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Abstract 

 

Most estimates of litter decomposition rates do not account well for the effects of soil 

macrofauna, and so are suspect in ecosystems in which litter-transforming soil fauna are 

abundant. In coastal rainforests, millipedes consume substantial amounts of leaf litter, most 

of which is egested as faecal pellets. Little is known about the fate of this material, which 

hinders estimation of realistic rates of litter decomposition in these ecosystems.  

In this study, I assess the influence of feeding by the millipede (Harpaphe haydeniana) on 

decomposition of leaf litter by comparing rates of CO2 release during laboratory incubation 

from leaf litter which has been ingested by millipedes and transformed into faecal pellets 

with that from litter which has not been ingested by millipedes. Changes in litter microbial 

communities as a consequence of millipede ingestion are assessed by comparing the PLFA 

profiles of faeces and uningested litter during incubation.   

Rates of CO2 release from faeces and litter were similar. CO2 release was higher in maple 

litter than Douglas-fir litter, and this difference persisted in the faeces from litter that 

millipedes fed on. Differences in bacterial abundance between litter types were also retained 

during millipede gut passage. Grinding of litter increased CO2 release, as did grinding of 

faeces, indicating that structure of litter and millipedes‟ faecal pellets may restrict microbial 

access and thus decrease the decomposition rates. Microbial activity and abundance did not 

differ between leaf litter and faeces incubated alone vs together. 
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Chapter  1: Introduction 

 

1.1 Background 

Understanding the fluxes of carbon within ecosystems has become an important topic 

due to the increasing demand for knowledge about how to mediate climate change. Since 

carbon dioxide is an important greenhouse gas, it is important to determine how we could 

reduce the release of carbon to the atmosphere. The terrestrial biosphere contains 2500 Gt of 

carbon, which is the third largest carbon reservoir after the lithosphere (75,000,000 Gt) and 

ocean (38,400 Gt) (Falkowski et al. 2000). In the terrestrial biosphere, more than half of the 

total carbon is in organic forms (1550 Gt; inorganic carbon is 950 Gt) (Lal 2004). Increasing 

accumulation of carbon in soils is one strategy, but as Janzen (2006) pointed out, organic 

carbon enhances microbial activities which increased the release of respiratory CO2, so we 

also need to consider strategies to reduce the release of CO2 back to the atmosphere through 

the process of litter decomposition (Prescott 2010). 

 Litter decomposition has been measured mainly with litter bags (Huhta 2007). In this 

method, a known mass of litter is confined within mesh bags, and remaining mass is 

periodically measured in order to estimate the decomposition rate. One criticism of this 

technique is that the mesh of the litter bag may restrict faunal access to the litter. If the mesh 

is too fine for soil animals to go through, fragmentation of litter would slow down. Coarse –

meshed bags have been used to estimate the degree to which decomposition is stimulated by 

soil fauna, but this may overestimate decomposition by allowing litter fragments to fall out of 

the bag (Kampichler and Bruckner 2009, Prescott 2005). The importance of faunal activities 

in litter decomposition processes is well documented. For instance, in a microscopic study of 



 2 

pine needle litter decomposition, Ponge (1991) concluded that fauna such as nematodes 

digests needles after two stages of fungal attacks. A variety of soil animal species was 

observed also in a field experiment using litter bags implying that the animals feed on the 

plant residues and thus influence litter decomposition (Anderson 1975). Several microcosm 

experiments also demonstrate the significance of fauna in decomposition and mineralization. 

For example, the presence of meso-fauna increased plant growth in microcosms relative to 

defaunated microcosms, indicating that nematodes, enchytraeids and microarthropods 

enhance nutrient mineralization (Setälä and Huhta 1991). Collembolans enhanced microbial 

cellulase production although no significant change was observed in other factors such as 

fungal biomass and microbial respiration (Faber et al. 1992). Kandeler et al. (1999) 

demonstrated an increase in protease production in the H layer in a field mesocosm 

experiment in a spruce forest in Australia due to the presence of some soil microarthropods. 

Microcosms with mixtures of micro-, meso- and macro-fauna enhanced N uptake by poplar 

compared to those with micro- and meso-fauna or micro-fauna only (Setälä et al. 1996). 

These studies indicate the importance of faunal communities in litter decomposition and 

nutrient mineralization although the specific functions of individual faunal species are not yet 

clear.  

 According to Visser (1985), the effects of faunal activities on microbes can be 

classified into either reduction of fungal diversity, changes in fungal community structures or 

transportation of microbes. Soil invertebrates homogenize microhabitats through litter 

breakdown and soil agitation, resulting in the presence of only a limited number of microbial 

species that are adapted to the environment.  Fungal community structure may be modified 

through selective feeding of soil fauna on particular species of fungi. Finally, microbes 
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attached to invertebrates‟ body and/or living in their gut are carried to different habitats, 

resulting in the spread of the microbes (Harinikumar and Bagyaraj 1994). The significance of 

these functions varies among faunal species because each species has different capabilities. 

Fragmentation is strongly related to the body size of animals; most meso- and micro-fauna 

feed on plant residues that are already fragmented by macro-fauna. Only macro-fauna modify 

soil structure; earthworms create soil aggregates by burrowing (Frouz 2011) and supply 

habitat for meso- and micro-fauna that dwell in soil pores (Szlavecz 1985). Therefore, 

macro-fauna may affect litter decomposition by influencing the activities of smaller animals 

and microbes (Frouz 2006, Gómez-Brandón et al. 2010). 

 Among the many species of macro-fauna in soils, earthworms are widely recognized 

as a key species in litter decomposition (Huhta 2007, Scheu 2003). They alter soil profiles by 

ingesting both organic and inorganic materials, burrowing, and excreting faecal pellets 

(Lavelle 1997; Staaf 1987). Millipedes, like earthworms, feed on decayed litter. Smaller 

invertebrates such as collembolans, mites, enchytraeids and isopods are often found with 

millipedes‟ faeces (Nicholson et al. 1966) indicating that millipedes‟ faeces are the important 

food source for those animals. Few earthworms but many millipedes are found in coastal 

rainforests in British Columbia (Battigelli et al. 1994, Setälä et al. 1996), and this may be a 

situation in which functionally similar species undertakes the role in case of absence of a key 

species (Huhta 2007). One of the millipede species in coastal rainforests in BC, Harpaphe 

haydiniana, was estimated to consume about 36 % of annual aboveground litter fall 

(Cárcamo 2000). This means that more than one-third of above-ground litter passes through 

millipedes‟ gut, inferring that the effects of millipedes on an ecosystem are significant. 

Cárcamo (2000) also reported that H. haydiniana, assimilate only about 10% of their 
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consumption, so their overall effect on decomposition and C flow depends largely on the fate 

of their faecal pellets. 

 

1.2 Biology of Millipedes 

 The general biology of millipedes has been well summarized by Hopkin and Read 

(1992). Millipedes are arthropods with 10,000 species within the Class Diplopoda. They have 

two pairs of legs in one body segment, from which the word “diplopods” is derived. Class 

Diplopoda consists of two subclasses and 14 orders, which can be classified into 5 groups 

based on their ecomorphological types: long, cylindrical millipedes with hard cuticles which 

are suitable for burrowing; shorter millipedes with a flat head which are suitable for 

penetration; millipedes with compressible segments such that they good at broadening gaps; 

millipedes that protect themselves by rolling up into a ball; and hairy, flat millipedes that 

cannot burrow. Millipedes‟ body size also varies from 2 mm and 30 cm. Most millipedes 

dwell under leaf litter or rocks on the soil surface and in soil pores, although some species are 

reported to live under bark or even climb trees. These habitats relate to their food source, 

which is mostly decayed litter and plant residues. Although not common, some species of 

millipedes are reported to be geophagous as well as coprophagous. Millipedes generally have 

a long life - for example, some species in the genus Parafontara, known as “train millipedes” 

in Japan, take 7 to 8 years to mature (Niijima and Shinohara 1988). Julus scandivavius moult 

9 to 13 times in 2 years to mature and overwinter three times during their life (Blower 1970).  

 The amount of food consumption varies among and in each development stadium 

(Kheirallah 1978); most food is consumed at the beginning of each instar (Blower 1974). 

Consumption also depends on the degree of decay and/or microbial colonization of the 
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residue (Hafidi et al. 1998). The woodlouse, Procellio scaber, prefers more-decayed pine 

needles over partially decayed ones (Soma and Saito 1983). Likewise, millipedes feed upon 

decayed litter, not fresh fallen leaves (David and Gillon 2002).  Uneven consumption of leaf 

litter of different tree species due to the differences in their quality has been observed for 

various faunal species (Cotrufo et al. 2005, Hättenschwiler and Gasser 2005, Hendriksen 

1990, Tian et al. 1995).  Palatability seems to be related to C/N ratio and phenol content of 

the food (Hendriksen 1990, Kadamannaya and Sridhar 2009); earthworms removed more 

litter of willow species with low tannin content from a litter bag than that with high tannin 

content (Šlapokas and Granhall 1991). Millipedes also prefer litter species with relatively 

low tannin content (Cárcamo 2000, Edwards 1974, Kadamannaya and Sridhar 2009). On the 

other hand, the feeding rate of woodlouse on F. silvatica decreased after two weeks of 

increasing consumption, coinciding with the increase and decrease of abundance of bacteria 

colonized in the litter (Daniel et al. 1997). The depletion of available carbon in the later stage 

of decomposition was confirmed by Maraun and Scheu (1996) who demonstrated that in 

spring when fresh carbon was abundant in the litter, microbial activity and biomass were 

enhanced by litter fragmentation, whereas in fall when fresh carbon was less abundant, 

microbes did not flourish regardless of the increased surface area. The preference of soil 

fauna for partially decayed “conditioned” litter may also reflect soil animals‟ preference for 

litter with abundant fungal tissue. Mites were reported to selectively feed on colonized fungi 

on decayed litter (Hubert et al. 2000). Hyphal material was much more abundant than pine 

needles in the gut of isopods Porcellio scaber (Soma and Saito 1983).  

Millipedes influence litter decomposition processes both directly and indirectly. 

During gut passage, litter is fragmented into smaller particles, chemical substances in litter 
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are degraded, some nutrients are assimilated into the millipede‟s body, microbes colonized in 

litter are digested while gut microbes flourish, and faecal pellets are formed. Each event 

results in accelerated or decelerated microbial activities, and the subsequent rate of 

decomposition is influenced by these events. 

 

1.3 Fragmentation of Leaf Litter 

 Faunal grazing significantly enhances litter breakdown (Tian et al. 1995). Litter 

fragmentation may be related to size and structure of mandibles; species with large 

mandibles can graze on large particles of litter while others can only feed on fine fragments. 

This is supported by the correlation between feeding habits and cheliceral size among 

oribatid mites, indicating that animals with large chelicerae feed on large pieces of plant 

residues while those with small chelicerae feed on fragments (Kaneko 1988). Anatomical 

observation of millipedes‟ mouthparts revealed that millipedes are able to destroy cells of 

consumed litter as well as microbes (Köhler and Alberti 1990). The most significant effect of 

litter fragmentation on decomposition processes is an increase in surface area, which is 

broadened between one and 20 million times through millipedes‟ grazing (Kheirallah 1990). 

This increase in surface area of litter enables microbes to access to their food sources and 

thus, accelerates decomposition. In addition to the physical change, litter breakdown 

increases available glucose, resulting in high initial respiration of microbes (Maraun and 

Scheu 1995). Because millipedes consume a large amount of litter, the effect of 

fragmentation must be significant. 
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1.4 Biochemical Degradation 

 Biochemical changes of consumed litter through gut passage result from two 

antagonistic phenomena: degradation of complex compounds and assimilation of simple 

compounds. Enzymes in the gut fluid can degrade chemical compounds to some degree, 

resulting in an increase of easily decomposable substances, while millipedes selectively 

absorb simple compounds, resulting in stabilization of the remaining substances. The 

digestive system of millipedes consists of glands such as salivary and maxillary glands and a 

long pipe linking their mouth to their intestine. The intestine can be divided into three parts: 

foregut, midgut and hindgut. Digestion of consumed litter takes place mainly in the foregut 

where salivary glands excrete enzymes (Hopkin and Read 1992). In studies of enzymes in 

guts of collembolans and mites, amylase, xylanase, laminarinase, lichenase, cellulase 

complex and trehalase were detected (Urbášek and Rusek 1994; Urbášek and Starý 1994, 

Hubert et al. 1999). As for millipedes, catalase, cellulase and peroxidase were found in the 

gut of three species of Class Diplopoda, while aldehyde oxidase, which was found in guts of 

Isopoda and Mollusca, was not detected (Hartenstein 1982). The presence of cellulase is 

consistent with a microscopic observation, in which microbial cell walls dipped in 

millipedes‟ midgut fluid were destroyed, indicating that the fluid has the ability to degrade 

chemical compounds by hydrolytic activities (Byzov et al. 1998a). The origin of these 

enzymes could be either the animals or the microbes that are capable of surviving in their 

gut. Studies using transmission electron microscopy and epifluorescent microscopy found 

bacteria and actinomycetes in earthworm intestine (Krištůfek et al.1994, 1995). In guts of 

enchytraeids, some ingested bacteria survived and produced enzymes that degrade chitin 

(Krištůfek et al. 1999). Microbes have also been found in millipedes‟ guts (Guzev and Byzov 
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2006).  Knapp et al. (2009a) analyzed the DNA samples from millipedes‟ gut contents and 

showed that the microbial community in the gut is not affected by millipedes‟ food, 

indicating the possibility of microbial symbioses. Therefore millipedes may take advantage 

of microbial extracellular enzymes.  

 

1.5 Assimilation of Nutrients 

 Despite enzymatic activities in millipedes‟ gut to break down chemical compounds in 

ingested litter, stabilization of soil organic matter is reported.  Cárcamo (2000) demonstrated 

that millipedes assimilate only about 10 % of the litter consumed, which is similar to David 

and Gillon‟s (2002) estimate of 6 %, indicating that most of the litter consumed by millipedes 

stays intact throughout gut passage. More detailed comparison of chemical composition of 

leaf litter and millipedes‟ faeces indicated that millipedes utilize only water-soluble and 

easily degradable compounds such as lipids, carbohydrates and short-chain amino acids 

(Rawlins et al. 2006); therefore, the remaining substances consist of only recalcitrant 

materials. Enhanced stabilization of material resulting from gut passage was demonstrated in 

an experiment with oak leaf litter and millipedes‟ faeces (Rawlins et al. 2007). Addition of 

oak leaf litter to a dry sieved soil significantly increased the microbial respiration rate in the 

early stage of the decomposition while addition of pill millipedes‟ faeces did not differ from 

the control, indicating a low microbial activity on faeces. Generally, microbes specific to 

degrading recalcitrant substances (“K-strategists”) grow slowly whereas those limited to 

decomposition of easily degradable substances (“r-strategists”) grow rapidly (Ekschmitt et al. 

2005). This may explain the low respiration rate in microcosms with millipedes‟ faeces 

because most microbes in those microcosms would be K-strategists. Gram-negative bacteria 
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such as pseudomonads are r-strategists and Gram-positive bacteria such as corynebacteria are 

K-strategists (Margesin et al. 2003). Microbial activity on faecal material may also be 

hindered by the physical properties of faecal pellets which may have low surface area : 

volume ratio and coatings that are resistant to microbial or enzyme attack (Martin and 

Marinissen 1993).  

 

1.6 Effects of Microbes 

 As mentioned earlier, millipedes influence microbial activities and communities by 

increasing surface area of leaf litter and access to carbon and nutrients, decomposing 

complex chemical compounds, and taking up simple compounds. Millipedes can also directly 

influence microbes – by digesting microbes and by providing microbial habitats. In a study 

of collembolans and microbial activities, the presence of collembolans differentially 

influenced fungal and bacterial biomass; fungi decreased while bacteria increased with 

collembolan grazing (Hanlon and Anderson 1979).  Maraun and Scheu (1996) pointed out 

that ergosterol (an indicator of the presence of fungi), decreased by 71 % during millipede 

gut passage while loss of total microbial biomass was 42 %, indicating more intense 

digestion of fungi relative to to bacteria. Similarly, Byzov et al. (1998a) observed rapid 

reduction of certain fungal species in millipedes‟ midgut fluid. In contrast, comparisons of 

bacteria from leaves and faeces showed that gut passage increased the bacterial population 

(Anderson and Bignell 1980). This supports the finding of Byzov et al. (1996) that although 

most bacteria are killed in the midgut fluid of millipedes, some survived cells grow in the 

hindgut. A more detailed study using 
14

C-labelling showed that some microbes, especially 

fungi, were killed in millipedes‟ midgut, while the remaining organisms recovered in the 
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hindgut, resulting in an increase in bacterial population and decrease in fungal population 

during millipedes‟ digestion (Byzov et al. 1998b).  

 

1.7 Questions and Hypotheses 

It is evident from this review of the literature that soil fauna such as millipedes have 

complex effects on the process of litter decomposition and on the microbial communities 

involved in decay. Millipedes may enhance decomposition by fragmenting litter, but gut 

passage appears to stabilize the organic matter and faecal pellets may restrict microbial 

access, hence reduce its rate of decay. Millipede feeding reduces populations of some micro-

organisms (especially fungi) but increases others (especially bacteria), and alters the 

composition of the microbial communities (Visser 1985). This makes it difficult to generalize 

and so to predict the net effects of millipede activities on fluxes of carbon and nutrients. 

 In this study, I assess the influence of feeding by the millipede on decomposition of 

leaf litter by comparing rates of CO2 release from leaf litter which has been ingested by 

millipedes and transformed into faecal pellets with that from litter which has not been 

ingested by millipedes during laboratory incubation.  Changes in litter microbial 

communities as a consequence of millipede ingestion are assessed by comparing the PLFA 

profiles of faeces and uningested litter during incubation.  Based on studies to date, I 

hypothesized that CO2 release from millipede faeces would be less than that from uningested 

litter. I also hypothesized that millipede faeces would have smaller fungal but larger bacterial 

PLFA abundance relative to uningested litter. 

 Since millipedes egest 90% of the litter mass that they consume, the nature of their 

faecal pellets is likely to differ depending on the nature of litter that they consume. To 
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determine if the effects of millipede ingestion depends on the type of litter consumed, I 

compared effects of millipede ingestion of two contrasting leaf litters common in coastal 

forest – Douglas-fir (Pseudotsuga menziesii )needles and bigleaf maple (Acer macrophyllum) 

leaves.  I hypothesized that the litter type difference in microbial activity and abundance 

would persist through millipede ingestion. 

  I attempt to tease apart the effects of millipede activity in fragmenting litter and 

thereby increasing surface area (hence accessibility to microbes) from that of ingestion by 

comparing CO2 release and PLFA profiles in intact and ground litter. I also address the 

possibility that the physical nature of faecal pellets inhibits microbial abundance and decay 

by comparing CO2 release and PLFA profiles in intact and ground millipede faeces.  I 

hypothesize that grinding of litter and faecal pellets will increase microbial activity and 

decay as a consequence of increased accessibility to microbes.      

In forests, millipedes feed on leaf litter and excrete faeces on the litter, such that the 

litter and the faeces decompose together. It is therefore possible that the presence of litter 

affects the decomposition of faeces and vice versa. I address the possibility that mixing litter 

and faeces alters microbial communities and activity on either litter or faeces by comparing 

CO2 release and PLFA profiles of pure and mixed litter and faeces.  
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Chapter  2: Materials and Methods 

2.1 Sampling 

Leaf litter and millipedes were collected from Pacific Regional Park, Vancouver, 

Canada in forest containing Douglas-fir and bigleaf maple. Millipedes were captured from 

May to October in 2009 and in July and August in 2010. Juvenile individuals, whose bodies 

were grey and sometimes had fewer segments and premature reproductive organs, were 

excluded. Millipedes were kept in plastic containers with silica sands at the bottom and fed 

either Douglas-fir needles or bigleaf maple leaves. Their faeces were collected with forceps 

within 48 hours of defecation and stored in grass jars at -20 ˚C.   Douglas-fir needles and 

maple leaves for feeding millipedes were collected at the same time that millipedes were 

captured. The needles and leaves were stored in a refrigerator and rinsed with tap water and 

distilled water before feeding. Leaf litter samples for microcosm experiments were collected 

in July and August 2010 and stored at 4 ˚C. Maple leaves were cut to approximately 5 cm x 3 

cm using a knife and the thick veins were removed as millipedes did not consume veins.  

Some of the Douglas-fir litter and faeces derived from Douglas-fir were ground using a mill 

(Wiley mill, mesh size 20) and a mortar and a pestle, respectively. 

 

2.2 Microcosms 

Silica sand (Target Products Inc., Canada) was put in 500-ml glass jars to leave 

airspace of 400 ml. The jars with the sand were then autoclaved for 45 minutes. Nylon mesh 

with 0.5 µm pores (Plastok, UK) was placed on top of the silica sand in the jars to prevent 

small particles of samples from falling through the gaps between sand particles. 
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Water content of the litter and faeces samples was calculated by measuring fresh and 

oven-dry weights. A sample weighing 1.0-1.2 g (dry weight equivalent) was placed on top of 

the nylon mesh in microcosms. Each microcosm had one of the following 9 treatments: 1) 

DFL, Douglas-fir litter; 2) DFF, faeces derived from Douglas-fir; 3) DFm, litter and faeces of 

Douglas-fir; 4) DFLg, Douglas-fir litter, ground; 5) DFFg, faeces derived from Douglas-fir, 

ground; 6) BML, bigleaf maple litter; 7) BMF, faeces derived from bigleaf maple; 8) BMm, 

litter and faeces of bigleaf maple; 9) none. Litter and faeces from DFm and BMm were 

sorted for PLFA analyses (DFmL, DFmF, BMmL, BMmF, respectively).There were 4 

replicate jars of each treatment.  

Microcosms were covered with a thin polyethylene bag to allow gas exchange and 

prevent moisture loss (Eno 1960) and watered every 2 to 3 days to maintain moisture. They 

were kept in the laboratory at room temperature.  

 

    Time (days) 
0 1 2 3 4 7 14 28 56 

Treatment 

DF 

L C P C C C P C C P C P C P C P 

F C P C C C P C C P C P C P C P 
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Figure 2.1. Schematics of experiments. DF, Douglas-fir; BM, bigleaf maple;  L, litter; F, faeces; m, 

mixture of litter and faeces; g, ground; C, CO2 release measured; P, PLFA analyzed. 
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2.3  CO2 Release 

Prior to gas sampling, the relative humidity of each microcosm was measured so that 

the influence of partial vapour pressure could be calculated later (Rochette & Bertrand 2008). 

Microcosms were sealed with lids equipped with rubber septa and gas samples were taken 

every 10 minutes after sealing up to 5 samples per jar. The 20-ml syringe was flushed with 

compressed air 3 to 4 times before each sampling to clean the inside of the syringe, and then 

12 ml of compressed air was injected to the microcosm and the air inside the microcosm was 

mixed by pumping 4 times. Then 12 ml of gas was extracted and injected into a vacuum 

Exetainer of 5.9 ml (719W, Labco Limited, UK) with teflon/silicon septa (C401560, Fisher 

Scientific, USA) and rubber septa (VW101, Labco Limited, UK). The Exetainers were 

evacuated prior to sampling. The CO2 concentration in each sample was measured using a 

gas chromatograph (HP 5890 Series II, GMI Inc., USA). A linear regression of CO2 

concentrations at 4 or 5 sampling times during the hour was used to calculate CO2 release in 

μg CO2 per g dry sample per hour. 

 

2.4 Phospholipid Fatty Acid (PLFA) Analyses 

Phospholipid Fatty Acid analysis (PLFA) was used to estimate the abundance of total 

bacteria, Gram-negative bacteria, Gram-positive bacteria and actinomycetes as described by 

Frostegård et al. (1993). Following extraction of the gas samples from the microcosms, the 

remaining litter and faeces were placed in plastic bags and freeze-dried. Mixed samples 

(DFm and BMm) were sorted into litter and faeces. The freeze-dried samples were ground 

using a mortar and a pestle.     
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Fatty acids were extracted from samples (0.15 g of litter, 0.30 g of faeces) following 

the procedure of Dewi (2009). Fatty acids are designated by the ratio of the total number of 

carbon atoms:number of double bonds, followed by the position (ω) of the double bond from 

the methyl end of the molecule. Cis and trans configurations are indicated by c and t, 

respectively. The prefixes a and i indicate anteiso- and iso-branched fatty acids, respectively. 

Cyclopropane fatty acids have the prefix „cy‟ (Bååth et al. 1995, Steer & Harris 2000). Fatty 

acids identifying Gram-positive bacteria include i15, a15:0, i16:0, i17:0 and a17:0; those 

identifying Gram-negative bacteria include i16:1ω7c, 16:1ω9c, 16:1ω7c, i17:1ω8c, cy17:0, 

18:1ω7c, 18:1ω5c, cy19:0. Total Bacteria is calculated as the sum of Gram-positive and 

Gram-negative fatty acids, plus 15:0, 17:0 18:0. Actinomycetes are identified by a methyl 

group on the tenth carbon atom from the carboxyl end of the molecule and include 

10Me16:0, 10Me17:0, 10Me18:0, 10Me19:0. Biomarkers were identified using a gas 

chromatograph (Agilent 6890N, Agilent Inc., USA) equipped with a mass selective detector 

(Agilent 5973N, Agilent Inc., USA). 

 

2.5 Data Analyses 

The data were analyzed using an ANOVA model for split-plot designs since the dates 

are repeated-measures (Kuehl, 1994) (see Tables in the Appendix) using SAS (SAS Institute 

Inc., Version 9.2, Cary, NC, USA). A 95% of confidence interval was used to determine 

significant differences. All data were corrected for dry weight and averaged among the 

replicates.  
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Chapter  3: Results 

3.1 Litter and Faeces 

The ANOVA comparing CO2 release from litter and faeces indicated significant time 

x treatment interactions, therefore sampling dates are compared individually (Table A.1).  

Likewise, differences between litter and faeces were distinct for the two litter types (Table 

A.2 and Figure 3.1). In Douglas-fir there were no significant differences in CO2 release 

between litter and faeces throughout the incubation. In bigleaf maple, CO2 release from litter 

was greater than that from faeces on Days 0, 1 and 2 but declined to similar levels after two 

days. On Days 4 and 28, significantly more CO2 was released from faeces than from litter of 

maple (Figure 3.1).  

 

 

Figure 3.1. CO2 release from litter and faeces of Douglas-fir and bigleaf maple during an eight-week 

laboratory incubation in μg CO2 per g dry mass sample per hour. Different letters indicate significant 

differences among treatments within each sampling date (α<0.05).  
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The ANOVA comparing PLFA biomarkers for total bacteria, Gram-positive bacteria, 

Gram-negative bacteria and actinomycetes indicated significantly higher abundance of these 

groups of microbes in litter than in faeces (Tables A.3, A.5, A.7 and A.9). Biomarkers for 

total bacteria and Gram-negative bacteria were significantly more abundant in maple litter 

than in faeces derived from maple litter at all sampling times (Figures 3.2 and 3.3, Tables A.4 

and A.6). There were significantly higher abundance of total bacteria in Douglas-fir litter 

than in faeces derived from Douglas-fir (Figure 3.2 and Table A.4), but there were no 

significant differences between Douglas-fir litter and faeces in abundances of Gram-negative 

bacteria (Figure 3.3 and Table A.6).  

 

Figure 3.2. Abundance of total bacteria in litter and faeces of Douglas-fir and bigleaf maple during the 

eight-week laboratory incubation in nmol PLFA per gram dry mass sample. Different letters indicate 

significant differences among treatments within each sampling date (α<0.05).  
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Figure 3.3. Abundance of Gram-negative bacteria in litter and faeces of Douglas-fir and bigleaf maple 

during the eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters 

indicate significant differences among treatments within each sampling date (α<0.05). 
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Figure 3.4. Abundance of Gram-positive bacteria in litter and faeces of Douglas-fir and bigleaf maple 

during the eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters 

indicate significant differences among treatments within each sampling date (α<0.05). 

 

 
Figure 3.5. Abundance of actinomycetes in litter and faeces of Douglas-fir and bigleaf maple during the 

eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters indicate 

significant differences among treatments within each sampling date (α<0.05). 
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3.2 Douglas-fir and Bigleaf Maple 

The ANOVA comparing CO2 release from the two litter types indicated significant 

differences but significant treatment x time interaction, therefore sampling dates are 

compared individually (Table A.1).  CO2 release from maple, both litter and faeces, was 

significantly higher than that from Douglas-fir throughout the incubation (Figure 3.1).  

There was no significant difference in abundance of total bacteria, Gram-positive 

bacteria and actinomycetes between Douglas-fir litter and faeces and maple litter and faeces 

(Tables A.12, A.14 and A.15). Gram-negative bacteria were significantly more abundant in 

bigleaf maple than in Douglas-fir (Table A.13). This difference resulted from the high 

abundance of Gram-negative bacteria in maple litter relative to Douglas-fir litter on all 

sampling occasions (Figure 3.3). In a comparison of litter, Gram-positive bacteria were 

significantly more abundant in Douglas-fir than in maple during the first four weeks of 

incubation (Figure 3.4), and actinomycetes were significantly more abundant in maple than 

Douglas-fir on all occasions except Day 0 (Figure 3.5).  In contrast, there were no significant 

differences in bacterial group abundances between faeces derived from Douglas-fir and 

maple (Tables A.14 and A.15). 

The proportions of Gram-negative bacteria and Gram-positive bacteria in the maple 

and Douglas-fir litter and faeces are provided in Figure 3.6. Gram-negative were the 

dominant bacteria in maple litter while Gram-positive bacteria composed a greater proportion 

of the bacterial community in Douglas-fir than in maple throughout the incubation. Bacterial 

community structures of faeces were more uniform between the two litter types.  
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Figure 3.6. Proportion of abundance of each group of bacteria on each sampling date in DFL, DFF, BML 

and BMF.             Gram-negative bacteria,             Gram-positive bacteria,             unspecified bacteria. 

 

 

3.3 Grinding 
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surface of ground litter. It became visible on Day 3 in all four replicate microcosms and 
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Figure 3.7. CO2 release from ground and unground Douglas-fir litter and faeces during the eight-week 

laboratory incubation in μg CO2 per μg dry mass sample per hour. Different letters indicate significant 

differences among treatments within each sampling date (α<0.05). 
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Figure 3.8. Abundance of total bacteria in ground and unground Douglas-fir litter and faeces during the 

eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters indicate 

significant differences among treatments within each sampling date (α<0.05). 

  

 

 
Figure 3.9. Abundance of Gram-negative bacteria in ground and unground Douglas-fir litter and faeces 

during the eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters 

indicate significant differences among treatments within each sampling date (α<0.05). 
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Figure 3.10. Abundance of Gram-positive bacteria in ground and unground Douglas-fir litter and faeces 

during the eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters 

indicate significant differences among treatments within each sampling date (α<0.05). 

 

 
Figure 3.11. Abundance of actinomycetes in ground and unground Douglas-fir litter and faeces during 

the eight-week laboratory incubation in nmol PLFA per g dry mass sample. Different letters indicate 

significant differences among treatments within each sampling date (α<0.05). 
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3.4 Mixing 

CO2 release was compared between microcosms containing both litter and faeces 

(mixed; DFm and BMm) and the sum of those containing either litter or faeces (pure; DFp 

and BMp). Average CO2 release of mixed treatments was higher than pure treatments in the 

latter half of the two-month incubation (Table A.26). Mixing affected the two litter types 

differently, although the normality assumption was not met for this analysis. CO2 release 

from Douglas-fir was higher in mixed microcosms except on Days 0 and 2. In bigleaf maple, 

CO2 release was lower in the mixed microcosms than in pure microcosms on Day 1 but did 

not differ on the other days (Table A.27 and Figure 3.12). Significant difference could not be 

detected because residuals were not normally distributed. 

 

 
Figure 3.12. CO2 release from microcosms containing both litter and faeces and those containing either 

litter or faeces during the eight-week laboratory incubation in μg CO2 per g dry mass sample per hour. 

DFp, average of DFL and DFF; BMp, average of BML and BMF. 
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Mixing litter and faeces did not significantly affect the abundance of total bacteria, 

Gram-negative bacteria, Gram-positive bacteria or actinomycetes (Tables A.28, A.29, A.30, 

A.31, A.32, A.33, A.34 and A.35 and Figures 3.13, 3.14, 3.15 and 3.16).  

 

 
Figure 3.13. Abundance of total bacteria in microcosms containing both litter and faeces and those 

containing either litter or faeces during the eight-week laboratory incubation in nmol PLFA per g dry 

mass sample. Different letters indicate significant differences among treatments within each sampling 

date (α<0.05).  
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Figure 3.14. Abundance of Gram-negative bacteria in microcosms containing both litter and faeces and 

those containing either litter or faeces during the eight-week laboratory incubation in nmol PLFA per g 

dry mass sample. Different letters indicate significant differences among treatments within each sampling 

date (α<0.05). 
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Figure 3.15. Abundance of Gram-positive bacteria in microcosms containing both litter and faeces and 

those containing either litter or faeces during the eight-week laboratory incubation in nmol PLFA per g 

dry mass sample. Different letters indicate significant differences among treatments within each sampling 

date (α<0.05). 
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Figure 3.16. Abundance of actinomycetes in microcosms containing both litter and faeces and those 

containing either litter or faeces during the eight-week laboratory incubation in nmol PLFA per g dry 

mass sample. Different letters indicate significant differences among treatments within each sampling 

date (α<0.05). 
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Chapter  4: Discussion 

4.1 Litter and Faeces in Two Litter Types 

The hypothesized greater CO2 release from litter compared with faeces occurred only 

in the maple samples and only during the first 2 days of the incubation.  At other times and at 

all times in the Douglas-fir comparison, CO2 release was similar in litter and faeces. Rawlins 

et al. (2007) also measured higher rates of CO2 release from soil amended with oak leaf litter 

than that amended with millipede faeces only during the first few days of the incubation.  

The short-lived increase in CO2 release from litter may have been caused by the leaf litter 

being cut into pieces prior to placing in the microcosms in both of these studies, which would 

increase access of microorganisms and enzymes to labile material. Fyles and McGill (1987) 

showed that pine needles were decayed faster when they were cut in to 1-cm pieces and that 

litter structures were as important as their chemical composition. I also moistened the leaf 

litter just before putting it into microcosms, which could have led to a flush of microbial 

activity, although the faeces were similarly remoistened. Maple litter was drier than other 

samples before moistened (approximate water content of Douglas-fir litter 76%, faeces 

derived from Douglas-fir 70%, maple litter 10% and faeces derived from maple 83%), so it is 

possible that moistening more strongly affected the maple litter than faeces and Douglas-fir 

needles. The lack of early stimulation of microbial activity in faeces indicates that the initial 

flush of activity from microorganisms which colonize litter during gut passage is not 

significant in millipede faeces. It may also indicate that the most easily decomposable 

organic materials had been removed during gut passage.  

Despite incubation under identical conditions, the two litter types used in this study 

differed in microbial activity during incubation, and these differences persisted in the faeces 
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of the millipedes.  Leaf litter of maple and faeces of millipedes that consumed maple litter 

had higher rates of CO2 release than litter of Douglas-fir and faeces of millipedes that 

consumed Douglas-fir litter.  Thus, differences in decay rates of different litter types 

persisted despite consumption and gut passage by millipedes. This is consistent with many 

studies that have indicated that litter-type differences influence litter decomposition rates and 

that broadleaf litter such as maple initially decays more quickly than needle litter (Laganière 

et al. 2010, Prescott et al. 2004). Digestion of litter by millipedes changes the chemical 

composition, as the millipedes assimilate nutrients and labile compounds rendering their 

faeces more recalcitrant (Gillon and David 2001, Rawlins et al. 2006). However, the low 

assimilation rate of millipedes (<10%; Carcamo 2000), would allow many biochemical 

components to remain intact throughout gut passage, such that differences in initial chemistry 

of litter between species are maintained in the faeces.  

Contrary to my hypothesis that millipede faeces would have larger bacterial PLFA 

abundance relative to uningested litter, the greatest abundances of all PLFA biomarkers for 

bacteria were in the leaf litter. The hypothesis was based on the studies reporting that fungi in 

litter were selectively consumed during gut passage and surviving bacteria flourished in the 

hind gut of millipedes. Therefore, decrease of bacterial biomarkers may be explained by slow 

growth of bacteria in the hind gut, but I did not examine this in this study. Another possible 

explanation is that symbiotic microbes which could have been excreted with faeces could not 

adjust to the environment outside the gut and died soon after defaecation; the faeces were not 

collected for 48 hours at longest. However, it is not yet clear if PLFAs are decomposed 

immediately after cell death, and the PLFA analyses cannot distinguish PLFAs in dead cells 

from those in living cells (Frostegård et al. 2011). Other techniques such as ergosterol 
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analysis for fungal abundance (Högberg 2006) and DNA analyses (Oravecz et al. 2002) are 

required for better understanding of microbial communities.  

The proportion of Gram-negative bacteria and Gram-positive bacteria appeared to be 

different between two litter types. The bacterial community in Douglas-fir litter consisted of 

about 50 % of Gram-negative bacteria and 30% of Gram-positive bacteria while maple litter 

had about 80 % of Gram-negatives and 10 % of Gram-positives. Dominance of Gram-

negative bacteria, r-strategists, in maple litter compared to Douglas-fir litter implied that 

maple litter contained more easily utilizable substances. Contrary to this study, Gram-

positives decreased through digestion of earthworms (Knapp et al. 2009b). Since it is not yet 

clear where these microbes originate from, further studies including labeling microbes in the 

litter prior to faunal digestion are needed to understand the changes in microbial community.  

It is interesting that whilst there were significant differences in CO2 release and total 

bacteria between maple litter and faeces, relatively small differences were observed between 

Douglas-fir litter and faeces (Figure 3.2). Different rates of decay have been reported for 

different litter types; high nitrogen content of litter usually results in rapid decomposition in 

short-term experiments. This is consistent with greater CO2 release from maple than 

Douglas-fir in the current study. On the other hand, in long-term experiments, decay rates 

would be extremely slow after some time and organic materials stay in soils for a long time 

(Prescott 2010). The amount of the stabilized organic matter (“maximum decomposition 

limits”; Berg et al. 1996) has been reported to be positively correlated with nitrogen content 

in the original litter (Berg 2000); litter with high nitrogen content such as broadleaf litter 

decompose fast at the beginning but reach to the decomposition limit quickly while litter with 

low nitrogen content such as coniferous litter decompose slowly but keeps decaying at 
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similar rates (Prescott et al. 2004). The significant change of microbial activity in maple litter 

during a single gut passage may be related to the quick retardance of decomposition in long-

term decomposition processes.  

 In this study, microbial community was assessed only using PLFA biomarkers. The 

biomarker for fungi is found also in many eukaryotes (Frostegård et al. 2011) and, as my 

samples contained many plant cells, abundance of fungi could not be estimated.  

 

4.2 Grinding 

Grinding of Douglas-fir litter to increase the surface area : volume ratio of the 

particles significantly increased rates of CO2 release. Stimulation of decomposition or 

microbial activity in ground litter has been reported by Maraun and Scheu (1995) and Fyles 

and McGill (1987). However, PLFA biomarkers indicated that abundances of total bacteria 

and Gram-negative bacteria were not significantly different between unground and ground 

samples except for Day 0 and Gram-positive bacteria and actinomycetes were more abundant 

in unground litter than in ground litter. Therefore, the increase of CO2 release might be 

explained by respiration of fungi. This is supported by the observation of fungal mycelium 

on the surface of ground litter.  

The stimulation of CO2 release caused by grinding faeces indicates that microbial 

activity and decomposition of faeces is also inhibited by the tendency for faecal material to 

remain enclosed and protected within pellets.  Webb (1977) pointed out that surface area : 

volume ratio increased as particle size decreased, but when the particles were sufficiently 

small, the interparticle cohesive forces would be strong enough to generate compact pellets 

and the total microbial accessible area decreased. Some other studies reported that faecal 
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pellets retain their structure well in soils (reviewed in Coleman et al. 2004). In addition, 

tough coatings difficult to penetrate fungal hyphae growing on faecal pellets may further 

prevented physical breakdown of the pellet structure (Martin and Marinissen 1993). 

Therefore, part of the recalcitrance of faecal material may be related to inaccessibility of 

contents to microbial attack.  

 

4.3 Mixing 

In forests, millipedes H. haydeniana were usually found in the litter layer, and when 

they were present, their faeces often clung to the bigleaf maple leaf litter on the forest floor. 

It was therefore of interest to know if there were interactions between the decay of the two 

materials. It is possible that the micro-environment such as moisture and pH in which litter 

and faeces are in contact might be different from the surroundings, and thus change the 

microbial decomposition processes. There was little evidence in my experiment that mixing 

litter and faeces altered microbial communities and activity of either litter or faeces. 

 

4.4 Future Studies 

One aspect of faunal activity that was not examined in these short-term incubations is 

subsequent ingestion of faeces by coprophagous organisms and effects of secondary 

digestion on subsequent decomposition of faecal material.  Coprophagy is common in 

woodlice (Kautz et al. 2002), enchytraeids, mites and earthworms (Martin and Marinissen 

1993) and has been observed in a few species of millipedes (Hopkin and Read 1992) and 

may be related to growth of fungus/microbes on faeces. Nicholson et al. (1966) observed 

substantial increases in microbial biomass on faecal pellets 20 days into the laboratory 

incubation. Considering that millipedes selectively digest fungi, growth of fungi on faecal 
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pellets might induce consumption of the faeces by millipedes as well as other soil animals. 

Because assimilation rate of millipedes are very low, faunal digestion and fungal growth can 

be repeated several times and may influence microbial litter decomposition processes. 

However, due to the few studies of biology of H. haydeniana, their feeding habit such as 

coprophagy and geophagy is not yet clear.  

Another aspect I did not test in this study is the effects of mixed species of litter. 

Since litter type differences were retained during the gut passage of millipedes, consumption 

of multiple food sources may influence the decomposition of the faeces. Including the effects 

of mixed species of litter would help us fully understand the effects of millipedes on litter 

decomposition. 
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Chapter  5: Conclusion 

 

This study indicated that millipedes significantly influenced microbial litter 

decomposition processes only when they feed on some types of litter. CO2 release from 

bigleaf maple litter was significantly greater than that from faeces derived from maple litter 

while a similar amount of CO2 was released from Douglas-fir litter and faeces. The litter type 

difference in microbial community structure persisted in the faeces of the millipedes although 

the abundances of bacteria were not consistent with the amount of CO2 release throughout 

incubation. Greater release of CO2 from ground litter and faeces indicated that their physical 

structure may prevent litter and millipedes‟ faeces from decomposition. The presence of litter 

did not significantly influence the microbial litter decomposition processes of faeces, and 

vice versa. Therefore, including faunal effects on various types of litter is important to 

understand terrestrial litter decomposition processes.     
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Appendix 

Appendix A   

Table A.1. ANOVA for comparing CO2 release between litter and faeces. The data was transformed to 

the power of 0.9. 

Source DF MS F P 

T 1 0.06550727 2.60 0.1100 

R(T) 14 0.79815452 31.63 <.0001 

D 8 0.033127661 13.13 <.0001 

T*D 8 0.22073159 8.75 <.0001 

 

Table A.2. ANOVA for comparing CO2 release among Douglas-fir litter, Douglas-fir faeces, bigleaf maple 

litter and bigleaf maple faeces. The data was transformed to the power of 0.8. 

Source DF MS F P 

T 3 3.35761715 936.96 <.0001 

R(T) 12 0.00385286 1.08 0.3896 

D 8 0.28911109 80.68 <.0001 

T*D 24 0.13809081 38.53 <.0001 
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Table A.3. ANOVA for comparing abundance of total bacteria between litter and faeces. 

Source DF MS F P 

T 1 8843946.212 731.92    <.0001 

R(T) 14 517975.703 42.87    <.0001 

D 5 230083.833      19.04    <.0001 

T*D 5 21106.589 1.75    0.1353 

 

Table A.4. ANOVA for comparing abundance of total bacteria among Douglas-fir litter, Douglas-fir 

faeces, bigleaf maple litter and bigleaf maple faeces. The data was transformed to the power of 0.9. 

Source DF MS F P 

T 3 1081405.195     453.28    <.0001 

R(T) 12 2433.558       1.02 0.4427 

D 5 49714.087 20.84 <.0001 

T*D 15 3423.972 1.44 0.1609 

 

Table A.5. ANOVA for comparing abundance of Gram-negative bacteria between litter and faeces. The 

data was transformed to the power of 0.8. 

Source DF MS F P 

T 1 233220.5307 664.68 <.0001 

R(T) 14 29337.9420 83.61 <.0001 

D 5 9363.0469 26.68 <.0001 

T*D 5 1118.8380 3.19 0.0119 
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Table A.6. ANOVA for comparing abundance of Gram-negative bacteria among Douglas-fir litter, 

Douglas-fir faeces, bigleaf maple litter and bigleaf maple faeces. The data was transformed to the power 

of 0.65. 

Source DF MS F P 

T 3 19656.64576 680.48 <.0001 

R(T) 12 26.63184 0.92 0.5313 

D 5 1006.03376 34.83 <.0001 

T*D 15 83.22350 2.88 0.0019 

 

Table A.7. ANOVA for comparing abundance of Gram-positive bacteria between litter and faeces. The 

data was transformed to the power of 0.9. 

Source DF MS F P 

T 1 60511.25789 341.58 <.0001 

R(T) 14 2159.50643 12.19 <.0001 

D 5 1578.58578 8.91 <.0001 

T*D 5 124.85972 0.70 0.6217 
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Table A.8. ANOVA for comparing abundance of Gram-positive bacteria among Douglas-fir litter, 

Douglas-fir faeces, bigleaf maple litter and bigleaf maple faeces. The data was transformed to the power 

of 0.7. 

Source DF MS F P 

T 3 2101.701516 218.92 <.0001 

R(T) 12 16.733176 1.74 0.0799 

D 5 116.619617 12.15 <.0001 

T*D 15 20.369321 2.12 0.0207 

 

Table A.9. ANOVA for comparing abundance of actinomycetes between litter and faeces. The data was 

transformed to the power of 0.2. 

Source DF MS F P 

T 1 4.41224645 362.75 <.0001 

R(T) 14 0.11044269 9.08 <.0001 

D 5 0.18155191 14.93 <.0001 

T*D 5 0.07470901 6.14 <.0001 

 

Table A.10. ANOVA for comparing abundance of actinomycetes among Douglas-fir litter, Douglas-fir 

faeces, bigleaf maple litter and bigleaf maple faeces. The data was transformed to the power of 0.1. 

Source DF MS F P 

T 3 0.21782352 168.85 <.0001 

R(T) 12 0.00128223 0.99 0.4655 

D 5 0.02246335 17.41 <.0001 

T*D 15 0.00489025 3.79 0.0001 
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Table A.11. ANOVA for comparing CO2 release between Douglas-fir and bigleaf maple. The data was 

transformed to the power of 0.01. 

Source DF MS F P 

T 1 0.47974647 695.91 <.0001 

R(T) 14 0.00073057 1.06 0.4016 

D 8 0.01499064 21.75 <.0001 

T*D 8 0.00349110 5.06 <.0001 

 

Table A.12. ANOVA for comparing abundance of total bacteria between Douglas-fir and bigleaf maple. 

Source DF MS F P 

T 1 39494.9080 325.26 <.0001 

R(T) 14 867579.66 71.45 <.0001 

D 5 230083.83 18.95 <.0001 

T*D 5 20273.51 1.67 0.2218 

 

Table A.13. ANOVA for comparing abundance of Gram-negative bacteria between Douglas-fir and 

bigleaf maple. The data was transformed to the power of 0.8. 

Source DF MS F P 

T 1 245036.1040 677.26 <.0001 

R(T) 14 28493.9725 78.76 <.0001 

D 5 9363.0469 25.88 <.0001 

T*D 5 965.8869 2.67 0.0288 
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Table A.14. ANOVA for comparing abundance of Gram-positive bacteria between Douglas-fir and 

bigleaf maple. 

Source DF MS F P 

T 1 65948.6876 110.96 <.0001 

R(T) 14 18592.1988 31.28 <.0001 

D 5 5602.1390 9.43 <.0001 

T*D 5 1362.9619 2.29 0.0546 

 

Table A.15. ANOVA for comparing abundance of actinomycetes between Douglas-fir and bigleaf maple. 

The data was transformed to the power of 0.45. 

Source DF MS F P 

T 1 35.4820222 68.16 <.0001 

R(T) 14 13.9152035 26.73 <.0001 

D 5 5.6478788 10.85 <.0001 

T*D 5 0.8816274 1.69 0.1476 

 

Table A.16. ANOVA for comparing CO2 release between ground and unground treatments. The data was 

transformed  to the power of 0.4. 

Source DF MS F P 

T 1 2.39176904 1023.11 <.0001 

R(T) 14 0.00340785 1.46 0.1421 

D 7 0.09999527 42.77 <.0001 

T*D 7 0.01016537 4.35 0.0003 
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Table A.17. ANOVA for comparing CO2 release among ground litter, ground faeces, unground litter and 

unground faeces. The data was transformed to the power of 0.8. 

Source DF MS F P 

T 3 1.42845193 476.94 <.0001 

R(T) 12 0.00322654 1.08 0.3897 

D 7 0.15882899 53.03 <.0001 

T*D 21 0.01096157 3.66 <.0001 

 

Table A.18. ANOVA for comparing abundance of total bacteria between ground and unground 

treatments. The data was transformed to the power of 0.4. 

Source DF MS F P 

T 1 1.3343941 1.77 0.1880 

R(T) 14 6.6813609 8.85 <.0001 

D 5 21.7047595 28.75 <.0001 

T*D 5 0.6067912 0.80 0.5508 

 

Table A.19. ANOVA for comparing abundance of total bacteria among ground litter, ground faeces, 

unground litter and unground faeces. 

Source DF MS F P 

T 3 419664.196 40.22 <.0001 

R(T) 12 8614.785 0.83 0.6238 

D 5 289976.982 27.79 <.0001 

T*D 15 15321.460 1.47 0.1467 

 



 55 

Table A.20. ANOVA for comparing abundance of Gram-negative bacteria between ground and 

unground treatments. The data was transformed to the power of 0.3. 

Source DF MS F P 

T 1 0.01094278 0.08 0.7811 

R(T) 14 0.29583376 2.10 0.0218 

D 5 5.64915724 40.17 <.0001 

T*D 5 0.06903267 0.49 0.7820 

 

Table A.21. ANOVA for comparing abundance of Gram-negative bacteria among ground litter, ground 

faeces, unground litter and unground faeces. 

Source DF MS F P 

T 3 43850.0379 9.91 <.0001 

R(T) 12 3358.0104 0.76 0.6885 

D 5 199069.5890 45.01 <.0001 

T*D 15 11831.6308 2.68 0.0036 

 

Table A.22. ANOVA for comparing abundance of Gram-positive bacteria between ground and unground 

treatments. 

Source DF MS F P 

T 1 22586.5886 25.10 <.0001 

R(T) 14 21809.8909 24.24 <.0001 

D 5 6881.5023 7.65 <.0001 

T*D 5 1037.7379 1.15 0.3409 
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Table A.23. ANOVA for comparing abundance of Gram-positive bacteria among ground litter, ground 

faeces, unground litter and unground faeces. 

Source DF MS F P 

T 3 105952.8850 127.18 <.0001 

R(T) 12 838.8672 1.01 0.4541 

D 5 6881.5023 8.26 <.0001 

T*D 15 1212.8532 1.46 0.1520 

 

Table A.24. ANOVA for comparing abundance of actinomycetes between ground and unground 

treatments. 

Source DF MS F P 

T 1 1072.718713 15.54 0.0002 

R(T) 14 685.535604 9.93 <.0001 

D 5 457.144060 6.62 <.0001 

T*D 5 119.757972 1.73 0.1381 

 

Table A.25. ANOVA for comparing abundance of actinomycetes among ground litter, ground faeces, 

unground litter and unground faeces. 

Source DF MS F P 

T 3 3283.823713 60.95 <.0001 

R(T) 12 68.228836 1.27 0.2621 

D 5 457.144060 8.48 <.0001 

T*D 15 146.650224 2.72 0.0031 
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Table A.26. ANOVA for comparing CO2 release between mixed and pure treatments. Residuals were not 

normally distributed (Kolmogorov-Smirnov test; p=0.313). Three outliers were eliminated for the 

analysis and the data was transformed to the power of 0.1. 

Source DF MS F P 

T 1 0.06294623 119.45 <.0001 

R(T) 22 0.02205247 41.85 <.0001 

D 8 0.00582004 11.04 <.0001 

T*D 8 0.00478367 9.08 <.0001 

 

Table A.27. ANOVA for comparing CO2 release among mixed Douglas-fir, mixed bigleaf maple, pure 

Douglas-fir and pure bigleaf maple. Residuals were not normally distributed (Kolmogorov-Smirnov test; 

p=0.0189). Three outliers were eliminated for this analysis and the data was transformed to the power of 

0.1. 

Source DF MS F P 

T 3 0.18228289 455.06 <.0001 

R(T) 20 0.00057376 1.43 0.1147 

D 8 0.00639990 15.98 <.0001 

T*D 24 0.00298120 7.44 <.0001 
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Table A.28. ANOVA for comparing abundance of total bacteria between mixed and pure treatments. The 

data was transformed to the power of 0.8. 

Source DF MS F P 

T 1 1.116 0.00 <.0001 

R(T) 30 45613.480 94.51 <.0001 

D 5 22385.330 46.38 <.0001 

T*D 5 1417.364 2.94 0.0147 

 

Table A.29. ANOVA for comparing abundance of total bacteria among mixed Douglas-fir litter, mixed 

Douglas-fir faeces, mixed bigleaf maple litter, mixed bigleaf maple faeces, pure Douglas-fir litter, pure 

Douglas-fir faeces, pure bigleaf maple litter and pure bigleaf maple faeces. The data was transformed to 

the power of 0.8. 

Source DF MS F P 

T 7 193884.939 498.50 <.0001 

R(T) 24 467.122 1.20 0.2550 

D 5 22385.330 57.55 <.0001 

T*D 35 937.307 2.41 0.0002 
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Table A.30. ANOVA for comparing abundance of Gram-negative bacteria between mixed and pure 

treatments. The data was transformed to the power of 0.8. 

Source DF MS F P 

T 1 34.366 0.10 0.7508 

R(T) 30 43001.003 126.68 <.0001 

D 5 19857.805 58.50 <.0001 

T*D 5 891.688 2.63 0.0262 

 

Table A.31. ANOVA for comparing abundance of Gram-negative bacteria among mixed Douglas-fir 

litter, mixed Douglas-fir faeces, mixed bigleaf maple litter, mixed bigleaf maple faeces, pure Douglas-fir 

litter, pure Douglas-fir faeces, pure bigleaf maple litter and pure bigleaf maple faeces. The data was 

transformed to the power of 0.45. 

Source DF MS F P 

T 7 593.094946 666.97 <.0001 

R(T) 24 1.014985 1.14 0.3110 

D 5 91.779005 103.21 <.0001 

T*D 35 3.174634 3.57 <.0001 
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Table A.32. ANOVA for comparing abundance of Gram-positive bacteria between mixed and pure 

treatments. 

Source DF MS F P 

T 1 1832.8780 2.24 0.1366 

R(T) 30 24144.1432 29.50 <.0001 

D 5 11168.8650 13.65 <.0001 

T*D 5 1686.9351 2.06 0.0734 

 

Table A.33. ANOVA for comparing abundance of Gram-positive bacteria among mixed Douglas-fir 

litter, mixed Douglas-fir faeces, mixed bigleaf maple litter, mixed bigleaf maple faeces, pure Douglas-fir 

litter, pure Douglas-fir faeces, pure bigleaf maple litter and pure bigleaf maple faeces. The data was 

transformed to the power of 0.7. 

Source DF MS F P 

T 7 2032.49480 175.18 <.0001 

R(T) 24 14.97621 1.29 0.1849 

D 5 220.15388 18.98 <.0001 

T*D 35 30.07394 2.59 <.0001 
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Table A.34. ANOVA for comparing abundance of actinomycetes between mixed and pure treatments. 

Residuals were not normally distributed (Kolmogorov-Smirnov test; p=0.0268). Two outliers were 

eliminated for the analysis and the data were transformed to the power of 0.1. 

Source DF MS F P 

T 1 0.00002446 0.02 0.8939 

R(T) 30 0.04784730 34.90 <.0001 

D 5 0.02984528 21.77 <.0001 

T*D 5 0.00271622 1.98 0.0847 

 

Table A.35. ANOVA for comparing abundance of actinomycetes among mixed Dougla-fir litter, mixed 

Douglas-fir faeces, mixed biglaf maple litter, mixed bigleaf maple faeces, pure Douglas-fir litter, pure 

Douglas-fir faeces, pure bigleaf maple litter and pure bigleaf maple faeces. One outlier was eliminated for 

this analysis and the data was transformed to the power of 0.1. 

Source DF MS F P 

T 7 0.20458317 208.75 <.0001 

R(T) 24 0.00099836 1.02 0.4488 

D 5 0.03342609 34.11 <.0001 

T*D 35 0.00359582 3.67 <.0001 

 

 


