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Abstract

Algorithms to detect athletic jumps and to determine in real-time per-
formance parameters such as jump air time (AT), horizontal distance, height
and drop, are developed in this work. These algorithms are customized to be
implemented onboard action sports goggles developed by Recon Instruments
Ltd. These goggles are equipped with low cost micro-electro-mechanical in-
ertial sensors and a single point GPS receiver which feed raw data to the
algorithms. The micro-LCD display system in the goggles displays jump
statistics to the user wearing the goggles. Two novel methods, namely
WMCM (Windowed Mean Canceled Multiplication) and PFAD (Preced-
ing and Following Acceleration Difference), are introduced for jump detec-
tion using accelerometer data. Four characteristic points in the resultant
acceleration data are selected as the AT defining epochs for a jump. A
novel threshold independent, probabilistic method using MADM (Multiple
Attribute Decision Making) and the Closest Peak method are proposed to
detect these characteristic points and determine the corresponding AT of a
jump. A GPS/INS integration algorithm is developed to determine jump
horizontal distance, height and drop. A novel sensor error compensation
scheme is developed using sensor fusion and Linear Kalman Filters (LKF).
The LKF parameters are varied to address the fluctuating dynamics of the
athlete during a jump. The Extended Kalman Filter (EKF) used for GP-
S/INS integration has an observation vector augmented with sensor error
measurements derived from sensor fusion.

The performance of the proposed algorithms was evaluated through ex-
perimental field tests. The proposed jump detection algorithm successfully
detected 92% of the jumps performed by a snowboarder wearing the goggles
whereas the current Recon algorithm only detects 60%. The AT determi-
nation algorithm exhibited an average error of 0.033 s (4.8%) which is well
within the accuracy requirement of Recon, ±0.1 s, and betters the current
Recon algorithm which has an average error of 0.111 s (8.4%). For determi-
nation of jump horizontal distance, height and drop, the proposed algorithm
has an error of 14.34 cm (5.55%), 1.56 cm (38.21%) and 6.71 cm (9.43%)
respectively. The accuracy achieved is deemed to fulfill expectations of both
recreational and professional athletes.
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Notations and Abbreviations

Convention

Matrices are represented by capital case bold letters and vectors are rep-
resented by lower case bold letters.

A superscript in a vector represents the particular frame in which the vector
is represented.

Rotation matrices between two coordinate systems are defined with a su-
perscript and a subscript denoting the two coordinate systems., e.g. Rn

b

transforms from body frame b to navigation frame n.

Angular rate between two frames is expressed by a angular rate vector, e.g.
ωbib represents the angular rate between the inertial frame and the body
frame observed from the body frame.

The skew symmetric matrix form of any vector ω = [ω1ω2ω3] is represented
as

[ω×] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (1)

Abbreviations

KPV Key Performance Variable

AT Air Time

TDR Total Degrees of Rotation

INS Inertial Navigation Systems

GPS Global Positioning System
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Chapter 1

Introduction

1.1 Context

Many sports enthusiasts crave the sensation of ‘catching the air’ while
participating in such sports as snowboarding and skiing. ‘Catching air’ is
a phrase often used to describe what happens when a snowboarder or skier
travels fast enough over a jump to allow their board or skis to lift off the
snow and into the air. Well executed and stylish routines consisting of com-
plex aerial acrobatic maneuvers, as in Figure 1.1, are also highly appreciated
in both sports. During competitions, judges often score competitors based
upon the elevation, distance and time elapsed during the loft motion when
‘catching air’. The interest in witnessing and maneuvering complex jumps
becomes apparent from the regular exclamation after a jump that he ‘caught’
some ‘big sky’, ‘big air’ or other assorted remarks when referring to the ele-
vation, distance or time elapsed of the loft motion. Unfortunately, both the
spectators and athletes themselves typically only have a qualitative sense as
to the performance variables (e.g. jump height) without ever quantitatively
knowing the statistics. However, many believe that objectivity in evaluation
of these acrobatic performances could significantly enhance the experience
for these athletes.

Enhancement of experience and entertainment is not the only motiva-

Figure 1.1: Snowboard enthusiast catching some ‘big air’ [1].
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tion for finding objective information for evaluating sports performance. In
competition environments, performances are also evaluated based upon sub-
jective measures, referred to as ‘overall impression’, by a panel of judges [2].
During training sessions for these competitions, in the absence of appropriate
measurement tools, athletes and coaches much rely largely upon evaluating
performances based on their own experiences and feelings.

Recent analysis has revealed that sport specific Key Performance Vari-
ables (KPVs), e.g. loft duration and elevation for snowboard and ski jump-
ing, strongly correlates with the subjectively judged scores in competition.
Therefore, judges, coaches, and athletes could be greatly assisted by any
complementary tools that objectively measure the sport specific KPVs.
Even though video based assessment is widely used for training and evalu-
ation, it has often proved to be misleading. Furthermore, video recording
based performance analysis is generally time consuming and requires consid-
erable ground infrastructure (e.g. video setup). It is also often very difficult
to acquire and analyze information on the KPVs through the labor intensive
post processing of the video data [3]. For instance, sophisticated video pro-
cessing software is needed to determine the KPVs from the recorded data
which is both resource and time consuming.

In more recent years, satellite based positioning, such as Global Posi-
tioning System (GPS), has been developed as a performance assessment
technique to quantitatively measure sport specific variables. There are a
number of commercial products available on the market, e.g. [4, 5], which
provide performance parameters, such as distance, velocity and height pro-
files derived from satellite based position fixes. While these products may
be effective for certain parameters, coaches and athletes are often also in-
terested in other parameters such as orientation, degree of rotation, and
epochs of take-off and landing which cannot be fully measured by satellite
based monitoring systems. For example, in many instances the athlete’s
environment may have naturally occurring obstructions that could block or
attenuate satellite signals.

To over come many of these variables, which affect the ability to mea-
sure KPVs, Inertial Measurement Units (IMUs) are now being used along
with GPS units for sports monitoring. Conventional GPS/INS equipment
comprising dual-frequency GPS receivers and tactical grade INS, can pro-
vide highly accurate data (cm for positioning, cm/s for velocity and 1/100
degree for orientation). In the context of sports applications, however, such
equipment is often not suitable because of adverse weight (a few kg) and
expense (>= e40, 000). Recently, utilizing the advancements of micro tech-
nology, Micro-Electro-Mechanical Systems (MEMS) IMUs as well as low cost

2



1.2. Recon Action Sports Goggles

L1 GPS receivers has entered the world of sports monitoring [6–9]. The ben-
efit of such a GPS/INS system includes its global availability, light weight,
low cost and fast setup. This system, therefore, diminishes the necessity for
external infrastructure, such as video cameras [3].

The idea of measuring forces and position fix parameters with a GP-
S/INS integrated system to provide quantitative insight into athlete’s motion
dynamics is academically sound. However, the assumption then declaration
that this raw information will directly help the end users in functional eval-
uation and training seems to be an optimistic statement [2]. In addition,
the interpretation of the system’s gathered information into something suit-
able for use by athletes and coaches constitutes a major component of any
research focus. It is also imperative that consistency between the sport-
ing communities expectations and the focus of scientific research be reached
for the successful integration of any technological innovation into sports.
Consequently, strong rationale has been provided for researchers to explore
algorithms and systems that can bring cutting edge technology to the service
of sports communities.

Recon Instruments, a Vancouver based company, has recently developed
and is making Recon Action Sports Goggles, which are able to impart real-
time information on KPVs to the individual wearing the goggles. A built-in
MEMS GPS/INS unit is used to generate this data. The research conducted
for this thesis is part of the Recon goggle development project, conducted in
collaboration between The University of British Columbia and Recon Instru-
ments. The goal of this collaborative study was to develop an innovative
algorithm to derive sport specific KPVs in real-time onboard the goggles
with the best achievable accuracy using the available sensors as well as to
provide instantaneous feedback to individuals wearing the goggles.

1.2 Recon Action Sports Goggles

Recon Instruments has developed the world’s first GPS/INS enabled
goggles with a head-mounted display system (Figure 1.2). The micro-
LCD at the lower portion of the goggles, as shown in Figure 1.3, displays
performance-enhancing data and statistics on KPVs. The graphics and op-
tics of this direct-to-eye communication technology has made the display
unobtrusive for front and peripheral vision. Furthermore, little interaction
is needed during use to view the information making it applicable for use
in fast-paced environments. The goggles can be used both in entertainment
situations (for general interest during recreational skiing/snowboarding), or
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Figure 1.2: Recon Goggle. Click on the image to see promotional
video [1].

as a tool to aid in training for competitions.
The Recon goggles have sensors including a GPS receiver, a three axis

MEMS accelerometer, a three axis MEMS gyroscope, a three axis MEMS
magnetometer and an altimeter. The body frame coordinate system is shown
in Figure 1.4, and the sensors axes are congruent with the body frame. The
update rate of the GPS receiver position fixes is 1 Hz, and the data capture
rate of the MEMS sensors is 100 Hz. The entire system is controlled with
an ARM9TM processor.

Currently, these goggles provide real-time feedback including speed, lat-
itude/longitude, altitude, vertical distance traveled, total distance traveled,
chrono/stopwatch mode, a run-counter, temperature and time as shown in
Figure 1.5. The goggles can be charged by USB, which can also be used to
transfer data, along with the post-processing software included.

1.2.1 Key Performance Variables for Jumps

Recon Instruments has specially developed these goggles with sport per-
formance quantifying capabilities specially relevant to the motions involved
in snowboarding and skiing jumps. Four KPVs have been selected as the
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Figure 1.3: Micro-LCD display in Recon Action Sports Goggles [1].
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Figure 1.4: Orientation of the three dimensional body/sensor frame.

Figure 1.5: Real-time feedback in Recon goggles [1].
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standard parameters of interest for the aerial acrobatic routines performed
by skiers or snowboarders, especially during competitions. The KPVs are
defined as follows:

1. Air Time. Total time traveled through the air from the time of take-
off to the time of landing.

2. Horizontal Distance. The length over land traveled through the air
from the time of take-off to the time of landing.

3. Height. Total vertical distance achieved from the point of take-off to
the apex of the jump.

4. Drop. Total vertical distance achieved from the apex to the point of
landing.

1.2.2 Jump Categories

Recon Instruments has also categorized the different types of ski and
snowboard jumping into five major families. Each jump category possesses
distinct characteristics with respect to the KPVs previously mentioned. The
jump categories are illustrated in Figure 1.6 and defined as follows:

1. Ollie. Height and drop are equal, and the goggle wearer achieves
distance and Air Time (AT).

2. Step-up. Height is larger than drop due to elevation change during
the jump. AT and distance are both achieved, but AT is truncated.

3. Standard. This is the most common jump, where drop is larger than
height due to elevation drop (common on jumps in mountain terrain).
Longer AT and distances are achieved.

4. Half-pipe. AT is very large, and distance is very minimal. Drop is
larger than height.

5. Cliff-drop. This is where there is very little to no height achieved,
and drop is very large. AT is also very big, but distance is minimal.
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Figure 1.6: Categories of ski and snowboard jumping.
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1.3 Objective

The objective of this research is to develop an algorithm for the on-
board goggle processor to analyze all available sensor data. By doing so,
the processor will then be able to successfully detect each of the above men-
tioned jump categories, with a minimum of false positives, and determine
the standard KPVs as listed in Subsection 1.2.1. Recon has set the maxi-
mum allowable error in AT to be ±0.1 s. For the other KPVs, Recon has set
no specific requirements. However, errors should be negligible in magnitude
in comparison with the KPVs measured such that the KPVs have practical
application to the user. The key factors involved in this research are as
follows:

• Sensor Fusion. The fundamental problem is how to combine the
various sensor data, each of which has its own particular sensitivity,
update rate, and noise, to achieve reliable conclusions. Whereas cur-
rent work has concentrated on processing data from only two types
of sensors, this project will combine data from five types of sensors -
accelerometers, gyroscopes, magnetometers, GPS and altimeter. This
task is complicated by the variability of situations a skier or snow-
boarder encounters over the course of a typical day with the goggles
on. Therefore, the processing algorithm must cope with a large variety
of dynamics.

• Minimal Resources. Since battery life is limited, power manage-
ment is an important consideration in the goggle design. For instance,
the minimum update rate from each the sensors required to reliably
detect jumps must be determined. The lower the update rate, the
greater the potential for battery and memory savings.

• Online Processing. The algorithm developed to process all sensor
data and compute the parameters must be suitable for real-time oper-
ation and instantaneous feedback by the ARM9TM processor onboard
the Recon goggles. The limited computing resources and battery life
on the Recon goggles is a challenging factor in algorithm development.

• Head Motion. Since all sensors used are mounted within the goggles,
these sensors will be subject to movement of the user’s head. In other
documented work, sensors are primarily mounted on the user’s back,
waist, legs or underfoot. Independent head motion could complicate
(or aid) the interpretation of data from head-mounted sensors.

9
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• Unconventional Jumps. Apart from the standard jumps, there are
also many different ways that a skier or snowboarder can leave the
ground that must be taken into account during jump detection. For
instance, in some cases, the skier may never rise above the elevation of
the take-off point. Flips, half-pipe moves, and other jump types each
can result in radically different sensor readings.

• Low Data Rate. One of the major hardware limitations that the
goggles have is the low rate (1 Hz) of position fixes from the GPS
receiver whereas the typical ski jump duration is 0.5−2.0 s. Due to the
scarcity of available data in such a brief operation time, conventional
GPS dependent tracking algorithms are not suitable.

• Noise. MEMS sensors produce very noisy data. Depending upon the
noise characteristics, denoising algorithms are also often computation-
ally heavy. Therefore, focus should be given to the tradeoff between
computational cost and denoising benefits.

• Poor Sensitivity. The on board altimeter is not sensitive enough
to accurately capture typical jump height or drop of 0 − 2.0 m. The
GPS receiver also does not have enough accuracy and sensitivity in the
vertical axis. Consequently, none of the sensors can be used directly
to compute the KPVs.

• Accuracy. The algorithm needs to satisfy the accuracy criteria de-
manded by sport professionals and recreational athletes. Recon speci-
fied that a ±0.1 s error accuracy for AT must be met. Although Recon
has not set any accuracy specification for jump horizontal distance,
height and drop, error in the measurement should be constrained to
what may render the estimated parameters to be useful.

• Fast and Easy Operation. Coaches and athletes often lack knowl-
edge about emerging technologies. In addition, skiers and snowboard-
ers often prefer to execute jumps without any interruptions. Therefore,
it is important that the algorithm is independent of any tedious and
repetitive routines such as manual sensor calibration, bias estimation
or initial waiting period for filter convergence, which could interrupt
one’s performance.
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1.4 Methodology

• Jump Detection. For jump detection, accelerometer data has been
used by the novel Windowed Mean Canceled Multiplication (WMCM)
method as well as by the novel Preceding and Following Acceleration
Difference (PFAD) method.

• Air Time. To determine the AT, two methods are proposed. One is
a threshold based technique and another is a probabilistic approach
that uses no threshold. The novel probabilistic approach uses Multiple
Attribute Decision Making (MADM).

• Horizontal Distance, Height and Drop. To determine the jump
horizontal distance, height and drop, GPS aided and GPS integrated
INS algorithms have been proposed. The GPS aided INS algorithm
uses Linear Kalman Filters (LKFs) for continuous recursive error cor-
rection. For, the integration of GPS with INS, the EKF has been
explored. Both the aided and integrated algorithm have been devel-
oped with direct and indirect state estimation techniques.

1.5 Thesis Outline

The thesis is structured chronologically. Chapter 2 summarizes all the
relevant current research and development in sports monitoring. A detailed
discussion is presented on the feasibility of the current technology satisfy-
ing the requirements of the Recon goggles. In Chapter 3, the developed
jump detection and AT determination algorithm is presented with practi-
cal results. Chapter 4 presents the detailed architecture of the algorithm
developed for determining jump horizontal distance, height and drop with
performance evaluation. Concluding remarks and potential future research
is presented in Chapter 5.
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Chapter 2

Literature Review

The research in determining KPVs for Recon Action Sports Goggles
comprises several fields of study. For jump detection and Air Time (AT)
determination, the main focus is on the dynamics of the signals during jump
start, aero phase and jump end epochs available from the sensors. On the
other hand, the research in determining horizontal distance, height and drop
mostly involves the kinematics of the sensor data. These two fields of study
are distinct in signal processing, tools of manipulation and denoising aspects.
Therefore, the relevant previous and current research to determine the men-
tioned KPVs will be discussed in two main categories. Firstly, the prevailing
jump detection and AT calculation strategies will be presented. Secondly,
the shortcomings and feasibility of these current methods for the Recon
goggles application will be discussed. Finally, the current work pertinent
to horizontal distance, height and drop determination will be presented in
this chapter. The application of INS and GPS is widely practiced in similar
applications. Therefore, a priority will be given to the possibilities and im-
plications of the present INS and GPS involved strategies to meet the Recon
goggle feature requirements. Preceding these discussions, general monitor-
ing strategies for acrobatic maneuvers and the advantages of MEMS sensors
in this particular application will also be presented.

2.1 In Field Sports Performance Monitoring

2.1.1 General Strategies

Research has shown that subjectively judged scores for athletes doing
acrobatic maneuvers in sports like skiing and snowboarding has strong cor-
relation with the KPVs such as AT, Total Degrees of Rotation (TDR), jump
height, drop, horizontal distance, etc. As laboratory performance assess-
ment for these sports is not feasible, a number of attempts have been made
to develop and use current technologies to quantify sports specific perfor-
mance variables in the field. Recently, sports scientists from the Australian
Institute of Sport (AIS) have undertaken video based analysis of KPVs as-
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sociated with elite half-pipe snowboard competitions [10]. The video based
analysis is currently the most readily available method for coaches, sports
scientists, competition judges and recreational users to gather the most ob-
jective information from acrobatic maneuvers as possible and assess style
and run execution. However, video based analysis poses intrinsic time de-
lay in information feedback and is a labour intensive form of analysis. Due
to the requirement for synchronization of cameras, exterior orientation and
determination of the cameras’ position, all video based systems require a
large amount of infrastructure as well as considerable setup time. Video
based analysis has, therefore, not been adapted for everyday recreational
use as well as for training purposes, despite its ability to provide objective
observations. Novel strategies have been evolving to allow sensors to be
more capable of interacting with the physical world, and to provide sport
statistics in a convenient way.

An electromagnetic tracking system has been introduced in [11] to quan-
tify the kinetics and kinematics associated with snowboarding. The joint
moment torque and angular displacement information related to snowboard
turns is monitored by post-processing the data captured on snow by the
electromagnetic tracking system. When the object is placed inside vary-
ing yet controlled magnetic fields, voltages are induced in the sensor coils.
These induced voltages are used by the measurement system to calculate
the position and orientation of the object [12]. Additional research has been
conducted to measure the kinematics of the skier and snowboarder feet and
legs during maneuvers using a similar electromagnetic motion tracking sys-
tem [13]. A dynamometric platform has been capitalized for field based data
acquisition while snowboarding [14]. Without any interaction with current
snowboard binding technology this dynamometric platform measures all the
load components transmitted between the boots and snowboard bindings.
Therefore, this technology facilitates the capability to acquire quantitative
information on the torques and forces imparted by the boot on the bindings.

2.1.2 Potential of Micro-Technology

The research in the previously mentioned field based assessment methods
is a worthwhile goal for collecting information on the kinematics of technical
skill based sports, such as skiing and snowboarding. Unfortunately, certain
intrinsic drawbacks preclude its growth and the wide application of these
methods. The bulky electromagnetic tracking system [11] attached to the
athlete’s leg and the 10 kg measurement system which is carried by the
researcher and tethered to the athlete is quite an obtrusive measurement
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system. The weight of this monitoring system on the subject alone would be
enough to constrict and alter their normal movement patterns, removing any
relevance to real life snowboarding or skiing techniques. Therefore, a heavy
monitoring system with tethered requirements is unsuitable for any data
collection for elite level athletes training or competing in aerial acrobatic
events with elements of risk involved [2].

With the advent of small scale technologies, a promising alternative,
MEMS has drawn major attention from the sports science community due
to its light weight and unobtrusive nature. MEMS sensors are capable of
measuring human motion thousands of times per seconds in multiple axes
without the problems associated with size and weight. Micro sensors are
easy to attach anywhere on the athlete and do not limit the natural mo-
bility. Moreover, onboard data storage technology along with the MEMS
sensors diminishes the necessity for tethering bulky equipment. Therefore,
MEMS inertial sensors, such as triaxial accelerometer, triaxial gyroscope,
triaxial magnetometer etc., possess enormous potential in monitoring nat-
ural, unaltered and unobstructed acrobatic maneuvers of athletes in high
risk sports in a realistic manner. There are challenges involved in using
the capabilities of MEMS IMUs to calculate reliable and accurate objective
information relevant to the end user [2]. Furthermore, limited processing
capability and battery power cause the challenges to increase for small size
wearable integrated systems dedicated to online processing, such as the Re-
con goggles.

2.2 Jump Detection and Air Time Calculation

One of the primary features of the Recon goggles is the ability to detect
jumps while skiing and snowboarding as well as during acrobatic maneuvers
in similar sports. These features are also essential for determining the ex-
pected KPVs. Once the jump start and jump end epochs are determined,
the duration of the aero phase of the athlete, i.e. AT, can be derived easily.
A number of different types of sensors are being used to detect the occur-
rence of the jump and determine the associated AT. Among MEMS inertial
sensors, the accelerometer is significantly more popular for this purpose due
to its capability of capturing the changes in an athlete’s dynamics related
to jumps.
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2.2.1 Inertial Sensor Based Techniques

A significant amount of work has been done by Australian sports engi-
neers to provide sport specific KPV information automatically and imme-
diately post run for skiers and snowboarders. These developed technologies
allow coaches and competition judges to automatically and objectively as-
sess athletic performance in the environment in which half-pipe snowboard-
ing takes place [2, 10, 15, 16]. For example, a signal processing technique
was developed to calculate the AT associated with each individual aerial ac-
robatic manoeuvre performed during all half-pipe snowboard runs detected
in [2]. MEMS accelerometers were used as data capturing sensors. All ac-
celerometer units underwent a static calibration in three axes (up/down,
forward/backward and left/right) prior to each data collection session align-
ing each axes of sensitivity with and against the direction of gravity. As
reported in [2], half-pipe snowboarding generates a very distinct raw triaxial
accelerometer data trace. The forward/backward and up/down acceleration
axes were reported to display elevated accelerations during the aero phase
of aerial acrobatic maneuvers. As a result of the substantial increases and
decreases in acceleration throughout the performance, the power levels were
reported to rise during the aero phase. Thus, jump locations were detected
and jump windows were extracted by analyzing the entire trace for elevated
levels of acceleration and utilizing a sliding Fast Fourier Transform (FFT)
window and subsequent power analysis of average power levels.

A threshold based algorithm was used to identify the jumps within a
trace by evaluating each FFT window for frequencies ranging from 0.25 −
0.85 Hz (as aerial acrobatic maneuvers occur relatively rhythmically with
a period of 1.2 − 4.0 s) [2]. For detecting the AT, a two pass method was
proposed in this study. In the first pass, the accelerometer data was quan-
tized into three levels/states, namely maximum, minimum and transition.
In the second pass, a technique was applied to discard false jumps detected
by focusing on the sport specific possible durations of aerial acrobatic ma-
neuvers. The duration of any component between 0.8−2.2 s was considered
to be a valid aerial acrobatic maneuver. It was claimed by Harding et al.
that this range would cover most aerial acrobatic ATs completed by half-
pipe snowboard athletes. However, the threshold was selected heuristically
for the algorithm and no general threshold selection scheme was presented
in [2].

In a similar study, a preliminary automated feedback system based upon
MEMS sensors was designed to calculate objective information on these
sport specific KPVs [10]. The authors, Harding et al., argued that the results
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would provide practical benefits for elite half-pipe snowboard training and
current subjective judging protocols.

According to the method for detecting flight phase (i.e. the aero phase
of the jump) in ski jumping proposed in [17], acceleration data, sampled at
200 Hz was stored in the digital memory and a FFT analysis was conducted
on the overlapping Hanning windows comprising 256 points. It was reported
that the maximum amplitude of the acceleration at the initial flight phase
was clearly large (over 2.5 G) in each local coordinate system. In this study,
angular rate/velocity of the athlete was also used to detect jumps. The peak
angular velocity, captured by MEMS gyroscopes, at the initial flight phase
was reported to be produced 0.2 s later than the peak acceleration. The
peak power spectrums for acceleration in three directions just after take-off
were observed at 9.37 Hz. Peak power spectrums for angular velocity just
after take-off were reported to be produced at the frequencies of 9.37 Hz in
the anteroposterior axis of the trunk, and at 8.59 Hz in the transverse axis
and the longitudinal axis. These peak power spectrums were granted as the
evidence of jump or flight of the athletes.

In [18], an unorthodox way of sensing loft was proposed. Single and
multiple accelerometers were used to sense the vibration created by a snow-
board, skis or mountain bike, moving along a surface. While moving, the
voltage output provided by the accelerometer generates a noisy spectrum
over time. It was reported that the vibrational spectrum generated during
the aero phase for the athlete is generally much smoother than the spectrum
generated while in motion on the surface. This is because while in air, the
sporting equipment (i.e. skis or snowboard) is not subjected to the random
vibrations of the road or ski slope. Accordingly, this relatively smooth spec-
trum was discerned from the rest of the spectrum by the microprocessor
subsystem and evaluated to generate the AT. The time difference between
the epochs of the end and start of the smooth spectrum was deemed as the
airtime by the authors. Because the vibrational spectrum is affected by the
particular activity of a user, e.g. standing still, included with the micro-
processor subsystem of the invention was a means for assessing boundary
conditions of the spectrum. For excluding certain conditions from determin-
ing the air/loft time, a lower boundary of 500 ms and an upper boundary of
5 s were fixed. Any events with elapsed time duration outside this boundary
condition are excluded from the determination of loft time.
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2.2.2 Non-Inertial Sensor Based Techniques

A number of non-inertial sensor based techniques for jump and airtime
detection were proposed in [18]. The authors, Fleantov et al., proposed loft
sensors constructed with the following technologies:

• a microphone assembly that senses a noise spectrum

• a switch that is responsive to the weight of the user of the vehicle

• a voltage-resistance sensor that generates a voltage indicative of a
vehicle’s speed.

The loft sensors proposed in this study sense a spectrum of information,
e.g. a vibrational or sound spectrum and the microprocessor subsystem
determines the relative change in the spectrum of information. Further-
more, the microprocessor interprets this relative change in the spectrum to
determine the loft time. For example, the microphone based embodiment
detects sound waves and provides a voltage output accordingly. Similar to
the accelerometer based system described earlier, the microphone senses the
vibration of the vehicle, e.g. snowboard or skis, moving along the surface.
From the smoother spectrum during aero phase, the loft sensor senses the
jump and determines the AT.

Another embodiment of the loft sensing system that is proposed in [18]
is a switch that rests below the boot of the skier and that senses the pressure
caused by the weight of the skier. When the skier is on the ground, the boot
squeezes the switch, thereby closing it. The closed switch sends a distinct
input to the microprocessor subsystem. When the skier jumps into the air,
the switch opens up and renders the microprocessor to detect the openness
of the switch. When the skier lands on the ground the switch closes again.
The duration of the switch state being open is determined by the subsystem
to calculate the loft time.

In the same paper [18], Fleantov et al. proposed a pad that can be placed
under the skier’s boot and changes capacitance as a function of the change
in applied pressure. The capacitance changing element is then connected to
a circuit, incorporating a monostable multivibrator through a resistor. The
value of the resistor is fixed while the variable capacitance causes the pulse
train generated by the monostable multivibrator to change its frequency
depending on the pressure exerted on the pad. When the pulse train repe-
tition rate increases, the value of the capacitance decreases and the skier’s
boot applies less pressure on the pad. This event marks the start of a jump
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and beginning of the AT measurement. When the pulse repetition rate de-
creases, meaning a increase in capacitance, this indicates that the boot is
applying greater pressure on the pad. This event marks the end of the jump
as well as the end of the AT measurement.

2.2.3 Application of Wavelets

The acceleration of a snowboarder or skier at the begining of a jump
(take-off for the flight) and at the end of the jump (landing of the flight), re-
sults in a sudden change in acceleration. The detection of this abrupt change
in signals and/or systems is a classic problem in signal processing, especially
in the vast research field of detecting singularities or non-stationarity in a
stationary signal. Cusp or jump location identification techniques of any
signal encompasse a wide variety of signal processing tools and demand
very customized and application specific solutions. Among the various sig-
nal processing tools, wavelet analysis has proven to be useful in irregularity
detection of a signal for numerous areas of application. Wavelet coefficients
generally exhibit high peaks near abrupt changes or cusps of the underlying
signal. Therefore, even in the presence of additive noise, by checking the
absolute value of wavelet coefficients it is possible to detect discontinuities
in an otherwise smooth curve.

The problem of detecting a mean value jump of a stationary random pro-
cess was addressed in [19] by means of the wavelet transform. A matched
filter based approach was also proposed in this study for which an ideal
knowledge of the Power Spectral Density (PSD) of the signal was needed.
However, this is not generally the case. Therefore, a second approach was
proposed using the classic pattern recognition principle relying on the corre-
lation between the signal and the signature. Typically, wavelet based statis-
tical signal processing techniques model the wavelet coefficients as indepen-
dent or jointly Gaussian. To address the non-Gaussian statistics encountered
in real world signals, a new framework for statistical signal processing based
on the wavelet domain Hidden Markov Model (HMM) was proposed in [20].
The efficient expectation maximization algorithm was also developed in this
study for fitting the HMM to observational signal data. The new framework
was claimed to be suitable for a wide range of applications, including signal
estimation, detection, classification, prediction, and even synthesis.

A method of detecting the cusp or an incident in the traffic flow was
presented in [21]. Unlike the existing wavelet incident detection algorithm,
where the wavelet technique was utilized to denoise data before the data
was input into an algorithm, features that were extracted from traffic mea-
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surements by using wavelet transformation were directly utilized in detect-
ing changes in traffic flow. Using the Peaks Over Threshold modeling of
the noisy wavelet transformations and extreme value theory, a method for
detecting an arbitrary number of discontinuities in an unknown function
observed with noise was proposed in [22].

2.2.4 Recon Application: Feasibility of Current Methods

To develop the jump detection and AT calculation algorithm for the Re-
con goggles, extensive insight can be achieved from the prevailing relevant
studies as previously discussed, even though most of the techniques were
devoted to particular applications different from the application considered
here. However, the majority of the inventions were developed using com-
mon platforms, e.g. FFT. Unfortunately, none of the current techniques
meet Recon’s requirements entirely. The significant characteristics of cur-
rent methods which are not conducive with the application of Recon goggles
are as follows:

1. The Recon goggles demand a online (real-time and onboard) algorithm
to detect jumps which should be computationally light to save battery
power and instantaneous feedback. An FFT algorithm for jump de-
tection, as proposed in [2, 10, 15, 17], requires continuous heavy pro-
cessing of the acceleration data. Therefore, FFT analysis is not likely
to be a good option for any online algorithm required by Recon even
if it is useful for offline processing .

2. The use of PSD extracted from a sliding FFT window [2, 10, 15, 17]
for detecting jump and AT is heavily dependent upon the window size
and its position relative to the abrupt change in acceleration. The
expected high power may not even be captured if the window size is
not precisely accurate. However, no criterion was proposed for choos-
ing the proper window length in the related papers. Moreover, high
power level, due to the sudden shift in acceleration, may continue for
a number of consecutive FFT windows. In such cases, determination
of the proper epoch for jump start or jump end becomes ambiguous.
These phenomena will be discussed in detail in Chapter 3.

3. In most of the accelerometer data based jump detection and AT deter-
mination techniques, sensor calibration and bias correction is neces-
sary. However, sensor calibration before using a device like the Recon
goggles is very inconvenient for recreational users, even for coaches
and professional athletes.
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2.2. Jump Detection and Air Time Calculation

4. Almost all the current methods use stringent thresholds for the ac-
celeration or post processed data, which causes the algorithm to lose
generality. For fixed thresholds to work, bias correction and calibra-
tion is also necessary. This is not suitable for devices like the Recon
goggles which are targeted for users in different environmental condi-
tions with ease of operation. Some of the studies, e.g. [2], used a very
low threshold so that no event is missed. However, implications such
as too many false detections are there for these sort of strategies.

5. Most of MEMS accelerometer based techniques [2, 10, 15, 17] work
with raw acceleration data captured with individual accelerometers
aligned in specific directions with respect to the athlete’s body. At-
taching the accelerometers in exact alignment with direction is itself
fastidious. Moreover, the orientation of the body part to which the
sensors are attached is not the same for all body parts even for any
particular acrobatic maneuver. The magnitude of the readings from
the sensor may drastically change with a slight change from the ex-
pected alignment of the sensors. This phenomenon poses high risk of
failure to detect events for the fixed threshold and/or individual axis
acceleration based algorithms.

6. Strategies like quantization, as in [2], can also cause information loss
when trying to find the exact epoch for jump start or end.

7. Certain boundary conditions, e.g 0.8− 2.2 s in [2], 0.5− 5.0 s in [18],
were set to distinguish jumps from other events, such as abrupt head
movements. However, small jumps with AT less than these lower
boundaries are reported frequently, especially for nonprofessional ath-
letes. Therefore, the use of these boundary conditions will limit the
use of the Recon goggles.

8. Examples shown in [2, 10, 15, 17, 18] are mostly for very well behaved
data. However, it can be observed that low cost IMU sensors produce
very noisy readings. It is quite common for the low cost IMU sensors to
produce readings with true features buried under the noise. Movement
artifacts also arise frequently from the rapid movements of athletes
to maintain balance or to add an extra component of style to their
acrobatic performance. All these undesired signal attributes should
be accounted for to develop any robust algorithm.

9. In [18], it was assumed that the spectrum of acceleration is always
smooth during the flight phase of the athlete. However, this is often
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not the case for the jumps with complex acrobatic maneuvers such as
spinning and flipping. The extra acrobatic components during the aero
phase will render the IMU sensors to lose their spectral smoothness.

10. The biggest challenge in implementing any wavelet based algorithm is
the computational demand of the wavelet decomposition. For online
processing of the KPVs it is required that the computation tool be
power efficient with very little time lag in producing feedback which
is not always the case for wavelet analysis.

2.3 Jump Horizontal Distance, Height and Drop
Detection Strategies

The task of determining the horizontal distance, height and drop of
jumps for outdoor sports disciplines actually falls under the research for
trajectory determination of the athlete during the loft period. Trajectory
determination in sports application is relatively more explored than the AT
detection discussed earlier. Even though every sport has its own method
for performance analysis depending on the unique dynamics, ergonomic re-
quirements, and trajectory determination techniques of the sport, most have
developed with similar techniques. The general strategies of trajectory de-
termination are discussed below.

2.3.1 Imagery Based

Dartfish [23] has developed a powerful tool using cameras to provide
qualitative information about athletic trajectories. Their StroMotion tech-
nology is able to create trajectory video footage revealing the evolution of
an athlete’s movement, technique, execution and tactics. It is possible to
superimpose one athletic movement over another for precise comparisons
using the SimulCam technology developed by Dartfish. The developed sys-
tem utilizes invariant image retrieval techniques, which detect the common
features in the images captured for two different athletes, so that the images
of the two different trajectories can then be superimposed and compared.
Figure 2.1 and Figure 2.2 show examples of these two technologies. These
methods are only useful for relative analysis as quantitative data can not
be extracted. However, stereo-camera systems are able to provide highly
accurate, quantitative information about the 3D trajectory and motion of
athletes [3]. In [24], trajectory analysis was performed using single cam-
era and stereo-camera systems. Codamotion has developed systems with
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Figure 2.1: StroMotion highlights the essential moments in an athletic
performance.

Figure 2.2: The movement and form of two performances is compared
with SimulCam.

infrared LEDs which work as active markers that are detectable by the
cameras [25]. Passive marker systems for optical or infrared cameras have
also been developed [26]. Only the markers are visible on the image in an
infrared system. An advanced markerless system has been developed by
Organicmotion [27]. For this system, volume models are fitted specially to
the athlete. Each of these unique systems (active marker, passive marker
and markerless) [25–27], are able to capture the 3D motion of the subject
which can be used to derive the movement and trajectory of the athlete.
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2.3.2 Satellite Based

KPVs such as jump horizontal distance, height and drop are directly
related to the position information of the athlete. Therefore, satellite based
positioning has been widely used in sports applications. Many commercial
products are available that can provide the satellite navigation tracking
information and/or KPVs derived from satellite positioning [4, 5, 28–33].
GPS has been used for trajectory determination in multiple sports disciplines
such as skiing, ski jumping and snowboarding [3, 34, 35], water sports [36, 37]
and many others.

Unfortunately, GPS signal reception is not ensured for athletes perform-
ing maneuvers in adverse environments where satellites may get masked due
to naturally occurring obstructions, such as cliffs, and hills. Therefore, in
most sport disciplines, continuous observation of the athlete’s performance
cannot be guaranteed. Moreover, the accuracy of low cost single point re-
ceivers does not always meet the requirements. For example, measuring
jump height or drop with the Recon goggles is not possible because of the
poor accuracy of the integrated GPS receiver along the vertical axis. Highly
accurate dual-frequency GPS receivers are also not feasible for most sports
applications because of their larger size and cost. In addition, the low up-
date rate of the GPS receiver precludes the measurement of KPVs during
relatively short acrobatic maneuvers in such sports as ski jumping or snow-
board half-pipe. For example, the 1 Hz update rate of the single point
GPS receiver available in the Recon goggles is not suitable for measuring
the horizontal distances for jumps with small AT such as ∼ 0.5 s. Even for
long jumps, the low update rate of the GPS receiver is unable to guarantee
to record position fixes near the jump start or the jump end epochs with
acceptable accuracy.

2.3.3 Satellite and Inertial Navigation Based

Although a MEMS IMU cannot provide standalone navigation, INS with
GPS aiding or GPS integration can provide continuous reliable tracking for
sports applications. Integration of INS with GPS potentially bridges the
GPS outages along with compensating for the systematic inertial sensor er-
rors. The combination of the high short-term (relative) accuracy of the INS
results and longterm (absolute) accuracy of GPS results smears the varia-
tion in positioning performance and provides data at a high rate including
good orientation estimates [3]. Therefore, GPS/INS integration has been
widely used for reliable tracking such as in [38–42]. However, GPS/INS in-
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tegration incurs a heavy computational load on the microprocessor of the
system which is not always affordable.

2.3.4 Alternative Techniques

There are a few radio technologies that can be used for position fixing
instead of satellite navigation such as Ultra-Wide Band (UWB) [43, 44] and
Wireless Local Area Networks (WLAN) [45]. These systems can perform
well for indoor applications where the GPS signal is unavailable. Unfortu-
nately, these technologies only work for a short range and the infrastructure
needed for them is considerable. Moreover, shadowing by the human body
and multipath propagation limit the use of these technologies for perfor-
mance evaluation of athletes [3].

2.4 Summary

Upon reviewing the above-mentioned systems it becomes apparent that
none of these systems or their methods can be seen as a complete solution
for the Recon goggle requirements. Indeed, every system and strategy has
its advantages and drawbacks for sport application. In terms of available re-
sources, observed parameters and desired accuracies, however, a GPS aided
inertial sensor based power efficient algorithm is the most suitable solution
for the Recon goggles.
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Chapter 3

Jump Detection and Air
Time Determination

In this chapter, sensor signals are investigated to develop an algorithm
to detect jumps and the corresponding Air Time (AT) involved. The com-
monly applied FFT is also explored to detect jump indicative changes in the
sensor signals. A novel Windowed Mean Canceled Multiplication (WMCM)
method to detect jump occurrence is proposed. Another novel method to
determine the AT is presented in the later part of the chapter. Experimental
results and comparative analysis among the proposed algorithm, the current
Recon goggle algorithm and the Ripxx [4] algorithm are presented.

3.1 Sensor Selection

Among all the sensors available in the Recon goggles, the accelerometers
and gyroscopes measure the dynamics involved in the motion of the athlete.
Accelerometers capture the change in acceleration involved in jump take-
off and jump landing. The change in acceleration is very consistent and
significant from jump to jump. On the other hand, the gyroscopes are able
to record the high rate of angular movement of the head that is likely to
occur during the start and end of the loft motion. However, the high angular
rate of head movement is not guaranteed for all jumps. Moreover, the peak
angular rate tends to vary its relative position with respect to jump end or
start from jump to jump. Therefore, the accelerometers are deemed to be
the most suitable sensor for jump detection and AT determination.

3.2 Accelerometer Data

Ideally, in static conditions such as standing still on the ground, the
sensor body frame experiences antigravity (vertically upward), which has the
magnitude of 1 g, where g = 9.81 ms−2. While in free fall, no acceleration,
including antigravity, is experienced by the sensor body frame. Therefore,
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in an ideal noiseless condition the resultant body frame acceleration should
be 1 g in static condition and 0 g in free fall. These ideal scenarios will help
understanding the accelerometer data recorded while ski jumping.

An example of typical acceleration data captured by the triaxial MEMS
accelerometer during a ski jump is shown in Figure 3.1. This data was
recorded with Recon goggles which were mounted on the skier’s head. The
acceleration along the forward/backward (anteroposterior), right/left (medi-
olateral) and down/up (vertical) axes in the body frame are termed as abx,
aby and abz respectively. It is significant in the figure that abx and aby exhibit
a relatively low value (∼ 0 g) during the aero phase, i.e. while the athlete is
in the air. Except for the aero phase these sensors report significant accel-
erations which cause the resultant acceleration to be near 1 g. The sudden
change in accelerations are also noticeable at the start and end of the aero
phase. It should be noted that the accelerations exhibited by the three axes
of the body frame depend entirely on the orientation of the body frame. It
is not guaranteed that any specific body frame axis will capture the sudden
change in acceleration during the loft motion. However, the abrupt change
in acceleration is always captured in the total resultant acceleration ab as
shown in Figure 3.2, where ab =

√
(ab2x + ab2y + ab2z ) .

The resultant acceleration falling near 0 g while the skier is in the air,
provides an indication of the free fall state or, in other words, jump occur-
rence. However, due to the presence of noise, head motion and disturbance
signals from other activities, the detection of this drop in acceleration is not
straight forward. A typical signal due to disturbance and head motion is
shown in Figure 3.3. The similarities among the signal patterns during the
time of these unwanted motions and jump are clearly noticeable. A signifi-
cant amount of noise is also present in these low cost MEMS sensor signals.

3.3 Fast Fourier Transform

The sliding windowed Fast Fourier Transform (FFT) is widely proposed
to detect the abrupt change in acceleration as in [2, 10, 15, 17]. Figure 3.4
shows the sliding windowed FFT of the jump start region of the resultant
acceleration shown in Figure 3.2. Here, the FFT window length is 0.6 s and
each window overlaps with the following by 0.4 s. The sampling rate of the
data is 100 Hz. The time stamp indicated above each plot represents the
epoch at which the sliding window begins. The FFT for several windows
preceding and following the jump start region are shown. Even though
fluctuating spectrums at higher frequencies are noticeable in the windows
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Figure 3.1: Typical acceleration in the body frame.
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Figure 3.4: Sliding windowed FFT of ab (resultant acceleration) near jump
start region. Jump starts at 19.93 s.

neighboring that which contains the jump start, no distinct pattern in the
spectrum can be observed for the jump start window. Similar observations
can also be made for the sliding windowed FFT of the jump end region as
shown in Figure 3.5.

The Gabor Transform (GT) [46] is explored as an alternative for the
regular windowed FFT. In the GT, the data is multiplied with a Gaussian
window before applying the FFT, whereas in the regular windowed FFT
the data can be multiplied with a square window with the unity magnitude
before applying the FFT. Figure 3.6 and 3.7 show the results of the sliding
GT of the jump start and end region of the resultant acceleration shown
in Figure 3.2. The spectrums are smoother than what is observed for the
FFT. Still, the ripples at higher frequencies exhibit a random behavior near
the jump start/end region without showing any consistent detectable pat-

29



3.3. Fast Fourier Transform

0 20 40
0

0.5

1

1.5

2

A
m

pl
itu

de
 [

g]

Starts at 20.99s

Frequency (Hz)
0 20 40

Starts at 21.19s

Frequency (Hz)
0 20 40

Starts at 21.39s

Frequency (Hz)
0 20 40

Starts at 21.59s

Frequency (Hz)
0 20 40

Starts at 21.79s

Frequency (Hz)

0 20 40
0

0.5

1

1.5

2

Frequency (Hz)

A
m

pl
itu

de
 [

g]

Starts at 21.99s

0 20 40
Frequency (Hz)

Starts at 22.19s

0 20 40
Frequency (Hz)

Starts at 22.39s

0 20 40
Frequency (Hz)

Starts at 22.59s

0 20 40
Frequency (Hz)

Starts at 22.79s

Jump
end
window

Figure 3.5: Sliding windowed FFT of ab (resultant acceleration) near jump
end region. Jump ends at 21.62 s.
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Figure 3.6: Sliding GT of ab (resultant acceleration) near jump start re-
gion. Jump starts at 19.93 s.

tern. Even if the window for jump start/end is detected through the FFT
or GT, the jump start/end epoch can only be detected with the very poor
accuracy of the sliding window length, which, in this case is 0.6 s. The fluc-
tuation spectrum patterns exhibited in and neighboring the jump start/end
windows also vary significantly with the window size chosen and jump du-
ration. Therefore, besides the heavy computational load, the inconsistent
spectrum and poor accuracy provides enough rationale to discard the sliding
windowed FFT or GT as a tool for jump detection for the Recon goggles.

3.4 Sensor Correlation and Covariance

In steady motion or static condition of the athlete the recorded acceler-
ations in the three orthogonal axes of the body frame are understandably

31



3.4. Sensor Correlation and Covariance

0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (Hz)

A
m

pl
itu

de
 [

g]

Starts at 20.99s

0 20 40
Frequency (Hz)

Starts at 21.19s

0 20 40
Frequency (Hz)

Starts at 21.39s

0 20 40
Frequency (Hz)

Starts at 21.59s

0 20 40
Frequency (Hz)

Starts at 21.79s

0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (Hz)

A
m

pl
itu

de
 [

g]

Starts at 21.99s

0 20 40
Frequency (Hz)

Starts at 22.19s

0 20 40
Frequency (Hz)

Starts at 22.39s

0 20 40
Frequency (Hz)

Starts at 22.59s

0 20 40
Frequency (Hz)

Starts at 22.79s

Jump
end
window

Figure 3.7: Sliding GT of ab (resultant acceleration) near jump end region.
Jump ends at 21.62 s.
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uncorrelated due to the random nature of noise, head motion and fluctuation
in the accelerations. However, it is virtually guaranteed that all three ac-
celerometers in three orthogonal directions will experience a sudden impact
if there is an abrupt change in motion dynamics. During the take-off for a
jump, forces exerted by the athlete and the subsequent free fall state cause
a rapid change in the athlete’s dynamics. Hence, all the accelerometers are
expected to experience a peak (positive or negative) value during this brief
period of sudden change in acceleration. With similar reasoning, all the
accelerometers are also expected to record a local maximum or minimum
during the landing of the jump. Assuming this rationale to be valid, the
following analysis of the accelerometer data is conducted.

The cross-correlation of two discrete time signals, e.g. abx and aby, can be
defined as

rxy(kT ) =
+∞∑

n=−∞
abx(nT )aby(nT − kT ), k = 0,±1,±2, .... (3.1)

Here, the sampling period T = 1
F and the sampling frequency F = 100 Hz.

The index k is the discrete lag parameter and kT is the time shift. For
online signal processing, the data is captured as a window. Therefore, cross-
correlation of the two signals captured in a window from tjs to tje can be
expressed as

rwxy(kT ) =
N−1∑

n=−(N−1)

abx(tjs + nT )aby(t
j
s + nT − kT ), k = 0,±1, ...,±(N − 1)

(3.2)
where

tjs = beginning epoch of the jth data capture window, (integer multiple
of T)

tje = ending epoch of the jth data capture window, (integer multiple of
T)

N = number of samples in the data capture window

= (tje − tjs)/T + 1
w = center epoch of the window

= (tje + tjs)/2.

The purpose here is to capture the epoch of the highest correlation be-
tween any of the two accelerometer signals, given that one expects two or
more accelerometers to be highly correlated at jump start and end. The
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Figure 3.8: Cross-correlation at zero lag of windowed abx and aby.

region of simultaneous high correlation in all the acceleration signals is very
brief in span. Therefore, the cross-correlation at zero lag, i.e. rwxy(0), is the
main focus of interest for each window. Figure 3.8 shows the crosscorre-
lation of abx and aby of the data shown in Figure 3.1. For convenience, the
cross-correlation values are plotted against the center epoch of the pertinent
window. The window size, i.e. tje−tjs, is 0.6 s. The window size is empirically
chosen to produce best results. The peak values at the jump start and end
region are clearly noticeable in this cross-correlation plot. Hence it proves
the hypothesis that the acceleration signals are highly correlated during the
start and end of the aero phase due to the abrupt change in the dynamics
involved.

In Figure 3.8, undesired fluctuations with considerable magnitude are
present before and after the jump region. The nonzero average value of
the sensor signal causes this high cross-correlation value. Moreover, as ac-
celerometer values are very low during a jump, it is possible to miss a cross-
correlation peak if one of the accelerometer values is essentially zero. To
overcome these difficulties, covariance of the sensor signals may be used.
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Figure 3.9: Covariance at zero lag of windowed abx and aby.

Covariance of the two discrete time signal abx and aby can be defined as

cwxy(kT ) =
N−1∑

n=−(N−1)

{
abx(tjs + nT )− 1

N

N−1∑
n=0

abx(tjs + nT )

}
·

{
aby(t

j
s + nT − kT )− 1

N

N−1∑
n=0

aby(t
j
s + nT )

}
, (3.3)

k = 0,±1, ...,±(N − 1). (3.4)

Figure 3.9 shows the covariance of abx and aby at zero lag, i.e. cwxy(0) versus
the center epoch of the window. Similarly, in this plot, the peaks near jump
start and end are prominently distinguishable. Moreover, it is apparent that
the region neighboring the jump is smoother than what is seen for the cross-
correlation plot. Therefore, the covariance of the sensor signals would be a
better tool for jump detection. The presence of a peak with high magnitude
is also noticed after the peak near take-off. These scenarios may appear due
to the two extremes (one minimum and one maximum) experienced by the
accelerometers involved in jump take-off and landing.

The acceleration experienced by the body frame depends entirely on the
orientation and direction of the forces involved in the jump. Consequently,
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the covariance will differ significantly depending on the selection of two
sensor signals for any particular jump. Moreover, using the covariance value,
it is only possible to predict the jump start and end epochs with an accuracy
of the covariance window length. Window length cannot be reduced, as it
will diminish distinct features of covariance near the jump region. Exploiting
the concept of covariance, a novel intuitive method is presented in the next
section, which can subdue the above mentioned problems.

3.5 Windowed Mean Canceled Multiplication

From the previous discussion, it is understood that all three accelerome-
ter signals should be involved in the jump detection algorithm to overcome
the problem pertaining to the orientation uncertainty of the body frame. An-
other key factor is that the high peak value of the covariance is contributed to
predominately by a very small number of epochs which fall within the brief
time span of the event “jump start” or “jump end”. Based on these ratio-
nale, the novel Windowed Mean Canceled Multiplication (WMCM) method
is proposed. WMCM of the three acceleration signals abx, aby and abz captured

in the jth window spanning from tjs to tje is defined as

mxyz(t
j
s + nT ) =

{
abx(tjs + nT )− 1

N

N−1∑
p=0

abx(tjs + pT )

}
·

{
aby(t

j
s + nT )− 1

N

N−1∑
p=0

aby(t
j
s + pT )

}
·

{
abz(t

j
s + nT )− 1

N

N−1∑
p=0

abz(t
j
s + pT )

}
,

n = 0, 1, 2, ..., N − 1. (3.5)

Since the multiplied values are not added together for a particular win-
dow in WMCM, the information on epochs with the most correlations is not
lost. The involvement of all three axes accelerations also ensures that the
change in dynamics is captured regardless of sensor orientation. Figure 3.10
shows the WMCM values of the acceleration data set shown in Figure 3.1.
It is evident from the plot that near the take-off and landing regions the
WMCM value exhibits a very large magnitude response. WMCM values
other than in the jump region are very low in magnitude without any con-
siderable fluctuation. Therefore, with a safe threshold for WMCM, jump
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Figure 3.10: WMCM of abx, aby and abz.

occurrence can be detected with a good estimate of the jump start and end
epochs. However, due to disturbance activities and abrupt head motion a
high value in WMCM can be observed as also shown in Figure 3.10. To
verify the validity of any high value of WMCM indicating jump occurrence,
another complementary method is presented in the next section.

3.6 Preceding and Following Acceleration
Difference

In a static state or in motion with little change in the dynamics, the
resultant acceleration ab of an athlete exhibits noisy characteristics with a
steady mean. Therefore, the average values of the resultant acceleration over
consecutive windows should not differ by much if there is no abrupt change
in the resultant acceleration. However, at the jump occurrence region the
average value of the resultant acceleration falls drastically. If a time epoch
tI is selected near the take-off or landing region for ab, the neighboring
accelerations preceding and following tI are likely to differ significantly. This
difference in the preceding and following accelerations should serve as an
effective tool for jump detection.

Preceding and Following Acceleration Difference (PFAD) is computed
considering a certain window around the point of interest. Figure 3.11 shows
the PFAD windows of ab for a point of interest at epoch tI near the take-
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off region. LIpw and LIfw are the lengths of the windows preceding and
following tI respectively. The average resultant acceleration captured within
the windows preceding and following tI is termed ābIpw and ābIfw respectively.
PFAD at tI is the difference of these two averages. Therefore, the PFAD of
ab for any point of interest at epoch tI , where tI is an integer multiple of T,
can be defined as

dab(tI) =

NLI
pw∑

n=1
ab(tI + nT )

NLIpw
−

NLI
fw∑

n=1
ab(tI − nT )

NLIfw

= ābIpw − ābIfw (3.6)

where NLIpw = LIpw/T and NLIfw = LIfw/T are the number of samples

within the windows of length LIpw and LIfw respectively.
It is clear from the captured acceleration magnitude that the average

resultant acceleration within the preceding window ābIpw, will be significantly
greater than the average resultant acceleration within the following window
ābIfw. The opposite scenario will be observed if tI is near the landing region.

Therefore, dab(tI) should be a maximum if tI is near the take-off and a
minimum if tI is near the landing. At any other position except these two,
the PFAD value dab(tI) is not expected to exhibit any considerable mag-
nitude. Figure 3.12 shows the PFAD values of the resultant acceleration
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Figure 3.12: PFAD value of the resultant acceleration ab.

shown in Figure 3.2. For this example, the window lengths LIpw and LIfw are
set to 0.6 s. Selection of this window length depends on the jump category,
which is explained in Subsection 3.7.3. A maximum and a minimum with
large magnitude are evident near the jump start and the jump end respec-
tively. Another minimum just before the take-off and another maximum
just after the landing are also evident. These peak PFAD values appear
due to the gain in acceleration (mostly vertically upward and forward) just
before take-off and the gain in acceleration (mostly vertically upward and
backward) just after landing. Apart from the jump occurrence region, the
PFAD value dab(tI) is generally small and varies little. Therefore, PFAD
provides a powerful tool for detecting any jump occurrence. To be more
specific, from the PFAD value it is possible to determine whether tI is near
the jump start or the jump end. If dab(tI) is positive with a significant mag-
nitude, then tI is near the jump start or the take-off. On the other hand, if
tI is negative with a significant magnitude, then tI can be determined to be
near the jump end or the landing.

3.7 Jump Detection

Using the novel concepts of WMCM and PFAD a jump detection al-
gorithm is proposed in this section. The algorithm consists of two main
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steps:

• Step 1. Primarily detect the jump occurrence by WMCM.

• Step 2. Check the validity of the jump detection with PFAD.

3.7.1 Detection through WMCM

Data from the accelerometers in three orthogonal axes of the body frame
are captured in a window of (tje - tjs) = NT = 0.6 s. For each window the
WMCM value mxyz(t

j
s+nT ) is calculated. Then for each window, the max-

imum value of mxyz(t
j
s + nT ) is compared with a predefined threshold thm.

If, for a particular window, the maximum value of mxyz(t
j
s + nT ) is greater

than or equal to thm, then it is considered that a Jump Indication (JI) has
been detected at the corresponding time epoch tJI = tjs+n

j
maxT . Here, njmax

is the index of the maximum WMCM value for the jth window. To ensure
that the maximum WMCM value in a potential locality is considered as JI,
the maximum value of mxyz(t

j+1
s +nT ), i.e. maximum WMCM value of the

following window, is compared with the mxyz(tJI). If the maximum value

of mxyz(t
j+1
s + nT ) is greater than mxyz(tJI), the epoch of JI is updated

to tJI = tj+1
s + nj+1

maxT . Otherwise the previous value for tJI is preserved.
Thus, indication of jump occurrence, i.e. JI, is detected primarily through
WMCM and tJI is passed to the next step for verification.

WMCM Threshold

It is important to note that detection of either jump start or jump end
is adequate for successful detection of jump occurrence or JI. Depending on
where the sensors are mounted, the relative magnitude of the WMCM value
near the jump start and the jump end may vary. It has been empirically
found that, for the Recon goggles where the sensors are mounted on the
head, the WMCM value near the jump end is consistently greater than or
equal to what is observed near the jump start. For example, the magnitude
of the WMCM value near landing in Figure 3.10 is much higher than the
magnitude observed near take-off. Therefore, to be more resistive to false
JI detection and save power consumption, the threshold thm is set to a
higher value that only secures the detection of JI near the jump end or
landing. Hence, any JI near the jump start is not guaranteed to be detected
by this threshold. However, if any JI is detected near the jump start, the
corresponding JI at the jump end is overlooked. The sign of the PFAD value
at tJI , dab(tJI), is used to determine whether the JI is near the jump start
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or end. In this research, the threshold thm is set to a heuristically optimum
value of 0.20 g3.

For the data captured with the Ripxx device [4], which is strapped on to
the leg of an athlete, the scenario is opposite. That is, the WMCM value near
the jump start is consistently greater than or equal to the WMCM value near
the jump end. This is because the different body parts experience different
changes in dynamics for maneuvers. Consequently, the acceleration sensors
capture different accelerations depending on where the sensors are mounted.
Therefore, the threshold for the WMCM value should be set considering the
change in dynamics of the sensor attached to the specific body part.

3.7.2 Validity Check through PFAD

If any JI is detected by the WMCM procedure, the resultant acceleration
ab is calculated from the three axes acceleration data captured. Then the
PFAD value of ab at tJI , da

btJI is calculated and compared with a prede-
fined threshold thd. The selection procedure of thd is demonstrated later
in Section 3.7.3. If the magnitude of the PFAD value, |dabtJI |, is greater
than thd the detected JI is considered as a valid jump detection. Otherwise,
the detected JI is discarded as a false jump indication. It is also possible to
determine whether the JI is near take-off or landing from the sign of dabtJI
as mentioned earlier. This knowledge is important for the AT determination
algorithm proposed later in Section 3.8.

Figure 3.13 summarizes the concept of the proposed jump detection al-
gorithm. The plotted WMCM value mxyz is shifted by -2 g3 for visual
convenience. The high WMCM value will primarily report the JIs at the
jump start and jump end. Both the JIs will be validated by the high value
of PFAD at corresponding tJI . It should be noted that another JI will be
reported in the first step due to the high WMCM value near 9.5 s. This
detected JI will be discarded in the second step, as the PFAD value at the
corresponding tJI is negligible in magnitude. Thus, the proposed jump de-
tection method will only detect true jumps by filtering the false indication
in a two step method.

In Figure 3.13, LIpw and LIfw are selected to be 0.6 s. However, to
efficiently address a wide range of jumps with different characteristics, the
span of the PFAD windows can be varied. Depending on the acceleration
variation characteristics at the neighboring epochs of the detected tJI , JI
can be divided into two categories, namely high disturbance JI and low
disturbance JI. Both these categories can also be subdivided into two more
categories, high impact JI and low impact JI. Depending on the JI category,
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the threshold value, thd, for the JI validation process is selected.

3.7.3 Jump Indication Categories

JIs are categorized into high disturbance, low disturbance, high impact
and low impact. The high/low disturbance categories set the window length
for the PFAD calculation and the high/low impact categories determine the
threshold for the PFAD value.

High Disturbance JI. Generally for big jumps, where greater force is
involved in take-off and stronger thrust is felt at landing, abrupt head and
body motion cause high fluctuations in resultant acceleration near the jump
start and end regions. In such cases, the detected JI is termed as high
disturbance JI. Figure 3.14 shows an example of high disturbance JI. The
trough in resultant acceleration following tJI is due to the abrupt head
and body motions associated with hard landings. Jumps associated with
this type of JI generally have lengthy aero phase. It is understandable
from the figure that the PFAD value at tJI with narrow windows will not
be significant in magnitude due to the trough. On the other hand, wide
windows for PFAD calculations will lessen the effect of the trough and will
produce a PFAD value with greater magnitude at tJI . Therefore, relatively
higher values for LJIpw and LJIfw should be selected for high disturbance JIs.

For this research, LJIpw and LJIfw are heuristically selected to be 1 s for high
disturbance JIs.

Low Disturbance JI. In many cases, athletes try to minimize the re-
action force experienced by the body by conducting smooth take-offs and
landings. In such cases, neighboring resultant accelerations of tJI show less
fluctuations. Therefore, JI detected for this type of take-off or landing is
termed as low disturbance JI. An example of low disturbance JI is shown in
Figure 3.15. From the figure, it can be observed that the narrow window for
averaging is adequate to extract the high PFAD value at tJI . It is impor-
tant to note that the shallow trough is not deep enough to cause the PFAD
value to be insignificant. In fact, wide windows may render the PFAD value
to become less significant in magnitude. This is because low disturbance
JIs are generally detected for short aero phase jumps. Hence, the span of
wide windows around tJI may exceed the jump occurrence region, causing
higher resultant acceleration (as shown in dotted circle in Figure 3.15) to
be included in the averaging process. Therefore, a relatively lower value for
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Figure 3.14: High disturbance JI.

LJIpw and LJIfw is chosen for low disturbance JIs, which is 0.30 s in this study.

Depending on the WMCM value at tJI the above mentioned JI categories
can also be subdivided into two subcategories:

High Impact JI. If the abrupt change in acceleration during take-off or
landing occurs swiftly within a very brief time period, then the correspond-
ing WMCM value tends to be higher in magnitude. This is because the
mean cancelation process in WMCM causes the peak accelerations in the
sensors to stand out from their neighbors. Hence the resultant multipli-
cation at tJI , mxyz(tJI), exhibits high magnitude. Therefore, JIs with high
WMCM magnitude are defined as high impact JIs. In this study, any JI with
mxyz(tJI) ≥ 0.50g3 is considered a high impact JI. Figure 3.16 shows a high
impact JI along with the resultant acceleration and corresponding WMCM
value. Understandably, the JI is detected at the highest peak of WMCM
at 40.5 s. However, it can also be observed, as previously discussed, that
the PFAD value for narrow windows might not achieve a high magnitude
due to the presence of a high disturbance near tJI . Similar scenarios are
observed for general high impact JIs. Wide windows for PFAD will resolve
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this issue for lengthy aero phase jumps such as in Figure 3.16. Also, as pre-
viously noted, wide windows will not work for jumps with short duration.
Therefore, due to the unsteady nature of the resultant acceleration near JI,
the threshold thd is set at a relatively low value for validity check through
PFAD. Fortunately, this is also logically suited to the fact that any JI with
higher WMCM magnitude is a more eligible candidate than one with a lower
magnitude. Consequently, it is justified to have a less stringent threshold
for the validation procedure of the high impact JI primarily detected by the
WMCM procedure.

Low Impact JI. Take-offs and landings are often observed where the
change in resultant acceleration is steady and spans a prolonged period of
time. Therefore, the acceleration at tJI cannot excel itself significantly from
its neighbors. This phenomenon results in a relatively low value of WMCM
at tJI . In this case, the JI with a relatively low WMCM value is termed
as low impact JI. In this research, JIs with 0.20g3 ≤ mxyz(tJI) < 0.50g3

are considered low impact JIs. As mentioned earlier, JIs with a WMCM
value less than 0.20g3 are not considered as a valid JI. Figure 3.17 shows
an example of a low impact JI. It can be discerned from the figure that the
PFAD value is likely to have a high magnitude due to the steady nature of
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the resultant acceleration on opposite sides of tJI for both wide and narrow
windows. Therefore, for low impact JI the thd can be set to a higher value
relative to the case of high impact JI. Fortunately, this also makes logical
sense, as a JI with low WMCM value is more prone to be a false indication
of jump than a JI with high WMCM magnitude. Hence, a rigorous false
detection procedure with high threshold is rational for a low impact JI.

PFAD Threshold Selection

The selection of the PFAD threshold thd is done through a statistical
analysis, namely a Two-Sample t-Test [47], for both high and low impact
jumps. Acceleration data was collected with the Recon goggles for 27 ski
jumps. Then JIs were detected through WMCM and corresponding ābJIpw

and ābJIfw were calculated. For the purpose of this study, for jumps with aero

phase duration well over 1 s, LJIpw and LJIfw are set at 1 s. For the others,
the window lengths are set at 0.30 s. Depending on the WMCM value, the
jumps are then divided into sets of high impact and low impact jumps. Since
interest is focused on the difference in magnitude of ābJIpw and ābJIfw , the two
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sample t-Test is conducted with ābJIlow as one sample set and ābJIhigh as another

sample set. For any JI, ābJIlow and ābJIhigh are the minimum and maximum value

between ābJIpw and ābJIfw respectively.

In the two sample t-Test the test statistic is [47]

t0 =
ȳ1 − ȳ2

Sp

√
1
n1 + 1

n2

(3.7)

where ȳ1 and ȳ2 are the means of the samples of ābJIhigh and ābJIlow , and n1

and n2 are the sample sizes. It is assumed that ābJIhigh and ābJIlow have equal

variances. S2
p is the estimate of the common variance computed from

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(3.8)

and S2
1 and S2

2 are two individual sample variances, i.e. variances of ābJIhigh

and ābJIlow respectively. The hypotheses being tested by the t-Test are

• Null hypothesis H0: µ1 = µ2

• Alternative hypothesis H1: µ1 > µ2

where µ1 and µ2 are the means of ābJIhigh and ābJIlow . The observation models

are: ābJIhigh = µ1 + error and ābJIlow = µ2 + error.
To determine whether to reject H0: µ1 = µ2, t0 is compared with the t

distribution with n1 + n2 − 2 degrees of freedom. If t0 ≥ tζ,n1+n2−2, where
tζ,n1+n2−2 is the upper ζ percent point of the t distribution with n1 +n2− 2
degrees of freedom, H0 will be rejected. Here, ζ is the significance level,
which represents the possibility of rejecting H0 while it is in fact true. For
this test, ζ = 0.01 or 1%.

Table 3.1 lists the two samples collected for the low impact JIs. For a
1% significance level the calculated test statistic for low impact jumps is
t0 = 23.7975 > t.01,17+17−2 = 2.4487. As expected, the null hypothesis is
rejected and it is confirmed that µ1 > µ2. The extremely low P−value of
3.2184×10−22, where P−value is the smallest level of significance that would
lead to the rejection of the null hypothesis [47], proves the strong rejection of
the null hypothesis. However, the major goal of conducting this t-Test is to
know the range within which (µ1− µ2) is expected to lie for the low impact
JIs. Therefore, interest is focused on the confidence interval of the test,
which gives the range of the difference in means of the parameters (ābJIhigh,
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Table 3.1: Two sample t-Test for low impact JIs

Jump No. ābJIlow ābJIhigh

1 0.2939 1.8681
2 0.4915 1.8792
3 0.5255 1.5765
4 0.4384 1.8636
5 0.3136 1.6200
6 0.4369 1.7972
7 0.3926 1.4994
8 0.6478 1.2860
9 0.3205 1.6463
10 0.5037 1.8141
11 0.5072 1.6335
12 0.3574 1.6188
13 0.2552 1.5931
14 0.1568 1.6714
15 0.3652 1.6318
16 0.4095 1.6547
17 0.6945 2.0160

ābJIlow). The interval 1.1377 ≤ µ1−µ2 <∞ is the calculated 100(1−ζ) = 99%
confidence interval of the low impact JIs. In this regard, if a large number
of (ābJIhigh− ābJIlow), i.e. |dab(tJI)|, is gathered, 99% of them will be ≥ 1.1377.

The calculated confidence interval provides a reasonable estimate of the
value for the threshold thd for the low impact JI verification procedure. Since
a value of |dab(tJI)| = 1.1377 is copiously large for an acceleration difference,
a safer lower value can be selected for thd so that possibility of declaring any
valid JI as invalid is minimized. Therefore, to validate numerous possible
types of JIs, thd is selected to be 0.80 g for low impact jumps.

A similar test is done for the samples of high impact JIs as shown in
Table 3.2. Here, t0 = 6.2140 > t.01,10+10−2 = 2.5524 and P−value is 3.6460×
10−6. As previously discussed, the null hypothesis is also rejected here. The
99% confidence interval is 0.4531 ≤ µ1−µ2 <∞. Again, the lower boundary
of the confidence interval gives an estimate of the PFAD threshold. Due to
reasoning similar to that in the case of the low impact JIs, thd for high
impact JIs is set to a relatively lower and safer value of 0.25 g for this
project.
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Table 3.2: Two sample t-Test for high impact JIs

Jump No. ābJIlow ābJIhigh

18 0.7547 2.2298
18 0.6225 1.2437
20 0.8521 1.3228
21 0.7997 1.2297
22 0.8587 1.3239
23 0.7796 1.6223
24 0.5607 1.6255
25 0.6478 1.6595
26 0.8489 1.0170
27 0.9048 1.9652

False JI Detection

After any JI is detected by the WMCM procedure, the validity checking
steps through PFAD are as follows:

1. From mxyz(tJI) it is determined whether the JI is high impact or low
impact and the corresponding value for thd is set.

2. dab(tJI) is calculated considering LJIpw and LJIfw to be 1 s, i.e. as-
suming high disturbance JI, because high disturbance JI requires long
windows.

3. If dab(tJI) ≥ thd the JI is considered as valid and the AT calculation
algorithm is invoked. Otherwise the assumption that the JI is high
disturbance is discarded and one proceeds to the next validation step.

4. After the assumption that JI is categorized as high disturbance is
discarded, LJIpw and LJIfw are set to 0.30 s and dab(tJI) is calculated
again assuming JI to be low disturbance.

5. If dab(tJI) ≥ thd, the JI is considered as valid low disturbance JI and
the AT calculation algorithm is used. Otherwise, the JI is completely
discarded and considered to be a false detection.

6. After any false detection, the algorithm returns to the data acquisition
mode and the WMCM value is calculated for the new data set.
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The assumption that the detected JI is high disturbance is made earlier
than the low disturbance assumption to reduce computation. Most of the
regular jumps will comply with the high disturbance criteria and skip the
low disturbance JI verification computation. On the other hand, jumps
with small AT and disturbance activities will only be discarded in the first
assumption and the algorithm for low disturbance JI verification will be
invoked.

The flow-chart in Figure 3.18 summarizes the entire jump detection pro-
cedure.

3.8 Air Time Determination

3.8.1 Characteristic Acceleration Points

To determine the Air Time (AT) accurately, it is imperative to detect
the precise epochs of the events ‘jump start’ or ‘take-off’ and ‘jump end’ or
‘landing’. ‘Take-off’ is defined as the event of momentary transition from
ground to air. Similarly, ‘landing’ is the event of momentary transition from
air to ground. In noiseless and undisturbed ideal conditions, the resultant
acceleration pertaining to any jump should resemble a U-shaped pattern as
shown in Figure 3.19. The characteristic points that define the U-shaped
acceleration region are the highlighted points, namely jump start positive
peak (JSP ), jump start negative peak (JSN ), jump end positive peak (JEP ),
and jump end negative peak (JEN ). It should be noted that the local
maxima of any cusp is termed as positive peak and the local minima of any
notch is termed as negative peak.

As shown in Figure 3.19, JSP is the latest point before aero phase when
the reported acceleration indicates that the athlete is completely on the
ground. JSN is the first point in aero phase when the reported acceleration
suggests that the athlete is completely in the air. Therefore, the event
‘take-off’ must have occurred in the time span between these two points.
Similarly, ‘landing’ must have occurred between JEN and JEP . Depending
on the specific sport maneuvers, the weighted average of the epochs of JSP
and JSN , and JEP and JEN should theoretically produce the exact epochs
of take-off and landing. Consequently, the difference between these epochs
should produce exact AT. Since the time spans for both take-off and landing
are very brief in time (∼ 0.05 s), normal averages of the start and end points
should also yield AT with a reasonably high accuracy.

The argument presented above describes why accurate AT determina-
tion is directly dependent on the precise detection of the four characteristic
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Figure 3.18: Proposed jump detection method.
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points. Hence, the focus of the AT determination algorithm is to detect the
four characteristic points as accurately as possible. Of course, for practical
noisy jump acceleration signals the characteristic points are not as well de-
fined as in the ideal case. The U-shaped region and the possible localities of
JSP , JSN , JEP and JEN are shown in Figure 3.20 for a typical noisy data
set. Due to noise and other disturbances, the transition periods as well as
the characteristic points for the jump are not precisely obvious. Hence, in
the proposed AT determination algorithm, positive or negative peaks pos-
sessing the most eligibility for the U-shape defining points are detected as
the characteristic points.

3.8.2 Primary and Secondary Detection

Depending on the position of a valid JI, the detection techniques for
the characteristic points differ. In this research, the detection of the two
characteristic points near JI is termed Primary Detection and detection
of the other two is termed Secondary Detection. The relevant peaks are
consequently termed primary and secondary, positive/negative peaks. For
example, if the JI is near take-off, then the detection of JSP and JSN is
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3.8. Air Time Determination

primary detection and the detection of JEP and JEN is secondary detec-
tion. In this case, primary positive and negative peaks are JSP and JSN
respectively, and secondary positive and negative peaks are JEP and JEN
respectively. Since the challenges in primary and secondary detection are
dissimilar, distinct methods are proposed for each.

For the sake of convenience, methods for primary and secondary de-
tection are demonstrated for a particular example. As the features of the
jump start characteristic points are the reciprocal of those of the jump end
characteristic points, the demonstration will not lose any generality.

3.8.3 Window Selection

After the detection and validation of any JI with WMCM and PFAD, a
characteristic window is selected within which the AT determination algo-
rithm is applied to detect all four characteristic points. This window spans
from tcs to tce where

tcs = tJI −∇tlcs, l = 1, 2, .... (3.9)

tce = tJI +∇tlce, l = 1, 2, ..... (3.10)

Primarily, for any JI near the jump start, ∇t1cs = 0.50 s and ∇t1ce = 3 s.
For a JI near the jump end these parameter values are reciprocated, i.e.
∇t1cs = 3 s and ∇t1ce = 0.50 s.

Since the jump aero phase can vary in length, the primarily selected
window size may not prove to be adequate. On the other hand, selecting
a very large window each time to accommodate the largest possible jump
will excessively increase computation time and power. Therefore, window
length is extended only if any of the characteristic points are not detected
in the current window span. Each time, the window expansion parameter is
increased following ∇tl+1

ce = ∇tlce + 3 s for JI near jump start and ∇tl+1
cs =

∇tlcs+3 s for JI near jump end. The window is expanded until tlce−tlcs > 9 s.
If any of the characteristic points are not detected within the maximum span
of the window (9 s), the JI is discarded as invalid.

3.8.4 Positive and Negative Peaks

After selecting the characteristic window, the epochs of the positive and
negative peaks within the window are determined. The positive peak epochs

55



3.8. Air Time Determination

12 12.5 13 13.5 14 14.5 15
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

A
m

pl
itu

de
 o

f r
es

ul
ta

nt
 a

cc
el

er
at

io
n 

a
b  [g

]

 

 

Resultant acceleration Positive peaks

Epoch of JI, t
JI

∇  t1
ce∇  t1

cs

Figure 3.21: Window for characteristic acceleration points detection and
potential positive peaks.

can be mathematically represented as

tPc = arg
tcs+nT

{
(ab(tcs + nT )− ab(tcs + nT − 1)) > 0

}
∩ (3.11)

arg
tcs+nT

{
(ab(tcs + nT )− ab(tcs + nT + 1)) ≥ 0

}
(3.12)

where arg
tcs+nT

{·} is the set of epochs, tcs + nT , for which the argument {·} is

valid. The operator for intersection of the set of epochs satisfying pertinent
arguments is ∩. Similarly the epochs for negative peaks are

tNc = arg
tcs+nT

{
(ab(tcs + nT )− ab(tcs + nT − 1)) < 0

}
∩ (3.13)

arg
tcs+nT

{
(ab(tcs + nT )− ab(tcs + nT + 1)) ≤ 0

}
. (3.14)

For the jump shown in Figure 3.20 the characteristic window and corre-
sponding positive peaks are shown in Figure 3.21. The JI is detected at tJI
= 12.09 s and is validated afterwards by the jump detection algorithm. This
example will be used for illustrating the primary and secondary detection
procedures.
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3.8. Air Time Determination

3.8.5 Primary Detection

From the PFAD value of the jump detection algorithm it is already
known that the JI is near the jump start. Therefore, primary detection
means the detection of JSP and JSN for this JI and subsequent detection of
the pertinent epochs tPJS and tNJS . For the Recon goggles, primary detection
is done by the straight-forward Closest Peak Method.

Closest Peak Method

In this method, the JI is exploited as a reference point. Within the
characteristic window, the positive peak in the resultant acceleration nearest
JI with a magnitude greater than or equal to 1 g is considered as JSP . The
nearest negative peak with a resultant acceleration less than 1 g is detected
as JSN . The time epochs for JSP and JSN can be expressed as

tPJS = min
tI

{
|tJI − arg

tI

{
ab(tI) ≥ 1g

}
|
}
, tI ∈ tPc (3.15)

tNJS = min
tI

{
|tJI − arg

tI

{
ab(tI) < 1g

}
|
}
, tI ∈ tNc (3.16)

where min
tI
{·} yields the epoch tI which yields the minimum value of the

argument {·}.
Figure 3.22 shows the detected JSP and JSN . The detected peaks are at

tPJS = 12.09 s and tNJS = 12.24 s. It can be observed from the figure that both
the detected peaks reasonably estimate the two characteristic points on one
side of the U-shaped region. The threshold of 1 g is selected theoretically
since the ideal minimum resultant acceleration of the athlete is 1 g on the
ground.

3.8.6 Secondary Detection

Each potential secondary peak possesses four characteristic attributes or
criteria on which its eligibility can be assessed. The attributes for a peak at
tI are

1. Proximity to JI, tI − tJI

2. PFAD value, dab(tI)

3. Average magnitude of the preceding or following window, ābIpw or ābIfw

4. Self amplitude (resultant acceleration), ab(tI).
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Figure 3.22: Primary detection.

For each candidate peak, these four criteria values are calculated. To calcu-
late the preceding and following window average ābIpw and ābIfw, the window
spanning from tcs to tI and from tI to tce is considered respectively. Two
methods are proposed to assess the criteria/attributes and determine the
most eligible positive and negative peak. The first method is a threshold
based method and the second method is a probabilistic method, which is
independent of any threshold. Both of these methods are demonstrated in
the next section.

Similar to primary detection, JI serves as a reference for the secondary
detection. For the JI of the given example, secondary detection means the
detection of JEP and JEN and their epochs tPJE and tNJE . Figure 3.23a
and 3.23b show the potential positive peaks for JEP and the corresponding
attribute values for each candidate. Note that for the detection of JEP , all
the positive peaks following the JI are the only viable candidates. A similar
argument is valid for the negative peak candidates for JEN .

Threshold Based Method

As shown in Figure 3.23b, the attribute values for the candidate peaks for
JEP vary significantly. It can be understood that a potential candidate for
JEP at tI should have a negative dab(tI) with magnitude as high as possible,
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3.8. Air Time Determination

ābIpw should be as low as possible, and ab(tI) should have a moderately high
value. Therefore, three thresholds are set for these criteria. Among the set
of candidate positive peaks that satisfies these thresholds, the peak nearest
to JI is selected as JEP . On the account of a reciprocal rationale, the
farthest peak from JI is selected as JEN from the set of the candidate
negative peaks satisfying all the thresholds. The thresholds for the attribute
values of the candidates for JEP and JEN at tI are given in Table 3.3.
Furthermore, Table 3.4 shows the thresholds if JSP and JSN are to be
detected as secondary detection.

Table 3.3: Thresholds for secondary detection of JEP and JEN

Attribute Threshold for JEP Threshold for JEN

tI − tJI Lowest Highest
dab(tI) < −0.25 g < −0.25 g
ābIpw < 1 g < 1 g

ab(tI) > 1.50 g < 0.50 g

Table 3.4: Thresholds for secondary detection of JSP and JSN

Attribute Threshold for JSP Threshold for JSN

tJI − tI Lowest Highest
dab(tI) > 0.25 g > 0.25 g
ābIfw < 1 g < 1 g

ab(tI) > 1.50 g < 0.50 g

Using the predefined thresholds, detection of the epochs of JEP and
JEN , i.e. tPJE and tNJE , can mathematically be represented as

tPJE = min
tI

{{
arg
tI

{
dab(tI) < −0.25g

}
∩ arg

tI

{
ābIpw < 1g

}
∩

arg
tI

{
ab(tI) > 1.50

}}
− tJI

}
, tI ∈ tPc (3.17)

tNJE = max
tI

{{
arg
tI

{
dab(tI) < −0.25g

}
∩ arg

tI

{
ābIpw < 1g

}
∩

arg
tI

{
ab(tI) < 0.50

}}
− tJI

}
, tI ∈ tNc . (3.18)
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Figure 3.24: Secondary detection of JEP and JEN with threshold based
method.

Similar expressions can be derived for tPJS and tNJS for the threshold based
method. Figure 3.24 shows the detected JEP at tPJE = 13.78 s and JEN at
tNJE = 13.76 s. It is evident from the figure that the detected peaks make
reasonable sense as two of the characteristic points of the U-shaped region.

Probabilistic Method

The threshold based method is an effective and simple technique for sec-
ondary detection. However, the loss of generality cannot be avoided as is
true for all threshold based techniques. Use of several thresholds makes the
algorithm susceptible to error, especially for jumps with various aerial acro-
batic maneuvers. As previously mentioned, a potential candidate for JEP
at tI should have the highest dab(tI) magnitude and the lowest ābIpw. Un-
fortunately, a situation may occur whereby the candidate peaks possessing
the highest dab(tI) and the lowest ābIpw are not the same. In such a case, the
most eligible peak should be selected through a decision making procedure.

To accommodate all the above mentioned issues, a probabilistic method
using MADM [48] is proposed. This method uses no thresholds and selects
the best option among the alternatives, i.e. the candidate peaks. The idea
of secondary detection by probabilistic means stems from the fact that it is
possible to make an educated conjecture on the position of the characteristic
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3.8. Air Time Determination

points only from the shape of the acceleration data. For example, without
even looking at the y-axis magnitude, an educated eye should be able to de-
tect the possible regions of the characteristic points as shown in Figure 3.20.
Rather than directly discarding any point, the probabilistic method assesses
and scores the possibility of all candidate peaks to be a characteristic point.
Depending on the score, the optimum solution is selected. The most de-
sirable advantage of this method is that it renders the characteristic point
detection process to be very generalized and to be able to cope with a large
variety of situations.

A decision making problem can be formulated for the secondary detec-
tion process considering the candidate peaks as alternatives to choose from.
The decision making can be conducted using the four attribute values of
each alternative. M-TOPSIS [49] is a modified version of the popular TOP-
SIS [48] method for MADM. This method effectively addresses the ‘Rank
Inversion’ [49] problem of the TOPSIS method. Both the TOPSIS and M-
TOPSIS methods, along with the rank inversion problem, are demonstrated
in Appendix A. Due to the advantage over TOPSIS, M-TOPSIS is selected
as the decision making technique for secondary detection.

To detect JEP , the positive peaks shown in Figure 3.23a are fed to the
MADM method as alternatives. The four attribute values for each alterna-
tive, as shown in Figure 3.23b, are used to construct the decision matrix.
Preference information about the attributes, i.e. weights wci , i = 1, 2, 3, 4,
are predefined. The information regarding whether the attributes are cost
type or benefit type is also provided to the MADM algorithm. Benefit at-
tributes are those which are expected to be maximized and cost attributes
are those which are expected to be minimized. Depending on the specific
characteristic point, the attributes swap between benefit type and cost type.
Table 3.5 and Table 3.6 lists all the attribute types and weights for secondary
detection of JEP , JEN , JSP and JSN . Using the attribute type and weight
information, the decision matrix is normalized and the weighted normalized
ratings are calculated. The distances from the alternatives to the positive
ideal solution (D∗j ) and to the negative ideal solution (D−j ) are measured af-

terwards. Subsequently, the D∗D− plane is constructed and the Optimized
Ideal Reference Point (OIRP) is determined.

Figure 3.25 shows the D∗jD
−
j plane for JEP detection. From this plane

the distances between the OIRP and the alternatives (DOIRP
j ) are calcu-

lated. The color intensity of the alternatives shown in the figure is propor-
tional to its distance from the OIRP. DOIRP

j is sorted in ascending order and
all the alternatives, i.e. candidate peaks, are ranked against it correspond-
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ingly. The peak possessing the lowest DOIRP
j is ranked 1 and considered

as the optimal solution, i.e. JEP , for the MADM problem. Figure 3.26
shows the top ranked peaks for secondary JEP detection. Again, the color
intensity of the peaks is proportional to DOIRP

j . The epoch of the ranked

1 peak is determined as tPJE . In a similar manner, JEN is detected and
tNJE is determined. The result of secondary detection with the probabilistic
method is shown in Figure 3.27. The detected tPJE = 13.80 s and tNJE =
13.76 s.

Table 3.5: Attribute type and weight for probabilistic secondary detection
of JEP and JEN

For JEP For JEN

Attribute Type Weight Attribute Type Weight

tI − tJI Cost 0.05 tI − tJI Benefit 0.08
|dab(tI)| Benefit 0.50 |dab(tI)| Benefit 0.50
ābIpw Cost 0.33 ābIfw Benefit 0.38

ab(tI) Benefit 0.12 ab(tI) Cost 0.04

Table 3.6: Attribute type and weight for probabilistic secondary detection
of JSP and JSN

For JSP For JSN

Attribute Type Weight Attribute Type Weight

tJI − tI Cost 0.05 tJI − tI Benefit 0.08
|dab(tI)| Benefit 0.50 |dab(tI)| Benefit 0.50
ābIfw Cost 0.33 ābIpw Benefit 0.38

ab(tI) Benefit 0.12 ab(tI) Cost 0.04

A very safe threshold can be useful from the computational point of
view for the implementation of this MADM based probabilistic method even
though it does not require a threshold. For example, a safe threshold of > 1 g
for secondary JEP or JSP detection will eliminate a significant number
of candidate positive peaks from being considered as alternatives for the
decision making process. The reduced number of alternatives will cause
reduced computation resulting in efficient use of resources.
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Figure 3.27: Secondary detection of JEP and JEN with probabilistic
method.

3.9 Sensor and Visual Air Time

For snowboarding or skiing, Recon defines the jump start epoch as the
moment when the skis/board are no longer in contact with the ground.
Recon also defines the jump end epoch as the moment when any part of
the skis/board come into contact with the ground again. The difference
between the end and the start epochs defined in this manner leads to an AT
which can be visually realized. The procedure for calculating AT from the
JSP , JSN , JEP and JEN is described later in Subsection 3.10.2. However,
up to this point, the jump start and end epochs have been discussed from
the point of view of the sensor signals. The visual jump start and end
epochs are not necessarily same as what the sensors detect as the jump
start and end epochs. This is because the changes in the athlete’s dynamics
as detected by the sensors, does not always reflect what can be visually
observed. For example, while landing, the athlete may have been observed
to touch the ground even though no real impact was sensed by the sensors.
Similarly, during take-off, a change in acceleration is typically sensed by the
sensors prior to what is defined as the take-off by Recon. Logically, it is
expected to have a constant bias in the visually realized AT compared to
the AT determined from the sensor signal, which is termed as Sensor Air
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Time (SAT). From the experimental data, a simple relationship is developed
to convert the determined SAT into visual AT. For the rest of the discussion,
AT will refer to what is visually observed unless otherwise stated.

3.10 Experimental Results and Comparison

3.10.1 Field Data Collection

Field data was collected to test the performance of the proposed jump
detection and AT determination algorithm. The athlete had a Ripxx [4] unit
strapped to his leg and the Recon goggles on his head. Both the devices
were set to capture and log raw data from the available sensors. A video
camera with 30 fps (frame per second) capture capability was set to record
the jumps. Snowboard and ski jumps with different aero phase duration
and including various aerial maneuvers, e.g. spinning, were conducted. The
frame numbers of the skier leaving the ground and returning to the ground
were determined from video playback. Since the frame rate is known, (dif-
ference in frame numbers / frame rate in fps) provides the AT in seconds
as determined from the video. This video AT serves as the benchmark for
comparing the performance of current Recon, Ripxx and proposed algo-
rithms. However, the video AT is only accurate within a maximum error
of (0.033 s + 0.033 s) = 0.067 s. The error is twice (1/frame rate) since a
single frame error may occur both at the jump start and end.

3.10.2 Visual AT from SAT

Data captured with the Recon goggles is fed to the proposed algorithm to
detect the jump and determine the corresponding jump characteristic points.
For secondary detection, the probabilistic method is used. The difference
between tNJS and tNJE is used to determine the SAT, since JSN/JEN falls
closest to the take-off/landing points defined by Recon. An example of the
bias between visual AT and SAT is illustrated in Figure 3.28. The athlete’s
position and corresponding resultant acceleration are linked in the figure.
The characteristic points detected by the proposed algorithm are also shown.
Image 1 (frame 3409) is the first epoch when the accelerometers sense free
fall. However, it is clear from the image that the snowboard is still in contact
with the ground. Visually, the take-off is detected in image 2 (frame 3411).
Hence, sensor take-off is at an earlier time than visual take-off. Similarly,
images 4 and 5 exhibit the bias in sensor and visual landing. Therefore, it
is evident that the visual AT would always be shorter than SAT.
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To determine the AT from SAT, the determined SATs are plotted against
the ATs from video. The plot is shown in Figure 3.29. A first order linear
curve is fitted to develop a relation between the visual AT and SAT. The
developed relation, AT = 0.9438×SAT−0.0138 s, can be used to determine
the visual AT from determined SAT. Of course, the relationship could be
refined with acquisition of more jump data for any specific sport application.
Furthermore, the interpretation or use of the characteristic points along with
the SAT will vary with different definitions of take-off/landing. The devel-
oped relation between visual AT and SAT is most suitable for snowboard
and ski jumps according to Recon’s definition.

3.10.3 Performance Comparison

The algorithm for jump detection and AT detection are compared in
different aspects. The most important aspect is the accuracy of the AT.
Similar to the proposed algorithm, the Recon jump detection and AT deter-
mination algorithm, which is a threshold based method, was implemented
in Matlab c© for off-line processing. The Recon algorithm is proprietary and,
therefore, cannot be described in detail here. The recorded accelerometer
data sets collected with the Recon goggles are fed to both the Recon algo-
rithm and the proposed algorithm to generate AT. ATs for the proposed
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algorithm are determined by converting the SATs. AT for the test jumps
are also available from the Ripxx log sheet. These three ATs are compared
with the ATs deduced from the video. The error percentages with respect to
the true AT (video) are also calculated. The results are shown in Table 3.7.
Ripxx data was not available for the first two data sets. Note that an error
of 100% indicates that a jump that in fact occurred, was not detected.

From Table 3.7 it can be seen that the proposed algorithm is more effi-
cient in jump detection and has better accuracy in AT determination than
the other two. Among the 25 jumps, the proposed algorithm successfully
detected 23 of them (92% accuracy). On the other hand, the Recon algo-
rithm detected only 15 jumps out of the 25 (60% accuracy). Among the
available 23 jumps, the Ripxx algorithm was only able to successfully detect
10 of them (43.5% accuracy). Moreover, the Recon and Ripxx algorithms
have shown an AT determination average error of 8.4% and 39.7% respec-
tively where as the proposed algorithm has an average error of 4.8%. It is
very important to note that in the average error calculations the undetected
jumps for each algorithm were excluded. Therefore, the effect of undetected
jumps does not reflect on the average error.

Figure 3.30 shows, for all jumps, the measured AT error in seconds for
all three algorithms. Apart from very few exceptions, error for the proposed
jump detection and AT determination algorithm is well within the maximum
allowable error limit of ±0.1 s, whereas the other two exhibit considerable
error and often exceed the specification of ±0.1 s.

The second important aspect when comparing algorithms is their use of
resources. Depending on the jump detection method the number of false
wake up calls to the processor varies from algorithm to algorithm. A false
wake up means the realization of a false jump detection after most of the
computation is conducted. For example, the proposed algorithm will cause
a false wake up call if any of the characteristic points are not detected for
the largest characteristic window. No information on Recon false wake up
criteria can be provided in this study due to proprietary issues. For a given
data set, if the number of false wake up calls is significantly large, more power
will be unnecessarily drained, leading to a lower battery life. Therefore, the
number of false wake up calls to the processor is also determined and used as
an algorithm comparison criterion. The comparison is shown in Table 3.8.
Since the Ripxx algorithm for AT detection is unknown, the comparison for
Ripxx on this criterion could not be done. From Table 3.8 it is clear that
the proposed algorithm generates far fewer false wake up calls as compared
to the Recon algorithm. The Recon algorithm generates a total of 21 false
wake up calls while operating on the 14 data sets containing 25 jumps in

69



3.10. Experimental Results and Comparison

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

Jump

E
rr

or
 in

 a
ir 

tim
e 

[s
]

 

 

Ripxx
Recon
Proposed

0.1 s

−0.1 s

Figure 3.30: Error in AT comparison among the Recon, Ripxx and pro-
posed algorithm.

total. Therefore, the current Recon jump detection algorithm unnecessarily
wakes the processor 21 ∗ 100/(21 + 25) = 45.6% of the time. The 11th data
set contains 12 jumps which is far more than any of the other data sets.
This is the reason for the large number of false wake up calls for this set for
the Recon algorithm. On the other hand, the proposed algorithm generated
no false wake up calls for any of the 14 data sets.

The third criterion for algorithm performance comparison is the number
of false jumps detected and true jumps undetected. As shown in Table 3.7,
any true jump undetected also results in a 100% error in the corresponding
AT calculation. The results are shown in Table 3.9 for the collected data set.
In the 14 data sets (containing 25 jumps), the Recon algorithm had 11 wrong
detections (44%), i.e. true jumps undetected plus false jump detected. For
Ripxx, the number of wrong detections is 13 (52%). On the other hand,
the proposed algorithm has shown significantly better performance by only
reporting 2 wrong detections, (8%) while operating over the 14 data sets.

From these results, it is evident that the proposed method has com-
prehensive supremacy in AT determination performance over the other two
algorithms. The false wake up calls are also reduced significantly by the
proposed method. Except for the 11th data set, the proposed method also
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exhibits efficiency in avoiding false detection or missing true jumps. More-
over, the two missed jumps in the 11th set had extremely brief AT duration
and are likely to be insignificant to the goggle user. Therefore, it can be con-
cluded from the available experimental results that the proposed algorithm
performs significantly better than the current algorithm Recon is using and
the algorithm of the commercially available Ripxx unit.

3.11 Implementation Aspects for Other
Devices/Applications

The proposed methods for primary and secondary detection can be al-
tered according to the sensor signal characteristics. As mentioned earlier,
the jump detection thresholds are specifically customized for Recon goggles
only to guarantee the detection of landing. This is done to minimize the
mandatory computation as well as the possibility of false detection. There-
fore, the closest peak method for primary detection and the probabilistic
method for secondary detection were proposed. However, if the scenario
is such that both the JI near jump start and end are guaranteed to be de-
tected, the closest peak method can be used for both primary and secondary
detection. On the other hand, if scenarios are observed where the closest
peak method is not as accurate as expected, the probabilistic method can
be used for both primary and secondary detection. In such a case, after
secondary detection, any of the detected secondary characteristic points can
be selected as reference points to serve as the JI for the primary detection
process.
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Table 3.7: Comparison of AT among Recon, Ripxx and the proposed algo-
rithm.

Data
set

Video
AT(s)

Recon AT(s)
[%error]

Ripxx AT(s)
[%error]

Proposed AT(s)
[%error]

1 1.4333 1.28 [10.6] - [ - ] 1.4585 [1.8]

2 1.4333 1.43 [0.2] - [ - ] 1.4207 [0.9]

3 1.3333 1.10 [17.5] 1.10 [17.5] 1.3735 [3.0]

4 1.2000 1.28 [6.7] 1.35 [12.5] 1.2131 [1.1]

5 1.2333 1.36 [10.3] 1.05 [14.9] 1.1281 [8.5]

6 1.3333 1.39 [4.2] 0.60 [55.0] 1.3452 [0.9]

7 1.3333 1.34 [0.5] 0.62 [53.5] 1.3263 [0.5]

8 1.3333 0.00 [100.0] 0.00 [100.0] 1.3452 [0.9]

9 1.2667 0.72 [43.1] 0.00 [100.0] 1.1848 [6.5]

10 1.4000 1.30 [7.1] 0.94 [32.8] 1.4207 [1.5]

11-a 1.3333 1.39 [4.2] 0.65 [51.2] 1.3169 [1.2]

11-b 1.5000 1.35 [10.0] 0.00 [100.0] 1.4962 [0.2]

11-c 0.6667 0.00 [100.0] 0.00 [100.0] 0.7034 [5.5]

11-d 0.6667 0.67 [0.5] 0.00 [100.0] 0.7223 [8.3]

11-e 0.4333 0.00 [100.0] 0.00 [100.0] 0.4203 [3.0]

11-f 0.1333 0.00 [100.0] 0.00 [100.0] 0.00 [100.0]

11-g 0.4333 0.00 [100.0] 0.00 [100.0] 0.3165 [26.9]

11-h 0.3000 0.00 [100.0] 0.00 [100.0] 0.3448 [14.9]

11-i 0.1667 0.00 [100.0] 0.00 [100.0] 0.0000 [100.0]

11-j 0.3333 0.00 [100.0] 0.00 [100.0] 0.3637 [9.1]

11-k 0.5333 0.00 [100.0] 0.00 [100.0] 0.5619 [5.4]

11-l 0.6000 0.00 [100.0] 0.00 [100.0] 0.6374 [6.2]

12 1.3333 1.30 [2.5] 0.55 [58.7] 1.3263 [0.5]

13 1.7000 1.63 [4.1] 0.96 [43.5] 1.7227 [1.3]

14 1.2300 1.28 [4.1] 1.93 [56.9] 1.2131 [1.4]

Avg. error(s) [%error] 0.111 [8.4] 0.538 [39.7] 0.033 [4.8]
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Table 3.8: Comparison of number of false processor wake up calls for Re-
con algorithm and the proposed algorithm.

Data
set

Recon Proposed

1 1 0
2 0 0
3 1 0
4 0 0
5 1 0
6 0 0
7 0 0
8 2 0
9 0 0
10 1 0
11 9 0
12 3 0
13 0 0
14 3 0

Total 21 0
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Table 3.9: Comparison of the number of false detected jumps + true unde-
tected jumps among Recon, Ripxx and the proposed algorithm.

Data
set

Recon Ripxx Proposed

1 0 - 0

2 0 - 0

3 0 1 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 1 1 0

9 0 1 0

10 0 0 0

11 9 10 2

12 0 0 0

13 0 0 0

14 1 0 0

Total 11 13 2
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Chapter 4

Trajectory Determination

The determination of jump horizontal distance, height and drop corre-
sponds to the task of determining the trajectory of the athlete during a jump.
Once the trajectory is determined, the calculation of the desired parameters
is straight forward. In this chapter a GPS/INS integrated algorithm is pro-
posed for trajectory determination with the Recon goggles. First, the coor-
dinate frames involved in the algorithm are presented. Afterwards, the basic
INS algorithm and pertinent important factors are demonstrated. Finally,
the proposed algorithm with detailed performance analysis is presented.

4.1 Coordinate Frames

The local level frame has been chosen as the navigation frame (index n).
The local level frame is defined as the local North-East-Down (NED) axes.
The north axis is labeled X, the east is labeled Y , and the down is labeled
Z. As the reference frame for positioning, the Earth Centered Earth Fixed
(ECEF) frame is used, which is indexed by e. The ECEF frame is defined
as [50]:

• origin - at the mass center of the earth

• X axis - pointing towards the Greenwich meridian, in the equatorial
plane

• Y axis - 90◦ east of Greenwich meridian, in the equatorial plane

• Z axis - axis of rotation of the reference ellipsoid.

Measurement from the gyroscope is done with respect to an inertial frame
which is indexed by i. The inertial frame is considered to be rotationally
fixed. Coordinates in the ECEF frame can be transformed to the inertial
frame by a negative rotation about the Z axis of the frame by the amount
of the Greenwich Mean Sidereal Time (GMST) [50]. The navigation frame,
ECEF frame and inertial frame are depicted in Figure 4.1. The body frame
is indexed by b and defined as shown in Figure 1.4. The triaxial sensors are
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Figure 4.1: Coordinate frames.

aligned entirely with the body frame and the body frame is considered to
be rigidly attached to the athlete. It is important to note that all of these
frames follow right handedness.

4.2 Rotation Matrix

The most convenient way to represent the attitude of the body frame
with respect to the navigation frame is through a set of three Euler an-
gles [51]. These angles are commonly known as roll (φ), pitch (θ) and yaw
(ψ) which represent rotation along the X, Y and Z axes accordingly. Any
arbitrarily rotated body frame attitude with respect to the navigation frame
can be represented as three consecutive coordinate rotations. The three co-
ordinate rotations along the X, Y and Z axes can be represented in matrix
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4.2. Rotation Matrix

form respectively as follows:

RX(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 (4.1)

RY (θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (4.2)

RZ(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 . (4.3)

Multiplication of the matrices in Equation 4.1, 4.2 and 4.3 results in a ro-
tation matrix. A rotation matrix is a matrix whereby the multiplication
with a vector rotates the vector while preserving its length [51]. In this
research a ZY X intrinsic rotation convention is followed. This convention
means that rotation is applied along the Z, Y and X axes sequentially. In-
trinsic rotation means that rotations are applied with respect to the rotated
frame itself, not with respect to the reference frame. Therefore, the rotation
matrix to convert any vector represented in the body frame into a vector
represented in the navigation frame is derived as

Rn
b = RZ(ψ)RY (θ)RX(φ)

=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ cθsφ cθcφ

 (4.4)

where cos(arg) and sin(arg) are represented as carg and sarg.
It is very important to note that the matrix multiplication sequence is

not commutative. Any fixed amount of roll, pitch and yaw can result in
completely different results. For example, the coordinate frame shown in
Figure 4.2 is rotated in ZY X and ZXY sequences both with 90◦ roll, pitch
and yaw. The resultant attitudes are entirely different due to the interchange
in the sequential rotations along X and Y axis as shown in Figure 4.3 and
4.4.
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Figure 4.2: Coordinate frame before rotation.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

   Z

   X

   Y

Figure 4.3: Coordinate frame after rotations in ZYX sequence where roll
= pitch = yaw = 90◦. Click on the image to see sequential rotations.
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4.3. Body Frame Attitude Computation
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Figure 4.4: Coordinate frame after rotations in ZXY sequence where roll
= pitch = yaw = 90◦. Click on the image to see sequential rotations.

4.3 Body Frame Attitude Computation

4.3.1 Rotation Matrix Update

To compute the rotating body frame attitude with respect to the navi-
gation frame from the measured angular rate vector ω, the rotation matrix
must be updated. In order to update the rotation matrix a differential
equation of the following form [52] needs to be solved with

Ṙ = R[ω×] (4.5)

where ω× is the skew-symmetric form of the angular rate vector. Note
that the subscript and superscript of the rotation matrix Rn

b are left out for
convenience. Over an update period from time tk to tk+1, the solution of
the equation can be written as

Rk+1 = Rkexp(

∫ tk+1

tk

[ω×]dt). (4.6)

If it is assumed that the direction of the angular rate vector ω remains fixed
over the update interval, the integral of the skew symmetric matrix of the
angular rate is written as

[σ×] =

∫ tk+1

tk

[ω×]dt. (4.7)
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4.3. Body Frame Attitude Computation

where σ is the orientation vector. Hence

Rk+1 = Rkexp[σ×] (4.8)

= RkAk. (4.9)

Therefore, Ak is the rotation matrix that transforms a vector in the body
frame at the epoch tk+1 into the body frame at epoch tk. Here, tk and tk+1

are the times associated with the start and end of the computation cycle
respectively. The exponential term in Equation 4.8 is expanded afterwards,
which gives

Ak = I + [σ×] +
1

2!
[σ×]2 +

1

3!
[σ×]3 +

1

4!
[σ×]4...

= I + [σ×] +
1

2!
[σ×]2 − 1

3!
σ2[σ×]− 1

4!
σ2[σ×]2...

= I + (1− 1

3!
σ2 +

1

5!
σ4 − ...)[σ×] + (

1

2!
− 1

4!
σ2 +

1

6!
σ4 − ...)[σ×]2

(4.10)

= I +
1

σ
sin(σ)[σ×] +

1

σ2
{1− cos(σ)}[σ×]2 (4.11)

where I is the identity matrix. The exact representation of the rotation
matrix, which relates body frame attitude at times tk and tk+1, is provided
in Equation 4.11. However, this exact form can not be directly implemented
onboard the goggles’ processor due to the sine and cosine functions. There-
fore, Equation 4.11 is approximated by Equation 4.10 where only the first
three terms of the infinite series are used.

4.3.2 Orientation Vector Computation

In the previous section, it was assumed that the direction of the angular
vector ω remains constant during the update cycle. However, the direction
of ω does not remain fixed in space as the body frame is rotating. According
to Bortz [53] the rate of change of the orientation vector σ̇ is

σ̇ = ω + ε̇. (4.12)

Here ε̇ (non-commutativity rate vector) is a component of σ̇ due to non-
inertially measurable angular motion. The angular rate vector ω is provided
by the triaxial gyroscope which has its input axes coincident with the axes
of the rotating body frame.
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4.3. Body Frame Attitude Computation

Differentiating Equation 4.11, where Ȧk = Ak[ω×], and manipulating
vectors gives [52]

σ̇ = ω +
1

2
σ × ω +

1

σ2
[1− σ sin(σ)

2(1− cos(σ))
]σ × σ × ω. (4.13)

Together, the second and third terms on the right hand side of Equa-
tion 4.13 account for the non-commutativity vector. After a series of ro-
tations, as a result of the non-commutativity terms, the final orientation is
dependent on both the individual rotations and the order in which they have
occurred [52]. Ignagni in [54] has demonstrated that for practical applica-
tions, where the rotation matrix is computed in an iterative manner and
integration of the orientation vector rate is conducted over a brief period of
time, Equation 4.13 can be simplified to

σ̇ = ω +
1

2
α× ω (4.14)

where

α =

∫ tk+1

tk

ωdt. (4.15)

Ignagni has also shown that the orientation vector can be found from direct
integration of Equation 4.14 rather than solving the differential equation in
Equation 4.13. The second term in Equation 4.14 is the simplified form of
the non-commutativity rate vector.

4.3.3 Coriolis Effect

In inertial navigation calculations, the effects of the earth’s rotation with
respect to the inertial frame and the rotation of the navigation frame with
respect to the earth, should be accounted for. These effects are known as
the Coriolis effects. The earth’s angular velocity with respect to the inertial
frame and as observed from the navigation frame can be represented as

ωnie =

 ΩE cos(ϕ)
0

−ΩE sin(ϕ)

 (4.16)

and the angular velocity of the navigation frame with respect to the earth
and as observed from the navigation frame is

ωnen =

 λ̇ cos(ϕ)
ϕ̇

−λ̇ sin(ϕ)

 (4.17)
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4.4. Inertial Navigation Equations

where

ϕ = latitude
λ = longitude

ΩE = earth’s rotation rate 7.292115× 10−5 rad/s.

Therefore, the angular velocity of the navigation frame with respect to
the inertial frame is

ωnin = ωnie + ωnen. (4.18)

This angular velocity ωnin is important to account for because the gyroscope
sensors measure the angular rate of the body frame with respect to the
inertial frame rather than the navigation frame or body frame.

4.4 Inertial Navigation Equations

The rate of change in velocity of the body frame with respect to the
earth expressed in the navigation frame is represented as [52]

v̇n = an − (2ωnie + ωnen)× vn + gnl (4.19)

where

vn = velocity of the body frame with respect to the earth expressed in
local level frame

=
[
vN vE vD

]T
an = acceleration of body frame observed from navigation frame

=
[
fN fE fD

]T
gnl = plumb bob gravity.

Plumb bob gravity is defined as

gnl = gn −
Ω2
ER0(ϕ)

2

[
sin(2ϕ) 0 cos(2ϕ)

]T
. (4.20)

Here

gn = normal gravity =
[
0 0 9.81

]T
m/s2

R0(ϕ) = earth’s radius at latitude ϕ

= (
√

(R2
e cos(ϕ))2 + (R2

p sin(ϕ))2)/(
√

(Re cos(ϕ))2 + (Rp sin(ϕ))2)

Re = earth’s equatorial radius (6378137 m)
Rp = earth’s polar radius (6356752.3142 m).
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The change in velocity vn during the update interval between tk and tk+1

can be calculated from integrating Equation 4.19 which is represented as

∆vnk+1 =

∫ tk+1

tk

andt−
∫ tk+1

tk

(2ωnie + ωnen)× vnkdt+

∫ tk+1

tk

gnl dt. (4.21)

To solve Equation 4.21, the three integral terms need to be calculated. The
first integral term calculation needs further derivation, whereas the integral
of the second and the third term can be calculated directly.

The acceleration vector of the body frame observed from the body frame
can be transformed to an acceleration vector observed from the navigation
frame by multiplication with the rotation matrix, i.e.

an = Rn
b a

b (4.22)

where ab =
[
abx aby abz

]T
is the acceleration vector of the body frame

observed from the body frame. Now, the incremental velocity change of
the body frame as observed from the navigation frame is defined as

unk =

∫ k+1

k
Rn
b a

bdt

=

∫ k+1

k
RkAka

bdt. (4.23)

As the rotation matrix Rn
b varies continuously with time over the update

interval, it can be written in terms of the matrices Rk and Ak. The matrix
Rk is the value of Rn

b at time tk and Ak is a matrix representing the trans-
formation of the body frame at time tk+1 to the body frame at the start of
the update interval tk. Equation 4.23 can be revised as

unk = Rk

∫ k+1

k
Aka

bdt. (4.24)

Utilizing Equation 4.10 and ignoring second and higher order terms

unk = Rk

( ∫ k+1

k
abdt+

∫ k+1

k
[σ×]abdt

)
. (4.25)

The incremental velocity change of the body frame as observed from the
body frame is

ubk =

∫ k+1

k
abdt. (4.26)
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Using integration by parts, Equation 4.25 and Equation 4.26 can be used to
write

unk = Rk

(
ubk +

1

2
[σ×]ubk +

1

2

∫ k+1

k
([σ×]ab − [σ̇×]ubk)dt

)
. (4.27)

In this study, it is assumed that ab and σ remain constant for the update
interval. Therefore, as shown in [52], the integral term in Equation 4.27
becomes identically zero.

After solving the integral terms of Equation 4.27, the velocity vector of
the body frame as observed in the navigation frame at time tk+1 can be
written as

vnk+1 = vnk + unk + gnl (tk+1 − tk). (4.28)

In general the contribution of the Coriolis terms in Equation 4.19 is small
compared to the other terms in the equation [52]. Therefore, it is sufficient
to include the Coriolis corrections in Equation 4.19 at a relatively lower rate
than the rotation matrix computation rate. Moreover, in this study, ωnen is
considered negligible due to the low velocity of the athlete and very short
duration (aero phase of the jump only) of the trajectory determination.

Finally, the position can be found by integrating the velocity. By apply-
ing the fourth order Runge-Kutta integration as in [52], the position at time
tk+1 can be derived as

rnk+1 = rnk +
vnk−1 + 4vnk + vnk+1

6
(tk+1 − tk). (4.29)

4.5 Rotation Angle Computation

In the proposed trajectory determination algorithm, as will be described
in Section 4.7, rotation angles, i.e. roll, pitch and yaw, will be computed
from accelerometer and magnetometer data. Rotation angles can also be
derived from the rotation matrix, which is determined from the gyroscope
data. In this section, the procedures for computing the rotation angles are
demonstrated.

4.5.1 Roll and Pitch from Accelerometer

If the body frame is in steady motion, i.e. no specific acceleration on the
body frame, then the triaxial accelerometer experiences antigravity only.
In such a condition, the triaxial readings represent the vertically upward
antigravity axis with respect to the body frame axes. Therefore, from the
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Figure 4.5: Roll and pitch calculation from accelerometer data.

normalized accelerometer readings, it is possible to find the opposite unit
vector of the Z-axis of the navigation frame. On the other hand, the third
row of the rotation matrix in Equation 4.4 represents the unit vector along
the Z-axis of the navigation frame. Exploiting these facts, it is possible to
find the roll and pitch angle from the accelerometer data as follows.

Figure 4.5 shows the body frame acceleration in the presence of anti-
gravity only. From the first element of the third row of the rotation matrix
in Equation 4.4 and the normalized X-axis body frame acceleration, pitch
can be computed as follows:

sin(xbtilt) =
abx
|gnl |

= −
(
− sin(θ)

)
(4.30)

Therefore,

xbtilt = sin−1(
abx
|gnl |

) (4.31)

and
θ = xbtilt. (4.32)

Here xbtilt is the angle between the horizontal plane and Xb. In [55], it has
been proven that the sensitivity of Xb of the body frame decreases as it
comes closer to the vertical axis. Therefore, to increase the sensitivity of the
xbtilt calculation, the tangent function is used instead of the sine function in
Equation 4.31 as below:

xbtilt = tan−1(
abx√

ab2y + ab2z

). (4.33)
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From the second element of the third row of the rotation matrix in
Equation 4.4 and the normalized Y -axis body frame acceleration, roll can
be computed as follows:

sin(ybtilt) =
aby
−|gnl |

= cos(θ) sin(φ). (4.34)

Therefore,

ybtilt = sin−1(
aby
−|gnl |

) (4.35)

and

φ = sin−1
(sin(ybtilt)

cos(θ)

)
. (4.36)

Here ybtilt is the angle between the horizontal plane and Y b. For reason-
ing similar to that in [55], the tangent function is used instead of the sine
function in Equation 4.35 as follows:

ybtilt = − tan−1(
aby√

ab2x + ab2z
). (4.37)

Sign Ambiguity in Roll and Pitch

From Equation 4.36 and Equation 4.32 it is not possible to find the
quadrant in which the roll and pitch fall. Therefore, lookup tables are con-
structed where acceleration signs along orthogonal axes are used to extract
the quadrant information of the rotation angles. Table 4.1 and Table 4.2 are
lookup tables required to resolve the rotation angle ambiguity that occurs
while computing roll and pitch from acceleration data.

Table 4.1: Quadrant information of roll from acceleration signs.

Roll quadrant Sign of aby Sign of abz

1 - -
2 - +
3 + +
4 + -

86



4.5. Rotation Angle Computation

Table 4.2: Quadrant information of pitch from acceleration signs.

Pitch quadrant Sign of abx Sign of abz

1 + -
2 + +
3 - +
4 - -

4.5.2 Yaw from Magnetometer

The triaxial magnetometer gives the magnetic component information
vector of the earth’s magnetic field in the body frame. This vector is repre-

sented as mb =
[
mb
x mb

y mb
z

]T
. From this vector, it is possible to deduce

the yaw of the body frame with respect to the navigation frame. Even
though the earth’s magnetic north pole and geographic north pole do not
entirely coincide, the error in yaw due to this phenomenon is negligible for
the purpose of this study.

The magnetometer sensitivity decreases with an increase in xbtilt and
ybtilt angles [56]. Therefore, it is important to realign the body frame Z-axis
with the navigation frame Z-axis before computing yaw. For this purpose,
rotation must be applied to first remove the roll angle followed by a second
rotation that removes the pitch angle. The rotation matrix required is

Rφθ =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)


=

cos(θ) sin(φ) sin(θ) − cos(φ) cos(θ)
0 cos(φ) sin(φ)

sin(θ) − sin(φ) cos(θ) cos(φ) cos(θ)

 . (4.38)

The order of the matrix multiplication is important, as matrix multiplica-
tion is not commutative.

From the magnetic field readings and Rφθ the magnetic field components
along the X and Y axes of the realigned body frame can be computed as

Xh = mb
x cos(θ) +mb

y sin(φ) sin(θ)−mb
z cos(φ) sin(θ) (4.39)

Yh = mb
y cos(φ) +mb

z sin(φ). (4.40)

Finally, the yaw angle can be found as

ψ = tan−1(
Yh
Xh

). (4.41)
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Similar to the roll and pitch angle, the quadrant information should be
resolved from the signs of Xh and Yh. The necessary lookup table is given
in Table 4.3.

Table 4.3: Quadrant information of yaw from magnetic field component
signs.

For φ

Xh < 0 π − tan−1( YhXh
)

Xh > 0, Yh < 0 − tan−1( YhXh
)

Xh > 0, Yh > 0 2π − tan−1( YhXh
)

Xh = 0, Yh < 0 π
2

Xh = 0, Yh > 0 3
2π

4.5.3 Rotation Angles from Rotation Matrix

As previously discussed, in an INS algorithm the rotation matrix is up-
dated in each cycle from the angular rate readings of the triaxial gyroscope.
For the proposed trajectory determination algorithm, which is described
later in Section 4.7, rotation angles need to be computed directly from the
rotation matrix in each update cycle. For a rotation matrix

Rn
b =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (4.42)

the roll, pitch and yaw angles can be computed as

φ = tan−1(
R32

R33
) (4.43)

θ = − sin−1(R31) (4.44)

ψ = tan−1(
R21

R11
). (4.45)

(4.46)

As it will later be shown, the difference between the computed rotation
angles from the rotation matrix and the computed rotation angles from
the accelerometer and magnetometer serve as the observation vector for a
particular Linear Kalman Filter (LKF). Therefore, to make both sets of
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rotation angles coherent with each other, quadrant ambiguities are resolved
for the set computed from the rotation matrix using Tables 4.1, 4.2 and 4.3
as well.

4.6 Sensor Errors

For the implementation of the INS algorithm, it is important to mitigate
the error generated by the noise present in the accelerometer and gyroscope
readings. Among the number of error sources, such as misalignment, scaling,
bias, drift, temperature effects, etc., the accelerometer and gyroscope biases
are the most significant and should be accounted for [57]. Accelerometer bias
has a quadratic effect on the position derived from the INS algorithm. The
gyroscope bias, which is even more common, has an equally large impact on
the position estimate. Due to the bias in the gyroscope, the inertial measure-
ment unit is under the impression that it is rotating and the INS equations
will not account for gravity correctly. This can lead to a false movement
calculation due to an acceleration of maximum 9.81 ms−2 depending on how
much more the body frame is rotated due to the bias. Generally, for MEMS
sensors the gyroscope bias is more prominent than that of the accelerometers
and it also tends to drift significantly with time. Therefore, the gyroscope
bias contributes to the majority of the errors in the INS algorithm position
estimate.

According to the research conducted by Waegli et al., it was revealed
that for given MEMS sensor characteristics the misalignment, scaling, drift
and bias errors cannot be decorrelated efficiently for limited integration pe-
riods [38]. Therefore, in this research, a simplified error model is considered
where the bias terms are only taken into account and modeled as 1st order
Gauss-Markov processes as in [38].

The inertial accelerometer raw readings in discrete form can be modeled
as

ãk = ak + bak + wa
k (4.47)

where ãk is the measured acceleration, ak is the true body frame accelera-
tion, bak is the bias in acceleration and wa

k is the measurement noise at epoch
tk. Note that the superscript notion of the body frame is excluded for the
ease of representation. According to the 1st order Gauss-Markov model, the
bias can be represented with a discrete differential equation [58] as

bak+1 = (1− βa∆t)bak +
√

2βaσa2∆twa
k (4.48)
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where σa2 is the square of the amplitude of the acceleration bias power
spectral density, βa is the reciprocal of the acceleration process correlation
time τ a and ∆t is the sampling interval. These parameters can be calculated
from the widely practiced autocorrelation analysis, which is described in [58].

Similarly, the measured angular rate and the bias in angular rate are
modeled as

ω̃k = ωk + bωk + wω
k (4.49)

bωk+1 = (1− βω∆t)bωk +
√

2βωσω2∆twω
k (4.50)

where ω̃k is the measured body frame angular rate with respect to the
navigation frame, ωk is the true body frame angular rate, bωk is the bias
in angular rate and wω

k is the measurement noise at epoch tk. The bias
model parameter σω2 is the square of the amplitude of the angular rate bias
power spectral density and βω is the reciprocal of the angular rate process
correlation time τω.

The errors in magnetometer readings only affect the computation of the
yaw angle of the body frame with respect to the navigation frame. These
errors are not related to the critical gravity cancelation process. Hence,
magnetometer errors do not impose any large error in the position estimation
for a short duration. Even if there is a considerable bias in the magnetometer
reading, it can be safely ignored as the goal of this research is to find the
relative jump trajectory rather than the absolute trajectory. Relative jump
trajectory means the evolving position estimates of the athlete with respect
to a reference point, e.g. jump start position, whereas the absolute trajectory
represents the evolving position estimates in global positioning terms, e.g.
latitude and longitude. Therefore, magnetometer error estimation is ignored
in this work and measured magnetometer readings, i.e., m̃k are directly used
for yaw computation to reduce the computational load.

4.7 Proposed Algorithm

In this section, the proposed algorithm for jump trajectory determina-
tion is demonstrated. A loosely coupled GPS/INS integrated algorithm is
proposed. A flow diagram of the overall proposed algorithm is given in Fig-
ure 4.8. Three Linear Kalman Filters (LKF) are used to correct the sensor
data prior to computation of the position estimates with the INS algorithm.
Later, an Extended Kalman Filter (EKF) is implemented to correct the
trajectory from the INS with the position updates from the GPS. Even
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though, only the trajectory during the jump is required, the algorithm is
applied starting at an epoch prior to the jump start up to the epoch of
the jump end. This is done in order to capture the dynamics undertaken
as a preparation for the jump. The key and novel aspects of the proposed
trajectory determination algorithm are as follows:

1. In general, the INS or GPS/INS integrated algorithm corrects the
accelerometer and gyroscope readings with a bias estimate from the
previous update interval, as in [59], prior to resolving the INS equa-
tions. This is because the sensor error estimates for any update interval
are only available once the INS or GPS/INS navigation equations are
solved. Computing in this manner might not address the bias drift
correctly. Moreover, misalignment error and temperature effects are
also not decorrelated from the bias error, which may cause the sensor
error to drift rapidly. In the proposed algorithm, sensor data fusion
is exploited to estimate the bias in the readings with the sensor data
itself. LKF is used for the sensor fusion and to estimate the bias in one
sensor with the help of another prior to resolving the INS equations.
These estimated bias terms for the current update cycle are used to
correct the sensor readings, which results in a better position estimate
from the INS algorithm.

2. The sensor bias error estimate from the sensor signal itself also pro-
vides leverage in the GPS/INS integrated algorithm. In GPS/INS
integration with augmented states, i.e. where the sensor errors are
also incorporated in the state vector, typically there are no sensor
error terms in the observation vector as in [60]. However, the bias es-
timates made prior to the INS algorithm may serve as the observations
for sensor biases in the EKF for the GPS/INS integration. Therefore,
two separate sensor error estimations are conducted in a particular
update cycle. The estimated error from the EKF for an update cycle
is also used in the next update cycle to make primary corrections in
the accelerometer and gyroscope signal. In this way, the error esti-
mates from the EKF contribute a better initial estimate of the sensor
bias in the next update cycle. Therefore, the augmented observations
for GPS/INS integration leads to more accurate overall sensor error
estimation.

3. In previous work where acceleration is used to correct the inclination
estimate, e.g. [59], the body frame is assumed to be entirely stationary
and the relevant Kalman filter parameters also remain static. This is
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never the case for an athlete performing a jump. High specific accelera-
tion, i.e. non gravitational acceleration, is particularly involved before
the take-off and after the landing. On the other hand, during the aero
phase the body frame accelerometers feel no acceleration. Therefore,
the captured sensor data during and neighboring jumps are segmented
into different portions depending on the athletes dynamics. The LKF
parameters are customized for each segment and varied over time to
properly address the different acceleration scenarios.

4. Even though the error estimation processes for accelerometer and gy-
roscope through sensor fusion are not entirely independent from each
other, certain assumptions are made to decouple the states of the
accelerometer and gyroscope biases. This is done to reduce computa-
tional load as the state vectors for the accelerometer and gyroscope
errors are updated separately using transition matrices with smaller
dimensions (3×3) rather than using a single matrix with large dimen-
sion (6× 6).

The proposed algorithm is explained chronologically below. The basic
equations for the implementation of LKF and EKF are not explained in this
work. A detailed demonstration of the LKF and EKF can be found in [61]
and [52].

4.7.1 Acceleration Error Compensation

For an update cycle, an initial estimate of the body frame acceleration
is done with a LKF, which is termed as LKF1. The bias error estimated
from the GPS/INS integration in the previous cycle is used to correct the
accelerometer readings. This initial estimate is the observation vector for
the LKF1. As the acceleration of an athlete changes gradually with time,
acceleration of the current cycle can be estimated from the previous cycle
with a rotation matrix. The rotation matrix rotates the acceleration in the
previous cycle to reflect into the body frame attitude of the current update
cycle. To adjust to the changing dynamics, enough uncertainty is injected
into the process through considerable process noise.

The state and measurement equations of the LKF1 in discrete form are

ack+1 = AT
k âk + qak (4.51)

zack+1 = ack+1 + wa
k+1 (4.52)

where
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ack+1 = initial corrected acceleration for the current update cycle

AT
k = state transition matrix, transpose of Ak

âk = final estimate of the acceleration for the previous update cycle
starting at epoch tk

qak = process noise of acceleration with covariance matrix Qa
k

zack+1 = observation vector for LKF1

wa
k+1 = measurement noise of acceleration with covariance matrix Ra

k+1.

Note that, the transition matrix AT
k is the transpose of the rotation matrix

derived in Equation 4.10. This is because the acceleration is reflected for-
ward in time in the state equation, whereas Ak reflects the vector backwards
in time.

The measurement vector zack+1 for the current cycle is computed as

zack+1 = ãk+1 − b̂
aE

k . (4.53)

Here, ãk+1 is the accelerometer reading for the current update cycle starting

at tk+1 and b̂
aE

k is the acceleration error estimate from the EKF for GPS/INS
integration in the previous cycle starting at tk.

With the initial acceleration estimate âck+1 from the LKF1, the algorithm
proceeds to estimate the acceleration bias for the current cycle derived via
sensor fusion. Another LKF, namely LKF2, is applied for this purpose.
According to the 1st order Gauss-Markov model in Equation 4.48, the state
and measurement equations of LKF2 are represented as

baLk+1 = (1− βa∆t)baLk +
√

2βaσa2∆twaL
k (4.54)

zbaLk+1 = baLk+1 + waL
k+1 (4.55)

where

baLk+1 = bias error in the acceleration derived via sensor fusion for the
current update cycle

zbaLk+1 = observation vector for LKF2.
waL
k+1 = measurement noise of acceleration bias with covariance matrix

RaL
k+1.

The observation vector is found from the initial acceleration estimate and
the sensor readings as follows:

zbaLk+1 = ãk+1 − âck+1. (4.56)

The acceleration bias estimated from LKF2, b̂
aL

k+1, is claimed to be derived
via sensor fusion as the gyroscope readings are used in LKF1 to calculate
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âck+1. Moreover, the bias estimate from the EKF in the previous cycle indi-

rectly plays a role in b̂
aL

k+1 calculation as b̂
aE

k is used to derive âck+1. Here
it is assumed that the gyroscope errors are decoupled from the acceleration
errors. The rationale behind this assumption is that the gyroscope readings
are recursively corrected with a separate LKF, as will be later discussed,
for each update cycle. Therefore, the estimated error in the accelerome-
ter should become independent from the gyroscope error with time in an
iterative manner.

Finally, with the estimation of the acceleration error from LKF2, b̂
aL

k+1,
the accelerometer readings are corrected for the current update cycle as

âk+1 = ãk+1 − b̂
aL

k+1. (4.57)

This final acceleration estimate âk+1 is used for the rest of the algorithm
including in the gyroscope error estimation and in the INS equations for the
current update cycle.

4.7.2 Angular Rate Error Compensation

The gyroscope readings provide the angular rate of the body frame with
respect to the inertial frame. The Coriolis effects are accounted for to find
the angular rate of the body frame relative to the navigation frame following
the equation

ω̃k+1 = ω̃bibk+1 − (I + [ζ̂k×])T R̂
T
kω

n
ie (4.58)

where

ω̃bibk+1 = gyroscope reading for the update cycle starting at tk+1

[ζ̂k×] = skew symmetric matrix of the estimated attitude error vector
ζ̂k in INS mechanization for previous update cycle starting at
tk

R̂k = estimated rotation matrix for previous update cycle starting at
tk

ωnie = earth’s angular velocity with respect to the inertial frame and
as observed from the navigation frame.

It should be noted that the angular rate of the navigation frame relative
to the earth is ignored. This is because the athlete’s velocity relative to
the earth is insignificant enough to have no impact on the rotation matrix.
The attitude error vector is computed from the state estimation with EKF,
which is discussed in Subsection 4.7.4.
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The rotation matrix for the current cycle is computed initially using the
gyroscope error estimation from the previous cycle

R̃k+1 = R̂k(I + [ζ̂k×])Ãk (4.59)

where Ãk is computed following Equation 4.10 using the angular rate vector

(ω̃k+1 − b̂
ωE

k ). The estimated error in the gyroscope computed via EKF in

the previous cycle is b̂
ωE

k . It is important to note that the transpose of the
matrix Ãk is actually used as the transition matrix in Equation 4.51, i.e.
AT
k .

From R̃k+1, roll, pitch and yaw angles are computed using the method
described in Subsection 4.5.3. The computed set of angles are represented
as

γ̃k+1 =
[
φ̃k+1 θ̃k+1 ψ̃k+1

]T
(4.60)

Another separate set of rotation angles can be derived from the ac-
celerometer and magnetometer data. The method described in Subsec-
tion 4.5.1 is used to calculate the roll and pitch angles from the acceleration
data. The normalized estimated acceleration for the current update cycle,
âk+1/|âk+1|, is used as the acceleration signal for this purpose. The acceler-
ation is normalized to ensure that the amplitude of the acceleration vector
is 1 g. Subsection 4.5.2 is used with the available magnetometer data to find
the yaw angle. The set of rotation angles derived from the accelerometer
and magnetometer is represented as

zγk+1 =
[
zφk+1 zθk+1 zψk+1

]T
. (4.61)

The difference between the two separate estimates of the rotation angle
sets is used to derive the observation vector of the LKF, namely LKF3, for
the gyroscope error estimation. The state and measurement equations for
LKF3 are

bωLk+1 = (1− βω∆t)bωLk +
√

2βωσω2∆twωL
k (4.62)

zbωLk+1 = bωLk+1 + wωL
k+1 (4.63)

where

bωLk+1 = bias error in the gyroscope derived via sensor fusion for the
current update cycle

zbωLk+1 = observation vector for LKF3.
wωL
k+1 = measurement noise in angular rate with covariance matrix

RωL
k+1.
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The observation vector of LKF3 is computed as

zbωLk+1 =
γ̃k+1 − zγk+1

∆t
. (4.64)

The estimated error in angular rate using sensor fusion, b̂
ωL

k+1, is found
as the result of LKF3. This error estimate is used to correct the rotation
angle derived from the rotation matrix. Therefore, the estimated rotation
angle set is

γ̂k+1 = γ̃k+1 − b̂
ωL

k+1∆t. (4.65)

Henceforth, the estimated rotation matrix for the current update cycle R̂k+1

is computed from the set of corrected rotation angles γ̂k+1 using Equa-
tion 4.4.

Figure 4.6 shows the flow diagram of the proposed error compensation
technique for a particular update cycle starting at epoch tk+1. The Inertial
Measurement Unit (IMU) represents the set of body frame sensors, which
provides raw data to the algorithm. Among the four, two of the final outputs
after the error compensation, the estimated acceleration âk+1 and the esti-
mated rotation matrix R̂k+1, are fed to the INS mechanization equations.
The other two final outputs, estimated acceleration error and estimated an-

gular rate error from sensor fusion, namely b̂
aL

k+1 and b̂
ωL

k+1, are fed to the
EKF for the GPS/INS integration as a part of the observation vector.

4.7.3 INS Mechanization

The estimated body frame acceleration âk+1 and rotation matrix R̂k+1

are used to solve the INS equations derived in Section 4.4. The initial ve-
locity of the athlete required for the INS equations can be directly achieved
from the GPS receiver data. Finally, the position update at epoch tk+1 in
relation to the navigation frame is derived from the INS equations, which

are termed as the vector rnINSk+1 =
[
rnINSxk+1 rnINSyk+1 rnINSzk+1

]T
. Here, the sub-

scripts x, y and z denote the directions toward north, east and vertically
downwards respectively. The pertinent velocity vector is represented as

vnINSk+1 =
[
vnINSxk+1 vnINSyk+1 vnINSzk+1

]T
.

Figure 4.7 depicts the flow diagram of INS mechanization steps. The
final output, i.e. the position vector rnINSk+1 , is fed forward to the GPS/INS
integration.
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4.7.4 Integration with GPS

To estimate the optimum position updates, the output of the INS needs
to be integrated with the position updates from the GPS with a suitable
estimator. The Extended Kalman Filter (EKF) is one of the most popular
estimators for such integrations [62]. The EKF is an adaptation of the LKF
to nonlinear functions, such as the INS perturbation model provided later
in Equation 4.66-4.68, that is approximated by linearization. A detailed
description of the EKF can be found in [52, 61].

The type of integration, where GPS position and/or velocity updates are
directly used to correct the INS output, is called a loosely coupled system.
In this study, a loosely coupled system is implemented for integrating GPS
position updates. The integration strategy can also be either open looped
or close looped. In an open looped system, the INS mechanization operates
without being concerned about the presence of the estimator or external
data. The estimated state vectors are used to correct the INS output only.
However, in an open loop system, the error in INS mechanization with low
cost MEMS senors can grow unbounded and propagate significantly large
error within a short period of time. As a result, unbounded error observa-
tions are delivered to the estimator, such as the Kalman filter. This causes
problems in the linear filter since only small errors are allowed due to the
linearization process [63]. Therefore, a closed loop system is required to
continuously compensate for the error in INS mechanization. In a closed
loop system, error estimates from the estimator are fed back to correct the
sensor outputs and other mechanization parameters.

In a closed loop loosely coupled system, the GPS/INS integration is typ-
ically done by estimating the error states in the INS mechanization. The
basic estimator consists of nine navigation error states consisting of three
position, three velocity and three attitude error states [41]. However, due
to the error in sensors, the state vector is augmented by incorporating ac-
celeration and angular rate error states resulting in a fifteen element state
vector.

The INS error state models are obtained by the perturbation of the
mechanization equations [41]. The perturbation analysis is not within the
scope of this research and, therefore, is not demonstrated here. Several
well documentated perturbation analyses are available as in [64] and [65].
As given in [66], the obtained model is expressed as a series of differential
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Figure 4.8: Flow diagram of jump trajectory determination.

equations as follows:

δṙn = δvn (4.66)

δv̇n = −2[ωnie×]δvn − anζn + Rn
bb

aE (4.67)

ζ̇
n

= −[ωnie×]ζn + Rn
bb

ωE (4.68)

where the “dot”s denote time derivatives and

rn = position error state vector
vn = velocity error state vector
ζn = attitude error state vector

baE = accelerometer error state

bωE = gyroscope error state.

Following the above continuous perturbation model and the simplified
discrete time approximated model demonstrated in [63], the augmented dis-
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crete time fifteen state model can be represented as

δxk+1 =


δrnk+1

δvnk+1

ζnk+1

baEk+1

bωEk+1



=


0 I 0 0 0
0 −2[ωnie×] −an Rn

bk+1 0
0 0 −[ωnie×] 0 Rn

bk+1

0 0 0 (1/∆t− βa) 0
0 0 0 0 (1/∆t− βω)



δṙnk
δv̇nk
ζ̇
n
k

baEk
bωEk

∆t+ qEk

(4.69)

where qEk is the driven response at tk+1 due to the presence of the pro-
cess white noise during the time interval tk - tk+1 [63]. The corresponding
covariance matrix is set as [62]

QE
k =


Qr
k 0 0 0 0

0 Qv
k 0 0 0

0 0 Qζ
k 0 0

0 0 0 QaE
k 0

0 0 0 0 QωE
k

 (4.70)

where

Qr
k = covariance matrix for positioning error

Qv
k = covariance matrix for velocity error

Qζ
k = covariance matrix for attitude error

QaE
k = covariance matrix for acceleration error

QωE
k = covariance matrix for angular rate error.

Here, the bias errors are modeled as a 1st order Gauss-Markov process as
given in Equation 4.48 and 4.50.

The observation vector for the EKF is derived from the difference be-
tween GPS and INS position estimates, and augmented by the two estimated
errors from the error compensation block. Therefore, the nine element ob-
servation vector is

δzk+1 =

rnGPSk+1 − rnINSk+1

b̂
aL

k+1

b̂
ωL

k+1

 (4.71)
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where rnGPSk+1 is the position update from GPS at epoch tk+1. As GPS
position updates occur at lower frequency than the frequency of the INS
position updates, the GPS positions are interpolated to the INS update rate
within the time period selected for the jump trajectory determination.

Finally, the estimated states are fed back to the error compensation
block and the INS mechanization block for error correction. The estimated
position error is used to correct the position output from the INS. Therefore,
the final estimated position update is given as

r̂nk+1 = rnINSk+1 + δr̂nk+1. (4.72)

The flow diagram of the entire proposed algorithm is shown in Figure 4.8.
In the figure, dotted lines represent feedback. The proposed technique is
depicted for a particular update cycle and the index of the update cycle is
explicitly mentioned as a subscript in the variable names.

4.7.5 Period Segmentation and Parameter Customization

For jump trajectory determination, it is important to capture all the
abrupt changes in dynamics undertaken by the athlete in preparation for
the jump. Failure to accommodate any small portion of significant change in
acceleration prior to the jump may cause a large error in KPV determination,
i.e. jump horizontal distance, height and drop. Therefore, the trajectory
determination algorithm should be conducted on the data from a time epoch
preceding jump start. However, the computation capability of the onboard
processor is limited as well as the battery power. Moreover, computation
should be completed shortly after the jump to provide real-time feedback
on the KPVs to the goggle user. Therefore, due to resource constraints, it is
also not feasible to operate the trajectory determination algorithm starting
from far behind the jump start epoch to safely accommodate all of the jump
preparation dynamics.

Another significant difficulty in jump trajectory determination using the
Kalman filter is that the rate of change in dynamics varies abruptly within a
very short period of time immediately before and after a jump. The jump’s
dynamic characteristics also vary a great deal for a wide range of different
types of jumps. Therefore, the Kalman filter variables involved in predicting
an athlete’s dynamics should be customized and fine-tuned to address highly
fluctuating scenarios.

To address the above difficulties, an automated algorithm is implemented
to select the total trajectory determination period and segment it depend-
ing on the acceleration characteristics. As shown in Figure 4.9, the jump
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Figure 4.9: Period segmentation for trajectory determination.

preparation period, including the jump, has been segmented into three por-
tions depending on the resultant acceleration profile, namely Initial Ac-
celeration Period (IAP), Acceleration Gain Period (AGP) and Aero Phase
Period (APP). In IAP, the resultant acceleration is steady and there is
no abrupt change in the acceleration. In this period, the athlete has only
started to prepare for the jump and the average acceleration slowly increases.
This period also provides enough time for the Kalman filters to converge.
In AGP, the majority of the gain in acceleration (mostly in upward and
forward direction) occurs. Rapid fluctuations in the acceleration also take
place during the preparation for take-off. This segment is of the most im-
portance for the KPV calculation. The last segment, i.e. APP, is the time
period when the athlete is in the air. During APP, the acceleration falls
to near zero. Any algorithm parameter that uses gravity sensed by the
accelerometer should be carefully handled during AGP and APP. This is
because during AGP the accelerometer senses specific acceleration in mag-
nitude much higher than gravity, whereas during APP the accelerometer
senses no gravity at all. The jump trajectory determination algorithm is
operated from the start of IAP to the end of APP.

The IAP and AGP are automatically selected by the algorithm from the
resultant acceleration. APP is predetermined from the jump start epoch
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to jump end epoch, which are determined by the algorithm described in
Chapter 3. A threshold thAGP is selected to extract the information about
the gain in acceleration. If the resultant acceleration exceeds thAGP at any
epoch within a considerable period, which is set to 10 s in this study, prior to
the jump start, then an indication of the start of AGP is achieved. Another
2 s of safety period is annexed before this epoch to make sure that the rise
of acceleration is incorporated into AGP. Therefore, the start of AGP is
calculated as,

tAGPs = min
t

{
|ab(t)| > thAGP

}
− 2 s, tjumps − 10 s < t < tjumps (4.73)

where

tAGPs = start epoch of AGP
ab(t) = resultant acceleration

tjumps = jump start epoch.

Hence the AGP spans from tAGPs to tjumps . Furthermore, the IAP is empir-
ically selected to span from tAGPs - 3 s to tAGPs and, as mentioned earlier,
APP spans from tjumps to tjumpe . Here, tjumpe denotes the jump end epoch.

Two parameters of the LKFs implemented in the error compensation
block are directly dependent on the dynamics of the athlete and, therefore,
need to be varied over different segments. One of the parameters is the
process noise covariance matrix, Qa

k, of LKF1. Due to the very abrupt
nature of the acceleration during AGP, Qa

k is set to a higher value during
AGP relative to what it is set to for IAP and APP.

The second parameter, and also the more important one, which needs
to be tuned during different segments is the observation noise covariance
matrix, RωL

k+1, in LKF3. As previously noted, maintaining alignment, i.e.
determination of the roll and pitch of the body frame, is important because
of its direct relation to gravity cancelation. Therefore, acceleration mea-
surements are used to correct the estimate of the body frame attitude found
from the gyroscope. For accurate estimation of body frame attitude, the
accelerometer should only sense vertically directed acceleration, e.g. anti
gravity. However, during AGP, high specific acceleration is involved, which
renders the acceleration sensed by the accelerometer in any random direc-
tion. On the other hand, during APP there is practically no acceleration
to calculate the attitude from. Therefore, the reliability of the rotation an-
gles calculated from the accelerometer data varies amongst the segmented
periods. As the measurement vector of LKF3 directly depends on the mea-
sured rotation angles from the accelerometer, the measurement noise varies
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signifcantly during the trajectory determination period. Therefore, the mea-
surement noise covariance vector RωL

k+1 is considered a tuning parameter for
proper estimation of the angular rate error with LKF3. The covariance ma-
trix is tuned to a high value during AGP relative to what it is tuned to for
IAP. This is done to decrease the reliability of the measurement vector dur-
ing AGP. The reliability of the observation for LKF3 becomes even worse
during APP due to an absence of any acceleration and, therefore, RωL

k+1

is set to a higher value to completely rely on the data achieved from the
gyroscopes.

4.8 Field Experiments

The version of the Recon goggles, which are equipped with all the sensors
needed for trajectory determination, was not yet ready for field data collec-
tion when this research was conducted. Therefore, jump data was collected
with another data capturing device with similar sensors, named ‘Minimax’,
developed by Catapult [31]. As ski resorts were closed during the time of this
research, data was collected for jumps performed on a mountain bike as this
closely resembles ski jumps. For benchmark data, a Novatel DL-V3 GPS
receiver was carried by the mountain biker while executing the jumps. The
Novatel receiver position updates were further refined with ‘CSRS - Precise
Point Positioning’ provided by Natural Resources Canada [67]. The Novatel
GPS receiver has a 5 Hz update rate while the Minimax GPS receiver gives
position updates at 10 Hz. All the inertial sensors in the Catapult unit have
an update rate of 100 Hz.

The Catapult unit affixed to the side of the biker’s helmet, as shown in
Figure 4.10, while executing jumps to mimic the similar dynamic environ-
ment felt by the Recon goggle sensors. The Novatel receiver was carried in
a backpack with its antenna projected outside. Synchronization of the data
achieved from these two devices is a critical issue. Even though the GPS
time stamps of the data captured with the Novatel receiver are reliable, the
Catapult GPS time stamps suffer from a bias, which drifts with time. This
is due to a varying time delay that occurs when the Catapult microprocessor
writes the time stamps. This is a common issue for microsystems such as in
Recon goggles, Minimax etc.

Therefore, data sets from the different devices are synchronized by cal-
culating the minimum Root Mean Square (RMS) value of the difference
in positional data readings (latitude and longitude) from different devices.
However, this synchronization strategy renders an unavoidable implication.
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Figure 4.10: Catapult Minimax unit affixed to the biker’s helmet.

Due to the spatial distance between the head mounted Catapult unit and
the Novatel GPS antenna in the backpack, the derived jump start and end
epochs from the acceleration captured by the Catapult unit’s accelerome-
ter will not represent the same jump start and end epochs for the Nova-
tel receiver. Therefore, to eliminate the spatial difference, the Catapult is
strapped to the antenna pole of the Novatel receiver. The entire setup and a
test jump performed by the athlete is shown in Figure 4.11 and Figure 4.12.

Carrying the Catapult unit in the backpack also poses some negative im-
plications. First of all, the collected acceleration sensor data is more noisy
than the data collected with the Catapult affixed to the helmet. This is
because the antenna pole is not rigidly attached to the backpack and the
backpack itself generates noise from movement due to the flexible coupling
with the athlete. Secondly, as the catapult unit is not firmly coupled with
the athlete, the detected jump from the Catapult acceleration represents
the jump of the Catapult unit itself, not necessarily the jump of the ath-
lete. Experimental data has shown that the athlete’s jump occurrence is
delayed in time relative to the jump detected by the Catapult unit. The
probable reason for this phenomenon is that the backpack settles on the
athlete’s shoulder while he is still in the air. However, this should not cause
any problem in the performance analysis of the trajectory determination
algorithm as all the interest is focused on the trajectory determination, not
the detection of jump start or end epochs. The jump start and end are
detected with the accelerometer data as described in Chapter 3 and then
the detected epochs are used to find the jump region, i.e. the aero phase
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Figure 4.11: Catapult Minimax unit strapped to the Novatel GPS receiver
antenna pole. [Photograph by Darren Handschuh]

region for the Catapult unit. The detected jump region is moved forward
suitably to resemble the athlete’s jump and relevant KPVs without any loss
of generality. An example of noisy resultant acceleration of the Catapult
unit strapped to the antenna pole is shown in Figure 4.13.

4.9 Experimental Results

Fourteen jumps were executed for which the Catapult MEMS inertial
sensor and GPS receiver data, along with the Novatel receiver data, were
collected. The Catapult data was fed to the proposed trajectory determi-
nation algorithm and the jump trajectory was determined. The trajectory
determination begins from the start of the IAP and stops at the jump end.
The trajectory was also determined from the GPS position updates of the
Catapult unit. Afterwards, the relevant KPVs, namely jump horizontal dis-
tance, height and drop, were calculated easily. Similarly, KPVs are found
from the Novatel receiver GPS position updates which are used as the bench-
mark KPVs. The Novatel receiver GPS receiver updates with precise point
positioning have a horizontal positioning accuracy of ∼ 2 cm and verti-
cal positioning accuracy of ∼ 7 cm. Furthermore, the Novatel GPS position
updates are interpolated to the inertial sensor data rate for KPV determina-
tion, which is another potential error source for the benchmark data. Hence,
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Figure 4.12: Test jump performed by the athlete. [Photograph by Darren
Handschuh]
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Figure 4.13: Resultant acceleration of Catapult unit strapped to the an-
tenna pole carried in backpack.

the possibility of error in the benchmark KPV value should be considered
when it is used for performance evaluation.

Figure 4.14 and Figure 4.15 show two examples of jump trajectory deter-
mination with the proposed algorithm, with the Catapult GPS solution and
with the Novatel receiver GPS solution. The jump start and end epochs for
the athlete were found as described in the previous section. It is noticeable
in both figures that the trajectory from the Catapult GPS solution has very
poor performance in vertical positioning updates. Not being entirely certain
about the Catapult algorithm, it is speculated by looking at the data from
the Catapult unit that the height profile is derived from both the altimeter
and GPS solution. Therefore, the poor accuracy of the altimeter and the
single point GPS receiver causes the unsatisfactory trajectory determina-
tion with the Catapult GPS solution. On the other hand, the trajectory
determined by the proposed algorithm is very similar to the benchmark tra-
jectory from the Novatel receiver GPS solution. This is due to the successful
integration of the INS with the GPS updates. The fluctuation at the begin-
ning of the trajectory for the proposed algorithm is due to the time required
for filter convergence. However, there is a distance (mostly in vertical di-
rection) between the benchmark trajectory and the trajectory derived from
the proposed algorithm. This is because the proposed algorithm depends
heavily on the INS for vertical position estimates and, as seen earlier, the up-
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dates for vertical positioning from the Catapult height profile are also very
poor in accuracy. Therefore, the noise in low cost MEMS sensors causes
a drift from the benchmark in the trajectory determined by the proposed
algorithm, mostly in the vertical direction. However, this should not cause
considerable error as the interest is focused on relative measurements for a
brief period of time.
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Figure 4.14: First example of jump trajectory determination with the pro-
posed algorithm, with the Catapult GPS solution and with the Novatel
receiver GPS solution.

Tables 4.4, 4.5 and 4.6 lists KPV values (horizontal distance, height,
and drop respectively) for all the jumps along with the benchmark values
deduced from Novatel trajectory. For the calculation of average errors, error
in KPV for each jump was first determined and then the errors for all the
jumps were averaged. Similarly, the percentage errors were also calculated.
To show the advantage of the augmented error observation, provided by
the error compensation block in the GPS/INS integration, two results have
been shown for the proposed algorithm. One set of KPVs is calculated by
the application of the proposed algorithm excluding the augmenting sensor
error observations in the EKF, whereas, the second set of KPVs is calculated
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Figure 4.15: Second example of jump trajectory determination with the
proposed algorithm, with the Catapult GPS solution and with the Novatel
receiver GPS solution.

by the complete application of the proposed algorithm, i.e. including the
augmenting sensor error observations.

As shown Table 4.4, the proposed algorithm provides minor improve-
ments in the horizontal distance calculation. The proposed algorithm pro-
vides 1.99 % and 1.71 % improvement over the Catapult GPS solution. The
percentage error improvements are calculated with respect to the Catapult
unit errors in KPV determination. The reason behind this slight improve-
ment in horizontal distance measurement is because horizontal distance mea-
surement depends greatly on the initial velocity of the body frame. With
the inertial sensors, it is not possible to derive the initial velocity at the
start of the trajectory determination period. Hence, the velocity from the
Catapult GPS receiver is used for the proposed algorithm. Therefore, the
error in the Catapult GPS solution also propagates through the proposed
algorithm for horizontal distance measurements. It is postulated that the
Catapult GPS solution provides velocity readings lower than the true ve-
locity. Therefore, the horizontal distance measurements from the proposed
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algorithm are generally lower in magnitude than the benchmark. The error
in horizontal distance by the Catapult GPS solution is due to an internal
mechanism error of the unit, which is unknown.

On the other hand, the vertical velocity of the athlete is generally very
small at the start of the trajectory determination period and, therefore, er-
ror in the Catapult velocity has little effect on the proposed algorithm. As
a result, great improvements are reflected in the height and drop calcula-
tions for the proposed algorithm as shown in Table 4.5 and Table 4.6. In
height, the complete application of the proposed algorithm provides 60.51 %
improvement over the Catapult GPS solution, whereas the improvement is
even greater (88.73 %) for drop determination. In Table 4.5, it is noticeable
that there is no jump height for jumps no. 7, 10 and 12. This is due to the
characteristic of the jump itself where the athlete achieved no elevation from
the jump start point. For the application of the proposed algorithm with-
out the sensor error observations in the EKF, the improvement for height
and drop relative to the Catapult GPS solution are 55.70 % and 85.40 %
accordingly. The smaller improvement in height and drop determination for
the proposed algorithm with no sensor error observation provides the ratio-
nale behind augmenting the observation vector in the EKF for GPS/INS
integration with the estimated sensor errors from the error compensation
block. Of course, the addition of the augmented measurements will increase
the computation load. However, this is the price to pay for the increased
accuracy in KPV determination.

To show the effectiveness of the proposed novel error compensation
scheme, GPS/INS integration was also done but excluding the entire er-
ror compensation block depicted in Figure 4.6 as opposed to just excluding
the use of the augmented observation vector in the EKF, the results of which
are shown in Tables 4.4, 4.5 and 4.6. However, the error estimates from the
EKF are still fed back to correct the sensor readings and INS mechanization
parameters. The bar plots shown in Figure 4.16 and Figure 4.17 summa-
rize the error comparison in KPV determination produced by the catapult
GPS solution, GPS/INS integration without the error compensation block,
proposed algorithm without the augmented observation in EKF, and the
complete proposed algorithm. Each block is colored differently to mark
the error contribution of each KPV calculation to the total error of all the
KPV determinations. The height of each block represents the total error
in the jump horizontal distance, height and drop calculation for the applied
method to the particular jump. It is evident from the bar plot that the
error compensation block has a major impact on the accuracy of the INS
mechanization as well as the GPS/INS integration.
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Table 4.4: Comparison of jump horizontal distance determination perfor-
mance between the proposed algorithm and Catapult GPS solution.

Horizontal Distance [cm]

Jump no. Novatel
GPS

Catapult
GPS

Proposed
algo.(without
augmented

observation)

Proposed
algo.(with
augmented

observation)

1 206.25 189.46 189.40 189.37

2 215.81 198.68 198.26 198.24

3 339.44 332.82 333.17 333.17

4 290.47 273.39 274.07 274.13

5 251.52 200.45 201.39 201.27

6 313.86 296.44 296.92 296.74

7 197.96 180.57 180.62 180.67

8 231.89 225.01 225.19 225.21

9 237.45 224.27 225.07 225.07

10 206.10 200.08 200.09 199.95

11 289.50 278.61 279.01 278.79

12 238.07 221.39 221.79 221.62

13 333.62 332.79 333.14 333.16

14 262.59 256.24 256.32 256.32

Average error in cm [error%] 14.59
[5.65%]

14.30
[5.53%]

14.34
[5.55%]
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Table 4.5: Comparison of jump height determination performance between
the proposed algorithm and Catapult GPS solution.

Height [cm]

Jump no. Novatel
GPS

Catapult
GPS

Proposed
algo.(without
augmented

observation)

Proposed
algo.(with
augmented

observation)

1 0.66 0.00 1.98 1.47

2 7.13 0.00 3.37 3.37

3 13.85 0.30 10.98 11.95

4 0.21 0.00 0.00 0.32

5 2.01 1.50 4.86 4.21

6 8.02 0.00 7.84 7.42

7 0.00 0.00 0.00 0.00

8 8.80 0.00 4.14 4.18

9 6.54 0.00 7.95 7.68

10 0.00 0.00 0.00 0.00

11 2.80 0.00 3.92 3.88

12 0.00 0.00 0.09 0.10

13 3.33 0.00 8.56 8.06

14 3.81 0.00 4.57 4.53

Average error in cm [error%] 3.95
[96.85%]

1.75
[42.85%]

1.56
[38.21%]
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Table 4.6: Comparison of jump drop determination performance between
the proposed algorithm and Catapult GPS solution.

Drop [cm]

Jump no. Novatel
GPS

Catapult
GPS

Proposed
algo.(without
augmented

observation)

Proposed
algo.(with
augmented

observation)

1 55.72 0.70 43.14 54.61

2 30.87 1.90 60.95 59.58

3 75.49 0.00 70.68 76.20

4 106.23 60.50 110.14 107.60

5 91.53 0.00 74.67 73.98

6 83.94 7.20 82.38 82.06

7 49.03 3.20 49.71 55.09

8 62.51 4.90 78.64 74.90

9 46.19 5.00 48.87 51.12

10 64.54 6.20 63.73 64.20

11 75.68 16.70 68.68 72.54

12 90.27 9.50 78.28 78.23

13 94.10 38.00 98.13 94.18

14 70.02 8.40 78.68 73.73

Average error in cm [error%] 59.57
[83.72%]

8.70
[12.22%]

6.71 [9.43%]
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Figure 4.16: Error comparison in KPV determination among Catapult
GPS solution, GPS/INS integration excluding the error compensation
block and proposed algorithm [Jump no. 1-7].
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4.10 Summary

In this chapter, a jump trajectory determination scheme was presented
using inertial sensors and GPS updates. A novel sensor fusion scheme was
proposed to mitigate the error in the inertial sensor readings. The sensor
fusion scheme also provides leverage to augment the observation vector for
GPS/INS integration. Experimental results have shown that the proposed
algorithm calculates the jump horizontal distance, height and drop with an
average accuracy of 14.34 cm, 1.56 cm and 6.71 cm respectively. Even though
Recon has provided no accuracy requirement for these KPVs, the proposed
algorithm accuracy should be acceptable for recreational users for whom
the magnitude of jump horizontal distance, height and drop are typically
small but higher accuracy is not required. For training purposes of serious
athletes, the jump will typically be larger and, therefore, errors in the range
of 2 to 14 cm, as demonstrated here, will be a small percentage of the true
jump horizontal distance, height and drop.
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Chapter 5

Conclusions and
Recommendations

The objective of this research was to develop algorithms for Recon action
sports goggles to determine the Key Performance Variables (KPVs) relevant
to sport maneuvers. Dedicated algorithms were developed to determine the
KPVs taking into account the onboard resources available in the goggles. In
this chapter, the research objectives and the performance of the proposed
algorithms will be highlighted. Then, the key findings of the research will be
summarized. Finally, future work will be discussed and recommendations
will be made on the expansion of the current work.

5.1 Objectives and Algorithm Performance

Objective

The objective of this research was to develop online algorithms to de-
tect ski or snowboard jumps and to determine four KPVs associated with
the jump, namely Air Time (AT), horizontal distance, height and drop.
The algorithm should provide real-time feed back and should be developed
based on the available low cost MEMS inertial sensors and single point GPS
receiver contained in the Recon goggles. Recon provided an AT accuracy
requirement of ±0.1 s. Although Recon set no specific accuracy requirement
for jump horizontal distance, height and drop, the algorithm is expected to
produce results with sufficient accuracy to meet user’s expectations. For
instance, for a recreational user, an accuracy of 10 − 20 cm should be suf-
ficient. A professional user would likely desire better accuracy. However, a
professional user would typically perform larger jumps than a recreational
user and, therefore, errors no more than 10 − 20 cm will be insignificant
compared to the size of the jump itself.
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Jump Detection

For jump detection, a novel algorithm was developed using Windowed
Mean Canceled Multiplication (WMCM) and Preceding and Following Ac-
celeration Difference (PFAD), two novel methods developed by the author.
Experimental results showed that, the proposed jump detection algorithm
successfully detects 92% of the jumps performed by a snowboarder whereas
the current Recon jump detection algorithm and the commercial Ripxx unit
accurately detect only 60% and 43.50% of the jumps respectively. The false
wake up call rate of the proposed jump detection algorithm was found to be
0% for the experimental jumps. On the other hand, the current Recon jump
detection algorithm exhibits a false wake up call rate of 45.60%. Considering
the number of wrong detections, i.e. the combined number of true jumps un-
detected and false jumps detected, the Recon and Ripxx algorithms possess
an error rate of 44% and 52% for all jump detections respectively. Unlike
these two, the proposed algorithm has a wrong detection rate of only 8%.

Air Time Determination

To determine AT, a threshold independent probabilistic method using
Multiple Attribute Decision Making was developed. The proposed algorithm
exhibits an average error of 0.033 s (4.8%), which is well within the accuracy
requirement of Recon. On the other hand, the current Recon and Ripxx AT
determination algorithms have respective errors of 0.111 s (8.4%) and 0.538 s
(39.7%) in AT determination.

Jump Horizontal Distance, Height and Drop

A GPS/INS integrated algorithm using a novel sensor error correction
scheme and augmented measurement vector was developed for the deter-
mination of jump horizontal distance, height and drop. From experimental
results it was found that the proposed algorithm has an error of 14.34 cm
(5.55%), 1.56 cm (38.21%) and 6.71 cm (9.43%) in the determination of jump
horizontal distance, height and drop respectively, whereas, the Catapault
unit GPS solution has an error of 14.59 cm (5.65%), 3.95 cm (96.85%) and
59.57 cm (83.72%) accordingly. The proposed algorithm accuracy should be
sufficient for the recreational user, where magnitude of the KPVs is small,
and higher accuracy is not strictly required. On the other hand, for the train-
ing purposes of serious athletes, the jumps are typically large and, therefore,
errors in the range of 2 to 14 cm will be insignificant with respect to the true
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jump horizontal distance, height and drop. Hence, the proposed algorithm
should also meet the requirements of professional athletes.

5.2 Methods and Key Findings

Among the available inertial sensors, namely accelerometer, gyroscope
and magnetometer, the accelerometer is the most useful for jump detection
as the change in acceleration during a jump is most consistent. Even though
gyroscope readings change significantly as a result of the head movements
associated with a jump, these changes are not consistent. The magnetometer
is not usable for jump detection as this sensor is not related to jump dy-
namics. Therefore, the proposed tools for jump detection, i.e. the WMCM
and PFAD methods, only exploit the accelerometer signals. Use of redun-
dant accelerometers will increase the accuracy and reliability of the WMCM
method. This is because the WMCM method extracts jump information
from each individual accelerometer oriented in different directions. With an
increased number of accelerometer sensors oriented in other directions, the
WMCM method will have more information about true jump occurrence.
Therefore, jump detection performance will increase with the addition of
more accelerometers. However, the addition of more sensors will increase
the power consumption and cost of the device.

Four characteristic points in resultant acceleration relevant to jump oc-
currence are detected for AT determination. For detecting two of the points,
the closest peak method is proposed. For detecting the other two charac-
teristic points, two methods are developed, one being threshold based and
the other being a threshold independent probabilistic method using MADM.
The threshold dependent method incurs a loss of generality of the algorithm.
Therefore, the probabilistic method is promoted even though it causes a mi-
nor increase in the computational burden. M-TOPSIS, a modified version of
the TOPSIS method, is used for the implementation of MADM. From the
detection of these characteristic points, Sensor Air Time (SAT) is derived
and related to the visual AT later on. It is of utmost importance to detect
precisely the four characteristic points in order to determine the AT with
high accuracy. Depending on the accuracy requirement and the definition
of jump take-off and landing, detection of two characteristic points may also
suffice.

A GPS/INS integrated algorithm was developed for jump horizontal dis-
tance, height and drop measurement and it incorporates a novel sensor error
compensation scheme. Three Linear Kalman Filters (LKFs) were used to
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exploit sensor fusion to compensate for the errors in the accelerometer and
gyroscope. It was found to be critically important to vary the Kalman filter
parameters over the relevant jump period as the athlete’s dynamics signif-
icantly change before, during, and after a jump. As results have shown,
the error compensation scheme is very important for the detection of the
KPVs. The Extended Kalman Filter (EKF) used for GPS/INS integra-
tion is executed with an observation vector augmented with the sensor error
observations calculated by the error compensation block, which results in
better estimation of the sensor errors. Of course, the improvement in the
accuracy of the state estimation comes at the cost of an increased compu-
tational load due to the expansion in vector size. As mentioned earlier, the
proposed algorithm with the augmented observation vector has an error of
14.34 cm (5.55%), 1.56 cm (38.21%) and 6.71 cm (9.43%) in the determina-
tion of jump horizontal distance, height and drop respectively, whereas, the
proposed algorithm without the augmented observation vector has an error
of 14.30 cm (5.53%), 1.75 cm (42.85%) and 8.70 cm (12.22%) accordingly.

5.3 Recommendations

During the course of this research, new challenges important and worthy
of investigation were encountered.

Quaternion. The body frame to navigation frame rotation matrix im-
plemented with Euler angles may become singular at times, which can be
addressed by quaternion algebra. With the application of quaternion algebra
the rotation matrix calculation will also be decreased as only four elements
are calculated with quaternion algebra as opposed to nine elements with
Euler angles.

Kalman Filter Delay. The delay in the Kalman filter should be inves-
tigated for the proposed algorithms. If the error due to this phenomenon
is significant, recovery measures should be undertaken for compensation of
the filter delay.

Tight Coupling. GPS/INS integration tight coupling should also be in-
vestigated and the performance should be analyzed. The increase in compu-
tational complexity and the gain in KPV determination accuracy should be
evaluated in case of the adoption of a tightly coupled GPS/INS integrated
system.
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5.3. Recommendations

Algorithm Application. Even though the algorithms are developed spe-
cially for ski or snowboard jumping, the developed techniques might have
application aspects in a variety of fields with modifications and different
tuning. As seen in Chapter 4, the athlete’s jump dynamics in skiing/snow-
boarding and mountain biking are very similar. Hence, this research can
also be applied to sports where maneuvering jumps plays a key role. For
instance, these developed algorithms can be directly implemented in BMX
biking where similar KPVs are used to judge the aerial stunts executed
by professional athletes. Therefore, the scope of the developed algorithms
should be widely explored, not only in outdoor sports, but also in other
potential sectors such as video gaming, bio-medical engineering, etc.
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Appendix

Appendix A Multiple Attribute Decision Making

In general, a Multiple Attribute Decision Making (MADM) problem can
be described as [68, 69]

max
x1,x2,..,xp

{F1(x1, x2, .., xp), F2(x1, x2, .., xp)

.., FP (x1, x2, .., xp)} (A-1)

subject to a set of constraints

gr(x1, x2, .., xp) ≤ 0, r = 1, 2, .., L (A-2)

where Fi, i = 1, 2, .., P are the criteria and xi, i = 1, 2, .., n are the de-
sign variables which the criteria and constraints depend on. Any set X =
{x1, x2, .., xp|g(x1, x2, .., xp) ≤ 0} is the set of feasible design variables which
complies with the design constraints. For each point in X there is an asso-
ciated set {F1, F2, .., FP } such that X is mapped into a set

S = {F1, F2, .., FP |x1, x2, .., xp ∈ X} (A-3)

in the criteria space. Further, {x∗1, x∗2, .., x∗p} is called the optimal solution if
and only if {x∗1, x∗2, .., x∗p} ∈ X and Fi{x∗1, x∗2, .., x∗p} ≥ Fi{x1, x2, .., xp}, i =
1, 2, .., P .

TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOP-
SIS) is one of the most popular compromising methods among the compen-
satory techniques, utilizing preference information provided in the form of
weights wci , i = 1, 2, .., P for each criterion. TOPSIS defines an index called
similarity (or relative closeness) to the positive-ideal solution by combin-
ing the proximity to the positive-ideal solution and remoteness from the
negative-ideal solution [48]. The positive-ideal solution simultaneously opti-
mizes each objective. The positive-ideal solution to a multi-criteria problem
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is generally not feasible, but can serve as a standard to the alternatives [70].
Assuming that the greatest utility can be achieved from the positive-ideal
solution, closeness to the positive-ideal solution can be considered analogous
to maximizing utility.

The concept of the decision matrix D is applicable to all other MADM
techniques and can be expressed as

D =



f11 f12 . . . f1i . . . f1P
f21 f22 . . . f2i . . . f2P
...

...
. . .

...
. . .

...
fj1 fj2 . . . fji . . . fjP
...

...
. . .

...
. . .

...
fM1 fM2 . . . fMi . . . fMP


. (A-4)

D is an M-by-P-matrix with elements fji that indicate the value of the
criterion Fi with respect to the alternative Aj . The initial step of most
MADM problems is to calculate the normalized rating [48], rji, for each
element of D. The vector normalization procedure can be given as

rji =
fji√
M∑
j=1

x2ji

, j = 1, ...,M ; i = 1, ..., P. (A-5)

Hence the weighted normalized ratings are calculated as

vji = wci rji, j = 1, ...,M ; i = 1, ..., P. (A-6)

In such a context, the positive ideal solution can be denoted as

A∗ = {v∗1, .., v∗i , .., v∗P }
= {(max

j
vji|i ∈ I1),

(min
j
vji|i ∈ I2)|j = 1, ...,M} (A-7)

where v∗i is the best value for the ith criterion among all available alterna-
tives. I1 is the set of benefit attributes and I2 is the set of cost attributes.
Benefit attributes are those which are expected to be maximized and cost
attributes are those which are expected to be minimized. Consequently, the
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negative-ideal solution can be denoted as

A− = {v−1 , .., v
−
i , .., v

−
P }

= {(min
j
vji|i ∈ I1),

(max
j
vji|i ∈ I2)|j = 1, ...,M} (A-8)

where v−i is the worst value for the ith criterion among all alternatives. The
separation of each alternative from the positive ideal solution, A∗, can then
be given by

D∗j =

√√√√ P∑
i=1

(vji − v∗i )2, j = 1, ...,M. (A-9)

Similarly, the separation from the negative ideal solution, A−, can be given
by

D−j =

√√√√ P∑
i=1

(vji − v−i )2, j = 1, ...,M. (A-10)

Afterwards, similarities to the positive ideal solution are calculated as

C∗j =
D−j

D∗j +D−j
, j = 1, ...,M. (A-11)

Note that 0 ≤ C∗j ≤ 1, where C∗j = 0 when Aj = A−, and C∗j = 1 when
Aj = A∗. Finally, all the alternatives are ranked against C∗i in descending
order and the alternative with the maximum C∗i (rank 1) can be chosen
as the optimal solution for the system. For a two dimensional case, i.e.
for MADM for two criteria, and six alternatives, the TOPSIS method is
illustrated in Figure A-1.

M-TOPSIS

The TOPSIS method prone to ‘Rank Inversion’ problem which can be
resolved by the Modified TOPSIS (M-TOPSIS) method [49]. Rank inversion
means the change in relative ranking among any of the two alternatives in
the event of exclusion or inclusion of any other alternative.

In M-TOPSIS, the D∗jD
−
j plane is constructed and a new Optimized

Ideal Reference Point (OIRP) is constructed. In the D∗jD
−
j plane, D∗ is

the x-axis and D− is the y-axis. (D∗j , D
−
j ) represents each alternative and
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the OIRP is the point (min(D∗j ), (max)(D−j )). Then the distances from the
OIRP to the alternatives are calculated as

DOIRP
j =

√
{min(D∗j )−D∗j}2 + {min(D−j )−D−j }2, j = 1, ...,M.

(A-12)
Afterwards, DOIRP

j is sorted in ascending order and all the alternatives are
ranked against its’ closeness to the OIRP. The alternative with minimum
DOIRP
j (rank 1) is considered as the optimal choice for the MADM problem.

The D∗jD
−
j plane and the distances between OIRP and the alternatives are

depicted in Figure A-2.
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