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Abstract 

The Infrastructure Interdependencies Simulator (I2Sim) enables the user to explore the 

relationship and interdependencies among different infrastructures. Based on the same I2Sim 

ontology, and derived from a regular production cell, the I2Sim financial production cell (FPC) 

is designed to simulate and present the financial behaviors. 

UBC’s living lab model and living lab battery model provided an ideal testing ground for the 

I2Sim environment and its new financial production cell. In the living lab model, two of the 

financial production cells were integrated into the system, and provided with real time dynamic 

inputs. As expected, the financial production cell outputs correctly the cost of purchased 

resources as well as the ongoing real time costs. The results of this simulation successfully 

demonstrated the strength of the I2Sim environment and the capabilities of the financial 

production cell. 

In the living lab battery model simulation, two cases were tested. In the first test case, with 

demand peak-shaving as the main objective, an entire battery system model was developed from 

the ground up and finally integrated with the financial production cell. The simulation provided 

accurate financial analysis towards three different battery types: Flow batteries, lithium-ion 

batteries and sodium sulfur batteries. Although the results suggest that the battery system is not 

the most economical electric energy storage system at the moment, it again proved that the 

financial production cell is a suitable tool for many different business analysis cases. In the 

second case, delaying south transmission line’s upgrading process became the main objective; 

the test results showed that the flow battery was the best choice. The project was proven to be 

both technically and financially feasible.  
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1 Introduction 

 

The subject of this thesis is I2Sim’s financial model and its application to UBC’s living lab 

project. The financial model introduces a new toolbox module called Financial Production Cell. 

With this new member added to the I2Sim toolbox family, it enhances I2Sim’s capability of 

modeling financial infrastructures.  

1.1 Background 

With the advance of new technologies and increase of living standards, modern society has 

become more and more dependent on resources like electricity, clean water, heat, natural gas, etc. 

In order to deliver these resources to every corner of society, the system of critical infrastructures 

(power grid, water network, natural gas pipes) has become the artery system of our everyday life. 

On top of these, the health system, the telecommunications network and the traffic system are 

also vital. Although each system has its very own emergency response procedures, most of time 

when a disaster strikes, all these systems fail to collaborate with each other and do not respond as 

effectively as planned. The reason is that even though every single system has its private data, it 

is not willing to share it, which makes it very difficult to monitor and control the entire disaster 

response operation. 

1.2 I2Sim 

 

The idea behind the Infrastructures Interdependencies Simulation (I2Sim) is to build a dynamic 

multi-system simulator to test all infrastructure interactions under disaster situations. During 

these tests, system weaknesses are exposed, which will provide first responders good knowledge 
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of how to plan ahead. I2Sim can also be used to explore critical interdependencies between 

particular systems, which can provide valuable reference during the emergency time [1].  

1.2.1 I2Sim Ontology 

Different infrastructures have their own characteristics and natures, which makes it difficult to 

model many infrastructures with one principle. I2Sim defines a fundamental ontology that is 

very general and can be applied to many different processes [2]. 

The basic elements of the I2Sim ontology include: token, cell and channel.  

 Token represents the unit that travels through the I2Sim model. It can be consumed as 

input (electricity, natural gas, water, etc.) or produced as output (steam, merchandise, 

etc.). 

 Cell is a production unit that receives inputs and produces outputs (a steam plant, a 

factory, etc.) 

 Channel carries and transports the tokens in I2Sim models (electric transmission line, 

water pipe, transit system, etc.) 

 

In I2Sim modeling, cells and channels are the basic infrastructure elements [3]. One individual 

cell can represent one physical building or a group of buildings, which have the same 

functionality. For instance, a hospital or three steam boilers can be modeled by using only one 

cell. If a building or an infrastructure possesses multiple functionalities, it is too complex to be 

modeled by one cell. In this case, multiple cells and channels can be grouped together to forge a 

sub-system to fulfill the purpose. 
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Based on the ontology, the existing I2Sim toolbox includes the following units [4]: 

 Production Cell  Storage 

 Delay Channel  Aggregator 

 Distributor  Source 

 Modifier Cell  Control Panel 

 Visualization Panel  Probe 

 

Production Cell Produces output tokens based on input resources. The input and output 

relationship is governed by the Human Readable Table (HRT). 

Storage stores tokens and releases them at a user-defined rate. 

Delay Channel delays token travel speed from one block to another. 

Aggregator aggregates tokens of the same kind into a single input. 

Distributor distributes an output token to multiple other cells. 

Source creates tokens, which are the inputs for other cells. 

Modifier Cell applies weight factors to inputs and relates the result to a known curve to produce 

output. 

Control Panel is the user interface that controls the simulation. 

Visualization Panel shows the simulation results to users. 

Probe collects data, which are plotted in the visualization panel.  
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In this thesis, a new module called Financial Production Cell will be introduced. The details of 

the Financial Production Cell will be discussed later in Chapter 2.6. 

In the I2Sim ontology, the model contains multiple layers. The components on the same layer 

share the same functionality and server the same purpose. For example, all the components in the 

physical layer represent the physical conditions of the model; all the components on the 

communication layer are responsible for the communications network; and the decision layer 

gives commands to the other layers. The financial production cell introduced in this thesis 

belongs to the financial layer, and it simulates financial activities. 

1.2.2 2010 Vancouver Winter Olympics I2Sim Model 

One recent example of I2Sim application is the 2010 Winter Olympics Simulator. In this 

simulator, the Olympic Venues and critical buildings (BC Place, GM Place, Vancouver General 

Hospital, St. Paul’s Hospital, etc.) were modeled using the I2Sim environment; Figure 1 shows 

the entire model in detail. Several testing conditions were applied to the model, and by analyzing 

the simulation results, the vulnerabilities of the system as well as the interdependencies between 

them were discovered [5].  
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Figure 1: Vancouver winter Olympics I2Sim model [5]
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2 UBC’s Living Lab Project 

 

With the growing concern of green house gas (GHG) emission, climate change and the menace 

of global warming, the province of British Columbia is committed to participate in aggressive 

GHG reduction. The goal is to reduce 33% of GHG emission by the year 2020, and 80% by the 

year 2025. As the top university in BC, UBC takes a role as international leader in developing 

and demonstrating energy savings and clean technology initiatives [6], which focus on 

environmentally sustainable, energy self-sufficient and carbon emission free initiatives.  

Located on Point Grey of the west coast of Canada, UBC’s Vancouver campus has a gorgeous 

ocean view and more than 400 hectares in size. The beauty of the campus and the reputation of 

the University (UBC is consistently ranked in the top 40 universities in the world) has attracted 

37,000 undergraduate and 9,000 graduate students to come to study in the Vancouver campus [7]. 

In order to provide a comfortable academic and research environment, UBC offers housing 

services to its students, faculty and staff. In the year 2010, UBC had 15,500 residents, and by the 

year 2025, the population is expected to reach 28,100 [6].  

 

Figure 2: UBC Vancouver campus [8] 
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The large population requires many services. Thus, UBC hospital, police station, north and south 

electric substations and steam house are all located on campus. This self-sufficient environment 

makes UBC the perfect testing ground to conduct urban sustainability experiments. Under these 

circumstances, UBC’s living lab project was born, one of its main objective is to reduce campus 

greenhouse gas emissions from the year 2007 level to 33% by year 2015, 67% by year 2020, and 

100% by year 2050 [6].  

Most GHG emissions created on campus are caused by natural gas usage. A large amount of 

natural gas is consumed for campus’ heating. Currently, the operational heat source in UBC’s 

Vancouver campus is an aged steam plant. Natural gas is the primary fuel to create the steam. 

This plant suffers not only from large GHG emissions, but also from energy inefficiency [9]. If 

UBC is planning to reach its GHG emission reduction goal by the year 2050, natural gas usage 

must be greatly reduced. 

2.1 UBC Hot-Water Based Heating System Project 

 

In 2011, a new $85-million hot water based heating system will be developed to replace the 

aging steam heating system. This project will take five years to implement and will cover more 

than 100 buildings around the campus. Compared with the current steam based heating system, 

which operates at 190 , the new hot-water based heating system will operate at an average 80 . 

This noticeable difference in operating temperature can reduce the campus energy usage by 24% 

and the GHG emission by 22% [10].  

At the moment the planned source of energy for the new hot-water heating system is based on a 

biomass boiler and a natural gas boiler [11]. However, an argument can be made for the use of 

clean electricity to feed electrical boilers instead of using gas boilers. A comprehensive study 
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analyzing this option is made on a companion Master Thesis by César López [12], where the 

emphasis is on GHG reduction while maintaining fuel costs at similar levels as with gas boilers. 

2.1.1 Nexterra Biomass Plant 

The Nexterra biomass boiler is a Combined Heat and Power (CHP) boiler. It is fueled with urban 

wood waste and converted into clean burning, combustible synthetic gas. The synthetic gas is 

then fed into a high-efficiency GE internal combustion engine to generate 2 MW of electricity, 

and 4 MW of heat for the campus heating system [13].   

 

Figure 3: Nexterra advanced biomass heat and power system [13] 

 

The Nexterra biomass boiler is the first of its kind in North America. It has two operating modes: 

the thermal mode, which generates heat for the UBC campus; and the co-generation mode (heat 

and electric power), which generates heat as well as electricity. After this system starts full 

operation, it will provide in co-generation mode 12% of the campus’ average heat and up to 4.5% 

of the peak electric power; and in thermal mode 25% of the campus heat [14]. 



9 
 

The biomass fuel used by Nexterra mostly comes from urban wood waste. In addition, it is 

considered as carbon neutral [15] [16]. Introducing this technology to UBC will reduce GHG 

emission by up to 9,000 tons each year [14].   

2.1.2 Natural Gas Boilers 

The primary boilers used in the old steam plant are natural gas based, and were built between 

1922 and 1966. These aged boilers will be decommissioned in 2017 [10]. In this thesis, electrical 

boilers are also considered to replace natural gas boilers, so that the GHG emission can be 

reduced to a minimum. The electric boiler use off-peak electricity. In addition heat pumps that 

use waste heat from triumf’s particle accelerator are considered.  

2.1.3 Electric Boilers 

UBC Vancouver campus is powered by two electric substations: The North Substation (UNY) 

and The South Substation (UNS) [17]. These substations are supplied by BC Hydro through two 

power transmission circuits: the north transmission line, which has a capacity of 62 MVA, and 

the south transmission line, which has the capacity of 42 MVA. The transmission system is 

designed so that either of these two lines can supply the entire load of the North substation, in 

case the other one is out of service [18]. Figure 4 shows the connections between the two 

transmission lines and the two substations.  
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Figure 4: BC Hydro transmission line to UBC campus [18] 

 

The idea of using electric boilers is to take advantage of the off-peak electricity available to the 

UBC campus. Since electricity in BC is about 90% of hydro, it is considered a clean source of 

energy. In Figure 5, the blue section is the heat demand that can be supplied by off-peak 

electricity, the red section is the remaining heat demand supplied by natural gas, and the green 
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section is the extra electricity usage. The graph shows that the off-peak electricity can supply 

most of the UBC campus heat demand, and sometimes still has a large portion of unused 

capacity. 

 

 

Figure 5: Natural gas and off-peak electricity used for campus heat production as well as extra electricity usage [19] 

 

 

2.1.4 Heat Pumps 

Located on UBC campus, TRIUMF is a world-class subatomic physics research laboratory [20]. 

Within its facilities, there is the world’s largest cyclotron and it requires 18,500 Amps current to 

power its magnets [21]. The waste heat from the cyclotron could be re-used to heat hot-water for 

campus heating. One way of cycling the heat is through heat pumps. 
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A Heat pump extracts heat from one source and transfers it to another place. Common examples 

of heat pumps are refrigerators and air conditioners [22]. 

 

Figure 6: Basic heat pump principle [23] 

 

The efficiency of a heat pump is measured in term of coefficient of performance (COP). It is 

calculated as: 

                                  
                              

                                              
 

The higher the COP, the more efficient the heat pump is [22]. 
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2.2 UBC’s Living Lab I2Sim Model Overview 

 

The primary objective of UBC’s Living Lab is to minimize Green House Gas (GHG) emissions 

and optimize the financial outcome. As one of the leading modeling tools for multi-system 

interdependencies, I2Sim is a very good tool for UBC living lab modeling. The existing toolbox 

is sufficient for many applications, but does not have a financial layer. The new financial 

production cell (FPC) developed in this thesis is intended to bridge this gap. The details of the 

financial production cell are discussed in section 2.6 of this chapter. 

The living lab I2Sim model discussed in this thesis focuses on the campus heating system. In this 

case, it is the planned hot-water heating system. Currently, this system is planned to use natural 

gas and biomass as its main energy sources. Electricity and heat pumps from UBC Triumf 

particle accelerator are options that could be employed as potential energy sources. In this 

simulation model, all of these energy sources were integrated together as shown in Figure 7. The 

purpose of this is to find an optimal solution and use it as a reference for future projects. 

In the next several chapters, the key I2Sim components for the living lab model will be discussed 

in detail. They are: 

 Selector  Controller 

 Production Cell  Financial Production Cell 

 Financial User Interface  

  

Since the financial production cell is the centre focus of this thesis, it will be described explicitly 

in section 2.6.



14 
 

 

Figure 7: I2Sim living lab model overview
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2.3 Selector 

In order to reduce the GHG emission, the selector chooses the energy source that generates the 

least GHG. The flow chart shown in Figure 8 demonstrates the selection process within the 

selector component. Biomass is chosen first because it is considered as a base plant.   

Is biomass energy supply 

enough for the heating 

energy demand

Compare biomass energy 

supply with energy demand

Only biomass supply is 

needed for campus heating

Yes

Excessive energy demand 

will be supplied by other 

sources

No

Is off peak electricity 

enough for the excessive 

energy demand

Excessive energy demand 

will be supplied by natural 

gas and off peak electricity

Excessive energy demand 

will be supplied by off peak 

electricity

Yes No

Done !

Done !Done !
 

Figure 8: UBC living lab I2Sim model constraints flowchart 
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2.4 Controller 

The Controller in the living lab model controls the electricity distribution between campus 

electrical usage and campus heat usage. The Controller has two main tasks: 

 Find the peak electricity usage during each month. 

 Control the distributor to send electricity to both the UBC campus existing electrical 

system and the proposed electrical boiler. 

 

2.5 Production Cell 

The name of production cell is based on the functionality of the cell, which is producing output 

tokens with input resources [4]. By design a production cell can have several inputs, but it can 

only have one output.  

Inputs

Output

Production Cell

 

Figure 9: Production cell overview 
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Production cells can model many different facilities; one example is a steam plant. The steam 

plant needs multiple available resources to maintain its functionality. These resources will 

include natural gas for its gas boilers, electricity for its electrical boilers, and last but not least, 

water to generate the steam.  

Natural Gas

Steam

Steam Plant

Water

Electricity

 

Figure 10: Production cell steam plant sample 

 

2.5.1 Physical Mode (PM) 

In I2Sim, a regular production cell has a physical mode (PM) and a resource mode (RM). The 

physical mode represents the physical condition of the entity it is modeling, and it also limits the 

maximum resource mode level [5]. For example, when the steam station is at its peak condition, 

everything is working perfectly; the steam output can reach its 100% capacity if all the resources 

are available. However, if the steam station is damaged and its physical condition is reduced to 

75%, no matter how much resource it receives, the steam output cannot exceed more than 75% 

of its full capacity.  
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There are five different colour codes associates with five different physical mode conditions, 

which are shown in the Figure 11. 

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

100% 100% 100% 100%

75% 75% 75% 75%

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

75% 75% 75% 75%

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water
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Figure 11: Production cell physical modes 

  

2.5.2 Resource Mode (RM) 

The resource mode (RM) indicates the availabilities of different resources. In each physical 

mode, the relationship of output and inputs, which also reflects the resource mode, is determined 

by the Human Readable Table (HRT). The HRT expresses the outputs as a set of non-linear 

functions:                            in terms of inputs [24]. The Human Readable Table 

(HRT) contains multiple rows and columns. The rows represent different resource conditions, 



19 
 

and the columns represent output and inputs. The first column is always the output and the rest 

are inputs. 

In order to produce the required output, the inputs have to meet the minimal requirement. For 

example, as shown in the following table, if 100 units of steam need to be produced, the cell 

needs 5000 units of natural gas, 3000 units of electricity, and 6000 units of water. However, if 

only 5000 units of natural gas, 800 units of electricity, and 5000 units of water are provided, only 

25 units of steam will be produced, because the electricity, in this case, is the limiting factor. 

 

 

Figure 12: Production cell HRT 

 

The resource mode also employs the principle of colour coding, Figure 13 shows that the status of 

both the physical mode and resource mode are visible to the user. They are changing in real time 

simulation based on the cell condition. They give user a visual feedback of what is happening 

during the simulation. 
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Figure 13: Production cell resource mode colour code 
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2.6 Financial Production Cell 

The Financial Production Cell (FPC) is derived from a regular production cell, so they share the 

same basic ontology and design philosophy. Both types of production cells have a physical mode 

and resource mode. However, depending on the model itself, the regular production cell usually 

has two or more inputs. The financial production cell, on the other hand, only has two inputs: the 

available resource, and the available money that is allocated to the cell.  

 

 

Figure 14: Financial production cell overview 

 

The financial production cell focuses on the financial aspect of the model. It simulates the 

commodity trading process of resources, and this process is more of a virtual concept than a 

physical infrastructure. For instance, the purchasing of electricity is settled with a contract 

agreement. This process does not involve a physical building. Therefore, the physical mode (PM) 
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of the financial production cell does not represent the physical condition; neither will it suffer 

physical damage.  

The resource mode of the financial production cell governs the relationship between demand and 

supply. The detail of the PM and RM regarding a financial production cell is discussed in the 

next section.  

2.6.1 Physical Mode (PM) of the Financial Production Cell 

The physical mode (PM) in the financial production cell has a similar look as the regular 

production cell. However, it represents a different concept. The differences between physical 

modes in the financial production cell and regular production cells are: 

 The PM in the regular production cell represents the physical condition of the 

infrastructure, while the PM in the financial production cell indicates the cost of the 

resource. 

 The PM in the regular production cell limits the maximum RM level, but the PM in the 

financial production cell always stays at the maximum RM level.  

The idea of employing the concept of physical mode (PM) is to apply the same ontology through 

the entire I2Sim toolbox, which minimizes the complexity of the toolbox. On a higher level point 

of view, this approach greatly simplifies the complexity of the real-world case into manageable 

simulated system [1]. 

The physical mode in the financial production cells provides a frame to hold resource cost tables, 

which is the HRT. When the physical mode changes, the resource cost table is replaced by a new 

one. In real life trading cases, the prices of different resources change all the time. Therefore, the 

resource cost table needs to be updated continuously in real time during the simulation. In the 
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model, this is by accessing the HRT directly during the simulation. In chapter 3.1, this feature 

was fully tested and verified. 

2.6.2 Resource Mode (RM) of the Financial Production Cell 

The core structure of the resource mode is the human readable table (HRT); it defines the 

purchasing behavior of the financial production cell. There are three columns in the HRT. The 

entities in the each column are: 

 First column (Y): purchased resource based on the available resource and money needed. 

 Second column (  ): the available resource at a particular price. 

 Third column (  ): the corresponding cost for the available resource (  ) on the same 

row. 

On each row, the relationship between available resource (  ) and cost (  ) is a non-linear curve. 

The reason is that the more resource is purchased, the larger the cost will be. However, per unit 

price wise, the larger the amount of resource is purchased, the cheaper the per-unit price will be. 

Therefore, the total cost is increasing with the growth of purchasing, but slope of the curve is 

decreasing. This is consistent with real world cases. The example in Table 1 is plotted in Figure 15 

and Figure 16. It illustrates that this non-linear relationship has a logarithmic characteristic. 
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Table 1: Relationship among resource, total cost and per unit price 

Amount of Resource Total Cost Per Unit Price 

100 20000 200 

50 15000 300 

20 10000 500 

10 6000 600 

5 4000 800 

1 1000 1000 

 

 

 

Figure 15: The relationship between total cost and amount of resource 
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Figure 16: The relationship between per unit price and amount of resource 

 

When the two inputs (available resource and available money) are fed into the financial 

production cell, the HRT automatically launches a search sequence. This sequence starts 

searching from the    column first and then moves to the    column. The purpose of this search 

is to locate and identify which input is the limiting factor. The flowchart in Figure 17 shows how 

the search is performed. The allocated money in the flow chart indicates the available money that 

is allocated to the financial production cell. 
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Search limiting factor in HRT from 

left column to right column

Is available resource the 

limiting factor ?

 all allocated money will be spent

No Yes

Case 1

Compare the allocated money 

with the total cost of available 

resource

Is allocated money more than the 

total cost of available resource ?

all allocated money will be spent
Resource is the limiting factor, 

and all available resource will 

be purchased

NoYes

Case 3

Case 2

Is allocated money on the same 

row with available resource ?

Check which row in HRT does the 

allocated money belong

Resource is the limiting factor, 

and all available resource will 

be purchased

Case 4

Yes No

 

Figure 17: Financial production cell HRT flow chart 
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In the flowchart, among all possible combinations, four general cases can be defined. In each 

case, the amount of purchased resource and spent money are calculated as follows: 

 Case 1: Available resource and available money belong to different rows in the HRT, and 

available money is the limiting factor. 

 

  

                  
 

  

               
 

                   
                      

  
 

                            (all allocated money will be spent) 

 

 Case 2: Available resource and available money belong to different rows in the HRT, and 

the availability of the resource is the limiting factor. 

 

  

                  
 

  

           
 

            
                         

  
 

                                      (all the available resource will be 

purchased) 

 



28 
 

 Case 3: Available resource and available money belong to the same row in the HRT, and 

the availability of the resource is the limiting factor. 

 

  

                  
 

  

           
 

            
                         

  
 

                                      (all the available resource will be 

purchased) 

 

 Case 4: Available resource and available money belong to the same row in the HRT, and 

the available money is the limiting factor. 

  

  

                  
 

  

               
 

                   
                      

  
 

                            (all allocated money will be spent) 

 

The output of the financial production cell is the purchased resource. In a regular production cell, 

once the limiting factor is identified, no matter the value of the input, the output of the 
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production cell will be determined by the output row in HRT, which is illustrated in Figure 12. 

However, in the financial production cell, the outputs are calculated instead of being controlled 

by the HRT row.  

 

Figure 18: Financial production cell HRT 

 

Figure 18 shows a sample case of how the financial production cell HRT produces output when 

the limiting factor is found and it is above the HRT row (the red row). In this case, the output is 

calculated based on the formula in one of the four previous cases.  

Although, according to I2Sim ontology, there is only one output from a financial production cell, 

which is the purchased resource, the amount of spent money is also needed by many other 

applications. For instance, the financial user interface in next chapter will need this information 

to calculate the Net Present Value (NPV). One way to obtain this value is to use a Matlab 

command get_param. It provides a direct access to this parameter in computer memory. The 

behavior of FPC’s HRT was tested in chapter 3.1. 
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2.7 Financial User Interface 

I2Sim and Simulink are powerful mathematical tools to create and simulate complex real time 

models, but not all users are experts in programming. Therefore, a clear user interface is required. 

During the period of creating such interface, many similar programs or toolboxes were studied; 

for example, the EnergyPLAN toolbox [25]. The financial user interface provides the user a 

friendly environment to post-process the financial data generated from the model.  

The user interface block implemented is a Matlab GUI function. It consists of two parts; the first 

part is a “.fig” picture file. This picture file defines layout, frame work and function buttons of 

the interface. The second part is “.m” Matlab program file. It implements the functions of all the 

buttons and displays in the interface. 

The annual cash flow and the NPV user interfaces calculate and display the annual cash flow of 

the model according to the life-time of the project. Then it computes the NPV based on an 

appropriate interest rate. Figure 19 provides a look of the interface.  



31 
 

 

Figure 19: Annual cash flow and NPV user interface 

 

The financial interface in Figure 19 contains two major parts: Cash Flow calculation and Net 

Present Value (NPV) calculation. 

In the cash flow part, it obtains the annual cash flow information from the living lab model and 

displays this information on the cash flow table. The user has full control of the table content, 

which can be added, deleted or modified. 

The cash flow of the project in each year consists of: 

 Annual annuity of the initial capital cost  
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 Annual total maintenance cost 

 Annual total operation cost 

 Annual total fuel cost 

 Annual revenue 

 

In the I2Sim model, each production cell represents a physical structure (E.g. a hospital, an 

electrical substation or a water station). The initial capital cost, annual total maintenance cost and 

annual total operation cost of that structure are directly input by the user as attributes. 

 

 

Figure 20: Initial condition of the financial production cell 
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When a facility is built, the initial capital cost is paid by a loan broken down into several annual 

annuity payments. The loan payback period and the loan interest rate could be different from the 

life of the facility and from the inflation interest rate; therefore, they have to be specified. The 

annual annuity of the initial capital cost is calculated as [26]: 

         
                     

 
        

  

  
 

 

Where    is the interest rate for the payment period, and   is the number of payment periods. 

The annual cash flow is then calculated as: 

                                                                    

In step two, the NPV (net present value) is calculated by an additional function calculateNPV.m 

and plotted on the bottom left of the interface. 

In this case, the NPV (Net Present Value) of the project is calculated as [26]: 

        
   

      
 

   

      
   

   

      
 

Where     is the cash flow at time  , and   is the lifetime of the investment.  

The “calculateNPV.m” file is an additional function added onto the financial user interface; its 

content can be easily modified at a later time, which provides the end user great flexibility to 

apply a more sophisticated method or function in the future. 
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3 Simulation Results and Discussion 

This chapter focuses on the application of the financial production cell (FPC) and the simulation 

of various living lab models. A simple test case is first conducted on a single FPC alone, so that 

its functionality and features can be verified. Later, three living lab models are simulated and 

tested. 

3.1 Financial Production Cell Testing 

In this section, two main features were examined: the HRT behavior and the capability of 

updating HRTs during real time simulation. The first test model is shown in Figure 21 and 

includes one financial production cell, two inputs and one output probe. The purpose of this 

testing is to verify that the HRT’s actual output matches the expected (calculated by hand) 

outputs. 

 

Figure 21: Financial production cell HRT behavior testing model 
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The parameters for the test HRT are assigned as in Table 2. They are chosen to simplify the 

testing. 

Table 2: Testing HRT 

Output Resource Cost 

10000 10000 10000 

1000 1000 2000 

100 100 300 

10 10 40 

1 1 5 

 

The test data in Table 3 covers all four different cases mentioned in section 2.6.2. The expected 

output column is highlighted in green. 
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Table 3: Financial production cell testing table 

Test Data 

 

Input Data Output Data 

 

# 

Available 

Resource 

Available 

Money 

Purchased 

Resource Money Spent 

1 5 1000 5 25 

2 100 100 25 100 

3 200 5000 200 600 

4 5000 200 50 200 

5 20000 1000 333 1000 

6 300 100000 300 900 

7 100 10000 100 300 

8 1000 25 5 25 

9 900 1900 633 1900 

10 90 1000 90 360 

11 1200 8000 1200 2400 

12 600 5000 600 1800 

13 50 1000 50 200 
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Figure 22: Financial production cell behavior test results 

 

Each test case listed in Table 3 runs 10 steps during the simulation. In the end, the test results are 

displayed in Figure 22 and are consistent with the expected outputs listed in Table 3. The second 

test model is shown in Figure 23. The objective of this simulation is to prove that the HRT can be 

updated in real time during the simulation. The inputs of the simulation are shown in Figure 24; 

both available resource and available money were changed through time. The expected output in 

Figure 25 is the product of the resource and its corresponding price at the time. 
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Figure 23. Financial production cell HRT dynamic update test model 

 

Figure 24: Resource vs. price 
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Figure 25: Expected resource cost  

 

Figure 26: Resource cost from FPC test simulation 
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It can be observed that the simulation results match perfectly the expected results, which verifies 

the second major feature of the FPC: the capability of updating the HRT in real time during the 

simulation. 

 

3.2 Living Lab Model Simulation 

The data used for the UBC living lab simulation was UBC’s electricity yearly usage data and 

UBC’s steam plant yearly energy consumption data. The electricity usage data is from May 7
th

 

2007 to January 1
st
 2010; the steam data is from April 20

th
 2005 to August 15

th
 2007, and from 

February 28
th

 2008 to September 1
st
 2008. In order to set up a base year for testing, a complete 

year’s data is required. However, the overlapping periods of two sets of data are from May 7
th

 

2007 to August 15 2007 and from February 28
th

 2008 to September 1
st
 2008, and neither of them 

is sufficient for a full base year.  

To complete a full base year, it was observed that the average steam consumption during years 

2007 and 2008 are similar. Taking advantage of this condition, part of the year 2007 steam 

consumption data was extrapolated and then filled into 2008 gap, with the remaining data from 

2008, so that a complete year of steam demand data was obtained. The procedure of this setup is 

shown in Figure 27. 
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Figure 27: Obtaining a base year of data from the real data 

   

The derived year 2008 data serves as a base year; the later years’ data are derived from this data 

set by applying a projected growth factor. 

                        
              

              
      

Then in the following years, the projected heat demand is calculated as: 
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• 

• 

• 

And so on 

 

3.2.1 Living Lab Model with Fluctuating Resource Price 

The financial production cells were integrated into the living lab model as shown in Figure 28. 

The primary objective of the simulation is to demonstrate that the financial production cell is 

able to dynamically re-assign the resource price and calculate the corresponding cost in a 

complex system during the simulation. A static price curve and a dynamic price curve for 

Electricity and Natural gas are displayed in Figure 29 and Figure 30, respectively the cost 

comparisons of each resource are illustrated in Figure 31, Figure 32, Figure 33 and Figure 34. 
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Figure 28: UBC living lab simulation model with financial production cell
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Figure 29: Static price of electricity and natural gas 

 

Figure 30: Dynamic price of electricity and natural gas 
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Figure 31: Electricity consumption cost with static price 

 

Figure 32: Electricity consumption cost with dynamic price 
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Figure 33: Natural gas consumption cost with static price 

 

Figure 34: Natural gas consumption cost with dynamic price 
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Compared with the static price, the cost of both electricity and natural gas with dynamic price 

adjustment changed drastically. This was caused by the fluctuation of price between electricity 

and natural gas shown in Figure 30. The price and cost of the resources were handled by the HRT 

in the financial production cell. The process of updating prices was achieved by dynamically 

updating the HRT table and base value during the simulation. The results of this simulation 

fulfilled the initial goal of the testing, which provided solid evidence that the financial 

production cell is capable of handling dynamic data.   

 

3.3 Living Lab Battery System 

The UBC campus consumes large amount of electricity due to its dense population and various 

research facilities. UBC’s hydro bill includes two parts: the energy used and the energy demand 

[27]. The energy use charge is the energy consumption cost, which is based on how much 

electrical energy has been consumed; the energy demand charge is the peak demand cost, which 

is based on the highest peak demand of the month. On the BC Hydro bill for the energy demand 

charge corresponds to 30% of the total cost. The objective of this simulation is to test whether 

battery storage could be used to shave the peak and be financially feasible compared with the 

batteries capital cost.  

3.3.1  General Battery Model 

The general battery model represents the common battery behavior, it discharges electricity 

when it is needed and charges electricity when it is available. A battery age factor is also added 

to the model in order to make it more realistic. Figure 35 shows the overview of the model. And 
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Figure 36 shows the relationship among three function blocks: controller, discharge and charge. 

The Inputs and outputs of the model are:  

 Power demand: the amount of electric power needed from the battery. 

 Power available: the amount of electric power available to charge the battery. 

 Battery age factor: how well the battery is preserved since the initial stage (e.g. 0.8 means 

the battery can only be charged up to 80% of its initial maximum capacity.) 

 Power output: the amount of electric power drained from the battery. 

 Power stored: the amount of electric power stored in the battery. 

 Battery capacity: the level of battery charged capacity (e.g. fully charged or 60% charged) 

 

Power Demand

Power Available

Battery Age 

Factor

Power Output

Power Stored

Battery Capacity

Battery Unit

 

Figure 35: Battery unit 
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Figure 36: Battery functions 

 

The battery charge and discharge share similar characteristic curves. The curves contain two 

major areas: nominal area and exponential area [28]. In the nominal area, the battery charge and 

discharge occur at a constant nominal voltage, which depends on the battery type; while in the 

exponential area, the battery’s operating voltage varies between nominal voltage and maximum 

voltage [29]. A typical battery discharge characteristic is shown in Figure 37, and a typical battery 

charge characteristic is shown in Figure 38.  

Battery efficiency includes both charge efficiency and discharge efficiency. In the battery model, 

they are controlled by efficiency module.  



50 
 

 

Figure 37: Typical battery discharge characteristics [30] 

 

 

Figure 38: Typical battery charge characteristics [30] 

 

In order to design a simple but sufficient battery model in I2Sim, the battery characteristic curves 

shown in Figure 37 and Figure 38 are represented by two areas: nominal area and exponential area, 

which is shown in Figure 39. 
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Figure 39: Battery model discharge and charge characteristic 

 

3.3.2 Simulation Results 

Three different battery types were simulated and tested. They are: Flow Battery, Lithium-ion 

Battery and Sodium Sulfur Battery. The test data, including battery discharge and charge 

characteristics, total energy capacity and battery costs were provided by students from the 

Materials Engineering Department. The electricity consumption data used in this simulation is 

the same consumption data used in the previous living lab model simulation. The peak-shaving 

threshold was initially set at 38MW, which means that when UBC’s campus electricity demand 

is beyond 38MW, the battery system will step in and deliver the power as much as it is able to; 

when the electricity demand is below 38MW, BC Hydro will supply UBC’s campus demand, 

and in the mean time, the battery system will recharge itself for the next power demand period.  
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3.3.2.1 Flow Battery 

The flow battery stores electro-active materials externally and circulates these reactants through 

an electro-chemical cell which converts the chemical energy directly into electric energy [31]  

[32].  

 

Figure 40: Flow battery diagram [31] 

 

 

Figure 41: Flow battery discharge and charge characteristic 
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Figure 42: UBC electricity consumption with and without flow battery 

 

Figure 43: UBC peak demand with and without flow battery 
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3.3.2.2 Lithium-ion Battery 

The lithium-ion battery is one of the most widely used batteries in current new applications. In 

this type of battery, lithium ions travel from negative to positive during discharge, and vice-versa 

during charge [33]. 

 

Figure 44: Lithium-ion battery diagram [33] 

 

 

Figure 45: Lithium-ion battery discharge and charge characteristic 
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Figure 46: UBC electricity consumption with and without lithium-ion battery 

 

Figure 47: UBC peak with and without lithium-ion battery 
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3.3.2.3 Sodium Sulfur (NaS) Battery 

The Sodium Sulfur (NaS) Battery has liquid sulfur at the positive terminal and liquid sodium at 

the negative terminal. The active materials are separated by a solid beta alumina ceramic 

electrolyte [34] [35]. 

 

Figure 48: Sodium-sulfur (Nas) battery diagram [36] 

 

 

Figure 49: Sodium sulfur battery discharge and charge characteristic 
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Figure 50: UBC consumption with and without sodium sulfur battery 

 

Figure 51: UBC peak with and without sodium sulfur battery 
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The Simulation results presented in Figure 42, Figure 46 and Figure 50 are the electricity 

consumption comparison of three battery models. The blue curve shows how much BC Hydro 

electricity is originally needed to supply the UBC campus. The green curve shows that after 

employing the battery system, how much electricity is still needed from BC Hydro to supply the 

campus load. In most of the period, the battery system was capable of shaving off the peak 

demand. However, in the time line around 3000 hours, the battery system reached its full 

capacity. Therefore, BC Hydro had to take over and supply that period. 

In Figure 43, Figure 47 and Figure 51, the blue lines represent how much were the original peak 

demands of each month. The green lines represent how much are the new peak demands after 

applying the battery system. In the graph, the green lines are on top of the blue lines. Therefore, 

the visible blue sections are the shaved peaks. 

For the whole UBC Campus, the capacities of all three batteries were set at 37.5 MWh. The 

interest rate for the financing of the batteries is 2.5%. The financial performance and analysis of 

the three battery types are shown in Table 4. 

Table 4: Battery system financial analysis 

Battery Type 
Battery Life 

Span (year) 
Battery Cost ($) 

Annual Cost Reduction 

from Peak Shaving ($) 

Net Present 

Value ($) 

Flow Battery 31 $ 18,750,000 $ 101,678                

Lithium-ion 

Battery 
3.5 $ 15,000,000 $ 139,526                 

Sodium Sulfur 

Battery 
8 $ 18,750,000 $ 137,484                

 

Although each battery has indeed reduced the hydro cost by shaving off the peak demand, the 

final results show that they all have negative net present value. Therefore, they are not 

financially feasible.  
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3.3.2.4 Delay South Transmission Line’s Upgrading Process with Battery System 

The south transmission line’s emergency line capacity (protection setting) is 55.39 MVA [18]. 

Each year UBC’s electrical power demand grows at a rate of 109%. As a result, the south 

transmission line will exceed its emergency capacity by the year 2013, which is shown in Table 5. 

Table 5: Expected peak demands from 2010 to 2013 

Year 
UBC's Electricity Peak Demand of Each Month (MVA) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2010 40.70 39.17 40.65 41.86 44.18 40.16 40.34 41.71 42.36 37.13 37.54 40.12 

2011 44.36 42.70 44.31 45.63 48.16 43.77 43.97 45.46 46.17 40.47 40.92 43.73 

2012 48.36 46.54 48.30 49.73 52.49 47.71 47.93 49.56 50.33 44.11 44.60 47.67 

2013 52.71 50.73 52.64 54.21 57.21 52.01 52.24 54.02 54.86 48.08 48.62 51.96 

 

The cost of upgrading existing south transmission line is about 50 Million Canadian Dollars. If 

the upgrading process could be delayed for one year, the 50 Million initial capitals would be 

available for investing in elsewhere. The purpose of this test is to investigate whether it is 

financially feasible to use the battery system to delay the upgrading process. 

In this test, the battery capacity is re-set to 68.75 MWh, so that it will reduce the highest peak 

demand below 55.39 MVA. The threshold of peak shaving is also dynamically set to shave off 

30% of peak for each month, which will take advantage of the full capacity of the battery system. 

The test results of three battery types are shown in Figure 52, Figure 53, Figure 54, Figure 55, Figure 

56 and Figure 57. 
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Figure 52: UBC consumption with and without flow battery’s dynamic peak shaving 

 

Figure 53: Dynamic peak shaving by using flow battery 
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Figure 54: UBC consumption with and without lithium-ion battery's dynamic peak shaving 

 

Figure 55: Dynamic peak shaving by using lithium-ion battery 
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Figure 56: UBC consumption with and without NaS battery's dynamic peak shaving 

 

Figure 57: Dynamic peak shaving by using NaS battery 
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In the simulation results, the new peak demands of the year 2013 are reduced significantly and 

all stay below 55.39 MVA as shown in Table 6.  

Table 6: New peak demands after dynamic peak shaving 

Battery Type 
UBC's Electricity Peak Demand of Each Month (MVA) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Flow  49.03 48.52 48.95 50.41 55.06 51.57 48.46 50.23 51.01 44.71 45.21 48.32 

Lithium-ion 48.28 48.08 48.21 49.65 52.21 51.57 47.8 49.47 50.24 44.03 44.53 47.59 

Sodium Sulfur 48.33 48.11 48.26 49.7 52.59 51.57 47.84 49.52 50.29 44.08 44.57 47.64 

 

The life span, total capital cost and annual cost reduction from each battery type are shown in 

Table 7. 

Table 7: Battery dynamic peak shaving  

Battery Type 
Battery Life Span 

(year) 
Battery Cost ($) 

Annual Cost 

Reduction from Peak 

Shaving ($) 

Flow Battery 24 $ 34,375,000 $ 190,660 

Lithium-ion 

Battery 
3 $ 27,500,000 $ 272,203 

Sodium Sulfur 

Battery 
6 $ 34,375,000 $ 265,739  

 

Since the upgrading process of the south transmission line could be delayed, if 50 million initial 

capitals were deposited in the bank with a 3% interest rate, some interest could be gained each 

year. The total capital cost of the battery system is paid by an annuity loan with 9% growth 

factor and 5% interest rate, because in each year, an additional 9% of battery has to be purchased 

to keep up with the campus power demand growth.    
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Table 8: Financial analysis of flow battery's dynamic peak shaving 

year  

Flow Battery 
Annual Interest 

Gain from Bank 

(million $) 

Total Annual 

Gain (million $) 
Annual Capital 

Cost (million $) 

Annual Cost 

Reduction from Peak 

Shaving (million $) 

1 -1.43 0.19 1.50 0.26 

2 -1.64 0.21 3.05 1.62 

3 -1.87 0.23 4.64 2.99 

4 -2.14 0.25 6.28 4.38 

5 -2.45 0.27 7.96 5.78 

6 -2.81 0.29 9.70 7.19 

7 -3.21 0.32 11.49 8.60 

8 -3.68 0.35 13.34 10.01 

9 -4.21 0.38 15.24 11.41 

10 -4.82 0.41 17.20 12.79 

11 -5.51 0.45 19.21 14.15 

12 -6.31 0.49 21.29 15.47 

13 -7.22 0.53 23.43 16.74 

14 -8.26 0.58 25.63 17.95 

15 -9.46 0.63 27.90 19.08 

16 -10.82 0.69 30.24 20.11 

17 -12.39 0.75 32.64 21.01 

18 -14.18 0.82 35.12 21.77 

19 -16.22 0.90 37.68 22.35 

20 -18.57 0.98 40.31 22.71 

21 -21.25 1.06 43.01 22.83 

22 -24.32 1.16 45.81 22.64 

23 -27.84 1.27 48.68 22.11 

24 -31.86 1.38 51.64 21.16 

 

Table 9: Financial analysis of lithium-ion battery's dynamic peak shaving 

year  

Lithium-ion Battery 
Annual Interest 

Gain from Bank 

(million $) 

Total Annual 

Gain (million $) 
Annual Capital 

Cost (million $) 

Annual Cost 

Reduction from Peak 

Shaving (million $) 

1 -9.17 0.27 1.50 -7.40 

2 -10.49 0.29 3.05 -7.15 

3 -12.01 0.32 4.64 -7.05 
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Table 10: Financial analysis of NaS battery's dynamic peak shaving 

year  

NaS Battery 
Annual Interest 

Gain from Bank 

(million $) 

Total Annual Gain 

(million $) 
Annual Capital 

Cost (million $) 

Annual Cost 

Reduction from Peak 

Shaving (million $) 

1 -5.73 0.27 1.50 -3.96 

2 -6.56 0.29 3.05 -3.22 

3 -7.51 0.32 4.64 -2.55 

4 -8.59 0.34 6.28 -1.97 

5 -9.83 0.38 7.96 -1.49 

6 -11.25 0.41 9.70 -1.14 

 

The financial analysis results shown in Table 8, Table 9 and Table 10 indicate that the flow battery 

has successfully generated a positive financial gain in its 24 year life span. It proved that by 

employing the flow batteries, not only can the peak demands be reduced below emergency 

capacity, but also be financially feasible.  
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3.4 Simulation Conclusion 

The purpose of the four different test simulations was to test the key features of the financial 

production cell (FPC) model, and further explore the potential application of the FPC in various 

complex models. The results of the first test case demonstrate the capabilities of the FPC that are 

important for portraying the real life financial behavior. 

The second test case integrated the financial production cell with the UBC Living Lab model, 

which was a large scaled complex model. The results of the simulation proved that the model 

FPC was able to process large amount of dynamic data in real time.  

In the third test case, three independent battery models were tested with the FPC. Even though 

the final financial results did not favor the battery solution, they showed that the FPC is a good 

tool for project financial analysis. 

The forth test case investigates the possibilities of using battery system to delay upgrading the 

south transmission line. The results indicate that the project is both technically and financially 

feasible.  
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4 Conclusion and Future Work 

The Infrastructure Interdependencies Simulator (I2Sim) framework provides a sophisticated 

platform to explore the interdependencies among different infrastructures under disaster 

situation. However, in most of peace time, all the infrastructures are free from the damage caused 

by disasters. The interdependencies among them are mostly business and operational 

relationships. In order to simulate financial interdependencies and extend I2Sim’s capabilities, 

the Financial Production Cell (FPC) was developed in this thesis. 

The financial production cell was derived from the regular production cell; it comes with all the 

features in the regular production cell, and adds its own flavor. The new features include the 

capability of outputting accurate financial results and updating HRTs during real time 

simulation. Besides its internal operation features, the FPC is connected with several user 

interfaces, which provide the end users an intuitive experience when they interact with the I2Sim 

environment. 

The simulation results documented in this thesis provide solid evidence to prove the financial 

production cell’s capabilities and demonstrate the strength of the I2Sim simulation environment. 

Some other features of the FPC, which need to be improved in the future, have also been 

discovered during the simulation. These features are: 

 The financial production cell only reads the HRT table’s parameters when there is a 

change in the inputs, regardless of whether the HRT itself is updated or not. This could 

cause potential errors when the HRT table is updated, but the outputs are still being 

calculated based on an old HRT table, because the inputs are static and it do not trigger 

the FPC to read the new HRT table. 
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 The majority of the end users who use the financial production cell probably will not 

have sufficient knowledge about I2Sim. However, in the current stage of development, in 

order to set up the initial HRT tables, it is required that the end user manually input the 

FPC table content and base value.   

 The financial production cell physical mode still changes its color based on the input. 

This feature is inherited from the regular production cell’s physical mode, which 

indicates the physical condition of the cell. In the financial production cell, the physical 

condition does not exist. Therefore, the color code is meaningless in this case. 

The financial production cell has proved to be a valuable asset to the I2Sim tool-box family. 

With the future improvements, it will greatly enhance the I2sim environment.  
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Appendices 

 

Appendix A  Financial User Interface 

 

The complete Matlab code of the Financial User Interface is presented in this Appendix. 

 

function varargout = FinalEvaluate(varargin) 
% FINALEVALUATE M-file for FinalEvaluate.fig 
%      FINALEVALUATE, by itself, creates a new FINALEVALUATE or raises the 

existing 
%      singleton*. 
% 
%      H = FINALEVALUATE returns the handle to a new FINALEVALUATE or the 

handle to 
%      the existing singleton*. 
% 
%      FINALEVALUATE('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in FINALEVALUATE.M with the given input 

arguments. 
% 
%      FINALEVALUATE('Property','Value',...) creates a new FINALEVALUATE or 

raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before FinalEvaluate_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to FinalEvaluate_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help FinalEvaluate 

  
% Last Modified by GUIDE v2.5 08-Jun-2011 14:56:03 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @FinalEvaluate_OpeningFcn, ... 
                   'gui_OutputFcn',  @FinalEvaluate_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
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    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before FinalEvaluate is made visible. 
function FinalEvaluate_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to FinalEvaluate (see VARARGIN) 

  
% Choose default command line output for FinalEvaluate 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes FinalEvaluate wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = FinalEvaluate_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in NPV_pushbutton. 
function NPV_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to NPV_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% get the table data and discount rate 
tableData = get(handles.uitable1,'Data'); 
[num_Years,column] = size(tableData) 
discountRate = str2double(get(handles.discountRate_editText,'String')); 

  

  
% calculate NPV of individual case 
case1NPV = num2str(calculateNPV(tableData(:,1),discountRate)); 
case2NPV = num2str(calculateNPV(tableData(:,2),discountRate)); 
case3NPV = num2str(calculateNPV(tableData(:,3),discountRate)); 

  
% display the result on the GUI 
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set(handles.case1NPV_staticText,'String',case1NPV); 
set(handles.case2NPV_staticText,'String',case2NPV); 
set(handles.case3NPV_staticText,'String',case3NPV); 
guidata(hObject, handles); 

  
% plot the cash flow graph  
axes(handles.axes1); 

  
x = 1:num_Years; 
plot(x,tableData(:,1),'r',x,tableData(:,2),'g',x,tableData(:,3),'b'); 

  
%adds a title, x-axis description, and y-axis description 
title('Yearly Cashflow'); 
xlabel('Year'); 
ylabel('Cashflow'); 

  
% add legends 
legend('Case 1','Case 2','Case 3') 
guidata(hObject, handles); 

  
% plot NPV bar graph 
bargroup = [str2double(case1NPV); str2double(case2NPV); str2double(case3NPV)] 
axes(handles.axes2); 
bar(bargroup); 
guidata(hObject, handles); 

  

  
% d = tableData(2,3)+tableData(4,2) 
% --- Executes when entered data in editable cell(s) in uitable1. 
function uitable1_CellEditCallback(hObject, eventdata, handles) 
% hObject    handle to uitable1 (see GCBO) 
% eventdata  structure with the following fields (see UITABLE) 
%   Indices: row and column indices of the cell(s) edited 
%   PreviousData: previous data for the cell(s) edited 
%   EditData: string(s) entered by the user 
%   NewData: EditData or its converted form set on the Data property. Empty 

if Data was not changed 
%   Error: error string when failed to convert EditData to appropriate value 

for Data 
% handles    structure with handles and user data (see GUIDATA) 

  

  
% --- Executes when selected cell(s) is changed in uitable1. 
function uitable1_CellSelectionCallback(hObject, eventdata, handles) 
% hObject    handle to uitable1 (see GCBO) 
% eventdata  structure with the following fields (see UITABLE) 
%   Indices: row and column indices of the cell(s) currently selecteds 
% handles    structure with handles and user data (see GUIDATA) 

  

  

  
function Years_editText_Callback(hObject, eventdata, handles) 
% hObject    handle to Years_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Years_editText as text 
%        str2double(get(hObject,'String')) returns contents of Years_editText 

as a double 

  
%store the contents of input as a string. if the string 
%is not a number then input will be empty 
input = str2num(get(hObject,'String')); 

  
if (isempty(input)) 
     set(hObject,'String','0') 
end 
guidata(hObject, handles); 

  

  
% --- Executes during object creation, after setting all properties. 
function Years_editText_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Years_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% % --- Executes on button press in populateTable. 
% function populateYears_Callback(hObject, eventdata, handles) 
% % hObject    handle to populateTable (see GCBO) 
% % eventdata  reserved - to be defined in a future version of MATLAB 
% % handles    structure with handles and user data (see GUIDATA) 
%  
% % input number of years_edittext (rows) in the table 
% num_Years = str2num(get(handles.Years_editText,'String')) 
%  
% myData = zeros(num_Years, 3) 
% %now populate the table with the all zeros 
% set(handles.uitable1,'data',myData ); 

  

  

  
function discountRate_editText_Callback(hObject, eventdata, handles) 
% hObject    handle to discountRate_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of discountRate_editText as 

text 
%        str2double(get(hObject,'String')) returns contents of 

discountRate_editText as a double 
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%store the contents of input as a string. if the string 
%is not a number then input will be empty 
input = str2num(get(hObject,'String')); 

  
if (isempty(input)) 
     set(hObject,'String','0') 
end 
guidata(hObject, handles); 

  

  
% --- Executes during object creation, after setting all properties. 
function discountRate_editText_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to discountRate_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in loadfromFile_pushbutton. 
function loadfromFile_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to loadfromFile_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% load data from a .txt file 
fileData = load('cashFlow.txt') 

  
% input the data into uitable1 
set(handles.uitable1,'data',fileData); 

  

  

  
function loanpaymentPeriod_editText_Callback(hObject, eventdata, handles) 
% hObject    handle to loanpaymentPeriod_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of loanpaymentPeriod_editText 

as text 
%        str2double(get(hObject,'String')) returns contents of 

loanpaymentPeriod_editText as a double 
input = str2double(get(hObject,'String')); 

  
if (isempty(input)) 
     set(hObject,'String','0') 
end 
guidata(hObject, handles); 
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% --- Executes during object creation, after setting all properties. 
function loanpaymentPeriod_editText_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to loanpaymentPeriod_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in generateCashflow_pushbutton. 
function generateCashflow_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to generateCashflow_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% obtain initial capital cost, loan payment period annual maintenance cost, 
% annual operation cost, project life span and interest rate for payment 
% period 

  
% get initial capital cost 
% initialCapital = str2double(get(handles.initialCapital_editText,'string')) 
initialCapital = str2double(get_param('Case_4V2/Gas 

Boilers','InitCap'))+str2double(get_param('Case_4V2/Electric 

Boilers','InitCap'))+str2double(get_param('Case_4V2/Biomass 

Boilers','InitCap')) 

  
loanpaymentPeriod = 

str2double(get(handles.loanpaymentPeriod_editText,'string')) 

  
% get maintenance cost  
% maintenanceCost = str2double(get(handles.maintenanceCost_editText,'string')) 
maintenanceCost = str2double(get_param('Case_4V2/Gas 

Boilers','MantCost'))+str2double(get_param('Case_4V2/Electric 

Boilers','MantCost'))+str2double(get_param('Case_4V2/Biomass 

Boilers','MantCost')) 

  
% get operational cost 
% operationCost = str2double(get(handles.operationCost_editText,'string')) 
operationCost = str2double(get_param('Case_4V2/Gas 

Boilers','OperCost'))+str2double(get_param('Case_4V2/Electric 

Boilers','OperCost'))+str2double(get_param('Case_4V2/Biomass 

Boilers','OperCost')) 

  
num_Years = str2double(get(handles.Years_editText,'string')) 
loanpaymentInterestRate = 

str2double(get(handles.loanpaymentInterestRate_editText,'string')) 
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% calculate the annual ordinary general annuity for loan payment period 
annuity = initialCapital/((1-(1+loanpaymentInterestRate)^(-

1*loanpaymentPeriod))/loanpaymentInterestRate) 

  
% sum up all the annual costs without fuel cost 
% annualCashFlow = annuity + maintenanceCost + operationCost 

  
% populate the case years 
  caseTable = zeros(num_Years,1); 

  
% loading fuel cost and revenue 
load('Eleccost.mat') 
load('Biocost.mat') 
load('Gascost.mat') 
load('Revenue.mat') 

  

  
switch get(handles.case_popupmenu,'Value') 
    case 1 
        for i = 1:num_Years 
    if i <= loanpaymentPeriod 
        caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    else 
        caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    end 
        end 
        assignin('base','case1Temp',caseTable) 

         

         
    case 2 
        for i = 1:num_Years 
    if i <= loanpaymentPeriod 
        caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    else 
        caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    end 
        end 
        assignin('base','case2Temp',caseTable) 

         
    case 3 
        for i = 1:num_Years 
    if i <= loanpaymentPeriod 
        caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    else 
        caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue 
    end 
        end 
        assignin('base','case3Temp',caseTable) 
    otherwise 
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end 

  
% load data from a .txt file 
% load('manualCashFlow.mat') 

  
% input the data into uitable1 
casesTable = [evalin('base','case1Temp') evalin('base','case2Temp') 

evalin('base','case3Temp')] 

  
set(handles.uitable1,'data',casesTable); 

  
function loanpaymentInterestRate_editText_Callback(hObject, eventdata, 

handles) 
% hObject    handle to loanpaymentInterestRate_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of 

loanpaymentInterestRate_editText as text 
%        str2double(get(hObject,'String')) returns contents of 

loanpaymentInterestRate_editText as a double 
input = str2double(get(hObject,'String')); 

  
if (isempty(input)) 
     set(hObject,'String','0') 
end 
guidata(hObject, handles); 

  
% --- Executes during object creation, after setting all properties. 
function loanpaymentInterestRate_editText_CreateFcn(hObject, eventdata, 

handles) 
% hObject    handle to loanpaymentInterestRate_editText (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in case_popupmenu. 
function case_popupmenu_Callback(hObject, eventdata, handles) 
% hObject    handle to case_popupmenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = cellstr(get(hObject,'String')) returns case_popupmenu 

contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

case_popupmenu 
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% --- Executes during object creation, after setting all properties. 
function case_popupmenu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to case_popupmenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in populateTable. 
function populateTable_Callback(hObject, eventdata, handles) 
% hObject    handle to populateTable (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% setup three arrays to store case cashflow in the workspace 

  
case1Temp = zeros(str2double(get(handles.Years_editText,'string')),1) 
case2Temp = zeros(str2double(get(handles.Years_editText,'string')),1) 
case3Temp = zeros(str2double(get(handles.Years_editText,'string')),1) 
assignin('base','case1Temp',case1Temp) 
assignin('base','case2Temp',case2Temp) 
assignin('base','case3Temp',case3Temp) 
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Appendix B  Living Lab with Battery System 

 

In Figure 58, the detailed battery function schematic is illustrated. 

 

 

Figure 58: Battery function schematic 
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In Figure 59, the detailed battery system schematic is illustrated. 

 

 

Figure 59: Battery system schematic
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In Figure 60, the battery system financial model schematic is illustrated. 

 

 

 

Figure 60: Battery system financial model schematic 
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B.1     Battery Discharge Function Matlab Code 

This appendix contains the Matlab code of Battery Discharge function. 

function discharge(block) 
% Level-2 M file S-Function for times two demo. 
%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  
  setup(block); 
%endfunction 

  
function setup(block) 

   
  %% Register number of input and output ports 

   
  block.NumInputPorts  = 3; 
  block.NumOutputPorts = 2; 

  
  %% Setup functional port properties to dynamically 
  %% inherited. 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 

    
  % Allow multidimensional signals 
  block.AllowSignalsWithMoreThan2D = true; 

   
  block.InputPort(1).Dimensions        = 1; %Demand Power 
  block.InputPort(1).DatatypeID  = 0;  % double 
  block.InputPort(1).Complexity  = 'Real'; 
  block.InputPort(1).DirectFeedthrough = true;  

   
  block.InputPort(2).Dimensions        = 1; %Current Capacity 
  block.InputPort(2).DatatypeID  = 0;  % double 
  block.InputPort(2).Complexity  = 'Real'; 
  block.InputPort(2).DirectFeedthrough = true; 

   
  block.InputPort(3).Dimensions        = 1; %aging factor 
  block.InputPort(3).DatatypeID  = 0;  % double 
  block.InputPort(3).Complexity  = 'Real'; 
  block.InputPort(3).DirectFeedthrough = true; 

   
  block.OutputPort(1).Dimensions       = 1; %Output Power 
  block.OutputPort(1).DatatypeID  = 0; % double 
  block.OutputPort(1).Complexity  = 'Real'; 

   
  block.OutputPort(2).Dimensions       = 1; %New Current Capacity 
  block.OutputPort(2).DatatypeID  = 0; % double 
  block.OutputPort(2).Complexity  = 'Real';   

   

   
  % Register parameters 
  block.NumDialogPrms     = 0; 
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  %% Set block sample time to inherited 
  block.SampleTimes = [-1 0]; 

   
  %% Run accelerator on TLC 
  block.SetAccelRunOnTLC(true); 

   
  %% Register methods 
  block.RegBlockMethod('PostPropagationSetup',    @DoPostPropSetup); 
  block.RegBlockMethod('InitializeConditions',    @InitConditions); 
  block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);   
  %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims); 
  %block.RegBlockMethod('Terminate', @Terminate); 
  block.RegBlockMethod('Outputs', @Output); 
%endfunction 

  
function DoPostPropSetup(block) 

  
  %% Setup Dwork 
  block.NumDworks = 8; 

     
  block.Dwork(1).Name = 'Capacity'; %Battery Capacity 
  block.Dwork(1).Dimensions      = 1; 
  block.Dwork(1).DatatypeID      = 0; 
  block.Dwork(1).Complexity      = 'Real'; 
  block.Dwork(1).UsedAsDiscState = true; 

   
  block.Dwork(2).Name = 'turnPoint'; %The Point where battery discharge curve 

changes 
  block.Dwork(2).Dimensions      = 1; 
  block.Dwork(2).DatatypeID      = 0; 
  block.Dwork(2).Complexity      = 'Real'; 
  block.Dwork(2).UsedAsDiscState = true; 

  
  block.Dwork(3).Name = 'Demand';  %How much is power demand 
  block.Dwork(3).Dimensions      = 1; 
  block.Dwork(3).DatatypeID      = 0; 
  block.Dwork(3).Complexity      = 'Real'; 
  block.Dwork(3).UsedAsDiscState = true; 

   
  block.Dwork(4).Name = 'Voltage';  %Battery operating voltage 
  block.Dwork(4).Dimensions      = 1; 
  block.Dwork(4).DatatypeID      = 0; 
  block.Dwork(4).Complexity      = 'Real'; 
  block.Dwork(4).UsedAsDiscState = true; 

   
  block.Dwork(5).Name = 'eNominal'; %Energy stored in the Nominal region 
  block.Dwork(5).Dimensions      = 1; 
  block.Dwork(5).DatatypeID      = 0; 
  block.Dwork(5).Complexity      = 'Real'; 
  block.Dwork(5).UsedAsDiscState = true; 

   
  block.Dwork(6).Name = 'eExponential'; %Energy stored in the Exponetial 

region 
  block.Dwork(6).Dimensions      = 1; 
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  block.Dwork(6).DatatypeID      = 0; 
  block.Dwork(6).Complexity      = 'Real'; 
  block.Dwork(6).UsedAsDiscState = true; 

   
  block.Dwork(7).Name = 'vNominal'; %Nominal Voltage 
  block.Dwork(7).Dimensions      = 1; 
  block.Dwork(7).DatatypeID      = 0; 
  block.Dwork(7).Complexity      = 'Real'; 
  block.Dwork(7).UsedAsDiscState = true; 

   
  block.Dwork(8).Name = 'age'; %aging factor of the battery 
  block.Dwork(8).Dimensions      = 1; 
  block.Dwork(8).DatatypeID      = 0; 
  block.Dwork(8).Complexity      = 'Real'; 
  block.Dwork(8).UsedAsDiscState = true; 
%endfunction 

  
function InitConditions(block) 
%%  
%   block.Dwork(2).Data = 25; %turnPoint  
  block.Dwork(7).Data = 100; %constant voltage 
  block.Dwork(1).Data = 0; 

   
 %endfunction 

  

  

  
%endfunction 

  
function SetInputPortSamplingMode(block, idx, fd) 
  block.InputPort(idx).SamplingMode = fd; 
  for i=1:block.NumOutputPorts  
    block.OutputPort(i).SamplingMode = fd; 
  end 
%endfunction 

  
function Output(block) 

  
block.Dwork(1).Data = block.InputPort(2).Data; 
block.Dwork(3).Data = block.InputPort(1).Data; 
block.Dwork(8).Data = block.InputPort(3).Data; 

  
block.Dwork(2).Data = 25*block.Dwork(8).Data; %turnPoint  

  

  
if 0<= block.Dwork(1).Data && block.Dwork(1).Data<= block.Dwork(2).Data 

     
    block.Dwork(4).Data = block.Dwork(7).Data; 
    block.Dwork(5).Data = block.Dwork(1).Data*block.Dwork(4).Data; 
    block.Dwork(6).Data = 0; 
else 

     
    block.Dwork(4).Data = 5*(block.Dwork(1).Data)-25; 
    block.Dwork(5).Data = block.Dwork(2).Data*block.Dwork(7).Data; 
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    block.Dwork(6).Data = (block.Dwork(1).Data-

block.Dwork(2).Data)*block.Dwork(4).Data; 
end 

  
if block.Dwork(1).Data>block.Dwork(2).Data 
    if block.Dwork(3).Data*1<=block.Dwork(6).Data 
        block.OutputPort(1).Data = block.Dwork(3).Data; 
        block.OutputPort(2).Data = block.Dwork(1).Data-

(block.Dwork(3).Data*1/block.Dwork(4).Data); 
    else 
        if (block.Dwork(3).Data*1)<(block.Dwork(5).Data+block.Dwork(6).Data) 
            block.OutputPort(1).Data = block.Dwork(3).Data; 
            block.OutputPort(2).Data = block.Dwork(2).Data-

((block.Dwork(3).Data*1-block.Dwork(6).Data)/block.Dwork(7).Data); 
        else 
            block.OutputPort(1).Data = 

(block.Dwork(5).Data+block.Dwork(6).Data)/1; 
            block.OutputPort(2).Data = 0; 
        end 
    end 
else 
    if (block.Dwork(3).Data*1)<=(block.Dwork(5).Data+block.Dwork(6).Data) 
         block.OutputPort(1).Data = block.Dwork(3).Data; 
         block.OutputPort(2).Data = block.Dwork(1).Data-

(block.Dwork(3).Data*1/block.Dwork(7).Data); 
    else 
         block.OutputPort(1).Data = 

(block.Dwork(5).Data+block.Dwork(6).Data)/1; 
         block.OutputPort(2).Data = 0; 
    end 
end 
%endfunction 
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B.2     Battery Charge Function Matlab Code 

This appendix contains the Matlab code of Battery charge function. 

function charge(block) 
% Level-2 M file S-Function for times two demo. 
%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  
  setup(block); 
%endfunction 

  
function setup(block) 

   
  %% Register number of input and output ports 

   
  block.NumInputPorts  = 3; 
  block.NumOutputPorts = 2; 

  
  %% Setup functional port properties to dynamically 
  %% inherited. 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 

    
  % Allow multidimensional signals 
  block.AllowSignalsWithMoreThan2D = true; 

   
  block.InputPort(1).Dimensions        = 1; %Available Power 
  block.InputPort(1).DatatypeID  = 0;  % double 
  block.InputPort(1).Complexity  = 'Real'; 
  block.InputPort(1).DirectFeedthrough = true;  

   
  block.InputPort(2).Dimensions        = 1; %Current Capacity 
  block.InputPort(2).DatatypeID  = 0;  % double 
  block.InputPort(2).Complexity  = 'Real'; 
  block.InputPort(2).DirectFeedthrough = true; 

   
  block.InputPort(3).Dimensions        = 1; %aging factor 
  block.InputPort(3).DatatypeID  = 0;  % double 
  block.InputPort(3).Complexity  = 'Real'; 
  block.InputPort(3).DirectFeedthrough = true; 

   
  block.OutputPort(1).Dimensions       = 1; %Stored Power 
  block.OutputPort(1).DatatypeID  = 0; % double 
  block.OutputPort(1).Complexity  = 'Real'; 

   
  block.OutputPort(2).Dimensions       = 1; %New Current Capacity 
  block.OutputPort(2).DatatypeID  = 0; % double 
  block.OutputPort(2).Complexity  = 'Real';   

   

   
  % Register parameters 
  block.NumDialogPrms     = 0; 
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  %% Set block sample time to inherited 
  block.SampleTimes = [-1 0]; 

   
  %% Run accelerator on TLC 
  block.SetAccelRunOnTLC(true); 

   
  %% Register methods 
  block.RegBlockMethod('PostPropagationSetup',    @DoPostPropSetup); 
  block.RegBlockMethod('InitializeConditions',    @InitConditions); 
  block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);   
  %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims); 
  %block.RegBlockMethod('Terminate', @Terminate); 
  block.RegBlockMethod('Outputs', @Output); 
%endfunction 

  
function DoPostPropSetup(block) 

  
  %% Setup Dwork 
  block.NumDworks = 10; 

     
  block.Dwork(1).Name = 'Capacity'; %Battery Capacity 
  block.Dwork(1).Dimensions      = 1; 
  block.Dwork(1).DatatypeID      = 0; 
  block.Dwork(1).Complexity      = 'Real'; 
  block.Dwork(1).UsedAsDiscState = true; 

   
  block.Dwork(2).Name = 'turnPoint'; %The Point where battery charge curve 

changes 
  block.Dwork(2).Dimensions      = 1; 
  block.Dwork(2).DatatypeID      = 0; 
  block.Dwork(2).Complexity      = 'Real'; 
  block.Dwork(2).UsedAsDiscState = true; 

  
  block.Dwork(3).Name = 'available';  %How much power is available 
  block.Dwork(3).Dimensions      = 1; 
  block.Dwork(3).DatatypeID      = 0; 
  block.Dwork(3).Complexity      = 'Real'; 
  block.Dwork(3).UsedAsDiscState = true; 

   
  block.Dwork(4).Name = 'Voltage';  %Battery operating voltage 
  block.Dwork(4).Dimensions      = 1; 
  block.Dwork(4).DatatypeID      = 0; 
  block.Dwork(4).Complexity      = 'Real'; 
  block.Dwork(4).UsedAsDiscState = true; 

   
  block.Dwork(5).Name = 'eNominal'; %Energy stored in the Nominal region 
  block.Dwork(5).Dimensions      = 1; 
  block.Dwork(5).DatatypeID      = 0; 
  block.Dwork(5).Complexity      = 'Real'; 
  block.Dwork(5).UsedAsDiscState = true; 

   
  block.Dwork(6).Name = 'eExponential'; %Energy stored in the Exponetial 

region 
  block.Dwork(6).Dimensions      = 1; 
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  block.Dwork(6).DatatypeID      = 0; 
  block.Dwork(6).Complexity      = 'Real'; 
  block.Dwork(6).UsedAsDiscState = true; 

   
  block.Dwork(7).Name = 'vNominal'; %Nominal Voltage 
  block.Dwork(7).Dimensions      = 1; 
  block.Dwork(7).DatatypeID      = 0; 
  block.Dwork(7).Complexity      = 'Real'; 
  block.Dwork(7).UsedAsDiscState = true; 

   
  block.Dwork(8).Name = 'energyRoom'; %how much storage room is left 
  block.Dwork(8).Dimensions      = 1; 
  block.Dwork(8).DatatypeID      = 0; 
  block.Dwork(8).Complexity      = 'Real'; 
  block.Dwork(8).UsedAsDiscState = true; 

   
  block.Dwork(9).Name = 'capacityMax'; %Max capacity 
  block.Dwork(9).Dimensions      = 1; 
  block.Dwork(9).DatatypeID      = 0; 
  block.Dwork(9).Complexity      = 'Real'; 
  block.Dwork(9).UsedAsDiscState = true; 

   
  block.Dwork(10).Name = 'age'; %aging factor of the battery 
  block.Dwork(10).Dimensions      = 1; 
  block.Dwork(10).DatatypeID      = 0; 
  block.Dwork(10).Complexity      = 'Real'; 
  block.Dwork(10).UsedAsDiscState = true; 

   

  
%endfunction 

  
function InitConditions(block) 
%%  
%   block.Dwork(2).Data = 25; %turnPoint  
  block.Dwork(7).Data = 100; %constant voltage 

   
%   block.Dwork(9).Data = 30; %battery capacity 
  block.Dwork(1).Data = 0; 
 %endfunction 

  

  

  
%endfunction 

  
function SetInputPortSamplingMode(block, idx, fd) 
  block.InputPort(idx).SamplingMode = fd; 
  for i=1:block.NumOutputPorts  
    block.OutputPort(i).SamplingMode = fd; 
  end 
%endfunction 

  
function Output(block) 

  
block.Dwork(1).Data = block.InputPort(2).Data; 
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block.Dwork(3).Data = block.InputPort(1).Data; 
block.Dwork(10).Data = block.InputPort(3).Data; 

  
block.Dwork(2).Data = 25*block.Dwork(10).Data; %turnPoint 
block.Dwork(9).Data = 30*block.Dwork(10).Data; %battery capacity 

  
if 0<= block.Dwork(1).Data && block.Dwork(1).Data <= block.Dwork(2).Data 

     
    block.Dwork(4).Data = block.Dwork(7).Data; 
    block.Dwork(5).Data = block.Dwork(1).Data*block.Dwork(4).Data; 
    block.Dwork(6).Data = 0; 
else 

     
    block.Dwork(4).Data = 5*(block.Dwork(1).Data)-25; 
    block.Dwork(5).Data = block.Dwork(2).Data*block.Dwork(7).Data; 
    block.Dwork(6).Data = (block.Dwork(1).Data-

block.Dwork(2).Data)*block.Dwork(4).Data; 
end 

  
block.Dwork(8).Data = 

block.Dwork(7).Data*block.Dwork(2).Data+(5*(block.Dwork(9).Data)-

25)*(block.Dwork(9).Data-block.Dwork(2).Data)-block.Dwork(5).Data-

block.Dwork(6).Data; 

  
if block.Dwork(1).Data > block.Dwork(2).Data 

     
    if (block.Dwork(3).Data*1) < block.Dwork(8).Data 
        block.OutputPort(2).Data = block.Dwork(1).Data+(-

1*block.Dwork(4).Data+sqrt(block.Dwork(4).Data*block.Dwork(4).Data+4*5*block.

Dwork(3).Data*1))/(2*5); 
        block.OutputPort(1).Data = block.Dwork(3).Data; 
    else 
        block.OutputPort(2).Data = block.Dwork(9).Data; 
        block.OutputPort(1).Data = block.Dwork(8).Data/1; 
    end 
else 
    if block.Dwork(3).Data*1 <= (block.Dwork(7).Data*block.Dwork(2).Data-

block.Dwork(5).Data) 
        block.OutputPort(2).Data = 

block.Dwork(1).Data+(block.Dwork(3).Data/block.Dwork(7).Data); 
        block.OutputPort(1).Data = block.Dwork(3).Data; 
    else 
        if (block.Dwork(3).Data*1) < block.Dwork(8).Data 
            block.OutputPort(2).Data = block.Dwork(2).Data+(-

1*block.Dwork(4).Data+sqrt(block.Dwork(4).Data*block.Dwork(4).Data+4*5*(block

.Dwork(3).Data*1-block.Dwork(7).Data*(block.Dwork(2).Data-

block.Dwork(1).Data))))/(2*5); 
            block.OutputPort(1).Data = block.Dwork(3).Data; 
        else 
            block.OutputPort(2).Data = block.Dwork(9).Data; 
            block.OutputPort(1).Data = block.Dwork(8).Data/1; 
        end 
    end 
end 
%endfunction 
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 B.3     Battery Controller Function Matlab Code 

This appendix contains the Matlab code of Battery controller function. 

function controller(block) 
% Level-2 M file S-Function for times two demo. 
%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  
  setup(block); 
%endfunction 

  
function setup(block) 

   
  %% Register number of input and output ports 

   
  block.NumInputPorts  = 5; 
  block.NumOutputPorts = 5; 

  
  %% Setup functional port properties to dynamically 
  %% inherited. 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 

    
  % Allow multidimensional signals 
  block.AllowSignalsWithMoreThan2D = true; 

   
  block.InputPort(1).Dimensions        = 1; %Demand Power 
  block.InputPort(1).DatatypeID  = 0;  % double 
  block.InputPort(1).Complexity  = 'Real'; 
  block.InputPort(1).DirectFeedthrough = true;  

   
  block.InputPort(2).Dimensions        = 1; %Current Capacity 
  block.InputPort(2).DatatypeID  = 0;  % double 
  block.InputPort(2).Complexity  = 'Real'; 
  block.InputPort(2).DirectFeedthrough = true; 

   
  block.InputPort(3).Dimensions        = 1; %Demand Power 
  block.InputPort(3).DatatypeID  = 0;  % double 
  block.InputPort(3).Complexity  = 'Real'; 
  block.InputPort(3).DirectFeedthrough = true;  

   
  block.InputPort(4).Dimensions        = 1; %Demand Power 
  block.InputPort(4).DatatypeID  = 0;  % double 
  block.InputPort(4).Complexity  = 'Real'; 
  block.InputPort(4).DirectFeedthrough = true;  

   
  block.InputPort(5).Dimensions        = 1; %Aging factor 
  block.InputPort(5).DatatypeID  = 0;  % double 
  block.InputPort(5).Complexity  = 'Real'; 
  block.InputPort(5).DirectFeedthrough = true; 

   
  block.OutputPort(1).Dimensions       = 1; %Output Power 
  block.OutputPort(1).DatatypeID  = 0; % double 
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  block.OutputPort(1).Complexity  = 'Real'; 

   
  block.OutputPort(2).Dimensions       = 1; %New Current Capacity 
  block.OutputPort(2).DatatypeID  = 0; % double 
  block.OutputPort(2).Complexity  = 'Real';   

   
  block.OutputPort(3).Dimensions       = 1; %Output Power 
  block.OutputPort(3).DatatypeID  = 0; % double 
  block.OutputPort(3).Complexity  = 'Real'; 

   
  block.OutputPort(4).Dimensions       = 1; %Output Power 
  block.OutputPort(4).DatatypeID  = 0; % double 
  block.OutputPort(4).Complexity  = 'Real'; 

   
  block.OutputPort(5).Dimensions       = 1; %Aging factor 
  block.OutputPort(5).DatatypeID  = 0; % double 
  block.OutputPort(5).Complexity  = 'Real'; 

   
  % Register parameters 
  block.NumDialogPrms     = 0; 

    
  %% Set block sample time to inherited 
  block.SampleTimes = [-1 0]; 

   
  %% Run accelerator on TLC 
  block.SetAccelRunOnTLC(true); 

   
  %% Register methods 
  block.RegBlockMethod('PostPropagationSetup',    @DoPostPropSetup); 
  block.RegBlockMethod('InitializeConditions',    @InitConditions); 
  block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);   
  %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims); 
  %block.RegBlockMethod('Terminate', @Terminate); 
  block.RegBlockMethod('Outputs', @Output); 
%endfunction 

  
function DoPostPropSetup(block) 

  
  %% Setup Dwork 
  block.NumDworks = 1;    

   

   
  block.Dwork(1).Name = 'age'; %Aging Factor 
  block.Dwork(1).Dimensions      = 1; 
  block.Dwork(1).DatatypeID      = 0; 
  block.Dwork(1).Complexity      = 'Real'; 
  block.Dwork(1).UsedAsDiscState = true; 

  

   

   
%endfunction 

  
function InitConditions(block) 
%%  
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  %block.Dwork(1).Data = 30; %turnPoint  
 block.OutputPort(3).Data=5; 
 block.OutputPort(4).Data=5; 
%  block.Dwork(1).Data=30 %battery max capacity; 

  

   

   
 %endfunction 

  

  

  
%endfunction 

  
function SetInputPortSamplingMode(block, idx, fd) 
  block.InputPort(idx).SamplingMode = fd; 
  for i=1:block.NumOutputPorts  
    block.OutputPort(i).SamplingMode = fd; 
  end 
%endfunction 

  
function Output(block) 

  
block.OutputPort(1).Data=block.InputPort(1).Data; 
block.OutputPort(2).Data=block.InputPort(2).Data; 
block.OutputPort(5).Data=block.InputPort(5).Data; 
block.Dwork(1).Data=block.InputPort(5).Data; 

  

  
if block.InputPort(1).Data>0 
    if (block.Dwork(1).Data*30)>block.InputPort(3).Data 
 block.OutputPort(3).Data=block.InputPort(3).Data; 
 block.OutputPort(4).Data=block.InputPort(3).Data; 
    else 
        block.OutputPort(3).Data=block.Dwork(1).Data*30; 
        block.OutputPort(4).Data=block.Dwork(1).Data*30; 
    end 
else 
    if (block.Dwork(1).Data*30)>block.InputPort(4).Data 
 block.OutputPort(3).Data=block.InputPort(4).Data; 
 block.OutputPort(4).Data=block.InputPort(4).Data; 
    else 
        block.OutputPort(3).Data=block.Dwork(1).Data*30; 
        block.OutputPort(4).Data=block.Dwork(1).Data*30; 
    end 
end 

  

     
%      

  
%endfunction 

  

 

 


