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Abstract

Recent advancements in nanofabrication now allow precise fabrication

of devices and systems on nanometer scales. This technology is currently

used in the field of photonics to construct optical systems possessing sub-

wavelength features. A basic component of most optical systems is an optical

waveguide. There has been an increased interest in nanofabricated opti-

cal waveguides that incorporate metal layers due to their fabrication com-

patibility with existing complimentary-metal-oxide-semiconductor (CMOS)

processes and, as will be discussed in this thesis, their ability to sustain

sub-wavelength-confined electromagnetic modes. In this work, we have de-

veloped analytical techniques for designing metal waveguides that achieve

tailored optical functionalities. The developed techniques are applied in two

design examples which address contemporary problems related to waveguid-

ing at sub-wavelength and nanometer scales.

Realization of complex optical circuits based on miniaturized optical

waveguides requires components that can bend light around tight 90◦ bends.

In the first design example, we apply our analytical technique to opti-

mize a bi-axial waveguide constructed from two uni-axial metal waveguides

joined together at 90◦. The optimization procedure consists of mapping out

wavevector values of the electromagnetic modes sustained by the two waveg-
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uides over the intended operational frequency range. The constituent mate-

rials and geometry of the waveguides are selected such that each waveguide

sustains only one low-loss mode. The geometry of each of the waveguides

is tailored in such a way that the in-plane wavevector components for both

waveguide modes are matched. The wavevector matching results in efficient

coupling between the two modes, yielding 90◦ light bending with predicted

efficiencies over 90%.

In the second design example, we apply our analytical technique to opti-

mize a bi-axial waveguide structure for coupling free-space light into surface

plasmon polaritons (SPP), electromagnetic excitations bounded to the sur-

face of a metal. One of the practical challenges in realizing devices that use

SPPs is the development of efficient ways to couple in free-space plane-wave

light. We study the simple SPP coupling geometry consisting of a slit in a

metal film, filled and covered with a dielectric. We break the configuration

down into two constituent uni-axial waveguide components, modeling the

slit as a metal-dielectric-metal waveguide and the adjacent metal surface as

a metal-dielectric waveguide. Using similar analysis as in the first example,

we optimize the materials and geometry of the slit so that wavevector match-

ing is achieved between the light emanating from the slit and the adjacent

SPP modes, resulting in predicted peak SPP coupling efficiencies over 68%.
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Chapter 1

Introduction

1.1 Optical Waveguides: from Water Streams to

Nanometer-Scale Metallic Structures

An optical waveguide is a device that can guide light. This is achieved

by confining light within a boundary such that light can only propagate

along one or multiple directions defined by the waveguide [1]. The first

optical waveguide was demonstrated in 1840 by Daniel Colladon using a

thin curved stream of falling water [2]. A beam of light shone into the water

stream was shown to follow the curvature of the stream. The stream of

water thus acted like a pipe for light. In 1870, John Tyndall explained this

phenomenon in terms of total internal reflection (TIR) [3]. TIR occurs at

an interface between two media having different optical refractive indices.

Consider an interface formed between dielectric medium 1 with refractive

index n1 and dielectric medium 2 with refractive index n2. A beam of light

incident from medium 1 into medium 2 will obey Snell’s law, written as

n1sinθi = n2sinθr, (1.1)
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where 0 ≤ θi ≤ 90 is the angle of incidence of the beam (with respect

to normal to the interface) and θr is the angle of refraction of the beam

refracted into medium 2. When n1 is greater than n2, there exists an acute

critical angle of incidence where the refracted beam becomes parallel to the

interface. For angles of incidence greater than the critical angle, light no

longer refracts, but is totally internally reflected. This forms the basis of

optical waveguiding using dielectric materials.

Since the 1970s, developments in glass processing technology have al-

lowed the controlled manufacturing of optical fibre waveguides constructed

from thin glass wires. An optical fiber consists of two concentric glass

regions: a cylindrical core of higher refractive index and a surrounding

cladding of lower refractive index. The optical fibre works by guiding light

along the axis of the fibre and confining light within the core by total inter-

nal reflection. Fiber optics have revolutionized the field of communications

by providing a means to transfer information with low loss, high speed, wide

bandwidth, and immunity to electromagnetic interference, which has trans-

lated into tangible benefits such as fast internet speeds and instantaneous

communication across continents.

Along with faster information transmission via optical fibres, the last

half century has witnessed dramatic miniaturization of electronic compo-

nents, resulting in smaller devices with more functionalities. The modern

cellular phone, for example, has more processing power than the original

room-sized computers. This miniaturization has been possible due to the

development of nanofabrication processes enabling controllable manufactur-

ing on nanometer-size scales. In the last decades, there has been intense
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research interest in using nanofabrication to miniaturize optical waveguides.

The motivation for these efforts has been two-fold: first, smaller optical

waveguides means that more functionalities can be compressed into an op-

tical system [4–9] and second, optical waveguides that are size-compatible

with smaller electronic components could pave the way to opto-electronic

systems that exploit both the advantages of electronics and optics, which

could lead to significantly faster and more powerful computers [10–13].

A major road-block in efforts to miniaturize optical waveguides is the

so-called “diffraction limit”. This term was originally used to describe the

minimum resolution that can be achieved by an optical imaging system (on

the order of the wavelength of light). The same physical constraints placed

on the resolution of optical imaging systems also applies to most optical

waveguiding systems. Generally, light cannot propagate in a dielectric-

based waveguide system when the transverse profile of the waveguide is

less than the wavelength of light. At infrared and visible frequencies, this

means that the minimum transverse profile size of an optical waveguide

is on the order of 100s of nanometers or even microns, which is several

orders of magnitude greater than the typical feature sizes of electronic com-

ponents [11, 14, 15]. This constraint can be overcome by using optical

waveguides constructed from metals. A waveguide created using metallic

components can support light waves that propagate even when the trans-

verse profile of the waveguide is significantly less than the wavelength of

light [16–19]. In recent years, there has been tremendous research inter-

est in the development of nanometer-scale optical waveguides constructed

from metallic components. Metallic waveguiding systems have been realized
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in the form metal nanoparticle arrays [20], metal nanowires [21–24], and

nano-apertures in metal films [14, 25–27]. Research continues to understand

light interactions with these small metallic systems and to optimize their

performance.

1.2 Designing Uni- and Multi-Axial Optical

Waveguides

With the advent of nanofabrication, optical waveguides can now be

created in a wide range of geometries using dielectric, metallic, or semi-

conducting materials. Given the many degrees of freedom afforded by nanofab-

rication, optimization of a waveguide design requires efficient modeling tech-

niques. All modeling schemes are, in some way or another, rooted in Maxwell’s

equations, a set of four equations describing the relationship between elec-

tromagnetic fields and their sources. The way in which Maxwell’s equations

are applied to model a given optical waveguide depends in large measure on

the geometry of the waveguide. One of the simplest configurations is the

uni-axial waveguide, which guides electromagnetic waves along a single axial

direction. The electromagnetic properties of a uni-axial waveguide can be

modeled by analytically solving Maxwell’s equations. This is achieved by

assuming a general form of the electromagnetic fields propagating along the

direction of the waveguide. Applying boundary conditions to the interfaces

of the waveguide yields characteristic eigenvalue equations having solutions

corresponding to the wavevector of a wave. This wavevector contains infor-

mation on the wavelength and attenuation of the wave. When a uni-axial

4



1.2. Designing Uni- and Multi-Axial Optical Waveguides

waveguide is composed of dielectric materials described by real permittivity

values, the resulting eigenvalue equation is real and can be easily solved

using standard root-finding algorithms like the Newton-Raphson method.

When the uni-axial waveguide is composed of metallic materials described

by complex permittivity values, the resulting eigenvalue equation is complex

and requires more sophisticated root-finding algorithms.

Multi-axial waveguides guide electromagnetic waves along more than one

direction. They are challenging to model by analytical solutions to Maxwell’s

equations and often require numerical techniques. One of the most popular

numerical techniques is the finite-difference time-domain (FDTD) technique.

The FDTD technique is based on a one-, two-, or three-dimensional spatial

grid containing the waveguide structure and an electromagnetic wave source.

Approximating the time- and space- derivatives of Maxwell’s equations using

difference equations, Maxwell’s equations are solved to determine the elec-

tric and magnetic field values in the simulation space at each grid point as

a function of time. Numerical simulation tools like the FDTD technique are

powerful because they enable detailed visualization of electromagnetic fields

within complicated optical waveguides. One of the major limitations, how-

ever, is the massive computational power and processing time required to

complete a simulation. Because only one combination of parameters can be

explored for a given simulation, hundreds or thousands of simulations are

required to completely map out the frequency-dependent electromagnetic

response of an optical waveguide for various material combinations and ge-

ometrical configurations. As a result, optimization using only numerical

simulations is often not feasible.
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1.3 Analytical Approach for Designing

Multi-Axial Metallic Waveguides

The goal of this thesis is to explore a new analytical method to model the

electromagnetic properties of multi-axial, metallic, nanometer-scale waveg-

uides. The methodology is based on conceptually dividing a multi-axial

waveguide into uni-axial waveguide sub-components. By approximating

the more-complex multi-axial waveguide as a collection of simpler uni-axial

waveguide parts, analytical solutions can be obtained to describe electro-

magnetic wave behaviour in different regions of the multi-axial waveguide.

To achieve electromagnetic coupling between uni-axial waveguide compo-

nents, the geometries of the uni-axial waveguide components are tailored so

that the in-plane electromagnetic momenta are matched. This is achieved by

analytically mapping out the electromagnetic wavevectors of the uni-axial

waveguide sub-components as a function of both frequency and geometry

and then tailoring the geometries so that the magnitudes of the wavevectors

are equal. We test the predictive power of this approach in two design exam-

ples in which visible-frequency electromagnetic waves are guided by bi-axial,

metallic, nanometer-scale waveguides along two directions. Optimal param-

eters selected to yield maximum coupling using our analytical method are

shown to match those predicted to yield maximum coupling using FDTD

numerical simulations. Our analytical method thus provides a supplemental,

high-level tool for the design of complicated waveguide systems and provides

new physical insights into multi-axial electromagnetic waveguiding.
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1.4 Thesis Outline

This thesis is divided into two parts. The first part, consisting of Chap-

ters 1 and 2, develops the theoretical background required for understanding

the design technique and the second part, consisting of Chapters 3 and 4,

describe the two basic examples where the technique is applied.

In the remainder of Chapter 1, we will introduce classical electromag-

netic theory used in the thesis. Chapter 2 describes the background and

theory of metallic waveguides. We formulate the dispersion relations de-

scribing electromagnetic modes in metallic waveguides and discuss the nu-

merical techniques used to find their roots. In Chapters 3 and 4, we dis-

cuss the application of a new analytical method to model bi-axial, metallic,

nanoscale waveguides based on breaking down the bi-axial waveguide into

two uni-axial waveguide sub-components. Predictions based on this method

are compared with predictions using well-accepted FDTD simulations. The

thesis concludes in Chapter 5. Appendix A lists a series of analytical func-

tions that are fitted to the wavevector of electromagnetic modes in various

metallic waveguide structures. The intention is to provide the interested

reader with easy-to-evaluate functions and to circumvent the need to solve

the complex dispersion relations, which can be tedious and time-consuming.
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1.5 Maxwell’s Equations

In 1873, J. C. Maxwell developed the fundamental equations describing

the behavior of electromagnetic waves [28]. The equations relate four vector

fields - the displacement field, D, the electric field, E, the magnetic flux

density, B, and the magnetic field, H - to the presence of charge density, ρ,

and current density, J. The equations are given by

∇ · D(r, t) = ρ, (1.2)

∇ · B(r, t) = 0, (1.3)

∇ × E(r, t) = −∂B(r, t)

∂t
, (1.4)

and

∇ × H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (1.5)

where (r,t) describes the position and time dependence of the fields. The

displacement field, D is related to electric field, E and magnetic flux density

field, B is related to magnetic field, H via

D(r, t) = εoE(r, t) + P(r, t) (1.6)

and

B(r, t) = µoH(r, t) + M(r, t), (1.7)

where εo is the free-space permittivity, µo is the free-space permeability, P

is the polarization field and M is the magnetization field.
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1.5. Maxwell’s Equations

1.5.1 Constitutive Material Relations

The fields P, M, and J describe the response of a medium to electro-

magnetic fields. By assuming a medium that is linear, isotropic, lossless,

and instantaneously responsive, we get the relations

P(r, t) = εoχeE(r, t), (1.8)

M(r, t) = µoχmH(r, t), (1.9)

and

J(r, t) = σE(r, t), (1.10)

where χe is the electric susceptibility, χm is the magnetic susceptibility, and

σ is the electric conductivity.

Inserting Eq. 1.8 into Eq. 1.6, we get

D(r, t) = εoεrE(r, t) (1.11)

where εr is the relative electric permittivity given by

εr = 1 + χe. (1.12)

Similarly, inserting Eq. 1.9 into Eq. 1.7, we get

B(r, t) = µoµrH(r, t), (1.13)

9



1.5. Maxwell’s Equations

where µr is relative magnetic permeability given by

µr = 1 + χm. (1.14)

For most materials, χm ' 0 and µr = 1.

1.5.2 Electromagnetic Wave Equation

We generally deal with systems having no external charge (ρ = 0). Im-

posing the additional constraint that J = 0, Maxwell’s equations for such

systems can be written as

∇ · D(r, t) = 0, (1.15)

∇ · B(r, t) = 0, (1.16)

∇ × E(r, t) = −∂B(r, t)

∂t
, (1.17)

and

∇ × H(r, t) =
∂D(r, t)

∂t
. (1.18)

Inserting the constitutive relation of Eq. 1.11 in Eq. 1.15 we get:

∇ · (εoεrE(r, t)) = 0,

εoεr(∇ ·E(r, t)) + E(r, t) · ∇(εoεr) = 0,

which yields

∇ · E(r, t) = −E(r, t) · ∇(εoεr)

εoεr
. (1.19)

10



1.5. Maxwell’s Equations

For an isotropic and homogeneous medium, ∇(εoεr) = 0, which leads to the

compact relation

∇ · E(r, t) = 0. (1.20)

Using Eq. 1.13 with µr = 1 (for nonmagnetic materials), Eq. 1.17 be-

comes

∇ × E(r, t) = −µo
∂H(r, t)

∂t
. (1.21)

Taking the curl of both sides yields

∇ × ∇ × E(r, t) = ∇ ×
(
−µo

∂H(r, t)

∂t

)
= −µo

∂

∂t
(∇ × H(r, t)). (1.22)

Using Eq. 1.18, Eq. 1.22 simplifies to

∇ × ∇ × E(r, t) = −µo
∂2D(r, t)

∂t2

= −µoεoεr
∂2E(r, t)

∂t2
. (1.23)

The left side of Eq. 1.23 simplifies to

∇ ×∇ × E(r, t) = ∇(∇ · E(r, t))−∇2E(r, t) (1.24)

Using Eq. 1.20 in Eq. 1.24 yields

∇ ×∇ × E(r, t) = −∇2E(r, t). (1.25)

11



1.5. Maxwell’s Equations

Combining Eq. 1.23 and Eq. 1.25, we get

∇2E(r, t)− µoεoεr
∂2E(r, t)

∂t2
= 0. (1.26)

Given the speed of light defined by

c =
1

√
µoεo

, (1.27)

we arrive at the general wave equation

∇2E(r, t)− εr
c2
∂2E(r, t)

∂t2
= 0, (1.28)

which is also known as the Helmholtz wave equation. Using a similar treat-

ment for the magnetic field yields

∇2H(r, t)− εr
c2
∂2H(r, t)

∂t2
= 0. (1.29)

The above equations describe the electric and magnetic field component of

an electromagnetic wave as it travels in a medium. Both equations will be

used for analyzing the electromagnetic wave behaviour in a medium.
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1.6. Drude Model

Figure 1.1: Cartoon depiction of a piece of metal. The magnified part of
the metal shows its microscopic constituents consisting of free electrons (red
dots) moving around fixed positive ions (blue circles).

1.6 Drude Model

In 1900, Paul Drude explained the transport of electrons in metals by

applying the principles of kinetic theory [29, 30]. In this treatment, metals

consist of a density of free electrons, ρn, immersed in a collection of positive

ions, as shown in Fig. 1.1. The electrons are unbound and free to move,

surrounded by background ions without any restoring force.

When an external oscillating electromagnetic field is applied to the metal,

electrons start oscillating. These oscillations are damped by electron colli-

sions with other electrons and ions. The damping rate is approximately 1/τ ,

where τ is the average time between collisions [31]. To derive the equation

of motion for an electron inside the metal, let’s consider an electromagnetic

wave varying in the x-axis and uniform along all other directions such that

13



1.6. Drude Model

E(r, t) = E(x, t)x̂. Treating a free electron like a classical particle, we have

the equation of motion [32]

m
d2 ˜̀

dt2
+
m

τ

d˜̀

dt
= −eE(x, t), (1.30)

where ˜̀, m, and e are the displacement, effective mass, and charge of an

electron, respectively.

Generally, the electric field is time-harmonic with the form

Ẽ(ω) = E0(x)e−iωt, (1.31)

where ω is the frequency. Time-harmonic excitation yields time-harmonic

electron motion given by

˜̀(ω) = ˜̀
oe
−iωt, (1.32)

where ˜̀
o is a complex quantity whose magnitude is equal to the peak dis-

placement and whose phase describes temporal shifts between the electron

displacement and the driving field [33, 34].

Inserting Eq. 1.32 into Eq. 1.31 yields

m(−ω2 ˜̀
oe
−iωt) +

m

τ
(−iω ˜̀

oe
−iωt) = −eẼ(ω)

−mω ˜̀
oe
−iωt

(
ω +

i

τ

)
= −eẼ(ω)

which results in the complex amplitude

˜̀(ω) =
eẼ(ω)

mω(ω + i/τ)
. (1.33)
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1.6. Drude Model

The displacement of individual electrons contribute towards a dipole mo-

ment density. This dipole moment density yields a polarization field given

by

P̃ (ω) = −ρne˜̀(ω)

= − ρne
2

mω(ω + i/τ)
Ẽ(ω). (1.34)

In frequency-domain notation, the polarization field is related to the electric

field by

P̃ (ω) = εo(ε̃m(ω)− 1)Ẽ(ω), (1.35)

where ε̃m is the frequency-dependent relative electric permittivity of the

metal. Comparing Eqs. 1.34 and 1.35, we obtain the dielectric function

ε̃m(ω) = 1− ρne
2

mωεo(ω + i/τ)
. (1.36)

Given the plasma frequency for a free electron gas ω2
p = ρne

2/mεo, ε̃m is

then given by

ε̃m(ω) = 1−
ω2
p

ω(ω + i/τ)
. (1.37)

Re-writing Eq. 1.37 into a distinctive real part, ε′(ω), and imaginary part,

ε′′(ω), yields

ε̃m(ω) = 1−
ω2
p

(ω2 + 1/τ2)
+ i

ω2
pτ

ω(1 + ω2τ2)
. (1.38)
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1.7. Limitations of the Drude Model

1.7 Limitations of the Drude Model

In this section, we examine the accuracy of the Drude model for de-

scribing the dielectric functions of noble metals over visible frequencies. We

select gold and silver because they both have low losses at visible frequencies

(4.5×1014−8×1014 Hz) and are widely used in optical waveguides. We use

experimentally-measured values of the plasma frequency and collision rates

for gold and silver measured by Zeman and Sachts in [35] and summarized in

Table 1.1. The experimentally-measured parameters are then inserted into

the analytical function given in Eq.1.38. The resulting real and imaginary

components of the dielectric function are compared to complex permittivity

values experimentally measured by Johnson and Christy [36].

Table 1.1: Constant parameters for the Drude model for Ag

and Au

Metal Plasma frequency ωp (Hz) Collision rate τ−1 (s−1)

Silver 2.186× 1015 5.139× 1012

Gold 2.15× 1015 17.14× 1012

As shown in Fig. 1.2, values of Re[εm] for gold obtained from the Drude

model closely match the experimental data over a frequency range spanning

from the infrared to the ultraviolet. On the other hand, values of Im[εm]

match the experimental data only at lower frequencies below 4.5× 1014 Hz

(Fig. 1.3). Deviations of the Drude model from experimentally-measured
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1.7. Limitations of the Drude Model

Figure 1.2: Comparison between Re[εm] values for gold obtained indirectly
from the Drude model using experimentally-measured ωp and τ (line) with
those obtained directly from permittivity measurements (squares).
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1.7. Limitations of the Drude Model

Figure 1.3: Comparison between Im[εm] values for gold obtained from indi-
rectly from the Drude model using experimentally-measured ωp and τ (line)
with those obtained directly from permittivity measurements (squares).
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1.7. Limitations of the Drude Model

Figure 1.4: Comparison between Re[εm] values for silver obtained indirectly
from the Drude model using experimentally-measured ωp and τ (line) with
those obtained directly from permittivity measurements (squares).

values at higher frequencies are attributed to inter-band transitions which

are not accounted for in the Drude model.

Application of the Drude model to silver yields similar trends to those

observed for gold. While there is a good agreement with experimentally-

measured values of Re[εm] throughout the frequency range (Fig. 1.4), agree-

ment with experimentally-measured values of Im[εm] is achieved only at

lower frequencies below 4.0 × 1014 Hz (Fig. 1.5). Agreement between the

Drude model predictions and experimental data for both gold and silver
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1.7. Limitations of the Drude Model

Figure 1.5: Comparison between Im[εm] values for silver obtained indirectly
from the Drude model using experimentally-measured ωp and τ (line) with
those obtained directly from permittivity measurements (squares).

suggests that, at lower frequencies, the free-electron picture is an accurate

description of the microscopic motion of electrons. At higher frequencies,

modifications to the Drude model are required to accurately describe inter-

band transitions. These modifications can be implemented, for instance, by

restricting the free-electron approximation and modeling electrons as bound,

resonant entities [37].

The imaginary part of a medium’s dielectric function describes the at-

tenuation of an electromagnetic wave propagating in the medium. Silver

is an ideal metal for optical waveguiding because its Im[εm] at visible fre-
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1.8. Dielectric Function for Silver

quencies is among the lowest of all metals [38, 39] and, as a result, exhibits

the lowest visible-frequency losses. Throughout the remainder of the thesis,

we will restrict our treatment of metallic waveguide systems by considering

only those consisting of silver.

1.8 Dielectric Function for Silver

We describe the complex dielectric function of silver by high-order poly-

nomial fits to the Johnson and Christy experimental data. The order of the

polynomial is chosen such that the difference between the fit and experimen-

tal data is minimum. The polynomial fit for the real part of the dielectric

function is obtained as

Re[ε̃m(f)] = −958.72693 + (9.24279× 10−12) f

− (3.99243× 10−26) f2 + (9.69973× 10−41) f3

− (1.43038× 10−55) f4 + (1.30694× 10−70) f5

− (7.22877× 10−86) f6 + (2.21643× 10−101) f7

− (2.88985× 10−117) f8 (1.39)

where f is the frequency in units of Hz. As shown in Fig. 1.6, the polyno-

mial function given in Eq. 1.39 accurately models experimentally-measured

values of Re[εm], with only slight deviations at higher frequencies above the

visible spectrum. To obtain a polynomial fit for the imaginary part of the

dielectric function of silver, we divide the visible frequency spectrum into
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1.8. Dielectric Function for Silver

Figure 1.6: Polynomial fit function to model the real part of the dielectric
function of silver.
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1.8. Dielectric Function for Silver

Figure 1.7: Polynomial fit function to model the imaginary part of the
dielectric function of silver.

three intervals.

For 1.54683× 1014 Hz< f < 9.35347× 1014 Hz, the fit function is

Im[ε̃m(f)] = 48.47405− (5.22332× 10−13) f

+ (2.29072× 10−27) f2− (5.18924× 10−42) f3

+ (6.41697× 10−57) f4 − (4.12193× 10−72) f5

+ (1.07857× 10−87) f6, (1.40)
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1.8. Dielectric Function for Silver

for 9.35347× 1014 Hz≤ f < 9.35347× 1014 Hz, the fit function is

Im[ε̃m(f)] = 7.36947− (7.29005× 10−15) f +

(5.92× 10−30) f2 − (2.024× 10−45) f3, (1.41)

and for f ≥ 9.35347× 1014 Hz, the fit function is

Im[ε̃m(f)] = −145.44771 + (2.71872× 10−13) f

− (1.23802× 10−28) f2. (1.42)

As shown in Fig. 1.7, the piece-wise polynomial fit function accurately mod-

els experimentally-measured values of Im[εm].
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1.9 Summary

In this chapter, we have introduced classical electromagnetic theory in

the form of Maxwell’s equations and derived the general electromagnetic

wave equations. We have discussed the application of the Drude model for

describing the complex dielectric function of noble metals and shown that

at visible frequencies, the Drude model yields inaccurate results. To de-

scribe the dielectric function of silver (which will be used throughout the

remainder of this thesis), we have introduced analytical high-order polyno-

mial functions fitted to experimentally-measured data. In the next chapter,

we will apply Maxwell’s equations to model the electromagnetic properties

of uni-axial waveguides constructed from metallic constituents.
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Chapter 2

Metallic Waveguides

2.1 Uni-Axial Waveguide Composed of a Single

Metal-Dielectric Interface

A uni-axial waveguide is a structure that guides electromagnetic waves

along one direction. One of the simplest ways to implement a uni-axial

waveguide using metallic media is in the form of a single metal-dielectric

interface. In this section, we will analyze the electromagnetic waves that

can be sustained at a metal-dielectric interface by first assuming a general

form of the electromagnetic fields. Application of boundary conditions to

the waveguide will then yield a characteristic eigenvalue equation from which

possible wavevector values, β̃, of the electromagnetic waves are mapped as

a function of ω. The β̃-ω relationship is known as the dispersion relation of

the waveguide.

To analyze a single metal-dielectric uni-axial waveguide, we consider the

geometry of a semi-infinite metal occupying the region z < 0 and a semi-

infinite dielectric occupying the region z > 0 as shown in Fig. 2.1. The metal

is characterized by a local complex relative permittivity ε̃2, and the dielectric

is characterized by a local generally-complex relative permittivity ε̃1. We
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Metal

Dielectric

z

x

Figure 2.1: Single interface formed between a metal and dielectric.

assume a general form of the electromagnetic fields consisting of a transverse-

magnetic (TM) polarized electromagnetic wave propagating along the +x-

direction, which is given by

H̃y(z) =

 H̃1e
iβ̃xek̃1z z < 0

H̃2e
iβ̃xe−k̃2z z > 0,

(2.1)

Ẽx(z) =


−ik̃1
ωεoε̃1

H̃1e
iβ̃xek̃1z z < 0

ik̃2
ωεoε̃2

H̃2e
iβ̃xe−k̃2z z > 0,

(2.2)

and

Ẽz(z) =


−β̃
ωεoε̃1

H̃1e
iβ̃xek̃1z z < 0

−β̃
ωεoε̃2

H̃2e
iβ̃xe−k̃2z z > 0.

(2.3)

where k̃i(i = 1, 2) correspond to the exponential decay constants along

the z-axis and β̃ is the wavevector. Wavevector of an electromagnetic wave
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traveling with velocity, v and radial frequency, ω is defined as

β̃ =
ω

v
. (2.4)

The decay length of the electromagnetic fields from the interface is given by

ld =
1

|k̃i|
. (2.5)

Continuity of the tangential component of the electric field at z = 0

yields

− k̃1H̃1

ε̃1
=
k̃2H̃2

ε̃2
. (2.6)

Given continuity of the magnetic field at z = 0, we arrive at

k̃1

k̃2
= − ε̃1

ε̃2
. (2.7)

Application of the general electromagnetic fields to the general wave equa-

tion yields

k̃21 = β̃2 − k20 ε̃1 (2.8)

and

k̃22 = β̃2 − k20 ε̃2, (2.9)

where k0 is the free space wavevector. Applying Eqs. 2.8 and 2.9 to Eq. 2.7,

we obtain the dispersion relation for a single metal-dielectric interface

β̃ = k0

√
ε̃1ε̃2
ε̃1 + ε̃2

. (2.10)
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It is interesting to note that transverse electric (TE) polarized electro-

magnetic waves cannot be sustained at a single metal-dielectric interface.

This can be shown using by first assuming a general form of TE-polarized

electromagnetic fields given by

Ẽy(z) =

 Ẽ1e
iβ̃xek̃1z z < 0

Ẽ2e
iβ̃xe−k̃2z z > 0,

(2.11)

H̃x(z) =


ik̃1
ωεo

Ẽ1e
iβ̃xek̃1z z < 0

−ik̃2
ωεo

Ẽ2e
iβ̃xe−k̃2z z > 0,

(2.12)

and

H̃z(z) =


β̃
ωµo

Ẽ1e
iβ̃xek̃1z z < 0

β̃
ωµo

Ẽ2e
iβ̃xe−k̃2z z > 0.

(2.13)

Continuity of Ẽy and H̃x gives

Ẽ1 = Ẽ2 (2.14)

and

Ẽ1(k̃1 + k̃2) = 0. (2.15)

For k̃1, k̃2 > 0 (required for finite-energy solutions), Ẽ1 = Ẽ2 = 0 is the only

possible solution.
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2.2 Uni-Axial Waveguide Composed of

Metal-Dielectric-Metal Layers

We next consider a more complex uni-axial metallic waveguide consists

of two metal-dielectric interfaces, formed by a dielectric layer sandwiched

between two metal layers (forming a metal-dielectric-metal (MDM) waveg-

uide). We will analyze the electromagnetic waves that can be sustained by

MDM waveguides using analytical solutions to Maxwell’s equations. Similar

to the analysis used in the previous section, we assume a general form of the

electromagnetic fields and apply boundary conditions to the fields to derive

an eigenvalue equation.

Consider the geometry shown in Fig. 2.2 consisting of a lower metallic

region occupying z < −d, a dielectric region occupying −d < z < d, and an

upper metallic region occupying z > d. The lower metallic cladding layer

is characterized by a local complex relative permittivity ε̃1, the dielectric is

characterized by a local real relative permittivity ε3, and the upper metallic

cladding layer is characterized by a local complex relative permittivity ε̃2.

We assume a general exponentially decaying form of the electromagnetic

fields consisting of a transverse-magnetic (TM) polarized electromagnetic

wave propagating along the +x-direction, which is given by

H̃y(z) =


H̃1e

iβ̃xek̃1z z < −d

H̃31e
iβ̃xek̃3z + H̃32e

iβ̃xe−k̃3z −d < z < d

H̃2e
iβ̃xe−k̃2z z > d.

(2.16)
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x

z

d

- d

Metal

Dielectric

Metal

Figure 2.2: Geometry of a three-layered structure consisting of metallic
cladding layers sandwiching a dielectric core.

Ẽx(z) =



−i
ωεoε̃1

k̃1H̃1e
iβ̃xek̃1z z < −d

−ieiβ̃xk̃3
ωεoε3

H̃31e
k̃3z +

−ieiβ̃xk̃3
ωεoε3

H̃32e
−k̃3z −d < z < d

i

ωεoε̃2
k̃2H̃2e

iβ̃xe−k̃2z z > d.

(2.17)

and

Ẽz(z) =



−β̃
ωεoε̃1

H̃1e
iβ̃xek̃1z z < −d

−β̃
ωεoε3

H̃31e
iβ̃xek̃3z +

−β̃
ωεoε3

H̃32e
iβ̃xek̃3z −d < z < d

−β̃
ωεoε̃2

H̃2e
iβ̃xe−k̃2z z > d.

(2.18)

Continuity of H̃y and Ẽx at the boundaries z = d and z = −d yields the
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relations

H̃1e
−k̃1d = H̃31e

−k̃3d + H̃32e
k̃3d (2.19)

−k̃1
ε̃1

H̃1e
−k̃1d =

−k̃3
ε3

H̃31e
−k̃3d +

k̃3
ε3
H̃32e

k̃3d, (2.20)

and

H̃2e
−k̃2d = H̃31e

k̃3d + H̃32e
−k̃3d (2.21)

k̃2
ε̃2
H̃2e

−k̃2d =
−k̃3
ε3

H̃31e
k̃3d +

k̃3
ε3
H̃32e

−k̃3d. (2.22)

Application of the generalized electromagnetic fields into the wave equation

Eq. 1.29 and free space wavevector relation, k0 = ω
√
µ0ε0 yields the relations

k̃21 = β̃2 − k20 ε̃1, (2.23)

k̃22 = β̃2 − k20 ε̃2, (2.24)

and

k̃23 = β̃3 − k20ε3. (2.25)

Using Eqs.2.19, 2.21, 2.23, 2.24, and 2.25, we obtain the dispersion relation

e4k̃3d =
k̃3/ε3 − k̃1/ε̃1
k̃3/ε3 + k̃1/ε̃1

k̃3/ε3 − k̃2/ε̃2
k̃3/ε3 + k̃2/ε̃2

. (2.26)

Eq. 2.26 is a general relation and can be used for any three-layered waveguide

in which ε̃1 6= ε̃2 6= ε3. For a symmetric structure with cladding layers
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constructed using same material, ε̃1 = ε̃2 and k̃1 = k̃2, Eq.2.26 simplifies to

e4k̃3d =

(
k̃3/ε3 − k̃1/ε̃1
k̃3/ε3 + k̃1/ε̃1

)2

. (2.27)

Taking square root of both sides of Eq. 2.27 yields two families of solutions,

one of which is symmetric and the other asymmetric. It can be shown that

the negative solution of Eq. 2.27 gives the symmetric dispersion relation

e2k̃3d = − k̃3/ε3 − k̃1/ε̃1
k̃3/ε3 + k̃1/ε̃1

, (2.28)

which can be re-expressed in the simple relation

coth(k̃3d) = − k̃1ε3

k̃3ε̃1
. (2.29)

The asymmetric dispersion relation takes the form

e2k̃3d =
k̃3/ε3 − k̃1/ε̃1
k̃3/ε3 + k̃1/ε̃1

, (2.30)

or more simply

coth(k̃3d) = − k̃3ε̃1

k̃1ε3
. (2.31)

2.3 Uni-Axial Waveguide Composed of an

Arbitrary Number of Metal-Dielectric Layers

In this section, we derive a general dispersion relation for a uni-axial

waveguide composed of an arbitrary number of metal-dielectric layers using
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the transfer matrix method [40–42]. The description presented here follows

similar to that of Verhaugen [42]. Consider the geometry shown in Fig 2.3.

The geometry consists of n alternating layers of metal and dielectric. The

general form of the magnetic fields in the bottom layer (z < (z2 = 0)) and

in the uppermost layer (z > zn) is assumed as

H̃1y = H̃1e
iβ̃xek̃1z, (2.32)

and

H̃ny = H̃ne
iβ̃xek̃n(zn−z), (2.33)

respectively, where H̃1 is the magnetic field at z = z2 and H̃n is the magnetic

field at z = zn. Within an arbitrary layer j, the magnetic field is given by

H̃jy = H̃j(z)e
iβ̃x. (2.34)

Applying the general magnetic fields into the electromagnetic wave equation

Eq. 1.29, we obtain following relation

∂2H̃j(z)

∂z2
+ (k̃2o ε̃j − β̃2)H̃j(z) = 0. (2.35)

The solution for the above equation is

H̃j(z) = C̃j sin(k̃j(zj − z)) + D̃j cos(k̃j(zj − z)) (2.36)

where

k̃j =
√
β̃2 − k2o ε̃j (2.37)
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Figure 2.3: Uni-axial waveguide composed of an arbitrary number of metal-
dielectric layers stacked along the z direction.

Differentiating Eq. 2.36 with respect to z yields

d

dz
H̃j(z) = −C̃j k̃j cos(k̃j(zj − z)) + D̃j k̃j sin(k̃j(zj − z)). (2.38)

To determine the values of C̃j and D̃j , we evaluate the magnetic field and

its differential at z = zj to yield

D̃j = H̃j(zj) (2.39)

C̃j =
1

k̃j

d

dz
H̃j(zj). (2.40)
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Inserting C̃j and D̃j into Eq. 2.36 and Eq. 2.38 yields

H̃j(z) =
1

k̃j

d

dz
H̃j(zj) sin(k̃j(zj − z))

+H̃j(zj) cos(k̃j(zj − z)) (2.41)

d

dz
H̃j(z) = − d

dz
H̃j(zj) cos(k̃j(zj − z))

+H̃j(zj)k̃j sin(k̃j(zj − z)). (2.42)

In matrix form, we can write Eq. 2.41

 H̃j(z)

d
dz H̃j(z)

 =

 cos(k̃j(zj − z)) 1
k̃j

sin(k̃j(zj − z))

k̃j sin(k̃j(zj − z)) − cos(k̃j(zj − z))


 H̃j(zj)

d
dz H̃j(zj)

 .
(2.43)

The corresponding electric fields are given by

Ẽjx = − i

ωεoε̃j
eiβ̃x

d

dz
H̃j(z) (2.44)

Ẽjz = − β̃

ωεoε̃j
eiβ̃xH̃j(z). (2.45)

Applying boundary conditions for the tangential components of the elec-

tric and magnetic field at the arbitrary interface z = zj yields

H̃j(zj) = H̃j−1(zj) (2.46)

and

Ẽjx = Ẽ(j−1)x
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2.3. Uni-Axial Waveguide Composed of an Arbitrary Number of Metal-Dielectric Layers

1

ε̃j

d

dz
H̃j(zj) =

1

ε̃j−1

d

dz
H̃j(zj−1)

d

dz
H̃j(zj) =

ε̃j
ε̃j−1

d

dz
H̃j−1(zj), (2.47)

which can be re-expressed in matrix form as

 H̃j(zj)

d
dz H̃j(zj)

 =

 1 0

0
ε̃j
ε̃j−1


 H̃j−1(zj)

d
dz H̃j−1(zj)

 . (2.48)

At the interface z = zj+1, from Eq. 2.43

 H̃j(zj+1)

d
dz H̃j(zj+1)

 =

 cos(k̃j(dj))
1
k̃j

sin(k̃j(dj))

k̃j sin(k̃j(dj)) − cos(k̃j(dj))


 H̃j(zj)

d
dz H̃j(zj)


where dj = zj+1 − zj is the thickness of the jth layer. Putting values from

Eq. 2.48 into the above equation

 H̃j(zj+1)

d
dz H̃j(zj+1)

 = T̃j

 H̃j−1(zj)

d
dz H̃j−1(zj)


where

T̃j =

 cos(k̃j(dj))
1
k̃j

sin(k̃j(dj))

k̃j sin(k̃j(dj)) − cos(k̃j(dj))


 1 0

0
ε̃j
ε̃j−1

 . (2.49)

The magnetic field in layer 1 is given by Eq. 2.32. Using Eq. 2.48, we can
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2.3. Uni-Axial Waveguide Composed of an Arbitrary Number of Metal-Dielectric Layers

relate the magnetic field at interface z3 with the field in layer 1 by

 H̃2(z3)

d
dz H̃2(z3)

 = T̃2

 H̃1

k1H̃1

 . (2.50)

Similarly, the field at interface z3 can be related to the field at interface z2

by  H̃3(z4)

d
dz H̃3(z4)

 = T̃3

 H̃2(z3)

d
dz H̃2(z3)

 .
From above two relations, we can relate the field in layer 3 at interface

z4 with the field in layer 1 by

 H̃3(z4)

d
dz H̃3(z4)

 = T̃3T̃2

 H̃1(z2)

k̃1H1(z2)

 . (2.51)

In general, we can relate the field in layer j − 1 at interface zj with the

field in layer 1 by

 H̃j−1(zj)

d
dz H̃j−1(zj)

 = ˜Tj−1 ˜Tj−2...T̃2

 H̃1(z2)

k̃1H̃1(z2)

 . (2.52)

Further, we can relate the field in layer j at interface zj with the field in

layer 1 using relation 2.48 by

 H̃j(zj)

d
dz H̃j(zj)

 = Ṽj ˜Tj−1 ˜Tj−2...T̃2

 H̃1(z2)

k̃1H̃1(z2)

 (2.53)
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2.4. Davidenko Method

where

Ṽj =

 1 0

0
ε̃j
ε̃j−1

 .
We now define the quantity

W̃j = Ṽj ˜Tj−1 ˜Tj−2...T̃2

=

 W̃11 W̃12

W̃21 W̃22

 .
We can now relate the fields at interface z2 = 0 with fields at interface z = zn

by  H̃n(zn)

−k̃nH̃n(zn)

 = W̃j

 H̃1(0)

k̃1H̃1(0)

 . (2.54)

The above matrix can be resolved into the simplified equation

W̃11 + W̃12k̃1 +
W̃21

k̃n
+ W̃22

k̃1
kn

= 0. (2.55)

Equation 2.55 is a general dispersion relation for a multi-layered uni-axial

waveguide structure. The solutions to Eq. 2.55 are complex wavevector

values β̃.

2.4 Davidenko Method

The analytically-derived dispersion relations obtained in the previous

sections for various types of uni-axial metallic waveguides contain the neces-

sary information to understand the flow of electromagnetic waves within the
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2.4. Davidenko Method

waveguides. The complexity of the dispersion relation depends in large part

on the complexity of the waveguide geometry. The dispersion relation for a

single metal-dielectric interface is an explicit expression, but the dispersion

relation for multi-layered structures is an implicit, complex, transcendental

equation. In this section, we introduce a robust iterative method to solve

complex transcendental equations [43]. The method is commonly ascribed

to Davidenko [44–46].

The Davidenko method is widely used for solving transcendental equa-

tions that cannot otherwise be solved using traditional methods such as

Newton’s method and quasi-Newton methods [47]. The Davidenko method

can be understood by first considering the equation

f(x) = 0, (2.56)

which has a solution determined by the Newton’s method as

xn+1 = xn −
f(xn)

df(xn)/dx
. (2.57)

We can modify Eq. 2.57 to yield

df(xn)

dx
=

0− f(xn)

xn+1 − xn
. (2.58)

Eq. 2.58 describes a straight line in which the next iteration point xn+1 lies

at the intersection of this straight line with tangent to the function f(xn).

This restricts the initial guess to lie in an area that is sufficiently near the

actual solution. This condition can be relaxed by inserting a factor, t, such
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2.4. Davidenko Method

that

df(xn)

dx
= −t 0− f(xn)

xn+1 − xn
(2.59)

where 0 < t < 1. Equation 2.59 can be rearranged, using ∆xn = xn+1− xn,

to give

∆xn
t

= − f(xn)

df(xn)/dx
. (2.60)

In the limit t→ 0, ∆xn transforms into a differential. We can assume that

f(x) remains continuous in the small area near xn, yielding

dx

dt
= − f(x)

df/dx

= − 1
df

dx

(
1

f(x)

)
= − 1

d(ln(f(x)))/dx
. (2.61)

The solution of Eq. 2.61 is given by

f(x) = Ce−t(x), (2.62)

where C is the integration constant. Equation 2.62 suggests that f(x) =

0 is a limiting case when t → ∞. The differential equation can also be

transformed in terms of a Jacobian operator J as

dx

dt
= −J−1f(x). (2.63)

This relation is the basic form of Davidenko method. We can use the Davi-

denko method to solve the dispersion relation for various uni-axial metallic
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2.4. Davidenko Method

waveguides. We can write the general dispersion relation as

F (ω; β̃) = 0, (2.64)

where the wavevector β̃ is a complex quantity and can be written in its real

and imaginary components as

β = a+ ib. (2.65)

In other words, we can write the dispersion relation 2.64 as

F (ω; a, b) = 0. (2.66)

We can resolve Eq. 2.66 into two sets of equations given by

R(ω; a, b) = Re[F (ω; a, b)] = 0 (2.67)

I(ω; a, b) = Im[F (ω; a, b)] = 0. (2.68)

Because the dispersion relation is a complex analytical function, we can

express the Jacobian operator and its inverse in closed form. The dispersion

relation then satisfies the Cauchy-Riemann relations

∂R

∂a
=

∂I

∂b

Ra = Ib (2.69)

42



2.4. Davidenko Method

and

∂R

∂b
= −∂I

∂a

Rb = −Ia. (2.70)

From the property of analytical functions, we have

Fβ =
∂F

∂β
= Ra + jIa

= Ra − jRb, (2.71)

which yields

Ra =
∂R

∂a
= Re[Fβ] (2.72)

Rb =
∂R

∂b
= −Im[Fβ]. (2.73)

The Jacobian matrix in this case will be

J =

 Ra Rb

Ia Ib

 . (2.74)

Using Eqs. 2.69 and 2.70, the Jacobian matrix becomes

J =

 Ra Rb

−Rb Ra

 . (2.75)

To obtain the inverse Jacobian matrix, we first get the determinant of
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2.4. Davidenko Method

Eq. 2.75 by

detJ = R2
a + R2

b = |Fβ|2, (2.76)

which yields the inverse Jacobian matrix

J−1 =
1

detJ

 Ra −Rb

Rb Ra



=
1

|Fβ|2

 Re[Fβ] Im[Fβ]

−Im[Fβ] Re[Fβ].

 . (2.77)

Now we can write the Davidenko equation for the general dispersion relation

as

d

dt

 a

b

 = −J−1

 R

I

 .
Putting the value of the inverse Jacobian matrix yields

d

dt

 a

b

 = − 1

|Fβ̃|2

 Re[Fβ̃] Im[Fβ̃]

−Im[Fβ̃] Re[Fβ̃].


 R

I

 . (2.78)

From Eq. 2.78, we can obtain separate real, ordinary differential equations

for the real and imaginary parts of the wavevector

da

dt
= − 1

|Fβ̃|2
(Re[F ]Re[Fβ̃] + Im[F ]Im[Fβ̃]), (2.79)

and

db

dt
=

1

|Fβ̃|2
(Re[F ]Im[Fβ̃] + Im[F ]Re[Fβ̃]), (2.80)

which are considerably easier to solve than the original complex transcen-
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dental equation.

2.5 Summary

In this chapter, we have explored interaction of electromagnetic waves

with uni-axial metallic waveguides and derived characteristic equations that

yield the dispersion relations for different waveguide geometries. The Davi-

denko method has been introduced and will be used throughout the remain-

der of the thesis to solve complex transcendental equations corresponding to

the dispersion relations for various uni-axial metallic waveguides. We will

next develop a method to design multi-axial waveguides by conceptually

de-composing the structures into simpler uni-axial waveguide components.

The dispersion relations for uni-axial waveguides will then be used to ap-

proximate the electromagnetic wave behaviour in different sections of the

multi-axial waveguide.
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Chapter 3

Multi-Axial Nanoscale Light

Bending

Multi-axial waveguides are structures that guide light along more than

one direction. Modeling multi-axial waveguides is challenging because the

electromagnetic waves sustained within these structure are no longer char-

acterized by a single wavevector. Designing multi-axial waveguides gener-

ally requires numerical techniques, such as the FDTD method, to model

the multi-axial flow of electromagnetic waves within the structure. Numer-

ical simulations, however, are both computationally expensive and time-

consuming. Because only one set of parameters can be modeled in a given

simulation, full characterization and optimization of the waveguide using a

numerical simulation tool only, is often not feasible.

In this and coming sections, an analytical technique for designing a multi-

axial waveguide designing technique is investigated. The technique is based

on conceptually dividing a multi-axial waveguide into uni-axial waveguide

Adapted and reprinted with permission from M. W. Maqsood, R. Mehfuz, and K. J. Chau,
“Design and optimization of a high-efficiency nanoscale ±90◦ light-bending structure by
mode selection and tailoring,” Applied Physics Letters 97, 151111 (2010), American In-
stitute of Physics.
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Chapter 3. Multi-Axial Nanoscale Light Bending

sub-components. Solving the dispersion relations of the uni-axial waveg-

uide components then enables approximation of the electromagnetic wave

behaviour in different sections of the multi-axial waveguide. By tailoring the

geometry of the uni-axial waveguide sub-components so that each of them

sustain a single propagative mode with matched electromagnetic wavevec-

tors, efficient coupling between different sections of the multi-axial waveg-

uide is predicted. The predictions made using this simple analytical ap-

proach are confirmed using rigorous numerical simulations.

In recent years, there has been a growing interest in the development of

light steering structures for application in dense integrated optical systems.

Achieving efficient light bending over sharp corners is generally challeng-

ing due to bending losses - a general term that describes the propensity

of light to scatter and escape into free-space when curvature of a waveg-

uide bend is very small. Recently, several different approaches have been

put forward which use dielectric waveguide resonators [48, 49] and dielec-

tric photonic crystals [50] placed at the intersection of two waveguides, to

achieve bending over 90◦. An alternative method is to use waveguides com-

posed of metals. One such implementation is based on joining two nanoscale

metal-dielectric-metal (MDM) waveguides at 90◦ [51–53] to form either an L

or a T-junction. When the thickness of dielectric core in these structures is

reduced such that it is smaller than the wavelength of the incident light, the

waveguides sustain only the lowest-order TM mode, TM0 mode (commonly

referred as the surface plasmon polariton (SPP) mode), which travels along

the metal surface and around the waveguide bend. There are a few limita-

tions with this implementation. TM0 modes are highly dissipative and can
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only propagate over a few microns at visible frequencies. Furthermore, there

is significant back scattering of the TM0 mode when it encounters the bend.

Back scattering can be somewhat reduced by converting the bend into a

curve. Even with curved bends, waveguide bends based on SPP modes have

limited efficiency. A maximum bending efficiency of 77% has been reported

for a metallic waveguide bend with a bending curvature radius of 20 nm at

a free-space wavelength of 632 nm [52].

3.1 Material and Geometry Selection

Here, we will explore a bi-axial, metallic, nanometer scale waveguide

designed to bend light with high efficiency and low loss over right angles.

We start by selecting the constituent materials of the waveguide. At visible

frequencies, silver is the most suitable choice for the metal component, as

indicated by the small magnitude of the imaginary part of its permittivity.

For the dielectric component, we want to select a material that has low loss

yet has a high refractive index to reduce the effective wavelength of light in

the structure. With this in mind, we select gallium phosphide (GaP) which

is nearly transparent in the visible region and has a mostly real refractive

index n ' 3.5.

We first consider a basic multi-axial T-junction waveguide geometry as

shown in Fig. 3.1. The waveguide consists of semi-infinite silver metal film

with a slit in the center. The slit is filled with GaP and the complete

structure is covered with GaP. The waveguide structure is illuminated from

the bottom with a TM-polarized light at a frequency ω and wavelength
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Figure 3.1: Waveguide structure consisting of a silver slit filled with GaP,
with the complete structure covered with a semi-infinite GaP layer. GaP is
chosen due to its higher refractive index of n = 3.5.

λ. For analysis, the region before the bend is approximated as an infinite

metal-dielectric-metal (MDM) waveguide and region after the bend is ap-

proximated as single metal-dielectric waveguide. In this case, the MDM

waveguide is composed of a GaP core surrounded by silver cladding lay-

ers and the metal-dielectric waveguide is composed of an interface between

silver and GaP.

3.2 Mode Selection

We analyze the propagation of an electromagnetic wave in the waveguide

regions by approximating each region as an independent uni-axial waveg-

uide. The modes sustained by each of the uni-axial waveguides are mapped
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out to describe the propagation characteristics of the wave inside different

parts of the waveguide. A mode is a confined electromagnetic wave which

is described by a distinctive wavevector value at a given frequency. This

wavevector value corresponds to transverse field amplitudes that are inde-

pendent of the mode propagation. For a given waveguide geometry only a

finite number of modes are allowable and out of these only some are prop-

agative. The distinction between a propagative and non-propagative mode

is made through the figure-of-merit (FOM) given by

FOM =
Re(β̃)

Im(β̃)
. (3.1)

A mode is considered propagative if it can propagate at least one complete

cycle. This condition is achieved when FOM > 2π. Using eigenvalue equa-

tions derived in Chapter 2 and the Davidenko method, we obtain values of

the complex wavevector, β̃, for the uni-axial waveguides. From β̃, we cal-

culate FOM curves for the waveguides and identify the propagative modes

having FOM > 2π.

We first consider the lowest order asymmetric SPP mode (also known as

the TM0 mode) sustained by the uni-axial MDM waveguide section. Using

the asymmetric form of the dispersion relation obtained in Eq. 2.30 and

experimental data of Johnson and Christy [36] for silver, complex wavevector

values are numerically evaluated for the lowest order mode. Figure 3.2

depicts Re(β̃) and FOM curves for the asymmetric SPP mode sustained by

a silver-GaP-silver waveguide for slit width values varying from w = 10 nm

to w = 300 nm. The Re(β̃) curves have an inflection point near 5.5 × 1014
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Figure 3.2: Dispersion curves for the asymmetric SPP modes sustained by
an MDM (Ag-GaP-Ag) waveguide. a) Real part of the wavevector and b)
figure of merit (FOM) as a function of frequency for various dielectric core
thickness values.
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Hz, a frequency known as the surface plasmon resonance frequency. At

the surface plasmon resonance frequency, the magnitude of the real part

of the relative permittivity of the metal and dielectric are equivalent and,

as a result, Re(β̃) becomes large. From the FOM curves, the asymmetric

mode is generally only propagative for frequencies below the surface plasmon

resonance frequency. It is interesting to note that for the smallest slit width

(w = 10 nm) and at UV frequencies above the surface plasmon resonance

frequency, the asymmetric SPP mode is propagative with a negative FOM.

This describes a backwards-propagating mode which has a phase velocity

oriented in the opposite direction to the energy velocity.

We next consider the lowest order symmetric SPP mode (also known as

the TM0 mode) sustained by the MDM waveguide section. Using the sym-

metric form of the dispersion relation obtained in Eq. 2.28 and experimental

data of Johnson and Christy [36] for silver, complex wavevector values are

numerically evaluated for the lowest order mode. The Re(β̃) and FOM

curves for the symmetric mode are presented in Figure 3.3 for slit width

values varying from w = 10nm to w = 300nm. Again, the Re(β̃) curves

are characterized by an inflection point at a surface plasmon resonance fre-

quency which matches that of the asymmetric SPP mode. The FOM values

of the symmetric SPP mode approach zero near the resonance frequency.

Below this frequency, the symmetric SPP mode is propagative with FOM

values exceeding those of the asymmetric SPP mode. Based on the relative

FOM values of the symmetric and asymmetric SPP modes throughout the

explored frequency interval, we conclude that the symmetric SPP mode is

dominant over the asymmetric SPP mode.
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Figure 3.3: Dispersion curves for the symmetric SPP modes sustained by
an MDM (Ag-GaP-Ag) waveguide. a) Real part of the wavevector and b)
figure of merit (FOM) as a function of frequency for various dielectric core
thickness values.
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Figure 3.4: Dispersion curves for the TM1 modes sustained by an MDM
(Ag-GaP-Ag) waveguide. a) Real part of the wavevector and b) figure of
merit (FOM), as a function of frequency for various dielectric core thickness
values.
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We finally consider the first order symmetric TM mode sustained by the

MDM waveguide section, labeled as the TM1 mode. Using the symmetric

form of the dispersion relation obtained in Eq. 2.28 and experimental data

of Johnson and Christy [36] for silver, complex wavevector values are nu-

merically evaluated for the second-lowest order mode. Figure 3.4 depicts the

Re(β̃) and FOM curves for TM1 modes sustained by the MDM waveguide

for varying slit width values from w = 10nm to w = 300nm. Unlike the

SPP modes, the Re(β̃) curve of the TM1 mode is characterized by a cutoff

frequency - a frequency below which the wavevector value vanishes - and

Re(β̃) values that monotonically increase as a function of frequency. Near

the surface plasmon resonance frequency, the FOM values of the TM1 mode

are significantly larger than the FOM values of the SPP modes. For visible

frequencies near and above the surface plasmon resonance frequency, the

relative large FOM values of the TM1 mode as compared to the symmetric

and asymmetric SPP modes means that the TM1 mode is the dominant

mode.

Next we analyze the modes sustained by the silver-GaP interface by ap-

proximating the interface as an uni-axial metal-dielectric waveguide section.

As discussed in Chapter 2, a uni-axial waveguide composed of a metal-

dielectric interface can sustain only a single SPP mode. The Re(β̃) and

FOM curves for the SPP mode are depicted in Figure 3.5. Similar to the

case of SPP mode in the MDM waveguide, the Re(β̃) for the SPP mode at

the metal dielectric interface is characterized by an inflection point at the

surface plasmon resonance frequency 5.5× 1014 Hz. The SPP mode is prop-

agative below the surface plasmon resonance frequency and non-propagative
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above it.

Based on our analysis, a nanometer-scale GaP-filled slit in a silver film

coated with a semi-infinite GaP layer can potentially sustain four types of

modes. In the GaP-filled slit section of the structure, three modes are pos-

sible: asymmetric and symmetric SPP modes and the first order TM1 mode

(it can be shown that the higher order TM modes are all cutoff). Of these

three modes, the TM1 mode is desirable because it has the largest FOM val-

ues, which are achieved at higher frequencies above both the surface plasmon

resonance frequency and the cutoff frequency. In the silver-GaP section of

the structure, only the SPP mode is allowable, which is propagative below

the surface plasmon resonance frequency and non-propagative above it. At

lower frequencies where the SPP mode is propagative, the TM1 mode is

cutoff and at higher frequencies where the TM1 mode in the slit section is

dominant, the SPP mode at the metal interface becomes non-propagative.

Thus the SPP mode of the silver-GaP interface is not compatible with the

TM1 mode of the GaP-filled slit.

3.3 Modified Bi-Axial Waveguide Structure

We next modify the structure so that the GaP layer on the metal film has

a finite thickness, with a dielectric region on top of the GaP layer consisting

of air. The resulting structure is shown in Figure 3.6. To analyze this

modified structure, the region on top of the metal film is approximated

as a uni-axial metal-dielectric-dielectric (MDD) waveguide composed of a

silver cladding, a GaP core, and an air cladding. This MDD waveguide is
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Figure 3.5: Dispersion curves for the SPP mode sustained by a Ag-GaP
interface. a) Real part of the wavevector and b) figure of merit (FOM) as a
function of frequency.
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Figure 3.6: Waveguide structure consisting of a slit in a silver film where
the slit is filled with GaP and the entire silver film is coated with a GaP
layer of finite thickness. The structure is immersed in air.

advantageous to a metal-dielectric waveguide because the MDD waveguide

can sustain higher-order TM modes in addition to the SPP mode. Figure 3.7

shows the Re(β̃) and FOM curves for the SPP mode, and the first-order TM1

mode sustained by an MDD waveguide for core thickness values ranging

from 100nm to 300nm (the higher-order TM modes are cutoff for these core

thickness values). Similar to the trends observed for other SPP modes,

the SPP mode in the MDD waveguide is only propagative below the surface

plasmon resonance frequency, 5.5×1014 Hz. As before, this SPP mode is not

compatible with the TM1 mode in the MDM waveguide. The TM1 mode

of the MDD waveguide, on the other hand, is compatible with the TM1

mode in the MDM waveguide because both TM1 modes are propagative

at frequencies above the surface plasmon resonance frequency. Based on
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Figure 3.7: Modal solution for an MDD (Ag-GaP-Air) waveguide. a) Real
part of the wavevector and b) figure of merit (FOM) as a function of fre-
quency for the SPP mode. c) Real part of the wavevector and d) figure of
merit (FOM) as a function of frequency for the TM1 mode.
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this analysis, we will design the light-bending structure to achieve coupling

between the TM1 modes in the slit region and the TM1 mode in the GaP

layer region.

3.4 Wavevector Matching

Wavevector mismatch describes the difference between the wavevector

values of an electromagnetic wave in two regions of space. The concept of

wavevector mismatch and its effects on electromagnetic wave propagation

can be illustrated through a simple one dimensional example. Consider

an electromagnetic plane wave normally incident from medium 1, having

refractive index n1, onto medium 2, having refractive index n2 6= n1. We

assume that both media have positive relative permittivity values. For a

homogeneous and isotropic medium, the refractive index of a region, n, is

directly related to the wavevector in the region, β̃, by

β̃ = nko. (3.2)

An electromagnetic wave incident normally at the interface between two

media experiences a sudden change in its wavevector. This wavevector mis-

match results in reflection of a portion of the incident electromagnetic wave

and a reduction in the transmission from medium 1 to medium 2, as shown

in Figure 3.8(b). The relative amplitudes of the electromagnetic wave com-

60



3.4. Wavevector Matching

Medium 1 Medium 2

Transmitted lightReflected light

Medium 1 Medium 2

Incident light

a)

b)

Figure 3.8: A simple example demonstrating the reflection loss due to
wavevector mismatch. An electromagnetic plane wave is a) incident onto
a dielectric interface and b) scattered into reflected and transmitted com-
ponents after interacting with the interface. The relative amplitudes of
the reflected and transmitted components are proportional to the degree of
wavevector mismatch.
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ponents in the two media can be predicted by Fresnel equations, given as

R =
n1 − n2
n1 + n2

(3.3)

and

T = 1−R

=
2n2

n1 + n2
, (3.4)

where R and T are the reflection and transmission coefficients, respectively.

The above relations show that as the difference in refractive indices increases

(which then yield a wavevector mismatch), a greater portion of the incident

electromagnetic wave is reflected and less transmitted.

We extend the concept of wavevector matching to predict the coupling

efficiency of the two TM1 modes sustained by the proposed bi-axial waveg-

uide structure. It is hypothesized that the degree of coupling between the

TM1 mode in the slit section of the structure and the TM1 mode in the GaP

layer section of the structure is maximized when the degree of mismatch be-

tween the in-plane wavevector components of the two modes is minimized.

This mismatch corresponds to the difference between transverse component

of the wavevector, β1z, directed along the z-axis of the TM1 mode in the

slit and the longitudinal component of the wavevector,β2, directed along the

x-axis of the TM1 mode in the GaP layer. The configuration is shown in Fig-

ure 3.9. Thus, efficient coupling is achieved when the condition wavevector

matching β1z = β2 is satisfied.
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3.4. Wavevector Matching

Figure 3.9: Wavevector matching applied to a bi-axial waveguide. Wavevec-
tor matching is achieved when the transverse component of the wavevector
in the MDM waveguide matches with the longitudinal component of the
wavevector in the MDD waveguide.
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3.4. Wavevector Matching

Figure 3.10: Plot of the longitudinal wavevector components of the TM1

mode sustained by the MDD waveguide (β2) and the transverse wavevector
components of the TM1 mode sustained by the MDM waveguide (β1z). The
blue circle shows the matching point at the operational frequency of w =
6× 1014 Hz.
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3.5 Waveguide Structure Optimization

To determine an optimal configuration that yields wavevector matching,

we map out values of β1z of the TM1 mode in the slit as a function of the slit

width and β2 of the TM1 mode in the GaP layer as a function of the layer

thickness. The wavevector components are plotted in Figure 3.10 over the

visible frequency range. For a nominal operational frequency of ω = 6×1014

Hz, wavevector matching is achieved for a slit width value w = 150nm and a

GaP layer thickness value d = 100nm. It is predicted that when a structure

with these geometrical parameters is excited by an electromagnetic wave at

a frequency of ω = 6 × 1014 Hz, a TM1 mode sustained in the slit couples

efficiently to a TM1 mode in the GaP layer.

3.5.1 FDTD Simulation

We test the predictive powers of our analytical method by performing

rigorous numerical simulations of the electromagnetic response of the struc-

ture using the finite-difference-time-domain (FDTD) technique. The FDTD

technique is a widely used method to model the spatial and temporal evolu-

tion of electromagnetic waves by directly solving Maxwell’s equations over a

spatial grid. The temporal and spatial partial derivatives in Maxwell’s equa-

tions are discretized into difference equations using the central-difference

approximations [54]. At a particular time step, the difference equations are

solved at each grid point to determine the local amplitude of the electric

and magnetic field components.

To model the electromagnetic response of the proposed coupling struc-
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ture, we use a two dimensional spatial grid in the x− z plane consisting of

4000 × 1400 pixels with a resolution of 1 nm/pixel, resulting in a rectan-

gular grid occupying a physical area of 4.0 × 1.4 µm. A perfectly matched

layer is placed at the edges of the simulation space [55–57]. This layer is

impedance matched to free-space so that any electromagnetic waves inci-

dent onto the layer are totally absorbed and do not reflect back into the

simulation space. Within the simulation space, we defined both an electro-

magnetic wave source and our proposed structure. The source consists of a

TM-polarized electromagnetic wave oscillating at a frequency of ω = 6×1014

Hz, which corresponds to a free-space wavelength λ = 500nm. The TM-

polarized electromagnetic wave has a magnetic field component Hy and two

electric field components Ex and Ez. The wave propagates in +x-direction

and is centered at z = 0 with a full-width-at-half maximum of 1200 nm. Our

structure is defined in the simulation space by assigning to the grid points

occupied by the structure the relative permittivity of the local medium. For

grid points corresponding to GaP, we assign a relative permittivity of 3.52.

For grid points corresponding to silver, we model the relative permittivity

using the Drude model with experimentally obtained Drude parameters. For

grid points corresponding to air, we assign a unity relative permittivity.

Based on the field distributions calculated by the FDTD simulations,

we measure the bending efficiency of the structure. Line detectors D1, D2,

and D3 are placed at different locations in the simulation space to measure

the time-averaged values of the magnetic field intensity |Hy|2. Detectors

D1 and D2 are placed in the GaP layer to the left and right of the slit exit

and the detector D3 is placed in the air region above the slit exit. The
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bending efficiency is quantified by the ratio of |Hy|2 captured by D1,D2 to

the total |Hy|2 emitted from the slit and captured by D1, D2, and D3. The

bending efficiency therefore measures the percentage of the electromagnetic

wave exiting the slit region of the structure that couples into the GaP layer.

Figure 3.12 shows a snapshot of the FDTD-calculated magnetic field

intensity distribution when the structure is illuminated at a wavelength of

λ = 500 nm. Light incident from the bottom of the structure channels into

the slit and then emerges from the exit of the slit. There are two pathways

for the light emerging from the slit: it can bend into the GaP layer or

radiate into the air region above the GaP layer. At a wavelength of λ = 500

nm, highly efficient light bending at the slit exit is evident from almost

complete diversion of the +x-propagating TM1 mode in the slit into the

±z-propagating TM1 modes in the GaP layer, with minimal light scattered

into free-space plane wave modes in the air region above the GaP layer.

Figures 3.12(b) and (c) show the FDTD-calculated magnetic field intensity

distribution when the structure is illuminated at wavelengths of λ = 450

nm and λ = 400 nm, respectively. For these shorter wavelengths, there is

a greater amount of light scattered into the air region above the bend and

relatively less light coupled into the GaP layer. Comparison of the FDTD

calculated field distributions suggests that the efficiency of light bending at

the slit exit is highly sensitive to the incident electromagnetic wavelength

(and hence frequency).

Figure 3.13 plots the FDTD-calculated bending efficiency as a function

of the GaP layer thickness d for a fixed wavelength λ = 500 nm. The FDTD

simulations show that the bending efficiency reaches a maximum of 92% at
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Figure 3.11: Simulation geometry of the waveguide structure designed to
bend incident light at a frequency ω = 6 × 1014 Hz. The structure has
a metal thickness t = 300nm, slit width w = 150nm and dielectric cap
d = 100nm. The detectors D1 and D2 measure the time-averaged magnetic
field intensity,|Hy|2, of the TM1 mode in the GaP layer, and the detector
D3 measures |Hy|2 radiated into the air region.
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Figure 3.12: FDTD calculations to determine the bending efficiency for the
designed waveguide. For calculations, TM-polarized wave centered at z =
0 with a full-width-at-half-maximum of 1200nm is normally incident on the
bottom surface of the slit. Snapshots of the instantaneous magnetic field
intensity for normally-incident, free-space, TM-polarized illumination of the
structure at (a) ω = 6 × 1014 Hz, λ = 500 nm (b) ω = 6.67 × 1014 Hz,
λ = 450 nm, and (c) ω = 7.5 × 1014 Hz, λ = 400nm for fixed parameters
w = 150nm and d = 100nm. The inset in (a) highlights the TM mode
emanating from the slit to split symmetrically into TM1 modes confined
inside the GaP layer.
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3.5. Waveguide Structure Optimization

Figure 3.13: Coupling efficiency as a function of GaP layer thickness d.
The frequency of the incident light is kept constant at ω = 6× 1014 Hz.

an optimal layer thickness d = 100 nm. This optimal value matches the

layer thickness value predicted to yield wavevector matching. The bending

efficiency drops off for layer thickness values both smaller and larger than

the optimal value.

Figure 3.14 depicts the FDTD-calculated bending efficiency as a func-

tion of the wavelength of incident light for fixed slit width, w = 150 nm and

GaP layer thickness, d = 100 nm. The FDTD calculations show that the

bending efficiency is greater than 90% for incident wavelengths λ = 450 nm

and λ = 500 nm. Increasing or decreasing the wavelength outside of these
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Figure 3.14: Coupling efficiency as a function of λ. The slit width and layer
thickness are kept constant at w = 150 nm and d = 100 nm, respectively.

values, yields a dramatic drop in the bending efficiency of the structure. The

FDTD calculations therefore support our hypothesis that in-plane wavevec-

tor matching, which is achieved for a single combination of slit width, layer

thickness and wavelength, yields highly efficient mode coupling. For param-

eters departing from these optimal parameters, the coupling efficiency drops

dramatically.
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3.6 Summary

In this chapter we have presented a technique for designing a bi-axial

nanoscale metal waveguide that can bend light around a tight ±90◦ bend.

The design technique consists of first breaking the bi-axial waveguide into

two region, each of which is then approximated as an independent uni-

axial waveguide. The modes sustained by each of the uni-axial waveguides

are mapped out to determine the propagative modes. The geometrical pa-

rameters for each of the uni-axial waveguides are designed such that the

in-plane wavevector components of the propagative modes in the waveg-

uides are matched. The wavevector matching condition is predicted to yield

maximum coupling between the electromagnetic modes, even when they

propagate along perpendicular directions, and thus achieve highly efficient

light bending. The performance of the designed structure is modeled using

a finite-difference-time-domain (FDTD) technique which solves Maxwell’s

equations directly over a discretized spatial grid. The FDTD-calculated

bending efficiency as a function of the GaP layer thickness shows a pro-

nounced peak for parameters corresponding to the wavevector matching

condition, supporting the hypothesis that wavevector matching yields highly

efficient coupling. Our design methodology is useful because it can poten-

tially circumvent the need for tedious numerical simulations and may find

application in the design of highly-integrated, miniaturized optical circuits.
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Chapter 4

Multi-Axial

Surface-Plasmon-Polariton

Coupling

Surface plasmon polariton (SPP) modes are electromagnetic excitations

at an interface between a metal and dielectric, hold promise for the minia-

turization of optical devices [58, 59]. Due to the lack of readily-available

sources directly emitting SPP modes, designing methods to couple plane-

wave modes to SPP modes with high efficiency and throughput remains

an important objective. Plane-wave modes directly incident onto a metal-

dielectric interface cannot efficiently couple into SPP modes due to a mis-

match between the SPP wavevector and the component of the plane-wave

wavevector along the interface. Scatterers have been used to bridge the

wavevector mismatch between plane-wave and SPP modes. When a scat-

terer is illuminated, enhancement of the incident plane-wave wavevector

along the metal-dielectric interface by the Fourier spatial frequency compo-

nents of the scatterer geometry in the plane of the interface enables wavevec-

tor matching between the incident light and the SPP mode.
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A widely-used scatterer-based SPP coupling technique is to illuminate

a slit in a metal film. Slit based SPP couplers have an inherent advantage

that they can be easily incorporated in integrated optical devices. When a

slit is illuminated with a TM-polarized plane wave, a small portion of the

incident wave excites a guided mode in the slit. The guided mode propagates

through the slit and subsequently diffracts at the slit exit. The total light

intensity leaving the slit exit defines the total throughput, the SPP intensity

leaving the slit exit defines the SPP throughput, and the ratio of the SPP

throughput to the total throughput defines the SPP coupling efficiency. The

throughput and efficiency of a slit are highly dependent on the width of the

slit relative to the wavelength of the incident plane wave. A slit of width

less than the wavelength has inherently low total throughput and low SPP

throughput, but is capable of high SPP coupling efficiency. It has already

been demonstrated that the SPP coupling efficiency of a sub-wavelength

slit is increased up to ' 80% by coating the slit with a nanoscale dielectric

layer[60]; the dielectric layer, however, does not significantly affect the SPP

throughput. The objective of this chapter is to design a SPP coupling scheme

capable of both high throughput and high efficiency.

Increasing the total throughput of a slit can be achieved by simply in-

creasing the slit width. Increasing the SPP throughput, on the other hand,

is more challenging because the SPP throughput is dependent on the cou-

pling between the guided mode in the slit and the SPP mode, which has

not been fully explored yet. Recently, several theoretical [61–63] and semi-

analytical [60, 64–66] models have been developed to describe coupling from

a guided mode in a single slit to a SPP mode. The SPP mode is defined
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by a single, unique solution to Maxwell’s equations when the magnetic field

boundary conditions are imposed at the metal surface. The guided mode in

the slit, on the other hand, generally consists of a superposition of infinite

TM-polarized waveguide eigenmodes, and each of these modes correspond

to a unique solution to the Maxwell’s equations when the magnetic field

boundary condition are imposed at the slit edges. The width of the slit

dictates the eigenmode composition of the guided mode in the slit. All pre-

vious models [60–66] describing SPP coupling by a slit have assumed a slit

width less than the wavelength. When the slit width is less than the wave-

length, all eigenmodes are attenuated except the zeroth-order TM mode,

TM0 (also known as SPP mode) and the guided mode is accurately and

simply approximated as the TM0 mode. The TM0 mode approximation

becomes increasingly inaccurate [62, 64] as the slit width is increased to

values comparable to and/or larger than the wavelength and higher-order

eigenmodes become predominant. To date, accurate models of SPP coupling

from super-wavelength slits sustaining higher-order eigenmodes have yet to

be realized.

In this work, we propose and characterize a new SPP coupling technique

for multi-axial metal waveguide structures. The technique is applied on a

bi-axial metal waveguide constructed using slit of super-wavelength width

immersed in a uniform dielectric. The width of the super-wavelength slit is

selected to sustain a first-order TM1 eigenmode, TM1 mode, just above cut-

off, which then couples to the SPP mode at the slit exit. This is in contrast

to previously explored SPP coupling configurations using sub-wavelength

slits that sustain only the lowest-order TM0 eigenmode [60–66]. We show
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that the TM1 mode just above cutoff is advantageous for SPP coupling be-

cause it possesses a transverse wavevector component (lying in the plane of

the metal surface) that is larger than that achievable with a TM0 mode in a

slit of sub-wavelength width. It is proposed that if the transverse wavevector

component of the TM1 mode, added with the peak Fourier spatial frequency

component (due to diffraction at the slit exit), equals to the wavevector of the

SPP mode on the metal surface, high SPP coupling efficiency is achievable.

The hypothesis is tested by numerical simulation of visible light propagation

through a slit as a function of the slit width and refractive index. An opti-

mized geometry is discovered that satisfies the predicted wavevector match-

ing condition, yielding a peak SPP coupling efficiency of ' 68% and an SPP

throughput that is over an order of magnitude greater that achieved with

a sub-wavelength slit. Compared to a sub-wavelength slit, the optimized

super-wavelength slit geometry is easier to fabricate, has comparable SPP

coupling efficiency and an over order-of-magnitude greater SPP throughput.

4.1 Hypothesis

Consider a semi-infinite layer of metal (silver) with relative complex per-

mittivity ε̃m extends infinitely in the y- and z-directions and having thickness

t. A slit of width w oriented parallel to the x-axis and centred at z = 0 is cut

into the metal film. The metal film is immersed in a homogeneous dielectric

medium with relative permittivity εd and refractive index n =
√
εd. The

complete structure is presented in Fig. 4.1. The slit is illuminated from the

region below it with a TM-polarized electromagnetic plane wave of wave-
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length λ = λ0/n and wavevector βi = βix̂, where βi = 2π/λ. The +x-axis

defines the longitudinal direction, and the z-axis defines the transverse axis.

The electromagnetic wave couples into a guided mode in the slit having

complex wavevector β̃ = β̃xx̂ + β̃z ẑ, where β̃x and β̃z are the longitudinal

and transverse components of the complex wavevector, respectively. The

attenuation of the guided mode in the slit can be characterized by a fig-

ure of merit (FOM) as described in previous chapter using eq. 3.1. When

the guided mode exits the slit, electromagnetic energy is coupled into plane-

wave modes and ±z-propagating SPP modes. The SPP modes have complex

wavevector ±β̃sppẑ, where Re[β̃spp] and Im[β̃spp] describe the spatial peri-

odicity and attenuation, respectively, of the SPP field along the transverse

direction.

We treat the bi-axial waveguide SPP coupler by first dividing the struc-

ture into two uni-axial waveguides and mapping out the modes in each of

the waveguides. The slit region is approximated as a metal-dielectric-metal

(MDM) waveguide and the top of the metal film is approximated as a metal-

dielectric (MD) waveguide. The waveguide parameters are tuned such that

a propagating TM1 mode in the MDM waveguide couples to a SPP mode

in the MD waveguide. We map out the wavevector values of the TM0 and

TM1 modes sustained in the slit (approximated as a MDM waveguide) for

varying slit width by solving the complex eigenvalue equation, Eq. 2.26 us-

ing the Davidenko method. ε̃m is modeled by fitting to experimental data

of the real and imaginary parts of the permittivity of silver as obtained in

Section 1.8, and εd is assumed to be real and dispersion-less. Figure 4.2(a)

shows FOM curves for TM0 and TM1 modes in slits of varying width for the
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Figure 4.1: Waveguide structure consisting of a slit in a metal film immersed
in a dielectric. TM-polarized light is normally incident from the bottom of
the structure and is confined within the dielectric core.
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representative case where the slit is immersed in a dielectric with a refractive

index n = 1.75. The FOM values for the TM0 modes are largely insensitive

to variations in the slit width and gradually decrease as a function of in-

creasing frequency. FOM curves for the TM1 modes are characterized by a

lower-frequency region of low figure of merit and a higher-frequency region

of high figure of merit, separated by a kneel located at a cutoff frequency.

The cutoff slit width wc for the TM1 mode at a given frequency ω is the

threshold slit width value below which the TM1 mode is attenuating. At a

fixed visible frequency ω = 6.0 × 1014 Hz (λ = 285 nm), wc ∼ 300 nm. The

dominant mode in the slit can be identified at a particular frequency and

slit width by the mode with the largest FOM. The TM0 mode is dominant

for w < wc, and the TM1 mode is dominant for w > wc.

The real part of the transverse wavevector component, Re[β̃z], of the

guided mode in the slit describes the component of electromagnetic momen-

tum in the transverse plane parallel to the plane of the metal surface. Values

of β̃z are obtained from the relation

β̃z =
√
βi

2 − β̃2x, (4.1)

where βi = nβ0 is the magnitude of the wavevector in the dielectric core

of the slit. Figure 4.2(b) shows Re[β̃z] values over the visible-frequency

range for the TM0 mode in a slit of width w = 200 nm and for the TM1

mode in slits of widths w = 350 nm and w = 500 nm. At the frequency

ω = 6.0 × 1014 Hz, Re[β̃z] for the TM0 mode in the w = 200 nm slit is

nearly two orders of magnitude smaller than Re[β̃z] for the TM1 mode in
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Figure 4.2: Formulation of a hypothesis for diffraction-assisted SPP cou-
pling by a super-wavelength slit aperture. a) Figure-of-merit and b) the real
transverse wavevector component versus frequency and wavelength for TM0

and TM1 modes sustained in slits of different widths. c) Diffraction spec-
trum corresponding to the TM0 mode in a 200- nm-wide slit and the TM1

modes in 350- nm-wide and 500- nm-wide slits. d) Wavevector-space depic-
tion of diffraction-assisted SPP coupling from slits of width w = 200 nm,
w = 350 nm, and w = 500 nm, immersed in a uniform dielectric of refractive
index n = 1.75.
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the w = 350 nm and w = 500 nm slits. Values of Re[β̃z] for the TM1

mode generally increase for decreasing slit width. Given the parameters

in Fig. 4.2(b) and for a fixed ω = 6.0 × 1014 Hz, Re[β̃z] for the TM1 mode

increases from 8.5 × 106 m−1 to 1.3 × 107 m−1 as the slit width decreases

from 500 nm to 350 nm.

Diffraction at the slit exit generates transverse spatial frequency com-

ponents, κ. The diffraction spectrum is a distribution of transverse spatial

frequencies generated by diffraction at the slit exit. We calculate the diffrac-

tion spectrum by Fourier transformation of the transverse field profiles of the

guided mode [67]. Figure 4.2(c) shows the normalized diffraction spectrum

for slit widths w = 200 nm, w = 350 nm, and w = 500 nm at a fixed fre-

quency ω = 6.0×1014 Hz. The peak transverse spatial frequency component,

κp, is the spatial frequency at which the diffraction spectrum peaks. For the

parameters in Fig. 4.2(c), κp shifts from 1.6×107 m−1 to κp = 8.3×106 m−1

as the slit width increases from w = 200 nm to w = 500 nm. It is noteworthy

that κp < Re[β̃spp] for all slit width values.

A simple picture of diffraction-assisted SPP coupling based on the data

in Figs. 4.2(a)-(c) for w = 200 nm, w = 350 nm and w = 500 nm at a

fixed ω = 6.0 × 1014 Hz is presented in Fig. 4.2(d). SPP coupling at the

slit exit is mediated by diffraction of the guided mode, yielding a net real

transverse wavevector component Re[β̃z] +κp. Coupling from the diffracted

mode at the slit exit to the SPP mode adjacent to the slit exit is opti-

mized when the wavevector-matched condition Re[β̃z] + κp = Re[β̃spp] is

satisfied. Because Re[β̃spp] is generally larger than both Re[β̃z] and κp, large

and commensurate contributions from both Re[β̃z] and κp are required to
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fulfill wavevector matching. In a sub-wavelength slit, the TM0 mode has

Re[β̃z] << κp and SPP coupling at the slit exit requires a sufficiently small

slit width to generate large diffracted spatial frequency components to match

with Re[β̃spp]. On the other hand, a super-wavelength slit sustains a TM1

mode with Re[β̃z] ' κp. The large contributions of Re[β̃z] to the net real

transverse wavevector component reduces the required contributions from

κp needed for wavevector matching. As a result, wavevector matching with

the SPP mode adjacent to the slit exit can be achieved with a relatively

large slit aperture.

4.2 Methodology

SPP coupling efficiency of a slit immersed in a dielectric is modeled using

finite-difference-time-domain (FDTD) simulations of Maxwell’s equations.

The simulation grid has dimensions of 4000× 1400 pixels with a resolution

of 1 nm/pixel and is surrounded by a perfectly-matched layer to eliminate

reflections from the edges of the simulation space. The incident beam is

centered in the simulation space at z = 0 and propagates in the +x-direction,

with a full-width-at-half-maximum of 1200 nm and a waist located at x = 0.

The incident electromagnetic wave has a free-space wavelength λ0 = 500 nm

and is TM-polarized such that the magnetic field, Hy, is aligned along the

y-direction.

Control variables of this study include the type of metal (chosen as sil-

ver), the thickness of the metal layer (set at t = 300 nm), the polarization

of the incident electromagnetic wave (TM), the angle of incidence of the

82



4.3. Results and Discussion

incident electromagnetic wave (normal), and the wavelength of the incident

electromagnetic wave (λ0 = 500 nm). The independent variables include

the width of the slit, w, which is varied from 100 nm to 800 nm, and the

refractive index of the surrounding dielectric n, which varies from 1.0 to 2.5.

The dependent variables are the time-averaged intensity of the SPP modes

coupled to the metal surface at the slit exit, Ispp, the time-averaged inten-

sity of the radiated modes leaving the slit region, Ir, and the SPP coupling

efficiency, η. The dependent variables are quantified by placing line detec-

tors in the simulation space to capture different components of the intensity

pattern radiated from the exit of the slit, similar to the method employed

in chapter 3. The Ispp detectors straddle the metal/dielectric interface, ex-

tending 50 nm into the metal and λ0/4 nm into the dielectric region above

the metal, and are situated adjacent to the slit exit a length λ0 away from

the edges of the slit. The Ir detector captures the intensity radiated away

from the slit that is not coupled to the surface of the metal. The coupling

efficiency is then calculated by the equation

η =
1

1 + Ir/Ispp
. (4.2)

4.3 Results and Discussion

The numerical simulations provide evidence of high-throughput and high-

efficiency SPP coupling from a slit of super-wavelength width. Figure 4.3

displays representative snap-shots of the instantaneous |Hy|2 intensity and

time-averaged |Hy|2 angular distribution calculated from FDTD simula-

83



4.3. Results and Discussion

Figure 4.3: Images of the FDTD-calculated instantaneous |Hy|2 distribu-
tion (left) and the time-averaged |Hy|2 angular distribution (right) for a slit
of width values a) w = 200 nm, b) w = 350 nm, and c) w = 500 nm im-
mersed in a dielectric (n = 1.75) and illuminated by a quasi-plane-wave of
wavelength λ0 = 500 nm. A common saturated color scale has been used to
accentuate the fields on the exit side of the slit.
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tions for plane-wave, TM-polarized, normal-incidence illumination of a slit

immersed in a dielectric (n = 1.75) for slit width values w = 200 nm,

w = 350 nm, and w = 500 nm. Radiative components of the field in the

dielectric region above the slit propagate away from the metal-dielectric

interface, and plasmonic components propagate along the metal-dielectric

interface. For w = 200 nm [Fig. 4.3(a)], the incident plane wave couples into

a propagative TM0 mode in the slit, which is characterized by intensity max-

ima at the dielectric-metal sidewalls. Diffraction of the TM0 mode at the

exit of the slit yields a relatively strong radiative component with an angular

intensity distribution composed of a primary lobe centred about the longi-

tudinal axis and a relatively weak plasmonic component. A lobe describes

the concentration of electromagnetic energy in a region. For w = 350 nm

[Fig. 4.3(b)] and w = 500 nm[Fig. 4.3(c)], the incident plane wave couples

primarily into the TM1 mode in the slit, which is characterized by an inten-

sity maximum in the dielectric core of the slit. The high-throughput SPP

coupling is evident by the large SPP intensities observed for w = 350 nm.

Diffraction of the TM1 mode at the w = 350 nm slit exit yields a relatively

weak radiative component with an angular intensity distribution skewed at

highly oblique angles and a relatively strong plasmonic component. Further

increasing the slit width to w = 500 nm increases the total throughput of

the slit, but reduces the efficiency of SPP coupling. Diffraction of the TM1

mode at the w = 500 nm slit exit yields a strong radiative component with

an angular intensity distribution composed of two distinct side lobes and a

relatively weak plasmonic component.

Trends in the SPP coupling efficiencies calculated from the FDTD simu-
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Figure 4.4: a) SPP coupling efficiency as a function of optical slit width for
dielectric refractive index values n = 1.0 (squares), n = 1.5 (circles), n =
1.75 (upright triangles), n = 2.0 (inverted triangles), n = 2.5 (diamonds).
b) The measured SPP intensity (squares), radiative intensity (circles), and
total intensity (diamonds). The shaded region indicates the sub-wavelength-
slit-width regime.
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lations are compared to qualitative predictions from the model of diffraction-

assisted SPP coupling described in Fig. 4.4. Figure 4.4(a) plots the FDTD-

calculated SPP coupling efficiencies as a function of the optical slit width nw

for dielectric refractive index values ranging from n = 1.0 to n = 2.5. For

sub-wavelength slit width values nw < λ0, highest SPP coupling efficiency

is observed for the smallest optical slit width. This trend is consistent with

diffraction-dominated SPP coupling predicted to occur for sub-wavelength

slit widths, in which small slit width is required to yield large diffracted spa-

tial frequencies to achieve wavevector matching. For super-wavelength slit

width values nw > λ0, the SPP coupling efficiencies exhibit periodic mod-

ulations as a function of optical slit width, qualitatively agreeing with the

general trends observed in experimental data measured for a slit in air [64]

and theoretical predictions based on an approximate model for SPP cou-

pling from a slit [62]. The data in Fig. 4.4 reveals that the magnitude of

the fluctuations in the SPP coupling efficiencies are highly sensitive to the

dielectric refractive index. For refractive index values n = 1.0, 1.5, 1.75, and

2.0, the SPP coupling efficiency rises as nw increases above λ0 and reaches

local maxima of η = 14%, 44%, 68%, and 48% at a super-wavelength opti-

cal slit width nw ' 600 nm, respectively. The rapid increase in η as the slit

width increases from sub-wavelength slit width values to super-wavelength

slit width values is attributed to the disappearance of the TM0 mode in the

slit and the emergence of the TM1 mode in the slit, which boosts the net

real transverse wavevector component at the slit exit to enable wavevector

matching. It is interesting to note that the SPP coupling efficiency peak at

nw = 600 nm observed for lower refractive index values is absent for n = 2.5.
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4.3. Results and Discussion

Figure 4.5: Wavevector mismatch Re[β̃spp]− (Re[β̃z] + κp) as a function of
refractive index of the dielectric region for a fixed optical slit width nw =
600 nm and free-space wavelength λ0 = 500 nm.
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Figure 4.4(b) displays the time-averaged radiative intensity Ir, SPP in-

tensity Ispp, and total intensity It = Ispp + Ir, as a function of the optical

slit width for n = 1.75. Although the smallest optical slit width gener-

ally yields high SPP coupling efficiency, the total throughput and the SPP

throughput is low. As the optical slit width increases to w ' λ0 from sub-

wavelength values, an increase in Ir and a decrease in Ispp yield low SPP

coupling efficiency. In the super-wavelength range of optical slit width val-

ues, 520 nm < nw < 700 nm, concurrently high SPP throughput and high

SPP coupling efficiency (η > 50%) are observed. For the optical slit width

value nw ' 600 nm, Ispp is about an order of magnitude larger than Ispp

for the smallest slit width value nw = 175 nm. As the optical slit width is

further increased nw > 700 nm, Ir is significantly greater than Ispp, resulting

again in low SPP coupling efficiencies.

Variations in the peak SPP coupling efficiency at a fixed optical slit width

nw = 600 nm for varying n can be qualitatively explained by the mismatch

between the net real transverse wavevector component Re[β̃z] + κp and the

real SPP wavevector Re[β̃spp]. Figure 4.5 plots the transverse wavevector

mismatch Re[β̃spp] − (Re[β̃z] + κp) as a function of the dielectric refractive

index at a constant optical slit width value nw = 600 nm. The wavevector

mismatch increases monotonically from −0.4 × 107 m−1 to 2.4 × 107 m−1

as the refractive index increases from n = 1.0 to n = 2.5, crossing zero at

n = 1.75. Coincidence between the n value that yields peak SPP coupling

efficiency at nw = 600 nm and that which yields zero wavevector mismatch

supports the hypothesis that optimal SPP coupling efficiency occurs when

Re[β̃spp] = (Re[β̃z] + κp), and that this condition can be achieved using a
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super-wavelength slit aperture immersed in a dielectric. The relatively large

wavevector mismatch for n = 2.5 is also consistent with the noted absence

of a SPP coupling efficiency peak at nw = 600 nm.

4.4 Summary

In this chapter, we have designed a bi-axial waveguide SPP coupler that

converts a TM1 mode in a slit to a SPP mode on an adjacent metal sur-

face with high-throughput and high-efficiency. The crux of the design is a

super-wavelength slit aperture immersed in a uniform dielectric sustaining

a TM1 mode just above cutoff. High SPP coupling efficiency is achieved

when the transverse wavevector component of the TM1 mode, added with

the peak diffracted spatial frequency component, equals to the wavevector

of the SPP mode on the metal surface. Based on numerical simulations

using FDTD of light propagation through a slit of varying slit width and

varying surrounding dielectric refractive index, an optimal slit width and

refractive index combination is found that provides high efficiency coupling.

The parameters also match the parameters predicted to yield wavevector

matching.
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Chapter 5

Conclusion

Optical waveguides are structures that guide light. The advent of nanofab-

rication techniques now allows controlled manufacturing of optical waveg-

uides with nanometer scale features using dielectric, metallic, or semi-conducting

materials. Given the degrees of freedom afforded by nanofabrication, opti-

mization of a waveguide design requires efficient modeling techniques. All

modeling schemes are based on Maxwell’s equations. The way in which

Maxwell’s equations are applied to model a given optical waveguide depends

on the complexity of the waveguide geometry. One of the simplest con-

figurations is the uni-axial waveguide, which guides electromagnetic waves

along a single axial direction. The electromagnetic properties of a uni-axial

waveguide are easily determined and can be modeled by analytically solv-

ing Maxwell’s equations. Multi-axial waveguides, on the other hand, guide

electromagnetic waves along more than one direction. They are challenging

to model by analytical solutions to Maxwell’s equations and often require

numerical techniques. One of the most popular numerical techniques is

the finite-difference time-domain (FDTD) technique. Numerical simulation

tools like the FDTD technique enable detailed visualization of electromag-

netic fields within complicated optical waveguides systems. A limitation
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of the FDTD technique is the massive computation power and processing

time required to complete a simulation. Because only one combination of

parameters can be explored for a given simulation, hundreds or thousands

of simulations are required to completely map out the frequency-dependent

electromagnetic response of an optical waveguide for various material com-

binations and geometrical configurations. As a result, optimization using

only numerical simulations is often not feasible.

In this thesis, we have explored a new analytical technique to analyze

and optimize the performance of multi-axial waveguides. The technique

consists of breaking the multi-axial waveguide down into simpler uni-axial

waveguide sub-components. The uni-axial waveguides are modeled by an-

alytically solving Maxwell’s equations and mapping out the wavevector of

the modes sustained by the waveguides. We hypothesized that efficient cou-

pling between the uni-axial waveguide sub-components is achieved when the

in-plane wavevector of the modes sustained by the waveguides are matched.

In Chapters 3 and 4, we presented two design examples in which bi-axial

waveguides are optimized, using the proposed methodology, to achieve high

coupling efficiency. In both examples, the optimized parameters selected

using our methodology is shown, through FDTD simulations, to yield max-

imum coupling efficiency.

5.1 Limitations

One of the major limitations of this technique is that the uni-axial waveg-

uide sub-components are assumed to be infinitely-long, which is typically not
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the case. For waveguides that extend over short distances comparable to or

less than the wavelength, the uni-axial waveguide solutions may not accu-

rately describe the electromagnetic properties of the actual system. Another

major limitation of our methodology is that it cannot quantify the perfor-

mance of multi-axial waveguides. The methodology only selects waveguide

parameters that can potentially yield maximum coupling, but still requires

numerical methods like the FDTD technique to rigorously model the waveg-

uide performance. We thus envision that this technique can be potentially

used as a supplement to numerical methods to provide first order estimates

of optimal parameters.

5.2 Future Work

Future work aims to explore the application of this technique to design

multi-axial waveguides composed of more than two uni-axial waveguides

connected with each other non-perpendicular angles. Furthermore, we have

thus far restricted our treatment to simple cases where the uni-axial waveg-

uide components only sustain a single mode. Further work is needed to

verify that this methodology still holds for waveguide systems that sustain

more than one mode.
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Appendix: Fit Functions

In Chapters 3 and 4, we discussed the design of multi-axial metallic

waveguides using the solutions to dispersion relations for uni-axial metallic

waveguides. Dispersion relations for uni-axial metallic waveguides are gen-

erally complex transcendental equations which are difficult to solve using

simple algebraic techniques and require sophisticated iterative techniques.

These iterative techniques are usually time consuming and their convergence

to a stable solution requires a good initial guess value. Here, we present

explicit analytical piece-wise fit functions for the solutions to dispersion re-

lations of various metallic waveguide structures. These explicit expressions

can be used to approximate the complex wavevector or serve as an initial

guess for iterative solution implementations.

SPP Mode in a Silver-Dielectric-Silver Waveguide

We obtain piece-wise fit functions to the dispersion relations of the sym-

metric SPP mode over frequencies where it is propagative. The fit functions

for the symmetric SPP mode can be given for different dielectric cores as:
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SPP Mode in a Silver-Dielectric-Silver Waveguide

Dielectric Core n = 1.0

ω = 8.5× 1014 − 8.75× 1014 (Hz) and t = 150nm−300nm

β = 1.72173× 107 − 8.2303× 10−8ω − 1.32669× 1014t

+1.20818× 10−22ω2 + 9.33943× 1019t2 + 0.09494ωt

ω = 8.5× 1014 − 8.75× 1014 (Hz) and t = 50nm−150nm

β = −2.09062× 107 − 3.46651× 10−8ω + 1.09635× 1014t

+1.39199× 10−22ω2 + 8.8537× 1020t2 − 0.45034ωt

ω = 3.5× 1014 − 8.5× 1014 (Hz) and t = 150nm−300nm

β = 6.12927× 106 + 3.20113× 10−8ω +−6.05407× 10−23ω2

+2.00357× 10−37ω3 +−3.16232× 10−52ω4 + 1.93617× 10−67ω5

−9.32617× 1013t+ 5.71877× 1020t2 − 1.95536× 1027t3

+3.57259× 1033t4 − 2.7277× 1039t5

ω = 4.75× 1014 − 8.2× 1014 (Hz) and t = 50nm−150nm

β = 89293.84003− 1.72137× 10−7ω + 6.77262× 10−22ω2

−1.08811× 10−36ω3 + 7.76656× 10−52ω4 − 1.62355× 10−67ω5

+1.21543× 1015t− 2.30847× 1022t2 + 2.04098× 1029t3

−8.71403× 1035t4 + 1.45453× 1042t5
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Dielectric core n = 1.5

ω = 3.5× 1014 − 7.5× 1014 (Hz) and t = 120nm−300nm

β = −8.18148× 107 + 1.09905× 10−6ω − 4.73456× 10−21ω2

+1.04218× 10−35ω3 − 1.13622× 10−50ω4 + 4.93144× 10−66ω5

−2.19077E14t+ 1.63401× 1021t2 − 6.56117E27t3

+1.36474× 1034t4 − 1.15377× 1040t5

ω = 3.5× 1014 − 6× 1014 (Hz) and t = 10nm−80nm

β = −5.75014× 107 + 3.15718× 1011e−e

(
1.96374×1015−ω

1.11855×1015

)

+6.34943× 107e−e

(
−7.35261×10−8−t

1.43303×10−8

)

−3.15122× 1011e

−e
(

1.96374×1015−ω

1.11855×1015

)
− e

(
−7.35261×10−8−t

1.43303×10−8

)

ω = 6× 1014 − 7.5× 1014 (Hz)

t = 50nm−80nm

β = 8.3505× 106 + 6.23672× 108e−e

(
1.14896×1015−ω

4.84616×1014

)

+6.66111× 106e−e

(
5.69646×10−8−t

7.42459×10−8

)

−6.82193× 108e

−e
(

1.14896×1015−ω

4.84616×1014

)
− e

(
5.69646×10−8−t

7.42459×10−8

)

ω = 6× 1014 − 7.5× 1014 (Hz)
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t = 5nm−30nm

β = 3.6674× 107 + 1.90183× 109e−e

(
1.14951×1015−ω

3.07971×1014

)

+1.36918× 108e−e

(
4.09602×10−9−t

−7.24051×10−9

)

+2.03376× 1010e

−e
(

1.14951×1015−ω

3.07971×1014

)
− e

(
4.09602×10−9−t

−7.24051×10−9

)

ω = 6× 1014 − 7.5× 1014 (Hz)

t = 30nm−50nm

β = 1.07351× 106 + 1.27678× 109e−e

(
1.14951×1015−ω

4.57803×1014

)

+2.49982× 107e−e

(
2.83143×10−8−t

3.64897×10−8

)

−1.74087× 109e

−e
(

1.14951×1015−ω

4.57803×1014

)
− e

(
2.83143×10−8−t

3.64897×10−8

)

ω = 3.5× 1014 − 6× 1014 (Hz)

t = 80nm−120nm

β = −814849.18221 + 4.41699E × 10−8ω + 1.16474× 1013t

+1.06179× 10−23ω2 + 1.32263× 1014t2 − 0.10634ωt

ω = 6× 1014 − 7.5× 1014 (Hz)

t = 80nm−120nm

β = 2.28031× 107 − 9.72998× 10−8ω + 1.75929× 1014t
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+1.78671× 10−22ω2 − 7.58382× 1014t2 − 0.37664ωt

Dielectric core n = 2.0

ω = 3× 1014 − 6× 1014 (Hz)

t = 120nm−300nm

β = −1.97964× 107 + 1.6671× 109e−e

(
2.85129×1015−ω

1.97609×1015

)

+7.20147× 106e−e

(
−8.48997×10−9−t

6.252×10−8

)

−6.73854× 108e

−e
(

2.85129×1015−ω

1.97609×1015

)
− e

(
−8.48997×10−9−t

6.252×10−8

)

ω = 6.5× 1014 − 7.1× 1014 (Hz)

t = 120nm−300nm

β = 3.51039× 107 + 7.55202× 109e−e

(
1.00296×1015−ω

1.76148×1014

)

−1.86391× 106e−e

(
4.00369×10−7−t

2.17345×10−9

)

6.00459× 107e

−e
(

1.00296×1015−ω

1.76148×1014

)
− e

(
4.00369×10−7−t

2.17345×10−9

)

ω = 6.0× 1014 − 6.5× 1014 (Hz)

t = 120nm−300nm

β = 2.82033× 107 + 1.52588× 108e−e

(
7.86251×1014−ω

1.46422×1014

)

6.00435× 109e−e

(
−6.37561×10−7−t

−3.68951×10−7

)
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−3.31606× 1010e

−e
(

7.86251×1014−ω

1.46422×1014

)
− e

(
−6.37561×10−7−t

−3.68951×10−7

)

ω = 3.0× 1014 − 6.0× 1014 (Hz)

t = 30nm−120nm

β = −3.53696× 107 + 3.13797× 109e−e

(
4.46772×1015−ω

2.98473×1015

)

1.13447× 107e−e

(
4.94075×10−8−t

2.12237×10−8

)

−9.25342× 108e

−e
(

4.46772×1015−ω

2.98473×1015

)
− e

(
4.94075×10−8−t

2.12237×10−8

)

ω = 6.0× 1014 − 6.5× 1014 (Hz)

t = 30nm−120nm

β = 3.83428× 107 + 1.87655× 108e−e

(
7.82176×1014−ω

1.65181×1014

)

−9.72658× 106e−e

(
5.01303×10−8−t

1.94477×10−8

)

−6.92474× 107e

−e
(

7.82176×1014−ω

1.65181×1014

)
− e

(
5.01303×10−8−t

1.94477×10−8

)

ω = 6.5× 1014 − 7.1× 1014 (Hz)

t = 30nm−120nm

β = 5.28234× 107 + 1.21942× 109e−e

(
8.78901×1014−ω

1.36591×1014

)

−1.55391× 107e−e

(
5.07127×10−8−t

1.661×10−8

)
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−2.37427× 108e

−e
(

8.78901×1014−ω

1.36591×1014

)
− e

(
5.07127×10−8−t

1.661×10−8

)

ω = 3.0× 1014 − 5.5× 1014 (Hz)

t = 5nm−30nm

β = 2.83643× 106 + 1.89939× 109e−e

(
2.22083×1015−ω

1.28216×1015

)

−7.36171× 107e−e

(
3.56358×10−9−t

−7.72401×10−9

)

1.32238× 1010e

−e
(

2.22083×1015−ω

1.28216×1015

)
− e

(
3.56358×10−9−t

−7.72401×10−9

)

ω = 5.5× 1014 − 7.1× 1014 (Hz)

t = 5nm−30nm

β = 4.82025× 107 + 1.71088× 1010e−e

(
1.32937×1015−ω

3.69429×1014

)

2.17774× 108e−e

(
4.15853×10−9−t

−7.20353×10−9

)

1.70486× 1011e

−e
(

1.32937×1015−ω

3.69429×1014

)
− e

(
4.15853×10−9−t

−7.20353×10−9

)

Dielectric core n= 2.5

ω = 2.5× 1014 − 5.5× 1014 (Hz)

t = 100nm−300nm

β = −7.2073× 106 + 2.59213× 109e−e

(
2.8552×1015−ω

1.74298×1015

)

108



SPP Mode in a Silver-Dielectric-Silver Waveguide

−1.79057× 106e−e

(
1.3725×10−8−t

6.04451×10−8

)

−5.96339× 108e

−e
(

2.8552×1015−ω

1.74298×1015

)
− e

(
1.3725×10−8−t

6.04451×10−8

)

ω = 5.5× 1014 − 6.0× 1014 (Hz)

t = 100nm−300nm

β = 3.4993× 107 + 1.27119× 108e−e

(
6.79906×1014−ω

1.08599×1014

)

1.70174× 109e−e

(
−3.33857×10−7−t

−2.34925×10−7

)

−6.89123× 109e

−e
(

6.79906×1014−ω

1.08599×1014

)
− e

(
−3.33857×10−7−t

−2.34925×10−7

)

ω = 6× 1014 − 6.5× 1014 (Hz)

t = 100nm−300nm

β = 5.61033× 107 + 1.78816× 109e−e

(
8.13426×1014−ω

1.15717×1014

)

−8.70104× 106e−e

(
6.83944×10−8−t

2.04979×10−8

)

5.80717× 108e

−e
(

8.13426×1014−ω

1.15717×1014

)
− e

(
6.83944×10−8−t

2.04979×10−8

)

ω = 2.5× 1014 − 5.5× 1014 (Hz)

t = 50nm−100nm

β = −6.45697× 107 + 1.37518× 109e−e

(
3.10394×1015−ω

2.75231×1015

)
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1.43777× 107e−e

(
8.76514×10−8−t

4.37752×10−8

)

−3.05341× 108e

−e
(

3.10394×1015−ω

2.75231×1015

)
− e

(
8.76514×10−8−t

4.37752×10−8

)

ω = 5.5× 1014 − 6.0× 1014 (Hz)

t = 50nm−100nm

β = 3.39926× 107 + 2.51503× 108e−e

(
7.99154×1014−ω

2.85374×1014

)

−3.40492× 107e−e

(
8.81644×10−8−t

1.69038×10−7

)

−4.69014× 107e

−e
(

7.99154×1014−ω

2.85374×1014

)
− e

(
8.81644×10−8−t

1.69038×10−7

)

ω = 6.0× 1014 − 6.5× 1014 (Hz)

t = 50nm−100nm

β = 3.73922× 107 + 5.68088× 108e−e

(
7.9886×1014−ω

1.65266×1014

)

−4.98983× 107e−e

(
1.50844×10−7−t

1.18004×10−7

)

4.13079× 108e

−e
(

7.9886×1014−ω

1.65266×1014

)
− e

(
1.50844×10−7−t

1.18004×10−7

)

ω = 1.5× 1014 − 5× 1014 (Hz)

t = 5nm−50nm

β = −6.19853× 108 + 4.75358× 1010e−e

(
1.25148×1015−ω

7.88071×1014

)
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6.25779× 108e−e

(
−1.0823×10−8−t

4.90041×10−9

)

−4.69103× 1010e

−e
(

1.25148×1015−ω

7.88071×1014

)
− e

(
−1.0823×10−8−t

4.90041×10−9

)

ω = 5× 1014 − 6.5× 1014 (Hz)

t = 5nm−50nm

β = 4.62771× 107 + 5.12298× 1010e−e

(
1.57816×1015−ω

4.94713×1014

)

2.02722× 1011e−e

(
−7.59034×10−8−t

−3.93686×10−8

)

4.89833× 1014e

−e
(

1.57816×1015−ω

4.94713×1014

)
− e

(
−7.59034×10−8−t

−3.93686×10−8

)

Dielectric core n = 3.0

ω = 2.5× 1014 − 5× 1014 (Hz)

t = 100nm−300nm

β = 2.88107× 107 + 2.13426× 109e−e

(
1.95942×1015−ω

1.04187×1015

)

−2.47784× 107e−e

(
−1.87313×10−8−t

5.74129×10−8

)

2.14085× 108e

−e
(

1.95942×1015−ω

1.04187×1015

)
− e

(
−1.87313×10−8−t

5.74129×10−8

)

ω = 5× 1014 − 6× 1014 (Hz)
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t = 100nm−300nm

β = 4.67772× 107 + 3.21912× 109e−e

(
8.07685×1014−ω

1.50667×1014

)

402975.77697e−e

(
4.50521×10−7−t

3.73193×10−8

)

1.06579× 108e

−e
(

8.07685×1014−ω

1.50667×1014

)
− e

(
4.50521×10−7−t

3.73193×10−8

)

ω = 2.5× 1014 − 5× 1014 (Hz)

t = 50nm−100nm

β = −5.89053× 107 + 1.51844× 109e−e

(
2.60327×1015−ω

2.18067×1015

)

1.10074× 107e−e

(
8.7235×10−8−t

4.68116×10−8

)

−3.0804× 108e

−e
(

2.60327×1015−ω

2.18067×1015

)
− e

(
8.7235×10−8−t

4.68116×10−8

)

ω = 5.5× 1014 − 5.8× 1014 (Hz)

t = 50nm−100nm

β = 3.43401× 107 + 5.50512× 109e−e

(
8.34557×1014−ω

2.81694×1014

)

−4.59404× 107e−e

(
1.32879×10−7−t

1.28984×10−7

)

3.23191× 108e

−e
(

8.34557×1014−ω

2.81694×1014

)
− e

(
1.32879×10−7−t

1.28984×10−7

)

ω = 5.8× 1014 − 6.0× 1014 (Hz)
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t = 50nm−100nm

β = 5.54605× 107 + 5.88966× 108e−e

(
6.81188×1014−ω

9.463×1013

)

−5.96491× 107e−e

(
1.29969×10−7−t

2.57514×10−7

)

5.94126× 108e

−e
(

6.81188×1014−ω

9.463×1013

)
− e

(
1.29969×10−7−t

2.57514×10−7

)

ω = 2.5× 1014 − 4.0× 1014 (Hz)

t = 5nm−50nm

β = −4.87592× 109 + 2.31914× 1011e−e

(
4.98913×1014−ω

3.06452×1014

)

4.88724× 109e−e

(
−2.6278×10−8−t

5.00396×10−9

)

−2.31762× 1011e

−e
(

4.98913×1014−ω

3.06452×1014

)
− e

(
−2.6278×10−8−t

5.00396×10−9

)

ω = 4.0× 1014 − 6.0× 1014 (Hz)

t = 20nm−50nm

β = −1.12192× 106 + 8.92744× 109e−e

(
1.63305×1015−ω

7.77546×1014

)

1.71474× 107e−e

(
2.54566×10−8−t

3.20063×10−8

)

−9.24941× 109e

−e
(

1.63305×1015−ω

7.77546×1014

)
− e

(
2.54566×10−8−t

3.20063×10−8

)

ω = 4.0× 1014 − 6.0× 1014 (Hz)
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t = 5nm−20nm

β = 5.5263× 107 + 5.33629× 1010e−e

(
1.52435×1015−ω

5.03452×1014

)

2.58337× 108e−e

(
4.26971×10−9−t

−7.10258×10−9

)

4.69963× 1011e

−e
(

1.52435×1015−ω

5.03452×1014

)
− e

(
4.26971×10−9−t

−7.10258×10−9

)

Dielectric core n = 3.5

ω = 2.7× 1014 − 5.0× 1014 (Hz)

t = 100nm−300nm

β = 7.70898× 106 + 8.58092× 109e−e

(
2.04069×1015−ω

9.57004×1014

)

−4.78262× 106e−e

(
3.83384×10−7−t

1.54557×10−8

)

5.36255× 107e

−e
(

2.04069×1015−ω

9.57004×1014

)
− e

(
3.83384×10−7−t

1.54557×10−8

)

ω = 5.0× 1014 − 5.5× 1014 (Hz)

t = 100nm−300nm

β = 6.63587× 107 + 1.37356× 109e−e

(
6.35074×1014−ω

7.67264×1013

)

−7.41799× 107e−e

(
3.61797×10−7−t

1.37614×10−9

)

1.03749× 109e

−e
(

6.35074×1014−ω

7.67264×1013

)
− e

(
3.61797×10−7−t

1.37614×10−9

)
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ω = 2.5× 1014 − 4.8× 1014 (Hz)

t = 40nm−100nm

β = −5.45379× 106 + 1.20082× 1010e−e

(
2.82914×1015−ω

1.46163×1013

)

1.0073× 106e−e

(
4.9367×10−8−t

1.86263×10−8

)

−2.86019× 109e

−e
(

2.82914×1015−ω

1.46163×1015

)
− e

(
4.9367×10−8−t

1.86263×10−8

)

ω = 4.8× 1014 − 5.5× 1014 (Hz)

t = 40nm−100nm

β = 7.1167× 107 + 4.42601× 109e−e

(
7.71803×1014−ω

1.53727×1014

)

−1.71814× 107e−e

(
5.16071×10−8−t

1.40188×10−8

)

5.46782× 108e

−e
(

7.71803×1014−ω

1.53727×1014

)
− e

(
5.16071×10−8−t

1.40188×10−8

)

ω = 2.5× 1014 − 5× 1014 (Hz)

t = 20nm−40nm

β = −1.16087× 108 + 4.21399× 109e−e

(
1.86309×1015−ω

1.3616×1015

)

1.55129× 108e−e

(
2.81664×10−8−t

4.13305×10−8

)

−5.06593× 109e

−e
(

1.86309×1015−ω

1.3616×1015

)
− e

(
2.81664×10−8−t

4.13305×10−8

)
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ω = 5× 1014 − 5.5× 1014 (Hz)

t = 20nm−40nm

β = 1.06796× 108 + 1.6759× 109e−e

(
6.72104×1014−ω

1.53218×1014

)

−1.49326× 108e−e

(
2.93069×10−8−t

5.06187×10−8

)

−1.87427× 109e

−e
(

6.72104×1014−ω

1.53218×1014

)
− e

(
2.93069×10−8−t

5.06187×10−8

)

ω = 2.5× 1014 − 4.5× 1014 (Hz)

t = 20nm−40nm

β = 9.25716× 106 + 1.19191× 109e−e

(
1.06392×1015−ω

6.14568×1014

)

−9.9057× 107e−e

(
4.14344×10−9−t

−7.18321×10−9

)

9.86027× 109e

−e
(

1.06392×1015−ω

6.14568×1014

)
− e

(
4.14344×10−9−t

−7.18321×10−9

)

ω = 4.5× 1014 − 5.5× 1014 (Hz)

t = 20nm−40nm

β = 8.62397× 107 + 6.48528× 1010e−e

(
1.05886×1015−ω

2.73221×1014

)

5.25007× 108e−e

(
4.28125×10−9−t

−7.07869×10−9

)

5.17244× 1011e

−e
(

1.05886×1015−ω

2.73221×1014

)
− e

(
4.28125×10−9−t

−7.07869×10−9

)
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TM1 Mode in a Silver-Dielectric-Silver Waveguide

We obtain piece-wise fit functions to the dispersion relations of the TM1

mode over frequencies where it is propagative. The fit functions for the TM1

mode can be given for different dielectric cores as:

Dielectric core n = 1.0

For,

ω = 4.5× 1014 − 9× 1014 (Hz)

t = 660− 800 nm

β = −6.93061× 107 + 9.10218× 10−8ω + 1.06405× 1014t

−1.48057× 10−23ω2 − 4.17409× 1019t2 − 0.05735ωt.

ω = 6× 1014 − 9× 1014 (Hz)

t = 600− 660 nm

β = −9.92251× 107 + 1.33067× 10−7ω + 1.60785× 1014t

−2.94254× 10−23ω2 − 6.51506× 1019t2 − 0.0959ωt.

ω = 7.5× 1014 − 9× 1014 (Hz)

t = 400− 660 nm
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β = −9.92251× 107 + 1.33067× 10−7ω + 1.60785× 1014t

−2.94254× 10−23ω2 − 6.51506× 1019t2 − 0.0959ωt.

Dielectric core n = 1.5

For,

ω = 4× 1014 − 9× 1014 (Hz)

t = 550− 750 nm

β = −3.97487× 107 + 8.22517× 10−8ω + 5.71795× 1013t

−1.84235× 10−23ω2 − 2.3324× 1019t2 − 0.03228ωt.

ω = 6× 1014 − 9× 1014 (Hz)

t = 350− 550 nm

β = −9.96598× 107 + 1.63938× 10−7ω + 1.89559× 1014t

−4.68169× 10−23ω2 − 9.59265× 1019t2 − 0.12007ωt.

Dielectric core n = 2.0

For,

ω = 4× 1014 − 9× 1014 (Hz)

t = 450− 750 nm
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β = −2.86733× 107 + 7.95334× 10−8ω + 4.39631× 1013t

−1.4343× 10−23ω2 − 1.93033× 1019t2 − 0.02472ωt.

ω = 4× 1014 − 9× 1014 (Hz)

t = 350− 450 nm

β = −1.14088× 108 + 1.82421× 10−7ω + 3.03427× 1014t

−4.46102× 10−23ω2 − 2.1498× 1020t2 − 0.17968ωt.

Dielectric core n = 2.5

For,

ω = 4× 1014 − 9× 1014 (Hz)

t = 450− 800 nm

β = −1.55081× 107 + 7.18463× 10−8ω + 2.4086× 1013t

−7.46259× 10−24ω2 − 1.08697× 1019t2 − 0.0126ωt.

ω = 4× 1014 − 9× 1014 (Hz)

t = 350− 450 nm

119



TM1 Mode in a Silver-Dielectric-Silver Waveguide

β = −4.44726× 107 + 1.09333× 10−7ω + 1.05957× 1014t

−2.16556× 10−23ω2 − 7.31737× 1019t2 − 0.05808ωt.

Dielectric core n = 3.0

For,

ω = 4× 1014 − 9× 1014 (Hz)

t = 400− 800 nm

β = −1.22715× 107 + 7.75821× 10−8ω + 2.04492× 1013t

−5.59765× 10−24ω2 − 9.94216× 1018t2 − 0.00996ωt.

ω = 4× 1014 − 9× 1014 (Hz)

t = 300− 400 nm

β = −3.53474× 107 + 1.0746× 10−7ω + 9.04739× 1013t

−1.71373× 10−23ω2 − 6.74423× 1019t2 − 0.04795ωt.

Dielectric core n = 3.5

For,

ω = 4× 1014 − 9× 1014 (Hz)

t = 450− 800 nm
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β = −8.39088× 106 + 8.26824× 10−8ω + 1.43673× 1013t

−3.46659× 10−24ω2 − 7.20406× 1018t2 − 0.00639ωt.

ω = 4× 1014 − 9× 1014 (Hz)

t = 300− 450 nm

β = −2.24798× 107 + 9.9966× 10−8ω + 5.86262× 1013t

−1.00665× 10−23ω2 − 4.49514× 1019t2 − 0.02861ωt.
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