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Abstract 

Neuroscience research is increasingly dependent on bringing together large amounts of data 

collected at the molecular, anatomical, functional and behavioural levels. This data is 

disseminated in scientific articles and large online databases. I utilized these large resources 

to study the wiring diagram of the brain or ‘connectome’. The aims of this thesis were to 

automatically collect large amounts of connectivity knowledge and to characterize 

relationships between connectivity and gene expression in the rodent brain. To extract the 

knowledge embedded in the neuroscience literature I created the first corpus of neuroscience 

abstracts annotated for brain regions and their connections. These connections describe long 

distance or macroconnectivity between brain regions. The collection of over 1,300 abstracts 

allowed accurate training of machine learning classifiers that mark brain region mentions 

(76% recall at 81% precision) and neuroanatomical connections between regions (50% 

sentence level recall at 70% precision). By automatically extracting connectivity statements 

from the Journal of Comparative Neurology I generated a literature based connectome of 

over 28,000 connections. Evaluations revealed that a large number of brain region 

descriptions are not found in existing lexicons. To address this challenge I developed novel 

methods that allow mapping of brain region terms to enclosing structures. To further study 

the connectome I moved from scientific articles to large online databases. By employing 

resources for gene expression and connectivity I showed that patterns of gene expression 

correlate with connectivity. First, two spatially anti-correlated patterns of mouse brain gene 

expression were identified. These signatures are associated with differences in expression of 

neuronal and oligodendrocyte markers, suggesting they reflect regional differences in 
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cellular populations. Expression level of these genes is correlated with connectivity degree, 

with regions expressing the neuron-enriched pattern having more incoming and outgoing 

connections with other regions. Finally, relationships between profiles of gene expression 

and connectivity were tested. Specifically, I showed that brain regions with similar 

expression profiles tend to have similar connectivity profiles. Further, optimized sets of 

connectivity linked genes are associated with neuronal development, axon guidance and 

autistic spectrum disorder. This demonstration of text mining and large scale analysis 

provides new foundations for neuroinformatics. 
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Chapter  1: Introduction1 

The brain is perhaps the most complex object known, and deciphering its workings is an 

enduring challenge. This complexity has limited discovery of causes and cures for many 

devastating brain disorders. However, over 2,500 years of analysis have led to a huge 

accumulation of information about the brain at levels ranging from molecular to the 

anatomical. New techniques applied over the past few decades are generating ever more 

detailed and comprehensive data sets. Recent examples include whole brain tractography and 

genome-wide expression atlases. These enormous datasets combined with the accumulated 

knowledge from past experiments require powerful methods for exploiting this amount and 

diversity of data. This thesis is about a small subset of this problem, focusing on two types of 

information that are both important and available in relatively global forms, namely 

macroconnectivity and gene expression patterns. I sought to address two questions: Can our 

current databases of connectivity be expanded using computational approaches? And how 

does gene expression relate to brain connectivity? The first question is an informatics one, 

addressing the gap between the vast literature on neuroanatomy and our ability to use it 

efficiently. The second question is motivated by biology, namely the relationship between the 

genome (and its genetic variation) and the structure and function of the brain. One specific 

motivating question is, why are so many genes expressed in complex patterns in the brain? In 
                                                 

1 A previous version of this chapter has been published. French L, Pavlidis P (2007). Informatics in 

neuroscience. Briefings in Bioinformatics 8:6. 446-456. doi:10.1093/bib/bbm047). The article has been edited 

and updated to reflect recent changes in the area of neuroinformatics. 
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this introduction, I expand on these motivations, provide background on the state of the art, 

and put my work in the context of the nascent field of neuroinformatics. It is my hope that 

my research contributes to a better understanding of normal and abnormal brain function, and 

leads to new questions, resources, methodologies, experiments and analyses. 

Neuroanatomical connectivity is a unifying theme in this thesis. At the cellular level these 

communication links are defined by trillions of synapses between billions of neurons and are 

fundamental to our understanding of the nervous system. At the macro level these links join 

together to form pathways that connect neuroanatomically defined brain regions. Recently, 

there has been a push to map all connectivity or the “connectome” of the human brain using 

neuroanatomical imaging techniques (2005). On the other hand, large amounts of 

connectivity information are already present in the literature, but this resource has not been 

fully exploited. Currently the majority of this information is fragmented across many reports 

and is not accessible for large scale analyses. We attempt to address this need, and 

furthermore explore a new area in the interpretation of gene expression patterns in the brain 

in light of connectivity data. The wiring diagram of the brain is only poorly understood. In 

part this is due to the complexity of the brain and the difficulty in collecting data. This 

complexity is also apparent in the mouse brain transcriptome with varied spatial gene 

expression patterns that have not been linked to specific function or structure. While many 

individual genes function in neurotransmission and forming connections, it is not clear how 

global molecular signatures relate to macro connectivity in the adult brain. For both the 

transcriptome and connectome, we suggest that informatics technologies can be applied to 

existing knowledge to make new discoveries and guide further experimentation. This 
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introduction reviews the challenges, methods and resources for investigating neuroscience 

from an informatics perspective. 

1.1 Dissertation Overview 

In this dissertation, I research new strategies to collect and analyze neuroanatomical 

connectivity data. In particular I focus on macro connectivity that describes connections 

between brain regions. To collect connectivity data I apply existing bioinformatics 

techniques to mine the neuroscience literature for connectivity statements. To analyze 

connectivity data I integrate several heterogeneous neuroscience data sources. These two 

objectives form the WhiteText project (Chapters 2-4) and ABAMS project (Chapters 5-6).  

The WhiteText project addresses the following questions: 

1. How accurately can neuroanatomical information, including connectivity be 

automatically or manually extracted from neuroscience literature? 

2. What lexicographic, linguistic and semantic features are useful for extraction? 

3. How much connectivity data is available in neuroscience abstracts?  

The project aims to usefully apply text mining methods to brain connectivity. We will adapt 

and extend text-mining approaches previously used to analyze protein networks to extract 

data on connectivity of brain regions from free-text abstracts. We aim to manually generate a 

corpus for training and evaluation purposes. In addition to developing algorithms, we aim to 
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create a database of 15,000 connections among 1,000 mammalian brain regions. The 

database will become a tool for testing hypotheses about brain function, structure and 

development. The resulting resources will be made publicly available. 

To understand connectivity we analyze a genome-wide atlas of the adult mouse brain that has 

characterized many heterogeneous expression patterns (Lein et al., 2007). Global 

relationships between these patterns and brain organization are suspected but few cases exist, 

especially beyond development. While expression patterns of single genes have been linked 

to specific structure, genome wide screens for associations between gene expression, 

macroconnectivity and cellular distributions have not been previously performed in the 

rodent brain. Such analyses may reveal genes that play potential roles in developing, 

maintaining and repairing brain architecture. Conversely, insight into neuroanatomy at the 

brain region level can be derived from functional annotations at the gene level.  

In the context of the adult rodent brain, the ABAMS project addresses the following 

questions: 

1. Can complex spatial expression patterns be explained by differences in cellular 

populations or number of neuroanatomical connections? 

2. To what degree are expression and connectivity profiles correlated across many brain 

regions? Which genes carry the highest amount of information about connectivity in 

their expression levels? What are their functional associations? 
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3. To what degree are spatial and connectivity profiles correlated across many brain 

regions? 

The objective of the project is to find and study relationships between gene expression and 

neuroanatomical connectivity. We hypothesize there is a statistical relationship between the 

connections and gene expression levels of individual brain regions. Based on this hypothesis 

we aimed to specify lists of genes that carry information about a given brain region’s 

connectivity profile. This list of genes can aid interpretation of future experiments by 

suggesting connectivity-related functions, and candidate genes for understanding brain 

function in health and disease. Our methodology will focus on statistical data mining and 

heuristic search methods designed to find significant patterns in high-dimensional data. 

1.2 Literature Review 

The application of informatics to neuroscience goes far beyond “traditional” bioinformatics 

modalities such as DNA sequences. In this section I describe how informatics is being used 

to study the nervous system at multiple levels, spanning scales from molecules to behaviour.  

Neuroscience is a rich source of interesting computational and informatics problems and 

opportunities. These problems encompass a good deal of "traditional" bioinformatics (e.g., 

sequence analysis), applied to the neuroscience domain. In addition, perhaps more than any 

other field, neuroscience has been applying computation and informatics to domain-specific 

problems, giving rise to the term "neuroinformatics". Neuroinformatics includes the 

development of databases, standards, tools and models, and the development of simulations 
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and analytical techniques, spanning all levels of nervous system organization (from 

molecules to behaviour; Table 1). Much of the interest in neuroinformatics comes from the 

diverse types of neuroscience research and how they might be linked more effectively using 

informatics technologies. 

I provide an overview of neuroinformatics, biased somewhat towards the viewpoint of 

practitioners of bioinformatics who are outside of neuroscience. Therefore we focus our 

attention on only a subset of areas within neuroinformatics. The large field of nervous system 

modeling and simulation is not reviewed, so I point readers to further resources covering 

models of single neurons (Crasto et al., 2007a), networks (Brette et al., 2007), and 

sensory/information processing (Destexhe and Contreras, 2006). In addition, neuroimaging 

informatics has been reviewed in detail recently (Brinkley and Rosse, 2002;Toga, 

2002;Nielsen et al., 2006;Van Horn and Toga, 2009). Thus my focus is on other types of 

neuroscience data and knowledge databases, efforts towards integrating knowledge across 

domains, and especially on the analysis of the nervous system at the genetic, cell and 

molecular level. A summary of informatics resources covered in this review is given in Table 

2.  

1.2.1 Initiatives  

Recent large scale initiatives motivate our neuroinformatics research. They provide 

ontologies for linking extracted data, portals for finding resources and communities for 

sharing ideas. The first is the Human Brain Project (HPB, 

http://www.nimh.nih.gov/neuroinformatics) started in 1993, based on recommendations 
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developed starting in 1989 (Shepherd et al., 1998). With leadership from the National 

Institute of Mental Health and other NIH institutes, HBP provided funding and guidance to 

many of the neuroinformatics projects mentioned in this chapter (Koslow, 2005). The HBP 

has been succeeded by the NIH Blueprint for Neuroscience research as neuroinformatics is 

increasingly folded into the mainstream of neuroscience and informatics (Huerta et al., 

2006). The Blueprint for Neuroscience research is a large collaborative NIH effort for 

creating resources of general utility to neuroscience research (Baughman et al., 2006). The 

recently established International Neuroinformatics Coordinating Facility (INCF), funded by 

the EU and based in Stockholm, Sweden, with "nodes" in many European countries as well 

as the US and Japan, aims to "foster international activities in neuroinformatics", and is 

another signal of the seriousness with which the field is taking informatics (Amari et al., 

2002). The INCF was founded in response to a report of the Organization for Economic Co-

operation and Development (OECD) (Group, 2002).  

The Society for Neuroscience (SfN) formed the Brain Information Group task force in 2003 

and later the SfN Neuroinformatics committee. These were formed to examine the 

informatics needs of neuroscience and promote existing resources (Van Essen, 2007). The 

earliest result was the Neuroscience Database gateway (NDB).  NDB organized 178 

databases into five main categories, and 15 classes. Recently a consortium based effort 

funded by the National Institutes of Health constructed a successor to NDB, the 

Neuroscience Information Framework (http://www.neuinfo.org; NIF). In addition to 

cataloguing neuroscience resources NIF provides a dynamic portal to the resources and the 

data contained within them (Gardner et al., 2008). NIF is notable for its extensive efforts to 



 
8 

form accessible standards, services, ontologies and tools.  

In addition to these organizational efforts, a large-scale project that stands out in 

neuroinformatics for its scale and scope is the NIH-backed Biomedical Informatics Research 

Network (BIRN) (Martone et al., 2004;Helmer et al., 2011). BIRN is focused on 

neuroinformatics, and emphasizes brain imaging in humans and mice, and acts as a "test bed 

for development of hardware, software, and protocols to effectively share and mine data in a 

site-independent manner for both basic and clinical research". BIRN is a network of research 

groups that at this writing involves work from at least two dozen laboratories across the 

United States and the United Kingdom. BIRN is discussed below in the context of several 

specific areas of neuroinformatics.  

1.2.2 Towards integration  

Because neuroscience data is highly heterogeneous, complex, and voluminous, it has been 

recognized that interoperation of tools and databases will be required to make the best use of 

available resources (Insel et al., 2003). This is evidenced throughout the thesis, especially in 

Chapters 5 and 6 which derive new insight from combined datasets. As in other areas of 

biology, efforts to standardize data representations and interfaces have been increasing, and 

neuroscience can clearly learn lessons from looking at how standards have developed in 

other fields of informatics. One side-effect of the interest in neuroinformatics and 

neuroscience data is the recognition that integration requires data sharing, and the subject has 

been widely discussed by neuroinformatics researchers (Koslow, 2000;Gardner et al., 



 
9 

2001;Eckersley et al., 2003;Insel et al., 2003;Ascoli, 2006) . 

1.2.3 Ontologies and vocabularies  

Ontologies and controlled vocabularies are an important resource to enable informatics. 

Adherence to a specific terminology and/or data model can be constraining, but also greatly 

eases interoperability. One only has to look at the wide cross-referencing of the Gene 

Ontology (GO) (Ashburner et al., 2000) to see the power of standardized terminologies. 

Another example is BioPax, developed by the biological pathway database community to 

promote sharing of molecular pathway data (2006). BioPax has been widely adopted, and 

currently several pathway and interaction databases are available in BioPax format with more 

converted by third parties (Baitaluk et al., 2006;Kotecha N, 2006). 

Currently many neuroscience databases use their own vocabularies for neuron, anatomical 

region and receptor types, but this situation is likely to change rapidly. For example, the 

BIRN includes an ontology "taskforce", and developed BIRNLex for use in BIRN projects 

(Martone et al., 2004), an ontology containing concepts from neuroanatomy, molecular 

species, experimental design and cognitive processes. BIRNLex terms are taken from 

existing resources whenever possible, with direct mappings given. Recently BIRNLex has 

been merged into the NIF standardized (NIFSTD) ontology (Bug et al., 2008). It is our hope 

that NIFSTD (or something like it) will have a wide impact and be adopted by other projects 

as a de facto standard. However, like many efforts to develop standards, it is difficult to 

please everybody, so it remains to be seen if a single standard can emerge soon enough. 
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Neuroanatomy is an example of an area where multiple standards have emerged (Bowden et 

al., 2007). There are two established nomenclatures for the rat brain (Swanson, 1999;Paxinos 

and Watson, 2007), and three for the mouse (Hof et al., 2000;Dong, 2007;Paxinos and 

Watson, 2007).  Thankfully, mappings exist between the terminologies (Stephan et al., 

2000;Bowden and Dubach, 2003;Bota and Swanson, 2010). These atlases provide 

hierarchical structured vocabularies. Usually a child term refers to a region that is 

volumetrically contained in the region described by the parent term (e.g., prefrontal cortex is 

part of the cortex). The most widely accepted nomenclature is NeuroNames which contains 

over 1,900 structures linked to over 7,500 terms describing the human, rodent and macaque 

brain (Bowden and Dubach, 2003). NeuroNames has been integrated into the Foundational 

Model of Anatomy, NIFSTD, and the Unified Medical Language System (Hole and 

Srinivasan, 2003). A web based interface to NeuroNames is provided by BrainInfo (Bowden 

and Dubach, 2002). For a given brain region external links are provided for connectivity, 

literature, cytoarchitecture, and gene expression.  

The Brain Markup Language (BrainML) was developed as a set of XML schemas for 

exchange of neuroscience data (Gardner et al., 2001). BrainML encompasses representations 

of experimental protocols and designs, electrophysiology, measurement units, and other 

aspects important to representing neuroscience data, and forms a “base model” that is used to 

create additional specific components, such as describing animal experimental subjects. 

While BrainML does not yet appear to have undergone widespread adoption, as mentioned 

earlier, it was used to develop the Neuroscience Information Framework. 
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While purpose-built ontologies are clearly needed, many neuroscience concepts are 

contained in existing ontologies and terminologies that are not necessarily designed 

specifically for neuroscience. For example, a search for "hippocampus" at the National 

Center for Biomedical Ontology Bioportal (Noy et al., 2009) reveals 642 terms across 42 

ontologies. The Gene Ontology also contains many neuroscience concepts such as 

‘hippocampus development’ (biological process), ‘GABA receptor activity’ (molecular 

function) and ‘axon’ (cellular component) (Ashburner et al., 2000). Ideally new 

terminologies will meld seamlessly as possible with these existing terminologies and avoid 

reinventing the wheel. 

1.2.4 Databases of molecules and cells  

Several databases that are focused on collating data about specific neuron types and 

molecules motivate our work to database connectivity. They provide integration points and 

pioneering efforts into semi-automated curation. The most extensive purpose-built cell and 

molecular neuroscience knowledgebase is SenseLab, which includes seven databases 

covering pharmacology, ion channels, cell properties, olfactory pathways and neuronal 

models (Crasto et al., 2007a). Within the neuronal databases (CellPropDB, NeuronDB) 

entries are linked across scales of brain region, neuron, cell compartment, ion channel and 

receptor. Information about odorant molecules linked to receptors and maps of the olfactory 

bulb are provided in OdorDB, ORDB and OdorMapDB respectively. Links are provided to 

the Cell Centered Database (CCDB, consisting of cellular and subcellular imaging data), 

PubMed, GenBank and Ensembl. SenseLab increasingly spans a wide array of domains – 
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models, genetics, proteomics and imaging. SenseLab is largely curated manually, with some 

assistance from automated text-mining methods (Crasto et al., 2002) (Crasto et al., 2003).  

1.2.5 Text mining in neuroscience  

Text mining is the process of analyzing text to extract entities and relationships. It is usually 

performed on large collections of documents (a corpus). The field is closely related to natural 

language processing which seeks to computationally interpret human language. In this thesis 

we use several natural language tools for our tasks. One example is part of speech tagging 

where part-of-speech tags (noun or verb for example) are marked. Further examples are 

stemming (determine base form or stem of a word) or tokenization (determine end of a 

sentence). Although these tasks seem simple they are difficult to computationally perform, 

especially in biomedical text. The main problem is that there are not enough samples to 

statistically learn the complex rules (also known as the sparse data problem). Procedures like 

part-of-speech tagging and stemming ameliorate the problem by abstracting words into 

smaller categories. Ambiguity is another main challenge which especially limits text mining 

attempts to extract facts from text. This is clear in a seemingly simple task: extract and 

expand abbreviations in biomedical literature. Unfortunately, over 80% of biomedical 

abbreviations are ambiguous with over 16 expansions on average (Ao and Takagi, 2005). 

When both the short and long form of the abbreviation are provided in a document it is 

possible to correctly connect the two in roughly 95% of cases with 320 search patterns. The 

sentence boundary detection task of marking when a sentence begins and ends is also limited 

by ambiguity, problem examples include "congenic strains B10.D2/nSnJ" and "Hendricks et 
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al." (Xuan et al., 2007). Further ambiguity is observed when sentences are further segmented 

into words. Several methods can solve these tasks with reasonable accuracy and are applied 

in the first stages of most text mining systems. 

Given the words and their annotations, rule-based or statistical aproaches are used to 

determine if they are names of important entities (named entity recognition). Example 

entities include genes, diseases, species and brain regions. Rule-based systems are derived 

from general knowledge about the specific domain and its entities. In contrast, statistical 

approaches employ machine learning tools to classify based on examples. After named entity 

recogntion, relationship extraction is required to text mine valuable information such as 

which genes are specifically expressed in a brain region. In this thesis we focus on extracting 

mentions of brain regions and statements that describe their connections. 

Several projects have explored application of text mining techniques to neuroscience 

literature. Although the goals vary, the results are limited by standardized datasets for 

evaluating the methods. Textpresso for Neuroscience uses a text-mining approach to provide 

a neuroscience-focused search tool, indexing over 15,000 abstracts and full papers from the 

biomedical literature (Muller et al., 2008). The data in Textpresso is organized using a 

customized ontology based largely on selected terms from the Gene Ontology, combined 

with domain-specific concepts such as brain regions (Muller et al., 2004). The developers of 

NeuroExtract (Crasto et al., 2007b) rapidly built a neuroscience-focused database by 

searching for "brain" and "central nervous system" in three major bioinformatics resources 

(SwissProt, the Gene Expression Omnibus and the Protein Databank). These results and 
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associated abstracts were then filtered for 71 neuroscience related keywords (from cell types 

to brain regions). The authors show that their system returns more results than a keyword 

search performed on source websites (Crasto et al., 2007b). Similarly, the Synapse Database 

(SynDB), a database of genes involved in synaptic function, was populated by performing 

keyword searches on Interpro and UniProt databases followed by automatic then manual 

screening (Zhang et al., 2007). SynDB contains over 14,000 protein entries organized into a 

purpose-built 177-concept synapse ontology. While SynDB does not cross-reference to any 

neuroscience related databases, it provides links to eighteen general bioinformatics resources. 

SynDB has an extensive web browser interface, allowing a researcher to browse proteins 

using the ontology, functional categories, protein domains, species, chromosomal location 

and protein families. While these resources are still new, they represent efforts to make 

access to neuroscience knowledge easier and faster. 

A theme running through many cell and molecular databases is the use of information 

extraction from the biomedical literature. Literature mining is an active area in 

bioinformatics (for reviews see special issue of Briefings in Bioinformatics (Koehler, 2005)) 

and there are clearly additional interesting opportunities to apply natural language processing 

in domain-focused ways. Text mining shows up in our discussion of several other data 

modalities in the next sections. 
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1.2.6 Connectivity and connectomics 

Several existing neuroinformatics resources focus on connectivity in a limited set of 

organisms. Although restricted, these resources provide valuable data for integration and 

evaluation throughout this thesis.  

Brain connectivity can be thought of as a structural property of neurons (cell A connects to 

cell B) or of anatomical regions (inferior olive projects to the cerebellum). A “connectome” 

refers to a comprehensive map of connections at one of these scales. Measuring connectivity 

has a long history in neuroscience, and efforts to create exhaustive maps and databases are 

not new (Sporns et al., 2005). However, due to the difficulty of collecting connectivity data, 

the only complete nervous system connectivity map or connectome is for C. elegans (White 

et al., 1986). Clearly, having a good-quality map of human brain connectivity would serve as 

a cornerstone for understanding brain function and structure. The Human Connectome 

Project has recently begun to achieve this goal by magnetic resonance imaging 1,200 healthy 

adult brains (Marcus et al., 2011). 

One current application of connectivity is in the development of models. For example, 

connectivity data has been used to create models of the relatively well-studied primate visual 

system (Itti and Koch, 2001;Serre et al., 2007). As an example of an ambitious modeling 

project that will need connectivity information, the Blue Brain project envisions 

computational modeling of the entire brain (Markram, 2006).    

Currently connectivity data is sparse for humans so current databases focus on model 
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organisms. The Brain Architecture Management System (BAMS) focuses on connectivity in 

the rat brain, with over 40,000 records (Bota et al., 2003;, 2005). CoCoMac is a searchable 

database of connectivity data from over 400 literature reports in the Macaque monkey 

(Kotter, 2004). A related database, CoCoDat, contains detailed microcircuitry reports 

(Dyhrfjeld-Johnsen et al., 2005). Finally, the complete wiring diagram of the C. elegans 

nervous system can be downloaded from http://www.wormatlas.org/ (Chen et al., 2006). 

An interesting experimental project to populate connectivity databases using natural language 

processing is part of the Neuroscholar project (Burns and Cheng, 2006;Burns et al., 2007). 

Neuroscholar is able to classify text with respect to several experimental parameters of 

interest in tract tracing studies with 80% precision (Burns et al., 2007). Another part of the 

Neuroscholar project, NeuARt II digitizes analog atlases to create a flexible brain mapping 

infrastructure (Burns et al., 2006). As currently implemented, Neuroscholar is designed to 

operate with human supervision to assist manual curation efforts that underlie projects like 

BAMS and CoCoMac. 

There is interest in integrating connectivity data with other modalities. Recently the 

SenseLab team converted CoCoDat into OWL format, for integration with NeuronDB 

(Crasto et al., 2007a). BAMS is also involved in integration efforts, and provides links 

between neuron and cell associated molecules to brain regions.  
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1.2.7 Functional and morphometric imaging  

Brain imaging refers to non- or minimally-invasive technologies for measuring brain 

anatomy or activity in live animals (often humans), perhaps the best known of which is 

functional magnetic resonance imaging (fMRI). These technologies provide results at the 

level of brain regions by providing functional associations and structural descriptions. These 

brain region linked results are published in the neuroscience literature at an increasing rate 

and present a potential target for our text mining work. There is extensive interest in making 

imaging data sharable and comparable for the purposes of archiving and meta-analysis, and 

in integration of imaging data with other modalities. As mentioned earlier, imaging 

informatics is a relatively well-developed field and the subject of recent review (Brinkley and 

Rosse, 2002;Toga, 2002;Nielsen et al., 2006), so we only give the briefest possible overview 

of this area.  

Several repositories and databases of structural and functional MRI images exist, for example 

fMRIDC (Van Horn et al., 2004). Some systems provide extensive additional analysis tools. 

The Surface Management System Database (Van Essen, 2009), Brainmap (Laird et al., 

2005), NeuroSynth (Yarkoni et al., 2011), and the Brede database (Nielsen et al., 2004) allow 

visualization of brain locations and searches based on a reference coordinate system (Nielsen 

and Hansen, 2004). The Brede database provides software and numerous cross references to 

a variety of bioinformatics resources. Brede entries link to genes, diseases, receptors (via 

SenseLab) and brain regions (BrainInfo, CoCoMac).  The Brede database also provides 

correlated volumes for each experiment (Nielsen and Hansen, 2004), opening possibilities for 
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meta-analysis, and uses text mining to link articles to brain activation studies (Nielsen et al., 

2004). NeuroSynth is unique in its extensive use of text mining to extract brain activation 

coordinates from fMRI studies. By parsing result tables of full text papers and associating 

informative keywords it automatically forms thousands of structure to function relationships 

(Yarkoni et al., 2011).  

A specialized form of magnetic resonance imaging, diffusion tensor imaging (DTI), can be 

used to generate connectivity maps (“tractography”) of living human brains (Le Bihan et al., 

2001;Parker, 2004). For example, DTI has been used to describe connections between the 

thalamus and cortex (Behrens et al., 2003).  Since DTI scans the whole brain non-invasively 

it has the potential to be used to collect connectivity data from large samples of humans and 

then related to other variables such as genetic variation and psychopathology; this is already 

an active area of study (Kubicki et al., 2007). Although a few DTI datasets are available 

online (Evans, 2006;Hermoye et al., 2006), to our knowledge there are no accessible 

databases of connectivity derived from DTI. 

1.2.8 Genetics and gene expression 

The wealth of bioinformatics methods and resources at the gene level facilitates our study of 

the brain. In Chapters 5 and 6 we employ this wealth to characterize relationships between 

anatomy and gene expression patterns in the rodent brain. It is generally much easier to 

analyze genes than behaviour or neuroanatomy, and the links between them have frequently 

been elusive, especially as applied to “higher” organisms. Recent advances in genome 

analysis (founded on detailed physical and genetic maps) and in expression analyses (e.g., 
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using microarrays) have meant that bridging the gap between genotype and phenotype is 

getting easier, but is still limited by resolution at the organismal level. This is because 

behaviour and anatomy are highly complex and often thought to be heterogeneous. 

To our knowledge the best-developed effort to bridge this gap is GeneNetwork 

(http://www.genenetwork.org/ ) (Wang et al., 2003). GeneNetwork uses RNA profiling data 

from recombinant inbred mice which have been extensively phenotyped (behaviourally and 

otherwise) and genotyped. Because of the inbred nature of these mice, but the relatively large 

genetic differences between lines, variability at the phenotypic level can be rapidly related to 

variability at the sequence level. Thus, using the GeneNetwork website, one can search for 

loci with variants that correlate with quantitative traits including expression levels 

(expression quantitative trait loci, eQTL) and behaviour. For example, Korostynski et al. 

used GeneNetwork to help identify candidate genes for variation in opioid preference 

between different mouse lines (Korostynski et al., 2006). Additional applications can be 

found referenced on the GeneNetwork website.  We note that GeneNetwork is a part of 

BIRN and contributes to its goal of studying multi-modal data from mouse models of 

neurological disorders. 

Understanding differences in the genes expressed in different brain regions and neurons has 

always been of value for generating hypotheses about how the brain works, even when 

uncoupled from genetic variation in individuals. For example, knowing what 

neurotransmitters are synthesized in a brain region gives a major clue as to what the neurons 

there are capable of doing. Spatially and temporally-organized gene expression during 
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development plays a crucial role in determining the ultimate structure of the nervous system. 

Besides GeneNetwork, there are two types of resources that have emerged in the analysis of 

expression in the nervous system: spatially resolved atlases, and expression profiling 

databases. The latter also include data from other high throughput techniques such as 

competitive genomic hybridization (CGH) and chromatin immunoprecipitation on 

microarrays (ChIP-chip).  

I make extensive use of the Allen Mouse Brain Atlas (ABA), especially in Chapters 5 and 6. 

The ABA contains high resolution colorimetric in situ RNA hybridization data for most of 

the known mouse genes, in the adult brain (Lein et al., 2007). The ABA is primarily 

accessible via a sophisticated web-based graphical interface (Hochheiser and Yanowitz, 

2007). The ABA allows searching for genes by similarity of expression patterns 

(NeuroBLAST), and is making summarized data on expression patterns available for 

download (Jones et al., 2009). ABA has also contributed a digital mouse brain atlas (Dong, 

2007). There are a number of other atlases, which are lower coverage (hundreds to a few 

thousand genes) but complement ABA with additional features. The joint Brain Gene 

Expression Map (BGEM) and Gene Expression Nervous System Atlas (GENSAT) projects 

use radioactive in situ hybridization and fluorescent protein reporters, respectively. GENSAT 

is now a core database of NCBI's Entrez system. BGEM and GENSAT differ from ABA in 

that they include data from multiple embryonic stages as well as adults. Another distinction 

is that GENSAT's protein reporters often fill the neurons they are expressed in, revealing 

projection patterns as well as the cell bodies (Gong et al., 2003). Additional information and 
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comparison of these and other atlases are given in Sunkin (2006).  

RNA expression profiling using microarrays or sequence-based approaches (SAGE and 

RNA-Seq) stands in contrast to atlases in that spatial resolution is (usually) ignored at the 

gain of simultaneous quantitative measurements of thousands of genes in one sample. This 

allows the creation of data sets surveying expression over many different conditions. As in 

many areas of biology there is much interest in using expression profiles to characterize the 

nervous system and its disorders (Mirnics and Pevsner, 2004). In some ways, expression 

profiling is poorly suited to analyzing the nervous system, as the tissues that are most easily 

available are highly heterogeneous. This heterogeneity results in dilution of biological 

signals: genes of interest may be expressed in only a few cells and lost in the background, or 

changes in expression might appear smaller than they really are. This makes the application 

of profiling to the nervous system a demanding activity that can push the technology to its 

limits. While this discourages some, it highlights the need to carefully design and analyze 

experiments, and take advantage of prior knowledge through integration (the approach of 

GeneNetwork) and meta-analysis. 

Expression profiling data is readily found in public data repositories, the most important of 

which are GEO (Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2007), which 

together contain hundreds of brain-related expression studies. A thorough review of 

expression studies in the brain (Aarnio et al., 2005) identified 448 papers as of June 2004, of 

which less than one in five had data available online. A more recent review identified about 

400 brain-related studies with public data in GEO and ArrayExpress (Wan and Pavlidis, 
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2007). 

To use this mass of data, more tools are needed. GEO and ArrayExpress offer a variety of 

useful analysis tools, but comparing data across studies is difficult. To that end, third-party 

data analysis tools are beginning to appear, and some of these are geared to neuroscience. 

Gemma (Lee et al., 2004) ( http://chibi.ubc.ca/Gemma ), which is developed in our 

laboratory, offers tools for the collective analysis of multiple brain expression data sets, and 

related tools without a neuroscience focus, are offered by a number of other systems (Rhodes 

et al., 2004;Assou et al., 2007;Pan et al., 2007). Integrating this type of analysis with spatially 

resolved atlases will be an important area of activity (Sunkin, 2006). Expression data from 

microarrays can be compared to in situ data such as the ABA, in order to aid interpretation 

(Lee et al., 2008). 

1.2.9 Conclusion of literature review  

An editorial by David Van Essen (2007), identifies a key area where effort is needed in 

neuroinformatics: well-populated databases that are able to efficiently interoperate. This 

requires standards and terminologies, and community acceptance of the idea of sharing data. 

Dr. Van Essen envisions a future in which it will be possible to use informatics resources to 

rapidly answer natural-language questions such as, "What parts of the brain are abnormal in 

individuals with autism?" (Van Essen, 2007). While this might still sound like science 

fiction, our review of the state of the field makes us optimistic that some of Van Essen's 

vision is reachable in the near future. There is a great deal to be done, but as I demonstrate in 

my thesis, a bioinformatician can already explore a wealth of neuroscience information 
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stored within general and domain-specific bioinformatics resources at multiple scales from 

molecules to behaviour.  
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Table 1 Data domains in neuroscience 

Levels of Nervous system organization  Examples of data modalities  

Organism  behaviour, physiology 

Whole Brain  
functional and anatomical imaging, brain 

region connectivity, connectomes 

Brain region microcircuitry, electrophysiology 

Cells  neuronal morphology, electrophysiology  

Cellular Compartments  protein localization 

Molecules genotypes, protein interactions, gene 

expression profiles 
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Table 2 Neuroinformatics resources 

Project  Domain  URL  

Allen Brain Atlas Spatial gene expression http://www.brainatlas.org/ 

BAMS Brain architecture: 
molecular, cellular, and 
connectivity 

http://brancusi.usc.edu/bkms/ 

BIRN Research network http://www.nbirn.net/ 
BrainInfo, Neuronames Neuroanatomy http://braininfo.rprc.washington.edu/ 

BrainMap Functional neuroimaging http://www.brainmap.org/ 

Brede database Functional neuroimaging 
meta-analysis 

http://hendrix.ei.dtu.dk/services/jerne/brede/ 

CCDB Cellular and subcellular 
imaging http://ccdb.ucsd.edu/ 

CoCoDat Neuronal microcircuitry http://www.cocomac.org/cocodat/ 
CoCoMac Connectivity data of 

macaque 
http://www.cocomac.org/ 

fMRIDC Functional neuroimaging http://www.fmridc.org/ 

Gemma Gene expression meta-
analysis 

http://chibi.ubc.ca/Gemma/ 

Genenetwork Systems genetics http://www.genenetwork.org/ 

GENSAT Spatial gene expression http://www.gensat.org/ 
Neurodatabase Neurophysiology http://neurodatabase.org 

Neuroinformatics Portal Pilot Resource catalogue http://www.neuroinf.de/ 

Neuroscience Information 
Framework 

Resource catalogue and 
data portal 

http://neuinfo.org/ 

NeuroSynth Functional neuroimaging 
meta-analysis 

http://neurosynth.org/ 

SenseLab Neural systems, neurons, 
olfactory pathways, drugs 

http://senselab.med.yale.edu/ 

SumsDB Brain mapping http://sumsdb.wustl.edu:8081/ 

SynDB Synapse related proteins http://syndb.cbi.pku.edu.cn/ 

WormAtlas C. elegans neuronal 
connectivity 

http://www.wormatlas.org/ 

Textpresso for Neuroscience Genes, anatomy, drugs 
and other knowledge 
extracted from the 
literature 

http://www.textpresso.org/neuroscience/ 
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1.3 Chapter Summaries 

The general aims of this thesis were to automatically collect large amounts of connectivity 

knowledge (WhiteText project, Chapters 2-4) and to characterize relationships between 

connectivity and gene expression (ABAMS project, Chapters 5-6).  

The objective of the WhiteText project is to build a system capable of automatically 

extracting neuroanatomical connectivity statements from neuroscience abstracts. This 

objective is separated into three subtasks, each corresponding to a chapter:  

Chapter 2 describes the first step of recognizing when an author refers to a brain region. The 

input is a biomedical abstract and the output is mentions of brain regions. In natural language 

processing research, this is known as named entity recognition. The chapter describes 

application of methods used by existing neuroscience databases and a state of the art 

statistical modeling method (conditional random field). Evaluation was performed against 

manually annotated brain region mentions. 

Chapter 3 focuses on the task of converting brain region mentions to brain region concepts in 

a neuroanatomical lexicon. This conversion is also known as “normalization” or “resolution”, 

and is necessary because many names can refer to a single brain region concept. Manual 

evaluations were performed to gauge precision and coverage across a training dataset. For a 

given abstract, species of study explained a large amount of variance in the evaluation 
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measures. The tuned procedure was applied to an expanded corpus of over 12,000 abstracts, 

resulting in over one hundred thousand brain region mentions.   

Chapter 4 builds on the work of Chapters 2 and 3 by evaluating methods for extracting 

connectivity relationships. Simple and advanced relationship extraction techniques are tested 

on a manually annotated set of 1,377 abstracts. This chapter tests if methods for extraction of 

protein-protein interaction statements generalize to extraction of connectivity relationships. 

The most accurate method was selected and applied to the large set of automatically 

extracted brain region mentions from Chapter 3. The result is over 28,000 predicted 

connectivity statements. A normalized set of these relationships is compared to an existing 

source of neuroanatomical connectivity. 

The general aim of the ABAMS project was to apply and test computational approaches for 

elucidating the transcriptome and connectome. The objective was to analyze datasets 

describing cell-type-specific gene expression, connectivity, and regional expression. 

Specifically, we sought to test the hypothesis that there is a statistical relationship between 

the connections and gene expression levels of individual brain regions. This hypothesis is 

motivated by a large number of gene expression patterns that show unexplained spatial 

variation across the nervous system (Lein et al., 2007). 

Chapter 5 describes a large-scale analysis of gene expression and connectivity in the rodent 

brain. Complex patterns of gene expression in the rodent brain are examined in the context of 

regional brain connectivity and differences in cellular populations. Two novel patterns of 

mouse brain gene expression showing a strong degree of anti-correlation are identified. 
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The patterns contain genes that mark neurons and oligodendrocytes, suggesting they reflect 

regional differences in cellular populations. In addition, the expression level of these patterns 

is correlated with connectivity degree, with regions expressing the neuron-enriched pattern 

having more connections with other regions. 

Chapter 6 further examines relationships between gene expression and brain wiring in the 

adult rodent brain by analyzing shared connections. The analysis shows that adult gene 

expression signatures have a statistically significant relationship to connectivity and this 

effect is not entirely attributable to spatial correlations. Optimized lists of several hundred 

genes that carry significant information about connectivity are examined in detail. To 

overcome the effects of noise, replicate assays were used to create a smaller high confidence 

list of genes. Gene ontology analysis and literature review were performed on the lists to 

identify functional themes and associations to brain disorders. 
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Chapter  2: Automated recognition of brain region mentions2 

2.1 Introduction 

Bioinformatics has proven the value of databasing and formalizing knowledge. Traditionally 

much of the focus is on molecular biology but great opportunities exist in neuroscience (Akil 

et al., 2011). One means of building, or at least seeding, knowledge bases is text mining, or 

the automated extraction and formalization of information from free text sources such as the 

biomedical literature. There has been much interest in applying text mining to extracting 

information about genes and proteins. In the BioCreative 2 challenge, 44 teams competed to 

extract, resolve and link protein and gene mentions (Krallinger et al., 2008), and the methods 

work well enough to be of practical importance in creating databases (Leitner et al., 2008). 

There has been less work on how to apply such techniques to domain-specific knowledge in 

neuroscience. 

One entity of interest in the neuroscience literature is mentions of neuroanatomical regions 

(which we call brain regions for short). By analogy to the task of extracting gene mentions, 

the ability to computationally extract mentions of brain regions would be of potential value in 
                                                 

2 A version of this chapter has been published. French L, Lane S, Xu L and Pavlidis P (2009). Automated 

recognition of brain region mentions in neuroscience literature. Frontiers in Neuroinformatics. 3:29. 

doi:10.3389/neuro.11.029.2009 
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building neurobiological knowledge bases. This is because many neurobiological studies 

only make sense in the context of the specific brain regions studied. Furthermore anatomical 

or functional connections between regions are commonly described. Computationally 

extracting these locations would allow faster organization and mining of neuroscience data. 

We hypothesize that many of the methods and approaches developed for extraction of 

information about genes can be applied to extraction of information about brain areas. This is 

an attractive approach because many of the challenges in analyzing text for information 

about genes are faced in trying to mine information about brain regions. These challenges 

include abbreviations, synonyms, lexical variation and ambiguity. For example, the gene 

“carbonic anhydrase 1” has synonyms including “carbonate dehydratase I”, “Car1”, and 

“CA-I”. Its official symbol, CA1, is ambiguous in that it also matches a drug (the abbreviated 

form of coumermycin A1) and a brain region (the CA1 field of the hippocampus). Similarly 

brain regions have a variety of names and abbreviations, and can be confused with other 

types of entities. Approaches have been developed for addressing these problems for genes, 

so it seems reasonable to expect that the lessons learned will apply at least partly to other 

domains. However, before these approaches can be applied to brain regions, a “gold 

standard” corpus is needed. Such a corpus is needed both as training data for algorithms and 

for evaluation of methods. To our knowledge, no such resource exists for neuroscience text 

mining. 

Past efforts in neuroscience text mining provided limited ability to retrieve brain region 

mentions, by looking for exact matches of brain region names from small lists (Crasto et al., 
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2003;Crasto et al., 2007b;Muller et al., 2008). This limits the recall to a small number of 

(usually broad or large) brain regions. The most extensive effort is “Textpresso for 

Neuroscience”, with a list of 4,800 brain region terms (Muller et al., 2008). Unfortunately 

evaluations of these tools are lacking, as the methods were not checked against a gold 

standard set of annotated abstracts, leaving accuracy in question. The Neuroscholar project 

was the first to explore advanced natural language processing methods to extraction of 

neuroscience data (Burns et al., 2007). Focusing on neuroanatomical connectivity, Burns et 

al. sought to extract and annotate detailed statements from full-text articles. Their goal was 

extraction of relatively detailed experimental parameters and descriptions of results. They 

manually annotated 1047 sentences from 21 articles. Text spans were tagged with five 

different labels including two that represented brain regions. These annotations provided the 

test and training examples for a CRF that was able to produce the same tags at an overall 

79% F-Measure (performance for brain-region recognition alone was not reported).  

Although it was a small dataset they found the CRF could be joined with manual curation to 

increase annotation rate by 255%. 

The goals of the current work are two-fold. First, we provide a reasonably large corpus of 

article abstracts manually annotated for brain region mentions. Second, we develop and 

evaluate methods for extraction of brain region mentions from text, using the corpus. This 

sets the stage for further efforts at improving and applying text-mining methods to 

neuroanatomical questions. 
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2.2 Methods  

2.2.1 Corpus creation  

Articles for the corpus were initially selected manually but later an automated procedure was 

employed.  The first 119 articles in the corpus were selected with the help of PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/) searches using keywords such as "afferent" and 

"efferent". The process was then automated to increase speed of curation and reduce bias in 

selection. The automated procedure picks random articles from the Journal of Comparative 

Neurology. There was no limitation placed on the topic organism (rat and cat were most 

common but insects were the topics of some abstracts). We experimented with other search 

strategies, for example the MeSH keyword of "Neural Pathways". The Journal of 

Comparative Neurology was chosen to maximize the number of abstracts that included brain 

region mentions. It has also been used in previous work (Burns et al., 2007). A total of 1,377 

abstracts were used. 

The selected abstracts were retrieved in MEDLINE XML format for preprocessing. For each 

abstract the PubMed identifier, title and abstract were stored. The abstract text was then 

processed by the Schwartz and Hearst abbreviation expansion algorithm (Schwartz and 

Hearst, 2003). This identifies the short and long forms of abbreviations in the abstract with 

high accuracy. All short forms of the abbreviation are replaced with the long form followed 

by its short form in parentheses. Thirty-two abstracts (2.3%) were reloaded without 

expansion due to encoding errors. The abbreviation expansion changes are expressed in the 

XML markup and can be reversed. Finally, annotators are provided the abstract and title 
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for annotation. The General Architecture for Text Engineering (GATE, http://gate.ac.uk/) 

was used to create, compare and visualize the document annotations. Additionally, GATE 

provided a helpful interface and API for managing the document collections. 

2.2.2 Manual annotation guidelines  

The annotators were presented with the title and abstract text in the GATE interactive 

document display. Using the computer mouse, regions of text were selected and then 

“tagged” as representing a brain region mention. One annotator (the “primary” annotator) 

annotated all abstracts. A secondary annotator re-annotated a random subset of abstracts 

annotated by the primary annotator (to allow estimation of the human component in 

annotation accuracy). The annotators used their own knowledge of neuroanatomy, 

supplemented by online resources such as medical dictionaries, neuroanatomical atlases and 

BrainInfo (http://braininfo.rprc.washington.edu). An initial set of guidelines were developed 

prior to the annotation starting; these guidelines were amended in response to the outcome of 

periodic discussion of problems and manual review of the corpus. 

Brain (and spinal cord) regions were the primary targets of our manual annotation efforts. 

We annotated all mentions of brain regions in both the abstracts and titles according to our 

guidelines. Although we annotated all brain region mentions, our guidelines are influenced 

by our interest in mentions that describe higher-level features such as neuroanatomical 

connections.  

A key set of guidelines involves the level of detail. In particular, we did not attempt to 
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annotate details such as specific cortical layers, in part because they cover the whole cortex 

but also because these were judged to present an additional challenge that would be a topic of 

future work. Conversely, broad mentions of “systems” were not annotated (e.g. 

“orexin/hypocretin system” or “vestibular system”). However, mentions such as “cortex” 

were captured. Further, mentions of white matter tracts or fasciculi were not annotated. 

Annotations also included text that modified the mention. An example is "motor related areas 

of the hippocampus". We annotated the adjective forms of brain regions, for example 

"thamalic" or "cortical". We annotated parts that were identified by a number (primarily this 

applied to Brodmann areas or cortical regions such as V1). Brain region mentions were not 

extended to include organism name, so “rat hippocampus” would always be annotated only 

as “hippocampus”. We annotated text segments that referred to a specific region but might 

not be resolvable without more context. For example, in an abstract about the cerebellum we 

might find mentions of “medial zone”. As a fragment, “medial zone” cannot be assigned to a 

specific region.  

One particular problem area is conjunctions or coordination ellipses that connect two entities 

together. Examples are "dorsal and ventral cortex" or "lower thoracic and lumbosacral 

segments" which could be expanded to “dorsal cortex and ventral cortex” and “lower 

thoracic segments and lower lumbosacral segments”. The difficulty is determining whether 

these should be broken up into two brain region mentions or treated together. Past annotation 

efforts have recognized this difficulty (Tanabe et al., 2005). Unlike abbreviations there is no 

reliable method to automatically expand such expressions (Buyko et al., 2007). In the corpus, 

annotation of conjunctions varies except in the abstracts annotated by both annotators where 
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consistency was enforced. To achieve this, the whole conjunction was annotated if the 

contained brain region names have been shortened.  

2.2.3 Dictionary matching  

To test dictionary matching approaches we created term lists from neuroanatomical 

nomenclature sources. Although several lexicons exist we focused on Neuronames, the 

largest source of brain region names (Bowden and Dubach, 2003). We extracted terms from 

both Nomenclatures of Canonical Mouse and Rat Brain Atlases and the Ontology of Human 

and Macaque Neuroanatomy. From the later, a total of 6,462 terms were extracted from the 

primary names, synonyms, ancillary structures and Latin terms. We additionally extracted 

1,900 terms from the Nomenclatures of Canonical Mouse and Rat Brain Atlases that 

organizes terms from mouse (Hof et al., 2000;Paxinos and Franklin, 2001;Dong, 2007) and 

rat brain atlases (Swanson, 1999). Since we expand abbreviations within the abstracts we 

excluded abbreviations contained in Neuronames.  

To match the Neuronames terms to the document text we used a GATE Gazetteer. The 

gazetteer identifies occurances of names based on provided lists. Bracketed text in 

Neuronames terms were removed before matching. We set the Gazetteer to use case 

insensitive exact string matching. Resulting annotations were joined to remove overlapping 

matches. 

To compare our method to that used by “Textpresso for neuroscience” we used the lexicon 

files from http://www.textpresso.org/neuroscience, with case sensitive exact matching. To 
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further replicate conditions used by Textpresso we reverted the expanded abbreviations in the 

abstracts and did not filter abbreviation terms from the lexicon. 

2.2.4 Conditional random field 

For automated annotation of brain region mentions, we applied a linear chain conditional 

random field (CRF) using the Mallet software toolkit (Lafferty et al., 2001;McCallum, 2002). 

A linear chain CRF is similar to a hidden Markov model (HMM). Like an HMM, a CRF is a 

method for sequence processing that takes a series of symbols (in our case, words) as input 

and provides as output the predicted state (in our case, whether the symbol is part of a brain 

region mention or not). Unlike HMM’s, in which state probabilities are conditioned only on 

the state of the previous token, CRF state probabilities are computed by conditioning on the 

entire input sequence. Therefore, it cannot compare the probabilities of labellings across 

sentences. In return CRF models allow token descriptions (features) with complex 

dependencies. For example, HMM’s use the current token type but a CRF feature design can 

examine the previous and next two tokens.  

To start, the CRF model must be trained, by computing features for tokens with known label 

sequences (training set). In our case each feature has a Boolean value (details on the features 

are given in the next section). For example a feature named “text=red” is true if the current 

token is “red”. These features combined with the state transitions form feature functions. The 

feature functions are then given weights, so that a specific feature can influence the 

likelihood of specific state transition. The weights are learned from the known state 

sequences using an optimization procedure. For example, in Table 5 we can see that the 
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probability of the label sequence changing from outside of a brain region to inside is 

increased when the preceding token is “the”. For test sequences or sentences, probabilities of 

state sequences are computed. The most probable state sequence then forms the predicted 

brain region mention spans. For further detail we point our readers to a more complete 

introduction of CRFs (Wallach, 2004). 

The GATE software was used to segment the abstracts into sentences and tokens. For Mallet 

we used default CRF settings from the SimpleTagger class except Gaussian variance was set 

to 1.  

2.2.5 Features  

As mentioned, all of the features we used were binary. Thus the representation of each token 

was a long binary vector representing, for each feature, whether it was present for the given 

token. The simplest feature is the token itself, generated for every word/token in the corpus. 

We tested orthographic features, for example an uppercase first letter or presence of a 

numerical digit. The part of speech tag and lemma of the word were computed and tested. 

Like the text features, the lemmas of every word become a feature that is set to true if a 

word’s canonical form matches that lemma. To determine lemmas and tags we employed a 

model for the TreeTagger software (Schmid, 1994) that was extensively trained on the 

GENIA biomedical corpus (Kim et al., 2003) for STRING-IE (Saric et al., 2006). 

The token is compared to several term lists and lexical resources. For complete matching a 

word and neighbouring words must exactly match a brain region name in one of many 
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neuroanatomical lexicons. Further we segmented the brain region names into word n-grams. 

For example “ventral anterior nucleus” is fragmented into the 2-grams of “ventral anterior” 

and “anterior nucleus“. The tokens are then matched against these n-grams allowing relaxed 

matches to the lexicons. We further employed word lists for neuroanatomical terms 

describing boundaries or regions (e.g. bank, sulci, surface, area), neuroanatomical directions 

(e.g. dorsal, superior), root neuroscience terms (e.g. chiasm, raphe, striated) and stop words 

(e.g. on, this, is). Root neuroscience terms were extracted from Dr. Eric Chudler’s resource 

for neuroanatomical, neurophysiological and neuropsychological terminology 

(http://faculty.washington.edu/chudler/neuroroot.html). We used the stop word list from the 

Snowball small string processing language software (http://snowball.tartarus.org). We added 

regular expression features that match common templates, for example Brodmann's areas and 

spinal vertebrae. Finally, we employed window features that add context information to the 

current words feature set. This is done by encoding features from previous and following 

words into the current word's set. 

To rank the context features we averaged feature weights from eight cross-validation folds. 

The weights are from CRFs using only the text feature with a context window of two tokens 

on each side. We show the top weights for the state transition of outside a brain region 

mention into inside one, which occurs at the first word of a brain region mention. We filtered 

out the direct features from the current word to leave only the weights and rankings of 

features derived from the neighbouring words. Next we calculated a normalized score by 

multiplying the weight by the natural logarithm of its frequency.  
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2.2.6 Experiment setup 

Manual feature design and initial tests were performed using eight fold cross-validation on 

the 1,146 abstracts annotated only by the primary annotator. Annotations from both curators 

were merged by a logical OR operation at the character level (if an annotator marked that 

character as a brain region then it was kept). Sentences of an abstract were not split between 

training and testing sets. Each sentence became an input instance for the CRF. Final results 

were generated on the same eight fold cross-validation across all abstracts. 

2.2.7 Evaluation 

We used standard evaluation measures that ignore true negatives and operate at the 

annotation level instead of the token. Precision is defined as the proportion of predictions 

matching the annotated spans with recall being the proportion of annotated spans that match 

a prediction. F-Measure is the harmonic mean of precision and recall. In the strict case 

annotation spans must match exactly. Lenient measures are computed by counting partially 

overlapping spans as matches. 

2.3 Results 

In total 1,377 abstracts were annotated by the primary curator. A second curator annotated 

231 of those abstracts for agreement evaluation. The average number of brain region 

annotations per abstract from the primary curator was 13.2 and 14.6 for the second. 

Interannotator agreement was 90.7% (F-measure), increasing to 96.7% for the lenient 
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measure. Table 3 displays the top forty occurring mentions and their frequencies in the 

corpus. 

The GATE tokenizer split the corpus into 17,247 sentences then 461,552 tokens with 46,340 

labelled as brain regions. On average each brain region is 2.3 tokens in length. We observed 

a large vocabulary of 17,901 token types.  

Lexicon-based methods directed from neuroanatomical atlases performed poorly on the 

dataset, reaching 43.8% F-measure (precision=57.2%, recall=35.5%). We expected a higher 

level of precision; we believe variances in applying the annotation guidelines account for 

some of the false positives. Neuronames contains terms for layers, systems and tracts all of 

which we did not annotate. In addition, TextPresso contains abbreviations which possibly 

cause additional false positives. 

The next best performance of 66.4% F-Measure was attained by a CRF using 625 features we 

derived primarily from neuroanatomical lexicons. The lemma and text based CRF’s 

demonstrate the effect of the context window. These classifiers only look at the token type, 

or word. Without the window features the text based CRF achieves 66.7% F-measure. 

Adding information about the previous and next two words increases F-Measure to 76.1%. 

By combining any two of the designed, lemma and text feature sets the CRF reaches F-

measures in the range 76-78%. Combining the text and lemma features only slightly 

improves on text alone suggesting the features are very similar. By combing all three feature 

sets, the F-Measure peaks at 78.6%, with most of the gain from recall. This CRF that 
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combined all features perfectly predicted all brain region mentions for 174 abstracts that had 

on average 6.8 brain region mentions per abstract. 

We were unable to clearly determine which of our designed features contributed most to the 

final performance. This is due to the high dependency between the designed features and the 

simple text features. Furthermore, F-Measure varies by about 1% across different cross-

validation splits, so improvements of less than 1% are not significant. Throughout Table 4 

the recall rate is below precision. This suggests many novel brain regions are left 

unrecognized, also known as out-of-vocabulary error. Indeed, we find that on average 19.3% 

of text features are observed in the test folds but not in the training folds. To test the impact 

of this effect, we repeated the experiment but allowing the sentences of an abstract to be 

spread across training and testing sets. This decreases unseen words to 10.4% because new 

terms are often mentioned many times throughout an abstract. At this sentence level 

performance improves; F-measure reaches 0.813 with the gain in recall twice that of 

precision. This suggests that, not surprisingly, performance can be improved simply by 

having more diverse training data. 

We found some of the poorly classified examples were studies of brain regions from insects 

or other organisms underrepresented in the corpus. These abstracts tended to lack relevant 

training samples, and the regions they mention are not contained in the brain region lexicons 

we collected, resulting in poor recall. To examine this effect in more detail, we used a subset 

of abstracts for which we annotated the organism of study. This subset was further reduced to 

those studying monkey, cat, rat and mouse brains. A full featured CRF trained on this set of 
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214 common organism abstracts demonstrates much higher performance than a CRF trained 

on a random subset of the same size. This is demonstrated primarily by recall which 

increases to 75.7% from 67.6%, combined with a small increase in precision we find F-

Measure increases to 77.8% from 72.5%. In terms of unseen features, the random set has 

20.2% compared to 17.6% for the common organism set. This suggests that both sets have a 

similar out-of-vocabulary error.  

We began by assuming that expanding abbreviations to the full forms would increase 

performance. As a test of this assumption, we reverted the expanded abbreviations back to 

the original, resulting in an F-Measure decrease of only 2.1 (to 76.5%). If we include the 

Neuronames abbreviation terms as an added feature this difference is reduced to 1.4. 

We observed that coordinating conjunctions (see Methods) cause a significant amount of 

error. Examples are “middle and caudal amygdala” or “hippocampus and amygdala”.  Five 

percent of annotations have a similar form with 893 annotations in 403 of the abstracts 

containing “and”, “or”, comma, semicolon, or a slash. By removing these abstracts we 

remove annotations that span conjunctions, the remaining abstracts still have conjunctions 

but each part is annotated separately. By training and testing the CRF on the reduced set of 

974 the F-Measure increases to 79.9. This is significant compared to 76.5% reached by a 

CRF trained on a random set of the same size. With these consistently annotated 

conjunctions the strict precision gains the most, while lenient precision is almost unchanged. 

This suggests both datasets produce similar predictions but consistent annotations produce 

more precise spans. 
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Table 5 presents the context feature weights derived from a text only CRF. The window size 

ranged from the two preceding and following tokens. Although we only display the top 20, 

this CRF has over 300,000 weights for 17,901 token types times 5 token locations across four 

state changes. As expected common prepositions or adpositions are the most informative. 

Interestingly, “rat” and “monkey” have top scores. It seems the CRF learned that an organism 

name often precedes a brain region mention. Another entry is “projections” that is 

informative when seen two words before the current token. The importance of this 

connectivity-related term makes sense given the high number of tract tracing experiments in 

the Journal of Comparative Neurology. 

We found several techniques frequently used in general and biomedical named entity 

recognition research did not improve performance. Guided by work on gene name extraction 

we experimented with bidirectional parsing and beginning-inside-outside labels (Hsu et al., 

2008). We processed the text using MMTx and extracted rich semantic features (Aronson, 

2006). We tested feature induction (McCallum, 2003), an extension of the CRF framework. 

To treat the abstract as a whole we tested treating each abstract as a sequence instead of its 

sentences and carried the features from the first mention of a word to all the following. The 

large vocabulary suggested semi-supervised learning may help; we tested a self training 

approach using an additional set of 3,881 unlabelled abstracts. Unfortunately, all of these 

methods failed to produce a significant increase in performance when compared to our best 

results. 
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Table 3 Top 40 frequently occurring mentions 
Mention Frequency 

retina  313 
retinal 280 

spinal cord 256 
cortical  239 

superior colliculus 142 
cortex  140 

olfactory bulb  134 
brainstem 127 
thalamic  122 
thalamus  115 

hippocampus 108 
hypothalamus  100 

lateral geniculate nucleus  92 
olfactory 92 

cerebellum  86 
thalamocortical 85 

suprachiasmatic nucleus 83 
amygdala  78 

hippocampal 76 
optic nerve 74 
forebrain 73 
striatum  73 

inferior colliculus 72 
visual cortex 71 

cerebral cortex 69 
basal forebrain 68 

nucleus of the solitary tract 64 
spinal  64 

cerebellar  63 
globus pallidus 61 

midbrain  60 
periaqueductal gray 60 

locus coeruleus 59 
basal ganglia 57 

nucleus accumbens 55 
substantia nigra  55 

v2  55 
area 17 54 

prefrontal cortex 52 
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Table 4 Results from evaluated techniques 

  Strict   Lenient  

Name Precision Recall F-Measure Precision Recall F-Measure 

TextPresso Lexicon 0.529 0.185 0.274 0.824 0.288 0.427 

Neuronames Lexicon 0.572 0.355 0.438 0.839 0.521 0.643 

Features CRF 0.751 0.595 0.664 0.889 0.704 0.786 

Lemma CRF 0.773 0.681 0.724 0.890 0.784 0.834 

Text CRF 0.811 0.717 0.761 0.924 0.818 0.868 

Features + Lemma + 

Text CRF 
0.813 0.761 0.786 0.916 0.857 0.886 
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Table 5 Top 20 context features from text only CRF 

Token Type Position Count CRF Weight Normalized Score 

the previous token 28376 11.4 117.2 
and previous token 13109 10.8 102.8 

period previous token 16811 10.4 101.3 
from previous token 2295 10.4 80.6 

in previous token 12203 8.5 80.1 
to previous token 6630 9.1 79.9 

with previous token 2957 9.8 78.1 
that previous token 3581 9.2 75.5 
rat previous token 777 10.4 69.2 
into previous token 758 9.6 63.9 

monkey previous token 216 11.8 63.6 
left bracket previous token 10944 6.7 61.9 

labeled previous token 785 9.0 60.2 

projections 
second preceding 

token 
904 8.6 58.3 

The previous token 3274 7.0 56.4 
or previous token 1198 7.9 56.2 

mouse previous token 171 10.9 56.0 
and next token 13108 5.8 54.7 
of previous token 19205 5.5 54.6 

 



 
47 

 

Figure 1 A representative annotated abstract with several expanded abbreviations  

The original source abstract is from Gabbott and colleagues (2005). 

2.4 Discussion 

We have provided the first corpus of manually annotated brain region mentions in 

biomedical abstracts. The corpus is large enough to allow statistical models to learn the 

nomenclature. This is demonstrated by the text-based CRF which reached a 76.1% F-

Measure without outside resources. We found context windows, lemmatization and 

abbreviation expansion to be the most informative features for CRF labelling. A CRF using 

all the features provided the best performance of 78.6% F-Measure. 

Compared to more advanced techniques, the dictionary approach based on neuroanatomical 

lexicons performed poorly. However, it has the advantage of speed and easier resolution to 

standardized names. Furthermore, features derived from these lexicons provide valuable 
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information to the CRF models.  

We demonstrated that significant amounts of error are due to coordinating conjunctions, 

previously unseen words and brain regions of less commonly studied organisms. The poor 

performance of the lexicon combined with recall values consistently below precision suggest 

that lexical resources for neuroscience need to be improved. Current resources are based 

primary on neuroanatomical atlases of a few organisms. With open initiatives like NeuroLex 

we hope richer resources will be generated by a broader audience (http://neurolex.org/wiki/). 

We performed a preliminary examination of normalization of mentions to standardized 

identifiers. This task is more difficult than mention extraction alone, as demonstrated by our 

baseline methods covering just over one third of mentions. One reason for the difficulty of 

the normalization task is that researchers do not use standardized nomenclatures for brain 

regions in their papers. This is a recognized problem for resolving gene mentions (where 

aliases are common) which has been ameliorated to some extent by efforts by nomenclature 

standardization committees (Wain et al., 2004). Such efforts would be of obvious value in 

neuroscience (Bug et al., 2008). When combined with organism identification it grows in 

difficulty.  
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Chapter  3: Using text mining to link journal articles to neuroanatomical 

databases3 

3.1 Introduction 

The last 15 years has seen increasing interest in formally encoding and bringing together 

existing neuroscience databases (Shepherd et al., 1998;Koslow, 2005;Akil et al., 2011). 

These databases are often focused on a specific domain, and thus must be linked together or 

otherwise integrated to fulfill their potential for enabling discovery. A major challenge is that 

the majority of neuroscience data, results and conclusions are stored in scientific articles. The 

sheer mass of this material and its relative inaccessibility to integration with other databases 

is a bottleneck. A key step in enabling efficient mining and integration of the neuroscience 

literature is the formal encoding of concepts they contain. While this can be done manually, 

high-throughput methods based on natural language processing techniques (“text mining”) 

are attractive. An obvious target for formal encoding of neuroscience data is the anatomical 

brain region where an experiment was performed. This chapter describes tools for analyzing 

brain anatomy information from free text and provides novel applications. 

                                                 

3 A version of this chapter has been accepted and published online. French L, Pavlidis P (2011). Using text 

mining to link journal articles to neuroanatomical databases. Journal of Comparative Neurology, Copyright © 

2011 Wiley-Liss, Inc.. 
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While free-text searches (such as those supported by major web search engines) are effective 

at finding documents that contain user-specified text, there are many advantages to formally 

linking text describing a concept to a fixed, formalized identifier. For example, the text 

strings “ventral tegmentum”, “ventral tegmental area” and “VTA” can all be mapped to 

concepts in standardized terminologies. These concepts are identified by unique and stable 

concept identifiers such as “birnlex_1415”. This mapping (also referred to as the process of 

“normalization”) separates the concept of the VTA from the way it is presented in text. One 

advantage of this formal mapping is that it enables query expansion to include sub-parts of 

brain regions (Gardner et al., 2008). Using the structure of the terminology, software can 

infer that a query for “midbrain” should include information that refers to the VTA, because 

the terminology encodes the fact that the VTA is part of the midbrain. In contrast, a purely 

text-based search for “midbrain” would not be guaranteed to retrieve information on the 

VTA. A second advantage is integration across data modalities. The fact that the VTA 

contains dopaminergic neurons is formally encoded in the terminology and can be discovered 

automatically (Gardner et al., 2008). Software can be used to automatically learn that 

tyrosine hydroxylase is one of the genes most specifically expressed in the VTA, using the 

formal brain region encodings in the Allen Brain Atlas (Lein et al., 2007). Genome-scale 

expression experiments that studied the VTA can be identified by links to the Gemma system 

(Lee et al., 2004). Similar integration approaches will reveal patterns of anatomical 

connectivity (Bota et al., 2005) or functional imaging results (Nielsen, 2003). The third 

advantage of formal encoding of brain regions is to discover patterns of information hidden 

in text. For example, the co-occurrence of mentions of a brain region might be used to infer a 

functional or structural connection between them. Similarly associations between brain 
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region mentions could be linked to other concepts found in text such as “addiction”. The 

critical step in enabling all of these scenarios is identifying that a piece of text such as a 

journal article abstract refers to a specific brain region concept. The same principles naturally 

apply to other conceptual domains such as drugs or diseases, which have their own 

formalized terminologies.  

Our focus in this chapter is the development of methods for automatically linking free text to 

formal brain region identifiers. In Chapter 2, we presented high-performance methods for the 

first step needed to perform this task, which is identifying which parts of a document refer to 

brain regions. This recognition step only highlights textual spans or mentions that represent 

brain region mentions. In this chapter we address the step of automatically normalizing the 

mentions by resolving them to identifiers in neuroanatomical atlases and ontologies. By 

normalization (referred to as “standardization” or “resolution” in the text mining literature), 

we mean the mapping of a piece of text (a mention) to the concepts referred to by the text, in 

a formal way that can be used by computers. This addresses the difference between the 

concept of, for example, the substantia nigra pars compacta and the text “substantia nigra 

pars compacta”. In a computer system, we want all mentions of the concept “substantia nigra 

pars compacta” to be accessible in a consistent way. For example, the text “SNPC”, in the 

appropriate context, might refer to the same concept. If the computer system stores the 

information for occurrences of the text “SNPC” separately from that for the text “substantia 

nigra pars compacta”, queries accessing the latter will not successfully retrieve information 

linked to the former.  
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To our knowledge, little formal work has explored automatically normalizing brain region 

mentions to database identifiers. The most relevant studies are by Srinivas at al., who 

extracted compound terms from thalamic atlases and manually filtered them for 

neuroanatomical concepts (Srinivas et al., 2003;Srinivas et al., 2005). They then attempted to 

map the acronyms and terms across the atlases of cat, primate, human and monkey. Their 

results were focused on recall over precision to list possible mappings that can be evaluated 

manually for thesauri creation. Most other efforts in this area are focused on similar 

information retrieval tasks - a query brain region string is given and used to search a database 

(Bowden and Dubach, 2002;Nielsen, 2003). The most advanced example is the Neuroscience 

information framework (NIF) which matches user queries to existing brain region 

terminologies to expand the input query with synonyms (Gardner et al., 2008). Other 

literature retrieval search engines attempt to match mentions to lists of regions but they do 

not have explicit identifiers in an atlas or ontology (Crasto et al., 2003;Muller et al., 2008). 

Several general purpose tools extract biomedical concepts from the literature (Jonquet et al., 

2009;Aronson and Lang, 2010). These tools discover terms from large biomedical 

terminologies which include some brain region concepts. For this work we choose to explore 

several simple methods and customize them for neuroanatomy.  

Several challenges prevent full resolution of brain region mentions. Ambiguity often prevents 

confident resolution, for example the hypothalamus, medulla and thalamus each have an 

“arcuate nucleus”. Detailed studies present further challenges as authors often modify region 

names beyond existing nomenclature. This is done by adding directional or descriptive 

prefixes like “dorsal” and “agranular”. The wide range of organisms used in neuroscience 
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study presents another problem as taxa are described with different neuroanatomical 

terminologies. Here we present several novel solutions to these problems and evaluate their 

effectiveness, and yield a method that provides a high level of accuracy in mapping text to 

brain region concepts. We apply our approach to the analysis of a large set of abstracts from 

the Journal of Comparative Neurology, providing information on the distributions of brain 

region mentions. Our results are a starting point for linking diverse neuroinformatics data 

sources to literature-based information on brain regions. Finally, we highlight several 

remaining challenges.  

3.2 Methods 

3.2.1 Annotated corpus 

We used our previously described annotated corpus of brain region mentions in journal 

abstracts (Chapter 2). The corpus of 1377 abstracts consists of 1258 abstracts randomly 

chosen from the Journal of Comparative Neurology and 119 abstracts selected from other 

neuroscience journals. Although the text spans are manually curated, the corpus provides no 

normalization of the brain region mentions into database identifiers. Previously, an 

unsupervised abbreviation expansion algorithm was applied to all abstracts in the corpus 

(Schwartz and Hearst, 2003). All extracted mentions of an abbreviation short form were 

expanded to their long forms in a given abstract.  
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3.2.2 Extraction of lexicons 

The complete lexicon was compiled from NeuroNames (Bowden et al., 2007), NIFSTD (Bug 

et al., 2008), Brede Database (Nielsen, 2003), the Brain Architecture Management System 

(BAMS) (Bota and Swanson, 2008) and the Allen Mouse Brain Reference Atlas (ABA) 

(Dong, 2007). All terms were converted to lowercase and are linked to the provided 

identifiers. Of the five lexicons only BAMS and ABA are true neuroanatomical atlases that 

provide direct links between brain region names and 3D volumes in a digital or print format. 

The Brede database provides similar spatial data with 3D coordinates for named regions of 

interest. We did not add abbreviation terms to the lexicon because we expand abbreviations 

as described above. 

NeuroNames terms were extracted from all worksheets in the NeuroNames Ontology of 

Mammalian Neuroanatomy (NN2010) and Nomenclatures of Canonical Mouse and Rat 

Brain Atlases (NN2007) excel files (Bowden and Dubach, 2002). Classical, ancillary, Latin 

and synonym terms were added to the lexicon. Further, terms from all four mouse and rat 

atlases were added to the lexicon. Overall 9,188 unique terms were extracted to represent 

3,238 Neuroname concepts. 

The 2,391 NIFSTD terms were extracted from the 1,272 classes in the Anatomy subontology. 

Synonyms and the main labels were extracted for ontology classes that were regional parts of 

the eye, ear, brain, spine and ganglion of the peripheral nervous system. 

Terms from the Brede Database were extracted from the worois.xml file. Terms were 
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obtained from all name and variation XML tags. Hemispheric “left” and “right” prefixes 

were removed to be consistent with the rest of the lexicon. In total 1,006 terms were 

extracted from Brede to represent 763 concepts.  

For BAMS, we extracted terms from the primary lexicon - Swanson-1998 (Swanson, 1999). 

This lexicon allows linking to the rich connectivity information curated into BAMS. The 

version of the BAMS database we use contains 962 rat brain region terms and is accessible 

via bulk download (http://brancusi.usc.edu/bkms/xml/swanson-98.xml). Instead of parsing 

the original XML, we used a converted semantic web version created by John Barkley 

(http://sw.neurocommons.org/2007/kb-sources/bams-from-swanson-98-4-23-07.owl). 

Allen Brain Atlas terms were obtained from the OWL formatted version downloaded from 

the Allen Brain Atlas API documentation. Like the above sources, abbreviations were 

excluded from the extraction. In total 910 terms and concepts were extracted (no synonym 

information). 

The total number of concepts in these five lexicons is 7,145, but it is clear that there is 

extensive redundancy among them (even after accounting for species-specificity of 

concepts). Unfortunately, because there are limited direct mappings of concepts across the 

terminologies, it is difficult to estimate how many different brain regions are represented in 

total. We arrive at a rough estimate of 1,000 different mammalian brain region concepts 

based on the sizes of four of the lexicons, and the fact that the much larger NeuroNames (at 

over 3,000 concepts) has an expanded concept of “brain region” that includes “ancillary” 
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terms that tend not to be recognized as distinct concepts by the other lexicons. 

3.2.3 Resolvers 

We employed five methods of matching textual mentions to region names in the ontologies 

and atlases. The most basic is the Exact String Matching Resolver. This resolver simply 

converts the mention to lower case and attempts to match all characters to a region name in 

the lexicon. The next step is implemented in the Bag of Words Resolver which splits the 

mention strings into words (tokenization) and then looks for exact string matches for each of 

these words. This is a common information retrieval technique that matches the same text but 

ignores word order.  

To remove lexical variation we again tokenized the phrases into words. We converted the 

words into a base form by using a stemmer. A stemmer normalizes words to their base form 

by removing common endings. For example “ventral striatopallidal parts of the basal 

ganglia” is stemmed to “ventr striatopallis part of th bas gangl”. We employed the Lovin’s 

stemmer as implemented by Eibe Frank (Lovins, 1968). We created two resolvers analogous 

to the ones above. After tokenizing and stemming, the first resolver will match the stemmed 

tokens to the stemmed terms in the lexicons (Stem Resolver). The second will match them in 

any order (Bag of Stems Resolver). The Bag of Stems resolver is similar to the orderless gap-

edit global string-matching algorithm used by Srinivas et al. (2005). In their implementation 

they allowed half of the stems to match for terms greater than two words in length 

(uninformative common words excluded). Our Bag of Stems method is slightly different with 
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use of a different stemmer and a strict requirement of all words to match (our mentions might 

be modified to remove specific terms).  

To compare these to an externally designed method we employed the Lexical OWL 

Ontology Matcher (LOOM). LOOM is a simple method for mapping across biomedical 

ontologies. While LOOM is not designed for matching free text mentions we found its 

approximate string matching technique to be of value. LOOM uses a string comparison 

function that requires an exact match for words longer than four characters and allows one 

character mismatch for longer strings (after removing spaces and parentheses). The LOOM 

authors show it provides comparable performance to more complicated tools for ontology 

mapping (Ghazvinian et al., 2009). 

3.2.4 Mention editors 

To improve the resolution of mentions we employed several techniques that edit the 

mentions. In total nine editors are employed. The final three are considered to be lossy 

because they remove important words from the mention (Table 6). Each mention editor is 

applied in the order presented in Table 6 and is only applied to unmatched mentions. The 

result of the editor does not replace the original mention, but instead expands it by adding 

modified versions. Each editor is executed once except the Direction Remover which is run a 

second time at the end to extract more general regions from very specific mentions. 
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3.2.5 Species extraction 

We employed LINNAEUS, a species name identification system for biomedical literature for 

extracting species mentions from the corpus (Gerner et al., 2010). LINNAEUS provided an 

open and accurate tool for quantifying species mentions with accuracies above 90%. We used 

the default configuration properties to tag the abstracts for NCBI species identifiers. Of the 

209 species found we manually deemed 44 to be not relevant. These primarily included 

mentions of reagents for tract tracing (“horseradish”, “phaseous vulgaris”, “pseudorabies 

virus”). We noted some false positives, including brain regions that were tagged as species 

(“n. superficialis”, “n. ambiguus”).  

3.2.6 Data model 

To capture the relations between abstracts, mentions, terms and ontology concepts we 

employed a resource description framework (RDF) model (W3C, 2004). The general RDF 

structure is guided by the relationships and entities in Figure 2. For NIFSTD, BAMS, ABA 

and Brede concepts we link to the original identifiers for future integration. The full RDF 

dataset is available on our supplement website at http://www.chibi.ubc.ca/WhiteText/ . 

3.2.7 Manually created term to concept links 

Several evaluations and manual modifications were applied to test and improve the 

normalization procedures. During our first test we noticed many commonly used synonyms 

were not mapping to the lexicon. Examples include unexpanded abbreviations and region 
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names that have been used as adjectives (“cortical”, “thalamic”). We were able to manually 

map 42 of 122 unresolved mentions that had more than 9 mentions in the corpus. We provide 

evaluation statistics with and without these annotated synonyms, because these hand-tunings 

were done post-hoc.  

3.2.8 Evaluation 

By automatically testing for exact string matches we were able to review the complete set of 

mention to region pairings. The exact string matches were automatically accepted while the 

remaining pairings were manually evaluated. Each mention-to-concept pairing was marked 

as accept, reject or specific-to-general (partitive relationship). A specific-to-general marking 

applies to mentions where the region was mapped to an enclosing region (e.g. “nucleus 

deiters dorsalis” mapped to “nucleus of deiters”). This applies to many cases, as several of 

our mention editors discard information. Resolutions of ambiguous terms were accepted only 

if they matched a majority of the contexts. For example, all mappings of “arcuate nucleus” 

were rejected because the abstracts in which they occur are not consistently referencing the 

arcuate nucleus of the thalamus, medulla or hypothalamus. To reduce redundant evaluations, 

pairings were grouped when the main text label for the matched region is the same across 

ontologies. The abstracts in which the mention occurred were used to judge the context and 

correctness of the resolution. Resolutions were accepted across species unless it was a 

specific parcellation scheme for a species, for example - “area 10a of Vogts”. 

Normalization coverage represents the proportion of mentions that have been mapped to at 

least one brain region concept. This proportion of mapped mentions is dominated by 
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frequently occurring terms like "cortex". To control for mention popularity we provide two 

additional measures of coverage. The first ignores the number of times a mention occurs and 

treats each unique mention equally (rare mentions are given equal weight as common terms).  

The second ignores repeat mentions of a mention within an abstract and weights each 

mention by the number of abstracts it appears in. 

Normalization accuracy was measured by dividing the number of accepted concept to 

mention links by all total mention-to-concept resolutions made. We take into account 

frequency of the mention by multiplying the concept to mention links by number of abstracts 

the mention appears in. We considered specific-to-general mappings to be an accepted 

resolution while also measuring their frequency individually. 

Although the species name recognizer we choose has been previously evaluated we 

compared it to a subset of our abstracts that we previously annotated with species. Because 

the annotated tags were entered in free text we employed LINNAEUS to convert them to 

NCBI taxonomy identifiers. These converted identifiers were then compared to those 

extracted from the abstracts automatically.  

3.3 Results 

Figure 2 shows an overview of the system we developed, starting from journal abstract to 

mapped concept. In developing the approach, we examined the properties of the input 

terminologies, and carefully evaluated the quality of the mappings we obtained, as described 

in the next sections. In the final section we describe the application of the pipeline to a large 
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set of JCN abstracts and present findings on the patterns of brain region concept usage. 

3.3.1 Summary of the terminologies 

We first established the basic properties of the target terminologies (or “lexicons”) we used 

for mapping. It is important that these terminologies encompass the range of concepts used in 

the literature. In total we extracted 11,909 terms from five terminologies. These terms 

represent a total of an estimated 1,000 different mammalian brain regions (see Methods). On 

average a concept in the aggregated terminologies had 1.6 terms or labels (for example 

representing synonyms; note that we must distinguish between “concepts” and their textual 

representation as “terms”). While we estimate that concept overlaps among the terminologies 

are high, term overlap across terminologies was remarkably low, with terms being linked to 

just 1.3 of the five terminologies on average, with 79.8% of the terms appearing in only one 

terminology. Across the ontologies the highest amount of overlap was between ABA and 

NeuroNames with 62.7% of the ABA terms appearing in the much larger NeuroNames set. In 

addition 53.5% of the NIFSTD terms appear in NeuroNames. This is expected because 

NIFSTD was originally based on NeuroNames (Bug et al., 2008). Although the NeuroNames 

curators have imported some of the ABA and BAMS terminology, it is not complete. While 

some “singleton” terms are minor variants of terms found in other terminologies (e.g., raphé 

vs. raphe), the lexicons contain many apparently obscure or rarely-used terms such as “area 

22 of mauss 1908”.  
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3.3.2 Evaluation of concept resolution 

We ran our resolvers on the corpus of 17,585 brain region mentions (See Methods). To 

evaluate the results, we first examined coverage, providing a simple measure to compare 

across the different methods. We compute it as the proportion of mentions that are resolved 

to the lexicons. We provide three ways of measuring coverage that account for how the 

mention occurs in the corpus. To measure the coverage rate of unique mentions we weight 

each mention equally by ignoring the number of times it occurs. The two remaining coverage 

measures weight each mention by the total number of occurances in the corpus and the 

number of abstracts the mention occurs in (disregards multiple mentions in a single abstract). 

These measures show that popular brain regions are more likely to be resolved to existing 

lexicons than rare terms that appear only once in the corpus. In Table 7, these measures show 

that popular brain regions are more likely to be resolved to existing lexicons than rare terms 

that appear only once in the corpus with the coverage rate of unique mentions (18.8%) at half 

that of all mentions (47.7%).  

The accuracy of the mappings was evaluated for all non-exact string mappings. Table 7 

shows accuracy and coverage across the resolvers. We found the Simple Mapping Matcher 

performed the worst with 3.6% of unique mention mappings rejected. Overall the combined 

set of resolvers result in 4.3% of unique mentions being rejected and 52.9% of mentions 

failing to map. 
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3.3.3 Tuning and final evaluation 

After reviewing the unmatched mentions, we decided to modify our pipeline and input 

lexicons. The first change was the addition of manually-created mention-to-term links in the 

lexicons. This is akin to adding synonyms to the ontologies. We were able to create these 

links for 42 of the 122 top unmatched mentions that occurred more than 9 times in the 

corpus. Examples include “cortical”, “thalamic” and “si”. Although we sought to remove 

acronyms and abbreviations, several occur in the list. These are primarily terms that the 

automatic abbreviation expander failed to resolve or a long form was not provided by the 

author. The rate of these errors is roughly 5%, and is similar to the tested accuracy of the 

abbreviation expander (Schwartz and Hearst, 2003). The addition of these links produces a 

7.7 percentage point increase in mention coverage (Table 8). We list these values separately 

because they reflect post-hoc additions to the pipeline, but they provide true increases in 

coverage expected for a production system. 

Further modifications derived from observations of unmatched mention patterns were 

implemented as “mention editors” (Table 6). The editors all perform slight modifications of 

the original mention and, as a last resort, remove qualifying terms such as “medial” from the 

string. When combined, the mention editors raise the coverage of abstract-mention pairs to 

58.4% and 35.9% of unique mentions with 39.4% specific-to-general mappings. As Table 8 

shows, they each provide a modest contribution to the increase while providing accurate 

mappings. Finally, the lossy editors (designed to discard qualifiers) created primarily 

general-to-specific mappings for the mentions that failed to match after applying the 
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preceding mention editors.  

To gain insight into mentions that failed to match, we manually examined a random subset of 

100 unmatched mentions. A quarter of the sampled mentions were references to brain regions 

that are not contained in the lexicons we used, and instead refer to regions in other species. 

Fourteen of the 100 unique unmatched mentions can be explained by annotation errors in our 

corpus, including text spans that missed the first character of a term and annotations of tracts. 

This result was expected given previously measured rates of annotator agreement (Chapter 

2). The remaining unmatched mentions can be categorized as unique variants, very specific 

mentions and ambiguous mentions (a complete list is available as Appendix A). Beyond the 

annotation errors, it is not clear how to map the unmapped mentions without extending the 

lexicons.  

3.3.4 Species-specific evaluation 

We hypothesized that the quality of resolution would depend on the organism used in the 

study, as the lexicons are species-specific and many taxa lack lexicons. To filter for species 

of study we ran LINNAEUS to identify species mentions in the abstracts (Gerner et al., 

2010). We compared the automatically tagged species information to a subset of 396 

abstracts with manually annotated species information. LINNAEUS was able to recall 97.4% 

of the annotated species mentions that could be mapped to a specific species. Precision could 

not be fully evaluated because many mentions of species are too general and refer to a genus 

or other taxonomic level. LINNAEUS does not extract these terms and as a result terms like 

“Macaque monkey”, “pigeon” and “squirrel monkey” could not be extracted (but were still 
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annotated manually for the subset). Overall, LINNAEUS identified species terms in 88% of 

abstracts. Co-occurrence of species within abstracts is relatively low; the most common pair 

of species is rat and human which occur together in 30 abstracts. 

As predicted, the coverage of mentions and specific-to-general matches varied greatly across 

species. Table 9 presents the results for a selected set of top occurring species. Species that 

lacked lexicons resolved less well and specific-to-general mappings occurred much more 

often. The top occurring species benefited from lexicons of their species. To determine the 

accuracy of the commonly studied species targeted by our lexicons we combined the 

mentions that co-occur with rat, mouse, human, rhesus monkey and macaca fasicularis 

mentions. Coverage of unique mentions for this grouping increases by 7 percentage points, 

and specific-to-general mappings are reduced to 33.7% from 39.4% on all mentions. 

Accepted mappings slightly increased from 95.1% to 96.6%.  

3.3.5 Analysis of all Journal of Comparative Neurology abstracts 

We ran our final method on 12,557 JCN abstracts that are not already in our corpus (covering 

1975 to January 2011). This required first running the abbreviation expander, then the brain 

region mention detector as described previously (Chapter 2), followed by the tuned 

normalization pipeline described above. In total we found 142,178 brain region mentions. Of 

these 95,895 were resolved to a concept in a lexicon, representing 7,923 unique region 

mentions and 57,185 unique abstract-region pairs (on average 4.6 per abstract; 86% of 

abstracts having at least one). The resolution results resemble those from the manually 

annotated abstracts with 67.5% of mentions resolved and 27.4% of unique mentions 



 
66 

matched to a lexicon entry. For the subset of commonly studied species that cover the 

lexicons coverage reaches 71.6% of mentions and 32.3% of unique terms. The slight increase 

in mention coverage and decrease in unique coverage is expected from a larger corpus size 

generating a larger set of rare terms. Table 10 presents the top 25 most frequently occurring 

NIFSTD concepts. The types of unmatched mentions are similar to those found previously 

with many broad terms that are not explicitly in the lexicons and several insect brain regions 

such as “mushroom bodies”.  

We examined the extent to which terms in the lexicons are used. We found that 44.1% of the 

7,145 available concepts are used at least once. Viewed another way, over 55% of the 

concepts (and 77% of terms) in the lexicons do not appear to be used in any JCN abstract. 

These results suggest that many of the concepts (and terms) in the lexicons are rarely used by 

working scientists. 

Because our analysis includes information on species and publication date as well as brain 

region use, the final data set allows interesting temporal analyses of the JCN. We first asked 

whether there is a tendency for more recent articles to use more narrowly defined brain 

regions. By comparing the publication year with the proportion of specific-to-general 

mappings in the training set we observe a slight but non-significant positive trend (Spearman 

correlation 0.18; p-value = 0.31). Our analysis is also able to reveal trends in the “popularity” 

of brain regions over the years. For example, we found that there was an abrupt dip in the 

mentions of “superior colliculus” in the early 1990s, while the hippocampus and amygdala 

enjoyed rising mentions until recently (Figure 3). A similar analysis of species of study 
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shows that mentions of mouse and humans are increasing, while rat and Rhesus monkey 

mentions are fading (Figure 4). 

Table 6 Mention editor descriptions and examples 

Example input and output mention strings are separated by “>>”. The Direction splitter 

mention editor expands the single input string into two mentions. Methods that discard 

important words from the mention are classified as ‘Lossy’. 

Name Description Lossy  Example   

Direction 
splitter 

Splits conjunctions that use 
neuroanatomical directions 

No 
dorsal and posterior 
hypothalamic areas 

>> 
[dorsal hypothalamic 
areas, posterior 
hypothalamic areas] 

Hemisphere 
stripper 

Removes prefixes that 
specify hemisphere 

No 
contralateral inferior 
olivary 

>> inferior olivary 

Bracketed text 
remover 

Removes text that is 
enclosed by brackets 

No 
secondary 
somatosensory (sii) 
cortex 

>> 
secondary 
somatosensory cortex 

“n.” expander Expands “n.” to nucleus No n. ambiguus >> nucleus ambiguus 
“of the” 
remover 

Removes subdivision 
descriptors 

No 
medial portion of the 
entorhinal cortex 

>> medial entorhinal cortex 

Region suffix 
remover Removes “region” suffixes No 

posterior cingulate 
region 

>> posterior cingulate 

Cyto prefix 
remover 

Removes prefixes that 
mention cytoarchitectural 
descriptions 

Yes 
parvocellular red 
nucleus >> red nucleus 

Direction 
remover 

Removes neuroanatomical 
direction specifiers Yes 

caudal cuneate 
nucleus >> cuneate nucleus 

“nucleus of 
the” remover 

Removes nucleus 
specifiers 

Yes 
nucleus of the 
pontobulbar body 

>> pontobulbar body 
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Table 7 Mention coverage and rejection rates across resolvers 

Coverage is provided at three different levels to quantify repeated mentions. For the “Unique 

Mentions” and “Reject Unique” columns the number of times a mention occurs is ignored 

(rare terms are given equal weight as common terms). The “Abstract-Mentions” and “Reject 

Abs-Mention pairs” statistics ignores the number of times a mention occurs in an abstract. 

The “Mentions” and “Reject Frequency” columns weight each unique mention by the 

number of times it occurs in the corpus. 

 Coverage  Mapping Accuracy  

Resolver  Mentions  
Abstract-
Mentions  

Unique 
Mentions  

Reject 
Frequency  

Reject Abs-
Mention pairs  

Reject 
Unique  

Exact String Match  41.1% 36.0% 14.3% 0.0% 0.0% 0.0% 
Bag of Words  42.1% 37.1% 15.8% 0.2% 0.2% 1.0% 
Stem  45.1% 39.4% 16.2% 0.5% 0.5% 1.0% 
Bag of Stems  46.4% 40.8% 18.0% 0.7% 0.7% 1.9% 
LOOM Matcher  41.1% 35.8% 14.3% 2.5% 2.5% 3.6% 
All  47.1% 41.6% 18.8% 3.1% 3.2% 4.3% 
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Table 8 Incremental improvements from several additional methods 

Added editor 

New 
Mentions 
Matched 

Added 
Mappings 

Percent 
accepted 

Specific to 
General 

Mappings 
Matched 
Mentions 

Baseline 8280 2963 95.7% 0.8% 47.1% 
Manual to Mention to Concept 
links 1346 91 97.8% 0.0% 54.7% 
Direction splitting editor 35 109 86.2% 7.3% 54.9% 
Hemisphere Strip Mention Editor 131 265 100.0% 0.0% 55.7% 
Bracketed text remover 29 73 90.4% 2.7% 55.8% 
Converts n. to nucleus 5 14 100.0% 0.0% 55.9% 
Remover of "of the" type phrases 27 67 85.1% 10.4% 56.0% 
Region[s] suffix remover 36 56 100.0% 0.0% 56.2% 
Cytoarchitecture prefix remover 37 76 97.4% 96.1% 56.4% 
Direction prefix and suffix 
remover 1092 2204 95.8% 94.4% 62.7% 
Remover of "nucleus of the" 
phrase 21 72 100.0% 100.0% 62.8% 
Direction prefix and suffix 
remover 125 205 84.9% 84.9% 63.5% 
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Table 9 Resolution of species linked mentions 

The “Species terms” column list all recognized terms for a given species. Coverage is 

provided at two levels by counting mention frequency (“Mention Coverage”) and ignoring it 

(“Unique Coverage”).  

Species  Species terms  Mentions  
Unique 

Coverage  
Mention 

Coverage  
Rejected 
Mappings  

Specific-
to-

general 
Mappings  

Cat cats, kitten, cat, Cat, kittens 1001 42.5% 60.6% 3.0% 24.3% 

Rabbit  rabbit, rabbits 200 60.0% 73.3% 4.0% 16.5% 

Pigeon  Columba livia 157 40.1% 45.0% 1.1% 19.6% 

Clawed frog  
clawed frog, Xenopus 
laevis, African clawed frog, 
X. Laevis 

107 57.0% 66.8% 8.1% 37.1% 

Rat 

rat, rats, Norway rat, 
Sprague-Dawley rats, 
Wistar rats, Sprague-
Dawley rat 

2434 44.6% 67.7% 3.2% 31.9% 

Mouse  mice, mouse, murine, 
transgenic mice 

396 55.8% 75.7% 2.6% 13.6% 

Human  

patient, patients, human, 
infant, children, humans, 
infants, people, participants, 
man 

409 57.7% 73.5% 4.2% 11.6% 

Rhesus Monkey  rhesus monkey, rhesus 
monkeys, Macaca mulatta 

406 49.5% 63.6% 2.5% 29.6% 

Macaca f.  
macaca fascicularis, 
cynomolgus monkey, 
cynomolgus monkeys 

143 64.3% 67.9% 5.9% 17.5% 

Macaca f., 
Rhesus, 
Human, Mouse 
and Rat  

 3061 42.9% 68.6% 3.4% 33.7% 

All   5941 35.9% 63.5% 4.9% 39.4% 
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Table 10 Top 25 most frequent brain region concepts in the Journal of Comparative Neurology 

Regions are limited to the NIFSTD terminology with frequency determined from the full 

JCN corpus. Both the manually curated and automatically predicted brain region spans were 

used as input to the resolution approach. 

Region Frequency  
Retina 7341 
Cerebral cortex 5578 
Spinal cord 3915 
Thalamus 2290 
Hippocampus 2098 
Cerebellum 1953 
Hypothalamus 1800 
Olfactory bulb 1551 
Brainstem 1512 
Superior colliculus 1457 
Neostriatum 1343 
Amygdala 1312 
Midbrain tectum 1109 
Midbrain 1093 
Forebrain 962 
Solitary nucleus 819 
Locus ceruleus 769 
Substantia nigra 764 
Cochlea 762 
Entorhinal cortex 712 
Lateral geniculate body 705 
Dentate gyrus 684 
Central gray substance of 
midbrain 662 
Telencephalon 660 
Cochlear nuclear complex 651 
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Figure 2 Representation of the system and an example 

The procedure starts with an abstract that is manually or automatically scanned to find brain 

region mentions. The extracted mentions are then processed by mention editors and 

resolvers. For this example all resolvers including the exact string matcher resolve the 

direction split strings to the correct concepts. 
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Figure 3 Trends in the proportion of yearly abstracts mentioning amygdala (black square), superior 

colliculus (red triangle), hippocampus (blue triangle) and medulla (green triangle) 

Proportion values are smoothed by averaging the previous, current and following years. 

Copyright © 2011 Wiley-Liss, Inc. 
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Figure 4 Changes in the proportion of yearly abstracts mentioning rat (red square), mouse (black filled 

square), people (green diamonds) and Rhesus monkey (blue triangle) over time 

Only 32 abstracts are considered for the 2011 year. Rat, mouse and human are significantly 

increasing over the entire time period (p < 0.05). Abstracts mentioning Rhesus monkey are 

significantly declining (p < 0.001). Copyright © 2011 Wiley-Liss, Inc. 
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3.4 Discussion 

Our contribution in this chapter is the development and thorough evaluation of a pipeline for 

mapping specific brain region concepts to free text in journal abstracts. While we achieve a 

high degree of coverage (64.5%) and precision (95.1%), and yield a data set of value for 

additional analyses, we identified many challenges and current limitations that need to be 

addressed. The primary problem we encountered was with the terminologies, which are not 

well-standardized and also, apparently, incomplete. The terminologies we used have 

surprisingly little overlap, despite some of them having common target organisms. This 

reflects the extensive variation in how neuroanatomical concepts are expressed in natural 

language, but the lack of harmonization across terminologies is striking. In addition, authors 

often mention regions that are beyond the granularity of the terminologies (for example, by 

adding a modifier such as “mediolateral” to a recognized term). While we presented a lossy 

mapping method that handles this problem, it is likely that some of these fine-grained terms 

should be added to the terminologies. To this end,  we have contributed 136 new brain region 

concepts to NeuroLex (Larson et al., 2010). We selected the regions by filtering our results 

for specific-to-general mappings to an existing NITSFD brain region concept. We then 

selected terms that are co-mentioned with rhesus monkey, macaca fasicularis, rat, mouse or 

human in at least two separate abstracts, assuming that repeated use in the literature is 

evidence of utility. This automatically generated list of 152 region terms was reduced to 136 

after manual adjustments for synonyms and conjunctions. Although this is a small first step, 

formalization of these mention-to-concept pairings would reduce the specific-to-general 

mapping rate by 2.5 percentage points. Further, these 136 mentions occur over 2,400 times in 
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the complete set of JCN abstracts. Because NeuroLex is presented in a wiki format, the 

community can review and edit these additions ( http://neurolex.org ). Another potential 

avenue for improving lexicons is the International Neuroinformatics Coordinating Facility 

(INCF) Program on Ontologies of Neural Structures (PONS) which seeks to establish 

formalized lexicons for neuroanatomy ( http://www.incf.org/core/programs/pons ).  

In addition to pointing out gaps in the existing terminologies, our results point to a mismatch 

in the other direction, in that the terminologies contain numerous terms that do not appear in 

any JCN abstracts. Some of these are likely to be valid terms that are just not used often (for 

example, the rodent term “Perireunensis nucleus” never appears in any PubMed abstract; a 

wider web search turns up just a single mention in the accessible literature (Jacobsson et al., 

2010)). An overall picture emerges of lexicons that are incomplete while simultaneously full 

of terms which may not be actually used in practice. Our results may thus aid the developers 

of lexicons and highlights the need for more work in this area. 

Overall we found that our designed resolvers were precise at the task. We believe this is due 

in part to our avoidance of acronyms and relying on strict matches. The best resolver appears 

to be the Bag of Stems resolver that almost reaches the coverage of all resolvers combined 

while holding a low 1.9% unique term rejection rate. This agrees with previous work that 

tested a similar resolver for cross species mapping of thalamic atlases (Srinivas et al., 2005). 

The LOOM Simple Mapping Matcher, designed for a different task of ontology mapping 

performs worse than any other resolver. One advantage is that its one-character mismatch 

allowance provides some mappings our other resolvers cannot. While providing unique 
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mappings, the mismatch allowance leads to mapping errors such as “central” to “ventral”. 

Past work in the ontology mapping domain has placed LOOM at par to other more advanced 

methods (Ghazvinian et al., 2009). Those results suggest more complicated resolvers will not 

yield substantial improvements. 

Through studying unmatched mentions and tuning the system we were able to improve the 

coverage from 47.1% to 63.5%. Unfortunately most of our added techniques resulted in 

modest improvements. The main contributors were the manually created mappings for 

unmatched mentions and the lossy editors that allowed resolution to enclosing regions (e.g. 

mapping “medial lateral cervical nucleus” to Lateral cervical nucleus). Our analysis of one 

hundred unmatched mentions suggests more advanced methods employing contextual 

information could be used to resolve ambiguous and co-referenced mentions. Context 

information has already been applied to cross-species mapping and may be adaptable to brain 

region mapping outside of atlases (Srinivas et al., 2005). 

The most important contextual information seems to be the species of study. By applying an 

automated species extractor we linked the organism of study with the brain region mentions. 

Across the over 200 species we observed varied degrees of resolution. As expected, brain 

region mentions from amphibians, insects and fish had increased rejection and more specific-

to-general mappings. Mammalian species like rabbit and cat performed at levels close to the 

average. Rat, the most common species of study in the corpus, had an above average 

coverage but also a high amount of specific-to-general mappings (31.9%). In comparison, the 

increasingly common mouse abstracts had only 13.6% specific-to-general mappings while 
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achieving the highest coverage (75.7%). This may reflect that the larger rat brain is 

commonly used for study of detailed rodent neuroanatomy that extends beyond the standard 

atlases. In addition the human abstracts have results similar to mouse with high coverage of 

mentions and few specific-to-general mappings compared to Rhesus monkey abstracts. 

Approximately half of the mentions are linked to species matching the target lexicons. These 

mentions from commonly studied species are accurately normalized, with low rejected 

(3.4%) and specific-to-general mappings (33.7%).  

We applied the methods to an unseen set of automatically tagged region mentions from the 

remaining JCN abstracts. The results mirror those from within the manually annotated corpus 

and suggest the methods could readily be extended to larger scales. Our method appears to 

scale well, with over 1,000 brain region concepts appearing in the extended corpus but not 

the original annotated set.  

To increase the value of the data set to the neuroscience community, our results have been 

incorporated into the NeuroLex database, where work is in progress to display, for example, 

time-trends of brain region mentions in the JCN alongside other information on each region 

(Anita Bandrowksi, personal communication). We provide a bulk version of the data suitable 

for third-party analyses on our website (http://www.chibi.ubc.ca/WhiteText/ ). As mentioned 

in the introduction, having brain regions mapped to abstracts is only one step in making full 

use of the information embedded in the literature. Future work will focus on the linking of 

brain region mentions to each other and to other concepts such as drugs and diseases. Our 

eventual goal is to provide computationally rich linkages of brain regions to diverse 
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neuroinformatics resources.  
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Chapter  4: Application and evaluation of automated methods to extract 

connectivity statements from free text 

4.1 Introduction 

The brain is a vast interconnected network. Each neuron communicates with many others 

with chemical and electrical synapses to integrate information. Neurons are grouped into 

named nuclei or layers that make diverse connections across the brain, forming pathways of 

information flow.  This structural connectivity primarily defines its neural function and is 

frequently used by neuroscientists and clinicians to interpret physiological data. Examples 

include understanding strokes (Haines, 2004) and interpreting brain imaging results. In 

addition, neurologists have observed connectivity abnormalities in bipolar (Houenou et al., 

2007), autistic (Koshino et al., 2005), Alzheimer’s (Stam et al., 2007), and schizophrenia 

patients (Karlsgodt et al., 2008). A major goal of modern neuroscience is to understand the 

organization of the brain at all levels in as much detail as possible, and to understand how 

this networked organization relates to brain function and ultimately behaviour and human 

health (Sporns, 2011). 

The characterization of the connectivity network or wiring diagram of the brain is incomplete 

(Crick and Jones, 1993). In part, this is due to the complexity of the brain and the difficulty 

in collecting data. However, we suggest that informatics technologies can be used to leverage 
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existing knowledge that has already been collected to make new discoveries and guide 

further experimentation. 

In this work we are primarily concerned with “macroconnections”, or connections that can be 

identified between small brain regions (as opposed to microcircuitry which describes the 

connections among neurons per se). These macroconnections between groups of neurons are 

predicted to number between 25,000-100,000  (Bota et al., 2003). This suggests a high level 

of complexity, though comfortably placed between the more gross levels of brain 

organization and the microarchitecture which encompasses billions of neurons and 

quadrillions of synapses (Sporns et al., 2005). Furthermore, this estimated amount of 

macroconnections is smaller in scale than estimates of the human interactome at 650,000 

interactions between 25,000 proteins (Stumpf et al., 2008). 

Connectivity between brain regions can be assayed using tract tracing or electrophysiology. 

Tract tracing typically involves injecting a dye or other tracer (for example, horseradish 

peroxidase) into one brain region and following the fate of the tracer as it follows axonal 

pathways (Lanciego and Wouterlood, 2011). Electrophysiological methods use electrical or 

other stimulation in one site along with electrical recording at a second site to test the 

functional connectivity of regions. Using these methods a researcher can determine 

connections that send signals to the region (afferent) or away from the region (efferent). Over 

many years, thousands of connectivity studies have been performed, each of which typically 

elucidates at most a few connections. The presence of a deep literature on neuronal 

connectivity is a major motivation for this work: the data are out there, they just need to be 
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assembled.  

Attempts to turn this huge accumulation of knowledge into an ‘omics’ scale database have 

been extremely limited, despite the potential value of such a resource. Previous efforts have 

primarily used manual reviews of the literature to laboriously generate connectivity maps for 

limited parts of the brain. In 1991, Felleman and Van Essen published a connectivity matrix 

of the macaque visual cortex covering 305 pathways between 32 areas (1991). Scannell and 

colleagues followed the same procedure to collate 1139 connections between 65 brain 

regions in feline cerebral cortex (Scannell et al., 1995). Currently, a large number of collated 

connections are stored in the Collations of Connectivity data on the Macaque brain database 

(CoCoMac) (Kotter, 2004).  CoCoMac contains detailed information from 413 literature 

reports regarding 7007 macaque brain regions. A fourth model organism with large scale 

connectivity data is the rat with over 40,000 reports of connections formalized in the Brain 

Architecture Management System (BAMS) (Bota et al., 2005). Information is added to these 

databases manually, and therefore they are accurate but sparse. Currently, the only complete 

connectome scale database is the neuron-level wiring diagram of C. elegans, determined 

from electron micrographs (White et al., 1986). 

We seek to extend and complement manual efforts with automated text mining techniques. 

Over ten years of efforts to recognize gene and protein mentions and their interactions inspire 

our work (Blaschke et al., 1999;Jensen et al., 2006). In the gene interaction task, one must 

extract information from sentences such as “gene A interacts with gene B” (to give a toy 

example). Despite the difficulty of this task, great progress has been made. A recent survey 



 
83 

found that performance ranges from 29-80% precision and 45-90% recall. The varied results 

are partially explained by the selection criteria and size of the text corpus used for training 

and testing (Zhou and He, 2008). A comprehensive evaluation of kernel methods for 

extracting protein-protein interactions detailed precision and recall values ranging from 45-

70% by varying experiment design, dataset and method tested (Tikk et al., 2010). At the 

second Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE II) 

the top team was able to extract normalized, directed interaction pairs from full text articles 

with precision of 37% and recall of 33%. The analogy to brain connectivity is very tight: we 

wish to extract information from sentences akin to “brain region A connects to brain region 

B”. This related research gives us hope that the approaches applied to extracting gene 

interaction information can successfully mine connectivity relations. 

While attempts to use text mining in neuroscience have been limited, they are instructive. 

The Neuroscholar project previously explored automated extraction of connectivity data from 

text (Burns et al., 2007).  Burns et al. focus on extraction of detailed parameters and results 

of a tract-tracing experiment. They manually annotated 1,047 sentences from the Results 

sections of 21 documents with five labels that describe a tract-tracing experiment. These 

annotations provided the test and training examples for a conditional random field classifier 

that was able to label with 80% accuracy. We note that Burns et al. attempted to extract 

detailed information about connectivity experiments; we seek to extract much less detailed, 

but still valuable, information. The favourable results of Burns and colleagues’ research 

suggest that a somewhat simplified task may yield even better results.  
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Given the complexity of the domain we have simplified the problem by limiting our input 

dataset and output results. We restrict the corpus to abstracts from the Journal of 

Comparative Neurology because it contains a high frequency of connection reports across 

many diverse brain region mentions. Abstracts were chosen over full text documents because 

they are enriched for high level summary statements and are more accessible. Further, we 

predict connectivity relations between brain region mentions that have been manually 

annotated instead of automatically recognized spans. In previous chapters we have previously 

evaluated recognition and normalization of brain region mentions and chose to isolate these 

steps from the evaluations. We later demonstrate and evaluate a completely automated 

connectivity extraction system that employs automated recognition and resolution. Finally, 

we test methods for extracting the presence of connectivity relations but ignore the type or 

direction of connectivity (afferent, efferent or bidirectional). These generalizations allow a 

feasible first step to more detailed studies. 

We show that text mining methods can be usefully applied to brain connectivity by adapting 

text-mining approaches previously used to analyze protein networks. Our large manually 

annotated corpus allowed testing and training of various techniques possible. Beyond the 

corpus based evaluations we compared a large set of automatically extracted connectivity 

statements to an existing connectivity database.  
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4.2 Methods 

4.2.1 Annotated data 

To test and train text mining algorithms we created a large gold standard dataset. This dataset 

or corpus consists of abstracts manually annotated by a research assistant for connection 

verbs, species of study, brain region mentions, and connections between them. We annotated 

1,377 abstracts for 4,529 connections and 17,585 brain region mentions. In this design each 

connection consists of two brain regions, text describing the connection and the associated 

organism. Two hundred and thirty of the abstracts have been annotated by both annotators. 

This corpus provides sufficient training examples for machine learning methods. Abstracts 

for the gold standard corpus were randomly chosen from the Journal of Comparative 

Neurology. 

We have developed guidelines and software for the annotation process. Briefly, our main 

guidelines are: 1) annotate all brain region mentions whether they are part of a connection or 

not, 2) annotate all connections and brain regions for all organisms and organism states, 3) do 

not annotate mentions of white matter tracts. The General Architecture for Text Engineering 

(GATE) was used by annotators to highlight and connect brain region mentions in text 

(Cunningham et al., 2002). We have implemented software that uses GATE for abstract 

importing, corpus management and interannotator agreement computations. Furthermore, a 

GATE plug-in was created to allow annotation of connectivity relationships between two 



 
86 

brain region mentions.  

4.2.2 Co-occurrence 

To extract neuroanatomical connections as described by the abstract authors we must at least 

link two brain region mentions. Our first method, acting as a naïve baseline method, predicts 

a stated connection between every pair of brain region mentions (Jensen et al., 2006). We 

evaluate co-occurrence for single sentences and entire abstracts (including title).  

4.2.3 Rule based 

We created two simple rule based extensions of the co-occurrence technique. The first simply 

limits co-occurrence extraction to sentences that have a limited number of brain region 

mentions. The second requires presence of a connectivity related keyword (“afferent”, 

“efferent”, “projects”, “projection”, “pathway” or “inputs”). 

4.2.4 Kernel based methods 

Seven advanced kernel based methods were applied to the dataset. These methods were 

designed for a similar task, extraction of protein-protein interactions from biomedical 

literature. Each technique uses different features, parameters and kernel functions. 

Implementations were brought into a common evaluation framework by Tikk and colleagues 

(Tikk et al., 2010). The methods are categorized according to the type of features extracted 

from the sentences. Four syntax tree based methods use different techniques to compare the 

sentence parse trees (Collins and Duffy, 2001;Vishwanathan and Smola, 2002;Moschitti, 
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2005;Kuboyama et al., 2007). Going beyond syntax parses, the all-paths graph kernel (Airola 

et al., 2008) and k-band shortest path spectrum kernel (Tikk et al., 2010) employ dependency 

parse information. Lastly, the shallow linguistic kernel (SL) employs only shallow parsing 

information such as word occurrences and part-of-speech tags (Giuliano et al., 2006). We 

employed this framework to benchmark each of the kernel based methods on the brain region 

connectivity task. Of the nine methods described by Tikk et al. we were able to successfully 

test seven, including the three top performing kernels. For every method, the same parameter 

sets used by Tikk and colleagues were tested on our corpus. 

4.2.5 Experiment setup 

We evaluate connection extraction independently of the previously described methods for 

automated brain region recognition. This is done by providing the manually annotated brain 

region mentions to the relation extraction algorithm. Under this design the extraction task 

only requires correct linking of brain regions mentions. 

To find the optimal method while avoiding over-fitting, method comparison and selection 

was performed on the 1,146 abstracts annotated only by the primary annotator. Results for 

the kernel methods were computed using ten-fold cross-validation. Each sentence became an 

input instance for the kernel methods (including article title). Sentences of an abstract were 

not split between training and testing sets (document level split).  
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4.2.6 Evaluation 

Performance is measured against the number of true connectivity relations that are annotated 

completely within the evaluation scope. The rule and co-occurrence based methods can 

operate at the abstract or sentence level while the kernel methods are limited to sentence 

level scope. Precision is computed as the proportion of predicted relations that are correct, 

and recall is the proportion of true relations that are predicted by the method. The f-measure 

or f-measure is the harmonic mean of these two values, providing a balance of both. We also 

compute the area under the receiver operating curve where applicable (AUC). This measure 

uses a ranked list of predictions with descending classification prediction scores (scores 

represent distance from the discrimination hyperplane and approximate confidence in the 

prediction). This ranking allows computation of the true positive and false positive rates for a 

range of discrimination thresholds. Previous experiments have found the AUC measure to be 

more robust and stable than f-measure for interaction mining (Tikk et al., 2010).  

4.2.7 Comparison to existing connectivity database 

Normalization of brain region mentions to brain region concepts in formalized lexicons was 

targeted to the BAMS atlas (Swanson, 1999). BAMS was chosen because it’s wealth of 

curated rat tract tracing studies (Bota et al., 2005). In addition, rat is the most commonly 

studied species in the corpus. The previously described Bag of Stems resolver was applied 

with all Mention editors employed, including those that create resolutions to enclosing 

regions (see Chapter 3). The lexical information in BAMS was expanded with synonym 
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information to increase normalization performance. All possible normalized parings are 

evaluated when a mention maps to more than one region. Connections in the BAMS 

connectivity matrices were up-propagated. The up-propagation procedure ensures that if 

there is a connection between regions A and B then all enclosing regions of A and B are also 

connected. Self connections extracted from literature were ignored. The LINNAEUS species 

tagger was employed to recognize species names in the abstracts (Gerner et al., 2010).  

4.3 Results 

We annotated 4,276 connectivity relations across the complete corpus of 1,377 abstracts. To 

gauge interannotator agreement, a second curator annotated a random subset of 231 

documents. Roughly 80% of the second curator’s annotations matched the main curator 

(79.5% recall at 82.3% precision). Unlike the automated methods that predict relations 

between given brain region mention spans, this evaluation required both annotators to 

highlight the same brain region mention spans. By removing this restriction and allowing 

partially matching spans, the precision and recall reach 93.9% and 91.9% respectively. 

The co-occurrence based analysis reveals the proportion of brain region mention pairs that 

are co-mentioned and described as connected. At the abstract level 2.2% of all possible brain 

region pairings form connectivity statements. While many relationships can be formed 

between any two brain regions, co-occurrence assumes the relation is a connectivity 

statement. Often this is incorrect at the abstract level with precision of 2.2% at 100% recall, 

and a combined f-measure score of 4.3%. Within a sentence, co-occurrences between all 

pairs predicts connected pairs at 13.3% precision and 72.0% recall (remaining relations 
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span sentences). This level of recall means that over ¼ of all annotated connectivity relations 

are formed with regions in different sentences. Due to the difficulty in extracting connections 

spanning sentences, all of the below evaluations are performed at the sentence level with the 

relations spanning sentences excluded (under this evaluation framework sentence level co-

occurrence provides 100% recall).  

We tested two simple modifications of the sentence level co-occurrence technique. The first 

reduces co-occurrence predictions to sentences with a limited number of brain region 

mentions. By extracting co-occurring pairs from sentences with only two brain region 

mentions, precision reaches 23.1% and 17.2% recall (f-measure = 19.7%). This means that an 

average sentence with two brain region mentions is reporting a connection in almost one out 

of four cases. By varying this threshold the f-measure increases until sentences with 6 or 

more brain region mentions are included. We observed that some of these larger sentences 

merely list brain regions involved in the study and not their relationships. By limiting at 5 

brain region mentions or less per sentence, co-occurrence provides 18.8% precision and 

66.1% recall (f-measure = 29.3%). The second rule tested requires the sentences contain one 

of six connectivity related keywords (afferent, efferent, projects, projection, pathway and 

inputs). This keyword based rule increases recall to 17.4% and precision to 92.7% (f-measure 

= 29.4%). We created a new approach named “Keyword 5-threshold” by combining these 

two rules. This again provides improvement with f-measure reaching 34.1% (precision = 

23.7%, recall = 60.8%). As expected, rule based methods increase precision at the cost of 

lower recall when compared to unrestricted co-occurrence.  
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We applied seven methods for extracting protein-protein interactions to our connectivity 

relation dataset. While the methods were designed for a different type of biomedical relation, 

they do not require any changes to extract undirected relations between other entity types. 

The cross-validation results on the testing dataset (1,146 abstracts) are provided in Table 11. 

For each method, the parameter set with the highest AUC score is shown. The parameter sets 

range in size and are reproduced from Tikk et al. without modification (primarily grid 

searches of support vector machine settings). F-measure scores for all of the seven methods 

outperform unrestricted co-occurrence based analysis for at least one parameter set. The 

simple rule based methods outperform the more complex Partial Tree and Subset Tree based 

methods. While all of the syntax tree based methods are outperformed by the Keyword 5-

threshold approach, they provide much higher precision than recall. When ranked by AUC, 

the SL kernel performs best with a 58.3% f-measure and an AUC of 88.9%. The All Paths 

Graph and k-band shortest path spectrum kernel methods rank a close second and third with 

similar scores.  

For further application we choose the SL method due to its accuracy, speed and single 

parameter set (global n-gram = 3 and local window = 2). Unlike the other kernel methods the 

SL method uses only shallow linguistic information at the local (neighbouring words) and 

global sentence levels to predict relationships (Giuliano et al., 2006). This information forms 

feature vectors that are used to train a support vector machine classifier (scalar product 

kernel). The performance of SL is consistent on the complete set of 1,377 abstracts with f-

measure of 0.592. Figure 5 displays the resulting ROC curve (AUC = 0.899). For large-scale 

application, we applied the SL classifier to candidate sentences extracted from a set of 12,557 
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abstracts from the Journal of Comparative Neurology (covering 1975-2011). While previous 

evaluations used manually annotated brain region spans for input, this combination of 

automatic brain region recognition (see Chapter 2) and relation extraction will result in a 

higher error rate. To estimate the combined effects we trained the SL classifier on the manual 

annotations of the 1,146 test abstracts and test on the remaining manually annotated set of 

231 abstracts. The automatic brain region annotations on the test set are used as input to the 

SL classifier instead of the manual annotations. The result is 323 of 770 predicted 

connections exactly matching an annotated connection (precision = 41.9%, recall = 52.4%, f-

measure = 46.6%). While not obtained in a cross-validation framework, this experiment 

presents a good estimate of accuracy for the combined pipeline. In the set of 12,557 abstracts, 

application of the previously described automatic brain region recognizer provided 33,466 

sentences that mention two or more brain regions. Within these sentences, SL predicted 18% 

of the 156,484 possible brain region pairings to be connectivity relations. Of these predicted 

relations, 9,676 are in an abstract that mentions rat and can be evaluated against BAMS. 

Figure 6 shows the progression from abstracts to predicted connectivity relationships.  

Table 12 presents the ten most and least confident rat connectivity relations. Classication is 

approximated with the SL prediction score (distance to classifiying hyperplane), with highest 

values representing the cases closest to positive training examples. Two of the most confident 

predictions are extracted from an article title and have the same form (ranks 1 and 5). The 

sentences containing top predictions are shorter on average (192 characters) than the 

sentences with least confident predictions (282 characters); suggesting sentence complexity 

affects the prediction results. Of these twenty examples only two are clearly false positive 
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predictions (ranks 9764 and 9758) while several others point to errors in previous automated 

steps. An abbreviation expansion error appears in the sentence containing the relationship 

ranked 9762. Organism identification errors occur in two sentences that refer to connections 

in monkey although the associated abstracts mention rat neuroanatomy (ranks 8 and 9760). 

The mentions of "internal capsule" (rank 9766) and "Met-enkephalin" (rank 4) are incorrectly 

predicted as brain region mentions (our definition of a brain region excludes fibre tracts). We 

manually compared these twenty results to the BAMS system and found it difficult to map 

the mentioned regions to those in BAMS. For example, “retrosplenial dysgranular cortex” 

and “dorsal medullary reticular column” were not found in BAMS. Connections in BAMS 

were found for several of the relationships but between enclosing regions (ranks 9767, 7, and 

5). The low confidence relationship ranked 9761 shows an incorrectly marked brain region 

mention: “central olfactory cortical”, in addition the enclosing sentence contains connections 

not found in BAMS. For example, the stated connection between the anterior olfactory 

nucleus and piriform cortex is correctly extracted (rank 5795, score = 0.83) but the 

connection is not curated in BAMS. These results from the SL method are very encouraging 

and motivate a larger evaluation. 

We compare our results to an existing connectivity database (BAMS) to gauge accuracy of 

connections extracted from the unannotated set of 12,557 abstracts. Compared to the manual 

annotations, this is a less precise evaluation because BAMS does not cover the complete 

literature and is limited to rat studies (Bota et al., 2005). In addition, resolution errors 

resulting from linking brain region mentions to target regions in BAMS reduces accuracy 

(see Chapter 3 for details). For example, 12% of mentions are resolved to more than one 
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brain region due to ambiguous synonyms. To benchmark the BAMS evaluation metric we 

first tested it on manually curated connectivity relations. Our process first extracts abstracts 

that mention rats and resolves the brain region mentions to the BAMS lexicon. These rat 

connectivity relationships are then compared to the BAMS connectivity matrix. In this 

framework only 167 manually annotated connectivity relations are resolved with 70.5% 

having a connection in BAMS. In contrast, the set of 2,617 brain region pairings not 

annotated as connections but co-occur in sentences are connected in BAMS at 49.8%. This is 

not unexpected because co-occurring regions may be connected, but the author is not stating 

that in the sentence. In the unannotated set of rat abstracts 2,688 predicted connectivity 

relations are successfully resolved and 63.5% are connected in BAMS (Figure 6). For 

comparison, the remaining set of co-occurring brain region pairs are connected in BAMS at a 

rate of 51.1%. We note that the extracted relationships are between larger brain regions than 

those in BAMS. The average number of enclosing or parent brain regions for a connected 

pair in the BAMS matrix is 9.6. The literature extracted connections are shallower with an 

average number of enclosing regions of 7.9.  

We suspect that more recent reports of connectivity are of higher quality when compared to 

the BAMS database. Guidance is provided by a study of different eras of tract tracing 

techniques that revealed large improvements in accuracy (Bota et al., 2003). Bota and 

colleagues found that limbic system connections observed through axon degeneration (Nauta, 

1952) experiments are 60% accurate. In contrast, newer methods first applied in 1987 to 

exploit axonal transport are more accurate with over 90% considered valid. By splitting our 

corpus into documents published before and after 1987 we tested for a similar signal that 
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separates eras of experimental techniques. In agreement with the manually quantified trend, 

we observe an increase from 59.4% to 65.6% in the rate of connectivity statements validated 

in BAMS (p = 0.00071, hypergeometric test). We note the specificity of regions involved in 

the connections also increases while resolution rate is unchanged. 

Although we extract large sets of relations the number of unique resolved brain regions in the 

unannotated set is only 433 regions. In comparison 633 unique regions are connected in 

BAMS. Further, each unique predicted connectivity relation occurs more than twice on 

average in our text mined set.  

We further evaluate the results in the form of connectivity matrices that count the number of 

connections extracted for each brain region pair. In this framework, 54.7% of the predicted 

connections from the unannotated set of rat abstracts are connected in BAMS. From a recall 

perspective, 3.2% of BAMS connections are connected in the literature based matrix. By 

thresholding the literature matrix to two or more relation mentions, precision reaches 65.9% 

while recall drops to 1.4% (Table 13). This accuracy is near the 67.5% precision of the hand 

annotated set of connections. Precision gradually increases as the threshold increases, 

eventually reaching 100% for nine connections that are extracted at least 12 times. Further, 

we note the specificity of the connections increase with the average number of enclosing 

regions reaching 10.2 when thresholded at 12 occurrences. The region pairs not predicted to 

form connectivity relations have precision of 33.7% and recall of 9.3%. Again, this level of 

precision results from co-mentioned regions that are connected in BAMS but the author is 

not specifying that in the sentence. Further, the higher recall value results from the much 
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larger set of pairings (6079 compared to 1286 SL predicted parings). From a co-occurrence 

perspective we found that brain regions that co-occur in eight or more sentences recall 1.6% 

of the BAMS connections at 66.4% precision. Interestingly, this naive co-occurrence based 

method performs at par to the SL method that extracts direct connectivity statements. As the 

threshold is increased from 8 co-occurrences precision continues to gain, suggesting a large 

number of co-occurring mentions can predict connectivity as well as a few connectivity 

statements (Table 13). 
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Table 11 Training set cross-validation results  

Precision, recall, f-measure and AUC values are averaged across the ten cross-validation 

runs. The “Parameter Sets” column gives the size of parameter sets tested. For a given 

method, results are shown only for the parameter set with the highest scoring AUC value (F-

measure when AUC is not applicable). 

Kernel  Precision  Recall  F-
measure  

AUC Parser Type  
Parameter 
Sets  

Co-occurrence  13.3% 100.0% 23.5%  none 1 

Subset Tree Kernel  44.2% 20.8% 28.1% 74.8% syntax  12 

Co-occurrence 5-
threshold  18.8% 66.1% 29.3%  none 25 

Partial Tree Kernel  43.3% 23.1% 29.8% 75.2% syntax  12 

Keyword Co-occurrence  17.4% 92.7% 29.4%  none 1 

Spectrum Tree Kernel  37.4% 26.1% 30.2% 72.9% syntax  21 

Subtree Kernel  40.7% 25.2% 30.8% 74.6% syntax  12 

Keyword 5-threshold  23.7% 60.8% 34.1%  none 25 

k-band Shortest Path 
Spectrum  46.8% 70.5% 55.8% 86.7% dependency  288 

Shallow Linguistic Kernel 
(SL) 50.3% 70.1% 58.3% 88.9% 

part-of speech 
tagger  

1 

All-paths Graph Kernel  60.4% 57.9% 58.4% 88.4% dependency  4 
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Table 12 Top and bottom predicted relations ranked by SL classification score 

Each predicted relationship represents a single row (most sentences have many predicted 

relationships). Brain region mentions that participate in the extracted relationships are 

marked in bold text. 

Rank Sentence Score Reference 

1 Trigeminal  projections to hypoglossal and facial motor 
nuclei  in the rat.  

3.47 
(Pinganaud et 

al., 1999) 

2 
The cortical  projections to retrosplenial dysgranular 
cortex (Rdg) originate primarily in the infraradiata, retrosplenial, 
postsubicular, and areas 17 and 18b cortices. 

3.34 
(van Groen and 

Wyss, 1992) 

3 

The thalamic  projections to retrosplenial dysgranular 
cortex (Rdg) originate in the anterior (primarily the 
anteromedial), lateral (primarily the laterodorsal), and reuniens 
nuclei. 

3.33 
(van Groen and 

Wyss, 1992) 

4 

Our results indicate that the centromedial 
amygdala  receives Met-enkephalin (ENK) afferents, as 
indicated by the presence of mu-opioid receptor(MOR) , delta-
opioid receptor(DOR) , and Met-enkephalin(ENK) fibers in the 
central(CEA) and medial(MEA) , originating primarily from the 
bed nucleus of the stria terminalis (BST) and from other 
amygdaloid nuclei. 

3.32 
(Poulin et al., 

2006) 

5 
Thalamic  projections to retrosplenial cortex  in the rat.  

3.28 
(Sripanidkulchai 

and Wyss, 
1986) 

6 

The thalamic  projections to retrosplenial granular a 
cortex (Rga) originate mainly in the anterodorsal (AD) and 
laterodorsal (LD) nuclei with sparse projections arising in the 
anteroventral (AV) and reuniens nuclei. 

3.28 
(van Groen and 

Wyss, 1990) 

7 

Finally, reciprocal projections from the hypothalamus  to 
the intergeniculate leaflet (IGL) arise from neurons in the 
retrochiasmatic area, suprachiasmatic nucleus(SCN) , and 
adjacent anterior hypothalamus. 

3.27 
(Card and 

Moore, 1989) 

8 
The amygdala  projects to orbitofrontal cortex (OFC) by both 
a direct amygdalocortical (AC) pathway and an indirect 
pathway through mediodorsal thalamus.  

3.27 
(Miyashita et 

al., 2007) 

9 

The rostral part of the medial accessory olive  projects 
to zebrin-positive areas , in particular to the P4+ band of the 
anterior lobe and lobule VI and to the P5+ band of the posterior 
lobe, indicating that C2 has two noncontiguous representations 
in the SL and crus 1. 

3.21 
(Pijpers et al., 

2005) 

10 

Cortical  projections to retrosplenial granular a cortex (Rga) 
originate in the ipsilateral area infraradiata, the retrosplenial 
agranular and granular b cortices, the ventral subiculum, and 
the contralateral retrosplenial granular a cortex(Rga) . 

3.19 
(van Groen and 

Wyss, 1990) 
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Rank Sentence Score Reference 
...... 9747 relationships   

9758 

In the dorsal horn, terminals or preterminal axons were found 
in the dorsal horn marginal zone (lamina I), the substantia 
gelatinosa (lamina II), the nucleus proprius  (laminae III and 
IV--the most consistent projection), Clarke's column  (lamina 
VI), and the dorsal gray commissure. 

9.08E-
004 

(Nunez et al., 
1986) 

9759 

In addition, tracer injections into anteromedial(AM) , 
ventromedial(VM) , and ventrolateral (VL) revealed dense 
clusters of labeled neurons in layer VI of the medial agranular 
(Agm) zone , which corresponds to the MI whisker region.  

8.98E-
004 

(Alloway et al., 
2008) 

9760 

Additionally, the pontine  indoleamine-containing cells in M. 
mulatta extended laterally through the tegmentum such that 
they were often adjacent to catecholamine-containing neurons 
of the locus coeruleus complex . 

7.84E-
004 

(Schofield and 
Everitt, 1981) 

9761 
The anterior olfactory nucleus (AON) is a central olfactory 
cortical  structure that has heavy reciprocal connections with 
both the olfactory bulb (OB) and piriform cortex . 

7.23E-
004 

(Illig and Eudy, 
2009) 

9762 

Amygdala  infusion labeled neurons in the endopiriform 
nucleus, temporal cortex, piriform cortex, paralimbic cortex, 
hippocampus, subiculum, ento recombinant human(rh) inal 
cortex, amygdala, basal forebrain, thalamus, hypothalamus, 
substantia nigra, pars compacta, raphe, and pontine 
parabrachial nuclei . 

6.99E-
004 

(Sobreviela et 
al., 1996) 

9763 

The sparse reciprocal connections to the other amygdaloid 
nuclei  suggest that the central nucleus does not regulate the 
other amygdaloid regions but, rather, executes the responses 
evoked by the other amygdaloid nuclei that innervate 
the central nucleus .  

5.46E-
004 

(Jolkkonen and 
Pitkanen, 1998) 

9764 

The majority of the Endomorphin 1(EM1) / Fluoro-Gold(FG) 
and endomorphin 2(EM2) / Fluoro-Gold(FG) double-labeled 
neurons in the hypothalamus  were distributed in 
the dorsomedial nucleus , areas between the dorsomedial 
and ventromedial nucleus, and arcuate nucleus; a few were 
also seen in the ventromedial, periventricular, and posterior 
nucleus. 

4.36E-
004 

(Chen et al., 
2008) 

9765 

Projections from the dorsal medullary reticular 
column (DMRC) are largely bilateral and are distributed 
preferentially to the ventral subdivision of MoV , to the dorsal 
and intermediate subdivisions of VII, and to both the dorsal and 
the ventral subdivision of XII. 

2.91E-
004 

(Cunningham 
and 

Sawchenko, 
2000) 

9766 

Two additional large projections leave the medial forebrain 
bundle in the hypothalamus; the ansa peduncularis-ventral 
amygdaloid bundle system turns laterally through the internal 
capsule  into the striatal complex, amygdala  and the external 
capsule to reach lateral and posterior cortex, and another 
system of fibers turns medially to innervate medial 
hypothalamus and median eminence and form a contrelateral 
projection via the supraoptic commissures. 

2.87E-
004 

(Moore et al., 
1978) 
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Rank Sentence Score Reference 

9767 

In animals with injected horseradish peroxidase(HRP) confined 
within the main bulb, perikarya retrogradely labeled with the 
protein in the ipsilateral forebrain  were observed in 
the anterior prepyriform cortex horizontal limb of the 
nucleus of the diagonal band , and far lateral preoptic and 
rostral lateral hypothalamic areas. 

3.36E-
005 

(Broadwell and 
Jacobowitz, 

1976) 

 

Table 13 Aggregate connectivity results from several methods and relation sets 

Anatomical depth is the combined number of enclosing parent neuroanatomical structures for 

each brain region forming the pair. Threshold values represent the minimum number of 

occurrences required for a relationship to be considered a connection. 

Relation Set  Method  Threshold  
Anatomical 

Depth  
Connections  Precision  Recall  F-

Measure  
Positive 
annotated  Curation 1 8.7 200 67.50% 0.61% 1.22% 

Negative 
annotated  Curation 1 8.7 1606 41.91% 3.06% 5.71% 

Positive 
predictions  SL Kernel 1 8.4 1286 54.70% 3.20% 6.05% 

Positive 
predictions  SL Kernel 2 8.4 454 65.90% 1.40% 2.74% 

Positive 
predictions  SL Kernel 12 10.2 9 100.00% 0.04% 0.08% 

All pairings  Co-
occurrence 

1 8.3 6474 34.00% 10.01% 15.47% 

All pairings  Co-
occurrence 

2 8.3 2865 44.96% 5.86% 10.37% 

All pairings  Co-
occurrence 8 8.2 515 66.41% 1.56% 3.04% 

All pairings  Co-
occurrence 

16 8.4 189 71.43% 0.61% 1.22% 
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Figure 5 Summary ROC curve for the SL method (AUC = 0.899) 
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Figure 6 Flow chart depicting the processing steps  

4.4 Discussion 

We demonstrate a complete system for extracting connectivity statements from biomedical 

abstracts. The method provides high recall of manually annotated connectivity relations 

described in single sentences. Precision of predicted relations is 63.5% when evaluated 

against an independent source of rat connectivity. This result compares well to the 70.5% 

precision of manually annotated connectivity statements. By processing a large dataset 
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we found precision increases with the recency and frequency of the extracted relationships.  

A limitation of our work is that we assumed the connectivity statements are bidirectional 

although most of the relationships we extracted have a direction described. In addition, some 

reports of disconnection are described (region A does not project to region B). Extracting this 

information by extracting keywords such as “afferent”, “not” or “input” will require future 

work. These relationship modifiers are manually annotated in the corpus and can be used to 

design more complex rules.  

Our methods that focused on the sentence level cannot extract the large number of relations 

that span sentences. When these connections are taken into account the SL parser provides 

only 51.7% recall of annotated connections. Application of advanced natural language 

processing techniques may be necessary to bridge the sentences (e.g. anaphora resolution).  

The comparison of seven cutting edge kernel based approaches mirrored the previous results 

from the protein interaction relationship extraction domain (Tikk et al., 2010). Several of the 

kernel methods have lower performance than our simple rule based technique. Effort spent 

crafting more complex rules may yield higher precision at the cost of lower recall. The top 

three kernel methods (SL kernel, All-paths graph, k-band Shortest path spectrum kernel) all 

have similar accuracy (AUC and f-measure scores) but vary in precision and recall. This 

difference suggests higher performance may be achieved by combining the methods. 

Our results suggest a larger set of input abstracts will yield a larger number of precise 

connections. The largest possible extension set is Medline with over 10 million abstracts and 
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120 million sentences. Tikk and colleagues calculated that the SL parser could process all of 

Medline in 141 days (Tikk et al., 2010). A two step process may reduce runtime and increase 

accuracy by first identifying abstracts with connectivity statements and then extracting the 

specific connections with SL. Another targeted approach is to extend the analysis to other 

journals that often publish tract tracing studies (e.g. Journal of Chemical Neuroanatomy).  

In natural language processing, it has been observed that simple statistical models (e.g. co-

occurrence) outperform more complex models based on less data (Halevy et al., 2009). 

Indeed, in our corpora we found that brain region pairs with many co-mentions tend to be 

connected. In our evaluations this simple technique produces a larger set of potential 

connections with reasonable precision. Although this will produce a larger set of results than 

the SL method, it does not target connections that can be directly curated in light of 

experimental evidence because the co-mentions may or may not describe connectivity. 

Further, such co-occurrences may result from region proximity or popularity that may 

influence research attention in both the literature and in BAMS. However, such co-

occurrence networks show valuable areas of focus when combined with co-mentions of 

genes and diseases (Hayasaka et al.). 

Under one third of the extracted relationships were successfully mapped to a brain region 

concept pair in a standardized lexicon. This has been studied in previous chapters but for 

relationship extraction the resolution rate is greatly reduced as both pairs of a connectivity 

relation must be mapped. Further, it appears that regions forming connectivity relations are 

harder to resolve on average. For this work we managed to double the resolution rate to the 
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BAMS lexicon by adding synonyms. Additional work to improve the lexicons will lead to 

better resolution of connectivity statements, allowing validation and linking to other 

resources.  

For our evaluation to an outside database we focused on BAMS (Bota et al., 2005). While rat 

is the most frequent mentioned organism, other evaluations could compare the connectivity 

results to the Collations of Connectivity data on the Macaque brain (CoCoMac) (Kotter, 

2004)  or the Avian Brain Circuitry Database (ABCD) (Schrott and Kabai, 2008). Beyond 

evaluation, our dataset and method can provide a large set of extracted connectivity 

relationships for other species specific databases.  

In conclusion, we provide the first application of large-scale text mining to neuroanatomical 

connectivity extraction. We demonstrated that machine learning tools designed for extraction 

of protein-protein interactions are generalizable to mining brain region connections. From an 

information retrieval perspective, our large set of uncurated connections can aid 

neuroscientists in forming hypotheses and models. Future work will be aimed at further 

evaluating and disseminating the results before extending the analysis. 
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Chapter  5: Large-scale analysis of gene expression and connectivity in the 

rodent brain: insights through data integration4 

5.1 Introduction 

Understanding gene function requires the analysis of interactions among them, and ultimately 

unraveling the function of the genome will require comprehending how all of the parts 

interoperate in complex networks. An analogous situation exists for the brain and its regional 

connectome (Bota et al., 2003;Sporns et al., 2005;Lichtman and Sanes, 2008;Biswal et al., 

2010;Sporns, 2011). Given the relationships between these two systems (genome and 

connectome), as well as the fact they are both complex networks, it is natural to ask how 

analysis of one can inform understanding of the other. Indeed, the integrated analyses of the 

connectome with other modalities will be critical to understanding brain function. In this 

chapter our modality of interest is gene expression, for which extensive information exists.  

It is obvious that the connectome is related to the genome. Axon pathfinding, target 

recognition, synapse formation and plasticity are tightly controlled by gene expression 

(Ressler et al., 2002;Polleux et al., 2007). The function of synapses requires the coordinated 

                                                 

4 A version of this chapter has been published. French L, Tan PPC and Pavlidis P (2011) Large-scale analysis of 

gene expression and connectivity in the rodent brain: insights through data integration. Frontiers in 

Neuroinformatics. doi:10.3389/fninf.2011.00012 
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expression of genes directing the synthesis of neurotransmitters in the presynaptic cell and of 

receptors in the postsynaptic cell. Because high throughput experimental technologies for 

studying the genome are well developed, in many ways our understanding of gene expression 

and gene networks is better than for the connectome (though this situation is changing 

rapidly). This allows the collection of large data sets describing gene expression patterns at 

high levels of resolution. It is increasingly feasible to use this molecular level information to 

elucidate neuroanatomy.  

Analysis of connectomes with transcription data began with the nematode C. elegans because 

neuron-level connectivity and gene expression levels are known. (White et al., 1986;Harris et 

al., 2010). Neuron-level gene expression data in C. elegans is not available for all genes, but 

there is enough to perform reasonably large-scale analyses. The earliest study integrated the 

connection and expression profiles of 280 neurons and 292 genes (Varadan et al., 2006). 

Varadan and colleagues employed a systems-based approach to discover logical gene 

expression based rules that predict connectivity. Within the resulting gene modules they 

found high levels of “multivariate synergy”, suggesting statistically interacting genes were 

more important than single genes. The authors extracted several gene sets that correlate 

expression in pre and post-synaptic neurons to presence of gap and chemical synapses. 

Interestingly, gene sets which contained the most information about the formation of 

synapses included cell adhesion molecules, transcription factors and axon guidance cues. 

Kaufman et al. performed a similar analysis (Kaufman et al., 2006). They found a more 

general statistical relationship between gene expression and connectivity. Their analysis 
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employed a co-variation correlation assay, also known as a Mantel test. The Mantel test 

correlates similarity or distance measures across common objects (in this case, neurons). The 

Mantel correlations found by Kaufman et al. were up to 0.18. This signal, while statistically 

significant, is not strong enough to allow prediction of connectivity from gene expression. 

Using an optimization method, Kaufman et al. identified a set of 15 genes whose expression 

patterns carried the most information about connectivity. Similar to the results of Varadan et 

al. (2006), they found that a statistically significant number of these were previously linked 

to synaptogenesis, neuron type, axon guidance and development.  

A third C. elegans study, by Baruch et al. (2008) focused on finding relationships between 

gene expression and certain aspects of synapse formation (Baruch et al., 2008). They used 

expression profiles to model the type of synapse (e.g., electrical or chemical) between 

connected neurons. Like Varadan et al. (2006) they employed a machine learning method to 

find gene expression-based logical rules, and the genes found to be most predictive of 

connection type often had known functional roles in neural development.  

Similar analyses are starting to appear for the mammalian brain, though in terms of data the 

situation is the opposite of that for the worm: gene expression is more fully described than 

connectivity. Dong et al. (2009) provided a fascinating glimpse into the relationships 

between brain wiring and gene expression in the mammalian brain (Dong et al., 2009). They 

studied the Allen Mouse Brain Atlas (ABA) for spatial gene expression profiles that 

segmented the hippocampal field CA1 along its longitudinal axis. Nine of the genes that 

segmented the CA1 field had concordant expression patterns in the lateral septal nucleus, 



 
109 

apparently reflecting the patterns of projections between the respective dorsal and ventral 

aspects of the two regions. Dong et al. (2009) were able to interpret the CA1 segmentation 

from the perspective of brain function and connectivity. They noted that the ventral half is 

linked to goal-oriented and autonomic response while the dorsal half plays roles in 

navigation.  

A limitation of previous studies integrating gene expression and connectivity is the challenge 

of interpreting the patterns observed in terms of other parameters such as cellular 

composition of different brain regions. In the current chapter, we extend our earlier work, 

starting with a directed search for expression patterns of interest. We hypothesized that 

expression patterns that strongly distinguish brain regions from each other might be 

functionally relevant and potentially related to connectivity. We were specifically interested 

in gene pairs with expression patterns showing strong negative correlations across multiple 

brain regions. We then use connectivity data as well as information on cell-type-specific gene 

expression to further dissect and ascribe biological meaning to the patterns we identified. In 

addition to identifying a novel pattern of gene expression in the mouse brain, our analysis 

serves as a demonstration of how a complex gene expression pattern can be dissected using 

multiple data types including connectivity. 
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5.2 Materials and Methods 

5.2.1 Neuroanatomical connectivity data 

For neuroanatomical connectivity knowledge, we used the Brain Architecture Management 

system (BAMS). BAMS contains extensive information about neural circuitry curated from 

neuroanatomical atlases and tract tracing experiments (Bota et al., 2005;Bota and Swanson, 

2010). The version of the BAMS database we use contains 7,308 structural connections 

between 961 rat brain regions and is accessible via bulk download 

(http://brancusi.usc.edu/bkms/xml/swanson-98.xml). Instead of parsing the original XML we 

used a converted semantic web version created by John Barkley 

(http://sw.neurocommons.org/2007/kb-sources/bams-from-swanson-98-4-23-07.owl). The 

BAMS system stores information on projection strength, number of reports, report citations 

and absence of connections but it is not available in the database version we obtained. 

However, directions of the neuroanatomical connections are known, allowing splitting of our 

analysis between incoming and outgoing connection profiles. 

The BAMS curators comprehensively studied the bed nuclei of the stria terminalis (BNST) 

and indicate that its connection matrix is considered complete (Bota and Swanson, 2010). We 

were concerned that this unusually well-studied region would bias our results, as it has more 

known connections than the other regions (we considered regions that lack a documented 

connection to be unconnected). For example, it has over seven times the average number of 

outgoing connections. To reduce this bias in the dataset, we removed connection 
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information for the BNST and its subparts. We do not suspect the quality of these 

connections but wished to prevent one well-characterized region from being overrepresented. 

We believe the complete connectivity matrix of the BNST will be valuable for future focused 

analysis. 

5.2.2 Gene expression data 

We employed the expression energy quantifications of the ABA images. For each image the 

expression energy of every voxel is defined as the product of expression area and expression 

intensity (Ng et al., 2009). Pixels are averaged within voxels and brain regions to provide a 

single expression energy value for each brain region. To reduce computation time and filter 

genes of low and constant expression values we restricted our analysis to genes for which 

ABA has expression patterns in coronal sections. This set of 4261 image series (3976 genes) 

were assayed by ABA in the coronal plane because they showed marked regional expression 

patterns in the sagittal plane (Ng et al., 2009). Most “housekeeping” genes which tend to 

have widespread expression are not present in the set. Some genes were represented by more 

than one imageseries (that is, there are replicate data sets in the Allen Atlas), which were kept 

separate in our analysis. To create a single expression profile for a set of genes we averaged 

the expression values per region. 

For analysis of expression data alone, we used 150 non-overlapping ABA regions. When 

connectivity data was used the regions were limited to those for which we had connectivity 

data: 112 regions for outgoing, 141 for incoming connectivity and 142 resulting from joining 
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the two.  

5.2.3 Neuroanatomical matching and selecting 

The names of brain regions are formalized in hierarchies both in BAMS (Swanson, 

1999;Bota and Swanson, 2008) and the ABA data (Dong, 2007), but the schemes are not 

identical. In addition, the BAMS dataset contains information at a finer neuroanatomical 

resolution than ABA. To maximize the use of connectivity information, we created 

connection profiles of coarser scale by using an up-propagation procedure. Up-propagation 

maps the brain region to its parent region until the desired level in the neuroanatomical 

hierarchy is reached. This procedure was applied to all connection pairs in BAMS. For 

example, a connection between region A and region B will be expanded to the set of all 

possible connections between the neuroanatomical parents of both region A and region B. To 

prevent enrichment of up-propagated connections we kept regions that had zero connections 

to the ABA mapped regions. 

Although the two datasets are at the brain region level, the organisms differ. The rat brain 

with a wealth of neuroanatomical information is bigger and for some regions like the 

cerebellum, more complex. In contrast, genetics and molecular research is more commonly 

performed on the smaller mouse brain. For this work we considered neuroanatomical 

differences between the mouse and rat to be minor at the level of granularity we used 

(Swanson, 2003); for example, the Paxinos mouse atlas was guided by several rat brain 

atlases (Paxinos and Franklin, 2008), and brain regions names largely coincide between the 

two. These common names allowed quick lexical mapping for most of the regions. To 
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join the two data types we mapped nomenclatures manually. We used primarily a region’s 

name, then secondarily its parent region and spatial borders to pair brain regions. The 

mappings for the Allen Brain regions are provided in Appendix B. 

The neuroanatomical atlases from ABA (Dong, 2007) and BAMS (Swanson, 2004) provide 

information on which brain regions are neuroanatomical children or parts of others. These 

relations create correlations in the gene expression profiles and the connectivity data (due to 

up-propagation). To negate this effect we used only 149 of 207 Allen brain regions for the 

primary region list. These remaining regions have no neuroanatomical subparts in the ABA 

dataset. 

The Allen Atlas provides a differing grouping of regions than the BAMS hierarchy. The 

superior colliculus is one example. The ABA divides its regions into motor and sensory 

areas, while the BAMS atlas groups the regions into optic, gray and white layers. Differences 

were resolved by creating “virtual regions” in the BAMS atlas space that contained the 

corresponding subregions of the Allen Atlas. The connectivity profiles of the mapped regions 

were joined using a logical OR operation to provide the virtual region's BAMS connections. 

For example the superior colliculus sensory related virtual region has all of the BAMS 

connections of the zonal, optic and superficial gray layers. In addition to the superior 

colliculus, virtual regions were created for the pallidum medial region and nucleus ambiguus. 

After mapping of brain regions, the ABA data is an x (number of regions in the ABA) by y 

(number of genes) matrix, and the BAMS connectivity data is a square w (number of regions 

in BAMS) by w (region) matrix (Figure 13). The two matrices are not directly 



 
114 

comparable because the number of regions in BAMS is greater than those in ABA (w>x). 

Rather than discarding all information from regions which lack expression information, we 

use the x by w submatrix of the BAMS data. Thus each of the x regions has a y-dimensional 

expression vector and a w-dimensional connectivity vector. This maximizes the use of 

connection information, but we note that the connectivity profiles include information from 

regions for which we lack expression information. 

5.2.4 Statistical analysis 

To compare expression energy to spatial location and connectivity degree we compute 

Spearman rank correlation coefficients (ρ). Statistical significance was established by 

resampling 1,000 gene sets of the same size to generate empirical null distributions. This 

provides the probability that an equally sized gene set randomly chosen from the set of all 

genes scores a higher correlation. We used linear regression for computing partial correlation 

coefficients. Principal component analysis was performed after rescaling the gene profiles to 

a common mean and variance. We employed the complete-linkage agglomeration method for 

hierarchical clustering with the Euclidean distance function. 

5.2.5 Cell-type enriched gene lists 

Cell type enriched gene sets were extracted from the “The Transcriptome Database for 

Astrocytes, Neurons, and Oligodendrocytes” (Cahoy et al., 2008). The database contains 

gene expression profiles of cell-type purified mature mouse forebrain samples. Mouse gene 

symbols were extracted from supplementary tables S4-S6 of Cahoy et al. (2008) . These 
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tables provide lists of astrocyte, neuron, and oligodendrocyte enriched genes. After removing 

genes that are not in the ABA coronal gene set, 716 astrocyte, 831 neuron and 571 

oligodendrocyte enriched genes remain.  

5.2.6 Gene Ontology enrichment 

We used the ErmineJ software to extract overrepresented Gene Ontology (GO) groups 

(Ashburner et al., 2000;Gillis et al., 2010). The set of 3976 coronal genes formed the 

background gene list for the over-representation analysis. GO groups were limited to the 

biological process division and required 5-300 annotated genes. 

5.2.7 Ortholog assignment 

For each gene we extracted its homologous sequences from the HomoloGene database (build 

version 64) (Wheeler et al., 2007). HomoloGene groups were used to convert the mouse gene 

identifiers to genes from S. cerevisiae (yeast), C. elegans (worm), and D. melanogaster (fly). 

5.3 Results 

To identify genes showing strong negatively correlated expression patterns with other genes, 

we ranked all pairs of genes in the data set by their Spearman correlations across 150 ABA 

brain regions, and considered pairs with the strongest negative correlations. By filtering 

gene-gene correlations at a maximum Spearman’s rank correlation coefficient (ρ) of -0.72 we 

selected the 456 most anti-correlated gene pairs. We choose this stringent but arbitrary 

threshold because we wanted a small list that could be manually examined for interesting 



 
116 

relationships, though our findings proved to hold for other reasonable selection thresholds.  

Our first observation was that this list of 456 pairs includes only 102 different genes, 

indicating there would be strong positive correlations present within this set, rather than 

numerous distinct patterns. Hierarchical clustering and visualization of the expression 

patterns of these genes (Figure 7) shows that the original 456 inversely correlated patterns are 

essentially one inverse relationship corresponding to two gene expression profiles. 

Visualization of all gene-gene correlations within the set demonstrates this relationship with 

a clear bimodal distribution with peaks at -0.6 and 0.7 (Figure 8). To further examine the 

inverse relationship we use clustering to divide the data into two sets: pattern NE (43 image 

series, 40 genes, Table 14) and pattern OE (68 image series, 62 genes, Table 15). This choice 

of names will be clarified later in our results. Figure 9 shows expression energy images in the 

sagittal plane for a pattern NE (CamK2a) and OE gene (S100b). The average profiles of these 

patterns are strongly negatively correlated (Spearman’s rank correlation (ρ) = -0.88). Given 

the strength of this pattern, although it only includes a small fraction of the genes studied, we 

asked if it might correspond to patterns uncovered by principal component analysis (PCA). 

We found the pattern NE and OE genes are strongly separable in PC2 (Figure 10) and the 

mean loadings in PC1 differ significantly (p-value < 0.001). Thus these patterns correspond 

to major trends in the data. 

Inspection of the gene names and symbols suggested that pattern NE was enriched for 

neuron-associated genes such as calcium/calmodulin-dependent protein kinase II alpha 

(Camk2a) (Ouimet et al., 1984) and calbindin-28K (Calb1) (Pfeiffer et al., 1989). In contrast, 
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several glial cell markers appear in the pattern OE list: carbonic anhydrase II (Car2) 

(Ghandour et al., 1979;Ghandour et al., 1980), S100b (Ghandour et al., 1981;Rosengren et 

al., 1986) and glutamine synthetase (Glul) (Wu et al., 2005). Also, one neuron marker, 

neurofilament high molecular weight (Nefh) appears in the pattern OE list (Letournel et al., 

2006). We note that none of the ABA regions are white matter tracts (most are small nuclei), 

so the pattern does not reflect a simple contrast between grey and white matter.  

Gene Ontology (GO) enrichment analysis allowed us to objectively quantify these trends. 

The GO provides extensive annotations of genes that allow testing for enrichment of specific 

functions, subcellular localizations or processes. By looking for annotations overrepresented 

in patterns NE or OE we find several interesting groups, though none reach significance after 

multiple test correction. For pattern NE the top ranked groups include “regulation of 

transport” (GO:0051049, p-value=8.3×10-5) and “regulation of neurotransmitter secretion” 

(GO:0046928, p-value=0.0035). Pattern OE is enriched for groups such as “potassium ion 

transport” (GO:0006813, p-value=0.0047), “cellular ion homeostasis” (GO:0006873, p-

value=0.013) and “regulation of membrane potential” (GO:0042391, p-value=0.0015).  

By linking homologous sequences we quantified how evolutionary recent the pattern NE and 

OE genes are. Surprisingly, only three of the pattern NE genes had a homolog in yeast, worm 

or fly genomes (7.5%, p-value=0.00023, hypergeometric test). The pattern OE group had 23 

(37%, p=0.067) of earlier origin, slightly more than the faction seen in the entire coronal 

gene set (32%). Both sets had about the expected number of detected orthologs in the human 

genome.  
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We used a third bioinformatics approach to test whether these two patterns might reflect 

differences in cellular populations, using the Transcriptome Database for Astrocytes, 

Neurons, and Oligodendrocytes (Cahoy et al., 2008). Figure 7 and Figure 11 show that 

pattern NE is enriched for genes identified by Cahoy et al. as being neuron enriched (p-

value=0.0016, hypergeometric test). In contrast, pattern OE has half the number of expected 

number of neuron-enriched genes (p-value=0.015). For the Cahoy oligodendrocyte genes the 

opposite pattern appears, with 29 genes in pattern OE (p-value<0.0001). Genes from the 

Cahoy “astrocyte” gene set were represented approximately equally in both sets at the 

expected proportions. Similar results were obtained by using the lists of oligodendrocyte and 

neuron enriched gene sets from the ABA (Lein et al., 2007). These strong cell type signals 

led us to label the two gene sets as neuron enriched (NE) and oligodendrocyte enriched (OE). 

The results presented thus far are limited to information obtained at the gene level. While the 

two profiles seem to have a relationship to cell type, we wanted to test if they provide 

information about higher-level brain structure. Our next analysis stage incorporated 

information on spatial locations within the brain and connectivity. 

We first summarized patterns NE and OE as the average of the expression patterns of the 

gene sets. While pattern OE has slightly lower expression levels on average, the two patterns 

have similar variance. This expression pattern across regions was found to be significantly 

correlated with the anterior-posterior axis: regions that have high pattern OE expression tend 

to be at the posterior end of the brain (Spearman’s ρ=0.81), with the opposite true of pattern 

NE (ρ = -0.76). Regions in the posterior end of the brain had fewer connections (ρ = 0.55). 
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Accordingly we found that the expression patterns correlated with the number of connections 

the regions have. For incoming connectivity degree the Spearman correlations are 0.49 and -

0.54 for pattern NE and OE respectively (141 brain regions). For the 112 regions that have at 

least one report of an outgoing connection the correlations are 0.32 and -0.44 for pattern NE 

and OE respectively. Joining the incoming and outgoing connections provides 142 brain 

regions with correlations of 0.48 (pattern NE) and -0.59 (pattern OE). This means that higher 

expression of pattern NE is found in “hub-like” regions with many connections, and high 

expression of pattern OE is observed in “relay-like” regions with few connections. The 

relationship is shown in Figure 12 with regions of high connectivity degree with low pattern 

OE expression and high pattern NE expression. All of the above correlations are significant 

at p < 0.001. It is important to note that the entire coronal gene set has substantial 

correlations of expression levels to anterior-posterior axis (ρ = 0.29), incoming (ρ = -0.19), 

outgoing connection degree (ρ = -0.25). This spatial correlation reflects a bias in the coronal 

set gene selection, which favoured genes expressed in the cortex and hippocampus (Ng et al., 

2009). Against this baseline, the anterior-posterior expression gradient of the pattern NE and 

pattern OE genes is still very high. 

Because of the known relationship between spatial location in the brain and patterns of 

connectivity, we sought to correct for this in our analysis of the NE and OE patterns, using 

partial correlations. We found that the correlations with incoming connectivity degree are 

still significant after correction for anterior-posterior location, with correlations of 0.20 

(pattern NE) and -0.30 (pattern OE). Similarly, the outgoing degree correlations were still 

significant, though reduced in magnitude: 0.07 (pattern NE, p-value=0.001) and -0.30 
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(pattern OE). Correlations to the combined degree across 142 regions are 0.16 (pattern NE) 

and -0.35 (pattern OE; all of the above correlations are significant at p < 0.001 unless 

otherwise noted). A similar analysis carried out using the full Cahoy “neuron” and 

“oligodendrocyte” lists show similar trends, albeit much weaker than patterns NE and OE. 

Expression of the Cahoy astrocyte-enriched genes is not significantly correlated with 

connectivity degree or anterior-posterior axis (p > 0.1).  

Table 14 Pattern NE gene symbols and names 

Gene Symbol  Name 
6720401G13Rik RIKEN cDNA 6720401G13 gene 
Calb1 calbindin-28K 
Camk2a calcium/calmodulin-dependent protein kinase II alpha 
Camkv CaM kinase-like vesicle-associated 
Cenpf centromere protein F 
Cox6a2 cytochrome c oxidase, subunit VI a, polypeptide 2 
Cpne2 copine II 
Cpne7 copine VII 
Cyln2 cytoplasmic linker 2 
Dusp6 dual specificity phosphatase 6 
E2f1 E2F transcription factor 1 
Egr3 early growth response 3 
Fos FBJ osteosarcoma oncogene 
Gria1 glutamate receptor, ionotropic, AMPA1 (alpha 1) 
Gria2 glutamate receptor, ionotropic, AMPA2 (alpha 2) 
Grik5 glutamate receptor, ionotropic, kainate 5 (gamma 2) 
Heatr5b HEAT repeat containing 5B 
Hpcal4 hippocalcin-like 4 
Itm2c integral membrane protein 2C 
Kalrn kalirin, RhoGEF kinase 
Ly6h lymphocyte antigen 6 complex, locus H 
Mef2c myocyte enhancer factor 2C 
Mef2d myocyte enhancer factor 2D 
Nnat neuronatin 
Ntrk2 neurotrophic tyrosine kinase, receptor, type 2 

Ogt 
O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-
acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase) 
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Gene Symbol  Name 

Pdgfra platelet derived growth factor receptor, alpha polypeptide 
Pea15 phosphoprotein enriched in astrocytes 15 
Pkia protein kinase inhibitor, alpha 
Ppap2b phosphatidic acid phosphatase type 2B 
Prkcc protein kinase C, gamma 
Psg16 pregnancy specific glycoprotein 16 
Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 
Rtn4rl1 reticulon 4 receptor-like 1 
Shisa9 shisa homolog 9 (Xenopus laevis) 
Sirpa signal-regulatory protein alpha 
Slc27a1 solute carrier family 27 (fatty acid transporter), member 1 
Tiam1 T-cell lymphoma invasion and metastasis 1 
Tnrc4 trinucleotide repeat containing 4 
Unc84a unc-84 homolog A (C. elegans) 
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Table 15 Pattern OE gene symbols and names 

Gene Symbol  Name 
3632451O06Rik RIKEN cDNA 3632451O06 gene 
Acyp2 acylphosphatase 2, muscle type 
Adssl1 adenylosuccinate synthetase like 1 
Ankrd34b ankyrin repeat domain 34B 
Arhgef10 Rho guanine nucleotide exchange factor (GEF) 10 
Armc2 armadillo repeat containing 2 
Aspa aspartoacylase (aminoacylase) 2 
B630019K06Rik RIKEN cDNA B630019K06 gene 
Bcat1 branched chain aminotransferase 1, cytosolic 
Cables2 Cdk5 and Abl enzyme substrate 2 
Car2 carbonic anhydrase 2 
Cldn11 claudin 11 
Cnp1 cyclic nucleotide phosphodiesterase 1 
Cnp1 cyclic nucleotide phosphodiesterase 1 
Cryab crystallin, alpha B 
Cyp27a1 cytochrome P450, family 27, subfamily a, polypeptide 1 
Daam2 dishevelled associated activator of morphogenesis 2 
Ddt D-dopachrome tautomerase 
Dip2a DIP2 disco-interacting protein 2 homolog A (Drosophila) 
Elovl5 ELOVL family member 5, elongation of long chain fatty acids (yeast) 
Endod1 endonuclease domain containing 1 
Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2 
Fa2h fatty acid 2-hydroxylase 
Fts fused toes 
Galnt6 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 
Gatm glycine amidinotransferase (L-arginine:glycine amidinotransferase) 
Glra1 glycine receptor, alpha 1 subunit 
Glul glutamate-ammonia ligase (glutamine synthetase) 
Gprc5b G protein-coupled receptor, family C, group 5, member B 
Hcn2 hyperpolarization-activated, cyclic nucleotide-gated K+ 2 
Kcng4 potassium voltage-gated channel, subfamily G, member 4 
Kctd9 potassium channel tetramerisation domain containing 9 
Klk6 kallikrein 6 
Lgi3 leucine-rich repeat LGI family, member 3 
Limk1 LIM-domain containing, protein kinase 
Map2k6 mitogen activated protein kinase kinase 6 
Mmel1 membrane metallo-endopeptidase-like 1 
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Gene Symbol  Name 

Nefh neurofilament, heavy polypeptide 
Nifun NifU-like N-terminal domain containing 
Nrg1 neuregulin 1 
Pacs2 phosphofurin acidic cluster sorting protein 2 
Plekhb1 pleckstrin homology domain containing, family B (evectins) member 1 
Plp1 proteolipid protein (myelin) 1 
Pnkd paroxysmal nonkinesiogenic dyskinesia 
Prune2 prune homolog 2 (Drosophila) 
Pvalb parvalbumin 
Qdpr quininoid dihydropteridine reductase 
Rnd2 Rho family GTPase 2 
Rnf13 ring finger protein 13 
S100a16 S100 calcium binding protein A16 
S100b S100 protein, beta polypeptide, neural 
Scn1a sodium channel, voltage-gated, type I, alpha 
Sema7a sema domain, immunoglobulin domain (Ig), and GPI membrane anchor, (semaphorin) 7A 
Serpinb1c serine (or cysteine) peptidase inhibitor, clade B, member 1c 
Sgpp2 sphingosine-1-phosphate phosphotase 2 
Slc12a2 solute carrier family 12, member 2 
Slc39a14 solute carrier family 39 (zinc transporter), member 14 
Slc44a1 solute carrier family 44, member 1 
Slc4a2 solute carrier family 4 (anion exchanger), member 2 
Slc6a5 solute carrier family 6 (neurotransmitter transporter, glycine), member 5 
Syt2 synaptotagmin II 
Vamp1 vesicle-associated membrane protein 1 
Zfyve9 zinc finger, FYVE domain containing 9 
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Figure 7 Expression patterns of genes involved in the top 456 negative expression correlations 

Normalized expression is colour coded, ranging from blue (low) to yellow (high) and in 

white for missing values. Genes mentioned in the chapter are labelled. Gene membership in 

the transcriptome database for astrocytes (green), neurons (red), and oligodendrocytes (blue) 

is marked (Cahoy et al., 2008). The dendrogram shows the split between pattern NE and 

pattern OE. Brain regions are coloured as orange for endbrain, cyan for hindbrain, purple for 

interbrain and grey for midbrain. Expression data for each gene was normalized to mean zero 
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and variance one for contrast. 

 

Figure 8 Density plot of expression correlations within pattern NE and OE genes 
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Figure 9 Sagittal expression energy images of a pattern NE and OE gene 

CamK2a displays pattern NE (image series 79360274) and S100b shows pattern OE (image 

series 924). Images were downloaded from the ABA web site (http://www.brain-map.org). 

While all expression information for the analysis is from coronal assays, we selected a 
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sagittal view to better show interregional variability in a single section. 

 

Figure 10 Principal components analysis. Gene loadings for pattern NE (red circles), pattern OE (blue 

triangles) and all other genes (small black circles) are plotted 

The first two principal components, PC1 (16.4 % of the variance) and PC2 (11.8 % of the 

variance) separate the two patterns. 
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Figure 11 Fraction of cell type enriched genes appearing in the two patterns 

P-values below 0.05 are marked by * and below 0.005 with **. Neuron enriched genes are 

overrepresented in the NE list and underrepresented in the OE list. Oligodendrocyte genes 

are overrepresented in the OE list but not significantly underrepresented in the NE list. 
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Figure 12 Relationships between degree and expression patterns 

Connectivity degree is plotted against average pattern NE (red circles) and OE (blue 

triangles) expression levels for each brain region. Degree for the 142 regions is the sum of 

both incoming and outgoing connections. 

5.4 Discussion 

In this chapter we have shown how a complex expression pattern in the rodent brain can be 

dissected in terms of genes, cell types, spatial location and connectivity. To our knowledge, 

the expression patterns we identified have not been previously described. However, previous 
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work has uncovered possible links between neuroanatomy, gene expression and cell type. 

Using a voxel-based PCA on a subset of the ABA data, Bohland et al. noted that the two 

most separable structures, the striatum and cerebellum, contain a relatively large number of 

GABAergic inhibitory neurons (Bohland et al., 2009b). There are a number of differences 

between the analysis of Bohland et al. and ours, including the use of voxels vs. brain regions 

and the choice of genes analyzed, so it is not easy to compare them (indeed it appears the 

components in the two PCAs are not equivalent), but it is likely that at least some of the 

highly weighted genes in the pattern identified by Bohland et al. are genes in the pattern we 

found. A second study has examined a link between expression and connectivity for two 

specific brain regions (Ng et al., 2009). Using the Anatomic Gene Expression Atlas (AGEA) 

Ng et al. visualized correlated expression profiles of the parafascicular nucleus and the 

ventral posterior complex. The ventral posterior complex is a “relay nucleus” and has fewer 

connections than the hub-like parafascicular nucleus. The AGEA visualization demonstrated 

that the regions have diverse expression correlation maps that might reflect their diverse 

function (Ng et al., 2009). In agreement with this result, in our analysis the highly-connected 

parafascicular nucleus has high expression of the neuron-enriched pattern NE compared to 

the ventral posterior complex. For the oligodendrocyte enriched pattern OE the opposite is 

true. Our results are consistent with the idea that degrees of connectivity might be reflected in 

expression pattern.  

Patterns NE and OE are suggestive of differences in the relative proportion of neuronal and 

glial cell populations in the brain regions in which they are expressed. We further 

hypothesize that the correlations these patterns have with connectivity might be explained in 
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terms of highly-connected regions having more neurons, and concomitantly fewer 

oligodendrocytes. However, we could not rigorously test these ideas here because 

measurements of glia-to-neuron ratios across many brain structures do not appear to be 

readily available. More detail about the nature of connectivity supported by the pattern NE 

and OE regions could also provide insight; in particular the connectivity data we used does 

not detail if the connections are highly myelinated, inhibitory or excitatory. We also found 

that the pattern NE genes have a more recent evolutionary origin, while the pattern OE genes 

tend to be more ancient. This agrees with past work that found evolutionary expansion and 

regional variation of synaptic genes that are expressed primarily in neurons (Pocklington et 

al., 2006;Emes et al., 2008).  

We note that the connectivity data we employ does not form a complete connectome. The 

connectivity data we use lacks information about connections that have been shown not to 

exist. In addition, many brain region pairs have not been studied in a curated tract tracing 

experiment and may or may not be connected. Of these three cases only one (connected but 

not known) would increase connectivity degree of a region. Large increases in connectivity 

degree will affect our results but small changes in connectivity degree are unlikely to change 

the correlations because we measure Spearman's rank correlation coefficient. However, we 

expect additional connectivity data for regions with few reported connections will allow 

deeper analysis. Further, use of the BAMS connectivity data requires pooling of the 

underlying voxel based gene expression data into brain regions. This limits our results to less 

than half of the brain by volume but prevents large regions from dominating the analysis. A 

larger analysis at the voxel level may result in more robust inverse correlations. However, 
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associations to connection degree could not be performed because voxel level connectivity 

data is limited for mouse (Moldrich et al., 2010). 

Our analysis required the integration of several complex data sets, illustrating several 

methodological problems that hinder such efforts. Mapping between anatomical atlases 

presents a significant challenge in linking transcriptomics to connectomics. While genomics 

has mostly sorted out how to reference specific genes (Gerstein et al., 2007), it is much 

harder to identify and delineate a specific brain region (Bohland et al., 2009a;Hawrylycz et 

al., 2011). In C. elegans the stable number of neurons allows each one to be given a unique 

identifier, but in more complex organisms even within a specific atlas it can be hard to map 

brain regions across atlases. For example, in the BAMS database we found differences 

between the 1998 atlas and 2004 rat brain atlases (Swanson, 1999;, 2004). Although 

mappings between the two atlases are formalized and accessible, only 60% of the regions 

have mappings (Swanson and Bota, 2010). CoCoMac, a tract tracing database of Macaque 

connectivity has many conflicting atlases and like BAMS it provides information on equal, 

overlapping, and enclosing brain regions (Stephan et al., 2000;Kotter, 2004;Kotter and 

Wanke, 2005). Using CoCoMac, Modha and Singh were able to merge the 379 parcellation 

schemes and over 16,000 mapping relations to create the largest wiring diagram for the 

Macaque brain (Modha and Singh, 2010). These formalized brain maps will play an 

important role in future multimodal analyses of the nervous system. Overall, limitations in 

our ability to interpret these results stress the need for highly detailed neuroinformatics 

databases of many modalities (Akil et al., 2011). 



 
133 

In conclusion, we identified a novel expression pattern in the rodent brain that correlates with 

patterns of connectivity and measures of cellular composition. Future work will be aimed at 

further dissecting these and other patterns, including the potential relationships they may 

have with behavioural mutations in mice or neuropsychiatric disorders in humans. 



 
134 

 

Chapter  6: Relationships between gene expression and brain wiring in the 

adult rodent brain5 

6.1 Introduction 

In the last chapter we studied relationships between gene expression, cell types and number 

of connections. This chapter extends the analysis of gene expression to examine which 

connections the regions make. These “macroconnections” between neuroanatomically-

defined brain regions are thought to number between 25,000-100,000 in the mammalian 

brain (Bota et al., 2003), forming a complex network. Knowledge of the “connectome” is 

used to diagnose neurological disorders such as ischemic stroke, to interpret brain imaging 

results and to computationally model the brain. There is also growing evidence of 

connectivity abnormalities in disorders such as autism and schizophrenia (Lawrie et al., 

2002;Geschwind and Levitt, 2007;Just et al., 2007).  

As reviewed in Chapter 5, the most comprehensive studies of connectivity have been done in 

the worm Caenorhabditis  elegans (at the level of single neurons) and the macaque monkey 

                                                 

5 A version of this chapter has been published. French L, Pavlidis P (2011) Relationships between Gene 

Expression and Brain Wiring in the Adult Rodent Brain. PLoS Computational Biology 7(1): e1001049. 

doi:10.1371/journal.pcbi.1001049 
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(White et al., 1986;Kotter, 2004). Recent work has begun plumbing the properties of these 

networks, examining node degree distribution (Hugues and Olivier, 2007), network motifs 

(Sporns and Kotter, 2004), and modularity (Hilgetag and Kaiser, 2004). It has been shown 

that anatomical neighbours tend to be connected (Scannell et al., 1995), and there is evidence 

that wiring cost partially explains network structure (Costa Lda et al., 2007;Perez-Escudero 

and de Polavieja, 2007). There is also increasing interest in the integration of neuronal 

connectivity and information about genes. This is in part driven by the fact that many genes 

show spatially-restricted or varying expression in the nervous system, but in many cases the 

reasons for the expression patterns are not clear (Su et al., 2002;Zapala et al., 2005;Lein et 

al., 2007;Bohland et al., 2009b). Please refer to Section 5.1 for review of literature describing 

relationships between gene expression and connectivity. 

In this chapter we examine gene expression patterns and macroconnectivity in the adult 

rodent brain, using data from the Allen Brain Atlas (Lein et al., 2007) and the Brain 

Architecture Management System (Bota et al., 2005;Bota and Swanson, 2008). Unlike 

Chapter 5 that studied the number of connections, we analyze gene expression patterns in the 

context of specific connections. Our results suggest that in the mammalian brain, as in 

Caenorhabditis  elegans, there is a correlation between gene expression and connectivity, 

and the relevant genes are enriched for involvement in neuronal development and axon 

guidance.  
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6.2 Materials and Methods 

Data and methods were based on those used in Chapter 5. Specifically, the connectivity data 

is exactly the same while the gene expression gene set has expanded from 3976 regionally 

enriched genes to a more complete set of 17,530. 

6.2.1 Neuroanatomical connectivity data 

For neuroanatomical connectivity knowledge, we used the Brain Architecture Management 

system (BAMS). BAMS contains extensive information about neural circuitry curated from 

neuroanatomical atlases and tract tracing experiments (Bota et al., 2005;Bota and Swanson, 

2010). The version of the BAMS database we use contains 7,308 structural connections 

between 961 rat brain regions and is accessible via bulk download 

(http://brancusi.usc.edu/bkms/xml/swanson-98.xml). Instead of parsing the original XML we 

used a converted semantic web version created by John Barkley 

(http://sw.neurocommons.org/2007/kb-sources/bams-from-swanson-98-4-23-07.owl). The 

BAMS system stores information on projection strength, number of reports, report citations 

and absence of connections but it is not available in the database version we obtained. 

However, directions of the neuroanatomical connections are known, allowing splitting of our 

analysis between incoming and outgoing connection profiles. 

The BAMS curators comprehensively studied the bed nuclei of the stria terminalis (BNST) 
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and indicate that its connection matrix is considered complete (Bota and Swanson, 2010). We 

were concerned that this unusually well-studied region would bias our results, as it has more 

known connections than the other regions (we considered regions that lack a documented 

connection to be unconnected). For example, it has over seven times the average number of 

outgoing connections. To reduce this bias in the dataset, we removed connection information 

for the BNST and its subparts. We do not suspect the quality of these connections but wished 

to prevent one well-characterized region from being overrepresented. We believe the 

complete connectivity matrix of the BNST will be valuable for future focused analysis. 

6.2.2 Gene expression data 

We considered using gene expression profiles from SAGE and microarray experiments, but 

spatial resolution was too low. Therefore we used high-resolution colourmetric in situ 

hybridization (ISH) measurements produced by the ABA (Lein et al., 2007). The complete 

expression matrix from the ABA (kindly provided by the Allen Institute for Brain Research) 

consists of 5,380,137 entries formed by 25,991 ISH image series and 207 brain regions. In 

many cases a gene was assayed more than once, using a different probe or plane of 

sectioning. The ABA provides values for expression “energy”, “level” and “density” across a 

region. Because level and density had a large fraction of data missing (~40%) we choose to 

use expression energy (3% missing). Expression energy is defined as the sum of expressing 

pixel intensities normalized by the number of pixels in a region. The natural logarithm of 

expression energy values formed our gene expression matrix. Genes that do not have 

detectable expression in the ABA were removed. The list of non-expressing genes list was 
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provided in Lein et al. as supplementary data (Lein et al., 2007). After removing the non-

expressing genes the final gene expression profiles contain 22,771 image series representing 

17,530 genes. 

6.2.3 Neuroanatomical matching and selecting 

The names of brain regions are formalized in hierarchies both in BAMS (Swanson, 

1999;Bota and Swanson, 2008) and the ABA data (Dong, 2007), but the schemes are not 

identical. In addition, the BAMS dataset contains information at a finer neuroanatomical 

resolution than ABA. To maximize the use of connectivity information, we created 

connection profiles of coarser scale by using an up-propagation procedure. Up-propagation 

maps the brain region to its parent region until the desired level in the neuroanatomical 

hierarchy is reached. This procedure was applied to all connection pairs in BAMS. For 

example, a connection between region A and region B will be expanded to the set of all 

possible connections between the neuroanatomical parents of both region A and region B. To 

prevent enrichment of up-propagated connections we kept regions that had zero connections 

to the ABA mapped regions. 

Although the two datasets are at the brain region level, the organisms differ. The rat brain 

with a wealth of neuroanatomical information is bigger and for some regions like the 

cerebellum, more complex. In contrast, genetics and molecular research is more commonly 

performed on the smaller mouse brain. For this work we considered neuroanatomical 

differences between the mouse and rat to be minor at the level of granularity we used 

(Swanson, 2003); for example, the Paxinos mouse atlas was guided by several rat brain 
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atlases (Paxinos and Franklin, 2008), and brain regions names largely coincide between the 

two. These common names allowed quick lexical mapping for most of the regions. To join 

the two data types we mapped nomenclatures manually. We used primarily a region’s name, 

then secondarily its parent region and spatial borders to pair brain regions. The mappings for 

the Allen Brain regions are provided in Appendix B. 

The neuroanatomical atlases from ABA (Dong, 2007) and BAMS (Swanson, 2004) provide 

information on which brain regions are neuroanatomical children or parts of others. These 

relations create correlations in the gene expression profiles and the connectivity data (due to 

up-propagation). To negate this effect we used only 149 of 207 Allen brain regions for the 

primary region list. These remaining regions have no neuroanatomical subparts in the ABA 

dataset. 

The Allen Atlas provides a differing grouping of regions than the BAMS hierarchy. The 

superior colliculus is one example. The ABA divides its regions into motor and sensory 

areas, while the BAMS atlas groups the regions into optic, gray and white layers. Differences 

were resolved by creating “virtual regions” in the BAMS atlas space that contained the 

corresponding subregions of the Allen Atlas. The connectivity profiles of the mapped regions 

were joined using a logical OR operation to provide the virtual region's BAMS connections. 

For example the superior colliculus sensory related virtual region has all of the BAMS 

connections of the zonal, optic and superficial gray layers. In addition to the superior 

colliculus, virtual regions were created for the pallidum medial region and nucleus ambiguus. 
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After mapping of brain regions, the ABA data is an x (number of regions in the ABA) by y 

(number of genes) matrix, and the BAMS connectivity data is a square w (number of regions 

in BAMS) by w (region) matrix (Figure 13). The two matrices are not directly comparable 

because the number of regions in BAMS is greater than those in ABA (w>x). Rather than 

discarding all information from regions which lack expression information, we use the x by w 

submatrix of the BAMS data. Thus each of the x regions has a y-dimensional expression 

vector and a w-dimensional connectivity vector. This maximizes the use of connection 

information, but we note that the connectivity profiles include information from regions for 

which we lack expression information. 

6.2.4 Statistical tests 

Correlations between gene expression values and connection degree were computed using 

Spearman's rank correlation coefficient (ρ). Connection degree for each brain region is the 

sum of its propagated incoming and outgoing connections. Significance of the correlation 

was corrected for multiple testing using the Bonferroni method. 

Mantel test: To test the hypothesis that there is a statistical relationship between 

connectivity and gene expression profiles, we apply the Mantel test (Mantel, 1967). The 

Mantel test is similar to methods previously applied to Caenorhabditis  elegans data 

(Kaufman et al., 2006). The Mantel test uses correlation at two levels to measure the 

relationship between the connectivity and gene expression profiles. First, Pearson correlation 

for the connectivity and gene expression profiles is computed for each pair of brain regions, 

resulting in a distance or similarity matrix (Figure 13). The upper triangles of the 
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similarity or distance matrices are then converted to linear vectors. The Pearson correlation 

of these two vectors is then computed to provide dependence between the connectivity and 

gene expression profiles for all brain region pairings. The statistical significance is 

determined from an empirical null distribution. We performed the same analytic procedures 

used on the ‘real’ data 1,000 or more times using shuffled data. To keep the distribution of 

the gene expression and connectivity values constant, we shuffle the brain region labels. 

Significance is determined by counting the number of shuffled datasets that score higher than 

the non-shuffled result. Mantel correlograms were created using the “mantel.correlog” R 

library developed by Pierre Legendre (http://www.bio.umontreal.ca/legendre/). 

Spatial and nomenclature distance matrices: To create the spatial distance profiles we 

computed Euclidean distance between a given region’s centroid and all others, using the 

Allen Brain Atlas programming interface (API). Further, we created another measure of brain 

region proximity using the neuroanatomical part-of hierarchy. Similarity between two 

regions in the nomenclature profile is simply the number of shared neuroanatomical parents. 

Using these distance matrices we then performed the Mantel test using the spatial, 

nomenclature and connectivity profiles. Further we applied the partial Mantel test to 

determine if the correlation between connectivity and expression is still significant after 

controlling for these proximity measures (Smouse et al., 1986;Legendre and Fortin, 

1989). Akin to performing a partial correlation, the partial Mantel test uses the residuals of a 

regression fitted to the distance matrix. 
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6.2.5 Gene ranking and enrichment 

We generate a ranked list of genes so that a gene’s rank is proportional to its contribution to 

the connectivity correlation score. To achieve this we reduce the number of genes in the 

expression profiles while maximizing the Mantel test correlation score. Since it is not 

feasible to compute all possible subsets of the image sets, we approximate an optimal 

candidate list of genes. Again, we take guidance from Kaufman et al. (Kaufman et al., 2006) 

and use a greedy backward elimination algorithm with the Mantel test. Each iteration of the 

algorithm involves ranking each gene by its contribution to the global correlation, removing 

the least informative gene, and repeating the test on the remainder. For the connectivity gene 

rankings we optimized a partial Mantel correlation that modelled proximity in the connection 

matrix but not the expression correlations (due to computational constraints). 

For functional enrichment analysis we employed the ErmineJ software to explore the roles of 

the candidate genes (Ashburner et al., 2000;Gillis et al., 2010). Overrepresentation analysis 

was used on the set of genes removed after correlation reached a maximum. To increase 

resolution of the genes, NCBI identifiers were used instead of gene symbols. Gene Ontology 

(GO) groups included in the analysis required 5 to 200 measured gene members and were 

limited to the biological process division. Benjamini-Hochberg false discovery rate was used 

to control for testing multiple GO groups (Benjamini and Hochberg, 1995). GO groups were 

sorted by corrected p-value to determine rankings. 
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6.3 Results 

We obtained data sets of macroconnectivity in the rat brain and gene expression data on 

mouse (see Materials and Methods and Figure 13). By carefully mapping brain regions 

across them, we identified 142 distinct (non-overlapping) brain regions in common (the 

“common” regions; see Materials and Methods). In total these regions account for nearly half 

of the volume of the brain. A notable omission is many regions of the neocortex, which is not 

sub-parcellated in our data set. 

The expression data set, which is filtered to remove unexpressed genes (see Materials and 

Methods) consists of the expression levels of 17,530 genes in the 142 regions. Because many 

genes were assayed more than once in the Allen Atlas (independent “image series” in their 

terminology), there are 22,771 rows in the expression data matrix. The connectivity data 

consists of the connectivity profiles of 942 regions with the 142 common regions (Figure 13). 

In this binary matrix, a value of 1 at index (i,j) indicates a connection exists between region i 

and region j. In most of our analyses, we considered the directionality of connectivity. Of the 

142 common regions, 112 have efferent (outgoing) connections, and 141 have afferent 

(incoming) connections; there are 5216 outgoing connections and 6110 incoming 

connections. Our results are based on various direct and indirect comparisons of the 

connectivity and expression data matrices or their corresponding correlation matrices. 

We began our study with some relatively simple analyses designed to explore the 

relationship between connectivity, gene expression and other parameters such as spatial 
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distribution and size of brain regions. 

We first tested the simple hypothesis that regions which are connected might have more 

similar expression patterns. This is in effect a more global search for patterns like the ones 

identified by Dong et al. (Dong et al.) (note that the CA1 subregions studied by Dong et al. 

were not represented in our data). To do this we compared the distribution of correlations in 

expression profiles for regions which are connected to the distribution for regions that are not 

connected (Figure 14). We found that on average, regions that are connected (ignoring 

directionality; 456 connected pairs among the 142 regions) have more similar expression 

profiles than the 8,187 non-connected region pairs (0.79±0.06 for connected; 0.76±0.06 for 

unconnected; p-value < 2.2×10-16, t-test). This is an initial indication that structural 

connectivity and gene expression are related. 

We found that the size of a region is significantly correlated with its connection degree 

(Spearman’s rank correlation, ρ =  0.22). We also noted that the more posterior the region, 

the fewer connections it has (ρ = 0.55). Regions containing motor neurons that project long 

axons to the spinal cord or muscles were found to have significantly fewer connections (they 

also tend to be in posterior locations; p-value = 1.32×10-6, Wilcoxon–Mann–Whitney test).  

While the above analyses suggest some interesting generic patterns relating connectivity to 

expression and other parameters, they are not able to expose more complex relationships. 

Like Kauffman et al. (Kaufman et al., 2006) and Varadan et al. (Varadan et al., 2006), we 

hypothesized that expression patterns carry information about specific neural connectivity 

patterns involving multiple regions. To test the global correlation between expression and 
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connectivity profiles we used the Mantel test. Unlike the test used above to examine the 

relationship between pair-wise connectivity and expression patterns (using the direct 

connectivity matrix), here we are asking if the similarity of the connectivity profiles of two 

regions is related to the similarity of the expression profiles of the two regions, regardless of 

whether those two regions are themselves connected. In this analysis we are comparing the 

correlation matrices for the expression data set and the connectivity data (Figure 13). 

A key finding is that, as in Caenorhabditis  elegans (at the level of individual neurons), we 

find that brain regions that have similar connectivity patterns tend to have similar patterns of 

gene expression. The Mantel correlation (“correlation of correlations”) between expression 

and incoming connectivity patterns (141 regions) is 0.248 (p-value < 0.0001). Using the 

outgoing connectivity profiles for 112 regions yielded a correlation of 0.226 (p-value < 

0.0001). This relationship holds separately for some of the five major neuroanatomical 

divisions in the Allen reference atlas. For outgoing profiles the Mantel test is significant at p-

value < 0.001 for the interbrain (r = 0.42), cerebrum (r = 0.30) and hindbrain (r = 0.21) 

divisions but not midbrain or cerebellar divisions. For incoming connectivity only the 

cerebrum (r = 0.29) and interbrain (r = 0.34) divisions have significant Mantel correlations 

with expression. Again, we note that unlike our observation of similar expression profiles 

among connected regions, here we are comparing connectivity patterns of regions, which 

does not require that the regions be connected to each other.  

One factor in this analysis is that regions which are near each other tend to be connected 

(Scannell et al., 1995) and also might be expected to have higher correlations in expression 
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patterns (because nearby regions will tend to be of the same embryonic origin, for example). 

This will tend to obscure the degree to which expression is specifically correlated with 

connectivity (and in turn obscure the degree to which expression is specifically correlated 

with location). We assessed the overall degree of spatial autocorrelation by performing the 

Mantel test as above, but comparing expression or connectivity to a matrix representing 

physical distance or, alternatively, nomenclature distance (relationships in the nested 

hierarchy of brain regions). As expected, the Mantel test results are all significant (Figure 

15). The connection data (r = 0.32; p-value < 0.001, Mantel test) appears to be less spatially 

autocorrelated than expression (r = 0.49; p-value < 0.001, Mantel test).  

We visualized the spatial correlation structure with Mantel correlograms (Figure 17). The 

Mantel correlogram displays the correlation between a data matrix and a matrix formed by 

grouping region pairs into distance classes. The correlogram will not be flat if it is possible to 

predict the distance class of a pair based on connectivity or expression correlations alone. As 

shown in Figure 17, there is indeed an effect of distance on the correlation between 

connectivity and expression. We therefore attempted to correct our analysis for the effect of 

spatial autocorrelation, using regression. We calculated regressions between the distance and 

expression or connectivity correlations for all region pairs. The residuals of these regressions 

provide proximity-controlled correlations. As shown in Figure 17, an improvement in the 

correction is obtained when using log-transformed distances.  

Using the log-transformed distance matrix from above, we can control for spatial 

autocorrelations by applying the partial Mantel test (Smouse et al., 1986;Legendre and 
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Fortin, 1989). The partial Mantel test applies the same regression mentioned above to both 

the connectivity and expression similarity matrices. Then a standard Mantel test is calculated 

between the two spatially-corrected residual matrices. We found that after correction, the 

partial Mantel test between connectivity and expression remains significant, indicating the 

relationship is not entirely due to neighbourhood effects. However as expected the 

correlations are lower. Using the spatial correction, the correlation between incoming 

connectivity and expression is 0.109 (p-value = 0.008, Mantel test), for outgoing it is 0.126 

(p-value = 0.001, Mantel test). As a further confirmation for the effectiveness of the 

correction based on spatial distance, we found that the correlation between nomenclature 

distance and expression or connectivity correlation drops substantially, though the 

correlations are still significant (Mantel correlation -0.089 for expression, p-value = 0.006; 

0.11 for connectivity, p-value < 0.001). This incomplete correction is perhaps not surprising 

as the nomenclature hierarchy reflects connectivity as well as spatial location. 

The above tests use expression information for all expressed genes in the Allen Brain Atlas, 

but we expect that many genes will not contribute any information on connectivity. To find 

the most informative genes, we applied a greedy algorithm that identifies subsets of the data 

which maximize the correlation between connectivity and expression patterns (see Materials 

and Methods). Figure 19 displays the change in the Mantel correlations as genes are 

iteratively removed. As shown in Table 16, this yields much smaller sets of genes (357 and 

433 for outgoing and incoming, respectively) and much higher Mantel correlations (0.56 and 

0.65 for outgoing and incoming connectivity respectively). As a control, we performed the 

same procedure on multiple shufflings of the expression data, yielding a maximum 
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correlation across ten runs of r = 0.42 and r = 0.51 for outgoing and incoming respectively. 

We also carried out the same procedure for the spatial correlations instead of connectivity, 

yielding a “spatial proximity” list of 401 genes and a Mantel correlation of 0.934. Eighty-five 

image series (89 genes) were found to overlap between the lists for incoming and outgoing 

connectivity, which is not surprising because there is a fair amount of reciprocal 

connectivity. Twenty-one image series (31 genes) overlap across the spatial proximity list 

and one or both of the connectivity gene sets, suggesting that for the most part, different 

genes provide information about connectivity and proximity. The top twenty image series for 

the rankings are provided in Table 17. If we consider just the top 20 genes, the Mantel 

correlations are 0.516 (incoming), 0.460 (outgoing) and 0.590 (proximity). As an additional 

control, we found that the correlations obtained for the optimized gene sets are robust to the 

completeness of the connectivity network (tested by, for example, randomly removing brain 

regions and recomputing the Mantel correlations). Thus, while the connectivity map of the 

rodent brain is incomplete, the correlations with expression appear robust.  

We next examined the expression patterns of the optimized gene lists in more detail. It was 

of interest to determine, for example, if all the genes had similar expression patterns, which 

would suggest a single overwhelming signal in the data. A hierarchical clustering and 

visualization of the expression patterns of the optimized gene sets suggested that the patterns 

are in fact diverse. This is supported by a comparison of the distributions of gene-gene 

correlations within the optimized outgoing list, which are on average slightly lower than the 

full data set (0.10±0.21 for top outgoing genes; 0.15±0.21 for all genes; p-value < 0.0001, t-

test, Figure 16). This suggests that many different gene expression patterns are contributing 
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to the overall correlation between connectivity and gene expression. 

Figure 20 shows the expression patterns for two genes that rank high in the “outgoing” gene 

list, overlaid on schematics of the connectivity data. In Figure 20A, we show the pattern for 

Pcp2 (Purkinje cell protein 2; Figure 20A). Although Pcp2’s function is unknown, it is 

almost exclusively expressed in the projection neurons of the cerebellar cortex (Purkinje 

cells). We did not expect this specific expression pattern to carry information about 

connectivity because no other regions express Pcp2. However, the connections of the 

cerebellar cortex are also unique and specific: of the 112 outgoing regions, 69 place the 

cerebellar cortex in the bottom tenth percentile of similar regions based on proximity 

controlled connectivity. As a result, the optimization procedure finds that Pcp2's expression 

pattern marks the cerebellar cortex's unique connectivity profile.  Figure 20B shows the 

expression pattern of Pgrmc1 (Progesterone membrane component 1), a gene that may play 

roles in axon guidance (Runko and Kaprielian, 2002;, 2004). In contrast to Pcp2, which is 

expressed in only one brain region, expression of Pgrmc1 in two regions is correlated with a 

connection between them (Figure 18). Thus, clusters of highly connected regions tend to 

show higher levels of Pgrmc1 expression (Figure 20B). While the strong relationships shown 

in Figure 20 are not representative of the data set as whole, they serve to illustrate how 

expression patterns can contain information on connectivity. 

One concern about using high-throughput in situ hybridization data might be the potential for 

artifacts. While all of the image series we used had passed the Allen Brain Atlas project’s 

(ABA) own quality control criteria, we did note occasional spatial artifacts such as dust or 
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bubbles, though there was no indication such problems were more common in the genes we 

ranked highly. In addition, while there is good evidence that the ABA data are reliable, with 

a high quantitative and qualitative agreement with other data (Lee et al., 2008;Jones et al., 

2009), there are genes (~6% in ABA) for which ABA has disparities (Jones et al., 2009) and 

a few of those genes show up in our results (at approximately the expected proportion; see 

Dataset S1). To help address these concerns, we extracted a higher-confidence subset of 

results by considering genes measured more than once in the Allen Brain Atlas. These 

“duplicate” image series vary primarily by the RNA probe sequence used and the plane of 

section (sagittal vs. coronal), and it seems unlikely that results which are concordant across 

image series would be due to expression analysis artifacts. Seventeen genes in our top 

outgoing connectivity list have two concordant image series. In the case of incoming 

connectivity, 16 of the genes on our list are represented by at least two image series (Rprm 

has three, and Calb2 has four of its 20 image series across the atlas). We refer to these as the 

“high-confidence” lists. 

The next stage of our analysis was to consider in greater detail the types of genes which are 

correlated with connectivity. We accomplished this through a combination of Gene Ontology 

(GO) annotation enrichment analysis and manual review of the literature relating to the 

genes, particularly those on our high-confidence lists. We specifically hypothesized that 

genes that play roles in neural development might be found, as suggested by previous work 

on Caenorhabditis  elegans (Kaufman et al., 2006;Varadan et al., 2006). 

In agreement with this hypothesis, our Gene Ontology analysis of the “outgoing” list 
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revealed significant enrichment in categories related to neuronal development (Table 18; note 

that many of the top groups have overlapping gene members. No GO terms were significant 

for the “incoming” or “proximity” lists). A manual examination of the connectivity top gene 

lists makes it clear that this is due to the presence of many different genes that play a variety 

of roles in neuronal development, but axon guidance was a prominent theme. Our lists 

contain a total of 14 members of three major axon guidance families (Semaphorin, Ephrin, 

and Slit families) (Chilton, 2006) (Table 19). These gene families express cell-surface or 

secreted proteins that function to provide guidance signals to growing axons. This was most 

striking for the Semaphorin family, with ligands, receptors and co-receptors appearing in the 

incoming or outgoing top gene lists (Table 19). Six of the 17 genes from the high-confidence 

“outgoing” list function in neuronal development and axon guidance. Two of these six, Gpc3 

and Hs6st2 encode a heparan sulfate proteoglycan and a heparan sulfate sulfotransferase 

respectively. Two additional heparan sulfotransferases, Hs3st1 and Hs6st1 appear with one 

image series on outgoing top gene list. Heparan sulfate proteoglycans are membrane proteins 

that have been linked to neurogenesis, axon guidance and synaptogenesis (Yamaguchi, 

2001). Hs6st2 has been specifically linked to retinal axon targeting in Xenopus (Irie et al., 

2002). Another gene on the high-confidence list is the L1 cell adhesion molecule (L1cam), a 

recognition molecule involved in neuron migration and differentiation (De Angelis et al., 

2002). Vesicle-associated membrane-protein (Vamp2) is another gene connected to 

connectivity through two image series; in addition Vamp1 occurs once in the outgoing list. 

Recently Vamp2 has been linked to attractive axon guidance but not repulsion in chick 

growth cones (Tojima et al., 2007). Neurturin is another high-ranking gene with two image 

sets linked to outgoing and one linked to incoming. Neurturin is well known to promote 
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neuronal survival and induce neurite outgrowth (Yan et al., 2004). Lastly, Serinc5 is enriched 

in white matter and Inuzuka et al. (Inuzuka et al., 2005) suggest its major role is to provide 

serine molecules for myelin sheath formation.  

In the case of genes correlated with patterns of incoming connectivity, 4 of the 16 of the 

genes on our high confidence list have previously suggested roles in brain connectivity. 

Neurensin-1 shows up with two image series and is known to be involved in neurite 

extension (Nagata et al., 2006). Recently, Stat5a has been labelled a key effector molecule in 

the mammalian CNS, affecting axon guidance in the spinal cord and cortex (Markham et al., 

2007).  Thirdly, Uchl1 is mutated in the GAD mouse strain that presents axon targeting and 

genesis defects (Miura et al., 1993). Finally, ciliary neurotrophic factor receptor (Cntfr) 

appears twice on the top ranked list and is known to promote neuron survival and plays 

important roles in nervous system regeneration and development (Ip et al., 1993;Miotke et 

al., 2007).  

Another trend we notice from the GO results is that groups of genes with negative regulatory 

roles are much more prominent than the corresponding “positive” groups (e.g., “negative 

regulation of neurogenesis”) though these groups are not statistically significant after 

multiple test correction. The high ranking of these terms (which share members) is due to 11 

genes: Hdac5, Notch3, Nrp1, Cd24a, Cit, Apc, Nr2e1, Ptk2, Gpc3, and Runx2. The 

“negative” aspect of the function of these genes varies but all have roles in neuronal 

development and/or plasticity. For example Nrp1 is a coreceptor for semaphorins and 

triggers inhibition of axonal growth (Chedotal et al., 1998), while Hdac5 is a histone 
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deacetylase whose activity is associated with repressed chromatin conformations that are 

altered after addictive stimuli (Renthal et al., 2007). 

We also conducted a search among our high-confidence list for genes whose homologs are 

implicated in human disorders of the nervous system. We found evidence for such a role for 

five of the 30 genes. Prominent among the five is L1Cam, defects in which cause several 

brain disorders including partial agenesis of the corpus callosum (Gu et al., 1996). Two genes 

in the high confidence lists have been linked to heritable forms of Parkinson’s disease (alpha-

synuclein (Snca) (Polymeropoulos et al., 1997) and Uchl1 (Ragland et al., 2009)). Finally, 

two genes have been linked to autistic spectrum disorder (ASD). The human homolog of 

Cadps2 has been linked to autism and lies in the 7q autism susceptibility locus (AUTS1) 

(International Molecular Genetic Study of Autism Consortium, 1998;Sadakata et al., 2007). 

Another, Btg3 is in a genetic locus linked to autistic children characterized by a history of 

developmental regression (Molloy et al., 2005). By examining our expanded list of genes, we 

found several more of our connectivity linked genes are in AUTS1 and have been studied in 

the context of autism: Reln (Persico et al., 2001), Mest (Kwack et al., 2008 ), Ptprz1 (Bonora 

et al., 2005), Dpp6 (Marshall et al., 2008) and En2 (Kuemerle et al., 2007). To further 

explore the potential connection between our results and autism, we downloaded all autism 

candidate genes from the AutDB database (Basu et al., 2009). Of those genes, 163 were 

available in our dataset, and 17 appear in at least one of the connectivity linked lists (14 for 

incoming connectivity and Nrp2, Cadps2, Ntrk1,and Apc appear in both incoming and 

outgoing lists). The probability of this occurring by chance is 0.00029 (hypergeometric test; 

considering the incoming list alone the p-value is 5.43×10-5). In contrast, the proximity-
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ranked list contains only 5 genes in the AutDB set (p-value = 0.32).  

Table 16 Peak correlation and size of optimized Mantel tests 

Name Peak Correlation Size (image series) 
Incoming 0.645 452 
Outgoing 0.564 374 
Proximity 0.934 420 
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Table 17 Top twenty genes for proximity and proximity-controlled incoming and outgoing Mantel tests 

Incoming  Outgoing  Proximity  

Rank  Symbol  Imageset  Rank  Symbol  Imageset  Rank  Name Imageset  

1 Nrp2 80514091 1 Pgrmc1 797 1 Nup37 68795447 

1 D4st1 74657927 1 Slc25a37 68445000 1 Klrg1 69735903 

3 Acadvl 227161 3 Pcp2 77413702 1 Dnahc1  73520818 

4 Pgrmc1 797 4 Galr1 80514053 1 Pus1 532760 

5 8030411F24Rik 74580853 5 1700054O13Rik 69117086 1 Mm.359340 71209910 

6 Gda 70276867 6 Plk1s1 70295882 1 Tm2d3 77414123 

7 Mdfi 275690 7 Alpk3 71574473 1 LOC433436 73636096 

8 3110082D06Rik 74581400 8 Lrrn6c 72128919 8 Gba2 68844337 

9 Lyzs 68191492 9 Gm47 70565879 9 Prrg2 276063 

10 Atad2b  71496393 10 Cpne5 544709 10 Ccdc137 1979 

11 Slc5a2 68632936 11 Nmbr 77332086 11 Col5a3 74272917 

12 Dbnl 74819497 12 Trim52 70205626 12 Kcnk2 75147764 

13 Dmp1 74511936 13 AI427122 71495698 13 Comt 68301371 



 
156 

Incoming  Outgoing  Proximity  

Rank  Symbol  Imageset  Rank  Symbol  Imageset  Rank  Name Imageset  

14 Gata3 73931427 14 Slc44a4 68321886 14 Bcl2l12 71064289 

15 Rgs9 73521819 15 Nrp2 80514091 15 Mtif2 68341663 

16 En2 69288944 16 Anxa3 69526665 16 Eomes 80516770 

17 Wisp2 68523207 17 A930033C23Rik* 74300717 17 Gcnt1 68546476 

18 Cypt3 80474702 18 Tac2 77279001 18 LOC433088 70722898 

19 F2rl1 199391 19 C1qtnf9 70228041 19 Mrpl45 70919854 

20 1700018L24Rik 74634791 20 Kirrel1 71613657 20 Gda 70276867 

 

Table 18 Top twenty GO groups enriched in the proximity controlled outgoing ranked gene list 

Name ID 
Group 

Size 
Hits  P-value  

Corrected P-

value  

neuron projection development GO:0031175 186 16 0.00000 4.63E-003 

cell morphogenesis involved in differentiation GO:0000904 183 13 0.00013 0.05 

cell projection morphogenesis GO:0048858 157 12 0.00012 0.06 
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Name ID 
Group 

Size 
Hits  P-value  

Corrected P-

value  

cell part morphogenesis GO:0032990 166 12 0.00020 0.06 

cell migration GO:0016477 189 13 0.00018 0.06 

axonogenesis GO:0007409 145 12 0.00005 0.07 

cell morphogenesis involved in neuron 

differentiation 
GO:0048667 157 12 0.00012 0.07 

neuron projection morphogenesis GO:0048812 154 12 0.00010 0.08 

positive regulation of secretion GO:0051047 27 4 0.00227 0.45 

negative regulation of cell communication GO:0010648 150 9 0.00438 0.45 

heparan sulfate proteoglycan biosynthetic 

process 
GO:0015012 5 2 0.00420 0.45 

lymphocyte differentiation GO:0030098 83 7 0.00177 0.47 

leukocyte activation GO:0045321 161 9 0.00691 0.47 

B cell differentiation GO:0030183 33 4 0.00480 0.48 
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Name ID 
Group 

Size 
Hits  P-value  

Corrected P-

value  

positive regulation of cell-cell adhesion GO:0022409 5 2 0.00420 0.48 

negative regulation of neuron differentiation GO:0045665 28 4 0.00260 0.48 

regulation of neuron differentiation GO:0045664 82 6 0.00746 0.48 

epithelial cell development GO:0002064 19 3 0.00689 0.48 

central nervous system neuron 

axonogenesis 
GO:0021955 13 3 0.00223 0.48 

lymphocyte activation GO:0046649 140 8 0.00936 0.48 
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Table 19 Members of three canonical axon guidance families appearing in our connectivity and proximity 

top genes lists 

Name Connectivity Proximity 

Semaphorins and receptors Sema3a, Sema6a, Nrp1, Nrp2, 

Plxna2, Plxnb2  

Sema3a 

Ephrin/Eph Ephb1, Epha7, Epha8 Efna1, Epha7 

Slit/Robo Slit1 Slitrk4 
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Figure 13 Datasets and correlation matrices used in this chapter 

Matrices are shown schematically as shaded boxes; arrows indicate steps in the workflow. 

For example, from the full connectivity matrix we extracted submatrices of “outgoing” or 

“incoming” connectivity, and compared their correlation matrices with the correlation matrix 

of the brain region expression patterns. 
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Figure 14 Density plot of expression correlation between region pairs 
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Figure 15 Mantel correlations between different matrices 

“Nomenclature” and “Proximity” refer to the two different measures of spatial distance that 

we used (see Materials and Methods). The 141 regions with incoming connectivity 

information were used to generate the correlations for this figure. 
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Figure 16 Density plot of gene-to-gene correlations 

Gene to gene correlations were computed within the “outgoing” gene list and all genes. 
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Figure 17 Connectivity (A) and expression (B) Mantel correlograms for uncorrected, linear and log 

transform corrected spatial distance matrices 

Filled squares mark distance classes with significant spatial correlation after multiple test 

correction.
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Figure 18 Pgrmc1 expression levels versus connectivity 

For each region pair this plot shows the sum of the two regions' expression in the context of 

their connectivity. 
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Figure 19 Optimization of Mantel correlation by iteratively removing image series 

Each curve documents the correlation across iterations (as genes are greedily removed). 
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Figure 20 Connectivity in the context of Pcp2 (A) and Pgrmc1 (B) expression 

The connectivity map is a 2-D projection of the network on the saggital plane. Each node 

represents a brain region (placed at the center of the region as measured in the Allen 

reference atlas). Expression levels are depicted as shades of grey, with lighter shades 

indicating higher expression. Pcp2 expression is restricted to the cerebellar cortex (CBX), 

while Pgrmc1 tends to be expressed highly in both regions of connected pairs. The small 
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inset brain diagram provides orientation (anterior (A), dorsal (D), ventral (V) and posterior 

(P)) and the locations of the olfactory bulb (OB), cortex (CX), interbrain (IB), midbrain 

(MB), hindbrain (HB) and cerebellum (CB). 

6.4 Discussion 

Our analysis revealed a number of interesting relationships between gene expression and 

patterns of connectivity in the adult mammalian brain. Our key finding is that genes whose 

expression patterns carry information on connectivity are enriched for genes involved in 

neural development, and axon guidance in particular. While our results are based on analysis 

of the brains of rodents, it is of potential importance that many of the genes we identify have 

human homologs implicated in disorders of the nervous system including ASD. Because 

there is an increasing interest in the idea that ASD and other disorders are in part due to 

abnormalities in connectivity (Belmonte et al., 2004;Geschwind and Levitt, 2007), and given 

the heritability of many such disorders, the relationship between gene expression and 

connectivity is pertinent. The enrichment of homologs of autism candidate genes in our 

results suggests that these patterns could be relevant to the understanding of behavior in 

autism and potentially avenues for treatment. 

After our results appeared in literature, a similar study replicating the finding of correlations 

between gene expression and connectivity appeared (Wolf et al., 2011). Wolf and colleagues 

showed that machine learning methods could be used to predict connectivity from gene 

expression patterns in a statistically significant manner, for approximately one half of tested 

brain regions. Their analysis found that genes known to be associated with schizophrenia, 
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autism and attention deficit disorder are enriched in their gene sets that predict connectivity. 

Although the authors did not perform correction for the effect of spatial autocorrelation, they 

tested the robustness of the connectivity data and the quality of the expression images from 

the Allen Brain Atlas. 

Interestingly, a previous focused examination of the correlation between expression and 

connectivity for two brain regions identified some of the same genes we did. Dong et al. 

(Dong et al., 2009) examined correlations between genes that are differentially expressed 

between the dorsal and ventral hippocampus (which we were not able to treat as separate 

regions in our analysis). For nine of their genes, they observed matching expression patterns 

in a connected brain region, the lateral septal nucleus. Three of these nine genes appear on 

our connectivity correlation lists (Gpc3, Man1a, Wfs1); this is unlikely to occur by chance 

(p-value = 0.0045, hypergeometric test). In contrast, none of the nine appear on the proximity 

gene list.  

We stress that because what we observe are correlations, it is difficult to ascribe a definite 

mechanism or meaning to the patterns. In addition, in absolute terms the Mantel test 

correlations may seem low when we considered all genes. However, we do obtain a 

correlation of 0.65 between gene expression patterns and proximity-controlled incoming 

connectivity after gene selection. We also point out that at the neuron to neuron level in 

Caenorhabditis  elegans, Kaufman et al. (Kaufman et al., 2006) reported statistically 

significant correlations of 0.075 and 0.176 between expression and incoming and outgoing 

connectivity, respectively. Thus the patterns we observe in the adult mammalian brain are at 
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least as strong as those observed in previous studies. An obvious question is whether the 

signals we observe are strong enough to predict patterns of connectivity. Unfortunately, 

while the signals we observe are statistically significant, they are not strong enough to allow 

prediction of connections based on expression patterns. Kaufman et al. (Kaufman et al., 

2006) attempted this with their data and achieved very low accuracy. Using similar data, 

Baruch et al. (Baruch et al., 2008) attained statistically significant results in predicting the 

direction of connectivity between neurons known to be connected or which share a common 

synaptic partner. Using advanced imaging techniques on human subjects, Honey et al. 

(Honey et al., 2009) attempted to predict diffusion tensor imaging (DTI) based cortical 

connectivity from fMRI functional connectivity. By setting thresholds on functional 

connectivity, they achieved an AUC value of 0.79 that could predict only ~6% of inferred 

DTI connections (Honey et al., 2009). Despite these limitations, our results suggest some 

underlying models that in turn provide some testable hypotheses.  

Many of the genes we find to be associated with connectivity patterns in the adult are thought 

to be primarily active in the developing brain, when large-scale connectivity is determined. 

The reasons for expression of these genes in the adult brain is not fully understood, though 

there is evidence in some cases that they continue to play roles in the maintenance or tuning 

of neuronal connectivity at finer scales (Zapala et al., 2005;Murray et al., 2007). There is 

even less known about why the genes show regionally restricted patterns in the adult brain. 

Our results are the first to link the expression signatures of some of these genes to 

macroscopic connectivity. Our results have at least two possible biological interpretations. 

One is that the expression patterns in adulthood are a “residue” of the developmental pattern 
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that reflects processes occurring when connectivity is laid down, but that the adult expression 

pattern is not causally related to connectivity at the scale we studied. An alternative is that 

the expression patterns in adulthood are functionally relevant with respect to connectivity, 

perhaps in modulating activity in certain pathways. The patterns we identified could be used 

to design experiments to distinguish between these alternatives.  

The connectivity linked gene sets differ from the Pattern NE and OE gene lists presented 

previously in Chapter 5. Those genes were selected on the basis of spatial anti-correlation 

and we observed relationships to connection degree, not the connectivity patterns. Detailed 

comparison reveals thirteen of the pattern NE genes and five pattern OE genes overlap with 

the connectivity-optimized gene sets. Using the methods of this Chapter, the pooled Pattern 

NE and OE gene list does not contain significant information about connectivity patterns.  

While we have provided evidence for a relationship between connectivity and gene 

expression in the mammalian brain, our analysis is surely hindered by the incompleteness of 

connectivity and expression information. There are many brain regions for which we had 

expression data but no connectivity. While some of these regions might never have been 

studied, there are many reports in the literature that are not included in the current 

connectivity databases. Advances in the generation of connectivity information from new 

experiments or from more complete use of existing reports will be essential. The availability 

of additional expression data would also improve our ability to interpret the patterns we 

observe. In particular, having detailed information on gene expression patterns during 

development, and their relationships to the developing projection patterns in the brain, could 

permit stronger inference of causal relationships. A final limitation is that the structural 
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connections we use cannot be easily linked to specific states or functions of the brain. 

Because of this we could only interpret our results in the context of gene function 

information. It would be of interest to employ functional connectivity data to link gene 

expression to more dynamic and task specific states of the brain, especially in the context of 

genetic variation.  
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Chapter  7: Conclusion 

7.1 Summary 

My thesis was focused on applying bioinformatics techniques to neuroanatomical 

connectivity. The first objective was to create a database of neuroanatomical connectivity 

from neuroscience literature. Our informatics approach to extracting connectivity statements 

details unparalleled resources and evaluations for neuroscience text mining. The second was 

to examine relationships between neuroanatomy and gene expression. This second objective 

resulted in the discovery of several novel patterns that provide new insight into global brain 

architecture.  

7.1.1 Extraction of connectivity statements from text 

To address the fragmented nature of neuroanatomical connectivity reports we annotated a set 

of 1,377 abstracts for brain region mentions and connectivity relations. Using this corpus I 

developed and evaluated state of the art technologies for three tasks required for extracting 

connectivity relationships between brain region pairs. Our results and evaluations provide the 

most critical assessment of text mining for neuroscience to date. 

Our text mining system differs from related work of Burns and colleagues. Burns et al. 

created a system to automatically label detailed variables that describe connectivity 

experiments (in full text articles) (Burns et al., 2007). In contrast, our work focuses on 



 
174 

summary statements in abstracts to extract brain region mentions and relationships between 

them. Both sets of results support the value and feasibility of automatically extracting 

connectivity information from natural language text. 

Chapter 2 covers the first task of recognizing mentions of brain regions in free text. From our 

analysis we suspect a large amount of error is due to conjunctions, previously unseen words 

and brain regions of less commonly studied organisms. We found context windows, 

lemmatization and abbreviation expansion to be the most informative techniques. We 

implemented a conditional random field classifier that was able to label brain region 

mentions at 76% recall and 81% precision. This performance is much higher than naive 

dictionary-based methods. Although textual features derived from the neuroscience domain 

did increase performance, we found that most of the knowledge needed to extract brain 

region mentions can be learned from a large set of examples. To reduce lexical variation and 

link the brain region mentions to existing databases we normalize brain region mentions to 

standardized identifiers in five existing neuroanatomical lexicons (Chapter 3). Based on the 

analysis of the manually annotated corpus, we estimate mentions are mapped at 95% 

precision and 63% recall. Our results provide insights into the patterns of publication on 

brain regions and species of study in the Journal of Comparative Neurology, but also point to 

important challenges in the standardization of neuroanatomical nomenclatures. We find that 

many terms in the formal terminologies never appear in our corpus, while conversely; many 

terms authors use are not reflected in the terminologies. To improve the terminologies we 

deposited 136 unrecognized brain regions into the Neuroscience Lexicon (NeuroLex).  
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Chapter 4 builds on Chapters 2 and 3 by extracting connectivity relationships between brain 

region mentions. I tested several methods on our annotated corpus in a cross-validation 

framework. Of these methods, the shallow linguistic kernel recalled 50% of the sentence 

level connectivity statements at 70% precision. The all-paths graph and k-band shortest path 

spectrum kernels provided similar performance. Due to its speed and simplicity we applied 

the shallow linguistic kernel to 12,557 abstracts, resulting in 28,107 connectivity 

relationships. We compared a normalized subset of 2,688 relationships to BAMS (Bota et al., 

2005). The extracted connections were connected in BAMS at a rate of 63.5%, compared to 

51.1% for co-occurring brain region pairs. By aggregating the data into a connectivity matrix 

form we found that precision can be increased at the cost of recall by requiring connections 

to occur more than once across the corpus.  

7.1.2 Relationships between neuroanatomy and gene expression 

In Chapters 5 and 6 we examine complex patterns of gene expression in the rodent brain in 

the context of regional brain connectivity and differences in cellular populations. We utilized 

a large data set of the rat brain “connectome” from the Brain Architecture Management 

System (Bota et al., 2005) and used statistical approaches to relate the data to the gene 

expression signatures in 142 anatomical regions from the Allen Brain Atlas (Lein et al., 

2007). In Chapter 5 we identified two novel patterns of mouse brain gene expression 

showing a strong degree of anti-correlation, and relate this to multiple data modalities 

including connectivity. We found that these signatures are associated with differences in 

expression of neuronal and oligodendrocyte markers, suggesting they reflect regional 
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differences in cellular populations. We also find that the expression level of these genes is 

correlated with connectivity degree, with regions expressing the neuron-enriched pattern 

having more connections with other regions. Chapter 6 goes beyond the number of 

connections per region to discover relationships between gene expression and specific 

neuroanatomical connections. Our analysis shows that adult gene expression signatures have 

a statistically significant relationship to connectivity. In particular, brain regions that have 

similar expression profiles tend to have similar connectivity profiles, and this effect is not 

entirely attributable to spatial correlations. In addition, brain regions which are connected 

have more similar expression patterns. Using a simple optimization approach, we identified a 

set of genes most correlated with neuroanatomical connectivity, and find that this set is 

enriched for genes involved in neuronal development and axon guidance. Further, a number 

of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum 

disorder. Our results have the potential to shed light on the role of gene expression patterns in 

influencing neuronal activity and connectivity, with potential applications to our 

understanding of brain disorders. 

Our results in Chapter 6 answer questions first posed when the ABA data was first described 

(Lein et al., 2007). The interest of the field in these questions is confirmed by the work of 

Wolf and colleagues, who replicated our essential findings (Wolf et al., 2011). Using the 

same sources of connectivity and gene expression they support our findings by employing a 

classification framework that predicts connectivity from gene expression data. In addition 

they corroborate our finding that autism associated genes carry significant information about 
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connectivity.  

7.2 Conclusions 

We describe and apply a system for large scale automatic extraction of connectivity 

knowledge. By analyzing over 13,000 abstracts we found the neuroscience literature contains 

a wide diversity of terms, organisms of study, and brain region descriptions. Unfortunately, 

this diversity far exceeds that of the existing formalized neuroanatomical lexicons and our 

manually curated dataset. While this limits the automatic resolution of brain region mentions, 

we were able to implement several methods that improve automatic extraction. Our results 

suggest it is feasible to generate a useful database of connectivity statements from 

neuroscience abstracts.  

Our text mining approach provides a novel collection of data to the growing list of 

neuroinformatics resources. In Chapters 5 and 6, we demonstrate the value of similar large 

scale neuroscience datasets by integrating a large connectivity database with a brain-wide 

gene expression atlas. The results show that the wealth of formalized knowledge at the gene 

level provides valuable insight into neuroanatomy at the brain region level. Specifically, 

there is a relationship between patterns of gene expression and connectivity in the adult 

rodent brain. These relationships are linked to cell-type expression signatures that provide 

new insight into brain architecture. Although we observe only correlations, we used our 

methods to prioritize specific genes that can be targeted by experimental manipulations to 

reveal causality. Several of these genes are already associated with disorders involving 
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abnormal brain development and connectivity. 

A final conclusion is that large collections of neuroinformatics data, when combined, provide 

new insight into global brain architecture. Further application of computational tools to 

process, integrate, analyze and interpret large heterogeneous neuroscience data will improve 

our understanding of the brain and its complexity. 

7.3 Future Research Directions 

Several clear avenues of research can extend the WhiteText project. For example, a large 

number of abstracts describing neuroanatomical connectivity are available outside of the 

Journal of Comparative Neurology. By applying our pipeline of brain region recognition, 

resolution and relationship extraction we can aggregate a much larger set of connectivity 

statements. Before expansion, we first seek to make our current set of over 28,000 predicted 

connectivity statements more accessible to neuroscientists for building models and refining 

hypotheses. These mined statements can also provide literature based context and validation 

for connections revealed by mouse and human connectome projects. Creation of an 

information retrieval portal that allows searching of the data is a future objective. Before this 

data is released we plan detailed evaluations of the predicted relationships to fully measure 

the accuracy of the complete system. For decreasing amounts of predicted relationships we 

will evaluate in the context of the sentence, abstract, full text paper and complete literature 

(tests if the connection has been refuted by other results). Our contribution to the community 

has already begun with our additions to the NeuroLex resource. In addition to new brain 
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region concepts extracted from literature, our data provides extensive data on synonyms, 

frequency of use and co-occurrences that can be used to improve lexical resources. 

For the ABAMS project several directions may elucidate the relationships between gene 

expression and connectivity. Going beyond patterns OE and NE found in Chapter 5, we 

observe further clustering into patterns as the number of anticorrelated gene pairs grows. We 

suspect these additional gene clusters are linked to differing populations of neuron and 

oligodendrocyte types.  

Exploration of the relationships described in Chapter 5 and 6 in other stages or organisms are 

attractive future directions for the ABAMS project. The availability of spatially registered 

developmental mouse brain expression data would improve our ability to interpret the 

patterns we observe. In particular, having detailed information on gene expression patterns 

during development, and their relationships to the developing projection patterns in the brain, 

could permit stronger inference of causal relationships.  

A limitation of the ABAMS findings is that the structural connections we use cannot be 

easily linked to specific states or functions of the brain. This restricted our interpretation of 

results to functional information associated with genes. It would be of interest to employ 

functional connectivity data to link gene expression to more dynamic and task specific states 

of the brain, especially in the context of genetic variation. The literature provides a possible 

source of functional data that we can extract with the methods created for the WhiteText 

project. For example, co-occurrences between extracted brain regions (functional 

connectivity) and terms like “addiction” or “memory” (functional activation) can provide 
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a large dataset of functional associations that can be analyzed in light of gene expression 

patterns. 

While we have provided evidence for a relationship between connectivity and gene 

expression in the mammalian brain, our analysis is surely hindered by the incompleteness of 

connectivity information. There are many brain regions for which we had expression data but 

no connectivity. While some of these regions might never have been studied, there are many 

reports in the literature that are not included in the current connectivity databases. Our 

advances in extracting connectivity reports from the biomedical literature can address this 

need. Our new connectivity database backed by the literature can be directly examined for 

relationships to gene expression. Unfortunately, such an analysis would yield uncertain 

results given the error rates observed for connectivity statement extraction. Again, further 

evaluation of the large set of extracted connectivity relations will help refine the dataset. 

Although I provide some insight into the complexity of the brain my work is limited to 

rodent neuroanatomy. It is my hope that the work conducted for this dissertation will guide 

similar studies of the human brain. This hope is supported by two large projects that are 

undertaking the immense tasks of characterizing the human connectome and transcriptome. 

The Human Connectome Project is using MRI technologies to map brain wiring in over 

1,000 subjects and the Allen Institute for Brain Science has released gene expression data 

covering almost 1,000 brain sites in two normal adult donors. Our methods are immediately 

applicable to these data of the human brain and may provide significant insight into human 

neuroanatomy. For example, application of the methods used in Chapter 5 could provide 
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brainwide estimates of neuron to glia ratios. Further, studies of relationships between gene 

expression and connectivity that are focused on the human brain may inform new therapies 

for connectivity related disorders.  
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Appendices 

Appendix A  Evaluation of 100 Unmatched Mentions 

Mention  Frequency  Comment  

dorsomedial nuclei 2 ambiguous 
hippocampus region 1 unique variant 
nucleus of the electrosensory lateral line 
lobe 1 species, mormyrid 

ventral lamella of the principal olive 1 species, cat 
pontine region 1 coreference, “same pontine region” 
preoptic nucleus of the hypothalamus 2 species, fish 
primary gustatory sensory nuclei 1 species, fish 
magnocellular lobe 1 species, octopus 
rostrocaudal length of the geniculate 
complex 

1 unique variant, “length” 

vitreal retina 1 May not be brain region 
thoracic intermediolateral cell column 1 spinal cord region 
posterior region of the ventroposterior 
complex 

1 species, monkey 

dorsolateral column 3 spinal cord region 
pars lateralis of the bed nucleus of the stria 
terminalis 

1 too specific, can't find in atlas 

dorsal parts of the dorsomedial, posterior 
hypothalamic nuclei 

1 too specific, can't find in atlas 

subdivision of parietal cortex 1 ambiguous, coreference “each subdivision” 
sensory fibers of the facial nerve 1 tract not region 
midrostrocaudal levels of the lateral nucleus 1 too specific, can't find in atlas 
brainstem auditory nuclei 2 unique grouping of regions 
vestibular 2 tract not region, “vestibular efferents” 
periamygdaloid cortical region 1 unique synonym – exist in neurolex 
frontal lateral neostriatum 1 species, bird 
subplate zone of the pre- and 
parasubiculum 1 developmental term 

audal superior temporal plane 1 bad annotation 
periventricular stratum of the optic tectum 1 species, fish, unique modifier (stratum) 
posterior half of the avcn 1 unexpanded abbreviation 
second somatosensory area 4 can't find in altases 
vestibular receptor organs 1 May not be brain region 
ipsilateral inferior oblique muscle 1 bad annotation, not brain region 
external medial and external lateral para-
brachial nuclei 

1 might be the hypen 

anterior ectosylvian 2 species, cat 
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Mention  Frequency  Comment  

nucleus reticularis medullaris ventralis 1 species, cat 
dorsal superficial, dorsal, and 
suprageniculate nuclei 

1 species, cat 

forebrain sites 1 unique variant and coreference 
dorsomedial, dorsal, and lateral cortices 1 species, lizard 
cortical loci 1 nonspecific 
dorsal horn of the medulla 4 species, cat 

ventral horn in the spinal cord 1 
Unique synonym, should match “anterior 
gray column” in neuronames 

efferent vestibular nuclei 3 species, fish 
tangential and superior vestibular nuclei 1 species, bird 
medial and ventral lateral parabrachial 
subnuclei 

1 
unique variant, “sub” seems to cause 
trouble 

interstitial vestibular region 1 species, bird 
vmpo 3 unexpanded abbreviation 
neurohypophyseal 1 bad annotation, references tract 

external lateral and waist subnuclei 1 
Unique synonym, should match “waist part 
of the parabrachial nucleus” in neuornames 

insular and cingulate cortices 1 unique variant 
antennal nerve 1 species, insect 
nucleus ventrolateralis of torus 
semicircularis 

1 species, fish 

lenticular fasciculus caudodorsally 1 bad annotation, tract 
parabelt auditory cortex 2 not in atlas, is defined in abstract 

intercollicular region 1 
strange construct, “levels of intercollicular 
region” 

posterior ventrolateral 1 coreference, should be thalamic 
subnuclear groups of the nucleus of the 
tractus solitarius 

1 ambiguous 

area ventralis telencephali pars lateralis 1 species, fish 
thalamocortical relay nucleus 1 nonspecific, type of nucleus 

ventral portion of globus pallidus 1 
Unique synonym, should match “Ventral 
pallidum” 

parietal insular cortex 1 too specific, can't find in atlas 
rubral 2 cell group, neurons from red nucleus 

cerebellar area 1 
Unique synonym, should match 
“cerebellum” 

follicle-sinus complexes 5 bad annotation, skin part 
smii 2 unexpanded abbreviation 
ateral septum 1 bad annotation, missed first letter 
tectal cortex 2 species, bird 
medial and posterior thalamic regions 1 unique variant 

ventromedial subnucleus 1 
coreference, should be of the hypoglossal 
nucleus 

pallidostriatal 4 bad annotation, tract and cell group 
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Mention  Frequency  Comment  

left bulb 1 coreference, should be the olfactory bulb 
a7 2 ambiguous, cell group 
auditory strip 1 not in atlas 

medullary-spinal cord 1 
unique term, “medullary-spinal cord 
junction” 

c6 root 1 spinal cord region 

superior and inferior parts of area 46 2 
not sure, area 46 of broadmann should 
work 

6th abdominal ganglion 1 Bad annotation, not a brain region 
lateral suprasylvian visual area of cortex 1 species, cat 
temporal posterior inferior area 1 species, shrew 
vestibulospinal neurons 1 Bad annotation, cell group 
cerebellorecipient and retinorecipient 
pulvinar nucleus(pul) areas 

1 coreference, based on abstract 

cortical areas mt 1 
unexpanded abbreviation, unkown synonym 
– MT = middle temporal 

lateral archistriatum intermedium 1 species, bird 
perigeniculate nucleus 1 species, cat 
ipsilateral medial rectus muscle 1 Bad annotation, muscle 
n. dorsolateralis medialis 1 coreference, thalamic region 
ventrolateral (vl) or ventral posterolateral 
(vpl) thalamic nuclei 

1 
not sure, ventrolateral thalamic nuclei may 
match 

ventral dentate 1 
coreference, ventral parts of dentate 
nucleus of the cerebellum 

intermediate gray the intermediolateral 
nucleus in thoracic and upper lumbar 
segments 

1 spinal cord region 

posterior zone nuclei 1 species, frog 

sn-vta 1 
Annotation error, cell group, unexpanded 
abbreviation, cell group 

medial to lateral, termed medial, 
centromedial, centrolateral, and lateral 
segments 

1 coreference, regions of PLLL 

10m 2 
area 10m of Carmichael? Should match 
neuronames 

latero-medial axis in the entorhinal cortex 1 unique variant 
pviiin 3 annotation error, fibre tract 
dorsal cap 4 coreference, dorsal cap of Kooy 
subcortical medullary zone 1 coreference, part of cerebellum 
telencephalic nucleus olfactoretinalis 1 species, fish 
commissural 9 Bad annotation, tract descriptor 

13l 2 
area 13l of Carmichael? Should match 
neuronames 

rhombencephalic 1 should match rhombencephalon 
vision-related cortex 1 Unique synonym of area TE a 
frontoparietal isocortex 1 developmental term 
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Mention  Frequency  Comment  

areas teav 1 too specific, area TE a exists but not teav 
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Appendix B  Mappings between the Allen and Swanson Atlases  

ABA name  mapped BAMS (Swanson 98)  

Abducens nucleus Abducens nucleus 
Accessory olfactory bulb Accessory olfactory bulb 

Ammon's Horn Ammon Horn 

Anterior amygdalar area Anterior amygdaloid area 
Anterior group of the dorsal thalamus Anterior group of the dorsal thalamus 
Anterior hypothalamic nucleus Anterior hypothalamic nucleus 
Anterior olfactory nucleus Anterior olfactory nucleus 
Anterior pretectal nucleus  Anterior pretectal nucleus 
Anterior tegmental nucleus  Anterior tegmental nucleus 
Anterodorsal nucleus Anterodorsal nucleus of the thalamus 
Anterodorsal preoptic nucleus Anterodorsal preoptic nucleus 
Anteromedial nucleus Anteromedial nucleus of thalamus 
Anteroventral nucleus of thalamus  Anteroventral nucleus of thalamus 
Anteroventral periventricular nucleus Anteroventral periventricular nucleus 
Anteroventral preoptic nucleus  Anteroventral preoptic nucleus 
Arcuate hypothalamic nucleus Arcuate nucleus of the hypothalamus 
Area postrema Area postrema 
Barrington's nucleus  Barrington nucleus 
Basic cell groups and regions Brain 
Bed nuclei of the stria terminalis  Bed nuclei of the stria terminalis 
Bed nucleus of the anterior commissure  Bed nucleus of the anterior commissure 
Brain stem Brainstem 
Caudoputamen  Caudoputamen 
Central amygdalar nucleus  Central nucleus of amygdala 
Central lateral nucleus of the thalamus Central lateral nucleus of the thalamus 
Central linear nucleus raphé Central linear nucleus raphe 
Central medial nucleus of the thalamus Central medial nucleus of the thalamus 
Cerebellar cortex Cerebellar cortex 
Cerebellar nuclei Deep cerebellar nuclei 
Cerebellum Cerebellum 
Cerebral cortex Cerebral cortex 
Cerebral nuclei Basal Nuclei 
Cerebrum Cerebrum 
Cochlear nuclei  Cochlear nuclei 
Cortical amygdalar area Cortical nucleus of the amygdala 
Cortical plate Cerebral cortex, layers1-6a [cortical plate] 
Cuneate nucleus Cuneate nucleus 
Cuneiform nucleus Cuneiform nucleus 
Dentate gyrus Dentate gyrus 
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ABA name  mapped BAMS (Swanson 98)  

Dentate nucleus Dentate nucleus 
Dorsal column nuclei Dorsal column nuclei 
Dorsal motor nucleus of the vagus nerve Dorsal motor nucleus of the vagus nerve 
Dorsal nucleus raphé Dorsal nucleus raphe 
Dorsal part of the lateral geniculate complex Dorsal part of the lateral geniculate complex 
Dorsal premammillary nucleus Dorsal premammillary nucleus 
Dorsal tegmental nucleus Dorsal tegmental nucleus 
Dorsomedial nucleus of the hypothalamus Dorsomedial nucleus of the hypothalamus 
Edinger-Westphal nucleus Edinger-Westphal nucleus 
Epithalamus Epithalamus 
External cuneate nucleus External cuneate nucleus 
Facial motor nucleus Facial nucleus 
Fastigial nucleus Fastigial nucleus 
Field CA1 pyramidal layer Field CA1 pyramidal layer 
Field CA3 pyramidal layer Field CA3 pyramidal layer 
Fundus of striatum Fundus of the striatum 
Geniculate group_ dorsal thalamus Geniculate group of the dorsal thalamus 
Geniculate group_ ventral thalamus Geniculate group of the ventral thalamus 
Gracile nucleus Gracile nucleus 
Hindbrain  
Hippocampal formation Hippocampal formation 
Hippocampal region Hippocampal region 
Hypoglossal nucleus Hypoglossal nucleus 
Hypothalamic lateral zone Lateral hypothalamic area 
Hypothalamic medial zone Medial zone of the hypothalamus 
Hypothalamus Hypothalamus 
Inferior colliculus Inferior colliculus 
Inferior olivary complex Inferior olivary complex 
Inferior salivatory nucleus Inferior salivatory nucleus 
Interanterodorsal nucleus of the thalamus Interanterodorsal nucleus of the thalamus 
Interanteromedial nucleus of the thalamus Interanteromedial nucleus of the thalamus 
Interbrain Interbrain 
Intergeniculate leaflet of the lateral geniculate 
complex 

Intergeniculate leaflet of the lateral geniculate 
complex 

Intermediodorsal nucleus of the thalamus Intermediodorsal nucleus of the thalamus 
Interpeduncular nucleus Interpeduncular nucleus 
Interposed nucleus Interposed nucleus 
Interstitial nucleus of Cajal Interstitial nucleus of Cajal 
Intralaminar nuclei of the dorsal thalamus Intralaminar nuclei of the dorsal thalamus 
Lateral dorsal nucleus of thalamus Lateral dorsal nucleus of thalamus 
Lateral group of the dorsal thalamus Lateral group of the dorsal thalamus 
Lateral habenula Lateral habenula 
Lateral mammillary nucleus Lateral mammillary nucleus 
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Lateral posterior nucleus of the thalamus Lateral posterior nucleus of the thalamus 
Lateral reticular nucleus Lateral reticular nucleus 
Lateral septal complex Lateral septal complex 
Lateral septal nucleus  Lateral septal nucleus 
Lateral vestibular nucleus Lateral vestibular nucleus 
Linear nucleus of the medulla Linear nucleus of the medulla 
Locus ceruleus Locus coeruleus 
Magnocellular nucleus Magnocellular preoptic nucleus 
Magnocellular reticular nucleus Magnocellular reticular nucleus 
Main olfactory bulb Main olfactory bulb 
Mammillary body Mammillary body 
Medial amygdalar nucleus  Medial nucleus of the amygdala 
Medial geniculate complex Medial geniculate complex 
Medial group of the dorsal thalamus Medial group of the dorsal thalamus 
Medial habenula Medial habenula 
Medial mammillary nucleus Medial mammillary nucleus 
Medial preoptic nucleus Medial preoptic nucleus 
Medial pretectal area Medial pretectal area 
Medial vestibular nucleus Medial vestibular nucleus 
Median preoptic nucleus Median preoptic nucleus 
Mediodorsal nucleus of thalamus Mediodorsal nucleus of the thalamus 
Medulla  
Medulla_ behavioral state related  
Medulla_ motor related  
Medulla_ sensory related  
Midbrain  
Midbrain raphé nuclei Dorsal nucleus raphe 
Midbrain raphé nuclei Interfascicular nucleus raphe 
Midbrain raphé nuclei Rostral linear nucleus raphe 
Midbrain raphé nuclei Central linear nucleus raphe 
Midbrain raphé nuclei Superior central nucleus raphe 
Midbrain reticular nucleus_ magnocellular part_ 
general 

 

Midbrain reticular nucleus_ retrorubral area Retrorubral area 
Midbrain trigeminal nucleus Mesencephalic nucleus of the trigeminal 
Midbrain_ behavioral state related  
Midbrain_ motor related Midbrain-Hindbrain, Motor 
Midbrain_ sensory related Midbrain-Hindbrain, Sensory 
Motor nucleus of trigeminal Motor nucleus of the trigeminal 
Nucleus accumbens  Nucleus accumbens 
Nucleus ambiguus Nucleus ambiguus, ventral division 
Nucleus ambiguus Nucleus ambiguus dorsal division 
Nucleus incertus Nucleus incertus 
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Nucleus of the brachium of the inferior colliculus 
Nucleus of the brachium of the inferior 
colliculus 

Nucleus of the lateral lemniscus Nucleus of the lateral lemniscus 
Nucleus of the lateral olfactory tract Nucleus of the lateral olfactory tract 
Nucleus of the optic tract Nucleus of the optic tract 
Nucleus of the posterior commissure Nucleus of the posterior commissure 
Nucleus of the solitary tract Nucleus of the solitary tract 
Nucleus raphé magnus Nucleus raphe magnus 
Nucleus raphé obscurus Nucleus raphe obscurus 
Nucleus raphé pontis Nucleus raphe pontis 
Nucleus sagulum Nucleus sagulum 
Nucleus x Nucleus x 
Nucleus y Nucleus y 
Oculomotor nucleus Oculomotor nucleus 
Olfactory areas Olfactory areas 
Olfactory tubercle  Olfactory tubercle 
Olivary pretectal nucleus Olivary pretectal nucleus 
Pallidum Pallidum 
Pallidum_ caudal region Bed nucleus of the anterior commissure 
Pallidum_ caudal region Bed nuclei of the stria terminalis 
Pallidum_ dorsal region Pallidum dorsal region 
Pallidum_ medial region Triangular nucleus of the septum 
Pallidum_ medial region Medial septal complex 
Pallidum_ ventral region Magnocellular preoptic nucleus 
Pallidum_ ventral region Substantia innominata 
Parabigeminal nucleus Parageminal nucleus 
Parabrachial nucleus Parabrachial nucleus 
Paracentral nucleus Paracentral nucleus of the thalamus 
Parafascicular nucleus Parafascicular nucleus 
Paragigantocellular reticular nucleus Paragigantocellular reticular nucleus 
Parapyramidal nucleus Parapyramidal nucleus 
Parasolitary nucleus Parasolitary nucleus 
Parastrial nucleus Parastrial nucleus 
Paraventricular hypothalamic nucleus Paraventricular nucleus of the hypothalamus 
Pedunculopontine nucleus Pedunculopontine nucleus 
Periaqueductal gray Periaqueductal gray 
Peripeduncular nucleus Peripeduncular nucleus 
Perireunensis nucleus Perireunensis nucleus 
Periventricular region  
Periventricular zone Periventricular zone of the hypothalamus 
Piriform area Piriform area 
Piriform-amygdalar area Piriform-amygdaloid area 
Pons  
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Pons_ behavioral state related  
Pons_ motor related  
Pons_ sensory related  
Pontine central gray Pontine central gray 
Pontine gray Pontine gray 
Posterior hypothalamic nucleus Posterior hypothalamic nucleus 
Posterodorsal preoptic nucleus Posterodorsal preoptic nucleus 
Postpiriform transition area Postpiriform transition area 
Pretectal region Pretectal region 
Principal sensory nucleus of the trigeminal Principal sensory nucleus of the trigeminal 
Red Nucleus Red nucleus 
Reticular nucleus of the thalamus Reticular nucleus of the thalamus 
Retrohippocampal region Retrohippocampal region 
Septofimbrial nucleus  Septofimbrial nucleus 
Spinal nucleus of the trigeminal_ caudal part Spinal nucleus of the trigeminal caudal part 
Spinal nucleus of the trigeminal_ interpolar part Spinal nucleus of the trigeminal interpolar part 
Spinal nucleus of the trigeminal_ oral part Spinal nucleus of the trigeminal oral part 
Striatum Striatum 
Striatum dorsal region Striatum dorsal region 
Striatum ventral region Striatum ventral region 
Striatum-like amygdalar nuclei Striatum caudal (amygdalar) region 
Subceruleus nucleus Subcoeruleus nucleus 
Subiculum Subiculum 
Sublaterodorsal nucleus Sublaterodorsal nucleus 
Substantia innominata Substantia innominata 
Substantia nigra_ compact part Substantia nigra compact part 
Substantia nigra_ reticular part Substantia nigra reticular part 
Subthalamic nucleus Subthalamic nucleus 
Superior central nucleus raphé Superior central nucleus raphe 
Superior colliculus_ motor related Superior colliculus intermediate deep gray layer 
Superior colliculus_ motor related Superior colliculus intermediate gray layer 
Superior colliculus_ motor related Superior colliculus intermediate white layer 

Superior colliculus_ motor related 
Superior colliculus intermediate deep white 
layer 

Superior colliculus_ sensory related Superior colliculus zonal layer 
Superior colliculus_ sensory related Superior colliculus optic layer 
Superior colliculus_ sensory related Superior colliculus superficial gray layer 
Superior olivary complex Superior olivary complex 
Suprachiasmatic nucleus Suprachiasmatic nucleus 
Suprageniculate nucleus Suprageniculate nucleus 
Supragenual nucleus Supargenual nucleus  
Supramammillary nucleus Supramammillary nucleus 
Supratrigeminal nucleus Supratrigeminal nucleus 
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Taenia tecta Taenia tecta 
Tegmental reticular nucleus Tegmental reticular nucleus 
Thalamus Thalamus 
Thalamus_ polymodal association cortex related Anterior group of the dorsal thalamus 
Thalamus_ polymodal association cortex related Epithalamus 
Thalamus_ polymodal association cortex related Geniculate group of the ventral thalamus 
Thalamus_ polymodal association cortex related Intralaminar nuclei of the dorsal thalamus 
Thalamus_ polymodal association cortex related Lateral group of the dorsal thalamus 
Thalamus_ polymodal association cortex related Medial group of the dorsal thalamus 
Thalamus_ polymodal association cortex related Midline group of the dorsal thalamus 
Thalamus_ polymodal association cortex related Reticular nucleus of the thalamus 
Thalamus_ sensory-motor cortex related Geniculate group of the dorsal thalamus 
Thalamus_ sensory-motor cortex related Peripeduncular nucleus 
Thalamus_ sensory-motor cortex related  
Thalamus_ sensory-motor cortex related Subparafascicular nucleus 
Thalamus_ sensory-motor cortex related Ventral group of the dorsal thalamus 
Trochlear nucleus Trochlear nucleus 
Tuberal nucleus Tuberal nucleus 
Ventral group of the dorsal thalamus Ventral group of the dorsal thalamus 
Ventral medial nucleus of the thalamus Ventral medial nucleus of the thalamus 
Ventral part of the lateral geniculate complex Ventral part of the lateral geniculate complex 
Ventral posterior complex of the thalamus Ventral posterior complex of the thalamus 
Ventral premammillary nucleus Ventral premammillary nucleus 
Ventral tegmental area Ventral tegmental area 
Ventral tegmental nucleus Ventral tegmental nucleus 
Ventromedial hypothalamic nucleus Ventromedial nucleus of the hypothalamus 
Vestibular nuclei Vestibular nuclei 
Zona incerta Zona incerta 

 

 


