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Abstract

We study monotone operators in general Banach spaces. Properties and
characterizations of monotone linear relations are presented. We focus on
the “sum problem” which is the most famous open problem in Monotone
Operator Theory, and we provide a powerful sufficient condition for the sum
problem. We work on classical types of maximally monotone operators and
provide affirmative answers to several open problems posed by Phelps and
by Simons. Borwein-Wiersma decomposition and Asplund decomposition of

maximally monotone operators are also studied.
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Preface

My thesis is primarily based on the following twelve papers:

[6-8] by Heinz H. Bauschke, Jonathan M. Borwein, Xiangfu
Wang and Liangjin Yao;

[14-18] by Heinz H. Bauschke, Xianfu Wang and Liangjin Yao;
[88] by Xianfu Wang and Liangjin Yao;

and

[89-91] by Liangjin Yao.

Specifically, the relationship between the above papers and my thesis is as

follows:

Chapter 3 is mainly based on the work in [15, 17, 18, 89]; Chap-
ter 4 is mainly based on the work in [88]; Chapter 5 is mainly
based on the work in [90, 91]; Chapter 6 is all based on the
work in [6, 7]; Chapter 7 is mainly based on the work in [15, 17];
Chapter 8 is all based on the work in [8]; and Chapter 9 is mainly

based on the work in [18].

For every multi-authored paper, each author contributed equally.
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Chapter 1

Introduction

My thesis mainly focuses on monotone operators, which have proved to
be a key class of objects in modern Optimization and Analysis. We start
with linear relations, which are becoming a centre of attention in Monotone
Operator Theory.

In Chapter 3, we gather some basic properties about monotone linear
relations, and conditions for them to be maximally monotone. We construct
maximally monotone unbounded linear operators. We give some characteri-
zations of the maximal monotonicity of linear operators and we also provide
a brief proof of the Brezis-Browder Theorem. In Chapter 4, we focus on
finding explicit maximally monotone linear subspace extensions of mono-
tone linear relations, which generalize Crouzeix and Anaya’s recent work.

The most important open problem in Monotone Operator Theory con-
cerns the maximal monotonicity of the sum of two maximally monotone
operators provided that Rockafellar’s constraint qualification holds. This is
called the “sum problem”. The sum problem has an affirmative answer in
reflexive spaces, but is still unsolved in general Banach spaces. In Chap-
ter 5, we obtain a powerful sufficient condition for the sum problem to have

an affirmative solution, which generalizes other well-known results for this



Chapter 1. Introduction

problem obtained by different researchers in recent years. We also prove the
case of the sum of a maximally monotone linear relation and the subdiffer-
ential operator.

In Chapter 6, we study classical types of maximally monotone opera-
tors: dense type, negative-infimum type, Fitzpatrick-Phelps type, etc. We
show that every maximally monotone operator of Fitzpatrick-Phelps type
must be of dense type. We establish that for a maximally monotone linear
relation, being of dense type, negative-infimum type, or Fitzpatrick-Phelps
type is equivalent to the adjoint being monotone. The above results provide
affirmative answers to two open problems: one posed by Phelps and Simons,
and the other by Simons.

The Fitzpatrick function is a very important tool in Monotone Operator
Theory. In Chapter 7, we study the properties of the partial inf-convolution
of the Fitzpatrick functions associated with maximally monotone operators.

In Chapter 8, we construct some maximally monotone operators that
are not of type (D). Using these operators, we show that the partial inf-
convolution of two BC-functions will not always be a BC-function, which
provides a negative answer to a question posed by Simons.

There are two well known decompositions of maximally monotone op-
erators: Asplund Decomposition and Borwein-Wiersma Decomposition. In
Chapter 9, we show that Borwein-Wiersma decomposability implies Asplund
decomposability. We present characterizations of Borwein-Wiersma decom-
posability of maximally monotone linear relations in general Banach spaces
and provide a more explicit decomposition in Hilbert spaces.

In this thesis, we solve the following open problems.



Chapter 1. Introduction

(1) Simons posed the following question in [74, page 199] concerning [72,
Theorem 41.6] (See Corollary 5.3.6 or [16].):

Let A:dom A — X* be linear and mazimally monotone, let
C' be a nonempty closed convex subset of X, and suppose that
dom ANint C # @.

Is A+ N¢ necessarily mazximally monotone?

(2) Simons posed the following question in [74, Problem 47.6] (See Theo-
rem 6.2.1 or [6].):

Let A : domA — X* be linear and mazximally monotone.
Assume that A is of type (FP).

Is A necessarily of type (NI)?

(3) Simons posed the following question in [73, Problem 18, page 406] (See
Corollary 6.2.2 or [7].):

Let A : X = X* be mazimally monotone such that A is of

type (FP).

Is A necessarily of type (D)?

(4) Phelps and Simons posed the following question in [63, Section 9, item 2]
(See Corollary 6.3.3 or [6].):

Let A : domA — X* be linear and mazximally monotone.
Assume that A* is monotone.

Is A necessarily of type (D)?
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(5) Simons posed the following question in [74, Problem 22.12] (See Exam-
ple 8.3.1(iii)&(v) or [8].):

Let F1,Fy : X x X* — ]—o00,+00] be proper lower semicon-
tinuous and convex functions. Assume that Fy, Fy are BC-

functions and that

U A [Px+ dom F} — Px« dom F] is a closed subspace of X*.
A>0

Is F1l01 F5 necessarily a BC—function?

The answers are yes, yes, yes, yes and no, respectively.



Chapter 2

Notation and examples

In this chapter, we fix some notation and give some examples. Throughout
this thesis, we assume that X is a real Banach space with norm || - ||, that
X* is the continuous dual of X, and that X and X* are paired by (-,-). Let
A: X = X* be a set-valued operator (also known as multifunction) from X
to X*, i.e., for every z € X, Az C X*, and let gra A = {(z,2%) € X x X* |
x* € A$} be the graph of A. The inverse operator A~': X* = X is given
by graA™! = {(a*,2) € X* x X | #* € Az}; the domain of A is dom A =
{z € X | Az # @}, and its range is ran A = A(X). If Z is a real Banach
space with dual Z* and a set S C Z, we define S+ by S+ = {z* ez |
(z*,s) =0, Vse S}. Given asubset D of Z*, we define D, [63] by D =
{z €Z | (z,d*)=0, Vd*e D}. The adjoint of A, written A*, is defined
by

grad* = {(z*,2%) € X™ x X* | (z*, —2™) € (grad)*}

= {(z™,2%) € X™* x X* | (z*,a) = (a*,2™), V(a,a") € gra A}.

See Example 2.1.2, Example 2.1.4, Section 3.3 and Cross’ book [38] for more

information about linear relations.
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The Fitzpatrick function of A (see [45]) is given by

Fp:(z,2*)e X xX'—  sup  ((z,a") + (a,2") — (a,a")). (21)
(a,a*)egra A

See Chapter 7 for more properties of the Fitzpatrick functions.

Recall that A is monotone if

(V(z,2*) € graA) (V(y,y*) € grad) (z—y,a*—y*) >0, (2.2)

and maximally monotone if A is monotone and A has no proper monotone
extension (in the sense of graph inclusion). We say (z,z*) € X x X* is

monotonically related to gra A if

(x —y,x* —y*) >0, V(y,y") € gra A.

Let A: X = X* be maximally monotone. We say A is of type Fitzpatrick-
Phelps-Veronas (FPV) if for every open convex set U C X such that U N

dom A # &, the implication

x € Uand (z,2") is monotonically related to gra AN (U x X™)

= (z,2") € graA

holds. We say A is a linear relation if gra A is a linear subspace. Monotone
operators have proven to be a key class of objects in modern Optimization
and Analysis; see, e.g., [22-24], the books [9, 26, 33, 34, 48, 61, 68, 72, 74,

92, 93] and the references therein. We also adopt the standard notation
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used in these books: Given a subset C' of X, int C is the interior of C,
bdry C' is the boundary of C, convC is the convexr hull of C', and C and
C" are respectively the norm closure of C' and weak closure of C.  For
the set C* C X*, @W* is the weak™ closure of C*. If C*™* C X**, Ww*
is the weak™ closure of C** in X** with the topology induced by X*. The

indicator function of C, written as (¢, is defined at x € X by

0, ifzxzed,
to(x) = (2.3)

oo, otherwise.

The indicator mapping lc: X — X* is defined by

0, ifzeC;
Io(z) = (2.4)

&, otherwise.

The distance function to the set C, written as d(-,C), is defined by x —
inf.co ||z — ¢||. The support function of C, written as o¢, is defined by
oc(z*) = supeeclc,z*). D C X, weset C — D ={zx—y|zeC,ye D}
For every x € X, the normal cone operator of C at x is defined by No(z) =
{z* € X* | sup.cc(c—z,2*) <0}, if z € C; and Ne(z) = @, if z ¢ C
(see Example 2.1.5 for more information). For z,y € X, we set [z,y] =
{tr+(1—1t)y | 0<t<1}. Let dim F stand for the dimension of a subspace
F of X. Given f: X — ]—00,+00], we set dom f = f~1(R) and f*: X* —
[—00, +00] : ¥ > sup,c x ((x, x*) — f(x)) is the Fenchel conjugate of f. The

lower semicontinuous hull of f is denoted by f. If f is convex and dom f #
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g, thendf: X = X*:z— {a* e X* | (Ve X) (y—az,2%) + f(z) < f(y)}
is the subdifferential operator of f. Note that No = 0o For ¢ > 0,
the e—subdifferential of f is defined by d.f: X = X*: z — {x* e X" |
(Vy € X) (y —z,2*) + f(z) < f(y) +e}. We have 0f = 0y f.

Let g: X — ]—o0,+00]. The inf-convolution of f and g, fOg, is defined
by

fOg:z— ylg)f( [f(y) +g(z —y)].

Let J be the duality map, i.e., the subdifferential of the function | - [|>. By

[61, Example 2.26],
Jo={a" € X" | (a7, 2) = |a*|| - ][], with [l="|| = [l]|}. (2.5)

Let Id be the identity mapping from X to X. Let Y be a real Banach space.
We alsoset Py : X XY — X: (z,y) —» x,and Py : X XY = Y: (z,y) = y.
Let f: X — |—o00,+0o0] and g: Y — ]—00, +00]. We define (f@g) on X xY
by (f & 9)(z,y) = £(z) + g(y) for every (z,y) € X x V.

The open unit ball in X is denoted by Ux = {z € X | ||z| <1}, the
closed unit ball in X is denoted by By = {zx € X | [|z]| <1} and N =
{1,2,3,...}. Let Sgn be defined by

1, if £ > 0;

Sgn: R=2R: £ — [—1,1], if&=0;

-1, if € < 0.
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Throughout, we shall identify X with its canonical image in the bidual
space X**. Furthermore, X x X* and (X x X*)* = X* x X** are likewise
paired via ((z,z*), (y*,y*™)) = (x,y*) + («*,y**), where (z,2%) € X x X*
and (y*,y™) € X*x X**. Unless mentioned otherwise, the norm on X x X*,
written as || - |1, is defined by |[|(z,z*)|1 = ||z|| + ||=*| for every (x,z*) €

X x X*.

2.1 Some examples

Now we give some examples of linear relations and their adjoints. See Ex-

ample 2.1.1, Example 2.1.2 and Example 2.1.4.

Example 2.1.1 Figure 2.1 is the graph of the linear operator:

Example 2.1.2 (Borwein) (See [21, Example 3.1].) Let A : R™ =2 R" be
defined by

Bx+V, ifxebS;
Ar =

a, otherwise,
where B € R™" S and V are subspaces of R™. Then

BTz + S+, ifrevdt:
Afx =

a, otherwise.
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2.1.
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Figure 2.1: field plot of the linear operator A

That is,

'?(O?UQ)}

) (sp’BSp)v (0,’01), ..

gra A = span{(sy, Bs1),..

s BTuy), (0,8)),...,(0, Sy)}

(v

gra A* = span{ (v}, B"v}),..

.,vq) are respectively the bases of S and V and

. 7817)7 (Ul" .

where, (s1,..

., 8¢') are respectively the bases of VL oand St

=B

R™ and V = 0, then A

Remark 2.1.3 In Exzample 2.1.2, take S

= BT = AT,

and A*

Let’s go to an explicit example of a monotone linear relation.

10
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Example 2.1.4 Let A :R3 = R3 be defined by

4 1 -1
1 92 1 |x+spane;, ifz € span{es};
Ar =
-1 1 2
, otherwise,

where e; = (1,0,0),e9 = (0,1,0),e3 = (0,0,1). Then

4 1 -1

1 2 1 |x+span{er,es}, ifx € spanfes,es};
A*r =

, otherwise,

and

gra A = span{(0,e1), (e2,e1 + 2e2 +€3)}

gra A* = span{(0,e1), (0,e3), (e2, €1 + 2e2 + e3), (€3, —e1 + €2 + 2e3) }.

The following is the explicit formula for the normal cone operator in

().

Example 2.1.5 (Rockafellar) Suppose that

X = (Y(N), with norm ||(x,)nen|| = Z |z |, so that
neN

11
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X* = L°(N) with ||(x})nenl|lx = suppen|zi| . The normal cone operator

Ng, is mazimally monotone; furthermore, for every x € ¢*(N),

{0}, if llel < 1;

NBX(x) = R+ ° (Sgn(xn))neNa Zf HxH = ]"

2, if llz]) > 1.

\

Proof. By Fact 5.1.2, Np, is maximally monotone. We now turn to the
formula for the normal cone operator. Clearly, Np, (z) = {0} if ||z] < 1,
and Np, (z) = @ if ||z|| > 1. Now we suppose ||z|| = 1. Assume z* € (o (N).

Then

#" € Npy(z) & (¢7,y —x) <0, Vy € Bx & [l2"[|. < (2", 2)

& |lz%s = (=7, 7). (2.6)
Clearly,
(K (Segn(zn)).,z) = Kl|lz|| = K = | K(Sgn(z,)),[l+, VK >0.
Thus, by (2.6),
{(K -Sgu(zn))," | | K >0} C Npy(x).

Let 2* € Npy (x). Assume z* = (z,)72 . If 2* =0, then 2* €

{(K- Sgn(a:n));':o:1 | K > 0}. Now assume K := ||z*||, # 0. Thus,

|z} < K, VneN. Let n € N. Now we consider two cases:

12
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Case 1: z, = 0. Clearly, z} € K [-1,1] = K Sgn(0).

Case 2: x,, # 0. We can suppose x,, > 0. By (2.6), we have

K =z, —i—Zﬁxl < xyTn +Zsup|x;\ ai| = wqen + K(1—xp)
i#n i;énje

<Kzrp,+K(1 -2z, =K.

Hence z}x, + K(1 — z,) = Kz, + K(1 — z,,). Thus, 2} = K. Then
e (K- Sgn(:z:n))zozl. That is,

Np, () C {(K - Sgn(z,)) ~ | K >0}.

Hence Np, (z) = {(K - Sg]n(a:n))zoz1 | K > 0}. [ |

13



Chapter 3

Linear relations

This chapter is mainly based on [15, 17, 18] by Bauschke, Wang and Yao,
and my work in [89]. We give some background material on linear rela-
tions, present some sufficient conditions for a linear relation to be mono-
tone, and construct some examples of maximally monotone linear rela-
tions. Furthermore, we provide a brief proof of the Brezis-Browder The-
orem on the characterization of the maximal monotonicity of linear rela-
tions. Recently, linear relations have become an interesting topic and are
comprehensively studied in Monotone Operator Theory: see [3-5, 14-19, 28—
32, 63, 75, 80, 83, 87, 89, 91].

3.1 Properties of linear relations

In this section, we gather some basic properties about monotone linear re-
lations, and conditions for them to be maximally monotone. These results
are used frequently in the sequel. We start with properties for general linear
relations. If A: X =% X* is a linear relation that is at most single-valued,
then we will identify A with the corresponding linear operator from dom A
to X* and (abusing notation slightly) also write A: domA — X*. An

analogous comment applies conversely to a linear single-valued operator A

14
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with domain dom A, which we will identify with the corresponding at most

single-valued linear relation from X to X*.

Fact 3.1.1 (See [58, Proposition 2.6.6(c)] or [69, Theorem 4.7 and Theo-
rem 3.12]). Let C be a subspace of X, and D be a subspace of X*. Then

w¥

(cH,=C=C" and (D.)*=D

Fact 3.1.2 (Attouch-Brezis) (See [2, Theorem 1.1] or [74, Remark 15.2]).
Let f,g : X — ]—00,400] be proper lower semicontinuous convex func-

tions. Assume that

U Aldom f —domg] is a closed subspace of X.
A>0

Then

(f+9)" (") = min {f*(") +g7(z" —y7)}, Vo' € X" (3.1)

The following result appeared in Cross’ book [38]. We give new proofs.

The proof of Proposition 3.1.3(ix) was borrowed from [18, Remark 2.2].

Proposition 3.1.3 Let A: X = X* be a linear relation. Then the follow-
ing hold.

(i) A0 is a linear subspace of X*.
(ii) Az =a2*+ A0, Vz* e Ax.
(iii) (V(o, 8) € RZ2\{(0,0)}) (Vz,y € dom A) A(az + By) = adz + BAy.

15
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(iv) (A7t = (A"
(v) (Vz € dom A*)(Vy € dom A) (A*x,y) = (x, Ay) is a singleton.
(vi) If X is reflexive and gra A is closed, then A** = A.

(vii) (dom A)* = A*0 and dom A = (A*0) .

(viii) If gra A is closed, then (dom A*); = A0 and dom A+ = (A0)*.

(ix) If dom A is closed, then dom A* = (A0)* and thus dom A* is (weak*)
closed, where A is the linear relation whose graph is the closure of the

graph of A.
(x) If k € R~ {0}, then (KA)* = kA*.

Proof. (i): Since gra A is a linear subspace, {0} x A0 = gra AN {0} x X* is
a linear subspace and hence AQ is a linear subspace.

(ii): Let 2 € dom A and z* € Az. Then (x, z*+ A0) = (z,2*)+(0, A0) C
gra A and hence z* + A0 C Az. On the other hand, let y* € Az. We have
0,y* — 2*) = (x,y*) — (x,2*) € graA. Then y* — z* € A0 and thus
y* € x* + A0. Hence Ax C x* + A0 and thus Az = z* + AO0.

(iii): Let (o, 8) € R\ {(0,0)} and {x,y} C dom A. We can suppose
a # 0 and B # 0. Take z* € Az and y* € Ay. Since gra A is a linear
subspace, az* + fy* € A(ax+ By). By (ii), A(ax + By) = az™+ Py* + A0 =
az® + A0+ By* + A0 = a(a* + 2 A0) + B(y* + 5A40) = adz + SAy.

(iv): We have (z*,z**) € gra(A*)~! & (2**,2%) € gra A* & (2%, —2*)

€ (grad)t & (2%, —2*) € (graA™ 1)t & (2%, 2*) € gra(A~1)".
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3.1. Properties of linear relations

(v): Let € dom A* and y € dom A. Take z* € A*x and y* € Ay. We
have (z*,y) = (y*,z),Va* € A*x,y* € Ay. Hence (A*z,y) and (Ay,z) are
singleton and equal.

(vi): We have (z,z*) € gra A** & (2%, —x) € (gra A*)*+ =
((gra—A—HH) Lt =gra—A"1 & (2,2%) € gra A.

(vii): Clearly, (dom A)t C A*0. Let z* € A*0. We have (z*,y) +
(0,Ay) = 0, Vy € dom A. Then we have z* € (dom A)* and thus A*0
C (dom A)*. Hence (dom A)* = A*0. By Fact 3.1.1, dom A = (A*0) .

(viii): By Fact 3.1.1,

€ A0< (0,2%) € grad = [(graA)J‘L_ = [gl"a—(A*)il]l

& (@, y™) =0, WYy edomA® & ¥ € (domA¥),.

Hence (dom A*); = A0. Take Y = X*, by Fact 3.1.1 again, dom A+
= (A0)*.

(ix): Let A be the linear relation whose graph is the closure of the graph
of A. Then dom A = dom A and A* = A*. Then by Fact 3.1.2,

Lx*x(A0)+ = L’fo}xgo = (LgraA + L{o}xx*) = Lgra(— A%)—1 Hix=x {0}

= Lx*xdom A*-

It is clear that dom A* = dom A* = (A0)* is closed.
(x): Let k € R~ {0}. Then (z**,z*) € gra(kA)* & (z*, —z*)
€ (grakA)t & (2%, —kz™) € (graA)*- & (12*, —2**) € (gra A)*

& (2%, +2%) € gra A*. Hence (kA)* = kA" [ |
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3.2. Properties of monotone linear relations

3.2 Properties of monotone linear relations

Proposition 3.2.1, Proposition 3.2.2 and Proposition 3.2.7 were established
in reflexive spaces by Bauschke, Wang and Yao in [15, Proposition 2.2].

Here, we adapt the proofs to a general Banach space.

Proposition 3.2.1 Let A: X = X™ be a linear relation. Then the following
hold.

(i) Suppose A is monotone. Then dom A C (A0); and A0 C (dom A)*;
consequently, if gra A is closed, then dom A C domA*W* N X and

A0 C A*0.
(ii) (Vo € dom A)(Vz € (A0) 1) (z, Ax) is single-valued.
(iii) (Vz € (A0);) dom A — R: y — (z, Ay) is linear.

(iv) A is monotone < (Vx € dom A) (z, Az) is single-valued and (x, Az)

> 0.

(v) If (z,2z*) € (dom A) x X* is monotonically related to gra A and z,

€ Az, then z* — xf € (dom A)*.

Proof. (i): Pick 2 € dom A. Then there exists * € X* such that (x,z*)
€ graA. By the monotonicity of A and since (0, A0) C gra A, we have
(x,x*) > sup(z, A0). Since A0 is a linear subspace (Proposition 3.1.3(i)),
we obtain x| A0. This implies dom A C (A0), and A0 C (dom A)*. If gra A
is closed, then Proposition 3.1.3(viii)&(vii) yield dom A C (A0), C (A0)*
— dom A7 and A0 C A0
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3.2. Properties of monotone linear relations

(ii): Take x € dom A, z* € Az, and z € (A0) . By Proposition 3.1.3(ii),
(2, Ax) = (z,2* + A0) = (2, x).

(iii): Take z € (A0);. By (ii), (Vy € dom A) (z, Ay) is single-valued.
Now let x,y be in dom A, and let a,f be in R. If (a,3) = (0,0), then
(z, Alax + By)) = (2,A40) = 0 = a(z, Ax) + B(z, Ay). And if (o, ) #
(0,0), then Proposition 3.1.3(iii) yields (z, A(ax + By) = (z,aAzx + fAy) =
afz, Ax) + [(z, Ay). This verifies linearity.

(iv): “=7: This follows from (i), (ii), and the fact that (0,0) € gra A.
“<”: If  and y belong to dom A, then Proposition 3.1.3(iii) yields (z —
y, Az — Ay) = (z —y, Az —y)) 2 0.

(v): Let (z,2*) € (dom A) x X* be monotonically related to gra A, and
take xf € Ax. For every (v,v*) € gra A, we have that zf + v* € A(z + v)
(by Proposition 3.1.3(iii)); hence, (x — (z + v),z* — (z§ + v*)) > 0 and
thus (v,v*) > (v,2* — z§). Now take A > 0 and replace (v,v*) in the
last inequality by (Av, Av*). Then divide by A and let A — 07 to see that
0 > sup(dom A, z* — z). Since dom A is linear, it follows that «* — xf €
(dom A)*. [ |

We say that a linear relation A : X = X* is skew if gra A C gra(—A*),
equivalently, if (z,z*) =0, V(z,2*) € gra A; furthermore, A is symmetric if
gra A C gra A*; equivalently, if (x,y*) = (y,2*), V(x,2*), (y,y*) € gra A.

We define the symmetric part and the skew part of A via
Al = %A + %A* and Ao = %A — %A*, (3.2)
respectively. It is easy to check that A is symmetric and that Ao is skew.
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3.2. Properties of monotone linear relations

Proposition 3.2.2 Let A: X = X* be a monotone linear relation. Then
the following hold.

(i) If A is mazimally monotone, then (dom A)* = A0 and hence dom A =

(A0) 1.
(ii) Ifdom A is closed, then: A is mazimally monotone < (dom A)*+ = AO.

(iii) If A is mazimally monotone, then dom A N X =domA = (A0)

and A0 = A*0 = A, 0 = Ao0 = (dom A)*.

(iv) If A is mazimally monotone and dom A is closed, then dom A*NX =

dom A.

(v) If A is mazximally monotone and dom A C dom A*, then A = A, + Ao,
A+:A—Ao ) (,l’I’LdAo:A—A+.

Proof. (i): Since A + Ngoma = A + (dom A)' is a monotone extension
of A and A is maximally monotone, we must have A 4+ (dom A)* = A.
Then A0 + (dom A)* = A0. As 0 € A0, (dom A)t C A0. The reverse
inclusion follows from Proposition 3.2.1(i). Then we have (dom A)* = A0.
By Fact 3.1.1, dom A = (A0), .

(ii): “=": This follows directly from (i). “<”: By our assumptions
and Fact 3.1.1, dom A = (A0),. Let (z,2*) be monotonically related to
graA. We have inf [(x — 0,2* — A0)] > 0. Then we have z € (A0); and
hence z € dom A. Then by Proposition 3.2.1(v) and Proposition 3.1.3(ii),
x* € Ax. Hence A is maximally monotone.

(iii): By (i) and Proposition 3.1.3(vii), A0 = (dom A)* = A*0 and thus
A0 = Ao0 = A0 = (dom A)L. Then by Proposition 3.1.3(viii) and (i),
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3.2. Properties of monotone linear relations

domA*" N X = (A0), = dom A.

(iv): Apply (iii) and Proposition 3.1.3(ix) directly.

(v): We show only the proof of A = Ay + Ao as the other two proofs are
analogous. Clearly, dom A, = dom Ao = dom A N dom A* = dom A. Let
x € dom A, and z* € Az and y* € A*x. We write z* = % + % €
(A4 + Ao)z. Then, by (iii) and Proposition 3.1.3(ii), Az = z* + A0 =
¥+ (A4 + Ao)0 = (A4 + Ao)x. Therefore, A = A, + Ao. [ |

Corollary 3.2.3 below first appeared in [63, Corollary 2.6 and Proposi-
tion 3.2(h)] by Phelps and Simons. Voisei and Zalinescu showed that the

maximality part also holds in locally convex spaces [87, Proposition 23].

Corollary 3.2.3 Let A: X — X* be monotone and linear. Then A is

mazimally monotone and continuous.

Proof. By Proposition 3.2.2(ii), A is maximally monotone and thus gra A is
closed. By the Closed Graph Theorem, A is continuous. |
Proposition 3.2.2(ii) provides a characterization of maximal monotonic-
ity for certain monotone linear relations. More can be said in finite-
dimensional spaces. We require the following lemma, where dim F' stands
for the dimension of a subspace F' of X. Lemma 3.2.4 and Proposition 3.2.5

were established by Bauschke, Wang and Yao in [18].

Lemma 3.2.4 Suppose that X is finite-dimensional and let A: X = X* be

a linear relation. Then dim(gra A) = dim(dom A) + dim AO0.

Proof. We shall construct a basis of gra A. By Proposition 3.1.3(i), A0 is a

linear subspace. Let {x7,...,2}} be a basis of A0, and let {x}41,...,2;} be
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3.2. Properties of monotone linear relations

a basis of dom A. From Proposition 3.1.3(ii), it is easy to show {(0,z7}),...,
(0,2%), (Thy1,Tjyq), - -5 (1, 27) } is a basis of gra A, where x} € Ax;, i €
{k+1,...,1}. Thus dim(gra A) = [ = dim(dom A) + dim AO. [ |

Lemma 3.2.4 allows us to get a satisfactory characterization of maximal

monotonicities of linear relations in finite-dimensional spaces.

Proposition 3.2.5 Suppose that X is finite-dimensional, set n = dim X,
and let A: X = X* be a monotone linear relation. Then A is maximally

monotone if and only if dimgra A = n.

Proof. Since linear subspaces of X are closed, we see from Proposition 3.2.2(ii)

that

A is maximally monotone < dom A = (A0)*. (3.3)

Assume first that A is maximally monotone. Then dom A = (A40)‘. By
Lemma 3.2.4, dim(gra A) = dim(dom A)+dim(A0) = dim((A0)*)-+dim(A0)
= n. Conversely, let dim(graA) = n. By Lemma 3.2.4, we have that
dim(dom A) = n — dim(A40). As dim((A40)*) = n — dim(A40) and dom A C
(A0)* by Proposition 3.2.1(i), we have that dom A = (A0)*. By (3.3), A is
maximally monotone. |

Next, we obtain a key criteria on concerning maximally monotone linear
relations, which I will frequently use to construct maximally monotone linear

subspace extensions in Chapter 4.

Corollary 3.2.6 Let A: R = R" be a monotone linear relation. The fol-

lowing are equivalent:

(i) A is mazimally monotone.
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3.2. Properties of monotone linear relations

(i) dimgra A = n.
(iii) dom A = (A0)*.

For a monotone linear relation A: X = X™* it will be convenient to define

(as in, e.g., [5])

%(x,Am), if x € dom A;
(Vo € X) qa(z) =

oo, otherwise.

Proposition 3.2.7 Let A: X = X* be a monotone linear relation, let x

and y be in dom A, and let A € R. Then qa is single-valued and

Aga(@) + (1= Nga(y) — qa(hz + (1 = A)y) = A1 = Mga(z —y)

= %)\(1 —N{x —y, Az — Ay). (3.4)

Moreover, qa is convez.

Proof. Proposition 3.2.1(iv) shows that g4 is single-valued on dom A and
that g4 > 0. Combining with Proposition 3.2.1(i)&(iii), we obtain (3.4).

Then by (3.4), g4 is convex. [ |

Fact 3.2.8 (Simons) (See [74, Lemma 19.7 and Section 22].) Let A: X =
X* be a monotone operator with conver graph such that gra A = @. Then

the function

g: X x X* = |—00,400] : (x,2") — (x,2") + tgraa(x,x") (3.5)
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3.2. Properties of monotone linear relations

1 proper and conver.

Proof. 1t is clear that ¢ is proper because gra A # @. To see that g is convex,
let (a,a*) and (b, b*) bein gra A, and let A € ]0,1[. Set u =1—X €]0,1] and
observe that A(a,a*) + u(b,b*) = (Aa + pb, A\a® + pub*) € gra A by convexity

of gra A. Since A is monotone, it follows that

)‘g(aa a*) + ,u.g(b’ b*) - g()‘(aa a*) + :u(b’ b*))
= )\(CL, CL*> + :U‘<b7 b*> - ()\(Z + ,U'ba Aa* + Hb*>
= \u{a —b,a™ — b*)

> 0.

Therefore, g is convex. |
Phelps and Simons proved Fact 3.2.9 in the unbounded linear case in [63,
Proposition 3.2(a)], but their proof can also be adapted to a linear relation.

For readers’ convenience, we write down their proof.

Fact 3.2.9 (Phelps-Simons) Let A: X = X* be a monotone linear rela-

tion. Then (x,z*) € X x X* is monotonically related to gra A if and only

if
(w,2%) > 0 and [(y*,2) + (", 9)]* < 42", 2)(y",y), V(y,y") € gra A,
Proof. We have

(z,2%) € X x X* is monotonically related to gra A
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3.2. Properties of monotone linear relations

VA eR,VY(y,y*) € gra A
& (z,2") > 0and [(y*,2) + (%, y)]* < 4", 2)(y", y),

V(y,y*) € gra A (by [63, Lemma 2.1]).

|
The proof of Proposition 3.2.10(iii) was borrowed from [30, Theorem 2].
Results very similar to Proposition 3.2.10(i)&(ii) are established in [89,

Proposition 18.9].

Proposition 3.2.10 Let A: X = X* be a monotone linear relation. Then
(i) Ay is monotone, and Ga + tdom A, = qa, and thus qa, is convez.
(ii) gra Ay C gradga. If Ay is maximally monotone, then Ay = Jqx.
(iii) If A is maximally monotone, then A*|x is monotone.

(iv) If A is mazimally monotone and dom A is closed, then A*|x is maxi-

mally monotone.

Proof. Let v € dom Ay.

(i): Since A is monotone, by Proposition 3.1.3(v) and
Proposition 3.2.1(iv), g4, = ¢4ldom 4, and A is monotone. Then by Propo-
sition 3.2.7, qa, is convex. Let y € dom A. Then by Proposition 3.1.3(v)

again,

0< Az — Ay, z —y) = $(Ay,y) + 3(Az,z) — (As2,y), (3.6)
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3.2. Properties of monotone linear relations

we have qa(y) > (Ayx,y) — qa(x). Take lower semicontinuous hull at y and
then deduce that ga(y) > (A4+z,y) — qa(x). For y = z, we have ga(z) >
ga(x). On the other hand, ga(z) < ga(x). Altogether, ga(x) = qa(z) =
qa, (x). Thus (i) holds.

(ii): Let y € dom A. By (3.6) and (i),

q4(y) 2 qa(z) + (Ayz,y — x) = qa(x) + (Ayz,y — o). (3.7)

Since domga C domgyq = dom A, by (3.7), qa(z) > qa(z) + (Ayx,z —
x), Vz € domga. Hence Az C Jdga(z). If A, is maximally monotone,
then Ay = 0ga. Thus (ii) holds.

(iii): Suppose to the contrary that A*|x is not monotone. By Proposi-
tion 3.2.1(iv), there exists (xg, ) € gra A* with z¢p € X such that (z¢, z{}) <

0. Now we have

(=z0 —y, 205 — y*) = (—=w0,75) + (y,y") + (20,y") + (~y, 70)

= (~zo0,70) + (y,¥") >0, V(y,y") € gra A. (3.8)

Thus, (—xzo,x§) is monotonically related to gra A. By the maximal mono-
tonicity of A, (—xo,z{)) € graA. Then (—zg — (—x¢), x§ — x§) = 0, which
contradicts (3.8). Hence A*|x is monotone.

(iv): By Proposition 3.1.3(ix), dom A*|x = (A0), and thus dom A*|x is
closed. By Fact 3.1.1 and Proposition 3.2.2(i), (dom A*|x)* = ((40),)* =
A0"" = A0. Then by Proposition 3.2.2(iii), (dom A*|x)+ = A*0. Apply

(iii) and Proposition 3.2.2(ii), A*|x is maximally monotone. [ |

26
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Proposition 3.2.11 Let A: X = X* be a maximally monotone linear re-

lation. Then A is symmetric < A= A*|x.

Proof. “=": Assume that A is symmetric, i.e., gra A C gra A*. Since A is
maximally monotone, by Proposition 3.2.10(iii), A = A*|x.

“<": Obvious. |

Fact 3.2.12 (Phelps-Simons) (See [63, Theorem 2.5 and Lemma 4.4].)

Let A :dom A — X* be monotone and linear. The following hold.

(i) If A is mazimally monotone, then dom A is dense (and hence A* is at

most single-valued).

(ii) Assume that A is skew such that dom A is dense. Then dom A C

dom A* and A*|qoma = —A.

Fact 3.2.13 (Brezis-Browder) (See [30, Theorem 2|.)  Assume X is
reflexive. Let A: X = X* be a monotone linear relation such that gra A is

closed. Then the following are equivalent.
(i) A is mazimally monotone.

(ii) A* is mazimally monotone.

(iii) A* is monotone.

In Theorem 3.2.15, established in [89, Theorem 18.5], we provide a new
and simpler proof to show the hard part (iii)=-(i) in Fact 3.2.13. We first

need the following fact.
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Fact 3.2.14 (Simons-Zalinescu) (See [77, Theorem 1.2] or [72, Theo-
rem 10.6].)
Assume X is reflexive. Let A: X = X* be monotone. Then A is mai-

mally monotone if and only if
graA +gra(—J) =X x X™".

Now we come to the hard part (iii)=(i) in Theorem 3.2.13. The proof

was inspired by that of [93, Theorem 32.L].

Theorem 3.2.15 Assume X is reflexive. Let A: X = X* be a monotone
linear relation with closed graph. Suppose A* is monotone. Then A is

mazimally monotone.

Proof. By Fact 3.2.14, it suffices to show that X x X* C gra A + gra(—J).

For this, let (z,2*) € X x X* and we define g : X x X* — |—00, +00] by

(. y*) = Syl + 2yl + @ y) + tgraaly — 2,y" — 2%).

We have f : (y,4") = (", ¥) tigaa(y=2, 4" —2") = ", Y) Hgra At (o) (YY)
By Fact 3.2.8 and the assumption that gra A is closed, f is proper lower
semicontinuous and convex. Hence g is lower semicontinuous convex and
coercive. According to [92, Theorem 2.5.1(ii)], g has minimizers. Suppose

that (z,2*) is a minimizer of g. Then (z — z,2* — x*) € gra A, hence,

(x,2") € graA+ (z,2"). (3.9
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On the other hand, since (z, z*) is a minimizer of g, (0,0) € dg(z, z*). By a
result of Rockafellar (see [37, Theorem 2.9.8] and [92, Theorem 3.2.4(ii)]
or [60, Theorem 1.93 and Proposition 1.107(ii)]), there exist (z§,20) €
O(tgraa- — x,- — x%))(2,2") = Otgraa(z — z,2" — 2%) = (gra A)*, and

(v,v*) € X x X* with v* € Jz,2* € Jv such that
(0,0) = (2, 2) + (v*,v) + (27, 20)-
Then
(= (z4v),2" +v*) € grad®.
Since A* is monotone,
(" + v, z+v) = (2%, 2) + (z%,0) + (v, 2) + (v*,v) <O0. (3.10)

Note that since (2*,0) = | 2*[2 = [oll?, (v*,2) = [o*[[2 = 2[1%, by (3.10),

we have
1217 + 3127117 + (2%, 2) + 30" + 5ol + (v, v*) < 0.

Hence z* € —Jz. By (3.9), (z,2*) € gra A + gra(—J). [ |

Remark 3.2.16 Harauz provides a very simple proof of Theorem 3.2.15 in
Hilbert spaces in [51, Theorem 10], but the proof could not be adapted to
reflexive Banach spaces (The proof is based on the application of Minty’s
Theorem,).
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3.3. An unbounded skew operator on ¢*(N)

3.3 An unbounded skew operator on /*(N)

In this section, we construct a maximally monotone and skew operator S
on ¢2(N) such that —S* is not maximally monotone. This answers Svaiter’s
question raised in [80]. We also show its domain is a proper subset of the
domain of its adjoint S*, i.e., dom .S ; dom S*. Throughout this section,
H denotes a Hilbert space. Section 3.3 is all based on the work in [17] by
Bauschke, Wang and Yao .

Let ¢?(N) denote the Hilbert space of real square-summable sequences

(zn)nen = (21, 22,23, ...) with Zizl x? < +o00.

Example 3.3.1 Let H = (2(N), and S : dom S — (2(N) be given by

< Zi<n Yi — Zi>n yl)

<n neN

Vy = (Yn)nen € dom S, (3.11)

where dom S = {y = (yn) € A(N) | Xisq 95 = 0, <Zz<n yz) € (?(N)}
N N neN
and ), 1 y; is understood to mean 0. In matriz form,

0 -1 -1 -1 -1 -~ —1 -1
1 0 -1 -1 -1 -~ —1 -1
JJr o0 -1 -1 -1
S:§ 3
1 1 1 0 -1 -1 -1
1 1 1 1 0 -1 -1
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or
10 0 0 0 0 0
1 3 0 0 0 00
S 1 1 4 0 0 00
11 1 5 0 00
11 1 1 3 00

Using the second matrix, it is easy to see that S is injective.

Proposition 3.3.2 Let S be defined as in Example 3.8.1. Then S is skew.

Proof. Let © = (zp)nen € dom S. Then (ZZS” ;) € (*(N). Thus,

neN

(N) 5 <in>n€N — iz = (Z%) — 5(Zn)nen

i<n i<n neN
_ ) 1 =9
= Ti+ 5%n = Jx.
i<n neN

Hence S is well defined. Clearly, S is linear on dom S. Now we show S is

skew.

Let ¥ = (yn)nen € dom S, and s = 3,51 y;. Then (Zzgn yz> €
neN

¢*(N). Hence <Zz<nyl> = <Zz<ny2) — (Yn)nen € £2(N). Since
neN B neN
s =0,

“m>-(2n), =0 (Z), = (B2,

<n <n 1>1 <n

i>n neN
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< Z yi>n€N =0- (Zyz)n@] € (*(N). (3.12)

i>n+1 i<n

Thus, by (3.12),

ssun=((Zn-Ex) )=

>n 1<n

£ En), )

>n+1 >n

(3.13)

121 1>2 122 123
=((s,s —yr,s = (1 +y2),-- )+ (s =y, = (W1 +w2), ), (W1, 02, )
=[sy1+ (s —y)y2 + (s — (1 +y2))ys + -+ |+
[(s =y)yr 4 (s = (yr + y2))y2 + (s — (Y1 + y2 + y3))Jys + - -+
= lim[sys + (s —y1)y2 + -+ (s = (Y1 + -+ Yn-1))yn)+
lim|(s —y1)y1 + (s = (Y1 + y2))y2 + -+ (s = (W1 + -+ Yn))yn]
= lims(yr + - +yn) = v1y2 = (Y1 +42)y3 — - = (Y1 + -+ Yn1)yn]+

[s(yr+ -+ yn) = (Wi +- Fyn) =iy = = (Y1 + -+ Yn—1)Yn]

:117{Ln[28(y1+---+yn)—(y1+--~+yn)2]:252—82:52:0.

Hence S is skew. |

Proposition 3.3.3 Let S be defined as in Fxample 3.3.1. Then S is a

maximally monotone operator. In particular, gra.S is closed.

Proof. By Proposition 3.3.2, S is skew. Let (x,z*) € (?(N) x ¢2(N) be

monotonically related to graS. Write © = (2 )nen and z* = (2} )nen. By
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Fact 3.2.9, we have
(Sy,z) + (z",y) =0, Vye domS§. (3.14)

Let e, = (0,...,0,1,0,...) : the nth entry is 1 and the others are 0. Then
let y = —e; + e,. Thus y € dom S and Sy = (—%,—1,...,—1,—%,0,...).
Then by (3.14),

— ]+ le—O:x %xl—FZl‘i—i—%xn.
(3.15)

Since z* € £?(N) and = € /%(N), we have x}, — 0,z, — 0. Thus by (3.15),

- ZCL‘Z =2} — a1 (3.16)

i>1

Next we show — >, @; = 2] — t21 =0. Let s = >_i>1%i- Then by (3.15)
and (3.16),

2z* = 2(x), neN—2< Zmz—i—ZxZ—i— :Un)

i>1 <n neN
( zzmzzmggn)
i>1 <n neN
- (X wrn) = (X Ten)
>n >n >n neN
- (—Z%— T x> . (3.17)
i>n i>n+1 neN
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3.3. An unbounded skew operator on ¢*(N)

On the other hand, by (3.15) and (3.16),

PNy 2" — iz = <—in+zxi+%$n) ~ (3%n)nen = <—Z$z)

i>1 i<n neN i>n neN

Then by (3.17),

2$*:<—in> +<— Z$Z> .
i>n neN i>n+1 neN

Then by Fact 3.2.9, similar to the proof in (3.13) in Proposition 3.3.2, we

have

0> —2(z",z) = <<in>n€N ! <

i>n i>n+1 neN
:(<E xi,in,...>+<in,E $i,...>,$>
i>1 i>2 i>2 i>3

=252 — 5% =52

Hence s = 0, i.e., 2} = 11 by (3.16). By (3.15), 2* = <Zz<n xl+%xn>
neN
Thus

(N) > 2* + 32 = (sz + %mn> + (%xn)neN = (Z%)

i<n neN i<n neN

Hence x € dom S and z* = Sz. Thus, S is maximally monotone. Hence

gra S is closed. |

Remark 3.3.4 Let S be as in Example 3.3.1. Since e; = (1,0,0,...,0,...)

¢ dom S, the operator S is unbounded.
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Proposition 3.3.5 Let S be defined as in Example 3.3.1. Then

S*y:: <j£:yi+‘%yn) ) vy:: QhJHEN S dOHlS*, (318)

i>n neN

where dom S* = {y = (Yn)nen € F2(N) | di>1Yi € R, (an%) €

neN
(2(N)}. In matriz form,

1 1 1 1 11
0o 1 1 1 1 11
g _ |00 5 11 11
1o 0 o T 1 11
00 0 0 3 11
Moreover, dom S ; dom S*, §* = —S on dom S, and S* is not skew.

Proof. Let y = (yn)nen € €3(N) with <Zz>n yz> € 2(N), and y* =
neN

(an Yi + %yn> . Now we show (y,y") € graS*. Let s =} .5, y; and
neN
x € dom S. Then we have

s~ (ube (52)_)+ (v (£) )

<n >n
~((Z7) W+ ((29) )
ien 7 neN ion / neN
= 1iTIZH [yox1 + ys(x1 +22) + - Fyn(x1 + - + Tp1)]
—lign[xl(s—y1)+$2(8—yl_y2)+"'+xn(3_yl_"'_yn)]
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3.3. An unbounded skew operator on ¢*(N)

:lién[xl(yg—i-~-+yn)+:1:2(y3+---+yn)+-"+xn71yn]
—lim[zi(s —y1) +z2(s —y1 —yo) + -+ 2als —y1 = —yn)]

=lim [z (y1+ya+ Fyn— )+ 22y F 2+ Yy — )+
+an(yr Y2+ Yy — 8)]

= lm [(z1 4+ 20) (1 +y2 + -+ yn = 5)]

=0.

Hence (y,y*) € gra S™*.
On the other hand, let (a,a*) € graS* with a = (ap)neny and a* =

(@} )nen. Now we show

<Zai>neN € (*(N) and a* = <Zaz + %an> . (3.19)

>n i>n neN

Let e, = (0,...,0,1,0,...) : the nth entry is 1 and the others are 0. Then

let y = —e; +e,. Thus y € dom S and Sy = (—3,—1,...,-1,—3,0,...).
Then,
n—1
0= <(1*7y> + <_Sy7a> = _G’T —|—(1;'; + %al + %an + Zai
i=2
n—1
= ap =a} — Ja1— Y _a; — 3an. (3.20)
i=2

Since a* € /2(N) and a € (*(N), a}, — 0,a, — 0. Thus by (3.20),

af =Ja+ Y a; (3.21)
i>1
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3.3. An unbounded skew operator on ¢*(N)

from which we see that » ;- a; € R. Combining (3.20) and (3.21), we have
ay = Z a; + 1ay,
i>n

Thus, (3.19) holds. Hence (3.18) holds.

Now for x € dom S, since ) ;- z; = 0, we have

S*x = (%xn—i-ZxZ) = <—%xn+2xz>
neN neN

>n

We note that S* is not skew since for e; = (1,0, ...), (S*e1,e1) = (1/2e1,e1)
1/2. As e; = (1,0,0,...,0,...) € dom S* but e; ¢ dom S, we have dom S &
dom S*. |

Proposition 3.3.6 Let S be defined as in Example 3.3.1. Then

(S*y,y) = 1%, Vy € domS* with s= ZyZ (3.22)

i>1

Proof. Let y = (yn)nen € dom S*, and s = ;- y;- By Proposition 3.3.5,

we have s € R and
(S*y,y) = <<Zyi+%yn) y) = <<Zyi— %:Lm) )
i>n neN i>n nel
:lién[syl+(5—y1)y2+---+(8—y1—yg—--~—yn71)yn
— Wi+t )l
= lim[s(yr + -+ +yn) = y192 = (Y1 +y2)yz — - -
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3.3. An unbounded skew operator on ¢*(N)

— Wty )ual =5 Ui+ + v

= lim [s(y1 + - + yn)]
—h}ln[yly2+(3/1+y2)y3+"'+(3/1+y2+"'+yn71)yn
+ 3yt )]

=" —lm iy +y2+ - +yl’

=52 152
_ 1
Hence (3.22) holds. [ |

Proposition 3.3.7 Let S be defined as in Example 3.8.1. Then —S' is not

mazimally monotone.

Proof. By Proposition 3.3.2, —S is skew. Let e; = (1,0,0,...,0,...). Then
e1 ¢ domS = dom(—S). Thus, (e1,3e1) ¢ gra(—S). We have for every

y € dom S,

(e1,3e1) > 0and (e, —Sy) + (y, 3e1) = —3y1 + 1y1 = 0.

By Fact 3.2.9, (e1, 3€1) is monotonically related to gra(—S). Hence —S is
not maximally monotone. |

Suppose that X = ¢?(N). We proceed to show that for every maximally
monotone and skew operator S, the operator —S has a unique maximally

monotone extension, namely S*|x.
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Theorem 3.3.8 Let S : dom S — X* be a maximally monotone skew oper-

ator. Then —S has a unique maximally monotone extension: S*|x.

Proof. By Fact 3.2.12, gra(—S) C gra S*|x. Assume T is a maximally mono-
tone extension of —S. Let (z,2*) € graT. Then (z,z*) is monotonically

related to gra(—S). By Fact 3.2.9,
(@, y) + (=2, Sy) = (&",y) + (x,=S5y) =0, Vy € dom S.

Thus (z,2*) € gra S*|x. Since (x,z*) € graT is arbitrary, we have graT C

gra S*|x. By Fact 3.2.10(iii), S*|x is monotone. Hence T' = S*|x. [

Remark 3.3.9 Note that [87, Proposition 17| also implies that —S has a

unique mazimally monotone extension, where S is as in Theorem 3.3.8.

Remark 3.3.10 Define the right and left shift operators R, L : (*(N) —
2(N) by

Rx = (0,x1,x9,...), Lx=(z2,23,...), Y ax=(x1,22,...)€ EQ(N).
One can verify that in Example 3.3.1
Id Id

S=(Id-R)™' - 5 S*=(Id—-L)"! - X

The mazimally monotone operators (Id —R)~! and (Id — L)~ have been uti-

lized by Phelps and Simons, see [63, Example 7.4].
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3.3. An unbounded skew operator on ¢*(N)

Example 3.3.11 (S + S* fails to be maximally monotone) Let S be de-
fined as in Example 3.3.1. Then neither S nor S* has full domain. By

Fact 3.2.12, Vo € dom(S + S*) = dom S, we have
(S+S")z=0.

Thus S+S* has a proper monotone extension from dom(S+S*) to the 0 map
on (2(N). Consequently, S + S* is not mazrimally monotone. This supplies
a different example for showing that the constraint qualification in the sum
problem of maximal monotone operators cannot be substantially weakened,

see [63, Example 7.4].

Svaiter introduced S" in [80], which is defined by
graS” = {(z,2*) € X x X* | (2%, 7) € (graS)*}.

Hence S" = —S*|x.

Definition 3.3.12 Let S : X = X* be skew. We say S is maximally skew
(termed “maximal self-cancelling” in [80]) if no proper enlargement (in the
sense of graph inclusion) of S is skew. We say T is a maximally skew

extension of S if T' is mazrimally skew and graT O gra S.

Lemma 3.3.13 Let S : X = X* be a mazimally monotone skew operator.

Then both S and —S are mazimally skew.

Proof. Clearly, S is maximally skew. Now we show —S' is maximally skew.

Let T be a skew operator such that gra(—S) C graT. Thus, graS C
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3.3. An unbounded skew operator on ¢*(N)

gra(—T). Since —7T is monotone and S is maximally monotone, gra S =

gra(—T). Then —S =T. Hence —S is maximally skew. [

Fact 3.3.14 (Svaiter) (See [80].) Let S : X = X* be mazimally skew.

Then either —S*|x (i.e., S) or S*|x (i.e., — S") is maximally monotone.

In [80], Svaiter asked whether or not —S*|x (i.e., S") is maximally mono-
tone if S is maximally skew. Now we can give a negative answer, even though

S is maximally monotone and skew.

Theorem 3.3.15 Let S be defined as in Example 3.3.1. Then S is maxi-

mally skew, but —S™ is not monotone, so not mazximally monotone.

Proof. Let e = (1,0,0,...,0,...). By Proposition 3.3.5, (el,—%el) S
gra(—S*), but (e1, —1e1) = —3 < 0. Hence —S* is not monotone. [

By Theorem 3.3.15, —S*|x(i.e., S") is not always maximally monotone.
Can one improve Svaiter’s result to: “If S is maximally skew, then S*|x

(i.e., —S") is always maximally monotone”?

Theorem 3.3.16 There exists a mazimally skew operator T on (*(N) such
that T* is not maximally monotone. Consequently, Svaiter’s result is opti-

mal.

Proof. Let T'= —S, where S be defined as in Example 3.3.1. By Lemma 3.3.13,
T is maximally skew. Then by Theorem 3.3.15 and Proposition 3.1.3(x),
T* = (=8)" = —5* is not maximally monotone. Hence Svaiter’s result

cannot be further improved. [ |
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3.4. The inverse Volterra operator on L?|0,1]

3.4 The inverse Volterra operator on L?[0, 1]

Section 3.4 is all based on the work in [17] by Bauschke, Wang and Yao .
Let V be the Volterra integral operator. In this section, we systemati-
cally study 7 = V! and its skew part S = (T — T*). It turns out that
T is neither skew nor symmetric and that its skew part .S admits two max-
imally monotone and skew extensions 77,7 (in fact, anti-self-adjoint) even
though dom S is a dense linear subspace of L2[0,1]. This will give another
simpler example of Phelps-Simons’ showing that the constraint qualification
for the sum of monotone operators cannot be significantly weakened, see

[78, Theorem 5.5] or [83].

Definition 3.4.1 ([15]) Let A: H = H be a linear relation. We say that
A is anti-self-adjoint if A* = —A.

To study the Volterra operator and its inverse, we shall frequently need
the following generalized integration-by-parts formula, see [79, Theorem

6.90].

Fact 3.4.2 (Generalized integration by parts) Assume that z,y are ab-

solutely continuous functions on the interval [a,b]. Then

b b
[a+ [y =au®) - s(@yta)
Fact 3.2.13 allows us to claim the following proposition.

Proposition 3.4.3 Let A: H = H be a linear relation. If A* = —A, then

both A and —A are mazimally monotone and skew.
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3.4. The inverse Volterra operator on L?|0,1]

Proof. Since A = —A*, we have that dom A = dom A* and that A has closed

graph. Now Vz € dom A, by Proposition 3.1.3(v),
(Az,x) = (x,A"x) = —(x, Ax) = (Az,z)=0.

Hence A and —A are skew. As A* = —A is monotone, Fact 3.2.13 shows
that A is maximally monotone.
Now —A = A* = —(—A)* and —A is a linear relation. Similar arguments

show that —A is maximally monotone. |

Example 3.4.4 (Volterra operator) (See [5, Example 3.3].) Set H =
L2[0,1]. The Volterra integration operator [52, Problem 148] is defined by

t
ViH—H:x— Vx, where Va::[O,l]—>]R:tr—>/ x, (3.23)
0
and its adjoint is given by
1
Fs (V2)(t) = / z, VreX.
t

Then

(i) Both V and V* are maximally monotone since they are monotone,

continuous and linear.

(ii) Both ranges

ranV = {x € L*[0,1] : = is absolutely continuous,z(0) = 0,
z' € L2[0,1]}, (3.24)
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and

ran V* = {x € L*[0,1] : 2 is absolutely continuous, (1) = 0,

x' € L*0,1]}, (3.25)

are dense in L2[0,1], and both V and V* are one-to-one.
(iiil) ranV NranV* = {Vz |z € e*}, where e = 1 € L?[0,1].

(iv) Define Viz = 2(V +V*)(z) = 3(e,x)e. Then V. is self-adjoint and

ran V. = span{e}.

(v) Define Voxr = (V. —V*)(z) : t — %[fotx — ftlx] vz € L2[0,1],

t € [0,1]. Then V; is anti-self-adjoint and

ranV, = {x € L*[0,1] : x is absolutely continuous on [0,1],2" € L*[0,1],

z(0) = —x(1)}.

Proof. (i) By Fact 3.4.2,

(x, V) = /01 2(t) /Otx(s)dsdt - %(/01 $(5)d8>2 >0,

so V is monotone.

As domV = L?[0,1] and V is continuous, dom V* = L?[0,1]. Let x,y €
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3.4. The inverse Volterra operator on L?|0,1]

L?[0,1]. We have

(V) = // $)dsy(t dt/ dt/ ds—// §)dsz(t
([ foom)aon [ [

= (V'y,x

thus ( ft s)ds Vt € [0,1].
(ii) To show (3.24), if z € ran V, then

¢
z(t) = / x  for some z € L?[0,1],
0

and hence 2(0) = 0, z is absolutely continuous, and 2z’ = z € L?[0,1]. On
the other hand, if 2(0) = 0, z is absolutely continuous, 2’ € L?[0,1], then
z=Vz.

To show (3.25), if z € ran V*, then
1
z(t) = / x  for some x € L2[0,1],
t

and hence z(1) = 0, z is a absolutely continuous, and 2z’ = —x € L?[0,1].
On the other hand, if (1) = 0, z is absolutely continuous, 2’ € L?[0,1], then
z=V*(=2").

(iii) follows from (ii) (or see [5]).

(iv) is clear.

(v) If @ is absolutely continuous, z(0) = —z(1), 2’ € L?[0,1], we have
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Vo' (t) = %(/Ot o — /t1x> - %(ut) — 2(0) — z(1) +x(t)> = z(t).

This shows that = € ran V,. Conversely, if x € ran V5, i.e.,

I )
x(t) = 5 Y5 ¥ for some y € L?[0,1],
0 t

then z is absolutely continuous, 2’ = y € L?[0,1] and z(0) = —z(1) =

1 rl

Theorem 3.4.5 (Inverse Volterra operator) Let H = L?[0,1], and V
be the Volterra integration operator. We let T = V1 and D = domT N
dom T*. Then the following hold.

(i) T:domT — X is given by Tax = 2’ with

dom T

= {2z € L*0,1] : = is absolutely continuous,z(0) = 0,2’ € L?[0,1]},
and T* : dom T* — L?[0,1] is given by T*x = —z' with

dom T*

= {2z € L*0,1] : =z is absolutely continuous,z(1) = 0,2 € L?[0,1]}.

Both T and T* are mazximally monotone linear operators.

(ii) T is neither skew nor symmetric.
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(iii) The linear subspace

D ={x € L?[0,1]: x is absolutely continuous,z(0) = z(1) = 0,

«’ € L?[0,1]}

is dense in L?[0,1]. Moreover, T and T* are skew on D.

Proof. (i): T and T* are maximally monotone because T = V! and
T* = (V=1)* = (V*)7! and Example 3.4.4(i). By Example 3.4.4(ii), T :
L2[0,1] — L?[0,1] has

domT

= {z € L?[0,1] : z is absolutely continuous, z(0) = 0,z" € L?[0,1]}

dom T*

= {2z € L?[0,1] : z is absolutely continuous, z(1) = 0,z" € L?[0,1]}

Tx =2, Vo € domT, T*y = —y and Vy € dom T*.

Note that by Fact 3.4.2,

1
(Tx,z) = / rr = %xQ(l) - 1302(0) = %ac(l)2 Ve € domT,  (3.26)
0

—_
—_
| =

1
(T2, ) = /0 e = —(52(1)” — 52(0)°) = 22(0) Ve € domT*.

(3.27)
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(ii): Letting z(t) = t,y(t) = t*> we have

1 1 1
(Tx,x>:/0 t=1, (x,Ty>:/O QtQZ%#%:/O t? = (Txz,y)

= (Tz,x) #0,(Tx,y) # (z,Ty).

(iii): By (i), D = domT'Ndom T™ is clearly a linear subspace. For x € D,
z(0) = z(1) =0, from (3.26) and (3.27),

(Tx,x) = %x(1)2 =0, (TFz,x)= %x(0)2 =0.

Hence both T and T™* are skew on D. The fact that D is dense in L?[0, 1]
follows from [79, Theorem 6.111]. [

Our proof of (ii), (iii) in the following theorem follows the ideas of [69,
Example 13.4].

Theorem 3.4.6 (The skew part of the inverse Volterra operator) Let
H

= L%[0,1], and T be defined as in Theorem 8.4.5. Let S = T_QT*.

(i) Sz = 2’ (Vo € domS) and graS = {(Va,z) | = € et}, where

e=1¢€ L?[0,1]. In particular,

dom S = {z € L*[0,1] : =z is absolutely continuous, z(0) = (1) = 0,
«’ € L?[0,1]},

ran S = {y € L?[0,1] : (e,y) = 0} = e™.
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Moreover, dom S is dense, and
STt=V|.., (=8 '=V*., (3.28)

consequently, S is skew, and neither S nor —S is mazimally monotone.

(ii) The adjoint of S has gra S* = {(V*x* + le,z*) | #* € L?[0,1], | € R}.

More precisely,

S*r = —2' Va € dom S*, with
dom S* = {x € L?[0,1] : x is absolutely continuous on [0, 1],
«’ € L?0,1]},

ran S* = L?[0,1].

Neither S* nor —S* is monotone. Moreover, S** = §.

(iii) Let Ty : dom Ty — L2[0,1] be defined by

Tix =2, Vz €& domTy, with
domTy = {x € L*[0,1] : x is absolutely continuous,z(0) = x(1),

a' € L?[0,1]}.

Then T} = =17,

ranT) = et (3.29)

Hence T is skew, and a mazimally monotone extension of S; and —11

is skew and a maximally monotone extension of —S.
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Proof. (i): By Theorem 3.4.5(iii), we get domS directly. Now (Vx €
dom S = dom7T NdomT™*) Tz = 2’ and T*z = —2/, so Sz = 2’. Then

Example 3.4.4(iii) implies gra S = {(Vz,z) | = € e*}. Hence
graS~! = {(z,Vz)|z et} (3.30)

Theorem 3.4.5(iii) implies dom S is dense. Furthermore, gra(—=S5) =

{(Vx,—x) |z € et} so
gra(—=9) ! = {(z,—Vz) |z € et} (3.31)
Since
1 1 1 t
V*x(t) :/ 1‘—0:/ a:—/ x:—/ x=-Vz(t) Vtel0,1],Vzeet
t t 0 0
we have —Vz = V*z,Vz € e+. Then by (3.31),
gra(=8)"t = {(z,V*z) | x € et} (3.32)

Hence, (3.30) and (3.32) together establish (3.28). As both V,V* are max-

-1

imally monotone with full domain, we conclude that S~1,(—S)~! are not

maximally monotone, thus 5, —S are not maximally monotone.

(ii): By (i), we have

(z,2%) € graS* & (—x,y) + (z*,Vy) =0, Vycet

o (—z+ V2 y) =0, Vyecet o z— V2" espanfel.
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Equivalently, x = V*x*+ke for some k € R. This means that z is absolutely
continuous, z* = —2’ € L?[0, 1]
On the other hand, if z is absolutely continuous and 2’ € L?[0, 1], observe

that
1
fz:(t):/ —z' 4+ z(1)e,
t

so that  — V*(—1') € span{e} and (z, —2') € gra S*. It follows that
dom S* = {x € L?[0,1] : z is absolutely continuous on [0,1],2" € L?[0,1]},

ran S* = L?[0,1], and
S*r = —2/, Vo € dom S*.

Since
(%@, ) = — /01 a'x = —<%1‘(1)2 - %JJ(O)Z)y

we conclude that neither S* nor —S* is monotone.
Now we show S** = S. V has closed graph = V.. has closed graph =
S~1 has closed graph = S has closed graph = gra S = gra S** = S** = §.
(iii): To show (3.29), suppose that z is absolutely continuous and that
x(0) = z(1). Then

1
/ ¢ =x(1)—2(0)=0 =Tiz=2ce’.
0

Conversely, if z € L?[0,1] satisfies (e,z) = 0, we define t — 2(t) = fot T,

then z is absolutely continuous, z(0) = 2(1), T1z = x. Hence ran T} = e*.
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T is skew, because for every x € dom T, we have

1
(Thz,x) = / 7'z = 2(1)* - $2(0)* = 0.
0

Moreover, T} = —T1: indeed, as T} is skew, by Fact 3.2.12, gra(—T11) C
graTy. To show that T} = —Ti, take z € dom T}, = T}z. Put ®(t) =
fg . We have Vy € dom 17,

1 1 1
/0 W'z = (Tuy, 2) = (T2, y) = (p) = / yp = / y®  (3.33)

1
— [B(1)y(1) — (0)y(0)] - / By (3.34)

Using y = e € dom T} gives ®(1) — ®(0) = 0, from which ®(1) = ®(0) = 0.
It follows from (3.33)—(3.34) that fol Yy (2 4+ ®) = 0 Vy € domT;. Since
ranTy = el, z + ® € span{e}, say z + ® = ke for some constant k € R.
Then z is absolutely continuous, z(0) = z(1) since ®(0) = ®(1) = 0, and
Tfz = ¢ = ® = —2'. This implies that dom7; C dom7j. Then by

Fact 3.2.12, TT = —T}. It remains to apply Proposition 3.4.3. |

Remark 3.4.7 Let S be defined in Theorem 3.4.6. Now we give a new proof
to show that S** = S in Theorem 3.4.6 (ii). Applying similar arguments as
[42, Example 8.22], one can indeed show that S has a closed graph, so S** =
S. Or, by [63, Proposition 3.2(e)], S has a closed graph, then S** = S.

Fact 3.4.8 Let H be a Hilbert space and A : H = H. Then (—A)~! =
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3.4. The inverse Volterra operator on L?|0,1]

A=Y o (=1d). If A is a linear relation, then

(—A)L=—A1,

Proof. This follows from the definition of the set-valued inverse. Indeed,
re (A z*) & (z,2%) € gra(—A) & (v, —2*) Cgrad & x c A~ (—z%).
When A is a linear relation, z € (—A)~}(z*) & (v,—2*) € grad &

(—x,2%) €grad & —z € A" &z e —A Y (a*). [ |

Theorem 3.4.9 (The inverse of the skew part of Volterra operator)
Let H = L?[0,1], and V be the Volterra integration operator, and Vo :
L2[0,1] — L?[0,1] be given by

V-V

Vo - 2

Define Ty : dom Ty — L?[0,1] by To = VL. Then

(i) Tox =2/, Va € domTy where

domTy = {x € H: x is absolutely continuous on [0, 1],

2 € H,z(0) = —z(1)}. (3.35)

(ii) Ty = —T%, and both Ty, =T are mazimally monotone and skew.

(f=1>)

Proof. (i): Since
Vox(t) =

N[
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3.4. The inverse Volterra operator on L?|0,1]

V5 is a one-to-one map. Then

1 t 1 1 t 1 !
(5o [0) e = (5[ o= [ 0).
2°Jo t 2°Jo t
which implies Thx = Vo_lx =12/ for x € ranV,. As domTy = ranV,, by
Example 3.4.4(v), ran V, can be written as (3.35).
(ii): Since domV = dom V* = L2[0,1], V5 is skew on L2[0,1], so maxi-

1

mally monotone. Then 75 = V" is maximally monotone.

Since V; is skew and dom V, = L?[0, 1], we have VJ* = —V,, by Fact 3.4.8,
Ty=Vo )=o) =V) ==V =T

By Proposition 3.4.3, we have both T5 and —75 are maximally monotone

and skew. |

Remark 3.4.10 Note that while Vo is continuous on L?[0,1], the operator

S given in Theorem 8.4.6 is discontinuous.

Combining Theorem 3.4.5, Theorem 3.4.6 and Theorem 3.4.9, we can sum-
marize the relationships among the differentiation operators encountered in

this section.

Corollary 3.4.11 Let T be defined in Theorem 3.4.5 and S,T1 be defined
in Theorem 3.4.6 and Ty be defined in Theorem 3.4.9. Then the domain of
the skew operator S is dense in L?[0,1]. Neither S nor —S is mazimally

monotone. Neither S* nor —S* is monotone.
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3.4. The inverse Volterra operator on L?|0,1]

The linear operators S,T,T1, Ty satisfy:

graS G graT G gra(—S"),

graS G graTy G gra(—S"),
graS G graTy G gra(—S").

While S is skew, T,T1,T> are mazximally monotone and Ty, T> are skew.
Also,

gra(—S) G gra(T™) & gra S™,
gra(—S) G gra(—T1) G gra S,
gra(—S) G gra(—T3) G gra S*.

While —S is skew, T, —T1, —T5 are maximally monotone and —T7,—Ts are

skew.

Remark 3.4.12 (i): Note that while Ty, T> are mazimally monotone, —17,
—T5 are also mazximally monotone. This is in stark contrast with the max-
imally monotone skew operator given in Proposition 3.3.3 and Proposi-
tion 3.3.7 such that its negative is not mazximally monotone.

(ii): Even though the skew operator S in Theorem 3.4.6 has dom S dense
in L20,1], it still admits two distinct mazimally monotone and skew exten-

stons T1,T5.

Example 3.4.13 (T + T* fails to be maximally monotone) Let T be
defined as in Theorem 3.4.5, and Ty, Ty be respectively defined in Theo-
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3.5. Discussion

rem 3.4.6 and Theorem 3.4.9. Now Vx € domT NdomT™, we have

Te+T'z=2 —2' =0.

Thus T + T* has a proper monotone extension from domT N domT™ ;
L?[0,1] to the 0 map on L?[0,1]. Consequently, T + T* is not mazimally
monotone. Note that dom T Ndom T* is dense in L?[0,1] and that dom T —
dom T* is a dense subspace of L*[0,1]. This supplies a simpler example for
showing that the constraint qualification in the sum problem of maximally
monotone operators cannot be substantially weakened, see [63, Example 7.4).
Similarly, by Theorems 3.4.6 and Theorem 3.4.9, T = —T;, we conclude
that T; + T} = 0 on dom T}, a dense subset of L2[0,1]; thus, T; + T} fails to

be mazimally monotone while both T;, TS are maximally monotone.

3.5 Discussion

The Brezis-Browder Theorem (see Fact 3.2.13) is a very important character-
ization of maximal monotonicities of monotone relations. The original proof
[30] is based on the application of Zorn’s Lemma by constructing a series of
finite-dimensional subspaces, which is complicated. In Theorem 3.2.15, we
establish the Brezis-Browder Theorem by considering the fact that a lower
semicontinuous, convex and coercive function on a reflexive space has at
least one minimizer. In [75], Simons generalized the Brezis-Browder Theo-
rem to SSDB spaces. The Brezis-Browder Theorem and Corollary 3.2.6 are

essential tools for the construction of maximally monotone linear subspace
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3.5. Discussion

extensions of a monotone linear relation, which will be discussed in detail in
Chapter 4.
There will be an interesting question for the future work on the Brezis-

Browder Theorem in a general Banach space:

Let A: X = X* be a monotone linear relation such that gra A
is closed. Assume A*|x is monotone.

Is A necessarily mazimally monotone?

In Sections 3.3 and 3.4, some explicit monotone linear relations were
constructed in Hilbert spaces, which gave a negative answer to a question
raised by Svaiter [80] and which showed that the constraint qualification in
the sum problem for maximally monotone operators cannot be weakened (see
[63, Example 7.4]). In particular, these two sections will provide concrete
examples for the characterization of decomposable monotone linear relations

discussed in Chapter 9.
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Chapter 4

Maximally monotone
extensions of monotone

linear relations

This chapter is based on [88] by Wang and Yao. We consider the linear
relation G : R =% R™:

graG = {(z,2") e R" x R" | Az + Bz* =0} where (4.1)
A, B € RPX™, (4.2)
rank(A B) = p. (4.3)

Our main concern is to find explicit extensions of G' that are maximally
monotone linear relations. Recently, finding constructive maximally mono-
tone extensions, instead of using Zorn’s lemma, has been a very active topic
[11, 13, 39-41]. In [39], Crouzeix and Ocana-Anaya gave an algorithm for
finding maximally monotone linear subspace extensions of GG, but it is not
clear what the maximally monotone extensions are analytically. In this

chapter, we provide some maximally monotone extensions of G with closed
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4.1. Auxiliary results on linear relations

analytical forms. Along the way, we also give a new proof of Crouzeix and
Ocana-Anaya’s characterizations on monotonicity and maximal monotonic-
ity of G. Our key tool is the Brezis-Browder characterization of maximally
monotone linear relations.

In this chapter, we use the following notation. Counting multiplicities,

let

A1, A2, ..., Ax be all positive eigenvalues of (ABT + BAT) and  (4.4)

Akt1, Ak42, - - - s Ap be nonpositive eigenvalues of (ABT + BAT).  (4.5)

Moreover, let v; be an eigenvector of eigenvalue \; of (ABT+ BAT) satisfying

|lvill =1, and (v;,v;) =0 for 1 <i# j <gq. It will be convenient to put

A0 0 -+ 0
0 X O -+ O

Idy = diag(Ai,..., ) =10 0 X3 S, V=lno ..y,
o 0 . 0

0 0 0 0 A

4.1 Auxiliary results on linear relations

In this section, we collect some facts and preliminary results which will be
used in the sequel.
We first provide a result about subspaces on which a linear operator

from R™ to R™, i.e, an n X n matrix, is monotone. For M € R"*™  define
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4.1. Auxiliary results on linear relations

three subspaces of R”, namely, the positive eigenspace, null eigenspace and

negative eigenspace associated with M + MT by

\
wy,...,Ws : w; is an eigenvector associated with

a positive eigenvalue «; of M + M7
V(M) = span

,7=1,...,s.

Wstl, ..., W o w; is an eigenvector associated with
the 0 eigenvalue of M + MT
Vo(M) = span

ii=s+1,...,1

Wiy1,-.-,Wn ¢ w; is an eigenvector associated with

a negative eigenvalue «; of M + MT
V_(M) = span

(wi,wj) =0V i # g, [|wi]| =1,

iL,j=101+1,...,n.

\ Vs
which is possible since a symmetric matrix always has a complete orthonor-

mal set of eigenvectors, [59, pages 547-549].

Proposition 4.1.1 Let M be an n x n matriz. Then

(i) M is strictly monotone on Vi (M). Moreover, M + MT : V(M) —

V(M) is a bijection.
(ii) M is monotone on V(M) + Vo(M).
(iii) —M is strictly monotone on V_(M). Moreover, —(M+MT): V_(M) —
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4.1. Auxiliary results on linear relations

V_(M) is a bijection.
(iv) =M is monotone on V_(M) + Vo(M).
(v) For every x € Vo(M), (M +MT7)x =0 and (z,Mz) = 0.

In particular, the orthogonal decomposition holds: R™ =V (M)® Vo(M)®

V_(M).

Proof. (i): Let x € Vy(M). Then x = 7 | Liw; for some (I1,...,ls) €
R®. Since {wy,- - ,ws} is a set of orthonormal vectors, they are linearly

independent so that
r#0 < (ll,...,ls)#o.
Note that a; > 0 when i =1,...,s and (w;,w;) = 0 for i # j. We have
2(z, M) = (z, (M + MT)z) = ) Lw;, (M + MT)() _ liw;))
i=1 =1
S S S
= <Z liwi, Z lioziwi> = Z Oéil? >0
i=1 i=1 i=1

if x #0.

For every € V(M) with z = ;| l;w;, we have

S S
(M + M)z = Li(M+ Mw; =Y aliw; € V4 (M),
=1 =1

As a; > 0 for ¢ = 1,...,s and {wi,...,ws} is an orthonormal basis of

V. (M), we conclude that M + MT: V(M) — V(M) is a bijection.
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4.1. Auxiliary results on linear relations

(ii): Letz € V4 (M)+Vo(M). Thenz = Ei:l lyw; for some (Iy,...,1;) €

R!. Note that o;; > 0 when ¢ = 1,...,[ and (wi, wj) = 0 for 7 # j. We have
1 1
2(x, Mz) = (x, (M + MT)z) = 3 Lw;, (M +MT)(>_ L))
i=1 i=1
1 1 1
i=1 i=1 i=1

The proofs for (iii), (iv) are similar to (i), (ii). (v): Obvious. [

Corollary 4.1.2 The following hold:

(i)
gral = {(BTu, ATu) |u € VL (BAT)}
1s strictly monotone.
(i)
graT = {(BTu, ATu) | u € V4.(BAT) + Vo(BAT)}
18 monotone.
(iii)
graT = {(BTu,—ATu) |u € V_(BAT)}
18 strictly monotone.
(iv)

graT = {(BTu,—ATu) |u € V_(BAT) + Vo(BAT))}

1s monotone.
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4.1. Auxiliary results on linear relations

Proof. As (BTu, ATu) = (u, BATu) Yu € R", the result follows from Propo-

sition 4.1.1 by letting M = BAT. |

Lemma 4.1.3 For every subspace S C RP, the following hold.

dim{(BTu, ATu) |u € S} = dim S. (4.7
dim{(BTu,—ATu) |u € S} =dim S. (4.8)
Proof. See [59, page 208, Exercise 4.4.9]. |

The following fact is straightforward from the definition of V.

Fact 4.1.4 We have

(ABT + BAT)V =V 1d,.

Some basic properties of G are:
Lemma 4.1.5 (i) graG = ker(A B).
(ii) GO = ker B,G~1(0) = ker A.
(ili) dom G = Px(ker(A B)) and ran G = Px+(ker(A B)).

(iv) ran(G + 1d) = Px+«(ker(A — B B)) = Px(ker(A B — A)), and

dom G = Px(ker(A — B B)), ranG = Px«(ker(A (B — A)).
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4.1. Auxiliary results on linear relations

(v) dimgraG = 2n — p.

Proof. (i), (ii), (iii) follow from the definition of G. Since

Az+Bz* =0 < (A-B)z+B(z+2")=0 <& A(z+z")+(B—A)z" =0,

(iv) holds.
(v): We have
AT
2n = dimker(A B) + dimran = dimgraG + p.
BT
Hence dimgraG = 2n — p. |

The following result summarizes the monotonicities of G* and G.

Lemma 4.1.6 The following hold.
(i) graG* = {(BTu,—ATu) | u € RP}.
(ii) G* is monotone < the matriz ATB+BTA € RP*P is negative-semidefinite.

(iii) Assume G is monotone. Then n < p. Moreover, G is mazimally

monotone if and only if dimgraG = n = p.

Proof. (i): By Lemma 4.1.5(i), we have

AT
(z,2%) € graG* & (2%, —z) € graG+ = ran = {(ATu, BTu) | u € RP}.
BT

Thus graG* = {(BTu, —ATu) | u € RP}.
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4.1. Auxiliary results on linear relations

(ii): Since gra G* is a linear subspace, by (i),

G™ is monotone < (BTu, —ATu) >0, VYueRP
< (u,—BATu) >0, YueRP
< (u,BATu) <0, YueRP < (u,(ATB+ BTA)u) <0, VYuecRP

< (ATB + BTA)is negative semidefinite.

(iii): By Fact 3.2.6 and Lemma 4.1.5(v), 2n —p = dimgraG < n =n <
p. By Fact 3.2.6 and Lemma 4.1.5(v) again, G is maximally monotone <

2n —p=dimgraG = n < dimgraG = p = n. |

4.1.1 One linear relation: two equivalent formulations

The linear relation G given by (4.1)—(4.3):
graG = {(z,z*) e R" xR" | Az + Bz* =0} (4.9)

is an intersection of p linear hyperplanes. It can be equivalently described as
a span of ¢ = 2n—p points in R™ xR"™. Indeed, for (4.9) we can use Gaussian
elimination to reduce (A B) to row echelon form. Then back substitute to
solve for the basic variables in terms of the free variables, see [59, page 61].

The row-echelon form gives

T c
=hiy1 + -+ hon_pYon—p = Yy
D

-/E*
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4.2. Explicit maximally monotone extensions of monotone linear relations

where y € R?"~P and

= (h1,..., han—p)
D

with C, D being n x (2n — p) matrices. Therefore,

Cy ) C
graG = y € R*"P 3 =ran (4.10)

Dy D

which is a span of 2n — p points in R™ x R™. The two formulations (4.9)
and (4.10) coincide when p = ¢ =n, Id = =B = C and D = A in which
Id € R™*™,

4.2 Explicit maximally monotone extensions of

monotone linear relations

In this section, we give explicit maximally monotone linear subspace exten-
sions of G by using V(ABT) or V. A characterization of all maximally
monotone extensions of G is also given. We also provide a new proof for
Crouzeix and Ocana-Anaya’s characterizations of the monotonicity and the
maximal monotonicity of G. We shall use notations given in (4.1)—(4.6), in

particular, G is in the form of (4.9).

Lemma 4.2.1 Let M € RP*P, and linear relations G and G be defined by

graG = {(z,2*) | MTAz + M"Bz* = 0}

graG = {(BTu,—ATu) | we€ranM}.
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4.2. Explicit maximally monotone extensions of monotone linear relations

Then (G)* = G.

Proof. Let (y,y*) € R™ x R™. Then we have

(y,y") € gra(G)”
ATM

o (v, —y) € (ra @) = (ker <MTA MTB> )* = ran
BTM

< (y,y%) € graé.

Hence (G)* = G.

Lemma 4.2.2 Define linear relations G and G by

graG = {(z,z") | VyAzx + VyBa™ = 0}
graG = {(BTu,—ATu) | u € V_(BAT) + Vo(BAT)},

where Vg is (p — k) X p matriz defined by

.
Vkt1

:
v
| Yk
Vy =

Then

(i) G is monotone.

~ ~

(i) (G)=G.
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4.2. Explicit maximally monotone extensions of monotone linear relations

~ BT
(iii) graG =graG + ulu € Vi (BAT)
AT

Proof. (i): Apply Corollary 4.1.2(iv).

(ii): Notations are as in (4.6). Define the p x p matrix N by

0 o0
N =

0 Id

in which Id € R®=k)x(®=k) Then we have

0 0|\ 0
NTYT = <(u1 o V) o > = . (4.11)
0

Then we have

0
VyAx + V,Bx*
& NWTAz + NTVTBz* =0, V(zr,z%) e R" xR"
Hence
graé ={(z,2") | NT"VT Az + NTVTBz* = 0}.

Thus by Lemma 4.2.1 with M =V N,

gra(G)* = {(BTu, —ATu) | u € ran VN = ran (0 VgT>
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4.2. Explicit maximally monotone extensions of monotone linear relations

= V_(BAT) + Vo(BAT)} = graG.

Hence (G)* = (G)** = G.
(iii): Let J be defined by

BT
graJ = graG + ulu € Vi (BAT)
AT
Then we have
1
BT
(graJ)t = (graG@)*t n ulu € VL (BAT)
AT
By Lemma 4.1.5(i),
AT
graGt = wlw € RP
BT
Then
1
AT BT
w e ulu € VL (BAT)
BT AT

if and only if

(ATw, BTw), (BTu, ATw)) = 0 Y u € V. (BAT),
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4.2. Explicit maximally monotone extensions of monotone linear relations

that is,

(ATw, BTu) + (BTw, ATu) = (w,(ABT 4+ BAT)u) =0 Yu € V(ABT).
(4.12)
Because ABT+BAT : V_(ABT) — V_(ABT) is onto by Proposition 4.1.1(i),
we obtain that (4.12) holds if and only if w € V_(ABT) + Vo(ABT). Hence

(graJ)t = {(ATw, BTw) | w e V_(BAT) + Vo(BAT)},
from which gra J* = graG. Then by (i),
graG = gra(G)* = gra J*™ = gra J.

|
We are ready to apply the Brezis-Browder Theorem, namely Fact 3.2.13,
to improve Crouzeix and Ocana-Anaya’s characterizations of monotonicity

and maximal monotonicity of G and provide a different proof.

Theorem 4.2.3 Let @,é be defined in Lemma 4.2.2. The following are

equivalent:
(i) G is monotone;
(i) G is monotone;
(iii) G is mazimally monotone;

(iv) G is mazimally monotone;
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4.2. Explicit maximally monotone extensions of monotone linear relations

(v) dimV(BAT) = p — n, equivalently, ABT + BAT has exactly p — n

positive eigenvalues (counting multiplicity).

Proof. (i)<(ii): Lemma 4.2.2(iii) and Corollary 4.1.2(i).

(i)« (iii) < (iv): Note that G = (CAJ)* and @ is always a monotone linear
relation by Corollary 4.1.2(iv). It suffices to combine Lemma 4.2.2 and
Fact 3.2.13.

(i)=(v): Assume that G is monotone. Then G is monotone by

Lemma 4.2.2(iii) and Corollary 4.1.2(i). By Lemma 4.2.2(ii),
Corollary 4.1.2(iv) and Fact 3.2.13, G is maximally monotone, so that
dim(gra CAJ) = p—k = n by Fact 3.2.6 and Lemma 4.1.3, thus £k = p—n. Note
that for each eigenvalue of a symmetric matrix, its geometric multiplicity is
the same as its algebraic multiplicity [59, page 512].

(v)=(i): Assume that k = p —n. Then dim(graG) = p — k = n by
Lemma 4.1.3, so that G is maximally monotone by Fact 3.2.6(i)(ii). By
Lemma 4.2.2(ii) and Fact 3.2.13, G is monotone, which implies that G is

monotone. |
Corollary 4.2.4 Assume that G is monotone. Then

~ BT
graG = graG + ulu € VL (BAT)
AT

= {(z,2") | VjAz + V;Bz" = 0}
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4.2. Explicit maximally monotone extensions of monotone linear relations

18 a mazximally monotone extension of G, where

p—n—+1
v Vp_pi2
9 .
vp
Proof. Combine Theorem 4.2.3 and Lemma 4.2.2(iii) directly. [ |

Note that Corollary 4.2.4 gives both types of maximally monotone ex-
tensions of G, namely, type (4.9) and type (4.10). A remark is in order to

compare our extension with the one by Crouzeix and Ocana-Anaya.

Remark 4.2.5 (i). Crouzeiz and Ocana-Anaya [39] defines the union of

monotone extension of G as

BT
S =graG + ulu € K p,
AT
where K = {u € R" | (u, (ABT + BAT)u) > 0}. Although this is the set mono-
tonically related to G, it is not monotone in general as long as (ABT+ BAT)
has both positive eigenvalues and negative eigenvalues. Indeed, let (o, uq)
and (ag,uz) be eigen-pairs of (ABT + BAT) with aq > 0 and ag < 0. We

have

<U1, (ABT+BAT)U1> = oz1Hu1||2 > 0, (’LLQ, (ABT+BAT)ZL2> = a2HU2||2 < 0.
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Choose € > 0 sufficiently small so that

(uy + eug, (ABT 4+ BAT)(uj + €ugy)) > 0.

Then
BT BT
u, (u1 + eug) € S.
AT AT
However,
BT BT BT
(uy + eug) — U = ¢ U9
AT AT AT
has

, (uz, (ABT + BAT)uy)

0.
5 <

<€BTU2, EATU2> = 62 <UQ, BATU2> =€

Therefore S is not monotone. By using V4 (BAT) C K, we have obtained a
maximally monotone extension of G .

(ii). Crouzeiz and Ocana-Anaya [39] find a maximally monotone linear
subspace extension of G algorithmically by using uy € graé; \ graGy and
constructing gra Gy = gra Gy, + Ruy, where

[ B
U = ug,  (uk, (AgBl + BpAl)ug) > 0.
A

This recursion is done until dim gra Gy = n. In particular, each ui may

be chosen as an eigenvector associated with a positive eigenvalue of AkB,I +

B AT, which is possible since p > n when Gy, is not mazimally monotone.
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Their construction uses both formulations, namely, (4.9) and (4.10). No
computation indications are given on the passage from one formulation to

the other one.

The following result extends the characterization of maximally monotone

linear relations given by Crouzeix and Ocana-Anaya [39].

Theorem 4.2.6 Let @,é be defined in Lemma 4.2.2. The following are

equivalent:

(i) G is maximally monotone;

(ii) p=n and G is monotone;

(iii) p =n and ABT + BAT is negative semidefinite.
(iv) p=n and G is mazimally monotone.

Proof. (i)=(ii): Apply Lemma 4.1.6(iii).

(ii)=-(iii): Apply Theorem 4.2.3(i)(v) directly .

(iii)=-(i): Assume that p =n and (ABT+ BAT) is negative semidefinite.
Then k = 0 and G = G. It follows that dim(graG) = p— k = n by
Lemma 4.1.3, so that G is maximally monotone by Corollary 4.1.2(iv) and
Fact 3.2.6(i)(ii). Since (G)" = G by Lemma 4.2.2(ii), Fact 3.2.13 gives that
G=0Gis maximally monotone.

(iii)=-(iv): Assume that p = n and (ABT+ BAT) is negative semidefinite.
We have k£ = 0 and dim(gra é) =p—Fk =n—0=n. Hence (iv) holds by
Corollary 4.1.2(iv) and Fact 3.2.6(i)(ii).
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(iv)=>(iii): Assume that G is maximally monotone and p = n. We have
dim(gra@) = p—k = n — k = n so that k = 0. Hence (ABT + BAT) is
negative semidefinite. |

Corollary 4.2.4 supplies only one maximally monotone linear subspace
extension of G. Can we find all of them? Surprisingly, we may give a
characterization of all the maximally monotone linear subspace extensions

of G when it is given in the form of (4.9).

Theorem 4.2.7 Let G be monotone. Then G is a maximally monotone
extension of G if and only if there exists N € RP*P with rank of n such that

NTIdy N is negative semidefinite and
graG = {(z,2*) | NTVTAz + NTVTBz* = 0}. (4.13)
Proof. “=”: By Lemma 4.1.6(i), we have
graG* = {(BTu, —ATu) | u € RP}. (4.14)

Since graG C graé and thus gra(é)* is a subspace of gra G*.

Thus by (4.14), there exists a subspace F' of RP such that
gra(G)* = {(BTu, —ATu) | u € F}. (4.15)

By Fact 3.2.13, Fact 3.2.6 and Lemma 4.1.3, we have

dim F' = n. (4.16)
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Thus, there exists N € RP*P with rank n such that ran VN = F and

gra(G)* = {(BTVNy,—ATVNy) | y € R}. (4.17)

AsGis maximally monotone, (G)* is maximally monotone by Fact 3.2.13,
SO

NTVT(BAT + ABT)V N is negative semidefinite.

Using Fact 4.1.4, we have
NTIdy N = NTVTVIdy N = NTVT(ABT + BAT)VN (4.18)

which is negative semidefinite. (4.13) follows from (4.17) by Lemma 4.2.1
using M = VN.

“«<": By Lemma 4.2.1, we have

gra(G)* = {(B"VNu,—ATVNu) | u € RP}. (4.19)

Observe that (G)* is monotone because NTVT(ABT+BAT)VN = NT1d, N
is negative semidefinite by Fact 4.1.4 and the assumption. As rank(VN) =

n, it follows from (4.19) and Lemma 4.1.3 that dim gra(G)* = n. Therefore
(G)* is maximally monotone by Fact 3.2.6. Applying Fact 3.2.13 for T' =
(G)* yields that G = (G)** is maximally monotone. [ |

From the above proof, we see that to find a maximally monotone exten-

sion of GG one essentially need to find subspace F' C RP such that dim F = n

and ABT+ BAT is negative semidefinite on F. If F =ran M and M € RP*P
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4.2. Explicit maximally monotone extensions of monotone linear relations

with rank M = n, one can let N = VTM. The maximally monotone linear

subspace extension of G is
G = {(z,2*) | MTAz + MTBz* = 0}.

In Corollary 4.2.4, one can choose M = (0 0 -0 vp_pg1 -+ ’Up).

n

Corollary 4.2.8 Let G be monotone. Then G is a maximally monotone
extension of G if and only if there exists M € RP*P with rank of n such that

MT(ABT + BAT)M is negative semidefinite and
graG = {(x,2") | MTAz + MTBz* = 0}. (4.20)

Note that G may have different representations in terms of A, B. The
maximally monotone extension of G given in Theorem 4.2.7 and Corol-
lary 4.2.4 relies on A, B matrices and N. This might lead to different max-

imally monotone extensions, see Section 4.5.

Remark 4.2.9 A referee for the paper [88] pointed out that there is a
shorter way to see Theorem 4.2.7. Consider the mazimally monotone linear

subspace extension of G of type:
graG = {(z,2*) € R" x R" | Az + Bz* = 0} D graG

where ;L B € R, With the nonsingular p X p matriz V- given as in (4.6),
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4.2. Explicit maximally monotone extensions of monotone linear relations

an equivalent formulation of G is
graG = {(z,2") e R" x R" | VT Az + VT Bz™ = 0}.

As G is mazximally monotone, the n x 2n matriz has rank(ﬁ, E) =n and

the matrix

ABT + BAT € R™"
is negative semidefinite. Since graé D graG, we have

AT _ VTAT
ran = (graG)* C (graG)* = ran ( )

BT (ViB)T
Therefore, there exists a p x n matriz N with rank N = n such that

AT vrar) o [(vTATN
BT (VTB)T (VIB)TN

from which A= NTVTA, B = NTVTB. Then the n x n matriz

ABT 4 BAT = NTVTA(NTVTB)T + NTVTB(NTVTA)T (4.21)
= NTVT(ABT + BAT)VN (4.22)
= NTIdy N. (4.23)

Therefore, all mazimally monotone linear subspace extensions of G can be
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4.3. Minty parameterizations

obtained by using
graG = {(z,2*) € R" x R" | NTVT Az + NTVTBz* = 0}

in which the p x n matriz N satisfies rank N = n and NTIdy N is negative
semidefinite.
4.3 Minty parameterizations

Although G is set-valued in general, when G is monotone it has an elegant
Minty parametrization in terms of A, B, which is what we are going to show

in this section.

Lemma 4.3.1 The linear relation G is monotone if and only if

lyll® = lly*||* > 0, whenever (4.24)

(A+ By + (B — A)y* = 0. (4.25)

Consequently, if G is monotone then the p X n matrix B — A must have full

column rank, namely n.

Proof. Define the 2n x 2n matrix

79



4.3. Minty parameterizations

where Id € R™*™. It is easy to see that GG is monotone if and only if

€T
<(.1‘,.1‘*),P > 207
T*

whenever Az + Bx* = 0. Define the orthogonal matrix

1 [Id —-1Id
V2l 1
and put
T Y
=qQ
:L,* y*

Then G is monotone if and only if

lyll? = lly*||* > 0, whenever (4.26)

(A+ By + (B — A)y* = 0. (4.27)

If (B — A) does not have full column rank, then there exists y* # 0 such
that (B — A)y* = 0. Then (0,y*) satisfies (4.27) but (4.26) fails. Therefore,
B — A has to be full column rank. [

Theorem 4.3.2 (Minty parametrization) Assume that G is a mono-

tone operator. Then (x,x*) € graG if and only if

x:%m+w—AW3+mw (4.28)
%M—B—Aﬂ3+mw (4.29)
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4.3. Minty parameterizations

for y = x + x* € ran(Id +G). Here the Moore-Penrose inverse (B — A)f =
[(B—A)T(B—A)]"YB-A)T. In particular, when G is maximally monotone,

we have
graG = {((B—A)"'By,—(B—-A) 'Ay) | y e R"}.

Proof. As (B — A) is full column rank, (B — A)T(B — A) is invertible. It
follows from (4.25) that (B — A)T(A+ B)y+ (B —A)T(B — A)y* = 0 so that

y'=—((B-A)T(B~-A) (B-A)T(A+B)y=—(B-A)(A+B)y.

Then
r= "y y) = [ +(B— A)(B+ A)
BYTY NG Y
v = S +y) = S =(B = A) (B + Ay

rta*

where y = R with (z,2*) € graG. Since ran(Id +G) is a subspace, we

have

x:%m+B—AﬂB+mw

ﬁ:%M—B—AﬂB+mw
with § = z + 2* € ran(Id +G).

If G is maximally monotone, then p = n by Theorem 4.2.6 and hence

B — A is invertible, thus (B—A)! = (B—A)~!. Moreover, ran(G+1d) = R".
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4.3. Minty parameterizations

Then (4.28) and (4.29) imply that

T = %(B —~A)MB-A+(B+A)y=(B-A)"'By (4.30)

o = %(B A YB-A)— (B+ Ay = —(B—A) Ay (431)

for y € R™. |

Remark 4.3.3 See Lemma 4.1.5 for ran(G + Id). Note that as G is a

monotone linear relation, the mapping
2 ((G+1d) 71 1d —(G +1d) 7 )(2)

is bijective and linear from ran(G+1d) to gra G, therefore dim(ran(G+1d)) =
dim(gra G).

Corollary 4.3.4 Let G be a monotone operator. Then G defined in Corol-
lary 4.2.4, the maximally monotone extension of G, has its Minty parametriza-

tion given by
gra G = {(V,B — V,A) 1V, By, ~(V,B — V,A) WV, Ay) | y € R"}

where Vg is given as in Corollary 4.2.4.

Proof. Since rank(V,) = n and rank(4 B) = p, by Lemma 4.1.3(4.7),
rank(V;A V,B) = n. Then we can apply Corollary 4.2.4 and Theorem 4.3.2

directly. ]
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4.4. Maximally monotone extensions with the same domain or the same range

Corollary 4.3.5 When G is mazimally monotone,
domG = (B — A)"'(ranB), ranG = (B — A) " !(ran A).
Recall that T : R® — R" is firmly nonexpansive if
|Tx —Ty||? < (Tx —Ty,x —y) Y x,yecdomT.

In terms of matrices, we have

Corollary 4.3.6 Suppose that p =n, ABT + BAT is negative semidefinite.
Then (B — A)™'B and —(B — A)~ A are firmly nonezpansive.

Proof. By Theorem 4.2.6, G is maximally monotone. Theorem 4.3.2 gives

that
(B—A)™'B=(1d+G)"', —(B-A)'A=@1d+cH L.

Being resolvents of monotone operators G, G~!, they are firmly nonexpan-

sive, see [9, 43] or [13, Fact 2.5]. [ |

4.4 Maximally monotone extensions with the

same domain or the same range

How do we find maximally monotone linear subspace extensions of G if it is
given in the form of (4.10)?7 The purpose of this section is to find maximally

monotone linear subspace extensions of G which keep either dom G or ran G
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4.4. Maximally monotone extensions with the same domain or the same range

unchanged. For a closed convex set S C R", let Ng denote its normal cone

mapping.

Proposition 4.4.1 Assume that T : R"™ = R"™ is a monotone linear rela-

tion. Then

(1) Ty =T+ NyomT, €.,

Tz + (domT)*+ ifzx e domT
z— Tix =

0 otherwise

1s maximally monotone. In particular, domT; = domT.

(i) 7o = (T7' 4+ Nean7) ! is a mazimally monotone extension of T and

ranTy =ranT.

Proof. (i): Since 0 € T0 C (dom T)* by [15, Proposition 2.2(i)], we have
T10 = TO+(dom T)* = (dom T')* so that dom T} = dom T = (710)*. Hence
Ty is maximally monotone by Fact 3.2.6.

(ii): Apply (i) to T~ to see that 7= + N is a maximally mono-
tone extension of 7! with dom(T~! + Nyan7) = ranT. Therefore, Tb is a
maximally monotone extension of T with ranT> = ranT. |

Define linear relations E; : R" = R" (i = 1,2) by

Cy 0

gralb = + y e R™P 4 (4.32)
Dy (ran C)*
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4.4. Maximally monotone extensions with the same domain or the same range

Cy (ran D)+ )
gra Fy = + yeRTP S (4.33)
Dy 0

Theorem 4.4.2 (i) E; is a mazimally monotone extension of G with

dom Ey = dom G. Moreover,

C 0 C 0
gra ] =ran + = ran + . (4.34)
D (ran C)* D ker CT
(ii) Ey is a mazimally monotone extension of G with ran By = ranG.
Moreover,
C (ran D)+ C ker DT
gra E5 = ran + = ran + . (4.35)
D 0 D 0

Proof. (i): Note that domG = ran(C. The maximal monotonicity fol-
lows from Proposition 4.4.1. (4.34) follows from (4.32) and the fact that
(ran C)* = ker CT [59, page 405].

(ii): Apply (i) to G71, i.e.,

Dy
graG—1 = y € R¥P (4.36)
Cy
and followed by taking the set-valued inverse. |

Apparently, both extensions F1, Fy rely on graG, dom G, ran G, not on
the A, B. In this sense, Fp, Ey are intrinsic maximally monotone linear

subspace extensions.
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4.4. Maximally monotone extensions with the same domain or the same range

Remark 4.4.3 Theorem 4.4.2 is much easier to use than Corollary 4.2.8

when G is written in the form of (4.10). Indeed, it is not hard to check that

gra(E}) = {(BTu, —ATu) | BTu € dom G, u € RP}. (4.37)

gra(E3) = {BTu,—ATu) | ATu € ran G, u € RP}. (4.38)

According to Fact 3.2.13, E is maximally monotone and dim E} = n. This

implies that
dim{u € R? | BTy € dom G} = n, dim{u € R? | ATu € ran G} = n.
Let M; € RP*P with rank M; = n and

{u € R? | BTu € dom G} = ran M, (4.39)

{u e R | ATy € ran G} = ran Mo. (4.40)

Corollary 4.2.8 shows that
gra B; = {(z,z") | M] Az + M] Bz* = 0}.

Howewver, finding M; from (4.39) and (4.40) may not be as easy as it seems.

Remark 4.4.4 Unfortunately, we do not know how to determine all mazi-

mally monotone linear subspace extensions of G if it is given in the form of
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(4.10).

4.5 Examples

In the final section, we illustrate our maximally monotone extensions by con-
sidering three examples. In particular, they show that maximally monotone
extensions G rely on the representation of G in terms of A, B and choices
of N we shall use. However, the maximally monotone extensions FE; are

intrinsic, depending only on gra G.

Example 4.5.1 Consider
Id
graG =< (z,2%) e R" x R" x+ ¥ =0
where C' € R™™ is symmetric and positive definite, and Id € R™*™ . Clearly,
graG =

We have

(i) For every o € [-1,1], Gy defined by

~ {(Oan)}v if = 1;
graGy =
{(1‘7 —}sz‘lx) | z € R”} ,  otherwise

is a mazimally monotone linear extension of G.
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4.5. Examples

(ii) E1 = él and E2 = é_l.

Proof. (i): To find G, we need eigenvectors of

Id 0
A= (0CT) 4+ (Id 0) =
0 C c 0
Counting multiplicity, the positive definite matrix C' has eigen-pairs (\;, w;)
(¢t =1,...,n) such that \; > 0, ||w;|| = 1 and (w;,w;) = 0 for i # j. As

such, the matrix A has 2n eigen-pairs, namely

Wy
Ai7
Wy
and
ws
_Ai7
—w;

withi=1,...,n. Put W= (w; --- wy) € R™" and write

w W
V=

w W

Then
WTCW = D = diag(A1, A2y ..., A\pn)-
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4.5. Examples

In Theorem 4.2.7, take

Na — O OéId c RQTLXQTZ

0 Id

where Id € R™"*". We have rank N, = n,

0 0 0 0
NIIdy N, = =
0 (2-1)WTCW 0 (a>-1)D
being negative semidefinite, and
0 A+a)W
VN, =
0 (a—1)W

Then by Theorem 4.2.7, we have a maximally monotone linear extension éa

given by

~ 0
graGy = < (z,2") € R" x R" =0

(1+a)WTz + (a — HYWTCz*
= {(z,2*) e R" xR" | (1 + @)z + (o — 1)Cz* = 0}
{(0,R")}, if o = 1;
{(a:, rac=ly) |z e R”} , otherwise.

Hence we get the desired result.

(ii): It is immediate from Theorem 4.4.2 and (i). [
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Example 4.5.2 Consider

graG = { (z,2*) € R* x R?

Then

(i) the linear operators G, : R? = R2 fori=1,2 given by

~ 1
Gy =
0

are two maximally monotone extensions of G.

(i)

El(azl,O) = (l‘l,R)

(iii)

Ea(x1,y) = (21,0)

Proof. We have

graG =

\

—1+v2
2—v/2

I
0
1

0

r1 €R

—

_
ey o

Vr1 € R.

Vri,y € R.

is monotone. Since dim G = 1, G is not maximally monotone by Fact 3.2.6.
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The matrix

-2 0 0
ABT+BAT=10 0 -1
0 -1 -2

Then by Corollary 4.2.4,

gra él =

Therefore,

BT
so that u =
AT
I 0
0 2 -2
r1 €R » +
T O
0 ) —1++2
1
(2 = V2)x2
T1,T9 € R
T
(—1 + \/5)332 }
- 1 0
G =
0 —14+2
2—/2

is a maximally monotone extension of G.

o €R
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Now we have

—14++2 0 0 0 0 1
= 1 — — o 1 o 1
Idy 0 1-v2 0|, V % 5 0
0 0 -2 1 1 0
(4.41)
Take
0 -1 1
N=1lo 2 -11. (4.42)
0 1 1

We have rank N = 2 and

0 0 0
NTIdyN= |0 —7-3V2 1+2 (4.43)
0 1++v2 —4

is negative semidefinite. By Theorem 4.2.7, with V, N given in (4.41) and

(4.42), we use the NullSpace command in Maple to solve

(VN)TAz + (VN)TBz* =0,

92



4.5. Examples

and get
1 —2V/2
N 0 5v2
gra G9 = span ,
1 0
0 1
-1
. 1 —2v2 1 2
Thus Gy = = is another maximally monotone
0 52 0 ¥2

extension of G.

On the other hand,

I 0 I
0 0 0
gra by = r1 €ER 3+ = r1 €R
T 0 Il
0 R R
gives
El(l‘l,O) = (.Tl,R) Vz; € R.
We have
T
R
gra Fy = r1 €ER 3,
T
0
\ Vs
which gives Fo(z1,y) = (21,0) Vai,y € R. [ ]
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In [11], the authors use autoconjugates to find maximally monotone ex-
tensions of monotone operators. In general, it is not clear whether the
maximally monotone extensions of a linear relation is still a linear relation.
As both monotone operators in Examples 4.5.2 and 4.5.1 are subsets of
{(z,z) | = € R"}, [11, Example 5.10] shows that the maximally monotone
extension obtained by autoconjugates must be Id, which is different from

the ones given here.

Example 4.5.3 Consider graG = {(z,2*) € R? x R? | Ax + Bz* = 0}

where
11 15 1 1 15
A=12 o|,B=|1 7|, thus(AB)=12 0 1 7]|- (4.44)
31 0 2 3 10 2

Then the linear operators éz :R® =2 R™ fori=1,2 given by

—117+17v/201  —10747+/201 33 /201 13 /201

G, = | 2-1+v20) 2(—14+/201) Gy — 4 6 1 6
_ -2313V201  —21+v201 | 20 VO _ 9, V201
2(—1++/201) 2(—1++/201) 20 30 20 30

are two mazximally monotone linear extensions of G.

Moreover,

— |
—
o o

gra By = T + To|x1, 19 €ER

|
ot
—
(V]

—_
—_

\
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and

-1 1
1 5
gra Ky = xr1 + To|x1,x2 € R
-5 0
1 0
Proof. We have rank(A B) =3 and
20 20
1344201 0 0 T y201 0 = /301
Idy = 0 —6 0 , V= 1 -1 1 ;
0 0 13—+201 1 1 1
(4.45)
and
0 -1 1
Vg = . (4.46)
20 1 1
1-v/201

Clearly, here p = 3,n = 2 and ABT + BAT has ezactly p —n = 3 —
2 = 1 positive eigenvalue. By Theorem 4.2.3(i)(v), G is monotone. Since
ABT + BAT is not negative semidefinite, by Theorem 4.2.6(1) (i), G is not
mazimally monotone.

With Vy given in (4.46) and A, B in (4.44), use the NullSpace command
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in maple to solve VyAx + VyBx* = 0 and obtain Gy defined by

;

gra él = Span

\

—21++/201
2(—1++/201)

—23+3./201
2(—1+v/201)

1
0

_ —10747v/201

—117417+/201

2(—1++/201)

2(—1++/201)
0

1

By Corollary 4.2.4, él is a maximally monotone linear subspace extension

of G. Then
-1
_ —214+201  _ —1074+7/201 —117+17/201 —107+7/201
él _ 2(—1++/201) 2(—1++/201) _ 2(—1++/201) 2(—1++/201)
—2343/201 —117417+/201 _ —2343201 _ —21++/201
2(—1++/201) 2(—1++/201) 2(—1++/201) 2(—1-++/201)
Let N be defined by
00 %
N=1l0o1 0 (4.47)
0 01
Then rank N = 2 and
0 O 0
NTId\N =10 -6 0
338—24+/201
0 O 55

is negative semidefinite.

With N in (4.47), A, B in (4.44) and V in (4.45), use the NullSpace

command in maple to solve (VN)TAzx+ (VN)"Bx* = 0. By Theorem 4.2.7,
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we get a maximally monotone linear extension of G, ég, defined by

-1

_9 V0T 13 V201 33 V201 13 /201
Gy — 20 30 4 6 . 4 6 7] 6
29 V201 33 V201 20 V0L _ 9, V201
20 30 4 6 20 30 20 30

To find E1 and Eo, using the LinearSolve command in Maple, we get

graG = ran , where
D

It follows from Theorem 4.4.2 that

-1 0
1 0

graF; = x|+ ro| 1,22 €R
-5 1
1 1

and

-1 1
1 5

gra By = 1 + ro| 1,22 €R
-5 0
1 0
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4.6 Discussion

A direction for future work in this chapter is to write computer code to
find the maximally monotone subspace extension of G, and to generalize

the results into a Hilbert space by applying the Brezis-Browder Theorem.
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Chapter 5

The sum problem

Let A and B be maximally monotone operators from X to X*. Clearly, the

sum operator
A+B: X =% X" 2+ Az + Br = {a* +b" | " € Az and b* € Bz}

is monotone. Rockafellar established the following very important result in

1970.

Theorem 5.0.1 (Rockafellar’s sum theorem) (See [66, Theorem 1].)
Suppose that X is reflexive. Let A, B : X = X* be maximally monotone.
Assume that A and B satisfy the classical constraint qualification

dom ANintdom B # @ Then A+ B is mazimally monotone.

The most famous open problem concerns the maximal monotonicity of the
sum of two maximally monotone operators in general Banach spaces, which
is called the “sum problem”. See Simons’ monograph [74] and [22-24, 86, 90]
for a comprehensive account of some recent developments. In this chap-
ter, we prove the maximal monotonicity of A + B provided that dom A N

int dom B # &, A4 Nq55 is of type (FPV), and dom ANdom B C dom B.
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We also show the maximal monotonicity of A + B when A is a maxi-
mally monotone linear relation and B is a subdifferential operator satisfying
dom A Nint dom B # @.

This chapter is mainly based on my work in [90, 91].

5.1 Basic properties

Fact 5.1.1 (Rockafellar) (See [65, Theorem 3|, [74, Corollary 10.3 and
Theorem 18.1], or [92, Theorem 2.8.7(iii)].) Let f,g : X — ]—o00,+00] be
proper convex functions. Assume that there exists a point xg € dom fNdom g
such that g is continuous at xg. Then for every z* € X, there exists y* € X*

such that

(f+9)7E) = W) +9° (= —y) (5.1)
Furthermore, O(f + g) = 0f + 0g.

Fact 5.1.2 (Rockafellar) (See [67, Theorem A], [92, Theorem 3.2.8], [74,
Theorem 18.7] or [54, Theorem 2.1]) Let f : X — ]—o00,400] be a proper

lower semicontinuous convex function. Then Of is mazximally monotone.

Fact 5.1.3 (See [61, Theorem 2.28].) Let A : X =% X* be monotone such
that int dom A # @. Assume that x € intdom A. Then A is locally bounded

at z, i.e., there exist d > 0 and K > 0 such that

sup [[y*|| < K, Vye (z+dBx)NdomA.
y*€Ay

Fact 5.1.4 (See [61, Proposition 3.3 and Proposition 1.11].) Let f : X —
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|—00, +00] be a lower semicontinuous convex function and intdom f # &.

Then f is continuous on intdom f and Of(x) # @ for every x € int dom f.

Fact 5.1.5 (Fitzpatrick) (See [45, Corollary 3.9].) Let A: X == X* be

mazimally monotone, and set

Fa: X x X* = ]—00,+00] : (z,2%) = sup  ((z,a")+ (a,z*) — (a,a*)).
(a,a*)egra A

(5.2)

Then for every (z,z*) € X x X*, the inequality (x,z*) < Fa(x,x*) is true,

and equality holds if and only if (x,z*) € gra A.

Fact 5.1.6 (Fitzpatrick) (See [45, Theorem 3.4].) Let A: X = X* be

monotone. Then convdom A C Py (dom Fjy).

Fact 5.1.7 (See [84, Theorem 3.4 and Corollary 5.6] or
[74, Theorem 24.1(b)].)  Let A,B : X =% X* be mazimally monotone

operators. Assume

U A[Px(dom F4) — Px(dom Fp)] is a closed subspace of X.
A>0

If
Faip> (-, )on X xX* (5.3)

then A + B is maximally monotone.

Fact 5.1.8 (Simons) (See [74, Theorem 27.1 and Theorem 27.3].) Let A :

X = X* be maximally monotone with intdom A # &. Then

int dom A = int [Px dom Fy4], dom A = Px [dom F4], and dom A is convez.

101



5.1. Basic properties

Fact 5.1.9 (Simons) (See [70, Lemma 2.2].) Let f : X — ]—o0,+00] be
proper, lower semicontinuous and convex. Let x € X and A € R be such

that inf f < A < f(x) < 400, and set

K := sup /\—7)“(a)

a€X,a#x ||l‘ - a” ‘

Then K € ]0,+o0o[ and for every e € 0, 1], there exists (y,y*) € gradf such

that

(y—a,y") < (1 —e)Klly —zf| <0. (5.4)

Fact 5.1.10 (Simons) (See [74, Theorem 48.6(a)].) Let f : X — ]—00,+00]
be proper, lower semicontinuous, and convex. Let (z,x*) € X x X* be such
that (z,x*) ¢ gradf and let « > 0. Then for every € > 0, there exists

(y,y*) € gradf with y # x and y* # x* such that

le=vll ) <. (5.5)
|lz* —y*||
and
o —y.2" —y") +1'<€. (5.6)
lz =yl - [lo* — y*||

Fact 5.1.11 (Simons) (See [74, Corollary 28.2].) Let A: X = X* be maz-

imally monotone. Then

span(Px dom F4) = span [dom A]. (5.7)
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5.1. Basic properties

Now we cite some results on maximally monotone operators of type

(FPV).

Fact 5.1.12 (Fitzpatrick-Phelps and Verona-Verona) (See [47, Corol-
lary 3.4], [81, Theorem 3] or [74, Theorem 48.4(d)].) Let f : X —
|—00, +00] be proper, lower semicontinuous, and conver. Then Of is of

type (FPV).

Fact 5.1.13 (Simons) (See [74, Theorem 44.2].) Let A : X == X* be a

maximally monotone of type (FPV). Then

dom A = convdom A = Px dom Fly.

Fact 5.1.14 (Simons) (See [74, Theorem 46.1].) Let A : X = X* be a

maximally monotone linear relation. Then A is of type (FPV).

Fact 5.1.15 (Simons and Verona-Verona) (See [74, Thereom 44.1] or
[81].) Let A : X =% X* be mazimally monotone. Suppose that for every
closed conver subset C of X with dom A Nint C # @, the operator A 4+ N¢

is maximally monotone. Then A is of type (FPV).

The following statement first appeared in [72, Theorem 41.5]. However,
on [74, page 199], concerns were raised about the validity of the proof of [72,
Theorem 41.5]. In [85], Voisei recently provided a result that generalizes

and confirms [72, Theorem 41.5] and hence the following fact.

Fact 5.1.16 (Voisei) Let A : X = X* be maximally monotone of type

(FPV) with conver domain, let C' be a nonempty closed convex subset of X,
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5.1. Basic properties

and suppose that dom ANint C' # &. Then A+ N¢ is mazimally monotone.

Corollary 5.1.17 Let A: X = X* be maximally monotone of type (FPV)
with convexr domain, let C' be a nonempty closed conver subset of X, and

suppose that dom A Nint C' # &. Then A+ N¢ is of type (FPV).

Proof. By Fact 5.1.16, A+ N¢ is maximally monotone. Let D be a nonempty
closed convex subset of X, and suppose that dom(A+ N¢)Nint D # &. Let
21 € domANintC and x9 € dom(A + N¢) Nint D. Thus, there exists
0 > 0 such that 1 + 0Ux C C and z9 + 0Ux C D. Then for small enough
A €10, 1[, we have xo + A(x1 — x2) + %5UX C D. Clearly, xo + A(x1 — x2) +
AUy C C. Thus x9 + A(x1 — 22) + %‘SUX C CND. Since dom A is convex,
2 + AMx1 —22) € dom A and 3 + A(x; — 22) € dom A Nint(C' N D). By
Fact 5.1.1 , A+ No + Np = A+ Noap. Then, by Fact 5.1.16 (applied to
A and CN D), A+ Nc + Np = A+ Nenp is maximally monotone. By
Fact 5.1.15, A+ N¢ is of type (FPV). [

Corollary 5.1.18 Let A : X = X* be a mazimally monotone linear re-
lation, let C' be a nonempty closed convex subset of X, and suppose that

domANintC # @. Then A+ N¢ is of type (FPV).

Proof. Apply Fact 5.1.14 and Corollary 5.1.17. |
The following Lemma 5.1.19 is from [16, Lemma 2.5].

Lemma 5.1.19 Let C' be a nonempty closed convex subset of X such that
intC # @. Let cg € int C' and suppose that z € X ~ C. Then there exists

A €]0,1] such that Aco + (1 — X)z € bdry C.

104



5.1. Basic properties

Proof. Let A =inf {t € [0,1] | tco + (1 —t)z € C'}. Since C is closed,

A=min {t € [0,1] | teg + (1 — t)z € C}. (5.8)

Because z ¢ C, A > 0. We now show that Acop+ (1 — A)z € bdry C. Assume
to the contrary that Aco + (1 — )z € int C. Then there exists § € |0, A\[ such
that Acg+(1—X)z—0(co —2) € C. Hence (A—d)cog+(1—A+0d)z € C, which
contradicts (5.8). Therefore, Acg + (1 — X\)z € bdry C. Since ¢o ¢ bdry C,
we also have A < 1. [ ]

The proof of the next result follows closely the proof of [74, Theo-
rem 53.1]. Lemma 5.1.20 was established by Bauschke, Wang and Yao in
[19, Lemma 2.10].

Lemma 5.1.20 Let A : X = X* be a monotone linear relation, and let
f:X — ]—00,4+00] be a proper lower semicontinuous and convex function.
Suppose that dom A Nintdom df # &, (z,2*) € X x X* is monotonically

related to gra(A+ 0f) and z € dom A. Then z € dom Jf.

Proof. Let ¢y € X and y* € X™* be such that

co € domANintdomdf and (z,y*) € gra A. (5.9)

Take ¢y € Acp, and set

M = max {|ly"||, I3}, (5.10)
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5.1. Basic properties

D := ey, 2], and h := f+p. By (5.9), Fact 5.1.4 and Fact 5.1.1, 0h =
Of +0up. Set g: X — |—o00,+00]: © — h(x + z) — (2", x). It remains to

show that

0 € dom Jg. (5.11)

If inf g = ¢(0), then (5.11) holds. Now suppose that inf g < g(0). Let A € R

be such that inf g < A < ¢(0), and set

A —
Ky := sup ﬂ (5.12)
g(z)<A HxH
We claim that
Ky, <M.

By Fact 5.1.9, we have K, € |0,00[ and Ve € ]0,1[, by gradg = gradh —

(z,2*) there exists (z,2*) € gradh such that

(x —z,2" = 2") < —(1 —e)K,\||z — z|| < 0. (5.13)

Since Oh = 0f +0up, there exists t € [0, 1] with 2] € 0f(x) and x5 € Ovp(x)
such that z = tco + (1 — t)z and 2* = x] + 25. Then (z — z,23) > 0. Thus,

by (5.13),

r—z,0] -2 <{(z—z, 2] +a5 -2 < —-(1-e)K,||lr —z2|| <0. (5.14
1 1 2
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

As x = tep+ (1 —1t)z and A is a linear relation, we have (z,tcf + (1 —t)y*) €

gra A. Since (z, z*) is monotonically related to gra(A + df), by (5.10),
(x —z,2] — 2%) > —(x — z,tcg + (L —t)y™) > —M||x — z]|. (5.15)
Combining (5.15) and (5.14), we obtain
—M|z—z|| < —(1—¢)K)||lz — z|]| < 0. (5.16)

Hence, (1 —¢)K) < M. Letting ¢ | 0, we deduce that K, < M. Then, by
(5.12) and letting A 1 g(0), we get

9(y) + M|yl > g(0), Vye X. (5.17)

In view of [74, Example 7.1], we conclude that 0 € dom dg. Hence (5.11)
holds and thus z € dom df. |

5.2 Maximality of the sum of a (FPV) operator

and a full domain operator

The following result plays a key role in the proof of Theorem 5.2.4. The first

half of its proof follows along the lines of the proof of [74, Theorem 44.2].

Proposition 5.2.1 Let A, B : X = X* be mazximally monotone with dom A

Nintdom B # &. Assume that A + Ng—5 is mazximally monotone of type

(FPV), and dom ANdom B C dom B. Then Px [dom Fu4p] =
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

dom A Ndom B.

Proof. By Fact 5.1.6, dom ANdom B = dom(A + B) C Px [dom Fsyp]. It

suffices to show that

Px [dom F4y ] € dom A Ndom B. (5.18)

After translating the graphs if necessary, we can and do assume that 0 €
dom A Nint dom B and (0,0) € gra B.
To show (5.18), we take z € Px [dom F4.p] and we assume to the con-

trary that

z ¢ dom AN dom B. (5.19)

Thus a = d(z,dom A Ndom B) > 0. Now take yj € X* such that

lysll =1 and {2, 45) > 3|z|. (5.20)
Set

Up=10,2]+ -Ux, VneN. (5.21)

Since 0 € Ny p(x),Ve € dom B, graB C gra(B 4+ Ng5). Since B is
maximally monotone and B + Ng—7 is a monotone extension of B, we

must have B = B + N=—=. Thus

om B*

A+B=A+Nyp+B (5.22)
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Since dom A Ndom B C dom B by assumption, we obtain
dom A Ndom B C dom(A + Ng;=5) = dom AN dom B C dom A N dom B.
Hence

dom ANdom B = dom(A + Nq;5)- (5.23)

By (5.19) and (5.23), z ¢ dom(A + Ng5) and thus (z,ny;) ¢ gra(A +
N4—5),Vn € N. For every n € N, since z € U, and since A + Nq5 is of
type (FPV) by assumption, we deduce the existence of (z,,2)) € gra(A +

N5—5) such that z, € U, and
(z — 2zn,20) >nlz — 2zn,v5), VneN. (5.24)
Hence, using (5.21), there exists A, € [0, 1] such that

|2 =20 — Anzl| = l2n — (1 = Ap)z|| < o, VneN. (5.25)

By the triangle inequality, we have ||z — z,|| < An||2|| + o for every n € N.
From the definition of o and (5.23), it follows that o < ||z — 2, || and hence

that a < Ay|z| + . Thus,

Sa < Anfzll, VneN. (5.26)
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

By (5.25) and (5.20),
(z—zn — M2, y3) = —llzn — (1= Ap)z|| > —a, VneN. (5.27)

By (5.27), (5.20) and (5.26),

(z = 20, 45) > Alz,40) — ta > 230 —2a=1a, VneN. (5.28)
Then, by (5.24) and (5.28),
(z = zp,25) > tna, VneN. (5.29)

By (5.21), there exist ¢, € [0,1] and b, € 5-Ux such that z, = t,z + by.
Since t,, € [0,1], there exists a convergent subsequence of (¢, )nen, which,
for convenience, we still denote by (¢, )nen. Then ¢, — 3, where 8 € [0, 1].

Since b, — 0, we have
Zn — Bz. (5.30)

By (5.23), z, € dom A N dom B; thus, ||z, — z|| > « and 8 € [0,1]. In view

of (5.22) and (5.29), we have, for every z* € X*,

FA+B(Z7 Z*) = FA+Nm+B(Za Z*)

> sup [<Zn7 Z*> + (Z — Zn, Z;;> + (Z - Zn7y*> - LgraB(Znyy*)]
{neNy*eX*}

> sup [(2n, 2") + Ina + (2 — 2, ¥*) — tara B (20, y7)] - (5.31)
{neNy*eX*}
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

We now claim that

FaiB(z,2%)

Q.

(5.32)
We consider two cases.

Case 1: g =0.

By (5.30) and Fact 5.1.3 (applied to 0 € int dom B), there exist N € N
and K > 0 such that

Bz, #@ and sup |y*|| <K, Vn>N. (5.33)
y*€Bzp

Then, by (5.31),

FA+B(Z, Z*) > sup [<Zna Z*> + ina + <Z - Znay*> - LgraB(Znay*)]
{n>N,y*eX*}
> sup [zl 127+ gne = 2 =zl - [ly¥]]
{n2N7y*€BZn}

> sup [~lzll- 2] + tna— K|z - 2] (by (5.33)
{n>N}

=00 (by (5.30)).

Thus (5.32) holds.

Case 2: B # 0.
Take v}, € Bz,. We consider two subcases.

Subcase 2.1: (v} )nen is bounded. By (5.31),

Fain(z2) > sup [(zas2") + bna+ (z — 2, 00)]
{neN}
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

> sup [zl - [[2%]| + jna — [lz = 2l - on]]
neN

=00 (by (5.30) and the boundedness of (v} )nen).

Hence (5.32) holds.
Subcase 2.2: (v} )nen is unbounded.

We first show

limsup (z — zp,, vy,) > 0. (5.34)

n—oo

Since (v} )nen is unbounded and after passing to a subsequence if necessary,
we assume that ||v)|| # 0,Vn € N and that ||v}|| — +oo. By 0 € int dom B

and Fact 5.1.3, there exist § > 0 and M > 0 such that
By# @ and sup ||y*||< M, VyeIBx. (5.35)
y*€By

Then we have

(zn —y vy —y*) >0, VyedUx,y" € ByyneN

= (Zn,v;) — (Y, v0) + (zn —y,—y*) >0, VyedUx,y" € By,neN
= (zn,v0) — (y,v0) > (zn —y,y"), Vye€oUx,y" € By,n e N

= (2n,vp) — (Y, 05) 2 =([lzall +6)M, VyedUx,neN (by (5.86))
= (zn,v,) 2 (y,v) — (lznll +0)M,  Vy €dUx,neN

= (o) 2 O3l = (o]l + M, Vo€ N

- nll+0)M
= (2, i) > 6 — UsmEDM g e N, (5.36)

112
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By the Banach-Alaoglu Theorem (see [69, Theorem 3.15]), there exist a

weak™ convergent subnet (v)yer of (v} )nen, say

Lt e X* (5.37)

Using (5.30) and taking the limit in (5.36) along the subnet, we obtain
(Bz,w™) > 0. (5.38)
Since 8 > 0, we have
(z,w") > % > 0. (5.39)
Now we assume to the contrary that
limsup(z — z,,v;) < —¢,

n—o0

for some ¢ > 0.

Then, for all n sufficiently large,
(z = zn,vp) < =5,

and so

*

(z — 2n, ﬁ) < =37 (5.40)

*
n
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Then by (5.30) and (5.37), taking the limit in (5.40) along the subnet again,

we see that
(z — pBz,w*) <0.

Since 5 < 1, we deduce (z,w*) < 0 which contradicts (5.39). Hence (5.34)

holds. By (5.31),

Faip(z,2%) > sup [(2,2%) + tna+ (z — z,,0))]

{neN}
> sup [=llzall - I2°]| + fna + (2 = 2, 0},)]
> lim sup [—||zn|| 2+ %na +(z — zn,vfl}]
n—oo
=00 (by (5.30) and (5.34)).
Hence

Faip(z,2%) = 0. (5.41)

Therefore, we have proved (5.32) in all cases. However, (5.32) contradicts

our original choice that z € Py [dom Fa;p]. Hence Px [dom Fayp] C

dom ANdom B and thus (5.18) holds. Thus we have Px [dom Faip] =

dom A Ndom B. [ ]

Corollary 5.2.2 Let A : X = X* be mazimally monotone of type (FPV)

with convex domain, and B : X = X* be maximally monotone with dom AN
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

intdom B # @. Assume that dom A Ndom B C dom B. Then

Px [dom Fs ] = dom A N dom B.

Proof. Combine Fact 5.1.8, Corollary 5.1.17 and Proposition 5.2.1. |

Corollary 5.2.3 Let A : X = X* be a mazimally monotone linear relation,
and let B : X = X* be mazimally monotone with dom A N int dom B # &.

Assume that dom A Ndom B C dom B. Then

Px [dom F4; g] = dom A N dom B.

Proof. Combine Fact 5.1.8, Corollary 5.1.18 and Proposition 5.2.1. Alter-
natively, combine Fact 5.1.14 and Corollary 5.2.2. |

We are now ready for our main result in this section.

Theorem 5.2.4 Let A, B: X = X* be maximally monotone with dom AN
intdom B # &. Assume that A + Ny, is mazimally monotone of type
(FPV), and that dom A Ndom B C dom B. Then A + B is mazimally

monotone.

Proof. After translating the graphs if necessary, we can and do assume
that 0 € dom A Nint dom B and that (0,0) € gra A N gra B. By Fact 5.1.5,
dom A C Px(dom F4) and dom B C Px(dom Fg). Hence,

U A(Px(dom F) — Px(dom Fg)) = X. (5.42)
A>0
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Thus, by Fact 5.1.7, it suffices to show that

Faip(z,2") > (2,2%), V(z,2") € X x X*. (5.43)

Take (z,2*) € X x X*. Then

Fayp(z,27) = { sup }[(x,z*> +(2,2%) — (z,2") + (2 — z,9")
T,r*y*

- LgraA(ny 13*) - LgraB($7 y*)] (5'44)

Assume to the contrary that

Faip(z,2%) < (z,2"). (5.45)

Then (z,2*) € dom F44p and, by Proposition 5.2.1,

z € dom A Ndom B = Px [dom F44p]. (5.46)

Next, we show that

Farp(\z,A2%) > \2(z,2%), VYA €]0,1[. (5.47)

Let A € ]0,1[. By (5.46) and Fact 5.1.8, z € Py dom Fz. By Fact 5.1.8 again
and 0 € intdom B, 0 € int Py dom Fg. Then, by [92, Theorem 1.1.2(ii)], we

have

Az € int Px dom Fp = int [Py dom F'g]. (5.48)
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Combining (5.48) and Fact 5.1.8, we see that Az € int dom B.
We consider two cases.
Case 1: Az € dom A.

By (5.44),

Fayp(Az,A2") > sup [(Az,A2") + (Az,2") — (Az,2%) + (A\z — Az, 9%)
{z*y*}

- LgraA()\zvx*) - LgraB()\Zay*)]

= (Az, A\z").

Hence (5.47) holds.
Case 2: Az ¢ dom A.

Using 0 € dom A N dom B and the convexity of dom ANdom B (which

follows from (5.46)), we obtain Az € dom ANdom B C dom A Ndom B.

Set
Up=Az+ Uy, VneN. (5.49)

Then U, Ndom(A + N 5) # 9. Since (Az,\z*) ¢ gra(A+ Ny 5), Az €
Uy, and A+ Nq5 5 is of type (FPV), there exists (b, b;,) € gra(A+ Nqg5)

such that b, € U,, and

(A2, 05 + (b, \2%) — (b, b)) > X3(z,2*), Vn €N. (5.50)
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5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Since Az € intdom B and b, — Az, by Fact 5.1.3, there exist N € N and

M > 0 such that

b, € intdom B and sup [v*|| <M, Vn>N. (5.51)
v*€Bby,

Hence Ng5(bn) = {0} and thus (by,b;,) € gra A for every n > N. Thus
by (5.44), (5.50) and (5.51),

Fayp(Az,Az7)

> sup  [(bp, A2%) + (A2, b)) — (b, b)) + (A2 — by, v")], Vn>N
{v*€Bby }

> sup  [AN(z,2%) + Az — by, v")], Yn >N (by (5.50))
{v*€Bby }

> sup [)\2<z, Z*) = M|Az = b,l]], Yn>N (by (5.51))

> \%(z,2*)  (by b, = \2). (5.52)

Hence Fa,p(Az, A\z*) > A2(z, 2*).

We have established that (5.47) holds in both cases. Since (0,0) € gra AN
gra B, we obtain (V(z,z*) € gra(A+ B)) (x,z*) > 0. Thus, F445(0,0) = 0.
Now define

f:10,1] 5 R: t — Fagpp(tz, tz").

Then f is continuous on [0, 1] by [92, Proposition 2.1.6]. From (5.47), we

obtain

lim Fapp(Az,Az") > lim (A2, A\2") = (2,2%),  (5.53)

F z2,2%) =
A+B(’ ) A—=1— A—=1—
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which contradicts (5.45). Hence

Faip(z,2%) > (z,27). (5.54)

Therefore, (5.43) holds, and A + B is maximally monotone. [ |
Theorem 5.2.4 allows us to deduce both new and previously known sum

theorems.

Corollary 5.2.5 Let f : X — |—o0,+0o0| be proper, lower semicontinuous
and convex, and let B : X =% X* be mazimally monotone with dom f N
intdom B # @. Assume that domdf Ndom B C dom B. Then df + B is

mazimally monotone.

Proof. By Fact 5.1.8 and Fact 5.1.1, 0f + Nqorog = O(f + tg5g)- Then by

Fact 5.1.12, 0f + Np 5 is type of (FPV). Now apply Theorem 5.2.4. W

Corollary 5.2.6 Let A: X = X* be maximally monotone of type (FPV),
and let B : X = X* be maximally monotone with full domain. Then A+ B

18 mazimally monotone.

Proof. Since A+ Ny = A+ Nx = A and thus A + Ny is maximally

monotone of type (FPV), the conclusion follows from Theorem 5.2.4. [ |

Corollary 5.2.7 (Verona-Verona) (See [82, Corollary 2.9(a)] or [74, The-
orem 53.1].) Let f : X — ]|—o00,400] be proper, lower semicontinuous, and
convezx, and let B : X = X* be mazimally monotone with full domain. Then

df + B is maximally monotone.
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Proof. Clear from Corollary 5.2.5. Alternatively, combine Fact 5.1.12 and

Corollary 5.2.6. |

Corollary 5.2.8 (Heisler) (See [62, Remark, page 17].) Let A,B : X =
X* be maximally monotone with full domain. Then A 4+ B is mazimally

monotone.

Proof. Let C' be a nonempty closed convex subset of X. By Corollary 5.2.7,
N¢ + A is maximally monotone. Thus, A is of type (FPV) by Fact 5.1.15.

The conclusion now follows from Corollary 5.2.6. |

Corollary 5.2.9 Let A: X = X* be mazimally monotone of type (FPV)
with convex domain, and let B : X = X* be mazimally monotone with
dom A Nintdom B # &. Assume that dom A Ndom B C dom B. Then

A+ B is mazimally monotone.

Proof. Combine Fact 5.1.8, Corollary 5.1.17 and Theorem 5.2.4. |

Corollary 5.2.10 (Voisei) (See [85].) Let A : X == X* be mazimally
monotone of type (FPV) with convex domain, let C' be a nonempty closed
convex subset of X, and suppose that dom ANint C' # &. Then A+ N¢ is

mazimally monotone.

Proof. Apply Corollary 5.2.9. |

Corollary 5.2.11 Let A : X = X* be a maximally monotone linear rela-
tion, and let B : X = X* be mazimally monotone with dom ANint dom B #
&. Assume that dom ANdom B C dom B. Then A+ B is mazximally mono-

tone.

120



5.2. Maximality of the sum of a (FPV) operator and a full domain operator

Proof. Combine Fact 5.1.14 and Corollary 5.2.9. |

Corollary 5.2.12 (See [16, Theorem 3.1].) Let A: X == X* be a mazimally
monotone linear relation, let C' be a nonempty closed convex subset of X,

and suppose that dom ANint C' # &. Then A+ N¢ is mazimally monotone.

Proof. Apply Corollary 5.2.11. |

Corollary 5.2.13 Let A : X = X* be a mazximally monotone linear rela-
tion, and let B : X = X* be mazimally monotone with full domain. Then

A+ B is mazimally monotone.

Proof. Apply Corollary 5.2.11. |

Example 5.2.14 Suppose that X = L'[0,1], let
D = {z € X | z is absolutely continuous,z(0) =0,2" € X"},

and set

{«'}, ifx e D;
A X=Xz~

a, otherwise.
By Phelps and Simons’ [63, Example 4.3], A is an alt most single-valued
maximally monotone linear relation with proper dense domain, and A is
neither symmetric nor skew. Now let J be the duality mapping, i.e., J =
0Ll -|[%. Then Corollary 5.2.13 implies that A+ J is mazimally monotone.
To the best of our knowledge, the maximal monotonicity of A+ J cannot be

deduced from any previously known result.
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Remark 5.2.15 In [19], it was shown that the sum problem has an affir-
mative solution when A is a linear relation, B is the subdifferential operator
of a proper lower semicontinuous sublinear function, and Rockafellar’s con-
straint qualification holds. When the domain of the subdifferential operator
1s closed, then that result can be deduced from Theorem 5.2.4. Howewver, it
is possible that the domain of the subdifferential operator of a proper lower
semicontinuous sublinear function does not have to be closed. For an exam-
ple, see [3, Example 5.4]: Set C = {(z,y) € R* |0 < 1/z <y} and f =1}

given by

—2/xy, ifx <0 andy <O0;
fla,y) =

400, otherwise.

Then f is not subdifferentiable at any point in the boundary of its domain,
except at the origin. Thus, in the general case, we do not know whether or

not it is possible to deduce the result in [19] from Theorem 5.2.4.

5.3 Maximality of the sum of a linear relation

and a subdifferential operator

Theorem 5.3.1 Let A : X = X* be a maximally monotone linear rela-
tion, and let f : X — |—00,400| be a proper lower semicontinuous convex

function with dom ANintdom df # @. Then A+0f is mazimally monotone.

Proof. After translating the graphs if necessary, we can and do assume that

0 € dom ANintdom df and that (0,0) € graANgradf. By Fact 5.1.5 and
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Fact 5.1.2, dom A C Px(dom F4) and dom df C Px(dom Fjy). Hence,
| A(Px(dom F) — Px(dom Fyy)) = X. (5.55)
A>0
Thus, by Fact 5.1.2 and Fact 5.1.7, it suffices to show that
Fator(z,2") > (2,2"), V(z2") e X x X" (5.56)

Take (z,2*) € X x X*. Then

Fayor(2,2%) = { sup }[(m,z*) + (z,2") — (z,2™) + (z — x,y")
x,x*,y*

- LgraA(xax*) - Lgra@f(xay*)]' (5'57)

Assume to the contrary that

Fayor(z,2%) + X < (z,2), (5.58)
where A > 0.
Thus by (5.58),
(z,2") is monotonically related to gra(A + df). (5.59)
We claim that
2 ¢ dom A. (5.60)
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Indeed, if z € dom A, apply (5.59) and Lemma 5.1.20 to get z € domdf.
Thus z € dom ANdom 0 f and hence Fay5¢(2,2*) > (2, 2*) which contradicts
(5.58). This establishes (5.60).

By (5.58) and the assumption that (0,0) € gra A Ngradf, we have

sup [(0, 2) + (z, A0) — (0, A0) + (z,0f(0))]

= sup [(z,a") + (2,b")] < (2, 27).
a*€A0,b*€df(0)

Thus, because A0 is a linear subspace,

z € X N(A0)* . (5.61)

Then, by Proposition 3.2.2(i), we have

z € dom A. (5.62)
Combine (5.60) and (5.62),
z € dom A\dom A. (5.63)
Set
Upy=2+1Ux, VneN. (5.64)

By (5.63), (z,2*) ¢ graA and U, Ndom A # &. Since z € U,, and A is of

type (FPV) by Fact 5.1.14, there exists (an,a)) € gra A with a,, € U,,n € N
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such that

(z,ap) + (an, 2%) — (an, ay) > (z,2"). (5.65)

Then we have

ap — 2. (5.66)

Now we claim that

z € domOf. (5.67)

Suppose to the contrary that z ¢ dom 0f. By the Brgndsted-Rockafellar

Theorem (see [61, Theorem 3.17] or [92, Theorem 3.1.2]), domdf = dom f.
Since 0 € intdom df C intdom f C int dom f, then by Lemma 5.1.19, there

exists ¢ € |0, 1] such that

0z € bdrydom f. (5.68)

Set gn, : X — |—00, +00] by

In=f+toa) MEN (5.69)

Since z ¢ dom f, z € dom f N [0,a,] = dom g,. Thus (z,2*) ¢ gradg,.

Then by Fact 5.1.10, there exist 3,, € [0,1] and ), € 0g,,(Bray) with z;, # 2*
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and Bpa, # z such that

[2* = 23
(z — Bnan, 25 — ) 3
— = < =3 (5.71)
Iz = Bnanl| - 2= =23~ *
By (5.66), ||z — fnan|| is bounded. Then by (5.70), we have
x, — 2" (5.72)

Since 0 € intdom f, f is continuous at 0 by Fact 5.1.4. Then by 0 €
dom f M dom¢[g,,) and Fact 5.1.1, we have that there exist wy, € 9f(Bnan)

and vy, € J[g,q4,)(Bnan) such that j, = wy}, + v;;. Then by (5.72),

wy, + vy — 2" (5.73)

Since B, € [0,1], there exists a convergent subsequence of (8, )nen,
which, for convenience, we still denote by (8,)nen. Then B, — 3, where

B € [0,1]. Then by (5.66),

Bran — Bz. (5.74)

We claim that

B<s<1. (5.75)
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In fact, suppose to the contrary that 8 > 6. By (5.74), 8z € dom f.
Then by 0 € intdom f and [92, Theorem 1.1.2(ii)], 6z = %Bz € int dom [,
which contradicts (5.68).

We can and do suppose that 3, < 1 for every n € N. Then by v} €

0L[0,a,] (Bnan), we have
(s an — Bnan) < 0. (5.76)
Dividing by (1 — 8,) on both sides of the above inequality, we have
(vpyan) < 0. (5.77)

n’

Since (0,0) € gra A, (an,a}) > 0,¥n € N. Then by (5.65), we have

<Z7ﬁna:,> + <5nan7 Z*> - /6727,<an7 a;kz> > <5nza a;kz> + <5nan7 Z*> - 5n<ana a:;>

> Bz, 2%). (5.78)
Then by (5.78),
(Z - /Bnam ﬁna;> > (,an — /Bnam Z*> (5.79)

Since gra A is a linear subspace and (a,,a)) € gra A, (Bpan, fnal) € gra A.

By (5.58), we have

A <(z — Bpan, 2" —w; — Ppar)

= (2 = Bpan, 2* — W) + (2 — Butn, —Bnal)
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< =3z = Buanl| - ||2* — w} — L] + (2 — Buan, v3)
+ (2 — Bnan, —Bnas) (by (5.71))
< =3z = Buan] - |I2* — w — V3l + (2 — Buan, V)

- </8nz - /Bnana Z*> (by (579))

Then

A < (z = Bpan,v;) — (Bnz — Bnan, 2%). (5.80)

Now we consider two cases:

Case 1: (w})nen is bounded.

By (5.73), (v} )nen is bounded. By the Banach-Alaoglu Theorem (see [69,
Theorem 3.15]), there exist a weak™® convergent subnet ()~ er of (v},)nen,

say

*

vt vt € X*. (5.81)

)
Combine (5.66), (5.74) and (5.81), and pass the limit along the subnet

of (5.80) to get that

A< (z—pz,vL). (5.82)
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By (5.75), divide by (1 — /) on both sides of (5.82) to get
(z,v5) > ﬁ > 0. (5.83)

On the other hand, by (5.66) and (5.81), taking the limit along the subnet
of (5.77) we get that

(v3es2) <0, (5.84)

which contradicts (5.83).

Case 2: (w})nen is unbounded.

Since (w} )nen is unbounded and after passing to a subsequence if nec-
essary, we assume that ||w} || # 0,Vn € N and that ||w} || — +oc.

By the Banach-Alaoglu Theorem again, there exist a weak* convergent

subnet (w}),er of (W})nen, say

*
w wk

Ll € X (5.85)

v

[[w

By 0 € intdom df and Fact 5.1.3, there exist p > 0 and M > 0 such

that
ofy) 4o and  sup |yl <M, VyepUx.  (586)
y*€of(y)
Then by w} € 0f(Bnan), we have

(Bnan —y,wy, —y*) >0, Vye pUx,y" € 0f(y)
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= (Bpan, wy) = (y,wy) + (Bpan —y, —y*) >0, Yy € pUx,y" € If(y)
= (Bnan, wy) — (Y, wn) > (Bnan —y,y"), Yy € pUx,y" € 9f(y)

= (Bnan, wy,) — (y,wy) > —([|Branl + p)M, Vy € pUx  (by (5.86))

= (Bnan, wy,) > (y,wy) — (|Buan|l + p)M,  Vy € pUx

= (Bnan, wy,) > pllwy |l — (|Bnanll + p)M

= (Butn, 1) > p - Ubnanll + )M o, (5.87)

wk *
] [l

Combining (5.74) and (5.85), taking the limit in (5.87) along the subnet,

we obtain

(Bz,wi,) = p- (5.88)

Then we have 8 # 0 and thus 8 > 0. Then by (5.88),

(z,wi, > % > 0. (5.89)
By (5.73) and ”;—i” — 0, we have
Tn_y n ), (5.90)
Jwill [lwyll

By(5.85), taking the weak* limit in (5.90) along the subnet, we obtain

B S (5.91)
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Dividing by ||w}|| on the both sides of (5.80), we get that
vy, (ﬂnz — Bnan, Z*>
7 < (2 = Bntns ) — - (5.92)
[[wy | T ol [[wy |

Combining (5.74), (5.66) and (5.91), taking the limit in (5.92) along the

subnet, we obtain

(z — Bz, —wi,) > 0. (5.93)

By (5.75) and (5.93),

; (5.94)

which contradicts (5.89).

Altogether z € domdf = dom f.

Next, we show that
Farop(tz,tz*) > t%(2,2%), Vte€]0,1]. (5.95)
Let t € ]0,1[. By 0 € intdom f and [92, Theorem 1.1.2(ii)], we have
tz € int dom f. (5.96)
By Fact 5.1.4,

tz € int dom Of. (5.97)
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Set
H,=tz+1Ux, VYneN. (5.98)

Since dom A is a linear subspace, tz € dom A\dom A by (5.63). Then H,, N
dom A # @. Since (tz,tz*) ¢ graA and tz € H,, A is of type (FPV) by

Fact 5.1.14, there exists (by, b)) € gra A such that b,, € H,, and
(t2,05) + (bp, t2%) — (bp, bF) > t2(2,2*), Vn €N. (5.99)

Since tz € intdomdf and b, — tz, by Fact 5.1.3, there exist NV € N and

K > 0 such that

by, € intdomdf and sup |lv*|| < K, ¥n>N. (5.100)
v*€0f(bn)

Hence

FA+8f (tZ, tZ*)

> sup  [(bp,t2%) + (tz,00) — (by, b)) + (tz — by, )], Yn>N
{c*edf(bn)}

> sup  [t%(2,2%) 4 (tz — by, )], Vn >N (by (5.99))
{ercaf(bn)}

> sup [tQ(z,z*> — K|tz =b,[]], Yn>N (by (5.100))

> t2(z,2*)  (by b, — t2). (5.101)

Hence Faigf(tz, tz*) > t%(z, z*).
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We have established (5.95). Since (0,0) € gra A N gradf, we obtain
(V(d,d*) € gra(A+ 0f)) (d,d*) > 0. Thus, Fats5(0,0) = 0. Now define

J: [0,1] = R:t = Fayop(tz, tz").

Then j is continuous on [0, 1] by (5.58) and [92, Proposition 2.1.6]. From
(5.95), we obtain

Faiof(z,2") = tLiIP— Fayof(tz, tz") > lim (tz,t2%) = (z,2%),  (5.102)

t—1—

which contradicts (5.58). Hence
Fayor(z,2%) > (2,2%). (5.103)

Therefore, (5.56) holds, and A + 0f is maximally monotone. [ |

Remark 5.3.2 In Theorem 5.3.1, when int dom A Ndom df # &, we have
dom A = X since dom A is a linear subspace. Therefore, we can obtain the

maximal monotonicity of A+ Of from the Verona-Verona result (see [82,

Corollary 2.9(a)], [}, Theorem 53.1] or [90, Corollary 3.7]).

Corollary 5.3.3 Let A : X = X* be a mazimally monotone linear relation,

and f: X — |—o0,+00] be a proper lower semicontinuous convex function

with dom A Nintdom df # @. Then A+ Of is of type (FPV).

Proof. By Theorem 5.3.1, A 4+ Jf is maximally monotone. Let C be a
nonempty closed convex subset of X, and suppose that dom(A+9f)Nint C' #

. Let 1 € dom ANintdom df and z9 € dom(A+ 9f)Nint C. Thus, there

133



5.3. Maximality of the sum of a linear relation and a subdifferential operator

exists 6 > 0 such that 1 + 0Ux C dom f and a9 + 6Ux C C. Then
for small enough A € ]0,1[, we have x5 + A(z1 — 22) + 36Ux C C. Clearly,
o+ A(x1—22)+A0Ux C dom f. Thus :L‘g—l—)\(ml—mg)—i—%éUX Cdom fNC =
dom(f + tc). By Fact 5.1.4, xo + A(z1 — x2) + )‘75UX C doma(f + o).
Since dom A is convex, zo + A(z1 — x2) € dom A and x9 + A\(x] — z2) €
dom A Nint [dom d(f + ¢¢)]. By Fact 5.1.1 , df + Ne = 9(f + vc). Then,
by Theorem 5.3.1 (applied to A and f+tc), A+90f+ Noc=A+9(f + o)

is maximally monotone. By Fact 5.1.15, A+ 0f is of type (FPV). |

Corollary 5.3.4 Let A: X = X* be a mazimally monotone linear relation,

and f: X — |—o00,+00] be a proper lower semicontinuous convex function

with dom A Nintdom 0f # &. Then

dom(A 4 0f) = convdom(A 4 0f) = Px dom Fa,a5.

Proof. Combine Corollary 5.3.3 and Fact 5.1.13. |
Now by Corollary 5.3.3, we can deduce Fact 5.1.14 that is used in the

proof of Theorem 5.3.1.

Corollary 5.3.5 (Simons) (See [74, Theorem 46.1].) Let A: X =2 X* be

a mazimally monotone linear relation. Then A is of type (FPV).

Proof. Let f = 1x. Then by Corollary 5.3.3, we have that A = A+ df is of
type (FPV). [ |

Corollary 5.3.6 (See [16, Theorem 3.1].) Let A : X = X* be a mazimally

monotone linear relation, let C' be a nonempty closed convex subset of X,
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and suppose that dom ANint C' # &. Then A+ N¢ is mazimally monotone.

Corollary 5.3.7 (See [19, Theorem 3.1].) Let A: X = X* be a mazimally
monotone linear relation, let f : X — |—00,400] be a proper lower semi-
continuous sublinear function, and suppose that dom A Nintdomdf # @.

Then A+ Of is mazximally monotone.

5.4 An example and comments

Example 5.4.1 Suppose that X = L0, 1] with norm || - ||1, let

D = {z € X | z is absolutely continuous,z(0) =0,2" € X*},

and set

{«'}, ifxe€D;
A X=Xz~

a, otherwise.

Define f: X — ]—o00,+00] by

flz) = ! (5.104)

00, otherwise.

Clearly, X is a nonreflexive Banach space. By Phelps and Simons’ [63,
Ezample 4.3], A is an at most single-valued mazimally monotone linear
relation with proper dense domain, and A is neither symmetric nor skew.
Since g(t) = T2 is convex and increasing on [0,1[ (by ¢"(t) = 2(1—t*) "2+

8t2(1 — t2)=3 > 0,Vt € [0,1[), f is convex. Clearly, f is proper lower
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semicontinuous, and by Fact 5.1.4, we have

dom f = Ux = intdom f = dom df = int [dom Of]. (5.105)

Since 0 € dom A Nint [dom Of], Theorem 5.5.1 implies that A+ Of is maz-

imally monotone. To the best of our knowledge, the maximal monotonicity

of A+ 0f cannot be deduced from any previously known result.

Remark 5.4.2 To the best of our knowledge, the results in [19, 82, 84, 86,

90] cannot establish the maximal monotonicity in Example 5.4.1.

(1)

(2)

(3)

Verona and Verona (see [82, Corollary 2.9(a)] or [74, Theorem 53.1] or
[90, Corollary 3.7]) showed the following: “Let f : X — ]—o0,+00] be
proper, lower semicontinuous, and convez, let A : X = X* be maximally
monotone, and suppose that dom A = X. Then Of + A is maximally
monotone.” The dom A in Example 5.4.1 is proper dense, hence A+ 0f

i Example 5.4.1 cannot be deduced from the Verona -Verona result.

In [84, Theorem 5.10(n)], Voisei showed that the sum problem has an
affirmative solution when dom ANdom B is closed, dom A is conver and
Rockafellar’s constraint qualification holds. In Example 5.4.1, dom AN
dom Of is not closed by (5.105). Hence we cannot apply for [84, Theo-

rem 5.10(n)].

In [86, Corollary 4], Voisei and Zalinescu showed that the sum problem
has an affirmative solution when “(dom A) # @,%(dom B) # @ and

0 €% [dom A — dom B]. Since the dom A in Example 5.4.1 is a proper
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(4)

(5)

dense linear subspace, ““(dom A) = @. Thus we cannot apply for [86,

Corollary 4]. (Given a set C C X, we define “C by

) iC, if aft C' is closed;
ZCC —

@,  otheruise,

where *C' [92] is the intrinsic core or relative algebraic interior of C,
defined by 'C = {a € C' | Vz € aff(C — C),36 > 0,YA € [0,6] :a + \x €
C}.)

In [19], it was shown that the sum problem has an affirmative solution
when A is a linear relation, B is the subdifferential operator of a proper
lower semicontinuous sublinear function, and Rockafellar’s constraint
qualification holds. Clearly, f in Example 5.4.1 is not sublinear. Then

we cannot apply for it. Theorem 5.3.1 truly generalizes [19].

In [90, Corollary 3.11], it was shown that the sum problem has an affir-
mative solution when A is a linear relation, B is a maximally monotone
operator satisfying Rockafellar’s constraint qualification and dom A N
dom B C dom B. In Example 5.4.1, since dom A is a linear subspace,

we can take o € dom A with ||zo|| = 1. Thus, by (5.105), we have that

o € domANUx =domANdomdf but z¢¢& Ux = domaf.
(5.106)

Thus dom A N dom Jf g dom df and thus we cannot apply [90, Corol-

lary 3.11] either.
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5.5 Discussion

As we can see, Fact 5.1.7 plays an important role in the proof of Theo-
rem 5.2.4 and Theorem 5.3.1. Theorem 5.2.4 presents a powerful sufficient
condition for the sum problem. The following question posed by Simons in

[72, Problem 41.4] remains open:

Let A : X = X* be mazimally monotone of type (FPV), let
C be a nonempty closed convex subset of X, and suppose that
dom ANintC # @.

Is A+ N¢ necessarily mazimally monotone?

If the above result holds, by Theorem 5.2.4, we can get the following result:
Let A : X = X* be maximally monotone of type (FPV), and let B :
X = X* be maximally monotone with dom A Nintdom B # &. Assume

that dom A Ndom B C dom B. Then A + B is maximally monotone.
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Chapter 6

Classical types of maximally

monotone operators

This chapter is based on the work by Bauschke, Borwein, Wang and Yao
in [6, 7]. We study three classical types of maximally monotone operators:
dense type, negative-infimum type, and Fitzpatrick-Phelps type.

We show that every maximally monotone operator of Fitzpatrick-Phelps
type must be of dense type. This provides affirmative answers to two ques-
tions posed by Stephen Simons and it implies that various important notions
of monotonicity coincide.

Moreover, we prove that for a maximally monotone linear relation, the
monotonicities of dense type, of negative-infimum type, and of Fitzpatrick-
Phelps type are the same and equivalent to monotonicity of the adjoint.
This result also provides an affirmative answer to one problem posed by

Phelps and Simons.

6.1 Introduction and auxiliary results

We now recall the three fundamental types of monotonicity.
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Definition 6.1.1 Let A : X = X™* be mazimally monotone. Then three key

types of monotone operators are defined as follows.

(i) A is of dense type or type (D) (1971, [49], [62] and [76, Theorem 9.5])

if for every (x**,x*) € X** x X* with

inf  (a—2",a" —2%) >0,
(a,a*)egra A

there exists a bounded net (aq,al)aer in gra A such that (aq,al)aer

weak*x strong converges to (x**,x*).

(ii) A is of type negative infimum (NI) (1996, [71]) if

sup  ({a,2") + (a",2™) — (a,a%)) = (2™, 27),
(a,a*)egra A

for every (x**,z*) € X** x X*.

(iii) A is of type Fitzpatrick-Phelps (FP) (1992, [46]) if whenever U is
an open conver subset of X* such that U Nran A # @, z* € U, and
(z,2*) € X x X* is monotonically related to gra AN (X x U) it must

follow that (z,x*) € gra A.

All three of these properties are known to hold for the subgradient of
a closed convex function and for every maximally monotone operator on a
reflexive space [26, 72, 74]. These and other relationships known amongst
these and other monotonicity notions are described in [26, Chapter 9].

Now we introduce some notation. Let F': X x X* — |—o00,+00]. We

say F' is a representative of a maximally monotone operator A : X = X* if
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F' is lower semicontinuous and convex with F' > (-,-) on X x X* and

grad={(z,z%) € X x X" | F(z,z2") = (x,2")}.

Let (2,2*) € X x X*. Then F...) : X x X* = |—o00,400] [55, 57, 74] is
defined by (for every (z,z*) € X x X*)

Fo, o (z,2") = F(z +x,2" +2%) — ((a:, 25+ (z,2") + (z, z*})

=Fz+z,2"+2%) — (z+z,2" +2%) + (x,27). (6.1)

We recall the following basic fact regarding the second dual ball:

Fact 6.1.2 (Goldstine) (See [58, Theorem 2.6.26] or [44, Theorem 3.27].)

The weak*-closure of Bx in X** is Bx».

Fact 6.1.3 (Borwein) (See [20, Theorem 1] or [92, Theorem 3.1.1].) Let
f:X — ]—00,400] be a proper lower semicontinuous and convez function.
Let e > 0 and B > 0 (where § = o0). Assume that o € dom f and

x§ € 0zf(xo). There exist x. € X, xz¥ € X* such that

lze = @oll + B[{ze — 20, 25)| < Ve, al € 0f(ze),

22 — a5l < Vel + Bllzgl),  [(ze — zo,27)] < e+

=[5

Fact 6.1.4 (Simons) (See [73, Theorem 17] or [74, Theorem 37.1].) Let
A X = X* be mazximally monotone and of type (D). Then A is of type
(FP).
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Fact 6.1.5 (Simons / Marques Alves and Svaiter) (See[71, Lemma 15]
or [74, Theorem 36.3(a)], and [56, Theorem 4.4].) Let A: X == X* be max-
imally monotone, and let F : X x X* — ]—00,+00] be a representative of

A. Then the following are equivalent.
(i) A is type of (D).
(ii) A is of type (NI).

(iii) For every (xg,xy) € X x X*,

inf [ By ey (,2%) + Sl + 3*]12] = 0.
(a:,a:*)lélXxX* (xvao)(x z”) 2||$H 2||$ |

6.2 Every maximally monotone operator of
Fitzpatrick-Phelps type is actually of dense
type

In Theorem 6.2.1 of this section (see also [7]), we provide an affirmative an-

swer to the following question, posed by S. Simons [73, Problem 18, page 406]:

Let A : X = X* be maximally monotone such that A is of type
(FP).

Is A necessarily of type (D)?

In consequence, in Corollary 6.2.2 we record that the three notions in
Definition 6.1.1 actually coincide.

Simons posed another question in [74, Problem 47.6]:
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Let A : dom A — X* be linear and mazximally monotone. As-
sume that A is of type (FP).

Is A necessarily of type (NI)?

By Fact 6.1.5, [74, Problem 47.6] is a special case of [73, Problem 18, page 406].
Let A : X = X* be monotone. For convenience, we defined ®4 on

X* x X* by

Dy (2",2")—  sup (<J:**,a*> + (a,z*) — <a,a*>).
(a,a*)egra A

Then we have ® 4|xxx+ = Fa. The next theorem is our first main result
in Chapter 6. In conjunction with the corollary that follows, it provides
the affirmative answer promised to Simons’s problem posed in [73, Prob-

lem 18, page 406].

Theorem 6.2.1 Let A : X = X* be maximally monotone such that A is
of type (FP). Then A is of type (NI).

Proof. After translating the graph if necessary, we can and do suppose that

(0,0) € graA. Let (af*, zf) € X* x X*. We must show that

Da(ag”, w9) = (207, ) (6.2)

and we consider two cases.
Case 1: zi* € X.

Then (6.2) follows directly from Fact 5.1.5.
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Case 2: zj" € X*™ X

By Fact 6.1.2, there exists a bounded net (z4)aer in X that weak™ converges

to z3*. Thus, we have
M = sup [za]| < +o0
ael
and

(T, o) = (20", Tp)-

Now we consider two subcases.
Subcase 2.1: There exists a € I, such that (z,,zf) € gra A.

By definition,

Pa(xg",20) 2 (Tay 20) + (20”5 20) = (Tas ) = (07, Tp)-

Hence (6.2) holds.
Subcase 2.2: We have

(T, xy) ¢ graA, Vael

Set

U. = [0, zp] + eUx~,

(6.3)

(6.4)

(6.6)

where £ > 0. Observe that U is open and convex. Since (0,0) € gra A, we

have, by the definition of U,, 0 € ran AN U, and z{; € U.. In view of (6.5)
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and because A is of type (FP), there exists a net (aa.,a, ) in gra A such

that af, . € Ue and
(Gae, zg) + <xa,a275> — (Ga,e, a2’5> > (o, ), Vo€l (6.7)
Now fix a € I. By (6.7),
(Gae, mp) + (20 g e) = (Gaer Gae) > (407 — Tas g c) + (ZTa, Tp)-
Hence,
Da(zg"s 29) > (20" = Ta, g.) + (Ta, Tg)- (6.8)
Since ag, . € Ue, there exist
tae €0,1] and by, . € Ux- (6.9)
such that
Qe = ta,eT + b5 .- (6.10)

Using (6.8), (6.10), and (6.3), we deduce that

D(xp",2p) > (20" — Ta, taey + €0y 2) + (Ta, )
= tae (" = Ta, o) + (20" = Tas by 2) + (T, o)

> ta (20" — Tar o) — €llzg" — zal + (Tas )
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> tac(Ty" = Ta, o) — e(l|zg"[| + M) + (za, 25)- (6.11)

In view of (6.9) and since o € I was chosen arbitrarily, we take the limit in

(6.11) and obtain with the help of (6.4) that

®a(xg", 2) = —e((lag™ || + M) + (207, xg)- (6.12)

Next, letting ¢ — 0 in (6.12), we have

el 7p) > (f, 7). (6.13)

Therefore, (6.2) holds in all cases. [ |

We now obtain the promised corollary:

Corollary 6.2.2 Let A: X = X* be mazimally monotone. Then the fol-

lowing are equivalent.
(i) A is of type (D).
(i1) A is of type (NI).
(iii) A is of type (FP).

Proof. “(i)=-(iii)”: Fact 6.1.4. “(iii)=(ii)”: Theorem 6.2.1 . “(ii)=(i)":
Fact 6.1.5. [

Remark 6.2.3 Let A: X = X* be maximally monotone. Corollary 6.2.2
establishes the equivalences of the key types (D), (NI), and (FP), which as
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noted all hold when X is reflexive or A = Of, where f: X — ]—o00,+00] is
convez, lower semicontinuous, and proper (see [26, 72, T}]).

Furthermore, these notions are also equivalent to type (ED), see [76].
For a nonlinear operator they also coincide with the uniqueness of maximal
extensions to X** (see [56]). In [26, p. 454] there is a discussion of this
result and of the linear case.

Finally, when A is a linear relation, it has recently been established that
all these notions coincide with the monotonicity of the adjoint multifunction

A* (see Section 6.3).

6.3 The adjoint of a maximally monotone linear

relation

In this section, we provide tools to give an affirmative answer to a ques-
tion posed by Phelps and Simons. Phelps and Simons posed the following

question in [63, Section 9, item 2J:

Let A : dom A — X* be linear and mazximally monotone. As-
sume that A* is monotone.

Is A necessarily of type (D)?

Theorem 6.3.1 Let A: X = X* be a mazimally monotone linear relation.

Then A is of type (NI) if and only if A* is monotone.

Proof.
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“=": Suppose to the contrary that there exists (aj*,a) € gra A* such
that (ag*,af;) < 0. Then we have
sup  ({a,—ag) + (ag" a”) = (a,a")) = sup  {—{a,a")}
(a,a*)€gra A (a,a*)€gra A

=0< (—ay*,ap),

which contradicts that A is of type (NI). Hence A* is monotone.

“«<=": Define
F: X x X" — |-00,400] : (x,2") = tgraa(z,2") + (z,27).

Since A is maximally monotone, Fact 3.2.8 implies that F' is proper lower
semicontinuous and convex, and a representative of A. Let (vg,v5) € X xX*.

Recalling (6.1), note that
Flogwg) (x,2%) = tgraa(vo + x,v5 + &%) + (z,2%) (6.14)

is proper lower semicontinuous and convex. By Fact 5.1.1, there exists
(y**,y*) € X** x X* such that
K = inf [F o (z, %) + L|z|? + L||z* 2]
(I,I*)EXXX* (U07v0)( ) 2” || 2” H
= —(Flugp) + 3l - 17 + 31 17)7(0,0)

*

= —Flo W5 y™) = s lly™ 1 = 5lly" 1> (6.15)
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Since (z, z*) F(v07v6)(ac,m*)—i—%HxHQ—F%Hx*HQ is coercive, there exist M > 0

and a sequence (ap,a’)pey in X x X* such that, Vn € N,
lan| + llazll < M (6.16)
and

Flugg)(@ny ay,) + §llanl” + §llay[®

<K+ = —Fo o 5 y™) = sly™ 1P = 5lly* 1P + 55 (by (6.15))

= Flug.wg) (s @) + gllanll® + Fllanl® + Fiog ooy 0% 5™) + 3 lly™ |2
+3ly01? < = (6.17)

= Flugwg) (@ns ) + o o) @7 4™) + (an, —y*) + (a5, —y™*) < 7z (6.18)

V0,5

= (Y",y™) € 01 Flyyuy)(an,ay)  (by [92, Theorem 2.4.2(ii)]). (6.19)
n2

Set 8 =

1 .
T T T Then by Fact 6.1.3, there exist sequences

(E,;,Ej:)neN in X x X* and (y}, " )nen in X* x X** such that, Vn € N,

lan — @l + llas, —aill + 8 ((Eg —an,y") + {ay —apy)| <5 (6:20)
max{]ly; — ||, lyn” —y™ I} < & (6.21)

(@ — an,ym) + (a5, — an,yn") | < 52 + 7 (6.22)
(U Un") € OF g i) (s a3)- (6.23)

Then, Vn € N, we have

<&;ay2> + (%7y;*> - (anyy*> - (azvy**>
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= (an — an, yn) + (an o =y + {af — an,yn’) + (an.yi —y™)

< (an = ans yn) + (a5 = an, v, ") |+ Kan, yn = v + [ag, 40" — v

IN

w2+ g +llaall - Nl =7l + llanll - llyn” —y™ Il (by (6.22))

IN

L+ 5+ Ulanll + llapl) - maxlly; — o[l i — ™1}

<L +L+2M (by (6.16) and (6.21)). (6.24)

By (6.20), Vn € N, we have
[lan | = llanll] + [llanll = lazll] < 3 (6.25)
Thus by (6.16), Vn € N, we have

[lanl? = @] + [l 12 ~ a5 12

= [llanll = llaxll (lan]l + @) + ‘HGZH = llazl

(lazli + flaz )

<5 @llanll +3) + 5 @llanll +5)  (by (6.25))

IN
S

1M +2)=2M+ 2. (6.26)
Similarly, by (6.21), for all n € N, we have

Hynll® = "I < Syl + 52 < 55 + 72

g1 = ™ 1P] < 2™ 1+ 25 < 55 + 22 (6.27)
Thus, Vn € N,

Fug, o) (@n, a3) + Fyg ey Wno ") + 5@l + 3llaf 12 + 3llynl® + 3llyn )1
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= [Flugwg) (@ a3) + Fly ooy s vm”) + 5llanl® + 3llaill® + 5 llynl®

+ Sl ?]

~ [Fluog) (ns03) + Sllanll® + Slail? + Fyy ) (0" 5™ + g™ |

+ 31

+ (B o) (@n: @3) + Sllanl? + 3llan]? + Fy oy (07, y™) + 3lly ™12
+ 1]

< | Foog) @ @) + By W U7) = Flag ) (@ns05) = Fog oy (" 5™
+ 4 [I@ I + a5 = llan]2 - lla3 2]

3 Il + 12 = ™ 12 = "] + 7 (by (6.17))

< [(@n ) + (@ uy) = (on ) — (aiy™)] - (by (623)
—%WWWIMM+WW laz 1))

3 (Ml = 1]+ 12 = D™ IP]) + 25

<iptagtEM A4S M Ao+ o5+ o 4 5 (by (6.24), (6.26) and (6.27))

S AR S 373 (6.28)

By (6.23), (6.14), and [92, Theorem 3.2.4(vi)&(ii)], there exists a sequence

(2%, 25 )nen in (gra A)* and such that

n»Tn

WnsYn') = (a3, an) + (2, 257), Vne N. (6.29)
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Since A* is monotone and (z*, 2) € gra(—A*), it follows from (6.29) that,
Vn € N,

W) = s @n) — (un® ai) + {ah, @n) =y — af " —a@n) - (6.30)

= (zr,2:") <0

n»~n

= (UnsUn) < (Y @) + (g7 a3) — (a, @)

Then by (6.14) and (6.23), we have (a},a,) = Flug g (@n,a a¥) and, Vn € N,

Wi ) < (s @) + (" 3) = Frug ) (@ns a) = Fly oy (U yi7). (6.31)

By (6.28) and (6.31), Vn € N, we have

Flogup)@nsa3) + (ymoyn®) + sllanll® + sllag 12 + sllynll + 5 lly5 I
<+t aM
= Flugwp) (@ @) + 3llanll® + sllai|® < 5 + 355 + 2M. (6.32)
Thus by (6.32),
inf [F(v o (@, 2%) + 3lz)2 + 3a*)2] <o. (6.33)
(z,x*)e X x X* 0% 2 2 B
y (6.14),
inf |:F(v o) (@, 2%) + gllzl|* + 5[] > 0. (6.34)
(z,2*)EX X X* 0>%0 2 2 -
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Combining (6.33) with (6.34), we obtain

: * 1 2 %112 —
B [l a) + 3llal? + 32717 = 0. (635)

Thus by Fact 6.1.5, A is of type (NI). |

Remark 6.3.2 The proof of the necessary part of Theorem 6.3.1 follows
closely that of [30, Theorem 2]. The proof of the sufficient part of Theo-
rem 6.3.1 was partially inspired by that of [93, Theorem 32.L] and that of
[54, Theorem 2.1].

Combining Corollary 6.2.2 and Theorem 6.3.1, we get the following re-

sult.

Corollary 6.3.3 Let A : X = X™ be a maximally monotone linear relation.

Then the following are equivalent.
(i) A is of type (D).

(ii) A is of type (NI).

(iii) A is of type (FP).

(iv) A* is monotone.

Remark 6.3.4 When A is linear and continuous, Corollary 6.3.3 is due
to Bauschke and Borwein [4, Theorem 4.1]. Phelps and Simons in [63,
Theorem 6.7] considered the case when A is linear but possibly discontinuous;

they arrived at some of the implications of Corollary 6.3.3 in that case.

153



6.3. The adjoint of a maximally monotone linear relation

Corollary 6.3.3(iv)=(i) gives an affirmative answer to a problem posed
by Phelps and Simons in [63, Section 9, item 2] on the converse of [63,
Theorem 6.7(c)=(f)].

It is interesting to compare Corollary 6.3.3 with the following related
result by Brezis and Browder. Suppose that X is reflexive and let A: X =
X* be a monotone linear relation with closed graph. Then A is mazimally
monotone if and only if A* is (mazimally) monotone; see [28-30] and also

the recent works [70, 89].

We conclude with an application of Corollary 6.3.3 to an operator studied

previously by Phelps and Simons [63].

Example 6.3.5 Suppose that X = L'[0,1] so that X* = L>[0,1], let
D = {z € X | x is absolutely continuous,z(0) = 0,2" € X*},

and set

{«'}, ifzeD;
A X=Xz~
a, otherwise.

By [63, Example 4.3], A is an at most single-valued mazimally monotone
linear relation with proper dense domain, and A is neither symmetric nor

skew. Moreover,
dom A* = {z € X*™ | 2 is absolutely continuous,z(1) =0,2' € X*} C X
A*z = —2/,Vz € dom A*, and A* is monotone. Therefore, Corollary 6.3.3
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implies that A is of type (D), of type (NI), and of type (FP).

6.4 Discussion

Our first main result (Theorem 6.2.1) in this chapter is obtained by applying
Goldstine’s Theorem (see Fact 6.1.2). Simons, Marques Alves and Svaiter’s
characterization of type (D) operators and Borwein’s generalization of the
Brgndsted-Rockafellar theorem are the main tools for obtaining the other
main result (Theorem 6.3.1). Corollary 6.3.3 motivates the following ques-

tion:

Let A : X = X* be a monotone linear relation with closed
graph. Assume that A* is monotone.

Is A necessarily of type (D)?
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Chapter 7

Properties of monotone
operators and the partial inf
convolution of Fitzpatrick

functions

Chapter 7 is mainly based on the work in [15, 17] by Bauschke, Wang and
Yao.

Let F1,Fy: X X X* — ]—00,400]. Then the partial inf-convolution on
the second variable Fy0sF5, is the function defined on X x X* by

FOyFy: (z,2%) — in)f( Fi(z,z" —y*) + Fo(z,y").
y*e *

In this chapter, we study the properties of F'4[s Fig for two maximally mono-
tone operators A and B. We also consider the connection between F 4o Fg
and F44p. Then we provide a new proof of the following result due to Voisei
[83]: Let A,B: X =% X* be mazximally monotone linear relations, and sup-

pose that [dom A — dom B] is closed. Then A+ B is mazimally monotone.
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7.1 Auxiliary results

The next result was first established in [5, Proposition 2.2(v)] by Bauschke,
Borwein and Wang in a Hilbert space. Now we generalize it to a general

Banach space.

Proposition 7.1.1 Let A: X — X* be linear and monotone. Then

Fyp(xz,z*) = 2q2+(%m*+%A*m) = %q:k‘hr (x"+A%x), V(z,z*)e XxX. (7.1)

If ran A, is closed, then dom ¢4, =Tan Al

Proof. By Proposition 3.1.3(ix), dom A*NX = X. Hence for every (z,z*) €

X x X,

Fy(z,2") = sup [(z, Ay) + (y, ") — (y, Ay)]

=2sup [(y, 22" + 1 A*z) — qa, (v)]
yeX

= quhr(%x* + %A*x)

= %qjﬁu (" + A*x). (7.2)
By [92, Proposition 2.4.4(iv) and Theorem 2.3.3],
randga, C domdgy, . (7.3)
By Proposition 3.2.10, ran g4, = ran Ay. Then by (7.3),

ran Ay C domdqy, C domgy, (7.4)
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Then by the Brgndsted-Rockafellar Theorem (see [92, Theorem 3.1.2]),
ran A, C dom 8qu1+ C dom qf4+ CranA,.

By the assumption that ran A is closed, we have ran Ay = dom 8qjjl+ =
dom qj‘+. |

Now we give a direct proof of the following result.

Fact 7.1.2 (Bartz-Bauschke-Borwein-Reich-Wang) (See
[3, Corollary 5.9].) Let C be a closed convex nonempty set of X. Then

FNC = Lc@bg.

Proof. Let (z,2*) € X x X*. Then we have

Fn.(z,2") = sup [(x,c") + (c,x™) — (¢, "]
(c,c*)egra No

= sup [<$7 kC*> + (C, $*> - <C, k6*>]
(c,c*)egra No,k>0

= sup [k({x,c*) — (c,c")) + (c,x™)] (7.5)
(c,c*)egra No,k>0

By (7.5),

(z,2*) € dom Fy, = sup  [(z,c") — (¢, )] <0
(¢,c*)egra No

& inf —(x,c* , >0
(C,C*)leIlgI‘aNC[ <$ c >+<C c >] —

& inf [(c—x,c"=0)] >0
(c,c*)egra No

& (z,0) € graN¢  (by Fact 5.1.2)
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s rel. (7.6)
Now assume z € C. By (7.5),
Fye (2, 2%) = 1o (a”). (7.7)

Combine (7.6) and (7.7), Fn, = tc ® t{. [ |

Following Penot [64], if F': X x X* — |—00, +00], we set
FT: X*x X: (2%, 2) = F(z,x"). (7.8)

Fact 7.1.3 (Fitzpatrick) (See [45, Proposition 4.2 and Theorem 4.3].) Let

A: X = X* be a monotone operator. Then F, = (-,-) on gra A and
{z € X | 32" € X* such that Fi(z*,z) = (z,2*)} C conv(dom A).

Fact 7.1.4 (See [92, Theorem 2.4.14].) Let f : X — |—o00,+00] be a sub-

linear function. Then the following hold.
(i) 0f (x) ={z" € 0f(0) | (2", 2) = f(x)}, Va €domf.

(ii) If f is lower semicontinuous, then f = sup(-,0f(0)).

Fact 7.1.5 (Simons and Zalinescu) (See [78, Theorem 4.2].)
Let Y be a Banach space and Fy,Fy: X XY — |—00,400| be proper,

lower semicontinuous, and convex. Assume that for every (x,y) € X x Y,

(F1|:|2F2)(1‘, y) > —00
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and that | Jyso A [Px dom Fy — Px dom Fb] is a closed subspace of X. Then
for every (x*,y*) € X x X*,

(F1O2F)* (2", y") = wI*nel)I}* [F} (2" — w*,y") + F5(w*,y")].

The following result was first established in [21, Theorem 7.4]. Now we

give a new proof.

Fact 7.1.6 (Borwein) Let A,B : X = X* be linear relations such that

gra A and gra B are closed. Assume that dom A — dom B is closed. Then
(A+B)" = A"+ B".
Proof. We have

lgra(A+B) — LgraADQLgraB~ (7.9)

Let (z**,2*) € X™ x X*. Since gra A and gra B are closed convex, tgra A
and tgra p are proper lower semicontinuous and convex. Then by Fact 7.1.5

and (7.9), there exists y* € X* such that

Lgra(a+B) (7, 27) = L(gra(AJrB))l(_x 27)

= lgra(at+p)(—2",2™")  (since gra(A + B) is a subspace)
= LgraA(y*? J}**) + LgraB(_qj* - Z/*’ J}**)
= L(graA)J-(y*v x**) + (gra B)L (_Jj* - y*7 Jj**)

*%

= lgra A* (Qj ) _y*) + lgra B* (Jj**u "+ y*)
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= Lgra(A*JrB*)(x**yQ:*)' (710)

Thus gra(A + B)* = gra(A* + B*) and hence (A + B)* = A* + B*. [ |

Lemma 7.1.7 Let A,B: X == X* be maximally monotone, and suppose
that | Jy<o A [dom A — dom B] is a closed subspace of X. Set

E = {z € X | 32" € X" such that Fj(z*,z) = (z,z")}
and

F ={z € X |3z* € X* such that Fj(z*,z) = (z,2")}.
Then

J Aldom A — dom B] = | J A[E - FJ.
A>0 A>0

Moreover, if A and B are of type (FPV), then we have
| Aldom A — dom B] = _J A[Px dom F4 — Px dom Fp] .
A>0 A>0

Proof. Using Fact 7.1.3, we see that

J Aldom A — dom B] C | J A[E - F]

A>0 A>0

- U A [conv(dom A) — conv(dom B)}
A>0

- U A [conv(dom A) — conv(dom B)}
A>0
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= U Alconv(dom A — dom B)]
A>0

- U A [conv(dom A — dom B)]
A>0

= U Aldom A — dom B]  (using the assumption).
A>0

Hence (JyogAldom A —dom B] = [Jyo o A £ — F].
Now assume that A, B are of type (FPV). Then by Fact 5.1.6 and

Fact 5.1.13, we have

J Aldom A — dom B] € | J A[Px dom F4 — Px dom Fp]

A>0 A>0

C U A [dom A — dom B]
A>0

c |JA[domA=domB] C | J A[dom A — dom B
A>0 A>0

= U Aldom A — dom B]  (using the assumption).
A>0

Corollary 7.1.8 Let A, B: X == X* be mazximally monotone linear rela-

tions, and suppose that [dom A — dom B] is a closed subspace. Then

| A[Px dom Fy — Px dom Fp] = [dom A — dom B]

A>0
= |J A [Px dom F}T — Px dom F}] .
A>0
Proof. Apply directly Fact 5.1.14 and Lemma 7.1.7. |
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Corollary 7.1.9 Let A: X = X* be mazimally monotone linear relations
and C C X be a closed convex set. Assume that | Jy.,A[dom A —C] is a

closed subspace. Then

|J A[Px dom Fs — Px dom Fiy,] = | ] Aldom A — C]

A>0 A>0
— U A [Pxdom BT~ Prdom Y|
A>0

Proof. Let B = N¢g. Then apply directly Fact 5.1.14, Fact 5.1.12 and
Lemma 7.1.7. n

Fact 7.1.10 (See [74, Lemma 23.9] or [10, Proposition 4.2].) Let A, B: X =

X* be monotone operators and dom ANdom B # @. Then Farp < FalOsFp.

Proof. Let (z,2*) € X x X* and y* € X*. Then we have

Fa(z,y") + Fp(z, 2" —y*) = sup [{(a,y") + (z,a") — (a,a")]
(a,a*)egra A

+ sup [(b,z" —y) + (x,b%) — (b, b")]
(b,b*)egra B

= sup [<a’y*> + (a:,a*> - <a?a*> + <b,33* - y*> + <l‘, b*>
(a,a*)€egra A,(b,b*)Egra B
- <b7 b*>]

> sup [{a,y™) + (z,a") — (a,a") + (a,2" —y) + (z,0)
(a,a*)egra A,(a,b*)€egra B
- <a7 b*>]

= sup [{a,z") + (x,a* + b*) — (a,a™ + b")]

(a,a*)€egra A,(a,b*)Egra B

= Fyyp(x,z"). (7.11)
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Then infy«cx« [Fa(z,y*) + Fp(x,2* —y*)] > Fayp(z,2*) and thus
FaOoFp(z,2*) > Farp(x,z*). [ |
We now discover more properties of Fa4lsFg.
Proposition 7.1.11 was first established by Bauschke, Wang and Yao
in [15, Proposition 5.9] when X is a reflexive space. We now provide a

nonreflexive version.

Proposition 7.1.11 Let A,B: X =% X* be mazimally monotone and sup-
pose that | Jy-o A [dom A — dom B] is a closed subspace of X. Then FayFp
1s proper, normX weak® lower semicontinuous and convex, and the partial in-

fimal convolution is exact everywhere.

Proof. Define Fy, Fy: X x X* — ]—00,4+00] by

Fy: (z,2")— Fi(z",2), Fy:(z,2")— Fg(a*, x).

Since F4, Fg is norm-weak® lower semicontinuous,

Ff(z*,z) = Fa(z,2%), F5(z*,z) = Fp(z,z%), VY(zr,z")e X x X™.
(7.12)

Take (z,2*) € X x X*. By Fact 5.1.5,

(Fi02F) (z,2%) > (z,2") > —oc.
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In view of Lemma 7.1.7,

U A [Px dom F} — Px dom Fy| = U Aldom A — dom B] is a closed subspace.
A>0 A>0

By Fact 7.1.5 and (7.12),
(P2 F) (%, 2) = Juin [FY(@" =y 2) + Fy (v, o))

= uin, [Fa(z, 2™ —y*) + Fp(x,y")] = (FaO2Fg) (2, 2%).

Hence F4[JsFp is proper, normxweak® lower semicontinuous and convex,

and the partial infimal convolution is exact. |

Proposition 7.1.12 (See [15, Proposition 5.5].) Let X be reflexive and
A: X == X* be a monotone linear relation with nonempty closed graph.

Then F7j: (x*,x) = tgraa(x, %) + (x, 2%).

Proof. Define g: X x X* — |—o00,400] : (z,2%) = (x,2%) + tgraa(z,").
Thus by Fact 3.2.8 and the assumption, g is proper, lower semicontinuous
and convex.
By definition of Fa, Fa(z,z*) = ¢g*(z*, x) (for every (z,z2*) € X x X*).
Therefore, by [92, Theorem 2.3.3] we have ;" = g. [ |
The next new result provides a sufficient but not necessary condition for

the maximality of the sum of two maximally monotone operators.

Proposition 7.1.13 Let A,B: X =% X* be mazimally monotone and sup-
pose that | Jy o A [Px dom F)y — Py dom Fp| is a closed subspace of X. As-

sume that FAOoFp = Farp. Then A+ B is maximally monotone.
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Proof. We first show

Fasp > (). (7.13)

Let (z,2*) € X x X* and y* € X*. Then by Fact 5.1.5, we have

Fa(z,y") + Fp(z, 2" —y*) > (z,y") + (v, 2" —y*) = (z,27).

Then

FyOyFp(x,2*) = 1é1)f{* [Fa(z,y") + Fp(x,z* —y*)] > (z,2%). (7.14)
y

By (7.14) and the assumption that Fu[oFp = F44p, we have (7.13) holds.
Combining (7.13) and Fact 5.1.7, A + B is maximally monotone. |

Let A, B: X = X* be maximally monotone such that dom ANdom B #
@. By Fact 7.1.10 F4UsFp > Fayp. It naturally raises a question: Does
the equality always hold under the Rockafellar’s constraint qualification:
dom A Nintdom B # @ (which was also asked by the referee of [90])?
The equality has a far-reaching meaning. If this were true, then Propo-
sition 7.1.13 would directly solve the sum problem in the affirmative. How-
ever, in general, it cannot hold. The easiest example probably is [10, Ex-
ample 4.7] by Bauschke, McLaren and Sendov on two projection operators
in one dimensional space. Now we give another counterexample on a max-
imally monotone linear relation and the subdifferential of a proper lower
semicontinuous sublinear function, which thus implies that we cannot ap-

proach the maximality of the sum of a linear relation A and the subdif-
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ferential of a proper lower semicontinuous sublinear function f by showing

FaOyFy = Fayoy.

Example 7.1.14 Let X be a Hilbert space, Bx be the closed unit ball of X
and Id be the identity mapping from X to X. Let f :x € X — ||z||. Then

we have

0, if[|x 4+ 2" < 1;
FysOoFrg(x, %) = ||z +

%Hl‘ + z*||2 — %||:1:+3:*|| + i, if ||z + x*|| > 1.

(7.15)
We also have Fyyy1q # ForUoF1q when X = R.
Proof. By [10, Example 3.10 and Example 3.3|, we have
Fa(z,27) = Yjo + 27 (7.16)
Fop(x,x*) = ||| + tBy (z¥), V(z,z2¥) € X x X. (7.17)

Note that

Bx, ifx = 0;
Of (x) = (7.18)

{ﬁ },  otherwise.

0, if [|z]] < 1;
Npy(®) = 4 [0,00] -, if|z] = 1; (7.19)
, otherwise.
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Indeed, clearly 0f(0) = Bx. Assume z # 0. By Fact 7.1.4(i),

xt € 0f(x) & a* € Bx, (z",7) = ||zl & [|«7]| = 1, («", ) = ||=[| - [|l="]]

&t =

|z

Hence (7.18) holds. Similarly, (7.19) holds.
Then by (7.16) and (7.17),

(FofO2Fia)(w,2") = inf [l + ey (") + gl + 2" —y*||?]

= |lzll + Zllz + 2 + 3 inf [(z +2%,y") + o5 (¥) + sly*lP]. (7.20)

We consider two cases:

Case 1: |[z +2*|| < 1. Then we directly obtain that
inf [(z 42", y") + ey (y7) + sy IIP] = =3 lle + 27|

And thus, FyrOaFrg(z, z*) = ||z|.

Case 2: ||z+a*|| > 1. Since K : y* € X — (z+2*,y*)+ip, (y*)+3y*|?
is convex, y§ is a minimizer of K if and only if 0 € x + 2* + y§ + Np, (¥5)-
Since ||z 4+ «*|| > 1, by (7.19), ||yl = 1. Thus by (7.19) again, there
exists p > 0 such that 0 =  + 2* + y§ + py;. Then we have p +1 =
|z + «*| and y§ = —%. Thus inf K = K(y}) = —|lz + 2*|| + 3. Then
FyiOyFla(z, z*) = ||z + %|lz + *||* — ||z + 2*|| + 1. Hence (7.15) holds.
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In order to show Fyry1q # FoplaFiq, we consider the case when X = R.

Now we consider the point (—1,4). Then by (7.15),
(FosOaFg)(—1,4) =1+1=2. (7.21)
On the other hand,

Fopya(=1,4) = sup [(z,4) + (=1, 2+ 0f(2)) — (z,0f (x) + x)]

— sup[(,3) + (~1,0f(2)) — (x,0f (x) + )

z€R

= ilég [(z,3) + (—1,0f(z)) — |z| — |z[*] (by Fact 7.1.4(i))

= max {sup [(2,3) + (1,0 (@) = |o] = [2’]

sup [(z,3) + (=1,0f(x)) — || — |x\2] )

=0

sup [(x,3> +(=1,0f(x)) — |z| — |x\2] }

<0

= max { sup [(z,3) — 1 — |z| — [z[*] , 1,sup [(z,3) + 1 — || — |z|*] }
x>0 <0

(by (7.18))

= max { sup [(z,3) — 1 —z — |2|°] , 1,1}
x>0

= max { sup [2v — 1 — |z[*] , 1}
x>0

— max{0,1} = 1# 2 = Fy;OyFa(—1,4) (by (7.21)).

Hence FBf—i—Id 75 FafDQFId. |
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7.2 Fitzpatrick function of the sum of two linear

relations

Section 7.2 is mainly based on the work in [15, 17] by Bauschke, Wang and
Yao.
Theorem 7.2.1 was first proved in [15, Theorem 5.10] by Bauschke, Wang

and Yao in a reflexive space. Now we generalize it to a general Banach space.

Theorem 7.2.1 (Fitzpatrick function of the sum) Let A, B: X =% X*
be mazimally monotone linear relations, and suppose that [dom A — dom B]

15 closed. Then Fayp = FalloFp.

Proof. Let (z,2*) € X x X*. By Fact 7.1.10, it suffices to show that

Fyyp(z,2%) > (FAO2FB)(2,2%). (7.22)

If (z,2%) ¢ dom Fayp, then (7.22) clearly holds.

Now assume that (z,z*) € dom Fa;p. Then

FA+B(Z¢ Z*)

= sup [(z,2") 4+ (z,2%) — (x,2") + (z = 2,¥") — tgraa(z,2")
{z,z*,y*}

- LgraB($7y*)]' (723)
Let Y = X* and define F, K : X x X* xY — |—00, +00] respectively by

Fiz,2",y") e X x X" XY = (2,2") + tgraa(z,27)
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K :(z,2",y") e X x X" XY = (2,¥") + tgraB(2,y")

Then by (7.23),

Fayp(z,2%) = (F+ K)* (2", 2, 2). (7.24)

By Fact 3.2.8 and the assumptions, F' and K are proper lower semicontin-

uous and convex, and

dom F — dom K = [dom A — dom B] x X* x Y is a closed subspace.

Thus by Fact 3.1.2 and (7.24), there exist (2§, 25%,27") € X* x X* x Y*

such that

Faip(z,2%) = F* (2" — 25,2 — 25", 2 — 217) + K* (25, 20", 217)
=F"(z" = 25,2,0) + K*(25,0,2) (by (z,2%) € dom FayB)
:FA(Z?Z*_ZS)+FB(Z?ZS)

> (FaAOoFp)(z,27).

Thus (7.22) holds and hence Fyyp = FAO2Fp. [ ]
The following result was first established by Voisei in [83]. Simons gave
another proof in [74, Theorem 46.3]. Now we give a new approach for

showing this result.

Theorem 7.2.2 Let A,B: X = X* be maximally monotone linear rela-
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tions, and suppose that [dom A — dom B] is closed. Then A+ B is mazimally

monotone.

Proof. Combining Theorem 7.2.1, Corollary 7.1.8, and Proposition 7.1.13,
we have A 4+ B is maximally monotone. |
The following examples show that the constraint on the domain in The-
orem 7.2.1 cannot be weakened. The rest of this section is all based on the
work in [17] by Bauschke, Wang and Yao.
Let S be defined in Example 3.3.1, i.e.,

S: domS — (N): y — <%yn + Zyz> , (7.25)

with

doms = {y =) € £0) | Tu=0.(Tu) el

i>1 i<n

We explicitly compute the Fitzpatrick functions Fgyg+, Fg, Fg+, and
show that Fgyg+ # FsUaFg+« even though S, §* are linear maximally mono-

tone with dom S — dom S* being a dense linear subspace in £2(N).

Lemma 7.2.3 Let X be a reflexive space and S : dom S — X* be a maxi-

mally monotone skew linear operator. Then
Fs = Lara(—S*)

and

FSI = Fg+ = lgra S* + <7>
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Proof. By Proposition 7.1.12,

F§ = (tgras)T.

Then

Fs = (F5')" = (tgras) ™" = (tras)” = (tgras—1)"

= L(graS_l)L == Lgra(—S*)- (726)

From Fact 3.2.12, gra(—S) C gra S*, we have

Fg« > F(fS) = lgra—(—8)* = lgraS*,

this shows that dom Fs» C gra S*. By the Brezis-Browder theorem (Fact 3.2.13)
and Fact 5.1.5, Fg«(x,2*) = (x,2*) V(z,2*) € graS*. Hence Fg« = tgra 5+ +

(-,+). Again by Proposition 7.1.12, Fgl = 1gra 5+ + (-, ). [ |

Theorem 7.2.4 Let H = (*(N) and S be defined as in Example 3.5.1.
Then

Fsyg+(z,2%) = tyxqoy(z,27)
252, if (z,2%) € dom S* x {0} withs = >, x4
Fqly Fg« (l‘,l‘*) = -

00 otherwise.

(7.27)

Consequently, FgloFg+ # Fgyg+.
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Proof. By Fact 3.2.12,
(S + S*)|dom5’ = 0. (7.28)

Let (z,x2*) € H x H. Using (7.28) and Fact 3.2.12, we have

Fsig+(z,2") = Sdup S<$*>a> = L(domS)J-(x*) = 6{0}(93*) = be{o}(fL‘,fL‘*)'
acdom
(7.29)

Then by Fact 7.1.10, we have
(FsOaFg+)(z, %) =00, " #0. (7.30)
It follows from Lemma 7.2.3 that

(FseFg+)(,0) = yi}éﬁ]{FS(ﬂ«“, y") + Fs«(z, —y")}

- yigﬁf{bgra(—m(x, Y*) + tgras(z, —y") + (z, —y")}

= inf {tgras(z, —y") + (z, —y")}. (7.31)
y*eH

Thus, FsyFs+«(x,0) = oo if x ¢ dom S*. Now suppose z € dom S* and
8= ;> ;- Then by (7.31) and Proposition 3.3.6, we have

FsOyFg+(7,0) = (z,S*z) = 1s%

Combine the results above, (7.27) holds. Since dom S* # H, FsyFg« #
FS+S*. .

Let A : H = H be a maximally monotone linear relation. Then [15,

174



7.2. Fitzpatrick function of the sum of two linear relations

Theorem 7.6] shows that: A* = —A if and only if (dom A = dom A* and
Fyq = FZT). Let A = S* with S defined as in Example 3.3.1. Lemma 7.2.3
shows that Fq = F7, but A* = S # —S* = —A by Proposition 3.3.5.
Hence the requirement dom A = dom A* cannot be omitted.

Let V be the Volterra integral operator. In the rest of this section, we
systematically study T'= V! and its adjoint T*.

We compute the Fitzpatrick functions Fr, Fr-, Frip-, and we show that
FrOsFp« # Fpyp-. This shows that the constraint qualification for the
formula of the Fitzpatrick function of the sum of two maximally monotone
operators cannot be significantly weakened either.

To study Fitzpatrick functions of sums of maximally monotone opera-

tors, we need:

Lemma 7.2.5 Let H = L?[0,1] and V be the Volterra integration operator
defined in Example 3.4.4 and e =1 € L%[0,1]. Then

67, (2) = tspan(e} (2) + (2,€)%, ¥z € L[0,1].
Proof. Let z € H. By Example 3.4.4(iv) and Fact 7.1.1, we have
qv, (2) = o0, if z ¢ span{e}.

Now suppose that z = le for some [ € R. By Example 3.4.4(iv),

av, (2) = sup{{z,2) — qv, (2)} = sup{(z,le) — 1(z,¢)*}
zeH reH

=12 = (le,e)? = (z,¢)%
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Hence qj;, (2) = tspanfe} (2) + (2, e)?. [ |

Lemma 7.2.6 Let H = L%[0,1] and T be defined as in Theorem 3.4.5. We
have (for every (z,y*) € H x H)

FT(l‘,y*) = Fv(y*,l‘) = Lspan{e}(x + V*y*) + %<l‘ + V*y*v e>27

Fp«(z,y") = Fu«(y",2) = topanter (@ + VY*) + 3(z + Vi e)>.  (7.32)

Proof. Apply Fact 5.1.5, Fact 7.1.1 and Lemma 7.2.5 to obtain the formula
for Fp. Let (z,y*) € H x H. By Proposition 3.1.3(iv), Fact 7.1.1 and

Lemma 7.2.5 again, we have

Fr«(z,y") = Fy=(y*,z) = %q% (x + V*™y*) = %q% (x+Vy)

= Lspan{e}(dj + Vy*) + %(w +Vy*, €>2.

Remark 7.2.7 Theorem 7.2.8 below gives another example showing that
Frip« # FrOoFp« while T,T* are mazimally monotone, and domT —
dom T* is a dense subspace in L?[0,1]. This again shows that the assump-
tion that dom A — dom B is closed in Theorem 7.2.1 cannot be weakened

substantially.

Theorem 7.2.8 Let H = L?[0,1] and T be defined as in Theorem 8.4.5,

e=1¢ L?[0,1] and set

C ={x e L?0,1]: =z is absolutely continuous, and 2’ € L?[0,1]}.
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Then

FT+T*($7$*) = LHX{O}($7$*)7 V(x,a:*) €HxH

LT2(1)2 + 2(0)2 if (z, x* ;
(FrOyFre)(z, 2%) = 7 (o7 207, ifa) € O {0) (7.33)

o, otherwise.

Consequently, FrlsFr« # Fprip«.

Proof. By Theorem 3.4.5(i) and Example 3.4.4(iii),
(T+T"y=0, YyedomTNdomT*={Vz |zece}. (7.34)

Let (z,2*) € H x H. Using Theorem 3.4.5(iii) and (7.34), we see that

Frop«(z,2") = sup (z,y) = sup(z™, y)
yedom T'Ndom T'* yeH
= L{o}(ﬂﬁ*) = LHx{0} (z,2%). (7.35)

By Fact 7.1.10, we have
(FrOoFp+)(z,2*) = 00, ¥V a*#0. (7.36)
When z* = 0, by Lemma 7.2.6,

(FOuFr) (@,0) = f (Fr(e.y) + Fr-(e. )} (737)
= yyéfl‘q{bspan{e} (z+ V™) + %(JL‘ +Vryr, €>2

+ Lspan{e}(w - Vy*) + %<l‘ - Vy*v e>2}'

177



7.3. Fitzpatrick function of the sum of a linear relations and a normal cone operator

Observe that

x4+ V*y* € span{e},x — Vy* € span{e}
sz —Vy" +Vy* +V*y* € span{e},x — Vy* € span{e}
< x — Vy* € span{e}, (by Example 3.4.4(iv))

&z € Vy* + spanf{e} < x is absolutely continuous and y* = 2.

Therefore, (FraoFr+)(z,0) = oo if z ¢ C. For z € C, using (7.37) and the

fact that x — Va' = z(0)e and = + V*2' = x(1)e, we obtain

(PrOoFr ) (2,0) = 2z + V*2',e)? + 3(z — V', e)?

= g2(1)* + 32(0)* = 3 [2(1)” + 2(0)°].

Thus, (7.33) holds. Consequently, FryFp« # Fpyp-. [ |

7.3 Fitzpatrick function of the sum of a linear

relations and a normal cone operator

The proof of Theorem 7.3.1 partially follows that of [16, Theorem 3.1] by

Bauschke, Wang and Yao.

Theorem 7.3.1 Let A: X = X* be a mazimally monotone linear relation,
let C be a nonempty closed conver subset of X, and suppose that

domANint C # @. Then Fain, = FAO2Fn,.
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Proof. Let (z,2*) € X x X*. By Fact 7.1.10, it suffices to show that

Fayng(z,2%) > (FAO2Fn. ) (2, 27). (7.38)

By Corollary 5.3.4,

Px [dom Fuyn,.] C [dom(A + N¢)| C C.
Thus, (7.38) holds if z ¢ C. Now assume that z € C. Set
g: X x X* = ]—o00,400] : (z,2%) = (@, 2") + tgra a(z, 7). (7.39)
By Fact 3.2.8, g is convex. Hence,
h=g+ioxx (7.40)
is convex as well. Let
cp € dom ANint C, (7.41)
and let ¢ € Acy. Then (cp, ) € gra AN(int Cx X*) = dom gNint dom o x+.

By Fact 5.1.4, toxx+ is continuous at (co, c). Then,

Fayng(2,27)

= sup [(@27) + (5, 0") — (5,57) + (2 — 2,¢) — tgraa(2,57)
(z,2*,c*)

— tgrane (¥, ¢")]

> (sup) [(z,2") + (2,2%) — (z,2%) — tgraa(x, ") — toxx=(z,2")]
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= sup [(x,z*> + <2,$*> - h(x,x*)]

(z,z*)

= h*(z", 2)

=9 WY Foxx- (2" —yh 2 —yT)
(by Fact 5.1.1, 3(y*, y™) € X* x X™)

=9 y") +weF = y) + oz -y

We consider two cases:
Case 1: z # y**. Clearly, Fain, (2, 2%) = 400 > (FaO2Fn, ) (2, 2%).

Case 2: z = y**. Then

Fayng(2,2°) 2 9" (" y™) + 162" —y") = Falz, ") +10(2" —y%)
= Fu(z,y") + 102" —y") + 1e(2) > FaOs (e + u8)

= (Fa0O3Fn,)(2,2") (by Fact 7.1.2).

Hence (7.38) holds and thus Fayn, = FaO2Fp,,. [ |

7.4 Discussion

It would be interesting to find out whether Theorem 7.3.1 generalizes to the

following;:

Let A : X = X* be a maximally monotone linear relation,
let C' be a nonempty closed convex subset of X. Assume that
[dom A — [J,.0 AC] is a closed subspace of X.

Is it necessarily true that Fayn, = FalloFn,?
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Chapter 8

BC—functions and examples

of type (D) operators

This chapter is based on the work in [8] by Bauschke, Borwein, Wang and
Yao.

We first introduce some notation related to this chapter. Let F' : X X
X* — ]—o00,4+00]. We say F is a BC—function (BC stands for “bigger

conjugate”) [74] if F' is proper and convex with
F*(z*,2) > F(z,2*) > (x,z2%) VY(z,2") € X x X™. (8.1)

Let Y be a real Banach space, and let Fy, Fb: X XY — |—00,400]. Then
the function Fi[]y Fs is defined on X X Y by

O Fp: (z,y) — uilel)f({Fl (u,y) + Fo(z —u,y)}.

In Example 8.3.1(iii)&(v) of this chapter, we provide a negative answer to

the following question posed by S. Simons [74, Problem 22.12]:

Let F1,F5 : X x X* — ]—00,+00] be lower semicontinuous BC—
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functions and

U A [Px»dom F} — Px« dom Fy] is a closed subspace of X*.
A>0

Is Fil01 F5 necessarily a BC—function?

8.1 Auxiliary results

Fact 8.1.1 (Banach and Mazur) (See [44, Theorem 5.17]).) Every sep-

arable Banach space is isometric to a subspace of C|0,1].

Fact 8.1.2 (Fitzpatrick) (See [45, Corollary 3.9 and Proposition 4.2].)
Let A: X = X* be maximally monotone. Then Fy is a BC—function and

Fp=(,-) ongraA.

Let Y be a real Banach space. Let L : X — Y be linear. We say L is an
isomorphism into Y if L is one to one, continuous and L~! is continuous on
ran L. We say L is an isometry if ||Lz| = ||z||, Vx € X. The spaces X, Y are
called isometric if there exists an isometry from X onto Y. Let A : X = X*

be monotone and S be a subspace of X. We say A is S—saturated if
Az + St = Az, Vr € domA.

Fact 8.1.3 (Simons and Zalinescu) (See [74, Theorem 16.4(b)].)

Let Y be a Banach space and Fy,Fy: X XY — |—00,400| be proper,
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lower semicontinuous and convex. Assume that for every (zr,y) € X XY,

(F1|:|1F2)(1‘, y) > —00

and that | Jys o A [Py dom Fy — Py dom F] is a closed subspace of Y. Then
for every (x*,y*) € X* x Y*,

(FOWF) (", ") = min [Ff(a*, ")+ F (", y" — )],

Fact 8.1.4 (Simons) (See [74, Theorem 28.9].) Let Y be a real Banach
space, and L :'Y — X be continuous and linear with ran L closed and
ranL* = Y*. Let A: X = X* be monotone with dom A C ranL such
that gra A # &. Then A is mazximally monotone if and only if A is ran L—

saturated and L*AL is mazimally monotone.

Fact 8.1.5 (See [58, Theorem 3.1.22(b)] or [44, Exercise 2.39(i), page 59].)
Let Y be a real Banach space. Assume that L :' Y — X is an isomorphism

into X. ThenranL* =Y™.

Corollary 8.1.6 Let Y be a real Banach space, and L :' Y — X be an
isomorphism into X. Let T :' Y = Y* be monotone. Then T is maximally

monotone if, and only if (L*)"*TL™! is maximally monotone.

Proof. Let A = (L*)"'TL~!. Then domA C ranL. Since L is an iso-
morphism into X, ran L is closed. By Fact 8.1.5, ran L* = Y™*. Hence
gra(L*)7'TL~! # @ if and only if graT # @. Clearly, A is monotone.
Since (0, (ran L)) C gra(L*)™!, A = (L*)"'TL~! is ran L-saturated. By
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Fact 8.1.4, A = (L*)"'TL~! is maximally monotone if and only if L* AL = T
is maximally monotone. |
The following result will allow us for constructing operators that are not

of type (D) in different Banach spaces.

Corollary 8.1.7 Let Y be a real Banach space, and L :' Y — X be an
isomorphism into X. Let T :'Y = Y™ be maximally monotone. Assume

that T is not of type (D). Then (L*)~'*TL~' is maximally monotone but is

not of type (D).

Proof. By Corollary 8.1.6, (L*)~'TL~! is maximally monotone. By Fact 6.1.5

or Corollary 6.2.2 , there exists (y3*,y5) € Y** x Y* such that

(b,b*)egraT

By Fact 8.1.5, there exists z; € X* such that L*zj = y5. Let A =

(L*)~'TL~!. Then we have

sup  {(L™y5",a") + (a5, a) — (a,a")}
(a,a*)egra A

= sup {<yg*7L*a*> + (xS,Ly) - <Lyva*>}
(Ly,a*)egra A

— sup {(yg*, L*a*) + (L*zp,y) — (y, L*a*>}
(Ly,a*)egra A

= sup  {{y", L") + (v5,y) — (y, L7a")}
(Ly,a*)egra A

= sup {5y + Wow) — (wy)}
(y,y*)€graT

(by (Ly,a*) € graA < (y,L*a™) € graT)
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<(y0"»%0) (by (82))

= (L™y5", zp)- (8.3)

Thus A is not type (NI) and hence A = (L*)"!TL~! is not type (D) by
Fact 6.1.5. |
8.2 Main construction

We shall give an abstract framework for constructing non type (D) operators

in non-reflexive spaces.

Lemma 8.2.1 Let A: X = X* be a skew linear relation. Then

Fa= bgra(—A*)NX x X* - (84)

Proof. Let (zg, () € X x X*. We have
Fa(xzo,z) = sup  {((xg,20), (z,27)) = (z,2")}
(z,x*)Egra A

= sup <(‘T87‘T0)7($7$*)>
(z,z*)egra A

= l(gra A)+ ($3> l‘())
= Lgra(—A*)(T0, ()

*
= Lgra(—A*)mXxX*(l‘o, 7).

Hence (8.4) holds. [ |
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The main result in this chapter is Theorem 8.2.2, which our constructed

examples are based on.

Theorem 8.2.2 Let A : X* — X™** be linear and continuous. Assume that

ran A C X and there exists e € X**\ X such that

(Az* %) = (e,x*)?, Va* € X*.

Let P and S respectively be the symmetric part and antisymmetric part of

A. Let T : X = X* be defined by

graT = {(—Sl‘*’l‘*) | aj* € X*, <€,33*> = 0}

= {(—Az",2") | 2" € X*, (e, z™) = 0}. (8.5)

Let f: X — ]—00,400] be a proper lower semicontinuous and convex func-

tion. Set F' = f @ f* on X x X*. Then the following hold.
(i) T is maximally monotone.

(ii) graT* = {(Sz* +re,x*) | z* € X*, r € R}.

(iii) T is not of type (D).

(iv) Fr =1c, where

C={(—Ax",2") | z* € X"}. (8.6)

(v) IfdomT Nintdom df # &, then T + Of is maximally monotone.
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(vi) F and Fp are BC-functions on X x X*.

(vii) Moreover,

L A(Px+(dom Fr) — Px+(dom F)) = X™.
A>0

Assume that there exists (vo,vy) € X x X* such that
f(wo) + 7 (vo — Avg) < (vo,vg)- (8.7)

Then Frly F is not a BC—function.

(viil) Assume that [ran A —J oo Adom f| is a closed subspace of X and

that @ # dom f** o A*|x» € {e} . Then T + df is not of type (D).

Proof. (i): Now we claim that
Pz* = (z*,e)e, Vz* € X*. (8.8)

Since (-,e)e = 9(3(-,e)?) and by [63, Theorem 5.1], (-,e)e is a symmetric
operator on X*. Clearly, A — (-, e)e is skew. Then (8.8) holds.

Let 2* € X* with (e,z*) = 0. Then we have
Sz* = (z*,e)e + Sa* = Pa* + Sz* = Az™ eran A C X.

Thus (8.5) holds and T is well defined.
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We have S is skew and hence T is skew. Let (z,2*) € X x X* be

monotonically related to gral. By Fact 3.2.9, we have

0= (z,2%) + (—=Sz",2%) = (¢ + Sz",2), Va*e{e},.

Thus by Fact 3.1.1, we have z + S2* € ({e}, ) = span{e} and then

z=—52"+ ke, I € R, (8.9)
By Fact 3.2.9 again,
k(2% e) = (=Sz" + ke, z2") = (z,2%) > 0. (8.10)
Then by (8.9) and (8.8),
Az* = Pz" 4+ S2" = Pz" + ke — 2z = [(z",e) + K] e — z. (8.11)

By the assumptions that z € X, Az* € X and e ¢ X, [(z*,e) + k] = 0 by
(8.11). Then by (8.10), we have (z*,e) = x = 0 and thus (z,2*) € graT by
(8.9). Hence T is maximally monotone.

(ii): Let (xf*, zj5) € X*™ x X*. Then we have

(x5, xy) € graT™ < (x5, Sz™) + (™, 25") =0, Va* € {e},
& (2% x5 — Sxg) =0, Vo' € {e}y
& ap* — Szh € ({e} )" =span{e} (by Fact 3.1.1)

& xyt — Sxg=re, IreR.
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Thus graT* = {(Sz* + re,z*) | * € X*, r € R}.
(iii): By (ii), T is not monotone. Then by Corollary 6.3.3, T" is not of

type (D).

(iv): By (ii), we have

(2,2%) e gra(-T")N X x X~

& (2,2")=(=8z"—re,z"), zeX, IreR, z*e X"

& (2,2") = (=52" = (2%, e)e + [(z",e) —1]e,2%), TIreR, z*eX*
& (2,2%) = (A" + [(¢",e) —r]e,2¥), TFreR, z¥e X* (by (8.38))
& (2,2%) = (A", 2%), (%,e)=r

(by 2,A2* € X and e ¢ X),Ir e R, 2" € X~

& (z,2") e {(-Az",2") | 2" € X"} =C.

Thus by Lemma 8.2.1, we have Fr = i¢.

(v): Apply (i) and Theorem 5.3.1.

(vi): Clearly, F' is a BC—function. By (i) and Fact 8.1.2, we have Fp is
a BC—function.

(vii): By (iv), we have
| A(Px+(dom Fr) — Px+(dom F)) = X*. (8.12)
A>0

Then for every (z,z*) € X x X* and u € X, by (vi),

Fr(z —u,z*) + F(u,2*) = Fr(z —u,2*) + (f & f*)(u, z")
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> (x—u,z") + (u,z*) = (x,z").
Hence
(PrOF)(z,2™) > (z,2%) > —0c0. (8.13)
Then by (8.12), (8.13) and Fact 8.1.3,

(FrOLF) (v, 00) = min_ B (v, 2°) + F*(o, v — 2
< Fr(vg, A% vg) + F* (v, v0 — A*vp)
=0+ F*(v5,v0 — A%vg)  (by (iv))
= (f @& %) (vo,v0 — A™vg) = (f* & f™)(vg, vo — A™vp)
= f*(vg) + [ (vo — A™;)
< (vg,v0) (by 8.7).

(8.14)

Hence F40; F is not a BC—function.

(viii): By the assumption, there exists z§ € dom f** o A*|x+ such that
(e,xf) # 0. Let g9 = %. By [92, Theorem 2.4.4(iii)]), there exists
Yo € Oz [ (A*xf). By [92, Theorem 2.4.2(ii)]),

(A x) + 7 (9™ < (A", 507) + <o (8.15)
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Then by [74, Lemma 45.15] or the proof of [67, Eq.(2.5) in Proposition 1],

there exists y5 € X™ such that

(A% ) + [ (yg) < (A%zg,y0) + 2¢0. (8.16)

Let 2§ = y§ + «§. Then by (8.16), we have

(A% xg) + [ (20 — ) < (A%wp, 25 — ) + 2€0
= (A%wg, 25) — (A", 2p) + 2e0
= (A%xg, 29) — {0, Azg) + 220
= (A%, 29) — 2€0 + 2€0

= (A%xg, 23)- (8.17)

Then for every (z,z*) € X x X* and u* € X, by (vi),

FT(JL‘,JL‘* - U*) + F(x?u)k) = FT(.I‘,.I‘* - U*) + (f ) f*)(x7U*)

> (x, 2" —u*) + (z,u”) = (x,z").
Hence
(PrOoF)(z,2™) > (z,2%) > —o0. (8.18)

Then by (8.18), (iv) and Fact 7.1.5,

(FrD2 )" (25, A"p)
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= min Fi(y" A%f) + F* (5 — ", A"
< Ff(ay, A"ag) + F*(z5 — a5, A"a)
=0+ F*(s" =, A"z5)  (by (iv)

= (f @ [7)" (5 — a5, A%3)

= (25 — ab) + [ (A%p)

< Azy,A*x5)  (by (8.17)). (8.19)
Let Fy: X x X* — ]—00,+0o0] be defined by

(x,2") — (x,2") + Lara(T+0f) (z,z). (8.20)

Clearly, FrOF < Fy on X x X* and thus (Fr0O2F)* > F§f on X* x X**.
By (8.19), F§ (25, A*xj) < (25, A*xj). Hence T'+ Of is not of type (NI) and
thus T'+ Jf is not of type (D) by Fact 6.1.5. |

8.3 Examples and applications

Example 8.3.1 Suppose that
X = co, with norm || - ||eo s0 that X* = (*(N) with norm || - ||1,

and X** = (*®(N) with norm || - ||«. Let o = (ap)nen € €°(N) with

limsup v, # 0, and let A, : 01(N) — (*°(N) be defined by

(Apz®)y = a2at +2 Z anagxs, Vot = ()pen € LH(N).

>n
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Let P, and S, respectively be the symmetric part and antisymmetric part of

Ay. Let Ty i cg = X* be defined by

graT, = {(—Sax*,a:*)| e X' (o, ") = O}
= {(—Anz*,2%)| 2" € X*, (a,2") = 0}
— {((—Zanail‘f + Zanaixf)neN,x*)‘x* € X" (a,z%) = 0}.

>n <n

(8.21)

Then the following hold.

(i) (Apz*,2*) = (a,2*)?, Va* = (2))nen € 1(N). Hence (8.21) is well

defined.
(ii) T, is a maximally monotone operator that is not of type (D).
(ili) Pr,0:(]] - || ® tBy.) is not a BC-function.
(iv) T + 0| - || is a maximally monotone operator that is not of type (D).
(v) If % <l €1, then Pr,0: (3| - > @ 4[| - |3) is not a BC-function.

(Vi) Ty + AJ is a mazimally monotone operator that is not of type (D) for

every A > 0.

(vii) There exists a linear operator L : ¢y — C0, 1] that is an isometry from
co to a subspace of C[0,1]. Then for every A > 0, (L*) =Y (T, +0||-|) L1
and (L*) YT, + \J)L™! are mazimally monotone operators that are

not of type (D).
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(viii) Let G : £1(N) — ¢°°(N) be Gossez’s operator [50] defined by

nGN Zdj _wa nENEg(N)

>n <n

Then T, : co = £*(N) as defined by
graT, = {(=G(z*),z*) | z* € £}(N), (z*,e) = 0}

is a mazimally monotone operator that is not of type (D), where e =

(1,1,...,1,...).

Proof. We have a ¢ c¢y. Since a = (ap)nen € €°(N), A, is linear and
continuous and ran A, C ¢y C (*°(N).

(i): We have

Agx™, z* Zx a —1—2204”042 ZaQ *2—1—22204”0423: x;

i>n n i>n
= ZaQ *2 —i—Zanal
n#i
Zanaz (o, %)%, Va* = (2))nen € £H(N). (8.22)

Then the proof of Theorem 8.2.2 shows that the symmetric part P, of A,

is Pyx* = (a, x*)a (for every z* € ¢*(N)). Thus, the skew part S, of A, is

(Sa@*Jnen = (AatJucts = (PaaJue = (a2ah +2 ) anaue Zanaz)

>n

= ( Z Q4T Z Q4T ) . (8.23)

>n <n
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Then by Theorem 8.2.2, (8.21) is well defined.

(ii): Combine Theorem 8.2.2(1)&(iii).

(iii): Let f = ||| on X = ¢o. Then f* = 1p,. by [92, Corol-
lary 2.4.16]. Since a # 0, there exists i9 € N such that a;, # 0. Let
ei, = (0,...,0,1,0,...), i.e., the ipth component is 1 and the others are 0.

Then by (8.23), we have

Saeio = Oy, (011, ceey g1, 0, —Qg+1, —Ojg42, - - ) (8.24)

Then

*
Aaeio = Paeio - Saeio

= Oy, (O, ce ,0, (0718 2ai0+1, 20éi0+2, .. ) (825)

Now set v§ = e;, and vy = 3||a?e;,. Thus by (8.25),

vo — Ay = 3llalZes, — Ageig

=(0,...,0,3]|al|? — af , —20v0vig+1, — 204 i 42, - . .)  (8.26)

We have

fH(wo) + [ (vo — Ageig) = tBy.(€ig) + [[vo — Ageio |«

= [[Bllatlei, = Azes |

<3fal (by (8.26))

= (vp, vg)-
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Hence by Theorem 8.2.2 (vii), Fr,O:(]| - || ® tBy.) is not a BC—function.
(iv): Let f = - || on X. Since dom f** = X**, @ 2 dom f** o0 A%|x- &
{e} 1. Then apply Theorem 8.2.2(v)&(viii) directly.
(v): Tet f = 3|2 on X = cp. Then f* = 4|+ |2 and f* = |- |2. By
% < |lall« <1, take |ay,|* > 3. Let e, be defined as in the proof of (iii).
Then set v] = %eio and v1 = (1+ %0%20)6@‘0-

By (8.25), we have
v — ALv] = (0,...,0, 1, —ay Qg 1, — Qig Qig+25 - - -) (8.27)
Since |a; o] < |laf|? <1, Vj € N, then
lvr — ALl < 1. (8.28)
We have

Fr7) + 7 (or = Agd) = 5l0T T + llor — ALl 2

<i+3 (by (828)

2

2 1
<tz (byaj>3)

= (o1, 01).

Hence by Theorem 8.2.2(vii), Fr, 01 (%] - [|>® 4| - |2) is not a BC-function.
(vi): Let A > 0 and f = 3| ||> on X = ¢o. Then f** = || - ||2. The rest

of the proof is very similar to that of (iv).
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(vii) : Since ¢y is separable by [58, Example 1.12.6] or [44, Proposi-
tion 1.26(ii)], by Fact 8.1.1, there exists a linear operator L : ¢ — C0,1]
that is an isometry from ¢y to a subspace of C[0,1]. Then combine (iv), (vi)
and Corollary 8.1.7.

(viii): Apply (ii) . [ |

Remark 8.3.2 The maximal monotonicity of the operator T, in FEram-
ple 8.3.1(viii) was established by Voisei and Zalinescu in [87, Example 19]
and then later a direct proof was given by Bueno and Svaiter in

[32, Lemma 2.1]. Bueno and Svaiter also proved that Te is not of type (D)
in [32]. Here we give a short and direct proof of the above results. FEx-

ample 8.3.1(111)€(v) provide a negative answer to Simons’ problem in [74,

Problem 22.12].

8.4 Discussion

The idea of the construction of the operator A in (Theorem 8.2.2) comes
from [4, Theorem 5.1] by Bauschke and Borwein. The main tool involved
in the main result (Theorem 8.2.2) is Simons and Zalinescu’s version of

Attouch-Brezis theorem.
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Chapter 9

On Borwein-Wiersma
decompositions of monotone

linear relations

This chapter is mainly based on [18] by Bauschke, Wang and Yao, in which
although we worked in a reflexive Banach space in [18], we can adapt most
results from a reflexive space to a general Banach space.

It is well known that every square matrix can be decomposed into the
sum of a symmetric matrix and an antisymmetric matrix, where the symmet-
ric part is a gradient of a quadratic function. In this chapter, we provide the
necessary and sufficient conditions for a maximally monotone linear relation
to be Borwein-Wiersma decomposable, i.e., to be the sum of a subdiffer-
ential operator and a skew operator. We also show that Borwein-Wiersma

decomposability implies Asplund decomposability.
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9.1 Decompositions

Definition 9.1.1 (Borwein-Wiersma decomposition [27]) The set-

valued operator A : X = X* is Borwein-Wiersma decomposable if

A=0df+8, (9.1)

where f: X — |—o00,+00] is proper lower semicontinuous and convezx, and
where S @ X = X s skew and at most single-valued. The right side of

(9.1) is a Borwein-Wiersma decomposition of A.

Note that every single-valued linear monotone operator A with full domain

is Borwein-Wiersma decomposable, with Borwein-Wiersma decomposition

A:A++AQZVQA+A0. (92)

Definition 9.1.2 (Asplund irreducibility [1]) The set-valued operator

A: X = X* is irreducible (sometimes termed “acyclic” [27]) if whenever

A=08f+S,

with f + X — ]—o0,+00] proper lower semicontinuous and convez, and

S X = X* monotone, then necessarily ran(0f)|dom 4 5 a singleton.

As we shall see in Section 9.1, the following decomposition is less restric-

tive.

Definition 9.1.3 (Asplund decomposition [1]) The set-valued operator
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A: X = X* is Asplund decomposable if

A=09f + 8, (9.3)

where f: X — |—00,+00] is proper, lower semicontinuous, and convezx, and
where S is irreducible. The right side of (9.3) is an Asplund decomposition
of A.

The following fact, due to Censor, Iusem and Zenios [36, 53], was previ-
ously known in R". Here we give a different proof and extend the result to

Banach spaces.

Fact 9.1.4 (Censor, Iusem and Zenios) The subdifferential operator of
a proper lower semicontinuous convex function f: X — |—o00,+00] is para-

monotone, i.e., if

xt € df(x), y*e€df(y), (9-4)

and

(" —y",z —y) =0, (9.5)
then z* € 0f(y) and y* € 0f ().

Proof. By (9.5),

(%, 2) + (", y) = (=", y) + (¥", 2). (9.6)

By (9.4),

Fr@) + fle) = (%), A y) + Fy) =Wy
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Adding them, followed by using (9.6), yields

@)+ W)+ W) + fe) = (2% y) + (v, 2),

@) + fly) = @l + 7)) + ) = (5 o)) = 0.

Since each bracketed term is nonnegative, we must have f*(z*) + f(y) =
(x*,y)y and f*(y*) + f(z) = (y*,x). It follows that z* € Jf(y) and that
y* € of(x). [ |

The following result provides a powerful criterion for determining whether

a given operator is irreducible and hence Asplund decomposable.

Theorem 9.1.5 Let A: X == X* be monotone and at most single-valued.

Suppose that there exists a dense subset D of dom A such that

(Ax — Ay,x —y) =0 Vzx,y € D.

Then A is irreducible and hence Asplund decomposable.

Proof. Let a € D and D" := D — {a}. Define A’ : dom A — {a} — A(- + a).
Then A is irreducible if and only if A’ is irreducible. Now we show A’ is

irreducible. By assumptions, 0 € D’ and

(Alz — Aly,x—y) =0 Va,yeD.

Let A" = 0f + R, where f is proper lower semicontinuous and convex, and

R is monotone. Since A’ is single-valued on dom A’, we have that 0f and R
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are single-valued on dom A’ and that

R=A—-0f on domA.

By taking x§ € 0f(0), rewriting A" = (0f — x) + (x§ + R), we can and do
suppose df(0) = {0}. For z,y € D’ we have (A'z — A'y,x — y) = 0. Then

for z,y € D’

0<(R(x) — R(y),z —y) = (Ax — Aly,x —y) — (0f (x) — 0f (y),x — y)

= —(0f(x) = 0f(y),z — y).

On the other hand, df is monotone, thus,

(Of(x) —0f(y),x —y) =0, Vaw,yeD. (9.7)

Using 0£(0) = {0},

(0f(x) — 0,2 —0) =0, VaxeD. (9.8)

As Of is paramonotone by Fact 9.1.4, f(x) = {0} so that z € argmin f.
This implies that D’ C argmin f since x € D’ was chosen arbitrarily. As
f is lower semicontinuous, argmin f is closed. Using that D’ is dense in
dom A’, it follows that dom A’ C D’ C argmin f. Since Jf is single-valued
on dom A, 9f(x) = {0}, Vo € dom A’. Hence we have A’ is irreducible, and
so is A. [

Remark 9.1.6 In Theorem 9.1.5, the assumption that A be at most single-
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valued is important: indeed, let L be a proper subspace of R™. Then Ouy, is

a linear relation and skew, yet Ovy, = Oivp, + 0 is not irreducible.

Theorem 9.1.5 and the definitions of the two decomposabilities now yield

the following.

Corollary 9.1.7 Let A : X = X* be mazximally monotone such that A is

Borwein- Wiersma decomposable. Then A is Asplund decomposable.

We proceed to give a few sufficient conditions for a maximally monotone
linear relation to be Borwein-Wiersma decomposable. The following simple

observation will be needed.

Lemma 9.1.8 Let A : X == X* be a monotone linear relation such that A is
Borwein-Wiersma decomposable, say A = Of +S, where f: X — |—00, +00]
s proper, lower semicontinuous, and convex, and where S: X = X* is at

most single-valued and skew. Then the following hold.

Of(x), ifxr e domA;

(i) Of + Ljoma: © +— is a monotone linear
a, otherwise

relation.
(ii) domA C domdf C dom f C (A0), .

(iii) If A is mazimally monotone, then domA C domdf C domf C

dom A.

(iv) If A is mazimally monotone and dom A is closed, then domdf =

dom A = dom f.
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Proof. (i): Indeed, on dom A, we see that 0f = A — S is the difference of
two linear relations.
(ii): Clearly dom A C domdf. As SO = 0, we have A0 = 9f(0). Thus,
Va* € A0, z € X,
(i, 2) < f(2) — 1(0)

Then o40(x) < f(x) — f(0), where o4 is the support function of A0. If
x & (A0),, then o9(z) = 400 since A0 is a linear subspace, so f(x) =
+o0, Vx ¢ (A0), . Therefore, dom f C (A0) . Altogether, (ii) holds.

(iii): Combine (ii) with Proposition 3.2.2(i). (iv): Apply (iii). [ |

Theorem 9.1.9 Let A: X = X* be a maximally monotone linear relation

such that dom A C dom A*. Then A is Borwein- Wiersma decomposable via

A=07i+85,

where S is an arbitrary linear single-valued selection of Ao. Moreover,

0qa = A4 on dom A.

Proof. From Proposition 3.2.10(i), A4 is monotone and g4, = qa, using
Proposition 3.2.10(ii), gra Ay C gradga, = gradga. Let S : dom A — X*
be a linear selection of Ao (the existence of which is guaranteed by a standard
Zorn’s lemma argument). Then, S is skew. Thus, by Proposition 3.2.2(v),
we have gra A = gra(Ay +5) C gra(dga + S). Since A is maximally mono-
tone, A = 0qa+S5, which is the announced Borwein-Wiersma decomposition.

Moreover, 9ga = A — S = A4 on dom A. ]
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Corollary 9.1.10 Let A : X = X™* be a maximally monotone linear rela-
tion such that A is symmetric. Then A is Borwein- Wiersma decomposable,
with decompositions A = 0qa + 0. If X is reflexive, then A~! is Borwein-

Wiersma decomposable with A~' = d¢* + 0.

Proof.  Using Proposition 3.2.11, we obtain A = A*|x. Hence, Theo-
rem 9.1.9 applies; in fact, A = 0ga. If X is reflexive, then we have
A~ = 9ga* = 8¢’y by [92, Theorem 2.4.4(iv) and Theorem 2.3.1(iv)]. From
Proposition 3.1.3(iv), we have A~! = (4*)~™! = (A71)*. Then A~! = 9.

Hence A™! = dg,—1 = dq. |

Corollary 9.1.11 Let A: X = X* be a mazimally monotone linear rela-
tion such that dom A is closed, and let S be a single-valued linear selection
of Ao. Then qa = qa, A+ = 0qa is mazimally monotone, and A and A*|x
are Borwein-Wiersma decomposable, with decompositions A = Ay + S and

A*|x = Ay — S, respectively.

Proof. Proposition 3.2.2(iv) implies that dom A*|x = dom A. By Proposi-
tion 3.2.10(iv), A*|x is maximally monotone. In view of Proposition 3.2.2(v),
A=Ay + Ao and A*|x = A4 — Ao. Theorem 9.1.9 yields the Borwein-
Wiersma decomposition A = dga+S. Hence dom A C dom dga C domga C
dom A = dom A. In turn, since dom A = dom A, and ¢4 = qA., this implies
that dom A = dom dga; = dom @z . In view of Proposition 3.2.10(i)&(ii),
qa, = qa, and gra A C gradqa,. By Theorem 9.1.9, A, = Jga on dom A.
Since dom A = dom A} = dom dq4 and g4 = qa, = qa, = qa, this implies
that AL = 0qa = 0Ga everywhere. Therefore, Ay is maximally monotone.

Then we obtain the Borwein-Wiersma decomposition A*|x = A, —S. W
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Theorem 9.1.12 Let A : X == X* be a maximally monotone linear relation
such that A is skew, and let S be a single-valued linear selection of A. Then

A is Borwein- Wiersma decomposable via Ovgg— +S.

Proof. Clearly, S is skew. Proposition 3.1.3(ii) and Proposition 3.2.2(iii)
imply that A = A0+ S = (dom A)* + S = digz—s + S, as announced.
Alternatively, by [80, Lemma 2.2], dom A C dom A* and now apply Theo-
rem 9.1.9. |

Under a mild constraint qualification, the sum of two Borwein-Wiersma
decomposable operators is also Borwein-Wiersma decomposable and the de-

composition of the sum is the corresponding sum of the decompositions.

Proposition 9.1.13 (sum rule) Let A; and Ay be mazimally monotone
linear relations from X to X*. Suppose that A1 and As are Borwein-
Wiersma decomposable via A1 = 0f1 + S1 and Ay = Ofy + So, respectively.
Suppose that dom A1 —dom As is closed. Then A1+ Ay is Borwein- Wiersma
decomposable via Ay + As = I(f1 + f2) + (S1+ S2).

Proof. By Lemma 9.1.8(iii), dom A; C dom f; C dom A; and dom Ay C

dom f5 C dom As. Hence dom A; — dom Ay C dom f; — dom fo C dom Ay —

dom As C dom A; — dom Ay = dom A; — dom As. Thus, dom f; —dom fy =
dom A; — dom Aj is a closed subspace of X. By [74, Theorem 18.2], 0f; +
Ofy = O(f1 + f2); furthermore, S1 + So is clearly skew. The result thus
follows. |
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9.2 Uniqueness results

The main result in this section (Theorem 9.2.8) states that if a maximally
monotone linear relation A is Borwein-Wiersma decomposable, then the
subdifferential part of its decomposition is unique on dom A. We start by
showing that subdifferential operators that are monotone linear relations are

actually symmetric, which is a variant of a well known result from Calculus.

Lemma 9.2.1 Let f : X — ]—o00,+00] be proper, lower semicontinuous,
and convex. Suppose that the mazimally monotone operator Of is a linear

relation with closed domain. Then Of = (Of)*.

Proof. Set A =0f and Y = dom f. Since dom A is closed, the Brgndsted-
Rockafellar Theorem (see [74, Theorem 18.6]) implies that dom f =Y =
dom A. By Proposition 3.2.2(iv), dom A*|x = dom A. Let z € Y and
consider the directional derivative g = f/(x;-), i.e.,

g: X — [—o0,+o0] : y»—>lti¢1(r)1 f(x+ti) —J@),

By [92, Theorem 2.1.14], domg = {J,5q7 - (dom f —z) =Y. On the other
hand, f is lower semicontinuous on X. Thus, since Y = dom f is a Banach
space, f|y is continuous by [92, Theorem 2.2.20(b)]. Altogether, in view
of [92, Theorem 2.4.9], g|y is continuous. Hence g is lower semicontinuous.
Using [92, Corollary 2.4.15] and Fact 3.1.3(v), we now deduce that (Vy € Y))
g(y) =sup(0f(x),y) = (Az,y) = (x, A*y). We thus have proved that

(VzeY)(VyeY) flary) = (Az,y) = (z,Ay). (9.9)
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In particular, f|y is differentiable. Now fix x,y,z in Y. Then, using (9.9),

we see that

(Az + s2),y) — (Az,y) f'(@+szy) - f(2y)

= ; I A
(9.10)
i (LS ) = S 50) St i)~ )y
sJ0 t]0 st st

Set h: R - R: s — f(x+sz+ty)— f(x+sz). Since fl|y is differentiable, so

is h. For s > 0, the Mean Value Theorem thus yields rs; € ]0, s[ such that

flatsztty) - flatsz) [flztty) - [f(z)

=83 B W () (9.11)

s
= f'(z + retz +ty; 2) — f(z+ Tst2; %)

= t(Ay, z).

Combining (9.10) with (9.11), we deduce that (Az,y) = (Ay, z). Thus, A is
symmetric. The result now follows from Proposition 3.2.11. |
To improve Lemma 9.2.1, we need the following “shrink and dilate”

technique.

Lemma 9.2.2 Let A: X = X* be a monotone linear relation, and let Z be
a closed subspace of dom A. Set B = (A +1z) + Z+. Then B is mazximally

monotone and dom B = Z.
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Proof. Since Z C dom A and B = A + Ovz it is clear that B is a monotone

linear relation with dom B = Z. By Proposition 3.2.2 (i), we have

Zt CBO=A0+2Zt C(dom At + 2zt czt+ 2t =7+

Hence BO = Z+ = (dom B)*. Therefore, by Proposition 3.2.2(ii), B is

maximally monotone. n

Theorem 9.2.3 Let f : X — |—o00,+00| be proper, lower semicontinuous,
and convex, and let Y be a linear subspace of X. Suppose that Of + 1y is a

linear relation. Then Of + ly is symmetric.

Proof. Put A = 9f + Iy. Assume that (z,2%),(y,y*) € graA. Set Z =
span{z,y}. Let B : X = X* be defined as in Lemma 9.2.2. Clearly,
graB C grad(f+tz). In view of the maximal monotonicity of B, we see that
B =0(f+tz). Since dom B = Z is closed, it follows from Lemma 9.2.1 that
B = B*. In particular, we obtain that (z*,y) = (y*, z). Hence, (0f(x),y) =

(0f(y),z) and therefore 0f + Iy is symmetric. [ |

Lemma 9.2.4 Let A: X = X* be a mazimally monotone linear relation

such that A is Borwein- Wiersma decomposable. Then dom A C dom A*.

Proof. By hypothesis, there exists a proper lower semicontinuous and convex
function f: X — ]—o00,400] and an at most single-valued skew operator S
such that A = 0f +S. Hence dom A C dom S, and Theorem 9.2.3 implies

that (A —S) + Iqom 4 is symmetric. Let 2 and y be in dom A. Then

(Ax — 2Sz,y) = (Ax — Sz,y) — (Sz,y) = (Ay — Sy, z) — (Sx,y)
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= (Ay,$> - (Sy7$> - <S$,y> = (Ay,$>7

which implies that (A — 2S)z C A*z. Therefore, dom A = dom(A — 25) C
dom A*. |

Remark 9.2.5 We can now derive part of the conclusion of Proposition 9.1.13
differently as follows. Since dom Ay —dom Ay is closed, Voisei proved in [83]
(see Theorem 7.2.2 or [T}, Theorem 46.3]) that A1+ As is maximally mono-
tone; moreover, Fact 7.1.6 yields (A1 +A2)* = A7+ Aj. Using Lemma 9.2.4,
we thus obtain dom(A; + A2) = dom A; Ndom A2 C dom A} N dom A} =
dom (A} + A%) = dom(Ay + A2)*. Therefore, A1 + Ay is Borwein- Wiersma

decomposable by Theorem 9.1.9.

Theorem 9.2.6 (characterization of subdifferential operators) Let
A: X = X* be a monotone linear relation. Then A is mazximally monotone
and symmetric < there exists a proper lower semicontinuous convex function

f: X — ]—00,+00] such that A = Of.

Proof. “=”: Proposition 3.2.10(ii). “«<”": Apply Theorem 9.2.3 with Y =

X. |

Remark 9.2.7 Theorem 9.2.6 generalizes [63, Theorem 5.1] of Phelps and

Simons.

Theorem 9.2.8 (uniqueness of the subdifferential part) Let A :
X = X* be a maximally monotone linear relation such that A is Borwein-

Wiersma decomposable. Then on dom A, the subdifferential part in the de-
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composition is unique and equals to Ay, and the skew part must be a linear

selection of Ao.

Proof. Let fi and fo be proper lower semicontinuous convex functions from
X to ]—o0, 400}, and let S; and Sa be at most single-valued skew operators

from X to X* such that

A=0f1+851 =0fs+ Ss. (9.12)

Set D = dom A. Since S; and Sy are single-valued on D, we have A — 51 =
Ofi and A — Sy = dfy on D. Hence 0f; + Ip and 0fs + [p are monotone

linear relations with

(0f1 +1p)(0) = (0f2 +1p)(0) = AO. (9.13)

By Theorem 9.2.3, df1 4+ Ip and df; + Ip are symmetric, i.e.,

(Ve € D)(Vy € D) (0f1(x),y) = (0f1(y), =) and (0fz(x),y) = (9fa2(y), z).

Thus,

(Vo € D)(Vy € D) (0fa(x) = Of1(x),y) = (Of2(y) — 0f1(y),x).  (9.14)

On the other hand, by (9.12), (Vx € D) Siz — Syx € dfs(x) — df1(x). Then

by Fact 3.2.2(iii), Proposition 3.2.1(ii) and Proposition 3.1.3(v),

(Vo € D)(Vy € D) (9fa(x) = 0fi(x),y) = (S1z — S2,y) (9.15)
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= —(S1y — Soy, )

= —(0f2(y) — 0f1(y), x).

Now fix x € D. Combining (9.14) and (9.15), we get (Vy € D)
(Ofa(x) — 0f1(z),y) = 0. Using Fact 3.2.2(iii), we see that

dfa(z) — 8f1(x) € DT = (dom A)*+ = Ao.

Hence, in view of Lemma 9.1.8(i), (9.13), and Fact 3.1.3(ii),

ofi +1p =0fy +1p.

By Lemma 9.2.4 and Theorem 9.1.9, we consider the case when fo = qa
so that 0fy = A4 on D. Hence 0f; = Ay on D and, if x € D, then
Six € Ax — 0f1(x) = Ax — ALz = Aoz by Proposition 3.2.2(v). [

Remark 9.2.9 In a Borwein- Wiersma decomposition, the skew part need
not be unique: indeed, assume that X = R2, set Y := R x {0}, and let
S be given by graS = {((z,0),(0,z)) | € R}. Then S is skew and the
mazximally monotone linear relation Ovy has two distinct Borwein- Wiersma

decompositions, namely Oy + 0 and Oy + S.

Proposition 9.2.10 Let A : X = X* be a mazimally monotone linear
relation. Suppose that A is Borwein- Wiersma decomposable, with subdiffer-
ential part Of, where f: X — ]—o00,4+00] is proper, lower semicontinuous

and convex. Then there exists a constant o € R such that the following hold.
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(i) f=7a+ a on domA.
(ii) If dom A is closed, then f =qa+a=qa+a on X.

Proof. Let S be a linear single-valued selection of Ao. By Lemma 9.2.4,

dom A C dom A*. In turn, Theorem 9.1.9 yields

A=08ga+S.

Let {z,y} € dom A. By Theorem 9.2.8, 9f + Ijom 4 = 9G4 + lqom 4. Now
set Z = span{z,y}, apply Lemma 9.2.2 to the monotone linear relation
Of + lgom a4 = 9G4 + lgom 4, and let B be as in Lemma 9.2.2. Note that
gra B = gra(dga + 0vz) C grad(ga + tz) and that gra B = gra(0f + duz) C
grad(f + tz). By the maximal monotonicity of B, we conclude that B =

O(qa + tz) = O(f + tz). By [67, Theorem B], there exists o € R such that

f+iz=qa+i1z+a. Hence a = f(z) —qa(z) = f(y) —a(y) and repeating

this argument with y € (dom A) \ {z}, we see that

f=ga+a ondomA (9.16)

and (i) is thus established. Now assume in addition that dom A is closed.

Applying Lemma 9.1.8(iv) with both df and 0ga, we obtain

dom@a = dom 9§14 = dom A = dom df = dom f.

Consequently, (9.16) now yields f = ga+«. Finally, Corollary 9.1.11 implies

that g4 = qa. |

213



9.3. Characterizations and examples

9.3 Characterizations and examples

The following characterization of the Borwein-Wiersma decomposability of

a maximally monotone linear relation is quite pleasing.

Theorem 9.3.1 (Borwein-Wiersma decomposability) Let A: X = X*

be a mazximally monotone linear relation. Then the following are equivalent.
(i) A is Borwein- Wiersma decomposable.
(ii) dom A C dom A*.

(iii) A= A4 + Ao.

Proof. “(i)=(ii)”: Lemma 9.2.4. “(i)<(ii)”: Theorem 9.1.9. “(ii)=-(iii)”:

Proposition 3.2.2(v). “(ii)<«=(iii)”: This is clear. [

Corollary 9.3.2 Assume X is reflexive. Let A: X = X* be a mazimally
monotone linear relation. Then both A and A* are Borwein- Wiersma de-

composable if and only if dom A = dom A*.

Proof. Combine Theorem 9.3.1, Fact 3.2.13, and Fact 3.1.3(vi). [ |
We shall now provide two examples of a linear relation S in the Hilbert

space to illustrate that the following do occur:
e S is Borwein-Wiersma decomposable, but S* is not.
e Neither S nor §* is Borwein-Wiersma decomposable.

e S is not Borwein-Wiersma decomposable, but S~ is.
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Example 9.3.3 Suppose that X is the Hilbert space (*(N), and set

S: domS — X:y+— (%yn—FZyZ) , (9.17)
i<n neN
with
doms = {y=uhev e X | Tui=0.(Xu) ex}.
i>1 i<n neN
Then
S*: dom S* — X:y+— (%yn%—ZyZ) (9.18)
i>n TLGN
where

dom S* = {y = (Yn)nen € X ‘ (Zw)nEN € X}-

i>n
Then S can be identified with an at most single-valued linear relation such
that the following hold. (See [63, Theorem 2.5] and Proposition 3.3.2, Propo-
sition 3.5.3, Proposition 3.3.5, and Theorem 3.3.8.)

(i) S is mazximally monotone and skew.

(ii) S* is mazximally monotone but not skew.
(iii) dom S is dense in £*(N), and dom S & dom S*.
(iv) S* = —S on domS§S.

In view of Theorem 9.8.1, S is Borwein-Wiersma decomposable while S* is

not. However, both S and S* are irreducible and Asplund decomposable by
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Theorem 9.1.5. Because S* is irreducible but not skew, we see that the class

of irreducible operators is strictly larger than the class of skew operators.

Example 9.3.4 (Inverse Volterra operator) (See Example 3.4.4 and The-
orem 8.4.5.) Suppose that X is the Hilbert space L*[0,1], and consider the

Volterra integration operator (see, e.g., [52, Problem 148]), which is defined

by
t
V:X = X:x—Vz, where V:L‘:[O,l]—)R:tH/x, (9.19)
0
and set A=V, Then
1
VX -5 X:2—V*z, where V*x:[O,l]—>]R:tr—>/ x,
t

and the following hold.

(i) We have

dom A = {z € X | x is absolutely continuous, z(0) = 0,

anda:/EX}

and

A: domA — X:zw— 2.
(ii) We have
domA* ={z e X ‘ x is absolutely continuous, x(1) =0,
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anda:/EX}

and
A*: domA* — X:z— —2'.
(iii) Both A and A* are mazimally monotone linear operators.
(iv) Neither A nor A* is symmetric.
(v) Neither A nor A* is skew.
(vi) dom A Z dom A*, and dom A* € dom A.
(vii) Y = dom A Ndom A* is dense in X.
(viii) Both A+ 1Ty and A* + 1y are skew.

By Theorem 9.1.5, both A and A* are irreducible and Asplund decomposable.
On the other hand, by Theorem 9.3.1, neither A nor A* is Borwein- Wiersma
decomposable. Finally, A1 =V and (A*)~™! = V* are Borwein-Wiersma

decomposable since they are continuous linear operators with full domain.

Remark 9.3.5 (an answer to Borwein and Wiersma’s question) The
operators S, S*, A, and A* defined in this section are all irreducible and
Asplund decomposable, but none of them has full domain. This provides an

answer to [27, Question (4) in Section 7]:

Can one exhibit an irreducible operator whose domain is not

the whole space?
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9.4 When X is a Hilbert space

Throughout this short section, we suppose that X is a Hilbert space. Recall
(see, e.g., [42, Chapter 5] for basic properties) that if C' is a nonempty closed
convex subset of X, then the (nearest point) projector Pc is well defined and

continuous. If Y is a closed subspace of X, then Py is linear and Py = Py..

Definition 9.4.1 Let A: X = X be a maximally monotone linear relation.
We define Q4 by

Qa:domA— X :x+— Py

Note that @ 4 is monotone and a single-valued selection of A because (Vx €

dom A) Az is a nonempty closed convex subset of X.

Proposition 9.4.2 (linear selection) Let A: X = X be a mazimally

monotone linear relation. Then the following hold.
(i) (Vo € domA) Qax = Pypy1(Az), and Qax € Ax.
(ii) Qa4 is monotone and linear.

(iii) A= Qa4+ AO.

Proof. Let x € dom A = dom Q4 and let * € Az. Using

Proposition 3.1.3(ii), we see that

Qax = Pyyx = Ppejpaox = 2% 4+ Pap(x — 2*) = 2" + Paox — Pyox™

*

= PAO.T"‘P(AO)LJI* = P(AO)LJJ .
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Since x* € Az is arbitrary, we have thus established (i). Now let 2 and y
be in dom A, and let @ and 8 be in R. If a = § = 0, then, by Proposi-

tion 3.1.3(i), we have Qa(ax + By) = Q40 = P40 = 0 = aQazx + SQay.
Now assume that o # 0 or S # 0. By (i) and Proposition 3.1.3(iii), we have

Qalaz + By) = Pagyr Alax + By) = aP 401 (Az) + BP 40y (Ay)

= aQaz + fQay.
Hence @ 4 is a linear selection of A and (ii) holds. Finally, (iii) follows from

Proposition 3.1.3(ii). [

Example 9.4.3 Let A: X = X be maximally monotone and skew. Then

A = Ovggrrg + Qa is a Borwein-Wiersma decomposition.

Proof. By Proposition 9.4.2(ii), Q4 is a linear selection of A. Now apply
Theorem 9.1.12. ]

Example 9.4.4 Let A: X = X be a mazimally monotone linear relation
such that dom A is closed. Set B = Piom AQAPiom A and f = ¢ + tdom A-
Then the following hold.

(i) B: X — X is continuous, linear, and mazimally monotone.
(i) f: X = ]—o00,+00] is converz, lower semicontinuous, and proper.
(iif) A = Otqom 4 + B.

(iv) Of + Bo is a Borwein-Wiersma decomposition of A.
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Proof. (i): By Proposition 9.4.2(ii), Q4 is monotone and a linear selec-
tion of A. Hence, B: X — X is linear; moreover, (Vx € X) (z, Bz) =
(x, Piom AQAPdom AT) = (Pgom A%, QaPgomax) > 0. Altogether, B: X —
X is linear and monotone. By Corollary 3.2.3, B is continuous and maxi-
mally monotone.

(ii): By (i), ¢p is thus convex and continuous; in turn, f is convex, lower
semicontinuous, and proper.

(iii): Using Proposition 9.4.2(i) and Proposition 3.2.2(iii), we have (Vx €
X) (QaPioma)r € (A0)+ = dom A = dom A. Hence, (Vx € dom A) Bx =
(Piom AQAPijom aA)r = Qax € Ax. Thus, B + Ijoma = Q4. In view of
Proposition 9.4.2(iii) and Proposition 3.2.2(iii), we now obtain A = B +
Tgom A + A0 = B 4+ Otqom A-

(iv): It follows from (iii) and (9.2) that A = B + dtqgoma = VaB +

Otdom A + Bo = 9(qB + tdom 4) + Bo = 0f + Bo. u

Proposition 9.4.5 Let A: X = X be such that dom A is a closed subspace
of X. Then A is a mazximally monotone linear relation < A = Otqom 4 + B,

where B : X — X 1is linear and monotone.

Proof. “=7: This is clear from Example 9.4.4(1)&(iii). “<”: Clearly, A is
a linear relation. By Corollary 3.2.3, B is continuous and maximally mono-
tone. Using Rockafellar’s sum theorem [66] or Theorem 5.3.1, we conclude

that Otqom 4 + B is maximally monotone. |
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9.5 Discussion

The original papers by Asplund [1] and by Borwein and Wiersma [27]
concerned the additive decomposition of a maximally monotone operator
whose domain has nonempty interior. In this chapter, we focused on max-
imally monotone linear relations and we specifically allowed for domains
with empty interior. All maximally monotone linear relations on finite-
dimensional spaces are Borwein-Wiersma decomposable; however, this fails
in infinite-dimensional settings. We presented characterizations of Borwein-
Wiersma decomposability of maximally monotone linear relations in general
Banach spaces and provided a more explicit decomposition in Hilbert spaces.

The characterization of Asplund decomposability and the correspond-
ing construction of an Asplund decomposition remain interesting unresolved
topics for future explorations, even for maximally monotone linear operators
whose domains are proper dense subspaces of infinite-dimensional Hilbert

spaces.
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Conclusion

Let us conclude by listing our findings of all relevant chapters.

Chapter 3: The Brezis-Browder Theorem (see Fact 3.2.13) is a very im-
portant characterization of maximal monotonicities of monotone relations.
The original proof [30] is based on the application of Zorn’s Lemma by con-
structing a series of finite-dimensional subspaces, which is complicated. In
Theorem 3.2.15, we establish the Brezis-Browder Theorem by considering
the fact that a lower semicontinuous, convex and coercive function on a
reflexive space has at least one minimizer. In [75], Simons generalized the
Brezis-Browder Theorem to SSDB spaces. The Brezis-Browder Theorem
and Corollary 3.2.6 are essential tools for the construction of maximally
monotone linear subspace extensions of a monotone linear relation.

There will be an interesting question for the future work on the Brezis-

Browder Theorem in a general Banach space:

Let A: X = X* be a monotone linear relation such that gra A
is closed. Assume A*|x is monotone.

Is A necessarily mazimally monotone?

In Sections 3.3 and 3.4, some explicit monotone linear relations were

constructed in Hilbert spaces, which gave a negative answer to a question
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raised by Svaiter [80] and which showed that the constraint qualification in
the sum problem for maximally monotone operators cannot be weakened
(see [63, Example 7.4]). In particular, these two sections will provide con-
crete examples for the characterization of decomposable monotone linear
relations.

Chapter 4: A direction for future work in this chapter is to write com-
puter code to find the maximally monotone subspace extension of GG, and to
generalize the results into a Hilbert space by applying the Brezis-Browder
Theorem.

Chapter 5: As we can see, Fact 5.1.7 plays an important role in the proof
of Theorem 5.2.4 and Theorem 5.3.1. Theorem 5.2.4 presents a powerful
sufficient condition for the sum problem. The following question posed by

Simons in [72, Problem 41.4] remains open:

Let A : X = X* be mazimally monotone of type (FPV), let
C be a nonempty closed convex subset of X, and suppose that
dom ANintC # @.

Is A+ N¢ necessarily mazimally monotone?

If the above result holds, by Theorem 5.2.4, we can get the following result:
Let A : X = X* be maximally monotone of type (FPV), and let B :
X = X* be maximally monotone with dom A Nintdom B # &. Assume
that dom A Ndom B C dom B. Then A + B is maximally monotone.
Chapter 6: Our first main result (Theorem 6.2.1) in this chapter is ob-
tained by applying Goldstine’s Theorem (see Fact 6.1.2). Simons, Marques

Alves and Svaiter’s characterization of type (D) operators and Borwein’s
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generalization of the Brgndsted-Rockafellar theorem are the main tools for
obtaining the other main result (Theorem 6.3.1). Corollary 6.3.3 motivates

the following question:

Let A : X = X* be a monotone linear relation with closed
graph. Assume that A* is monotone.

Is A necessarily of type (D)?

Chapter 7: It would be interesting to find out whether Theorem 7.3.1

generalizes to the following:

Let A: X = X* be a maximally monotone linear relation, let C

be a nonempty closed convex subset of X. Assume that

dom A — U \C
A>0

is a closed subspace of X.

Is it necessarily true that Fayn, = FalaFn,7?

Chapter 8: The idea of the construction of the operator A in (Theo-
rem 8.2.2) comes from [4, Theorem 5.1] by Bauschke and Borwein. The main
tool involved in the main result (Theorem 8.2.2) is Simons and Zalinescu’s
version of Attouch-Brezis theorem.

Chapter 9: The original papers by Asplund [1] and by Borwein and
Wiersma [27] concerned the additive decomposition of a maximally mono-
tone operator whose domain has nonempty interior. In this chapter, we
focused on maximally monotone linear relations and we specifically allowed
for domains with empty interior. All maximally monotone linear relations

on finite-dimensional spaces are Borwein-Wiersma decomposable; however,
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this fails in infinite-dimensional settings. We presented characterizations of
Borwein-Wiersma decomposability of maximally monotone linear relations
in general Banach spaces and provided a more explicit decomposition in
Hilbert spaces.

The characterization of Asplund decomposability and the correspond-
ing construction of an Asplund decomposition remain interesting unresolved
topics for future explorations, even for maximally monotone linear operators
whose domains are proper dense subspaces of infinite-dimensional Hilbert

spaces.
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Appendix A

Maple code

The following is the Maple code to plot Figure 2.1.

Loading Student:—LinearAlgebra

>restart:

with (plots ):

>fieldplot ((Matrix(2, 2, {(1, 1) = 0,

(2) =vy})), x=-3

(Vector (2, {(1) = x,

= blue)

colour
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thickness
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Appendix A. Maple code

The following is the Maple code used to verify the calculations for Exam-

ple 4.5.2 on G

>restart: Loading Student:—LinearAlgebra

>A = Matrix (3, 2, {(1, 1) = -1, (1, 2) =0, (2, 1) =0,
(27 ) (37 1) 0, (37 ) = _1})

>B := Matrix(3, 2, {(1, 1) =1, (1, 2) =0, (2, 1) =0,
(27 ) (37 1 (37 2) = 1})

) =
>T:=A.Transpose(B)+B. Transpose(A)
>Eigenvalues (T)

>Eigenvectors(T)

>Idlam:=[[[~1+sqrt(2),0,0],[0,—1—sqrt (2),0],[0,0, —2]]]
>V := Matrix (3, 3, {(1, 1) =0, (1, 2) =0, (1, 3) = 1,
(2, 1) = —1/(sart(2)—1), (2, 2) = —1/(~1=sqrt (2)),
(2, 3) =0, (3, 1) =1, (3, 2) =1, (3, 3) = 0})
>N:= Matrix (3, 3, {(1, 1)y =0, (1, 2) = -1, (1, 3) =1,
(2, 1) =0, (2, 2) =2, (2, 3) =-1, (3, 1) =0,

>M:=Transpose (N).Idlam .N

>evalf (Eigenvalues (M))

>NullSpace (‘<|>‘(Transpose(N). Transpose(V).A,
Transpose(N). Transpose(V).B))

>C := Matrix (2, 2, {(1, 1) = 1
(2, 1) =0, (2, 2) = bxsqrt(2)})

>tilde {G.2}:= 1/C
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Appendix A. Maple code

The following is the Maple code used to verify the calculations for Exam-

ple 4.5.3 on Gy, G, Fy and Es.

>restart: Loading Student:—LinearAlgebravoisei

>A := Matrix ([[1, 1], [2, 0], [3, 1]])

>B := Matrix ([[1, 5], [1, 7], [0, 2]])

SK := Matrix ([[1, 1, 1, 5], [2, 0, 1, 7], [3, 1, 0, 2]])

>Rank (K)

>K1:= A.Transpose(B)+B. Transpose(A)

>Eigenvectors (K1)

>Idlam := Matrix (3, 3, {(1, 1) = 13+sqrt(201), (

(1, 3) =0, (2, 1) =0, (2, 2) = =6, (2, 3) =0,

(3, 1) =0, (3, 2) =0, (3, 3) =13—sqrt(201)})

SVi= Matrix (3, 3, {(1, 1) = 20/(1+sqrt(201)), (1, 2) = 0,
)

(1, 3) = 20/(1—sqrt(201)),

(3, 2) =1, (3, 3) = 1})

>V_g := Matrix(2, 3, {(1, 1) =0, (1, 2) = -1, (1, 3) =1,
(2, 1) = 20/(1—sqrt(201)),
(2, 2) =1, (2, 3) = 1})

>L :=NullSpace (‘<|>‘(V_g.A, V_g.B))

>C0 := Matrix (2, 2, {(1, 1) = —(=21+sqrt(201))/(—2+2xsqrt(201)),
(1, 2) = —(—107+7xsqrt(201))/(—2+2*sqrt (201)),
(2, 1) = (—23+3%sqrt(201))/(—2+2%sqrt (201)),
(2, 2) = (=1174+17xsqrt(201))/(—2+2%sqrt (201))})

241



Appendix A. Maple code

>tilde{G_1}:= 1/C0
>N := Matrix (3, 3, {(1, 1) =0, (1, 2)

>M := Transpose(N).Idlam.N

>evalf (Eigenvalues (M))

>NullSpace (‘<|>‘(Transpose(N). Transpose(V).A,

Transpose(N). Transpose(V).B))

>C1 := Matrix (2, 2, {(1, 1) = —9/20+(1/30)*sqrt (201),

(1, 2) = —13/4+(1/6)*sqrt (201),

(2, 1) = 29/20—(1/30)xsqrt (201),

(2, 2) = 33/4—(1/6)*sqrt (201)})
>tilde {G.2}:= 1/C1

>vec := Vector (3, {(1) =0, (2) =0, (3)

>LinearSolve (‘<|>‘(A, B, vec), free =
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e—subdifferential operator, 8, 141 duality mapping, 121

adjoint, 5, 27, 28, 147, 153 Fenchel conjugate, 7

Asplund decomposition, 200, 203 Fitzpatrick function, 6, 101

Attouch & Brezis’ Theorem, 15 Fitzpatrick, Phelps & Veronas’ The-
orem, 103

BC—function, 4, 181, 182, 187, 193
Borwein’s Theorem, 141 graph, 5

Borwein-Wiersma decomposition,
identity mapping, 167
199, 211, 212, 214

indicator function, 7
boundary, 7

indicator mapping, 7
Brezis & Browder’s Theorem, 27
inf-convolution, 8, 15

Censor, Tusem & Zenios’ Theorem, interior, 7

200 inverse operator, 5
closed unit ball, 8 irreducible, 199
constraint qualification, 99 isometric, 182
convex hull, 7 isometry, 182

Crouzeix & Ocana-Anaya’s char- isomorphism into, 182

acterizations, 70
linear relation, 6

distance function, 7 lower semicontinuous hull, 7

domain, 5
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maximally monotone, 6
maximally skew, 40
maximally skew extension, 40
monotone, 6

monotonically related to, 6

norm closure, 7

open unit ball, 8

paramonotone, 200
partial inf-convolution, 156, 159,

182

range, b

representative, 140, 142

right and left shift operator, 39
Rockafellar’s Theorems, 99, 100

set-valued operator, 5

Simons & Veronas’ Theorem, 103

Simons & Zalinescu’s Theorems, 28,
159, 182

Simons’ Theorems, 101-103, 141,
183

Simons, Marques Alves & Svaiter’s
Theorem, 142

skew, 19

skew part, 19

subdifferential operator, 8, 100, 102,
103, 141

sum operator, 99

sum problem, 99, 115, 122

symmetric, 19

symmetric part, 19

type (D), 140, 146, 153, 184

type (FPV), 6, 103, 115, 133

type Fitzpatrick-Phelps (FP), 140,
141, 143, 146, 153

type Fitzpatrick-Phelps-Veronas, 6

type negative infimum (NI), 140,
143, 146, 147, 153

Voisei’s Theorem, 103

Volterra integration operator, 43

weak closure, 7
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