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Abstract

Neuroscience research is increasingly dependehbtinging together large amounts of data
collected at the molecular, anatomical, functicarad behavioural levels. This data is
disseminated in scientific articles and large anlitlatabases. | utilized these large resources
to study the wiring diagram of the brain or ‘contoeae’. The aims of this thesis were to
automatically collect large amounts of connectikityppwledge and to characterize
relationships between connectivity and gene exmess the rodent brain. To extract the
knowledge embedded in the neuroscience literataredted the first corpus of neuroscience
abstracts annotated for brain regions and theinections. These connections describe long
distance or macroconnectivity between brain regidhg collection of over 1,300 abstracts
allowed accurate training of machine learning dfeess that mark brain region mentions
(76% recall at 81% precision) and neuroanatomigahections between regions (50%
sentence level recall at 70% precision). By autacaly extracting connectivity statements
from the Journal of Comparative Neurology | gerented literature based connectome of
over 28,000 connections. Evaluations revealedaltatge number of brain region
descriptions are not found in existing lexicons.atilress this challenge | developed novel
methods that allow mapping of brain region termertolosing structures. To further study
the connectome | moved from scientific articlesatge online databases. By employing
resources for gene expression and connectivitpwsh that patterns of gene expression
correlate with connectivity. First, two spatiallgtacorrelated patterns of mouse brain gene
expression were identified. These signatures aeceged with differences in expression of

neuronal and oligodendrocyte markers, suggestiey iteflect regional differences in



cellular populations. Expression level of theseeges correlated with connectivity degree,
with regions expressing the neuron-enriched pattauing more incoming and outgoing
connections with other regions. Finally, relatiapstbetween profiles of gene expression
and connectivity were tested. Specifically, | shdwleat brain regions with similar
expression profiles tend to have similar connettiprofiles. Further, optimized sets of
connectivity linked genes are associated with neairdevelopment, axon guidance and
autistic spectrum disorder. This demonstratioregf tmining and large scale analysis

provides new foundations for neuroinformatics.
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Chapter 1: Introduction®

The brain is perhaps the most complex object kn@nd,deciphering its workings is an
enduring challenge. This complexity has limiteccdigery of causes and cures for many
devastating brain disorders. However, over 2,5@0s/ef analysis have led to a huge
accumulation of information about the brain at lswanging from molecular to the
anatomical. New techniques applied over the pastiecades are generating ever more
detailed and comprehensive data sets. Recent egammglude whole brain tractography and
genome-wide expression atlases. These enormousetiatmmbined with the accumulated
knowledge from past experiments require powerfulhmes for exploiting this amount and
diversity of data. This thesis is about a smallsstilof this problem, focusing on two types of
information that are both important and availabledlatively global forms, namely
macroconnectivity and gene expression patterrsudlst to address two questions: Can our
current databases of connectivity be expanded wsingputational approaches? And how
does gene expression relate to brain connectiVigfirst question is an informatics one,
addressing the gap between the vast literatureearoanatomy and our ability to use it
efficiently. The second question is motivated byldigy, namely the relationship between the
genome (and its genetic variation) and the strecand function of the brain. One specific

motivating question is, why are so many genes agackin complex patterns in the brain? In

! A previous version of this chapter has been phbtis French L, Pavlidis P (2007). Informatics in
neuroscience. Briefings in Bioinformatics 8:6. 4486. doi:10.1093/bib/bbm047). The article has bedited

and updated to reflect recent changes in the dne@upoinformatics.



this introduction, | expand on these motivatiomrsyvpde background on the state of the art,
and put my work in the context of the nascent fefldeuroinformatics. It is my hope that
my research contributes to a better understandingronal and abnormal brain function, and

leads to new questions, resources, methodologipsrienents and analyses.

Neuroanatomical connectivity is a unifying themethis thesis. At the cellular level these
communication links are defined by trillions of sygses between billions of neurons and are
fundamental to our understanding of the nervouteaysAt the macro level these links join
together to form pathways that connect neuroanailiyidefined brain regions. Recently,
there has been a push to map all connectivity@fcbnnectome” of the human brain using
neuroanatomical imaging techniques (2005). On therdhand, large amounts of
connectivity information are already present inlitexature, but this resource has not been
fully exploited. Currently the majority of this ifmation is fragmented across many reports
and is not accessible for large scale analysesatt#mpt to address this need, and
furthermore explore a new area in the interpretatibgene expression patterns in the brain
in light of connectivity data. The wiring diagrarhtbe brain is only poorly understood. In
part this is due to the complexity of the brain #mel difficulty in collecting data. This
complexity is also apparent in the mouse brainsiteptome with varied spatial gene
expression patterns that have not been linkedeoifsp function or structure. While many
individual genes function in neurotransmission rching connections, it is not clear how
global molecular signatures relate to macro conwviectn the adult brain. For both the
transcriptome and connectome, we suggest thatnafiics technologies can be applied to

existing knowledge to make new discoveries andegtudher experimentation. This



introduction reviews the challenges, methods asdukees for investigating neuroscience

from an informatics perspective.

1.1 Dissertation Overview

In this dissertation, | research new strategiestiect and analyze neuroanatomical
connectivity data. In particular | focus on macomeectivity that describes connections
between brain regions. To collect connectivity dadpply existing bioinformatics
techniques to mine the neuroscience literaturedonectivity statements. To analyze
connectivity data | integrate several heterogen@eusoscience data sources. These two

objectives form the WhiteText project (Chapters)2dd ABAMS project (Chapters 5-6).

The WhiteText project addresses the following goast

1. How accurately can neuroanatomical informationluding connectivity be

automatically or manually extracted from neurosceeliterature?

2. What lexicographic, linguistic and semantic feasumee useful for extraction?

3. How much connectivity data is available in neuresce abstracts?

The project aims to usefully apply text mining noath to brain connectivity. We will adapt
and extend text-mining approaches previously ugethélyze protein networks to extract
data on connectivity of brain regions from freettalzstracts. We aim to manually generate a

corpus for training and evaluation purposes. Intamdto developing algorithms, we aim to

3



create a database of 15,000 connections among af0nalian brain regions. The
database will become a tool for testing hypothedesit brain function, structure and

development. The resulting resources will be mad#i@dy available.

To understand connectivity we analyze a genome-afids of the adult mouse brain that has
characterized many heterogeneous expression maftezim et al., 2007). Global

relationships between these patterns and braim@afgon are suspected but few cases exist,
especially beyond development. While expressiotepa of single genes have been linked
to specific structure, genome wide screens foraaBons between gene expression,
macroconnectivity and cellular distributions hawd been previously performed in the

rodent brain. Such analyses may reveal genesldapptential roles in developing,
maintaining and repairing brain architecture. Cogsgly, insight into neuroanatomy at the

brain region level can be derived from functionahetations at the gene level.

In the context of the adult rodent brain, the ABAMISject addresses the following

guestions:

1. Can complex spatial expression patterns be expldgealifferences in cellular

populations or number of neuroanatomical connesfion

2. To what degree are expression and connectivitylpsoforrelated across many brain
regions? Which genes carry the highest amountfofrimation about connectivity in

their expression levels? What are their functi@sslociations?



3. To what degree are spatial and connectivity prefilerrelated across many brain

regions?

The objective of the project is to find and studiationships between gene expression and
neuroanatomical connectivity. We hypothesize tiheeestatistical relationship between the
connections and gene expression levels of individigan regions. Based on this hypothesis
we aimed to specify lists of genes that carry imfation about a given brain region’s
connectivity profile. This list of genes can aideirpretation of future experiments by
suggesting connectivity-related functions, and adatteé genes for understanding brain
function in health and disease. Our methodologyfadus on statistical data mining and

heuristic search methods designed to find sigmfipatterns in high-dimensional data.

1.2 Literature Review

The application of informatics to neuroscience gaedeyond “traditional” bioinformatics
modalities such as DNA sequences. In this sectawstribe how informatics is being used

to study the nervous system at multiple levelsnspay scales from molecules to behaviour.

Neuroscience is a rich source of interesting coatpartal and informatics problems and
opportunities. These problems encompass a goodt&ahditional” bioinformatics (e.g.,
sequence analysis), applied to the neurosciencaidom addition, perhaps more than any
other field, neuroscience has been applying conipautand informatics to domain-specific
problems, giving rise to the term "neuroinformatidéeuroinformatics includes the

development of databases, standards, tools andisnade the development of simulations

5



and analytical techniques, spanning all levelses¥aus system organization (from
molecules to behaviour; Table 1). Much of the ies¢in neuroinformatics comes from the
diverse types of neuroscience research and howntingdyt be linked more effectively using

informatics technologies.

| provide an overview of neuroinformatics, biasedewhat towards the viewpoint of
practitioners of bioinformatics who are outsidenetiroscience. Therefore we focus our
attention on only a subset of areas within neuosimfbtics. The large field of nervous system
modeling and simulation is not reviewed, so | pog#ders to further resources covering
models of single neurons (Crasto et al., 2007d)yorks (Brette et al., 2007), and
sensory/information processing (Destexhe and Ca#y@006). In addition, neuroimaging
informatics has been reviewed in detail recentlyrlBey and Rosse, 2002;Toga,
2002;Nielsen et al., 2006;Van Horn and Toga, 2008us my focus is on other types of
neuroscience data and knowledge databases, affardsds integrating knowledge across
domains, and especially on the analysis of themergystem at the genetic, cell and
molecular level. A summary of informatics resourcesered in this review is given in Table

2.

1.2.1 Initiatives

Recent large scale initiatives motivate our nedasmatics research. They provide
ontologies for linking extracted data, portalsfioding resources and communities for
sharing ideas. The first is the Human Brain Profei¢tB,

http://www.nimh.nih.gov/neuroinformatics) startedli993, based on recommendations



developed starting in 1989 (Shepherd et al., 198&h leadership from the National
Institute of Mental Health and other NIH institutéBP provided funding and guidance to
many of the neuroinformatics projects mentionethis chapter (Koslow, 2005). The HBP
has been succeeded by the NIH Blueprint for Neugase research as neuroinformatics is
increasingly folded into the mainstream of neureisce and informatics (Huerta et al.,
2006). The Blueprint for Neuroscience researchléage collaborative NIH effort for
creating resources of general utility to neurosmaresearch (Baughman et al., 2006). The
recently established International Neuroinforma@a®rdinating Facility (INCF), funded by
the EU and based in Stockholm, Sweden, with "noaesiany European countries as well
as the US and Japan, aims to "foster internatiactalities in neuroinformatics", and is
another signal of the seriousness with which télklfis taking informatics (Amatri et al.,
2002). The INCF was founded in response to a reydie Organization for Economic Co-

operation and Development (OECD) (Group, 2002).

The Society for Neuroscience (SfN) formed the Biaformation Group task force in 2003
and later the SfN Neuroinformatics committee. Thesee formed to examine the
informatics needs of neuroscience and promoteiegistsources (Van Essen, 2007). The
earliest result was the Neuroscience Database gate\nbDB). NDB organized 178
databases into five main categories, and 15 claBseently a consortium based effort
funded by the National Institutes of Health constied a successor to NDB, the

Neuroscience Information Framework (http://www.médaiorg NIF). In addition to

cataloguing neuroscience resources NIF providgsardic portal to the resources and the

data contained within them (Gardner et al., 2008 is notable for its extensive efforts to
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form accessible standards, services, ontologiesanisl

In addition to these organizational efforts, a éasgale project that stands out in
neuroinformatics for its scale and scope is the-N#dked Biomedical Informatics Research
Network (BIRN) (Martone et al., 2004;Helmer et 2011). BIRN is focused on
neuroinformatics, and emphasizes brain imagingimdns and mice, and acts as a "test bed
for development of hardware, software, and pro®toleffectively share and mine data in a
site-independent manner for both basic and clines¢arch”. BIRN is a network of research
groups that at this writing involves work from atkt two dozen laboratories across the
United States and the United Kingdom. BIRN is dssad below in the context of several

specific areas of neuroinformatics.

1.2.2 Towardsintegration

Because neuroscience data is highly heterogeneonnglex, and voluminous, it has been
recognized that interoperation of tools and databasll be required to make the best use of
available resources (Insel et al., 2003). Thivvidenced throughout the thesis, especially in
Chapters 5 and 6 which derive new insight from cowdb datasets. As in other areas of
biology, efforts to standardize data representatenmd interfaces have been increasing, and
neuroscience can clearly learn lessons from loo&trfgpw standards have developed in

other fields of informatics. One side-effect of theerest in neuroinformatics and
neuroscience data is the recognition that integnagquires data sharing, and the subject has

been widely discussed by neuroinformatics reseasdi@slow, 2000;Gardner et al.,



2001;Eckersley et al., 2003;Insel et al., 2003;As2006) .

1.2.3 Ontologiesand vocabularies

Ontologies and controlled vocabularies are an it@mbresource to enable informatics.
Adherence to a specific terminology and/or data @hcdn be constraining, but also greatly
eases interoperability. One only has to look attltke cross-referencing of the Gene
Ontology (GO) (Ashburner et al., 2000) to see tbeqr of standardized terminologies.
Another example is BioPax, developed by the biaalgpathway database community to
promote sharing of molecular pathway data (200&PBx has been widely adopted, and
currently several pathway and interaction databasesvailable in BioPax format with more

converted by third parties (Baitaluk et al., 200@t¢&cha N, 2006).

Currently many neuroscience databases use theivoeabularies for neuron, anatomical
region and receptor types, but this situationkislyi to change rapidly. For example, the
BIRN includes an ontology "taskforce", and devebbpéRNLex for use in BIRN projects
(Martone et al., 2004), an ontology containing @pts from neuroanatomy, molecular
species, experimental design and cognitive prose88BNLex terms are taken from
existing resources whenever possible, with diresppmgs given. Recently BIRNLex has
been merged into the NIF standardized (NIFSTD) logp(Bug et al., 2008). It is our hope
that NIFSTD (or something like it) will have a widapact and be adopted by other projects
as ade factostandard. However, like many efforts to devel@mdards, it is difficult to

please everybody, so it remains to be seen ifglesstandard can emerge soon enough.



Neuroanatomy is an example of an area where meiiggindards have emerged (Bowden et
al., 2007). There are two established nomenclafordse rat brain (Swanson, 1999;Paxinos
and Watson, 2007), and three for the mouse (Hal. €2000;Dong, 2007;Paxinos and
Watson, 2007). Thankfully, mappings exist betwienterminologies (Stephan et al.,
2000;Bowden and Dubach, 2003;Bota and Swanson,) 20h6se atlases provide
hierarchical structured vocabularies. Usually &dctarm refers to a region that is
volumetrically contained in the region describedluy parent term (e.g., prefrontal cortex is
part of the cortex). The most widely accepted nafaare is NeuroNames which contains
over 1,900 structures linked to over 7,500 ternscdieing the human, rodent and macaque
brain (Bowden and Dubach, 2003). NeuroNames has inézgrated into the Foundational
Model of Anatomy, NIFSTD, and the Unified Medicadnguage System (Hole and
Srinivasan, 2003). A web based interface to Neunod&ais provided by Braininfo (Bowden
and Dubach, 2002). For a given brain region extdimks are provided for connectivity,

literature, cytoarchitecture, and gene expression.

The Brain Markup Language (BrainML) was develops@&et of XML schemas for
exchange of neuroscience data (Gardner et al.,)2B8dinML encompasses representations
of experimental protocols and designs, electrofhgygy, measurement units, and other
aspects important to representing neuroscience aadaforms a “base model” that is used to
create additional specific components, such asitd@sg animal experimental subjects.
While BrainML does not yet appear to have undergeigespread adoption, as mentioned

earlier, it was used to develop the Neuroscienfmrimation Framework.
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While purpose-built ontologies are clearly neededny neuroscience concepts are
contained in existing ontologies and terminologied are not necessarily designed
specifically for neuroscience. For example, a de&oc "hippocampus” at the National
Center for Biomedical Ontology Bioportal (Noy et, &009) reveals 642 terms across 42
ontologies. The Gene Ontology also contains manyaseience concepts such as
‘hippocampus development’ (biological process), BHreceptor activity’ (molecular
function) and ‘axon’ (cellular component) (Ashburee¢ al., 2000). Ideally new
terminologies will meld seamlessly as possible \higse existing terminologies and avoid

reinventing the wheel.

1.2.4 Databases of molecules and cdlls

Several databases that are focused on collatirgadbetut specific neuron types and
molecules motivate our work to database conneygtiVihey provide integration points and
pioneering efforts into semi-automated curatiore most extensive purpose-built cell and
molecular neuroscience knowledgebase is Sensellabh wcludes seven databases
covering pharmacology, ion channels, cell propsytifactory pathways and neuronal
models (Crasto et al., 2007a). Within the neuralagéhbases (CellPropDB, NeuronDB)
entries are linked across scales of brain regiearan, cell compartment, ion channel and
receptor. Information about odorant molecules lthieereceptors and maps of the olfactory
bulb are provided in OdorDB, ORDB and OdorMapDBpesgively. Links are provided to
the Cell Centered Database (CCDB, consisting dfileeland subcellular imaging data),

PubMed, GenBank and Ensembl. SenseLab increaspglys a wide array of domains —
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models, genetics, proteomics and imaging. SensisUabgely curated manually, with some

assistance from automated text-mining methods {€etsal., 2002) (Crasto et al., 2003).

1.25 Text miningin neuroscience

Text mining is the process of analyzing text taa@st entities and relationships. It is usually
performed on large collections of documents (ausyprhe field is closely related to natural
language processing which seeks to computatiomaltypret human language. In this thesis
we use several natural language tools for our t&3ke example is part of speech tagging
where part-of-speech tags (noun or verb for exapgrke marked. Further examples are
stemming (determine base form or stem of a worddpkenization (determine end of a
sentence). Although these tasks seem simple tleegifficult to computationally perform,
especially in biomedical text. The main problerthiat there are not enough samples to
statistically learn the complex rules (also knowsritee sparse data problem). Procedures like
part-of-speech tagging and stemming ameliorat@tbklem by abstracting words into
smaller categories. Ambiguity is another main avade which especially limits text mining
attempts to extract facts from text. This is cl@eaa seemingly simple task: extract and
expand abbreviations in biomedical literature. UWnioately, over 80% of biomedical
abbreviations are ambiguous with over 16 expansongverage (Ao and Takagi, 2005).
When both the short and long form of the abbresratire provided in a document it is
possible to correctly connect the two in roughly®6f cases with 320 search patterns. The
sentence boundary detection task of marking whesmgence begins and ends is also limited

by ambiguity, problem examples include "congeniaiss B10.D2/nSnJ" and "Hendricks et
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al." (Xuan et al., 2007). Further ambiguity is alveel when sentences are further segmented
into words. Several methods can solve these tagks@asonable accuracy and are applied

in the first stages of most text mining systems.

Given the words and their annotations, rule-basedatistical aproaches are used to
determine if they are names of important entitresr{ed entity recognition). Example
entities include genes, diseases, species andregions. Rule-based systems are derived
from general knowledge about the specific domathigmentities. In contrast, statistical
approaches employ machine learning tools to ckabsifed on examples. After named entity
recogntion, relationship extraction is requiredet mine valuable information such as
which genes are specifically expressed in a begion. In this thesis we focus on extracting

mentions of brain regions and statements that destireir connections.

Several projects have explored application of teixting techniques to neuroscience
literature. Although the goals vary, the results lanited by standardized datasets for
evaluating the methods. Textpresso for Neuroscieses a text-mining approach to provide
a neuroscience-focused search tool, indexing dv@0D abstracts and full papers from the
biomedical literature (Muller et al., 2008). Theaa Textpresso is organized using a
customized ontology based largely on selected ténmons the Gene Ontology, combined
with domain-specific concepts such as brain reg(dhdler et al., 2004). The developers of
NeuroExtract (Crasto et al., 2007b) rapidly buitteairoscience-focused database by
searching for "brain" and "central nervous systemthree major bioinformatics resources

(SwissProt, the Gene Expression Omnibus and theiRmatabank). These results and
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associated abstracts were then filtered for 71lassignce related keywords (from cell types
to brain regions). The authors show that theiresysteturns more results than a keyword
search performed on source websites (Crasto &0dl7b). Similarly, the Synapse Database
(SynDB), a database of genes involved in synaptiction, was populated by performing
keyword searches on Interpro and UniProt dataldfafiesied by automatic then manual
screening (Zhang et al., 2007). SynDB contains @4eD00 protein entries organized into a
purpose-built 177-concept synapse ontology. WhiteCB does not cross-reference to any
neuroscience related databases, it provides lmkgyhteen general bioinformatics resources.
SynDB has an extensive web browser interface, aligwa researcher to browse proteins
using the ontology, functional categories, protiimains, species, chromosomal location
and protein families. While these resources allengtiv, they represent efforts to make

access to neuroscience knowledge easier and faster.

A theme running through many cell and moleculaabases is the use of information
extraction from the biomedical literature. Litenaumining is an active area in

bioinformatics (for reviews see special issue aéfngs in Bioinformatics (Koehler, 2005))
and there are clearly additional interesting oppatites to apply natural language processing
in domain-focused ways. Text mining shows up indiscussion of several other data

modalities in the next sections.
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1.2.6 Connectivity and connectomics

Several existing neuroinformatics resources foeusamnectivity in a limited set of
organisms. Although restricted, these resourceggeosaluable data for integration and

evaluation throughout this thesis.

Brain connectivity can be thought of as a strudtpraperty of neurons (cell A connects to
cell B) or of anatomical regions (inferior olivegpects to the cerebellum). A “connectome”
refers to a comprehensive map of connections abbtiese scales. Measuring connectivity
has a long history in neuroscience, and effortg¢ate exhaustive maps and databases are
not new (Sporns et al., 2005). However, due taiffeculty of collecting connectivity data,
the only complete nervous system connectivity magoanectome is fo€. elegangWhite

et al., 1986). Clearly, having a good-quality m&pwuman brain connectivity would serve as
a cornerstone for understanding brain functionstnetture. The Human Connectome
Project has recently begun to achieve this goahagnetic resonance imaging 1,200 healthy

adult brains (Marcus et al., 2011).

One current application of connectivity is in thevdlopment of models. For example,
connectivity data has been used to create modéteotlatively well-studied primate visual
system (Itti and Koch, 2001;Serre et al., 2007)aA€xample of an ambitious modeling
project that will need connectivity informationgtBlue Brain project envisions

computational modeling of the entire brain (Marky&006).

Currently connectivity data is sparse for humanswseent databases focus on model
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organisms. The Brain Architecture Management Syg@f&MS) focuses on connectivity in
the rat brain, with over 40,000 records (Bota gt28)03;, 2005). CoCoMac is a searchable
database of connectivity data from over 400 litaateports in the Macague monkey
(Kotter, 2004). A related database, CoCoDat, costdetailed microcircuitry reports
(Dyhrfjeld-Johnsen et al., 2005). Finally, the cdet@ wiring diagram of th€. elegans

nervous system can be downloaded from http://wwwmatlas.org/ (Chen et al., 2006).

An interesting experimental project to populateramtivity databases using natural language
processing is part of the Neuroscholar project (iBuand Cheng, 2006;Burns et al., 2007).
Neuroscholar is able to classify text with resgecteveral experimental parameters of
interest in tract tracing studies with 80% preaisiBurns et al., 2007). Another part of the
Neuroscholar project, NeuARt Il digitizes analokases to create a flexible brain mapping
infrastructure (Burns et al., 2006). As currenthpilemented, Neuroscholar is designed to
operate with human supervision to assist manuaiticur efforts that underlie projects like

BAMS and CoCoMac.

There is interest in integrating connectivity daith other modalities. Recently the
Senselab team converted CoCoDat into OWL formatintegration with NeuronDB
(Crasto et al., 2007a). BAMS is also involved itegration efforts, and provides links

between neuron and cell associated molecules o t@gions.
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1.2.7 Functional and morphometric imaging

Brain imaging refers to non- or minimally-invasitezhnologies for measuring brain
anatomy or activity in live animals (often humansrhaps the best known of which is
functional magnetic resonance imaging (fMRI). Thesshnologies provide results at the
level of brain regions by providing functional asstions and structural descriptions. These
brain region linked results are published in therascience literature at an increasing rate
and present a potential target for our text minuagk. There is extensive interest in making
imaging data sharable and comparable for the pagpofkarchiving and meta-analysis, and
in integration of imaging data with other modaktié&\s mentioned earlier, imaging
informatics is a relatively well-developed fielddathe subject of recent review (Brinkley and
Rosse, 2002;Toga, 2002;Nielsen et al., 2006), sonkegive the briefest possible overview

of this area.

Several repositories and databases of structudafuanctional MRI images exist, for example
fMRIDC (Van Horn et al., 2004). Some systems prewcttensive additional analysis tools.
The Surface Management System Database (Van EX3@9), Brainmap (Laird et al.,

2005), NeuroSynth (Yarkoni et al., 2011), and thed® database (Nielsen et al., 2004) allow
visualization of brain locations and searches basea reference coordinate system (Nielsen
and Hansen, 2004). The Brede database providegasefand numerous cross references to
a variety of bioinformatics resources. Brede estligk to genes, diseases, receptors (via
SenselLab) and brain regions (Braininfo, CoCoMdat)e Brede database also provides

correlated volumes for each experiment (Nielsentdauasen, 2004), opening possibilities for
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meta-analysis, and uses text mining to link arsi¢tebrain activation studies (Nielsen et al.,
2004). NeuroSynth is unique in its extensive usexitf mining to extract brain activation
coordinates from fMRI studies. By parsing resutiiés of full text papers and associating
informative keywords it automatically forms thoudarof structure to function relationships

(Yarkoni et al., 2011).

A specialized form of magnetic resonance imaginfgslon tensor imaging (DTI), can be
used to generate connectivity maps (“tractograpbf/tiving human brains (Le Bihan et al.,
2001;Parker, 2004). For example, DTI has been tesddscribe connections between the
thalamus and cortex (Behrens et al., 2003). IdWdescans the whole brain non-invasively
it has the potential to be used to collect conrdygtdata from large samples of humans and
then related to other variables such as genetiati@r and psychopathology; this is already
an active area of study (Kubicki et al., 2007).haligh a few DTI datasets are available
online (Evans, 2006;Hermoye et al., 2006), to owwedge there are no accessible

databases of connectivity derived from DTI.

1.2.8 Geneticsand geneexpression

The wealth of bioinformatics methods and resouatdbe gene level facilitates our study of
the brain. In Chapters 5 and 6 we employ this vdalicharacterize relationships between
anatomy and gene expression patterns in the rdwlaimt It is generally much easier to
analyze genes than behaviour or neuroanatomy hanthks between them have frequently
been elusive, especially as applied to “higher’anigms. Recent advances in genome

analysis (founded on detailed physical and geme#ips) and in expression analyses (e.g.,
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using microarrays) have meant that bridging thelggtpeeen genotype and phenotype is
getting easier, but is still limited by resolutianthe organismal level. This is because

behaviour and anatomy are highly complex and dfteaght to be heterogeneous.

To our knowledge the best-developed effort to keitlgs gap is GeneNetwork
(http://'www.genenetwork.org/ ) (Wang et al., 2003gneNetwork uses RNA profiling data
from recombinant inbred mice which have been extehsphenotyped (behaviourally and
otherwise) and genotyped. Because of the inbragdeaf these mice, but the relatively large
genetic differences between lines, variabilityhest phenotypic level can be rapidly related to
variability at the sequence level. Thus, using@emeNetwork website, one can search for
loci with variants that correlate with quantitativaits including expression levels
(expression quantitative trait loci, eQTL) and beabar. For example, Korostynski et al.
used GeneNetwork to help identify candidate geaesdriation in opioid preference
between different mouse lines (Korostynski et2006). Additional applications can be
found referenced on the GeneNetwork website. We that GeneNetwork is a part of

BIRN and contributes to its goal of studying muitedal data from mouse models of

neurological disorders.

Understanding differences in the genes expressédiffanent brain regions and neurons has
always been of value for generating hypothesestdimw the brain works, even when
uncoupled from genetic variation in individualsr Eaample, knowing what
neurotransmitters are synthesized in a brain regiogs a major clue as to what the neurons

there are capable of doing. Spatially and tempg@ijanized gene expression during
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development plays a crucial role in determiningulignate structure of the nervous system.
Besides GeneNetwork, there are two types of ressutat have emerged in the analysis of
expression in the nervous system: spatially resbatases, and expression profiling
databases. The latter also include data from dtigérthroughput techniques such as
competitive genomic hybridization (CGH) and chrom&anmunoprecipitation on

microarrays (ChlIP-chip).

| make extensive use of the Allen Mouse Brain A{laBA), especially in Chapters 5 and 6.
The ABA contains high resolution colorimetiicsitu RNA hybridization data for most of
the known mouse genes, in the adult brain (Lead.e2007). The ABA is primarily
accessible via a sophisticated web-based graphtesface (Hochheiser and Yanowitz,
2007). The ABA allows searching for genes by sintyaof expression patterns
(NeuroBLAST), and is making summarized data on esgion patterns available for
download (Jones et al., 2009). ABA has also couateith a digital mouse brain atlas (Dong,
2007). There are a number of other atlases, whiehoaver coverage (hundreds to a few
thousand genes) but complement ABA with additideatures. The joint Brain Gene
Expression Map (BGEM) and Gene Expression Nervysseth Atlas (GENSAT) projects
use radioactivén situ hybridization and fluorescent protein reporteespectively. GENSAT
is now a core database of NCBI's Entrez system.B@ad GENSAT differ from ABA in
that they include data from multiple embryonic stags well as adults. Another distinction
is that GENSAT's protein reporters often fill theunons they are expressed in, revealing

projection patterns as well as the cell bodies @=&tral., 2003). Additional information and
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comparison of these and other atlases are giveamkin (2006).

RNA expression profiling using microarrays or saggeebased approaches (SAGE and
RNA-Seq) stands in contrast to atlases in thaiapaisolution is (usually) ignored at the
gain of simultaneous quantitative measurementsamfdands of genes in one sample. This
allows the creation of data sets surveying expoessver many different conditions. As in
many areas of biology there is much interest ingisixpression profiles to characterize the
nervous system and its disorders (Mirnics and Ray&004). In some ways, expression
profiling is poorly suited to analyzing the nervaystem, as the tissues that are most easily
available are highly heterogeneous. This heterdgeresults in dilution of biological
signals: genes of interest may be expressed inafdw cells and lost in the background, or
changes in expression might appear smaller thanrédadly are. This makes the application
of profiling to the nervous system a demandingvagtihat can push the technology to its
limits. While this discourages some, it highligtite need to carefully design and analyze
experiments, and take advantage of prior knowl¢dgrigh integration (the approach of

GeneNetwork) and meta-analysis.

Expression profiling data is readily found in peldiata repositories, the most important of
which are GEO (Edgar et al., 2002) and ArrayExp(Psskinson et al., 2007), which
together contain hundreds of brain-related expoessiudies. A thorough review of
expression studies in the brain (Aarnio et al.,53)00entified 448 papers as of June 2004, of
which less than one in five had data availablenanlA more recent review identified about

400 brain-related studies with public data in GE@ ArrayExpress (Wan and Pavlidis,
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2007).

To use this mass of data, more tools are neede@. & ArrayExpress offer a variety of
useful analysis tools, but comparing data acras$ies is difficult. To that end, third-party
data analysis tools are beginning to appear, ame s these are geared to neuroscience.
Gemma (Lee et al., 2004) ( http://chibi.ubc.ca/Gemnwhich is developed in our

laboratory, offers tools for the collective ana$ysf multiple brain expression data sets, and
related tools without a neuroscience focus, arereff by a number of other systems (Rhodes
et al., 2004;Assou et al., 2007;Pan et al., 2007@grating this type of analysis with spatially
resolved atlases will be an important area of agt(&unkin, 2006). Expression data from
microarrays can be compared to in situ data suthea8BA, in order to aid interpretation

(Lee et al., 2008).

1.29 Conclusion of literaturereview

An editorial by David Van Essen (2007), identifeekey area where effort is needed in
neuroinformatics: well-populated databases thaahle to efficiently interoperate. This
requires standards and terminologies, and commanigptance of the idea of sharing data.
Dr. Van Essen envisions a future in which it wil possible to use informatics resources to
rapidly answer natural-language questions suct/sat parts of the brain are abnormal in
individuals with autism?" (Van Essen, 2007). Whiles might still sound like science

fiction, our review of the state of the field makesoptimistic that some of Van Essen's
vision is reachable in the near future. Theregseat deal to be done, but as | demonstrate in

my thesis, a bioinformatician can already explovesalth of neuroscience information
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stored within general and domain-specific bioinfatis resources at multiple scales from

molecules to behaviour.
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Table 1 Data domainsin neuroscience

L evels of Nervous system or ganization

Examples of data modalities

Organism behaviour, physiology
functional and anatomical imaging, brain
Whole Brain
region connectivity, connectomes
Brain region microcircuitry, electrophysiology
Cells neuronal morphology, electrophysiology

Cellular Compartments

protein localization

Molecules

genotypes, protein interactions, gene

expression profiles
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Table 2 Neuroinfor matics r esour ces

Proj ect Domain URL
Allen Brain Atlas Spatial gene expressior http:/imtrainatlas.org/
BAMS Brain architecture: http://brancusi.usc.edu/bkms/
molecular, cellular, and
connectivity
BIRN Research network http://www.nbirn.net/

Braininfo, Neuronames

Neuroanatomy

http://brainimficc. washington.edu/

BrainMap

Functional neuroimagin

) http://www.brairprarg/

Brede database

Functional neuroimagiplattp://hendrix.ei.dtu.dk/services/jerne/bre

meta-analysis

CCDB Cellular and subcellular
imaging http://ccdb.ucsd.edu/
CoCoDat Neuronal microcircuitry | http://www.cocomac.org/cded/
CoCoMac Connectivity data of http://www.cocomac.org/
macaque
fMRIDC Functional neuroimaging  http://www.fmridcgir
Gemma Gene expression meta-| http://chibi.ubc.ca/Gemma/
analysis
Genenetwork Systems genetics http://www.genenetwagk
GENSAT Spatial gene expression|  http://www.gensat.org/
Neurodatabase Neurophysiology http://neurodatabase.
Neuroinformatics Portal Piloff Resource catalogue tp:Mvww.neuroinf.de/

Neuroscience Information
Framework

Resource catalogue and
data portal

http://neuinfo.org/

NeuroSynth Functional neuroimaginghttp://neurosynth.org/
meta-analysis

SenselLab Neural systems, neuropsittp://senselab.med.yale.edu/
olfactory pathways, drugp

SumsDB Brain mapping http://sumsdb.wustl.edu:8081/

SynDB Synapse related proteing  http://syndb.cbigxkucn/

WormAtlas C. elegans neuronal http://www.wormatlas.org/

connectivity

Textpresso for Neurosciencs

Genes, anatomy, dru
and other knowledge
extracted from the
literature

yhittp://www.textpresso.org/neuroscience/
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1.3 Chapter Summaries

The general aims of this thesis were to automdyicallect large amounts of connectivity
knowledge (WhiteText project, Chapters 2-4) andharacterize relationships between

connectivity and gene expression (ABAMS projectaftiers 5-6).

The objective of the WhiteText project is to bualdystem capable of automatically
extracting neuroanatomical connectivity statemé&ot® neuroscience abstracts. This

objective is separated into three subtasks, eachsponding to a chapter:

Chapter 2 describes the first step of recognizihgman author refers to a brain region. The
input is a biomedical abstract and the output iatioas of brain regions. In natural language
processing research, this is known as named eptignition. The chapter describes
application of methods used by existing neuros@etatabases and a state of the art
statistical modeling method (conditional randonidjeEvaluation was performed against

manually annotated brain region mentions.

Chapter 3 focuses on the task of converting biegmon mentions to brain region concepts in
a neuroanatomical lexicon. This conversion is &s@mwvn as “normalization” or “resolution”,
and is necessary because many names can refesmgle brain region concept. Manual
evaluations were performed to gauge precision amdrage across a training dataset. For a

given abstract, species of study explained a langeunt of variance in the evaluation
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measures. The tuned procedure was applied to andgd corpus of over 12,000 abstracts,

resulting in over one hundred thousand brain regientions.

Chapter 4 builds on the work of Chapters 2 and 8Jajfuating methods for extracting
connectivity relationships. Simple and advancedti@hship extraction techniques are tested
on a manually annotated set of 1,377 abstracts. difapter tests if methods for extraction of
protein-protein interaction statements generabizextraction of connectivity relationships.
The most accurate method was selected and applibe targe set of automatically
extracted brain region mentions from Chapter 3. rEselt is over 28,000 predicted
connectivity statements. A normalized set of thetstionships is compared to an existing

source of neuroanatomical connectivity.

The general aim of the ABAMS project was to appid éest computational approaches for
elucidating the transcriptome and connectome. Thective was to analyze datasets
describing cell-type-specific gene expression, eatikity, and regional expression.
Specifically, we sought to test the hypothesis thate is a statistical relationship between
the connections and gene expression levels ofichaaV brain regions. This hypothesis is
motivated by a large number of gene expressiorpetthat show unexplained spatial

variation across the nervous system (Lein et BD72

Chapter 5 describes a large-scale analysis of ggmession and connectivity in the rodent
brain. Complex patterns of gene expression indidemt brain are examined in the context of
regional brain connectivity and differences in gkl populations. Two novel patterns of

mouse brain gene expression showing a strong defeegi-correlation are identified.
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The patterns contain genes that mark neurons agabeindrocytes, suggesting they reflect
regional differences in cellular populations. Ird@idn, the expression level of these patterns
is correlated with connectivity degree, with rega@xpressing the neuron-enriched pattern

having more connections with other regions.

Chapter 6 further examines relationships betweee gepression and brain wiring in the
adult rodent brain by analyzing shared connectidhs.analysis shows that adult gene
expression signatures have a statistically sigamficelationship to connectivity and this
effect is not entirely attributable to spatial @ations. Optimized lists of several hundred
genes that carry significant information about asiivity are examined in detail. To
overcome the effects of noise, replicate assaye weed to create a smaller high confidence
list of genes. Gene ontology analysis and liteetaview were performed on the lists to

identify functional themes and associations torbdasorders.
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Chapter 2: Automated recognition of brain region mentions’

2.1 Introduction

Bioinformatics has proven the value of databasimdjfarmalizing knowledge. Traditionally
much of the focus is on molecular biology but g@ggbortunities exist in neuroscience (Akil
et al., 2011). One means of building, or at leastigng, knowledge bases is text mining, or
the automated extraction and formalization of infation from free text sources such as the
biomedical literature. There has been much intenespplying text mining to extracting
information about genes and proteins. In the Bia@ve 2 challenge, 44 teams competed to
extract, resolve and link protein and gene ment{&nallinger et al., 2008), and the methods
work well enough to be of practical importance lieating databases (Leitner et al., 2008).
There has been less work on how to apply such tgeés to domain-specific knowledge in

neuroscience.

One entity of interest in the neuroscience litaia mentions of neuroanatomical regions
(which we call brain regions for short). By analdgythe task of extracting gene mentions,

the ability to computationally extract mentionsbodin regions would be of potential value in

2 A version of this chapter has been published. ¢frén Lane S, Xu L and Pavlidis P (2009). Automated
recognition of brain region mentions in neurosceeliterature. Frontiers in Neuroinformatics. 3:29.

doi:10.3389/neuro.11.029.2009
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building neurobiological knowledge bases. Thisasduse many neurobiological studies
only make sense in the context of the specificrbragions studied. Furthermore anatomical
or functional connections between regions are contyndescribed. Computationally

extracting these locations would allow faster orgatmon and mining of neuroscience data.

We hypothesize that many of the methods and appesateveloped for extraction of
information about genes can be applied to extracifanformation about brain areas. This is
an attractive approach because many of the chaleinganalyzing text for information

about genes are faced in trying to mine informa#ibaut brain regions. These challenges
include abbreviations, synonyms, lexical variatam ambiguity. For example, the gene
“carbonic anhydrase 1” has synonyms including “oadie dehydratase I”, “Carl”, and
“CA-I". Its official symbol, CA1, is ambiguous irhat it also matches a drug (the abbreviated
form of coumermycin Al) and a brain region (the Cld of the hippocampus). Similarly
brain regions have a variety of names and abbiewsgtand can be confused with other
types of entities. Approaches have been developeaddressing these problems for genes,
So it seems reasonable to expect that the lessangeld will apply at least partly to other
domains. However, before these approaches canpiie@dpo brain regions, a “gold
standard” corpus is needed. Such a corpus is ndedbds training data for algorithms and
for evaluation of methods. To our knowledge, ndhsugsource exists for neuroscience text

mining.

Past efforts in neuroscience text mining providedtéd ability to retrieve brain region

mentions, by looking for exact matches of brainaegiames from small lists (Crasto et al.,
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2003;Crasto et al., 2007b;Muller et al., 2008).sTlimits the recall to a small number of
(usually broad or large) brain regions. The mostresive effort is “Textpresso for
Neuroscience”, with a list of 4,800 brain regiomms (Muller et al., 2008). Unfortunately
evaluations of these tools are lacking, as the ousthvere not checked against a gold
standard set of annotated abstracts, leaving ancurajuestion. The Neuroscholar project
was the first to explore advanced natural langymgeessing methods to extraction of
neuroscience data (Burns et al., 2007). Focusinmgeomnoanatomical connectivity, Burns et
al. sought to extract and annotate detailed statenieom full-text articles. Their goal was
extraction of relatively detailed experimental paeters and descriptions of results. They
manually annotated 1047 sentences from 21 arti€ked. spans were tagged with five
different labels including two that representedrbragions. These annotations provided the
test and training examples for a CRF that was @bproduce the same tags at an overall
79% F-Measure (performance for brain-region redogmialone was not reported).
Although it was a small dataset they found the €B#d be joined with manual curation to

increase annotation rate by 255%.

The goals of the current work are two-fold. Fivgg provide a reasonably large corpus of
article abstracts manually annotated for brainaegnentions. Second, we develop and
evaluate methods for extraction of brain region tiegs from text, using the corpus. This
sets the stage for further efforts at improving apglying text-mining methods to

neuroanatomical questions.
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2.2 Methods

2.2.1 Corpuscreation

Articles for the corpus were initially selected mahy but later an automated procedure was
employed. The first 119 articles in the corpusenszlected with the help of PubMed
(http://www.ncbi.nim.nih.gov/pubmed/) searches gdeywords such as "afferent” and
"efferent”. The process was then automated to aserepeed of curation and reduce bias in
selection. The automated procedure picks randanoiesrfrom the Journal of Comparative
Neurology. There was no limitation placed on th@dmrganism (rat and cat were most
common but insects were the topics of some absjratte experimented with other search
strategies, for example the MeSH keyword of "Ne&ahways". The Journal of
Comparative Neurology was chosen to maximize thebar of abstracts that included brain
region mentions. It has also been used in prewauk (Burns et al., 2007). A total of 1,377

abstracts were used.

The selected abstracts were retrieved in MEDLINEL@rmat for preprocessing. For each
abstract the PubMed identifier, title and abstveete stored. The abstract text was then
processed by the Schwartz and Hearst abbreviatjpansion algorithm (Schwartz and
Hearst, 2003). This identifies the short and loognis of abbreviations in the abstract with
high accuracy. All short forms of the abbreviatame replaced with the long form followed
by its short form in parentheses. Thirty-two alssg2.3%) were reloaded without
expansion due to encoding errors. The abbreviaipansion changes are expressed in the

XML markup and can be reversed. Finally, annotadoesprovided the abstract and title
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for annotation. The General Architecture for Tergteering (GATE, http://gate.ac.uk/)
was used to create, compare and visualize the daduamnotations. Additionally, GATE

provided a helpful interface and API for managihg tlocument collections.

2.2.2 Manual annotation guidelines

The annotators were presented with the title astkatt text in the GATE interactive
document display. Using the computer mouse, regibihext were selected and then
“tagged” as representing a brain region mentiore @motator (the “primary” annotator)
annotated all abstracts. A secondary annotatonmetated a random subset of abstracts
annotated by the primary annotator (to allow estiomeof the human component in
annotation accuracy). The annotators used theirlowwledge of neuroanatomy,
supplemented by online resources such as medutamhries, neuroanatomical atlases and

BrainInfo (http://braininfo.rprc.washington.edu\n initial set of guidelines were developed

prior to the annotation starting; these guidelwese amended in response to the outcome of

periodic discussion of problems and manual reviéth® corpus.

Brain (and spinal cord) regions were the primarge#s of our manual annotation efforts.
We annotated all mentions of brain regions in lb&habstracts and titles according to our
guidelines. Although we annotated all brain regentions, our guidelines are influenced
by our interest in mentions that describe higheelléeatures such as neuroanatomical

connections.

A key set of guidelines involves the level of deta particular, we did not attempt to
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annotate details such as specific cortical layarpart because they cover the whole cortex
but also because these were judged to presentdaioad! challenge that would be a topic of
future work. Conversely, broad mentions of “systémsre not annotated (e.g.
“orexin/hypocretin system” or “vestibular systemPMowever, mentions such as “cortex”
were captured. Further, mentions of white mattts or fasciculi were not annotated.
Annotations also included text that modified thentian. An example is "motor related areas
of the hippocampus". We annotated the adjective$anf brain regions, for example
"thamalic” or "cortical". We annotated parts tharevidentified by a number (primarily this
applied to Brodmann areas or cortical regions sisck1). Brain region mentions were not
extended to include organism name, so “rat hippgeehwould always be annotated only
as “hippocampus”. We annotated text segments défatred to a specific region but might
not be resolvable without more context. For examplan abstract about the cerebellum we
might find mentions of “medial zone”. As a fragmgimhedial zone” cannot be assigned to a

specific region.

One particular problem area is conjunctions or dmation ellipses that connect two entities
together. Examples are "dorsal and ventral coeXlfower thoracic and lumbosacral
segments" which could be expanded to “dorsal catekventral cortex” and “lower

thoracic segments and lower lumbosacral segment&’ difficulty is determining whether
these should be broken up into two brain regiontiaes or treated together. Past annotation
efforts have recognized this difficulty (Tanabekt 2005). Unlike abbreviations there is no
reliable method to automatically expand such exgioes (Buyko et al., 2007). In the corpus,

annotation of conjunctions varies except in thdralbts annotated by both annotators where

34



consistency was enforced. To achieve this, the evbohjunction was annotated if the

contained brain region names have been shortened.

2.2.3 Dictionary matching

To test dictionary matching approaches we created lists from neuroanatomical
nomenclature sources. Although several lexiconst e focused on Neuronames, the
largest source of brain region names (Bowden arishbhy, 2003). We extracted terms from
both Nomenclatures of Canonical Mouse and Rat Bidases and the Ontology of Human
and Macaque Neuroanatomy. From the later, a tb&HU62 terms were extracted from the
primary names, synonyms, ancillary structures aatthlterms. We additionally extracted
1,900 terms from the Nomenclatures of Canonical $¢cand Rat Brain Atlases that
organizes terms from mouse (Hof et al., 2000;Paxara Franklin, 2001;Dong, 2007) and
rat brain atlases (Swanson, 1999). Since we exabbrkviations within the abstracts we

excluded abbreviations contained in Neuronames.

To match the Neuronames terms to the documenwexised a GATE Gazetteer. The
gazetteer identifies occurances of names basedoordpd lists. Bracketed text in
Neuronames terms were removed before matching.eibes Gazetteer to use case
insensitive exact string matching. Resulting antamta were joined to remove overlapping

matches.

To compare our method to that used by “Textpressaoduroscience” we used the lexicon

files from http://www.textpresso.org/neuroscieneéh case sensitive exact matching. To
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further replicate conditions used by Textpressoeverted the expanded abbreviations in the

abstracts and did not filter abbreviation termsrfithie lexicon.

2.2.4 Conditional random field

For automated annotation of brain region mentiaresapplied a linear chain conditional
random field (CRF) using the Mallet software toolkiafferty et al., 2001;McCallum, 2002).
A linear chain CRF is similar to a hidden Markovaeb(HMM). Like an HMM, a CRF is a
method for sequence processing that takes a sérggsnbols (in our case, words) as input
and provides as output the predicted state (ircase, whether the symbol is part of a brain
region mention or not). Unlike HMM'’s, in which ségprobabilities are conditioned only on
the state of the previous token, CRF state proiiasilare computed by conditioning on the
entire input sequence. Therefore, it cannot comirer@robabilities of labellings across
sentences. In return CRF models allow token desonip (features) with complex
dependencies. For example, HMM'’s use the currdmtrtdype but a CRF feature design can

examine the previous and next two tokens.

To start, the CRF model must be trained, by comgutatures for tokens with known label
sequences (training set). In our case each fehig@ Boolean value (details on the features
are given in the next section). For example a featamed “text=red” is true if the current
token is “red”. These features combined with tladestransitions form feature functions. The
feature functions are then given weights, so ttedexific feature can influence the

likelihood of specific state transition. The weiglaire learned from the known state

sequences using an optimization procedure. For pbearim Table 5 we can see that the
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probability of the label sequence changing fronswmlg of a brain region to inside is
increased when the preceding token is “the”. Fsirdequences or sentences, probabilities of
state sequences are computed. The most probatdesstpience then forms the predicted
brain region mention spans. For further detail wmipour readers to a more complete

introduction of CRFs (Wallach, 2004).

The GATE software was used to segment the absirdotsentences and tokens. For Mallet
we used default CRF settings from the SimpleTaglzes except Gaussian variance was set

to 1.

2.25 Features

As mentioned, all of the features we used wererlinhus the representation of each token
was a long binary vector representing, for eactufeawhether it was present for the given
token. The simplest feature is the token itselfiegated for every word/token in the corpus.
We tested orthographic features, for example aengagse first letter or presence of a
numerical digit. The part of speech tag and lemfrthe@word were computed and tested.
Like the text features, the lemmas of every worcblbee a feature that is set to true if a
word’s canonical form matches that lemma. To deitegrfemmas and tags we employed a
model for the TreeTagger software (Schmid, 1994} was extensively trained on the

GENIA biomedical corpus (Kim et al., 2003) for STN&-IE (Saric et al., 2006).

The token is compared to several term lists aniddéxesources. For complete matching a

word and neighbouring words must exactly matchaentmegion name in one of many
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neuroanatomical lexicons. Further we segmentedridia region names into word n-grams.
For example “ventral anterior nucleus” is fragmentgo the 2-grams of “ventral anterior”
and “anterior nucleus*. The tokens are then mataugzinst these n-grams allowing relaxed
matches to the lexicons. We further employed wistd for neuroanatomical terms
describing boundaries or regions (e.g. bank, ssilecface, area), neuroanatomical directions
(e.g. dorsal, superior), root neuroscience terngs @hiasm, raphe, striated) and stop words
(e.g. on, this, is). Root neuroscience terms wet@eted from Dr. Eric Chudler’'s resource
for neuroanatomical, neurophysiological and newopslogical terminology
(http://faculty.washington.edu/chudler/neuroroohht We used the stop word list from the

Snowball small string processing language soft\lattg://snowball.tartarus.oygWe added

regular expression features that match common teglfor example Brodmann's areas and
spinal vertebrae. Finally, we employed window feasuthat add context information to the
current words feature set. This is done by encof#iatures from previous and following

words into the current word's set.

To rank the context features we averaged featurghtgefrom eight cross-validation folds.
The weights are from CRFs using only the text fiesatith a context window of two tokens
on each side. We show the top weights for the statesition of outside a brain region
mention into inside one, which occurs at the fivetd of a brain region mention. We filtered
out the direct features from the current word sv&eonly the weights and rankings of
features derived from the neighbouring words. Nextcalculated a normalized score by

multiplying the weight by the natural logarithmitsf frequency.
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2.2.6 Experiment setup

Manual feature design and initial tests were pemnfat using eight fold cross-validation on
the 1,146 abstracts annotated only by the primanpttor. Annotations from both curators
were merged by a logical OR operation at the chardevel (if an annotator marked that
character as a brain region then it was kept).e®ers of an abstract were not split between
training and testing sets. Each sentence becanmpahinstance for the CRF. Final results

were generated on the same eight fold cross-vaiacross all abstracts.

2.2.7 Evaluation

We used standard evaluation measures that ignegrenggatives and operate at the
annotation level instead of the token. Precisioteiined as the proportion of predictions
matching the annotated spans with recall beingptbportion of annotated spans that match
a prediction. F-Measure is the harmonic mean dofipi@n and recall. In the strict case
annotation spans must match exactly. Lenient measare computed by counting partially

overlapping spans as matches.

2.3 Reaults

In total 1,377 abstracts were annotated by thegmrourator. A second curator annotated
231 of those abstracts for agreement evaluatioa.ailerage number of brain region
annotations per abstract from the primary curatas 3.2 and 14.6 for the second.

Interannotator agreement was 90.7% (F-measuregasmg to 96.7% for the lenient
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measure. Table 3 displays the top forty occurrimgtions and their frequencies in the

corpus.

The GATE tokenizer split the corpus into 17,24 7teroes then 461,552 tokens with 46,340
labelled as brain regions. On average each brgiomes 2.3 tokens in length. We observed

a large vocabulary of 17,901 token types.

Lexicon-based methods directed from neuroanatoraitases performed poorly on the
dataset, reaching 43.8% F-measure (precision=57&%ll=35.5%). We expected a higher
level of precision; we believe variances in applyihe annotation guidelines account for
some of the false positives. Neuronames containsstéor layers, systems and tracts all of
which we did not annotate. In addition, TextPressatains abbreviations which possibly

cause additional false positives.

The next best performance of 66.4% F-Measure wamatl by a CRF using 625 features we
derived primarily from neuroanatomical lexiconsellaBmma and text based CRF’s
demonstrate the effect of the context window. Theassifiers only look at the token type,

or word. Without the window features the text ba€& achieves 66.7% F-measure.
Adding information about the previous and next tmards increases F-Measure to 76.1%.
By combining any two of the designed, lemma and feeture sets the CRF reaches F-
measures in the range 76-78%. Combining the tekteanma features only slightly

improves on text alone suggesting the featuresamesimilar. By combing all three feature

sets, the F-Measure peaks at 78.6%, with mosteofémn from recall. This CRF that
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combined all features perfectly predicted all br@gion mentions for 174 abstracts that had

on average 6.8 brain region mentions per abstract.

We were unable to clearly determine which of owigieed features contributed most to the
final performance. This is due to the high depengdietween the designed features and the
simple text features. Furthermore, F-Measure vdryesbout 1% across different cross-
validation splits, so improvements of less thand®not significant. Throughout Table 4
the recall rate is below precision. This suggesiaymovel brain regions are left
unrecognized, also known as out-of-vocabulary etrateed, we find that on average 19.3%
of text features are observed in the test foldsbuin the training folds. To test the impact
of this effect, we repeated the experiment buwatg the sentences of an abstract to be
spread across training and testing sets. This dseseunseen words to 10.4% because new
terms are often mentioned many times throughouwatbstract. At this sentence level
performance improves; F-measure reaches 0.813tketgain in recall twice that of
precision. This suggests that, not surprisinglyfggenance can be improved simply by

having more diverse training data.

We found some of the poorly classified examplesevgtudies of brain regions from insects
or other organisms underrepresented in the coffhese abstracts tended to lack relevant
training samples, and the regions they mentiomat&ontained in the brain region lexicons
we collected, resulting in poor recall. To exantimis effect in more detail, we used a subset
of abstracts for which we annotated the organisstudy. This subset was further reduced to

those studying monkey, cat, rat and mouse brairfall Aeatured CRF trained on this set of
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214 common organism abstracts demonstrates mubkrpgrformance than a CRF trained
on a random subset of the same size. This is damated primarily by recall which
increases to 75.7% from 67.6%, combined with a kimadease in precision we find F-
Measure increases to 77.8% from 72.5%. In termsséen features, the random set has
20.2% compared to 17.6% for the common organisnil$ed suggests that both sets have a

similar out-of-vocabulary error.

We began by assuming that expanding abbreviatotisetfull forms would increase
performance. As a test of this assumption, we teddhe expanded abbreviations back to
the original, resulting in an F-Measure decreasandf 2.1 (to 76.5%). If we include the

Neuronames abbreviation terms as an added fe#tisrdifference is reduced to 1.4.

We observed that coordinating conjunctions (seeéhbtig) cause a significant amount of
error. Examples are “middle and caudal amygdaldhmpocampus and amygdala”. Five
percent of annotations have a similar form with &8otations in 403 of the abstracts
containing “and”, “or”, comma, semicolon, or a $laBy removing these abstracts we
remove annotations that span conjunctions, theirenggabstracts still have conjunctions
but each part is annotated separately. By traiamgjtesting the CRF on the reduced set of
974 the F-Measure increases to 79.9. This is sugmf compared to 76.5% reached by a
CRF trained on a random set of the same size. iMetbe consistently annotated
conjunctions the strict precision gains the mostjevenient precision is almost unchanged.
This suggests both datasets produce similar predgcbut consistent annotations produce

more precise spans.
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Table 5 presents the context feature weights deffieen a text only CRF. The window size
ranged from the two preceding and following tokeXighough we only display the top 20,

this CRF has over 300,000 weights for 17,901 tdipas times 5 token locations across four
state changes. As expected common prepositiondpasdions are the most informative.
Interestingly, “rat” and “monkey” have top scorésseems the CRF learned that an organism
name often precedes a brain region mention. An@hty is “projections” that is

informative when seen two words before the curtekén. The importance of this
connectivity-related term makes sense given thie hignber of tract tracing experiments in

the Journal of Comparative Neurology.

We found several techniques frequently used ingé@@d biomedical named entity
recognition research did not improve performanagd€d by work on gene name extraction
we experimented with bidirectional parsing and bemig-inside-outside labels (Hsu et al.,
2008). We processed the text using MMTx and ex@échdtch semantic features (Aronson,
2006). We tested feature induction (McCallum, 20@8)extension of the CRF framework.
To treat the abstract as a whole we tested treatich abstract as a sequence instead of its
sentences and carried the features from the fiesition of a word to all the following. The
large vocabulary suggested semi-supervised leamaghelp; we tested a self training
approach using an additional set of 3,881 unlabellestracts. Unfortunately, all of these
methods failed to produce a significant increasgeiriormance when compared to our best

results.
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Table 3 Top 40 frequently occurring mentions

Mention
retina
retinal
spinal cord
cortical
superior colliculus
cortex
olfactory bulb
brainstem
thalamic
thalamus
hippocampus
hypothalamus
lateral geniculate nucleus
olfactory
cerebellum
thalamocortical
suprachiasmatic nucleus
amygdala
hippocampal
optic nerve
forebrain
striatum
inferior colliculus
visual cortex
cerebral cortex
basal forebrain
nucleus of the solitary tract
spinal
cerebellar
globus pallidus
midbrain
periaqueductal gray
locus coeruleus
basal ganglia
nucleus accumbens
substantia nigra
v2
area 17
prefrontal cortex

Frequency

313
280
256
239
142
140
134
127
122
115
108
100
92
92
86
85
83
78
76
74
73
73
72
71
69
68
64
64
63
61
60
60
59
57
55
55
55
54
52
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Table 4 Results from evaluated techniques

Strict L enient
Name Precision Recall F-Measure Precison Recall F-Measure
TextPresso L exicon 0.529 0.185 0.274 0.824  0.288  0.427
NeuronamesLexicon 575 0355  0.438 0.839 0521  0.643
Features CRF 0.751 0595  0.664 0889 0704  0.786
Lemma CRF 0773 0681 0.724 0890 0784  0.834
Text CRF 0811 0717 0.761 0924 0818  0.868
Features+ Lemma +
0813 0.761  0.786 0916 0.857  0.886

Text CRF
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Table 5 Top 20 context featuresfrom text only CRF

Token Type

the
and
period
from
in
to
with
that
rat
into
monkey
left bracket
labeled

projections

The
or
mouse
and

of

Position

previous token
previous token
previous token

previous token
previous token

previous token
previous token

previous token
previous token
previous token

previous token
previous token

previous token

second preceding

token
previous token
previous token
previous token
next token
previous token

Count

28376
13109
16811
2295
12203
6630
2957
3581
77
758
216
10944
785

904

3274
1198
171

13108
19205

CRF Weight Normalized Score

11.4
10.8
10.4
10.4
8.5
9.1
9.8
9.2
10.4
9.6
11.8
6.7
9.0

8.6

7.0
7.9
10.9
5.8
5.5

117.2
102.8
101.3
80.6
80.1
79.9
78.1
75.5
69.2
63.9
63.6
61.9
60.2

58.3

56.4
56.2
56.0
54.7
54.6
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Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers.

This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from
areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde
pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into
dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH),
mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus,
nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC). High-resolution flat-map
density distributions of retrogradely labelled neurons indicated that specific prefrontal cortex(PFC) regions were
differentially involved in the projections studied, with medial (m) prefrontal cortex(PFC) divided into dorsal and ventral
sectors. The percentages that wheat germ agglutinin conjugated with horseradish peroxidase(WGA-HRP) retrogradely
labelled neurons composed of the projection neurons in individual layers of infralimbic (IL; area 25) prelimbic (PL; area
32), and dorsal anterior cingulate (ACd; area 24h) cortices were calculated. Among layer 5 pyramidal cells, approximately
27.4% in infralimbic(IL) / prelimbic(PL) /ACd cortices projected to lateral hypothalamus(LH) , 22.9% in infralimbic(IL)
/ventral prelimbic(PL) to VS, 18.3% in ACd/dorsal prelimbic(PL) to DS, and 8.1% in areas infralimbic(IL) / prelimbic(PL) to
basolateral amygdala(BLA) ; and 37% of layer 6 pyramidal cells in infralimbic(IL) / prelimbic(PL) /ACd projected to
mediodorsal thalamus(MD) . Data for other projection pathways are given. Multiple dual retrograde fluorescent tracing
studies indicated that moderate populations (&It;9%) of layer 5 m prefrontal cortex(PFC) neurons projected to lateral
hypothalamus(LH) /VS, lateral hypothalamus(LH) / spinal cord(SC) , or VS/ basolateral amygdala(BLA) . The data provide
new quantitative information concerning the density and distribution of neurons invelved in identified projection
pathways from defined areas of the rat prefrontal cortex(PFC) to specific subcortical targets involved in dynamic
goal-directed behavior.

Figure 1 A representative annotated abstract with several expanded abbreviations

The original source abstract is from Gabbott arittagues (2005).

2.4 Discussion

We have provided the first corpus of manually aatest brain region mentions in
biomedical abstracts. The corpus is large enougltiidav statistical models to learn the
nomenclature. This is demonstrated by the textéb@$F which reached a 76.1% F-
Measure without outside resources. We found comt@édows, lemmatization and
abbreviation expansion to be the most informateagres for CRF labelling. A CRF using

all the features provided the best performance8d3% F-Measure.

Compared to more advanced techniques, the dicyi@a@proach based on neuroanatomical
lexicons performed poorly. However, it has the addage of speed and easier resolution to

standardized names. Furthermore, features deneedthese lexicons provide valuable
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information to the CRF models.

We demonstrated that significant amounts of ererdaie to coordinating conjunctions,
previously unseen words and brain regions of lessngonly studied organisms. The poor
performance of the lexicon combined with recallnes consistently below precision suggest
that lexical resources for neuroscience need impeoved. Current resources are based
primary on neuroanatomical atlases of a few orgasidVith open initiatives like NeuroLex

we hope richer resources will be generated by ad@oaudience (http://neurolex.org/wjki/

We performed a preliminary examination of normal@aof mentions to standardized
identifiers. This task is more difficult than meattiextraction alone, as demonstrated by our
baseline methods covering just over one third afitoas. One reason for the difficulty of
the normalization task is that researchers do setstandardized nomenclatures for brain
regions in their papers. This is a recognized noblor resolving gene mentions (where
aliases are common) which has been ameliorateshte &xtent by efforts by nomenclature
standardization committees (Wain et al., 2004) hSftorts would be of obvious value in
neuroscience (Bug et al., 2008). When combined angianism identification it grows in

difficulty.
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Chapter 3: Using text mining to link journal articlesto neuroanatomical

databases®

3.1 Introduction

The last 15 years has seen increasing interestnmally encoding and bringing together
existing neuroscience databases (Shepherd efaB;Koslow, 2005;Akil et al., 2011).

These databases are often focused on a specifiagidpamd thus must be linked together or
otherwise integrated to fulfill their potential fenabling discovery. A major challenge is that
the majority of neuroscience data, results andlosmans are stored in scientific articles. The
sheer mass of this material and its relative insgibdity to integration with other databases
is a bottleneck. A key step in enabling efficienhimg and integration of the neuroscience
literature is the formal encoding of concepts thegtain. While this can be done manually,
high-throughput methods based on natural langueggepsing techniques (“text mining”)
are attractive. An obvious target for formal enogdof neuroscience data is the anatomical
brain region where an experiment was performeds Thapter describes tools for analyzing

brain anatomy information from free text and pr@adhovel applications.

3 A version of this chapter has been accepted ahtisped online. French L, Pavlidis P (2011). Usiext
mining to link journal articles to neuroanatomidakabases. Journal of Comparative Neurology, Cghy@®

2011 Wiley-Liss, Inc..
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While free-text searches (such as those suppoyteddipr web search engines) are effective
at finding documents that contain user-specified, there are many advantages to formally
linking text describing a concept to a fixed, fotinad identifier. For example, the text
strings “ventral tegmentum?”, “ventral tegmentaladrand “VTA” can all be mapped to
concepts in standardized terminologies. These gaaege identified by unique and stable
concept identifiers such as “birnlex_1415". Thisppiaag (also referred to as the process of
“normalization”) separates the concept of the VTéuni the way it is presented in text. One
advantage of this formal mapping is that it enabl@sry expansion to include sub-parts of
brain regions (Gardner et al., 2008). Using thecstire of the terminology, software can
infer that a query for “midbrain” should includdanmation that refers to the VTA, because
the terminology encodes the fact that the VTA ig pathe midbrain. In contrast, a purely
text-based search for “midbrain” would not be gaéead to retrieve information on the
VTA. A second advantage is integration across daddalities. The fact that the VTA
contains dopaminergic neurons is formally encodettié terminology and can be discovered
automatically (Gardner et al., 2008). Software lsarused to automatically learn that
tyrosine hydroxylase is one of the genes most Bpalty expressed in the VTA, using the
formal brain region encodings in the Allen Brairiast(Lein et al., 2007). Genome-scale
expression experiments that studied the VTA canléatified by links to the Gemma system
(Lee et al., 2004). Similar integration approachékreveal patterns of anatomical
connectivity (Bota et al., 2005) or functional inmagresults (Nielsen, 2003). The third
advantage of formal encoding of brain regions idiscover patterns of information hidden
in text. For example, the co-occurrence of mentimfre brain region might be used to infer a

functional or structural connection between themmil&rly associations between brain
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region mentions could be linked to other concepimdl in text such as “addiction”. The
critical step in enabling all of these scenariosl&ntifying that a piece of text such as a
journal article abstract refers to a specific braigion concept. The same principles naturally
apply to other conceptual domains such as drugsseases, which have their own

formalized terminologies.

Our focus in this chapter is the development offroés for automatically linking free text to
formal brain region identifiers. In Chapter 2, wesented high-performance methods for the
first step needed to perform this task, which eniifying which parts of a document refer to
brain regions. This recognition step only highlgytextual spans or mentions that represent
brain region mentions. In this chapter we addreesstep of automatically normalizing the
mentions by resolving them to identifiers in neura@mical atlases and ontologies. By
normalization (referred to as “standardization*m@solution” in the text mining literature),
we mean the mapping of a piece of text (a mentiothe concepts referred to by the text, in
a formal way that can be used by computers. Thisesdes the difference between the
concept of, for example, the substantia nigra panspacta and the text “substantia nigra
pars compacta”. In a computer system, we want afitrans of the concept “substantia nigra
pars compacta” to be accessible in a consistent M@yexample, the text “SNPC”, in the
appropriate context, might refer to the same condefhe computer system stores the
information for occurrences of the text “SNPC” sgpaly from that for the text “substantia
nigra pars compacta”, queries accessing the haitenot successfully retrieve information

linked to the former.
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To our knowledge, little formal work has explorad@natically normalizing brain region
mentions to database identifiers. The most relestaaties are by Srinivas at al., who
extracted compound terms from thalamic atlasesw@anually filtered them for
neuroanatomical concepts (Srinivas et al., 2008)\&$ et al., 2005). They then attempted to
map the acronyms and terms across the atlases, giricaate, human and monkey. Their
results were focused on recall over precisiondiodossible mappings that can be evaluated
manually for thesauri creation. Most other effantshis area are focused on similar
information retrieval tasks - a query brain regsbring is given and used to search a database
(Bowden and Dubach, 2002;Nielsen, 2003). The nub&raced example is the Neuroscience
information framework (NIF) which matches user ge®to existing brain region
terminologies to expand the input query with symoeyGardner et al., 2008). Other
literature retrieval search engines attempt to matentions to lists of regions but they do
not have explicit identifiers in an atlas or ontptqCrasto et al., 2003;Muller et al., 2008).
Several general purpose tools extract biomedicadeots from the literature (Jonquet et al.,
2009;Aronson and Lang, 2010). These tools disctarens from large biomedical
terminologies which include some brain region cgiseFor this work we choose to explore

several simple methods and customize them for a@atomy.

Several challenges prevent full resolution of braigion mentions. Ambiguity often prevents
confident resolution, for example the hypothalanmsdulla and thalamus each have an
“arcuate nucleus”. Detailed studies present furthallenges as authors often modify region
names beyond existing nomenclature. This is doredioyng directional or descriptive

prefixes like “dorsal” and “agranular”. The widenge of organisms used in neuroscience
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study presents another problem as taxa are dedanitte different neuroanatomical
terminologies. Here we present several novel swistio these problems and evaluate their
effectiveness, and yield a method that providegla level of accuracy in mapping text to
brain region concepts. We apply our approach tattaysis of a large set of abstracts from
the Journal of Comparative Neurology, providingpmmhation on the distributions of brain
region mentions. Our results are a starting pantifking diverse neuroinformatics data
sources to literature-based information on bragiomes. Finally, we highlight several

remaining challenges.

3.2 Methods

3.2.1 Annotated corpus

We used our previously described annotated corplbsam region mentions in journal
abstracts (Chapter 2). The corpus of 1377 abstcactsists of 1258 abstracts randomly
chosen from the Journal of Comparative Neurology HIO abstracts selected from other
neuroscience journals. Although the text spansremeually curated, the corpus provides no
normalization of the brain region mentions intoatkatse identifiers. Previously, an
unsupervised abbreviation expansion algorithm vpgdied to all abstracts in the corpus
(Schwartz and Hearst, 2003). All extracted mentminsn abbreviation short form were

expanded to their long forms in a given abstract.
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3.2.2 Extraction of lexicons

The complete lexicon was compiled from NeuroNanBesvden et al., 2007), NIFSTD (Bug
et al., 2008), Brede Database (Nielsen, 2003)Bth&a Architecture Management System
(BAMS) (Bota and Swanson, 2008) and the Allen MdBssEn Reference Atlas (ABA)
(Dong, 2007). All terms were converted to lowercasé are linked to the provided
identifiers. Of the five lexicons only BAMS and ABd#e true neuroanatomical atlases that
provide direct links between brain region names 2iDd/olumes in a digital or print format.
The Brede database provides similar spatial data3i coordinates for named regions of
interest. We did not add abbreviation terms toléiiecon because we expand abbreviations

as described above.

NeuroNames terms were extracted from all workshedtsee NeuroNames Ontology of
Mammalian Neuroanatomy (NN2010) and Nomenclatuf€samonical Mouse and Rat
Brain Atlases (NN2007) excel files (Bowden and Dalh&002). Classical, ancillary, Latin
and synonym terms were added to the lexicon. Fyrtiens from all four mouse and rat
atlases were added to the lexicon. Overall 9,18@uenterms were extracted to represent

3,238 Neuroname concepts.

The 2,391 NIFSTD terms were extracted from the 2 @dd@sses in the Anatomy subontology.
Synonyms and the main labels were extracted falogy classes that were regional parts of

the eye, ear, brain, spine and ganglion of thepperal nervous system.

Terms from the Brede Database were extracted fhemvbrois.xml file. Terms were
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obtained from all name and variation XML tags. Hgphieric “left” and “right” prefixes
were removed to be consistent with the rest ofakigon. In total 1,006 terms were

extracted from Brede to represent 763 concepts.

For BAMS, we extracted terms from the primary lexic Swanson-1998 (Swanson, 1999).
This lexicon allows linking to the rich connectivihformation curated into BAMS. The
version of the BAMS database we use contains 982am region terms and is accessible
via bulk download (http://brancusi.usc.edu/bkms/smbanson-98.xml). Instead of parsing
the original XML, we used a converted semantic weision created by John Barkley

(http://sw.neurocommons.org/2007/kb-sources/bams-Hswanson-98-4-23-07.owl).

Allen Brain Atlas terms were obtained from the OWétmatted version downloaded from
the Allen Brain Atlas APl documentation. Like theoze sources, abbreviations were
excluded from the extraction. In total 910 termd aancepts were extracted (no synonym

information).

The total number of concepts in these five lexiagng 145, but it is clear that there is
extensive redundancy among them (even after acoguiiolr species-specificity of
concepts). Unfortunately, because there are lindieztt mappings of concepts across the
terminologies, it is difficult to estimate how madifferent brain regions are represented in
total. We arrive at a rough estimate of 1,000 d&ife mammalian brain region concepts
based on the sizes of four of the lexicons, andabethat the much larger NeuroNames (at

over 3,000 concepts) has an expanded conceptah“begion” that includes “ancillary”
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terms that tend not to be recognized as distinatepts by the other lexicons.

3.2.3 Resolvers

We employed five methods of matching textual mergito region names in the ontologies
and atlases. The most basic is the Exact StringiNtag Resolver. This resolver simply
converts the mention to lower case and attemptsatich all characters to a region name in
the lexicon. The next step is implemented in thg B&Words Resolver which splits the
mention strings into words (tokenization) and theoks for exact string matches for each of
these words. This is a common information retriggahnique that matches the same text but

ignores word order.

To remove lexical variation we again tokenizedheases into words. We converted the
words into a base form by using a stemmer. A stenmoiemalizes words to their base form
by removing common endings. For example “ventrg&tpallidal parts of the basal

ganglia” is stemmed to “ventr striatopallis partiebas gangl”. We employed the Lovin’s
stemmer as implemented by Eibe Frank (Lovins, 196&) created two resolvers analogous
to the ones above. After tokenizing and stemming first resolver will match the stemmed
tokens to the stemmed terms in the lexicons (StesoRer). The second will match them in
any order (Bag of Stems Resolver). The Bag of Stesalver is similar to the orderless gap-
edit global string-matching algorithm used by Sras et al. (2005). In their implementation
they allowed half of the stems to match for termesater than two words in length

(uninformative common words excluded). Our Bag t&in$ method is slightly different with
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use of a different stemmer and a strict requireroéatl words to match (our mentions might

be modified to remove specific terms).

To compare these to an externally designed metleodmployed the Lexical OWL
Ontology Matcher (LOOM). LOOM is a simple method foapping across biomedical
ontologies. While LOOM is not designed for matchfree text mentions we found its
approximate string matching technique to be of @allDOM uses a string comparison
function that requires an exact match for wordgjérthan four characters and allows one
character mismatch for longer strings (after remg\apaces and parentheses). The LOOM
authors show it provides comparable performaneedee complicated tools for ontology

mapping (Ghazvinian et al., 2009).

3.24 Mention editors

To improve the resolution of mentions we employegkesal techniques that edit the
mentions. In total nine editors are employed. Tihal three are considered to be lossy
because they remove important words from the merfliable 6). Each mention editor is
applied in the order presented in Table 6 and lig applied to unmatched mentions. The
result of the editor does not replace the origmahtion, but instead expands it by adding
modified versions. Each editor is executed oncepgixthe Direction Remover which is run a

second time at the end to extract more generabmedrom very specific mentions.
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3.25 Speciesextraction

We employed LINNAEUS, a species name identificagstem for biomedical literature for
extracting species mentions from the corpus (Gezhal., 2010). LINNAEUS provided an
open and accurate tool for quantifying species mpstwith accuracies above 90%. We used
the default configuration properties to tag thetiaess for NCBI species identifiers. Of the
209 species found we manually deemed 44 to bestetant. These primarily included
mentions of reagents for tract tracing (“horserafighaseous vulgaris”, “pseudorabies
virus”). We noted some false positives, includimgib regions that were tagged as species

(“n. superficialis”, “n. ambiguus”).

3.2.6 Datamodd

To capture the relations between abstracts, mentterms and ontology concepts we
employed a resource description framework (RDF) @h@/3C, 2004). The general RDF
structure is guided by the relationships and ediin Figure 2. For NIFSTD, BAMS, ABA
and Brede concepts we link to the original ideet#ifor future integration. The full RDF

dataset is available on our supplement websit&@t/favww.chibi.ubc.ca/WhiteText/ .

3.2.7 Manually created term to concept links

Several evaluations and manual modifications wppdied to test and improve the
normalization procedures. During our first testvaticed many commonly used synonyms

were not mapping to the lexicon. Examples includexpanded abbreviations and region
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names that have been used as adjectives (“cortith#ilamic”). We were able to manually
map 42 of 122 unresolved mentions that had mome @haentions in the corpus. We provide
evaluation statistics with and without these anteatdynonyms, because these hand-tunings

were done post-hoc.

3.2.8 Evaluation

By automatically testing for exact string matcheswere able to review the complete set of
mention to region pairings. The exact string masalere automatically accepted while the
remaining pairings were manually evaluated. Eachtioe-to-concept pairing was marked
as accept, reject or specific-to-general (partitelationship). A specific-to-general marking
applies to mentions where the region was mapped &nclosing region (e.g. “nucleus
deiters dorsalis” mapped to “nucleus of deiter$his applies to many cases, as several of
our mention editors discard information. Resolusiofh ambiguous terms were accepted only
if they matched a majority of the contexts. Forragpée, all mappings of “arcuate nucleus”
were rejected because the abstracts in which tbeyr@re not consistently referencing the
arcuate nucleus of the thalamus, medulla or hypatias. To reduce redundant evaluations,
pairings were grouped when the main text labetfermatched region is the same across
ontologies. The abstracts in which the mention oeclwere used to judge the context and
correctness of the resolution. Resolutions were@ed across species unless it was a

specific parcellation scheme for a species, fomgta - “area 10a of Vogts”.

Normalization coverage represents the proportiomeftions that have been mapped to at

least one brain region concept. This proportiomapped mentions is dominated by
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frequently occurring terms like "cortex". To cortfor mention popularity we provide two
additional measures of coverage. The first igntresaumber of times a mention occurs and
treats each unique mention equally (rare mentiongi@en equal weight as common terms).
The second ignores repeat mentions of a mentidnmatn abstract and weights each

mention by the number of abstracts it appears in.

Normalization accuracy was measured by dividingninaber of accepted concept to
mention links by all total mention-to-concept regmns made. We take into account
frequency of the mention by multiplying the concepmention links by number of abstracts
the mention appears in. We considered specificetoegal mappings to be an accepted

resolution while also measuring their frequencyvittially.

Although the species hame recognizer we choosbdes previously evaluated we
compared it to a subset of our abstracts that eeigusly annotated with species. Because
the annotated tags were entered in free text wéaseegh LINNAEUS to convert them to
NCBI taxonomy identifiers. These converted ideatgiwere then compared to those

extracted from the abstracts automatically.

3.3 Reaults

Figure 2 shows an overview of the system we dewglpgtarting from journal abstract to
mapped concept. In developing the approach, we ieeahthe properties of the input
terminologies, and carefully evaluated the qualitthe mappings we obtained, as described

in the next sections. In the final section we dibscthe application of the pipeline to a large
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set of JCN abstracts and present findings on ttterpa of brain region concept usage.

3.3.1 Summary of theterminologies

We first established the basic properties of thgetaterminologies (or “lexicons”) we used
for mapping. It is important that these terminosgencompass the range of concepts used in
the literature. In total we extracted 11,909 tefrom five terminologies. These terms
represent a total of an estimated 1,000 differesthmalian brain regions (see Methods). On
average a concept in the aggregated terminologiéd. 6 terms or labels (for example
representing synonyms; note that we must distiigltween “concepts” and their textual
representation as “terms”). While we estimate tuaicept overlaps among the terminologies
are high, term overlap across terminologies wasrkatly low, with terms being linked to
just 1.3 of the five terminologies on average, Wi¢h8% of the terms appearing in only one
terminology. Across the ontologies the highest amad overlap was between ABA and
NeuroNames with 62.7% of the ABA terms appearinthexmuch larger NeuroNames set. In
addition 53.5% of the NIFSTD terms appear in Newaids. This is expected because
NIFSTD was originally based on NeuroNames (Bud.e2808). Although the NeuroNames
curators have imported some of the ABA and BAM$®taology, it is not complete. While
some “singleton” terms are minor variants of tefosd in other terminologies (e.g., raphé
vs. raphe), the lexicons contain many apparentbgcolke or rarely-used terms such as “area

22 of mauss 1908".
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3.3.2 Evaluation of concept resolution

We ran our resolvers on the corpus of 17,585 lmegion mentions (See Methods). To
evaluate the results, we first examined coveragmjiging a simple measure to compare
across the different methods. We compute it aptbportion of mentions that are resolved
to the lexicons. We provide three ways of measucmgerage that account for how the
mention occurs in the corpus. To measure the cgeaiae of unique mentions we weight
each mention equally by ignoring the number of im@ccurs. The two remaining coverage
measures weight each mention by the total numbecairances in the corpus and the
number of abstracts the mention occurs in (disgsyarmultiple mentions in a single abstract).
These measures show that popular brain regionmaire likely to be resolved to existing
lexicons than rare terms that appear only onckearcorpus. In Table 7, these measures show
that popular brain regions are more likely to bsoheed to existing lexicons than rare terms
that appear only once in the corpus with the cayerate of unique mentions (18.8%) at half

that of all mentions (47.7%).

The accuracy of the mappings was evaluated foraaitexact string mappings. Table 7
shows accuracy and coverage across the resolverfoWd the Simple Mapping Matcher
performed the worst with 3.6% of unique mention piags rejected. Overall the combined
set of resolvers result in 4.3% of unique mentioeing rejected and 52.9% of mentions

failing to map.
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3.3.3 Tuning and final evaluation

After reviewing the unmatched mentions, we decideahodify our pipeline and input
lexicons. The first change was the addition of nadigtcreated mention-to-term links in the
lexicons. This is akin to adding synonyms to tholmgies. We were able to create these
links for 42 of the 122 top unmatched mentions twaturred more than 9 times in the
corpus. Examples include “cortical”, “thalamic” atsi’. Although we sought to remove
acronyms and abbreviations, several occur in gteThese are primarily terms that the
automatic abbreviation expander failed to resolva long form was not provided by the
author. The rate of these errors is roughly 5%, iamstimilar to the tested accuracy of the
abbreviation expander (Schwartz and Hearst, 2008).addition of these links produces a
7.7 percentage point increase in mention coveragel¢ 8). We list these values separately
because they reflect post-hoc additions to thelipgebut they provide true increases in

coverage expected for a production system.

Further modifications derived from observationsiomatched mention patterns were
implemented as “mention editors” (Table 6). Thaadiall perform slight modifications of
the original mention and, as a last resort, rentmadifying terms such as “medial” from the
string. When combined, the mention editors raigectbverage of abstract-mention pairs to
58.4% and 35.9% of uniqgue mentions with 39.4% djgetm-general mappings. As Table 8
shows, they each provide a modest contributiohédricrease while providing accurate
mappings. Finally, the lossy editors (designediscatd qualifiers) created primarily

general-to-specific mappings for the mentions thiéd to match after applying the
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preceding mention editors.

To gain insight into mentions that failed to matale, manually examined a random subset of
100 unmatched mentions. A quarter of the sampladtiores were references to brain regions
that are not contained in the lexicons we used rstéad refer to regions in other species.
Fourteen of the 100 unique unmatched mentions eaxplained by annotation errors in our
corpus, including text spans that missed the ¢instracter of a term and annotations of tracts.
This result was expected given previously meastatss of annotator agreement (Chapter
2). The remaining unmatched mentions can be caisgbas unique variants, very specific
mentions and ambiguous mentions (a complete Istadable as Appendix A). Beyond the
annotation errors, it is not clear how to map themapped mentions without extending the

lexicons.

3.34 Species-specific evaluation

We hypothesized that the quality of resolution wiodépend on the organism used in the
study, as the lexicons are species-specific and/iea lack lexicons. To filter for species

of study we ran LINNAEUS to identify species mensan the abstracts (Gerner et al.,
2010). We compared the automatically tagged spadiesnation to a subset of 396
abstracts with manually annotated species infoonatiINNAEUS was able to recall 97.4%
of the annotated species mentions that could bgethip a specific species. Precision could
not be fully evaluated because many mentions afispare too general and refer to a genus
or other taxonomic level. LINNAEUS does not extrdse terms and as a result terms like

“Macaque monkey”, “pigeon” and “squirrel monkey”wd not be extracted (but were still
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annotated manually for the subset). Overall, LINNAEidentified species terms in 88% of
abstracts. Co-occurrence of species within abstiacelatively low; the most common pair

of species is rat and human which occur togeth80iabstracts.

As predicted, the coverage of mentions and speifgeneral matches varied greatly across
species. Table 9 presents the results for a sdlseteof top occurring species. Species that
lacked lexicons resolved less well and specifiggéaeral mappings occurred much more
often. The top occurring species benefited froniclexs of their species. To determine the
accuracy of the commonly studied species targegemiblexicons we combined the
mentions that co-occur with rat, mouse, human,ufi@sonkey andhacaca fasicularis
mentions. Coverage of unique mentions for this giogiincreases by 7 percentage points,
and specific-to-general mappings are reduced ?83rom 39.4% on all mentions.

Accepted mappings slightly increased from 95.1%6®%.

3.35 Analysisof all Journal of Comparative Neurology abstracts

We ran our final method on 12,557 JCN abstractsateanot already in our corpus (covering
1975 to January 2011). This required first runrtimg abbreviation expander, then the brain
region mention detector as described previoushaf@dr 2), followed by the tuned
normalization pipeline described above. In totalfaend 142,178 brain region mentions. Of
these 95,895 were resolved to a concept in a laxi@presenting 7,923 unique region
mentions and 57,185 unique abstract-region pamrayerage 4.6 per abstract; 86% of
abstracts having at least one). The resolutionteesesemble those from the manually

annotated abstracts with 67.5% of mentions resawedd?27.4% of unique mentions
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matched to a lexicon entry. For the subset of comynstudied species that cover the
lexicons coverage reaches 71.6% of mentions ar8¥@af unique terms. The slight increase
in mention coverage and decrease in unique covesageected from a larger corpus size
generating a larger set of rare terms. Table 18gmts the top 25 most frequently occurring
NIFSTD concepts. The types of unmatched mentioasiamilar to those found previously
with many broad terms that are not explicitly ie txicons and several insect brain regions

such as “mushroom bodies”.

We examined the extent to which terms in the lexscare used. We found that 44.1% of the
7,145 available concepts are used at least onesveéd another way, over 55% of the
concepts (and 77% of terms) in the lexicons daappear to be used in any JCN abstract.
These results suggest that many of the conceptistéams) in the lexicons are rarely used by

working scientists.

Because our analysis includes information on sgeaiel publication date as well as brain
region use, the final data set allows interesterggoral analyses of the JCN. We first asked
whether there is a tendency for more recent astidaise more narrowly defined brain
regions. By comparing the publication year with pineportion of specific-to-general
mappings in the training set we observe a slightbn-significant positive trend (Spearman
correlation 0.18; p-value = 0.31). Our analysialso able to reveal trends in the “popularity”
of brain regions over the years. For example, wadathat there was an abrupt dip in the
mentions of “superior colliculus” in the early 139Qvhile the hippocampus and amygdala

enjoyed rising mentions until recently (Figure 8)similar analysis of species of study
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shows that mentions of mouse and humans are imcggaghile rat and Rhesus monkey

mentions are fading (Figure 4).

Table 6 Mention editor descriptions and examples

Example input and output mention strings are sépdtay “>>". The Direction splitter

mention editor expands the single input string imto mentions. Methods that discard

important words from the mention are classifiedLassy’'.

Name

Direction
splitter

Hemisphere
stripper

Bracketed text
remover

“n.” expander
“of the”
remover

Region suffix
remover

Cyto prefix
remover

Direction
remover
“nucleus of
the” remover

Description Lossy

Splits conjunctions that use

; ) . No
neuroanatomical directions
Removes prefixes that

. . No
specify hemisphere
Removes text that is
No

enclosed by brackets

Expands “n.” to nucleus No

Removes subdivision

descriptors No

Removes “region” suffixes No

Removes prefixes that

mention cytoarchitectural Yes
descriptions
Removes neuroanatomical Yes
direction specifiers
Removes nucleus

Yes

specifiers

Example

dorsal and posterior
hypothalamic areas

contralateral inferior

olivary
secondary

somatosensory (sii)

cortex
n. ambiguus

medial portion of the
entorhinal cortex

posterior cingulate

region

parvocellular red

nucleus

caudal cuneate
nucleus

nucleus of the

pontobulbar body

[dorsal hypothalamic
>>areas, posterior
hypothalamic areas]

>> inferior olivary

S secondary
somatosensory cortex

>>nucleus ambiguus

>>medial entorhinal cortex

>> posterior cingulate
>>red nucleus

>> cuneate nucleus

>> pontobulbar body
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Table 7 Mention coverage and rgjection rates acrossresolvers

Coverage is provided at three different levelsuardify repeated mentions. For the “Unique
Mentions” and “Reject Unique” columns the numbetiwfes a mention occurs is ignored
(rare terms are given equal weight as common terfiing) “Abstract-Mentions” and “Reject
Abs-Mention pairs” statistics ignores the numbetimies a mention occurs in an abstract.
The “Mentions” and “Reject Frequency” columns weighch unique mention by the

number of times it occurs in the corpus.

Coverage Mapping Accuracy
. Abstract- Unique Reject Reject Abs- Reject
Resolver Mentions . ; : X :
Mentions Mentions  Frequency Mention pairs Unique
Exact String Match 41.1% 36.0% 14.3% 0.0% 0.0% 0.0%
Bag of Words 42.1% 37.1% 15.8% 0.2% 0.2% 1.0%
Stem 45.1% 39.4% 16.2% 0.5% 0.5% 1.0%
Bag of Stems 46.4% 40.8% 18.0% 0.7% 0.7% 1.9%
LOOM Matcher 41.1% 35.8% 14.3% 2.5% 2.5% 3.6%
All 47.1% 41.6% 18.8% 3.1% 3.2% 4.3%
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Table 8 Incremental improvements from several additional methods

Added editor

Baseline

Manual to Mention to Concept
links

Direction splitting editor
Hemisphere Strip Mention Editor
Bracketed text remover
Converts n. to nucleus

Remover of "of the" type phrases
Region[s] suffix remover
Cytoarchitecture prefix remover
Direction prefix and suffix
remover

Remover of "nucleus of the"
phrase

Direction prefix and suffix
remover

New

Mentions
Matched

8280

1346
35
131
29
5
27
36
37

1092

21

125

Added
Mappings

2963

91
109
265

73

14

67

56

76

2204

72

205

Percent
accepted
95.7%

97.8%
86.2%
100.0%
90.4%
100.0%
85.1%
100.0%
97.4%

95.8%
100.0%

84.9%

Specific to
General
Mappings
0.8%

0.0%
7.3%
0.0%
2.7%
0.0%
10.4%
0.0%
96.1%

94.4%
100.0%

84.9%

Matched
Mentions

47.1%

54.7%
54.9%
55.7%
55.8%
55.9%
56.0%
56.2%
56.4%

62.7%
62.8%

63.5%
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Table 9 Resolution of specieslinked mentions

The “Species terms” column list all recognized tefior a given species. Coverage is

provided at two levels by counting mention frequeidention Coverage”) and ignoring it

(“Unique Coverage”).

Specific-
. . . Unique | Mention | Rejected to-
Species Species terms Mentions ;
Coverage |Coverage |[Mappings | general
Mappings
Cat cats, kitten, cat, Cat, kittens 1001 42.5% 60.6% 3.0% 24.3%
Rabbit rabbit, rabbits 200 60.0% 73.3% 4.0% 16.5%
Pigeon Columba livia 157 40.1% 45.0% 1.1% 19.6%
clawed frog, Xenopus
Clawed frog laevis, African clawed frog, 107 57.0% 66.8% 8.1% 37.1%
X. Laevis
rat, rats, Norway rat,
Rat sﬁg?gr“fa'gaggzéﬁi 2434 | 446% | 67.7% | 32% | 31.9%
Dawley rat
Mouse [‘:a'l‘rig o ane 396 | 558% | 75.7% | 26% | 13.6%
patient, patients, human,
Human infant, children, humans, 400 | 57.7% | 735% | 42% | 11.6%
infants, people, participants,
man
Rhesus Monkey [[1€Sus monkey, rhesus 406 | 495% | 636% | 25% | 29.6%
monkeys, Macaca mulatta
macaca fascicularis,
Macaca f. cynomolgus monkey, 143 64.3% 67.9% 5.9% 17.5%
cynomolgus monkeys
Macaca f.,
Eﬂf:;rf'Mouse 3061 | 42.9% | 68.6% | 3.4% | 33.7%
and Rat
All 5941 35.9% 63.5% 4.9% 39.4%
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Table 10 Top 25 most frequent brain region conceptsin the Journal of Compar ative Neur ology

Regions are limited to the NIFSTD terminology witequency determined from the full
JCN corpus. Both the manually curated and automigtipredicted brain region spans were

used as input to the resolution approach.

Region Frequency
Retina 7341
Cerebral cortex 5578
Spinal cord 3915
Thalamus 2290
Hippocampus 2098
Cerebellum 1953
Hypothalamus 1800
Olfactory bulb 1551
Brainstem 1512
Superior colliculus 1457
Neostriatum 1343
Amygdala 1312
Midbrain tectum 1109
Midbrain 1093
Forebrain 962
Solitary nucleus 819
Locus ceruleus 769
Substantia nigra 764
Cochlea 762
Entorhinal cortex 712
Lateral geniculate body 705
Dentate gyrus 684
Central gray substance of

midbrain 662
Telencephalon 660
Cochlear nuclear complex 651
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Framework

annotation ) resolvers
abstract mention term

Example

PMID
3995367

"dorsal
premamillary nucleus"

"dorsal and ventral
premamillary nucleus”

"ventral
premamillary nucleus"

Figure 2 Representation of the system and an example

label

labels
synonyms

(http://mouse.brain-map.org/atlaslindex.htmI#PMd]

bams-from-swanson-98-4-23-07.owl#p314
neuronames#A631
\_neuronames#1508

bams-from-swanson-98-4-23-07.owl#p306
neuronames#A632
kneuronames#1 509

rhttp://mouse.brain-map.org/atlas/index.h(ml#PMvj

The procedure starts with an abstract that is mnomautomatically scanned to find brain

region mentions. The extracted mentions are theogssed by mention editors and

resolvers. For this example all resolvers includimgexact string matcher resolve the

direction split strings to the correct concepts.
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Figure 3 Trendsin the proportion of yearly abstracts mentioning amygdala (black square), superior

colliculus (red triangle), hippocampus (blue triangle) and medulla (green triangle)

Proportion values are smoothed by averaging thaqurs, current and following years.

Copyright © 2011 Wiley-Liss, Inc.
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Figure 4 Changesin the proportion of yearly abstracts mentioning rat (red square), mouse (black filled

squar€), people (green diamonds) and Rhesus monkey (bluetriangle) over time

Only 32 abstracts are considered for the 2011 Y&atr.mouse and human are significantly

increasing over the entire time period (p < 0.@®stracts mentioning Rhesus monkey are

significantly declining (p < 0.001). Copyright © 2D Wiley-Liss, Inc.

74



3.4 Discussion

Our contribution in this chapter is the developmemd thorough evaluation of a pipeline for
mapping specific brain region concepts to free iexdurnal abstracts. While we achieve a
high degree of coverage (64.5%) and precision @%.and yield a data set of value for
additional analyses, we identified many challerass current limitations that need to be
addressed. The primary problem we encountered whglve terminologies, which are not
well-standardized and also, apparently, incomplEbe. terminologies we used have
surprisingly little overlap, despite some of theaving common target organisms. This
reflects the extensive variation in how neuroanatahtoncepts are expressed in natural
language, but the lack of harmonization acrossiteiogies is striking. In addition, authors
often mention regions that are beyond the grartylafithe terminologies (for example, by
adding a modifier such as “mediolateral” to a ratpgd term). While we presented a lossy
mapping method that handles this problem, it islfikhat some of these fine-grained terms
should be added to the terminologies. To this eme have contributed 136 new brain region
concepts to NeuroLex (Larson et al., 2010). Wecsetkthe regions by filtering our results
for specific-to-general mappings to an existing 8IFD brain region concept. We then
selected terms that are co-mentioned with rhesuskayymacaca fasicularisrat, mouse or
human in at least two separate abstracts, assuhmhgepeated use in the literature is
evidence of utility. This automatically generated bf 152 region terms was reduced to 136
after manual adjustments for synonyms and conjanstiAlthough this is a small first step,
formalization of these mention-to-concept pairimgsild reduce the specific-to-general

mapping rate by 2.5 percentage points. Furtheseti®6 mentions occur over 2,400 times in
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the complete set of JCN abstracts. Because Neurnslymesented in a wiki format, the

community can review and edit these additionsi{:Hiteurolex.org. Another potential

avenue for improving lexicons is the InternatioNaluroinformatics Coordinating Facility
(INCF) Program on Ontologies of Neural Structue®NS) which seeks to establish

formalized lexicons for neuroanatomy ( http://wwwef.org/core/programs/pons

In addition to pointing out gaps in the existingnenologies, our results point to a mismatch
in the other direction, in that the terminologiest@in numerous terms that do not appear in
any JCN abstracts. Some of these are likely toalid terms that are just not used often (for
example, the rodent term “Perireunensis nucleusenappears in any PubMed abstract; a

wider web search turns up just a single mentiahénaccessible literature (Jacobsson et al.,
2010)). An overall picture emerges of lexicons & incomplete while simultaneously full

of terms which may not be actually used in practi@er results may thus aid the developers

of lexicons and highlights the need for more warkhis area.

Overall we found that our designed resolvers weeeipe at the task. We believe this is due
in part to our avoidance of acronyms and relyingtitt matches. The best resolver appears
to be the Bag of Stems resolver that almost reatttgesoverage of all resolvers combined
while holding a low 1.9% unique term rejection rakhis agrees with previous work that
tested a similar resolver for cross species mapgirigalamic atlases (Srinivas et al., 2005).
The LOOM Simple Mapping Matcher, designed for dedlént task of ontology mapping
performs worse than any other resolver. One adgantathat its one-character mismatch

allowance provides some mappings our other resokamnot. While providing unique
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mappings, the mismatch allowance leads to mapphogsesuch as “central” to “ventral”.
Past work in the ontology mapping domain has place@®@M at par to other more advanced
methods (Ghazvinian et al., 2009). Those resuljgsst more complicated resolvers will not

yield substantial improvements.

Through studying unmatched mentions and tuningyséem we were able to improve the
coverage from 47.1% to 63.5%. Unfortunately mostwfadded techniques resulted in
modest improvements. The main contributors wererthrually created mappings for
unmatched mentions and the lossy editors that alflowsolution to enclosing regions (e.g.
mapping “medial lateral cervical nucleus” to Laterarvical nucleus). Our analysis of one
hundred unmatched mentions suggests more advaretbdas employing contextual
information could be used to resolve ambiguousa@nteferenced mentions. Context
information has already been applied to cross-sganiapping and may be adaptable to brain

region mapping outside of atlases (Srinivas e2805).

The most important contextual information seemisetdhe species of study. By applying an
automated species extractor we linked the organisstudy with the brain region mentions.
Across the over 200 species we observed varieceds@rf resolution. As expected, brain
region mentions from amphibians, insects and festhihcreased rejection and more specific-
to-general mappings. Mammalian species like radoit cat performed at levels close to the
average. Rat, the most common species of studyeigdrpus, had an above average
coverage but also a high amount of specific-to-gdmaappings (31.9%). In comparison, the

increasingly common mouse abstracts had only 13j686ific-to-general mappings while
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achieving the highest coverage (75.7%). This mégaethat the larger rat brain is
commonly used for study of detailed rodent neurtang that extends beyond the standard
atlases. In addition the human abstracts havetsesatilar to mouse with high coverage of
mentions and few specific-to-general mappings coatpo Rhesus monkey abstracts.
Approximately half of the mentions are linked t@sigs matching the target lexicons. These
mentions from commonly studied species are acdyratemalized, with low rejected

(3.4%) and specific-to-general mappings (33.7%).

We applied the methods to an unseen set of autcatigtiagged region mentions from the
remaining JCN abstracts. The results mirror thoze fwithin the manually annotated corpus
and suggest the methods could readily be exterdiediger scales. Our method appears to
scale well, with over 1,000 brain region concepisearing in the extended corpus but not

the original annotated set.

To increase the value of the data set to the nei@mse community, our results have been
incorporated into the NeuroLex database, where wgoirk progress to display, for example,
time-trends of brain region mentions in the JCNhgkde other information on each region
(Anita Bandrowksi, personal communication). We padeva bulk version of the data suitable
for third-party analyses on our website (http://wwahibi.ubc.ca/WhiteText/ ). As mentioned
in the introduction, having brain regions mappedhstracts is only one step in making full
use of the information embedded in the literat&rgure work will focus on the linking of
brain region mentions to each other and to othecepts such as drugs and diseases. Our

eventual goal is to provide computationally riatkkges of brain regions to diverse
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neuroinformatics resources.
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Chapter 4: Application and evaluation of automated methodsto extract

connectivity statements from free text

41 Introduction

The brain is a vast interconnected network. Eacimarecommunicates with many others
with chemical and electrical synapses to integreta@mation. Neurons are grouped into
named nuclei or layers that make diverse connextonoss the brain, forming pathways of
information flow. This structural connectivity prarily defines its neural function and is
frequently used by neuroscientists and clinicianimterpret physiological data. Examples
include understanding strokes (Haines, 2004) atedpreting brain imaging results. In
addition, neurologists have observed connectibtyoamalities in bipolar (Houenou et al.,
2007), autistic (Koshino et al., 2005), Alzheimgi&am et al., 2007), and schizophrenia
patients (Karlsgodt et al., 2008). A major goahaidern neuroscience is to understand the
organization of the brain at all levels in as mdelail as possible, and to understand how
this networked organization relates to brain fumctnd ultimately behaviour and human

health (Sporns, 2011).

The characterization of the connectivity networkuining diagram of the brain is incomplete
(Crick and Jones, 1993). In part, this is due eodbmplexity of the brain and the difficulty

in collecting data. However, we suggest that infatios technologies can be used to leverage
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existing knowledge that has already been colletdedake new discoveries and guide

further experimentation.

In this work we are primarily concerned with “maooanections”, or connections that can be
identified between small brain regions (as oppdeeadicrocircuitry which describes the
connections among neurons per se). These macrad@mebetween groups of neurons are
predicted to number between 25,000-100,000 (Bodih,2003). This suggests a high level
of complexity, though comfortably placed betweea tfore gross levels of brain
organization and the microarchitecture which encassps billions of neurons and
guadrillions of synapses (Sporns et al., 2005)tHeumore, this estimated amount of
macroconnections is smaller in scale than estinaftd®e human interactome at 650,000

interactions between 25,000 proteins (Stumpf e808).

Connectivity between brain regions can be assagew) wract tracing or electrophysiology.
Tract tracing typically involves injecting a dye @her tracer (for example, horseradish
peroxidase) into one brain region and following fie of the tracer as it follows axonal
pathways (Lanciego and Wouterlood, 2011). Electysfhogical methods use electrical or
other stimulation in one site along with electricatording at a second site to test the
functional connectivity of regions. Using these huogls a researcher can determine
connections that send signals to the region (affgr away from the region (efferent). Over
many years, thousands of connectivity studies haes performed, each of which typically
elucidates at most a few connections. The preseine@leep literature on neuronal

connectivity is a major motivation for this workwet data are out there, they just need to be
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assembled.

Attempts to turn this huge accumulation of knowkedgo an ‘omics’ scale database have
been extremely limited, despite the potential valisuch a resource. Previous efforts have
primarily used manual reviews of the literaturdatiooriously generate connectivity maps for
limited parts of the brain. In 1991, Felleman arah\Essen published a connectivity matrix
of the macaque visual cortex covering 305 pathvieysaieen 32 areas (1991). Scannell and
colleagues followed the same procedure to colla89 onnections between 65 brain
regions in feline cerebral cortex (Scannell et95). Currently, a large number of collated
connections are stored in the Collations of Conwviégidata on the Macaque brain database
(CoCoMac) (Kotter, 2004). CoCoMac contains dethifdormation from 413 literature
reports regarding 7007 macaque brain regions. Atianodel organism with large scale
connectivity data is the rat with over 40,000 repaf connections formalized in the Brain
Architecture Management System (BAMS) (Bota et2005). Information is added to these
databases manually, and therefore they are acdusagparse. Currently, the only complete
connectome scale database is the neuron-levelgadiagram ofC. elegansdetermined

from electron micrographs (White et al., 1986).

We seek to extend and complement manual efforts avitomated text mining techniques.
Over ten years of efforts to recognize gene antepreanentions and their interactions inspire
our work (Blaschke et al., 1999;Jensen et al., 2A@@he gene interaction task, one must
extract information from sentences such as “gemaekacts with gene B” (to give a toy

example). Despite the difficulty of this task, grpeogress has been made. A recent survey

82



found that performance ranges from 29-80% preciaimh45-90% recall. The varied results
are partially explained by the selection critemna gize of the text corpus used for training
and testing (Zhou and He, 2008). A comprehensiatuation of kernel methods for
extracting protein-protein interactions detailedgision and recall values ranging from 45-
70% by varying experiment design, dataset and nietibsted (Tikk et al., 2010). At the
second Critical Assessment of Information Extrat8gstems in Biology (BioCreAtIvE 1)
the top team was able to extract normalized, ddckoiteraction pairs from full text articles
with precision of 37% and recall of 33%. The anglagbrain connectivity is very tight: we
wish to extract information from sentences akifli@in region A connects to brain region
B”. This related research gives us hope that tipeagehes applied to extracting gene

interaction information can successfully mine carivity relations.

While attempts to use text mining in neuroscieneeehbeen limited, they are instructive.
The Neuroscholar project previously explored autesh@&xtraction of connectivity data from
text (Burns et al., 2007). Burns et al. focus rtmaetion of detailed parameters and results
of a tract-tracing experiment. They manually antestd ,047 sentences from the Results
sections of 21 documents with five labels that dbsa tract-tracing experiment. These
annotations provided the test and training examiplea conditional random field classifier
that was able to label with 80% accuracy. We noé Burns et al. attempted to extract
detailed information about connectivity experimemte seek to extract much less detailed,
but still valuable, information. The favourableuls of Burns and colleagues’ research

suggest that a somewhat simplified task may yie&hdetter results.
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Given the complexity of the domain we have simetifthe problem by limiting our input
dataset and output results. We restrict the caipabstracts from the Journal of
Comparative Neurology because it contains a higguency of connection reports across
many diverse brain region mentions. Abstracts waasen over full text documents because
they are enriched for high level summary statementsare more accessible. Further, we
predict connectivity relations between brain regioentions that have been manually
annotated instead of automatically recognized sgarmevious chapters we have previously
evaluated recognition and normalization of bragioe mentions and chose to isolate these
steps from the evaluations. We later demonstralecaaluate a completely automated
connectivity extraction system that employs aut@aaecognition and resolution. Finally,

we test methods for extracting the presence of ecinnty relations but ignore the type or
direction of connectivity (afferent, efferent odbiectional). These generalizations allow a

feasible first step to more detailed studies.

We show that text mining methods can be usefulptia@ to brain connectivity by adapting
text-mining approaches previously used to analyageem networks. Our large manually
annotated corpus allowed testing and training obus techniques possible. Beyond the
corpus based evaluations we compared a large setahatically extracted connectivity

statements to an existing connectivity database.
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42 Methods

421 Annotated data

To test and train text mining algorithms we creaddrge gold standard dataset. This dataset
or corpus consists of abstracts manually annotayexdresearch assistant for connection
verbs, species of study, brain region mentions,camhections between them. We annotated
1,377 abstracts for 4,529 connections and 17,58% begion mentions. In this design each
connection consists of two brain regions, text dbsw the connection and the associated
organism. Two hundred and thirty of the abstraetgelbeen annotated by both annotators.
This corpus provides sufficient training examplesrhachine learning methods. Abstracts

for the gold standard corpus were randomly chosan the Journal of Comparative

Neurology.

We have developed guidelines and software for tim@t@tion process. Briefly, our main
guidelines are: 1) annotate all brain region merstiwhether they are part of a connection or
not, 2) annotate all connections and brain regionall organisms and organism states, 3) do
not annotate mentions of white matter tracts. Thadgal Architecture for Text Engineering
(GATE) was used by annotators to highlight and eahibrain region mentions in text
(Cunningham et al., 2002). We have implementedwso#t that uses GATE for abstract
importing, corpus management and interannotat@esgent computations. Furthermore, a

GATE plug-in was created to allow annotation of mectivity relationships between two
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brain region mentions.

42.2 Co-occurrence

To extract neuroanatomical connections as deschipe¢le abstract authors we must at least
link two brain region mentions. Our first methodtiag as a naive baseline method, predicts
a stated connection between every pair of brailmregentions (Jensen et al., 2006). We

evaluate co-occurrence for single sentences am@ afstracts (including title).

4.2.3 Rulebased

We created two simple rule based extensions afdh@ccurrence technique. The first simply
limits co-occurrence extraction to sentences thaeta limited number of brain region
mentions. The second requires presence of a covitectlated keyword (“afferent”,

“efferent”, “projects”, “projection”, “pathway” ofinputs”).

424 Kerned based methods

Seven advanced kernel based methods were applibd ttataset. These methods were
designed for a similar task, extraction of protgiotein interactions from biomedical
literature. Each technique uses different featygasameters and kernel functions.
Implementations were brought into a common evadudtiamework by Tikk and colleagues
(Tikk et al., 2010). The methods are categorizemiting to the type of features extracted
from the sentences. Four syntax tree based metlsaddifferent techniques to compare the

sentence parse trees (Collins and Duffy, 2001;Vastathan and Smola, 2002;Moschitti,
86



2005;Kuboyama et al., 2007). Going beyond syntaggs the all-paths graph kernel (Airola
et al., 2008) and k-band shortest path spectrumekérikk et al., 2010) employ dependency
parse information. Lastly, the shallow linguisterkel (SL) employs only shallow parsing
information such as word occurrences and part-eésp tags (Giuliano et al., 2006). We
employed this framework to benchmark each of thedddbased methods on the brain region
connectivity task. Of the nine methods describedili et al. we were able to successfully
test seven, including the three top performing &knFor every method, the same parameter

sets used by Tikk and colleagues were tested onarpus.

425 Experiment setup

We evaluate connection extraction independentth@fpreviously described methods for
automated brain region recognition. This is don@toywiding the manually annotated brain
region mentions to the relation extraction algenttunder this design the extraction task

only requires correct linking of brain regions mens.

To find the optimal method while avoiding overifit§, method comparison and selection
was performed on the 1,146 abstracts annotatedoyrilye primary annotator. Results for
the kernel methods were computed using ten-foldszk@lidation. Each sentence became an
input instance for the kernel methods (includinche title). Sentences of an abstract were

not split between training and testing sets (doairteyel split).
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426 Evaluation

Performance is measured against the number ottmueectivity relations that are annotated
completely within the evaluation scope. The ruld ao-occurrence based methods can
operate at the abstract or sentence level whil&ehsel methods are limited to sentence
level scope. Precision is computed as the propodigredicted relations that are correct,
and recall is the proportion of true relations tua predicted by the method. The f-measure
or f-measure is the harmonic mean of these twoegalproviding a balance of both. We also
compute the area under the receiver operating euinege applicable (AUC). This measure
uses a ranked list of predictions with descendlagsification prediction scores (scores
represent distance from the discrimination hypempland approximate confidence in the
prediction). This ranking allows computation of thee positive and false positive rates for a
range of discrimination thresholds. Previous expernts have found the AUC measure to be

more robust and stable than f-measure for intemactiining (Tikk et al., 2010).

4277 Comparison to existing connectivity database

Normalization of brain region mentions to brainioggconcepts in formalized lexicons was
targeted to the BAMS atlas (Swanson, 1999). BAMS wl@sen because it's wealth of
curated rat tract tracing studies (Bota et al. 520l addition, rat is the most commonly
studied species in the corpus. The previously destiBag of Stems resolver was applied
with all Mention editors employed, including thabat create resolutions to enclosing

regions (see Chapter 3). The lexical informatioBAMS was expanded with synonym
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information to increase normalization performarfiépossible normalized parings are
evaluated when a mention maps to more than onerreGonnections in the BAMS
connectivity matrices were up-propagated. The qp@gation procedure ensures that if
there is a connection between regions A and B #fleanclosing regions of A and B are also
connected. Self connections extracted from liteeatvere ignored. The LINNAEUS species

tagger was employed to recognize species namés iabistracts (Gerner et al., 2010).

4.3 Results

We annotated 4,276 connectivity relations acroesstimplete corpus of 1,377 abstracts. To
gauge interannotator agreement, a second curatotated a random subset of 231
documents. Roughly 80% of the second curator’s t@atioas matched the main curator
(79.5% recall at 82.3% precision). Unlike the audted methods that predict relations
between given brain region mention spans, thisued@n required both annotators to
highlight the same brain region mention spans.a@yaving this restriction and allowing

partially matching spans, the precision and raeath 93.9% and 91.9% respectively.

The co-occurrence based analysis reveals the gropaf brain region mention pairs that
are co-mentioned and described as connected. At$teact level 2.2% of all possible brain
region pairings form connectivity statements. Wihilany relationships can be formed
between any two brain regions, co-occurrence asstimeerelation is a connectivity
statement. Often this is incorrect at the absteaal with precision of 2.2% at 100% recall,
and a combined f-measure score of 4.3%. Withiméesee, co-occurrences between all

pairs predicts connected pairs at 13.3% precismah/2.0% recall (remaining relations
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span sentences). This level of recall means that@vof all annotated connectivity relations
are formed with regions in different sentences. uhe difficulty in extracting connections
spanning sentences, all of the below evaluatioaparformed at the sentence level with the
relations spanning sentences excluded (underhisaion framework sentence level co-

occurrence provides 100% recall).

We tested two simple modifications of the sentdagel co-occurrence technique. The first
reduces co-occurrence predictions to sentencesavithited number of brain region
mentions. By extracting co-occurring pairs fromtsages with only two brain region
mentions, precision reaches 23.1% and 17.2% r@eaakasure = 19.7%). This means that an
average sentence with two brain region mentionggerting a connection in almost one out
of four cases. By varying this threshold the f-mueasncreases until sentences with 6 or
more brain region mentions are included. We obsktivat some of these larger sentences
merely list brain regions involved in the study arad their relationships. By limiting at 5
brain region mentions or less per sentence, coroaace provides 18.8% precision and
66.1% recall (f-measure = 29.3%). The second mdtetl requires the sentences contain one
of six connectivity related keywords (afferent,ezéint, projects, projection, pathway and
inputs). This keyword based rule increases reodll’t4% and precision to 92.7% (f-measure
= 29.4%). We created a new approach named “KeyWwdhteshold” by combining these

two rules. This again provides improvement withdasure reaching 34.1% (precision =
23.7%, recall = 60.8%). As expected, rule basedhau= increase precision at the cost of

lower recall when compared to unrestricted co-aenge.
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We applied seven methods for extracting proteirigdinanteractions to our connectivity
relation dataset. While the methods were desigoed fifferent type of biomedical relation,
they do not require any changes to extract undicectlations between other entity types.
The cross-validation results on the testing datds&46 abstracts) are provided in Table 11.
For each method, the parameter set with the highid€t score is shown. The parameter sets
range in size and are reproduced from Tikk et @haut modification (primarily grid
searches of support vector machine settings). Fsuaneacores for all of the seven methods
outperform unrestricted co-occurrence based arsalgsiat least one parameter set. The
simple rule based methods outperform the more cexripartial Tree and Subset Tree based
methods. While all of the syntax tree based metlaned®utperformed by the Keyword 5-
threshold approach, they provide much higher piacithan recall. When ranked by AUC,
the SL kernel performs best with a 58.3% f-measman AUC of 88.9%. The All Paths
Graph andk-band shortest path spectrum kernel methods rafdsa second and third with

similar scores.

For further application we choose the SL methodtduts accuracy, speed and single
parameter set (global n-gram = 3 and local winda®y.2nlike the other kernel methods the
SL method uses only shallow linguistic informatatrthe local (neighbouring words) and
global sentence levels to predict relationshipsii&no et al., 2006). This information forms
feature vectors that are used to train a suppatbvenachine classifier (scalar product
kernel). The performance of SL is consistent oncthraplete set of 1,377 abstracts with f-
measure of 0.592. Figure 5 displays the resulti@gCRurve (AUC = 0.899). For large-scale

application, we applied the SL classifier to caatidsentences extracted from a set of 12,557
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abstracts from the Journal of Comparative Neurol@gyering 1975-2011). While previous
evaluations used manually annotated brain regiansfor input, this combination of
automatic brain region recognition (see Chapterid) relation extraction will result in a
higher error rate. To estimate the combined effeetsrained the SL classifier on the manual
annotations of the 1,146 test abstracts and tegteoremaining manually annotated set of
231 abstracts. The automatic brain region annotsitim the test set are used as input to the
SL classifier instead of the manual annotation® fEsult is 323 of 770 predicted
connections exactly matching an annotated conmre@piecision = 41.9%, recall = 52.4%, f-
measure = 46.6%). While not obtained in a crosgtaabn framework, this experiment
presents a good estimate of accuracy for the cazdlpipeline. In the set of 12,557 abstracts,
application of the previously described automatairbregion recognizer provided 33,466
sentences that mention two or more brain regionthilthese sentences, SL predicted 18%
of the 156,484 possible brain region pairings tadenectivity relations. Of these predicted
relations, 9,676 are in an abstract that mentiahamd can be evaluated against BAMS.

Figure 6 shows the progression from abstractsedipted connectivity relationships.

Table 12 presents the ten most and least confrdecbnnectivity relations. Classication is
approximated with the SL prediction score (distatocelassifiying hyperplane), with highest
values representing the cases closest to positiirertg examples. Two of the most confident
predictions are extracted from an article title hiagle the same form (ranks 1 and 5). The
sentences containing top predictions are shortaverage (192 characters) than the
sentences with least confident predictions (282asttars); suggesting sentence complexity

affects the prediction results. Of these twentyngplas only two are clearly false positive
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predictions (ranks 9764 and 9758) while severadstipoint to errors in previous automated
steps. An abbreviation expansion error appeatsarséntence containing the relationship
ranked 9762. Organism identification errors ocoutwo sentences that refer to connections
in monkey although the associated abstracts merdtameuroanatomy (ranks 8 and 9760).
The mentions of "internal capsule” (rank 9766) dvdt-enkephalin” (rank 4) are incorrectly
predicted as brain region mentions (our definibb@a brain region excludes fibre tracts). We
manually compared these twenty results to the BAysem and found it difficult to map

the mentioned regions to those in BAMS. For exanijpétrosplenial dysgranular cortex”

and “dorsal medullary reticular column” were noaiial in BAMS. Connections in BAMS
were found for several of the relationships butMeein enclosing regions (ranks 9767, 7, and
5). The low confidence relationship ranked 976Iwshan incorrectly marked brain region
mention: “central olfactory cortical”, in additidhe enclosing sentence contains connections
not found in BAMS. For example, the stated conmechetween the anterior olfactory
nucleus and piriform cortex is correctly extracfexhk 5795, score = 0.83) but the
connection is not curated in BAMS. These resutisifthe SL method are very encouraging

and motivate a larger evaluation.

We compare our results to an existing connecto@tabase (BAMS) to gauge accuracy of
connections extracted from the unannotated se2 &5Y abstracts. Compared to the manual
annotations, this is a less precise evaluationusscBAMS does not cover the complete
literature and is limited to rat studies (Botalet2005). In addition, resolution errors
resulting from linking brain region mentions toget regions in BAMS reduces accuracy

(see Chapter 3 for details). For example, 12% afitiors are resolved to more than one
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brain region due to ambiguous synonyms. To bendkhtharBAMS evaluation metric we
first tested it on manually curated connectivithatens. Our process first extracts abstracts
that mention rats and resolves the brain regiontimento the BAMS lexicon. These rat
connectivity relationships are then compared toBA®IS connectivity matrix. In this
framework only 167 manually annotated connectixgations are resolved with 70.5%
having a connection in BAMS. In contrast, the 62,617 brain region pairings not
annotated as connections but co-occur in sentareasnnected in BAMS at 49.8%. This is
not unexpected because co-occurring regions magti@ected, but the author is not stating
that in the sentence. In the unannotated set afsttacts 2,688 predicted connectivity
relations are successfully resolved and 63.5% @neected in BAMS (Figure 6). For
comparison, the remaining set of co-occurring bragion pairs are connected in BAMS at a
rate of 51.1%. We note that the extracted relalippssare between larger brain regions than
those in BAMS. The average number of enclosingaoet brain regions for a connected
pair in the BAMS matrix is 9.6. The literature edted connections are shallower with an

average number of enclosing regions of 7.9.

We suspect that more recent reports of connectaretyof higher quality when compared to
the BAMS database. Guidance is provided by a stdidyfferent eras of tract tracing
techniques that revealed large improvements inracgyBota et al., 2003). Bota and
colleagues found that limbic system connectiongentesl through axon degeneration (Nauta,
1952) experiments are 60% accurate. In contrastenmethods first applied in 1987 to
exploit axonal transport are more accurate withr &84 considered valid. By splitting our

corpus into documents published before and aft87 e tested for a similar signal that
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separates eras of experimental techniques. In mgm&ewith the manually quantified trend,
we observe an increase from 59.4% to 65.6% inateeaf connectivity statements validated
in BAMS (p = 0.00071, hypergeometric test). We rtbte specificity of regions involved in

the connections also increases while resolutianisatinchanged.

Although we extract large sets of relations the benof unique resolved brain regions in the
unannotated set is only 433 regions. In comparg&ahunique regions are connected in
BAMS. Further, each unique predicted connectivéiation occurs more than twice on

average in our text mined set.

We further evaluate the results in the form of amtivity matrices that count the number of
connections extracted for each brain region paithis framework, 54.7% of the predicted
connections from the unannotated set of rat alisteae connected in BAMS. From a recall
perspective, 3.2% of BAMS connections are conneictdiae literature based matrix. By
thresholding the literature matrix to two or moeéation mentions, precision reaches 65.9%
while recall drops to 1.4% (Table 13). This accyrizcnear the 67.5% precision of the hand
annotated set of connections. Precision graduatiseases as the threshold increases,
eventually reaching 100% for nine connections #natextracted at least 12 times. Further,
we note the specificity of the connections increagh the average number of enclosing
regions reaching 10.2 when thresholded at 12 oesaes. The region pairs not predicted to
form connectivity relations have precision of 33.3@f@ recall of 9.3%. Again, this level of
precision results from co-mentioned regions thatcannected in BAMS but the author is

not specifying that in the sentence. Further, ilgadr recall value results from the much
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larger set of pairings (6079 compared to 1286 Rdioted parings). From a co-occurrence
perspective we found that brain regions that catoateight or more sentences recall 1.6%
of the BAMS connections at 66.4% precision. Intengty, this naive co-occurrence based
method performs at par to the SL method that etgr@dicect connectivity statements. As the
threshold is increased from 8 co-occurrences pogciontinues to gain, suggesting a large
number of co-occurring mentions can predict conuggtas well as a few connectivity

statements (Table 13).
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Table 11 Training set cross-validation results

Precision, recall, f-measure and AUC values areaaes across the ten cross-validation
runs. The “Parameter Sets” column gives the sizeodmeter sets tested. For a given
method, results are shown only for the parametewisie the highest scoring AUC value (F-

measure when AUC is not applicable).

Kernel Precision Recall ;—easure AUC  Parser Type g:;sameter
Co-occurrence 13.3%  100.0%  23.5% none 1
Subset Tree Kernel 44.2% 20.8% 28.1%  74.8% syntax 12
t%?:;ﬁg‘fére”ce > 18.8%  66.1%  29.3% none 25
Partial Tree Kernel 43.3% 23.1% 29.8%  75.2% syntax 12
Keyword Co-occurrence 17.4% 92.7% 29.4% none 1
Spectrum Tree Kernel 37.4% 26.1% 30.2%  72.9% syntax 21
Subtree Kernel 40.7% 25.2% 30.8%  74.6% syntax 12
Keyword 5-threshold 23.7% 60.8% 34.1% none 25
gs::t?ufnhorteﬁ Path 468%  705%  55.8% 86.7% dependency 288
Shallow Linguistic Kernel 50.3% 70.1% 58.3%  88.9% part-of speech 1
(SL) tagger

All-paths Graph Kernel 60.4% 57.9% 58.4%  88.4% dependency 4

97



Table 12 Top and bottom predicted relationsranked by SL classification score

Each predicted relationship represents a single(no@st sentences have many predicted

relationships). Brain region mentions that paratgin the extracted relationships are

marked in bold text.

Rank

10

Sentence

Trigeminal projections to hypoglossal and facial motor
nuclei in the rat.

The cortical projections to retrosplenial dysgranular

cortex (Rdg) originate primarily in the infraradiata, retrosplenial,
postsubicular, and areas 17 and 18b cortices.

The thalamic projections to retrosplenial dysgranular

cortex (Rdg) originate in the anterior (primarily the
anteromedial), lateral (primarily the laterodorsal), and reuniens
nuclei.

Our results indicate that the centromedial

amygdala receives Met-enkephalin (ENK) afferents, as
indicated by the presence of mu-opioid receptor(MOR) , delta-
opioid receptor(DOR) , and Met-enkephalin(ENK) fibers in the
central(CEA) and medial(MEA) , originating primarily from the
bed nucleus of the stria terminalis (BST) and from other
amygdaloid nuclei.

Thalamic projections to retrosplenial cortex in the rat.

The thalamic projections to retrosplenial granular a

cortex (Rga) originate mainly in the anterodorsal (AD) and
laterodorsal (LD) nuclei with sparse projections arising in the
anteroventral (AV) and reuniens nuclei.

Finally, reciprocal projections from the hypothalamus to
the intergeniculate leaflet (IGL) arise from neurons in the
retrochiasmatic area, suprachiasmatic nucleus(SCN) , and
adjacent anterior hypothalamus.

The amygdala projects to orbitofrontal cortex (OFC) by both
a direct amygdalocortical (AC) pathway and an indirect
pathway through mediodorsal thalamus.

The rostral part of the medial accessory olive projects

to zebrin-positive areas , in particular to the P4+ band of the
anterior lobe and lobule VI and to the P5+ band of the posterior
lobe, indicating that C2 has two noncontiguous representations
in the SL and crus 1.

Cortical projections to retrosplenial granular a cortex (Rga)
originate in the ipsilateral area infraradiata, the retrosplenial
agranular and granular b cortices, the ventral subiculum, and
the contralateral retrosplenial granular a cortex(Rga) .

Score

3.47

3.34

3.33

3.32

3.28

3.28

3.27

3.27

3.21

3.19

Reference

(Pinganaud et
al., 1999)

(van Groen and
Wyss, 1992)

(van Groen and
Wyss, 1992)

(Poulin et al.,
2006)

(Sripanidkulchai
and Wyss,
1986)

(van Groen and
Wyss, 1990)

(Card and
Moore, 1989)

(Miyashita et
al., 2007)

(Pijpers et al.,
2005)

(van Groen and
Wyss, 1990)
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9759

9760

9761

9762

9763

9764

9765

9766

Sentence

9747 relationships

In the dorsal horn, terminals or preterminal axons were found
in the dorsal horn marginal zone (lamina I), the substantia
gelatinosa (lamina Il), the nucleus proprius (laminae IIl and
IV--the most consistent projection), Clarke's column (lamina
VI), and the dorsal gray commissure.

In addition, tracer injections into anteromedial(AM) ,
ventromedial(VM) , and ventrolateral (VL) revealed dense
clusters of labeled neurons in layer VI of the medial agranular
(Agm) zone , which corresponds to the MI whisker region.

Additionally, the pontine indoleamine-containing cells in M.
mulatta extended laterally through the tegmentum such that
they were often adjacent to catecholamine-containing neurons
of the locus coeruleus complex

The anterior olfactory nucleus (AON) is a central olfactory
cortical structure that has heavy reciprocal connections with
both the olfactory bulb (OB) and piriform cortex .

Amygdala infusion labeled neurons in the endopiriform
nucleus, temporal cortex, piriform cortex, paralimbic cortex,
hippocampus, subiculum, ento recombinant human(rh) inal
cortex, amygdala, basal forebrain, thalamus, hypothalamus,
substantia nigra, pars compacta, raphe, and pontine
parabrachial nuclei .

The sparse reciprocal connections to the other amygdaloid
nuclei suggest that the central nucleus does not regulate the
other amygdaloid regions but, rather, executes the responses
evoked by the other amygdaloid nuclei that innervate

the central nucleus .

The majority of the Endomorphin 1(EM1) / Fluoro-Gold(FG)
and endomorphin 2(EM2) / Fluoro-Gold(FG) double-labeled
neurons in the hypothalamus were distributed in

the dorsomedial nucleus , areas between the dorsomedial
and ventromedial nucleus, and arcuate nucleus; a few were
also seen in the ventromedial, periventricular, and posterior
nucleus.

Projections from the dorsal medullary reticular

column (DMRC) are largely bilateral and are distributed
preferentially to the ventral subdivision of MoV , to the dorsal
and intermediate subdivisions of VII, and to both the dorsal and
the ventral subdivision of XII.

Two additional large projections leave the medial forebrain
bundle in the hypothalamus; the ansa peduncularis-ventral
amygdaloid bundle system turns laterally through the internal
capsule into the striatal complex, amygdala and the external
capsule to reach lateral and posterior cortex, and another
system of fibers turns medially to innervate medial
hypothalamus and median eminence and form a contrelateral
projection via the supraoptic commissures.

Score

9.08E-
004

8.98E-
004

7.84E-
004

7.23E-
004

6.99E-
004

5.46E-
004

4.36E-
004

2.91E-
004

2.87E-
004

Reference

(Nunez et al.,
1986)

(Alloway et al.,
2008)

(Schofield and
Everitt, 1981)

(lllig and Eudy,
2009)

(Sobreviela et
al., 1996)

(Jolkkonen and
Pitkanen, 1998)

(Chenetal.,
2008)

(Cunningham
and
Sawchenko,
2000)

(Moore et al.,
1978)
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Rank Sentence Score Reference
In animals with injected horseradish peroxidase(HRP) confined

within the main bulb, perikarya retrogradely labeled with the

protein in the ipsilateral forebrain  were observed in 3.36E-
the anterior prepyriform cortex horizontal limb of the 005
nucleus of the diagonal band , and far lateral preoptic and

rostral lateral hypothalamic areas.

(Broadwell and
Jacobowitz,
1976)

9767

Table 13 Aggr egate connectivity results from several methods and relation sets

Anatomical depth is the combined number of enclpgiarent neuroanatomical structures for
each brain region forming the pair. Threshold valtepresent the minimum number of

occurrences required for a relationship to be c®rsid a connection.

Relation Set Method  Threshold An%tgg:Lcal Connections Precision Recall MeE:l:s-ure
zﬁﬁg't‘;?e d Curation 1 8.7 200 67.50% 0.61% 1.22%
;‘r?r?;t;‘;g g Curation 1 8.7 1606 41.91% 3.06% 5.71%
;F))roesditii;/t?ons SL Kernel 1 8.4 1286 54.70% 3.20% 6.05%
;F))roesditii;/t?ons SL Kernel 2 8.4 454 65.90% 1.40%  2.74%
;F))roesditii;/t?ons SL Kernel 12 10.2 9 100.00% 0.04% 0.08%
Al pairings Occf}?énce 1 8.3 6474 34.00% 10.01% 15.47%
All pairings Occf}?énce 2 8.3 2865 44.96% 5.86% 10.37%
All pairings occfrcr)énce 8 8.2 515 66.41% 1.56% 3.04%
All pairings OCCS:I‘?(;HCG 16 8.4 189 71.43% 0.61% 1.22%
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Figure5 Summary ROC curvefor the SL method (AUC = 0.899)
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[ 12,557 Abstracts ]

Sentences with > 2 brain regions

[ 33,466 sentences J

All possible brain region pairings
\

[ 156,741 pairs J

Predict connectivty relations with SL
/—‘L\

28,107 pairs

U

Filter for relations from rat abstracts

9,676 pairs

Normalize to BAMS

\

2,688 pairs
63.5% connected in BAMS

Convert to connectivity matrix

y

1,286 unique pairs
54.7% connected in BAMS

Figure 6 Flow chart depicting the processing steps

4.4 Discussion

We demonstrate a complete system for extractingectvity statements from biomedical
abstracts. The method provides high recall of méyaanotated connectivity relations
described in single sentences. Precision of prediictlations is 63.5% when evaluated
against an independent source of rat connectiVhis result compares well to the 70.5%

precision of manually annotated connectivity staets. By processing a large dataset
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we found precision increases with the recency asglency of the extracted relationships.

A limitation of our work is that we assumed the gectivity statements are bidirectional
although most of the relationships we extracteceladirection described. In addition, some
reports of disconnection are described (region Asdwt project to region B). Extracting this
information by extracting keywords such as “affétgnot” or “input” will require future
work. These relationship modifiers are manuallydated in the corpus and can be used to

design more complex rules.

Our methods that focused on the sentence levebtanxtract the large number of relations
that span sentences. When these connections areitdk account the SL parser provides
only 51.7% recall of annotated connections. Appiccaof advanced natural language

processing techniques may be necessary to bridgeetitences (e.g. anaphora resolution).

The comparison of seven cutting edge kernel bagpaches mirrored the previous results
from the protein interaction relationship extrantsbomain (Tikk et al., 2010). Several of the
kernel methods have lower performance than ourlsimye based technique. Effort spent
crafting more complex rules may yield higher prexisat the cost of lower recall. The top
three kernel methods (SL kernel, All-paths grapbakd Shortest path spectrum kernel) all
have similar accuracy (AUC and f-measure scoresydmy in precision and recall. This

difference suggests higher performance may be agthiey combining the methods.

Our results suggest a larger set of input abstraitityield a larger number of precise

connections. The largest possible extension sdedline with over 10 million abstracts and
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120 million sentences. Tikk and colleagues caledlahat the SL parser could process all of
Medline in 141 days (Tikk et al., 2010). A two sf@pcess may reduce runtime and increase
accuracy by first identifying abstracts with contdty statements and then extracting the
specific connections with SL. Another targeted apph is to extend the analysis to other

journals that often publish tract tracing studieg(Journal of Chemical Neuroanatomy).

In natural language processing, it has been obdehat simple statistical models (e.g. co-
occurrence) outperform more complex models basddssndata (Halevy et al., 2009).
Indeed, in our corpora we found that brain regiamgwith many co-mentions tend to be
connected. In our evaluations this simple technjgeeluces a larger set of potential
connections with reasonable precision. Although thil produce a larger set of results than
the SL method, it does not target connectionsdhatbe directly curated in light of
experimental evidence because the co-mentions mawap not describe connectivity.
Further, such co-occurrences may result from regromimity or popularity that may
influence research attention in both the literaamd in BAMS. However, such co-
occurrence networks show valuable areas of focienwlbmbined with co-mentions of

genes and diseases (Hayasaka et al.).

Under one third of the extracted relationships veerecessfully mapped to a brain region
concept pair in a standardized lexicon. This hamnlsudied in previous chapters but for
relationship extraction the resolution rate is fye@educed as both pairs of a connectivity
relation must be mapped. Further, it appears #aons forming connectivity relations are

harder to resolve on average. For this work we meath&o double the resolution rate to the
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BAMS lexicon by adding synonyms. Additional workitoprove the lexicons will lead to
better resolution of connectivity statements, alfgywalidation and linking to other

resources.

For our evaluation to an outside database we facosdBAMS (Bota et al., 2005). While rat
is the most frequent mentioned organism, otheruatimins could compare the connectivity
results to the Collations of Connectivity data ba Macaque brain (CoCoMac) (Kotter,
2004) or the Avian Brain Circuitry Database (ABQ@ghrott and Kabai, 2008). Beyond
evaluation, our dataset and method can providege ket of extracted connectivity

relationships for other species specific databases.

In conclusion, we provide the first applicationlafge-scale text mining to neuroanatomical
connectivity extraction. We demonstrated that maelearning tools designed for extraction
of protein-protein interactions are generalizablenining brain region connections. From an
information retrieval perspective, our large setio€urated connections can aid
neuroscientists in forming hypotheses and modeisirE work will be aimed at further

evaluating and disseminating the results beforershhg the analysis.
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Chapter 5: Large-scale analysis of gene expression and connectivity in the

rodent brain: insights through data integration®

5.1 Introduction

Understanding gene function requires the analySisteractions among them, and ultimately
unraveling the function of the genome will requianprehending how all of the parts
interoperate in complex networks. An analogousasitm exists for the brain and its regional
connectome (Bota et al., 2003;Sporns et al., 200Btnan and Sanes, 2008;Biswal et al.,
2010;Sporns, 2011). Given the relationships betweese two systems (genome and
connectome), as well as the fact they are both tmetworks, it is natural to ask how
analysis of one can inform understanding of thewotimdeed, the integrated analyses of the
connectome with other modalities will be criticalinderstanding brain function. In this

chapter our modality of interest is gene expresdmmwhich extensive information exists.

It is obvious that the connectome is related toggm@ome. Axon pathfinding, target
recognition, synapse formation and plasticity aybtly controlled by gene expression

(Ressler et al., 2002;Polleux et al., 2007). Theefion of synapses requires the coordinated

* A version of this chapter has been published. ¢frén Tan PPC and Pavlidis P (2011) Large-scaléyaiseof
gene expression and connectivity in the rodennbriasights through data integration. Frontiers in

Neuroinformatics. doi:10.3389/fninf.2011.00012
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expression of genes directing the synthesis ofateansmitters in the presynaptic cell and of
receptors in the postsynaptic cell. Because higbhutfhput experimental technologies for
studying the genome are well developed, in manysveay understanding of gene expression
and gene networks is better than for the connec{timeigh this situation is changing
rapidly). This allows the collection of large da&ts describing gene expression patterns at
high levels of resolution. It is increasingly fdasito use this molecular level information to

elucidate neuroanatomy.

Analysis of connectomes with transcription datadregith the nematodgé. elegandecause
neuron-level connectivity and gene expression teast known. (White et al., 1986;Harris et
al., 2010). Neuron-level gene expression data.ialeganss not available for all genes, but
there is enough to perform reasonably large-scaé/ses. The earliest study integrated the
connection and expression profiles of 280 neurows292 genes (Varadan et al., 2006).
Varadan and colleagues employed a systems-baseshapgdo discover logical gene
expression based rules that predict connectivitghthe resulting gene modules they
found high levels of “multivariate synergy”, sugtieg statistically interacting genes were
more important than single genes. The authors @etisseveral gene sets that correlate
expression in pre and post-synaptic neurons teepoesof gap and chemical synapses.
Interestingly, gene sets which contained the ndstination about the formation of

synapses included cell adhesion molecules, tratsmnifactors and axon guidance cues.

Kaufman et al. performed a similar analysis (Kauiretal., 2006). They found a more

general statistical relationship between gene esggwa and connectivity. Their analysis
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employed a co-variation correlation assay, alsodknas a Mantel test. The Mantel test
correlates similarity or distance measures acrossmon objects (in this case, neurons). The
Mantel correlations found by Kaufman et al. werga.18. This signal, while statistically
significant, is not strong enough to allow prediotof connectivity from gene expression.
Using an optimization method, Kaufman et al. idkedi a set of 15 genes whose expression
patterns carried the most information about conwiégt Similar to the results of Varadan et
al. (2006), they found that a statistically sigrafnt number of these were previously linked

to synaptogenesis, neuron type, axon guidance evelapment.

A third C. eleganstudy, by Baruch et al. (2008) focused on findielgtionships between
gene expression and certain aspects of synapsatiom{Baruch et al., 2008). They used
expression profiles to model the type of synapsg,(electrical or chemical) between
connected neurons. Like Varadan et al. (2006) émegloyed a machine learning method to
find gene expression-based logical rules, and émeg found to be most predictive of

connection type often had known functional roleseuniral development.

Similar analyses are starting to appear for the malian brain, though in terms of data the
situation is the opposite of that for the worm: gexpression is more fully described than
connectivity. Dong et al. (2009) provided a fastimaglimpse into the relationships
between brain wiring and gene expression in the malmn brain (Dong et al., 2009). They
studied the Allen Mouse Brain Atlas (ABA) for sdtgene expression profiles that
segmented the hippocampal field CA1 along its ltudgnal axis. Nine of the genes that

segmented the CAL1 field had concordant expressattenns in the lateral septal nucleus,
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apparently reflecting the patterns of projectioaieen the respective dorsal and ventral
aspects of the two regions. Dong et al. (2009) vabte to interpret the CA1 segmentation
from the perspective of brain function and connaisti They noted that the ventral half is

linked to goal-oriented and autonomic responseenhié dorsal half plays roles in

navigation.

A limitation of previous studies integrating gengeression and connectivity is the challenge
of interpreting the patterns observed in termstb&opparameters such as cellular
composition of different brain regions. In the @t chapter, we extend our earlier work,
starting with a directed search for expressiongpast of interest. We hypothesized that
expression patterns that strongly distinguish bragions from each other might be
functionally relevant and potentially related tonoectivity. We were specifically interested
in gene pairs with expression patterns showinghgtreegative correlations across multiple
brain regions. We then use connectivity data as aseihformation on cell-type-specific gene
expression to further dissect and ascribe bioldgneaning to the patterns we identified. In
addition to identifying a novel pattern of gene ®gsion in the mouse brain, our analysis
serves as a demonstration of how a complex genegsipn pattern can be dissected using

multiple data types including connectivity.
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5.2 Materialsand Methods

5.2.1 Neuroanatomical connectivity data

For neuroanatomical connectivity knowledge, we ubedBrain Architecture Management
system (BAMS). BAMS contains extensive informatabout neural circuitry curated from
neuroanatomical atlases and tract tracing expetsr(8ota et al., 2005;Bota and Swanson,
2010). The version of the BAMS database we useagm 7,308 structural connections
between 961 rat brain regions and is accessiblbulladownload
(http://brancusi.usc.edu/bkms/xml/swanson-98.xinbtead of parsing the original XML we
used a converted semantic web version createdhyyBarkley
(http://sw.neurocommons.org/2007/kb-sources/bamsHswanson-98-4-23-07.owl). The
BAMS system stores information on projection sttengumber of reports, report citations
and absence of connections but it is not availablee database version we obtained.
However, directions of the neuroanatomical conwestiare known, allowing splitting of our

analysis between incoming and outgoing connectrofiles.

The BAMS curators comprehensively studied the heden of the stria terminalis (BNST)

and indicate that its connection matrix is congdaeztomplete (Bota and Swanson, 2010). We
were concerned that this unusually well-studiedaoregvould bias our results, as it has more
known connections than the other regions (we censdiregions that lack a documented
connection to be unconnected). For example, iblras seven times the average number of

outgoing connections. To reduce this bias in thas#d, we removed connection

110



information for the BNST and its subparts. We dbsuspect the quality of these
connections but wished to prevent one well-charaeé region from being overrepresented.
We believe the complete connectivity matrix of Bi¢ST will be valuable for future focused

analysis.

522 Geneexpression data

We employed the expression energy quantificatidrisedABA images. For each image the
expression energy of every voxel is defined agptioduct of expression area and expression
intensity (Ng et al., 2009). Pixels are averagethiwivoxels and brain regions to provide a
single expression energy value for each brain redio reduce computation time and filter
genes of low and constant expression values weaatest our analysis to genes for which
ABA has expression patterns in coronal sectionss 3ét of 4261 image series (3976 genes)
were assayed by ABA in the coronal plane becauseshowed marked regional expression
patterns in the sagittal plane (Ng et al., 20099siMhousekeeping” genes which tend to
have widespread expression are not present ireth&€sme genes were represented by more
than one imageseries (that is, there are replaatie sets in the Allen Atlas), which were kept
separate in our analysis. To create a single esimegrofile for a set of genes we averaged

the expression values per region.

For analysis of expression data alone, we usecabéverlapping ABA regions. When
connectivity data was used the regions were lintibetthose for which we had connectivity

data: 112 regions for outgoing, 141 for incomingreectivity and 142 resulting from joining
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the two.

5.2.3 Neuroanatomical matching and selecting

The names of brain regions are formalized in haias both in BAMS (Swanson,
1999;Bota and Swanson, 2008) and the ABA data (D2d@7), but the schemes are not
identical. In addition, the BAMS dataset contam®rmation at a finer neuroanatomical
resolution than ABA. To maximize the use of conngt information, we created
connection profiles of coarser scale by using aprgpagation procedure. Up-propagation
maps the brain region to its parent region ungéldesired level in the neuroanatomical
hierarchy is reached. This procedure was appliedl wonnection pairs in BAMS. For
example, a connection between region A and regianllBe expanded to the set of all
possible connections between the neuroanatomicah{zaof both region A and region B. To
prevent enrichment of up-propagated connectionkepé regions that had zero connections

to the ABA mapped regions.

Although the two datasets are at the brain regogl| the organisms differ. The rat brain
with a wealth of neuroanatomical information isgegand for some regions like the
cerebellum, more complex. In contrast, geneticsraalécular research is more commonly
performed on the smaller mouse brain. For this wegkconsidered neuroanatomical
differences between the mouse and rat to be mirtbedevel of granularity we used
(Swanson, 2003); for example, the Paxinos mouas aths guided by several rat brain
atlases (Paxinos and Franklin, 2008), and brailmnsghames largely coincide between the

two. These common names allowed quick lexical magpfr most of the regions. To
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join the two data types we mapped nomenclaturesialgn We used primarily a region’s
name, then secondarily its parent region and dgadraers to pair brain regions. The

mappings for the Allen Brain regions are provided\ppendix B.

The neuroanatomical atlases from ABA (Dong, 200id) RAMS (Swanson, 2004) provide
information on which brain regions are neuroanataichildren or parts of others. These
relations create correlations in the gene expragsiofiles and the connectivity data (due to
up-propagation). To negate this effect we used A8/ of 207 Allen brain regions for the
primary region list. These remaining regions hawaeuroanatomical subparts in the ABA

dataset.

The Allen Atlas provides a differing grouping ofjrens than the BAMS hierarchy. The
superior colliculus is one example. The ABA dividissregions into motor and sensory
areas, while the BAMS atlas groups the regionsaptac, gray and white layers. Differences
were resolved by creating “virtual regions” in BAMS atlas space that contained the
corresponding subregions of the Allen Atlas. Thenaztivity profiles of the mapped regions
were joined using a logical OR operation to prowiake virtual region's BAMS connections.
For example the superior colliculus sensory relatgdal region has all of the BAMS
connections of the zonal, optic and superficialydagers. In addition to the superior

colliculus, virtual regions were created for thdidam medial region and nucleus ambiguus.

After mapping of brain regions, the ABA data isxafmumber of regions in the ABA) by
(number of genes) matrix, and the BAMS connectiddya is a squam® (humber of regions

in BAMS) byw (region) matrix (Figure 13). The two matrices ac¢ directly
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comparable because the number of regions in BAMfBeiater than those in ABAvEX).
Rather than discarding all information from regiovisich lack expression information, we
use thex by w submatrix of the BAMS data. Thus each of xtregions has gdimensional
expression vector andvadimensional connectivity vector. This maximizes tise of
connection information, but we note that the cotimgtg profiles include information from

regions for which we lack expression information.

524 Statistical analysis

To compare expression energy to spatial locati@hcamnectivity degree we compute
Spearman rank correlation coefficient¥. Statistical significance was established by
resampling 1,000 gene sets of the same size toagerempirical null distributions. This
provides the probability that an equally sized gesterandomly chosen from the set of all
genes scores a higher correlation. We used limgmession for computing partial correlation
coefficients. Principal component analysis wasqrenkd after rescaling the gene profiles to
a common mean and variance. We employed the cosrloiage agglomeration method for

hierarchical clustering with the Euclidean distahgection.

5.25 Cell-typeenriched genelists

Cell type enriched gene sets were extracted fraiTthe Transcriptome Database for
Astrocytes, Neurons, and Oligodendrocytes” (Caliat.e2008). The database contains
gene expression profiles of cell-type purified nmatonouse forebrain samples. Mouse gene

symbols were extracted from supplementary tableS&df Cahoy et al. (2008) . These
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tables provide lists of astrocyte, neuron, andoalendrocyte enriched genes. After removing
genes that are not in the ABA coronal gene set,aét®cyte, 831 neuron and 571

oligodendrocyte enriched genes remain.

5.2.6 GeneOntology enrichment

We used the ErmineJ software to extract overreptedegsene Ontology (GO) groups
(Ashburner et al., 2000;Gillis et al., 2010). Tle¢ af 3976 coronal genes formed the
background gene list for the over-representatialyasis. GO groups were limited to the

biological process division and required 5-300 dateal genes.

5.2.7 Ortholog assignment

For each gene we extracted its homologous sequéoceshe HomoloGene database (build
version 64) (Wheeler et al., 2007). HomoloGene gsowere used to convert the mouse gene

identifiers to genes fror8. cerevisiaéyeast) C. elegangworm), andD. melanogaste(fly).

5.3 Reaults

To identify genes showing strong negatively cotegleexpression patterns with other genes,
we ranked all pairs of genes in the data set by 8mearman correlations across 150 ABA
brain regions, and considered pairs with the seshgegative correlations. By filtering
gene-gene correlations at a maximum Spearman’sa@mé&lation coefficientp) of -0.72 we
selected the 456 most anti-correlated gene paiesch@ose this stringent but arbitrary

threshold because we wanted a small list that doalchanually examined for interesting
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relationships, though our findings proved to haddther reasonable selection thresholds.

Our first observation was that this list of 456rpancludes only 102 different genes,
indicating there would be strong positive correlas present within this set, rather than
numerous distinct patterns. Hierarchical clusteand visualization of the expression
patterns of these genes (Figure 7) shows thatrtbmal 456 inversely correlated patterns are
essentially one inverse relationship correspontbrigro gene expression profiles.
Visualization of all gene-gene correlations withie set demonstrates this relationship with
a clear bimodal distribution with peaks at -0.6 &nd (Figure 8). To further examine the
inverse relationship we use clustering to dividedhata into two sets: pattern NE (43 image
series, 40 genes, Table 14) and pattern OE (68drsages, 62 genes, Table 15). This choice
of names will be clarified later in our resultsgéie 9 shows expression energy images in the
sagittal plane for a pattern NE (CamK2a) and OEed&100b). The average profiles of these
patterns are strongly negatively correlated (Spaarsrank correlationp) = -0.88). Given

the strength of this pattern, although it only udgs a small fraction of the genes studied, we
asked if it might correspond to patterns uncovéregrincipal component analysis (PCA).
We found the pattern NE and OE genes are stroregigrable in PC2 (Figure 10) and the
mean loadings in PC1 differ significantly (p-vaki®.001). Thus these patterns correspond

to major trends in the data.

Inspection of the gene names and symbols suggtstedattern NE was enriched for
neuron-associated genes such as calcium/calmodefiandent protein kinase Il alpha

(Camk2a) (Ouimet et al., 1984) and calbindin-28klf) (Pfeiffer et al., 1989). In contrast,
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several glial cell markers appear in the patternli€tEcarbonic anhydrase Il (Car2)
(Ghandour et al., 1979;Ghandour et al., 1980), 81Ghandour et al., 1981;Rosengren et
al., 1986) and glutamine synthetase (Glul) (Wul.e2805). Also, one neuron marker,
neurofilament high molecular weight (Nefh) appaarthe pattern OE list (Letournel et al.,
2006). We note that none of the ABA regions aretevimatter tracts (most are small nuclei),

so the pattern does not reflect a simple contretstden grey and white matter.

Gene Ontology (GO) enrichment analysis allowedushfectively quantify these trends.

The GO provides extensive annotations of genesatlmat testing for enrichment of specific
functions, subcellular localizations or proces&aslooking for annotations overrepresented
in patterns NE or OE we find several interestingugrs, though none reach significance after
multiple test correction. For pattern NE the topked groups include “regulation of
transport” (GO:0051049, p-value=8.3%)@nd “regulation of neurotransmitter secretion”
(G0:0046928, p-value=0.0035). Pattern OE is enddbegroups such as “potassium ion
transport” (GO:0006813, p-value=0.0047), “cellutar homeostasis” (GO:0006873, p-

value=0.013) and “regulation of membrane poten{i@0:0042391, p-value=0.0015).

By linking homologous sequences we quantified healionary recent the pattern NE and
OE genes are. Surprisingly, only three of the patéE genes had a homolog in yeast, worm
or fly genomes (7.5%, p-value=0.00023, hypergeamtdst). The pattern OE group had 23
(37%, p=0.067) of earlier origin, slightly more thine faction seen in the entire coronal
gene set (32%). Both sets had about the expectatenof detected orthologs in the human

genome.
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We used a third bioinformatics approach to testthdrethese two patterns might reflect
differences in cellular populations, using the B@aiptome Database for Astrocytes,
Neurons, and Oligodendrocytes (Cahoy et al., 2@€i8ure 7 and Figure 11 show that
pattern NE is enriched for genes identified by Gadioal. as being neuron enriched (p-
value=0.0016, hypergeometric test). In contrastepa OE has half the number of expected
number of neuron-enriched genes (p-value=0.015%)tiHfeoCahoy oligodendrocyte genes the
opposite pattern appears, with 29 genes in pa@ériip-value<0.0001). Genes from the
Cahoy “astrocyte” gene set were represented appaigly equally in both sets at the
expected proportions. Similar results were obtaimgdsing the lists of oligodendrocyte and
neuron enriched gene sets from the ABA (Lein ¢t28107). These strong cell type signals

led us to label the two gene sets as neuron emti@¥E) and oligodendrocyte enriched (OE).

The results presented thus far are limited to métron obtained at the gene level. While the
two profiles seem to have a relationship to cgletywe wanted to test if they provide
information about higher-level brain structure. @ext analysis stage incorporated

information on spatial locations within the bramdaconnectivity.

We first summarized patterns NE and OE as the geavhthe expression patterns of the
gene sets. While pattern OE has slightly lower esgion levels on average, the two patterns
have similar variance. This expression patternsscregions was found to be significantly
correlated with the anterior-posterior axis: regitimat have high pattern OE expression tend
to be at the posterior end of the brain (Spearm@r0s81), with the opposite true of pattern

NE (p = -0.76). Regions in the posterior end of therbred fewer connectiong € 0.55).

118



Accordingly we found that the expression pattemsatated with the number of connections
the regions have. For incoming connectivity degheeSpearman correlations are 0.49 and -
0.54 for pattern NE and OE respectively (141 bragions). For the 112 regions that have at
least one report of an outgoing connection theetations are 0.32 and -0.44 for pattern NE
and OE respectively. Joining the incoming and omgoonnections provides 142 brain
regions with correlations of 0.48 (pattern NE) add&9 (pattern OE). This means that higher
expression of pattern NE is found in “hub-like” i@gs with many connections, and high
expression of pattern OE is observed in “relay-ltegions with few connections. The
relationship is shown in Figure 12 with regionshafh connectivity degree with low pattern
OE expression and high pattern NE expression. fAh@® above correlations are significant
at p < 0.001. It is important to note that the rentioronal gene set has substantial
correlations of expression levels to anterior-pasteaxis o = 0.29), incomingd = -0.19),
outgoing connection degree £ -0.25). This spatial correlation reflects a braghe coronal

set gene selection, which favoured genes expreésshd cortex and hippocampus (Ng et al.,
2009). Against this baseline, the anterior-postezipression gradient of the pattern NE and

pattern OE genes is still very high.

Because of the known relationship between spateation in the brain and patterns of
connectivity, we sought to correct for this in @amalysis of the NE and OE patterns, using
partial correlations. We found that the correlasionth incoming connectivity degree are
still significant after correction for anterior-gesior location, with correlations of 0.20
(pattern NE) and -0.30 (pattern OE). Similarly, th#going degree correlations were still

significant, though reduced in magnitude: 0.07tgratNE, p-value=0.001) and -0.30
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(pattern OE). Correlations to the combined degoeess 142 regions are 0.16 (pattern NE)

and -0.35 (pattern OE; all of the above correlatiare significant at p < 0.001 unless

otherwise noted). A similar analysis carried ounhgghe full Cahoy “neuron” and

“oligodendrocyte” lists show similar trends, albeitich weaker than patterns NE and OE.

Expression of the Cahoy astrocyte-enriched genestisignificantly correlated with

connectivity degree or anterior-posterior axis (@.2).

Table 14 Pattern NE gene symbols and names

Gene Symbol
6720401G13Rik
Calbl
Camk2a
Camkv
Cenpf
Cox6a2
Cpne2
Cpne7
Cyln2
Dusp6
E2f1
Egr3
Fos
Grial
Gria2
Grik5
Heatr5b
Hpcal4
Itm2c
Kalrn
Ly6h
Mef2c
Mef2d
Nnat
Ntrk2

Ogt

Name

RIKEN cDNA 6720401G13 gene

calbindin-28K

calcium/calmodulin-dependent protein kinase Il alpha
CaM kinase-like vesicle-associated

centromere protein F

cytochrome c oxidase, subunit VI a, polypeptide 2
copine Il

copine VI

cytoplasmic linker 2

dual specificity phosphatase 6

E2F transcription factor 1

early growth response 3

FBJ osteosarcoma oncogene

glutamate receptor, ionotropic, AMPAL1 (alpha 1)
glutamate receptor, ionotropic, AMPA2 (alpha 2)
glutamate receptor, ionotropic, kainate 5 (gamma 2)
HEAT repeat containing 5B

hippocalcin-like 4

integral membrane protein 2C

kalirin, RhoGEF kinase

lymphocyte antigen 6 complex, locus H

myocyte enhancer factor 2C

myocyte enhancer factor 2D

neuronatin

neurotrophic tyrosine kinase, receptor, type 2

O-linked N-acetylglucosamine (GIcNAc) transferase (UDP-N-
acetylglucosamine:polypeptide-N-acetylglucosaminyl transferase)
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Gene Symbol
Pdgfra
Peal5
Pkia
Ppap2b
Prkcc
Psgl6
Ptprz1
Rtn4rll
Shisa9
Sirpa
Slc27al
Tiam1
Tnrc4
Unc84a

Name

platelet derived growth factor receptor, alpha polypeptide
phosphoprotein enriched in astrocytes 15

protein kinase inhibitor, alpha

phosphatidic acid phosphatase type 2B

protein kinase C, gamma

pregnancy specific glycoprotein 16

protein tyrosine phosphatase, receptor type Z, polypeptide 1
reticulon 4 receptor-like 1

shisa homolog 9 (Xenopus laevis)

signal-regulatory protein alpha

solute carrier family 27 (fatty acid transporter), member 1
T-cell ymphoma invasion and metastasis 1

trinucleotide repeat containing 4

unc-84 homolog A (C. elegans)

121



Table 15 Pattern OE gene symbols and names

Gene Symbol
3632451006Rik
Acyp2
Adssl1
Ankrd34b
Arhgefl0
Armc2
Aspa
B630019K06Rik
Bcatl
Cables2
Car2
Cldn11
Cnpl
Cnpl
Cryab
Cyp27al
Daam2
Ddt
Dip2a
Elovl5
Endod1
Enpp2
Fa2h

Fts
Galnt6
Gatm
Glral
Glul
Gprchb
Hcn2
Kcng4
Kctd9
KIk6

Lgi3
Limk1
Map2k6
Mmell

Name
RIKEN cDNA 3632451006 gene
acylphosphatase 2, muscle type
adenylosuccinate synthetase like 1
ankyrin repeat domain 34B
Rho guanine nucleotide exchange factor (GEF) 10
armadillo repeat containing 2
aspartoacylase (aminoacylase) 2
RIKEN cDNA B630019K06 gene
branched chain aminotransferase 1, cytosolic
Cdk5 and Abl enzyme substrate 2
carbonic anhydrase 2
claudin 11
cyclic nucleotide phosphodiesterase 1
cyclic nucleotide phosphodiesterase 1
crystallin, alpha B
cytochrome P450, family 27, subfamily a, polypeptide 1
dishevelled associated activator of morphogenesis 2
D-dopachrome tautomerase
DIP2 disco-interacting protein 2 homolog A (Drosophila)
ELOVL family member 5, elongation of long chain fatty acids (yeast)
endonuclease domain containing 1
ectonucleotide pyrophosphatase/phosphodiesterase 2
fatty acid 2-hydroxylase
fused toes
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6
glycine amidinotransferase (L-arginine:glycine amidinotransferase)
glycine receptor, alpha 1 subunit
glutamate-ammonia ligase (glutamine synthetase)
G protein-coupled receptor, family C, group 5, member B
hyperpolarization-activated, cyclic nucleotide-gated K+ 2
potassium voltage-gated channel, subfamily G, member 4
potassium channel tetramerisation domain containing 9
kallikrein 6
leucine-rich repeat LGI family, member 3
LIM-domain containing, protein kinase
mitogen activated protein kinase kinase 6
membrane metallo-endopeptidase-like 1
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Gene Symbol Name

Nefh neurofilament, heavy polypeptide

Nifun NifU-like N-terminal domain containing

Nrgl neuregulin 1

Pacs2 phosphofurin acidic cluster sorting protein 2

Plekhbl pleckstrin homology domain containing, family B (evectins) member 1
Plp1 proteolipid protein (myelin) 1

Pnkd paroxysmal nonkinesiogenic dyskinesia

Prune2 prune homolog 2 (Drosophila)

Pvalb parvalbumin

Qdpr quininoid dihydropteridine reductase

Rnd2 Rho family GTPase 2

Rnf13 ring finger protein 13

S100al6 S100 calcium binding protein A16

S100b S100 protein, beta polypeptide, neural

Scnla sodium channel, voltage-gated, type I, alpha

Sema7a sema domain, immunoglobulin domain (lg), and GPlI membrane anchor, (semaphorin) 7A
Serpinblc serine (or cysteine) peptidase inhibitor, clade B, member 1c

Sgpp2 sphingosine-1-phosphate phosphotase 2

Slcl2a2 solute carrier family 12, member 2

Slc39a14 solute carrier family 39 (zinc transporter), member 14

Slc44al solute carrier family 44, member 1

Slc4a2 solute carrier family 4 (anion exchanger), member 2

Slc6as solute carrier family 6 (neurotransmitter transporter, glycine), member 5
Syt2 synaptotagmin

Vampl vesicle-associated membrane protein 1

Zfyve9 zinc finger, FYVE domain containing 9
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Cell type enrichment Brain region category

Paragigantocedllular reticular nucleus
Motor nucleus of trigeminal

Edinger Westphal nucleus

Substantia nigra reticular part

Ventral posterior complex of the thalamus
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Figure 7 Expression patter ns of genesinvolved in the top 456 negative expression correlations

Normalized expression is colour coded, ranging flue (low) to yellow (high) and in

white for missing values. Genes mentioned in theptdr are labelled. Gene membership in
the transcriptome database for astrocytes (greenyons (red), and oligodendrocytes (blue)
is marked (Cahoy et al., 2008). The dendrogram shbe split between pattern NE and
pattern OE. Brain regions are coloured as orangerfdbrain, cyan for hindbrain, purple for

interbrain and grey for midbrain. Expression datagfach gene was normalized to mean zero
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and variance one for contrast.

Density Plot of All Gene-Gene Expression Correlations within Pattern NE and OE gene sets

Density
0.6 1.0 1.2

04

Spearman Correlation

Figure 8 Density plot of expression correlationswithin pattern NE and OE genes
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Camk2a

Figure 9 Sagittal expression energy images of a pattern NE and OE gene

CamkK?2a displays pattern NE (image series 7936027d)S100b shows pattern OE (image
series 924). Images were downloaded from the ABA site (http://www.brain-map.org).

While all expression information for the analysidriom coronal assays, we selected a
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sagittal view to better show interregional variapiin a single section.
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Figure 10 Principal components analysis. Gene loadings for pattern NE (red circles), pattern OE (blue

triangles) and all other genes (small black circles) are plotted

The first two principal components, PC1 (16.4 %h&f variance) and PC2 (11.8 % of the

variance) separate the two patterns.
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Figure 11 Fraction of cell type enriched genes appearing in the two patterns

P-values below 0.05 are marked by * and below 0v0i@5 **. Neuron enriched genes are
overrepresented in the NE list and underrepresenteér OE list. Oligodendrocyte genes

are overrepresented in the OE list but not sigaifity underrepresented in the NE list.
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Figure 12 Relationships between degree and expression patterns

Connectivity degree is plotted against averageepattiE (red circles) and OE (blue

triangles) expression levels for each brain regixegree for the 142 regions is the sum of

both incoming and outgoing connections.

5.4 Discussion

In this chapter we have shown how a complex expmegsttern in the rodent brain can be

dissected in terms of genes, cell types, spatation and connectivity. To our knowledge,

the expression patterns we identified have not Ipeeviously described. However, previous
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work has uncovered possible links between neuroangtgene expression and cell type.
Using a voxel-based PCA on a subset of the ABA,davaland et al. noted that the two
most separable structures, the striatum and cdueletontain a relatively large number of
GABAergic inhibitory neurons (Bohland et al., 2009bhere are a number of differences
between the analysis of Bohland et al. and oucdydiing the use of voxels vs. brain regions
and the choice of genes analyzed, so it is not ®asgmpare them (indeed it appears the
components in the two PCAs are not equivalent)jthatikely that at least some of the
highly weighted genes in the pattern identifiedBmhland et al. are genes in the pattern we
found. A second study has examined a link betwepression and connectivity for two
specific brain regions (Ng et al., 2009). Using Amatomic Gene Expression Atlas (AGEA)
Ng et al. visualized correlated expression profiethe parafascicular nucleus and the
ventral posterior complex. The ventral posterianptex is a “relay nucleus” and has fewer
connections than the hub-like parafascicular nicl@he AGEA visualization demonstrated
that the regions have diverse expression correlaiaps that might reflect their diverse
function (Ng et al., 2009). In agreement with tt@sult, in our analysis the highly-connected
parafascicular nucleus has high expression of ¢ueam-enriched pattern NE compared to
the ventral posterior complex. For the oligodengite@nriched pattern OE the opposite is
true. Our results are consistent with the ideadlegtees of connectivity might be reflected in

expression pattern.

Patterns NE and OE are suggestive of differencéseimelative proportion of neuronal and
glial cell populations in the brain regions in whidey are expressed. We further

hypothesize that the correlations these patterms With connectivity might be explained in
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terms of highly-connected regions having more nesirand concomitantly fewer
oligodendrocytes. However, we could not rigorousht these ideas here because
measurements of glia-to-neuron ratios across meaig btructures do not appear to be
readily available. More detail about the natureafnectivity supported by the pattern NE
and OE regions could also provide insight; in gaitr the connectivity data we used does
not detail if the connections are highly myelinatetibitory or excitatory. We also found
that the pattern NE genes have a more recent émaduy origin, while the pattern OE genes
tend to be more ancient. This agrees with past Wakfound evolutionary expansion and
regional variation of synaptic genes that are esgqed primarily in neurons (Pocklington et

al., 2006;Emes et al., 2008).

We note that the connectivity data we employ daggorm a complete connectome. The
connectivity data we use lacks information aboutnsztions that have been shown not to
exist. In addition, many brain region pairs havelreen studied in a curated tract tracing
experiment and may or may not be connected. Otttiese cases only one (connected but
not known) would increase connectivity degree tg@on. Large increases in connectivity
degree will affect our results but small changesannectivity degree are unlikely to change
the correlations because we measure Spearman'sagaelkation coefficient. However, we
expect additional connectivity data for regionshafiegw reported connections will allow
deeper analysis. Further, use of the BAMS connigégtilata requires pooling of the
underlying voxel based gene expression data irgimbegions. This limits our results to less
than half of the brain by volume but prevents laggions from dominating the analysis. A

larger analysis at the voxel level may result imren@bust inverse correlations. However,
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associations to connection degree could not bepeed because voxel level connectivity

data is limited for mouse (Moldrich et al., 2010).

Our analysis required the integration of severahglex data sets, illustrating several
methodological problems that hinder such effortapping between anatomical atlases
presents a significant challenge in linking trangomics to connectomics. While genomics
has mostly sorted out how to reference specifiegd@erstein et al., 2007), it is much
harder to identify and delineate a specific bragion (Bohland et al., 2009a;Hawrylycz et
al., 2011). InC. eleganghe stable number of neurons allows each one tpMes a unique
identifier, but in more complex organisms even with specific atlas it can be hard to map
brain regions across atlases. For example, in A B database we found differences
between the 1998 atlas and 2004 rat brain atl&ear(son, 1999;, 2004). Although
mappings between the two atlases are formalizeceoessible, only 60% of the regions
have mappings (Swanson and Bota, 2010). CoCoMaacttracing database of Macaque
connectivity has many conflicting atlases and B&MS it provides information on equal,
overlapping, and enclosing brain regions (Stephah ,e2000;Kotter, 2004;Kotter and
Wanke, 2005). Using CoCoMac, Modha and Singh wkle t@8 merge the 379 parcellation
schemes and over 16,000 mapping relations to ctieatargest wiring diagram for the
Macaque brain (Modha and Singh, 2010). These foratbrain maps will play an
important role in future multimodal analyses of tievous system. Overall, limitations in
our ability to interpret these results stress thednfor highly detailed neuroinformatics

databases of many modalities (Akil et al., 2011).
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In conclusion, we identified a novel expressiortgratin the rodent brain that correlates with
patterns of connectivity and measures of cellutemgosition. Future work will be aimed at
further dissecting these and other patterns, imatpthe potential relationships they may

have with behavioural mutations in mice or neurapsatric disorders in humans.
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Chapter 6: Relationships between gene expression and brain wiringin the

adult rodent brain®

6.1 Introduction

In the last chapter we studied relationships betvgsme expression, cell types and number
of connections. This chapter extends the analygigme expression to examine which
connections the regions make. These “macroconmettletween neuroanatomically-
defined brain regions are thought to number betvi22e®00-100,000 in the mammalian
brain (Bota et al., 2003), forming a complex netwdtnowledge of the “connectome” is
used to diagnose neurological disorders such hensic stroke, to interpret brain imaging
results and to computationally model the brain.réhe also growing evidence of
connectivity abnormalities in disorders such assautind schizophrenia (Lawrie et al.,

2002;Geschwind and Levitt, 2007;Just et al., 2007).

As reviewed in Chapter 5, the most comprehensivdiests of connectivity have been done in

the wormCaenorhabditis elegan(&t the level of single neurons) and the macaqoiekey

® A version of this chapter has been published. ¢frén Pavlidis P (2011) Relationships between Gene
Expression and Brain Wiring in the Adult RodentiBr&LoS Computational Biology 7(1): e1001049.

doi:10.1371/journal.pcbi.1001049
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(White et al., 1986;Kotter, 2004). Recent work hagun plumbing the properties of these
networks, examining node degree distribution (Hsgared Olivier, 2007), network motifs
(Sporns and Kotter, 2004), and modularity (Hilgedag Kaiser, 2004). It has been shown
that anatomical neighbours tend to be connecteah{®&dl et al., 1995), and there is evidence
that wiring cost partially explains network struetCosta Lda et al., 2007;Perez-Escudero
and de Polavieja, 2007). There is also increasitegest in the integration of neuronal
connectivity and information about genes. Thisiipart driven by the fact that many genes
show spatially-restricted or varying expressiothi& nervous system, but in many cases the
reasons for the expression patterns are not ckeaet(al., 2002;Zapala et al., 2005;Lein et
al., 2007;Bohland et al., 2009b). Please referetctiSn 5.1 for review of literature describing

relationships between gene expression and conitgctiv

In this chapter we examine gene expression patterdsnacroconnectivity in the adult
rodent brain, using data from the Allen Brain At{asin et al., 2007) and the Brain
Architecture Management System (Bota et al., 200&Bnd Swanson, 2008). Unlike
Chapter 5 that studied the number of connectioesamalyze gene expression patterns in the
context of specific connections. Our results sugtied in the mammalian brain, as in
Caenorhabditis eleganghere is a correlation between gene expressidrcannectivity,

and the relevant genes are enriched for involvenmeméuronal development and axon

guidance.
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6.2 Materialsand Methods

Data and methods were based on those used in Cha@pecifically, the connectivity data
is exactly the same while the gene expression gehleas expanded from 3976 regionally

enriched genes to a more complete set of 17,530.

6.2.1 Neuroanatomical connectivity data

For neuroanatomical connectivity knowledge, we ubedBrain Architecture Management
system (BAMS). BAMS contains extensive informatabout neural circuitry curated from
neuroanatomical atlases and tract tracing expetsr(@ota et al., 2005;Bota and Swanson,
2010). The version of the BAMS database we useagm,308 structural connections
between 961 rat brain regions and is accessiblbutkadownload
(http://brancusi.usc.edu/bkms/xml/swanson-98.xinBtead of parsing the original XML we
used a converted semantic web version createdtbyBarkley
(http://sw.neurocommons.org/2007/kb-sources/bamsHswanson-98-4-23-07.owl). The
BAMS system stores information on projection sttengumber of reports, report citations
and absence of connections but it is not availablee database version we obtained.
However, directions of the neuroanatomical conwestiare known, allowing splitting of our

analysis between incoming and outgoing connectrofilgs.

The BAMS curators comprehensively studied the heden of the stria terminalis (BNST)
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and indicate that its connection matrix is congdaztomplete (Bota and Swanson, 2010). We
were concerned that this unusually well-studiedaoregvould bias our results, as it has more
known connections than the other regions (we censdiregions that lack a documented
connection to be unconnected). For example, iblras seven times the average number of
outgoing connections. To reduce this bias in thas#d, we removed connection information
for the BNST and its subparts. We do not suspectttality of these connections but wished
to prevent one well-characterized region from be&wgrrepresented. We believe the

complete connectivity matrix of the BNST will belwable for future focused analysis.

6.2.2 Geneexpression data

We considered using gene expression profiles fr&l@ES and microarray experiments, but
spatial resolution was too low. Therefore we usgtidnesolution colourmetrim situ
hybridization (ISH) measurements produced by thé&ABein et al., 2007). The complete
expression matrix from the ABA (kindly provided the Allen Institute for Brain Research)
consists of 5,380,137 entries formed by 25,991 il8&ye series and 207 brain regions. In
many cases a gene was assayed more than onceausffeyent probe or plane of
sectioning. The ABA provides values for expressemergy”, “level” and “density” across a
region. Because level and density had a largeiéracf data missing (~40%) we choose to
use expression energy (3% missing). Expressiorggneidefined as the sum of expressing
pixel intensities normalized by the number of pixiel a region. The natural logarithm of
expression energy values formed our gene expressabimx. Genes that do not have

detectable expression in the ABA were removed.|iBh®f non-expressing genes list was
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provided in Lein et al. as supplementary data (letial., 2007). After removing the non-
expressing genes the final gene expression prafietin 22,771 image series representing

17,530 genes.

6.2.3 Neuroanatomical matching and selecting

The names of brain regions are formalized in haias both in BAMS (Swanson,
1999;Bota and Swanson, 2008) and the ABA data (D2d@7), but the schemes are not
identical. In addition, the BAMS dataset contam®rmation at a finer neuroanatomical
resolution than ABA. To maximize the use of connagt information, we created
connection profiles of coarser scale by using aprgpagation procedure. Up-propagation
maps the brain region to its parent region ungéldesired level in the neuroanatomical
hierarchy is reached. This procedure was appliedl tmonnection pairs in BAMS. For
example, a connection between region A and regianllBe expanded to the set of all
possible connections between the neuroanatomicah{gaof both region A and region B. To
prevent enrichment of up-propagated connectionkepé regions that had zero connections

to the ABA mapped regions.

Although the two datasets are at the brain regogl] the organisms differ. The rat brain
with a wealth of neuroanatomical information isgegand for some regions like the
cerebellum, more complex. In contrast, geneticsraalécular research is more commonly
performed on the smaller mouse brain. For this wegkconsidered neuroanatomical
differences between the mouse and rat to be mirtbedevel of granularity we used

(Swanson, 2003); for example, the Paxinos mouas aths guided by several rat brain
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atlases (Paxinos and Franklin, 2008), and brailmnsghames largely coincide between the
two. These common names allowed quick lexical mapr most of the regions. To join
the two data types we mapped nomenclatures manWédyused primarily a region’s name,
then secondarily its parent region and spatial ésrtb pair brain regions. The mappings for

the Allen Brain regions are provided in Appendix B.

The neuroanatomical atlases from ABA (Dong, 200id) RAMS (Swanson, 2004) provide
information on which brain regions are neuroanataichildren or parts of others. These
relations create correlations in the gene expragsiofiles and the connectivity data (due to
up-propagation). To negate this effect we used 48/ of 207 Allen brain regions for the
primary region list. These remaining regions hawaeauroanatomical subparts in the ABA

dataset.

The Allen Atlas provides a differing grouping ofjrens than the BAMS hierarchy. The
superior colliculus is one example. The ABA dividissregions into motor and sensory
areas, while the BAMS atlas groups the regionsaptac, gray and white layers. Differences
were resolved by creating “virtual regions” in BAMS atlas space that contained the
corresponding subregions of the Allen Atlas. Thenaztivity profiles of the mapped regions
were joined using a logical OR operation to prowiake virtual region's BAMS connections.
For example the superior colliculus sensory relatgdal region has all of the BAMS
connections of the zonal, optic and superficialydagers. In addition to the superior

colliculus, virtual regions were created for thdidam medial region and nucleus ambiguus.
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After mapping of brain regions, the ABA data isxafmumber of regions in the ABA) by
(number of genes) matrix, and the BAMS connectidiya is a squam (number of regions
in BAMS) byw (region) matrix (Figure 13). The two matrices ac¢ directly comparable
because the number of regions in BAMS is greatan those in ABAW>X). Rather than
discarding all information from regions which lagkpression information, we use thby w
submatrix of the BAMS data. Thus each of Xiregions has g-dimensional expression
vector and av-dimensional connectivity vector. This maximizes tise of connection
information, but we note that the connectivity jpiesf include information from regions for

which we lack expression information.

6.2.4 Statistical tests

Correlations between gene expression values antecton degree were computed using
Spearman's rank correlation coefficigmt Connection degree for each brain region is the
sum of its propagated incoming and outgoing conoest Significance of the correlation

was corrected for multiple testing using the Border method.

Mantel test: To test the hypothesis that there is a statistetationship between

connectivity and gene expression profiles, we afipdyMantel test (Mantel, 1967). The
Mantel test is similar to methods previously applie Caenorhabditis elegardata

(Kaufman et al., 2006). The Mantel test uses catia at two levels to measure the
relationship between the connectivity and geneesgion profiles. First, Pearson correlation
for the connectivity and gene expression profilesamputed for each pair of brain regions,

resulting in a distance or similarity matrix (Figut3). The upper triangles of the
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similarity or distance matrices are then convettelihear vectors. The Pearson correlation
of these two vectors is then computed to providgeeddence between the connectivity and
gene expression profiles for all brain region pays. The statistical significance is
determined from an empirical null distribution. \Werformed the same analytic procedures
used on the ‘real’ data 1,000 or more times usingfled data. To keep the distribution of
the gene expression and connectivity values constenshuffle the brain region labels.
Significance is determined by counting the numbeshaiffled datasets that score higher than
the non-shuffled result. Mantel correlograms wesated using the “mantel.correlog” R

library developed by Pierre Legendre (http://www.bmontreal.ca/legendre/).

Spatial and nomenclature distance matrices: To create the spatial distance profiles we
computed Euclidean distance between a given regmeritroid and all others, using the

Allen Brain Atlas programming interface (API). Hoet, we created another measure of brain
region proximity using the neuroanatomical partigfrarchy. Similarity between two

regions in the nomenclature profile is simply thenter of shared neuroanatomical parents.
Using these distance matrices we then performetiitirgel test using the spatial,
nomenclature and connectivity profiles. Furtherapelied the partial Mantel test to
determine if the correlation between connectivitg @xpression is still significant after
controlling for these proximity measures (Smousal .et1986;Legendre and Fortin,

1989). Akin to performing a partial correlationetpartial Mantel test uses the residuals of a

regression fitted to the distance matrix.
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6.25 Generanking and enrichment

We generate a ranked list of genes so that a gesrgksis proportional to its contribution to
the connectivity correlation score. To achieve tsreduce the number of genes in the
expression profiles while maximizing the Manteltesrrelation score. Since it is not
feasible to compute all possible subsets of thg@sets, we approximate an optimal
candidate list of genes. Again, we take guidanomfKaufman et al. (Kaufman et al., 2006)
and use a greedy backward elimination algorithnin wie Mantel test. Each iteration of the
algorithm involves ranking each gene by its contiitn to the global correlation, removing
the least informative gene, and repeating theoreshe remainder. For the connectivity gene
rankings we optimized a partial Mantel correlatibat modelled proximity in the connection

matrix but not the expression correlations (duecimputational constraints).

For functional enrichment analysis we employedBhmineJ software to explore the roles of
the candidate genes (Ashburner et al., 2000;@ilal., 2010). Overrepresentation analysis
was used on the set of genes removed after coomrl@ached a maximum. To increase
resolution of the genes, NCBI identifiers were usetiead of gene symbols. Gene Ontology
(GO) groups included in the analysis required 3G0 measured gene members and were
limited to the biological process division. BenjamiHochberg false discovery rate was used
to control for testing multiple GO groups (Benjamand Hochberg, 1995). GO groups were

sorted by corrected p-value to determine rankings.

142



6.3 Reaults

We obtained data sets of macroconnectivity in #tdrain and gene expression data on
mouse (see Materials and Methods and Figure 13¢aBsfully mapping brain regions
across them, we identified 142 distinct (non-ovgrlag) brain regions in common (the
“common” regions; see Materials and Methods). taltthese regions account for nearly half
of the volume of the brain. A notable omission snyregions of the neocortex, which is not

sub-parcellated in our data set.

The expression data set, which is filtered to reenavexpressed genes (see Materials and
Methods) consists of the expression levels of ¥ gehes in the 142 regions. Because many
genes were assayed more than once in the Alless Atldependent “image series” in their
terminology), there are 22,771 rows in the expoesdiata matrix. The connectivity data
consists of the connectivity profiles of 942 regamth the 142 common regions (Figure 13).
In this binary matrix, a value of 1 at inday)(indicates a connection exists between region
and regior]. In most of our analyses, we considered the daeality of connectivity. Of the
142 common regions, 112 have efferent (outgoingheotions, and 141 have afferent
(incoming) connections; there are 5216 outgoingiections and 6110 incoming
connections. Our results are based on varioustdiretindirect comparisons of the

connectivity and expression data matrices or tt@iresponding correlation matrices.

We began our study with some relatively simple ysed designed to explore the

relationship between connectivity, gene expresaimhother parameters such as spatial
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distribution and size of brain regions.

We first tested the simple hypothesis that regiwshgh are connected might have more
similar expression patterns. This is in effect aenglobal search for patterns like the ones
identified by Dong et al. (Dong et al.) (note thea CA1 subregions studied by Dong et al.
were not represented in our data). To do this wepawed the distribution of correlations in
expression profiles for regions which are connetbettie distribution for regions that are not
connected (Figure 14). We found that on averaggoms that are connected (ignoring
directionality; 456 connected pairs among the Etffans) have more similar expression
profiles than the 8,187 non-connected region air&+0.06 for connected; 0.76+0.06 for
unconnected; p-value < 2.2x1t-test). This is an initial indication that sttural

connectivity and gene expression are related.

We found that the size of a region is significamttyrelated with its connection degree
(Spearman’s rank correlatiom= 0.22). We also noted that the more posterierdgion,

the fewer connections it has £ 0.55). Regions containing motor neurons thajggtdong
axons to the spinal cord or muscles were foundat@ Isignificantly fewer connections (they

also tend to be in posterior locations; p-value32%10°, Wilcoxon—Mann-Whitney test).

While the above analyses suggest some interestingrig patterns relating connectivity to
expression and other parameters, they are not@kbgpose more complex relationships.
Like Kauffman et al. (Kaufman et al., 2006) and &tan et al. (Varadan et al., 2006), we
hypothesized that expression patterns carry infoamabout specific neural connectivity

patterns involving multiple regions. To test thelwdl correlation between expression and
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connectivity profiles we used the Mantel test. Walihe test used above to examine the
relationship between pair-wise connectivity andregpion patterns (using the direct
connectivity matrix), here we are asking if the iganity of the connectivity profiles of two
regions is related to the similarity of the expressrofiles of the two regions, regardless of
whether those two regions are themselves conndcatéluis analysis we are comparing the

correlation matrices for the expression data seétthe connectivity data (Figure 13).

A key finding is that, as i€@aenorhabditis eleganat the level of individual neurons), we
find that brain regions that have similar connettipatterns tend to have similar patterns of
gene expression. The Mantel correlation (“correlabf correlations”) between expression
and incoming connectivity patterns (141 regiong).&18 (p-value < 0.0001). Using the
outgoing connectivity profiles for 112 regions yiet a correlation of 0.226 (p-value <
0.0001). This relationship holds separately for sahthe five major neuroanatomical
divisions in the Allen reference atlas. For outgpgnofiles the Mantel test is significant at p-
value < 0.001 for the interbrain (r = 0.42), cetgbr(r = 0.30) and hindbrain (r = 0.21)
divisions but not midbrain or cerebellar divisioR®sr incoming connectivity only the
cerebrum (r = 0.29) and interbrain (r = 0.34) dis have significant Mantel correlations
with expression. Again, we note that unlike ouresleation of similar expression profiles
among connected regions, here we are comparingectivity patterns of regions, which

does not require that the regions be connecteddo ether.

One factor in this analysis is that regions whioh @ear each other tend to be connected

(Scannell et al., 1995) and also might be expetctddve higher correlations in expression
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patterns (because nearby regions will tend to lbeofame embryonic origin, for example).
This will tend to obscure the degree to which egpi@n is specifically correlated with
connectivity (and in turn obscure the degree tocvleixpression is specifically correlated
with location). We assessed the overall degregatia autocorrelation by performing the
Mantel test as above, but comparing expressiomnactivity to a matrix representing
physical distance or, alternatively, nomenclatustathce (relationships in the nested
hierarchy of brain regions). As expected, the Miatetst results are all significant (Figure
15). The connection data (r = 0.32; p-value < 0,004ntel test) appears to be less spatially

autocorrelated than expression (r = 0.49; p-val0e0€1, Mantel test).

We visualized the spatial correlation structurenvitantel correlograms (Figure 17). The
Mantel correlogram displays the correlation betwa@ata matrix and a matrix formed by
grouping region pairs into distance classes. Theetmgram will not be flat if it is possible to
predict the distance class of a pair based on @bty or expression correlations alone. As
shown in Figure 17, there is indeed an effect sfagice on the correlation between
connectivity and expression. We therefore attemfexbrrect our analysis for the effect of
spatial autocorrelation, using regression. We ¢aled regressions between the distance and
expression or connectivity correlations for alliegpairs. The residuals of these regressions
provide proximity-controlled correlations. As shownFigure 17, an improvement in the

correction is obtained when using log-transformistiagices.

Using the log-transformed distance matrix from agave can control for spatial

autocorrelations by applying the partial Mantet {&nouse et al., 1986;Legendre and
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Fortin, 1989). The partial Mantel test applies $hene regression mentioned above to both
the connectivity and expression similarity matricBisen a standard Mantel test is calculated
between the two spatially-corrected residual mesidVe found that after correction, the
partial Mantel test between connectivity and exg@esremains significant, indicating the
relationship is not entirely due to neighbourhotidas. However as expected the
correlations are lower. Using the spatial corretctibe correlation between incoming
connectivity and expression is 0.109 (p-value ©8,Mantel test), for outgoing it is 0.126
(p-value = 0.001, Mantel test). As a further canftion for the effectiveness of the
correction based on spatial distance, we foundttigatorrelation between nomenclature
distance and expression or connectivity correladi@ps substantially, though the
correlations are still significant (Mantel corredat -0.089 for expression, p-value = 0.006;
0.11 for connectivity, p-value < 0.001). This inqalete correction is perhaps not surprising

as the nomenclature hierarchy reflects connectastyvell as spatial location.

The above tests use expression information faegilessed genes in the Allen Brain Atlas,
but we expect that many genes will not contriburg iaformation on connectivity. To find
the most informative genes, we applied a greedyriign that identifies subsets of the data
which maximize the correlation between connectiaityl expression patterns (see Materials
and Methods). Figure 19 displays the change irMaetel correlations as genes are
iteratively removed. As shown in Table 16, thisdggemuch smaller sets of genes (357 and
433 for outgoing and incoming, respectively) anccmhigher Mantel correlations (0.56 and
0.65 for outgoing and incoming connectivity respesty). As a control, we performed the

same procedure on multiple shufflings of the exgimsdata, yielding a maximum
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correlation across ten runs of r = 0.42 and r 4 @d% outgoing and incoming respectively.
We also carried out the same procedure for theadgatrelations instead of connectivity,
yielding a “spatial proximity” list of 401 genesca Mantel correlation of 0.934. Eighty-five
image series (89 genes) were found to overlap laetwhee lists for incoming and outgoing
connectivity, which is not surprising because thera fair amount of reciprocal
connectivity. Twenty-one image series (31 genesylap across the spatial proximity list
and one or both of the connectivity gene sets, esstgrg that for the most part, different
genes provide information about connectivity anokpnity. The top twenty image series for
the rankings are provided in Table 17. If we coesjdst the top 20 genes, the Mantel
correlations are 0.516 (incoming), 0.460 (outgoiagd 0.590 (proximity). As an additional
control, we found that the correlations obtainedtii@ optimized gene sets are robust to the
completeness of the connectivity network (testedidayexample, randomly removing brain
regions and recomputing the Mantel correlationBusl while the connectivity map of the

rodent brain is incomplete, the correlations witpression appear robust.

We next examined the expression patterns of then@&d gene lists in more detail. It was

of interest to determine, for example, if all trengs had similar expression patterns, which
would suggest a single overwhelming signal in taedA hierarchical clustering and
visualization of the expression patterns of themoed gene sets suggested that the patterns
are in fact diverse. This is supported by a congparif the distributions of gene-gene
correlations within the optimized outgoing list, isin are on average slightly lower than the
full data set (0.10+0.21 for top outgoing gened5@&0.21 for all genes; p-value < 0.0001, t-

test, Figure 16). This suggests that many diffegente expression patterns are contributing
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to the overall correlation between connectivity gete expression.

Figure 20 shows the expression patterns for twegémat rank high in the “outgoing” gene
list, overlaid on schematics of the connectivityadan Figure 20A, we show the pattern for
Pcp2 (Purkinje cell protein 2; Figure 20A). AlthduBcp2’s function is unknown, it is
almost exclusively expressed in the projection aesiof the cerebellar cortex (Purkinje
cells). We did not expect this specific expresgattern to carry information about
connectivity because no other regions express Rtp&ever, the connections of the
cerebellar cortex are also unique and specifithefl12 outgoing regions, 69 place the
cerebellar cortex in the bottom tenth percentilsiofilar regions based on proximity
controlled connectivity. As a result, the optimieatprocedure finds that Pcp2's expression
pattern marks the cerebellar cortex's unique cdiviigcprofile. Figure 20B shows the
expression pattern of Pgrmcl (Progesterone memis@nponent 1), a gene that may play
roles in axon guidance (Runko and Kaprielian, 202@04). In contrast to Pcp2, which is
expressed in only one brain region, expressiorgainel in two regions is correlated with a
connection between them (Figure 18). Thus, clustehsghly connected regions tend to
show higher levels of Pgrmcl expression (Figure)2@hile the strong relationships shown
in Figure 20 are not representative of the datasethole, they serve to illustrate how

expression patterns can contain information on eotivity.

One concern about using high-throughiousitu hybridization data might be the potential for
artifacts. While all of the image series we used passed the Allen Brain Atlas project’s

(ABA) own quality control criteria, we did note aasional spatial artifacts such as dust or

149



bubbles, though there was no indication such prosiere more common in the genes we
ranked highly. In addition, while there is gooddance that the ABA data are reliable, with
a high quantitative and qualitative agreement witler data (Lee et al., 2008;Jones et al.,
2009), there are genes (~6% in ABA) for which AB&sldisparities (Jones et al., 2009) and
a few of those genes show up in our results (atceqipately the expected proportion; see
Dataset S1). To help address these concerns, waetd a higher-confidence subset of
results by considering genes measured more thanioribe Allen Brain Atlas. These
“duplicate” image series vary primarily by the R£obe sequence used and the plane of
section (sagittal vs. coronal), and it seems uhlikeat results which are concordant across
image series would be due to expression analysiaas. Seventeen genes in our top
outgoing connectivity list have two concordant ireagries. In the case of incoming
connectivity, 16 of the genes on our list are repnéed by at least two image series (Rprm
has three, and Calb2 has four of its 20 image saceoss the atlas). We refer to these as the

“high-confidence” lists.

The next stage of our analysis was to considereatgr detail the types of genes which are
correlated with connectivity. We accomplished thimugh a combination of Gene Ontology
(GO) annotation enrichment analysis and manuaévewf the literature relating to the
genes, particularly those on our high-confidenstsliwe specifically hypothesized that
genes that play roles in neural development mighfolind, as suggested by previous work

on Caenorhabditis elegan&aufman et al., 2006;Varadan et al., 2006).

In agreement with this hypothesis, our Gene Ontpolotalysis of the “outgoing” list
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revealed significant enrichment in categories egldd neuronal development (Table 18; note
that many of the top groups have overlapping geambers. No GO terms were significant
for the “incoming” or “proximity” lists). A manuaéxamination of the connectivity top gene
lists makes it clear that this is due to the presast many different genes that play a variety
of roles in neuronal development, but axon guidamag a prominent theme. Our lists
contain a total of 14 members of three major axadance families (Semaphorin, Ephrin,
and Slit families) (Chilton, 2006) (Table 19). Thegene families express cell-surface or
secreted proteins that function to provide guidasigeals to growing axons. This was most
striking for the Semaphorin family, with ligandsceptors and co-receptors appearing in the
incoming or outgoing top gene lists (Table 19). &ixhe 17 genes from the high-confidence
“outgoing” list function in neuronal developmentdaaxon guidance. Two of these six, Gpc3
and Hs6st2 encode a heparan sulfate proteoglyaha haparan sulfate sulfotransferase
respectively. Two additional heparan sulfotransdesa Hs3stl and Hs6stl appear with one
image series on outgoing top gene list. Hepardatsuybroteoglycans are membrane proteins
that have been linked to neurogenesis, axon guédand synaptogenesis (Yamaguchi,
2001). Hs6st2 has been specifically linked to edtaxon targeting in Xenopus (Irie et al.,
2002). Another gene on the high-confidence lishesL1 cell adhesion molecule (L1cam), a
recognition molecule involved in neuron migratiordalifferentiation (De Angelis et al.,
2002). Vesicle-associated membrane-protein (Vangp@hother gene connected to
connectivity through two image series; in additilampl occurs once in the outgoing list.
Recently Vamp2 has been linked to attractive axadance but not repulsion in chick
growth cones (Tojima et al., 2007). Neurturin isther high-ranking gene with two image

sets linked to outgoing and one linked to incomMgurturin is well known to promote
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neuronal survival and induce neurite outgrowth (éaal., 2004). Lastly, Serinc5 is enriched
in white matter and Inuzuka et al. (Inuzuka et2005) suggest its major role is to provide

serine molecules for myelin sheath formation.

In the case of genes correlated with patternsaanmng connectivity, 4 of the 16 of the
genes on our high confidence list have previoustgested roles in brain connectivity.
Neurensin-1 shows up with two image series anahasvk to be involved in neurite
extension (Nagata et al., 2006). Recently, Sta#isadbleen labelled a key effector molecule in
the mammalian CNS, affecting axon guidance in pieas cord and cortex (Markham et al.,
2007). Thirdly, Uchll is mutated in the GAD mowdeiin that presents axon targeting and
genesis defects (Miura et al., 1993). Finally acyfineurotrophic factor receptor (Cntfr)
appears twice on the top ranked list and is knawpréomote neuron survival and plays
important roles in nervous system regenerationdavelopment (Ip et al., 1993;Miotke et

al., 2007).

Another trend we notice from the GO results is traups of genes with negative regulatory
roles are much more prominent than the correspgriiositive” groups (e.g., “negative
regulation of neurogenesis”) though these groupsat statistically significant after

multiple test correction. The high ranking of thésens (which share members) is due to 11
genes: Hdac5h, Notch3, Nrpl, Cd24a, Cit, Apc, NrRik2, Gpc3, and Runx2. The
“negative” aspect of the function of these geneagsgeut all have roles in neuronal
development and/or plasticity. For example Nrpa oreceptor for semaphorins and

triggers inhibition of axonal growth (Chedotal &t 4998), while Hdac5 is a histone
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deacetylase whose activity is associated with ssge chromatin conformations that are

altered after addictive stimuli (Renthal et al.02p

We also conducted a search among our high-confedkstdor genes whose homologs are
implicated in human disorders of the nervous sysi&i@ found evidence for such a role for
five of the 30 genes. Prominent among the fiveli€am, defects in which cause several
brain disorders including partial agenesis of thguas callosum (Gu et al., 1996). Two genes
in the high confidence lists have been linked totélele forms of Parkinson’s disease (alpha-
synuclein (Snca) (Polymeropoulos et al., 1997)@akll (Ragland et al., 2009)). Finally,

two genes have been linked to autistic spectruordiés (ASD). The human homolog of
Cadps2 has been linked to autism and lies in theufigm susceptibility locus (AUTS1)
(International Molecular Genetic Study of Autismr@ortium, 1998;Sadakata et al., 2007).
Another, Btg3 is in a genetic locus linked to aigishildren characterized by a history of
developmental regression (Molloy et al., 2005).eBamining our expanded list of genes, we
found several more of our connectivity linked geaesin AUTS1 and have been studied in
the context of autism: Reln (Persico et al., 200gst (Kwack et al., 2008 ), Ptprz1 (Bonora
et al., 2005), Dpp6 (Marshall et al., 2008) and Bf2emerle et al., 2007). To further
explore the potential connection between our resrt autism, we downloaded all autism
candidate genes from the AutDB database (Basu, &(419). Of those genes, 163 were
available in our dataset, and 17 appear in at taasof the connectivity linked lists (14 for
incoming connectivity and Nrp2, Cadps2, Ntrkl,argtAppear in both incoming and
outgoing lists). The probability of this occurribg chance is 0.00029 (hypergeometric test;

considering the incoming list alone the p-valub.#3x10°). In contrast, the proximity-
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ranked list contains only 5 genes in the AutDB(petalue = 0.32).

Table 16 Peak correlation and size of optimized M antel tests

Name Peak Correlation Size (image series)
Incoming 0.645 452
Outgoing 0.564 374
Proximity 0.934 420
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Table 17 Top twenty genesfor proximity and proximity-controlled incoming and outgoing M antel tests

Incoming Outgoing Proximity
Rank [Symbol Imageset Rank |Symbol Imageset Rank [Name Imageset
1{Nrp2 80514091 1|Pgrmcl 797 1{Nup37 68795447
1|D4st1 74657927 1|Slc25a37 68445000 1|KIrgl 69735903
3|Acadvl 227161 3|Pcp2 77413702 1|Dnahcl 73520818
4|Pgrmcl 797 4|Galrl 80514053 1|Pusl1 532760
5[8030411F24Rik 74580853 5[1700054013Rik 69117086 1{Mm.359340 71209910
6|Gda 70276867 6|Plk1s1 70295882 1|Tm2d3 77414123
7|Mdfi 275690 7|Alpk3 71574473 1]LOC433436 73636096
8|3110082D06RIk 74581400 8|Lrr6c 72128919 8|Gba2 68844337
9lLyzs 68191492 9IGm47 70565879 9|Prrg2 276063
10[Atad2b 71496393 10|Cpne5 544709 10{Ccdc137 1979
11{Slc5a2 68632936 11{Nmbr 77332086 11|Col5a3 74272917
12|Dbnl 74819497 12| Trim52 70205626 12|Kcnk2 75147764
13{Dmp1 74511936 13|Al427122 71495698 13|Comt 68301371
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Incoming Outgoing Proximity

Rank |Symbol Imageset Rank |Symbol Imageset Rank [Name Imageset
14|Gata3 73931427 14|Sic44a4 68321886 14|Bcl2l12 71064289
15|Rgs9 73521819 15|Nrp2 80514091 15[ Mtif2 68341663
16|En2 69288944 16{Anxa3 69526665 16|Eomes 80516770
17|Wisp2 68523207 17|A930033C23Rik* 74300717 17|Gentl 68546476
18|Cypt3 80474702 18|Tac2 77279001 18|LOC433088 70722898
19|F2ri1 199391 19|C1qtnf9 70228041 19|Mrpl45 70919854
20(1700018L24Rik 74634791 20|Kirrell 71613657 20|Gda 70276867

Table 18 Top twenty GO groups enriched in the proximity controlled outgoing ranked genelist

Group Corrected P-
Name ID Hits |P-value

Size value
neuron projection development G0:0031175 186| 16]0.00000 4.63E-003
cell morphogenesis involved in differentiation|GO:0000904 183| 13]0.00013 0.05
cell projection morphogenesis G0:0048858 157| 12]0.00012 0.06
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Group Corrected P-
Name ID Hits |P-value
Size value
cell part morphogenesis G0:0032990 166| 12]0.00020 0.06
cell migration G0:0016477 189| 13|0.00018 0.06
axonogenesis G0O:0007409 145} 12]0.00005 0.07
cell morphogenesis involved in neuron
G0:0048667 157] 12|0.00012 0.07
differentiation
neuron projection morphogenesis G0:0048812 154| 12]0.00010 0.08
positive regulation of secretion G0:0051047 27\  4{0.00227 0.45
negative regulation of cell communication G0:0010648 150 9]0.00438 0.45
heparan sulfate proteoglycan biosynthetic
G0:0015012 5| 2/0.00420 0.45
process
lymphocyte differentiation G0:0030098 83| 7/0.00177 0.47
leukocyte activation G0:0045321 161| 9]0.00691 0.47
B cell differentiation G0:0030183 33| 4]0.00480 0.48
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Group Corrected P-
Name ID Hits |P-value

Size value
positive regulation of cell-cell adhesion G0:0022409 5] 2]|0.00420 0.48
negative regulation of neuron differentiation |GO:0045665 28]  4/0.00260 0.48
regulation of neuron differentiation G0:0045664 82| 6/0.00746 0.48
epithelial cell development G0:0002064 19| 3]0.00689 0.48
central nervous system neuron

G0:0021955 13| 3|0.00223 0.48

axonogenesis
lymphocyte activation G0:0046649 140| 8]0.00936 0.48
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Table 19 M ember s of three canonical axon guidance families appearing in our connectivity and proximity

top geneslists

Name Connectivity Proximity

Semaphorinsand receptors | Sema3a, Semab6a, Nrpl, Nrp2, Sema3a

Plxna2, PIxnb2

Ephrin/Eph Ephb1l, Epha7, Epha8 Efnal, Epha7

Slit/Robo Slitl Slitrk4
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Figure 13 Datasets and correlation matrices used in this chapter

Matrices are shown schematically as shaded boresysindicate steps in the workflow.
For example, from the full connectivity matrix wetcted submatrices of “outgoing” or

“incoming” connectivity, and compared their corteda matrices with the correlation matrix

of the brain region expression patterns.

160



Expression Correlation versus connectivity
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Figure 14 Density plot of expression correlation between region pairs
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Figure 15 Mantel correlations between different matrices

“Nomenclature” and “Proximity” refer to the two tBfent measures of spatial distance that
we used (see Materials and Methods). The 141 regidgth incoming connectivity

information were used to generate the correlationthis figure.
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Density Plot of Expression Correlation Between Image Series Pairs
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Figure 16 Density plot of gene-to-gene correlations

Gene to gene correlations were computed withirfahegoing” gene list and all genes.
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Figure 17 Connectivity (A) and expression (B) Mantel correlogramsfor uncorrected, linear and log

transform corrected spatial distance matrices

Filled squares mark distance classes with sigmfispatial correlation after multiple test

correction.
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Pgrmc1 expression levels versus connectivity

—— Connected
--- Not connected
o
(\! —
o
wn
= o |
B
C
[
a
=
©
o
s ©
g o
o
wn
Q —
(=)
o
S |-
[=)

Sum of Pgrmc1 Expression

Figure 18 Pgrmcl expression levels ver sus connectivity

For each region pair this plot shows the sum otweregions' expression in the context of

their connectivity.
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Figure 19 Optimization of Mantel correlation by iteratively removing image series

Each curve documents the correlation across iterafjas genes are greedily removed).
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Figure 20 Connectivity in the context of Pcp2 (A) and Pgrmcl (B) expression

The connectivity map is a 2-D projection of thewatk on the saggital plane. Each node
represents a brain region (placed at the centiéreafegion as measured in the Allen
reference atlas). Expression levels are depictethades of grey, with lighter shades
indicating higher expression. Pcp2 expressionsgioted to the cerebellar cortex (CBX),

while Pgrmcl tends to be expressed highly in begons of connected pairs. The small
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inset brain diagram provides orientation (anteffr, dorsal (D), ventral (V) and posterior
(P)) and the locations of the olfactory bulb (O&)rtex (CX), interbrain (IB), midbrain

(MB), hindbrain (HB) and cerebellum (CB).

6.4 Discussion

Our analysis revealed a number of interestingimeahips between gene expression and
patterns of connectivity in the adult mammalianrr®ur key finding is that genes whose
expression patterns carry information on conndgtaie enriched for genes involved in
neural development, and axon guidance in particdnile our results are based on analysis
of the brains of rodents, it is of potential im@mte that many of the genes we identify have
human homologs implicated in disorders of the nesveystem including ASD. Because
there is an increasing interest in the idea thdd A8d other disorders are in part due to
abnormalities in connectivity (Belmonte et al., 2(fBeschwind and Levitt, 2007), and given
the heritability of many such disorders, the relaship between gene expression and
connectivity is pertinent. The enrichment of hongsl@f autism candidate genes in our
results suggests that these patterns could beargléy the understanding of behavior in

autism and potentially avenues for treatment.

After our results appeared in literature, a simslardy replicating the finding of correlations
between gene expression and connectivity appe#etf €t al., 2011). Wolf and colleagues
showed that machine learning methods could be tasprkdict connectivity from gene

expression patterns in a statistically significaxanner, for approximately one half of tested

brain regions. Their analysis found that genes kmtmmbe associated with schizophrenia,
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autism and attention deficit disorder are enricinetheir gene sets that predict connectivity.
Although the authors did not perform correctionttoe effect of spatial autocorrelation, they
tested the robustness of the connectivity datalaaduality of the expression images from

the Allen Brain Atlas.

Interestingly, a previous focused examination ef¢brrelation between expression and
connectivity for two brain regions identified sommithe same genes we did. Dong et al.
(Dong et al., 2009) examined correlations betwesreg that are differentially expressed
between the dorsal and ventral hippocampus (whikvere not able to treat as separate
regions in our analysis). For nine of their gettlesy observed matching expression patterns
in a connected brain region, the lateral septalausc Three of these nine genes appear on
our connectivity correlation lists (Gpc3, Manla,3d), this is unlikely to occur by chance
(p-value = 0.0045, hypergeometric test). In comtrasne of the nine appear on the proximity

gene list.

We stress that because what we observe are canslait is difficult to ascribe a definite
mechanism or meaning to the patterns. In additroabsolute terms the Mantel test
correlations may seem low when we considered akkgeHowever, we do obtain a
correlation of 0.65 between gene expression patt@nd proximity-controlled incoming
connectivity after gene selection. We also poirittbat at the neuron to neuron level in
Caenorhabditis elegan&aufman et al. (Kaufman et al., 2006) reportedistically
significant correlations of 0.075 and 0.176 betwegpression and incoming and outgoing

connectivity, respectively. Thus the patterns weeobe in the adult mammalian brain are at
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least as strong as those observed in previousestuéin obvious question is whether the
signals we observe are strong enough to preditgnpatof connectivity. Unfortunately,
while the signals we observe are statistically ifiggmt, they are not strong enough to allow
prediction of connections based on expression patt&aufman et al. (Kaufman et al.,
2006) attempted this with their data and achieway low accuracy. Using similar data,
Baruch et al. (Baruch et al., 2008) attained gte#ily significant results in predicting the
direction of connectivity between neurons knowibbéoconnected or which share a common
synaptic partner. Using advanced imaging technigandsuman subjects, Honey et al.
(Honey et al., 2009) attempted to predict diffusiensor imaging (DTI) based cortical
connectivity from fMRI functional connectivity. Bsetting thresholds on functional
connectivity, they achieved an AUC value of 0.7&t ttould predict only ~6% of inferred
DTI connections (Honey et al., 2009). Despite tHaes#ations, our results suggest some

underlying models that in turn provide some tegtdlylpotheses.

Many of the genes we find to be associated witmeotivity patterns in the adult are thought
to be primarily active in the developing brain, wHarge-scale connectivity is determined.
The reasons for expression of these genes in thieladin is not fully understood, though
there is evidence in some cases that they contipky roles in the maintenance or tuning
of neuronal connectivity at finer scales (Zapalalgt2005;Murray et al., 2007). There is
even less known about why the genes show regioradlyicted patterns in the adult brain.
Our results are the first to link the expressia@mnatures of some of these genes to
macroscopic connectivity. Our results have at leastpossible biological interpretations.

One is that the expression patterns in adulthoeddresidue” of the developmental pattern
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that reflects processes occurring when connectisilgtid down, but that the adult expression
pattern is not causally related to connectivitthat scale we studied. An alternative is that
the expression patterns in adulthood are functipmelevant with respect to connectivity,
perhaps in modulating activity in certain pathwalise patterns we identified could be used

to design experiments to distinguish between thésenatives.

The connectivity linked gene sets differ from tregtern NE and OE gene lists presented
previously in Chapter 5. Those genes were seleunigtie basis of spatial anti-correlation
and we observed relationships to connection degrehe connectivity patterns. Detailed
comparison reveals thirteen of the pattern NE ganddive pattern OE genes overlap with
the connectivity-optimized gene sets. Using thehods of this Chapter, the pooled Pattern

NE and OE gene list does not contain significafdrmation about connectivity patterns.

While we have provided evidence for a relationdfepween connectivity and gene
expression in the mammalian brain, our analysssiigly hindered by the incompleteness of
connectivity and expression information. Thereraesny brain regions for which we had
expression data but no connectivity. While somthege regions might never have been
studied, there are many reports in the literathae @re not included in the current
connectivity databases. Advances in the generaficonnectivity information from new
experiments or from more complete use of existegprts will be essential. The availability
of additional expression data would also improveatility to interpret the patterns we
observe. In particular, having detailed informat@ngene expression patterns during
development, and their relationships to the devetpprojection patterns in the brain, could

permit stronger inference of causal relationshipBnal limitation is that the structural
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connections we use cannot be easily linked to 8pestates or functions of the brain.
Because of this we could only interpret our resialthe context of gene function
information. It would be of interest to employ faienal connectivity data to link gene
expression to more dynamic and task specific sta#tdse brain, especially in the context of

genetic variation.
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Chapter 7: Conclusion

7.1 Summary

My thesis was focused on applying bioinformatichteques to neuroanatomical
connectivity. The first objective was to createadatbase of neuroanatomical connectivity
from neuroscience literature. Our informatics apploto extracting connectivity statements
details unparalleled resources and evaluationsdaroscience text mining. The second was
to examine relationships between neuroanatomy and gxpression. This second objective
resulted in the discovery of several novel patténas provide new insight into global brain

architecture.

7.1.1 Extraction of connectivity statements from text

To address the fragmented nature of neuroanatogocalectivity reports we annotated a set
of 1,377 abstracts for brain region mentions antheativity relations. Using this corpus |
developed and evaluated state of the art techreddgr three tasks required for extracting
connectivity relationships between brain regiorrgadur results and evaluations provide the

most critical assessment of text mining for neumse to date.

Our text mining system differs from related workBarns and colleagues. Burns et al.
created a system to automatically label detailethlabes that describe connectivity

experiments (in full text articles) (Burns et @007). In contrast, our work focuses on
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summary statements in abstracts to extract brgiomementions and relationships between
them. Both sets of results support the value aasilidity of automatically extracting

connectivity information from natural language text

Chapter 2 covers the first task of recognizing no@st of brain regions in free text. From our
analysis we suspect a large amount of error ig@genjunctions, previously unseen words
and brain regions of less commonly studied orgasidie found context windows,
lemmatization and abbreviation expansion to berhst informative techniques. We
implemented a conditional random field classifleattwas able to label brain region
mentions at 76% recall and 81% precision. Thisgeardnce is much higher than naive
dictionary-based methods. Although textual featalessved from the neuroscience domain
did increase performance, we found that most oktieevledge needed to extract brain
region mentions can be learned from a large sexafples. To reduce lexical variation and
link the brain region mentions to existing datalsase normalize brain region mentions to
standardized identifiers in five existing neuroamaical lexicons (Chapter 3). Based on the
analysis of the manually annotated corpus, we eséimmentions are mapped at 95%
precision and 63% recall. Our results provide ihggnto the patterns of publication on
brain regions and species of study in the Jourh@omparative Neurology, but also point to
important challenges in the standardization of oanatomical nomenclatures. We find that
many terms in the formal terminologies never appeaur corpus, while conversely; many
terms authors use are not reflected in the terrogies. To improve the terminologies we

deposited 136 unrecognized brain regions into therdscience Lexicon (NeuroLex).
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Chapter 4 builds on Chapters 2 and 3 by extractomgectivity relationships between brain
region mentions. | tested several methods on oootated corpus in a cross-validation
framework. Of these methods, the shallow linguikémel recalled 50% of the sentence
level connectivity statements at 70% precision. dlpaths graph and k-band shortest path
spectrum kernels provided similar performance. ués speed and simplicity we applied
the shallow linguistic kernel to 12,557 abstrantspulting in 28,107 connectivity
relationships. We compared a normalized subsetc@8relationships to BAMS (Bota et al.,
2005). The extracted connections were connect&hAMS at a rate of 63.5%, compared to
51.1% for co-occurring brain region pairs. By aggtteng the data into a connectivity matrix
form we found that precision can be increasedettst of recall by requiring connections

to occur more than once across the corpus.

7.1.2 Relationships between neur canatomy and gene expression

In Chapters 5 and 6 we examine complex pattergeioé expression in the rodent brain in
the context of regional brain connectivity and eiéinces in cellular populations. We utilized
a large data set of the rat brain “connectome” ftbenBrain Architecture Management
System (Bota et al., 2005) and used statisticalagmbhes to relate the data to the gene
expression signatures in 142 anatomical regioms tiee Allen Brain Atlas (Lein et al.,
2007). In Chapter 5 we identified two novel patseof mouse brain gene expression
showing a strong degree of anti-correlation, atateehis to multiple data modalities
including connectivity. We found that these sigmesuare associated with differences in

expression of neuronal and oligodendrocyte marlserggesting they reflect regional
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differences in cellular populations. We also fihdttthe expression level of these genes is
correlated with connectivity degree, with regiorpressing the neuron-enriched pattern
having more connections with other regions. Chapigoes beyond the number of
connections per region to discover relationshigsa/éen gene expression and specific
neuroanatomical connections. Our analysis showsathdt gene expression signatures have
a statistically significant relationship to conneity. In particular, brain regions that have
similar expression profiles tend to have similanmectivity profiles, and this effect is not
entirely attributable to spatial correlations. tidaion, brain regions which are connected
have more similar expression patterns. Using alsimptimization approach, we identified a
set of genes most correlated with neuroanatomaahectivity, and find that this set is
enriched for genes involved in neuronal developnaadtaxon guidance. Further, a number
of the genes have been implicated in neurodevelofhdisorders such as autistic spectrum
disorder. Our results have the potential to sheat lbn the role of gene expression patterns in
influencing neuronal activity and connectivity, vppotential applications to our

understanding of brain disorders.

Our results in Chapter 6 answer questions firsegaghen the ABA data was first described
(Lein et al., 2007). The interest of the field me$e questions is confirmed by the work of
Wolf and colleagues, who replicated our essentirigs (Wolf et al., 2011). Using the
same sources of connectivity and gene expresseynstippport our findings by employing a
classification framework that predicts connectifitym gene expression data. In addition

they corroborate our finding that autism associggues carry significant information about
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connectivity.

7.2 Conclusions

We describe and apply a system for large scalaratto extraction of connectivity
knowledge. By analyzing over 13,000 abstracts wadiathe neuroscience literature contains
a wide diversity of terms, organisms of study, arain region descriptions. Unfortunately,
this diversity far exceeds that of the existingriatized neuroanatomical lexicons and our
manually curated dataset. While this limits theoautic resolution of brain region mentions,
we were able to implement several methods thatorgautomatic extraction. Our results
suggest it is feasible to generate a useful datatasonnectivity statements from

neuroscience abstracts.

Our text mining approach provides a novel collattd data to the growing list of
neuroinformatics resources. In Chapters 5 and GJemeonstrate the value of similar large
scale neuroscience datasets by integrating a tangeectivity database with a brain-wide
gene expression atlas. The results show that théwef formalized knowledge at the gene
level provides valuable insight into neuroanatormtha brain region level. Specifically,
there is a relationship between patterns of gepeession and connectivity in the adult
rodent brain. These relationships are linked tbtgpke expression signatures that provide
new insight into brain architecture. Although wesetve only correlations, we used our
methods to prioritize specific genes that can bgetad by experimental manipulations to

reveal causality. Several of these genes are gli@sgbciated with disorders involving
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abnormal brain development and connectivity.

A final conclusion is that large collections of nenformatics data, when combined, provide
new insight into global brain architecture. Furthpplication of computational tools to
process, integrate, analyze and interpret largerbgéneous neuroscience data will improve

our understanding of the brain and its complexity.

7.3 Future Research Directions

Several clear avenues of research can extend thte ekt project. For example, a large
number of abstracts describing neuroanatomical ectivity are available outside of the
Journal of Comparative Neurology. By applying oiggtine of brain region recognition,
resolution and relationship extraction we can ag@gea much larger set of connectivity
statements. Before expansion, we first seek to roakeurrent set of over 28,000 predicted
connectivity statements more accessible to newnssts for building models and refining
hypotheses. These mined statements can also piaeidture based context and validation
for connections revealed by mouse and human coomecprojects. Creation of an
information retrieval portal that allows searchofghe data is a future objective. Before this
data is released we plan detailed evaluationseopthdicted relationships to fully measure
the accuracy of the complete system. For decreasmaynts of predicted relationships we
will evaluate in the context of the sentence, auastifull text paper and complete literature
(tests if the connection has been refuted by ao#mirlts). Our contribution to the community

has already begun with our additions to the Neuxaksource. In addition to new brain
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region concepts extracted from literature, our gatevides extensive data on synonyms,

frequency of use and co-occurrences that can lzetasmprove lexical resources.

For the ABAMS project several directions may elatélthe relationships between gene
expression and connectivity. Going beyond patt@Bsand NE found in Chapter 5, we
observe further clustering into patterns as thelerof anticorrelated gene pairs grows. We
suspect these additional gene clusters are linkédfering populations of neuron and

oligodendrocyte types.

Exploration of the relationships described in Ckaptand 6 in other stages or organisms are
attractive future directions for the ABAMS projethe availability of spatially registered
developmental mouse brain expression data wouldavepour ability to interpret the

patterns we observe. In particular, having detaiéarmation on gene expression patterns
during development, and their relationships todéeeloping projection patterns in the brain,

could permit stronger inference of causal relatigos

A limitation of the ABAMS findings is that the sttural connections we use cannot be
easily linked to specific states or functions & tirain. This restricted our interpretation of
results to functional information associated wiémgs. It would be of interest to employ
functional connectivity data to link gene expreasio more dynamic and task specific states
of the brain, especially in the context of gengtidation. The literature provides a possible
source of functional data that we can extract Whthmethods created for the WhiteText
project. For example, co-occurrences between dertitdirain regions (functional

connectivity) and terms like “addiction” or “memdrffunctional activation) can provide
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a large dataset of functional associations thatweaanalyzed in light of gene expression

patterns.

While we have provided evidence for a relationdiepween connectivity and gene
expression in the mammalian brain, our analysssiigly hindered by the incompleteness of
connectivity information. There are many brain ocegi for which we had expression data but
no connectivity. While some of these regions miggwer have been studied, there are many
reports in the literature that are not includethm current connectivity databases. Our
advances in extracting connectivity reports from biomedical literature can address this
need. Our new connectivity database backed bytdrature can be directly examined for
relationships to gene expression. Unfortunatelghsan analysis would yield uncertain
results given the error rates observed for conviecstatement extraction. Again, further

evaluation of the large set of extracted conndgti@lations will help refine the dataset.

Although I provide some insight into the complexatiythe brain my work is limited to
rodent neuroanatomy. It is my hope that the workdceted for this dissertation will guide
similar studies of the human brain. This hope gsuted by two large projects that are
undertaking the immense tasks of characterizingntiman connectome and transcriptome.
The Human Connectome Project is using MRI technetotp map brain wiring in over
1,000 subjects and the Allen Institute for BraimeBice has released gene expression data
covering almost 1,000 brain sites in two normalladonors. Our methods are immediately
applicable to these data of the human brain andprmawide significant insight into human

neuroanatomy. For example, application of the natheed in Chapter 5 could provide
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brainwide estimates of neuron to glia ratios. Femtistudies of relationships between gene
expression and connectivity that are focused orntiman brain may inform new therapies

for connectivity related disorders.
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Appendices

Appendix A Evaluation of 100 Unmatched Mentions

Mention
dorsomedial nuclei
hippocampus region

nucleus of the electrosensory lateral line
lobe

ventral lamella of the principal olive
pontine region

preoptic nucleus of the hypothalamus
primary gustatory sensory nuclei
magnocellular lobe

rostrocaudal length of the geniculate
complex

vitreal retina
thoracic intermediolateral cell column

posterior region of the ventroposterior
complex

dorsolateral column

pars lateralis of the bed nucleus of the stria
terminalis

dorsal parts of the dorsomedial, posterior
hypothalamic nuclei

subdivision of parietal cortex

sensory fibers of the facial nerve
midrostrocaudal levels of the lateral nucleus
brainstem auditory nuclei

vestibular

periamygdaloid cortical region

frontal lateral neostriatum

subplate zone of the pre- and
parasubiculum

audal superior temporal plane
periventricular stratum of the optic tectum
posterior half of the avcn

second somatosensory area

vestibular receptor organs

ipsilateral inferior oblique muscle

external medial and external lateral para-
brachial nuclei

anterior ectosylvian

2

B W R PR R RPRPNRRER B P

N P PR MANRPRRPR PR RPRPNMNNRRR BB

Frequency Comment

ambiguous
unique variant

species, mormyrid

species, cat

coreference, “same pontine region”
species, fish

species, fish

species, octopus

unique variant, “length”

May not be brain region
spinal cord region

species, monkey
spinal cord region

too specific, can't find in atlas

too specific, can't find in atlas

ambiguous, coreference “each subdivision”
tract not region

too specific, can't find in atlas

unique grouping of regions

tract not region, “vestibular efferents”
unigue synonym — exist in neurolex
species, bird

developmental term

bad annotation

species, fish, unique modifier (stratum)
unexpanded abbreviation

can't find in altases

May not be brain region

bad annotation, not brain region

might be the hypen
species, cat
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Mention
nucleus reticularis medullaris ventralis

dorsal superficial, dorsal, and
suprageniculate nuclei

forebrain sites

dorsomedial, dorsal, and lateral cortices
cortical loci

dorsal horn of the medulla

ventral horn in the spinal cord

efferent vestibular nuclei
tangential and superior vestibular nuclei

medial and ventral lateral parabrachial
subnuclei

interstitial vestibular region
vmpo
neurohypophyseal

external lateral and waist subnuclei

insular and cingulate cortices
antennal nerve

nucleus ventrolateralis of torus
semicircularis

lenticular fasciculus caudodorsally
parabelt auditory cortex

intercollicular region

posterior ventrolateral

subnuclear groups of the nucleus of the
tractus solitarius

area ventralis telencephali pars lateralis
thalamocortical relay nucleus

ventral portion of globus pallidus

parietal insular cortex
rubral

cerebellar area

follicle-sinus complexes

smii

ateral septum

tectal cortex

medial and posterior thalamic regions

ventromedial subnucleus

pallidostriatal

Frequency Comment

1

A P PNRPNOUOUO R NP R PR P P R NR P PP P POR P PO R DMRRR R

species, cat
species, cat

unique variant and coreference
species, lizard

nonspecific

species, cat

Unique synonym, should match “anterior
gray column” in neuronames

species, fish

species, bird

unique variant, “sub” seems to cause
trouble

species, bird
unexpanded abbreviation
bad annotation, references tract

Unique synonym, should match “waist part
of the parabrachial nucleus” in neuornames

unique variant
species, insect

species, fish

bad annotation, tract

not in atlas, is defined in abstract

strange construct, “levels of intercollicular
region”

coreference, should be thalamic

ambiguous

species, fish
nonspecific, type of nucleus

Unique synonym, should match “Ventral
pallidum”

too specific, can't find in atlas
cell group, neurons from red nucleus

Unique synonym, should match
“cerebellum”

bad annotation, skin part
unexpanded abbreviation

bad annotation, missed first letter
species, bird

unique variant

coreference, should be of the hypoglossal
nucleus

bad annotation, tract and cell group
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Mention

left bulb

a7

auditory strip

medullary-spinal cord
c6 root
superior and inferior parts of area 46

6th abdominal ganglion

lateral suprasylvian visual area of cortex
temporal posterior inferior area
vestibulospinal neurons
cerebellorecipient and retinorecipient
pulvinar nucleus(pul) areas

cortical areas mt

lateral archistriatum intermedium
perigeniculate nucleus

ipsilateral medial rectus muscle

n. dorsolateralis medialis

ventrolateral (vl) or ventral posterolateral
(vpl) thalamic nuclei

ventral dentate

intermediate gray the intermediolateral
nucleus in thoracic and upper lumbar
segments

posterior zone nuclei
sn-vta

medial to lateral, termed medial,
centromedial, centrolateral, and lateral
segments

10m

latero-medial axis in the entorhinal cortex
pviiin

dorsal cap

subcortical medullary zone

telencephalic nucleus olfactoretinalis
commissural

13l

rhombencephalic
vision-related cortex
frontoparietal isocortex

Frequency Comment

1

N = ) ST =N SN )

e =

P PR, N OFRP R MNMWERLR N

coreference, should be the olfactory bulb
ambiguous, cell group
not in atlas

unique term, “medullary-spinal cord
junction”

spinal cord region

not sure, area 46 of broadmann should
work

Bad annotation, not a brain region
species, cat

species, shrew

Bad annotation, cell group

coreference, based on abstract

unexpanded abbreviation, unkown synonym

— MT = middle temporal
species, bird

species, cat

Bad annotation, muscle
coreference, thalamic region

not sure, ventrolateral thalamic nuclei may
match

coreference, ventral parts of dentate
nucleus of the cerebellum

spinal cord region

species, frog
Annotation error, cell group, unexpanded
abbreviation, cell group

coreference, regions of PLLL

area 10m of Carmichael? Should match
neuronames

unique variant

annotation error, fibre tract
coreference, dorsal cap of Kooy
coreference, part of cerebellum
species, fish

Bad annotation, tract descriptor

area 13l of Carmichael? Should match
neuronames

should match rhombencephalon
Unique synonym of area TE a
developmental term
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Mention Frequency Comment
areas teav 1 too specific, area TE a exists but not teav
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Appendix B Mappings between the Allen and Swanson Atlases

ABA name

Abducens nucleus

Accessory olfactory bulb
Ammon's Horn

Anterior amygdalar area

Anterior group of the dorsal thalamus
Anterior hypothalamic nucleus
Anterior olfactory nucleus

Anterior pretectal nucleus
Anterior tegmental nucleus
Anterodorsal nucleus
Anterodorsal preoptic nucleus
Anteromedial nucleus
Anteroventral nucleus of thalamus
Anteroventral periventricular nucleus
Anteroventral preoptic nucleus
Arcuate hypothalamic nucleus
Area postrema

Barrington's nucleus

Basic cell groups and regions

Bed nuclei of the stria terminalis

Bed nucleus of the anterior commissure

Brain stem

Caudoputamen

Central amygdalar nucleus

Central lateral nucleus of the thalamus
Central linear nucleus raphé

Central medial nucleus of the thalamus
Cerebellar cortex

Cerebellar nuclei

Cerebellum

Cerebral cortex

Cerebral nuclei

Cerebrum

Cochlear nuclei

Cortical amygdalar area

Cortical plate

Cuneate nucleus

Cuneiform nucleus

Dentate gyrus

mapped BAMS (Swanson 98)
Abducens nucleus

Accessory olfactory bulb

Ammon Horn

Anterior amygdaloid area

Anterior group of the dorsal thalamus
Anterior hypothalamic nucleus
Anterior olfactory nucleus

Anterior pretectal nucleus

Anterior tegmental nucleus
Anterodorsal nucleus of the thalamus
Anterodorsal preoptic nucleus
Anteromedial nucleus of thalamus
Anteroventral nucleus of thalamus
Anteroventral periventricular nucleus
Anteroventral preoptic nucleus
Arcuate nucleus of the hypothalamus
Area postrema

Barrington nucleus

Brain

Bed nuclei of the stria terminalis

Bed nucleus of the anterior commissure
Brainstem

Caudoputamen

Central nucleus of amygdala

Central lateral nucleus of the thalamus
Central linear nucleus raphe

Central medial nucleus of the thalamus
Cerebellar cortex

Deep cerebellar nuclei

Cerebellum

Cerebral cortex

Basal Nuclei

Cerebrum

Cochlear nuclei

Cortical nucleus of the amygdala

Cerebral cortex, layers1-6a [cortical plate]

Cuneate nucleus
Cuneiform nucleus
Dentate gyrus



ABA name

Dentate nucleus

Dorsal column nuclei

Dorsal motor nucleus of the vagus nerve
Dorsal nucleus raphé

Dorsal part of the lateral geniculate complex
Dorsal premammillary nucleus

Dorsal tegmental nucleus

Dorsomedial nucleus of the hypothalamus
Edinger-Westphal nucleus

Epithalamus

External cuneate nucleus

Facial motor nucleus

Fastigial nucleus

Field CA1 pyramidal layer

Field CA3 pyramidal layer

Fundus of striatum

Geniculate group_ dorsal thalamus
Geniculate group_ ventral thalamus
Gracile nucleus

Hindbrain

Hippocampal formation

Hippocampal region

Hypoglossal nucleus

Hypothalamic lateral zone

Hypothalamic medial zone

Hypothalamus

Inferior colliculus

Inferior olivary complex

Inferior salivatory nucleus
Interanterodorsal nucleus of the thalamus
Interanteromedial nucleus of the thalamus
Interbrain

Intergeniculate leaflet of the lateral geniculate
complex

Intermediodorsal nucleus of the thalamus
Interpeduncular nucleus

Interposed nucleus

Interstitial nucleus of Cajal

Intralaminar nuclei of the dorsal thalamus
Lateral dorsal nucleus of thalamus
Lateral group of the dorsal thalamus
Lateral habenula

Lateral mammillary nucleus

mapped BAMS (Swanson 98)

Dentate nucleus

Dorsal column nuclei

Dorsal motor nucleus of the vagus nerve
Dorsal nucleus raphe

Dorsal part of the lateral geniculate complex
Dorsal premammillary nucleus

Dorsal tegmental nucleus

Dorsomedial nucleus of the hypothalamus
Edinger-Westphal nucleus

Epithalamus

External cuneate nucleus

Facial nucleus

Fastigial nucleus

Field CA1 pyramidal layer

Field CA3 pyramidal layer

Fundus of the striatum

Geniculate group of the dorsal thalamus
Geniculate group of the ventral thalamus
Gracile nucleus

Hippocampal formation

Hippocampal region

Hypoglossal nucleus

Lateral hypothalamic area

Medial zone of the hypothalamus
Hypothalamus

Inferior colliculus

Inferior olivary complex

Inferior salivatory nucleus
Interanterodorsal nucleus of the thalamus
Interanteromedial nucleus of the thalamus
Interbrain

Intergeniculate leaflet of the lateral geniculate
complex

Intermediodorsal nucleus of the thalamus
Interpeduncular nucleus

Interposed nucleus

Interstitial nucleus of Cajal

Intralaminar nuclei of the dorsal thalamus
Lateral dorsal nucleus of thalamus
Lateral group of the dorsal thalamus
Lateral habenula

Lateral mammillary nucleus
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ABA name

Lateral posterior nucleus of the thalamus

Lateral reticular nucleus

Lateral septal complex

Lateral septal nucleus

Lateral vestibular nucleus

Linear nucleus of the medulla
Locus ceruleus

Magnocellular nucleus
Magnocellular reticular nucleus
Main olfactory bulb

Mammillary body

Medial amygdalar nucleus
Medial geniculate complex
Medial group of the dorsal thalamus
Medial habenula

Medial mammillary nucleus
Medial preoptic nucleus

Medial pretectal area

Medial vestibular nucleus
Median preoptic nucleus
Mediodorsal nucleus of thalamus
Medulla

Medulla_ behavioral state related
Medulla_ motor related

Medulla_ sensory related
Midbrain

Midbrain raphé nuclei

Midbrain raphé nuclei

Midbrain raphé nuclei

Midbrain raphé nuclei

Midbrain raphé nuclei

Midbrain reticular nucleus_ magnocellular part_

general

Midbrain reticular nucleus_ retrorubral area

Midbrain trigeminal nucleus
Midbrain_ behavioral state related
Midbrain_ motor related
Midbrain_ sensory related

Motor nucleus of trigeminal
Nucleus accumbens

Nucleus ambiguus

Nucleus ambiguus

Nucleus incertus

mapped BAMS (Swanson 98)

Lateral posterior nucleus of the thalamus

Lateral reticular nucleus

Lateral septal complex

Lateral septal nucleus

Lateral vestibular nucleus

Linear nucleus of the medulla
Locus coeruleus

Magnocellular preoptic nucleus
Magnocellular reticular nucleus
Main olfactory bulb

Mammillary body

Medial nucleus of the amygdala
Medial geniculate complex

Medial group of the dorsal thalamus
Medial habenula

Medial mammillary nucleus

Medial preoptic nucleus

Medial pretectal area

Medial vestibular nucleus

Median preoptic nucleus
Mediodorsal nucleus of the thalamus

Dorsal nucleus raphe
Interfascicular nucleus raphe
Rostral linear nucleus raphe
Central linear nucleus raphe
Superior central nucleus raphe

Retrorubral area

Mesencephalic nucleus of the trigeminal

Midbrain-Hindbrain, Motor
Midbrain-Hindbrain, Sensory
Motor nucleus of the trigeminal
Nucleus accumbens

Nucleus ambiguus, ventral division
Nucleus ambiguus dorsal division
Nucleus incertus



ABA name
Nucleus of the brachium of the inferior colliculus

Nucleus of the lateral lemniscus
Nucleus of the lateral olfactory tract
Nucleus of the optic tract
Nucleus of the posterior commissure
Nucleus of the solitary tract
Nucleus raphé magnus
Nucleus raphé obscurus
Nucleus raphé pontis

Nucleus sagulum

Nucleus x

Nucleus y

Oculomotor nucleus

Olfactory areas

Olfactory tubercle

Olivary pretectal nucleus
Pallidum

Pallidum_ caudal region
Pallidum_ caudal region
Pallidum_ dorsal region
Pallidum_ medial region
Pallidum_ medial region
Pallidum_ ventral region
Pallidum_ ventral region
Parabigeminal nucleus
Parabrachial nucleus
Paracentral nucleus
Parafascicular nucleus
Paragigantocellular reticular nucleus
Parapyramidal nucleus
Parasolitary nucleus

Parastrial nucleus
Paraventricular hypothalamic nucleus
Pedunculopontine nucleus
Periaqueductal gray
Peripeduncular nucleus
Perireunensis nucleus
Periventricular region
Periventricular zone

Piriform area
Piriform-amygdalar area

Pons

mapped BAMS (Swanson 98)

Nucleus of the brachium of the inferior
colliculus

Nucleus of the lateral lemniscus
Nucleus of the lateral olfactory tract
Nucleus of the optic tract

Nucleus of the posterior commissure
Nucleus of the solitary tract

Nucleus raphe magnus

Nucleus raphe obscurus

Nucleus raphe pontis

Nucleus sagulum

Nucleus x

Nucleus y

Oculomotor nucleus

Olfactory areas

Olfactory tubercle

Olivary pretectal nucleus

Pallidum

Bed nucleus of the anterior commissure
Bed nuclei of the stria terminalis
Pallidum dorsal region

Triangular nucleus of the septum
Medial septal complex
Magnocellular preoptic nucleus
Substantia innominata

Parageminal nucleus

Parabrachial nucleus

Paracentral nucleus of the thalamus
Parafascicular nucleus
Paragigantocellular reticular nucleus
Parapyramidal nucleus

Parasolitary nucleus

Parastrial nucleus

Paraventricular nucleus of the hypothalamus
Pedunculopontine nucleus
Periaqueductal gray

Peripeduncular nucleus
Perireunensis nucleus

Periventricular zone of the hypothalamus

Piriform area
Piriform-amygdaloid area
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ABA name

Pons_ behavioral state related

Pons_ motor related

Pons_ sensory related

Pontine central gray

Pontine gray

Posterior hypothalamic nucleus
Posterodorsal preoptic nucleus
Postpiriform transition area

Pretectal region

Principal sensory nucleus of the trigeminal
Red Nucleus

Reticular nucleus of the thalamus
Retrohippocampal region

Septofimbrial nucleus

Spinal nucleus of the trigeminal_ caudal part
Spinal nucleus of the trigeminal_ interpolar part
Spinal nucleus of the trigeminal_ oral part
Striatum

Striatum dorsal region

Striatum ventral region

Striatum-like amygdalar nuclei
Subceruleus nucleus

Subiculum

Sublaterodorsal nucleus

Substantia innominata

Substantia nigra_ compact part
Substantia nigra__ reticular part
Subthalamic nucleus

Superior central nucleus raphé

Superior colliculus_ motor related
Superior colliculus_ motor related
Superior colliculus_ motor related

Superior colliculus_ motor related

Superior colliculus_ sensory related
Superior colliculus_ sensory related
Superior colliculus_ sensory related
Superior olivary complex
Suprachiasmatic nucleus
Suprageniculate nucleus
Supragenual nucleus
Supramammillary nucleus
Supratrigeminal nucleus

mapped BAMS (Swanson 98)

Pontine central gray

Pontine gray

Posterior hypothalamic nucleus
Posterodorsal preoptic nucleus
Postpiriform transition area

Pretectal region

Principal sensory nucleus of the trigeminal
Red nucleus

Reticular nucleus of the thalamus
Retrohippocampal region

Septofimbrial nucleus

Spinal nucleus of the trigeminal caudal part
Spinal nucleus of the trigeminal interpolar part
Spinal nucleus of the trigeminal oral part
Striatum

Striatum dorsal region

Striatum ventral region

Striatum caudal (amygdalar) region
Subcoeruleus nucleus

Subiculum

Sublaterodorsal nucleus

Substantia innominata

Substantia nigra compact part

Substantia nigra reticular part

Subthalamic nucleus

Superior central nucleus raphe

Superior colliculus intermediate deep gray layer
Superior colliculus intermediate gray layer
Superior colliculus intermediate white layer
Superior colliculus intermediate deep white
layer

Superior colliculus zonal layer

Superior colliculus optic layer

Superior colliculus superficial gray layer
Superior olivary complex

Suprachiasmatic nucleus

Suprageniculate nucleus

Supargenual nucleus

Supramammillary nucleus

Supratrigeminal nucleus
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ABA name

Taenia tecta

Tegmental reticular nucleus

Thalamus

Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ polymodal association cortex related
Thalamus_ sensory-motor cortex related
Thalamus_ sensory-motor cortex related
Thalamus_ sensory-motor cortex related
Thalamus_ sensory-motor cortex related
Thalamus_ sensory-motor cortex related
Trochlear nucleus

Tuberal nucleus

Ventral group of the dorsal thalamus

Ventral medial nucleus of the thalamus

Ventral part of the lateral geniculate complex
Ventral posterior complex of the thalamus
Ventral premammillary nucleus

Ventral tegmental area

Ventral tegmental nucleus

Ventromedial hypothalamic nucleus

Vestibular nuclei

Zona incerta

mapped BAMS (Swanson 98)

Taenia tecta

Tegmental reticular nucleus

Thalamus

Anterior group of the dorsal thalamus
Epithalamus

Geniculate group of the ventral thalamus
Intralaminar nuclei of the dorsal thalamus
Lateral group of the dorsal thalamus
Medial group of the dorsal thalamus
Midline group of the dorsal thalamus
Reticular nucleus of the thalamus
Geniculate group of the dorsal thalamus
Peripeduncular nucleus

Subparafascicular nucleus

Ventral group of the dorsal thalamus
Trochlear nucleus

Tuberal nucleus

Ventral group of the dorsal thalamus
Ventral medial nucleus of the thalamus
Ventral part of the lateral geniculate complex
Ventral posterior complex of the thalamus
Ventral premammillary nucleus

Ventral tegmental area

Ventral tegmental nucleus

Ventromedial nucleus of the hypothalamus
Vestibular nuclei

Zona incerta
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