ITEM: NUMBER OF ATOMS

252

ITEM: BOX BOUNDS pp pp ff

-1.396000 12.564000

-0.966049 50.533900

-2.000000 2.000000

ITEM: ATOMS id type x y z

1 0 0.648417 -0.352954 0.000000

2 1 0.002844 0.873234 0.000000

3 1 0.648417 2.099420 0.000000

.

.

.

250 1 11.165200 47.468400 0.000000

251 1 10.519600 48.694600 0.000000

252 1 11.165200 49.920800 0.000000

ITEM: TIMESTEP

2000

ITEM: NUMBER OF ATOMS

252

ITEM: BOX BOUNDS pp pp ff

-1.396000 12.564000

-1.294850 50.862700

-2.000000 2.000000

ITEM: ATOMS id type x y z

1 0 0.763745 -0.673928 0.000000

2 1 0.052989 0.567919 0.000000

3 1 0.763745 1.809760 0.000000

.

.
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.

250 1 11.115000 47.758100 0.000000

251 1 10.404300 48.999900 0.000000

252 1 11.115000 50.241800 0.000000

...........................................................

.

.

.
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