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Abstract

Motivated by health reform debates and policy changes in Canada and other
OECD countries, we study how the private and public health care impact on the
public health waiting time and more generally the welfare of patients. This thesis
encompasses theoretical and empirical research.
In Chapter 2, we develop a theoretical model and then empirically test the asso-

ciation between allowing private care financing and public waiting time using joint
replacement surgery data of nine Canadian provinces. Two policies that induce pri-
vate care financing are tested. The empirical results suggest that both policies are
associated with shorter public waiting times. This work contributes to the existing
literature by providing an empirical analysis of the relationship between private care
financing and public health waiting time under a unique institutional setting.
In Chapter 3, we investigate the effect of physician dual practice on public wait-

ing time and patient welfare. Motivated by Manitoba’s cataract surgery evidence, our
study shows that the public waiting time difference existing between dual-practice
physicians and public-only physicians can be explained by service quality differenti-
ation. Patients with lower time costs would have a longer waiting time if physician
dual practice were allowed. But some of these patients could be better off by re-
ceiving a service of higher quality induced by allowing physician dual practice. This
work contributes to the limited literature of physician dual practice.
In Chapter 4, we study the use of tax or subsidy on private care to improve in-

come redistribution given that the public health system is financed by a head tax.
When the utilization of the public health system is low, the health planner should
subsidize private care to induce patients with higher time costs to the private sector.
The production cost of public care would then be reduced and so would be the head
tax that everyone pays for. We show that the optimal tax/subsidy decision improves
income redistribution when the utilization of public health system is either high or
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low. This work contributes to the literature of public provision of private goods on
income redistribution.
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Chapter 1

Introduction

We begin with the motivation of this thesis and then discuss how we design the
thesis to address the research questions in Section 1.1. We then present a brief
overview of the three essays included in this thesis in Section 1.2. We conclude
this chapter with an outline of the thesis in Section 1.3.

1.1 Motivation and Research Design
This thesis is motivated by health reform debates in Canada and other OECD

countries regarding the long waiting times in the public health system (Sanmartin et al.,
2000). Debates in Canada are heightened by a series of waiting time related law-
suits.1 Among these lawsuits, the ruling of Chaoulli vs. Quebec2 turns out to be the
most controversial ruling of Supreme Court of Canada to date. Physician Jacques
Chaoulli, together with joint replacement patient George Zeliotis, sued Quebec gov-
ernment for not allowing patients to purchase private insurance to cover their private
care expenses in face of long public waiting times. In 2005, the Supreme Court
of Canada ruled that Quebec’s ban on private health insurance on medically neces-
sary services violates the Quebec Charter of Human Rights and Freedoms. After
the ruling, Quebec government was forced to set up waiting time guarantee for joint
replacement surgeries and allow patients to purchase private health insurance to pay
for their private care should the waiting time guarantee be exceeded (Prémont, 2007).

1These lawsuits may include, but not limited to, Chaoulli vs. Quebec in 2005 (joint replacement),
Murray vs. Alberta in 2006 (joint replacement), McCreith and Holmes vs. Ontario in 2007 (cancer).

2See Chaoulli v. Quebec (Attorney General), [2005] 1 S.C.R. 791, 2005 SCC 35.
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Many people believe that this ruling could lead to fundamental structural changes in
the way Canadian provinces deliver health services.
Similar to Canada, long waiting time of essential or elective services in the pub-

lic health system is a critical issue in many OECD countries in the face of rising
demand and costs, limited public health budget and the advancement of technolo-
gies (Canadian Institute for Health Information, 2008b). Because long public wait-
ing time is the outcome of the interplay of many factors, the root causes of the prob-
lem are far from being clear. To tackle the waiting time problem, two competing
solutions have been proposed in Canada’s health reform debates (Sanmartin et al.,
2000). Some people see long public waiting time as a strong call for more resources
to re-strengthen the public health system (Quesnel-Vallee et al., 2006), so the solu-
tion is to increase the public health funding (Kondro, 2007). On the other hand,
some other people believe that the public health system alone would not resolve the
problem. These people argue that the waiting time problem roots in the failure of
Canada’s single payer system – patients do not have a choice in the face of long
public waiting times. Supporters of this rationale propose to broaden the role and
scope of private care (Esmail and Walker, 2008). Nevertheless, most of the current
public versus private debates are characterized much more by claims and counter-
claims from competing ideological bases than evidence (Tuohy et al., 2004). We are
motivated to provide a better understanding on these controversial issues through
theoretical modeling and empirical research.
The relation between public and private sectors could be structured very differ-

ently in different settings (Tuohy et al., 2004). Most OECD countries adopt a uni-
versal health care system, which normally consists of a public sector that provides
the basic and necessary medical services and a parallel supplemental private sector.
However, the role and form of the private sector vary greatly across countries. For
instance, in many Canadian provinces, the private sector is only allowed to cover
pharmaceutics and non-medically necessary services (Flood and Archibald, 2001);
While in many European countries, the private sector is allowed to cover medically
necessary services. To respect these institutional differences, the literature of health
economics on private care generally focuses on two dimensions. The first dimen-
sion is related to the financing of private care (e.g., Besley et al. (1999); Hurley et al.
(2001); Tuohy et al. (2004); Siciliani and Hurst (2005); Willcox et al. (2007)). Re-
search topics of this dimension include, but not limited to, the source of private care
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financing, the relation between public care financing and private care financing, and
the impact of private care financing on the public health system. Literature on this
dimension mainly consists of empirical studies, such as case studies that compare the
strategies of private care financing across different countries. The second dimension
is related to the provision of private care (e.g., Iversen (1993, 1997); Olivella (2003);
Duckett (2005); Derrett et al. (2009) and papers listed in Eggleston and Bir (2006)).
Research topics of this dimension include, but not limited to, the delivery of private
care, the existence of a private sector and its impact on public health system. Liter-
ature on this dimension mainly consists of theoretical research. As shown in Table
1.1, the three essays included in this thesis cover both dimensions.

Table 1.1: The coverage of topics on private care

Empirical Theoretical
Financing Chapter 2 Chapter 2 / Chapter 4
Provision × Chapter 3

As this thesis is motivated by Canada’s health reform debates, the research topics
and design of this thesis also reflect the focus of the debates. First, Canada’s health
reform debates center at the financing of private care. This is because in Canada,
the health providers are not salaried employees of public hospitals. Instead, they are
self-employed professionals who are usually paid by social insurance on a fee-for-
service basis (Flood and Archibald, 2001), i.e., public health services are delivered
privately. Therefore, the central issue of the public versus private debates is whether
or not to allow private financing of medically necessary services. In both Chapter 2
and Chapter 4, we focus on this issue by discussing the regulatory policies of private
care financing. Second, Canada’s health reform debates focus on medically neces-
sary services. Some medically necessary services, particularly the five priority areas
targeted by the governments for waiting time reduction, are considered as privati-
zable. Waiting time problems of these five areas are covered excessively by media,
which builds up the tension between patients and public health authorities. The health
services chosen for this thesis are of the five priority areas: Chapter 2 discusses the
waiting time problem of joint replacement surgeries; Chapter 3 is motivated by the
empirical evidence of cataract surgeries in Manitoba. Third, in addition to the financ-
ing of private care, another controversial issue in Canada’s health reform debates is
related to physician’s status of practice. In Canada, physicians need to choose opt-in

3



status in order to receive payments from social insurance. The opt-in status prevents
physicians from seeing private patients and receiving private payments. The disman-
tlement of this status disincentive is a controversial proposal in the health reform
plans of some provinces. This thesis also discusses the topic of physician’s status of
practice: Chapter 3 studies the phenomenon of physician dual practice in Manitoba.
These research topics for this thesis allow us to focus on the core of the debates.
We resort to both empirical and theoretical methodologies to investigate the cho-

sen research topics. Either type of research has its strengths and limitations. Theo-
retical research allows us to investigate a topic in a general setting without subject to
the availability of data. Nevertheless, due to the complexity of health care system,
certain assumptions have to be made to simplify the analysis. Empirical research has
the advantage of providing evidence-based answers to hypotheses that are otherwise
undetermined in theoretical research. By including both empirical and theoretical
research in this thesis, we are able to provide a well-rounded understanding of the
issues raised in the public versus private debates.
In the following section, we provide a brief overview of the three essays included

in this thesis. For each essay, we would discuss the research questions to be ad-
dressed, the research methodologies used, the main results and the contributions to
literature.

1.2 Overview of the Thesis

1.2.1 Chapter 2: Private Care Financing and Public Waiting
Time

Chapter 2 is an empirical study that investigates the following research question:
would allowing privately funded health care reduce the public waiting time? This
empirical study focuses on the dimension of private care financing. Two policies that
induce private care financing are tested using joint replacement surgery waiting time
data. Joint replacement surgery is one of the target areas for waiting time reduction
in Canada. Compared to other empirical studies that use cross country data, the
cross province data used in this study are more homogeneous in terms of patient
demographics and institutional characteristics. Therefore, we are in a better position
to test the association between private care financing and public waiting time.
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The main hypothesis for test is derived from a demand and supply equilibrium by
modeling the provision of public health services. To test the policy effects, ideally
one would expect the data set to have a panel structure so that the panel data tech-
nique, i.e., Fixed-effects model, can be used to control for the heterogeneity of cross
section units. However, the policies are fixed in time series, so we have to resort to
general linear model and random-effects model to draw conclusions. Robust tests are
conducted to access the robustness of the results.
This study shows that policies that induce private care financing are associated

with shorter public waiting times. This work provides empirical evidence to one of
the key issues in the public versus private debates in Canada. This work contributes
to the existing literature by providing an empirical research that is based on Canada’s
institutional setting.

1.2.2 Chapter 3: Physician Dual Practice, Public Waiting Time
and Patient Welfare

Chapter 3 is a theoretical study that discusses the phenomenon of physician dual
practice. This study focuses on the dimension of private care provision. This study
is motivated by the observations of waiting time differences existing between dual-
practice physicians and public-only physicians in Manitoba cataract surgeries. We
aim to provide a possible explanation for these waiting time differences by consider-
ing two effects that are induced by allowing physician dual practice - service quality
differentiation and patient prioritization. By considering these two effects jointly, we
are able to investigate the impact of physician dual practice on patient’s waiting time
and welfare. We show that allowing physician dual practice would lengthen the wait-
ing time of patients with lower time costs. However, these patients could be better
off as they receive a service of higher quality.
Although physician dual practice is a common phenomenon in many OECD and

developing countries, the literature on physician dual practice is limited and recent
(Eggleston and Bir, 2006). The objective of this study is more to provide managerial
insights to a specific application than to provide a general model. Therefore, the
modeling assumptions are mainly implied in or supported by Manitoba’s empirical
evidence.

5



1.2.3 Chapter 4: Tax or Subsidy on Private Care and Income
Redistribution

Chapter 4 is a theoretical study that discusses the use of tax or subsidy on private
care to improve income redistribution. This study focuses on the dimension of private
care financing. The research questions of this chapter are motivated by the findings of
Chapter 2. Chapter 2 shows that providing subsidy to private care is associated with
shorter public waiting times. This chapter looks at the same issue from a different but
related perspective: Under what circumstances does providing subsidy to private care
improve income redistribution? Existing literature has shown that public provision
of private goods could improve income redistribution even if the public provision is
financed by a head tax. We aim to extend the existing literature by taking tax or
subsidy decision into account.
We extend the model of Hoel and Sáther (2003) to study the public health plan-

ner’s tax or subsidy decision. The objective of income redistribution is modeled by
assigning welfare weights to different patient types. The analytical results derived
from M/M/1 queue are substantiated by the numerical results of M/G/1 queue.
This study shows that the health planner should subsidize private care when the uti-
lization of the public health system is low. Subsidy to private care induces patients
with higher time costs to the private sector. Therefore, the production cost of public
health service would be reduced and so would be the head tax that everyone pays
for. Additionally, this study shows that the optimally designed tax or subsidy rate
improves income redistribution when the utilization of public health system is either
high or low.

1.3 Outline of the Thesis
The remainder of the thesis is organized as a series of chapters. At the beginning

of every chapter, we motivate the research questions in discussion and examine the
related literature. We then present our analysis and results. We conclude each chap-
ter with a summary of the main findings. The Conclusion chapter summarizes the
main results of this thesis and discusses some ongoing work closely related to this
thesis and the possible extensions for future research. Following them is the bibli-
ography for all chapters. The mathematical proofs for each chapter are placed in the
appendices at the end of the thesis.
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Chapter 2

Would Allowing Privately Funded
Health Care Reduce the Public
Waiting Time? Empirical Evidence
from Canadian Joint Replacement
Surgery Data

2.1 Introduction
Long waiting times in the public health system have been a source of public

concern in many OECD countries (Siciliani and Hurst, 2005), and therefore a target
for policy initiatives. In Canada, long waiting times for elective surgeries have led
to several famous lawsuits1 and nationwide health reform debates. In 2005, physi-
cian Jacques Chaoulli, together with joint replacement patient George Zeliotis, sued
Quebec government for banning the purchase of private insurance to cover private
care expenses when patients were not able to obtain timely access to public health
care through Medicare, Canada’s single-payer public health system. The Supreme
Court’s ruling turns out to be highly contentious (Quesnel-Vallee et al., 2006). The
ruling forced Quebec government to change its policies towards public waiting time

1These lawsuits include Chaoulli vs. Quebec in 2005 (joint replacement), Murray vs. Alberta in
2006 (joint replacement), and McCreith and Holmes vs. Ontario in 2007 (cancer).
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and private care. Due to its potential conflicts with the Canada Health Act, some peo-
ple believe that this ruling might lead to the dismantling of Medicare, while others
suggest that this is a strong call for reforming the current single-payer health system.
Today long waiting times and privatization are among the most controversial topics
in the health care reform debates in Canada and other OECD countries.2 Our study is
motivated to investigate whether or not allowing private care financing is associated
with shorter waiting times in a public health system.
To answer the question, we employ a unique data set which encompasses joint

replacement surgery records of nine Canadian provinces. The information contained
in this data set has been used in Canadian Joint Replacement Registry (CJRR) annual
reports (e.g., Canadian Institute for Health Information 2008a), but it is the first time
that these data are examined with econometric methodologies. To our best knowl-
edge, CJRR is the only nationwide data registry that collects waiting time information
from different provinces for a specific surgical procedure using the same methodolo-
gies. Our main hypothesis for empirical tests is developed through the compara-
tive statics of a demand and supply equilibrium. A province’s public health system
is assumed to be a general queuing system, so observations are constructed at the
province/joint/month level to reflect the statistics of the queuing system. Lags of
arrival rates are proposed to capture the “lagging effects” of arrival rates on wait-
ing times. We employ both the generalized least square model and Random-effects
model. We find that policies that induce private care financing appear to be asso-
ciated with shorter public waiting times. The results also suggest positive lagging
effects of arrival rates on waiting time. Sensitivity analysis is conducted to check the
robustness of the findings.
The existing literature on private health care mainly focuses on two dimensions.

One dimension is related to the financing of private care (e.g., the discussions of pri-
vate insurance, tax incentives to private insurance and cost-sharing), and the other
dimension is related to the ownership of care provision (e.g., the discussion of physi-
cian’s private practice). Our study focuses on the dimension of private care financing.

2For instance, in the health reform debates of the United States in 2009, Canada’s waiting time
problem was described by many people as a seemingly unavoidable issue associated with univer-
sal health care (e.g. Wendell Goler, Canada’s Health System Informs U.S. Health Care Debate,
http://www.foxnews.com/politics/2009/08/12/ (August 12, 2009)). In particular, the problemwas used
to counter the idea of introducing a public, government-administeredhealth insurance to compete with
private insurance (Blendon and Benson, 2009).
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In this regard, this study distinguishes from other studies that focus on private care
provision or focus on both dimensions (e.g., Iversen 1997). As suggested by our
institutional context, this study assumes that all health care services are delivered pri-
vately, so the difference between public and private care rests only on the financing
side. Accordingly, in the rest of this chapter, “public care” or “public health service”
refers to services that are funded through social insurance programs, while “private
care” or “private health service” refers to services that are funded through private
sources.
Our study distinguishes from the previous empirical studies of private care fi-

nancing in the following ways. First, using case studies and simple statistical analy-
sis, Tuohy et al. (2004) and Siciliani and Hurst (2005) compare aggregate data from
different country models in which demographic characteristics and regulatory envi-
ronments are not controlled for. By contrast, the control groups in our study are more
homogenous with respect to these factors, except for the policies concerning private
care financing, so our study is in a better position to tease out the effects of private
care financing on the public waiting time. Second, physician dual practice is not
allowed in our setting, which minimizes the potential concern of physician’s incen-
tive distortions. For instance, if a physician is allowed to provide both public and
private care, he may strategically manipulate the public waiting list so as to increase
the demand for private care. Third, the use of econometric techniques distinguishes
our study from other studies that utilize Canadian data. For instance, Cipriano et al.
(2007) use Ontario joint replacement data to develop simulation models for waiting
time prediction and policy evaluation. To our best knowledge, Besley et al. (1999)
and Jofre-Bonet (2000) are the only studies that employ econometric models. How-
ever, their perspectives are different from ours: both studies consider the long public
waiting list as a driver to the demand for supplemental private health insurance. Fi-
nally, our study contributes to Canada’s health care reform debates. Most of the
current debates may be characterized much more by claims and counterclaims from
competing ideological bases than by evidence (Tuohy et al. 2004). Rigorous empiri-
cal investigations of Canadian evidence are relatively rare, which is due partly to lack
of data collection and partly to the complicated nature of health waiting times. For
instance, there is no consensus about the definition and measurement of “medically
necessary” waiting times. In this sense, it presents us a unique opportunity to answer
the question as which claims can be substantiated.
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The remainder of this chapter is organized as follows. Section 2.2 describes Cana-
dian institutional background. Section 2.3 develops a theoretical model of a demand
and supply equilibrium in the public health system, and derives main hypotheses
for empirical testing. Section 2.4 describes the data, sets up the econometric spec-
ifications and discusses the relevant econometric issues. Section 2.5 presents the
empirical results, and Section 2.6 concludes.

2.2 Institutional Background
Canada’s public health system is a single-payer universal health system. Medi-

cally necessary health services are funded through general taxation and are provided
by Medicare free of charge at the point of consumption. Evans (2000) provides
an overview of the structure and funding of Canada’s health system. Physicians in
Canada are considered as for-profit independent entrepreneurs. Nevertheless, physi-
cians need to choose between wholly staying in the public system (opt-in) and wholly
staying out of the public system (opt-out). Opt-in physicians are eligible to bill the
social insurance plan whilst opt-out physicians do not get any payments from the
social insurance plan (status disincentive). Canada Health Act does not directly pro-
hibit privately funded medically necessary services, but many provinces do not allow
opt-out physicians to extra-bill private patients and most provinces do not provide
public subsidy to private care. The ban on the purchase of private insurance also
limits patients’ choice of private care (Flood and Archibald, 2001). Canada’s prohi-
bition of physician dual practice is also in contrast to the general practice in other
OECD countries. Furthermore, all Canadian provincial health systems need to meet
the five guidelines of Canada Health Act to receive federal transfers, but provinces
do regulate private care financing and physician’s private practice in different ways.
Flood and Archibald (2001) provide a review of these regulatory differences.
Long public health care waiting time is at the heart of the health reform debates

in Canada. The call for privately funded health care is heightened by lawsuits such
as the famous Chaoulli vs. Quebec case in 2005. Despite the measures that federal
and provincial governments have taken to tackle long waiting times, some people
believe that the waiting time problem roots in Canada’s single-payer health system
– patients do not have a choice in face of long waiting times. Supporters of this
rationale propose to allow patients to purchase privately funded health care. The
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argument is that part of the demand for public care will be shifted to the private
sector so that congestion in the public health system will be mitigated. Furthermore,
the private sector is likely more efficient in utilizing resources than the public sector.
Nevertheless, some researchers argue that the introduction of a two-tier system will
not reduce the long public waiting time, if not worsening it.3

Although private care is largely banned in Canada, there are examples of private
clinics. For instance, private clinics of orthopedic surgeries include, but not limited
to, Duval orthopedic clinic, Westmount square surgical center, and RocklandMD
surgery center in Quebec, Cambie surgery center, False Creek healthcare center and
Kamloops surgical center in British Columbia, and Maples surgical center in Man-
itoba. In effect, no formal survey or study has been conducted to investigate the
private sector in Canada and the extent of breach of Canada Health Act.

2.3 Theoretical Model and Empirical Implication

2.3.1 The Demand-Supply Equilibrium
In this section, we shall consider a demand and supply equilibrium for public

care and then derive the hypothesis for empirical test. Let λ be the demand (patient
arrival rate) for public care, w be the average public waiting time and η be the extent
of privately funded care, then λ may be written as a function of w and η:

λ = λ (w,η) (2.1)

The demand function is assumed to have the following properties. First, ∂λ/∂w<

0: when the public waiting time increases, less patients are willing to join the public
health system. Second, ∂λ/∂η < 0: when the extent of privately funded care in-
creases, the supply of private care will increase and the market for private care will
grow, so more patients are willing to choose private care, moving away from the

3Evans (2000) argues that a truly private, parallel system of care, which is self-financing and
independent of the public system, will allow health providers to charge patients fees in addition to the
negotiated fee schedules between the provincial governments and the medical associations in return
for perceived preferred access to care, while remaining fully eligible to bill the public system. He
contends that the biggest risk of a two-tier system is that practitioners would be able to manipulate
patient’s access to public facilities and services in various ways so as to induce or compel patients to
pay extra “private” fees, which would result in a greater social inequality.
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public system.
Similar toMartin and Smith (1999), the supply function of public care is modeled

through the optimization problem of the key decision maker of the public health
system, e.g., the provincial health ministry. The production of public health services
is constrained by two types of resources: human resources and non-human resources.
Human resources include nurses, physicians and other hospital personnel that work
in the public health system. Non-human resources are physical assets such as hospital
facilities. Human resources and non-human resources are functions of η , denoted by
BHR(η) and BNHR(η) respectively. We assume ∂BHR/∂η ≤ 0, i.e., if the extent of
privately funded care increases, the market for private care will grow so that some
human resources will be attracted to the private sector. We assume ∂BNHR/∂η = 0,
i.e. the extent of privately funded care has no impact on the physical assets since
private sector can invest in these resources using private payments from the patients.
The health ministry needs to allocate BHR(η) and BNHR(η) to various types of

public health services. Some of the health services (e.g., community care, acute care
and long term care) are not prone to privatization so they can only be funded through
general taxation. Let N be the supply of public health services that are not prone to
privatization, and v(N) be the amount of health surplus generated from these health
services. We assume dv/dN > 0 and d2v/dN2 ≤ 0. Let μ be the supply of public
health services that are prone to privatization (which we call as “public care” in the
rest of this section). We assume that each unit of public health service costs one unit
of human resources and one unit of non-human resources.
According to queuing theories, waiting time is a function of the arrival (demand)

rate and the service (supply) rate, denoted as μ , so we have a general waiting time
function as

w= f (λ ,μ) (2.2)

which has direct effects ∂ f/∂λ > 0 and ∂ f/∂ μ < 0. We further assume ∂ 2 f/∂ μ∂λ ≤
0 and ∂ 2 f/∂ μ2 ≥ 0.4
Let R be the health benefit that a patient obtains from public care, θ be the cost

of one unit of time in waiting, then λR is the total amount of health benefits that
patients obtain from the public system and θλ f (λ ,μ) is the total cost of waiting. We

4For instance, these signs hold for the queuing time ofM/M/1 queue.

12



assume that the health ministry’s objective is to maximize the total amount of health
surplus out of resource BHR(η) and BNHR(η) given a demand rate of λ .5 Therefore,
the health ministry’s optimization problem is:

max
μ

U(μ) = v(N) + λR−θλ f (λ ,μ)

s.t. N + μ ≤ BHR(η) (2.3)

N + μ ≤ BNHR(η) (2.4)

Since the objective function is increasing in N and μ , one of the two constraints,
(2.3) and (2.4), must be binding. Let B(η) =min{BHR(η),BNHR(η)} be the binding
constraint, then the optimal supply, μ∗, is determined by the first order condition as:

dv
dN

+θλ
∂ f
∂ μ

= 0 (2.5)

Therefore, μ∗ is a function of λ and η , i.e.,

μ∗ = μ(λ ,B(η)) (2.6)

We take the partial derivatives with respect to λ and η at both sides of (2.5) and
reshuffle the terms, then we have direct effects ∂ μ/∂λ and ∂ μ/∂η as follows:

∂ μ
∂λ

= −
(

θλ
∂ 2 f

∂ μ∂λ
+θ

∂ f
∂ μ

)
/

(
θλ

∂ 2 f
∂ μ2

− d2v
dN2

)
> 0 (2.7)

∂ μ
∂η

= − d
2v
dN2

∂B
∂η

/

(
θλ

∂ 2 f
∂ μ2

− d2v
dN2

)
≤ 0 (2.8)

Given the partial derivatives of f (λ ,μ) and v(N), it is straightforward to see that(
θλ ·∂ 2 f/∂ μ2−d2v/dN2)> 0 and (θλ ·∂ 2 f/∂ μ∂λ +θ ·∂ f/∂ μ

)
< 0, so ∂ μ/∂λ >

0. This means that if the demand for public care increases, the health ministry has
an incentive to allocate more resources to the production of public care. For in-
stance, Cipriano et al. (2007) discuss the minimum growth rates of supply of joint

5In our setting, it is reasonable to assume that λ is given in the health ministry’s decision making.
This is because the health ministry does the planning based on demand forecast for a relatively long
time horizon, e.g., one year. Once the planning decisions N and μ are made, they are unlikely to be
affected by short term demand changes.
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replacement surgeries in Ontario in response to a wide range of demand projec-
tions over a 10-year period in order to achieve waiting time targets. As for inequal-
ity (2.8), if B(η) = BHR(η), then ∂B/∂η = ∂BHR/∂η ≤ 0. Therefore, we have
d2v/dN2 ·∂B/∂η ≥ 0 and thus ∂ μ/∂η ≤ 0. This means that some human resources
in the public health system are drawn to the private sector so the supply of pub-
lic care is reduced. If B(η) = BNHR(η), then ∂B/∂η = ∂BNHR/∂η = 0 and thus
∂ μ/∂η = 0. In this case, the existence of private sector has no impact on the supply
of public care.
The demand-supply equilibrium should simultaneously satisfy equation (2.1),

(2.2) and (2.6). Inputting (2.1), (2.6) into (2.2) yields the waiting time equation as:

w= f (λ (w,η),μ(λ (w,η),η)) (2.9)

We assume the existence of the equilibrium in the same way as Linsay and Feigenbaum
(1984). Solving (2.9) for w gives rise to the equilibrium waiting time as a function of
η:

w= h(η) (2.10)

2.3.2 Effects of Policies 1 and 2 on Public Waiting Time
Two policies are available for our empirical tests. Policy 1 allows opt-out physi-

cians to extra-bill private patients, so more health service providers are willing to
participate in the private care market and the supply of private care increases. Pol-
icy 2 provides public subsidies to patients seeking private care, so more patients are
willing to choose private care and the demand for private care increases. Therefore,
both policies increase the extent of privately funded care. The effects of policy 1 and
policy 2 on the public waiting time are obtained through the net effect of η on w. We
derive the net effect of η on w through comparative statics. Taking derivative with
respect to η at both sides of equation (2.9) yields:

dw
dη

=
∂ f
∂λ

(
∂λ
∂w
dw
dη

+
∂λ
∂η

)
+

∂ f
∂ μ

(
∂ μ
∂λ

(
∂λ
∂w
dw
dη

+
∂λ
∂η

)
+

∂ μ
∂η

)
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which must lead to:

dw
dη

=

{
∂ f
∂λ

∂λ
∂η

+
∂ f
∂ μ

(
∂ μ
∂λ

∂λ
∂η

+
∂ μ
∂η

)}
/

(
1−

(
∂ f
∂λ

+
∂ f
∂ μ

∂ μ
∂λ

)
∂λ
∂w

)
(2.11)

The numerator of the right hand side of (2.11) has two competing effects:

∂ f
∂λ

∂λ
∂η

< 0 (2.12)

∂ f
∂ μ

(
∂ μ
∂λ

∂λ
∂η

+
∂ μ
∂η

)
> 0 (2.13)

We call (2.12) the demand-side effect and (2.13) the supply-side effect. A nega-
tive demand-side effect means that a higher extent of privately funded care induces
patients to switch from public care to private care. When the non-human resources
are the bottleneck of the public health system, we have ∂ μ/∂η = 0. In this case, a
positive supply effect means that as the demand for public care decreases, the health
ministry allocates less resources to the production of public care. When the human
resources are the bottleneck of the public health system, a positive supply-side ef-
fect means that apart from less budget allocation, the increase of privately funded
care “crowds out” the human resources used for the production of public care, which
increases the public waiting time.
If the demand-side effect dominates the supply-side effect, we must have

∂ f
∂λ

∂λ
∂η

+
∂ f
∂ μ

(
∂ μ
∂λ

∂λ
∂η

+
∂ μ
∂η

)
< 0

⇒ ∂ f
∂λ

+
∂ f
∂ μ

∂ μ
∂λ

> −∂ f
∂ μ

∂ μ
∂η

/
∂λ
∂η

≥ 0 (2.14)

Since ∂λ/∂w< 0, by (2.14), the denominator of (2.11) is positive and it immediately
yields

dw
dη

< 0

On the other hand, if the supply-side effect dominates the demand-side effect, we
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must have

∂ f
∂λ

∂λ
∂η

+
∂ f
∂ μ

(
∂ μ
∂λ

∂λ
∂η

+
∂ μ
∂η

)
≥ 0

⇒ ∂ f
∂λ

+
∂ f
∂ μ

∂ μ
∂λ

≤ −∂ f
∂ μ

∂ μ
∂η

/
∂λ
∂η

In this case, the sign of
(

∂ f
∂λ + ∂ f

∂ μ
∂ μ
∂λ

)
is undetermined, which makes the sign of the

denominator of (2.11) and further the sign of dw/dη undetermined. In summary, if
the demand-side effect dominates the supply-side effect, an increase of the extent of
private care would result in a longer public waiting time; If the supply-side effect
dominates the demand-side effect, the impact of an increase of the extent of private
care on public waiting time is undetermined.
Our simple theoretical model thus suggests that the effects of policy 1 and pol-

icy 2 on the public waiting time depend on the relative strengths of the competing
demand-side and supply-side effects. The negative demand-side effect corresponds
to the well-known supportive argument for private care – the existence of private care
lessens the burden of the public health system. In discussing the competing explana-
tions of public waiting lists, Cullis and Jones (1985) argue that providing subsidies
to private care is more efficient to reduce the public waiting time than increasing
the budget of public care. Iversen (1997) finds that the net effect of a private sec-
tor on the public waiting time depends on the relative strengths of the competing
capacity and demand side effects. In his model, the strengths of the two compet-
ing effects are determined by the elasticity of the demand for public care with re-
spect to the public waiting time. The more elastic the demand is, the more likely
the existence of a private sector will increase the public waiting time. However,
Iversen (1997) only models the case when the non-human resources are the bottle-
neck of the public health system. In contrast, our model also considers the case when
the human resources are the bottleneck of the public health system, in which case
the supply-side effect is determined by not only the health ministry’s supply deci-
sion (i.e. ∂ f/∂ μ ·∂ μ/∂λ ·∂λ/∂η) but also the extent of privately funded care (i.e.
∂ f/∂ μ ·∂ μ/∂η).
On the empirical side, Siciliani and Hurst (2005) argue that the policies govern-

ments use to reduce the public waiting time can be categorized into supply side poli-
cies (i.e., inducing more supply of public care), demand side policies (i.e., reducing
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demand for public care) and policies acting directly on waiting times. Using evi-
dence from Australia, the authors show that providing tax incentives to the purchase
of supplemental private health insurance results in a dominant demand side effect,
thereby reducing public waiting times (p.211 of Siciliani and Hurst (2005)). The au-
thors suggest that governments should provide tax incentives for patients to purchase
private health insurance and encourage patients to substitute private care for public
care. In accordance with these theoretical findings and empirical evidence, we have
the following main hypothesis for empirical tests:

Hypothesis 2.1 Both policy 1 and policy 2 are associated with shorter public waiting
times.

2.4 Data and Econometric Models
We now describe, in Section 2.4.1, the data used for our empirical tests and con-

struct the dependent and main explanatory variables. Additional explanatory vari-
ables suggested by the existing literature will be introduced. We then in Section 2.4.2
present the feasible generalized least square model and the random-effects model, as
well as discuss the econometric issues related to lag variables and the random-effects
specification.

2.4.1 Data and Variable Construct
The data for our econometric analysis are from Canadian Joint Replacement Reg-

istry (CJRR) which is administered by Canadian Institute for Health Information
(CIHI). To our best knowledge, CJRR is the only nationwide data registry that col-
lects waiting time information from different provinces for a specific surgical proce-
dure using a consistent methodology. To comply with CIHI’s strict standards of data
release and security, our data application took one year to complete. Research ethics
approvals and data security agreements at both the organizational and provincial lev-
els are required for the final release of the data.
The actual data for empirical tests are comprised of 29,369 joint replacement

surgery records of nine Canadian provinces based on admission date from April 1,
2005 to March 31, 2007. Each record contains a patient’s demographic informa-
tion (age, gender, distance from home to hospital), surgical information6 (hip/knee,

6Other surgical information is excluded from our analysis due to a large percentage of data missing.

17



primary surgery/revision), waiting time information (the calendar month of making
decision for surgery, the calendar month of admission to hospital,7 and waiting time
defined as the number of days from decision date to admission date). Since revi-
sion surgeries are to repair the primary joint replacements, we only include primary
surgery data for analysis.8

Canadian orthopedic surgeons submit their joint replacement surgery records to
CJRR on a voluntary basis. Depending on a province’s surgeon participation rate
and data submission,9 the percentages of surgeries included in our data set (we call
it “data inclusion” hereafter) varies by province, ranging from 3.6% of hip/knee re-
placements of Ontario in 2005/6 to 70% of knee replacements of New Brunswick in
2006/7.10 To account for the voluntary nature of the data set, it behooves us to access
the representativeness of our data.
First, we compare our waiting time data with the waiting time data published

in Fraser Health Institute’s (FHI) annual waiting time reports of 2005 and 2006
(Esmail and Walker, 2005, 2006), and we find a strong consistency.11 Secondly,
we compare the patient demographics of our data12 with the patient demographics
of Hospital Morbidity Database (HMDB) and Discharge Abstract Database (DAD),
both of which contain all joint replacement hospitalizations during the same period.
The patient demographics of all sources are very similar, if not closely matched.13

To deal with outliers of waiting time and distance data, we follow the common pro-
cedure of winsorizing the data - we replace the top (bottom) 1% of the data by the 99

7CJRR only agrees to provide decision dates and admission dates in the form of calendar month.
8A total of 2,277 revision records, together with 51 erroneous primary records which have decision

date after admission date, are removed.
9Canadian Institute for Health Information (2008a) estimates that all of New Brunswick and Nova

Scotia orthopedic surgeons are participating in CJRR while only 44% of Quebec orthopedic surgeons
are doing so. However, the actual surgeon participation rates are unknown. Also, a participating
surgeon may not submit all of his patient records to CJRR.
10The detailed information of data inclusion is shown in Table A.1 of Appendix A.
11We compare the median waiting times (in province/year level; hip and knee combined) of our data

with the median waiting times of arthroplasty surgeries (in province/year level; hip, knee, ankle and
shoulder surgeries combined) from FHI’s annual waiting time reports of 2005 and 2006. The two sets
of median waiting times are strongly positively correlated - the correlation is 0.78 for the year of 2005
and 0.87 for the year of 2006. FHI’s annual reports are based on nationwide survey data collected by
the institute. To our best knowledge, FHI’s annual reports are the only source that contains waiting
time comparisons in the specialty level and uses data collected by consistent methodologies.
12Age, gender and joint type distributions of the 29,369 records.
13Our preliminary analysis also shows that patient demographics are similar among provinces.
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(1) percentile value for each province-joint pair.14

The data are structured to reflect a province’s monthly queuing statistics. We de-
fine province-joint pair as the cross section unit, so observations are at the province/join-
t/month level of analysis. In the rest of this chapter, we use subscript i to denote cross
section unit and subscript t to denote calendar month.
The first control variable to be included in the regression model is the patient

arrival rate, denoted by λt , which is measured as the count of patient records by deci-
sion date t. Accordingly, the dependent variable, wt , is measured as the mean waiting
time of these λt patients – prospective waiting time. Arrival rates and waiting times
measured as above reflect the transient states of a queuing system. The transient
waiting times are dependent on the history of arrival rates and service rates. Unfortu-
nately, we are not able to include the time-dependent service rate as a control variable
due to the unavailability of data. Nevertheless, since hospitals plan their resources
on a regular basis for surgeries, e.g., 6 months in advance in British Columbia, we
do not expect the service capacity to exhibit as much randomness as the arrival rates
during the short time horizon of our study.
Prospective waiting times are consistent with our assumption in the demand func-

tion that patients make their decisions based on the expected waiting time. However,
prospective waiting times come with the cost of data truncation.15 Data truncation
induces a bias towards the underestimation of λt and wt , especially when the estima-
tion moves closer to March 2007.16 To ensure that the time series data of different
cross section units in the analysis are comparable, for each cross section unit, we
only include the data of those months of which at least 90% of the incoming patients
are served by the end of the 24-month period.17

We expect arrival rates to have positive lagging effects on (prospective) waiting
14We also experiment with 2.5% and 5% cut-offs. The exact location of winsorization does not

affect our results.
15Patients records with decision dates within the 24-month period but admission dates after March

2007 are not included in our data.
16On the other hand, Table A.1 of Appendix A shows that many provinces have a mild increase

in data inclusion from 2005/6 to 2006/7, which may counteract the underestimation of λt due to data
truncation.
17For instance, for cross section unit “Alberta-hip”, 90% of its patient records have waiting times

less than or equal to 11 months, i.e., at least 90% of the patients arriving in the first 13 months are
served by the end of the 24-month period. Therefore, the first 13 months of data (April 2005 to April
2006) are used for “Alberta-hip”. Table A.2 in Appendix A shows the number of months included
in the analysis for each cross section unit, which ranges from 0 of Saskatchewan (knee) to 18 of
Newfoundland (hip/knee).
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times;18 hence we propose lag variables λt− j, j = 1,2, .. in the econometric models.
We use models with different number of lags to test the lagging effects and check the
robustness of our main findings.19 We normalize arrival rates by province-specific
population and data inclusion.
The constructs of the main explanatory variables - indicator variables of policy

1 (i.e., whether opt-out physicians are allowed to extra bill private patients) and pol-
icy 2 (i.e., whether public subsidies are provided to private care) - use information
from Flood and Archibald (2001). Moreover, in order to yield more robust causal
inferences, it behooves us to control for other potential drivers of waiting times:
namely, age, gender, joint type, distance and trending. Among them, the interaction
effects of age and gender are examined. No other interaction effects are suggested
by existing literature or found significant in the preliminary analysis of differences
between means.

(i) Age and gender: Canadian Institute for Health Information (2008a) reports wait-
ing time differences by gender and age, and age differences by joint type.20

A possible explanation of the impact of age and gender on waiting times is
that age and gender correlate with patient’s obesity.21 Obese patients may
be requested to lose weight prior to undergoing surgeries to improve the out-
come of the procedure (Canadian Institute for Health Information, 2008a). In
the econometric models, we use variable “femaleage” and “maleage” to isolate
the age effect by gender, and use variable “female” (the percentage of female
patients) to capture the gender effect.

(ii) Hip/knee: Canadian Institute for Health Information (2008a) finds that in gen-
eral hip patients have shorter waiting times than knee patients. However, the
report does not provide elaboration about the cause of this difference.

18If we consider each surgeon as a single server queue, then the elementary queueing theory implies
that the arrival rates have positive lagging effects on the waiting times. We expect such positive lagging
effects to prevail in a system with many surgeons in aggregation.
19Our estimation of the arrival rates prior to April 2005 is as follows: for month t prior to April

2005, we estimate that y% of patient records are not included in our data. Let c be the count of surgery
records for month t and thus we estimate λt = c

1−y%.
20Canadian Institute for Health Information (2008a) finds that female patients tend to have shorter

waiting times than male patients. Knee patients are significantly older than hip patients.
21Karlson et al. (2003) find that higher Body Mass Index and older ages significantly increase the

risks of osteoarthritis, the most commonly reported diagnosis of joint replacement patients.
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(iii) Distance: our preliminary data analysis shows that patients in provinces of
Manitoba, Newfoundland, Nova Scotia and Saskatchewan tend to have longer
distances from home to hospital than patients in other provinces. Patients in
these provinces may have extra difficulties to access health services as these
provinces have low population densities and lack of major urban areas where
health care facilities are located close to the majority of population.

(iv) Trending: our preliminary analysis of the mean waiting times by admission
date shows a declining time trend for some cross section units.22 Provincial
governments’ short term measures to deal with patient backlog may contribute
to this time trend.23 Also, the data truncation problem (as discussed above)
is likely to result in a declining trend in the estimation of λt and wt . When
both the dependent and explanatory variables are trending, Wooldridge (2009)
suggests adding a time trend variable to obtain a detrending interpretation of
the regression. Therefore, we include a time trend variable, “month”, which
measures the number of months after March 2005, in the econometric model.24

Another possible explanatory variable that might be considered is the ratio of general
physicians to orthopedic surgeons. General physicians (upstream) and orthopedic
surgeons (downstream) are at different stages of a patient’s care path, so the public
health system can be seen as a tandem queue. With everything else being equal,
congestion (e.g., long waiting time) more likely appears at a stage where service ca-
pacity (e.g., number of service providers) is relatively scarce. However, preliminary
analysis (see Table A.3 and Table A.4 in Appendix A) does not show an anticipated
correlation between this explanatory variable and the dependent variable. Moreover,
inclusion of this variable into regressions generates inconsistent signs of coefficient
and insignificant results for this variable. Therefore, we decide not to report regres-
sion results with this variable being included.
Table 2.1 provides the source of variables and summary statistics. In consistent

with the discussions above, we hypothesize that arrival rates have positive lagging
22There is a slight declining trend for Alberta (hip/knee), British Columbia (hip/knee) andManitoba

(hip/knee).
23Provincial governments were under pressure to achieve meaningful waiting time reductions for

joint replacement surgeries by March 2007, so they had an incentive to increase the service provision;
see the numbers of hospitalizations of 2005/6 and 2006/7 in Table A.1 of Appendix A.
24We also test models using indicator variables for calendar months, which does not change our

results.
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effects on the public waiting time, and that older patients, male patients, knee patients
and patients having longer home-to-hospital distances have longer waiting times.
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Table 2.1: Variables included in the regression models and descriptive statistics

Variable name Definition Source Mean Std dev Min Max
w Mean waiting time (days) CJRR 164.02 63.06 63.46 338.26
Month Number of months after the starting month (April 2005) CJRR 6.69 4.14 1 18
Hip Indicator of hip replacement CJRR 0.54 0.49 0 1
Distance Mean distance of home to hospital (in kilometers) CJRR 39.47 27.48 13.78 304.16
Policy1 Indicator if opt-out physicians are allowed to extra bill private

patients
Flood and
Archibald
(2001)

0.719 0.45 0 1

Policy2 Indicator if public subsidy is provided to private care Flood and
Archibald
(2001)

0.18 0.38 0 1

Female % of female patients CJRR 0.58 0.09 0.28 0.93
Femaleage Mean age of female patients CJRR 67.22 2.98 56.4 74.54
Maleage Mean age of male patients CJRR 65.17 4.37 41.75 75.67
λ Arrival rate (number of incoming patients per 105 population)

adjusted for province data inclusion
CJRR 8.59 2.94 2.70 17.50
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2.4.2 Econometric Issues and Sensitivity Analysis
By (2.10) and including the explanatory variables discussed in Section 2.4.1, we

have the following regression models:

wit =β0+
k

∑
j=0

β1, j λi,t− j+β2 poliy1i+β3 poliy2i+β4 montht+β5 hipi+β6 distanceit

+β7 f emaleit +β8 f emaleageit +β9 maleageit+ εi,t, k = 1,2, ...
(2.15)

It should be noted that as the main purpose of this study is not to search for a
model that best fits our data, we do not utilize techniques like variable and model
selection to optimize the inclusion of control variables and the form of regression
models. However, in order to properly employ our data, a couple of econometric is-
sues need to be considered. First, due to the non-variation of the key variables (policy
1 and policy 2), we are unable to fully employ panel data econometric techniques,
i.e., the Fixed-effects model. Therefore, we resort to the feasible generalized linear
square (FGLS) model.25 Nevertheless, to account for the unobserved cross section
specific effects and for the sake of robustness check, we further examine our data
using the random-effects specification. The random-effects model is constructed by
adding a cross section specific term ui to the econometric model (2.15), assuming
that explanatory variables are exogenous to ui.
Due to the general multicollinearity problem between lag variables, the t-statistics

of lag variables are often less significant. Wooldridge (2009) suggests using the
Wald-test to test the joint significance of lag variables.
To check for the robustness of our findings, we conduct sensitivity analysis as

follows. The results of sensitivity tests are consistent with the results presented in
Table 2.2.

• To account for the likely high and uncontrolled clustering of dependent vari-
ables, we run regressions with standard errors clustered at the province-joint
level.26 Comparing to the results of Table 2.2, the only difference is that the

25For other studies that utilize panel methods to empirically investigate waiting time issues, see
Martin and Smith (2003); Siciliani and Martin (2007).
26This is done by adding “vce(cluster)” option in the Stata command for FGLS and Random-effects

models.
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coefficients of “Policy 1” become insignificant in FGLS model with clustering.

• Autocorrelation is a concern when running regressions on time series data. We
perform the Wooldridge (2002) test for autocorrelation in panel data to our
data set and the test result does not reject the null hypothesis of no first order
autocorrelation. To avoid the potential correlation of error terms between joint
types of the same province, we also test by running the regressions solely on
hip or knee data. The results show that the estimation using knee data generates
more significant results than the estimation using hip data.

• To account for province-specific waiting time trends, we can replace a common
time trend by 18 province-joint specific time trends in the regressions. The
results show a declining trend for 5 province-joint pairs, an increasing time
trend for 2 province-joint pairs and no time trend for other province-joint pairs.
In Table 2.2, we only present results for regressions with a common time trend
as we believe it better reflects the macro movement of waiting times over the
24-month period.

2.5 Results and Discussion
Table 2.2 shows the results of both the FGLS model and the Random-effects

model. FGLS model uses panel-specific AR(1) autocorrelation structure and allows
for heteroskedasticity, but assumes no cross-sectional correlation. Random-effects
model clusters standard errors at province-joint level. For both specifications, the
Wald-test suggests that only when the 3-month and 4-month lags of arrival rates are
included, the coefficients of lag variables are jointly significant. Residual analysis
shows no signs of heteroskedasticity or abnormality for each province-joint pair. As
this study is subject to small sample size, we need to interpret them with caution.
In the following discussions, we compare our results to those of CJRR annual re-

port (Canadian Institute for Health Information, 2008b) wherever possible. The find-
ings of CJRR annual report are based on observations on descriptive statistics. There-
fore, our regression results should be deemed more creditable as we have properly
controlled for different factors.
The coefficients of policy 1 and policy 2 suggest that both policies are associated

with shorter waiting times, which supports our main Hypothesis 2.1. The results
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of policy 2 are more robust than those of policy 1. Additionally, the magnitude
of coefficients of policy 2 is greater than that of policy 1. Both findings suggest
that policy 2 is associated with a greater waiting time reduction than policy 1. This
is consistent with the conclusion drawn by Flood and Archibald (2001) that public
funding to private care is the key in making private care an option for patients. Policy
2 subsidizes patient’s private care up to the amount of public fee schedule, which
gives patients a substantial incentive to opt out of the public health system and shifts
the demand from public health system to private care market. This corresponds to a
dominant demand-side effect in (2.11).
The coefficients of arrival rates and lags are mostly positive. The results of Wald-

test suggest that when the 3-month and 4-month lags of arrival rates are included in
the models, the coefficients of lag variables are jointly significant.27 The coefficients
of the 3-month and 4-month lag variables suggest that if there is one more patient
arrival in the current month, patients arriving three or four months later should expect
an extra delay of one to three days over the average waiting time.
The coefficients of “Month” are negative and significant for all model specifica-

tions, suggesting a declining time trend. Data truncation problem may contribute to
this time trend. More importantly, in September 2004 federal and provincial govern-
ments set up the “Wait Times Reduction Fund” (in the 10-Year Plan to Strengthen
Health Care) to build capacities to address waiting time problems. Joint replace-
ment surgery is identified as a target area for this fund. These government-led ini-
tiatives may affect the joint replacement surgery waiting times through the following
channels. First, the fund could have directly increased the provision of joint replace-
ment surgeries. Second, under the pressure of achieving meaningful waiting time
reductions by March 2007, provincial governments might have relocated some ca-
pacities that were previously used by other services to joint replacement surgeries.
Johnson et al. (2007) show that between 2001/2 and 2005/6, there was a dramatic
increase of age-standardized rate for joint replacement surgeries, but a decrease of
age-standardized rate for other surgeries.
The coefficients of “Hip” are negative for all model specifications but are only

significant for FGLS model with 3-month lags of arrival rate. The results suggest that
knee patients generally have to wait one to three weeks more than hip patients. This
27We also use F-test to test the model specifications - comparing the log likelihood of models with

and without lag variables. Similar results are obtained.
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finding is consistent with CJRR annual report (Canadian Institute for Health Information
2008a).
The coefficients of “Distance” are positive and significant for all model specifi-

cations. The results suggest that patients with longer distances have longer waiting
times. The coefficients of “Distance” in the random-effects model are much smaller
than those in the FGLS model, which suggests that distance impacts on patient’s
waiting time partly through the province specific mean. This finding is consistent
with our preliminary analysis of distance data.
In addition to the robust results discussed above, the coefficients of “Female” are

negative but insignificant for all model specifications. The negative sign is consis-
tent with the findings of Canadian Institute for Health Information (2008a) – female
patients tend to have shorter waiting times than their male counterparts. This may
be due to the higher obesity of male patients. As obesity positively correlates to
poor health conditions, obese patients may require more medical treatments before
surgeries. The regression results exhibit mixed age effects on waiting times. The co-
efficients of “Femaleage” are negative but insignificant for all model specifications,
while the coefficients of “Maleage” are inconclusive.

2.6 Concluding Remarks
The objective of this study is to test the relationship between privately funded

health care and the public waiting time. How private care impacts on the public health
waiting time has been extensively debated in Canada and other OECD countries, but
often debates are based on ideological arguments and claims rather than empirical
evidence. Using a sample of joint replacement surgery data from Canada, we had
investigated the relationship between policies that induce private care financing and
the public waiting time. Based on the results of the FGLS model and the Random-
effects model, we found that the policies of interest are associated with shorter public
waiting times. According to the theoretical model in Section 2.3, the shorter public
waiting times observed in empirical data can be attributed to a dominant demand-
side effect introduced by the policies of interest, i.e., these policies do not reduce the
provision of public care very much but induce patients to seek private care so that the
demand pressure on the public health system is mitigated. Our results also suggested
positive lagging effects of arrival rate on the public waiting time.
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Although this study provides supportive evidence to one side of the public versus
private debates, policy implications should be drawn with cautions as our study is
subject to data limitation. In this regard, our study would motivate more empirical
studies of public waiting time and a mixed financed health system. We look forward
to applying the same methodologies to more recent data to investigate policy changes
after the ruling of Chaoulli vs. Quebec took effect in January 2008.
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Table 2.2: Regression resultsa

FGLS model Random-effects model

Intercept 276.2 248.2 211.0 199.9

(62.82)*** (63.07)*** (67.11)** (75.64)**

Month -2.404 -2.928 -1.917 -2.258

(0.603)*** (0.587)*** (0.689)** (0.750)**

Hip -14.50 -7.703 -19.71 -14.38

(6.842)* (6.830) (24.25) (25.04)

Distance 0.559 0.490 0.301 0.313

(0.123)*** (0.121)*** (0.150)* (0.151)*

Policy 1 -38.06 -32.87 -25.86 -23.22

(13.53)** (13.72)* (34.22) (34.72)

Policy 2 -85.01 -78.94 -81.17 -77.63

(7.938)*** (7.999)*** (11.86)*** (11.02) ***

Female -16.07 -21.39 -24.46 -30.81

(18.35) (17.88) (20.12) (22.17)

Maleage -0.317 -0.0335 0.250 0.261

(0.483) (0.486) (0.585) (0.667)

Femaleage -0.976 -1.198 -0.115 -0.200

(0.665) (0.669) (0.802) (0.802)

λ−1 0.968 1.442 0.319 0.448

(0.678) (0.672)* (1.196) (1.190)

λ−2 0.742 0.546 -1.243 -0.872

(0.661) (0.659) (1.117) (1.209)

λ−3 3.129 3.300 2.422 2.361

(0.662)*** (0.655)*** (0.834)** (0.790)**

λ−4 2.462 1.454

(0.671)*** (1.399)

Observations 184 184 184 184

Log likelihood -827.38 -826.74

R-squared 0.63 0.67

Wald-test that coefficients of λ and lag vari-
ables are all equal to zero (i.e., Prob > chi2)

0.000 0.000 0.008 0.009

a ***, ** and * denote statistical significance at the 1%, 5% and 10% confidence levels, respectively.
Standard errors are shown in parentheses.
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Chapter 3

Physician Dual Practice, Public
Waiting Time and Patient Welfare

3.1 Introduction
This study is motivated by cataract surgery evidence in the province of Manitoba,

Canada (DeCoster et al., 2000). Before January 1999, cataract patients of Manitoba
needed to pay a “facility” fee of $1,000 to obtain surgeries in privately-run clinics,
while they paid no fees for surgeries in the public hospitals. Ophthalmological sur-
geons were allowed to practise in both public hospitals and private clinics. These sur-
geons are referred as “dual-practice physicians”. On the other hand, there were sur-
geons who only practised in the public hospitals and thus are referred as “public-only
physicians”. The provincial social health insurance program paid the same amount
of fee-for-service to each cataract surgery regardless where it was supplied. In this
case, the social insurance subsidized private surgeries up to the amount of public fee
schedule. After January 1999, the facility fee of $1,000 (referred as “extra billing”)
was banned. However, the provincial social insurance agreed to pay for the same
number (but no more) of surgeries in the private clinics in the last year prior to the
ban. Over time the private clinics were merged into the public system. Today all
cataract surgeries offered in Manitoba are considered as public surgeries and there
are no more dual practice physicians.
During the period when extra billing was allowed, DeCoster et al. (2000) show in

Table 3.1 that the waiting times of surgeries differ by physician practice type and the
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location of provision.

Table 3.1: Median waiting times (in weeks) of cataract surgeries in Manitoba:
1992-1999a

Year 92/93 93/94 94/95 95/96 96/97 97/98 98/99

Public-only physician Public hospital 14 8 6 6 10 10 10

Dual-practice physician
Public hospital 18 14 14 19 23 21 26

Private clinic 4 4 4 4 4 5 5
a Source: DeCoster et al. (2000).

The first row of Table 3.1 is the median waiting times of surgeries performed by
public-only physicians in public hospitals. The second and third rows are the median
waiting times of surgeries performed by the same dual-practice physicians in public
hospitals and private clinics, respectively. Two types of waiting time difference can
be observed in Table 3.1. First, the last two rows of Table 3.1 show that the waiting
times of private surgeries are far shorter than the waiting times of public surgeries,
all of which were performed by the same dual-practice physicians. This waiting time
difference may be attributed to the priority that dual-practice physicians gave to pri-
vate patients. A dual-practice physician treated all incoming patients equally until
the point when the decision to surgery was finalized and patients were offered the
option of private surgery. If a patient opted for private surgery by paying the extra
facility fee, the dual-practice physician would arrange the surgery in a private clinic
at the earliest possible date. Therefore, it is reasonable to assume that some priority
is at work for private patients in the queues of dual-practice physicians. Second, the
first two rows of Table 3.1 show that the waiting times of public surgeries provided
by public-only physicians are shorter than the waiting times of public surgeries pro-
vided by dual-practice physicians. Neither price rationing nor physical environments
seem to contribute to this waiting time difference, because no fees were charged for
public surgeries and both types of physicians used the same public hospital facilities.
Hypothetically, if the two types of physicians were identical in every aspect of ser-
vice provision, and meanwhile the service attributes are observable to patients, then
such a waiting time difference should not exist.
The above observations motivate us to provide a possible explanation for the wait-

ing time difference of public surgeries between different physician practice types.
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The analysis is based on certain assumptions that are either directly implied in Mani-
toba’s empirical evidence or supported by the existing literature. First, we assume
that physicians may be differentiated by their service qualities. The concept of
“quality” here is an abstract term, which aggregates all attributes of a service ex-
cept for the waiting time. This assumption is supported by the pricing mechanism
observed inManitoba’s empirical evidence. The existing literature also shows that al-
lowing physician dual practice could improve dual-practice physician’s service qual-
ity, in which service quality can be defined as the appropriate amount of treatment
(Rickman and McGuire, 1999), the accuracy of diagnosis (González, 2004), or an
output determined by physician skill level (Bir and Eggleston, 2003; Biglaiser and Ma,
2007). We assume that service qualities are observable to patients in the case when
physician dual practice is allowed. The observability is fulfilled through, for instance,
price discrimination and/or discovering physician’s practice type. Second, the wait-
ing time difference observed in the surgeries of dual-practice physicians implies that
private patients were given some sort of priority over public patients when a dual-
practice physician managed her waiting list. In reality, dual-practice physicians may
prioritize patients by considering more factors. To keep our analysis to the core of the
problem, we assume that a pure priority is at work. It would be of our interest to see
whether a model based on these assumptions would yield results that are consistent
with Manitoba’s evidence.
Our study shows that the waiting time difference of public surgeries existing be-

tween dual-practice physicians and public-only physicians could be explained by ser-
vice quality differentiation. Additionally, the model based on the above assumptions
allows us to investigate the impact of allowing physician dual practice on patient’s
waiting time and welfare. Our study shows that patients in the public queue of dual-
practice physicians have to endure a longer waiting time than they would do in the
case when physician dual practice is not allowed. However, there are always pa-
tients in the public queue of dual-practice physicians who would be better off by
allowing physician dual practice, as they would enjoy a higher service quality from
dual-practice physicians.
The model used in our study follows general results of queuing theories. Pa-

tients are assumed to be heterogenous with respect to their time costs. Two sets
of health providers are in the health care market, i.e. dual-practice physicians and
public-only physicians. Each set of providers serve a common stream of incoming
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patients. The queue of dual-practice physicians is modeled as a single queue with two
classes of patients,1 while there is only one single class in the queue of public-only
physicians. Therefore, there are three service alternatives: private care, public care
of dual-practice physicians and public care of public-only physicians. An incoming
patient has information of the expected waiting time of each service alternative. The
patient would choose the service alternative that offers the maximum expected net
benefit or choose outside services that offer a reservation benefit. The expected net
benefit is defined as the service benefit net of the price (if any) and the expected
waiting cost.
In Section 3.4 to Section 3.6, we limit our discussions to the case when no pa-

tients seek outside service. This is, for one thing, to simplify the analysis so that some
structural results can be obtained. Moreover, empirical evidence has revealed that the
cost of cataract surgery in another jurisdiction could be very high for Canadian pa-
tients if they choose to pay out of their pockets. For example, the straightforward
cataract surgery alone in the United States would cost a patient about $3,279 per
eye nowadays,2 let alone other ancillary costs such as the costs of transportation and
accommodation. Therefore, patients who can afford such an expensive outside ser-
vice only constitute a small fraction of the whole patient population. In other words,
ignoring outside service in our model would not undermine the main conclusions.
Nonetheless, at the end of Section 3.5 we discuss how the results might change if this
assumption is relaxed.
This study may also provide some insights to the debates on physician dual prac-

tice in Canada. In early 2006, the provincial government of Alberta proposed a health
reform plan targeting at joint replacement and cataract surgeries.3 The key of the
plan was to allow physician dual practice and allow patients to use private financing
to pay for private surgeries. Government officials of Alberta argued that the plan was
to offer more options to patients and reduce public waiting times. But opponents
criticized that the plan would worsen the already long public waiting lists. Our study

1The modeling of multiple classes of customers in a single queue in face of competition between
health providers is in contrast to a single class queue in Chen and Wan (2003), Chen and Wan (2005)
and Hassin and Haviv (2003).

2See Haddrill, Marilyn. “Cataract Surgery Cost.” Retrieved on September 11, 2011 from:
http://www.allaboutvision.com/conditions/cataract-surgery-cost.htm.

3See CBC News. “Alberta’s ‘third way’ could mean health-care
showdown with Ottawa”. Retrieved on September 11, 2011 from:
http://www.cbc.ca/news/canada/story/2006/02/28/thirdway060228.html (February 28, 2006).
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shows that the impact of allowing physician dual practice may be two-fold. Allowing
physician dual practice may increase the waiting time of patients in the public queue
of dual-practice physicians, but some patients in this queue may also benefit from
enhanced service qualities. However, these results are conditional on the assumption
that there is a fixed supply of physicians whether physician dual practice is allowed
or not. Further investigations are needed if this assumption were relaxed.
The remainder of this chapter is organized as follows. Section 3.2 sets up the

model. Section 3.3 derives the simultaneous equations that characterize equilibrium
arrival rates and proves the existence of equilibrium. Section 3.4 studies the compar-
ative statics of equilibrium arrival rates and equilibrium waiting times. Section 3.5
discusses the impact of physician dual practice on patient’s waiting time and welfare.
Section 3.6 collects the results for a minor but relevant case when the service quality
of public-only physicians is higher than that of dual-practice physicians. Section 3.7
concludes and provides extended discussions.

3.2 Problem Formulation
This section provides modeling details of waiting time and patient choice. As

stated in the introduction, we assume that there are two sets of health providers in
the market, i.e., a set of nd dual-practice physicians and another set of na public-only
physicians. Each set of health providers serve a separate stream of incoming patients.
The service times of two types of physicians may not follow the same distribution.
The dual-practice physicians have a service qualityQd and the public-only physicians
have a service qualityQa. BothQd andQa are expressed in monetary units. Note that
although cataract surgery is a standard procedure, the perceived quality of a service
could be related to a health provider’s reputation, expertise, the amount of personal
attention given to a patient, hospital environments, availability of equipments, the
supporting staffs, etc (see Conner-Spady et al. (2008)). The concept of “quality” here
abstracts all service attributes except for the waiting time, and thus Qd and Qa may
not be equal. It is beyond the scope of this study to model how the service quality
differentiation is developed. Instead, we take the service quality differentiation as
given in our modeling. However, we do not predetermine the ordering of Qd and Qa
one way or the other.
For elective surgeries, patients do not physically stand in a queue to wait for ser-
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vice, but they do appear as a sequence of jobs in physician’s working list. Therefore,
we would think of patients as joining virtual queues. In the queue of dual-practice
physicians, patients who opt for private care need to pay a price p and are given pri-
ority over patients who seek public care for free. As explained in the introduction,
the assumption of pure priority follows from the observed waiting time difference in
the surgeries of dual-practice physicians. Therefore, there are two classes of patients
in the queue of dual-practice physicians. There is only one single class of patients in
the queue of public-only physicians. Each class of patients form a separate queue:
queue 0 for class 0 patients who seek private care, queue 1 for class 1 patients who
seek public care of dual-practice physicians, and queue 2 for class 2 patients who
seek public care of public-only physicians. Within a class, patients are served under
first-in-first-out (FIFO) service discipline.
Both class 0 and class 1 patients receive services of quality Qd , and class 2 pa-

tients receive services of quality Qa. Let λ0, λ1 and λ2 be the arrival rates of class
0, class 1 and class 2 patients respectively. Generalized from the results of M/G/n
queue with non-preemptive priority (see Appendix B.1), the expected waiting times
of class 0 and class 1 patients can be written as functions w0(λ0,λ1) and w1(λ0,λ1)
respectively. Waiting times w0 and w1 have the following functional properties:
∂w0
∂λ0

> 0, ∂w0
∂λ1

> 0, w0(0,0) = 0, lim
λ0→ nd

md

w0 = +∞; ∂w1
∂λ0

> 0, ∂w1
∂λ1

> 0, w1(0,0) = 0,

lim
λ0+λ1→ nd

md

w1 = +∞, where md is the mean service time of dual-practice physicians.

Furthermore, we have ∂w1
∂λ0 > ∂w0

∂λ0 and
∂w1
∂λ1 > ∂w0

∂λ1 . Generalized from the results of
M/G/n queue, the expected waiting time of class 2 patients can be written as func-
tion w2(λ2). w2 has the following functional properties: ∂w2

∂λ2 > 0, w2(0) = 0 and
lim

λ2→ na
ma

w2 = +∞, where ma is the mean service time of public-only physicians. It

should be noted that the assumption of a single M/G/n queue for either type of
physicians is based on the fact that a patient always has the right to be switched to a
different surgeon anytime in the course of treatment. However, if the switching cost
is high, the public health system would operate like a system of multiple separate
M/G/1 queues, one queue for each surgeon. As M/G/1 queue is a special instance
of M/G/n queue, the results obtained in this study can be readily extended to the
system of multiple separateM/G/1 queues.
We assume that all queues are subject to a common stream of potential patient
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arrivals with rate Λ (patient population). Patients are heterogenous with respect to
their time costs, denoted by h, which has a cumulative probability function F(x),x ∈
[0,+∞). All patients act in a fashion so as to maximize their own benefits. Before
making decisions to join a queue, patients already have full knowledge of p, Qd , Qa,
h (their own time costs and the distribution of h) and the expected waiting time of
each service alternative. The exact time a patient needs to wait for a service is known
only after the booking of operating theater time is confirmed, so no precise waiting
time information can be provided to the patient when she is offered different service
alternatives. However, the expected waiting time of each service alternative can be
reasonably estimated. For instance, the recent waiting time statistics of a surgeon
in public/private clinics could be acquired through word of mouth or public waiting
time information release. Therefore, it is reasonable to assume that patients make
their decisions based on expected waiting time other than actual waiting time.
If a patient decides to join a queue, she then receives one unit of service of quality

Q and thus Q · 1 is the gross benefit of the service counter. Therefore, Q can also
denote the gross service benefit of a queue. After taking into account the price and the
cost of waiting, (Q− p−hw) would be the net service benefit of joining a queue. A
patient would choose to join a queue that offers the maximum net benefit or choose to
receive outside service, which has a reservation net benefit of zero. The aggregation
of patient choices would determine the arrival rates λ0, λ1 and λ2, which in turn
determine the expected waiting time of each queue. Therefore, both w and λ are
endogenous. In an equilibrium, if exists, patients have no incentive to switch to
another queue.

3.3 Equilibrium Arrival Rates and the Existence and
Uniqueness of Equilibrium

In this section, by assuming that physician dual practice is allowed, we establish
the equilibrium arrival rates and the existence of equilibrium when a set of param-
eters p, Qd , Qa, nd , na, h and Λ are given. We use a general framework to derive
the necessary conditions for the existence of equilibrium, and then use the necessary
conditions to obtain the system of simultaneous equations that characterize the equi-
librium arrival rates. The derivation of equilibrium arrival rates is to express λ0, λ1
and λ2 as (implicit) functions of the given set of parameters. Since waiting times
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are functions of arrival rates, once λ0, λ1 and λ2 are determined, w0, w1 and w2 are
determined. Inversely, arrival rates are functions of waiting times, so once w0, w1
and w2 are determined, λ0, λ1 and λ2 are determined as well. The proofs of relevant
lemmas, propositions and theorems of this section are in Appendix B.2 and B.3.

3.3.1 Necessary Conditions of Equilibrium
In the analysis of equilibrium, we find that the sorting of patients into different

queues depends on the ordering of the rewards of queues. The reward of a queue
is defined as the gross service benefit Q minus the price p (if any). For example,
if a set of exogenous parameters are such that Qd > Qa and p > Qd −Qa, then the
ordering of queues in terms of rewards, is Qd (queue 1) > Qa (queue 2) > Qd − p
(queue 0). However, if the parameters are such that Qd > Qa and p< Qd−Qa, then
the ordering of queues is Qd (queue 1) > Qd− p (queue 0) > Qa (queue 2). In order
to use a unifying framework to derive the necessary conditions of equilibrium, we
use R to denote the reward of a queue. We use subscript A, B and C to denote the
classes of patients and the corresponding queues with the highest, medium and lowest
rewards respectively. We define “mid” to be the operator that takes the medium value
of three arguments, then we must have RA = max{Qd , Qa}, RB = mid{Qd, Qd −
p, Qa}, RC =min{Qd− p, Qa} and RA ≥ RB ≥ RC. Let λA, λB and λC be the arrival
rates and wA, wB and wC be the expected waiting times of class A, B and C patients
respectively, then we have the following proposition:

Proposition 3.1 Given p≥ 0, in an equilibrium (if exists), one of the following three
cases must prevail:

(i) wA ≥ wB ≥ wC;

(ii) wB ≥ wA ≥ wC, in which case Qa > Qd, wB = w1(λ0,λ1) and λB = λ1 = 0;

(iii) wA ≥ wC ≥ wB, in which case Qd > Qa and p > Qd −Qa, wA = w1(λ0,λ1),
wB = w2(λ2), wC = w0(λ0,λ1), λA = λ1 = Λ, λB = λ2 = 0 and λC = λ0 = 0.

Case 1 of Proposition 3.1 states that in equilibrium (if exists), a patient class
with higher reward must have a longer waiting time than a patient class with lower
reward. Manitoba evidence shows that the public patients of dual-practice physicians
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have the longest waiting time (23 weeks), followed by the public patients of public-
only physicians (15 weeks) and the private patients have the shortest waiting time (4
weeks), i.e., we observed w1 >w2 >w0. According to Proposition 3.1, we must have
RA =Qd > RB =Qa > RC =Qd− p. In this case, the service quality of dual-practice
physicians must be higher than that of public-only physicians. DeCoster et al. (2000)
point out that dual-practice physicians are high volume physicians that specialize in
cataract surgeries. Some attributes of these physicians may be perceived by patients
as higher service qualities. For instance, it is noted that the greatest single factor in
the success rate of cataract extraction procedures is the volume of operations that a
surgeon performs.4 By Qa > Qd− p, we have p > Qd−Qa, which implies that the
$1,000 facility fee is greater than the service quality difference between dual-practice
physicians and public-only physicians. Only those patients who are highly sensitive
to waiting will choose to pay the premium to access the fastest service.
Case 2 of Proposition 3.1 is a special case when no public patients are served by

the dual-practice physicians, i.e., λ1 = 0. Since there are no patients in the public
queue of dual-practice physicians, w1 should be interpreted as the virtual waiting
time: namely, should one class 1 patient joins, his expected waiting time would be
wB. Case 3 of Proposition 3.1 is another special case when all patients are served
in the public queue of dual-practice physicians, i.e., λ1 = Λ. Again, as there are no
patients in the private queue of dual-practice physicians, w0 should be interpreted as
the virtual waiting time. Case 2 and Case 3 of Proposition 3.1 are not essential to our
research questions as we are interested in studying equilibria in which none of the
three queues is empty. Therefore, we limit our analysis to Case 1 of Proposition 3.1
in the rest of this chapter.

3.3.2 Simultaneous Equations of Equilibrium Arrival Rates
In this subsection, we derive simultaneous equations of equilibrium arrival rates

and equilibrium waiting times. Appendix B.2 provides more details on the develop-
ment of these equations and we only summarize the results here.
Given a set of parameters Qd , Qa and p and a set of values w′A, w

′
B and w′C that

follow w′A ≥ w′B ≥ w′C, we can show whether or not they constitute an equilibrium.
4See Frey, Rebecca. “Extracapsular Cataract Extraction.” Gale Encyclopedia of Surgery: A

Guide for Patients and Caregivers. 2004. Retrieved on September 11, 2011 from Encyclopedia.com:
http://www.encyclopedia.com/doc/1G2-3406200162.html.
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By Proposition 3.1, we can determine the patient type that is indifferent between
each pair of queues. For instance, the patient type indifferent between queue A and
queue B, denoted by hAB, must satisfy RA−hAB ·w′A = RB−hAB ·w′B and thus we have
hAB = RA−RB

w′A−w′B
. Patients with time cost h ≤ hAB prefer queue A to queue B; Patients

with time cost h ≥ hAB prefer queue B to queue A. Similarly we can determine the
indifferent patient type between joining a specific queue and choosing an outside
service with zero reservation net benefit. By having these indifferent patient types,
we are able to sort the heterogenous patients into four segments as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Joining queue A, h ∈
[
0, RA−RBw′A−w′B

]
;

Joining queue B, h ∈
[
RA−RB
w′A−w′B

, RB−RCw′B−w′C

]
;

Joining queue C, h ∈
[
RB−RC
w′B−w′C ,

RC
w′C

]
;

Choosing outside service, h ∈
[
RC
w′C

,+∞
]
.

(3.1)

Since patient type follows cumulative probability distribution function F(x), we
can compute the expected arrival rate to each queue. For instance, the arrival rate
to queue A is computed as λ ′

A = F
(
RA−RB
w′A−w′B

)
Λ. Similarly we can compute λ ′

B and
λ ′
C. Inputting λ ′

A, λ ′
B and λ ′

C into waiting time functions w0(λ0,λ1), w1(λ0,λ1) and
w2(λ2), we obtainwA, wB and wC. If it turns out that w′A=wA, w

′
B=wB and w′C =wC,

then the set of w′A, w
′
B and w′C is a candidate of equilibrium waiting times; otherwise,

they should not be equilibrium waiting times. Meanwhile, the analysis described
above also provides λ ′

A,λ
′
B and λ ′

C as the candidates for equilibrium arrival rates. In
summary, the equilibrium arrival rates and equilibrium waiting times must satisfy the
following simultaneous equations:

λA = F
(
RA−RB
wA−wB

)
Λ, (3.2)

λB =

[
F
(
RB−RC
wB−wC

)
−F

(
RA−RB
wA−wB

)]
Λ, (3.3)

λC =

[
F
(
RC
wC

)
−F

(
RB−RC
wB−wC

)]
Λ. (3.4)
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where

wA =

{
w1(λ0,λ1), i f Qd ≥ Qa;
w2(λ2), i f Qd < Qa.

wB =

⎧⎪⎨⎪⎩
w0(λ0,λ1), i f Qd ≥ Qa, p≤ Qd−Qa;
w2(λ2), i f Qd ≥ Qa, p> Qd−Qa;
w1(λ0,λ1), i f Qd < Qa.

wC =

{
w2(λ2), i f Qd ≥ Qa, p≤ Qd−Qa;
w0(λ0,λ1), i f Qd ≥ Qa, p> Qd−Qa or Qd < Qa.

Simultaneous equations (3.2) – (3.4) with three unknowns λA,λB and λC serve
as the necessary conditions for the existence of equilibrium. Solving (3.2) – (3.4)
for λA,λB and λC gives rise to multiple solutions, but only those solutions that satisfy
λA≥ 0,λB≥ 0,λC≥ 0 are equilibrium arrival rates. Therefore, equations (3.2) – (3.4)
with non-negativeness of solutions serve as the sufficient conditions of equilibrium.
According to (3.1), patients choose among service alternatives by weighing their

opportunity costs of time against the benefits of service they receive. Patients with
lower time costs would choose to receive a higher service benefit by sacrificing their
time in waiting. On the other hand, patients who have higher time costs would choose
to receive faster service by forgoing service of higher benefit.

3.3.3 Existence and Uniqueness of Equilibrium
This subsection discusses the existence and uniqueness of equilibrium. For the

existence of equilibrium, we have the following proposition:

Proposition 3.2 Given p> 0, there always exists an equilibrium.

Uniqueness of equilibrium is hard to establish in general. For instance, we show
an example of multiple equilibria in Appendix B.5. However, for some simple forms
of waiting time functions, the uniqueness of equilibrium could be established. Propo-
sition 3.3 presents one of these cases.

Proposition 3.3 If waiting time functions are of the linear forms w0 = α(λ0+λ1),
w1 = β (λ0+λ1) and w2 = αλ2, then the equilibrium is unique.
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By establishing the existence of equilibrium, we extend the study to discuss how
the equilibrium arrival rates and equilibrium waiting times respond to the change of
price p and the change of service quality difference Q = |Qd −Qa| in Section 3.4.
In Section 3.5, we study the impact of allowing physician dual practice on patient’s
waiting time and welfare. As implied in the observations on Manitoba’s empirical
evidence, the service quality of dual-practice physicians is higher than that of public-
only physicians. We therefore focus on the case of Qd > Qa in Section 3.4 and
Section 3.5 as it is more relevant to the motivation of our research. We present the
results for the case of Qd < Qa in Section 3.6.

3.4 Comparative Statics of Equilibrium Arrival
Rates and EquilibriumWaiting Times with
Respect to Price and Service Quality Difference

In this section, we discuss how the equilibrium arrival rates and equilibrium wait-
ing times respond to change of price p and change of service quality difference
Q= Qd−Qa. To derive the comparative statics with respect to price, we take partial
derivatives with respect to p at both sides of (3.2), (3.3) and (3.4). We then solve the
resulted simultaneous equations for ∂λA

∂ p ,
∂λB
∂ p and

∂λC
∂ p . The expressions of

∂λA
∂ p ,

∂λB
∂ p

and ∂λC
∂ p obtained this way are generally messy and intractable, which do not seem

to offer further insights (see Appendix B.4). To simplify the expressions of ∂λA
∂ p ,

∂λB
∂ p

and ∂λC
∂ p and obtain some managerial insights, we limit our analysis to some meaning-

ful specific case. The specific case for our considerations is based on the following
assumptions: (I) λ0+λ1+λ2 = Λ; (II) F(x) is uniformly distributed in [0,1]; (III)
linear forms of waiting time; (IV) the service times of both types of physician follow
the same distribution. The justifications for these assumptions are as follows.
Assumption (I) assumes that no patients seek outside service. As explained in

Introduction, since the cost of outside service is high, patients who can afford such
expensive services only constitute a small fraction of the whole patient population.
In other words, ignoring outside service in our model would not undermine the main
conclusions. Assumption (II) suits a patient populationwith no clusterings of patients
at certain points of time cost. Assumption (III) is applicable when the traffic intensity
of a queue is not close to 1. When the traffic intensity is close to 1, the average
waiting time would grow exponentially. We do not observe an exponential growth of
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waiting time inManitoba’s evidence (see the time series of waiting time in Table 3.1).
Therefore, it is reasonably to assume that the traffic intensities of queue 0, queue
1 and queue 2 are not close to 1. Nevertheless, for cases when traffic intensities
are high and thus the linear forms of waiting time are deemed as inappropriate, we
use numerical analysis to obtain insights. Figure 3.1 to Figure 3.3 are examples of
numerical analysis. Findings on these numerical examples supplement the analytical
results of Proposition 3.4 and Proposition 3.5.
For assumption (IV), to our best knowledge, there have been no empirical stud-

ies investigating the operation times of cataract surgeries. This is probably because
cataract surgery has become one of the most common, safest and standard surgeries.
The operation of cataract extractions usually lasts less than one hour.5 Cataract surg-
eries are usually performed on an outpatient basis and surgeons follow the same stan-
dard procedures (Pesudovs and Elliott, 2001). In view of these facts, it is reasonable
to assume that the variability of operation times would depend more on other factors,
e.g., patient’s ocular co-morbidities, than surgeon practice types.

3.4.1 Marginal Equilibrium Arrival Rates of Price and
Marginal Equilibrium Waiting Times of Price

Given assumptions (I), (II), (III) and (IV), we summarize the analytical results of
marginal equilibrium arrival rates of price and marginal equilibrium waiting times of
price as Proposition 3.4 below. The details of analysis are in Appendix B.4.

Proposition 3.4 Under assumptions of (I), (II), (III), (IV) and Qd > Qa, it follows
that:
∂λ0
∂ p < 0, ∂λ1

∂ p > 0, ∂λ2
∂ p < 0, ∂w0

∂ p < 0, ∂w1
∂ p < 0, ∂w2

∂ p < 0, if p> Qd−Qa.

We cannot determine the signs of comparative statics analytically for the case
of p < Qd −Qa. Instead, we conduct extensive numerical analysis for that case.
Our numerical analysis uses assumption (I), (II) and (IV). Instead of linear forms of
waiting time, we use waiting times of M/G/n queue with non-preemptive priority.
We fix the patient population to be 1, i.e., Λ = 1, and limit the number of dual-
practice physicians to be less than or equal to 3, i.e., nd ≤ 3. This is because when

5See National Eye Institute. “Facts About Cataract.” Retrieved on September 11, 2011 from:
http://www.nei.nih.gov/health/cataract/cataract facts.asp
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nd ≥ 3, the computation of the numerical examples becomes extremely slow and
would not finish within the given time limit (60 minutes). The number of public-only
physicians is fixed to be 1 to utilize the explicit waiting time function of M/G/1
queue. The values of Qd and Qa are chosen in such a way that the value of (Qd−Qa)
varies from 0 to 100. For each pair of Qd and Qa, the first and second moments of
the service time, i.e., m and m2, would have to fall within a certain region to ensure
that none of the queues has zero arrival rate. All of the numerical examples show
that λ0, λ1, w0 and w1 are monotone with respect to price, which is consistent with
Proposition 3.4. Arrival rate λ2 is not monotone with respect to p. Figure 3.1 shows
one of these numerical examples.
Both Proposition 3.4 and Figure 3.1 suggest that a price increase deters patients

from seeking private service and thus increases the demand for dual-practice physi-
cian’s public services. Although the arrival rate of class 1 patients increases in p,
the expected waiting time of class 1 patients decreases thanks to the decrease of the
arrival rate of class 0 patients.
The interesting finding is how λ2 respond to p. Proposition 3.4 and Figure 3.1

suggest that different patterns could exist. In the case of linear waiting time, Proposi-
tion 3.4 suggests that the arrival rate to queue 2 is monotonically decreasing in price
p in the region of p < (Qd −Qa). In the case of M/G/1 queue, Figure 3.1 shows
that when the price of private service is lower than the service quality difference, i.e.,
p< (Qd−Qa), the line of λ2 is flat, so the price change only induces a switching of
patients between queue 0 and queue 1. When the price of private service is higher
than the service quality difference, i.e., p> (Qd−Qa), Figure 3.1 shows that the line
of λ2 is quasi-concave in p. In this case, patients with low/medium/high time costs
would join queue 1/2/0 respectively. An increase of the already high price will make
queue 0 less attractive to patients with high time costs, so some of these patients
would switch from queue 0 to queue 2. Meanwhile, there are also patients switch-
ing from queue 2 to queue 1 because the expected waiting time of class 1 patients
decreases. Therefore, the change of the arrival rate of class 2 patients may not be
monotone.
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3.4.2 Marginal Equilibrium Arrival Rates of Service Quality
Difference and Marginal Equilibrium Waiting Times of
Service Quality Difference

This subsection also utilizes assumptions (I), (II), (III) and (IV). The analytical
results of marginal equilibrium arrival rates of service quality difference and marginal
equilibrium waiting times of service quality difference are summarized as Proposi-
tion 3.5. The change of service quality difference Q= Qd−Qa can be due to either
the change of Qd , or the change of Qa, or both. In the following discussions, we
assume that the increase of Q is due to the increase of Qd . The details of the analysis
are in Appendix B.4.

Proposition 3.5 Under assumptions (I), (II), (III), (IV) and Qa < Qd, it follows that:

(i) ∂λ2
∂Q < 0, ∂w0

∂Q > 0, ∂w1
∂Q > 0, ∂w2

∂Q < 0, if p> Qd−Qa;

(ii) ∂λ0
∂Q > 0, ∂λ1

∂Q < 0, ∂λ2
∂Q < 0, ∂w0

∂Q > 0, ∂w1
∂Q > 0, ∂w2

∂Q < 0, if p< Qd−Qa.

We cannot determine the signs of ∂λ0
∂Q and

∂λ1
∂Q analytically under assumptions

(I), (II), (III) and (IV) when p > Qd−Qa. Instead, we conduct extensive numerical
analysis following the same choices of parameters in Section 3.4.1. Figure 3.2 and
3.3 are two numerical examples.
In the case of linear waiting times, Proposition 3.5 suggests that an increase of

service quality of dual-practice physicians makes patients switch from the queue of
public-only physicians to the queue of dual-practice physicians. Therefore, the arrival
rate of class 2 patients decreases. When the price is less than the service quality
difference, i.e., Case 2 of Proposition 3.5, an increase of service quality of dual-
practice physicians makes the price p become less concerned to class 1 and class 2
patients. Therefore, class 1 and class 2 patients are more willing to pay to enjoy a
service of expediency and higher quality. An increase of the already high Qd will
make patients switch from both queue 1 and queue 2 to queue 0.
The monotonicity stated in Proposition 3.5 holds in the numerical example of

Figure 3.2, but fail to hold in the numerical example of Figure 3.3. As noted above,
the linear approximation of waiting time is more applicable when the traffic intensity
is not close to 1, i.e., the system is not congested. The only difference between Figure
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3.2 and Figure 3.3 is the mean service time: m = 2.22 for Figure 3.2 and m = 2.5
for Figure 3.3. With everything else being equal, a queue with higher mean service
time would have higher traffic intensity and thus is more congested. In the more
congested example of Figure 3.3, when the service quality difference is lower than
the price, the change of λ0 with respect to Q is no longer monotonic. When the
service qualities are close, i.e., Qd is close to Qa, patients do not see much value in
paying a high price p to access private care. Therefore, patients are more willing to
enjoy a higher service quality Qd for free. Also, patients know that since the system
is congested, the waiting time of class 1 patients would drop greatly if the number
of class 0 patients falls. By switching from queue 0 to queue 1, patients in queue 1
not only enjoy a higher service quality for free, but also enjoy a shorter waiting time
because the traffic intensity of queue 0 is reduced. In fact, the waiting time of class
1 patients does not change much in the region Qd ∈ [2,2.4]. Therefore, an increase
of service quality of dual-practice physicians not only makes patients switch from
queue 2 to queue 1, but also makes patients switch from queue 0 to queue 1.

3.5 Physician Dual Practice on Patient’s Waiting
Time and Welfare

In this section, we discuss the impact of allowing physician dual practice on pa-
tient’s waiting time and welfare. We first set up the base case in which physician dual
practice is not allowed and patients are unable to distinguish between physicians of
different service qualities. We obtain the waiting time, and then calculate the net
service benefit of each patient type in the base case. Next, we compare the waiting
times and welfare of class 0, 1 and 2 patients with the waiting time and welfare of
the base case. In this section, we assume no outside service whether physician dual
practice is allowed or not, and we only discuss the case of Qd > Qa. We will present
the results for the case of Qd < Qa in Section 3.6.
Physician dual practice could affect patient’s welfare through two channels: one

is through waiting time differentiation, and the other is through service quality im-
provement. The existing literature has shown that allowing physician dual practice
could improve the service quality of dual-practice physicians in the public health
system (Eggleston and Bir, 2006). González (2004) argues that allowing physician
dual practice improves the service quality as dual-practice physicians conduct more

45



accurate diagnosis for patients. This is because dual-practice physicians need to es-
tablish reputations among patients. Section 3.3 has shown that the waiting time dif-
ference of public surgeries existing between two types of physician can be explained
by service quality differentiation. This finding motivates us to take both the effect
of waiting time differentiation and the effect of service quality enhancement into ac-
count, and investigate how these two effects work together to affect patient’s welfare.
It is beyond the scope of this study to model how the service quality enhancement
is realized. Instead, we take the service quality enhancement effect as given in our
model.

3.5.1 The Base Case
In this subsection, we establish the waiting time and patient’s welfare of the base

case – a setting in which physician dual practice is not allowed. In such a setting,
patients are unable to distinguish the service quality difference, if any, among physi-
cians because there are no price discrimination or the offering of private service.
Meanwhile, physicians cannot price discriminate patients either. A patient arriving
at this system joins the end of a common queue and upon reaching the head of the
queue, she is assigned to the next available physician. This system can be considered
as an M/G/(nd + na) queue under FIFO service principle. Here nd is the number
of physicians who would become dual-practice physicians if physician dual practice
is allowed; na is the number of physicians who only practice in the public system
whether physician dual practice is allowed or not. Since we assume that there is no
outside service, all of Λ patients are served in the M/G/(nd + na) queue. The ex-
pected waiting time of patients in the base case can be written as w̃(Λ,nd+na). We
assume that the nd physicians have a service quality of Q̃d and the na physicians have
a service quality of Qa in the base case. To model the service quality enhancement
effect induced by allowing physician dual practice, we assume Q̃d ≤ Qd .
We assume that the total number of physicians is fixed whether physician dual

practice is allowed or not. This is a valid assumption in the short term as new
physicians would face entry barrier. In Manitoba’s case, none of the dual-practice
physicians left the public system after extra billing was banned in January 1999.
Bir and Eggleston (2003) argue that allowing physician dual practice could help at-
tract higher skill physicians. However, they fail to formalize a concrete model to

46



justify this argument. We therefore treat the number of physicians as fixed in this
section for the sake of simplicity. At the end of this section, we discuss the possible
impacts of relaxing this assumption.
As patients are randomly assigned to physicians, a patient is expected to receive

a service of quality Q̃d with probability nd/(nd+na) or a service of quality Qa with
probability na/(nd+na). The expected net benefit for a patient with time cost h is

ndQ̃d+naQa
nd+na

−h · w̃(Λ,nd+na)

and the total patient welfare of the base case is

Λ

(
ndQ̃d+naQa
nd+na

− w̃(Λ,nd+na)
∫ +∞

0
h dF(h)

)
which would be referred as the benchmark patient welfare in the following discus-
sions.
It should be noted that due to the pooling effect, when a commonM/G/(nd+na)

queue is split into a M/G/nd queue and another M/G/na queue, some efficiency is
lost. This means at least one of the separated queues would have a longer waiting
time than the original common queue, regardless how the total arrival rate is split into
the two separated queues.

3.5.2 Impact of Physician Dual Practice on Waiting Time
In this subsection, we compare the waiting time of the base case with the waiting

times of class 0, class 1 and class 2 patients. By Proposition 3.1, we know that in
the equilibrium of case Qa < Qd , class 1 patients would be the group of patients
having lower time costs than class 0 or class 2 patients. One key issue in the health
reform debates in Canada is whether allowing privately funded health care would
result in a shorter public waiting time. In particular, the policy maker is concerned
about whether allowing privately funded health care would benefit some people at the
cost of others. Proposition 3.6 below shows that given a fixed supply of physicians,
allowing physician dual practice results in a longer waiting time for patients with
lower time costs, i.e., class 1 patients.

Proposition 3.6 Given p > 0, Qa < Qd and a fixed supply of physicians, we always
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have w̃ ≤ w1, i.e. the waiting time of patients with lower time costs becomes longer
when physician dual practice is allowed.

There are no similar conclusions for class 0 and class 2 patients. As shown in
the right hand sides of Figure 3.1 to Figure 3.3, when Qa < Qd , w1 is always longer
than the waiting time of the base case (the black bar). However, w0 and w2 could be
longer or shorter than the waiting time of the base case.
It should be noted that patients with lower time costs are not necessarily patients

with lower incomes. As shown in DeCoster et al. (2000), a substantial proportion
(38%) of total private surgeries were performed on patients from the two lowest-
income neighborhoods. Clearly these patients have higher time costs. Therefore,
patient’s opportunity cost of time could be determined by factors other than personal
income. For instance, in the case of cataract surgery, a patient’s cost of time could
be mainly determined by the importance of vision to her life and work. Allowing
privately funded health service offers more options not only to the rich but also to the
poor.
Figure 3.1 to Figure 3.3 show that the proportion of class 1 patients could range

from 0% to a large percentage depending on the price and the service qualities. Table
3.2 below shows that nearly 50% of Manitoba cataract patients were class 1 patients
during the time period when physician dual practice was allowed.
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Figure 3.1: Numerical example with Qd = 2.4, Qa = 2, Λ = 1, m= 2.5, m2 =
1, nd = 2, na = 1. (Note: the expected waiting time of class 1 patients is
plotted against the secondary Y-axis.)
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Figure 3.2: Numerical example with p= 0.4, Qa = 2, Λ = 1, m= 2.22, m2 =
1, nd = 2, na = 1. (Note: the expected waiting time of class 1 patients is
plotted against the secondary Y-axis.)
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Figure 3.3: Numerical example with p = 0.4, Qa = 2, Λ = 1, m = 2.5, m2 =
1, nd = 2, na = 1. (Note: the expected waiting time of class 1 patients is
plotted against the secondary Y-axis.)
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Table 3.2: Number of patients by surgeon practice type: 1992-1999a

Year 92/93 93/94 94/95 95/96 96/97 97/98 98/99

Public-only surgeon Public hospital 1,207 1,190 1,365 1,578 1,471 1,133 1,154

(36.0%) (35.6%) (40.6%) (39.4%) (38.1%) (25.8%) (23.4%)

Dual-practice surgeon

Public hospital 1,671 1,705 1,689 2,043 1,722 2,353 2,424

(49.9%) (51.0%) (50.2%) (50.9%) (44.6%) (53.6%) (49.2%)

Private clinic 471 448 312 389 672 903 1,351

(14.1%) (13.4%) (9.3%) (9.7%) (17.4%) (20.6%) (27.4%)

3,349 3,343 3,366 4,010 3,865 4,389 4,929
a Source: DeCoster et al. (2000).52



3.5.3 Impact of Physician Dual Practice on Patient Welfare
In the preceding subsection, we have shown that class 1 patients have a longer

waiting time than the waiting time of the base case. However, class 1 patients may
benefit from the enhanced service quality induced by allowing physician dual prac-
tice. Therefore, the net effect of physician dual practice on class 1 patients is not
straightforward. Suppose that a patient with time cost h joins queue 1, so she re-
ceives a net benefit of Qd−hw1. This net benefit Qd−hw1 is no worse than the net
benefit she receives in the base case if and only if:

Qd−hw1 ≥ ndQ̃d+naQand+na
−hw̃

⇒ Qd− ndQ̃d+naQand+na
≥ h(w1− w̃) (3.5)

According to Proposition 3.6, we know that w1 > w̃. Dividing both sides of (3.5) by
(w1− w̃) gives rise to

h≤
(
Qd− ndQ̃d+naQand+na

)
/(w1− w̃) (3.6)

Since Q̃d < Qd and Qa < Qd , we have Qd− ndQ̃d+naQa
nd+na > 0. The right hand side

of (3.6) is always positive, i.e., there always exist class 1 patients who are better off
by allowing physician dual practice. Furthermore, we let

hd =min{h1,h2}

where h1 denotes the right hand side of (3.6), while h2 denotes the indifferent type
between queue 1 and queue 2 (in the case of Qd−Qa ≤ p) or the indifferent type be-
tween queue 1 and queue 0 (in the case of Qd−Qa > p). Therefore, hd is a threshold
of time cost. Patients with time costs lower than this threshold would benefit from
allowing physician dual practice. As both h1 and h2 are functions of p and Qd , hd is
a function of p and Qd as well, i.e., hd(p,Qd). For the marginal hd of price p, we
have the following proposition:

Proposition 3.7 Given Qa<Qd, we have ∂hd
∂ p > 0, i.e., the higher the price, the more

class 1 patients who would benefit from allowing physician dual practice.
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Proposition 3.7 holds because as price increases, the number of class 1 patients
increases and the waiting time of class 1 patients decreases. Therefore, class 1 pa-
tients would enjoy a shorter waiting time and a service of higher quality (compared
to the base case). As the price increases, more class 1 patients would receive a higher
net benefit than they do in the base case. We cannot make a similar conclusion for
the marginal hd of service quality Qd .
Next, we do the same analysis for class 0 and class 2 patients. A patient with time

cost h in queue 0 would benefit from allowing physician dual practice if and only if:

Qd− p− ndQ̃d+naQand+na
≥ h(w0− w̃) (3.7)

Both the sign of Qd− p− ndQ̃d+naQa
nd+na and the sign of (w0− w̃) could be either pos-

itive or negative. The discussion would lead to many scenarios. Likewise, a patient
with time cost h in queue 2 would benefit from allowing physician dual practice if
and only if:

Qa− ndQ̃d+naQand+na
≥ h(w2− w̃) (3.8)

Again, both the sign of Qa− ndQ̃d+naQa
nd+na and the sign of (w2− w̃) could be either

positive or negative, and the discussion would lead to many scenarios too. In fact,
due to the loss of efficiency in queue splitting, we can construct an example in which
none of the class 0 and class 2 patients is better off from allowing physician dual
practice.
Figure 3.4 is a numerical example using the same parameters as Figure 3.1. Fig-

ure 3.4 shows how the number of class 0/1/2 patients who would benefit from allow-
ing physician dual practice changes with respect to price. The number of queue 0/1/2
patients who would benefit from allowing physician dual practice is labeled as line
“queue 0/1/2”. Figure 3.4 also shows the total patient welfare of the base case and that
of the dual practice case. As shown in Figure 3.4, no class 2 patients would benefit
from allowing physician dual practice due to the loss of efficiency in queue splitting.
The single public-only physician serves less patients in the case when physician dual
practice is allowed, but the waiting time of class 2 patients is instead longer than the
waiting time of the base case. The number of class 1 patients who would benefit from
allowing physician dual practice increases in price. The number of class 0 patients
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who would benefit from allowing physician dual practice decreases in price. This is
because as the price increases, less patients would stay in queue 0 and those patients
who remain staying in queue 0 need to pay a higher price. The total patient welfare
is quasi-concave in price. The total patient welfare is at the lowest when the price is
either very low or very high. It should be noted that the comparison of total patient
welfare between the base case and the case where physician dual practice is allowed
is conditional on the choice of Q̃d . Therefore, we should refrain from making con-
clusions on which scenario yields higher total welfare.

Figure 3.4: Patient welfare with Qd = 2.4, Qa = 2, Q̃d = 2.1, Λ = 1, m =
2.5, m2 = 1, nd = 2, na = 1.
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To study the change of patient welfare with respect to service quality, we can
fix Qa and Qd but allow Q̃d to vary. As Q̃d increases, the service quality enhance-
ment, i.e., (Qd − Q̃d), would decrease. For the number of class 0/1/2 patients who
would benefit from allowing physician dual practice with respect to Q̃d , we have the
following proposition:

Proposition 3.8 Given Qa < Qd, the higher the service quality Q̃d in the base case,
the less the patients across all classes would benefit from allowing physician dual
practice.

The intuition behind Proposition 3.8 is straightforward: the extent of patient wel-
fare improvement correlates positivelywith the extent of service quality improvement
induced by physician dual practice.
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3.5.4 Discussion
In the above subsections, we have relied on two important assumptions to sim-

plify the analysis: one assumption is no outside service and the other is a fixed num-
ber of physicians whether physician dual practice is allowed or not. In this subsec-
tion, we discuss the possible impacts if these two assumptions are relaxed.
In the setting of this study, an outside service means a health service that is offered

in another jurisdiction. For instance, an outside service for cataract patients in Man-
itoba could be a cataract surgery that is offered in a neighborhooding province like
Ontario, or a cataract surgery that is offered across the border. To model an outside
service option, the most simplistic way is to assume that the outside service offers a
reservation net benefit v to patients regardless of their types. A patient would choose
the outside service if she finds that the maximum net benefit from being served by
either the dual-practice physicians or the public-only physicians is lower than v. Our
discussion below relies on this modeling approach.
In the base case, the introduction of an outside service provides patients an alter-

native if they feel that the public waiting time is long. The outside service functions
as a valve to mitigate the congestion in the public system, and thus the introduction
of an outside service would inevitably shorten the public waiting time and improve
patient’s welfare. In the case when physician dual practice is allowed, the introduc-
tion of an outside service could lead to mixed outcomes on patient’s waiting time.
Appendix B.5 has shown an example of multiple equilibria in the case when physi-
cian dual practice is allowed. This example shows that some patients would switch
from the existing system to the outside service if there were one. However, whether
or not the introduction of outside service would improve patient’s waiting time re-
ally depends on which equilibrium the system would be driven into. In short, the
introduction of an outside service always favors the base case.
Meanwhile, we may also be interested in whether the main results of this sec-

tion would hold if there were an outside service whether physician dual practice is
allowed or not. With an outside service in the market, class 1 patients would have a
longer waiting time in the case when physician dual practice is allowed.6 This means
Proposition 3.6 would still hold. Similarly, there always exist class 1 patients who
would benefit from allowing physician dual practice. However, Proposition 3.7 and

6One can prove it by using the same logic as the proof of Proposition 3.6
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Proposition 3.8 may or may not hold.
As stated above, Bir and Eggleston (2003) argue that allowing physician dual

practice could help attract higher skilled physicians. Indeed, allowing physician dual
practice introduces additional possible venues for physicians to supplement their pub-
lic incomes, so some physicians from outside might be attracted to the system and
thus the total number of physicians increases. Intuitively, one might expect that once
the assumption of fixed number of physicians is relaxed, the the waiting time of
at least one of the patient classes would decrease. This conjecture seems reason-
able because there is more service supply in the market. However, there might exist
some counterexamples to this seemingly logic argument. For instance, Appendix
B.5 shows that the waiting time of each patient class in Table B.3 is longer than the
waiting time of the same patient class in Table B.2, even if there are same number of
dual-practice physicians and same number of public-only physicians in both cases.
This example also shows that the patient welfare in Table B.3 is no better than that in
Table B.2. That is, the equilibrium of Table B.3 is dominated by the equilibrium of
Table B.2 in terms of patient welfare. Think of a case in which the addition of a neg-
ligible number of physicians would trigger the system to evolve from the equilibrium
of Table B.2 to the equilibrium of Table B.3. In that case, the addition of physician
supply does not improve patient’s welfare. Therefore, it is not straightforward how
relaxing the assumption of fixed number of physicians would affect the main results
of this section. We leave it as a direction for future research.

3.6 Results for the Case of Qd < Qa
We assume Qd < Qa throughout this section, i.e., the service quality of dual-

practice physicians is lower than that of public-only physicians. Although this case
is not the main focus of this chapter, we summarize the results here to supplement the
findings presented in the previous sections. We first present the comparative statics
of equilibrium arrival rates and equilibrium waiting times with respect to price and
service quality difference. We then present the results as how allowing physician
dual practice would affect patient’s waiting time and welfare.
Given assumption (I), (II), (III) and (IV), the analytical results of marginal equi-

librium arrival rates and marginal equilibriumwaiting times are summarized as Propo-
sition 3.9 below. The details of the analysis are in Appendix B.4. We assume that the
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change of service quality difference Q= Qa−Qd is due to the increase of Qa.

Proposition 3.9 Under assumptions (I), (II), (III), (IV)and Qd < Qa, it follows that:

(i) ∂λ0
∂ p < 0, ∂λ1

∂ p > 0, ∂λ2
∂ p = 0, ∂w0

∂ p = 0, ∂w1
∂ p = 0, ∂w2

∂ p = 0;

(ii) ∂λ0
∂Q < 0, ∂λ1

∂Q < 0, ∂λ2
∂Q > 0, ∂w0

∂Q < 0, ∂w1
∂Q < 0, ∂w2

∂Q > 0.

Case 1 of Proposition 3.9 shows that a price increase deters patients from seek-
ing private care and thus increases the demand for dual-practice physicians’ public
service. However, due to the linear forms of waiting time, the arrival rate to queue 2,
as well as the waiting times of all three patient classes, does not change in price. Nu-
merical analysis7 instead shows that the arrival rate to queue 2, as well as the waiting
times of all three patient classes, is decreasing in p. Case 2 of Proposition 3.9 shows
that an increase of the service quality of public-only physicians attracts patients from
both queue 0 and queue 1, and thus both the arrival rate and waiting time of class 2
patients increase.
With regard to the impact of allowing physician dual practice on patient’s waiting

time and welfare, we summarize the results as Proposition 3.10:

Proposition 3.10 Given Qa > Qd and p> 0, we have

(i) w̃ < w2, i.e., the waiting time of patients with lower time costs becomes longer
when physician dual practice is allowed;

(ii) There always exist class 2 patients who would benefit from allowing physician
dual practice;

(iii) The higher the service quality Q̃d in the base case, the less the class 0/1/2 pa-
tients who would benefit from allowing physician dual practice.

Both the conclusion and proof of Proposition 3.10 follow those of Proposition 3.6
to Proposition 3.8, so details are skipped here for the sake of conciseness.

7The numerical analysis here follows the same choices of parameters as in Section 3.4.1 except
that the values of Qd and Qa are chosen in such a way that the value of (Qa−Qd) varies from 0 to
100.
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3.7 Concluding Remarks
Physician dual practice is a common phenomenon in manyOECD and developing

countries (Garcı́a-Pardo and González, 2007; Jan et al., 2005), but the existing litera-
ture on physician dual practice is relatively limited and recent (Eggleston and Bir,
2006; González, 2005). Motivated by the two types of waiting time differences
existing in Manitoba’s cataract surgeries, we study physician dual practice from a
different but related perspective. In this chapter, we showed that the waiting time
difference existing between dual-practice physicians and public-only physicians may
be explained by the service quality differentiation between the two groups of physi-
cians. Patients of physicians with higher service qualities have longer waiting times
than patients of physicians with lower service qualities. The impact of allowing
physician dual practice on patient’s waiting time and welfare is mixed. We showed
that allowing physician dual practice would increase the waiting time for patients
with lower time costs, but some of these patients may also benefit from an enhanced
service quality induced by allowing physician dual practice. The impact of allowing
physician dual practice on patients with higher time costs is mixed.
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Chapter 4

Tax or Subsidy on Private Care and
Income Redistribution in A Two-Tier
Health System

4.1 Introduction
Public provision of private goods, e.g., health care and eduction, has long been a

critical subject in public economics. Governmental inventions into markets of such
goods and service are deemed as needed due to a number of reasons. First, free
market by its own can be inefficient under certain circumstances: monopoly power
of suppliers, negative externalities resulted from adverse selection and moral hazard,
and asymmetric information. Second, because of the market failure in the private
insurance market, a social insurance or a tax-financed health system may be more ef-
ficient than a competitive private insurance system. Last, public provision of private
goods serves redistributive purpose, i.e., redistribution of wealth and income from
persons with higher earning abilities to persons with lower earning abilities. For a
comprehensive coverage of the arguments for public provision of health care, please
see Section 8 of McPake et al. (2002), Section 3 of Wonderling et al. (2005) and Sec-
tion 5 of Zweifel et al. (2009). In this study, we focus on the redistributive purpose
of the public provision of health care.
One may argue that the redistributive purpose can be accomplished by income

taxation alone. However, one of the lessons learned from the optimal income tax
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literature is that there are limits to the amount of redistribution that can be achieved
by progressive taxation (e.g., Mirrlees (1971); Roberts (1971)). Personal income
is not a perfect signal of earning ability as income could depend on labor sup-
ply and human capital investments (Besley and Coate, 1991). Another constraint
in designing an efficient tax-based redistribution policy is that governments are not
as well-informed about the relevant utility-determining characteristics of taxpay-
ers as the taxpayers themselves are (Boadway et al., 1998). Public provision of
private goods, on the other hand, could be used as a policy instrument to reduce
these inefficiencies (e.g., Bucovetsky (1984); Blomquist and Christiansen (1995);
Boadway and Marchand (1995)). For instance, Cremer and Gahvari (1997) show
that as a redistributive mechanism, public provision of private goods can enhance
overall welfare above the maximum that can be achieved when the income tax policy
is designed optimally on the basis of the information available to the government.
Besley and Coate (1991) show that universal provision of private goods of certain
quality levels can serve the redistributive purpose even if the provision is financed by
a head tax. In this chapter, we show that public provision of health care can further
improve income redistribution if an optimally designed subsidy or tax (i.e., “negative
subsidy”) were levied on private care when the public provision is financed by a head
tax. We then characterize the conditions under which providing subsidy to private
care improves income redistribution.
The key assumption in Besley and Coate (1991) to drive their results is that the

quality levels of public and private provisions must be sufficiently differentiated to
make consumer’s self-selection to be an informal means for efficient sorting of con-
sumers between sectors. In this chapter, the quality differentiation comes from pa-
tient’s waiting. Bucovetsky (1984) and Hoel and Sáther (2003) show that waiting can
be an efficient method for income redistribution. The argument rests on the differ-
ence in the valuation of time among different patients – whereas the private providers
use this difference to price discriminate, the welfare-maximizing government uses it
as a redistributive tool (Bucovetsky, 1984). Chapter 2 has shown that providing sub-
sidy to private care contributes to public waiting time reduction. An important and
related question to this finding is: Whether or not the policy of providing subsidy
would improve patient’s income redistribution. This chapter shows that the answer
to this question is conditional. When the utilization1 of the public health system is

1The utilization is defined as the ratio of total patient arrival rate to the service rate of the public
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high, the public waiting time is expected to be long and patients with high time costs
would seek private care. A tax levied on the consumption of private care would gen-
erate a revenue transferred from the private sector to the public health system. The
transferred revenue would then reduce the cost of public care that everyone pays for
(i.e., the head tax). On the contrary, when the utilization is low, the public waiting
time is expected to be short, so patients with high time costs are likely to stay in the
public health system. The production cost of public care would then be high and
so would be the head tax. To induce the patients with high time costs to the private
sector, a subsidy to private care should be provided. This result agrees the conclusion
of Eggleston and Bir (2006) that by inducing higher income consumers to the private
sector, public care becomes more effectively targeted on poor consumers.
Similar to Hoel and Sáther (2003), the consideration of income redistribution is

modeled as the weights that the health planner assigns to the welfare of different pa-
tient types. Using welfare weights to model government’s redistributive objective is
an approach used in optimal income taxation literature (e.g., Boadway et al. (1998)).
Patients with high earning abilities have high opportunity costs of time. These pa-
tients are more sensitive to the waiting in the public health system. Therefore, the
health planner is more concerned about the welfare of patients with low time costs
and thus assigns proportionally higher weights to them. Our study shows that the
more the health planner assigns weights to patients with low time costs, the more
likely the health planner implements tax on private care.
The model we use in this chapter is a straightforward extension of the one in

Hoel and Sáther (2003). Nevertheless, to consider the effect of tax or subsidy on
patient’s income redistribution, patient’s waiting can no longer be treated as an inde-
pendent decision variable as in Hoel and Sáther (2003). The health planner’s tax or
subsidy decision would influence patient’s choice, which determines the effective ar-
rival rate to the public health system and in turn determines the public waiting time.
We use M/M/1 queuing model to formulate this relation. Due to its simple form,
M/M/1 queue is widely used in the operations management literature to model firm’s
capacity or pricing decisions when firms compete on time (e.g., Chen and Wan (2003,
2005); Hassin and Haviv (2003); Guo and Zhang (2010)). To simplify the analysis,
we assume that the service rate of the public health system is fixed. This assumption
is reasonable if the capacity or the productivity of the public health system is not easy

health system.
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to adjust in the short run. In such a case, financial incentives could be an effective
measure to influence the demand for public care. Nevertheless, we also discuss cases
when the service rate is considered as a decision variable in Section 4.4 and Sec-
tion 4.5. The assumption of exponential service time distribution of M/M/1 queue
can be unrealistic in many cases. Therefore, we supplement the analytical results of
M/M/1 queue with numerical analysis of M/G/1 queue, which assumes a general
service time distribution.
The remainder of this chapter is organized as follows. Section 4.2 sets up the

model. Section 4.3 to Section 4.5 are dedicated to presenting the analysis and results
for the case when unequal welfare weights are assigned to patients. Section 4.3
discusses the optimal tax or subsidy decision to private care given a fixed public
service rate. In Section 4.3, we first discuss the existence and uniqueness of first-
order condition solutions, and then present the comparative statics of the optimal
tax or subsidy with respect to welfare weight function and the public service rate.
This is followed by the discussion of the improvement of income redistribution by
implementing the optimal tax or subsidy. Section 4.4 discusses the decision of public
service rate when the tax or subsidy on private care is given. Section 4.5 explores
the optimization problem when the health planner makes tax/subsidy decision and
public service rate decision jointly. Section 4.6 collects the results for the case when
patients are treated equally. Section 4.7 provides concluding remarks.

4.2 Problem Formulation
We model the public health system as a single service station that has Poisson

arrivals and exponentially distributed service time. Let λ be the effective arrival
rate to the public health system and μ be the fixed service rate. The service rate
here is defined as the rate of processing job requests. According to the results of
M/M/1 queue, the expected waiting (queuing) time of patients in the public health
system is T =

(
1

μ−λ − 1
μ

)
. Similar to the assumption of health economics liter-

ature (e.g., Cullis and Jones (1985); Iversen (1993, 1997); Hoel and Sáther (2003);
González (2005)), we assume zero waiting time in the private sector.
The provision of public care incurs two types of cost: production cost and capac-

ity cost. The production cost has a constant marginal rate of q, so the total production
cost is q ·λ ; The capacity cost has a constant marginal constant rate c, so the total
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capacity cost is c ·μ . For instance, the production cost can include the fee-for-service
paid to physicians and the capacity cost can include the cost of maintaining hospital
facilities or overhead cost. Let h be the unit price of private care and R be the health
benefit of receiving one unit of treatment. We assume that the market for private care
is competitive so that private health providers take price as given. We assume h≥ q.
The public health planner implements a monetary term t on each unit of private

care. A patient needs to pay the consumer price of h+ t for one unit of private care.
If t > 0, this monetary term serves as a tax levied on the consumption of private care.
If t < 0, this monetary term is the public subsidy to private care. Let p= h+ t, then
p is the actual price that a patient needs to pay for private care.

4.2.1 Patient’s Problem
Without loss of generality, we normalize the total patient arrival rate to be 1. In

the rest of this chapter, we use 1 to represent the total patient arrival rate. Patients are
heterogenous with respect to the cost of time in waiting, denoted by θ . We assume
that θ follows a uniform distribution in [0,1]. A patient with time cost θ in the public
health system has an expected net benefit of (R−θT ). The same patient has a net
benefit of (R− p) if he seeks private care. Each patient decides between public and
private care by comparing the expected net benefits. To avoid triviality, we assume
R−h≥ 0.
The patient type who is indifferent between public and private care, denoted by

θ̃ , must satisfy R− θ̃T = R− p. Therefore, we have θ̃ ·T = p. Patients with time
cost θ ≤ θ̃ will seek public care, while patients with time cost θ > θ̃ will seek private
care. The effective arrival rate to the public health system is:

λ =

∫ θ̃

0
1dθ = θ̃

By θ̃T = θ̃
(

1
μ−λ − 1

μ

)
= p, we must have

T =
p
λ

⇒ λ = α(p) ·μ

where α(p) = 1
2

(√
p2+4p− p

)
. We can see that α ′

p > 0 and α ′′
pp < 0. For ease of

exposition, we use λ to denote both the arrival rate to public health system and the
patient type that is indifferent between public and private care.
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For a patient with time cost θ , the expected cost that she needs to bear con-
sists of two parts. The first part is the patient’s share of the total cost of the public
health system. We assume that the public health system is financed by a head tax
(Besley and Coate, 1991), then the first part of cost is equal to qλ+cμ−t(1−λ )

1 , where
qλ is the production cost, cμ is the cost of service rate, t(1−λ ) is the total amount
of tax revenue collected from the private sector (t > 0) or the total amount of sub-
sidy provided to private care (t < 0). The second part of cost is the expected cost of
service, which is the cost of waiting (= θT ) if the patient chooses public care or the
price p if he chooses private care. Let B(θ) be the expected cost of a patient with
time cost θ , then we must have

B(θ) =
qλ + cμ − t(1−λ )

1
+min{θT, p}

Finally the welfare of a patient with time cost θ is defined as the health benefit
net of the expected cost, i.e.,

R−B(θ)

4.2.2 Health Planner’s Problem
To consider the redistributive purpose, the health planner assigns unequal weights

to the welfare of different patient types. We assume that patients with higher earning
abilities have higher θ ’s. Since the health planner is more concerned about the wel-
fare of persons with low earning abilities, she assigns proportionally higher weights
to persons with lower time costs. We use a weight distribution function w(θ) to
reflect this consideration. We assume that w(θ) decreases in θ . Without loss of gen-
erality, the sum of weights is normalized to 1, i.e.,

∫ 1
0 w(θ)dθ = 1. The weighted

sum of patient welfare is:

∫ 1

0
[R−B(θ)]w(θ)dθ = R−

∫ 1

0
B(θ)w(θ)dθ

Letting V =
∫ 1
0 B(θ)w(θ)dθ , then maximizing the weighted sum of patient wel-
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fare is equivalent to minimizing the weighted sum of patient costs V :

V (t|μ,w) = qλ + cμ︸ ︷︷ ︸
ζ1(t|μ,w)

− t(1−λ )︸ ︷︷ ︸
ζ2(t|μ,w)

+T
∫ λ

0
θw(θ)dθ︸ ︷︷ ︸

ζ3(t|μ,w)

+ p
∫ 1

λ
w(θ)dθ︸ ︷︷ ︸

ζ4(t|μ,w)

(4.1)

V (t|μ,w) can be further partitioned into four parts of cost. Among them, ζ1(t|μ,w)
is the cost of production and capacity of the public health system; ζ2(t|μ,w) is the
amount of tax revenue received from the private sector or the amount of subsidy pro-
vided to private care; ζ3(t|μ,w) is the cost of waiting in the public system; ζ4(t|μ,w)
is the amount of money that patients pay for private care. The sum of ζ1 and −ζ2
is the amount of cost incurred in the public health system, so we call it “supply-side
cost”. The sum of ζ3 and ζ4 is the amount of cost that patients need to bear, so we
call it “patient-side cost”. The health planner’s problem is:

min
t
V (t|μ,w)

s.t. λ = α(p) ·μ

p= h+ t

0≤ λ ≤ 1

Since p = h+ t, we can use p as the decision variable in the rest of this chapter.

To make 0 ≤ λ ≤ 1, we must have p ∈
[
0,min

{
R,
[
1

μ−1 − 1
μ

]+}]
(see Appendix

C.1.1).
In the remainder of this chapter, the discussion of the health planner’s optimiza-

tion problem is based on the discussion of the first order condition (FOC) solution.
Therefore, it behooves us to explicitly write out the derivative of V with respect to p.
Substituting λ =α(p) ·μ into (4.1) and taking the partial derivative ofV with respect
to p gives rise to:

∂V
∂ p

=

∫ λ

0

[
θ
λ
−θ · p

λ 2
· ∂λ

∂ p
−1

]
·w(θ)dθ +λ +(p−h+q) · ∂λ

∂ p
(4.2)
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where ∂λ
∂ p = α ′

p ·μ and α ′
p =

(√
1+ 4

p2+4p −1
)
/2> 0. In the next two sections, we

characterize the existence and uniqueness of FOC solutions. We then discuss how
the optimal p determined by FOC solution responds to the weight function and the
public service rate. It is followed by the discussion of the improvement of income
redistribution by using the optimal tax or subsidy. Proofs of the propositions are in
Appendix C.1.

4.3 Optimal Tax or Subsidy on Private Care
In this section, we study the optimal tax or subsidy decision. We first charac-

terize the existence and uniqueness of the optimal tax or subsidy and then discuss
how the optimal tax/subsidy respond to the changes of w(θ) and μ respectively.
Next, we discuss how the improvement of income redistribution using the optimal
tax/subsidy varies according to the public service rate. In order to obtain analytical
results, we assume the following properties for the welfare weight function w(θ):
lim

θ→0+
θ ·w(θ) = 0. For example, both function w(θ) = (1−σ)θ−σ , σ ∈ (0,1) and

piecewise weight function satisfy this assumption.

4.3.1 Existence and Uniqueness of FOC Solutions
To analyze the existence of FOC solutions, we study the functional properties of

∂V
∂ p and we have the following results:

Proposition 4.1 If patients are assigned unequal welfare weights, then we have

(i) ∂V
∂ p |p→0+

{
< 0, h> q;
= 0, h= q;

(ii) ∂V
∂ p |p→pmax > 0;

(iii) The optimal tax/subsidy t∗ is determined by FOC.

The interpretation of Case 1 of Proposition 4.1 is as follows. If the price of private
care is greater than the marginal production cost of public care, it not optimal for the
health planner to fully subsidize private care. If the price of private care is equal
to the marginal production cost of public care, it may not be optimal for the health
planner to fully subsidizes private care either. This result is in contrast to the result
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of the equal welfare weight case that the health planner should always subsidize
private care (to be shown in Section 4.6.1). This is because if the health planner fully
subsidize private care, the total amount of subsidy would be borne equally by all
patients, then it is equivalent to have each patient paying h = q out of their pockets
for private care. Instead, by not fully subsidizing private care, the health planner can
induce only part of the patient population to the private sector, then the amount of
supply-side cost would be smaller than 1 · h. Since the supply-side cost is shared
equally among all patients, the amount of supply-side cost per capita is less than q
for patients with low time costs. Since the health planner is more concerned about
the welfare of patients with lower time costs, setting p > 0 (i.e., t > −h) results in
better income redistribution. Case 2 of Proposition 4.1 states that the marginal total
cost is always positive at the maximum net price. Case 3 of Proposition 4.1 states
that the optimal p∗ is determined by FOC solutions. This result agrees Proposition 7
of Hoel and Sáther (2003). The uniqueness of FOC solutions is hard to establish, but
we can show that uniqueness is guaranteed for some meaningful weight functions.
These weight functions would be used in the analysis in the later sections.

Proposition 4.2 If the weight function w(θ) satisfies either of the following two con-
ditions, then the FOC solution is unique.

(i) Both w(λ ) and 1
λ 2
∫ λ
0 θ ·w(θ)dθ are convex in λ , and ∂ 2V

∂ p2 |p→0+ < 0;

(ii) 2+ 2
3(h−q)α−2 ≥ 2

λ 2
∫ λ
0 θ ·w(θ)dθ , ∀p ∈ R+.

Case 1 of Proposition 4.2 guarantees that ∂ 2V
∂ p2 is a quasi-convex function of p. Case

2 of Proposition 4.2 guarantees that ∂ 2V
∂ p2 is a strictly increasing function of p. Either

condition guarantees that ∂V
∂ p is a unimodular function of p. Under either condition,

∂V
∂ p = 0 has at most one solution.
We show some examples of w(θ) that satisfy the conditions of Proposition 4.2.

For Case 1 of Proposition 4.2, we have h = q and w(θ) = a− (2a−2)θ ,a ∈ (1,2).
This weight function has a constant rate (2a−2) of decrease. For Case 2 of Proposi-
tion 4.2, any piecewise function w(θ) with w(θ)≤ 2, ∀θ ∈ [0,1] would be qualified.
For the specific weight function w(θ) = (1−σ)θ−σ ,σ ∈ (0,1), the higher the σ , the
proportionally higher the weights the health planner assigns to patients with lower
time costs. To make w(θ) = (1−σ)θ−σ ,σ ∈ (0,1) satisfy Case 2 of Proposition
4.2, we only need to have h−q≥ 10−2.
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In the next three subsections, we assume that FOC solution is unique so that p∗

is a function of w(θ) and μ .

4.3.2 Change of the Optimal Tax/Subsidy in Response to Weight
Function

In this subsection, we study how the optimal tax/subsidy responds to the change
of weight function w(θ). A weight function w1(θ) is said to stochastically dominate
another weight function w2(θ) if

∫ λ
0 [w1(θ)−w2(θ)]dθ > 0, ∀λ ∈ [0,1]. This means

that when the health planner makes tax or subsidy decision according to w1(θ), she
concerns more about the welfare of patients with low time costs than she does accord-
ing to w2(θ). For instance, when a new ruling party is elected, the party’s decision
making may switch from w1(θ) to w2(θ). Given a fixed μ , let p∗1 and p

∗
2 be the FOC

solutions with respect to w1(θ) and w2(θ) respectively, then we have the following
proposition:

Proposition 4.3 Assume that patients are assigned unequal weights, the FOC solu-
tion is unique and weight function w1(θ) stochastically dominates weight function
w2(θ), then we have p∗1 > p

∗
2.

The intuition behind Proposition 4.3 is straightforward. If the health planner
is more concerned with the welfare of patients with low time costs, p∗ should be
higher so that either a higher tax is levied on the consumption of private care or a
lower subsidy is provided to private care. For instance, de Vericourt and Lobo (2009)
show that an Indian nonprofit organization uses revenue from for-profit activities
to subsidize its for-free activities. In the former case, more tax revenue would be
collected from the private sector to finance the public health system. In the later case,
a lower subsidy is provided to private care so that some public money is saved.

4.3.3 Change of the Optimal Tax/Subsidy in Response to Public
Service Rate

We define the utilization of the public health system to be the ratio of total patient
arrival rate to the public service rate, i.e., 1/μ . Given a fixed total patient arrival
rate, the higher the service rate, the lower the utilization. We are interested to know
how the optimal tax/subsidy changes when the utilization decreases. The following
proposition states the main conclusion:
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Proposition 4.4 Given that patients are assigned unequal weights and the optimal
tax/subsidy is determined by a unique FOC solution, we have ∂ p∗(μ)

∂ μ < 0, i.e., when
the utilization of the public health system decreases, the health planner should im-
plement a lower tax or a higher subsidy.

The intuition behind Proposition 4.4 is not immediately evident. To investigate
why this result holds, we use a specific weight function w(θ) = (1−σ)θ−σ ,σ ∈
(0,1) to illustrate the underlying forces that drive the result. According to (4.1), ∂V

∂ p
can be broken down into four parts of cost as follows:

∂V
∂ p

=
∂ζ1
∂ p

− ∂ζ2
∂ p︸ ︷︷ ︸

Marginal Supply-Side Cost

+
∂ζ3
∂ p

+
∂ζ4
∂ p︸ ︷︷ ︸

Marginal Patient-Side Cost

(4.3)

where

∂ζ1
∂ p = α ′qμ > 0 ∂ζ2

∂ p = 1− [α +(p−h)α ′]μ

∂ζ3
∂ p = 1−σ

2−σ [α +(1−σ)pα ′]α−σ μ1−σ > 0 ∂ζ4
∂ p = 1− [α +(1−σ)pα ′]α−σ μ1−σ

Some interpretations follow. When p increases, an increasing number of patients
stay in the public health system, so both the production cost and the utilization of
the public health system increase, i.e., both the marginal cost of production ∂ζ1

∂ p and

the marginal cost of waiting ∂ζ3
∂ p are positive. Both the sign of the marginal cost of

tax/subsidy ∂ζ2
∂ p and the sign of the marginal cost of private care

∂ζ4
∂ p depend on p and

μ . We group these four marginal costs into marginal supply-side cost and marginal
patient-side cost as in (4.3). The marginal patient-side cost is always positive and
decreasing in p. The marginal supply-side cost is increasing in p. We also have∥∥∥∂ 2ζ1

∂ p2 −
∂ 2ζ2
∂ p2

∥∥∥ >
∥∥∥∂ 2ζ3

∂ p2 +
∂ 2ζ4
∂ p2

∥∥∥, i.e., the magnitude of the marginal supply-side cost
is increasing in a faster rate than the magnitude of the marginal patient-side cost.
Now suppose that the public service rate is μ1 and FOC yields a unique solution

p∗1, then we must have
∂V
∂ p |μ1,p∗1 = 0,

(
∂ζ1
∂ p − ∂ζ2

∂ p

)
|μ1,p∗1 < 0,

(
∂ζ3
∂ p +

∂ζ4
∂ p

)
|μ1,p∗1 > 0

and
∥∥∥∂ζ1

∂ p − ∂ζ2
∂ p

∥∥∥
μ1,p∗1

=
∥∥∥∂ζ3

∂ p +
∂ζ4
∂ p

∥∥∥
μ1,p∗1

. For the second order cross partial deriva-

tives with respect to p and μ , we have
(

∂ 2ζ1
∂ p∂ μ − ∂ 2ζ2

∂ p∂ μ

)
|μ1,p∗1 > 0,

(
∂ 2ζ3
∂ p∂ μ + ∂ 2ζ4

∂ p∂ μ

)
|μ1,p∗1 <
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0 and
∥∥∥ ∂ 2ζ1

∂ p∂ μ − ∂ 2ζ2
∂ p∂ μ

∥∥∥
μ1,p∗1

>
∥∥∥ ∂ 2ζ3

∂ p∂ μ + ∂ 2ζ4
∂ p∂ μ

∥∥∥
μ1,p∗1

. Therefore, we have ∂ 2V
∂ p∂ μ |μ1,p∗1 >

0. For any μ2 such that μ2 = μ1 +Δμ where Δμ > 0, we must have ∂V
∂ p |μ2,p∗1 =

∂V
∂ p |μ1,p∗1 +

∫ μ2
μ1

∂ 2V
∂ p∂ μ |μ1,p∗1dμ > 0. Since

∥∥∥∂ 2ζ1
∂ p2 −

∂ 2ζ2
∂ p2

∥∥∥ >
∥∥∥∂ 2ζ3

∂ p2 +
∂ 2ζ4
∂ p2

∥∥∥, in order to
obtain a FOC solution p∗2 for μ2, we must have p∗2 < p

∗
1. For more details about this

analysis, please see Appendix C.2.
The intuition behind the above analysis is as follows. Keeping price p∗1 intact,

if the public service rate μ increases, the public waiting time would decrease so
that more patients stay in the public health system. In this case, the patient-side
cost would decrease, but the supply-side cost would increase. The increase of the
marginal supply-side cost is more than offsetting the decrease of the marginal patient-
side cost, so the marginal total cost is increasing in μ . In order to obtain a new FOC
solution, the health planner has to offset the increase of the marginal supply-side
cost by decreasing p∗1, i.e., lowering the tax or increasing the subsidy. Some patients
with high time costs are therefore induced to the private sector, and the supply-side
cost would increase at a lower rate. In a background paper to Boadway et al. (1998),
Boadway et al. (1997) establish that the use of a subsidy to the consumption of private
goods may be desirable if it is optimal to induce the high-ability persons to “opt-out”
of using publicly provided goods. Nevertheless, the model of Boadway et al. (1997)
is constructed in the standard optimal income taxation framework. Their results rely
on the relaxation of the participation constraint that ensures the high-ability house-
holds are better off by not “opting in”. In contrast, our study does not impose such a
constraint.

4.3.4 Threshold of Public Service Rate for Subsidy
By Proposition 4.4, we see that given a weight function w(θ), there must exist a

public service rate μw such that for μ ≤ μw, the health planner should implement tax
(i.e., p∗ > h); For μ > μw, the heath planner should implement subsidy (i.e., p∗ < h).
If there are two weight functions w1(θ) and w2(θ) such that w1(θ) stochastically
dominates w2(θ), then we have the following proposition:

Proposition 4.5 If weight function w1(θ) stochastically dominates weight function
w2(θ), we must have μw1 ≥ μw2 .
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Proposition 4.5 suggests that if the health planner is more concerned about the
welfare of patients with lower time costs, the threshold for subsidy should increase.

4.3.5 Numerical Analysis
Proposition 4.3 and Proposition 4.4 are derived analytically usingM/M/1 queue.

However, the assumption of exponential service time distribution of M/M/1 queue
may not be realistic in many cases. To test the robustness of Proposition 4.3 and
Proposition 4.4 in the case of general service time distribution, we conduct exten-
sive numerical analysis using M/G/1 queue. We use weight function w(θ) = (1−
σ)θ−σ , where σ reflects the health planner’s concern of income redistribution: the
higher the σ , the proportionally higher the weights assigned to patients with lower
time costs. The expected waiting time of patients in an M/G/1 queue is λ (v2+μ−2)

2(1−ρ)
where v is the standard deviation of the service time distribution and ρ = λ/μ is the
traffic intensity. We allow v,q,c and h to vary in a wide range of values. The results
of Proposition 4.3 and Proposition 4.4 hold in all of the numerical examples. One
of these numerical example is Table C.1 of Appendix C.3. This example uses pa-
rameters q= 0.2,c= 0.2,h= 0.5 and v= 0.5. The service rate (by row) varies from
μ = 1.10 to μ = 3.00 and the weight parameter σ (by column) varies from σ = 0.1
to σ = 0.9. Inside the table, positive numbers mean tax and negative numbers mean
subsidy. For instance, when μ = 1.10 and σ = 0.1, the table shows that the health
planner should subsidize the consumption of each unit of private care by 0.317 mon-
etary terms. The numerical results are consistent with the conclusions of Proposition
4.3, 4.4 and 4.5.

4.3.6 Benefits of the Optimal Tax/Subsidy on Income
Redistribution

In this subsection, we discuss the types of public health system that benefit more
on income redistribution from the optimal tax/subsidy. Using the optimal tax/subsidy,
the health planner can always achieve a no worse income redistribution because t = 0
is a feasible solution. Let V (0|μ) denote the total cost when no tax or subsidy is
used and V (t∗|μ) denote the total cost when the optimal tax/subsidy is used, then
J(μ) = V (0|μ)−V (t∗|μ) is the amount of income redistribution improvement. We
are interested to know whether or not this amount of improvement depends on the
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public service rate μ . By (4.1), we have

J(μ) =V (0|μ)−V (t∗|μ) =
{
(h−q) [α∗ −αh]+

h ·αh− p∗ ·α∗

2

}
μ

where α∗ = α(p∗),αh = α(h). In order to yield analytical results, we limit our
discussion to weight functions w(θ) = (1− σ)θ−σ . We then have the following
proposition:

Proposition 4.6 Given weight functions w(θ) = (1−σ)θ−σ , σ ∈ (0,1), the optimal
tax/subsidy would achieve larger income redistribution improvement when the public
health service rate is either low or high.

As high public service rate means low utilization, Proposition 4.6 suggests that
the optimal tax/subsidy benefits more on income redistribution when the utilization
of public health system is either high or low. This result is in contrast to that of the
case of equal welfare weights (to be shown in Section 4.6.1) where the improvement
of income redistribution is monotonously increasing at a constant rate in μ .

4.4 Optimal Public Service Rate Given A Fixed
Tax/Subsidy

In this section, we study the service rate decision when the tax or subsidy on
private care is given. This is an appropriate setting where the long term tax or sub-
sidy rate is fixed, but the capacity of the public health system is allowed to adjust.
We assume that the tax/subsidy t (thus p = h+ t) is given, and the health planner
determines μ to minimize the total weighted cost. Since μ = λ

α and α is fixed by t,
to minimize the cost function V over μ is equivalent to minimize V over λ . In the
following analysis, we use λ as the decision variable. Taking partial derivative of V
with respect to λ gives rise to:

∂V
∂λ

=
c
α
+q︸ ︷︷ ︸

∂ ζ1
∂ λ

+(p−h)︸ ︷︷ ︸
∂ ζ2
∂ λ

− p
λ 2

∫ λ

0
θ ·w(θ)dθ︸ ︷︷ ︸

∂ ζ3
∂ λ +

∂ ζ4
∂ λ

(4.4)

The marginal patient-side cost
(

∂ζ3
∂λ + ∂ζ4

∂λ

)
is always negative. The marginal cost
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of production ∂ζ1
∂λ is positive, because increasing the public service rate reduces the

public waiting time so that more patients want to stay in the public health system.
Therefore, there would be more public care to be produced. The marginal cost of
tax/subsidy is positive if tax is used (i.e., ∂ζ2

∂λ > 0 if p> h). This is because increasing
public service rate attracts patients to the public health system, so less tax revenue
is collected from the private sector. The marginal cost of tax/subsidy is negative if
subsidy is used (i.e., ∂ζ2

∂λ < 0 if p < h). This is because less patients would choose
private care when the pubic service rate increases, so less subsidy is provided to
private patients. ∂V

∂λ is an increasing function of λ . By studying the sign of ∂V
∂λ at the

boundary points λmin = 0+ and λmax = 1−, we can summarize the health planner’s
optimal strategy as follows:

Proposition 4.7 Given that patients are assigned unequal weights and the tax/sub-
sidy is given,

(i) If
{
c
α +q+(p−h)− pw(0+)2

}
≥ 0, then ∂V

∂λ ≥ 0, ∀λ ∈ [0,1], i.e., V is strictly
increasing in μ , so the health planner should set μ∗ = 0 such that all patients
choose private care.

(ii) If
{
c
α +q+(p−h)− p∫ 10 θ ·w(θ)dθ

}
< 0, then ∂V

∂λ < 0, ∀λ ∈ [0,1], i.e., V is
strictly decreasing in μ , so the health planner should set μ∗ = 1

α such that all
patients stay in the public health system.

(iii) Otherwise, μ∗ is uniquely determined by FOC solution and μ∗ is an interior
point.

Case 1 of Proposition 4.7 is likely to prevail under one or more of the following
circumstances: (1) the health planner assigns insufficient weights to patients with
the lowest time costs, i.e., when w(0+) is sufficiently small; (2) the cost of public
service rate c is high; (3) the production cost of public care q is high. If Case 1 of
Proposition 4.7 prevails, having patients to be served in the private sector is more
efficient than doing so in the public health system. Therefore, the health planner’s
best strategy is to push all patients to the private sector.
Since cα +q+(p−h)− p∫ 10 θ ·w(θ)dθ = c

α +q+t
(
1− ∫ 1

0 θ ·w(θ)dθ
)
−h∫ 10 θ ·

w(θ)dθ , Case 2 of Proposition 4.7 is likely to prevail under one or more of the fol-
lowing circumstances: (1) either the cost of public service rate c or the production
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cost of public care q or both of them are low; (2) private patients are heavily sub-
sidized, i.e., t � 0; (3) the price of private care h is sufficiently high. If Case 2
prevails, the health planner can save money from not subsidizing private patients and
save patient’s cost of private care if more patients stay in the public health system.
Therefore, the health planner has the incentive to increase the public service rate to
an extent that all patients choose to stay in the public health system.
In Case 3 of Proposition 4.7, it is neither optimal to set μ = 0 to push all patients

to the private sector, nor optimal to set μ high enough to accommodate all patients in
the public health system. The interior optimal point λ ∗ solves the following equation:

1
λ 2

∫ λ

0
w(θ)θdθ = 1− h−q

p
+

c
p ·α

In this case, even if h = q, it is not optimal to set λ ∗ = 0 (i.e., μ∗ = 0), which is in
contrast to the conclusion of Proposition 4.9.

4.5 Joint Decisions of Tax/Subsidy and Public Service
Rate

This section discusses the health planner’s optimization problem when she needs
to decide the tax/subsidy and the public service rate jointly. Since the optimal tax/-
subsidy is a function of μ , i.e., p∗(μ), we can substitute p∗(μ) for p in V and then
optimize over μ . In this case, the partial derivative of V with respect to μ is:

∂V (p∗(μ)|μ,w)
∂ μ

=
∂V
∂ p

|p∗(μ) ·
∂ p∗(μ)

∂ μ
+

∂V
∂ μ

|p∗(μ)

Since ∂V
∂ p |p∗(μ) = 0, we have

∂V (p∗(μ)|μ,w)
∂ μ

=
∂V
∂ μ

|p∗(μ)
If the health planner assigns unequal weights to patients, then we have

∂V
∂ μ

|p∗(μ) = c+
{[
p

(
1−

∫ λ
0 θ ·w(θ)dθ

λ 2

)
− (h−q)

]
α

}
|p∗(μ) (4.5)

The structural property of (4.5) is not easy to determine under a general weight
function. By limiting our discussion to weight function w(θ) = (1−σ)θ−σ , (4.5)
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can be simplified as:

∂V
∂ μ

|p∗(μ) = c+
{[

pσ − (h−q)
1+(1−σ)pα ′

α

]
α

}
|p∗(μ) (4.6)

When h = q, (4.6) is positive for any μ ≥ 0, so the health planner should set
μ∗ = 0 and push all patients to the private sector. When h > q, ∂V

∂ μ |p∗(μ) is a quasi-
convex function of p∗ and thus is a quasi-concave function of μ . The health planner’s
best strategy could be to serve only part of the patient population in the public health
system while leaving the rest to the private sector. This result is in contrast to that
of the case of equal welfare weights (to be shown in Section 4.6.3) where the health
planner’s best strategy is either to serve all patients in the public health system or to
push all patients to the private sector.

4.6 Results for the Case of Equal Welfare Weight
This section collects results for the case when the health planner treats all patients

equally, i.e., w(θ) = 1. Subsection 4.6.1 characterizes the optimal tax/subsidy when
the public service rate is given. Subsection 4.6.2 discusses the optimal public service
rate when the tax/subsidy is given. Subsection 4.6.3 investigates the joint decisions
of tax/subsidy and public service rate.

4.6.1 Optimal Tax/Subsidy on Private Care Given A Fixed
Public Service Rate

By w(θ) = 1, we have

∂V
∂ p

=
1
2

(
p · ∂λ

∂ p
+λ

)
− (h−q) · ∂λ

∂ p
∂ 2V
∂ p2

=
∂λ
∂ p

+
( p
2
−h+q

) ∂ 2λ
∂ p2

> 0

Therefore, the optimal net price p∗ (= h+ t∗) is either at the boundary points, or
determined by the unique FOC solution. We have the results for t∗ and p∗ as follows:

Proposition 4.8 Given that the health planner treats all patients equally,

(i) If h= q, then t∗ =−q and p∗ = 0.
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(ii) If h> q, then −h< t∗ < 0 and 0< p∗ < h.

(iii) ∂ t∗
∂h < 0 and ∂ p∗

∂h > 0.

(iv) ∂ t∗
∂ μ = 0.

Case 1 and 2 of Proposition 4.8 suggest that when patients are treated equally, the
health planner should always provide subsidy to private care. Case 1 of Proposition
4.8 shows that if the price of private care is equal to the marginal production cost
of public care, the health planner should provide full subsidy to patients so that all
patients go to the private sector. This is exactly the same conclusion of Proposition
8 of Hoel and Sáther (2003). Case 2 of Proposition 4.8 shows that if the price of
private care is greater than the marginal production cost, providing full subsidy is no
longer optimal. Case 3 of Proposition 4.8 states that when the price of private care
increases, the health planner should provide higher subsidy. However, the rate of
subsidy increase should be lower than the rate of price increase. Case 4 of Proposition
4.8 states that the optimal subsidy is independent of the public service rate, which is
in contrast to the results of the case of unequal welfare weights.
Similar to the discussion of unequal welfare weights, we use V (0|μ) to denote

the total cost when no subsidy is used and use V (t∗|μ) to denote the total cost when
the optimal subsidy is used. Therefore, J(μ) =V (0|μ)−V (t∗|μ) is the improvement
of income redistribution by using the optimal subsidy. By (4.1), we have

J(μ) =V (0|μ)−V (t∗|μ) =
{
(h−q) [α∗ −αh]+

h ·αh− p∗ ·α∗

2

}
μ

where α∗ = α(p∗),αh = α(h). The marginal income redistribution improvement
with respect to μ is:

∂J
∂ μ

= (h−q) [α∗ −αh]+
h ·αh− p∗ ·α∗

2
> 0

The improvement of income redistribution is monotonously increasing in μ at
a constant rate. Therefore, the higher the public service rate, the more the optimal
subsidy improves income redistribution. Again, this conclusion is in contrast to the
results of the case of unequal welfare weights.
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4.6.2 Optimal Public Service Rate Given A Fixed Tax/Subsidy
If w(θ) = 1 and t is given, according to (4.1), the total cost V becomes

V (μ|t) = q+ cμ +(h−q)(1−λ )+
pλ
2

The first-order derivative with respect to μ is

∂V
∂ μ

= c+
[ p
2
− (h−q)

]
α (4.7)

Note that the right hand side of (4.7) is independent of μ . Depending on the sign
of the right hand side, the cost function V is either strictly decreasing or strictly
increasing in μ . Therefore, we have the following proposition:

Proposition 4.9 Given that the tax/subsidy is fixed and all patients are treated equally,

(i) If c+
[ p
2 − (h−q)]α > 0, then the health planner should set μ∗ = 0 so that

λ ∗ = 0.

(ii) Otherwise, the health planner should set μ∗ = 1
α such that λ ∗ = 1.

If Case 1 of Proposition 4.9 prevails, the health planner should push all patients
to the private sector; Otherwise, the health planner should set the public service rate
high enough to accommodate all patients in the public health system. We can see
that c+

[ p
2 − (h−q)]α > 0 is likely to hold when c is high or h is low. In this

case, providing public care to patients is less efficient than having them served in the
private sector, so the health planner should push all patients to the private sector. By
setting μ = 0, patients have no choice but to accept private care. The total amount of
tax revenue collected from the private sector or the total amount of subsidy provided
to private care is equal to (t ·1). This amount of tax revenue or subsidy would be paid
back to patients, so at the end each patient only bears a cost of h.

4.6.3 Joint Decisions of Tax/Subsidy and Public Service Rate
Section 4.6.1 shows that if p∗ is determined by FOC solution, then p∗ is inde-

pendent of μ but strictly increasing in h. Therefore, we can write p∗ as a function of
h, i.e., p∗(h). Substituting p∗(h) for p in V and taking the first order derivative of μ
yields:
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∂V
∂ μ

|p∗(μ) = c−
α2

2α ′ |p∗(h)

Depending on the sign of c− α2
2α ′ |p∗(h), the health planner either sets μ∗ = 0 or sets

μ∗ high enough to accommodate all patients in the public health system. Because c−
α2
2α ′ |p∗(h) is a strictly decreasing function of h, the health planner’s optimal strategies
can be summarized as the following proposition:

Proposition 4.10 Let h̃ be the solution to equation c− α2
2α ′ |p∗(h) = 0, then

(i) If h≤ h̃, then μ∗ = 0, so λ ∗ = 0 and V = h.

(ii) If h> h̃, μ∗ must solve 1
μ−1 − 1

μ = p∗(h), so λ ∗ = 1 and V = cμ∗+q+ p∗(h)
2 .

Proposition 4.10 suggests that if the health planner treats all patients equally and
the price of private care is lower than the threshold h̃, the health planner should
push all patients to the private sector; Otherwise, if the price of private care is high
for patients, the health planner should accommodate all patients in the public health
system.

4.7 Concluding Remarks
Public provision of private goods, such as public health care, may serve redis-

tributive purpose even if the public provision is financed by a head tax. Many OECD
countries subsidize private care to reduce the demand for public care and thus reduce
the long public waiting time. In this chapter, we showed that subsidy to private care
can also be used to improve income redistribution under certain circumstances. In
the case of unequal welfare weights, the health planner should subsidize private care
when the utilization of the public health system is low. This is because the subsidy
would induce patients with higher time costs to the private sector, so the demand for
public care would fall and the head tax that finances the public provision is reduced.
As shown in Section 4.3.3, this result arises as a consequence of the health planner
balancing the competing supply-side cost and patient-side cost. In the case of equal
welfare weights, the health planner should always subsidize private care. We also
discussed the choice of public service rate when the tax or subsidy on private care is
given. We found that in most cases, the health planner should either set the public
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service rate to zero to push all patients to the private sector, or set the public service
rate high enough to serve all patients. The decision depends on the efficiency of
health care production in each sector.
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Chapter 5

Conclusion

5.1 Summary
Whether or not the existence of private care would reduce public health wait-

ing times and improve social welfare has long been a central topic for research in
health economics (Cullis and Jones, 1985). Due to the complexity of health care sys-
tem, the answer to this question depends on the underlying institutional setting that a
study is based on. Motivated by the current public versus private debates in Canada’s
health reform debates, this thesis uses both theoretical and empirical methodologies
to investigate some of the core issues raised in the debates: Chapter 2 and Chapter
4 investigate the issue of private care financing; Chapter 3 investigates the issue of
physician dual practice. This thesis covers both dimensions of research on private
care in health economics. In particular, the three essays included in this thesis are
either of empirical nature or motivated by empirical evidence: Chapter 2 is an empir-
ical analysis, Chapter 3 is a theoretical research motivated by the empirical evidence
of Manitoba’s cataract surgeries, and Chapter 4 is a theoretical research motivated
by the empirical findings of Chapter 2. This thesis contributes to the existing liter-
ature of health economics on private care by providing managerial insights to some
controversial issues raised in the public versus private debates based on Canada’s
institutional setting.
Chapter 2 empirically investigates the impact of allowing private care financing

on public waiting times. Using joint replacement data of nine Canadian provinces,
we test two policies that induce private care financing. Due to the limitations of the
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data set, we rely on cross sectional analysis and Random-effects model to derive the
results and test the robustness of these results. Given the available data to our study
and the methodological approaches we employ, the results show that the two policies
are associated with shorter waiting times. In particular, the policy of providing sub-
sidy to patients seeking private care is consistently significant in all regressions. The
contribution of this study to the existing literature is to provide an empirical analysis
of private care financing and public waiting time under Canada’s institutional setting.
Chapter 3 investigates the impact of allowing physician dual practice on public

waiting time and patient welfare. This topic is relevant as physician dual practice is
currently prohibited in all Canadian provinces, but proposals to approve it had been
made in the health reform debates. By examining the empirical evidence of Mani-
toba’s cataract surgeries in the late 1990’s when physician dual practice was allowed,
we formulate a queuing model to study the system performance and patient welfare
with and without physician dual practice. Two effects induced by allowing physician
dual practice are considered in the model: one is the quality differentiation between
dual-practice physicians and public-only physicians, and the other is the prioritization
of patients in the queue of dual-practice physicians. We find that allowing physician
dual practice results in a longer waiting time for patients with lower time costs due to
the prioritization effect. However, these patients might benefit from allowing physi-
cian dual practice because the quality differentiation effect allows them to self-select
the service of a higher quality in the public health system. The existing literature
on physician dual practice is recent and very limited, so our study has provided new
insights to this topic.
Chapter 4 is related to the findings of Chapter 2. Chapter 2 shows that providing

subsidy to private care may contribute to waiting time reduction. This study addresses
a related and relevant question: in addition to waiting time reduction, whether or not
providing subsidy to private care would also improve income redistribution. This
is a research question that has never been investigated by the existing literature of
public provision of private goods. The stylized model used in our study assumes
that the operation of the public health system is financed by a head tax. We find
that providing subsidy to private care can improve income redistribution by inducing
patients with higher earning abilities to the private sector, so the production cost of
public care would be reduced and so would be the head tax that everyone, including
patients with lower earning abilities, pays for. The conditions under which providing
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subsidy to private care can improve income redistribution are derived.

5.2 Related Ongoing Work

5.2.1 Efficiency of Different Subsidy Schemes on Reducing
Public Waiting Time and Improving Patient Welfare

This work is related to both Chapter 2 and Chapter 4. Under the pressure of
reducing long public waiting times, governments are using different schemes to sub-
sidize patients who seek private care in order to take the demand burden off the public
health system. For instance, Quebec government introduces a waiting time guarantee
policy for cataract and joint replacement surgeries: If the treatment cannot be pro-
vided to a patient within the guaranteed period of nine months, the health ministry
of Quebec must purchase the treatment from a heath provider who operates outside
Quebec’s public health system.1 In addition to Quebec, United Kingdom and Swe-
den also implement similar waiting time guarantee policies. Under these policies,
patients are fully subsidized to receive private treatments should their waiting times
exceed the guarantee. For brevity, we call it a “full subsidy” scheme. A full subsidy
scheme works in a public-private mixed health system.
In contrast to the full subsidy scheme, another mechanism used to reduce public

waiting times is to provide partial subsidies to patients seeking private care. Such a
device can alleviate the congestion of the public health system by rationing patients
into the private sector. Examples of governments implementing this scheme have
been introduced in Chapter 2. Empirical studies of Siciliani and Hurst (2005) and
Chapter 2 show that this partial subsidy policy contributes to the waiting time reduc-
tion. Additionally, Chapter 4 shows that, under certain conditions, providing partial
subsidies to patients seeking private care improves social welfare.
Which subsidy mechanism is more efficient in achieving a larger amount of pa-

tient welfare given the same amount of public health budget? This is an important
question to the policy makers. At first, the answer seems to be blatantly obvious. To
be cost-efficient, subsidies shall only be applied to those patients who join the private
sector but would join the public system without subsidy. The full subsidy scheme

1See “Guaranteeing Access: Meeting the challenges of equity, effi-
ciency and quality”. Retrieved from Gouvernement du Québec website:
http://publications.msss.gouv.qc.ca/acrobat/f/documentation/2005/05-721-01A.pdf

83



indeed can achieve that since only those patients who are routed from the public
to the private system receive the subsidy. On the contrary, patients who would not
join the public system even without subsidy are subsidized under the partial subsidy
scheme. On a second thought, a “how” question looms: How could a mechanism
ensure the allocation of the subsidy to those in need? The brutal fact confronted by
those patients under the full subsidy scheme is that: to be subsidized, they must wait.
Clearly, when waiting plays a rationing role, a big waste of social welfare occurs. In
contrast, partial subsidy scheme avoids such a rationing cost by providing subsidy
unconditionally to those seeking private care. Therefore, although the the full sub-
sidy scheme has the advantage of “allocation efficiency”, it also incurs a “rationing
cost”. Consequently, we shall invest more scrutiny to examine the pros and cons of
the two subsidy schemes.
In Guo and Qian (2011b), we set up mathematical models to evaluate the effi-

ciency of the two subsidy schemes in reducing public waiting times and improving
patient welfare. The congestion in the public system is modeled through a queueing
model. The central point is to model patient’s strategic choice behavior, given certain
levels of delay information and the conditions of obtaining the subsidy. We consider
the private care as an outside option for patients. Patients who seek private care are
“balking” patients, so a patient arriving to the public system needs to decide whether
“to join” the public system or “to balk”. When making such decisions, a patient must
take others’ decisions into consideration because delay is endogenous. We model the
equilibrium behavior of patients. We show that equilibria could be different should
different levels of delay information be provided to patients. We model different
levels of delay information by considering the queue to be either unobservable or
observable. In the case of unobservable queue, patients can only form an expectation
of the congestion given others’ decisions. In the cases of observable queue, patients
can be provided information of actual queue length or actual workload upon arrival.
Armored with the equilibrium analysis on patient behavior, we then consider the op-
timal design of the two mechanisms. In the partial subsidy scheme, the decision
variable is the amount of subsidy per patient whereas, in the full subsidy scheme, the
decision variable is the threshold level of waiting time for a patient to be qualified to
switch to the private sector.
The existing literature on strategic customer behavior and queuing is abundant.

Noar (1969) pioneers the study on the strategic customer behavior and socially op-
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timal control with observable queue. Rich work is carried over ever since then and
the literature dated before year 2003 is surveyed by Hassin and Haviv (2003). Two
important streams of this field emerge in recent years. The first stream is the study
of the impact of different levels of delay information on the system performance,
e.g., Hassin (1986); Guo and Zipkin (2007, 2008, 2009). One major finding of this
literature is that providing more accurate delay information needs not necessarily
to improve customer’s utility and service provider’s profit. Other literature study-
ing delay information and customer behavior includes Armony and Maglaras (2004);
Mandelbaum and Shimkin (2000); Shimkin and Mandelbaum (2004); Allon et al. (2008);
Allon and Bassamboo (2008); Ibrahim and Whitt (2009a,b); Armony et al. (2009);
Jouini et al. (2009). Besides this stream, there also exists an increasing trend on
studying customer strategic behavior in queues where positive externalities and follow-
the-crowd (FTC) behavior are observed, e.g., Burnetas and Economou (2007); Economou and Kanta
(2008); Economou et al. (2011); Guo and Hassin (2011); Johari and Kumar (2008);
Veeraraghavan and Debo (2009). In the following paragraphs, the contributions of
our work to the existing literature and to the managerial insights are discussed.
The equilibrium analysis parts under the partial subsidy scheme with unobserv-

able and observable queues are, de facto, the same as Noar (1969) and Edelson and Hildebrand
(1975), respectively. However, the optimal control problem is different: in those pa-
pers, the pricing decision is unconstrained; whereas it needs to satisfy the budget
constraint in our case. This difference breeds an interesting finding: under the unob-
servable queue, the socially optimal solution must be a boundary solution with the
budget constraint binding; whereas under the observable queue, the socially optimal
solution can be an interior solution with the budget constraint unbinding. This is
counter-intuitive: one may believe that the more the public fund is spent, the larger
the social welfare. Our findings show that, when the delay information is revealed to
customers, a naive implementation of the spending-all-budget policy could actually
reduce social welfare.
The equilibrium analysis under the full subsidy scheme is analogous to the one

under the partial subsidy scheme except that there exist both balking and “reneging”
(being switched to the private sector with full subsidy) behaviors: when patients de-
cide to join or balk upon arrival, they need to consider the later chance of reneging
with full subsidy. Such a system has a more complex expression of system perfor-
mance measures and in general needs numerical calculations. Despite these complex-
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ities, we are able to carry out the optimization over the optimal threshold level and
show that it still holds that the socially optimal solution might not satisfy a binding
budget constraint under observable queue.
A comparison over patient welfare under the two subsidy schemes yields the main

conclusion. Analytically, we show that the partial subsidy scheme is better than the
full subsidy scheme with a scarce fund, while the full subsidy scheme prevails with
an ample fund. In the case of moderate fund, numerical studies reveal that there
exists a critical level, below which the partial subsidy scheme is better, while above
which the full subsidy scheme prevails. We also find a sufficient condition for this
conclusion to hold. This conclusion is reasonable and reflects the relative roles of
“rationing cost” versus “allocation efficiency” along with the total fund: when the
total subsidy fund is large, the threshold for rationing can be set to be relatively low,
which diminishes the marginal rationing cost of the full subsidy scheme. Therefore,
the advantage of the full subsidy scheme looms with a large fund.

5.2.2 Subsidy on Private Care versus Public Capacity Expansion
Section 5.2.1 considers the scenario when the public health planner can only

choose among different subsidy schemes to reduce public waiting times. This sce-
nario is relevant when the public health system cannot be easily expanded in the
short run, so providing financial incentives becomes an effective measure to influ-
ence patient’s behavior. From a long term perspective, the more important question
is whether the limited health budget should be used to expand the capacity of the
public system or to subsidize private care. In (Guo and Qian, 2011a), we address
this related and important question. In this work, we assume that the health planner
can split the health budget to serve both purposes. We aim to answer the question
as under what circumstances, providing subsidy to private care is more efficient to
improve patient’s welfare than expanding the capacity of public system.
Due to analytical difficulties, Guo and Qian (2011a) only consider homogeneous

patients. The problem formulation is similar to that of Section 4.6.3, i.e., the case
of equal welfare weights. However, the optimization problem in Section 4.6.3 is
unconstrained; while the joint decisions of capacity and subsidy need to satisfy the
budget constraint in Guo and Qian (2011a). The introduction of a budget constraint
into the problem makes Part 2 of Proposition 4.10 no longer hold. Our results show
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that the health planner should always use some part of the budget, if not all of it,
to subsidize patients seeking private care. However, there exist no conditions under
which the budget should be solely used to expand the capacity of the public system.
For the sake of simplification, a competitive private care market is assumed in

Guo and Qian (2011a). However, our model can be easily extended to other market
structures, under which the behavior of the private care providers needs to be consid-
ered. On the one hand, providing subsidy to private care may encourage the private
health providers to raise the price. On the other hand, providing subsidy to private
care may also attract more health providers to the private care market, which would
intensify the price competition. Therefore, it would be of our interests to see how
these market structures would affect the public health planner’s decision making.

5.3 Future Research Plan

5.3.1 Empirical Study of CJRR Data in A Longer Time Horizon
Although the empirical study of Chapter 2 provides supportive evidence to one

side of the “public versus private” debates, we should not take the result as conclusive
due to data limitation. In particular, the data truncation problem only allows us to
generate a small sample for test. This data limitation suggests the need for more
data collection and empirical studies of this subject. It would be useful if the same
analysis can be applied to more waiting time data in a longer time horizon to test the
robustness of our findings. In order to do this, we are in the process of applying for
CJRR data in the most recent years (2007-2010). With the addition of new data, we
would be able to extend the current study to examine the effects of policy changes in
recent years. For instance, Quebec government changed its policies towards public
waiting times and these policies took effect in January 2008. It will be interesting
to see how these policy changes affect the public health waiting times. Additionally,
more data may also allow us to empirically isolate the demand-side effect from the
supply-side effect. We see these exercises as a natural extension of Chapter 2.

5.3.2 Empirical Study of Physician Dual Practice
The phenomenon of physician dual practice has triggered substantial interests in

health economists and thus the theoretical studies of physician dual practice are grow-

87



ing rapidly. Nevertheless, the empirical side of the field has not yet been developed.
We see it as a natural direction for future research. Due to the data accessibility
policy of Manitoba government, we are still unable to conduct a related empirical
study on Manitoba’s cataract surgery data. The findings of empirical study, if suc-
cessfully obtained, would provide us additional perspectives to look into the problem
and generate more interesting questions for theoretical research.
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Appendix A

Appendix for Chapter 2

A.1 Variable Selection and Calculation
Table A.1 below shows the number of surgeries included in our data versus the

total number of surgeries performed in the same period (admission date from April
1, 2005 to March 31, 2007).
The dependent variable - patients’ mean waiting time - can be constructed in two

manners: prospective or retrospective. The prospective mean waiting time takes the
mean of the waiting times of patients incoming in a particular calendar month, while
the retrospective mean waiting time takes the mean of the waiting times of patients
departing in a particular month. In a stationary queuing system, the long run aver-
age waiting time is the same whether it is measured in a prospective or retrospective
manner. However, when we construct the observations on a monthly basis, the differ-
ence does matter. We decide to use the prospective mean waiting time due to reasons
as follows. First, the lagging effects of arrival rates can be captured by prospective
waiting time. In contrast, we can construct examples to show that retrospective wait-
ing time is negatively correlated to lags of arrival rate. Second, when we consider
patient’s choice in the demand function, it is more reasonable to assume that patients
make their decisions based on the waiting times that they expect to experience rather
than the waiting times in the past. In accordance with prospective waiting time, all
monthly statistics are calculated based on decision date.
We recognize the data truncation problem when we measure the monthly arrival

rates and the mean waiting times in a prospective manner. To proceed with our study,
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Table A.1: Number of surgeries in our data set versus total
number of hospitalizationsa

Hip replacement 2005/6 2006/7

Province CJRR* Total % CJRR* Total %

Alberta 966 2,846 33.9% 991 2,649 37.4%

British Columbia 1,303 4,237 30.8% 1,701 4,656 36.5%

Manitoba 251 1,248 20.1% 487 1,302 37.4%

New Brunswick 355 656 54.1% 388 651 59.6%

Newfoundland 130 372 34.9% 138 336 41.1%

Nova Scotia 218 935 23.3% 200 831 24.1%

Ontario 435** 12,103 3.6% 1,043 12,494 8.3%

Quebec 681 4,411 15.4% 795 N/A N/A

Saskatchewan 422 1,059 39.8% 424 1,131 37.5%

Knee replacement 2005/6 2006/7

Province CJRR* Total % CJRR* Total %

Alberta 1,484 4,001 37.1% 1,499 4,003 37.4%

British Columbia 1,328 5,374 24.7% 1,870 6,446 29.0%

Manitoba 572 1,879 30.4% 1,044 2,202 47.4%

New Brunswick 642 1,284 50.0% 681 968 70.4%

Newfoundland 172 491 35.0% 200 518 38.6%

Nova Scotia 338 1,041 32.5% 349 1,126 31.0%

Ontario 688** 18,990 3.6% 1,642 20,742 7.9%

Quebec 939 5,865 16.0% 1,100 N/A N/A

Saskatchewan 802 1,497 53.6% 774 1,620 47.8%
a Source: Hospital Discharge Database and CJRR. *: CJRR records that do
not contain waiting time information are not released to us. **: number of
surgeries from October 1, 2005 to March 31, 2006.

we assume data integrity for a certain number of months for each cross section unit,
i.e., we try to construct time series data for each cross section unit with certain level
of comparability. The way we determine the number of valid months for each cross
section unit follows: we pool all waiting time data of a cross section unit and look
at the cumulative percentages by the number of months, and the number of months
with 90% completion is set as the cut-off point. For instance, there are a total of
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1,960 records for cross section unit “Alberta-hip”, 90% of which have a waiting time
less than or equal to 11 months, and thus we can assume that for patients arriving
in the first 13 months, at least 90% of them are served by the end of the 24-month
period. Therefore, the first 13 months of data, i.e., April 2005 to April 2006, will be
used as time series data for cross section unit “Alberta-hip”. We can do the similar
manipulations for other cross section units. Table A.2 shows the number of months
for each cross section unit.

Table A.2: Number of valid months

Province Hip Knee
Alberta 13 9
British Columbia 10 7
Manitoba 7 4
New Brunswick 13 11
Newfoundland 18 18
Nova Scotia 10 8
Ontario 11 11
Quebec 15 14
Saskatchewan 6 0

We also need to measure the arrival rates prior to April 2005 to be used as lag
variables. For instance, we need to estimate the arrival rate of March 2005. In the
data set, patient records with decision date of March 2005 are subject to truncation.
To reasonably approximate the arrival rate of March 2005, we use the cumulative
percentages of waiting times again. For instance, for “Alberta-hip”, there are 55
patient records with decision date of March 2005 in our data. The waiting time
analysis shows that for “Alberta-hip”, 14% of patients are served in less than or equal
to one month, then these 55 patients can be seen as the remaining 86% of the cohort,
so the approximated number of patient records with decision date of March 2005 is
55/(100%-14%) = 64.
Previous empirical studies also suggest the following explanatory variables to the

public waiting times:

(i) Admission threshold (rationing): a surgeon’s admission threshold is set such
that patients with severities below that threshold are not added to the waiting
list. Less patients will be added to the waiting lists if the threshold is set at a
higher level.
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(ii) Funding schemes: it is found that the way in which hospitals and physicians are
funded also affects a health system’s performance. Hospital funding schemes
(e.g., fixed, activity-based and performance-based) and the physician payment
schemes (Siciliani and Hurst, 2005) are often considered in empirical stud-
ies. Siciliani and Hurst (2005) show that fee-for-service payment schemes give
physicians more incentives to increase their productivities and discourage the
formation of visible queues because of competitive pressure and the incentive
to disguise demand, especially when there are no gatekeepers and surgeons
assume primary care responsibilities for patients. Siciliani and Hurst (2005)
also show that productivity depends, among other things, on the way in which
physicians and hospitals are paid. In Canada, all physicians are paid on a
fee-for-service basis. We do not have the information about hospital funding
schemes.

(iii) Patient’s education level: Siciliani and Verzulli (2009) find that higher educa-
tion levels are associated with shorter waiting times. The authors hypothesize
that patients with higher levels of education access more and better health care
by having better knowledge, information and skills of complaint.

(iv) Surgeon’s prioritization of waiting list: patient prioritization is suggested in
Siciliani and Hurst (2005) and Willcox et al. (2007). Patients with different
health conditions and different levels of emergency require different amounts
of treatment and diagnosis, which would affect a surgeon’s prioritization de-
cision. For instance, it has been shown that knee replacement patients with
BMI=40 have higher revision rates after a minimum follow-up period of five
years. For the sake of cost containment, a surgeon may purposely delay the
surgeries for patients with higher levels of obesity so that these patients do not
need revisions after the primary replacement.

Due to data limitations, we are unable to include the above explanatory variables in
the empirical analysis. Additionally, Table A.3 and A.4 below show the ratios of
general physicians to orthopedic surgeons.
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Table A.3: Ratios of general physicians to orthopedic surgeons by province

Province Number
of eligible
orthopedic
surgeons

Number of family medicine doctors The ratio of family
medicine doctors to
orthopedic surgeons

Mean waiting time
(in days), 2005-2007

Fee-for-
service
count

Full-time
equivalent

Fee-for-
service
count

Full-time
equivalent

Hip surgery Knee surgery

Alberta 54 3,363 2,643 62 49 155 233
British Columbia 97 4,966 3,638 51 38 212 261
Manitoba 24 953 757 40 32 269 314
New Brunswick 27 713 471 26 17 176 216
Newfoundland 15 595 384 40 26 95 109
Nova Scotia 27 950 636 35 24 236 279
Ontario 241 11,301 8,808 47 37 106 113
Quebec 193 7,341 5,513 38 29 143 169
Saskatchewan 24 1,010 750 42 31 339 455

Note: (1) the numbers of eligible orthopedic surgeons are estimated by CJRR for the year of 2005-2006; (2) the source of numbers of family medicine
doctors is National Physician Database, 2005-2006 Data Release, Canadian Institute for Health Information; (3) the number of family medicine doctors
by fee-for-service count is the number of physicians that registered to receive fee-for-service payments; (4) the number of family medicine doctors
by full-time equivalent estimates the number of physicians working in a full-time capacity, which is a weighted count based on the yearly amount of
fee-for-service payments received.
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Table A.4: Correlation coefficients

Ratio of general physicians
to orthopedic surgeons

Fee-for-
service count

Full-time
equivalent

Mean waiting time Hip surgery - 0.120 - 0.069
Knee surgery - 0.003 0.040
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Appendix B

Appendix for Chapter 3

B.1 Waiting Time ofM/G/n Queue with
Non-preemptive Priority and Linear Waiting
Time Approximation

According to Williams (1985), the average waiting times of M/G/n queue with
non-preemptive priority and two classes of customers can be written as follows. We
assume that the service times of both classes of customers follow the same distribu-
tion. The justification of this assumption is stated in Section 3.4. We define:

λi = the arrival rate of customers of priority i (i=1,2)

S = the random variable of service time

n = number of servers

ρi = λiE(S)/n (i=1,2)

ρ = ρ1+ρ2 (assumed to be less than 1)

Let π be such that

π =

{
1+(1−ρ)

n−1
∑
k=0

ρk−n
nk+1−n(n−1)!

k!

}−1
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The expected waiting time of the priority customers (i= 1) is

w1 =
E(S2)π

2E(S)n(1−ρ1)

It is straightforward to see that w1 is strictly increasing in λ1, λ2 and E(S). The
expected waiting time of the non-priority customers (i= 2) is

w2 =
w1

(1−ρ)

Again, w2 is strictly increasing in λ1, λ2 and E(S). However, we have ∂w2
∂λ1 >

∂w1
∂λ1 and

∂w2
∂λ2

> ∂w1
∂λ2
. For instance, when n= 1, we have

w1 =
(λ1+λ2)E(S2)
2(1−ρ1)

w2 =
(λ1+λ2)E(S2)

2(1−ρ1)(1−ρ1−ρ2)

The Taylor series for w1 and w2 are as follows:

w1=
(λ1+λ2)E(S2)

2
{
1+ρ1+ρ21 + . . .

}
=
E(S2)
2

{λ1+λ2+λ1(λ1+λ2)E(S)+ . . .}

w2 =
(λ1+λ2)E(S2)

2
{
1+ρ1+ρ21 + . . .

}{
1+(ρ1+ρ2)+(ρ1+ρ2)2+ . . .

}
Therefore, w1 can be approximated by linear terms of arrival rates as:

w1 ∼ E(S2)
2

(λ1+λ2)

Accordingly, w2 can be written as:

w2 = w1
{
1+(ρ1+ρ2)+(ρ1+ρ2)2+ . . .

}
We know that

{
1+(ρ1+ρ2)+(ρ1+ρ2)2+ . . .

}
is always greater than 1. Let α =

E(S2)
2 and β = α

[
1+(ρ1+ρ2)+(ρ1+ρ2)2+ . . .

]
, then we have linear approxima-

tions for w1 and w1 as:
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w1 ∼ α(λ1+λ2) w2 ∼ β (λ1+λ2)

where β > α .
The expected waiting time of an M/G/1 queue (assuming that the service time

follows the same distribution as S) under FIFO service principle is:

w=
λE(S2)

2(1−λE(S))

Similarly, the linear approximation for w can be written:

w∼ αλ

It should be noted that these linear approximations are applicable only when the
traffic intensities ρ1, ρ2 and ρ are not close to 1.

B.2 Development of Equilibrium Arrival Rates
The indifferent patient type between queue A and B is:

RA−h ·wA

⎛⎜⎝ >

=

<

⎞⎟⎠ RB−h ·wB ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RA−RB
wA−wB (B.1)

The indifferent patient type between queue A and C is:

RA−h ·wA

⎛⎜⎝ >

=

<

⎞⎟⎠RC−h ·wC ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RA−RC
wA−wC (B.2)

The indifferent patient between queue B and queue C is:

RB−h ·wB

⎛⎜⎝ >

=

<

⎞⎟⎠RC−h ·wC ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RB−RC
wB−wC (B.3)

Last, there are indifferent patient types between joining a queue and seeking an
outside service with zero reservation net benefit.
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RA−h ·wA

⎛⎜⎝ >

=

<

⎞⎟⎠0 ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RAwA (B.4)

RB−h ·wB

⎛⎜⎝ >

=

<

⎞⎟⎠0 ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RBwB (B.5)

RC−h ·wC

⎛⎜⎝ >

=

<

⎞⎟⎠0 ⇒ h

⎛⎜⎝ >

=

<

⎞⎟⎠ RCwC (B.6)

According to (B.1)–(B.6), in equilibrium patients’ choices of queues are as fol-
lows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Join queue A, h ∈
[
0,min

{
RA−RB
wA−wB ,

RA−RC
wA−wC ,

RA
wA

}]
;

Join queue B, h ∈
[
RA−RB
wA−wB ,min

{
RB−RC
wB−wC ,

RB
wB

}]
;

Join queue C, h ∈
[
max

{
RA−RC
wA−wC ,

RB−RC
wB−wC

}
, RCwC

]
;

Choose outside service, h ∈
[
max

{
RA
wA ,

RB
wB ,

RC
wC

}
,+∞

)
.

(B.7)

(B.7) can be further simplified by the following two lemmas:

Lemma B.1 In an equilibrium (if exists) where arrival rates to all three queues are
positive, we must have

(i) RA−RC
wA−wC ≤ RA

wA ;

(ii) RB−RC
wB−wC ≤ RB

wB ;

(iii) max
{
RB−RC
wB−wC ,

RA−RC
wA−wC

}
≤ RC
wC .

Proof: For Case (i), suppose not and we have RA−RCwA−wC > RA
wA in equilibrium. For pa-

tients with h ∈
[
RA
wA ,

RA−RC
wA−wC

]
, by (B.1) and (B.4), we have RC−hwC < RA−hwA < 0,
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so these patients prefer outside service to joining queue C. For patients with h ∈(
RA−RC
wA−wC ,+∞

)
, we have RC− hwC < 0, i.e. these patients prefer outside service to

joining queue C. Therefore, no patients join queue C, which contradicts the assump-
tion that λC > 0. By the same rationale, Case (ii) and Case (iii) follow.

Lemma B.2 In an equilibrium (if exists) where arrival rates to all three queues are
positive, we must have:

RA−RB
wA−wB <

RA−RC
wA−wC <

RB−RC
wB−wC .

Proof: Suppose not and we have RA−RBwA−wB ≥ RB−RC
wB−wC in equilibrium, then by (B.7) we

have λB= 0, which contradicts the assumption that all arrival rates are positive. Also,
we have the following derivations:

RA−RB
wA−wB <

RB−RC
wB−wC ⇒ RA(wB−wC)+RC(wA−wB)< RB(wA−wC)

⇒ RA(wA−wC−wA+wB)< RB(wA−wC)−RC(wA−wB)
⇒ RA(wA−wC)−RB(wA−wC)< RA(wA−wB)−RC(wA−wB)
⇒ RA−RB

wA−wB <
RA−RC
wA−wC

RA−RB
wA−wB <

RB−RC
wB−wC ⇒ RA(wB−wC)+RC(wA−wB)< RB(wA−wC)

⇒ RA(wB−wC)−RC(wB−wC−wA+wC)< RB(wA−wC)
⇒ RA(wB−wC)−RC(wB−wC)< RB(wA−wC)−RC(wA−wC)
⇒ RA−RC

wA−wC <
RB−RC
wB−wC

By Lemma B.1 and B.2, (B.7) can be simplified as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Join queue A, h ∈
[
0, RA−RBwA−wB

]
;

Join queue B, h ∈
[
RA−RB
wA−wB ,

RB−RC
wB−wC

]
;

Join queue C, h ∈
[
RB−RC
wB−wC ,

RC
wC

]
;

Choose outside service, h ∈
[
RC
wC ,+∞

)
.

and the corresponding arrival rates are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λA = F
(
RA−RB
wA−wB

)
Λ

λB =
{
F
(
RB−RC
wB−wC

)
−F

(
RA−RB
wA−wB

)}
Λ

λC =
{
F
(
RC
wC

)
−F

(
RB−RC
wB−wC

)}
Λ

(B.8)

B.3 Proofs

B.3.1 Proof of Proposition 3.1
Proof: First, we assert that for an equilibrium in which none of the queues is empty,
we must have wA ≥ wB ≥ wC. For instance, suppose not and we have wB < wC in
equilibrium. For any patient type h, we therefore have RB−h ·wB > RC−h ·wC, i.e.
all patients prefer queue B to queue C. In this case, queue C would be empty, which
contradicts the assumption that λC > 0. By the same rationale, wA ≥wB and wA ≥wC
should follow.
However, if we allow that the arrival rate to some queue could be zero in equi-

librium, then the conclusion wA ≥ wB ≥ wC may not hold. For instance, let Qa,
Qd and p be such that RA = Qa > RB = Qd > RC = Qd − p, then wC = w0(λ0,λ1),
wB = w1(λ0,λ1) and wA = w2(λ2). We can construct an equilibrium in which wB >
wA prevails. Let the service times of both types of physicians follow the same dis-
tribution, and the waiting times take the form of M/G/1 queue with postponable
priority (Appendix B.1), i.e. nd = na = 1. Therefore, we have wA = w2 =

λ2E(S2)
2(1−ρ2)

,
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wB = w1 = (λ0+λ1)E(S2)
2(1−ρ0)(1−ρ0−ρ1)

≥ (λ0+λ1)E(S2)
2(1−ρ0)2

> wC = w0 = (λ0+λ1)E(S2)
2(1−ρ0)

. Let patients
be homogeneous and θ = 1 be patient’s time cost, service qualities be Qa = 1 and
Qd = 0.9, and total patient arrival rate be Λ = 1. We assume that the service times
of both physician types follow the same distribution. Let the first and second mo-
ments of service time be E(S) = E(S2) = 1. For any λ0 ∈ (0.43,0.475), λ1 = 0,λ2 =
1−λ0, p= 1−λ0

2λ0
− λ0
2(1−λ0)−0.1 constitutes an equilibrium. For any of these equilibria,

we have w1 > w2 > w0, i.e. wB > wA > wC.
The second example uses the same assumptions, parameters and waiting time

functions as in the preceding paragraph, except that we use Qd = 2,Qa = 1, p= 1.5
and Λ = 0.5 in this example. In this case, RA = Qd > RB = Qa > RC = Qd − p and
wA = w1(λ0,λ1), wB = w2(λ2) and wC = w0(λ0,λ1). The resulted equilibrium is that
all patients are served in queue 1 (λ1 = Λ = 0.5), while queue 0 and queue 2 are
empty (λ0 = λ2 = 0). The waiting times are wA = w1 = wC = w0 = 0.5> wB = 0.

B.3.2 Proof of Proposition 3.2
Proof: We only prove for the case Qd > Qa > Qd − p > 0. Proofs of the other
two cases follow the same rationale. We assume that the total arrival rate is Λ and
patient’s time cost h∈ [0, h̄], where h̄ can be+∞. We assume that the outside service
has a reservation benefit of zero.
Before going into the details of the proof, we have two important conclusions.

First, we assert that λ1 > 0. Given any w1 ≥ 0, patients with time costs h ∈
[
0, Qdw1

]
would join queue 1, so the arrival rate to queue 1 is always positive. Second, we assert
that if λ0 > 0, then λ2 > 0. Suppose not, then we must have w0 > 0 and w2 = 0. In
that case, any patient would have a higher net benefit by joining queue 2 than by
joining queue 0. Therefore, all these class 0 patients would join queue 2 instead of
queue 0, which leads to λ0 = 0. This is a contraction to the assumption λ0 > 0.
There could exist different types of equilibria. The first type of equilibrium is that

only one queue has positive arrival rate, while other two queues are empty. According
to the p, the queue with positive arrival rate must be queue 1. Queue 1 accommodate
all patients and no patients want to switch to another queue or outside service. The
necessary and sufficient conditions for this equilibrium to occur is:

Qd− h̄ ·w1(0,Λ)≥ Qa (B.9)
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The second type of equilibrium is that the arrival rates of two queues are positive
and the last queue is empty. According to the above conclusions, the empty queue
must be queue 0, i.e. λ0= 0. However, since the arrival rate to queue 1 is positive, i.e.
λ1 > 0, the virtual waiting time of queue 0 would be positive, w0 > 0. The necessary
and sufficient conditions for this scenario to occur is:⎧⎪⎪⎨⎪⎪⎩

λ1 = F
(
Qd−Qa
w1−w2

)
Λ;

λ2 =
[
F
(
Qa
w2

)
−F

(
Qd−Qa
w1−w2

)]
Λ;

Qd− p− Qa
w2w0(0,λ1)≤ 0.

(B.10)

Given that neither condition (B.9) nor condition (B.10) is satisfied, the arrival
rates to all three queues are positive, i.e. none of the queue is empty. Our task below
is to prove that there exist non-negative arrival rates λ0 > 0, λ1 > 0 and λ2 > 0 that
solve the following simultaneous equations:

λ1 = F
(
Qd−Qa
w1−w2

)
Λ, (B.11)

λ2 =

[
F
(
Qa−Qd+ p
w2−w0

)
−F

(
Qd−Qa
w1−w2

)]
Λ, (B.12)

λ0 =

[
F
(
Qd− p
w0

)
−F

(
Qa−Qd+ p
w2−w0

)]
Λ. (B.13)

The idea of the proof is as follows. First, we show that there exist nonnegative
triplets (λ0,λ1,λ2), denoted as set G1, that solve equation (B.11). Next, we show
that there exists a subset of G1, denoted as G2, that solve equation (B.12). Finally,
we show that there exists (λ0,λ1,λ2) in G2 that solve equation (B.12).
First, we show thatG1 is not empty. We look at triplets (0,λ1,0). In this case, we

have w1 = w1(0,λ1) and w2 = 0. Equation (B.11) then becomes λ1 = F
(
Qd−Qa
w1

)
Λ.

If λ1 = 0, we have λ1 < F
(
Qd−Qa
w1

)
Λ = Λ; if λ = Λ, we have Λ ≥ F

(
Qd−Qa
w1

)
Λ.

By continuity of λ1 ∈ [0,Λ], there must exist λ1 > 0 that solve λ1 = F
(
Qd−Qa
w1

)
Λ.

Therefore, G1 is not empty. For each given λ1 in G1, there could exist multiple
nonnegative (λ0,λ2) that solve (B.11).
Now let us discuss the range of λ1 in G1. The lower bound of λ1 in G1, denoted

as λ 1, solves λ1 = F
(
Qd−Qa
w1

)
Λ, where w1 = w1(Λ − λ1,λ1). The upper bound
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of λ1 in G1, denoted as λ̄1, solves λ1 = F
(
Qd−Qa
w1−w2

)
Λ, where w1 = w1(0,λ1) and

w2 = w2(Λ−λ1).
Next, we show that there exist a subset of G1 that solve (B.12). For every triplet

(λ0,λ1,λ2) in G1, (B.12) can be simplified as

λ2+λ1 = F
(
Qa−Qd+ p
w2−w0

)
Λ (B.14)

First, by substituting λ̄1 and λ2 = Λ− λ̄1 into both sides of (B.14), we have Λ ≥
F
(
Qa−Qd+p
w2−w0

)
Λ, where w2 = w2(Λ− λ̄1) and w0 = w0(0, λ̄1). Next, we assert that

there exist triplet (λ0,λ1,λ2) in G1 so as to make w2 < w0. For instance, (λ 1,Λ−
λ 1,0)makes w2 = 0<w0 =w0(Λ−λ 1,λ 1) . However, if all (λ0,λ1,λ2) inG1make
w2 ≤ w0, then it must be that the given parameters satisfy condition (B.10), which
contradicts our assumption. Therefore, there exist (λ0,λ1,λ2) in G1 such that w2 ≥
w0. By continuity of (λ0,λ1,λ2), there must exist (λ0,λ1,λ2) in G1 such that w2 =
w0. Substituting these (λ0,λ1,λ2) into (B.14), we obtain λ2+λ1<F

(
Qa−Qd+p
w2−w0

)
Λ=

Λ. In conclusion, by continuity of (λ0,λ1,λ2), there must exist (λ0,λ1,λ2) inG1 that
satisfy λ2+λ1 = F

(
Qa−Qd+p
w2−w0

)
Λ. We denote this set of (λ0,λ1,λ2) as G2.

Lastly, we prove that there exist (λ0,λ1,λ2) in G2 that satisfy (B.13). For every
(λ0,λ1,λ2) in G2, equation (B.13) can be simplified as:

λ0+λ1+λ2 = F
(
Qd− p
w0

)
Λ (B.15)

If for every (λ0,λ1,λ2) in G2, we always have λ0+λ1+λ2 < F
(
Qd−p
w0

)
Λ, then it

means that we can always serve more patients than λ0+λ1+λ2. Keeping doing that
would make the total number of patients being served in the health system equal to
Λ. Therefore, we can conclude that there must exist triplet (λ0,λ1,λ2) in G2 that
satisfy λ0+λ1+λ2 ≥ F

(
Qd−p
w0

)
Λ. On the other hand, we can find triplets (0,λ1,λ2)

that solve: ⎧⎨⎩ λ1 = F
(
Qd−Qa
w1−w2

)
Λ;

λ2 =
[
F
(
Qa−Qd+p

w2

)
−F

(
Qd−Qa
w1−w2

)]
Λ.

(B.16)

Note that the solutions (0,λ1,λ2) above belongs to G2. Since we assume that
condition (B.10) is not satisfied, we must have Qd − p− Qa−Qd+p

w2 ·w0(0,λ1) > 0.
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That means, there exist (λ0,λ1,λ2) in G2 that satisfy λ0+ λ1+ λ2 < F
(
Qd−p
w0

)
Λ.

By continuity of (λ0,λ1,λ2) in G2, there must exist (λ0,λ1,λ2) in G2 that satisfy
λ0+λ1+λ2 = F

(
Qd−p
w0

)
Λ.

In conclusion, we have established the existence of nonnegative arrival rates
(λ0,λ1,λ2) that solve simultaneous equations (B.11) – (B.13). Since simultaneous
equations (B.11) – (B.13) plus nonnegativeness are the sufficient and necessary con-
ditions of the existence of equilibrium, we have established the existence of equilib-
rium.

B.3.3 Proof of Proposition 3.3
Proof: Similar to the proof of Proposition 3.2, we only prove for the caseQd >Qa >
Qd− p. Proofs of the other two cases follow the same rationale.
The waiting times take linear forms w0 = α(λ0 + λ1), w1 = β (λ0 + λ1) and

w2 = αλ2, where α < β . Suppose that there are two equilibria: (λ0,λ1,λ2) and(
λ̃0, λ̃1, λ̃2

)
. Therefore, (λ0,λ1,λ2) and

(
λ̃0, λ̃1, λ̃2

)
must satisfy the following two

sets of simultaneous equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ1 = F

(
Qd−Qa

β (λ0+λ1)−αλ2

)
Λ;

λ2 =
[
F
(

Qa−Qd+p
α(λ2−λ0−λ1)

)
−F

(
Qd−Qa

β (λ0+λ1)−αλ2

)]
Λ;

λ0 =
[
F
(

Qd−p
α(λ0+λ1)

)
−F

(
Qa−Qd+p

α(λ2−λ0−λ1)

)]
Λ.⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ̃1 = F
(

Qd−Qa
β (λ̃0+λ̃1)−αλ̃2

)
Λ;

λ̃2 =
[
F
(

Qa−Qd+p
α(λ̃2−λ̃0−λ̃1)

)
−F

(
Qd−Qa

β (λ̃0+λ̃1)−αλ̃2

)]
Λ;

λ̃0 =
[
F
(

Qd−p
α(λ̃0+λ̃1)

)
−F

(
Qa−Qd+p

α(λ̃2−λ̃0−λ̃1)

)]
Λ.

Without loss of generality, we assume λ2 < λ̃2. If at the same time we also have
λ1 < λ̃1, then it must be that β (λ0+λ1)−αλ2 > β (λ̃0+ λ̃1)−αλ̃2⇒ α(λ̃2−λ2)>
β (λ̃0+ λ̃1−λ0−λ1).
If (λ̃0+ λ̃1−λ0−λ1) > 0, then α(λ̃2−λ2) > β (λ̃0+ λ̃1−λ0−λ1) ⇒ α(λ̃2−

λ2) > α(λ̃0+ λ̃1− λ0− λ1) ⇒ α(λ̃2− λ̃0− λ̃1) > α(λ2− λ0− λ1); otherwise, if
(λ̃0+ λ̃1−λ0−λ1)< 0, then we also have α(λ̃2− λ̃0− λ̃1)>α(λ2−λ0−λ1). In this
case, we have λ̃1+ λ̃2 = F

(
Qa−Qd+p

α(λ̃2−λ̃0−λ̃1)

)
Λ < λ1+λ2 = F

(
Qa−Qd+p

α(λ2−λ0−λ1)

)
Λ, which

contradicts the assumption that λ̃1+ λ̃2 > λ1+λ2. In conclusion, λ1 < λ̃1 would not
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exist in the equilibrium.
On the other hand, if we have λ1 ≥ λ̃1 in equilibrium, then it must be that

β (λ0+λ1)−αλ2 ≤ β (λ̃0+ λ̃1)−αλ̃2⇒ 0< α(λ̃2−λ2)≤ β (λ̃0+ λ̃1−λ0−λ1)⇒
λ̃0 > λ0 and λ̃0 + λ̃1 > λ0 + λ1. Since λ̃0 + λ̃1 > λ0 + λ1 ⇒ F

(
Qd−p

α(λ̃0+λ̃1)

)
Λ <

F
(

Qd−p
α(λ0+λ1)

)
Λ ⇒ λ̃0+ λ̃1+ λ̃2 < λ0+ λ1+ λ2, it contradicts the assumption that

λ̃2 > λ2 and λ̃0+ λ̃1 > λ0+λ1.
In conclusion, there only exists a unique equilibrium when the waiting times take

the linear forms.

B.3.4 Proof of Proposition 3.6
Proof: When a common queue is split into multiple queues, some efficiency would
be lost due to the argument of resource pooling. Provided that the total arrival rate
remains the same before and after the queue separation, the expected waiting time
in at least one of the resulted queues would be longer than the expected waiting
time in the original common queue. In our case, the total patient arrival rate is Λ
whether physician dual practice is allowed or not. If physician dual practice is al-
lowed, the commonM/G/(nd+na) queue would be split into aM/G/nd queue with
non-preemptive priority and a M/G/na queue under FIFO service principle. The
expected waiting time in at least one of these two resulted queues would be longer
than the expected waiting time in the common M/G/(nd + na) queue (i.e. w̃). By
Proposition 3.1, we know that wA ≥ wB ≥ wC, so we must have wA > w̃. If Qa < Qd ,
then we have wA = w1 > w̃; if Qa > Qd , then we have wA = w2 > w̃. However, we
cannot determine whether wB or wC is longer than w̃.

B.3.5 Proof of Proposition 3.7
Proof: By Proposition 3.4, we know that if Qa < Qd , then ∂w1

∂ p < 0. Therefore,
Qd− ndQ̃d+naQa

nd+na
w1−w̃ is increasing in p, i.e. h1 is increasing in p, so ∂h1

∂ p > 0. Also by
Proposition 3.4, we have ∂λ1

∂ p > 0: the higher the price, the more patients are served
in the public queue of dual practice physicians. Therefore, h2 is increasing in p
too. Combining these two results, we know that when p increases, more patients
in the public queue of dual practice physicians would benefit from service quality
enhancement that is induced by allowing physician dual practice.
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B.3.6 Proof of Proposition 3.8
Proof: In the case when physician dual practice is not allowed, patients are not able to
distinguish between physicians with service quality Q̃d and physicians with service
quality Qa. Therefore, incoming patients are served under FIFO service principle,
and the expected waiting time is w̃ regardless of Q̃d .
For class 1 patients, at the right hand side of (3.6), (w1− w̃) is constant regard-

less of Q̃d ,
(
Qd− ndQ̃d+naQa

nd+na

)
is decreasing in Q̃d , so the right hand side of (3.6) is

decreasing in Q̃d , i.e. the number of class 1 patients who benefit from physician dual
practice decreases in Q̃d .
The proofs for both class 0 patients and class 2 patients are the same, so we only

present the proof for class 0 patients. At both sides of (3.7),
(
Qd− p− ndQ̃d+naQa

nd+na

)
is decreasing in Q̃d and (w0− w̃) is constant regardless of Q̃d . Dividing both sides
by (w0− w̃), we obtain

h

(
≤
>

)[
Qd− p− ndQ̃d+naQand+na

]
/ [w0− w̃] , if

{
w0− w̃≥ 0
w0− w̃< 0

(B.17)

The right hand side of (B.17) is a threshold of time cost. If (w0− w̃)≥ 0, patients
with time costs lower than this threshold benefit from physician dual practice. In this
case, the threshold is decreasing in Q̃d , so the number of class 0 patients who benefit
from physician dual practice decreases in Q̃d . On the other hand, if (w0 − w̃) <
0, patients with time costs higher than this threshold benefit from physician dual
practice. In this case, the threshold is increasing in Q̃d – again, the number of class
0 patients who benefit from physician dual practice decreases in Q̃d . In conclusion,
regardless of the sign of (w0− w̃), the number of class 0 patients who benefit from
physician dual practice decreases in Q̃d .

B.4 Comparative Statics of Equilibrium Arrival
Rates and EquilibriumWaiting Times with
Respect to Price and Service Quality Difference

The equilibrium arrival rates are defined in (3.2), (3.3) and (3.4). By taking
derivative with respect to p at both sides of each equation and reshuffling the items,
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we have⎛⎜⎜⎜⎜⎜⎜⎝
(3.2)

(3.3)

(3.4)

⎞⎟⎟⎟⎟⎟⎟⎠
−−−−−−−−−−−−−−−−→
taking derivative w.r.t. p

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ∂g1
∂λA

− ∂g1
∂λB − ∂g1

∂λC

− ∂g2
∂λA

+ ∂g1
∂λA

1− ∂g2
∂λB +

∂g1
∂λB − ∂g2

∂λC
+ ∂g1

∂λC

− ∂g3
∂λA

+ ∂g2
∂λA

− ∂g3
∂λB +

∂g2
∂λB 1− ∂g3

∂λC
+ ∂g2

∂λC

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

M

·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂λA
∂ p

∂λB
∂ p

∂λC
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂ p

∂g2
∂ p

∂g3
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠

where g1(λA,λB,λc)=F
(
RA−RB
wA−wB

)
Λ, g2(λA,λB,λc)=F

(
RB−RC
wB−wC

)
Λ and g3(λA,λB,λc)=

F
(
RC
wC

)
Λ. Therefore, the comparative statics of equilibrium arrival rates to p are:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂λA
∂ p

∂λB
∂ p

∂λC
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=M−1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂ p

∂g2
∂ p

∂g3
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Using Maple v.11, we check the expression ofM−1. Each entry ofM−1 contains

11 linear and quadratic terms of ∂g
∂λ ’s so its sign and functional properties are not

easy to determine. Therefore, we need to limit our analysis to some specific case by
which we can simplify the expression ofM−1.
The specific case for our analysis assumes: (I) λ0+ λ1+ λ2 = Λ, i.e., there is

no outside service; (II) h follows a uniform distribution in [0,1]; (III) linear forms
of waiting time in Appendix B.1. It is noted that the linear forms of waiting time in
Appendix B.1 use the assumption that the service times of both types of physician
follow the same distribution. Given λ0+λ1+λ2 = Λ, we have g3 = Λ and g3−g2 =
Λ−λA−λB, soM can be simplified into:
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ∂g1
∂λA − ∂g1

∂λB − ∂g1
∂λC

− ∂g2
∂λA +

∂g1
∂λA 1− ∂g2

∂λB +
∂g1
∂λB − ∂g2

∂λC +
∂g1
∂λC

1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

M

·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂λA
∂ p

∂λB
∂ p

∂λC
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂ p

∂g2
∂ p

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

We can calculate the inverse matrix ofM as
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M−1 =
1
L

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ∂g2
∂λB +

∂g1
∂λB +

∂g2
∂λC

− ∂g1
∂λC

∂g1
∂λB −

∂g1
∂λC

∂g1
∂λB

∂g2
∂λC

+ ∂g1
∂λC

− ∂g1
∂λC

∂g2
∂λB

∂g2
∂λA

− ∂g1
∂λA

− ∂g2
∂λC

+ ∂g1
∂λC

1− ∂g1
∂λA

+ ∂g1
∂λC

∂g2
∂λC

− ∂g1
∂λC

− ∂g1
∂λA

∂g2
∂λC

+ ∂g1
∂λC

∂g2
∂λA

− ∂g2
∂λA

+ ∂g1
∂λA

−1+ ∂g2
∂λB −

∂g1
∂λB −1+ ∂g1

∂λA
− ∂g1

∂λB 1− ∂g2
∂λB +

∂g1
∂λB −

∂g1
∂λA

+ ∂g1
∂λA

∂g2
∂λB −

∂g1
∂λB

∂g2
∂λA

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1
L

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ∂g2
∂λB +

∂g2
∂λC

0 ∂g1
∂λB

∂g2
∂λC

+ ∂g1
∂λC

− ∂g1
∂λC

∂g2
∂λB

∂g2
∂λA

−1− ∂g2
∂λC

0 ∂g2
∂λC

− ∂g1
∂λC

− ∂g1
∂λA

∂g2
∂λC

+ ∂g1
∂λC

∂g2
∂λA

− ∂g2
∂λA

+ ∂g2
∂λB 0 1− ∂g2

∂λB +
∂g1
∂λB −

∂g1
∂λA

+ ∂g1
∂λA

∂g2
∂λB −

∂g1
∂λB

∂g2
∂λA

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+
1
L

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂λB −

∂g1
∂λC

∂g1
∂λB −

∂g1
∂λC

0

1− ∂g1
∂λA

+ ∂g1
∂λC

1− ∂g1
∂λA

+ ∂g1
∂λC

0

−1+ ∂g1
∂λA

− ∂g1
∂λB −1+ ∂g1

∂λA
− ∂g1

∂λB 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where L= ∂g1

∂λB
∂g2
∂λC

− ∂g1
∂λC

∂g2
∂λB −

∂g1
∂λB

∂g2
∂λA

+ ∂g1
∂λC

∂g2
∂λA

+1− ∂g2
∂λB +

∂g1
∂λB +

∂g2
∂λC

− ∂g1
∂λA

+ ∂g1
∂λA

∂g2
∂λB −

∂g1
∂λA

∂g2
∂λC
.
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Therefore, the marginal equilibrium arrival rates of price can be written as:⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂λA
∂ p

∂λB
∂ p

∂λC
∂ p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=M−1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂ p

∂g2
∂ p

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Similarly, the marginal equilibrium arrival rates of service quality difference can

be written as: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂λA
∂Q

∂λB
∂Q

∂λC
∂Q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=M−1 ·

⎛⎜⎜⎜⎜⎜⎜⎝

∂g1
∂Q

∂g2
∂Q

0

⎞⎟⎟⎟⎟⎟⎟⎠
Under assumptions (I), (II) and (III), we have g1(λA,λB,λc)= RA−RB

wA−wBΛ, g2(λA,λB,λc)=
RB−RC
wB−wCΛ, w0 = α(λ0+λ1), w1 = β (λ0+λ1) and w2 = αλ2. Therefore, the marginal

equilibrium waiting times of price can be written as ∂w0
∂ p = α

(
∂λ0
∂ p +

∂λ1
∂ p

)
, ∂w1

∂ p =

β
(

∂λ0
∂ p + ∂λ1

∂ p

)
and ∂w2

∂ p = α ∂λ2
∂ p . The marginal equilibrium waiting times of service

quality difference can be written out accordingly, which are skipped here for the sake
of conciseness.
In the case when Qd > Qa and p < Qd −Qa, we have g1 = p

w1−w0Λ, g2 =
Qd−p−Qa
w0−w2 Λ, λA = λ1, λB = λ0 and λC = λ2. The comparative statics are:⎛⎜⎜⎜⎜⎜⎜⎝

∂λ0/∂ p

∂λ1/∂ p

∂λ2/∂ p

⎞⎟⎟⎟⎟⎟⎟⎠ =
Λ/L
w1−w0

⎛⎜⎜⎜⎜⎜⎜⎝
2K−1

1−2K

0

⎞⎟⎟⎟⎟⎟⎟⎠+

[
Λ/L
w1−w0 −

Λ/L
w0−w2

]
⎛⎜⎜⎜⎜⎜⎜⎝
1−H

H

−1

⎞⎟⎟⎟⎟⎟⎟⎠

118



⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂Q

∂λ1/∂Q

∂λ2/∂Q

⎞⎟⎟⎟⎟⎟⎟⎠=
Λ/L
w0−w2

⎛⎜⎜⎜⎜⎜⎜⎝
1−H

H

−1

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂Q> 0

∂λ1/∂Q< 0

∂λ2/∂Q< 0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ∂w0
∂Q

> 0,
∂w1
∂Q

> 0

whereH = ∂g1
λA

= ∂g1
λB =− pΛ(β−α)

(w1−w0)2 < 0, K= ∂g2
λA

= ∂g2
λB =−∂g2

λC
=− (Qd−p−Qa)Λα

(w0−w2)2 < 0,
L= 1−2K > 0.
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In the case when Qd > Qa and p > Qd −Qa, we have g1 = Qd−Qa
w1−w2 Λ, g2 = Qa−Qd+p

w2−w0 Λ, λA = λ1, λB = λ2 and λC = λ0. The
comparative statics are:⎛⎜⎜⎜⎜⎜⎜⎝

∂λ0/∂ p

∂λ1/∂ p

∂λ2/∂ p

⎞⎟⎟⎟⎟⎟⎟⎠=
Λ/L
w2−w0

⎛⎜⎜⎜⎜⎜⎜⎝
−1+H− J

J−H

1

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂ p< 0

∂λ1/∂ p> 0

∂λ2/∂ p> 0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ∂w0
∂ p

< 0,
∂w1
∂ p

< 0

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂Q

∂λ1/∂Q

∂λ2/∂Q

⎞⎟⎟⎟⎟⎟⎟⎠=
Λ/L
w1−w2

⎛⎜⎜⎜⎜⎜⎜⎝
−2K

1+2K

−1

⎞⎟⎟⎟⎟⎟⎟⎠+

[
Λ/L
w1−w2 −

Λ/L
w2−w0

]
⎛⎜⎜⎜⎜⎜⎜⎝

−1+H− J

J−H

1

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ∂λ2
∂Q

< 0,
∂w0
∂Q

> 0,
∂w1
∂Q

> 0,
∂w2
∂Q

< 0

where H = ∂g1
λA

= ∂g1
λC

= − (Qd−Qa)Λβ
(w1−w2)2 < 0, J = ∂g1

λB = (Qd−Qa)Λα
(w1−w2)2 > 0, K = ∂g2

λA
= −∂g2

λB = ∂g2
λC

= (Qa−Qd+p)Λα
(w2−w0)2 > 0, L =

1+2K+ J−H > 0.
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In the case when Qa > Qd , we have g1 = Qa−Qd
w2−w1 Λ, g2 = p

w1−w0Λ, λA = λ2, λB = λ1 and λC = λ0. The comparative statics are:⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂ p

∂λ1/∂ p

∂λ2/∂ p

⎞⎟⎟⎟⎟⎟⎟⎠ =
Λ/L
w1−w0

⎛⎜⎜⎜⎜⎜⎜⎝
−1+H− J

1−H+ J

0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂ p< 0

∂λ1/∂ p> 0

∂λ2/∂ p= 0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ∂w0
∂ p

= 0,
∂w1
∂ p

= 0

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂Q

∂λ1/∂Q

∂λ2/∂Q

⎞⎟⎟⎟⎟⎟⎟⎠=
Λ/L
w2−w1

⎛⎜⎜⎜⎜⎜⎜⎝
−1+H− J+K

−H+ J−K

1

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎜⎝
∂λ0/∂Q< 0

∂λ1/∂Q> 0

∂λ2/∂Q> 0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ∂w0
∂Q

< 0,
∂w1
∂Q

< 0

where H = ∂g1
λA

=− (Qa−Qd)Λα
(w2−w1)2 < 0, J = ∂g1

λB = ∂g1
λC

= (Qa−Qd)Λβ
(w2−w1)2 > 0, K = ∂g2

λB = ∂g2
λC

= (Qa−Qd)Λ(α−β )
(w1−w0)2 < 0, L= 1+ J−H > 0.
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B.5 An Example of Multiple Equilibria When
Physician Dual Practice Is Allowed and There Is
Outside Service

In the following discussion, we assume that physician dual practice is allowed,
the total patient arrival rate is Λ = 1.3501, nd = na = 1, the queue of dual-practice
physicians is an M/G/nd queue with non-preemptive priority, the queue of public-
only physicians is an M/G/na queue under FIFO service principle, service times of
both types of physician follow the same distribution, the first and second moments
of service time are m= 1 and m2 = 1, the service qualities are Qd = 2.2 and Qa = 2,
price p= 0.45, and patient’s time cost has the following discrete distribution:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
135.01 , x= 0;
32

135.01 , x= 1
4 ;

35
135.01 , x= 1

3 ;
27

135.01 , x= 5
8 ;

16
135.01 , x= 1;
0.01
135.01 , x= 2.

Given the above assumptions and no outside service, one equilibrium is as fol-
lows:

Table B.1: Equilibrium without outside service

h λ w

class 0 1, 2 0.1601 0.4346

class 1 0, 14 0.57 1.6104

class 2 1
3 ,
5
8 0.62 0.8158

Table B.1 shows the composition of each patient class, the arrival rate to each
queue and the waiting time of each patient class. For instance, the first row of Table
B.1 says that class 0 patients consist of patients with time costs h = 1 and h = 2,
the arrival rate to queue 0 is λ0 = 0.1601, and the waiting time of class 0 patients is
w0 = 0.4346. Other rows of the table can be interpreted accordingly. Now suppose
that patients are offered an outside service which has a reservation net benefit v= 1,
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then patients with time cost h = 2 would switch from the existing system to the
outside service. The rest of the patients would remain being served in the existing
system. In this case, two possible equilibria emerge:

Table B.2: Equilibrium with outside service

h λ w

class 0 1 0.16 0.4345

class 1 0, 14 0.57 1.6093

class 2 1
3 ,
5
8 0.62 0.8158

outside service 2 0.01 N/A

Table B.3: Equilibrium with outside service

h λ w

class 0 5
8 , 1 0.43 0.5965

class 1 0 0.25 1.8640

class 2 1
4 ,
1
3 0.67 1.0151

outside service 2 0.01 N/A

Every patient class in the equilibrium of Table B.2 has a waiting time no longer
than that in the equilibrium of Table B.1. On the contrary, every patient class in the
equilibrium of Table B.3 has a waiting time longer than that in the equilibrium of
Table B.1.
We can also compare the patient welfare of the three equilibria as in Table B.4.

For instance, a patient with time cost h = 1
4 has a net benefit of 1.7974 in the equi-

librium of Table B.1, a net benefit of 1.7976 in the equilibrium of Table B.2 and a
net benefit of 1.7462 in the equilibrium of Table B.3. From Table B.4, we can see
that except for patients with time cost h = 2, every other type of patients have the
highest net benefit in the equilibrium of Table B.2, followed by the net benefit in the
equilibrium of Table B.1, and the lowest net benefit in the equilibrium of Table B.3.
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Table B.4: Patient welfare comparison

h Table B.1 Table B.2 Table B.3

0 2.2 2.2 2.2

1
4 1.7974 1.7976 1.7462

1
3 1.7281 1.7281 1.6616

5
8 1.4901 1.4901 1.3772

1 1.3154 1.3155 1.1535

2 0.8808 1 1
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Appendix C

Appendix for Chapter 4

C.1 Proofs

C.1.1 Proof of Proposition 4.1
Proof: The proof for the first part is as follows. By (4.2), ∂V

∂ p can be rewritten as:

∂V
∂ p

=
1
λ

∫ λ

0
θw(θ)dθ

{
1− p

λ
∂λ
∂ p

}
+λ + p

∂λ
∂ p

−
∫ λ

0
w(θ)dθ − (h−q)∂λ

∂ p
(C.1)

We have the following results:

• lim
p→0+

1
λ

∫ λ

0
θw(θ)dθ = lim

λ→0+
1
λ

∫ λ

0
θw(θ)dθ = lim

λ→0+
λ ·w(λ )= 0 (by L’Hopital’s

rule);

• p
λ

∂λ
∂ p ≤ 1

2;

• lim
p→0+

p
∂λ
∂ p

= 0;

• lim
p→0+

∫ λ

0
w(θ)dθ = lim

λ→0+

∫ λ

0
w(θ)dθ = 0.

When p→ 0+, the first four items of (C.1) go to 0. Therefore, (C.1) is simplified
as:
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∂V
∂ p

|p→0+ =− lim
p→0+

(h−q)∂λ
∂ p

⎧⎪⎨⎪⎩
< 0, h> q;

= 0, h= q.

The proof for the second part is as follows. If μ <
1+
√
1+4/R
2 , then

(
1

μ−1 − 1
μ

)
>

R. In this case, the the public health system alone cannot accommodate all patients.
Suppose not, then the patient type with θ = 1 would have negative net health benefit,
i.e. R−

(
1

μ−1 − 1
μ

)
< 0. For any p ≥ R, no patients would choose private care.

Therefore, the effective range of p for the health planner’s decision making is p ∈
[0,R].

If μ ≥ 1+
√
1+4/R
2 , then

(
1

μ−1 − 1
μ

)
≤ R. In this case, the public health system

alone can accommodate all patients and provides them with nonnegative net health
benefits. For any p ≥

(
1

μ−1 − 1
μ

)
, no patients would choose private care and all

patients would stay in the public system. Therefore the effective range of p for the
health planner’s decision making is p ∈

[
0,
(

1
μ−1 − 1

μ

)]
.

In summary, the upper bound of effective p for the health planner’s decision mak-

ing is pmax = min
{
R,
(

1
μ −1 −

1
μ

)}
. When p = pmax, λ = 1 and the first order

derivative of V with respect to p is:

∂V
∂ p

|pmax =
∫ 1

0

[
1− p∂λ

∂ p

]
θw(θ)dθ +(p−h+q) · ∂λ

∂ p

Since
[
1− p∂λ

∂ p

]
> 0 and (p−h+q)≥ (R−h+q)> 0, we have ∂V

∂ p |pmax > 0.
The proof for the third part is as follows. If ∀p ∈ [0, pmax], we have ∂V

∂ p ≤ 0, then
p∗ = pmax. The corresponding tax/subsidy is t∗ = p∗ −h = pmax−h. Otherwise, if
there exists a p̃ ∈ [0, pmax), such that ∂V

∂ p | p̃ > 0. By the continuity of ∂V
∂ p in (0, p̃),

there must exist a p̂ ∈ (0, p̃), such that ∂V
∂ p | p̂= 0. Therefore, p∗ is either equal to pmax

or determined by FOC solutions.

C.1.2 Proof of Proposition 4.2
Proof: The idea of the proof is as follows. Since we know that ∂V

∂ p |p→0+ ≤ 0, if ∂V
∂ p is

quasi-convex in p, i.e. if we can prove that ∂ 2V
∂ p2 = 0 only has one unique solution, then

the uniqueness of ∂V
∂ p = 0 is established. For ease of exposition, we use α , α ′

p and
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α ′′
pp to denote α(p), ∂α(p)

∂ p and ∂ 2α(p)
∂ p2 respectively. To derive the sufficient conditions

for the quasi-convexity of ∂V
∂ p , we start by looking at

∂ 2V
∂ p2 :

∂ 2V
∂ p2

= 2[γ1(p)+ γ2(p)]μ︸ ︷︷ ︸
f1(p)

−
[

γ1(p)
2

λ 2
∫ λ

0
θ ·w(θ)dθ + γ2(p)w(λ )

]
μ︸ ︷︷ ︸

f2(p,μ)

−(h−q)α ′′
ppμ︸ ︷︷ ︸
f3(p)

(C.2)
where γ1(p) = α ′

p− γ2(p) + 1
2 pα

′′
pp , γ2(p) = p (α

′
p)
2

α . The structure of γ1(p) and
γ2(p) is usually messy and it is not easy to see their functional properties. We resort
to numerical tests by varying p from 0+ to a very large positive number to test the
convexity/concavity of these functions. These numerical tests show the following
results:

(i) For p ∈ [0,104], both γ1(p) and γ2(p) are positive, strictly decreasing and convex
in p. Both function decreases from +∞ to 0+.

(ii) For p ∈ [0,5000], function γ1(p)
γ2(p)

is positive, strictly increasing and concave in p.
The function increases from 0.5 to 1−.

(iii) Function f3(p) is strictly increasing and concave in p. The function increases
from from −∞ and to 0−.

(iv) Function − γ1(p)+γ2(p)
f3(p)·α2 is strictly decreasing and convex in p. The function de-

creases from 1.5− to 1+.

In the rest of this chapter, we assume pmax < 104 to preserve the functional properties
(i), (ii), (iii) and (iv). When p= pmax, λ = 1, w(1)< 2 and 2

∫ 1
0 θw(θ)dθ < 2, so we

have ∂ 2V
∂ p2 |pmax > 0.
For part 1 of Proposition 4.2, λ is increasing and concave in p, given that w(λ )

and 1
λ 2
∫ λ
0 θ ·w(θ)dθ are convex in λ , w(λ ) and 1

λ 2
∫ λ
0 θ ·w(θ)dθ are decreasing and

convex in p. Let f1(p), f2(p) and f3(p) be the functions denoted in (C.2). According
to the functional properties (i), (ii), (iii) and (iv), [ f1(p)− (h−q) f3(p)] is decreasing
and convex in p. Because the product of two decreasing and convex functions of p is
also decreasing and convex in p, f2(p) is decreasing and convex in p as well.
Since ∂ 2V

∂ p2 |p→0+ < 0 and ∂ 2V
∂ p2 |pmax > 0, we have [ f1(0+)−(h−q) f3(0+)]− f2(0+)<

0 and [ f1(pmax)−(h−q) f3(pmax)]− f2(pmax)> 0. By the convexity and monotonic-
ity of [ f1(p)−(h−q) f3(p)] and f2(p), f1(p)−(h−q) f3(p)= f2(p) has one and only
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one solution. Let this solution be denoted as p̂. Therefore, when p ∈ [0, p̂], we have
∂ 2V
∂ p2 < 0; when p ∈ [p̂, pmax], we have ∂ 2V

∂ p2 > 0.
Since limp→0+

∂V
∂ p ≤ 0 and limp→pmax ∂V

∂ p > 0, when p goes from 0 to p̂,
∂V
∂ p goes

from 0 to the lowest point (negative). When p goes from p̂ to pmax, ∂V
∂ p goes from

the lowest point (negative) to the highest point (positive). Therefore, ∂V
∂ p is a quasi-

convex function of p. Using the similar logic,V (p|μ) is a quasi-convex function of p
and there must exist a unique point p∗ ∈ [p̂, pmax] such that ∂V

∂ p |p∗ = 0, with p∗ being
the optimal price.
For part 2 of Proposition 4.2, we have

2
λ 2

∫ λ

0
θ ·w(θ)dθ −w(λ ) = 2

λ 2
∫ λ

0
θ [w(θ)−w(λ )]dθ > 0

Given that 2+ 2
3(h−q)α−2 ≥ 2

λ 2
λ
0 θ ·w(θ)dθ , ∀p ∈ R+, by (C.2), we know that

∂ 2V
∂ p2

≥ 2[γ1(p)+ γ2(p)]− 2
λ 2

∫ λ

0
θ ·w(θ)dθ [γ1(p)+ γ2(p)]+

2
3
(h−q)α−2[γ1(p)+ γ2(p)]

=

{
2− 2

λ 2
∫ λ

0
θ ·w(θ)dθ +

2
3
(h−q)α−2

}
[γ1(p)+ γ2(p)]≥ 0

In this case, ∂V
∂ p is increasing in p. Since limp→0+

∂V
∂ p ≤ 0 and limp→pmax ∂V

∂ p > 0,
by the continuity of the function, there must exist one unique point p∗ such that
∂V
∂ p |p∗ = 0, with p∗ being the optimal price.

C.1.3 Proof of Proposition 4.3
Proof: Let λ ∗

1 = α(p∗1)μ and λ ∗
2 = α(p∗2)μ , then p

∗
1 > p

∗
2 if and only if λ ∗

1 > λ ∗
2 . We

evaluate the first-order derivatives at p∗2 and we can assert that:

∂V
∂ p

|{w1(θ ),p∗2} −
∂V
∂ p

|{w2(θ ),p∗2} =
∂V
∂ p

|{w1(θ ),p∗2} =
∫ λ ∗

2

0
g(θ)[w1(θ)−w2(θ)]dθ < 0

(C.3)
where g(θ) =

{
θ
λ ∗
2

[
1− p∗2

λ ∗
2
· ∂λ

∂ p |p∗2
]
−1

}
and g(θ) is increasing in θ . The proof is as

follows.
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First, we have θ
λ ∗
2
< 1 and p

∗
2

λ ∗
2

∂λ
∂ p |p∗2 ≤ 0.5, so it must be that g(θ)< 0,∀θ ∈ [0,λ ∗

2 ].
If w1(θ)−w2(θ) > 0,∀θ ∈ [0,λ ∗

2 ], then (C.3) holds. If not, [0,λ ∗
2 ] must be divided

into alternative segments: [0,y1], [y1,y2], ..., [yn,λ ∗
2 ] such that

w1(θ)−w2(θ)
⎧⎨⎩> 0 if θ ∈ [y2k,y2k+1]

< 0 if θ ∈ [y2k+1,y2k+2]

where k∈N. ∀θ ∈ [y2k,y2k+1], g(θ)[w1(θ)−w2(θ)]< g(y2k+1)[w1(θ)−w2(θ)]< 0.
∀θ ∈ [y2k+1,y2k+2], 0< g(θ)[w1(θ)−w2(θ)]< g(y2k+1)[w1(θ)−w2(θ)]. Therefore,
we always have

∫ y2k+2

y2k
g(θ)[w1(θ)−w2(θ)]dθ < g(y2k+1)

∫ y2k+2

y2k
[w1(θ)−w2(θ)]dθ

For k = 0, we have

∫ y2

0
g(θ)[w1(θ)−w2(θ)]dθ < g(y1)

∫ y2

0
[w1(θ)−w2(θ)]dθ < 0

Since g(y1)< g(y3)< 0, we have

g(y1)
∫ y2

y0
[w1(θ)−w2(θ)]dθ +g(y3)

∫ y4

y2
[w1(θ)−w2(θ)]dθ < g(y3)

∫ y4

y0
[w1(θ)−w2(θ)]dθ < 0

Therefore, we have

∫ y4

0
g(θ)[w1(θ)−w2(θ)]dθ < g(y3)

∫ y4

0
[w1(θ)−w2(θ)]dθ

By the same logic, we can prove that for any k ∈ N

∫ y2k+2

0
g(θ)[w1(θ)−w2(θ)]dθ < g(y2k+1)

∫ y2k+2

0
[w1(θ)−w2(θ)]dθ

If n= 2i+1, then we have

∫ λ ∗
2

0
g(θ)[w1(θ)−w2(θ)]dθ < g(y2k+1)

∫ y2k+2

0
[w1(θ)−w2(θ)]dθ < 0
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If n= 2i+2, then we have

∫ λ ∗
2

0
g(θ)[w1(θ)−w2(θ)]dθ

< g(y2k+1)
∫ y2k+2

0
[w1(θ)−w2(θ)]dθ +

∫ λ ∗
2

y2k+2
g(θ)[w1(θ)−w2(θ)]dθ < 0

which follows thatw1(θ)−w2(θ)> 0, g(θ)< 0, ∀θ ∈ [y2k+2,λ ∗
2 ]. Because

∂V
∂ p |w1(θ ) =

0 only has one solution and ∂V
∂ p |w1(θ ),p∗2 < 0, p∗1 must be on the right-hand side of p∗2,

i.e. p∗2 > p
∗
1.

C.1.4 Proof of Proposition 4.4
Proof: Let p̃1 and p̃2 be such that ∂V

∂ p |{μ1, p̃1} =
∂V
∂ p |{μ2, p̃2} = 0, where μ1 < μ2. To

prove the theorem, we only need to prove p̃1 > p̃2. Since both 1
λ 2
∫ λ
0 θ ·w(θ)dθ and

w(λ ) are decreasing in λ , and λ = α ·μ , we know that f2(p,μ) in (C.2) is decreasing
in μ . We must have

∫ p̃
0 [ f1(p)− f2(p,μ)− (h−q) f3(p)]dp increasing in μ , ∀p̃ > 0.

According to (C.2), we have

∂V
∂ p

|{μ1, p̃1} = lim
p→0+

∂V
∂ p

|μ1+
∫ p̃1

0

∂ 2V
∂ p2

|μ1dp

= μ1
{
−(h−q) lim

p→0+
α ′+

∫ p̃1

0
[ f1(p)− f2(p,μ1)− (h−q) f3(p)]dp

}
= 0

(C.4)

It must be that the bracket in (C.4) equal to zero. Similarly, we have

∂V
∂ p

|{μ2, p̃1} = lim
p→0+

∂V
∂ p

|μ2+
∫ p̃1

0

∂ 2V
∂ p2

|μ2dp

= μ2
{
−(h−q) lim

p→0+
α ′+

∫ p̃1

0
[ f1(p)− f2(p,μ2)− (h−q) f3(p)]dp

} (C.5)

Since μ1 < μ2 and
∫ p̃1
0 { f1(p)− f2(p,μ)− (h−q) f3(p)}dp is increasing in μ ,

we know that the bracket in (C.5) is greater than zero, so ∂V
∂ p |{μ2, p̃1} > 0. Since

∂V
∂ p |μ2 = 0 only has one unique solution, p̃2 must be on the left hand side of p̃1, so we
have p̃2 < p̃1.
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C.1.5 Proof of Proposition 4.5
Proof: To find out μw, we only need to input p∗ = h to the first order condition and
solve for μ . Given a welfare weight function w(θ), let λ̂ = α(h) ·μ . Substituting λ̂
for λ in (4.2) gives rise to:

∫ λ̂

0

(
1− θ

λ̂
+

θ ·h
(λ̂ )2

∂ λ̂
∂h

)
w(θ)dθ = [α(h)+qα ′(h)]μ (C.6)

Solving equation (C.6) for μ yields μw, which is a function of w(θ) and h. If w1(θ)
stochastically dominates w2(θ), by the proof of Proposition 4.3, we have

[α(h)+qα ′(h)] (μw1−μw2) =
∫ λ̂

0

(
1− θ

λ̂
+θ

h
(λ̂)2

∂ λ̂
∂h

)
[w1(θ)−w2(θ)]dθ ≥ 0

Therefore, we must have μw1 ≥ μw2 .

C.1.6 Proof of Proposition 4.6
Proof: Taking the first order derivative of J(μ) with respect to μ gives rise to:

∂J(μ)
∂ μ

=αh

{
q− h

λ̃ 2

∫ λ̃

0
θ ·w(θ)dθ

}
−p∗α∗

{
1− 1

λ ∗2

∫ λ ∗

0
θ ·w(θ)dθ

}
+(h−q)α∗

(C.7)
where αh = α(h), α∗ = α(p∗(μ)), λ̃ = αh · μ and λ ∗ = α∗μ . Substituting (1−
σ)θ−σ for w(θ) in FOC gives rise to:

λ σ = (αμ)σ =
1+(1−σ)pα ′

α

(2−σ)
(
1+(p−h+q)α ′

α

)
⇒ μ−σ = ασ (2−σ)

1+ pα ′
α

1+(1−σ)pα ′
α

(C.8)

Inputting w(θ) = (1−σ)θ−σ and (C.8) into (C.7) yields:
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∂J(μ)
∂ μ

= αh
{
q−h1−σ

2−σ
λ̃−σ

}
− p∗α∗

{
1− 1−σ

2−σ
λ ∗−σ

}
+(h−q)α∗

= (1−σ)(α∗)σ [p∗ · (α∗)1−σ −h · (αh)1−σ] 1+(p∗ −h+q)α∗′
α∗

1+(1−σ)p∗α∗′
α∗

− [(p∗ −h+q)α∗ −q ·αh] (C.9)

By (C.9), ∂J(μ)
∂ μ is a function of p∗ only. Numerical tests show that:

∂J(μ)
∂ μ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, if p∗ < h;

= 0, if p∗ = h;

< 0, if p∗ > h.

Since p∗(μ) is decreasing in μ , when μ ≤ μw, we have p∗ > h. In this case
∂J(μ)

∂ μ < 0, i.e. the marginal improvement using the optimal tax/subsidy is negative,
so less improvement is obtained when μ increases. When p∗ = h, there is no im-
provement. When μ > μw, we have p∗ < h. In this case ∂J(μ)

∂ μ > 0, i.e. the marginal
improvement using the optimal tax/subsidy is positive, so more improvement will be
obtained when μ increases.

C.1.7 Proof of Proposition 4.7
Proof: Let φ(λ ) = 1− 1

λ 2
∫ λ
0 w(θ)θdθ , then

φ ′ =
2

λ 3
∫ λ

0
θ ·w(θ)dθ − w(λ )

λ
=
2

λ 3
∫ λ

0
θ · [w(θ)−w(λ )]dθ > 0

By (4.4), ∂V
∂λ = c

α +q−h+ p ·φ(λ ) is an increasing function of λ with λmin = 0+
and λmax = 1−.

∂V
∂λ

|λ=0+ =
c
α
+q+(p−h)− pw(0+)

2
∂V
∂λ

|λ=1− =
c
α
+q+(p−h)− p

∫ 1

0
θ ·w(θ)dθ

The two equations above follow because when λ → 0, we have λ 2→ 0,
∫ λ
0 w(θ)θdθ →
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0 (according to assumption limθ→0+w(θ) ·θ = 0). By L H́opital’s rule, we have

lim
λ→0

1
λ 2

∫ λ

0
w(θ)θdθ = lim

λ→0
λw(λ )
2λ

=
w(0+)
2

If ∂V
∂λ |λ=0+ ≥ 0, then ∂V

∂λ ≥ 0,∀λ ∈ [0,1], so we have λ ∗ = 0 and μ∗ = λ ∗
α = 0.

If ∂V
∂λ |λ=1− ≤ 0, then ∂V

∂λ ≤ 0,∀λ ∈ [0,1], so we have λ ∗ = 1 and μ∗ = λ ∗
α = 1

α .
Otherwise, λ ∗ is determined by ∂V

∂λ = 0.

C.1.8 Proof of Proposition 4.8
Proof: If w(θ) = 1, (4.2) becomes

∂V
∂ p

=
1
2

(
p · ∂λ

∂ p
+λ

)
− (h−q) · ∂λ

∂ p

We know that
(
p · ∂λ

∂ p +λ
)
is strictly increasing in p. The value of

(
p · ∂λ

∂ p +λ
)

goes from 0+ to 1 when p goes from 0 to +∞. ∂λ
∂ p is strictly decreasing in p. The

value of ∂λ
∂ p goes from +∞ to 0+ when p goes from 0 to +∞. Therefore ∂V

∂ p = 0 has
a unique solution and the optimal p∗ (thus t∗) is determined by FOC solution. We
further have

∂V
∂ p

= 0 ⇒ 1
2

(
p+

α
α ′
p

)
|p=p∗︸ ︷︷ ︸

f (p∗)

= (h−q) (C.10)

The left hand side of (C.10) is a function of p∗, denoted as f (p∗). We have f ′(p∗)>
0, f ′′(p∗)> 0 and p∗ = f−1(h−q). If h= q, then we have f (p∗) = 0⇒ p∗ = 0 and
thus t∗ = p∗ −q=−q.
If h> q, then 0< ∂ p∗

∂h = 1
f ′ <

2
3 and

∂ 2p∗
∂h2 =− f ′′

( f ′)3 < 0, so p
∗ = q+

∫ h
q

∂ p∗
∂h dh> 0.

As p∗ = h+ t∗ > 0, we have t∗ > −h and ∂ t∗
∂h = 1

f ′ −1< 0. Therefore, when h> q,
we must have t∗ =

∫ h
q

∂ t∗
∂h dh−q< 0.

C.1.9 Proof of Proposition 4.10
Proof: According to FOC solution (C.10), we have
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p∗

2
− (h−q) =− α

2α ′ |p=p∗

Because α
2α ′ is strictly increasing in p, and p∗ is strictly increasing in h, so α

2α ′ |p∗
is strictly increasing in h. (4.7) can be rewritten as

∂V
∂ μ

|p∗(μ) = c−
α2

2α ′ |p∗ (C.11)

Because (C.11) is strictly decreasing in h, there must exist h∗ that solves c− α2
2α ′ |p∗ =

0. If h ≤ h∗, ∂V
∂ μ |p∗(μ) ≥ 0,∀μ ≥ 0, so it is optimal to set μ∗ = 0. In this case, all

patients choose private care and the total cost is V = h · 1. If h > h∗, ∂V
∂ μ |p∗(μ) <

0,∀μ ≥ 0, so it is optimal to set μ∗ that solves 1
μ−1 − 1

μ = p∗(h). In this case, all
patients would be served in the public health system and the total cost is V = cμ∗+
q+ p∗(h)

2 .

C.2 Analysis of Proposition 4.4
We use weight function w(θ) = (1−σ)θ−σ ,σ ∈ (0,1), and the marginal cost V

of p can be written as:

∂V
∂ p

=
∂ζ1
∂ p

− ∂ζ2
∂ p︸ ︷︷ ︸

Marginal Supply-Side Cost

+
∂ζ3
∂ p

+
∂ζ4
∂ p︸ ︷︷ ︸

Marginal Patient-Side Cost

where

∂ζ1
∂ p = α ′qμ > 0 ∂ζ2

∂ p = 1− [α +(p−h)α ′]μ

∂ζ3
∂ p = 1−σ

2−σ [α +(1−σ)pα ′]α−σ μ1−σ > 0 ∂ζ4
∂ p = 1− [α +(1−σ)pα ′]α−σ μ1−σ

Both the marginal production cost ∂ζ1
∂ p and the marginal waiting cost

∂ζ3
∂ p are pos-

itive. In order to lower the total cost, the only chance is to make the marginal tax/-
subsidy ∂ζ2

∂ p > 0 and/or to make the marginal private care cost ∂ζ4
∂ p < 0, which can be

achieved when p is relatively low. When p is relatively low (e.g., close to 0+), the
health planner uses subsidy (t = p−h< 0), so that ∂ζ2

∂ p ∼ O(1+hα ′μ) > 0. In this
case, an increase of p means that less amount of subsidy is provided to each private
patient, so the health planner ends up paying less total amount of subsidy. When p
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is relatively high, e.g., p is close to R− or
(

1
μ−1 − 1

μ

)
−
, the health planner uses tax

(t = p−h > 0) and we have (1−λ ) → 0+, so ∂ζ2
∂ p ∼ O(−(p−h)α ′μ) < 0. In this

case, an increase of p means that more tax is charged on each private patient. But
since less patients are joining the private system, less total amount of tax revenue is
collected from private system.
When we group thesemarginal costs into “marginal supply-side cost” and “marginal

patient-side cost”, the marginal “patient-side” cost is always positive. This is because

[α +(1−σ)pα ′]α−σ μ1−σ = λ 1−σ [1+(1−σ)pα ′
α ]< 3

2 ,∀λ ∈ [0,1] andmax
p≥0

p ·α ′

α
=

0.5. We have numerically tested that α−σ

2−σ [α +(1−σ)p ·α ′]μ1−σ < 1, ∀p∈ [0, 1
μ−1−

1
μ ] for a wide range of μ and σ . In this case, the only opportunity to reduce the total
cost is to make the marginal “supply-side” cost negative in a greater magnitude than
that of the marginal “patient-side” cost. Since [α +(p−h+q)α ′]μ is increasing in
p, we have lim

p→0+
[
α +(p−h+q)α ′]μ −1< 0, and lim

p→pmax
[
α +(p−h+q)α ′]μ −

1> 0, so we can conclude that the marginal “supply-side” cost is negative when p is
relatively small.
Now suppose we have μ1 and p∗(μ1) such that ∂V

∂ p |μ1,p∗(μ1) = 0, then we must
have

(
∂ζ1
∂ p − ∂ζ2

∂ p

)
|μ1,p∗(μ1) < 0,

(
∂ζ3
∂ p +

∂ζ4
∂ p

)
|μ1,p∗(μ1) > 0,

∥∥∥∂ζ1
∂ p − ∂ζ2

∂ p

∥∥∥
μ1,p∗(μ1)

=∥∥∥∂ζ3
∂ p +

∂ζ4
∂ p

∥∥∥
μ1,p∗(μ1)

. To understand why p∗(μ) decreases in μ , we look at the second
order cross partial derivatives with respect to p and μ . We have the following second
order cross partial derivatives:

∂ 2ζ1
∂ p∂ μ

= α ′q> 0

∂ 2ζ2
∂ p∂ μ

= −[α +(p−h)α ′]
∂ 2ζ3

∂ p∂ μ
=

(1−σ)2

2−σ
[
α +(1−σ)pα ′] [αμ]−σ > 0

∂ 2ζ4
∂ p∂ μ

= −(1−σ)
[
α +(1−σ)pα ′] [αμ]−σ < 0

and we know that
(

∂ 2ζ1
∂ p∂ μ − ∂ 2ζ2

∂ p∂ μ

)
|μ1,p∗(μ1) > 0,

(
∂ 2ζ3

∂ p∂ μ + ∂ 2ζ4
∂ p∂ μ

)
|μ1,p∗(μ1) < 0 and∥∥∥ ∂ 2ζ1

∂ p∂ μ − ∂ 2ζ2
∂ p∂ μ

∥∥∥
μ1,p∗(μ1)

>
∥∥∥ ∂ 2ζ3

∂ p∂ μ + ∂ 2ζ4
∂ p∂ μ

∥∥∥
μ1,p∗(μ1)

. Therefore, we have ∂ 2V
∂ p∂ μ |μ1,p∗(μ1)>
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0. For any μ2 such that μ2 > μ1, we must have ∂V
∂ p |μ2,p∗(μ1) > 0. Because ∂V

∂ p = 0
only has one unique solution, the FOC solution p∗2 when μ2 is the public service rate
must be on the left hand side of p∗1.
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C.3 Numerical Examples

Table C.1: Tax/subsidy forM/G/1 queue with q= 0.2,c= 0.2,h= 0.5,v= 0.5.

μ \σ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1.10 -0.317 -0.294 -0.262 -0.219 -0.159 -0.075 0.051 0.251 0.613
1.15 -0.318 -0.295 -0.265 -0.226 -0.172 -0.097 0.010 0.173 0.444
1.20 -0.318 -0.296 -0.269 -0.232 -0.183 -0.116 -0.024 0.112 0.326
1.25 -0.318 -0.298 -0.271 -0.237 -0.193 -0.133 -0.051 0.064 0.238
1.30 -0.318 -0.299 -0.274 -0.242 -0.201 -0.147 -0.075 0.025 0.170
1.35 -0.319 -0.300 -0.276 -0.246 -0.208 -0.159 -0.095 -0.007 0.116
1.40 -0.319 -0.301 -0.278 -0.250 -0.215 -0.170 -0.112 -0.035 0.072
1.45 -0.319 -0.301 -0.280 -0.254 -0.221 -0.180 -0.127 -0.058 0.035
1.50 -0.319 -0.302 -0.282 -0.257 -0.226 -0.188 -0.140 -0.078 0.005
1.55 -0.319 -0.303 -0.284 -0.260 -0.231 -0.196 -0.151 -0.095 -0.021
1.60 -0.319 -0.304 -0.285 -0.263 -0.236 -0.203 -0.162 -0.110 -0.044
1.65 -0.319 -0.304 -0.286 -0.265 -0.240 -0.209 -0.171 -0.123 -0.063
1.70 -0.319 -0.305 -0.288 -0.267 -0.243 -0.214 -0.179 -0.135 -0.080
1.75 -0.319 -0.305 -0.289 -0.270 -0.247 -0.219 -0.186 -0.146 -0.095
1.80 -0.319 -0.306 -0.290 -0.271 -0.250 -0.224 -0.193 -0.155 -0.108
1.85 -0.319 -0.306 -0.291 -0.273 -0.253 -0.228 -0.199 -0.164 -0.120
1.90 -0.319 -0.306 -0.292 -0.275 -0.255 -0.232 -0.205 -0.172 -0.131
1.95 -0.319 -0.307 -0.293 -0.276 -0.258 -0.236 -0.210 -0.179 -0.141
2.00 -0.319 -0.307 -0.293 -0.278 -0.260 -0.239 -0.214 -0.185 -0.149
2.05 -0.319 -0.307 -0.294 -0.279 -0.262 -0.242 -0.219 -0.191 -0.157
2.10 -0.319 -0.307 -0.295 -0.280 -0.264 -0.245 -0.222 -0.196 -0.165
2.15 -0.320 -0.308 -0.295 -0.282 -0.266 -0.247 -0.226 -0.201 -0.171
2.20 -0.320 -0.308 -0.296 -0.283 -0.267 -0.250 -0.230 -0.206 -0.177
2.25 -0.320 -0.308 -0.297 -0.284 -0.269 -0.252 -0.233 -0.210 -0.183
2.30 -0.320 -0.308 -0.297 -0.285 -0.270 -0.254 -0.236 -0.214 -0.188
2.35 -0.320 -0.308 -0.298 -0.285 -0.272 -0.256 -0.238 -0.218 -0.193
2.40 -0.320 -0.308 -0.298 -0.286 -0.273 -0.258 -0.241 -0.221 -0.197
2.45 -0.320 -0.309 -0.298 -0.287 -0.274 -0.260 -0.243 -0.224 -0.202
2.50 -0.320 -0.309 -0.299 -0.288 -0.275 -0.261 -0.245 -0.227 -0.205
2.55 -0.320 -0.309 -0.299 -0.288 -0.276 -0.263 -0.248 -0.230 -0.209
2.60 -0.321 -0.309 -0.299 -0.289 -0.277 -0.264 -0.250 -0.232 -0.212
2.65 -0.321 -0.309 -0.300 -0.290 -0.278 -0.266 -0.251 -0.235 -0.216
2.70 -0.321 -0.309 -0.300 -0.290 -0.279 -0.267 -0.253 -0.237 -0.219
2.75 -0.321 -0.309 -0.300 -0.291 -0.280 -0.268 -0.255 -0.239 -0.221
2.80 -0.321 -0.309 -0.301 -0.291 -0.281 -0.269 -0.256 -0.241 -0.224
2.85 -0.321 -0.309 -0.301 -0.292 -0.282 -0.270 -0.258 -0.243 -0.226
2.90 -0.321 -0.309 -0.301 -0.292 -0.282 -0.272 -0.259 -0.245 -0.229
2.95 -0.321 -0.309 -0.301 -0.293 -0.283 -0.273 -0.261 -0.247 -0.231
3.00 -0.322 -0.309 -0.302 -0.293 -0.284 -0.273 -0.262 -0.248 -0.233
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