
Response-time Analysis and Overload Management in
Real-time Systems

by

Sriram Murali

B. E., Electronics and Communications Engineering, Anna University,

2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

The University Of British Columbia

(Vancouver)

February 2012

c© Sriram Murali, 2012



Abstract

We provide two approaches to handling overload in shared resources offering real-

time guarantees. We first provide a technique (based on mathematical optimiza-

tion) for identifying the possible causes for an overload situation by computing the

worst-case demand of the system, depending upon the amount of requests serviced.

Worst-case analysis of response time has a pseudo-polynomial time complexity,

and when there is no knowledge about the workload, the complexity further in-

creases. We provide polynomial-time heuristics to reduce the computation time

of the algorithm. Further, we evaluate it against other techniques using stochastic

analysis to stress on the accuracy and ease of estimation of the result. The schedul-

ing policy based on the approach is useful to detect an overload in the resource and

to allow us to make responsible decisions on it. Secondly, we present a scheduling

policy (obtained through stochastic approximation) to handle overload in real-time

systems. Competitive analysis of online algorithms has commonly been applied to

understand the behavior of real-time systems during overload conditions. While

competitive analysis provides insight into the behavior of certain algorithms, it is

hard to make inferences about the performance of those algorithms in practice.

Similar on-line scheduling approaches tend to function differently in practice due

to factors. Further, most work on handling overload in real-time systems does

not consider using information regarding the distribution of arrival rates of jobs

and execution times to make scheduling decisions. With some information about

the workload, we aim to improve the revenue earned by the service provider, in

a scenario when each successful job completion results in revenue accrual. We

prove that the policy we outline does lead to increased revenue when compared to

a class of scheduling policies that make static resource allocations to different ser-

ii



vice classes. We also use empirical evidence to underscore the fact that this policy

performs better than a variety of other scheduling policies. The ideas presented

can be applied to several soft real-time systems, specifically systems with multiple

service classes.

iii



Preface

Chapter 4 consists of work continued by Sriram Murali, based on the initial re-

search conducted by Dr. Sathish Gopalakrishnan1.

1Supervisor, Assistant Professor, Department of Electrical and Computer Engineering, University
of British Columbia

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overload Management in Real-time Systems . . . . . . . . . . . 2

1.2 Overview of our Work . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 On-line Scheduling Approach to Detect Overload . . . . . 3

1.2.2 Maximizing Revenue when the System is Overloaded . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background in Real-time Scheduling . . . . . . . . . . . . . . . . . . 7
2.1 Basics of Schedulability Theory . . . . . . . . . . . . . . . . . . 7

2.1.1 Simple Schedulability Tests . . . . . . . . . . . . . . . . 8

2.1.2 Worst-case Response-time (WCRT) Analysis of Periodic

Task Systems . . . . . . . . . . . . . . . . . . . . . . . . 9

v



2.1.3 WCRT Analysis of Tasks with Arbitrary Deadlines . . . . 10

2.1.4 Competitiveness of On-line Scheduling Algorithms for Real-

time Systems . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Basics of Combinatorial Optimization . . . . . . . . . . . . . . . 11

3 On-line Scheduling Policy for Overload Management . . . . . . . . 13
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 System and Task Model . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 The General Task Model (GTM) . . . . . . . . . . . . . . 15

3.2.2 Simple Task Scheduling Model using Rate Monotonic Schedul-

ing (RMS) . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Practical Considerations for Scheduling in a GTM . . . . 18

3.3 WCRT Analysis of a General Task Model . . . . . . . . . . . . . 18

3.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Exact WCRT Analysis . . . . . . . . . . . . . . . . . . . 21

3.3.3 Off-line Schedulability Test with Exact WCRT . . . . . . 29

3.4 Reducing the Complexity of WCRT Analysis . . . . . . . . . . . 37

3.4.1 Approximated WCRT Analysis Formulation . . . . . . . . 38

3.4.2 Empirical Evaluation of Approximated WCRT Analysis . 41

3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Scheduling to Improve Rewards during Overload . . . . . . . . . . 45
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 System and Task Model . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Identifying a Good Scheduling Policy . . . . . . . . . . . . . . . 48

4.3.1 Optimal Fractional Resource Allocation . . . . . . . . . . 49

4.3.2 An Improved Policy for Online Job Selection . . . . . . . 51

4.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Comparison with Stochastic Dynamic Programming (SDP) 55

4.4.2 Comparison with ROBUST . . . . . . . . . . . . . . . . . 58

4.4.3 Comparison with REDF . . . . . . . . . . . . . . . . . . 61

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



5 Conclusions and Future Improvements . . . . . . . . . . . . . . . . 65
5.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . 65

5.1.1 On-line Scheduling Policy to Detect Overload . . . . . . . 65

5.1.2 Overload Management to Improve Rewards by Stochastic

Approximation . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Potential Future Improvements . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



List of Tables

Table 3.1 Task Schedulability Points Si . . . . . . . . . . . . . . . . . . 27

Table 3.2 Utilization and Response-time Bounds for a Barely Schedulable

Task Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.3 Comparison of Tight Upper Bounds on Response-time . . . . . 42

Table 4.1 Task Stream Parameters to Compare the Performance of the

Proposed Policy with Other Policies (Two Task Streams) . . . 56

viii



List of Figures

Figure 2.1 Binding Constraints in a Linear Program (LP) Problem . . . . 12

Figure 3.1 Illustration of GTM for Two Tasks . . . . . . . . . . . . . . . 16

Figure 3.2 Occurrence of (a)Processor Idle Time, with Sufficient Test for

Schedulability, and (b) Processor Time Demand Overflow with

Necessary Tests for Schedulability . . . . . . . . . . . . . . . 25

Figure 3.3 Comparison of Sufficient and Exact Test for Schedulability . . 28

Figure 3.4 (a)Worst-case Processor Demand Bound, and (b) Correspond-

ing Utilization Bound, Uub
i , for a Barely Schedulable Task Set 34

Figure 3.5 Space of Binary Search to find Rub
i . . . . . . . . . . . . . . 36

Figure 3.6 Timeline of P j for the Example in Table 3.1 . . . . . . . . . 40

Figure 3.7 Empirical evaluation of Approximated WCRT Analysis . . . . 43

Figure 4.1 Performance of Policy Z Compared with the Optimal Frac-

tional Policy and SDP . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.2 Performance of Policy Z Compared with the ROBUST Policy

when Slack Factor is 2 . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.3 Performance of Policy Z Compared with the ROBUST Policy

when the Slack Factor is 4 . . . . . . . . . . . . . . . . . . . 60

Figure 4.4 Performance of Policy Z Compared with the REDF Policy (Ran-

dom Rewards) . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.5 Performance of Policy Z Compared with the REDF Policy (Lin-

ear Rewards) . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



Glossary

FOGS The Faculty of Graduate Studies

UGF University Graduate Fellowship

EDF Earliest Deadline First

EPU Effective Processor Utilization

FAP Fractional Allocation Policy

FPS Fixed-Priority Scheduling

FPPS Fixed-Priority Preemptive Scheduling

FPTAS Fully Polynomial-Time Approximation Scheme

MPEG Motion Picture Experts Group

GTM General Task Model

IRIS Increased Reward with Increased Service

LP Linear Program

MF Multiframe Task Model

PTAS Polynomial-Time Approximation Scheme

QOS Quality-of-Service

QRAM QoS-based Resource Allocation Model

x



RMA Rate Monotonic Analysis

RMS Rate Monotonic Scheduling

RTA Response-time Analysis

RTQT Real-time Queuing Theory

SDP Stochastic Dynamic Programming

SLA Service Level Agreement

WCRT Worst-case Response-time

xi



Acknowledgments

I extend my gratitude to faculty and students at UBC and my friends, who inspired

me to write the thesis. I am sincerely thankful to my advisor, and mentor Dr.

Sathish Gopalakrishnan, without whom I would not be the person I am today. His

guidance helped me address several hard research problems, as well as gain a good

perspective of the growing job industry.

My sincere thanks to all my course supervisors from Electrical and Computer

Engineering and Computer Science Departments, for their support throughout the

course of my degree. I am also thankful for the past and present members of

Radical lab, whose company made me feel at home, and willing to learn. Debojit,

Theepan, Maliha, Karim and Bader were always around, whether for a relaxing

conversation, or a heated discussion after the Paper Reading seminar. I am grateful

for having Madhu, Mrigank, Karthik, Jagath and Shankar beside me during the

times of need. Finally, my special regards to my parents, grand-parents, Bharath

(brother), and cousins, who helped me at different stages of my life. I am grateful

to The Faculty of Graduate Studies (FOGS), University of British Columbia (UBC)

for granting the University Graduate Fellowship (UGF)2 for pursuing my degree.

I dedicate this thesis to my guru Prof. N Venkateswaran (Waran), who guided

me to pursue this career.

2UBC Annual fellowship awards for meritorious students pursuing graduate degree

xii



Chapter 1

Introduction

Large scale Internet-based operators provide a variety of services today. These

services range from simple HTML content retrieval to sophisticated infrastructure

services. Amazon.com, for example, offers a storage service (S3) for developing

flexible data storage capabilities, a database with support for real-time queries over

structured data (SimpleDB), and a computation cloud for web-scale computing

(Elastic Cloud) [2]. Such services are offered at a basic support level, and at pre-

mium support levels with more stringent Service Level Agreement (SLA). These

SLAs specify the availability, reliability, and response times that customers can ex-

pect for the services provided. Further, several services are offered on a pay-for-use

model rather than on the basis of long-term contracts.

Whereas most service providers size their systems to meet the normal demand

and some spikes in workload, studies on Internet service workload have noted that

peak-to-average ratio of workload varies from 1.6:1 to 6:1 [12]. This large vari-

ation makes it exceedingly difficult for service providers to size their systems to

handle all possible workload scenarios. Systems should, therefore, be designed to

gracefully degrade under overload conditions. Web services are illustrative of sys-

tems that need to handle heavy workload and respond to requests within bounded

durations to adhere to SLAs with clients.

These services are like any other application, characterized by a group of re-

quests competing for a shared or distributed resource. However, the important

difference is that they have predefined priority levels, and have deadlines to be met

1



based on the offered SLA. Soft real-time systems are a class of such systems in

which the deadlines can be missed, but results in the loss of revenue to the ser-

vice providers. The revenue earned directly depends upon the requests serviced

within the expected response times. Since many service providers have abundant

resources, extra resources can be provisioned for the clients who require more.

However, during times of severe overload, or when there is a massive outage of sys-

tem resources, alternative approaches such as dropping the jobs that are requested

by clients with lower Quality of Service (QoS) guarantees.

1.1 Overload Management in Real-time Systems
In the case of a large amount of requests, the system administrator might provision

additional resources to serve the clients, or use a scheduling policy to drop cer-

tain requests and (preferentially) provide service to requests from clients that offer

better revenue (have chosen a higher QoS. Finding the exact characteristics of the

scheduling algorithm gives a few metrics to compare, but are not ideal for handling

hugely varying workloads [12]. Approaches towards assuming the behavior of the

workload, and making scheduling decisions based on it have proven to be efficient,

but are based on stochastic modeling. Finding the best possible solution among the

two is hard, but the knowledge of both is ideal for making meaningful decisions.

It is important because, even though the SLA may indicate peak workload,

the average workload might be much lower than the peak workload. In order to

conserve resources, often the total available processing power of the system would

be significantly lower than the cumulative requirement of all the tasks serviced

over a period of time. Since most of the requests are short lived, the resources

gets freed-up very quickly. Service providers also multiplex service among many

clients, and this increases the need for managing situations when the requests from

clients overload the system; the duration of the overload maybe a few minutes to

a few hours and a good scheduling policy will lead to optimal (or near-optimal)

revenue for the service provider per unit time.

By using on-line schedulability tests, these policies can be made efficiently.

Schedulability analysis is essential to validate if the requests can meet their dead-

lines. The system resource has a peak utilization of 100%, that is shared among a

2



stream of requests. These requests comprise of a stream of jobs, having an arrival

time that is periodic, or arbitrary, a deadline relative to its arrival time Di, an ex-

ecution time requirement ei, and a fixed reward for successful completion. These

parameters would be part of the SLA between the client and the service provider.

1.2 Overview of our Work
We now discuss two important contributions of this work, in which we address the

Overload management problem in real-time systems. First, in a system agnostic

of the workload, we show that the possibility of an overload can be identified by

understanding the worst-case performance of the system. Consequently, system

resources can be increased to accommodate the overload. In the case of limited

system resources, we try to we make use of the knowledge about the workload,

and develop scheduling policies for maximizing the amount of requests serviced.

We also analyze the optimality of these policies based on empirical evaluations and

worst-case performance.

1.2.1 On-line Scheduling Approach to Detect Overload

On-line scheduling using different scheduling models have been studied widely. In

a real-time scenario, where we do not have much information about the system,

it is only possible to determine the task schedulability for worst-case assumptions

i.e. the one which yields maximum response time. We restrict our scope to Rate

Monotonic Scheduling (RMS), which is the most common scheduling algorithm

used, in which the tasks arrive periodically, and are prioritized based on the rate of

arrival.

Even though Rate Monotonic Analysis (RMA) of tasks scheduled under RMS

have pseudo-polynomial time complexity, they are acceptable if the analysis can be

done prior to the system deployment (off-line test). These tests were traditionally

used for designing small real-time systems such as sensor networks, or systems

with known requirements, in case of aviation systems. However, in the case of

web services with soft real time requirements, and workload varying over time, the

Worst-case Response-time (WCRT) analysis is different.

We consider the problem of task schedulability on a uniprocessor system with

3



dynamic task assumptions. To solve this problem, we make use of mathematical

optimization to obtain the worst-case task set for the given system, where the task

periods are known. Further, any knowledge about task computation times can be

easily encoded into the problem to determine a suitable solution. The task will have

a certain worst-case execution time ei,max, and a best-case execution time ei,min,

between which the resulting task set lies. We determine the absolute WCRT of all

possible task streams, and show that if the system requires additional requirements

than available already. This helps the system designer set the basic characteristics

of the application, so as to maximize the system utilization. In the case of dynamic

applications, it helps to check the feasibility of tasks during run-time, since it is

sufficient to find the WCRT of the lowest-priority task in the system.

In sum, we have attempted to address the following issues:

• Provide a new approach to find the absolute WCRT for a system of client

requests to be scheduled in a uniprocessor system.

• Provide an approximation scheme to identify the worst-case fractional re-

source allocation, such that the requests are schedulable under RMS, if the

processor capacity is known at the time of design. When some information

about workload is available, it can also be programmed in the model.

• Devise a scheduling policy based on WCRT analysis, for the use in dynamic

real-time applications.

• Analyze stochastically, the approximation scheme with respect to other ef-

forts. This evaluation is important, because the amount of deviation of re-

sponse time from the average response time of all possible combination of

resource allocations is a useful metric for evaluation.

1.2.2 Maximizing Revenue when the System is Overloaded

When the system resource cannot be adapted to handle worst-case workload de-

mands, it is necessary to have some requests discarded. Even though there are

some heuristics that perform well under such circumstances, it is hard to prove

the tightness of the bounds on the actual amount of requests serviced. In order to

4



address that, we make use of empirical evidence to show that maximum resource

utilization is possible. Several scheduling policies have been proposed to sched-

ule the request effectively on the available resource to reduce the frequency of

deadline-misses, and thereby maximize the revenue a service provider may gain.

These policies are based on either

1. the occupance of an event, such as job arrival, or completion, or if it a dead-

line is missed, or

2. work-conservation (or) minimizing the idle time of the system.

We consider the behavior of the scheduling policy over an infinite horizon. Note

that a short overload duration (5 – 10 minutes) is sufficiently long to motivate the

use of infinite horizon policies when a system is receiving several hundred (or

thousand) service requests per second, as is common for many Internet services. If

a system were to respond to 100 service requests per minute, a 10-minute interval

would yield 60000 jobs. We also aim to maximize the average reward earned per

time step; this is closely related to maximizing the total reward obtained. This

model relies on the use of micro-payments, which are becoming a popular pricing

design, and other pricing schemes can be approximated using micro-payments.

In sum, we have attempted to address the following issues:

• To develop a scheduling policy to improve revenues when a system is over-

loaded, if we knew, a priori, some information about future workload.

• Provable effectiveness of such a scheduling policy.

• Evaluate the policy against other efforts aiming to handle overload situations,

using empirical analysis, and determine the optimality (or near-optimality)

of the policy.

• Analyze the importance of having any knowledge about future job arrivals.

The scheduling policy we have derived is based on a stochastic improvement

approach, and this approach is likely to be useful in a variety of other real-time

scheduling problems.

5



1.3 Outline
We discuss different response time analysis techniques that we analyze in varying

details in the Chapter 2. We provide the worst-case bounds on response times, and

derive the worst possible request allocation to detect possible system overload in

the Chapter 3. In Chapter 4, we discuss the scheduling policy that handles real-

time systems under overload and maximize the revenue for the service provider.

Finally, we provide conclusions and possible extensions in Chapter 5

6



Chapter 2

Background in Real-time
Scheduling

We discuss Schedulability Tests for Periodic Task Scheduling, particularly about

the on-line and off-line schedulability tests from Real-time Systems by Jane W.S.

Liu [34]. Further, we discuss the fundamentals of Combinatorial Optimization

from the Papadimitriou and Steiglitz [39], and explain the formulation of Linear

Programming in some detail. This section can be skipped if the reader has funda-

mental knowledge of Scheduling Theory, and Linear Programming.

2.1 Basics of Schedulability Theory
A schedulability test of a real-time system is the verification of a request or a set

of requests to be permitted on a processor for execution, resulting in a yes/no an-

swer, i.e. the requests are accepted or not accepted. For requests scheduled using

dynamic-priority scheduling like Earliest Deadline First (EDF), the schedulability

test is simple. If the total utilization of all the requests is less than the processor ca-

pacity, the requests are schedulable. However for Fixed-Priority Scheduling (FPS),

such as RMS, the schedulability analysis is little more complicated. The main ad-

vantage of using FPS is the simplicity of deployment on an embedded device,

where the timeliness of a real-time system is a much sought after quality. In RMS

the requests with higher priorities can preempt the ones with lower priorities and

7



hence the scheduling is known as Fixed-Priority Preemptive Scheduling (FPPS).

We will discuss the properties of FPPS and the efforts to provide a schedulability

test for FPPS.

Some of the most common scheduling tests [10, 16, 28, 33, 38, 41], as ex-

plained below, check for feasible scheduling of periodic task sets.

2.1.1 Simple Schedulability Tests

Liu and Layland Bound

The initial work on scheduling theory was done by Liu and Layland in 1973, which

provides an off-line schedulability test. Some of the assumptions are, (1) the dead-

line of the tasks are equal to their periods, (2) the tasks are independent and peri-

odic, with fixed computation times, and (3) there is negligible release jitter.

Theorem 1. (Theorem 5 in [33]). The task set Γ = {τ1, . . . ,τn} is schedulable iff:

n

∑
i=1

ei

Pi
≤ n( n
√

2−1) =Ubound . (2.1)

The schedulability analysis is very easy in this case with a complexity of O(n).

The bound provided by the work is a sufficient, but not necessary bound, leaving

a large room for improvement. It results in very low utilization bound Ubound for

large task sets as shown:

lim
n→∞

n( n
√

2−1) = ln2' 0.6931 (2.2)

This however inspired further research in schedulability analysis.

Hyperbolic Bound

The hyperbolic bound [10] is an improvement over the Liu and Layland bound

having a larger region of coverage, but using the same assumptions as before. The

algorithm has a complexity of O(n), and uses the processor utilization of each task

to evaluate their feasibility. The theorem also assumes that the tasks suffer from a

worst-case processor bound when initiated at the critical instant. The condition for

8



schedulability is given by,
n

∏
1=1

(Ui +1)≤ 2 (2.3)

The simple schedulability tests are often pessimistic, and as a result will not

permit a lot of tasks that can potentially be scheduled successfully. Therefore,

better tests have been sought after. The optimal test for schedulability in fixed-

priority scheduling makes use of WCRT analysis.

2.1.2 WCRT Analysis of Periodic Task Systems

Liu and Layland [33] first showed that the task τi has its maximum possible re-

sponse time, when released along with the higher priority tasks. This instant is

called critical instant, and the response time Ri will be the WCRT of the task.

Worst-case Response-time Analysis (RTA) is a sufficient and necessary schedula-

bility test proposed by Lehoczky et al. [32]. It is based the processor time-demand

analysis, where the total processor time requirement for each task is computed, and

check if the requirement is met before the deadline of the task expires. Naturally,

the lower priority tasks must also account for the time demand of the higher priority

tasks. The workload for the tasks are given by the relation

Wi(t) = ei +∑
j<i

⌈ t
Pk

⌉
ek, (2.4)

∀ 0 < t ≤ Pi

If a task τi meets its deadline, according to the time demand analysis, then

it is implied that any higher priority task will also meet its deadline. In order to

guarantee the feasibility of the task set, the tasks must be checked for the inequality

Wi(t)≤ t at all the points in between (0,Di]. Lehoczky et al. [32] proved that it is

necessary and sufficient to check for the condition at specific points, referred to as

preemption points for τi. The number of preemption points, depends upon the size

of the inputs, making the running time of the algorithm, pseudo-polynomial.

9



2.1.3 WCRT Analysis of Tasks with Arbitrary Deadlines

When the tasks have deadline greater than the periods, then additional factors must

be considered while performing the time demand analysis. This is because, the

processor time demand increases with the invocation of every additional job. In

essence, the analysis must be extended until the end of a period called level-i

busy period. Lehoczky [29] defined the level-i busy period of a task τi, as the

total time the processor is busy, until the kth invocation of τi is completed. The

processor demand function for level-i busy period which ends at t when k jobs of

τi are scheduled is given as follows:

Wi(k, t) = kei +∑
j<i

⌈ tk
Pj

⌉
e j ≤ t (2.5)

The level-i busy period ends when the computation requirement of τi is completed.

The WCRT of the task set is given by the maximum among the response times of

the individual jobs.

2.1.4 Competitiveness of On-line Scheduling Algorithms for
Real-time Systems

On-line scheduling algorithms in real-time systems decides if a new job of a task

can be scheduled dynamically (during the run time). When a hard real-time system

is overloaded, one or more requests tend to miss its deadlines, thereby resulting in

timing failures. In soft-real time systems, missing such deadlines does not imply

timing faults, but merely loss of revenue. So the aim of the algorithm is to max-

imize the revenue (value vi)accrued from successful completion of jobs. A useful

metric for comparing the goodness of an on-line scheduling algorithm is its com-

petitive factor 0 < r < 1. If an algorithm has a competitiveness of r, it means that

the algorithm is guaranteed to achieve a cumulative value of V ζ = r.V ζ ∗ , where V ζ ∗

is the cumulative value of an off-line (or clairvoyant).

Real-time Queuing Network Theory [31] has been used to model heavy traffic

in real-time systems. In a M/M/1 queuing theory, one assumes a Poisson(λ ) task

arrival process to a single server, and each task stream has an exponentially(µ) dis-

10



tributed computation requirements. If one takes the number of tasks in the system

as a state variable, then this state is a Markov Chain having equilibrium distribu-

tion given by πi = (1− ρ)ρ i, i ≥ 0, where ρ = λ/µ , is the traffic intensity. The

task streams are modeled as a Markov process, using lead-time, the time until its

deadline. If lead-time is negative, then the task missed its deadline. In the case

of constant deadlines, the equilibrium distribution of the queuing system can be

obtained in a closed form.

2.2 Basics of Combinatorial Optimization
Combinatorial Optimization problems are the class of problems with discrete solu-

tions, in which we minimize or maximize an objective function, with respect to one

or more constraints. An instance of an optimization problem is defined in [39], as

a pair (F,c), with is any set of feasible points F , and a cost function c, given by a

mapping

c : F → R

The problem is to find an f ∈ F for which

c( f )≤ c(y)| ∀y ∈ F

The point f is called a globally optimal solution to the given instance. Linear

Programming in particular is a technique to obtain the best outcome for the given

objective function, subject to linear equality and inequality constraints. If a Linear

Program (LP) has a feasible solution, then it is bounded by the constraints, thereby

forming a convex polyhedron. The solution of the LP is either the minimum or

maximum possible point within the convex region. An instance of LP is defined

by

F = {x : x ∈ Rn, Ax = b, x≥ 0}c : x→ c′x

Even though this linear program formulation is a continuous optimization problem,

it is considered as a Combinatorial Optimization problem because any instance I of

a LP is bounded by a set of constraints, without which there is no feasible solution

for the problem. For example, in Figure 2.1, we minimize the objective function

c′x = c1x1 + c2x2 + c3x3. The corners of the triangle formed by the plane c′x will

11



contain the maximum or minimum possible values of our LP. Linear Programs

have a polynomial time complexity, and finds optimal solution in a finite number

of steps.

x1 + x2+ x3 =k 

x1 

x2 

x3 

Figure 2.1: Binding Constraints in a LP Problem

12



Chapter 3

On-line Scheduling Policy for
Overload Management

Scheduling of real-time applications with dynamic task assumptions fall under

an important class of FPS. There has been no prior effort towards determining

absolute WCRT bound for such a system. This result is highly useful in the situa-

tions, where we need the detect system overload possibilities, in order to manage

it effectively. This motivated us towards finding the WCRT for such systems.

3.1 Related Work
Liu and Layland bound [33], Hyperbolic Bound [10], are simple Θ(n) algorithms

for schedulability, but are very pessimistic. Exact schedulability test, using the

necessary and sufficient condition for RMA [32], is computationally complex,

leading to a compromise to use approximation schemes. Extensive research has

been done on Polynomial-Time Approximation Scheme (PTAS) for Exact RTA

[16, 20, 22, 38], using a variety of techniques, such as simplification of the prob-

lem domain, approximating the solution for future job arrivals etc. Resource aug-

mentation analysis and, approximation analysis are used to bound the accuracy of

such algorithms. Tei-Wei Kuo et al. [16], provided harmonic-period based test

useful for on-line analysis and admission control. However, it is restricted only

for multimedia streaming service where the task streams have periods harmonic to

13



the other streams. The scope of RMA is restricted in such applications, and the

analysis cannot be applied to other applications.

Albers and Slomka [1], and later Fisher and Baruah [20] proposed a Fully

Polynomial-Time Approximation Scheme (FPTAS) for static-priority feasibility anal-

ysis for response analysis test on EDF and RMS respectively using backed by a

Resource Augmentation analysis [38]. According to the technique, the accuracy

of the approximate test is lower-bounded by the exact test performed on a system

with half the computing power. Several derivatives these approximations on the

exact Response-time characterization given by 2.4 has been proposed [18, 20, 38],

which are polynomial time algorithms. Some of them also account for release jitter

Ji of a task, which is the most significant factor affecting the computation times.

However, when there is limited or no information about the workload, at the

time of the design, such analysis are not possible. Empirical analysis to get a good

measure of the worst-case performance is time consuming, and defeats the purpose

of the PTAS. The Multiframe Task Model (MF) task model has been studied in the

real-time systems community after the initial work by Mok and Chen [37]. Under

this model, the task execution times are periodically changed according to a pat-

tern. Therefore, schedulability analysis have been performed for such systems with

dynamic task assumptions. This is the closest available real-time systems model

to our work. However, we further relax the constraints of the MF, by allowing

the computation time of the jobs to be any feasible value, rather than following a

pattern. We define this model as the General Task Model (GTM), and will consider

the model for the design and analysis of our PTAS.

Lee et al. [28] provided a schedulability test for real-time systems with dy-

namic task assumptions using mathematical optimization. Tasks streams are con-

sidered to have a predefined period corresponding a Quality-of-Service (QOS)

option in Motion Picture Experts Group (MPEG) or H.264 video streaming or

surveillance radar systems application. They provided a polynomial-time heuris-

tic, leading to a sub-optimal solution (a sufficient test). While using mathematical

optimization, tightness bounds cannot be provided for a general case, making the

algorithm not easily comparable to the actual schedulability test.

Majority of the approximation techniques, such as the aforementioned cases

have the task parameters pre-defined. Particularly, the task computation times are

14



used in the computation of the bounds. This is useful for many cases, in which

the schedulability test is done prior to the job execution, making it inefficient for

dynamic applications [35]. Particularly, in servers, where large number of re-

quests with QOS guarantees are received, efficient on-line schedulability test is

essential. Furthermore, the task assignment based on worst-case conditions leads

to reduced CPU utilization, since more tasks cannot be accommodated. By settling

to average-case conditions, a reasonable task assignment is possible. But during

high CPU load, or when there are interfering tasks, some tasks may miss their dead-

lines. Therefore, the approximation algorithms we consider, assumes arbitrary task

computation times.

3.2 System and Task Model

3.2.1 The GTM

We define the real-time system with dynamic task assumptions with a GTM, as

follows:

Definition 1. A general task τi is represented by a tuple (Ei,Pi), where Ei is a

tuple (ei,min,ei,max), where the elements are minimum and maximum permissible

execution times for the task, respectively, and P is the task period.

The average execution time of the task τi is ei,min+ei,max
2 . But, instead of using the

average execution time of the task, we relax the minimum and maximum limits to 0

and PiU , respectively, where U is the system utilization. We consider a uniproces-

sor system with n general tasks, represented by Γ= {τ1,τ2, . . . ,τn} competing for a

shared resource. We also assume that each task τi has a relative deadline Di, before

which the execution must complete. Since we assume RMS, the tasks are ordered

according to increasing order of periods. They have decreasing order of priorities,

such that a task τi can be preempted by any higher-priority task τ j, where j < i.

Each task utilizes a portion of the system resource, represented by task utilization,

ui =
ei
Pi

. Therefore, the total system utilization is given by U = ∑
n
i=1 ui = ∑

n
i=1

ei
Pi

.

The total time between the release of τi and its completion time is given by its

Response-time Ri. We assume that the tasks are scheduled at the critical instant, i.e.

15



ei,min 

ei,max 

τ1 

τ2 

t P2 

P1 2P1 

0 

Figure 3.1: Illustration of GTM for Two Tasks

all tasks are released simultaneously, resulting in the WCRT of task i. We assume

that the tasks are independent, where each task can be preempted by higher priority

tasks. Further, they have negligible context switch overhead and release jitter Ji,

but can be easily extended to account them.

3.2.2 Simple Task Scheduling Model using RMS

We now revisit the exact test for schedulability of tasks scheduled under RMS by

Lehoczky et al. [32] in Section 2.1.2. The theorem gives both sufficient and

necessary conditions for task schedulability under RMS, and hence called an exact

schedulability test. The algorithm performs a processor time-demand analysis for

the task set, at specific time instants, to determine if the processor is free at any of

those points. Formally, the theorem is stated as:

Theorem 2. Theorem 1.2 in Lehoczky et al. [32]: Given the task set Γ= {τ1, . . . ,τn}

1. The task τi can be scheduled for all task phasings using the RMS if and only

16



if
Ri = min

t∈Si

{
T : Wi(t)≤ t

}
(3.1)

where Wi(t) is the processor time-demand at the instant t, given by Equation

(2.4). Si represents a finite set of preemption points for τi that increases the

processor time-demand, before the instant Ri. it is given by:

Si =
{

kPj| j = 1, . . . , i; k = 1, . . . ,
⌊Ri

Pj

⌋}
∪{Ri} (3.2)

2. The entire task set is schedulable for all task phasings using RMS if and
only if

R = max
t∈Si,1≤i≤n

Ri ≤ t (3.3)

When the tasks are released with worst-case phasing,i.e. along with the other

tasks, Liu and Layland [33], showed that the tasks are released at the critical

instant, and the Response-time of the task is equal to the WCRT. Therefore, we

also consider the first job invocation of the tasks are released together, at time 0.

Theorem 1 provides the exact test for finding the WCRT Ri, when the tasks are

released at the critical instant.

The set Si is a subset of all the points of time t,0 < t < Pi, forming a piece-wise

monotonically increasing processor time-demand function, marked by the pre-

emption points. For example, consider the example task set in Figure ??, Γ =

{(1,3), (1.5,5), (1.25,7), (0.5,9)}. The time instants when the processor de-

mand increases, with all the four tasks present in the system is given by S4 =

{3,5,7,6,9}. Theorem 2 proves that the task set is schedulable under RMS, and

gives the value of WCRT as 9. It is to be noted that the total utilization of the task

set is 0.8674, which is much greater than that of the Liu-Layland bound of 0.7568

for a task set having four tasks. This gives sufficient evidence that the RTA of tasks

will provide an exact schedulability test, and yield the WCRT of the lowest-priority

task in the system. The point of intersection of the processor time-demand and the

line f (t) = t, is the WCRT of the task set.

17



3.2.3 Practical Considerations for Scheduling in a GTM

There are several advantages of using the RTA to find the response bounds for a

system such as GTM. As opposed to use a worst-case scenario or average-scenario

of probabilistic models for Exact Test [32] or Approximation Schemes [38, 48],

a single analysis of GTM tasks is computationally efficient. In order to obtain a

relatively good estimate of the worst-case task assumption, 10,000 iterations are

needed, and an algorithm to uniformly assign task utilizations to generate a random

task set. Evaluations took time in the order of several minutes, for the Exact Test

[32], and in the order of few minutes for the Approximation Schemes [38, 48].

We will show that the WCRT obtained for a task system under GTM is suffi-

ciently accurate for large task utilizations, and large number of tasks. While de-

signing an embedded device, using this model, the system designer should have

a deadline greater than Rub
i , for a τi, so that it doesn’t suffer a timing fault. This

deadline would be at least as big as the Response-time of any feasible task set for

the system, and therefore needs proper planning before deciding the task periods.

When the ratio of the smallest task period to the largest task period in the system

is huge, the WCRT is very large, while in the case of harmonic task periods [16],

the WCRT is acceptably small. The benefit of using RTA is that, once we perform

it for task τi and determine feasibility, it is implied that all the higher priority tasks

τ j, j < i follow suit. For simplicity of calculations, we limit our scope to the inter-

ference caused by higher priority tasks, and not the blocking of system resources

by lower priority tasks in the system.

3.3 WCRT Analysis of a General Task Model
In this section, we propose a new WCRT analysis technique using mathematical

optimization, based on the utilization bound estimation technique, previously dis-

cussed in [28, 41]. We make use of the definition of a barely-schedulable task set,

which has a utilization Uub, and any task with utilization U >Uub is unschedulable

with the same processor.

18



3.3.1 Problem Description

Liu and Layland proved that the WCRT of a task is found when performing RMA on

tasks released at the critical instant. For a GTM, there are many possible WCRTs,

corresponding to every possible task assumption. We propose a new approach to

determine Response-time bound. It is defined as

Definition 2. The upper-bound on Response-times, Rub
i is the maximum Response-

time among all tasks sets of GTM, when scheduled using RMS.

Rub
i = max

E j,∀ j≤i
Ri (3.4)

For a given system utilization, U, we aim to find Rub
i . In order to achieve that,

we need a mathematical optimization approach, such as LP to maximize Ri over

the possible values of E j,∀ j ≤ i. However, this approach has a few drawbacks:

1. We must always check the Response-time of all the jobs in the level-i busy

period, and find its maximum to determine the WCRT by finding.

2. We must use an exit mechanism for the algorithm, when the end of the level-

i busy period is reached. In the work of Park et al. [41], the algorithm exits,

when there is no feasible solution.

Therefore, we obtain WCRT with an alternative representation, using a LP.

Here, we find a barely-schedulable task set for an assumed Response-time bound

Rub
i . The task set will have a total utilization equal to the bound Uub. Any task set

with a smaller utilization will be schedulable. Therefore, Uub and Rub
i forms the

upper bound on utilization and WCRT respectively. We then compare it with the

given system utilization, U, and re-iterate the LP with a near optimal value of Rub
i ,

until we find a sufficiently accurate Response-time bound, close to R.

Constraints of the LP

We now show the sufficient and necessary conditions required for the feasibility

of a task, and how it directly relates to the formulation of LP problem to find

19



utilization bound. A level-i utilization bound Uub
i is said to be sufficient if the

total utilization U ≤Uub
i . Further, the processor time demand must be greater than

the available computing power, at all times, until the task’s Response-time. These

constraints are listed below:

1. The processor time-demand function of all the tasks τ1, . . . ,τi meets the line

f (t) = t at Rub
i . This is the WCRT of the low priority task τi. It is the

cumulative processor usage of all tasks, when initiated at the critical instant.

The first constraint is therefore given by:

Wi(t) = ei +∑
j<i

⌈Rub
i

Pj

⌉
e j = Rub

i (3.5)

This condition is only a sufficient condition for schedulability, such that if

Rub
i is smaller than the task’s deadline, the task is feasible. It doesn’t say that

Rub
i is the WCRT, because we haven’t verified if the system is idle in between

time (0,Rub
i ]. The next condition will solve that particular issue.

2. At any time instant t < Rub
i , the processor time demand is always greater the

resource. In other words, Wi(t)> t. This is a continuous constraint, in which

one must check at each instant in (0,Rub
i ]. Lehoczky et al. [32] showed that it

is sufficient and necessary to check for this condition only at the preemption

points given by Si, rather than all the time instants. If we only check if the

processor time demand is higher than the computing power, at the points of

time in Si−{Rub
i }, we will have the necessary conditions for schedulability.

Wi(t)> t;∀t ∈ Si−{Rub
i } (3.6)

These set of conditions will not check if the processor time demand will

over-flow after time Rub
i .

We must therefore look at both the conditions above in order to find schedulability

test. Consequently, the Response-time Rub
i , for which these conditions are satisfied

will be the WCRT of the task set. Also, the LP, that aims to find the barely-

schedulable task set satisfying these conditions, will have a utilization equal to

the level-i barely-schedulable utilization bound Uub
i , as shown in [28], we can

20



refer to the WCRT of any feasible task set as the level-i comfortably-schedulable

Response-time bound. This is because, by the definition of the LP, any task set

with utilization U ≤Uub
i , will be schedulable.

Definition 3. The level-i comfortably-schedulable Response-time bound for any

task set, with utilization U ≤Uub
i is given by Rub

i .

By picking the value of Rub
i from the possible values, we get an initial feasible

Uub
i . By comparing it with the given system utilization bound U and searching

linearly for the R that yields the actual solution, we obtain the sufficiently accurate

value for WCRT.

Hardness of the Problem

The proposed LP must satisfy several constraints that the affect the task utiliza-

tions. We will prove that we must satisfy a pseudo-polynomial number of con-

straints in order to get the exact WCRT. Further, the number of jobs to be veri-

fied within the level-i busy period is large, when the system utilization U is ar-

bitrarily large. These factors make the problem Pseudo-polynomial, and simpler

polynomial-time formulations must be used, when we need to use this technique

for on-line schedulability tests.

3.3.2 Exact WCRT Analysis

Determining the Barely Schedulable Task Set

The tight level-i utilization bound Uub
i is the utilization of the barely-schedulable

task set, given the input Response-time Rub
i . It is first defined by Lee et al. [28] as

the utilization bound that guarantees schedulability of tasks τ1, . . .τi. The objective

function of the LP is therefore given by

i

∑
j=1

e j

Pj
=Uub

i (3.7)

The level-i utilization bound has an interesting property, which allows us to

restrict the number of LPs required to obtain Uub to 1, instead of i, when there

21



are i tasks in the system. It is shown by Lee et al. [28] that the system-level

utilization bound Uub as the smallest value among all of the level-k utilization

bounds, where k = 1, . . . , i utilization. The following lemma determines the system-

level utilization bound, under a special condition.

Lemma 1. If the Response-time of the task τi yields a level-i utilization bound Uub
i ,

the following condition holds:

Uub
j ≤Uub

i , ∀ Rub
j ≤ Rub

i (3.8)

Proof. Let us consider j = i− 1, be a next highest priority task to τi. The level-

(i-1) comfortably-schedulable Response-time bound is Rub
i−1, and the corresponding

utilization bound is Uub
i−1. Since τi−1 has higher priority than τi, the period Pi−1≤Pi.

The processor time demand functions for the two tasks are given as follows:

W (ti) : ∑
j≤i

e j

⌈ ti
Pj

⌉
≥ ti

W (ti−1) : ∑
j<i

e j

⌈ ti−1

Pj

⌉
≥ ti−1

∀ti =
{

kPm| m = 1, . . . , i; k = 1, . . . ,
⌊Rub

i
Pm

⌋}
∀ti−1 =

{
lPn| n = 1, . . . , i−1; l = 1, . . . ,

⌊Rub
i−1

Pn

⌋}
This is a special case of problem addressed in [23] in which the condition W (ti−1)

is redundant. The first equation in Equation (3.3.2) dominates the second one, i.e.

if
∑ j<i

⌈
ti
Pj

⌉
e j

ti
≥

∑ j<i

⌈
ti−1
Pj

⌉
e j

ti−1
;∀ j ≤ i− 1. Due to the presence of ith task, additional

terms are possible for W (ti), as shown in Equation (3.3.2). Since, we considered

that Pi−1 ≤ Pi, the corresponding Response-time bounds Rub
i−1 ≤ Rub

i . The relation

between the processor demand functions of the tasks can be derived based on their

dominance, assuming Ξ(i) = W (ti)
ti

as follows:

22



Ξ(i) =
∑ j≤i

⌈
ti
Pj

⌉
e j

ti

=
∑ j<i

⌈
ti
Pj

⌉
e j

ti
+

⌈
ti
Pi

⌉
ei

ti

Ξ(i−1) =
∑ j<i

⌈
ti−1
Pj

⌉
e j

ti−1

Here, the first term of Ξ(i) is always greater than Ξ(i− 1), thereby making

the former dominate over the latter. The additional terms of Ξ(i) only makes our

case much stronger, thereby eliminating the necessity of checking Ξ(i−1), while

having i tasks in the system. Therefore, the utilization upper bound Uub
i is also an

upper bound for utilization for a system with j < i tasks.

We now give the LP formulation to minimize Uub
i and find the barely-schedulable

task set, using the constraints mentioned in Section 3.3.

Minimize Uub
i =

i

∑
j=1

e j

Pj

Sub ject to τ j, j ≤ i is schedulable under RMS( 3.5)

Processor is not fully utilized at Rub
i ( 3.5)

Processor is fully utilized at t ∈ Si−{Rub
i }( 3.6)

(3.9)

Since the Response-time of the task set is Rub
i , processor is not fully utilized at

that instant. This is a sufficient condition for schedulability of τi. The constraints

that expect the processor to be fully utilized at t ∈ Si provides the necessary but not

sufficient conditions for task schedulability. Therefore, we require both in order to

find the optimal utilization bound Uub
i .

Sufficient Conditions for Utilization Bound

The utilization upper bound, obtained by only using the sufficient condition, given

in Equation (3.5) is evidently smaller than the one obtained using all the con-

straints. We call the utilization upper bound, as the minimum possible upper bound

Uub,min
i . The following Lemma, first proved by Lee et al. [28] provides the suf-

23



ficient condition for schedulability, and in turn finds the minimum possible level-i

utilization bound Uub,min
i corresponding to a barely-schedulable task set.

Lemma 2. The sufficient condition for schedulability of a barely-schedulable task

set is given by the following constraint.

∑
j<1

⌈Rub
i

Pj

⌉
e j + ei = Rub

i (3.10)

Proof. Equation (3.10) shows that, when a task set Γ is not feasible with a barely-

schedulable utilization bound Uub, it is possible to schedule a task set by changing

the task computation times. If the processor demand at time W (Rub
i ) < Rub

i , then

infinite number of schedulable task sets are available, with utilization as low as 0.

Therefore, we do not consider that case. Let the task set is barely schedulable, and

its processor time demand is greater than Rub
i . In this case, at least some amount of

work for a task τ j, j < i is done after Rub
i . Let δ j be extra work done after Rub

i .

i

∑
j=1

⌈Rub
i

Pj

⌉
e j + ei > Rub

i

i

∑
j=1

⌈Rub
i

Pj

⌉
e j + ei = Rub

i +δ j

Let us consider a new task set, that is barely schedulable Γ′ with processor time

demand at Rub
i is Rub

i . This can be created by rewriting from the task set, we arrive

at a new task set Γ′, with e′j = e j−
δ j⌈ Rub
i

Pj

⌉as follows.

(
⌈Rub

i
Pj

⌉
e j−δ )+

i

∑
k 6= j,k=1

⌈Rub
i

Pk

⌉
ek + ei = Rub

i

(
⌈Rub

i
Pj

⌉
e′j)+

i

∑
k 6= j,k=1

⌈Rub
i

Pk

⌉
ek + ei = Rub

i

When there is an overflow of δ j, the overall utilization is reduced by δ j/Pj,

because the overflow is eliminated. In order to fill up the idle time, more computa-

tion can be added, which is equal to bPi/Pjcδ j, and correspondingly, the utilization

is increased by(bPi/Pjcδ j)/Pj, which is less than δ j/Pj. Therefore, the utilization

24



of the task set Γ′ is less than that of Γ. We can conclude that, when we use the

sufficient condition for schedulability defined by the Equation (3.10) in a LP to

find Uub,min
i , will return a barely-schedulable task set.

From the Figure 3.2 (a), we can see that, if we only check for completion of

task τ3 at time 8, the test will pass, but still have idle times in between 0 and 8.

This will make the WCRT to be less than 8, and result in the insufficiency of RTA.

The LP using only the constraint from Equation (3.5) will give the minimum uti-

τ1 

τ2
 

τ3
 

t   1         2       3        4         5        6        7        8        9   

τ1 

τ2
 

τ3
 

t   1         2       3        4         5        6        7        8        9   

Processor Idle  Time Processor Time Demand Overflow 

Figure 3.2: Occurrence of (a)Processor Idle Time, with Sufficient Test for
Schedulability, and (b) Processor Time Demand Overflow with Neces-
sary Tests for Schedulability

lization bound Uub,min
i , while the LP using all the constraints from Equations (3.5)

and (3.6) will give rise to the maximum possible utilization bound Uub
i . This

result is important, because the number of constraints in Equation (3.6) is pseudo-

polynomial with respect to the number tasks. Therefore, in order to provide the

worst-case bounds on the Uub
i or correspondingly the WCRT, the Uub,min

i is helpful.

Necessary and Sufficient Conditions for Utilization Bound

We now provide the LP using all the constraints specified in (3.9) that gives the

barely-schedulable task set, and the corresponding upper bound on utilization Uub
i .

In addition to having the processor complete all its computation requirements by

Rub
i , it must also be fully utilized until the time t < Rub

i . The condition is given

25



by Equation (3.6). For example, if we only consider ∑ j<id t
Pj
ee j + ei > t, ∀t ∈ Si,

in Figure 3.2 (b), we will not be able to detect the overflow, thereby failing the

schedulability test. Therefore, in order to show that the processor demand meets

line f (t) = t only at time t = Rub
i , we must use both the conditions and have an

exact schedulability test. However, the LP formulation can be relaxed to accept

anything in between the sufficient and exact test. This means that, the utilization

bound obtained with a set of constraints, can be within the maximum limit of Uub
i

when the exact schedulability test is used, or Uub,min
i , when only the sufficient con-

straints are used. The corresponding WCRT will be greater when only the sufficient

constraints are used, as opposed to all the constraints. This is given by the follow-

ing theorem.

Theorem 3. The solution of following LP will always be in the limit [Uub
i ,Uub,min

i ]

Minimize ∑
j≤i

e j

Pj

Sub ject to ∑
j<i

⌈Rub
i

Pj

⌉
e j + ei = Rub

i

∑
j<i

⌈
Φ

Pj

⌉
e j + ei ≥Φ | Φ⊆ {kPm},∀i

m=1,∀
b Rub

i
Pm
c

k=1

(3.11)

Proof. According to Lemma 2, the utilization of the task set using the Sufficient

Test will be lower than the actual utilization, because of idle time between 0 and

Rub
i . But the total processor demand will be less than Rub

i , making the task set

schedulable. Let this task set be Γ′ with a utilization Uub,min
i . Correspondingly, let

Γ be the task set that is barely schedulable with all the constraints, giving rise to

Uub
i . By establishing the upper and lower bounds, for the utilization, we can say

that the utilization approximation caused by the choosing a few of the necessary

constraints will be within the bounds.

Equation (3.11), when using all the sufficient and necessary constraints will

give the Exact utilization bound for our assumption of Rub
i . We illustrate the impor-

tance of sufficient and necessary conditions with an example. Consider a simple

four-task set with dynamic task assumptions, ordered based on their priority ac-

26



cording and scheduled by RMS. We do not know the computation requirements of

each task, since we use a GTM. Table 3.1 gives the worst-case scheduling points

given according to criterion given in the equation (in lemma).

τi Pi Rub
i Si

τ1 5
τ2 14
τ3 27
τ4 35 31 { 5, 10, 14, 15, 20, 25, 27, 28, 30, 31}

Table 3.1: Task Schedulability Points Si

In order to confirm that the Response-time of the task set is Rub
i , when there is

no information about the computation requirements, we need to verify the list of

constraints, obtained from Equation. The following conditions are to be satisfied,

for proving the Response-time of Rub
4 to be 31

e1 + e2 + e3 > 5 P1

2e1 + e2 + e3 > 10 2∗P1

3e1 + e2 + e3 > 14 P2

3e1 +2e2 + e3 > 15 3∗P1

4e1 +2e2 + e3 > 20 4∗P1

5e1 +2e2 + e3 > 25 5∗P1

6e1 +2e2 + e3 > 27 P3

6e1 +2e2 + e3 > 28 2∗P2

6e1 +3e2 + e3 > 30 6∗P1

7e1 +3e2 + e3 = 31 Rub
4



(3.12)

where } denotes logical AND operation, making all the conditions necessary to

prove that Rub
4 as the Response-time of τ4. Further, the task with least priority τ4 is

schedulable under RMS if and only if Rub
4 ≤ D4.

27



Tightness of the Estimated Utilization Bound

Following the proof of Lemma 2, we can say that any LP that uses the suffi-

cient condition in Equation (3.5), and one or more necessary conditions from the

Equation (3.6), will give a utilization upper bound Uub,approx
i , which is within the

range [Uub,min
i ,Uub

i ]. Figure 3.3 shows the plot of Utilization Bounds against

Response-Time. Utilizations are obtained using the LPs that used (1) only the suffi-

cient conditions for schedulability, and (2) both sufficient and necessary conditions

for schedulability.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

U

∆ = Ri
ub/Ti

 

 
Sufficient and Necessary Conditions
Sufficient Conditions
Preemption Points Si

Ri
ub

 Ui
ub,min = 0.61

  Ui
ub = 0.70

Figure 3.3: Comparison of Sufficient and Exact Test for Schedulability

28



Finding the Exact WCRT

The formulation of our LP problem guarantees a one-to-one correspondence be-

tween the utilization bound and response time bound. For instance, a task set

which is barely schedulable under RMS has a utilization bound Uub
i , and has as

Response-time Rub
i . Given the maximum possible utilization for the system U, the

system designer should be able to obtain the corresponding WCRT bound. There-

fore, in order to obtain the R among all possible jobs having utilization U, we

must search the solution space the LP. The bounds of the space can be as large

as the hyperperiod of the tasks in the system, i.e. (0,LCM(τ1, . . . ,τi)]. Since this

is a huge space to search from, we narrow down the scope to an smaller space,

corresponding to a smaller number of points from Si.

Once we narrow down the scope to these points, the solution close to R can

be obtained by further search. If we use Binary search, the algorithm converges in

polynomial-time, with a complexity of Θ(log 1
ε
), for an approximation of (U)± ε .

We show, by brute-force, how the WCRT corresponding to a Utilization bound

can be determined. Table 3.2 shows the relative response time bound and utiliza-

tion bounds for a two task set P1 = 46,P2 = 65. We calculated the utilization bounds

for each time instant in the sample range [46,92] using the LP model discussed in

Section 3.3.2.

If we have a task set Γ with utilization U = 0.863, then we have to find the

closest approximation Rub
i = 71, which corresponds to the Uub = 0.8665, such that

U≤Uub. Here, Rub will give the WCRT bound for the any task set, with utilization.

The advantage of searching the space of LP solutions is that, it provides only the

barely-schedulable task sets, and the solution is piece-wise linear, between the time

instants marked by the preemption points Si.

3.3.3 Off-line Schedulability Test with Exact WCRT

We now provide an off-line schedulability test using the exact WCRT obtained by

incrementally searching the LP solutions on the space of Si. Since we do not have

any limitations with respect to the complexity of computation, we give the Exact

and Optimal LP formulation. This is acceptable for off-line schedulability tests,

when the system designer is only cares about the WCRT of the GTM, rather than

29



Rub
2 Uub

2 Rub
2 Uub

2 Rub
2 Uub

2

46 0.707692 62 0.809365 78 0.911037
47 0.714047 63 0.815719 79 0.917391
48 0.720401 64 0.822074 80 0.923746
49 0.726756 65 0.828428 81 0.9301
50 0.73311 66 0.834783 82 0.936455
51 0.739465 67 0.841137 83 0.942809
52 0.745819 68 0.847492 84 0.949164
53 0.752174 69 0.853846 85 0.955518
54 0.758528 70 0.860201 86 0.961873
55 0.764883 71 0.866555 87 0.968227
56 0.771237 72 0.87291 88 0.974582
57 0.777592 73 0.879264 89 0.980936
58 0.783946 74 0.885619 90 0.987291
59 0.790301 75 0.891973 91 0.993645
60 0.796656 76 0.898328 92 1
61 0.80301 77 0.904682

Table 3.2: Utilization and Response-time Bounds for a Barely Schedulable
Task Set

the amount of time it takes to compute.

Once we are sufficiently close to the solution, we use Binary Search between

the two adjacent points on Si, that yields the utilization bound. We also provide

the complexity analysis of the algorithm, and show how we can improve upon it.

The LP formulation to find the Exact WCRT bound involves all the constraints

mentioned in Section 3.3.1, because an exact schedulability test encompasses suf-

ficient and necessary tests.

We also account for level-i busy period, when the input Rub
i to the LP is larger

than Pi. This is because, if the Response-time is greater than the period, it must

be the largest of all the Response-times in the level-i busy period. Since we are

performing an Off-line test, we can determine the WCRT within the busy period

without any problem. The solution to the LP is the level-i barely schedulable task

set, and the WCRT, FT corresponding to that task set can be easily obtained using

the Equation (2.5), for each job j = 1, . . . until the busy period ends. If FT is

30



within the input Response-time Rub
i of the LP formulation, then we can exit the

algorithm. Again, this algorithm extends until the end of level-i busy period, and is

of pseudo-polynomial time complexity. It is only acceptable when it is an off-line

schedulability test, and approximation schemes are to be followed to approximate

the solution in the case of on-line schedulability test.

31



Algorithm 1 SearchExact(U,<P1,P2, . . . ,Pn>)
Result: Find the WCRT of the system

Data: P←<P1,P2, . . . ,Pn> // Task Periods

1 Φ←<>

2 while (1) do
3 i← 1

4 for ( j← 1 to n) do
5 if (i%Pj is 0) then
6 Sn← Sn∪{i}
7 id← Sn.last() // id forms the Rub

n input for LP

8 Break // To add redundant constraints only once

// Call LP to find Uub

9 Uub
n ← FindUtilBound(P,Sn, id)

10 if (Uub
n ≥ U) then

11 Rub
n ← BSearch(U,P,Sn, i−1, i,(1+ε)) // Call Search Routine

12 return Rub
n // Found the WCRT

// When Rub
n is not found, continues here

13 if (i > Pn) then
// If the Response-time exceeds Pn, find end of

level-n busy period

14 FT ← LevelNPeriodEnd(E,P)

15 if (FT ≤ Pn) then
16 Rub

n ← BSearch(U,P,Sn, i − 1, i,(1 + ε)) // Call Search

Routine

17 return Rub
n // Found the WCRT

18 else
19 Continue

// When Rub
n is not found, increment i

20 i← i+1

32



Searching for Optimal WCRT with Binary Search

We have calls to a BSearch routine( 2) upon finding a WCRT sufficiently close to

the solution. It helps narrowing down the WCRT between the two recent points of

time i− 1, i. The worst-case running time of the Binary Search algorithm can be

estimated in terms of the accuracy factor ε , and the size of the search space [t1, t2].

But we first need to establish the fact that we have a continuous function between

those two points. Therefore, we show that the function of Uub has no discontinu-

ities in the region [t1, t2], and show the maximum possible distance between t1 and

t2, in order to perform binary search. The definition of the worst-case processor

demand bound function is important for the proof.

Definition 4. For a sub task set Γ = {τ1,τ2, . . . ,τi}, the worst-case processor de-

mand bound at time t is given by

Ωi(t) =
i

∑
j=1

⌈ t
Pj

⌉
e j− t (3.13)

The interpretation of the processor demand bound function is given by Figure

3.4. We can clearly see that the processor usage decreases over a period of time,

when the tasks get computed. However, there are discontinuities at the time in-

stances which are multiples of the task periods, because newer jobs are introduced

in the system. The Response-time of the lowest priority task Ri is the time when

the function Ωi(t) = 0, or the processor is idle.

Lemma 3. BSearch( 2) Algorithm has a worst-case running time of O(log(n/ε)),

for an accuracy of ε in the range (0,1), n = Rb−Ra, the difference between the

minimum and maximum range of search for the algorithm.

Proof. We know that the processor demand ∑
i
j=1

⌈
t

Pj

⌉
e j > t, until the jobs of tasks

τ j, j ≤ i are completed. It is clear from the Processor Demand Bound in Figure

3.4(a), has local maxima at time when new jobs are introduced in the system, and

is idle at Ri. The only discontinuities in the processor demand bound function

are at points Si = kPj | ∀ j ≤ i,k = 1,2, . . . . The utilization bound Uub
i is found

at these time instants, using Equation (3.11) with time t = Rub
i as input. We see

that the utilization bound function, Uub
i has a maxima at the points represented

33



0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

t

W
i(t

)

T1 T2 2*T1 2*T2 T3 T4 3*T1 T5

R5(t)

3*T2

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R5
 ub = t

U
i u

b

0.55

0.7991

U5
 ub

0.725

R5
 lb = T5

t

(a) (b)

Figure 3.4: (a)Worst-case Processor Demand Bound, and (b) Corresponding
Utilization Bound, Uub

i , for a Barely Schedulable Task Set

by Si. Since we check for the utilization bound at Si, we have a function that is

continuous in the interval (ta, ta+1],∀t ∈ Si. The open interval after time instant in

Si can be neglected while performing the binary search, since we are looking for

the first occurrence of U, and subsequent occurrence smaller than any occurrence

can be neglected. Figure 3.4 (b) shows the utilization bound function for the same

task set. The minimum and maximum range for the Binary Search algorithm is

therefore continuous [Ra,Rb], and the binary search will run in a time polynomial

with respect to n and ε .

The complexity of computing the Response-Time bounds by searching for the

sub-optimal solution using binary search is O(log( t
ε
)), where t is the distance be-

tween two points ta and ta+1. We showed, by Lemma 3 that the maximum distance

between those two points can be the distance between the consecutive points in Si,

where the discontinuities in the processor demand occurs.

34



Algorithm 2 Helper Functions for Exact WCRT Estimation

// Binary Search to return Response-time bound

1 Procedure BSearch(U,P,Sn,min,max,δ ):

2 if (min≤ max) then
3 Rub

n ← (min+max)/2

4 Uub
n ← FindUtilBound(P,Sn,Rub

n )

5 if (Uub
n ≥ U+δ ) then

6 max← BSearch(U,P,Sn,Rub
n ,max,δ )

7 else if (Uub
n ≤ U−δ ) then

8 min← BSearch(U,P,Sn,min,Rub
n ,δ )

9 else return Rub
n

10 return 0

// Find the time when Level-n Busy Period ends

11 Procedure LevelNPeriodEnd(E,P):

12 t← Pn

13 while 1 do
14 j← bt/Pnc

15 CT ←
n

∑
k=1

⌈ t
Pk

⌉
ek // Completion time of job j

16 if CT ≤ t then
17 FT ←CT − ( j−1)Pn

18 return FT // End of busy period for the task (E,P)

19 t← t +Pn

The search space of BSearch 2 is shown in Figure 3.5, for the same five-task

set. Let us start with the preliminary solution for Uub
i at the two points ta and ta+1

of time, using Rub
i = ta and Rub

i = ta+1 respectively. We continue searching for the

solution, until we reach a sufficiently accurate solution U± ε using BSearch. The

BSearch module has a polynomial running time in both t and ε , and therefore, has

a very fast convergence rate.

35



The LP formulation in the algorithm makes use of job number as well, in order

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

∆ 
=

 R
iub

/T
i

 

 

 
Linear Program solution 
Si Scheduling Points

Uub (ta)UinputUub (ta−1)

Ri
ub (ta−1)

Ri
ub (ta)

Ri
ub (exact)

Figure 3.5: Space of Binary Search to find Rub
i

to account for all the jobs in the level-i busy period. This is useful for finding the

WCRT of task sets when the system utilization is arbitrarily high. Particularly for

systems with high computing power, and when off-line scheduling is possible, this

formulation is ideal.

36



Algorithm 3 LP Formulation to find Utilization Bound

// Returns minimum utilization

Procedure FindUtilBound(P,Sn,Rub
n ):

Minimize
n

∑
i=1

ei

Pi

subject to
n−1

∑
k=1

⌈ j
Pk

⌉
ek +

⌊ j
cn

⌋
en ≥ j | ∀ j ∈ Sn, and

n−1

∑
k=1

⌈Rub
n

Pk

⌉
ek +

⌊ j
cn

⌋
en = Rub

n

return Uub
n

3.4 Reducing the Complexity of WCRT Analysis
So far we have discussed about the Exact test for finding the Utilization upper

bound Uub
i , and a binary search technique to find the WCRT from the space of

LP solutions. This test is very accurate, and provides the absolute WCRT of a

task set, given a utilization bound U. The test is often done off-line, i.e. prior

to the execution of the tasks. However, for applications with varying computation

requirements, an approximate algorithm is essential.

We first describe a polynomial-time algorithm that will result in a sub-optimal

solution of the WCRT. The accuracy of the algorithm can be bounded from below

with the sufficient test, defined already. Therefore, the approximation schemes will

be better than this worst-case scenario. We evaluate the performance of the algo-

rithm with other comparable bounds using empirical studies. Finally, we provide

insights into improving the accuracy of the algorithm by using a near-optimal al-

gorithm based on the work related to pruning the constraints of schedulability test,

by Bini and Buttazzo [8].

The running time of the ideal search algorithm to obtain Rub
i is pseudo-polynomial,

and it is acceptable for polynomial-time algorithms that delivers near optimal re-

sults. The factors responsible for making the algorithm pseudo-polynomial are:

37



1. Pseudo-polynomial nature of the problem, where the problem size is depen-

dent on the value of the inputs.

2. The overhead of LP to find the bounds, and

3. The running time of the search algorithm to find the correct solution.

Since we need to search the solution space of several LPs to identify the WCRT,

it is hard to quantify it mathematically. Therefore, we provide a simple polynomial-

time heuristic to minimize the complexity of the problem. By modifying the im-

plementation of the search algorithm to identify Rub
i , we can obtain a sub-optimal

solution running in time polynomial to the number of tasks. Depending upon the

accuracy of the output expected, the polynomial-time search approximation is be

implemented using approximation factor δ = (1+ ε

2N ), for a task set with N tasks.

Also, the number of constraints for the LP, given by the array Sn makes the algo-

rithm run in pseudo-polynomial time. Therefore, we can reduce them to one per

task, when an approximation factor γ = 0,1 is set to 1. In order to use the search

algorithm to use all the constraints, we set γ = 0.

3.4.1 Approximated WCRT Analysis Formulation

The two important factors that contributes to the hardness of the problem formu-

lation are the number of constraints required for the LP formulation, and the total

search space of all jobs that must be checked in the level-i busy period. We reduce

the number of jobs to be checked to a polynomial number by using the approximate

request bound function, first proposed by Fisher and Baruah [20]. It is given by

δ (τi, t) =

{ ⌈
t
Pi

⌉
for t ≤ (k−1)Pi

(t +Pi)Ui otherwise
(3.14)

where k = d1/εe−1, for an approximation factor 0 < ε < 1. The approximate

cumulative processor demand function is given for each job τi, l as

Wi,l = lei +∑
j<i

δ (τ j, t) (3.15)

38



By reducing the number of points to check in the level-i busy period, we introduce

an approximation to the actual WCRT. The Approximation Algorithm 4 runs in

polynomial-time to the number of inputs. We also enforce a policy to reduce the

number of constraints to be checked for the LP with the conditions provided by

Bini et al. [8].

Algorithm 4 SearchApproxResponseTimes(U,<P1,P2, . . . ,Pn>,ε)
P←<P1,P2, . . . ,Pn>

Jn← AcquireSearchRange(P,Pn,ε)

Sn← AcquireReducedConstraints(P,Pn)

for i ∈ Jn do
Uub

n ← FindUtilBoundP,Sn, i

if Uub
n ≥ U then
Rub

n ← BSearch(U, ,P,Sn, i−1, i,(1+ ε))

Procedure AcquireSearchRange(P, t,ε):

Jn←<>

k← d1/εe−1

for j← 1 to k - 1 do
Jn← Jn∪{ j.Pn}

return Jn

In order to provide a tighter bound, close to the exact Response-time bound

provided by Lehoczky et al. [32], we modify the algorithm to make use of an

optimal subset of the total constraints possible. Prior work in analyzing the space

of RMS schedulability shows that, for the entire list of scheduling points, Sn, there

exists a reduced scheduling point set Pn ⊆ Sn [8, 36]. It is formally stated as: The

reduced scheduling set Pi is defined by the recurrent expression:

P1(t) = t (3.16)

Pi(t) = Pi−1

(⌊ t
Pi

⌋
Pi

)
∪Pi−1(t) (3.17)

Despite being complex, the equation is inherently simple. In a system of n tasks,

39



by simply including the scheduling points that lie immediately before a schedul-

ing of a low priority task, we can fill the list Pn. This means that the scheduling

points P j depends on Pi, j < i. We make use of the reduced set of constraints for

our LP formulation to obtain a tighter bound for Response-Time Rub. Again, this

formulation doesn’t provide necessary and sufficient conditions for schedulability,

as discussed earlier.

We illustrate it with a simple example from Table 3.1. The exhaustive set

of constraints are given by S4 = {5,10,14,15,20,25,27,28,30,31}. By recur-

sively calculating the constraints for higher priority tasks τ j, with the knowledge

of constraints for the lower priority tasks τi, j < i, we can find out the set P4 =

{10,14,25,27,28,30,31}. The algorithm to determine the reduced set has a com-

plexity of O(n), and therefore is polynomial in the number of tasks n.

5 10 15 20 25 30 35 

14 28 

27 

35 0 t 

P1 = 5 

P2 = 14 

P3 = 27 

P4 = 35 

R 4 = 31 P  = {10,14,25,27,28,30,31}   

Figure 3.6: Timeline of P j for the Example in Table 3.1

The only modification to the SearchApprox ( 4) is in the procedure Acquir-

eReducedConstraints. The procedure AcquireReducedConstraints( 5) eliminates

the need for a γ option to choose minimal constraints or not. The algorithm recur-

sively find the constraints of higher priority tasks, and runs in polynomial time. It

is therefore ideal to use the method to determine the Response-time bound.

40



Algorithm 5 Procedure to Acquire Reduced Number of Constraints for the LP

Procedure AcquireReducedConstraints(P, t):
Data: Pn←< t >

1 for i← n - 1 to 1 do
2 Li←<> // Li is the list of constraints for task τi

3 for j in Pi+1 do
4 Li← AddConstraints(i, j,P)

5 Pn← Pn∪{Li}

6 return Pn

// Adds constraints for task τk

7 Procedure AddConstraints(k, time,P):

8 Constraint =
⌊

time
Pk

⌋
Pk

9 return Constraint

3.4.2 Empirical Evaluation of Approximated WCRT Analysis

The tightness of the algorithm can be verified with respect to conventional ap-

proaches to finding Response-times with known task computation times [18, 38,

45, 48]. For a set of given task periods, we pick computation times that are uni-

formly distributed and find the Response-time bound for all the samples and com-

pare it with the Response-time bound obtained using SearchApprox( 4). Though

the approach of generating synthetic task sets doesn’t reflect the application’s char-

acteristics, it is ideal to test the average case performance of a RTA technique, given

the input utilization bound U. Several other algorithms to obtain Uniform Distri-

bution of task utilizations are available, some of which are listed in [9]. We use

UUnifast [7] for its simplicity in formulation and adaptability for larger task sets.

We use UUnifast to obtain the task sets, and determine the Response-time bounds

using other RTA. Rub, obtained by procedure SearchApprox ( 4) is obtained for

the Task periods assumed, for comparison. We calculate the exact formulation of

Response-time bounds using the formulation given by Lehoczky et al. [32] to

verify if the value is less than Rub. A well known bound that could be computed

41



efficiently, known as the Fluid-flow model, proposed by [48] is also evaluated.

The formulation of Response-time bound using Fluid-flow model is by expanding

the ceiling function in the exact characterization as follows:

Ri = ei + ∑
j∈hp(i)

⌈Ri

Pj

⌉
e j

Ri ≤ ei + ∑
j∈hp(i)

(Ri

Pj
+1
)

e j

Ri ≤
∑ j∈hp(i) e j

1−∑ j∈hp(i)
e j
Pj

= R f luid
i (3.18)

Despite its simplicity, the Fluid-flow model has a very bad worst-case perfor-

mance, which we portray in the experiment. Therefore, we also compare Rub with

another computationally efficient method proposed by Bini et al. [11], which has

a bounded worst-case performance. The related works that are used in the evalu-

ation, and the Response-time bound formulation, are listed in Table 3.3. Figure

Cited
article Response-time Model Rub

[32] Exact Characterization Rub
i = ei + ∑

j∈hp(i)

⌈Rub
i

Pj

⌉
e j

[48] Fluid-flow Model R f luid
i =

∑ j∈hp(i) e j

1− ∑
j∈hp(i)

U j

[11] Linear-approximation Model Rbound
i =

ci +∑ j∈hp(i) e j(1−U j)

1− ∑
j∈hp(i)

U j

This LP based
work Optimization

Table 3.3: Comparison of Tight Upper Bounds on Response-time

3.7 shows the comparison of various techniques to obtain Response-time bounds

that we discussed against our bound. We show only a small range of samples, of

42



the whole experiment for clarity. It is found that the Response-time bound using

the algorithm specified in our work is close to the asymptotic value of the exact

characterization. This gives us confidence that the upper bound is a sufficient value

to determine task schedulability.

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

Samples

R
ilb

Comparison of Response Time Bounds with U = 0.84

 

 
Exact Characterization
Baruah et al. Approx
This Work
Fluid Flow Model

(        )

Figure 3.7: Empirical evaluation of Approximated WCRT Analysis

3.4.3 Discussion

Our experimental analysis shows that the WCRT bound obtained using LP ap-

proach is a useful number to determine the system characteristics, allowing the

system designers to assign a fraction of the resource, and still be feasible. In ap-

plications like Web services, where we assume a stream of requests arriving at a

shared resource, WCRT bound , and thereby loss of QOS guarantees can be es-

timated using our approach. The LP accepts a minimum and maximum solution

43



for the task computation times, which can be represented as min
i ≤ ei ≤ emax

i , for a

task τi. By enforcing the constraints of the computation times, the LP will give a

feasible Response-time bound that suits GTM. There are studies discussing utiliza-

tion bounds as a feasibility test for similar applications such as MF, indicated by

Lee et al. [28]. This ensures that there are other applications in which the WCRT

Analysis can be used for.

An on-line scheduling algorithm is the only option in a system whose future

workload is unpredictable, because it can accommodate dynamic variations in user

demands and resource availability. The benefit of having a single metric to detect

the worst-case Response-time of a group of requests in a system is itself useful for

various applications with dynamic application requirements. The lack of knowl-

edge of the workload is not an issue in the case of GTM. On-line Schedulability

tests on the approximate WCRT Analysis, shown in our work is important to deter-

mine the system load whenever a new request is received.

Even though fast schedulability tests using Liu and Layland bound [33], or

Hyperbolic Bound [10] are available, they are pessimistic and unsuitable for sys-

tems processing a large number of incoming requests. We proposed a new WCRT

Analysis technique for a system of tasks, when the system does not have infor-

mation about the workload. We showed that the complexity of the technique is

pseudo-polynomial, and proposed approximation techniques to minimize the com-

putational complexity. The proposed approximation involves some heuristics to

reduce the number of parameters involved in the computation of WCRT, to make

it suitable for On-line scheduling test. Approximate WCRT is comparable to the

average performance of the best known Response-time Bound analysis techniques.

The major benefit of the model is that it is applicable for a GTM, and predicts

the worst-case scenario of the system, when large number of requests are received.

Any scheduling policy built on top of the idea will help the system administrator

make responsible decisions for handling overload in real-time systems.

44



Chapter 4

Scheduling to Improve Rewards
during Overload

4.1 Related Work
In the context of soft real-time systems, where real-time jobs can be executed with

some flexibility, many techniques have been presented for maximizing a utility

function subject to schedulability constraints. While Buttazzo, et al. [13] provide

a detailed exposition on soft real-time systems, some approaches that are more

closely related to the work described in this work involve the imprecise compu-

tation [17] and the Increased Reward with Increased Service (IRIS) [19] task

models. In these models, a real-time job is split into a mandatory portion and an

optional portion. The mandatory portion provides the basic (minimal) quality of

service needed by a task; the mandatory portion has to be completed before the

job’s deadline. The optional part can be executed if the system has spare capacity,

but it too must be completed before the job’s deadline. The optional portion results

in a reward, and the longer the optional portion can execute the greater is the reward

garnered. The reward for executing the optional portion is described using a func-

tion of the extent to which the option portion is executed. Along these lines, Aydin,

et al. presented techniques for optimal reward based scheduling for periodic real-

time tasks [3]. Other techniques for maximizing utility (which can be considered

as revenue/rewards) include the use of linear and non-linear optimization [47], and

45



heuristic resource allocation techniques such as QoS-based Resource Allocation

Model (QRAM) [43, 44].

Our work is distinct from the imprecise computation model or the IRIS model

because jobs in our task model do not have a mandatory or an optional portion.

Further, a fixed revenue accrues with each job completion and this is unlike prior

work we have highlighted where the reward is a function of the optional portion.

Overload in real-time systems has also received attention. Baruah and Haritsa

described the ROBUST scheduling policy for handling overload [6]. Baruah and

Haritsa used the effective processor utilization as a measure of the “goodness” of a

scheduling policy. The Effective Processor Utilization (EPU) is the fraction of time

during an overload that the system executes tasks that complete by their deadlines.

When the EPU is used as a metric for measuring the performance of a scheduling

policy the task model is a special case of scheduling to improve rewards: in this

model the reward for a job completion is equal to the execution time of the job. The

task model studied by Baruah and Haritsa made no assumptions about the arrival

rates of jobs. Each job was characterized by its arrival times, its execution time

and its deadline. The ROBUST scheduler is an optimal online scheduler among

schedulers with no knowledge of future arrivals. Baruah, et al. established that

no online scheduler is guaranteed to achieve an EPU greater than 0.25 [4]. When

the value of a job need not be related to the execution length, Baruah, et al. [5]

provided a general result that the competitive ratio for an online scheduling policy

cannot be guaranteed to be better than 1
(
√

k+1)2 where k is the ratio of the largest to

smallest value density among jobs to be scheduled. The value density of a job is its

value-to-execution length ratio.

For systems where a job’s value need not be directly related to its execution

length, Koren and Shasha developed the Dover online scheduling policy [24], which

provides the best possible competitive ratio relative to an off-line (or clairvoyant)

scheduling policy. Koren and Shasha also developed the Skipover scheduling ap-

proach [25] to deal with task sets where certain jobs can be skipped to ensure

schedulability at the cost of lower quality of service. While Skipover was devel-

oped as a mechanism for dealing with overload, it is not suited to the application

scenarios we have described earlier.

Hajek studied another special case when all jobs are unit length and concluded

46



that the competitive ratio for online scheduling of such jobs lies in the interval

[0.5,φ ] where φ =
√

5−1
2 ≈ 0.618, the inverse of the golden ratio [21].

Competitive analysis of scheduling policies provides us good insight into the

behavior of different policies but does not address all issues. The job arrival pattern

that leads to poor performance of a policy ζ may be extremely rare in real systems.

Additionally, two online algorithms with the same competitive ratio might have sig-

nificantly varied performance in practice. Koutsoupias and Papadimitriou discuss

the limitations of competitive analysis and suggest some refinements that could

make problem formulation more realistic [26]. The limitations of competitive anal-

ysis have spurred investigations into several heuristics that offer good performance

in most settings. For example, Buttazzo, et al. have described experiences with

robust versions of the earliest deadline first algorithm [14, 15].

With regard to prior work on handling overload in real-time systems, we study

a general revenue model where the revenue earned on completing a job need not

be related to the execution time of the job. Moreover, we propose a scheduling

policy that has limited awareness of the characteristics of the workload. While in

prior work ([4, 6, 14, 15, 24]) no assumptions were made about future job arrivals,

we use estimates of arrival rates to make better decisions. Such information can

easily be measured, or specified, in a system, and is often described in the service

level agreements between service providers and customers. This information is,

therefore, not unreasonable to expect for the class of systems that we are interested

in. Furthermore, Stankovic, et al. [49] have stressed the need to incorporate more

information about the workload. Writing about competitive analysis for overload

scheduling ([49], p. 17) they note that “More work is needed to derive other bounds

based on more knowledge of the task set.” Although our work does not lead to

deriving bounds on competitive performance of online scheduling policies, we use

information concerning the task streams to develop a scheduling policy to improve

revenues in the presence of overload.

Lam, et al. [27] have presented a scheme that uses faster processors to handle

overload. We have proposed a scheme that is suited to situations where extra re-

sources may not easily be available, or cannot be deployed quickly, to ameliorate

overload.

Finally, we note that we use stochastic models for soft real-time systems. Real-

47



time queueing theory [30] deals with probabilistic guarantees for real-time systems

but Real-time Queuing Theory (RTQT) does not provide tools either for analyzing

overload conditions or for maximizing rewards in a real-time system.

4.2 System and Task Model
The system and task model that we consider is that of n streams, {S1, . . . ,Sn},
with preemptible jobs; all jobs are executed on a uniprocessor system. Within a

particular stream Si jobs arrive with a mean inter-arrival time Pi; the inter-arrival

times are governed by a Poisson process with rate ri =
1
Pi

.1 The execution time of

each job may also vary; for stream Si we consider the execution time of jobs to be

governed by an exponential distribution with mean ei. Each job also has a deadline;

the deadlines for jobs of Si follow an exponential distribution with mean Di. When

a job belonging to Si is completed prior to its deadline expiring a fixed revenue of

vi(> 0) is earned. We will use the terms revenue, value and reward interchangeably

for the rest of this work.

In this work, we provide a method for achieving high average revenue over an

infinite time horizon. An optimal scheduling policy, ζ ∗, is one that will achieve the

supremum

V ζ ∗ = limsup
t→∞

{V
ζ (t)

t +1
}

where V ζ (t) is the revenue obtained using policy ζ over the interval [0, t).

The scheduling policies of interest are non-idling, or work conserving, policies

that make decisions whenever the state of the system changes: when a new job

arrives, when a job finishes, or when a deadline expires.

This model also generalizes the traditional periodic task model studied by Liu

and Layland. No relationship need exist between the deadlines and the rates of the

tasks.

4.3 Identifying a Good Scheduling Policy
Before we develop some intuition regarding scheduling policies that optimize the

average revenue earned over a long run of the system, we note that this discussion
1The inter-arrival times correspond to peak workload.

48



is particularly relevant for overloaded systems, i.e., for systems where ∑
n
i=1

ei
Pi
=

∑
n
i=1 eiri > 1. If the system was under-utilized then such a policy is optimal and

would generate an average revenue of ∑
n
i=1 viri; the earliest deadline first policy, in

fact, emulates this allocation when the utilization is ≤ 1.

Whenever the system is not overloaded, we will assume the use of the EDF

policy. Notice that a system is guaranteed to meet all deadlines when ∑i ei/Di ≤
1. In general, when a system operates at utilization less than 100% then EDF

maximizes the average revenue earned.

We shall identify an ideal policy by first determining an optimal static alloca-

tion of the processor among the different job streams, and then improving that allo-

cation at each decision step. Our first goal is to determine fractional allocations of

the processor among the n streams. Essentially we seek a vector f= { f1, f2, . . . , fn}
such that fi represents the proportion of processor time allocated to stream Si. In

other words, such a static allocation would allocate an fi fraction of each time unit

to task stream Si. Although this may be an impractical policy – because of the ex-

cessive context switching overhead – we shall use this as an initial step to obtaining

a more practical policy.

4.3.1 Optimal Fractional Resource Allocation

We would like to partition the processor’s efforts among the n streams to optimize

the revenue earned. fi represents that long-run fraction of time spent by the pro-

cessor servicing jobs of stream Si.

When dealing with systems subject to overload, job queue lengths may grow

rapidly but the system is kept stable by the fact that jobs have deadlines. We let

Li(t) represent the length of the queue of jobs from Si at time instant t. The n

queue lengths are stochastic processes that evolve depending on the scheduling

policy chosen; further the queue lengths are independent of each other because

each queue is guaranteed a fraction of the processor. The queue length Li(t) is,

therefore, a simple birth-death process with the rate of arrivals to the queue being

ri and the departure rate being fi
ei
+ l

Di
[influenced by job completions and deadline

expirations] when the state of the queue, the queue length, is l. If we use terms that

are more common to queueing systems, then the service rate si =
1
ei

, the deadline

49



miss rate di =
1
Di

, and the departure rate for the queue length process is fisi + ldi.

Applying some standard results concerning birth-death processes [40], the sta-

tionary distribution for Li(t), when stream Si is allotted an fi proportion of the

processor, is given by

Πi(l, fi) =
(ri)

l

∏
l
m=1(si fi +mdi)

Π0(ri,si fi,di), (4.1)

where l is the state of queue i and

Π0(ri,si fi,di) =

(
∞

∑
l=0

(ri)
l

∏
l
m=1(si fi +mdi)

)−1

. (4.2)

The average revenue obtained using scheduling policy ζf that allocates fi pro-

portion of the processor to stream Si is

Vf =
n

∑
i=1

visi fi [1−Π0(ri,si fi,di)] (4.3)

and the optimal fractional allocation policy ζ ∗ is that policy that picks the maxi-

mizing vector f:

V ∗ = max{Vf| fi ≥ 0,
n

∑
i=1

fi = 1}. (4.4)

We will initially assume that we have obtained the optimal fractional allocation

policy and suggest a mechanism to improve on policies that pre-allocate processor

shares. We will refer to ζ ∗, the optimal fractional allocation policy, as Fractional

Allocation Policy (FAP). Further, we noted earlier that the fractional allocation

policy might require each time step to divided among all queues, which might lead

to unacceptable overhead. The improvement step will result in a policy that can be

applied at every time instant when the state of the system changes, i.e., whenever a

new job arrives, or when a job is completed, or when a job misses its deadline.

50



4.3.2 An Improved Policy for Online Job Selection

We will improve upon a fractional allocation policy ζf by defining a priority index

Zi(li) that indicates the priority of a stream when there are li queued jobs belonging

to that stream. Then, at any time t when the scheduler needs to make a decision,

the scheduler will activate a job from the stream with the highest priority index;

thus stream Si will be chosen if and only if

Zi(li) = max
k
{Zk(lk)} . (4.5)

A scheduling decision is made whenever the state of any of the queues changes.

The approach underlying our improved policy is to assume that at every decision

instant a particular job is scheduled and that from the next decision instant policy

FAP will be applied; the selection of the job at the first decision instant is based

on improving the revenue in comparison to a consistent use of FAP. By applying

the improvement step (as dictated by the priority indices) at each decision instant

we can obtain consistently better performance than FAP. This approach can be

re-stated as follows:

• If t = 0 is the first decision instant then we will select a job and execute it till

the second decision instant.

• Assume that FAP will be used from the second decision instant. Therefore,

pick a job at t = 0 that will lead to an improved revenue when compared with

the use of FAP from t = 0.

• If we treat every decision instant exactly like the first decision instant then

the modified policy will consistently outperform FAP.

In this work we shall denote the policy that uses the above priority index as

Policy Z.We shall now state the main theorem and then proceed to prove this theo-

rem.

Theorem 4. The scheduling policy that improves upon the fractional allocation

policy ζf is the policy that chooses to service task stream i when li > 0 and

Zi(li) = max
k;lk>0
{Zk(lk)}

51



where

Zi(li) = visi

[
1− (si fi)Π0(ri,si fi,di)

(si fi + lidi)Π0(ri,si fi + lidi,di)

]
.

Understanding the modified policy. The prioritization suggested by the up-

dated scheduling policy is greedy. This is expected when scheduling tasks with

deadlines. The priorities are based on the highest possible revenue rate (visi). At

the same times, the priority attempts to delay those streams that typically have

longer deadlines; draining queues that have jobs that can wait would, at later time

instant, lead to serving jobs that do not yield high revenues and this is reflected by

the zero probability term Π0(ri,si fi,di). However, if a queue is sufficiently long

then we can serve jobs in that queue without worrying about draining that queue

and this is reflected by the Π0(ri,si fi+ lidi,di) term. Also, when deadlines are short

the deadline miss rate (di) is high and this is captured by the term (si fi + lidi)
−1

that boosts the priority of streams with shorter deadlines.

Whenever a scheduling decision is to be made, the optimal choice would de-

pend on whether executing a job now is better than deferring its execution. The

penalty that one may incur by deferring the execution of a job is that the job may

miss its deadline thereby resulting in no revenue. We denote the expectation of the

revenue earned from Si by applying the fractional allocation policy when the state

of queue i is li as Vf,i(li). The priority of each stream can then be computed as

Zi(li) = si[vi−{Vf,i(li)−Vf,i(li−1)}]. (4.6)

Proof outline. In computing the priorities we essentially account for the poten-

tial loss in revenue if we defer the execution of a job to a later time instant. The

highest priority job is that job that will result in the maximum loss if its execution

were to be deferred and its deadline were to expire as a consequence of the deferral.

It becomes essential to compute the expected change in revenue, Vf,i(li)−Vf,i(li−1)

before we can determine the priority of a job. The rest of this section is dedicated

to a discussion on how we can recover this quantity.

To understand the long-run average reward obtained from a particular class

of workload, we consider the evolution of the queue {Li(t), t ∈ R+} with initial

condition Li(0) = li and being awarded a fraction fi of processing time. The queue

52



length will evolve as a birth-death process with birth rate ri and death rate si fi+ ldi

at time t with l ∈ Z+, l = Li(t).

A scheduling policy that apportions fractional processing to different job streams

is guaranteed an average revenue of fisivi from stream i as long as queue i is never

empty. If we have determined the optimal fractional allocations then a scheduling

policy can attain high value by not allowing queues to empty: jobs that provide

high revenue and have short deadlines may be preferred. We will, therefore, un-

derstand the variation in the emptying time of a queue if a job is processed at time

instant t or at a later time instant.

The remainder of the proof is devoted to identifying the quantity Vf,i(li)−
Vf,i(li−1).

Proof. The stopping time for the birth-death process {Li(t), t ∈ R+} when the

scheduling policy uses fractional allocations defined by the vector f is defined as

τf,i(li) := inf{t| t > 0 and Li(t) = 0}. (4.7)

The expected value obtained from queue i in the interval [0,τf,i(li)) is denoted

V̂f,i(li). Further, we denote the expectation for the stopping time as

T f,i(li) := E[τf,i(li)]. (4.8)

From standard results concerning Markov Decision Processes [42], we can es-

tablish that the 0 state is a regeneration point for the queuing process {Li(t), t ∈
R+}. We can then obtain

Vf,i(li)−Vf,i(li−1) = V̂f,i(li)−V̂f,i(li−1)− [T f,i(li)−T f,i(li−1)]Vf,i

∀li ∈ Z+, 1≤ i≤ N. (4.9)

Notice that if we define an alternative stopping time

τ̂f,i(li) := inf{t| t > 0 and Li(t) = li−1} (4.10)

then V̂f,i(li)−V̂f,i(li−1) is the value derived from servicing queue i, which is gov-

53



erned by the MDP {Li(t), t ∈ R+} with Li(0) = li during the interval [0, τ̂f,i(li)).

Also,

T f,i(li)−T f,i(li−1) = E[τ̂f,i(li)]. (4.11)

We shall now introduce a shadow process {L̂i(t), t ∈ R+} to ease our analysis.

This process shadows the queueing process {Li(t), t ∈ R+} with some subtle dif-

ferences. The shadow process is a birth-death process with birth rate ri and death

rate si fi +(li +m)di in state (li +m),m ∈ N. The death rate is 0 in states where the

queue length is less than li. The initial state of the shadow process is L̂i(0) = li.

The shadow process is identical to the original queue length process {Li(t), t ∈R+}
when the queue length is greater than li−1 but the shadow process cannot enter the

state where the queue length is li−2. The shadow process has as its regeneration

point the state li−1 and the reward derived from the shadow process per unit time

is

Ṽf,i =
V̂f,i(li)−V̂f,i(li−1)

r−1
i +T f,i(li)−T f,i(li−1)

. (4.12)

In the expression for Ṽf,i, the numerator represents the reward earned when

the original MDP transitions from state li to li−1; the denominator is the expected

duration for the shadow process to return to its initial state, i.e., start from the initial

state of li, transition to state li−1 and then return to state li.

From standard results regarding birth-death processes [40] we can obtain the

stationary distribution for {L̂f,i(t), t ∈ R+} as

Π̂i(l) =

 rl−li+1
i

{
Π0(ri,si fi+(li−1)di,di)

∏
l
m=li

(si fi+mdi)

}
, l ≥ li−1

0, l ≤ li−2

(4.13)

The value obtained per unit time for the shadow process, which does not earn

any revenue in state li−1, is given by

visi fi(1− Π̂i(li−1)) = visi fi[1−Π0(ri,si fi +(li−1)di,di)]. (4.14)

54



Further, we can use (4.3) and (4.12) to infer that

(V̂f,i(li)−V̂f,i(li−1))
r−1

i +T f,i(li)−T f,i(li−1)
= visi fi[1−Π0(ri,si fi +(li−1)di,di)] (4.15)

and that

(T f,i(li)−T f,i(li−1))
r−1

i +T f,i(li)−T f,i(li−1)
= 1−Π0(ri,si fi +(li−1)di,di). (4.16)

We can now combine (4.9), (4.14), (4.15) and (4.16) to conclude that

Vf,i(li)−Vf,i(li−1) =
[visi fi][Π0(ri,si fi,di)]

[si fi + lidi][Π0(ri,si fi + lidi,di)]
. (4.17)

Finally, we use (4.17) in (4.6) to complete the theorem.

4.4 Empirical Evaluation
Having described the structure of a policy for job selection to maximize rewards,

we shall now describe simulation results that compare the performance of our pol-

icy with other approaches.

Before elaborating on empirical evaluation, we emphasize that it is extremely

difficult to exhaustively evaluate, via simulation, different scheduling policies, es-

pecially when rewards can be assigned arbitrarily. The proof that Policy Z can yield

strong, and increased, revenue (Theorem 4) is what should suggest the “goodness”

of the policy. The empirical evaluations are only indicative of the general applica-

bility of that result.

4.4.1 Comparison with Stochastic Dynamic Programming (SDP)

Optimal solutions to the scheduling problem of interest can be recovered using

stochastic dynamic programming [46]. Stochastic dynamic programming is, how-

ever, computationally expensive and is not practical for most applications. For a

simple workload with at most two task streams it is computationally feasible to re-

sort to SDP; we used this case to compare the performance of the proposed policy

55



with the optimal policy.

We begin by making two comparisons:

1. Optimal fractional allocation ( FAP) vs. Policy Z, and

2. Policy Z vs. the optimal policy via SDP.

For these comparisons we used many task streams, and we present the results

from a representative set of simulation runs (parameters in Table 4.1). Each run

consisted of two task streams, and the simulations were performed for 9,00,000

time steps. Each task stream had the same average inter-arrival time of 350 time

units, and the revenue earned for every job of task stream 2 was 1.0, i.e., v2 = 1.0.

We also kept the same mean deadline for each task stream, D = D1 = D2. For

some simulation runs the mean execution time was longer than the mean deadline,

making scheduling decisions even harder.

Experiment D e1 e2 v1 f ∗1
E1 1000 600 600 1.0 0.50
E2 1000 620 725 1.1 0.54
E3 1000 580 790 1.2 0.57
E4 1000 545 855 1.3 0.61
E5 1000 520 925 1.4 0.64
E6 1000 500 1010 1.5 0.67
E7 500 610 735 1.1 0.55
E8 500 530 900 1.3 0.63
E9 500 475 1110 1.5 0.70
E10 250 590 765 1.1 0.56
E11 250 495 1020 1.3 0.67
E12 250 435 1430 1.5 0.77
E13 165 575 785 1.1 0.58
E14 165 465 1170 1.3 0.72
E15 165 400 2000 1.5 0.84

Table 4.1: Task Stream Parameters to Compare the Performance of the Pro-
posed Policy with Other Policies (Two Task Streams)

We describe our results for each experiment (Figure 4.1). The optimal frac-

tional allocation is described with other parameters (Table 4.1). Recall that f ∗2 =

56



0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 

Experiment 

FAP vs. Z Z vs. OPT/SDP 

Figure 4.1: Performance of Policy Z Compared with the Optimal Fractional
Policy and SDP

1− f ∗1 . Policy Z clearly improves over FAP; the percentage improvement in av-

erage revenue is at least 15% (red bars in the graph). We compute the percentage

improvement as follows: If VZ was the revenue accrued by Policy Z at the end of

an experiment and if VFAP was the reward accrued using FAP, then the percentage

improvement is 100× VZ−VFAP
VFAP

.

In comparison to the optimal policy recovered using SDP, we determined the

loss in average revenue (percentage loss = 100× VSDP−VZ
VSDP

) using policy Z (yellow

bars); the maximum loss was not more than 4%. This confirms the dramatic im-

provement that can be obtained over the FAP and indicates that the suggested policy

has a performance that is very close to the optimal SDP policy. The performance

of Policy Z improves when the rate of deadline misses increases.

57



4.4.2 Comparison with ROBUST

Baruah and Haritsa developed the ROBUST scheduler [6] for achieving near-optimal

performance during overload for a specific class of systems where

• The value of a job is equal to its execution length, and

• Each job has a slack of at least s, i.e., Di
ei
≥ s.

The performance of the ROBUST scheduler is near-optimal in the sense that it

can, asymptotically, match the performance of the optimal online scheduling policy

for the mentioned class of systems. They showed that the best performance that an

online scheduler can guarantee is an EPU of dse/(dse+ 1) and that the ROBUST

scheduler guarantees an EPU that is at most 2/s(s+ 1) fractionally off from the

optimum [6].

We provide a brief description of the ROBUST scheduler before detailing some

empirical comparisons between the Policy Z and ROBUST. The ROBUST sched-

uler partitions an overloaded interval into an even number of contiguous phases

(Phases-1, . . . ,2a). The length of each even numbered phase is equal to a 1/(s−
1) fraction of the length of the preceding odd numbered phase. At the start of

an odd phase, the algorithm selects the longest eligible job and executes it non-

preemptively. This job may have been executed in the previous even numbered

phase; the length of the odd numbered phase is equal to the execution time remain-

ing for that job. An odd phase concludes with the termination of the chosen job.

During an even numbered phase, the scheduler selects a job with maximum length;

this job may be preempted if another job arrives with longer execution length.

To compare Policy Z with the ROBUST scheduler, we used several simulations.

For two sets of simulated runs, we chose a fixed slack factor of 2; for the other two

sets of runs we chose a slack factor of 4. Each simulated run lasted 1,000,000 time

units and involved four task streams. The execution time for jobs belonging to the

same task stream were drawn from the same exponential distribution (the mean ex-

ecution times for the four task streams were 50, 100, 200 and 400 respectively); the

deadline for each job was set based on the slack factor. For simplicity we chose the

same arrival rate for all streams; based on the desired workload intensity the arrival

rate was determined.We did perform a variety of simulation studies with different

58



arrival rates for different task streams. The performance of the scheduling policies

when the arrival rates for different streams are different is similar to the results

reported in this work. Only Policy Z is concerned with task streams; the ROBUST

scheduler simply schedules on a job-by-job basis. The reward for completing a job

successfully was equal to the execution time for that task stream. We do not in-

tend this empirical analysis to be exhaustive but merely indicative of the benefits of

using stochastic approximation to derive scheduling policies. For each data point,

we averaged 50 independent simulation runs and compared the behavior of the two

policies.

We found that Policy Z outperformed ROBUST in all scenarios (Figures 4.2

and 4.3). Policy Z is not clairvoyant, but the awareness of potential future arrivals

enables it to make better decisions. With a slack factor of 2 (s = 2), we were able

to improve the per-time step rewards in excess of 15% in some cases. When the

slack factor increases (s = 4), Policy Z was able improve revenue per time step but

the increases are smaller. When the slack factor is high, most policies will be able

to recover from a poor decision and still generate near-optimal revenue.

0 

5 

10 

15 

20 

25 

30 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t 

Workload 

With exact information Without exact information 

Figure 4.2: Performance of Policy Z Compared with the ROBUST Policy
when Slack Factor is 2

59



0 

2 

4 

6 

8 

10 

12 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t 

Workload 

With exact information Without exact information 

Figure 4.3: Performance of Policy Z Compared with the ROBUST Policy
when the Slack Factor is 4

The ROBUST scheduler requires accurate knowledge of the execution times of

jobs and their deadlines. Policy Z is obtained via stochastic approximation and

is more tolerant of errors in the parameters. When the ROBUST scheduler is only

provided with the mean execution time for a job its performance drops significantly

and the improvement noticed by using Policy Z is more pronounced. (The red bars

in Figures 4.2 and 4.3 are based on the ROBUST scheduler using exact information;

the orange bars are based on approximate information.)

Another observation is that when the extent of overload is small, both policies

perform equally well (or equally poorly). Similarly, when the system experiences

heavy overload, most choices are equally good and the two policies have smaller

differences.

60



4.4.3 Comparison with REDF

The ROBUST scheduler is targeted at systems with known slack factors and with

a job’s value being equal to its execution time. The policy we have developed,

however, is also suited to arbitrary reward assignments and to situations when jobs

do not have a guaranteed slack.

To understand the performance of Policy Z under general workloads we com-

pared its performance with the performance offered by the Robust EDF heuris-

tic [14, 15]. The REDF policy is identical to EDF when the system is not over-

loaded. Whenever a job arrives a check is performed to determine if the system is

overloaded. (If tasks are scheduled using EDF and ei/Di ≤ 1 then the system is not

overloaded.) When an overload is detected, the least value task that can prevent

the system from being overloaded is removed from the queue of pending jobs to a

reject queue.2 If some job completes ahead of time then jobs from the reject queue

whose deadlines have not expired may be brought back to the pending queue. But-

tazzo, Spuri and Sensini showed that REDF is well behaved during overloads [15],

and we used additional simulations to understand the performance of REDF and

Policy Z, and to contrast the two approaches.

For these simulations, we used the task streams similar to those in our com-

parisons with ROBUST. For each run we used four task streams, S1,S2,S3,S4, with

mean execution times of 150, 100, 200 and 400 respectively. The deadlines for

jobs of the four task streams were drawn from exponential distributions with mean

600, 800, 1600 and 3200 respectively. The arrival rate was chosen to generate the

required workload. Similar to the previous evaluation, each stream had the same

arrival rate.

We compared the performance of REDF with Policy Z under two reward mod-

els:

• The rewards associated with jobs of the four streams were 150, 300, 400 and

200 respectively. These were chosen to represent a random ranking of task

streams in terms of value.

• The reward associated with each stream was inversely related to the mean

2This policy can be modified and a smart search strategy might remove multiple jobs of low value
to prevent overload. We have not implemented this approach in our evaluation.

61



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t 

Workload 

Z vs. REDF -- random rewards 

Figure 4.4: Performance of Policy Z Compared with the REDF Policy (Ran-
dom Rewards)

deadline for that stream, i.e., shorter the deadline greater the reward. The

rewards associated with S1, . . . ,S4 were 450, 300, 200 and 100 respectively.

This reward model was intended to be approximately linear in terms of job

deadlines.

We note that Policy Z results in measurable improvements in revenue when

compared with REDF using both the random (Figure 4.4) and the linear (Fig-

ure 4.5) reward models. The linear reward model indicates greater differences

because REDF has to choose to drop jobs that may yield high rewards (because

higher rewards are connected to higher utilization, and one job providing high re-

ward may dropped in place of multiple jobs that jointly yield a smaller reward) to

ensure that other jobs meet their deadlines.

62



0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t 

Workload 

Z vs. REDF -- linear rewards 

Figure 4.5: Performance of Policy Z Compared with the REDF Policy (Linear
Rewards)

4.4.4 Discussion

On the basis of the three different comparisons (with SDP, with ROBUST, with

REDF), we were able to ascertain the uniformly improved performance that the pro-

posed scheduling approach (Policy Z) is able to offer. These comparisons strongly

indicate that using knowledge of future workload does increase the revenue one can

earn. The improvement in revenue can be at least 10%, and is likely higher when

perfect information regarding the temporal requirements of jobs is not available.

The improvements in revenue obtained using Policy Z diminish when the system

is extremely overloaded; this hints at the possibility that most scheduling decisions

are likely to be reasonable in those situations.

We speculate that if Policy Z is near optimal (as is the case when there are

two task streams – see Figure 4.1) then other scheduling policies (e.g., ROBUST,

REDF) are also likely to be only about 20 to 25% away from optimality (even

less in some cases) in practice, and that is an encouraging result concerning the

63



practical applicability of those policies.

The structure of the priority index for Policy Z is intuitive and can form the

basis for obtaining good scheduling heuristics even when workload might not con-

form to simple probability distributions.

Implementation considerations. Policy Z requires a priority for each class of

requests, and this dynamic priority depends on the length of the corresponding

queues. It is possible to compute the priorities at different queue lengths off-line

and use a table lookup to identify the priorities of tasks online. This makes the

proposed policy easy to implement. We also need to identify the optimal fractional

allocation policy, and this is also an offline operation. Identifying the optimal frac-

tional allocation is an optimization problem in itself and we use a search over the

space of possible allocations to determine the optimal allocation. This is feasible

when the number of service classes is limited. It is likely that some sub-optimal ini-

tial allocations may not affect the behavior of Policy Z significantly but this notion

requires further study.

64



Chapter 5

Conclusions and Future
Improvements

Overload in certain soft real-time systems (such as Internet-based services) is of-

ten unavoidable because the costs of provisioning for peak load are significantly

greater than the costs of handling typical load. In such systems, service providers

need to provide the best possible service to customers who demand higher quality

of service and are willing to pay more for better QoS.

In this thesis, we have addressed the issue of handling overloads in Real-time

Systems, and have taken two different approaches. We initially proposed a way

of find the conditions causing overload of the system, and avert it by provision-

ing extra resources, or dropping requests. Subsequently, we proposed a fractional

allocation policy based on stochastic approximation to make a decision to drop

requests, while maximizing the revenue at the same time.

5.1 Summary of the Contributions

5.1.1 On-line Scheduling Policy to Detect Overload

The problem of finding the WCRT for Rate Monotonic Scheduling is a challeng-

ing problem. The past and current efforts on Rate Monotonic Analysis have been

attempted at finding the best match of accuracy and computational complexity, but

65



not when there is no information about the workload. Our work shows that it is pos-

sible to find an upper bound on WCRT for any possible distribution of resources

among the task streams, with reduced complexity. We showed the hardness of the

problem when Stochastic Analysis is done, even when PTAS are used to minimize

the complexity. By using mathematical optimization techniques, we proved that

the maximum WCRT can be determined with lesser complexity, but it is still not

applicable for embedded devices with little processing power.

In order to address the issue of complexity in the proposed WCRT analysis, we

provided heuristics to minimize the problem size at different stages of the analysis.

Therefore, we showed that by using polynomial number of constraints, the Linear

Program converges to a suboptimal solution faster. In order to bound the worst-

case accuracy of the approximation technique, we established worst-case limits on

the possible solutions of the Linear Program formulation. Then, we followed an

approximation scheme proposed by Fisher and Baruah [20] to restrict the search

space of the solution, instead of incrementally checking all possible future arrivals

of the task. WCRT gives a good indication of the possible overload to the system

administrator, depending on the arrival of the requests and allows for handling

overloads efficiently.

5.1.2 Overload Management to Improve Rewards by Stochastic
Approximation

When the resources available are stringent, we made assumptions on the workload

characteristics and presented a scheduling policy for handling overload conditions

while improving the revenue earned. The policy that we present, Policy Z, is based

on stochastic approximation, using the information about future job arrivals. It is

an on-line scheduling policy and therefore, approximate information about future

workload is sufficient to make meaningful decisions. Empirical evidence suggests

that Policy Z has an excellent performance when compared with other scheduling

policies for value maximization in the presence of overload.

66



5.2 Potential Future Improvements
In large-scale systems having multiple processing units to serve the requests from

different clients are prevalent. Schedulability analysis, and fractional allocation are

far more challenging in such scenarios. With more cores being added in the same

processor in embedded systems, makes it more compelling to have the schedula-

bility analysis extended for multiprocessor /multicore systems. The problem of

scheduling of these resources, based on allocating jobs to different cores(bin pack-

ing) is widely studied, and estimated to be a NP Complete problem. Therefore,

identification of WCRT for dynamic task assumptions is an interesting area for

research.

Our scheduling policy, using stochastic approximation is sufficiently general

and can be used in multiprocessor systems as well. However, we have restricted

the discussion in this article to uniprocessor systems, but it is possible to use the

policy in a system with m processors by selecting the top m jobs based on their

priority indices.

Even though we make some minor assumptions in our formulation, it can be

removed and the model can be extended to such cases. In the case of Schedulability

analysis, the assumptions such as periodic arrival of tasks, task independence, lack

of release jitter induced delays, etc. can be eliminated, since the Linear Program

formulation is fairly generalized. Similarly, we make some assumptions about job

arrival rates and deadlines, we believe that the approach of generating an initial

policy and then improving upon that policy (as we do with the optimal fractional

allocation policy and Policy Z) is a useful tool for decision making in real-time

systems that can be generalized and applied to other problems as well.

67



Bibliography

[1] K. Albers and F. Slomka. An event stream driven approximation for the
analysis of real-time systems. In ECRTS, pages 187–195, 2004. → pages 14

[2] Amazon.com. Amazon web services. http://www.amazon.com/, May 2008.
→ pages 1

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Optimal
reward-based scheduling for periodic real-time tasks. IEEE Transactions on
Computers, 50(2):111–130, February 2001. ISSN 0018-9340.
doi:http://dx.doi.org/10.1109/12.908988. URL
http://portal.acm.org/ft gateway.cfm?id=365334&type=external&coll=
Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428. → pages 45

[4] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha.
On-line scheduling in the presence of overload. In Proceedings of the
Symposium on Foundations of Computer Science, pages 100–110, October
1991. ISBN 0-8186-2445-0. → pages 46, 47

[5] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang. On the competitiveness of on-line real-time task
scheduling. Real-Time Systems, 4(2):125–144, May 1992. ISSN 0922-6443.
doi:http://dx.doi.org/10.1007/BF00365406. → pages 46

[6] S. K. Baruah and J. R. Haritsa. Scheduling for overload in real-time
systems. IEEE Transactions on Computers, 46(9):1034–1039, September
1997. ISSN 0018-9340. doi:http://dx.doi.org/10.1109/12.620484. URL
http://portal.acm.org/ft gateway.cfm?id=265217&type=external&coll=
Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428. → pages 46,
47, 58

[7] E. Bini. The Design Domain of Real-Time Systems. PhD thesis, Scuola
Superiore S.Anna, Pisa, 2004. → pages 41

68

http://dx.doi.org/http://dx.doi.org/10.1109/12.908988
http://portal.acm.org/ft_gateway.cfm?id=365334&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428
http://portal.acm.org/ft_gateway.cfm?id=365334&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428
http://dx.doi.org/http://dx.doi.org/10.1007/BF00365406
http://dx.doi.org/http://dx.doi.org/10.1109/12.620484
http://portal.acm.org/ft_gateway.cfm?id=265217&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428
http://portal.acm.org/ft_gateway.cfm?id=265217&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428


[8] E. Bini and G. C. Buttazzo. The space of rate monotonic schedulability. In
IEEE Real-Time Systems Symposium, pages 169–178, 2002. → pages 37, 39

[9] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In
ECRTS. IEEE Computer Society, 2004. ISBN 0-7695-2176-2. → pages 41

[10] E. Bini, G. C. Buttazzo, and G. Buttazzo. Rate monotonic analysis: The
hyperbolic bound. IEEE Trans. Computers, 52(7):933–942, 2003. → pages
8, 13, 44

[11] E. Bini, T. Nguyen, P. Richard, and S. Baruah. A response-time bound in
fixed-priority scheduling with arbitrary deadlines. IEEE Trans. Computers,
58:279–286, 2009. → pages 42

[12] E. A. Brewer. Lessons from giant-scale services. IEEE Internet Computing,
5(4):46–55, Jul./Aug. 2001. → pages 1, 2

[13] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems:
Predictability vs. Efficiency. Springer, 2005. → pages 45

[14] G. C. Buttazzo and J. A. Stankovic. RED: a robust earliest deadline
scheduling algorithm. In Proceedings of the International Workshop on
Responsive Computing Systems, pages 100–111, September 1993. → pages
47, 61

[15] G. C. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline scheduling in
overload conditions. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 90–99, December 1995. → pages 47, 61

[16] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound re-visited. In
RTCSA, pages 295–302, 1999. → pages 8, 13, 18

[17] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow
imprecise results. IEEE Transactions on Computers, 39(9):1156–1174,
September 1990. ISSN 0018-9340. doi:http://dx.doi.org/10.1109/12.57057.
URL http://portal.acm.org/ft gateway.cfm?id=102826&type=external&coll=
Portal&dl=GUIDE&CFID=68484521&CFTOKEN=56294152. → pages 45

[18] R. Davis and A. Burns. Response time upper bounds for fixed priority
real-time systems. In Real-Time Systems Symposium (RTSS), pages
407–418. IEEE Computer Society, December 2008. → pages 14, 41

[19] J. K. Dey, J. Kurose, and D. Towsley. On-line scheduling policies for a class
of IRIS (increasing reward with increasing service) real-time tasks. IEEE

69

http://dx.doi.org/http://dx.doi.org/10.1109/12.57057
http://portal.acm.org/ft_gateway.cfm?id=102826&type=external&coll=Portal&dl=GUIDE&CFID=68484521&CFTOKEN=56294152
http://portal.acm.org/ft_gateway.cfm?id=102826&type=external&coll=Portal&dl=GUIDE&CFID=68484521&CFTOKEN=56294152


Transactions on Computers, 45(7):802–813, July 1996.
doi:http://dx.doi.org/10.1109/12.508319. URL
http://portal.acm.org/ft gateway.cfm?id=627153&type=external&coll=
Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428. → pages 45

[20] N. Fisher and S. Baruah. A polynomial-time approximation scheme for
feasibility analysis in static-priority systems with arbitrary relative
deadlines. In In Proceedings of the 13th International Conference on
Real-Time Systems, pages 117–126. IEEE Computer Society Press, 2005. →
pages 13, 14, 38, 66

[21] B. Hajek. On the competitiveness of on-line scheduling of unit-length
packets with hard deadlines in slotted time. In Proceedings of the
Conference on Information Sciences and Systems, pages 434–439, March
2001. → pages 47

[22] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for
real-time fixed-priority scheduling algorithm. In IEEE Real-Time Systems
Symposium, pages 36–45, 1997. → pages 13

[23] X. S. Hu and G. Quan. Fast performance prediction for periodic task
systems. In CODES, pages 72–76, 2000. → pages 22

[24] G. Koren and D. Shasha. Dover: an optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM Journal of Computing, 24
(2):318–339, April 1995. → pages 46, 47

[25] G. Koren and D. Shasha. SkipOver: algorithms and complexity for
overloaded systems that allow skips. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 110–119, December 1995. ISBN 0-8186-7337-0.
URL http://portal.acm.org/ft gateway.cfm?id=828929&type=external&coll=
Portal&dl=GUIDE&CFID=29442874&CFTOKEN=47928360. → pages 46

[26] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis.
SIAM Journal of Computing, 30(1):300–317, January 2000. ISSN
0097-5397. doi:http://dx.doi.org/10.1137/S0097539796299540. URL
http://portal.acm.org/ft gateway.cfm?id=587029&type=external&coll=
Portal&dl=GUIDE&CFID=29061345&CFTOKEN=21883824. → pages 47

[27] T.-W. Lam, T.-W. J. Ngan, and K.-K. To. Performance guarantee for EDF
under overload. Journal of Algorithms, 52(2):193–206, August 2004. ISSN
0196-6774. doi:http://dx.doi.org/10.1016/j.jalgor.2003.10.004. → pages 47

70

http://dx.doi.org/http://dx.doi.org/10.1109/12.508319
http://portal.acm.org/ft_gateway.cfm?id=627153&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428
http://portal.acm.org/ft_gateway.cfm?id=627153&type=external&coll=Portal&dl=GUIDE&CFID=68485383&CFTOKEN=40244428
http://portal.acm.org/ft_gateway.cfm?id=828929&type=external&coll=Portal&dl=GUIDE&CFID=29442874&CFTOKEN=47928360
http://portal.acm.org/ft_gateway.cfm?id=828929&type=external&coll=Portal&dl=GUIDE&CFID=29442874&CFTOKEN=47928360
http://dx.doi.org/http://dx.doi.org/10.1137/S0097539796299540
http://portal.acm.org/ft_gateway.cfm?id=587029&type=external&coll=Portal&dl=GUIDE&CFID=29061345&CFTOKEN=21883824
http://portal.acm.org/ft_gateway.cfm?id=587029&type=external&coll=Portal&dl=GUIDE&CFID=29061345&CFTOKEN=21883824
http://dx.doi.org/http://dx.doi.org/10.1016/j.jalgor.2003.10.004


[28] C.-G. Lee, L. Sha, and A. Peddi. Enhanced utilization bounds for qos
management. IEEE Trans. Computers, 53(2):187–200, 2004. → pages 8,
14, 18, 20, 21, 22, 23, 44

[29] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In IEEE Real-Time Systems Symposium, pages 201–213, 1990.
→ pages 10

[30] J. P. Lehoczky. Real-time queuing theory. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 186 – 195, Dec. 1996. → pages 48

[31] J. P. Lehoczky. Real-time queuing network theory. In Proceedings of the
IEEE Real-Time Systems Symposium, pages 58–67, Dec. 1997. → pages 10

[32] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium, pages 166–171, 1989. → pages 9, 13, 16,
18, 20, 39, 41, 42

[33] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973. → pages 8, 9,
13, 17, 44

[34] J. W.-S. Liu. Real-time systems. Prentice Hall, 2000. ISBN
978-0-13-099651-0. → pages 7

[35] R. MacKenzie, D. Hands, and T. O’Farrell. Packet handling strategies to
improve video qos over 802.11e wlans. In PIMRC, pages 1173–1177, 2009.
→ pages 15

[36] Y. Manabe and S. Aoyagi. A feasibility decision algorithm for rate
monotonic and deadline monotonic scheduling. Real-Time Systems, 14(2):
171–181, 1998. → pages 39

[37] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE
Trans. Software Eng., 23(10):635–645, 1997. → pages 14

[38] T. Nguyen, P. Richard, and E. Bini. Approximation techniques for
response-time analysis of static-priority tasks. Real-Time Systems, 43:
147–176, 2009. ISSN 0922-6443. → pages 8, 13, 14, 18, 41

[39] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, 1982. ISBN 0-13-152462-3. →
pages 7, 11

71



[40] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic
Processes. McGraw-Hill, 4 edition, 2002. → pages 50, 54

[41] D.-W. Park, S. Natarajan, A. Kanevsky, and M. J. Kim. A generalized
utilization bound test for fixed-priority real-time scheduling. In RTCSA,
pages 73–, 1995. → pages 8, 18, 19

[42] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, New York, 5 edition, 2005. → pages
53

[43] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. Siewiorek. A resource
allocation model for QoS management. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 298–307, Dec. 1997. → pages 46

[44] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. Siewiorek. Practical solutions
for QoS-based resource allocation. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 296–306, Dec. 1998. → pages 46

[45] P. Richard and J. Goossens. Approximating response times of static-priority
tasks with release jitters. In In the WiP segment of the 18th Euromicro
Conference on Real-Time Systems, 2006. → pages 41

[46] S. M. Ross. Introduction to stochastic dynamic programming. Academic
Press, 1995. → pages 55

[47] D. Seto, J. P. Lehoczky, and L. Sha. Task period selection and schedulability
in real-time systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 188–198, Dec. 1998. → pages 45

[48] M. Sjödin and H. Hansson. Improved response-time analysis calculations.
In IEEE Real-Time Systems Symposium, pages 399–408, 1998. → pages 18,
41, 42

[49] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications of
classical scheduling results for real-time systems. Computer, 28(6):16–25,
June 1995. ISSN 0018-9162. doi:http://dx.doi.org/10.1109/2.386982. URL
http://portal.acm.org/ft gateway.cfm?id=620236&type=external&coll=
Portal&dl=GUIDE&CFID=28250344&CFTOKEN=38174394. → pages 47

72

http://dx.doi.org/http://dx.doi.org/10.1109/2.386982
http://portal.acm.org/ft_gateway.cfm?id=620236&type=external&coll=Portal&dl=GUIDE&CFID=28250344&CFTOKEN=38174394
http://portal.acm.org/ft_gateway.cfm?id=620236&type=external&coll=Portal&dl=GUIDE&CFID=28250344&CFTOKEN=38174394

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Overload Management in Real-time Systems
	1.2 Overview of our Work
	1.2.1 On-line Scheduling Approach to Detect Overload
	1.2.2 Maximizing Revenue when the System is Overloaded

	1.3 Outline

	2 Background in Real-time Scheduling
	2.1 Basics of Schedulability Theory
	2.1.1 Simple Schedulability Tests
	2.1.2  WCRT Analysis of Periodic Task Systems
	2.1.3  WCRT Analysis of Tasks with Arbitrary Deadlines
	2.1.4 Competitiveness of On-line Scheduling Algorithms for Real-time Systems

	2.2 Basics of Combinatorial Optimization

	3 On-line Scheduling Policy for Overload Management
	3.1 Related Work
	3.2 System and Task Model
	3.2.1 The GTM
	3.2.2 Simple Task Scheduling Model using  RMS
	3.2.3 Practical Considerations for Scheduling in a  GTM

	3.3  WCRT Analysis of a General Task Model
	3.3.1 Problem Description
	3.3.2 Exact  WCRT Analysis
	3.3.3 Off-line Schedulability Test with Exact  WCRT

	3.4 Reducing the Complexity of  WCRT Analysis
	3.4.1 Approximated  WCRT Analysis Formulation
	3.4.2 Empirical Evaluation of Approximated  WCRT Analysis
	3.4.3 Discussion


	4 Scheduling to Improve Rewards during Overload
	4.1 Related Work
	4.2 System and Task Model
	4.3 Identifying a Good Scheduling Policy
	4.3.1 Optimal Fractional Resource Allocation
	4.3.2 An Improved Policy for Online Job Selection

	4.4 Empirical Evaluation
	4.4.1 Comparison with  SDP
	4.4.2 Comparison with ROBUST
	4.4.3 Comparison with REDF
	4.4.4 Discussion


	5 Conclusions and Future Improvements
	5.1 Summary of the Contributions
	5.1.1 On-line Scheduling Policy to Detect Overload
	5.1.2 Overload Management to Improve Rewards by Stochastic Approximation

	5.2 Potential Future Improvements

	Bibliography

