
I2SIM FINANCIAL MODEL AND ITS APPLICATION

 TO UBC’S LIVING LAB PROJECTS

by

Rui Ren

B.A.Sc., The University of British Columbia, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

 THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2011

©Rui Ren, 2011

ii

Abstract

The Infrastructure Interdependencies Simulator (I2Sim) enables the user to explore the

relationship and interdependencies among different infrastructures. Based on the same I2Sim

ontology, and derived from a regular production cell, the I2Sim financial production cell (FPC)

is designed to simulate and present the financial behaviors.

UBC’s living lab model and living lab battery model provided an ideal testing ground for the

I2Sim environment and its new financial production cell. In the living lab model, two of the

financial production cells were integrated into the system, and provided with real time dynamic

inputs. As expected, the financial production cell outputs correctly the cost of purchased

resources as well as the ongoing real time costs. The results of this simulation successfully

demonstrated the strength of the I2Sim environment and the capabilities of the financial

production cell.

In the living lab battery model simulation, two cases were tested. In the first test case, with

demand peak-shaving as the main objective, an entire battery system model was developed from

the ground up and finally integrated with the financial production cell. The simulation provided

accurate financial analysis towards three different battery types: Flow batteries, lithium-ion

batteries and sodium sulfur batteries. Although the results suggest that the battery system is not

the most economical electric energy storage system at the moment, it again proved that the

financial production cell is a suitable tool for many different business analysis cases. In the

second case, delaying south transmission line’s upgrading process became the main objective;

the test results showed that the flow battery was the best choice. The project was proven to be

both technically and financially feasible.

iii

Table of Contents

Abstract .. ii

Table of Contents ... iii

List of Tables ... v

List of Figures ... vi

Acknowledgements .. ix

1 Introduction ... 1

1.1 Background .. 1

1.2 I2Sim .. 1

1.2.1 I2Sim Ontology ... 2

1.2.2 2010 Vancouver Winter Olympics I2Sim Model ... 4

2 UBC’s Living Lab Project .. 6

2.1 UBC Hot-Water Based Heating System Project .. 7

2.1.1 Nexterra Biomass Plant... 8

2.1.2 Natural Gas Boilers ... 9

2.1.3 Electric Boilers.. 9

2.1.4 Heat Pumps ... 11

2.2 UBC’s Living Lab I2Sim Model Overview ... 13

2.3 Selector ... 15

2.4 Controller ... 16

2.5 Production Cell ... 16

2.5.1 Physical Mode (PM) ... 17

2.5.2 Resource Mode (RM) ... 18

2.6 Financial Production Cell ... 21

2.6.1 Physical Mode (PM) of the Financial Production Cell ... 22

2.6.2 Resource Mode (RM) of the Financial Production Cell ... 23

2.7 Financial User Interface ... 30

3 Simulation Results and Discussion ... 34

3.1 Financial Production Cell Testing .. 34

iv

3.2 Living Lab Model Simulation .. 40

3.2.1 Living Lab Model with Fluctuating Resource Price ... 42

3.3 Living Lab Battery System .. 47

3.3.1 General Battery Model .. 47

3.3.2 Simulation Results .. 51

3.3.2.1 Flow Battery .. 52

3.3.2.2 Lithium-ion Battery ... 54

3.3.2.3 Sodium Sulfur (NaS) Battery .. 56

3.3.2.4 Delay South Transmission Line’s Upgrading Process with Battery System... 59

3.4 Simulation Conclusion ... 66

4 Conclusion and Future Work ... 67

Bibliography .. 69

Appendices ... 72

Appendix A Financial User Interface... 72

Appendix B Living Lab with Battery System .. 81

B.1 Battery Discharge Function Matlab Code ... 84

B.2 Battery Charge Function Matlab Code ... 88

B.3 Battery Controller Function Matlab Code .. 92

v

List of Tables

Table 1: Relationship among resource, total cost and per unit price .. 24

Table 2: Testing HRT ... 35

Table 3: Financial production cell testing table .. 36

Table 4: Battery system financial analysis.. 58

Table 5: Expected peak demands from 2010 to 2013 ... 59

Table 6: New peak demands after dynamic peak shaving .. 63

Table 7: Battery dynamic peak shaving .. 63

Table 8: Financial analysis of flow battery's dynamic peak shaving .. 64

Table 9: Financial analysis of lithium-ion battery's dynamic peak shaving 64

Table 10: Financial analysis of NaS battery's dynamic peak shaving .. 65

vi

List of Figures

Figure 1: Vancouver winter Olympics I2Sim model [5] .. 5

Figure 2: UBC Vancouver campus [8] ... 6

Figure 3: Nexterra advanced biomass heat and power system [13] .. 8

Figure 4: BC Hydro transmission line to UBC campus [18] .. 10

Figure 5: Natural gas and off-peak electricity used for campus heat production as well as extra

electricity usage [19] ... 11

Figure 6: Basic heat pump principle [23] ... 12

Figure 7: I2Sim living lab model overview .. 14

Figure 8: UBC living lab I2Sim model constraints flowchart .. 15

Figure 9: Production cell overview ... 16

Figure 10: Production cell steam plant sample ... 17

Figure 11: Production cell physical modes ... 18

Figure 12: Production cell HRT .. 19

Figure 13: Production cell resource mode colour code .. 20

Figure 14: Financial production cell overview ... 21

Figure 15: The relationship between total cost and amount of resource 24

Figure 16: The relationship between per unit price and amount of resource 25

Figure 17: Financial production cell HRT flow chart ... 26

Figure 18: Financial production cell HRT .. 29

Figure 19: Annual cash flow and NPV user interface .. 31

Figure 20: Initial condition of the financial production cell ... 32

Figure 21: Financial production cell HRT behavior testing model .. 34

Figure 22: Financial production cell behavior test results .. 37

Figure 23. Financial production cell HRT dynamic update test model .. 38

Figure 24: Resource vs. price.. 38

Figure 25: Expected resource cost .. 39

Figure 26: Resource cost from FPC test simulation ... 39

Figure 27: Obtaining a base year of data from the real data ... 41

vii

Figure 28: UBC living lab simulation model with financial production cell 43

Figure 29: Static price of electricity and natural gas .. 44

Figure 30: Dynamic price of electricity and natural gas ... 44

Figure 31: Electricity consumption cost with static price ... 45

Figure 32: Electricity consumption cost with dynamic price ... 45

Figure 33: Natural gas consumption cost with static price ... 46

Figure 34: Natural gas consumption cost with dynamic price .. 46

Figure 35: Battery unit .. 48

Figure 36: Battery functions ... 49

Figure 37: Typical battery discharge characteristics [30] ... 50

Figure 38: Typical battery charge characteristics [30] ... 50

Figure 39: Battery model discharge and charge characteristic ... 51

Figure 40: Flow battery diagram [31] ... 52

Figure 41: Flow battery discharge and charge characteristic .. 52

Figure 42: UBC electricity consumption with and without flow battery...................................... 53

Figure 43: UBC peak demand with and without flow battery .. 53

Figure 44: Lithium-ion battery diagram [33] .. 54

Figure 45: Lithium-ion battery discharge and charge characteristic .. 54

Figure 46: UBC electricity consumption with and without lithium-ion battery 55

Figure 47: UBC peak with and without lithium-ion battery ... 55

Figure 48: Sodium-sulfur (Nas) battery diagram [36] .. 56

Figure 49: Sodium sulfur battery discharge and charge characteristic ... 56

Figure 50: UBC consumption with and without sodium sulfur battery .. 57

Figure 51: UBC peak with and without sodium sulfur battery ... 57

Figure 52: UBC consumption with and without flow battery’s dynamic peak shaving 60

Figure 53: Dynamic peak shaving by using flow battery ... 60

Figure 54: UBC consumption with and without lithium-ion battery's dynamic peak shaving 61

Figure 55: Dynamic peak shaving by using lithium-ion battery... 61

Figure 56: UBC consumption with and without NaS battery's dynamic peak shaving 62

Figure 57: Dynamic peak shaving by using NaS battery .. 62

viii

Figure 58: Battery function schematic .. 81

Figure 59: Battery system schematic .. 82

Figure 60: Battery system financial model schematic .. 83

ix

Acknowledgements

I would like to thank my supervisor, Professor Dr. Jose R. Marti, for his supervision and

guidance during my graduate study years. Dr. Marti has not only broadened my knowledge

towards the power engineering field, but introduced the multi-infrastructure interdependencies

simulation concept to me as well. I also like to thank Dr. K.D. Srivastava for his help and

valuable suggestions during our weekly team meetings over several projects with other

undergraduate students.

I would like to thank Cesar Lopez for helping me to implement the Financial Production Cell.

During the past two years, I spent many memorable hours with the people who study and work in

the Electric Power and Energy System (EPES) lab, they are: Dr. Paul Lusina, Mohammed Talat

Khouj, Marco Gonzalez-Rojas, Dr. Hafiz Abdur Rahman, Alexander De Maeseneer, Dr. Tom De

Rybel, Mehrdad Chapariha, Hamid Atighechi, Amir Rasuli, Sina Chiniforoosh, Mehmet Sucu

and others. We had a good time together.

I am also feeling very grateful for the help from Kristina Welch. She has spent many of her

valuable hours to help me out with the financial modeling questions, as well as the important

data that she provided us for the living lab project.

I appreciate Brook Dermody, Mohammed Sami Rahyyem, Amit Mahal and Sunil Bhati, as well

as the students from material engineering department for their excellent work on the UBC Living

Lab battery testing project.

Finally, I appreciate UBC’s Living Lab committee for supporting the living lab project we were

working on.

x

DEDICATED TO MY PARENTS

1

1 Introduction

The subject of this thesis is I2Sim’s financial model and its application to UBC’s living lab

project. The financial model introduces a new toolbox module called Financial Production Cell.

With this new member added to the I2Sim toolbox family, it enhances I2Sim’s capability of

modeling financial infrastructures.

1.1 Background

With the advance of new technologies and increase of living standards, modern society has

become more and more dependent on resources like electricity, clean water, heat, natural gas, etc.

In order to deliver these resources to every corner of society, the system of critical infrastructures

(power grid, water network, natural gas pipes) has become the artery system of our everyday life.

On top of these, the health system, the telecommunications network and the traffic system are

also vital. Although each system has its very own emergency response procedures, most of time

when a disaster strikes, all these systems fail to collaborate with each other and do not respond as

effectively as planned. The reason is that even though every single system has its private data, it

is not willing to share it, which makes it very difficult to monitor and control the entire disaster

response operation.

1.2 I2Sim

The idea behind the Infrastructures Interdependencies Simulation (I2Sim) is to build a dynamic

multi-system simulator to test all infrastructure interactions under disaster situations. During

these tests, system weaknesses are exposed, which will provide first responders good knowledge

2

of how to plan ahead. I2Sim can also be used to explore critical interdependencies between

particular systems, which can provide valuable reference during the emergency time [1].

1.2.1 I2Sim Ontology

Different infrastructures have their own characteristics and natures, which makes it difficult to

model many infrastructures with one principle. I2Sim defines a fundamental ontology that is

very general and can be applied to many different processes [2].

The basic elements of the I2Sim ontology include: token, cell and channel.

 Token represents the unit that travels through the I2Sim model. It can be consumed as

input (electricity, natural gas, water, etc.) or produced as output (steam, merchandise,

etc.).

 Cell is a production unit that receives inputs and produces outputs (a steam plant, a

factory, etc.)

 Channel carries and transports the tokens in I2Sim models (electric transmission line,

water pipe, transit system, etc.)

In I2Sim modeling, cells and channels are the basic infrastructure elements [3]. One individual

cell can represent one physical building or a group of buildings, which have the same

functionality. For instance, a hospital or three steam boilers can be modeled by using only one

cell. If a building or an infrastructure possesses multiple functionalities, it is too complex to be

modeled by one cell. In this case, multiple cells and channels can be grouped together to forge a

sub-system to fulfill the purpose.

3

Based on the ontology, the existing I2Sim toolbox includes the following units [4]:

 Production Cell Storage

 Delay Channel Aggregator

 Distributor Source

 Modifier Cell Control Panel

 Visualization Panel Probe

Production Cell Produces output tokens based on input resources. The input and output

relationship is governed by the Human Readable Table (HRT).

Storage stores tokens and releases them at a user-defined rate.

Delay Channel delays token travel speed from one block to another.

Aggregator aggregates tokens of the same kind into a single input.

Distributor distributes an output token to multiple other cells.

Source creates tokens, which are the inputs for other cells.

Modifier Cell applies weight factors to inputs and relates the result to a known curve to produce

output.

Control Panel is the user interface that controls the simulation.

Visualization Panel shows the simulation results to users.

Probe collects data, which are plotted in the visualization panel.

4

In this thesis, a new module called Financial Production Cell will be introduced. The details of

the Financial Production Cell will be discussed later in Chapter 2.6.

In the I2Sim ontology, the model contains multiple layers. The components on the same layer

share the same functionality and server the same purpose. For example, all the components in the

physical layer represent the physical conditions of the model; all the components on the

communication layer are responsible for the communications network; and the decision layer

gives commands to the other layers. The financial production cell introduced in this thesis

belongs to the financial layer, and it simulates financial activities.

1.2.2 2010 Vancouver Winter Olympics I2Sim Model

One recent example of I2Sim application is the 2010 Winter Olympics Simulator. In this

simulator, the Olympic Venues and critical buildings (BC Place, GM Place, Vancouver General

Hospital, St. Paul’s Hospital, etc.) were modeled using the I2Sim environment; Figure 1 shows

the entire model in detail. Several testing conditions were applied to the model, and by analyzing

the simulation results, the vulnerabilities of the system as well as the interdependencies between

them were discovered [5].

5

Figure 1: Vancouver winter Olympics I2Sim model [5]

6

2 UBC’s Living Lab Project

With the growing concern of green house gas (GHG) emission, climate change and the menace

of global warming, the province of British Columbia is committed to participate in aggressive

GHG reduction. The goal is to reduce 33% of GHG emission by the year 2020, and 80% by the

year 2025. As the top university in BC, UBC takes a role as international leader in developing

and demonstrating energy savings and clean technology initiatives [6], which focus on

environmentally sustainable, energy self-sufficient and carbon emission free initiatives.

Located on Point Grey of the west coast of Canada, UBC’s Vancouver campus has a gorgeous

ocean view and more than 400 hectares in size. The beauty of the campus and the reputation of

the University (UBC is consistently ranked in the top 40 universities in the world) has attracted

37,000 undergraduate and 9,000 graduate students to come to study in the Vancouver campus [7].

In order to provide a comfortable academic and research environment, UBC offers housing

services to its students, faculty and staff. In the year 2010, UBC had 15,500 residents, and by the

year 2025, the population is expected to reach 28,100 [6].

Figure 2: UBC Vancouver campus [8]

7

The large population requires many services. Thus, UBC hospital, police station, north and south

electric substations and steam house are all located on campus. This self-sufficient environment

makes UBC the perfect testing ground to conduct urban sustainability experiments. Under these

circumstances, UBC’s living lab project was born, one of its main objective is to reduce campus

greenhouse gas emissions from the year 2007 level to 33% by year 2015, 67% by year 2020, and

100% by year 2050 [6].

Most GHG emissions created on campus are caused by natural gas usage. A large amount of

natural gas is consumed for campus’ heating. Currently, the operational heat source in UBC’s

Vancouver campus is an aged steam plant. Natural gas is the primary fuel to create the steam.

This plant suffers not only from large GHG emissions, but also from energy inefficiency [9]. If

UBC is planning to reach its GHG emission reduction goal by the year 2050, natural gas usage

must be greatly reduced.

2.1 UBC Hot-Water Based Heating System Project

In 2011, a new $85-million hot water based heating system will be developed to replace the

aging steam heating system. This project will take five years to implement and will cover more

than 100 buildings around the campus. Compared with the current steam based heating system,

which operates at 190 , the new hot-water based heating system will operate at an average 80 .

This noticeable difference in operating temperature can reduce the campus energy usage by 24%

and the GHG emission by 22% [10].

At the moment the planned source of energy for the new hot-water heating system is based on a

biomass boiler and a natural gas boiler [11]. However, an argument can be made for the use of

clean electricity to feed electrical boilers instead of using gas boilers. A comprehensive study

8

analyzing this option is made on a companion Master Thesis by César López [12], where the

emphasis is on GHG reduction while maintaining fuel costs at similar levels as with gas boilers.

2.1.1 Nexterra Biomass Plant

The Nexterra biomass boiler is a Combined Heat and Power (CHP) boiler. It is fueled with urban

wood waste and converted into clean burning, combustible synthetic gas. The synthetic gas is

then fed into a high-efficiency GE internal combustion engine to generate 2 MW of electricity,

and 4 MW of heat for the campus heating system [13].

Figure 3: Nexterra advanced biomass heat and power system [13]

The Nexterra biomass boiler is the first of its kind in North America. It has two operating modes:

the thermal mode, which generates heat for the UBC campus; and the co-generation mode (heat

and electric power), which generates heat as well as electricity. After this system starts full

operation, it will provide in co-generation mode 12% of the campus’ average heat and up to 4.5%

of the peak electric power; and in thermal mode 25% of the campus heat [14].

9

The biomass fuel used by Nexterra mostly comes from urban wood waste. In addition, it is

considered as carbon neutral [15] [16]. Introducing this technology to UBC will reduce GHG

emission by up to 9,000 tons each year [14].

2.1.2 Natural Gas Boilers

The primary boilers used in the old steam plant are natural gas based, and were built between

1922 and 1966. These aged boilers will be decommissioned in 2017 [10]. In this thesis, electrical

boilers are also considered to replace natural gas boilers, so that the GHG emission can be

reduced to a minimum. The electric boiler use off-peak electricity. In addition heat pumps that

use waste heat from triumf’s particle accelerator are considered.

2.1.3 Electric Boilers

UBC Vancouver campus is powered by two electric substations: The North Substation (UNY)

and The South Substation (UNS) [17]. These substations are supplied by BC Hydro through two

power transmission circuits: the north transmission line, which has a capacity of 62 MVA, and

the south transmission line, which has the capacity of 42 MVA. The transmission system is

designed so that either of these two lines can supply the entire load of the North substation, in

case the other one is out of service [18]. Figure 4 shows the connections between the two

transmission lines and the two substations.

10

Figure 4: BC Hydro transmission line to UBC campus [18]

The idea of using electric boilers is to take advantage of the off-peak electricity available to the

UBC campus. Since electricity in BC is about 90% of hydro, it is considered a clean source of

energy. In Figure 5, the blue section is the heat demand that can be supplied by off-peak

electricity, the red section is the remaining heat demand supplied by natural gas, and the green

11

section is the extra electricity usage. The graph shows that the off-peak electricity can supply

most of the UBC campus heat demand, and sometimes still has a large portion of unused

capacity.

Figure 5: Natural gas and off-peak electricity used for campus heat production as well as extra electricity usage [19]

2.1.4 Heat Pumps

Located on UBC campus, TRIUMF is a world-class subatomic physics research laboratory [20].

Within its facilities, there is the world’s largest cyclotron and it requires 18,500 Amps current to

power its magnets [21]. The waste heat from the cyclotron could be re-used to heat hot-water for

campus heating. One way of cycling the heat is through heat pumps.

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

2
8

-F
e

b

2
-M

ar

5
-M

ar

9
-M

ar

1
2

-M
ar

1
6

-M
ar

1
9

-M
ar

2
2

-M
ar

2
6

-M
ar

2
9

-M
ar

2
-A

p
r

5
-A

p
r

9
-A

p
r

1
2

-A
p

r

1
5

-A
p

r

1
9

-A
p

r

2
2

-A
p

r

2
6

-A
p

r

2
9

-A
p

r

2
-M

ay

6
-M

ay

9
-M

ay

1
3

-M
ay

1
6

-M
ay

2
0

-M
ay

2
3

-M
ay

2
6

-M
ay

3
0

-M
ay

2
-J

u
n

6
-J

u
n

9
-J

u
n

1
2

-J
u

n

1
6

-J
u

n

1
9

-J
u

n

2
3

-J
u

n

2
6

-J
u

n

3
0

-J
u

n

3
-J

u
l

6
-J

u
l

1
0

-J
u

l

1
3

-J
u

l

1
7

-J
u

l

2
0

-J
u

l

2
3

-J
u

l

2
7

-J
u

l

3
0

-J
u

l

3
-A

u
g

6
-A

u
g

1
0

-A
u

g

1
3

-A
u

g

1
6

-A
u

g

2
0

-A
u

g

2
3

-A
u

g

2
7

-A
u

g

3
0

-A
u

g

P
o

w
e

r
[k

W
]

Smart Grid Energy Source Plan for UBC Steam Plant:
(Example for 02/28/2008 till 09/01/2008 Load Data)

Free Electrical Capacity - Used for Steam Supplemental Power from Natural Gas Free Electrical Capacity - Unused

12

A Heat pump extracts heat from one source and transfers it to another place. Common examples

of heat pumps are refrigerators and air conditioners [22].

Figure 6: Basic heat pump principle [23]

The efficiency of a heat pump is measured in term of coefficient of performance (COP). It is

calculated as:

The higher the COP, the more efficient the heat pump is [22].

13

2.2 UBC’s Living Lab I2Sim Model Overview

The primary objective of UBC’s Living Lab is to minimize Green House Gas (GHG) emissions

and optimize the financial outcome. As one of the leading modeling tools for multi-system

interdependencies, I2Sim is a very good tool for UBC living lab modeling. The existing toolbox

is sufficient for many applications, but does not have a financial layer. The new financial

production cell (FPC) developed in this thesis is intended to bridge this gap. The details of the

financial production cell are discussed in section 2.6 of this chapter.

The living lab I2Sim model discussed in this thesis focuses on the campus heating system. In this

case, it is the planned hot-water heating system. Currently, this system is planned to use natural

gas and biomass as its main energy sources. Electricity and heat pumps from UBC Triumf

particle accelerator are options that could be employed as potential energy sources. In this

simulation model, all of these energy sources were integrated together as shown in Figure 7. The

purpose of this is to find an optimal solution and use it as a reference for future projects.

In the next several chapters, the key I2Sim components for the living lab model will be discussed

in detail. They are:

 Selector Controller

 Production Cell Financial Production Cell

 Financial User Interface

Since the financial production cell is the centre focus of this thesis, it will be described explicitly

in section 2.6.

14

Figure 7: I2Sim living lab model overview

15

2.3 Selector

In order to reduce the GHG emission, the selector chooses the energy source that generates the

least GHG. The flow chart shown in Figure 8 demonstrates the selection process within the

selector component. Biomass is chosen first because it is considered as a base plant.

Is biomass energy supply

enough for the heating

energy demand

Compare biomass energy

supply with energy demand

Only biomass supply is

needed for campus heating

Yes

Excessive energy demand

will be supplied by other

sources

No

Is off peak electricity

enough for the excessive

energy demand

Excessive energy demand

will be supplied by natural

gas and off peak electricity

Excessive energy demand

will be supplied by off peak

electricity

Yes No

Done !

Done !Done !

Figure 8: UBC living lab I2Sim model constraints flowchart

16

2.4 Controller

The Controller in the living lab model controls the electricity distribution between campus

electrical usage and campus heat usage. The Controller has two main tasks:

 Find the peak electricity usage during each month.

 Control the distributor to send electricity to both the UBC campus existing electrical

system and the proposed electrical boiler.

2.5 Production Cell

The name of production cell is based on the functionality of the cell, which is producing output

tokens with input resources [4]. By design a production cell can have several inputs, but it can

only have one output.

Inputs

Output

Production Cell

Figure 9: Production cell overview

17

Production cells can model many different facilities; one example is a steam plant. The steam

plant needs multiple available resources to maintain its functionality. These resources will

include natural gas for its gas boilers, electricity for its electrical boilers, and last but not least,

water to generate the steam.

Natural Gas

Steam

Steam Plant

Water

Electricity

Figure 10: Production cell steam plant sample

2.5.1 Physical Mode (PM)

In I2Sim, a regular production cell has a physical mode (PM) and a resource mode (RM). The

physical mode represents the physical condition of the entity it is modeling, and it also limits the

maximum resource mode level [5]. For example, when the steam station is at its peak condition,

everything is working perfectly; the steam output can reach its 100% capacity if all the resources

are available. However, if the steam station is damaged and its physical condition is reduced to

75%, no matter how much resource it receives, the steam output cannot exceed more than 75%

of its full capacity.

18

There are five different colour codes associates with five different physical mode conditions,

which are shown in the Figure 11.

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

100% 100% 100% 100%

75% 75% 75% 75%

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

75% 75% 75% 75%

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

50% 50% 50% 50%

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

25% 25% 25% 25%

0% 0% 0% 0%

Physical Mode

Output Inputs

Steam Natural Gas Electricity Water

0% 0% 0% 0%

76% - 100%

51% - 75%

26% - 50%

1% - 25%

0%

Figure 11: Production cell physical modes

2.5.2 Resource Mode (RM)

The resource mode (RM) indicates the availabilities of different resources. In each physical

mode, the relationship of output and inputs, which also reflects the resource mode, is determined

by the Human Readable Table (HRT). The HRT expresses the outputs as a set of non-linear

functions: in terms of inputs [24]. The Human Readable Table

(HRT) contains multiple rows and columns. The rows represent different resource conditions,

19

and the columns represent output and inputs. The first column is always the output and the rest

are inputs.

In order to produce the required output, the inputs have to meet the minimal requirement. For

example, as shown in the following table, if 100 units of steam need to be produced, the cell

needs 5000 units of natural gas, 3000 units of electricity, and 6000 units of water. However, if

only 5000 units of natural gas, 800 units of electricity, and 5000 units of water are provided, only

25 units of steam will be produced, because the electricity, in this case, is the limiting factor.

Figure 12: Production cell HRT

The resource mode also employs the principle of colour coding, Figure 13 shows that the status of

both the physical mode and resource mode are visible to the user. They are changing in real time

simulation based on the cell condition. They give user a visual feedback of what is happening

during the simulation.

20

PM

RM

RM

PM

RM

PM

RM

PM PM

RM

Figure 13: Production cell resource mode colour code

21

2.6 Financial Production Cell

The Financial Production Cell (FPC) is derived from a regular production cell, so they share the

same basic ontology and design philosophy. Both types of production cells have a physical mode

and resource mode. However, depending on the model itself, the regular production cell usually

has two or more inputs. The financial production cell, on the other hand, only has two inputs: the

available resource, and the available money that is allocated to the cell.

Figure 14: Financial production cell overview

The financial production cell focuses on the financial aspect of the model. It simulates the

commodity trading process of resources, and this process is more of a virtual concept than a

physical infrastructure. For instance, the purchasing of electricity is settled with a contract

agreement. This process does not involve a physical building. Therefore, the physical mode (PM)

22

of the financial production cell does not represent the physical condition; neither will it suffer

physical damage.

The resource mode of the financial production cell governs the relationship between demand and

supply. The detail of the PM and RM regarding a financial production cell is discussed in the

next section.

2.6.1 Physical Mode (PM) of the Financial Production Cell

The physical mode (PM) in the financial production cell has a similar look as the regular

production cell. However, it represents a different concept. The differences between physical

modes in the financial production cell and regular production cells are:

 The PM in the regular production cell represents the physical condition of the

infrastructure, while the PM in the financial production cell indicates the cost of the

resource.

 The PM in the regular production cell limits the maximum RM level, but the PM in the

financial production cell always stays at the maximum RM level.

The idea of employing the concept of physical mode (PM) is to apply the same ontology through

the entire I2Sim toolbox, which minimizes the complexity of the toolbox. On a higher level point

of view, this approach greatly simplifies the complexity of the real-world case into manageable

simulated system [1].

The physical mode in the financial production cells provides a frame to hold resource cost tables,

which is the HRT. When the physical mode changes, the resource cost table is replaced by a new

one. In real life trading cases, the prices of different resources change all the time. Therefore, the

resource cost table needs to be updated continuously in real time during the simulation. In the

23

model, this is by accessing the HRT directly during the simulation. In chapter 3.1, this feature

was fully tested and verified.

2.6.2 Resource Mode (RM) of the Financial Production Cell

The core structure of the resource mode is the human readable table (HRT); it defines the

purchasing behavior of the financial production cell. There are three columns in the HRT. The

entities in the each column are:

 First column (Y): purchased resource based on the available resource and money needed.

 Second column (): the available resource at a particular price.

 Third column (): the corresponding cost for the available resource () on the same

row.

On each row, the relationship between available resource () and cost () is a non-linear curve.

The reason is that the more resource is purchased, the larger the cost will be. However, per unit

price wise, the larger the amount of resource is purchased, the cheaper the per-unit price will be.

Therefore, the total cost is increasing with the growth of purchasing, but slope of the curve is

decreasing. This is consistent with real world cases. The example in Table 1 is plotted in Figure 15

and Figure 16. It illustrates that this non-linear relationship has a logarithmic characteristic.

24

Table 1: Relationship among resource, total cost and per unit price

Amount of Resource Total Cost Per Unit Price

100 20000 200

50 15000 300

20 10000 500

10 6000 600

5 4000 800

1 1000 1000

Figure 15: The relationship between total cost and amount of resource

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

To
ta

l C
o

st

Amount of Resource

Total Cost vs. Amount of Resource

25

Figure 16: The relationship between per unit price and amount of resource

When the two inputs (available resource and available money) are fed into the financial

production cell, the HRT automatically launches a search sequence. This sequence starts

searching from the column first and then moves to the column. The purpose of this search

is to locate and identify which input is the limiting factor. The flowchart in Figure 17 shows how

the search is performed. The allocated money in the flow chart indicates the available money that

is allocated to the financial production cell.

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

P
e

r
U

n
it

 P
ri

ce

Amount of Resource

Per Unit Price vs. Amount of Resource

26

Search limiting factor in HRT from

left column to right column

Is available resource the

limiting factor ?

 all allocated money will be spent

No Yes

Case 1

Compare the allocated money

with the total cost of available

resource

Is allocated money more than the

total cost of available resource ?

all allocated money will be spent
Resource is the limiting factor,

and all available resource will

be purchased

NoYes

Case 3

Case 2

Is allocated money on the same

row with available resource ?

Check which row in HRT does the

allocated money belong

Resource is the limiting factor,

and all available resource will

be purchased

Case 4

Yes No

Figure 17: Financial production cell HRT flow chart

27

In the flowchart, among all possible combinations, four general cases can be defined. In each

case, the amount of purchased resource and spent money are calculated as follows:

 Case 1: Available resource and available money belong to different rows in the HRT, and

available money is the limiting factor.

 (all allocated money will be spent)

 Case 2: Available resource and available money belong to different rows in the HRT, and

the availability of the resource is the limiting factor.

 (all the available resource will be

purchased)

28

 Case 3: Available resource and available money belong to the same row in the HRT, and

the availability of the resource is the limiting factor.

 (all the available resource will be

purchased)

 Case 4: Available resource and available money belong to the same row in the HRT, and

the available money is the limiting factor.

 (all allocated money will be spent)

The output of the financial production cell is the purchased resource. In a regular production cell,

once the limiting factor is identified, no matter the value of the input, the output of the

29

production cell will be determined by the output row in HRT, which is illustrated in Figure 12.

However, in the financial production cell, the outputs are calculated instead of being controlled

by the HRT row.

Figure 18: Financial production cell HRT

Figure 18 shows a sample case of how the financial production cell HRT produces output when

the limiting factor is found and it is above the HRT row (the red row). In this case, the output is

calculated based on the formula in one of the four previous cases.

Although, according to I2Sim ontology, there is only one output from a financial production cell,

which is the purchased resource, the amount of spent money is also needed by many other

applications. For instance, the financial user interface in next chapter will need this information

to calculate the Net Present Value (NPV). One way to obtain this value is to use a Matlab

command get_param. It provides a direct access to this parameter in computer memory. The

behavior of FPC’s HRT was tested in chapter 3.1.

30

2.7 Financial User Interface

I2Sim and Simulink are powerful mathematical tools to create and simulate complex real time

models, but not all users are experts in programming. Therefore, a clear user interface is required.

During the period of creating such interface, many similar programs or toolboxes were studied;

for example, the EnergyPLAN toolbox [25]. The financial user interface provides the user a

friendly environment to post-process the financial data generated from the model.

The user interface block implemented is a Matlab GUI function. It consists of two parts; the first

part is a “.fig” picture file. This picture file defines layout, frame work and function buttons of

the interface. The second part is “.m” Matlab program file. It implements the functions of all the

buttons and displays in the interface.

The annual cash flow and the NPV user interfaces calculate and display the annual cash flow of

the model according to the life-time of the project. Then it computes the NPV based on an

appropriate interest rate. Figure 19 provides a look of the interface.

31

Figure 19: Annual cash flow and NPV user interface

The financial interface in Figure 19 contains two major parts: Cash Flow calculation and Net

Present Value (NPV) calculation.

In the cash flow part, it obtains the annual cash flow information from the living lab model and

displays this information on the cash flow table. The user has full control of the table content,

which can be added, deleted or modified.

The cash flow of the project in each year consists of:

 Annual annuity of the initial capital cost

32

 Annual total maintenance cost

 Annual total operation cost

 Annual total fuel cost

 Annual revenue

In the I2Sim model, each production cell represents a physical structure (E.g. a hospital, an

electrical substation or a water station). The initial capital cost, annual total maintenance cost and

annual total operation cost of that structure are directly input by the user as attributes.

Figure 20: Initial condition of the financial production cell

33

When a facility is built, the initial capital cost is paid by a loan broken down into several annual

annuity payments. The loan payback period and the loan interest rate could be different from the

life of the facility and from the inflation interest rate; therefore, they have to be specified. The

annual annuity of the initial capital cost is calculated as [26]:

Where is the interest rate for the payment period, and is the number of payment periods.

The annual cash flow is then calculated as:

In step two, the NPV (net present value) is calculated by an additional function calculateNPV.m

and plotted on the bottom left of the interface.

In this case, the NPV (Net Present Value) of the project is calculated as [26]:

Where is the cash flow at time , and is the lifetime of the investment.

The “calculateNPV.m” file is an additional function added onto the financial user interface; its

content can be easily modified at a later time, which provides the end user great flexibility to

apply a more sophisticated method or function in the future.

34

3 Simulation Results and Discussion

This chapter focuses on the application of the financial production cell (FPC) and the simulation

of various living lab models. A simple test case is first conducted on a single FPC alone, so that

its functionality and features can be verified. Later, three living lab models are simulated and

tested.

3.1 Financial Production Cell Testing

In this section, two main features were examined: the HRT behavior and the capability of

updating HRTs during real time simulation. The first test model is shown in Figure 21 and

includes one financial production cell, two inputs and one output probe. The purpose of this

testing is to verify that the HRT’s actual output matches the expected (calculated by hand)

outputs.

Figure 21: Financial production cell HRT behavior testing model

35

The parameters for the test HRT are assigned as in Table 2. They are chosen to simplify the

testing.

Table 2: Testing HRT

Output Resource Cost

10000 10000 10000

1000 1000 2000

100 100 300

10 10 40

1 1 5

The test data in Table 3 covers all four different cases mentioned in section 2.6.2. The expected

output column is highlighted in green.

36

Table 3: Financial production cell testing table

Test Data

Input Data Output Data

Available

Resource

Available

Money

Purchased

Resource Money Spent

1 5 1000 5 25

2 100 100 25 100

3 200 5000 200 600

4 5000 200 50 200

5 20000 1000 333 1000

6 300 100000 300 900

7 100 10000 100 300

8 1000 25 5 25

9 900 1900 633 1900

10 90 1000 90 360

11 1200 8000 1200 2400

12 600 5000 600 1800

13 50 1000 50 200

37

Figure 22: Financial production cell behavior test results

Each test case listed in Table 3 runs 10 steps during the simulation. In the end, the test results are

displayed in Figure 22 and are consistent with the expected outputs listed in Table 3. The second

test model is shown in Figure 23. The objective of this simulation is to prove that the HRT can be

updated in real time during the simulation. The inputs of the simulation are shown in Figure 24;

both available resource and available money were changed through time. The expected output in

Figure 25 is the product of the resource and its corresponding price at the time.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

Time Step [steps]

P
u
rc

h
a
s
e
d
 R

e
s
o
u
rc

e
 [

k
w

h
]

 (I2Sim Probe)

38

Figure 23. Financial production cell HRT dynamic update test model

Figure 24: Resource vs. price

trigger out

price

trigger out

Resource

priceChanger

Level-2 M-file

S-Function

I2Sim Probe2

I2Sim Probe1

I2Sim Probe

I2Sim Control Panel I2Sim
Visualization Panel1

I2Sim
Visualization Panel

<--PM:

Base:
1000000000000.0tokens

Resource

Cost

Output

limit

PM:--

RM:--

FProduction Cell

costReceiver

Electricity Cost

0 10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

Time [hours]

R
e
s
o
u
rc

e
 [

k
w

]
&

 P
ri
c
e
 [

$
/k

w
h
]

Resource (I2Sim Probe)

Price (I2Sim Probe2)

39

Figure 25: Expected resource cost

Figure 26: Resource cost from FPC test simulation

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

6

Time [hours]

C
o
s
t

[$
]

Cost (I2Sim Probe1)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

6

Time [hours]

C
o
s
t

[$
]

cost (I2Sim Probe2)

40

It can be observed that the simulation results match perfectly the expected results, which verifies

the second major feature of the FPC: the capability of updating the HRT in real time during the

simulation.

3.2 Living Lab Model Simulation

The data used for the UBC living lab simulation was UBC’s electricity yearly usage data and

UBC’s steam plant yearly energy consumption data. The electricity usage data is from May 7
th

2007 to January 1
st
 2010; the steam data is from April 20

th
 2005 to August 15

th
 2007, and from

February 28
th

 2008 to September 1
st
 2008. In order to set up a base year for testing, a complete

year’s data is required. However, the overlapping periods of two sets of data are from May 7
th

2007 to August 15 2007 and from February 28
th

 2008 to September 1
st
 2008, and neither of them

is sufficient for a full base year.

To complete a full base year, it was observed that the average steam consumption during years

2007 and 2008 are similar. Taking advantage of this condition, part of the year 2007 steam

consumption data was extrapolated and then filled into 2008 gap, with the remaining data from

2008, so that a complete year of steam demand data was obtained. The procedure of this setup is

shown in Figure 27.

41

Figure 27: Obtaining a base year of data from the real data

The derived year 2008 data serves as a base year; the later years’ data are derived from this data

set by applying a projected growth factor.

Then in the following years, the projected heat demand is calculated as:

42

•

•

•

And so on

3.2.1 Living Lab Model with Fluctuating Resource Price

The financial production cells were integrated into the living lab model as shown in Figure 28.

The primary objective of the simulation is to demonstrate that the financial production cell is

able to dynamically re-assign the resource price and calculate the corresponding cost in a

complex system during the simulation. A static price curve and a dynamic price curve for

Electricity and Natural gas are displayed in Figure 29 and Figure 30, respectively the cost

comparisons of each resource are illustrated in Figure 31, Figure 32, Figure 33 and Figure 34.

43

Figure 28: UBC living lab simulation model with financial production cell

44

Figure 29: Static price of electricity and natural gas

Figure 30: Dynamic price of electricity and natural gas

0 1000 2000 3000 4000 5000 6000 7000 8000
0.025

0.03

0.035

0.04

Time [hours]

P
ri
c
e
 [

$
/k

w
h
]

Electricity Price (I2Sim Probe1)

Natural Gas Price (I2Sim Probe3)

0 1000 2000 3000 4000 5000 6000 7000 8000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time [hours]

P
ri
c
e
 [

$
/k

w
h
]

Electricity Price (I2Sim Probe1)

Natural Gas Price (I2Sim Probe3)

45

Figure 31: Electricity consumption cost with static price

Figure 32: Electricity consumption cost with dynamic price

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

Time [hours]

C
o
s
t

[$
]

Electricity Cost (I2Sim Probe)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Time [hours]

C
o
s
t

[$
]

Electricity Cost (I2Sim Probe)

46

Figure 33: Natural gas consumption cost with static price

Figure 34: Natural gas consumption cost with dynamic price

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

Time [hours]

C
o
s
t

[$
]

Natural Gas Cost (I2Sim Probe2)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time [hours]

C
o
s
t

[$
]

Natural Gas Cost (I2Sim Probe2)

47

Compared with the static price, the cost of both electricity and natural gas with dynamic price

adjustment changed drastically. This was caused by the fluctuation of price between electricity

and natural gas shown in Figure 30. The price and cost of the resources were handled by the HRT

in the financial production cell. The process of updating prices was achieved by dynamically

updating the HRT table and base value during the simulation. The results of this simulation

fulfilled the initial goal of the testing, which provided solid evidence that the financial

production cell is capable of handling dynamic data.

3.3 Living Lab Battery System

The UBC campus consumes large amount of electricity due to its dense population and various

research facilities. UBC’s hydro bill includes two parts: the energy used and the energy demand

[27]. The energy use charge is the energy consumption cost, which is based on how much

electrical energy has been consumed; the energy demand charge is the peak demand cost, which

is based on the highest peak demand of the month. On the BC Hydro bill for the energy demand

charge corresponds to 30% of the total cost. The objective of this simulation is to test whether

battery storage could be used to shave the peak and be financially feasible compared with the

batteries capital cost.

3.3.1 General Battery Model

The general battery model represents the common battery behavior, it discharges electricity

when it is needed and charges electricity when it is available. A battery age factor is also added

to the model in order to make it more realistic. Figure 35 shows the overview of the model. And

48

Figure 36 shows the relationship among three function blocks: controller, discharge and charge.

The Inputs and outputs of the model are:

 Power demand: the amount of electric power needed from the battery.

 Power available: the amount of electric power available to charge the battery.

 Battery age factor: how well the battery is preserved since the initial stage (e.g. 0.8 means

the battery can only be charged up to 80% of its initial maximum capacity.)

 Power output: the amount of electric power drained from the battery.

 Power stored: the amount of electric power stored in the battery.

 Battery capacity: the level of battery charged capacity (e.g. fully charged or 60% charged)

Power Demand

Power Available

Battery Age

Factor

Power Output

Power Stored

Battery Capacity

Battery Unit

Figure 35: Battery unit

49

Power Demand

Power Available

for charging

Battery Age

Power Demand

Battery Capacity

Battery Capacity

Power Available

for charging

Battery Age

Battery Age

Power Output

Power Stored

Controller

Discharge

Charge

Figure 36: Battery functions

The battery charge and discharge share similar characteristic curves. The curves contain two

major areas: nominal area and exponential area [28]. In the nominal area, the battery charge and

discharge occur at a constant nominal voltage, which depends on the battery type; while in the

exponential area, the battery’s operating voltage varies between nominal voltage and maximum

voltage [29]. A typical battery discharge characteristic is shown in Figure 37, and a typical battery

charge characteristic is shown in Figure 38.

Battery efficiency includes both charge efficiency and discharge efficiency. In the battery model,

they are controlled by efficiency module.

50

Figure 37: Typical battery discharge characteristics [30]

Figure 38: Typical battery charge characteristics [30]

In order to design a simple but sufficient battery model in I2Sim, the battery characteristic curves

shown in Figure 37 and Figure 38 are represented by two areas: nominal area and exponential area,

which is shown in Figure 39.

51

Figure 39: Battery model discharge and charge characteristic

3.3.2 Simulation Results

Three different battery types were simulated and tested. They are: Flow Battery, Lithium-ion

Battery and Sodium Sulfur Battery. The test data, including battery discharge and charge

characteristics, total energy capacity and battery costs were provided by students from the

Materials Engineering Department. The electricity consumption data used in this simulation is

the same consumption data used in the previous living lab model simulation. The peak-shaving

threshold was initially set at 38MW, which means that when UBC’s campus electricity demand

is beyond 38MW, the battery system will step in and deliver the power as much as it is able to;

when the electricity demand is below 38MW, BC Hydro will supply UBC’s campus demand,

and in the mean time, the battery system will recharge itself for the next power demand period.

52

3.3.2.1 Flow Battery

The flow battery stores electro-active materials externally and circulates these reactants through

an electro-chemical cell which converts the chemical energy directly into electric energy [31]

[32].

Figure 40: Flow battery diagram [31]

Figure 41: Flow battery discharge and charge characteristic

53

Figure 42: UBC electricity consumption with and without flow battery

Figure 43: UBC peak demand with and without flow battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

54

3.3.2.2 Lithium-ion Battery

The lithium-ion battery is one of the most widely used batteries in current new applications. In

this type of battery, lithium ions travel from negative to positive during discharge, and vice-versa

during charge [33].

Figure 44: Lithium-ion battery diagram [33]

Figure 45: Lithium-ion battery discharge and charge characteristic

55

Figure 46: UBC electricity consumption with and without lithium-ion battery

Figure 47: UBC peak with and without lithium-ion battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

56

3.3.2.3 Sodium Sulfur (NaS) Battery

The Sodium Sulfur (NaS) Battery has liquid sulfur at the positive terminal and liquid sodium at

the negative terminal. The active materials are separated by a solid beta alumina ceramic

electrolyte [34] [35].

Figure 48: Sodium-sulfur (Nas) battery diagram [36]

Figure 49: Sodium sulfur battery discharge and charge characteristic

57

Figure 50: UBC consumption with and without sodium sulfur battery

Figure 51: UBC peak with and without sodium sulfur battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

58

The Simulation results presented in Figure 42, Figure 46 and Figure 50 are the electricity

consumption comparison of three battery models. The blue curve shows how much BC Hydro

electricity is originally needed to supply the UBC campus. The green curve shows that after

employing the battery system, how much electricity is still needed from BC Hydro to supply the

campus load. In most of the period, the battery system was capable of shaving off the peak

demand. However, in the time line around 3000 hours, the battery system reached its full

capacity. Therefore, BC Hydro had to take over and supply that period.

In Figure 43, Figure 47 and Figure 51, the blue lines represent how much were the original peak

demands of each month. The green lines represent how much are the new peak demands after

applying the battery system. In the graph, the green lines are on top of the blue lines. Therefore,

the visible blue sections are the shaved peaks.

For the whole UBC Campus, the capacities of all three batteries were set at 37.5 MWh. The

interest rate for the financing of the batteries is 2.5%. The financial performance and analysis of

the three battery types are shown in Table 4.

Table 4: Battery system financial analysis

Battery Type
Battery Life

Span (year)
Battery Cost ($)

Annual Cost Reduction

from Peak Shaving ($)

Net Present

Value ($)

Flow Battery 31 $ 18,750,000 $ 101,678

Lithium-ion

Battery
3.5 $ 15,000,000 $ 139,526

Sodium Sulfur

Battery
8 $ 18,750,000 $ 137,484

Although each battery has indeed reduced the hydro cost by shaving off the peak demand, the

final results show that they all have negative net present value. Therefore, they are not

financially feasible.

59

3.3.2.4 Delay South Transmission Line’s Upgrading Process with Battery System

The south transmission line’s emergency line capacity (protection setting) is 55.39 MVA [18].

Each year UBC’s electrical power demand grows at a rate of 109%. As a result, the south

transmission line will exceed its emergency capacity by the year 2013, which is shown in Table 5.

Table 5: Expected peak demands from 2010 to 2013

Year
UBC's Electricity Peak Demand of Each Month (MVA)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010 40.70 39.17 40.65 41.86 44.18 40.16 40.34 41.71 42.36 37.13 37.54 40.12

2011 44.36 42.70 44.31 45.63 48.16 43.77 43.97 45.46 46.17 40.47 40.92 43.73

2012 48.36 46.54 48.30 49.73 52.49 47.71 47.93 49.56 50.33 44.11 44.60 47.67

2013 52.71 50.73 52.64 54.21 57.21 52.01 52.24 54.02 54.86 48.08 48.62 51.96

The cost of upgrading existing south transmission line is about 50 Million Canadian Dollars. If

the upgrading process could be delayed for one year, the 50 Million initial capitals would be

available for investing in elsewhere. The purpose of this test is to investigate whether it is

financially feasible to use the battery system to delay the upgrading process.

In this test, the battery capacity is re-set to 68.75 MWh, so that it will reduce the highest peak

demand below 55.39 MVA. The threshold of peak shaving is also dynamically set to shave off

30% of peak for each month, which will take advantage of the full capacity of the battery system.

The test results of three battery types are shown in Figure 52, Figure 53, Figure 54, Figure 55, Figure

56 and Figure 57.

60

Figure 52: UBC consumption with and without flow battery’s dynamic peak shaving

Figure 53: Dynamic peak shaving by using flow battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

61

Figure 54: UBC consumption with and without lithium-ion battery's dynamic peak shaving

Figure 55: Dynamic peak shaving by using lithium-ion battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

62

Figure 56: UBC consumption with and without NaS battery's dynamic peak shaving

Figure 57: Dynamic peak shaving by using NaS battery

0 1000 2000 3000 4000 5000 6000 7000 8000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original Hydro Usage (I2Sim Probe)

Peak Shaved BC Hydro Usage (I2Sim Probe1)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6
x 10

4

Time [hours]

D
e
m

a
n
d
 [

k
w

]

Original BC Hydro Peak (I2Sim Probe2)

New BC Hydro Peak (I2Sim Probe3)

63

In the simulation results, the new peak demands of the year 2013 are reduced significantly and

all stay below 55.39 MVA as shown in Table 6.

Table 6: New peak demands after dynamic peak shaving

Battery Type
UBC's Electricity Peak Demand of Each Month (MVA)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Flow 49.03 48.52 48.95 50.41 55.06 51.57 48.46 50.23 51.01 44.71 45.21 48.32

Lithium-ion 48.28 48.08 48.21 49.65 52.21 51.57 47.8 49.47 50.24 44.03 44.53 47.59

Sodium Sulfur 48.33 48.11 48.26 49.7 52.59 51.57 47.84 49.52 50.29 44.08 44.57 47.64

The life span, total capital cost and annual cost reduction from each battery type are shown in

Table 7.

Table 7: Battery dynamic peak shaving

Battery Type
Battery Life Span

(year)
Battery Cost ($)

Annual Cost

Reduction from Peak

Shaving ($)

Flow Battery 24 $ 34,375,000 $ 190,660

Lithium-ion

Battery
3 $ 27,500,000 $ 272,203

Sodium Sulfur

Battery
6 $ 34,375,000 $ 265,739

Since the upgrading process of the south transmission line could be delayed, if 50 million initial

capitals were deposited in the bank with a 3% interest rate, some interest could be gained each

year. The total capital cost of the battery system is paid by an annuity loan with 9% growth

factor and 5% interest rate, because in each year, an additional 9% of battery has to be purchased

to keep up with the campus power demand growth.

64

Table 8: Financial analysis of flow battery's dynamic peak shaving

year

Flow Battery
Annual Interest

Gain from Bank

(million $)

Total Annual

Gain (million $)
Annual Capital

Cost (million $)

Annual Cost

Reduction from Peak

Shaving (million $)

1 -1.43 0.19 1.50 0.26

2 -1.64 0.21 3.05 1.62

3 -1.87 0.23 4.64 2.99

4 -2.14 0.25 6.28 4.38

5 -2.45 0.27 7.96 5.78

6 -2.81 0.29 9.70 7.19

7 -3.21 0.32 11.49 8.60

8 -3.68 0.35 13.34 10.01

9 -4.21 0.38 15.24 11.41

10 -4.82 0.41 17.20 12.79

11 -5.51 0.45 19.21 14.15

12 -6.31 0.49 21.29 15.47

13 -7.22 0.53 23.43 16.74

14 -8.26 0.58 25.63 17.95

15 -9.46 0.63 27.90 19.08

16 -10.82 0.69 30.24 20.11

17 -12.39 0.75 32.64 21.01

18 -14.18 0.82 35.12 21.77

19 -16.22 0.90 37.68 22.35

20 -18.57 0.98 40.31 22.71

21 -21.25 1.06 43.01 22.83

22 -24.32 1.16 45.81 22.64

23 -27.84 1.27 48.68 22.11

24 -31.86 1.38 51.64 21.16

Table 9: Financial analysis of lithium-ion battery's dynamic peak shaving

year

Lithium-ion Battery
Annual Interest

Gain from Bank

(million $)

Total Annual

Gain (million $)
Annual Capital

Cost (million $)

Annual Cost

Reduction from Peak

Shaving (million $)

1 -9.17 0.27 1.50 -7.40

2 -10.49 0.29 3.05 -7.15

3 -12.01 0.32 4.64 -7.05

65

Table 10: Financial analysis of NaS battery's dynamic peak shaving

year

NaS Battery
Annual Interest

Gain from Bank

(million $)

Total Annual Gain

(million $)
Annual Capital

Cost (million $)

Annual Cost

Reduction from Peak

Shaving (million $)

1 -5.73 0.27 1.50 -3.96

2 -6.56 0.29 3.05 -3.22

3 -7.51 0.32 4.64 -2.55

4 -8.59 0.34 6.28 -1.97

5 -9.83 0.38 7.96 -1.49

6 -11.25 0.41 9.70 -1.14

The financial analysis results shown in Table 8, Table 9 and Table 10 indicate that the flow battery

has successfully generated a positive financial gain in its 24 year life span. It proved that by

employing the flow batteries, not only can the peak demands be reduced below emergency

capacity, but also be financially feasible.

66

3.4 Simulation Conclusion

The purpose of the four different test simulations was to test the key features of the financial

production cell (FPC) model, and further explore the potential application of the FPC in various

complex models. The results of the first test case demonstrate the capabilities of the FPC that are

important for portraying the real life financial behavior.

The second test case integrated the financial production cell with the UBC Living Lab model,

which was a large scaled complex model. The results of the simulation proved that the model

FPC was able to process large amount of dynamic data in real time.

In the third test case, three independent battery models were tested with the FPC. Even though

the final financial results did not favor the battery solution, they showed that the FPC is a good

tool for project financial analysis.

The forth test case investigates the possibilities of using battery system to delay upgrading the

south transmission line. The results indicate that the project is both technically and financially

feasible.

67

4 Conclusion and Future Work

The Infrastructure Interdependencies Simulator (I2Sim) framework provides a sophisticated

platform to explore the interdependencies among different infrastructures under disaster

situation. However, in most of peace time, all the infrastructures are free from the damage caused

by disasters. The interdependencies among them are mostly business and operational

relationships. In order to simulate financial interdependencies and extend I2Sim’s capabilities,

the Financial Production Cell (FPC) was developed in this thesis.

The financial production cell was derived from the regular production cell; it comes with all the

features in the regular production cell, and adds its own flavor. The new features include the

capability of outputting accurate financial results and updating HRTs during real time

simulation. Besides its internal operation features, the FPC is connected with several user

interfaces, which provide the end users an intuitive experience when they interact with the I2Sim

environment.

The simulation results documented in this thesis provide solid evidence to prove the financial

production cell’s capabilities and demonstrate the strength of the I2Sim simulation environment.

Some other features of the FPC, which need to be improved in the future, have also been

discovered during the simulation. These features are:

 The financial production cell only reads the HRT table’s parameters when there is a

change in the inputs, regardless of whether the HRT itself is updated or not. This could

cause potential errors when the HRT table is updated, but the outputs are still being

calculated based on an old HRT table, because the inputs are static and it do not trigger

the FPC to read the new HRT table.

68

 The majority of the end users who use the financial production cell probably will not

have sufficient knowledge about I2Sim. However, in the current stage of development, in

order to set up the initial HRT tables, it is required that the end user manually input the

FPC table content and base value.

 The financial production cell physical mode still changes its color based on the input.

This feature is inherited from the regular production cell’s physical mode, which

indicates the physical condition of the cell. In the financial production cell, the physical

condition does not exist. Therefore, the color code is meaningless in this case.

The financial production cell has proved to be a valuable asset to the I2Sim tool-box family.

With the future improvements, it will greatly enhance the I2sim environment.

69

Bibliography

[1] Jose R. Marti, Carlos E. Ventura, Jorge A. Hollman, K.D. Srivastava, and Hugon Juarez, "I2Sim

Modelling and Simulation Framework for Scenario Development, Traning, and Real-Time Decision

Support of Multiple Interdependent Critical Infrastructures during Large Emergencies," Applied

Science, British Columbia, Vancouver,.

[2] Philippe Kruchten, Carson Woo, Kafui Monu, and Mandana Sotoodeh, "A Human-Centered

Conceptual Model of Disasters Affecting Critical Infrastructures," The University of British Columbia,

Vancouver, 2007.

[3] Hafiz Abdur Rahman, Mazana Armstrong, DeTao Mao, and Jose R. Marti, "I2Sim: A Matrix-partition

based Framework for Critical Infrastructure Interdependencies Simulation," Applied Science, The

University of British Columbia, Vancouver, Conference Paper 2008.

[4] "Infrastructure Interdependencies Simulator Technical Description and User Manual," University of

British Columbia, Vancouver, User Manual, Sept 2009.

[5] HyunJung Lee, "Infrastructure Interdependencies Simulation (I2Sim) System Model and Toolbox,"

University of British Columbia, Vancouver, Master Thesis, 2007.

[6] Brent J. Sauder, "The Living Lab - The next evolution of Industry - University Partnerships," The

University of British Columbia, Vancouver, 2010.

[7] The University of British Columbia Homepage. [Online]. http://www.ubc.ca/about/

[8] TechFrontiers. [Online]. http://techfrontiers.blogspot.com/2008/08/schools-back-but-with-

twist.html

[9] Cesar Lopez, Paul Lusina, and Jose Marti, "REAL-TIME MONITORING OF ENERGY INFRASTRUCTURE,"

University of British Columbia, Vancouver, 2011.

[10] (2011) UBC energy conversion saves $4 million a year, cuts GHGs. [Online].

http://www.sustain.ubc.ca/steam-hot-water/ubc-energy-conversion-saves-4-million-year-cuts-ghgs

[11] Stantec Consulting, "Alternative Energy Report For University of British Columbia Phase One - Stage

One," Vancouver,.

[12] César López, "MULTI-ENERGY SYSTEMS SIMULATIOR FOR HOURLY MANAGEMENT AND

OPTIMIZATION OF GHG EMISSIONS AND FUEL COSTS," The University of British Columbia,

Vancouver , Master Thesis 2011.

http://www.ubc.ca/about/
http://techfrontiers.blogspot.com/2008/08/schools-back-but-with-twist.html
http://techfrontiers.blogspot.com/2008/08/schools-back-but-with-twist.html
http://www.sustain.ubc.ca/steam-hot-water/ubc-energy-conversion-saves-4-million-year-cuts-ghgs

70

[13] (2010, August) Nexterra to power UBC. [Online]. http://www.globe-

net.com/articles/2010/august/17/nexterra-to-power-ubc.aspx

[14] UBC Bioenergy Research and Demonstration Project. [Online].

http://www.nexterra.ca/news/100215_backgrounder.html

[15] Dawn R. Gallagher, "BIOMASS AND CARBON NEUTRALITY," Department of Environmental

Protection, 2004.

[16] (2011, July,) Bioenergy Wiki. [Online]. http://bioenergywiki.net/Carbon_neutral

[17] Shahrzad Rostamirad, "INTELLIGENT LOAD SHEDDING SCHEME FOR FREQUENCY CONTROL IN

COMMUNITIES WITH LOCAL ALTERNATIVE GENERATION AND LIMITED MAIN GRID SUPPORT," The

University of British Columbia, Vancouver, Master Thesis, 2011.

[18] Stantec Consulting, "Alternative Energy Feasibility Report For University of British Columbia Phase

Two - Step Three (Final)," Vancouver,.

[19] CIS Group UBC, "UBC-CIS Living Lab Proposal," The University of British Columbia, Vancouver, 2010.

[20] Physics and Astronomy. [Online]. http://www.physics.ubc.ca/research/particle.php

[21] TRIUMF Backgrounder. [Online]. http://www.triumf.info/public/about/background.php

[22] Natural Resources Canada's Office of Energy Efficiency, "Heating and Cooling With a Heat Pump,"

Natural Resource Canada, Gatineau, 2004.

[23] Heat Pumps South Africa. [Online]. http://www.heatpumpssouthafrica.co.za/heat-pump-geyser/

[24] Lu Liu, "Prototyping and Cells Modeling of the Infrastructure Interdependencies Simulator I2Sim,"

University of British Columbia, Vancouver, Master Thesis, August, 2007.

[25] Henrik Lund, "EnergyPLAN Advanced Energy Systems Analysis Computer Model ," Aalborg

University, 2010.

[26] Ron Mackinnon, "APSC 540 Business Decisions for Engineering Ventures Formula Sheet," The

University of British Columbia, Vancouver, 2010.

[27] (2011) BC Hydro Regeneration Demand Charges. [Online].

https://www.bchydro.com/youraccount/content/demand_charges.jsp

[28] MathWorks. (2009) MathWorks-Product Documentation. [Online].

http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html

http://www.globe-net.com/articles/2010/august/17/nexterra-to-power-ubc.aspx
http://www.globe-net.com/articles/2010/august/17/nexterra-to-power-ubc.aspx
http://www.nexterra.ca/news/100215_backgrounder.html
http://bioenergywiki.net/Carbon_neutral
http://www.physics.ubc.ca/research/particle.php
http://www.triumf.info/public/about/background.php
http://www.heatpumpssouthafrica.co.za/heat-pump-geyser/
https://www.bchydro.com/youraccount/content/demand_charges.jsp
http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html

71

[29] Woodbank Communications Ltd. (2005) Battery and Energy Technologies. [Online].

http://www.mpoweruk.com/performance.htm

[30] MathWorks. (2011) MathWorks Product Documentation. [Online].

http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html

[31] Trung Nguyen and Robert F. Savinell, "Flow Batteries," The Electrochemical Society, 2010.

[32] David L. Chandler. (2011, June) MITnews. [Online]. http://web.mit.edu/newsoffice/2011/flow-

batteries-0606.html

[33] Marshall Brain. How Lithium-ion Batteries Work. [Online].

http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm

[34] (2006, January) About Sodium-Sulfur (NaS) Batteries. [Online].

http://thefraserdomain.typepad.com/energy/2006/01/sodiumsulfur_na.html

[35] Hassan Karami, Abbas Yaghoobi, and Ali Ramazani, "Sodium Sulfate Effects on the Electrochemical

Behaviors of Nanostructured Lead Dioxide and Commercial Positive Plates of Lead-Acid Batteries,"

Nano Research Laboratory, Abhar, July 2010.

[36] Electric cells or batteries. [Online]. http://knol.google.com/k/electric-cells-or-batteries#

http://www.mpoweruk.com/performance.htm
http://www.mathworks.com/help/toolbox/physmod/powersys/ref/battery.html
http://web.mit.edu/newsoffice/2011/flow-batteries-0606.html
http://web.mit.edu/newsoffice/2011/flow-batteries-0606.html
http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm
http://thefraserdomain.typepad.com/energy/2006/01/sodiumsulfur_na.html
http://knol.google.com/k/electric-cells-or-batteries

72

Appendices

Appendix A Financial User Interface

The complete Matlab code of the Financial User Interface is presented in this Appendix.

function varargout = FinalEvaluate(varargin)
% FINALEVALUATE M-file for FinalEvaluate.fig
% FINALEVALUATE, by itself, creates a new FINALEVALUATE or raises the

existing
% singleton*.
%
% H = FINALEVALUATE returns the handle to a new FINALEVALUATE or the

handle to
% the existing singleton*.
%
% FINALEVALUATE('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in FINALEVALUATE.M with the given input

arguments.
%
% FINALEVALUATE('Property','Value',...) creates a new FINALEVALUATE or

raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FinalEvaluate_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FinalEvaluate_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help FinalEvaluate

% Last Modified by GUIDE v2.5 08-Jun-2011 14:56:03

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @FinalEvaluate_OpeningFcn, ...
 'gui_OutputFcn', @FinalEvaluate_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout

73

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before FinalEvaluate is made visible.
function FinalEvaluate_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to FinalEvaluate (see VARARGIN)

% Choose default command line output for FinalEvaluate
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes FinalEvaluate wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = FinalEvaluate_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in NPV_pushbutton.
function NPV_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to NPV_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% get the table data and discount rate
tableData = get(handles.uitable1,'Data');
[num_Years,column] = size(tableData)
discountRate = str2double(get(handles.discountRate_editText,'String'));

% calculate NPV of individual case
case1NPV = num2str(calculateNPV(tableData(:,1),discountRate));
case2NPV = num2str(calculateNPV(tableData(:,2),discountRate));
case3NPV = num2str(calculateNPV(tableData(:,3),discountRate));

% display the result on the GUI

74

set(handles.case1NPV_staticText,'String',case1NPV);
set(handles.case2NPV_staticText,'String',case2NPV);
set(handles.case3NPV_staticText,'String',case3NPV);
guidata(hObject, handles);

% plot the cash flow graph
axes(handles.axes1);

x = 1:num_Years;
plot(x,tableData(:,1),'r',x,tableData(:,2),'g',x,tableData(:,3),'b');

%adds a title, x-axis description, and y-axis description
title('Yearly Cashflow');
xlabel('Year');
ylabel('Cashflow');

% add legends
legend('Case 1','Case 2','Case 3')
guidata(hObject, handles);

% plot NPV bar graph
bargroup = [str2double(case1NPV); str2double(case2NPV); str2double(case3NPV)]
axes(handles.axes2);
bar(bargroup);
guidata(hObject, handles);

% d = tableData(2,3)+tableData(4,2)
% --- Executes when entered data in editable cell(s) in uitable1.
function uitable1_CellEditCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields (see UITABLE)
% Indices: row and column indices of the cell(s) edited
% PreviousData: previous data for the cell(s) edited
% EditData: string(s) entered by the user
% NewData: EditData or its converted form set on the Data property. Empty

if Data was not changed
% Error: error string when failed to convert EditData to appropriate value

for Data
% handles structure with handles and user data (see GUIDATA)

% --- Executes when selected cell(s) is changed in uitable1.
function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields (see UITABLE)
% Indices: row and column indices of the cell(s) currently selecteds
% handles structure with handles and user data (see GUIDATA)

function Years_editText_Callback(hObject, eventdata, handles)
% hObject handle to Years_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

75

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Years_editText as text
% str2double(get(hObject,'String')) returns contents of Years_editText

as a double

%store the contents of input as a string. if the string
%is not a number then input will be empty
input = str2num(get(hObject,'String'));

if (isempty(input))
 set(hObject,'String','0')
end
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function Years_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to Years_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% % --- Executes on button press in populateTable.
% function populateYears_Callback(hObject, eventdata, handles)
% % hObject handle to populateTable (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
%
% % input number of years_edittext (rows) in the table
% num_Years = str2num(get(handles.Years_editText,'String'))
%
% myData = zeros(num_Years, 3)
% %now populate the table with the all zeros
% set(handles.uitable1,'data',myData);

function discountRate_editText_Callback(hObject, eventdata, handles)
% hObject handle to discountRate_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of discountRate_editText as

text
% str2double(get(hObject,'String')) returns contents of

discountRate_editText as a double

76

%store the contents of input as a string. if the string
%is not a number then input will be empty
input = str2num(get(hObject,'String'));

if (isempty(input))
 set(hObject,'String','0')
end
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function discountRate_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to discountRate_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in loadfromFile_pushbutton.
function loadfromFile_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to loadfromFile_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% load data from a .txt file
fileData = load('cashFlow.txt')

% input the data into uitable1
set(handles.uitable1,'data',fileData);

function loanpaymentPeriod_editText_Callback(hObject, eventdata, handles)
% hObject handle to loanpaymentPeriod_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of loanpaymentPeriod_editText

as text
% str2double(get(hObject,'String')) returns contents of

loanpaymentPeriod_editText as a double
input = str2double(get(hObject,'String'));

if (isempty(input))
 set(hObject,'String','0')
end
guidata(hObject, handles);

77

% --- Executes during object creation, after setting all properties.
function loanpaymentPeriod_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to loanpaymentPeriod_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in generateCashflow_pushbutton.
function generateCashflow_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to generateCashflow_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% obtain initial capital cost, loan payment period annual maintenance cost,
% annual operation cost, project life span and interest rate for payment
% period

% get initial capital cost
% initialCapital = str2double(get(handles.initialCapital_editText,'string'))
initialCapital = str2double(get_param('Case_4V2/Gas

Boilers','InitCap'))+str2double(get_param('Case_4V2/Electric

Boilers','InitCap'))+str2double(get_param('Case_4V2/Biomass

Boilers','InitCap'))

loanpaymentPeriod =

str2double(get(handles.loanpaymentPeriod_editText,'string'))

% get maintenance cost
% maintenanceCost = str2double(get(handles.maintenanceCost_editText,'string'))
maintenanceCost = str2double(get_param('Case_4V2/Gas

Boilers','MantCost'))+str2double(get_param('Case_4V2/Electric

Boilers','MantCost'))+str2double(get_param('Case_4V2/Biomass

Boilers','MantCost'))

% get operational cost
% operationCost = str2double(get(handles.operationCost_editText,'string'))
operationCost = str2double(get_param('Case_4V2/Gas

Boilers','OperCost'))+str2double(get_param('Case_4V2/Electric

Boilers','OperCost'))+str2double(get_param('Case_4V2/Biomass

Boilers','OperCost'))

num_Years = str2double(get(handles.Years_editText,'string'))
loanpaymentInterestRate =

str2double(get(handles.loanpaymentInterestRate_editText,'string'))

78

% calculate the annual ordinary general annuity for loan payment period
annuity = initialCapital/((1-(1+loanpaymentInterestRate)^(-

1*loanpaymentPeriod))/loanpaymentInterestRate)

% sum up all the annual costs without fuel cost
% annualCashFlow = annuity + maintenanceCost + operationCost

% populate the case years
 caseTable = zeros(num_Years,1);

% loading fuel cost and revenue
load('Eleccost.mat')
load('Biocost.mat')
load('Gascost.mat')
load('Revenue.mat')

switch get(handles.case_popupmenu,'Value')
 case 1
 for i = 1:num_Years
 if i <= loanpaymentPeriod
 caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 else
 caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 end
 end
 assignin('base','case1Temp',caseTable)

 case 2
 for i = 1:num_Years
 if i <= loanpaymentPeriod
 caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 else
 caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 end
 end
 assignin('base','case2Temp',caseTable)

 case 3
 for i = 1:num_Years
 if i <= loanpaymentPeriod
 caseTable(i,1) = -1*(annuity + maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 else
 caseTable(i,1) = -1*(maintenanceCost + operationCost)-

1000000*(cost_gas+cost_bio+cost_elec)+revenue
 end
 end
 assignin('base','case3Temp',caseTable)
 otherwise

79

end

% load data from a .txt file
% load('manualCashFlow.mat')

% input the data into uitable1
casesTable = [evalin('base','case1Temp') evalin('base','case2Temp')

evalin('base','case3Temp')]

set(handles.uitable1,'data',casesTable);

function loanpaymentInterestRate_editText_Callback(hObject, eventdata,

handles)
% hObject handle to loanpaymentInterestRate_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of

loanpaymentInterestRate_editText as text
% str2double(get(hObject,'String')) returns contents of

loanpaymentInterestRate_editText as a double
input = str2double(get(hObject,'String'));

if (isempty(input))
 set(hObject,'String','0')
end
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function loanpaymentInterestRate_editText_CreateFcn(hObject, eventdata,

handles)
% hObject handle to loanpaymentInterestRate_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in case_popupmenu.
function case_popupmenu_Callback(hObject, eventdata, handles)
% hObject handle to case_popupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns case_popupmenu

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

case_popupmenu

80

% --- Executes during object creation, after setting all properties.
function case_popupmenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to case_popupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in populateTable.
function populateTable_Callback(hObject, eventdata, handles)
% hObject handle to populateTable (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% setup three arrays to store case cashflow in the workspace

case1Temp = zeros(str2double(get(handles.Years_editText,'string')),1)
case2Temp = zeros(str2double(get(handles.Years_editText,'string')),1)
case3Temp = zeros(str2double(get(handles.Years_editText,'string')),1)
assignin('base','case1Temp',case1Temp)
assignin('base','case2Temp',case2Temp)
assignin('base','case3Temp',case3Temp)

81

Appendix B Living Lab with Battery System

In Figure 58, the detailed battery function schematic is illustrated.

Figure 58: Battery function schematic

3

batteryCapacity

2

Pstored

1

Poutput

z

1

Unit Delay1

z

1

Unit Delay

controller

Level-2 M-file

S-Function3

charge

Level-2 M-file

S-Function2

discharge

Level-2 M-file

S-Function1

-K-

Gain1

-K-

Gain

3

age

2

Pavailable

1

Pdemand

82

In Figure 59, the detailed battery system schematic is illustrated.

Figure 59: Battery system schematic

3

Battery Capacity

2

BC Hydro Output with Battery

1

Original BC Hydro Output

Consumption

To Workspace1

Output

To Workspace

demand

Level-2 M-file

S-Function

Hydro output with battery

1/1

Gain9

1/1

Gain8

-K-

Gain7

-K-

Gain6

-K-

Gain5

-K-

Gain4

-K-

Gain3

-K-

Gain2

-1

Gain10

1/1

Gain1

1/1

Gain

trigger out

Battery Aging Factor

Pdemand

Pav ailable

age

Poutput

Pstored

battery Capacity

Battery

Aggregator2

Aggregator1

83

In Figure 60, the battery system financial model schematic is illustrated.

Figure 60: Battery system financial model schematic

sumUpPower

Total power through the period1

sumUpPower

Total power through the period

<--PM: 1

Base:
1000000000000.0 tokens/hour

Resource

Cost

out: Output

NEED: Resource

PM:1

RM:4

Total peak with battery

<--PM: 1

Base:
1000000000000.0 tokens/hour

Resource

Cost

out: Output

NEED: Resource

PM:1

RM:4

Total original peak

<--PM: 1

Base:
1000000000000.0 tokens/hour

Resource

Cost

out: Output

NEED: Resource

PM:1

RM:3

Total original elec usage

<--PM: 1

Base:
1000000000000.0 tokens/hour

Resource

Cost

out: Output

NEED: Resource

PM:1

RM:3

Total elec usage with battery

trigger out

Source3

trigger out

Source2

trigger out

Source1

trigger out

Source

financial

Level-2 M-file

S-Function2

peakSelector

Level-2 M-file

S-Function1

peakSelector

Level-2 M-file

S-Function

I2Sim Probe4

I2Sim Probe3

I2Sim Probe2

I2Sim Probe1

I2Sim Probe

I2Sim Control Panel I2Sim
Visualization Panel2

I2Sim
Visualization Panel1

I2Sim
Visualization Panel

Original BC Hy dro Output

BC Hy dro Output with Battery

Battery Capacity

BC Hydro with Battery System

84

B.1 Battery Discharge Function Matlab Code

This appendix contains the Matlab code of Battery Discharge function.

function discharge(block)
% Level-2 M file S-Function for times two demo.
% Copyright 1990-2004 The MathWorks, Inc.
% $Revision: 1.1.6.1 $
 setup(block);
%endfunction

function setup(block)

 %% Register number of input and output ports

 block.NumInputPorts = 3;
 block.NumOutputPorts = 2;

 %% Setup functional port properties to dynamically
 %% inherited.
 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

 % Allow multidimensional signals
 block.AllowSignalsWithMoreThan2D = true;

 block.InputPort(1).Dimensions = 1; %Demand Power
 block.InputPort(1).DatatypeID = 0; % double
 block.InputPort(1).Complexity = 'Real';
 block.InputPort(1).DirectFeedthrough = true;

 block.InputPort(2).Dimensions = 1; %Current Capacity
 block.InputPort(2).DatatypeID = 0; % double
 block.InputPort(2).Complexity = 'Real';
 block.InputPort(2).DirectFeedthrough = true;

 block.InputPort(3).Dimensions = 1; %aging factor
 block.InputPort(3).DatatypeID = 0; % double
 block.InputPort(3).Complexity = 'Real';
 block.InputPort(3).DirectFeedthrough = true;

 block.OutputPort(1).Dimensions = 1; %Output Power
 block.OutputPort(1).DatatypeID = 0; % double
 block.OutputPort(1).Complexity = 'Real';

 block.OutputPort(2).Dimensions = 1; %New Current Capacity
 block.OutputPort(2).DatatypeID = 0; % double
 block.OutputPort(2).Complexity = 'Real';

 % Register parameters
 block.NumDialogPrms = 0;

85

 %% Set block sample time to inherited
 block.SampleTimes = [-1 0];

 %% Run accelerator on TLC
 block.SetAccelRunOnTLC(true);

 %% Register methods
 block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);
 block.RegBlockMethod('InitializeConditions', @InitConditions);
 block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);
 %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims);
 %block.RegBlockMethod('Terminate', @Terminate);
 block.RegBlockMethod('Outputs', @Output);
%endfunction

function DoPostPropSetup(block)

 %% Setup Dwork
 block.NumDworks = 8;

 block.Dwork(1).Name = 'Capacity'; %Battery Capacity
 block.Dwork(1).Dimensions = 1;
 block.Dwork(1).DatatypeID = 0;
 block.Dwork(1).Complexity = 'Real';
 block.Dwork(1).UsedAsDiscState = true;

 block.Dwork(2).Name = 'turnPoint'; %The Point where battery discharge curve

changes
 block.Dwork(2).Dimensions = 1;
 block.Dwork(2).DatatypeID = 0;
 block.Dwork(2).Complexity = 'Real';
 block.Dwork(2).UsedAsDiscState = true;

 block.Dwork(3).Name = 'Demand'; %How much is power demand
 block.Dwork(3).Dimensions = 1;
 block.Dwork(3).DatatypeID = 0;
 block.Dwork(3).Complexity = 'Real';
 block.Dwork(3).UsedAsDiscState = true;

 block.Dwork(4).Name = 'Voltage'; %Battery operating voltage
 block.Dwork(4).Dimensions = 1;
 block.Dwork(4).DatatypeID = 0;
 block.Dwork(4).Complexity = 'Real';
 block.Dwork(4).UsedAsDiscState = true;

 block.Dwork(5).Name = 'eNominal'; %Energy stored in the Nominal region
 block.Dwork(5).Dimensions = 1;
 block.Dwork(5).DatatypeID = 0;
 block.Dwork(5).Complexity = 'Real';
 block.Dwork(5).UsedAsDiscState = true;

 block.Dwork(6).Name = 'eExponential'; %Energy stored in the Exponetial

region
 block.Dwork(6).Dimensions = 1;

86

 block.Dwork(6).DatatypeID = 0;
 block.Dwork(6).Complexity = 'Real';
 block.Dwork(6).UsedAsDiscState = true;

 block.Dwork(7).Name = 'vNominal'; %Nominal Voltage
 block.Dwork(7).Dimensions = 1;
 block.Dwork(7).DatatypeID = 0;
 block.Dwork(7).Complexity = 'Real';
 block.Dwork(7).UsedAsDiscState = true;

 block.Dwork(8).Name = 'age'; %aging factor of the battery
 block.Dwork(8).Dimensions = 1;
 block.Dwork(8).DatatypeID = 0;
 block.Dwork(8).Complexity = 'Real';
 block.Dwork(8).UsedAsDiscState = true;
%endfunction

function InitConditions(block)
%%
% block.Dwork(2).Data = 25; %turnPoint
 block.Dwork(7).Data = 100; %constant voltage
 block.Dwork(1).Data = 0;

 %endfunction

%endfunction

function SetInputPortSamplingMode(block, idx, fd)
 block.InputPort(idx).SamplingMode = fd;
 for i=1:block.NumOutputPorts
 block.OutputPort(i).SamplingMode = fd;
 end
%endfunction

function Output(block)

block.Dwork(1).Data = block.InputPort(2).Data;
block.Dwork(3).Data = block.InputPort(1).Data;
block.Dwork(8).Data = block.InputPort(3).Data;

block.Dwork(2).Data = 25*block.Dwork(8).Data; %turnPoint

if 0<= block.Dwork(1).Data && block.Dwork(1).Data<= block.Dwork(2).Data

 block.Dwork(4).Data = block.Dwork(7).Data;
 block.Dwork(5).Data = block.Dwork(1).Data*block.Dwork(4).Data;
 block.Dwork(6).Data = 0;
else

 block.Dwork(4).Data = 5*(block.Dwork(1).Data)-25;
 block.Dwork(5).Data = block.Dwork(2).Data*block.Dwork(7).Data;

87

 block.Dwork(6).Data = (block.Dwork(1).Data-

block.Dwork(2).Data)*block.Dwork(4).Data;
end

if block.Dwork(1).Data>block.Dwork(2).Data
 if block.Dwork(3).Data*1<=block.Dwork(6).Data
 block.OutputPort(1).Data = block.Dwork(3).Data;
 block.OutputPort(2).Data = block.Dwork(1).Data-

(block.Dwork(3).Data*1/block.Dwork(4).Data);
 else
 if (block.Dwork(3).Data*1)<(block.Dwork(5).Data+block.Dwork(6).Data)
 block.OutputPort(1).Data = block.Dwork(3).Data;
 block.OutputPort(2).Data = block.Dwork(2).Data-

((block.Dwork(3).Data*1-block.Dwork(6).Data)/block.Dwork(7).Data);
 else
 block.OutputPort(1).Data =

(block.Dwork(5).Data+block.Dwork(6).Data)/1;
 block.OutputPort(2).Data = 0;
 end
 end
else
 if (block.Dwork(3).Data*1)<=(block.Dwork(5).Data+block.Dwork(6).Data)
 block.OutputPort(1).Data = block.Dwork(3).Data;
 block.OutputPort(2).Data = block.Dwork(1).Data-

(block.Dwork(3).Data*1/block.Dwork(7).Data);
 else
 block.OutputPort(1).Data =

(block.Dwork(5).Data+block.Dwork(6).Data)/1;
 block.OutputPort(2).Data = 0;
 end
end
%endfunction

88

B.2 Battery Charge Function Matlab Code

This appendix contains the Matlab code of Battery charge function.

function charge(block)
% Level-2 M file S-Function for times two demo.
% Copyright 1990-2004 The MathWorks, Inc.
% $Revision: 1.1.6.1 $
 setup(block);
%endfunction

function setup(block)

 %% Register number of input and output ports

 block.NumInputPorts = 3;
 block.NumOutputPorts = 2;

 %% Setup functional port properties to dynamically
 %% inherited.
 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

 % Allow multidimensional signals
 block.AllowSignalsWithMoreThan2D = true;

 block.InputPort(1).Dimensions = 1; %Available Power
 block.InputPort(1).DatatypeID = 0; % double
 block.InputPort(1).Complexity = 'Real';
 block.InputPort(1).DirectFeedthrough = true;

 block.InputPort(2).Dimensions = 1; %Current Capacity
 block.InputPort(2).DatatypeID = 0; % double
 block.InputPort(2).Complexity = 'Real';
 block.InputPort(2).DirectFeedthrough = true;

 block.InputPort(3).Dimensions = 1; %aging factor
 block.InputPort(3).DatatypeID = 0; % double
 block.InputPort(3).Complexity = 'Real';
 block.InputPort(3).DirectFeedthrough = true;

 block.OutputPort(1).Dimensions = 1; %Stored Power
 block.OutputPort(1).DatatypeID = 0; % double
 block.OutputPort(1).Complexity = 'Real';

 block.OutputPort(2).Dimensions = 1; %New Current Capacity
 block.OutputPort(2).DatatypeID = 0; % double
 block.OutputPort(2).Complexity = 'Real';

 % Register parameters
 block.NumDialogPrms = 0;

89

 %% Set block sample time to inherited
 block.SampleTimes = [-1 0];

 %% Run accelerator on TLC
 block.SetAccelRunOnTLC(true);

 %% Register methods
 block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);
 block.RegBlockMethod('InitializeConditions', @InitConditions);
 block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);
 %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims);
 %block.RegBlockMethod('Terminate', @Terminate);
 block.RegBlockMethod('Outputs', @Output);
%endfunction

function DoPostPropSetup(block)

 %% Setup Dwork
 block.NumDworks = 10;

 block.Dwork(1).Name = 'Capacity'; %Battery Capacity
 block.Dwork(1).Dimensions = 1;
 block.Dwork(1).DatatypeID = 0;
 block.Dwork(1).Complexity = 'Real';
 block.Dwork(1).UsedAsDiscState = true;

 block.Dwork(2).Name = 'turnPoint'; %The Point where battery charge curve

changes
 block.Dwork(2).Dimensions = 1;
 block.Dwork(2).DatatypeID = 0;
 block.Dwork(2).Complexity = 'Real';
 block.Dwork(2).UsedAsDiscState = true;

 block.Dwork(3).Name = 'available'; %How much power is available
 block.Dwork(3).Dimensions = 1;
 block.Dwork(3).DatatypeID = 0;
 block.Dwork(3).Complexity = 'Real';
 block.Dwork(3).UsedAsDiscState = true;

 block.Dwork(4).Name = 'Voltage'; %Battery operating voltage
 block.Dwork(4).Dimensions = 1;
 block.Dwork(4).DatatypeID = 0;
 block.Dwork(4).Complexity = 'Real';
 block.Dwork(4).UsedAsDiscState = true;

 block.Dwork(5).Name = 'eNominal'; %Energy stored in the Nominal region
 block.Dwork(5).Dimensions = 1;
 block.Dwork(5).DatatypeID = 0;
 block.Dwork(5).Complexity = 'Real';
 block.Dwork(5).UsedAsDiscState = true;

 block.Dwork(6).Name = 'eExponential'; %Energy stored in the Exponetial

region
 block.Dwork(6).Dimensions = 1;

90

 block.Dwork(6).DatatypeID = 0;
 block.Dwork(6).Complexity = 'Real';
 block.Dwork(6).UsedAsDiscState = true;

 block.Dwork(7).Name = 'vNominal'; %Nominal Voltage
 block.Dwork(7).Dimensions = 1;
 block.Dwork(7).DatatypeID = 0;
 block.Dwork(7).Complexity = 'Real';
 block.Dwork(7).UsedAsDiscState = true;

 block.Dwork(8).Name = 'energyRoom'; %how much storage room is left
 block.Dwork(8).Dimensions = 1;
 block.Dwork(8).DatatypeID = 0;
 block.Dwork(8).Complexity = 'Real';
 block.Dwork(8).UsedAsDiscState = true;

 block.Dwork(9).Name = 'capacityMax'; %Max capacity
 block.Dwork(9).Dimensions = 1;
 block.Dwork(9).DatatypeID = 0;
 block.Dwork(9).Complexity = 'Real';
 block.Dwork(9).UsedAsDiscState = true;

 block.Dwork(10).Name = 'age'; %aging factor of the battery
 block.Dwork(10).Dimensions = 1;
 block.Dwork(10).DatatypeID = 0;
 block.Dwork(10).Complexity = 'Real';
 block.Dwork(10).UsedAsDiscState = true;

%endfunction

function InitConditions(block)
%%
% block.Dwork(2).Data = 25; %turnPoint
 block.Dwork(7).Data = 100; %constant voltage

% block.Dwork(9).Data = 30; %battery capacity
 block.Dwork(1).Data = 0;
 %endfunction

%endfunction

function SetInputPortSamplingMode(block, idx, fd)
 block.InputPort(idx).SamplingMode = fd;
 for i=1:block.NumOutputPorts
 block.OutputPort(i).SamplingMode = fd;
 end
%endfunction

function Output(block)

block.Dwork(1).Data = block.InputPort(2).Data;

91

block.Dwork(3).Data = block.InputPort(1).Data;
block.Dwork(10).Data = block.InputPort(3).Data;

block.Dwork(2).Data = 25*block.Dwork(10).Data; %turnPoint
block.Dwork(9).Data = 30*block.Dwork(10).Data; %battery capacity

if 0<= block.Dwork(1).Data && block.Dwork(1).Data <= block.Dwork(2).Data

 block.Dwork(4).Data = block.Dwork(7).Data;
 block.Dwork(5).Data = block.Dwork(1).Data*block.Dwork(4).Data;
 block.Dwork(6).Data = 0;
else

 block.Dwork(4).Data = 5*(block.Dwork(1).Data)-25;
 block.Dwork(5).Data = block.Dwork(2).Data*block.Dwork(7).Data;
 block.Dwork(6).Data = (block.Dwork(1).Data-

block.Dwork(2).Data)*block.Dwork(4).Data;
end

block.Dwork(8).Data =

block.Dwork(7).Data*block.Dwork(2).Data+(5*(block.Dwork(9).Data)-

25)*(block.Dwork(9).Data-block.Dwork(2).Data)-block.Dwork(5).Data-

block.Dwork(6).Data;

if block.Dwork(1).Data > block.Dwork(2).Data

 if (block.Dwork(3).Data*1) < block.Dwork(8).Data
 block.OutputPort(2).Data = block.Dwork(1).Data+(-

1*block.Dwork(4).Data+sqrt(block.Dwork(4).Data*block.Dwork(4).Data+4*5*block.

Dwork(3).Data*1))/(2*5);
 block.OutputPort(1).Data = block.Dwork(3).Data;
 else
 block.OutputPort(2).Data = block.Dwork(9).Data;
 block.OutputPort(1).Data = block.Dwork(8).Data/1;
 end
else
 if block.Dwork(3).Data*1 <= (block.Dwork(7).Data*block.Dwork(2).Data-

block.Dwork(5).Data)
 block.OutputPort(2).Data =

block.Dwork(1).Data+(block.Dwork(3).Data/block.Dwork(7).Data);
 block.OutputPort(1).Data = block.Dwork(3).Data;
 else
 if (block.Dwork(3).Data*1) < block.Dwork(8).Data
 block.OutputPort(2).Data = block.Dwork(2).Data+(-

1*block.Dwork(4).Data+sqrt(block.Dwork(4).Data*block.Dwork(4).Data+4*5*(block

.Dwork(3).Data*1-block.Dwork(7).Data*(block.Dwork(2).Data-

block.Dwork(1).Data))))/(2*5);
 block.OutputPort(1).Data = block.Dwork(3).Data;
 else
 block.OutputPort(2).Data = block.Dwork(9).Data;
 block.OutputPort(1).Data = block.Dwork(8).Data/1;
 end
 end
end
%endfunction

92

 B.3 Battery Controller Function Matlab Code

This appendix contains the Matlab code of Battery controller function.

function controller(block)
% Level-2 M file S-Function for times two demo.
% Copyright 1990-2004 The MathWorks, Inc.
% $Revision: 1.1.6.1 $
 setup(block);
%endfunction

function setup(block)

 %% Register number of input and output ports

 block.NumInputPorts = 5;
 block.NumOutputPorts = 5;

 %% Setup functional port properties to dynamically
 %% inherited.
 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

 % Allow multidimensional signals
 block.AllowSignalsWithMoreThan2D = true;

 block.InputPort(1).Dimensions = 1; %Demand Power
 block.InputPort(1).DatatypeID = 0; % double
 block.InputPort(1).Complexity = 'Real';
 block.InputPort(1).DirectFeedthrough = true;

 block.InputPort(2).Dimensions = 1; %Current Capacity
 block.InputPort(2).DatatypeID = 0; % double
 block.InputPort(2).Complexity = 'Real';
 block.InputPort(2).DirectFeedthrough = true;

 block.InputPort(3).Dimensions = 1; %Demand Power
 block.InputPort(3).DatatypeID = 0; % double
 block.InputPort(3).Complexity = 'Real';
 block.InputPort(3).DirectFeedthrough = true;

 block.InputPort(4).Dimensions = 1; %Demand Power
 block.InputPort(4).DatatypeID = 0; % double
 block.InputPort(4).Complexity = 'Real';
 block.InputPort(4).DirectFeedthrough = true;

 block.InputPort(5).Dimensions = 1; %Aging factor
 block.InputPort(5).DatatypeID = 0; % double
 block.InputPort(5).Complexity = 'Real';
 block.InputPort(5).DirectFeedthrough = true;

 block.OutputPort(1).Dimensions = 1; %Output Power
 block.OutputPort(1).DatatypeID = 0; % double

93

 block.OutputPort(1).Complexity = 'Real';

 block.OutputPort(2).Dimensions = 1; %New Current Capacity
 block.OutputPort(2).DatatypeID = 0; % double
 block.OutputPort(2).Complexity = 'Real';

 block.OutputPort(3).Dimensions = 1; %Output Power
 block.OutputPort(3).DatatypeID = 0; % double
 block.OutputPort(3).Complexity = 'Real';

 block.OutputPort(4).Dimensions = 1; %Output Power
 block.OutputPort(4).DatatypeID = 0; % double
 block.OutputPort(4).Complexity = 'Real';

 block.OutputPort(5).Dimensions = 1; %Aging factor
 block.OutputPort(5).DatatypeID = 0; % double
 block.OutputPort(5).Complexity = 'Real';

 % Register parameters
 block.NumDialogPrms = 0;

 %% Set block sample time to inherited
 block.SampleTimes = [-1 0];

 %% Run accelerator on TLC
 block.SetAccelRunOnTLC(true);

 %% Register methods
 block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);
 block.RegBlockMethod('InitializeConditions', @InitConditions);
 block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);
 %block.RegBlockMethod('SetInputPortDimensions', @SetInpPortDims);
 %block.RegBlockMethod('Terminate', @Terminate);
 block.RegBlockMethod('Outputs', @Output);
%endfunction

function DoPostPropSetup(block)

 %% Setup Dwork
 block.NumDworks = 1;

 block.Dwork(1).Name = 'age'; %Aging Factor
 block.Dwork(1).Dimensions = 1;
 block.Dwork(1).DatatypeID = 0;
 block.Dwork(1).Complexity = 'Real';
 block.Dwork(1).UsedAsDiscState = true;

%endfunction

function InitConditions(block)
%%

94

 %block.Dwork(1).Data = 30; %turnPoint
 block.OutputPort(3).Data=5;
 block.OutputPort(4).Data=5;
% block.Dwork(1).Data=30 %battery max capacity;

 %endfunction

%endfunction

function SetInputPortSamplingMode(block, idx, fd)
 block.InputPort(idx).SamplingMode = fd;
 for i=1:block.NumOutputPorts
 block.OutputPort(i).SamplingMode = fd;
 end
%endfunction

function Output(block)

block.OutputPort(1).Data=block.InputPort(1).Data;
block.OutputPort(2).Data=block.InputPort(2).Data;
block.OutputPort(5).Data=block.InputPort(5).Data;
block.Dwork(1).Data=block.InputPort(5).Data;

if block.InputPort(1).Data>0
 if (block.Dwork(1).Data*30)>block.InputPort(3).Data
 block.OutputPort(3).Data=block.InputPort(3).Data;
 block.OutputPort(4).Data=block.InputPort(3).Data;
 else
 block.OutputPort(3).Data=block.Dwork(1).Data*30;
 block.OutputPort(4).Data=block.Dwork(1).Data*30;
 end
else
 if (block.Dwork(1).Data*30)>block.InputPort(4).Data
 block.OutputPort(3).Data=block.InputPort(4).Data;
 block.OutputPort(4).Data=block.InputPort(4).Data;
 else
 block.OutputPort(3).Data=block.Dwork(1).Data*30;
 block.OutputPort(4).Data=block.Dwork(1).Data*30;
 end
end

%

%endfunction

