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Abstract 

This thesis comprises three methodological advancements that address important issues 

related to cost-effectiveness analysis (CEA) and expected value of information (EVI) analysis in 

health technology assessment. Aims: 1) To develop a practical sampling scheme for the 

incorporation of external evidence in CEAs conducted alongside randomized controlled trials 

(RCT); 2) To develop non-parametric methods for the calculation of the expected value of 

sample information (EVSI) for RCT-based CEAs; 3) To develop a computationally efficient 

algorithm for the calculation of single-parameter expected value of partial perfect information 

(EVPPI) for RCT-based and model-based CEAs. The theories and methods laid out in this work 

are accompanied by real-world CEA and EVI analyses of the Canadian Optimal Therapy of 

Chronic Obstructive Pulmonary Diseases (OPTIMAL) trial, a RCT on combination pharmaceutical 

therapies in chronic obstructive pulmonary diseases (COPD). Results: 1) The ‘vetted bootstrap’ 

is a semi-parametric algorithm based on rejection sampling and bootstrapping that allows the 

incorporation of external evidence into RCT-based CEAs. Implementing this method to 

incorporate external information on the effect size of treatment in the OPTIMAL trial required 

only minor modifications to the original CEA algorithm. 2) A Bayesian interpretation of the 

bootstrap allows non-parametric calculation of EVSI through two-level resampling. In the case 

study, incorporation of missing value imputation and adjustment for covariate imbalance in EVI 

calculations generated EVSI and the expected value of perfect information (EVPI) values that 

were significantly different than those calculated conventionally, demonstrating the flexibility 

of this method and the potential impact of modeling such aspects of the analysis on EVI 
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calculations. 3) The new method enabled the calculation of EVPPI for the effect size of 

treatment for the exemplary RCT data, and showed a significant (up to 25 times in terms of 

root-mean-squared error) improvement in efficiency compared to the conventional EVPPI 

calculation methods in a series of simulations. Summary: This thesis provides several original 

advancements in the methodology of the CEA and EVI analysis of RCTs and enables several 

analytical approaches that have hitherto been available only through parametric modeling of 

RCT data.  
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Chapter 1. Introduction 

1.1 Research statement 

The goal of this thesis is to advance Bayesian methods for cost-effectiveness analysis (CEA) and 

expected value of information (EVI) analysis of healthcare technologies, with emphasis on the 

studies conducted alongside randomized controlled trials (RCTs) that use bootstrapping to carry 

out the CEA. RCTs provide a desirable framework for CEAs because they provide internally valid 

and often timely information on the comparative performance of health technologies1. The 

bootstrap method is a popular method among applied health economists for quantifying 

uncertainty in RCT-based CEAs and is one of the methods recommended by current guidelines1. 

An alternative approach to conduct a RCT-based CEA is to perform a fully parametric analysis. 

The latter can be performed in a Bayesian context, enabling analysts to incorporate prior 

evidence in the analysis and allowing the calculation of EVI measures. Currently, however, for 

an analyst using the bootstrap method and intending to incorporate external evidence or 

perform EVI analysis, a paradigm shift to the parametric framework is required. This thesis 

attempts to provide this large camp of analysts with alternative methods of Bayesian evidence 

synthesis and EVI calculation. The overall theme of the thesis can be described in Figure 1-1. 

This is an illustration of the steps that need to be taken whenever making decisions on the 

adoption of health technologies or conducting studies on the performance of such 

technologies. Each chapter of my thesis contributes to the methodology in one of the three 

steps in this figure.  
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Figure 1-1: Illustration of informing decisions in health care based on the evidence 

 
CEA: cost-effectiveness analysis, EVPI: expected value of perfect information, EVPPI: expected 

value of partial perfect information, EVSI: expected value of sample information 

 

Chapter 2 introduces the vetted bootstrap, a practical sampling algorithm for incorporation of 

external evidence in RCT-based CEAs. Chapter 3 suggests a non-parametric approach for 

calculation of the expected value of perfect information (EVPI) and the expected value of 

sample information (EVSI) for RCT-based CEAs based on the bootstrap. Chapter 4 provides a 

heuristic method for the calculation of single-parameter expected value of partial perfect 

information (EVPPI) that is applicable to both RCT-based and model-based CEAs. All three 

chapters are accompanied by case studies based on the data from the OPTIMAL trial 2,3. 

The remainder of this chapter is organized as follows: I discuss the inevitability of decision 

making under constraint resources in health care. This will lead to the notion of economic 

Decisions informed by 

Health Technology 

Assessment (HTA)

EVPI, 

EVPPI
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Which of the competing 

alternatives provides the 

best value for the money?
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Is more evidence 
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Chapter 2
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CEA
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evaluations which I describe and classify in some detail. The concept of synthesizing evidence to 

inform decisions is presented, and I review the relevant literature on Bayesian evidence 

synthesis for RCT-based CEAs. This is followed by discussing the quantification of uncertainty in 

the evidence with an emphasis on the role of the bootstrap method in quantifying uncertainty 

in RCT-based CEAs. A connection is then made to the notion of the irrelevance of inference in 

decision making and the debate is framed in this context to discuss the expected value of 

information (EVI) methodology. The EVI literature in medical decision making is reviewed. I 

conclude the chapter by highlighting some of the gaps in the knowledge base that motivated 

this research, elaborating on the general context governing the subsequent chapters, and 

describing the clinical trial that acts as a running example throughout this thesis.  

1.2 Introduction 

In the healthcare field (as in all other realms of life), a decision maker faces choices. For 

example, a policy maker for a public healthcare system may need to decide on public insurance 

coverage of either drug A or B for the treatment of a disease, or a physician at bedside may 

need to decide whether to make a diagnosis based on available information or ask for more 

diagnostic tests. A rational decision maker should have an implicit or explicit objective based on 

which the merits of competing decisions are compared. Decision making at the public health 

level is often governed by policy makers interested in maximizing some measure of population 

health given a finite financial budget 4. As such, the decision on the adoption of competing 

health technologies (henceforth called the adoption decision) in health economics often 
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concerns two entities: the cost and effectiveness of health technologies*. Economic evaluation 

is a set of methods and concepts comprising the philosophy, theory, methodology, and 

professional practice necessary to address such decisions in an objective and rational manner 4.  

Facing choices in healthcare is inevitable, even when only one technology is available for a 

health condition. Consider the situation in which the only treatment for a disease is 

pharmacotherapy with a specific drug. Here the option of using the available treatment can 

always be compared to the option of not treating patients at all. Countless other questions 

surface as well: should the technology be used only in a subgroup of individuals and at what 

cutoff; what level of intensity; delayed versus immediate treatment; and so on. Such decisions, 

at times, are based on educated guesses, expert opinion, or consensus. Nevertheless, an 

objective and quantitative approach to health technology assessment has several clear 

advantages. It helps comprehensively quantify all the relevant options, clearly determine the 

viewpoint assumed in the analysis, and optimally use the available evidence in making such 

decisions 4.  

A fundamental reality underlying economic evaluation of health technologies is that because 

the amount of budget the decision maker can use is limited, choosing a particular technology 

means fewer financial resources would be available to the others. Since the budget in a given 

jurisdiction is often set at a fixed value for the entire health care system by legislative 

authorities, the competition for resources transcends the boundaries of any specific health 

                                                      
*
 A health technology, throughout this document, is widely defined as any form of healthcare product that is used 

for the screening, diagnosis, monitoring, or treatment of health conditions in humans. Examples include a 

guideline for general practitioners to treat hypertension, a screening program for cervical cancer, a blood test for 

detection of a toxin in the body, a drug for common cold, and a surgical procedure for treatment of pancreatitis. 
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condition*. In other words, using a more expensive health technology for a particular disease 

means there will be fewer resources available to the technologies for all other health 

conditions. The question an economic evaluation is set to address is whether the additional 

benefits generated by adopting a technology are greater than such opportunity losses from the 

reduction in other technologies—that is, whether such re-allocation is efficient 4.  

1.2.1 Types of economic evaluations 

Economic evaluation studies can be categorized in different ways 5. One approach is to classify 

according to the metrics used in quantifying the trade-offs between costs and health effects. In 

cost-effectiveness analysis (CEA), the incremental costs and health outcomes for competing 

technologies are calculated 6(p96), and health outcomes are quantified as either condition-

specific (e.g., disease exacerbation avoided, or cancer-free years) or in more generic units (e.g., 

life years gained). Cost-utility analysis (CUA) is a specific form of the CEA in which the 

effectiveness outcome is expressed in a unit that is not specific to any disease and allows 

preferred health states to receive quantitatively higher weights compared to less preferable 

states, thus the difference in both quantity and quality of life between choices is materialized 

on a single scale. Some effectiveness outcomes satisfying these characteristics include quality-

adjusted life years (QALY), disability-adjusted life years (DALYs) and healthy year equivalents 

(HYEs)7. Such specification of outcomes for the CUA enables the comparison of health 

                                                      
*
 It also transcends into other fields if the legislative body is using a finite budget to make decisions across 

economic sectors. For example, for a national legislative body a decision on the adoption of a medication 

competes with a decision on building a dam, as both ultimately compete for a limited government budget. This 

generalization, nevertheless, has little relevance for the methods presented in this thesis.  
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technologies across unrelated health conditions. Finally*, cost-benefit analysis (CBA) is a form of 

economic evaluation that requires analysis outcomes to be expressed in monetary units. As the 

CBA values benefits and costs in monetary units, it is not limited to only making decisions 

within health care, and can span within and across sectors 6(p129). 

The methods developed throughout this thesis are applicable to all three forms of economic 

evaluation mentioned above. However, as mentioned earlier, the CUA is a sub-class of the CEA. 

Also, decision rules that are used to designate a health technology as cost-effective often 

(implicitly or explicitly) assign a monetary value for the unit of effectiveness. This practice 

allows the transformation of effectiveness outcomes to monetary units. As such, the CEA and 

the CBA, at the time of decision making, are often (at least statistically) indistinguishable8†. 

Given this, and for consistency, I will use the term CEA for comparative economic evaluations 

throughout this thesis.  

An alternative way of classifying economic evaluations is in terms of the framework for the 

analysis. From this perspective, CEAs can broadly be classified as those that aggregate evidence 

from various resources in a decision-analytic format versus those that mainly estimate cost and 

effectiveness outcomes from patient-level data. For ease, the former group will be referred to 

as model-based CEAs given that a decision-analytic simulation model is often used as the 

framework; the latter group will be referred to as RCT-based CEAs, as RCTs are by far the most 

                                                      
*
 Another form of economic evaluation, the cost-minimization analysis, is not reported here as the focus is on the 

evaluations that compare both cost and health outcomes without the assumption of equivalence.  

 
†
 This holds when a unique willingness-to-pay (WTP) value is used to value the QALY. In fact, the logical 

equivalence of the CEA and CBA using a fixed WTP in contrast with the two very different assumptions underlying 

each approach (with regard to the normative perceptions of the role of health versus other goods in the society) 

has led some investigators to reject the theoretical validity of using a fixed WTP altogether 
9
.  
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common type of experiment informing such analyses, although observational studies can be 

used for the same purpose 10. In model-based CEAs, a decision-analytic model is created to 

simulate various aspects of the health condition under study and the impact of competing 

technologies on this condition is simulated to generate estimated values of cost and 

effectiveness outcomes associated with each alternative. On the other hand, in typical RCT-

based CEAs, statistical inference is made on the individual-level data of the RCT to estimate the 

cost and effectiveness outcomes associated with each choice. A RCT useful for such analysis 

should incorporate realistic situations rather than laboratory-type conditions in its design 

(effectiveness versus efficacy trials). In addition, the resource use and effectiveness outcomes 

are often collected for each individual to enable inference on cost-effectiveness. RCTs with such 

characteristics are often called pragmatic trials 11,12.  

RCT-based CEAs comprise a large fraction of contemporary CEAs. A growing number of trials 

incorporate economic end-points at the design stage and there are established protocols and 

guidelines for conducting economic evaluation alongside a RCT 1,13. Some advantages of RCT-

based CEAs are practical. For example, the approval of new health technologies in many 

jurisdictions requires evidence generated through RCTs. Therefore RCTs are a timely (and 

sometimes the only) source of evidence on the performance of emerging health technologies. 

RCTs also have theoretical advantages for deriving a CEA. They are desirable frameworks to 

inform decisions because of their high degree of internal validity 14. The randomization process 

(statistically) protects against known and unknown confounders, which, along measures to 

prevent performance, detection, and attrition biases, can minimize systematic errors 15. 

Effectiveness trials can also have high external validity as causal relationships estimated from 
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such trials can be generalized to different settings 16. Decision-analytic modeling often times 

involves parametric evidence synthesis. One important and often overlooked aspect of 

evidence synthesis is modeling the correlation structure among the parameters representing 

the evidence 17,18. In RCT-based CEAs, cost and effectiveness outcomes are estimated at the 

individual level, and the correlation between them and with other parameters is captured 

directly through patients' experience during the trial (for example, one would expect patients 

who experience fewer respiratory exacerbations in a COPD trial to report higher health state 

utility values and lower costs; however, the analyst needs not make an explicit assumption on 

the impact of exacerbation on costs and quality of life as such an impact is already captured 

through patients' experiences within the trial). The bootstrap method of RCT-based CEA indeed 

relies on such 'captured' correlation to enable evidence synthesis without parametric modeling.  

The main focus of this thesis is RCT-based CEAs, but the methods developed in Chapter 2 and 4 

can be applied to model-based CEAs as well. I will discuss the applications of the methods for 

model-based CEAs wherever they arise. 

1.2.2 Outputs of an economic evaluation 

In order to maximize the reallocation of resources, health technology assessment should be 

concerned with the incremental cost and effectiveness of competing technologies 19. A typical 

figure of merit to inform such reallocation decisions is the incremental cost-effectiveness ratio 

(ICER):  

���� ≡ (�� − �	)/(�� − �	), 
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where the letters � and 	� represent, respectively, the costs and effectiveness, and the indices 

A and S indicate the alternative and standard (or no) treatment, respectively.  

If the data on the comparative cost-effectiveness of all health technologies in a health 

jurisdiction is available, then the problem of maximizing the health outcome given a fixed 

budget can be solved through an iterative approach based on creating a league table and 

ranking strategies by their ICERs 20. In practice, however, it is very common to compare the ICER 

to the decision maker’s willingness-to-pay (WTP) value 21. The WTP is the maximum monetary 

value the decision maker is willing to pay for a unit of effectiveness. For the QALY as the 

effectiveness outcome, a widely accepted value is $50,000 when the decision maker is the 

society itself; that is, it is widely held that society is willing to pay up to $50,000 for gaining one 

QALY in an individual. Nevertheless, recent studies based on the empirical assessment of 

adopted technologies suggest that societies are actually paying much different values for QALYs 

22.  

The decision based on the ICER and a non-negative WTP can be formulated in this way: 


(�� − �	) > 0, ���� < ���	 �����	�ℎ�	��������� �	��!ℎ����"#(�� − �	) < 0, ���� > ���	 �����	�ℎ�	��������� �	��!ℎ����"#��ℎ��$�%� �����	�ℎ�	%�������	��!ℎ����"# &. 

Note that comparison of the ICER with a decision threshold based on a WTP value per unit of 

effectiveness blurs the boundaries between the CEA and the CBA, because the decision rule 

described above can be transformed into  
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'(�� − �	) × ��� − (�� − �	) > 0 �����	�ℎ�	��������� �	��!ℎ����"#	��ℎ��$�%� �����	�ℎ�	%�������	��!ℎ����"# ). 
The term (�� − �	) ×��� − (�� − �	) is called the incremental net monetary benefit (INMB) 

23 as (�� − �	) × ��� is the incremental effectiveness outcome transformed to a monetary 

value. Similarly, one can use the term	(�� − �	) − (�� − �	)/���, called the incremental net 

health benefit (INHB), in the same decision rule 24, as the term (�� − �	)/��� transforms the 

incremental cost to its equivalent effectiveness value. In other words, a decision rule comparing 

the ICER against a WTP is equal to a decision rule that compares the incremental net (monetary 

or health) benefit with zero. In practice, inference based on the net benefit is usually subject to 

sensitivity analysis based on a plausible range for the WTP. 

1.2.3 Synthesizing information (evidence synthesis) 

The evidence to support the adoption decision can be obtained from various sources. For 

example, evidence can be obtained from empirical (interventional or observational) studies, 

expert opinion, or secondary analyses (such as meta-analyses). It is obvious that as long as 

evidence is not generated through a mechanism that introduces bias in favor of some choices 

over the others, then the incorporation of more evidence increases the chance of making the 

correct decision; therefore the most efficient decisions are those that are based on 

comprehensive evidence synthesis. In model-based CEAs, where the evidence is represented 

through model parameters, evidence synthesis is an integral part of the effort in conducting the 

CEA and comprehensiveness is a matter of the rigor of the analyst. In RCT-based CEAs, on the 

other hand, as inference is often directly made using the individual-level outcomes, there has 

been less emphasis on the practice of evidence synthesis. This has made RCT-based CEAs the 
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target of some valid criticism. Sculpher et al. 25, for example, consider the lack of 

comprehensive evidence synthesis alongside RCT-based CEAs to be their most damning 

criticism. 

There is a fundamental difference between RCT-based and model-based CEAs. For the former, 

the RCT data itself is a rich source of evidence for the decision, whereas for the latter, a 

decisions model is mostly a framework for propagating evidence to generate outcomes of 

interest*. Thus, a decision model can be seen as a function from model parameters to the 

outcomes of interest. It follows then, for RCT-based CEAs, the practice of evidence synthesis 

from sources external to the RCT is actually combining historical (prior) and trial (current) 

information. A quantitative method for carrying out such a task is Bayesian evidence synthesis 

26. The Bayesian approach formalizes the procedure of incorporating pre-study beliefs, which 

are subsequently influenced by the results of an experiment, such as a clinical trial, to yield 

revised beliefs 27.  

1.2.3.1 Review of literature on Bayesian evidence synthesis for RCT-based CEAs 

In the mainstream biostatistics literature, Bayesian analysis of clinical trials is an active and 

flourishing area of research 27–31. Such methods, however, have mainly focused on the 

statistical inference on a single trial outcome, the effect size, incorporating prior knowledge 

from previous trials, other experimental studies, expert opinion, and ‘off the shelf’ priors 27. For 

RCT-based CEAs the interest is in the joint inference on costs and effectiveness (or inference on 

                                                      
*
 One can argue that the model structure is massively influenced by the information that the analyst has about the 

underlying health condition.  Nevertheless, as long as issues such as model uncertainty are not taken into account, 

this type of information is not relevant in this thesis. 
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net benefit) 32. If external evidence on cost and/or effectiveness is available, then the analyst 

can use the aforementioned Bayesian methods to combine such information with trial results.  

Such a paradigm, combining prior and trial information defined on costs and/or effectiveness 

outcomes, has been the dominant practice in evidence synthesis for RCT-based CEAs. An early 

step towards adopting a Bayesian approach to RCT-based CEAs was taken by Briggs 33. He 

suggested that a Bayesian interpretation of cost-effectiveness results offers several advantages 

over the frequentist paradigm including the capacity to incorporate prior evidence and the 

ability to make probability statements for the outcomes while retaining the robustness of the 

frequentist approach. Another early work in Bayesian CEA was by Heitjan et al. 34. Here what 

captured the authors’ attention was the difficulty in presenting the results of inference around 

the ICER as a ratio statistic. The adoption of the Bayesian paradigm was for the purpose of 

making probability statements around the true ICER value on which basis better inferential 

measures for the ICER were suggested. Given such an objective for using a Bayesian paradigm, 

no effort was made to incorporate any external evidence and vague priors were used in the 

case study. Choosing a Bayesian framework in order to provide more interpretable or robust 

estimates of the outcome of interest, rather than incorporating external evidence, is not limited 

to this example. As another example, empirical Bayes methods have been proposed in the 

context of multi-national RCTs in order to provide better estimates of costs and cost-

effectiveness outcome for individual countries by borrowing evidence from results in other 

countries in a hierarchical Bayesian paradigm 35,36.  
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Al et al. 37 performed one of the first analyses that used informative priors based on external 

evidence for a RCT-based CEA. The authors used data from two trials that compared costs and 

effectiveness of stent implantation versus balloon angioplasty in patients with cardiovascular 

diseases. The outcomes of the first RCT were used as the prior information for the second 

study. Evidence synthesis was fully parametric with the use of conjugate priors, which resulted 

in closed-form equations for the posterior probability distributions. The analysis was separately 

performed on costs and effectiveness, and also on the joint distribution of cost and 

effectiveness. The authors concluded that different prior distributions may lead to different 

decisions.  

A more systematic treatment of Bayesian evidence synthesis for RCT-based CEAs was provided 

by O’Hagan et al. 38–40. The authors introduced a series of methods developed for the 

incorporation of prior information on costs and/or effectiveness in RCT-based CEAs when cost 

and effectiveness could be defined on a variety of scales. Because the posterior distributions 

were complex and direct inference was not possible, samples from the posterior distributions 

were derived using Markov Chain Monte Carlo (MCMC) techniques. Nixon et al. 41 further 

developed the methodology and provided a coherent set of Bayesian methods to adjust for 

imbalance in the distribution of baseline covariates, to provide subgroup-specific cost-

effectiveness outcomes, and to allow for differences between centres in a multicentre study 

using a hierarchical model. These methods consider costs and effects jointly, and allow for the 

typically skewed distribution of cost data.  
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As an alternative to MCMC methods, Heitjan et al. 42,43 used importance sampling to draw 

samples from the posterior joint distribution of cost and effectiveness outcomes. The case 

study for this report involved a RCT comparing two different interventions for the management 

of cardiovascular patients. Data from a pilot study was used to construct prior information on 

the effectiveness (survival) and informed reasoning to construct a subjective prior for the 

distribution of the costs.  

All of the above-mentioned studies were mainly methodological and examples were used for 

illustrative or pedagogical purposes. RCT-based CEAs in which the results were the main 

message of the study and for which a Bayesian paradigm was adopted are uncommon 44–46. 

Interestingly, in all such RCTs, vague priors have been used for the analysis. Therefore, the 

choice of a Bayesian paradigm in such RCT-based CEAs seems to have been for reasons other 

than evidence synthesis. This could be due to a preference for making probability statements 

about the CEA outcomes, which are more intuitive than frequentist measures, or perhaps 

because of the recent availability of software that makes practical MCMC methods available to 

applied statisticians 47.  

Nevertheless, it is hard to argue that no external information relevant to the adoption decision 

was available at the time the aforementioned RCT-based CEAs were conducted. One factor that 

might have restricted the analysts to non-informative priors is that, in most cases, the inference 

was made directly on the joint distribution of the cost and effectiveness outcomes without 

identifying any extra parameters during the analysis. In such a context, the prior information 

too could have only been defined on the cost and effectiveness outcomes. But prior 
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information on cost and effectiveness outcomes is rarely available and if it is, it is notoriously 

difficult and often inappropriate to transfer from one setting to another 48. An example for this 

phenomenon was reported by Briggs 49. Here fixed-effects analysis on the normal data was 

chosen for Bayesian evidence synthesis on the net benefit scale for a British RCT on blood 

pressure control in patients with diabetes. Prior information on costs and effectiveness from a 

Swedish study was available, but the author concluded that such information cannot really be 

transferred across the two jurisdictions and an analysis with non-informative priors was 

adopted.  

1.2.3.2 Evidence synthesis: trialist versus economist 

What makes the effectiveness and costs so difficult to transfer from one setting to another is 

that they are, to a large extent, affected by the specific settings in the jurisdiction in which they 

are measured (e.g., price units for medical resources, practice patterns, organizational 

peculiarities, and so on). On the contrary, evidence on the aspects of the intervention that 

relate to the pathophysiology of the underlying health condition and the biologic impact of 

treatment, such as the effect size of treatment or rate of adverse events, are less affected by 

specific settings and are therefore more transferable. This puts the economist in a difficult 

situation for a RCT-based CEA: inference is made directly on the cost and effectiveness 

variables, but evidence is available on some other aspects of treatment that is not necessarily 

identified during the CEA. Here arises an important philosophical difference between the trialist 

and economist in the analysis of RCT data with important implications for the evidence 

synthesis methods used by the two camps.  
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• The trialist is a 'discoverer', and is interested in making inference based on RCT data 

primarily on the effect size and secondarily on other aspects of treatment such as safety 

or compliance. These measures are conceptually distinct enough to be analyzed and 

reported separately and trialists have a full arsenal of standard statistical methods at 

their disposal for such analyses. Concordantly, incorporation of prior knowledge with 

trial data has largely remained within such strata of results.  

• The economist should inform the adoption decision. The adoption decision is an all-

inclusive one and cost-effectiveness is a complex function of all aspects of a health 

technology. As such, evidence external to the trial on any aspect of technology has 

bearings on the results of the CEA, and the economist does not have the luxury of 

dissecting RCT results into different components. 

This important difference between the two camps results in specific challenges for the 

economist, which might not have been addressed by advances in Bayesian analysis of RCTs. 

Chapter 2 specifically deals with this problem. 

1.2.4 Decision making under uncertainty 

It is very unlikely that all the information required for an adoption decision is at hand. Evidence 

coming from the literature is accompanied by uncertainty due to the finite sample size of the 

original reports and between-study variation. If evidence is elicited from expert opinion, 

uncertainty lies in experts’ doubt, varying levels of analysts’ trust in experts’ opinions, and the 

heterogeneity of opinion amongst experts. In RCT-based CEAs, an essential source of 

uncertainty is the finite sample size of the RCT. In addition, some quantities that are used in the 
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analysis (such as unit costs) might be uncertain and sometimes there is doubt in the similarity 

of the RCT population and the population for which the decision will be applied. Such 

uncertainties will indeed result in uncertainties in the estimated cost and effectiveness 

outcomes.  

Decision-theoretic arguments postulate that if the goal is to maximize the benefit of decisions 

across the population, and in the absence of irreversibilities and sunk costs (costs that will not 

be recovered in case the decision is annulled), a risk-neutral decision maker should choose the 

option with the highest expected benefit 50. The calculation of the expected benefit requires 

proper propagation of uncertainty from the underlying evidence to the cost-effectiveness 

outcomes 17. In the presence of uncertainty, one relevant metric for decision making is: 

���� ≡ *(��) − *(�	)*(��) − *(�	) 

(or its net benefit equivalent), with * indicating expectation which should incorporate all 

sources of uncertainty as described above*. A robust, unbiased, and easy to implement method 

of calculating the expected values of costs and effectiveness is to perform a Monte Carlo 

simulation. This can be done by randomly drawing from the uncertain parameters in model-

based CEAs 51 and through bootstrapping in RCT-based CEAs 52,53(pp54–58), and averaging the 

calculated outcomes. This method in the health economics literature is commonly referred to 

                                                      
*
 In many contemporary model-based CEAs, only the point estimate of parameters is used for the calculation of 

the ICER in the so-called base case analysis. This is indeed different from the ICER described above (because the 

function of an expected value is different from the expected value of a function). Therefore, the ICER calculated by 

using the point estimate of the parameters can only be taken as an approximate value for the true value of the 

ICER that should inform the adoption decision.  
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as probabilistic sensitivity analysis (PSA) 17,51. For very simple decision-analytic models, 

sometimes the joint distribution of the cost and effectiveness outcomes can be analytically 

calculated. Likewise, for RCT-based CEAs, there are parametric methods that can be used to 

calculate the expected value of cost-effectiveness outcomes 54,55. Overall, however, the PSA 

remains a very popular method of quantifying uncertainty in a CEA.  

1.2.5 The bootstrap method for the analysis of uncertainty in RCT-based CEAs 

The bootstrap method is one the most popular methods for the analysis of uncertainty in RCT-

based CEAs 52,54,56,57. In this approach, the distribution from which data for a trial arm is 

sampled (often referred to as the population distribution) is approximated by the empirical 

distribution of the sample. An empirical distribution of a real-valued vector + of size � is the 

probability distribution constructed by putting a probability mass of 1/� on each element of + 

58. The sampling distribution of the population distribution, and hence any statistics based on 

that, can then be estimated by sampling from the empirical distribution (i.e., sampling with 

replacement with the same number of observations as are in the original data set +). For a RCT, 

the data structure is more complicated than that of a real-valued vector. But the bootstrap 

remains a valid inferential technique as long as bootstrapping mechanism mirrors the 

mechanism that has generated the data 59, which, for parallel arm RCTs, means obtaining 

bootstrap sets separately within each arm of the RCT 52,53,60. The data generated through 

bootstrapping can be used to calculate the ICER, estimate a confidence region around the ICER, 

draw the acceptability curves, and so on. 
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The popularity of the bootstrap method for RCT-based CEAs can be attributed to several 

factors. First, inference in CEAs is on the joint distribution of cost and effectiveness. This makes 

the familiar univariate statistical tools for parametric inference unavailable. Another problem is 

the distribution of costs and effectiveness values 61,62. Costs are often right-skewed and zero-

inflated. An outcome like health state utility value can take any values from less than zero to 

one. Joint modeling of such outcomes, adjusting for covariate imbalance, and imputation of 

missing and censored values in a unified framework require statistical expertise and will likely 

result in a context-specific statistical model with a multitude of parametric assumptions. The 

bootstrap on the other hand is a robust non-parametric approach which is simple to 

implement, involves fewer distributional assumptions, and allows the propagation of joint 

uncertainty on all such aspects through an iterative resampling scheme. However, one should 

note that the validity of the bootstrap approach is based on two asymptotics: the sample size of 

the RCT approaches the size of the target population, and the statistics of interest is estimated 

from infinite cycles of bootstrapping 53(p55). 

Note that the above description of the bootstrap is in line with its popular frequentist 

interpretation (as it estimates the sample distribution of the parameter of interest). Rubin et al. 

added a Bayesian dimension to the bootstrap by introducing the Bayesian bootstrap 63. The 

Bayesian bootstrap is very similar both in operation and in numerical results to the 

conventional bootstrap 63,64. However, theoretically, it estimates the posterior distribution of 

the parameter of interest. Such a Bayesian interpretation of the bootstrap motivates some of 

the widely accepted statistical methods such as the non-parametric imputation of missing data 
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65. A more detailed description of the Bayesian bootstrap will be provided in Chapter 2 as it 

plays a pivotal role in the method developed in that chapter.  

1.2.6 Expected Value of Information (EVI)   

Despite the need for basing the adoption decision on the expected value of cost and 

effectiveness outcomes, the consumers of cost-effectiveness studies often remain interested in 

how strong the evidence is in support of some decisions over others. The data generated 

through the PSA can be used to communicate the level of uncertainty in various ways. 

Examples include the cost-effectiveness plane, cost-effectiveness acceptability curve, or 

confidence regions and intervals around the ICER and net benefit 60,66. Unfortunately, aside 

from illustrative purposes, none of these methods have any rationale in decision making and 

the adoption decision should always remain based on the expected value of the costs and 

effectiveness of comparative options 50. This raises the question as to the relevance of such 

methods for the presentation of uncertainty in medical decision making.  

From a decision-theoretic viewpoint, uncertainty in a decision only matters when the decision 

maker is interested in collecting more evidence 50. Decisions that are made in the face of 

substantial uncertainty benefit more from additional evidence than those for which there is 

little doubt in the merit of the chosen option. Expected value of information (EVI) analysis 

includes a set of concepts and methods stemmed from decision theory that deal with the 

impact of uncertainty on the outcome of a decision 50,67–71. 

From this perspective, information is valuable because it increases the chance that the right 

decision is made. Thus, there is an opportunity loss associated with uncertainty, which is 
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generally determined by the combination of the probability that a decision based on the 

current information is wrong on one hand and the marginal loss of benefit due to the wrong 

decision on the other hand 67. This means investment in obtaining more information (evidence) 

can be associated with a return on investment because it increases the chance of choosing the 

optimal option. EVI methods allow for the quantification of such return on investment and 

present its magnitude in the same unit as the benefit (often defined on the NMB scale) of the 

decision 67. There are several measures of EVI, some of the most widely used are: 

1) Expected Value of Perfect Information (EVPI): the EVPI quantifies the overall value of 

resolving all uncertainty in the decision task 72. It answers the question: what is the expected 

gain in benefit by completely resolving uncertainty around all evidence used in making the 

decision? For a risk-neutral decision maker, it is defined as the value of decision situation with 

perfect information minus the value of current decision situation: 

�-�� ≡ ./ {1�2	3 [563(/, 7)]} − 1�2	3 {./[563(/, 7)]},	
where	: is the set of all stochastic (uncertain) quantities informing the decision, ; is the set of 

non-stochastic quantities, and 563 is the function calculating the net benefit for the ith option*. 

Alternatively, the EVPI can be seen as the opportunity loss in the decision with current 

information, as such opportunity loss will be completely avoided with the availability of perfect 

information 71. 

                                                      
*
 This notation departs from the style most often used in the literature because the equations for EVI measure are 

mostly discussed in the context of decision-analytic CEAs. The notation adopted here is intended to be more 

flexible. For example, /, the stochastic entity, can be the set of uncertain parameters in decision-analytic CEAs, or 

the population distribution of the RCT in RCT-based CEAs.  
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2) Expected Value of Partial Perfect Information (EVPPI, or partial EVPI): This is the expected 

gain in benefit by completely resolving uncertainty around specific aspects of the evidence used 

in the decision task 73. It answers the question: what is the expected gain in benefit by 

completely resolving uncertainty around a selected set of evidence in a decision-making task? It 

is also equal to the opportunity loss due to uncertainty in the value of the subset of evidence. If 

the subset of evidence of interest is denoted by :< and the rest (complementary set) of the 

evidence by :=	then  

�-���/> ≡ ./> 1�23{./?|/>[563(/, 7)]} − 1�23{./[563(/, 7)]}.	
3) Expected Value of Sample Information (EVSI): This is the expected value of gain in benefit 

obtained from conducting an experiment with a given design and sample size 68. It answers the 

question: what is the expected gain in benefit in conducting an experiment with a particular 

design and sample size that gives us information for a particular decision making task? If the 

future study provides us with a probability distribution D that carries information about :<, 
then EVSI can be calculated as 

�-B�/> ≡ .C1�23{./?|(/>|C)[563(/, 7)]} − 1�23{./[563(/, 7)]}. 
Again, an alternative way of deriving the EVSI is to see it as the difference between the EVPI 

before and after conducting the study 71.  

The above equations for EVPI, EVPPI, and EVSI typically calculate per-individual values (because 

563(. ) typically returns per-individual net benefit). To clarify, a per-individual EVSI of $400 (on 

the NMB scale) associated with a future RCT means that the adoption decision, after the trial 



 

23 

 

results become available and the evidence is incorporated into the decision, will be associated 

with an expected extra $400 gain in the NMB compared to the current decision for every 

instance the cost-effective technology is used. Because the cost-effective technology will be 

used for many patients, the overall population EVSI provides the expected return on investment 

from the study. This extension from individual to population values apply to the EVPI and EVPPI 

as well. In general, population EVI is the product of per-individual EVI and the total number of 

times the adoption decision is expected to be made. If patients arrive at rate � in the future, 

and if the results of the study will become available after time t and the decision will be 

relevant for a time T (T>t, and assuming both t and T are multiplicative of the time unit), then 

the population EVI, discounting the future events at rate c, can be calculated as 74 

�-�DEDFGHI3EJ = ∑ (�. �-�)/(1 + !)3N3OI . 
Note that the later the information becomes available, the smaller the population EVI will be. 

For a RCT, this is the time spent for planning, recruitment, analysis, and dissemination of the 

results, during which the population does not receive the benefit from the information 

provided by the trial. Therefore, unlike per-individual EVSI, the population EVSI will not 

necessarily be a monotonically increasing function of the sample size.  

1.2.6.1 Review of literature on EVI 

1.2.6.1.1 EVI methods in medical decision making 

EVI methods have firm foundations in statistical decision theory and have been successfully 

used in other fields such as operations research and environmental risk analysis 75–78. An EVI 
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approach to evaluate uncertainty in medical decision making was at first focused on model-

based CEAs. The EVPI was the first EVI measure introduced to the health economics community 

as an index for measuring the sensitivity of decision-analytic models to the variation in their 

inputs. The EVPI was argued to be a theoretically sound and a practically valid method for 

sensitivity analysis 67. Claxton 50 more directly linked EVI measures to the prioritization of future 

research and argued that EVI can be used to inform the decision on acquiring more information 

once the adoption decision is made. Methods for EVI analysis alongside RCT-based CEAs soon 

followed 70,71,79–86.  

Among the EVI measures, the EVSI has a particular appeal in the context of RCT-based CEAs 

because the EVSI, along with the estimate of the overhead and per-subject costs of the trial, 

can be used to inform the design and specifically the optimal sample size of subsequent RCTs 71. 

This provides a theoretically rigorous alternative for contemporary methods for sample size 

calculations in RCTs. Traditionally, the statistical analysis of RCTs has been based on the 

discovery of the differential effects in the efficacy of competing interventions based on 

frequentist hypothesis testing. When a RCT is aimed at reporting the statistical significance on 

the primary outcome, the sample size calculation is concordantly based on power analysis, 

giving the trial a pre-specified level of type I and type II errors 87. However, given that the 

results of (pragmatic) RCTs are eventually used to inform the adoption decision, it has been 

argued that designing a RCT should directly incorporate such considerations 88.  

This approach brings the trial design and the adoption decision into a single framework of 

constraint optimization: how to best use a fixed budget to maximize population health through 
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adopting optimal technologies and prioritizing research on the comparative performance of 

technologies. Choosing the relevant course of action in this context will be informed by the CEA 

and EVI analyses. In the absence of irreversibilities, one possible scenario can be formulated as 

follows: the adoption decision is made based on the CEA. Next, the EVPI is used to evaluate if 

there is any need for collecting more evidence. If the EVPI is positive, one can then use the 

EVPPI to assess if research in any specific dimensions of evidence is particularly promising. For 

example, if the uncertainty in the quality of life of patients under treatment is the only 

important source of uncertainty, then a non-randomized study measuring this parameter in a 

sample of patients and controls might be an economical way of gathering the required 

information. If there are several sources of uncertainty, conducting a future RCT that will 

provide evidence on all such parameters might be justified. Once a particular study is found to 

be potentially worthwhile, the next step is to find the best design and the sample size of such 

study. The most optimal design of a RCT is the one that maximizes the difference between the 

population EVSI and the cost of the trial. This difference is called the expected net gain (ENG) 71, 

or the expected net benefit of sampling (ENBS) 89. A future RCT is worthwhile if the ENG is 

positive, and the optimal sample size is the one that maximizes the ENG.  

It should be noted that in implementing new technologies there are often sunk costs arising 

from reversing information flow, change in practice to health care providers, and 

irreversibilities such as necessary capital equipment, training, and so on that might not be 

reallocated to alternative uses 83. These costs might be high enough that once the adoption 

decision is made, it becomes irreversible 90. Consideration of such irreversibilities will create 

situations in which delaying the adoption of the optimal technology might be beneficial, and 
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the relevant course of action will become one of ‘adopt and no trial’, ‘adopt and trial’, or ‘delay 

and trial’. Again, the CEA and EVI, in conjunction with the estimate of irreversible and sunk 

costs, will provide a rigorous answer 83.  

1.2.6.1.2 EVI calculations for RCT-based CEAs 

Compared to EVI analysis for decision-analytic models, which has a deep root in the operations 

research and risk analysis literature 78, EVI analysis for RCT-based CEAs is a younger discipline 

that is more restricted to the health care field. Methods have been developed for the 

calculation of EVPI, EVPPI, and EVSI for RCT-based CEAs 70,71,79,79–86,91. Such methods are almost 

entirely based on the normal approximation of the distribution of the expected value of the 

(incremental) net benefit for trial arms. This turns the output of the RCT into a multivariate 

normal distribution of net benefits for which the algorithms for EVI analysis for model-based 

CEAs can readily be applied (such multivariate distribution can indeed be considered a simple 

decision-analytic model). For example, EVI calculation using Monte Carlo simulation by 

sampling from the distribution of the NMB has been used to calculate EVPI, EVSI, and EVPPI by 

Koerkamp et al. 86. The authors analyzed patient-level data on a RCT comparing two treatments 

for intermittent claudication. The expected value of the NMB associated with each treatment 

was assumed to follow a normal distribution. In addition to the EVPI, the EVSI and EVPPI for the 

whole as well as sub-sets of parameters were calculated.  

In some general situations, EVI equations based on such normal approximation can be 

expressed in closed form, providing a more elegant and efficient solution than Monte Carlo 

methods. For example, for a two-arm RCT, when the expected value of the incremental net 
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benefit for the current and future RCTs are assumed to be normally distributed, the EVPI and 

EVSI can be calculated using equations that are related to the unit normal loss integral 71. 

Eckermann et al. developed this paradigm further for the situation where there is a reversibility 

cost, and provided equations for the expected value of benefit associated with the option of 

‘delay and trial’ 83. This framework has been extended to multi-stage RCTs 80, when the 

implementation of the optimal technology is not perfect 79, when the decision maker is a third 

party (industry) that aims at maximizing their expected profit 82, and when different 

jurisdictions have the option of conducting their own RCTs and/or borrowing evidence from the 

RCTs conducted by other jurisdictions 84.  

For model-based CEAs, the EVPI can directly be calculated from the PSA data 17. Some authors 

have already mentioned that the data generated through bootstrapping for RCT-based CEAs 

can be used to calculate the EVPI in the same way 86,92. However, the same authors mention 

that it is not generally known how to perform EVSI calculations using the bootstrap, a topic that 

will be dealt with in Chapter 3 of this thesis. Calculating the EVPPI for RCT-based CEA has not 

been thoroughly explored in the literature. In the study by Koerkamp et al. 86, the EVPPI was 

calculated for components of cost and effectiveness parameters by assigning a multivariate 

normal distribution to the cost and QALY components. The methodology used for such 

calculations does not seem to be readily extendable to calculate EVPPI for other parameters 

such as the effect size of the treatment, because the framework for the analysis directly 

generates a probability distribution for the cost-and effectiveness outcomes without identifying 

such intermediary parameters. This is the focus of the research presented in Chapter 4.  
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1.3 Gaps in current knowledge that inspired this dissertation 

Because the bootstrap is such a popular method in RCT-based CEAs, it would be attractive to 

further expand this framework. Currently, investigators who intend to incorporate external 

evidence into RCT-based CEAs or perform EVI analysis require a paradigm shift to parametric 

modeling. In this context, some of the main gaps in the current knowledge can be summarized 

as follows: 

1) In its current form, the bootstrap approach in the analysis of RCT-based CEA does not allow 

the incorporation of external information in the analysis.  The need for the incorporation of 

external information, whenever available, in CEAs should not be affected by the choice of the 

analytic framework. As such, it is desirable to develop methods for evidence synthesis for RCT-

based CEAs that use the bootstrap.   

2) The current methods of EVSI calculations for RCT-based CEAs are largely based on the normal 

approximation of the expected value of the incremental cost and effectiveness (or net benefit) 

across treatment arms. The central limit theorem seems to make this a theoretically justifiable 

approach. However, making this approximation requires some simplifications in modeling the 

uncertainty due to censored and missing values and covariate imbalance. It is desirable to 

develop methods that can more accurately model such realistic aspects of the analysis of RCT-

based CEAs. In addition, if the bootstrap is used for a RCT-based CEA, it will be natural to use an 

EVI method that is based on the same paradigm and the implicit assumptions inherent in the 

bootstrap method.  
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3) EVPPI calculation for RCT-based CEAs is largely undeveloped. After the results of a RCT 

become available, it would be of interest to evaluate if there is a need for generating further 

evidence for particular aspects of the decision so that any future study can be geared towards 

measuring such parameters. Again, it is desirable to use such EVPPI calculations based on the 

bootstrap method of RCT-based CEAs given its popularity and familiarity among applied health 

economists.  

1.4 Context 

The methods described in this thesis and the numerical results are based on a set of 

assumptions that will be mentioned here in order to avoid repetition. Throughout this work, it 

is assumed that the decision maker is a risk-neutral agent that tries to maximize the benefit to 

the target population, which is the population from which the RCT data is sampled. I focus on 

decision problems with discrete alternatives, i.e. that out of the total P alternative decisions, 

the decision maker will choose the one with the highest NB. The decision-maker has access to a 

fixed financial budget and has a fixed WTP value for a unit of effectiveness. The results of the 

CEA and EVI are all reported as per individual and no attempt has been made to transform the 

reported results into their population values as such calculations are for the most part 

independent of the method of per-individual EVI calculation.  

1.5 The OPTIMAL clinical trial as a case study 

The OPTIMAL clinical trial is used as a running example for this thesis 2,3,93. Although several 

parts of this thesis are inspired by issues surrounding the analysis of the OPTIMAL RCT, none of 

the methods developed is specific to any aspect of the OPTIMAL study, and the case studies are 
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selected in order to provide an opportunity to discuss the practical aspects of implementing the 

methods.  

The OPTIMAL clinical trial was a multi-centre Canadian study evaluating the benefit of 

combination therapy in patients with chronic, obstructive pulmonary disease (COPD). It was 

conducted among 27 academic and community medical centres in Canada from 2003 to 2006. 

The study included 449 patients randomized into three treatment groups: tiotropium plus 

placebo (TP, the current standard of care, N=156), tiotropium plus salmeterol (TS, N=148), or 

tiotropium plus fluticasone-salmeterol (TFS, N=145). The hypothesis was that combination 

therapy in COPD improves outcomes, and the primary outcome measure was the proportion of 

patients who experienced a respiratory exacerbation by the end of follow-up (52 weeks).  

Basic demographic characteristics and clinical and economic results of the OPTIMAL trial are 

presented in Table 1-1. At the end of follow-up, the proportion of patients who experienced at 

least one respiratory exacerbation was not significantly different across the groups (TP=62.8%, 

TS=64.8%, TFS=60.0%, P=0.69). The difference in this proportion between TS and TP was -2.0 

percentage points (95% CI -12.8 to 8.8), and for the TFS vs. TP, it was 2.8 percentage points 

(95%CI -8.2 to 13.8).  

Nevertheless, patients in combination therapy showed improvements in a number of secondary 

outcomes: TFS improved lung function (p-value=0.049) and disease-specific quality of life (p-

value=0.01) and reduced the number of hospitalizations for COPD exacerbation (incidence rate 

ratio, 0.53 [95% CI 0.33 to 0.86]) and all-cause hospitalizations (incidence rate ratio, 0.67 [95% 
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CI 0.45 to 0.99]) compared with the TP. In contrast, the TS did not statistically improve lung 

function, hospitalization rates, or quality of life compared with the TP.   

The OPTIMAL trial protocol included a concurrent prospective economic analysis. Data on 

resource use and quality of life (measured using a disease-specific quality of life questionnaire 

and converted into utility values 94) were collected during the trial. The cost-effectiveness 

analysis revealed that the average patient in the TP group generated $2,678 in direct medical 

costs (costs are all in 2008 Canadian dollars), while the TS and TFS generated $2,801 and 

$4,042, respectively. The average QALY for the TP group was 0.7092. When QALYs were 

adjusted for baseline utility, the TS group showed a decrease of −0.0052 and the TFS group 

showed an increase of 0.0056 in QALY compared to that of the TP group. As such, the TS 

strategy was dominated by TP and TFS. Compared with the TP, the TFS strategy resulted in ICER 

of $243,180 per QALY gained. At the willingness-to-pay (WTP) value of $50,000/QALY, the TP 

strategy remained the best choice, and in probabilistic sensitivity analysis, it had 78% chance of 

being the cost-effective option. 

For a full review, the reader can refer to the publication on the design 93, results of the main 

analysis 2, and the economic evaluation 3 of the OPTIMAL study.   
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Table 1-1: Characteristics of patients and clinical and economic results in the OPTIMAL trial 

 TP TS TFS 

N 156 148 145 

Mean age (SD), y  68.1 (8.9) 67.6 (8.2) 67.5 (8.9) 

Women, %  46.2 42.6 42.1 

Prebronchodilator lung function 

Mean FEV1 (SD), L  

1.01 (0.38) 1.00 (0.44) 1.05 (0.38) 

Baseline utility 0.6919 0.7055 0.6931 

    

Patients with 1 acute exacerbation, n 

(%) 

98 (62.8) 96 (64.8) 87 (60.0) 

Absolute risk reduction (95% CI), 

percentage points 

reference -2.0 (-12.8 to 8.8) 2.8 (-8.2 to 13.8) 

All exacerbations, n  222 226 188 

    

Mean cost 2678 (1950 

to 3536) 

2801 (2306 to 

3362) 

4042 (3228 to 4994) 

Mean QALY 0.7092 

(0.6953 to 

0.7228) 

0.7124 (0.6931 to 

0.7310) 

0.7217 (0.7034 to 

0.7389) 

Mean adjusted QALY reference −0.0052 (−0.0088 

to 0.0032)  

0.0056 (−0.0142 to 

0.0251) 

QALY: quality-adjusted life year, TP: tiotropium + placebo, TS: tiotropium + salmeterol, TFS: 

tiotropium + fluticasone/salmeterol, SD: standard deviation, CI: confidence interval 

 

1.6 Contents of this thesis 

Overall, the contribution of this thesis research to the knowledge base in the health economics 

literature includes a coherent set of methods that can be seen as an extension of bootstrap 

method for the CEA of RCTs. Chapter 2 discusses the Bayesian interpretation of the bootstrap 

and, based on such interpretation, introduces the vetted bootstrap, a practical sampling 

algorithm for incorporation of external evidence in RCT-based CEAs. Chapter 3 takes the 

framework proposed in Chapter 2 one step further, and suggests a non-parametric approach 
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for calculation of the expected value of perfect information (EVPI) and the expected value of 

sample information (EVSI) for RCT-based CEAs based on the bootstrap. Chapter 4 provides a 

heuristic method for the calculation of single-parameter expected value of partial perfect 

information (EVPPI), which is applicable to both model-based and RCT-based CEAs. Chapter 5 

provides an integrated discussion elaborating on the common features of the methods 

developed throughout this thesis and discusses some limitations and suggestions for future 

research. Some details that I deemed not to be an integral part of the argument are presented 

in a series of appendices. The appendices also contain computer codes for the implementation 

of the algorithm described in Chapter 4. Also provided in the appendices are the computer 

codes for the stylized examples in this thesis so that the reader can reproduce the results or 

uses different input values for further examination. The code used for the analysis of the 

OPTMAL trial is not provided here as it is not a generic, reusable computer code, but the reader 

can access and examine the code at http://www.core.ubc.ca/~msafavi/thesis 
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Chapter 2. The Vetted Bootstrap, a practical algorithm for the 

incorporation of external evidence in RCT-based CEAs.  

2.1 Background 

In the contemporary Bayesian analysis of RCTs the focus is on statistical inference on a single 

trial outcome, most often the effect size, and the incorporation of prior knowledge too remains 

focused on such outcomes 27–29,31. For trial-based CEAs, if external evidence on cost or 

effectiveness (or the net benefit) is available, then the analyst can use such Bayesian methods 

to combine this information with trial results. This has been the dominant paradigm in the 

Bayesian analysis of RCT-based CEAs 34,37,39,43,49. However, prior information on cost and 

effectiveness is rarely available and if it is, it is often inappropriate to transfer to other settings 

95. In the context of a RCT-based CEA, external evidence is often available on parameters that 

relate to the underlying biology of the health condition and the impact of treatment. Such 

parameters indeed affect cost and effectiveness, but are not necessarily quantified in the 

course of a RCT-based CEA.     

As a motivating example, consider a hypothetical trial in which the economist is interested in 

treatment costs (direct and total costs) and effectiveness (quality adjusted life years and 

mortality), all of which are collected at the individual level. Without any external evidence, the 

economist can make direct inference on the joint distributions of cost and effectiveness 

outcomes across the trial arms. Yet, imagine there is also external evidence on the treatment 

effect size from another RCT, as well as adverse event rates for the control arm from an 

observational study. How can external evidence on such parameters be incorporated in the 
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analysis and then be propagated to the cost and effectiveness outcomes? One way to do so is 

to create a parametric model to connect cost-effectiveness outcomes with parameters for 

which external evidence is available. The model can be updated using a variety of techniques 

such as Markov Chain Monte Carlo (MCMC) methods or through the maximization of likelihood 

as used in the Confidence Profile method 96. However, the model must connect several 

parameters through link functions, regression equations, and error terms. This involves a 

multitude of parametric assumptions, and there is always the danger of model misspecification 

61,62. In addition, implementing such a model and comprehensive model diagnostics are not an 

easy undertaking. The ‘vetted bootstrap’, presented in this chapter, requires fewer parametric 

assumptions and is generally much easier to implement. 

2.2 The vetted bootstrap: a practical approach to evidence synthesis in RCT-

based CEAs 

The vetted bootstrap is an extension of the popular bootstrap method of RCT-based CEAs 

52,54,97. It is a semi-parametric method in that it requires a parametric specification of the 

external evidence while avoiding parametric assumptions on the cost-effectiveness outcomes 

and their relationship with the external evidence. The method presented is a form of rejection 

sampling 98 applied to the bootstrap sample – an approach that is very simple to implement.  

The remainder of this chapter is structured as follows: after outlining the context, a Bayesian 

interpretation of the bootstrap is presented. Next, the theory of the incorporation of external 

evidence into such sampling scheme is explained. A highly stylized example shows the step-by-

step implementation of the vetted bootstrap method in a simple scenario for which an 
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(approximate) analytical solution exists. A case study featuring the OPTIMAL trial shows the 

practical aspects of implementing such a method. A discussion section on the various aspects of 

the new method and its strengths and weaknesses compared to parametric approaches 

concludes the chapter.  

2.3 Theory and methods 

Let Q = {RST: � = 1,2, … , 5, X = 1,2, … , �3} represent the individual-level data of an N-arm 

clinical trial, with sample size of	�3  in the ith arm, where RST is the data of the jth person in the ith 

arm. RST is the set of all the measured quantities that are required to inform the cost-

effectiveness analysis. For example, it can consist of the individual-level resource use and 

quality of life weights, baseline covariates that are used for adjusting outcomes, as well as the 

parameters for which external evidence is available. I do not index the elements inside RST as 

the unit of sampling in subsequent sections is RST in its entirety. Let Y = {Z[, Z\, … , Z]} be the 

set of unknown population distributions from which the data for each individual within each 

arm of the trial is generated (∀�, X		Rij~3.3.bZ3  , which I also indicate by the short-hand 

notation	Q~Y). Let c be the vector of some quantities of interest relevant for cost-effectiveness 

analysis (e.g., expected cost and effectiveness values for each intervention, or the net monetary 

benefit)*. Let the functional form c(Y) represent the unobserved population value of c that 

can be identified if Y is fully specified. Likewise let d be the vector of some parameters for 

which external evidence is available (henceforth called auxiliary parameters). Examples include 

                                                      
*
 While the measures of economic evaluation are of interest here, c can be generalized to many other types of 

inference as well.  
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the odds ratio (OR) of treatment success between the two arms of the trial, the rate of adverse 

events estimated from an observational study, or compliance rate estimated from another 

dataset. Again, I use the functional form d(Y) to represent the unobserved population value 

of	d. The auxiliary parameters should have a fundamental property: d(Y) should be identified 

(unique) for each	Y, but many different Ys can have the same	d(Y). This definition seems to 

hold for the most common forms of external evidence, such as the examples used above. Let 

ef(. ) be the probability density function of	d representing our external information. The 

distribution assigned to the external evidence should satisfy the following conditions*: 1)	ef(. )  

should be constructed without any influence from trial data X (no hindsight bias). 2)	ef(. ) 
should have a finite maximum value. This condition will be violated for some distributions such 

as 6���(g, h) when either g or h is less than one. 3) ef(. ) should be a continuous distribution. 

This is related to the previous condition as discrete or mixed-type distributions have probability 

density functions that take infinite values.  

My goal in this chapter is to generate random samples from the posterior distribution of	c 

having observed the RCT data and the distribution of the external evidence. I use the short-

hand notation �(c|Q, ef) for this quantity.  

2.4 A Bayesian interpretation of the bootstrap 

A key step for the vetted bootstrap method is to treat probability distributions as random 

entities that, much like random variables, are subject to probability calculations and statistical 

                                                      
*
 Some of these conditions might be relaxed in specific situations. For example, the second condition should not 

necessarily hold for the weighted bootstrap method; the third condition can also be relaxed if the population value 

only takes discrete values.  
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inference, including the Bayes’ rule. If we treat the population distribution Y as a random 

entity, we can use Bayes’ rule to update our knowledge of Y based on the observed	Q: 

�(Y|Q) ∝ eY(Y). j(Q|Y),          (1) 

where	πl(F) is our prior distribution on	Y, �(Y|Q) is our posterior distribution of Y having 

observed the trial data	Q, and	L(X|F) is the likelihood of data. 

If prior and posterior distributions on Y are from a parametric family indexed by a set of 

distribution parameters, then the randomness of Y would translate into the randomness of 

those parameters. However, one can perform such Bayesian inference non-parametrically: 

Rubin 63 showed that if we assume a prior non-informative Dirichlet process for	Y (a prior of the 

form	P���!ℎ���(0, … ,0) on the vector of all possible observations from	Y), then we can directly 

draw from �(Y|Q) using a simple process called the Bayesian bootstrap. In the Bayesian 

bootstrap of a vector	p, a weight vector q of the same size is generated from a random 

variable with Dirichlet distribution with scale parameter of one (q~P���!ℎ���(1, … ,1)), such 

that the ith element of	q is the weight assigned to the ith element of	p. The probability 

distribution defined by putting point mass Wi on Zi can be considered a random draw from the 

distribution of	�(Y|p). It turns out that the conventional bootstrap can also be interpreted, 

with some approximation, in the same way; in this case the vector q is generated from a 

scaled multinomial distribution 99(p125). Although this sampling method does not correspond to a 

formal Bayesian inference, the similarity in the operation and results to the Bayesian bootstrap 

allows one to interpret the conventional bootstrap in the same way (see 64 for an extensive 

study of the numerical similarity of the two methods). Rubin called this the approximate 
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Bayesian bootstrap 99(p124). This method is used as an alternative to the Bayesian bootstrap in 

some circumstances like the imputation of missing data 65,99 and the weighted likelihood 

bootstrap 100. As such, I adopt a general notation and use the term p* to indicate a bootstrap 

sample of a vector p with the bootstrap weights generated using Bayesian or approximate 

Bayesian mechanisms. The empirical distribution of p* generated by putting probability mass 

Wi on Zi, can be interpreted as a random sample from the posterior distribution of	�(Y|p).  
2.5 Cost-effectiveness analysis without the incorporation of external 

evidence 

In a CEA in which we do not intend to incorporate the external evidence, we are interested in 

generating a random sample from the distribution of c(Y|Q). This sample can then be used to 

estimate the expected value of cost and effectiveness outcomes across interventions as well as 

to characterize uncertainty in a variety of ways, including cost-effectiveness planes, 

acceptability curves, or intervals around the incremental cost-effectiveness ratio or incremental 

net benefit. 

With bootstrapping acting as sampling from	�(Y|Q), one can generate a random sample from 

the distribution of c(Y|Q) using a simple Monte Carlo approach:  

1. For q=1, ... , M, where M is the number of simulations: 

2. Generate	Q∗, a (Bayesian) bootstrap sample of	Q with bootstrapping performed 

within each arm of the trial.  
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3. Calculate	c∗ = c(Q∗), the cost and effectiveness outcomes from the bootstrap 

sample.  

4. Store the value of	c∗ and jump to 1. 

This approach generates M random draws from the posterior distribution of the cost and 

effectiveness outcomes having observed the RCT data. If the conventional (approximate 

Bayesian) bootstrap is used, this algorithm becomes similar to the method commonly used to 

quantify uncertainty in RCT-based CEAs 52,54.  

2.6 Incorporating external evidence 

To incorporate external evidence, I specify the information on d by putting a further prior on Y 

representing the prior knowledge on the value of	d measured in	Y (note the requirement on 

the identifiability of d in Y made earlier): 

�(Y|Q, ef) ∝ efud(Y)v. eY(Y). j(Q|Y) ∝ efud(Y)v. �(Y|Q),      (2) 

Estimating c(Y) from a random sample from this distribution provides a random sample 

from	�(c|Q, ef). What equation (2) tells us is that for any given	Y, the term �(Y|Q, ef)	is a 

weighted value of �(Y|Q) with weights being	ef(d(Y)). With the empirical distribution of Q∗ 

acting as a random sample from	�(Y|Q), I only need to weight each Q∗ by	efud(Q∗)v, 

the probability of the value of d measured in the bootstrap sample given its distribution 

from the external evidence. Being able to sample from	�(Y|Q), I propose two sampling 

schemes for generating samples from	�(Y|Q, ef): the vetted bootstrap, which is a form of 

rejection sampling 101, and the weighted bootstrap, which is a form of importance sampling 102. 
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In both schemes, one desires to sample from a probability distribution with density 

function	w(. ), but is only able to generate random samples from the density function	"(. ), 
often called the instrumental or proposal distribution. Here, "(Y) = �(Y|Q) and	w(Y) ∝
efud(Y)v. "(Y). The idea is to ‘weight’ each sample from "(. ) by a weight proportional 

to	w(. )/"(. ), which in this case is proportional to	efud(Y)v. 

2.7 Algorithm: the vetted bootstrap 

In this scheme, each	Q∗, the entire bootstrap sample of RCT data, is accepted by a probability 

that is proportional to	efud(Q∗)v (hence ‘vetting’ the bootstrap). To change weights to valid 

probabilities, I need only to multiply them by a constant to make sure that the weights will 

remain in the interval [0,1]. The optimal way to do so is to divide the weights over the 

maximum possible weight, i.e., 1�2f ef(d)	 (any constant larger than this value will be valid 

but larger values result in wasteful rejection of bootstrap samples). This results in the following 

algorithm: 

1. Calculate xyHz = 1�2f ef(d)	 as the scaling factor for weights from the 

distribution of the external evidence.   

2. For q=1, ... , M, where M is the number of simulations: 

3. Generate	Q∗, a (Bayesian) bootstrap sample of	Q, with bootstrapping performed 

separately within each arm of the trial.  

4. Calculate the statistics θ
* = θuX*v in this sample. 

5. Calculate ω = πθuθ
*v, the likelihood of the statistics according to external 

evidence. 
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6. Randomly draw | from a uniform distribution in the interval [0,1]. If	| >
x/xyHz , then ignore the bootstrap sample and jump to step 3. 

7. Calculate	c∗ = c(Q∗), the cost and effectiveness outcomes for each arm from 

the bootstrap sample.  

8. Store the value of	c∗ and jump to 2.  

2.8 Weighted bootstrap as an alternative to the vetted bootstrap 

As an alternative to probabilistically accepting or rejecting bootstrap samples based on the 

weight	x, one can assign the weights directly to each bootstrap sample and incorporate such 

weights in all downstream calculations. This importance sampling scheme will lead to the same 

results as the acceptance-rejection method employed in the vetted bootstrap 98. This 

mechanism is especially helpful for the situations in which xyHz cannot be determined. 

However, unlike the vetted bootstrap, which can generate a desired number of independent, 

identically distributed draws from the posterior distribution of cost-effectiveness outcomes, the 

unequal weights assigned to bootstrap samples in the weighted bootstrap scheme affect 

subsequent calculations and pose difficulties in presenting results graphically in the cost-

effectiveness plane.  
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2.9 Case studies 

2.9.1 Analogy between the vetted bootstrap and parametric analysis of bivariate 

normal data 

First, I use a highly stylized example that allows for an analytical solution and shows how the 

vetted bootstrap operates. Imagine we measure the paired values of c and d in n=100 

individuals and that we are interested in inference on	E(c) based on this sample and external 

information on	d. We observe that d has a mean 1 and variance of 10 in the sample. Imagine 

we also observe the relation between c and d having a linear form	c = 2d + 1 + �, where the 

error term � is assumed homoscedastic and normally distributed, with zero mean and variance 

5. This yields the likelihood function for E(c) as	5��1�� ~2 × 1 + 1 = 3, �×[���J = 0.45�, with 

the first and second parameters being mean and variance, respectively. 

Now imagine there is external evidence on E(d) in the target population which 

is	5��1��(0.5, 0.1). Because c is dependent on	d, this external evidence will carry information 

about	c. To update the distribution of	E(c), I first use parametric Bayesian inference on 

normal distribution (approximating the t distribution with normal, equal to assuming that the 

variance is known) to update the marginal distribution of E(d) 103(p46): the posterior distribution 

of E(d) is	5��1��([×�.[��.�×����.[���� = 0.75, [��.����� = 0.05). From this, the posterior distribution of 

E(c) can be obtained as	5��1��(2 × 0.75 + 1 = 2.5, 4 × 0.05 + 5/� = 0.25). The prior 

distribution of	E(d), the likelihood function of E(c) based on the data, and the posterior 

distribution of E(c) are shown in Figure 2-1.  
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Figure 2-1: An illustrative example of the parametric Bayesian inference vs. the vetted 

bootstrap approach. 

 

Data are generated from 100 pairs of samples from �	and �. See text for 

details. (R code available in Appendix A.1) 

 

To implement the vetted bootstrap to derive the distribution of	E�c
, I first generate bootstrap 

sets from the observed pairs of	d and	c and calculate the mean of d and	c in each set (the 

conventional [approximate Bayesian] bootstrap is chosen for this example). The histogram of 

the mean of c in the bootstrap sets (white bars in Figure 2-1), expectedly, matches the 

parametric likelihood function of	E�c
. Next, I calculate weights x for each bootstrap set given 

the prior normal distribution of d as x K ��f∗������.�√�.[ 
 with � being the normal probability density 

Mean of c in 

bootstrap sets 

Posterior distribution of ��c
  

Likelihood function of ��c
 

Means of c in the 

vetted bootstrap sets 

Prior distribution on	��d) 
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function and d∗��� the mean of d in the bootstrap sample. Finally, I will accept each bootstrap set 

with a probability proportional to	x/��0
, with ��0
 K 0.3989 being the maximum possible 

value of weights. The histogram of the accepted bootstraps (gray bars, drawn under the axis for 

clarity in Figure 2-1) will resemble the posterior distribution of the expected value of b derived 

using parametric inference (the R code for this stylized example is available in Appendix A.1).  

Note that the parametric inference in this example provides a valid answer only because the 

relation between d and c was simple and data were generated to match the parametric 

assumptions. In reality, the nature of such relations can be very complex, especially when the 

external evidence and outcomes of interest are multidimensional.  On the other hand, in 

drawing inference on c using the vetted bootstrap, I did not rely on the assumed relation 

between c and	d and used the raw data to draw inference. 

2.9.2 A real-world RCT-based CEA 

Here, I use data from the OPTIMAL trial to show the practical aspects of implementing the 

vetted bootstrap algorithm. I describe the original approach taken for the CEA of the RCT 3 and 

show that such steps can easily be modified to incorporate external information on treatment 

effect size. This case study is to demonstrate the operational aspects of implementing the 

algorithm and the exercise is undertaken only for pedagogical purposes.  

Data on both resource use and quality of life were collected during the trial, which was used to 

carry out the CEA. The outcomes of the CEA were the incremental costs per exacerbation 

avoided and incremental costs per QALY gained. For the original analysis, we partitioned the 

time series data on resource use and exacerbations to 13 intervals and used a nested sequence 



 

46 

 

of bootstrapping, imputation of missing and censored values, and linear regression for adjusting 

QALYs for baseline utility. Since individual level resource use and effectiveness outcomes were 

available, the CEA was based on the direct inference on their distribution. No external 

information was incorporated into the analysis in the original CEA. The vector of data for an 

individual patient (RST in the notation developed earlier) used in the CEA consists of 13 cost 

values collected in each period, 13 values indicating the number of exacerbations in each 

period, 5 utility values measured at baseline and follow-up visits, and the baseline covariates 

used to adjust the QALY.  

2.9.2.1 Incorporating external evidence 

To my knowledge, there is currently no other RCT published that provides evidence on the 

effects size of treatments used in the OPTIMAL study, but there are RCTs that have used drugs 

within the same classes. I used the results of a meta-analysis comparing exacerbation rates 

between COPD patients receiving tiotropium plus formoterol (the same class as salmeterol) 

versus tiotropium alone as the source of external evidence for the effect size between TS and 

TP 104. For evidence on the effect size of TFS versus TP, I chose the results of a 12-week RCT on 

comparing budesonide (the same class as fluticasone) and formoterol added to tiotropium 

versus tiotropium alone in COPD patients 105. The evidence was parameterized on the log (OR) 

scale. Because the external evidence was synthesized from the studies that used medications 

from a similar class yet different from those in the OPTIMAL study, I decided a priori that such 

historical evidence should be discounted by inflating the variance of log (OR) by 50% 28(p151). 

This reflects my desire to use historical data but to avoid the assumption that these data were 



 

47 

 

obtained from the same population that received the study drugs 106. Because the distribution 

of external evidence was modeled as normal, this can also be seen as constructing a power 

prior (with α=2/3) that is often used for discounting historical data 107.  

The meta-analysis pooled five studies and estimated an OR of 0.93 (95% CI 0.45 – 1.93). 

Because this meta-analysis was based on a random-effects model, the most relevant estimate 

for the effect size for the OPTIMAL trial is the predictive distribution of the log(OR) of treatment 

in a new RCT 108. This quantity has an approximate normal distribution with mean equal to the 

pooled estimate of the effect size and a variance that is the sum of the estimated between-trial 

variance (0.34) and the variance of the pooled estimate 28(p150). This results in a normal prior for 

the log(OR) of TS vs. TP for experiencing at least one exacerbation (denoted by dN	/N�) with 

mean -0.073 and variance 1.03, equal to OR=0.93 (95% CI 0.13 –  6.84). The previous RCT 

reported a risk ratio of 0.38 (95% CI 0.25–0.57) for triple therapy versus monotherapy, which 

after discounting corresponds to a log(OR) of TFS vs. TP for experiencing at least one 

exacerbation (denoted by dN�	/N�) having a normal distribution with mean -0.97 and variance 

0.09, equal to OR= 0.38 (95% CI 0.21 – 0.68). I note that the external evidence on TS vs. TP is 

relatively weak with a point estimate indicating near-equivalence accompanied by a large 

variance. The external evidence on TFS vs. TP, on the other hand, favors TFS more strongly than 

what the OPTIMAL results indicate. 

Putting all these together, the likelihood function for the external evidence becomes 

efudN	/N�, dN�	/N�v ∝ ��~���/����.�����
	�.�� �~����/����.����

	�.�  , 
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the product of two normal likelihoods representing our knowledge on the treatment effect. 

Note that ef(. ) is already scaled to have a maximum of 1, hence all weights generated from 

ef(. )	are valid probabilities without need for further manipulation.  

The original algorithm for the CEA can now be updated to incorporate the external evidence as 

follows: 

1. For q=1,2,...,10000. 

2. Generate X*, a (Bayesian) bootstrap sample within each of the three arms of the RCT. 

3. Impute the missing values in costs, utilities, and exacerbations in X*.  

4. Calculate	dN	/N�∗  and	dN�	/N�∗  from the bootstrap sample, the log(OR) of experiencing at 

least one exacerbation during the follow-up period for TS vs. TP and TFS vs. TP, 

respectively.    

5. Calculate	x K efudN	/N�∗ 	, dN�	/N�∗ v using the distribution constructed for the external 

evidence. 

6. Randomly draw | from a uniform distribution in the interval [0,1]. If	| > x , then ignore 

the bootstrap sample and jump to step 2. 

7. Calculate mean costs, number of exacerbations, and adjusted QALYs for each arm from 

Q∗. 

8. Store the average values for costs, number of exacerbations, and adjusted QALYs; then 

jump to 1. 
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The above algorithm was run separately using the Bayesian and approximate Bayesian 

bootstraps. In order to study the impact of applying the external information on TS/TP and 

TFS/TP separately, I repeated the analysis three times, once with evidence on TS/TP, once with 

evidence on TFS/TP, and once with full evidence (as described in the above algorithm). I also 

used the same data generated using this algorithm (including all the rejected and accepted 

bootstraps) for calculating the outcomes using the weighted bootstrap method, by also 

recording the value of the weight generated for each bootstrap.   

2.9.2.2 Results 

Table 2-1 presents the mean costs, mean number of exacerbations, and mean QALYs for each 

of the three arms of the trial. Each panel shows the results with and without incorporating the 

external evidence, with the former obtained through four different permutations of the 

bootstrap and weighting methods: the vetted Bayesian bootstrap (VB), the vetted approximate 

Bayesian bootstrap (VAB), the weighted Bayesian bootstrap (WB), and the weighted 

approximate Bayesian bootstrap (WAB). As this figure demonstrates, the four different 

methods for the most part generate very similar results. The incorporation of external evidence 

on TS/TP does not have a noticeable effect on the outcome, an expected finding given the weak 

prior on the effect size of TS vs. TP. The incorporation of evidence on TFS/TP, on the other 

hand, shifts the outcomes of the TFS arm in the favorable direction (lower costs, lower 

exacerbation rate, and higher QALYs), and shifts the outcomes of the TP arm in the opposite 

direction. This is an expected finding given the strong prior in favor of TFS for the effect size of 

TFS vs. TP.  
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Table 2-1: Outcomes of the OPTIMAL CEA without and with the incorporation of external evidence 

 TP TS TFS 

No external information 

Costs 2,660.2 2,821.0 4,071.3 

Exacerbations 1.578 1.696 1.345 

QALY 0.7071 0.7019 0.7129 

 VB VAB WB WAB VB VAB WB WAB VB VAB WB WAB 

External information on TS vs. TP 

Costs 2,662.3 2,654.3 2,663.8 2,654.3 2,818.2 2,822.1 2,818.1 2,820.5 4,072.7 4,083.0 4,071.3 4,082.2 

Exacerbations 1.580 1.580 1.581 1.580 1.693 1.695 1.693 1.695 1.345 1.346 1.345 1.346 

QALY 0.7070 0.7068 0.7070 0.7068 0.7020 0.7017 0.7020 0.7017 0.7128 0.7125 0.7129 0.7125 

External information on TFS vs. TP 

Costs 2,753.6 2,722.7 2,737.8 2,736.8 2,820.9 2,817.8 2,824.2 2,827.3 3,960.2 4,012.4 3,970.7 3,996.8 

Exacerbations 1.645 1.638 1.643 1.643 1.694 1.697 1.696 1.702 1.283 1.289 1.284 1.284 

QALY 0.7058 0.7051 0.7056 0.7054 0.7026 0.7022 0.7022 0.7020 0.7151 0.7142 0.7148 0.7145 

External information on TS vs. TP & TFS vs. TP 

Costs 2,759.4 2,726.1 2,738.8 2,738.1 2,820.7 2,816.3 2,823.2 2,826.2 3,961.4 4,011.5 3,971.5 3,997.4 

Exacerbations 1.646 1.638 1.644 1.643 1.693 1.696 1.695 1.700 1.283 1.289 1.285 1.284 

QALY 0.7058 0.7051 0.7056 0.7054 0.7027 0.7022 0.7022 0.7020 0.7151 0.7143 0.7148 0.7145 

A total of 67,786 and 67,618 runs were required to obtain 10,000 accepted bootstraps using the Bayesian and approximate Bayesian techniques, 

respectively 

TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol. VBB: vetted Bayesian bootstrap, VAB: vetted approximate 

Bayesian bootstrap, WB: Weighted Bayesian, WAB: Weighted approximate Bayesian 
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Compared to the cost and effectiveness outcomes, the impact of incorporating external 

evidence on the ICER, presented in Figure 2-2, is more noticeable. This figure shows the ICERs 

for exacerbation avoided and for QALY gain for TS vs. TP and TFS vs. TP. Incorporating external 

evidence on TS/TP has virtually no impact on the ICERs. Likewise, incorporating external 

evidence on both TFS/TP and TS/TP gives similar results with incorporating external evidence 

on TFS/TP only, another demonstration of the little information provided by the external 

evidence on TS/TP. For TFS vs. TP comparison, both ICERs decrease by 40% after the 

incorporation of the external evidence. This is a change in the expected direction given that the 

external evidence strongly favours the TFS strategy in terms of the lower number of 

exacerbation, which intuitively translates into better quality of life outcome.  
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Figure 2-2: Incremental cost-effectiveness ratio (ICER) without and with incorporation of 

external evidence 

Exacerbation avoided QALY gained 

External information on TS vs. TP 

  

External information on TFS vs. TP 

  

External information on both TS vs. TP & TFS vs. TP 

  
 No external evidence   Vetted Bayesian(VB)  Vetted approximate Bayesian(VAB)  Weighted 

Bayesian(WB)   Weighted approximate Bayesian(WAB) 

TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol. 

QALY: quality-adjusted life year 

 

Figure 2-3 presents the cost-effectiveness plane (CE-plane). I have provided the CE-plane for 

TFS vs. TP comparison (the TS vs. TP CE-plane is not noticeably affected by the incorporation of 

external evidence), and for two scenarios: one without incorporation of external evidence, and 

one with the incorporation of external evidence on both TS/TP and TFS/TP (the incorporation of 
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external evidence on TS/TP results in the CE-plane that is not distinguishable from the non-

informative scenario). Although the overall shape of the CE-planes remain the same, the 

incorporation of external evidence shifts the cloud of data mainly to the right, corresponding 

mainly to an improvement in the effectiveness outcome.  

Figure 2-3: Cost-effectiveness plane (CE-plane) for TFS vs. TP without and with incorporation 

of external evidence 

Exacerbation avoided QALY gained 

No external evidence 

 

No external evidence 

 

With external evidence 

 

With external evidence 

 

QALY: quality-adjusted life years 
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Finally, the cost effectiveness acceptability curve (CEAC) is provided in Figure 2-4. Again, I have 

focused on incorporating both effect sizes in the informative analysis, and have generated the 

curves from the output of the vetted Bayesian bootstrap method (the approximate Bayesian 

method gives virtually the same curve). The incorporation of the external evidence increased 

the probability of cost-effectiveness for TFS, especially with higher willingness-to-pay values. 

Without the incorporation of the external evidence, the probability of TFS being the cost-

effective intervention surpassed that of TP at WTP values greater than $200,000/QALY, while 

the incorporation of the external evidence moves this threshold to $130,000/QALY. Changes in 

the CEAC were modest for the TS arm. 

Figure 2-4: Cost-effectiveness acceptability curve (CEAC) without and with incorporation of 

external evidence 

Exacerbation  avoided 

 

QALY gained 

Square: TP, Diamond: TS, Triangle: TFS.  Filled shapes: without external evidence. Empty shapes: with 

external evidence. QALY: quality-adjusted life year 
TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol. 

 

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Willingness to pay

P
ro

b
a

b
il
it
y
 o

f 
c
o

s
t-

e
ff
e

c
ti
v
e

n
e

s

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Willingness to pay

P
ro

b
a

b
il
it
y
 o

f 
c
o

s
t-

e
ff
e

c
ti
v
e

n
e

s

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Willingness to pay

P
ro

b
a

b
il
it
y
 o

f 
c
o

s
t-

e
ff
e
c
ti
v
e

n
e

s

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Willingness to pay

P
ro

b
a

b
il
it
y
 o

f 
c
o

s
t-

e
ff
e
c
ti
v
e

n
e

s

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50000 100000 150000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TFS TS 

TP 

No external information 

 With external information 

TS 

TFS 

TP 

No external information 

 With external information 



 

55 

 

A total of 67,786 and 67,618 runs were required to obtain 10,000 accepted bootstraps using 

the Bayesian and approximate Bayesian techniques, respectively. The incorporation of the 

external evidence on the TS/TP effect size resulted in a rejection of 5% of samples. 

Incorporating both sources of evidence, on the other hand, led to the rejection of 85% of the 

bootstraps. This relatively high rate of rejection can be interpreted as a manifestation of the 

dissimilarity of the prior (external information) and likelihood (RCT data), with regard to the 

effect size of TFS vs. TP.  

2.10 Discussion 

In the health economics literature, when an economic evaluation is conducted alongside a 

single RCT, the practice of evidence synthesis is not currently an integral part of the analysis. 

This is partly because evidence synthesis can result in problem-specific and complex statistical 

models. There are simple methods for borrowing inference from external sources that result in 

straightforward calculations for the posterior distributions of costs and effectiveness 38,49, but 

these methods are able to incorporate external evidence only with certain parametric 

assumptions and only if the external evidence is defined on costs and/or effectiveness 

outcomes. The vetted and weighted bootstrap methods, which provide the ability to 

incorporate evidence on any aspect of intervention within a semi-parametric framework, are 

therefore a practical, relevant extension of the current methods of evidence synthesis for RCT-

based CEAs. Rejection sampling and importance sampling are popular methods in which 

sampling from a ‘difficult’ distribution is replaced by sampling from a proposal (or instrumental) 

distribution 109. Here sampling from ��Y|Q, ef
	is performed via the proposal 
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distribution	��Y|Q
, and the latter can easily be sampled through (Bayesian) bootstrapping. 

This form of sampling has seldom been applied to a bootstrap. This uncommon mixture was 

employed here because of the need for evidence synthesis in CEAs and the popularity of 

bootstrap in RCT-based CEA.  

In synthesizing evidence for RCT-based CEAs, a carefully crafted parametric model with 

comprehensive analysis of model convergence and sensitivity of results to parametric 

assumptions has some strengths over an acceptance/rejection approach, including the higher 

computational efficiency of MCMC or likelihood-based methods and the ability to synthesize 

and propagate all evidence in a single analytical framework 26,110. Nevertheless, practical issues 

make the vetted bootstrap a competitive option. The vetted bootstrap is an intuitive and easy 

extension of the popular bootstrap method of RCT-based CEAs; it does not require specialist 

software and in-depth content expertise for its implementation. In addition to such practical 

advantages, this method connects the auxiliary parameters to the cost and effectiveness 

outcomes without an explicit model.  Instead, it uses RCT data to connect related parameters 

(e.g., treatment effect size and quality of life), maintaining the correlation structure between 

cost and effectiveness outcomes and intermediary parameters.  

A particularly useful application of the vetted bootstrap approach is to incorporate the use of 

so-called objective or structural priors in RCT-based CEAs 40. These are priors expressing our 

confidence about the structure of the data coming from logical expectations whilst having 

relatively much weaker prior knowledge of the numerical values of the parameters 40. For 

example, in a RCT-based CEA of chemotherapy versus combination of chemotherapy plus 
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radiotherapy for a malignancy, one can, based on basic laws of biology, expect that the 

combination therapy will not result in the higher recurrence rate of cancer, at least in the short 

term. Then, one can discard (or assign a very low weight to) the bootstrap sets in which the 

incidence of cancer in the combination therapy arm is higher.  

This chapter provides a conceptual framework. Further research into theory, as well as practical 

issues in using this method in realistic situations, should follow. If the prior distribution and 

sample distribution of the external evidence substantially differ from each other (i.e., the prior 

and data are in conflict), then the weights assigned to the majority of bootstrap samples will be 

low, resulting in the rejection of many bootstraps. This was the case in our example study, as 

incorporating external evidence that assumed an effect size that conflict with the observed 

effect size resulted in the rejection of 85% of bootstraps. Similar situations may arise when 

there are too many parameters with external evidence, in which each bootstrap sample needs 

to be vetted by several distributions, resulting in a low yield for the whole process. Finally, how 

to perform the bootstrap and how to weigh the bootstrap sample against the external evidence 

might not be straightforward in some situations, such as cluster or cross-over RCTs.  

The prior information for the vetted bootstrap was constructed by multiplying the Rubin’s prior 

on the population distribution (eY) with the informative prior on the auxiliary parameters (ef). 

An obvious consequence of this approach is that the marginal distribution of d is not exactly 

the same as the intended distribution,	ef, because eY carries information about d. 

Nevertheless, this should generate no misgivings. First, eY	is a vague prior used merely to justify 

bootstrapping in a Bayesian context and does not carry strong information on the population 
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distribution (and hence on any parameter estimated from it), as evident by the proven 

performance and comparability of the bootstrap method for inference with the frequentist and 

non-informative Bayesian methods. Second, in a Bayesian CEA without the incorporation of 

external evidence one should ideally assign a flat (or otherwise a conventionally accepted non-

informative) prior distribution to the cost and effectiveness outcomes, yet the use of eY 

translates into using an unknown (but not necessarily flat) prior on such outcomes. As such, 

using the bootstrap for inference implies accepting such a deviation from a strictly non-

informative analysis (one can see this as the cost that comes with the convenience of using 

resampling methods for inference). From this perspective an informative prior of the form 

ef × eY is quite logical in that it incorporates the external evidence 'incrementally' on top of 

the non-informative scenario, therefore the difference in the results with and without the 

external evidence shows the true impact of our external knowledge. However, it might be 

possible to construct a prior on Y that both enables bootstrapping and has a marginal 

distribution of d that matches the distribution from the external evidence. Such a prior will be 

more efficient as there will be no need for rejection sampling. However, specifying such 

information in the context of a Dirichlet process prior will lead to posterior distributions that 

put non-zero probability on unobserved values, therefore invalidating resampling methods for 

inference 111.  

Faced with the soaring costs of RCTs and the requirement by many decision-making bodies for 

formal economic evaluation of emerging health technologies, trialists and health economists 

are hard-pressed to generate as much relevant information for policy makers as possible. As 

such, and despite criticisms, it appears that RCT-based CEAs are here to stay. The incorporation 
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of external evidence should improve CEA validity and help optimize adoption decisions. The 

vetted bootstrap, aside from its theoretical contribution, provides the large camp of analysts 

using bootstrap for RCT-based CEAs with a statistically sound, easily implementable tool for 

such purpose.   
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Chapter 3. Pulling EVI by its bootstrap: a framework for non-parametric 

expected value of information analysis of RCT-based CEAs 

3.1 Background 

Methods have been developed for EVI analysis of model-based 72,112–114 and RCT-based 70,79–81,84 

CEAs. For the latter group, methods are almost entirely based on the normal approximation of 

the distribution of the expected (incremental) net benefit. This turns the output of the trial into 

a multivariate normal distribution of net benefits for which the algorithms for EVI analysis for 

model-based CEAs can readily be applied (such a multivariate distribution can indeed be 

considered a simple decision-analytic model). For two-arm RCTs, equations based on such 

normal approximation can be expressed in closed form 71. If the CEA and quantification of 

uncertainty is based on parametric inference on the net benefit scale 55, this method of EVI 

analysis can be considered conjugate to parametric CEA 61.  

In this chapter I propose a method for the calculation of the EVPI and EVSI in the context of 

RCT-based CEAs based on the bootstrap. It has already been pointed out that the data 

generated by bootstrapping can be used to calculate the EVPI 86,92. However, as mentioned by 

others, it is not clear if and how such methods for the CEA can be extended to calculate the 

EVSI 86. In this chapter I propose a general, non-parametric method that can be considered the 

extension of the bootstrap method of the CEA. This method allows for calculating the maximum 

expected return of investment for a future RCT with similar design as the current RCT (expected 

value of perfect information, EVPI), or the expected return of investment for a future RCT with 

a given sample size (expected value of sample information, EVSI). This method is not based on 



 

61 

 

the assumption of normality of net benefits, and has the capability of incorporating practical 

issues that arise in the analysis, such as missing values in the current and future RCTs and 

unbalanced distribution of covariates. Compared to the contemporary EVI methods for RCT-

based CEAs, the incorporation of such practical aspects requires more elaborate statistical 

programming and is computationally more demanding. Nevertheless, as the case study shows, 

incorporating such aspects into the analysis may lead to results that are different from those 

obtained by simpler methods, with potentially significant impact on the design of the future 

RCTs. 

The present chapter builds directly on the framework developed in the previous chapter, 

namely the Bayesian interpretation of the bootstrap. The remaining sections of this chapter are 

structured as follows: after describing the context, I show the similarity of the results between 

the two-level method and the normal approximation method using a stylized example. Next, I 

use the OPTIMAL trial data to perform EVI analysis under two scenarios: a simple scenario 

based on patient-level net benefits from the RCT, aimed at demonstrating the analogy between 

the parametric and non-parametric methods of EVI calculation, and a detailed scenario that 

tackles issues around EVI analysis, such as the appropriate handling of missing data and the 

need for covariate adjustment. I conclude by listing some other scenarios in which the two-level 

resampling methodology can remain valid, and elaborate on its strengths and limitations.  

3.2 Context 

The context is similar to the general context outlined in the Introduction. In addition, only 

direct medical costs are considered in this analysis, and the decision maker has no prior 
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information about any aspects of the competing interventions. Having the raw data from a 

current RCT at hand, the decision maker is interested in estimating the value of another RCT 

with a similar or nested design; that is, with the same (or a subset of) interventions and also for 

the same follow-up period. As discussed in the original study, because the interventions 

considered in the OPTIMAL trial generate costs and benefits as long as medications are being 

used by patients (unlike, say, a surgical intervention that generates a one-time large cost and 

continuous benefits), there is no strong reason to believe a longer time horizon would change 

their cost-effectiveness; as such, I assume the future RCT and its CEA analysis will have one year 

follow-up. Given this, no discounting was applied to the outcomes of the analysis. All 

calculations were performed in the statistical programming environment R version 2.10.01 115. 

3.3 EVPI and EVSI definitions in a non-parametric framework 

The equations for EVI measures (see the Introduction) are heavily based on ‘parameters’ that 

constitute the evidence. In the bootstrap method of RCT-based CEAs, however, there is no 

obvious parameter to begin with. Nevertheless, an analogy can be established by treating the 

distributions that have generated data for each arm of the RCT (population distributions) as a 

random quantity. Like the notations in the previous chapter, let Q be the data of the RCT at 

hand. The individual-level data observed within each arm of a trial can be considered random 

draws from the population distribution of the respective arm. Let Y be the population 

distribution, a probability distribution that generates data for a random individual from the 

population depending on which treatment that individual receives. One can think of such 

population distribution as the random quantity of interest for which one has only partial 
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information in the form of the data of the current RCT. I can write the formulas for EVPI and 

EVSI as 

�-���Q
 K EY|Q{max3 [563�Y
]} − max3 {EY|Q[563�Y
]} 
�-B��Q
 K EQ∗∗|Q¤max3{EY|{Q,Q∗∗}[563(Y)]}¥ − max3{EY|Q[563�Y
]}, 

where	563�. ) is the estimator of the population value of NB if the population receives the ith 

treatment. The term Q∗∗ is the data for the future RCT. These equations parallel the equations 

for EVI calculations for decision-analytic models, with the population distribution Y replacing 

model parameters 67,68,81. If I can sample from	��Y|Q
, then I can calculate	EY|Q and hence the 

EVPI using Monte Carlo techniques. Likewise, if I can generate samples from ��Q∗∗|Q
 
and	��Y|{Q∗∗, Q}), EVSI calculation can be performed through Monte Carlo simulation 

(estimating EQ∗∗|Q and EY|{Q,Q∗∗} by Monte Carlo). This is analogous to Monte Carlo approaches 

for EVI calculations in parametric models.  

3.4 Bootstrap as a method of sampling from the “distribution of a 

distribution” 

The critical question of how to generate samples from	��Y|Q),	��Q∗∗|Q), and	��Y|{Q∗∗, Q}) is 

answered by the Bayesian viewpoint to the bootstrap, described in the previous chapter. Again, 

I denote Q∗ to be a (Bayesian or approximate Bayesian) bootstrap sample of	Q. The empirical 

distribution associated with Q∗ can be considered as a random draw from	��Y|Q
.  
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Having samples from the population distribution Y at hand, a random draw from the future trial 

data,	Q∗∗, can be obtained by sampling from Y, therefore ��Q∗∗|Q
 can be generated by two-

level resampling; the first level (which can be Bayesian or approximate Bayesian bootstrap) 

generates sample from ��Y|Q
, and the second level (which is sampling with replacement with 

sample size equal to that of the future RCT) produces sample from ��Q∗∗|Y
. Finally, generating 

samples from	��Y|{Q∗∗, Q}) really depends on the analyst’s plan for the CEA once the future 

RCT data are available. Given the similar design of the current and future RCTs, one option, 

which I will adopt here, is to simply merge the datasets of the current and future RCTs, in which 

case samples from �(Y|{Q∗∗, Q}) can be obtained by the (Bayesian) bootstrap of the merged 

set. Other options include relying solely on the future RCT, or using a random-effects model for 

pooling data from current and future RCTs 116.  

3.5 Case studies 

3.5.1 A stylized example 

The purpose of this stylized example is to show the analogy between the two-level resampling 

method and the normal approximation method for EVSI calculation. I use the summary data of 

the Early Cephalic Version trial used by Willan et al. 71. In this RCT, 232 patients were equally 

randomized between the treatment and control groups. The outcome of interest (non-

caesarean delivery) occurred in 41 patients in the treatment arm and 33 patients in the control 

arm. Assuming the decision maker wants to maximize the probability of successful outcome in 

the target population (regardless of any other aspect of treatment), and assuming a willingness-

to-pay (WTP) value of $1000 to achieve one favourable outcome, the current RCT provides an 
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estimate of the net benefit of �41/116 − 	33/116
 × 1000 K 69.0 with a variance of 

[41/116 × (1 − 41/116)/116 + 33/116 × (1 − 33/116)/116] × 1000\ = 3724.8. Now 

imagine we are interested in conducting another RCT with the similar design. The EVSI of the 

future RCT can be calculated in closed form as described by Willan et al. 71. Note that the data 

has a very simple structure: each patient within each arm can be represented by a single binary 

variable indicating success or failure. A RCT therefore can be fully specified by the number of 

patients in each arm, and the proportion within each arm who had a successful outcome. The 

population distribution for each arm can be fully specified by a single value: the probability of 

successful outcome. This simple structure allows direct modeling of the outcomes in the 

bootstrap samples instead of actually performing the bootstraps. The sequence of sampling for 

EVSI calculations is provided in Table 3-1.  

In order to calculate the EVSI non-parametrically using the conventional and Bayesian 

bootstraps, I should first obtain a bootstrap sample separately within each arm of the trial. 

Imagine we have � patients of which 1 had successful outcome. The number of successful 

outcomes in a conventional (approximate Bayesian) bootstrap sample obtained from this 

sample is a random variable with probability distribution	§���1�����,1/�
. The probability of 

success (�¨) in the population is therefore a draw from this distribution, divided by �. Likewise, 

for the Bayesian bootstrap, the probability of success in the population if they receive the 

treatment is the sum of the weights assigned to 1 components of the � -variate Dirichlet 

variable with scale parameter of 1, which according to the relationship between the Dirichlet 

and Beta distributions 117(pp189–90), is a random variable with distribution §����1, � − 1
. Once 

the population distribution is specified in this way, the number of patients in each arm of the 
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future RCT who experience the outcome (denoted by	1�) can be modeled as 

1�~§���1������ , �¨
,  where �� is the sample size per arm of the future RCT. The updated 

estimate of the probability of success for treatment after observing the future trial is	�1 +
	1�
/�� +	��
.  Once these calculations are performed for both arms, the decision can be 

revised. A single loop of non-parametric EVSI calculation can therefore be described as in Table 

3-1. 

Table 3-1: Non-parametric EVSI calculation for the stylized example 

Step Bayesian Approximate Bayesian* Comments 

 

1 

 

 

2 

 

�	I~§����41,116 − 14
 
 

 �	©~§���(33,116 − 33) 

�	I~§���1���(116,41/116)/116 
 

 �	©~ §���1���(116,33/116)/116 

Random draw from the population 

distribution of treatment arm 

 

Random draw from the population 

distribution of control arm 

 

3    
 

 1Z�~§���1���(�Z, �B�) 
 

 

Number of patients with successful 

outcome in the treatment arm of the 

future RCT 

 

4    
 

1Z!~§���1�����Z, �B!
 
 

Number of patients with successful 

outcome in the control arm of the future 

RCT 

 

5 

 

 

�56 = [(41 + 1Z�)/(116 + �Z) − (33 + 1Z!)/(116 + �Z)] ∗ 1000; Expected incremental net benefit after 

merging the current and future RCTs 

6 �-B� = 1�2(�56, 0) EVSI estimate for the current loop 

See Appendix A.2 for the R code that generates the results 
 

 

                                                      
*
 The abuse of notation in �	I and �	©  is for brevity, and indicates randomly drawing from the binomial distribution 

and dividing the value by the denominator.  
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The EVPI using the parametric method, non-parametric method based on the Bayesian 

bootstrap, and non-parametric method based on the approximate Bayesian bootstrap are  

3.945, 3.912, and 3.944, respectively. Figure 3-1 presents the results of EVSI calculations for a 

range of sample sizes for the future RCT, averaged over 1,000,000 loops, as well as the results 

obtained using the normal approximation method using the equations provided by Willan et al. 

71(see Appendix A.2 for the R code that generates the results). As can be seen in this figure, all 

three methods generate very similar EVSIs. While there is no doubt the closed-form equation 

provides a much faster method of EVSI calculation and does not suffer from Monte Carlo 

sampling error, the two-level resampling method has some potential advantages: it can readily 

be extended to RCTs with more than two interventions, and can be used flexibly in order to 

accommodate realistic aspects of RCTs, as will be described in the next section. 
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Figure 3-1: Parametric vs. non-parametric EVSI calculations for the stylized example 

 

Non-parametric calculations are average of 1,000,000 iterations. (R code 

available in Appendix A.2) 

EVSI: expected value of sample information 

 

3.5.2 Example from the OPTIMAL trial 

I use the individual-level data of the OPTIMAL trial in order to calculate the EVPI and EVSI for a 

future RCT with a similar or nested design (i.e., having a subset of intervention arms). I assume 

the future RCT will attempt to randomize patients with equal probability into each intervention. 

I perform the calculations using two methods: a simple scenario that is based on working with 

individual-level NBs and is a non-parametric analogous of the normal approximation methods, 

and a detailed scenario that demonstrates the flexibility of EVI analysis using patient-level data 

with regard to incorporating some realistic aspects of designing and conducting RCTs.  
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3.5.2.1 Simple scenario: EVPI/EVSI calculation using individual net benefits  

In the simple scenario, I work directly on individual-level NBs, assuming there is no uncertainty 

in their elicitation from each patient (that is, Q is the set of observed NBs in the trial, and Y is 

the probability distribution that generates NB for a random individual from the population 

depending on which treatment that individual receives). Because the simple scenario does not 

allow for the incorporation of uncertainties arising from missing value imputation, I replaced 

the missing cost and utility data with the sample average within the same time point and within 

the same arm of the trial. In this scenario, a sample from Y can be obtained by bootstrapping 

NBs separately for each arm, and 563�. ) simply calculates the sample mean of NBs for the ith 

arm.  

Given that I am able to generate random draws from	��Y|Q
,	��Q∗∗|Q
, and	��Y|{Q∗∗, Q}) 

using the resampling techniques described earlier, I can repeat the same steps as the 

parametric EVPI and EVSI, working directly with the data instead of parameters. The algorithm 

can be followed as below: 

1. Generate	Q∗, a (Bayesian) bootstrap sample from	Q, separately for each trial arm. For the 

approximate Bayesian bootstrap, this is equal with sampling with replacement from the 

vector of NBs within each arm with the size equal to the sample size of the corresponding 

arm in the current trial.  

2. Calculate the mean net benefit for each intervention using Q∗ and pick the maximum mean 

NB. 
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3. Generate Q∗∗ through sampling with replacement from	Q∗, with the sample size within each 

arm equal to the sample size of the corresponding arm in the future RCT. 

4. Merge the two datasets Q and	Q∗∗.  

5. Calculate the mean net benefit for each intervention from the merged data and pick the 

maximum mean NB.  

6. Subtract from [2] the current maximum mean NB. This will be an estimate of EVPI. Subtract 

from [5] the current maximum mean NB; this will be an estimate of EVSI. 

7. Repeat the cycle several times and average the results. 

If the conventional (approximate Bayesian) bootstrap method is used for generating samples 

from	Y, the first two steps of this algorithm are similar to the bootstrap method of analysis of 

uncertainty in RCT-based CEAs 52,118. 

3.5.2.2 Detailed scenario 

The simple scenario is based on the assumption that conducting a clinical trial is akin to 

randomly drawing from the distribution of NBs from the population distribution within each 

arm of the trial. However, the reality is often more complicated, as individual NBs are estimated 

by following patients over time and collecting intermediate quantities such as health state 

utility weights and resource use records. Transforming such intermediate quantities to NBs 

often involves additional statistical inference. Such statistical inference is associated with 

uncertainty, and a comprehensive analysis has to take into account these aspects of the 

analysis. The steps that I explicitly consider for EVI analysis in the CEA of the OPTIMAL trial are 
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the imputation of missing values (costs and utilities) and the adjustment of calculated QALYs for 

the baseline estimate of health state utility values 119. In addition, the future RCT will inevitably 

have missing data and some level of covariate imbalance, which will be taken into account in 

the detailed scenario. The analysis of the detailed scenario adopted here is based on the 

conventional bootstrap because first, it is consistent with the commonly used bootstrap 

method of RCT-CEA, and second, it can be performed by resampling the data (instead of 

assigning weights to data rows as in the Bayesian bootstrap), which facilitates subsequent 

analyses.  

Unlike in the simple scenario, in the detailed scenario Q is the set of all intermediate quantities 

that are used to calculate NBs. As such, this approach will generate an entire panel of data, 

instead of vectors of NBs, for the population distribution and for the future RCT. For the 

OPTIMAL study, this panel of data consists of baseline covariates (age, gender, and study site 

code), five estimates of health state utility values and 13 estimates of costs (accumulated in 

each 28-day period) per individual. In this context Y is the multivariate distribution generating 

such a set of quantities for a random individual depending on the treatment the individual 

receives, and 56�. ) represents the full process of cost-effectiveness analysis that calculates the 

expected value of NB from the intermediate quantities (including missing value imputation and 

covariate adjustment). A schematic flow-chart of the approach taken for the calculation of EVPI 

and EVSI for the future trial is provided in Figure 3-2.  
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Figure 3-2: Schematic illustration of the two-level bootstrap approach for EVSI calculation 

 

3.5.2.2.1 Missing values 

In the OPTIMAL study, 10.0% of health resource data and 9.7% of health state utility values 

were missing in the original data. Calculating population values of NBs for each arm requires 

imputation of such missing values. In line with the non-parametric approach adopted in this 

analysis, I performed a non-parametric, two-level bootstrap imputation method 65, stratified 

within the quintiles of propensity score for the presence of missing cost and QALYs. I used the 

same covariates in constructing the propensity score as in the original CEA, except the period-

lagged estimates of costs and utilities which were excluded in order to reduce the 

computational demand. 

 
EVPI: expected value of perfect information, EVSI: expected value of sample information, RCT: 

randomized controlled trial, CEA: cost-effectiveness analysis 
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3.5.2.2.2 Covariate adjustment 

In the CEA of OPTIMAL trial, as recommended elsewhere 119, we adjusted the estimated QALY 

for each individual for the baseline utility, and used such adjusted difference in QALYs among 

arms for cost-effectiveness. I assume the future cost-effectiveness analysis of data will be based 

on the same approach.  

The interpretation of the first level bootstrap as a random draw from the population 

distribution has an important bearing on the structure of the data. Because the interventions in 

the OPTIMAL trial compete with each other in the same population  (e.g., patients with COPD in 

Canada), the population distribution is in fact the same across the three arms as long as factors 

not associated with treatment are considered; hence such factors should have the same 

distribution among the population distribution of each arm.  While this argument is valid for all 

covariates not affected by treatment (e.g., gender and age), the focus here will be on the 

baseline utility as it is explicitly taken into account in the CEA and hence directly impacts the 

CEA results. When the bootstrap is used for calculating cost and effectiveness outcomes, or to 

calculate the EVPI, one common approach for adjusting for difference in baseline covariates is 

to use regression techniques. This approach is useful in such situations because the goal for the 

CEA and EVPI calculations is to calculate mean NB for each treatment arm. Here, however, the 

plan is to simulate the full panel of data for the future RCT in order to calculate the EVSI. 

Therefore adjusting mean NBs for baseline covariates using regression techniques is not 

enough. 
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Balance in the distribution of non-treatment-related variables in this context can conceivably 

be achieved in several ways. I propose two approaches, and perform simulations to compare 

their performance. The first approach is based on generating k sets of candidate bootstraps 

from Y and picking the one in which baseline utilities across treatment arms are closest in 

distribution as measured by the Kolmogorov-Smirnov (K-S) test statistic 120. The theoretical 

justification of this approach is based on the idea of the vetted bootstrap developed in the 

previous chapter. Here, that the population distribution of trial arms should have the same 

distribution of non-treatment related factors is considered external knowledge (we know this 

because we randomize patients from the same subject pool into each arm). This knowledge can 

be incorporated into the analysis by putting the following probability distribution on	Y:  

eY�Y
 ∝ «1 Z[¬ K Z\¬ K ⋯ K Z]¬0 ��ℎ��$�%� , 

with Z being the set of parameters that need to have equal distribution across treatment arms 

in Y, and Z3¬ denoting the marginal distribution of such parameters in Y if the patient receives 

the ith treatment. The vetted-bootstrap implementation of this idea means only accepting the 

bootstraps in which the population distributions of RCT arms are equal in the distribution of Z, 

and rejecting all other bootstrap sets. Of course, this process in its exact form is infinitely 

unwieldy. The proposed approach is an approximation that converges to the above scheme 

asymptotically with a RCT of infinite size and with k being infinite. The choice of the K-S 

statistics is somewhat arbitrary. Any measure of distance among two or more distributions that 

becomes smaller the more similar the distributions become could be a candidate.  
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The second method follows a similar line of reasoning, but uses a more ad hoc approach. The 

use of linear regression for adjusting QALYs on baseline utility in current and future RCTs 

reflects our assumption that the expected value of QALY in each arm is a linear function of the 

expected value of baseline utility. Therefore, it is good enough to ensure random samples from 

the population distributions have the same mean baseline utility across treatment arms. To 

achieve this, I suggest generating k candidate bootstrap sets, and picking the one in which the 

F-test statistic of a one-way fixed-effects ANOVA for baseline utility across treatment arms has 

the smallest value (indicating smaller between-group difference in mean). 

I compared the performance of the two approaches described above with three different 

values of k (10, 20, and 100). For each method, I calculated the reduction in the between-

treatment sum-of-squares for baseline utility and the reduction in the K-S test statistic. Results 

were compared to a non-adjusted scenario that simply accepts the first bootstrap, regardless of 

the distribution of baseline utility. I also calculated EVPI based on bootstrapping within each 

arm, regressing NBs on baseline utility, and estimating the EVPI using the adjusted mean NB for 

each arm. This last approach provides a fully-adjusted EVPI, but because it does not generate 

panel data for the future RCT it cannot be used for EVSI calculations for the detailed scenario.  

Results of the simulation analysis are provided in Table 3-2. As expected, when the selection of 

the best bootstrap set is based on the K-S test statistic, the reduction in the K-S statistic is 

higher than when the selection is based on ANOVA. Likewise, ANOVA results in better 

adjustment based on between-treatment sum of squares than the K-S statistic. In both 

methods, with k=100, the calculated EVPI becomes close to the fully adjusted EVPI.  
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Table 3-2: The effect of adjusting for covariate imbalance on EVPI calculations 

 EVPI Sum of 

squares 

K-S statistic 

No adjustment 
349.1 0.017 0.212 

Minimize ANOVA F statistic    

   k=10 211.0 0.007 0.175 

   k=20 189.5 <0.0001 0.112 

   k=100 175.9 0.0002 0.150 

Minimize K-S statistic     

   k=10 247.0 0.0006 0.130 

   k=20 207.1 0.003 0.147 

   k=100 176.8 0.002 0.125 

Full adjustment* 167.2 NA NA 

* Full adjustment is based on regressing mean net benefit on baseline utility. 

There is no sampling from the population distribution in this case and 

measures of distribution similarity are irrelevant.  

EVPI: expected value of perfect information, K-S: Kolmogorov-Smirnov, 

ANOVA: analysis of variance 

 

Based on these results, I picked the ANOVA method with k=20 for the EVSI calculations in the 

detailed scenario as I perceived that it provides a trade-off between computational efficiency 

and balancing the distribution of baseline utility. 

3.5.2.2.3 Future RCT 

A sampling with replacement stratified within each arm of the trial, with a sample size equal to 

the size of the corresponding arm in the future RCT was performed in order to generate the 

panel of the data for the future RCT. I also considered the fact that while the future RCT will be 

aimed at having equal number of patients within each arm, the blinded randomization results 

in each new patient being assigned with probability of 1/3 to each arm. Therefore, the final 

number of patients in each arm is itself a random variable with a multinomial distribution. In 

the next step, I artificially introduced missing values in the future RCT, assuming it would have a 
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similar pattern of missing values as the current RCT. This was modeled by sampling from the 

current RCT data and applying the missing data pattern to each individual in the future RCT. 

Finally, the current and future RCT data were merged, and the resulting data was subject to a 

full CEA to calculate the expected net benefit of the combined results. The future CEA was 

again based on non-parametric imputation of the missing data and adjusting QALYs for baseline 

utility using a linear regression, as had been the case in the original analysis.  

I used the above algorithm for calculation of the EVPI and EVSI for a range of sample sizes (50 

to 1,500 patients per arm) for the future RCT. I compared the results obtained from the simple 

scenario using Bayesian bootstrap, conventional bootstrap, and the normal approximation of 

the sample mean of NB as described by Koerkamp et al. 86 with those estimated using the 

detailed scenario, based on 10,000 repetitions.  

3.5.2.2.4 Results 

The calculated EVPIs are presented in Table 3-3. The EVPIs estimated using the three methods 

in the simple scenario were generally in the same range. The calculated EVPIs using the detailed 

scenario for the trial on all three treatments is $191.3 per individual, which is 45% lower than 

the EVPI calculated using the conventional bootstrap method in the simple scenario. A 

substantially lower EVPI was observed for the detailed analysis compared with simple scenarios 

for the TP/TS comparison. On the other hand, the EVPI calculated based on the detailed 

analysis for the TS/TFS comparison was almost twice as its counterparts based on the simple 

scenario. 
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Table 3-3: EVPI for various design and scenarios for the OPTIMAL trial 

 Simple scenario Detailed scenario 

Future RCT design Normal  Bayesian 

bootstrap 

Approximate 

Bayesian 

bootstrap 

 

TP/TS   331.9 329.8 331.7 164.5 

TP/TFS 70.3 62.8 64.0 58.7 

TS/TFS 62.7 51.2 56.5 114.3 

TP/TS/TFS 356.4 344.2 349.2 191.3 

* The standard errors of the estimates are around 5 after 10,000 simulations. 

All values are in net monetary benefit scale with 2008 $CAD. 
TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol. 

  

Figure 3-3 presents the EVSIs for a range of sample sizes for the future RCT. Again, the 

estimated EVSIs using the three methods in the simple scenario (marked curves) are closely 

similar. However, except for trials on TP/TFS, the estimated EVSIs using the detailed scenario 

are substantially different than those estimated in the simple scenario (lower for the TP/TS/TFS 

and TP/TS comparisons, higher for the TS/TFS comparison). Such differences generally follow 

the pattern of the differences in the EVPI between simple and detailed scenarios.  
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Figure 3-3: EVSI per individual for a future study with similar design as the OPTIMAL study 

with a range of sample sizes 

TP/TS/TFS 

 

TP/TS 

 

TP/TFS 

 

TS/TFS 

 

Each point in the graph is generated by averaging the results of 10,000 simulations.  

Continuous line without marks: detailed scenario. Dashed line: simple scenario (Bayesian 

bootstrap), dotted line: simple scenario (approximate Bayesian bootstrap), and continuous line 

with marks: simple scenario (normal). 
TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol. 

 

To further explore the reason for such a disparity between the results of the simple versus 

detailed analyses, I calculated the EVPI using the detailed analysis, by turning off, one at a time, 

Total sample size Total sample size 

Total sample size Total sample size 
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one of the three features that distinguish the detailed analysis from the simple one (imputation 

of missing values, adjustment for baseline utility, and sample size per arm of the future RCT 

being a random variable). The result of such analysis is reported in Table 3-4 and is contrasted 

against the EVPI estimated from the fully implemented detailed scenario and the simple 

scenario based on the approximate Bayesian bootstrap.  

Table 3-4: Impact of different aspects of the detailed analysis on the EVPI 

 Feature disabled* Fully implemented 

detailed analysis 

Simple analysis 

based on 

approximate 

Bayesian bootstrap 

Missing value 

imputation  

Adjusting QALYs 

for baseline 

utility 

Random sample 

size per arm for 

future RCT 

      

TP/TS 168.2 334.8 171.6 164.5 331.7 

TP/TFS 56.6 65.2 50.8 58.7 64.0 

TS/TFS 93.7 56.9 110.0 114.3 56.5 

TP/TS/TFS 190.9 353.9 193.3 191.3 349.2 

* Results are based on 1,000 simulations. All values are in net monetary benefit 

scale with 2008 $CAD. 
TP: Tiotropium + placebo, TS: tiotropium + salmeterol, TFS: tiotropium + fluticasone/salmeterol, 

EVPI: expected value of perfect information. QALY: quality-adjusted life year 

 

 

Results of this analysis indicate that the feature of the detailed analysis that is the most 

responsible for the disparity in the results between the detailed and the simple scenarios is the 

adjustment of QALYs for baseline utility. When this feature is removed, the results of the 

detailed analysis became similar to those of the simple analysis. 

3.6 Discussion 

In this chapter I explained a generic, non-parametric framework for EVI analysis. The main 

advantage of this method is its versatility which allows it to accommodate a spectrum of 
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intermediate steps. In its simplest form, two-level resampling for EVSI calculation can directly 

be performed on the vector of net benefits within each arm of the trial. This is an extension of 

the popular bootstrap method for the analysis of RCT-based CEAs and can be considered a non-

parametric method analogous to methods based on normal approximation of mean net benefit 

71,86. Bootstrapping net benefits -albeit computationally more demanding than the normal 

approximation method- is still fast and operationally trivial. It is not based on parametric 

assumptions, and in terms of the underlying statistical assumptions, is conjugate with the 

popular bootstrap method of RCT-based CEA.  

I described a more detailed scenario that illustrated one possible way for incorporating more 

realistic aspects of EVI analysis, and showed its impact on EVI calculations. The estimates of 

EVPI and EVSI using the detailed scenario showed significant differences from those in the 

simple scenario. While the estimates of EVPI using the three methods in the simple scenarios 

were generally close to each other, estimates of EVPI from the detailed scenario varied from 

being less than half (TP/TS) to more than twice (TS/TFS) as large as its counterparts in the 

simple analysis. EVSIs for any given sample size also followed the same pattern. These 

differences are large enough to have an impact on the sample size of the future RCT, if the 

sample size is informed by the EVSI, based on maximizing the difference between population 

EVSI and the budget of the trial 88.   

Because the estimated EVPIs and EVSIs using the simple two-level bootstrap are very close to 

their counterparts in the normal approximation method, it can be concluded that the different 

results estimated from the detailed scenario is not because of the non-parametric vs. 
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parametric nature of calculations, rather they are due to the incorporation of some realistic 

analytical aspects. Further analysis of the results after disabling features of the detailed 

scenario highlighted the role of adjusting the estimated QALYs for baseline utility. This should 

not come as a surprise given the substantial impact of such an adjustment on the estimated 

mean QALYs for each arm (refer to Table 1-1). The normal approximation method can 

conceivably be upgraded to incorporate adjustment for baseline covariates, for example, by 

estimating the mean and variance of NBs for each arm of the trial from a regression model with 

adjustment for baseline utility. But this is not as rigorous as the approach used in the detailed 

scenario as it fails to properly model the potential lack of balance in the distribution of baseline 

covariates in the future study (which is automatically modeled in the detailed scenario as part 

of the second-level sampling). More elaborate schemes such as joint modeling of baseline 

utility and NBs can enable the normal approximation method to more rigorously address this, 

but it will cost this method its main appeal: its simplicity. Meanwhile, there is little doubt that, 

in other situations, other aspects of the analysis such as handling of missing values, which can 

be realistically modeled in a two-level resampling scheme, will turn out to be important factors 

affecting the EVI results.  

The questions that I answered in this work, estimating the value of conducting a future RCT 

with similar design to a current RCT, is not the only questions that can be explored using this 

approach. The two-level sampling paradigm is a framework to which more problem-specific 

details can be added. A relevant scenario is to model the future RCT to have a longer follow-up 

period. After drawing a sample from the population distribution	Y, one can use time series 

methods for extrapolating the data into future time points, considering the statistical 
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uncertainty in the predicted values, and perform other steps for EVI calculations accordingly. 

Other questions that can be explored using this framework include estimating the benefit of 

attempts to prevent attrition from the future RCT and the benefit of controlling for possible 

confounding effects at the design stage (e.g., by stratified randomization), to name a few. One 

can compare the costs and return on investment of RCTs with and without such design 

specifications, and the two-level method appears to be flexible enough to address these and 

similar scenarios. In a broader sense, this approach could have applications beyond economic 

evaluation of RCTs. It can be seen as a way to generate individual-level samples from a future 

clinical trial based on the data of a current RCT, which can be used to generate predictive 

probability distributions for the results of a planned analysis.  

I acknowledge several limitations with this approach. The foremost drawback is the 

computational demand of a detailed analysis (it required 2,000 times more computational time 

than the simple scenario based on the normal method), and its requirement for context-specific 

statistical programming. Incorporating more advanced scenarios such as extrapolating behind 

the time horizon of the current RCT will only add to such computational burden. Secondly, 

merging the individual-level data of the current and future RCTs amounts to a fixed-effects 

analysis. This is not the only paradigm for evidence synthesis, and other approaches such as 

random-effects models should be evaluated in this context 116.  

A growing number of trials incorporate economic end-points at the design stage and there are 

established protocols and guidelines for conducting economic evaluation alongside a RCT 1. 

With soaring costs, the design and conduct of a RCT is a formidable undertaking, and rigor and 
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objectivity in planning such studies in order to optimize the investment are worth taking. The 

stakes seems to be high enough to justify the time and resources required for conducting a 

realistic EVI analysis to fine-tune the design of a RCT. The present method adds to the available 

toolkit of EVI methods and sets the stage for future studies to compare and contrast different 

approaches from both theoretical and practical perspectives.  
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Chapter 4. A heuristic algorithm for calculation of single-parameter 

expected value of partial perfect Information  

4.1 Background  

A robust, unbiased, and easy-to-implement method for calculating the expected value of the 

outcomes and quantifying uncertainty in CEAs is to perform a Monte Carlo simulation. In 

model-based CEAs, this is done by randomly drawing from the distribution of uncertain 

parameters and calculating cost and effectiveness outcomes. In RCT-based CEAs, this can be 

performed by bootstrapping within each arm of the trial, and calculating the mean cost and 

effectiveness outcomes for each arm from the bootstrap sample. Generally, this method in the 

health economics literature is referred to as probabilistic sensitivity analysis (PSA).  

The EVPPI is the expected gain in benefit by completely resolving uncertainty around a subset 

of evidence 73. The EVPPI can be used as a generic measure to compare the relative importance 

of uncertainty in parameters of a decision model. Population EVPPI sets an analytical upper 

limit on the budget of future research aimed at obtaining more information on those 

parameters.  

Unfortunately, calculation of EVPPI is often computationally intensive as it generally requires a 

two-level nested Monte Carlo expectation 73. For model-based CEAs, alternative methods for 

EVPPI calculation have been proposed; they are either based on parametric assumptions or 

work only in special cases (e.g., when the model is multi-linear on its parameters), while others 

have been proved to be incorrect (see 112 for a review). There are some meta-modeling 
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approaches in calculating the EVPPI but they too come with certain assumptions and require 

considerable expertise for implementation 112,113. For RCT-based CEAs, the calculation of the 

EVPPI is much less discussed. Koerkamp et al. performed EVPPI calculations for a trial on 

endovascular revascularization or supervised exercise training for the treatment of intermittent 

claudication. This was performed by assuming joint normal distribution for the parameters of 

interest and the rest of parameters, which allowed them to implement the two-level Monte 

Carlo method 86. But the parameters were all subsets if cost and effectiveness outcomes, and 

the method does not seem to be readily extendable to other parameters such as the effect size 

of treatment that might not be identified during the CEA.  

The calculation of the two-level expectation using Monte Carlo requires that the inner 

expectation be calculated while d is fixed at a given value set at the outer expectation loop. For 

RCT-based CEAs, if the parameter of interest has an explicit probability distribution, such as a 

unit price, then the outer expectation can be performed by randomly drawing from the 

distribution of the parameter, while the inner expectation can be performed by bootstrapping 

and calculating mean NB for each arm with d fixed at the value set at the outer loop. When	d 

itself is the function of the RCT data (such as the treatment effect size), then the random draw 

from d for the outer loop can be obtained by bootstrapping. But in this case, in the inner loop 

only the bootstrap sets in which the value of d is equal to the fixed value generated from the 

outer loop should be accepted. This is indeed an (infinitely) unwieldy process; therefore the 

bootstrap method cannot readily be used in two-level EVPPI calculation for RCT-based CEAs 

when the parameter of interest is a function of the RCT data.  
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This chapter presents a novel and simple method for calculating single-parameter EVPPI that is 

applicable to both model-based and RCT-based CEAs. The main advantages of the present 

method are its computational efficiency and that it only relies on the data generated through 

the PSA, which is a standard output of any stochastic CEA. During the final preparation of this 

thesis I encountered an unpublished report by Strong et al. presenting an approach for EVPPI 

calculation which is operationally somewhat similar to the present method 121. Nevertheless, 

the present method is based on a different theoretical justification and seems to have 

important advantages to the method developed by Strong et al. which I will explain in the 

Discussion section. 

I begin by defining the mathematical formulation of the EVPPI. Next, I outline the heuristic 

underlying the present method. Based on such heuristic, I propose an estimator for the EVPPI. 

The convergence in probability of the estimator to the true EVPPI under the necessary 

regularity conditions is formally proved. I explain a visual method for checking the performance 

of the algorithm. I then compare the numerical and computational performance of the new 

algorithm with those of the conventional two-level Monte Carlo simulation method using three 

exemplar decision-analytic models. The OPTIMAL clinical trial is used as a case study 

demonstrating the feasibility of such calculations for RCT-based CEAs.  

4.2 Methods 

4.2.1 Context and notations  

Let : denote the set of stochastic quantities that inform the underlying decision task. In model-

based CEAs, : is the set of all uncertain model parameters that are represented by probability 
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distributions. In RCT-based CEAs, it is the raw RCT data, plus any stochastic parameters that 

might be used in deriving cost-effectiveness outcomes. Examples of such stochastic parameters 

in the context of a RCT-based CEA include unit prices, if a probability distribution is assigned to 

their values, which will be multiplied by individual resource use data from the RCT, or if 

regression coefficients are used to convert a disease-specific measure of quality of life to health 

state utility values (if such coefficients are uncertain). I denote the single parameter whose 

EVPPI is of interest as	d. Let 56b�Ω
 represent the process that calculates the NB of the dth 

strategy associated with a realized value of :. One fundamental assumption in this work, as in 

any stochastic CEA, is that 56b�Ω
 has an expected value and a finite variance, such that by 

many times sampling from	:, calculating 56b�Ω
, and averaging the results one obtains a 

value that converges to the expected net benefit of the dth strategy. Let �f�d
 be the 

probability density function of	d. The present method is applicable to the parameters with 

continuous probability distributions*. In model-based CEAs, d is typically one of the input 

parameters. For RCT-based CEA, it can be one of the uncertain quantities (such as a unit price) 

that are used to carry out the CEA, or alternatively, it can be a summary statistic that is 

estimated from the RCT data, such as the effect size of treatment. Let d®  and	d¯ denote the 

lower and upper bounds (either or both can be infinite) of	d.  

The PSA is performed by randomly drawing from the distribution of : and calculating the net 

benefit (NB) for all D strategies, repeating this process � times. The PSA data can be denoted by 

{°±, ²³́} where	°± K �dµ3, � K 1: �, dµ[ ≤ dµ\… ≤ dµJ
 is the random draws from the distribution of 

                                                      
*
 When using conventional bootstrap for RCT-based CEAs, the distribution of any aggregate statistics based on the 

RCT data is inevitably discrete. The present algorithm therefore relies on asymptotics in this situation.  
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the parameter of interest (ordered ascendingly, without loss of generality), and ²³́ K
�NB́3,b, � K 1: �, � K 1: P
 is the corresponding matrix of NBs (the draws from the other 

parameters are irrelevant and are omitted in this notation). 

I define the function E56b(d) as the expected NB of the dth strategy conditional on the 

parameter of interest being fixed at	d: 

E56b(d) ≡ E:|f�56b�:

.          (2) 

In this case the EVPPI for the parameter d can be written as 

�-���f ≡ Ef{maxb[E56b(d)]} − maxb{Ef[E56b(θ)]}.      (3) 

The main difficulty in calculating (3) is the first term with two nested expectations separated by 

a maximization step. As these expectations are analytically intractable for all but the simplest 

situations, a two-level Monte Carlo simulation is often used for their calculation, such that the 

inner and outer levels perform, respectively, the inner and outer expectations in the left term 

of (3)73. There does not seem to be an overarching rule for the sample size of the simulations 

122, but even with a few thousand iterations at each level, the overall number of simulation runs 

required could easily become overwhelming. 

4.2.2 Concept 

The concept underlying the present method can be described as 'data segmentation approach 

to EVPPI calculation'. I start by defining  

 º�d
 ≡ argmaxb E56b(d) ,         (4) 



 

90 

 

the function that returns the index of the strategy that has the highest E56 at a given value of 

d. The heuristic is that if a strategy has the maximum E56 at d, it probably has the maximum 

E56 at the vicinity of d as well. The º function is therefore, for the most realistic scenarios, 

piecewise constant with finitely many pieces (as shown in Figure 4-1). As such, it is good 

enough to restrict our attention to the set of such functions in calculating the EVPPI.  

Figure 4-1: Schematic illustration of the segmentation approach to EVPPI calculation 

  

The curved lines are the ENB functions for three hypothetical strategies at different values of the 

parameter of interest. In this example, the two points for which the strategy that has the maximum 

ENB changes divide the range of the parameter of interest into three segments. Within each 

segment, the best strategy remains the same. 

 

The expectation that º	is piecewise constant rests generally on logical relationship between the 

parameter of interest and the outcomes of decisions. The nature of such relationship can often 

be deduced even before looking at the data. For example, it is rationally expected that the 

higher the treatment effect size, the higher the incremental net benefit of treatment vs. no 

treatment; or the higher the prevalence of the disease, the higher the incremental net benefit 

of a screening vs. no screening strategies. That is, the incremental net benefit function between 
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 º 

d d 
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such pairs of decisions monotonically varies with the parameter of interest. Therefore the E56 

of the treatment and no treatment (or screening and no screening) decisions are unlikely to 

cross too many times.  

Restricting our attention to the set of piecewise constant functions proves advantageous: if �∗ 

consists of ½ + 1 pieces created by ½ segmentation points (13; � = 1: ½; 1[ < 1\ < ⋯ <
1¾), then the left term of the EVPPI can be rewritten as 

Ef{maxb[E56b(d)]} = maxy�,…,y¿ «∑ maxb ÀÁ E56b(2). �f(2). �2yÂ��yÂ Ã¾3O� Ä,   (5) 

with 1� = dÅ and 1¾�[ = dÆ. The reason for using such a formula for the EVPPI is that the 

right side of equation (5) can be estimated from the PSA data. Define the vector Ç (�3; � =
1: j; �[ < �\ < ⋯ < �®) as the j × 1 vector of candidate segmentation points. The elements of 

Ç correspond to the row indices of elements in dµ. Define È(Ç) as 

È(Ç) = [J ∑ maxb(∑ 56́É,bGÂ��ÉOGÂ�[ )®3O� ,         (6) 

with �� = 0 and �®�[ = �. Then define 

�-���Ê = maxG�,G�..,GËÈ(Ç) − [J . maxb ∑ 56́3,bJ3O[ ,       (7) 

as an estimator of the EVPPI from the PSA data. The intuition in the above formula is that the 

quantity maxG�,G�..,GËÈ(Ç) is analogous to the term in the right side of equation (5) but estimated 

from the PSA data.  
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Putting all these together, the heuristic algorithm for single-parameter EVPPI calculation 

suggests that one calculates (7) with a high enough j from the PSA data. The power of this 

method is its computational efficiency compared to the two-level Monte Carlo method as well 

as its ability to estimate EVPPI for all individual parameters from one set of PSA data.  

4.2.2.1 Proof of the convergence of .ÌÍÍ>Ê  to EVPPI  

Here I prove that with a fixed size of	j, and provided that j is equal or greater than	½, the true 

number of segmentation points (discontinuity points on	º), the term maxG�,G�..,GËÈ(Ç) converges in 

probability to the left term of EVPPI (i.e., Ef{maxb[E56b(d)]}). This is proved in two stages. 

Lemma 4.1: Let Î	�13; � K 1:½;1[ < 1\ < ⋯ < 1¾
  be the ½ × 1 vector of true 

segmentation points on	d that maximizes equation (5). Each element of Î is a real value within 

the range of	d. Let Ç	��3; � K 1: j; �[ ≤ �\ ≤ ⋯ ≤ �®
 be the j × 1 vector of candidate 

segmentation points. The elements in Ç	correspond to the row indices of elements in °±. 

If	j ≥ ½	then 

limJ→Ò
1� maxG�,…,GË 
Ómaxb Ô Ó E56budµÉvGÂ��

ÉOGÂ�[ Õ®
3O� & = �f «maxb [E56b(d)]Ä,

 

with �� = 0 and �®�[ = �.  

Proof: Since by definition, within any segment created by Î one decision has the maximum w 

at all values of	d, we have 

limJ→Ò
1�Ómaxb Ô Ó E56budµÉvyÂ��

ÉOyÂ�[ Õ¾
3O� = limJ→Ò

1� Ó maxb ¤E56budµ3v¥J
3O[

H.¨.Ö× �f «maxb [E56b(d)]Ä, 
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with	1� K dÅ and 1¾�[ K dÆ. The notation 
H.¨.Ö× implies almost sure convergence according to 

the strong law of large numbers 123(p60).  

So by setting	�� K 0 and	�®�[ K �, and all other �3 to the index of the largest element in °± that 

is smaller than 13 (and this is why we need	j ≥ ½; extra elements in Ç are all set to	�) the right 

side term is achievable. Also, this is the maximum value a piecewise constant function can 

achieve as it picks the maximum NB at all points of	dµ. This guarantees the above equality. 

Lemma 4.2: If	j ≥ ½	then 

maxG�,..,GË È(Ç) 				D				ÖØ× �f «maxb [E56b(d)]Ä, 

where 
				D				ÖØØ× indicates convergence in probability. 

Proof: During the proof we use the following propositions (whose proofs are either very simple 

or well known) that are later referenced by their index.  

For any real-valued matrix Q of size	� × 1: 

1)		maxÉ �∑ R3ÉJ3O[ 
 ≤ ∑ maxÉ �R3É
J3O[  

2)		minÉ �∑ R3ÉJ3O[ 
 ≥ ∑ minÉ �R3É
J3O[  

3) 	minÉ u∑ R3ÉJ3O[ v K −maxÉ u∑ −R3ÉJ3O[ v 

4) If ; is a vector of random variables of size � then	�[max3 	�Ú3
 > �] ≤ ∑ ��Ú3 > �
J3O[ . 

5) Kolmogorov inequality 124(sec22.4): If ; is a vector of � independent random variables with 

finite (not necessarily equal) variance and zero expectation, for each	Û	 > 	0, 
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� Ümax[ÝyÝJ ÞßÓ Ú3y
3O[ ßà ≥ Ûá ≤ 1Û\Ó  ���Ú3
J

3O[ . 
Now we proceed with the main proof: 

maxG�,..,GË Ô1� . Ó maxb â Ó 56́É,b
GÂ��

ÉOGÂ�[ ã®
3O� Õ = 1� . maxG�,..,GË âÓ maxb 
 Ó ¤E56budµÉv + �budµÉv¥GÂ��

ÉOGÂ�[ &®
3O� ã

 

(where �b(dµX) is an error term with zero expectation)	
#[		åæç	Sèèéç	êëìSêSíëîSæè		ïðððððððððððððððððððñ	

≤1� . maxG�,..,GË 
Ó Ômaxb Ó E56budµÉv + maxb Ó �budµÉvGÂ��
ÉOGÂ�[

GÂ��
ÉOGÂ�[ Õ®

3O� & 

#[	åæç	æòîéç	êëìSêSíëîSæè				ïðððððððððððððððððððñ	
 

KJ +≤ , 

where  

ó K 1� . maxG�,..,GË 
Ó Ômaxb Ó E56udµÉvGÂ��
ÉOGÂ�[ Õ®

3O� & , ô = 1� . maxG�,..,GË 
Ó Ômaxb Ó �budµÉvGÂ��
ÉOGÂ�[ Õ®

3O� &. 

ó	is already proved in lemma 4.1 to converge to	�f{maxb[E56b(d)]}
 
as � grows to infinity. So we 

proceed by proving that ô converges in probability to zero. This term is the maximum sum of 

errors over j + 1 segments, and hence is not greater than j + 1 times the sum of errors of a 

segment with maximum sum of errors, and not less than j + 1  times the sum of errors of a 

segment with minimum sum of errors: 

j + 1� . minb,[ÝHÝõÝJ Ó �budµÉvõ
ÉOH ≤ ô ≤ j + 1� . maxb,[ÝHÝõÝJ Ó �budµÉvõ

ÉOH  
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	éìöëè÷Sèø	îùé	úòêêëè÷ú					ïððððððððððððððððððððñ	
	j + 1� . minb,[ÝHÝõÝJ ÔÓ �budµÉvõ

ÉO[ + Ó −�budµÉvH
ÉO[ Õ ≤ ô ≤ j + 1� . maxb,[ÝHÝõÝJ ÔÓ �budµÉvõ

ÉO[ + Ó −�budµÉvH
ÉO[ Õ 

Now we change the maximization and minimization condition 1 ≤ � ≤ § ≤ � to	{1 ≤ � ≤ �, 

1 ≤ § ≤ �}. Since the new condition is less restrictive, the maximization cannot result in a 

smaller value, and the minimization not in a larger value, and we can continue 

j + 1� . minb,[ÝHÝJ,[ÝõÝJ
ÔÓ �budµÉvõ

ÉO[ + Ó −�budµÉvH
ÉO[ Õ ≤ ô ≤ j + 1� . maxb,[ÝHÝJ,[ÝõÝJ

ÔÓ �budµÉvõ
ÉO[ + Ó −�budµÉvH

ÉO[ Õ 

		#[,#\	�HJb	ûüDGH©3Jý	GüIIüû	õ	þ3I�	H
		ïððððððððððððððððððððððððððððñ 

j + 1� . Ô minb,[ÝHÝJ Ó �budµÉvH
ÉO[ + minb,[ÝHÝJ Ó −�budµÉvH

ÉO[ Õ ≤ ô ≤ j + 1� . Ô maxb,[ÝHÝJ
Ó �budµÉvH
ÉO[ + maxb,[ÝHÝJ

Ó −�budµÉvH
ÉO[ Õ 

		#�	åæç	�éåî	úS÷é			ïðððððððððððñ 

−j + 1� . Ô maxb,[ÝHÝJ
Ó −�budµÉvH
ÉO[ + maxb,[ÝHÝJ

Ó �budµÉvH
ÉO[ Õ ≤ ô ≤ j + 1� . Ô maxb,[ÝHÝJ

Ó �budµÉvH
ÉO[ + maxb,[ÝHÝJ

Ó −�budµÉvH
ÉO[ Õ 

							îë�Sèø	ë�úæ�òîé	�ë�òéú	æå	éë�ù	îéçê							ïððððððððððððððððððððððððððððððñ 

|ô| ≤ j + 1� . �maxb,[ÝHÝJ
Ó �budµÉvH
ÉO[ + maxb,[ÝHÝJ

Ó −�budµÉvH
ÉO[ � 

															ïðððñ 

|ô| ≤ (j + 1). (	 + �),
 

where		 ≡ [J 	1�2b,[ÝHÝJ

∑ �budµÉvHÉO[ 
 and � ≡ [J 	 maxb,[ÝHÝJ


∑ −�budµÉvHÉO[ 
. We show that		 D→0 (the proof for 

� D→0 follows by symmetry, and indeed 	 D→0 and	� �→ 0 implies		 + � D→0). With any positive 

value Û we can proceed: 
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�(	 > Û) = � 
1�maxb Ô max[ÝHÝJ �Ó�budµÉvH
ÉO[

�Õ > Û& 

			#�				ïððñ 

≤ Ó� Ô1�2[ÝHÝJ �Ó1��budµÉv
H

ÉO[
� > ÛÕ�

bO[
. 

Applying the Kolmogorov inequality (#5) with Û = ��[/� for each term of the above summation, 

we can write 

� Þ	 > ��[�à ≤ �[\ ÓÓ 1�\  ��¤�budµÉv¥
J

ÉO[
�

bO[
= ��[\ ÓRµb�

bO[
,	

where  

Rµb = 1�Ó ��¤�budµÉv¥J
ÉO[

. 

The proof is complete if we can show that limJ→Ò(��[/\∑ Rµb�bO[ ) = 0 as this will guarantee that for 

any positive value	Û, limJ→Ò�(	 > Û) = 0, which implies convergence in probability. We note that Rµb 

is a Monte Carlo estimator of	Ed{ ��[��(d)]}. Because	 ��[��(d)] ≡ E:−|d[56�(:)2] − 	 w��d
2, we 

have Rµb H.¨.Ö× 	Ef�E:
|f[56b(:)\] − 	 wb�d
\� ≡ E:[56b(:)\] − Ef[wb(d)\]. We note that	E:[56�(:)2] ≡
-� + μ�2, where -b 	and μb are the variance and expected value, respectively, of the distribution 

of the NB for the dth decision, and the remaining term Ef[wb(d)\] is non-negative. Therefore, and 

given that Rµb  is non-negative, 0 ≤ limJ→Ò Rµb ≤ -b + μb\. Because of the fundamental assumption 

of the finiteness of	P, -b 	, and μb	made in the introduction, limJ→Ò�����∑ Rµb�bO[ 
 K 0. 
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4.3 Deciding on the number of segmentation points, and a visual tool for 

model checking 

The convergence of �-���Ê  to the true EVPPI rests on the critical assumption that j, the 

number of fitted segmentation points, is at least as large as ½, the number of true 

segmentation points. ½ is indeed unknown, but one can choose a very large j to ensure this 

condition is satisfied. However, I note that each additional segmentation point can cause 

overestimation of the EVPPI in finite PSA samples (because of the maximization step in (7)). 

Therefore a parsimonious choice for j is important for avoiding overtly overestimated EVPPIs.  

Again, I refer to the logical expectation that the incremental net benefit as a function of 

d	between any two strategies is, for the most likelihood, a monotonical function and as such 

the E56s of any two decisions cross each other at most once. This line of reasoning suggests 

that an economical choice for j is P. (P − 1)/2, the total number of the pairs of decisions in a 

D-decision task.  

Fortunately, there is a powerful visual tool for assessing such an assumption: for a pair of 

strategies � and §, define the quantity 

B��d
 K 1� . Ó �udµ3 < dv. (56́3,H − 56́3,õ)J
3O[  

where �(. ) is the indicator function taking the value of one when the condition is satisfied, and 

zero otherwise. B�(d) is the running cumulative sum of the incremental net benefits from the 

PSA data (after creating an ordered version of the PSA by sorting the data on dµ), which can be 
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calculated very easily in a spreadsheet or using a simple function in any computer program. In 

addition, B�(d) is a Monte Carlo estimator of  

B(d) = Á [E56ë(2) − E56�(2)]ffË . �f(2). �2. 

Because any crossing point of E56ë and E56� corresponds to an extremum on B(d), one can 

expect to observe an extremum on its Monte Carlo estimator, B�(d), around such values as well. 

This is clearly observable in Figure 4-2. These are the running cumulative sums of the 

incremental net benefit associated with the three parameters of a decision-analytic model 

(model 1 in subsequent sections). The left panel presents the scatter plot of the incremental 

net benefits against	dµ from the PSA data. The right panel is the	B��d
 function for the same 

parameter. Clearly, an extremum is visible on B��d
	for the first and second parameters, 

indicating a positive EVPPI, while for the third parameter, the function does not have a clear 

extremum, suggesting that EVPPI=0. 
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Figure 4-2: The running cumulative sum of incremental net benefits for three parameters of a 

decision-analytic model 

pSurvival_NoRx 

   
pSurvival_Rx 

 
 

cRX 

 
 

Vertical lines in the second row are the global extrema of the function  

The visual inspection of the performance of the algorithm therefore involves plotting the B� 
calculated from the PSA data for all pairs of decisions, and checking if an extremum is visible (or 

if there are more than one segmentation points). The software implementation of the 

algorithm provided in the Appendix A.5, under default settings, automatically generates such 
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pair-wise plots, and the user is able to force the algorithm to fit a given number of 

segmentation points between pairs of decisions after observing the plots.  

4.4 Simulation studies 

4.4.1 Comparing the performance of the new algorithm and the conventional two-

level simulation method for model-based CEAs. 

I compared the performance of this algorithm with that of the conventional two-level method 

using three decision-analytic models. Model 1(Figure 4-3, left panel) is a simple model for 

which the EVPPIs could be derived analytically (see Appendix A.3. for analytical derivation of 

EVPPIs for this model). Model 2 (Figure 4-3, right panel) is a relatively simple decision tree that, 

on top of model 1, will test the performance of the algorithm when more than two decisions 

are compared. Model 3 is a more complex, realistic decision tree and Markov model used by 

Brennan et al. for comparing different methods of EVPPI calculations 73. All simulations were 

run on the default setting of fitting P. (P − 1)/2 segments for a D-decision task. Because the 

algorithm was automated to repeat the simulation 1,000 times, no visual evaluation of the 

segmentation was performed. All model outputs were converted to net benefits with a 

willingness-to-pay of 50,000 for unit of effectiveness for EVPPI calculations. I also compared the 

computational performance of the two methods. This was done on the R implementation of 

the algorithm on a personal computer (a typical setting for the application of this method) 

using model 1.  
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Figure 4-3: Schematic illustration and parameter specification for model 1 (left) and model 2 

(right) 

 

 

pSurvival_NoRx~Beta(2,2): probability of survival 

without treatment.  

 

pSurvival_Rx~Beta(6,4): probability of survival with 

treatment. 

 

cRX~Unif(1000,2000): cost of treatment. 

pSurvival~Unif(0,1):probability of survival at time 

horizon without treatment. 

 

ln(OR1)~Normal(0.6,ln(3)):Odds Ratio (OR) of 

survival at time horizon with treatment 1. 

 

ln(OR2)~Normal(0.6,ln(4)):OR of survival at time 

horizon with treatment 2. 

 

ln(cRx1)~Unif(5500, 8500):Cost of treatment 1. 

 

ln(cRX2)~Unif(9000, 15000):Cost of treatment 2 

The numbers x/y associated to the terminal branches of the tree represent cost/benefit 

associated with that branch 

 

Results are reported as the mean and standard deviation (SD) of the estimated EVPPI by each 

algorithm at various sizes of Monte Carlo simulations. For model 1 (for which EVPPIs could also 

be calculated analytically, see Appendix A.3), the root mean squared error (RMSE) is also 

reported. To calculate the mean, SD, and RMSE, I repeated all simulations 1,000 times.  

Calculations were performed in MATLAB (version 7.6.0 for Linux, Matchwork Inc. Natick, 

Massachusetts, USA) on a multi-processor computer running Red Hat Linux version 2.6.9 (Red 

Hat, Inc. Raleigh, North Carolina, USA). The choice of the software and platform for this 
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simulation was for the sake of computational performance given the number of model runs 

required, especially for the two-level Monte Carlo method. Both methods can be implemented 

for use with personal computers using popular software (see section 4.6). 

Table 4-1 presents the mean and SD of the new and the two-level estimators. For the most 

part, the higher precision of the new estimator is obvious. An interesting comparison is 

between the new method with 1,000,000 and two-level method with 1,000×1,000 (number of 

outer simulation runs x number of inner simulation runs) iterations for model 1, as they involve 

equal number of model runs. The calculated RMSEs for the parameter pSurvival_Rx and 

pSurvival_NoRx were more than 20 times higher in the two-level method than the new 

method. Another interesting observation is that for the parameter cRx, which has a true EVPPI 

of zero, the reduction in its SD with successively increasing PSA sizes is greater than the inverse 

of the square-root of the PSA size (as one would expect for an estimator). This is likely due to 

the fact that the SD of the estimator is affected both by the chance of the algorithm in finding a 

segmentation point, as well as the sample standard error of the EVPPI given a fixed 

segmentation point, both of which decreases as the PSA size increases. For model 2, the ratio of 

the variance varies from more than 900 for pSurvival to 31.8 for cRx1. For model 3, the gain in 

performance is less spectacular, with the ratio of variance ranging from 1.6 for P2 to 4.4 for P3.  

On an average personal computer, it took 90 milliseconds (ms) to generate a PSA data with the 

size of 100,000 for model 1. The segmentation algorithm required a further 610 ms for each 

parameter. Therefore, around 1,920 ms was required to calculate the EVPPI for all three 

parameters. On the other hand, the two-level Monte Carlo with 10,000X1,000 samples (which 
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gives less precise results than the one-level method with PSA size of 10,000, as indicated by the 

results in Table 4-1) required 25,320 ms to estimate EVPPIs for all three parameters. This 

demonstrates the substantial computational advantage obtained by using the new algorithm.  
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Table 4-1: Results of the simulation analysis comparing the performance of the novel and two-level Monte Carlo method for 

EVPPI calculation 

 New method  Two-level method 

Monte Carlo sample size Monte Carlo sample size (Outer X Inner loops) 

1,000 10,000 100,000 1,000,000 1,000X 

1,000 

10,000X 

1,000 

1,000X 

10,000 

10,000X 

10,000 

Model 1  

mean 

 (SD) 

[RMSE] 

Psurvival_NoRx 
(EVPPI=3120.6) 

3123.8 3130.4 3120.1 3121.6 3127.6 3125.5 3117.9 3123.5 

(223.9) 

[224] 

(80.0) 

[80] 

(21.6) 

[24] 

(6.1) 

[6.2] 

(165.7) 

[166] 

(49.8) 

[50] 

(160.6) 

[161] 

(50.3) 

[51] 

PSurvival_Rx 
(EVPPI=1618.3) 

1655.1 1643.1 1622.0 1619.4 1613.7 1623.0 1612.5 1617.4 

(232.2) 

[235] 

(68.6) 

[70] 

(20.1) 

[29] 

(6.5) 

[7] 

(161.4) 

[162] 

(52.3) 

[53] 

(170.5) 

[171] 

(53.6) 

[54] 

cRx 
(EVPPI=0) 

29.2 3.1 0.3 0.0 0.2 0.4 0.9 0.6 

(32.0) 

[43] 

(3.0) 

[26] 

(0.3) 

[2.9] 

(0.03) 

[0.3] 

(13.7) 

[14] 

(8.3) 

[8.3] 

(12.1) 

[12] 

(7.8) 

[7.8] 

 

Model 2 

mean 

 (SD) 

pSurvival 1252.0 1281.5 1255.4 1277.2 1360.0 1362.4 1374.7 1365.8 

(181.2) (117.6) (31.0) (14.6) (455.6) (137.5) (431.0) (132.9) 

OR1 15409.0 1419.1 1394.4 1397.1 1403.6 1369.0 1460.0 1358.0 

(254.9) (72.1) (17.1) (1.5) (18.6) (13.8) (13.6) (13.1) 

OR2 3.4 2.1 1.1 0.8 -1.4 -2.1 -10.3 -7.9 

(16.8) (1.1) (0.5) (0.1) (23.1) (14.2) (19.6) (13.6) 

cRx1 235.2 317.2 315.9 334.0 301.0 316.1 326.9 316.6 

(121.3) (56.5) (9.2) (3.3) (18.0) (13.6) (13.6) (13.1) 

cRx2 16.2 9.0 4.3 0.9 -13.3 -9.3 -7.0 -8.3 

(76.2) (6.9) (1.5) (0.9) (17.8) (13.7) (13.6) (13.0) 

Model 3 

mean 

 (SD) 

P1 48.4 217.3 327.0 317.3 303.8 334.1 290.6 305.9 

(257.6) (237.1) (32.7) (9.2) (17.9) (13.7) (13.8) (13.0) 

P2 3249.0 3127.5 3113.1 3103.5 3115.9 3112.3 3188.1 3065.2 

(487.9) (142.9) (46.2) (14.5) (18.6) (13.7) (13.7) (13.1) 

P3 19.9 293.5 328.6 317.7 425.3 339.2 502.3 307.1 

(154.0) (71.1) (27.9) (8.5) (17.8) (13.6) (13.6) (13.1) 

P4 1368.7 1309.8 1216.9 1257.1 1116.6 1312.9 988.0 1314.8 

(513.6) (124.0) (43.7) (10.7) (18.0) (13.7) (13.5) (13.1) 

 
SD: standard deviation, RMSE: root mean squared error. 
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4.5 Case study of EVPPI calculations for the OPTIMAL trial 

The OPTIMAL trial’s main outcomes were the effect size of TFS and TS versus TP for the 

prevention of respiratory exacerbations. Because the trial incorporated a prospective economic 

evaluation, it allowed for calculating cost-effectiveness outcomes. In the previous chapter, I 

calculated the overall EVPI and EVSI as the function of sample size for a future study with a 

similar (or nested) design to the OPTIMAL trial. However, conducting another study similar to 

the OPTIMAL trial is not the only way of obtaining evidence on the cost-effectiveness of 

combination therapies in COPD. For example, a very attractive alternative design is to use 

observational studies using electronic health databases to estimate the effectiveness of 

combination medications. The estimate of the effect size from such a study can be used to 

further inform cost-effectiveness of combination therapies. This can be done, for example, by 

using the vetted bootstrap approach discussed in Chapter 2 to update the measures of cost-

effectiveness from the OPTIMAL trial with the estimates of the effect size from the 

observational study as the external information. If such a design is in mind, the question would 

be how much the expected benefit of conducting a study that will estimate the effect size of 

TFS vs. TP, or TS vs. TP will be. This question can be answered by calculating the EVPPI of TFS vs. 

TP and TS vs. TP using the approach presented here.  

To calculate the EVPPI using the algorithm described above, I generated PSA data through 

n=10,000 Bayesian bootstraps from the OPTIMAL study. Within the bootstrap loops, I followed 

the original CEA approach and adjusted the calculated net benefits for the baseline utility, and 

imputed the missing cost and effectiveness data using non-parametric missing value imputation 
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based on the propensity score. Single–parameter EVPPI was calculated for the OR of TFS vs. TP 

and TS vs. TP, with QALY as the effectiveness outcomes, for a range of willingness to-pay from 0 

to 200,000. All the results were repeated using the conventional (approximate Bayesian) 

bootstrap as well.  

For both the Bayesian and the approximate Bayesian bootstraps, and for the entire range of the 

WTP, the EVPPI for the effect size of TS vs. TP was close to zero, and no segmentation point was 

obvious in the visual inspection of the running cumulative sum. For the effect size of TFS vs. TP, 

the EVPPI using both methods started becoming positive at WTP of $150,000 (Figure 4-4). The 

EVPPI was maximum at WTP=$260,000 when the PSA data was based on the Bayesian 

bootstrap, and was maximum at WTP=$250,000 when the PSA data was based on the 

approximate Bayesian bootstrap.  
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Figure 4-4: EVPPI as a function of willingness-to-pay for the effect size of TFS vs. TP, using 

Bayesian and approximate Bayesian bootstrap 

 
EVPPI: expected value of partial perfect information. TP: Tiotropium + placebo, TS: tiotropium + 

salmeterol, TFS: tiotropium + fluticasone/salmeterol. 

 

For illustration, the scatter plots of �56́ vs. dµ	(left panel), and the	B� (right panel) for 

WTP=$50,000 and WTP=$250,000 and for both the Bayesian and the approximate Bayesian 

methods are shown in Figure 4-5. Again, the B� plot provides a powerful visual tool for checking 

if the EVPPI is positive, with no extremum (indicating a zero EVPPI) on the top two panels and a 

clear extremum on the bottom two panels.  
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Figure 4-5: Scatter plot of the PSA (left panel) and S ̂ (right panel) for the effect size of TFS vs. 

TS for two WTP values using Bayesian and approximate Bayesian bootstrap 

Bayesian bootstrap, WTP=$50,000 

 
 

Approximate Bayesian bootstrap, WTP=$50,000 

  

Bayesian bootstrap, WTP=$250,000 

 
 

Approximate Bayesian bootstrap, WTP=$250,000 

  
WTP: willingness-to-pay. PSA: probabilistic sensitivity analysis 
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4.6 Implementation 

I have developed an add-in for Microsoft Excel (version 2007, Microsoft Corporation, Redmond, 

WA, USA) that performs EVPPI calculations from the PSA data. The program requires random 

samples from the parameter of interest as well as the corresponding vector of net benefits for 

each strategy (if one vector for net benefit is provided, the program assumes it is the vector of 

incremental net benefits for two strategies). The calculations are based on equation (7), finding 

up to one segmentation point on all possible pairs of strategies. I have also provided a set of R 

functions that carries out the analysis and provides graphical output including the plot of B� for 

visual inspection. The Visual Basic program for the Excel add-in and the R function are provided 

in the Appendix A.4 and Appendix A.5, respectively. 

4.7 Discussion 

While EVPPI provides an easily interpretable measure of the decision uncertainty, the 

conventional two-step Monte Carlo simulation for EVPPI calculation is computationally 

intensive. In this chapter I explained a novel method for single-parameter EVPPI calculation, 

proved its consistency, and empirically demonstrated its performance. I consider this approach 

to be heuristic as it relies on some assumptions (namely, the º function being piecewise 

constant with finitely many pieces) on the shape of the net benefit function that, while 

plausible, are not guaranteed to hold for all instances. However, when these assumptions hold, 

this algorithm generally performs much faster than the two-level Monte Carlo method to 

achieve the same precision. An additional computational advantage is that once the suitable 

data are generated, it can be used for EVPPI calculations for all stochastic parameters of the 
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model. Such a computational advantage could be considerable especially for complex models 

with many parameters. Besides being more efficient, this approach is simpler, since it only 

requires data that are generated through PSA- data that are a standard output in any stochastic 

cost-effectiveness analysis.  This is unlike the classic and almost all other alternative EVPPI 

calculation methods that need either to be built in the modeling software or be implemented 

by the analyst. For RCT-based CEAs, the present method provides an entirely new opportunity 

for calculating the EVPPI for aspects of the evidence, such as the treatment effect size, that are 

aggregate statistics of the RCT data. Overall, the proposed approach facilitates single-

parameter EVPPI calculation as a by-product of the probabilistic sensitivity analysis with very 

little additional computational cost. I hope this will encourage researchers to report the results 

of EVPPI analysis which are the most analytically rigorous way of uncertainty analysis in 

decision making 50. 

The presented technique is also insensitive to first-level uncertainty, meaning that in model-

based CEAs it can equally be used in the individual-level (microsimulation) models. This is 

because the algorithm only needs an unbiased estimator of NB. In patient-level simulations, the 

NB generated for each simulated individual is an unbiased estimator of the population NB 

provided that the individual-level covariates are sampled from distributions that represent their 

variation among the target population.  

The present method is not the first method for alternative computation of EVPPI. It can be 

contrasted with four different methods of EVPPI calculations reviewed by Coyle et al. 112. Aside 

from the generic two-step Monte Carlo method, they also reviewed the Unit Normal Loss 
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Integral (UNLI) method, a single-step Monte Carlo method, and a quadrate method based on 

numerical integration of the outer expectation, which is especially wieldy for one-parameter 

EVPPI12. The UNLI and single-step simulation are only valid for special cases. The quadrature 

method seems to be especially comparable with our method. While the quadrature method 

requires less computation than the two-step approach, the outer integration part should yield 

high coverage of the probability distribution of the parameter of interest, and the inner Monte 

Carlo simulation sample should be large enough to minimize the bias caused by maximization. 

Meanwhile, unlike our method, the quadrature method cannot use the same set of data to 

calculate EVPPI for different parameters. 

This approach could also be compared with the ‘meta-modeling’ techniques such as the 

Gaussian process modeling 72,113,125. Implementation and interpretation of the results provided 

by such methods require considerable expertise. Meanwhile, for data of size n, the Gaussian 

process requires operation on matrices of size (� × �), making it practically impossible to work 

with large data (e.g. �=10,000) unless further approximations are made. However, the Gaussian 

process does have the advantage that once developed and tested, it can be used to calculate 

multi-parameter EVPPI. 

Recently, Strong et al. developed a method for EVPPI calculation which is operationally very 

similar to the method presented here 121. The idea in their approach is to partition the domain 

of the parameter of interest to an arbitrary number of intervals, and instead of performing a 

nested Monte Carlo simulation at a given value of d, simply average the associated NBs for all 

                                                      
12

 the fifth, the difference method, as the authors explained, is not a valid method for EVPPI calculation 
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the d within the same segment (see equations (3) and (4) in their report). This obviates the 

need for the two-level Monte Carlo simulation and allows for the calculation of the EVPPI from 

the PSA data. They discuss that for the small (large) number of segments, their algorithm has a 

downward (upward) bias, but show that for a wide range of the number of segments, it 

generates estimated EVPPIs close to the real ones (see Figure 1 in their report). The method 

presented in this chapter can be seen as an improved version of this approach as instead of 

partitioning the domain of d into an arbitrary number of segments, it chooses the 

segmentation points only at relevant points (corresponding to discontinuity points in d*). I also 

believe the formal proof of the convergence in probability of the estimator presented in this 

chapter is more rigorous than the theoretical justification provided by Strong et al. based on 

the linear approximation of the net benefit function in small intervals (See Appendix B in their 

report) 121 which does not amount to a proof for the convergence of their proposed estimator 

to its true value.   

The foremost shortcoming of this approach is that it can only be used for one parameter at a 

time. This is because with more than one parameter the net benefit is a ‘surface’ function of 

model parameters, not a one-dimensional curve, and crossing points of surfaces are not a finite 

set of points. As a note of caution, there is no additivity rule for multivariate EVPPI, meaning 

that one cannot simply sum (or use other arithmetic operations on) EVPPIs for individual 

parameters to calculate joint EVPPI for a set of parameters 126. Convergence of the novel EVPPI 

estimator in probability to its true value means it is at least an asymptotically unbiased 

estimator. However, as the results of the simulations indicate, it has asymptotic upward bias, 

and such bias is larger in smaller samples. This bias is generated by the noise in the data around 



 

113 

 

the segmentation points, as the optimization step will inevitably capture some such noise 

towards overestimating EVPPI. Adjusting for such bias will remain the focus of further research. 

The empirical results indicate that with PSA sizes of 10,000 and above such bias has negligible 

effect.  

There is broad consensus that EVPPI should be presented in the results of economic 

evaluations, but given complexities in calculation and computation, few studies have reported 

such results. I presented a practically simple method for calculating single-parameter EVPPI 

which we believe can eliminate these hurdles. Our method has been tested on only a small set 

of sample models, and so its efficiency in more complex models needs to be explored. The 

development of methods for bias adjustment and statistical selection of the number of 

segments could improve the results further. Extensions to this concept for calculation of similar 

metrics such as the expected value of sample information (EVSI) should also be added to the 

research agenda. 
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Chapter 5. Integrated discussion and conclusions 

5.1 Main contributions 

The objective of this thesis has been to improve the methodology and accessibility of methods 

for the CEA and EVI analysis of health technologies. In this regard, several contributions were 

made, especially for the economic evaluations conducted alongside a single RCT. The vetted 

bootstrap, proposed in Chapter 2, allows for the incorporation of external evidence in a simple-

to-implement scheme. The non-parametric EVI analysis method, explained in Chapter 3, 

provides a new method for EVSI calculation and a theoretical justification of using the 

bootstrap for EVPI calculation. The heuristic algorithm, explained in Chapter 4, is a very fast and 

easy-to-use method for single-parameter EVPPI calculation that is solely based on the PSA data. 

Each of the three studies in this thesis contributes a novel approach to the toolbox for the CEA 

and EVI analyses. Whenever the incorporation of external evidence in RCT-based CEAs has been 

sought, a parametric Bayesian framework has been chosen 127, a departure from the popular 

bootstrap method in RCT-based CEAs. For the EVI analysis of RCT-based CEAs, previous authors 

have explicitly acknowledged the lack of non-parametric methods. Koerkamp et al. mention 

that “unfortunately, it is not obvious how bootstrapping should be implemented to estimate 

partial value of information and sample information” 86. Meltzer et al. remark that “the absence 

of a decision model makes it impossible to calculate the expected value of perfect partial 

information on specific parameters that may be partial determinants of the outcomes of the 

interventions being considered” 128. The methods presented in Chapters 3 and 4 are important 

steps towards addressing such problems. Meltzer et al. called minimal modeling approaches to 
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EVI analysis as “those that model [value of information] without constructing a decision model 

of the disease and treatment process to characterize the uncertainty in net benefit associated 

with an intervention” 128. The content of Chapters 3 and 4 indeed fit well within this definition.  

I believe the set of methods developed in this thesis have improved the accessibility of 

stochastic CEA and EVI analysis for the applied health economists. All three methods are based 

on the Monte Carlo simulation for estimating the cost and effectiveness outcomes using the 

bootstrap, an approach that is very common among practical economists to quantify 

uncertainty in RCT-based CEAs. Furthermore, the vetted and weighted bootstrap and the 

single-parameter EVPPI calculation methods can potentially be employed after the PSA data is 

generated, without any need for manipulating the process that has generated the data (the 

only extra step is that the relevant parameter should be recorded throughout the bootstrap 

loops). This allows for an ‘offline’ use of such methods without any tampering with the original 

RCT-based CEA, therefore making Bayesian evidence synthesis and EVI analysis available at low 

implementation or computation costs.  

The fundamental building block of this thesis is the Bayesian interpretation of the bootstrap 

63,64. The Bayesian interpretation of the bootstrap has been the basis of several popular 

statistical procedures such as non-parametric missing-value imputation and the weighted 

likelihood approach 99,100. In the CEA too, quantities such as the probability of cost-effectiveness 

in acceptability curves, or the probability of belonging to a particular quadrant in the cost-

effectiveness plane, treat the unobserved population values of cost and effectiveness outcomes 

as random entities, and thus invite a Bayesian interpretation 33,129. EVPI calculation using the 



 

116 

 

bootstrap strictly mandates a Bayesian interpretation 86. Therefore, when bootstrapping is used 

in such contexts, it can be interpreted in its Bayesian paradigm. I explicitly quantified a 

population distribution, which allowed Bayesian evidence synthesis and justified subsequent 

resampling in two-level EVSI calculation. 

This underlying common theme allows the vetted bootstrap approach to be readily 

incorporated in the EVPI and EVSI calculations (Chapter 3) and the single-parameter EVPPI 

calculation (Chapter 4). For example, the external information obtained from the literature in 

Chapter 2 regarding the effect size of the medications can be used in calculating the EVPI and 

EVSI, as outlined in Chapter 3. This can easily be performed by applying the 

acceptance/rejection algorithm in the first-level bootstrap, and performing the EVPI and EVSI 

calculations on the bootstrap sets that have been accepted in the first level. Similarly, one can 

generate PSA data consisting of all the bootstrap sets that have successfully passed through the 

acceptance/rejection step for EVPPI calculation without any modification to the EVPPI 

calculation method developed in Chapter 4.   

5.2 Limitations and future research 

As with almost all other research, there are some limitations in the methods developed in this 

thesis. These methods are based on the non-parametric bootstrap. Nevertheless, the non-

parametric nature of the bootstrap does not ensure robustness and freedom from 

assumptions. The apparent simplicity of the bootstrap has the potential to conceal the strong 

assumptions being made, especially with small datasets 63,130. For one, both Bayesian and 

approximate Bayesian bootstrapping methods assume that the population distribution can only 
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generate the observed data and any other data has zero probability of occurrence 63. There are 

modified versions of bootstrapping that can address this problem and might be considered in 

this context 58,131. Generally, the bootstrap approach to statistical analysis is based on two 

asymptotics: the RCT data should be infinitely large, and the number of bootstrap loops should 

be infinite 53. Departure from such asymptotic conditions in reality is inevitable and, as such, 

the results are always an approximate. 

The vetted and weighted bootstrap methods can quickly become unwieldy if there are too 

many parameters for which external evidence is available, or when the distribution of the 

external evidence is in conflict with the evidence generated by the trial. It might be possible to 

develop more efficient bootstrap sampling methods. One possibility is to manipulate Rubin’s 

prior distribution for the Bayesian bootstrap to carry the information on the parameters of 

interest, obviating the need for rejection or importance sampling used in Chapter 2. 

Unfortunately, this does not seem to be an easy extension, as the methods proposed so far 

result in posterior distributions that put non-zero probability on the unobserved values 

(therefore the bootstrap will no longer remain a valid sampling mechanism) or result in 

degenerate situations (e.g., posterior variance growing without bounds as the prior variance 

approaches infinity regardless of the amount of information in the data) 111. Another interesting 

opportunity is to create auto-correlated Markov Chain bootstraps that tend to concentrate on 

the high probability areas of the posterior distribution, which result in fewer rejections. One 

interesting example is the work by Yu et al. in which a Markov chain bootstrap is constructed 

for efficient p-value evaluation in genetic association studies 132.  
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An important area that needs further research is covariate adjustment of unbalanced 

covariates in the context of the bootstrap method of RCT-based CEA. The ad hoc process used 

for adjusting covariates in EVSI calculations in Chapter 3 is inefficient, only partially adjusts for 

the covariate imbalance, and can be justified only in the asymptotic case. Alternative 

candidates for covariate adjustment might be considered such as matching individuals between 

treatment arms based on important covariates, but such matching should be fully justifiable 

within the Bayesian framework for the EVI calculations. Yet another interesting alternative is to 

use ideas from the missing value imputation literature. One can assume for the ith patient in the 

jth arm, the data had the patient been assigned to the kth (� ≠ X) arm is missing. Such missing 

data can be imputed from the sample in the kth arm from the pool of patients that have similar 

values of the covariates. 

For all three approaches presented in Chapters 2-4, there are alternative parametric methods 

(or one could conceive of such methods) to carry out the same objective. However, the 

proposed methods are novel enough that I felt the focus should be on developing the theory 

and detailing the context in which they are applicable, and simulation studies were mainly used 

to establish analogies with parametric methods and demonstrate the similarity in the results 

between the new and established techniques. The next logical step is to comprehensively 

examine the performance of the methods presented in this thesis versus the alternative 

approaches using simulation studies. The attractive feature of the simulation studies is that the 

analyst is in control of the data generation mechanism. The assumptions underlying the 

parametric model can be adjusted to match the mechanism that generates the data. 

Subsequently, the data generation mechanism can be tweaked to be intentionally in conflict 
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with the parametric model. This will allow comparison of the performance of the non-

parametric versus both correctly and incorrectly specified parametric methods, and will help 

detect situations in which parametric or nonparametric methods are superior.  

5.3 Putting this research in context  

For the EVPI and EVSI calculations, the method developed in Chapter 3 competes with normal 

approximation methods. For the specific case of two-arm trials, there are closed-form 

equations for EVPI and EVSI calculations that can be used for an efficient EVI analysis, and the 

results are not subject to Monte Carlo uncertainty 71. This method, unfortunately, is not 

currently applicable to RCTs with more than two arms and the analyst should resort to Monte 

Carlo simulation. Still, Monte Carlo simulation based on sampling from a normal distribution 

will be faster than resampling-based methods that work on the raw RCT data. In addition, the 

normal approximation methods for EVI analysis are well integrated in realistic decision contexts 

and are extended to tackle issues such as imperfect implementation, transferability of results 

across jurisdictions, and so on 92. There is no reason to believe non-parametric EVSI methods 

cannot be expanded likewise, but this remains to be explored in future studies.  

Eckermann et al. consider the normal approximation approach to EVI calculation as the 

Occam’s razor in EVI analysis 92. This argument is made on the basis of the ease of use of this 

method and it being on par with or better than bootstrap methods in EVPI calculation, 

especially in small samples and because of “their [more complex EVI methods such as 

bootstrapping] increased complexity and current limitations in informing decision making, with 

restriction to EVPI rather than EVSI and not allowing for important decision-making contexts” 92. 
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The method presented in Chapter 3 removes the limitation of non-parametric methods for EVSI 

calculation, and while I agree that the simplicity and ease of use of the normal methods are 

very attractive, their comparative accuracy for EVSI calculations in realistic scenarios remains to 

be studied. This task does not seem to be an easy undertaking given that there is no gold 

standard for EVSI calculations for any realistic data. All in all, as in many other areas in statistics, 

parametric and non-parametric methods can coexist and each can be used in certain situations. 

One example is the imputation of missing data in which methods based on normal 

approximation and non-parametric methods based on bootstrap are both popular. The non-

parametric bootstrap method of missing data imputation 65,99 is specifically similar to the two-

level approach for EVSI calculation outlined in Chapter 3. This is not a coincidence, as I believe 

EVI calculations are connected to the missing data problem; one can see the data of the future 

trial as missing data that can be imputed based on the current RCT. 

The method presented in Chapter 4 can be compared to the method of EVPPI calculation based 

on partitioning the domain of the parameter of interest recently developed by Strong et al. 121. 

The two methods are operationally similar. However, the method by Strong et al. is based on 

an arbitrary partitioning of the domain of the parameter of interest given that for a wide range 

of the number of partitions, the estimated EVPPI seems to remain close to the true EVPPI (see 

Figure 1 in their report). The present method can be seen as an improved version of the 

method by Strong et al. as partitioning is performed only at the 'necessary' points in which the 

net benefit functions of different decisions cross. This almost surely increases the precision of 

the estimates. However, finding such segmentation points requires a numerical maximization 
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algorithm which slightly increases its computational demand and the complexity of the 

software implementation compared to the method proposed by Strong et al.  

5.4 Knowledge transfer and exchange  

Knowledge transfer and exchange (KTE) is an interactive interchange of knowledge between 

research users and researcher producers 133. If the target audience does not become aware of 

the research results and put them into practice, then the time and resources spent on the 

research will be wasted. Given the importance of KTE, and to elaborate on the potential steps 

needed to be taken in order to ensure the uptake of the research developed in this thesis, I 

applied the framework suggested by Lavis et al. 134. This framework provides a list of five 

elements to consider when organizing KTE: message, target audience, messenger, knowledge 

transfer process and support system, and evaluation strategy. 

What do research organizations transfer to their target audiences, and at what cost (the 

Message)?  

The present thesis elaborates on the research that makes stochastic CEA and EVI analyses more 

accessible. The first core message to transfer is that the bootstrap method of RCT-based CEA 

has the capacity to be used in situations that so far have been considered to be exclusive to 

parametric modeling; and second, the set of specific methods that carry such additional 

information, as well as the computer programs developed for this purpose. The KTE literature 

emphasizes that the message should be "action-able" 134. In this context, this can be 

interpreted as a message that results in the change of practice by the end user. This is most 
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relevant for the applied economist who can conceivably use the aforementioned methods 

instead of, or along with, alternatives.  

To whom do research organizations transfer research knowledge, and with what investments 

in targeting them (the Target)? 

To improve the use of research, researchers must first decide who their audience is. Willson et 

al. suggest that each audience has different information needs and communication styles and 

therefore the information must be appropriately tailored 135. In this regard, I recognize two 

distinct audience as the target of my research: the applied analysts (health economists and 

biostatisticians involved in RCT-based CEA research), and theoretical scientists (biostatisticians 

and statisticians developing methodology for RCT-based CEAs). The applied analyst uses the 

methods for the analysis of their data, and the theorist further develops the theory behind the 

proposed approaches to improve the methods and to create new ones.  

By whom is the research knowledge transferred, and with what investments in assisting them 

(the Messenger)?  

The natural avenue for propagating this research to the target audience is the publication of 

the results in peer-reviewed journals and presentations at conferences. This is probably the 

most efficient method of dissemination of the knowledge generated in this work to the 

theoretical scientists. For the applied analysts, however, I will use alternative methods of 

communication and engagement. It is known that when researchers have the skills and 

experience to act as the principal messenger, their credibility will likely make them the ideal 
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choice 134. I can also seek the engagement of trusted intermediaries that can act as knowledge 

brokers. Among those candidates, I specially think professional bodies such as the Canadian 

Agency for Drugs and Technologies in Health (CADTH) and the International Society For 

Pharmaco-economics and Outcomes Research (ISPOR) are viable messengers for my research. 

These agencies periodically publish guidelines and recommendations and I hope the knowledge 

generated throughout my thesis research will be reflected in such reports in the future. It is 

already shown that the uptake of research is influenced by the reputation and credibility of the 

messenger such as the authoritative organizations representing professional groups 136. 

How do research organizations engage target audiences in the research process (the Process 

and supporting systems)?  

For the applied analysts, I will not restrict myself to the traditional academic language of peer-

reviewed publication. Non-traditional communication channels will be used. I have already 

presented the method in Chapters 2 and 4 in conference proceedings, which enables more 

face-to-face engagement of the applied analyst. I will avoid information overload, which is a 

known barrier for engaging the target audience; and will emphasize on the presentation of the 

summary results in simple language, and with clearly worded recommendations 137. With the 

collaboration of some of my colleagues, I have already held a workshop about the method 

developed in Chapter 4 for the CADTH (http://core.ubc.ca/software/voi/), and will continue 

pursuing such opportunities to more directly engage with the relevant audience for this work.  

In addition, I have developed a Microsoft Excel add-in and a set of R functions as a generic 

implementation of the algorithm that can work with PSA data of either RCT-based or model-
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based CEAs with minimal requirement for the consideration of the specific settings of the 

original study. Excel is a very popular platform for decision analysis. R is a popular free and 

open source statistical computing program. The choice of these two software platforms is to 

ensure the maximum availability of the framework for the target audience.  

Do research organizations perform evaluative activities related to knowledge transfer 

(Evaluation strategy)? 

This element of Lavis’ framework for KTE mainly applies to the organizations that sponsor 

research at a larger scale 134. Nevertheless, there are certain opportunities in getting feedback 

from the target audience in this research as well. Such activities can include face-to-face 

communication with the target users which makes the transfer of knowledge a two-way 

communication 138. The target audience for my research is the relatively small community of 

theorists and applied health economists, and the usefulness of such approach in providing 

mutual feedback between the research users and research producers in such settings is already 

established 138. In my future workshops and presentations, I will also try to implement a before-

after survey to evaluate the uptake of the knowledge by the audience. 

5.5 Concluding remarks 

In the world of frozen budgets, escalating costs of new health technologies, and soaring costs of 

RCTs, decision makers should increasingly be efficient in the decisions they make with regard to 

the allotment of resources. Making efficient adoption decisions is informed through CEA, while 

making efficient research prioritization is performed through the EVI analysis. Nevertheless, 
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stochastic CEA which allows the incorporation of evidence uncertainty in the analysis, as well 

the EVI analysis, are relatively young disciplines and there is much room for their improvement. 

This thesis has been an attempt in enriching the toolkit of stochastic CEA and EVI analysis, with 

an eye on the needs of practical economists that use resampling methods for RCT-based CEAs. 

Methods developed in this thesis seem to have applicability for the large camps of health 

economists who embark on the CEA and EVI analysis of RCTs. The research in this thesis was a 

bold step in territories unfamiliar to many health economists, and I hope the methods 

developed in this thesis, and the inevitable gaps remained, will stimulate further research in 

this area.  
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Appendices 

Appendix A.1: R code for stylized example of chapter 2. 

Copying this code in the R environment will automatically generate the graph.  

n<-100;  #Number of data points 

muLTheta<-1; #Mean of theta in the observed sample 

vLTheta<-10/n; #Variance of E(theta) in the observed sample 

slope<-2;  

intercept<-1;  

vE<-5/n; #Variance of the error around E(b); 

 

muLB<-intercept+slope*muLTheta;  

vLB<-vLTheta*slope^2+vE; 

 

#In order to generate data that exactly matches the properties described in the text, I found it easier to get samples from the 

joint distribution of (theta,b) which is bivariate normal rather than theta as normal and b as linear on theta. Consult any stat 

text book for who to derive parameters of the bivariate normal (theta,b) from a linear regression model; 

rho<-slope/sqrt(slope^2+vE/vLTheta); #correlation coefficient between (theta,b) 

 

mu0Theta<-0.5; #Mean of prior distribution on theta 

v0Theta<-0.1; #Variance of the prior distribution on theta 

 

mu1Theta<-(mu0Theta*vLTheta+muLTheta*v0Theta)/(vLTheta+v0Theta); #Fixed-effect normal method for the mean of posterior 

distribution of E(theta) 

v1Theta<-1/(1/v0Theta+1/vLTheta); #Fixed-effect normal method for the variance of posterior distribution of E(theta) 

 

mu1B<-intercept+slope*mu1Theta; #Mean of the posterior distribution for E(b) with updated information on theta 

v1B<-(1-rho*rho)*vLB+vLB/vLTheta*rho*rho*v1Theta; #Variance of the posterior distribution for E(b) with updated information on 

theta 

 

##############generating sample of theta and b with desired properties################# 

nSim<-10000; #Number of requested vetted bootstraps 

 

#Here I generate random samples of (theta,b) with sample mean and variance as described in the text. Note that the linear model 

of b on theta is transformed to the joint bivariate normal distribution of (theta,b) so that direct manipulation of the 

covariance matrix gives the desired properties for the sample; 

theta<-rnorm(n,0,1); 

theta<-theta-mean(theta); #Set mean to zero 

b<-rnorm(n,0,1);  

b<-b-mean(b); #Set mean to zero; 

x<-cbind(theta,b);  

m<-solve(cov(x));  

m.eig <- eigen(m) 

m.sqrt <- m.eig$vectors %*% diag(sqrt(m.eig$values)) %*% solve(m.eig$vectors) 

x<-x%*%m.sqrt; #This transformation generates a bivariate sample with zero mean and covariaqnce [1 0; 0 1]. type cov(x) to check; 

m<-c(vLTheta*n, rho*sqrt(vLB*n*vLTheta*n), rho*sqrt(vLB*n*vLTheta*n), vLB*n);  

dim(m)<-c(2,2); 

m.eig <- eigen(m) 

m.sqrt <- m.eig$vectors %*% diag(sqrt(m.eig$values)) %*% solve(m.eig$vectors) 

x<-x%*%(m.sqrt);  

x[,1]<-x[,1]+muLTheta; 

x[,2]<-x[,2]+muLB; 

#I have finally generated bivariate sample x for (theta,b) with the exact distributional assumptions outlines in the text. Type 

r<-lm(x[,2]~x[,1]); then type coefficients(r); then type var(residuals(r)); to check 

 

 

##################################Vetted bootstrap########################## 

#Creating the vectors for data 

W<-rep(0,nSim); 

B<-rep(0,2*nSim); #B will hold the mean of bootstrap samples 

dim(B)<-c(nSim,2); 

VB<-B; #VB will hold the mean of vetted bootstrap samples; 

 

#Regular bootstrap; 

count<-0; 

while(count<nSim) 

{ 

 xBS<-x[sample(1:n,n,replace=TRUE),]; #Bootstrap sample of x 

 count<-count+1; 

 B[count,]<-colMeans(xBS); #record the mean of each bootstrap sample 

} 

 

#Vetted bootstrap; 

wMax<-dnorm(mu0Theta,mean=mu0Theta,sd=sqrt(v0Theta)); #Maximum weight (wMax in the text) 

count<-0; 

while(count<nSim) 

{ 

 xBS<-x[sample(1:n,n,replace=TRUE),]; #Bootstrap sample of x 

 w<-dnorm(mean(xBS[,1]),mean=mu0Theta,sd=sqrt(v0Theta)); #w 

 if(runif(1)<w/wMax) #This is the vetting part 
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 { 

  count<-count+1; 

  VB[count,]<-colMeans(xBS); 

 }   

} 

 

######################################Presentation of the results ########### 

#Graph space. (note that if you hange values earlier in the code then xlim and ylim should change to accomodate the graphs) 

xlim<-c(-1,6); 

ylim<-c(-1,1.5); 

 

#Likelihood function of the mean of b 

curve(dnorm(x,mean=muLB,sd=sqrt(vLB)), from=muLB-3*sqrt(vLB),to=muLB+3*sqrt(vLB), xlim=xlim, ylim=ylim, lty=2, xlab="", ylab="", 

main=""); 

lines(xlim,c(0,0)); 

par(new=T); 

#Prior info dist 

curve(dnorm(x,mean=mu0Theta,sd=sqrt(v0Theta)), from=mu0Theta-3*sqrt(v0Theta),to=mu0Theta+3*sqrt(v0Theta), xlim=xlim, ylim=ylim, 

lty=3, xlab="", ylab="", main=""); 

#Posterior dist; 

par(new=T); 

curve(-dnorm(x,mean=mu1B,sd=sqrt(v1B)), from=mu1B-3*sqrt(v1B),to=mu1B+3*sqrt(v1B), xlim=xlim, ylim=ylim, xlab="", ylab="", 

main=""); 

par(new=T); 

hist(B[,2],20, freq=FALSE, xlim=xlim, ylim=ylim, xlab="", ylab="", main=""); 

 

z<-hist(VB[,2],20, plot=FALSE); 

#Reverse the histogram to show it below the axis; 

for(i in 1:(length(z$breaks)-1)) 

{ 

 z$density[i]<--z$density[i]; 

 z$intensities[i]<--z$intensities[i]; 

 z$counts[i]<--z$counts[i]; 

} 

par(new=T); 

plot(z, col=rgb(0.8,0.8,0.8), freq=FALSE, xlim=xlim, ylim=ylim, xlab="", ylab="", main=""); 
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Appendix A.2: R code for stylized example of chapter 3.  

Copying this code in the R environment will automatically generate the graph.  

BS_TYPE_MULTINOMIAL<-1; 

BS_TYPE_DIRICHLET<-2; 

 

 

#Willan-Pinto method for EVSI calculation; 

evsiWP<-function(b0,v0,sigma,n) 

{ 

 v1=1/(1/v0+n/2/sigma^2) 

 #b1<-v1*(b0/v0+n*b_hat/2/sigma^2); 

 sigma_b_hat<-sqrt(v0+2*sigma^2/n); 

  

 A<-v1*n^2/4/sigma^4+1/sigma_b_hat^2; 

 B<-(v1*n/v0/sigma^2-2/sigma_b_hat^2)*b0; 

 C<-(v1/v0^2+1/sigma_b_hat^2)*b0^2; 

 D<-1/2/pi*sqrt(v1/sigma_b_hat^2); 

 

 I1<-D*sqrt(2*pi/A)*exp(B^2/8/A-C/2); 

 a<-n*sqrt(v1*sigma_b_hat^2)/2/sigma^2; 

 b<--n*sqrt(v1)*sigma_b_hat^2*b0/2/sigma^2/v0; 

 I2<-sqrt(v1)*(b*pnorm(b/sqrt(a^2+1))+a^2/sqrt(2*pi*(a^2+1))*exp(-b^2/2/(a^2+1))); 

 I3<-b0*pnorm(-b0*sqrt(sigma_b_hat^2)/v0)-v1*n*sqrt(sigma_b_hat^2)/(2*sigma^2*sqrt(2*pi))*exp(-b0^2*sigma_b_hat^2/2/v0^2); 

 

 EVSI<-I1+I2+I3; 

 

 return(Di(b0,v0)-EVSI); 

} 

 

#Willan-Pinto method for EVPI calculation; 

Di<-function(b0,v0) 

{ 

 return(sqrt(v0/2/pi)*exp(-b0^2/2/v0)-b0*(pnorm(-b0/sqrt(v0))-(b0<=0)*1)); 

} 

 

 

b0<-68.97; 

v0<-3724.78; 

sigma<-sqrt(217227); 

n<-100; 

wtp<-1000; 

 

 

#Non-parametric EVPI and EVSI calculations using the two-level resampling; 

eviNP<-function(n,nSim,bsType=BS_TYPE_MULTINOMIAL) 

{ 

 

 if(bsType==BS_TYPE_MULTINOMIAL) 

 { 

  ptDataBS<-rbinom(nSim,116,41/116)/116; 

  pcDataBS<-rbinom(nSim,116,33/116)/116; 

 } 

 else 

 { 

  ptDataBS<-rbeta(nSim,41,116-41); 

  pcDataBS<-rbeta(nSim,33,116-33); 

 } 

 

 evpi=(sum((ptDataBS-pcDataBS)[ptDataBS>pcDataBS])-sum(ptDataBS-pcDataBS))/nSim*wtp; 

 

 ptDataBSBS<-rbinom(nSim,n,ptDataBS); 

 pcDataBSBS<-rbinom(nSim,n,pcDataBS); 

 b<-wtp*((41+ptDataBSBS)/(116+n)-(33+pcDataBSBS)/(116+n)); 

 

 res<-sum(b[b>0])/nSim; 

 evsi=res-wtp*(41/116-33/116); 

 

 return(list(evpi=evpi,evsi=evsi)); 

} 

 

 

#Note that we use the calls to the eviNP function to calculate both EVPI and EVSI. Because evpi is the same regardless of the 

sample size of the future RCT, we average the EVPIs for  

 

different sample sizes to gain precision; 

main<-function() 

{ 

 sampleSize<<-(0:10)*100; 

 resWP<<-rep(0,length(sampleSize)); 

 resNPMulti<<-resWP; 

 resNPDiri<<-resWP; 

 

 evpiWP<<-Di(b0,v0); 

 evpiMulti<<-0; 

 evpiDiri<<-0; 
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 for(i in 1:length(sampleSize)) 

 { 

  resWP[i]<<-evsiWP(b0,v0,sigma,sampleSize[i]); 

 

  temp<-eviNP(sampleSize[i],1000000,bsType=BS_TYPE_MULTINOMIAL); 

  evpiMulti<<-evpiMulti+temp$evpi; 

  resNPMulti[i]<<-temp$evsi; 

  

  temp<-eviNP(sampleSize[i],1000000,bsType=BS_TYPE_DIRICHLET); 

  evpiDiri<<-evpiDiri+temp$evpi; 

  resNPDiri[i]<<-temp$evsi; 

 } 

 

 evpiMulti<<-evpiMulti/length(sampleSize); 

 evpiDiri<<-evpiDiri/length(sampleSize); 

 

 resWP[1]<<-0; 

 

 yLim<-c(0,Di(b0,v0)); 

 g_range <- range(yLim, resWP, resNPMulti, resNPDiri); 

 

 plot(sampleSize,resWP,type='b',ylim=yLim,pch=21,ann=FALSE); 

 

 lines(sampleSize,resNPDiri,type='o',ylim=yLim,pch=22,lty=2); 

 

 lines(sampleSize,resNPMulti,type='o',ylim=yLim,pch=23,lty=3); 

 

 legend(1, g_range[2], c("Parametric","Bayesian","Approximate Bayesian"), cex=0.8, pch=21:23, lty=1:3); 

 title(ylab="EVSI",xlab="Sample size"); 

} 

 

main(); 

 

#END; 
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Appendix A.3: Exact calculation of the Expected Value of Partial Perfect 

Information for model 1  

Let P0, P1 and C be the probability of survival without treatment, probability of survival with 

treatment, and cost of treatment, respectively. Also let λ be the willingness-to-pay. The model 

inputs are represented by the following distributions: 

)2000,1000(~

)4,6(~

)2,2(~

1

0

UnifC

BetaP

BetaP

   ,

 

with 50000=λ . The incremental net benefit between the treatment and no-treatment 

decisions can be written as 

))((
01

CPPEINB −−= λ

 

and its expected value as 
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EVPPI for P0 (pSurvival_NoRx): ��
|��u�56���
v K Û. �[� − Û. �� − � ̅ is a linearly descending 

function of �� and hence it has one root, denote by 
0PR , on �� which is: 
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λ
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C
PRCPP P  
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The EVPPI is the negative of the area under the segment of the curve of ��
|��that is negative. 

Therefore, 

∫

∫

−+−−=

−−−=

1

57.0

2

1

57.0

)(0

).2,2(/)1.(50000)]2,2,57.0()2,2,1(.[28500

].1500)6.0.(50000[
00

dxBxxII

dPEVPPI pGP

 

Where 6�g, h
 and ��2, g, h
 indicate the beta function and the cumulative distribution 

function of the beta distribution, respectively, with parameters g and	h. Noting that I(1,2,2)=1, 

I(0.57,2,2)= 0.604314, B(2,2)=1/6, and Á2\. (1 − 2) = (�	�	�z
z�[\ , we have  

3120.650
0

=PEVPPI

  

 

Note that the above calculations can easily be verified numerically in R, by calculating the EVPPI 

through numerical integration, and finding the area under the negative part of	E�
|��uINB�P�
v 

by subtracting the integral of the function from the integral of its absolute value (paste the 

below code in R command prompt): 

f<-function(x){return((50000*(0.6-x)-1500)*dbeta(x,2,2));} 
af<-function(x){ return(abs(f(x)));} 

(integrate(af,0,1)$value-integrate(f,0,1)$value)/2 

 

EVPPI for P1 (pSurvival_Rx): ��
|��u�56��[
v K Û. �[ − Û. ����� − � ̅ is a linearly ascending 

function of �[ and hence it has one root on �[ , denoted by 
1PR : 
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53.00)( 001 1
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∫

∫

−−−=
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0

36

53.0

0

)(1

).4,6(/)1.(50000)]4,6,0()4,6,53.0(.[26500
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With I(0,6,4)=0, I(0.53,6,4)= 0.3163517, B(6,4)=0.001984127, and Á2�. (1 − 2)� = z�
� − �z 

� +
z�
� − z��

[� , we have  

275.6181
1

=PEVPPI

  

 

Again, the above calculations can easily be verified numerically in R (paste the below code in R 

command prompt): 

f<-function(x){return((50000*(x-0.5)-1500)*dbeta(x,6,4));} 

af<-function(x){ return(abs(f(x)));} 

(integrate(af,0,1)$value-integrate(f,0,1)$value)/2 

 

EVPPI for C (cRx): 

The root is  

5000)( 01 =−= PPRC λ  

which is outside the range of the distribution of this parameter, therefore  

0=CEVPPI
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The numerical verification in R (paste the below code in R command prompt): 

f<-function(x){return((50000*(0.6-0.5)-x)*dunif (x,1000,2000));} 

af<-function(x){ return(abs(f(x)));} 

(integrate(af,1000,2000)$value-integrate(f,1000,2000)$value)/2 
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Appendix A.4: Excel add-in for single parameter EVPPI calculation 

This is the Visual Basic (VB) code that can be copied into the VB editor in an Excel file. A fully 

functional add-in, with sample data and instructions to use is available from 

http://core.ubc.ca/software/voi 

Note that the code also generates a p-value for segmentation. This is an experimental feature 

and is not discussed in this thesis.  

 
 

' VOI Excel add-in by Mohsen Sadatsafavi 

' Last update 04/04/2011 

' Please cite 'Sadatsafavi M, Najafzadeh M, Bansback M, Sizto M, Sun H, Lynd LD, Marra C. A NOVEL METHOD FOR THE CALCULATION OF 

THE EXPECTED VALUE OF PARTIAL PERFECT INFORMATION. 30th Annual Meeting of the Society for Medical Decision Making Abstracts. 

(October 19-22, 2008). Philadelphia, USA. Available online at: http://smdm.confex.com/smdm/2008pa/webprogram/Paper4378.html' 

' This program is free for use and distribution. In case you found a bug or other problems with the code please email msafavi at 

interchange dot ubc dot ca 

 

 

Option Explicit 

 

Public Function EVPI(NBs As Range) 

    Dim nbsLength, nNBs, y, temp, i, j, k, runSum, eMaxNb 

       

    If IsNumeric(Right(NBs.Address, 1)) Then nbsLength = NBs.Rows.Count Else nbsLength = NBs.Cells(NBs.Rows.Count, 

1).End(xlUp).Row 

    nNBs = NBs.Columns.Count 

      

    If Not IsNumeric(NBs(1, 1)) Then 

        y = NBs.Range("A2:" & Chr(Asc("A") + nNBs - 1) & nbsLength) 

    Else 

        y = NBs.Range("A1:" & Chr(Asc("A") + nNBs - 1) & nbsLength) 

    End If 

    nbsLength = UBound(y, 1) 

     

    If nbsLength < 100 Then 

        EVPI = "Warning: too few samples" 

        Exit Function 

    End If 

    If UBound(y, 2) = 1 Then 

        temp = y 

        ReDim y(nbsLength, 2) 

        For i = 1 To nbsLength 

            y(i, 1) = temp(i, 1) 

            y(i, 2) = 0 

        Next i 

        nNBs = nNBs + 1 

    End If 

                        

                        

    runSum = 0 

    For i = 1 To nbsLength 

        For k = 1 To nNBs 

            If k = 1 Then temp = y(i, k) Else temp = WorksheetFunction.Max(temp, y(i, k)) 

        Next 

        runSum = runSum + temp 

    Next 

     

    For i = 1 To nNBs 

        temp = 0 

        For k = 1 To nbsLength 

            temp = temp + y(k, i) 

        Next 

        If i = 1 Then eMaxNb = temp Else If temp > eMaxNb Then eMaxNb = temp 

    Next 

     

    EVPI = (runSum - eMaxNb) / nbsLength 

    Exit Function 

kooni: 

    MsgBox Err.Description, vbCritical 

End Function 

 

 

Public Function EVPPI(param As Range, NBs As Range, Optional sigLevel = 0.1) 

    Dim minP, i, j, k, temp, v, minX, maxX, minWhere, maxWhere, x0, x1, zetaMin, zetaMax, zeta, p, runSum, eMaxNb, localMax 

    Dim nbsLength 

    Dim nNBs 

    Dim parmsLength 

    Dim roots(100) 

    Dim rootsN 

    Dim rootsLeft(100) 

    Dim rootsRight(100) 

    rootsN = 1 
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    minP = 1 

       

        

    If IsNumeric(Right(param.Address, 1)) Then parmsLength = param.Rows.Count Else parmsLength = param.Cells(param.Rows.Count, 

1).End(xlUp).Row 

    If IsNumeric(Right(NBs.Address, 1)) Then nbsLength = NBs.Rows.Count Else nbsLength = NBs.Cells(NBs.Rows.Count, 

1).End(xlUp).Row 

     

    If Not parmsLength = nbsLength Then 

        EVPPI = "Error: input parameters not the same siZe" 

        Exit Function 

    End If 

     

    nNBs = NBs.Columns.Count 

      

    Dim x, y 

 

    If Not IsNumeric(param(1, 1)) Then 

        x = param.Range("A2:A" & parmsLength) 

        y = NBs.Range("A2:" & Chr(Asc("A") + nNBs - 1) & parmsLength) 

    Else 

        x = param.Range("A1:A" & parmsLength) 

        y = NBs.Range("A1:" & Chr(Asc("A") + nNBs - 1) & parmsLength) 

    End If 

    parmsLength = UBound(x, 1)  'update the estimat eo flength given the above code 

     

    If parmsLength < 100 Then 

        EVPPI = "Warning: too few samples" 

        Exit Function 

    End If 

    If UBound(y, 2) = 1 Then 

        temp = y 

        ReDim y(parmsLength, 2) 

        For i = 1 To parmsLength 

            y(i, 1) = temp(i, 1) 

            y(i, 2) = 0 

        Next i 

        nNBs = nNBs + 1 

    End If 

    'ReDim x(parmsLength, 1) 

    'ReDim y(parmslengh, nNBs) 

     

    QuickSort x, y 

     

    ReDim nbDiffs(parmsLength, nNBs * (nNBs - 1) / 2), partialSums(parmsLength, nNBs * (nNBs - 1) / 2) 

     

    Dim counter 

    counter = 1 

     

    'MsgBox param(1, 1) 

    On Error GoTo kooni 

    For i = 1 To nNBs 

        For j = i + 1 To nNBs 

            v = 0 

            For k = 1 To parmsLength 

                nbDiffs(k, counter) = y(k, i) - y(k, j) 

                If k = 1 Then 

                    partialSums(k, counter) = nbDiffs(k, counter) 

                    minX = partialSums(k, counter) 

                    minWhere = 1 

                    maxX = partialSums(k, counter) 

                    maxWhere = 1 

                Else 

                    partialSums(k, counter) = partialSums(k - 1, counter) + nbDiffs(k, counter) 

                    If partialSums(k, counter) < minX Then 

                        minX = partialSums(k, counter) 

                        minWhere = k 

                    End If 

                    If partialSums(k, counter) > maxX Then 

                        maxX = partialSums(k, counter) 

                        maxWhere = k 

                    End If 

                End If 

                v = v + nbDiffs(k, counter) ^ 2 / parmsLength 

            Next 

             

            x0 = partialSums(1, counter) 

            x1 = partialSums(parmsLength, counter) 

                     

            zetaMin = Application.WorksheetFunction.Min(x1 - minX, x0 - minX) 

            zetaMax = Application.WorksheetFunction.Min(maxX - x0, maxX - x1) 

                     

            zeta = Application.WorksheetFunction.Max(zetaMin, zetaMax) 

            p = 2 * Application.WorksheetFunction.NormDist(-zeta / Math.Sqr(v * parmsLength), 0, 1, True) 

            If p < minP Then minP = p 

            If p < sigLevel Then 

                rootsN = rootsN + 1 

                If zetaMin > zetaMax Then 

                    roots(rootsN) = minWhere 

                Else 

                    roots(rootsN) = maxWhere 

                End If 

            End If 

            counter = counter + 1 
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        Next 

    Next 

     

    roots(1) = 0 

    rootsN = rootsN + 1 

    roots(rootsN) = parmsLength 

    runSum = 0 

    For i = 1 To rootsN - 1 

        For j = 1 To nNBs 

            temp = 0 

            For k = roots(i) + 1 To roots(i + 1) 

                temp = temp + y(k, j) 

            Next 

            If j = 1 Then localMax = temp Else If temp > localMax Then localMax = temp 

        Next 

        runSum = runSum + localMax 

    Next 

                                 

    For i = 1 To nNBs 

        temp = 0 

        For k = 1 To parmsLength 

            temp = temp + y(k, i) 

        Next 

        If i = 1 Then eMaxNb = temp Else If temp > eMaxNb Then eMaxNb = temp 

    Next 

     

    EVPPI = runSum - eMaxNb 

     

        

    ReDim results(3, 3) 

    results(0, 0) = EVPPI / parmsLength 

    results(1, 0) = minP 

    results(0, 1) = results(0, 1) 

    results(2, 0) = zeta / Math.Sqr(v * parmsLength) 

    results(0, 2) = results(2, 0) 

     

    EVPPI = results 

    Exit Function 

kooni: 

    MsgBox Err.Description, vbCritical 

End Function 

 

 

Private Sub QuickSort(ByRef Values As Variant, Optional ByRef Attached As Variant, Optional ByVal Left As Long, Optional ByVal 

Right As Long) 

   

  Dim i As Long 

  Dim j As Long 

  Dim k As Long 

  Dim Item1 As Variant 

  Dim Item2 As Variant 

  Dim II 

     

  On Error GoTo Catch 

  If IsMissing(Left) Or Left = 0 Then Left = LBound(Values) 

  If IsMissing(Right) Or Right = 0 Then Right = UBound(Values) 

  i = Left 

  j = Right 

 

  Item1 = Values((Left + Right) \ 2, 1) 

  Do While i < j 

    Do While Values(i, 1) < Item1 And i < Right 

      i = i + 1 

    Loop 

    Do While Values(j, 1) > Item1 And j > Left 

      j = j - 1 

    Loop 

    If i < j Then 

      Call Swap(Values, i, j) 

      Call Swap(Attached, i, j) 

    End If 

    If i <= j Then 

      i = i + 1 

      j = j - 1 

    End If 

  Loop 

  If j > Left Then Call QuickSort(Values, Attached, Left, j) 

  If i < Right Then Call QuickSort(Values, Attached, i, Right) 

    Exit Sub 

Catch: 

  MsgBox Err.Description, vbCritical 

   

End Sub 

 

Private Sub Swap(ByRef Values As Variant, ByVal i As Long, ByVal j As Long) 

  Dim Temp1 As Double 

  Dim d, C 

  d = UBound(Values, 2) 

  For C = 1 To d 

    Temp1 = Values(i, C) 

    Values(i, C) = Values(j, C) 

    Values(j, C) = Temp1 

  Next C 

End Sub 
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Sub ParseRange(Optional RefAddress As String = vbNullString, _ 

    Optional LeftColumn As String = vbNullString, _ 

    Optional LeftRow As Long = 0, _ 

    Optional RightColumn As String = vbNullString, _ 

    Optional RightRow As Long = 0) 

    Dim Ary1 As Variant, Ary2 As Variant, N As Integer, Msg As String 

    Const Title As String = "Procedure 'ParseRange'" 

    On Error GoTo ErrMsg 

    If RefAddress = vbNullString _ 

    Then RefAddress = ActiveWindow.RangeSelection.Address(, False) 

      

     'Convert the address to column-absolute, row-absolute format 

    RefAddress = Application.ConvertFormula(Formula:=RefAddress, _ 

    FromReferenceStyle:=xlA1, _ 

    ToReferenceStyle:=xlA1, _ 

    ToAbsolute:=xlAbsolute) 

      

    Ary1 = Split(RefAddress, "$") 

    Ary2 = Split(Ary1(2), ":") 

    LeftColumn = Ary1(1) 

    LeftRow = Ary2(0) 

    On Error Resume Next 

    RightColumn = Ary1(3) 

    RightRow = Ary1(4) 

    GoTo Finish 

      

ErrMsg: 

    Select Case Err.Number 

    Case 438, 1004, 9:   Msg = "A range is not currently selected or specified." & vbCr 

    Case Else:   Msg = "An unexpected error occurred in macro 'ParseRange'." & vbCr 

    End Select 

    Msg = Msg & "Error number: " & Err.Number & vbCr & _ 

    "Descrip: " & Err.Description 

    Resume Contin 

Contin: 

    MsgBox Msg, vbCritical, Title 

    LeftColumn = vbNullString 

    LeftRow = -1 

    RightColumn = vbNullString 

    RightRow = -1 

Finish: 

    On Error Resume Next 

    Erase Ary1 'Release memory 

    On Error Resume Next 

    Erase Ary2 

End Sub 
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Appendix A.5: R code for the efficient algorithm for EVPPI calculation 

This is the function implemented in R for the method developed in Chapter 4. An exemplary 

analysis is embedded in the code and the results will be displayed after copying the code in the 

R environment.   

 

Another copy of the code is available from http://www.core.ubc.ca/~msafavi/thesis 
 

 

# R code for EVPPI calculation by Mohsen Sadatsafavi; 

# Version 1.00 

# Last update: 18/12/2011 

#  

# Usage: evppi(param,nbs,...); 

# param: the nX1 vector of the stochastic parameter (_theta_hat in the manuscript).  

# nbs: the nXm matrix of corresponding net benefits for m decisions (NB_hat in the manuscript). If m=1, then the it is assumed 

nbs are incremental net benefit between two decisions.  

# other parameters: use to specify the number of segmentation points between pairs of decision. This information should be 

submitted in the form of c(a,b,k) where a and b specify the pairs of strategies, and k (which should be 0, 1, or 2), is the 

number of segmentation points. For example, for a three-decision model, using the function evppi(x1,nbs,c(1,2,0),c(2,3,2)) forces 

the algorithm not to fit any segmentation points between decisions 1 and 2, and 2 segmentations between decisions 2 and 3, for 

parameter x1. The default is to fit 1 segmentation point for each pairs of decisions. 

#  

# code for model 1, and an example of evppi calculation using the evppi function are appended to the end; 

 

 

 

evppi<-function(param,nbs,...) 

{ 

 n<-length(param); 

 o<-order(param); 

 param<-param[o]; 

 

 

 d<-dim(nbs)[2]; 

 if(is.vector(nbs)) 

 { 

  nbs<-cbind(nbs[o],0); 

  d<-2; 

 } 

 

 if(d==1) 

 { 

  nbs<-cbind(nbs[o,],0); 

  d<-2; 

 } 

 else 

  nbs<-nbs[o,]; 

 

 nSegs<-matrix(1,d,d); 

 exArgs<-list(...); 

 for(obj in exArgs) 

 { 

  if(is.null(names(obj))) 

   if (length(obj)==1) 

    nSegs[1,2]<-obj 

   else 

    nSegs[obj[1],obj[2]]<-obj[3]; 

 } 

 

 segPoints<-c(); 

 

 for(i in 1:(d-1)) 

  for(j in (i+1):d) 

  { 

   message(paste('Fitting ',nSegs[i,j],' segmentation points for decisions ',i,j)); 

 

   cm<-cumsum(nbs[,i]-nbs[,j])/n; 

 

   if(nSegs[i,j]==1) 

   { 

    l<-which.min(cm); 

    u<-which.max(cm); 

    if(cm[u]-max(cm[1],cm[n])>min(cm[1],cm[n])-cm[l]) 

                      segPoint<-u 

                  else 

                      segPoint<-l; 

    if (segPoint>1 && segPoint<n) 

     segPoints<-c(segPoints, segPoint); 

   } 

 

   if(nSegs[i,j]==2) 

   {  

    minL<-0; 

           maxL<-0; 
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           minR<-0; 

           maxR<-0; 

         

           aMinL<-array(0,n); 

           aMaxL<-array(0,n); 

           aMinR<-array(0,n); 

           aMaxR<-array(0,n); 

        

           for(k in 1:n) 

    { 

               minL<-min(minL,cm[k]); 

               maxL<-max(maxL,cm[k]); 

               minR<-min(minR,-cm[n]+cm[n-k+1]); 

               maxR<-max(maxR,-cm[n]+cm[n-k+1]); 

               aMinL[k]<-minL; 

               aMaxL[k]<-maxL; 

               aMinR[n-k+1]<-minR; 

               aMaxR[n-k+1]<-maxR; 

    } 

 

    sP<-aMaxL-aMinR; 

           sN<-aMaxR-aMinL; 

 

    if(max(sP)>max(sN)) 

    { 

     br<-which.max(sP); 

     segPoint<-c(which.max(cm[1:br]),br+which.min(cm[br:n])); 

    } 

    else 

    { 

     br<-which.max(sN); 

     segPoint<-c(which.min(cm[1:br]),br+which.max(cm[br:n])); 

    } 

 

    if (segPoint[1]>1 && segPoint[1]<n) 

     segPoints<-c(segPoints, segPoint[1]); 

 

    if (segPoint[2]>1 && segPoint[2]<n) 

     segPoints<-c(segPoints, segPoint[2]); 

   } 

 

 

   x11(); 

   plot(param,cm); 

   for(k in 1:length(segPoint)) 

   { 

    if (segPoint[k]>1 && segPoint[k]<n) 

     lines(c(param[segPoint[k]],param[segPoint[k]]),c(0,cm[segPoint[k]])); 

   } 

   title(paste("Decision",i,"vs.",j)); 

 

  } 

 

 if(length(segPoints)>0) 

 { 

  segPoints2<-c(0, segPoints[order(segPoints)], n); 

 

  evppi<-0; 

       for(j in 1:(length(segPoints2)-1)) 

             evppi<-evppi+max(colSums(nbs[(1+segPoints2[j]):segPoints2[j+1],]))/n;     

  evppi<-evppi-max(colMeans(nbs)); 

 } 

 else 

  evppi<-0; 

 

      return(list(evppi=evppi,segPoints=segPoints)); 

} 

 

 

 

 

 

 

 

 

 

#This is the model currently in the manuscript for which EVPPIs can be 

#calcuated analytically. 

 

model1<-function(n,parmsIn=c(NA, NA, NA),exParms) 

{ 

 if(is.vector(parmsIn)) 

  parmsIn=matrix(parmsIn,1,3); 

  

 if(!exists('evppi.wtp')) 

  evppi.wtp<<-50000; 

 

 if(length(parmsIn)>3 && length(parmsIn)!=n*3) 

 { 

  cat('error: when input parameters are explicit they should agree with n','\n'); 

  return(NA); 

 } 

 

 if(length(parmsIn)==3) 
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 { 

  temp<-parmsIn; 

  if(is.na(temp[,1])) 

   p0<-rbeta(n,2,2) 

  else 

   p0<-rep(temp[,1],n); 

  if(is.na(temp[,2])) 

   p1<-rbeta(n,6,4) 

  else 

   p1<-rep(temp[,2],n); 

  if(is.na(temp[,3])) 

   cRx<-1000+runif(n)*1000 

  else 

   cRx<-rep(temp[,3],n); 

 } 

 else 

 { 

  p0<-parmsIn[,1]; 

  p1<-parmsIn[,2]; 

  cRx<-parmsIn[,3]; 

 } 

 

    cNoRx<-0; 

    uNoRx<-p0; 

    uRx<-p1; 

 

    parmsOut<-cbind(p0, p1, cRx); 

    nmbs<-cbind(uNoRx*evppi.wtp-cNoRx,uRx*evppi.wtp-cRx); 

 

 return(list(parmsOut,nmbs)); 

} 

 

 

temp<-model1(10000); 

params<-temp[[1]]; 

nbs<-temp[[2]]; 

evppi(params[,1],nbs); 

 

 

 

#END; 

 

 


