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Abstract

In three directed search models with horizontal differentiation, this thesis charac-

terizes the unique symmetric equilibrium for each model and studies the welfare

property of equilibrium allocations.

In Chapter 2, horizontal differentiation is modeled as buyers’ valuations being

independent. In equilibrium, sellers use a mixed strategy with the support con-

sisting of a countable number of prices. Equilibrium price dispersion exists and

equilibrium allocation is constrained inefficient due to price dispersion.

Chapter 3 extends the model in Chapter 2 by allowing different degrees of

horizontal differentiation. With large degrees of horizontal differentiation, sellers

use a mixed strategy qualitatively similar to the equilibrium in Chapter 2. With

small degrees of differentiation, sellers use a pure strategy.

Chapter 4 extends the model in Chapter 2 by allowing differentiation to be

endogenous. Initially buyers are equally uncertain about the characteristics of sell-

ers’ goods and no differentiation exists. Then sellers choose prices together with

the amounts of information disclosed to buyers about the characteristics of sellers’

goods. Information disclosure leads to differentiation after buyers receive the in-

formation. It is shown that a seller’s profit by disclosing full information is higher

than that by disclosing partial information. In equilibrium both sellers disclose full

information and use a pricing strategy that is identical to the equilibrium in Chapter

2.
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Chapter 1

Introduction

In a textbook version of a Walrasian competitive economy, the market is friction-

less. There is a centralized price setting authority, and everyone else in the market

observes the price, takes it as given, and makes buying or selling decisions opti-

mally. Then the price adjusts so that the desired aggregate demand is equal to the

desired aggregate supply. However, in real life markets, such a centralized price

setting authority is often absent, and the transactions are conducted in a decentral-

ized manner. Sellers decide on their own prices, and buyers choose from which

seller to buy. The market is fraught with frictions, which prevent the market from

bringing traders together and exhausting all desirable trades. Frictions include the

difficulties in informing potential traders about the trading opportunities and in co-

ordinating traders’ decentralized decisions. Frictions can also generate important

regularities in prices. A single price prevailing in a frictionless Walrasian market

is at odds with the empirical observation of price dispersion or wage dispersion for

similar goods or workers.

Early literature departs from the frictionless Walrasian analyses by assuming

that agents randomly search among the other side of market, so the probability that

an agent meets someone on the other side depends on the total numbers of agents

on two sides of the market1. This approach ignores that the matching process is not

completely random and different agents on the same side of the market can have

different matching probabilities. Another strand of literature assumes that agents

1Examples include Diamond [7], Diamond [8], Mortensen [14] and Pissarides [19].
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on one side first choose their respective terms of trade. Then, upon observing the

distribution of the offered terms of trade, agents on the other side repeatedly sample

a trading partner and choose how many samplings he or she does. Each sampling

involves a cost for the agent and therefore, if the sampling cost outweighs the

likelihood of finding the best trading partner, the agent may stop sampling before

he or she finds the best trading partner. This literature integrates agents’ rational

choices into the matching model. An assumption made is that agents do not know

the identities of trading partners who offer different terms of trade, and therefore

can only randomly sample among all potential trading partners. This assumption

contradicts with the emergence of information technologies that significantly re-

duce agents’ cost of acquiring the information on identities of trading partners and

the observation in two-sided market that agents can effectively direct their search

toward specific potential partners.

The seminal work of Peters [15] develops another way of modelling decentral-

ized matching. The matching process is modelled as a two stage game where in the

first stage agents on one side of the market choose their respective terms of trade2.

After observing all chosen terms of trade and identities of trading partners offering

these terms of trade, agents on the other side select trading partners to visit, taking

into account their payoffs from trading with all potential partners and the possibili-

ties of trading. The friction is captured by the assumption that agents decide which

partner to visit in an uncoordinated manner, and if too many agents visit the same

partner, some of them will not trade successfully. This literature is called “directed

search”, because each agent on one side of the market can choose the term of trade

to “direct” the visiting behaviours of the other side and through doing so, influence

the probability he can trade with someone.

Recent directed search models begin to allow agents on either side of the mar-

ket to be heterogeneous in terms of the values of trading with each other, and the

information on this trading value can be dispersedly possessed by agents3. The typ-

2More generally, agents can choose a general mechanism, which determines the allocation and
transfer price as functions of messages received from all visiting traders.

3In a goods market where sellers and buyers are on either side of the market, Eeckhout and
Kircher [10] studies the case that sellers and buyers can be heterogeneous. In a labour market where
two sides are vacancies and job seekers, Shimer [22] and Peters [18] study the case that vacancies
and job seekers have different types.
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ical assumption is that heterogeneity is valued in the same way by different agents.

In other words, agents are differentiated by “types”. Regardless of the identity of

an agent on one side of the market, matching with high type agents on the other

side leads to higher value than matching with low type agents.

However, there are cases where agents are differentiated horizontally. In other

words, there are no high type agents that are more desirable to be matched nor low

type agents that are less desirable to be matched with. Instead, agents’ desirabilities

for matching can vary for different agents on the other side, possibly due to agents’

differing tastes or needs. In a market where the two sides are buyers and sellers4,

sellers’ goods can be horizontally differentiated. For some buyers, some sellers’

goods are more desirable than others, while for other buyers, the former sellers’

goods are less desirable than the latter sellers’.

This thesis focuses on a simple environment with 2 buyers and 2 sellers. I con-

sider three models with different degrees of horizontal differentiation and study the

equilibrium allocation in each model. In Chapter 2, sellers’ goods are horizontally

differentiated, modelled with buyers’ valuations of sellers’ goods being indepen-

dent. Depending on their valuations, each seller has some buyers who prefer her

over the other seller regardless of sellers’ prices. They are “loyal” buyers of the

seller. The remaining buyers are indifferent between sellers’ goods and choose a

seller based on price comparison. They are “shoppers”. A seller faces a trade-off

between choosing a high price to only attract loyal buyers and a low price to at-

tract both loyal buyers and shoppers. This trade-off leads to the nonexistence of

pure-strategy equilibrium between sellers. A mixed-strategy equilibrium between

sellers is constructed and is proved to be the only symmetric equilibrium between

sellers. The mixed-strategy equilibrium features price-dispersion, in which sellers

choose different prices for ex ante identical products.

In Chapter 3, sellers’ goods are also horizontally differentiated but with dif-

ferent degrees of differentiation, modelled as different correlations between buy-

ers’ valuations. In this case, when the differentiation between sellers’ goods is

small, the unique symmetric equilibrium between sellers exhibits a pure-strategy

equilibrium between sellers and when the differentiation is large, the unique sym-

4Throughout this thesis, buyers are male and sellers are female.

3



metric equilibrium exhibits a mixed-strategy equilibrium. When the differentiation

reaches the threshold value, the mixed-strategy equilibrium converges to the pure-

strategy equilibrium.

Chapter 4 considers a similar model as in Chapter 2, but now allowing the

differentiation between sellers’ goods to be endogenous. At the very beginning,

buyers have no information about their valuations of sellers’ goods and regard sell-

ers’ goods as perfect substitutes. Then sellers choose both prices and the amount

of information disclosed to buyers by choosing the informativeness of the signal

buyers receive about their true valuation of the seller’s good. After observing sell-

ers’ prices and signal informativeness, buyers privately observe signals from both

sellers and simultaneously decide which seller to select. Information provision by

sellers leads to differentiation between sellers’ goods. The more information sell-

ers disclose, the more differentiated the sellers’ goods are for the two buyers as

they receive different signals from the sellers. The model finds in the unique sym-

metric subgame perfect Nash equilibrium, both sellers disclose full information to

buyers and randomize over a countable number of different prices.

1.1 Related Literature
As stated above, this thesis is related to the literature on directed search. In this

literature, sellers post prices or selling mechanisms first, then after observing all

prices or mechanism postings, buyers choose which seller to visit. Buyers’ searches

among sellers are “directed” by the prices or mechanisms sellers post.

Burdett et al. [2] studies a directed search model where buyers think all sellers’

goods are perfect substitutes and all buyers have the same valuation for sellers’

goods. Sellers post prices first, then buyers decide which seller to visit. In order

to model that buyers visit sellers in an uncoordinated way, buyers have to use a

symmetric strategy for visiting sellers. Friction is captured by assuming sellers

have limited capacities so that if too many buyers visit a given seller, some buyers

will not get the seller’s goods. A subgame perfect Nash equilibrium is identified

where sellers post the same price and buyers randomly visit sellers.

This thesis considers a variant of the model in Burdett et al. [2] by introducing

heterogeneous buyers and sellers. Sellers have different characteristics denoted by
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a one-dimensional type and similarly for buyers. Depending on the realizations

of sellers’ types and buyers’ types, a buyer may prefer one seller over the other,

or may like or dislike both sellers equally. Sellers in this model first post their

prices, then buyers choose which seller to select. There are frictions due to buyers’

uncoordinated visiting strategies and the limited capacities of sellers. I identify

the unique symmetric pricing strategy of sellers. This pricing strategy is a mixed

strategy with a countable support.

This thesis is also related recent directed search models that also introduce het-

erogeneous agents. Eeckhout and Kircher [10] considers a case where buyers and

sellers have different types. The difference between their paper and the current

thesis is that if all sellers charge the same price, in their paper, all types of buyers

would agree on the relative attractiveness between any two types of sellers, while

in the current thesis, some types of buyers would prefer one type of seller over the

other, and other types of buyers have the reverse preference. In this sense, their

model is about vertical differentiation while this thesis is about horizontal differ-

entiation. Another difference is that, in Eeckhout and Kircher [10], each side of

market is made up of a continuum of agents. When a single seller considers a de-

viation from the equilibrium posting strategy, he believes that in order to attract

any buyer he has to provide buyers with some “market utility”, which he takes

as independent from the deviation. In a series of papers, Peters [16] and Peters

[17] study the important question of whether the subgame perfect equilibrium of

directed search with a finite number of agents and the rational expectation equilib-

rium where a market utility is assumed to be given, converge to the same limiting

equilibrium as the number of agents converges to infinity. However, the current

thesis conducts a fully strategic analysis by explicitly solving for the buyers’ re-

sponses to all price postings that can possibly be equilibrium prices. Sellers’ pay-

offs are determined by buyers’ responses in the continuation equilibrium, without

the market utility assumption. In the labour market setting, Shimer [22] considers

a directed search model for a job market where firms have different productivities

and job seekers have different abilities, and firms can post a wage schedule that

depend on the job seekers’ abilities. Peters [18] considers a directed search model

with heterogeneous firms and job seekers, but the wage posted does not depend on

the job seekers’ abilities. Peters [18] also allows for an arbitrary distribution of job
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seekers’ abilities and firms’ productivities and investigates which kinds of firms

match which kinds of job seekers in equilibrium. In both models the heterogeneity

among agents is valuated in the same way across all agents on the other side of the

market. For all firms, regardless of their productivities, the output of matching with

a high ability job seeker is higher than the output of matching with a low ability

job seeker. The difference between a goods market and a labour market is that in

a labour market, firms (who post the terms of trade) care about which type of job

seekers they hire as well as the wage, while job seekers (who observe the terms

of trade posted by firms and decide which firm to approach) only care about the

terms of trade and the probability of trading. However, in a goods market, sellers

(who post the terms of trade) only care about the terms of trade and the probability

of selling products, while buyers (who observe the terms of trade posted by sellers

and decide which seller to approach) care about both the terms of trade and which

seller they match with.

One major question in the directed search literature is how to explain price

or wage dispersion, the phenomenon where identical goods have different prices

or where identical workers have different wages. A directed search framework

with homogeneous agents is in general not useful to get price dispersion as an

equilibrium phenomenon. Burdett et al. [2] gets an equilibrium where a single

price is charged5. Most other papers on directed search either have to rely on

heterogeneity or have to use ex-post price dispersion. Ex-post price dispersion

refers to the case where although sellers offer identical selling mechanism, because

buyers visit sellers randomly and the final price of the selling mechanism depends

on the realized number of visiting buyers, sellers offering the same mechanism end

up charging different prices6. However, the current thesis suggests that equilibrium

price dispersion might be generated by a simple interaction between horizontal

5An exception is Delacroix and Shi [6] which studies on-the-job search of workers and gets wage
dispersion for homogeneous workers and jobs. The wage dispersion is due to firms using a pure
strategy in wage schedule which depend on the wage of workers’ current jobs. Another exception is
Kircher [12] which allows workers to apply for more than one vacancies and vacancies can contact
more than one applicant.

6See Shi [21], Shimer [22] and Dickens et al. [9] for models that generate equilibrium wage
dispersion with heterogeneous workers and firms, and see Albrecht et al. [1] and Camera and Selcuk
[3] for models that generate ex-post wage (price) dispersion in a homogeneous agents setting with
symmetric equilibrium strategies.
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differentiation and directed search.

This thesis is also related to the literature explaining price dispersion or wage

dispersion without using directed search. Varian [24] considers a model with two

groups of buyers having different amounts of price information. Buyers without

pricing information randomly pick a seller and buy if the price is below the buyer’s

reservation price, while the informed buyers know all sellers’ prices and choose

the lowest price seller. Varian’s model features a symmetric mixed-strategy equi-

librium where sellers randomize among all the prices in an interval. As informed

buyers always buy from the lowest price seller, there are no point masses in the

equilibrium mixed strategy. Rosenthal [20] considers a model where each seller

has “loyal” buyers who will buy as long as the price is lower than the buyers’ reser-

vation price. Remaining buyers are “shoppers”, who regard all products as perfect

substitutes and buy at the lowest price seller. The author finds in equilibrium sellers

use a mixed strategy in setting prices.

In the equilibrium of this thesis, the market is segmented into loyal buyers

and shoppers. Similarly as in Rosenthal [20], the presence of loyals and shoppers

negates a pure strategy equilibrium. The difference between Rosenthal [20] and

this thesis is that in Rosenthal [20] sellers have unlimited capacities so that shop-

pers always select the lowest price seller. This makes the profit function discontin-

uous. To be an equilibrium, sellers use a mixed strategy with an interval support. In

this thesis sellers are capacity-constrained so that shoppers randomize in selection

between sellers. As a result sellers’ profits are continuous in prices. Nonethe-

less I show there is a mixed-strategy equilibrium, which differs considerably from

Rosenthal [20] in that the support of the equilibrium strategy is a countable set.

From a different angle, this thesis is related to papers which study the mixed-

strategy equilibrium in games with payoff discontinuities or continuities. Dasgupta

and Maskin [5] shows the general condition for a game with discontinuous payoffs

to have a mixed-strategy equilibrium and identifies properties of the mixed-strategy

equilibrium. If players’ payoffs are discontinuous when players take the same ac-

tion, the mixed equilibrium strategy cannot take that action with strictly positive

probability. On the reverse side, Sinitsyn [23] studies an environment where play-

ers’ payoffs are continuous in the action profile of all players and finds that there

exists a mixed-strategy equilibrium with finite number of actions. This thesis stud-
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ies a case where players’ payoffs are continuous at almost all common actions

taken by players, but are discontinuous at a particular common action. The mixed-

strategy equilibrium exhibits a countable number of actions approaching the action

where payoffs are discontinuous.

8



Chapter 2

Directed Search with Horizontal
Differentiation

2.1 Introduction
In the current chapter, the horizontal differentiation is modelled as a buyer’s val-

uation of a seller’s good depends on whether the buyer’s taste matches with the

characteristics of the seller’s good. Both buyer’s taste and seller’s characteristics

are binary variables. Depending on whether a buyer’s taste matches with two sell-

ers’ characteristics, buyers are segmented into four groups: Two groups of buyers

whose tastes match one seller but not the other, a group of buyers whose tastes

match both sellers, and a group of buyers whose tastes do not match either seller.

In equilibrium, the group of buyers whose tastes match one seller but not the other

always selects the first seller as long as the seller’s price is lower than buyers’ reser-

vation price. The group of buyers whose tastes match both sellers select sellers by

comparing the prices of two sellers. When the two sellers’ prices are close to each

other, these buyers randomize between selecting two sellers with the probability of

selecting one seller strictly decreasing in the seller’s price. When one seller’s price

is sufficiently lower than the other seller’s, these buyers select the lower price seller

with probability 1.

From a seller’s point of view, her potential buyers consist of two groups of

buyers. One group of buyers have tastes that match the seller’s characteristics but

9



do not match the opponent seller’s. These buyers are loyal buyers for the seller.

Another group of buyers have tastes that match both sellers’ characteristics. These

buyers are called “shoppers” and they compare sellers’ prices to decide which seller

to select in the way described in the previous paragraph. A seller faces a choice

of whether to compete for shoppers and if so, how many shoppers to attract. At-

tracting shoppers is good for the seller’s probability to sell, but has a cost that a

seller has to choose a lower price than opponent’s. When the opponent seller’s

price is high, a price slightly lower than the opponent’s can attract most shoppers

because at a high price level these buyers are sensitive to the price difference be-

tween sellers. The seller’s cost of attracting shoppers is low and therefore, her best

response is to choose a price lower than the opponent and get all shoppers. When

the opponent seller’s price is low, to attract shoppers a seller has to choose a price

much lower than the opponent’s. This is because at a low price level shoppers are

much less sensitive to price difference between sellers, and to attract these buyers a

seller has to give them a sufficiently higher trading surplus than the opponent seller

does. As the cost of attracting shoppers is very high, the seller’s best response is to

give up shoppers and to choose a price equal to the buyers’ reservation price. This

best response to the opponent’s price leads to the nonexistence of a pure-strategy

equilibrium in the sellers’ game.

This chapter finds there exists a symmetric mixed-strategy equilibrium between

sellers. The support of the equilibrium mixed strategy consists of a countable num-

ber of prices. For any two prices p′ > p in the support of the equilibrium strategy,

if a shopper is offered the choice between p and p′, he will select p for sure. At the

same time, for any price p in the support, there is a p < p′′, such that if a shopper

has the choice between p and p′′, he will select both with strictly positive proba-

bilities1. The equilibrium strategy can be characterized by the first order condition

for a seller to choose each price and the condition for the seller to get equal profit

by choosing all prices.

In addition, this equilibrium is the only symmetric equilibrium in the sellers’

game. To establish this, I show that all symmetric equilibria must have a countable

support. All prices and the probabilities with which these prices are used are deter-

1This is different from Rosenthal [20] where shoppers always choose the lower price for sure.
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mined by the fact that each price must satisfy a first order condition and the fact that

each price must give the seller the same expceted profit. Given the characterized

mixed-strategy equilibrium is the only mixed strategy satisfying these conditions,

there do not exist symmetric equilibria, other than the characterized mixed-strategy

equilibrium.

I show there cannot be a symmetric equilibrium with a finite support. If there

was , the highest price would be either equal to the buyers’ reservation price or

lower. The first possibility cannot hold because if the opponent seller has a strictly

positive probability of charging the buyers’ reservation price, a seller has an incen-

tive to charge a slightly lower price and get a discretely larger probability of selling

by attracting all shoppers. The second possibility cannot hold either. If the highest

possible price the opponent seller charges is strictly lower than the buyers’ reser-

vation price, a seller has either of two profitable deviations. If the opponent seller

charges the highest price with a high probability, the seller wants to charge just

slightly below that highest price. If the opponent charges the highest price with a

low probability, the seller is better off by charging buyers’ reservation price rather

than the highest price of the opponent seller because at both prices the seller will

not get shoppers. The seller’s profit is higher by charging the higher price among

these two prices, which is buyers’ reservation price.

If there is an infinite number of prices converging to the buyers’ (common)

reservation price, as prices rise, the difference between any two adjacent prices

becomes smaller. At the same time, shoppers’ probability to visit sellers is more

sensitive to price and the requirement on the distance between two prices to make

these buyers visit the lower price is becoming smaller at a faster rate. Even at high

prices, there is a price difference between any two prices such that shoppers would

choose the lower price seller.

This chapter is organized as follows: Section 2.2 describes the model. Section

2.3 explicitly constructs a symmetric equilibrium where each seller randomizes

over a countable number of prices. Section 2.4 proves the constructed equilibrium

is the only symmetric equilibrium in the sellers’ game. Section 2.5 discusses the

welfare property of the characterized equilibrium and shows it is not constrained

efficient. Section 2.6 gives some concluding remarks.
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2.2 The Model
There are two sellers, A and B, and two buyers, 1 and 2. Each seller has one unit

of indivisible good for which the seller’s reservation price is 0. Each buyer wants

to buy one unit of the good. A buyer’s valuation of a seller’s good can be either

0 or 1 with equal probabilities. Buyers’ valuations are independent both across

two sellers for a given buyer and across two buyers for a given seller. A buyer’s

valuations for two sellers’ goods are known only to the buyer.

The model has three stages. At stage 1, two sellers simultaneously choose their

prices, pA and pB. At stage 2, buyers observe the prices chosen by sellers, then,

knowing their own valuations of two sellers’ goods, simultaneously decide which

seller to select. Each buyer can select at most one seller and can choose not to

select any seller. At stage 3, the exchange happens. If only one buyer selects a

seller, the seller sells the good to the buyer at the seller’s price. If two buyers select

the same seller, the seller randomly chooses one buyer and sells the good to the

chosen buyer at the seller’s price; the unchosen buyer will not get the good, nor

will she be charged. If no buyer selects a seller, the seller keeps her good.

Sellers and buyers are risk-neutral. A seller’s profit is her expected revenue,

which is the seller’s price multiplied by the probability of selling the good. The

probability of selling is equal to the probability that at least one buyer selects the

seller. A buyer’s expected payoff from selecting a seller is the buyer’s net valuation

of the seller’s good (the buyer’s valuation of the seller’s good subtracted by the

seller’s price) multiplied by the probability the buyer can get the seller’s good,

conditional on the buyer’s valuations for the two sellers’ goods. If the buyer does

not select any seller, the buyer gets payoff 0.

The assumption that each buyer cannot select more than one seller implies if

a buyer selects a seller but fails to match with the seller, the buyer fails to match

with any seller. The setup that the seller randomly chooses one buyer to match with

when the seller is selected by two buyers implies a strategic interaction between the

two buyers in the sense that a buyer’s probability of matching with a seller depends

on the probability that the other buyer selects the same seller2.

2This is different from Bertrand price competition models, where a buyer’s payoff of buying
from a seller is independent from whether or not the other buyers are buying from the same seller.
This difference leads to buyers’ different equilibrium response to sellers’ prices, which in turn gives
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This chapter focuses on symmetric subgame perfect Nash equilibrium of the

game. Two buyers, if having the same valuations of two sellers’ goods, use the

same strategy in selecting sellers. Two sellers use the same strategy in choosing

prices. The focus on symmetric strategy is due to the assumption that buyers cannot

coordinate in selecting sellers and sellers cannot coordinate in choosing prices.

For any price profile by two sellers, a buyer’s strategy is the probabilities of

selecting sellers in each realization of the buyer’s valuations of two sellers’ goods,{ (
θ A

00(pA, pB),θ
B
00(pA, pB)

)
,
(
θ A

01(pA, pB),θ
B
01(pA, pB)

)(
θ A

10(pA, pB),θ
B
10(pA, pB)

)
,
(
θ A

11(pA, pB),θ
B
11(pA, pB)

) }

where θ
j

st(pA, pB) is, when seller A chooses price pA and seller B chooses price

pB, the buyer’s probability of selecting seller j ∈ {A,B} when he has valuation s

for seller A’s good and valuation t for seller B’s good. 1−θ A
st (pA, pB)−θ B

st (pA, pB)

is the probability of choosing not to select any seller. θ A
st (pA, pB)+θ B

st (pA, pB)≤ 1.

Because the two buyers’ valuations are independent, a buyer’s knowledge of

his own valuations does not give any information regarding the other buyer’s val-

uations. Therefore regardless of what the buyer’s valuations of two sellers’ goods

are, he thinks the other buyer’s valuations of sellers’ goods can be one of the four

possible realizations, {(0,0) ,(0,1) ,(1,0) ,(1,1)}, with equal probabilities. Given

this belief and the other buyer’s strategy,
(

θ̃ A
00(pA, pB), θ̃

B
00(pA, pB)

)
,
(

θ̃ A
01(pA, pB), θ̃

B
01(pA, pB)

)(
θ̃ A

10(pA, pB), θ̃
B
10(pA, pB)

)
,
(

θ̃ A
11(pA, pB), θ̃

B
11(pA, pB)

) ,

the probability that the other buyer selects seller j ∈ {A,B} is

θ̃ j(pA, pB)≡ 1
4

(
θ̃

j
00(pA, pB)+ θ̃

j
10(pA, pB)+ θ̃

j
01(pA, pB)+ θ̃

j
11(pA, pB)

)
,

as the probability that the other buyer selects seller j when he has valuation (s, t)

is θ̃
j

st(pA, pB) and the probability that the other buyer has valuation (s, t) is
1
4

.

Because seller j has only one good, if the other buyer selects seller j, a buyer’s

probability to match with seller j is 1
2 . If the other buyer does not select j, the

buyer’s probability to match with seller j is 1 . If the probability that the other

buyer selects seller j is θ̃ j(pA, pB), the buyer’s probability to match with seller j is

different equilibrium pricing strategies of sellers.
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1
2 θ̃ j(pA, pB)+1− θ̃ j(pA, pB) = 1− 1

2 θ̃ j(pA, pB)

If a buyer has valuation 1 for seller j’s good, his net valuation for j’s good is

1− p j. Therefore, given the other buyer’s strategy, the buyer’s expected payoff

from selecting seller j is

(1− p j)(1− 1
2 θ̃ j(pA, pB)).

If a buyer has valuation 0 for seller j’s good, his net valuation for j’s good is

−p j, and his expected payoff from selecting seller j is

−p j(1− 1
2 θ̃ j(pA, pB)).

After characterizing a buyer’s payoff as functions of the other buyer’s strat-

egy, we can find equilibria between buyers. Throughout the chapter, we focus on

symmetric equilibria between buyers, based on the assumption that buyers can-

not coordinate their strategies. This is a standard assumption in directed search

literature.

Suppose in a symmetric continuation equilibrium in the buyers’ game, both

buyers select seller j with probability θ j(pA, pB). Seller j’s probability of selling

her good is

1−
(
1−θ j(pA, pB)

)2

And seller j’s expected profit is[
1−
(
1−θ j(pA, pB)

)2
]

p j

It is straightforward to show that sellers will not charge prices strictly less than

0, the lowest possible valuation of buyers, or prices strictly greater than 1, the

highest possible valuation of buyers. I focus on the subgames where prices of both

sellers are between 0 and 1.
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2.3 Construction of Equilibrium
The main result of this chapter is stated here.

Proposition 1. There exists a symmetric subgame perfect Nash equilibrium where

a seller’s strategy is to randomize over a countably infinite number of prices.

To prove the proposition, we first characterize buyers’ symmetric continuation

equilibrium for every profile of two sellers’ prices, as summarized in Lemma 1.

Taking the characterized buyers’ continuation equilibrium as given, we get each

seller’s profit associated with two sellers’ price choices. Then by solving a set of

equations, we find a mixed strategy in choosing prices, denoted by
{(

p∗k ,x
∗
k

)}∞

k=1,

with the probability of choosing p∗k being x∗k for all k. At last, we show that{(
p∗k ,x

∗
k

)}∞

k=1 is a symmetric equilibrium in the sellers’ game, which completes

the proof of the proposition.

We first explain buyers’ equilibrium strategy with the following definition.

Definition 1. Denote p(p)≡ 7
6

p− 1
6

and p(p)≡ 6
7

p+
1
7

. Say p′ locally competes

with p when p′ satisfies p(p)≤ p′ ≤ p(p).

The reason we say two sellers’ prices locally compete with each other when

two sellers’ prices satisfy p(pB)≤ pA ≤ p(pB) is, in buyers’ continuation equilib-

rium in the subgame following (pA, pB), a buyer will randomize between selecting

two sellers when he has valuation 1 for both sellers, with the probability of se-

lecting a seller strictly decreasing in the seller’s price and strictly increasing in the

opponent seller’s price.

The range of prices that locally compete with a price 0 < p < 1 is shown in

Figure 2.1. It shrinks as p increases. As p converges to 1, the measure of locally

competing prices converges to 0 with only price 1 locally competing with price 1

itself.

The following lemma shows the buyers’ symmetric continuation equilibrium.

Lemma 1. In the subgames where sellers choose 0≤ pA ≤ 1 and 0≤ pB ≤ 1, there

exists a symmetric equilibrium in the buyers’ game such that
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Figure 2.1: Prices that Locally Compete with 0 < p < 1


θ A∗

00 (pA, pB) = 0,θ B∗
00 (pA, pB) = 0

θ A∗
01 (pA, pB) = 0,θ B∗

01 (pA, pB) = 1

θ A∗
10 (pA, pB) = 1,θ B∗

10 (pA, pB) = 0

,

θ A∗
11 (pA, pB) =



1 i f pA < p(pB)

7(1− pA)−6(1− pB)

(1− pA)+(1− pB)
i f

p(pB)≤ pA ≤ p(pB)

and pA 6= 1 or pB 6= 1

0 i f pB < p(pA)
1
2

i f pA = pB = 1

and θ B∗
11 (pA, pB) = 1−θ A∗

11 (pA, pB).

If two buyers both use the symmetric equilibrium strategy as stated in Lemma
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1, seller A’s probability to sell is

Π(pA, pB)≡ 1−
[

1− 1
4
(
1+θ A∗

11 (pA, pB)
)]2

,

which is strictly increasing in θ A∗
11 (pA, pB).

Therefore, when pA < p(pB), Π(pA, pB) =
3
4 , which is the maximum level of

Π(pA, pB), denoted as Π.

When p(pB)≤ pA ≤ p(pB) and pA 6= 1 or pB 6= 1,

Π(pA, pB) =
13
4
(1− pB)

2(1− pA)− 5
4 (1− pB)

((1− pA)+(1− pB))
2 ;

When pB < p(pA), Π(pA, pB) =
7
16 , which is the minimum level of Π(pA, pB),

denoted as Π.

When pA = pB = 1, Π(pA, pB) =
39
64

.

It is straightforward to show that Π(pA, pB) is continuous at all (pA, pB) such

that 0 < pA ≤ 1 and 0 < pB ≤ 1 except (1,1).

Consider a mixed strategy of a seller, denoted as {(pk,xk)}∞

k=1 where pk is

chosen with probability xk, such that for all k, 0 < pk < pk+1 < 1 and pk does not

locally compete with pk+1. Because {pk}∞

k=1 has an infinite number of prices and

0 < pk < pk+1 < 1 for all k, {pk}∞

k=1 must converge to some price less than or

equal to 1. This means for a sufficiently large k, pk is very close to pk+1. To satisfy

that pk does not locally compete with pk+1 despite pk being very close to pk+1 for

sufficiently large k, pk has to be very close to 1 to make the measure of pk’s locally

competing region close to 0. In other words, {pk}∞

k=1 must converge to 1. Note

that price 1 is chosen with probability 0.

Based on these properties of {(pk,xk)}∞

k=1, consider two equations. The first

equation requires that when the opponent seller adopts the mixed strategy {(pk,xk)}∞

k=1,

a seller’s profit by choosing price pk is equal to her profit by choosing price 1. As

price 1 is chosen with probability 0 by the opponent seller, the seller’s profit by

choosing price 1 is Π. The second equation requires that the seller has no prof-

itable local deviation from choosing pk.
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[
Π

k−1

∑
i=1

xi +Π(pk, pk)xk +Π

(
1−

k

∑
i=1

xi

)]
pk = Π (2.1)

Π

k−1

∑
i=1

xi +

[
Π(pk, pk)xk +

∂Π(pk, pk)

∂ pA
pkxk

]
+Π

(
1−

k

∑
i=1

xi

)
= 0 (2.2)

As there is no local competition between pl and pl+1 for all l ∈N, when a seller

chooses price pk and the opponent seller chooses any price among p1, p2, ..., pk−1,

the probability that the seller can sell is Π. If the opponent seller chooses pk, the

probability that the seller can sell is Π(pk, pk). When the opponent seller chooses

any price among pk+1, pk+2, ..., the probability that the seller can sell is Π. There-

fore the expected probability that the seller can sell by choosing pk is the term in

the square bracket on the left hand side of (2.1).

As the seller slightly changes her price away from pk, if the opponent seller

chooses any price among p1, p2, ..., pk−1, the probability that the seller can sell is

not affected by the seller’s price change and the marginal profit change associated

with the seller’s price change is equal to the probability of selling Π. If the op-

ponent seller chooses price pk, the probability that the seller can sell is affected

with the marginal change being
∂Π(pk, pk)

∂ pA
therefore the marginal profit change is

the probability of selling Π(pk, pk) plus
∂Π(pk, pk)

∂ pA
pk, which is the profit change

associated with the change in probability of selling. If the opponent seller chooses

any price among pk+1, pk+2, ..., the probability that the seller can sell is not af-

fected and the marginal profit change is again equal to the probability of selling Π.

Therefore the marginal change in the seller’s expected profit is the left hand side of

(2.2).

The following lemma shows that the above two equations can fully charac-

terize a mixed strategy. In addition, the characterized mixed strategy satisfies the

properties that there is no local competition between any two adjacent prices and

price 1 is chosen with probability 0.

Lemma 2. (2.1) and (2.2) have a unique solution, denoted as
{(

p∗k ,x
∗
k

)}∞

k=1, such
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that for all k, 0 < p∗k < p∗k+1 < 1 and 0 < x∗k . Also limk→∞ p∗k = 1 and ∑
∞
k=1 x∗k = 1.

In addition, there is no local competition between p∗k and p∗k+1 for all k.

Note that ∑
∞
k=1 x∗k = 1 implies limk→∞xk = 0, therefore price 1 is chosen with

probability 0.

We can prove a stronger result, which says there is no overlapping between the

locally competing regions of p∗k and that of p∗k+1 for all k.

Lemma 3. The solution to equations (2.1) and (2.2) satisfies p
(

p∗k
)
< p

(
p∗k+1

)
for

all k.

The next lemma shows that the characterized mixed strategy is a symmetric

equilibrium, which complete the proof of Proposition 1.

Lemma 4.
{(

p∗k ,x
∗
k

)}∞

k=1 is a symmetric equilibrium in the sellers’ game.

When the opponent seller uses mixed strategy
{(

p∗k ,x
∗
k

)}∞

k=1, a seller’s profit

by choosing p such that p is in local competing region of p∗k for some k can be

shown to be strictly concave function in p. Therefore the first order condition for

the seller to choose p∗k implies that the seller’s profit by choosing p∗k is greater

than the seller’s profit by choosing any other price in the local competing region of

p∗k . When the seller’s price p is in the range
[
p
(

p∗k−1

)
, p
(

p∗k
)]

, the seller’s profit

can be shown to be a constant multiplied by p, and therefore strictly increasing

in p. Because the seller’s profit is continuous at p
(

p∗k
)
, we can show the seller’s

profit by choosing p is less than her profit by choosing p∗k . Because any 0 < p < 1

must either fall into the local competing region of p∗k or the gap between the local

competing regions of p∗k−1 and p∗k for some k , and the seller receives the same

profit by choosing p∗k for all k as the profit by choosing price 1, we have the seller’s

profit by choosing any p such that 0 < p ≤ 1 is less than or equal to the seller’s

profit by choosing p∗k . Therefore
{(

p∗k ,x
∗
k

)}∞

k=1 is a symmetric equilibrium in the

sellers’ game.

2.4 Uniqueness of Equilibrium
We establish a stronger claim that the characterized mixed strategy in the last sec-

tion is the only symmetric equilibrium in the sellers’ game, given buyers’ symmet-

ric continuation equilibrium as in Lemma 1.
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Proposition 2. The equilibrium established in Proposition 1 is the only symmetric

equilibrium between sellers.

The proposition establishes that price dispersion is a necessary outcome of

horizontal differentiation in directed search introduced in this chapter.

The proof of Proposition 2 follows a sequence of lemmas.

Lemma 5. Any symmetric equilibrium between sellers is in a mixed strategy.

Intuitively, buyers with valuation 1 for seller A and valuation 0 for B are the

loyal buyers of seller A because they will always select seller A. Similarly, buyers

with valuation 0 for seller A and valuation 1 for B are the loyal buyers of seller

B. Buyers with valuation 1 for both sellers decide which seller to select based on

comparison between sellers’ prices. Call them shoppers. Sellers face a trade-off

in choosing prices. A high price can extract more surplus from loyal buyers, but

will turn away shoppers and lead to a low probability of selling. A low price

can attract shoppers and lead to a high probability of selling. When the opponent

seller’s price is high, choosing a price lower than the opponent to attract shoppers

is more profitable than choosing price 1 and attracting only loyal buyers. When

the opponent seller’s price is low, choosing a lower price to attract shoppers is less

profitable than choosing price 1 and attracting the loyal buyers only. Therefore, as

the opponent seller’s price decreases, the seller’s best response will change from

choosing a price lower than the opponent’s to choosing price 1. The discrete jump

in the seller’s best response leads to the nonexistence of a pure-strategy pricing

equilibrium.

Lemma 6. In any symmetric equilibrium in the sellers’ game, price 1 is chosen

with probability 0.

To see why in any symmetric equilibrium strategy a seller cannot choose 1

with strictly positive probability, consider a seller who chooses price 1 with strictly

positive probability. If the other seller chooses price 1, since a shopper gets payoff

0 from selecting either seller, he selects either seller with equal probabilities. If

the other seller chooses a price slightly less than 1, since the shopper gets strictly

positive payoff from selecting the other seller and gets payoff 0 from selecting the
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seller, he selects the other seller with probability 1. So when the seller chooses

price 1 with strictly positive probability, by choosing a price slightly less than 1,

the other seller can attract shoppers and get a discretely larger probability of selling

and discretely larger profit than by choosing price 1. Therefore, for the other seller,

choosing price 1 with strictly positive probability cannot be a best response. This

implies in any symmetric equilibrium in the sellers’ game, price 1 cannot be chosen

with strictly positive probability.

Lemma 7. In any symmetric equilibrium between sellers, there is no local compe-

tition between any two prices in the support of equilibrium strategy.

To see why Lemma 7 is true, suppose there are two prices in a symmetric

equilibrium’s support, and there is local competition between these two prices.

Because the derivative of a seller’s profit with respect to the seller’s price can be

easily shown to be strictly less than Π and strictly decreasing in the seller’s price,

we can show the first order condition cannot hold at both prices. In particular, when

the first order condition holds at the lower price, a seller has an incentive to slightly

decrease her price below the higher price.

Lemma 8. In any symmetric equilibrium in the sellers’ game, the supremum of

equilibrium strategy support is equal to 1.

To see why Lemma 8 is true, suppose the support of a symmetric equilibrium

has a supreme strictly less than 1. From Lemma 7, the support must consist of

a finite number of prices, because if the support consists of an infinite number of

prices and the price sequence has a supreme strictly less than 1, for sufficiently

large k, pk is in local competition with pk+1, which violates Lemma 7. For a

finite number of prices, there must be a highest price. For the mixed strategy to

be a symmetric equilibrium, a seller has no incentive to deviate from choosing the

highest price to choosing price 1, and also the first order condition must be satisfied

at the highest price. However, the appendix shows these two conditions cannot be

both satisfied. In particular, if a seller has no incentive to deviate to choosing price

1, the seller has an incentive to slightly decrease her price from the highest price in

the support.

Proposition 2 follows from the above four lemmas. These lemmas imply any

symmetric equilibrium in the sellers’ game takes the form {(pk,xk)}∞

k=1 with the
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probability of charging price pk being xk and limk→∞ pk = 1. To be a symmet-

ric equilibrium, {(pk,xk)}∞

k=1 has to satisfy necessary equilibrium conditions, i.e.,

when the opponent seller takes strategy {(pk,xk)}∞

k=1, a seller’s profit by choos-

ing pk is the same for all k ∈ N, and the seller has no profitable local deviation

away from choosing pk. Given pk does not locally compete with pk+1 for all

k ∈ N, these two necessary conditions are just equations (2.1) and (2.2). There-

fore, {(pk,xk)}∞

k=1 must also be a solution to these equations. Because the equa-

tions have a unique solution
{(

p∗k ,x
∗
k

)}∞

k=1, {(pk,xk)}∞

k=1 must be identical to{(
p∗k ,x

∗
k

)}∞

k=1.

Therefore, there do not exist symmetric equilibria other than
{(

p∗k ,x
∗
k

)}∞

k=1.

2.5 Welfare Analysis
Now that we have characterized the unique symmetric equilibrium of the game

in which sellers use the mixed strategy established in Proposition 1 and buyers

use the strategy for selecting sellers as stated in Lemma 1, we can characterize the

expected total surplus generated by the equilibrium allocation. In particular, we are

interested in the following question: whether the equilibrium allocation maximizes

the total surplus.

Consider a social planner, who can observe buyers’ valuations and can also de-

cide which seller the buyers select, but is constrained to decide a buyer’s selection

of sellers only based on the buyer own valuations (not based on the valuation pro-

file of two buyers). In addition, the social planner must assign the two buyers the

same selection action if they have the same valuations. In other words, the select-

ing actions of buyers are constrained to be symmetric and the social planner cannot

coordinate selection actions of buyers. We consider the social planner’s problem

of the optimal selection action of buyers that maximizes the total surplus under the

above constraints, and get the maximum value of the total surplus.

By comparing the total surplus under equilibrium allocation with that under

social planner, we get the following result.

Proposition 3. The symmetric subgame perfect Nash equilibrium generates a total

surplus strictly less than the total surplus by a social planner who cannot coordi-

nate buyers’ selection actions.
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It is well known that in directed search models, when the social planner can not

coordinate buyers’ selection actions among sellers, letting buyers independently

randomize among sellers with equal probability of selecting each seller maximizes

total welfare. To see why the total surplus of the equilibrium allocation is less

than the total surplus of the social planner, note that in the equilibrium sellers use

a mixed strategy in setting prices, so there is a positive probability that one seller

charges a lower price than the other seller. If both buyers have valuation 1 for two

sellers, they both select the lower price seller and only one of them can get the

seller’s good. In other words, because in equilibrium buyers’ selections are based

on sellers’ prices that are observed by both buyers, the buyers’ selections become

positively correlated with each other. Buyers are therefore more likely to select the

same seller than they are when their selections are completely independent, which

is the case in the social planner’s problem.

2.6 Concluding Remarks
This chapter investigates a directed search model in which sellers simultaneously

choose prices then buyers simultaneously select sellers without coordination. Sell-

ers’ goods are horizontally differentiated and buyers have independent valuations

for sellers’ goods. In the unique symmetric equilibrium, sellers use a mixed strat-

egy where a countable number of prices can be charged. There is equilibrium price

dispersion. The price dispersion makes buyers more likely to select the same seller

and the equilibrium allocation becomes constrained inefficient.

We can consider an extension of the current model to a directed search model

with more than two sellers and two buyers. Also, the buyers’ valuation space can

be more general. A conjecture is that there still exists a similar mixed-strategy

equilibrium because the result of the current chapter seems to hinge on the directed

search of buyers, but not on the particular details of the number of buyers and

sellers and the valuation space of buyers. Explicitly verifying this conjecture is the

direction for future work.

Another direction for future work is to relax the restriction that sellers choose

take-it-or-leave-it prices to more general selling mechanisms, such as auctions.
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Chapter 3

Pricing Differentiated Products in
Directed Search

3.1 Introduction
Similarly with Chapter 2, this chapter considers sellers’ symmetric equilibrium

pricing strategy in a directed search model where sellers’ goods are differentiated.

When a buyer has high valuation for one seller’s good and low valuation for the

other’s, the buyer’s decision in selecting which seller to contact is independent

from two sellers’ prices and the buyer will contact the seller for whom the buyer

has a high valuation as long as the seller’s price is lower than the buyer’s reser-

vation price. This buyer is the loyal buyer of the seller. When a buyer has high

valuation for both sellers’ goods, the buyer decides which seller to buy from based

on sellers’ prices and probability of getting each seller’s product. This buyer is

called “shopper”. Sellers face a trade-off between choosing a high price with a low

selling probability by attracting only loyal buyers and choosing a low price with a

high selling probability by attracting both loyal buyers and shoppers.

In a directed search framework under various compositions of buyers with dif-

ferent valuations, this chapter’s main finding is the condition under which different

kinds of symmetric equilibrium in the sellers’ game can appear. The model finds

that ceteris paribus, the less differentiated sellers’ products are, the more shoppers

there are and the more likely the model will have a symmetric pure-strategy equi-
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librium in the sellers’ game. In the equilibrium, each seller competes for these

shoppers by choosing a low price. On the other hand, the more differentiated sell-

ers’ products are, the more loyal buyers there are and the more likely the model

will have a symmetric mixed-strategy equilibrium.

Comparative static analysis shows when the model has a pure-strategy equilib-

rium in the sellers’ game, as sellers’ products become slightly more differentiated,

the symmetric equilibrium price increases. When products are more differentiated,

there are more loyal buyers. With more loyal buyers, the incentive of a seller to

extract surplus from loyal buyers through raising price is stronger. So seller’s price

increases. However, the price will not increase without bound. As price increases,

the incentive to marginally decrease the price to compete for shoppers becomes

stronger. This is because a one-unit price decrease at a higher price level by a

seller leads to a proportionally bigger surplus increase for shoppers, and therefore,

a larger switch by shoppers from the other seller to the seller, giving the seller

stronger incentive to decrease price to attract shoppers.

As sellers’ products become sufficiently differentiated, the proportion of loyal

buyers is so large that competing for shoppers is less profitable than choosing buy-

ers’ reservation price and attracting only loyal buyers. However, if both sellers

choose this price, a seller has an incentive to slightly lower her price. To see this,

note that when both sellers choose buyers’ reservation price, shoppers get zero

payoff from contacting either seller therefore they randomize between contacting

two sellers with equal probabilities. As a seller slightly decreases her price below

the buyers’ reservation price, all shoppers will switch to the seller because they get

strictly positive surplus from trading with the seller. Therefore, each seller has an

incentive to lower her price to attract shoppers. As sellers’ prices drop to a level

slightly lower than buyers’ reservation price, shoppers’ surplus from trading with

each seller is still very low, therefore a price cut by a seller will make matching

with the seller more desirable than matching with the other and attract shoppers to

the seller. Therefore each seller still wants to cut her price to get more shoppers.

As the price level drops to a sufficiently low level where sellers have no incentive

to decrease their prices even further to attract shoppers, they find the current price

is so low that choosing buyers’ reservation price is more profitable. When two

sellers both choose buyers’ reservation price, each of them wants to decrease her
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price slightly. Another cycle of price cutting begins. The model therefore does not

have a symmetric pure-strategy equilibrium.

The symmetric equilibrium exhibits a mixed-strategy equilibrium with the sup-

port consisting of a countable number of prices. When the degree of differentiation

between sellers’ products is just big enough for the model to have a mixed-strategy

equilibrium, the lowest price of the equilibrium price support (which is made of

a countable number of prices) is charged with probability close to 1. In other

words, the mixed-strategy equilibrium is “close” to a pure-strategy equilibrium.

As sellers’ products become even more differentiated, the probability to choose

the lowest price decreases and the probability to choose other prices in the support

increases. Therefore, the product differentiation introduced in the current chapter

theoretically bridges the gap between mixed-strategy equilibrium and pure-strategy

equilibrium.

This chapter is organized as follows: Section 3.2 describes the setup of the

model. Section 3.3 discusses the conditions under which the unique symmetric

equilibrium exhibits a pure-strategy equilibrium and a mixed-strategy equilibrium

in the sellers’ game respectively. Section 3.4 considers how the equilibrium strat-

egy changes when the degree of differentiation changes. Section 3.5 concludes and

discusses future works.

3.2 The Model
There are two sellers, A and B, and two buyers, 1 and 2. Each seller has one unit of

indivisible good for which the seller’s reservation price is 0. A buyer’s valuation

of a seller’s good can be either 1 or 0, which is private information to the buyer.

This chapter considers a general distribution of the profile of two buyers’ val-

uations for two sellers’ goods in order to capture situations with various correla-

tions in buyers’ valuations of sellers. The correlations can be both across buyers

and across sellers. The joint distribution of two buyers’ valuations of two sellers’

goods (four random variables) is shown in Table 3.1.

The model has three stages. At stage 1, two sellers simultaneously choose

their prices pA and pB. At stage 2, buyers observe prices chosen by sellers, then,

knowing their own valuations of two sellers’ goods, simultaneously decide which
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Table 3.1: Joint Distribution of Buyers’ Valuations of Sellers’ Goods

Valuation realization Prob.

One buyer has valuation 0 for both sellers

The other buyer has valuation 0 for both sellers
η0

One buyer has valuation 0 for both sellers

The other buyer has valuation 0 for one seller and valuation 1 for the other
η1

One buyer has valuation 0 for both sellers

The other buyer has valuation 1 for both sellers
η

β

2

One buyer has valuation 0 for one seller and valuation 1 for the other seller

The other buyer has valuation 1 for the first seller, valuation 0 for the second
η2

One buyer has valuation 0 for one seller and valuation 1 for the other seller

The other buyer has valuation 0 for the first seller, and valuation 1 for the second
ησ

2

One buyer has valuation 1 for both sellers

The other buyer has valuation 0 for one seller and valuation 1 for the other
η3

One buyer has valuation 1 for both sellers

The other buyer has valuation 1 for both sellers
η4

seller to select. Each buyer can select at most one seller. At stage 3, the exchange

happens. If only one buyer selects a seller, the seller sells the good to that buyer at

the seller’s price. If two buyers select the same seller, the seller randomly chooses

one buyer and sells the good to the chosen buyer at the seller’s price; the unchosen

buyer will not get the good, nor will he be charged. If no buyer selects a seller, the

seller keeps his good.

Sellers and buyers are all risk-neutral. A seller’s profit is the seller’s probabil-

ity of selling the good multiplied by the seller’s price. The probability of selling is

equal to the probability that at least one buyer selects the seller. A buyer’s expected

payoff from selecting a seller is the buyer’s net valuation of the seller’s good (the

buyer’s valuation of the seller’s good less the seller’s price) multiplied by the prob-

ability the buyer believe he can get the seller’s good. The buyer’s payoff from not

selecting any seller is 0.

The assumption that each buyer cannot select more than one seller implies if

a buyer selects a seller but fails to trade with the seller, the buyer fails to match

with any seller. The setup that when both buyers select the same seller, the seller

can accommodate at most one and randomly choose to trade implies a strategic
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interaction between two buyers, in the sense that a buyer’s probability of trading

with a seller depends on the probability that the other buyer selects the same seller1.

A buyer’s strategy is, when two sellers choose pA and pB, the probabilities

of selecting one of two sellers for each of the buyer’s possible valuations of two

sellers’ goods,{ (
θ A

00(pA, pB),θ
B
00(pA, pB)

)
,
(
θ A

01(pA, pB),θ
B
01(pA, pB)

)(
θ A

10(pA, pB),θ
B
10(pA, pB)

)
,
(
θ A

11(pA, pB),θ
B
11(pA, pB)

) }

where θ
j

st(pA, pB) is, when seller A announces price pA and seller B announces

price pB, the buyer’s probability of selecting seller j ∈ {A,B} if the buyer’s valu-

ation for A’s good is s and for B’s good is t. 1− θ A
st (pA, pB)− θ B

st (pA, pB) is the

probability of choosing not to select any seller. θ A
st (pA, pB)+θ B

st (pA, pB)≤ 1.

Because seller j has only one good, if the other buyer selects seller j, a buyer’s

probability to match with seller j is 1
2 . If the other buyer does not select j, the

buyer’s probability to match with seller j is 1. If the probability conditional on the

buyer’s own valuation that the other buyer selects seller j is θ̃ j(pA, pB), the buyer’s

probability to match with seller j is

1
2 θ̃ j(pA, pB)+1− θ̃ j(pA, pB) = 1− 1

2 θ̃ j(pA, pB)

If a buyer has valuation 1 for seller j’s good, his net valuation for j’s good is

1− p j. Therefore, given the other buyer’s strategy, the buyer’s expected payoff

from selecting seller j is

(1− p j)(1− 1
2 θ̃ j(pA, pB)).

If a buyer has valuation 0 for seller j’s good, his net valuation for j’s good is

−p j, and his expected payoff from selecting seller j is

−p j(1− 1
2 θ̃ j(pA, pB)).

1This is different from Bertrand price competition models, where a buyer’s payoff of buying
from a seller is independent from whether or not the other buyers are buying from the same seller.
This difference leads to buyers’ different equilibrium response to sellers’ prices, which in turn gives
different equilibrium pricing strategies of sellers.
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Suppose in a symmetric continuation equilibrium in the buyers’ game, both

buyers select seller j with probability θ j(pA, pB). Seller j’s probability of selling

her good is

1−
(
1−θ j(pA, pB)

)2

And seller j’s expected profit is[
1−
(
1−θ j(pA, pB)

)2
]

p j.

The chapter focuses on symmetric (possibly mixed-strategy) equilibria between

buyers in selecting sellers, and symmetric equilibria between sellers in choosing

prices. The focus on symmetric strategy is due to the assumption that buyers cannot

coordinate on selecting sellers, and sellers cannot coordinate on choosing prices. In

other words, the chapter focuses on the symmetric subgame perfect Nash equilibria

of the game.

It can be shown that choosing negative prices cannot be equilibrium strate-

gies for sellers. Also, choosing prices strictly greater than 1 or price 0 cannot be

equilibrium strategies either. This implies equilibrium prices of sellers are strictly

positive and less than or equal to 1. Given prices are in this range, in any equilib-

rium between buyers, buyers with valuation 1 for one seller’s good and valuation

0 for the other seller select the first seller for sure because selecting the first seller

gives non-negative payoff while selecting the second gives strictly negative payoff.

For buyers with valuation 0 for both sellers, they do not select any seller because

selecting either seller gives strictly negative payoff.

When η4 = 0 and at least one of η
β

2 and η3 is not equal to 0, it is possible for

one buyer to have valuation 1 for both sellers but not possible for two buyers to both

have valuation 1 for both sellers. For a buyer with valuation 1 for both sellers, the

other buyer either has valuation 1 for one seller and valuation 0 for the other, or has

valuation 0 for both sellers. Therefore, the other buyer’s strategy is determined. For

the buyer, the probability of getting seller A’s good can be shown to be the same as

the probability of getting seller B’s good. Therefore the buyer’s selection between

two sellers is to select the lower price seller with probability 1. From a seller’s

point of view, choosing a price slightly lower than the opponent gives the seller
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discretely larger probability of selling by attracting those buyers with valuation 1

for both sellers. It can be shown there exists a symmetric equilibrium in the sellers’

game where each seller randomizes over an interval of prices 2.

When η4 = 0, η
β

2 = 0 and η3 = 0, it is not possible for any buyer to have

valuation 1 for both sellers. Therefore all buyers’ strategies are independent from

sellers’ prices. The equilibrium between sellers is to both choose price 1.

The remainder of this chapter will focus on situation with η4 > 0.

For buyers with valuation 1 for both sellers, there are three cases to consider.

When seller A’s price is sufficiently lower than seller B’s, their selection strategy is

to select seller A with probability 1 and seller A’s probability of selling is a constant,

denoted as Π. When seller A’s price is sufficiently higher than B’s, these buyers

select seller B with probability 1 and seller A’s probability of selling is a constant

with regards to the particular level of seller A’s price, denoted as Π. When A’s price

is close to B’s, these buyers randomize between selecting A and B and seller A’s

probability of selling depends on two sellers prices, denoted as Π(pA, pB) where

Π(pA, pB)≡
1
2 η1 +η2 +

1
2 ησ

2 + 1
2 η3 +(η

β

2 + 1
2 η3) f (pA, pB)+η4 f (pA, pB)(2− f (pA, pB))

and f (pA, pB)≡
(η

β

2 + 3
4 η3 +2η4)(1− pA)− (η

β

2 + 3
4 η3 +η4)(1− pB)

η4[(1− pA)+(1− pB)]
.

In the last case, we say there is local competition between two prices while in

the first two cases, there is no local competition between two prices.

3.3 Symmetric Equilibrium between Sellers
This section investigates the symmetric equilibrium in the sellers’ game.

Define p∗ to be the solution of equation

∂Π(p, p)
∂ pA

p+Π(p, p) = 0 (3.1)

2The analysis is analogous to Varian (1980) so is omitted here.
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The main result of this chapter can be stated here.

Proposition 4. When Π≤Π(p∗, p∗)p∗, the unique symmetric subgame perfect

Nash equilibrium is such that each seller chooses p∗. When Π(p∗, p∗)p∗ < Π,

each seller randomizes over a countable number of prices in the unique symmetric

subgame perfect Nash equilibrium.

To prove, it is first established that when seller B chooses p∗, seller A’s profit

as a function of A’s price has two local maximum points, p∗ and 1. Therefore, only

p∗ or 1 can be global maximum points of A’s profit.

If Π≤Π(p∗, p∗)p∗, seller A’s profit by choosing p∗ is greater than or equal

to her profit by choosing 1 and therefore, p∗ is the global maximum point of A’s

profit. So p∗ is a symmetric equilibrium between sellers.

To prove p∗ is the only symmetric equilibrium in the sellers’ game, suppose by

contradiction that there exists another symmetric equilibrium in the sellers’ game.

One possibility is that the symmetric equilibrium is in pure strategy where

sellers choose price p′. A necessary condition for p′ to be a symmetric equilibrium

is when opponent seller chooses p′, p′ is a local maximizing point for a seller’s

profit. Therefore p′ satisfies equation 3.1. As equation 3.1 has a unique solution p∗,

p′ must coincide with p∗, which establishes that there can be only one symmetric

pure-strategy equilibrium in the sellers’ game where sellers choose p∗.

Another possibility is that the symmetric equilibrium is in mixed strategy. We

can similarly show that, as in Chapter 2, any two prices in the support of any sym-

metric equilibrium strategy do not locally compete with each other. Based on this

result, there are two possibilities regarding the support of the symmetric equilib-

rium mixed strategy. One possibility is that the support of the equilibrium mixed

strategy is made of finite number of prices. Another possibility is that the support

of the equilibrium mixed strategy is made of infinite number of prices. We can

show that in either case, necessary equilibrium conditions cannot simultaneously

hold at all prices. Therefore there do not exist symmetric mixed-strategy equilibria

between sellers.

If Π(p∗, p∗)p∗ < Π, choosing price p∗ with probability 1 is not a symmetric

equilibrium, because the seller’s profit by choosing p∗ is low and choosing price

1 is more profitable. As shown before, the only candidate for a symmetric pure-
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strategy equilibrium is p∗. As p∗ is not a symmetric equilibrium and therefore,

there do not exist symmetric pure-strategy equilibria between sellers.

By following similar steps as in Chapter 2, we can show that when Π(p∗, p∗)p∗ < Π,

these exists only one symmetric mixed-strategy equilibrium in the sellers’ game

where sellers randomize over a countable number of prices.

3.4 Comparative Statics
η

β

2 represents a degree of no differentiation between sellers’ products since it is

the probability that one buyer has valuation 1 for both sellers while the other buyer

has valuation 0 for both sellers, and so the two sellers are perfect substitutes from

the perspective of each buyer. Similarly, η4 represents a degree of no differentia-

tion between sellers’ products. η3 represents a degree of horizontal differentiation

between sellers’ products since it is the probability that one buyer has valuation 1

for both sellers while the other buyer has valuation 1 for one seller and 0 for the

other seller. Therefore one buyer regards two sellers as perfect substitutes while

the other buyer thinks two sellers are selling differentiated goods. Similarly, η1, η2

and ησ
2 are also measures of differentiation.

When η4 increases while holding probabilities η1, η2, ησ
2 , η

β

2 and η3 to be

constants, condition Π≤Π(p∗, p∗)p∗ is more likely to hold. In addition, when

η4 approaches 1, the other probabilities approach 0. Sellers’ goods are almost the

same goods. We can show that condition Π≤Π(p∗, p∗)p∗ will hold for sufficiently

large η4 and the unique symmetric equilibrium in the sellers’ game exhibits sellers

choose p∗.

When η3 increases while holding probabilities η1, η2, ησ
2 , η

β

2 and η4 to be con-

stants, condition Π(p∗, p∗)p∗ < Π is more likely to hold. In addition, when η3 ap-

proaches 1, which means the sellers’ goods are almost horizontally differentiated,

we can show that condition Π(p∗, p∗)p∗ < Π will hold. The unique symmetric

equilibrium in the sellers’ game exhibits each seller randomizes over a countable

number of different prices.

When any of η1, η2 and ησ
2 increases while holding probabilities η

β

2 , η3 and

η4 to be constants, condition Π(p∗, p∗)p∗ < Π is more likely to hold. Because η1,

η2 and ησ
2 are all measure of differentiation, as the measure of differentiation in-

32



creases, the unique symmetric equilibrium in the sellers’ game exhibits each seller

randomizes over a countable number of prices.

Corollary 1. With sufficiently small degree of differentiation between sellers’ goods,

the symmetric equilibrium exhibits sellers use a pure strategy in choosing prices.

With a sufficiently large degree of differentiation, the symmetric equilibrium ex-

hibits sellers randomize among a countable number of different prices.

The appendix shows in addition that when any of η1, η2 and ησ
2 increase, p∗

increases and the lowest price of the price support of mixed-strategy equilibrium,

denoted as p∗1, also increases. It can also be shown that the probability of choosing

p∗1 decreases.

3.5 Conclusion
This chapter considers a directed search model where two sellers, each with one

unit of horizontally differentiated goods, try to match with two buyers, each of

whom wants one unit of good. Sellers simultaneously choose prices, then after

observing both sellers’ price choices, buyers simultaneously select sellers without

coordination. When two buyers select the same seller, each of them trades with the

seller with equal probabilities.

The model finds whenever the correlation structure between buyers’ valuations

satisfies a certain condition, there exists a symmetric pure-strategy equilibrium in

the sellers’ game, and whenever the condition is violated, there exists a symmetric

mixed-strategy equilibrium between sellers where each seller randomizes over a

countable number of prices.

Future work includes extending the binary space of buyers’ valuations into

a continuous space. The {0,1} case is special in the sense that sellers cannot

profitably extract surplus from buyers who have valuation 0 for the seller’s good.

Therefore, in the current model the competition between sellers is for buyers who

have valuation 1 for both sellers.

Although the current model is a very special in the buyers’ valuation space,

a general insight of the model is that the selection among sellers by buyers, who

are the target of sellers’ competition, changes continuously as the profile of the
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utilities sellers offer changes. As one seller provides sufficiently better utility than

other sellers do, the buyer selects the seller with probability 1. This feature holds

in other directed search models. It is of interest to investigate whether the mixed-

strategy equilibrium among sellers with a support consisting of a countable number

of prices can still appear in other directed search models.
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Chapter 4

Information Provision in Directed
Search

4.1 Introduction
In numerous economic environments, sellers not only decide the prices of their

products, but also provide information about the products to potential buyers, who

initially know little about the products. This is true particularly for new or sophis-

ticated products. Consider the examples of free samples, movie trailers, and free

trial computer games. By controlling how much information the free samples con-

tain about the real products, sellers control how much information buyers know

about sellers’ products. However, buyers’ valuation after receiving the new infor-

mation is typically known to buyers, but not to sellers. For example, providing

free samples to potential buyers gives buyers more information about the product,

but the effect of that information on the buyers’ valuation is typically known only

to the buyers, given their personal tastes and needs. Instead, sellers only know

the distribution of valuations among buyers conditional on the new information.

Disclosing information on the characteristics of the sellers’ goods changes buyers’

valuations in a non-monotonic way. Releasing information increases some buyers’

valuations, whose tastes match with the disclosed characteristics, and decreases

others’, whose tastes it does not match. In other words, more information leads to

a mean-preserving-spread in the distribution of buyers’ valuations conditional on
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the new information.

Sellers face a trade-off in deciding how much information to release to potential

buyers. Disclosing more information raises the valuation of buyers whose tastes

match with the characteristics of seller’s good, meaning the seller can charge a

higher price to extract part of this extra surplus. However, disclosing information

lowers some other buyers’ valuations, which leads to decreased market share for

the seller. This paper studies this trade-off in a decentralized matching model where

two sellers try to match with two buyers by posting prices and disclosing product

information to the buyers.

The matching process is modelled as a two stage game in which the sellers first

simultaneously post their prices and product information. Then after the buyers

privately draw signals, they simultaneously select sellers from whom to buy. There

is no coordination between the buyers in choosing sellers, so in equilibrium, two

buyers may select the same seller and only one buyer will be able to trade with

the seller. There is, therefore, strategic interaction between buyers in the sense that

a buyer has to consider the other buyer’s strategy when deciding which seller to

select. A buyer does not necessarily buy from the seller who offers him the highest

valuation less the price. Rather, because there is some uncertainty about whether a

buyer can get the seller’s good, a buyer must also consider the probability of suc-

cessfully trading with the seller. The main result is that providing full information

dominates providing only partial information.

The argument is that regardless of the opponent seller’s information provision

and price, increasing the provided information to be fully informative while in-

creasing the price accordingly always leads to higher profits for a seller. In an

environment with frictional search for sellers, buyers have to take into account the

probability of successfully trading with sellers. Providing full information and in-

creasing price accordingly maintains the valuations (less the seller’s price) of buy-

ers who receive high signal realizations, but strictly increases the probability these

buyers can trade with the seller. This is because buyers who receive low signal re-

alizations no longer select that seller. Therefore these high signal buyers select the

seller with equal or higher probability after the seller deviates to full information.

A seller’s profit is the probability of a sale multiplied by the seller’s price. Because

each seller has only one unit of goods, as long as there remain buyers seeking to
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buy, the seller has a good probability of making a sale. The fact that high signal

buyers select the seller with equal or higher probability limits the loss in the seller’s

probability of making a sale after the seller deviates to full information and a higher

price. It turns out it is more profitable to sell only to these high signal buyers at

full information and a higher price than attracting both high signal and low signal

buyers at a lower price.

This paper is related to Lewis and Sappington [13] which studies how much in-

formation a monopolistic seller should let potential buyers know about buyers’ pri-

vate tastes about the seller’s good. Lewis and Sappington [13] identify conditions

under which a monopolistic seller should either disclose no information or disclose

all information. This paper is also related to recent models which consider infor-

mation provision by sellers in a competitive environment. Ivanov [11] considers

an information provision model where multiple sellers non-cooperatively decide

how much information and how high a price to charge. There is a representative

buyer in Ivanov’s model for whom the sellers’ information affects his valuation for

each seller separately. After receiving information from all sellers, the buyer buys

from the seller who gives him the highest valuation less the price. Providing full

information becomes the unique equilibrium among sellers only when the number

of sellers reaches some threshold value. If there are only two sellers, providing full

information is not an equilibrium. In a two-stage setup, Damiano and Li [4] con-

sider a model where two sellers compete to sell to a representative buyer. In the first

stage, sellers choose how much information to provide. In the second stage, after

knowing each other’s information provision, sellers choose their prices. Although

there is an equilibrium in the sellers’ game in the first stage where full information

provision is an equilibrium, there is also an asymmetric equilibrium where a seller

provides full information and the other seller provides no information. The differ-

ence between the current paper and the above representative buyer models is in the

current paper there is competition between buyers. Therefore the cost of providing

all information in terms of reduced market share is smaller in the current paper

because high signal buyers will select sellers with higher probability.

In terms of the approach to modelling the matching process, this paper is also

related to the directed search literature. In a series of papers, Peters [15], Peters

[16] and Peters [17] study the equilibrium outcome of the matching game between
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a group of sellers and a group of buyers, in which sellers first publicly post their

respective prices, then after observing all sellers’ prices, buyers decide which seller

to select without coordination. The focus of Peters’ series of papers is to investi-

gate, when the number of players is very large, whether the symmetric subgame

perfect Nash equilibrium of the matching game approaches the competitive equi-

librium of the game. Burdett et al. [2] studies a similar model and their aim is to

derive the number of matches as a function of the numbers of buyers and sellers.

Unlike the above papers, this paper considers information provision by sellers in

an otherwise standard directed search model.

This chapter is organized as follows: Section 4.2 describes the setup of the

model. Section 4.3 discusses the dominance of full information provision. Section

4.4 analyzes the welfare property of the equilibrium. Section 4.5 concludes and

discusses future works.

4.2 The Model
Consider a model where there are two sellers, A and B, each having one unit of

good, and two buyers, 1 and 2, each wanting one unit of good. A buyer’s valuation

of a seller’s good can be either 0 or 1, with equal probability. A buyer’s valuation

of one seller’s good is independent of his valuation of the other seller’s good, and

it is also independent of the other buyer’s valuations. Initially, buyers do not know

their valuations for sellers’ goods. Each seller can provide the two buyers with

some information about their valuations of the seller’s good. This paper considers a

class of symmetric binary information structures for each good. The signal of each

information structure takes realization either 0 or 1. Each information structure can

be represented by a probability α , which is both the probability of the signal being

1 conditional on the buyer’s valuation of the good being 1, and the probability of

the signal being 0 conditional on the buyer’s valuation of the good being 0. For a

higher α , buyers are more sure about their valuations of a seller’s good from the

signal realization. α is therefore called the precision of the signal and a higher α

stands for more information about buyers’ valuations disclosed to buyers. Without

loss of generality, we can restrict attention to the case where α ∈ [1
2 ,1].

Although the seller can choose the precision of the signal, she does not observe
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the realization of the signal. Only the buyer can observe the realization of the

signal.

The timing of the model is as follows. First, sellers simultaneously post their

prices and signal precisions. Second, upon observing the prices and signal preci-

sions of the two sellers, each buyer independently and privately draws a signal from

each seller and observes the signal realization. Then buyers simultaneously decide

which seller to select (or decide not to select either seller). A buyer’s payoff of not

selecting any seller is 0. If a buyer is the only buyer selecting the seller, the buyer

trades with the seller at the seller’s posted price. If two buyers select the same

seller, the seller randomly picks one buyer between them with equal probabilities

and trades with the buyer at the seller’s posted price. The other buyer is turned

away, does not trade with any seller and receives payoff 0. If no buyer selects a

seller, the seller keeps the good and receives profit 0.

A buyer can select seller A, seller B, or neither. Because the buyer receives 0

payoff when a buyer selects a seller but fails to get the seller’s good, the buyer’s

expected payoff of selecting a seller is the probability the buyer can get the seller’s

good, multiplied by the difference between the seller’s price and the buyer’s ex-

pected valuation of the seller’s good conditional on the signal realization.

Given a seller’s signal precision is α j, after a buyer receives a realization 1 of

the signal from the seller, the buyer’s expected valuation of the seller, conditional

on the signal realization being 1, is

E(buyer i′s valuation o f seller j|realization o f signal

received by buyer i f rom seller j = 1)

= 1 ·Prob(buyer i′s valuation o f seller j′s good =

1|realization o f signal received by buyer i f rom seller j = 1)

+0 ·Prob(buyer i′s valuation o f seller j′s good =

0|realization o f signal received by buyer i f rom seller j = 1)

= α j

When a buyer receives a realization 0 of the signal from the seller, the buyer’s

expected valuation of the seller, conditional on the signal realization being 0, is
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E(buyer i′s valuation o f seller j|realization o f signal

received by buyer i f rom seller j = 0)

= 1 ·Prob(buyer i′s valuation o f seller j′s good =

1|realization o f signal received by buyer i f rom seller j = 0)

+0 ·Prob(buyer i′s valuation o f seller j′s good =

0|realization o f signal received by buyer i f rom seller j = 0)

= 1−α j

The more precise a seller’s signal is, the larger the difference between the ex-

pected valuation of buyers who receive signal 0 and expected valuation of buyers

who receive signal 1 is.

This paper focuses on the case where two buyers, if they get the same signals

from two sellers, use the same strategy in selecting sellers1. A buyer’s (common)

strategy is defined as the probabilities of selecting seller A and seller B for possible

signal realizations from two sellers, following the prices and signal precisions of

two sellers.

{
(
πA

00(αA, pA,αB, pB),π
B
00(αA, pA,αB, pB)

)
,
(
πA

01(αA, pA,αB, pB),π
B
01(αA, pA,αB, pB)

)(
πA

10(αA, pA,αB, pB),π
B
10(αA, pA,αB, pB)

)
,
(
πA

11(αA, pA,αB, pB),π
B
11(αA, pA,αB, pB)

)
}

where π
j

st(αA, pA,αB, pB) is the probability of selecting seller j ∈ {A,B} when

the buyer receives signal s from seller A and signal t from seller B if seller A’s signal

precision is αA and price is pA and seller B’s signal precision is αB and price is pB.

1−πA
st(αA, pA,αB, pB)−πB

st(αA, pA,αB, pB) is the probability of not selecting any

sellers following αA, pA, αB and pB. πA
st(αA, pA,αB, pB)+πB

st(αA, pA,αB, pB)≤ 1.

From a buyer’s point of view, given the other buyer’s strategy as stated above,

the probability that the other buyer selects seller A is

1The focus on a symmetric strategy is due to the assumption that no coordination between buyers
exists in selecting sellers.
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πA(αA, pA,αB, pB)≡
1
4
[πA

00(αA, pA,αB, pB)+πA
01(αA, pA,αB, pB)

+πA
10(αA, pA,αB, pB)+πA

11(αA, pA,αB, pB)]

With probability πA(αA, pA,αB, pB) the other buyer selects seller A, and the

buyer trades with seller A with probability 1
2 . With complementary probability

the other buyer does not select seller A, and the buyer trades with seller A with

probability 1. The probability that the buyer can trade with seller A upon selecting

seller A is therefore

1− 1
2

π
A(αA, pA,αB, pB)

The buyer’s expected payoff from selecting seller A is therefore

{E[buyer′s valuation o f seller A′s good|realization o f signal

received by the buyer f rom seller A]− pA}×
[

1− 1
2

π
A(αA, pA,αB, pB)

]
The buyer’s expected payoff from selecting seller B is

{E[buyer′s valuation o f seller B′s good|realization o f signal

received by the buyer f rom seller B]− pB}×
[

1− 1
2

π
B(αA, pA,αB, pB)

]
where

πB(αA, pA,αB, pB)≡
1
4
[πB

00(αA, pA,αB, pB)+πB
01(αA, pA,αB, pB)

+πB
10(αA, pA,αB, pB)+πB

11(αA, pA,αB, pB)]

A seller’s profit is defined as the probability of selling the good multiplied by

the price. Seller A’s probability of selling when buyer 1 and 2 use the same strategy

in choosing sellers, as stated above, is

1−
[
1−πA(αA, pA,αB, pB)

]2
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where
[
1−πA(αA, pA,αB, pB)

]2 is the probability that neither buyer selects the

seller A. The complimentary probability of this is the probability that at least one

buyer selects seller A, which is the probability for seller A to sell.

From above, the probability that a buyer can trade with seller A is a decreasing

function in πA(αA, pA,αB, pB) and seller A’s probability of selling is an increasing

function in πA(αA, pA,αB, pB). Therefore the probability that a buyer can trade

with seller A decreases as the seller’s probability of selling increases. The higher

the probability seller A can sell means the lower the probability a buyer can trade

with seller A.

The solution concept is a subgame perfect Nash equilibrium in which buyers

use symmetric strategy in selecting sellers. That is, for any profile of sellers’ prices

and information provisions, given the other buyer uses a pure or mixed strategy, a

buyer wants to use the same strategy. This is due to the assumption that there is no

coordination between buyers. Also, this chapter focuses on symmetric equilibria

between sellers.

4.3 Full Information Provision
Proposition 5. The unique symmetric subgame perfect Nash equilibrium features

that sellers provide full information and randomize over a countable number of

prices.

To prove the proposition, we first show that any symmetric subgame perfect

Nash equilibrium must feature full information provision by sellers. This follows

from the result that a seller always has a profitable deviation to the perfectly precise

signal, regardless of the other seller’s price and signal precision. In particular, if

seller A is providing less than full information, i.e., αA < 1, and if seller A gets

strictly positive probability of selling under (αA, pA,αB, pB), seller A’s profit is

greater under (1, pA +(1−αA),αB, pB) than her profit under (αA, pA,αB, pB). If

αA < 1 and seller A’s probability of selling under (αA, pA,αB, pB) is zero, seller A

can get more profit under (1,ε,αB, pB) where ε is positive and very close to 0.

Lemma 9. If αA < 1 and seller A’s probability of selling under (αA, pA,αB, pB) is

strictly positive, seller A’s profit under (1, pA +(1−αA),αB, pB) is strictly greater
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than seller A’s profit under (αA, pA,αB, pB), regardless of seller B’s information

provision αB and price pB.

Lemma 9 claims that seller A has a profitable deviation from partial information

provision to full information provision and a higher price such that high signal

buyer’s net surplus of A is unaffected.

This deviation to full information and higher price will immediately make

seller A lose the low signal buyers, if A initially has some of the low signal buyers.

High signal buyers are more likely to select A because while they receive the same

net surplus from A, their probability of getting A’s good is higher as there is no

longer competition for A’s product from low signal buyers.

This implies if seller A initially does not have low signal buyers, seller A’s

deviation to full information is at no cost for A’s probability of selling and is strictly

profitable due to the higher price.

Now consider the situation where A initially has low signal buyers, a situation

that requires A’s initial price not to be too high. In particular, it has to be lower

than the low signal buyer’s initial valuation.

To establish the deviation is still profitable, we consider the change in A’s prices

and probabilities of selling associated with the deviation.

The increase in price is exactly equal to the increase in the high signal buyer’s

valuation associated with better information. Due to the symmetry between high

and low signals, the increase in the high signal buyer’s valuation is exactly equal

to the decrease in the low signal buyer’s valuation, which is equal to the low sig-

nal buyer’s initial valuation because the buyer’s valuation decreases to 0 under full

information. Therefore the price increase is equal to the low signal buyer’s initial

valuation. Given the initial price is lower than the low signal buyers’ initial valua-

tion, the price increase is higher than the initial price, which implies the new price

is at least twice as high as the initial price.

The decrease in probability of selling cannot be very high. The argument is

high signal buyers are more likely to select A than low signal buyers. Given low

signal buyers constitutes one half of the total population of buyers, among buyers

who select A initially at most one half can be low signal buyers. When seller A

deviates to full information, losing low signal buyers can lead to at most one half
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drop in seller A’s probability of selling.

Therefore, given the price is at least twice as high while probability of selling

is at most one half as low, the profit of A must increase.

Lemma 10. If αA < 1 and seller A’s probability of selling under (αA, pA,αB, pB)

is zero, seller A’s profit under (1,ε,αB, pB) is strictly greater than seller A’s profit

under (αA, pA,αB, pB) for a sufficiently small ε , regardless of seller B’s information

provision αB and price pB.

Seller A’s probability of selling under (αA, pA,αB, pB) is zero only when (αB, pB)

satisfies pB ≤ 1−αB, because otherwise seller A can at least get the buyer who gets

signal 1 from A and signal 0 from B and sell at strictly positive probability. It is

claimed that seller A’s profit is strictly positive under (1,ε,αB, pB) where ε > 0

but very small. Under (1,ε,αB, pB), for buyers who get signal 1 from seller A and

get signal 0 from seller B, their net valuation of A’s good is close to 1, and their

net valuation of B’s good is 1−αB− pB, which is strictly less than 1
2 , because

1−αB ≤ 1
2 and pB is a positive number. For ε sufficiently close to 0, the buyer’s

net surplus from seller A will be larger than twice the net surplus from seller B. The

buyer will visit seller A for sure. This implies the seller can sell at a strictly posi-

tive probability under (1,ε,αB, pB). Therefore, seller A’s profit is strictly positive

under (1,ε,αB, pB).

Given the result of Lemma 9, a seller can always increase her profit by devi-

ating to full information regardless of the opponent seller’s price and information

provision. Therefore as long as with strictly positive probability the opponent seller

is taking information provision and pricing policies that give the seller strictly pos-

itive probability of selling, the seller can strictly increase her profit by deviating to

full information and a higher price. If all information provision and pricing poli-

cies taken by the opponent seller with strictly positive probabilities gives the seller

zero probability of selling, the seller can strictly increase her profit by deviating

to full information and a small but positive price. This establishes that as long

as buyers are playing according to their symmetric continuation equilibrium, any

subgame perfect Nash equilibrium features that sellers provide full information.

Given Chapter 1 shows that, conditional on both sellers providing full information,

the unique symmetric pricing equilibrium in the sellers’ game is that sellers ran-

44



domize over a countable number of prices, the unique symmetric subgame perfect

Nash equilibrium of the game must feature that sellers provide full information and

randomize over a countable number of prices.

4.4 Welfare Analysis
Given the model analyzed in this chapter has a unique symmetric subgame perfect

Nash equilibrium where two sellers both disclose full information and randomize

over a countable number of prices, the equilibrium allocation is identical to the

equilibrium allocation in Chapter 1. Therefore the total surplus of the equilibrium

allocation of this chapter is equal to that of Chapter 1.

Now consider the case where sellers are constrained to disclose no information

to buyers. Therefore, each buyer has valuation 1
2 for both sellers’ goods. This is the

case analyzed in Burdett et al. [2] except that each buyer’s valuation is 1
2 rather than

1. It can be easily verified that in the symmetric subgame perfect Nash equilibrium,

both sellers choose price 1
4 and both buyers randomize between selecting either

seller with equal probabilities. The equilibrium total surplus can be shown to be
3
4 , which is strictly lower than the total surplus of the equilibrium allocation in

this chapter. Therefore, endowing sellers with the ability to disclose information

improves the efficiency of the allocation, compared to the case where sellers cannot

disclose information.

4.5 Conclusion
This paper investigates the information provision by sellers when they can also

simultaneously decide the prices of their goods in a model where buyers use di-

rected search to decide which seller to select. The main result is that providing full

information is always more profitable than partial information provision for sellers.

As can be seen in the proof, this strong result is associated with strong assump-

tions made in the model. One is that a buyer has valuation 0 and 1 with equal

probabilities. Another is the symmetric nature of signal structure of each seller.

Investigating whether full information is also always more profitable than partial

information in a more general setup is a question for future work to address.

Another possible future extension of the current chapter is to ask whether the
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dominance of full information provision still holds in a more general environment

where buyers’ valuations are drawn from a continuous distribution. Still another

possible extension is more general search friction of buyers. For example, instead

of assuming each visiting buyer trades with the seller with equal probability, we

can consider a more general selling mechanism such as ex-post negotiation.
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Chapter 5

Conclusion

This thesis studies a decentralized way to match sellers with buyers by allowing

sellers to choose their respective prices and buyers to select sellers without coor-

dination after observing all of the prices chosen by sellers. Sellers can only sell

goods to buyers who select them. When only one buyer selects a seller, the seller

sells her good to the buyer at the seller’s chosen price. When multiple buyers se-

lect the same seller, the seller randomly picks one buyer and sells the goods to him.

Other buyers are turned away and do not trade with any other seller.

The innovation of this thesis is to introduce horizontal differentiation between

sellers’ goods in a model of directed search. The general result is that under enough

horizontal differentiation, there is a mixed-strategy equilibrium that is considerably

different from the mixed-strategy equilibrium in previous research.

This thesis also shows how reducing the level of horizontal differentiation can

make the mixed-strategy equilibrium to disappear and make a pure-strategy equi-

librium to emerge. The pure-strategy equilibrium is exactly the same equilibrium

as in a standard directed search model.

When sellers can choose information disclosure policy at the time that they

choose prices, there is a unique symmetric equilibrium in the sellers’ game to dis-

close full information and randomize over a countable number of prices.

Future work includes extending the binary space of buyers’ valuations into

a continuous space. The {0,1} case is special in the sense that sellers cannot

profitably extract surplus from buyers who have valuation 0 for the seller’s good.
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Therefore in the current thesis, the competition between sellers is for buyers who

have valuation 1 for both sellers. We can consider another extension of the current

model to a directed search model with more than two sellers and two buyers.

A conjecture is that there still exists a similar mixed strategy equilibrium under

a more general setup because the result of the current thesis seems to hinge on the

directed search of buyers, but not on the particular details of the number of buyers

and sellers, or the valuation space of buyers. Explicitly verifying this conjecture is

a direction for future work.

As can be seen in the proof in Chapter 4, the result that sellers disclose full

information is associated with strong assumptions made in the model. One is that a

buyer can have valuation 0 and 1 with equal probabilities. Another is the symmetric

nature of the signal structure of each seller. Investigating whether in a more gen-

eral setup providing full information is also always more profitable than providing

partial information is a question for future work to address.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemma 1
In the subgames in which seller A chooses pA and seller B chooses pB, suppose the

other buyer uses the strategy in selecting sellers as stated in Lemma 1. This implies

the other buyer selects seller A with probability
1+θ (pA, pB)

4
, and selects seller B

with probability
2−θ (pA, pB)

4
. Therefore a buyer’s payoff by selecting seller A,

when the buyer’s valuation of A’s good is 1, is

(1− pA)

(
1− 1

2
1+θ (pA, pB)

4

)
and the buyer’s payoff by selecting seller B, when the buyer’s valuation of B’s

good is 1, is

(1− pB)

(
1− 1

2
2−θ (pA, pB)

4

)
.

In subgames in which pA <
7
6

pB−
1
6

, the other buyer’s strategy as stated in

Lemma 1 is to select seller A with probability θ (pA, pB) = 1. The buyer’s payoff

by selecting seller A is therefore

(1− pA)

(
1− 1

2
1+θ (pA, pB)

4

)
=

3
4
(1− pA)
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and payoff by selecting seller B is

(1− pB)

(
1− 1

2
2−θ (pA, pB)

4

)
=

7
8
(1− pB).

Because pA <
7
6

pB−
1
6

implies
3
4
(1− pA)>

7
8
(1− pB), selecting seller A with

probability 1 is optimal for the buyer.

In subgames in which
7
6

pB−
1
6
≤ pA ≤

6
7

pB +
1
7

and pA 6= 1 or pB 6= 1, the

other buyer’s strategy as stated in Lemma 1 is to select seller A with probability

θ (pA, pB) =
7(1− pA)−6(1− pB)

(1− pA)+(1− pB)
. The buyer’s payoff by selecting seller A is

(1− pA)

(
1− 1

2
1+θ (pA, pB)

4

)
=

13
8
(1− pB)

(1− pA)+(1− pB)
(1− pA)

and payoff by selecting seller B is

(1− pB)

(
1− 1

2
2−θ (pA, pB)

4

)
=

13
8
(1− pA)

(1− pA)+(1− pB)
(1− pB).

Therefore the buyer’s expected payoff by selecting A is equal to the payoff by

selecting B.

So selecting seller A with probability
7(1− pA)−6(1− pB)

(1− pA)+(1− pB)
is optimal for the

buyer.

In subgames in which
6
7

pB +
1
7
< pA, the other buyer’s strategy as stated in

Lemma 1 is to select seller A with probability θ (pA, pB) = 0. The buyer’s payoff

by selecting seller A is

(1− pA)

(
1− 1

2
1+θ (pA, pB)

4

)
=

7
8
(1− pA)

and payoff by selecting seller B is

(1− pB)

(
1− 1

2
2−θ (pA, pB)

4

)
=

3
4
(1− pB).
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Because
6
7

pB +
1
7
< pA implies

7
8
(1− pA)<

3
4
(1− pB), selecting seller A with

probability 0 is optimal for the buyer.

In the subgame in which pA = pB = 1, the other buyer’s strategy as stated in

Lemma 1 is to select seller A with probability θ (pA, pB) =
1
2

. The buyer’s payoff

by selecting seller A is

(1− pA)

(
1− 1

2
1+θ (pA, pB)

4

)
= 0

and payoff by selecting seller B is

(1− pB)

(
1− 1

2
2−θ (pA, pB)

4

)
= 0.

Because the payoff by selecting A is equal to the payoff by selecting B, select-

ing seller A with probability
1
2

is optimal for the buyer.

In conclusion, when the other buyer use the strategy in selecting sellers as

stated in Lemma 1, the same strategy in selecting sellers is also optimal for the

buyer. Therefore, the strategy in selecting sellers as stated in Lemma 1 is a sym-

metric equilibrium between buyers.

When two prices p and p′ satisfy
7
6

p′− 1
6
≤ p≤ 6

7
p′+

1
7

, we say they locally

compete with each other. Otherwise we say they do not locally compete with each

other.

A.2 Proof of Lemma 2
First, (2.1) and (2.2) can be rewritten as the following first order difference equa-

tion.

pk+1 =
56+

√
562 +36 76pk−11

p2
k

2 76pk−11
p2

k

f or k ∈ N (A.1)

with initial condition

p1 =
98+

√
21889

390
(A.2)

And the probability of choosing pk is xk, with xk being given by
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xk =
28
65

1− pk

p2
k

f or k ∈ N (A.3)

(A.2) implies that p∗1 ≈ 0.63064, therefore p∗1 satisfies 0 < p∗1 < 1, and it is

straightforward to show x∗1 =
28
65

1− p∗1
p∗21

satisfies 0 < x∗1 < 1.

Second, we can show that price sequence {p∗k}∞
k=1 as defined by difference

equation (A.1) and initial condition (A.2) satisfies 0< p∗k < 1,
7
6
(1− p∗k+1)≤ 1− p∗k

for all k ∈ N.

Because of (A.1), it can be shown that when
11
48

< p∗k , comparing p∗k+1 with p∗k
is equivalent with comparing 1 with p∗k , and comparing p∗k+1 with 1 is equivalent

with comparing p∗k with 1.

Therefore, when
11
48

< p∗k < 1, p∗k < p∗k+1 < 1.

Because p∗1 satisfies
11
48

< p∗1 < 1, we have p∗1 < p∗2 < 1.

Therefore p∗2 also satisfies
11
48

< p∗2 < 1, which in turns implies p∗2 < p∗3 < 1.

By repeating this argument, for all k ∈ N, p∗k < p∗k+1 < 1.

Given
{

p∗k
}∞

k=1 is strictly increasing and has an upper bound of 1, limk→∞ p∗k
exists and is less than or equal to 1.

By taking limit on the two sides of (A.1) as k→∞, we can solve for limk→∞ p∗k =

1.

When
11
48

< p∗k , comparing 7
6(1− p∗k+1) with 1− p∗k is equivalent with compar-

ing p∗k with 1. Because
11
48

<p∗k < 1, for all k ∈ N, 7
6(1− p∗k+1) < 1− p∗k , which

is p∗k <
7
6

p∗k+1−
1
6

. In addition, comparing
6
7

p∗k +
1
7

with
7
6

p∗k+1−
1
6

is equivalent

with comparing p∗k with 1. Because p∗k < 1,
6
7

p∗k +
1
7
<

7
6

p∗k+1−
1
6

.

Now we show that {x∗k}∞
k=1 as defined by using the price sequence {p∗k}∞

k=1 and

(A.3) satisfies 0 < x∗k < 1 for all k ∈ N and ∑
∞
k=1 x∗k = 1.

From p∗k < 1 for all k ∈ N and (A.3), we know 0 < x∗k for all k ∈ N.

Rearrangement of (A.1) leads to the following equation:

76p∗k−11
p∗2k

=
56p∗k+1 +9

p∗2k+1
(A.4)
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Therefore

∑
∞
k=1 x∗k = limN→∞

(
N

∑
k=1

x∗k

)

= limN→∞

[
N

∑
k=1

(
28
65

1− p∗k
p∗2k

)]

= limN→∞

[
7

325

N

∑
k=1

(
56p∗k +9

p∗2k
−

76p∗k−11
p∗2k

)]
= limN→∞

[
7

325

(
56p∗1 +9

p∗21
− 76p∗N−11

p∗2N

)]
=

7
325

(
56p∗1 +9

p∗21
−65

)
= 1

where the third from the last equality is got by using difference equation (A.4)

to cancel out terms, the second from the last equality is due to limN→∞ p∗N = 1, and

the last equality is due to (A.2).

Because 0 < x∗k for all k ∈ N, from ∑
∞
k=1 x∗k = 1, we know x∗k < 1 for k ∈ N.

A.3 Proof of Lemma 4

In the text, it is already shown that ΓA
(

p∗k
)
= Π and

∂ΓA (p)
∂ p

|p=p∗k = 0 for all k.

It is straightforward to show that
∂ 2ΓA (p)

∂ p2 < 0 for all p such that p
(

p∗k
)
< p <

p
(

p∗k
)
. Therefore, ΓA (p)≤ ΓA

(
p∗k
)

for all p such that p
(

p∗k
)
≤ p≤ p

(
p∗k
)
.

It can be shown that ΓA (p) ≤ ΓA
(

p
(

p∗k
))

for all p such that p
(

p∗k−1

)
< p <

p
(

p∗k
)
. Therefore, ΓA (p)≤ ΓA

(
p∗k
)

for all p such that p
(

p∗k−1

)
≤ p≤ p

(
p∗k
)
.

For p < p(p∗1), ΓA (p)≤ ΓA
(

p(p∗1)
)
.

As for all 0 < p < 1, ∃k ∈ N, such that p
(

p∗k−1

)
≤ p ≤ p

(
p∗k
)
, so ΓA (p) ≤

ΓA
(

p∗k
)

for all 0 < p < 1. Because ΓA
(

p∗k
)
= Π for all k ∈ N, a seller has no prof-

itable deviation from choosing p∗k for all k. Therefore
{(

p∗k ,x
∗
k

)}∞

k=1 is a symmetric

equilibrium between sellers.

A.4 Proof of Lemma 5
Seller A’s best response in pA for seller B’s price 0 < pB < 1 is
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pA(pB) =


1 i f 0≤ pB <

6
7

Π

Π
+

1
7

1or
Π

Π
i f pB =

6
7

Π

Π
+

1
7

7
6
× pB−

1
6

i f
6
7

Π

Π
+

1
7
< pB < 1

Seller B’s best response in pB for seller A’s price 0 < pA < 1 can be symmet-

rically defined. The two best response functions have no intersection point in the

set of (pA, pB) such that 0 ≤ pA < 1 and 0 ≤ pB < 1. This implies any (pA, pB)

such that 0≤ pA < 1 and 0≤ pB < 1 cannot be a pure strategy pricing equilibrium

between two sellers.

A’s best response to pB = 1 is not well defined: At pB = 1, A’s profit is ΠpA

for pA < 1, and is Π(1,1) for pA = 1. Because Π > Π(1,1), A wants to set pA

arbitrarily close to 1 but different from 1. This implies (pA = 1, pB = 1) is not a pure

strategy equilibrium between two buyers because given the opponent is choosing

1, a seller has incentive to choose slightly below 1.

Similarly, any (pA, pB) such that pA = 1 and pB < 1 cannot be a pure strategy

equilibrium either. Given A chooses price 1, B wants to choose slightly below (and

strictly below) 1, and given B chooses a price slightly below 1, A wants to choose
7
6

pB−
1
6

, which is strictly less than 1 for a pB strictly below 1.

A.5 Proof of Lemma 6
Proof. Suppose a seller chooses price 1 with probability γ > 0 and chooses prices

less than 1 with probability 1− γ . The other seller’s profit by choosing price 1 is

γΠ(1,1)+(1− γ)Π, because with probability γ the seller chooses price 1 so the

other seller sells her good with probability Π(1,1) by choosing price 1, and with

probability 1− γ the seller chooses prices less than 1 so the other seller sells her

good with probability Π by choosing price 1.

The other seller’s profit by choosing a price p < 1 is greater than or equal to

γΠp+(1− γ)Πp, because with probability γ the seller chooses price 1 so the other

seller sells her good with probability Π by choosing price p, and with probability

1− γ the seller chooses prices strictly less than 1 so the other seller’s probability

of selling her good by choosing price p is no less than Π since Π is the lowest

possible probability for the other seller to sell her good.
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Compare γΠ(1,1)+(1− γ)Π with γΠp+(1− γ)Πp.

Because Π(1,1)< Π and 0 < γ ,
γΠ(1,1)+(1− γ)Π

γΠ+(1− γ)Π
< 1.

When
γΠ(1,1)+(1− γ)Π

γΠ+(1− γ)Π
< p, γΠ(1,1)+(1− γ)Π < γΠp+(1− γ)Πp.

So given the seller has a positive probability of choosing price 1, the other

seller has a profitable deviation from choosing price of 1 to some price strictly less

than but very close to 1. This establishes that any symmetric equilibrium between

two sellers cannot have a strictly positive probability of choosing price of 1.

Because in any symmetric equilibrium between sellers, price 1 is chosen with

probability 0, given opponent seller uses a symmetric equilibrium strategy, a seller’s

profit by choosing price 1 is Π, because opponent seller chooses prices strictly less

than 1. This implies to be a symmetric equilibrium, equilibrium profit of a seller

has to be at least Π to deter a seller’s deviation of choosing price 1.

Suppose a symmetric equilibrium strategy has a support with a lower bound p.

Given opponent seller takes an equilibrium strategy (which has a lower bound p), a

seller’s profit by choosing p is less than or equal to Πp. Because equilibrium profit

(which is also the profit a seller gets by choosing p) is greater than or equal to Π,

this implies Πp≥Π, i.e., p≥ Π

Π
.

Suppose a symmetric equilibrium strategy has a support with a least upper

bound p. A seller’s profit by choosing p is less than or equal to Π(p, p)p. From

Π(p, p)p≥ Π, we have p≥ Π

Π(p, p)
. This implies that in any symmetric equilib-

rium, prices in the support of the equilibrium strategy must be greater than or equal

to
Π

Π(p, p)
.

A.6 Proof of Lemma 7

Denote M(pA, pB)≡
∂Π(pA, pB)

∂ pA
.

It is straightforward to show that Π(pA, pB) is strictly decreasing and concave

in pA.

Seller A’s expected profit is ΓA(pA, pB) ≡ Π(pA, pB)× pA, so the first order

derivative of seller A’s expected profit with respect to pA is

58



∂ΓA(pA, pB)

∂ pA
= Π(pA, pB)+M(pA, pB)× pA.

When
7
6

pB−
1
6
≤ pA ≤

6
7

pB +
1
7

, Π(pA, pB) ≤ Π, and M(pA, pB) < 0, so the

first order derivative of seller A’s expected profit with respect to seller A’s price is

strictly less than Π. Observe

∂ 2ΓA(pA, pB)

∂ p2
A

= 2M(pA, pB)+
∂ 2Π(pA, pB)

∂ p2
A

× pA.

Because M(pA, pB)< 0 and
∂ 2Π(pA, pB)

∂ p2
A

< 0 due to strict concavity of Π(pA, pB)

in pA, therefore
∂ 2ΓA(pA, pB)

∂ p2
A

< 0, it follows that the derivative of seller A’s ex-

pected profit with respect to pA is strictly decreasing in pA.

Consider a symmetric mixed strategy equilibrium with the distribution denoted

as F(.). Denote the lowest price in the price support of F(.) as p1. Suppose there

is another price p′ in the price support that locally competes with p1.

When opponent seller using mixed pricing strategy F(.), the derivative of a

seller’s expected profit with respect to the seller’s price when the seller chooses

price p1 is

6
7 p1+

1
7∫

p1

[Π(p, p̃)+M(p, p̃) · p] |p=p1dF(p̃)+

Π
(
F(6

7 p′+ 1
7)−F(6

7 p1 +
1
7)
)
+Π

(
1−F(6

7 p′+ 1
7)
) (A.5)

The derivative of a seller’s expected profit with respect to the seller’s price

when the seller chooses price p′ is

6
7 p1+

1
7∫

p1

[Π(p, p̃)+M(p, p̃) · p] |p=p′dF(p̃)+

∫ 6
7 p′+ 1

7
6
7 p1+

1
7
[Π(p, p̃)+M(p, p̃) · p] |p=p′dF(p̃)+Π

(
1−F(6

7 p′+ 1
7)
) (A.6)

Compare the first terms of (A.5) and (A.6). Note that opponent seller’s price
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p̃ between [p1,
6
7

p1 +
1
7
] is now locally competing with both p1 and p′, and be-

cause the derivative of a seller’s expected profit with respect to the seller’s price,

Π(p, p̃) + M(p, p̃) · p, is strictly decreasing in its own price conditional on the

seller’s price is locally competing with opponent seller’s price, the first term of

(A.5) is strictly greater than the first term of (A.6) as long as opponent seller has

strictly positive probability of charging a price in [p1,
6
7 p1 +

1
7 ].

Compare the second terms of (A.5) and (A.6). It can be shown that second

term of (A.5) is strictly greater than the second term of (A.6).

Therefore (A.5) is strictly greater than (A.6), which implies first order condi-

tions could not hold simultaneously at price p1 and p′. It is therefore established

that there is no prices in a symmetric equilibrium price support that locally compete

with the lowest price of the support. A symmetric mixed strategy pricing equilib-

rium F(.) must have a discrete mass at price p1, denote it as x1. And there exists

p2 in the support of F(.) such that in the support of F(.) there is no prices between

p1 and p2, and there is no local competition between p1 and p2.

Suppose there is a price p′′ > p2 in the support of F(.) that locally competes

with p2.

When opponent seller is using mixed pricing strategy F(.), the derivative of a

seller’s expected profit with respect to the seller’s price when the seller’s price is

p2 is

Πx1 +

6
7 p2+

1
7∫

p2

[Π(p, p̃)+M(p, p̃) · p] |p=p2dF(p̃)+

Π
(
F(6

7 p′′+ 1
7)−F(6

7 p2 +
1
7)
)
+Π

(
1−F(6

7 p′′+ 1
7)
) (A.7)

and the derivative of a seller’s expected profit with respect to the seller’s price

when the seller’s price is p′′ is

Πx1 +

6
7 p2+

1
7∫

p2

[Π(p, p̃)+M(p, p̃) · p] |p=p′′dF(p̃)+

∫ 6
7 p′′+ 1

7
6
7 p2+

1
7
[Π(p, p̃)+M(p, p̃) · p] |p=p′′dF(p̃)+Π

(
1−F(6

7 p′′+ 1
7)
) (A.8)
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Similarly as the comparison before, it can be shown (A.7) is strictly greater

than (A.8), which implies there cannot be prices in the support of a symmetric

equilibrium mixed pricing strategy F(.) that locally compete with p2. F(.) must

have a discrete mass at price p2, denote it as x2, and there exists p3 in the support

of F(.) such that in the support of F(.) there is no other prices between p2 and p3,

and there is no local competition between p2 and p3.

Then by using the same argument for the third lowest price and all other prices,

it is proved that the equilibrium price support has to be discrete and there cannot

be two prices in the price support that locally compete with each other.

A.7 Proof of Lemma 8
Suppose there exists a symmetric equilibrium pricing strategy such that the support

has a supreme strictly less than 1. From Lemma 7, the symmetric equilibrium

pricing strategy must have finite number of prices.

When opponent seller uses a pricing strategy made of finite number of prices,

where the largest price p is strictly less than 1 and p is charged with probability

x and prices below
7
6

p− 1
6

are charged with probability 1− x, a seller’s expected

profits by charging p is

(1− x)Πp+ xΠ(p, p)p

Because a seller’s expected profit by charging price 1 is Π, the condition that

the seller does not want to deviate to price 1 is

(1− x)Πp+ xΠ(p, p)p≥Π

which implies

x≥ Π

Π(p, p)−Π

1− p
p

(A.9)
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On the other hand, a seller’s first order condition at p is

(1− x)Π+ x [Π(p, p)+M(p, p)p] = 0,

which implies

x =
Π

Π−Π(p, p)−M(p, p)p
(A.10)

From the functional form

Π(p j, p j′)≡
13
4
(1− p j′)

2(1− p j)− 5
4(1− p j′)(

(1− p j)+(1− p j′)
)2

we can get

M(p j, p j′) =
13
4
(1− p j′)

2(1− p j)− 9
2(1− p j′)(

(1− p j)+(1− p j′)
)3

Therefore

M(p j′ , p j′) =−
65
64

1
(1− p j′)

Substitute into (A.10), we have

x =
Π

Π−Π(p, p)+ 65
64

p
1−p

Because the lower bound of a symmetric pricing equilibrium support is no less

than
Π

Π(p, p)
=

28
39

, p satisfies
11
65

< p < 1.

It can be shown that
11
65

< p < 1 implies

Π

Π(p, p)−Π

1− p
p

>
Π

Π−Π(p, p)+ 65
64

p
1−p

.

Therefore condition that if a seller has no profitable deviation from p to 1, i.e.,

(A.9) holds, then (A.10) would be violated, in particular, the seller will has an

incentive to slightly decrease her price below p.
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A.8 Proof of Proposition 3
Now we turn to the discussion of expected total surplus in the equilibrium char-

acterized in Proposition 1. Denote a buyer’s action of not selecting any seller as

selecting φ .

As shown in Table A.1, the expected total surplus under the characterized equi-

librium is the sum of expected total surplus under every profile of valuations of two

buyers multiplied by the probability of the respective profile of valuations. The cal-

culation shows the expected total surplus is

1
16{8Pr(pA > pB)+

17
2 Pr(pA = pB)+8Pr(pA < pB)+11}

which is, using Pr(pA = pB) = 1−Pr(pA > pB)−Pr(pA < pB), and because

seller A and seller B use the symmetric mixed pricing strategy, Pr(pA > pB) =

Pr(pA < pB), the expected total surplus is

39
32 −

1
16 Pr(pA < pB)
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Table A.1: Expected Total Surplus under Equilibrium Allocation

Valuation Equilibrium Allocation Surplus Expected surplus

(1,1) (1,1)


Both buyers select B i f pA > pB

Buyer mixes between
selecting A and B

i f pA = pB

Both buyers select A i f pA < pB


1 i f pA > pB
3
2 i f pA = pB

1 i f pA < pB

Pr(pA > pB)

+ 3
2 Pr(pA = pB)

+Pr(pA < pB)

(1,1) (0,1)


Both buyers select B i f pA > pB

1 mixes between A and B
2 selects B

i f pA = pB

1 selects A, 2 selects B i f pA < pB


1 i f pA > pB
3
2 i f pA = pB

2 i f pA < pB

Pr(pA > pB)

+ 3
2 Pr(pA = pB)

+2Pr(pA < pB)

(1,1) (1,0)


1 selects B, 2 selects A i f pA > pB

1 mixes between A and B
2 selects A

i f pA = pB

Both buyers select A i f pA < pB


2 i f pA > pB
3
2 i f pA = pB

1 i f pA < pB

2Pr(pA > pB)

+ 3
2 Pr(pA = pB)

+Pr(pA < pB)

(1,1) (0,0)


1 selects B, 2 selects φ i f pA > pB

1 mixes between A and B
2 selects φ

i f pA = pB

1 selects A, 2 selects φ i f pA < pB


1 i f pA > pB

1 i f pA = pB

1 i f pA < pB

1

(0,1) (1,1)


Both buyers select B i f pA > pB

1 selects B
2 mixes between A and B

i f pA = pB

1 selects B, 2 selects A i f pA < pB


1 i f pA > pB
3
2 i f pA = pB

2 i f pA < pB

Pr(pA > pB)

+ 3
2 Pr(pA = pB)

+2Pr(pA < pB)

(0,1) (0,1) Both buyers select B 1 1

(0,1) (1,0) 1 selects B, 2 selects A 2 2

(0,1) (0,0) 1 selects B, 2 selects φ 1 1

(1,0) (1,1)


1 selects A, 2 selects B i f pA > pB

1 selects A
2 mixes between A and B

i f pA = pB

Both buyers select A i f pA < pB


2 i f pA > pB
3
2 i f pA = pB

1 i f pA < pB

2Pr(pA > pB)

+ 3
2 Pr(pA = pB)

+Pr(pA < pB)

(1,0) (0,1) 1 selects A, 2 selects B 2 2

(1,0) (1,0) Both buyers select A 1 1

(1,0) (0,0) 1 selects A, 2 selects φ 1 1

(0,0) (1,1)


1 selects φ , 2 selects B i f pA > pB

1 selects φ

2 mixes between A and B
i f pA = pB

1 selects φ 2 selects A i f pA < pB


1 i f pA > pB

1 i f pA = pB

1 i f pA < pB

1

(0,0) (0,1) 1 selects φ , 2 selects B 1 1

(0,0) (1,0) 1 selects φ , 2 selects A 1 1

(0,0) (0,0) 1 selects φ , 2 selects φ 0 0

Total Surplus 39
32 −

1
16 Pr(pA < pB)

64



Table A.2: Optimal Buyer’s Selection Action (Social Planner Cannot Coor-
dinate)

Buyer’s valuation Buyer’s optimal action

(1,1) Select A and B with equal probabilities
(1,0) Select A
(0,1) Select B
(0,0) φ

Table A.3: Optimal Expected Total Surplus (Social Planner Cannot Coordi-
nate)

Buyers’ valuation profile Allocation to achieve maximum surplus Surplus
(1,1) (1,1) Each buyer selects A and B with equal probabilities 3

2
(1,1) (0,1) 1 selects A and B with equal probabilities, 2 selects B 3

2
(1,1) (1,0) 1 selects A and B with equal probabilities, 2 selects A 3

2
(1,1) (0,0) 1 selects A and B with equal probabilities,2 selects φ 1
(0,1) (1,1) 1 selects B, 2 selects A and B with equal probabilities 3

2
(0,1) (0,1) 1 selects B, 2 selects B 1
(0,1) (1,0) 1 selects B, 2 selects A 2
(0,1) (0,0) 1 selects B, 2 selects φ 1
(1,0) (1,1) 1 selects A, 2 selects A and B with equal probabilities 3

2
(1,0) (0,1) 1 selects A, 2 selects B 2
(1,0) (1,0) 1 selects A, 2 selects A 1
(1,0) (0,0) 1 selects A, 2 selects φ 1
(0,0) (1,1) 1 selects φ , 2 selects A and B with equal probabilities 1
(0,0) (0,1) 1 selects φ , 2 selects B 1
(0,0) (1,0) 1 selects φ , 2 selects A 1
(0,0) (0,0) 1 selects φ , 2 selects φ 0

Total expected surplus 39
32
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Appendix B

Appendix for Chapter 3

B.1 Proof that Sellers will not Choose Negative Prices or
Prices strictly greater than 1

Suppose, by contradiction, a seller chooses a negative price. To show this cannot

be equilibrium strategy, there are two cases to consider.

One case is the seller has a strictly positive probability of selling by choosing

the negative price. This implies the seller gets strictly negative profit. The seller

will get higher profit by choosing price 0, which guarantees profit 0.

Another case is that the seller has probability 0 of selling by choosing the neg-

ative price. Zero probability of selling means no buyer selects the seller. This can

happen only when the other seller also chooses a negative price, because other-

wise a buyer who has valuation 0 for both sellers will select the first seller and

therefore the first seller, being selected by at least one buyer, has a strictly positive

probability of selling. The other seller attracts all buyers and sells with probability

1. Therefore, as argued in the first case, the other seller has a profitable deviation

to price 0. After the other seller deviates to price 0, the seller now can sell with

strictly positive probability, and as argued in the first case, the seller has a profitable

deviate to price 0.

Suppose, by contradiction again, a seller chooses a price strictly greater than 1.

As buyers have the outside option of not selecting any seller, which gives the buyer

0 payoff, choosing a price strictly greater than 1 by a seller (the highest possible
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valuation of buyer) leads to no buyer selecting the seller and therefore 0 selling

probability and 0 profit for the seller. Choosing price 0 also leads to 0 expected

profit for the seller. I claim that a seller can get strictly positive expected profit

by choosing a positive price very close to 0, as long as the other seller’s price

is non-negative. Consider a buyer who has valuation 1 for the seller and 0 for

the other seller. Regardless of which seller the other buyer selects, as long as the

seller’s price is strictly positive and very close to 0 and the other seller’s price is

non-negative, the buyer gets strictly positive payoff from selecting the seller and

non-positive payoff from selecting the other seller. Therefore in equilibrium the

buyer selects the seller with probability 1, which means the seller can get a strictly

positive selling probability and a strictly positive profit by choosing a positive price

very close to 0.

B.2 Buyers’ Symmetric Continuation Equilibrium
To determine the symmetric continuation equilibrium value of πA∗

11 (pA, pB),π
B∗
11 (pA, pB),

for 0< pA≤ 1, 0< pB≤ 1 and pA,pB not simultaneously 1, suppose the other buyer

uses strategy(
πA

00 = 0,πB
00 = 0

)
,
(
πA

01 = 0,πB
01 = 1

)
,
(
πA

10 = 1,πB
10 = 0

)
,
(
πA

11 = a,πB
11 = 1−a

)
Then a buyer’s expected payoff from selecting seller A, conditional on the

buyer’s valuations being 1 for both sellers, is

(1− pA)

(
1− 1

2

1
4 η3 +η4a

1
2 η

β

2 + 1
2 η3 +η4

)

where the second term is the expected probability of trading with seller A suc-

cessfully conditional on the buyer’s valuation being 1 for both sellers. This is be-

cause from a buyer’s point of view, with probability 1
2 η

β

2 , the buyer has valuation 1

for both sellers and the other buyer has valuation 0 for both sellers. The reason for

the probability to be 1
2 η

β

2 is that η
β

2 is the probability that a buyer has valuation 1

for both sellers and the other buyer has valuation 0 for both sellers. Due to symme-

try between two buyers, the probability for a particular buyer to have valuation 1
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for both sellers and the other buyer to have valuation 0 for both sellers is 1
2 η

β

2 . Sim-

ilarly, with probability 1
4 η3, the buyer has valuation 1 for both sellers and the other

buyer has valuation 1 for seller A and valuation 0 for seller B; With probability
1
4 η3, the buyer has valuation 1 for both sellers and the other buyer has valuation 0

for A and valuation 1 for B; With probability η4, the buyer has valuation 1 for both

sellers and the other buyer has valuation 1 for both sellers. Therefore conditional

on the buyer having valuation 1 for both sellers, the probability distribution of the

other buyer’s valuations is: With probability
1
2 η

β

2
1
2 η

β

2 + 1
2 η3 +η4

, the other buyer has

valuation 0 for both sellers; With probability
1
4 η3

1
2 η

β

2 + 1
2 η3 +η4

, the other buyer has

valuation 1 for A and 0 for B; With the same probability, the other buyer has val-

uation 0 for A and 1 for B; With probability
η4

1
2 η

β

2 + 1
2 η3 +η4

, the other buyer has

valuation 1 for both sellers. Because the other buyer selects A with probability 1

when he has valuation 1 for A and 0 for B, and selects A with probability a when he

has valuation 1 for both sellers, conditional on the buyer has valuation 1 for both

sellers, the probability that the other buyer selects A is
1
4 η3 +η4a

1
2 η

β

2 + 1
2 η3 +η4

. When the

other buyer selects A, the buyer gets the seller’s good with probability 1
2 , and when

the other buyer does not select A, the buyer gets the seller’s good with probability

1. Therefore the expected probability that the buyer gets A’s good conditional on

the buyer’s valuation being 1 for both sellers is

1
2
·

1
4 η3 +η4a

1
2 η

β

2 + 1
2 η3 +η4

+1 ·

(
1−

1
4 η3 +η4a

1
2 η

β

2 + 1
2 η3 +η4

)
= 1− 1

2

1
4 η3 +η4a

1
2 η

β

2 + 1
2 η3 +η4

.

Similarly the buyer’s expected payoff from selecting B, conditional on the

buyer’s valuations being 1 for both sellers, is

(1− pB)

(
1− 1

2

1
4 η3 +η4−η4a
1
2 η

β

2 + 1
2 η3 +η4

)
By comparing the expected payoffs from selecting A and selecting B, the buyer’s

best response to the other buyer’s selecting strategy is(
θ A

00(a) = 0,θ B
00(a) = 0

)
,
(
θ A

01(a) = 0,θ B
01(a) = 1

)
,
(
θ A

10(a) = 1,θ B
10(a) = 0

)
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θ A
11(a) =


1 , i f f (pA, pB)> a

∈ [0,1] , i f f (pA, pB) = a

0 , i f f (pA, pB)< a

where f (pA, pB)≡
(η

β

2 + 3
4 η3 +2η4)(1− pA)− (η

β

2 + 3
4 η3 +η4)(1− pB)

η4[(1− pA)+(1− pB)]
.

f (pA, pB) is strictly decreasing in pA and strictly increasing in pB for 0 < pA ≤
1, 0 < pB ≤ 1 and pA,pB not simultaneously equal to 1.

The unique symmetric continuation equilibrium value of θ A∗
11 (pA, pB),θ

B∗
11 (pA, pB),

for 0 < pA ≤ 1, 0 < pB ≤ 1 and pA,pB not simultaneously equal to 1, can be char-

acterized as

θ A∗
11 (pA, pB) =


1 , f (pA, pB)≥ 1

f (pA, pB) , 0 < f (pA, pB)< 1

0 , f (pA, pB)≤ 0

and θ B∗
11 (pA, pB) = 1−θ A∗

11 (pA, pB).

Define the notion that pA is sufficiently lower than pB when f (pA, pB) ≥ 1,

pA is sufficiently higher than pB when f (pA, pB) ≤ 0, and pA is close to pB when

0 < f (pA, pB)< 1. In the first two cases, there is no local competition between pA

and pB, while in the last case, there is local competition between two prices.

Since sellers do not know the particular realization of buyers’ valuations, but

know the joint distribution of their valuations, given buyers’ equilibrium strategy

in the subgame with pA and pB such that 0 < pA ≤ 1 and 0 < pB ≤ 1, seller A’s

expected probability of selling is

1
2 η1 +η2 +

1
2 ησ

2 + 1
2 η3 +(η

β

2 + 1
2 η3)θ

A∗
11 (pA, pB)+

η4θ A∗
11 (pA, pB)

(
2−θ A∗

11 (pA, pB)
)

This is because with probability 1
2 η1 + η2 +

1
2 ησ

2 + 1
2 η3, at least one buyer

chooses seller A with probability 1. This is because among the scenarios where a

buyer has valuation 1 for one seller and valuation 0 for the other while the other

buyer has valuation 0 for both sellers, half of them involve a buyer has valuation 1

for seller A. Therefore half of η1, which is the total probability of these scenarios,
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one buyer has valuation 1 for seller A so seller A can sell with probability 1. Sim-

ilarly we can get other probabilities. With probability η
β

2 + 1
2 η3, only one buyer

chooses seller A with probability πA∗
11 (pA, pB) and the other buyer does not choose

the seller, so seller A can sell with probability πA∗
11 (pA, pB). With probability η4,

both buyers choose seller A with probability πA∗
11 (pA, pB), so seller A can sell with

probability 1−
(
1−πA∗

11 (pA, pB)
)2

= πA∗
11 (pA, pB)

(
2−πA∗

11 (pA, pB)
)
.

And seller B’s expected probability of selling is

1
2 η1 +η2 +

1
2 ησ

2 + 1
2 η3 +(η

β

2 + 1
2 η3)

(
1−θ A∗

11 (pA, pB)
)
+

η4
(
1−θ A∗

11 (pA, pB)
)(

1+θ A∗
11 (pA, pB)

)
.

Seller A’s expected probability of selling is strictly increasing in θ A∗
11 (pA, pB).

When 1 < f (pA, pB), we haveθ A∗
11 (pA, pB) = 1 and seller A’s expected proba-

bility of selling reaches its maximum level, denote it as Π. When f (pA, pB) < 0,

we have θ A∗
11 (pA, pB) = 0, and seller A’s expected probability of selling reaches

its minimum level, denote it as Π. When 0 ≤ f (pA, pB) ≤ 1, denote seller A’s

expected probability of selling as Π(pA, pB).

B.3 Proof of Proposition 4
First, the following results will be useful regarding the properties of symmetric

mixed-strategy equilibrium between sellers.

Lemma 11. In any symmetric mixed-strategy equilibrium between sellers, any two

prices in the support do not locally compete with each other.

The proof of this lemma follows exactly as the proof of Lemma 7, so is omitted

here.

Lemma 12. Any symmetric equilibrium between sellers cannot have a support

made of more than two and finite number of prices.

Proof. Consider by contradiction, there is a symmetric mixed-strategy equilibrium

between sellers with a support made of a finite number of prices {p1, p2, ..., pK},
where 2 ≤ K. From Lemma 11, pk does not locally compete with pk+1 for all

k = 1, ...,K − 1. Denote the probabilities of choosing pk as xk. The necessary
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conditions for this mixed strategy to be a symmetric equilibrium include the first

order condition at pK , which can be shown to be

[Π(1− xK)+Π(pK , pK)xK ]+
∂Π(pK , pK)

∂ pA
xK pK = 0 (B.1)

from which we can solve for xK ,

xK =
Π

Π−Π(pK , pK)
− ∂Π(pK , pK)

∂ pA
pK (B.2)

Another necessary equilibrium condition is that a seller’s profit by choosing pK is

no less than her profit by choosing 1.

Π≤ [Π(1− xK)+Π(pK , pK)xK ] pK (B.3)

Substitute equation B.2 into the above equation and rearrange, we have

pK ≤
Π(pK , pK)−Π

− ∂Π(pK ,pK)
∂ pA

(1− pK)
(B.4)

From the first order condition for a seller to choose pK−1,

Π(1− xK−1− xK)+Π(pK−1, pK−1)xK−1 +
∂Π(pK−1, pK−1)

∂ pA
xK−1 pK−1 +ΠxK = 0

(B.5)

Subtract B.1 by B.5, we have[
Π−Π(pK , pK)−

∂Π(pK , pK)

∂ pA
pK

]
xK =

[
Π−Π(pK−1, pK−1)−

∂Π(pK−1, pK−1)

∂ pA
pK−1

]
xK−1

(B.6)

A seller’s profit by choosing pK−1 is

[
Π(1− xK−1− xK)+Π(pK−1, pK−1)xK−1 +ΠxK

]
pK−1 (B.7)
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From B.5, we know

Π(1− xK−1− xK)+Π(pK−1, pK−1)xK−1 +ΠxK =−∂Π(pK−1, pK−1)

∂ pA
xK−1 pK−1

(B.8)

which implies a seller’s profit by choosing pK−1 is

−∂Π(pK−1, pK−1)

∂ pA
xK−1 p2

K−1 (B.9)

Similarly we can show that a seller’s profit by choosing pK is

−∂Π(pK , pK)

∂ pA
xK p2

K (B.10)

From the necessary equilibrium condition that a seller gets the same profit by

choosing pK and pK−1, we have

−∂Π(pK , pK)

∂ pA
xK p2

K =−∂Π(pK−1, pK−1)

∂ pA
xK−1 p2

K−1 (B.11)

Divide B.6 by B.11, we have

Π−Π(pK , pK)− ∂Π(pK ,pK)
∂ pA

pK

− ∂Π(pK ,pK)
∂ pA

p2
K

=
Π−Π(pK , pK)− ∂Π(pK−1,pK−1)

∂ pA
pK−1

− ∂Π(pK−1,pK−1)
∂ pA

p2
K−1

(B.12)

The left hand side of B.12 can be shown to be a strictly decreasing function in pK

and because pK < 1, we know the left hand side is strictly greater than 1. The right

hand side of B.12 can be shown to be less than or equal to 1. To see this, note pK−1

is strictly less than pK and because of B.4, we know that

pK−1 ≤
Π(pK−1, pK−1)−Π

− ∂Π(pK−1,pK−1)
∂ pA

(1− pK−1)
(B.13)

which can be shown is equivalent to the right hand side of B.12 is less than or

equal to 1. Given the left hand side of B.12 is strictly greater than 1 and the right

hand side of B.12 is less than or equal to 1, we know that B.12 cannot hold. This

implies that necessary equilibrium conditions cannot hold at both two prices pK
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and pK−1. Therefore, the support of any symmetric mixed-strategy equilibrium

cannot be made of more than two and finite number of prices.

B.3.1 Mixed-strategy Symmetric Equilibrium

When Π(p∗, p∗)p∗ < Π, similarly with Chapter 1, we can construct a candidate for

symmetric equilibrium between sellers.

Consider an increasing, infinite sequence of prices {pk}∞

k=1 with a sequence of

probabilities {xk}∞

k=1 corresponding to each price, such that for all k, pk does not

locally compete with pk+1 for all k.

This implies that limk→∞ pk = 1.

Necessary conditions for the mixed strategy {pk}∞

k=1 and {xk}∞

k=1 to be a sym-

metric equilibrium between sellers are that when opponent seller uses the mixed

strategy, a seller gets the same profit by choosing pk as the profit by choosing 1 and

the seller has no profitable local deviation from pk for all k.

These conditions can be written as the following equations.

For all k ∈ N,

[Π ·
k−1

∑
j=1

x j +Π(pk, pk) · xk +Π · (1−
k

∑
j=1

x j)]pk = Π (B.14)

Π ·
k−1

∑
j=1

x j +Π(pk, pk) · xk +Π · (1−
k

∑
j=1

x j)+
∂Π(pk, pk)

∂ pA
· xk · pk = 0 (B.15)

We show that when Π(p∗, p∗)p∗ < Π, the above two equations characterize
{pk}∞

k=1 and {xk}∞

k=1, and the characterized mixed strategy is a symmetric equilib-

rium between sellers.

First, we can rewrite equations (B.14), and (B.15) into a first order difference

equation in prices,

Π(pk+1, pk+1)−Π+ ∂Π(pk+1,pk+1)
∂ pA

pk+1

∂Π(pk+1,pk+1)
∂ pA

p2
k+1

=
Π(pk, pk)−Π+ ∂Π(pk,pk)

∂ pA
pk

∂Π(pk,pk)
∂ pA

p2
k

(B.16)
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with initial condition

Π(p1, p1)−Π+ ∂Π(p1,p1)
∂ pA

p1

∂Π(p1,p1)
∂ pA

p2
1

=
Π

Π
(B.17)

with xk being determined by

xk =
Π

− ∂Π(pk,pk)
∂ pA

p2
k

. (B.18)

Because
∂Π(p, p)

∂ pA
=−

(η
β

2 + 1
2 η3 +η4)(2η

β

2 + 3
2 η3 +3η4)

4η4

1
1− p

is a strictly

decreasing and continuous function in p for all p ∈ (0,1), the left hand side of

(B.17),
Π(p1, p1)−Π+ ∂h(p1,p1)

∂ pA
p1

∂Π(p1,p1)
∂ pA

p2
1

, is a strictly decreasing and continuous func-

tion for all p1 ∈ (0,1).

Furthermore,
Π(p1, p1)−Π+ ∂Π(p1,p1)

∂ pA
p1

∂Π(p1,p1)
∂ pA

p2
1

|p1=
Π

Π

=
Π(p1, p1)−Π

∂Π(p1,p1)
∂ pA

p2
1

|p1=
Π

Π

+
Π

Π
>

Π

Π
.

And limp1→1−
Π(p1, p1)−Π+ ∂Π(p1,p1)

∂ pA
p1

∂Π(p1,p1)
∂ pA

p2
1

= limp1→1−
Π(p1, p1)−Π

∂Π(p1,p1)
∂ pA

p2
1

+ limp1→1−
1
p1

=1 <
Π

Π
.

Therefore, initial condition (B.17) has a unique solution, denoted as p∗1, such

that 0 < p∗1 < 1. Furthermore, p∗1 is strictly greater than
Π

Π
.

In addition, when Π(p∗, p∗)p∗ < Π, we have{
∂Π(p, p)

∂ pA
p+Π(p, p)

}
|p= Π

Π(p,p)
< 0

which implies that

Π(p, p)−Π+ ∂Π(p,p)
∂ pA

p
∂Π(p,p)

∂ pA
p2

|p= Π

Π(p,p)
<

Π

Π
.

Because
Π(p∗1, p∗1)−Π+

∂Π(p∗1,p
∗
1)

∂ pA
p∗1

∂Π(p∗1,p
∗
1)

∂ pA
p∗21

=
Π

Π
and

Π(p1, p1)−Π+ ∂Π(p1,p1)
∂ pA

p1

∂Π(p1,p1)
∂ pA

p2
1

is
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strictly decreasing in p1, the above inequality implies p∗1 <
Π

Π(p∗1, p∗1)
.

Second, we show that p∗2 satisfies p∗1 < p∗2 < 1. From difference equation (B.16),

we have

Π(p1, p1)−Π+ ∂Π(p1,p1)
∂ pA

p1

∂Π(p1,p1)
∂ pA

p2
1

=
Π(p2, p2)−Π+ ∂Π(p2,p2)

∂ pA
p2

∂Π(p2,p2)
∂ pA

p2
2

(B.19)

From equation (B.19), p∗2 can be solved by substituting the value of p∗1.

Because
Π(p∗1, p∗1)−Π+

∂Π(p∗1,p
∗
1)

∂ pA
p∗1

∂Π(p∗1,p
∗
1)

∂ pA
p∗21

=
Π

Π
, it can be shown that

Π(p∗1, p∗1)−Π+
∂Π(p∗1,p

∗
1)

∂ pA
p∗1

∂Π(p∗1,p
∗
1)

∂ pA
p∗21

=
Π

Π
+

Π−Π

Π
(
Π(p∗1, p∗1)−Π

) (Π− Π

p∗1

)

And because p∗1 <
Π

Π(p∗1, p∗1)
, we have

Π

Π
+

Π−Π

Π
(
Π(p∗1, p∗1)−Π

) (Π− Π

p∗1

)
> 1,

which implies

Π(p∗1, p∗1)−Π+
∂Π(p∗1,p

∗
1)

∂ pA
p∗1

∂Π(p∗1,p
∗
1)

∂ pA
p∗21

> 1

The right hand side of (B.19) is a strictly decreasing and continuous function

in p. Its value at p = p∗1 is strictly greater than the left hand side of (B.19), and its

limit value as p→ 1− is equal to 1, which is strictly less than the left hand side of

(B.19), as shown in the above inequality. Therefore, equation (B.19) as an equation

in p2 has a unique solution between p∗1 and 1.

Because−∂Π(p, p)
∂ pA

p(1− p) is a strictly increasing function in p and p∗2 > p∗1,

we have

−∂Π(p∗2, p∗2)
∂ pA

p∗2(1− p∗2)>−
∂Π(p∗1, p∗1)

∂ pA
p∗1(1− p∗1)

Because
Π(p∗1, p∗1)−Π+

∂Π(p∗1,p
∗
1)

∂ pA
p∗1

∂Π(p∗1,p
∗
1)

∂ pA
p∗21

> 1, we have − ∂Π(p∗1,p
∗
1)

∂ pA
p∗1(1− p∗1) >

Π(p∗1, p∗1)−Π, therefore
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−∂Π(p∗2, p∗2)
∂ pA

p∗2(1− p∗2)> Π(p∗2, p∗2)−Π

which is equivalent to

Π(p∗2, p∗2)−Π+
∂Π(p∗2,p

∗
2)

∂ pA
p∗2

∂Π(p∗2,p
∗
2)

∂ pA
p∗22

> 1.

Third, we can show that p∗3 satisfies p∗2 < p∗3 < 1.

Π(p2, p2)−Π+ ∂Π(p2,p2)
∂ pA

p2

∂Π(p2,p2)
∂ pA

p2
2

=
Π(p3, p3)−Π+ ∂Π(p3,p3)

∂ pA
p3

∂Π(p3,p3)
∂ pA

p2
3

(B.20)

Given
Π(p∗2, p∗2)−Π+

∂Π(p∗2,p
∗
2)

∂ pA
p∗2

∂Π(p∗2,p
∗
2)

∂ pA
p∗22

> 1 as shown in step 2, we can similarly

prove that equation (B.20) has a unique solution p∗3 between p∗2 and 1.

These steps can be carried out for any k ∈ N, therefore, for all k ∈ N, p∗k <

p∗k+1 < 1.

Because
{

p∗k
}∞

k=1 is strictly increasing sequence, and has an upper bound 1,

limk→∞ p∗k exists and limk→∞ p∗k ≤ 1.

Take limits of the two sides of difference equation (B.16) as k→ ∞, we can

solve that limk→∞ p∗k = 1.
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N

∑
k=1

x∗k =
N

∑
k=1

Π

− ∂Π(p∗k ,p
∗
k)

∂ pA
p∗2k

=
Π

Π−Π

N

∑
k=1

Π−Π

− ∂Π(p∗k ,p
∗
k)

∂ pA
p∗2k

=
Π

Π−Π

N

∑
k=1

Π(p∗k , p∗k)−Π+
∂Π(p∗k ,p

∗
k)

∂ pA
p∗k

− ∂Π(p∗k ,p
∗
k)

∂ pA
p∗2k

−
Π(p∗k , p∗k)−Π+

∂Π(p∗k ,p
∗
k)

∂ pA
p∗k

− ∂Π(p∗k ,p
∗
k)

∂ pA
p∗2k


=

Π

Π−Π

−Π(p∗1, p∗1)−Π+
∂Π(p∗1,p

∗
1)

∂ pA
p∗1

− ∂Π(p∗1,p
∗
1)

∂ pA
p∗21

+
Π(p∗N , p∗N)−Π+

∂Π(p∗N ,p
∗
N)

∂ pA
p∗N

− ∂Π(p∗N ,p
∗
N)

∂ pA
p∗2N


=

Π

Π−Π

Π

Π
+

Π(p∗N , p∗N)−Π+
∂Π(p∗N ,p

∗
N)

∂ pA
p∗N

− ∂Π(p∗N ,p
∗
N)

∂ pA
p∗2N


=

Π

Π−Π
+

Π

Π−Π

Π(p∗N , p∗N)−Π+
∂Π(p∗N ,p

∗
N)

∂ pA
p∗N

− ∂Π(p∗N ,p
∗
N)

∂ pA
p∗2N

where the fourth equality is to use (B.16) to cancel out terms, and the fifth

equality is to use (B.17).

∑
∞
k=1 x∗k = limN→∞ ∑

N
k=1 x∗k = limN→∞

 Π

Π−Π
+

Π

Π−Π

Π(p∗N , p∗N)−Π+
∂Π(p∗N ,p

∗
N)

∂ pA
p∗N

− ∂Π(p∗N ,p
∗
N)

∂ pA
p∗2N


=

Π

Π−Π
+

Π

Π−Π
limN→∞

Π(p∗N , p∗N)−Π+
∂Π(p∗N ,p

∗
N)

∂ pA
p∗N

− ∂Π(p∗N ,p
∗
N)

∂ pA
p∗2N

=
Π

Π−Π
+

Π

Π−Π
(−1)

= 1

where the third equality is due to limN→∞ p∗N = 1.

In conclusion, we prove that for all k∈N, p∗k < p∗k+1 < 1, 0< x∗k , limk→∞ p∗k = 1,

and
∞

∑
k=1

x∗k = 1.

Therefore,
{(

p∗k ,x
∗
k

)}∞

k=1 is a valid mixed strategy in choosing prices.

At last, we show that for all k ∈ N, p∗k maximizes seller A’s profit when seller

B uses mixed strategy
{(

p∗k ,x
∗
k

)}∞

k=1.
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p∗1 is determined by the solution to equation (B.17).

It is easy to show that when Π(p∗, p∗)p∗ < Π,

p∗1 >
Π(p∗1, p∗1)−Π

Π(p∗1, p∗1)−Π− ∂Π(p∗1,p
∗
1)

∂ pA
(1− p∗1)

Because for all k ∈ N, p∗k+1 > p∗1, we have for all k ∈ N,

p∗k >
Π(p∗k , p∗k)−Π

Π(p∗k , p∗k)−Π− ∂Π(p∗1,p
∗
1)

∂ pA
(1− p∗1)

.

The difference equation (B.16) can be solved for p∗k+1 as a function of p∗k .

Denote the highest price p such that f
(

p, p∗k
)
> 0 as p(p∗k), the lowest price

such that f
(

p, p∗k
)
< 1 as p(p∗k).

Compare p(p∗k) with p
(

p∗k+1
)
, by substituting the expression for p∗k+1, and

rearrange, we have the above comparison is equivalent with comparing(
1− p∗k

)[(
6η2

4 +4η3η4 +7η
β

2 η4 +
3
4 η2

3 +
5
2 η

β

2 η3 +2η
β2
2

)
p∗k−

(
3η2

4 +η3η4 +2η
β

2 η4

)]
with 0.

Because p∗k satisfies p∗k < 1 and p∗k >
Π(p∗1, p∗1)−Π

Π(p∗1, p∗1)−Π− ∂Π(p∗1,p
∗
1)

∂ pA
(1− p∗1)

, we

have (
1− p∗k

)[(
6η2

4 +4η3η4 +7η
β

2 η4 +
3
4 η2

3 +
5
2 η

β

2 η3 +2η
β2
2

)
p∗k−

(
3η2

4 +η3η4 +2η
β

2 η4

)]
<

0

Therefore p(p∗k)< p
(

p∗k+1
)
.

Given opponent seller is using {(p∗k ,x
∗
k)}∞

k=1, consider whether a seller has a

profitable deviation to prices other than {p∗1, p∗2, ...}.
Consider some price p̃ ∈

[
p(p∗k), p(p∗k)

]
but different from p∗k . By charging p̃,

the seller is locally competing with opponent seller when opponent seller is charg-

ing p∗k , and is not locally competing with opponent when opponent is charging price

other than p∗k . If the prices opponent seller is locally competing with the seller’s

price, the first order derivative of seller’s profit with respect to the seller’s price is

decreasing in seller’s price. If the opponent’s price is not locally competing with the

seller’s price, the first order derivative of seller’s profit with respect to the seller’s

price is a constant. This implies when opponent is using strategy {(p∗k ,x
∗
k)}∞

k=1,

the derivative of the seller’s expected profit with respect to the seller’s price is also

78



decreasing in seller’s own price. From the main text of the paper, the derivative of

the seller’s expected profit with respect to the seller’s price when the seller’s price

is p∗k is zero. Because the derivative of the seller’s expected profit with respect

to the seller’s price is decreasing in seller’s own price, the derivative of the seller’s

expected profit with respect to the seller’s price is positive when the seller’s price is

in the range of [p(p∗k), p∗k) while the derivative is negative when the seller’s price

is in the range of (p∗k , p(p∗k)], so the seller’s expected profit by charging price p∗k is

greater than expected profit by charging any other price p̃ ∈
[
p(p∗k), p(p∗k)

]
.

Now consider prices in the range
(

p
(

p∗k−1
)
, p(p∗k)

)
. When the seller’s price is

in this range, the seller is not locally competing with any of opponent’s prices. So

seller’s expected probability of selling is a positive constant, which means expected

profit at p(p∗k) is strictly greater than profit at any other price in the range. Because

the seller’s expected profit is continuous at p(p∗k), and expected profit at p∗k is

greater than profit at p(p∗k), expected profit at p∗k is greater than expected profit at

any price in the range
(

p
(

p∗k−1
)
, p(p∗k)

)
.

Therefore, the seller’s expected profit at p∗k is strictly greater than expected

profit at any other price in
[
p
(

p∗k−1
)
, p(p∗k)

]
. This holds for all k = 1,2, ... so we

have seller has no profitable deviation to prices other than {p∗1, p∗2, ...}.
Therefore, when Π(p∗, p∗)p∗ < Π, the mixed strategy {p∗1, p∗2, ...} with corre-

sponding probabilities {x∗1,x∗2, ...} is a symmetric equilibrium between sellers.

According to Lemma 11 and Lemma 12, we know any symmetric mixed-

strategy equilibrium must have a support consisting of infinite number of prices

such that any two prices in the support do not locally compete with each other.

Therefore any symmetric mixed-strategy equilibrium takes the form {p1, p2, ...}
with corresponding probabilities {x1,x2, ...} such that pk does not locally compete

with pk+1 for all k ∈ N. This implies that necessary conditions for {p1, p2, ...}
and {x1,x2, ...} to be a symmetric equilibrium include equations B.14 and B.15.

Given these two equations have a unique solution {p∗1, p∗2, ...} and {x∗1,x∗2, ...},
{p1, p2, ...} and {x1,x2, ...}must coincide with {p∗1, p∗2, ...} and {x∗1,x∗2, ...} in order

for {p1, p2, ...} and {x1,x2, ...} to be a symmetric equilibrium.

This establishes the characterized mixed strategy {p∗1, p∗2, ...} and {x∗1,x∗2, ...} is

the unique symmetric mixed-strategy equilibrium between sellers.

Given there is no symmetric pure-strategy equilibrium between sellers when
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Π(p∗, p∗)p∗ < Π, {p∗1, p∗2, ...} and {x∗1,x∗2, ...} is the unique symmetric equilibrium

between sellers.

B.3.2 Pure-strategy Symmetric Equilibrium

As argued in the main text, if we can prove that when the opponent seller chooses

price p∗, only p∗ and 1 can be local maximum points for a seller’s profit, then we

can show condition Π≤Π(p∗, p∗)p∗ implies there is a pure-strategy symmetric

equilibrium where sellers choose p∗.

We consider three cases for seller A’s price when B’s price is p∗.

When seller A’s prices are sufficiently higher than p∗, seller A’s probability of

selling is Π regardless of the particular level of A’s price, and price 1 leads to the

highest profit among all prices that are sufficiently higher than p∗. As prices strictly

higher than 1 lead to 0 probability of selling and strictly lower profit than price 1,

1 is a local maximum point for seller A’s profit.

When A’s price is in local competition with p∗, seller A’s profit is given by

Π(pA, p∗) pA. Since by definition of p∗, first order derivative of seller A’s profit

with respect to pA is zero at p∗ and Π(pA, p∗) pA is strictly concave in pA, seller

A’s profit at p∗ is higher than profit by choosing prices nearby and is therefore a

local maximum point.

When seller A’s price is sufficiently lower than p∗, seller A’s probability of

selling is Π regardless of particular level of A’s price, and the highest price among

all prices sufficiently lower than p∗ leads to the highest profit. Whether or not this

price is local maximum point for seller A depends on whether seller A’s profit at

this price is higher than her profits at prices slightly higher. Price slightly higher

mean the price is in local competition with p∗, and seller A’s probability of selling

is a strictly concave function of the particular level of price. As the first order

condition is satisfied at p∗, and p∗ is strictly higher than the price in question, the

derivative is strictly positive at the price in question. This is implies the highest

price among all prices sufficiently lower than p∗ is not a local maximum point for

seller A.

Therefore, seller A’s profit has only two local maximum points, 1 and p∗. As

long as seller A’s profit by choosing p∗ is greater than or equal to profit by choosing
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1, which is condition Π≤Π(p∗, p∗)p∗, p∗ is a symmetric equilibrium between

sellers.

Then we can show there do not exist mixed-strategy symmetric equilibria be-

tween sellers when Π≤Π(p∗, p∗)p∗. Suppose by contradiction that there exists

a symmetric mixed-strategy equilibrium. Based on Lemma 11, the support must

be discrete. Based on Lemma 12, the support must be made of infinite number of

prices.

Given the support is made of an infinite number of price such that any two

prices in the support do not locally compete with each other, we know the infinite

number of prices must converge to 1.

Denote these infinite number of prices as {pk}∞

k=1 and the corresponding prob-

abilities of choosing pk as xk, similarly as in Chapter 2, we can show necessary

equilibrium conditions are equations B.14 and B.15.

When Π < Π(p∗, p∗)p∗, we can show that p∗2 is strictly greater than 1. There-

fore the characterized p∗2 cannot be in the support of a mixed strategy.

When Π = Π(p∗, p∗)p∗, we can show that p∗1 = p∗, x∗1 = 1, p∗k = 1 and x∗k = 0

for all k ≥ 2. Therefore the characterized mixed strategy coincides with the pure

strategy p∗.

In both cases, there does not exist a symmetric mixed-strategy equilibrium.

Therefore, when Π≤Π(p∗, p∗)p∗, p∗ is the only symmetric equilibrium be-

tween sellers.

B.4 Comparative Statics

Because −∂Π(p, p)
∂ p

p is a strictly increasing function in p, the condition that Π≤

Π(p∗, p∗)p∗ is equivalent to the following condition:

−∂Π(p, p)
∂ p

p|p= Π

Π(p,p)
≤Π(p, p)

which can be shown is

(
η

β

2 + 1
2 η3 +η4

)(
2η

β

2 + 3
2 η3 +3η4

)
4η4

− Π(p, p)(Π(p, p)−Π)

Π
≤ 0.
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As η1, η2 and ησ
2 increases, Π and Π(p, p) both increases with Π(p, p)−Π

unchanged therefore, the left hand side of the above inequality increases. Therefore

the above inequality is less likely to hold.

As η3 increases, it can be shown that the left hand side of the above inequality

increases. Therefore the above inequality is less likely to hold, too.

As η4 increases, it can be shown that the left hand side of the above inequality

decreases. Therefore the above inequality is more likely to hold.

In addition, as η1, η2 and ησ
2 increases, it can also be shown that p∗ increases as

Π(p∗, p∗) increases and p1, which is the lowest price among the countable number

of prices in the support of mixed-strategy equilibrium, increases and the probability

of choosing p1 decreases.
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Appendix C

Appendix for Chapter 4

C.1 Buyers’ Symmetric Continuation Equilibrium

C.1.1 1
2 < αA ≤ 1, 1

2 < αB ≤ 1, 1−αA < pA < αA and 1−αB < pB < αB

Case 1. (αA− pA)≤
6
7
(αB− pB)

There exists a symmetric Nash equilibrium between two buyers:

{ (
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

) }

Case 2.
6
7
(αB− pB)< (αA− pA)<

7
6
(αB− pB)

There exists a symmetric Nash equilibrium between two buyers:


(
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,(

πA∗
11 =

7(αA− pA)−6(αB− pB)

(αA− pA)+(αB− pB)
,πB∗

11 =
7(αB− pB)−6(αA− pA)

(αA− pA)+(αB− pB)

)


Case 3.
7
6
(αB− pB)≤ (αA− pA)

There is a symmetric Nash equilibrium between two buyers:
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{ (
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }

C.1.2 1
2 < αA ≤ 1,0 < pA ≤ 1−αA and 1

2 < αB ≤ 1, 1−αB < pB ≤ αB

Case 1. αA− pA ≤ αB− pB

There exists a symmetric Nash equilibrium between buyers:

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

) }

Case 2. αB− pB < αA− pA < 7
5(αB− pB)

There is a symmetric Nash Equilibrium between buyers:


(
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,(

πA∗
11 (αA, pA,αB, pB) =

6(αA− pA)−6(αB− pB)

(αA− pA)+(αB− pB)
,πB∗

11 (αA, pA,αB, pB) =
7(αB− pB)−5(αA− pA)

(αA− pA)+(αB− pB)

)


Case 3. 7
5(αB− pB)≤ αA− pA, 1−αA− pA < 7

5(αB− pB)

There exists a symmetric Nash equilibrium between two buyers:

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }

Case 4. 7
5(αB− pB)≤ 1−αA− pA < 2(αB− pB)

There exists a symmetric Nash Equilibrium between two buyers:


(
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,(

πA∗
01 (αA, pA,αB, pB) =

5(1−αA− pA)−7(αB− pB)

(1−αA− pA)+(αB− pB)
,πB∗

01 (αA, pA,αB, pB) =
8(αB− pB)−4(1−αA− pA)

(1−αA− pA)+(αB− pB)

)
(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
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Case 5. 2(αB− pB)≤ 1−αA− pA

There exists a symmetric Nash Equilibrium between buyers:

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 1,πB∗
01 (αA, pA,αB, pB) = 0

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }

C.1.3 0 < pA ≤ 1−αA and 0 < pB ≤ 1−αB

Case 1. αA− pA < 1
2 (1−αB− pB)

For buyers receiving all signal combinations, valuation of A’s goods is low

comparing to the valuation of B’s goods. Buyers always visit B.

{ (
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 1

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 0,πB∗
10 (αA, pA,αB, pB) = 1

)
,
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

) }

Case 2. 1
2 (1−αB− pB)≤ αA− pA ≤ 5

7 (1−αB− pB)

For buyers receiving (1,0), valuation of A’s goods is comparable to valuation

of B’s goods. These buyers mix between A and B. For buyers receiving signal

(1,1),(0,0),and (0,1), valuation of A’s goods is low compared to valuation of B’s

goods, they visit B.


(
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 1

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) =
8(αA− pA)−4(1−αB− pB)

(αA− pA)+(1−αB− pB)
,πB∗

10 (αA, pA,αB, pB) =
5(1−αB− pB)−7(αA− pA)

(αA− pA)+(1−αB− pB)

)
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

)


Case 3. 5
7
(1−αB− pB)≤ (αA− pA)≤

5
7
(αB− pB), (1−αA− pA)≤

5
7
(1−αB− pB)

For buyers receiving signal (1,0), valuation of A’s goods is high compared to

valuation of B’s goods, these buyers visit A. For buyers receiving (0,0), (0,1) and

(1,1) valuation of A’s goods is low compared to valuation of B’s goods, they visit

B.

85



{ (
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 1

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

) }

Case 4. 5
7
(αB− pB)≤ (αA− pA)≤ αB− pB,

αB−αA

αB− 1
2
≤ pA− pB

1
2 − pB

For buyers receiving (1,0), valuation of A’s goods is high compared to valu-

ation of B’s goods, so they visit A. For buyers receiving (1,1), valuation of A’s

goods is now comparable to valuation of B’s goods so they mix between A and B.

For buyers receiving (0,0) and (0,1), valuation of A’s goods is low compared to

valuation of B’s goods, they visit B.


(
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 1

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,(

πA∗
11 (αA, pA,αB, pB) =

7(αA− pA)−5(αB− pB)

(αA− pA)+(αB− pB)
,πB∗

11 (αA, pA,αB, pB) =
6(αB− pB)−6(αA− pA)

(αA− pA)+(αB− pB)

)


Case 5. 5
7
(1−αB− pB)≤ (1−αA− pA)≤ 1−αB− pB,

αB−αA

αB− 1
2

>
pA− pB
1
2 − pB

For buyers receiving (1,0) , valuation of A’s goods is high compared to valua-

tion of B’s goods so they visit A. For buyers receiving (0,0) , valuation of A’s goods

is comparable to valuation of B’s goods so they mix between A and B. For buyers

receiving (0,1) and (1,1), valuation of A’s goods is low compared to valuation of

B’s goods,they visit B.


(

πA∗
00 (αA, pA,αB, pB) =

7(1−αA− pA)−5(1−αB− pB)

(1−αA− pA)+(1−αB− pB)
,πB∗

00 (αA, pA,αB, pB) =
6(1−αB− pB)−6(1−αA− pA)

(1−αA− pA)+(1−αB− pB)

)
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)
,(

πA∗
10 (αA, pA,αB, pB) = 1,πB∗

10 (αA, pA,αB, pB) = 0
)(

πA∗
11 (αA, pA,αB, pB) = 0,πB∗

11 (αA, pA,αB, pB) = 1
)



Case 6. (αB− pB)≤ (αA− pA), (1−αA− pA)≤ (1−αB− pB)

For buyers receiving (1,0) and (1,1), valuation of A’s goods is high compared

to valuations of B’s goods so they visit A. For buyers receiving (0,0) and (0,1),

valuation of A’s goods is low compared to valuations of B’s goods, so they visit B

for sure.
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{ (
πA∗

00 (αA, pA,αB, pB) = 0,πB∗
00 (αA, pA,αB, pB) = 1

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }

Case 7. (αA− pA)≤ (αB− pB), (1−αB− pB)≤ (1−αA− pA)

For buyers receiving (1,0) and (0,0), valuation of A’s goods is high compared

to valuation of B’s goods, so they visit A. For buyers receiving (1,1) and (0,1),

valuations of A’s goods are low compared to valuation of B’s goods, so they visit

B.

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 0,πB∗
11 (αA, pA,αB, pB) = 1

) }

Case 8. (1−αB− pB)≤ (1−αA− pA)≤ 7
5 (1−αB− pB),

αB−αA

αB− 1
2
≤ pA− pB

1
2 − pB

For buyers receiving (1,0) and (1,1), valuation of A’s goods is high compared

to valuations of B’s goods so they visit A. For buyers receiving (0,0) valuation of

A’s goods is comparable to valuation of B’s goods, so they mix between A and B.

For buyers receiving (0,1) valuation of A’s goods is low compared to valuation of

B’s goods, so they visit B.


(

πA∗
00 (αA, pA,αB, pB) =

6(1−αA− pA)−6(1−αB− pB)

(1−αA− pA)+(1−αB− pB)
,πB∗

00 (αA, pA,αB, pB) =
7(1−αB− pB)−5(1−αA− pA)

(1−αA− pA)+(1−αB− pB)

)
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)
,(

πA∗
10 (αA, pA,αB, pB) = 1,πB∗

10 (αA, pA,αB, pB) = 0
)(

πA∗
11 (αA, pA,αB, pB) = 1,πB∗

11 (αA, pA,αB, pB) = 0
)



Case 9. (αB− pB)≤ (αA− pA)≤ 7
5 (αB− pB),

αB−αA

αB− 1
2

>
pA− pB
1
2 − pB

For buyers receiving (1,0) and (0,0), valuation of A’s goods is high compared

to valuation of B’s goods, so they visit A. For buyers receiving (1,1), valuation of

A’s goods is comparable to valuation of B’s goods, so they mix between A and B.

For buyers receiving (0,1), valuation of A’s goods is low compared to valuation of

B’s goods, so they visit B.
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(
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,(

πA∗
11 (αA, pA,αB, pB) =

6(αA− pA)−6(αB− pB)

(αA− pA)+(αB− pB)
,πB∗

11 (αA, pA,αB, pB) =
7(αB− pB)−5(αA− pA)

(αA− pA)+(αB− pB)

)


Case 10. 1−αA− pA ≤ 7
5 (αB− pB),

7
5 (1−αB− pB)≤ 1−αA− pA,

7
5 (αB− pB)≤αA− pA

For buyers receiving (1,0) and (1,1), valuation of A’s goods is high compared

to valuations of B’s goods so they visit A. For buyers receiving (0,0) valuation of

A’s goods is high compared to valuation of B’s goods, so they visit A. For buyers

receiving (0,1), valuation of A’s goods is low compared to valuation of B’s goods,

they visit B.

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 0,πB∗
01 (αA, pA,αB, pB) = 1

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }

Case 11. 7
5
(αB− pB)≤ (1−αA− pA)≤ 2(αB− pB)

For buyers receiving (1,0),(1,1) and (0,0), valuation of A’s goods is high com-

pared to valuations of B’s goods so they visit A. For buyers receiving (0,1), valua-

tion of A’s goods is comparable to valuation of B’s goods, they mix between A and

B.


(
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)(
πA∗

01 (αA, pA,αB, pB) =
5(1−αA− pA)−7(αB− pB)

(1−αA− pA)+(αB− pB)
,πB∗

01 (αA, pA,αB, pB) =
8(αB− pB)−4(1−αA− pA)

(1−αA− pA)+(αB− pB)

)
(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

)


Case 12. 2(αB− pB)< (1−αA− pA)

For buyers receiving all signals, valuation of A’s goods is high compared to

valuation of B’s goods. Buyers always visit A.

{ (
πA∗

00 (αA, pA,αB, pB) = 1,πB∗
00 (αA, pA,αB, pB) = 0

)
,
(
πA∗

01 (αA, pA,αB, pB) = 1,πB∗
01 (αA, pA,αB, pB) = 0

)(
πA∗

10 (αA, pA,αB, pB) = 1,πB∗
10 (αA, pA,αB, pB) = 0

)
,
(
πA∗

11 (αA, pA,αB, pB) = 1,πB∗
11 (αA, pA,αB, pB) = 0

) }
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C.2 Proof of Lemma 9
For ease of notation, denote π

j
st ≡ π

j
st(αA, pA,αB, pB), π

j′
st ≡ π

j
st(1, pA+(1−αA),αB, pB)

for (s, t) ∈ {(0,0),(0,1),(1,0),(1,1)}, j ∈ {A,B}, and π j ≡ π j(αA, pA,αB, pB),

π j′ ≡ π j(1, pA +(1−αA),αB, pB) for j ∈ {A,B}. We need the following result to

proceed.

Lemma 13. When pB ≤ 1−αB or pA > 1−αA and pB > 1−αB, if seller A’s

probability of selling under (1, pA+(1−αA),αB, pB) is strictly less than that under

(αA, pA,αB, pB), seller B’s probability of selling under (1, pA+(1−αA),αB, pB) is

greater than or equal to that under (αA, pA,αB, pB).

Proof. When pB ≤ 1−αB, a buyer gets nonnegative payoff from selecting seller

B, because the buyer’s net valuation for seller B’s good, conditional on getting B’s

good, is nonnegative and the probability of getting B’s good is strictly positive.

Given a buyer can always get a nonnegative payoff from selecting at least one

seller, in equilibrium the buyer either selects seller A or seller B. This means, for all

(s, t)∈ {(0,0),(0,1),(1,0),(1,1)}, πA
st +πB

st = 1, which implies πA+πB = 1. Note

that after seller A deviates to (1, pA + (1−αA)), because seller B’s information

provision and price do not change, by the same argument, we have πA′ +πB′ = 1.

If A’s probability of selling is strictly less under (1, pA + (1−αA),αB, pB) than

that under (αA, pA,αB, pB), which implies πA′ < πA, then we have πB′ > πB. This

implies B’s probability of selling is greater under (1, pA +(1−αA),αB, pB) than

that under (αA, pA,αB, pB).

When pA > 1−αA, pB > 1−αB, a buyer gets negative payoff from selecting a

seller when getting signal 0 from the seller. This implies the buyer will choose to

not select any seller when getting signal 0 from both sellers, i.e.,πA
00 +πB

00 = 0. If

the buyer gets signal 1 from at least one seller, the buyer’s probabilities of selecting

two sellers will add up to one because the buyer gets positive payoff from selecting

at least one seller. Therefore, πA
10 + πB

10 = 1,πA
01 + πB

01 = 1,πA
11 + πB

11 = 1. This

implies πA+πB = 3
4 . Note that after seller A deviates to (1, pA+(1−αA)), because

seller B’s information provision and price do not change, by the same argument as

before, we have πA′ + πB′ = 3
4 . If A’s probability of selling is strictly less under

(1, pA+(1−αA),αB, pB) than that under (αA, pA,αB, pB), which implies πA′ < πA,

because πA +πB = 3
4 and πA′ +πB′ = 3

4 , we have πB′ > πB, which in turn implies
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seller B’s probability of selling under (1, pA +(1−αA),αB, pB) is greater than that

under (αA, pA,αB, pB).

As argued in the main text, if seller A’s probability of selling under (1, pA +

(1− αA),αB, pB) is strictly greater than or equal to that under (αA, pA,αB, pB),

seller A’s profit under (1, pA +(1−αA),αB, pB) is strictly greater than that under

(αA, pA,αB, pB).

Now we focus on the situation where seller A’s probability of selling under

(1, pA +(1−αA),αB, pB) is strictly less than that under (αA, pA,αB, pB). In other

words, πA′ < πA. To prove that seller A’s profit under (1, pA +(1−αA),αB, pB) is

strictly greater than that under (αA, pA,αB, pB), there are several cases to consider.

Case 1. pA ≤ 1−αA, pB ≤ 1−αB

Sub-case 1.1 πA
11 > 0

This implies πA
10 > 0.

The argument is the following. A buyer’s payoff from selecting seller A under

signal (1,1) is equal to the payoff of selecting A under signal (1,0). This is because

first the buyer’s net valuations of seller A’s good conditional on getting A’s good

successfully is the same across two signal realizations since the buyer gets signal

1 from seller A in both cases. Second the probabilities of getting A’s good are the

same across these two signal realizations. This is because two buyers’ signals are

statistical independent, so getting a different pair of signals from two sellers does

not change the buyer’s belief on the other buyer’s signals. The buyer’s payoff from

selecting B under signal (1,1) is higher than or equal to the payoff from selecting

B under signal (1,0) because the buyer’s net valuation of B’s good conditional on

successfully getting B’s good under signal (1,1) is higher than or equal to that under

signal (1,0)1. Given πA
11 > 0, i.e., in equilibrium the buyer selects A with positive

probability under signal (1,1), the buyer must also select A with positive probability

under signal (1,0) because selecting A is equally attractive while selecting B is less

attractive.
1A buyer’s payoff from selecting B under signal (1,1) is equal to that under signal (1,0) only when

B is providing no information at all, i.e., αB =
1
2

. In this case, signal (1,1) and signal (1,0) should be

seen as the same signal because B’s signals are completely uninformative. Therefore πA
11 = πA

10.
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From πA
11 > 0 and πA

10 > 0, combined with πA > πA′ and, by Lemma 13, πB ≤
πB′ , it can be proved that πA′

11 = 1 and πA′
10 = 1 as shown in the following argument.

Under (1, pA+(1−αA),αB, pB), upon getting signal (1,1), a buyer’s net valua-

tion of seller A’s good conditional on successfully getting A’s good is the same

as that of the buyer upon getting signal (1,1) under (αA, pA,αB, pB). In both

cases, the buyer’s net valuation of seller A’s good is αA− pA. From πA′ < πA,

the probability for a buyer to get seller A’s good under (1, pA +(1−αA),αB, pB),

1− 1
2

π
A′ , is strictly greater than the probability for a buyer to get A’s good under

(αA, pA,αB, pB), 1− 1
2

π
A. Therefore under (1, pA +(1−αA),αB, pB), a buyer’s

payoff from selecting A upon getting signal (1,1) is strictly greater than the buyer’s

payoff from selecting A upon getting signal (1,1) under (αA, pA,αB, pB). Similarly,

from πB ≤ πB′ , a buyer’s payoff from selecting B upon getting signal (1,1) under

(1, pA +(1−αA),αB, pB) is strictly less than that of the buyer upon getting sig-

nal (1,1) under (αA, pA,αB, pB). Therefore, given the buyer selects A with strictly

positive probability upon getting signal (1,1) under (αA, pA,αB, pB), the buyer will

select seller A with probability 1 upon getting signal (1,1) under (1, pA + (1−
αA),αB, pB), because under (1, pA +(1−αA),αB, pB), selecting A is strictly more

attractive and selecting B is strictly less attractive.

Therefore, πA′ ≡
πA′

11 +πA′
10

4
=

1
2

, and A’s probability of selling under (1, pA +

(1− αA),αB, pB) is 1− (1− πA′)2 = 3
4 . Even if A’s probability of selling un-

der (αA, pA,αB, pB) is 1, which is the highest probability seller A can sell under

(αA, pA,αB, pB), seller A’s probability of selling under (1, pA +(1−αA),αB, pB)

is still larger than one half of the probability of selling under (αA, pA,αB, pB).

This means A’s profit under (1, pA + (1−αA),αB, pB) is strictly larger than A’s

profit by under (αA, pA,αB, pB) since pA +(1−αA)≥ 2pA from the condition that

pA ≤ 1−αA.

Sub-case 1.2 πA
11 = 0

This implies πA
01 = 0, which in turn implies πA ≤ 1

2 . This implies seller A’s

probability of selling under (αA, pA,αB, pB) is less than or equal to 3
4 . There are

two possibilities to consider.
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One possibility is πA
10 > 0. From πA

10 > 0 combined with πA > πA′ and by

Lemma 13, πB ≤ πB′ , we have πA′
10 = 1. This implies πA′ ≥ 1

4 and seller A’s prob-

ability of selling under (1, pA + (1−αA),αB, pB) is greater than or equal to 7
16 .

Because 7
16 is greater than half of 3

4 , which is the upper bound of seller A’s prob-

ability of selling under (αA, pA,αB, pB), A’s profit under (1, pA +(1−αA),αB, pB)

is strictly larger than A’s profit under (αA, pA,αB, pB).

Another possibility is πA
10 = 0. This implies πA

00 = 0. Therefore, πA = 0. This is

the case ruled out because it is assumed that seller A can sell with a strictly positive

probability under (αA, pA,αB, pB).

Case 2. pA ≤ 1−αA, pB > 1−αB

In this case, we know πA
10 = 1,πB

10 = 0 and πA
00 = 1, πB

00 = 0. πA
01 = 1−πB

01, and

πA
11 = 1−πB

11. Therefore, πA =
2+πA

01 +πA
11

4
and πB =

2−πA
01−πA

11
4

.

Also we know that πA′
10 = 1, πB′

10 = 0 and πA′
00 = 0, πB′

00 = 0. πA′
01 = 0, πB′

01 = 1,

and πA′
11 = 1−πB′

11. Therefore, πA′ =
1+πA′

11
4

and πB′ =
2−πA′

11
4

.

There are two sub-cases to consider.

Sub-case 2.1 πA
01 > 0.

This implies πA
11 = 1 and πB

11 = 1−πA
11 = 0.

Therefore, πA =
3+πA

01
4

and πB =
1−πA

01
4

.

From πA′ =
1+πA′

11
4

, we have πA > πA′ , and because πB′ =
2−πA′

11
4

, we have

πB ≤ πB′ .

From πA > πA′ and πB ≤ πB′ , we have πA′
11 ≥ πA

11, which implies πA′
11 = 1.

Therefore, πA′ =
1
2

. Seller A’s expected probability of selling is 3
4 . Similarly with

Sub-case 1.1, seller A’s expected profit under (1, pA +(1−αA),αB, pB) is strictly

larger than A’s profit under (αA, pA,αB, pB).

Sub-case 2.2 πA
01 = 0.

In this sub-case, πA =
2+πA

11
4

, πA′ =
1+πA′

11
4

,πB =
2−πA

11
4

and πB′ =
2−πA′

11
4

.

Suppose πA
11 > πA′

11. Because πA
11 +πB

11 = 1, πA′
11 +πB′

11 = 1, and πA
11 > πA′

11, we

have πB
11 < πB′

11. This implies πB < πB′ .
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Because πA > πA′ and πB < πB′ , we have πA
11 ≤ πA′

11, which contradicts with

πA
11 > πA′

11.

Therefore, it must be πA
11 ≤ πA′

11.

Because πA ≡ 2+πA
11

4
,and πA′ ≡ 1+πA′

11
4

≥ 1+πA
11

4
= π

A− 1
4

.

It can be shown that seller A’s probability of selling under πA′ , 1−
(

1−πA′
)2

,

is greater than or equal to half of the probability of selling for seller A under πA,

1−
(
1−πA

)2.
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