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Abstract 
 

Repositioning existing drugs for new therapeutic uses is an efficient approach to drug 

discovery. However, most successful repositioning cases to date have been serendipitous; the 

goal of my thesis was to use computational methods to rationally discover drug repositioning 

candidates.  

 

I first virtually screened (VS) 4621 drugs against 252 drug targets with molecular docking. 

This method emphasized removing potential false positives using stringent criteria from 

known interaction docking, consensus scores, and rank information. Published literature 

indicated experimental evidence for 31 top predicted interactions, supporting the approach. 

The chemotherapeutic nilotinib was validated as a potent MAPK14 inhibitor in vitro (IC50 

40nM), suggesting a potential use in inflammatory diseases.  

 

I then applied this method to the cancer target EGFR, predicting the anti-HIV drug tenofovir 

disoproxil fumarate (TDF) as a novel inhibitor. In vitro, TDF inhibited the proliferation and 

EGFR-signaling of an EGFR-overexpressing cell line, but did not inhibit EGFR in direct 

kinase binding assays. This study highlighted limitations of computational and experimental 

methodologies that should be considered when interpreting or designing other studies. 

 

We then screened 1,120 off-patent drugs against the triple-negative breast cancer (TNBC) 

target p90RSK using both VS and high-throughput (HTS) methods. VS predicted a set of 

compounds 26-times enriched for known RSK inhibitors and 11 times enriched for HTS hits, 

underscoring its efficiency. In secondary screens, the chemotherapeutic ellipticine and the 

bioflavonoids luteolin and apigenin inhibited RSK activity (IC50 0.50-4.77µM), blocked RSK 

signaling, and inhibited TNBC cell proliferation. These drugs thus have potential to be 

repositioned to TNBC. 

 

Finally, we rationally repositioned renal cell carcinoma drugs for a patient with a rare tongue 

adenocarcinoma. Whole genome and transcriptome sequencing of the patient’s tumor and 

normal cells detected sequence, copy number, and expression aberrations, and analysis 
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suggested that the tumor was driven by the RET oncogene. Treatment with RET-inhibiting 

drugs stabilized the disease for eight months, after which the disease progressed. We also 

sequenced the post-treatment tumor and found changes consistent with acquired therapeutic 

resistance. 

 

Overall, this thesis details two novel high-throughput approaches for drug repositioning: 

virtual screening of drugs and targets and personalized medicine via sequencing. 
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Preface 
 

The work presented in this thesis included contributions from many, as mentioned below. 

 

I conceived and conducted the work in Chapter 2, guided by my supervisor, Steven Jones. 

Jianghong An aided the method design discussions, especially regarding technical issues of 

the ICM software. I drafted the manuscript, which was edited and refined by Steven Jones 

and Jianghong An. 

 

The work presented in Chapter 3 was a combination of computational prediction and 

biological validation. I conducted all the analysis and labwork and Dr. Steven Jones 

supervised the overall study. Dr. Sandra Dunn at the Child and Family Research Institute 

guided the experimental design. Anna Stratford aided me in learning and performing the 

labwork. Kaiji Hu operated the Cellomics high-content screening machinery.  I drafted the 

manuscript; Drs. Jones, Dunn, and Stratford helped edit and refine the text. 

 

Chapter 4 was also in collaboration with Dr. Dunn’s lab. I conceived and conducted all the 

computational analysis in this chapter, supervised by Drs. Jones and Dunn. Jennifer Law, 

Kristin Reipas, and Amarpal Cheema performed the experimental aspects of the study. I also 

aided in preparing and revising the manuscript. 

 

Chapter 5 is the result of a large collaboration between Canada’s Michael Smith Genome 

Sciences Centre, led by Steven Jones and Marco Marra, and Janessa Laskin, a clinician 

scientist at the BC Cancer Agency. They participated in the experimental design, analysis 

and drafting the manuscript. Ethics approval for this research was granted by the BC Cancer 

Agency Research Ethids Board, certificate number: H10-01869. I designed and performed all 

the computational drug analysis under the guidance of my supervisor, conceiving the list of 

recommended therapeutics (Table 5.3, 5.4 and 5.5). I researched the literature to generate 

hypothetical cancer signaling pathways for the two tumors (Figure 4.3). I also created Figure 

5.1. I worked with various datasets obtained GSC members and assisted Obi Griffith with 

designing the gene expression analysis. Finally, I, Obi Griffith, Yaron Butterfield, Richard 
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Corbett and Inanc Birol, undertook analysis and aided in manuscript preparation. Jianghong 

An, Misha Bilenky, Timothee Cezard, Eric Chuah, Anthony Fejes, Malachi Griffith, Ryan 

Morin, Sohrab Shah, Nina Thiessen, and Richard Varhol contributed to the computational 
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Yongjun Zhao, Richard Moore, Martin Hirst and Robert Holt conducted the molecular 
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 1 

1     Introduction 
 

1.1 History of drug discovery and motivation for drug repositioning 

Drug discovery is the process by which chemical substances are developed to treat diseases. 

Historically, natural product extracts from plants, animals, and minerals were used. With 

progress in chemistry in the 19th century, researchers started isolating active substances from 

the extracts: the precursor of aspirin was extracted from willow tree bark [3], the antibiotic 

penicillin from bread mold [4], and the painkillers morphine and codeine from the opium 

poppy [5]. However, finding effective natural sources relied heavily upon serendipity. For 

instance, the discovery of dicoumarol as an anticoagulant stemmed from farmers finding that 

their cattle died from internal hemorrhaging after ingesting rotten sweet clover [6]. The 

advent of biochemistry in the 1930’s introduced the concepts of enzymes and receptors and 

their potential as drug targets, leading to targeted drugs like monoclonal antibodies [7]. The 

field of molecular biology brought greater understanding of disease mechanisms at the 

molecular level, such as the cancer causing mutations in RAS and P53, overexpression of 

HER2, and translocation of BCR and ABL [8]. This knowledge has led to a more rational 

approach towards drug discovery, where drug candidates are obtained by screening 

chemicals against a target known to play a role in disease. The development of X-ray 

crystallography has allowed us to determine the 3-dimensional structures of proteins at 

atomic resolution, launching the more recent field of structure-based-drug-design (SBDD). 

Notable drugs that have been developed through SBDD approaches include Viracept for 

AIDS and Relenza for influenza [9]. With the completion of the Human Genome Project 

leading to an increase in the number of drug targets, modern drug discovery has also 

expanded to include quality-of-life drugs including sildenafil for erectile dysfunction and 

statins for obesity.  

 

The rate of new drug approval has remained relatively constant in the past 60 years, with just 

20-30 new drugs approved per year [10]. However, recent productivity charts have shown 

tremendous increases in expenditure. In 2006, large pharmaceutical companies spent $92 

billion researching and developing only 22 new drugs [11]. The average time and cost to 

discover one successful new drug and bring it to market is currently estimated at $1.78 
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billion USD and 13.5 years [12] – a staggering value that does not even include the time and 

cost involved to identify and validate the target. In the standard drug discovery pipeline 

(Figure 1.1a), clinical trials development is the most time consuming (5-6 years) and 

expensive step (63% of the overall cost [12]). Moreover, only 11% of potential drugs 

entering clinical trials have a chance of successfully continuing on to US Food & Drug 

Administration (FDA) approval [13]. The inefficiency of pharmaceutical drug development 

has been widely discussed [10-18].  

 

Drug repositioning is the process of finding new therapeutic uses for existing drugs, outside 

of their original medical indications. This is an efficient approach to discovery (Figure 1.1b), 

since existing drugs are already optimized to their target, have extensive absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) data, and are less likely to fail 

clinical trials due to adverse effects [15]. To date, most repositioned drugs have been 

discovered through serendipitous observations: sildenafil was first developed for angina but 

later approved for erectile dysfunction; thalidomide was first marketed for morning sickness 

and later for leprosy and multiple myeloma [15]. Rationally repositioned drugs also exist. 

The most well known example is imatinib, first approved for chronic myeloid leukemia 

(CML) due to its inhibition of the BCR-ABL fusion protein and later approved for 

gastrointestinal stromal tumor due to its potent inhibition of KIT [19]. A second example is 

duloxetine, which was developed to treat depression but later marketed for stress urinary 

incontinence based on a shared mechanism of action between the two diseases [15]. With the 

increasing catalog of validated drug targets and drug molecules, opportunities for elucidating 

novel drug-target, drug-mechanism, or target-disease relationships are also rising. These 

relationships form a basis from which repositioning hypotheses can be made. 

 

1.2 Drug discovery 

1.2.1 Drugs and drug targets 

For purposes of this thesis, drugs are molecular structures that can alter the biological activity 

of living systems for medicinal purposes. Targets are molecular structures that interact with 

these drugs, and their change in activity upon drug-binding is used for medicinal purposes 
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[20]. These medicinal purposes encompass the treating, diagnosing, and preventing of 

disease.   

 

There are many types of drugs currently being developed: small molecules, peptides, 

proteins, antibodies, oligonucleotides, and aptamers. Drugs approved by the FDA since the 

1950’s have predominantly been small molecules, accounting for 1,103 of 1,222 drugs [10]. 

Antibodies comprise the majority of the other 119, but while they are highly specific to their 

target, they only target cell surface and secreted proteins. In addition, the large size of 

antibodies (approximately 150kDa) compared to small molecule drugs (approximately 500 

Da) introduces difficulties in tissue penetration, blood clearance, and high production costs 

[21, 22]. Of small molecule drugs, inhibitors are a much more attractive option than agonists 

because designing a chemical to cause loss-of-function is a much simpler task than causing 

gain-of-function. Small molecule drugs also tend to target protein active sites or cofactor-

binding sites rather than protein-protein binding sites, as the latter are generally flat and open 

[23] and form binding interactions through large interfacial areas with many hydrophobic 

residues [24]. In contrast, protein-ligand binding usually involves a deep cavity as well as a 

few strong hydrogen bonds and electrostatic interactions. 

 

Four types of drug targets are targetable by small molecule drugs: proteins, nucleic acids, 

polysaccharides, and lipids. Much effort has been invested in studying the ‘druggable 

genome’ – the proteins in the genome that have the potential to interact with drugs. A ligand-

binding analysis in 2002 estimated 399 existing targets and ~3000 druggable targets [25]. In 

2007, Imming et al. estimated 218 drug targets based on marketed drug information [20]. 

The latest version of DrugBank, a curated open-access database with drug-target interactions 

culled from the literature, contains 4,326 unique targets, of which 1,768 are targets of FDA 

approved drugs. However, it should be noted that the DrugBank targets are not necessarily 

involved in disease, but just physically interact with the drugs. Within the established drug 

targets, protein families with more than 40% of marketed drugs include G-protein coupled 

receptors and ion channels [26]. Kinases are a popular target for cancer therapy – kinase 

inhibitors being the largest class of new cancer drugs – not only due to their involvement in 

cell growth, proliferation, and survival, but also because they are frequently mutated in 
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cancers [27]. Establishing a protein as a therapeutically relevant drug target is a difficult task 

due to the tremendous amount of in vitro and in vivo research involved. There is added 

challenge in proving the effectiveness of a target in terms of the safety and efficacy profiles 

in clinical trials. On average, only 5.3 new targets accompany approved drugs each year [26]. 

 

1.2.2 Fundamental approaches to drug discovery 

Classical drug discovery employs a forward pharmacology approach. Compounds with 

biological activity are first discovered, and extensive research follows to determine the 

compounds’ molecular targets and mechanism of action [28]. For example, siacylic acid (the 

precursor of aspirin) was used to treat arthritis in the 1870’s, but its inhibition of 

cyclooxygenases was not revealed until the late 1970’s [29]. Another instance is the class of 

fluoroquinolone antimicrobial agents. The first generation compound nalidixic acid was 

discovered in 1962 and its DNA gyrase inhibition mechanism was delineated ten years later 

[30]. It was not until the 1990’s that the other major target of these compounds was 

determined to be topoisomerase IV [31]. One current approach to forward pharmacology 

approach is high-content screening (HCS), where phenotypic screening of compound 

libraries or natural product extracts is conducted on cell lines or other organisms with 

quantifiable phenotype changes [32]. Subsequent determination of how a drug works at the 

molecular level is a challenging task; to date, there are at least 30 marketed drugs with 

unknown mechanisms of action [20]. 

 

The reverse pharmacology approach relies on first identifying a molecular target, and then 

finding a drug that affects the target’s molecular function [28]. An example of this approach 

is high-throughput screening (HTS), where large chemical repositories are tested against a 

specific target in vitro, to find chemicals that modulate the target’s biological activity. The 

majority of HTS systems assay for a purified protein’s enzymatic activity, though HTS can 

also measure the activity of signaling transduction pathways either isolated or in cellular 

environments. Current technology can test 100,000 compounds per day using automated 

robotic systems [33]. Compounds showing activity then undergo validation assays and 

animal model studies, to confirm whether their biological activities are indeed due to 

inhibition of the target. Reverse discovery has been the conventional strategy for the past few 
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decades; however, this approach requires a deep understanding of the biological activity of 

target proteins.  

 

1.2.3 From the magic bullet to the multi-target paradigm 

The concept of ‘magic bullets,’ drugs that bind directly to a single molecular disease target, 

was first postulated by Paul Erlich in the late 19th century [34]. This “one-drug one-target 

one-disease” strategy has driven much of drug discovery in the late 20th century, and has 

resulted in successful targeted therapies. The most well known examples are the antibody 

Herceptin for HER2-positive breast cancer, the antibody Rituxan for non-Hodgkin’s 

lymphoma, and the small molecule imatinib for CML [35]. For diseases where a single 

protein is known to be the unique driving aberration - such as the fusion protein BCR-ABL in 

CML [36] - the monotherapy approach has proven effective. However, many diseases are 

caused by multiple molecular aberrations, including certain cancers, noninsulin dependent 

diabetes mellitus, and Alzheimer’s [37]. In addition, the majority of human cancers exhibit 

extensive molecular and phenotypic heterogeneity [38]. For these ‘complex’ diseases, where 

the cause is not any single defect, multiple proteins must be targeted concurrently.  

 

There are two types of multi-targeting approaches. The first is to use a combination therapy 

of multiple approved drugs. This strategy has already been implemented for acquired 

immunodeficiency syndrome (AIDS) through HAART (highly active antiretroviral therapy). 

One widely used treatment, ATRIPLA, is a cocktail of the nucleotide reverse transcriptase 

inhibitor (RTI) tenofovir disoproxil fumarate, the nucleoside RTI emtricitabine, and the non-

nucleoside RTI efavirenz [39] – three inhibitors that target the human immunodeficiency 

virus (HIV) through distinct mechanisms. The second multi-targeting approach is to use a 

single drug that simultaneously inhibits several different targets – that is, a drug with 

clinically relevant polypharmacology [26]. Many antipsychotic drugs fall into this category, 

such as Clozaril, a multi-targeting drug used to treat schizophrenia. Unexpectedly, Clozaril 

showed less efficacy when chemical modifications were made to improve its specificity [40]. 

Sunitinib is a kinase cancer drug with a large number of targets known to be involved in cell 

proliferation, angiogenesis, and the tumor microenvironment. It was found to be more 

effective than single-target drugs in mouse xenograft models, and had a cumulative anti-
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tumor efficacy similar to combining the single-target drugs [41]. These examples have 

demonstrated that targeting multiple proteins is an effective strategy for complex diseases. 

 

1.2.4 Drug polypharmacology 

A growing body of evidence suggests that small molecule drugs have extensive 

polypharmacologies. This is well illustrated in the case of ATP-competitive inhibitors of the 

kinase family, since every kinase has an ATP-binding domain. Fabian et al. tested 20 kinase 

inhibitors in ATP-competitive assays against a panel of 119 kinase proteins, and showed that 

the kinase drugs inhibited many more proteins than expected [42]. Sunitinib at 10µM showed 

inhibition to 79 of 119 kinases tested, though it had ten-fold stronger binding to its four 

intended targets than to any other off-target. Vandetanib inhibited 50 of 119 kinases, but 

showed only two-fold stronger binding to its two intended targets. Brehmer et al. washed cell 

lysate extracts over a bead column fixed with gefitinib, and discovered 26 proteins binding to 

this EGFR-specific drug [43]. The non-steroidal anti-inflammatory drug (NSAID) celecoxib 

is a selective COX-2 inhibitor, preventing the production of prostaglandins that cause pain 

and inflammation. It also is a nanomolar inhibitor of carbonic anhydrase II [44] and exhibits 

in vitro and in vivo inhibition of 5-lipoxygenase (5-LO), though at a micromolar potency 

[45]. This is may account for some of the COX-2-independent effects of celecoxib, as 5-LO 

is also involved in inflammation through a parallel pathway to COX-2 [46].  

 

Drug polypharmacology can also be an undesirable phenomenon. A number of diverse drugs, 

including the serotonergic 5-HT4 receptor agonist cisapride, the histamine H1 receptor 

inhibitors astemizole and terfenadine, and the antibacterial drug grepafloxacin, were 
withdrawn from the market due to causing an increased risk of life-threatening ventricular 
arrhythmias [47]. This adverse effect was found to be due inhibition of hERG potassium 
channel, a key protein in cardiac repolarization and a target shared between all four drugs.  

 

In light of this evidence, several recent studies have analyzed the drug-target space. Paolini et 

al. created a human pharmacology interaction network connecting proteins that have one or 

more chemical binders in common (Figure 1.2) [48]. In their database of 276,122 active 

compounds, 35% were observed to hit more than one target. Though the majority of 
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compounds only bound to targets in the same gene family, 25% were ‘promiscuous’ 

compounds that also bound targets from different gene families. A second study by Yildirim 

et al. mapped the network for existing drugs and found 305 out of the 395 drug targets were 

linked by multi-targeting drugs [49]. Mestres et al. consolidated seven drug-target interaction 

databases, creating an interaction network between 802 drugs and 480 targets, and found that 

on average each drug interacted with six different targets [50]. 

 

During the drug development process, candidate drugs are routinely tested against a small 

panel of proteins that are similar to their intended target. However, more and more studies 

are demonstrating that small protein panels are no longer sufficient for assessing drug 

specificity, particularly in the case of kinase drugs. Though the prospect of finding multi-

targeting drugs is attractive, the actual implementation is a more complicated endeavour. 

Drugs will have to be screened against multiple targets at a time, and specific combinations 

of target affinities must be attained. Though high-throughput assays for over 317 kinases 

have been developed [51], assays are lacking for other protein families. An even more 

challenging task is determining which set of targets will be optimal in a given disease. In 

short, to approach multi-target drug discovery in a rational manner, more information about 

targets and their pathways in diseases must first be elucidated.  

 

1.3 Computational drug discovery 

Computational methods are an integral part of drug discovery. Broadly, they are used to 

predict novel drug targets, protein-ligand binding, perform virtual library screening to find 

novel compounds, optimize the efficacy of lead compounds, perform de novo design of novel 

drugs, predict drug properties like ADMET or potential drug-drug interactions [52]. Even for 

experimental methods like X-ray crystallography or high-throughput assays, computational 

methods are necessary for structure refinement or data collection and correction. Much of the 

research conducted in the field of computer-based drug discovery (CBDD) overlaps with 

chemoinformatics, the field where informatics methods are applied to chemistry problems. In 

this section, computational methods for finding novel drug candidates are discussed, with 

particular focus on molecular docking methods. 
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1.3.1 Overview of current approaches  

There are two main types of computational methods for finding novel ligands for protein 

targets: ligand-based and structure-based methods. Ligand-based methods rely on the 

knowledge of a set of ligands that bind to a biological target of interest. From that list, a 

quantitative structure-activity relationship (QSAR) can be derived between activity and 

ligand structure (2D, 3D, or ligand molecular properties such as charge or melting point) 

[53]. Pharmacophore models can also be constructed relating ligand activity to their 

functional groups [52]. If the 3-dimensional structure of a protein is available, structure-

based methods can be applied. One technique is molecular docking, where a small molecule 

ligand is rendered flexible and fitted into a protein binding site in 3-dimensional space. The 

‘best fitting’ conformation of the ligand is determined, and the likelihood of the binding 

interaction is reported as a score. Beyond docking, molecular dynamics is a computationally 

intensive method that uses classical force fields to model a protein-ligand binding in full 

aqueous surroundings, sampling of all degrees of freedom, for a snapshot in time 

(nanoseconds) [52]. Finally, de novo drug design attempts to incrementally construct a 

chemical that can inhibit the target binding site from scratch [54]. This can result in novel 

chemotypes and binding scaffolds; however, the predicted chemicals are not always readily 

synthesizable. Of the three methods, docking is the most common method used in high-

throughput virtual screening (VS) due to its high speed, low cost, and software availability. 

Docking was also the method of choice in this thesis, and is described in detail in the 

following sections. 

 
1.3.1.1 Virtual screening versus experimental screening 

Screening large databases of small molecules to find one that binds to a drug target is 

analogous to finding a needle in a haystack. Current technologies include experimental 

(HTS) and computational (VS) approaches, each with benefits and limitations. 

 

Due its computational and predictive nature, VS methods are often regarded as inferior to 

HTS in the search for novel compounds. However, HTS methods also produce noisy 

readouts with false positives and false negatives and with significant assay variability. 
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Sources of HTS errors fall into three categories: logistic, measurement, or strategic errors 

[55]. Logistic errors are caused by 1) human error such as assigning incorrect information to 

a compound, 2) intrinsic compound properties such as stability and solubility in solvent, 3) 

aggregation, 4) purity, or 5) solvent properties such as evaporation during the experiment 

[55]. In particular, aggregation occurs when compounds form colloidal aggregates during the 

assay and indiscriminately inhibit enzymes [56]. Also, fluorescent molecules can interfere 

with the fluorescence reading of the assay. Measurement errors can include imperfect 

pipetting, temperature gradients, time sequence of processing plates – errors that can be 

multiplied in high-throughput assays [55, 57]. Lastly, strategic errors can be caused by the 

assay design, such as whether assay measurements are performed sequentially or in parallel, 

whether compounds are tested one by one or in a mixture, and inter- or intra- assay 

variability. Of the artifacts listed, one study found that aggregates caused over 90% of the 

false positive hits selected by high-throughput assays [58, 59].  

 

One advantage of HTS is the ability to screen natural product extracts, as the compound 

structures in the extracts are often undetermined and thus not available for docking. Natural 

products are also attractive to pharmaceutical companies as a source of novel chemical 

scaffolds and thus potential intellectual property (IP). However, these benefits are balanced 

by many difficulties leading to high time and cost requirements: 1) natural product 

compounds often have complex structures that are infeasible to synthesize, 2) natural product 

sources are limited and may become extinct, 3) the active compound(s) in an extract need to 

be singled out and elucidated, 4) interesting compounds in the extract may be in 

concentrations too low to be detected in the screen, and 5) the novel compound discovered 

may not be patentable due to the IPs of local governments [60, 61]. In comparison, VS 

methods work with known compound structures for which synthesis methods, toxic chemical 

moieties, and other drug-like characteristics can be readily assessed. 

 

There are numerous studies comparing virtual and experimental screening. Edwards et al. 

docked ~480,000 small molecules to a GPCR, and then tested a subset of ~4,300 in a high-

throughput flow-cytometry platform to measure protein binding [62]. They found a 1.2% hit 

rate for virtual screening which was 12-fold better than physical screening. Polgar et al. 
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docked ~5300 compounds to GSK3B using FlexX and screened ~16,000 molecules using a 

robotic AssayStation and found that the VS hit rate of 12.9% was much higher than the 

0.55% hit rate of HTS [63]. Paiva et al. used the Merck chemical collection for both 

screenings and found that VS and HTS gave hit rates of 6% and 0.2%, respectively [64]. 

Doman et al. docked 235,000 commercially available compounds to PTP1B and concurrently 

screened a 400,000 compound corporate library using HTS compounds [65]. The top 365 

docked compounds were tested in enzymatic assays and 127 (35%) exhibited some inhibition 

of PTP1B. In comparison, the HTS screen had a much lower hit rate with only 85 (0.021%) 

compounds showing inhibition. The two lists of experimentally validated PTP1B inhibitors 

were very different from each other, suggesting that VS and HTS may be complementary 

methods. In short, VS is a fast and cost-effective method of screening chemicals, and is a 

complementary method to HTS. VS has proven to be valuable in selecting a smaller subset of 

the chemical library with a higher percentage of active compounds. In the following sections, 

the basics of VS by molecular docking are described in detail. 

 

1.3.2 Molecular docking 

Molecular docking is a process that simulates how a small molecule (ligand) interacts with a 

protein-target binding site (receptor), in terms of a binding conformation and a binding score 

[1]. A basic docking protocol is shown in Figure 1.3. First, a 3-dimensional structure of the 

target protein is obtained. Then, the binding site of interest in the protein is designated. Third, 

a ligand is fitted into the binding site and the most likely ligand binding conformation is 

selected. Fourth, an overall score is calculated for the protein-ligand docking based on the 

best conformation. In a virtual screening (VS) procedure, a large compound database is 

docked one-by-one to the target protein. The scores of all ligands are collected and ranked, 

after which the most likely binding candidates are selected by visual inspection of the 

predicted binding conformations. Candidates are then tested experimentally to determine 

their ability to inhibit the target protein. Molecular docking has been used to successfully 

discover novel ligands for a wide variety of drug targets (compounds for over 20 targets just 

from 2007 to mid-2009 are reviewed in [66]). 
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1.3.2.1 Obtaining a protein 3D structure 

The starting point of structure-based drug design is a 3-dimensional protein structure, which 

can be attained using experimental or computational methods. The two prevalent 

experimental methods today are X-ray crystallography and nuclear magnetic resonance 

(NMR), which account for 87% and 12% of existing structures, respectively [67]. In X-ray 

crystallography, the protein is suspended in solution and crystallized. X-rays are then beamed 

at the crystals and the scattering pattern is used to determine the electron densities in the 

crystal. These data are assembled into a 3-dimensional structure, to a resolution of 1.5-3Å 

[68]. In NMR, strong oscillating magnetic fields are applied to stimulate proton nuclei. The 

chemical shifts of 1H, 13C, and 15N protons are mapped out and used to reverse engineer the 

protein structure. These two methods have distinct advantages and disadvantages. X-ray 

methods can determine the structure of any size of protein to a high resolution as long as 

suitable crystals can be formed, whereas NMR methods are limited to proteins 5-30 kDa in 

size and resolutions of 2-10Å but can observe the flexibility and motion of the protein in 

solution [69]. Though NMR structure resolutions can be improved with computational 

strategies [70], the general consensus is that X-ray structures are better in quality due to 

higher experimental data-content and atomic resolution [71].  

 

If the crystal structure of a protein is not available, a comparative (or homology) model of the 

structure can be built using the existing structure of a similar protein. If the sequence identity 

between the two proteins is over 50%, an accurate model can be built (~1Å alpha-carbon 

atom root-mean-square-deviation (RMSD) from an existing experimental structure) [72]. A 

sequence identity of 30-50% may result in a model with 2-3Å RMSD, while any sequence 

identity under 30% is not recommended for modeling [72]. Previous analyses have suggested 

that homology models are useful for virtual screening studies [73, 74]. Specifically, a 

systematic study showed that docking to homology models is often just as successful as 

docking to the structure template [75]. 

 

A comprehensive resource for protein 3-dimensional structures is the Protein Data Bank [76], 

which currently houses over 67,000 experimentally determined protein structures [67]. The 
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number of deposited structures has grown rapidly compared to only 772 structures solved 

from 1976 to 1992. As more drug target structures become available, the utility of docking in 

SBDD increases correspondingly. 

 

1.3.2.2 Docking preparation steps 

Prior to docking, the quality of the protein structure should be considered. Whether an X-ray 

structure, NMR structure, or homology model, the resolution of the structure and presence of 

gaps in the structure are important considerations. Errors in the structure may have occurred 

during structure deposition and should be noted. Hydrogen atoms must be added to the 

structure and optimized, since the resolutions of current protein structures are not yet 

powerful enough to accurately place hydrogen atoms.  

 

The binding sites in a protein can be determined using the knowledge of an existing ligand-

bound structure, experimental active site mutation data, evolutionary inference based on 

sequence alignments of homologous proteins, or a pocket-prediction algorithm on the protein 

structure. The latter is necessary when a protein structure is not bound to any ligands (a holo 

structure); many algorithms have been developed to address this issue (Q-SiteFinder [77], 

PocketFinder [78], PASS [79], to name a few). In addition, pocket search can also identify 

potential allosteric sites (sites other than the active site), which are also viable targets for 

drugs. For example, imatinib binds to an allosteric site in ABL beside the ATP-binding site 

to lock the protein in an inactive conformation [80]. Another ABL inhibitor, GNF-2, binds to 

the myristoyl binding site distant from the ATP-binding site [81, 82].  

 

Compound databases containing millions of compounds are frequently used in VS analyses; 

they may need to be preprocessed to expedite the docking step during VS. Some docking 

methods prefer input ligands to be in an energetically minimized conformation [83] or have 

pre-assigned atom types and charges [84], requiring other software. Also, prior knowledge 

about binders can be used to pre-filter ligands through similarity to known binders or through 

a pharmacophore model. Another common filter is Lipinski’s rule of 5, a set of descriptors 

that describe the range of molecular weights, hydrogen bond donors and acceptors, and 

octanol-water partition coefficients that encompass >90% of existing oral marketed drugs 
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[85]. Ligands that do not have these properties are more likely to have poor absorption and/or 

permeation (i.e. do not possess the ideal properties as a drug), and can thus be eliminated 

from consideration. However, it is important to note that 10% of approved drugs are 

overlooked with this filter. Thus, Lipinki’s rules can be relaxed during VS if  computational 

capacity permits. 

 

With a good quality protein structure, a binding site of interest, and compound structures, 

docking is ready to begin. 

 

1.3.2.3 Docking and scoring methods [1, 2] 

In order to perform VS of millions of compounds, a key criterion for docking processes is 

speed – on the order of seconds to minutes per simulation. One constraint commonly used in 

docking is to keep the protein receptor rigid, under the assumption that ligands are often 

highly flexible and can adapt to complement the receptor site [86]. However, even the 

potential ligand conformational space can be infinite, depending on the number of rotatable 

bonds and how many degrees they are rotated at a time. Thus, heuristic methods were 

developed to provide a fast yet effective sampling of ligand conformational space.  

 

Sampling algorithms fall into two main categories: systematic search algorithms like 

incremental reconstruction and stochastic methods like genetic algorithms or Monte Carlo 

(MC) simulations. Incremental reconstruction is the process of separating the ligand 

molecule into fragments, docking them independently, and merging the fragments back 

together. This can be done by docking the rigid fragment first then adding on flexible 

fragments one by one, or by docking each fragment separately and merging them in the 

binding site. Genetic algorithms generate a collection of starting ligand poses, to which 

‘mutations’ (bond rotation) or ‘crossovers’ (merging two poses) are applied to form new 

poses; this process cycles until the poses have converged. The basis of this method is to 

mimic Darwinian evolution and pick the ‘fittest’ ligand poses. MC methods start from one 

single ligand pose, to which random moves like bond rotation and ligand translocation are 

then applied. The Metropolis criterion is used to evaluate each new pose, and decide whether 

it is acceptable as the starting pose for the next cycle of modification. 
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Scoring functions are used to evaluate the docked ligand conformations and fall into three 

main categories: knowledge-based, empirical, and force-field based. Knowledge-based 

scoring compares the interactions between the protein and the docked ligand to the known 

atom-atom interactions across experimental complex structures in PDB. Empirical methods 

calculate the score as a weighted sum of various terms of protein-ligand interaction potentials 

such as the hydrogen-bonding potential or the electrostatic potential. The weights for these 

functions are determined by training on an existing set of PDB structures. Lastly, force-field 

based methods try to accurately estimate the binding free energy of the protein-ligand 

interaction, using physics-based energy functions.  

 

1.3.2.4 The ICM docking and scoring method  

Here I describe the algorithm of the Internal Coordinate Mechanics (ICM) software [87-90], 

which was used throughout this thesis to perform docking. Briefly, ICM performs global 

optimization of an empirical energy function using a Monte Carlo minimization procedure.  

 

A unique feature of ICM is that ligands are represented by an ‘internal coordinate system’: a 

start point in the ligand is defined arbitrarily, and 4 types of variables (bond lengths, bond 

angles, torsion angles, and phase dihedral angles) for each connecting atom of the ligand are 

defined. Bond lengths and certain bond angles are fixed. In contrast, a Cartesian coordinate 

system requires 7-10 times more variables including degrees of freedom for bond lengths and 

angles, atom coordinates, as well as torsion angles, corresponding exponential increase of the 

ligand conformational space. 

 

At the start of a docking cycle, a random change is applied to the ligand conformation and 

position (Figure 1.4). This can be a single torsion angle change, a Brownian-like random 

change in the ligand rotational and translational movement, or a biased probability ‘random’ 

torsion change that chooses new torsion angles based on the distribution of existing ligand 

conformations in PDB. The new ligand conformation is minimized with a simple scoring 

function, after which a more comprehensive score is determined for the cycle. The 

Metropolis criterion is applied to accept or reject the conformation, and then the system 
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restarts with a random conformation change to the ligand. Briefly, the Metropolis criterion 

states that a new ligand pose with a lower energy should be accepted, but a higher energy 

pose can be accepted if a probability value (dependent upon the energy difference) is larger 

than some random number. The leniency of the probability function can be adjusted prior to 

docking. The cycling stops after a predetermined number of cycles or when the predicted 

ligand conformations converge at an energetic minimum. Though the MC algorithm tries to 

avoid falling into local minimum energies by using the Metropolis Criterion, there is no 

guarantee that the pose is globally minimized. Thus, ICM recommends that dockings should 

be repeated 2-3 times, and the best scoring pose be retained. 

 

The ICM scoring function is a weighted sum of energy terms. A simpler energy function is 

used during the local minimization step, with the following ECEPP/3 energy terms: 

1. van der Waals energy: two atoms near each other will have binding potential, but will 

begin to repel each other as they come too close.  

2. hydrogen bonding energy: a bonding interaction that forms when a hydrogen atom that is 

covalently attached to an electronegative atom (such as nitrogen or oxygen) is attracted to 

another electronegative atom. 

3. Coloumb electrostatic energy: an attractive or repulsive interaction that forms when two 

electrically charged atoms are near each other. 

4. torsion energy: the bond energy, bond angle bending, and improper torsion energies in a 

given ligand conformation.   

 

The more comprehensive scoring function also includes approximations of three energies 

that are computationally expensive and would be rate-limiting during local minimization.  

1. desolvation energy: the energy required to dispel solvent molecules from the binding site 

and break the protein-solvent interactions in order for ligand to bind. 

2. electrostatic polarization energy: the energy caused by reorientation of electronic clouds 

surrounding protein atoms after ligand binding. 

3. side chain entropy: the entropic energy lost by protein side chains when protein atoms are 

bound to ligand atoms.  
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When performing VS of many small molecule ligands against a protein receptor, ICM returns 

a ranked list of the ligands, each with an energy-based score as described above (hereafter 

referred as the icm-score) and a potential of mean force score (pmf-score). The latter is a 

knowledge-based score and its statistical-basis indicates that it is entirely independent from 

the icm-score. ICM recommends the pmf-score for secondary evaluation of the docked 

ligand, though it is not often utilized in published docking studies. 

 

1.3.2.5 Advantages and limitations of docking & virtual screening methods 

Docking methods can help narrow down large chemical libraries to select a smaller subset for 

experimental testing. Its speed and computational nature allow the screening of compounds 

much faster and at much lower cost than experimental screening. The 3-dimensional 

simulation of docking is more thorough than methods that only search for similar binding 

sites or similar chemical structures. In addition, docking can be used to screen compounds 

that are not physically available. Finally, docking delivers the predicted conformation of the 

ligand bound to the protein, which can aid in ligand optimization when combined with SAR 

analyses 

 

However, docking also has limitations along each step of its process. The first factor is initial 

protein structure. Though X-ray crystal structures are considered to be ‘gold-standard,’ 

differing experimental conditions can result in the ligand orientation to be reversed in the 

binding site [106]. Certain characteristics of the protein structure may also be due to its 

crystalline state and may not be representative biologically [68]. Lastly, ambiguities when 

accounting for structural heterogeneity also contribute to the inaccuracy of crystal structures 

[107]. 

 

The binding pocket itself is a potential caveat. Though docking is often used to find 

compounds that bind to established ligand-binding sites, sometimes novel allosteric sites 

need to be predicted and targeted. In such cases, the accuracy of the pocket prediction 

algorithm is crucial, as results from docking to a non-existent protein pocket are of no utility. 
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During docking, the protein structure is kept rigid. However, since both the protein and 

ligand may conform to fit each other during binding, using a protein conformation that is too 

different from the actual conformation may allow true binders to be missed. Murray et al. 

assessed the effect of receptor flexibility by docking a ligand back to its native crystal 

structure and also to other structures of the same protein (these other structures were bound 

to different ligands and thus represented different conformations of the same protein) [108]. 

They found that the success rate of docking decreased from 76% for the native scenario to 

49% in the flexible scenario.  

 

The heuristic sampling method is inherently a limitation since the optimal binding pose can 

be missed. Furthermore, no water molecules or co-factor molecules are taken into account 

during docking unless they are fixed into the binding site beforehand. The aqueous 

environment is important as water molecules often mediate interactions between the protein 

and ligand.  

 

Limitations of scoring functions are also an important issue in molecular docking. During 

docking, inaccurate energy functions can cause the selection of the wrong ligand 

conformation as the best-docked pose. During scoring, empirical functions may fail to score 

accurately if the ligand does not fit the trained score function, and force-field methods may 

fail if the force field parameters are not complete. Even state-of-the-art scoring functions 

cannot correctly predict the binding energies [109]; however, scoring functions are more 

effective when used to select likely binders for further validation, instead of predicting 

precise binding affinities. 

 

Finally, though docking may model the binding interaction that occurs in an in vitro binding 

assay (without protein flexibility, or an aqueous environment), it is still much simpler than 

the binding process when a compound enters a cell. In the latter scenario, the compound may 

have hundreds of thousands of protein binding sites to choose from, some of which (like 

ATP-binding sites) may be very similar to each other.  
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Overall, these weaknesses are important to consider when conducting any docking study. 

They do not undermine the utility of molecular docking methods and VS in drug discovery, 

but speak to the potential for improvement with the improvement of docking algorithms and 

scoring functions. 

 

1.3.2.6 A comparison of popular docking programs 

A review article in 2008 documented over 60 docking programs and 30 scoring functions, 

and many more have been developed to date [91, 92]. However, fewer than 10 are widely 

used [93]; these programs are listed in Table 1.1 with a general description of their sampling 

and scoring methods. AutoDock, Dock, and eHits are free for academic users, which greatly 

increases their usage within academic circles. 

 

Each of these docking programs involves their own software packages, some with very 

powerful molecular viewers and modeling packages. For example, Glide and ICM both have 

a complete desktop modeling environment that can perform energy minimization, multiple 

sequence alignments, homology modeling, among other functionalities. In addition the 

methods of protein-preparation, ligand-preparation, docking settings, and input and output 

formats differ greatly between different programs. To this end, there is a learning curve to 

each program, and experts who know to fine-tune the details can obtain better docking results 

than novice or intermediate users [94].   

 

With the abundance of docking programs, it is not surprising to find many studies comparing 

the speed and accuracy of these programs. 14 of these studies published from 2003-2009 

have been summarized [95]. The gist of such studies is to select a set of 10-200 protein 

complexes (representing around 10 unique protein targets) and compare the docking 

programs based on their ability to: 1) dock the ligand in a correct conformation; 2) score the 

docked ligand reasonably; and/or 3) select the correct ligand(s) out of a library of decoy 

molecules. However, a major limitation to these studies is that they each use a different set of 

docking programs, and a different set of protein and ligand structures as a test set. 
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I review here the studies that assessed ICM, since it was the software used in this thesis. All 

the studies assessed whether the crystallographic pose of a PDB structure complex could be 

reproduced by docking within 2Å RMSD. Perola et al. studied over 200 PDB complexes for 

three protein targets, and found acceptable RMSDs in 61% of cases using Glide, 48% of 

cases using GOLD, and 45% using ICM [96]. Chen et al. tested GLIDE, GOLD, ICM, and 

FlexX on 12 proteins (164 complexes) and found that ICM performed best, correctly docking 

91% of the complexes within 2Å RMSD [97]. GLIDE followed with 73%, GOLD with 55%, 

and FlexX with 43%. Bursulaya et al. chose a set of 37 protein complexes for 11 different 

proteins and found that docking passed the RMSD cut-off in 76% of cases for ICM, 46% for 

GOLD and AutoDock, 35% for FlexX, and 30% for DOCK [98]. Cross et al. performed one 

of the largest studies using 68 diverse structure complexes, and found the RMSDs acceptable 

in 72% of cases for ICM, 69% for Glide, ~55% for DOCK, ~50% for Surflex, and ~45% for 

FlexX [99]. This study also employed the Database of Useful Decoys (DUD) [100], a set of 

40 diverse protein targets with known active compounds and physically similar but 

topologically dissimilar decoy compounds. When calculating the area under the curve (AUC) 

in receiver operating characteristic (ROC) curves, all methods performed better than random 

(AUC=0.5) with AUC values of 0.72 for Glide, 0.66 for Surflex, 0.63 for ICM, and 0.55 for 

DOCK. The Chen et al. study also assessed enrichment factors (EFs) - the ratio between the 

percentage of active compounds in the top X% scoring compounds, and the percentage of 

active compounds in the entire compound set. They found that at X=10 (selecting the top 

10% scoring compounds as predicted binders), ICM had an EF of 6.1, Glide of 4.3, FlexX of 

2.2, and GOLD of 1.71.   

 

The overall consensus is that there is significant variability in VS results [99], as docking 

software performance greatly depends on the chosen target set and its molecular properties. 

However, the commercial software Glide and ICM consistently rank among the best 

performing software based on their docking and scoring accuracy. In contrast, the free 

software DOCK and AutoDock generally do not perform as well in assessment studies. 
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1.3.2.7 Validating docking results 

With the low accuracy of docking predictions, experimental validation of docking predictions 

is essential. In vitro assays generally fall into two categories, target studies and cellular 

studies.  

 

Target-based studies test for a direct binding interaction between the target and ligand. The 

BIACORE method fixes the protein to a surface and washes it with the drug, testing for 

changes in molecular weight to determine if the drug has bound to the protein [101]. Some 

methods measure the change in stability of a drug-bound protein, such as through a shift in 

melting point (thermal shift assays [102]), or through ease of proteolysis (the DARTS - drug 

affinity response target stability method [103]). Enzymatic assays test if the ligand can inhibit 

or increase the enzymatic activity of the target protein. An example would to use a kinase 

protein with a substrate peptide, radio-labeled ATP, and a predicted inhibitor, and seeing if 

adding the inhibitor reduces the output of radio-labelled peptide. The most convincing type 

of validation is solving a crystal structure of the target-ligand complex. However, it is also 

the most difficult to achieve from a time and cost standpoint. 

 

Cell-based studies involve choosing a cell line for which the target is known to play an 

integral factor, or for which the target has been overexpressed. Treating cells with the 

predicted compound in increasing doses should then show the expected phenotype with 

increasing clarity. As a control, cells without the target aberration are used. For example, 

imatinib would kill CML cells but not control ML cells. Affinity pull-down methods fix the 

drug on a column, and wash through cell lysates. Proteins that bind to the drug can then be 

identified using liquid chromatography separation techniques or tandem mass spectrometry 

[43, 104]. Cell-based assays also have the potential to reveal the effect of the ligand on 

pathways through the use of antibody probes, and can give more insight into the molecular 

effect of the ligand. However, cell-based assays may need to be accompanied by biochemical 

binding assays to confirm whether an observed cellular effect is due to inhibition of the 

intended target or an off-target in the cell. 
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In vivo validation in animal models occurs after both the binding interaction and cellular 

effects have been verified. In the case of a tumor, a typical study would be to graft and grow 

the tumor in mice, treat the mice with the drug, and check for shrinkage of the tumor without 

compromising the weight of the mouse. A statistically significant difference in survival 

between test and control mice can be calculated using Kaplan-Meier survival curves. 

 

Each method has its own caveats. In in vitro models, proteins or chemicals are often ‘fixed’ 

to beads or capsids or surfaces in regions that are supposedly not important for binding. 

However, this cannot be guaranteed. In cell-based assays the complexity increases with the 

involvement of the entire cell, and positive results such as cell death could be caused by any 

number of factors. This complexity only increases in in vivo models. 

 

1.3.2.8 Virtual screening resources 

Many resources exist for virtual screening. There are at least 14 publicly available databases 

and six commercial databases of chemical or bioactivity data (reviewed in [105]). 

Furthermore, natural product companies have their own extensive library sets that are 

available by request. Some of the most popular chemical libraries are listed in Table 1.2. The 

increasing size of these libraries underscore the need for docking algorithms to be fast – to 

virtually screen PubChem against one protein binding site using ICM at one minute per target 

would require 12,500 days on one processor, and nearly two weeks using a 1000-processor 

cluster. 

 

1.4 Finding new targets for existing drugs 

Nobel laureate Sir James Black once stated, “The most fruitful basis for the discovery of a 

new drug is to start with an old drug.” Old drugs - approved drugs and candidate drugs that 

failed at a late stage in development - have already been optimized for their pharmacokinetic 

and safety/toxicity profiles. As such, a newly identified use for an existing drug could be 

evaluated directly in phase II clinical trials, and save 40% of the overall cost for developing a 

new drug. For failed drugs, modifications can be made to improve their efficacy for an off-

target; since these chemical starting points have drug-like properties, they would be expected 

to have fewer toxicity issues compared to other approaches of drug design [110]. 
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Reviews of the field indicate at least 24 existing drugs have already been repositioned for 

new therapeutic uses and another 17 are in various stages of development [15, 111].  

 

1.4.1 Recent experimental efforts  

There have been many innovative experimental efforts to systematically elucidate novel 

drug-target and drug-disease relationships in recent years. CombinatoRx’s discovery 

platform phenotypically screened thousands of pairs of existing drugs to find novel 

therapeutic combinations [112]. The Connectivity Map study determined gene expression 

profiles for small molecule drugs and disease tumor and cell line samples, and linked 

together drugs that showed an opposite gene expression profile to a disease profile [113]. 

Iorio et al. searched for similar gene expression profiles between cell lines that were treated 

with drugs, and linked together drugs that may have similar mechanisms of action [114]. 

High-throughput kinase assays tested 38 kinase inhibitors 317 kinase proteins to determine 

their targets [51]. The SOSA approach (selective optimization of side activities of drug 

molecules) examines the off-target activities of known drugs, and uses SAR studies to 

modify the drugs in order to be potent towards a particular off-target [110]. For example, the 

monoamine oxidase-A (MOA) inhibitor minaprine was found to have a weak affinity for the 

muscaranic M1 receptor (Ki 17µM) and acetylcholinesterase (Ki 600µM). Minaprine was 

subsequently modified into two different compounds that no longer inhibited (MOA), one a 

nanomolar agonist of muscarnic M1 receptor, and the other a nanomolar inhibitor of 

acetylcholinesterase.  

 

1.4.2 Recent computational efforts  

Just as computational methods have been applied to screening and designing new drugs, 

similar methods are also being used to elucidate drugs that can be repositioned for novel 

therapeutic uses. Given the large number of druggable protein targets and existing drugs, it is 

infeasible to set up assays to test every single interaction in the laboratory. In addition to the 

time and cost required, a tailored activity assay must be developed for each protein and 

compound libraries of all existing drugs must be collated. I review here computational efforts 

to virtually assay drug-target interactions. There are two main types of studies: ‘inverse’ 
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docking studies that dock selected drugs of interest across many protein targets, and larger 

studies that search for interactions between many drugs and many proteins. 

 

Ligand-protein inverse docking was first proposed by Chen and Zhi in 2001 [115, 116]. They 

docked 4H-tamoxifen and vitamin E to a collection of 2,700 PDB ligand-binding sites, and 

found that half of their top predicted targets of these drugs were implicated or confirmed by 

previous experiments [115]. Liu et al. inverse docked eight drugs across 1714 targets, and 

found that at 15 of 17 known targets of the drugs ranked within the top 20 scoring targets. 

Zahler et al. searched for novel kinase targets of three indirubin-3’-oxime derivatives within 

327 kinase structure complexes, and validated PDK1 as a target with direct binding IC50 

1.5µM and low micromolar inhibition of the MCF-7 cell line [117]. The online docking 

server TarFisDock was developed to aid in inverse docking, using the software DOCK to 

dock a user’s compound of interest to 698 protein structures [118]. 

 

For studies predicting novel drug-target interactions between many drugs and many proteins, 

similarity approaches have been the most common. Campillos et al. searched for drugs with 

similar side-effect phenotypes, hypothesizing that such drugs would be likely to share the 

same protein targets [119]. They predicted a network of 1018 side-effect relationships 

between 746 marketed drugs, and validated 13 chemically dissimilar drugs from different 

therapeutic indications to bind to same protein. Keiser et al. associated targets based on the 

similarity of their known binding ligands (the SEA or similarity ensemble approach), and 

tried to reposition drugs chemically similar to known ligands of the targets [120]. They were 

able to confirm 23 new drug-target associations, of which five had IC50’s under 100nM. Of 

particular interest was a reverse transcriptase inhibitor that could be repositioned to the 

histamine receptor. Another approach is sequence order-independent profile-profile 

alignment (SOIPPA), which computes binding-site descriptors based on shape, physical 

properties, and evolutionary profiles of active-site residues, without regard for actual site 

residues [121]. Kinnings et al. used this method to search for human proteins with similar 

ligand binding sites to the bacterial InhA protein, and found the protein COMT [122]. The 

COMT inhibitor, entacapone (Comtan) was then showed to inhibit InhA with an IC50 of 

80µM. Though the inhibition was weak, the safety profile of entacapone and its few side 
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effects suggested it to be a potential repositioning drug lead for tuberculosis. Finally, the 

IDMap resource predicts associations between chemicals and drug targets based on chemical 

similarity and co-occurrence of annotated bioactivities between chemicals [123]. 

 

Cross-docking is when a set of chemicals and a set of proteins are all computationally docked 

against one another. It is commonly used on small datasets as a benchmark to assess docking 

methodology. For instance, Huang et al. cross docked 40 protein structures to 40 ligands 

(native to the PDB structures) to assess ligand enrichment and specificity [100]. One 

interesting approach is ‘in situ cross docking’ where the proteins are placed side by side on 

one grid, and the ligand is docked to the multiple proteins simultaneously [124]. This study 

involved 3 proteins and 6 ligands, but whether the method is scalable to larger data sets 

remains to be seen. To date, the largest cross-docking undertaking has been the 

BioDrugScreen resource, which used AutoDock to dock 1592 diverse small molecules to 

1926 binding sites on 1589 human targets [125]. This resource provides various types of 

scores for the docked interaction including AutoDock, GoldScore, ChemScore, and PMF 

score, for the user to judge. 

 

1.4.3 Resources for drug-target interactions 

There has been an explosion in new drug-target interaction databases developed in recent 

years, which reflects the increasing interest in drug polypharmacology and repositioning. 

Some of the popular databases are listed in Table 1.3. Many of these databases are manually 

curated, like DrugBank, and should have few false positive interactions. Two very recent 

databases PROMISCUOUS and ChemProt highlight the trend of attempting to integrate data 

from several sources into a comprehensive resource. 

 

1.5 Thesis overview and chapter objectives 

Human diseases are comprised of complex mechanisms involving aberrations in numerous 

proteins and pathways. We now know that small molecule drugs inhibit more target proteins 

than previously expected, and these off-target effects can contribute to drug efficacy. For 

approved drugs, finding novel off-target proteins can also lead to potential repositioning to 

other diseases or added insight into the drug’s mechanism of action or adverse effects. 
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However, most successfully repositioned drugs to date have been discovered through 

serendipitous observations. Thus, the overall aim of this thesis was to develop computational 

methods to rationally predict drug repositioning candidates. 

 

In Chapter 2, I describe an approach for performing large-scale molecular docking of many 

targets to many drugs to find novel drug-target interactions. The cross-docking of 4621 drugs 

to 2921 binding sites was a tremendous undertaking, requiring the use of a 1000-processor 

cluster. This is the largest cross-docking study and analysis to date. Due to the high false 

positive prediction rate of molecular docking, I developed a consensus-scoring threshold and 

combined it with rank information to retain only the most likely binding interactions. As a 

result, the predicted dataset was enriched for known interactions by over 50 times compared 

to standard docking software thresholds. The utility of this method was also confirmed when 

31 of the top predictions that were not annotated in interaction databases were validated 

through literature search. Two approved drugs, one for asthma and one for cancer, were 

tested against the anti-inflammatory target MAPK14 and experimentally validated in in vitro 

kinase assays. In particular, the cancer drug nilotinib shows promise as a potential treatment 

for inflammatory diseases like rheumatoid arthritis. 

 

In Chapter 3, I applied the docking approach to a particular drug target – the protein kinase 

Epidermal Growth Factor Receptor (EGFR). This target appeared to be ideal for docking 

studies due to PDB having over 30 solved crystal structures in complex with a wide variety 

of ligands. Known inhibitors of EGFR, selected as positive control ligands, scored and 

ranked highly using my method. When screening the DrugBank database against EGFR, the 

HIV pro-drug tenofovir disoproxil fumarate (TDF) appeared to be a potential repositioning 

candidate. I experimentally tested TDF in EGFR-overexpressing breast cancer cell lines, and 

found that TDF showed micromolar inhibition of these cancer cell lines as well as an 

inhibition of EGFR pathway signaling. However, subsequent in vitro kinase assays could not 

detect any inhibition of EGFR by TDF, suggesting that its effects on EGFR pathway 

signaling and cell proliferation may be mediated through other targets. This study 

underscored the challenging nature of drug-target interaction prediction, and the need to 

continue improving docking and scoring algorithms.  
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In Chapter 4, I applied the docking approach to screen 1,120 off-patent drugs against the 

triple-negative breast cancer (TNBC) target RSK. To improve the existing docking strategy, 

several approaches were pursued: building homology models to increase the number of 

useful RSK structures, defining new score and rank thresholds as well as visual criteria, and 

performing a high-throughput in vitro screen (HTS) in parallel. The docking methods greatly 

enriched for known RSK inhibitors compared to random. However the top 29 docking hits 

from the 1,120 off-patent drugs shared only six drugs in common with the top 32 HTS hits. 

Promising compounds from both the computational and experimental analyses were 

confirmed through secondary screens: a low-throughput in vitro binding assay, a western blot 

experiment, and a cellular proliferation assay. Three compounds inhibited RSK catalytic 

activity in a dose-dependent manner, blocked RSK signaling, and blocked TNBC cellular 

proliferation; these drugs represent repositioning candidates for TNBC, the most aggressive 

subtype of breast cancer with no targeted therapy options. 

 

In Chapter 5, I present a personalized medicine case study, where the genome and 

transcriptome of a patient with a rare adenocarcinoma of the tongue was sequenced and 

analyzed. Discovering the RET pathway upregulation as a driving force of the cancer 

allowed us to rationally suggest two RET-inhibiting drugs approved for renal cell carcinoma. 

These drugs provided the patient, who had no standard treatment options, with 8 months of 

disease stabilization before the tumor metastasized. Sequencing the metastasized tissue and 

comparing it to the pre-treatment tumor revealed that an extensive amount of aberrations and 

evolution had accrued in the 8 months of drug treatment. I worked with many people to 

analyze candidate gene lists from copy number, expression, and mutation analyses, among 

others, to build a model of the disease mechanisms in the two tumor samples. This step 

formed the basis for suggesting rational therapeutic options for the patient. The success of 

using RET-inhibiting drugs to treat a tongue adenocarcinoma provided one of the first 

examples where finding genetic aberrations in the tumor allowed existing drugs to be 

repositioned for use in an individualized manner. This study also underscored the utility of 

next-generation sequencing methods for personalized diagnosis, by demonstrating the 
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effectiveness of drug repositioning for elucidated disease mechanisms without the need to 

discover novel drug-target interactions. 

 

In addition to the work presented in this thesis, I have participated in other collaborative 

projects that are described in published manuscripts. With Dr. Fiona Brinkman and Debra 

Fulton, I helped develop a novel method of ortholog prediction [126] aimed at reducing the 

number of false positive predictions. I assisted Dr. Artem Cherkasov with assessing a novel 

method of calculating partial charges [127] as well as a novel docking strategy using QSAR 

models to improve docking speed [128]. With Dr. Cherkasov I was also involved in finding 

compounds that selectively targeted a Leishmania protein but not its human homolog [129, 

130]. I have assisted Alexander Yakovenko with testing of a novel force field that 

incorporates another novel method of calculating partial charges [131]. 
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Figure 1.1   A comparison of drug discovery pipelines.  
 
a) The traditional drug discovery process where a novel drug is discovered through screening 
methods, optimized for maximum efficacy and minimal toxicity, and three phases of clinical 
trials before FDA approval. b) Drug repositioning starts with an existing drug so much of the 
discovery, optimization, toxicology, and clinical histories can be re-used, shortening the 
overall timeline and improving the chance of approval. Figure reprinted with permission 
from [15]. 
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Figure 1.2   Global mapping of pharmacological space. 
 
The human polypharmacology interaction network connecting drug targets (nodes) based on 
shared chemical binders (edges). There are 468 proteins in the network and 3,636 poly-
pharmacology relationships. Reprinted with permission from [48] 
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Figure 1.3   The main steps of a virtual screening procedure using molecular docking.  
 

 
 

 

Figure 1.4   The ICM docking algorithm. 
 
ICM uses a MC algorithm to sample the ligand conformational space in order to find the 
docked ligand conformation with a global minimum energy. At each step, a movement is 
applied to the ligand and a local energy minimization is performed to refine the ligand 
conformation. A more comprehensive energy is then calculated for the docked interaction. 
The Metropolis criterion is used to retain some poor scoring conformations to avoid falling 
into local minimum energies.   
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Table 1.1   A comparison of available docking programs. 
 
Program License type Docking method Scoring method 

AutoDock 4.0 [132]  Academic Genetic algorithm Force-field / 
Empirical 

Dock 6.1 [84] Academic Multiconformers & 
Incremental construction Force-field 

eHits [133] Academic Incremental construction Empirical 
FlexX [134] Commercial Incremental construction Empirical 
Gold [135] Commercial Genetic algorithm Force field 
Glide [136] Commercial Stochastic search Empirical 
ICM [87] Commercial Monte-Carlo Empirical 
Surflex [83] Commercial Incremental construction Empirical 

 
 
Table 1.2   Popular chemical compound libraries for virtual screening. 
 
Library Description 

NCI 3D [137] A public repository of about 200,000 physically available 
compounds. 

ZINC [138] 2.7 million commercially-available compounds in 
docking-compatible format 

ChemDB [139] 5 million commercially available small molecules that 
can be synthetic building blocks  

Pubchem [140] A public repository of over 18 million small molecule 
compounds 

GDB-13 [141] 970 million virtually generated, chemically possible, 
drug-like organic compounds up to 13 atoms in size 
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Table 1.3   Popular drug-target interaction databases. 
 
Library Description 

Pubchem Bioassays [142] 
National Institute of Health (NIH) repository of over 
2300 screening studies [143], containing the biological 
activities of small molecules.  

DrugBank [144] 
A fully curated database of 6826 drugs, with information 
about their mechanisms, pharmacology, and protein 
targets. 

KEGG Drug [145] Known target protein and target pathway information for 
over 3000 approved drugs in Japan, USA, and Europe 

WOMBAT [146] A curated database with small molecule biological 
activity information for more than 1400 protein targets.  

MDL Drug Data Report 
(MDDR) [147] 

A commercial database of biological activities of over 
100,000 chemicals, compiled from patent literature 
[148] 

PROMISCUOUS [149] 

A database integrating DrugBank, SuperTarget, and 
SuperCyp data, focusing on drug-target interactions, 
and side effect information. They also use text-mining to 
find interactions. 

ChemProt [150] 

A database integrating ChEMBL, BindingDB, DrugBank, 
PharmGKB, WOMBAT,  and PubChem Bioassay, CTD, 
and STITCH. It includes drug-protein associations 
between 700,000 chemicals and 30,578 proteins that 
may not be direct binding events. 
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2     A Large-scale Computational Approach to Finding Novel 
Targets for Existing Drugs 
 

2.1 Introduction 

Drug repositioning is the process of finding new therapeutic indications for existing drugs. It 

is an efficient parallel approach to drug discovery, as existing drugs already have extensive 

clinical history and toxicology information. However, novel interactions between drugs and 

target proteins must first be discovered. This is not a simple task – there are at least 30 

approved drugs with unknown cellular targets and mechanism of action. 

 

Drug candidates are routinely screened against a small panel of similar proteins to determine 

their specificity to the intended target. Large panels with hundreds of kinase proteins have 

been developed to assess kinase inhibitor specificity [51], especially since we now know that 

many kinase drugs are multi-targeting. However, the druggable proteome is much larger than 

just the kinome, so larger and more varied protein panels are needed to truly assess drug 

specificity. With the availability of massively parallel DNA sequencing technology, 

recurrently mutated proteins in diseases – such as EZH2 in certain lymphomas [151] and 

FOXL2 in certain ovarian cancers [152] - are now being rapidly determined and are also 

relevant drug targets. However, testing all drugs against all targets experimentally is 

extremely costly and technically infeasible. 

 

Recent computational endeavors to predict novel drug repositioning candidates have used 

methods incorporating protein structural similarity [122, 153], chemical similarity [120], and 

side effect similarity [119]. Molecular docking is a computational method that predicts how 

two molecules interact with each other in 3-dimensional space. It is well established as a 

virtual screening method in drug discovery [52], where typically many chemicals are docked 

against a specific protein binding site, in order to discover novel inhibitors of that target. 

Compared to similarity analyses, docking has the potential to find drugs that bind to proteins 

with novel scaffolds as well as off-targets that may be structurally dissimilar to the known 
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targets. Recently, Brylinski et al. used a machine learning approach combining protein 

sequence, structure, and ligand docking similarities [154].  

 

Inverse docking is a method where specific ligands are docked to a large protein database to 

virtually screen targets instead of compounds. It was first used to predict potential off-target 

interactions and toxicities of 4H-tamoxifen and vitamin E [116]. Rockey et al. have inverse 

docked three kinase drugs to kinase crystal structures and homology models [155]. This 

approach has also been used to filter interactions predicted through protein binding site 

similarity [153]. More recently, the DOCK program was used to search for interactions 

between 10 Alzheimer’s drugs and 401 proteins [156].  

 

Large-scale docking of many targets to many drugs is now feasible when run on powerful 

computer clusters. However, limitations in scoring methods result in high false positive 

prediction rates [157], and large-scale studies amplify these low prediction accuracies. For 

example, the BioDrugScreen resource, which performed large-scale cross-docking using 

AutoDock, did not provide any methods to interpret results [125]. Here I present a molecular 

docking analysis of 4621 known drugs against 252 known protein drug targets for the 

prediction of novel drug-target interactions.  This method emphasizes removing false positive 

predictions using protein structures determined to be reliable for docking, as well as 

consensus scoring and ranking thresholds. In short, I sought to retain only the highest 

confidence interactions as drug repositioning candidates. 

 

2.2 Results 

2.2.1 Computational pipeline  

A computational pipeline was developed for large-scale molecular docking of drugs to 

protein targets (Figure 2.1). Briefly, I collected all 3D structures available for each drug 

target, determined binding pockets in the structures, and docked drugs to each pocket. 

Results were collected and thresholds were applied to select the top predicted interactions, 

which were then visually inspected. 
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2.2.2 Known drug-target interaction docking 

I first docked 3570 known protein-drug interactions annotated by DrugBank, between 678 

unique human proteins and 1309 small molecule drugs. I used the ICM docking program 

developed by Molsoft [87], which ranks ligands using a Monte-Carlo based docking 

procedure and an empirical, energetics-based docking score. Like most docking software, 

ICM recommends a standard score cut-off for virtual screening efforts: -32 [90], where more 

negative scores represent more likely binding interactions. However, studies have used 

different cut-offs (i.e. -28 [158]) depending on the protein target. Here I used a score of -30 

as the threshold for ‘good’ dockings scores. Of the 3570 known interactions docked, 1116 

(31%) had a good ICM docking score. 252 proteins had at least one known interaction 

predicted by docking – these formed the ‘reliable’ set of proteins that are hypothesized to be 

more suited for docking purposes. A breakdown of protein classifications for this reliable set 

revealed that 67% of targets were enzymes, of which 12% were protein kinases. In contrast, 

there were few G-protein coupled receptors in the database due to lack of crystal structures, 

which reflects both the current state of solved protein crystal structure space as well as 

popular drug targets. 

 

2.2.3 Known drug-target interaction docking evaluation 

In high-throughput molecular docking, it is common to hold protein structures rigid during 

the simulation. With this restriction, re-docking a PDB ligand back to its native PDB 

structure (cognate docking) is a simpler task than docking a different ligand to the structure 

(non-cognate docking) because in the former case the protein is already in a specific ligand-

bound conformation. Due to the abundance of existing protein-ligand complex structures in 

PDB, cognate-docking situations occur frequently. Previous studies show that such cases can 

be docked well in 60-80% of cases [159]. In contrast, the more informative non-cognate 

docking is only successful in 20-40% of cases [159]. 

 

The 1116 known interactions were examined as to whether those that docked well were only 

due to docking cognate ligands. For each interaction, I observed whether the drug bound 1) a 

holo (unliganded) protein structure, 2) an apo (liganded) structure with a same or similar 

ligand as the drug (the cognate-docking scenario), or 3) an apo structure with a chemically 
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different ligand from the drug. Chemical similarity was defined as having a Tanimoto 

coefficient less than 0.54. Figure 2.2 shows that cognate docking occurred in 380 of the 1116 

interactions. Of these, only 56 were drugs docked to an apo protein with the same ligand 

(Tanimoto coefficient of 0). The majority of drugs docked well to holo structures as well as 

apo structures with dissimilar ligands. In short, the ICM docking method was able to predict 

known interactions for both cognate and non-cognate docking scenarios. 

 

Aside from the docking score, it was also important to verify that the ligands were docked in 

correct binding conformations. Further examination of the 380 cognate dockings revealed 

that the docked drug conformation was close to the known drug conformation (RMSD value 

≤ 2Å) in 69% of cases. The other 31% fell into two categories: 1) partly symmetrical ligands 

like NAD and 2) ligands that bound to a small pocket. In the first case, the molecule was 

incorrectly determined to be flipped, causing a high RMSD; however, its central portion was 

docked correctly due to symmetry. In the second case, the region of ligand bound in the 

pocket was docked correctly, but the region free in solvent contributed to a poor RMSD 

value. Overall, this analysis showed that when a known interaction was docked with a good 

score, the binding conformation was also reasonably predicted.  

 

2.2.4 Known drug-target interaction network 

I gathered the known protein-drug interactions into a network (Figure 2.3) with proteins as 

rectangular nodes, drugs as circular nodes, and interactions as edges. Interaction edges with 

good docking scores were highlighted in red. Proteins from the same family were often 

grouped close together and shared many drug interactions, such as the retinoid X and retinoic 

acid receptors and the matrix metalloproteinases (RXRs, RARs, MMPs). Proteins having the 

most known drug interactions in the network included the transport protein serum albumin 

(ALB) and the phosphatase PTPN1. The most highly connected chemicals in the network 

were metabolites: ATP, NAD, and NADP. For some proteins such as MAPK14, 13 of 14 

known inhibitors were well predicted by docking, whereas for others such as the angiotensin-

converting enzyme (ACE), only one of its nine known inhibitors scored well. For 426 of the 

678 protein targets not included in Figure 2.3, none of their known interacting drugs could be 

docked well, reflecting the limitations of current molecular docking methods. To this end, I 
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chose the subset of 252 protein targets for which at least one known drug docked well (from 

the 1116 interactions that docked well), which were deemed as more ‘reliable-for-docking’ 

compared to the other proteins. 

 

2.2.5 Large scale cross-docking and score thresholds 

I proceeded to dock the 252 reliable protein set against the database of 4621 drugs. 

Considering the multiple crystal structures per protein and the multiple binding pockets per 

structure, there were a total of 1514 crystal structures and 2923 binding pockets. Each drug 

was docked to all binding pockets of a protein and whichever pocket gave the best docking 

score for the drug determined the final protein-drug score. This method allowed multiple 

conformations of a protein to be accounted for during docking and provided a simple model 

of protein flexibility.  

 

In total, 1.2 million protein-drug interactions were docked. 104,625 (0.9%) had ICM docking 

scores (icm-score) of -30 or better, encompassing all 1116 known interactions in the reliable 

data set. Since the fraction of known interactions in the predicted set was so low, I assumed 

that the vast majority of predictions were false positives. Though I believed that novel drug-

target interactions existed and were enriched within these 104,625, there was clearly a need 

for more stringent score thresholds. 

 

2.2.6 Investigating score thresholds 

Various methods of selecting top drug-target interactions were investigated. The standard 

software-recommended icm-score is based on a weighted sum of various binding energy 

terms [87]. The pmf-score, or potential of mean force score, is a measure of the statistical 

probability for the drug and protein to interact with each other (for example, it examines 

interatomic distances and atom types of the docked interaction and compares that to existing 

distances in PDB) [90]. A consensus score was developed that uses both icm- and pmf- 

scores and allows us to select the top X% of interactions for each protein; it is described in 

more detail in case studies below. Interactions were ranked in two ways. The drug-rank is the 

rank of this drug compared to all drugs docked to this protein (from 1-4621), and the protein-

rank is the rank of this protein when the drug is docked to all proteins (from 1-252).  
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Requiring high drug and protein ranks (i.e. a low value when the two ranks are summed 

together) enforces a mutual specificity criterion. I hypothesized that by choosing interactions 

with good scores and ranks, more false positive predictions would be filtered out. 

 

The positive predictive value (PPV), defined as the proportion of predicted interactions that 

are known binding interactions, was measured to assess performance. The premise is that a 

better threshold would yield a set of predictions more enriched with known interactions as 

well as novel interactions that are more likely be true binding events. Figure 2.4a shows that 

as the stringency of a threshold increased (i.e. icm-score of -40 versus -30), fewer 

interactions were predicted; however, the PPV increased due to a higher proportion of known 

interactions in the predicted set. This behavior was consistent for all thresholds, and the 

highest PPVs were generally observed within the top 100 predicted interactions. It is 

important to note that each of the 4621 drugs will always have a top-ranked protein 

(interactions with protein-rank of 1), and each of the 252 proteins will always have a top-

ranked drug (interactions of drug-rank 1). Thus, the protein-rank threshold particularly was 

not sensitive alone.  

 

The protein-rank and pmf-score thresholds appeared to be the worst based on both the PPV 

plot (Figure 2.4) and on enrichment factors (Table 2.1). However, they showed better PPVs 

when combined with other thresholds. For example, the drug rank and protein rank measure 

performed much better than drug-rank alone, and the consensus score (combining icm- and 

pmf-score) also performed better than the icm-score alone. When the enrichment factor was 

measured for each type of threshold at its most stringent setting (leftmost points of Figure 

2.4a),  the pmf-score and protein-rank were the least effective at predicting known drugs 

(Table 2.1). Instead, combinations of score and rank criteria provided a 100-500 fold 

enrichment of known interactions compared to a random algorithm, and 10-50 fold 

enrichment compared to a standard binding energy-based ICM score cut-off of -30. 

Interestingly, the drug-rank 1 and protein-rank 1 combination threshold (basically a sum of 

ranks of 2) performed surprisingly well; however, adding the consensus score clearly 

improved the PPV for the top ~300 interactions (Figure 2.4b) which were the most 

interesting to us for further inspection. 
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Another threshold method is to use the scores of known binders as the score cut-off for each 

protein. Table 2.2 shows that using the best and worst icm- and pmf-scores of known drugs 

did not result in a higher enrichment, nor did it help narrow down the number of predicted 

interactions.  

 

Overall, the combination of consensus score with the two ranks gave the highest PPV and 

enrichment values: in the top 50 predicted interactions, 49% were known. This gave us 

confidence that many of the other 51%, all novel interactions, were real. 

 

2.2.7 Case study: MAPK14 

Two examples are presented to illustrate the utility of combining rank and scoring criteria. 

The first is for the signaling protein MAPK14 (also known as p38 alpha), an integral 

component in numerous cellular processes. It is a drug-target for inflammatory diseases 

[160]. MAPK14 is known to be a challenging docking target due to its structural flexibility 

[161] and its shallow binding pocket [100]. However, these docking studies used only one 

3D structure. In my dataset, there are 35 crystal structures of MAPK14 in different 

conformations, providing a simple view of protein flexibility.  

 

2.2.7.1 MAPK14 docking results and consensus score threshold 

The consensus score is based on the observation that when docking a large number of diverse 

compounds to any target, most compounds have poor icm- or pmf- scores, and few 

compounds have both good icm- and pmf- scores. Therefore, I chose a linear threshold that 

eliminated the densest area of points in the poor scoring region (top-right) of a score plot like 

Figure 2.5, and thus selects the compounds in the best scoring region (bottom-left) as 

potential interaction hits. In theory, the consensus score picks drugs with good icm-score and 

pmf-score ranks. As seen in Figure 2.4a and Table 2.1, the consensus score performed better 

for PPVs and enrichments compared to a simple icm- and pmf- score combination.  

 

Figure 2.5 plots the icm- versus pmf- scores of the 4621 drugs docked to MAPK14. Each 

drug is a point on the graph, where the 5% of drugs passing a consensus threshold are shown 
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in orange, and the 1% passing a consensus threshold are shown in purple. For 67 drugs, 

MAPK14 was one of the top 5 scoring targets; they are circled in green. Table 2.3 shows that 

a combination of the consensus and protein rank criteria resulted in the best enrichment 

(110x) of known drugs. There were 15 annotated known binders of MAPK14 in DrugBank, 

but I disregarded 2-chlorophenyl due to it being a very small molecule with a very weak 

MAPK14-binding affinity (>1mM). 10 of 14 known drugs were predicted through the 

stringent thresholds. Though 4 true positive binders were lost, 99.99% of points were 

eliminated, presumably consisting mostly of non-binders. Through literature search, it was 

found that imatinib and quercetin have been previously tested against MAPK14 and did not 

show any inhibition [162]. This suggested that the 5% consensus threshold was too lenient 

for MAPK14, whereas the 1% was more appropriate. Within the other approved drugs 

predicted to bind MAPK14, literature validation was found for sorafenib, a multi-kinase 

inhibitor approved for renal cell carcinoma [163], and gefitinib, a EGFR inhibitor approved 

for late stage non-small cell lung cancer [43]. 

 

2.2.7.2 Experimental validation of two MAPK14 predicted inhibitors 

Previous high-throughput studies have shown varying results regarding nilotinib-MAPK14 

inhibition. Some enzymatic assays to MAPK14 showed weak inhibition: 570nM or 2.2µM 

depending on the assay type [164]. Direct binding assays have shown 100nM Kd [164] or no 

binding at all in a peptide pulldown experiment [162]. Since nilotinib was one of the top 

approved drugs predicted to bind MAPK14, I decided to further experimentally validate the 

interaction. MAPK14 ATP-competitive binding assays were performed for two inhibitors 

that were available for purchase: zafirlukast, and nilotinib.  As seen in Figure 2.6, both drugs 

exhibited inhibition of MAPK14 at therapeutically relevant concentrations (<10µM) in a 

dose dependent manner. Zafirlukast (AstraZeneca) is an oral leukotriene inhibitor that 

reduces inflammation of the breathing passage in asthma patients. I found that it does inhibit 

MAPK14 weakly, and this may contribute to its inflammation reducing effect. The chronic 

myeloid leukemia drug nilotinib was especially potent with an IC50 of 40nM. 

 

Despite their appeal as an inflammatory disease target, MAPK14 drug candidates to date 

have failed due to drug toxicity issues [164]. Though it may seem underwhelming to use a 
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cancer drug with potentially serious side effects to treat inflammation, nilotinib is noted to 

have a much milder adverse effects profile compared to its similar drug dasatinib [162].  

Another similar drug imatinib has shown promise in treating rheumatoid arthritis in mouse 

models [165] and specific patients [166, 167], speculated due to its inhibition of mast cell c-

Kit and PDGFRB. Nilotinib also inhibits these two proteins, and its extra inhibition of 

MAPK14 may render it a better choice for arthritis models. Recently, nilotinib was tested in 

a glucose-6-phosphate-isomerase-induced arthritis mouse model and found to significantly 

prevent paw inflammation – to a greater extent than imatinib [168]. This study also suggested 

that the two drugs acted through some distinct mechanisms. Overall, these findings seem to 

agree with the observation that nilotinib potently inhibits MAPK14, unlike imatinib, and thus 

has added potential as an anti-inflammatory drug. 

 

2.2.8 Case study: BIM-8 

A second example is the Protein Kinase C inhibitor BIM-8. I docked BIM-8 to the set of 252 

reliable targets, and the results are plotted in Figure 2.7. Each point on the graph represents a 

protein target, and targets for which BIM-8 passes the 5% consensus threshold are shown in 

orange.  

 

These results were compared to three previous studies. Two studies performed protein kinase 

assays with radioactive ATP and substrate peptides, where inhibitor binding decreased the 

amount of radioactive peptide produced [169, 170]. The third study performed thermal shift 

assays where inhibitor binding increased the kinase stability and thus the melting point [171]. 

BIM-8 targets discovered by these papers are shown in shades of red in Figure 2.7, and non-

binders in these papers are shown in green. The only annotated target of BIM-8 in DrugBank 

is PDPK1. GSK3B and PIM1, which are in the top 5 protein rank and top 5% consensus 

threshold, were also validated as inhibitors. PDPK1 was not found to be an inhibitor by the 

first two studies but was confirmed as a binder by the third study with a kinase assay and 

crystal structure. Overall, there were 4 known binders (PIM1, PDPK1, GSK3B, LCK, since 

CDK and MAPK14 are probably weak or non-binders) and found that applying a 5% 

consensus threshold and protein rank criteria gave us 63-fold enrichment over random 
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selection, and a 63/10.5= 46 fold enrichment over a standard ICM score threshold of -30 

(Table 2.4). 

 

2.2.9 Drug-target interaction map 

For a global and quantitative review of the predicted protein-drug interactions, I plotted the 

icm scores of drugs docked to established drug targets (Figure 2.8). Each protein is 

represented by a row, on which a black cross denotes a known drug docked to the target, a 

red dot denotes an approved drug docked to the target, and a blue dot denotes an 

experimental drug docked to the target. Only protein-drug interactions that docked with a 

score passing the consensus threshold and had a protein-rank ≤ 5 are shown. 

 

Overall, the known drugs (black crosses) had better scores than other drugs for a given target. 

This was expected, as many of these known drugs were chemically optimized for their 

targets. For a number of targets, the known drug was the only predicted interaction. None of 

the approved and experimental drugs from DrugBank were able to dock well, despite a 

reliable protein structure, suggesting that virtually screening larger chemical databases may 

be the only way to discover novel inhibitors by docking. For most targets, at least one 

experimental drug showed a better score than the known drugs; however, experimental drugs 

are often unavailable for purchase or experimental testing. Instead, I was most interested in 

cases with approved drugs such as the MAPK14-sorafenib example which was verified by 

the literature, and the MAPK14-nilotinib example which was verified with an in vitro kinase 

assay. 

 

Through literature search, I found experimental support for many of the top drug-target 

predictions that scored better than known interactions (Table 2.5). These all pass the 1% 

consensus threshold and are observed to have high drug and protein ranks for the most part. 

It is important to note that the drug-rank depends on the number of known binders for the 

protein; thus, since ESR1 had 39 annotated drugs in DrugBank, a drug-rank of 16 is not low. 

In contrast, a drug-rank of 16 would be low for MMP13, which has only seven annotated 

drugs in DrugBank. 
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One type of validated interaction includes drugs that are close analogs of known drugs for 

that target; for example, the estrogen analog ERA-923 is a known selective estrogen receptor 

modular (SERM) [172]. Genistein is known to bind both ESR1 and ESR2 [173]. 

Becocalcidol and ED-71 are vitamin-D analogs and bind the vitamin D receptor [174, 175]. 

Drosiprenone is a synthetic progestin with anti-mineralocorticoid receptor (MR, NR3C2) 

effects and has potential for reducing cardiovascular risk in women taking oral contraceptives 

or postmenopausal hormone treatment [176]. Another type includes interactions that were 

missed or mistyped by drug-target databases in the manual curation process. BMS181156, 

for example, is known to bind RARG and has even been solved in a X-ray structure complex 

but is entered in DrugBank 2.5 as binding only to RARG2. The interaction has been 

corrected in the latest version of DrugBank, however this example highlights the utility for 

my computational method to assist in curating drug-target databases. 

 

Due to the many in depth studies on kinase inhibitor specificity, collaborating evidence was 

available for some of the kinase protein interaction predictions. For example, vatalanib is a 

known pan-VEGFR inhibitor [177], nilotinib is a potent KIT inhibitor [178], and other 

inhibitors of MAPK14 and targets of kinase inhibitor BIM-8 were discussed in previous 

sections. The subset of predictions for which there was literature support included many 

structural analogs. I performed a similarity analysis for the top 45 interactions at the strictest 

threshold (Table 2.1, bottom row), where each drug was compared to all known binders of its 

target. For the 22 known interactions in the set, all drugs were similar as expected (within a 

threshold Tanimoto coefficient of 0.54). For the 23 novel predicted interactions, 14 were 

similar to at least one of the known binders and 9 were different. Thus, the docking approach 

at strictest thresholds was also capable of predicting non-structural analogs of existing drugs. 

 

Overall, I was able to find literature support for 31 top interactions, validating the utility of 

my computational method for finding novel drug-target interactions. 

 

2.3 Discussion 

The binding of a small molecule drug to its target protein in a cell is much more complex 

than a single docking calculation. For example, an ATP-competitive kinase drug would have 
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hundreds of ATP-binding sites to choose from due to the large size of the kinome. Cancer 

drugs such as sunitinib are now known to potently inhibit many more kinase targets than 

previously expected [42]. In addition, non-kinase targets of kinase drugs have also been 

found: NQO2 was the first non-kinase target discovered for imatinib [162, 181], and several 

cytotoxic LIM kinase inhibitors were found to be actually inhibiting tubulin [182]. Such 

studies imply that the target search space for any inhibitor should be the entire druggable 

proteome. 

 

The overall strategy was to find novel drug targets of existing drugs by computationally 

screening the druggable proteome. For this purpose, I chose molecular docking due to its 

speed, low cost, and detailed three-dimensional simulation. Moreover, docking can evaluate 

any protein with a solved structure due to its virtual nature, without the need for tailoring 

enzymatic assays or collecting drugs in solutions. However, docking is known to have a high 

false positive prediction rate, due to limitations such as incomplete binding pocket prediction, 

inadequate ligand conformation sampling, inaccurate scoring functions, lack of protein 

flexibility, and lack of water and cofactor molecules during the simulation. As evidenced in 

this study, only 31% of the 3570 known interactions docked with a good score. One review 

states that 10-50% of a set of diverse compounds can be expected to be docked correctly for 

a given target [157]. My results were well within this range, and I believe the method 

performed quite well considering the large variety protein targets involved and the automated 

nature of the pipeline. However, the other 69% of known interactions were not predicted due 

to docking limitations. 

 

The computational method attempted to address these limitations. First, I manually included 

binding pockets that were present in PDB structure complexes but not predicted by the 

binding pocket search. Second, I docked each interaction 10 times to better sample ligand 

conformations. Third, I applied consensus score and rank criteria to further narrow down top 

scoring docking hits. Fourth, I used all available structures of a protein (versus choosing one 

representative structure), to allow a simple view of protein flexibility. I did not incorporate 

water and cofactor molecules in the docking simulations due to the computational complexity 

involved. However, by selecting proteins for which at least one known drug docked and 



 45 

scored well, I obtained proteins for which the limitations of the docking software were not 

critical for a good prediction. In short, assuming the docked conformation of the known 

ligand was correct, I used only proteins for which the binding pocket was genuine, the 

scoring functions were adequate, the protein was in a conformation amenable for drug 

inhibition, and the lack of water or cofactor molecules didn’t drastically affect the prediction.  

 

Virtual screening studies typically involve docking large chemical databases to one protein 

target, selecting compounds that score within the top 0.5-1% of the database and then further 

prioritizing them by visual examination. When experimentally validating these top 

candidates, a 5% hit rate can be considered a successful endeavor (where a good hit is a 

predicted compound showing an experimental binding affinity in the µM or lower range) 

[183]. Depending on the target, the crystal structure, the software used, post-docking criteria 

(such as chemical clustering), and even the individual performing the visual examination, the 

hit rate can be improved to 10-40% (Cavasotto et al. had 14% hit rate from 50 tested 

compounds [158]; Sabio et al. had a 36% hit rate from 56 tested compounds [184]). 

 

In this case, both the standard scoring threshold and the known-inhibitor score were not 

sufficient. With a normal score threshold of -30, docking 4621 drugs against 252 proteins 

resulted in 104,625 predicted interactions. This is roughly 1% of the docked interactions, so 

even selecting the top 1% of the docking hits for validation becomes prohibitive for large-

scale studies. It is important to note that each protein has different physiochemical properties: 

for some proteins, hundreds of compounds pass the -30 cut-off, while for other proteins none 

pass. Thus, using the known-inhibitor score as a cut-off allows for a threshold that is tailored 

to each protein. However, this method still predicted ~8000 interactions at the most stringent. 

The consensus threshold allowed us to pick the top 1% (or any X%) of docked compounds 

with the best icm- and pmf- scores for each protein and further filter from there. After testing 

many combinations, the consensus score with rank information resulted in the highest PPV – 

nearly 50% - and enrichment factor – 50 times better than standard -30 score threshold and 

490 times better than random selection. This high enrichment for known interactions 

suggests that many of the other predictions that have not yet been experimentally tested may 

be true binding interactions. 
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There are limitations to this scoring scheme. Since the pmf-score is a statistical score 

comparing the docked interaction to known interactions in PDB, a chemical with a different 

scaffold or novel binding conformation may have a poor pmf-score and become predicted as 

a false negative.  However, my foremost goal in this study was to eliminate as many false 

positive predictions as possible and obtain a high enrichment of true positives in the 

predicted interaction set. Thus, it was acceptable to miss some false negative predictions. In 

addition, the consensus score is a simple linear separation method and may not be as 

powerful as a machine-learning algorithm that trains on known ligand docking scores. 

However, training algorithms require many known binders and non-binders for each protein, 

which is not the case for many proteins in the data set. In addition, the trained system may 

not be representative for proteins not in the training set or having few known binders. I 

desired an automated scoring method that did not depend upon the existence of known 

ligands. That is, if a protein structure had just one, or no known binders, the method would 

still be able to select the top 1% of docking hits. 

 

Despite the limitations, my computational method has several novel points of interest. First, 

the ‘reliable-for-docking’ target set was based on whether any of a protein’s known inhibitors 

could be docked well. This differs from most methods to date which do not restrict targets or 

use only protein structures in complex with a ligand [156]. It was shown through the known 

interactions analysis that many non-cognate dockings could also be successful. Second, the 

consensus score line differs from most methods to date which are simple score thresholds 

[158] or utilize machine learning algorithms [185-187]. I observed for every target, that most 

docked drugs have poor icm- and pmf-scores and are clustered densely on the top-right of a 

score plot. The consensus score line thus chooses the top X% of drugs by removing the N-

X% (where N is the total number of drugs) in the smallest possible top-right area. Recently, 

Yang et al. applied 2-directional normalization of docking score matrices to select top 

interactions, which in essence selects drugs that have both a high drug-rank and protein-rank 

[156]. For this dataset the protein-rank and drug-rank combination performed well, but that 

adding the consensus score allowed for even higher PPVs (Figure 2.4). The former method 

may predict more false-positives when an interaction has high ranks but poor scores – such 
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as when there are no real interactions to be found for that drug and that target. I thus believe 

that including the docking scores into the threshold is important. 

 

To date, cross-docking of proteins to compounds has generally been used for small datasets. 

As an example, Huang et al. docked 40 targets against 40 compounds to check whether their 

docking method could distinguish between a target’s cognate ligands and the other targets’ 

cognate ligands [100]. In this large-scale cross-docking study, the use of a 1000-processor 

cluster was essential to completing the tens of millions of docking simulations in a timely 

manner. In addition, the large number of crystal structures and binding pockets involved 

required much of the docking pipeline be automated. 

 

High-throughput computational screening of drug-target interactions represents a parallel 

approach to high-throughput experimental screening. Due to differences in experimental 

methods, assay settings, and protein panels, different studies may present differing results. 

For example, small molecule affinity purification methods that use whole cell lysates would 

give different results from in vitro kinase assays that use a specific panel of proteins. In the 

case of gefitinib, two such studies had distinct differences in their proposed cellular targets 

[42, 43]. Differences in methods are also further compared in a study by Manley et al [164]. I 

presented an example for BIM-8, which binds to PDPK1 differently in two similar in vitro 

experiments. For MAPK14, the experimental results for nilotinib also varied. Two 

purchasable approved drugs were experimentally tested against MAPK14; nilotinib was a 

strong nanomolar inhibitor, and zafirlukast was also an inhibitor, though not as potent. Thus, 

interactions that are predicted to be very likely inhibitors computationally may merit extra 

study even if experimental tests are initially negative. 

 

In short, I have developed a computational pipeline that can run large-scale cross-docking of 

compounds to targets. I developed stringent criteria to filter a large proportion of false 

positive interactions. The two case studies presented were selected based on known 

experimental binding assay data, so as to demonstrate the notable enrichment of known 

interactions using the scoring and ranking criteria. I hypothesized that predicting a set of 

interactions with a higher PPV (enrichment of known interactions) would also lend 
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confidence to the other novel interactions in the set. This appears to have worked, as I was 

able to find validation for 31 predicted drug-target interactions that were not previously 

annotated in DrugBank, as well as validate two other inhibitors of MAPK14. Other drug-

target interaction predictions are currently undergoing experimental validation; novel 

interactions discovered are potential drug repositioning candidates, but also provide insight 

into a drug’s mechanism of action and adverse effects profile.  

 

2.4 Methods 

2.4.1 Pocket database and drug database construction 

The DrugBank 2.5 database [144], containing drug information and comprehensive 

information of their targets, was downloaded. I extracted human protein drug targets from 

DrugBank and retrieved their sequences from SwissProt [188]. Protein Data Bank structures 

showing at least 95% sequence identity for proteins at least 20 amino acids in size were 

downloaded. They were required to be X-ray crystal structures with a minimum resolution of 

2.8Å.  Multiple chains were grouped into a set of non-redundant sequences, based on PDB’s 

chain redundancy analysis at the 95% sequence identity level.  

 

2.4.2 Preparing a target pocket database 

Protein structures were prepared for docking using Molsoft's ICM software version 3.4-9c 

[87], removing water molecules, solvent ions, and other ligands from the structures. I added 

hydrogen atoms to the structures then optimized their positions.  

 

To predict pockets, or potential binding sites, I used the PocketFinder [78] method in ICM, 

which calculates a Lennard-Jones transformation of the van der Waals energy for an aliphatic 

carbon probe on a grid map. The grid potential values are smoothed over 10 iterative 

averagings. Contouring of the map defines the binding pockets, and those with volume under 

100 Å3 are removed. For each protein structure, the three largest pockets are retained in the 

database. If metal ions were found near a pocket, two receptors were prepared for docking: 

one of the protein with the metal ion and one without. 
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The receptor was defined as the box 3.5Å surrounding the pocket. If the pocket overlapped 

well with the ligand but the ligand extended out of the protein structure, the receptor was 

defined to be the box 3.5Å around the pocket but also including 2.0Å around the ligand. This 

ensured that known ligand binding sites not predicted by my automated method were also 

included in the pocket database. 

 

2.4.3 Molecular docking procedure 

Drugs were docked to target receptors using the ICM virtual library screening (VLS) module. 

This method performs rigid-receptor flexible-ligand docking using a two-step Monte Carlo 

minimization method and energy scoring function to sample ligand conformations and select 

the best docking hits. MMFF partial charges and ECEPP/3 force-field parameters are used. 

ICM virtual screening automatically assigns the ligand ionization (charging carboxylate, 

phosphate groups), stereochemistry and tautomeric forms. I did not include alternative ligand 

forms, as this would have caused too much increase in the size of the chemical database. 

 

Docking one interaction required on average 30 seconds to 1 min per processor. A given 

protein may have several structures, each of which with more than one pocket; in such cases 

I dock all pockets to a drug, and the best scoring interaction is selected to be the 

representative protein-drug score.   

 

To ensure a sufficient coverage of the docking energy landscape, each drug-target interaction 

was docked 10 times in the known docking analysis and 5 times in the large-scale cross-

docking analysis. Docking was performed on a Linux cluster with 1000 processors – this 

level of throughput allowed us to complete 1-3 million dockings per day.  

 

 

 

2.4.4 Known interactions docking 

8867 known interactions between human protein targets and drugs were culled from the 

DrugBank Drugcards database. Of these, 3570 interactions with protein target crystal 

structures present in the database were docked. Due to the Monte-Carlo nature of the ICM 
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method, each interaction was docked 10 times to better cover the docking energy landscape. 

After 10 iterations, the best scoring prediction was retained.  

 

If the protein structure was solved in complex with a ligand, a Tanimoto coefficient was used 

to determine if the docked drug was similar to the complexed ligand. A coefficient less than 

0.54 represented similar molecules [189], and thus cognate dockings. Evaluation of static 

RMSD values of protein-drug interactions representing 380 cognate interaction dockings was 

performed on a case-by-case basis as the chemical numbering of PDB heteroatoms and 

docked structures often differed, which caused incorrect RMSD calculations. Each RMSD 

comparison was required to match at least 30% of the docked ligand atoms to the cognate 

crystal-structure ligand. 320 interactions pass this requirement, of which 221 (69%) showed 

RMSDs under 2Å. The other 99 (31%) had RMSDs larger than 2Å. 

 

Cytoscape [190] was used to generate the known drug-target interaction map. Networks were 

fitted to a force-directed layout and manually edited for improved visibility. Drugs and 

protein targets are nodes in the network, interconnected by interaction edges. The edge 

lengths were not weighted, and are adjusted for maximum visible understanding. 

 

2.4.5 Applying and evaluating score thresholds 

I applied several methods of score thresholding, applying cut-offs for 1) the icm score 

ranging from 0 to -80 with 16 steps (Δscore of 5), 2) the pmf score ranging from 0 to -250 

with 25 steps (Δscore of 10), 3) the drug rank ranging from 1 to 4000 (every rank from 1-15, 

then 11 steps with increasing intervals until 4000), 4) the protein rank ranging from 1 to 252 

(every rank from 1-15, then 7 steps with increasing intervals until 252), and 5) the combined 

docking score and mean force score cut-offs at each combination of steps  

 

For the consensus score thresholds, all combinations of slopes (from 0 to -40 with step level 

0.5) and intercepts (from 0 to -400 with step level 5) were tested. For each line, I calculated 

the density of the points eliminated in a trapezoidal area delineated by the consensus line, the 

best icm- score for this protein, the best pmf-score for this protein, the midpoint between the 

worst icm-score and its mean, and the midpoint between the worst pmf-score and its mean. 
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Many consensus lines will predict the same number of interactions – the method selects the 

line that eliminates the densest cloud of poor-scoring points. There are no icm-scores <-123 

or pmf-scores <-383 in my dataset; thus these lines are able to cut the dataset and select any 

X% of drugs. I was careful to note that picking the top 1% of drugs would be uninformative 

if there were no good scoring binders in the data set, and thus used the midpoint between the 

worst icm/pmf score and its mean as the minimum score requirement. 

 

2.4.6 Large-scale cross-docking 

1,164,492 interactions between 252 proteins and 4621 drugs were docked using ICM. 

Though there were actually 4854 drugs small molecules, some were excluded being too small 

or too large for docking (molecular weight under 100 or over 1000 g/mol). Due to the 

multiple binding pockets per protein and multiple crystal structures per protein, there were a 

total of 2923 binding pockets. Each interaction was docked 5 times to better cover the 

docking energy landscape and the best scoring conformation was retained. Overall there were 

2923x4621x5 dockings or 68 million docking calculations. The icm and pmf scores of each 

interaction were gathered into large matrices for further analysis.  

 

2.4.7 Kinase assays 

Protein inhibition assays were performed by SignalChem (Richmond, BC, Canada). Kinase 

assays consisted of 33P-ATP at 5µM, the protein kinase, peptide substrate, assay buffer, and 

the drug. Blank assays without substrate or drug, and assays without the drug, were used as 

controls. Staurosporine at 1µM was used as the positive control drug.  
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Figure 2.1   The computational molecular docking pipeline. 
 

 
 
 

Figure 2.2   Evaluating the known drug-target interaction docking. 
 
1116 (31%) of 3570 known interactions docked with a good score. Two-thirds of the 1116 
were ligands docking to non-cognate protein structures, showing that the method could do 
more than re-dock existing drug-target structures.  
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Figure 2.3   Network of known protein-drug interactions. 
 
This network represents the known interactions (grey edges) between proteins (rectangular 
box nodes), approved drugs (pink circle nodes) and experimental drugs (blue circle nodes). 
Here are the 252 proteins for which at least one known drug docked well (each protein has at 
least one red edge) – the ‘reliable-for-docking’ set. This network shows the high level of 
interconnection between existing drugs and targets. The proteins at the bottom of the graph 
are singletons and are not connected to other proteins through shared drugs. 
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Figure 2.4   Score thresholds assessment 
 
Various combinations of score and rank thresholds were assessed using the positive 
predictive value (PPV). a) PPVs for thresholds predicting less than 7000 interactions. b) a 
zoomed in version showing clearer PPV separation for the top 500 predicted interactions. 
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Figure 2.5   The MAPK14 score plot. 
 
Docking icm- and pmf- scores for 4621 drugs to MAPK14. Each point represents a drug. The 
top 5% of the drugs as determined by the consensus scoring threshold are shown as orange 
dots. These drugs were also docked to the 252 other drug targets in the database, and circles 
denote the drugs for which this protein was one of the top 5 targets for the drug. Drugs that 
are known to bind MAPK14 are shown in red boxes, and it can be seen than most of these 
red boxes pass both the consensus and protein rank thresholds. 
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Figure 2.6   Experimental validation of two interactions. 
 
The kinase drug nilotinib (blue) and the asthma drug zafirlukast (yellow) were tested in ATP-
competitive enzymatic assays against MAPK14.  Results are plotted as percent inhibition of 
activity versus drug concentration. 1µM staurosporine was used as the positive control. The 
nilotinib-MAPK14 IC50 was calculated to be 40nM. 
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Figure 2.7   The BIM-8 score plot.  
 
Docking icm- and pmf- scores for BIM-8 docked to 252 reliable-for-docking protein targets. 
Each point represents a protein target. Targets for which BIM-8 passed a consensus threshold 
are shown as orange dots (top 5%) and brown dots (top 1%). Targets with experimental 
support are enclosed in red boxes. Targets that have shown no binding activity with BIM-8 in 
the literature are shown in shades of green. It can be seen that most of the actual targets of 
BIM-8 pass stringent consensus score thresholds. 
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Figure 2.8   Predicted drug-target interaction map. 

Quantitative interaction map of drugs docked to protein targets, according to their ICM 
docking score. Each protein is represented by a row, on which a black cross denotes a known 
drug docked to the target, a red dot denotes an approved drug docked to the target, and a blue 
dot denotes an experimental drug docked to the target. Only the top predictions for 
established drug targets (at least one known approved drug) that docked with a score passing 
the consensus threshold and had a protein-rank ≤5 are shown. 
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Table 2.1   A comparison of various threshold methods. 

Testing the ability of various threshold methods to predict a high percentage of known 
interactions (PPV) and enrich the predicted interaction set for known interactions. The sum 
rank is the sum of the protein and drug ranks for that interaction. Thresholds are listed by 
increasing enrichment.  
 

Threshold  # predicted 
interactions 

# known   
in predicted 
interactions 

# proteins 
in 

interactions 

% known in 
predicted 
set (PPV) 

enrichment 
factor vs 
random 

random 1,164,492 1116 252 0.1% 1 
icm-score of -30 104,625 1116 252 1.1% 11 
pmf-score of -300 150 3 20 2.0% 21 
protein-rank of 1 4621 234 206 5.1% 53 
consensus score 0.05% 437 45 238 10.3% 107 
icm-score of -100 72 9 17 12.5% 130 
drug-rank of 1 252 42 252 16.7% 174 
icm-score -100  &  
pmf score -140 48 8 13 16.6% 174 

drug rank 1 &  
protein rank 1 53 16 53 30.2% 315 

consensus score 0.05% 
& sum rank ≤4 

45 22 39 48.8% 510 

 
 
Table 2.2   A comparison of various threshold methods.  

A comparison of various threshold methods based on their ability to predict a high 
percentage of known interactions (PPV) and enrich the predicted interaction set for known 
interactions compared to other methods. 
 

Threshold # predicted 
interactions 

# known in 
predicted 

interactions 

# proteins 
in 

interactions 

% known 
in 

predicted 
set (PPV) 

enrichment 
factor vs 
random 

use icm- score of worst 
scoring known binder 62337 1117 252 1.8% 20 

use icm- & pmf- scores 
of worst scoring known 
binder 

28840 716 252 2.5% 27 

use icm- score of best 
scoring known binder 16412 253 252 1.5% 17 

use icm- & pmf- scores 
of best scoring known 
binder 

7859 253 252 3.2% 35 
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Table 2.3   The ability of thresholds to enrich for known MAPK14 inhibitors.  

 All 
docked 
drugs 

Known 
drugs 

ligands 

Enrichment 
factor versus 

random 
# docked to MAPK14 4621 14 1 
# passing icm score ≤-30 970 14 5 
# passing 5% consensus score 225 10 15 
# passing 5% consensus & protein rank ≤5 67 10 49 
# passing 1% consensus score  45 6 44 
# passing 1% consensus & protein rank ≤5 18 6 110 

 
 
Table 2.4   The ability of various thresholds to enrich for BIM-8 targets.  

 All 
docked 
drugs 

Known 
drugs 

ligands 

Enrichment 
factor versus 

random 
# proteins BIM-8 was docked to 252 4 1.0 
# passing default score ≤-30 24 4 10.5 
# passing 5% consensus score 20 4 12.6 
# passing 1% consensus score 6 3 31.5 
# passing 5% consensus & protein rank ≤5 3 3 63 
# passing 1% consensus & protein rank ≤5 3 3 63 
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Table 2.5   Top predicted hits that have literature support.  

 
Protein Drug icm 

score 
pmf 

score 
drug 
rank 

prot 
rank 

Notes 

AIFM1 DB02332 -79 -231 1 1 Flavin is a cofactor. [191] 

ALB DB03756 -66 -163 1 2 
Dosahexanoic acid (DHA) can form 
complex with albumin and confers 
neuroprotective effects in rats. [180] 

ALB DB06689 -51 -130 84 3 Ethanolamine oleate promptly binds 
with albumin in the blood. [17] 

AKT1 DB03265 -81 -95 2 1 Crystal structure of inositol 1,3,4,5-
tetrakisphosphate bound to AKT. [16] 

BTK DB03344 -69 -99 1 3 

[192]  shows that inositol 1,3,4,5-
tetrakisphosphate binds to BTK. This 
compound is very similar: inositol 
1,3,4,5,6 tetrakisphosphate. 

CYB5R3 DB02332 -71 -258 2 2 Flavin is a cofactor. [193] 

ESR1 DB05414 -47 -197 3 1 ERA-923 is a selective estrogen receptor 
modulator. [172] 

ESR1 DB01645 -42 -109 16 1 Genistein is a selective estrogen 
receptor modulator. [173] 

GART DB02223 -63 -126 1 5 

LY-231514 tetra-glu a known 
thymidylate synthase inhibitor. LY-
231514 is pemetrexed, a GART and 
thymidylate sythase inhibitor. inhibitor. 
[194] 

GART DB02794 -62 -147 2 4 Crystal structure of compound bound to 
E.coli GART. [195] 

GSR DB02332 -57 -211   Flavin is a cofactor. [191] 

KDR DB04879 -49 -152 1 1 Vatalanib is a pan VEGFR inhibitor. IC50 
37nM. [177] 

KIT DB04868 -44 -240 4 2 Nilotinib binds to KIT. [178] 

MAPK10 DB00317 -39 -183 72 3 Gefitinib binds MAPK10 weakly: Kd=2-
3µM. [42] 

MAPK14 DB00398 -51 -161 2 2 Sorafenib IC50 0.057µM. [163] 

MMP2 DB02255 -37 -84 1 6 
Illomastat is a broad-spectrum MMP 
inhibitor. Ki 0.5nM (Chemicon 
International Inc, Temecula, CA) 

MMP8 DB02255 -44 -67 2 1 
Illomastat is a broad-spectrum MMP 
inhibitor. Ki 0.1nM (Chemicon 
International Inc, Temecula, CA) 
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Protein Drug icm 

score 
pmf 

score 
drug 
rank 

prot 
rank 

Notes 

NR3C2  DB01395 -48 -150 1 1 Drospirenone, a progestogen with 
antimineralocorticoid properties. [196] 

PPARD DB03756 -62 -144 1 4 DHA can activate PPARD. [197] 

PPARG DB06536 -47 -130 9 1 Tesaglitazir is a dual PPARA/PPARG 
agonist. [198] 

RAC1 DB03532 -120 -145 1 1 RAC1 is a GTPase [191], and this 
compound is a standard GTP analog.  

RARG DB02466 -58 -216 1 1 BMS181156 binds RARG with Kd 0.6nM. 
[199] 

RARG DB02258 -56 -220 2 1 SR11254 is a RARG-selective ligand. 
[200] 

RARA DB05076 -45 -131 6 2 4-HPR is a highly selective activator of 
retinoid receptors. [201] 

RARG DB05076 -46 -134 6 1 4-HPR is a highly selective activator of 
retinoid receptors. [201] 

RARG DB02741 -52 -217 3 1 CD564 binds RARG with Kd 3nM. [199] 
RARG DB03466 -46 -208 11 1 BMS184394. [199] 
RXRA DB03756 -54 -137 1 8 DHA. [202] 
RXRA DB04557 -53 -156 2 5 Arachidonic acid. [202] 
VDR DB04891 -49 -204 1 1 Becocalcidiol, a vitamin D analog. [174] 
VDR DB04295 -44 -297 4 1 ED-71, a vitamin D analog. [175] 
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3     Identifying Novel EGFR Inhibitors by Computational Drug 
Repositioning Analysis 
 

3.1 Introduction 

The tyrosine kinase EGFR is a member of the ErbB family of cell surface receptors. Upon 

binding of the epidermal growth factor (EGF), EGFR dimerization and activation is induced. 

This leads to the initiation of many signaling pathways including the MAPK (RAS/RAF/ 

MEK/ERK) and the PI3K pathway (PI3K/AKT/MTOR), among others [203]. As these 

pathways play key roles in cell survival and proliferation; EGFR has been deeply studied as a 

drug target in cancer research. Antagonists of EGFR are approved for the treatment of non-

small-cell lung cancer, head and neck cancer, colorectal cancer, and pancreatic cancer [204]. 

The antagonists are also under evaluation for treatment of breast cancer, ovarian cancer, and 

renal cell carcinoma [204]. 

 

EGFR is also an attractive target for molecular docking studies, with crystal structures solved 

in a variety of conformations as well as numerous known ligands. To date, several studies 

have searched for novel EGFR inhibitors using docking approaches. Cavasotto et al. docked 

315,102 compounds of the ChemBridge Express Library against an EGFR crystal structure 

and found seven compounds with 40-50% inhibition of kinase activity at 10µM [158]. 

Choowongkomon et al. docked the NCI Diversity set of 1990 compounds against one EGFR 

crystal structure and found 8 potential interactions [205], although these interactions were not 

validated in binding assays. Recently Li et al. used support vector machines to create a 

scoring function for EGFR, and docked an in-house library of 1125 compounds to one EGFR 

crystal structure [206]. They found 3 compounds with direct binding IC50’s of 2, 10, and 56 

µM. La Motta et al. performed QSAR and docking studies to EGFR with the Maybridge 

database and found that docking studies performed best, identifying two low micromolar 

inhibitors of EGFR [207]. Taken together, these studies suggested that docking could be an 

effective approach for identifying novel EGFR inhibitors. 
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I chose to search for an existing drug that could be repositioned as an EGFR inhibitor, for 

potential use as a cancer treatment. Here I used molecular docking to 23 EGFR crystal 

structures followed by stringent false-positive filtering to predict such repositioning 

candidates. My computational method was able to predict known EGFR binders from a drug 

database with high enrichment. I then virtually screened the DrugBank chemical library 

against EGFR and experimentally tested one of the top hits. Though the drug appeared to 

inhibit both EGFR pathway signaling and EGFR-overexpressing cell line proliferation, it 

ultimately did not inhibit EGFR in ATP-competitive kinase binding assays. I thus concluded 

that this result was a false positive docking prediction, and summarized the limitations of 

docking methods that would be important to consider in future VS analyses. 

 

3.2 Results 

3.2.1 Molecular docking to EGFR structures 

Three-dimensional crystal structures of EGFR collected from the Protein Data Bank [76] are 

listed in Table 3.1. There were a total of 23 structures: 11 with wild type kinase domains, 8 

with the G719S or L858R mutation, and 4 with only the extracellular domain. 65 binding 

pockets were predicted in these structures, including the known ATP-binding pockets as well 

as potentially novel pockets in the kinase and extracellular domains (Figure 3.1). I docked 

5908 small molecule drugs from three drug databases to the predicted EGFR binding pockets 

using the ICM software package [87]. The small molecules included 806 FDA approved 

drugs, 768 experimental drugs, and 39 nutraceutical drugs from DrugBank [144]; 3102 drugs 

approved in USA and Japan from KEGG DRUG [145]; and 1193 oral marketed drugs 

collected by a 2004 study [208]. As described in Chapter 2, each docked protein-drug 

interaction had two independent scores describing its binding potential: an energy-based 

score (icm-score) and a knowledge-based potential of mean force score (pmf-score).  

 

3.2.2 Filtering the docking results 

Figure 3.2 plots the two scores for each compound docked to EGFR and shows that few 

compounds have both good icm- and pmf-scores, located in the bottom-left of the plot. I 

applied the consensus scoring method developed in Chapter 2 that considers each docked 

interaction as a pair (icm-score, pmf-score), and removes the densest group of poor scoring 
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pairs on the plot. I selected the threshold line that minimally allowed the known EGFR-drug 

canertinib to pass. This resulted in 50 candidate drugs including all 7 known EGFR binding 

compounds (Table 3.2). 

 

I then docked these top 50 drugs against a reliable-for-docking set of protein targets 

consisting of 2231 human protein crystal structures (134 unique drug targets, an earlier 

version of the dataset described in Chapter 2). Targets were ranked by their icm-score to each 

drug, thereby creating a ‘protein rank,’ which measured the selectivity of the ligand to the 

protein. I filtered out compounds for which EGFR had a protein rank of greater than 3 

(EGFR was not one of their top three predicted targets), resulting in just 20 drugs. Many high 

scoring drugs were eliminated at this step. These predicted EGFR-binding drugs are listed in 

Table 3.3.  

 

There are other, more standard ways of choosing top docking hits (Table 3.2 first two rows 

and Figure 3.2 blue lines). Using the default software-specified score threshold, an icm-score 

of -32, resulted in 528 hits. More lenient thresholds can also be used; for example, the EGFR 

study by Cavasotto et al. used a score threshold of -28 [158]. Using the worst known-drug 

docking score as the cut-off (gefitinib with an icm-score of -36) resulted in 150 hits. In 

comparison, my computational method produced a much more compact list of 20 predicted 

binders. However, in order to be useful, this method was required to enrich the predicted set 

for known binders. 

 

3.2.3 Analysis of known EGFR inhibitors 

A standard measure of docking success for a target is to evaluate the docking of its known 

inhibitors as a positive control. In our my database there were four known EGFR drugs 

(gefitinib, erlotinib, lapatinib, canertinib), two metabolites (ADP, ATP), and a broad-

spectrum kinase inhibitor (staurosporine). They all had high scores passing the consensus 

score threshold (Figure 3.2). The four known drugs also passed the protein rank criteria; thus, 

EGFR was one of the top three proteins for these drugs when docked to 134 drug targets. 

This property did not hold for ADP, ATP, and staurosporine with EGFR protein ranks of 4, 
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6, and 8, respectively. However, these compounds are known bind to all kinases (or >90% of 

kinases in the case of staurosporine [42]). 

 

The drugs’ predicted binding conformations were also compared to their respective poses in 

EGFR crystal structure complexes, a couple of which are shown in Figure 3.2c. I considered 

a heavy atom RMSD under 2Å to be a measure of successful docking, and under 1Å to be a 

very rigorous measure of docking accuracy [97]. For example, the docked ADP was 

compared to the ATP-analog AMP-PNP (PDB code 2ITX) where RMSD is 0.8Å. Although 

staurosporine obtained the lowest score out of the known EGFR binders, its RMSD to the 

analog AFN941 (PDB code 2ITQ) was still successful at 1.6Å. The known drugs all 

exhibited RMSDs under 2Å and variation occurred mostly in the solvent-exposed regions of 

the bound ligand that did not directly interact with the protein. The core positions of the 

bound and docked ligands are very similar, with RMSDs under 1Å. In addition, hydrogen 

bonds formed in the crystal structure complexes were retained in the docked binding 

conformations. In short, the computational method successfully reproduced all the known 

EGFR ligands both in terms of score and conformation. I therefore applied my method to 

predict potential drug repositioning candidates for EGFR. 

 

3.2.4 Analysis of top predicted drug repositioning candidates of EGFR 

The 20 predicted EGFR binding compounds passing all score and protein rank thresholds are 

shown in Table 3.2. Aside from the 4 known binders, several kinase targeting compounds 

were also predicted. Of note is compound 2, a CDK2 inhibitor [209] that is likely to inhibit 

EGFR as it belongs to the same 4-anilinoquinazoline class of compounds as gefitinib, 

erlotinib, and canertinib. Atorvastatin is predicted to bind to EGFR at a site on its 

extracellular domain, and a previous study has shown that this drug inhibits the 

phosphorylation of EGFR and ERK in mice [210].  

 

An additional result of performing a protein-rank analysis is the prediction of a protein-drug 

network centered on EGFR (Figure 3.3), showing drug targets that are connected to EGFR 

through one drug. There are many kinases in the network (CDK2, MET, PDPK1, LCK, 

HCK, MAPK10, MAPK14, ABL1, and KIT), which is in accordance with ATP-binding sites 
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being similar across kinases and thus being expected to bind drugs in common with EGFR. 

In particular, there are many compounds shared between HCK and LCK, which is also likely 

considering 26 of 28 binding site residues of these two protein targets are identical. In short, 

this network shows us other proteins that could be targeted in combination with EGFR using 

a single drug. 

 

I selected one prediction for experimental validation, requiring it to be an approved drug and 

have a very good (icm-score, pmf-score) pair. Since compounds with higher pmf-scores have 

more statistically likely interactions with protein atoms, I selected the anti-HIV drug 

tenofovir disoproxil fumarate (TDF) (Figure 3.4a) known to inhibit reverse transcriptase. 

TDF passed the consensus thresholds and also had a very high pmf-score (Figure 3.2a). This 

compound docked well to both the wild-type and mutant structures of EGFR. Despite being 

chemically similar to ADP, TDF has a different predicted binding conformation (Figure 

3.4c). Like ATP, TDF is predicted to establish hydrogen bonds with M793; however, it is 

also predicted to form two hydrogen bonds to K745, a residue that is known to be critical for 

EGFR activity [211]. These extra hydrogen bonds anchor TDF in the ATP-binding site from 

both ends, interacting with additional residues at the ATP site. TDF appeared to be a good 

candidate for EGFR inhibition from both scoring and posing aspects, and I followed with in 

vitro experiments on TDF for validation. 

 

In the protein-drug network, TDF also docked well to two other non-kinase targets. The first 

target UDP-galactose-4-epimerase (GALE) is one of three human galactose-metabolizing 

enzymes. Individuals born with defective GALE develop galactosemia and must be treated 

with a low galactose diet [212]. Interestingly, TDF therapy in AIDS individuals has been 

increasingly recognized as a cause of acquired Fanconi’s syndrome (FS), which in turn can 

be caused by cystinosis, Wilson’s disease, tyrosenemia, as well as galactosemia [213, 214]. 

Though FS is an uncommon adverse effect of TDF, the GALE protein may play a role in 

these individuals. The other target is the repair enzyme protein-L-isoaspartate (D-aspartate) 

O-methyltransferase (PIMT). In mice, PIMT-deficiency results in fatal epilepsy [215], but it 

does not have an elucidated role in human diseases to date. TDF is not known to cause 

epilepsy in AIDS patients. TDF is not predicted to interact with other kinase proteins and 
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may thus have a very different off-target profile from current EGFR drugs. The predicted 

specificity of TDF for EGFR may lie in its binding conformation (Figure 3.3c), interacting 

with three residues spanning the ATP binding site. In contrast, the known drug erlotinib only 

had one hydrogen bond to EGFR (Figure 3.2b).  

 

3.2.5 TDF inhibits cell proliferation of breast cancer cell lines 

Since TDF is predicted to target the EGFR ATP-binding site, it was expected to inhibit cells 

in a manner similar to the known EGFR drug gefitinib (marketed as Iressa®; AstraZeneca). I 

thus investigated the effect of TDF on three gefitinib-sensitive cell lines. The first two are 

known to overexpress EGFR: the basal-like breast cancer (BLBC) cell line SUM149, known 

to overexpress wild-type EGFR [216] and the human epidermoid carcinoma A431 cell line 

[217]. The third was metastatic breast cancer cell line BT474M1 which expresses wild-type 

EGFR but is also known to overexpress HER2 [218]. After 72 hours of treatment with TDF, 

cell growth was significantly inhibited up to 35% at 1µM and 57% at 10µM in SUM149 

(Figure 3.5a). The inhibition was dose-dependent with an estimated cellular IC50 of 8.1µM. It 

was not as potent as gefitinib (cellular IC50 ~1µM, which is in accordance with previous 

studies [216]. A431 and BT474M1 cells also showed similar inhibition % at 10µM (note that 

the A431 cells were not tested at 1µM).   

 

I tested TDF from pharmacy acquired pills, in the form of Truvada (TDF + emtricitabine) 

and found that Truvada inhibited SUM149 cells with an IC50 of 3.5µM, but did not show any 

inhibition on the gefitinib-insensitive cell lines (MDA-MB231) [219] (Figure 3.5b).  The IC50 

values were estimated to be 46µM and 71µM, respectively. As a positive control, I 

determined that gefitinib was able to inhibit SUM149 cells at 1µM but only weakly inhibited 

MDA-MB231 and HCC1937 cells. Overall, these experiments supported the hypothesis that 

TDF was inhibiting the EGFR protein in a manner similar to the known EGFR-targeting drug 

gefitinib.  

 

I also tested TDF on the melanoma cell line LCC6 (Figure 3.5c) which expresses wild type 

EGFR [220]. In this cell line, it is thought that HER2 overexpression is the main cancer 

driving mechanism. However, the EGFR-HER2 interaction causes prolonged HER2 
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signaling and in accord, LCC6 cells are known to be sensitive to the EGFR-drug gefitinib 

[220]. Though I did not observe strong inhibition of LCC6 by gefitinib, studies performd by 

Warburton et al. showed that the concentration of fetal bovine serum (FBS) was important in 

such an assay, since gefitinib did not inhibit LCC6 cells at 10% FBS. However, 1µM 

gefitinib caused a 66% inhibition of cell proliferation compared to untreated controls at 

reduced serum conditions (1% FBS), suggesting that an excess of growth factors may 

override the low drug concentration. The 5% FBS present in my assay may have been too 

high to observe gefitinib inhibition; however, TDF still showed a strong dose-dependent 

inhibition of LCC6 proliferation. 

 

3.2.6 TDF inhibits EGFR pathway signaling in an EGF-driven manner 

I investigated the effects of TDF compared to gefitinib on the signaling of EGFR and ERK, a 

key protein in the EGFR signaling pathway. TDF treatment for 24 hours significantly 

decreased phospho-ERK 1/2 protein levels while total-ERK protein levels remained constant 

(Figure 3.6a). The control drug gefitinib also decreased ERK signaling. However, ERK 

signaling can also be decreased when receptor tyrosine kinases other than EGFR are 

inhibited. Thus in order to show that the TDF inhibition was EGF-dependent, I stimulated 

serum-starved SUM149 cells with EGF to see whether signaling was still inhibited (Figure 

3.6b). As expected, following EGF stimulation, phosphorylation of ERK increased and 

gefitinib was able to suppress this (Figure 3.6b left). TDF also showed strong EGF-

dependence evidenced by the dramatic inhibition of ERK phosphorylation following EGF 

stimulation (Figure 3.6b right). Thus it appears that the anti-proliferative activity of TDF is a 

result of directly inhibiting EGFR signaling in an EGF-driven manner. 

 

3.2.7 TDF does not inhibit EGFR in direct binding assays 

After completing the cell line and signaling experiments, an in vitro EGFR assay became 

available at SignalChem (Richmond, Canada). Though preliminary results seemed promising 

(40% inhibition at 10nM drug concentration), subsequent replicates did not show any 

inhibition or dose-dependent interaction for TDF (Figure 3.7a). I speculated whether the 

peptide used in their assay may be interfering with TDF binding. Therefore, I also conducted 

a kinase assays from Invitrogen and Caliper, which used different peptides and fluorescent 
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detection methods; however TDF did not inhibit EGFR any more than baseline variation in 

either assay (Figure 3.7c).  In short, TDF was not able to inhibit EGFR in three different 

biochemical binding assays and I concluded that its effects on MAPK signaling inhibition 

may have been through other protein targets. 

 

One important lesson resulting from these experiments was the importance of the ATP 

concentration in the kinase assays (Figure 3.7b). SignalChem uses standard settings of 50µM 

ATP with staurosporine as the control drug. However, my control drug, the known 

nanomolar inhibitor gefitinib, did not show any inhibition in such conditions. At the lower 

ATP concentration of 5µM, gefitinib was able to display a clear dose-dependent response.  

 

3.3 Discussion 

In this study, I have developed a docking pipeline for EGFR using an ensemble of 23 

existing EGFR crystal structures. With a set of seven known binders (including 4 approved 

drugs), the scoring and ranking criteria were able to obtain enrichment factors over 100. The 

most stringent criteria had a PPV of 4/20=20%. Extrapolating, there would be a 20% chance 

for the chosen drug TDF to be a true EGFR inhibitor. 

 

That TDF was not observed to inhibit EGFR directly was disappointing given the previous 

experimental data showing that TDF could inhibit ERK phosphorylation and was dependent 

upon the presence of EGF. There were several possible explanations for the contradictory 

results. One possibility could be some type of chemical aggregate forming during assay 

conditions that prevents it from binding to EGFR. However, this is very unlikely as 

aggregates would not be able to penetrate the cells and inhibit the EGFR pathway signaling. 

TDF may be inhibiting another protein in the cell that can affect ERK phosphorylation. For 

example, Protein Kinase C is known to inhibit ERK phosphorylation independent of Ras, an 

important protein along the EGFR pathway [221]. However, this is also unlikely as TDF 

inhibition was observed to be EGF-dependent. If TDF was inhibiting through PKC, I would 

not expect to see such strong dependence on EGF. 
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TDF could also be inhibiting the proteins PIMT or GALE. PIMT knockdown has been 

previously associated with hyperactivation of EGF-stimulated MEK and ERK signaling in 

mammalian cells [222]. Since TDF treatment inhibited ERK signaling in breast cancer cells, 

I do not believe it inhibited PIMT in these cells. Though there is indirect support for the 

TDF-GALE interaction through galactosemia, I could not find any links between GALE and 

ERK signaling in the literature, and thus do not believe GALE is involved in the observed 

inhibition of ERK phosphorylation. 

 

I considered whether TDF was inhibiting one of the other ERBB family proteins (other than 

EGFR, which is also known as HER1/ERBB1, there are HER2/ERBB2, HER3/ERBB3, and 

HER4/ERBB4). EGF is an agonist specific to EGFR; however, EGFR is known to form a 

homo- or hetero- dimer with one of the other family members before continuing the signaling 

cascade [204]. A sequence comparison of the family members (Figure 3.8) shows that they 

share many identical residues (shaded in dark green), especially within 3.5A of the ATP 

binding site (boxed in red). Though there were no solved PDB structures of these other 

structures at the time, it is likely that TDF would be also able to inhibit one or more of them. 

It is interesting to note that TDF could inhibit LCC6 cells at 1µM, whereas gefitinib could 

not. This may suggest some interaction between TDF and HER2 that allowed it to more 

strongly inhibit the LCC6 cells. 

 

TDF could also be inhibiting another protein along the EGFR pathway, downstream of 

EGFR but upstream of ERK, or even perhaps ERK itself. Such proteins include Ras, Raf (B-

Raf, C-Raf), MEKs (MEK1/2), ERKs (ERK1/2) [223]. These proteins were not in my 

database as their crystal structures had not yet been solved; thus, I was not able to include 

them in the inverse docking study. I believe that this low representation of all proteins in the 

cell is currently the biggest limitation of my method – as well as all other drug-target 

interaction prediction methods. If the true target of TDF were in the dataset, the TDF-EGFR 

interaction would have a poorer protein-rank and thus fail the protein-rank thresholds. As 

more crystal structures of proteins are solved, the accuracy of the protein rank filter as well 

as the protein-drug network can be improved. Of course, improvements in docking scoring 

mechanisms will also be critical for improving the utility of the method (i.e. improving the 
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score of staurosporine). As scoring methods improve in accuracy, I would also expect the 

docking score of TDF to be lower and thus fail the consensus score threshold.  

 

Finally, it could be that all three direct binding assays were not able to detect the inhibition of 

EGFR by TDF. It is possible to use other assays such as washing cell lysates over column-

bound TDF; however, this method does not generate IC50 values that are necessary for any 

potential therapeutic. If the opportunity arises, it would also be informative to test the TDF-

EGFR interaction using BIACORE assays, which do not rely on fluorescence readings but 

instead detect changes in protein mass upon ligand binding[102]. 

 

The method performed well for many of the known EGFR binders. The goal was to filter out 

the majority of false positive predictions that are predicted by docking. The large enrichment 

values in this study suggest that many false positive predictions have been eliminated, and 

the PPV values suggest that 20% of the of the remaining 19 predicted hits may be real EGFR 

binding compounds. I was not able to validate TDF, but noted that it did not fall in an 

optimal section of the score plot (i.e. bottom right). It was also possible that there were few 

strong inhibitors in the library and that my stringent thresholds eliminated all the true 

positives. Determining the cause will require experimental testing of the other top 

predictions. However, TDF was one of the few drugs that could be purchased due to its 

approved status, in contrast to experimental drugs synthesized in specific labs. Overall, the 

results of this study indicate that there may be few strong EGFR inhibitors within the existing 

approved drugs aside from the existing inhibitors and that I should apply the method to 

screen larger databases of chemicals to find novel EGFR inhibitors. Drug repositioning 

currently may not be a viable strategy for targeting EGFR-associated diseases.   

 

3.4 Methods 

3.4.1 Known drug database collection 

Chemical structures in SDF format were obtained from DrugBank, consisting of 806 FDA 

approved drugs, 768 experimental drugs, and 39 nutraceutical drugs [144]; 3102 drugs 

approved in USA and Japan from KEGG DRUG [145]; and 1193 oral marketed drugs 
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collected by a 2004 study [208]. The DrugBank compounds all had at least one known 

human protein target. 

 

3.4.2 EGFR crystal structures collation 

EGFR crystal structures were obtained from the Protein Data Bank (PDB) [224]. I prepared 

protein structures for docking using Molsoft's ICM software version 3.6-1c [87], removing 

water molecules, solvent ions, and other ligands from the structures. I added hydrogen atoms 

to the structures then optimized in their positions. To predict potential ligand-binding pockets 

in the proteins, I used the PocketFinder [78] method in ICM, which calculates a 

transformation of the van der Waals energy for an aliphatic carbon probe on a grid map. The 

receptor is defined as the box 3.5Å surrounding the pocket, and the three largest pockets 

were added to the EGFR binding site collection. In total, there were 65 pockets. 

 

3.4.3 Protein drug target crystal structures collection 

I obtained human protein drug targets from DrugBank. PDB structures with at least 95% 

sequence identity for proteins at least 20 amino acids in size were obtained. Structures were 

required to be X-ray crystal structures with a minimum resolution of 2.5Å. Multiple chains 

were grouped into a set of non-redundant sequences, based on PDB’s chain redundancy 

analysis at the 95% sequence identity level [225]. As with the EGFR structures, I added 

hydrogen atoms, predicted pockets, and defined receptor areas. 

 

3.4.4 Molecular docking 

Drugs were docked to target receptors using the ICM virtual library screening (VLS) module. 

This method performs rigid-receptor flexible-ligand docking using a two-step Monte Carlo 

minimization method and energy scoring function to sample ligand conformations and select 

the best docking hits. MMFF partial charges and ECEPP/3 force-field parameters were used. 

To ensure a sufficient coverage of the docking energy landscape, I docked every drug-target 

interaction 10 times. High-throughput docking was performed on a Linux cluster with 175 

licenses of ICM. As a given protein may have several structures, each of which with more 

than one pocket, I docked all pockets to a drug, and the best scoring interaction is selected to 

be the representative protein-drug score.  
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3.4.5 Consensus score threshold 

I set the minimum icm- and pmf- score threshold to be (-30,-30). On a 2D score plot, straight 

lines of negative slope and intercept were used to separate the predicted hits into passing-

threshold and failing-threshold groups. As seen in Figure 3.2, my best predictions passing the 

threshold were in the bottom left corner of the plot. The failing predictions fell in the 

trapezoid formed by the line, icm-score=-30, pmf-score=-30 and the minimum and maximum 

icm- and pmf- scores. For each line, I calculated the density of failing-threshold hits in the 

trapezoid. Of the lines that just included canertinib (which had the worst score pair of the 

known drugs) in the passing group, I chose the line that failed the densest cluster of points. 

 

3.4.6 Inverse docking 

I docked the 50 compounds that passed the consensus scoring threshold to a database of 2231 

binding pockets for 134 unique human protein drug targets annotated by DrugBank. This 

database was gathered as per 3.4.3 and is an earlier version of the pocket database described 

in Chapter 2. It consists of target proteins for which at least one known drug could be docked 

with a good score. The database has been described in my previous work [226], and 

represents a selection of targets that are more reliable for docking. Since then, I have updated 

it with the latest DrugBank and PDB information. Inverse docking was carried out as the 

docking in 3.4.4, though each drug-target interaction was docked 5 times instead of 10. Since 

I could not perform a icm-, pmf- score threshold for each protein (each protein was only 

docked to 50 drugs, not allowing enough points for a reliable autonomous threshold), I 

applied a simple -32 score threshold. 

 

3.4.7 Drug-target network 

Cytoscape 2.6.0 [190] was used to generate the network graph. Known interactions shown as 

pink edges were collected from DrugBank annotations and literature search. For example 

gefitinib-MAPK10 and gefitinib-MAPK-14 are not annotated expressly by DrugBank, but 

gefitinib has been shown to inhibit MAPK14 with an IC50 of 1.19µM [43] and MAPK10 with 

an IC50 of 2.3µM [42]  through two different kinase binding assay studies. 
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3.4.8 Cell lines and reagents 

The SUM149 cell line was purchased from Astrand (Ann Arbor, Michigan, USA) and grown 

according to the manufacturer's recommendation. In brief, cells were cultured in F-12 

(Ham's) media (Gibco/Invitrogen, Burlington, Ontario, USA) supplemented with 5 µg/ml 

insulin (Sigma, Oakville, Ontario, Canada) 1 µg/ml hydrocortisone (Sigma), 10 mM HEPES 

(Sigma), and 5% fetal bovine serum (Gibco/Invitrogen). BT474-m1 cells (50% F12/50% 

DMEM) were obtained from MC Hung, M. D. Anderson Cancer Center. MDA-MB-231 

(DMEM with 10% FBS) and HCC1937 (RPMI with 5% FBS) cells were from the American 

Type Culture Collection (ATCC). MDA-MB-435/LCC6 cells were a gift Dr. Robert Clark at 

Georgetown University, Washington, DC, and were cultured in DMEM  (Invitrogen, 

Burlington, ON, Canada) with 2 mmol/L L-glutamine and 10% fetal bovine serum 

(Invitrogen) 

 

3.4.9 Growth assays 

Breast cancer cells were seeded in 96-well plates (5000 cells/well) and incubated for 24 

hours at 37˚C. Cells were then treated with gefitinib (isolated from tablets purchased from 

AstraZeneca and kindly provided by Ching-Shih Chen (Ohio State University, USA) at 1µM 

and with TDF (≥97% pure tenofovir disoproxil fumarate powder purchased from Changzhou 

Huaren Chemical Co, Jiangsu, China) at 1µM, 10µM, and 100µM. Cells were also treated 

with vehicle controls: DMSO for gefitinib and methanol for TDF. Nuclei/cell counts were 

determined after 72 hours of drug treatment. Cells were washed in PBS and then fixed and 

stained in 2% paraformaldehyde containing Hoechst dye (1µg/ml). Cell numbers were 

determined using the ArrayScan VTI high throughput analyzer. Each cell count reported is 

the average of six wells. IC50 values were estimated by linear regression of a log-

transformation of the data. Significant decreases in cell count were assessed using an 

unpaired Student’s t-test p-value < 0.05. 

 

Growth assays with gefitinib-insensitive cell lines MDA-MB-231 and HCC1937 were 

performed using Truvada (Gilead Sciences, Inc., a combination drug with TDF and 

emtricitabine). Truvada pills were crushed and completely dissolved in DMSO to create 
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stock solution. These assays were performed as the average of two wells (only one well in 

the case of HCC1937). 

 

3.4.10 Western blotting 

SUM149 cells were plated in 6-well plates with a density of 3.5x105 cells/well and incubated 

for 24 hours at 37˚C. Cells were then treated with vehicles, gefitinib (1µM), and TDF (1 and 

10µM) for 24 hours then lysed with ELB buffer (5mmol/l PH 7.4 HEPES, 150 mmol/l NaCl, 

1 mmol/L pH 8 EDTA, 1% Triton X-100, 1% sodium deoxycholate, and 0.1% SDS) with 

protease inhibitors. Proteins were then quantified by Bradford assay, resolved on a 12% 

SDS-PAGE, and transferred overnight to nitrocellulose membranes at 40V and 4˚C. 

Membranes were blocked in 5% milk in TBS/0.1% Tween for 1 hour at room temperature, 

before being probed with primary antibodies as follows: p42/44 ERK (1:1000; cell signaling) 

phospho-ERK (1:500; cell signaling), EGFR (1:1000; stressgen), phospho-EGFR (1:1000, 

cell signaling), vinculin (1:1000; cell signaling),  and incubated with either mouse (1:5000; 

Amersham) or rabbit (1:2000; Amersham) secondary antibodies. Protein bands were 

visualized using ECL Western blotting detection reagents (GE Healthcare). 

 

In the EGF dependence experiment, SUM149 cells were serum-starved for 24 hours before 

treating with vehicles, gefitinib (1µM) and TDF at 1 and 10µM for a further 24 hours. Then 

one set of cells remained serum starved, whereas the second set was stimulated with EGF 

(20ng/mL) for 30 minutes. Western blots were then conducted as described above.  

 

3.4.11 Direct binding assays 

Caliper Discovery Alliances and Services performed an in vitro assay of TDF against EGFR 

using their LabChip 3000 technology. An enzyme titration was performed in standardized 

buffer with 100µM ATP, 1µM fluorescent peptide substrate, and the drug on a microfluidic 

chip. A capillary sipper was used to separate the phosphorylated and unphosphorylated 

substrate via electrophoresis. The amount of phosphorylated substrate is then measured via 

laser-induced fluorescence. It is reputed to be able to detect both strong and weak inhibitors 

due to the sensitivity of microfluidic precision and can identify drug candidates missed by 

conventional techniques. TDF was tested at 8 concentrations in duplicate. 
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Invitrogen’s SelectScreen service performed an in vitro assay of TDF against EGFR using 

their Z’-LYTE methodology. This assay uses a synthetic peptide substrate with a fluorophore 

on each end (the two fluorophores have different emission wavelengths). A site-specific 

protease was then used to cleave only non-phosphorylated peptides, disrupting the 

fluorophore pair and affecting the ratio of the two fluorophore emissions. This difference of 

emission was measured. TDF was tested at 10 concentrations in duplicate. 

 

SignalChem (Richmond, BC, Canada) performed in an in vitro assay of TDF against EGFR. 

Kinase assays consisted of 33P-ATP at 5µM, the protein kinase, peptide substrate, assay 

buffer, and the drug. After 20 minutes of incubation, the radiolabelled substrate was isolated 

using phosphocellulose paper and the fluorescence reading was obtained. Blank assays 

without substrate or drug, and assays without the drug, were used as controls. Staurosporine 

at 1µM was used as the positive control drug.  

 

3.4.12 Alignment of the ERBB kinase family 

Protein sequences of the four ERBB family kinases were downloaded from UniProt [191] 

and aligned using standard settings in the ICM graphical user interface [87]. The ICM 

method is a global, Needleman-Wunsch alignment with zero end gap penalties [355]. The 

residue substitution matrix and normalized gap penalties were determined by training on a 

fold-recognition benchmark [355]. In method comparison studies, the ICM method has 

performed well, particularly in its ability to allow continuous gaps in both sequences being 

aligned [356]. This is significant for proteins because two proteins sharing a fold will have 

conserved regions but will also have regions (such as loops) with significant structural 

deviation. The multiple sequence alignment (MSA) algorithm is based on CLUSTAL, 

constructing a guide tree to cluster sequences and building the MSA by aligning proteins 

from most to least similar [357]. The kinase domain sequence was determined using the 

sequence of EGFR kinase domain crystal structure 1M14.
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Figure 3.1   Predicted binding sites in EGFR crystal structures.  

 
a) The three largest predicted binding sites the EGFR kinase domains. b) The three largest 
predicted binding sites in the EGFR extracellular domain. The protein is shown in green with 
the binding pockets shown as green, orange, and blue in order of decreasing size. In total, the 
23 EGFR crystal structures had 65 predicted binding pockets. 
 
(a) 

 

(b) 
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Figure 3.2   Molecular docking analysis. 
 
(a) Chemicals from DrugBank, KEGG drug, and an oral-marketed drug database [208] were 
docked to EGFR crystal structures. Docking scores (icm-score) and potential of mean force 
scores (pmf-score) were plotted for each EGFR-drug interaction. (b) Predicted binding 
conformation of two known EGFR ligands (erlotinib and ATP) compared to their native 
EGFR-ligand crystal structures. The solved inhibitor is shown in grey stick format, and the 
neighbouring protein residues are in white sticks. The docked inhibitor is shown as yellow 
sticks. All compounds exhibited RMSD values under 2.0Å as expected for a successful 
docking result. 
 

 

b)              Erlotinib. RMSD 1.1Å. ATP. RMSD 1.2Å. 
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Figure 3.3   Drug-target interaction network of predicted EGFR drugs. 
 
Targets that are connected to EGFR through one drug interaction are shown. Targets are 
depicted as boxes, and drugs as circles. Approved drugs are purple and experimental drugs 
are shown by their DrugBank ID in blue. Predicted interactions are depicted as edges, with 
literature-verified interactions colored pink. The width of the edge line shows the 
interaction’s protein rank (thickest line = protein rank 1, thinnest line = protein rank 3). Only 
interactions with protein rank ≤3 are shown. 
 

 



 81 

 
Figure 3.4   TDF is predicted to bind to the ATP-binding site of EGFR 
 
The predicted binding mode of TDF in the ATP binding pocket of EGFR is shown as (a) a 
stick model and (b) a space-filing model. (c) Comparison of binding modes of TDF and an 
ATP-analog (grey stick). Hydrogen bonds formed by TDF are in purple and those by the 
ATP-analog are in green. 
 
(a) (b) 

  
(c) 

 
 



 82 

Figure 3.5   TDF suppresses the growth of gefitinib-sensitive cancer cell lines only. 
 
a) SUM149 and A431 cells are known to overexpress EGFR. DMSO was the vehicle control 
for Iressa (gefitinib) and methanol was the control for the drug TDF. BT474M1 expresses 
EGFR but is also known to overexpress HER2. Decreases in growth that are statistically 
significant are indicated with * (p-value < 0.05).   
 

 
 

b) The MDA-MB231 breast cancer cell line is not sensitive to gefitinib. Both gefitinib and 
TDF did not inhibit this cell line in my study. The drug used here was Truvada (TDF + 
emtricitabine) obtained from dissolving crushed pills. DMSO was the vehicle control for 
gefitinib and methanol was the control for Truvada.  
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c) LCC6 is known to overexpress HER2, and has been shown to be sensitive to Iressa under 
low serum conditions and insensitive with 10% FBS [220]. In my standard assay protocol 
with 5% FBS, LCC6 did not show sensitivity to Iressa. However, LCC6 was inhibited in a 
dose-dependant manner by the drug TDF. DMSO was the vehicle control for gefitinib and 
methanol was the control for TDF.  
 



 84 

Figure 3.6   TDF inhibits EGFR pathway signaling. 
 
(a) Effect of TDF on EGFR and the ERK signaling pathway. SUM149 cells were treated 

with two concentrations of TDF for 24 hours. Cells treated with TDF show a decrease in 
phospho-ERK signaling without decreasing total-ERK. Vinculin was used as loading 
control.  

 
 
 
 
 
 
 
 
 
 
 

 
(b) Effect of TDF on ERK pathway signaling with and without EGF. SUM149 cells were 

serum-starved, treated with two concentrations of TDF for 24 hours, and then stimulated 
with EGF for 30 min (right). Gefitinib was used as a control drug (left). Vinculin was 
used as the loading control. 
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Figure 3.7    In vitro kinase assays of TDF against EGFR 
a) In vitro kinase assay of control drug gefitinib. The known inhibitor gefitinib did not 
exhibit any EGFR inhibition (negative values represent % inhibition) at 50µM ATP 
concentration, however, adjusting the concentration to 5µM showed a strong dose-dependent 
response. 
 

[ATP] 
drug 
10nM 

drug 
100nM 

drug 
1µM 

drug 
10µM 

drug 
100µM 

5µM -6 -17 -23 -73 -51 
50µM -99 -102 -103 -103 -103 

 

b) In vitro kinase assay of TDF against EGFR at 5µM ATP concentration. The assay was 
performed by SignalChem (Richmond, BC, Canada) three times with various TDF 
concentrations. Overall, TDF did not appear to inhibit EGFR. Negative values represent % 
inhibition, and anything within +20 or -20 may represent noise. 
 

[ATP] 
drug 
10nM 

drug 
100nM 

drug 
1µM 

drug 
10µM 

drug 
100µM 

5µM -40 -38 -4 -3 - 
5µM -3 3 - - - 
5µM -6 - 0 -6 -23 

 

c) In vitro kinase assay of TDF against EGFR performed by Invitrogen and Caliper, 
respectively.  
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Figure 3.8    Comparison of the ERBB family of kinases.  
 
Within the kinase domain, the four proteins are quite similar as shown in the below sequence 
alignment. They are colored by conservation (dark green is perfectly conserved, light green is 
conserved across 3 of the 4 kinases). Residues within 3.5Å of the ATP binding site are shown 
in red boxes and are quite well conserved, particularly across EGFR, ERBB2/HER2, and 
ERBB4/HER4. 
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Table 3.1   The 24 crystal structures of EGFR and their mutational status. 
 

PDB 
code Domain Ligand Resolution 

(Å) Mutation Reference 

1ivo extracellular - 3.30 - [227] 
1mox extracellular TGF-alpha 2.50 - [228] 
1nql extracellular EGF 2.80 - [229] 
1yy9 extracellular cetuximab 2.61 - [230] 
1m14 kinase - 2.60 - 
1m17 kinase erlotinib 2.60 - 

[231] 

1xkk kinase lapatinib 2.40 - [232] 
2gs2 kinase - 2.80 - 
2gs6 kinase ATP analog 2.60 - 
2gs7 kinase AMP-PNP 2.60 - 

[233] 

2itn kinase AMP-PNP 2.47 G719S 
2ito kinase gefitinib 3.25 G719S 
2itp kinase AEE788 2.74 G719S 
2itq kinase AFN941 2.68 G719S 
2itt kinase AEE788 2.73 L858R 
2itu kinase AFN941 2.80 L858R 
2itv kinase AMP-PNP 2.47 L858R 
2itz kinase gefitinib 2.80 L858R 
2itw kinase AFN941 2.88 - 
2itx kinase AMP-PNP 2.98 - 
2ity kinase gefitinib 3.42 - 
2j6m kinase AEE788 3.10 - 

[234] 

2j5e kinase 13-jab 3.10 - 
2j5f kinase 34-jab 3.00 - 

[235] 

 

Table 3.2    Various scoring thresholds for the docking results. 
 
Compared to the default score threshold, the devised consensus line predicts far fewer EGFR 
inhibitors out of the 5908 drugs, while retaining the ability to predict known EGFR ligands. 
The protein rank filter only predicts 4 known ligands, but the eliminated 3 predicted 
inhibitors are broad-spectrum kinase ligands (ATP, ADP, and staurosporine). 
 

 
Score cut-off method 

Number 
of 

predicted 
inhibitors 

Number of 
known 
ligands 

Enrichment 
factor 
versus 
random 

No threshold (random selection) 5903 7 1 
Default score threshold -32 528 7 11 
icm-score -32, pmf- score -60 minimum threshold 226 7 26 
Use known-drug score -36 150 7 39 
Use consensus scoring threshold line 50 7 118 
Use EGFR protein rank of 3 or lower from docking 
the top compounds against a panel of 134 drugs  20 4 169 
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Table 3.3   Top 20 known drugs predicted to inhibit EGFR. 
 
The table is sorted by the protein rank (prot rank) of EGFR for each drug, then by icm-score. 
These interactions passed the consensus score filter and have a protein rank of at least 3. The 
majority of drugs are predicted to bind the wild-type ATP-binding site; compounds 7 and 9 
are exceptions, as they are predicted to bind to a site in the extracellular domain. Bolded 
compounds indicate known EGFR inhibitors 
 
No. icm 

score 
pmf 

score 
prot  
rank 

No. of 
targets Drug name Experimental drug 

structures 

1 -46 -107 1 13 compound 19 

 

2 -48 -144 1 9 
4-[3-hydroxyanilino]-6,7-
dimethoxyquinazoline 
 

 

3 -42 -94 1 10 Atorvastatin 

 

4 -38 -143 1 6 

6-[n-(1-isopropyl-
1,2,3,4-tetrahydro-7-
isoquinolinyl )carbamyl]-
2-naphthalene 
carboxamidine  

5 -38 -144 1 7 

6-[n-(1-isopropyl-3,4-
dihydro-7-isoquinolinyl) 
carbamyl]-2-naphthalene 
carboxamidine 

 

6 -38 -145 1 2 Erlotinib 

 

7 -35 -157 1 3 Flutroline 
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No. icm 
score 

pmf 
score 

prot 
rank 

No. of 
targets Drug name Experimental drug 

structures 

8 -48 -202 2 6 Lapatinib 
 

 

9 -44 -120 2 16 Cefodizime sodium 

 

10 -43 -121 2 9 Plaunotol 
 

11 -41 -127 2 6 Pentamidine isetionate 
 

12 -40 -195 2 9 Gefitinib 

 

13 -40 -146 2 4 
3-(4-amino-1-tert-butyl-
1h-pyrazolo[3,4-d] 
pyrimidin-3-yl) phenol 

 

14 -37 -157 2 6 Droperidol 

 

15 -37 -129 2 9 

[2-amino-6-(2,6-difluoro-
benzoyl)-imidazo[1,2-
a]pyridin-3-yl]-phenyl-
methanone 

 

16 -36 -216 2 3 Tenofovir disoproxil 
fumarate 
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No. icm 
score 

pmf 
score 

prot 
rank 

No. of 
targets Drug name Experimental drug 

structures 

17 -36 -166 2 2 

4-(2-{[4-{[3-(4-chloro 
phenyl) propyl]sulfanyl}-
6-(1-piperazinyl)-1,3,5-
triazin-2-yl]amino}ethyl) 
phenol 

 

18 -38 -137 3 4 
1-ter-butyl-3-p-tolyl-1h-
pyrazolo[3,4-d]pyrimidin-
4-ylamine 

 

19 -38 -163 3 5 Azlocillin sodium 

 

20 -36 -139 3 6 Canertinib  
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4     Combining Virtual and High-throughput Screening to Discover 
Novel Repositioning Candidates for Triple Negative Breast Cancer 
 

4.1 Introduction 

Breast cancer tumors are notorious for their phenotypic and genetic diversity. Seminal papers 

in the early 2000’s used gene expression profiling to classify breast tumor samples by gene 

expression profiling, and found four to six major subtypes [236, 237]. Clinically, three major 

receptors are used for molecular classification of these tumors: the estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). ER- or 

PR- positive tumors represent over 50% of breast cancer tumors [238] and have long been 

treated using hormonal therapies like tamoxifen [239]. 15-25% of early stage breast cancers 

overexpress HER2 and are treated with the anti-HER2 monoclonal antibody trastuzumab 

(Herceptin) [240]. 10-20% of breast cancers are triple-negative (TNBC) – characterized by a 

lack of ER, PR and HER2 expression – and have been associated with aggressive clinical 

course and poor prognosis [241]. Despite being only a relatively small proportion of breast 

cancers, TNBCs have a significantly higher rate of death within three years following 

diagnosis: in a large cohort of 1,601 women, the median time to death was 4.2 years for 

TNBC patients compared to 6 years for other types of breast cancer [241]. Also unlike the 

other two subtypes, TNBCs do not have an established therapeutic target or targeted 

therapies for clinical use. Instead, they are treated with standard chemotherapy regimens and 

have the highest rates of relapse and metastasis [242].  

 

As TNBCs do not express the ER, PR and HER2 receptors, it has been suggested that they 

may be more responsive to non-receptor mediated therapies [243]. One protein that has 

emerged as a potential drug target in TNBC is the p90 ribosomal S6 kinase (RSK), a member 

of the MAPK pathway. Following growth factor stimulation, MAPK signaling proceeds 

through RAS, RAF and ERK. ERK activates RSK, which in turn phosphorylates a host of 

downstream substrates involved in nuclear signaling, cell cycle progression, cell survival, 

motility, and proliferation [244]. RSK is also the predominant activator of the Y-box binding 

protein-1 (YB-1) transcription factor [245]. Upon phosphorylation at the S102 site, P-YB-1-
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S102 migrates to the nucleus and turns on transcription of many genes important in cancer 

proliferation, such as EGFR [246]. In a study of 48 cancerous and 12 normal breast tissue 

samples tissue samples, 50% of the cancer tissues had RSK1 or RSK2 isoform 

overexpression [247]. 

 

In this study, I used molecular docking to virtually screen (VS) the Prestwick Chemical 

Library of 1,120 off-patent drugs, in order to identify novel repositioning candidates for the 

RSK1 and RSK2 proteins. By analyzing known RSK inhibitors, I was able to formulate 

stringent scoring, ranking, and visual criteria to select the Prestwick drugs most likely to 

inhibit RSK activity. We also performed high-throughput screening (HTS) of the Prestwick 

library against RSK, resulting in a second and significantly different, list of RSK inhibitors. 

Top candidates that showed strong HTS RSK inhibition and strong VS dockings were 

validated in secondary experimental screens. The ability of these drugs to inhibit YB-1 

phosphorylation and nuclear translocation was confirmed, as well as their ability to inhibit 

growth of TNBC cell lines. Overall, three Prestwick drugs were validated as novel RSK 

inhibitors and potential TNBC repositioning treatment strategies. 

 

4.2 Results 

4.2.1 Building RSK models to supplement existing RSK structures 

RSK proteins contain two kinase domains connected by a linker region. The C-terminal 

domain (CTKD) autophosphorylates the N-terminal domain (NTKD), which is required for 

RSK activation. Subsequently, the NTKD phosphorylates downstream substrates such as 

YB-1 and GSK3B [248].  

 

I gathered existing RSK crystal structures from PDB including NTKD and CTKD domains 

from RSK1 and RSK2 (Table 4.1). While these structures had acceptable resolutions for 

docking purposes (under 2.5Å), they also had shortcomings. First, there were several large 

structure gaps proximal to the known ligand binding sites in the NTKD structures (Figure 

4.1a – shaded residues); docking small molecules next to gaps may result in false positive 

predictions. Second, none of the existing structures were solved in complex with a peptide 

substrate and thus were not in a substrate-binding conformation for rigid-protein docking. I 
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therefore decided to supplement the existing protein structures with two RSK1 NTKD 

homology models. 

 

4.2.1.1 Creating a model of RSK based on ligand-binding and loop modeling 

The first model of RSK1 NTKD utilized the RSK2 NTKD structure as a template (Figure 

4.2). This resulted in a high confidence model based on 90% sequence identity between the 

two proteins’ kinase domains. The RSK2 structure was complexed to an ATP analog called 

AMP-PNP without metal ion catalysts present in the binding site. It differed from the 

existing RSK1-AMP-PCP structure since metal ions often pull protein residues towards 

them, and the lack of metal ions in the RSK2 structure resulted in a dissimilar protein 

conformation.  

 

There were two gaps in the template structure (Figure 4.1b) corresponding to highly flexible 

loops in the RSK protein. To construct loops during the homology modeling process, ICM 

refers to a loop database assembled from existing PDB structures, and then performs energy 

minimization based on its Monte Carlo method [249]. The resulting model (Figure 4.2a) 

shows that the presence of the activation loop (shown in grey) created a putative binding 

pocket that overlapped with the substrate binding site (substrate peptide position shown in 

orange).  

 

4.2.1.2 Creating a model of RSK bound to YB-1 peptide 

I also built a homology model of RSK1 NTKD based on a peptide-bound AKT structure. 

Since it is known that RSK and AKT can both phosphorylate GSK3B and YB1 at a serine 

residue (Figure 4.3a), I hypothesized that the binding conformations of these interactions 

would be similar. In the RSK-AKT sequence alignment (Figure 4.1b), it can be seen that the 

AKT template structure 1o6k does not have gaps involving loop regions; I was thus able to 

confidently homology model the loop positions in a peptide-bound protein conformation.  

 

The final model is shown in Figure 4.3 (b,c). The protein-peptide interaction is stabilized by 

11 hydrogen bonds along the peptide length. Comparison of the predicted RSK-YB-1 

binding conformation with the solved structure of AKT-GSK3B (Fig 4.3 c,d) shows 
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similarities in hydrogen bonds and interacting protein residues. The side chain R2 of the YB-

1 peptide forms three hydrogen bonds with RSK (E254, Y228, E191) and these bonds are 

retained in the GSK3B-AKT complex. The peptide (catalytic) serine is in a position to 

hydrogen bond to the protein as well as receive a phosphate group from ATP. In addition, the 

interactions between the peptide and both G244 and K189 are consistent. The peptide 

binding pocket predicted in this second model was entirely different from the pocket in 

4.2.1.1, due to the change in loop position (Figure 4.2b). 

 

4.2.2 VS off-patent drugs against RSK  

I used my established molecular docking pipeline to search for existing drugs that could 

potentially inhibit RSK. First, I collected existing PDB structures of RSK as well as the two 

modeled structures. Both the NTKD and CTKD of RSK1 and RSK2 were represented in my 

binding site database. The NTKDs are very similar between the two RSK isoforms, with 90% 

sequence identity; in contrast, the NTKD and CTKD of each RSK protein are very different, 

with only 27% identity. Thus, for this analysis I categorized the binding sites as N-terminal 

or C-terminal, without regard for the RSK isoform. 

 

For each RSK protein, the ATP- and substrate- binding sites were prepared for docking, 

resulting in 16 binding pockets. As described in previous chapters, each drug is docked to all 

pockets, and the best site-drug score becomes the representative RSK-drug score. The results 

from docking 1,120 Prestwick compounds and 10 known RSK inhibitors are shown in a 

score plot (Figure 4.4) and are discussed in more detail in the following sections. Analogous 

to previous chapters, I used a consensus score threshold and protein ranks to aid in removing 

potential false positive interactions.  

 

4.2.2.1 Docking known inhibitors to RSK 

To assess my VS strategy, I first docked known small molecules inhibitors of RSK to my 

pocket database. There were ten in total, including four compounds from existing RSK 

structure complexes and six chemically diverse RSK inhibitors (in vitro IC50’s 15nM to 

1µM). The docked conformations and scores for these known binders are shown in Table 4.2.  
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4.2.2.1.1 Known inhibitors had good docking scores and conformations 

Four compounds were present in RSK structure complexes and thus represented ‘cognate’ 

docking scenarios (Table 4.2 a-d). Cognate scenarios are less challenging to dock well, since 

the protein is already in the ligand-bound conformation. Aside from the ATP analog AMP-

PCP, the other eight inhibitors showed icm-scores ranging from -29 to -54 and pmf-scores 

ranging from -102 to -190. These values were indicative of potential binding interactions as 

they were close to or better than the icm-score cut off of -30 established in Chapter 2. There 

was no correlation between the strength of the icm-score and the strength of RSK inhibition, 

in agreement with previous studies [109]. However I did note a weak correlation between 

pmf-score and binding strength (r-squared value from linear regression 0.67). 

 

The predicted binding conformations of AMP-PNP, AMP-PCP, purvalanol A, and 

staurosporine were compared to their respective PDB structure complexes (Table 4.2 a-d, 

grey versus yellow compounds). They exhibited RMSD values from 0.3-2.2Å, which 

indicated an accurate prediction of the bound conformation. In addition, hydrogen bond 

contacts in the original PDB complexes were retained in the predicted conformations.  The 

remaining six compounds were not solved in a PDB RSK complex and thus represented the 

more challenging computational scenario of non-cognate docking. However, it can be seen in 

Table 4.2 (e-j) that they all exhibited icm-scores indicative of likely binding interactions, 

ranging from -28 to -36. Further examination of protein hydrogen bonding residues 

suggested that important residues for small molecule inhibitor binding were Q70, S72, F73, 

Q74, D142, L144 for the NTKD and C436, E463, T493, E494, M496, D561 for the CTKD. 

 

4.2.2.1.2 Known inhibitors docked well to multiple RSK structures 

This score table in Table 4.3 shows the icm-score of known inhibitors docked to each of the 

RSK binding sites. The best scoring structure for each compound is shaded blue and cognate 

docking scenarios are boxed in black.  The distribution of good scoring interactions (shaded 

orange) across the table shows that each structure was able to dock a different set of known 

inhibitors well. The exception was 2z7q, which did not dock any known inhibitors with 

acceptable icm-scores. 2z7q was also the only cognate docking scenario with a poor score, 
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suggesting that this PDB entry encountered errors during ICM protein preparation steps. 

Thus, 2z7q was removed from further analysis. Overall, I found that including multiple 

structures of the ATP-binding domains was integral to the docking analysis as each of the 

structures had characteristics for binding different known inhibitors.  

 

4.2.2.1.3 Known inhibitors docked well to specific kinase domains 

For four of the known inhibitors, the exact binding domain of binding has been elucidated. 

sl0101 binds to the RSK NTKD, since a mutant RSK with a modified NTKD (replacing the 

12 amino acid loop involved in ATP binding of RSK (p90RSK) with that of p70RSK) was 

much less inhibited [247]. Correspondingly, I found that sl0101 docked well to several 

NTKD structures but to none of the CTKD structures (Table 4.3j). fmk inhibits RSK2 though 

its electrophilic fluoromethylketone moiety interacting with Cys436 of RSK2 CTKD [250]; 

this is reflected in the docked binding conformation (Table 4.2e) as well as the fact that it 

docked well it all three CTKDs but only one of six NTKDs. nsc356821 was discovered 

through a VS against the RSK2 NTKD [251]; here, its best scoring structure when docking is 

a NTKD but it also intriguingly docks well to the CTKD structures (Table 4.3j). BI-D1870 

binds at the NTKD of all RSK isoforms, and can still inhibit a CTKD lacking mutant of RSK 

[252]. My results agree - as seen in Table 4.3e, BI-D1870 docks well to three NTKDs but to 

none of the CTKDs. In short, docking was able to discriminate between N-terminal and C-

terminal binders. 

 

4.2.2.1.4 Many top predicted interactions for known inhibitors were validated 

Lastly, I examined whether the scoring and ranking criteria could predict novel true binding 

interactions. I determined the protein ranks of the ten known inhibitors by docking them to 

the 252 drug-target structure database constructed in Chapter 2. This metric measured 

whether a drug docked better to RSK compared to other drug targets. In Table 4.4, I list the 

top 21 scoring and ranking interactions (both in terms of icm-score and pmf-score) out of 

2520 potential interactions. Literature search supported or validated 15 of these interactions 

(Table 4.4 references column). In addition, the top predictions for ATP analogs (AMP-PCP, 

AMP-PNP) and the pan-kinase inhibitor staurosporine were all kinases, despite the target 
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database consisting of a wide array of drug-target types. This extra validation step confirmed 

that the ranking criteria were able to aid in selecting true binding interactions. 

 

Overall, the known inhibitor analyses established that my docking, scoring, and thresholding 

methods could dock and score known binders well, discriminate C-terminal inhibitors from 

N-terminal inhibitors, and predict true binding interactions. This result gave us confidence to 

perform further VS with different compound sets. 

 

4.2.2.2 Top predicted inhibitors of the RSK ATP-binding site 

The Prestwick collection of 1,120 off-patent drugs was docked to each of the RSK binding 

sites. The icm- and pmf- scores for the drugs are shown in Figure 4.4. As expected, known 

inhibitors (red boxes) landed in the bottom left-area of the plot with strong icm- and pmf-

scores.  

 

A ~10% consensus threshold (orange line) was applied to isolate the top scoring drugs in the 

bottom-left area of the plot. These top 110 drugs were docked to the 252 drug targets; for 

each drug, the rank of the RSK score compared to other proteins determined the protein rank. 

However, there were only 9 drugs with protein rank under 3 (which is the threshold I used in 

previous chapters); instead, I relaxed the thresholds to a protein rank of 10, selecting 27 

drugs. 

 

I did not anticipate a large number of RSK binders in the Prestwick collection of only 1,120 

drugs, and thus did not want to eliminate potential true positive interactions using strict 

thresholds. Instead, I performed a visual inspection of drug binding conformations and 

eliminated top interactions not passing certain visual criteria. First, I selected drugs with 

hydrogen bonds spread out along the length of the bound drug conformation, which would 

better anchor the binding event. With this criterion, compounds such as picotamide were 

eliminated as it only interacted with RSK through on the left-side of the figure in Table 4.5e, 

while the isopthalamide moiety remained free. I note, however, that the known RSK 

inhibitors SB216763 and BI-D1870 only bound through one anchor point to L144. Thus, 
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eliminating drugs such as ellipticine (Table 4.5f) may be too stringent, since it also bound to 

RSK through a single hydrogen bond to L144. 

 

Second, I checked that the residues interacting with the drug (i.e. the hydrogen-bond forming 

residues) overlapped with the residues previously determined from the known-drug dockings. 

As an example, isocixam (Table 4.5d) interacted with residues not involved in binding RSK-

specific inhibitors, K94 and T204. Aside from L144, xamoterol (Table 4.5c) also bound to 

other residues: K94, R186, and T204. Etifenin (Table 4.5a) was eliminated as it also bound to 

F73 and K210 which did not seem to be involved in binding known inhibitors.  

 

Third, I considered whether the compound was in a plausible docked conformation  For 

example, an existing PDB structure of dobutamine bound to the beta-1 adrenergic receptor 

(2y00) exhibited a very linear conformation, unlike the predicted binding position (Table 

4.5b). In contrast, methotrexate also had a ‘kink’ in its docking prediction, but binds in a 

conformation similar to an existing PDB structure (1rg7). Thus, methotrexate was not 

eliminated by this criterion.  

 

Nine of the top 29 predicted RSK inhibitors – based on the consensus score, protein rank, and 

visual criteria - are summarized in Table 4.6. 

 

4.2.2.3 Top predicted inhibitors of the RSK peptide-binding site 

The score plot for screening the Prestwick library against the RSK peptide-binding site is 

shown in Figure 4.5. Overall, the compounds exhibited poor pmf-scores docked to the 

peptide pocket as compared to the ATP pocket. However, the distribution of scores still 

showed that the majority of compounds landed in a denser region of poor icm- and pmf- 

scores, while only a sparser set of compounds landed in the best-scoring bottom left of the 

score plot. Thus, consensus threshold criteria could still be applied to select the best icm- and 

pmf-scoring drugs from the set. After applying protein rank criteria, the top six predicted 

inhibitors of the peptide pocket are shown in Figure 4.5. 
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The lack of existing known RSK peptide-binding-site inhibitors to form comparisons upon 

also presented challenges during visual inspection of the top docking hits. However, I did 

know the residues important in binding the YB-1 and GSK3B substrates when building the 

protein model. I thus chose drugs that interacted with RSK residues such as S72, E191, E254, 

Y228, K189, D187 and G224 (Figure 4.3c). 

 

The final list of five predicted RSK inhibitors are shown in Table 4.7, and comprise an 

entirely different set of compounds compared to the top ATP pocket predicted binders. All 

five appeared to bind in conformations that interfere with the peptide binding (Table 4.7: 

orange peptide in blue protein), and interacted with two or more RSK residues of interest. 

 

4.2.3 HTS of off-patent drugs against RSK1  

A high-throughput in vitro screen of Prestwick drugs against RSK1 using radiolabelled-ATP 

competition assays was conducted in parallel to the VS analysis. 32 of the 1,120 drugs 

exhibited significant inhibition of RSK at 10µM (>20% inhibition, Figure 4.6). It was 

expected that kaempferol would be a top HTS hit, since it is a substructure of the positive 

control drug sl0101 and a known inhibitor of RSK protein [247]. Kaempferol is a naturally 

occurring flavonol and other similar HTS hits included myricetin, hesperidin, luteolin, and 

apigenin. Several steroid hormones appeared in the list including estriol, progesterone, and 

estradiol-17-beta; however, previous studies have shown that the similar steroids estrogen 

and estradiol activated p90RSK through the MAPK signaling pathway [253, 254]. In the 

HTS assay, an agonist of RSK would have been detected by an increased fluorescence 

reading (higher levels of phosphorylated substrate). Thus, the contradictory inhibition of 

p90RSK activity observed suggested that the steroid hormone HTS hits may have been false 

positives. 

 

4.2.4 Comparison of HTS and VS results 

On the ATP pocket score plot (Figure 4.4), the ten known RSK inhibitors (red boxes) 

exhibited strong icm- and pmf- score pairs that landed in the bottom left of the plot. In 

contrast, the HTS hits (red points) did not separate as well from the remainder of the 

Prestwick drugs.  
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I determined the enrichment factors (EFs) of docking predictions for both the HTS-

determined drugs and the previously known inhibitors (Table 4.8). Though the ten known 

ATP inhibitors were not part of the Prestwick collection, I assumed that they would have 

shown activity in the HTS screen and included them for a total of 1130 drugs. Compared to 

experimentally screening all compounds, VS threshold methods predicted interaction sets 

more enriched for true binders. For instance, applying a consensus score threshold and 

stringent protein rank criteria allows us to predict a set of 26 drugs containing six known 

ATP inhibitors. This resulted in a PPV of 23%, allowing us to select six of ten true RSK 

inhibitors without experimentally testing 98% of the compounds. However, the thresholds 

were not as effective at enriching for HTS hits, where only a 2.7x EF could be achieved.  

 

The visual criteria performed better than stringent protein rank criteria with an EF of 7. 

Combining the visual criteria with loose protein rank criteria (using the worst protein ranks 

of the known inhibitors) resulted in the best EF of 11. I could not assess the EFs using visual 

criteria for the known RSK inhibitors, since their docked conformations were already the 

basis of the visual criteria. 

 

Several of the HTS hits that did not pass score and rank thresholds are shown in Table 4.9. 

They generally had reasonable docked conformations and are predicted to interact with the 

previously determined ‘important’ RSK residue. The only drug in the set that would not have 

passed the visual criteria is menadione (Table 4.8 j), which formed just one hydrogen bond 

contact with the RSK protein. 

 

To summarize, there were 32 HTS hits and 29 VS hits, with only 6 compounds shared in 

between the two lists. The known RSK inhibitors were more potent (IC50’s 15nM to 1µM) 

and were better filtered using standard consensus score thresholds and protein-rank criteria, 

with an EF of 26; these criteria were not as effective for the HTS hits. By using score 

thresholds, visual criteria, and protein rank criteria, the VS method was able to predict a set 

11x enriched for true binders with a 6/19=32% hit rate. This reveals that if I had used VS 
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without HTS, I would have been able to screen just 19 (1.7%) of 1,120 Prestwick drugs and 

discovered 6 novel RSK inhibitors.  

 

4.2.5 Follow up validation of predicted hits 

4.2.5.1 Secondary in vitro kinase screens 

We validated the top HTS/VS predictions using low-throughput kinase assays against the 

RSK2 kinase. BI-D1870 was chosen as a positive control compound. Ellipticine and 

kaempferol were chosen as top scoring VS hits that also showed strong HTS inhibition. 

Menadione was selected as a lower scoring VS hit with strong HTS inhibition. Finally 

luteolin and apigenin were selected due to their plausible binding conformations despite 

weaker HTS inhibition. These five compounds were drug ‘leads’ with TNBC repositioning 

potential. 

 

Figure 4.7 shows the activity of these 5 compounds when tested at low-throughput. Two 

substrate peptides were used to control for any effect the substrate might have on the 

inhibitor binding. Figure 4.7a shows the results using the YB-1 peptide that was also used in 

the HTS screen. The IC50 value of the positive control drug BI-D1870 was determined to be 

16nM which was consistent with previous studies [252]. Overall, the IC50’s were consistent 

with inhibition levels observed during the RSK1 HTS assay at 10µM drug concentrations. 

Menadione was a singular case as it only showed inhibition with one of the two peptides. 

Since it did not show strong inhibition of RSK-YB-1 in the secondary screen, it seemed 

likely that the HTS hit was a false positive. However, its ability to strongly inhibit the RSK-

S6K interaction suggests that it still has potential as a RSK inhibitor. 

 

4.2.5.2 YB-1 inhibition screens 

RSK is the predominant kinase that phosphorylates YB-1 [245] and upon this event YB-1 is 

activated and translocates to the nucleus. Therefore, compounds inhibiting RSK would be 

expected to inhibit YB-1 activation and nuclear translocation. We therefore assessed the five 

lead compounds ability to affect nuclear phospho-YB-1 (P-YB-1) by western blotting (Figure 

4.8a). As expected, the lead compounds all had decreased levels of P-YB-1 compared to YB-

1, in contrast to the DMSO control. This result was shown both for the cytosolic and nuclear 
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fractions. In addition, immunofluorescence visualization with DAPI nuclear staining 

supported the decreased levels of P-YB1 in both the cytosol and nucleus (Figure 4.8b). 

Tthere were a wide range of potencies in the western blot results, in that ellipticine appeared 

to strongly decrease P-YB-1 but menadione did not. This result appears to agree with the 

secondary screen, where menadione poorly inhibited RSK in the presence of YB-1 substrate. 

 

4.2.5.3 TNBC cellular growth screens 

We further tested whether these RSK inhibitors were able to inhibit growth of two cellular 

models of TNBC: SUM149 and MDA-MB-231. For each cell line, both a monolayer and 

soft-agar colony growth assay was performed. The latter assay was especially important in 

order to better represent the 3D nature of the tumor and its environment.  

 

BI-D1870 was once again used as the positive control drug and showed strong growth 

inhibition of both cell lines in both assays. We found that ellipticine and menadione 

significantly inhibited monolayer growth at 10µM, whereas kaempferol, phenindione and 

apigenin required higher concentrations to produce the same effect (Figure 4.9a). In 

anchorage-independent conditions, all five compounds inhibited TNBC growth at 10µM 

(Figure 4.9b). The drugs behaved similarly between the two cell lines, despite generally 

being less potent in the MDA-MB-231’s. To ensure that these compounds were not 

cytotoxic, we tested them in normal mammary epithelial cells (184 hterts). As seen in Figure 

4.9c, these compounds had no effect on normal cells at 100µM.  

 

4.3 Discussion 

We have applied two parallel approaches to find novel off-patent drugs able to inhibit the 

TNBC drug target RSK. The five compounds we chose to further experimentally test were a 

mix of HTS-selected (menadione and ellipticine), VS-selected (apigenin), and combination-

selected (kaempferol, luteolin) hits. We found that these compounds could block the 

phosphorylation and nuclear translocation of YB-1, indicative of an inhibitory effect on RSK 

catalytic activity. In addition, the drugs were able to inhibit the growth of two TNBC cell 

lines while not affecting normal mammary epithelial cells, indicating a selective ability to kill 

TNBC breast cancer cells. Apigenin and luteolin were less potent towards MDA-MB231 
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cells in comparison to SUM149 cells. However, this was a reasonable result as SUM149 cells 

are driven by EGFR overexpression and signaling through the MAPK pathway [216], 

whereas MDA-MB-231 also exhibit aberrant PI3K/AKT signaling parallel to the MAPK 

pathway [255]. Thus a RSK inhibitor, acting downstream of the MAPK pathway, would be 

less effective in MDA-MB-231 cells.   

 

It is important to consider that many of these off-patent drugs also work through other 

biological avenues, especially since they were originally designed against other drug targets. 

This may have accounted for the flavonoids apigenin and luteolin inhibiting TNBC cell 

growth more strongly than kaempferol despite weaker inhibition constants. Strong growth 

inhibition of ellipticine could be partly due to its modulation of P53 or perhaps through as-

yet unidentified off-target interactions. However, its strong inhibition of RSK activity, P-YB-

1 signaling, and TNBC cells suggest that it has potential to be repositioned towards RSK-

related cancers and a RSK-related subset of TNBCs.  

 

Several novel TNBC repositioning candidates were discovered in this study. Luteolin and 

apigenin are promising in that they are bioflavonoids that can be taken through dietary means 

like parsley or celery. However, it may be difficult to absorb them into the bloodstream at 

high enough concentrations to inhibit RSK. Though some oral drugs can show plasma 

concentrations of 100µM, like the MEK inhibitor CI-1040 [256], previous studies have 

shown that luteolin bioavailability is only about 14nM [257]. Flavonoids can be used as 

dietary recommendations to accompany therapeutic treatment, to additively inhibit RSK 

activity; however, the low bioavailability suggests that there may not be enough free drug to 

significantly inhibit RSK. Though menadione was not validated as a RSK-YB-1 inhibitor 

during the secondary screen and considered a false positive of the HTS screen, I note that it 

did show strong inhibition of RSK-S6K peptide. Thus, the strong TNBC growth inhibition of 

menadione may be due in part to its ability to inhibit other RSK functions aside from YB-1 

phosphorylation. The compound ellipticine was especially promising as it is already an anti-

cancer agent, based on its ability to rescue mutant P53 transcription and modulate P53 

nuclear localization [258, 259].  
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Unfortunately, none of the VS peptide-site predictions showed activity in the HTS screen. 

However, designing potent small molecule inhibitors of protein-protein interactions still 

remains an extremely challenging task today. Not only are protein-protein interaction sites 

shallow and large (and thus generally unable to form a few strong interactions with a small 

molecule), they are also understood to be difficult to detect in HTS methods [260]. Thus, it 

will be extremely difficult to develop novel protein-protein inhibiting drugs until better HTS 

and VS methods are in place. 

 

The positive compounds were substantially different between the HTS and VS lists, with 

only six compounds were common to both. There are many possible explanations for the low 

overlap, illustrating the various advantages and limitations of HTS and VS methods. First, 

docking uses a rigid protein and the correct protein conformation needed to bind the specific 

drug may not be in RSK structure database. This was apparent for the rigid-planar inhibitor 

staurosporine, which could only dock well to its cognate structure. Ellipticine and menadione 

also appear to be this type of compound, with connected rings and no rotatable bonds. Thus 

the poor amenability of rigid compounds must be taken in consideration when conducting 

VS. In contrast, HTS methods would not have difficulties detecting such compounds. 

Second, the docking process lacks water and cofactor molecules. This could explain the less 

than optimal icm- scores obtained for many of the HTS hits. An alternate explanation for 

poor scores could be an incomplete scoring function. For instance, ICM was not able to 

determine why kaempferol was a much stronger binder than the very similar compounds 

luteolin and apigenin. ICM also predicted the flavonoid epicatechin which did not show any 

RSK inhibition during HTS. Incomplete scoring functions and/or rigid protein conformations 

may have impacted the docking of these compounds. To mitigate this problem, other docking 

software such as Glide [136] or GOLD [135] can be used as secondary virtual screens. 

Fourth, my docking method was targeted towards only two binding pockets – the ATP and 

peptide pockets. However, a binding site prediction using PocketFinder [78] shows that there 

are many potential small molecule binding pockets in the protein (Figure 4.10). HTS screens 

would be able to detect binding to any of them if the event affected RSK catalytic activity. 

Lastly, HTS results are also prone to false positive results, as seen with menadione showing 

poor activity in a secondary in vitro kinase assay using the same YB-1 substrate as the HTS. 
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In addition the steroid hormones may also have been false positive hits since they were 

previously found to activate p90RSK. 

 

The docking and thresholding criteria developed in this analysis will be useful in future 

studies. There are some docking studies using ensembles of protein structures [261], some 

using homology models [262], some using consensus scoring criteria [263] and most using 

visual criteria (though the latter is usually based on expert judgment rather than strict 

criteria). Here, I have incorporated all of the above methods to improve the accuracy of my 

docking pipelines and have delineated criteria that could enrich for known RSK inhibitors by 

26 times and HTS inhibitors by 11 times. These criteria would be especially useful for future 

screens with larger databases, or with luteolin-like compounds. Furthermore, future RSK 

crystal structures bound to different inhibitors can be added to the structure database to 

improve the collection of RSK protein conformations.  

 

Overall, the docking methods and thresholds developed could select some of the strongest 

HTS inhibitors (ellipticine, kaempferol) while only needing to experimentally test the top 2% 

of the Prestwick library. The docked results also correctly predicted false positive HTS hits. 

VS methods are thus a powerful complementary approach to HTS methods to improve 

efficiency of screening, as well as accuracy of discovered hits. Furthermore, knowing the 

binding mode for a strong inhibitor is especially useful for designing derivatives. However, 

for both methods, low-throughput follow up assays as well as growth inhibition and signaling 

assays are essential for assessing the true utility of the top hits. 

 

4.4 Methods 

4.4.1 Sequence alignments 

Protein sequences of the RSK kinases and NTKDs were downloaded from UniProt [191] and 

aligned using standard settings in the ICM graphical user interface [87]. Only one 

representative structure from each publication was chosen for the alignment in Figure 4.1. 
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4.4.2 Molecular docking using ICM 

Drugs were docked to target receptors using the ICM virtual library screening (VLS) module. 

This method performs rigid-receptor flexible-ligand docking using a two-step Monte Carlo 

minimization method and energy scoring function to sample ligand conformations and select 

the best docking hits. MMFF partial charges and ECEPP/3 force-field parameters were used. 

To ensure a sufficient coverage of the docking energy landscape, I docked every drug-target 

interaction 10 times. High-throughput docking was performed on a Linux cluster with 175 

licenses of ICM. As a given protein may have several structures, each of which with more 

than one pocket, I docked all pockets to a drug, and the best scoring interaction is selected to 

be the representative protein-drug score.  

 

I set the minimum icm- and pmf- score threshold to be (-30, -30). On a 2D score plot (such as 

Figure 4.4), straight lines of negative slope and intercept were used to separate the predicted 

hits into passing-threshold and failing-threshold groups. The best predictions passing the 

threshold were in the bottom left corner of the plot. The failing predictions fell in the 

trapezoid formed by the line, icm-score=-30, pmf-score=-30 and the minimum and maximum 

icm- and pmf- scores. For each line, I calculated the density of failing-threshold hits in the 

trapezoid, and chose the line passing 10% of the screened compounds that also had the 

densest set of failed points. 

 

4.4.3 Inverse docking 

The 10 known RSK inhibitors were docked to the database of 252 unique human protein 

drug targets annotated by DrugBank. It consists of target proteins for which at least one 

known drug could be docked with a good score, and represents a selection of targets that are 

more reliable for my docking system. Since then, I have updated it with the latest DrugBank 

and PDB information. Inverse docking was carried out as the docking in 3.4.4, though each 

drug-target interaction was docked 5 times instead of 10. Since I could not apply a consensus 

score threshold for each protein (each protein was only docked to 50 drugs, not allowing 

enough points for a reliable autonomous threshold), I applied a simple -32 score threshold. 
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4.4.4 Creating a model of RSK bound to YB-1 peptide 

Models were examined with the ICM protein health option [264], which, similar to the pmf-

score, compares the energy profile of each amino acid the model to existing PDB structure 

profiles to reduce statistically unlikely energy strain in the model. 

 

A model of the RSK-YB1 peptide-binding complex was built through an iterative docking 

procedure, using a known binding complex of AKT-GSK3B peptide (PDB id 1o6k) [265] as 

a template. This structure was chosen for its structure quality (resolution=1.70Å, R-

value=0.205, R-free=0.234, no gaps near peptide) and because the protein was already in a 

peptide-bound conformation. First, a homology model of RSK was built upon 1o6k, where 

the sequence identity was 46% over the kinase domain, and 67% within residues 3.5Å to the 

peptide-binding site. Protein regularization was then performed to optimize the covalent 

residue geometries. The peptide-binding site was defined to be a large 3-dimensional box 

containing all residues within 3.5Å of the known GSK3B substrate position. 

 

Initial rigid-receptor docking of a chemically optimized YB-1 peptide structure into the 

peptide-binding site (receptor) was unsuccessful, due to the vast conformational search space 

of a flexible peptide. The larger number of rotatable bonds in a peptide compared to a small 

molecule exponentially increased the number of potential binding conformations to be 

sampled during docking. Increasing the thoroughness parameter of docking did not improve 

the results, as molecular docking is a technique generally suited for small molecules and not 

peptide chains. Including the two manganese ions and small molecule ATP-analog inhibitor 

in known positions (extracted from the original 1o6k structure) also did not generate any 

reasonable YB-1 docked binding conformations. Instead, knowing that the YB-1 peptide is 

phosphorylated at Ser6 (Ser102 in the full protein) [245], I visually scanned through the list 

of predicted conformations in the results stack and selected those with Ser6 in a position 

allowing for phosphorylation. For this step, the serine phosphorylation site on the GSK3B 

peptide was used as a reference. These YB-1 conformations were used as starting points for 

further docking into the RSK peptide-binding site (instead of re-optimizing the peptide each 

time as is the normal docking procedure). The docking was iterated, each time selecting a 

peptide with similar or better docking score and a better binding conformation by visual 
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judgment. This process ended when the binding poses and energies of the selected peptide 

conformation stabilized over five iterations. The docking score of the YB-1 peptide in the 

protein binding site was -55, very strong by ICM standards, and was comparable to other 

RSK-peptide complex scores. 

 

All of the computational analyses were performed using the Molsoft ICM 3.5-1m software 

package [87]. 

 

4.4.5 Creating a RSK structure database 

I obtained RSK crystal structures from the Protein Data Bank (PDB) [224]. I prepared 

protein structures for docking using Molsoft's ICM software version 3.6-1c [87], removing 

metal ions, water molecules, solvent ions, and other ligands from the structures. I added 

hydrogen atoms to the structures then optimized in their positions. To predict potential 

ligand-binding pockets in the proteins, I used the PocketFinder [78] method in ICM, which 

calculates a transformation of the van der Waals energy for an aliphatic carbon probe on a 

grid map. The receptor is defined as the box 3.5Å surrounding the pocket, and the three 

largest pockets were added to the EGFR binding site collection. In total, there were 16 

pockets. 

 

4.4.6 Chemicals 

The Prestwick Chemical Library (Prestwick Chemical, Washington, DC) was used as part of 

the Canadian Chemical Biology Network at the University of British Columbia. Kaempferol, 

ellipticine, menadione, apigenin and luteolin were purchased from Sigma-Aldrich Chemical 

(Oakville, ON, Canada) and were dissolved in DMSO to stock concentrations of 100mM.  

Drugs were then further diluted in cell culture medium as necessary to working 

concentrations. 

 

4.4.7 RSK1 and RSK2 kinase screens 

Kinase profiling services were provided by SignalChem (Richmond, BC) using methods as 

previously described [245].  Briefly, the RSK kinase assays were performed using a synthetic 

YB-1 cell permeable peptide (YB-1 CPP) [266] that contains the S102 region as the 
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substrate.  For RSK1, the Prestwick Chemical Library was screened at 10 μM against the 

YB-1 peptide and results compared to a staurosporine control (a broad-spectrum kinase 

inhibitor) that has 100% inhibitory activity.  Compounds with >20% inhibitory activity were 

considered to be significant RSK inhibitors.  For RSK2, the compounds kaempferol, 

menadione, ellipticine, apigenin, and luteolin were similarly screened against the YB-1 

peptide.  Drug treatment concentrations in the RSK2 kinase assay were 0.001, 0.01, 0.1, 1.0, 

10, and 100 μM.  BI-D1870, a known RSK inhibitor [267], was also examined at these 

concentrations.  For each compound, a graph of log concentration (μM) versus % inhibition 

of RSK2 activity was generated and IC50 values were determined.  To confirm inhibition of 

RSK2 activity, we also used a secondary RSK substrate, S6K, and repeated the kinase assay 

as described above. 

 

4.4.8 Cell culture 

The triple-negative breast cancer cell lines SUM149 (Asterand, Ann Arbor, MI) and MDA-

MB-231 (American Tissue Culture Collection, Manassus, VA) were grown as previously 

described [216] in a 37°C humidified incubator with 5% CO2. 

 

4.4.9 Immunofluorescence and western blotting 

SUM149 cells were plated on 8-well multi-chamber slides (40000 cells/well), allowed to  

adhere for 24 h, then treated with 10 µM of each lead compound for 24 h. 

Immunofluorescence was conducted as previously described [354] using P-YB-1S102 and  

YB-1 antibodies (Cell Signaling, Danvers, MA) with Alexa-Fluor 488 (Invitrogen)  

secondary and images were acquired on an Olympus BX61 microscope and analysed  

using ImageJ (NIH, Bethesda, MD).  For western-blotting, cell lysates were collected  

after 24 h drug treatments and immunoblotting was performed as described previously  

using P-YB-1S102, YB-1, and αβ-tubulin (Cell Signaling) antibodies.  

 

4.4.10 Monolayer, mammosphere and soft agar growth assays 

Monolayer growth assays were performed with 5000 (SUM149) or 3000 (MDA-MB-231) 

cells per well in a 96 well plate.  Following 24h after plating, the cells were treated with 

DMSO, 10 μM or 100 μM of the drugs.  The number of cells was counted by high-content 
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screening as previously described [269] after 72 h drug treatment. Soft agar assays were also 

performed as previously described [270].  Compounds were added at 10 μM at time of 

seeding into the top layer and colonies were counted after 28-30 d.  Percent change in growth 

was assessed compared to DMSO control.  All growth assays were repeated. 



 111 

Figure 4.1   Sequence alignments of RSK1 against existing PDB structures. 
 
Comparison of RSK1 N-terminal kinase domain (NTKD) sequence (ref_RSK1N) aligned to 
a) existing RSK structures and b) an AKT structure. Residues within 3.5Ä of the ATP and 
substrate binding sites are shaded. Existing RSK1 (2z7q) and RSK2 (3g51) NTKDs have 
high sequence identity compared to the CTKD (2qr7). However, the NTKDs (3g51, 2z7q) 
have numerous gaps. b) The AKT structure (1o6k) has fewer gaps when aligned to RSK1, 
especially near ATP- and substrate- binding site residues (shaded). 
 
a) 

 
 

b) 
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Figure 4.2   RSK homology models. 
 
Two homology models of RSK1 NTKD were built to add extra protein conformations to or 
structure collection. a) The template was a RSK2 structure bound to an ATP-analog without 
the aid of metal ions. ICM loop modeling was used to predict energetically favorable 
positions for the two loops corresponding to gaps in the sequence alignment. b) The template 
was an AKT structure bound to a substrate peptide. Loops were resolved in this structure (no 
gaps), thus not requiring further modeling. Both models contained novel peptide-site pockets 
that were not present in existing RSK structures. 
 
a) Model 1: 
RSK1 model 
based on 3g51 
(RSK2) 

 
b) Model 2: 
RSK1 model 
based on 1o6k 
(AKT). 
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Figure 4.3   A detailed look at Model 2: RSK1 bound to YB-1 peptide. 
 
The YB-1 peptide is shown with ribbon backbone and stick residues. Protein residues 
involved in hydrogen bonding are shown in black wire format. a) RSK and AKT can both 
phosphorylate YB-1 and GSK3B. b) Protein surface view of the RSK-YB-1 interaction. c) 
An alternate view of b) showing hydrogen bonds (green) between the peptide and protein. d) 
The AKT-GSK3B template complex shows that hydrogen bonds are preserved between 
corresponding AKT and RSK. Numerous protein residues involved in peptide binding are 
also preserved between AKT and RSK. 
 
a)  

 

b) 

 
 
c) 

 

 
 d) 
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Figure 4.4   Score plot of Prestwick drugs docked to the RSK ATP-binding site.  

The (icm-score, pmf-score) pair for each of the 1,120 drugs is plotted in blue. There are 10 
extra points, corresponding to known RSK inhibitors collected from the literature (red 
boxes). A 10% consensus score threshold selected the top 111 score-pairs. These drugs were 
subsequently docked to a panel of 252 drug targets to determine the protein rank of RSK 
relative to other targets. Drug compounds that docked to RSK better than at least 232 other 
targets are shown in black (purple circles, protein rank ≤20). A bare minimum icm-score 
threshold of -20 was used to remove the worst scoring compounds. 
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Figure 4.5   Score plot of Prestwick compounds docked to the RSK substrate-binding site.  

The (icm-score, pmf-score) pair for each of the 1,120 drugs is plotted in blue. A 10% 
consensus score threshold and a protein rank ≤20 criterion were used to select the top seven 
scoring drugs. 
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Figure 4.6   Prestwick drugs that modulate the activity of RSK1 in a HTS. 

 
The Prestwick Chemical Library of 1,120 off-patent compounds was screened against RSK1 
in an ATP-competitive high-throughput assay, using YB-1 peptide as the substrate. The 32 
drugs that inhibited RSK1 activity significantly (>20%) are shown here.  
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Figure 4.7   Secondary in vitro screens of lead HTS/VS compounds confirm activity.  
 
Five lead compounds from the HTS and VS analyses were analyzed using low-throughput 
RSK2 ATP-competitive kinase assays, with BI-D1870 as a positive control drug. The IC50 
value for each compound was determined. 
 
a) Inhibition curves for 6 selected drugs against RSK2 using the YB-1 substrate  

  
b) Inhibition curves for 6 selected drugs against RSK2 using the S6K substrate. 
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Figure 4.8   Lead compounds block YB-1 activation and nuclear translocation in SUM149 
cells. 
 
a) Levels of P-YB-1, a downstream 
target of RSK, are diminished in 
SUM149 cells after 24-hour drug 
treatment. For the control drug BI-
D1870 and four of the five lead 
compounds, there was a marked 
decrease in P-YB1 levels compared to 
total YB-1 in both the cytosol and the 
nucleus. Only menadione had little 
effect on YB-1 signaling in both 
fractions. 
 

 
 
 

 
 

b) The immunofluorescence of nuclear P-YB1 is 
markedly reduced in SUM149 cells after 24-hour 
drug treatment of all lead compounds.  
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Figure 4.9   Lead compounds inhibit growth in TNBC cell lines.  
 
SUM149 and MDA-MB-231 cells were assayed for growth in monolayer and soft agar after 
treatment with the five lead compounds. For the TNBC assays, BI-D1870 was used as a 
positive control and DMSO a vehicle control. a) In the monolayer assay, the cell-lines were 
treated in triplicate with 10μM or 100μM of drug for 72 hours. b) In the soft agar assay, 
10μM of drug was added to the top layer at the time of seeding each cell line. Colonies were 
counted after 28 days. c) Growth in normal mammary epithelial (184htert) cells was not 
inhibited by any of the lead compounds at 100μM drug concentration. 
 

a) 

 
b) 

 
c) 
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Figure 4.10   Potential small molecule binding pockets in one RSK kinase domain.  

Pockets were predicted using the ICM Pocketfinder method. It can be seen that the RSK 
NTKD has many deep cavities that are compatible for small molecule ligand binding. 
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Table 4.1     Existing crystal structures of the RSK protein 
 
Existing RSK protein 3D structures represented in the binding-site database. For each 
structure, details about the isoform, N-terminal or C-terminal location, and active site ligand, 
are provided. 
 

PDB 
ID 

Resolution 
(Å) 

RSK 
isoform 

Kinase 
domain 

Active site 
ligand Reference 

2wnt 2.4 RSK1 N-terminal - [76] 

2z7q 2.0 RSK1 N-terminal ATP analog 
AMP-PCP 

2z7r 2.0 RSK1 N-terminal staurosporine 
2z7s 2.1 RSK1 N-terminal purvalanol A 

[271] 

3g51 1.8 RSK2 N-terminal ATP analog 
AMP-PNP 

[272] 

2qr7 2.0 RSK2 C-terminal - 
2qr8 2.0 RSK2 C-terminal - 

[273] 
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Table 4.2   Docking known compounds to RSK structures as positive controls.  
 
The docked compound conformations are shown in yellow and protein residues forming 
hydrogen bond contacts with the compounds are shown in white. Since each compound was 
docked to multiple RSK structures, the isoform of the best scoring RSK protein is listed. The 
docked conformations of cognate scenarios a-d) were compared to their bound conformations 
(grey) in existing PDB complexes both using RMSD.  
 

 Inhibitor RSK 
isoform  

icm- 
score 

pmf-
score 

RMSD 
(Å) Docked conformation 

a) AMP-PCP  RSK1 0.57 -111 2.16 

 

b) AMP-PNP RSK2 -54 -138 1.30 

 

c) purvalanol 
A RSK1 -31 -133 1.93 

 

d) stauro-
sporine RSK1 -37 -190 0.31 
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 Inhibitor 
(IC50) 

RSK 
isoform  

icm-
score 

pmf-
score 

RMSD 
(Å) Docked conformation 

e) fmk 
(15nM) 

RSK2 -36 -169 - 

 

f) 
indirubin-
3-oxime 
(0.1µM) 

RSK2 -34 -133 - 

 

g) 
nsc 

356821 
(1µM) 

RSK1 -35 -113 - 

 

h) 
BI-D1870 
(15nM) RSK1 -29 -167 - 

 

i) 
sl0101 
(90nM) RSK1 -29 -138 - 

 

j) 
SB 

216763 
(0.1µM) 

RSK1 -28 -133 - 
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Table 4.3   Comparison of the effects of using multiple crystal structures. 
  
Below are the distributions of icm-scores for each compound across the different RSK 
structures. Interactions with good docking scores are shaded in orange, while the best score 
for each compound is shaded in blue. Overall, there is a wide spread of orange and blue, 
showing that each structure binds well to a different set of known inhibitors. 2z7q could not 
dock well to any known RSK binders and was removed from my database. In addition, the 
docking method was able to discriminate between N-terminal and C-terminal binders, since 
NSC356821, sl0101, and BI-D1870 are known to be NTKD inhibitors while fmk is a known 
CTKD inhibitor.   
 
Several compounds are abbreviated with PDB chemical shorthand. STU: staurosporine. p01: 
purvalanol A. IRB: indirubin-3-oxime. 
 

  2z7q 2z7r 2z7s model1 model2 3g51 2wnt 2qr7 2qr8 

  RSK1N RSK2N RSK1C RSK2C 

a) AMP-PCP 0.6 -28.3 -20.0 -22.0 -31.6 -38.5 -22.4 -29.6 -23.6 

b) STU 0.6 -35.8 -24.4 -16.4 1.1 -17.4 -8.5 -22 -18.0 

c) P01 -22.3 -31.6 -30.7 -28.3 -5.4 -29.6 -26.6 -16.8 -18.7 

d) AMP-PNP -14.4 -28 -14 -36.7 -41.5 -60.2 -6.9 -29.6 -4.1 

e) BI-D1870 0.2 -26.2 -29.4 -25.2 -19.4 -27.7 -12.7 -19.9 -17.2 

f) fmk -10.3 -34.2 -20.9 -17.2 -12.3 -23.7 -27.3 -35.6 -38.1 

g) SB216763 -19.6 -28.7 -27.6 -9.8 -19 -16.8 -29.6 -32.8 -26.7 

h) IRB* -22.3 -29.1 -23.2 -10.1 -21.4 -17.7 -20.8 -33.8 -30.0 

i) nsc356821 -10.3 -24.5 -27.8 -29.7 -35.4 -28.3 -28.2 -32.3 -29.6 

j) sl0101* -5.6 -19.9 -29.2 -29.2 -13.2 -29.5 -20 -17.7 -19.1 

 



 125 

Table 4.4   The top 21 ranking inhibitors of known RSK inhibitors. 
 
The top predicted off-target interactions for the ten RSK inhibitors, passing stringent criteria: 
10% consensus score threshold as well as drug rank ≤ 15, protein rank ≤ 10, pmf-score rank 
≤ 20, and pmf-score protein rank ≤ 25. Finally, 21 interactions out of a potential 10x252 = 
2520 were selected. Many of the top protein-drug interactions predicted by docking scores 
and ranks are also true binders or likely true binders based on the literature. 
 
Abbreviations: prk: protein rank. drk: drug rank. STO: staurosporine. IRB: indirubin-3-
oxime. p01: purvalanol A. 
 

Known 
inhibitor 

Protein icm-
score 

pmf-
score 

icm 
drk 

icm 
prk 

pmf 
drk 

pmf 
prk 

True 
binder? 

Reference 

AMP-PCP AK1 -40.0 -187 1 9 1 2 

AMP-PCP UCK2 -43.3 -170 2 6 2 6 

AMP-PNP EGFR -31.2 -186 5 7 2 14 

AMP-PNP GSK3B -33.1 -197 9 6 1 9 

AMP-PNP PDPK1 -33.9 -212 2 5 1 4 

likely 
binder 

These ATP analogs 
are routinely used 
as kinase inhibitors 
in crystal structure 

determination. 

BI-D1870 RARA -32.2 -173 2 1 2 3 - 1 

fmk LCK -39.4 -177 4 2 3 3 yes 

fmk SRC -35.9 -152 13 4 5 22 yes 
[274] 

fmk EGFR -31.4 -157 4 7 5 18 likely 

Many strong pyrrolo-
pyrimidine inhibitors 
of EGFR exist (PKI-

166, AEE-788) [275] 
IRB NT5M -34.4 -121 5 7 11 19 -  

IRB KIT -35.3 -141 1 6 18 9 -  

nsc356821 RARA -46.8 -138 1 1 18 9 -  

p01 NR1H2 -32.1 -161 2 4 9 6 -  

p01 ALB -37.6 -153 7 1 6 9 -  

SB216763 GSK3B -33.1 -148 10 5 13 14 yes [274] 

SB216763 MAPK14 -32.9 -142 14 6 11 20 weak  

sl0101 SRC -38.5 -156 9 7 3 16 no [274] 

STO HCK -33.9 -198 4 4 1 7 
STO SRC -34.1 -189 15 3 1 13 
STO SYK -42.5 -215 1 1 1 2 
STO LCK -42.0 -192 2 2 1 11 

yes [42] 
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Table 4.5   Examples of drugs eliminated by or visual criteria. 
 
The docked compound conformations are shown in yellow while protein residues forming 
hydrogen bond contacts with the compounds are shown in white. These compounds had good 
icm- and pmf- scores but did not pass visual inspection criteria. 
 

 Compound Predicted binding conformation icm-
score 

pmf-
score 

protein 
rank 

a) etifenin 

 

-41 -111 16 

b) dobutamine 

 

-36 -110 4 

c) xamoterol 

 

-30 -145 10 

d) isoxicam 

 

-29 -139 12 

e) picotamide 

 

-27 -139 37 

f) ellipticine 

 

-25 -149 18 
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Table 4.6   Top Prestwick drugs predicted to bind to the RSK ATP site.  
 
The docked compound conformations are shown in yellow while protein residues forming 
hydrogen bond contacts with the compounds are shown in white. These compounds were 
selected through consensus scoring, protein rank, and visual inspection criteria. 
 

Compound Predicted binding conformation icm-
score 

pmf-
score 

protein 
rank 

aztreonam 

 

-49 -99 11 

glafenine 

 

-39 -129 29 

luteolin 

 

-32 -121 35 

catechin 
epicatechin 

 

 

-31.6 
-31.5 

-134 
-134 

9 
10 

triamterine 

 

-31 -37 7 
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Compound Predicted binding conformation icm-

score 
pmf-
score 

protein 
rank 

hesperidin 

 

-26 -175 2 

pyrimethamine 

 

-28 -122 10 

kaempferol 
 

 

-27 -125 36 
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Table 4.7   Top Prestwick drugs predicted to bind to the RSK1 substrate-binding site.  
 
These compounds were selected through consensus scoring, protein rank, and visual 
inspection criteria. Rows are listed by icm-score. On the left, the YB-1 peptide is shown as a 
ribbon (orange) bound to the RSK surface (blue), and residues that hydrogen bond with the 
compound are shown in grey.  On the right, the compound (yellow) and hydrogen bond 
forming RSK residues (white) are shown in stick format. 
 

Compound Predicted binding conformation icm-
score 

pmf-
score 

mitoxantrone 

  

-32.7 -30 

(R)-(+)-
atenolol 

 
(S)-(-)-
atenolol 

  

-32.2 
 

-32.1 

-31 
 

-31 

labetalol 

  

-31.9 -47 

famotidine 

  

-31.7 -46 

liothyronine 

  

-30.8 -35.8 
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Table 4.8   The enrichment of HTS hits and known ATP binders using traditional ICM 
scoring cutoffs or the consensus scoring threshold. 
 

 
 

Total # 
hits 

# HTS hits 
passing 

threshold 

HTS 
enrichment 

factor 

# known 
drugs 

passing 
threshold 

Known drug 
enrichment 

factor 

No threshold (random) 1130 32 1.0 10 1 
10% consensus score 111 7 2.2 10 10.2 
10% consensus score 
 & protein rank ≤20 40 3 2.6 6 17.0 

10% consensus score 
 & protein rank ≤10 26 2 2.7 6 26.1 

10% consensus score  
& visual criteria 29 6 7.3 - - 

10% consensus score  
& visual criteria  
& protein rank <=76 
& pmf-score protein rank <=50 

19 6 11.2 - - 
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Table 4.9   Predicted binding conformations of several Prestwick drugs that had high RSK 
inhibition in the HTS experiment but did not pass score cut-offs.  
 
The docked compound conformations are shown in yellow while protein residues forming 
hydrogen bond contacts with the compounds are shown in white. These compounds showed 
reasonable docked conformations and scores. However, the icm- and pmf- scores were not 
high enough to pass the consensus score.  
 

 Compound Predicted binding  
conformation 

icm-
score 

pmf-
score 

protein 
rank 

RSK 
isoform 

a) apigenin 

 

-33 -88 6 
RSK2 

N-terminal 

b) isocarboxacid 

 

-32 -32 2 
RSK1 

N-terminal 
 

c) riboflavine 

 

-27 -123 15 RSK2 
C-terminal 

d) 
 

nifuroxazide 

 

-26 -131 39 
RSK1 

N-terminal 
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 Compound Predicted binding 

conformation 
icm-
score 

pmf-
score 

protein 
rank 

RSK 
isoform 

e) amrinone 

 

-26 -94 63 RSK1 
N-terminal 

f) todralazine 

 

-25 -103 22 RSK1 
N-terminal 

g) menadione 

 

-25 -70 19 RSK2 
N-terminal 
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5     Evolution of an Adenocarcinoma in Response to Selection by 
Targeted Kinase Inhibitors 
 

5.1 Introduction 

5.1.1 Challenges in cancer drug discovery 

Cancer is a disease arising from uncontrollable cell growth, and is a leading cause of death in 

the world [276]. Discovering novel cancer drugs is particularly difficult as evidenced by far 

lower clinical success rates compared to other diseases such as cardiovascular or CNS 

disorders [13]. Early cancer drugs were cytotoxic and affected all rapidly dividing cells by 

targeting essential cellular functions such as DNA metabolism, replication, chromosomal 

segregation, and cytokenesis [277]. A few of these remain as standard chemotherapies today 

(i.e. methotrexate, doxorubicin), but are not ideal due to their inability to distinguish normal 

cells from cancer cells. In recent years, targeted therapies aim to inhibit proteins that are 

involved in the tumor disease mechanism but are less essential in normal cells [278]. 

However, there must be other factors underlying the low clinical success rates of cancer drug 

discovery. 

 

It is well known that the same therapy can have different efficacies and toxicities across 

patient populations. This is due in part to the genetic makeup of the patient, including 

polymorphisms in drug-metabolizing enzymes like cytochrome P450 [279] or target proteins 

like EGFR [280]. Another major factor is that cancers are classified by their location of 

origin and histology, but each class of cancer is actually a collection of diseases with 

different molecular features. Breast cancer is a prominent example of this phenomenon, 

having been classified into four broad subtypes and many more sub-subtypes through gene 

expression profiling [281]. The four subtypes have been shown to respond differently to 

preoperative chemotherapy [282]. In particular, the triple-negative subtype that does not 

express estrogen receptor, progesterone receptor, or the HER2 gene is associated with 

aggressive tumors and poor prognosis. Kidney and ovarian cancer, among many other 

cancers, are also known to be collections of different diseases at the molecular level with 

significant variation between patients [283, 284].  
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To date, gene expression profiling platforms have been constructed for diagnosing the cancer 

risk or prognosis for individuals, such as MammaPrint or OncoType DX for breast cancer 

[285]. Fluorescence in situ hybridization (FISH) analysis has been used in the UroVysion kit 

to detect specific cytogenetic abnormalities in bladder cancer from urine samples [286]. A 

much higher resolution analysis of genomic aberrations can be conducted through whole 

genome sequencing of a tumor and its matched normal sample, detecting sequence, copy 

number, and expression changes, among other aberrations. 

 

5.1.2 Whole genome sequencing for cancer drug discovery 

Large-scale sequence analysis of cancer transcriptomes, using expressed sequence tags 

(ESTs) [287] or serial analysis of gene expression (SAGE) [288, 289], has been used to 

identify genetic lesions that accrue during oncogenesis. Other studies have involved large-

scale PCR amplification of exons and subsequent DNA sequence analysis of the amplicons 

to survey the mutational status of protein kinases in cancer samples [290], 623 'cancer genes' 

in lung adenocarcinomas [291], 601 genes in glioblastomas [292], all annotated coding 

sequences in breast, colorectal [293, 294] and pancreatic tumors [295], searching for somatic 

mutations that drive oncogenesis. 

 

The development of massively parallel sequencing technologies has provided an 

unprecedented opportunity to rapidly and efficiently sequence human genomes [296]. The 

technology has been used to sequence cancer cell line transcriptomes [297-299] and to 

identify genomic rearrangements in a breast cancer genome [300]. The first human cancer 

genome was sequenced in 2008 from a patient with Acute Myeloid Leukemia, discovering 

two genes with mutations already thought to be involved in tumor progression and eight 

genes with novel mutations [301]. However, methodological approaches for integrated 

analysis of cancer genome and transcriptome sequences have not been reported, nor has there 

been evidence presented in the literature that such analysis has the potential to inform the 

choice of cancer treatment options. We present for the first time such evidence here. The 

ability to comprehensively genetically characterize tumors at an individual patient level 
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represents a logical route for informed clinical decision making and increased understanding 

of these diseases. 

 

5.1.3 Patient history and treatment overview 

In this case the patient was a 78 year old, fit and active Caucasian man. A timeline 

summarizing the patient’s examinations and treatments is shown in Figure 5.1. He presented 

in August 2007 with throat discomfort and was found to have a 2 cm mass at the left base of 

the tongue. He had minimal comorbidities and no obvious risk factors for an oropharyngeal 

malignancy. A positron emission tomography-computed tomography (PET-CT) scan 

identified suspicious uptake in the primary mass and two local lymph nodes. A small biopsy 

of the tongue lesion revealed a papillary adenocarcinoma, potentially originating from a 

minor salivary gland. In November 2007 the patient had a laser resection of the tumor and 

lymph node dissection, with negative final surgical margins. The pathology described a 1.5 

cm poorly differentiated adenocarcinoma with micropapillary and mucinous features. Three 

of 21 neck nodes (from levels 1 to 5) indicated the presence of metastatic adenocarcinoma. 

Adenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of the 

salivary gland tumors affecting the tongue [302-304]. 

 

The patient then received 60 Gy of adjuvant radiation therapy completed in February 2008. 

Four months later, although the patient remained asymptomatic, a routine follow up PET-CT 

scan identified numerous novel small (largest 1.2 cm) bilateral pulmonary metastases but no 

evidence of local recurrence. There were no standard chemotherapy treatment options for this 

rare tumor type, so a pathology review was conducted. The review indicated +2 EGFR 

expression (Zymed assay) and a 6-week trial of the EGFR inhibitor erlotinib was initiated. 

However, all the pulmonary nodules grew while on this drug and the largest lesion increased 

in size from 1.5cm to 2.1cm from June 19th to August 18th. Chemotherapy was terminated on 

August 20th and a repeat CT on October 1st showed growth in all of the lung metastases. At 

this point, the patient provided explicit consent to pursue a genomic and transcriptome 

analysis. 
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5.2 Results 

5.2.1 Initial tumor 

The patient had multiple pulmonary nodules, and elected to undergo a fresh tumor tissue 

needle biopsy of a 1.7 cm left upper lobe lung lesion. This was done under CT guidance and 

multiple aspirates were obtained for analysis. 

 

5.2.1.1 Genome and transcriptome sequencing 

 Table 5.1 summarizes the patient’s tumor and normal DNA and RNA samples that were 

sequenced and aligned to the reference human genome (HG18). There were 2,584,553,684 

tumor DNA reads and 342,019,291 normal DNA purified from peripheral blood cells. This 

was approximately 18X diploid coverage of the tumor DNA. Whole transcriptome shotgun 

sequencing (WTSS) [299, 305] was conducted to profile the expression of tumor transcripts. 

There were 498,229,009 tumor RNA reads, and 62,517,972 normal RNA reads from the 

leukocytes.  

 

5.2.1.2 Mutation detection and analysis 

Our initial analysis of sequence alignments identified 84 DNA putative sequence changes 

corresponding to non-synonymous changes in protein coding regions present only in the 

tumor (Table 5.2). Sanger sequencing subsequently validated four changes to be somatic 

tumor mutations. The vast majority of false positives were due to undetected heterozygous 

alleles in the germline. Somatic mutations were observed in two well-characterized tumor 

suppressor genes TP53 (D259Y) and RB1 (L234*). TP53 was within a region of 

heterozygous loss (LOH) and the truncating mutation of RB1 removed 75% of its coding 

sequence. 

 

5.2.1.3 Copy number analysis 

We concentrated on finding genetic changes likely to affect cellular function, such as 

changes in gene copy number or protein sequence. Due to our inability to usefully interpret 

alterations in non-coding regions, such changes were not considered. We compared the 

relative frequency of sequence alignment derived from the tumor and normal DNA and 

identified 7,629 genes in chromosomally amplified regions, including 17 genes classified as 
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being highly amplified. Our  analysis also revealed large regions of chromosomal loss 

(Figure 5.2). Intriguingly, we observed loss of approximately 57 megabases across segments 

from 18q, on which frequent loss has been observed in colorectal metastases. Other large 

chromosomal losses were observed in the tumor (17p, 22q and 12p) but did not correlate with 

previous studies of salivary gland tumors [306-309]. 

 

5.2.1.4 Transcriptome analysis 

In the absence of an equivalent normal tissue for comparison, we compared expression 

changes to the patient's leukocytes and a compendium of 50 tumor-derived WTSS datasets 

(Appendix C). We expected that the compendium would prevent spurious observations due 

to technical or methodological differences between gene expression profiling platforms. This 

compendium approach allowed us to identify a specific and unique molecular transcript 

signature for this tumor compared to unrelated tumors. In essence, this approach enriches for 

changes specific to the patient's tumor and should thus represent relevant drug targets for 

therapeutic intervention. There were 3,064 differentially expressed genes (1,078 up-

regulated, 1,986 down-regulated) in the lung tumor versus the blood and compendium. This 

analysis provided insight into those genes whose expression rate was likely to be a driving 

factor specific to this tumor, not identifying genes that correlate simply with proliferation and 

cell division. It is conceivable that such an approach, coupled with a greater understanding 

from multiple tumor datasets, could be replaced by the absolute quantification of oncogene 

expression as a means to determine clinical relevance.  

 

5.2.1.5 Disease mechanism 

I correlated mutated, amplified or differentially expressed genes with known cancer 

pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [310] and 

to drug targets present in the DrugBank database [144]. The 15 amplified, over-expressed or 

mutated genes in cancer pathways targetable by approved drugs are listed in Table 5.3. Some 

amplified genes, such as NKX3-1, RBBP8 and CABL1, were implicated in cancer but did 

not have well characterized functions or known drugs targeting them. I was not surprised to 

see LAMC1, a protein thought to be involved in metastasis, as the lung tumor had already 

metastasized from the tongue primary tumor. 
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The Ret proto-oncogene (RET) emerged as a particularly interesting gene, as it was both 

amplified and highly expressed. RET is a receptor tyrosine kinase that stimulates signals for 

cell growth and differentiation via the mitogen-activated protein kinase (MAPK)-

extracellular signal-regulated kinase (ERK) pathway [311] and its constitutive activation is 

responsible for oncogenic transformation in medullary and papillary thyroid carcinoma 

[312]. In the lung tumor, RET was both highly amplified (hidden Markov model (HMM) 

level 4) and the most highly expressed known oncogene (34.5 fold change (FC) in lung 

relative to compendium; 123.2 FC in lung relative to blood) (Figure 5.3a). In addition, RET 

activating factors and MAPK pathway constituents were also highly expressed in the tumor. I 

also noted overexpression of the water channel protein Aquaporin-5 (AQP5), which has been 

implicated in multiple cancers and has been shown to activate Ras and its signaling pathways 

[313]. 

 

Aberrations leading to increased activation of the PI3K/AKT pathway are common in human 

cancers and are reviewed in [314]. Inactivating mutations and decreased expression (either 

by LOH or methylation) of PTEN, a tumor suppressor that reverses the action of PI3K, are 

the most frequently observed aberrations. Loss of PTEN expression has also been previously 

implicated in tongue squamous cell carcinoma [315]. In the patient tumor, PTEN was under-

expressed (-109.7 FC in lung relative to compendium; -440.1 FC in lung relative to blood) 

and mapped to a region of heterozygous loss. Since PTEN mediates crosstalk between PI3K 

and RET signaling by negatively regulating SHC and ERK [316] and increased RET can also 

activate the PI3K/AKT pathway [311] (Figure 5.3a), loss of PTEN would up-regulate both 

the PI3K/AKT and RET-MAPK pathways, leading to decreased apoptosis, increased protein 

synthesis and cellular proliferation. In actuality, there was a LOH deletion in AKT1, under-

expression of AKT2, mTOR, elF4E, and over-expression of the negative regulators 

eIF4EBP1 and NKX3-1. These changes appear to mitigate the effect of PTEN loss on the 

PI3K/AKT pathway and suggest that PTEN loss serves primarily to activate the RET 

pathway to drive tumor growth.  
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Like EGFR, RET also activates the RAS/ERK pathway (Figure 5.3a). Therefore, increased 

expression of RET provides a plausible explanation of the failure of the EGFR inhibitor 

erlotinib to control proliferation of this tumor. PTEN loss has also been implicated in 

resistance to the EGFR inhibitors gefitinib [317] and erlotinib [318]. Lastly, the mutated RB1 

may also play a role in the observed erlotinib insensitivity, as the loss of both RB1 and PTEN 

as seen in this tumor has previously been implicated in gefitinib resistance [319]. 

 

As RET and PTEN were the most significant cancer-associated aberrations in the patient 

tumor, we performed FISH and immunohistochemical analysis on RET, PTEN, and RBBP8 

to confirm their amplification statuses (Figure 5.4). 

 

5.2.2 Therapeutic intervention 

The integration of copy number, expression and mutational data generated a compelling 

hypothesis of the mechanism driving the tumor. This allowed us to identify drugs that target 

the observed up-regulation of the MAPK pathways through RET over-expression and PTEN 

deletion (Table 5.4). The approved cancer drugs sunitinib and sorafenib have wide kinase 

polypharmacologies (Appendix B), but were top candidates due their inhibition of RET. I 

then validated that other major protein targets of sunitinib and sorafenib, including RAFs, 

CSF-1R, FLT3, and VEGFRs, and PDGFRs, were expressed in the tumor and not mutated.  

We chose to administer sunitinib for three reasons: first, due to its wider range of kinase 

targets it may be able to concurrently target other pathways in the tumor cell; second, one of 

those targets (PDGFR) is highly expressed in the tumor and its activating factor PDGFB 

appears to be amplified; third, sorafenib also targets the MAPK pathway protein RAF and 

thus may be a viable treatment option in case the tumor develops resistance to sunitinib 

through a non-RAF-mediated change. 

 

The patient gave his full and informed consent to initiate therapy with this medication and 

was fully aware that adenocarcinoma of the tongue was not an approved indication for 

sunitinib. Clinical administration of the RET inhibitor sunitinib showed evident shrinking of 

the patient tumors (Figure 5.5c), consistent with the hypothesis that RET-targeting drugs 

should inhibit the up-regulated MAPK proliferation pathway driving the tumor. The drug 
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was administered using standard dosing at 50 mg, orally, every day for 4 weeks followed by 

a planned 2 weeks off of the drug. After one such round of therapy, the patient had a PET-CT 

scan which was compared to the baseline pretreatment scan (Figure 5.5b). Using Response 

Evaluation Criteria in Solid Tumors (RECIST) criteria [320], the lung metastases had 

decreased in size by 22% and no new lesions had appeared. In contrast, the tumor exhibited 

16% growth in the month pre-treatment (Figure 5.5b). However, due to typical side effects, 

the patient’s sunitinib dose was reduced to 37.5 mg daily. Repeated scanning continued to 

show disease stabilization and the absence of new tumor nodules for four months. 

 

5.2.3 Cancer recurrence 

After 4 months on sunitinib, the patient's CT scan showed evidence of growth in the lung 

metastases. He was then switched to sorafenib and sulindac, another medication thought to 

be of potential benefit given his initial genomic profiling (Table 5.4). Within 4 weeks a CT 

scan showed disease stabilization and he continued on these agents for a total of 3 months 

when he began to develop symptoms of disease progression. At this point he was noted to 

have developed recurrent disease at his primary site on the tongue, a rapidly growing skin 

nodule in the neck, and progressive and new lung metastases.  

 

5.2.3.1 DNA sequencing and mutation detection 

A tumor sample was removed from the metastatic skin nodule and was subjected to both 

WTSS and genomic sequencing (Table 5.1). The four somatic changes identified in the pre-

treatment tumor were detected, suggesting that the skin tumor was likely to have 

metastasized from the lung tumor. Nine new non-synonymous protein coding changes were 

detected that were not present within either the pre-treatment tumor or the normal DNA 

(Table 5.2). Reexamination of the sequence reads from the initial tumor analysis did not 

reveal the presence of any of these nine new mutated alleles even at the single read level.  

 

5.2.3.2 Copy number analysis 

Extensive copy number variations were observed in the post-treatment sample that were not 

present before treatment (Figure 5.2). In the tumor recurrence, 0.13% of the genome 

displayed high levels of amplification, compared to 0.05% in the initial tumor sample. Also, 
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24.8% of the initial tumor showed a copy number loss whereas 28.8% of the tumor 

recurrence showed such a loss. We identified eight regions where the copy number status 

changed from a loss to a gain in the tumor recurrence and twelve regions where the copy 

number changed from a gain to a loss. In addition, copy number neutral regions of LOH 

arose on chromosomes 4, 7 and 11.  

 

5.2.3.3 Transcriptome analysis 

There were 459 differentially expressed genes (385 up-regulated, 74 down-regulated) in the 

metastatic skin nodule versus the blood-and-compendium. Of these, 209 overlapped with the 

differentially expressed genes in the lung tumor versus blood-and-compendium set. In the 

skin metastasis relative to lung there were 6,440 differentially expressed genes (4,676 up-

regulated, 1,764 down-regulated), reflective of the tremendous change the tumor underwent. 

Changes in expression in both the lung and skin metastases were significantly associated 

with copy number changes.  

 

Overall, I found 23 amplified, over-expressed or mutated genes in cancer pathways targetable 

by approved drugs are listed in Table 5.5. It is interesting to note the presence of additional 

laminin and matrix metalloproteinase proteins, as they are known to have important roles in 

cancer cell metastasis [321, 322]. 

 

5.2.3.4 Disease mechanism  

The cancer recurrence exhibited strong up-regulation of transcripts from genes in both the 

MAPK/ERK and PI3K/AKT pathways (Figure 5.4b). There are striking increases in 

expression of the receptor tyrosine kinases RET, EGFR, PDGFRB and their growth factor 

ligands GFRA1 (GDNF family receptor alpha 1), NRTN (neurturin), and EGF. Other genes 

within these pathways, such as AKT1, MEK1 and PDGFA, also appear amplified in copy 

number in the skin tumor compared to the lung tumor.  

 

Taken together, these data suggest that the mechanisms of resistance to the RET targeting 

selective kinase inhibitors sunitinib and sorafenib are the up-regulation of the targeted 

MAPK/ERK pathway and the parallel PI3K/AKT pathway. It can be speculated that perhaps 
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only a cocktail of targeted drugs (such as to RET, EGFR, mTOR, AKT) would be able to 

affect the proliferation of the tumor cells. The further activation of RET and its downstream 

pathway in the post-treatment tumor suggests that the RET inhibitors are still necessary to 

treat the patient.  Another drug candidate is the novel AKT inhibitor perifosine, which is has 

shown benefit in phase II clinical trials for multiple myeloma, chronic myeloid leukemia, and 

other hematological cancers [323]. The mTOR inhibitors rapamycin and everolimus have 

recently been approved for treatment of renal cell carcinoma after sorafenib and sunitinib 

failed to affect the disease [324]. However, it is important to note that these drugs only target 

the mTOR-RAPTOR protein complex and not the mTOR-RICTOR protein complex, and that 

the mTOR-RICTOR complex was prevalent in the skin tumor (mTOR FC 3.4 in skin tumor 

versus lung tumor, RICTOR FC 158.4 in skin versus lung tumor, and RICTOR versus 

RAPTOR FC 105 in the skin tumor). In addition, since RAF is now upregulated, it may be 

necessary to target a lower position in the MAPK pathway. At the moment, MEK inhibitors 

are either under development or in clinical trials - such as U1026 [325] and AZD6244 [326]. 

FDA approval of drugs like perifosine and AZD6244 would provide more rationally targeted 

therapeutic options for the patient. 

 

Sunitinib resistance has been observed to be mediated by IL8 in renal cell carcinoma [327]. 

This is also reflected in the tumor data, where IL8 became highly over-expressed in the 

cancer recurrence (FC 861.1 in skin tumor relative to lung tumor). Though the mechanism of 

resistance is still unclear, IL8 has been observed to transactivate EGFR and downstream 

ERK, stimulating cell proliferation in cancer cells [328].  

 

5.3 Discussion 

High-throughput sequencing provided a comprehensive determination of copy number 

alterations, gene expression changes, and protein coding mutations in the patient’s tumor. 

Correlation of the up-regulated and amplified gene products with known cancer-related 

pathways provided a putative mechanism of oncogenesis that was validated through the 

successful administration of targeted therapeutic compounds. Sequence analysis of the 

protein coding regions was also able to determine that the drug binding sites for known 

targets of sunitinib and sorafenib were intact.  



 143 

 

Both sunitinib and sorafenib appeared to be viable options for the patient, and are widely 

used in sequence to treat renal cell carcinoma [329]. We chose to first apply sunitinib due to 

its wider polypharmacology (Appendix B), the apparent activation of PDGFR in the tumor, 

and the potential ability for sorafenib to treat sunitinib-resistant disease through RAF 

inhibition. However, several recent studies in metastatic renal cell carcinoma have 

hypothesized otherwise [330, 331]. They suggested that since sorafenib is a less potent 

inhibitor of certain kinases than sunitinib (Appendix B), the latter drug would be able to 

overcome resistance accrued during sorafenib treatment. This hypothesis is still under 

contention, as another large study in Czech patients did not observe any benefit for sorafenib-

sunitinib therapy compared to sunitinib-sorafenib therapy [332]. In our case, sorafenib 

appeared to be effective for the patient after sunitinib resistance. The activation of PDGFRs 

may have contributed to the efficacy of sunitinib, and the presence of non-mutated RAF 

proteins in the skin metastasis suggest that sorafenib’s potent RAF inhibition may have 

contributed to its therapeutic benefit (i.e. sunitinib treatment did not cause RAF mutations). 

In short, sequencing was also useful in helping us select the order of treatments. 

 

The patient’s initial tumor had molecular features previously implicated in other cancers. For 

instance, loss of copy number on 18q has been frequently observed in colorectal metastases. 

It is believed that these metastases are driven by inactivation of the tumor suppressor protein 

SMAD4 (on 18q) and the allelic loss of 18q [333]. The expression level of SMAD4 in the 

patient’s tumor was found to be very low (43-fold lower than in samples within our 

compendium of tumor expression data); hence, down-regulation of SMAD4 along with loss 

of 18q also appear to be properties of the tumor. Another example is the amplification of 

RET, whose oncogenic transformation is known to drive medullary thyroid cancer, and play 

an important role renal cell carcinoma. These aberrations have not been previously observed 

in tongue cancers, and add insight into potential disease mechanisms for tongue 

adenocarcinomas.  

 

The observation that the RET pathway had increased activity in the metastasis is important. 

First, it shows that resistance mechanisms may not always work by circumvention through 
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parallel pathways or acquired mutations, but can also further upregulate the targeted pathway. 

This leads to the second point, that in such cases the same drug (sunitinib/sorafenib) should 

not be discontinued in order to try a different chemotherapy. Typically, after one drug fails to 

stabilize the disease, it is stopped and another drug is tried as second-line therapy [332, 334]. 

However, our study suggests that sometimes the drug should be continued and at higher 

dosages if possible. Such a test can be incorporated into existing clinical and pathological 

tests to inform therapeutic options by testing if a known target of a working drug (i.e. RET in 

our case) has increased in expression. An interesting artifact of our analysis was the 

annotation of the anti-androgen bicalutamide as an inhibitor of IL6. Though bicalutimide was 

annotated in DrugBank 2.5 as an inhibitor of Interleukin-6, it has since been corrected and 

removed from the newer DrugBank 3.0. It is thus important to verify all important leads in 

the literature since database curation, like any other process, is prone to human error. 

 

Though I have summarized the aberrations known to be involved in cancer pathways, many 

other changes accrued in the tumor during the 8 months of treatment. Just the expression 

analysis identified over 6000 differentially expressed genes in the post- versus pre-treatment 

tumor. Some of these may have contributed to the pathogenesis of the disease but are not 

currently known as being important in cancer. As our understanding of cancer biology is far 

from complete, it is possible that these drugs may have elicited the observed clinical benefit 

for reasons unrelated to the hypothesis. However, the skin metastasis showed changes 

corresponding to acquired resistance to RET-inhibition and suggests that the hypothesized 

disease mechanisms contributed, at least in part, to the tumor growth. 

 

Our study provided clinically useful information and the rationale for a therapeutic regime 

that, whilst not curative, did establish stable disease for several months. We propose that 

complete genetic characterization in this manner represents a tractable methodology for the 

study of rare cancer types and can aid in the determination of relevant therapeutic approaches 

in the absence of established interventions. Furthermore, the establishment of repositories 

containing the genomic and transcriptomic information of individual cancers coupled with 

their clinical responses to therapeutic intervention will be a key factor in furthering the utility 
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of this approach. We eenvisage that as sequencing costs continue to decline, whole genome 

characterization will become a routine part of cancer pathology. 

 

5.4 Methods 

5.4.1 Sample preparation 

Tumor DNA was extracted from formalin-fixed, paraffin-embedded lymph node sections 

(slides) using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Mississauga, ON, Canada). 

Normal DNA was prepared from leukocytes using the Gentra PureGene blood kit as per the 

manufacturer's instructions (Qiagen). Genome DNA library construction and sequencing 

were carried out using the Genome Analyzer II (Illumina, Hayward, CA, USA) as per the 

manufacturer's instructions. Tumor RNA was derived from fine needle aspirates of lung 

metastases and normal RNA was extracted from leukocytes using Trizol (Invitrogen, 

Burlington, ON Canada}) and the processing for transcriptome analysis was conducted as 

previously described [299, 335, 336]. The relapse sample was obtained by surgical excision 

of the skin metastasis under local anesthetic 5 days after cessation with sorafenib/sulindac 

treatment. DNA was extracted using the Gentra PureGene Tissue kit and RNA was extracted 

using the Invitrogen Trizol kit, and the genomic library and transcriptome library were 

constructed as previously described. 

 

5.4.2 Mutational detection and copy number analysis 

DNA sequences were aligned to the human reference, HG18, using MAQ version 0.7.1 

[337]. To identify mutations and quantify transcript levels, WTSS data were aligned to the 

genome and a database of exon junctions [299]. SNPs from the tumor tissue whole genome 

shotgun sequencing and WTSS were detected using MAQ SNP filter parameters of 

consensus quality = 30 and depth = 8 and minimum mapping quality = 60. All other 

parameters were left as the default settings. Additional filters to reduce false positive variant 

calls included: the base quality score (MAQ qcal) of a variant had to be ≥20; and at least one-

third of the reads at a variant position were required to possess the variant base pair. SNPs 

present in dbSNP [338] and established individual genomes [296, 339, 340] were subtracted 

as well as those detected in the normal patient DNA. SNPs present in the germline sample 

(blood) were detected using MAQ parameters at lower threshold of consensus quality = 10 



 146 

and depth = 1 and minimum mapping quality = 20 in order to reduce false positive somatic 

mutations. Initially, non-synonymous coding SNPs were identified using Ensembl versions 

49 and 50; the updated analysis presented here used version 52_36n. Candidate protein 

coding mutations were validated by PCR using primers using either direct Sanger sequencing 

or sequencing in pools on an Illumina GAiix. In the latter case, amplicons were designed 

such that the putative variant was located within the read length performed (75bp). For copy 

number analysis, sequence quality filtering was used to remove all reads of low sequence 

quality (Q ≤ 10). Due to the varying amounts of sequence reads from each sample, aligned 

reference reads were first used to define genomic bins of equal reference coverage to which 

depths of alignments of sequence from each of the tumor samples were compared. This 

resulted in a measurement of the relative number of aligned reads from the tumors and 

reference in bins of variable length along the genome, where bin width is inversely 

proportional to the number of mapped reference reads. A HMM was used to classify and 

segment continuous regions of copy number loss, neutrality, or gain using methodology 

outlined previously [341]. The sequencing depth of the normal genome provided bins that 

covered over 2.9 gigabases of the HG18 reference. The five states reported by the HMM 

were: loss (1), neutral (2), gain (3), amplification (4), and high-level amplification (5). LOH 

information was generated for each sample from the lists of genomic SNPs that were 

identified through the MAQ pipeline. This analysis allows for classification of each SNP as 

either heterozygous or homozygous based on the reported SNP probabilities. For each 

sample, genomic bins of consistent SNP coverage are used by an HMM to identify genomic 

regions of consistent rates of heterozygosity. The HMM partitioned each tumor genome into 

three states: normal heterozygosity, increased homozygosity (low), and total homozygosity 

(high). We infer that a region of low homozygosity represents a state where only a portion of 

the cellular population had lost a copy of a chromosomal region. 

 

5.4.3 Gene expression analysis 

Transcript expression was assessed at the gene level based on the total number of bases 

aligning to Ensembl (v52) [342] gene annotations. The tumor transcriptome library was 

found to be enriched for fragments representing contaminating genomic DNA, which was 

compensated for by performing a genomic subtraction. We estimated 84% genomic 
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contamination based on the proportion of intergenic reads present in the tumor library. We 

then compensated for the contamination by subtracting, for each gene, the expected coverage 

from genomic contamination.  

 

The corrected and normalized values for tumor gene expression (both skin and lung 

metastases) were then used to identify genes differentially expressed with respect to the 

patient's germline (blood) and a compendium of 50 previously sequenced WTSS libraries. 

This compendium was composed of 19 cell lines and 31 primary samples representing at 

least 19 different tissues and 25 tumor types as well as 6 normal or benign samples 

(Appendix C). Tumor versus compendium comparisons used outlier statistics and tumor 

versus blood used Fisher's exact test. We first filtered out genes with less than 20% non-zero 

data across the compendium. This was necessary to avoid cases where a small expression 

value in the tumor receives an inflated rank when all other libraries reported zero expression 

(a problem common to sequencing-based expression techniques when libraries have 

insufficient depth). Next, we defined over-expressed genes as those with outlier and Fisher P-

values < 0.05 and FC for tumor versus compendium and tumor versus blood > 2 and > 1.5, 

respectively. Similar procedures were used to define under-expressed genes. In addition to 

lung/skin metastasis versus compendium/normal blood we also compared the skin and lung 

metastases directly. P-values for differential expression were corrected with the Benjamini 

and Hochberg method [343]. Overlaps were determined with the BioVenn web tool [344]. 

 

5.4.4 Immunohistochemistry 

Immunohistochemistry was performed using automated methods as previously described 

[345], with the following antibodies: monoclonal rabbit anti-human PTEN 1:25 dilution 

(clone 138C6, cat# 9559, Cell Signaling Technology, Beverly, MA), goat polyclonal anti-

human RET diluted 1:25 dilution (clone C-20, cat# sc-1290, Santa Cruz Biotechnology, 

Santa Cruz, CA), monoclonal rabbit anti-human NTRK1 1:350 dilution (clone 14G6, cat# 

2508, Cell Signaling Technology), and undiluted CONFIRM anti-human EGFR (clone 3C6, 

cat# 790-2988, Ventana, Tucson, AZ). Hematoxylin and eosin staining is performed using 

standard reagents and methods. 
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5.4.5 Fluorescence in situ hybridization 

Bacterial artificial chromosomes (BACs) were obtained from the Children’s Hospital 

Oakland Research Institute (Oakland, CA). The BACs RP11-124O11, labelled with 

SpectrumRed (Abbott Molecular, Abbott Park, IL), and RP11-348I3, labelled with 

SpectrumGreen, flanked the RET locus and detect disruption of RET. BACs RP11-66D17 

(red) and RP11-1038N13 (green) flanked the NTRK1 locus and detect disruption of NTRK1. 

BAC RP11-104H10 (red) was used to detect RBBP8 copy number. The PTEN and EGFR 

loci were detected with commercial probes (EGFR: Vysis LSI EGFR SpectrumOrange/CEP 

7 SpectrumGreen probe, cat# 32-191053; PTEN: Vysis LSI PTEN Spectrum Orange/CEP 10 

SpectrumGreen dual color probe, cat# 32-231010; Abbott Molecular). Commercial 

centromeric probes for chromosomes 10 and 18 were used in conjunction with the RET and 

RBBP8 BAC probes, respectively (chr. 10: CEP 10 SpectrumAqua, cat# 32-131010; chr. 18: 

CEP 18 (D18Z1) SpectrumAqua, cat# 32-131018). FISH was performed as previously 

described [346]. 
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Figure 5.1   Timeline of treatment and summary of sampled sites for the patient 
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Figure 5.2   Identified regions of chromosomal copy number variation (CNV) and loss of 
heterozygosity (LOH). 
 
Regions in the pre-treatment (T1 – lung tumor) and post-treatment (T2 – skin tumor) tumor 
samples and matched normal patient DNA (R - reference) plotted in Circos format [347]. 
CNV values are the hidden Markov model (HMM) state. LOH values are shown in the 
shaded green track. Δ indicates the degree in change of HMM or LOH state between the two 
cancers.  
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Figure 5.3   Cancer signaling pathways affected within the tumor.  
 
(a) Pre-treatment: overall, the down-regulation of PTEN and up-regulation of the RET 
signaling pathway appear to be driving tumor proliferation. Increased signaling independent 
of EGFR is consistent with the observed erlotinib insensitivity of the tumor. The number of 
arrows denoting significantly over- or under-expressed genes are quantified using fold 
change of tumor versus compendium in (a), and primary tumor versus the tumor recurrence 
in (b): 1 arrow is FC ≥2; 2 arrows is FC ≥10; and 3 arrows is FC ≥50. CNV, copy number 
variation. 
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(b) Post-versus pre-treatment: after treatment with the RET inhibitors sunitinib and sorafenib. 
There is a marked increase in the signaling of pathway constituents leading to tumor 
proliferation. Black and red pathway arrows represent activation and inhibition, respectively. 
Dotted arrows represent indirect interactions. 
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Figure 5.4   Fluorescent in situ hybridization (FISH) and immunohistochemical analysis of 
the sublingual adenocarcinoma.  
 
(a) Hematoxylin and eosin stained section of tumor (20× objective). (b) Striking 
amplification of RBBP8 (40×, with RBBP8 probe in red). (c) Focal nuclear and cytoplasmic 
expression of PTEN (20×) is associated with (d) a missing red signal indicating monoallelic 
loss of PTEN (100×; the orange gene-specific probe signals are decreased in number 
compared to the centromeric probe). (e) Diffuse, strong cytoplasmic expression of RET (20×) 
is associated with (f) amplification of the RET gene (40× with bacterial artificial 
chromosomes flanking the RET gene labeled in red and green). 
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Figure 5.5   PET-CT scans of the patient.  
 

(a) 1 October 2008, 1 month before sunitinib initiation. (b) 29 October 2008, baseline before 
sunitinib initiation on 30 October 2008. (c) 9 December 2008, 4 weeks on sunitinib. 
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Table 5.1   Summary of tumor and normal samples sequenced in the study. 
 
Lung Tumor  DNA lymph node biopsy sections (slides) 2,584,553,684 42-bp reads  

Lung Tumor RNA fine needle aspirates of lung biopsy 498,229,009 42-bp reads 

Lung Normal  DNA leukocytes (peripheral blood) 342,019,291 42-bp reads 

Lung Normal  RNA leukocytes (peripheral blood) 62,517,972 42-bp reads 

Skin Tumor  DNA skin nodule 1,262,856,802 50-bp reads 

Skin Tumor  RNA skin nodule 5,022,407,108 50-bp reads 
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Table 5.2   Predicted protein coding somatic changes within the initial tumor (T1) and the 
drug resistant recurrent tumor (T2) 
 
Validated non-synonymous single nucleotide variations (SNVs) predicted by high-
throughput sequencing are listed with the corresponding chromosome position (Chr. 
position), Ensembl gene ID, the base at this location in the reference genome (Ref.), the 
observed base (Obs.), the amino acid change as a result of the SNV, and the Ensembl 
description for this gene. The first four SNVs marked T1 were identified in the primary 
tumor and were validated using PCR and Sanger sequencing on germline and tumor genomic 
DNA. The remaining nine SNVs marked T2 were identified in the post-treatment secondary 
tumor and were validated by Illumina sequencing. SNVs in the initial tumor were also 
identified and validated in the recurrent tumor. 
 

Tumor Chr. position Ensembl gene ID Ref. Obs. Protein 
change Description 

T1 6: 28352058 ENSG00000197062 G T G62C Zinc finger. SCAN domain -
containing protein 26 

T1 8: 106884238 ENSG00000169946 A G K785E 
Zinc finger protein 
multitype 2. Friend of GATA 
protein 2 (FOG-2)  

T1 13: 47832247 ENSG00000139687 T A L234* Retinoblastoma-associated 
protein (pRb) 

T1 17: 7518231 ENSG00000141510 C A D259Y Tumor suppressor P53 

T2 1: 35608585 ENSG00000146463 G C Q317H Zinc finger protein 262 

T2 2: 196431742 ENSG00000118997 C G V2590L 
Dynein heavy chain 7, 
axonemal Ciliary dynein 
heavy chain 7) (HDHC2)  

T2 4: 78747983 ENSG00000156234 G A R56H B cell-attracting chemokine 
1 (BCA-1) 

T2 6: 33281235 ENSG00000204228 G A A141T 
Estradiol 17-beta-
dehydrogenase 8 (17-beta-
HSD 8) (Ke-6)  

T2 7: 82419723 ENSG00000186472 T C T2759A Protein piccolo (Aczonin)  

T2 11: 
105355581 ENSG00000152578 C T R872C 

Glutamate receptor 4 
Precursor (GluR4) 
(Glutamate receptor 
ionotropic, AMPA 4)  

T2 14: 19414855 ENSG00000165762 C T L197F Olfactory receptor 4K2  

T2 14: 63500386 ENSG00000054654 C G A302G 
Nesprin-2 (Nuclear 
envelope spectrin repeat 
protein 2) (Syne-2) 

T2 18: 8333477 ENSG00000173482 G A A929T 
Receptor-type tyrosine-
protein phosphatase mu 
Precursor (R-PTP-mu)  
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 Table 5.3   Cancer related observed lung tumor aberrations. 
 
Proteins that are amplified compared to blood, significantly overexpressed compared to both 
blood and compendium, or mutated. Highly amplified refers to an HMM classification value 
of 4 and amplified to an HMM value of 3. Only proteins that are known to be targets of 
approved drugs are listed. The last column lists a few approved drugs that are annotated in 
DrugBank as binding to each target.  
 
Target Target name Genome aberration in 

lung tumor 
Approved 

drug 

RET Proto-oncogene tyrosine-protein 
kinase receptor ret  

significantly over expressed 
highly amplified 

sunitinib 
sorafenib 

EGLN1 Egl nine homolog 1  highly amplified vitamin C 

LAMC1 Laminin subunit gamma-1  highly amplified alteplase 
reteplase 

PTGS2 Prostaglandin G/H synthase 2  highly amplified etoricoxib 
carprofen 

BMP2 Bone morphogenetic protein 2  amplified simvastatin 

CYCS Cytochrome c amplified minocycline 
melatonin 

EGFR Epidermal growth factor receptor  amplified gefitinib 
erlotinib 

GSK3B Glycogen synthase kinase-3 beta  amplified lithium 

HDAC2 Histone deacetylase 2  amplified vorinostat 

IL6 Interleukin-6  amplified bicalutamide 
arsenite 

MAPK3 Mitogen-activated protein kinase 3  amplified sulindac 
isoprotenerol 

NTRK1 High affinity nerve growth factor 
receptor  amplified imatinib 

PRKCB Protein kinase C beta type  amplified vitamin E 

RAC1 Ras-related C3  
botulinum toxin substrate 1  amplified simvastatin 

RXRG Retinoic acid receptor RXR-gamma  amplified tretinoin 
adapalene 
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Table 5.4   Potential therapeutics targeting the observed lung aberrations. 
 
Drug Known mechanism & indications Targeted aberrations 

Sunitinib 
Targets PDGFRs, VEGFRs, RET, KIT, CSF1R, 
FLT3. Approved for GIST and RCC. In trials 
for thyroid cancer. 

Motesanib Targets VEGFRs, PDGFRs, KIT, RET. In trials 
for thyroid cancer, GIST, NSCLC. 

Sorafenib 
Targets BRAF, RAF1, RET, VEGFRs, PDGFRB, 
KIT, FLT3. Approved for RCC and HCC. In 
trials for thyroid cancer. 

Sulindac An NSAID COX inhibitor for inflammation but 
also inhibits MAPK3 (ERK1).  

Up-regulation the MAPK pathway 
increases cell proliferation. 
 
RET, a validated thyroid cancer 
target, and its growth factors are 
amplified and overexpressed 
 
AQP5 a known activator of this 
pathway is overexpressed 
 
MAPK3 (ERK1) is amplified. 
 
BRAF is a target in thyroid cancer. 
 
PTEN, a suppressor of this pathway, 
is highly down-regulated. 
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Table 5.5   Cancer related observed skin tumor aberrations. 
 
Proteins that are amplified compared to blood, significantly overexpressed compared to both 
blood and compendium, or mutated. Highly amplified refers to an HMM classification value 
of 4 and amplified to an HMM value of 3. Only proteins that are known to be targets of 
approved drugs are listed. A few approved drugs known to inhibit each target are listed. 
 

Target Target name Genome aberration in 
skin tumor 

Approved 
drug 

RET Proto-oncogene tyrosine-protein 
kinase receptor ret  

significantly over expressed 
highly amplified 

sunitinib 
sorafenib 

AKT1 RAC-alpha serine/threonine-
protein kinase  significantly over expressed arsenite 

BMP2 Bone morphogenetic protein 2  amplified simvastatin 

CYCS Cytochrome c amplified minocycline 
melatonin 

EGFR Epidermal growth factor receptor  amplified gefitinib 
erlotinib 

EGLN1 Egl nine homolog 1  amplified vitamin C 

ERBB2 Receptor tyrosine-protein 
 kinase erbB-2  amplified lapatinib 

GRB2 Growth factor  
receptor-bound protein 2  amplified pegademase 

bovine 

GSK3B Glycogen synthase kinase-3 beta  amplified  

IL6 Interleukin-6  amplified bicalutamide 
arsenite 

ITGA2B Integrin alpha-IIb  amplified tirofiban 

LAMA1 Laminin subunit alpha-1  amplified alteplase 
reteplase 

LAMC1 Laminin subunit gamma-1  amplified alteplase 
reteplase 

MAPK3 Mitogen-activated  
protein kinase 3  amplified sulindac 

isoprotenerol 

MMP9 Matrix metalloproteinase-9  amplified minocycline 
simvastatin 

NTRK1 High affinity nerve  
growth factor receptor  amplified imatinib 

PRKCA Protein kinase C alpha type  amplified vitamin E 

PRKCB Protein kinase C beta type  amplified vitamin E 

PTGS2 Prostaglandin G/H synthase 2  amplified etoricoxib 
carprofen 

RAC1 Ras-related C3  
botulinum toxin substrate 1  amplified simvastatin 

RARA Retinoic acid receptor alpha  amplified isotretinoin 
alitretinoin 

RXRG Retinoic acid receptor  
RXR-gamma  amplified tretinoin 

adapalene 

STAT5B Signal transducer and activator 
of transcription 5B amplified dasatinib 
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6     Conclusions and Future Directions 
 
Drug repositioning has become increasingly studied in recent years due to the consistently 

low rate of new drug approvals. Given the vast number of potential drug-target interactions, 

computational methods are a valuable parallel approach to experimental methods. The 

primary goals of this thesis were to find novel drug repositioning candidates by (1) 

developing a computational method to predict novel drug-target interactions and (2) better 

understanding of disease mechanisms. In Chapter 1, I reviewed the existing computational 

drug repositioning approaches. 

 

6.1 Molecular docking to find novel drug-target interactions 

In Chapter 2, I described my computational repositioning approach, involving the largest 

molecular cross-docking study to date. Molecular docking is a more realistic model of 

binding interaction compared to existing methods based on protein sequence, protein 

structure, or chemical similarity, and can detect drug repositioning candidates that are not 

structurally similar to existing drugs. Conceptually, my cross-docking approach also models 

a more realistic biological environment - once a drug enters a cell, which of the multitude of 

different proteins will it bind to? In the future, it could be informative to classify target 

proteins by their subcellular localization in order to better model the cellular environment. 

 

A major limiting factor of large-scale docking studies is the requisite computational power to 

virtually screen millions of interactions. Therefore, the results and analysis of this study, 

taking over 3 weeks on a 1000-processor cluster, will be an important contribution to the 

molecular docking community. However, without further processing, these results would 

consist of mainly false positive interactions. Using software-standard docking score 

thresholds, I would have predicted over 100,000 interactions, containing only 1.1% known 

interactions. Experimentally validating all the predictions would be infeasible.  

 

The computational goal of my method was develop methods to filter out as many false 

positive interactions as possible. The ranking and scoring criteria I developed allowed for a 

more rational selection of top interactions and enriched the predicted set for known 
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interactions several hundred fold. My filtering method also differed from existing machine 

learning approaches in that there was no need to train on known binders for each target. The 

high EFs suggested that the predicted interactions were more likely to be true binders 

compared to predictions from other thresholds, and would be more efficient for experimental 

validation. Indeed, I found literature validation for 31 of the top predictions that were not 

annotated in DrugBank. Since it is infeasible for drug-target interaction databases to 

manually curate all the literature for all targets and drugs, I suggest that virtual screening 

studies can also aid in annotating existing drug-target interaction databases.  

 

My method is scalable to larger datasets - as long as the docking can be feasibly completed. 

The set of proteins can be increased as new structures are entered in PDB. Moreover, 

homology models of proteins can be included provided that these structures pass the reliable-

for-docking criteria. As docking and scoring mechanisms continue to improve, it is 

foreseeable that more known interactions will be docked well, also leading to an increase in 

the number of reliable-for-docking targets in the dataset.  

 

Current docking methods are recognized to have many weaknesses: lack of protein 

flexibility, lack of solvent molecules, poor scoring functions, to name a few. I countered 

these shortcomings by using ‘reliable’ proteins for which at least one known drug could be 

docked well, hypothesizing that for these proteins the shortcomings did not override the 

predictive ability of the docking. Ideally, molecular dynamics would be the most realistic 

simulation of protein-ligand binding in 3-dimensional space; however, it is currently not 

feasible to perform large-scale molecular docking in an automated fashion or in a timely 

manner.  

 

In this chapter, I focused on finding novel targets for existing drugs, in order to determine 

novel therapeutic indications, added insight into mechanism of action, and better 

understanding of adverse reactions at the molecular level for these drugs. However, this 

method is not limited to only approved drugs, and can be used to select top predictions from 

any virtual screening study; for example, I could screen 20 million PubChem compounds 

against a target, use the consensus score threshold to select the top 1000 compounds, then 
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dock these against the reliable target set to determine protein ranks and further filter top 

predictions. In short, molecular docking is a powerful method for determining protein-drug 

interactions and the docking approach and scoring thresholds I developed can be applied to 

improve any future docking prediction, whether for novel compounds or approved drugs. 

 

6.2 In-depth docking of EGFR kinase to find novel repositioning candidates 

In Chapter 3, I presented a detailed computational analysis to find inhibitors of the well-

established drug target EGFR. The docking approach in Chapter 2 appeared to perform well 

for EGFR, greatly enriching the predicted set of inhibitors for known interactions (15 fold 

better than the standard software threshold). Compared to previous EGFR docking studies, 

my study was unique in that it used 23 crystal structures of the protein instead of just one. I 

hypothesized that this would allow us to better model protein flexibility. In addition, the 

protein rank criteria allowed us to further eliminate potential false positive predictions. 

Though a few true positive interactions were also filtered out, these were broad-spectrum 

binders of EGFR (ATP, ADP, staurosporine) that were not interesting drug candidates. 

 

The anti-HIV drug TDF showed promise in cell line and Western blot assays, behaving 

similarly to the known EGFR drug gefitinib. However, TDF did not inhibit EGFR in direct 

binding assays, suggesting that the drug works through other mechanisms. I speculated that 

the drug may be acting through other ERBB family kinases that are similar to EGFR (but are 

not included in my database), or the other docking-predicted targets PIMT or GALE, or 

kinase proteins in between EGFR and ERK in the signaling pathway. More analysis will be 

needed to investigate these potential interactions using computational 3D structures (building 

homology models if possible) and experimental assays. 

 

This study showed some of the limitations of my virtual screening approach. As mentioned 

for Chapter 2, not having true targets of TDF in the dataset will cause other false positive 

targets to pass protein rank thresholds. In addition, the scoring functions are still inaccurate 

and can cause true targets to score poorly and false targets to score well. These limitations 

are applicable to any drug-target prediction study using docking methods. However, the 

number of structures solved in PDB is rapidly increasing and as the scoring functions 
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improve, I believe that redoing this analysis in the future will provide a more informative set 

of predictions. In addition, as more EGFR crystal structures are deposited into PDB, they can 

also be added to the set of targets. 

 

From this study, I have learned that experimental determination of drug-target binding also 

has many limitations. First, the assay conditions and experimental design can affect whether 

a direct binding interaction is detected and at what strength. Examples have been shown 

throughout the thesis, whether with previous nilotinib-MAPK14 results, gefitinib targets 

determined from two different studies, the BIM-8 PIM-1 interaction, the importance of ATP 

and FBS concentrations. In addition, observed inhibition in cell proliferation and signaling 

assays may have arisen through any number of targets, and may not be due to inhibition of 

the desired target. However, cell line assays may be the only option when direct binding 

assays are not readily available. 

 

The inverse docking of TDF against the protein database aided in selecting top interaction 

predictions. However, it also allowed us to explore the potential polypharmacology of the 

drug through a drug-target network. The clinical utility of multi-targeting or ‘dirty’ drugs has 

been proven with cancer drugs like sunitinib and sorafenib. However, not knowing the 

contributions of each target means that there will still be more adverse effects than I would 

like. As more is understood about cancer pathways, an important milestone of drug discovery 

would be to design drugs that only inhibit specific combinations of targets, for greater 

efficacy and better safety profiles. The drug-target network I built from docking is one 

computational approach this problem, by allowing us to identify combinations of proteins 

that can be targeted by a single agent. Though targets were not similar in sequence or 

structure, like GALE and EGFR, some molecular properties in their binding sites allow them 

to dock well with the same drug. This network also suggests non-kinase drug targets that 

could be targeted in combination with EGFR. 
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6.3 Combining VS and HTS to find novel drug repositioning candidates for RSK 

Based on my experience docking to EGFR, I made several amendments to my screening 

strategy. I first built homology models of RSK to supplement existing PDB structures, which 

either had structure gaps near ligand binding sites or were not in a peptide-bound 

conformation. Though it can be argued that docking to homology models is less reliable than 

docking to an original 3D structure, several studies have shown that models can be just as 

informative or even more informative when used in docking.  Oshiro et al. studied the cyclin-

dependent kinase CDK2 using templates with sequence identity of 43% to 60% and the 

DOCK software, and found that they could enrich the predicted binders by 3.5 or 3.1 times, 

respectively, using homology models [348]. This was only slightly lower than the 4.5 times 

enrichment obtained using actual CDK2 crystal structures, demonstrating the utility of 

homology models for VS. I found adding the two RSK homology models beneficial to my 

analysis, both in docking known inhibitors (Table 4.3) and docking HTS hits (for the 32 HTS 

hits, 5 docked best to a RSK model structure instead of an existing RSK crystal structure).  

 

One of the reasons I constructed a peptide-bound model of RSK was to search for novel 

protein-protein (peptide pocket) small molecule inhibitors. To date, finding small molecule 

inhibitors of protein-protein interaction (PPI) interfaces remains a widely studied yet largely 

undeveloped area of drug discovery. Being able to target these interfaces would greatly 

increase the number of druggable targets for therapeutic purposes, since PPIs occur in all 

major biological and disease pathways. In particular, kinase targets share similar ATP-

binding sites, so an additional peptide-binding site inhibitor could add a layer of specificity to 

kinase drugs. However, due to the different natures of small molecule and PPI sites, these 

types of inhibitors are extremely challenging to detect using existing VS and HTS methods 

[23]. In this study, the challenge presented as not having known RSK PPI inhibitors for 

positive control docking. Overall, Prestwick drugs had poor pmf- scores and none of the top 

predictions exhibited activity in the HTS screen. Conversely, none of the 32 HTS hits docked 

well to the peptide pocket. Only menadione may have bound near the peptide site, since it 

inhibited RSK-S6K but not RSK-YB-1 activity. Two likely factors emerged when comparing 

the HTS and VS results: first, the small Prestwick library may not have contained any strong 

RSK PPI inhibitors; and second, empirical scoring algorithms (like ICM) were unable to 
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score PPI inhibitors well since they were trained on existing PDB structure complexes (none 

of which involve PPI inhibitors). I thus believe that more PPI-specialized VS and HTS 

methods need to be developed before computationally determining PPI inhibitors becomes 

routinely feasible. 

 

The second amendment to my strategy was to perform a much more in depth docking 

analysis of known inhibitors. The EGFR known inhibitors were very similar to ligands in 

PDB structure complexes; thus, the positive controls in that study were all cognate dockings. 

Here, I chose ten chemically diverse inhibitors of RSK, six of which represented the non-

cognate docking scenario. Validating their scores, ranks, and known binding domains 

(NTKD/CTKD) allowed us to be more confident in my positive control analysis. This step 

also provided the predicted binding conformation of several RSK inhibitors that have not yet 

been solved in RSK crystal structures. These binding modes will be useful for understanding 

drug binding chemistries and designing derivative compounds.  

 

PDB structures are often considered gold standard for docking purposes, as it is the central 

repository of protein three dimensional crystal structures. However, it is not often recognized 

that PDB structures often have errors of their own – whether human error or refinement error 

(i.e. incorrect sequence mapping errors [349]). Docking software like ICM attempt to adjust 

for many of these errors but cannot account for all cases. Other software should also be tried, 

as they would adjust for a different set of errors. Through the known inhibitor analysis, I was 

able to detect RSK structures not suitable for ICM docking. I thus found it important to 

examine the docking of each RSK structure individually, instead of grouping them together 

as in previous chapters. 

 

The most significant change to my strategy was the inclusion of HTS results, parallel to the 

VS results. I was surprised to find that 32 of 1,120 off-patent drugs had RSK inhibitory 

activity. Of course, some drugs may have been false positive or weak inhibitors. However, if 

combinations of weak drugs are taken, the additive effect on RSK inhibition could become 

significant. Furthermore, these drugs would be chosen such that they would not share many 

other targets in common, aside from RSK. The overall effect would therefore be a strong 
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added RSK inhibition with a weak inhibition of other targets, resulting in milder adverse 

effects. While an attractive endeavour in theory, such combinations are challening to 

formulate in practice. Drug-drug interactions will need to be carefully understood, to ensure 

that drugs in the combination do not interfere with each others’ absorption, distribution, 

metabolism, excretion, or actual clinical effect [350].  In addition, it would be important to 

ensure that weakly inhibited targets do not cooperate synergistically to cause adverse effects. 

 

Aside from allowing us to select top Prestwick drugs for secondary screening, the combined 

screening approach also allowed a direct comparison of HTS and VS for the same chemical 

library. While the ability of docking to enrich for known RSK binders was very clearly 

established (PPV=23%, EF=26.1), I was interested to see how the scoring and ranking 

criteria enriched for HTS hits. There was very little overlap between VS and HTS results, 

with only 6 drugs in common between the top ~30 interactions from each analysis. However, 

many of the drugs passing the consensus score threshold included the HTS hits with the 

strongest activity (kaempferol, myricetin, ellipticine). Examining the drugs eliminated by 

visual criteria showed that rigid molecules like ellipticine formed few hydrogen bonds but 

could induce protein to conform during binding (like staurosporine). The new generation of 

flexible-protein docking algorithms may be able to improve detection of such compounds.  

 

The EFs in this study were lower compared to the EGFR analysis, due to the smaller 

database size; however, the PPV rates remained around 20%. The EF analysis showed that 

VS allows us to screen only 19 compounds (<2% of the library) yet find six RSK inhibitors, 

allowing for a much more efficient experimental output in the absence of an HTS screen. In 

addition, VS methods were able to aid in identifying several HTS false positive hits, as was 

seen with menadione and the steroid hormone compounds.  

 

Lastly, during the validation steps, we made sure to confirm a strong dose-dependent 

inhibition of RSK before continuing on to signaling or growth inhibition experiments. This 

prevented any TDF-like scenarios from occurring – because compounds that inhibit growth 

and signaling may be acting through any number of pathways. Even in the current results, the 

five follow-up drugs may be acting through a number of kinase proteins, such as EGFR or 
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ERK, which are above RSK in the MAPK signaling chain. A glimpse of other potential 

targets for each drug can be obtained from the protein rank analysis, when the top ~110 drugs 

were docked to the 252 drug-target database. As an example, myricetin with protein rank 75 

had strong RSK inhibition but its poor protein rank indicated that it may also target many 

other proteins in the cell. 

 

The behaviour of myricetin underscores one disadvantage for both HTS and VS screens: they 

are not reflective of the cellular environment. The dynamics of the target protein, the 

concentration at which the protein is present in the cell, local environments in the cell 

(including the subcellular localization) and presence of cofactors, chaperones, or competitors,  

may all affect the relevance of the HTS or VS result. Similarly, cellular assays are not 

necessarily reflective of results from an animal model study, and the drug efficacy and 

toxicity seen in an animal model may not translate to the clinic. In our computational 

method, we tried to account for cellular competitors by including a host of other drugs and 

target proteins in the docking process. We have identified drugs that show direct inhibition of 

RSK and cellular inhibition of TNBC cell lines. The next step thus be to validate these drugs 

in animal models of TNBC. 

 

In conclusion, I have demonstrated the utility of using both VS and HTS methods to search 

for novel drug inhibitors of the RSK protein. Comparing the two lists suggested potential 

false positives and false negatives as well as highlighted the strengths and weaknesses of 

each method. These results agree with previous studies in that VS and HTS are parallel 

approaches producing two different, but useful, lists of inhibitors [62-65]. The improved 

docking pipeline developed here can be used to screen future chemical libraries consisting of 

more approved drugs, novel inhibitors, or derivative compounds of existing known 

inhibitors. Three of the four drugs determined to be novel RSK inhibitors are nutritional 

supplements with known safety profiles. The fourth drug is already a cancer agent with a 

known ability to modulate TP53 activity. Thus, these drugs are prime candidates to be 

repurposed to RSK-related cancers.   
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6.4 Finding personalized drug options for a patient with a rare tumor 

The cost of sequencing the human genome is rapidly declining, and with it, whole genome 

sequencing for medical use is advancing. In Chapter 5, we were able to use whole genome 

and transcriptome sequencing to generate a hypothesis about the disease mechanisms of a 

patient with a rare tongue tumor and consequently reposition renal cancer drugs to treat this 

tumor. This was one of the first personalized medicine studies using sequencing and 

highlights the utility of genomic data to inform rational therapeutic options.  

 

There were many advantages to a sequencing approach. First, sequencing can be performed 

with very small samples, such as from a fine needle biopsy. Compared to clinical genetic 

testing for patients with risk of disease, genotyping or genomic assays, the sequencing 

approach is comprehensive and can determine copy number, expression, and sequence 

changes concurrently. It is not limited to known SNPs and risk factors, or a small subset of 

genes. Being able to study the entire genome allowed us to form a hypothesis about the 

disease mechanism of the tumor. For example, PTEN is most often associated with 

upregulation of the PI3K/AKT pathway; however, we observed apparent downregulation of 

this pathway in the tumor and thus focused on the RET-signaling pathway instead. When we 

found potential therapeutic options, I was able to confirm that the known targets of the 

proposed drugs were expressed and did not have any interfering mutations. This type of 

analysis can be expanded to include drug metabolizing enzymes, for example, and would add 

insight into whether the drug would be effective for the patient.  

 

Genome sequencing of the metastasized skin tumor also revealed several important 

observations. First, there were extensive large-scale DNA changes compared to the original 

tumor, highlighting the genomic instability of the post-treatment metastasis. Second, many of 

the changes appeared to correspond with the tumor acquiring resistance to RET-targeted 

therapies. Third, knowing the genetic makeup of the tumor allowed us to suggest a cocktail 

of rational targeted therapies for the patient; however, determining the proper dosages and 

potential drug-drug interactions in a large drug cocktail would be a difficult task, requiring 

further in vitro and in vivo research. 
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There were also limitations to our study. The significant genome contamination of the lung 

tumor transcriptome with genomic DNA may have affected the gene expression analysis. 

However, after correcting for background contamination, I believe that the most important 

signals should still be retained, just at a lower level of coverage. Indeed, we were still able to 

detect the highly amplified genes and showed that they correlated well with copy number 

data for both the lung and skin tumor genomes (Appendix D). Adjacent normal tissue for the 

tumors was unavailable for differential expression analysis. Instead tumor expression was 

compared to blood expression and the compendium. Expression differences between tumor 

and blood may have been caused by inherent differences between the tissue types. By 

including the compendium, these types of differences could be eliminated. However, the 

composition of the compendium is also significant; for example, if many cancers in the 

compendium were driven by RET, we would not have been able to detect RET as important 

in this patient. Lastly, we could not be sure that the skin tumor metastasized from the lung 

tumor. However, the presence of the four somatic mutations in both the lung and skin tumors 

suggests that we could meaningfully compare the skin and lung tumors as post- and pre-

treatment tumors.  

 

Our study highlighted key challenges in cancer drug discovery. For instance, there were 

many aberrations in the cancer genomes, which played important roles in driving the disease 

but were not targetable by known drugs, such as the down-regulation or mutation of the 

tumor suppressor genes PTEN, TP53, and RB1. Existing drug discovery methods search for 

small molecule drug inhibitors of target proteins, but it is extremely challenging to develop 

novel small molecule agonists of mutated or downregulated targets. Other methods like 

siRNA, immunotherapy, and gene therapy methods have not yet progressed to widespread 

use. A second was the acquiring of resistance, for which there are two reasonable causes. 

First, the standard dosage of sunitinib was reduced after one round due to adverse effects. 

This is compounded by the second reason, which is that overexpression of the RET protein 

may actually have required higher doses of sunitinib in order to inhibit MAPK pathway 

signaling. Another challenge is the lack of safe and effective drugs for many proteins. In the 

skin metastasis, drugs that inhibit AKT, the mTOR-RICTOR, MEK1, or ERK1 would have 

been valuable for this patient. However, no approved drugs for these targets exist. In addition, 
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aside from AKT, these proteins have not yet been proven to drive proliferation in specific 

cancers, and as such it would be difficult to identify a patient subset to test such inhibitors in 

clinical trials. 

 

What this study did show is that whole genome and transcriptome sequencing of patient 

genomes is now tractable and can both inform disease mechanisms and rational therapeutic 

options. This approach is especially relevant for rare tumors with poorly understand 

molecular mechanisms and no standard treatment options since the scarcity of these patients 

and the diversity of their tumors would be challenging for establishing clinical trials. It is 

thus conceivable that characterizing tumor genomes will become a routine part of cancer 

therapy in the future, with continued monitoring to update treatment options. 

 

6.5 Conclusion 

Drug candidates with low efficacy but good safety profiles may fail clinical trials due to poor 

target inhibition in humans. In such a case, my molecular docking approach can help 

determine novel therapeutic targets for this drug. Candidates may also fail due to 

heterogeneity of the disease across patients. The sequencing approach can help elucidate the 

disease mechanism for each patient, and find the subset for which the drug would be 

effective. I would thus be able to inform therapeutic options and conduct clinical trials for 

patients on a molecularly-personalized level. On the whole, the research presented in this 

thesis provides new methods to improve drug discovery efficiency. 
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Appendices 

Appendix A   Top homology modeling templates for RSK1. 
 
Top template options for RSK homology modeling as determined by the SWISS-MODEL 
server. These PDB structures are selected by sequence identity to the RSK kinase domain.  
14 structures of AKT are omitted from this table; they either 1) have similar sequence 
identities and resolutions 2) are complexed with a small molecule inhibitor only, or 3) were 
deposited in PDB in 2009-2011 which was after the initial modeling. 
  

PDB ID Resolution (Å) Protein name Sequence identity 
3a62 2.4 p70S6K1 55% 

3a60 2.8 p70S6K1 55% 

1vzo 1.8 MSK 54% 

3a61 3.4 p70S6K1 53% 

3e87 2.3 AKT2 45% 

3d0e 2.0 AKT2 45% 

3e88 2.5 AKT2 45% 

1o6k 1.7 AKT1 (S474D) 45% 

2jdo 1.8 AKT2 45% 

3e8d 2.7 AKT2 45% 

1o6l 1.6 AKT1 (PIF) 45% 

3hdm 2.6 SGK1 45% 

3iw4 2.8 PKCalpha 43% 

3dne 2.0 PKA 38% 
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Appendix B    Comparison of sunitinib and sorafenib polypharmacology 
 
a) Comparison of the sorafenib and sunitinib targets based on 317 direct kinase binding 
assays from [51] using the KinomeScan technology (Ambit Biosciences, Massachusetts, 
USA). Only IC50 values below 100nM are shown. Shared targets are shaded in grey at the 
bottom of the table. Surprisingly, sunitinib inhibited 43 of 317 kinases with IC50’s below 
100nM and 200 of 317 kinases with IC50’s within 10µM. 
 

Target sorafenib IC50 (nM) sunitinib IC50 (nM) 
AAK1  11 
AMPK-alpha1  19 
AMPK-alpha2  89 
ARK5  48 
AXL  9 
BLK  65 
CAMK2A  80 
CLK1  22 
CLK2  20 
CLK4  29 
CSNK1D  15 
CSNK1E  13 
CSNK2A1  81 
DAPK3  22 
DRAK1  1 
GAK  20 
ITK  13 
JAK3  49 
LKB  38 
LOK  19 
MAP4K1  16 
MAP4K5  41 
MERTK  25 
MLCK  23 
STK3  56 
STK4  19 
STK24  63 
MYLK  49 
PAK3  16 
PHKG1  5.5 
PHKG2  5.9 
PIP5K2B  39 
PTK2B  82 
RIOK1  35 
RPS6KA2  17 
RPS6KA4  96 
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Target sorafenib IC50 (nM) sunitinib IC50 (nM) 
RPS6KA5  28 
SGK085  15 
STK33  17 
SLK  56 
TNIK  25 
TTK  63 
TYRO3  49 
Raf-1 230  
BRAF 540  
TIE1 68  
DDR1 1.5  
DDR2 6.6  
MAPK15 46  
ZAK 6.3  
CSF1R 28 2 
FLT1 31 1.8 
FLT3 13 0.47 
KIT 31 0.37 
PDGFRA 62 0.79 
PDGFRB 37 0.075 
RET 13 12 
VEGFR2 59 1.5 
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b) Kinase targets widely established as major sunitinib targets. [351] 
 

Target sunitinib IC50 (nM) 
VEGFR1 15 
VEGFR2 38 
VEGR3 30 
PDGFRA 69 
PDGFRB 55 
CSF1R 35 
FLT3 21 
KIT 1 
RET 224 
FGFR1 675 

 

c) Kinase targets widely established as major sorafenib targets. [352, 353] 
 

Target sorafenib IC50 (nM) 
RET 5.9 
RAF-1 6 
BRAF 22 
VEGFR2 90 
murine VEGFR3 20 
murine PDGFRB 57 
FLT3 58 
KIT 68 
FGFR1 580 
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Appendix C  RNA-Seq libraries included in the compendium. 
 
The compendium is comprised of 50 RNA-Seq libraries including 19 cell lines and 31 
primary samples representing at least 19 different tissues and 25 tumor types as well as 6 
normal or benign samples. Cell line names are listed in brackets under ‘Tissue’ where 
applicable. Otherwise, all libraries were derived from primary tumors. 
 
Tissue  
(Cell Line: If applicable) Description Gender 

Bone marrow Acute Lymphoblastic Leukemia Unknown 
Bone marrow Acute Lymphoblastic Leukemia Unknown 
Brain Oligodendroglioma Unknown 
Brain Oligodendroglioma Unknown 
Brain Oligodendroglioma Unknown 
Brain (NB88) Neuroblastoma Unknown 
Brain/Bone Marrow 
(NB122L) 

Neuroblastoma, stage 4, bone marrow 
metastases Male 

Brain/Bone Marrow 
(NB153) 

Neuroblastoma, stage 4, bone marrow 
metastases Unknown 

Breast Breast Tumor Female 
Breast Breast Tumor Female 
Breast Breast Tumor Female 
Breast (BT474-M1) Solid, invasive ductal carcinoma Female 
Breast (HS-578T) Aneuploid epithelial breast carcinoma Female 
Breast (SUM149) Breast carcinoma Female 
Colon (HCT116) Colon carcinoma Male 
Colon (MIP101) Colon carcinoma Male 
Embryonic stem cells Normal, undifferentiated Male 
Foreskin (FS210) Normal  Male 
Foreskin (FS248) Normal  Male 
Foreskin (FS253) Normal skin-derived precursor cells Male 
Gastrointestinal Tract Lymphoma Female 
Lung Lung tumor Female 
Lung Lung tumor Female 
Lung (PC9) Lung adenocarcinoma Unknown 
Lymph nodes Lymphoma Male 
Lymph nodes Lymphoma Male 
Lymph nodes Primary mediastinal B cell lymphoma Female 
Mononuclear blood cells Acute Lymphoblastic Leukemia Male 
Mononuclear peripheral 
blood cells Acute Lymphoblastic Leukemia Male 
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Tissue  
(Cell Line: If applicable) Description Gender 

Ovary Endometroid ovarian cancer Female 
Ovary High grade clear cell ovarian tumor Female 
Ovary High grade serous cancer Female 
Ovary Mucinous ovarian cancer Female 
Ovary Small cell hypercalemic ovarian cancer Female 
Ovary  Granulosa cell ovarian tumor Female 
Ovary (BIN67) Ovarian small cell carcinoma Female 
Ovary (SBOT 3.1) Low grade serous ovarian tumor Female 
Pancreas (CAPAN-1) Pancreatic adenocarcinoma Male 
Pelvis, Right Epithelioid sarcoma Unknown 
Peripheral blood Acute Lymphoblastic Leukemia Unknown 
Peripheral blood Acute Lymphoblastic Leukemia Unknown 
Peritoneal effusion  
(SU-DHL-6) B-cell Non-Hodgkin Lymphoma Male 

Pleural effusion  
(Karpas 1106P) Primary Mediastinal B cell lymphoma Female 

Pleural effusion (KM-H2) Hodgkin lymphoma, mixed cellulariity Male 
Skin (A431) Epidermoid carcinoma Female 
Spleen Lymphoma Female 
Thigh Sarcoma Unknown 
Tonsil Benign (CD77+ normoblasts) Unknown 
Tonsil Benign (centroblast cells) Unknown 
Tonsil Lymphoma Male 
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Appendix D  Copy number varation (CNV) compared to differential expression. 
 
a) Boxplot of CNV versus differential expression value for lung metastasis relative to blood. 
* Indicates significant p-value for comparison to normal (CNV = 2). 
 

 
 
b) Boxplot of CNV versus differential expression value for skin metastasis relative to blood. 
* Indicates significant p-value for comparison to normal (CNV = 2). 
 

 
 


