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Abstract

In this thesis, we present several random access algorithms for medium access control

in wireless networks. Optimization theory, game theory, and dynamic programming are

applied in the analysis and the design of these algorithms.

First, we study the problem of multi-channel random access using the signal-to-interference-

plus-noise-ratio (SINR) model in cognitive radio networks. We formulate it as a network

utility maximization (NUM) problem, and propose a distributed algorithm that converges

to a near-optimal solution. Moreover, we apply coalitional game theory to study the in-

centive issues of rational user cooperation in a given channel under the SINR model.

Next, we consider a wireless local area network (WLAN) with rational users, who may

strategically declare their access categories (ACs) not intended for their applications in

order to gain some unfair shares of the network resources. We propose to use the Vickrey-

Clarke-Groves (VCG) mechanism to motivate each user to declare truthfully its actual AC

to the access point (AP). In order to implement the VCG mechanism with concave, step,

and quasi-concave utility functions, we propose an enumeration algorithm to obtain the

global optimal solution of the formulated non-convex NUM problem.

To extend the aforementioned work on single-channel random access in WLANs, we

focus on sigmoidal utility functions. We propose a subgradient algorithm to solve the

formulated NUM problem using the dual decomposition method. If the sufficient conditions

on link capacities are satisfied, the algorithm obtains the optimal solution.

Finally, we consider the vehicular ad hoc networks. We study the problem of random
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Abstract

access in a drive-thru scenario, where roadside APs are installed on a highway to provide

temporary Internet access for vehicles. We first consider the single-AP scenario with ran-

dom vehicular traffic, and propose a dynamic optimal random access (DORA) algorithm

that aims to minimize the total transmission cost of a vehicle. We determine the condi-

tions under which the optimal transmission policy has a threshold structure, and propose

an algorithm with a lower computational complexity. Then, we consider the multiple-AP

scenario with deterministic vehicular traffic arrival due to traffic estimation. A joint DORA

is proposed to obtain the optimal transmission policy.

iii



Preface

I am the first author and principal contributor of all chapters. All chapters are co-authored

with Dr. Vincent W.S. Wong, who supervised the research. Chapters 2, 3, and 4 are

co-authored with Dr. Robert Schober, who provided valuable comments for the works.

Chapters 3 and 4 are co-authored with Dr. Amir-Hamed Mohsenian-Rad, who contributed

in the formulation of the network utility maximization problems. In particular, in Chapter

3, Dr. Amir-Hamed Mohsenian-Rad contributed in proving a necessary condition related

to the feasibility of the optimization problem. Chapter 5 are co-authored with Dr. Fen

Hou and Dr. Jianwei Huang, who provided valuable comments for the work.

The following publications describe the work completed in this thesis. In some cases,

the conference papers contain materials overlapping with the journal papers.

Journal Papers Accepted/Published

• Man Hon Cheung, Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, and Robert

Schober, “Random Access for Elastic and Inelastic Traffic in WLANs,” IEEE Trans.

on Wireless Communications, vol. 9, no. 6, pp. 1861–1866, June 2010.

• Man Hon Cheung, Vincent W.S. Wong, and Robert Schober, “SINR-based Random

Access for Cognitive Radio: Distributed Algorithm and Coalitional Game,” IEEE

Trans. on Wireless Communications, vol. 10, no. 11, pp. 3887–3897, Nov. 2011.

iv



Preface

• Man Hon Cheung, Fen Hou, Vincent W.S. Wong, and Jianwei Huang, “DORA: Dy-

namic Optimal Random Access for Vehicle-to-Roadside Communications,” accepted

for publication in IEEE Journal on Selected Areas in Communications, 2012.

Journal Paper Submitted

• Man Hon Cheung, Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, and Robert

Schober, “Utility-Optimal Random Access for Wireless Multimedia Networks,” sub-

mitted, 2012.

Conference Papers Published

• Man Hon Cheung, Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, and Robert

Schober, “Random Access Protocols for WLANs based on Mechanism Design,” in

Proc. of IEEE International Conference on Communications (ICC), Dresden, Ger-

many, June 2009.

• Man Hon Cheung, Fen Hou, Vincent W.S. Wong, and Jianwei Huang, “Dynamic

Optimal Random Access for Vehicle-to-Roadside Communications,” in Proc. of IEEE

International Conference on Communications (ICC), Kyoto, Japan, June 2011.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Random Access in Wireless Networks . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Wireless Local Area Networks . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Vehicular Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mathematical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



Table of Contents

1.3 Summary of Results and Contributions . . . . . . . . . . . . . . . . . . . 17

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Multi-channel SINR-based Random Access and Coalitional Game . . 22

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Network Utility Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Three-Phase Distributed Algorithm using Sequential Convex Optimization 33

2.4.1 Transmission Probability Optimization . . . . . . . . . . . . . . . . 33

2.4.2 Listening Probability Optimization . . . . . . . . . . . . . . . . . . 34

2.4.3 Three-Phase Distributed Algorithm . . . . . . . . . . . . . . . . . 35

2.5 Coalitional Game Theory for SINR Model . . . . . . . . . . . . . . . . . . 39

2.5.1 Coalitional Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 The Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Shapley Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 VCG-based Truthful Random Access Protocols for WLANs . . . . . . 52

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Network Utility Maximization Problem . . . . . . . . . . . . . . . 58

3.2.3 Non-cooperative Random Access Game . . . . . . . . . . . . . . . 59

3.3 Truthful Mechanism Design for WLANs . . . . . . . . . . . . . . . . . . . 61

3.4 Implementation of the VCG Mechanism . . . . . . . . . . . . . . . . . . . 64

3.5 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



Table of Contents

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Random Access with Sigmoidal and Concave Utility Functions . . . . 79

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Random Access with Sigmoidal and Concave Utilities . . . . . . . . . . . 83

4.2.1 NUM for Random Access . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Dual Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 First Dual Subproblem . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Second Dual Subproblem . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 Centralized Algorithm for Random Access . . . . . . . . . . . . . . 87

4.2.6 General Optimality Conditions . . . . . . . . . . . . . . . . . . . . 89

4.3 Optimality and Sub-optimality . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Sub-optimal Solution: Upper and Lower Bounds . . . . . . . . . . 92

4.4 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Dynamic Optimal Random Access for Vehicle-to-Roadside Communica-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Distributed Medium Access Control . . . . . . . . . . . . . . . . . 104

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Finite-Horizon Dynamic Programming . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Single AP Optimization with Random Vehicular Traffic . . . . . . 109

viii



Table of Contents

5.4.2 Joint AP Optimization with Deterministic Vehicular Traffic . . . . 120

5.5 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

ix



List of Tables

5.1 List of Key Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x



List of Figures

1.1 V2V and V2R communications in a VANET. . . . . . . . . . . . . . . . . . 5

2.1 A CRN with set of users N = {1, 2, 3}, where the triangles and circles

represent the transmitters and receivers, respectively. The set of available

orthogonal data channels C = {1, 2} is provided by the primary BS. p
(c)
i and

q
(c)
i denote the transmission and listening probabilities for user i in channel

c, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Aggregate utility obtained using an exhaustive search and the three-phase

distributed algorithm (i.e., Algorithm 2.1) based on the multi-channel SINR

model. We can see that Algorithm 2.1 achieves a near-optimal solution. . . 45

2.3 Convergence of the aggregate utility u∗(t) using the three-phase distributed

algorithm (i.e., Algorithm 2.1). Notice that the aggregate utility obtained

in each iteration is non-decreasing. The users probe the channels in phase

I and select the best channel in phase II. In phase III, the transmission

probabilities are adjusted based on the channels selected in phase II. . . . . 47

xi



List of Figures

2.4 The change in aggregate utility u∗(t) when the set of data channels C changes

due to dynamic spectrum leasing. Initially, we assume that there are four

data channels available. We assume that two data channels are removed

from C and then one data channel is added back to C. We run the three-phase

distributed algorithm (i.e., Algorithm 2.1) based on the previous solution

after set C has changed. We can see that u∗(t) converges again quickly to a

fixed point when the set C changes. . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Average aggregate throughput versus the number of orthogonal channels

available for Algorithm 2.1 using the SINR model, the protocol model, and

the MMAC [1]. Notice that the design based on the SINR model achieves

the highest aggregate throughput. . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 A CRN with eight users. User 5 generates and receives the least amount of

interference due to its isolated position. . . . . . . . . . . . . . . . . . . . . 50

2.7 Aggregate utility of the grand coalition v(N ) =
∑

i∈N φi(v) and the Shapley

value φ(v) for the secondary users in Fig. 2.6. When θth is increased, v(N ) is

decreased because the interference range is increased. When θth is increased

to 15 dB, v(N ) is equally shared among these one-hop neighbours as stated

in Theorem 2.7. Notice that user 5 has the largest share of payoff for θth < 15

dB due to its large marginal contribution to different coalitions. . . . . . . 51

3.1 Three different types of utility functions considered in this work: (1) Con-

cave function: α-fair function (Ki = 0.1, αi = 1, and Li = 4), (2) Step

function (Ki = 1.5 and pcritical
i = 0.25) , and (3) Quasi-concave function:

α-critical function (Ki = 0.015, αi = 3, and pcritical
i = 0.1). . . . . . . . . . . 56

xii



List of Figures

3.2 A WLAN with a set of users N = {1, 2, 3}. In our system model, user i first

declares to the AP the utility parameter (or type) θ̂i, which characterizes the

AC of the application of user i. After receiving θ̂i, ∀ i ∈ N , the AP assigns

the transmission probabilities p̂ = (p̂1, p̂2, p̂3) for random access and charges

the users t = (t1, t2, t3) according to the allocation and payment rules of the

VCG mechanism described in (3.8) and (3.10), respectively. By using the

VCG mechanism, it is shown in Theorem 3.2 that a rational player i should

declare its true utility parameter θi in order to maximize its own utility. . . 64

3.3 Results in a sample network with six stations: (a) Utility, (b) Payment, and

(c) Surplus (i.e., utility minus payment) of each station using the proposed

VCG-based scheme. With the use of VCG mechanism, station 1 ends up

having a lower surplus when it is selfish and is thus motivated to be honest. 73

3.4 (a) Throughput of users with step utility functions and other utility func-

tions and (b) aggregate utility. We assume that the stations with α-fair and

α-critical utilities are honest and we vary the number of selfish stations with

step utilities. We can see that differentiated QoS and maximum aggregate

utility can be maintained by using the VCG-based mechanism design (MD). 74

3.5 Number of iterations required to obtain the optimal solution by Algorithm

3.1 and an exhaustive search. We can see that Algorithm 3.1 has a much

lower computational complexity than an exhaustive search. . . . . . . . . . 75

3.6 Average utility in the system achieved by our NUM-based random access

scheme and a CSMA scheme versus the total number of stations N in the

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



List of Figures

4.1 Utility functions Ui versus data rate x for utility functions U1(x) = 1 −

(x + 1)−1, U2(x) = x2

x2+20
, U3(x) = 1

2
[1 − (x + 1)−2], and U4(x) = x4

x4+300
.

Notice that U1 and U3 are concave functions, and U2 and U4 are sigmoidal

functions. We address both concave and sigmoidal utility functions in this

chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 The solution of the first dual subproblem x̄∗i (λi) versus λi for sigmoidal

utility function Ui(x) = x2

x2+20
. We can see that x̄∗i (λi) is discontinuous at

λi = λc
i = 0.0780. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 The minimal capacities cc1 and cc2 for types of utility functions versus the

total number of stations N . Type 1 utility functions are concave, while

Type 2 utility functions are sigmoidal. . . . . . . . . . . . . . . . . . . . . 93

4.4 Aggregate utility versus the total number of stations N when c ≻ cc using

exhaustive search and Algorithm 4.1. . . . . . . . . . . . . . . . . . . . . . 94

4.5 Aggregate utility versus the total number of stations N when c ≺ cc using

exhaustive search and Algorithm 4.1. The lower and upper bounds are

obtained by replacing p∗(λ∗) and x̄∗(λ∗) (i.e., the results from Algorithm

4.1) into the expressions in (4.33) and (4.32), respectively. We can see that

the lower bound is very tight in this case. In fact, except for the case with

14 stations, the lower bound exactly matches the global optimal solution in

all other considered cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Convergence of the allocation of the persistent probabilities with insufficient

capacity c ≺ cc using diminishing step size α(t) = 0.01/t, even though the

allocation may not be globally optimal as discussed in Section 4.3. . . . . . 96

5.1 Drive-thru V2R communications with multiple APs. . . . . . . . . . . . . . 102

xiv



List of Figures

5.2 An example of the time line representation for the events happened with

three APs (i.e., J = {1, 2, 3}). Here, we assume that T1 = 10, T2 = 15,

and T3 = 12. With respect to the time line, we have T1 = {1, . . . , 10},

T2 = {11, . . . , 25}, and T3 = {26, . . . , 37}. It is clear from the figure that

ζ(j, τ) =
∑j−1

i=0 Ti + τ, ∀ τ ∈ {1, . . . , Tj}, where T0 = 0. . . . . . . . . . . . . 104

5.3 The structure of a time slot of the jth AP. . . . . . . . . . . . . . . . . . . 106

5.4 Total uploaded file size against the penalty parameter b for S = 100 Mbits

and ρ = 20 veh/km with a single AP. As b increases, a larger file size is

uploaded for the DORA scheme. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Total cost versus traffic density ρ for file size S = 200 Mbits with a single

AP. The DORA scheme has the minimal total cost. . . . . . . . . . . . . . 125

5.6 Upload ratio (i.e., total uploaded file size / total payment to the APs) versus

traffic density ρ for file size S = 200 Mbits with a single AP. The DORA

scheme achieves the highest upload ratio. . . . . . . . . . . . . . . . . . . . 126

5.7 Total cost versus traffic density ρ for file size S = 500 Mbits with five APs.

The JDORA scheme with perfect estimation of psucc
t has the minimal total

cost. Moreover, a higher total cost is required when the precision of the

estimation reduces (i.e., when the variance of the estimation θ increases). . 127

5.8 Upload ratio versus traffic density ρ for file size S = 500 Mbits with five APs.

The JDORA scheme with perfect estimation of psucc
t achieves the highest

upload ratio as compared with three other heuristic schemes. Moreover, a

lower upload ratio is achieved when the precision of the estimation reduces

(i.e., when the variance of the estimation θ increases). . . . . . . . . . . . . 128

5.9 The thresholds s∗t (p
succ) of the optimal policy against the decision epoch t

for different penalty parameters b. . . . . . . . . . . . . . . . . . . . . . . 129

xv



List of Abbreviations

AC Access category

ACK Acknowledgement

AP Access point

BS Base station

CR Cognitive radio

CRN Cognitive radio network

CSMA/CA Carrier sense multiple access with collision avoidance

DCF Distributed coordination function

DORA Dynamic optimal random access

DP Dynamic programming

DSRC Dedicated short range communications

IEEE Institute of Electrical and Electronics Engineers

ITS Intelligent transportation system

JDORA Joint dynamic optimal random access

KKT Karush-Kuhn-Tucker (optimality conditions)

MAC Medium access control

MS Mobile station

NE Nash equilibrium

NUM Network utility maximization

xvi



List of Abbreviations

OBU Onboard unit

QoS Quality of service

RSU Roadside unit

SINR Signal-to-interference-plus-noise ratio

SNR Signal-to-noise ratio

VANET Vehicular ad hoc network

VCG Vickrey-Clarke-Groves (mechanism)

V2R Vehicle-to-roadside

V2V Vehicle-to-vehicle

WAVE Wireless access in vehicular environments

WLAN Wireless local area network

xvii



Acknowledgments

First and foremost, I wish to express my deep gratitude to my supervisor, Dr. Vincent

Wong, for his supervision. His advice and comments have greatly improved the quality

of my research. He has provided me with a lot of opportunities to experience different

research areas in wireless networking. He has also taught me about technical writing and

has helped me improve the presentation of my works.

I am particularly grateful to Dr. Robert Schober, Dr. Victor Leung, Dr. Jianwei

Huang, Dr. Amir-Hamed Mohsenian-Rad, and Dr. Fen Hou for their collaborations and

useful comments that help improve the quality of my research work. I would also like to

thank the members of my doctoral committee for their time and effort.

I am grateful to the colleagues in my lab: Dr. Joo-Han Song, Dr. Hongbo Guo, Dr.

Enrique Stevens-Navarro, Dr. Yuxia Lin, Dr. Vahid Shah-Mansouri, Derrick Wing Kwan

Ng, Keivan Ronasi, Pedram Samadi, Binglai Niu, Mani Malekesmaeili, Ehsan Vahedi,

Enxin Yao, Bojiang Ma, Chi Sun, Jiaqi Gui, Wei Bao, Xiaolei Hao, Wenbo Shi, Jinbiao

Xu, Shaobo Mao, and Suyang Duan.

I wish to record my gratitude to my dad, mom, and sister for their love and support

when I am studying in Canada. The life as a Ph.D student would be tough and lonely

without their care.

I hope to thank my friends in my church in Vancouver. They have helped me adapt to

a new environment in Vancouver. Their prayers are important to me, especially when the

deadlines are approaching. I am also grateful to my friends in my church in Hong Kong

xviii



Acknowledgments

for their prayers and support.

Last by not the least, I would like to thank my Lord for accompanying me in my life

in Vancouver and every stages of my research. He is “a lamp to my feet and a light for my

path” (Psalm 119:105).

This work was supported by the AUTO21, a member of the Network of Centres of

Excellence of Canada program.

xix



Chapter 1

Introduction

In a wireless network, a medium access control (MAC) protocol is used to coordinate the

access of the users to the shared wireless medium. In general, there are two main classes

of MAC protocols: scheduling and random access [2]. In a scheduling-based MAC, the

transmissions of the users are scheduled orderly in an attempt to prevent packet collisions

among the users. On the other hand, in a random access MAC, the users need to contend for

the channel for transmission, so packet collisions are likely to occur. However, contention-

based random access protocols are scalable and flexible, and are widely used in wireless

networks.

In this thesis, we design random access protocols for different types of wireless networks,

which includes cognitive radio networks (CRNs), wireless local area networks (WLANs),

and vehicular ad hoc networks (VANETs). Mathematical tools, such as optimization the-

ory, game theory, and dynamic programming, are applied in the design and analysis of

these protocols. The rest of this chapter is organized as follows. In Section 1.1, we first

provide an overview of the wireless network settings that we consider in this thesis. We then

introduce the mathematical tools that we use in the thesis in Section 1.2. In Section 1.3,

we summarize the main contributions and results in this thesis. Finally, the organization

of the thesis is described in Section 1.4.

1



Chapter 1. Introduction

1.1 Random Access in Wireless Networks

1.1.1 Cognitive Radio Networks

With the licensed radio spectrum being under-utilized [3], cognitive radio (CR) [4, 5] has

emerged as the solution to the spectrum scarcity problem. To address the problem of

spectrum sharing between the primary (licensed) users and secondary (unlicensed) users,

the commons model and the property model [6] have been proposed. In the commons

model, the primary users act as if the secondary users are not present. The secondary

users access the spectrum holes opportunistically so that they do not cause interference to

the primary users. In the property model, the primary users are allowed to trade some

of their temporarily unused spectrum to the secondary users in exchange for monetary

return. In Chapter 2, we consider the setting where a set of channels from the primary

network is available to the secondary CRN, e.g., in the form of dynamic spectrum leasing

[7–9] in the property model or by spectrum sensing [10, 11] in the commons model. In

order to implement a scalable system that is adaptive to the dynamic network changes in a

CRN, a distributed MAC protocol is proposed for the secondary users. The multi-channel

signal-to-interference-plus-noise-ratio (SINR) model is consider in the chapter.

1.1.2 Wireless Local Area Networks

In a WLAN, an access point (AP) is usually set up to offer connectivity to the users in

the network. Due to the network topology and limited transmission range in a WLAN, it

is usually reasonable to assume that all the users are one-hop neighbours to each other.

We consider a single channel model, where each user randomly attempts to access the

shared channel with a certain transmission probability. We consider that the users support

applications with both elastic and inelastic traffic [12]. The elastic traffic is generated by
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non-real-time applications such as traditional file transfer and electronic mail. The inelastic

traffic is generated by real-time applications including real-time voice and video streaming,

which usually have tight quality of service (QoS) requirements. The random access problem

is formulated mathematically using the framework of network utility maximization (NUM).

In Chapter 3, we model the utilities of the users with elastic traffic using concave functions,

and the utilities of the users with inelastic traffic using quasi-concave and step functions.

Global optimal solution is obtained for the NUM problem. In Chapter 4, we extend the

work in Chapter 3 by considering concave utility functions for elastic traffic sources, and

sigmoidal utility functions for inelastic traffic sources. Optimal solution is obtained if a

sufficient condition on link capacities is satisfied. Otherwise, an approximate solution with

the lower and upper bounds of the objective value are obtained.

1.1.3 Vehicular Ad Hoc Networks

The development of intelligent transportation system (ITS) has gained significant momen-

tum in recent years, especially after the Federal Communications Commission (FCC) in

the United States allocated 75 MHz licensed spectrum in the 5.9 GHz band in 1999 for this

purpose. There are two types of application in an ITS. Safety applications, such as cooper-

ative forward collision warning, lane change warning, and left turn assistant (e.g.,[13, 14]),

have been proposed to improve the safety of the passengers by informing the vehicles of

potential dangers ahead of time. Non-safety applications, such as traffic management, in-

stant messaging, and media content delivery, have been designed to avoid traffic congestion

and improve the experience of driving.

Vehicular ad hoc networks, which are designed to provide reliable communications

among vehicles and roadside APs, are playing an important role in the development of

ITS. VANETs support the ITS applications through different types of communication pat-
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terns, including vehicle-to-roadside (V2R) and vehicle-to-vehicle (V2V) communications

[15]. V2R communications involve data transmissions between vehicular nodes and road-

side APs, and V2V communications involve data exchange among vehicular nodes only. For

both types, we can further classify the communications as either single-hop or multi-hop.

Some of the characteristics of VANETs are briefly described as follows:

• Rechargeability: Because the power of the vehicles can be recharged easily and read-

ily, power constraint is usually not a prime design issue in VANETs.

• Frequent change in network topology: In urban areas, the average speed of the

vehicles is around 50 to 60km/h. While in highways, the vehicles move with high

average speed of around 80 to 110 km/h. As a result, the network topology changes

rapidly.

• Variable network density: In urban areas with traffic jams during rush hours, the

network density is very high. On the other hand, it can be very low in rural areas.

• Non-random trajectory: Because of the fixed road topology, vehicles move in an

organized instead of a completely random manner. The position of a vehicle is

confined to the road network. Also, the mobility of the vehicles is influenced by

human behaviours and some pre-defined traffic rules.

• Frequent fragmentation of network: Due to the mobility of the vehicles and the

limited transmission ranges of the antenna, a network is frequently segmented in

regions where the network density is not too high. As a result, some of the nodes are

isolated and are not connected to the network.

• Large scale: During the rush hours in urban areas, the number of vehicles involved

in a VANET can be very large.
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RSU

RSU

Figure 1.1: V2V and V2R communications in a VANET.

In recent years, the dedicated short range communications (DSRC) was proposed to

provide a short to medium range communication service that supports both the safety and

non-safety applications in V2R and V2V communication environments. DSRC is meant

to be a complement to the cellular communications by providing high data rate in some

circumstances while minimizing the latency of the communication links. The wireless

access in vehicular environments (WAVE) standard is a core part of DSRC, and it includes

the IEEE 802.11p and IEEE 1609.x standards. The IEEE 802.11p standard specifies the

physical and MAC layer of the wireless communications, and the IEEE 1609.1, 1609.2,

1609.3, and 1609.4 standards are related to the resource manager, security, networking,

and multichannel operations, respectively [16–18].

Since the IEEE 802.11p MAC protocol is a heuristic, we aim to design distributed and

optimal uplink random access schemes for VANETs analytically. In Chapter 5, we study

random access for V2R single-hop uplink transmissions from the vehicles to the APs in

a drive-thru scenario. We propose algorithms for single AP optimization with random

vehicular traffic and for joint AP optimization with traffic pattern estimation.
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1.2 Mathematical Foundation

In this thesis, we extensively employed several useful mathematical tools for the design

and analysis of the random access protocols, which include the optimization theory, game

theory, and dynamic programming. Optimization theory [19–23] is related to the problem

of maximization or minimization of a real-valued function by systematically choosing the

variables from a feasible set and computing the values of the objective and constraint func-

tions. Game theory [24–27] is a useful technique for studying the interactions among the

users with strategic interdependence and characterizing the outcome of the game based on

some well-defined solution concepts. Dynamic programming [28, 29] is a set of mathemat-

ical and computational tools that is usually applied for the study of sequential decision

problems by taking into account both the short-term and long-term consequences of a

chosen action. In this section, we provide an overview of each of these three techniques.

1.2.1 Optimization Theory

In some problems, we are given a well-defined objective function, some constraints, and

some optimization variables. We may want to obtain an optimal or a near-optimal solution

of the problem systematically based on some results in optimization theory. Specifically,

we consider the following optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,

x ∈ X ,

(1.1)

where f0(x) is the objective function, and fi(x) ≤ 0 is the ith constraint. The vector x

contains all the optimization variables, and X is its feasible set.
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The Lagrangian function is given by

L(x,λ) = f0(x) +
m∑

i=1

λifi(x), (1.2)

where λi is the Lagrange multiplier associated with the ith constraint fi(x) ≤ 0.

The Lagrangian dual function is given by

g(λ) = inf
x∈X

L(x,λ). (1.3)

The dual problem is

maximize
λ

g(λ)

subject to λ � 0.
(1.4)

It should be noted that the dual problem (1.4) is a convex optimization problem. This is

the case whether or not the primal problem (1.1) is convex [21, pp. 223]. We assume that

g(λ) has a finite value for all λ � 0.

By applying the Danskin’s Theorem [19, pp. 737], the subdifferential ∂g(λ) (i.e., the

set of all subgradients of g(λ)) is given by

∂g(λ) = conv
{
∇λL(x,λ) : x ∈ x∗(λ)

}
, (1.5)

where

∇λL(x,λ) =

(
∂L(x,λ)

∂λ1
, . . . ,

∂L(x,λ)

∂λm

)T

, (1.6)

and

x∗(λ) = arg min
x∈X

L(x,λ). (1.7)

conv{H} is the convex hull of set H and the notation (·)T denotes vector transpose operator.
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Since g(λ) is concave, it can be shown that ∂g(λ) is a nonempty, convex, and compact

set [19, pp. 732]. Let s(λ) ∈ ∂g(λ) be the subgradient of g at λ. g(λ) is differentiable at

λ with gradient s(λ) = ∇g(λ) = ∇λL(x∗(λ),λ), if and only if there is only one element

∇g(λ) in ∂g(λ) (i.e., ∂g(λ) = {∇g(λ)} is a singleton) [19, pp. 732]. Otherwise, g(λ) is

non-differentiable at λ.

Using the subgradient projection method (or more specifically, the gradient projection

method if g(λ) is a differentiable function), we update λ according to the following equa-

tion:

λ(t+ 1) =
[

λ(t) + α(t)s
(
λ(t)

)]+

, (1.8)

where t is the index of the iteration, α(t) is the step size, and [z]+ = max{z, 0}. Note

that for gradient projection method, s(λ) is an improving feasible direction [23, pp. 590].

However, this may not be true for the subgradient projection method [22, pp. 461]. The

convergence of the subgradient projection method is due to the fact that the distance of

the current solution λ(t) to the optimal solution λ∗ decreases for sufficiently small step

size [22, pp. 462].

To study the convergence of the subgradient projection method, we need to assume that

the subgradients are bounded [22, pp. 471]. With the use of diminishing step size α(t) ≥ 0

such that limt→∞ α(t) = 0 and
∑∞

t=0 α(t) = ∞ (e.g., we can choose α(t) = 1+k
k+t

, where k is

a positive constant [19, pp. 624]), it can be shown that the subgradient projection method

can obtain the optimal solution λ∗ of problem (1.4) [22, pp. 478]. However, with the use

of fixed step size α(t) = α, it is only guaranteed to converge to within some bounds of

the optimal value [22, pp. 473]. For differentiable function g(λ), with the use of fixed step

size, it is guaranteed to converge to the optimal solution λ∗, provided that α is sufficiently

small and the gradient satisfies a Lipschitz continuity condition [19, pp. 240].

Let p⋆ and d⋆ be the optimal values of the primal problem (1.1) and the dual problem
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(1.4), respectively. We can establish the lower bound on the optimal value of the primal

problem by the weak duality theorem [19, pp. 495]).

Theorem 1.1 (Weak Duality Theorem) d⋆ ≤ p⋆.

After we have obtained the optimal solution λ∗ of the dual problem (1.4), we may want

to check if we can use λ∗ to obtain the optimal solution of the primal problem (1.1). This

is done possible by the following theorem.

Theorem 1.2 If g(λ) is differentiable at λ∗ and x∗ is the unique minimum in x of

L(x,λ), then (x∗,λ∗) is a saddle point of the primal problem (1.1). Thus, x∗ is the

global optimal solution of the primal problem (1.1).

The results follow from [20, Property 6.5(c), Theorem 5.3]. Even if we cannot obtain the

primal optimal solution from the dual optimal solution, we can still find a good approximate

solution to the primal problem based on the dual solution. Consider the following perturbed

problem

minimize
x

f0(x)

subject to fi(x) ≤ fi(x
∗
(
λ)
)
, i = 1, . . . , m,

x ∈ X ,

(1.9)

where x∗(λ) is defined in (1.7).

Theorem 1.3 For any λ � 0, x∗(λ) is a global optimal solution of the perturbed problem

(1.9).

The results follow from [20, Property 6.6]. As a result, if the term fi(x
∗
(
λ)
)

is not much

larger than zero for all i (i.e., there is only a small violation of the inequality constraints),

we may obtain an acceptable practical solution using the dual algorithm [19, pp. 602].
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1.2.2 Game Theory

In some problems, we need to model the interaction among multiple rational users with

strategic interdependence [27] in a wireless network. Game theory is a useful mathematical

tool for analyzing the strategic interactions of the players and predicting the final outcome.

Here, we introduce two main branches in game theory, namely the non-cooperative game

theory and coalitional game theory (also known as cooperative game theory). However,

their names may be misleading in that the former does not apply exclusively to situations

where the interests of different players conflict (e.g., the result of using cooperative strate-

gies in the prisoner’s dilemma in a repeated game), and the latter does not consider only

situations where the interests of players align with each other (e.g., the grand coalition may

not be stable in some cases that the players choose not to cooperate as one coalition). In

other words, it is possible that the players cooperate in non-cooperative game theory and

does not cooperate in coalitional game theory. The essential differences between these two

branches lies in the modeling unit, where the modeling unit for the former is an individual

player, while that for the latter is a group of players [24]. In addition, we discuss the theory

of mechanism design, which the players have private preferences on the available options,

and the preferences are not publicly observable.

Non-cooperative Game Theory

In a non-cooperative game, there are four ingredients that characterize the game [27]: the

players, the rules (e.g., the order of the players in making a move), the outcome (i.e., the

result after the players have chosen their actions), and the payoff (i.e., the utility function

that ranks the preference of a player towards different outcomes).

One way of classifications in non-cooperative game theory is to classify the games into

two categories: strategic game (also known as static game) or extensive game (also known
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as dynamic game). In a static game, each player chooses his action once and for all, and all

the players make their moves simultaneously. Given the assumptions about the preference,

rationality, and information available of each player, solution concepts are defined that

characterize the possible outcomes of a game. Examples of solution concepts include Nash

equilibrium, Pareto optimality, dominant strategy, Bayesian-Nash equilibrium, maxmin

strategy, minmax strategy, minimax regret, correlated equilibrium [24–27].

In contrast, in a dynamic game, the events are ordered sequentially that the players

may choose their actions at different time instants. The players are interacted sequentially,

which the strategy of one player is conditioned on the strategies of the other players.

Solution concepts, such as subgame perfect Nash equilibrium and perfect Bayesian-Nash

equilibrium, are commonly used in a dynamic game.

Coalitional Game Theory

Different from noncooperative game theory, coalitional game theory focuses on on what a

group or some groups of players can achieve rather than on what individual players can

achieve. Formally, a coalitional game G is defined as a pair (N , v), where

• N is the set of players or the grand coalition.

• v is the value of a coalition S ⊆ N . For a transferable utility (TU) game [24], we have

v(S) ∈ R, which is a scalar. Otherwise, for a nontransferable utility (NTU) game,

v(S) ∈ R
|S|, which is a vector that represents the payoff of each player in coalition

S.

In fact, there are different categories of coalitional game, which includes the canonical

coalitional game and coalition formation game [30]. For the canonical coalitional game, a

superadditive game is considered. For a TU game, it is defined as follows:
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Definition 1.1 A coalitional game G is superadditive if v(S1∪S2) ≥ v(S1)+v(S2), ∀S1,S2 ⊂

N with S1 ∩ S2 = φ.

It means that the formation of a large coalition by cooperation out of disjoint coalitions

achieves at least the sum of the value achieved by the disjoint coalitions individually.

Solution concepts, such as the core and the Shapley value, are usually used to analyze the

coalitional game. The core is used to analyze the stability of the grand coalition. Because

of the superadditivity of the game, the players have an incentive to form the grand coalition

N that consists of all the players. The core characterizes if it is possible that a subset of

players may opt out of the grand coalition to form a smaller coalition, where the players

in the smaller coalition receive higher utilities than when they participate in the grand

coalition. The Shapley value is related to fairly dividing the payoff, achieved by the grand

coalition, among the players. It is fair in the sense that the division of the payoff among

the players is related to the contribution of each player to a coalition. Other useful solution

concepts for superadditive game include the nucleolus, the kernel, the bargaining set, and

the Nash bargaining solution [24].

For games that are not superadditive, we may consider the problem of coalition for-

mation [30]. We define a coalition structure as a partition of the set of players N into

a number of disjoint coalitions. Let the value of a coalition structure be the sum of the

values of all the coalitions in the coalition structure. If the game is superadditive, coali-

tion structure generation is trivial because the coalition structure with the largest value is

the grand coalition. For the formation of coalitions based on maximizing the value of the

coalition structure, the merge-and-split algorithm can be used to find a stable coalition

structure [30, 31]. Stability concepts such as Dhp-stability and Dc-stability can be applied

to study the stability of the coalition structure after the merge-and-split operations. For

the formation of coalitions based on the individual preferences of the players, hedonic coali-
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tion formation game can be used [30, 32, 33]. We can characterize the stability of the final

coalition structure by testing if it is Nash-stable or individually stable.

Mechanism Design Theory

Mechanism design is a sub-field in microeconomics and game theory that considers how to

implement a desirable solutions with self-interested players, each with private information

about their preferences [25, 27, 34]. Since the players’ actual preferences are not publicly

known, it is important to elicit this information from the rational players so that a so-

cially favourable outcome can be implemented. Famous examples of mechanism design

includes the Vickrey-Clarke-Groves (VCG) mechanism and the dAGVA mechanism due to

d’Aspremont, Gerard-Varet, and Arrow. There are a number of properties that can be

used to characterize the operation of a mechanism. They include incentive compatibility

(i.e., whether the players will reveal their true preferences), efficiency (i.e., whether the

allocation results in the maximum aggregate utility in the system), budget balance (i.e.,

whether there is a net transfer of payment from or to the mechanism), and individual

rationality (i.e., whether a player has the intention to participate in the system).

1.2.3 Dynamic Programming

In some problems, we need to make decisions sequentially, which have both short-term and

long-term consequences. In order to achieve the optimal performance, we need to take into

account the relationship between the current and future decisions, and that between the

current and future outcomes. Dynamic programming is a collection of mathematical and

computational tools for analyzing this type of sequential decision problems. Specifically,

there are five key ingredients in a sequential decision problem [28]:

1. Decision epoch: t ∈ T , where T represents the set of time points at which decisions
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can be made. Notice that T can be either finite or infinite, and either discrete or

continuous. In this chapter, we focus on a discrete-time finite-horizon problem with

T = {1, . . . , T}, where T is the total number of decision time points.

2. State: s ∈ S, where S represents the set of states. It summarizes the past information

that is relevant for future optimization.

3. Action: a ∈ A, where A represents the set of actions that the decision maker can

take.

4. State transition probability : pt(s
′|s, a) represents that the probability that the system

will be in state s′ at time t+ 1 if action a is taken in state s at time t.

5. Cost : ct(s, a) represents the immediate cost incurred by choosing action a in state s

at time t ∈ T . For a discrete-time finite-horizon problem with T = {1, . . . , T}, we

define ĉT+1(s) as the terminal cost when the system is in state s at time t = T + 1

(i.e., after all the decision epochs).

Let δt : S → A be the decision rule that specifies the decision at state s at time t ∈ T .

We define a policy π = (δt(s), ∀ s ∈ S, t ∈ T ) as a set of decision rules covering all the

states at all the time. We denote sπ
t as the state at time t if policy π is used, and we let Π

be the feasible set of π. The decision maker aims to find an optimal policy that minimizes

the total expected cost, which can be formulated as the following optimization problem

min
π∈Π

Eπ,S

T∑

τ=1

ct

(

sπ
t , δt(s

π
t )
)

+ ĉT+1(s
π
T+1), (1.10)

where Eπ,S denotes the expectation with respect to the probability distribution by policy π

with an initial state S at time t = 1. Besides the finite-horizon decision problem described
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in this chapter, it is also possible to consider a infinite-horizon problem with discounted

cost or average cost [28].

Finite-Horizon Dynamic Programming

Let vt(s) be the minimal expected total cost that the decision maker has to pay from time

t to time T +1, given that the system is in state s immediately before the decision at time

slot t ∈ T . The optimality equation [28, pp. 83] relating the minimal expected total cost

at different states for t ∈ T is

vt(s) = min
a∈A

{ψt(s, a)}, (1.11)

where

ψt(s, a) = ct(s, a) +
∑

s′∈S

pt

(
s′ | s, a

)
vt+1(s

′) (1.12)

The first and second terms on the right hand side of the equation above are the immediate

cost and the expected future cost in the remaining decision epochs for choosing action a,

respectively. For time t = T + 1, we have the boundary condition that

vT+1(s) = ĉT+1(s). (1.13)

By evaluating the optimality equation (1.11) recursively from t = T to t = 1 starting

from the boundary condition in (1.13) (i.e., using backward induction [28, pp. 92]), we can

obtain the optimal policy π∗ = (δ∗t (s), ∀ s ∈ S, t ∈ T ), where

δ∗t (s) = arg min
a∈A

{ψt(s, a)}. (1.14)
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The policy π∗ obtained is the optimal solution of problem (1.10) [29, pp. 18]. In fact, π∗

is a contingency plan that contains information about the optimal decisions in all possible

states s at all time t ∈ T .

Threshold Optimal Policy

In some special cases, the optimal policy π∗ may have a threshold structure. Consider an

example with an action set A = {a1, a2}, where a1 and a2 are distinct actions. The optimal

policy is said to have a threshold structure, if for all t ∈ T , we have

δ∗t (s) =







a1, if s ≤ s∗t ,

a2, otherwise.
(1.15)

where s∗t is a control limit. Establishing a threshold policy is appealing, because the decision

rule is easier to implement and the computational complexity in obtaining the optimal

policy can be reduced significantly [28, pp. 103]. Moreover, memory can be saved, because

we do not need to store the decision rules in all states at all time (i.e., δ∗t (s), ∀ s ∈ S, t ∈ T ),

but just the set of thresholds (s∗t , ∀ t ∈ T ) in order to characterize the optimal policy π∗.

In addition, it may provide useful insight into the structure of the problem.

To establish a threshold policy, one useful step is to check if the expected total cost

ψt(s, a) is supermodular or submodular.

Definition 1.2 A function ψt(s, a) is supermodular in S ×A if for ŝ, š ∈ S and â, ǎ ∈ A,

where ŝ ≥ š and â ≥ ǎ, we have

ψt(ŝ, â) + ψt(š, ǎ) ≥ ψt(ŝ, ǎ) + ψt(š, â). (1.16)

If the reverse inequality holds, then ψt(s, a) is submodular.
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If we can establish the supermodularity or submodularity of the function ψt(s, a), we

can show directly that the optimal policy π∗ has a threshold structure by the following

theorem:

Theorem 1.4 a) If ψt(s, a) is a supermodular function in S × A, then δ∗t (s) is a nonin-

creasing function in S. b) If ψt(s, a) is a submodular function in S × A, then δ∗t (s) is a

nondecreasing function in S.

The result follows from [28, pp. 104, 115]. With a threshold structure, we can apply

the monotone backward induction [28, pp. 111] with a lower computational complexity to

obtain the optimal policy π∗.

1.3 Summary of Results and Contributions

The thesis covers several analytical MAC design problems in different types of wireless

networks, which includes CRNs, WLANs, and VANETs. The results are divided into four

chapters. The contributions in each chapter are as follows:

• Chapter 2 considers the problem of multi-channel random access in CRNs. While

most of the previously proposed MAC protocols for CRNs are heuristic and are based

on the simplistic protocol model, we design a distributed MAC protocol using the

more accurate SINR model. First, we assume that the secondary users are coopera-

tive and formulate the problem of assigning transmission and listening probabilities

for random access as a non-convex NUM problem. We propose a three-phase algo-

rithm that converges to a near-optimal solution after solving a number of convex

optimization problems distributively. Simulation results show that our proposed al-

gorithm based on the SINR model achieves a higher aggregate throughput than other

schemes which are based on the protocol model. Then, we consider the case that the
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secondary users are rational. We use coalitional game theory to study the incentive

issues of user cooperation in a given channel for the SINR model. In particular, we

use the solution concept of the core to analyze the stability of the grand coalition,

and the solution concept of the Shapley value to fairly divide the payoff among the

users. We show that the Shapley value lies in the core when all the users are one-

hop neighbours of each other. We illustrate the Shapley value and the core with a

numerical example. The work in Chapter 2 is published in [35].

• Chapter 3 considers the incentive issues of access category (AC) declaration in a

WLAN, where any rational station can strategically declare an AC which is not

intended for its application in order to gain an unfair share of the network resources.

We first apply game theory to analyze the behaviour of the rational stations. We then

propose to use the VCG mechanism to motivate each station to declare truthfully

the required AC of its application to the AP. The AP will then inform each station

about its transmission probability and the price that the station needs to pay for the

offered service. Furthermore, we consider the implementation of the VCG mechanism

in a WLAN with both elastic (e.g., file transfer) and inelastic (e.g., real-time video)

traffic. By modeling the utilities of mobile stations with concave, step, and quasi-

concave utility functions, we show that implementing the VCG mechanism involves

solving a non-convex network utility maximization problem optimally. We propose

an enumeration algorithm to obtain the global optimal solution by solving a number

of convex optimization problems. Simulation results show that a truthful mechanism

prevents selfish users from gaining an unfair share of the network bandwidth and

supports adequate service differentiation among different ACs. The work in Chapter

3 is published in [36].

• Chapter 4 extends the work of random access in a WLAN with both elastic and
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inelastic traffic in Chapter 3. The utilities of the applications generating elastic and

inelastic traffic are modeled by concave and sigmoidal functions, respectively. We

formulate a NUM problem, where the optimization variables are the transmission

probabilities of the stations. By applying the dual decomposition method, we propose

a subgradient algorithm to solve the formulated NUM problem. We also develop

closed-form solutions for the dual subproblems involving sigmoidal functions that

have to be solved in each iteration of the proposed algorithm. Furthermore, we

obtain a sufficient condition on the link capacities which guarantees achieving the

global optimal solution when our proposed algorithm is being used. If this condition

is not satisfied, then we can still guarantee that the optimal value of the objective

function is within some lower and upper bounds. We perform various simulations to

validate our analytical models when the available link capacities meet or do not meet

the sufficient optimality condition. The work in Chapter 4 is published in [37].

• Chapter 5 considers the problem of random access in a drive-thru scenario, where

roadside APs are installed on a highway to provide temporary Internet access for

vehicles. We consider V2R communications for a vehicle that aims to upload a file

when it is within the APs’ coverage ranges, where both the channel contention level

and transmission data rate vary over time. The vehicle will pay a fixed amount

each time it tries to access the APs, and will incur a penalty if it cannot finish

the file uploading when leaving the APs. First, we consider the problem of finding

the optimal transmission policy in an AP with random vehicular traffic arrival. We

formulate it as a finite-horizon sequential decision problem, solve it using dynamic

programming (DP), and design a general dynamic optimal random access (DORA)

algorithm. We determine the conditions under which the optimal transmission policy

has a threshold structure. A monotone DORA algorithm with a lower computational

19



Chapter 1. Introduction

complexity is proposed for this special case. Next, we consider the problem of finding

the optimal transmission policy in multiple APs with deterministic vehicular traffic

arrival due to traffic estimation. The optimal transmission policy is obtained using

DP and a joint DORA algorithm is proposed. Simulation results based on realistic

vehicular traffic model show that our algorithms achieve the minimal total cost and

the highest upload ratio as compared with some other heuristic schemes. The work

in Chapter 5 is published in [38, 39].

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we study the multi-channel

random access problem using the SINR model, and propose a distributed algorithm to

obtain a near-optimal solution. We also study the interactions of the rational users in single

channel under the SINR model using coalitional game theory. In Chapter 3, we study the

incentive issues of AC declaration of the rational users. We apply the VCG mechanism to

motivate the users to declare their ACs truthfully. To implement the VCG-based random

access with concave, quasi-concave, and step utility functions, an enumeration algorithm

is proposed to obtain the optimal solution of the NUM problem. In Chapter 4, we focus

on users with sigmoidal and concave utility functions. A subgradient algorithm based on

the dual method is proposed that can obtain the optimal solution if a sufficient condition

on link capacities is satisfied. Otherwise, it can be used to obtain a near-optimal solution

with the lower and upper bounds of the optimal value of the objective function. Finally, in

Chapter 5, we study uplink random access in VANETs. Both the single-AP and multiple-

AP scenarios are studied, and DORA algorithms that minimizes the total transmission cost

in a finite horizon are proposed. Each of the main chapters in this thesis is self-contained

and included in separate journal articles or conference papers. A review of the related
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work is given for each chapter accordingly. The notations are defined separately for each

chapter.
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Chapter 2

Multi-channel SINR-based Random

Access and Coalitional Game

In the throughput analysis of multi-channel MAC protocols in CRNs, such as [40, 41], the

protocol model or unit disk model [42] is widely used to account for the effect of multi-user

interference due to its simplicity in characterizing the physical layer. Under the protocol

model, a transmission is successful if the receiver is within the transmission range of its

intended transmitter and outside the interference range of other transmitters. However, in

reality, the interference at the receiver is the cumulative power received from other nodes

that are concurrently transmitting. As a result, the signal-to-interference-plus-noise-ratio

(SINR) model or physical model [42] characterizes the effect of interference more accurately.

Under the SINR model, a transmission is successful if and only if the SINR at the intended

receiver is above a predefined threshold that depends on the adopted modulation and

coding schemes. Despite its higher complexity, the SINR model is getting more attention

in recent years due to its higher practicality and accuracy in modeling. Some recent

works have investigated contention-based random access protocols [43, 44] and collision-

free scheduling protocols [45, 46] using the SINR model.

Since most of the proposed multi-channel MAC protocols for CRNs are heuristic in

nature and apply the simplistic protocol model, in this chapter, we propose a distributed

random access protocol for CRNs, which is based on the multi-channel SINR model and

the mathematical framework of network utility maximization (NUM). In particular, we
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extend the mathematical models in [44] and [47], where the former focused on the single-

channel SINR model, while the latter focused on the multi-channel protocol model. The

resulting non-convex optimization problem is more difficult to solve than the problems

in [44] and [47]. In particular, our problem involves the dimension of channel selection

which was absent in [44], and entails a more accurate and complex interaction among the

users due to the SINR model which was absent in [47]. We propose a distributed three-

phase algorithm using convex optimization and the coordinate ascent method to obtain a

near-optimal solution for the non-convex NUM problem. Simulation results show that the

proposed scheme based on the SINR model achieves a higher aggregate throughput than

other schemes which are based on the protocol model.

In the formulation of the NUM problem, we assume that all the secondary users are

cooperative. Thus, an interesting question is what happens if the users are rational and they

aim to maximize their own utilities? Previous works, such as [48, 49] use non-cooperative

game theory to analyze the behaviour of rational users in CRNs. However, this approach

is more appropriate for analyzing the behaviour of individual rational users. To analyze

what a group of rational users can achieve under the SINR model, where the effect of

interference is cumulative, coalitional game theory [24] is a more suitable tool. Coalitional

game theory has found many applications in communication networks [10, 30, 50]. In

[50], it was applied to study the behaviour of users under the SINR model. However, [50]

investigated cooperative communications, whereas we consider random access in CRNs. In

summary, the contributions of this chapter are as follows:

• We first assume that the secondary users are cooperative. We formulate the problem

of random access with multiple channels as a NUM problem using the SINR model,

where the optimization variables are the transmission and listening probabilities of

the users.
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• We propose a distributed three-phase algorithm using convex optimization and the

coordinate ascent method to obtain a near-optimal solution for the non-convex NUM

problem.

• We then study the case where the secondary users are rational. We formulate the

problem as a coalitional game to analyze the interactions among the users under the

SINR model. We apply the solution concepts of the core and the Shapley value [24]

to characterize the stability and fair allocation of the aggregate utility among the

rational users, respectively. We show that the Shapley value lies in the core when all

users are one-hop neighbours.

• Simulation results show that the proposed scheme based on the SINR model achieves

a higher aggregate throughput than other schemes which are based on the protocol

model. A numerical example is given to illustrate both the Shapley value and the

core.

The rest of this chapter is organized as follows. We present the related work in Section

2.1. The system model is described in Section 2.2. We formulate the random access problem

in Section 2.3 and present our distributed algorithm in Section 2.4. The coalitional game

is discussed in Section 2.5 and simulation results are presented in Section 2.6. A summary

is given in Section 2.7.

2.1 Related Work

Several multi-channel MAC protocols have been proposed for CRNs. In [51], Cordeiro

et al. proposed a distributed cognitive MAC protocol that includes a slotted beaconing

period for nodes to negotiate on the channel usage. A rendezvous channel is used to coor-

dinate nodes tuned to different channels. Su et al. proposed in [40] two sensing policies for
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User 1
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User 3
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p1
(1)

p1
(2)

q1
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q1
(2)

p2
(1)

p2
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q2
(1)

q2
(2)

Data Channel 1

Data Channel 2

p3
(1)

p3
(2)

q3
(1)

q3
(2)

Figure 2.1: A CRN with set of users N = {1, 2, 3}, where the triangles and circles represent
the transmitters and receivers, respectively. The set of available orthogonal data channels
C = {1, 2} is provided by the primary BS. p

(c)
i and q

(c)
i denote the transmission and listening

probabilities for user i in channel c, respectively.

the physical layer and a packet scheduling algorithm for the MAC layer of a distributed

CRN. Queueing theory was used to evaluate the throughput and delay in saturated and

non-saturated networks under the proposed sensing policies. Jia et al. proposed in [52] a

hardware-constrained cognitive MAC protocol that coordinates the contention and spec-

trum usage among the secondary users. Practical constraints related to hardware, sensing,

and transmission were considered. Timmers et al. proposed in [41] an energy-efficient dis-

tributed multi-channel MAC protocol for a multi-hop CRN, which is based on the timing

structure of the power-saving mode used in the IEEE 802.11 standard.

2.2 System Model

As shown in Fig. 2.1, we consider a CRN with several secondary nodes located in a

neighbourhood, where a set of orthogonal data channels C and one control channel are

obtained from the primary base station (BS), e.g, in the form of spectrum leasing. The data

channels are used for data transmissions, and the control channel is used for the exchange

of control messages. The total number of data channels is C = |C|. We consider only
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single-hop transmissions between the secondary nodes. We define N as the set of one-hop

transmitter/receiver pairs or links in the CRN, and we refer to each transmitter/receiver

pair as a user. The total number of users is N = |N |. We adopt a slotted MAC protocol,

where time is divided into equal time slots. The users attempt to access the shared channel

at the beginning of each time slot according to their transmission probabilities in each

channel. That is, each user i ∈ N can access a channel c with a certain transmission

probability p
(c)
i , and we define a vector p = (p

(c)
i , ∀ i ∈ N , c ∈ C). Also, we introduce

a vector q = (q
(c)
i , ∀ i ∈ N , c ∈ C), where q

(c)
i is the listening probability of receiver i in

channel c. We have the following constraints:

∑

c∈C

p
(c)
i ≤ 1 and

∑

c∈C

q
(c)
i ≤ 1, ∀ i ∈ N . (2.1)

For the SINR model, if user i ∈ N chooses to transmit in channel c ∈ C, then the SINR

at receiver i is given by

θ
(c)
i =

PiG
(c)
ii

ι
(c)
i + n

(c)
i

, (2.2)

where Pi is the transmit power of user i. G
(c)
ij is the channel gain from the transmitter of

user i to the receiver of user j in channel c. ι
(c)
i and n

(c)
i are the interference and noise

powers received by user i in channel c, respectively. Given that receiver i has tuned to

channel c for reception, the communication of user i is successful if

θ
(c)
i ≥ θth

i ⇔ ι
(c)
i ≤ PiG

(c)
ii

θth
i

− n
(c)
i , (2.3)

where θth
i is the SINR threshold. Let Ni be the power set (i.e., the set of all subsets) of

N\{i}. As an example, for N = {1, 2, 3}, N2 = {{}, {1}, {3}, {1, 3}}. Assuming that the

transmit powers (Pi, ∀ i ∈ N ) are fixed, we define M
(c)
i as a set where each element is a

set of users that can transmit simultaneously with user i without affecting the reception
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of receiver i in channel c (i.e., θth
i can be achieved). The set M

(c)
i obtained with the SINR

model is given by

M
(c)
i,SINR =

{

M ∈ Ni :
∑

m∈M

PmG
(c)
mi ≤

PiG
(c)
ii

θth
i

− n
(c)
i

}

. (2.4)

If the protocol model is used, only pairwise interference is considered. User m is an

interferer or one-hop neighbour to user i if the SINR due to the interference from user m

only is below the SINR threshold. That is,

PiG
(c)
ii

PmG
(c)
mi + n

(c)
i

< θth
i . (2.5)

The set M
(c)
i obtained with the protocol model is given by

M
(c)
i,PTC =

{

M ∈ Ni : PmG
(c)
mi ≤

PiG
(c)
ii

θth
i

− n
(c)
i , ∀m ∈ M

}

. (2.6)

Intuitively, more users are allowed to transmit simultaneously in the protocol model

than in the SINR model. This is confirmed by the following lemma.

Lemma 2.1 M
(c)
i,SINR ⊆ M

(c)
i,PTC.

Proof : Observing the fact that
∑

m∈M PmG
(c)
mi ≤ PiG

(c)
ii

θth
i

− n
(c)
i in (2.4) implies PmG

(c)
mi ≤

PiG
(c)
ii

θth
i

− n
(c)
i , ∀m ∈ M in (2.6), it follows directly that M

(c)
i,SINR ⊆ M

(c)
i,PTC . �

Example 2.1 We consider Fig. 2.1 where the transmit powers of all users are the same.

Assuming that all users have selected channel 1, at a certain transmit power level P ,

we can observe the following: Since transmitter 1 is close to receivers 2 and 3, user 1

interferes with users 2 and 3. However, since transmitters 2 and 3 are far away from

receiver 1, users 2 and 3 do not interfere with user 1 as long as they do not transmit
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simultaneously. Users 2 and 3 are far from each other and do not interfere with each other.

For the protocol model, we have M
(1)
1,PTC = {{}, {2}, {3}, {2, 3}}, M

(1)
2,PTC = {{}, {3}}, and

M
(1)
3,PTC = {{}, {2}}. However, the protocol model does not take into account that user 1

may be interfered when both users 2 and 3 transmit simultaneously. In this case, we have

M
(1)
1,SINR = {{}, {2}, {3}} ⊂ M

(1)
1,PTC, M

(1)
2,SINR = M

(1)
2,PTC, and M

(1)
3,SINR = M

(1)
3,PTC.

The probability of successful transmission of user i in channel c is given by

p
succ,(c)
i = p

(c)
i q

(c)
i

∑

M∈M
(c)
i

(
∏

m∈M

p(c)
m

)(
∏

k∈N\M,k 6=i

(1 − p
(c)
k )

)

. (2.7)

We define Mi =
{
M

(c)
i , ∀ c ∈ C

}
. The average data rate of user i is given by

ri(p, qi,Mi) =
∑

c∈C

µ
(c)
i p

succ,(c)
i , (2.8)

where µ
(c)
i is the peak data rate for user i in channel c, and vector qi =

(
q
(c)
i , ∀ c ∈ C

)

contains the listening probabilities of receiver i in all the channels. Given p and qi, we have

the following lemma, which states that the average data rate ri is over-estimated when the

protocol model is used.

Lemma 2.2 ri(p, qi,Mi,PTC) ≥ ri(p, qi,Mi,SINR).

Proof : From (2.8) and Lemma 2.1, we have

ri(p, qi,Mi,PTC) = ri(p, qi,Mi,SINR) +
∑

c∈C

µ
(c)
i p

(c)
i q

(c)
i

×
∑

M∈M
(c)
i,PTC

\M
(c)
i,SINR

(
∏

m∈M

p(c)
m

)(
∏

k∈N\M,k 6=i

(1 − p
(c)
k )

)

(2.9)

≥ ri(p, qi,Mi,SINR), (2.10)
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which completes the proof. �

For the rest of this chapter, we assume that sets M
(c)
i in (2.4) and (2.6) are given, so

we write ri(p, qi,Mi) as ri(p, qi) for simplicity.

2.3 Network Utility Maximization

We now formulate the multi-channel random access problem as a NUM problem with

vectors p and q as the optimization variables. The NUM problem is given by

maximize
p, q

∑

i∈N

Ui

(
ri(p, qi)

)

subject to
∑

c∈C p
(c)
i ≤ 1,

∑

c∈C q
(c)
i ≤ 1, ∀ i ∈ N ,

0 ≤ p
(c)
i , q

(c)
i ≤ 1, ∀ i ∈ N , c ∈ C,

(2.11)

where Ui

(
ri(p, qi)

)
is a concave and non-decreasing function in ri(p, qi). However, due to

the product form of the variables in (2.7), problem (2.11) is non-convex, even if the utility

functions are concave. As a result, the problem is difficult to solve in general. An example

of a concave utility function useful for resource allocation is the α-fair function [53] defined

as

Ui(ri)=







(1 − αi)
−1r1−αi

i , if αi ∈ [0, 1) ∪ (1,∞),

ln ri, if αi = 1,

∀ i ∈ N . (2.12)

Intuitively, ri increases when p
(c)
i increases or when p

(c)
j decreases, j 6= i. This is

confirmed by the following lemma:

Lemma 2.3 For i ∈ N , we have: (a) ri(p, qi) is a non-decreasing function of p
(c)
i , ∀ c ∈ C.

(b) ri(p, qi) is a non-increasing function of p
(c)
j , ∀ j ∈ N\{i}, c ∈ C.
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Proof : (a) From (2.8), ri can be written in the form ri(p, qi) =
∑

c∈C x
(c)
i p

(c)
i , where

x
(c)
i = µ

(c)
i q

(c)
i

∑

M∈M
(c)
i

(
∏

m∈M

p(c)
m

)


∏

k∈N\M,k 6=i

(1 − p
(c)
k )



 . (2.13)

Since x
(c)
i ≥ 0 and it is independent of p

(c)
i , ri(p, qi) is a non-decreasing function of p

(c)
i , ∀ c ∈

C.

(b) Let j ∈ N\{i} be given. We first define two sets of users that exclude users i and

j:

S̃(c)
i,j =

{

S : S ∈ N\{i, j},S ∈ M
(c)
i ,S ∪ {j} ∈ M

(c)
i

}

(2.14)

and
Ŝ(c)

i,j =

{

S : S ∈ N\{i, j},S ∈ M
(c)
i ,S ∪ {j} /∈ M

(c)
i

}

. (2.15)

From (2.8), we can write ri as

ri(p, qi) =
∑

c∈C

µ
(c)
i p

(c)
i q

(c)
i

[
∑

S∈S̃
(c)
i,j

(
∏

s∈S

p(c)
s

)(
∏

k∈N\S,k 6=i,j

(1 − p
(c)
k )

)

+

∑

S∈Ŝ
(c)
i,j

(
∏

s∈S

p(c)
s

)(
∏

k∈N\S,k 6=i,j

(1 − p
(c)
k )

)

(1 − p
(c)
j )

]

, (2.16)

which is a non-increasing function of p
(c)
j , ∀ c ∈ C. �

Although it is possible that the users may occupy more than one channel at an optimal

solution, we can show based on Lemma 2.3 that we can always find another optimal solution

where each user occupies only one channel.
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Theorem 2.1 A global optimal solution of problem (2.11), (p∗, q∗), is in the form:

p
(c)∗
i







∈ [0, 1], if c = ci,

= 0, otherwise,

and q
(c)∗
i =







1, if c = ci,

0, otherwise,

(2.17)

where ci is the channel chosen by user i.

Proof : Assume that (p, q) is feasible in problem (2.11), but p and q are not in the form

of (2.17). From (2.8), we have

ri(p, qi) =
∑

c∈C

s
(c)
i (p)q

(c)
i , (2.18)

where

s
(c)
i (p) = µ

(c)
i p

(c)
i

∑

M∈M
(c)
i

(
∏

m∈M

p(c)
m

)(
∏

k∈N\M,k 6=i

(1 − p
(c)
k )

)

. (2.19)

We define

ci = arg max
c∈C

s
(c)
i (p), ∀ i ∈ N , (2.20)

and q∗
i = (q

(c)∗
i , ∀ i ∈ N , c ∈ C), where

q
(c)∗
i =







1, if c = ci,

0, otherwise.

(2.21)

We have

ri(p, qi) =
∑

c∈C

s
(c)
i (p)q

(c)
i ≤ s

(ci)
i (p) = ri(p, q

∗
i ), ∀ i ∈ N , (2.22)

where the inequality in the middle is due to the definition of ci in (2.20) and the fact that
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∑

c∈C q
(c)∗
i ≤ 1. Since Ui(ri) is a non-decreasing function in ri, ∀ i ∈ N , we have

∑

i∈N

Ui

(
ri(p, qi)

)
≤
∑

i∈N

Ui

(
ri(p, q

∗
i )
)
. (2.23)

Given q∗, we have

ri(p, q
∗
i ) = µ

(ci)
i p

(ci)
i

∑

M∈M
(ci)
i

(
∏

m∈M

p(ci)
m

)


∏

k∈N\M,k 6=i

(1 − p
(ci)
k )



 . (2.24)

Since p is not in the form as shown on the left hand side of (2.17), there exists c 6= ci

such that p
(c)
i > 0. We define p∗ = (p

(c)∗
i , ∀ i ∈ N , c ∈ C), where

p
(c)∗
i =







p
(c)
i , if c = ci,

0, otherwise.

(2.25)

Notice that ri in (2.24) is independent of p
(c)
i for c 6= ci, and it is a non-increasing function

of p
(c)
j , ∀ j ∈ N\{i}, c ∈ C as shown in Lemma 2.3(b). Thus, we have

ri(p, q
∗
i ) ≤ ri(p

∗, q∗
i ), ∀ i ∈ N . (2.26)

Since Ui(ri) is a non-decreasing function in ri, ∀ i ∈ N , we have

∑

i∈N

Ui

(
ri(p, q

∗
i )
)
≤
∑

i∈N

Ui

(
ri(p

∗, q∗
i )
)
. (2.27)

Combining (2.23) and (2.27), we have

∑

i∈N

Ui

(
ri(p, qi)

)
≤
∑

i∈N

Ui

(
ri(p, q

∗
i )
)
≤
∑

i∈N

Ui

(
ri(p

∗, q∗
i )
)
. (2.28)
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To sum up, given any feasible point (p, q), we can always find another feasible point (p∗, q∗)

in the form of (2.25) and (2.21), which yields an objective value that is not smaller than

that for (p, q) and each user occupies only one channel. The result thus follows. �

2.4 Three-Phase Distributed Algorithm using

Sequential Convex Optimization

In this section, our goal is to solve non-convex NUM problem (2.11). We propose a low-

complexity three-phase algorithm where the transmitters and receivers have to solve a

number of convex optimization problems distributively. Convergence of the solution is

guaranteed.

2.4.1 Transmission Probability Optimization

We define the vector pi = (p
(c)
i , ∀ c ∈ C). Transmitter i ∈ N needs to solve the following

local optimization problem, which has the same objective function as problem (2.11):

maximize
pi

Ui

(
∑

c∈C

o
(c)
i p

(c)
i

)

+
∑

j∈N\{i}

Uj

(
∑

c∈C

(

v
(c)
ji p

(c)
i + w

(c)
ji

(

1 − p
(c)
i

))
)

subject to
∑

c∈C p
(c)
i ≤ 1, 0 ≤ p

(c)
i ≤ 1, ∀ c ∈ C,

(2.29)

where

o
(c)
i = µ

(c)
i q

(c)
i

∑

M∈M
(c)
i

(
∏

m∈M

p(c)
m

)


∏

k∈N\M,k 6=i

(

1 − p
(c)
k

)



, (2.30)

v
(c)
ji = µ

(c)
j p

(c)
j q

(c)
j

∑

M∈M
(c)
j : i∈M

(
∏

m∈M\{i}

p(c)
m

)(
∏

k∈N\M,k 6=j

(

1 − p
(c)
k

)
)

, (2.31)
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and

w
(c)
ji = µ

(c)
j p

(c)
j q

(c)
j

∑

M∈M
(c)
j : i/∈M

(
∏

m∈M

p(c)
m

)


∏

k∈N\M,k 6=j,i

(

1 − p
(c)
k

)



 . (2.32)

The coefficients o
(c)
i , v

(c)
ji , and w

(c)
ji should be computed by transmitter i based on the

broadcast messages from other transmitters and receivers.

Theorem 2.2 Problem (2.29) is a convex optimization problem in pi.

Proof : First, the constraints in problem (2.29) are linear. Also, as o
(c)
i , v

(c)
ji , and w

(c)
ji

are independent of p
(c)
i , and since the arguments within the utility functions are linear in

pi, the objective function is concave in pi [21, pp. 79]. Thus, problem (2.29) is a convex

optimization problem. �

Hence, we can solve problem (2.29) by using the interior point method [21].

2.4.2 Listening Probability Optimization

Receiver i ∈ N needs to solve the following local optimization problem with the same

objective function as problem (2.11).

maximize
qi

Ui

(
∑

c∈C

a
(c)
i q

(c)
i

)

+
∑

j∈N\{i}

Uj (rj(p, qj))

subject to
∑

c∈C q
(c)
i ≤ 1, 0 ≤ q

(c)
i ≤ 1, ∀ c ∈ C,

(2.33)

where

a
(c)
i = µ

(c)
i p

(c)
i

∑

M∈M
(c)
i

(
∏

m∈M

p(c)
m

)


∏

k∈N\M,k 6=i

(1 − p
(c)
k )



 . (2.34)
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Theorem 2.3 Let ci = arg maxc∈C a
(c)
i . A closed-form solution of problem (2.33) is

q
(c)∗
i =







1, if c = ci,

0, otherwise.
(2.35)

Proof : First, notice that a
(c)
i and

∑

j∈N\{i} Uj (rj(p, qj)) are independent of q
(c)
i . Since Ui is

a non-decreasing function, problem (2.33) is equivalent to the following linear programming

problem

maximize
qi

∑

c∈C

a
(c)
i q

(c)
i

subject to
∑

c∈C q
(c)
i ≤ 1,

0 ≤ q
(c)
i ≤ 1, ∀ c ∈ C,

(2.36)

the solution of which is given by (2.35). �

2.4.3 Three-Phase Distributed Algorithm

Having introduced the local optimization problems for the transmitter and receiver of

user i ∈ N , we are now ready to present Algorithm 2.1 for obtaining a near-optimal

solution of problem (2.11) based on the coordinate ascent method [54, pp. 207]. Let p−i =

(p1, . . . ,pi−1,pi+1, . . . ,pN) and q−i = (q1, . . . , qi−1, qi+1, . . . , qN). Considering transmitter

i, the basic idea of this method is that we fix p−i and q, and maximize the aggregate

utility
∑

i∈N Ui

(
ri(p, qi)

)
with respect to pi (i.e., problem (2.29)). Similarly, for receiver

i, we fix p and q−i, and maximize the aggregate utility
∑

i∈N Ui

(
ri(p, qi)

)
with respect to

qi (i.e., problem (2.33)). The updates of the solutions are carried out successively. Notice

that the solution of problem (2.33) as stated in Theorem 2.3 represents a channel selection.

Once the channel is selected by the receiver, the transmitter will not attempt to transmit

in other channels, to which the receiver is not listening. As a result, the receivers should
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defer their decisions of selecting a channel until after the transmitters have coordinated

their transmission probabilities.

With this idea, we propose our Algorithm 2.1 with three phases. In phase I, the receivers

are initialized to listen to each channel with a certain probability. The transmitters then

probe the channels by adjusting their transmission probabilities until the aggregate utility

converges. In phase II, each transmitter/receiver pair selects the channel that results

in the highest average data rate. The reason for choosing only one channel is given by

Theorem 2.1. In phase III, based on this channel selection, the transmitters adjust their

transmission probabilities again until the aggregate utility converges. After the execution

of Algorithm 2.1, the transmitters and receivers can proceed to transmit in and listen to

the data channels according to p∗ and q∗, respectively. In other words, in the control

stage, Algorithm 2.1 is executed to determine p∗ and q∗. In the transmission stage, data

transmissions take place based on p∗ and q∗.

In Algorithm 2.1, Ti is the set of time slots in which user i ∈ N solves the local

optimization problem in the control stage. Also, we use variable u to keep track of the

aggregate utility achieved in the previous iteration, and we let u∗(t) be the aggregate

utility achieved in iteration t. The algorithm transitions from phase I to phase II and

from phase III to the exit if the difference ∆ = u∗(t) − u is less than the predefined

convergence threshold ǫ. The complexity of Algorithm 2.1 is relatively low because it

involves solving only convex problem (2.29) and evaluating closed-form equation (2.35).

Thus, it is reasonable to assume that users in CRNs have the computational capabilities

to perform these mathematical operations.
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Algorithm 2.1 Three-Phase Distributed Algorithm to Obtain a Near-optimal Solution for
Problem (2.11).

1: Initialize p∗ such that
∑

c∈C p
(c)∗
i ≤ 1, ∀ i ∈ N , and 0 ≤ p

(c)∗
i ≤ 1, ∀ i ∈ N , c ∈ C

2: Initialize q∗ such that
∑

c∈C q
(c)∗
i ≤ 1, ∀ i ∈ N , and 0 ≤ q

(c)∗
i ≤ 1, ∀ i ∈ N , c ∈ C

3: Set the convergence threshold ǫ > 0
4: Set the iteration counter t := 1
5: Set u := −∞ and ∆ := ∞
6: Phase I: Channel Probing
7: while ∆ > ǫ
8: for each transmitter i ∈ N
9: If t ∈ Ti then

10: Calculate o
(c)
i , ∀ c ∈ C using (2.30)

11: Calculate v
(c)
ji , ∀ j ∈ N\{i}, c ∈ C using (2.31)

12: Calculate w
(c)
ji , ∀ j ∈ N\{i}, c ∈ C using (2.32)

13: Solve problem (2.29) to obtain the solution p∗
i

14: Broadcast p∗
i to other users using the control channel

15: Set u∗(t) :=
∑

i∈N Ui

(
ri(p

∗, q∗
i )
)

16: Set t := t+ 1
17: end if
18: end for
19: Set ∆ := u∗(t) − u and u := u∗(t)
20: end while
21: Phase II: Channel Selection
22: for each receiver i ∈ N
23: If t ∈ Ti then
24: Calculate a

(c)
i , ∀ c ∈ C using (2.34)

25: Set ci := arg maxc∈C a
(c)
i

26: Set q
(c)∗
i , ∀ c ∈ C using (2.35)

27: Broadcast q∗
i to other users using the control channel

28: Set p
(c)∗
i := 0, if c 6= ci, ∀ c ∈ C

29: Set u∗(t) :=
∑

i∈N Ui

(
ri(p

∗, q∗
i )
)

30: Set t := t+ 1
31: end if
32: end for
33: Phase III: Transmission Probability Allocation
34: Set ∆ := ∞
35: Repeat Lines 7 to 20 once

For the message exchanges, after solving for the corresponding local optimization prob-
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lems, transmitter i and receiver i need to broadcast the solutions p∗
i and q∗

i in (2.29) and

(2.35) using the control channel, respectively. Thus, the signalling overhead grows linearly

with the number of users N in the system. The exchange of p∗
i and q∗

i can be achieved

by using broadcast protocols, such as limited-scope message flooding [55]. However, it

should be noted that interference also affects these message exchanges. For the case with

a high level of interference in the CRN, broadcast protocols with high reliability can be

considered, such as [56]. Alternatively, the transmitters or receivers that cannot receive the

control messages correctly are not required to solve their corresponding local optimization

problems. In our system model, since the secondary nodes are located in a neighbourhood,

the broadcast of each control message to the whole CRN can be completed in a few hops.

In this way, the duration of a time slot in the control stage should take into account both

the amount of time required for solving a local optimization problem and for broadcasting

a control message to all the secondary nodes in the CRN.

We have the following theorem that shows the convergence of Algorithm 2.1. Notice

that even in a centralized setting, there is no guarantee that we can obtain the globally

optimal solution of problem (2.11) due to its non-convexity.

Theorem 2.4 The aggregate utility u∗(t) converges to a fixed point u∗. That is, limt→∞ u∗(t) =

u∗. Moreover, u∗(t) is a non-decreasing sequence in t. That is, u∗(t) ≤ u∗(t + 1) for all

t ≥ 0.

Proof : In both phases I and III, because we fix p∗
−i and q∗ to solve problem (2.29) for p∗

i ,

and update the solution of transmission probabilities p∗ in the Gauss-Seidel manner [54,

pp. 185], we can show by [54, Proposition 3.9, pp. 219] that u∗(t) converges to a fixed point.

In each iteration t, since we are maximizing the objective function
∑

i∈N Ui

(
ri(p

∗, q∗
i )
)

over

some variables, while the other variables are fixed, we must have u∗(t) ≤ u∗(t+ 1) for all

t ≥ 0. �
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2.5 Coalitional Game Theory for SINR Model

In the previous section, we have assumed that all the secondary nodes cooperate to maxi-

mize the aggregate utility. This gives rise to the question of what happens if the users are

rational and aim to maximize their own utilities. In fact, if user i is rational and there is no

coordination among the users, user i may choose to transmit in a particular channel ci by

setting p
(ci)
i = q

(ci)
i = 1 and p

(c)
i = q

(c)
i = 0 for c 6= ci in order to maximize Ui as suggested

by the proof of Theorem 2.1. Hence, a significant amount of interference will be generated.

In the worst case (e.g., when the number of channels C is small), it is possible that the

utilities of all the users will be zero. To prevent this problem, the users may coordinate

among themselves in the form of a coalition. The users belonging to the same coalition

coordinate their transmission and listening probabilities to maximize the aggregate utility,

which is then divided among themselves.

Example 2.2 We continue with Example 2.1, and assume that the three users have se-

lected channel 1 and transmit with power P . We assume that their peak data rates are

µ1 = 5, µ2 = 2, and µ3 = 1. If all the users are willing to coordinate their transmission

probabilities p, the optimal transmission probabilities based on throughput maximization

(i.e., α = 0 in problem (2.11)) for both the SINR and protocol models are given by p∗1 = 1,

p∗2 = 0, and p∗3 = 0. From (2.12), the corresponding utilities are U1 = 5 and U2 = U3 = 0.

However, if users 2 and 3 are rational, they may not be satisfied with zero utility. For the

protocol model, users 2 and 3 have no bargaining power with user 1 to increase their utili-

ties. On the other hand, the SINR model reveals that users 2 and 3 can threaten user 1 to

transmit simultaneously and jam user 1’s transmission. This effect is not captured by the

protocol model. In the following, we apply coalitional game theory to study the incentives

of rational user cooperation and the payoff distribution among the users. We note that

coalitions can also be formed in the protocol model. However, in this case, the significance
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of the formation of coalitions may be undermined by the fact that the protocol model does

not capture the cumulative effect of interference.

2.5.1 Coalitional Game

Since the channels are orthogonal, we focus on one particular channel, and refer to the set

of users that have selected that channel by N for notational simplicity. In this case, the

average data rate of user i in (2.8) can be simplified to

ri(p) = µipi

∑

M∈Mi

(
∏

m∈M

pm

)(
∏

k∈N\M,k 6=i

(1 − pk)

)

, (2.37)

where we drop the superscript for channel c and the term for the listening probability.

We further restrict our attention to non-decreasing concave utility functions Ui(ri), where

Ui(0) = 0.

We define the coalitional game G with transferable utility [24] as a pair (N , v), where N

is the set of players or the grand coalition, and v : 2N → R is the value of a coalition S ⊆ N

that the members of the coalition can distribute among themselves. In our problem, this

value is defined as

v(S) = maximize
p

∑

i∈S

Ui

(
ri(p)

)

subject to 0 ≤ pi ≤ 1, ∀ i ∈ S,

pj = 1, ∀ j ∈ N\S.

(2.38)

That is, v(S) =
∑

i∈S Ui

(
ri(p

∗(S))
)
, where p∗(S) is the optimal solution of problem (2.38).

The users within coalition S coordinate among themselves to maximize the aggregate

utility, subject to the worst-case interference from users j ∈ N\S when they choose

transmission probabilities pj = 1. All users in set N\S are not coordinating with the users
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within coalition S. Instead, each user j ∈ N\S transmits with pj = 1 in order to maximize

its own utility, because Uj(rj(p)) is a non-decreasing function in pj from Lemma 2.3(a).

v(S) can be obtained from Algorithm 2.1 with a few minor changes: Choose C = 1. Run

line 13 if i ∈ S, but replace it with “Set p∗i := 1” if i ∈ N\S. It should be noted that game

G is a one-shot game. Also, we assume that the communication overhead is negligible when

a coalition is formed.

The property of superadditivity [24] is often observed in coalitional games, including

game G. It is defined as follows:

Definition 2.1 A game is superadditive if v(S1 ∪ S2) ≥ v(S1) + v(S2), ∀S1,S2 ⊂ N with

S1 ∩ S2 = φ.

Theorem 2.5 Game G is superadditive.

Proof : Let p∗(S1), p∗(S2), and p∗(S1 ∪S2) be the optimal probabilities maximizing v(S1),

v(S2), and v(S1 ∪ S2), respectively, as defined in (2.38). For S1 ∩ S2 = φ, we construct a

vector p(S1 ∪ S2), where the ith element is

pi(S1 ∪ S2) ,







p∗i (S1), if i ∈ S1,

p∗i (S2), if i ∈ S2,

1, otherwise.

(2.39)

So p(S1 ∪ S2) is feasible in problem (2.38) with S = S1 ∪ S2. From (2.38), we have

p∗i (S1) = 1 if i ∈ N\S1. Thus, we have

p∗i (S1)







= pi(S1 ∪ S2), if i ∈ S1,

≥ pi(S1 ∪ S2), if i ∈ N\S1.
(2.40)

41



Chapter 2. Multi-channel SINR-based Random Access and Coalitional Game

From Lemma 2.3(b), we have

ri(p
∗(S1)) ≤ ri(p(S1 ∪ S2)), ∀ i ∈ S1. (2.41)

Since Ui is a non-decreasing function of ri, we have

Ui

(
ri(p

∗(S1))
)
≤ Ui

(
ri(p(S1 ∪ S2))

)
, ∀ i ∈ S1, (2.42)

which implies that

∑

i∈S1

Ui

(
ri(p

∗(S1))
)
≤
∑

i∈S1

Ui

(
ri(p(S1 ∪ S2))

)
. (2.43)

Similarly, we have
∑

i∈S2

Ui

(
ri(p

∗(S2))
)
≤
∑

i∈S2

Ui

(
ri(p(S1 ∪ S2))

)
. (2.44)

Overall, we have

∑

i∈S1

Ui

(
ri(p

∗(S1))
)

+
∑

i∈S2

Ui

(
ri(p

∗(S2))
)

≤
∑

i∈S1∪S2

Ui

(
ri(p(S1 ∪ S2))

)
≤
∑

i∈S1∪S2

Ui

(
ri(p

∗(S1 ∪ S2))
)
, (2.45)

which concludes the proof. �

2.5.2 The Core

To determine the stability of the grand coalition, we use the solution concept of the core

[24]. It is possible that a subset of users may opt out of the grand coalition to form

a smaller coalition, if the users in the smaller coalition receive higher utilities than when
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they participate in the grand coalition. In that case, the core is empty. The core is formally

defined as follows:

Definition 2.2 The core is the set of feasible utility allocation vectors U = (Ui, ∀ i ∈ N )

where

Ucore =
{

U :
∑

i∈N

Ui = v(N ),
∑

i∈S

Ui ≥ v(S), ∀S ⊂ N
}

. (2.46)

In some special cases, it can be shown that the core is non-empty. One such special

case is when all the users are one-hop neighbours to each other (i.e., user i is a one-hop

neighbour to user j, ∀ i, j ∈ N , i 6= j, where one-hop neighbour is defined in (2.5)). In this

case, since Mi,SINR and Mi,PTC are null sets ∀ i ∈ N from (2.4) and (2.6), the SINR model

is identical to the protocol model. So, the average data rate of user i in (2.37) can further

be simplified as

ri(p) = µipi

∏

j∈N\{i}

(1 − pj). (2.47)

Theorem 2.6 If all the users are one-hop neighbours to each other, then the core is non-

empty.

Proof : Since pj = 1, ∀ j ∈ N\S from (2.38), we have ri = 0, ∀ i ∈ S ⊂ N from (2.47) if

all the users are one-hop neighbours to each other, which implies that v(S) = 0, ∀S ⊂ N .

Notice that any vector U = (Ui, ∀ i ∈ N :
∑

i∈N Ui = v(N ), Ui ≥ 0, ∀ i ∈ N ) satisfies
∑

i∈S Ui ≥ v(S) = 0, ∀S ⊂ N . So U ∈ Ucore, and the core is thus non-empty. �

2.5.3 Shapley Value

As a solution concept, the core has a few drawbacks. It can be empty and the allocation

of payoff according to the core may be unfair. In Example 2.2, with the use of the SINR

model, we can show that v({1, 2}) = v({1, 3}) = v({1, 2, 3}) = 5 using (2.38). The only
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allocation of utilities that lies in the core is U1 = 5, U2 =U3 = 0. This allocation is stable

since no smaller coalitions can be formed where the members can receiver a higher payoff

than when they are in the grand coalition. However, it is unfair in the division of the

payoff among the users as it does not take into account the contribution of each user to

a coalition. In the following, we propose to use the Shapley value [24] to fairly divide the

payoff among the players. Let the total number of users in coalition S be S= |S|.

Definition 2.3 The Shapley value is the payoff allocation vector φ(v) =
(
φ1(v), . . . , φN(v)

)
,

where

φi(v) =
∑

S⊆N\{i}

S!(N − S − 1)!

N !

[

v(S ∪ {i}) − v(S)
]

. (2.48)

In fact, φi(v) represents the expected marginal contribution of user i to different coali-

tions S without user i. The Shapley value has a number of nice properties. First,

we have
∑

i∈N φi(v) = v(N ). Moreover, it is fair in the sense that users who make

the same contribution to different coalitions receive the same payoff. Mathematically, if

v(S∪{i}) = v(S∪{j}), ∀S ∈ N\{i, j}, then φi(v) = φj(v). As we have discussed in Exam-

ple 2.2, with the use of the SINR model, users 2 and 3 can threaten to leave the coalition to

jointly jam user 1’s transmission. The Shapley value in this case is φ(v) = (3.33, 0.83, 0.83)

and both users 2 and 3 receive positive utilities. It is worth mentioning that since users

2 and 3 have no bargaining power in the protocol model, we can show that the Shapley

value in this case is φ(v) = (5, 0, 0) and both users 2 and 3 receive zero utility.

In general, the Shapley value is not directly related to the core. However, the Shapley

value lies in the core in some special cases, including the case where all the users are

one-hop neighbours to each other for our problem.

Theorem 2.7 If all the users are one-hop neighbours to each other, then (a) φi(v) =

v(N )
N
, ∀ i ∈ N , and (b) φ(v) ∈ Ucore.
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Figure 2.2: Aggregate utility obtained using an exhaustive search and the three-phase
distributed algorithm (i.e., Algorithm 2.1) based on the multi-channel SINR model. We
can see that Algorithm 2.1 achieves a near-optimal solution.

Proof : (a) If all the users are one-hop neighbours to each other, we have v(S) = 0, ∀S ⊂ N ,

from the proof of Theorem 2.6. From (2.48), notice that the only non-zero term in the

summation is given by S = N\{i}. Therefore, we have φi(v) = (N−1)!(N−(N−1)−1)!
N !

[v(N ) −

v(N\{i})] = v(N )
N

.

(b) From part (a), we have
∑

i∈N φi(v) = v(N ). Also,
∑

i∈S φi(v) = Sv(N )/N > 0 =

v(S), ∀S ⊂ N . From (2.46), we know that φ(v) ∈ Ucore. �

Thus, in this case, the payoff allocation vector φ(v), which distributes the total payoff

equally among the users, is in the core. Empirical investigations regarding the core and

the Shapley value in the general setting, where not all the users are one-hop neighbours,

are provided in the next section.
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2.6 Performance Evaluations

In this section, we evaluate the performances of Algorithm 2.1 for the SINR and protocol

models, and compare with that of a heuristic scheme. We also illustrate the significance of

the core and the Shapley value. Unless specified otherwise, we assume that the secondary

nodes are randomly placed in a 50 m × 50 m area. The peak data rate of a user is randomly

selected to be between 1 Mbps and 10 Mbps. For simplicity, we do not take into account

the effect of fading and model the channel gain as G
(c)
i,j = 1/dγ

i,j, where di,j is the distance

between the transmitter of user i and the receiver of user j, and γ is the path loss exponent.

We adopt γ = 2. When the effect of channel fading is considered, Algorithm 2.1 is still

applicable. In this case, after estimating the channel gain G
(c)
i,j in every coherence interval,

we rerun Algorithm 2.1 to obtain an updated solution. The transmit powers of all the

users are equal and set to a value which yields a minimum signal-to-noise-ratio (SNR) of

10 dB at the receivers. The SINR threshold is θth
i = θth, ∀ i ∈ N , and is set to 0 dB. The

convergence threshold ǫ is set to 10−4. All the users have the same α-fair utility functions

with αi = α, ∀ i ∈ N . For initialization, we use p
(c)∗
i =q

(c)∗
i =1/C, ∀ i ∈ N , c ∈ C in lines 1

and 2 in Algorithm 2.1.

We first evaluate the optimality of the solution obtained with Algorithm 2.1. We

consider the case of five users, two orthogonal channels with identical channel conditions,

and α = 5. The optimal solution under the SINR model is obtained with an exhaustive

search. As shown in Fig. 2.2, the solution obtained with Algorithm 2.1 is near-optimal.

In Fig. 2.3, we evaluate the convergence of Algorithm 2.1 for N = 10, C = 3, and α= 0.

From Theorem 2.4, the algorithm converges to a fixed point limt→∞ u∗(t) = u∗. Also, the

aggregate utility u∗(t) obtained in iteration t is a non-decreasing sequence, i.e., u∗(t) ≤

u∗(t + 1). The improvement in u∗(t) in phase III is more significant than that in phase

I. In phase I, the transmitters may transmit in all channels, i.e., a significant amount of
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Figure 2.3: Convergence of the aggregate utility u∗(t) using the three-phase distributed
algorithm (i.e., Algorithm 2.1). Notice that the aggregate utility obtained in each iteration
is non-decreasing. The users probe the channels in phase I and select the best channel in
phase II. In phase III, the transmission probabilities are adjusted based on the channels
selected in phase II.

interference is generated. However, in phase III, since the users have selected to transmit

and listen to only one channel, the number of potential interferers in each channel is

reduced. As a result, the improvement in u∗(t) is more significant.

In Fig. 2.4, we consider the case N = 10, C = 4, and α = 0 when the set of data

channels C changes due to dynamic spectrum leasing. Specifically, we assume that two

channels are removed from C when the lease expires, and one new channel is leased and

added back to C later. As we can see, by running Algorithm 2.1 based on p∗ from the

previous solution after each change in set C, the solution converges quickly to a fixed point

again and adapts to these dynamic network changes.

Next, we compare the aggregate throughput achieved with Algorithm 2.1 for the SINR

model (using Mi = Mi,SINR, ∀ i ∈ N ) and protocol model (using Mi = Mi,PTC, ∀ i ∈ N ),

and the multi-channel MAC (MMAC) protocol [1] for N = 10 and α = 0 averaged over 100
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Figure 2.4: The change in aggregate utility u∗(t) when the set of data channels C changes
due to dynamic spectrum leasing. Initially, we assume that there are four data channels
available. We assume that two data channels are removed from C and then one data
channel is added back to C. We run the three-phase distributed algorithm (i.e., Algorithm
2.1) based on the previous solution after set C has changed. We can see that u∗(t) converges
again quickly to a fixed point when the set C changes.

different random topologies when the number of orthogonal channels C varies. The MMAC

protocol is a multi-channel extension of the IEEE 802.11 distributed coordination function

and is suitable for the spectrum leasing model in CRNs. In MMAC, the users first select

the channel with the least scheduled traffic, and then contend for it by using the carrier

sense multiple access with collision avoidance (CSMA/CA) protocol. We assume that the

channel is sensed busy if any one-hop neighbour transmits. In other words, the sensing is

based on the protocol model. Since Algorithm 2.1 obtains a locally optimal solution from

a given starting point, we execute Algorithm 2.1 from thirteen randomly generated feasible

starting points (p∗, q∗), and record the solution that yields the maximum aggregate utility

to obtain a solution that is close to the globally optimal one. As shown in Fig. 2.5, when

C increases, less interference is experienced by each user, so the overall system throughput

is increased. Also, we notice that the design based on the SINR model always achieves a
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Figure 2.5: Average aggregate throughput versus the number of orthogonal channels avail-
able for Algorithm 2.1 using the SINR model, the protocol model, and the MMAC [1].
Notice that the design based on the SINR model achieves the highest aggregate through-
put.

higher throughput than that using the protocol model and the MMAC protocol.

Finally, we investigate the payoff distribution for the Shapley value and the existence

of the core for the network scenario shown in Fig. 2.6. Eight secondary users are randomly

placed in a 75 m × 75 m open area, α = 0, and the peak data rate of each user is fixed to

10 Mbps. The minimum SNR is guaranteed to be at least 20 dB and we consider different

SINR thresholds θth, e.g., for different bit error rate requirements. The aggregate utility of

the grand coalition v(N ) =
∑

i∈N φi(v) and the Shapley value φ(v) are shown in Fig. 2.7.

By increasing θth, the receivers become less tolerant to interference from other users, so the

interference range is increased and the spatial reuse factor is reduced. As a result, v(N ) is

reduced as shown in Fig. 2.7. From (2.5), when θth is increased up to a certain value, all

users are one-hop neighbours to each other. This holds true in this setting when θth ≥ 15

dB. As expected from Theorem 2.7, all the users equally share the aggregate utility in this

case. Also, notice that user 5 generates and receives the least amount of interference due to
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Figure 2.6: A CRN with eight users. User 5 generates and receives the least amount of
interference due to its isolated position.

its isolated position. Thus, it has a large marginal contribution to different coalitions, and

receives the largest proportion of the payoff for θth < 15 dB. Moreover, it can be shown

that the constraints in (2.46) can be satisfied and the core exists in this example for all

the values of θth that we have studied. However, the Shapley value lies only in the core

for θth ≥ 10 dB, which includes the cases θth ≥ 15 dB where all the users are one-hop

neighbours to each other as stated in Theorem 2.7.

2.7 Summary

In this chapter, we have studied random access in CRNs using the SINR model. For

cooperative users in a multi-channel model, a three-phase distributed algorithm has been

proposed to obtain a near-optimal solution for the formulated non-convex NUM problem.

It converges readily to a close-to-optimal value even when the set of data channels changes

due to dynamic spectrum leasing. For rational users in a single-channel model, we have

used the core and the Shapley value to characterize the stability and fair allocation of the
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Figure 2.7: Aggregate utility of the grand coalition v(N ) =
∑

i∈N φi(v) and the Shapley
value φ(v) for the secondary users in Fig. 2.6. When θth is increased, v(N ) is decreased
because the interference range is increased. When θth is increased to 15 dB, v(N ) is equally
shared among these one-hop neighbours as stated in Theorem 2.7. Notice that user 5 has
the largest share of payoff for θth < 15 dB due to its large marginal contribution to different
coalitions.

payoff among the users, respectively. In our system model, we have assumed that (a) the

set of users N is fixed and (b) the transmission between the transmitter and receiver of each

user is only single-hop. For (a), it can be shown that by running Algorithm 2.1 starting

from the previous solution after N has changed, the solution converges readily again to a

fixed point. For (b), we may consider the multi-hop setting by introducing binary routing

variables and flow conservation constraints as in [57].
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Chapter 3

VCG-based Truthful Random Access

Protocols for WLANs

In this chapter, we consider a WLAN with several users associated with an AP. The users

support applications with both elastic and inelastic traffic [12]. The elastic traffic is gen-

erated by applications such as traditional file transfer and electronic mail. The inelastic

traffic is generated by applications including real-time voice and video streaming, which

usually have tight QoS requirements. We consider the setting where the users first declare

their ACs (or utility functions) to the AP. In return, the AP assigns transmission prob-

abilities to the users for random access such that the aggregate utility of all the users is

maximized. If all the users accurately declare their AC information, the aforementioned

setting can lead to adequate QoS and service differentiation based on application needs.

However, some users may cheat on their declared ACs to obtain some larger shares of

bandwidth. We first use non-cooperative game theory to analyze the behaviour of users in

the described wireless system. Then, we apply the Vickrey-Clarke-Groves (VCG) mech-

anism [25, 26, 34] to motivate the users to be truthful through pricing. In fact, pricing

is important for the efficient allocation of network resources among users [58]. The VCG

mechanism has been successfully applied in various other areas, e.g., resource allocation

for wireless multimedia applications [59] and multipath traffic assignment [60].

To implement the VCG mechanism in the described wireless system, we need to obtain

the exact optimal solution of a formulated NUM problem, where the optimization variables
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are the transmission probabilities of all the users in the system. Note that replacing the

optimal solution with even a near-optimal solution will make the mechanism useless and

untruthful [61]. Previous works, such as [62, 63], have focused on solving the NUM problem

to achieve efficiency and fairness for wireless random access for elastic traffic only, where

the utility functions of the applications are concave [64]. However, here we include the more

challenging case of inelastic traffic. The application requirements of users with inelastic

traffic are modeled using step or quasi-concave utility functions. As a result, the formulated

NUM problem in this chapter is non-convex and is difficult to solve in general. We propose

an algorithm to obtain the optimal solution for the formulated non-convex problem, which

is based on solving a number of convex optimization problems. In summary, the main

contributions of this chapter are listed as follows.

• We formulate a wireless random access game using non-cooperative game theory and

analyze the behaviour of rational users, where service differentiation for QoS support

is implemented.

• We apply the VCG mechanism to encourage the users to truthfully reveal their ACs.

• We address several challenging computational issues in implementing the VCG mech-

anism which requires solving a complicated non-convex optimization problem. We

propose a low-complexity enumeration algorithm to obtain the global optimal solu-

tion by iteratively solving a chain of convex optimization problems.

• Simulation results show that our scheme ensures that both service differentiation

and maximum network utility can be achieved. Moreover, we demonstrate the low

computational complexity of our scheme and its performance gain over a CSMA

scheme in terms of the system utility.

The rest of this chapter is organized as follows. We present the related work in Section
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3.1. The system model and the non-cooperative random access game are described in

Section 3.2. The proposed VCG-based scheme is presented in Section 3.3. The algorithm

required for implementing the VCG mechanism for random access is discussed in Section

3.4. Simulation results are presented in Section 3.5. A summary is given in Section 3.6.

3.1 Related Work

A number of previous works addressed non-cooperative random access from the players’

viewpoint using game theory. Network equilibrium points were characterized and strategies

were proposed to counteract the selfish behaviours of players. In [65], Cagalj et al. modeled

carrier sense multiple access with collision avoidance (CSMA/CA) using game theory. Both

normal-form and repeated-form CSMA/CA games were formulated and the existence of

a Nash equilibrium (NE) was shown for each game. In [66], game theory was applied

to analyze the behaviour of selfish nodes in a one-shot random access game. Necessary

and sufficient conditions for the NE were proposed, and the asymptotic properties of the

system were studied. Chen et al. proposed in [67] an analytical framework for random

access using game theory. Distributed algorithms were proposed to achieve the NE. In [68],

a cartel maintenance repeated game framework was proposed. A trigger-punishment rule

was designed so that it is always in each user’s best interest to cooperate.

On the other hand, it is possible to take a proactive approach from the system designer ’s

point of view and introduce some mechanisms to prevent players from misbehaving. Wang

et al. proposed in [69] a strategyproof mechanism for wireless multicast routing. An agent’s

profit is maximized when it truthfully reports its cost. Nuggehalli et al. proposed in [70]

an incentive mechanism to avoid selfishness. They showed that the users are encouraged

to always be truthful on declaring their ACs in an attempt to increase throughput under

some conditions. Bae et al. studied in [71] the design of a dynamic auction for wireless
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spectrum sharing between the high and low transmit power users. A mechanism was

proposed that maximizes the incentives for truthful bidding. Huang et al. proposed in [72]

two auction mechanisms, namely signal-to-noise ratio (SNR) auction and power auction,

for distributed relay selection and relay power allocation in cooperative communications.

The best response bid updates globally converge to the unique NE asynchronously. Ko et

al. proposed in [73] a mechanism to gather the private traffic information of selfish users

in two-tier Orthogonal Frequency Division Multiple Access (OFDMA) femtocell networks.

It was shown that the resource allocation achieves weighted max-min fairness, weighted

proportional fairness, and Pareto efficiency.

3.2 System Model

Consider a WLAN with one AP and N mobile stations (MSs)1. The set of MSs is denoted

by N = {1, 2, . . . , N}. All MSs are one-hop neighbors to the AP. Time is divided into

equal-length slots. We only consider the uplink scenario2, where each MS i∈N attempts

to access the shared wireless channel at the beginning of each time slot with transmission

probability pi. Note that the choice of transmission probabilities can be transformed into

equivalent contention window sizes that can be implemented in IEEE 802.11 WLANs [74].

Let psucc
i denote the probability that a transmission from station i ∈ N is successful, i.e.,

does not experience collision, in a time slot. We have

psucc
i (p) = pi

∏

j∈N\{i}

(1 − pj), ∀ i ∈ N , (3.1)

1In this chapter, we use the terms mobile stations, users, and players interchangeably.
2We notice that selfish users may only affect the performance of the uplink transmissions. In fact, for

downlink transmissions, the AP can simply perform scheduling with adequate QoS provisioning and there
is no need for random access.
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Figure 3.1: Three different types of utility functions considered in this work: (1) Concave
function: α-fair function (Ki = 0.1, αi = 1, and Li = 4), (2) Step function (Ki = 1.5 and
pcritical

i = 0.25) , and (3) Quasi-concave function: α-critical function (Ki = 0.015, αi = 3,
and pcritical

i = 0.1).

where vector p = (pi, i ∈ N ). Given the nominal data rate ϕ (e.g., 54 Mbps in IEEE

802.11g), the average data rate for user i is obtained as ϕ psucc
i (p). The MSs are assumed

to run different types of applications, where each application may have different QoS

requirements.

3.2.1 Utility Functions

For each MS i ∈ N , we use a utility function ui (p
succ
i (p)) to model the level of satisfaction

that station i experiences from its application when it attains success probability psucc
i (p).

The utility functions are assumed to be nondecreasing.

We consider a system with MSs having both elastic and inelastic traffic. Let NE and

NI denote the sets of users with elastic and inelastic traffic, respectively. We refer to

these users as elastic and inelastic users in the following. Note that NE ∩ NI = ∅ and

NE ∪ NI = N , where ∅ is the null set. For each user j ∈ NE with an elastic application
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(e.g., file transfer and electronic mail), we can use a concave function to model the utility

[64]. A common class of concave utility functions is α-fair utility function, which is defined

as [53]

ui(p
succ
i (p), αi, Ki, Li) =







Ki

(

ln
(
psucc

i (p)
)

+ Li

)

, if αi = 1,

Ki

(
psucc

i (p)(1−αi)

1−αi
+ Li

)

, if αi > 1,
(3.2)

where ui is the utility that user i receives, αi ≥ 1 is a fixed utility parameter, and Ki ≥ 0 is

an amplitude parameter. Li is a parameter that adjusts the vertical position of the utility

curve. On the other hand, the applications supported by each user i ∈ NI , such as voice

and video streaming, may have tight QoS requirements and require some minimum level of

available bandwidth. If the available bandwidth drops below the required threshold, then

the connection will become useless, leading to zero utility for the corresponding user. In

this chapter, we use two types of utility functions to model inelastic traffic: step functions

and quasi-concave functions. A step utility function is characterized by parameters Ki and

pcritical
i . Parameter pcritical

i ≥ 0 refers to the minimum required psucc
i (p) for the application

to run properly in station i ∈ NI . Parameter Ki determines the amplitude of the utility

function as long as the required pcritical
i is achieved. Step utility functions are used to math-

ematically model various hard real-time applications, such as audio and voice applications,

which cannot operate if the minimum required data rate is not provided [12]. That is,

ui

(
psucc

i (p), Ki, p
critical
i

)
=







Ki , if psucc
i (p)≥pcritical

i ,

0, if psucc
i (p)<pcritical

i .
(3.3)

Furthermore, for rate-adaptive video, audio, and other applications with minimum band-

width requirements, we can model the utility functions to be quasi-concave. We introduce

a new quasi-concave utility function [21, pp. 95], which we refer to as the α-critical utility
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function, by modifying the α-fair utility function in (3.2). If αi = 1, we have

ui

(
psucc

i (p), αi, Ki, p
critical
i

)
=







Ki ln
(

psucc
i (p)

pcritical
i

)

, if psucc
i (p) ≥ pcritical

i ,

0, if psucc
i (p) < pcritical

i .
(3.4)

If αi > 1, then the α-critical utility function is modeled as

ui(p
succ
i (p), αi, Ki, p

critical
i ) =







Ki

1−αi

[

(psucc
i (p))(1−αi)−

(
pcritical

i

)(1−αi)
]

, if psucc
i (p) ≥ pcritical

i ,

0, if psucc
i (p) < pcritical

i .

(3.5)

Clearly, α-critical and step utility functions are non-concave and non-differentiable. Some

examples of the utility functions that we consider in this chapter are shown in Fig. 3.1.

For simplicity of presentation, we denote the set of utility parameters for each user

i ∈ N by θi. Using the terminology of game theory, we refer to θi as a type for user

i. Notice that there is a one-to-one correspondence between a type and an AC. If utility

function ui is a concave α-fair function as in (3.2), we have θi = {Ki, αi, Li}. If utility

function ui is a step function as in (3.3), then θi = {Ki, p
critical
i }. Finally, if it is an α-critical

function as in (3.4) and (3.5), then θi = {Ki, αi, p
critical
i }.

3.2.2 Network Utility Maximization Problem

Given complete knowledge of all system parameters (i.e., θi, ∀ i ∈ N ) and centralized

control of the WLAN, an efficient choice of all transmission probabilities p is characterized

as an optimal solution of the following NUM problem across all users [12, 62, 75]:

maximize
p ∈P

∑

i∈N

ui (p
succ
i (p), θi) , (3.6)

where P = {p : 0 ≤ pi ≤ 1, ∀ i ∈ N} represents the set of all feasible transmission proba-
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bilities. The objective function in optimization problem (3.6) is also called network social

welfare [27]. As the ACs of the applications running on the MSs are private information,

they are not known to the AP. That is, the AP is not aware of the MSs’ utility functions.

Thus, the AP may not be able to solve NUM problem (3.6) unless each MS i ∈ N declares

its true type θi to the AP. Clearly, if all the stations are truthful, then the obtained vector

of optimal transmission probabilities leads to the optimal network performance. However,

if a user i ∈ N is selfish, then it may declare its type to be θ̂i 6= θi to obtain a higher

utility. In that case, the obtained transmission probabilities are not optimal. In fact, the

network performance can be very poor in the latter case, as shown in Section 3.5.

3.2.3 Non-cooperative Random Access Game

Using game theory, we next formulate the described N -user random access system as a

finiteN -person non-cooperative normal-form game (N , Ω, u), where N is the set of players,

Ω=Θ1 ×Θ2 × · · · ×ΘN is the Cartesian product of the action sets of all players, Θi is the

action set of player i, and u=(u1, u2, . . . , uN) is the vector of utility functions for all the

stations. In this chapter, we assume for simplicity that all players have the same action

set Θ. That is, Θi = Θ, ∀ i ∈ N . The action of each station i∈N is to strategically select

its declared type θ̂i (which is not necessarily the same as its true type θi) to maximize its

own utility. That is, given θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂N ) as the vector of declared types

for all stations other than station i, where θ̂−i ∈ Ω−i = Θ1 × · · ·×Θi−1 ×Θi+1 × · · ·×ΘN ,

station i selects θ̂i to solve the following local problem related to its actual utility function

ui (p
succ
i , θi):

maximize
θ̂i∈Θi

ui

(

psucc
i (p̂(θ̂i, θ̂−i)), θi

)

, (3.7)

which is based on the prior knowledge that the AP will determine the vector of the players’

transmission probabilities p̂ by solving the following global optimization problem, according
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to the application type declarations θ̂ of all the players:

p̂(θ̂i, θ̂−i) = p̂(θ̂) = arg max
p ∈P

∑

i∈N

ui

(

psucc
i (p), θ̂i

)

. (3.8)

Notice that the difference between problems (3.6) and (3.8) is that in (3.8) we have replaced

the true type θi with the declared type θ̂i for each i ∈ N . That is, the solution of problem

(3.6) is what the system aims to achieve, while that of problem (3.8) is what the system

actually achieves.

The complete analysis of game (N , Ω, u) is very difficult in general. Nevertheless,

we can show the following interesting theorem, which states that player i is interested in

declaring K̂i to be as large as possible in order to have a higher success probability psucc
i (p),

and thus a higher utility ui.

Theorem 3.1 For any α-fair, step, or α-critical utility functions in game (N , Ω, u), if

a player i ∈ N declares θ̂i such that K̂i > Ki ≥ 0 and the declarations of other players θ̂−i

remain the same, we have

psucc

i (p̂(θ̂i, θ̂−i)) ≥ psucc

i (p̂(θi, θ̂−i)), ∀ θ̂i 6= θi, θ̂−i ∈ Ω−i, (3.9)

where psucc

i (p̂(θ̂i, θ̂−i)) and psucc

i (p̂(θi, θ̂−i)) are the probabilities of successful transmission

obtained when player i declares K̂i and Ki, respectively.

Proof : We notice that parameters K̂i, i ∈ N , act as weighting parameters in problem

(3.8). Together with the fact that α-fair, step, and α-critical utility functions are all

nondecreasing functions in psucc
i (p), it follows that the higher the value of K̂i, the higher

the value of psucc
i (p) would be at optimality. Thus, for K̂i > Ki, we have psucc

i (p̂(θ̂i, θ̂−i)) ≥

psucc
i (p̂(θi, θ̂−i)). �

From Theorem 3.1, if there is a range of values that K̂i can be chosen from, then
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declaring K̂i to its maximum possible value is a dominant strategy [25, 34] of player i. A

dominant strategy is a strategy that is chosen regardless of the strategies of other players.

Clearly, playing such an untruthful dominant strategy results in a significant degradation

of the network performance and prevents adequate service distinction among different ACs.

In our system model, we assume that the players can possibly declare all the utility

parameters (i.e., their types) in such a way that increases their own utilities. The analysis

related to the strategic declarations of α̂i and p̂critical
i are not as straightforward as that of

K̂i stated in Theorem 3.1 and we leave it for future work. Next, we show that by using

a VCG mechanism, the players are encouraged to declare their types truthfully for their

own good.

3.3 Truthful Mechanism Design for WLANs

The results in Theorem 3.1 reveal that it is crucial to develop efficient schemes to moti-

vate the stations to be truthful, i.e., to declare their true types. In this section, we use

mechanism design [25, 26, 34] for this purpose. Mechanism design is a sub-field in microe-

conomics and game theory that studies the problem of optimal resource allocation in the

presence of selfish players, who aim to maximize only their own payoffs. Mechanisms are

responsible for the allocation of resources and incur payment to the players, so as to pro-

vide them with incentives to declare their private information (i.e., their types) truthfully.

Groves mechanism and its subfamily, named Vickrey-Clarke-Groves (VCG) mechanism,

are among the most efficient mechanisms that not only prevent the dishonesty of play-

ers, but also guarantee achieving the maximum network social welfare. The latter implies

achieving the optimal performance in terms of solving the NUM problem in (3.6).

The VCG mechanism consists of two main components [34]: an allocation rule and a

payment rule. For the allocation rule, given the declared types of all players θ̂=(θ̂1, . . . , θ̂N),
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the AP selects the transmission probabilities according to the optimal solution of problem

(3.8). Moreover, according to the payment rule, it also imposes a payment ti(θ̂) on each

MS i∈N such that

ti(θ̂) =
∑

j∈N\{i}

uj

(

psucc
j (p̃i(θ̂)), θ̂j

)

−
∑

j∈N\{i}

uj

(

psucc
j (p̂(θ̂)), θ̂j

)

, (3.10)

where p̃i(θ̂) = arg max
p∈P, pi=0

∑

j∈N\{i}

uj

(

psucc
j (p), θ̂j

)

, (3.11)

and p̂(θ̂) is as in (3.8). The above payment values are calculated based on the declared

types θ̂, not the true types θ, as the AP is not aware of the true types of the MSs. Also

notice that in (3.10), the first term, i.e.,
∑

j∈N\{i} uj(p
succ
j (p̃i(θ̂)), θ̂j), charges player i with

the aggregate utility achieved when player i is removed from the network, and the second

term, i.e.,
∑

j∈N\{i} uj(p
succ
j (p̂(θ̂)), θ̂j), pays player i with the aggregate utility achieved

excluding that of player i when player i is added to the network. Thus, player i is made to

pay its social cost, which is the aggregate impact that its participation has on other players’

utilities [25]. Note that there are various ways to implement such payments in practice.

For example, one can assume that there is a trusted charging entity which maintains a

billing account for every player in the system (e.g., as in [76]).

Given the vector of payment rules t(θ̂) = (t1(θ̂), . . . , tN(θ̂)), each station needs to pay

ti(θ̂) to the AP for relaying its transmitted packets. Intuitively, VCG selects the payment

values such that it is the best choice for the players to be honest and declare their true

types. In fact, since each player needs to pay the AP for the packets it transmits, player

i ∈ N needs to declare its type θ̂i such that its surplus (i.e., its utility minus payment)

is maximized. In other words, when VCG mechanism is used, instead of solving problem
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(3.7), player i has to solve the following problem to maximize its own payoff:

maximize
θ̂i∈Θi

ui

(

psucc
i (p̂(θ̂i, θ̂−i)), θi

)

− ti(θ̂i, θ̂−i). (3.12)

In fact, VCG mechanism forces all players to be honest as shown by the following theorem.

Theorem 3.2 Assume that the allocation and payment rules are implemented as in (3.8)

and (3.10), respectively, then declaring θ̂i = θi is a dominant strategy for player i ∈ N .

Proof : Please refer to [34, pp. 42]. �

From Theorem 3.2, if VCG mechanism is used, the most beneficial action for all players

is to declare their true types such that θ̂i = θi for all i ∈ N , irrespective of the declarations

by other players. Thus, solving problem (3.8) based on the declared types suffices to achieve

optimal performance, i.e., the maximum network utility as described in (3.6). This is the

key property of the VCG mechanism.

We are now ready to propose our VCG-based mechanism for QoS provisioning in

WLANs with random access. It includes the following key steps:

1. Type declaration: Before starting transmission, all stations declare their types to the

AP.

2. VCG mechanism: Given the declared types θ̂, the AP calculates the transmission

probability p̂(θ̂) as in (3.8). It also calculates the payments t(θ̂) using (3.10) and

(3.11).

3. Resource allocation and payment : The obtained vectors of transmission probabilities

and payments are broadcast by the AP to all stations. Stations may only transmit

based on the transmission probabilities assigned by the AP; otherwise, they will be
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Figure 3.2: A WLAN with a set of users N = {1, 2, 3}. In our system model, user i first
declares to the AP the utility parameter (or type) θ̂i, which characterizes the AC of the
application of user i. After receiving θ̂i, ∀ i ∈ N , the AP assigns the transmission prob-
abilities p̂ = (p̂1, p̂2, p̂3) for random access and charges the users t = (t1, t2, t3) according
to the allocation and payment rules of the VCG mechanism described in (3.8) and (3.10),
respectively. By using the VCG mechanism, it is shown in Theorem 3.2 that a rational
player i should declare its true utility parameter θi in order to maximize its own utility.

refused service3.

The system model of the VCG-based random access scheme is shown in Fig. 3.2. Next,

we try to answer the following key question: How can we solve the computationally chal-

lenging optimization problems (3.8) and (3.11)?

3.4 Implementation of the VCG Mechanism

In order to implement the VCG mechanism, we need to compute p̂(θ̂) in (3.8) and p̃(θ̂) in

(3.11). However, in general, solving the optimization problems in (3.8) and (3.11) is not an

easy task due to the non-convexity of the product forms in (3.1) and the non-differentiability

3It is easy for the AP to check whether the stations are indeed transmitting according to the assigned
transmission probabilities by listening to the shared communication medium as explained in [75].
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of step and α-critical utility functions. In this section, we propose an algorithm to obtain

the globally optimal solutions of problems (3.8) and (3.11) by iteratively solving a number

of convex optimization problems. Here, we will focus on problem (3.8) because similar

techniques can be applied to solve problem (3.11).

In this chapter, we assume that the declared utility function for each elastic user j ∈ NE

is an α-fair utility function as in (3.2). We also assume that the declared utility function

for each inelastic user i ∈ NI is either a step function as described in (3.3) or an α-critical

function as defined in (3.4) and (3.5). Although we only consider α-fair functions for

concave functions and α-critical functions for quasi-concave functions, our approach can

be applied to any similar continuous nondecreasing function as long as its concave part

satisfies the following condition on the curvature of the utility function [62]:

d2u(psucc, θ̂)

d(psucc)2
psucc ≤ −du(p

succ, θ̂)

dpsucc
. (3.13)

With both elastic and inelastic users in the system, problem (3.8) can be written as

maximize
p ∈P

∑

j∈NE

uj(p
succ
j (p), θ̂j) +

∑

i∈NI

ui(p
succ
i (p), θ̂i), (3.14)

where psucc
i (p) is defined as in (3.1) for all users i ∈ N . Notice that problem (3.14) is

a non-convex and non-differentiable optimization problem due to the non-convexity and

non-differentiability of α-critical or step utility functions as we discussed in Section 3.2.1.

Let p∗ denote the optimal solution of problem (3.14). Also let psucc
i (p∗) = p∗i

∏

j∈N\{i}(1−

p∗j) denote the corresponding optimal success probability for station i ∈ N . We can show

the following lemma which helps us compute the optimal allocation of transmission prob-

abilities.

Lemma 3.1 At any optimal solution of problem (3.14), for all inelastic users i∈NI , we
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have either psucc

i (p∗) ≥ p̂critical

i or psucc

i (p∗) = 0.

Proof : We prove by contradiction. Assume that at optimality, we have 0 < psucc
i (p∗) <

p̂critical
i for some user i ∈ NI . Since the minimum required success probability is not

satisfied for user i ∈ NI , we have ui = 0. Thus, the objective function of problem (3.14)

at optimality becomes

∑

j∈NE

uj(p
succ
j (p∗), θ̂j) +

∑

k∈NI\{i}

uk(p
succ
k (p∗), θ̂k). (3.15)

On the other hand, from (3.1), the success probability psucc
j (p) is a decreasing function of

pi for any j 6= i. Therefore, the summation in (3.15) is decreasing in p∗i and at optimality

we have p∗i = 0. This implies that psucc
i (p∗) = 0 which contradicts our assumption that

0 < psucc
i (p∗) < p̂critical

i . �

From Lemma 3.1, when VCG mechanism is being used, the AP either does not admit

an inelastic user i, or if it does admit user i, then it guarantees to provide it with its

minimum required success probability p̂critical
i . Thus, we can obtain the optimal value of

problem (3.14) by considering all subsets of users M ⊆ NI admitted:

maximize
M⊆NI

v(M), (3.16)

where

v(M) , maximize
x, p ∈P

∑

j∈NE

uj(xj , θ̂j) +
∑

i∈NI

ui(xi, θ̂i)

subject to 0 ≤ xi ≤ psucc
i (p), ∀ i ∈ NE ∪M,

p̂critical
i ≤ psucc

i (p), ∀ i ∈ M,

pi = 0, ∀ i ∈ NI\M.

(3.17)
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In problem (3.17), the first constraint is introduced for the auxiliary variable xi [62]. We

divide the set of inelastic users NI into two subsets: subset M and subset NI\M. Here,

set M denotes the set of those users which are admitted to the system, and acts as an

auxiliary set to model admission control. For each inelastic user i ∈M, problem (3.17)

includes the extra constraint psucc
i (p) ≥ p̂critical

i such that all admitted inelastic users achieve

their minimum required success probabilities p̂critical
i . On the other hand, for each inelastic

user i∈NI\M, which is not admitted, we include the constraint pi =0 to make sure that

no transmission probability is allocated to it.

By taking the logarithm of both sides of the first and second constraints in (3.17) and

a logarithm change of variables u′i(x
′
i, θ̂i) = ui(e

x′
i , θ̂i) and x′i = ln xi, we can reformulate

problem (3.17) as

v(M) = maximize
x′ , p ∈P

∑

j∈NE
u′j(x

′
j , θ̂j) +

∑

i∈NI
u′i(x

′
i, θ̂i)

subject to x′i ≤ ln pi +
∑

j∈N\{i}

ln(1−pj), ∀ i ∈ NE ∪M,

ln p̂critical
i ≤ ln pi +

∑

j∈N\{i}

ln(1−pj), ∀ i ∈ M,

pi = 0, ∀ i ∈ NI\M.

(3.18)

From [62], problem (3.18) is convex, so it can be solved using the interior point method

[21].

Let NI = |NI|. Notice that we need to evaluate 2NI possible subsets M of NI in

problem (3.16). However, there are many redundant computations that can be eliminated.

Let M(θ) =
(
i ∈ M : θ̂i = θ

)
be the subset of users in set M ⊆ NI with declared type θ.

We define the equivalent AC sets as follows:
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Definition 3.1 A pair of sets M1,M2 ⊆ NI are equivalent AC sets if

|M1(θ)| = |M2(θ)|, ∀ θ ∈ Θ. (3.19)

In other words, sets M1 and M2 have the same number of users in every ACs.

Given the above definition, we can show the following lemma for equivalent AC sets:

Lemma 3.2 If M1,M2 ⊆ NI are equivalent AC sets, then we necessarily have v(M1) =

v(M2).

Proof : By definition, M1 and M2 have the same number of users in every AC. Thus, the

optimization problems resulting for v(M1) and v(M2) as defined in (3.17) have the same

objective functions and constraints. Thus, we have v(M1) = v(M2). �

Let ΘI be the set of types that are present in set NI . That is, θi ∈ ΘI ⇔ i ∈ NI . Let

N θ
I be the number of users in set NI with type θ ∈ ΘI . We have

∑

θ∈ΘI
N θ

I = NI . The total

number of subsets of set NI which are not equivalent AC sets is given by
∏

θ∈ΘI
(N θ

I + 1)

[77, pp. 197]. From Lemma 3.2, after solving problem (3.18) for v(M1) in problem (3.16),

we do not have to solve it again for v(M2) if M1 and M2 are equivalent AC sets. Thus, in

problem (3.16), we actually need to solve problem (3.18) for only
∏

θ∈ΘI
(N θ

I + 1) different

v(M) if we explore the equivalent AC sets. Moreover, in some cases when too many users

are admitted, problem (3.17) may become infeasible. Let M = |M|. The following lemma

helps us in identifying some of the infeasible cases.

Lemma 3.3 Given set M ⊆ NI and p̂critical

i for all i ∈ M, problem (3.17) is feasible only

if

M−1

√
∏

i∈M p̂critical

i ≤ 1 −∑i∈M p̂critical

i . (3.20)
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Proof : Problem (3.17) is feasible if and only if we have

pi

(
∏

j∈M\{i}(1 − pj)
)

≥ p̂critical
i , ∀ i ∈ M. (3.21)

From (3.21) and by reordering of the terms we have

pi

1 − pi

≥ p̂critical
i

∏

j∈M(1 − pj)
⇒ pi ≥

1

1 +
∏

j∈M(1−pj)

p̂critical
i

, ∀ i ∈ M. (3.22)

From the last line, for each user i ∈ M, we have

1 − pi ≤

∏

j∈M(1−pj)

p̂critical
i

1 +
∏

j∈M(1−pj)

p̂critical
i

=

∏

j∈M(1 − pj)

p̂critical
i +

∏

j∈M(1 − pj)
. (3.23)

Multiplying the terms for each user i ∈ M, we can come up with the following condition

∏

i∈M

(1 − pi) ≤
∏

i∈M

( ∏

j∈M(1 − pj)

p̂critical
i +

∏

j∈M(1 − pj)

)

. (3.24)

We define A(p) =
∏

j∈M(1 − pj). Clearly, 0 ≤ A(p) ≤ 1 is the probability of experiencing

an idle time slot. That is, the probability that no user transmits any packet. Replacing

A(p) in (3.24), problem (3.17) is feasible if there exists a value A between zero and one

such that we have

A ≤ AM

∏

i∈M(p̂critical
i + A)

⇒
∏

i∈M

(p̂critical
i + A) ≤ AM−1. (3.25)

For the rest of the proof, we show that condition (3.20) is a necessary condition for the

existence of any A such that (3.25) holds. We first notice that from (3.25), we need to
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have

M−1

√
∏

i∈M p̂critical
i ≤ A. (3.26)

Condition (3.25) can be written in the following extended form

AM +
(∑

i∈M p̂critical
i − 1

)
AM−1 + Γ(A) ≤ 0, (3.27)

where Γ(A) is a polynomial in A with degree M − 2 and only non-negative multipliers.

Clearly, Γ(A) ≥ 0. Thus, from (3.27) we also need to have

A ≤ 1 −∑i∈M p̂critical
i . (3.28)

Combining the lower-bound in (3.26) and the upper-bound in (3.28), optimization problem

(3.17) is feasible only if there exists an A such that the following holds:

M−1

√
∏

i∈M p̂critical
i ≤ A ≤ 1 −∑i∈M p̂critical

i . (3.29)

Clearly, the above condition holds as long as the upper bound is greater than or equal to

the lower bound. This directly results in condition (3.20). �

Notice that the condition in (3.20) is a necessary condition for the feasibility of the

constraints in problem (3.17).

We are now ready to propose Algorithm 3.1 to find the exact global optimal solution

of problem (3.8) when elastic users have α-fair utility functions and inelastic users have

α-critical or step utility functions. A similar algorithm can be used to solve problem (3.11).

In Algorithm 3.1, from lines 3 to 7, we iterate through all possible subsets of NI and record

the non-equivalent AC sets in Ψ. We only need to consider the non-equivalent AC sets,

because we know from Lemma 3.2 that v(M) = v(M̃) if M and M̃ are equivalent AC
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Algorithm 3.1 Algorithm to solve (3.8) for the mix of α-fair, step, and α-critical utility
functions defined in (3.2) to (3.5).

1: Input: θ̂i, ∀ i ∈ N
2: (Initialization) Set s := −∞, p∗ := 0, M∗ := ∅, and Ψ := ∅
3: for all subset M of NI do
4: if M and M̃ are not equivalent AC sets, ∀M̃ ∈ Ψ, as defined in (3.19), then
5: Set Ψ := Ψ ∪M
6: end if
7: end for
8: for all M ∈ Ψ do
9: Set M := |M|

10: if M−1

√
∏

i∈M p̂critical
i ≤ 1 − ∑

i∈M p̂critical
i then

11: Solve problem (3.18) for v(M) and the optimal solution p using the interior point
method

12: if v(M) > s, then
13: Set s := v(M), p∗ := p, and M∗ := M
14: end if
15: end if
16: end for
17: Output: p∗ and M∗

sets. From lines 8 to 16, we iterate through all the sets in Ψ. In line 10, we use Lemma 3.3

to rule out infeasible cases, which reduces the computational complexity of the algorithm.

In line 11, the allocated transmission probability p for the given set M is calculated. Set

M and the corresponding p that result in the largest aggregate utility so far are recorded

in lines 12 to 14. In line 17, p∗ is the resulting optimal solution of optimization problem

(3.8) and M∗ is the resulting set of inelastic users admitted to the system for the optimal

admission control solution.

3.5 Performance Evaluations

In this section, we assess the performance of our proposed VCG-based scheme in random

access systems using MATLAB. We first illustrate with an example about how our proposed
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VCG-based scheme enforces truthfulness of the stations. Then, we show the support of

service differentiation of different ACs and maximum aggregate utility in various scenarios

with selfish stations, and the low computational complexity of our scheme. We also compare

our random access scheme with a CSMA scheme. Unless specified otherwise, we assume a

nominal data rate ϕ = 54 Mbps.

First, we provide an example to illustrate the operation of our proposed VCG-based

pricing and resource allocation scheme by considering a network with one AP and six MSs.

The AP supports four different ACs: AC 1 has a step utility function with parameters

K = 0.1 and pcritical = 0.1. AC 2 also has a step utility function but with parameters

K = 1 and pcritical = 0.1. AC 3 has an α-critical utility function with parameters K = 0.3,

α = 1, and pcritical = 0.001. AC 4 has an α-fair utility function with parameters K = 5,

α = 1, and L = 4. We assume that MS 1 belongs to AC 1, MS 2 belongs to AC 2, both

MSs 3 and 4 belong to AC 3, and both MSs 5 and 6 belong to AC 3. We consider two

cases: In Case I, MS 1 honestly declares that it supports applications in AC 1 and all other

MSs are honest. In Case II, MS 1 selfishly declares that it supports applications in AC

2 (i.e., declares a larger K) while other MSs are still honest. Notice that MS 1 has the

motivation to do so as stated in Theorem 3.1. With the use of the VCG mechanism and

Algorithm 3.1, we plot the utilities, payments, and surpluses of the six MSs in Fig. 3.3,

where Cases I and II are represented by the two bars at the index of each MS. As shown

in Fig. 3.3(a), when MS 1 is honest, it is not admitted into the system and it receives zero

utility. However, it is not charged with any payment by the VCG mechanism as shown

in Fig. 3.3(b). On the other hand, when MS 1 is selfish, it is admitted into the system

and receives a positive utility. However, with the use of the VCG mechanism, MS 1 is

punished with a large payment when it lies. As shown in Fig. 3.3(c), the surplus (i.e.,

utility minus payment) of player 1 indeed decreases if it lies due to the use of the proposed
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Figure 3.3: Results in a sample network with six stations: (a) Utility, (b) Payment, and
(c) Surplus (i.e., utility minus payment) of each station using the proposed VCG-based
scheme. With the use of VCG mechanism, station 1 ends up having a lower surplus when
it is selfish and is thus motivated to be honest.

VCG mechanism. Clearly, this forces user 1 to be truthful about its type. Notice that in

Case II, although MS 1 declares its application to be in AC 2 and thus receives the same

transmission probability as MS 2 which has an AC 2 type of application, it receives a lower

utility than MS 2 because its application is indeed in AC 1.

Next, we evaluate the performance of our proposed scheme in a larger network with

twelve MSs. We assume that four MSs have step utility functions with parameters K = 0.1

and pcritical = 0.1, four MSs have α-critical utility function with parameters K = 0.1,

α = 1, and pcritical = 0.001, and the remaining four MSs have α-fair utility functions

with parameters K = 0.01, α = 1 and L = 4. We assume that all the MSs are honest,

except some of the MSs with step utility functions which are selfish and may declare a

higher amplitude parameter K̂ = 1 > 0.1 = K (see Theorem 3.1). The throughput and

the network aggregate utility (i.e., the objective function in problem (3.6)) achieved for
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Figure 3.4: (a) Throughput of users with step utility functions and other utility functions
and (b) aggregate utility. We assume that the stations with α-fair and α-critical utilities
are honest and we vary the number of selfish stations with step utilities. We can see
that differentiated QoS and maximum aggregate utility can be maintained by using the
VCG-based mechanism design (MD).

different numbers of selfish MSs with step utility functions are shown in Figs. 3.4(a) and

(b), respectively. As shown in Fig. 3.4(a), without the use of mechanism design, selfish MSs

with step utilities may indeed declare K̂ > K in order to gain admission to the system. In

this case, since many users are not truthful, the AP’s information is inaccurate. Therefore,

the AP is not able to provide differentiated QoS. On the other hand, when our proposed

VCG-based scheme is used, the throughput of MSs with other types of utility functions is

guaranteed that the differentiated QoS is supported. In Fig. 3.4(b), we can see that the

dishonest declaration of the MSs with step utilities causes a deviation from the optimal
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Figure 3.5: Number of iterations required to obtain the optimal solution by Algorithm 3.1
and an exhaustive search. We can see that Algorithm 3.1 has a much lower computational
complexity than an exhaustive search.

network aggregate utility. The performance reduction becomes more severe as the number

of selfish MSs increases, e.g., resulting in more than 56.4% efficiency loss in the presence of

four selfish MSs. Thus, using the VCG-based mechanism results in a significantly better

network performance.

In Fig. 3.5, we compare the computational complexity of Algorithm 3.1 with an ex-

haustive search. Specifically, to solve problem (3.8), we compare the number of iterations

that v(M) in problem (3.16) is evaluated by the two schemes. In other words, we compare

the total number of times that problem (3.18) is solved for different M. For the exhaus-

tive search, we modify Algorithm 3.1 by removing lines 3 to 7 and initializing Ψ to be the

power set (i.e., the set of all subsets) of NI in line 2 instead. That is, we do not include

the result of Lemma 3.2 in the exhaustive search algorithm. In our evaluation, we assume

that there are four ACs, where two ACs are for inelastic traffic and the other two ACs are

for elastic traffic. We assume that the number of MSs in each AC is the same and we vary
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Figure 3.6: Average utility in the system achieved by our NUM-based random access
scheme and a CSMA scheme versus the total number of stations N in the system.

the number of MSs N in the system. As we can see, by eliminating a significant number

of redundant computations due to the equivalent AC sets from Lemma 3.2, Algorithm 3.1

results in a much lower computational complexity than that of the exhaustive search.

In Fig. 3.6, we compare our random access scheme with a CSMA scheme similar to

the one used in the IEEE 802.11e with different contention window sizes for different ACs.

Let aCWmin and aCWmax be two parameters related to the contention window sizes. For

the CSMA scheme, we assume that three ACs are available with different minimum and

maximum contention window sizes [78, pp. 131]: aCWmin and aCWmax for AC 1 (best

effort), (aCWmin + 1)/2 − 1 and aCWmin for AC 2 (video), and (aCWmin + 1)/4 − 1 and

(aCWmin +1)/2−1 for AC 3 (voice). We assume that when a user initiates a transmission,

it keeps the channel for µ time slots. For simplicity, we do not implement the interframe

space in the IEEE 802.11e standard. We assume that the number of MSs in each ACs

is the same. We consider a system with real-time voice, rate-adaptive video, and file

transfer applications, which their utility functions are as follows: a step function with
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parameters K = 10 and pcritical = 0.001 for the real-time voice application, an α-critical

utility function with parameters K = 1.2, α = 1, and pcritical = 0.001 for the rate-adaptive

video application, and an α-fair utility function with parameters K = 0.5, α = 1, and

L = 4 for the file transfer application. Note that the utility of the step utility function

is the highest and that of the α-fair utility function is the lowest. From the nature and

utilities of the applications, we map the real-time voice application to AC 3 (voice), the

rate-adaptive video application to AC 2 (video), and the file transfer application to AC

1 (best effort). We choose aCWmin = 63, aCWmax = 1023 [78, pp. 589], and µ = 3. As

shown in Fig. 3.6, the performance improvement of the average utility in the system of

our scheme over the CSMA scheme is 15.0% for N = 3 and 10.1% for N = 15, although

the CSMA scheme achieves a higher throughput as suggested in the literature.

3.6 Summary

In this chapter, we studied the problem of assigning transmission probabilities to MSs for

random access in a WLAN. Each MS is running an elastic or an inelastic application with

different QoS requirements, which are characterized by different ACs and modeled by dif-

ferent utility functions. Specifically, we considered that the utility functions for elastic users

are concave, while those for inelastic users are step or quasi-concave. Potentially, a selfish

MS may strategically declare its AC to unfairly achieve a larger share of bandwidth, which

can drastically degrade the network performance and inhibit adequate service distinction

among different ACs. We used game theory to analyze the strategic declarations of the

ACs of the rational users, and applied the VCG mechanism in our random access protocol

to motivate the MSs to declare the ACs of their applications truthfully. In our proposed

scheme, the AP performs admission control, and informs the MSs about their assigned

transmission probabilities as well as the required payments. In order to implement the

77



Chapter 3. VCG-based Truthful Random Access Protocols for WLANs

VCG mechanism, we need to solve a non-convex NUM problem optimally. We proposed a

novel enumeration algorithm, which involves solving only a convex optimization problem

in each iteration. Analytical results related to the equivalent AC sets were presented that

significantly reduce the computational complexity of the proposed algorithm. Simulation

results show that a truthful mechanism can prevent selfish users from gaining an unfair

share of the network bandwidth, such that both the overall network performance in terms

of aggregate utility and service differentiation in terms of necessary throughput in each AC

can be supported.
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Chapter 4

Random Access with Sigmoidal and

Concave Utility Functions

In this chapter, we extend the work in Chapter 3 for single-channel wireless random access

with both elastic and inelastic traffic in a WLAN. We still model the utilities of the applica-

tions generating elastic traffic with concave utility functions. However, we extend the work

in [62] and Chapter 3 by not restricting the utility functions to remain concave after a log-

arithmic change of variables, but allowing the possibilities of concave, convex, or sigmoidal

utility functions. For applications generating inelastic traffic, we model their utilities with

sigmoidal utility functions, leading to NUM problems which are usually difficult to solve.

NUM problems with sigmoidal utility functions have previously been considered in various

networking design problems such as Internet congestion control [79, 80], downlink power

allocation [81], power control [82], and radio resource allocation [83]. But no prior work

has addressed NUM problems with sigmoidal utility functions in random access systems.

In this chapter, since we are not considering a VCG-based random access that requires

the computation of a global optimal solution, it suffices to obtain obtain a near-optimal

solution. We formulate the problem of random access as a NUM problem, which is non-

convex. We use the dual approach and the subgradient projection method to tackle the

non-convexity of the NUM problem. For sigmoidal utility functions, each iteration in our

algorithm involves only updating the dual variables with some closed-form expressions. In

summary, the contributions of this chapter are as follows:
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• We consider solving the primal problem using the dual method and derive the Karush-

Kuhn-Tucker (KKT) optimality conditions of the dual problem.

• We propose a centralized algorithm based on the subgradient projection method to

solve the formulated non-convex NUM problem.

• We provide a sufficient condition on the wireless link capacities which guarantee our

algorithm to find the exact global optimal solution of the NUM problem. If this

condition is not satisfied, we can still obtain upper and lower bounds for the optimal

objective value. The bounds approach each other when the duality gap is zero.

• Simulations are performed to verify our analytical results.

The rest of this chapter is organized as follows. The system model is described in

Section 4.1. We present our centralized algorithm and the optimality conditions for the

dual problem in Section 4.2. We study the condition on capacity that results in optimal

or sub-optimal solutions in Section 4.3. Simulation results are given in Section 4.4. A

summary is given in Section 4.5.

4.1 System Model

Consider a WLAN with a single AP and a set of N mobile stations, denoted by N =

{1, 2, . . . , N}. All stations are one-hop neighbors to the AP. We only consider the up-

link scenario, where each station i ∈ N can access the shared medium with a persistent

probability (or transmission probability) pi. We consider using a slotted Aloha MAC pro-

tocol, where time is divided into equal time slots. The stations attempt to access the

shared channel at the beginning of each time slot according to their persistent probabili-

ties. Notice that the choice of persistent probabilities can be transformed into equivalent
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contention window sizes that can be implemented directly in IEEE 802.11 WLANs [74].

Let psucc
i denote the probability that a transmission from station i ∈ N is successful, i.e.,

the transmission does not experience any collision. We have

psucc
i (p) = pi

∏

j∈N\{i}

(1 − pj), ∀ i ∈ N , (4.1)

where p = (pi, i ∈ N ). For the rest of this chapter, we will use bold symbols to denote

vectors with components ∀ i ∈ N . Given the capacity ci for user i, the average data rate

for station i is xi = ci p
succ
i (p), which is a function of both ci and p. We denote the utility

function of each station i ∈ N by Ui(xi), which is a non-decreasing function in xi. The

utility function is used to model the level of satisfaction that station i experiences from

its application when it attains average data rate xi. In particular, we have Ui(xi) ≥ 0 if

xi ≥ 0. Also, we have Ui(0) = 0.

Each station may have either elastic or inelastic traffic. Let NE and NI denote the sets

of stations with elastic and inelastic traffic, respectively. We notice that NE ∩NI = φ and

NE ∪ NI = N . For each user v ∈ NE , we can use a concave function to model the utility.

A common example is the α-fair utility function (see Fig. 4.1) [53] normalized such that

Ui(0) = 0:

Uv(xv) =







ln (xv + 1) , if αv = 1,

(1−αv)
−1
[
(xv + 1)(1−αv) − 1

]
, if αv ∈ (0, 1) ∪ (1,∞),

(4.2)

where αv is a fixed utility parameter. On the other hand, for each user w ∈ NI , the

utility function depends on the quality of service (QoS) requirements of the running voice

and video applications. We can use a sigmoidal utility function Uw(xw) to model these

applications such that U ′′
w(xw) > 0 for xw < xin

w and U ′′
w(xw) < 0 for xw > xin

w , where xin
w
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is the point of inflection. In particular, we can use the sigmoidal function (see Fig. 4.1)

defined as [84]:

Uw(xw) =
xaw

w

kw + xaw
w

, (4.3)

where xw ≥ 0, aw > 1, kw > 0, and xin
w = aw

√
kw(aw−1)

aw+1
. With the logarithmic change

of variables x̄i , ln xi and Ūi(x̄i) , Ui(e
x̄i), the utility functions become more convex.

That is, the concave part may remain concave or turn convex [62], while the convex part

always remains convex. For the concave function Uv(xv) in (4.2), we can see that Ūv(x̄v)

is a sigmoidal function with point of inflection x̄in
v = ln( 1

αv−1
) for αv > 1, and a convex

function for 0 < αv ≤ 1. Moreover, we have

Ūw(x̄w) =
1

1 + e−(aw x̄w+bw)
, (4.4)

which represents a sigmoidal function in standard form with the point of inflection x̄in
w =

−bw/aw, where kw = e−bw . Note that x̄in
w 6= ln xin

w in general. In the sequel, we will assume

that Ūi(x̄i) is sigmoidal for x̄min
i ≤ x̄i ≤ x̄max

i , ∀ i ∈ N . We will omit the cases where

Ūi(x̄i) is either a convex or a concave function for brevity, because the dual problem is

straightforward in these cases. It should be noted that the solution approach discussed in

the following sections can be applied to concave, convex, and sigmoidal utility functions in

general.
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Figure 4.1: Utility functions Ui versus data rate x for utility functions U1(x) = 1−(x+1)−1,
U2(x) = x2

x2+20
, U3(x) = 1

2
[1 − (x + 1)−2], and U4(x) = x4

x4+300
. Notice that U1 and U3 are

concave functions, and U2 and U4 are sigmoidal functions. We address both concave and
sigmoidal utility functions in this chapter.

4.2 Random Access with Sigmoidal and Concave

Utilities

4.2.1 NUM for Random Access

In this chapter, we consider the following NUM problem:

maximize
p,x

∑

i∈N Ui(xi) =
∑

v∈NE
Uv(xv) +

∑

w∈NI
Uw(xw)

subject to xi ≤ cip
succ
i = cipi

∏

j∈N\{i}(1 − pj), ∀ i ∈ N ,

xmin
i ≤ xi ≤ xmax

i , ∀ i ∈ N ,

0 ≤ pi ≤ 1, ∀ i ∈ N ,

(4.5)

where xmin
i and xmax

i are the constraints on the minimum and maximum data rates for the

transmission of user i, respectively. Notice that problem (4.5) is a non-convex optimization
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problem, because the objective function is non-concave in general, and the first constraint

is non-convex.

4.2.2 Dual Method

Using the logarithmic change of variables x̄i , ln xi, x̄
min
i , ln xmin

i , x̄max
i , ln xmax

i ,

Ūi(x̄i) , Ui(e
x̄i), and c̄i , ln ci, we can reformulate optimization problem (4.5) as

maximize
p,x̄

∑

i∈N Ūi(x̄i) =
∑

v∈NE
Ūv(x̄v) +

∑

w∈NI
Ūw(x̄w)

subject to c̄i + ln pi +
∑

j∈N\{i} ln(1−pj) − x̄i ≥ 0, ∀ i ∈ N ,

x̄min
i ≤ x̄i ≤ x̄max

i , ∀ i ∈ N ,

0 ≤ pi ≤ 1, ∀ i ∈ N .

(4.6)

Here, the Lagrangian function is derived as

L(p, x̄,λ) =
∑

i∈N

(

Ūi(x̄i) − λix̄i

)

+
∑

i∈N

λi

(

c̄i + ln pi +
∑

j∈N\{i}

ln(1−pj)

)

, (4.7)

and the Lagrangian dual function becomes

g(λ) =
∑

i∈N

sup
x̄i∈X̄i

(

Ūi(x̄i) − λix̄i

)

+ sup
p∈P

∑

i∈N

λi

(

ln pi +
∑

j∈N\{i}

ln(1−pj)

)

+
∑

i∈N

λic̄i, (4.8)

where P = {p : 0 ≤ pi ≤ 1, ∀ i ∈ N} and X̄i = {x̄i : x̄min
i ≤ x̄i ≤ x̄max

i }. The dual problem

is

minimize
λ

g(λ)

subject to λ � 0.
(4.9)

In order to solve optimization problem (4.9), we need to solve two subproblems for each
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i ∈ N :

max
x̄i∈X̄i

(

Ūi(x̄i) − λix̄i

)

, and max
p∈P

∑

i∈N

λi

(

ln pi +
∑

j∈N\{i}

ln(1−pj)

)

. (4.10)

4.2.3 First Dual Subproblem

To solve the first dual subproblem, we define si(x̄i, λi) = Ūi(x̄i) − λix̄i and

x̄∗i (λi) = arg max
x̄i∈X̄i

si(x̄i, λi). (4.11)

Notice that si is also a sigmoidal function in x̄i with point of inflection x̄in
i .

Lemma 4.1 If x̄min
i ≤ x̄in

i ≤ x̄max
i , we have

x̄∗i (λi) = arg max
x̄i∈{x̄min

i
, x̄v

i
(λi)}

si(x̄i, λi), (4.12)

where

x̄v
i (λi) , arg max

x̄in
i ≤x̄i≤x̄max

i

si(x̄i, λi). (4.13)

Proof : It is always true that

max
x̄i∈X̄i

si(x̄i, λi) = max

{

max
x̄min

i ≤x̄i≤x̄in
i

si(x̄i, λi), max
x̄in

i ≤x̄i≤x̄max
i

si(x̄i, λi)

}

. (4.14)

Also notice that si(x̄i, λi) is a convex function in x̄i for x̄min
i ≤ x̄i ≤ x̄in

i . Thus, we have

arg maxx̄min
i ≤x̄i≤x̄in

i
si(x̄i, λi) = {x̄min

i , x̄in
i }. This concludes the proof. �

Notice that problem (4.13) is convex. In fact, we can obtain a closed-form solution for

(4.13) when Ūw(x̄w) is as in (4.4):
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Lemma 4.2 For Ūw(x̄w) in (4.4), we have

x̄v
w(λw) =







[
− ln

((

aw−2λw−
√

a2
w−4awλw

)

/2λw

)

−bw

aw

]x̄max
w

x̄in
w

, if aw ≥ 4λw,

x̄in
w , otherwise,

(4.15)

where [z]yw = min{max{z, w}, y}.

Proof : Since sw(x̄w, λw) is concave for x̄in
w ≤ x̄w ≤ x̄max

w , by taking the derivative, we have

Ū ′
w(x̄v

w) − λw =
awe

−(aw x̄v
w+bw)

[1 + e−(aw x̄v
w+bw)]2

− λw = 0. (4.16)

Let yw = e−(aw x̄v
w+bw), we obtain λwy

2
w +(2λw−aw)yw +λw = 0. We can consider two cases:

Case I: If aw ≥ 4λw, since 0 ≤ yw ≤ 1, we can take the root yw =
aw−2λw−

√
a2

w−4awλw

2λw
,

so

x̄v
w(λw) =

[
− ln

((

aw−2λw−
√

a2
w−4aλw

)

/2λw

)

−bw

aw

]x̄max
w

x̄in
w

. (4.17)

Case II: If aw < 4λw, we have s′w(x̄w, λw) < 0 and sw(x̄w, λw) is decreasing in x̄w.

Thus,

x̄v
w(λw) = arg max

x̄in
w ≤x̄w≤x̄max

w

sw(x̄w, λw) = x̄in
w . (4.18)

Considering the two cases above, we can fully characterize x̄v
w(λw) as in (4.17) and (4.18).

�
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4.2.4 Second Dual Subproblem

For the second dual subproblem, given λ, we have

max
p∈P

∑

i∈N

λi



ln pi +
∑

j∈N\{i}

ln(1−pj)





=
∑

i∈N

max
0≤pi≤1



λi ln pi +




∑

j∈N\{i}

λj



 ln(1 − pi)



 .

(4.19)

Since the problem at the right hand side in (4.19) is convex, we can apply the first

order necessary and sufficient optimization condition to obtain the given optimal solution

[62] as follows

p∗i (λ) =
λi

∑

j∈N λj

, if
∑

j∈N

λj 6= 0. (4.20)

4.2.5 Centralized Algorithm for Random Access

We define

λc
i = min{λ ≥ 0 : si(x̄

min
i , λ) = max

x̄in
i ≤x̄i≤x̄max

i

si(x̄i, λ)}. (4.21)

Thus, x̄∗i (λ
c
i) has two solutions: x̄∗i (λ

c
i) = x̄min

i and x̄in
i ≤ x̄∗i (λ

c
i) ≤ x̄max

i . As shown in Fig.

4.2, x̄∗i (λi) is discontinuous at λc
i .

Consider g(λ) = supp∈P,x̄∈X̄ L(p, x̄,λ), we apply Danskin’s Theorem [19] to find the

subdifferential ∂g(λ) (i.e., the set of all subgradients of g(λ))

∂g(λ) = conv{∇λL(p, x̄,λ) : p ∈ p∗(λ), x̄ ∈ x̄∗(λ)}, (4.22)

where conv{H} is the convex hull of set H and ∇λL(p, x̄,λ) =
(

∂L(p,x̄,λ)
∂λ1

, . . . , ∂L(p,x̄,λ)
∂λN

)T

denotes the gradient of L with respect to λ, and the notation (·)T denotes vector transpose

operator. Moreover, p∗(λ) and x̄∗(λ) are the solutions of (4.20) and (4.11) at λ for all
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Figure 4.2: The solution of the first dual subproblem x̄∗i (λi) versus λi for sigmoidal utility
function Ui(x) = x2

x2+20
. We can see that x̄∗i (λi) is discontinuous at λi = λc

i = 0.0780.

i ∈ N , respectively. We note that g(λ) is differentiable at λ, because there is only one

element in both sets p∗(λ) and x̄∗(λ). This is always true unless ∃ i ∈ N such that λi = λc
i ,

because in that case there are two possible solutions for x̄∗i (λ
c
i) as discussed above. Using

the subgradient projection method, we update (λi, ∀i ∈ N ) according to the following

equation:

λi(t+ 1) =



λi(t) − α(t)



c̄i + ln p∗i (λ(t)) +
∑

j∈N\{i}

ln(1 − p∗j(λ(t))) − x̄∗i (λi(t))









+

,

(4.23)

where [z]+ = max{z, 0} and t is the index of the iteration. With a diminishing step size

α(t) ≥ 0 such that limt→∞ α(t) = 0 and
∑∞

t=1 α(t) = ∞ (e.g., we can choose α(t) = m/t,

where m is a positive constant), it can be shown that λi(t) converges to the dual optimal

solution λ∗i as t→ ∞ [19]. The algorithm to solve problem (4.6) is shown in Algorithm 4.1.

In the algorithm, we initialize the variables in lines 1 to 3, and update the variables p∗, x̄∗

and λ in lines 4 to 10. Notice that the subgradient method is usually used without any
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Algorithm 4.1 Centralized Algorithm to Solve Problem (4.6).

1: Input: ci, x
min
i , xmax

i , ∀ i ∈ N
2: Calculate x̄in

i , ∀ i ∈ N
3: Set t := 1 and initialize λi(t) > 0, ∀ i ∈ N
4: while t < MAXITER
5: Set p∗i (λ(t)) := λi(t)∑

j∈N λj(t)
, ∀i ∈ N

6: Set x̄v
i (λi(t)) := arg max

x̄in
i ≤x̄i≤x̄max

i

si(x̄i, λi(t))

7: Set x̄∗i (λi(t)) := arg max
x̄i∈{x̄min

i ,x̄v
i (λi(t))}

si(x̄i, λi(t))

8: Set λi(t+ 1) as in (4.23) with α(t) := m/t, where m > 0
9: Set t := t+ 1

10: end while
11: Output: p∗ and x̄∗.

formal stopping criterion, so we run our algorithm for a pre-specified number of iterations

MAXITER. We will discuss the optimality of its solution in the next section.

4.2.6 General Optimality Conditions

We have the following general optimality condition for the dual problem in (4.9):

Theorem 4.1 Vector λ∗ is the solution of problem (4.9) if and only if λ∗ � 0 and

1. If λ∗i = 0, we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗)) − x̄v

i (λ
∗
i ) ≥ 0. (4.24)

2. If λ∗i > 0 and λ∗i 6= λc
i , we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗)) − x̄v

i (λ
∗
i ) = 0. (4.25)
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3. If λ∗i > 0 and λ∗i = λc
i , we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗)) − x̄v

i (λ
∗
i ) ≤ 0, (4.26)

and

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗)) − x̄min

i ≥ 0. (4.27)

Proof : First, for dual feasibility, we have λ∗ � 0. For cases 1 and 2, g(λ)i is differentiable

at λi = λ∗i , where g(λ)i is the ith element in g(λ). The ith entry of the derivative becomes

∇g(λ∗)i = c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j(λ
∗)) − x̄v

i (λ
∗
i ). (4.28)

Since problem (4.9) is convex, the result directly follows from [21, pp. 142]. For case 3,

g(λ)i is non-differentiable at λi = λ∗i ; therefore, the KKT condition is 0 ∈ ∂g(λ∗)i. From

(4.22), we have

∂g(λ∗)i = conv{c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i} ln(1 − p∗j (λ
∗)) − x̄∗i : x̄∗i ∈ x̄∗i (λ

∗
i )}

=
[
c̄i + ln p∗i (λ

∗) +
∑

j∈N\{i} ln(1 − p∗j(λ
∗)) − x̄v

i (λ
∗
i ),

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i} ln(1 − p∗j(λ
∗)) − x̄min

i

]
,

(4.29)

which is simply an interval. Considering the lower and upper bounds in the interval, we

can directly derive (4.26) and (4.27), respectively. �

Since the dual problem is convex, the KKT conditions (4.24)-(4.27) are necessary and

sufficient [21, p. 139]. By using the following theorem, we can determine whether Algorithm

4.1 can solve the NUM problem.

Theorem 4.2 If λ∗i 6= λc
i , ∀i ∈ N , then Algorithm 4.1 finds the optimal solution of

problem (4.6).
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Proof : If λ∗i 6= λc
i , ∀ i ∈ N , from the discussion in Section 4.2.5, p∗ = p∗(λ∗) and x̄∗ =

x̄∗(λ∗) form the unique minimizer of Lagrangian L(p, x̄,λ∗). Thus g(λ) is differentiable

at λ∗ by (4.22). Finally, from [20, Property 6.5(c)], the primal problem (4.6) has a saddle

point (p∗, x̄∗,λ∗). By [20, Theorem 5.3], p∗ and x̄∗ are the global optimum of the primal

problem (4.6). �

4.3 Optimality and Sub-optimality

In this section, we assume that xmax
i = ci, ∀ i ∈ N such that the optimal value of the

objective function is restricted by capacity c = (ci, i ∈ N ) only, but not the data rate

bound xmax = (xmax
i , i ∈ N ). Next, we discuss certain conditions on vector c which affect

optimality and sub-optimality of Algorithm 4.1.

4.3.1 Optimal Solution

We first provide a sufficient condition on the link capacities for optimality of Algorithm

4.1:

Theorem 4.3 With xmax
i = ∞, suppose λc

i and x̄v
i (λ

c
i) are obtained by (4.21) and (4.13)

for any i ∈ N , respectively. We define

cci =
ex̄v

i (λc
i )

p∗i (λ
c)
∏

j∈N\{i}(1 − p∗j(λ
c))
, ∀ i ∈ N , (4.30)

where p∗i (λ
c) is as in (4.20). Here, cc denotes the vector of critical link capacities. If

c ≻ cc, then Algorithm 4.1 can obtain the optimal solution in problem (4.6), and thus that

of problem (4.5).
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Proof : Let λ∗ be the dual optimal solution and assume that c ≻ cc. From (4.30), we have

c̄i + ln p∗i (λ
c) +

∑

j∈N\{i} ln(1 − p∗j(λ
c)) − x̄v

i (λ
c
i) > 0, for any i ∈ N . We can further show

that

0 /∈ ∂g(λc)i = [c̄i + ln p∗i (λ
c) +

∑

j∈N\{i} ln(1 − p∗j (λ
c)) − x̄v

i (λ
c
i),

c̄i + ln p∗i (λ
c) +

∑

j∈N\{i} ln(1 − p∗j(λ
c)) − x̄min

i ].
(4.31)

Thus, λ∗i 6= λc
i , ∀ i ∈ N . By Theorem 4.2, Algorithm 4.1 finds the optimum of problem

(4.5). �

The key idea in the proof is that if c ≻ cc, λ∗i < λc
i , ∀ i ∈ N , then the optimality of

the solution directly results from Theorem 4.2.

4.3.2 Sub-optimal Solution: Upper and Lower Bounds

Next, assume that c � cc. In this case, Algorithm 4.1 may only obtain a sub-optimal

solution. For cases other than c ≻ cc and c � cc, Algorithm 4.1 may obtain an optimal

or sub-optimal solution depending on the exact scenario. Notice that x̄∗(λ) and p∗(λ)

obtained from lines 5 to 7 of Algorithm 4.1 always satisfy the second and third constraints

in problem (4.6), respectively. By Theorem 4.1, the first constraint can be satisfied in all

the three cases in (4.24), (4.25), and (4.27). That is, for the case λ∗i > 0 and λ∗i = λc
i , we

will choose x̄∗i (λi) = x̄min
i . By weak duality [21, pp. 225], we can obtain an upper bound for

the objective value of problems (4.5) and (4.6) as

∑

i∈N

Ui(x
∗
i ) =

∑

i∈N

Ūi(x̄
∗
i ) ≤ g(λ∗) = L(p∗(λ∗), x̄∗(λ∗),λ∗). (4.32)

The first equality is due to the fact that problems (4.5) and (4.6) have the same ob-

jective function. The inequality is due to weak duality, and the last equality is by def-
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Figure 4.3: The minimal capacities cc1 and cc2 for types of utility functions versus the total
number of stations N . Type 1 utility functions are concave, while Type 2 utility functions
are sigmoidal.

inition. In some cases, we can also obtain a lower bound for problem (4.5). If xi =

cip
∗
i (λ

∗)
∏

j∈N\{i}(1 − p∗j(λ
∗)) satisfies constraint xmin

i ≤ xi ≤ xmax
i , ∀i ∈ N , by the opti-

mality of x∗, we can obtain a lower bound as

∑

i∈N

Ūi(x̄
∗
i ) =

∑

i∈N

Ui(x
∗
i ) ≥

∑

i∈N

Ui



cip
∗
i (λ

∗)
∏

j∈N\{i}

(1 − p∗j(λ
∗))



 . (4.33)

It should be noted that both the upper and lower bounds are constructed from the same

p∗(λ∗) and x̄∗(λ∗) obtained from Algorithm 4.1. When the duality gap is zero, the upper

and lower bounds are both equal to the optimal value of the objective function
∑

i∈N Ui(x
∗
i ).

4.4 Performance Evaluations

In this section, we consider both cases where c ≻ cc and c � cc for Algorithm 4.1. We

choose xmin
i = 0.0001 and xmax

i = ci, for ∀ i ∈ N . Here, we assume that there are two types
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Figure 4.4: Aggregate utility versus the total number of stations N when c ≻ cc using
exhaustive search and Algorithm 4.1.

of utility functions used in the network: a concave (Type 1) function U1(x1) = 1−(x1+1)−1,

and a sigmoidal (Type 2) function U2(x2) =
x2
2

x2
2+20

, as shown in Fig. 4.1. We can then

obtain λc
1 = 0.0789 and λc

2 = 0.0780 numerically (e.g., using MATLAB as in Fig. 4.2). We

assume that there are N stations in the network, where half of them are Type 1, and the

other half are Type 2. We plot cc1 and cc2 versus the total number of stations N in Fig. 4.3.

We can see that only a linear increase in cc1 and cc2 is required for Algorithm 4.1 to find the

optimal solution when N increases.

Next, we plot the aggregate utility versus the number of stations in Fig. 4.4 to verify

the optimality of Algorithm 4.1 when c ≻ cc. We can see that the result of the exhaustive

search is identical to that of Algorithm 4.1, meaning that Algorithm 4.1 obtains the optimal

solution. Then, we consider the case where c ≺ cc by using the capacities c = 0.5cc. Fig.

4.5 shows the upper and lower bounds obtained from Algorithm 4.1.

Next, we focus on the case when N = 2, c1 = 21 kbps and c2 = 44 kbps to study the

resource allocation when c ≺ cc. With the use of diminishing step size α(t) = 0.01/t, the
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Figure 4.5: Aggregate utility versus the total number of stations N when c ≺ cc using ex-
haustive search and Algorithm 4.1. The lower and upper bounds are obtained by replacing
p∗(λ∗) and x̄∗(λ∗) (i.e., the results from Algorithm 4.1) into the expressions in (4.33) and
(4.32), respectively. We can see that the lower bound is very tight in this case. In fact,
except for the case with 14 stations, the lower bound exactly matches the global optimal
solution in all other considered cases.

allocations of persistent probabilities converge, as shown in Fig. 4.6. Moreover, we have

noticed in the simulation that λ1(t) → λ∗1 = λc
1 and λ2(t) → λ∗2 = λc

2 as t → ∞. It can be

verified, by simulation, that the use of a constant step size leads to oscillatory behaviour

in the dual variables and the allocation of persistent probabilities.
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Figure 4.6: Convergence of the allocation of the persistent probabilities with insufficient
capacity c ≺ cc using diminishing step size α(t) = 0.01/t, even though the allocation may
not be globally optimal as discussed in Section 4.3.

4.5 Summary

In this chapter, we proposed a random access algorithm based on the NUM framework for

stations with either concave or sigmoidal utilities. We applied the dual method to solve

our problem. A sufficient condition on link capacities that guarantee the optimality of the

solution is proposed. Simulations have been performed to verify our analytical results.
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Chapter 5

Dynamic Optimal Random Access for

Vehicle-to-Roadside Communications

In this chapter, we aim to design a uplink random access algorithm that is distributed

in nature, so that it is compatible with the IEEE 802.11p standard that is developed to

facilitate the provision of wireless access in vehicular environment [16, 17]. Different from

most previous works on heuristic distributed uplink V2R communication algorithm design,

we aim at designing an optimal uplink resource allocation scheme in VANETs analytically.

Specifically, we consider the drive-thru scenario [85], where vehicles pass by several

APs located along a highway and obtain Internet access for only a limited amount of time.

We assume that a vehicle wants to upload a file when it is within the coverage ranges of

the APs, and needs to pay for the attempts to access the channel. As both the channel

contention level and achievable data rate vary over time, the vehicle needs to decide when to

transmit by taking into account the required payment, the application’s QoS requirement,

and the level of contention in current and future time slots. Because of the dynamic nature

of the problem, we formulate it as a finite-horizon sequential decision problem and solve

it using the dynamic programming (DP). The main contributions of this chapter are as

follows:

• In the case of a single AP with random vehicular traffic, we propose a general dynamic

optimal random access (DORA) algorithm to compute the optimal access policy. We
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further extend the results to the case of multiple consecutive APs and propose a joint

DORA (JDORA) algorithm to compute the optimal policy.

• We consider a special yet practically important case of a single AP with constant data

rate. We show that the optimal policy in this case has a threshold structure, which

motivates us to propose a low complexity and efficient monotone DORA algorithm.

• Extensive simulation results show that our proposed algorithms achieve the mini-

mal total cost and the highest upload ratio as compared with three other heuristic

schemes. In the multi-AP scenario, the performance improvements in upload ratio of

the JDORA scheme are 130% and 207% at low and high traffic density, respectively.

The rest of this chapter is organized as follows. We present the related work in Section

5.1. We describe our system model in Section 5.2 and formulate the DP problem in Section

5.3. The general and monotone DORA algorithms for single AP are proposed in Section

5.4.1, and the JDORA algorithm for multiple APs is discussed in Section 5.4.2. Simulation

results are given in Section 5.5, and a summary is given in Section 5.6. A list of the key

notations used in this chapter is given in Table 5.1.
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Table 5.1: List of Key Notations
Notation Meaning

λ Arrival rate of the vehicles

ρ, ρmax Density of the vehicles and density of the vehicles during traffic jam

ν, νf Speed and free-flow speed of the vehicles

j, J Index of an AP and its feasible set

Rj Transmission radius of the jth AP

P Transmit power of the vehicle

γ Path loss exponent

W Channel bandwidth

N0/2 Power spectral density of the Gaussian noise

dt Distance between the vehicle and the closest AP at time slot t

∆t Length of a time slot

∆tdata Length of time in a time slot for data transmission

t, Tj, T Time slot, its feasible set in the jth coverage range, and its overall
feasible set

Tj Total number of time slots that the vehicle stays within the
jth coverage range

a, A Action and its feasible set

S, s, S Total file size, remaining file size to be uploaded, and its feasible set

psucc, psucc
t , P Probability of successfully gaining access to the time slot, its value at

time slot t, and its feasible set

qj Payment per time slot in the jth coverage range

wt Data rate at time slot t

lt Number of vehicles leaving the jth coverage range at time slot t ∈ Tj

δt(·) Decision rule at time slot t

π, Π Transmission policy and its feasible set

h(·) Self-incurred penalty

σ Granularity of discrete state element s in the algorithms

n, nt, Nj Number of vehicles in the coverage range, its value at time slot t,
and its feasible set in the jth coverage range

Nmax,j Maximum number of vehicles that can be accommodated in the
jth coverage range

gj(·) A function used by the jth AP that maps n to psucc

ζ(j, τ) A function that maps the τ th time slot in the jth coverage range to the
time line as shown in Fig. 5.2

ct Cost at time slot t

ĉ Terminal cost

vt(s, p
succ) Minimal expected total cost in state (s, psucc) from time t over the

planning horizon

ψt(s, p
succ, a) Expected total cost in state (s, psucc) from time t over the planning horizon

if action a is chosen

K, pr, F MAC parameters in the MCBC scheme [86]

99



Chapter 5. Dynamic Optimal Random Access for Vehicle-to-Roadside Communications

5.1 Related Work

Several centralized and distributed resource allocation schemes have been proposed for

VANETs. In the centralized setting, the AP schedules the transmissions from different

vehicles based on some predefined criteria. Hadaller et al. in [87] proposed a scheduling

protocol that grants channel access to a vehicle that achieves the maximum transmission

rate. Analytical and simulation results showed significant overall system throughput im-

provement over a benchmark scheme. Chang et al. in [88] proposed a heuristic downlink

scheduling algorithm for dedicated short range communication (DSRC) networks. It aims

to reduce the handoff rate under some delay constraints of the vehicles. Based on a metric

which measures the chance that a vehicle can be served completely within the coverage

range of an AP, the algorithm divides the vehicles into two priority classes for scheduling.

Zhang et al. in [89] considered the case where roadside APs only store the data uploaded

by the vehicles. Scheduling priority is determined by two factors: data size and deadline.

A request with either a smaller data size or an earlier deadline will be served first. Alcaraz

et al. in [90] considered both uplink and downlink scheduling of non-real-time traffic for

non-safety applications. The scheduling problem was formulated as a constrained linear

quadratic regulator design problem that aims to reduce the residual queue backlog for each

user. However, because centralized resource allocation is not scalable due to its computa-

tional complexity, we focus on distributed resource allocation scheme in this chapter.

In the distributed setting, the vehicles contend for the channel for transmission based

on the applications’ QoS requirements. Yang et al. in [91] proposed a cross-layer protocol

called coordinated external peer communication for multi-hop V2R communications. The

roads are divided into segments such that the vehicles are divided into clusters. Informa-

tion is aggregated and passed between cluster heads. Shrestha et al. in [92] considered

the scenario where the data packets are first distributed from the roadside units (RSUs)
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to the onboard units (OBUs). The OBUs then bargain with each other for the missing

data packets, and exchange them using BitTorrent protocol. Jarupan et al. in [93] pro-

posed a cross-layer protocol for V2R multi-hop communication. The MAC module collects

information of local data traffic, and the routing module finds a path with the minimum

delay. Niyato et al. in [94] proposed a hierarchical optimization framework for downlink

data streaming in V2R communications. The optimal pricing and bandwidth reservation

of a service provider is obtained using game theory, and the optimal download policy of

an OBU is obtained using constrained Markov decision processes. Sikdar in [95] proposed

a V2R protocol, where the AP first obtains an estimate of the number of active nodes in

the network, and then uses it to determine the optimal number of data contention slots.

An information-theoretic lower bound on the MAC layer overhead was derived related to

node reassociations induced by the mobility of the nodes. Tan et al. in [96] analyzed the

performance of a downlink resource allocation scheme in a V2R communication system

with one AP on a road. The resources are equally shared among all the vehicles that are

within the coverage range of the AP. The distribution of the number of bytes downloaded

per drive-thru was derived using Markov reward processes. Roman et al. in [86] proposed

a cross-layer protocol in the physical and MAC layers that addresses the issues of channel

fading, synchronization, and channel contention. Performance analysis was presented for

the channel contention scheme, and a testbed was used to evaluate the proposed protocol.

5.2 System Model

We consider a drive-thru scenario on a highway as shown in Fig. 5.1, where multiple APs

are installed and connected to a backbone network to provide Internet services to vehicles

within their coverage ranges. We focus on a vehicle that wants to upload a single file of

size S when it moves through a segment of this highway with a set of APs J = {1, . . . , J},
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Figure 5.1: Drive-thru V2R communications with multiple APs.

where the vehicles pass through the ith AP before the jth AP for i < j with i, j ∈ J . We

assume that the jth AP has a transmission radius Rj. We also assume that the vehicle is

connected to at most one AP at a time. If the coverage areas of the APs are overlapping,

then proper handover between the APs will be performed [97]. For the ease of exposition,

we assume that the APs are set up in a way that any position in this segment of highway

is covered by an AP. Our work can easily be extended to consider the settings where the

coverage areas of adjacent APs are isolated from each other.

5.2.1 Traffic Model

Let λ denote the average number of vehicles passing by a fixed AP per unit time. We assume

that the number of vehicles moving into this segment of the highway follows a Poisson

process [98] with a mean arrival rate λ. Let ρ denote the vehicle density representing the

number of vehicles per unit distance along the road segment, and ν be the speed of the

vehicles. From [99], we have

λ = ρν. (5.1)
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The relation between the vehicle density ρ and speed ν is given by the following equation

[99]:

ν = νf(1 − ρ/ρmax), (5.2)

where νf is the free-flow speed when the vehicle is moving on the road without any other

vehicles, and ρmax is the vehicle density during traffic jam.

As we are studying the traffic flow in steady state, all the vehicles within the coverage

range are assumed to move with the same speed ν in (5.2). Let ⌊·⌋ denote the floor function.

The maximum number of vehicles that can be accommodated within the coverage range

of the jth AP is given by

Nmax,j = ⌊2Rjρmax⌋ , ∀ j ∈ J . (5.3)

5.2.2 Channel Model

Wireless signal propagations suffer from path loss, shadowing, and fading. Since the dis-

tance between the vehicle and the AP varies in the drive-thru scenario, we focus on the

dominant effect of channel attenuation due to path loss. The data rate at time slot t is

given by

wt = W log2

(

1 +
P

N0Wdγ
t

)

, (5.4)

where W is the channel bandwidth, P is the transmit power of the vehicle, dt is the distance

between the vehicle and the closest AP at time slot t, and γ is the path loss exponent.

We assume that the additive white Gaussian noise has a zero mean and a power spectral

density N0/2. In addition, we also consider a special case with fixed data rate in Section

5.4.1.
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Figure 5.2: An example of the time line representation for the events happened with three
APs (i.e., J = {1, 2, 3}). Here, we assume that T1 = 10, T2 = 15, and T3 = 12. With
respect to the time line, we have T1 = {1, . . . , 10}, T2 = {11, . . . , 25}, and T3 = {26, . . . , 37}.
It is clear from the figure that ζ(j, τ) =

∑j−1
i=0 Ti + τ, ∀ τ ∈ {1, . . . , Tj}, where T0 = 0.

5.2.3 Distributed Medium Access Control

We consider a slotted MAC protocol, where time is divided into equal time slots of length

∆t. We assume that there is perfect synchronization between the APs and the vehicles

with the use of global positioning system (GPS) [18]. The total number of time slots that

the vehicle stays within the coverage range of the jth AP is Tj =
⌊

2Rj

ν∆t

⌋

. We use the

notation ζ(j, τ) to denote the τ th time slot when the vehicle is in the coverage area of the

jth AP, i.e.,

ζ(j, τ) =

j−1
∑

i=0

Ti + τ, ∀ τ ∈ {1, . . . , Tj}, (5.5)

where T0 = 0. The set of time slots in the jth AP with respect to this time line represen-

tation is Tj = {ζ(j, 1), . . . , ζ(j, Tj)}. An example of the time line representation is given in

Fig. 5.2.

When the vehicle first enters the coverage range of the jth AP, it declares the type of its

application to the AP. In return, the jth AP informs the vehicle the channel contention in

the coverage range (λ and psucc
t , ∀ t ∈ Tj), data rate in all the time slots in the jth coverage

range (i.e., wt, ∀ t ∈ Tj), the price qj , and the estimated number of vehicle departures from
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the coverage range in all the time slots in the jth coverage range (i.e., lt, ∀ t ∈ Tj). We

further elaborate these system parameters as follows:

• psucc
t represents the probability that the vehicle can successfully obtain access in time

slot t ∈ Tj after contending with all the vehicles in the jth coverage range. psucc
t is

estimated by the AP based on the level of system contention and it varies over time.

Since psucc
t is related to the number of vehicles nt currently in the jth coverage range

at time slot t, we define psucc
t = gj(nt), where gj is a strictly decreasing function.

An AP knows the value of nt, since vehicles need to establish and terminate their

connections when they enter and leave the coverage range, respectively.

• qj ≥ 0 denotes the amount (e.g., in virtual currency) that a vehicle needs to pay

the AP for each time slot that it sends a transmission request in the jth coverage

range, even it fails to access the channel. The value of qj does not change over time.

Moreover, in order to provide QoS support, an AP may charge differently for vehicles

running different types of applications.

• lt represents the number of vehicle departing at time slot t ∈ Tj from the jth coverage

range. Since all the vehicles move with constant speed ν in the traffic model, we

assume that (lt, ∀ t ∈ Tj) are accurately known by the jth AP, and are sent to the

vehicle when it enters the coverage range.

In each time slot t ∈ Tj in the jth coverage range, the jth AP first broadcasts the

value of psucc
t to all the vehicles in its coverage range. If a vehicle decides to transmit

within this time slot, it sends a request to the jth AP at its scheduled mini-slot, where

Nmax,j mini-slots are reserved for transmission requests. The transmissions of requests are

thus collision-free. After collecting the requests from all vehicles in its coverage range,

the jth AP assigns the time slot to one of these vehicles. The vehicle, which receives the
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Figure 5.3: The structure of a time slot of the jth AP.

acknowledgement (ACK), can transmit the data packets in the remaining time ∆tdata of

this time slot, where ∆tdata < ∆t. The structure of a time slot is shown in Fig. 5.3.

Meanwhile, regardless of which vehicle is granted the time slot, each vehicle which re-

quested to transmit in the time slot needs to pay qj to the jth AP. Without such pricing,

each vehicle would send a request in every time slot, which unnecessarily increases the con-

tention level and prevents efficient allocation of time slots to the most needed application.

The vehicle aims to achieve a good tradeoff between the total uploaded file size and the

total payment to the APs according to the QoS requirement of the application. For exam-

ple, a higher priority may be placed on the total uploaded file size for safety applications,

but on the total payment for non-safety applications. The problem is further complicated

by the time-varying data rate wt and channel contention level. Therefore, it is a challenge

for the vehicle to decide when to request for data transmission.

5.3 Problem Formulation

In this section, we formulate the optimal transmission problem of a single vehicle as a

finite-horizon sequential decision problem [28]. The decision epochs of the vehicle are

t ∈ T =
⋃

j∈J

Tj =
⋃

j∈J

{
ζ(j, 1), . . . , ζ(j, Tj)

}
, (5.6)
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where T is the set of all the time slots in the total of J coverage ranges.

The system state of a vehicle is defined as (s, psucc), where the state element s ∈ S =

[0, S] represents the remaining size (in bits) of the single file to be uploaded. If we denote

the number of vehicles in the coverage range of the jth AP as n ∈ Nj = {1, . . . , Nmax,j},

then psucc ∈ Pj = {gj(n) : n ∈ Nj}.

At any state (s, psucc), the vehicle has two possible actions :

a ∈ A = {0, 1}, (5.7)

where action a = 1 implies that the vehicle decides to request to transmit, and action

a = 0 otherwise.

The cost at state (s, psucc) with action a ∈ A at time slot t ∈ Tj in the jth coverage

range is

ct(s, p
succ, a) = aqj , ∀ t ∈ Tj . (5.8)

After the vehicle has left the J th coverage range at time ζ(J, TJ + 1), we define a

self-incurred penalty of the vehicle for not being able to complete the file uploading as

ĉζ(J,TJ+1)(s, p
succ) = h(s), (5.9)

where h(s) ≥ 0 is a nondecreasing function of s with h(0) = 0. The function depends

on the QoS requirement of the application. To sum up, each vehicle is incurred with two

costs: the transmission cost in each time slot in (5.8) and the penalty after leaving the J th

coverage range in (5.9).

The state transition probability pt

(
(s′, psucc′) | (s, psucc), a

)
is the probability that the

system will go into state (s′, psucc′) if action a is taken at state (s, psucc) at time slot t ∈ T.

Since the transition from psucc to psucc′ is independent of the value of s but depends on
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time t, we have

pt

(
(s′, psucc′) | (s, psucc), a

)
= pt

(
s′ | (s, psucc), a

)
pt

(
psucc′ | psucc

)
. (5.10)

With action a = 1, we have

pt

(
s′ | (s, psucc), 1

)
=







psucc, if s′ = [s− wt∆tdata]
+,

1 − psucc, if s′ = s,

0, otherwise,

(5.11)

where [x]+ = max{0, x}. The first and second cases correspond to the scenarios of success-

ful and unsuccessful packet transmissions, respectively. With action a = 0, we have

pt

(
s′ | (s, psucc), 0

)
=







1, if s′ = s,

0, otherwise,
(5.12)

where the remaining size of the file to upload does not change. The derivation of

pt

(
psucc′ | psucc

)
will be discussed in detail in Section 5.4.

Let δt : S ×Pj → A be the decision rule that specifies the transmission decision of the

vehicle at state (s, psucc) at time slot t ∈ Tj in the jth coverage range. We define a policy

as a set of decision rules covering all the states as π = (δt(s, p
succ), ∀ s ∈ S, psucc ∈ Pj , t ∈

Tj , ∀ j ∈ J ). We denote (sπ
t , p

succ,π
t ) as the state at time slot t if policy π is used, and we

let Π be the feasible set of π. The vehicle aims to find an optimal policy that minimizes
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the total expected cost, which can be formulated as the following optimization problem

min
π∈Π

Eπ,(S,psucc
1 )

[
J∑

j=1

[ Tj∑

τ=1

cζ(j,τ)

(

sπ
ζ(j,τ), p

succ,π
ζ(j,τ) , δζ(j,τ)(s

π
ζ(j,τ), p

succ,π
ζ(j,τ) )

)]

+ ĉζ(J,TJ+1)(s
π
ζ(J,TJ+1), p

succ,π
ζ(J,TJ+1))

]

,

(5.13)

where Eπ,(S,psucc
1 ) denotes the expectation with respect to the probability distribution by

policy π with an initial state (S, psucc
1 ) at time slot t = ζ(1, 1) = 1. In the following section,

we will study two scenarios: single AP with random vehicular traffic and multiple APs with

traffic pattern estimation.

5.4 Finite-Horizon Dynamic Programming

In this section, we describe how to obtain the optimal transmission policies in both the

single-AP and multiple-AP scenarios using finite-horizon dynamic programming. We first

study the single-AP scenario with random vehicular traffic arrival in Section 5.4.1. In

particular, we consider a special case that the optimal policy has a threshold structure in

Section 5.4.1. When the traffic pattern can be estimated accurately, we consider a joint

AP optimization in Section 5.4.2.

5.4.1 Single AP Optimization with Random Vehicular Traffic

Since we are considering one AP (i.e., J = {1}) in this subsection, we drop the subscript

j for simplicity. Although the exact traffic pattern (i.e., the exact number of vehicles in

the coverage range of the AP in each time slot) is not known, the vehicles arrive according

to a Poisson process with parameter λ. Meanwhile, the parameters lt (∀ t ∈ T ), ρmax, ∆t,
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R, and the function g(·) are available. The transition probability of psucc is given by

pt

(
psucc′ | psucc

)
= pt

(
g(n′) | g(n)

)
= pt

(
n′ |n

)
=







(λ∆t)n′−n+lt+1

(n′−n+lt+1)! φt(n)
, if n− lt+1 ≤ n′ ≤ Nmax,

0, otherwise,

(5.14)

where φt(n) =
∑Nmax−n+lt+1

y=0
(λ∆t)y

y!
is a normalization factor. Because psucc = g(n) is

a strictly decreasing function of n, there is a one-to-one mapping between psucc and n

as shown in the first two equalities in (5.14). The expression after the third equalities

describes the probability with n′ − n + lt+1 arrivals due to the Poisson process and lt+1

deterministic departures at time t + 1. n′ is lower-bounded by n− lt+1 ≥ 0 when there is

no vehicle arrival, and is upper-bounded by Nmax.

In this subsection, since we consider J = {1}, we can simplify problem (5.13) as

min
π∈Π

Eπ,(S,psucc
1 )

[ T∑

t=1

ct

(

sπ
t , p

succ,π
t , δt(s

π
t , p

succ,π
t )

)

+ ĉT+1(s
π
T+1, p

succ,π
T+1 )

]

. (5.15)

Let vt(s, p
succ) be the minimal expected total cost that the vehicle has to pay from time

t to time T + 1 when it is in the coverage range, given that the system is in state (s, psucc)

immediately before the decision at time slot t ∈ T . The optimality equation [28, pp. 83]

relating the minimal expected total cost at different states for t ∈ T is

vt(s, p
succ) = min

a∈A
{ψt(s, p

succ, a)}, (5.16)
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where

ψt(s, p
succ, a) = ct(s, p

succ, a) +
∑

s′∈S

∑

psucc′∈P

pt

(
(s′, psucc′) | (s, psucc), a

)
vt+1(s

′, psucc′) (5.17)

= aq +
∑

psucc′∈P

pt

(
psucc′ | psucc

)[

apsuccvt+1

(
[s− wt∆tdata]

+, psucc′
)

+
(
1 − apsucc

)
vt+1(s, p

succ′)
]

. (5.18)

The first and second terms on the right hand side of (5.17) are the immediate cost and the

expected future cost in the remaining time slots in the coverage range for choosing action

a, respectively. Equation (5.18) follows directly by evaluating (5.17) using (5.10) - (5.12).

For time t = T + 1, we have the boundary condition that

vT+1(s, p
succ) = ĉT+1(s, p

succ) = h(s). (5.19)

Lemma 5.1 The value of ψt(s, p
succ, a), ∀ t ∈ T , can be obtained as

ψt(s, p
succ, a) = aq +

Nmax−n+lt+1∑

m=0

(λ∆t)m

m!φt(n)

[

apsuccvt+1

(
[s− wt∆tdata]

+, g(n+m− lt+1)
)

+
(
1 − apsucc

)
vt+1

(
s, g(n+m− lt+1)

)]

,

(5.20)

where n = g−1(psucc) is the number of vehicles in the coverage range of the AP.

Proof : The result follows directly by evaluating (5.18) using (5.14). �

Intuitively, the minimal expected cost vt(s, p
succ) should be smaller when the remaining

file size s to be uploaded is smaller. It is confirmed by the following lemma:

Lemma 5.2 vt(s, p
succ) is a nondecreasing function in s, ∀ psucc ∈ P, t ∈ T .
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Proof : We prove it by induction. From (5.19), since vT+1(s, p
succ) = h(s), vT+1(s, p

succ) is

a nondecreasing function in s, ∀ psucc ∈ P. Assume that vt+1(s, p
succ) is a nondecreasing

function in s, ∀ psucc ∈ P. Since pt

(
psucc′ | psucc

)
≥ 0 and 0 ≤ apsucc ≤ 1, it can be

inferred from (5.18) that ψt(s, p
succ, a) is a nondecreasing function in s, ∀ psucc ∈ P. Thus,

vt(s, p
succ) in (5.16) is a nondecreasing function in s, ∀ psucc ∈ P. �

Using the optimality equation and backward induction [28, pp. 92], we propose the

general dynamic optimal random access (DORA) algorithm in Algorithm 5.1 to obtain the

optimal policy π∗ = (δ∗t (s, p
succ), ∀ s ∈ S, psucc ∈ P, t ∈ T ), where

δ∗t (s, p
succ) = arg min

a∈A
{ψt(s, p

succ, a)}. (5.21)

Theorem 5.1 The policy π∗ obtained from Algorithm 5.1 is the optimal solution of prob-

lem (5.15).

Proof : Using the principle of optimality [29, pp. 18], we can show that π∗ is the optimal

solution of problem (5.15). �

The proposed DORA algorithm consists of two phases: Planning phase and transmis-

sion phase. The planning phase starts when the vehicle enters the coverage range. The

vehicle then obtains information from the AP and computes the optimal policy π∗ offline

using dynamic programming. In fact, π∗ is a contingency plan that contains information

about the optimal decisions at all possible states (s, psucc) in the coverage range. In the

transmission phase, the transmission decision in each time slot is made according to the

optimal policy π∗, and s is updated depending on whether the time slot is granted to the

vehicle for transmission or not. Note that the computational complexity of the algorithm is

directly proportional to the dimension of the optimal policy, which is given by |S|×|P|×T .
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Algorithm 5.1 General DORA Algorithm for single AP optimization (i.e., problem
(5.15)).

1: Planning Phase:
2: Input the traffic parameters: ν, λ, ρmax, lt (∀ t ∈ T );
3: Input the system parameters: h(·), S, R, wt (∀ t ∈ T ), q, ∆t, ∆tdata, σ, g(·);
4: Set the boundary condition vT+1(s, p

succ), ∀ s ∈ S, ∀ psucc ∈ P using (5.19);
5: t := T ;
6: while t ≥ 1
7: for psucc ∈ P
8: s := 0;
9: while s ≤ S

10: Calculate ψt(s, p
succ, a), ∀ a ∈ A = {0, 1} using (5.20);

11: δ∗t (s, p
succ) := arg min

a∈A
{ψt(s, p

succ, a)};
12: vt(s, p

succ) := ψt

(
s, psucc, δ∗t (s, p

succ)
)
;

13: s := s+ σ;
14: end while
15: end for
16: t := t− 1;
17: end while
18: Output the optimal policy π∗ for use in the transmission phase;
19: Transmission Phase:
20: t := 1 and s := S;
21: while t ≤ T
22: Receive the information of psucc from the AP;
23: Set action a := δ∗t (s, p

succ) based on the policy π∗;
24: If action a = 1
25: Send a request to the AP;
26: If ACK is received from the AP
27: Transmit packets with total size wt∆tdata;
28: s := [s− wt∆tdata]

+;
29: end if
30: end if
31: t := t+ 1;
32: end while

Special Case: Convex Penalty Function and Fixed Data Rate

In this subsection, we further investigate a special yet practically important case with

convex penalty function and non-adaptive data rate [96]. The key idea is that if the self-
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incurred penalty function h(s) is convex and the data rate wt is fixed within the coverage

range (i.e., wt = w, ∀ t ∈ T ), we can show that ψt(s, p
succ, a) is submodular [28, pp. 103]

on S × A, ∀ t ∈ T , which is defined as follows.

Definition 5.1 Given psucc, the function ψt(s, p
succ, a) is submodular on S × A if for

ŝ, š ∈ S and â, ǎ ∈ A, where ŝ ≥ š and â ≥ ǎ, we have

ψt(ŝ, p
succ, â) + ψt(š, p

succ, ǎ) ≤ ψt(ŝ, p
succ, ǎ) + ψt(š, p

succ, â). (5.22)

Furthermore, with δ∗t (s, p
succ) as defined in (5.21), we can establish the threshold structure

of the optimal policy [28, 100, 101].

The details of the derivation of the threshold policy are as follows. Because wt =

w, ∀ t ∈ T , we let ω = w∆tdata. Since δ∗t (s, p
succ) is defined as in (5.21), we can establish

the threshold policy if we can prove that ψt(s, p
succ, a) is submodular on S×A, ∀ t ∈ T [28,

pp. 104, 115]. The following results from Lemma 5.3 and 5.4 establish the submodularity

of ψt(s, p
succ, a). First, Lemma 5.3 shows that vt(s, p

succ) has a nondecreasing difference in

s if h(s) is a convex and nondecreasing function.

Lemma 5.3 If h(s) is a convex and nondecreasing function in s, then

vt(s, p
succ) − vt

(
[s− ω]+, psucc

)
≥ vt

(
[s− σ]+, psucc

)
− vt

(
[s− σ − ω]+, psucc

)
,

∀ s ∈ S, psucc ∈ P, t ∈ T ∪ {T + 1}.
(5.23)

Proof : We prove it by induction. Since h(s) is a nondecreasing convex function, we have

h(s) − h([s− ω]+) ≥ h([s− σ]+) − h([s− σ − ω]+), ∀ s ∈ S. (5.24)
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Let s ∈ S, psucc ∈ P be given. For t = T + 1, we have

vT+1(s, p
succ) − vT+1

(
[s− ω]+, psucc

)
= h(s) − h

(
[s− ω]+

)

≥ h([s− σ]+) − h([s− σ − ω]+) = vT+1([s− σ]+, psucc) − vT+1

(
[s− σ − ω]+, psucc

)
,

(5.25)

where the equalities are due to (5.19) and the inequality is due to (5.24).

Assume that for a given t ∈ T , we have

vt+1(s, p
succ) − vt+1

(
[s− ω]+, psucc

)
≥ vt+1

(
[s− σ]+, psucc

)
− vt+1

(
[s− σ − ω]+, psucc

)
,

∀ s ∈ S, psucc ∈ P.

(5.26)

From (5.16), let actions a1, a2, a3, and a4 be defined such that

vt(s, p
succ) = min

a∈A
{ψt(s, p

succ, a)} = ψt(s, p
succ, a1), (5.27)

vt

(
[s− ω]+, psucc

)
= min

a∈A
{ψt

(
[s− ω]+, psucc, a

)
} = ψt

(
[s− ω]+, psucc, a2

)
, (5.28)

vt

(
[s− σ]+, psucc

)
= min

a∈A
{ψt

(
[s− σ]+, psucc, a

)
} = ψt

(
[s− σ]+, psucc, a3

)
, (5.29)

vt

(
[s− σ − ω]+, psucc

)
= min

a∈A
{ψt

(
[s− σ − ω]+, psucc, a

)
}

= ψt

(
[s− σ − ω]+, psucc, a4

)
. (5.30)
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We thus have

vt(s, p
succ) − vt

(
[s− ω]+, psucc

)
− vt

(
[s− σ]+, psucc

)
+ vt

(
[s− σ − ω]+, psucc

)

= ψt(s, p
succ, a1) − ψt

(
[s− ω]+, psucc, a2

)
− ψt

(
[s− σ]+, psucc, a3

)
+ ψt

(
[s− σ − ω]+, psucc, a4

)

=

A
︷ ︸︸ ︷

ψt(s, p
succ, a1) − ψt

(
[s− σ]+, psucc, a1

)
+

B
︷ ︸︸ ︷

ψt

(
[s− σ]+, psucc, a1

)
− ψt

(
[s− σ]+, psucc, a3

)

C
︷ ︸︸ ︷

−ψt

(
[s− ω]+, psucc, a2

)
+ ψt

(
[s− ω]+, psucc, a4

)

−
(

D
︷ ︸︸ ︷

ψt

(
[s− ω]+, psucc, a4

)
− ψt

(
[s− σ − ω]+, psucc, a4

))

= A+B + C −D. (5.31)

We have

A =
∑

psucc′∈P

pt

(
psucc′ | psucc

)[

a1p
succ
[
vt+1([s− ω]+, psucc′) − vt+1([s− σ − ω]+, psucc′)

]

+
(
1 − a1p

succ
)[
vt+1(s, p

succ′) − vt+1([s− σ]+, psucc′)
]]

≥
∑

psucc′∈P

pt

(
psucc′ | psucc

)[
vt+1([s− ω]+, psucc′) − vt+1([s− σ − ω]+, psucc′)

]

≥
∑

psucc′∈P

pt

(
psucc′ | psucc

)[

a4p
succ
[
vt+1([s− 2ω]+, psucc′) − vt+1([s− σ − 2ω]+, psucc′)

]

+
(
1 − a4p

succ
)[
vt+1([s− ω]+, psucc′) − vt+1([s− σ − ω]+, psucc′)

]]

= D,

(5.32)

where the two equalities are obtained by using (5.18) and the two inequalities are due to

the induction hypothesis in (5.26). From (5.29) and (5.28), we have B ≥ 0 and C ≥ 0,

respectively. Overall, from (5.31), we obtain

vt(s, p
succ) − vt

(
[s− ω]+, psucc

)
− vt

(
[s− σ]+, psucc

)
+ vt

(
[s− σ − ω]+, psucc

)
≥ 0, (5.33)
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which completes the proof. �

Lemma 5.4 shows that ψt(s, p
succ, a) is submodular if vt(s, p

succ) has a nondecreasing

difference in s.

Lemma 5.4 If ∀ ŝ, š ∈ S, psucc ∈ P, t ∈ T with ŝ ≥ š, where

vt+1(ŝ, p
succ) − vt+1

(
[ŝ− ω]+, psucc

)
≥ vt+1(š, p

succ) − vt+1

(
[š− ω]+, psucc

)
, (5.34)

then ψt(s, p
succ, a) is submodular on S × A, ∀ t ∈ T .

Proof : Let ŝ, š ∈ S, â, ǎ ∈ A, psucc ∈ P, and t ∈ T be given, where ŝ ≥ š and â ≥ ǎ. Then

ψt(ŝ, p
succ, â) + ψt(š, p

succ, ǎ) − ψt(ŝ, p
succ, ǎ) − ψt(š, p

succ, â)

= −
∑

psucc′∈P

pt

(
psucc′ | psucc

)
psucc(â− ǎ)

[

vt+1(ŝ, p
succ′) − vt+1

(
[ŝ− ω]+, psucc′

)

− vt+1(š, p
succ′) + vt+1

(
[š− ω]+, psucc′

)]

≤ 0,

(5.35)

where the equality is obtained by using (5.18). The inequality at the end is due to the fact

that pt

(
psucc′ | psucc

)
≥ 0, psucc ≥ 0, â ≥ ǎ, and the given condition in Lemma 5.4. From

Definition 5.1 and (5.22), the result follows. �

Theorem 5.2 If h(s) is a convex and nondecreasing function in s, and the data rate

wt is fixed such that wt = w, ∀ t ∈ T , then we have a threshold optimal policy π∗ =

(δ∗t (s, p
succ), ∀ s ∈ S, psucc ∈ P, t ∈ T ) in s as follows:

δ∗t (s, p
succ) =







1, if s > s∗t (p
succ),

0, otherwise,
(5.36)

where s∗t (p
succ) is the threshold that depends on both psucc and t.
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Proof : Let ŝ, š ∈ S, ω ≥ 0, psucc ∈ P, and t ∈ T be given. Moreover, let š = [ŝ − kσ]+,

where k > 0. If the condition of the theorem is satisfied, by repetitively applying Lemma

5.3, we have

vt(ŝ, p
succ) − vt

(
[ŝ− ω]+, psucc

)
≥ vt

(
[ŝ− σ]+, psucc

)
− vt

(
[ŝ− σ − ω]+, psucc

)
≥ · · ·

≥ vt

(
[ŝ− kσ]+, psucc

)
− vt

(
[ŝ− kσ − ω]+, psucc

)
= vt

(
š, psucc

)
− vt

(
[š− ω]+, psucc

)
.

(5.37)

From Lemma 5.4, ψt(s, p
succ, a) is submodular on S × A, ∀ t ∈ T . From [28, pp. 104, 115],

δ∗t (s, p
succ) is a monotone nondecreasing function in s. Since δ∗t (s, p

succ) ∈ A = {0, 1},

δ∗t (s, p
succ) is in the form of (5.36). �

By modifying Algorithm 5.1, we are ready to propose the monotone DORA algorithm

with a lower computational complexity in Algorithm 5.2 using monotone backward in-

duction [28, pp. 111]. Let Ã ⊆ A be the set of actions that we need to consider in the

minimization in line 11 in Algorithm 5.2. When δ∗t (s, p
succ) = 1 and flag = 0 are satisfied

(line 13), which means that the threshold s∗t (p
succ) is reached, set Ã is reduced from {0, 1}

to {1} and the threshold s∗t (p
succ) is recorded (line 14). Then the minimization in line 11

is readily known, since set Ã = {1} is a singleton. The computational complexity is thus

reduced. Moreover, memory can be saved, because we do not need to store the complete

optimal policy π∗ = (δ∗t (s, p
succ), ∀ s ∈ S, psucc ∈ P, t ∈ T ). We just need to store the

thresholds (s∗t (p
succ), ∀ psucc ∈ P, t ∈ T ), which completely characterize the optimal policy

π∗ as shown in (5.36).
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Algorithm 5.2 Monotone DORA Algorithm for single AP optimization (i.e., problem
(5.15)) for the special case with convex penalty function h(s) and fixed data rate wt.

1: Planning Phase:
2: Input the traffic parameters: ν, λ, ρmax, lt (∀ t ∈ T );
3: Input the system parameters: h(·), S, R, wt (∀ t ∈ T ), q, ∆t, ∆tdata, σ, g(·);
4: Set the boundary condition vT+1(s, p

succ), ∀ s ∈ S, ∀ psucc ∈ P using (5.19);
5: t := T ;
6: while t ≥ 1
7: for psucc ∈ P
8: Set s := 0, flag := 0, and Ã := {0, 1};
9: while s ≤ S

10: Calculate ψt(s, p
succ, a), ∀ a ∈ Ã using (5.20);

11: δ∗t (s, p
succ) := arg min

a∈Ã

{ψt(s, p
succ, a)};

12: vt(s, p
succ) := ψt

(
s, psucc, δ∗t (s, p

succ)
)
;

13: if δ∗t (s, p
succ) = 1 and flag = 0

14: Set Ã := {1}, s∗t (psucc) = s, and flag = 1;
15: end if
16: s := s+ σ;
17: end while
18: end for
19: t := t− 1;
20: end while
21: Output the thresholds (s∗t (p

succ), ∀ psucc ∈ P, t ∈ T ) for use in the transmission phase;
22: Transmission Phase:
23: t := 1 and s := S;
24: while t ≤ T
25: Receive the information of psucc from the AP;
26: If s > s∗t (p

succ)
27: Send a request to the AP;
28: If ACK is received from the AP
29: Transmit packets with total size wt∆tdata;
30: s := [s− wt∆tdata]

+;
31: end if
32: end if
33: t := t+ 1;
34: end while
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5.4.2 Joint AP Optimization with Deterministic Vehicular

Traffic

In the previous subsection, we consider the optimization problem in a single AP. In this

subsection, we extend the result to the case of multiple APs, where we assume that the

traffic pattern (i.e., the exact number of vehicles in the coverage ranges of the APs in each

time slot) can be estimated accurately. The traffic pattern can be estimated in various

ways, such as by installing a traffic monitor at a place before the first AP to observe the

actual traffic pattern when the vehicles pass by (e.g., using computer vision [102] and

pattern recognition [103]). If the traffic flow reaches the steady state (as discussed in

Section 5.2.1), the estimation of the number of vehicles nt at time t ∈ T can be reasonably

accurate. As a result, the values of psucc
t = gj(nt), ∀ t ∈ T can be obtained accurately. As

an example, we consider that the traffic model is as described in Section 5.2.1, and all the

APs have the same transmission radii. After the traffic monitor has estimated the values

of psucc
τ , ∀ τ ∈ T1 for the first coverage range, it can set psucc

ζ(j,τ) := psucc
τ for the remaining

coverage ranges j ∈ J \{1}.

The optimality equations relating the minimal expected total cost at different time

t ∈ T for problem (5.13) are similar to that described in Section 5.4.1, but are simplified

because we assume that psucc
t , ∀ t ∈ T are known. At time t ∈ Tj , we have

vt(s, p
succ
t ) = min

a∈A
{ψt(s, p

succ
t , a)}, (5.38)
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where

ψt(s, p
succ
t , a) = ct(s, p

succ
t , a) +

∑

s′∈S

pt

(
(s′, psucc

t+1 ) | (s, psucc
t ), a

)
vt+1(s

′, psucc
t+1 )

= aqj + apsucc
t vt+1

(
[s− wt∆tdata]

+, psucc
t+1

)

+
(
1 − apsucc

t

)
vt+1(s, p

succ
t+1 ). (5.39)

The second line in (5.39) is obtained by using (5.11) and (5.12). After the vehicle has left

the Jth coverage range at t = ζ(J, TJ + 1), the boundary condition is

vζ(J,TJ+1)(s, p
succ
ζ(J,TJ+1)) = ĉζ(J,TJ+1)(s, p

succ
ζ(J,TJ+1)) = h(s). (5.40)

The JDORA algorithm for joint AP optimization is given in Algorithm 5.3.In Algorithm

5.3, the vehicle first needs to obtain the values of psucc
t , ∀ t ∈ T, from the traffic monitor.

In the planning phase, for each s ∈ S and t ∈ T, the optimal decision rule δ∗t (s, p
succ
t ) is

the action that minimizes the expected total cost (line 10), where the expected total cost

ψt(s, p
succ
t , a) for all possible actions is calculated (line 9) based on vt+1 obtained (line 11)

in the previous iteration t+1. After the process is repeated for all t ∈ T (line 6) and s ∈ S

(line 8), we obtain the optimal policy π∗. In the transmission phase, the transmission

decision in each time slot is made according to the optimal policy π∗, and it follows the

MAC protocol described in Section 5.2.3.

Theorem 5.3 The policy π∗ = (δ∗t (s, p
succ
t ), ∀ s ∈ S, t ∈ T) obtained from Algorithm 5.3

is the optimal solution of problem (5.13) when psucc
t , ∀ t ∈ T are accurately known.

Proof : The result follows directly from the principle of optimality [29, pp. 18]. �
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Algorithm 5.3 JDORA Algorithm for joint AP optimization (i.e., problem (5.13)).

1: Planning Phase:
2: Input the traffic parameters: ν, psucc

t (∀ t ∈ T);
3: Input the system parameters: h(·), S, Rj (∀ j ∈ J ), wt (∀ t ∈ T), qj(∀ j ∈ J ), ∆t,

∆tdata, σ;
4: Set the boundary condition vζ(J,TJ+1)(s, p

succ
ζ(J,TJ+1)), ∀ s ∈ S using (5.40);

5: t := ζ(J, TJ);
6: while t ≥ 1
7: s := 0;
8: while s ≤ S
9: Calculate ψt(s, p

succ
t , a), ∀ a ∈ A = {0, 1} using (5.39);

10: δ∗t (s, p
succ
t ) := arg min

a∈A
{ψt(s, p

succ
t , a)};

11: vt(s, p
succ
t ) := ψt

(
s, psucc

t , δ∗t (s, p
succ
t )

)
;

12: s := s+ σ;
13: end while
14: t := t− 1;
15: end while
16: Output the optimal policy π∗ for use in the transmission phase;
17: Transmission Phase:
18: t := 1 and s := S;
19: while t ≤ ζ(J, TJ)
20: Set action a := δ∗t (s, p

succ
t ) based on the policy π∗;

21: If action a = 1
22: Send a request to the AP;
23: If ACK is received from the AP
24: Transmit packets with total size wt∆tdata;
25: s := [s− wt∆tdata]

+;
26: end if
27: end if
28: t := t+ 1;
29: end while

5.5 Performance Evaluations

In this section, we first compare Algorithms 5.1 and 5.3 with three heuristic schemes

using the traffic model described in Section 5.2.1 in both the single-AP and multiple-

AP scenarios. In particular, we study the performance of Algorithm 5.3 under imperfect

122



Chapter 5. Dynamic Optimal Random Access for Vehicle-to-Roadside Communications

Table 5.2: Simulation Parameters
Parameters Values

Number of APs J 1, 5

AP’s transmission radius R 100 m

Free-flow speed νf 110 km/hr

Vehicle jam density ρmax 100 veh/km

Duration of a time slot ∆t 0.02 sec

Duration for data transmission in a time slot ∆tdata 0.018 sec

Channel bandwidth W 20 MHz

Transmit signal-to-noise ratio P
N0W 60 dB

Path loss exponent γ 3

Payment per time slot q 1

Contention window cw ∈ [cwmin, cwmax] [1, 8]

MCBC parameter K (used in [86]) 3

MCBC parameter [p1p2, p3] (used in [86]) [0.12, 0.77, 0.86]

MCBC parameter F (used in [86]) 15

estimations of the psucc
t in the multiple-AP scenario. We then study the threshold policies

obtained by Algorithm 5.2.

The three heuristic schemes that we consider are as follows. The first heuristic scheme

is a greedy algorithm, in which each vehicle sends transmission requests at all the time slots

if its file upload is not complete. That is, the greedy algorithm aims to maximize the total

uploaded file size. The second heuristic scheme is the exponential backoff algorithm that

is similar to the one used in the IEEE 802.11. We have slightly modified it for the system

that we consider as follows. Each vehicle has a counter, which randomly and uniformly

chooses an initial integer value cnt from the interval [0, cw), where cw is the contention

window size. The value of cnt is decreased by one after each time slot. When cnt = 0,

the vehicle will send a request. If the vehicle has sent a request in a time slot, the size

of cw ∈ [cwmin, cwmax] will change according to the response from the AP: If an ACK is

received from the AP, cw is set to cwmin. Otherwise, cw is doubled until it reaches cwmax.

For the DORA, JDORA, greedy, and exponential schemes, we assume that the APs allow

the vehicles to share the channel with an equal probability. Therefore, psucc
t = 1/nt. The
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Figure 5.4: Total uploaded file size against the penalty parameter b for S = 100 Mbits
and ρ = 20 veh/km with a single AP. As b increases, a larger file size is uploaded for the
DORA scheme.

third heuristic scheme is the MAC protocol in the multi-carrier burst contention (MCBC)

scheme [86]. Similar to the greedy scheme, a vehicle will send a request if it has data to

send in each time slot. However, the vehicles need to undergo K rounds of contention

in each time slot. First, in round r, a vehicle survives the contention with probability

pr. Each of these vehicles will choose a random integer in {1, . . . , F}. Vehicles that have

chosen the largest number can proceed to round r + 1. The transmission is successful if

there is only one vehicle left in round K. Otherwise, packet collision will occur.

For the evaluations of all the schemes, we use the convex self-incurred penalty function

h(s) = bs2, ∀ s ∈ S, (5.41)

where b ≥ 0 is a constant. The three heuristic schemes are evaluated using a similar

transmission phase as in Algorithms 5.1 and 5.3, but with π∗ in Algorithms 5.1 and 5.3

replaced by the corresponding policies. The simulation parameters are listed in Table 5.2.
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Figure 5.5: Total cost versus traffic density ρ for file size S = 200 Mbits with a single AP.
The DORA scheme has the minimal total cost.

We first study the impact of penalty parameter b on the total uploaded file size for

S = 100 Mbits and ρ = 20 veh/km in one AP. As shown in Fig. 5.4, by increasing b, a

larger penalty is incurred on the size of the file not yet uploaded by using Algorithm 5.1.

As a result, a larger file size is uploaded to reduce the penalty. Depending on the QoS

requirements of different applications, different values of b should be chosen that tradeoff

the total uploaded file size and total payment to the AP by a different degree. Taking

safety application as an example, it may be more important to maximize the uploaded

file size than to reduce the total payment to the APs, so a large value of b should be be

chosen. Also, since the transmission policies of the greedy, MCBC, and exponential backoff

schemes do not consider the self-incurred penalty in (5.41), their total uploaded file size

are independent of b.

Next, we plot the total cost against the traffic density ρ for S = 200 Mbits with b = 0.1

for the case of one AP in Fig. 5.5. It is clear that the DORA scheme in Algorithm 5.1

achieves the minimal total cost as stated in Theorem 5.1, with 48% and 24% cost reduction

as compared with the exponential backoff scheme at low and high ρ, respectively. To

measure the cost effectiveness of the file uploading for the four schemes, we propose a
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Figure 5.6: Upload ratio (i.e., total uploaded file size / total payment to the APs) versus
traffic density ρ for file size S = 200 Mbits with a single AP. The DORA scheme achieves
the highest upload ratio.

metric called the upload ratio, which is defined as the total uploaded file size divided by

the total payment to the APs. In other words, it represents the size of the file uploaded

per unit payment. As shown in Fig. 5.6, since the DORA algorithm takes into account the

varying channel contention level and data rate in determining the transmission policy, it is

cost effective and achieves the highest upload ratio. In particular, the performance gains

in upload ratio over the exponential backoff scheme are 17% and 77% at low and high ρ,

respectively.

Furthermore, we consider the case with five APs, where we assume that all of them

have the same transmission radii R and price q. For the JDORA scheme in Algorithm 5.3,

we consider that the estimated number of vehicles ñt at time t ∈ T is obtained by rounding

off a normally distributed random variable with a mean nt and a variance θ to the nearest

non-negative integer. Thus, the lower the variance θ, the higher is the precision of the

estimation. The value of psucc
t is obtained by setting psucc

t = gj(ñt), ∀ t ∈ Tj , j ∈ J . We

plot the total cost and upload ratio in Figs. 5.7 and 5.8 for S = 500 Mbits with b = 0.01,

respectively. In Fig. 5.7, we can see that the JDORA scheme with perfect estimation (i.e.,
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Figure 5.7: Total cost versus traffic density ρ for file size S = 500 Mbits with five APs.
The JDORA scheme with perfect estimation of psucc

t has the minimal total cost. Moreover,
a higher total cost is required when the precision of the estimation reduces (i.e., when the
variance of the estimation θ increases).

θ = 0) of psucc
t , ∀ t ∈ T achieves the minimal total cost as stated in Theorem 5.3, where

it achieves 53% and 71% cost reduction as compared with the exponential backoff scheme

at low and high traffic density ρ, respectively. In Fig. 5.8, we can see that the JDORA

scheme with perfect estimation achieves the highest upload ratio. In particular, it achieves

an upload ratio 130% and 207% better than the exponential backoff scheme at low and high

traffic density ρ, respectively. As shown in Figs. 5.7 and 5.8, the total cost is increased

and the upload ratio is reduced, respectively, when the estimation precision decreases.

However, this result based on equal share of bandwidth that psucc
t = 1/ñt, ∀ t ∈ T is less

sensitive to the estimation error when the traffic density ρ is high. It suggests that the

JDORA algorithm is suitable especially for VANETs with high traffic densities.

Finally, we study the threshold policy in a single AP obtained by Algorithm 5.2 when

the penalty function h(s) is convex and data rate wt is fixed. We consider that S = 100

Mbits, ν = 100 km/hr, wt = 54 Mbps, ∀ t ∈ T , and h(s) is defined as in (5.41). From

Theorem 5.2, we know that the optimal policy has a threshold structure. In Fig. 5.9, we
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Figure 5.8: Upload ratio versus traffic density ρ for file size S = 500 Mbits with five APs.
The JDORA scheme with perfect estimation of psucc

t achieves the highest upload ratio as
compared with three other heuristic schemes. Moreover, a lower upload ratio is achieved
when the precision of the estimation reduces (i.e., when the variance of the estimation θ
increases).

plot the thresholds s∗t (p
succ) of the optimal policy against the decision epoch t for different

values of psucc. With the use of the convex penalty function, we can see that the threshold

increases with t. In Fig. 5.9(a), for b = 0.1, we can observe that the threshold increases

when psucc decreases. It is because a small penalty parameter is chosen, which places a

higher priority on the total payment than on the uploaded file size. When psucc is small,

the chance of successful transmission is low, so the vehicle chooses a higher threshold and

transmits less aggressively to reduce the amount of payment. In Fig. 5.9(b), we choose a

larger penalty parameter b = 10 such that a higher priority is placed on the uploaded file

size than on the total payment. We can observe that the threshold decreases when psucc

decreases. It is because when psucc is small, the vehicle needs to transmit more aggressively

(i.e., with a lower threshold) to prevent a large penalty. Moreover, we can see that the

thresholds presented in Fig. 5.9(b) is lower than that in Fig. 5.9(a) due to the higher

incentive to transmit when the penalty is large.
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Figure 5.9: The thresholds s∗t (p
succ) of the optimal policy against the decision epoch t for

different penalty parameters b.

5.6 Summary

In this chapter, we studied the V2R uplink transmission from a vehicle to the APs in

a dynamic drive-thru scenario, where both the channel contention level and data rate

vary over time. Depending on the applications’ QoS requirements, the vehicle can achieve

different levels of tradeoff between the total uploaded file size and the total payment to

the APs by tuning the self-incurred penalty. For a single AP with random vehicular

traffic, we proposed a DORA algorithm based on DP to obtain the optimal transmission
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policy for the vehicle in a coverage range. We prove that if the self-incurred penalty

function h(s) is convex and the data rate wt is non-adaptive and fixed, then the optimal

transmission policy has a threshold structure. A monotone DORA algorithm with a lower

computational complexity was proposed for this special case. Next, for multiple APs

with known vehicular patterns, we considered the transmission policy in multiple coverage

ranges jointly and proposed an optimal JDORA algorithm. Simulation results showed that

our schemes achieve the minimal total cost and the highest upload ratio as compared with

three other heuristic schemes.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the results and highlight the contributions of this thesis.

We also suggest several topics for future work.

6.1 Research Contributions

In this thesis, we have proposed several optimal or near-optimal random access algorithms

for wireless networks in Chapters 2, 3, and 4 using the NUM framework. We have also

considered a uplink transmission problem in VANETs with time-varying channel contention

level and data rate in Chapter 5.

• In Chapter 2, we considered the random access problem in CR networks using the

SINR model. For cooperative users in a multi-channel model, a three-phase dis-

tributed algorithm was proposed to obtain a near-optimal solution for the formulated

non-convex NUM problem. It converges readily to a close-to-optimal value even when

the set of data channels changes due to dynamic spectrum leasing. For rational users

in a single-channel model, we used the solution concepts of core and the Shapley value

in coalitional game theory to characterize the stability and fair allocation of the pay-

off among the users, respectively. The performance gain in aggregate throughput of

the proposed algorithm based on the SINR model over other schemes based on the

protocol model are validated by simulations. The Shapley value and the core were

illustrated with a numerical example.

131



Chapter 6. Conclusions and Future Work

• In Chapter 3, we studied the single-channel random access problem in WLANs,

where the users have concave, step, and quasi-concave utility functions. Potentially,

a selfish user may strategically declare its utility function or AC to unfairly achieve

a larger share of bandwidth, which can drastically degrade the network performance

and inhibit adequate service distinction among different ACs. We applied the VCG

mechanism in our random access protocol to motivate the users to declare the ACs

of their applications truthfully. In order to implement the VCG mechanism, we

proposed a low-complexity enumeration algorithm that can obtain the global optimal

solution for the formulated non-convex problem. Simulation results show that a

truthful mechanism can prevent selfish users from gaining an unfair share of the

network bandwidth, such that both the overall network performance in terms of

aggregate utility and service differentiation in terms of necessary throughput in each

AC can be supported.

• In Chapter 4, we extended the work of random access in WLANs, where we con-

sidered that the users have concave or sigmoidal utility functions. Different from

Chapter 3, we did not restrict a concave utility function to remain concave after a

logarithmic change of variables. By applying the dual decomposition method, we

proposed a subgradient algorithm to solve the formulated non-convex NUM prob-

lem. Closed-form solutions for the dual subproblems involving sigmoidal functions

were obtained. If a sufficient condition on link capacities is satisfied, it is guaran-

teed that the proposed algorithm can obtain the global optimal solution. Otherwise,

lower and upper bounds of the optimal value of the objective function were obtained.

Simulations were performed to verify our analytical results.

• In Chapter 5, we studied V2R uplink transmission from a vehicle to the APs in a

dynamic drive-thru scenario with time-varying channel contention level and trans-
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mission data rate. First, for a single AP with random vehicular traffic, we proposed a

DORA algorithm based on DP to obtain the optimal transmission policy. We proved

that if the self-incurred penalty function is convex and the data rate is fixed, then we

obtain an optimal transmission policy with threshold structure. We proposed a low

complexity monotone DORA algorithm for this special case. Then, for multiple APs

with known vehicular patterns, we considered joint AP optimization and proposed

a JDORA algorithm to obtain the optimal transmission policy. Simulation results

showed that our proposed schemes achieve the minimal total cost and the highest

upload ratio as compared with three other heuristic schemes.

6.2 Suggestions for Future Work

In the following, we consider several interesting possibilities for extension of the current

work.

1. CSMA-based MAC Protocol. In Chapters 2, 3, and 4, we have used a slotted

Aloha type of MAC protocol, which each user accesses the channel with a certain

transmission probability. It is interesting to consider the CSMA-based MAC protocol,

where a user attempts to transmit only when the channel is sensed idle [104–106].

2. Rational User Cooperation in Multiple Channels. In Chapter 2, we have

analyzed the rational user cooperation in a single channel under the SINR model.

It is interesting to extend the model to a multi-channel setting and analyze the

interactions of the rational users. The idea of coalition formation game in coalitional

game theory is an interesting direction for future work.

3. Multi-hop Communication. In Chapters 2, 3, and 4, we have assumed that the

transmission between the transmitter and receiver of each user is only single-hop. It
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is possible to consider the multi-hop setting by introducing binary routing variables

and flow conservation constraints as in [57].

4. Analysis of the Random Access Game. In Chapter 3, we have analyzed the

strategic declarations of the amplitude parameters K̂ by the rational players in the

non-cooperative random access game. It is possible to extend the analysis to consider

the strategic declarations of the other utility parameters, i.e., α̂ and p̂critical.

5. Joint AP Optimization Without Traffic Pattern Estimation. In Chapter

5, we have considered the single-AP scenario with random vehicular traffic, and

the multiple-AP scenario with deterministic vehicular traffic due to traffic pattern

estimation. One possible direction for extension is to characterize the probability

related to the number of vehicles in each AP in the multiple-AP scenario, and consider

joint AP optimization with random vehicular traffic (i.e., without the need of traffic

pattern estimation).
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