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Abstract

We study monotone operators in general Banach spaces. Properties and

characterizations of monotone linear relations are presented. We focus on

the “sum problem” which is the most famous open problem in Monotone

Operator Theory, and we provide a powerful sufficient condition for the sum

problem. We work on classical types of maximally monotone operators and

provide affirmative answers to several open problems posed by Phelps and

by Simons. Borwein-Wiersma decomposition and Asplund decomposition of

maximally monotone operators are also studied.
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Preface

My thesis is primarily based on the following twelve papers:

[6–8] by Heinz H. Bauschke, Jonathan M. Borwein, Xiangfu

Wang and Liangjin Yao;

[14–18] by Heinz H. Bauschke, Xianfu Wang and Liangjin Yao;

[88] by Xianfu Wang and Liangjin Yao;

and

[89–91] by Liangjin Yao.

Specifically, the relationship between the above papers and my thesis is as

follows:

Chapter 3 is mainly based on the work in [15, 17, 18, 89]; Chap-

ter 4 is mainly based on the work in [88]; Chapter 5 is mainly

based on the work in [90, 91]; Chapter 6 is all based on the

work in [6, 7]; Chapter 7 is mainly based on the work in [15, 17];

Chapter 8 is all based on the work in [8]; and Chapter 9 is mainly

based on the work in [18].

For every multi-authored paper, each author contributed equally.
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Chapter 1

Introduction

My thesis mainly focuses on monotone operators, which have proved to

be a key class of objects in modern Optimization and Analysis. We start

with linear relations, which are becoming a centre of attention in Monotone

Operator Theory.

In Chapter 3, we gather some basic properties about monotone linear

relations, and conditions for them to be maximally monotone. We construct

maximally monotone unbounded linear operators. We give some characteri-

zations of the maximal monotonicity of linear operators and we also provide

a brief proof of the Brezis-Browder Theorem. In Chapter 4, we focus on

finding explicit maximally monotone linear subspace extensions of mono-

tone linear relations, which generalize Crouzeix and Anaya’s recent work.

The most important open problem in Monotone Operator Theory con-

cerns the maximal monotonicity of the sum of two maximally monotone

operators provided that Rockafellar’s constraint qualification holds. This is

called the “sum problem”. The sum problem has an affirmative answer in

reflexive spaces, but is still unsolved in general Banach spaces. In Chap-

ter 5, we obtain a powerful sufficient condition for the sum problem to have

an affirmative solution, which generalizes other well-known results for this
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Chapter 1. Introduction

problem obtained by different researchers in recent years. We also prove the

case of the sum of a maximally monotone linear relation and the subdiffer-

ential operator.

In Chapter 6, we study classical types of maximally monotone opera-

tors: dense type, negative-infimum type, Fitzpatrick-Phelps type, etc. We

show that every maximally monotone operator of Fitzpatrick-Phelps type

must be of dense type. We establish that for a maximally monotone linear

relation, being of dense type, negative-infimum type, or Fitzpatrick-Phelps

type is equivalent to the adjoint being monotone. The above results provide

affirmative answers to two open problems: one posed by Phelps and Simons,

and the other by Simons.

The Fitzpatrick function is a very important tool in Monotone Operator

Theory. In Chapter 7, we study the properties of the partial inf-convolution

of the Fitzpatrick functions associated with maximally monotone operators.

In Chapter 8, we construct some maximally monotone operators that

are not of type (D). Using these operators, we show that the partial inf-

convolution of two BC-functions will not always be a BC-function, which

provides a negative answer to a question posed by Simons.

There are two well known decompositions of maximally monotone op-

erators: Asplund Decomposition and Borwein-Wiersma Decomposition. In

Chapter 9, we show that Borwein-Wiersma decomposability implies Asplund

decomposability. We present characterizations of Borwein-Wiersma decom-

posability of maximally monotone linear relations in general Banach spaces

and provide a more explicit decomposition in Hilbert spaces.

In this thesis, we solve the following open problems.

2



Chapter 1. Introduction

(1) Simons posed the following question in [74, page 199] concerning [72,

Theorem 41.6] (See Corollary 5.3.6 or [16].):

Let A : domA → X∗ be linear and maximally monotone, let

C be a nonempty closed convex subset of X, and suppose that

domA ∩ intC 6= ∅.

Is A+NC necessarily maximally monotone?

(2) Simons posed the following question in [74, Problem 47.6] (See Theo-

rem 6.2.1 or [6].):

Let A : domA → X∗ be linear and maximally monotone.

Assume that A is of type (FP).

Is A necessarily of type (NI)?

(3) Simons posed the following question in [73, Problem 18, page 406] (See

Corollary 6.2.2 or [7].):

Let A : X ⇒ X∗ be maximally monotone such that A is of

type (FP).

Is A necessarily of type (D)?

(4) Phelps and Simons posed the following question in [63, Section 9, item 2]

(See Corollary 6.3.3 or [6].):

Let A : domA → X∗ be linear and maximally monotone.

Assume that A∗ is monotone.

Is A necessarily of type (D)?

3



Chapter 1. Introduction

(5) Simons posed the following question in [74, Problem 22.12] (See Exam-

ple 8.3.1(iii)&(v) or [8].):

Let F1, F2 : X × X∗ → ]−∞,+∞] be proper lower semicon-

tinuous and convex functions. Assume that F1, F2 are BC–

functions and that

⋃

λ>0

λ [PX∗ domF1 − PX∗ domF2] is a closed subspace of X∗.

Is F1�1F2 necessarily a BC–function?

The answers are yes, yes, yes, yes and no, respectively.

4



Chapter 2

Notation and examples

In this chapter, we fix some notation and give some examples. Throughout

this thesis, we assume that X is a real Banach space with norm ‖ · ‖, that

X∗ is the continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. Let

A : X ⇒ X∗ be a set-valued operator (also known as multifunction) from X

to X∗, i.e., for every x ∈ X, Ax ⊆ X∗, and let graA =
{
(x, x∗) ∈ X ×X∗ |

x∗ ∈ Ax
}
be the graph of A. The inverse operator A−1 : X∗ ⇒ X is given

by graA−1 =
{
(x∗, x) ∈ X∗ ×X | x∗ ∈ Ax

}
; the domain of A is domA =

{
x ∈ X | Ax 6= ∅

}
, and its range is ranA = A(X). If Z is a real Banach

space with dual Z∗ and a set S ⊆ Z, we define S⊥ by S⊥ =
{
z∗ ∈ Z∗ |

〈z∗, s〉 = 0, ∀s ∈ S
}
. Given a subset D of Z∗, we define D⊥ [63] by D⊥ =

{
z ∈ Z | 〈z, d∗〉 = 0, ∀d∗ ∈ D

}
. The adjoint of A, written A∗, is defined

by

graA∗ =
{
(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥

}

=
{
(x∗∗, x∗) ∈ X∗∗ ×X∗ | 〈x∗, a〉 = 〈a∗, x∗∗〉, ∀(a, a∗) ∈ graA

}
.

See Example 2.1.2, Example 2.1.4, Section 3.3 and Cross’ book [38] for more

information about linear relations.
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Chapter 2. Notation and examples

The Fitzpatrick function of A (see [45]) is given by

FA : (x, x∗) ∈ X ×X∗ 7→ sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
. (2.1)

See Chapter 7 for more properties of the Fitzpatrick functions.

Recall that A is monotone if

(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y, x∗ − y∗〉 ≥ 0, (2.2)

and maximally monotone if A is monotone and A has no proper monotone

extension (in the sense of graph inclusion). We say (x, x∗) ∈ X × X∗ is

monotonically related to graA if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

Let A : X ⇒ X∗ be maximally monotone. We say A is of type Fitzpatrick-

Phelps-Veronas (FPV) if for every open convex set U ⊆ X such that U ∩

domA 6= ∅, the implication

x ∈ U and (x, x∗) is monotonically related to graA ∩ (U ×X∗)

⇒ (x, x∗) ∈ graA

holds. We say A is a linear relation if graA is a linear subspace. Monotone

operators have proven to be a key class of objects in modern Optimization

and Analysis; see, e.g., [22–24], the books [9, 26, 33, 34, 48, 61, 68, 72, 74,

92, 93] and the references therein. We also adopt the standard notation

6



Chapter 2. Notation and examples

used in these books: Given a subset C of X, intC is the interior of C,

bdryC is the boundary of C, convC is the convex hull of C, and C and

C
w

are respectively the norm closure of C and weak closure of C. For

the set C∗ ⊆ X∗, C∗w*
is the weak∗ closure of C∗. If C∗∗ ⊆ X∗∗, C∗∗w*

is the weak∗ closure of C∗∗ in X∗∗ with the topology induced by X∗. The

indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) =





0, if x ∈ C;

∞, otherwise.

(2.3)

The indicator mapping IC : X → X∗ is defined by

IC(x) =





0, if x ∈ C;

∅, otherwise.

(2.4)

The distance function to the set C, written as d(·, C), is defined by x 7→

infc∈C ‖x − c‖. The support function of C, written as σC , is defined by

σC(x
∗) = supc∈C〈c, x∗〉. If D ⊆ X, we set C −D = {x− y | x ∈ C, y ∈ D}.

For every x ∈ X, the normal cone operator of C at x is defined by NC(x) =
{
x∗ ∈ X∗ | supc∈C〈c− x, x∗〉 ≤ 0

}
, if x ∈ C; and NC(x) = ∅, if x /∈ C

(see Example 2.1.5 for more information). For x, y ∈ X, we set [x, y] =

{tx+(1− t)y | 0 ≤ t ≤ 1}. Let dimF stand for the dimension of a subspace

F of X. Given f : X → ]−∞,+∞], we set dom f = f−1(R) and f∗ : X∗ →

[−∞,+∞] : x∗ 7→ supx∈X(〈x, x∗〉− f(x)) is the Fenchel conjugate of f . The

lower semicontinuous hull of f is denoted by f . If f is convex and dom f 6=

7



Chapter 2. Notation and examples

∅, then ∂f : X ⇒ X∗ : x 7→
{
x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)

}

is the subdifferential operator of f . Note that NC = ∂ιC For ε ≥ 0,

the ε–subdifferential of f is defined by ∂εf : X ⇒ X∗ : x 7→
{
x∗ ∈ X∗ |

(∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y) + ε
}
. We have ∂f = ∂0f .

Let g : X → ]−∞,+∞]. The inf-convolution of f and g, f�g, is defined

by

f�g : x 7→ inf
y∈X

[f(y) + g(x− y)] .

Let J be the duality map, i.e., the subdifferential of the function 1
2‖ · ‖2. By

[61, Example 2.26],

Jx =
{
x∗ ∈ X∗ | 〈x∗, x〉 = ‖x∗‖ · ‖x‖, with ‖x∗‖ = ‖x‖

}
. (2.5)

Let Id be the identity mapping from X to X. Let Y be a real Banach space.

We also set PX : X×Y → X : (x, y) 7→ x, and PY : X×Y → Y : (x, y) 7→ y.

Let f : X → ]−∞,+∞] and g : Y → ]−∞,+∞]. We define (f⊕g) on X×Y

by (f ⊕ g)(x, y) = f(x) + g(y) for every (x, y) ∈ X × Y .

The open unit ball in X is denoted by UX =
{
x ∈ X | ‖x‖ < 1

}
, the

closed unit ball in X is denoted by BX =
{
x ∈ X | ‖x‖ ≤ 1

}
and N =

{1, 2, 3, . . .}. Let Sgn be defined by

Sgn: R ⇒ R : ξ 7→





1, if ξ > 0;

[−1, 1] , if ξ = 0;

−1, if ξ < 0.

8



2.1. Some examples

Throughout, we shall identify X with its canonical image in the bidual

space X∗∗. Furthermore, X ×X∗ and (X ×X∗)∗ = X∗ ×X∗∗ are likewise

paired via 〈(x, x∗), (y∗, y∗∗)〉 = 〈x, y∗〉 + 〈x∗, y∗∗〉, where (x, x∗) ∈ X × X∗

and (y∗, y∗∗) ∈ X∗×X∗∗. Unless mentioned otherwise, the norm on X×X∗,

written as ‖ · ‖1, is defined by ‖(x, x∗)‖1 = ‖x‖ + ‖x∗‖ for every (x, x∗) ∈

X ×X∗.

2.1 Some examples

Now we give some examples of linear relations and their adjoints. See Ex-

ample 2.1.1, Example 2.1.2 and Example 2.1.4.

Example 2.1.1 Figure 2.1 is the graph of the linear operator:

A =



0 −1

1 0


 .

Example 2.1.2 (Borwein) (See [21, Example 3.1].) Let A : Rn ⇒ Rn be

defined by

Ax =





Bx+ V, if x ∈ S;

∅, otherwise,

where B ∈ Rn×n, S and V are subspaces of Rn. Then

A∗x =





BTx+ S⊥, if x ∈ V ⊥;

∅, otherwise.

9



2.1. Some examples

Figure 2.1: field plot of the linear operator A

That is,

graA = span{(s1, Bs1), . . . , (sp, Bsp), (0, v1), . . . , (0, vq)}

graA∗ = span{(v′1, B>v′1), . . . , (v
′
p′ , B

>vp′), (0, s
′
1), . . . , (0, s

′
q′)}

where, (s1, . . . , sp), (v1, . . . , vq) are respectively the bases of S and V and

(v′1, . . . , v
′
p′), (s

′
1, . . . , sq′) are respectively the bases of V ⊥ and S⊥

Remark 2.1.3 In Example 2.1.2, take S = Rn and V = 0, then A = B

and A∗ = BT = AT .

Let’s go to an explicit example of a monotone linear relation.

10



2.1. Some examples

Example 2.1.4 Let A : R3 ⇒ R3 be defined by

Ax =








4 1 −1

1 2 1

−1 1 2




x+ span e1, if x ∈ span{e2};

∅, otherwise,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Then

A∗x =








4 1 −1

1 2 1

−1 1 2




x+ span{e1, e3}, if x ∈ span{e2, e3};

∅, otherwise,

and

graA = span{(0, e1), (e2, e1 + 2e2 + e3)}

graA∗ = span{(0, e1), (0, e3), (e2, e1 + 2e2 + e3), (e3,−e1 + e2 + 2e3)}.

The following is the explicit formula for the normal cone operator in

`1(N).

Example 2.1.5 (Rockafellar) Suppose that

X = `1(N), with norm ‖(xn)n∈N‖ =
∑

n∈N
|xn|, so that
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2.1. Some examples

X∗ = `∞(N) with ‖(x∗n)n∈N‖∗ = supn∈N |x∗n| . The normal cone operator

NBX
is maximally monotone; furthermore, for every x ∈ `1(N),

NBX
(x) =





{
0
}
, if ‖x‖ < 1;

R+ ·
(
Sgn(xn)

)
n∈N, if ‖x‖ = 1;

∅, if ‖x‖ > 1.

Proof. By Fact 5.1.2, NBX
is maximally monotone. We now turn to the

formula for the normal cone operator. Clearly, NBX
(x) = {0} if ‖x‖ < 1,

and NBX
(x) = ∅ if ‖x‖ > 1. Now we suppose ‖x‖ = 1. Assume x∗ ∈ `∞(N).

Then

x∗ ∈ NBX
(x) ⇔ 〈x∗, y − x〉 ≤ 0, ∀y ∈ BX ⇔ ‖x∗‖∗ ≤ 〈x∗, x〉

⇔ ‖x∗‖∗ = 〈x∗, x〉. (2.6)

Clearly,

〈K
(
Sgn(xn)

)∞
n=1

, x〉 = K‖x‖ = K = ‖K
(
Sgn(xn)

)∞
n=1

‖∗, ∀K ≥ 0.

Thus, by (2.6),

{(
K · Sgn(xn)

)∞
n=1

| K ≥ 0
}
⊆ NBX

(x).

Let x∗ ∈ NBX
(x). Assume x∗ = (x∗n)

∞
n=1. If x

∗ = 0, then x∗ ∈
{(

K · Sgn(xn)
)∞
n=1

| K ≥ 0
}
. Now assume K := ‖x∗‖∗ 6= 0. Thus,

|x∗n| ≤ K, ∀n ∈ N. Let n ∈ N. Now we consider two cases:

12



2.1. Some examples

Case 1: xn = 0. Clearly, x∗n ∈ K [−1, 1] = K Sgn(0).

Case 2: xn 6= 0. We can suppose xn > 0. By (2.6), we have

K = x∗nxn +
∑

i 6=n

x∗ixi ≤ x∗nxn +
∑

i 6=n

sup
j∈N

|x∗j | · |xi| = x∗nxn +K(1− xn)

≤ Kxn +K(1− xn) = K.

Hence x∗nxn + K(1 − xn) = Kxn + K(1 − xn). Thus, x∗n = K. Then

x∗ ∈
(
K · Sgn(xn)

)∞
n=1

. That is,

NBX
(x) ⊆

{(
K · Sgn(xn)

)∞
n=1

| K ≥ 0
}
.

Hence NBX
(x) =

{(
K · Sgn(xn)

)∞
n=1

| K ≥ 0
}
. �

13



Chapter 3

Linear relations

This chapter is mainly based on [15, 17, 18] by Bauschke, Wang and Yao,

and my work in [89]. We give some background material on linear rela-

tions, present some sufficient conditions for a linear relation to be mono-

tone, and construct some examples of maximally monotone linear rela-

tions. Furthermore, we provide a brief proof of the Brezis-Browder The-

orem on the characterization of the maximal monotonicity of linear rela-

tions. Recently, linear relations have become an interesting topic and are

comprehensively studied in Monotone Operator Theory: see [3–5, 14–19, 28–

32, 63, 75, 80, 83, 87, 89, 91].

3.1 Properties of linear relations

In this section, we gather some basic properties about monotone linear re-

lations, and conditions for them to be maximally monotone. These results

are used frequently in the sequel. We start with properties for general linear

relations. If A : X ⇒ X∗ is a linear relation that is at most single-valued,

then we will identify A with the corresponding linear operator from domA

to X∗ and (abusing notation slightly) also write A : domA → X∗. An

analogous comment applies conversely to a linear single-valued operator A

14



3.1. Properties of linear relations

with domain domA, which we will identify with the corresponding at most

single-valued linear relation from X to X∗.

Fact 3.1.1 (See [58, Proposition 2.6.6(c)] or [69, Theorem 4.7 and Theo-

rem 3.12]). Let C be a subspace of X, and D be a subspace of X∗. Then

(C⊥)⊥ = C = C
w

and (D⊥)
⊥ = D

w*
.

Fact 3.1.2 (Attouch-Brezis) (See [2, Theorem 1.1] or [74, Remark 15.2]).

Let f, g : X → ]−∞,+∞] be proper lower semicontinuous convex func-

tions. Assume that

⋃

λ>0

λ [dom f − dom g] is a closed subspace of X.

Then

(f + g)∗(z∗) = min
y∗∈X∗

{f∗(y∗) + g∗(z∗ − y∗)}, ∀z∗ ∈ X∗. (3.1)

The following result appeared in Cross’ book [38]. We give new proofs.

The proof of Proposition 3.1.3(ix) was borrowed from [18, Remark 2.2].

Proposition 3.1.3 Let A : X ⇒ X∗ be a linear relation. Then the follow-

ing hold.

(i) A0 is a linear subspace of X∗.

(ii) Ax = x∗ +A0, ∀x∗ ∈ Ax.

(iii) (∀(α, β) ∈ R2 r {(0, 0)}) (∀x, y ∈ domA) A(αx + βy) = αAx+ βAy.

15



3.1. Properties of linear relations

(iv) (A∗)−1 = (A−1)∗.

(v) (∀x ∈ domA∗)(∀y ∈ domA) 〈A∗x, y〉 = 〈x,Ay〉 is a singleton.

(vi) If X is reflexive and graA is closed, then A∗∗ = A.

(vii) (domA)⊥ = A∗0 and domA = (A∗0)⊥.

(viii) If graA is closed, then (domA∗)⊥ = A0 and domA∗w*
= (A0)⊥.

(ix) If domA is closed, then domA∗ = (Ā0)⊥ and thus domA∗ is (weak∗)

closed, where Ā is the linear relation whose graph is the closure of the

graph of A.

(x) If k ∈ Rr {0}, then (kA)∗ = kA∗.

Proof. (i): Since graA is a linear subspace, {0} ×A0 = graA ∩ {0} ×X∗ is

a linear subspace and hence A0 is a linear subspace.

(ii): Let x ∈ domA and x∗ ∈ Ax. Then (x, x∗+A0) = (x, x∗)+(0, A0) ⊆

graA and hence x∗ + A0 ⊆ Ax. On the other hand, let y∗ ∈ Ax. We have

(0, y∗ − x∗) = (x, y∗) − (x, x∗) ∈ graA. Then y∗ − x∗ ∈ A0 and thus

y∗ ∈ x∗ +A0. Hence Ax ⊆ x∗ +A0 and thus Ax = x∗ +A0.

(iii): Let (α, β) ∈ R2 r {(0, 0)} and {x, y} ⊆ domA. We can suppose

α 6= 0 and β 6= 0. Take x∗ ∈ Ax and y∗ ∈ Ay. Since graA is a linear

subspace, αx∗+βy∗ ∈ A(αx+βy). By (ii), A(αx+βy) = αx∗+βy∗+A0 =

αx∗ +A0 + βy∗ +A0 = α(x∗ + 1
α
A0) + β(y∗ + 1

β
A0) = αAx+ βAy.

(iv): We have (x∗, x∗∗) ∈ gra(A∗)−1 ⇔ (x∗∗, x∗) ∈ graA∗ ⇔ (x∗,−x∗∗)

∈ (graA)⊥ ⇔ (x∗∗,−x∗) ∈ (graA−1)⊥ ⇔ (x∗, x∗∗) ∈ gra(A−1)∗.
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3.1. Properties of linear relations

(v): Let x ∈ domA∗ and y ∈ domA. Take x∗ ∈ A∗x and y∗ ∈ Ay. We

have 〈x∗, y〉 = 〈y∗, x〉,∀x∗ ∈ A∗x, y∗ ∈ Ay. Hence 〈A∗x, y〉 and 〈Ay, x〉 are

singleton and equal.

(vi): We have (x, x∗) ∈ graA∗∗ ⇔ (x∗,−x) ∈ (graA∗)⊥ =

((gra−A−1)⊥)⊥ = gra−A−1 ⇔ (x, x∗) ∈ graA.

(vii): Clearly, (domA)⊥ ⊆ A∗0. Let x∗ ∈ A∗0. We have 〈x∗, y〉 +

〈0, Ay〉 = 0, ∀y ∈ domA. Then we have x∗ ∈ (domA)⊥ and thus A∗0

⊆ (domA)⊥. Hence (domA)⊥ = A∗0. By Fact 3.1.1, domA = (A∗0)⊥.

(viii): By Fact 3.1.1,

x∗ ∈ A0 ⇔ (0, x∗) ∈ graA =
[
(graA)⊥

]
⊥
=

[
gra−(A∗)−1

]
⊥

⇔ 〈x∗, y∗∗〉 = 0, ∀y∗∗ ∈ domA∗ ⇔ x∗ ∈ (domA∗)⊥.

Hence (domA∗)⊥ = A0. Take Y = X∗, by Fact 3.1.1 again, domA∗w*

= (A0)⊥.

(ix): Let Ā be the linear relation whose graph is the closure of the graph

of A. Then domA = dom Ā and A∗ = Ā∗. Then by Fact 3.1.2,

ιX∗×(Ā0)⊥ = ι∗{0}×Ā0 =
(
ιgra Ā + ι{0}×X∗

)∗
= ιgra(−Ā∗)−1 � ιX∗×{0}

= ιX∗×dom Ā∗ .

It is clear that domA∗ = dom Ā∗ = (Ā0)⊥ is closed.

(x): Let k ∈ Rr {0}. Then (x∗∗, x∗) ∈ gra(kA)∗ ⇔ (x∗,−x∗∗)

∈ (gra kA)⊥ ⇔ (x∗,−kx∗∗) ∈ (graA)⊥ ⇔ ( 1
k
x∗,−x∗∗) ∈ (graA)⊥

⇔ (x∗∗, 1
k
x∗) ∈ graA∗. Hence (kA)∗ = kA∗. �
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3.2. Properties of monotone linear relations

3.2 Properties of monotone linear relations

Proposition 3.2.1, Proposition 3.2.2 and Proposition 3.2.7 were established

in reflexive spaces by Bauschke, Wang and Yao in [15, Proposition 2.2].

Here, we adapt the proofs to a general Banach space.

Proposition 3.2.1 Let A : X ⇒ X∗ be a linear relation. Then the following

hold.

(i) Suppose A is monotone. Then domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥;

consequently, if graA is closed, then domA ⊆ domA∗w* ∩ X and

A0 ⊆ A∗0.

(ii) (∀x ∈ domA)(∀z ∈ (A0)⊥) 〈z,Ax〉 is single-valued.

(iii) (∀z ∈ (A0)⊥) domA → R : y 7→ 〈z,Ay〉 is linear.

(iv) A is monotone ⇔ (∀x ∈ domA) 〈x,Ax〉 is single-valued and 〈x,Ax〉

≥ 0.

(v) If (x, x∗) ∈ (domA) × X∗ is monotonically related to graA and x∗0

∈ Ax, then x∗ − x∗0 ∈ (domA)⊥.

Proof. (i): Pick x ∈ domA. Then there exists x∗ ∈ X∗ such that (x, x∗)

∈ graA. By the monotonicity of A and since (0, A0) ⊆ graA, we have

〈x, x∗〉 ≥ sup〈x,A0〉. Since A0 is a linear subspace (Proposition 3.1.3(i)),

we obtain x⊥A0. This implies domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥. If graA

is closed, then Proposition 3.1.3(viii)&(vii) yield domA ⊆ (A0)⊥ ⊆ (A0)⊥

= domA∗w*
and A0 ⊆ A∗0.
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3.2. Properties of monotone linear relations

(ii): Take x ∈ domA, x∗ ∈ Ax, and z ∈ (A0)⊥. By Proposition 3.1.3(ii),

〈z,Ax〉 = 〈z, x∗ +A0〉 = 〈z, x∗〉.

(iii): Take z ∈ (A0)⊥. By (ii), (∀y ∈ domA) 〈z,Ay〉 is single-valued.

Now let x, y be in domA, and let α, β be in R. If (α, β) = (0, 0), then

〈z,A(αx + βy)〉 = 〈z,A0〉 = 0 = α〈z,Ax〉 + β〈z,Ay〉. And if (α, β) 6=

(0, 0), then Proposition 3.1.3(iii) yields 〈z,A(αx+ βy) = 〈z, αAx+ βAy〉 =

α〈z,Ax〉 + β〈z,Ay〉. This verifies linearity.

(iv): “⇒”: This follows from (i), (ii), and the fact that (0, 0) ∈ graA.

“⇐”: If x and y belong to domA, then Proposition 3.1.3(iii) yields 〈x −

y,Ax−Ay〉 = 〈x− y,A(x− y)〉 ≥ 0.

(v): Let (x, x∗) ∈ (domA)×X∗ be monotonically related to graA, and

take x∗0 ∈ Ax. For every (v, v∗) ∈ graA, we have that x∗0 + v∗ ∈ A(x + v)

(by Proposition 3.1.3(iii)); hence, 〈x − (x + v), x∗ − (x∗0 + v∗)〉 ≥ 0 and

thus 〈v, v∗〉 ≥ 〈v, x∗ − x∗0〉. Now take λ > 0 and replace (v, v∗) in the

last inequality by (λv, λv∗). Then divide by λ and let λ → 0+ to see that

0 ≥ sup〈domA, x∗ − x∗0〉. Since domA is linear, it follows that x∗ − x∗0 ∈

(domA)⊥. �

We say that a linear relation A : X ⇒ X∗ is skew if graA ⊆ gra(−A∗),

equivalently, if 〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA; furthermore, A is symmetric if

graA ⊆ graA∗; equivalently, if 〈x, y∗〉 = 〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA.

We define the symmetric part and the skew part of A via

A+ = 1
2A+ 1

2A
∗ and A◦ = 1

2A− 1
2A

∗, (3.2)

respectively. It is easy to check that A+ is symmetric and that A◦ is skew.
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3.2. Properties of monotone linear relations

Proposition 3.2.2 Let A : X ⇒ X∗ be a monotone linear relation. Then

the following hold.

(i) If A is maximally monotone, then (domA)⊥ = A0 and hence domA =

(A0)⊥.

(ii) If domA is closed, then: A is maximally monotone ⇔ (domA)⊥ = A0.

(iii) If A is maximally monotone, then domA∗w* ∩ X = domA = (A0)⊥

and A0 = A∗0 = A+0 = A◦0 = (domA)⊥.

(iv) If A is maximally monotone and domA is closed, then domA∗ ∩X =

domA.

(v) If A is maximally monotone and domA ⊆ domA∗, then A = A++A◦,

A+ = A−A◦ , and A◦ = A−A+.

Proof. (i): Since A + NdomA = A + (domA)⊥ is a monotone extension

of A and A is maximally monotone, we must have A + (domA)⊥ = A.

Then A0 + (domA)⊥ = A0. As 0 ∈ A0, (domA)⊥ ⊆ A0. The reverse

inclusion follows from Proposition 3.2.1(i). Then we have (domA)⊥ = A0.

By Fact 3.1.1, domA = (A0)⊥.

(ii): “⇒”: This follows directly from (i). “⇐”: By our assumptions

and Fact 3.1.1, domA = (A0)⊥. Let (x, x∗) be monotonically related to

graA. We have inf [〈x− 0, x∗ −A0〉] ≥ 0. Then we have x ∈ (A0)⊥ and

hence x ∈ domA. Then by Proposition 3.2.1(v) and Proposition 3.1.3(ii),

x∗ ∈ Ax. Hence A is maximally monotone.

(iii): By (i) and Proposition 3.1.3(vii), A0 = (domA)⊥ = A∗0 and thus

A+0 = A◦0 = A0 = (domA)⊥. Then by Proposition 3.1.3(viii) and (i),
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3.2. Properties of monotone linear relations

domA∗w* ∩X = (A0)⊥ = domA.

(iv): Apply (iii) and Proposition 3.1.3(ix) directly.

(v): We show only the proof of A = A++A◦ as the other two proofs are

analogous. Clearly, domA+ = domA◦ = domA ∩ domA∗ = domA. Let

x ∈ domA, and x∗ ∈ Ax and y∗ ∈ A∗x. We write x∗ = x∗+y∗

2 + x∗−y∗

2 ∈

(A+ + A◦)x. Then, by (iii) and Proposition 3.1.3(ii), Ax = x∗ + A0 =

x∗ + (A+ +A◦)0 = (A+ +A◦)x. Therefore, A = A+ +A◦. �

Corollary 3.2.3 below first appeared in [63, Corollary 2.6 and Proposi-

tion 3.2(h)] by Phelps and Simons. Voisei and Zălinescu showed that the

maximality part also holds in locally convex spaces [87, Proposition 23].

Corollary 3.2.3 Let A : X → X∗ be monotone and linear. Then A is

maximally monotone and continuous.

Proof. By Proposition 3.2.2(ii), A is maximally monotone and thus graA is

closed. By the Closed Graph Theorem, A is continuous. �

Proposition 3.2.2(ii) provides a characterization of maximal monotonic-

ity for certain monotone linear relations. More can be said in finite-

dimensional spaces. We require the following lemma, where dimF stands

for the dimension of a subspace F of X. Lemma 3.2.4 and Proposition 3.2.5

were established by Bauschke, Wang and Yao in [18].

Lemma 3.2.4 Suppose that X is finite-dimensional and let A : X ⇒ X∗ be

a linear relation. Then dim(graA) = dim(domA) + dimA0.

Proof. We shall construct a basis of graA. By Proposition 3.1.3(i), A0 is a

linear subspace. Let {x∗1, . . . , x∗k} be a basis of A0, and let {xk+1, . . . , xl} be
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3.2. Properties of monotone linear relations

a basis of domA. From Proposition 3.1.3(ii), it is easy to show {(0, x∗1), . . . ,

(0, x∗k), (xk+1, x
∗
k+1), . . . , (xl, x

∗
l )} is a basis of graA, where x∗i ∈ Axi, i ∈

{k + 1, . . . , l}. Thus dim(graA) = l = dim(domA) + dimA0. �

Lemma 3.2.4 allows us to get a satisfactory characterization of maximal

monotonicities of linear relations in finite-dimensional spaces.

Proposition 3.2.5 Suppose that X is finite-dimensional, set n = dimX,

and let A : X ⇒ X∗ be a monotone linear relation. Then A is maximally

monotone if and only if dimgraA = n.

Proof. Since linear subspaces ofX are closed, we see from Proposition 3.2.2(ii)

that

A is maximally monotone ⇔ domA = (A0)⊥. (3.3)

Assume first that A is maximally monotone. Then domA = (A0)⊥. By

Lemma 3.2.4, dim(graA) = dim(domA)+dim(A0) = dim((A0)⊥)+dim(A0)

= n. Conversely, let dim(graA) = n. By Lemma 3.2.4, we have that

dim(domA) = n − dim(A0). As dim((A0)⊥) = n − dim(A0) and domA ⊆

(A0)⊥ by Proposition 3.2.1(i), we have that domA = (A0)⊥. By (3.3), A is

maximally monotone. �

Next, we obtain a key criteria on concerning maximally monotone linear

relations, which I will frequently use to construct maximally monotone linear

subspace extensions in Chapter 4.

Corollary 3.2.6 Let A : Rn ⇒ Rn be a monotone linear relation. The fol-

lowing are equivalent:

(i) A is maximally monotone.
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3.2. Properties of monotone linear relations

(ii) dimgraA = n.

(iii) domA = (A0)⊥.

For a monotone linear relation A : X ⇒ X∗ it will be convenient to define

(as in, e.g., [5])

(∀x ∈ X) qA(x) =





1
2〈x,Ax〉, if x ∈ domA;

∞, otherwise.

Proposition 3.2.7 Let A : X ⇒ X∗ be a monotone linear relation, let x

and y be in domA, and let λ ∈ R. Then qA is single-valued and

λqA(x) + (1− λ)qA(y)− qA(λx+ (1− λ)y) = λ(1− λ)qA(x− y)

= 1
2λ(1− λ)〈x− y,Ax−Ay〉. (3.4)

Moreover, qA is convex.

Proof. Proposition 3.2.1(iv) shows that qA is single-valued on domA and

that qA ≥ 0. Combining with Proposition 3.2.1(i)&(iii), we obtain (3.4).

Then by (3.4), qA is convex. �

Fact 3.2.8 (Simons) (See [74, Lemma 19.7 and Section 22].) Let A : X ⇒

X∗ be a monotone operator with convex graph such that graA 6= ∅. Then

the function

g : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉+ ιgraA(x, x
∗) (3.5)
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3.2. Properties of monotone linear relations

is proper and convex.

Proof. It is clear that g is proper because graA 6= ∅. To see that g is convex,

let (a, a∗) and (b, b∗) be in graA, and let λ ∈ ]0, 1[. Set µ = 1−λ ∈ ]0, 1[ and

observe that λ(a, a∗) + µ(b, b∗) = (λa+ µb, λa∗ + µb∗) ∈ graA by convexity

of graA. Since A is monotone, it follows that

λg(a, a∗) + µg(b, b∗)− g
(
λ(a, a∗) + µ(b, b∗)

)

= λ〈a, a∗〉+ µ〈b, b∗〉 − 〈λa+ µb, λa∗ + µb∗〉

= λµ〈a− b, a∗ − b∗〉

≥ 0.

Therefore, g is convex. �

Phelps and Simons proved Fact 3.2.9 in the unbounded linear case in [63,

Proposition 3.2(a)], but their proof can also be adapted to a linear relation.

For readers’ convenience, we write down their proof.

Fact 3.2.9 (Phelps-Simons) Let A : X ⇒ X∗ be a monotone linear rela-

tion. Then (x, x∗) ∈ X ×X∗ is monotonically related to graA if and only

if

〈x, x∗〉 ≥ 0 and [〈y∗, x〉+ 〈x∗, y〉]2 ≤ 4〈x∗, x〉〈y∗, y〉, ∀(y, y∗) ∈ graA.

Proof. We have

(x, x∗) ∈ X ×X∗ is monotonically related to graA
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3.2. Properties of monotone linear relations

⇔ λ2〈y, y∗〉 − λ [〈y∗, x〉+ 〈x∗, y〉] + 〈x, x∗〉 = 〈λy∗ − x∗, λy − x〉 ≥ 0,

∀λ ∈ R,∀(y, y∗) ∈ graA

⇔ 〈x, x∗〉 ≥ 0 and [〈y∗, x〉+ 〈x∗, y〉]2 ≤ 4〈x∗, x〉〈y∗, y〉,

∀(y, y∗) ∈ graA (by [63, Lemma 2.1]).

�

The proof of Proposition 3.2.10(iii) was borrowed from [30, Theorem 2].

Results very similar to Proposition 3.2.10(i)&(ii) are established in [89,

Proposition 18.9].

Proposition 3.2.10 Let A : X ⇒ X∗ be a monotone linear relation. Then

(i) A+ is monotone, and qA + ιdomA+
= qA+

and thus qA+
is convex.

(ii) graA+ ⊆ gra ∂qA. If A+ is maximally monotone, then A+ = ∂qA.

(iii) If A is maximally monotone, then A∗|X is monotone.

(iv) If A is maximally monotone and domA is closed, then A∗|X is maxi-

mally monotone.

Proof. Let x ∈ domA+.

(i): Since A is monotone, by Proposition 3.1.3(v) and

Proposition 3.2.1(iv), qA+
= qA|domA+

and A+ is monotone. Then by Propo-

sition 3.2.7, qA+
is convex. Let y ∈ domA. Then by Proposition 3.1.3(v)

again,

0 ≤ 1
2〈Ax−Ay, x− y〉 = 1

2 〈Ay, y〉+ 1
2〈Ax, x〉 − 〈A+x, y〉, (3.6)
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3.2. Properties of monotone linear relations

we have qA(y) ≥ 〈A+x, y〉− qA(x). Take lower semicontinuous hull at y and

then deduce that qA(y) ≥ 〈A+x, y〉 − qA(x). For y = x, we have qA(x) ≥

qA(x). On the other hand, qA(x) ≤ qA(x). Altogether, qA(x) = qA(x) =

qA+
(x). Thus (i) holds.

(ii): Let y ∈ domA. By (3.6) and (i),

qA(y) ≥ qA(x) + 〈A+x, y − x〉 = qA(x) + 〈A+x, y − x〉. (3.7)

Since dom qA ⊆ dom qA = domA, by (3.7), qA(z) ≥ qA(x) + 〈A+x, z −

x〉, ∀z ∈ dom qA. Hence A+x ⊆ ∂qA(x). If A+ is maximally monotone,

then A+ = ∂qA. Thus (ii) holds.

(iii): Suppose to the contrary that A∗|X is not monotone. By Proposi-

tion 3.2.1(iv), there exists (x0, x
∗
0) ∈ graA∗ with x0 ∈ X such that 〈x0, x∗0〉 <

0. Now we have

〈−x0 − y, x∗0 − y∗〉 = 〈−x0, x
∗
0〉+ 〈y, y∗〉+ 〈x0, y∗〉+ 〈−y, x∗0〉

= 〈−x0, x
∗
0〉+ 〈y, y∗〉 > 0, ∀(y, y∗) ∈ graA. (3.8)

Thus, (−x0, x
∗
0) is monotonically related to graA. By the maximal mono-

tonicity of A, (−x0, x
∗
0) ∈ graA. Then 〈−x0 − (−x0), x

∗
0 − x∗0〉 = 0, which

contradicts (3.8). Hence A∗|X is monotone.

(iv): By Proposition 3.1.3(ix), domA∗|X = (A0)⊥ and thus domA∗|X is

closed. By Fact 3.1.1 and Proposition 3.2.2(i), (domA∗|X)⊥ = ((A0)⊥)⊥ =

A0
w ∗

= A0. Then by Proposition 3.2.2(iii), (domA∗|X)⊥ = A∗0. Apply

(iii) and Proposition 3.2.2(ii), A∗|X is maximally monotone. �
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Proposition 3.2.11 Let A : X ⇒ X∗ be a maximally monotone linear re-

lation. Then A is symmetric ⇔ A = A∗|X .

Proof. “⇒”: Assume that A is symmetric, i.e., graA ⊆ graA∗. Since A is

maximally monotone, by Proposition 3.2.10(iii), A = A∗|X .

“⇐”: Obvious. �

Fact 3.2.12 (Phelps-Simons) (See [63, Theorem 2.5 and Lemma 4.4].)

Let A : domA → X∗ be monotone and linear. The following hold.

(i) If A is maximally monotone, then domA is dense (and hence A∗ is at

most single-valued).

(ii) Assume that A is skew such that domA is dense. Then domA ⊆

domA∗ and A∗|domA = −A.

Fact 3.2.13 (Brezis-Browder) (See [30, Theorem 2].) Assume X is

reflexive. Let A : X ⇒ X∗ be a monotone linear relation such that graA is

closed. Then the following are equivalent.

(i) A is maximally monotone.

(ii) A∗ is maximally monotone.

(iii) A∗ is monotone.

In Theorem 3.2.15, established in [89, Theorem 18.5], we provide a new

and simpler proof to show the hard part (iii)⇒(i) in Fact 3.2.13. We first

need the following fact.
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Fact 3.2.14 (Simons-Zălinescu) (See [77, Theorem 1.2] or [72, Theo-

rem 10.6].)

Assume X is reflexive. Let A : X ⇒ X∗ be monotone. Then A is maxi-

mally monotone if and only if

graA+ gra(−J) = X ×X∗.

Now we come to the hard part (iii)⇒(i) in Theorem 3.2.13. The proof

was inspired by that of [93, Theorem 32.L].

Theorem 3.2.15 Assume X is reflexive. Let A : X ⇒ X∗ be a monotone

linear relation with closed graph. Suppose A∗ is monotone. Then A is

maximally monotone.

Proof. By Fact 3.2.14, it suffices to show that X ×X∗ ⊆ graA + gra(−J).

For this, let (x, x∗) ∈ X ×X∗ and we define g : X ×X∗ → ]−∞,+∞] by

(y, y∗) 7→ 1
2‖y∗‖2 + 1

2‖y‖2 + 〈y∗, y〉+ ιgraA(y − x, y∗ − x∗).

We have f : (y, y∗) 7→ 〈y∗, y〉+ιgraA(y−x, y∗−x∗) = 〈y∗, y〉+ιgraA+(x,x∗)(y, y
∗).

By Fact 3.2.8 and the assumption that graA is closed, f is proper lower

semicontinuous and convex. Hence g is lower semicontinuous convex and

coercive. According to [92, Theorem 2.5.1(ii)], g has minimizers. Suppose

that (z, z∗) is a minimizer of g. Then (z − x, z∗ − x∗) ∈ graA, hence,

(x, x∗) ∈ graA+ (z, z∗). (3.9)
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On the other hand, since (z, z∗) is a minimizer of g, (0, 0) ∈ ∂g(z, z∗). By a

result of Rockafellar (see [37, Theorem 2.9.8] and [92, Theorem 3.2.4(ii)]

or [60, Theorem 1.93 and Proposition 1.107(ii)]), there exist (z∗0 , z0) ∈

∂(ιgraA(· − x, · − x∗))(z, z∗) = ∂ιgraA(z − x, z∗ − x∗) = (graA)⊥, and

(v, v∗) ∈ X ×X∗ with v∗ ∈ Jz, z∗ ∈ Jv such that

(0, 0) = (z∗, z) + (v∗, v) + (z∗0 , z0).

Then

(
− (z + v), z∗ + v∗

)
∈ graA∗.

Since A∗ is monotone,

〈z∗ + v∗, z + v〉 = 〈z∗, z〉+ 〈z∗, v〉+ 〈v∗, z〉+ 〈v∗, v〉 ≤ 0. (3.10)

Note that since 〈z∗, v〉 = ‖z∗‖2 = ‖v‖2, 〈v∗, z〉 = ‖v∗‖2 = ‖z‖2, by (3.10),

we have

1
2‖z‖2 + 1

2‖z∗‖2 + 〈z∗, z〉+ 1
2‖v∗‖2 + 1

2‖v‖2 + 〈v, v∗〉 ≤ 0.

Hence z∗ ∈ −Jz. By (3.9), (x, x∗) ∈ graA+ gra(−J). �

Remark 3.2.16 Haraux provides a very simple proof of Theorem 3.2.15 in

Hilbert spaces in [51, Theorem 10], but the proof could not be adapted to

reflexive Banach spaces (The proof is based on the application of Minty’s

Theorem).
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3.3. An unbounded skew operator on `2(N)

3.3 An unbounded skew operator on `2(N)

In this section, we construct a maximally monotone and skew operator S

on `2(N) such that −S∗ is not maximally monotone. This answers Svaiter’s

question raised in [80]. We also show its domain is a proper subset of the

domain of its adjoint S∗, i.e., domS $ domS∗. Throughout this section,

H denotes a Hilbert space. Section 3.3 is all based on the work in [17] by

Bauschke, Wang and Yao .

Let `2(N) denote the Hilbert space of real square-summable sequences

(xn)n∈N = (x1, x2, x3, . . .) with
∑

i≥1 x
2
i < +∞.

Example 3.3.1 Let H = `2(N), and S : domS → `2(N) be given by

Sy =

(∑
i<n yi −

∑
i>n yi

)

n∈N
2

=

(∑

i<n

yi +
1
2yn

)

n∈N
,

∀y = (yn)n∈N ∈ domS, (3.11)

where domS =
{
y = (yn) ∈ `2(N) | ∑i≥1 yi = 0,

(∑
i≤n yi

)

n∈N
∈ `2(N)

}

and
∑

i<1 yi is understood to mean 0. In matrix form,

S = 1
2




0 −1 −1 −1 −1 · · · −1 −1 · · ·

1 0 −1 −1 −1 · · · −1 −1 · · ·

1 1 0 −1 −1 · · · −1 −1 · · ·

1 1 1 0 −1 · · · −1 −1 · · ·

1 1 1 1 0 · · · −1 −1 · · ·
...

. . .
. . .

. . .
. . .




,
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or

S =




1
2 0 0 0 0 · · · 0 0 · · ·

1 1
2 0 0 0 · · · 0 0 · · ·

1 1 1
2 0 0 · · · 0 0 · · ·

1 1 1 1
2 0 · · · 0 0 · · ·

1 1 1 1 1
2 · · · 0 0 · · ·

...
. . .

. . .
. . .

. . .




.

Using the second matrix, it is easy to see that S is injective.

Proposition 3.3.2 Let S be defined as in Example 3.3.1. Then S is skew.

Proof. Let x = (xn)n∈N ∈ domS. Then
(∑

i≤n xi
)
n∈N ∈ `2(N). Thus,

`2(N) 3
(∑

i≤n

xi

)

n∈N
− 1

2x =

(∑

i≤n

xi

)

n∈N
− 1

2(xn)n∈N

=

(∑

i<n

xi +
1
2xn

)

n∈N
= Sx.

Hence S is well defined. Clearly, S is linear on domS. Now we show S is

skew.

Let y = (yn)n∈N ∈ domS, and s =
∑

i≥1 yi. Then

(∑
i≤n yi

)

n∈N
∈

`2(N). Hence

(∑
i<n yi

)

n∈N
=

(∑
i≤n yi

)

n∈N
− (yn)n∈N ∈ `2(N). Since

s = 0,

`2(N) 3 −
(∑

i<n

yi

)

n∈N
= 0−

(∑

i<n

yi

)

n∈N
=

(∑

i≥1

yi −
∑

i<n

yi

)

n∈N

=

(∑

i≥n

yi

)

n∈N
,
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3.3. An unbounded skew operator on `2(N)

( ∑

i≥n+1

yi

)

n∈N
= 0−

(∑

i≤n

yi

)

n∈N
∈ `2(N). (3.12)

Thus, by (3.12),

− 2〈Sy, y〉 =
〈(∑

i>n

yi −
∑

i<n

yi

)

n∈N
, y

〉
=

〈( ∑

i≥n+1

yi +
∑

i≥n

yi

)

n∈N
, y

〉

(3.13)

=

〈(∑

i≥1

yi,
∑

i≥2

yi, . . .

)
+

(∑

i≥2

yi,
∑

i≥3

yi, . . .

)
, y

〉

= 〈(s, s− y1, s − (y1 + y2), . . .) + (s− y1, s − (y1 + y2), . . .), (y1, y2, . . .)〉

= [sy1 + (s− y1)y2 + (s − (y1 + y2))y3 + · · · ]+

[(s− y1)y1 + (s− (y1 + y2))y2 + (s− (y1 + y2 + y3))y3 + · · · ]

= lim
n
[sy1 + (s− y1)y2 + · · ·+ (s− (y1 + · · · + yn−1))yn]+

lim
n
[(s− y1)y1 + (s− (y1 + y2))y2 + · · ·+ (s− (y1 + · · ·+ yn))yn]

= lim
n
[s(y1 + · · ·+ yn)− y1y2 − (y1 + y2)y3 − · · · − (y1 + · · · + yn−1)yn]+

[s(y1 + · · ·+ yn)− (y21 + · · ·+ y2n)− y1y2 − · · · − (y1 + · · ·+ yn−1)yn]

= lim
n
[2s(y1 + · · ·+ yn)− (y1 + · · ·+ yn)

2] = 2s2 − s2 = s2 = 0.

Hence S is skew. �

Proposition 3.3.3 Let S be defined as in Example 3.3.1. Then S is a

maximally monotone operator. In particular, graS is closed.

Proof. By Proposition 3.3.2, S is skew. Let (x, x∗) ∈ `2(N) × `2(N) be

monotonically related to graS. Write x = (xn)n∈N and x∗ = (x∗n)n∈N. By

32



3.3. An unbounded skew operator on `2(N)

Fact 3.2.9, we have

〈Sy, x〉+ 〈x∗, y〉 = 0, ∀y ∈ domS. (3.14)

Let en = (0, . . . , 0, 1, 0, . . .) : the nth entry is 1 and the others are 0. Then

let y = −e1 + en. Thus y ∈ domS and Sy = (−1
2 ,−1, . . . ,−1,−1

2 , 0, . . .).

Then by (3.14),

− x∗1 + x∗n − 1
2x1 − 1

2xn −
n−1∑

i=2

xi = 0 ⇒ x∗n = x∗1 − 1
2x1 +

n−1∑

i=1

xi +
1
2xn.

(3.15)

Since x∗ ∈ `2(N) and x ∈ `2(N), we have x∗n → 0, xn → 0. Thus by (3.15),

−
∑

i≥1

xi = x∗1 − 1
2x1. (3.16)

Next we show −∑
i≥1 xi = x∗1 − 1

2x1 = 0. Let s =
∑

i≥1 xi. Then by (3.15)

and (3.16),

2x∗ = 2(x∗n)n∈N = 2

(
−

∑

i≥1

xi +
∑

i<n

xi +
1
2xn

)

n∈N

=

(
− 2

∑

i≥1

xi + 2
∑

i<n

xi + xn

)

n∈N

=

(
− 2

∑

i≥n

xi + xn

)

n∈N
=

(
−

∑

i≥n

xi −
∑

i≥n

xi + xn

)

n∈N

=

(
−
∑

i≥n

xi −
∑

i≥n+1

xi

)

n∈N
. (3.17)
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On the other hand, by (3.15) and (3.16),

`2(N) 3 x∗ − 1
2x =

(
−

∑

i≥1

xi +
∑

i<n

xi +
1
2xn

)

n∈N
− (12xn)n∈N =

(
−

∑

i≥n

xi

)

n∈N
.

Then by (3.17),

2x∗ =

(
−

∑

i≥n

xi

)

n∈N
+

(
−

∑

i≥n+1

xi

)

n∈N
.

Then by Fact 3.2.9, similar to the proof in (3.13) in Proposition 3.3.2, we

have

0 ≥ −2〈x∗, x〉 = 〈
(∑

i≥n

xi

)

n∈N
+

( ∑

i≥n+1

xi

)

n∈N
, x〉

= 〈
(∑

i≥1

xi,
∑

i≥2

xi, . . .

)
+

(∑

i≥2

xi,
∑

i≥3

xi, . . .

)
, x〉

= 2s2 − s2 = s2.

Hence s = 0, i.e., x∗1 =
1
2x1 by (3.16). By (3.15), x∗ =

(∑
i<n xi+

1
2xn

)

n∈N
.

Thus

`2(N) 3 x∗ + 1
2x =

(∑

i<n

xi +
1
2xn

)

n∈N
+

(
1
2xn

)
n∈N =

(∑

i≤n

xi

)

n∈N
.

Hence x ∈ domS and x∗ = Sx. Thus, S is maximally monotone. Hence

graS is closed. �

Remark 3.3.4 Let S be as in Example 3.3.1. Since e1 = (1, 0, 0, . . . , 0, . . .)

/∈ domS, the operator S is unbounded.
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Proposition 3.3.5 Let S be defined as in Example 3.3.1. Then

S∗y =

(∑

i>n

yi +
1
2yn

)

n∈N
, ∀y = (yn)n∈N ∈ domS∗, (3.18)

where domS∗ =
{
y = (yn)n∈N ∈ `2(N) | ∑i≥1 yi ∈ R,

(∑
i>n yi

)

n∈N
∈

`2(N)
}
. In matrix form,

S∗ =




1
2 1 1 1 1 · · · 1 1 · · ·

0 1
2 1 1 1 · · · 1 1 · · ·

0 0 1
2 1 1 · · · 1 1 · · ·

0 0 0 1
2 1 · · · 1 1 · · ·

0 0 0 0 1
2 · · · 1 1 · · ·

...
. . .

. . .
. . .

. . .
. . . · · · · · ·




.

Moreover, domS $ domS∗, S∗ = −S on domS, and S∗ is not skew.

Proof. Let y = (yn)n∈N ∈ `2(N) with

(∑
i>n yi

)

n∈N
∈ `2(N), and y∗ =

(∑
i>n yi +

1
2yn

)

n∈N
. Now we show (y, y∗) ∈ graS∗. Let s =

∑
i≥1 yi and

x ∈ domS. Then we have

〈y, Sx〉 + 〈y∗,−x〉 =
〈
y, 12x+

(∑

i<n

xi

)

n∈N

〉
+

〈
1
2y +

(∑

i>n

yi

)

n∈N
,−x

〉

=

〈
y,

(∑

i<n

xi

)

n∈N

〉
+

〈(∑

i>n

yi

)

n∈N
,−x

〉

= lim
n

[y2x1 + y3(x1 + x2) + · · ·+ yn(x1 + · · ·+ xn−1)]

− lim
n

[x1(s− y1) + x2(s − y1 − y2) + · · ·+ xn(s− y1 − · · · − yn)]
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= lim
n

[x1(y2 + · · ·+ yn) + x2(y3 + · · ·+ yn) + · · · + xn−1yn]

− lim
n

[x1(s− y1) + x2(s − y1 − y2) + · · ·+ xn(s− y1 − · · · − yn)]

= lim
n

[x1(y1 + y2 + · · · + yn − s) + x2(y1 + y2 + · · ·+ yn − s) + · · ·

+ xn(y1 + y2 + · · ·+ yn − s)]

= lim
n

[(x1 + · · ·+ xn)(y1 + y2 + · · ·+ yn − s)]

= 0.

Hence (y, y∗) ∈ graS∗.

On the other hand, let (a, a∗) ∈ graS∗ with a = (an)n∈N and a∗ =

(a∗n)n∈N. Now we show

(∑

i>n

ai

)

n∈N
∈ `2(N) and a∗ =

(∑

i>n

ai +
1
2an

)

n∈N
. (3.19)

Let en = (0, . . . , 0, 1, 0, . . .) : the nth entry is 1 and the others are 0. Then

let y = −e1 + en. Thus y ∈ domS and Sy = (−1
2 ,−1, . . . ,−1,−1

2 , 0, . . .).

Then,

0 = 〈a∗, y〉+ 〈−Sy, a〉 = −a∗1 + a∗n + 1
2a1 +

1
2an +

n−1∑

i=2

ai

⇒ a∗n = a∗1 − 1
2a1 −

n−1∑

i=2

ai − 1
2an. (3.20)

Since a∗ ∈ `2(N) and a ∈ `2(N), a∗n → 0, an → 0. Thus by (3.20),

a∗1 =
1
2a1 +

∑

i>1

ai, (3.21)
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from which we see that
∑

i≥1 ai ∈ R. Combining (3.20) and (3.21), we have

a∗n =
∑

i>n

ai +
1
2an

Thus, (3.19) holds. Hence (3.18) holds.

Now for x ∈ domS, since
∑

i≥1 xi = 0, we have

S∗x =

(
1
2xn +

∑

i>n

xi

)

n∈N
=

(
− 1

2xn +
∑

i≥n

xi

)

n∈N

=

(
− 1

2xn −
∑

i<n

xi

)

n∈N
= −Sx.

We note that S∗ is not skew since for e1 = (1, 0, . . .), 〈S∗e1, e1〉 = 〈1/2e1, e1〉 =

1/2. As e1 = (1, 0, 0, . . . , 0, . . .) ∈ domS∗ but e1 6∈ domS, we have domS $

domS∗. �

Proposition 3.3.6 Let S be defined as in Example 3.3.1. Then

〈S∗y, y〉 = 1
2s

2, ∀y ∈ domS∗ with s =
∑

i≥1

yi. (3.22)

Proof. Let y = (yn)n∈N ∈ domS∗, and s =
∑

i≥1 yi. By Proposition 3.3.5,

we have s ∈ R and

〈S∗y, y〉 = 〈
(∑

i>n

yi +
1
2yn

)

n∈N
, y〉 = 〈

(∑

i≥n

yi − 1
2yn

)

n∈N
, y〉

= lim
n
[sy1 + (s − y1)y2 + · · ·+ (s− y1 − y2 − · · · − yn−1)yn

− 1
2(y

2
1 + y22 + · · · + y2n)]

= lim
n
[s(y1 + · · ·+ yn)− y1y2 − (y1 + y2)y3 − · · ·

37



3.3. An unbounded skew operator on `2(N)

− (y1 + y2 + · · ·+ yn−1)yn]− 1
2

[
y21 + y22 + · · ·+ y2n

]

= lim
n

[s(y1 + · · ·+ yn)]

− lim
n
[y1y2 + (y1 + y2)y3 + · · ·+ (y1 + y2 + · · · + yn−1)yn

+ 1
2(y

2
1 + y22 + · · · + y2n)]

= s2 − lim
n

1
2 [y1 + y2 + · · ·+ yn]

2

= s2 − 1
2s

2

= 1
2s

2.

Hence (3.22) holds. �

Proposition 3.3.7 Let S be defined as in Example 3.3.1. Then −S is not

maximally monotone.

Proof. By Proposition 3.3.2, −S is skew. Let e1 = (1, 0, 0, . . . , 0, . . .). Then

e1 /∈ domS = dom(−S). Thus, (e1,
1
2e1) /∈ gra(−S). We have for every

y ∈ domS,

〈e1, 12e1〉 ≥ 0 and 〈e1,−Sy〉+ 〈y, 12e1〉 = −1
2y1 +

1
2y1 = 0.

By Fact 3.2.9, (e1,
1
2e1) is monotonically related to gra(−S). Hence −S is

not maximally monotone. �

Suppose that X = `2(N). We proceed to show that for every maximally

monotone and skew operator S, the operator −S has a unique maximally

monotone extension, namely S∗|X .
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Theorem 3.3.8 Let S : domS → X∗ be a maximally monotone skew oper-

ator. Then −S has a unique maximally monotone extension: S∗|X .

Proof. By Fact 3.2.12, gra(−S) ⊆ graS∗|X . Assume T is a maximally mono-

tone extension of −S. Let (x, x∗) ∈ graT . Then (x, x∗) is monotonically

related to gra(−S). By Fact 3.2.9,

〈x∗, y〉+ 〈−x, Sy〉 = 〈x∗, y〉+ 〈x,−Sy〉 = 0, ∀y ∈ domS.

Thus (x, x∗) ∈ graS∗|X . Since (x, x∗) ∈ graT is arbitrary, we have graT ⊆

graS∗|X . By Fact 3.2.10(iii), S∗|X is monotone. Hence T = S∗|X . �

Remark 3.3.9 Note that [87, Proposition 17] also implies that −S has a

unique maximally monotone extension, where S is as in Theorem 3.3.8.

Remark 3.3.10 Define the right and left shift operators R,L : `2(N) →

`2(N) by

Rx = (0, x1, x2, . . .), Lx = (x2, x3, . . .), ∀ x = (x1, x2, . . .) ∈ `2(N).

One can verify that in Example 3.3.1

S = (Id−R)−1 − Id

2
, S∗ = (Id−L)−1 − Id

2
.

The maximally monotone operators (Id−R)−1 and (Id−L)−1 have been uti-

lized by Phelps and Simons, see [63, Example 7.4].
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3.3. An unbounded skew operator on `2(N)

Example 3.3.11 (S + S∗ fails to be maximally monotone) Let S be de-

fined as in Example 3.3.1. Then neither S nor S∗ has full domain. By

Fact 3.2.12, ∀x ∈ dom(S + S∗) = domS, we have

(S + S∗)x = 0.

Thus S+S∗ has a proper monotone extension from dom(S+S∗) to the 0 map

on `2(N). Consequently, S + S∗ is not maximally monotone. This supplies

a different example for showing that the constraint qualification in the sum

problem of maximal monotone operators cannot be substantially weakened,

see [63, Example 7.4].

Svaiter introduced S` in [80], which is defined by

graS` =
{
(x, x∗) ∈ X ×X∗ | (x∗, x) ∈ (graS)⊥

}
.

Hence S` = −S∗|X .

Definition 3.3.12 Let S : X ⇒ X∗ be skew. We say S is maximally skew

(termed “maximal self-cancelling” in [80]) if no proper enlargement (in the

sense of graph inclusion) of S is skew. We say T is a maximally skew

extension of S if T is maximally skew and graT ⊇ graS.

Lemma 3.3.13 Let S : X ⇒ X∗ be a maximally monotone skew operator.

Then both S and −S are maximally skew.

Proof. Clearly, S is maximally skew. Now we show −S is maximally skew.

Let T be a skew operator such that gra(−S) ⊆ graT . Thus, graS ⊆
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3.3. An unbounded skew operator on `2(N)

gra(−T ). Since −T is monotone and S is maximally monotone, graS =

gra(−T ). Then −S = T . Hence −S is maximally skew. �

Fact 3.3.14 (Svaiter) (See [80].) Let S : X ⇒ X∗ be maximally skew.

Then either −S∗|X(i.e., S`) or S∗|X(i.e., − S`) is maximally monotone.

In [80], Svaiter asked whether or not −S∗|X(i.e., S`) is maximally mono-

tone if S is maximally skew. Now we can give a negative answer, even though

S is maximally monotone and skew.

Theorem 3.3.15 Let S be defined as in Example 3.3.1. Then S is maxi-

mally skew, but −S∗ is not monotone, so not maximally monotone.

Proof. Let e1 = (1, 0, 0, . . . , 0, . . .). By Proposition 3.3.5, (e1,−1
2e1) ∈

gra(−S∗), but 〈e1,−1
2e1〉 = −1

2 < 0. Hence −S∗ is not monotone. �

By Theorem 3.3.15, −S∗|X(i.e., S`) is not always maximally monotone.

Can one improve Svaiter’s result to: “If S is maximally skew, then S∗|X
(i.e., −S`) is always maximally monotone”?

Theorem 3.3.16 There exists a maximally skew operator T on `2(N) such

that T ∗ is not maximally monotone. Consequently, Svaiter’s result is opti-

mal.

Proof. Let T = −S, where S be defined as in Example 3.3.1. By Lemma 3.3.13,

T is maximally skew. Then by Theorem 3.3.15 and Proposition 3.1.3(x),

T ∗ = (−S)∗ = −S∗ is not maximally monotone. Hence Svaiter’s result

cannot be further improved. �
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3.4. The inverse Volterra operator on L2[0, 1]

3.4 The inverse Volterra operator on L2[0, 1]

Section 3.4 is all based on the work in [17] by Bauschke, Wang and Yao .

Let V be the Volterra integral operator. In this section, we systemati-

cally study T = V −1 and its skew part S = 1
2(T − T ∗). It turns out that

T is neither skew nor symmetric and that its skew part S admits two max-

imally monotone and skew extensions T1, T2 (in fact, anti-self-adjoint) even

though domS is a dense linear subspace of L2[0, 1]. This will give another

simpler example of Phelps-Simons’ showing that the constraint qualification

for the sum of monotone operators cannot be significantly weakened, see

[78, Theorem 5.5] or [83].

Definition 3.4.1 ([15]) Let A : H ⇒ H be a linear relation. We say that

A is anti-self-adjoint if A∗ = −A.

To study the Volterra operator and its inverse, we shall frequently need

the following generalized integration-by-parts formula, see [79, Theorem

6.90].

Fact 3.4.2 (Generalized integration by parts) Assume that x, y are ab-

solutely continuous functions on the interval [a, b]. Then

∫ b

a

xy′ +
∫ b

a

x′y = x(b)y(b)− x(a)y(a).

Fact 3.2.13 allows us to claim the following proposition.

Proposition 3.4.3 Let A : H ⇒ H be a linear relation. If A∗ = −A, then

both A and −A are maximally monotone and skew.
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3.4. The inverse Volterra operator on L2[0, 1]

Proof. Since A = −A∗, we have that domA = domA∗ and that A has closed

graph. Now ∀x ∈ domA, by Proposition 3.1.3(v),

〈Ax, x〉 = 〈x,A∗x〉 = −〈x,Ax〉 ⇒ 〈Ax, x〉 = 0.

Hence A and −A are skew. As A∗ = −A is monotone, Fact 3.2.13 shows

that A is maximally monotone.

Now −A = A∗ = −(−A)∗ and −A is a linear relation. Similar arguments

show that −A is maximally monotone. �

Example 3.4.4 (Volterra operator) (See [5, Example 3.3].) Set H =

L2[0, 1]. The Volterra integration operator [52, Problem 148] is defined by

V : H → H : x 7→ V x, where V x : [0, 1] → R : t 7→
∫ t

0
x, (3.23)

and its adjoint is given by

t 7→ (V ∗x)(t) =
∫ 1

t

x, ∀x ∈ X.

Then

(i) Both V and V ∗ are maximally monotone since they are monotone,

continuous and linear.

(ii) Both ranges

ranV = {x ∈ L2[0, 1] : x is absolutely continuous, x(0) = 0,

x′ ∈ L2[0, 1]}, (3.24)
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3.4. The inverse Volterra operator on L2[0, 1]

and

ranV ∗ = {x ∈ L2[0, 1] : x is absolutely continuous, x(1) = 0,

x′ ∈ L2[0, 1]}, (3.25)

are dense in L2[0, 1], and both V and V ∗ are one-to-one.

(iii) ranV ∩ ranV ∗ = {V x | x ∈ e⊥}, where e ≡ 1 ∈ L2[0, 1].

(iv) Define V+x = 1
2(V + V ∗)(x) = 1

2〈e, x〉e. Then V+ is self-adjoint and

ranV+ = span{e}.

(v) Define V◦x = 1
2(V − V ∗)(x) : t 7→ 1

2 [
∫ t

0 x −
∫ 1
t
x] ∀x ∈ L2[0, 1],

t ∈ [0, 1]. Then V◦ is anti-self-adjoint and

ranV◦ = {x ∈ L2[0, 1] : x is absolutely continuous on [0, 1], x′ ∈ L2[0, 1],

x(0) = −x(1)}.

Proof. (i) By Fact 3.4.2,

〈x, V x〉 =
∫ 1

0
x(t)

∫ t

0
x(s)dsdt =

1

2

(∫ 1

0
x(s)ds

)2

≥ 0,

so V is monotone.

As domV = L2[0, 1] and V is continuous, domV ∗ = L2[0, 1]. Let x, y ∈
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3.4. The inverse Volterra operator on L2[0, 1]

L2[0, 1]. We have

〈V x, y〉 =
∫ 1

0

∫ t

0
x(s)dsy(t)dt =

∫ 1

0
x(t)dt

∫ 1

0
y(s)ds−

∫ 1

0

∫ t

0
y(s)dsx(t)dt

=

∫ 1

0

(∫ 1

0
y(s)ds −

∫ t

0
y(s)ds

)
x(t)dt =

∫ 1

0

∫ 1

t

y(s)dsx(t)dt

= 〈V ∗y, x〉,

thus (V ∗y)(t) =
∫ 1
t
y(s)ds ∀t ∈ [0, 1].

(ii) To show (3.24), if z ∈ ranV , then

z(t) =

∫ t

0
x for some x ∈ L2[0, 1],

and hence z(0) = 0, z is absolutely continuous, and z′ = x ∈ L2[0, 1]. On

the other hand, if z(0) = 0, z is absolutely continuous, z′ ∈ L2[0, 1], then

z = V z′.

To show (3.25), if z ∈ ranV ∗, then

z(t) =

∫ 1

t

x for some x ∈ L2[0, 1],

and hence z(1) = 0, z is a absolutely continuous, and z′ = −x ∈ L2[0, 1].

On the other hand, if z(1) = 0, z is absolutely continuous, z′ ∈ L2[0, 1], then

z = V ∗(−z′).

(iii) follows from (ii) (or see [5]).

(iv) is clear.

(v) If x is absolutely continuous, x(0) = −x(1), x′ ∈ L2[0, 1], we have
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3.4. The inverse Volterra operator on L2[0, 1]

V◦x
′(t) = 1

2

(∫ t

0
x′ −

∫ 1

t

x′
)

= 1
2

(
x(t)− x(0)− x(1) + x(t)

)
= x(t).

This shows that x ∈ ranV◦. Conversely, if x ∈ ranV◦, i.e.,

x(t) =
1

2

∫ t

0
y − 1

2

∫ 1

t

y for some y ∈ L2[0, 1],

then x is absolutely continuous, x′ = y ∈ L2[0, 1] and x(0) = −x(1) =

−1
2

∫ 1
0 y. �

Theorem 3.4.5 (Inverse Volterra operator) Let H = L2[0, 1], and V

be the Volterra integration operator. We let T = V −1 and D = domT ∩

domT ∗. Then the following hold.

(i) T : domT → X is given by Tx = x′ with

domT

= {x ∈ L2[0, 1] : x is absolutely continuous, x(0) = 0, x′ ∈ L2[0, 1]},

and T ∗ : domT ∗ → L2[0, 1] is given by T ∗x = −x′ with

domT ∗

= {x ∈ L2[0, 1] : x is absolutely continuous, x(1) = 0, x′ ∈ L2[0, 1]}.

Both T and T ∗ are maximally monotone linear operators.

(ii) T is neither skew nor symmetric.
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3.4. The inverse Volterra operator on L2[0, 1]

(iii) The linear subspace

D =
{
x ∈ L2[0, 1] : x is absolutely continuous, x(0) = x(1) = 0,

x′ ∈ L2[0, 1]
}

is dense in L2[0, 1]. Moreover, T and T ∗ are skew on D.

Proof. (i): T and T ∗ are maximally monotone because T = V −1, and

T ∗ = (V −1)∗ = (V ∗)−1 and Example 3.4.4(i). By Example 3.4.4(ii), T :

L2[0, 1] → L2[0, 1] has

domT

= {x ∈ L2[0, 1] : x is absolutely continuous, x(0) = 0, x′ ∈ L2[0, 1]}

domT ∗

= {x ∈ L2[0, 1] : x is absolutely continuous, x(1) = 0, x′ ∈ L2[0, 1]}

Tx = x′, ∀x ∈ domT, T ∗y = −y′ and ∀y ∈ domT ∗.

Note that by Fact 3.4.2,

〈Tx, x〉 =
∫ 1

0
x′x =

1

2
x2(1)− 1

2
x2(0) =

1

2
x(1)2 ∀x ∈ domT, (3.26)

〈T ∗x, x〉 =
∫ 1

0
−x′x = −(

1

2
x(1)2 − 1

2
x(0)2) =

1

2
x(0)2 ∀x ∈ domT ∗.

(3.27)
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3.4. The inverse Volterra operator on L2[0, 1]

(ii): Letting x(t) = t, y(t) = t2 we have

〈Tx, x〉 =
∫ 1

0
t = 1

2 , 〈x, Ty〉 =
∫ 1

0
2t2 = 2

3 6= 1
3 =

∫ 1

0
t2 = 〈Tx, y〉

⇒ 〈Tx, x〉 6= 0, 〈Tx, y〉 6= 〈x, Ty〉.

(iii): By (i), D = domT∩domT ∗ is clearly a linear subspace. For x ∈ D,

x(0) = x(1) = 0, from (3.26) and (3.27),

〈Tx, x〉 = 1
2x(1)

2 = 0, 〈T ∗x, x〉 = 1
2x(0)

2 = 0.

Hence both T and T ∗ are skew on D. The fact that D is dense in L2[0, 1]

follows from [79, Theorem 6.111]. �

Our proof of (ii), (iii) in the following theorem follows the ideas of [69,

Example 13.4].

Theorem 3.4.6 (The skew part of the inverse Volterra operator) Let

H

= L2[0, 1], and T be defined as in Theorem 3.4.5. Let S = T−T ∗

2 .

(i) Sx = x′ (∀x ∈ domS) and graS = {(V x, x) | x ∈ e⊥}, where

e ≡ 1 ∈ L2[0, 1]. In particular,

domS = {x ∈ L2[0, 1] : x is absolutely continuous, x(0) = x(1) = 0,

x′ ∈ L2[0, 1]},

ranS = {y ∈ L2[0, 1] : 〈e, y〉 = 0} = e⊥.
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3.4. The inverse Volterra operator on L2[0, 1]

Moreover, domS is dense, and

S−1 = V |e⊥ , (−S)−1 = V ∗|e⊥ , (3.28)

consequently, S is skew, and neither S nor −S is maximally monotone.

(ii) The adjoint of S has graS∗ = {(V ∗x∗ + le, x∗) | x∗ ∈ L2[0, 1], l ∈ R}.

More precisely,

S∗x = −x′ ∀x ∈ domS∗, with

domS∗ = {x ∈ L2[0, 1] : x is absolutely continuous on [0, 1],

x′ ∈ L2[0, 1]},

ranS∗ = L2[0, 1].

Neither S∗ nor −S∗ is monotone. Moreover, S∗∗ = S.

(iii) Let T1 : domT1 → L2[0, 1] be defined by

T1x = x′, ∀x ∈ domT1, with

domT1 = {x ∈ L2[0, 1] : x is absolutely continuous, x(0) = x(1),

x′ ∈ L2[0, 1]}.

Then T ∗
1 = −T1,

ranT1 = e⊥. (3.29)

Hence T1 is skew, and a maximally monotone extension of S; and −T1

is skew and a maximally monotone extension of −S.
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Proof. (i): By Theorem 3.4.5(iii), we get domS directly. Now (∀x ∈

domS = domT ∩ domT ∗) Tx = x′ and T ∗x = −x′, so Sx = x′. Then

Example 3.4.4(iii) implies graS = {(V x, x) | x ∈ e⊥}. Hence

graS−1 = {(x, V x) | x ∈ e⊥}. (3.30)

Theorem 3.4.5(iii) implies domS is dense. Furthermore, gra(−S) =

{(V x,−x) | x ∈ e⊥}, so

gra(−S)−1 = {(x,−V x) | x ∈ e⊥}. (3.31)

Since

V ∗x(t) =
∫ 1

t

x−0 =

∫ 1

t

x−
∫ 1

0
x = −

∫ t

0
x = −V x(t) ∀t ∈ [0, 1] ,∀x ∈ e⊥

we have −V x = V ∗x,∀x ∈ e⊥. Then by (3.31),

gra(−S)−1 = {(x, V ∗x) | x ∈ e⊥}. (3.32)

Hence, (3.30) and (3.32) together establish (3.28). As both V, V ∗ are max-

imally monotone with full domain, we conclude that S−1, (−S)−1 are not

maximally monotone, thus S,−S are not maximally monotone.

(ii): By (i), we have

(x, x∗) ∈ graS∗ ⇔ 〈−x, y〉+ 〈x∗, V y〉 = 0, ∀y ∈ e⊥

⇔ 〈−x+ V ∗x∗, y〉 = 0, ∀y ∈ e⊥ ⇔ x− V ∗x∗ ∈ span{e}.
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3.4. The inverse Volterra operator on L2[0, 1]

Equivalently, x = V ∗x∗+ke for some k ∈ R. This means that x is absolutely

continuous, x∗ = −x′ ∈ L2[0, 1]

On the other hand, if x is absolutely continuous and x′ ∈ L2[0, 1], observe

that

x(t) =

∫ 1

t

−x′ + x(1)e,

so that x− V ∗(−x′) ∈ span{e} and (x,−x′) ∈ graS∗. It follows that

domS∗ = {x ∈ L2[0, 1] : x is absolutely continuous on [0, 1], x′ ∈ L2[0, 1]},

ranS∗ = L2[0, 1], and

S∗x = −x′, ∀x ∈ domS∗.

Since

〈S∗x, x〉 = −
∫ 1

0
x′x = −

(
1

2
x(1)2 − 1

2
x(0)2

)
,

we conclude that neither S∗ nor −S∗ is monotone.

Now we show S∗∗ = S. V has closed graph ⇒ V |e⊥ has closed graph ⇒

S−1 has closed graph ⇒ S has closed graph ⇒ graS = graS∗∗ ⇒ S∗∗ = S.

(iii): To show (3.29), suppose that x is absolutely continuous and that

x(0) = x(1). Then

∫ 1

0
x′ = x(1)− x(0) = 0 ⇒ T1x = x′ ∈ e⊥.

Conversely, if x ∈ L2[0, 1] satisfies 〈e, x〉 = 0, we define t 7→ z(t) =
∫ t

0 x,

then z is absolutely continuous, z(0) = z(1), T1z = x. Hence ranT1 = e⊥.
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3.4. The inverse Volterra operator on L2[0, 1]

T1 is skew, because for every x ∈ domT1, we have

〈T1x, x〉 =
∫ 1

0
x′x = 1

2x(1)
2 − 1

2x(0)
2 = 0.

Moreover, T ∗
1 = −T1: indeed, as T1 is skew, by Fact 3.2.12, gra(−T1) ⊆

graT ∗
1 . To show that T ∗

1 = −T1, take z ∈ domT ∗
1 , ϕ = T ∗

1 z. Put Φ(t) =
∫ t

0 ϕ. We have ∀y ∈ domT1,

∫ 1

0
y′z = 〈T1y, z〉 = 〈T ∗

1 z, y〉 = 〈ϕ, y〉 =
∫ 1

0
yϕ =

∫ 1

0
yΦ′ (3.33)

= [Φ(1)y(1) − Φ(0)y(0)] −
∫ 1

0
Φy′. (3.34)

Using y = e ∈ domT1 gives Φ(1)− Φ(0) = 0, from which Φ(1) = Φ(0) = 0.

It follows from (3.33)–(3.34) that
∫ 1
0 y′(z + Φ) = 0 ∀y ∈ domT1. Since

ranT1 = e⊥, z + Φ ∈ span{e}, say z + Φ = ke for some constant k ∈ R.

Then z is absolutely continuous, z(0) = z(1) since Φ(0) = Φ(1) = 0, and

T ∗
1 z = ϕ = Φ′ = −z′. This implies that domT ∗

1 ⊆ domT1. Then by

Fact 3.2.12, T ∗
1 = −T1. It remains to apply Proposition 3.4.3. �

Remark 3.4.7 Let S be defined in Theorem 3.4.6. Now we give a new proof

to show that S∗∗ = S in Theorem 3.4.6 (ii). Applying similar arguments as

[42, Example 8.22], one can indeed show that S has a closed graph, so S∗∗ =

S. Or, by [63, Proposition 3.2(e)], S has a closed graph, then S∗∗ = S.

Fact 3.4.8 Let H be a Hilbert space and A : H ⇒ H. Then (−A)−1 =
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A−1 ◦ (− Id). If A is a linear relation, then

(−A)−1 = −A−1.

Proof. This follows from the definition of the set-valued inverse. Indeed,

x ∈ (−A)−1(x∗) ⇔ (x, x∗) ∈ gra(−A) ⇔ (x,−x∗) ∈ graA ⇔ x ∈ A−1(−x∗).

When A is a linear relation, x ∈ (−A)−1(x∗) ⇔ (x,−x∗) ∈ graA ⇔

(−x, x∗) ∈ graA ⇔ −x ∈ A−1x∗ ⇔ x ∈ −A−1(x∗). �

Theorem 3.4.9 (The inverse of the skew part of Volterra operator)

Let H = L2[0, 1], and V be the Volterra integration operator, and V◦ :

L2[0, 1] → L2[0, 1] be given by

V◦ =
V − V ∗

2
.

Define T2 : domT2 → L2[0, 1] by T2 = V −1
◦ . Then

(i) T2x = x′, ∀x ∈ domT2 where

domT2 = {x ∈ H : x is absolutely continuous on [0, 1],

x′ ∈ H,x(0) = −x(1)}. (3.35)

(ii) T ∗
2 = −T2, and both T2,−T2 are maximally monotone and skew.

Proof. (i): Since

V◦x(t) =
1
2

(∫ t

0
x−

∫ 1

t

x

)
,

53



3.4. The inverse Volterra operator on L2[0, 1]

V◦ is a one-to-one map. Then

V −1
◦

(
1

2
(

∫ t

0
x−

∫ 1

t

x)

)
= x(t) =

(
1

2
(

∫ t

0
x−

∫ 1

t

x)

)′
,

which implies T2x = V −1
◦ x = x′ for x ∈ ranV◦. As domT2 = ranV◦, by

Example 3.4.4(v), ranV◦ can be written as (3.35).

(ii): Since domV = domV ∗ = L2[0, 1], V◦ is skew on L2[0, 1], so maxi-

mally monotone. Then T2 = V −1
◦ is maximally monotone.

Since V◦ is skew and domV◦ = L2[0, 1], we have V ∗
◦ = −V◦, by Fact 3.4.8,

T ∗
2 = (V −1

◦ )∗ = (V ∗
◦ )

−1 = (−V◦)
−1 = −V −1

◦ = −T2.

By Proposition 3.4.3, we have both T2 and −T2 are maximally monotone

and skew. �

Remark 3.4.10 Note that while V◦ is continuous on L2[0, 1], the operator

S given in Theorem 3.4.6 is discontinuous.

Combining Theorem 3.4.5, Theorem 3.4.6 and Theorem 3.4.9, we can sum-

marize the relationships among the differentiation operators encountered in

this section.

Corollary 3.4.11 Let T be defined in Theorem 3.4.5 and S, T1 be defined

in Theorem 3.4.6 and T2 be defined in Theorem 3.4.9. Then the domain of

the skew operator S is dense in L2[0, 1]. Neither S nor −S is maximally

monotone. Neither S∗ nor −S∗ is monotone.
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3.4. The inverse Volterra operator on L2[0, 1]

The linear operators S, T, T1, T2 satisfy:

graS $ graT $ gra(−S∗),

graS $ graT1 $ gra(−S∗),

graS $ graT2 $ gra(−S∗).

While S is skew, T, T1, T2 are maximally monotone and T1, T2 are skew.

Also,

gra(−S) $ gra(T ∗) $ graS∗,

gra(−S) $ gra(−T1) $ graS∗,

gra(−S) $ gra(−T2) $ graS∗.

While −S is skew, T ∗,−T1,−T2 are maximally monotone and −T1,−T2 are

skew.

Remark 3.4.12 (i): Note that while T1, T2 are maximally monotone, −T1,

−T2 are also maximally monotone. This is in stark contrast with the max-

imally monotone skew operator given in Proposition 3.3.3 and Proposi-

tion 3.3.7 such that its negative is not maximally monotone.

(ii): Even though the skew operator S in Theorem 3.4.6 has domS dense

in L2[0, 1], it still admits two distinct maximally monotone and skew exten-

sions T1, T2.

Example 3.4.13 (T + T ∗ fails to be maximally monotone) Let T be

defined as in Theorem 3.4.5, and T1, T2 be respectively defined in Theo-
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3.5. Discussion

rem 3.4.6 and Theorem 3.4.9. Now ∀x ∈ domT ∩ domT ∗, we have

Tx+ T ∗x = x′ − x′ = 0.

Thus T + T ∗ has a proper monotone extension from domT ∩ domT ∗ $

L2[0, 1] to the 0 map on L2[0, 1]. Consequently, T + T ∗ is not maximally

monotone. Note that domT ∩ domT ∗ is dense in L2[0, 1] and that domT −

domT ∗ is a dense subspace of L2[0, 1]. This supplies a simpler example for

showing that the constraint qualification in the sum problem of maximally

monotone operators cannot be substantially weakened, see [63, Example 7.4].

Similarly, by Theorems 3.4.6 and Theorem 3.4.9, T ∗
i = −Ti, we conclude

that Ti + T ∗
i = 0 on domTi, a dense subset of L2[0, 1]; thus, Ti + T ∗

i fails to

be maximally monotone while both Ti, T
∗
i are maximally monotone.

3.5 Discussion

The Brezis-Browder Theorem (see Fact 3.2.13) is a very important character-

ization of maximal monotonicities of monotone relations. The original proof

[30] is based on the application of Zorn’s Lemma by constructing a series of

finite-dimensional subspaces, which is complicated. In Theorem 3.2.15, we

establish the Brezis-Browder Theorem by considering the fact that a lower

semicontinuous, convex and coercive function on a reflexive space has at

least one minimizer. In [75], Simons generalized the Brezis-Browder Theo-

rem to SSDB spaces. The Brezis-Browder Theorem and Corollary 3.2.6 are

essential tools for the construction of maximally monotone linear subspace
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3.5. Discussion

extensions of a monotone linear relation, which will be discussed in detail in

Chapter 4.

There will be an interesting question for the future work on the Brezis-

Browder Theorem in a general Banach space:

Let A : X ⇒ X∗ be a monotone linear relation such that graA

is closed. Assume A∗|X is monotone.

Is A necessarily maximally monotone?

In Sections 3.3 and 3.4, some explicit monotone linear relations were

constructed in Hilbert spaces, which gave a negative answer to a question

raised by Svaiter [80] and which showed that the constraint qualification in

the sum problem for maximally monotone operators cannot be weakened (see

[63, Example 7.4]). In particular, these two sections will provide concrete

examples for the characterization of decomposable monotone linear relations

discussed in Chapter 9.
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Chapter 4

Maximally monotone

extensions of monotone

linear relations

This chapter is based on [88] by Wang and Yao. We consider the linear

relation G : Rn ⇒ Rn:

graG = {(x, x∗) ∈ Rn ×Rn | Ax+Bx∗ = 0} where (4.1)

A,B ∈ Rp×n, (4.2)

rank(A B) = p. (4.3)

Our main concern is to find explicit extensions of G that are maximally

monotone linear relations. Recently, finding constructive maximally mono-

tone extensions, instead of using Zorn’s lemma, has been a very active topic

[11, 13, 39–41]. In [39], Crouzeix and Ocaña-Anaya gave an algorithm for

finding maximally monotone linear subspace extensions of G, but it is not

clear what the maximally monotone extensions are analytically. In this

chapter, we provide some maximally monotone extensions of G with closed
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4.1. Auxiliary results on linear relations

analytical forms. Along the way, we also give a new proof of Crouzeix and

Ocaña-Anaya’s characterizations on monotonicity and maximal monotonic-

ity of G. Our key tool is the Brezis-Browder characterization of maximally

monotone linear relations.

In this chapter, we use the following notation. Counting multiplicities,

let

λ1, λ2, . . . , λk be all positive eigenvalues of (ABᵀ +BAᵀ) and (4.4)

λk+1, λk+2, . . . , λp be nonpositive eigenvalues of (ABᵀ +BAᵀ). (4.5)

Moreover, let vi be an eigenvector of eigenvalue λi of (AB
ᵀ+BAᵀ) satisfying

‖vi‖ = 1, and 〈vi, vj〉 = 0 for 1 ≤ i 6= j ≤ q. It will be convenient to put

Idλ = diag(λ1, . . . , λp) =




λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3
...

... 0 0
. . . 0

0 0 0 0 λp




, V = [v1 v2 . . . vp] .

(4.6)

4.1 Auxiliary results on linear relations

In this section, we collect some facts and preliminary results which will be

used in the sequel.

We first provide a result about subspaces on which a linear operator

from Rn to Rn, i.e, an n × n matrix, is monotone. For M ∈ Rn×n, define
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4.1. Auxiliary results on linear relations

three subspaces of Rn, namely, the positive eigenspace, null eigenspace and

negative eigenspace associated with M +Mᵀ by

V+(M) = span





w1, . . . , ws : wi is an eigenvector associated with

a positive eigenvalue αi of M +Mᵀ

〈wi, wj〉 = 0 ∀ i 6= j, ‖wi‖ = 1,

i, j = 1, . . . , s.





V0(M) = span





ws+1, . . . , wl : wi is an eigenvector associated with

the 0 eigenvalue of M +Mᵀ

〈wi, wj〉 = 0 ∀ i 6= j, ‖wi‖ = 1,

i, j = s+ 1, . . . , l.





V−(M) = span





wl+1, . . . , wn : wi is an eigenvector associated with

a negative eigenvalue αi of M +Mᵀ

〈wi, wj〉 = 0 ∀ i 6= j, ‖wi‖ = 1,

i, j = l + 1, . . . , n.





which is possible since a symmetric matrix always has a complete orthonor-

mal set of eigenvectors, [59, pages 547–549].

Proposition 4.1.1 Let M be an n× n matrix. Then

(i) M is strictly monotone on V+(M). Moreover, M +Mᵀ : V+(M) →

V+(M) is a bijection.

(ii) M is monotone on V+(M) +V0(M).

(iii) −M is strictly monotone on V−(M). Moreover, −(M+Mᵀ) : V−(M) →
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4.1. Auxiliary results on linear relations

V−(M) is a bijection.

(iv) −M is monotone on V−(M) +V0(M).

(v) For every x ∈ V0(M), (M +Mᵀ)x = 0 and 〈x,Mx〉 = 0.

In particular, the orthogonal decomposition holds: Rn = V+(M)⊕V0(M)⊕

V−(M).

Proof. (i): Let x ∈ V+(M). Then x =
∑s

i=1 liwi for some (l1, . . . , ls) ∈

Rs. Since {w1, · · · , ws} is a set of orthonormal vectors, they are linearly

independent so that

x 6= 0 ⇔ (l1, . . . , ls) 6= 0.

Note that αi > 0 when i = 1, . . . , s and 〈wi, wj〉 = 0 for i 6= j. We have

2〈x,Mx〉 = 〈x, (M +Mᵀ)x〉 = 〈
s∑

i=1

liwi, (M +Mᵀ)(

s∑

i=1

liwi)〉

= 〈
s∑

i=1

liwi,

s∑

i=1

liαiwi〉 =
s∑

i=1

αil
2
i > 0

if x 6= 0.

For every x ∈ V+(M) with x =
∑s

i=1 liwi, we have

(M +Mᵀ)x =
s∑

i=1

li(M +Mᵀ)wi =
s∑

i=1

αiliwi ∈ V+(M).

As αi > 0 for i = 1, . . . , s and {w1, . . . , ws} is an orthonormal basis of

V+(M), we conclude that M +Mᵀ : V+(M) → V+(M) is a bijection.

61



4.1. Auxiliary results on linear relations

(ii): Let x ∈ V+(M)+V0(M). Then x =
∑l

i=1 liwi for some (l1, . . . , ll) ∈

Rl. Note that αi ≥ 0 when i = 1, . . . , l and 〈wi, wj〉 = 0 for i 6= j. We have

2〈x,Mx〉 = 〈x, (M +Mᵀ)x〉 = 〈
l∑

i=1

liwi, (M +Mᵀ)(
l∑

i=1

liwi)〉

= 〈
l∑

i=1

liwi,

l∑

i=1

liαiwi〉 =
l∑

i=1

αil
2
i ≥ 0.

The proofs for (iii), (iv) are similar to (i), (ii). (v): Obvious. �

Corollary 4.1.2 The following hold:

(i)

graT = {(Bᵀu,Aᵀu) | u ∈ V+(BAᵀ)}

is strictly monotone.

(ii)

graT = {(Bᵀu,Aᵀu) | u ∈ V+(BAᵀ) +V0(BAᵀ)}

is monotone.

(iii)

graT = {(Bᵀu,−Aᵀu) | u ∈ V−(BAᵀ)}

is strictly monotone.

(iv)

graT = {(Bᵀu,−Aᵀu) | u ∈ V−(BAᵀ) +V0(BAᵀ))}

is monotone.
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4.1. Auxiliary results on linear relations

Proof. As 〈Bᵀu,Aᵀu〉 = 〈u,BAᵀu〉 ∀u ∈ Rn, the result follows from Propo-

sition 4.1.1 by letting M = BAᵀ. �

Lemma 4.1.3 For every subspace S ⊆ Rp, the following hold.

dim{(Bᵀu,Aᵀu) | u ∈ S} = dimS. (4.7)

dim{(Bᵀu,−Aᵀu) | u ∈ S} = dimS. (4.8)

Proof. See [59, page 208, Exercise 4.4.9]. �

The following fact is straightforward from the definition of V .

Fact 4.1.4 We have

(ABᵀ +BAᵀ)V = V Idλ .

Some basic properties of G are:

Lemma 4.1.5 (i) graG = ker(A B).

(ii) G0 = kerB,G−1(0) = kerA.

(iii) domG = PX(ker(A B)) and ranG = PX∗(ker(A B)).

(iv) ran(G+ Id) = PX∗(ker(A−B B)) = PX(ker(A B −A)), and

domG = PX(ker(A−B B)), ranG = PX∗(ker(A (B −A)).
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4.1. Auxiliary results on linear relations

(v) dimgraG = 2n− p.

Proof. (i), (ii), (iii) follow from the definition of G. Since

Ax+Bx∗ = 0 ⇔ (A−B)x+B(x+x∗) = 0 ⇔ A(x+x∗)+(B−A)x∗ = 0,

(iv) holds.

(v): We have

2n = dimker(A B) + dim ran



Aᵀ

Bᵀ


 = dimgraG+ p.

Hence dimgraG = 2n− p. �

The following result summarizes the monotonicities of G∗ and G.

Lemma 4.1.6 The following hold.

(i) graG∗ = {(Bᵀu,−Aᵀu) | u ∈ Rp}.

(ii) G∗ is monotone ⇔ the matrix AᵀB+BᵀA ∈ Rp×p is negative-semidefinite.

(iii) Assume G is monotone. Then n ≤ p. Moreover, G is maximally

monotone if and only if dimgraG = n = p.

Proof. (i): By Lemma 4.1.5(i), we have

(x, x∗) ∈ graG∗ ⇔ (x∗,−x) ∈ graG⊥ = ran



Aᵀ

Bᵀ


 = {(Aᵀu,Bᵀu) | u ∈ Rp}.

Thus graG∗ = {(Bᵀu,−Aᵀu) | u ∈ Rp}.
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(ii): Since graG∗ is a linear subspace, by (i),

G∗ is monotone ⇔ 〈Bᵀu,−Aᵀu〉 ≥ 0, ∀u ∈ Rp

⇔ 〈u,−BAᵀu〉 ≥ 0, ∀u ∈ Rp

⇔ 〈u,BAᵀu〉 ≤ 0, ∀u ∈ Rp ⇔ 〈u, (AᵀB +BᵀA)u〉 ≤ 0, ∀u ∈ Rp

⇔ (AᵀB +BᵀA) is negative semidefinite.

(iii): By Fact 3.2.6 and Lemma 4.1.5(v), 2n− p = dimgraG ≤ n ⇒ n ≤

p. By Fact 3.2.6 and Lemma 4.1.5(v) again, G is maximally monotone ⇔

2n − p = dimgraG = n ⇔ dimgraG = p = n. �

4.1.1 One linear relation: two equivalent formulations

The linear relation G given by (4.1)–(4.3):

graG = {(x, x∗) ∈ Rn × Rn | Ax+Bx∗ = 0} (4.9)

is an intersection of p linear hyperplanes. It can be equivalently described as

a span of q = 2n−p points in Rn×Rn. Indeed, for (4.9) we can use Gaussian

elimination to reduce (A B) to row echelon form. Then back substitute to

solve for the basic variables in terms of the free variables, see [59, page 61].

The row-echelon form gives




x

x∗


 = h1y1 + · · ·+ h2n−py2n−p =



C

D


 y
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4.2. Explicit maximally monotone extensions of monotone linear relations

where y ∈ R2n−p and 

C

D


 = (h1, . . . , h2n−p)

with C,D being n× (2n − p) matrices. Therefore,

graG =







Cy

Dy




∣∣∣∣∣∣∣
y ∈ R2n−p





= ran



C

D


 (4.10)

which is a span of 2n − p points in Rn × Rn. The two formulations (4.9)

and (4.10) coincide when p = q = n, Id = −B = C and D = A in which

Id ∈ Rn×n.

4.2 Explicit maximally monotone extensions of

monotone linear relations

In this section, we give explicit maximally monotone linear subspace exten-

sions of G by using V+(AB
ᵀ) or Vg. A characterization of all maximally

monotone extensions of G is also given. We also provide a new proof for

Crouzeix and Ocaña-Anaya’s characterizations of the monotonicity and the

maximal monotonicity of G. We shall use notations given in (4.1)–(4.6), in

particular, G is in the form of (4.9).

Lemma 4.2.1 Let M ∈ Rp×p, and linear relations G̃ and Ĝ be defined by

gra G̃ = {(x, x∗) | MᵀAx+MᵀBx∗ = 0}

gra Ĝ = {(Bᵀu,−Aᵀu) | u ∈ ranM}.
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Then (G̃)∗ = Ĝ.

Proof. Let (y, y∗) ∈ Rn ×Rn. Then we have

(y, y∗) ∈ gra(G̃)∗

⇔ (y∗,−y) ∈ (gra G̃)⊥ = (ker

(
MᵀA MᵀB

))⊥
= ran



AᵀM

BᵀM




⇔ (y, y∗) ∈ gra Ĝ.

Hence (G̃)∗ = Ĝ. �

Lemma 4.2.2 Define linear relations G̃ and Ĝ by

gra G̃ = {(x, x∗) | VgAx+ VgBx∗ = 0}

gra Ĝ = {(Bᵀu,−Aᵀu) | u ∈ V−(BAᵀ) +V0(BAᵀ)},

where Vg is (p − k)× p matrix defined by

Vg =




vᵀk+1

vᵀk+2

...

vᵀp




.

Then

(i) Ĝ is monotone.

(ii) (Ĝ)∗ = G̃.
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4.2. Explicit maximally monotone extensions of monotone linear relations

(iii) gra G̃ = graG+







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ V+(BAᵀ)





.

Proof. (i): Apply Corollary 4.1.2(iv).

(ii): Notations are as in (4.6). Define the p× p matrix N by

N =



0 0

0 Id




in which Id ∈ R(p−k)×(p−k). Then we have

NᵀV ᵀ =

(
(v1 · · · vk V ᵀ

g )



0 0

0 Id




)ᵀ

=




0

Vg


 . (4.11)

Then we have

VgAx+ VgBx∗ = 0 ⇔




0

VgAx+ VgBx∗


 = 0

⇔ NᵀV ᵀAx+NᵀV ᵀBx∗ = 0, ∀(x, x∗) ∈ Rn × Rn.

Hence

gra G̃ = {(x, x∗) | NᵀV ᵀAx+NᵀV ᵀBx∗ = 0}.

Thus by Lemma 4.2.1 with M = V N ,

gra(G̃)∗ = {(Bᵀu,−Aᵀu) | u ∈ ranV N = ran

(
0 V ᵀ

g

)
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= V−(BAᵀ) +V0(BAᵀ)} = gra Ĝ.

Hence (Ĝ)∗ = (G̃)∗∗ = G̃.

(iii): Let J be defined by

gra J = graG+







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ V+(BAᵀ)





.

Then we have

(gra J)⊥ = (graG)⊥ ∩







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ V+(BAᵀ)





⊥

.

By Lemma 4.1.5(i),

graG⊥ =







Aᵀ

Bᵀ


w

∣∣∣∣∣∣∣
w ∈ Rp





Then 

Aᵀ

Bᵀ


w ∈







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ V+(BAᵀ)





⊥

if and only if

〈(Aᵀw,Bᵀw), (Bᵀu,Aᵀu)〉 = 0 ∀ u ∈ V+(BAᵀ),
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that is,

〈Aᵀw,Bᵀu〉+ 〈Bᵀw,Aᵀu〉 = 〈w, (ABᵀ +BAᵀ)u〉 = 0 ∀u ∈ V+(AB
ᵀ).

(4.12)

Because ABᵀ+BAᵀ : V+(AB
ᵀ) 7→ V+(AB

ᵀ) is onto by Proposition 4.1.1(i),

we obtain that (4.12) holds if and only if w ∈ V−(ABᵀ)+V0(AB
ᵀ). Hence

(gra J)⊥ = {(Aᵀw,Bᵀw) | w ∈ V−(BAᵀ) +V0(BAᵀ)},

from which gra J∗ = gra Ĝ. Then by (i),

gra G̃ = gra(Ĝ)∗ = gra J∗∗ = gra J.

�

We are ready to apply the Brezis-Browder Theorem, namely Fact 3.2.13,

to improve Crouzeix and Ocaña-Anaya’s characterizations of monotonicity

and maximal monotonicity of G and provide a different proof.

Theorem 4.2.3 Let Ĝ, G̃ be defined in Lemma 4.2.2. The following are

equivalent:

(i) G is monotone;

(ii) G̃ is monotone;

(iii) G̃ is maximally monotone;

(iv) Ĝ is maximally monotone;
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4.2. Explicit maximally monotone extensions of monotone linear relations

(v) dimV+(BAᵀ) = p − n, equivalently, ABᵀ + BAᵀ has exactly p − n

positive eigenvalues (counting multiplicity).

Proof. (i)⇔(ii): Lemma 4.2.2(iii) and Corollary 4.1.2(i).

(ii)⇔(iii)⇔(iv): Note that G̃ =
(
Ĝ
)∗

and Ĝ is always a monotone linear

relation by Corollary 4.1.2(iv). It suffices to combine Lemma 4.2.2 and

Fact 3.2.13.

(i)⇒(v): Assume that G is monotone. Then G̃ is monotone by

Lemma 4.2.2(iii) and Corollary 4.1.2(i). By Lemma 4.2.2(ii),

Corollary 4.1.2(iv) and Fact 3.2.13, Ĝ is maximally monotone, so that

dim(gra Ĝ) = p−k = n by Fact 3.2.6 and Lemma 4.1.3, thus k = p−n. Note

that for each eigenvalue of a symmetric matrix, its geometric multiplicity is

the same as its algebraic multiplicity [59, page 512].

(v)⇒(i): Assume that k = p − n. Then dim(gra Ĝ) = p − k = n by

Lemma 4.1.3, so that Ĝ is maximally monotone by Fact 3.2.6(i)(ii). By

Lemma 4.2.2(ii) and Fact 3.2.13, G̃ is monotone, which implies that G is

monotone. �

Corollary 4.2.4 Assume that G is monotone. Then

gra G̃ = graG+







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ V+(BAᵀ〉





= {(x, x∗) | VgAx+ VgBx∗ = 0}

71



4.2. Explicit maximally monotone extensions of monotone linear relations

is a maximally monotone extension of G, where

Vg =




vᵀp−n+1

vᵀp−n+2

...

vᵀp




.

Proof. Combine Theorem 4.2.3 and Lemma 4.2.2(iii) directly. �

Note that Corollary 4.2.4 gives both types of maximally monotone ex-

tensions of G, namely, type (4.9) and type (4.10). A remark is in order to

compare our extension with the one by Crouzeix and Ocaña-Anaya.

Remark 4.2.5 (i). Crouzeix and Ocaña-Anaya [39] defines the union of

monotone extension of G as

S = graG+







Bᵀ

Aᵀ


u

∣∣∣∣∣∣∣
u ∈ K





,

where K = {u ∈ Rn | 〈u, (ABᵀ +BAᵀ)u〉 ≥ 0}. Although this is the set mono-

tonically related to G, it is not monotone in general as long as (ABᵀ+BAᵀ)

has both positive eigenvalues and negative eigenvalues. Indeed, let (α1, u1)

and (α2, u2) be eigen-pairs of (ABᵀ + BAᵀ) with α1 > 0 and α2 < 0. We

have

〈u1, (ABᵀ+BAᵀ)u1〉 = α1‖u1‖2 > 0, 〈u2, (ABᵀ+BAᵀ)u2〉 = α2‖u2‖2 < 0.
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4.2. Explicit maximally monotone extensions of monotone linear relations

Choose ε > 0 sufficiently small so that

〈u1 + εu2, (AB
ᵀ +BAᵀ)(u1 + εu2)〉 > 0.

Then 

Bᵀ

Aᵀ


u1,



Bᵀ

Aᵀ


 (u1 + εu2) ∈ S.

However, 

Bᵀ

Aᵀ


 (u1 + εu2)−



Bᵀ

Aᵀ


u1 = ε



Bᵀ

Aᵀ


u2

has

〈εBᵀu2, εA
ᵀu2〉 = ε2〈u2, BAᵀu2〉 = ε2

〈u2, (ABᵀ +BAᵀ)u2〉
2

< 0.

Therefore S is not monotone. By using V+(BAᵀ) ⊆ K, we have obtained a

maximally monotone extension of G .

(ii). Crouzeix and Ocaña-Anaya [39] find a maximally monotone linear

subspace extension of G algorithmically by using ũk ∈ gra G̃k \ graGk and

constructing graGk+1 = graGk + Rũk where

ũk =



Bᵀ

k

Aᵀ
k


uk, 〈uk, (AkB

ᵀ
k +BkA

ᵀ
k)uk〉 ≥ 0.

This recursion is done until dimgraGk = n. In particular, each uk may

be chosen as an eigenvector associated with a positive eigenvalue of AkB
ᵀ
k +

BkA
ᵀ
k, which is possible since p > n when Gk is not maximally monotone.
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4.2. Explicit maximally monotone extensions of monotone linear relations

Their construction uses both formulations, namely, (4.9) and (4.10). No

computation indications are given on the passage from one formulation to

the other one.

The following result extends the characterization of maximally monotone

linear relations given by Crouzeix and Ocaña-Anaya [39].

Theorem 4.2.6 Let Ĝ, G̃ be defined in Lemma 4.2.2. The following are

equivalent:

(i) G is maximally monotone;

(ii) p = n and G is monotone;

(iii) p = n and ABᵀ +BAᵀ is negative semidefinite.

(iv) p = n and Ĝ is maximally monotone.

Proof. (i)⇒(ii): Apply Lemma 4.1.6(iii).

(ii)⇒(iii): Apply Theorem 4.2.3(i)(v) directly .

(iii)⇒(i): Assume that p = n and (ABᵀ+BAᵀ) is negative semidefinite.

Then k = 0 and G̃ = G. It follows that dim(gra Ĝ) = p − k = n by

Lemma 4.1.3, so that Ĝ is maximally monotone by Corollary 4.1.2(iv) and

Fact 3.2.6(i)(ii). Since
(
Ĝ
)∗

= G̃ by Lemma 4.2.2(ii), Fact 3.2.13 gives that

G̃ = G is maximally monotone.

(iii)⇒(iv): Assume that p = n and (ABᵀ+BAᵀ) is negative semidefinite.

We have k = 0 and dim(gra Ĝ) = p − k = n − 0 = n. Hence (iv) holds by

Corollary 4.1.2(iv) and Fact 3.2.6(i)(ii).
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4.2. Explicit maximally monotone extensions of monotone linear relations

(iv)⇒(iii): Assume that Ĝ is maximally monotone and p = n. We have

dim(gra Ĝ) = p − k = n − k = n so that k = 0. Hence (ABᵀ + BAᵀ) is

negative semidefinite. �

Corollary 4.2.4 supplies only one maximally monotone linear subspace

extension of G. Can we find all of them? Surprisingly, we may give a

characterization of all the maximally monotone linear subspace extensions

of G when it is given in the form of (4.9).

Theorem 4.2.7 Let G be monotone. Then G̃ is a maximally monotone

extension of G if and only if there exists N ∈ Rp×p with rank of n such that

Nᵀ IdλN is negative semidefinite and

gra G̃ = {(x, x∗) | NᵀV ᵀAx+NᵀV ᵀBx∗ = 0}. (4.13)

Proof. “⇒”: By Lemma 4.1.6(i), we have

graG∗ = {(Bᵀu,−Aᵀu) | u ∈ Rp}. (4.14)

Since graG ⊆ gra G̃ and thus gra(G̃)∗ is a subspace of graG∗.

Thus by (4.14), there exists a subspace F of Rp such that

gra(G̃)∗ = {(Bᵀu,−Aᵀu) | u ∈ F}. (4.15)

By Fact 3.2.13, Fact 3.2.6 and Lemma 4.1.3, we have

dimF = n. (4.16)
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4.2. Explicit maximally monotone extensions of monotone linear relations

Thus, there exists N ∈ Rp×p with rank n such that ranV N = F and

gra(G̃)∗ = {(BᵀV Ny,−AᵀV Ny) | y ∈ Rp}. (4.17)

As G̃ is maximally monotone, (G̃)∗ is maximally monotone by Fact 3.2.13,

so

NᵀV ᵀ(BAᵀ +ABᵀ)V N is negative semidefinite.

Using Fact 4.1.4, we have

Nᵀ Idλ N = NᵀV ᵀV IdλN = NᵀV ᵀ(ABᵀ +BAᵀ)V N (4.18)

which is negative semidefinite. (4.13) follows from (4.17) by Lemma 4.2.1

using M = V N .

“⇐”: By Lemma 4.2.1, we have

gra(G̃)∗ = {(BᵀV Nu,−AᵀV Nu) | u ∈ Rp}. (4.19)

Observe that (G̃)∗ is monotone because NᵀV ᵀ(ABᵀ+BAᵀ)V N = Nᵀ IdλN

is negative semidefinite by Fact 4.1.4 and the assumption. As rank(V N) =

n, it follows from (4.19) and Lemma 4.1.3 that dim gra(G̃)∗ = n. Therefore

(G̃)∗ is maximally monotone by Fact 3.2.6. Applying Fact 3.2.13 for T =

(G̃)∗ yields that G̃ = (G̃)∗∗ is maximally monotone. �

From the above proof, we see that to find a maximally monotone exten-

sion of G one essentially need to find subspace F ⊆ Rp such that dimF = n

and ABᵀ+BAᵀ is negative semidefinite on F . If F = ranM and M ∈ Rp×p
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4.2. Explicit maximally monotone extensions of monotone linear relations

with rankM = n, one can let N = V ᵀM . The maximally monotone linear

subspace extension of G is

G̃ = {(x, x∗) | MᵀAx+MᵀBx∗ = 0}.

In Corollary 4.2.4, one can choose M =
(
0 0 · · · 0︸ ︷︷ ︸

n

vp−n+1 · · · vp
)
.

Corollary 4.2.8 Let G be monotone. Then G̃ is a maximally monotone

extension of G if and only if there exists M ∈ Rp×p with rank of n such that

Mᵀ(ABᵀ +BAᵀ)M is negative semidefinite and

gra G̃ = {(x, x∗) | MᵀAx+MᵀBx∗ = 0}. (4.20)

Note that G may have different representations in terms of A,B. The

maximally monotone extension of G̃ given in Theorem 4.2.7 and Corol-

lary 4.2.4 relies on A,B matrices and N . This might lead to different max-

imally monotone extensions, see Section 4.5.

Remark 4.2.9 A referee for the paper [88] pointed out that there is a

shorter way to see Theorem 4.2.7. Consider the maximally monotone linear

subspace extension of G of type:

gra G̃ = {(x, x∗) ∈ Rn × Rn | Ãx+ B̃x∗ = 0} ⊇ graG

where Ã, B̃ ∈ Rn×n. With the nonsingular p× p matrix V given as in (4.6),
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4.2. Explicit maximally monotone extensions of monotone linear relations

an equivalent formulation of G is

graG = {(x, x∗) ∈ Rn × Rn | V ᵀAx+ V ᵀBx∗ = 0}.

As G̃ is maximally monotone, the n × 2n matrix has rank(Ã, B̃) = n and

the matrix

ÃB̃ᵀ + B̃Ãᵀ ∈ Rn×n

is negative semidefinite. Since gra G̃ ⊇ graG, we have

ran



Ãᵀ

B̃ᵀ


 = (gra G̃)⊥ ⊆ (graG)⊥ = ran



(V ᵀA)ᵀ

(V ᵀB)ᵀ


 .

Therefore, there exists a p× n matrix N with rankN = n such that



Ãᵀ

B̃ᵀ


 =



(V ᵀA)ᵀ

(V ᵀB)ᵀ


N =



(V ᵀA)ᵀN

(V ᵀB)ᵀN




from which Ã = NᵀV ᵀA, B̃ = NᵀV ᵀB. Then the n× n matrix

ÃB̃ᵀ + B̃Ãᵀ = NᵀV ᵀA(NᵀV ᵀB)ᵀ +NᵀV ᵀB(NᵀV ᵀA)ᵀ (4.21)

= NᵀV ᵀ(ABᵀ +BAᵀ)V N (4.22)

= Nᵀ Idλ N. (4.23)

Therefore, all maximally monotone linear subspace extensions of G can be
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4.3. Minty parameterizations

obtained by using

gra G̃ = {(x, x∗) ∈ Rn × Rn | NᵀV ᵀAx+NᵀV ᵀBx∗ = 0}

in which the p× n matrix N satisfies rankN = n and Nᵀ Idλ N is negative

semidefinite.

4.3 Minty parameterizations

Although G is set-valued in general, when G is monotone it has an elegant

Minty parametrization in terms of A,B, which is what we are going to show

in this section.

Lemma 4.3.1 The linear relation G is monotone if and only if

‖y‖2 − ‖y∗‖2 ≥ 0, whenever (4.24)

(A+B)y + (B −A)y∗ = 0. (4.25)

Consequently, if G is monotone then the p× n matrix B−A must have full

column rank, namely n.

Proof. Define the 2n× 2n matrix

P =




0 Id

Id 0



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4.3. Minty parameterizations

where Id ∈ Rn×n. It is easy to see that G is monotone if and only if

〈
(x, x∗), P




x

x∗




〉
≥ 0,

whenever Ax+Bx∗ = 0. Define the orthogonal matrix

Q =
1√
2



Id − Id

Id Id




and put 


x

x∗


 = Q




y

y∗


 .

Then G is monotone if and only if

‖y‖2 − ‖y∗‖2 ≥ 0, whenever (4.26)

(A+B)y + (B −A)y∗ = 0. (4.27)

If (B − A) does not have full column rank, then there exists y∗ 6= 0 such

that (B −A)y∗ = 0. Then (0, y∗) satisfies (4.27) but (4.26) fails. Therefore,

B −A has to be full column rank. �

Theorem 4.3.2 (Minty parametrization) Assume that G is a mono-

tone operator. Then (x, x∗) ∈ graG if and only if

x =
1

2
[Id+(B −A)†(B +A)]y (4.28)

x∗ =
1

2
[Id−(B −A)†(B +A)]y (4.29)
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for y = x+ x∗ ∈ ran(Id+G). Here the Moore-Penrose inverse (B − A)† =

[(B−A)ᵀ(B−A)]−1(B−A)ᵀ. In particular, when G is maximally monotone,

we have

graG = {((B −A)−1By,−(B −A)−1Ay) | y ∈ Rn}.

Proof. As (B − A) is full column rank, (B − A)ᵀ(B − A) is invertible. It

follows from (4.25) that (B−A)ᵀ(A+B)y+(B−A)ᵀ(B−A)y∗ = 0 so that

y∗ = −((B −A)ᵀ(B −A))−1(B −A)ᵀ(A+B)y = −(B −A)†(A+B)y.

Then

x =
1√
2
(y − y∗) =

1√
2
[Id+(B −A)†(B +A)]y

x∗ =
1√
2
(y + y∗) =

1√
2
[Id−(B −A)†(B +A)]y

where y = x+x∗√
2

with (x, x∗) ∈ graG. Since ran(Id+G) is a subspace, we

have

x =
1

2
[Id+(B −A)†(B +A)]ỹ

x∗ =
1

2
[Id−(B −A)†(B +A)]ỹ

with ỹ = x+ x∗ ∈ ran(Id+G).

If G is maximally monotone, then p = n by Theorem 4.2.6 and hence

B−A is invertible, thus (B−A)† = (B−A)−1. Moreover, ran(G+Id) = Rn.
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Then (4.28) and (4.29) imply that

x =
1

2
(B −A)−1[B −A+ (B +A)]y = (B −A)−1By (4.30)

x∗ =
1

2
(B −A)−1[(B −A)− (B +A)]y = −(B −A)−1Ay (4.31)

for y ∈ Rn. �

Remark 4.3.3 See Lemma 4.1.5 for ran(G + Id). Note that as G is a

monotone linear relation, the mapping

z 7→ ((G+ Id)−1, Id−(G+ Id)−1)(z)

is bijective and linear from ran(G+Id) to graG, therefore dim(ran(G+Id)) =

dim(graG).

Corollary 4.3.4 Let G be a monotone operator. Then G̃ defined in Corol-

lary 4.2.4, the maximally monotone extension of G, has its Minty parametriza-

tion given by

gra G̃ = {((VgB − VgA)
−1VgBy,−(VgB − VgA)

−1VgAy) | y ∈ Rn}

where Vg is given as in Corollary 4.2.4.

Proof. Since rank(Vg) = n and rank(A B) = p, by Lemma 4.1.3(4.7),

rank(VgA VgB) = n. Then we can apply Corollary 4.2.4 and Theorem 4.3.2

directly. �
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Corollary 4.3.5 When G is maximally monotone,

domG = (B −A)−1(ranB), ranG = (B −A)−1(ranA).

Recall that T : Rn → Rn is firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 ∀ x, y ∈ domT.

In terms of matrices, we have

Corollary 4.3.6 Suppose that p = n, ABᵀ +BAᵀ is negative semidefinite.

Then (B −A)−1B and −(B −A)−1A are firmly nonexpansive.

Proof. By Theorem 4.2.6, G is maximally monotone. Theorem 4.3.2 gives

that

(B −A)−1B = (Id+G)−1, −(B −A)−1A = (Id+G−1)−1.

Being resolvents of monotone operators G,G−1, they are firmly nonexpan-

sive, see [9, 43] or [13, Fact 2.5]. �

4.4 Maximally monotone extensions with the

same domain or the same range

How do we find maximally monotone linear subspace extensions of G if it is

given in the form of (4.10)? The purpose of this section is to find maximally

monotone linear subspace extensions of G which keep either domG or ranG
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unchanged. For a closed convex set S ⊆ Rn, let NS denote its normal cone

mapping.

Proposition 4.4.1 Assume that T : Rn ⇒ Rn is a monotone linear rela-

tion. Then

(i) T1 = T +NdomT , i.e.,

x 7→ T1x =





Tx+ (domT )⊥ if x ∈ domT

∅ otherwise

is maximally monotone. In particular, domT1 = domT .

(ii) T2 = (T−1 + NranT )
−1 is a maximally monotone extension of T and

ranT2 = ranT .

Proof. (i): Since 0 ∈ T0 ⊆ (dom T )⊥ by [15, Proposition 2.2(i)], we have

T10 = T0+(domT )⊥ = (domT )⊥ so that domT1 = domT = (T10)
⊥. Hence

T1 is maximally monotone by Fact 3.2.6.

(ii): Apply (i) to T−1 to see that T−1 + NranT is a maximally mono-

tone extension of T−1 with dom(T−1 +NranT ) = ranT . Therefore, T2 is a

maximally monotone extension of T with ranT2 = ranT . �

Define linear relations Ei : Rn ⇒ Rn (i = 1, 2) by

graE1 =







Cy

Dy


+




0

(ranC)⊥




∣∣∣∣∣∣∣
y ∈ R2n−p





, (4.32)
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graE2 =







Cy

Dy


+



(ranD)⊥

0




∣∣∣∣∣∣∣
y ∈ R2n−p





. (4.33)

Theorem 4.4.2 (i) E1 is a maximally monotone extension of G with

domE1 = domG. Moreover,

graE1 = ran



C

D


+




0

(ranC)⊥


 = ran



C

D


+




0

kerCᵀ


 . (4.34)

(ii) E2 is a maximally monotone extension of G with ranE2 = ranG.

Moreover,

graE2 = ran



C

D


+



(ranD)⊥

0


 = ran



C

D


+



kerDᵀ

0


 . (4.35)

Proof. (i): Note that domG = ranC. The maximal monotonicity fol-

lows from Proposition 4.4.1. (4.34) follows from (4.32) and the fact that

(ranC)⊥ = kerCᵀ [59, page 405].

(ii): Apply (i) to G−1, i.e.,

graG−1 =







Dy

Cy




∣∣∣∣∣∣∣
y ∈ R2n−p





(4.36)

and followed by taking the set-valued inverse. �

Apparently, both extensions E1, E2 rely on graG, domG, ranG, not on

the A,B. In this sense, E1, E2 are intrinsic maximally monotone linear

subspace extensions.
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Remark 4.4.3 Theorem 4.4.2 is much easier to use than Corollary 4.2.8

when G is written in the form of (4.10). Indeed, it is not hard to check that

gra(E∗
1) = {(Bᵀu,−Aᵀu) | Bᵀu ∈ domG,u ∈ Rp}. (4.37)

gra(E∗
2) = {Bᵀu,−Aᵀu) | Aᵀu ∈ ranG,u ∈ Rp}. (4.38)

According to Fact 3.2.13, E∗
i is maximally monotone and dimE∗

i = n. This

implies that

dim{u ∈ Rp | Bᵀu ∈ domG} = n, dim{u ∈ Rp | Aᵀu ∈ ranG} = n.

Let Mi ∈ Rp×p with rankMi = n and

{u ∈ Rp | Bᵀu ∈ domG} = ranM1, (4.39)

{u ∈ Rp | Aᵀu ∈ ranG} = ranM2. (4.40)

Corollary 4.2.8 shows that

graEi = {(x, x∗) | Mᵀ
i Ax+Mᵀ

i Bx∗ = 0}.

However, finding Mi from (4.39) and (4.40) may not be as easy as it seems.

Remark 4.4.4 Unfortunately, we do not know how to determine all maxi-

mally monotone linear subspace extensions of G if it is given in the form of
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(4.10).

4.5 Examples

In the final section, we illustrate our maximally monotone extensions by con-

sidering three examples. In particular, they show that maximally monotone

extensions G̃ rely on the representation of G in terms of A,B and choices

of N we shall use. However, the maximally monotone extensions Ei are

intrinsic, depending only on graG.

Example 4.5.1 Consider

graG =




(x, x∗) ∈ Rn × Rn

∣∣∣∣∣∣∣



Id

0


x+




0

C


x∗ = 0





where C ∈ Rn×n is symmetric and positive definite, and Id ∈ Rn×n . Clearly,

graG =







0

0








.

We have

(i) For every α ∈ [−1, 1] , G̃α defined by

gra G̃α =





{(0,Rn)} , if α = 1;

{
(x, 1+α

1−α
C−1x) | x ∈ Rn

}
, otherwise

is a maximally monotone linear extension of G.
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(ii) E1 = G̃1 and E2 = G̃−1.

Proof. (i): To find G̃α, we need eigenvectors of

A =



Id

0


 (0 Cᵀ) +




0

C


 (Id 0) =




0 C

C 0


 .

Counting multiplicity, the positive definite matrix C has eigen-pairs (λi, wi)

(i = 1, . . . , n) such that λi > 0, ‖wi‖ = 1 and 〈wi, wj〉 = 0 for i 6= j. As

such, the matrix A has 2n eigen-pairs, namely


λi,



wi

wi







and 
−λi,




wi

−wi







with i = 1, . . . , n. Put W = (w1 · · · wn) ∈ Rn×n and write

V =



W W

W −W


 .

Then

W ᵀCW = D = diag(λ1, λ2, . . . , λn).
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In Theorem 4.2.7, take

Nα =



0 α Id

0 Id


 ∈ R2n×2n

where Id ∈ Rn×n. We have rankNα = n,

Nᵀ
α IdλNα =



0 0

0 (α2 − 1)W ᵀCW


 =



0 0

0 (α2 − 1)D




being negative semidefinite, and

V Nα =



0 (1 + α)W

0 (α− 1)W


 .

Then by Theorem 4.2.7, we have a maximally monotone linear extension G̃α

given by

gra G̃α =




(x, x∗) ∈ Rn × Rn

∣∣∣∣∣∣∣




0

(1 + α)W ᵀx+ (α− 1)W ᵀCx∗


 = 0





=
{
(x, x∗) ∈ Rn × Rn | (1 + α)x+ (α− 1)Cx∗ = 0

}

=





{(0,Rn)} , if α = 1;

{
(x, 1+α

1−α
C−1x) | x ∈ Rn

}
, otherwise.

Hence we get the desired result.

(ii): It is immediate from Theorem 4.4.2 and (i). �
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Example 4.5.2 Consider

graG =




(x, x∗) ∈ R2 × R2

∣∣∣∣∣∣∣∣∣∣




−1 0

0 0

0 −1






x1

x2


+




1 0

0 1

0 1






x∗1

x∗2


 = 0





.

Then

(i) the linear operators G̃i : R2 ⇒ R2 for i = 1, 2 given by

G̃1 =



1 0

0 −1+
√
2

2−
√
2


 , G̃2 =



1 2

5

0
√
2

10




are two maximally monotone extensions of G.

(ii)

E1(x1, 0) = (x1,R) ∀x1 ∈ R.

(iii)

E2(x1, y) = (x1, 0) ∀x1, y ∈ R.

Proof. We have

graG =








x1

0

x1

0




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ R





is monotone. Since dimG = 1, G is not maximally monotone by Fact 3.2.6.
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The matrix

ABᵀ +BAᵀ =




−2 0 0

0 0 −1

0 −1 −2




has a positive eigenvalue −1 +
√
2 with an eigenvector

u =




0

1

1−
√
2




so that



Bᵀ

Aᵀ


u =




0

2−
√
2

0

−1 +
√
2




.

Then by Corollary 4.2.4,

gra G̃1 =








x1

0

x1

0




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ R





+








0

2−
√
2

0

−1 +
√
2




x2

∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 ∈ R





=








x1

(2−
√
2)x2

x1

(−1 +
√
2)x2




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2 ∈ R





.

Therefore,

G̃1 =



1 0

0 −1+
√
2

2−
√
2




is a maximally monotone extension of G.
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Now we have

Idλ =




−1 +
√
2 0 0

0 −1−
√
2 0

0 0 −2




, V =




0 0 1

− 1
−1+

√
2

− 1
−1−

√
2

0

1 1 0




.

(4.41)

Take

N =




0 −1 1

0 2 −1

0 1 1




. (4.42)

We have rankN = 2 and

Nᵀ Idλ N =




0 0 0

0 −7− 3
√
2 1 +

√
2

0 1 +
√
2 −4




(4.43)

is negative semidefinite. By Theorem 4.2.7, with V,N given in (4.41) and

(4.42), we use the NullSpace command in Maple to solve

(V N)ᵀAx+ (V N)ᵀBx∗ = 0,
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and get

gra G̃2 = span








1

0

1

0




,




−2
√
2

5
√
2

0

1








.

Thus G̃2 =



1 −2

√
2

0 5
√
2




−1

=



1 2

5

0
√
2

10


 is another maximally monotone

extension of G.

On the other hand,

graE1 =








x1

0

x1

0




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ R





+




0

0

0

R




=








x1

0

x1

R




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ R





gives

E1(x1, 0) = (x1,R) ∀x1 ∈ R.

We have

graE2 =








x1

R

x1

0




∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ R





,

which gives E2(x1, y) = (x1, 0) ∀x1, y ∈ R. �
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In [11], the authors use autoconjugates to find maximally monotone ex-

tensions of monotone operators. In general, it is not clear whether the

maximally monotone extensions of a linear relation is still a linear relation.

As both monotone operators in Examples 4.5.2 and 4.5.1 are subsets of

{(x, x) | x ∈ Rn}, [11, Example 5.10] shows that the maximally monotone

extension obtained by autoconjugates must be Id, which is different from

the ones given here.

Example 4.5.3 Consider graG = {(x, x∗) ∈ R2 × R2 | Ax + Bx∗ = 0}

where

A =




1 1

2 0

3 1




, B =




1 5

1 7

0 2




, thus (A B) =




1 1 1 5

2 0 1 7

3 1 0 2




. (4.44)

Then the linear operators G̃i : Rn ⇒ Rn for i = 1, 2 given by

G̃1 =




−117+17
√
201

2(−1+
√
201)

−107+7
√
201

2(−1+
√
201)

− −23+3
√
201

2(−1+
√
201)

− −21+
√
201

2(−1+
√
201)


 , G̃2 =




33
4 −

√
201
6

13
4 −

√
201
6

−29
20 +

√
201
30 − 9

20 +
√
201
30




are two maximally monotone linear extensions of G.

Moreover,

graE1 =








−1

1

−5

1




x1 +




0

0

1

1




x2

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2 ∈ R




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and

graE2 =








−1

1

−5

1




x1 +




1

5

0

0




x2

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2 ∈ R





.

Proof. We have rank(A B) = 3 and

Idλ =




13 +
√
201 0 0

0 −6 0

0 0 13−
√
201




, V =




20
1+

√
201

0 20
1−

√
201

1 −1 1

1 1 1




,

(4.45)

and

Vg =




0 −1 1

20
1−

√
201

1 1


 . (4.46)

Clearly, here p = 3, n = 2 and ABᵀ + BAᵀ has exactly p − n = 3 −

2 = 1 positive eigenvalue. By Theorem 4.2.3(i)(v), G is monotone. Since

ABᵀ +BAᵀ is not negative semidefinite, by Theorem 4.2.6(i)(iii), G is not

maximally monotone.

With Vg given in (4.46) and A,B in (4.44), use the NullSpace command
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in maple to solve VgAx+ VgBx∗ = 0 and obtain G̃1 defined by

gra G̃1 = span








− −21+
√
201

2(−1+
√
201)

−23+3
√
201

2(−1+
√
201)

1

0




,




−−107+7
√
201

2(−1+
√
201)

−117+17
√
201

2(−1+
√
201)

0

1








.

By Corollary 4.2.4, G̃1 is a maximally monotone linear subspace extension

of G. Then

G̃1 =



− −21+

√
201

2(−1+
√
201)

−−107+7
√
201

2(−1+
√
201)

−23+3
√
201

2(−1+
√
201)

−117+17
√
201

2(−1+
√
201)




−1

=




−117+17
√
201

2(−1+
√
201)

−107+7
√
201

2(−1+
√
201)

− −23+3
√
201

2(−1+
√
201)

− −21+
√
201

2(−1+
√
201)


 .

Let N be defined by

N =




0 0 1
5

0 1 0

0 0 1




. (4.47)

Then rankN = 2 and

Nᵀ Idλ N =




0 0 0

0 −6 0

0 0 338−24
√
201

25




is negative semidefinite.

With N in (4.47), A,B in (4.44) and V in (4.45), use the NullSpace

command in maple to solve (V N)ᵀAx+(V N)ᵀBx∗ = 0. By Theorem 4.2.7,
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we get a maximally monotone linear extension of G, G̃2, defined by

G̃2 =



− 9

20 +
√
201
30 −13

4 +
√
201
6

29
20 −

√
201
30

33
4 −

√
201
6




−1

=




33
4 −

√
201
6

13
4 −

√
201
6

−29
20 +

√
201
30 − 9

20 +
√
201
30


 .

To find E1 and E2, using the LinearSolve command in Maple, we get

graG = ran



C

D


, where

C =



−1

1


 , D =



−5

1


 .

It follows from Theorem 4.4.2 that

graE1 =








−1

1

−5

1




x1 +




0

0

1

1



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4.6. Discussion

4.6 Discussion

A direction for future work in this chapter is to write computer code to

find the maximally monotone subspace extension of G, and to generalize

the results into a Hilbert space by applying the Brezis-Browder Theorem.
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Chapter 5

The sum problem

Let A and B be maximally monotone operators from X to X∗. Clearly, the

sum operator

A+B : X ⇒ X∗ : x 7→ Ax+Bx =
{
a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx

}

is monotone. Rockafellar established the following very important result in

1970.

Theorem 5.0.1 (Rockafellar’s sum theorem) (See [66, Theorem 1].)

Suppose that X is reflexive. Let A,B : X ⇒ X∗ be maximally monotone.

Assume that A and B satisfy the classical constraint qualification

domA ∩ int dom B 6= ∅ Then A+B is maximally monotone.

The most famous open problem concerns the maximal monotonicity of the

sum of two maximally monotone operators in general Banach spaces, which

is called the “sum problem”. See Simons’ monograph [74] and [22–24, 86, 90]

for a comprehensive account of some recent developments. In this chap-

ter, we prove the maximal monotonicity of A + B provided that domA ∩

int domB 6= ∅, A+NdomB is of type (FPV), and domA∩domB ⊆ domB.
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We also show the maximal monotonicity of A + B when A is a maxi-

mally monotone linear relation and B is a subdifferential operator satisfying

domA ∩ int domB 6= ∅.

This chapter is mainly based on my work in [90, 91].

5.1 Basic properties

Fact 5.1.1 (Rockafellar) (See [65, Theorem 3], [74, Corollary 10.3 and

Theorem 18.1], or [92, Theorem 2.8.7(iii)].) Let f, g : X → ]−∞,+∞] be

proper convex functions. Assume that there exists a point x0 ∈ dom f∩dom g

such that g is continuous at x0. Then for every z∗ ∈ X∗, there exists y∗ ∈ X∗

such that

(f + g)∗(z∗) = f∗(y∗) + g∗(z∗ − y∗). (5.1)

Furthermore, ∂(f + g) = ∂f + ∂g.

Fact 5.1.2 (Rockafellar) (See [67, Theorem A], [92, Theorem 3.2.8], [74,

Theorem 18.7] or [54, Theorem 2.1]) Let f : X → ]−∞,+∞] be a proper

lower semicontinuous convex function. Then ∂f is maximally monotone.

Fact 5.1.3 (See [61, Theorem 2.28].) Let A : X ⇒ X∗ be monotone such

that int domA 6= ∅. Assume that x ∈ int domA. Then A is locally bounded

at x, i.e., there exist δ > 0 and K > 0 such that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ (x+ δBX) ∩ domA.

Fact 5.1.4 (See [61, Proposition 3.3 and Proposition 1.11].) Let f : X →
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5.1. Basic properties

]−∞,+∞] be a lower semicontinuous convex function and int dom f 6= ∅.

Then f is continuous on int dom f and ∂f(x) 6= ∅ for every x ∈ int dom f .

Fact 5.1.5 (Fitzpatrick) (See [45, Corollary 3.9].) Let A : X ⇒ X∗ be

maximally monotone, and set

FA : X×X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉− 〈a, a∗〉

)
.

(5.2)

Then for every (x, x∗) ∈ X ×X∗, the inequality 〈x, x∗〉 ≤ FA(x, x
∗) is true,

and equality holds if and only if (x, x∗) ∈ graA.

Fact 5.1.6 (Fitzpatrick) (See [45, Theorem 3.4].) Let A : X ⇒ X∗ be

monotone. Then conv domA ⊆ PX(domFA).

Fact 5.1.7 (See [84, Theorem 3.4 and Corollary 5.6] or

[74, Theorem 24.1(b)].) Let A,B : X ⇒ X∗ be maximally monotone

operators. Assume

⋃

λ>0

λ [PX(domFA)− PX(domFB)] is a closed subspace of X.

If

FA+B ≥ 〈·, ·〉 on X ×X∗, (5.3)

then A+B is maximally monotone.

Fact 5.1.8 (Simons) (See [74, Theorem 27.1 and Theorem 27.3].) Let A :

X ⇒ X∗ be maximally monotone with int domA 6= ∅. Then

int domA = int [PX domFA], domA = PX [domFA], and domA is convex.
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5.1. Basic properties

Fact 5.1.9 (Simons) (See [70, Lemma 2.2].) Let f : X → ]−∞,+∞] be

proper, lower semicontinuous and convex. Let x ∈ X and λ ∈ R be such

that inf f < λ < f(x) ≤ +∞, and set

K := sup
a∈X,a6=x

λ− f(a)

‖x− a‖ .

Then K ∈ ]0,+∞[ and for every ε ∈ ]0, 1[, there exists (y, y∗) ∈ gra ∂f such

that

〈y − x, y∗〉 ≤ −(1− ε)K‖y − x‖ < 0. (5.4)

Fact 5.1.10 (Simons) (See [74, Theorem 48.6(a)].) Let f : X → ]−∞,+∞]

be proper, lower semicontinuous, and convex. Let (x, x∗) ∈ X ×X∗ be such

that (x, x∗) /∈ gra ∂f and let α > 0. Then for every ε > 0, there exists

(y, y∗) ∈ gra ∂f with y 6= x and y∗ 6= x∗ such that

∣∣∣∣
‖x− y‖
‖x∗ − y∗‖ − α

∣∣∣∣ < ε (5.5)

and

∣∣∣∣
〈x− y, x∗ − y∗〉

‖x− y‖ · ‖x∗ − y∗‖ + 1

∣∣∣∣ < ε. (5.6)

Fact 5.1.11 (Simons) (See [74, Corollary 28.2].) Let A : X ⇒ X∗ be max-

imally monotone. Then

span(PX domFA) = span [domA]. (5.7)
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5.1. Basic properties

Now we cite some results on maximally monotone operators of type

(FPV).

Fact 5.1.12 (Fitzpatrick-Phelps and Verona-Verona) (See [47, Corol-

lary 3.4], [81, Theorem 3] or [74, Theorem 48.4(d)].) Let f : X →

]−∞,+∞] be proper, lower semicontinuous, and convex. Then ∂f is of

type (FPV).

Fact 5.1.13 (Simons) (See [74, Theorem 44.2].) Let A : X ⇒ X∗ be a

maximally monotone of type (FPV). Then

domA = conv domA = PX domFA.

Fact 5.1.14 (Simons) (See [74, Theorem 46.1].) Let A : X ⇒ X∗ be a

maximally monotone linear relation. Then A is of type (FPV).

Fact 5.1.15 (Simons and Verona-Verona) (See [74, Thereom 44.1] or

[81].) Let A : X ⇒ X∗ be maximally monotone. Suppose that for every

closed convex subset C of X with domA ∩ intC 6= ∅, the operator A+NC

is maximally monotone. Then A is of type (FPV).

The following statement first appeared in [72, Theorem 41.5]. However,

on [74, page 199], concerns were raised about the validity of the proof of [72,

Theorem 41.5]. In [85], Voisei recently provided a result that generalizes

and confirms [72, Theorem 41.5] and hence the following fact.

Fact 5.1.16 (Voisei) Let A : X ⇒ X∗ be maximally monotone of type

(FPV) with convex domain, let C be a nonempty closed convex subset of X,
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5.1. Basic properties

and suppose that domA∩ intC 6= ∅. Then A+NC is maximally monotone.

Corollary 5.1.17 Let A : X ⇒ X∗ be maximally monotone of type (FPV)

with convex domain, let C be a nonempty closed convex subset of X, and

suppose that domA ∩ intC 6= ∅. Then A+NC is of type (FPV ).

Proof. By Fact 5.1.16, A+NC is maximally monotone. LetD be a nonempty

closed convex subset of X, and suppose that dom(A+NC)∩ intD 6= ∅. Let

x1 ∈ domA ∩ intC and x2 ∈ dom(A + NC) ∩ intD. Thus, there exists

δ > 0 such that x1 + δUX ⊆ C and x2 + δUX ⊆ D. Then for small enough

λ ∈ ]0, 1[, we have x2 + λ(x1 − x2) +
1
2δUX ⊆ D. Clearly, x2 + λ(x1 − x2) +

λδUX ⊆ C. Thus x2 + λ(x1 − x2) +
λδ
2 UX ⊆ C ∩D. Since domA is convex,

x2 + λ(x1 − x2) ∈ domA and x2 + λ(x1 − x2) ∈ domA ∩ int(C ∩ D). By

Fact 5.1.1 , A + NC + ND = A + NC∩D. Then, by Fact 5.1.16 (applied to

A and C ∩ D), A + NC + ND = A + NC∩D is maximally monotone. By

Fact 5.1.15, A+NC is of type (FPV ). �

Corollary 5.1.18 Let A : X ⇒ X∗ be a maximally monotone linear re-

lation, let C be a nonempty closed convex subset of X, and suppose that

domA ∩ intC 6= ∅. Then A+NC is of type (FPV ).

Proof. Apply Fact 5.1.14 and Corollary 5.1.17. �

The following Lemma 5.1.19 is from [16, Lemma 2.5].

Lemma 5.1.19 Let C be a nonempty closed convex subset of X such that

intC 6= ∅. Let c0 ∈ intC and suppose that z ∈ X r C. Then there exists

λ ∈ ]0, 1[ such that λc0 + (1− λ)z ∈ bdryC.
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5.1. Basic properties

Proof. Let λ = inf
{
t ∈ [0, 1] | tc0 + (1− t)z ∈ C

}
. Since C is closed,

λ = min
{
t ∈ [0, 1] | tc0 + (1− t)z ∈ C

}
. (5.8)

Because z /∈ C, λ > 0. We now show that λc0 + (1− λ)z ∈ bdryC. Assume

to the contrary that λc0+(1−λ)z ∈ intC. Then there exists δ ∈ ]0, λ[ such

that λc0+(1−λ)z−δ(c0−z) ∈ C. Hence (λ−δ)c0+(1−λ+δ)z ∈ C, which

contradicts (5.8). Therefore, λc0 + (1 − λ)z ∈ bdryC. Since c0 /∈ bdryC,

we also have λ < 1. �

The proof of the next result follows closely the proof of [74, Theo-

rem 53.1]. Lemma 5.1.20 was established by Bauschke, Wang and Yao in

[19, Lemma 2.10].

Lemma 5.1.20 Let A : X ⇒ X∗ be a monotone linear relation, and let

f : X → ]−∞,+∞] be a proper lower semicontinuous and convex function.

Suppose that domA ∩ int dom ∂f 6= ∅, (z, z∗) ∈ X × X∗ is monotonically

related to gra(A+ ∂f) and z ∈ domA. Then z ∈ dom ∂f .

Proof. Let c0 ∈ X and y∗ ∈ X∗ be such that

c0 ∈ domA ∩ int dom ∂f and (z, y∗) ∈ graA. (5.9)

Take c∗0 ∈ Ac0, and set

M := max
{
‖y∗‖, ‖c∗0‖

}
, (5.10)
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5.1. Basic properties

D := [c0, z], and h := f + ιD. By (5.9), Fact 5.1.4 and Fact 5.1.1, ∂h =

∂f + ∂ιD. Set g : X → ]−∞,+∞] : x 7→ h(x + z) − 〈z∗, x〉. It remains to

show that

0 ∈ dom ∂g. (5.11)

If inf g = g(0), then (5.11) holds. Now suppose that inf g < g(0). Let λ ∈ R

be such that inf g < λ < g(0), and set

Kλ := sup
g(x)<λ

λ− g(x)

‖x‖ . (5.12)

We claim that

Kλ ≤ M.

By Fact 5.1.9, we have Kλ ∈ ]0,∞[ and ∀ε ∈ ]0, 1[, by gra ∂g = gra ∂h −

(z, z∗) there exists (x, x∗) ∈ gra ∂h such that

〈x− z, x∗ − z∗〉 ≤ −(1− ε)Kλ‖x− z‖ < 0. (5.13)

Since ∂h = ∂f+∂ιD, there exists t ∈ [0, 1] with x∗1 ∈ ∂f(x) and x∗2 ∈ ∂ιD(x)

such that x = tc0 + (1− t)z and x∗ = x∗1 + x∗2. Then 〈x− z, x∗2〉 ≥ 0. Thus,

by (5.13),

〈x− z, x∗1 − z∗〉 ≤ 〈x− z, x∗1 + x∗2 − z∗〉 ≤ −(1− ε)Kλ‖x− z‖ < 0. (5.14)
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As x = tc0+(1− t)z and A is a linear relation, we have (x, tc∗0+(1− t)y∗) ∈

graA. Since (z, z∗) is monotonically related to gra(A+ ∂f), by (5.10),

〈x− z, x∗1 − z∗〉 ≥ −〈x− z, tc∗0 + (1− t)y∗〉 ≥ −M‖x− z‖. (5.15)

Combining (5.15) and (5.14), we obtain

−M‖x− z‖ ≤ −(1− ε)Kλ‖x− z‖ < 0. (5.16)

Hence, (1 − ε)Kλ ≤ M . Letting ε ↓ 0, we deduce that Kλ ≤ M . Then, by

(5.12) and letting λ ↑ g(0), we get

g(y) +M‖y‖ ≥ g(0), ∀y ∈ X. (5.17)

In view of [74, Example 7.1], we conclude that 0 ∈ dom ∂g. Hence (5.11)

holds and thus z ∈ dom ∂f . �

5.2 Maximality of the sum of a (FPV) operator

and a full domain operator

The following result plays a key role in the proof of Theorem 5.2.4. The first

half of its proof follows along the lines of the proof of [74, Theorem 44.2].

Proposition 5.2.1 Let A,B : X ⇒ X∗ be maximally monotone with domA

∩ int domB 6= ∅. Assume that A +NdomB is maximally monotone of type

(FPV), and domA ∩ domB ⊆ domB. Then PX [domFA+B ] =
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

domA ∩ domB.

Proof. By Fact 5.1.6, domA ∩ domB = dom(A+B) ⊆ PX [domFA+B ]. It

suffices to show that

PX [domFA+B ] ⊆ domA ∩ domB. (5.18)

After translating the graphs if necessary, we can and do assume that 0 ∈

domA ∩ int domB and (0, 0) ∈ graB.

To show (5.18), we take z ∈ PX [domFA+B ] and we assume to the con-

trary that

z /∈ domA ∩ domB. (5.19)

Thus α = d(z,domA ∩ domB) > 0. Now take y∗0 ∈ X∗ such that

‖y∗0‖ = 1 and 〈z, y∗0〉 ≥ 2
3‖z‖. (5.20)

Set

Un = [0, z] + α
4nUX , ∀n ∈ N. (5.21)

Since 0 ∈ NdomB(x),∀x ∈ domB, graB ⊆ gra(B + NdomB). Since B is

maximally monotone and B + NdomB is a monotone extension of B, we

must have B = B +NdomB. Thus

A+B = A+NdomB +B. (5.22)
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Since domA ∩ domB ⊆ domB by assumption, we obtain

domA ∩ domB ⊆ dom(A+NdomB) = domA ∩ domB ⊆ domA ∩ domB.

Hence

domA ∩ domB = dom(A+NdomB). (5.23)

By (5.19) and (5.23), z /∈ dom(A + NdomB) and thus (z, ny∗0) /∈ gra(A +

NdomB),∀n ∈ N. For every n ∈ N, since z ∈ Un and since A+NdomB is of

type (FPV) by assumption, we deduce the existence of (zn, z
∗
n) ∈ gra(A +

NdomB) such that zn ∈ Un and

〈z − zn, z
∗
n〉 > n〈z − zn, y

∗
0〉, ∀n ∈ N. (5.24)

Hence, using (5.21), there exists λn ∈ [0, 1] such that

‖z − zn − λnz‖ = ‖zn − (1− λn)z‖ < 1
4α, ∀n ∈ N. (5.25)

By the triangle inequality, we have ‖z − zn‖ < λn‖z‖+ 1
4α for every n ∈ N.

From the definition of α and (5.23), it follows that α ≤ ‖z − zn‖ and hence

that α < λn‖z‖+ 1
4α. Thus,

3
4α < λn‖z‖, ∀n ∈ N. (5.26)
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By (5.25) and (5.20),

〈z − zn − λnz, y
∗
0〉 ≥ −‖zn − (1− λn)z‖ > −1

4α, ∀n ∈ N. (5.27)

By (5.27), (5.20) and (5.26),

〈z − zn, y
∗
0〉 > λn〈z, y∗0〉 − 1

4α > 2
3
3
4α− 1

4α = 1
4α, ∀n ∈ N. (5.28)

Then, by (5.24) and (5.28),

〈z − zn, z
∗
n〉 > 1

4nα, ∀n ∈ N. (5.29)

By (5.21), there exist tn ∈ [0, 1] and bn ∈ α
4nUX such that zn = tnz + bn.

Since tn ∈ [0, 1], there exists a convergent subsequence of (tn)n∈N, which,

for convenience, we still denote by (tn)n∈N. Then tn → β, where β ∈ [0, 1].

Since bn → 0, we have

zn → βz. (5.30)

By (5.23), zn ∈ domA ∩ domB; thus, ‖zn − z‖ ≥ α and β ∈ [0, 1[. In view

of (5.22) and (5.29), we have, for every z∗ ∈ X∗,

FA+B(z, z
∗) = FA+N

domB
+B(z, z

∗)

≥ sup
{n∈N,y∗∈X∗}

[〈zn, z∗〉+ 〈z − zn, z
∗
n〉+ 〈z − zn, y

∗〉 − ιgraB(zn, y
∗)]

≥ sup
{n∈N,y∗∈X∗}

[
〈zn, z∗〉+ 1

4nα+ 〈z − zn, y
∗〉 − ιgraB(zn, y

∗)
]
. (5.31)
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We now claim that

FA+B(z, z
∗) = ∞. (5.32)

We consider two cases.

Case 1 : β = 0.

By (5.30) and Fact 5.1.3 (applied to 0 ∈ int domB), there exist N ∈ N

and K > 0 such that

Bzn 6= ∅ and sup
y∗∈Bzn

‖y∗‖ ≤ K, ∀n ≥ N. (5.33)

Then, by (5.31),

FA+B(z, z
∗) ≥ sup

{n≥N,y∗∈X∗}

[
〈zn, z∗〉+ 1

4nα+ 〈z − zn, y
∗〉 − ιgraB(zn, y

∗)
]

≥ sup
{n≥N,y∗∈Bzn}

[
−‖zn‖ · ‖z∗‖+ 1

4nα− ‖z − zn‖ · ‖y∗‖
]

≥ sup
{n≥N}

[
−‖zn‖ · ‖z∗‖+ 1

4nα−K‖z − zn‖
]

(by (5.33))

= ∞ (by (5.30)).

Thus (5.32) holds.

Case 2 : β 6= 0.

Take v∗n ∈ Bzn. We consider two subcases.

Subcase 2.1 : (v∗n)n∈N is bounded. By (5.31),

FA+B(z, z
∗) ≥ sup

{n∈N}

[
〈zn, z∗〉+ 1

4nα+ 〈z − zn, v
∗
n〉
]
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≥ sup
{n∈N}

[
−‖zn‖ · ‖z∗‖+ 1

4nα− ‖z − zn‖ · ‖v∗n‖
]

= ∞ (by (5.30) and the boundedness of (v∗n)n∈N).

Hence (5.32) holds.

Subcase 2.2 : (v∗n)n∈N is unbounded.

We first show

lim sup
n→∞

〈z − zn, v
∗
n〉 ≥ 0. (5.34)

Since (v∗n)n∈N is unbounded and after passing to a subsequence if necessary,

we assume that ‖v∗n‖ 6= 0,∀n ∈ N and that ‖v∗n‖ → +∞. By 0 ∈ int domB

and Fact 5.1.3, there exist δ > 0 and M > 0 such that

By 6= ∅ and sup
y∗∈By

‖y∗‖ ≤ M, ∀y ∈ δBX . (5.35)

Then we have

〈zn − y, v∗n − y∗〉 ≥ 0, ∀y ∈ δUX , y∗ ∈ By, n ∈ N

⇒ 〈zn, v∗n〉 − 〈y, v∗n〉+ 〈zn − y,−y∗〉 ≥ 0, ∀y ∈ δUX , y∗ ∈ By, n ∈ N

⇒ 〈zn, v∗n〉 − 〈y, v∗n〉 ≥ 〈zn − y, y∗〉, ∀y ∈ δUX , y∗ ∈ By, n ∈ N

⇒ 〈zn, v∗n〉 − 〈y, v∗n〉 ≥ −(‖zn‖+ δ)M, ∀y ∈ δUX , n ∈ N (by (5.86))

⇒ 〈zn, v∗n〉 ≥ 〈y, v∗n〉 − (‖zn‖+ δ)M, ∀y ∈ δUX , n ∈ N

⇒ 〈zn, v∗n〉 ≥ δ‖v∗n‖ − (‖zn‖+ δ)M, ∀n ∈ N

⇒ 〈zn, v∗n
‖v∗n‖ 〉 ≥ δ − (‖zn‖+δ)M

‖v∗n‖ , ∀n ∈ N. (5.36)
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By the Banach-Alaoglu Theorem (see [69, Theorem 3.15]), there exist a

weak* convergent subnet (v∗γ)γ∈Γ of (v∗n)n∈N, say

v∗γ
‖v∗γ‖

w*
⇁w∗ ∈ X∗. (5.37)

Using (5.30) and taking the limit in (5.36) along the subnet, we obtain

〈βz,w∗〉 ≥ δ. (5.38)

Since β > 0, we have

〈z, w∗〉 ≥ δ
β
> 0. (5.39)

Now we assume to the contrary that

lim sup
n→∞

〈z − zn, v
∗
n〉 < −ε,

for some ε > 0.

Then, for all n sufficiently large,

〈z − zn, v
∗
n〉 < − ε

2 ,

and so

〈z − zn,
v∗n

‖v∗n‖〉 < − ε
2‖v∗n‖ . (5.40)
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Then by (5.30) and (5.37), taking the limit in (5.40) along the subnet again,

we see that

〈z − βz,w∗〉 ≤ 0.

Since β < 1, we deduce 〈z, w∗〉 ≤ 0 which contradicts (5.39). Hence (5.34)

holds. By (5.31),

FA+B(z, z
∗) ≥ sup

{n∈N}

[
〈zn, z∗〉+ 1

4nα+ 〈z − zn, v
∗
n〉
]

≥ sup
{n∈N}

[
−‖zn‖ · ‖z∗‖+ 1

4nα+ 〈z − zn, v
∗
n〉
]

≥ lim sup
n→∞

[
−‖zn‖ · ‖z∗‖+ 1

4nα+ 〈z − zn, v
∗
n〉
]

= ∞ (by (5.30) and (5.34)).

Hence

FA+B(z, z
∗) = ∞. (5.41)

Therefore, we have proved (5.32) in all cases. However, (5.32) contradicts

our original choice that z ∈ PX [domFA+B ]. Hence PX [domFA+B ] ⊆

domA ∩ domB and thus (5.18) holds. Thus we have PX [domFA+B ] =

domA ∩ domB. �

Corollary 5.2.2 Let A : X ⇒ X∗ be maximally monotone of type (FPV)

with convex domain, and B : X ⇒ X∗ be maximally monotone with domA∩
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int domB 6= ∅. Assume that domA ∩ domB ⊆ domB. Then

PX [domFA+B ] = domA ∩ domB.

Proof. Combine Fact 5.1.8, Corollary 5.1.17 and Proposition 5.2.1. �

Corollary 5.2.3 Let A : X ⇒ X∗ be a maximally monotone linear relation,

and let B : X ⇒ X∗ be maximally monotone with domA ∩ int domB 6= ∅.

Assume that domA ∩ domB ⊆ domB. Then

PX [domFA+B ] = domA ∩ domB.

Proof. Combine Fact 5.1.8, Corollary 5.1.18 and Proposition 5.2.1. Alter-

natively, combine Fact 5.1.14 and Corollary 5.2.2. �

We are now ready for our main result in this section.

Theorem 5.2.4 Let A,B : X ⇒ X∗ be maximally monotone with domA∩

int domB 6= ∅. Assume that A + NdomB is maximally monotone of type

(FPV), and that domA ∩ domB ⊆ domB. Then A + B is maximally

monotone.

Proof. After translating the graphs if necessary, we can and do assume

that 0 ∈ domA ∩ int domB and that (0, 0) ∈ graA ∩ graB. By Fact 5.1.5,

domA ⊆ PX(domFA) and domB ⊆ PX(domFB). Hence,

⋃

λ>0

λ
(
PX(domFA)− PX(domFB)

)
= X. (5.42)
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Thus, by Fact 5.1.7, it suffices to show that

FA+B(z, z
∗) ≥ 〈z, z∗〉, ∀(z, z∗) ∈ X ×X∗. (5.43)

Take (z, z∗) ∈ X ×X∗. Then

FA+B(z, z
∗) = sup

{x,x∗,y∗}
[〈x, z∗〉+ 〈z, x∗〉 − 〈x, x∗〉+ 〈z − x, y∗〉

− ιgraA(x, x
∗)− ιgraB(x, y

∗)]. (5.44)

Assume to the contrary that

FA+B(z, z
∗) < 〈z, z∗〉. (5.45)

Then (z, z∗) ∈ domFA+B and, by Proposition 5.2.1,

z ∈ domA ∩ domB = PX [domFA+B ]. (5.46)

Next, we show that

FA+B(λz, λz
∗) ≥ λ2〈z, z∗〉, ∀λ ∈ ]0, 1[ . (5.47)

Let λ ∈ ]0, 1[. By (5.46) and Fact 5.1.8, z ∈ PX domFB . By Fact 5.1.8 again

and 0 ∈ int domB, 0 ∈ intPX domFB . Then, by [92, Theorem 1.1.2(ii)], we

have

λz ∈ intPX domFB = int [PX domFB ] . (5.48)
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Combining (5.48) and Fact 5.1.8, we see that λz ∈ int domB.

We consider two cases.

Case 1 : λz ∈ domA.

By (5.44),

FA+B(λz, λz
∗) ≥ sup

{x∗,y∗}
[〈λz, λz∗〉+ 〈λz, x∗〉 − 〈λz, x∗〉+ 〈λz − λz, y∗〉

− ιgraA(λz, x
∗)− ιgraB(λz, y

∗)]

= 〈λz, λz∗〉.

Hence (5.47) holds.

Case 2 : λz /∈ domA.

Using 0 ∈ domA ∩ domB and the convexity of domA ∩ domB (which

follows from (5.46)), we obtain λz ∈ domA ∩ domB ⊆ domA ∩ domB.

Set

Un = λz + 1
n
UX , ∀n ∈ N. (5.49)

Then Un ∩ dom(A+NdomB) 6= ∅. Since (λz, λz∗) /∈ gra(A+NdomB), λz ∈

Un, and A+NdomB is of type (FPV), there exists (bn, b
∗
n) ∈ gra(A+NdomB)

such that bn ∈ Un and

〈λz, b∗n〉+ 〈bn, λz∗〉 − 〈bn, b∗n〉 > λ2〈z, z∗〉, ∀n ∈ N. (5.50)
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Since λz ∈ int domB and bn → λz, by Fact 5.1.3, there exist N ∈ N and

M > 0 such that

bn ∈ int domB and sup
v∗∈Bbn

‖v∗‖ ≤ M, ∀n ≥ N. (5.51)

Hence NdomB(bn) = {0} and thus (bn, b
∗
n) ∈ graA for every n ≥ N . Thus

by (5.44), (5.50) and (5.51),

FA+B(λz, λz
∗)

≥ sup
{v∗∈Bbn}

[〈bn, λz∗〉+ 〈λz, b∗n〉 − 〈bn, b∗n〉+ 〈λz − bn, v
∗〉] , ∀n ≥ N

≥ sup
{v∗∈Bbn}

[
λ2〈z, z∗〉+ 〈λz − bn, v

∗〉
]
, ∀n ≥ N (by (5.50))

≥ sup
[
λ2〈z, z∗〉 −M‖λz − bn‖

]
, ∀n ≥ N (by (5.51))

≥ λ2〈z, z∗〉 (by bn → λz). (5.52)

Hence FA+B(λz, λz
∗) ≥ λ2〈z, z∗〉.

We have established that (5.47) holds in both cases. Since (0, 0) ∈ graA∩

graB, we obtain (∀(x, x∗) ∈ gra(A+B)) 〈x, x∗〉 ≥ 0. Thus, FA+B(0, 0) = 0.

Now define

f : [0, 1] → R : t → FA+B(tz, tz
∗).

Then f is continuous on [0, 1] by [92, Proposition 2.1.6]. From (5.47), we

obtain

FA+B(z, z
∗) = lim

λ→1−
FA+B(λz, λz

∗) ≥ lim
λ→1−

〈λz, λz∗〉 = 〈z, z∗〉, (5.53)
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which contradicts (5.45). Hence

FA+B(z, z
∗) ≥ 〈z, z∗〉. (5.54)

Therefore, (5.43) holds, and A+B is maximally monotone. �

Theorem 5.2.4 allows us to deduce both new and previously known sum

theorems.

Corollary 5.2.5 Let f : X → ]−∞,+∞] be proper, lower semicontinuous

and convex, and let B : X ⇒ X∗ be maximally monotone with dom f ∩

int domB 6= ∅. Assume that dom ∂f ∩ domB ⊆ domB. Then ∂f + B is

maximally monotone.

Proof. By Fact 5.1.8 and Fact 5.1.1, ∂f +NdomB = ∂(f + ιdomB). Then by

Fact 5.1.12, ∂f +NdomB is type of (FPV). Now apply Theorem 5.2.4. �

Corollary 5.2.6 Let A : X ⇒ X∗ be maximally monotone of type (FPV),

and let B : X ⇒ X∗ be maximally monotone with full domain. Then A+B

is maximally monotone.

Proof. Since A+NdomB = A+NX = A and thus A+NdomB is maximally

monotone of type (FPV), the conclusion follows from Theorem 5.2.4. �

Corollary 5.2.7 (Verona-Verona) (See [82, Corollary 2.9(a)] or [74, The-

orem 53.1].) Let f : X → ]−∞,+∞] be proper, lower semicontinuous, and

convex, and let B : X ⇒ X∗ be maximally monotone with full domain. Then

∂f +B is maximally monotone.
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Proof. Clear from Corollary 5.2.5. Alternatively, combine Fact 5.1.12 and

Corollary 5.2.6. �

Corollary 5.2.8 (Heisler) (See [62, Remark, page 17].) Let A,B : X ⇒

X∗ be maximally monotone with full domain. Then A + B is maximally

monotone.

Proof. Let C be a nonempty closed convex subset of X. By Corollary 5.2.7,

NC + A is maximally monotone. Thus, A is of type (FPV) by Fact 5.1.15.

The conclusion now follows from Corollary 5.2.6. �

Corollary 5.2.9 Let A : X ⇒ X∗ be maximally monotone of type (FPV)

with convex domain, and let B : X ⇒ X∗ be maximally monotone with

domA ∩ int domB 6= ∅. Assume that domA ∩ domB ⊆ domB. Then

A+B is maximally monotone.

Proof. Combine Fact 5.1.8, Corollary 5.1.17 and Theorem 5.2.4. �

Corollary 5.2.10 (Voisei) (See [85].) Let A : X ⇒ X∗ be maximally

monotone of type (FPV) with convex domain, let C be a nonempty closed

convex subset of X, and suppose that domA ∩ intC 6= ∅. Then A+NC is

maximally monotone.

Proof. Apply Corollary 5.2.9. �

Corollary 5.2.11 Let A : X ⇒ X∗ be a maximally monotone linear rela-

tion, and let B : X ⇒ X∗ be maximally monotone with domA∩ int domB 6=

∅. Assume that domA∩domB ⊆ domB. Then A+B is maximally mono-

tone.
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Proof. Combine Fact 5.1.14 and Corollary 5.2.9. �

Corollary 5.2.12 (See [16, Theorem 3.1].) Let A : X ⇒ X∗ be a maximally

monotone linear relation, let C be a nonempty closed convex subset of X,

and suppose that domA∩ intC 6= ∅. Then A+NC is maximally monotone.

Proof. Apply Corollary 5.2.11. �

Corollary 5.2.13 Let A : X ⇒ X∗ be a maximally monotone linear rela-

tion, and let B : X ⇒ X∗ be maximally monotone with full domain. Then

A+B is maximally monotone.

Proof. Apply Corollary 5.2.11. �

Example 5.2.14 Suppose that X = L1[0, 1], let

D =
{
x ∈ X | x is absolutely continuous, x(0) = 0, x′ ∈ X∗},

and set

A : X ⇒ X∗ : x 7→





{x′}, if x ∈ D;

∅, otherwise.

By Phelps and Simons’ [63, Example 4.3], A is an at most single-valued

maximally monotone linear relation with proper dense domain, and A is

neither symmetric nor skew. Now let J be the duality mapping, i.e., J =

∂ 1
2‖ · ‖2. Then Corollary 5.2.13 implies that A+ J is maximally monotone.

To the best of our knowledge, the maximal monotonicity of A+ J cannot be

deduced from any previously known result.
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Remark 5.2.15 In [19], it was shown that the sum problem has an affir-

mative solution when A is a linear relation, B is the subdifferential operator

of a proper lower semicontinuous sublinear function, and Rockafellar’s con-

straint qualification holds. When the domain of the subdifferential operator

is closed, then that result can be deduced from Theorem 5.2.4. However, it

is possible that the domain of the subdifferential operator of a proper lower

semicontinuous sublinear function does not have to be closed. For an exam-

ple, see [3, Example 5.4]: Set C = {(x, y) ∈ R2 | 0 < 1/x ≤ y} and f = ι∗C

given by

f(x, y) :=





−2
√
xy, if x ≤ 0 and y ≤ 0;

+∞, otherwise.

Then f is not subdifferentiable at any point in the boundary of its domain,

except at the origin. Thus, in the general case, we do not know whether or

not it is possible to deduce the result in [19] from Theorem 5.2.4.

5.3 Maximality of the sum of a linear relation

and a subdifferential operator

Theorem 5.3.1 Let A : X ⇒ X∗ be a maximally monotone linear rela-

tion, and let f : X → ]−∞,+∞] be a proper lower semicontinuous convex

function with domA∩int dom ∂f 6= ∅. Then A+∂f is maximally monotone.

Proof. After translating the graphs if necessary, we can and do assume that

0 ∈ domA ∩ int dom ∂f and that (0, 0) ∈ graA ∩ gra ∂f . By Fact 5.1.5 and
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Fact 5.1.2, domA ⊆ PX(domFA) and dom ∂f ⊆ PX(domF∂f ). Hence,

⋃

λ>0

λ
(
PX(domFA)− PX(domF∂f )

)
= X. (5.55)

Thus, by Fact 5.1.2 and Fact 5.1.7, it suffices to show that

FA+∂f (z, z
∗) ≥ 〈z, z∗〉, ∀(z, z∗) ∈ X ×X∗. (5.56)

Take (z, z∗) ∈ X ×X∗. Then

FA+∂f (z, z
∗) = sup

{x,x∗,y∗}
[〈x, z∗〉+ 〈z, x∗〉 − 〈x, x∗〉+ 〈z − x, y∗〉

− ιgraA(x, x
∗)− ιgra ∂f (x, y

∗)]. (5.57)

Assume to the contrary that

FA+∂f (z, z
∗) + λ < 〈z, z∗〉, (5.58)

where λ > 0.

Thus by (5.58),

(z, z∗) is monotonically related to gra(A+ ∂f). (5.59)

We claim that

z /∈ domA. (5.60)
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Indeed, if z ∈ domA, apply (5.59) and Lemma 5.1.20 to get z ∈ dom ∂f .

Thus z ∈ domA∩dom∂f and hence FA+∂f (z, z
∗) ≥ 〈z, z∗〉 which contradicts

(5.58). This establishes (5.60).

By (5.58) and the assumption that (0, 0) ∈ graA ∩ gra ∂f , we have

sup [〈0, z∗〉+ 〈z,A0〉 − 〈0, A0〉 + 〈z, ∂f(0)〉]

= sup
a∗∈A0,b∗∈∂f(0)

[〈z, a∗〉+ 〈z, b∗〉] < 〈z, z∗〉.

Thus, because A0 is a linear subspace,

z ∈ X ∩ (A0)⊥. (5.61)

Then, by Proposition 3.2.2(i), we have

z ∈ domA. (5.62)

Combine (5.60) and (5.62),

z ∈ domA\domA. (5.63)

Set

Un = z + 1
n
UX , ∀n ∈ N. (5.64)

By (5.63), (z, z∗) /∈ graA and Un ∩ domA 6= ∅. Since z ∈ Un and A is of

type (FPV) by Fact 5.1.14, there exists (an, a
∗
n) ∈ graA with an ∈ Un, n ∈ N
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such that

〈z, a∗n〉+ 〈an, z∗〉 − 〈an, a∗n〉 > 〈z, z∗〉. (5.65)

Then we have

an → z. (5.66)

Now we claim that

z ∈ dom∂f. (5.67)

Suppose to the contrary that z 6∈ dom ∂f . By the Brøndsted-Rockafellar

Theorem (see [61, Theorem 3.17] or [92, Theorem 3.1.2]), dom ∂f = dom f .

Since 0 ∈ int dom ∂f ⊆ int dom f ⊆ int dom f , then by Lemma 5.1.19, there

exists δ ∈ ]0, 1[ such that

δz ∈ bdry dom f. (5.68)

Set gn : X → ]−∞,+∞] by

gn = f + ι[0,an], n ∈ N (5.69)

Since z /∈ dom f , z 6∈ dom f ∩ [0, an] = dom gn. Thus (z, z∗) /∈ gra ∂gn.

Then by Fact 5.1.10, there exist βn ∈ [0, 1] and x∗n ∈ ∂gn(βnan) with x∗n 6= z∗
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and βnan 6= z such that

‖z − βnan‖
‖z∗ − x∗n‖

≥ n (5.70)

〈z − βnan, z
∗ − x∗n〉

‖z − βnan‖ · ‖z∗ − x∗n‖
< −3

4 . (5.71)

By (5.66), ‖z − βnan‖ is bounded. Then by (5.70), we have

x∗n → z∗. (5.72)

Since 0 ∈ int dom f , f is continuous at 0 by Fact 5.1.4. Then by 0 ∈

dom f ∩ dom ι[0,an] and Fact 5.1.1, we have that there exist w∗
n ∈ ∂f(βnan)

and v∗n ∈ ∂ι[0,an](βnan) such that x∗n = w∗
n + v∗n. Then by (5.72),

w∗
n + v∗n → z∗. (5.73)

Since βn ∈ [0, 1], there exists a convergent subsequence of (βn)n∈N,

which, for convenience, we still denote by (βn)n∈N. Then βn → β, where

β ∈ [0, 1]. Then by (5.66),

βnan → βz. (5.74)

We claim that

β ≤ δ < 1. (5.75)
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In fact, suppose to the contrary that β > δ. By (5.74), βz ∈ dom f .

Then by 0 ∈ int dom f and [92, Theorem 1.1.2(ii)], δz = δ
β
βz ∈ int dom f,

which contradicts (5.68).

We can and do suppose that βn < 1 for every n ∈ N. Then by v∗n ∈

∂ι[0,an](βnan), we have

〈v∗n, an − βnan〉 ≤ 0. (5.76)

Dividing by (1− βn) on both sides of the above inequality, we have

〈v∗n, an〉 ≤ 0. (5.77)

Since (0, 0) ∈ graA, 〈an, a∗n〉 ≥ 0,∀n ∈ N. Then by (5.65), we have

〈z, βna∗n〉+ 〈βnan, z∗〉 − β2
n〈an, a∗n〉 ≥ 〈βnz, a∗n〉+ 〈βnan, z∗〉 − βn〈an, a∗n〉

≥ βn〈z, z∗〉. (5.78)

Then by (5.78),

〈z − βnan, βna
∗
n〉 ≥ 〈βnz − βnan, z

∗〉. (5.79)

Since graA is a linear subspace and (an, a
∗
n) ∈ graA, (βnan, βna

∗
n) ∈ graA.

By (5.58), we have

λ <〈z − βnan, z
∗ − w∗

n − βna
∗
n〉

= 〈z − βnan, z
∗ − w∗

n〉+ 〈z − βnan,−βna
∗
n〉
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< −3
4‖z − βnan‖ · ‖z∗ − w∗

n − v∗n‖+ 〈z − βnan, v
∗
n〉

+ 〈z − βnan,−βna
∗
n〉 (by (5.71))

≤ −3
4‖z − βnan‖ · ‖z∗ − w∗

n − v∗n‖+ 〈z − βnan, v
∗
n〉

− 〈βnz − βnan, z
∗〉 (by (5.79)).

Then

λ < 〈z − βnan, v
∗
n〉 − 〈βnz − βnan, z

∗〉. (5.80)

Now we consider two cases:

Case 1 : (w∗
n)n∈N is bounded.

By (5.73), (v∗n)n∈N is bounded. By the Banach-Alaoglu Theorem (see [69,

Theorem 3.15]), there exist a weak* convergent subnet (v∗γ)γ∈Γ of (v∗n)n∈N,

say

v∗γ
w*
⇁v∗∞ ∈ X∗. (5.81)

Combine (5.66), (5.74) and (5.81), and pass the limit along the subnet

of (5.80) to get that

λ ≤ 〈z − βz, v∗∞〉. (5.82)
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By (5.75), divide by (1− β) on both sides of (5.82) to get

〈z, v∗∞〉 ≥ λ
1−β

> 0. (5.83)

On the other hand, by (5.66) and (5.81), taking the limit along the subnet

of (5.77) we get that

〈v∗∞, z〉 ≤ 0, (5.84)

which contradicts (5.83).

Case 2 : (w∗
n)n∈N is unbounded.

Since (w∗
n)n∈N is unbounded and after passing to a subsequence if nec-

essary, we assume that ‖w∗
n‖ 6= 0,∀n ∈ N and that ‖w∗

n‖ → +∞.

By the Banach-Alaoglu Theorem again, there exist a weak* convergent

subnet (w∗
ν)ν∈I of (w∗

n)n∈N, say

w∗
ν

‖w∗
ν‖

w*
⇁w∗

∞ ∈ X∗. (5.85)

By 0 ∈ int dom ∂f and Fact 5.1.3, there exist ρ > 0 and M > 0 such

that

∂f(y) 6= ∅ and sup
y∗∈∂f(y)

‖y∗‖ ≤ M, ∀y ∈ ρUX . (5.86)

Then by w∗
n ∈ ∂f(βnan), we have

〈βnan − y,w∗
n − y∗〉 ≥ 0, ∀y ∈ ρUX , y∗ ∈ ∂f(y)
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⇒ 〈βnan, w∗
n〉 − 〈y,w∗

n〉+ 〈βnan − y,−y∗〉 ≥ 0, ∀y ∈ ρUX , y∗ ∈ ∂f(y)

⇒ 〈βnan, w∗
n〉 − 〈y,w∗

n〉 ≥ 〈βnan − y, y∗〉, ∀y ∈ ρUX , y∗ ∈ ∂f(y)

⇒ 〈βnan, w∗
n〉 − 〈y,w∗

n〉 ≥ −(‖βnan‖+ ρ)M, ∀y ∈ ρUX (by (5.86))

⇒ 〈βnan, w∗
n〉 ≥ 〈y,w∗

n〉 − (‖βnan‖+ ρ)M, ∀y ∈ ρUX

⇒ 〈βnan, w∗
n〉 ≥ ρ‖w∗

n‖ − (‖βnan‖+ ρ)M

⇒ 〈βnan, w∗
n

‖w∗
n‖〉 ≥ ρ− (‖βnan‖+ ρ)M

‖w∗
n‖

, ∀n ∈ N. (5.87)

Combining (5.74) and (5.85), taking the limit in (5.87) along the subnet,

we obtain

〈βz,w∗
∞〉 ≥ ρ. (5.88)

Then we have β 6= 0 and thus β > 0. Then by (5.88),

〈z, w∗
∞ ≥ ρ

β
> 0. (5.89)

By (5.73) and z∗

‖w∗
n‖ → 0, we have

w∗
n

‖w∗
n‖

+
v∗n

‖w∗
n‖

→ 0. (5.90)

By(5.85), taking the weak∗ limit in (5.90) along the subnet, we obtain

v∗ν
‖w∗

ν‖
w*
⇁−w∗

∞. (5.91)
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Dividing by ‖w∗
n‖ on the both sides of (5.80), we get that

λ

‖w∗
n‖

< 〈z − βnan,
v∗n

‖w∗
n‖

〉 − 〈βnz − βnan, z
∗〉

‖w∗
n‖

. (5.92)

Combining (5.74), (5.66) and (5.91), taking the limit in (5.92) along the

subnet, we obtain

〈z − βz,−w∗
∞〉 ≥ 0. (5.93)

By (5.75) and (5.93),

〈z,−w∗
∞〉 ≥ 0, (5.94)

which contradicts (5.89).

Altogether z ∈ dom ∂f = dom f .

Next, we show that

FA+∂f (tz, tz
∗) ≥ t2〈z, z∗〉, ∀t ∈ ]0, 1[ . (5.95)

Let t ∈ ]0, 1[. By 0 ∈ int dom f and [92, Theorem 1.1.2(ii)], we have

tz ∈ int dom f. (5.96)

By Fact 5.1.4,

tz ∈ int dom ∂f. (5.97)
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Set

Hn = tz + 1
n
UX , ∀n ∈ N. (5.98)

Since domA is a linear subspace, tz ∈ domA\domA by (5.63). Then Hn ∩

domA 6= ∅. Since (tz, tz∗) /∈ graA and tz ∈ Hn, A is of type (FPV) by

Fact 5.1.14, there exists (bn, b
∗
n) ∈ graA such that bn ∈ Hn and

〈tz, b∗n〉+ 〈bn, tz∗〉 − 〈bn, b∗n〉 > t2〈z, z∗〉, ∀n ∈ N. (5.99)

Since tz ∈ int dom∂f and bn → tz, by Fact 5.1.3, there exist N ∈ N and

K > 0 such that

bn ∈ int dom ∂f and sup
v∗∈∂f(bn)

‖v∗‖ ≤ K, ∀n ≥ N. (5.100)

Hence

FA+∂f (tz, tz
∗)

≥ sup
{c∗∈∂f(bn)}

[〈bn, tz∗〉+ 〈tz, b∗n〉 − 〈bn, b∗n〉+ 〈tz − bn, c
∗〉] , ∀n ≥ N

≥ sup
{c∗∈∂f(bn)}

[
t2〈z, z∗〉+ 〈tz − bn, c

∗〉
]
, ∀n ≥ N (by (5.99))

≥ sup
[
t2〈z, z∗〉 −K‖tz − bn‖

]
, ∀n ≥ N (by (5.100))

≥ t2〈z, z∗〉 (by bn → tz). (5.101)

Hence FA+∂f (tz, tz
∗) ≥ t2〈z, z∗〉.
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We have established (5.95). Since (0, 0) ∈ graA ∩ gra ∂f , we obtain

(∀(d, d∗) ∈ gra(A+ ∂f)) 〈d, d∗〉 ≥ 0. Thus, FA+∂f (0, 0) = 0. Now define

j : [0, 1] → R : t → FA+∂f (tz, tz
∗).

Then j is continuous on [0, 1] by (5.58) and [92, Proposition 2.1.6]. From

(5.95), we obtain

FA+∂f (z, z
∗) = lim

t→1−
FA+∂f (tz, tz

∗) ≥ lim
t→1−

〈tz, tz∗〉 = 〈z, z∗〉, (5.102)

which contradicts (5.58). Hence

FA+∂f (z, z
∗) ≥ 〈z, z∗〉. (5.103)

Therefore, (5.56) holds, and A+ ∂f is maximally monotone. �

Remark 5.3.2 In Theorem 5.3.1, when int domA ∩ dom ∂f 6= ∅, we have

domA = X since domA is a linear subspace. Therefore, we can obtain the

maximal monotonicity of A + ∂f from the Verona-Verona result (see [82,

Corollary 2.9(a)], [74, Theorem 53.1] or [90, Corollary 3.7]).

Corollary 5.3.3 Let A : X ⇒ X∗ be a maximally monotone linear relation,

and f : X → ]−∞,+∞] be a proper lower semicontinuous convex function

with domA ∩ int dom∂f 6= ∅. Then A+ ∂f is of type (FPV ).

Proof. By Theorem 5.3.1, A + ∂f is maximally monotone. Let C be a

nonempty closed convex subset ofX, and suppose that dom(A+∂f)∩intC 6=

∅. Let x1 ∈ domA∩ int dom ∂f and x2 ∈ dom(A+ ∂f)∩ intC. Thus, there
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5.3. Maximality of the sum of a linear relation and a subdifferential operator

exists δ > 0 such that x1 + δUX ⊆ dom f and x2 + δUX ⊆ C. Then

for small enough λ ∈ ]0, 1[, we have x2 + λ(x1 − x2) +
1
2δUX ⊆ C. Clearly,

x2+λ(x1−x2)+λδUX ⊆ dom f . Thus x2+λ(x1−x2)+
λδ
2 UX ⊆ dom f∩C =

dom(f + ιC). By Fact 5.1.4, x2 + λ(x1 − x2) +
λδ
2 UX ⊆ dom∂(f + ιC).

Since domA is convex, x2 + λ(x1 − x2) ∈ domA and x2 + λ(x1 − x2) ∈

domA ∩ int [dom ∂(f + ιC)]. By Fact 5.1.1 , ∂f + NC = ∂(f + ιC). Then,

by Theorem 5.3.1 (applied to A and f + ιC), A+ ∂f +NC = A+ ∂(f + ιC)

is maximally monotone. By Fact 5.1.15, A+ ∂f is of type (FPV ). �

Corollary 5.3.4 Let A : X ⇒ X∗ be a maximally monotone linear relation,

and f : X → ]−∞,+∞] be a proper lower semicontinuous convex function

with domA ∩ int dom∂f 6= ∅. Then

dom(A+ ∂f) = conv dom(A+ ∂f) = PX domFA+∂f .

Proof. Combine Corollary 5.3.3 and Fact 5.1.13. �

Now by Corollary 5.3.3, we can deduce Fact 5.1.14 that is used in the

proof of Theorem 5.3.1.

Corollary 5.3.5 (Simons) (See [74, Theorem 46.1].) Let A : X ⇒ X∗ be

a maximally monotone linear relation. Then A is of type (FPV).

Proof. Let f = ιX . Then by Corollary 5.3.3, we have that A = A+ ∂f is of

type (FPV). �

Corollary 5.3.6 (See [16, Theorem 3.1].) Let A : X ⇒ X∗ be a maximally

monotone linear relation, let C be a nonempty closed convex subset of X,
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and suppose that domA∩ intC 6= ∅. Then A+NC is maximally monotone.

Corollary 5.3.7 (See [19, Theorem 3.1].) Let A : X ⇒ X∗ be a maximally

monotone linear relation, let f : X → ]−∞,+∞] be a proper lower semi-

continuous sublinear function, and suppose that domA ∩ int dom ∂f 6= ∅.

Then A+ ∂f is maximally monotone.

5.4 An example and comments

Example 5.4.1 Suppose that X = L1[0, 1] with norm ‖ · ‖1, let

D =
{
x ∈ X | x is absolutely continuous, x(0) = 0, x′ ∈ X∗},

and set

A : X ⇒ X∗ : x 7→





{x′}, if x ∈ D;

∅, otherwise.

Define f : X → ]−∞,+∞] by

f(x) =





1
1−‖x‖2

1

, if ‖x‖ < 1;

+∞, otherwise.

(5.104)

Clearly, X is a nonreflexive Banach space. By Phelps and Simons’ [63,

Example 4.3], A is an at most single-valued maximally monotone linear

relation with proper dense domain, and A is neither symmetric nor skew.

Since g(t) = 1
1−t2

is convex and increasing on [0, 1[ (by g′′(t) = 2(1− t2)−2+

8t2(1 − t2)−3 ≥ 0,∀t ∈ [0, 1[), f is convex. Clearly, f is proper lower
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semicontinuous, and by Fact 5.1.4, we have

dom f = UX = int dom f = dom ∂f = int [dom ∂f ] . (5.105)

Since 0 ∈ domA ∩ int [dom ∂f ], Theorem 5.3.1 implies that A+ ∂f is max-

imally monotone. To the best of our knowledge, the maximal monotonicity

of A+ ∂f cannot be deduced from any previously known result.

Remark 5.4.2 To the best of our knowledge, the results in [19, 82, 84, 86,

90] cannot establish the maximal monotonicity in Example 5.4.1.

(1) Verona and Verona (see [82, Corollary 2.9(a)] or [74, Theorem 53.1] or

[90, Corollary 3.7]) showed the following: “Let f : X → ]−∞,+∞] be

proper, lower semicontinuous, and convex, let A : X ⇒ X∗ be maximally

monotone, and suppose that domA = X. Then ∂f + A is maximally

monotone.” The domA in Example 5.4.1 is proper dense, hence A+∂f

in Example 5.4.1 cannot be deduced from the Verona -Verona result.

(2) In [84, Theorem 5.10(η)], Voisei showed that the sum problem has an

affirmative solution when domA∩domB is closed, domA is convex and

Rockafellar’s constraint qualification holds. In Example 5.4.1, domA ∩

dom∂f is not closed by (5.105). Hence we cannot apply for [84, Theo-

rem 5.10(η)].

(3) In [86, Corollary 4], Voisei and Zălinescu showed that the sum problem

has an affirmative solution when ic(domA) 6= ∅,ic (domB) 6= ∅ and

0 ∈ic [domA− domB]. Since the domA in Example 5.4.1 is a proper
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dense linear subspace, ic(domA) = ∅. Thus we cannot apply for [86,

Corollary 4]. (Given a set C ⊆ X, we define icC by

icC =





iC, if aff C is closed;

∅, otherwise,

where iC [92] is the intrinsic core or relative algebraic interior of C,

defined by iC = {a ∈ C | ∀x ∈ aff(C − C),∃δ > 0,∀λ ∈ [0, δ] : a+ λx ∈

C}.)

(4) In [19], it was shown that the sum problem has an affirmative solution

when A is a linear relation, B is the subdifferential operator of a proper

lower semicontinuous sublinear function, and Rockafellar’s constraint

qualification holds. Clearly, f in Example 5.4.1 is not sublinear. Then

we cannot apply for it. Theorem 5.3.1 truly generalizes [19].

(5) In [90, Corollary 3.11], it was shown that the sum problem has an affir-

mative solution when A is a linear relation, B is a maximally monotone

operator satisfying Rockafellar’s constraint qualification and domA ∩

domB ⊆ domB. In Example 5.4.1, since domA is a linear subspace,

we can take x0 ∈ domA with ‖x0‖ = 1. Thus, by (5.105), we have that

x0 ∈ domA ∩ UX = domA ∩ dom ∂f but x0 6∈ UX = dom ∂f.

(5.106)

Thus domA ∩ dom ∂f " dom ∂f and thus we cannot apply [90, Corol-

lary 3.11] either.
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5.5 Discussion

As we can see, Fact 5.1.7 plays an important role in the proof of Theo-

rem 5.2.4 and Theorem 5.3.1. Theorem 5.2.4 presents a powerful sufficient

condition for the sum problem. The following question posed by Simons in

[72, Problem 41.4] remains open:

Let A : X ⇒ X∗ be maximally monotone of type (FPV), let

C be a nonempty closed convex subset of X, and suppose that

domA ∩ intC 6= ∅.

Is A+NC necessarily maximally monotone?

If the above result holds, by Theorem 5.2.4, we can get the following result:

Let A : X ⇒ X∗ be maximally monotone of type (FPV), and let B :

X ⇒ X∗ be maximally monotone with domA ∩ int domB 6= ∅. Assume

that domA ∩ domB ⊆ domB. Then A+B is maximally monotone.
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Chapter 6

Classical types of maximally

monotone operators

This chapter is based on the work by Bauschke, Borwein, Wang and Yao

in [6, 7]. We study three classical types of maximally monotone operators:

dense type, negative-infimum type, and Fitzpatrick-Phelps type.

We show that every maximally monotone operator of Fitzpatrick-Phelps

type must be of dense type. This provides affirmative answers to two ques-

tions posed by Stephen Simons and it implies that various important notions

of monotonicity coincide.

Moreover, we prove that for a maximally monotone linear relation, the

monotonicities of dense type, of negative-infimum type, and of Fitzpatrick-

Phelps type are the same and equivalent to monotonicity of the adjoint.

This result also provides an affirmative answer to one problem posed by

Phelps and Simons.

6.1 Introduction and auxiliary results

We now recall the three fundamental types of monotonicity.
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Definition 6.1.1 Let A : X ⇒ X∗ be maximally monotone. Then three key

types of monotone operators are defined as follows.

(i) A is of dense type or type (D) (1971, [49], [62] and [76, Theorem 9.5])

if for every (x∗∗, x∗) ∈ X∗∗ ×X∗ with

inf
(a,a∗)∈graA

〈a− x∗∗, a∗ − x∗〉 ≥ 0,

there exists a bounded net (aα, a
∗
α)α∈Γ in graA such that (aα, a

∗
α)α∈Γ

weak*×strong converges to (x∗∗, x∗).

(ii) A is of type negative infimum (NI) (1996, [71]) if

sup
(a,a∗)∈graA

(
〈a, x∗〉+ 〈a∗, x∗∗〉 − 〈a, a∗〉

)
≥ 〈x∗∗, x∗〉,

for every (x∗∗, x∗) ∈ X∗∗ ×X∗.

(iii) A is of type Fitzpatrick-Phelps (FP) (1992, [46]) if whenever U is

an open convex subset of X∗ such that U ∩ ranA 6= ∅, x∗ ∈ U , and

(x, x∗) ∈ X ×X∗ is monotonically related to graA ∩ (X × U) it must

follow that (x, x∗) ∈ graA.

All three of these properties are known to hold for the subgradient of

a closed convex function and for every maximally monotone operator on a

reflexive space [26, 72, 74]. These and other relationships known amongst

these and other monotonicity notions are described in [26, Chapter 9].

Now we introduce some notation. Let F : X × X∗ → ]−∞,+∞]. We

say F is a representative of a maximally monotone operator A : X ⇒ X∗ if
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F is lower semicontinuous and convex with F ≥ 〈·, ·〉 on X ×X∗ and

graA = {(x, x∗) ∈ X ×X∗ | F (x, x∗) = 〈x, x∗〉}.

Let (z, z∗) ∈ X × X∗. Then F(z,z∗) : X × X∗ → ]−∞,+∞] [55, 57, 74] is

defined by (for every (x, x∗) ∈ X ×X∗)

F(z,z∗)(x, x
∗) = F (z + x, z∗ + x∗)−

(
〈x, z∗〉+ 〈z, x∗〉+ 〈z, z∗〉

)

= F (z + x, z∗ + x∗)− 〈z + x, z∗ + x∗〉+ 〈x, x∗〉. (6.1)

We recall the following basic fact regarding the second dual ball:

Fact 6.1.2 (Goldstine) (See [58, Theorem 2.6.26] or [44, Theorem 3.27].)

The weak*-closure of BX in X∗∗ is BX∗∗.

Fact 6.1.3 (Borwein) (See [20, Theorem 1] or [92, Theorem 3.1.1].) Let

f : X → ]−∞,+∞] be a proper lower semicontinuous and convex function.

Let ε > 0 and β ≥ 0 (where 1
0 = ∞). Assume that x0 ∈ dom f and

x∗0 ∈ ∂εf(x0). There exist xε ∈ X,x∗ε ∈ X∗ such that

‖xε − x0‖+ β |〈xε − x0, x
∗
0〉| ≤

√
ε, x∗ε ∈ ∂f(xε),

‖x∗ε − x∗0‖ ≤ √
ε(1 + β‖x∗0‖), |〈xε − x0, x

∗
ε〉| ≤ ε+

√
ε

β
.

Fact 6.1.4 (Simons) (See [73, Theorem 17] or [74, Theorem 37.1].) Let

A : X ⇒ X∗ be maximally monotone and of type (D). Then A is of type

(FP).
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Fact 6.1.5 (Simons / Marques Alves and Svaiter) (See [71, Lemma 15]

or [74, Theorem 36.3(a)], and [56, Theorem 4.4].) Let A : X ⇒ X∗ be max-

imally monotone, and let F : X ×X∗ → ]−∞,+∞] be a representative of

A. Then the following are equivalent.

(i) A is type of (D).

(ii) A is of type (NI).

(iii) For every (x0, x
∗
0) ∈ X ×X∗,

inf
(x,x∗)∈X×X∗

[
F(x0,x

∗

0
)(x, x

∗) + 1
2‖x‖2 + 1

2‖x∗‖2
]
= 0.

6.2 Every maximally monotone operator of

Fitzpatrick-Phelps type is actually of dense

type

In Theorem 6.2.1 of this section (see also [7]), we provide an affirmative an-

swer to the following question, posed by S. Simons [73, Problem 18, page 406]:

Let A : X ⇒ X∗ be maximally monotone such that A is of type

(FP).

Is A necessarily of type (D)?

In consequence, in Corollary 6.2.2 we record that the three notions in

Definition 6.1.1 actually coincide.

Simons posed another question in [74, Problem 47.6]:

142



6.2. Every maximally monotone operator of Fitzpatrick-Phelps type is actually of dense type

Let A : domA → X∗ be linear and maximally monotone. As-

sume that A is of type (FP).

Is A necessarily of type (NI)?

By Fact 6.1.5, [74, Problem 47.6] is a special case of [73, Problem 18, page 406].

Let A : X ⇒ X∗ be monotone. For convenience, we defined ΦA on

X∗∗ ×X∗ by

ΦA : (x∗∗, x∗) 7→ sup
(a,a∗)∈graA

(
〈x∗∗, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
.

Then we have ΦA|X×X∗ = FA. The next theorem is our first main result

in Chapter 6. In conjunction with the corollary that follows, it provides

the affirmative answer promised to Simons’s problem posed in [73, Prob-

lem 18, page 406].

Theorem 6.2.1 Let A : X ⇒ X∗ be maximally monotone such that A is

of type (FP). Then A is of type (NI).

Proof. After translating the graph if necessary, we can and do suppose that

(0, 0) ∈ graA. Let (x∗∗0 , x∗0) ∈ X∗∗ ×X∗. We must show that

ΦA(x
∗∗
0 , x∗0) ≥ 〈x∗∗0 , x∗0〉 (6.2)

and we consider two cases.

Case 1 : x∗∗0 ∈ X.

Then (6.2) follows directly from Fact 5.1.5.
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Case 2 : x∗∗0 ∈ X∗∗ rX.

By Fact 6.1.2, there exists a bounded net (xα)α∈I in X that weak* converges

to x∗∗0 . Thus, we have

M = sup
α∈I

‖xα‖ < +∞ (6.3)

and

〈xα, x∗0〉 → 〈x∗∗0 , x∗0〉. (6.4)

Now we consider two subcases.

Subcase 2.1 : There exists α ∈ I, such that (xα, x
∗
0) ∈ graA.

By definition,

ΦA(x
∗∗
0 , x∗0) ≥ 〈xα, x∗0〉+ 〈x∗∗0 , x∗0〉 − 〈xα, x∗0〉 = 〈x∗∗0 , x∗0〉.

Hence (6.2) holds.

Subcase 2.2 : We have

(xα, x
∗
0) /∈ graA, ∀α ∈ I. (6.5)

Set

Uε = [0, x∗0] + εUX∗ , (6.6)

where ε > 0. Observe that Uε is open and convex. Since (0, 0) ∈ graA, we

have, by the definition of Uε, 0 ∈ ranA ∩ Uε and x∗0 ∈ Uε. In view of (6.5)
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and because A is of type (FP), there exists a net (aα,ε, a
∗
α,ε) in graA such

that a∗α,ε ∈ Uε and

〈aα,ε, x∗0〉+ 〈xα, a∗α,ε〉 − 〈aα,ε, a∗α,ε〉 > 〈xα, x∗0〉, ∀α ∈ I. (6.7)

Now fix α ∈ I. By (6.7),

〈aα,ε, x∗0〉+ 〈x∗∗0 , a∗α,ε〉 − 〈aα,ε, a∗α,ε〉 > 〈x∗∗0 − xα, a
∗
α,ε〉+ 〈xα, x∗0〉.

Hence,

ΦA(x
∗∗
0 , x∗0) > 〈x∗∗0 − xα, a

∗
α,ε〉+ 〈xα, x∗0〉. (6.8)

Since a∗α,ε ∈ Uε, there exist

tα,ε ∈ [0, 1] and b∗α,ε ∈ UX∗ (6.9)

such that

a∗α,ε = tα,εx
∗
0 + εb∗α,ε. (6.10)

Using (6.8), (6.10), and (6.3), we deduce that

ΦA(x
∗∗
0 , x∗0) > 〈x∗∗0 − xα, tα,εx

∗
0 + εb∗α,ε〉+ 〈xα, x∗0〉

= tα,ε〈x∗∗0 − xα, x
∗
0〉+ ε〈x∗∗0 − xα, b

∗
α,ε〉+ 〈xα, x∗0〉

≥ tα,ε〈x∗∗0 − xα, x
∗
0〉 − ε‖x∗∗0 − xα‖+ 〈xα, x∗0〉
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≥ tα,ε〈x∗∗0 − xα, x
∗
0〉 − ε(‖x∗∗0 ‖+M) + 〈xα, x∗0〉. (6.11)

In view of (6.9) and since α ∈ I was chosen arbitrarily, we take the limit in

(6.11) and obtain with the help of (6.4) that

ΦA(x
∗∗
0 , x∗0) ≥ −ε(‖x∗∗0 ‖+M) + 〈x∗∗0 , x∗0〉. (6.12)

Next, letting ε → 0 in (6.12), we have

ΦA(x
∗∗
0 , x∗0) ≥ 〈x∗∗0 , x∗0〉. (6.13)

Therefore, (6.2) holds in all cases. �

We now obtain the promised corollary:

Corollary 6.2.2 Let A : X ⇒ X∗ be maximally monotone. Then the fol-

lowing are equivalent.

(i) A is of type (D).

(ii) A is of type (NI).

(iii) A is of type (FP).

Proof. “(i)⇒(iii)”: Fact 6.1.4. “(iii)⇒(ii)”: Theorem 6.2.1 . “(ii)⇒(i)”:

Fact 6.1.5. �

Remark 6.2.3 Let A : X ⇒ X∗ be maximally monotone. Corollary 6.2.2

establishes the equivalences of the key types (D), (NI), and (FP), which as
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noted all hold when X is reflexive or A = ∂f , where f : X → ]−∞,+∞] is

convex, lower semicontinuous, and proper (see [26, 72, 74]).

Furthermore, these notions are also equivalent to type (ED), see [76].

For a nonlinear operator they also coincide with the uniqueness of maximal

extensions to X∗∗ (see [56]). In [26, p. 454] there is a discussion of this

result and of the linear case.

Finally, when A is a linear relation, it has recently been established that

all these notions coincide with the monotonicity of the adjoint multifunction

A∗ (see Section 6.3).

6.3 The adjoint of a maximally monotone linear

relation

In this section, we provide tools to give an affirmative answer to a ques-

tion posed by Phelps and Simons. Phelps and Simons posed the following

question in [63, Section 9, item 2]:

Let A : domA → X∗ be linear and maximally monotone. As-

sume that A∗ is monotone.

Is A necessarily of type (D)?

Theorem 6.3.1 Let A : X ⇒ X∗ be a maximally monotone linear relation.

Then A is of type (NI) if and only if A∗ is monotone.

Proof.
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“⇒”: Suppose to the contrary that there exists (a∗∗0 , a∗0) ∈ graA∗ such

that 〈a∗∗0 , a∗0〉 < 0. Then we have

sup
(a,a∗)∈graA

(
〈a,−a∗0〉+ 〈a∗∗0 , a∗〉 − 〈a, a∗〉

)
= sup

(a,a∗)∈graA
{−〈a, a∗〉}

= 0 < 〈−a∗∗0 , a∗0〉,

which contradicts that A is of type (NI). Hence A∗ is monotone.

“⇐”: Define

F : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ ιgraA(x, x
∗) + 〈x, x∗〉.

Since A is maximally monotone, Fact 3.2.8 implies that F is proper lower

semicontinuous and convex, and a representative of A. Let (v0, v
∗
0) ∈ X×X∗.

Recalling (6.1), note that

F(v0,v∗0)
: (x, x∗) 7→ ιgraA(v0 + x, v∗0 + x∗) + 〈x, x∗〉 (6.14)

is proper lower semicontinuous and convex. By Fact 5.1.1, there exists

(y∗∗, y∗) ∈ X∗∗ ×X∗ such that

K := inf
(x,x∗)∈X×X∗

[
F(v0,v∗0 )

(x, x∗) + 1
2‖x‖2 + 1

2‖x∗‖2
]

= −
(
F(v0,v∗0 )

+ 1
2‖ · ‖2 + 1

2‖ · ‖2
)∗
(0, 0)

= −F ∗
(v0,v∗0)

(y∗, y∗∗)− 1
2‖y∗∗‖2 − 1

2‖y∗‖2. (6.15)
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6.3. The adjoint of a maximally monotone linear relation

Since (x, x∗) 7→ F(v0,v∗0)
(x, x∗)+ 1

2‖x‖2+ 1
2‖x∗‖2 is coercive, there existM > 0

and a sequence (an, a
∗
n)n∈N in X ×X∗ such that, ∀n ∈ N,

‖an‖+ ‖a∗n‖ ≤ M (6.16)

and

F(v0,v∗0 )
(an, a

∗
n) +

1
2‖an‖2 + 1

2‖a∗n‖2

< K + 1
n2 = −F ∗

(v0,v∗0 )
(y∗, y∗∗)− 1

2‖y∗∗‖2 − 1
2‖y∗‖2 + 1

n2 (by (6.15) )

⇒ F(v0,v∗0)
(an, a

∗
n) +

1
2‖an‖2 + 1

2‖a∗n‖2 + F ∗
(v0,v∗0)

(y∗, y∗∗) + 1
2‖y∗∗‖2

+ 1
2‖y∗‖2 < 1

n2 (6.17)

⇒ F(v0,v∗0)
(an, a

∗
n) + F ∗

(v0,v∗0)
(y∗, y∗∗) + 〈an,−y∗〉+ 〈a∗n,−y∗∗〉 < 1

n2 (6.18)

⇒ (y∗, y∗∗) ∈ ∂ 1
n2

F(v0,v∗0 )
(an, a

∗
n) (by [92, Theorem 2.4.2(ii)]). (6.19)

Set β = 1
max{‖y∗‖,‖y∗∗‖}+1 . Then by Fact 6.1.3, there exist sequences

(ãn, ã∗n)n∈N in X ×X∗ and (y∗n, y
∗∗
n )n∈N in X∗ ×X∗∗ such that, ∀n ∈ N,

‖an − ãn‖+ ‖a∗n − ã∗n‖+ β
∣∣∣〈ãn − an, y

∗〉+ 〈ã∗n − a∗n, y
∗∗〉

∣∣∣ ≤ 1
n

(6.20)

max{‖y∗n − y∗‖, ‖y∗∗n − y∗∗‖} ≤ 2
n

(6.21)
∣∣∣〈ãn − an, y

∗
n〉+ 〈ã∗n − a∗n, y

∗∗
n 〉

∣∣∣ ≤ 1
n2 + 1

nβ
(6.22)

(y∗n, y
∗∗
n ) ∈ ∂F(v0,v∗0)

(ãn, ã∗n). (6.23)

Then, ∀n ∈ N, we have

〈ãn, y∗n〉+ 〈ã∗n, y∗∗n 〉 − 〈an, y∗〉 − 〈a∗n, y∗∗〉
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= 〈ãn − an, y
∗
n〉+ 〈an, y∗n − y∗〉+ 〈ã∗n − a∗n, y

∗∗
n 〉+ 〈a∗n, y∗∗n − y∗∗〉

≤
∣∣∣〈ãn − an, y

∗
n〉+ 〈ã∗n − a∗n, y

∗∗
n 〉

∣∣∣+ |〈an, y∗n − y∗〉|+ |〈a∗n, y∗∗n − y∗∗〉|

≤ 1
n2 + 1

nβ
+ ‖an‖ · ‖y∗n − y∗‖+ ‖a∗n‖ · ‖y∗∗n − y∗∗‖ (by (6.22))

≤ 1
n2 + 1

nβ
+ (‖an‖+ ‖a∗n‖) ·max{‖y∗n − y∗‖, ‖y∗∗n − y∗∗‖}

≤ 1
n2 + 1

nβ
+ 2

n
M (by (6.16) and (6.21)). (6.24)

By (6.20), ∀n ∈ N, we have

∣∣‖an‖ − ‖ãn‖
∣∣+

∣∣‖a∗n‖ − ‖ã∗n‖
∣∣ ≤ 1

n
. (6.25)

Thus by (6.16), ∀n ∈ N, we have

∣∣‖an‖2 − ‖ãn‖2
∣∣+

∣∣∣‖a∗n‖2 − ‖ã∗n‖2
∣∣∣

=
∣∣‖an‖ − ‖ãn‖

∣∣(‖an‖+ ‖ãn‖
)
+

∣∣∣‖a∗n‖ − ‖ã∗n‖
∣∣∣
(
‖a∗n‖+ ‖ã∗n‖

)

≤ 1
n

(
2‖an‖+ 1

n

)
+ 1

n

(
2‖a∗n‖+ 1

n

)
(by (6.25))

≤ 1
n
(2M + 2

n
) = 2

n
M + 2

n2 . (6.26)

Similarly, by (6.21), for all n ∈ N, we have

∣∣‖y∗n‖2 − ‖y∗‖2
∣∣ ≤ 4

n
‖y∗‖+ 4

n2 ≤ 4
nβ

+ 4
n2 ,

∣∣‖y∗∗n ‖2 − ‖y∗∗‖2
∣∣ ≤ 4

n
‖y∗∗‖+ 4

n2 ≤ 4
nβ

+ 4
n2 . (6.27)

Thus, ∀n ∈ N,

F(v0,v∗0 )
(ãn, ã∗n) + F ∗

(v0,v∗0 )
(y∗n, y

∗∗
n ) + 1

2‖ãn‖2 + 1
2‖ã∗n‖2 + 1

2‖y∗n‖2 + 1
2‖y∗∗n ‖2
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=
[
F(v0,v∗0 )

(ãn, ã∗n) + F ∗
(v0,v∗0 )

(y∗n, y
∗∗
n ) + 1

2‖ãn‖2 + 1
2‖ã∗n‖2 + 1

2‖y∗n‖2

+ 1
2‖y∗∗n ‖2

]

−
[
F(v0,v∗0)

(an, a
∗
n) +

1
2‖an‖2 + 1

2‖a∗n‖2 + F ∗
(v0,v∗0 )

(y∗, y∗∗) + 1
2‖y∗∗‖2

+ 1
2‖y∗‖2

]

+
[
F(v0,v∗0)

(an, a
∗
n) +

1
2‖an‖2 + 1

2‖a∗n‖2 + F ∗
(v0,v∗0 )

(y∗, y∗∗) + 1
2‖y∗∗‖2

+ 1
2‖y∗‖2

]

<
[
F(v0,v∗0 )

(ãn, ã∗n) + F ∗
(v0,v∗0 )

(y∗n, y
∗∗
n )− F(v0,v∗0 )

(an, a
∗
n)− F ∗

(v0,v∗0 )
(y∗, y∗∗)

]

+ 1
2

[
‖ãn‖2 + ‖ã∗n‖2 − ‖an‖2 − ‖a∗n‖2

]

+ 1
2

[
‖y∗n‖2 + ‖y∗∗n ‖2 − ‖y∗∗‖2 − ‖y∗‖2

]
+ 1

n2 (by (6.17))

≤
[
〈ãn, y∗n〉+ 〈ã∗n, y∗∗n 〉 − 〈an, y∗〉 − 〈a∗n, y∗∗〉

]
(by (6.23))

+ 1
2

(∣∣‖ãn‖2 − ‖an‖2
∣∣+

∣∣∣‖ã∗n‖2 − ‖a∗n‖2
∣∣∣
)

+ 1
2

(∣∣‖y∗n‖2 − ‖y∗‖2
∣∣+

∣∣‖y∗∗n ‖2 − ‖y∗∗‖2
∣∣)+ 1

n2

≤ 1
n2 + 1

nβ
+ 2

n
M + 1

n
M + 1

n2 + 4
nβ

+ 4
n2 + 1

n2 (by (6.24), (6.26) and (6.27))

= 7
n2 + 5

nβ
+ 3

n
M. (6.28)

By (6.23), (6.14), and [92, Theorem 3.2.4(vi)&(ii)], there exists a sequence

(z∗n, z
∗∗
n )n∈N in (graA)⊥ and such that

(y∗n, y
∗∗
n ) = (ã∗n, ãn) + (z∗n, z

∗∗
n ), ∀n ∈ N. (6.29)
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Since A∗ is monotone and (z∗∗n , z∗n) ∈ gra(−A∗), it follows from (6.29) that,

∀n ∈ N,

〈y∗n, y∗∗n 〉 − 〈y∗n, ãn〉 − 〈y∗∗n , ã∗n〉+ 〈ã∗n, ãn〉 = 〈y∗n − ã∗n, y
∗∗
n − ãn〉 (6.30)

= 〈z∗n, z∗∗n 〉 ≤ 0

⇒ 〈y∗n, y∗∗n 〉 ≤ 〈y∗n, ãn〉+ 〈y∗∗n , ã∗n〉 − 〈ã∗n, ãn〉.

Then by (6.14) and (6.23), we have 〈ã∗n, ãn〉 = F(v0,v∗0)
(ãn, ã∗n) and, ∀n ∈ N,

〈y∗n, y∗∗n 〉 ≤ 〈y∗n, ãn〉+ 〈y∗∗n , ã∗n〉 − F(v0,v∗0)
(ãn, ã∗n) = F ∗

(v0,v∗0)
(y∗n, y

∗∗
n ). (6.31)

By (6.28) and (6.31), ∀n ∈ N, we have

F(v0,v∗0)
(ãn, ã∗n) + 〈y∗n, y∗∗n 〉+ 1

2‖ãn‖2 + 1
2‖ã∗n‖2 + 1

2‖y∗n‖2 + 1
2‖y∗∗n ‖2

< 7
n2 + 5

nβ
+ 3

n
M

⇒ F(v0,v∗0 )
(ãn, ã∗n) +

1
2‖ãn‖2 + 1

2‖ã∗n‖2 < 7
n2 + 5

nβ
+ 3

n
M. (6.32)

Thus by (6.32),

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0 )

(x, x∗) + 1
2‖x‖2 + 1

2‖x∗‖2
]
≤ 0. (6.33)

By (6.14),

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0 )

(x, x∗) + 1
2‖x‖2 + 1

2‖x∗‖2
]
≥ 0. (6.34)
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6.3. The adjoint of a maximally monotone linear relation

Combining (6.33) with (6.34), we obtain

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0 )

(x, x∗) + 1
2‖x‖2 + 1

2‖x∗‖2
]
= 0. (6.35)

Thus by Fact 6.1.5, A is of type (NI). �

Remark 6.3.2 The proof of the necessary part of Theorem 6.3.1 follows

closely that of [30, Theorem 2]. The proof of the sufficient part of Theo-

rem 6.3.1 was partially inspired by that of [93, Theorem 32.L] and that of

[54, Theorem 2.1].

Combining Corollary 6.2.2 and Theorem 6.3.1, we get the following re-

sult.

Corollary 6.3.3 Let A : X ⇒ X∗ be a maximally monotone linear relation.

Then the following are equivalent.

(i) A is of type (D).

(ii) A is of type (NI).

(iii) A is of type (FP).

(iv) A∗ is monotone.

Remark 6.3.4 When A is linear and continuous, Corollary 6.3.3 is due

to Bauschke and Borwein [4, Theorem 4.1]. Phelps and Simons in [63,

Theorem 6.7] considered the case when A is linear but possibly discontinuous;

they arrived at some of the implications of Corollary 6.3.3 in that case.
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6.3. The adjoint of a maximally monotone linear relation

Corollary 6.3.3(iv)⇒(i) gives an affirmative answer to a problem posed

by Phelps and Simons in [63, Section 9, item 2] on the converse of [63,

Theorem 6.7(c)⇒(f)].

It is interesting to compare Corollary 6.3.3 with the following related

result by Brezis and Browder. Suppose that X is reflexive and let A : X ⇒

X∗ be a monotone linear relation with closed graph. Then A is maximally

monotone if and only if A∗ is (maximally) monotone; see [28–30] and also

the recent works [70, 89].

We conclude with an application of Corollary 6.3.3 to an operator studied

previously by Phelps and Simons [63].

Example 6.3.5 Suppose that X = L1[0, 1] so that X∗ = L∞[0, 1], let

D =
{
x ∈ X | x is absolutely continuous, x(0) = 0, x′ ∈ X∗},

and set

A : X ⇒ X∗ : x 7→





{x′}, if x ∈ D;

∅, otherwise.

By [63, Example 4.3], A is an at most single-valued maximally monotone

linear relation with proper dense domain, and A is neither symmetric nor

skew. Moreover,

domA∗ = {z ∈ X∗∗ | z is absolutely continuous, z(1) = 0, z′ ∈ X∗} ⊆ X

A∗z = −z′,∀z ∈ domA∗, and A∗ is monotone. Therefore, Corollary 6.3.3
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6.4. Discussion

implies that A is of type (D), of type (NI), and of type (FP).

6.4 Discussion

Our first main result (Theorem 6.2.1) in this chapter is obtained by applying

Goldstine’s Theorem (see Fact 6.1.2). Simons, Marques Alves and Svaiter’s

characterization of type (D) operators and Borwein’s generalization of the

Brøndsted-Rockafellar theorem are the main tools for obtaining the other

main result (Theorem 6.3.1). Corollary 6.3.3 motivates the following ques-

tion:

Let A : X ⇒ X∗ be a monotone linear relation with closed

graph. Assume that A∗ is monotone.

Is A necessarily of type (D)?
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Chapter 7

Properties of monotone

operators and the partial inf

convolution of Fitzpatrick

functions

Chapter 7 is mainly based on the work in [15, 17] by Bauschke, Wang and

Yao.

Let F1, F2 : X ×X∗ → ]−∞,+∞]. Then the partial inf-convolution on

the second variable F1�2F2, is the function defined on X ×X∗ by

F1�2F2 : (x, x
∗) 7→ inf

y∗∈X∗
F1(x, x

∗ − y∗) + F2(x, y
∗).

In this chapter, we study the properties of FA�2FB for two maximally mono-

tone operators A and B. We also consider the connection between FA�2FB

and FA+B . Then we provide a new proof of the following result due to Voisei

[83]: Let A,B : X ⇒ X∗ be maximally monotone linear relations, and sup-

pose that [domA− domB] is closed. Then A+B is maximally monotone.
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7.1 Auxiliary results

The next result was first established in [5, Proposition 2.2(v)] by Bauschke,

Borwein and Wang in a Hilbert space. Now we generalize it to a general

Banach space.

Proposition 7.1.1 Let A : X → X∗ be linear and monotone. Then

FA(x, x
∗) = 2q∗A+

(12x
∗+1

2A
∗x) = 1

2q
∗
A+

(x∗+A∗x), ∀(x, x∗) ∈ X×X. (7.1)

If ranA+ is closed, then dom q∗A+
= ranA+.

Proof. By Proposition 3.1.3(ix), domA∗∩X = X. Hence for every (x, x∗) ∈

X ×X∗,

FA(x, x
∗) = sup

y∈X
[〈x,Ay〉+ 〈y, x∗〉 − 〈y,Ay〉]

= 2 sup
y∈X

[
〈y, 12x∗ + 1

2A
∗x〉 − qA+

(y)
]

= 2q∗A+
(12x

∗ + 1
2A

∗x)

= 1
2q

∗
A+

(x∗ +A∗x). (7.2)

By [92, Proposition 2.4.4(iv) and Theorem 2.3.3],

ran ∂qA+
⊆ dom∂q∗A+

. (7.3)

By Proposition 3.2.10, ran ∂qA+
= ranA+. Then by (7.3),

ranA+ ⊆ dom ∂q∗A+
⊆ dom q∗A+

(7.4)
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Then by the Brøndsted-Rockafellar Theorem (see [92, Theorem 3.1.2]),

ranA+ ⊆ dom∂q∗A+
⊆ dom q∗A+

⊆ ranA+.

By the assumption that ranA+ is closed, we have ranA+ = dom ∂q∗A+
=

dom q∗A+
. �

Now we give a direct proof of the following result.

Fact 7.1.2 (Bartz-Bauschke-Borwein-Reich-Wang) (See

[3, Corollary 5.9].) Let C be a closed convex nonempty set of X. Then

FNC
= ιC ⊕ ι∗C .

Proof. Let (x, x∗) ∈ X ×X∗. Then we have

FNC
(x, x∗) = sup

(c,c∗)∈graNC

[〈x, c∗〉+ 〈c, x∗〉 − 〈c, c∗〉]

= sup
(c,c∗)∈graNC ,k≥0

[〈x, kc∗〉+ 〈c, x∗〉 − 〈c, kc∗〉]

= sup
(c,c∗)∈graNC ,k≥0

[k(〈x, c∗〉 − 〈c, c∗〉) + 〈c, x∗〉] (7.5)

By (7.5),

(x, x∗) ∈ domFNC
⇒ sup

(c,c∗)∈graNC

[〈x, c∗〉 − 〈c, c∗〉] ≤ 0

⇔ inf
(c,c∗)∈graNC

[−〈x, c∗〉+ 〈c, c∗〉] ≥ 0

⇔ inf
(c,c∗)∈graNC

[〈c− x, c∗ − 0〉] ≥ 0

⇔ (x, 0) ∈ graNC (by Fact 5.1.2)
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⇔ x ∈ C. (7.6)

Now assume x ∈ C. By (7.5),

FNC
(x, x∗) = ι∗C(x

∗). (7.7)

Combine (7.6) and (7.7), FNC
= ιC ⊕ ι∗C . �

Following Penot [64], if F : X ×X∗ → ]−∞,+∞], we set

F ᵀ : X∗ ×X : (x∗, x) 7→ F (x, x∗). (7.8)

Fact 7.1.3 (Fitzpatrick) (See [45, Proposition 4.2 and Theorem 4.3].) Let

A : X ⇒ X∗ be a monotone operator. Then F ∗ᵀ
A = 〈·, ·〉 on graA and

{
x ∈ X | ∃x∗ ∈ X∗ such that F ∗

A(x
∗, x) = 〈x, x∗〉

}
⊆ conv(domA).

Fact 7.1.4 (See [92, Theorem 2.4.14].) Let f : X → ]−∞,+∞] be a sub-

linear function. Then the following hold.

(i) ∂f(x) = {x∗ ∈ ∂f(0) | 〈x∗, x〉 = f(x)}, ∀x ∈ dom f .

(ii) If f is lower semicontinuous, then f = sup〈·, ∂f(0)〉.

Fact 7.1.5 (Simons and Zălinescu) (See [78, Theorem 4.2].)

Let Y be a Banach space and F1, F2 : X × Y → ]−∞,+∞] be proper,

lower semicontinuous, and convex. Assume that for every (x, y) ∈ X × Y ,

(F1�2F2)(x, y) > −∞
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and that
⋃

λ>0 λ [PX domF1 − PX domF2] is a closed subspace of X. Then

for every (x∗, y∗) ∈ X ×X∗,

(F1�2F2)
∗(x∗, y∗) = min

w∗∈X∗
[F ∗

1 (x
∗ − w∗, y∗) + F ∗

2 (w
∗, y∗)] .

The following result was first established in [21, Theorem 7.4]. Now we

give a new proof.

Fact 7.1.6 (Borwein) Let A,B : X ⇒ X∗ be linear relations such that

graA and graB are closed. Assume that domA− domB is closed. Then

(A+B)∗ = A∗ +B∗.

Proof. We have

ιgra(A+B) = ιgraA�2ιgraB. (7.9)

Let (x∗∗, x∗) ∈ X∗∗ × X∗. Since graA and graB are closed convex, ιgraA

and ιgraB are proper lower semicontinuous and convex. Then by Fact 7.1.5

and (7.9), there exists y∗ ∈ X∗ such that

ιgra(A+B)∗(x
∗∗, x∗) = ι(

gra(A+B)
)⊥(−x∗, x∗∗)

= ι∗gra(A+B)(−x∗, x∗∗) (since gra(A+B) is a subspace)

= ι∗graA(y
∗, x∗∗) + ι∗graB(−x∗ − y∗, x∗∗)

= ι(graA)⊥(y
∗, x∗∗) + ι(graB)⊥(−x∗ − y∗, x∗∗)

= ιgraA∗(x∗∗,−y∗) + ιgraB∗(x∗∗, x∗ + y∗)
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= ιgra(A∗+B∗)(x
∗∗, x∗). (7.10)

Thus gra(A+B)∗ = gra(A∗ +B∗) and hence (A+B)∗ = A∗ +B∗. �

Lemma 7.1.7 Let A,B : X ⇒ X∗ be maximally monotone, and suppose

that
⋃

λ>0 λ [domA− domB] is a closed subspace of X. Set

E =
{
x ∈ X | ∃x∗ ∈ X∗ such that F ∗

A(x
∗, x) = 〈x, x∗〉

}

and

F =
{
x ∈ X | ∃x∗ ∈ X∗ such that F ∗

B(x
∗, x) = 〈x, x∗〉

}
.

Then
⋃

λ>0

λ [domA− domB] =
⋃

λ>0

λ [E − F ] .

Moreover, if A and B are of type (FPV), then we have

⋃

λ>0

λ [domA− domB] =
⋃

λ>0

λ [PX domFA − PX domFB ] .

Proof. Using Fact 7.1.3, we see that

⋃

λ>0

λ [domA− domB] ⊆
⋃

λ>0

λ [E − F ]

⊆
⋃

λ>0

λ
[
conv(domA)− conv(domB)

]

⊆
⋃

λ>0

λ
[
conv(domA)− conv(domB)

]
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=
⋃

λ>0

λ[conv(domA− domB)]

⊆
⋃

λ>0

λ [conv(domA− domB)]

=
⋃

λ>0

λ [domA− domB] (using the assumption).

Hence
⋃

λ>0 λ [domA− domB] =
⋃

λ>0 λ [E − F ] .

Now assume that A,B are of type (FPV). Then by Fact 5.1.6 and

Fact 5.1.13, we have

⋃

λ>0

λ [domA− domB] ⊆
⋃

λ>0

λ [PX domFA − PX domFB ]

⊆
⋃

λ>0

λ
[
domA− domB

]

⊆
⋃

λ>0

λ
[
domA− domB

]
⊆

⋃

λ>0

λ [domA− domB]

=
⋃

λ>0

λ [domA− domB] (using the assumption).

�

Corollary 7.1.8 Let A,B : X ⇒ X∗ be maximally monotone linear rela-

tions, and suppose that [domA− domB] is a closed subspace. Then

⋃

λ>0

λ [PX domFA − PX domFB ] = [domA− domB]

=
⋃

λ>0

λ
[
PX domF ∗ᵀ

A − PX domF ∗ᵀ
B

]
.

Proof. Apply directly Fact 5.1.14 and Lemma 7.1.7. �
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Corollary 7.1.9 Let A : X ⇒ X∗ be maximally monotone linear relations

and C ⊆ X be a closed convex set. Assume that
⋃

λ>0 λ [domA− C] is a

closed subspace. Then

⋃

λ>0

λ [PX domFA − PX domFNC
] =

⋃

λ>0

λ [domA− C]

=
⋃

λ>0

λ
[
PX domF ∗ᵀ

A − PX domF ∗ᵀ
NC

]
.

Proof. Let B = NC . Then apply directly Fact 5.1.14, Fact 5.1.12 and

Lemma 7.1.7. �

Fact 7.1.10 (See [74, Lemma 23.9] or [10, Proposition 4.2].) Let A,B : X ⇒

X∗ be monotone operators and domA∩domB 6= ∅. Then FA+B ≤ FA�2FB.

Proof. Let (x, x∗) ∈ X ×X∗ and y∗ ∈ X∗. Then we have

FA(x, y
∗) + FB(x, x

∗ − y∗) = sup
(a,a∗)∈graA

[〈a, y∗〉+ 〈x, a∗〉 − 〈a, a∗〉]

+ sup
(b,b∗)∈graB

[〈b, x∗ − y∗〉+ 〈x, b∗〉 − 〈b, b∗〉]

= sup
(a,a∗)∈graA,(b,b∗)∈graB

[
〈a, y∗〉+ 〈x, a∗〉 − 〈a, a∗〉+ 〈b, x∗ − y∗〉+ 〈x, b∗〉

− 〈b, b∗〉
]

≥ sup
(a,a∗)∈graA,(a,b∗)∈graB

[
〈a, y∗〉+ 〈x, a∗〉 − 〈a, a∗〉+ 〈a, x∗ − y∗〉+ 〈x, b∗〉

− 〈a, b∗〉
]

= sup
(a,a∗)∈graA,(a,b∗)∈graB

[〈a, x∗〉+ 〈x, a∗ + b∗〉 − 〈a, a∗ + b∗〉]

= FA+B(x, x
∗). (7.11)
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Then infy∗∈X∗ [FA(x, y
∗) + FB(x, x

∗ − y∗)] ≥ FA+B(x, x
∗) and thus

FA�2FB(x, x
∗) ≥ FA+B(x, x

∗). �

We now discover more properties of FA�2FB .

Proposition 7.1.11 was first established by Bauschke, Wang and Yao

in [15, Proposition 5.9] when X is a reflexive space. We now provide a

nonreflexive version.

Proposition 7.1.11 Let A,B : X ⇒ X∗ be maximally monotone and sup-

pose that
⋃

λ>0 λ [domA− domB] is a closed subspace of X. Then FA�2FB

is proper, norm×weak∗ lower semicontinuous and convex, and the partial in-

fimal convolution is exact everywhere.

Proof. Define F1, F2 : X ×X∗ → ]−∞,+∞] by

F1 : (x, x
∗) 7→ F ∗

A(x
∗, x), F2 : (x, x

∗) 7→ F ∗
B(x

∗, x).

Since FA, FB is norm-weak∗ lower semicontinuous,

F ∗
1 (x

∗, x) = FA(x, x
∗), F ∗

2 (x
∗, x) = FB(x, x

∗), ∀(x, x∗) ∈ X ×X∗.

(7.12)

Take (x, x∗) ∈ X ×X∗. By Fact 5.1.5,

(
F1�2F2

)
(x, x∗) ≥ 〈x, x∗〉 > −∞.
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In view of Lemma 7.1.7,

⋃

λ>0

λ [PX domF1 − PX domF2] =
⋃

λ>0

λ [domA− domB] is a closed subspace.

By Fact 7.1.5 and (7.12),

(
F1�2F2

)∗
(x∗, x) = min

y∗∈X∗
[F ∗

1 (x
∗ − y∗, x) + F ∗

2 (y
∗, x)]

= min
y∗∈X∗

[FA(x, x
∗ − y∗) + FB(x, y

∗)] =
(
FA�2FB

)
(x, x∗).

Hence FA�2FB is proper, norm×weak∗ lower semicontinuous and convex,

and the partial infimal convolution is exact. �

Proposition 7.1.12 (See [15, Proposition 5.5].) Let X be reflexive and

A : X ⇒ X∗ be a monotone linear relation with nonempty closed graph.

Then F ∗
A : (x∗, x) 7→ ιgraA(x, x

∗) + 〈x, x∗〉.

Proof. Define g : X × X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉 + ιgraA(x, x
∗).

Thus by Fact 3.2.8 and the assumption, g is proper, lower semicontinuous

and convex.

By definition of FA, FA(x, x
∗) = g∗(x∗, x) (for every (x, x∗) ∈ X ×X∗).

Therefore, by [92, Theorem 2.3.3] we have F ∗ᵀ
A = g. �

The next new result provides a sufficient but not necessary condition for

the maximality of the sum of two maximally monotone operators.

Proposition 7.1.13 Let A,B : X ⇒ X∗ be maximally monotone and sup-

pose that
⋃

λ>0 λ [PX domFA − PX domFB ] is a closed subspace of X. As-

sume that FA�2FB = FA+B. Then A+B is maximally monotone.
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Proof. We first show

FA+B ≥ 〈·, ·〉. (7.13)

Let (x, x∗) ∈ X ×X∗ and y∗ ∈ X∗. Then by Fact 5.1.5, we have

FA(x, y
∗) + FB(x, x

∗ − y∗) ≥ 〈x, y∗〉+ 〈x, x∗ − y∗〉 = 〈x, x∗〉.

Then

FA�2FB(x, x
∗) = inf

y∗∈X∗
[FA(x, y

∗) + FB(x, x
∗ − y∗)] ≥ 〈x, x∗〉. (7.14)

By (7.14) and the assumption that FA�2FB = FA+B , we have (7.13) holds.

Combining (7.13) and Fact 5.1.7, A+B is maximally monotone. �

Let A,B : X ⇒ X∗ be maximally monotone such that domA∩domB 6=

∅. By Fact 7.1.10 FA�2FB ≥ FA+B . It naturally raises a question: Does

the equality always hold under the Rockafellar’s constraint qualification:

domA ∩ int domB 6= ∅ (which was also asked by the referee of [90])?

The equality has a far-reaching meaning. If this were true, then Propo-

sition 7.1.13 would directly solve the sum problem in the affirmative. How-

ever, in general, it cannot hold. The easiest example probably is [10, Ex-

ample 4.7] by Bauschke, McLaren and Sendov on two projection operators

in one dimensional space. Now we give another counterexample on a max-

imally monotone linear relation and the subdifferential of a proper lower

semicontinuous sublinear function, which thus implies that we cannot ap-

proach the maximality of the sum of a linear relation A and the subdif-
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ferential of a proper lower semicontinuous sublinear function f by showing

FA�2F∂f = FA+∂f .

Example 7.1.14 Let X be a Hilbert space, BX be the closed unit ball of X

and Id be the identity mapping from X to X. Let f : x ∈ X → ‖x‖. Then

we have

F∂f�2FId(x, x
∗) = ‖x‖+





0, if ‖x+ x∗‖ ≤ 1;

1
4‖x+ x∗‖2 − 1

2‖x+ x∗‖+ 1
4 , if ‖x+ x∗‖ > 1.

(7.15)

We also have F∂f+Id 6= F∂f�2FId when X = R.

Proof. By [10, Example 3.10 and Example 3.3], we have

FId(x, x
∗) = 1

4‖x+ x∗‖2 (7.16)

F∂f (x, x
∗) = ‖x‖ + ιBX

(x∗), ∀(x, x∗) ∈ X ×X. (7.17)

Note that

∂f(x) =





BX , if x = 0;

{ x
‖x‖}, otherwise.

(7.18)

NBX
(x) =





0, if ‖x‖ < 1;

[0,∞[ · x, if ‖x‖ = 1;

∅, otherwise.

(7.19)
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Indeed, clearly ∂f(0) = BX . Assume x 6= 0. By Fact 7.1.4(i),

x∗ ∈ ∂f(x) ⇔ x∗ ∈ BX , 〈x∗, x〉 = ‖x‖ ⇔ ‖x∗‖ = 1, 〈x∗, x〉 = ‖x‖ · ‖x∗‖

⇔ x∗ = x
‖x‖ .

Hence (7.18) holds. Similarly, (7.19) holds.

Then by (7.16) and (7.17),

(F∂f�2FId)(x, x
∗) = inf

y∗

[
‖x‖+ ιBX

(y∗) + 1
4‖x+ x∗ − y∗‖2

]

= ‖x‖+ 1
4‖x+ x∗‖2 + 1

2 infy∗

[
〈x+ x∗, y∗〉+ ιBX

(y∗) + 1
2‖y∗‖2

]
. (7.20)

We consider two cases:

Case 1 : ‖x+ x∗‖ ≤ 1. Then we directly obtain that

inf
y∗

[
〈x+ x∗, y∗〉+ ιBX

(y∗) + 1
2‖y∗‖2

]
= −1

2‖x+ x∗‖2.

And thus, F∂f�2FId(x, x
∗) = ‖x‖.

Case 2 : ‖x+x∗‖ > 1. SinceK : y∗ ∈ X → 〈x+x∗, y∗〉+ιBX
(y∗)+ 1

2‖y∗‖2

is convex, y∗0 is a minimizer of K if and only if 0 ∈ x+ x∗ + y∗0 +NBX
(y∗0).

Since ‖x + x∗‖ > 1, by (7.19), ‖y∗0‖ = 1. Thus by (7.19) again, there

exists ρ > 0 such that 0 = x + x∗ + y∗0 + ρy∗0. Then we have ρ + 1 =

‖x + x∗‖ and y∗0 = − x+x∗

‖x+x∗‖ . Thus infK = K(y∗0) = −‖x + x∗‖ + 1
2 . Then

F∂f�2FId(x, x
∗) = ‖x‖+ 1

4‖x+ x∗‖2 − 1
2‖x+ x∗‖+ 1

4 . Hence (7.15) holds.
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In order to show F∂f+Id 6= F∂f�2FId, we consider the case when X = R.

Now we consider the point (−1, 4). Then by (7.15),

(F∂f�2FId)(−1, 4) = 1 + 1 = 2. (7.21)

On the other hand,

F∂f+Id(−1, 4) = sup
x∈R

[〈x, 4〉 + 〈−1, x+ ∂f(x)〉 − 〈x, ∂f(x) + x〉]

= sup
x∈R

[〈x, 3〉 + 〈−1, ∂f(x)〉 − 〈x, ∂f(x) + x〉]

= sup
x∈R

[
〈x, 3〉+ 〈−1, ∂f(x)〉 − |x| − |x|2

]
(by Fact 7.1.4(i))

= max
{
sup
x>0

[
〈x, 3〉 + 〈−1, ∂f(x)〉 − |x| − |x|2

]
,

sup
x=0

[
〈x, 3〉+ 〈−1, ∂f(x)〉 − |x| − |x|2

]
,

sup
x<0

[
〈x, 3〉+ 〈−1, ∂f(x)〉 − |x| − |x|2

] }

= max
{
sup
x>0

[
〈x, 3〉 − 1− |x| − |x|2

]
, 1, sup

x<0

[
〈x, 3〉 + 1− |x| − |x|2

] }

(by (7.18))

= max
{
sup
x>0

[
〈x, 3〉 − 1− x− |x|2

]
, 1, 1

}

= max
{
sup
x>0

[
2x− 1− |x|2

]
, 1
}

= max{0, 1} = 1 6= 2 = F∂f�2FId(−1, 4) (by (7.21)).

Hence F∂f+Id 6= F∂f�2FId. �
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7.2 Fitzpatrick function of the sum of two linear

relations

Section 7.2 is mainly based on the work in [15, 17] by Bauschke, Wang and

Yao.

Theorem 7.2.1 was first proved in [15, Theorem 5.10] by Bauschke, Wang

and Yao in a reflexive space. Now we generalize it to a general Banach space.

Theorem 7.2.1 (Fitzpatrick function of the sum) Let A,B : X ⇒ X∗

be maximally monotone linear relations, and suppose that [domA− domB]

is closed. Then FA+B = FA�2FB.

Proof. Let (z, z∗) ∈ X ×X∗. By Fact 7.1.10, it suffices to show that

FA+B(z, z
∗) ≥ (FA�2FB)(z, z

∗). (7.22)

If (z, z∗) /∈ domFA+B , then (7.22) clearly holds.

Now assume that (z, z∗) ∈ domFA+B . Then

FA+B(z, z
∗)

= sup
{x,x∗,y∗}

[〈x, z∗〉+ 〈z, x∗〉 − 〈x, x∗〉+ 〈z − x, y∗〉 − ιgraA(x, x
∗)

− ιgraB(x, y
∗)]. (7.23)

Let Y = X∗ and define F,K : X ×X∗ × Y → ]−∞,+∞] respectively by

F :(x, x∗, y∗) ∈ X ×X∗ × Y 7→ 〈x, x∗〉+ ιgraA(x, x
∗)
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K :(x, x∗, y∗) ∈ X ×X∗ × Y 7→ 〈x, y∗〉+ ιgraB(x, y
∗)

Then by (7.23),

FA+B(z, z
∗) = (F +K)∗(z∗, z, z). (7.24)

By Fact 3.2.8 and the assumptions, F and K are proper lower semicontin-

uous and convex, and

domF − domK = [domA− domB]×X∗ × Y is a closed subspace.

Thus by Fact 3.1.2 and (7.24), there exist (z∗0 , z
∗∗
0 , z∗∗1 ) ∈ X∗ × X∗∗ × Y ∗

such that

FA+B(z, z
∗) = F ∗(z∗ − z∗0 , z − z∗∗0 , z − z∗∗1 ) +K∗(z∗0 , z

∗∗
0 , z∗∗1 )

= F ∗(z∗ − z∗0 , z, 0) +K∗(z∗0 , 0, z) (by (z, z∗) ∈ domFA+B)

= FA(z, z
∗ − z∗0) + FB(z, z

∗
0)

≥ (FA�2FB)(z, z
∗).

Thus (7.22) holds and hence FA+B = FA�2FB . �

The following result was first established by Voisei in [83]. Simons gave

another proof in [74, Theorem 46.3]. Now we give a new approach for

showing this result.

Theorem 7.2.2 Let A,B : X ⇒ X∗ be maximally monotone linear rela-
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tions, and suppose that [domA− domB] is closed. Then A+B is maximally

monotone.

Proof. Combining Theorem 7.2.1, Corollary 7.1.8, and Proposition 7.1.13,

we have A+B is maximally monotone. �

The following examples show that the constraint on the domain in The-

orem 7.2.1 cannot be weakened. The rest of this section is all based on the

work in [17] by Bauschke, Wang and Yao.

Let S be defined in Example 3.3.1, i.e.,

S : domS → `2(N) : y 7→
(

1
2yn +

∑

i<n

yi

)

n∈N
, (7.25)

with

domS =

{
y = (yn) ∈ `2(N)

∣∣∣∣
∑

i≥1

yi = 0,

(∑

i≤n

yi

)

n∈N
∈ `2(N)

}
.

We explicitly compute the Fitzpatrick functions FS+S∗ , FS , FS∗ , and

show that FS+S∗ 6= FS�2FS∗ even though S, S∗ are linear maximally mono-

tone with domS − domS∗ being a dense linear subspace in `2(N).

Lemma 7.2.3 Let X be a reflexive space and S : domS → X∗ be a maxi-

mally monotone skew linear operator. Then

FS = ιgra(−S∗)

and

F ∗ᵀ
S∗ = FS∗ = ιgraS∗ + 〈·, ·〉.
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Proof. By Proposition 7.1.12,

F ∗
S = (ιgraS)

ᵀ.

Then

FS =
(
F ∗ᵀ
S

)∗ᵀ
=

(
ιgraS

)∗ᵀ
=

(
ιᵀgraS

)∗
=

(
ιgraS−1

)∗

= ι(graS−1)⊥ = ιgra(−S∗). (7.26)

From Fact 3.2.12, gra(−S) ⊆ graS∗, we have

FS∗ ≥ F(−S) = ιgra−(−S)∗ = ιgraS∗ ,

this shows that domFS∗ ⊆ graS∗. By the Brezis-Browder theorem (Fact 3.2.13)

and Fact 5.1.5, FS∗(x, x∗) = 〈x, x∗〉 ∀(x, x∗) ∈ graS∗. Hence FS∗ = ιgraS∗ +

〈·, ·〉. Again by Proposition 7.1.12, F ∗ᵀ
S∗ = ιgraS∗ + 〈·, ·〉. �

Theorem 7.2.4 Let H = `2(N) and S be defined as in Example 3.3.1.

Then

FS+S∗(x, x∗) = ιH×{0}(x, x
∗)

FS�2FS∗(x, x∗) =





1
2s

2, if (x, x∗) ∈ domS∗ × {0}with s = ∑
i≥1 xi;

∞ otherwise.

(7.27)

Consequently, FS�2FS∗ 6= FS+S∗.
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Proof. By Fact 3.2.12,

(S + S∗)|dom S = 0. (7.28)

Let (x, x∗) ∈ H ×H. Using (7.28) and Fact 3.2.12, we have

FS+S∗(x, x∗) = sup
a∈dom S

〈x∗, a〉 = ι(dom S)⊥(x
∗) = ι{0}(x

∗) = ιH×{0}(x, x
∗).

(7.29)

Then by Fact 7.1.10, we have

(FS�2FS∗)(x, x∗) = ∞, x∗ 6= 0. (7.30)

It follows from Lemma 7.2.3 that

(FS�2FS∗)(x, 0) = inf
y∗∈H

{FS(x, y
∗) + FS∗(x,−y∗)}

= inf
y∗∈H

{ιgra(−S∗)(x, y
∗) + ιgraS∗(x,−y∗) + 〈x,−y∗〉}

= inf
y∗∈H

{ιgraS∗(x,−y∗) + 〈x,−y∗〉}. (7.31)

Thus, FS�2FS∗(x, 0) = ∞ if x /∈ domS∗. Now suppose x ∈ domS∗ and

s =
∑

i≥1 xi. Then by (7.31) and Proposition 3.3.6, we have

FS�2FS∗(x, 0) = 〈x, S∗x〉 = 1
2s

2.

Combine the results above, (7.27) holds. Since domS∗ 6= H, FS�2FS∗ 6=

FS+S∗ . �

Let A : H ⇒ H be a maximally monotone linear relation. Then [15,

174



7.2. Fitzpatrick function of the sum of two linear relations

Theorem 7.6] shows that: A∗ = −A if and only if
(
domA = domA∗ and

FA = F ∗ᵀ
A

)
. Let A = S∗ with S defined as in Example 3.3.1. Lemma 7.2.3

shows that FA = F ∗ᵀ
A , but A∗ = S 6= −S∗ = −A by Proposition 3.3.5.

Hence the requirement domA = domA∗ cannot be omitted.

Let V be the Volterra integral operator. In the rest of this section, we

systematically study T = V −1 and its adjoint T ∗.

We compute the Fitzpatrick functions FT , FT ∗ , FT+T ∗ , and we show that

FT�2FT ∗ 6= FT+T ∗ . This shows that the constraint qualification for the

formula of the Fitzpatrick function of the sum of two maximally monotone

operators cannot be significantly weakened either.

To study Fitzpatrick functions of sums of maximally monotone opera-

tors, we need:

Lemma 7.2.5 Let H = L2[0, 1] and V be the Volterra integration operator

defined in Example 3.4.4 and e ≡ 1 ∈ L2[0, 1]. Then

q∗V+
(z) = ιspan{e}(z) + 〈z, e〉2, ∀z ∈ L2[0, 1].

Proof. Let z ∈ H. By Example 3.4.4(iv) and Fact 7.1.1, we have

q∗V+
(z) = ∞, if z /∈ span{e}.

Now suppose that z = le for some l ∈ R. By Example 3.4.4(iv),

q∗V+
(z) = sup

x∈H
{〈x, z〉 − qV+

(x)} = sup
x∈H

{〈x, le〉 − 1
4〈x, e〉2}

= l2 = 〈le, e〉2 = 〈z, e〉2.
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Hence q∗V+
(z) = ιspan{e}(z) + 〈z, e〉2. �

Lemma 7.2.6 Let H = L2[0, 1] and T be defined as in Theorem 3.4.5. We

have (for every (x, y∗) ∈ H ×H)

FT (x, y
∗) = FV (y

∗, x) = ιspan{e}(x+ V ∗y∗) + 1
2〈x+ V ∗y∗, e〉2,

FT ∗(x, y∗) = FV ∗(y∗, x) = ιspan{e}(x+ V y∗) + 1
2 〈x+ V y∗, e〉2. (7.32)

Proof. Apply Fact 5.1.5, Fact 7.1.1 and Lemma 7.2.5 to obtain the formula

for FT . Let (x, y∗) ∈ H × H. By Proposition 3.1.3(iv), Fact 7.1.1 and

Lemma 7.2.5 again, we have

FT ∗(x, y∗) = FV ∗(y∗, x) = 1
2q

∗
V ∗
+
(x+ V ∗∗y∗) = 1

2q
∗
V+

(x+ V y∗)

= ιspan{e}(x+ V y∗) + 1
2〈x+ V y∗, e〉2.

�

Remark 7.2.7 Theorem 7.2.8 below gives another example showing that

FT+T ∗ 6= FT�2FT ∗ while T, T ∗ are maximally monotone, and domT −

domT ∗ is a dense subspace in L2[0, 1]. This again shows that the assump-

tion that domA − domB is closed in Theorem 7.2.1 cannot be weakened

substantially.

Theorem 7.2.8 Let H = L2[0, 1] and T be defined as in Theorem 3.4.5,

e ≡ 1 ∈ L2[0, 1] and set

C = {x ∈ L2[0, 1] : x is absolutely continuous, and x′ ∈ L2[0, 1]}.
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Then

FT+T ∗(x, x∗) = ιH×{0}(x, x
∗), ∀(x, x∗) ∈ H ×H

(FT�2FT ∗)(x, x∗) =





1
2

[
x(1)2 + x(0)2

]
, if (x, x∗) ∈ C × {0};

∞, otherwise.

(7.33)

Consequently, FT�2FT ∗ 6= FT+T ∗ .

Proof. By Theorem 3.4.5(i) and Example 3.4.4(iii),

(T + T ∗)y = 0, ∀y ∈ domT ∩ domT ∗ = {V x | x ∈ e⊥}. (7.34)

Let (x, x∗) ∈ H ×H. Using Theorem 3.4.5(iii) and (7.34), we see that

FT+T ∗(x, x∗) = sup
y∈domT∩domT ∗

〈x∗, y〉 = sup
y∈H

〈x∗, y〉

= ι{0}(x
∗) = ιH×{0}(x, x

∗). (7.35)

By Fact 7.1.10, we have

(
FT�2FT ∗

)
(x, x∗) = ∞, ∀ x∗ 6= 0. (7.36)

When x∗ = 0, by Lemma 7.2.6,

(
FT�2FT ∗

)
(x, 0) = inf

y∗∈H
{FT (x, y

∗) + FT ∗(x,−y∗)} (7.37)

= inf
y∗∈H

{ιspan{e}(x+ V ∗y∗) + 1
2〈x+ V ∗y∗, e〉2

+ ιspan{e}(x− V y∗) + 1
2 〈x− V y∗, e〉2}.
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Observe that

x+ V ∗y∗ ∈ span{e}, x − V y∗ ∈ span{e}

⇔ x− V y∗ + V y∗ + V ∗y∗ ∈ span{e}, x − V y∗ ∈ span{e}

⇔ x− V y∗ ∈ span{e}, (by Example 3.4.4(iv))

⇔ x ∈ V y∗ + span{e} ⇔ x is absolutely continuous and y∗ = x′.

Therefore, (FT�2FT ∗)(x, 0) = ∞ if x /∈ C. For x ∈ C, using (7.37) and the

fact that x− V x′ = x(0)e and x+ V ∗x′ = x(1)e, we obtain

(
FT�2FT ∗

)
(x, 0) = 1

2〈x+ V ∗x′, e〉2 + 1
2〈x− V x′, e〉2

= 1
2x(1)

2 + 1
2x(0)

2 = 1
2

[
x(1)2 + x(0)2

]
.

Thus, (7.33) holds. Consequently, FT�2FT ∗ 6= FT+T ∗ . �

7.3 Fitzpatrick function of the sum of a linear

relations and a normal cone operator

The proof of Theorem 7.3.1 partially follows that of [16, Theorem 3.1] by

Bauschke, Wang and Yao.

Theorem 7.3.1 Let A : X ⇒ X∗ be a maximally monotone linear relation,

let C be a nonempty closed convex subset of X, and suppose that

domA ∩ intC 6= ∅. Then FA+NC
= FA�2FNC

.
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Proof. Let (z, z∗) ∈ X ×X∗. By Fact 7.1.10, it suffices to show that

FA+NC
(z, z∗) ≥ (FA�2FNC

)(z, z∗). (7.38)

By Corollary 5.3.4,

PX [domFA+NC
] ⊆ [dom(A+NC)] ⊆ C.

Thus, (7.38) holds if z /∈ C. Now assume that z ∈ C. Set

g : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉+ ιgraA(x, x
∗). (7.39)

By Fact 3.2.8, g is convex. Hence,

h = g + ιC×X∗ (7.40)

is convex as well. Let

c0 ∈ domA ∩ intC, (7.41)

and let c∗0 ∈ Ac0. Then (c0, c
∗
0) ∈ graA∩(intC×X∗) = dom g∩int dom ιC×X∗ .

By Fact 5.1.4, ιC×X∗ is continuous at (c0, c
∗
0). Then,

FA+NC
(z, z∗)

= sup
(x,x∗,c∗)

[
〈x, z∗〉+ 〈z, x∗〉 − 〈x, x∗〉+ 〈z − x, c∗〉 − ιgraA(x, x

∗)

− ιgraNC
(x, c∗)

]

≥ sup
(x,x∗)

[〈x, z∗〉+ 〈z, x∗〉 − 〈x, x∗〉 − ιgraA(x, x
∗)− ιC×X∗(x, x∗)]
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= sup
(x,x∗)

[〈x, z∗〉+ 〈z, x∗〉 − h(x, x∗)]

= h∗(z∗, z)

= g∗(y∗, y∗∗) + ι∗C×X∗(z∗ − y∗, z − y∗∗)

(by Fact 5.1.1,∃(y∗, y∗∗) ∈ X∗ ×X∗∗)

= g∗(y∗, y∗∗) + ι∗C(z
∗ − y∗) + ι{0}(z − y∗∗).

We consider two cases:

Case 1 : z 6= y∗∗. Clearly, FA+NC
(z, z∗) = +∞ ≥ (FA�2FNC

)(z, z∗).

Case 2 : z = y∗∗. Then

FA+NC
(z, z∗) ≥ g∗(y∗, y∗∗) + ι∗C(z

∗ − y∗) = FA(z, y
∗) + ι∗C(z

∗ − y∗)

= FA(z, y
∗) + ι∗C(z

∗ − y∗) + ιC(z) ≥ FA�2(ιC + ι∗C)

= (FA�2FNC
)(z, z∗) (by Fact 7.1.2).

Hence (7.38) holds and thus FA+NC
= FA�2FNC

. �

7.4 Discussion

It would be interesting to find out whether Theorem 7.3.1 generalizes to the

following:

Let A : X ⇒ X∗ be a maximally monotone linear relation,

let C be a nonempty closed convex subset of X. Assume that
[
domA−⋃

λ>0 λC
]

is a closed subspace of X.

Is it necessarily true that FA+NC
= FA�2FNC

?
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Chapter 8

BC–functions and examples

of type (D) operators

This chapter is based on the work in [8] by Bauschke, Borwein, Wang and

Yao.

We first introduce some notation related to this chapter. Let F : X ×

X∗ → ]−∞,+∞]. We say F is a BC–function (BC stands for “bigger

conjugate”) [74] if F is proper and convex with

F ∗(x∗, x) ≥ F (x, x∗) ≥ 〈x, x∗〉 ∀(x, x∗) ∈ X ×X∗. (8.1)

Let Y be a real Banach space, and let F1, F2 : X × Y → ]−∞,+∞]. Then

the function F1�1F2 is defined on X × Y by

F1�1F2 : (x, y) 7→ inf
u∈X

{F1(u, y) + F2(x− u, y)}.

In Example 8.3.1(iii)&(v) of this chapter, we provide a negative answer to

the following question posed by S. Simons [74, Problem 22.12]:

Let F1, F2 : X ×X∗ → ]−∞,+∞] be lower semicontinuous BC–
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functions and

⋃

λ>0

λ [PX∗ domF1 − PX∗ domF2] is a closed subspace of X∗.

Is F1�1F2 necessarily a BC–function?

8.1 Auxiliary results

Fact 8.1.1 (Banach and Mazur) (See [44, Theorem 5.17]).) Every sep-

arable Banach space is isometric to a subspace of C[0, 1].

Fact 8.1.2 (Fitzpatrick) (See [45, Corollary 3.9 and Proposition 4.2].)

Let A : X ⇒ X∗ be maximally monotone. Then FA is a BC–function and

FA = 〈·, ·〉 on graA.

Let Y be a real Banach space. Let L : X → Y be linear. We say L is an

isomorphism into Y if L is one to one, continuous and L−1 is continuous on

ranL. We say L is an isometry if ‖Lx‖ = ‖x‖,∀x ∈ X. The spaces X, Y are

called isometric if there exists an isometry from X onto Y . Let A : X ⇒ X∗

be monotone and S be a subspace of X. We say A is S–saturated if

Ax+ S⊥ = Ax, ∀x ∈ domA.

Fact 8.1.3 (Simons and Zălinescu) (See [74, Theorem 16.4(b)].)

Let Y be a Banach space and F1, F2 : X × Y → ]−∞,+∞] be proper,
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lower semicontinuous and convex. Assume that for every (x, y) ∈ X × Y ,

(F1�1F2)(x, y) > −∞

and that
⋃

λ>0 λ [PY domF1 − PY domF2] is a closed subspace of Y . Then

for every (x∗, y∗) ∈ X∗ × Y ∗,

(F1�1F2)
∗(x∗, y∗) = min

u∗∈Y ∗
[F ∗

1 (x
∗, u∗) + F ∗

2 (x
∗, y∗ − u∗)] .

Fact 8.1.4 (Simons) (See [74, Theorem 28.9].) Let Y be a real Banach

space, and L : Y → X be continuous and linear with ranL closed and

ranL∗ = Y ∗. Let A : X ⇒ X∗ be monotone with domA ⊆ ranL such

that graA 6= ∅. Then A is maximally monotone if and only if A is ranL–

saturated and L∗AL is maximally monotone.

Fact 8.1.5 (See [58, Theorem 3.1.22(b)] or [44, Exercise 2.39(i), page 59].)

Let Y be a real Banach space. Assume that L : Y → X is an isomorphism

into X. Then ranL∗ = Y ∗.

Corollary 8.1.6 Let Y be a real Banach space, and L : Y → X be an

isomorphism into X. Let T : Y ⇒ Y ∗ be monotone. Then T is maximally

monotone if, and only if (L∗)−1TL−1 is maximally monotone.

Proof. Let A = (L∗)−1TL−1. Then domA ⊆ ranL. Since L is an iso-

morphism into X, ranL is closed. By Fact 8.1.5, ranL∗ = Y ∗. Hence

gra(L∗)−1TL−1 6= ∅ if and only if graT 6= ∅. Clearly, A is monotone.

Since (0, (ranL)⊥) ⊆ gra(L∗)−1, A = (L∗)−1TL−1 is ranL–saturated. By
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Fact 8.1.4, A = (L∗)−1TL−1 is maximally monotone if and only if L∗AL = T

is maximally monotone. �

The following result will allow us for constructing operators that are not

of type (D) in different Banach spaces.

Corollary 8.1.7 Let Y be a real Banach space, and L : Y → X be an

isomorphism into X. Let T : Y ⇒ Y ∗ be maximally monotone. Assume

that T is not of type (D). Then (L∗)−1TL−1 is maximally monotone but is

not of type (D).

Proof. By Corollary 8.1.6, (L∗)−1TL−1 is maximally monotone. By Fact 6.1.5

or Corollary 6.2.2 , there exists (y∗∗0 , y∗0) ∈ Y ∗∗ × Y ∗ such that

sup
(b,b∗)∈gra T

{
〈y∗∗0 , b∗〉+ 〈y∗0 , b〉 − 〈b, b∗〉

}
< 〈y∗∗0 , y∗0〉. (8.2)

By Fact 8.1.5, there exists x∗0 ∈ X∗ such that L∗x∗0 = y∗0 . Let A =

(L∗)−1TL−1. Then we have

sup
(a,a∗)∈graA

{
〈L∗∗y∗∗0 , a∗〉+ 〈x∗0, a〉 − 〈a, a∗〉

}

= sup
(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈x∗0, Ly〉 − 〈Ly, a∗〉

}

= sup
(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈L∗x∗0, y〉 − 〈y, L∗a∗〉

}

= sup
(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈y∗0 , y〉 − 〈y, L∗a∗〉

}

= sup
(y,y∗)∈graT

{
〈y∗∗0 , y∗〉+ 〈y∗0 , y〉 − 〈y, y∗〉

}

(by (Ly, a∗) ∈ graA ⇔ (y, L∗a∗) ∈ graT )
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8.2. Main construction

< 〈y∗∗0 , y∗0〉 (by (8.2))

= 〈L∗∗y∗∗0 , x∗0〉. (8.3)

Thus A is not type (NI) and hence A = (L∗)−1TL−1 is not type (D) by

Fact 6.1.5. �

8.2 Main construction

We shall give an abstract framework for constructing non type (D) operators

in non-reflexive spaces.

Lemma 8.2.1 Let A : X ⇒ X∗ be a skew linear relation. Then

FA = ιgra(−A∗)∩X×X∗ . (8.4)

Proof. Let (x0, x
∗
0) ∈ X ×X∗. We have

FA(x0, x
∗
0) = sup

(x,x∗)∈graA
{〈(x∗0, x0), (x, x∗)〉 − 〈x, x∗〉}

= sup
(x,x∗)∈graA

〈(x∗0, x0), (x, x∗)〉

= ι(graA)⊥(x
∗
0, x0)

= ιgra(−A∗)(x0, x
∗
0)

= ιgra(−A∗)∩X×X∗(x0, x
∗
0).

Hence (8.4) holds. �
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The main result in this chapter is Theorem 8.2.2, which our constructed

examples are based on.

Theorem 8.2.2 Let A : X∗ → X∗∗ be linear and continuous. Assume that

ranA ⊆ X and there exists e ∈ X∗∗\X such that

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and antisymmetric part of

A. Let T : X ⇒ X∗ be defined by

graT = {(−Sx∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0}

= {(−Ax∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0}. (8.5)

Let f : X → ]−∞,+∞] be a proper lower semicontinuous and convex func-

tion. Set F = f ⊕ f∗ on X ×X∗. Then the following hold.

(i) T is maximally monotone.

(ii) graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.

(iii) T is not of type (D).

(iv) FT = ιC , where

C = {(−Ax∗, x∗) | x∗ ∈ X∗}. (8.6)

(v) If domT ∩ int dom ∂f 6= ∅, then T + ∂f is maximally monotone.
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8.2. Main construction

(vi) F and FT are BC–functions on X ×X∗.

(vii) Moreover,

⋃

λ>0

λ
(
PX∗(domFT )− PX∗(domF )

)
= X∗.

Assume that there exists (v0, v
∗
0) ∈ X ×X∗ such that

f∗(v∗0) + f∗∗(v0 −A∗v∗0) < 〈v0, v∗0〉. (8.7)

Then FT�1F is not a BC–function.

(viii) Assume that
[
ranA−⋃

λ>0 λdom f
]
is a closed subspace of X and

that ∅ 6= dom f∗∗ ◦ A∗|X∗ " {e}⊥. Then T + ∂f is not of type (D).

Proof. (i): Now we claim that

Px∗ = 〈x∗, e〉e, ∀x∗ ∈ X∗. (8.8)

Since 〈·, e〉e = ∂(12 〈·, e〉2) and by [63, Theorem 5.1], 〈·, e〉e is a symmetric

operator on X∗. Clearly, A− 〈·, e〉e is skew. Then (8.8) holds.

Let x∗ ∈ X∗ with 〈e, x∗〉 = 0. Then we have

Sx∗ = 〈x∗, e〉e + Sx∗ = Px∗ + Sx∗ = Ax∗ ∈ ranA ⊆ X.

Thus (8.5) holds and T is well defined.
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We have S is skew and hence T is skew. Let (z, z∗) ∈ X × X∗ be

monotonically related to graT . By Fact 3.2.9, we have

0 = 〈z, x∗〉+ 〈−Sx∗, z∗〉 = 〈z + Sz∗, x∗〉, ∀x∗ ∈ {e}⊥.

Thus by Fact 3.1.1, we have z + Sz∗ ∈ ({e}⊥)⊥ = span{e} and then

z = −Sz∗ + κe, ∃κ ∈ R. (8.9)

By Fact 3.2.9 again,

κ〈z∗, e〉 = 〈−Sz∗ + κe, z∗〉 = 〈z, z∗〉 ≥ 0. (8.10)

Then by (8.9) and (8.8),

Az∗ = Pz∗ + Sz∗ = Pz∗ + κe− z = [〈z∗, e〉+ κ] e− z. (8.11)

By the assumptions that z ∈ X, Az∗ ∈ X and e /∈ X, [〈z∗, e〉+ κ] = 0 by

(8.11). Then by (8.10), we have 〈z∗, e〉 = κ = 0 and thus (z, z∗) ∈ graT by

(8.9). Hence T is maximally monotone.

(ii): Let (x∗∗0 , x∗0) ∈ X∗∗ ×X∗. Then we have

(x∗∗0 , x∗0) ∈ graT ∗ ⇔ 〈x∗0, Sx∗〉+ 〈x∗, x∗∗0 〉 = 0, ∀x∗ ∈ {e}⊥

⇔ 〈x∗, x∗∗0 − Sx∗0〉 = 0, ∀x∗ ∈ {e}⊥

⇔ x∗∗0 − Sx∗0 ∈ ({e}⊥)⊥ = span{e} (by Fact 3.1.1)

⇔ x∗∗0 − Sx∗0 = re, ∃r ∈ R.
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Thus graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.

(iii): By (ii), T ∗ is not monotone. Then by Corollary 6.3.3, T is not of

type (D).

(iv): By (ii), we have

(z, z∗) ∈ gra(−T ∗) ∩X ×X∗

⇔ (z, z∗) = (−Sz∗ − re, z∗), z ∈ X, ∃r ∈ R, z∗ ∈ X∗

⇔ (z, z∗) = (−Sz∗ − 〈z∗, e〉e+ [〈z∗, e〉 − r] e, z∗), ∃r ∈ R, z∗ ∈ X∗

⇔ (z, z∗) = (−Az∗ + [〈z∗, e〉 − r] e, z∗), ∃r ∈ R, z∗ ∈ X∗ (by (8.8))

⇔ (z, z∗) = (−Az∗, z∗), 〈z∗, e〉 = r

(by z,Az∗ ∈ X and e /∈ X),∃r ∈ R, z∗ ∈ X∗

⇔ (z, z∗) ∈ {(−Ax∗, x∗) | x∗ ∈ X∗} = C.

Thus by Lemma 8.2.1, we have FT = ιC .

(v): Apply (i) and Theorem 5.3.1.

(vi): Clearly, F is a BC–function. By (i) and Fact 8.1.2, we have FT is

a BC–function.

(vii): By (iv), we have

⋃

λ>0

λ
(
PX∗(domFT )− PX∗(domF )

)
= X∗. (8.12)

Then for every (x, x∗) ∈ X ×X∗ and u ∈ X, by (vi),

FT (x− u, x∗) + F (u, x∗) = FT (x− u, x∗) + (f ⊕ f∗)(u, x∗)
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≥ 〈x− u, x∗〉+ 〈u, x∗〉 = 〈x, x∗〉.

Hence

(FT�1F )(x, x∗) ≥ 〈x, x∗〉 > −∞. (8.13)

Then by (8.12), (8.13) and Fact 8.1.3,

(FT�1F )∗(v∗0 , v0) = min
x∗∗∈X∗∗

F ∗
T (v

∗
0 , x

∗∗) + F ∗(v∗0 , v0 − x∗∗)

≤ F ∗
T (v

∗
0 , A

∗v∗0) + F ∗(v∗0 , v0 −A∗v∗0)

= 0 + F ∗(v∗0 , v0 −A∗v∗0) (by (iv))

= (f ⊕ f∗)∗(v∗0 , v0 −A∗v∗0) = (f∗ ⊕ f∗∗)(v∗0 , v0 −A∗v∗0)

= f∗(v∗0) + f∗∗(v0 −A∗v∗0)

< 〈v∗0 , v0〉 (by 8.7).

(8.14)

Hence FA�1F is not a BC–function.

(viii): By the assumption, there exists x∗0 ∈ dom f∗∗ ◦ A∗|X∗ such that

〈e, x∗0〉 6= 0. Let ε0 =
〈e,x∗

0
〉2

2 . By [92, Theorem 2.4.4(iii)]), there exists

y∗∗∗0 ∈ ∂ε0f
∗∗(A∗x∗0). By [92, Theorem 2.4.2(ii)]),

f∗∗(A∗x∗0) + f∗∗∗(y∗∗∗0 ) ≤ 〈A∗x∗0, y
∗∗∗
0 〉+ ε0. (8.15)
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Then by [74, Lemma 45.15] or the proof of [67, Eq.(2.5) in Proposition 1],

there exists y∗0 ∈ X∗ such that

f∗∗(A∗x∗0) + f∗(y∗0) < 〈A∗x∗0, y
∗
0〉+ 2ε0. (8.16)

Let z∗0 = y∗0 + x∗0. Then by (8.16), we have

f∗∗(A∗x∗0) + f∗(z∗0 − x∗0) < 〈A∗x∗0, z
∗
0 − x∗0〉+ 2ε0

= 〈A∗x∗0, z
∗
0〉 − 〈A∗x∗0, x

∗
0〉+ 2ε0

= 〈A∗x∗0, z
∗
0〉 − 〈x∗0, Ax∗0〉+ 2ε0

= 〈A∗x∗0, z
∗
0〉 − 2ε0 + 2ε0

= 〈A∗x∗0, z
∗
0〉. (8.17)

Then for every (x, x∗) ∈ X ×X∗ and u∗ ∈ X, by (vi),

FT (x, x
∗ − u∗) + F (x, u∗) = FT (x, x

∗ − u∗) + (f ⊕ f∗)(x, u∗)

≥ 〈x, x∗ − u∗〉+ 〈x, u∗〉 = 〈x, x∗〉.

Hence

(FT�2F )(x, x∗) ≥ 〈x, x∗〉 > −∞. (8.18)

Then by (8.18), (iv) and Fact 7.1.5,

(FT�2F )∗(z∗0 , A
∗x∗0)
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= min
y∗∈X∗

F ∗
T (y

∗, A∗x∗0) + F ∗(z∗0 − y∗, A∗x∗0)

≤ F ∗
T (x

∗
0, A

∗x∗0) + F ∗(z∗0 − x∗0, A
∗x∗0)

= 0 + F ∗(z∗ − x∗0, A
∗x∗0) (by (iv))

= (f ⊕ f∗)∗(z∗0 − x∗0, A
∗x∗0)

= f∗(z∗0 − x∗0) + f∗∗(A∗x∗0)

< 〈z∗0 , A∗x∗0〉 (by (8.17)). (8.19)

Let F0 : X ×X∗ → ]−∞,+∞] be defined by

(x, x∗) 7→ 〈x, x∗〉+ ιgra(T+∂f)(x, x
∗). (8.20)

Clearly, FT�2F ≤ F0 on X ×X∗ and thus (FT�2F )∗ ≥ F ∗
0 on X∗ ×X∗∗.

By (8.19), F ∗
0 (z

∗
0 , A

∗x∗0) < 〈z∗0 , A∗x∗0〉. Hence T + ∂f is not of type (NI) and

thus T + ∂f is not of type (D) by Fact 6.1.5. �

8.3 Examples and applications

Example 8.3.1 Suppose that

X = c0, with norm ‖ · ‖∞ so that X∗ = `1(N) with norm ‖ · ‖1,

and X∗∗ = `∞(N) with norm ‖ · ‖∗. Let α = (αn)n∈N ∈ `∞(N) with

lim supαn 6= 0, and let Aα : `1(N) → `∞(N) be defined by

(Aαx
∗)n = α2

nx
∗
n + 2

∑

i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1(N).
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Let Pα and Sα respectively be the symmetric part and antisymmetric part of

Aα. Let Tα : c0 ⇒ X∗ be defined by

graTα =
{
(−Sαx

∗, x∗)
∣∣ x∗ ∈ X∗, 〈α, x∗〉 = 0

}

=
{
(−Aαx

∗, x∗)
∣∣ x∗ ∈ X∗, 〈α, x∗〉 = 0

}

=
{(

(−
∑

i>n

αnαix
∗
i +

∑

i<n

αnαix
∗
i )n∈N, x

∗)∣∣∣x∗ ∈ X∗, 〈α, x∗〉 = 0
}
.

(8.21)

Then the following hold.

(i) 〈Aαx
∗, x∗〉 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1(N). Hence (8.21) is well

defined.

(ii) Tα is a maximally monotone operator that is not of type (D).

(iii) FTα�1(‖ · ‖ ⊕ ιBX∗ ) is not a BC–function.

(iv) Tα + ∂‖ · ‖ is a maximally monotone operator that is not of type (D).

(v) If 1√
2
< ‖α‖∗ ≤ 1, then FTα�1(

1
2‖ · ‖2 ⊕ 1

2‖ · ‖21) is not a BC–function.

(vi) Tα + λJ is a maximally monotone operator that is not of type (D) for

every λ > 0.

(vii) There exists a linear operator L : c0 → C[0, 1] that is an isometry from

c0 to a subspace of C[0, 1]. Then for every λ > 0, (L∗)−1(Tα+∂‖·‖)L−1

and (L∗)−1(Tα + λJ)L−1 are maximally monotone operators that are

not of type (D).
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(viii) Let G : `1(N) → `∞(N) be Gossez’s operator [50] defined by

(
G(x∗)

)
n∈N =

∑

i>n

x∗i −
∑

i<n

x∗i , ∀(x∗n)n∈N ∈ `1(N).

Then Te : c0 ⇒ `1(N) as defined by

graTe = {(−G(x∗), x∗) | x∗ ∈ `1(N), 〈x∗, e〉 = 0}

is a maximally monotone operator that is not of type (D), where e =

(1, 1, . . . , 1, . . .).

Proof. We have α /∈ c0. Since α = (αn)n∈N ∈ `∞(N), Aα is linear and

continuous and ranAα ⊆ c0 ⊆ `∞(N).

(i): We have

〈Aαx
∗, x∗〉 =

∑

n

x∗n(α
2
nx

∗
n + 2

∑

i>n

αnαix
∗
i ) =

∑

n

α2
nx

∗
n
2 + 2

∑

n

∑

i>n

αnαix
∗
nx

∗
i

=
∑

n

α2
nx

∗
n
2 +

∑

n 6=i

αnαix
∗
nx

∗
i

= (
∑

n

αnx
∗
n)

2 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1(N). (8.22)

Then the proof of Theorem 8.2.2 shows that the symmetric part Pα of Aα

is Pαx
∗ = 〈α, x∗〉α (for every x∗ ∈ `1(N)). Thus, the skew part Sα of Aα is

(Sαx
∗)n∈N = (Aαx

∗)n∈N − (Pαx
∗)n∈N =

(
α2
nx

∗
n + 2

∑

i>n

αnαix
∗
i −

∑

i

αnαix
∗
i

)
n∈N

=
(∑

i>n

αnαix
∗
i −

∑

i<n

αnαix
∗
i

)
n∈N

. (8.23)
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Then by Theorem 8.2.2, (8.21) is well defined.

(ii): Combine Theorem 8.2.2(i)&(iii).

(iii): Let f = ‖ · ‖ on X = c0. Then f∗ = ιBX∗ by [92, Corol-

lary 2.4.16]. Since α 6= 0, there exists i0 ∈ N such that αi0 6= 0. Let

ei0 = (0, . . . , 0, 1, 0, . . .), i.e., the i0th component is 1 and the others are 0.

Then by (8.23), we have

Sαei0 = αi0(α1, . . . , αi0−1, 0,−αi0+1,−αi0+2, . . .). (8.24)

Then

A∗
αei0 = Pαei0 − Sαei0

= αi0(0, . . . , 0, αi0 , 2αi0+1, 2αi0+2, . . .). (8.25)

Now set v∗0 = ei0 and v0 = 3‖α‖2∗ei0 . Thus by (8.25),

v0 −A∗
αv

∗
0 = 3‖α‖2∗ei0 −A∗

αei0

= (0, . . . , 0, 3‖α‖2∗ − α2
i0
,−2αi0αi0+1,−2αi0αi0+2, . . .) (8.26)

We have

f∗(v∗0) + f∗∗(v0 −A∗
αei0) = ιBX∗ (ei0) + ‖v0 −A∗

αei0‖∗

=
∥∥∥3‖α‖∗ei0 −A∗

αei0

∥∥∥
∗

< 3‖α‖2∗ (by (8.26))

= 〈v0, v∗0〉.
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Hence by Theorem 8.2.2 (vii), FTα�1(‖ · ‖ ⊕ ιBX∗ ) is not a BC–function.

(iv): Let f = ‖ · ‖ on X. Since dom f∗∗ = X∗∗, ∅ 6= dom f∗∗ ◦ A∗
α|X∗ "

{e}⊥. Then apply Theorem 8.2.2(v)&(viii) directly.

(v): Let f = 1
2‖ · ‖2 on X = c0. Then f∗ = 1

2‖ · ‖21 and f∗∗ = 1
2‖ · ‖2∗. By

1√
2
< ‖α‖∗ ≤ 1, take |αi0 |2 > 1

2 . Let ei0 be defined as in the proof of (iii).

Then set v∗1 = 1
2ei0 and v1 =

(
1 + 1

2α
2
i0

)
ei0 .

By (8.25), we have

v1 −A∗
αv

∗
1 = (0, . . . , 0, 1,−αi0αi0+1,−αi0αi0+2, . . .) (8.27)

Since |αi0αj | ≤ ‖α‖2∗ ≤ 1, ∀j ∈ N, then

‖v1 −A∗
αv

∗
1‖ ≤ 1. (8.28)

We have

f∗(v∗1) + f∗∗(v1 −A∗
αv

∗
1) =

1
2‖v∗1‖21 + 1

2‖v1 −A∗
αv

∗
1‖2∗

≤ 1
8 +

1
2 (by (8.28))

<
α2
i0

4 + 1
2 (by α2

i0
>

1

2
)

= 〈v∗1 , v1〉.

Hence by Theorem 8.2.2(vii), FTα�1(
1
2‖ · ‖2 ⊕ 1

2‖ · ‖2∗) is not a BC–function.

(vi): Let λ > 0 and f = λ
2‖ · ‖2 on X = c0. Then f∗∗ = λ

2‖ · ‖2∗. The rest

of the proof is very similar to that of (iv).
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(vii) : Since c0 is separable by [58, Example 1.12.6] or [44, Proposi-

tion 1.26(ii)], by Fact 8.1.1, there exists a linear operator L : c0 → C[0, 1]

that is an isometry from c0 to a subspace of C[0, 1]. Then combine (iv), (vi)

and Corollary 8.1.7.

(viii): Apply (ii) . �

Remark 8.3.2 The maximal monotonicity of the operator Te in Exam-

ple 8.3.1(viii) was established by Voisei and Zălinescu in [87, Example 19]

and then later a direct proof was given by Bueno and Svaiter in

[32, Lemma 2.1]. Bueno and Svaiter also proved that Te is not of type (D)

in [32]. Here we give a short and direct proof of the above results. Ex-

ample 8.3.1(iii)&(v) provide a negative answer to Simons’ problem in [74,

Problem 22.12].

8.4 Discussion

The idea of the construction of the operator A in (Theorem 8.2.2) comes

from [4, Theorem 5.1] by Bauschke and Borwein. The main tool involved

in the main result (Theorem 8.2.2) is Simons and Zălinescu’s version of

Attouch-Brezis theorem.
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Chapter 9

On Borwein-Wiersma

decompositions of monotone

linear relations

This chapter is mainly based on [18] by Bauschke, Wang and Yao, in which

although we worked in a reflexive Banach space in [18], we can adapt most

results from a reflexive space to a general Banach space.

It is well known that every square matrix can be decomposed into the

sum of a symmetric matrix and an antisymmetric matrix, where the symmet-

ric part is a gradient of a quadratic function. In this chapter, we provide the

necessary and sufficient conditions for a maximally monotone linear relation

to be Borwein-Wiersma decomposable, i.e., to be the sum of a subdiffer-

ential operator and a skew operator. We also show that Borwein-Wiersma

decomposability implies Asplund decomposability.
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9.1. Decompositions

9.1 Decompositions

Definition 9.1.1 (Borwein-Wiersma decomposition [27]) The set-

valued operator A : X ⇒ X∗ is Borwein-Wiersma decomposable if

A = ∂f + S, (9.1)

where f : X → ]−∞,+∞] is proper lower semicontinuous and convex, and

where S : X ⇒ X∗ is skew and at most single-valued. The right side of

(9.1) is a Borwein-Wiersma decomposition of A.

Note that every single-valued linear monotone operator A with full domain

is Borwein-Wiersma decomposable, with Borwein-Wiersma decomposition

A = A+ +A◦ = ∇qA +A◦. (9.2)

Definition 9.1.2 (Asplund irreducibility [1]) The set-valued operator

A : X ⇒ X∗ is irreducible (sometimes termed “acyclic” [27]) if whenever

A = ∂f + S,

with f : X → ]−∞,+∞] proper lower semicontinuous and convex, and

S : X ⇒ X∗ monotone, then necessarily ran(∂f)|domA is a singleton.

As we shall see in Section 9.1, the following decomposition is less restric-

tive.

Definition 9.1.3 (Asplund decomposition [1]) The set-valued operator
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9.1. Decompositions

A : X ⇒ X∗ is Asplund decomposable if

A = ∂f + S, (9.3)

where f : X → ]−∞,+∞] is proper, lower semicontinuous, and convex, and

where S is irreducible. The right side of (9.3) is an Asplund decomposition

of A.

The following fact, due to Censor, Iusem and Zenios [36, 53], was previ-

ously known in Rn. Here we give a different proof and extend the result to

Banach spaces.

Fact 9.1.4 (Censor, Iusem and Zenios) The subdifferential operator of

a proper lower semicontinuous convex function f : X → ]−∞,+∞] is para-

monotone, i.e., if

x∗ ∈ ∂f(x), y∗ ∈ ∂f(y), (9.4)

and

〈x∗ − y∗, x− y〉 = 0, (9.5)

then x∗ ∈ ∂f(y) and y∗ ∈ ∂f(x).

Proof. By (9.5),

〈x∗, x〉+ 〈y∗, y〉 = 〈x∗, y〉+ 〈y∗, x〉. (9.6)

By (9.4),

f∗(x∗) + f(x) = 〈x∗, x〉, f∗(y∗) + f(y) = 〈y∗, y〉.
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9.1. Decompositions

Adding them, followed by using (9.6), yields

f∗(x∗) + f(y) + f∗(y∗) + f(x) = 〈x∗, y〉+ 〈y∗, x〉,

[f∗(x∗) + f(y)− 〈x∗, y〉] + [f∗(y∗) + f(x)− 〈y∗, x〉] = 0.

Since each bracketed term is nonnegative, we must have f∗(x∗) + f(y) =

〈x∗, y〉 and f∗(y∗) + f(x) = 〈y∗, x〉. It follows that x∗ ∈ ∂f(y) and that

y∗ ∈ ∂f(x). �

The following result provides a powerful criterion for determining whether

a given operator is irreducible and hence Asplund decomposable.

Theorem 9.1.5 Let A : X ⇒ X∗ be monotone and at most single-valued.

Suppose that there exists a dense subset D of domA such that

〈Ax−Ay, x− y〉 = 0 ∀x, y ∈ D.

Then A is irreducible and hence Asplund decomposable.

Proof. Let a ∈ D and D′ := D − {a}. Define A′ : domA− {a} → A(·+ a).

Then A is irreducible if and only if A′ is irreducible. Now we show A′ is

irreducible. By assumptions, 0 ∈ D′ and

〈A′x−A′y, x− y〉 = 0 ∀x, y ∈ D′.

Let A′ = ∂f + R, where f is proper lower semicontinuous and convex, and

R is monotone. Since A′ is single-valued on domA′, we have that ∂f and R
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9.1. Decompositions

are single-valued on domA′ and that

R = A′ − ∂f on domA′.

By taking x∗0 ∈ ∂f(0), rewriting A′ = (∂f − x∗0) + (x∗0 +R), we can and do

suppose ∂f(0) = {0}. For x, y ∈ D′ we have 〈A′x− A′y, x − y〉 = 0. Then

for x, y ∈ D′

0 ≤ 〈R(x)−R(y), x− y〉 = 〈A′x−A′y, x− y〉 − 〈∂f(x)− ∂f(y), x− y〉

= −〈∂f(x)− ∂f(y), x− y〉.

On the other hand, ∂f is monotone, thus,

〈∂f(x)− ∂f(y), x− y〉 = 0, ∀x, y ∈ D′. (9.7)

Using ∂f(0) = {0},

〈∂f(x)− 0, x− 0〉 = 0, ∀x ∈ D′. (9.8)

As ∂f is paramonotone by Fact 9.1.4, ∂f(x) = {0} so that x ∈ argmin f .

This implies that D′ ⊆ argmin f since x ∈ D′ was chosen arbitrarily. As

f is lower semicontinuous, argmin f is closed. Using that D′ is dense in

domA′, it follows that domA′ ⊆ D′ ⊆ argmin f . Since ∂f is single-valued

on domA′, ∂f(x) = {0}, ∀x ∈ domA′. Hence we have A′ is irreducible, and

so is A. �

Remark 9.1.6 In Theorem 9.1.5, the assumption that A be at most single-
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9.1. Decompositions

valued is important: indeed, let L be a proper subspace of Rn. Then ∂ιL is

a linear relation and skew, yet ∂ιL = ∂ιL + 0 is not irreducible.

Theorem 9.1.5 and the definitions of the two decomposabilities now yield

the following.

Corollary 9.1.7 Let A : X ⇒ X∗ be maximally monotone such that A is

Borwein-Wiersma decomposable. Then A is Asplund decomposable.

We proceed to give a few sufficient conditions for a maximally monotone

linear relation to be Borwein-Wiersma decomposable. The following simple

observation will be needed.

Lemma 9.1.8 Let A : X ⇒ X∗ be a monotone linear relation such that A is

Borwein-Wiersma decomposable, say A = ∂f+S, where f : X → ]−∞,+∞]

is proper, lower semicontinuous, and convex, and where S : X ⇒ X∗ is at

most single-valued and skew. Then the following hold.

(i) ∂f + IdomA : x 7→





∂f(x), if x ∈ domA;

∅, otherwise

is a monotone linear

relation.

(ii) domA ⊆ dom ∂f ⊆ dom f ⊆ (A0)⊥.

(iii) If A is maximally monotone, then domA ⊆ dom ∂f ⊆ dom f ⊆

domA.

(iv) If A is maximally monotone and domA is closed, then dom∂f =

domA = dom f .
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Proof. (i): Indeed, on domA, we see that ∂f = A − S is the difference of

two linear relations.

(ii): Clearly domA ⊆ dom ∂f . As S0 = 0, we have A0 = ∂f(0). Thus,

∀x∗ ∈ A0, x ∈ X,

〈x∗, x〉 ≤ f(x)− f(0).

Then σA0(x) ≤ f(x) − f(0), where σA0 is the support function of A0. If

x 6∈ (A0)⊥, then σA0(x) = +∞ since A0 is a linear subspace, so f(x) =

+∞, ∀x 6∈ (A0)⊥. Therefore, dom f ⊆ (A0)⊥. Altogether, (ii) holds.

(iii): Combine (ii) with Proposition 3.2.2(i). (iv): Apply (iii). �

Theorem 9.1.9 Let A : X ⇒ X∗ be a maximally monotone linear relation

such that domA ⊆ domA∗. Then A is Borwein-Wiersma decomposable via

A = ∂qA + S,

where S is an arbitrary linear single-valued selection of A◦. Moreover,

∂qA = A+ on domA.

Proof. From Proposition 3.2.10(i), A+ is monotone and qA+
= qA, using

Proposition 3.2.10(ii), graA+ ⊆ gra ∂qA+
= gra ∂qA. Let S : domA → X∗

be a linear selection ofA◦ (the existence of which is guaranteed by a standard

Zorn’s lemma argument). Then, S is skew. Thus, by Proposition 3.2.2(v),

we have graA = gra(A+ + S) ⊆ gra(∂qA + S). Since A is maximally mono-

tone, A = ∂qA+S, which is the announced Borwein-Wiersma decomposition.

Moreover, ∂qA = A− S = A+ on domA. �
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Corollary 9.1.10 Let A : X ⇒ X∗ be a maximally monotone linear rela-

tion such that A is symmetric. Then A is Borwein-Wiersma decomposable,

with decompositions A = ∂qA + 0. If X is reflexive, then A−1 is Borwein-

Wiersma decomposable with A−1 = ∂q∗A + 0.

Proof. Using Proposition 3.2.11, we obtain A = A∗|X . Hence, Theo-

rem 9.1.9 applies; in fact, A = ∂qA. If X is reflexive, then we have

A−1 = ∂qA
∗ = ∂q∗A by [92, Theorem 2.4.4(iv) and Theorem 2.3.1(iv)]. From

Proposition 3.1.3(iv), we have A−1 = (A∗)−1 = (A−1)∗. Then A−1 = ∂qA−1 .

Hence A−1 = ∂qA−1 = ∂q∗A. �

Corollary 9.1.11 Let A : X ⇒ X∗ be a maximally monotone linear rela-

tion such that domA is closed, and let S be a single-valued linear selection

of A◦. Then qA = qA, A+ = ∂qA is maximally monotone, and A and A∗|X
are Borwein-Wiersma decomposable, with decompositions A = A+ + S and

A∗|X = A+ − S, respectively.

Proof. Proposition 3.2.2(iv) implies that domA∗|X = domA. By Proposi-

tion 3.2.10(iv), A∗|X is maximally monotone. In view of Proposition 3.2.2(v),

A = A+ + A◦ and A∗|X = A+ − A◦. Theorem 9.1.9 yields the Borwein-

Wiersma decomposition A = ∂qA+S. Hence domA ⊆ dom ∂qA ⊆ dom qA ⊆

domA = domA. In turn, since domA = domA+ and qA = qA+
, this implies

that domA+ = dom ∂qA+
= dom qA+

. In view of Proposition 3.2.10(i)&(ii),

qA+
= qA+

and graA+ ⊆ gra ∂qA+
. By Theorem 9.1.9, A+ = ∂qA on domA.

Since domA = domA+ = dom ∂qA and qA = qA+
= qA+

= qA, this implies

that A+ = ∂qA = ∂qA everywhere. Therefore, A+ is maximally monotone.

Then we obtain the Borwein-Wiersma decomposition A∗|X = A+ − S. �
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Theorem 9.1.12 Let A : X ⇒ X∗ be a maximally monotone linear relation

such that A is skew, and let S be a single-valued linear selection of A. Then

A is Borwein-Wiersma decomposable via ∂ιdomA + S.

Proof. Clearly, S is skew. Proposition 3.1.3(ii) and Proposition 3.2.2(iii)

imply that A = A0 + S = (domA)⊥ + S = ∂ιdomA + S, as announced.

Alternatively, by [80, Lemma 2.2], domA ⊆ domA∗ and now apply Theo-

rem 9.1.9. �

Under a mild constraint qualification, the sum of two Borwein-Wiersma

decomposable operators is also Borwein-Wiersma decomposable and the de-

composition of the sum is the corresponding sum of the decompositions.

Proposition 9.1.13 (sum rule) Let A1 and A2 be maximally monotone

linear relations from X to X∗. Suppose that A1 and A2 are Borwein-

Wiersma decomposable via A1 = ∂f1 + S1 and A2 = ∂f2 + S2, respectively.

Suppose that domA1−domA2 is closed. Then A1+A2 is Borwein-Wiersma

decomposable via A1 +A2 = ∂(f1 + f2) + (S1 + S2).

Proof. By Lemma 9.1.8(iii), domA1 ⊆ dom f1 ⊆ domA1 and domA2 ⊆

dom f2 ⊆ domA2. Hence domA1 − domA2 ⊆ dom f1 − dom f2 ⊆ domA1 −

domA2 ⊆ domA1 − domA2 = domA1 − domA2. Thus, dom f1 − dom f2 =

domA1 − domA2 is a closed subspace of X. By [74, Theorem 18.2], ∂f1 +

∂f2 = ∂(f1 + f2); furthermore, S1 + S2 is clearly skew. The result thus

follows. �
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9.2 Uniqueness results

The main result in this section (Theorem 9.2.8) states that if a maximally

monotone linear relation A is Borwein-Wiersma decomposable, then the

subdifferential part of its decomposition is unique on domA. We start by

showing that subdifferential operators that are monotone linear relations are

actually symmetric, which is a variant of a well known result from Calculus.

Lemma 9.2.1 Let f : X → ]−∞,+∞] be proper, lower semicontinuous,

and convex. Suppose that the maximally monotone operator ∂f is a linear

relation with closed domain. Then ∂f = (∂f)∗.

Proof. Set A = ∂f and Y = dom f . Since domA is closed, the Brøndsted-

Rockafellar Theorem (see [74, Theorem 18.6]) implies that dom f = Y =

domA. By Proposition 3.2.2(iv), domA∗|X = domA. Let x ∈ Y and

consider the directional derivative g = f ′(x; ·), i.e.,

g : X → [−∞,+∞] : y 7→ lim
t↓0

f(x+ ty)− f(x)

t
.

By [92, Theorem 2.1.14], dom g =
⋃

r≥0 r · (dom f − x) = Y . On the other

hand, f is lower semicontinuous on X. Thus, since Y = dom f is a Banach

space, f |Y is continuous by [92, Theorem 2.2.20(b)]. Altogether, in view

of [92, Theorem 2.4.9], g|Y is continuous. Hence g is lower semicontinuous.

Using [92, Corollary 2.4.15] and Fact 3.1.3(v), we now deduce that (∀y ∈ Y )

g(y) = sup〈∂f(x), y〉 = 〈Ax, y〉 = 〈x,A∗y〉. We thus have proved that

(∀x ∈ Y )(∀y ∈ Y ) f ′(x; y) = 〈Ax, y〉 = 〈x,A∗y〉. (9.9)
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In particular, f |Y is differentiable. Now fix x, y, z in Y . Then, using (9.9),

we see that

〈Az, y〉 = lim
s↓0

〈A(x+ sz), y〉 − 〈Ax, y〉
s

= lim
s↓0

f ′(x+ sz; y)− f ′(x; y)
s

(9.10)

= lim
s↓0

lim
t↓0

(f(x+ sz + ty)− f(x+ sz)

st
− f(x+ ty)− f(x)

st

)
.

Set h : R → R : s 7→ f(x+sz+ ty)−f(x+sz). Since f |Y is differentiable, so

is h. For s > 0, the Mean Value Theorem thus yields rs,t ∈ ]0, s[ such that

f(x+ sz + ty)− f(x+ sz)

s
− f(x+ ty)− f(x)

s

=
h(s)

s
− h(0)

s
= h′(rs,t) (9.11)

= f ′(x+ rs,tz + ty; z)− f ′(x+ rs,tz; z)

= t〈Ay, z〉.

Combining (9.10) with (9.11), we deduce that 〈Az, y〉 = 〈Ay, z〉. Thus, A is

symmetric. The result now follows from Proposition 3.2.11. �

To improve Lemma 9.2.1, we need the following “shrink and dilate”

technique.

Lemma 9.2.2 Let A : X ⇒ X∗ be a monotone linear relation, and let Z be

a closed subspace of domA. Set B = (A+ IZ) + Z⊥. Then B is maximally

monotone and domB = Z.
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Proof. Since Z ⊆ domA and B = A+ ∂ιZ it is clear that B is a monotone

linear relation with domB = Z. By Proposition 3.2.2 (i), we have

Z⊥ ⊆ B0 = A0 + Z⊥ ⊆ (domA)⊥ + Z⊥ ⊆ Z⊥ + Z⊥ = Z⊥.

Hence B0 = Z⊥ = (domB)⊥. Therefore, by Proposition 3.2.2(ii), B is

maximally monotone. �

Theorem 9.2.3 Let f : X → ]−∞,+∞] be proper, lower semicontinuous,

and convex, and let Y be a linear subspace of X. Suppose that ∂f + IY is a

linear relation. Then ∂f + IY is symmetric.

Proof. Put A = ∂f + IY . Assume that (x, x∗), (y, y∗) ∈ graA. Set Z =

span{x, y}. Let B : X ⇒ X∗ be defined as in Lemma 9.2.2. Clearly,

graB ⊆ gra ∂(f+ιZ). In view of the maximal monotonicity of B, we see that

B = ∂(f+ ιZ). Since domB = Z is closed, it follows from Lemma 9.2.1 that

B = B∗. In particular, we obtain that 〈x∗, y〉 = 〈y∗, x〉. Hence, 〈∂f(x), y〉 =

〈∂f(y), x〉 and therefore ∂f + IY is symmetric. �

Lemma 9.2.4 Let A : X ⇒ X∗ be a maximally monotone linear relation

such that A is Borwein-Wiersma decomposable. Then domA ⊆ domA∗.

Proof. By hypothesis, there exists a proper lower semicontinuous and convex

function f : X → ]−∞,+∞] and an at most single-valued skew operator S

such that A = ∂f + S. Hence domA ⊆ domS, and Theorem 9.2.3 implies

that (A− S) + IdomA is symmetric. Let x and y be in domA. Then

〈Ax− 2Sx, y〉 = 〈Ax− Sx, y〉 − 〈Sx, y〉 = 〈Ay − Sy, x〉 − 〈Sx, y〉
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= 〈Ay, x〉 − 〈Sy, x〉 − 〈Sx, y〉 = 〈Ay, x〉,

which implies that (A − 2S)x ⊆ A∗x. Therefore, domA = dom(A − 2S) ⊆

domA∗. �

Remark 9.2.5 We can now derive part of the conclusion of Proposition 9.1.13

differently as follows. Since domA1−domA2 is closed, Voisei proved in [83]

(see Theorem 7.2.2 or [74, Theorem 46.3]) that A1+A2 is maximally mono-

tone; moreover, Fact 7.1.6 yields (A1+A2)
∗ = A∗

1+A∗
2. Using Lemma 9.2.4,

we thus obtain dom(A1 + A2) = domA1 ∩ domA2 ⊆ domA∗
1 ∩ domA∗

2 =

dom(A∗
1 +A∗

2) = dom(A1 +A2)
∗. Therefore, A1 +A2 is Borwein-Wiersma

decomposable by Theorem 9.1.9.

Theorem 9.2.6 (characterization of subdifferential operators) Let

A : X ⇒ X∗ be a monotone linear relation. Then A is maximally monotone

and symmetric ⇔ there exists a proper lower semicontinuous convex function

f : X → ]−∞,+∞] such that A = ∂f .

Proof. “⇒”: Proposition 3.2.10(ii). “⇐”: Apply Theorem 9.2.3 with Y =

X. �

Remark 9.2.7 Theorem 9.2.6 generalizes [63, Theorem 5.1] of Phelps and

Simons.

Theorem 9.2.8 (uniqueness of the subdifferential part) Let A :

X ⇒ X∗ be a maximally monotone linear relation such that A is Borwein-

Wiersma decomposable. Then on domA, the subdifferential part in the de-
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composition is unique and equals to A+, and the skew part must be a linear

selection of A◦.

Proof. Let f1 and f2 be proper lower semicontinuous convex functions from

X to ]−∞,+∞], and let S1 and S2 be at most single-valued skew operators

from X to X∗ such that

A = ∂f1 + S1 = ∂f2 + S2. (9.12)

Set D = domA. Since S1 and S2 are single-valued on D, we have A− S1 =

∂f1 and A − S2 = ∂f2 on D. Hence ∂f1 + ID and ∂f2 + ID are monotone

linear relations with

(∂f1 + ID)(0) = (∂f2 + ID)(0) = A0. (9.13)

By Theorem 9.2.3, ∂f1 + ID and ∂f2 + ID are symmetric, i.e.,

(∀x ∈ D)(∀y ∈ D) 〈∂f1(x), y〉 = 〈∂f1(y), x〉 and 〈∂f2(x), y〉 = 〈∂f2(y), x〉.

Thus,

(∀x ∈ D)(∀y ∈ D) 〈∂f2(x)− ∂f1(x), y〉 = 〈∂f2(y)− ∂f1(y), x〉. (9.14)

On the other hand, by (9.12), (∀x ∈ D) S1x−S2x ∈ ∂f2(x)− ∂f1(x). Then

by Fact 3.2.2(iii), Proposition 3.2.1(ii) and Proposition 3.1.3(v),

(∀x ∈ D)(∀y ∈ D) 〈∂f2(x)− ∂f1(x), y〉 = 〈S1x− S2x, y〉 (9.15)
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= −〈S1y − S2y, x〉

= −〈∂f2(y)− ∂f1(y), x〉.

Now fix x ∈ D. Combining (9.14) and (9.15), we get (∀y ∈ D)

〈∂f2(x)− ∂f1(x), y〉 = 0. Using Fact 3.2.2(iii), we see that

∂f2(x)− ∂f1(x) ⊆ D⊥ = (domA)⊥ = A0.

Hence, in view of Lemma 9.1.8(i), (9.13), and Fact 3.1.3(ii),

∂f1 + ID = ∂f2 + ID.

By Lemma 9.2.4 and Theorem 9.1.9, we consider the case when f2 = qA

so that ∂f2 = A+ on D. Hence ∂f1 = A+ on D and, if x ∈ D, then

S1x ∈ Ax− ∂f1(x) = Ax−A+x = A◦x by Proposition 3.2.2(v). �

Remark 9.2.9 In a Borwein-Wiersma decomposition, the skew part need

not be unique: indeed, assume that X = R2, set Y := R × {0}, and let

S be given by graS =
{(

(x, 0), (0, x)
)
| x ∈ R

}
. Then S is skew and the

maximally monotone linear relation ∂ιY has two distinct Borwein-Wiersma

decompositions, namely ∂ιY + 0 and ∂ιY + S.

Proposition 9.2.10 Let A : X ⇒ X∗ be a maximally monotone linear

relation. Suppose that A is Borwein-Wiersma decomposable, with subdiffer-

ential part ∂f , where f : X → ]−∞,+∞] is proper, lower semicontinuous

and convex. Then there exists a constant α ∈ R such that the following hold.
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(i) f = qA + α on domA.

(ii) If domA is closed, then f = qA + α = qA + α on X.

Proof. Let S be a linear single-valued selection of A◦. By Lemma 9.2.4,

domA ⊆ domA∗. In turn, Theorem 9.1.9 yields

A = ∂qA + S.

Let {x, y} ⊂ domA. By Theorem 9.2.8, ∂f + IdomA = ∂qA + IdomA. Now

set Z = span{x, y}, apply Lemma 9.2.2 to the monotone linear relation

∂f + IdomA = ∂qA + IdomA, and let B be as in Lemma 9.2.2. Note that

graB = gra(∂qA + ∂ιZ) ⊆ gra ∂(qA + ιZ) and that graB = gra(∂f + ∂ιZ) ⊆

gra ∂(f + ιZ). By the maximal monotonicity of B, we conclude that B =

∂(qA + ιZ) = ∂(f + ιZ). By [67, Theorem B], there exists α ∈ R such that

f + ιZ = qA+ ιZ +α. Hence α = f(x)− qA(x) = f(y)− qA(y) and repeating

this argument with y ∈ (domA)r {x}, we see that

f = qA + α on domA (9.16)

and (i) is thus established. Now assume in addition that domA is closed.

Applying Lemma 9.1.8(iv) with both ∂f and ∂qA, we obtain

dom qA = dom ∂qA = domA = dom ∂f = dom f.

Consequently, (9.16) now yields f = qA+α. Finally, Corollary 9.1.11 implies

that qA = qA. �
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9.3 Characterizations and examples

The following characterization of the Borwein-Wiersma decomposability of

a maximally monotone linear relation is quite pleasing.

Theorem 9.3.1 (Borwein-Wiersma decomposability) Let A : X ⇒ X∗

be a maximally monotone linear relation. Then the following are equivalent.

(i) A is Borwein-Wiersma decomposable.

(ii) domA ⊆ domA∗.

(iii) A = A+ +A◦.

Proof. “(i)⇒(ii)”: Lemma 9.2.4. “(i)⇐(ii)”: Theorem 9.1.9. “(ii)⇒(iii)”:

Proposition 3.2.2(v). “(ii)⇐(iii)”: This is clear. �

Corollary 9.3.2 Assume X is reflexive. Let A : X ⇒ X∗ be a maximally

monotone linear relation. Then both A and A∗ are Borwein-Wiersma de-

composable if and only if domA = domA∗.

Proof. Combine Theorem 9.3.1, Fact 3.2.13, and Fact 3.1.3(vi). �

We shall now provide two examples of a linear relation S in the Hilbert

space to illustrate that the following do occur:

• S is Borwein-Wiersma decomposable, but S∗ is not.

• Neither S nor S∗ is Borwein-Wiersma decomposable.

• S is not Borwein-Wiersma decomposable, but S−1 is.
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Example 9.3.3 Suppose that X is the Hilbert space `2(N), and set

S : domS → X : y 7→
(

1
2yn +

∑

i<n

yi

)

n∈N
, (9.17)

with

domS =

{
y = (yn)n∈N ∈ X

∣∣∣∣
∑

i≥1

yi = 0,

(∑

i≤n

yi

)

n∈N
∈ X

}
.

Then

S∗ : domS∗ → X : y 7→
(

1
2yn +

∑

i>n

yi

)

n∈N
(9.18)

where

domS∗ =

{
y = (yn)n∈N ∈ X

∣∣∣∣
(∑

i>n

yi

)

n∈N
∈ X

}
.

Then S can be identified with an at most single-valued linear relation such

that the following hold. (See [63, Theorem 2.5] and Proposition 3.3.2, Propo-

sition 3.3.3, Proposition 3.3.5, and Theorem 3.3.8.)

(i) S is maximally monotone and skew.

(ii) S∗ is maximally monotone but not skew.

(iii) domS is dense in `2(N), and domS $ domS∗.

(iv) S∗ = −S on domS.

In view of Theorem 9.3.1, S is Borwein-Wiersma decomposable while S∗ is

not. However, both S and S∗ are irreducible and Asplund decomposable by
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Theorem 9.1.5. Because S∗ is irreducible but not skew, we see that the class

of irreducible operators is strictly larger than the class of skew operators.

Example 9.3.4 (Inverse Volterra operator) (See Example 3.4.4 and The-

orem 3.4.5.) Suppose that X is the Hilbert space L2[0, 1], and consider the

Volterra integration operator (see, e.g., [52, Problem 148]), which is defined

by

V : X → X : x 7→ V x, where V x : [0, 1] → R : t 7→
∫ t

0
x, (9.19)

and set A = V −1. Then

V ∗ : X → X : x 7→ V ∗x, where V ∗x : [0, 1] → R : t 7→
∫ 1

t

x,

and the following hold.

(i) We have

domA =
{
x ∈ X

∣∣ x is absolutely continuous, x(0) = 0,

and x′ ∈ X
}

and

A : domA → X : x 7→ x′.

(ii) We have

domA∗ =
{
x ∈ X

∣∣ x is absolutely continuous, x(1) = 0,
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and x′ ∈ X
}

and

A∗ : domA∗ → X : x 7→ −x′.

(iii) Both A and A∗ are maximally monotone linear operators.

(iv) Neither A nor A∗ is symmetric.

(v) Neither A nor A∗ is skew.

(vi) domA 6⊆ domA∗, and domA∗ 6⊆ domA.

(vii) Y = domA ∩ domA∗ is dense in X.

(viii) Both A+ IY and A∗ + IY are skew.

By Theorem 9.1.5, both A and A∗ are irreducible and Asplund decomposable.

On the other hand, by Theorem 9.3.1, neither A nor A∗ is Borwein-Wiersma

decomposable. Finally, A−1 = V and (A∗)−1 = V ∗ are Borwein-Wiersma

decomposable since they are continuous linear operators with full domain.

Remark 9.3.5 (an answer to Borwein and Wiersma’s question) The

operators S, S∗, A, and A∗ defined in this section are all irreducible and

Asplund decomposable, but none of them has full domain. This provides an

answer to [27, Question (4) in Section 7]:

Can one exhibit an irreducible operator whose domain is not

the whole space?
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9.4 When X is a Hilbert space

Throughout this short section, we suppose that X is a Hilbert space. Recall

(see, e.g., [42, Chapter 5] for basic properties) that if C is a nonempty closed

convex subset of X, then the (nearest point) projector PC is well defined and

continuous. If Y is a closed subspace of X, then PY is linear and PY = P ∗
Y .

Definition 9.4.1 Let A : X ⇒ X be a maximally monotone linear relation.

We define QA by

QA : domA → X : x 7→ PAxx.

Note that QA is monotone and a single-valued selection of A because (∀x ∈

domA) Ax is a nonempty closed convex subset of X.

Proposition 9.4.2 (linear selection) Let A : X ⇒ X be a maximally

monotone linear relation. Then the following hold.

(i) (∀x ∈ domA) QAx = P(A0)⊥(Ax), and QAx ∈ Ax.

(ii) QA is monotone and linear.

(iii) A = QA +A0.

Proof. Let x ∈ domA = domQA and let x∗ ∈ Ax. Using

Proposition 3.1.3(ii), we see that

QAx = PAxx = Px∗+A0x = x∗ + PA0(x− x∗) = x∗ + PA0x− PA0x
∗

= PA0x+ P(A0)⊥x
∗ = P(A0)⊥x

∗.
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Since x∗ ∈ Ax is arbitrary, we have thus established (i). Now let x and y

be in domA, and let α and β be in R. If α = β = 0, then, by Proposi-

tion 3.1.3(i), we have QA(αx + βy) = QA0 = PA00 = 0 = αQAx + βQAy.

Now assume that α 6= 0 or β 6= 0. By (i) and Proposition 3.1.3(iii), we have

QA(αx+ βy) = P(A0)⊥A(αx+ βy) = αP(A0)⊥(Ax) + βP(A0)⊥(Ay)

= αQAx+ βQAy.

Hence QA is a linear selection of A and (ii) holds. Finally, (iii) follows from

Proposition 3.1.3(ii). �

Example 9.4.3 Let A : X ⇒ X be maximally monotone and skew. Then

A = ∂ιdomA +QA is a Borwein-Wiersma decomposition.

Proof. By Proposition 9.4.2(ii), QA is a linear selection of A. Now apply

Theorem 9.1.12. �

Example 9.4.4 Let A : X ⇒ X be a maximally monotone linear relation

such that domA is closed. Set B = PdomAQAPdomA and f = qB + ιdomA.

Then the following hold.

(i) B : X → X is continuous, linear, and maximally monotone.

(ii) f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper.

(iii) A = ∂ιdomA +B.

(iv) ∂f +B◦ is a Borwein-Wiersma decomposition of A.
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Proof. (i): By Proposition 9.4.2(ii), QA is monotone and a linear selec-

tion of A. Hence, B : X → X is linear; moreover, (∀x ∈ X) 〈x,Bx〉 =

〈x, PdomAQAPdomAx〉 = 〈PdomAx, QAPdomAx〉 ≥ 0. Altogether, B : X →

X is linear and monotone. By Corollary 3.2.3, B is continuous and maxi-

mally monotone.

(ii): By (i), qB is thus convex and continuous; in turn, f is convex, lower

semicontinuous, and proper.

(iii): Using Proposition 9.4.2(i) and Proposition 3.2.2(iii), we have (∀x ∈

X) (QAPdomA)x ∈ (A0)⊥ = domA = domA. Hence, (∀x ∈ domA) Bx =

(PdomAQAPdomA)x = QAx ∈ Ax. Thus, B + IdomA = QA. In view of

Proposition 9.4.2(iii) and Proposition 3.2.2(iii), we now obtain A = B +

IdomA +A0 = B + ∂ιdomA.

(iv): It follows from (iii) and (9.2) that A = B + ∂ιdomA = ∇qB +

∂ιdomA +B◦ = ∂(qB + ιdomA) +B◦ = ∂f +B◦. �

Proposition 9.4.5 Let A : X ⇒ X be such that domA is a closed subspace

of X. Then A is a maximally monotone linear relation ⇔ A = ∂ιdomA+B,

where B : X → X is linear and monotone.

Proof. “⇒”: This is clear from Example 9.4.4(i)&(iii). “⇐”: Clearly, A is

a linear relation. By Corollary 3.2.3, B is continuous and maximally mono-

tone. Using Rockafellar’s sum theorem [66] or Theorem 5.3.1, we conclude

that ∂ιdomA +B is maximally monotone. �
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9.5 Discussion

The original papers by Asplund [1] and by Borwein and Wiersma [27]

concerned the additive decomposition of a maximally monotone operator

whose domain has nonempty interior. In this chapter, we focused on max-

imally monotone linear relations and we specifically allowed for domains

with empty interior. All maximally monotone linear relations on finite-

dimensional spaces are Borwein-Wiersma decomposable; however, this fails

in infinite-dimensional settings. We presented characterizations of Borwein-

Wiersma decomposability of maximally monotone linear relations in general

Banach spaces and provided a more explicit decomposition in Hilbert spaces.

The characterization of Asplund decomposability and the correspond-

ing construction of an Asplund decomposition remain interesting unresolved

topics for future explorations, even for maximally monotone linear operators

whose domains are proper dense subspaces of infinite-dimensional Hilbert

spaces.
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Conclusion

Let us conclude by listing our findings of all relevant chapters.

Chapter 3: The Brezis-Browder Theorem (see Fact 3.2.13) is a very im-

portant characterization of maximal monotonicities of monotone relations.

The original proof [30] is based on the application of Zorn’s Lemma by con-

structing a series of finite-dimensional subspaces, which is complicated. In

Theorem 3.2.15, we establish the Brezis-Browder Theorem by considering

the fact that a lower semicontinuous, convex and coercive function on a

reflexive space has at least one minimizer. In [75], Simons generalized the

Brezis-Browder Theorem to SSDB spaces. The Brezis-Browder Theorem

and Corollary 3.2.6 are essential tools for the construction of maximally

monotone linear subspace extensions of a monotone linear relation.

There will be an interesting question for the future work on the Brezis-

Browder Theorem in a general Banach space:

Let A : X ⇒ X∗ be a monotone linear relation such that graA

is closed. Assume A∗|X is monotone.

Is A necessarily maximally monotone?

In Sections 3.3 and 3.4, some explicit monotone linear relations were

constructed in Hilbert spaces, which gave a negative answer to a question
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raised by Svaiter [80] and which showed that the constraint qualification in

the sum problem for maximally monotone operators cannot be weakened

(see [63, Example 7.4]). In particular, these two sections will provide con-

crete examples for the characterization of decomposable monotone linear

relations.

Chapter 4: A direction for future work in this chapter is to write com-

puter code to find the maximally monotone subspace extension of G, and to

generalize the results into a Hilbert space by applying the Brezis-Browder

Theorem.

Chapter 5: As we can see, Fact 5.1.7 plays an important role in the proof

of Theorem 5.2.4 and Theorem 5.3.1. Theorem 5.2.4 presents a powerful

sufficient condition for the sum problem. The following question posed by

Simons in [72, Problem 41.4] remains open:

Let A : X ⇒ X∗ be maximally monotone of type (FPV), let

C be a nonempty closed convex subset of X, and suppose that

domA ∩ intC 6= ∅.

Is A+NC necessarily maximally monotone?

If the above result holds, by Theorem 5.2.4, we can get the following result:

Let A : X ⇒ X∗ be maximally monotone of type (FPV), and let B :

X ⇒ X∗ be maximally monotone with domA ∩ int domB 6= ∅. Assume

that domA ∩ domB ⊆ domB. Then A+B is maximally monotone.

Chapter 6: Our first main result (Theorem 6.2.1) in this chapter is ob-

tained by applying Goldstine’s Theorem (see Fact 6.1.2). Simons, Marques

Alves and Svaiter’s characterization of type (D) operators and Borwein’s
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generalization of the Brøndsted-Rockafellar theorem are the main tools for

obtaining the other main result (Theorem 6.3.1). Corollary 6.3.3 motivates

the following question:

Let A : X ⇒ X∗ be a monotone linear relation with closed

graph. Assume that A∗ is monotone.

Is A necessarily of type (D)?

Chapter 7: It would be interesting to find out whether Theorem 7.3.1

generalizes to the following:

Let A : X ⇒ X∗ be a maximally monotone linear relation, let C

be a nonempty closed convex subset of X. Assume that

[
domA−

⋃

λ>0

λC

]
is a closed subspace of X.

Is it necessarily true that FA+NC
= FA�2FNC

?

Chapter 8: The idea of the construction of the operator A in (Theo-

rem 8.2.2) comes from [4, Theorem 5.1] by Bauschke and Borwein. The main

tool involved in the main result (Theorem 8.2.2) is Simons and Zălinescu’s

version of Attouch-Brezis theorem.

Chapter 9: The original papers by Asplund [1] and by Borwein and

Wiersma [27] concerned the additive decomposition of a maximally mono-

tone operator whose domain has nonempty interior. In this chapter, we

focused on maximally monotone linear relations and we specifically allowed

for domains with empty interior. All maximally monotone linear relations

on finite-dimensional spaces are Borwein-Wiersma decomposable; however,

224



Chapter 10. Conclusion

this fails in infinite-dimensional settings. We presented characterizations of

Borwein-Wiersma decomposability of maximally monotone linear relations

in general Banach spaces and provided a more explicit decomposition in

Hilbert spaces.

The characterization of Asplund decomposability and the correspond-

ing construction of an Asplund decomposition remain interesting unresolved

topics for future explorations, even for maximally monotone linear operators

whose domains are proper dense subspaces of infinite-dimensional Hilbert

spaces.
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Appendix A

Maple code

The following is the Maple code to plot Figure 2.1.

>r e s t a r t : Loading Student:−LinearAlgebra

with ( p l o t s ) :

> f i e l d p l o t ( ( Matrix (2 , 2 , {(1 , 1) = 0 , (1 , 2) = −1, (2 , 1) = 1 ,

(2 , 2) = 0} ) ) .

( Vector (2 , {(1) = x , (2 ) = y } ) ) , x = −3 . . 3 , y = −2 . . 2 ,

t h i ckn e s s = 2 , co lou r = blue )
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Appendix A. Maple code

The following is the Maple code used to verify the calculations for Exam-

ple 4.5.2 on G̃2

>r e s t a r t : Loading Student:−LinearAlgebra

>A := Matrix (3 , 2 , {(1 , 1) = −1, (1 , 2) = 0 , (2 , 1) = 0 ,

(2 , 2) = 0 , (3 , 1) = 0 , (3 , 2) = −1});

>B := Matrix (3 , 2 , {(1 , 1) = 1 , (1 , 2) = 0 , (2 , 1) = 0 ,

(2 , 2) = 1 , (3 , 1) = 0 , (3 , 2) = 1})

>T:=A. Transpose (B)+B. Transpose (A)

>Eigenvalues (T)

>Eigenvec tor s (T)

>Idlam :=[[[−1+ sq r t (2) ,0 ,0] , [0 ,−1− s q r t ( 2 ) , 0 ] , [ 0 , 0 , − 2 ] ] ]

>V := Matrix (3 , 3 , {(1 , 1) = 0 , (1 , 2) = 0 , (1 , 3) = 1 ,

(2 , 1) = −1/( s q r t (2)−1) , (2 , 2) = −1/(−1− s q r t ( 2 ) ) ,

(2 , 3) = 0 , (3 , 1) = 1 , (3 , 2) = 1 , (3 , 3) = 0})

>N:= Matrix (3 , 3 , {(1 , 1) = 0 , (1 , 2) = −1, (1 , 3) = 1 ,

(2 , 1) = 0 , (2 , 2) = 2 , (2 , 3) = −1, (3 , 1) = 0 ,

(3 , 2) = 1 , (3 , 3) = 1})

>M:=Transpose (N) . Idlam .N

>e v a l f ( E igenvalues (M) )

>NullSpace ( ‘< |> ‘( Transpose (N) . Transpose (V) .A,

Transpose (N) . Transpose (V) .B) )

>C := Matrix (2 , 2 , {(1 , 1) = 1 , (1 , 2) = −2∗ s q r t ( 2 ) ,

(2 , 1) = 0 , (2 , 2) = 5∗ s q r t ( 2 )} )

> t i l d e {G 2}:= 1/C
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Appendix A. Maple code

The following is the Maple code used to verify the calculations for Exam-

ple 4.5.3 on G̃1, G̃2, E1 and E2.

>r e s t a r t : Loading Student:−L in ea rA l g eb r avo i s e i

>A := Matrix ( [ [ 1 , 1 ] , [ 2 , 0 ] , [ 3 , 1 ] ] )

>B := Matrix ( [ [ 1 , 5 ] , [ 1 , 7 ] , [ 0 , 2 ] ] )

>K := Matrix ( [ [ 1 , 1 , 1 , 5 ] , [ 2 , 0 , 1 , 7 ] , [ 3 , 1 , 0 , 2 ] ] )

>Rank (K)

>K1:= A. Transpose (B)+B. Transpose (A)

>Eigenvec tor s (K1)

>Idlam := Matrix (3 , 3 , {(1 , 1) = 13+sq r t (201) , (1 , 2) = 0 ,

(1 , 3) = 0 , (2 , 1) = 0 , (2 , 2) = −6, (2 , 3) = 0 ,

(3 , 1) = 0 , (3 , 2) = 0 , (3 , 3) = 13− s q r t (201)} )

>V:= Matrix (3 , 3 , {(1 , 1) = 20/(1+ sq r t ( 201 ) ) , (1 , 2) = 0 ,

(1 , 3) = 20/(1− s q r t ( 201 ) ) ,

(2 , 1) = 1 , (2 , 2) = −1, (2 , 3) = 1 , (3 , 1) = 1 ,

(3 , 2) = 1 , (3 , 3) = 1})

>V g := Matrix (2 , 3 , {(1 , 1) = 0 , (1 , 2) = −1, (1 , 3) = 1 ,

(2 , 1) = 20/(1− s q r t ( 201 ) ) ,

(2 , 2) = 1 , (2 , 3) = 1})

>L :=NullSpace ( ‘< |> ‘(V g .A, V g .B) )

>C0 := Matrix (2 , 2 , {(1 , 1) = −(−21+sq r t (201))/(−2+2∗ s q r t ( 201 ) ) ,

(1 , 2) = −(−107+7∗ s q r t (201))/(−2+2∗ s q r t ( 201 ) ) ,

(2 , 1) = (−23+3∗ s q r t (201))/(−2+2∗ s q r t ( 201 ) ) ,

(2 , 2) = (−117+17∗ s q r t (201))/(−2+2∗ s q r t ( 201 ) )} )
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Appendix A. Maple code

>t i l d e {G 1}:= 1/C0

>N := Matrix (3 , 3 , {(1 , 1) = 0 , (1 , 2) = 0 , (1 , 3) = 1/5 ,

(2 , 1) = 0 ,

(2 , 2) = 1 , (2 , 3) = 0 , (3 , 1) = 0 , (3 , 2) = 0 , (3 , 3) = 1})

>M := Transpose (N) . Idlam .N

>e v a l f ( E igenvalues (M) )

>NullSpace ( ‘< |> ‘( Transpose (N) . Transpose (V) .A,

Transpose (N) . Transpose (V) .B) )

>C1 := Matrix (2 , 2 , {(1 , 1) = −9/20+(1/30)∗ s q r t (201) ,

(1 , 2) = −13/4+(1/6)∗ s q r t (201) ,

(2 , 1) = 29/20−(1/30)∗ s q r t (201) ,

(2 , 2) = 33/4−(1/6)∗ s q r t (201)} )

>t i l d e {G 2}:= 1/C1

>vec := Vector (3 , {(1) = 0 , (2 ) = 0 , (3 ) = 0})

>LinearSolve ( ‘< |> ‘(A, B, vec ) , f r e e = t )

242



Index

ε–subdifferential operator, 8, 141

adjoint, 5, 27, 28, 147, 153

Asplund decomposition, 200, 203

Attouch & Brezis’ Theorem, 15

BC–function, 4, 181, 182, 187, 193

Borwein’s Theorem, 141

Borwein-Wiersma decomposition,

199, 211, 212, 214

boundary, 7

Brezis & Browder’s Theorem, 27

Censor, Iusem & Zenios’ Theorem,

200

closed unit ball, 8

constraint qualification, 99

convex hull, 7

Crouzeix & Ocaña-Anaya’s char-

acterizations, 70

distance function, 7

domain, 5

duality mapping, 121

Fenchel conjugate, 7

Fitzpatrick function, 6, 101

Fitzpatrick, Phelps & Veronas’ The-

orem, 103

graph, 5

identity mapping, 167

indicator function, 7

indicator mapping, 7
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