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Abstract 

The vast majority of cameras in the market nowadays can only capture a limited dynamic 

range of a scene. To generate high dynamic range (HDR) images, most existing methods use 

multiple images obtained from a single low dynamic range (LDR) camera at consecutive 

instances. These methods can obtain good quality HDR images for still or slow motion 

scenes but not for scenes with fast motion.  

In this thesis, we propose the use of two LDR cameras which have different exposures. To 

generate an HDR image, the two differently exposed LDR images of the same scene are used. 

The two LDR images should be captured at the same instance, so as to deal with scenes with 

fast motion. The most challenging step in this approach is to obtain accurate estimates of the 

disparity maps of the scenes. This will allow us to correctly align the pixels from the two 

differently exposed pictures when forming the HDR images.  

Very few state-of-the-art stereo matching algorithms can deal with the problem of obtaining 

accurate estimates of the disparity map from two differently exposed images. This is because 

the input LDR images that are used to construct HDR images have large radiometric changes. 

In addition, the two input LDR images usually have saturations in different areas. To obtain 

accurate disparity maps, we present a novel algorithm that obtains an initial estimate of the 

disparity map. Then a refinement step is used to minimize the edge effect and interpolates the 

values in the saturated regions.  

Compared to other state-of-the-art methods, our algorithm has a simpler set up with only two 

standard commercial LDR cameras. The offline processing of the LDR images has a simpler 

cost function, especially the cost function we use in the refinement step of the disparity map. 

This reduces the computational complexity and thus the processing time of the LDR images 

to form the HDR image. Moreover, the disparity map computed by our algorithm can tolerate 

greater radiometric changes and saturations. Therefore, the HDR images constructed by our 

algorithm are smoother and have fewer defects than those constructed by other methods. 
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Chapter 1 Introduction 

1.1 Background 

We now live in a world with overwhelming information. One of the most common medium 

we use to communicate and store the information in is that of images. It is very important 

that the images can accurately represent the details in the original scene in order to preserve 

all the information and avoid miscommunication. The first digital camera, a camera that uses 

a charged coupled device (CCD) imager and digitizes the captured scene and store the digital 

info on a standard cassette, was invented in 1975. Since then, the imaging technology has 

leaped into a new era by significantly extending the dynamic range in capturing real world 

luminance.  

However, the majority of cameras in the market nowadays are still incapable of capturing the 

entire dynamic range of a scene. For a scene, the dynamic range refers to the ratio between 

the brightest and darkest parts of the scene. The dynamic range of real-world scene can be 

quite high. Ratios of 100,000:1 is quite common in the natural world. Human visual system 

can process a simultaneous dynamic range of 50,000:1 or more and can adapt to a much 

larger range. The images captured by the cameras in the market now can only have dynamic 

ranges between 300:1 to 1,000:1.  Therefore, these images are considered as low dynamic 

range (LDR) images.  

High dynamic range (HDR) imaging provides the capacity to represent the wider dynamic 

range of the human visual system (HVS) in digital form. It assigns pixels with floating point 

values. The use of floating point values gives HDR images several advantages over LDR 

images. In an LDR image, areas that are too dark are clipped to black and areas that are too 

bright are clipped to white. In an HDR image, pixel values are normalized between 0.0 and 

1.0 with 0.0 representing black and 1.0 representing white. Dark areas and bright areas in 

HDR images are assigned different values close to 0.0 and 1.0. Therefore, HDR images can 

preserve details in a scene with large dynamic range. The use of the floating point also gives 

HDR images perceptual cues which increase the apparent brightness. Another advantage of 



2

HDR images is that they preserve optical phenomena such as reflections, refractions and 

transparent materials such as glass. In LDR images, the pixels representing all the bright light 

sources in a scene such as the sun are assigned to have the maximum possible integer value. 

However, the reflected light should have value less than the light source. In HDR images, the 

reflected light is assigned with values close but less than 1.0, while the bright source can 

assume values that equal to 1.0. This allows reflections off surfaces to maintain realistic 

brightness for bright light source. Therefore, HDR images are able to better represent scenes 

perceived by human eyes. 

In the past, there has been a strong effort to develop high-dynamic-range (HDR) display and 

camera hardware, as well as the supporting processing algorithms. The idea of using several 

differently exposed images to capture details in the extreme range of luminance was 

pioneered by Gustave Le Gray in 1850s. He tried to render images showing both the sky and 

the sea. The use of high dynamic range imaging (HDRI) in computer graphics was first 

introduced by Greg Ward in 1985 with his open-source Radiance rendering and lighting 

simulation software which created the first file format to retain a high-dynamic-range image. 

However, due to limitations imposed by the computer processing power and displaying 

technologies in the past, HDR images started to gain wider usage only in the past decade. In 

2005, Photoshop CS2 introduced the “Merge to HDR” function which combines LDR 

images of a still scene taken under different exposures at consecutive time instances to form 

an HDR image. This year, iphone 4 also introduced HDR photography functionality in iOS 

version 4.1. 

Besides a wider usage of HDR images, there is also an increasing demand for HDR videos 

Modern movies are often filmed with cameras featuring a higher dynamic range, and legacy 

movies can be upgraded even if manual intervention would be required for some frames. In 

addition, special effects, especially those in which real and synthetic footage are seamlessly 

mixed, require both HDR shooting and rendering. HDR video is also required in all 

applications in which capturing temporal aspects of changes in the scene is required with 

high accuracy. This is important in particular in monitoring of some industrial processes such 

as welding, predictive driver assistance systems in automotive industry, surveillance systems, 
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to name just a few possible applications. HDR video can also speed up the image acquisition 

in all applications where a large number of static HDR images are required, as for example in 

image-based techniques in computer graphics. Finally, with the spread of TV sets featuring 

enhanced dynamic range, broadcasting HDR video will be important, but may take a long 

time to actually occur due to standardization issues. For this particular application, enhancing 

current LDR video signal and transforming them to HDR videos by intelligent TV sets seems 

to be a more viable near-term solution. 

Even though there are a number of products in the market labeled with HDR capabilities, the 

dynamic range, the accuracy and the tolerance to the movement in the scene of the output 

images and videos are far from satisfactory. The major difficulty is in developing the 

hardware for HDR capturing devices that can be widely available in the market. It is very 

expensive to manufacture sensors that can register contrasts beyond low dynamic range. Few 

studios have so far managed to develop HDR cameras. However, their solutions are 

expensive and require a long time to capture the full dynamic range. A few companies such 

as RED and Arri have been developing digital sensors capable of a higher dynamic range, but 

have yet to be released or made affordable. Therefore, there is a need for low cost solutions 

that can synthesize HDR content using only LDR capturing devices before the hardware 

obstacle can be overcome. 

1.2 Thesis Objective 

As mentioned in the previous chapter, the HDR cameras with a single sensor may not be 

available in the market soon due to the limitation of the hardware. Efforts have been put to 

derive algorithms that can generate HDR images from LDR images captured by LDR camera. 

Most of the existing methods perform well for still scenes but fail for scenes with motion. 

Videos however have become a major source for communicating and storing information 

nowadays. There is an increasing demand for algorithms to synthesis HDR videos with 

reasonable computational complexity. In this thesis, we aim to develop a method that 

generates HDR images from LDR ones and that are better than existing methods in three 

aspects: 
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The algorithm should require a minimum number, namely two, LDR cameras so 

that the equipment is portable. 

The algorithm should not be computationally intensive. This is one of the key 

factors for a technology to be available in the market 

The algorithm should be able to construct more accurate images for different 

cases ranging from stationary scenes to scenes with fast motion. The algorithm 

can be applied easily to generate HDR videos by combine corresponding frames 

of the input LDR videos. 

Chapter 2 reviews the existing algorithms in constructing HDR images from LDR images. It 

also reviews the state-to-art technologies in stereo matching. This is because the most 

challenging and critical part in the algorithm presented by this thesis lies in finding accurate 

special shifts between corresponding pixels in the input LDR images. In particular, two 

algorithms, Adaptive Normalized Cross Correlation (ANCC) [9] and Multi-view Multi-

exposure algorithm [7], are covered in details. They are the most relevant algorithms which 

inspired me in developing the algorithm presented by this thesis. 

Chapter 3 gives the explanation of our algorithm. It puts special emphasis on the image 

model and the cost functions used by our algorithm to find accurate spatial displacement 

between corresponding pixels in the input LDR images. 

Chapter 4 compares the experimental results obtained using our algorithm. It also provides 

the statistics of the HDR images constructed as compared with the HDR images generated 

using the two state-of-the-art algorithms that have inspired me. The conclusion and proposals 

for future work are discussed in Chapter 5. The appendix describes a filter used in our 

algorithm: the Census filter. 
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Chapter 2 HDR Image Construction 

2.1 Introduction 

In recent years, several approaches have been developed to produce scenes with expanded 

dynamic ranges using LDR images. These approaches can be categorized into three types 

depending on the number of cameras and the number of LDR images used to construct the 

HDR images: 

Single camera with single LDR image. These approaches are most useful to 

recover the details in the old low quality images with valuable information 

Single camera with multiple LDR images taken under different exposures at 

consecutive time instances. 

Multiple cameras with multiple LDR images taken under different exposures at 

the same time instance. 

2.2 HDR Image Construction from a Single LDR Image 

For still scenes, one approach is to use a single LDR image and computes the inverse tone 

mapping curve of the camera used to capture this image. A tone mapping function converts a 

high dynamic range to a low dynamic range. Various tone mapping curves that compress the 

pixel values in images with high dynamic ranges to images with low dynamic ranges have 

been developed. By finding the inverse of these tone mapping curves, the pixel values in an 

LDR image are converted back to the high dynamic range [1].  

2.2.1 Tone Mapping 

Tone mapping is a process that converts a set of high dynamic range signals to a set of lower 

dynamic range signals. It addresses the problem of strong contrast reduction from the scene 

values to the displayable range while preserving the image details and color appearance. This 

is important as, in general, viewers appreciate viewing the original scene content. Tone 

mapping is widely used in image processing and computer graphics to display image signals 
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on various displays with limited dynamic ranges such as print-outs, CRT or LCD monitors 

and projectors.  

Tone mapping are achieved by applying tone mapping operators on the high dynamic range 

signals. Various tone mapping operators have been designed to reproduce visibility and the 

overall impression of brightness, contrast and color of the real world onto a limited dynamic 

range display. Tone mapping operators can be classified into two categories: global and local. 

Global tone mapping operators are not computationally intensive. An example of a global 

tone mapping operator is the exponential function proposed in [REFERECE 21 in 

FRAMEWO]: 

where  is the compressed luminance value at pixel .  is the world luminance at 

pixel .  represents the average luminance of the scene. Although global tone mapping 

operators have the advantage of low computational cost, they do not cope well with huge 

contract ratios. Local tone mapping operators have mapping functions that vary spatially 

depending on the neighbourhoods of pixels. Such operators concentrate on preserving 

contrast between neighbouring regions rather than absolute value. They are motivated by the 

fact that the human perception is most sensitive to contrast in images rather than absolute 

intensities. These operators are generally capable of compressing greater dynamic range. 

They usually also produce very sharp images, which preserve small contrast details very well. 

An example of a local tone mapping operator is the Gradient domain high dynamic range 

compression operator [18]. However, local operators often produce artefacts around the 

edges with high contrast.  

2.2.2 Inverse Tone Mapping 

One fairly straight way to recover the HDR image from the tone mapped LDR image is to 

find the inverse tone mapping operators. A framework for such an approach is laid out in [1]. 

The framework consists of four steps: 



7

Generate an initial HDR image by applying the calculated inverse tone mapping 

operator. The inverse tone mapping operators of many monotonically increasing 

tone mapping operators can be found easily. 

Identify the areas of high luminance using methods associated with importance 

sampling of light sources such as median cut. 

Create a map from density estimation of the area identified in step 2. This is to 

levitate the visual artefacts in the final HDR image due to the saturation in the 

bright areas in the LDR image. 

The final HDR image is composed through weighted linear interpolation of the 

input LDR image with the inverse tone mapping operator found in step one. The 

weight is calculated based on the map found in step 3. 

Although this approach tries to solve the problem of the lost details in the saturated or 

coarsely quantized regions of the LDR image, it still cannot recover all the lost information 

in the areas. As a result, the constructed HDR images have errors and blurred regions, which 

are unacceptable for commercial use. However, these algorithms are very useful when 

upgrading old images and videos. 

2.3 HDR Image Construction from Multiple LDR Images 

2.3.1 Algorithms Using Single Camera 

A better approach than that of using inverse tone mapping operators to construct HDR 

images is to use a single camera to capture multiple LDR images but with different exposures 

and at consecutive time instances. Each LDR image registers one part of the entire dynamic 

range of the scene. For example, one LDR image can have very low exposure to capture the 

details in the bright regions. Another LDR image can have very high exposure to capture the 

dark areas. A final HDR image that spans the entire dynamic range can be generated by 

combining these LDR images [5]. Such an approach avoids the loss of information due to 

saturation. This problem arises when inverse tone mapping operators are used to construct 

HDR images. Such approaches generally consist of the following four steps: 
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Extract the luminance component of the input LDR images. This is because the 

change in the exposure only affects the luminance channel 

Find the camera response function from the input LDR images. The camera 

response function is a radiometric model which represents the mapping of the 

radiance (falling on the camera sensor) to the luminance pixel values in the LDR 

images. 

Obtain the inverse camera response function. Use the inverse camera response 

function to obtain the radiance maps of the LDR images. Combine the radiance 

maps to form the HDR image radiance map.  

Construct the final HDR image by integrating the HDR image radiance map with 

the chrominance components in the input LDR images. The resultant integration 

forms the HDR image. 

The key step in such approaches is to find an accurate camera response function so that the 

pixel values in the LDR images can be correctly mapped to the radiance falling on the 

camera sensor. When the image of the scene is captured, the camera processes the amount of 

light (radiance) fallen on the sensor in two main steps, to convert the radiance to the 

luminance pixel values in the output image. In the first step, the camera compresses the 

dynamic range of the scene to the dynamic range that can be handled by the display system. 

In the second step, the compressed values are quantized to integer values. The integer values 

form the output as the pixel values in the image. This whole process can be represented by a 

non-linear function, called the camera response function. It is a function that represents how 

the radiance arriving on an image film/CCD, after passing through the lens, is transformed to 

actual pixel "brightness" values. The most popular function used by cameras for compressing 

the dynamic range of the scene is gamma correction function. Therefore, most algorithms use 

a gamma correction to model the camera response function. 

Various algorithms have been developed in the past to find an accurate camera response 

function. Most algorithms start with modeling the camera response function as a gamma 

correction function because most of the cameras use such a function to compress the dynamic 

range of the scene as explained above. Then they adopt the model suggested by Mitsunaga in 
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[5]. Mitsunaga models the camera response function as a high order polynomial because it is 

proved that the gamma correction function can be approximated by a high order polynomial 

with satisfactory accuracy [5].  We have adopted this model in our algorithm presented in 

this thesis and will explain it in details in the next chapter.  

The algorithms that use a single LDR camera to capture multiple images at consecutive time 

instances and then construct HDR images work will for still scenes. Some of the algorithms 

have been implemented for commercial use, such as the HDR function in Photoshop. Many 

photographers also use this approach to synthesis HDR images. Such approaches however 

result in defects when there is motion in the scene. This is because the positions of 

corresponding pixels in different LDR images shift their locations in the area of an image 

having motion. If the HDR images are constructed by directly summing the pixels with the 

same coordinated in the left and right LDR images, errors appear at the areas with motion. 

Such a requirement limits the use of these algorithms because most of the scenes in the world 

have motion. It also restricts the use of these algorithms in constructing HDR videos from 

LDR ones. 

The static scene (i.e. that with no motion) requirement can be removed by designing special 

capturing systems. Beam splitters are used to generate multiple copies of the optical image 

detector whose exposure is pre-set by using an optical attenuator or by changing the exposure 

time of the detector. This approach is able to produce high dynamic range images in real time. 

Since the LDR images captured by such method are taken at the same instances, the scene 

objects are free to move during the capture process. However, such a set up is expensive. 

This is because it requires multiple image detectors, precision optics for the alignment of all 

the acquired images. It also requires additional hardware to process the LDR images. 

Another approach is to use a different CCD design [19]. In this approach, each detector cell 

includes two sensing elements (potential wells) of different sizes (and hence sensitivities). 

When the detector is exposed to the scene, two measurements are made within each cell. The 

camera also has a special chip with an algorithm that processes the signals and outputs the 

final HDR image directly. However, this technique is expensive as it requires a sophisticated 
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detector to be fabricated. In addition, the spatial resolution is reduced by a factor of two since 

the two potential wells take up the same space as two pixels in a conventional image detector. 

Moreover, the technique is forced to process the outputs of the two wells on the chip. This 

forces the algorithm to be simple because the chip power is limited. Therefore, it limits the 

accuracy of the results. 

A novel idea has been proposed to set up sensors that have spatially varying pixel exposures 

[2]. In this configuration, pixels in the image are grouped into a square of four.  Each of the 

four pixels has different exposures. This pattern repeats over the entire images. The key 

feature of this set up is that it simultaneously samples the spatial dimensions as well as the 

exposure dimensions of image radiance. If one pixel in the image is saturated, its surrounding 

pixels (which would be captured at different exposures) are unlikely to be saturated. When a 

pixel produces zero brightness (under-saturation because the area is dark and the exposure 

time is short), it is likely to have a neighborhood pixel that produces non-zero brightness. 

Since images are expected to be smooth, except at the edges, the unsaturated surrounding 

pixels can be used to interpolate the central saturated pixel. The camera response function is 

calculated from the valid pixel values. The pixel values with zero brightness and maximum 

brightness are recovered by interpolating its neighboring unsaturated pixels. The advantage 

of this set up is that it does not require the scene to be still nor it requires any on chip 

processing of the signals before outputting the image.  

The spatially varying exposure can be achieved by directly etching the pattern on the CCDs. 

It can also be achieved by lower cost solutions such as placing a mask outside the imaging 

lens next to the detector plane. A primary lens is used to focus the scene onto the mask plane. 

The light rays that emerge from the mask are received by the imaging lens and focused onto 

the detector plane. A diffuser may be used to remove the directionality of rays arriving at the 

mask. Then the imaging lens is focused at the diffuser plane. However, this setup would 

increase the cost of the LDR cameras as manufacturers have to redesign their production 

process to include the mask in the camera. In addition, it also reduces the effective resolution 

of the resulting HDR because some of the pixels with high exposure are expected to be 

saturated and some of the pixels with very low exposure are expected to produce low and 
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noisy intensities [2]. Due to the high cost and low effective resolution, this solution is also 

not suitable for manufacturing commercial cameras. 

Recently, another algorithm that uses a single LDR camera to capture multiple LDR images 

that are differently exposed has been proposed [3]. This algorithm use commercial LDR 

camera to capture images at consecutive instances and process the LDR images offline to 

generate HDR image. This algorithm distinguishes itself from other algorithm in following 

two aspects: 

The capturing system is programmed to automatically vary the exposures under 

which consecutive LDR images are taken. 

The offline algorithm calculates the motion vectors between consecutive images. 

The HDR image is formed by combining different LDR images after spatial 

adjustment [4]–[6] using the motion vectors. 

Since the algorithm calculates the motion vectors, it is not limited to still scenes and can be 

used to generate HDR videos. However, the post processing algorithm is computationally 

expensive. In addition, the resulting pictures have significant artifacts in those scenes with 

high motion because computing accurate motion vectors for scenes with fast motions is not 

easy [3]. 

2.3.2 Algorithms Using Multiple Cameras 

Because constructing the fast motion scene in HDR images is difficult to achieve using a 

single camera, the use of multiple cameras to obtain multi-view, multi-exposed LDR images 

have been proposed [7]. Our algorithm also falls into this category. The two major 

advantages of such an approach are: 

They use standard commercial LDR cameras. They do not require any special 

designs of CCDs. Therefore, the set up cost using such an approach is low and 

thus possible for commercial uses. 

This approach takes LDR images at the same instance. No temporal adjustment 

(calculation of motion vectors) is required to find the corresponding pixels in the 
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different LDR images. Therefore, they are capable of construct HDR images for 

scenes with high motion. 

However, one challenge faced by such an approach is to find the spatial adjustment for 

corresponding pixels in the LDR images. This is because the LDR cameras are placed 

adjacent to each other. The pixels that register the same area in a scene appear at slightly 

different locations in the LDR images. It is important to correctly find the shifts for each 

pixel in the LDR images for the following two purposes: 

To accurately calculate the camera response function. The camera response 

function is calculated by exploiting the difference in the values of corresponding 

pixels under different exposures. 

To accurately construct the HDR images. The pixel values of the HDR images 

are usually calculated as a weighted sum of the corresponding pixels in the input 

LDR images. 

2.4 Stereo Matching 

Stereo matching is a field in computer vision that has matured over the last few decades. It is 

mainly used to estimate the distance between the camera and the objects in the scene. Such 

distance is called the depth of the objects in the scene. In order to find the depth of the 

objects, more than one camera are aligned and placed next to each other. Images of the same 

scene are captured by these cameras. Since images are taken at slightly different locations, 

the positions of pixels representing the same objects shift their locations in these images. The 

pixels representing objects nearer to the camera have larger shifts than those pixels 

representing objects further away from the camera.  

2.4.1 Disparity Map 

A convenient way of representing the depth of the objects is to plot an image, named 

disparity map. The horizontal (vertical) disparity is defined as a difference between the 

column (row) coordinates of pixel locations of corresponding pixels in the left and right 
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image of a stereo pair. In stereo matching, images are usually rectified first before calculating 

the disparity map so that the search for the corresponding pixels can be performed in one 

direction (either horizontal or vertical) only. This is because the cameras used to capture the 

stereo images are usually very hard to be aligned to have the exactly same image plane.  

Assume the cameras used to capture the stereo images can be approximated by the pin-hole 

camera model with positions (exaggerated) shown in Figure 2.1. and  represent the 

focal points of left and right cameras.  and  represent the image plane of the left and 

right cameras.  and are called the epipolar lines of the left and right images. If the 

two lines are not in the same plane, the displacement of pixel register the point in the right 

image relative to the left images is in both horizontal and vertical direction. This complicates 

the matching process because the algorithm has to search in both directions for each pixel in 

the left image to find the corresponding ones in the right images. In order to simplify the 

matching process, the image coordinates from the cameras can be transformed to emulate 

having a common image plane so that their epipolar lines coincide with each other. Namely, 

. This process is called image rectification. As a result, for each point in one 

image, its corresponding point in the other image can be found by looking only along a 

horizontal line. 

Figure 2.1 Epipolar geometry for the case of using two cameras to capture stereo images 

In a disparity map, pixels representing the objects nearer to the camera are assigned greater 

values, and pixels representing the objects further away from the camera are assigned with 
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smaller values. Equation (1) shows such a relationship between the disparity value and the 

depth of the object.  The depth is inversely proportional to disparity and is obtained using the 

property of similarity triangles shown in Figure 2.2. 

where 

represents the radial distance, which is the perpendicular distance between the object and 

the baseline of the two cameras. represents the focal length of the camera. is the distance 

between the two cameras along the baseline. represents the displacement in terms of the 

number of pixels of the corresponding pixel between the two images. 

Figure 2.2 Relationship between the disparity in the disparity map and the distance of the object from the 

image plan of the cameras 



15

As mentioned in the previous section, if we use multiple cameras placed next to one another 

to capture multiple LDR images under different exposures and at the same time instance to 

construct HDR images, one of the key step is to find an accurate disparity map for the input 

LDR images. All the stereo correspondence algorithms have a way of measuring the 

similarity of image locations in order to construct the disparity map. The function used to 

measure this similarity is called the matching cost. For each pixel in the image, the matching 

cost is for all the possible disparities. The disparity value that produces the smallest matching 

cost is chosen to be the value of this pixel in the disparity map. Depending on how this 

matching cost function is defined, stereo matching algorithms can be categorized into two 

categories: local and global. 

2.4.2 Local Stereo Matching Algorithm 

Local stereo algorithms are window based. They usually aggregate the sum of a certain cost 

measure over a window and use it as the cost function. Simple cost functions are the sum of 

absolute differences (SAD), sum of squared differences, normalized cross correlation (NCC) 

or sampling-insensitive absolute differences [9]. More complicated cost functions involve 

applying filters such as Laplacian of Gaussian (LoG) filter, Rank filter and Census filter 

(explained in the Appendix) to the images first and then calculating the absolute differences 

(for the LoG filter) or Hamming distance (for Rank and Census filters). The latter functions 

are more robust to noise [9]. This is because of their ability to tolerate small differences 

between corresponding pixel values in different input images.  

The matching decision for a pixel (when using local stereo methods) is made solely based on 

its surrounding local pixels within the window the method uses. The main problem with such 

methods is how to determine the optimal size, shape of the window and the weight 

distribution of the pixels within the window relative to the central pixel. These restrictions 

cause the local stereo methods to form disparity maps with more errors. In addition, since the 

local stereo methods lack global information about the image, the disparity maps they 

generate tend to have less smoothness and less well defined edges. 
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2.4.3 Global Stereo Matching Algorithm 

Global stereo methods, in most cases, rely on Bayesian stereo matching. The relationships 

among all the pixels in the two input images are encoded into a global objective function 

which usually consists of a cost term and a smoothness term. Therefore, the global objective 

function avoids the optimization problems faced by local stereo matching methods, related to 

the size and shape of the matching window.  

Most global stereo methods share the following two common assumptions: 

The stereo images are rectified (explained in the previous chapter) so that the 

disparity between two pixels in two images is in the horizontal direction. 

The disparity map between two rectified images can be modeled as a Markov 

Random field (MRF).  

MRF is very powerful at modeling spatial relationships. The global objective function 

usually consists of an observation term and a smoothness term. The observation term usually 

represents the data in the images, while the smoothness term ensures the continuity in the 

disparity map. The disparity map is calculated by optimizing this global objective function 

usually via belief propagation or graph cuts [8]. 

Most local and global algorithms share the common assumption that corresponding pixels in 

the stereo images have similar values, i.e. they have small radiometric changes between 

corresponding pixels. Thus, these methods perform well on images of the same illumination 

and exposure, which is not the case in our present application. Global stereo matching 

methods are more robust to noise introduced by a camera during the image capture process. 

However, when the radiometric variations between the input images are large, very few 

algorithms (such as the adaptive normalized cross-correlation (ANCC) algorithm proposed in 

[10]) can successfully estimate accurate disparity maps [9].  Even fewer algorithms can 

tolerate the presence of saturated regions. ANCC has been shown to fail in saturated image 

areas [10]. As mentioned earlier, the LDR images in our setup may have large radiometric 

changes and saturated regions. 



17

2.4.4 Adaptive Normalized Cross Correlation Function 

Recently, the adaptive normalized cross-correlation (ANCC) function was proposed as the 

matching cost function to find the disparity maps of stereo images captured under 

illumination and camera variations [10]. It uses a modified version of the standard matching 

cost function NCC and performs matching in the Log space to enable the algorithm to find 

disparity maps for the stereo pair which has the large radiometric changes between the 

corresponding pixels.  

Before deriving ANCC function, the paper [10], as most of other algorithms, models the 

camera response function as a gamma correction as discussed in the previous chapter:  

( ) ( ) ( )c cC p p R p

where ( )C p  is the value at pixel p  in channel c . This value measures the amount of light 

( )cR p , namely radiance, falling on the sensor of the camera. ( )p  is a function that depends 

on the angle between the light direction and the surface normal at the point registered by 

pixel p.  

The motivation of the paper [5] is to propose a cost function that is independent of factors 

( )p  and k . This is achieved by transforming the pixel value in each channel through a 

series of steps we are going to discussed shortly. As a result, the algorithm can tolerate large 

radiometric changes in the input images. This is achieved in the following steps. 

First, the algorithm transforms the pixel values in R, G and B channels to the Log space. This 

is for the use of the invariant property of NCC to the affine transformation of pixel values in 

the images [19] [20]. Assume , ,  and  are constants and  and are the pixels 

values corresponding to each other in the left and right images , the invariant property of 

NCC enables us to use NCC as the cost function to match pixels in the left and right stereo 

images if the pixels values in images undergo the following transformation: 
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Next, choromaticity normalization is used to eliminate the effect of light direction, namely 

the factor ( )p . This is achieved by subtracting the average value of a pixel over three color 

channels from its actual value in each of the color channel.  

Assume ( )rR p , ( )gR p  and ( )bR p  are the values of the pixel p  in each of the channel R, G 

and B. rk , gk  and bk  are the factors defined in equation (3) in each of the channel R, G and 

B. The effect of factor ( )p  can be eliminated by applying the following equation to the 

pixel values in each of the R, G and B channel.  
'' ' '( ) ( ) ( )C p C p C p

where ' ( )C p  is the value of pixel in the color channel  in the Log space. It is given by 

and ' ( )C p  is given by 

After rearranging the log terms, the pixel values in the left image after transformation can be 

expressed as 

Similarly, the pixel values in the right image after the transformation can be expressed as: 

Since the corresponding pixels in the left and right images register the same point in the 

scene,   is expected to be the same as . Using the invariant property of 
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NCC, we can use NCC as the cost function to match for  and  as well. 

This means that after the above transformations of the pixels values, the light direction and 

radiometric changes do not affect the matching result if NCC is used as the cost function. 

This modified version of NCC (after transforming the pixels values using above mentioned 

steps), named ANCC, is able to find disparity maps for the images with large radiometric 

changes. 

However, there is no interpolation process designed in ANCC function. It purely relies on the 

presence of textures to find the corresponding pixels in the input stereo images. As a result, 

ANCC cannot handle the stereo image with saturated areas [10] because the texture 

information is lost in the saturated areas and thus the matching process fails.  

2.4.5 Multi-view Multi-exposure Stereo Matching 

Another approach that computes the disparity map from multiple images is proposed in [7]. 

The algorithm can handle large radiometric changes between the input stereo images as well 

as the presence of saturated regions in the stereo images. The algorithm can be summarized 

in following steps: 

Compute the initial disparity maps from the unsaturated pixels in the multiple 

(more than two) input LDR images captured by multiple LDR cameras with the 

same camera response function. 

To compensate for the difference in exposure among the input LDR images, 

compute the common camera inverse response function from the initial disparity 

maps. Then convert each input LDR images to its radiance map using this inverse 

response function. 

Refine the initial disparity map by running step 1 again, using the radiance maps 

obtained in step 2. 

In order to improve the accuracy of the disparity map, the study in [7] focused on deriving a 

method that can estimate the camera inverse response function from pixels aligned 

incorrectly using inaccurate disparity maps.  
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The algorithm defines the camera response function as: 

where is a non-linear function that maps the scene radiance  at pixel to the intensity 

value when the image is captured under exposure . It uses the Brightness Transfer 

Function (BTF) [21] to solve this camera response function. For a pair of stereo images, the 

BTF is defined as: 

where  and  are the corresponding pixel brightness in the left and right images. The 

BTF is usually semi-monotonic. Depending on the exposure ratio  between the two input 

images, following constrains are applied: 

To compute the BTF between the input images, the algorithm groups all the input images 

into pairs. For each pair of input images, it plots a two-variable joint histogram , in which 

a give entry  stores the corresponding pixel values in the two input images. The 

joint histogram is then partitioned into two triangles along the line . To maintain the 

semi-monotonicity of the BTF, the following conditions are applied: 

The algorithm then uses the dynamic programming technique proposed by Kim and Pollefeys 

[22] to estimate the BTF that satisfies the above conditions. Once the two BTFs for each pair 

of the input LDR images,  and , are calculated, the algorithm 
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uses the EMOR model of Grossberg and Nayar [23] to find the inverse camera response 

function. 

When calculating the inverse camera response function, the above algorithm is more robust 

to large changes in the brightness of the corresponding pixels in the input images. As a result 

of a more accurate inverse camera response function, the radiance maps recovered in step 2 

are expected to have fewer errors than the radiance maps recovered using other techniques. 

This in turn improves the accuracy of the disparity maps obtained in the refinement step by 

re-running the matching process used to obtain the initial disparity maps. However, this 

approach involves a complex capturing system because it uses more than two cameras. This 

increases the amount of work to align the cameras and to rectify the captured images. In 

addition, the input images are grouped into pairs and processed individually. This also 

increases the amount of the computations and thus limits its use in the industry. 
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Chapter 3 Constructing HDR Image from Two LDR Images 

3.1 Overview 

In this chapter we present and describe a method that obtains an HDR image from two LDR 

images. In [7], a method that uses many (more than two) images obtained from different 

cameras is proposed. The images are all captured with different exposures and at the same 

instance of time. 

Our approach is inspired by the work in [7] where we propose the use of two cameras. Two 

images are captured using different exposures and at the same instance. The four sets of input 

LDR images we used to test our algorithm are shown in Fig. 3.1 to Fig. 3.4. The ones with 

the lower exposure register the information in the dark regions of the scene. The ones with 

higher exposure register the information in the bright regions of the scene. Each set of two 

images therefore complement each other in that they contain more information for forming a 

HDR image with a higher dynamic range. This is because one image has more details about 

the dark regions of the captured scene and the other contains more information about the 

bright regions. Thus more information is available than that obtained from one image.  

Using two cameras allows us to overcome the temporal adjustment in the fast motion scenes 

as the two LDR images are captured at the same instance of time .The use of more than one 

camera however has the problem of image spatial disparity. Thus the key step in such 

approach is the accurate computation of the disparity map, so that the pixels from the 

different LDR images can be aligned correctly to form the HDR image. This is a challenging 

task because the input LDR images have large radiometric changes as well as saturated 

regions. Not many studies that deal with such cases have been proposed. The four sets of the 

input LDR images we chose to test the performance of our algorithm impose different 

degrees of challenges for calculating the disparity map. 

Our algorithm is inspired by [7] but faces a greater challenge in computing accurate disparity 

maps. In [7], many (more than two) input LDR images are used to construct the HDR image. 
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If one pixel is saturated in one picture, it is unlikely that its corresponding pixels in the rest of 

the images are saturated. Therefore, the saturated pixels can be ignored. Instead, the pixels 

values in the rest of images are used calculate the disparity map and construct the HDR 

image.  

Figure 3.1 It shows the input LDR images of the scene Clothes. In the first image has scattered areas of 

pixels with very low brightness. These patches are of relatively small size. The second image has small 

patches of saturated pixels in the center and right. 
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Figure 3.2 This figure shows the input LDR images for the scene Dolls. This pair of images show larger 

areas of saturated and unsaturated pixels than those in the scene Clothes. In addition, the saturation and 

unsaturation occurs at the boundaries of the objects in the scene. For example, in the second image, the 

head of the central doll merged with the right arm of the bear above her. 



25

Figure 3.3 This figure shows the input LDR images for the scene Arts. This scene is more difficult to 

process than Clothes and Dolls. The head of the statue in the second image is saturated. The top part of 

the pen is also saturated in the second image. The two saturated regions are merged, making it hard to 

assign correct values at the edges of these two regions in the disparity map. In addition, it has thin objects 

such as the sticks to the right of the scene. Some parts of the copper kettle to the left of the image are also 

saturated (nearly white color) in the second image while the corresponding pixels in the first image are 

brown.  
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Figure 3.4 This figure shows the input LDR image for the scene Baby. The radiometric difference 

between the two images is very large. In addition, because the background has high texture, it imposes 

additional challenge to the matching process because some of the textures shown in the left image is 

occluded by the baby and book in the right image. 
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In our set up, we only have two input LDR images. From these images the disparity map is 

calculated and then used to construct the HDR image. The saturated pixels in one image 

cannot be ignored when calculating the disparity map and constructing the final HDR image. 

Therefore, for the saturated regions in one image, we have to derive a method to get the 

correct disparity value using the unsaturated information from the other image and thus 

assign correct values to those pixels in the constructed HDR image. In order to increase the 

accuracy of the disparity map and recover the lost information in the saturated regions, in [7] 

the focus has been to improve the accuracy of the camera response function. Our algorithm 

however focuses on improving the initial estimate of the disparity map as well as the 

refinement of the initial estimate of the disparity map. Figure 3.5 illustrates a block diagram 

of our proposed scheme. Our algorithm differs from the algorithm in [7] in the several 

aspects. 

Figure 3.5 Our proposed scheme for HDR construction 

First, our method uses only the luminance values of the input LDR images to calculate the 

initial disparity map. Luminance is an indicator of how bright the surface appears. Usually 

the value of a pixel in an image is formed by luminance and chrominance information. In [7], 

the disparity map is calculated using both the luminance and chrominance information.  

Second, our method finds an initial estimate of the disparity map using the normalized cross 

correlation (NCC) function as the matching cost. We use a different weighting function use 

in [7] to calculate NCC for each pair of pixels to be matched. The weighting function 

improves the accuracy of the initial disparity maps. 
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Third, instead of using all the pixels in the initial disparity maps as [7], we use a subset of the 

pixel values in the LDR images. This subset of pixels consists of pixels are obtained as 

follows: We construct two initial disparity maps for the two input LDR images. The first uses 

the left image as the reference and the second uses the right image as the reference. The 

subset of pixels we are after consists of every pixel whose values in both disparity maps 

match with each other, i.e. have the same value. Since we exclude the inaccurate disparity 

values from the initial disparity maps, we can use a less computationally intensive algorithm 

than the one in [7].  

In addition, to refine the initial estimate of the initial disparity map, we apply the census filter 

(covered in details in Appendix) to the radiance maps of the two input LDR images and use 

the Hamming distance as the cost function. This is because the radiometric variations (the 

difference in the luminance values) between the left and right radiance maps are less than the 

variations between the two input LDR images. Therefore, the stereo matching algorithm in 

the refinement step can be handled by a less computational expensive cost function than that 

used in estimating the initial disparity map. The refinement step is also designed to 

interpolate the values in the saturated regions using those in the unsaturated pixels in the 

input LDR images.  

Our algorithm improves on the algorithm in [7] in three aspects: 

By using two cameras, our method simplifies the set up and reduces the 

computational complexity. Such setup also helps improve the estimation of the 

disparity map. The two major factors that reduce the accuracy in computing the 

disparity map are occlusion and radiometric variation. Our setup minimizes the 

problem of occlusion as the two cameras are placed in proximity. As a result, the 

objects captured by one camera are less likely to be blocked in the image 

captured by the other camera as the angles of views of the two cameras in our 

setup are almost identical. 

Our algorithm is less computationally intensive. This is because our algorithm 

uses only the intensity channel, instead of R, G, B channels [7] to in the cost 

function when estimating the initial disparity maps. In addition, in the refinement 
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step, we apply Census filter to the radiance maps and then use Hamming distance 

between two pixels, which is faster to compute than NCC, as the matching cost to 

calculate the disparity map. In [7], the refinement step still uses NCC between 

two pixels as the matching cost to calculate the initial disparity map. 

 As a result of a better refinement step, our algorithm generates the disparity map 

with less errors and better smoothness and in turn constructs an HDR image that 

exhibits fewer artifacts. 

3.2 Disparity Map Computation 

In this paper, we propose a global stereo matching method to find the disparity map of two 

input LDR images that have 1) different exposures; 2) large radiometric changes; 3) areas 

with saturated regions. We model the matching problem via a Bayesian approach. In this 

approach, we use a vector  to represent the disparity pf ’s of every the pixel  in the 

disparity map.  The optimal vector  should contain disparities pf ’s that minimize an energy 

function  defined as equation(4) [11]. The energy function is composed of a pixel 

dissimilarity term  and a pixel smoothness term . It measures the degree of 

difference between corresponding pixels and the discontinuities of the disparity map for the 

disparity vector .

( ) ( ) ( )d sE f E f E f

 and  are 

( ) ( )d p p
p

E f D f

, ( )
( ) ( , )s pq p q

p q N p
E f V f f

where  measures the summation of dissimilarities of all pixels in the disparity map and 

 controls, i.e. maximizing, the smoothness of the disparity map. The terms  and  in 

(3) are the disparity values corresponding to a pixel  and a neighboring pixels  that lies in a 
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window  centered at pixel .  measures the cost associated with matching a 

pixels  in the left LDR image and   in the right LDR image.  is a function at 

pixel  in the left LDR image that measures the sum of the differences between the disparity 

( ) at pixel  and the disparities  of every neighboring pixel  of  in the window .

Thus, minimizing the function  will maximize the smoothness in the disparity map 

at pixel .

Before obtaining the energy terms  and , in the rest of this section, we will first 

discuss how the imaging model and the differences in lighting and exposure affect our choice 

of these energy terms in the rest of this section. 

3.2.1 Imaging Model 

To determine the scene radiance from the measured pixel data, imaging models are used. 

Different imaging models have been presented in the literature. In this paper, we employ two 

models. The first model is the gamma correction model, equation (8) and (9) below, as many 

other methods mentioned in the previous chapter. This model approximates the image 

luminance values in terms of the scene radiance. The second model the polynomial model, 

equation (10). This model is used to approximate the inverse of first model. It obtains the 

scene radiance at a pixel in terms of its luminance values in the image.  

We use the relationship between the pixel luminance values and the scene radiance, and the 

first gamma correction model to obtain a suitable cost function for the dissimilarities in the 

disparity map . This cost function is used to find an initial disparity map. Then we use 

the initial disparity map to compute the coefficients in the second polynomial model [5] so 

that we can obtain the scene radiance from the image intensities. Finally, we refine our initial 

disparity estimate of the true disparity map using the scene radiance estimated from the 

polynomial model. 
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3.2.1.1 Gamma Correction 

Every camera defines and quantizes an estimate of the scene radiance  explained in the 

previous chapter. In a stereo setup, both images are obtained from the same scene radiance 

but the recorded intensities have horizontal shifts in the pixel locations of both images. The 

image intensities recorded by a camera can be modeled as scaled gamma corrections of the 

scene radiance :

This is the same model used in method proposed in [5] to derive ANCC function.  is the 

value at pixel  in the color channel . It is approximated as a scaled gamma correction of the 

radiance , i.e., the amount of light that falls on the sensor of the camera corresponding 

to pixel .  is dependent on the angle between the light direction and the surface normal 

at the point registered by pixel  .  is the correction factor employed by the camera response 

curve to convert the amount of light  fallen on the camera sensor to image intensities. 

In our set up, the two cameras are place very close to each other. As a result, the angles 

between the light directions and the surfaces normal to the corresponding pixels registered by 

the two cameras are to be almost the same. This means that the above gamma correction 

model defined by equation (7) can ignore the factor  and . As a result, the 

chrominance channels of the input LDR images are expected to have little difference. The 

only difference is introduced by different exposures under which the images are taken. Since 

the exposure only affects the luminance values of the pixels in the image, we perform stereo 

matching using the information in the luminance channels of the input LDR images only. 

Therefore, the imaging model at pixel  is reduced to the following expressions [6]: 

lI R

( )rI eR
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where  and  are the left and right image intensities,  is the exposure ratio between the left 

and right images. The  factor can be eliminated by converting the luminance value of each 

pixel to the log space. 

3.2.1.2 Polynomial Camera Response 

In [3], different camera response functions that model the relationship between the radiance 

fallen on the senor and the luminance value at a pixel in the image, are compared. It shows 

that the response curve can be modeled as an nth order polynomial function [7] of the pixel 

values I in the image. 

( ) n
n

n
R I c I

where ( )R I  represents the radiance fallen on the sensor at a pixel with intensity value I .

The study also showed that it is sufficient to use  to build an accurate model to find the 

values of the radiance from the pixel intensities. To estimate the values of , we obtain two 

disparity maps  and  using the left and the right input LDR images as the 

reference respectively. For our algorithm, only those pixels in the two disparity maps that 

match each other correctly are used in obtaining the coefficients ,  i.e. those pixels that 

satisfy equation (11): 

( ) ( )l l r rDisp p Disp p

where ( )l lDisp p  is the value of a pixel lp  in the initial disparity map calculated using the 

left image as the reference. ( )r rDisp p  is the value of the pixel rp  in the initial disparity map 

calculated using the right image as the reference. lp  and lp  are the corresponding pixels in 

the input LDR images. Their relationship is given by: 

( )r l lp p Disp p
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We also exclude the pixels with values equal to 0 so as to minimize the error introduced by 

under-saturation. The polynomial coefficients  are then found by minimizing the cost 

function: 
2

( ) ( ) ( )n n
n n l n r

p P n n
J c c I p e c I p

where P  is the set of valid pixels defined by equation (11), nc  are the polynomial 

coefficients, and e  is the exposure ratio between the two images.  

3.2.2 Computing the Disparity Map 

The disparity map represents the integer values that characterize the lateral displacement of 

pixels of an object in the left image compared to its position in the right image. This map is 

represented by the vector  and  is an element in the vector . To compute the vector ,

we minimize the energy function  defined in equation (4). However, we must first 

define the dissimilarity term  and the smoothness term .

3.2.2.1 Pixel Dissimilarity 

We choose the normalized cross correlation (NCC) as the pixel similarity measure. In [7] and 

[9], it is shown that NCC is the best cost function that copes with exposure variations. Before 

computing NCC, we convert the image pixel intensities to the log space so that the exposure 

ratio  does not affect the results 

' log logl lI I R

' log log logr rI I e R

For a pixel p  whose corresponding disparity is pf , NCC is given by the following 

expression: 
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, , ( ) ( )
( , )

, ( ) , ( )

l r p t l r p
p

l l r p t r p

w p t w p f t f I p I p f
NCC p f

w p t I p w p f t f I p f

where pf f  is the disparity of pixel p , lw  and rw  are bilateral weights defined over a 

window ( , )W p t  centered at pixel p  in the left image and ( )pp f  in the right image 

respectively, and lI  and rI  are functions of the pixel values in the left and right images 

respectively which we will define below. is a neighbouring pixel of the central pixel p in 

the window ( , )W p t . Notice that the effects of  and e  in equation (13) and (14) are 

cancelled in equation (15). 

The fattening effect is one of the major drawbacks of the matching cost function that use 

windows [12]. The errors caused by the fattening effect occur all over the image, especially 

at the edges objects with strong depth discontinuity. This is because the central pixel of a 

window tends to inherit the disparity of the more contrasted pixels in the block [24]. As a 

result, at the edges of objects that have different distances from the camera, a brighter object 

tends to appear larger than its actual size. 

In our algorithm, we include bilateral weights ( , )lw p t  and ( , )rw p t  in NCC, equation (15) to 

reduce the fattening effect. The bilateral weights are functions of the pixel p and its 

neighbouring pixels . The weight function is given by the following expression: 
22 ' '

2 2

( ) ( )
( , ) exp

2 2d s

I t I pp t
w p t

where  and  are the space and range smoothing parameters, respectively. t  represents a 

pixels surrounding the central pixel p  in the window ( )W p . The first term in the exponent 

measures the spatial difference between pixels p and t . The second term measures the 

difference in the intensities registered by pixels p and t .
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The NCC is effective at finding similarities in highly textured surfaces. Therefore, we 

subtract the low frequency image components before performing the similarity matching. 

The functions I  are then chosen so that: 
'

( , ) ( , )'

( , ) ( , )

( , ) ( , ) log
log

( , ) ( , )

l
t W p t t W p t

l l

t W p t t W p t

w p t I p w p t R p
I p I p R p

w p t w p t

Similarly,  
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( , )(log log )
(log log )
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( , ) log
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t W p t
r

t W p

t W p t

t W p t

w p t e R p
I p e R p

w p t

w p t R p
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Note that equation (17) and (18) show that the NCC measure when calculated using I  is 

unaffected by  and e .

As NCC measures the similarity between pixels  and , the dissimilarity term 

can then be expressed as follows: 

( ) ( ) 1 ,d p p p
p p

E f D f NCC p f

3.2.2.2 Pixel Smoothness 

In stereo imaging, the pixels representing the same solid object should have similar disparity 

values. Therefore, the disparity map should be smooth within area corresponding to solid 

objects. The potential function pqV  in the smoothness term ( )sE f  in equation (6) can be a 

quadratic function, a delta function, a truncated quadratic function or an even more 

complicated function. We express the smoothness term ( )sE f in terms of a total variation 
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function pqV  regularized by weights ( , )p q  which are calculated using the perceptually 

uniform CIELab color space. Denote a pixel that falls within a neighbourhood window W

centered at pixel p  by ( )q W p . The variation term pqV  is expressed as follows: 

2

max, , min ,pq p q p qV f f p q f f V

where maxV  is the maximum upper bound on the smoothness. The upper boundary is 

introduced so that all the discontinuities in the image have the same reasonable potential 

instead of having different big values that blows up the function. The regularizing parameter 

,p q  is given by: 

2 2 22

2 2 2 2, exp
2 2 2 2

L L a a b b

s r r r

I p I q I p I q I p I qp q
p q

where , ,L a bI I I  are the CIELab color space components that best represent human perception 

of colors among all the available color spaces.  

Recent studies have shown that by grouping pixels with similar colors before matching can 

improve the accuracy of the resulting disparity map. Instead of segmenting images using 

computational intensive algorithms, this grouping can be simply coded by including bilateral 

weights, equation (21), in the smoothness term [13]. Introducing such bilateral weights in the 

smoothness term forces the resulting disparity map to agree with the color discontinuities in 

the reference image. The final smoothness term is expressed as follows: 

, ( , )s pq p q
p q N p

E f p q V f f

3.2.2.3 Initial Disparity and Camera Response 

The total energy function given in equation (4) is then minimized using the graph cut 

algorithm [9, 14] to produce the initial disparity estimate. The resulting disparity map 

contains errors mainly in the over-exposed and under-exposed regions of the images. To 

obtain estimates for these regions, we calculate two disparity maps. The first has the left 

image as the reference and the second has the right image as the reference. Then we cross 
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validate the resulting maps. The pixels in the two disparity maps that match are treated as 

valid disparities. The remaining pixels are marked as erroneous and are represented by black 

pixels for further correction. The initial disparity map is formed of the valid disparities and 

the erroneous black pixels. Figure 3.6 to Figure 3.9 show the initial disparity map obtained 

after matching the left and right disparities for the images: Cloths, Dolls, Arts and Baby. 

The matched pixels in the two disparity maps are considered as valid disparity values. 

Therefore, only these pixels are used to compute the coefficients in the polynomial model of 

the camera inverse response function using the algorithm in [5]. The coefficients  are 

found by minimizing the cost function given by equation (12). 
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Figure 3.6 Initial disparity map obtained by our algorithm after running step 1: Clothes 

Figure 3.7 Initial disparity map obtained by our algorithm after running step 1: Dolls 



39

Figure 3.8 Initial disparity map obtained by our algorithm after running step 1: Arts 

Figure 3.9 Initial disparity map obtained by our algorithm after running step 1: Baby 
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3.2.3 Refinement 

After finding the coefficients of the inverse polynomial camera response function, equation 

(10), we use this inverse polynomial camera response function to convert the left and right 

images into their respective radiance maps in radiance space . The radiance values of the 

brighter input image are also multiplied by the exposure ratio between the two input images 

so that the radiance of the corresponding pixels in the left and right images has the same 

value. We use the two resulting radiance maps to correct the erroneous pixels identified in 

the initial disparity map. This is done using the following interpolation method. 

We formulate the interpolation problem as a minimization problem of an energy function 

defined by equation (4).  In this step, we define a different pixel dissimilarity cost . In 

addition, the values of some entries in vector  are already known. The known pixels are the 

pixels with the disparity values that match each other, obtained as the initial estimates when 

each of the left and the right LDR images was used as the reference. Therefore, we force the 

solution of the new energy function to pick up the same value at these pixels. This is 

achieved by assigning the minimum possible cost 0 to each pixel  at the desired value and a 

large cost at the disparity values other than this known value. Namely, assume is the valid 

known disparity at a pixel , then 

0 p p

p p

p p

if f f
D f

K if f f

where  is a large number.  

This means that our refinement step finds the vector  that minimizes the new energy 

function and this vector has some of its values as already determined. The smoothness term 

in the energy function ensures that similar disparity values are assigned to pixels representing 

the same object. Therefore, an accurate disparity value that was determined in the initial 
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estimate for a pixel is expected to propagate to the neighboring pixels that belong to the same 

object but had erroneous values in their initial estimates.  

For the erroneous pixels in the initial disparity map, instead of using equation (19) as the cost 

function for stereo matching before, we define the cost function as the sum of two terms: the 

differences between the radiance of the corresponding left and right pixels and a Hamming 

distance, i.e. 

, , ,p p l r p p p l rD f R p R p f C f W p R R  (24) 

where lR  is the radiance map of the left LDR image after applying the Census transform [15] 

over the window W p . lR  is the radiance map of the right LDR image after applying the 

Census transform [16] over the window pW p f  . , , ,p p l rC f W p R R  is a cost function 

that calculates the Hamming distance between pixel p in the left radiance map lR  and pixel 

pp f  in the right radiance map. 

The Census transform is a non-parametric summary of local spatial structure. Let  be a pixel 

with intensity  and let  be the set of pixels in a square neighborhood of diameter 

surrounding pixel . The census transform  maps the pixels in  to a bit string 

representing the set of neighboring pixels whose intensity is less than  , the value of the 

central pixel . The value of a neighboring pixel in the bit string is set to 1 if its intensity is 

less than  and to 0 if its intensity is greater than  . Such a transform tolerates the 

presence of small variations in the values of the corresponding pixels in the left and right 

radiance estimates. This is because the variations are unlikely to alter the relationship 

between the surrounding pixels and the central pixel. Detailed explanation of Census 

transform is covered in the Appendix. 
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We apply the Census filter to the left and right radiance estimates. Then we add the 

Hamming distance to the cost function in the error correction step for the following two 

reasons:

As a non-parametric local image transformation, the Census filter differs from 

other operations in that it only responds to the relative ordering of intensities 

instead of the intensities themselves. This makes it robust to the variations in 

intensities between the two input images in our setting.  

The speed of the algorithm: after the Cencus filter is applied, the image patches 

corresponding to the two LDR radiance maps become two strings containing only 

binary numbers. The correlation between the two patches is calculated from the 

Hamming distance which is the number of bits the have different values between 

the two binary strings. Binary operators greatly reduce the computational 

complexity in determining the correlation between two image patches.  

Notice that the new dissimilarity cost function pD  for erroneous pixels is composed of two 

terms. The first term ensures a smooth transition across object boundaries in the radiance 

map, while the second term ensures that pixel locations are accurately matched. However, 

strict disparity matching can cause edge artefacts in the final HDR image which result from 

occlusions in the stereo setup. Therefore, we enforce smooth transitioning in the radiance 

map so as to remove any possible artefacts that may arise. Finally, in order to speed up the 

minimization process, we bound the search range of feasible disparity values by the 

minimum ,minvf  and maximum ,maxvf  valid disparity values found in the initial disparity 

estimate , such that ,min ,max
ˆ

v vf f f .

3.3  Image Synthesis 

Once the disparity map and the coefficients  in equation (10) are computed, the left and 

right images can be fused into a single HDR radiance image [3]. This is achieved by the 

following three steps: 
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1) we construct the radiance maps of the two input LDR images. Each of the pixel 

in the input LDR images is converted to a radiance value that represent the 

amount of light fallen onto the sensor at pixel  using the inverse camera 

response function defined by equation (10). 

2) We normalize the values in the two radiance maps by dividing the values in the 

right radiance map (with greater exposure) by the exposure ratio between the two 

input LDR images. According to the image model defined by equation (8) and 

(9), the amount of light fallen on the camera sensor depends on both the scene 

radiance and the exposure value used to capture the image. Therefore, the two 

radiance maps obtained in the first step differs by a scale equal to the exposure 

ratio between the two input LDR images.  

3) We assign pixels values in the HDR image as a weighted average of the 

corresponding pixels in the two LDR images: 

In order to determine the weights used to calculate the pixel values in the HDR image, we put 

great emphasis on the signal-to-noise ratio (SNR). A good estimate of the radiance in the 

HDR image should maximize both the SNR and the sensitivity to radiance changes. The 

SNR for the scaled radiance value is given by: 

'
N

R I
SNR

I R I

where, N I  is the standard deviation of the measurement noise and can be assumed to be 

independent of I  in our case. In addition, a large value R I  indicates that the sensor is set 

at the right exposure to detect the changes in the scene radiance. Therefore, we define the 

weighting function used to combine the input radiance maps as  

'

R I
w

R I

This weighting function ensures that for the two corresponding pixels in the input LDR 

images, the pixel with a greater SNR and sensitivity to radiance change is assigned a greater 
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weight than the other pixel. As a result, the pixel value that contains clearer scene 

information and less noise in the input LDR image determines the value of this pixel in the 

constructed HDR image. 
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Chapter 4 Experimental Results 

4.1  Disparity Map Accuracy 

We tested our algorithm using stereo images provided by Middlebury College [16]. The 

images provided are rectified so that we only need to search along the horizontal line for each 

point in the image when finding disparity maps. Before we can evaluate the quality of the 

disparity maps calculated using our algorithms, we have to find the true (ideal) disparity 

maps for the four scenes, Figure 3.1 to Figure 3.4, as the standard. The reference disparity 

map for each scene in Figure 3.1 to Figure 3.4 accurately represents the horizontal 

displacement of each pixel in the higher exposed image using the less exposed image as the 

reference.

4.1.1 True Disparity Maps 

In this paper, we present the results for the scenes Arts, Dolls, Baby and Clothes using input 

LDR images shown in Figure 3.1 to Figure 3.4. Figure 4.1, Figure 4.3, Figure 4.5 and Figure 

4.7 show the reference disparity maps of the scenes Clothes, Dolls, Arts and Baby we used to 

test the performance of our algorithm. The true disparity maps are calculated using our 

algorithm when the input LDR images are captured under the same exposure.  

4.1.2 Disparity Maps Obtained Using Our Algorithm 

The disparity maps for the four scenes obtained by using our algorithm are presented in 

Figure 4.2, Figure 4.4, Figure 4.6 and Figure 4.8. The input LDR images of Clothes and dolls, 

shown in Figure 3.1 and Figure 3.2, contain small saturated areas scattered over the images 

whereas the input LDR images Arts and Baby, shown in Figure 3.3 and Figure 3.4, have 

large areas of both under-saturated and over-saturated pixels.  

In our experiments, the size of the window used by our algorithm is (5 5)  pixels. The 

window size is chosen to be small in order to reduce the amount of computation for the NCC 
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for every disparity value under consideration. After running the algorithm several times with 

different parameters, we found the following parameters give optimal results. The standard 

deviations s  and r  used in calculating the bilateral weights, equation (16) when estimating 

the initial disparity map are set to 2.6  and 14.0 . The standard deviation s  and r  used in 

calculating , equation (21), in the potential function ,pq p qV f f , equation (20) are 

set to 2.6  and 16.0 .

Comparing the disparity maps obtained by our algorithm, shown in Figure 4.2, Figure 4.4, 

Figure 4.6 and Figure 4.8 with the true disparity maps, shown in Figure 4.1, Figure 4.3, 

Figure 4.5 and Figure 4.7, we obtain the following conclusions: 

If the input images contain scattered saturated regions of small areas, such as in 

the case of the scenes Clothes and Dolls, shown in Figure 3.1 and Figure 3.2, the 

disparity maps obtained by our algorithm, shown in Figure 4.2 and Figure 4.4, 

follow closely the true disparity maps, shown in Figure 4.1 and Figure 4.3.  

If the input LDR images have large saturated regions such as the case of the 

scenes Arts and Baby, shown in Figure 3.3 and Figure 3.4, the final disparity 

maps obtained using our algorithm, shown in Figure 4.6 and Figure 4.8 has 

discernible difference from their true disparity maps, shown in Figure 4.5 and 

Figure 4.7.  

The error pixel values in the disparity maps obtained by our algorithm have little 

effect on the constructed HDR images for Cloths, Dolls, Arts and Baby, shown in 

Figure 4.9 to Figure 4.12. This is because of the first term in the cost function (24) 

in our refinement step ensures that the pixels in one input LDR radiance map are 

mapped to the pixels in the other LDR radiance map with similar radiance. This 

is the case even for pixels with erroneous disparity values.  

The constructed HDR images show in Figure 4.9 to Figure 4.12 have a higher 

dynamic range than either of the input LDR images for the scenes in Figure 3.1 

to Figure 3.4. The constructed HDR images in Figure 4.9 to Figure 4.12 clearly 

display the details in both dark and bright regions of the scenes in Figure 3.1 to 

Figure 3.4. 
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Figure 4.1  Reference disparity map obtained using input images of the same exposure: Clothes 

Figure 4.2 The final disparity map obtained using our algorithm: Clothes. The values at the erroneous 

pixels in the initial disparity map are successfully obtained by the refinement step. This is because the 

saturated regions in the input images are small and scattered. 
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Figure 4.3 Reference disparity map obtained using input images of the same exposure: Dolls 

Figure 4.4 The final disparity map obtained using our algorithm: Dolls. Most of the pixels have the 

correct disparity value except the head of the left doll at the center. This is because the area is over 

exposed in the input images, causing the interpolation process in the refinement step to take the wrong 

value. 
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Figure 4.5 Reference disparity map obtained using input images of the same exposure: Arts 

Figure 4.6 The final disparity map obtained using our algorithm: Arts. The disparity map is generally 

accurate and smooth except at the edges of different objects and the pencils. This is because it is very 

difficult to completely remove the fattening effect caused by using a window based cost function in stereo 

matching.  
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Figure 4.7 Reference disparity map obtained using input images of the same exposure: Baby 

Figure 4.8 The final disparity map obtained using our algorithm: Baby. The disparity map is not as 

smooth as the previous three maps. This is because of the large areas of under-saturated and over-

saturated regions in the input images. However, the refinement step has still assigned correct values close 

to the true disparity values of the erroneous pixels in the initial disparity map, Fig. 3.13. 
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Figure 4.9 The tone-mapped reconstructed HDR image of Clothes. The image shows the details in the 

folds which are under-saturated in one input image. The image also shows the textures of the central 

piece of the cloth which are over exposed in the other input image.  

Figure 4.10  The tone-mapped reconstructed HDR image of Dolls. The picture shows the detail of both 

dark and bright cloths the dolls are wearing 
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Figure 4.11 The tone-mapped reconstructed HDR image of Arts. The statue at the center and the pot on 

the left of the image are not saturated. It also displays the details in the dark region of the paint in the 

background wall. 

Figure 4.12 The tone-mapped reconstructed HDR image of Baby. The picture displays both the words 

and equations in the book and the details of the maps on the wall.  
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4.1.3 Disparity Maps Obtained Using ANCC and Multi-view Multi-exposure 

Algorithms 

Figure 4.13 to Figure 4.16 show the disparity maps obtained using ANCC [10]. Figure 4.17 

to Figure 4.20 show the disparity maps obtained using the multi-view multi-exposure 

algorithm [7]. In this paper, we evaluate the performance of the multi-view multi-exposure 

algorithm by using three LDR images captured under different exposures as the input for the 

scenes Clothes, Dolls, Arts and Baby. 

The disparity maps of Clothes and Dolls have fewer errors because the saturated regions in 

these images are scattered small patches. The smoothing term in the energy function is 

successful in propagating the correct disparity values to the saturated pixels from their 

surrounding unsaturated pixels. However, the disparity maps of Arts and Baby contain 

significant errors because both matching cost functions in [7] and [10] do not have any term 

in the energy function designed specifically to propagate the correct disparity values for 

pixels in the saturated areas from the disparity values of the surrounding unsaturated pixels in 

the input LDR images. As a result, when the input LDR images have large saturated regions, 

instead of assigning correct disparity values to saturated pixels, the smoothing term tends to 

propagate the erroneous disparity values and thus assign wrong disparity values at pixels 

surrounding the saturated regions. 

Compared to the disparity maps for Arts obtained using the algorithms proposed in [7] and 

[10], the disparity map we computed has fewer errors and better smoothness. Our calculated 

disparity maps compared to those obtained using algorithms in [7] and [10] are presented in 

Table 4.1 to Table 4.3. The root mean square error (RMSE) of invalid pixels and the numbers 

of error pixels in the disparity maps obtained by our algorithm are significantly less than 

those obtained using algorithms in [7] and [10]. The percentage of error pixels in the 

disparity maps obtained by our algorithm is on average 16% less than that in [7] and 20% 

less than that in [10]. 
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Figure 4.13  The disparity maps of Clothes obtained using ANCC [10] 

Figure 4.14  The disparity maps of Dolls obtained using ANCC [10] 
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Figure 4.15  The disparity maps of Arts obtained using ANCC [10] 

Figure 4.16  The disparity maps of Baby obtained using ANCC [10] 
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Figure 4.17 The disparity maps of Clothes obtained using multi-view multi-exposure algorithm [7] 

Figure 4.18 The disparity maps of Dolls obtained using multi-view multi-exposure algorithm [7] 
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Figure 4.19 The disparity maps of Arts obtained using multi-view multi-exposure algorithm [7] 

Figure 4.20 The disparity maps of Baby obtained using multi-view multi-exposure algorithm [7] 
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Table 4.1 The root mean square error and percentage of invalid pixels in the final disparity maps using 

our algorithm 

 Exposure Ratio RMSE Error Percentage 

Clothes 
4 0.9934 8.23 

16 0.976 8.82 

Dolls 
4 0.8454 4.77 

16 0.8591 5.58 

Arts 
4 1.5459 7.43 

16 1.1556 8.15 

Baby 
4 1.432 9.42 

16 1.4642 10.13 

Table 4.2 The root mean square error and percentage of invalid pixels in the final disparity map using 

ANCC as the matching cost function [10] 

 Exposure Ratio RMSE Error Percentage 

Clothes 
4 20.218 29.0 

16 21.268 29.2 

Dolls 
4 15.689 14.4 

16 16.512 15.3 

Arts 
4 10.216 9.35 

16 11.653 9.72 

Baby
4 28.265 38.0 

16 28.044 37.6 
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Table 4.3 The root mean square error and percentage of invalid pixels in the final disparity maps using 

multi-view multi-exposure algorithm[7] 

 Exposure Ratio RMSE Error Percentage 

Clothes 
4 25.705 53.3 

16 25.798 53.7 

Dolls 
4 19.983 32.8 

16 20.385 33.7 

Arts 
4 20.665 31.6 

16 20.989 32.1 

Baby 
4 46.767 88.9 

16 48.246 90.3 
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4.2 Dynamic Range 

The quality of an HDR image is determined not only by the accuracy of the pixel values, but 

also by the range of the scene radiance it can capture. The dynamic range of constructed 

HDR images depends on the number of input LDR images and the exposure values of the 

input images. It is bounded by the lowest radiance value in the image with the shortest 

exposure and the highest radiance value in the image with the greatest exposure. The larger 

the number of the input LDR images and the greater the difference among their exposure 

values, the larger the dynamic range of the scene radiance that can be captured by the 

reconstructed HDR image. 

The computational complexity however, increases exponentially with the increase in the 

input LDR images. Reducing the computational complexity is crucial to transfer a 

technology from the lab to the market. This is also the reason why we limit our input LDR 

images to two. In addition, Figure 4.2, Figure 4.4, Figure 4.6 and Figure 4.8 show that a large 

exposure ratio between the two input LDR images results in a decrease in the accuracy of the 

disparity map generated by our algorithm. This is because when the exposure ratio between 

the two input images is large, the amount of the overlapping radiance ranges between the two 

input LDR images decreases. This results in the deviation of the calculated camera inverse 

response function from its true value increases. Therefore, the exposure values of the input 

LDR images should be chosen carefully so that the dynamic range of the reconstructed HDR 

image is maximized and the error in the calculated camera inverse response function is 

minimized. 

One way to find the optimal exposure values for a scene is to minimize an objective function 

that is based on the derivative of the camera response function [17]. In order to reduce the 

amount of calculation during the runtime, the exposure ratios of the different kinds of camera 

response function can be pre-calculated and stored in a table. For the cameras whose inverse 

response functions are modeled by a Gamma curve, equation (3), the optimal ratio of the 

exposure values is 1:3.094 [17]. 
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Chapter 5 Conclusion 

In this thesis, we address the problem of obtaining a HDR image using two LDR images. The 

two images should be captured at the same instance by the two cameras, which should be 

placed close to each other. The images should have different exposures. One image captured 

under lower exposure registers the bright part of the scene, i.e. it does not have over-saturated 

but under-saturated areas. The other image captured under higher exposure register the 

details in the dark part of the scene, i.e. it does not have under-saturated but over-saturated 

areas. We presented a novel algorithm that calculates the disparity map of two differently 

exposed LDR images to generate the HDR images. Compared to existing methods, our 

algorithm has several advantages. 

In many stereo matching algorithms, such as the ANCC [10] and the Multi-view, Multi-

exposure [7] algorithms we discussed in detail how the three R, G and B channels are used in 

the matching cost functions to find the disparity map of the input LDR images. These 

algorithms are developed for the case when the multiple input LDR images are taken by 

multiple cameras. Under such set up, the cameras at the two ends are not placed in proximity. 

The angle between the light and the norm of the surface, i.e. the factor  in equation (3), 

affects the amount of light fallen on the sensor of cameras placed further apart from each 

other. This means that the amount of chrominance form one channel fallen on one of the 

input LDR images are not the same as that fallen on another input LDR images. As a result, 

most stereo matching algorithm such as the ones proposed in [7] and [10] cannot use the 

simplified camera model as is the case in our algorithm (equation (8) and (9)). These 

algorithms have to include both the chrominance and luminance information when 

computing the matching cost for every disparity value under consideration.  

Our set up enable our algorithm to simplify the camera model and thus uses only the 

information in the luminance channel of input LDR images to evaluate the pixel 

dissimilarities, equation (15). As the computation of the cost function is done for one channel 
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in our case compared to three channels in other stereo matching algorithms such as [7] and 

[10], our algorithm is less computationally intensive. 

Our algorithm also designs a unique refinement process to cope with changes in the 

exposures under which the two input LDR images are captured. This refine process also 

copes with the existence of saturated regions in the input LDR images. Most of the available 

algorithms such as [10] just run the matching process once. These algorithms focus on 

designing a single cost function which can tolerate radiometric changes between and the 

existence of saturated areas in the input stereo images. Some algorithms such as [7] have a 

refinement step. Their refinement step is simply a rerun, i.e. it applies the first stereo 

matching process again either once or several time, using the same matching cost using 

radiance maps of the input LDR images. Such refinement step increases the accuracy of the 

disparity map because there are less radiometric changes among the radiance maps of the 

input LR images. However, the refinement step does not increase the probability of 

propagating the correct disparity values of unsaturated pixels to the nearby saturated pixels in 

the input LDR images.  

Our algorithm proposed a refinement step which differs from the refinement steps in other 

state-of-the-art algorithms in the following steps: 

We take the pixels with accurate disparity values found in the initial estimate of 

the disparity maps into consideration. This is done by pre-setting the disparity 

values of these pixels in the solution vector when solving the energy function. 

As a result, we ensure that the accurate disparity values of unsaturated pixels are 

assigned to the nearby saturated pixels belonging to the same object. 

 We take the luminance discontinuities in the input LDR images into 

consideration. Include this information in the smoothness term in the energy 

function also increase the accuracy and sharpness of the edges of objects in the 

image. 

We use a different matching cost function in energy function to measure the 

dissimilarities between two pixels in the radiance maps of the input images. We 

apply Census filter first to the radiance maps and then calculated the Hamming 
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distance between corresponding pixels. This cost function is much less 

computationally intensive than NCC.  

As a result, the disparity maps calculated using our algorithms show less errors and better 

smoothness than other state-of-art algorithm for input stereo images with saturations and 

large radiometric changes. 

Our algorithm can be used with fast motion scenes since the proposed setup captures images 

with different exposures at the same instance. Therefore, no temporal adjustment is required. 

Every pair of images represents the same scene and is used to generate the HDR image for 

that instance. For constructing HDR videos, we can use the same set up, i.e. two LDR 

cameras placed next to each other to record the same video. Then the corresponding frames 

of each video can be paired up. Each pair can be treated separately as one pair of stereo LDR 

images. Our algorithm can then be used to process these pairs of images to form the HDR 

images. Finally, the constructed HDR images from each pair for input LDR frames from the 

LDR videos can be combined together to form the HDR video. 

In the future, we would like to explore the field of constructing 3D HDR images or videos 

since our algorithm is capable of computing accurate disparity map for a variety of scenes 

such as scenes with large radiometric change, existence of saturated areas and motions. There 

are many interesting and useful work and projects that can continue from this work and that 

we would like to explore in the future. These include: 

Extension of our algorithm to the field of constructing HDR videos. This will be 

done using the framework outlined in the previous paragraph to obtain each 

frame of the HDR video.  One of the problems we might want to address is the 

flickering problem. The defects in constructed HDR frame may results in shifts 

of corresponding pixels between consecutive frames. Special steps may be 

required to make the video appear smooth. 

We would also like to find the optimal exposure ratio which results in HDR 

images with the largest possible dynamic range, following the direction proposed 

in [17]. The algorithm in [17] takes several predefined camera response functions. 

These are the response functions of several popular LDR cameras in the market. 
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Such limitation prevents it from being accurate for all the cameras in the market. 

We would like to modify the algorithm so that it can calculated the camera 

response function dynamically and calculates the optimal exposure ratio 

specifically for the camera being used. 
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Appendices 

Appendix A  Census Transform 

The Census transform is one form of non-parametric local transforms for computing vision 

correspondence. Non-parametric local transforms rely on the relative order of the 

neighboring intensity values to the central pixel value, thus do not rely on the local intensity 

values themselves as in the case of parametric local transforms such as NCC which rely on 

the exact intensity values of the pixels in the input images. Therefore, non-parametric local 

transforms have the advantage of tolerating more significant differences between the 

corresponding pixel values in the left and right stereo images. It also improves the accuracy 

of pixel values near object boundaries in the disparity map. 

Similar to other local transforms, the Census transform is based on a window and computes 

the correspondence between pixels in the left and right stereo images. Let be a pixel, 

be its intensity value and  be the neighboring pixels  within a  square window 

surrounding pixel . The Census transform only depends on the sign between the intensities 

at pixels  and , i.e.  and . The sign is determined as: 

The Census transform depends solely on the set of ordered pairs: 

where , the transform of , is a binary vector that represents the bit string of the set of 

neighboring pixels  whose pixel values less than .

To compare the similarity of two binary vectors (each representing a pixel belonging to one 

of two Census transformed images), the Hamming distance is used. The Hamming distance 

 between two vectors  and  is defined as the number of bits in which they differ. 

For example: 
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And

The correspondence between two pixels (one pixel belonging to the left image and the other 

belonging to the right image) is computed by minimizing the Hamming distance after 

applying the Census transform to the two images. 
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Appendix B  Code 

StereoMatching.cpp:

#include "stdafx.h"

//////////////////////////////////////////////////////////////////////////////
// Example illustrating the use of GCoptimization.cpp
//
/////////////////////////////////////////////////////////////////////////////
//
// Optimization problem:
// is a set of sites (pixels) of width 10 and hight 5. Thus number of pixels is 50
// grid neighborhood: each pixel has its left, right, up, and bottom pixels as neighbors
// 7 labels
// Data costs: D(pixel,label) = 0 if pixel < 25 and label = 0
// : D(pixel,label) = 10 if pixel < 25 and label is not 0
// : D(pixel,label) = 0 if pixel >= 25 and label = 5
// : D(pixel,label) = 10 if pixel >= 25 and label is not 5
// Smoothness costs: V(p1,p2,l1,l2) = min( (l1 l2)*(l1 l2) , 4 )
// Below in the main program, we illustrate different ways of setting data and smoothness costs
// that our interface allow and solve this optimizaiton problem

// For most of the examples, we use no spatially varying pixel dependent terms.
// For some examples, to demonstrate spatially varying terms we use
// V(p1,p2,l1,l2) = w_{p1,p2}*[min((l1 l2)*(l1 l2),4)], with
// w_{p1,p2} = p1+p2 if |p1 p2| == 1 and w_{p1,p2} = p1*p2 if |p1 p2| is not 1

#include <sstream>
#include "LocalCost.h"
#include "ImageIO.h"
#include "PostProc.h"

using namespace std;

int *resultl, *resultr;
LocalCost *lc = new LocalCost();

////////////////////////////////////////////////////////////////////////////////
// smoothness and data costs are set up one by one, individually
// grid neighborhood structure is assumed
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////////////////////////////////////////////////////////////////////////////////
int factor = 6;
int smoothFn(int p1, int p2, int l1, int l2)
{

int w = 768;
int h = 768;
int col1 = p1 % w;
int row1 = (p1 col1)/w;
int col2 = p2 % w;
int row2 = (p2 col2)/w;
double power = 0;

double exp1 = 0;
double exp2 = 0;

exp1 = ((row1 row2)*(row1 row2)+(col1 col2)*(col1 col2))/2.04/2.04;

if ((col2+p2) < w && (col2+p2) >= 0 && (col1+p1) < w && (col1+p1) >= 0 && (p2+l1 l2) < w
&& (p2+l1 l2) >= 0)

{
exp2 = pow((::lc >images.left[p1] ::lc >images.left[p2+l1 l2]), 2.0);
//exp2 = pow((::lc >images.left[p1] ::lc >images.left[p2]), 2.0);
exp2 = exp2/16.0/16.0;
double cost = (l1 l2)*(l1 l2) <= 5 ? (l1 l2)*(l1 l2):5;
return (int)(cost*factor*exp( 0.5*(exp1+exp2)));

}
else
{

int cost = (l1 l2)*(l1 l2) <= 5 ? (l1 l2)*(l1 l2):5;
return cost*factor;

}
}

void GridGraph_Individually(int width,int height,int num_pixels,int num_labels, int reverse, int
window, int lo)
{

try{
GCoptimizationGeneralGraph *gc = new

GCoptimizationGeneralGraph(num_pixels,num_labels);

// first set up data costs individually
for (int i = 0; i <height; i++ )
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{
for (int j = 0; j < width; j++)
{

for (int l = 0; l < num_labels; l++ )
{

if(reverse == 0)
gc >setDataCost(i*width+j,l,lc

>dataCoFn_ncc(i*width+j, l, window, width, height, lo));
else

gc >setDataCost(i*width+j,l,lc
>dataCoFn_ncc(i*width+j, l, window, width, height, lo));

}
}

}

// now set up a grid neighborhood system
// first set up horizontal neighbors
for (int y = 0; y < height; y++ )

for (int x = 1; x < width; x++ )
{

gc >setNeighbors(x+y*width,x 1+y*width);
//gc >setNeighbors(x+y*width,x 2+y*width);
if((y 1)>=0)
{

gc >setNeighbors(x+y*width,x 1+(y 1)*width);
//gc >setNeighbors(x+y*width,x 2+(y 1)*width);

}
if((y+1)< height)
{

gc >setNeighbors(x+y*width,x 1+(y+1)*width);
//gc >setNeighbors(x+y*width,x 2+(y+1)*width);

}
/*if((y 2)>=0)
{

gc >setNeighbors(x+y*width,x 1+(y 2)*width);
gc >setNeighbors(x+y*width,x 2+(y 2)*width);

}
if((y+2)< height)s
{

gc >setNeighbors(x+y*width,x 1+(y+2)*width);
gc >setNeighbors(x+y*width,x 2+(y+2)*width);
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}*/
}

// next set up vertical neighbors
for (int y = 1; y < height; y++ )
{

for (int x = 0; x < width; x++ )
{

gc >setNeighbors(x+y*width,x+(y 1)*width);
//gc >setNeighbors(x+y*width,x+(y 2)*width);

}
}

// next set up smoothness costs individually
/*for ( int l1 = 0; l1 < num_labels; l1++ )

for (int l2 = 0; l2 < num_labels; l2++ ){
int cost = (l1 l2)*(l1 l2) <= 5 ? (l1 l2)*(l1 l2):5;
gc >setSmoothCost(l1,l2,cost*10);

}
*/
gc >setSmoothCost(&smoothFn);
printf("\nBefore optimization energy is %d",gc >compute_energy());
gc >expansion(3);// run expansion for 2 iterations. For swap use gc

>swap(num_iterations)
//gc >swap(5);
printf("\nAfter optimization energy is %d\n",gc >compute_energy());

for ( int i = 0; i < num_pixels; i++ )
{

if (reverse == 0)
resultl[i] = gc >whatLabel(i);

else
resultr[i] = gc >whatLabel(i);

}
delete gc;

}
catch (GCException e){

e.Report();
}

}

int main(int argc, char **argv)
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{
int num_labels = 0;
char *leftImageFileName = "";
char *rightImageFileName = "";
char *leftIntermediateDispFileName = "";
char *rightIntermediateDispFileName = "";
char *leftDispFileName = "";
char *rightDispFileName = "";
int window = 3;
int lo = 8;

int width = 768;
int height = 768;

try
{

leftImageFileName = argv[1];
rightImageFileName = argv[2];
leftIntermediateDispFileName = argv[3];
rightIntermediateDispFileName = argv[4];
leftDispFileName = argv[5];
rightDispFileName = argv[6];
window = atoi(argv[7]);
num_labels = atoi(argv[8]);
lo = atoi(argv[9]);

}
catch (char *e)
{

//ask user for the inputs if it's not provided
cout << "This program takes in the intensity values of left and right images and

outputs the disparity maps\n.";
cout << "File name of left image (.txt file): ";
cin >> leftImageFileName;
cout << "File name of right image (.txt file): ";
cin >> rightImageFileName;
cout << "Please specify the file which stores the result of initial matching from left

image view: ";
cin >> leftIntermediateDispFileName;
cout << "Please specify the file which stores the result of initial matching from right

image view: ";
cin >> rightIntermediateDispFileName;
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cout << "Please specify the file which stores the final disparity map from left image
view: ";

cin >> leftDispFileName;
cout << "Please specify the file wich stores the final disparity map from right image

view: ";
cin >> rightDispFileName;
cout << "Window size (recommended value: 3): ";
cin >> window;
cout << "Number of labels considered in graph cut (This places a cap number to

reduce the amount of computation): ";
cin >> num_labels;
cout << "Minimum label value accepted in the finally disparity map (This is used in

the tuning step for more accurate result, recommended value: 8 10): ";
cin >> lo;
factor = 6;

}

int num_pixels = width*height;

//factor = atoi(argv[10]);

resultl = new int[num_pixels]; // stores result of optimization
resultr = new int[num_pixels];

// Read image files
ImageIO *imgio = new ImageIO(height, width);
imgio >openImage(leftImageFileName, rightImageFileName);

// smoothness and data costs are set up one by one, individually
GridGraph_Individually(width,height,num_pixels,num_labels, 0, window, lo);
imgio >writeData(leftIntermediateDispFileName, resultl, num_pixels);

imgio >swapImage();
GridGraph_Individually(width,height,num_pixels,num_labels, 1, window, lo);
imgio >writeData(rightIntermediateDispFileName, resultr, num_pixels);

printf("\nFinished %d (%d) clock per
sec %d\n",clock()/CLOCKS_PER_SEC,clock(),CLOCKS_PER_SEC);

int *disp = new int[num_pixels];
PostProc *pproc = new PostProc(width, height, num_labels);
//pproc >txtRead("disp_books_f11.txt", resultl, num_pixels);
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//pproc >txtRead("disp_books_r11.txt", resultr, num_pixels);
pproc >MatchLeftRightDisp(resultl, resultr, disp);
pproc >RemoveSmallAreas(num_labels, leftDispFileName, disp);
pproc >MatchRightLeftDisp(resultl, resultr, disp);
pproc >RemoveSmallAreas(num_labels, rightDispFileName, disp);

//clean the memory
delete imgio;
delete [] resultl;
delete [] resultr;
delete pproc;
delete lc;
delete [] disp;
printf("Finish.....\n");
return 0;

}
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LocalCost.h:

#ifndef __LOCALCOST_H__
#define __LOCALCOST_H__

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <fstream>

#include "GCoptimization.h"

struct Images
{

double left[768*768];
double right[768*768];

};
class LocalCost
{
public:

LocalCost(void);
virtual ~LocalCost(void);
struct Images images;
int dataCoFn_ncc(int p, int l, int window, int width, int height, int lo);
int dataCoFn_Census(int p, int l, int window, int width, int height, int lo);

private:
void subAvg(int width, int height);
double weightingFn(int colt, int rowt, int colp, int rowp, int width, int height, int left);
double normConst(double *weights, int size);
int ncc(int p, int l, int row, int col, int width, int height, double *weights_l, double

*weights_r, double leftAvg, double rightAvg, int offset);
};

#endif
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LocalCost.cpp:

#include "stdafx.h"
#include "LocalCost.h"

LocalCost::LocalCost(){}
LocalCost::~LocalCost(){}

void LocalCost::subAvg(int width, int height)
{

double suml = 0.0;
double sumr = 0.0;
int num_pixels = width*height;
for (int i = 0; i < num_pixels; i++)
{

suml = suml + images.left[i];
sumr = sumr + images.right[i];

}
suml = suml / num_pixels;
sumr = sumr / num_pixels;
for(int i = 0; i < num_pixels; i++)
{

images.left[i] = images.left[i] suml;
images.right[i] = images.right[i] sumr;

}
}

double LocalCost::weightingFn(int colt, int rowt, int colp, int rowp, int width, int height, int left)
{

double sigmad = 14.0;
double sigmas = 3.8;
double weight = 0.0;

int t = rowt*width + colt;
int p = rowp*width + colp;

if (colt >= 0 && colt < width && rowt >= 0 && rowt < height)
{

weight = (double)((colt colp)*(colt colp) + (rowt rowp)*(rowt rowp)) / 2.0 / sigmad
/ sigmad;

if (colt >= 0 && colt < width && rowt >= 0 && rowt < width)
{
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if (left == 0)
weight = weight (images.left[p] images.left[t])*(images.left[p]

images.left[t]) / 2.0 / sigmas / sigmas;
else

weight = weight (images.right[p] images.right[t])*(images.right[p]
images.right[t]) / 2.0 / sigmas / sigmas;

}
else
{

if (left == 0)
weight = weight (images.left[p] 0.0)*(images.left[p] 0.0) / 2.0 /

sigmas / sigmas;
else

weight = weight (images.right[p] 0.0)*(images.right[p] 0.0) / 2.0 /
sigmas / sigmas;

}

return exp(weight);
}
else
{

return 0.0;
}

}

double LocalCost::normConst(double *weights, int size)
{

double sum = 0.0;

for (int i = 0; i < size; i++)
{

sum = sum + weights[i];
}
return sum;

}

int LocalCost::ncc(int p, int l, int row, int col, int width, int height, double *weights_l, double
*weights_r, double leftAvg, double rightAvg, int offset)
{

//Calculate NCC
double numerator = 0.0;
double denorminator1 = 0.0;
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double denorminator2 = 0.0;
double pleft = 0;
double pright = 0;

double weightl = 0.0;
double weightr = 0.0;
int indexl = 0;
int indexr = 0;

int count = 0;

for (int i = row offset; i <= row+offset; i++)
{

for (int j = col offset; j <= col + offset; j++)
{

indexl = i*width+j;
indexr = i*width+j+l;
if (i >= 0 && i < height && j >= 0 && j < width)

pleft = images.left[indexl];
if (i >= 0 && i < height && j+l >= 0 && j+l < width)

pright = images.right[indexr];

weightl = weights_l[count];
weightr = weights_r[count];
count++;

numerator = numerator + fabs((pleft leftAvg) * (pright
rightAvg))*weightl*weightr;

denorminator1 = denorminator1 + pow((pleft leftAvg)*weightl, 2);
denorminator2 = denorminator2 + pow((pright rightAvg)*weightr, 2);

}
}
double denorminator = sqrt(denorminator1)*sqrt(denorminator2);
int cost = (1.0 fabs(numerator / denorminator))*400;
delete [] weights_l;
delete [] weights_r;
return cost;

}

int LocalCost::dataCoFn_Census(int p, int l, int window, int width, int height, int lo)
{

int col = p % width;
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int row = (p col) / width;

if (abs(l) < lo)
return 400;

if(col+l >= width || col+l < 0)
return 400;

int offset = (window 1)/2;
int wPixels = window*window;
double pleft = 0;
double pright = 0;
int indexl = 0;
int indexr = 0;
int *label1, *label2;
int count1 = 0;
int count2 = 0;

label1 = new int[wPixels];
label2 = new int[wPixels];

double center1 = images.left[p];
double center2 = images.right[p+l];

//apply Census transform to the image
for (int i = row offset; i <= row+offset; i++)
{

for (int j = col offset; j <= col + offset; j++)
{

if (j >= 0 && j < width && i >= 0 && i < height)
{

indexl = i*width+j;
pleft = images.left[indexl];
if (pleft < center1)

label1[count1] = 1;
else

label1[count1] = 0;
count1++;

}
else
{

label1[count1] = 0;
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count1++;
}

if (j+l >= 0 && j+l < width && i >= 0 && i < height)
{

indexr = i*width+j+l;
pright = images.right[indexr];
if (pright < center2)

label2[count2] = 1;
else

label2[count2] = 0;
count2++;

}
else
{

label2[count2] = 0;
count2++;

}
}

}

//Calculate the Hamming distance between the two bit streams
int hammingd = 0;

for (int i = 0; i < wPixels; i++)
{

if (label1[i] != label2[i])
hammingd++;

}
int cost = ((double)hammingd)/wPixels*400;
delete [] label1;
delete [] label2;
return cost;

}

int LocalCost::dataCoFn_ncc(int p, int l, int window, int width, int height, int lo)
{

int col = p % width;
int row = (p col) / width;
int offset = (window 1)/2;
double suml = 0.0;
double sumr = 0.0;
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double weightl = 0.0;
double weightr = 0.0;
int indexl = 0;
int indexr = 0;

if(abs(l) < lo)
return 400;

if(col+l >= width || col+l < 0)
return 400;

double *weights_l, *weights_r;
int wPixels = window*window;
weights_l = new double[wPixels];
weights_r = new double[wPixels];
int count = 0;

//Calculate average of left and right window
for (int i = row offset; i <= row+offset; i++)
{

for (int j = col offset; j <= col + offset; j++)
{

indexl = i*width+j;
indexr = i*width+j+l;
weightl = weightingFn(j, i, col, row, width, height ,0);
weightr = weightingFn(j+l, i, col+l, row, width, height, 1);

weights_l[count] = weightl;
weights_r[count] = weightr;
count++;

if (i >= 0 && i < height && j >= 0 && j < width)
suml = suml + images.left[indexl]*weightl;

if (i >= 0 && i < height && j+l >= 0 && j+l < width)
sumr = sumr + images.right[indexr]*weightr ;

}
}

double leftAvg = suml / normConst(weights_l, wPixels) ;
double rightAvg = sumr / normConst(weights_r, wPixels);
return ncc(p, l, row, col, width, height, weights_l, weights_r, leftAvg, rightAvg, offset);

}
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ImageIO.h:

#ifndef __IMAGEIO_H__
#define __IMAGEIO_H__

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <fstream>

#include "LocalCost.h"

class ImageIO
{
public:

ImageIO(int height, int width);
virtual ~ImageIO(void);
void openImage(char *leftn, char *rightn);
void swapImage(void);
void writeData(char *name, int *data, int num_pixels);

private:
int h, w;

};

#endif
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ImageIO.cpp:
#include "stdafx.h"
#include "ImageIO.h"

using namespace std;
extern LocalCost *lc;

ImageIO::ImageIO(int height, int width)
{

w = width;
h = height;

}

ImageIO::~ImageIO() {}

void ImageIO::openImage(char *leftn, char *rightn)
{

int value;
ifstream inFile;

inFile.open(leftn);
if (!inFile)
{

cout << "Unable to open file";
exit(1);

}

for (int i = 0; i < w*h; i++)
{

inFile >> value;
::lc >images.left[i] = log((double)value);

}
inFile.close();

inFile.open(rightn);
if (!inFile)
{

cout << "Unable to open file";
exit(1);

}

for (int i = 0; i < w*h; i++)
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{
inFile >> value;
::lc >images.right[i] = log((double)value);

}
inFile.close();

}

void ImageIO::swapImage()
{

double tmp = 0;
for (int i = 0; i < w*h; i++)
{

tmp = ::lc >images.left[i];
::lc >images.left[i] = ::lc >images.right[i];
::lc >images.right[i] = tmp;

}
}

void ImageIO::writeData(char *name, int *data, int num_pixels)
{

ofstream outFile;
outFile.open (name);
for (int i = 0; i < num_pixels; i++)
{

outFile << data[i] ;
outFile << "\t";

}
outFile.close();

}
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Segmentation.h:

#ifndef __SEGMENTATION_H__
#define __SEGMENTATION_H__

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <fstream>
#include <stack>
#include <map>

class Segmentation
{
public:

Segmentation(int width, int height);
virtual ~Segmentation(void);
int AssignLabel(int* disp);
void InvalidateSmallSegments (int* disp, int label);

int *seg;

private:
int w, h;
int MIN_REGION_SIZE;

};

#endif
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Segmentation.cpp:

#include "stdafx.h"
#include "Segmentation.h"
using namespace std;

Segmentation::Segmentation(int width, int height)
{

w = width;
h = height;
MIN_REGION_SIZE = 150;
seg = new int[w*h];

}

Segmentation::~Segmentation()
{

delete [] seg;
}

int Segmentation::AssignLabel(int *disp)
{

int label = 0;
int left = 999;
int up = 999;
int p = 0;

for (int i = 0; i < h; i++)
{

for (int j = 0; j < w; j++)
{

p = disp[i*w+j];

if (p == 0)
{

seg[i*w+j] = 0;
continue;

}

if (i > 0)
up = disp[(i 1)*w+j];

else
up = 999;
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if (j > 0)
left = disp[i*w+j 1];

else
left = 999;

if (abs(p left)<3)
seg[i*w+j] = seg[i*w+j 1];

else
{

if (abs(p up)<3)
seg[i*w+j] = seg[(i 1)*w+j];

else
{

label = label+1;
seg[i*w+j] = label;

}
}
if(abs(p left) < 3 && abs(p up) < 3 && abs(left up) < 3 && seg[(i 1)*w+j] !=

seg[i*w+j 1])
{

int min = 0;
int max = 0;
//merge the two labels
if(seg[(i 1)*w+j]>seg[i*w+j 1])
{

max = seg[(i 1)*w+j];
min = seg[i*w+j 1];

}
else
{

min = seg[(i 1)*w+j];
max = seg[i*w+j 1];

}
for(int m = 0; m <= i; m++)

for(int n = 0; n <= j; n++)
{

if(seg[m*w+n] == max)
seg[m*w+n] = min;

}
}

}
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}
return label;

}

void Segmentation::InvalidateSmallSegments(int *disp, int label)
{

stack<int> *index = new stack<int>[label];
int *count = new int[label];
int pIndex = 0;
int l;

for(int i = 0; i < label; i++)
{

count[i] = 0;
}

//count the size of each segment
for(int i = 0; i < h; i++)
{

for(int j = 0; j < w; j++)
{

pIndex = i*w+j;
l = seg[pIndex];
count[l]++;
if(count[l] < MIN_REGION_SIZE)

index[l].push(pIndex);
}

}

//check invalide segments
for(int i = 0; i < label; i++)
{

if(count[i] < MIN_REGION_SIZE)
{

while(!index[i].empty())
{

disp[index[i].top()] = 0;
index[i].pop();

}
}

}
}
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PostProc.h:

#ifndef __POSTPROC_H__
#define __POSTPROC_H__

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <fstream>
#include <vector>

#include "Segmentation.h"

class PostProc
{
public:

PostProc(int width, int height, int num_labels);
virtual ~PostProc(void);
void RemoveSmallAreas(int num_labels, char *filename, int *disp);
void writeData(char *name, int *data, int num_pixels);
void txtRead(char *name, int *data, int num_pixels);
void MatchLeftRightDisp(int *displ, int *dispr, int *disp);
void MatchRightLeftDisp(int *displ, int *dispr, int *disp);
//void getDisp(int *d);
//void getValidLabels(int *labels, int num_labels);

private:
int *pixels, *flag; //*disp,
int w, h, min_region;
//void MatchCbCrDisp(int *dispcb, int *dispcr);

};

#endif
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PostProc.cpp:

#include "stdafx.h"

#include "PostProc.h"
#include "ImageIO.h"

using namespace std;

PostProc::PostProc(int width, int height, int num_labels)
{

w = width;
h = height;
//disp = new int[h*w];
min_region = 1000;
pixels = new int[min_region];
flag = new int[num_labels];

}

PostProc::~PostProc()
{

//delete [] disp;
delete [] pixels;
delete [] flag;

}

void PostProc::txtRead(char *name, int *data, int num_pixels)
{

int value;
ifstream inFile;

inFile.open(name);
if (!inFile)
{

cout << "Unable to open file";
exit(1);

}

for (int i = 0; i < num_pixels; i++)
{

inFile >> value;
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data[i] = (int)value;
}
inFile.close();

}

/*void PostProc::getDisp(int *d)
{

for(int i = 0; i < h*w; i++)
{

d[i] = disp[i];
}

}*/

/*void PostProc::getValidLabels(int *labels, int num_labels)
{

for(int i = 0; i < num_labels; i++)
labels[i] = 0;

for(int i = 0; i < h*w; i++)
{

if(disp[i] != 0)
labels[disp[i]]++;

}
}*/

void PostProc::writeData(char *name, int *data, int num_pixels)
{

ofstream outFile;
outFile.open (name);
for (int i = 0; i < num_pixels; i++)
{

outFile << data[i] ;
outFile << "\t";

}
outFile.close();

}

void PostProc::MatchLeftRightDisp(int *displ, int *dispr, int *disp)
{

int num_pixels = w*h;
int dl = 0;
int dr = 0;
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for (int i = 0; i < h; i++)
{

for (int j = 0; j < w; j++)
{

dl = displ[i*w+j];
dr = dispr[i*w+j+dl];
if(abs(dl dr)<3)

disp[i*w+j] = dl;
else

disp[i*w+j] = 0;
}

}
//output the matched disparity map
//writeData("disp_statue.txt", disp, h*w);

}

void PostProc::MatchRightLeftDisp(int *displ, int *dispr, int *disp)
{

int num_pixels = w*h;
int dl = 0;
int dr = 0;

for (int i = 0; i < h; i++)
{

for (int j = 0; j < w; j++)
{

dr = dispr[i*w+j];
if (j dr < 0)

disp[i*w+j] = 0;
else
{

dl = displ[i*w+j dr];
if(abs(dl dr)<3)

disp[i*w+j] = dr;
else

disp[i*w+j] = 0;
}

}
}
//output the matched disparity map
//writeData("disp_statue.txt", disp, h*w);
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}

void PostProc::RemoveSmallAreas(int num_labels, char *filename, int *disp)
{

Segmentation *segProc = new Segmentation(w, h);
int num_l = segProc >AssignLabel(disp);
cout << "Number of labels is " << num_l << endl;
segProc >InvalidateSmallSegments(disp, num_l+1);

//output the matched disparity map
//writeData("statue_labels.txt", segProc >seg, h*w);

//output the matched disparity map
writeData(filename, disp, h*w);
delete segProc;

}
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GenerateHDR.m

function hdrImg = generateHDR(dimg1, dimg2, nleft, nright, disp, height, width, c)

num_pixels = width*height;

left_image = reshape(textread(nleft, '%d', num_pixels), width, height)';
right_image = reshape(textread(nright, '%d', num_pixels), width, height)';

left_image = double(left_image) / 255;
right_image = double(right_image) / 255;

hdrImg = dimg1;
%generate HDR image
for m = 1:size(dimg1, 1)
for n = 1:size(dimg2, 2) 30
r1 = dimg1(m,n);
if r1 < 0
r1 = 0;

end
l1 = left_image(m,n);

r2 = dimg2(m,n);
if r2 < 0
r2 = 0;

end
if (n+disp(m,n)) <= width
l2 = right_image(m,n+disp(m,n));

else
r2 = 0;
l2 = 0;

end

w1 = r1/diff(c, l1);
w2 = r2/diff(c, l2);
if r1 > 0 || r2 > 0
hdrImg(m,n) = (r1*w1+r2*w2)/(w1+w2);

else
hdrImg(m,n) = 0;

end
end

end
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function v = diff(c, b)
power = length(c);
v = 0;
for p = 2:power
v = v + c(p)*b^(p 2);

end
v = abs(v);

ToneMapping.m

function hdr = toneMapping(img)
height = size(img, 1);
width = size(img, 2);
Lw = exp(sum(sum(log(img + 10^ 6)))/width/height);
L = 0.18*img/Lw;
Ld = L./(1+L);
Ld = Ld/max(max(Ld));
hdr = uint8(Ld*255);
%hdr = uint8((0.9 power(Ld 1, 2))*255);


