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Abstract

An elementary model for the analysis of a photovoltaic solar cell is pro-

posed. This analysis is rooted in the current-voltage device characteristics

associated with a p-n junction in conjunction with a model for a solar flux

controlled current source; this follows the approach of Prince [M. B. Prince,

Journal of Applied Physics, vol. 26, pp. 553-540, 1955], the p-n junction ar-

chitecture being that underlying the photovoltaic solar cell. Recombination

processes were modeled through two means: (1) an empirical expression for

the current-voltage device characteristics with an associated ideality factor,

η, whose value determines the importance of recombination processes, and

(2) a more advanced expression that includes a recombination current. It is

shown that the simplified empirical expression is overly simplified and that

its use leads to artifacts, i.e., the suggestion that recombination processes

could actually enhance the fill-factor. In contrast, the more realistic current-

voltage device characteristic, which includes both ideal and recombination

related current densities, suggests that recombination processes actually will

reduce the fill-factor. This later observation is in accord with the experi-

mental observation.
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Chapter 1

Introduction

The economic vibrancy of modern industrial economies requires access

to cheap and abundant supplies of energy. Today, the uses of energy are

numerous. Energy is needed for the transportation of goods and for man-

ufacturing. It is also crucial for allowing habitation in regions of the Earth

that are either too cold or too hot or both. The demand for energy continues

to increase with each passing year; see Figure 1.1. In 2010, industrial soci-

eties consumed about 515 Exajoules (EJ) of energy; 1 Exajoule is equivalent

to 1018 Joules (J). Projections suggest that the global demand for energy

will exceed 700 EJ per year by the year 2030, a 36% increase over that

consumed in 2010 [1]. Energy supplies fuel modern human civilization. In-

dustrial societies would cease to function if sources of energy were no longer

available.

There are a number of natural resources that may be drawn upon in

order to generate energy. For the past century, fossil fuels have been the pri-

mary source of energy for modern industrial societies, such as Canada’s [2].

Unfortunately, in recent years, the finiteness and non-renewable nature of

this resource has become apparent [3]. Oil industry insiders suggest that

“peak oil” will be achieved shortly. In addition, the demand for energy from

emerging economies will rapidly deplete the reservoirs of fossil fuels that

1



Chapter 1. Introduction

Figure 1.1: Worldwide energy consumption by industrial societies as a function

of the year. The data depicted in this plot is from the US Department

of Energy [1].

2



Chapter 1. Introduction

remain. The harmful emissions that arise as a corollary to the use of fossil

fuels further underscores the urgent need to develop alternate and renewable

sources of energy.

In actual fact, renewable sources of energy have been used since the dawn

of human civilization. Throughout human history, flowing water has been

used in order to supply energy needs. Flour mills of yore often used water in

order to provide the mechanical energy needed for the flywheels and pulleys

found within such plants [4]. More recently, flowing water has been used

in order to supply electrical power. This type of electrical power is often

referred to as hydroelectricity. The first use of hydroelectricity dates back

as far as the 1870s [5]. Adam Beck’s development of the Niagara Falls power

station, the first large scale hydroelectrical generating station on Earth, fur-

ther demonstrated the utility of hydroelectricity [6]. Similar projects have

now been developed throughout the world. Unfortunately, this resource is

now almost fully tapped, and new sources of renewable energy must also be

considered [7].

While wind power has been used for many years, it is really only over

the past two decades that wind power has been added to the energy mix as

a viable candidate for the generation of renewable electrical power. This is

particularly true in Europe, where tax incentives have created a large wind

power industry. In Denmark, for example, wind power supplies as much

as 20% of the electrical energy in the country [8]. In many jurisdictions

within North America, windmills now dot the countryside [9], and wind

power is now considered a serious potential source of renewable energy; at

the present time, however, wind power only supplies 2 % of North Ameri-

3



Chapter 1. Introduction

can electrical power demands [10]. Unfortunately, there are some drawbacks

associated with wind power that detract from its practicality. The wind is

variable in its intensity, and thus, it can not be used in order to supply a

steady source of power. The construction of wind turbines is costly and

impacts upon the local environment. The noise that is produced as a result

of wind power also has taken the sheen off this potential source of renewable

energy [11].

The Sun produces a tremendous amount of energy. Arising as a product

of thermonuclear fusion processes within it, the solar radiation that is emit-

ted from the Sun is mostly in the form of electromagnetic waves [12]. The

Earth receives a solar flux of roughly 1400 W/m2 [13]. This radiation fur-

nishes the Earth with the energy that the life forms on the Earth require. It

is responsible for supplying the Earth with warmth and for photosynthesis,

which is the process that allows plants to grow; photosynthesis converts so-

lar radiation into organic compounds, which is ultimately the energy source

that plants draw upon for sustenance. Estimates suggest that the Earth

receives about 5.6 million EJ of solar radiation per year [14]. If completely

harnessed, this would supply in excess of 10000 times of all of humanity’s

energy needs today.

Solar radiation may be harnessed through the use of solar cells. A pho-

tovoltaic solar cell is comprised of semiconducting materials prepared in

the form of a p-n junction. Photovoltaic solar cells aim to generate elec-

trical power in response to exposure to the Sun’s rays. Solar radiation

corresponds to a flux of photons, and when these photons are sufficiently

energetic, electron-hole pairs can be generated within the semiconductor.

4
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Through the application of a potential across such a solar cell, electrical

power can be drawn from the solar cell. The first modern photovoltaic so-

lar cell was that fabricated in 1954 by Pearson, Chapin, and Fuller of Bell

Telephone Laboratories [15]. This prototype crystalline silicon (c-Si) based

solar cell, which was based on the p-n junction architecture, was reported

to have an initial efficiency of 4.5 %. Subsequent improvements, that were

introduced in the following months, allowed this efficiency to increase to

6 % [16]. Improvements in the materials used and the device geometries

employed, that have been introduced over the past half century, have led to

dramatic improvements in the resultant c-Si based solar cell efficiencies, as

may be seen from Figure 1.2 [17].

Fundamentally, a modern photovoltaic solar cell is a semiconductor p-n

junction. That is, it is comprised of a p-type semiconductor region that is

directly abutted against an n-type semiconductor region. Such junctions are

found frequently in the microelectronics industry, and the fact that the fabri-

cation processes that are employed in their manufacturing are well-developed

further adds to the practicality of this particular solar cell device configu-

ration. When exposed to sunlight, the absorption of the photons within

the sunlight by the semiconductor leads to the generation of electron-hole

pairs within the semiconductor. These charge carriers are then separated

under the action of the electric field. The potential difference that develops

between these separated charge carriers, coupled with the resultant pho-

tocurrent, are what is responsible for the generation of electrical power from

such a solar cell.

A p-n junction is comprised of both neutral and space-charge regions, as
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Figure 1.2: The efficiency of c-Si based solar cells as a function of the year. The

data is taken from Hezel [17].
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is shown in Figure 1.3. The space-charge region is formed in the immediate

locality of the interface between the p-type and n-type semiconductor re-

gions. The neutral regions lie on either side of this space-charge region. The

minority charge carriers within both the p-type and n-type semiconductor

regions are ultimately what are responsible for the external photocurrent. To

zeroth-order, the minority charge carriers within the neutral regions, that

are primarily engaging in diffusion processes, may be considered as being

supplied by the external current. If the recombination that occurs within

the space-charge region is taken into account, however, the external current

must also supply the charges that are lost due to recombination within the

space-charge region. As photovoltaic solar cells are fabricated using a p-n

junction configuration, it is clear that recombination processes are likely to

play an important role in determining the performance of such a cell.

This thesis is organized in the following manner. In Chapter 2, a brief

review of the developments in solar cell technology, that have transpired

over the years, is provided. In addition, a detailed description of the solar

spectrum is furnished within this chapter, this providing a measure of how

the power provided by the Sun is distributed over the electromagnetic spec-

trum. Then, in Chapter 3, the operating principles of the p-n junction are

discussed, the photovoltaic solar cell being based on the p-n junction archi-

tecture. In Chapter 4, the p-n junction operating principles are employed

in concert with the solar spectrum in order to analyze the performance of

a photovoltaic solar cell. The impact of recombination processes on these

results is also examined. Finally, in Chapter 5, conclusions are drawn and

recommendations for further research are suggested.
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Figure 1.3: A schematic of a p-n junction. The p-type region is abutted next to

the n-type region. The neutral and space-charge regions are depicted.
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Chapter 2

The solar spectrum and

background material

2.1 Background

Modern photovoltaic solar cells are based upon the p-n junction con-

figuration. Semiconductors, such as silicon or germanium, are the materi-

als from which these junctions are fabricated. When the Sun’s radiation

impinges upon such a junction, photons, with energies that exceed the en-

ergy gap of the underlying semiconductor, generate electron-hole pairs. The

“built-in” electric field, associated with the space-charge region at the p-

n junction interface, separates these charge carriers. As a consequence, a

potential difference arises across the two electrodes of the junction. This

phenomenon is referred to as the “photovoltaic effect,” and, as a result of it,

exposure of such a junction to light leads to the generation of current [15].

The resultant current is referred to as a photocurrent, as it is ultimately

related to light exposure. The power delivered from the photovoltaic solar

cell is essentially proportional to the product of the photocurrent and the

potential difference across the junction.

In order for a photovoltaic solar cell to work properly, it should per-
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2.1. Background

form four essential functions: (1) light absorption, (2) charge carrier genera-

tion, (3) charge carrier separation, and (4) and charge carrier collection [15].

These functions allow a photovoltaic solar cell to supply electrical power to

a load. Light absorption arises as a consequence of the interaction of a

beam of light with condensed matter, i.e., the semiconductor. As the light

beam passes through the material, its intensity diminishes in an exponen-

tial fashion. The attenuation of light is directly related to the generation

of electron-hole pairs within the material. Photons in the light beam with

energies that exceed the energy gap of the semiconductor can lead to the

creation of electron-hole pairs. These pairs of charge carriers, which typi-

cally recombine when equilibrium is achieved, separate under the action of

the “built-in” electric field that exists across the p-n junction; with light

exposure generating excess charge carriers, the “built-in” junction is not in

equilibrium. In order for these charge carriers to contribute to the external

photocurrent, these charge carriers must drift under the action of the elec-

tric field within the bulk of the p-n junction, i.e., away from the p-n junction

interface towards the external contacts.

This chapter is organized in the following manner. In Section 2.2, a

brief overview of solar cell technological developments, that have transpired

since their introduction, is provided. Then, in Section 2.3, an examination

of the energy in the Sun’s electromagnetic rays is furnished. A number of

solar spectra are then defined in Section 2.4. Finally the integrated solar

spectrum is introduced in Section 2.5.
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2.2. Solar cell technology developments

2.2 Solar cell technology developments

In 1839, the French physicist, A. E. Becquerel, demonstrated the pho-

tovoltaic effect. In particular, while studying the properties of electrolytic

cells, Becquerel noted that an electrical current is produced when such cells

are exposed to light [5]. In contrast, with no light exposure, the electrical

current was found to be nil. As this current is directly related to the pres-

ence of light, it was dubbed a photocurrent. In 1876, A. William and R.

Day observed a photocurrent within the semiconductor selenium [5]. Later

on, in 1894, C. Fritts developed what would later be referred to as a photo-

voltaic solar cell, comprised of a junction of selenium coated with gold. The

efficiency of this cell was about 1 % [15]. While not as efficient as modern

photovoltaic solar cells, Fritts’s development was an impressive 19th Century

engineering innovation.

In the 1950s, c-Si based p-n junctions were being mass produced for a

wide variety of electron device applications. As a result, it was just a matter

of time before the photovoltaic solar cell was implemented in a c-Si based p-n

junction technology. The first successfully implemented c-Si based photo-

voltaic solar cell was that fabricated in 1954 at Bell Telephone Laboratories

by Pearson, Chapin, and Fuller [15]. This cell, which was based upon the

p-n junction architecture, had an initial efficiency which was reported to be

about 4.5 %. Later on, however, with improvements in the device design, a

6 % efficiency was achieved. Initial applications for photovoltaic solar cells

focused on the emerging space-program and military applications. The first

commercial applications for this emerging solar cell technology were found

11



2.2. Solar cell technology developments

in commercial satellites, that were starting to be deployed during the late

1960s. Satellites needed sustainable means of supplying their energy needs,

and solar cells filled this niche very effectively. The first commercial satel-

lite to be powered using solar cells was Telstar from the American Telegraph

and Telecommunications Company, the parent company of Bell Telephone

Laboratories. This satellite was placed in Earth orbit in 1962 [8].

Owing to their great cost, solar cells were initially not employed in con-

sumer electronic products. This has changed over time, however, as solar

cell technology, and the materials related to solar cells, have become more

widely available. Initial applications of solar cell technology in consumer

electronic goods occurred in the mid-1970s (they were initially deployed in

watches and calculators) and now solar cells are a staple of the consumer

electronic products that are available. Recently, solar cells based on different

semiconductor materials, such as cadmium sulphide, gallium arsenide, and

cadmium telluride, have been employed in order to achieve higher efficien-

cies than that achieved previously through c-Si based solar cells [15]. Gains,

in terms of cost-reductions and economies of scale, have also been achieved.

In addition to the burgeoning scope of consumer electronic products that

employ solar cell technology, since the 1990s photovoltaic solar cells have

been fabricated for telecommunication and localized power supply applica-

tions [15]. Recently, there has been interest in using photovoltaic solar cells

for supplying electricity to the grid [15]. In 2000, the first photovoltaic solar

cell production plant, that aimed to produce photovoltaic solar cells for mass

power generation purposes, was built in Perrysburg, Ohio [8]. Most recently,

research, in terms of photovoltaic solar cells, has focused upon fabricating

12



2.3. Blackbody radiation

solar cells of improved geometries and with different materials in order to

achieve higher efficiencies and greater cost effectiveness [15].

2.3 Blackbody radiation

The power within the Sun’s rays may be characterized by the solar spec-

trum, which provides for the distribution of power over the electromagnetic

spectrum. Often times, insights into the spectral dependence of this power

spectrum may be achieved by treating the Sun as a blackbody, a blackbody

absorbing all of the radiation that it receives. While the Sun is not exactly

a blackbody, the blackbody approximation works quite well and provides

insight into the spectral dependence of the solar spectrum. It is therefore

instructive to consider the power spectrum corresponding to a blackbody.

For steady-state sinusoidal excitations, of angular frequency, ω, in a vac-

uum, the equation for the electric field, ~E, may be expressed as

∇2~E = −ω
2

c2
~E, (2.1)

where c represents the speed of light in vacuum. For an electromagnetic

cavity, of dimensions L×L×L, as shown in Figure 2.1, for zero-field along

the boundaries, the possible solutions for Eq. (2.1), for all dimensions, i.e.,

Ex, Ey, and Ez, where ~E = (Ex, Ey, Ez), are of the form [18],

E(x, y, z) = A sin

(
nxπx

L

)
sin

(
nyπy

L

)
sin

(
nzπz

L

)
, (2.2)

where A is a constant and nx, ny, and nz are integers which are greater than

or equal to unity. Substituting Eq. (2.2) into Eq. (2.1), it may be seen that

ω2

c2
=

(
nxπ

L

)2

+

(
nyπ

L

)2

+

(
nzπ

L

)2

. (2.3)
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Figure 2.1: A three dimensional electromagnetic cavity of the dimensions

L×L×L.
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ny, and nz values, corresponding to a possible solution of Eq. (2.1).
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2.3. Blackbody radiation

In n-space, which is depicted in Figure ??, there is a unit density of

points in the first octet, i.e, there is one point for every combination of nx,

ny, and nz, where these quantities are integers. In the continuum limit,

i.e, when nx, ny, and nz become large, the number of points with angular

frequency less than a given value of ω,

Ñ(ω) =
1

8

4π

3
n3, (2.4)

where

n2 = n2
x + n2

y + n2
z. (2.5)

Noting, from Eq. (2.3), that

ω2

c2
=
π2

L2
n2, (2.6)

it is seen that

Ñ(ω) =
1

8

4π

3

(
ω2L2

c2π2

)3/2

. (2.7)

This suggest that a density of modes may be defined, i.e, where nω(ω)∆ω

corresponds to the number of electromagnetic modes in the cavity, between

[ω, ω+∆ω], per unit volume [18]. Given that every nx, ny, and nz selection

corresponds to two possible electromagnetic modes, i.e, two different po-

larizations, differentiation of Eq. (2.7), multiplication by a factor of 2, and

division by the volume, L3, results in

nω(ω) =
ω2

c3π2
. (2.8)

It is often the case that one must instead determine the distribution of
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2.3. Blackbody radiation

modes over frequency or wavelength. Noting that

f =
ω

2π
, (2.9)

and that

fλ = c, (2.10)

two alternate density of modes distribution functions may also be intro-

duced, nf (f) and nλ(λ), where nf (f)∆f and nλ(λ)∆λ denote the number

of electromagnetic modes, per unit volume, between [f , f+∆ f ] and [λ, λ+

∆λ], respectively. Thus,

nf (f) =
8πf2

c3
, (2.11)

while

nλ(λ) =
8π

λ4
. (2.12)

These functions, nω(ω), nf (f), and nλ(λ), provide for the density of electro-

magnetic modes, per unit volume, with respect to ω, f , and λ, respectively.

The density of electromagnetic modes, nω(ω), may now be employed in

the determination of the energy density. In particular, it may be shown that

the energy density

uω(ω) = nω(ω)E(ω), (2.13)

where uω(ω)∆ω represents the energy, per unit volume, between angular

frequencies [ω, ω+∆ω], and E(ω) denotes the energy per electromagnetic

mode of angular frequency ω. Classically, it may be shown that the energy

per electromagnetic mode is kT , where T represents the temperature and k

denotes the Boltzmann constant, i.e.,

uω(ω) =
1

π2

w2

c3
kT. (2.14)
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2.3. Blackbody radiation

In a similar sense, the energy density, with respect to frequency and wave-

length, uf (f) and uλ(λ), respectively, may be expressed as

uf (f) =
8πf2

c3
kT, (2.15)

and

uλ(λ) =
8π

λ4
kT , (2.16)

where uf (f)∆f and uλ(λ)∆λ represent the energy, per unit volume, between

[f , f+∆f ] and [ω, ω+∆ω], respectively. Unfortunately, the classical en-

ergy distributions, uω(ω), uf (f), and uλ(λ), depicted in Eqs. (2.14), (2.15),

and (2.16), respectively, exhibit a non-integrable singularity at high frequen-

cies or low wavelengths. This was referred to as the ultraviolet catastrophe

in the 19th Century scientific community [19]. Of course, the integration of

the energy spectrum of a blackbody object is in actuality finite, this being

experimentally known in the 19th Century. The reasons why the ultraviolet

catastrophe does not occur were accounted for in the early 20th Century,

and the phenomena underlying these reasons led to a revolution in physics

that continues today.

In 1900, Planck suggested that light was actually comprised of photons,

and that each photon has a discrete energy, which is linearly proportional

to its angular frequency, ω [19]. Introducing a constant, now referred to as

Planck’s constant, h, the corresponding photon energy may be expressed as

h̄ω, where h̄ is referred to as the reduced Planck’s constant, i.e.,

h̄≡ h

2π
. (2.17)

Through a statistical analysis, Planck was able to demonstrate that

18



2.3. Blackbody radiation

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

Classic theory

Quantum theory

h̄ω/kT

E
ω
(ω

)/
k
T

Figure 2.3: The energy per electromagnetic mode as a function of h̄ω
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2.3. Blackbody radiation

Eω(ω) =
h̄ω

exp
(
h̄ω
kT

)
− 1

. (2.18)

In Figure 2.3, the energy per mode is plotted as a function of the photon

energy, h̄ω. The classical result, kT , is also depicted, it being independent of

h̄ω; this spectral dependence is normalized with the respect to the classical

result, kT , i.e., the results are presented in a dimensionless form. It is

noted that as h̄ω becomes very large, the energy per electromagnetic mode

diminishes, eventually becoming negligible. This allows for a reconciliation

between theory and experiment, i.e., the ultraviolet catastrophe is eliminated

through the exponential decrease in Eω(ω) as ω → ∞, i.e., the resultant

function, uω(ω), is now integrable. It is noted that in the classical limit, i.e.,

when h̄→ 0, Eq. (2.18) reduces to the classical result, i.e.,

Eω(ω)→ kT. (2.19)

This is consistent with the general observation that all quantum results

reduce to their corresponding classical results as h̄ → 0, i.e., as one moves

towards the classical limit.

In the f representation

Ef (f) =
hf

exp
(
hf
kT

)
− 1

, (2.20)

while in the λ representation

Eλ(λ) =
hc

λ
[
exp

(
hc
kλT

)
− 1

] , (2.21)

where Ef (f) and Eλ(λ) represent the energy per electromagnetic mode. Us-

ing the Planck result for Eω(ω), i.e., Eq. (2.18), from Eqs. (2.8) and (2.13),
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2.3. Blackbody radiation

the energy density associated with an electromagnetic cavity may be ex-

pressed as

uω(ω) =
1

π2c3

 h̄ω3

exp
(
h̄ω
kT

)
− 1

. (2.22)

A similar analysis, performed in the f representation, yields

uf (f) =
8πf2

c3

 hf

exp
(
hf
kT

)
− 1

, (2.23)

where Eq. (2.23) is determined from the product of Eqs. (2.11) and (2.20).

In the wavelength representation, however,

uλ(λ) =
1

λ5

 8πhc

exp
(
hc
λkT

)
− 1

, (2.24)

where Eq. (2.24) is determined from the product of Eqs. (2.12) and (2.21). It

is noted that all of the energy distribution functions, i.e., uω(ω), uf (f), and

uλ(λ), are now integrable. The distribution of energy of an electromagnetic

cavity, is plotted as a function of wavelength in Figure 2.4, for both the

classical and quantum cases, i.e., Eqs. (2.16) and (2.24), respectively. The

temperature is set to the surface temperature of the Sun, i.e., 5780 K, for

the purposes of this analysis. The ultraviolet catastrophe is seen at low

wavelengths for the classical result [20].

It can be shown that the power flux produced by a blackbody object is

related to the energy density within the cavity. In particular, we have

pω(ω) = uω(ω)
c

4
, (2.25)

where pω(ω)∆ω represents the power emitted, between [ω, ω+∆ω], per unit

area; the power flux refers to the projected power, per unit area, that is
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radially emitted. Using Eqs. (2.22) and (2.25), it can be shown that

pω(ω) =
1

4π2c2

 h̄ω3

exp
(
h̄ω
kT

)
− 1

, (2.26)

where integration over this power spectrum leads to the total power radiated

from the blackbody object, per unit area. A similar analysis may be used

to show that in the f representation,

pf (f) =
2πf2

c2

 hf

exp
(
hf
kT

)
− 1

, (2.27)

where pf (f)∆f provides for the power emitted, between frequencies [f, f +

∆f ], per unit area. In the λ representation, however,

pλ(λ) =
1

λ5

 2πhc2

exp
(
hc
λkT

)
− 1

, (2.28)

where pλ(λ)∆λ provides for the power emitted, between wavelengths [λ, λ+

∆λ], per unit area. All of these power flux spectra are seen to be integrable.

The expressions for the power flux spectra that have been determined

correspond to the surface of the blackbody. The solar flux received by the

Earth is attenuated, of course. Assuming that the solar radiation emitted

from the Sun is projected radially from the surface of the Sun, if the Earth

orbits the Sun at a radius rse, and if the Sun itself has a radius rs, then the

power flux received at the periphery of the Earth’s atmosphere is reduced

by an attenuation factor of
(
rs
rse

)2
, as seen in Figure 2.5 [21]. That is, in the

ω representation, the power flux spectra, received by the periphery of the

Earth’s atmosphere, may be expressed as

pω(ω) =
1

4π2c2

(
rs
rse

)2
 h̄ω3

exp
(
h̄ω
kT

)
− 1

. (2.29)
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Figure 2.5: The Earth orbiting the Sun at radius rse. The radius of the Sun itself

is rs. These distances have been exaggerated on this figure for the

purposes of illustration.
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In the f representation, however, this received power flux spectra may in-

stead be expressed as

pf (f) =
2πf2

c2

(
rs
rse

)2
 hf

exp
(
hf
kT

)
− 1

. (2.30)

In the λ representation, this received power flux spectra may be expressed

as

pλ(λ) =

(
rs
rse

)2 2πhc2

λ5
[
exp

(
hc
λkT

)
− 1

] . (2.31)

The temperature in these expressions, i.e., Eqs. (2.29), (2.30), and (2.31),

corresponds to that at the surface of the blackbody, i.e., the surface of the

Sun, as thermal equilibrium is achieved with the surrounding environment

through this surface. It is seen that these power spectra are strong functions

of this temperature. Treating the Sun as a blackbody, the power spectrum

of the solar flux received by the periphery of the Earth’s atmosphere, i.e.,

the solar spectrum, is a strong function of the temperature of the surface of

the Sun. In the λ representation, i.e., Eq. (2.31), the variations exhibited

by this power spectrum to changes in the Sun’s surface temperature are

depicted in Figure 2.6. For the purposes of this analysis, the radius of the

Sun, rs, is set to be 700 × 103 km, while the radius of the Earth orbit, rse,

is taken to be 150 × 106 km.

2.4 The solar spectrum

The solar spectrum characterizes the distribution of power within the

electromagnetic radiation received from the Sun by the Earth. This electro-

magnetic radiation is comprised of both electric and magnetic field compo-
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Figure 2.6: The solar spectrum, i.e., the power flux spectrum received at the

periphery of the Earth’s atmosphere, as a function of wavelength of

blackbody radiation for different temperatures. These temperatures

correspond to the temperature of the surface of the Sun. Eq. (2.31) is

used for the purposes of this analysis, where rs is set to 7.0 × 105 km

and rse is set to 1.5 × 108 km.
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nents, and it reaches the Earth after propagating from the Sun to the Earth

through space. It is instructive to define the spectral intensity of the solar

radiation received by the Earth in terms of the “air mass” that the Sun’s

rays encounter. The air mass takes into account the losses that occur as a

consequence of the propagation of the Sun’s electromagnetic flux through

the Earth’s atmosphere. Losses arise as a result of the interactions of the

electromagnetic radiation from the Sun with aerosol particles, gas molecules,

and cloud droplets [22].

At the periphery of the Earth’s atmosphere, the solar spectrum is as

determined by the Sun, and the distance of the Earth’s orbit from the Sun.

It should be noted, however, that slight deviations from the blackbody spec-

trum, arising from absorption processes within the Sun’s atmosphere itself,

do occur. As a result, at the periphery of the Earth’s atmosphere, the solar

spectrum appears slightly different from that of a blackbody with an appro-

priately selected Sun surface temperature [23]. The intensity of the solar

radiation received at the periphery of the Earth’s atmosphere is referred

to as air mass-zero (AM0), i.e., the sunlight has passed through zero of the

Earth’s atmospheric mass. In contrast, at the Earth’s surface, when the Sun

is directly overhead, the Sun’s rays have traveled through one atmosphere.

The resultant solar spectrum is referred to as air mass-one (AM1), and it

will have a lower intensity than the AM0 solar spectrum, i.e., propagating

through the Earth’s atmosphere will lead to an attenuation in the received

solar spectrum, this attenuation being non-uniformly distributed over the

electromagnetic spectrum [22].

If the Sun’s radiation is received at an oblique angle, then the Sun’s
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rays will effectively have passed through more than one atmosphere. Air

mass-1.5 (AM1.5), a commonly used reference solar spectrum, refers to the

solar radiation received by the surface of the Earth when the angle of in-

cidence for the solar radiation is such that the Sun’s rays effectively have

passed through 1.5 atmospheres. This corresponds to roughly a 48.2◦ angle

of incidence with respect to the vertical axis; see Figure 2.7. In general, the

air mass can be defined in terms of the angle between the Sun’s rays and

the vertical axis, i.e., the axis normal to the surface of the Earth. That is,

AM(number) =
1

cos(θ)
, (2.32)

where θ refers to the angle of incidence with respect to the vertical axis, i.e.,

θ = 00 corresponds to the Sun’s rays coming in from directly overhead. The

AM0 and AM1.5 solar spectra are depicted in Figure 2.8. The correspond-

ing blackbody radiation spectrum is also depicted in Figure 2.8, where the

surface temperature of the Sun is set to be 5780 K [23], this being a typical

value found in the literature. Integration over these solar spectra, over the

entire range of wavelengths, leads to the power flux densities tabulated in

Table 2.1. Further details are discussed in the literature.

2.5 Integrated solar spectrum

In the analysis of a photovoltaic solar cell, it is instructive to determine

the integrated solar spectrum. In the λ representation, the integrated solar

spectrum.

S̃(λ)≡
∫ λ

0
S(λ)dλ, (2.33)
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Figure 2.8: The solar spectra corresponding to the AM0 and AM1.5 cases. The

experimental data is taken from NREL [24]. The blackbody solar

spectrum is also depicted, for the Sun’s surface temperature set to

5780 K [23]. 30



2.5. Integrated solar spectrum

Table 2.1: The integrated solar spectra obtained for the upper wavelength in

Eq. (2.33) being set to ∞. This corresponds to integrating the so-

lar spectra over the entire range of wavelengths.

Solar Condition Power flux density (W/m2)

AM0 1366.1

AM1.5 1000.13

Blackbody 1534.4

where S(λ) denotes the solar spectrum itself. The integrated solar spectra,

corresponding to the AM0 and AM1.5 solar spectra depicted in Figure 2.8,

are shown in Figure 2.9. The integrated blackbody solar spectrum is also

depicted in Figure 2.9 for the case of the surface temperature of the Sun

being set to 5780 K [23]. It is noted that as the upper wavelength in the

integration of the solar spectrum, i.e., as seen in Eq. (2.33), approaches

infinity, the power densities, tabulated in Table 2.1, are achieved. A similar

analysis may be performed in the ω and f representations, of course.
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Figure 2.9: The integrated solar spectra corresponding to the AM0 and AM1.5 so-

lar spectra. The integrated blackbody solar spectrum is also depicted

for the Sun’s surface temperature set to 5780 K [23].
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Chapter 3

General theory of the p-n

junction with recombination

3.1 Rationale

The fundamental building block of most semiconductor devices is the p-n

junction. This junction forms the cornerstone upon which modern micro-

electronics is built. Accordingly, an understanding of the physics underlying

p-n junctions is an important step to developing an appreciation for the op-

eration of modern electron devices. Given that the p-n junction lies at the

heart of the modern photovoltaic solar cell, understanding the behavior of

the p-n junction is also crucial to the understanding of the operation of

such a cell. In 1951, Shockley introduced a theory for the operation of the

p-n junction, and described the current-voltage device characteristics of the

resultant electron device [25]. This theory remains at the core of our under-

standing of the operation of such devices today.

In this chapter, the general operating principles of the p-n junction are

laid out. Rather than going through all of the details provided for in the

analysis of Shockley [25], instead only details relevant to photovoltaic solar

cell modeling are provided. In particular, the analysis starts with a dis-
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3.2. The geometric layout of the p-n junction

cussion on the geometric layout of the p-n junction. Then, the drift and

diffusion charge carrier transport processes, that occur within a p-n junc-

tion, are presented. The behavior of the p-n junction under no bias is then

discussed. The forward biased p-n junction behavior is then reviewed, an

expression for the current-voltage device characteristic being obtained. The

behavior of the p-n junction under reverse bias is also presented. Finally,

the role that recombination processes play in influencing these device char-

acteristics is discussed.

This chapter is organized in the following manner. In Section 3.2, the ge-

ometric layout of the p-n junction is reviewed. The drift and diffusion charge

carrier transport processes, that occur within a p-n junction, are then dis-

cussed in Section 3.3. The behavior of the p-n junction under no bias is

then presented in Section 3.4. The forward biased p-n junction is reviewed

in Section 3.5, a current-voltage device characteristic being determined for

the case of no recombination. The reverse biased p-n junction is then con-

sidered in Section 3.6. Finally, the role that recombination processes play

in influencing these device characteristics is considered in Section 3.7.

3.2 The geometric layout of the p-n junction

In general, the p-n junction consists of a p-type semiconductor that is

directly abutted against an n-type semiconductor. Most often, a common

crystal is used, although heterogeneous p-n junctions have been fabricated.

The p-type region is created by doping the underlying semiconductor mate-

rial with acceptors, while the n-type region is created by doping the under-
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3.3. Drift and diffusion processes

lying semiconductor material with donors; for the case of c-Si, boron and

phosphorous are commonly used acceptors and donors, respectively [26].

The transition between the p-type and n-type regions can be abrupt, or it

can be of a gentler grade; the metallurgical junction represents the boundary

junction between the p-type and n-type regions. While most p-n junctions

are one-dimensional in nature, two-dimensional and three-dimensional p-n

junctions have also been used in order to produce photovoltaic solar cells.

The geometric layout of a one-dimensional abrupt p-n junction is depicted

in Figure 3.1.

3.3 Drift and diffusion processes

There are two kinds of charge carriers within semiconductors, electrons

and holes. These charge carriers engage in charge transport process that

determine the performance of the resultant electron device. There are two

fundamental charge carrier transport processes that influence the behavior

of a p-n junction: 1) drift, in which the charge carriers transit and under the

action of the applied electric field, and 2) diffusion, in which natural equi-

librium processes act to redistribute the charge carriers within the semicon-

ductor. In this section, these processes are discussed. How these processes

influence the behavior of the resultant p-n junction will be considered later.

Consider an ensemble of N electrons. Electrons in an ensemble are in

a perpetual state of motion and they frequently engage in scattering. Be-

tween scattering events, they act as free particles. It will be assumed that

the i − th electron begins its transit at t = ti, where ti denotes the time
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3.3. Drift and diffusion processes

p−type

M

semiconductor
n−type

semiconductorcontact contact

Figure 3.1: The geometric layout of a representative one-dimensional abrupt p-n

junction. M denotes the metallurgical junction between the p-type

and n-type regions.
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3.3. Drift and diffusion processes

of the last scattering event that the i− th electron has experienced. Under

the action of an applied electric field in the x-direction, assuming that the

initial electron velocity of the i− th electron in the x-direction is ux(ti), the

velocity of this electron in the x-direction at time t may be written as

vxi(t) = uxi(ti)−
qEx
me

(t− ti), (3.1)

where q denotes the electron charge, me represents the mass of the electron,

and Ex is the electric field in the x-direction. The drift velocity of the an

electron ensemble is defined to be

vedx≡
[vx1 + vx2 + ...+ vxN ]

N
. (3.2)

Noting that the average value of the initial velocity of the electrons over the

ensemble is nil, i.e., that

ux1(t1) + ux2(t2) + ...+ uxN (tN )

N
= 0, (3.3)

this drift velocity, defined in Eq. (3.2), may instead be expressed as

vedx =
−qEx
me

[
(t− t1) + (t− t2) + ...+ (t− tN )

N

]
. (3.4)

Noting that the average free time for each electron over the ensemble, i.e.,

the average time between ti to t when i−th electron is free, may be expressed

as

t− ti =
(t− t1) + (t− t2) + ....+ (t− tN )

N
, (3.5)

it is seen that Eq. (3.4) may instead be represented as

vedx = −qEx
me

(t− ti), (3.6)
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3.3. Drift and diffusion processes

where (t− ti) corresponds to the average free time for the electrons between

scattering events. Defining the electron drift mobility

µe =
qEx
me

(t− ti), (3.7)

it is thus seen that

vedx = −µeEx. (3.8)

That is, the electron drift velocity scales linearly with the applied electric

field in the x-direction, Ex. A similar analysis may be employed to show

that the hole drift mobility in the x-direction,

vhdx = µhEx, (3.9)

where µh denotes the hole drift mobility, this mobility being defined in a

similar manner to the electron drift mobility. The electron and hole drift

mobilities, corresponding to c-Si and crystalline germanium (c-Ge) at 300 K,

are tabulated in Table 3.1.

Table 3.1: The electron and hole drift mobilities associated with c-Si and c-Ge at

300 K [27].

Materials µe (cm2/V·s) µh (cm2/V·s)

c-Si 1400 470

c-Ge 3900 1900

The current density associated with an electric field applied in the x-

direction may be expressed as the sum over the contributions due to the
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3.3. Drift and diffusion processes

electrons and holes, respectively. In particular, the current density associ-

ated with drifting electrons

Jedx = −qnvedx, (3.10)

where n denotes the electron concentration (the negative sign is introduced

as electrons are negatively charged), while the current density associated

with drifting holes

Jhdx = qpvhdx, (3.11)

where p represents the hole concentration. Using equations Eqs. (3.8) and (3.9),

Eqs. (3.10) and (3.11) may instead be written as

Jedx = qnµeEx, (3.12)

and

Jhdx = qpµhEx, (3.13)

respectively. Thus, the total current density in the x-direction associated

with drifting charge carriers,

Jdx = Jedx + Jhdx, (3.14)

which may in turn be expressed as

Jdx = (qnµe + qpµh)Ex. (3.15)

In the absence of an applied electric field, charge carriers, be they elec-

trons or holes, diffuse from regions of higher concentration to regions of

lower concentration. The flux of electrons in the x-direction

φe = −De
∂n

∂x
, (3.16)

39



3.3. Drift and diffusion processes

where De denotes the electron diffusion coefficient. Accordingly, as the

electrons have a charge of −q, the current density corresponding to electron

diffusion may be expressed as

JeDx = qDe
∂n

∂x
. (3.17)

A similar analysis indicates that the flux of holes in the x-direction may be

expressed as

φhDx = −Dh
∂p

∂x
, (3.18)

where Dh denotes the hole diffusion coefficient. Accordingly, as the holes

have a charge of q, the hole current density corresponding to hole diffusion

may be expressed as

JhDx = −qDh
∂p

∂x
. (3.19)

The total current density in the x-direction associated with diffusive

processes may be expressed as the sum over the contributions corresponding

to the electrons and holes. Adding Eqs. (3.17) and (3.19), the diffusion

current density may be expressed as

JDx = qDe
∂n

∂x
− qDh

∂p

∂x
. (3.20)

The diffusion coefficients, corresponding to c-Si and c-Ge at 300 K, are tab-

ulated in Table 3.2.

It is often the case that one has both an applied electric field and charge

carrier concentration gradients. Accordingly, both drift and diffusion pro-

cesses must be taken into account when determining the total current flux.

These contributions to the overall current flux are schematically depicted
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3.3. Drift and diffusion processes

Table 3.2: The electron and hole diffusion coefficients associated with c-Si and

c-Ge at 300 K [28].

Materials De (cm2/s) Dh (cm2/s)

c-Si 35 12

c-Ge 100 49

in Figure 3.2. To zeroth-order, these charge carrier transport processes are

independent of each other, and thus, the total current may be expressed as

a sum over that due to drift and that due to diffusion processes, i.e., linear

superposition applies. Thus, the total current density

Jx = Jdx + JDx. (3.21)

While equation Eq. (3.21) will not be explicitly used in the subsequent anal-

ysis, in general, it is the equation to use in cases where one has both an

applied electric field and variations in the charge carrier concentrations [26].

Recombination processes between the charges play an important role in

influencing the performance of devices. When semiconductors are subject

to a stimulus, for example, light in the case of a photovoltaic solar cell,

excess electron-hole pairs can be generated. These charge carriers also re-

combine. For the case of holes in an n-type semiconductor, the excess hole

concentration may be expressed as ∆pn ≡ pn− pno, where pn represents the

concentration of holes in the n-type region, it being a function of position,

and pno denotes the equilibrium concentration in the n-type region; the p

script refers to the fact that the charges considered are holes and the n sub-

script refers to the fact that they are in the n-type semiconductor region,
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3.3. Drift and diffusion processes
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ous drift and diffusion processes. It is assumed that the electric field
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3.3. Drift and diffusion processes

i.e., they are minority charge carriers.

For the case of excess holes combining with a lifetime of τh, the charge

continuity equation in the x-direction may be expressed as

1

q

∂Jhx
∂x

= −pn − pno
τh

, (3.22)

where this equation accounts for the rate with which charge enters a differ-

ential volume in order to compensate for the charge carrier recombination

that occurs within. In the absence of an applied electric field, recalling

Eq. (3.19), Eq. (3.22) reduces to

−Dh
∂2pn
∂x2

= −pn − pno
τh

, (3.23)

which can be generalized to include a charge generation related term. For

just the excess holes in the n-type semiconductor region, neglecting all vari-

ations with respect to time, this charge continuity equation reduces to

Dh
d24pn
dx2

=
4pn
τh

. (3.24)

Defining the hole diffusion length, Lh≡
√
Dhτh, Eq. (3.24) may alternatively

be expressed as

d24pn
dx2

=
4pn
Lh

2 . (3.25)

A similar expression may be determined for the excess electrons in the p-type

semiconductor region, i.e.,

d24np
dx2

=
4np
Le

2 , (3.26)

where Le≡
√
Deτe is referred to as the electron diffusion length and ∆np ≡

np−npo, np representing the concentration of electrons in the p-type region,
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3.4. The p-n junction with no applied bias

it being a function of position, and npo denotes the equilibrium concentra-

tion of electrons in the p-type region; the n script refers to the fact that

the charges considered are electrons and the p subscript refers to the fact

that they are in the p-type semiconductor region, i.e., they are minority

charge carriers. The electron and hole diffusion lengths, Le and Lh, respec-

tively, corresponding to c-Si and c-Ge at 300 K, are tabulated in Table 3.3.

These diffusion lengths will be used in the subsequent analysis. These equa-

tions, i.e., Eqs. (3.25) and (3.26), are generally referred to as the ambipolar

diffusion equations.

Table 3.3: The electron and hole diffusion lengths associated with c-Si and c-Ge

at 300 K [26].

Materials Le (µm) Lh (µm)

c-Si 41 24

c-Ge 79 48

3.4 The p-n junction with no applied bias

It is instructive to consider the distribution of charges within a one-

dimensional abrupt p-n junction, as shown in Figure 3.3. The p-type semi-

conductor region is doped with acceptors. As a result, at normal operating

temperatures, i.e., when the acceptors are fully ionized, these acceptors will

be negatively charged and the corresponding bulk semiconductor will pos-

sess a surplus of holes, i.e., its polarity will be p-type. Similarly, the n-type

semiconductor region is doped with donors. As a result, at normal operat-
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3.4. The p-n junction with no applied bias
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Figure 3.3: The distribution of charges within a one dimensional abrupt p-n junc-

tion.

45



3.4. The p-n junction with no applied bias

ing temperatures, i.e., when the donors are fully ionized, these donors will

be positively charged and the bulk semiconductor will posses a surplus of

electrons, i.e., its polarity will be n-type. It should noted that while the

acceptors and donors atoms are fixed in their position, i.e., effectively they

are immobile, the electrons and holes are free to transit within the mate-

rial [26].

As the p-type region of the semiconductor has a high hole concentra-

tion, these holes tend to diffuse towards the n-type region. Similarly, as

the n-type region of the semiconductor has a high electron concentration,

these electrons tend to diffuse towards the p-type region. Holes that diffuse

into the n-type region will recombine with the electrons in this region near

the junction. Similarly, electrons that diffuse into the p-type region will

recombine with the holes in this region near the junction. As a result, the

junction region becomes depleted of free charge carriers when contrasted

with the bulk p-type and n-type regions far from the junction; see Fig-

ure 3.4 in which the distribution of spatially distributed charge is depicted.

Thus, a space-charge region exists around the junction, comprised of a pos-

itive distribution of charge on the n-type semiconductor side and a negative

distribution of charge on the p-type semiconductor side, these charge dis-

tributions corresponding to the immobile dopant atoms, i.e, ions, be they

acceptors or donors.

This space-charge region will create an internal “built-in” electric field

that points from the n-type region to the p-type region; see Figures 3.4,

and 3.5. This electric field acts to drift holes back into the p-type region

and drift electrons back into the n-type region. The greater the amount of
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3.4. The p-n junction with no applied bias
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Figure 3.4: The depletion region formed in a p-n junction under no bias. The net

distributed charge, ρnet, is also indicated. E0 denotes the “built-in”

electric field.
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3.4. The p-n junction with no applied bias
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Figure 3.5: The electric field within a p-n junction under no bias. The electric

field points from right to left, x = −Wp and x = Wn denoting the

space-charge/neutral region boundaries for the p-type and n-type re-

gions, respectively [26].
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3.4. The p-n junction with no applied bias

charge that is separated between these regions, the greater the “built-in”

electric field. When equilibrium is established, the flux of charge carriers

attributed to diffusion is exactly compensated by that due to drift, both

for electrons and for holes. Thus, under equilibrium conditions, an electric

potential profile, corresponding to the p-n junction, will exist. This poten-

tial profile modifies the band diagram associated with this semiconductor

device. This potential profile is depicted in Figure 3.6.

For a p-n junction under zero bias, the Fermi energy level, EF , remains

constant. To determine the band diagram corresponding to such a junction,

it is noted that the position of the electron energy levels change according to

the relative value of the potential. The resultant band diagram is depicted

in Figure 3.7. Note that in the bulk p-type region, i.e., far from the junction,

holes are the dominant charge carriers as the Fermi energy level is close to

the valence band edge [29]. In contrast, it is noted that in the bulk n-type

region, i.e., far from the junction, electrons are the dominant charge carriers

as the Fermi energy level is close to the conduction band edge. Across the

junction, the charge carrier concentrations change according to the position

of the band edges with respect to the Fermi energy level. The dependence

of the charge carrier concentrations on the position within the p-n junction

is depicted in Figure 3.8.

The bulk concentrations of the electrons and holes in the n-type region

under no bias may be written as nno and pno, respectively, where the sub-

script “o” refers to the case of no bias. The bulk concentrations of the

electrons and holes in the p-type region under no bias may be written as

npo and ppo, respectively. Assuming that all the donors and acceptors are
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3.4. The p-n junction with no applied bias

Figure 3.6: The electric field corresponding to a p-n junction under no bias. Vo

denotes the “built-in” potential.
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3.4. The p-n junction with no applied bias
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Figure 3.7: The energy band diagram of an unbiased p-n junction [29].
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3.4. The p-n junction with no applied bias

Figure 3.8: The charge carrier concentrations as a function of the position within

the p-n junction.
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3.4. The p-n junction with no applied bias

completely ionized, the “built-in” potential,

Vo =
kT

q
ln

(
pponno
n2
i

)
, (3.27)

where ni denotes the intrinsic charge carrier concentration. Noting that in

equilibrium

pn = n2
i , (3.28)

it is seen that in the bulk of the n-type region,

pnonno = n2
i , (3.29)

and that in the bulk of the p-type region,

pponpo = n2
i . (3.30)

This suggests that Eq. (3.27) may instead be written as

Vo =
kT

q
ln

(
pponno
pnonno

)
, (3.31)

using Eq. (3.29). Thus, it can be shown that,

pno = ppo exp

(
−qVo
kT

)
. (3.32)

Alternately, Eq. (3.27) may be rewritten as

Vo =
kT

q
ln

(
pponno
pponpo

)
, (3.33)

using Eq. (3.30). Thus,

npo = nno exp

(
−qVo
kT

)
. (3.34)

These expressions relate the minority charge carriers concentrations on one

side of the junction with the correspond majority charge carrier concentra-

tions on the other side of the junction.
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3.5. The p-n junction under forward-bias

3.5 The p-n junction under forward-bias

When a positive potential is applied across the terminals of a p-n junc-

tion, i.e., when the p-n junction is under forward bias, the equilibrium that

was established between the drift and diffusion components of the current

density for the no bias case is disrupted. As a result, there will now be

an injection of excess minority charge carriers across the junction, i.e., ex-

cess holes will be injected into the n-type region and excess electrons will

be injected into the p-type region. This will lead to a net current across

the device. With a positive potential across the p-n junction, the “built-in”

potential reduces from Vo to Vo−V , where V denotes the amount by which

the p-n junction is forward biased. As a consequence, the band diagram is

modified from the no bias case, as is seen in Figure 3.9. Under forward bias,

the Fermi energy level is no longer constant. Instead, it changes according to

the applied voltage, V , this also being shown in Figure 3.9. As a result, there

is a reduction in the height of the barrier [26] and a corresponding reduction

in the width of space-charge region [29]; see Figure 3.10. Accordingly, the

expressions for the minority charge carrier concentrations are modified from

those determined for the zero-bias case, i.e., Eqs. (3.32) and (3.34).

An injection of minority charge carriers across the junction under the

action of a forward bias will lead to minority charge carrier concentrations

that greatly exceed their corresponding steady-state values. These minority

charge carriers will recombine as they diffuse into the neutral regions, i.e.,

away from the space-charge region. Thus, the ambipolar diffusion equations

defined in Section 3.3, i.e., Eqs. (3.25) and (3.26), may be used to determine
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Figure 3.9: The energy band diagram of a forward-biased p-n junction [29].
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3.5. The p-n junction under forward-bias

the profile of excess minority charge carrier concentrations. Considering Fig-

ure 3.11, the excess hole concentration in the n-type region may be shown

to be

∆pn = pn(x = Wn) exp

(
−(x−Wn)

Lh

)
, (3.35)

where it has been assumed that the n-type neutral region is long and where

pn(x = Wn) is the boundary condition at the space-charge/neutral region

boundary on the n-type side, this being determined by the charge carrier

injection. Similarly, the excess electron concentration in the p-type region

may be shown to be

∆np = np(x = −Wp) exp

(
(x+Wp)

Le

)
, (3.36)

where it has been assumed that the p-type neutral region is long and where

np(x = −Wp) is the boundary condition at the space-charge/neutral region

boundary on the p-type side, this being determined by charge carrier injec-

tion.

The amount by which excess minority charge carriers are injected into

a region is related to the reduction in the barrier height, V . Specifically, it

may be shown that

∆pn(x = Wn) = pno

[
exp

(
qV

kT

)
− 1

]
, (3.37)

and that

∆np(x = −Wp) = npo

[
exp

(
qV

kT

)
− 1

]
, (3.38)

where the total minority charge carrier concentration may be determined by

adding the corresponding equilibrium charge carrier concentrations, i.e., pno

for the case of holes in the n-type region and npo for the case of electrons in
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Figure 3.11: The excess hole and electron concentrations in a p-n junction

Eqs. (3.37) and (3.38) establish the boundary conditions. The

x = −Wp represents the location of the space-charge/neutral region

boundary in the p-type region of junction. The x = Wn represents

the location of the space-charge/neutral region boundary in the n-

type region of junction.
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3.5. The p-n junction under forward-bias

Figure 3.12: The contributions to the current density associated with the drift

and diffusion processes.
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the p-type region.

From Section 3.3, it was demonstrated the total current density is deter-

mined by the sum over that due to drift and diffusion processes, their being

four possible current components contributing to the overall current den-

sity; recall Figure 3.12. It can be shown that the drift and diffusion current

densities associated with the majority charge carriers are negligible at the

edges space-charge/neutral region boundaries; see Figure 3.12. Accordingly,

the current density may be determined by evaluating the sum over the hole

and electron diffusion current densities at the different space charge/neutral

region boundaries for each minority charge carrier considered. That is

J = JhDx|x=+Wn + JeDx|x=−Wp , (3.39)

where JhDx|x=+Wn refers to the hole diffusion current on the n-type semi-

conductor side, i.e., evaluated at x = +Wn, and JeDx|x=−Wp , i.e., evaluated

at x = −Wp, represents the electron diffusion current on the p-type semi-

conductor side. Thus, from Eqs. (3.37) and (3.38), and using Eqs. (3.17)

and (3.19), it can be shown that

J =

(
qDh

Lhnno
+

qDe

Leppo

)
n2
i

[
exp

(
qV

kT

)
− 1

]
. (3.40)

This expression for the current density may alternatively be expressed as

J = Jso

[
exp

(
qV

kT

)
− 1

]
, (3.41)

where all the terms have been defined previously, the scale current density,

Jso =

(
qDh

Lhnno
+

qDe

Leppo

)
n2
i . (3.42)
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3.6. The p-n junction under reverse bias

Eqs. (3.40) is referred to as the ideal diode current-voltage device characteris-

tic associated with a p-n junction, i.e., a p-n junction without recombination

processes. The corresponding current may be obtained by multiplying the

current density with the area of the junction.

3.6 The p-n junction under reverse bias

When a negative potential is applied across the terminals of a p-n junc-

tion, i.e., when the p-n junction is under reverse bias, the electric field

related to the voltage across the terminals is in the same direction as that

related to the “built-in” electric field, as can be seen from Figure 3.13. As a

result, the potential barrier is increased and the current across the p-n junc-

tion becomes negligible. In addition, the breadth of the space-charge region

becomes wider [29]. The resultant band diagram is depicted in Figure 3.14.

3.7 Recombination processes

In the event that the charge carriers recombine, these recombining charge

carriers must be supplied by the external current. An elementary model for

these recombination processes may be obtained by plotting the electron and

hole concentrations across the space charge region, as is shown in Figure 3.15.

If the mean hole recombination time associated with the n-type region of

the space-charge region is denoted τh and the mean electron recombination

time associated with the p-type region of the space-charge region is denoted

τe, assuming a thick space-charge region, then the recombination current

density may be expressed as
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Figure 3.13: Depletion region formed in a p-n junction under reverse bias. Note

that the space-charge region is wider than for the no bias case.
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Figure 3.14: The energy band diagram for a reverse-biased p-n junction [29].
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space-charge region.
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3.7. Recombination processes

Jrecom =
q 1

2WpnM

τe
+
q 1

2WnpM

τh
, (3.43)

where nM and pM are the concentrations of electrons and holes at center of

the junction, respectively; see Figure 3.15. Assuming that the junction is

symmetric in form, it may be shown that

pM = nM = niexp

(
qV

2kT

)
. (3.44)

Thus, the current density due to recombination may be expressed as

Jrecom = q
1

2
Wp

(
1

τe
+

1

τh

)
exp

(
qV

2kT

)
. (3.45)

This expression for the current density may alternatively be expressed as

Jrecom = Jroexp

(
qV

2kT

)
, (3.46)

where the recombination scale current

Jro = q
1

2
Wp

(
1

τe
+

1

τh

)
. (3.47)

With recombination processes taken into account, within the framework

of linear superposition, the overall current density may be expressed as

J(v) = Jsoexp

(
qV

kT

)
+ Jroexp

(
qV

2kT

)
, (3.48)

where the first term represents the current density related to the ideal diode

and the second term denotes the current density contribution attributable

to recombination processes. These contributions to the current density are

plotted as a function of the applied voltage in Figure 3.16, for the case of Jso

set to 1 µA/cm2 and Jro set to 10 nA/cm2, these being representative values
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Figure 3.16: The current density-voltage device characteristics corresponding to

Eq. (3.48) with Jso set to 1 µA/cm2 and Jro set to 10 nA/cm2. The

temperature is set to 300 K.
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found in the literature. The impact that recombination processes play in

determining the performance of a photovoltaic solar cell will be investigated

further in Chapter 4 using this expression.

It is often the case that the current-voltage device characteristic asso-

ciated with a p-n junction may be represented using the simple empirical

relationship

J(v) = Jo

[
exp

(
qV

ηkT

)
− 1

]
, (3.49)

where η denotes the ideality factor. The ideality factor, η, represents the

amount of recombination that occurs. A value of η set to 2 implies that

recombination processes dominate, while a value of η set to unity suggests

that recombination processes play a negligible role. For the purposes of

the subsequent analysis, owing to its simplicity, Eq. (3.49) will initially be

employed. Later, as the impact of recombination processes are further ex-

amined, Eq. (3.48) will be used instead.
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Chapter 4

Solar cell performance

analysis

4.1 Motivation

Fundamentally, a photovoltaic solar cell is created when a p-n junction

is exposed to light. The photons in the light generate electron-hole pairs

within the junction. These pairs are then separated by the large “built-in”

electric field that occurs at the p-n interface within such a junction. The

transport of charge carriers, be they electrons or holes, creates a current.

As the incident light that the p-n junction receives is directly responsible

for this current, within the context of a solar cell device application, such

a current is usually referred to as a photocurrent. It is the product of the

photocurrent and the voltage developed across the terminals of such a p-n

junction that allows for power to be delivered to a load from the solar cell.

Following Prince [30], the behavior of a solar cell may be modeled as

a p-n junction in parallel with a solar flux controlled current source. The

corresponding circuit model is depicted in Figure 4.1. Clearly, a detailed

understanding of p-n junction operation is crucial to the understanding of

the behavior of this circuit. The functioning of the solar flux controlled
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Figure 4.1: Model for the behavior of a photovoltaic solar cell. The p-n junction

is in parallel with a solar flux controlled current source. This circuit

model follows the suggestion of Prince [30].
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4.1. Motivation

current source, which in turn depends upon how the materials within the

p-n junction respond to light, is also important. Linking this response to

the corresponding solar spectrum is a key focus of this analysis. With the

characteristics of the p-n junction established, and the operation of the solar

flux controlled current source determined, the performance of such a solar

cell may be assessed.

This chapter is organized in the following manner. In Section 4.2, the ge-

ometries commonly employed for photovoltaic solar cells are reviewed. Then,

in Section 4.3, the overall form of the behavior of such a cell is discussed.

Performance metrics, corresponding to the photovoltaic solar cell, are then

introduced in Section 4.4. Following the approach of Prince [30], using an

empirical model for the current-voltage p-n junction device characteristic,

i.e., Eq. (3.49), the performance of a photovoltaic solar cell is examined in

Section 4.5. This analysis demonstrates a shortcoming of Eq. (3.49), where

the ideality factor, η, is set to values beyond unity. The relationship with

the underlying material parameters corresponding to these photovoltaic so-

lar cells is then discussed in Section 4.6. In Section 4.7, the impact that

parasitic resistances have upon the performance of a photovoltaic solar cell

are then presented. The relationship between this performance and the solar

spectrum are then examined in Section 4.8, the dependence of the efficiency

of the solar cell on the energy gap of the material being determined for the

different solar spectra considered in this analysis. Finally, using a more rig-

orous approach, how recombination processes impact upon the performance

of a photovoltaic solar cell is considered in Section 4.9.
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4.2. Solar cell geometries

4.2 Solar cell geometries

There have been a number of different geometries proposed for the pho-

tovoltaic solar cell. Fundamentally, all of these configurations are in the

form of a p-n junction. A p-n junction is comprised of a p-type semicon-

ductor region abutted against an n-type semiconductor region. It is the

minority charge carriers in either region that determine the photovoltaic

response of such a junction. As the electrons within c-Si have a greater mo-

bility than the holes (recall Table 3.1), thicker p-type regions are preferred,

i.e, electrons are the minority charge carrier within the p-type c-Si region.

Accordingly, most modern c-Si based photovoltaic solar cells are comprised

of a thin n-type c-Si layer and a thicker p-type c-Si layer. A representative

one-dimensional p-n junction, that may be used for photovoltaic solar cell

device applications, is depicted in Figure 4.2. Real photovoltaic solar cell

geometries will be more complex, of course.

Multidimensional photovoltaic solar cells have been introduced in or-

der to achieve greater efficiencies. Lately, for example, Kayes and Atwater

have proposed a distribution of radial p-n junctions [31]. Kayes and At-

water found that the efficiencies produced from these radial p-n junctions

are higher than those corresponding to conventional p-n junctions; this is

true for low lifetime materials [31]. Radial p-n junctions offer a greater p-n

junction interface surface area. Fundamentally, it is this greater surface area

that is responsible for these greater efficiencies.
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Figure 4.2: A representative one dimensional p-n junction that may be used for

photovoltaic device applications. Note that the p-type layer is thicker

than the n-type layer.
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4.3. Photovoltaic solar cell behavior

4.3 Photovoltaic solar cell behavior

For the circuit model depicted in Figure 4.1, the photovoltaic solar cell

behaves as a battery. Under light illumination, the corresponding photon

flux generates electron-hole pairs within the semiconductor. The large elec-

tric field that exists at the interface between the p-type and n-type regions

separates these charge carriers, and they drift under the action of the ap-

plied electric field, leading to a photocurrent. The separation of charges that

occurs leads to the development of a potential difference across the termi-

nals of the p-n junction, i.e., a photovoltage. This effect is referred to as the

photovoltaic effect, and it is found in a variety of natural and engineered

structures. It is what is responsible for the behavior of the photovoltaic

solar cell.

4.4 Photovoltaic solar cell performance metrics

In Figure 4.3, a representative current-voltage device characteristic asso-

ciated with a photovoltaic solar cell is depicted. There are three important

performance metrics associated with this current-voltage device character-

istic: (1) the open-circuit voltage, Voc, (2) the short-circuit current, Isc, and

(3) the fill-factor associated with the device, FF . Two of these metrics are

depicted in Figure 4.3. The open-circuit voltage, Voc, corresponds to the

voltage that exists across the solar cell when no current flows. The short-

circuit current, Isc, corresponds to the current that emerges from the solar

cell circuit when the voltage across the solar cell is set exactly to zero. The

fill-factor, FF , corresponds to the maximum power that may be delivered
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Figure 4.3: A representative current-voltage device characteristic associated with

a photovoltaic solar cell.
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4.5. Photovoltaic solar cell device modeling

to an external load divided by the product of Voc and Isc, i.e.,

FF ≡ Pmax
VocIsc

, (4.1)

where Pmax denotes this maximum power. Essentially, the fill-factor pro-

vides a measure as to how rounded the current-voltage device characteristic

of the photovoltaic solar cell is, a fill-factor of unity corresponding to a

completely abrupt current-voltage device characteristic. In Figure 4.4, the

current-voltage device characteristics, corresponding to a variety of fill-factor

selections, is depicted.

Thus far, the focus of the analysis related to the current-voltage device

characteristics associated with a photovoltaic solar cell has centered on the

fourth quadrant. This is the region of the current-voltage device character-

istic over which power may be delivered from the photovoltaic solar cell to

an external load. Through a reversal in the polarity of the current, however,

this fourth quadrant may be mapped into the first quadrant. This repre-

sentation is often used in the characterization of the current-voltage device

characteristics associated with a photovoltaic solar cell. For the purposes of

this particular analysis, however, the fourth quadrant representation of the

current-voltage device characteristics will be employed instead.

4.5 Photovoltaic solar cell device modeling

For the purposes of this analysis, the approach of Prince is adopted [30],

the current-voltage device characteristics associated with a p-n junction be-

ing added to the current-voltage device characteristics of the solar flux con-

trolled current source; recall Figure 4.1. The total current that is delivered
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Figure 4.4: Representative current-voltage device characteristics associated with

a photovoltaic solar cell for various fill-factor selections.
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4.5. Photovoltaic solar cell device modeling

across the terminals of the p-n junction is thus the sum over these two

contributions. This is the manner in which the current-voltage device char-

acteristics associated with a photovoltaic solar cell will be modeled.

As was discussed in Section 3.7, the current-voltage device characteristic

associated with a p-n junction may be empirically expressed as

I(v) = I0 [exp (qv/ηkT )− 1] , (4.2)

where I represents the current, v is the voltage applied across the termi-

nals, I0 denotes the scale current, q is the charge of the electron, k is the

Boltzmann constant, T is the temperature, and η is the ideality factor. The

ideality factor, η, lies between 1 and 2 depending on the amount of recom-

bination that occurs within the junction. When the solar-flux controlled

current source is added to the mix, the resultant current-voltage device

characteristic becomes

I(v) = I0 [exp (qv/ηkT )− 1]− IL, (4.3)

where IL denotes the photocurrent. Note that IL is in the opposite direction

of the dark current. This occurs as the “built-in” electric field points in the

opposite direction to the forward bias direction; recall Figure 4.1.

From Eq. (4.3), it can be shown that the open-circuit voltage,

Voc =
ηkT

q
ln

(
IL
Io

+ 1

)
; (4.4)

this may be shown by setting the I(v) in Eq. (4.3) to nil. In Figure 4.5,

the open-circuit voltage, Voc, is plotted as a function of the ratio, IL
Io

, for

the case of η set to unity, i.e., the ideal case with no recombination. Voc

is normalized with respect to the thermal voltage, kT
q , for the purposes of
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Figure 4.5: The open-circuit voltage, Voc, scaled by the thermal voltage, kT
q , as

a function of the ratio, IL
Io

, for the ideality factor, η, set to unity.
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4.5. Photovoltaic solar cell device modeling

this plot. It is seen that the open-circuit voltage, Voc, logarithmically scales

with the current produced by the solar flux controlled current source. For

the special case of Io set to 10−9 A, a value that is representative of the

case of c-Si, the dependence of the open-circuit voltage on the photocurrent,

IL, is depicted in Figure 4.6, for two selections of η. The temperature is

set to 300 K for all cases, 300 K being representative of room temperature.

It is seen that for a fixed photocurrent, the open-circuit voltage, Voc, scales

linearly (for the temperature being set to 300 K, i.e., room temperature)

with the ideality factor, η. For IL set to 100 mA, this being a representative

photocurrent value, Voc varies between 0.42 and 0.84 V when η is increased

from unity to two. These values are representative of those found in the

literature.

The short-circuit current may be obtained by setting the voltage across

the p-n junction terminals to be zero. Using Eq. (4.3), it may be shown that

Isc = IL; (4.5)

this is determined by setting v = 0 and taking the absolute magnitude of the

resultant current; recall Figure 4.3. That is, the short current corresponds

to that provided from the solar flux controlled current source.

Within the framework of the elementary model for the p-n junction de-

vice characteristics that has been discussed thus far, i.e., Eq. (4.3), the power

delivered from the photovoltaic solar cell to an external load,

p(v) = −I(v)v. (4.6)

This power may be plotted as a function of the voltage applied across the

terminals of the p-n junction, v, the negative sign allowing one to determine
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Figure 4.6: The open circuit voltage, Voc, as a function of photocurrent, IL. Io

is set to 10−9 A for the purposes of this analysis. Two selections of η

are considered. The temperature is set to 300 K for the purposes of

this analysis.
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Figure 4.7: The power delivered to an external load as a function of the applied

voltage for two selections of the ideality factor, η. For the purposes

of this analysis, Io is set to 10−9 A and IL is set to 100 mA. The

temperature is set to 300 K for all cases.
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the delivered power as opposed to the absorbed power. For the case of Io

set to 10−9 A and IL set to 100 mA, the resultant power delivered to an

external load is plotted as a function of the applied voltage, v, in Figure 4.7,

for the temperature set to 300 K; two η selections are considered, η = 1 and

η = 2. For the case of η set to unity, it is seen that the power delivered to

the external load becomes a maximum when the applied voltage is around

0.4 V, the maximum power delivered being around 37 mW. The correspond-

ing fill-factor, FF , is seen to be 0.7928, i.e., ∼79.3 %. For the case η set to

2, however, it is seen that the power delivered to the external load becomes

a maximum when the applied voltage is around 0.8 V, the maximum power

delivered being around 75 mW. The corresponding fill-factor, FF , is seen

to be 0.7940 for this case, i.e., ∼79.4 %. It is interesting to note that in this

case, a greater ideality factor, i.e., more recombination, results in a slightly

higher fill-factor.

In order to examine the role that the ideality factor, η, plays in influenc-

ing the fill-factor, FF , in Figure 4.8 the fill-factor is plotted as a function

of IL for the cases of η set to unity and η set to 2. For all cases, Io is set

to 10−9 A and the temperature is set to 300 K. The approach employed in

Figure 4.7 is used to determine the corresponding fill-factor, FF . It is noted

that the fill-factor increases monotonically with the photocurrent, IL, for all

cases. In addition, it is noted that results for the fill-factor corresponding to

η set to 2 form an upperbound to that determined for η set to unity. This

was confirms the trend that was observed earlier for the specific case of IL

set to 100 mA.

It is interesting to note that greater recombination seems to produce
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Figure 4.8: The fill-factor as a function of the photocurrent, IL. Two selections of

η are considered. For all cases, Io is set to 10−9 A and the temperature

is set to 300 K.

83



4.6. Relationship with the material properties

higher fill-factors and therefore greater performance. This result seems coun-

terintuitive. As will be seen later, it arises as an artifact of over simplistic

nature by which the recombination processes within a p-n junction have

been treated, i.e., through the empirical expression for current, Eq. (4.3),

with η set to a value beyond unity, Io being set at a constant value for all

cases. A reanalysis of the role that recombination processes play within

p-n junctions, using more a realistic expression for the current-voltage de-

vice characteristics, will be presented in Section 4.9. This will show that

recombination processes actually reduce the fill-factor. Until that time, the

ideality factor, η, is set to unity.

4.6 Relationship with the material properties

Thus far, this analysis has relied upon an empirical model for the current-

voltage device characteristic associated with the p-n junction, i.e., Eq. (4.3).

Ultimately, of course, these current-voltage device characteristics are related

to the underlying material parameters. Drawing upon the insights gleaned

from the p-n junction device characteristic determined in Chapter 3, i.e.,

Eq. (3.40), in the absence of recombination, it can be shown that

I = Aq

[
pno

(
Dh

τh

)1/2

+ npo

(
De

τe

)1/2
] [

exp

(
qv

kT

)
− 1

]
, (4.7)

where A corresponds to the device cross-sectional area, pno is the hole con-

centration in the n-type region, Dh is the hole diffusion coefficient, Lh is the

hole diffusion length, np is the electron concentration in the p-type region,

τe is the electron lifetime, De is the electron diffusion coefficient and Le is

the electron diffusion length. Assuming that pno is much greater than npo,

84



4.7. The role of the parasitic resistances on the performance of a photovoltaic solar cell

i.e., that pno >> npo, Eq. (4.7) may be instead expressed as

I = Aqpno

(
Dh

Lh

)1/2[
exp

(
qv

kT

)
− 1

]
, (4.8)

where this expression has been determined using, the relationship between

ni, pno, and ppo, i.e., Eq. (3.30). For the material parameters specified in

Tables 3.1 and 3.2, it can be shown that for a cross-sectional device area of

1 cm2, the prefactor, Aqpno
(
Dh
Lh

)1/2
, is equal to 10−9 A for the case of pno

being set to 1015 cm−3, this pno selection being representative of that found

in a modern photovoltaic solar cell. This value is similar to the nominal

selection employed for Iso, i.e., 10−9 A.

4.7 The role of the parasitic resistances on the

performance of a photovoltaic solar cell

In real photovoltaic solar cells, power losses occur owing to the presence

of contact resistances at both the front and back contacts of the device

and due to current leakage from the edges of the cell. To determine the

role that these effects play in shaping the performance of such a solar cell,

the approach of Prince is followed [30], and two parasitic resistances are

introduced into the model for the p-n junction based on the photovoltaic

solar cell: (1) a series resistance, Rs, which acts in series with the parallel

combination of the p-n junction and the solar flux controlled current source,

this modeling the contact and body resistances associated with the cell, and

(2) a shunt resistance, Rsh, which acts in parallel to the parallel combination

of the p-n junction and the solar flux controlled current source, this modeling
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Figure 4.9: The circuit model for a photovoltaic solar cell with the parasitic re-

sistances taken into account.
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Figure 4.10: The current-voltage device characteristic associated with a photo-

voltaic solar cell, as modeled in Figure 4.9, for a number of selections

of the shunt resistance, Rsh. For all cases, Io is set to 10−9 A, IL

is set to 100 mA, and the temperature is set to 300 K. This plot is

determined using Eq. (4.9). The series resistance, Rs, is set to zero

in all cases.
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the current leakage. These resistances are depicted in Figure 4.9. With these

resistances taken into account, the resultant current across the contacts to

the device may be expressed as

I(v) = −IL + Ioexp

(
q(v + IRs)

kT

)
+
v + IRs
Rsh

, (4.9)

where I0 denotes the scale current, q is the electron charge, k is the Boltz-

mann constant, T is the temperature, IL is the photocurrent, Rs is the series

resistance, and Rsh is the shunt resistance.

The role that the shunt resistance plays in influencing these current-

voltage device characteristics is first considered. In Figure 4.10, the current-

voltage device characteristics corresponding to a photovoltaic solar cell, as

modeled in Figure 4.9, with various selections of the shunt resistance con-

sidered, is depicted, the series resistance being set to zero in all cases. For

all cases, Io is set to 10−9 A, IL is set to 100 mA, and the temperature is

set to 300 K. It is seen that the shunt resistance, Rsh, plays a relatively mi-

nor role in shaping the resultant current-voltage device characteristics. As

a result, for the purposes of the subsequent analysis, the presence of shunt

resistance will be neglected. These values are realistic values corresponding

to a modern photovoltaic solar cell.

The role that the series resistance plays in influencing these current-

voltage device characteristics is now considered. In Figure 4.11, the current-

voltage device characteristics corresponding to a photovoltaic solar cell, as

modeled in Figure 4.9, with various selections of the series resistance con-

sidered, is depicted, the shunt resistance being set to infinity in all cases.

For all cases, Io is set to 10−9 A, IL is set to 100 mA, and the temperature
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Figure 4.11: The current-voltage device characteristic associated with a photo-

voltaic solar cell, as modeled in Figure 4.9, for a number of selec-

tions of the series resistance, Rs. For all cases, Io is set to 10−9 A,

IL is set to 100 mA, and the temperature is set to 300 K. It is noted

that when the current is zero, all the voltages converges on the same

point. This plot is determined using Eq. (4.9). The shunt resistance,

Rsh, is open-circuited in all cases.
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is set to 300 K. It is seen that the series resistance, Rs, plays an important

role in shaping the current-voltage device characteristics. In particular, it

is seen that the current-voltage device characteristic shifts to the left and

becomes more sloped with greater series resistance, Rs.

Continuing with the analysis, if the power delivered to an external load,

i.e., p(v) = −I(v)v, is plotted as a function of the voltage applied across the

terminals, then the optimal power may be determined for a number of series

resistance selections; see Figure 4.12. As a result, one can determine the

fill-factor, FF , as a function of the series resistance, Rs. In Figure 4.13, the

obtained fill-factor is plotted as a function of the series resistance, Rs, for

the case of Io set to 10−9 A, IL set to 100 mA, and the temperature set to

300 K. It is seen that the fill-factor dramatically decreases in response to in-

creased Rs. It is interesting to note that at sufficient high Rs, the fill-factor

is seen to saturate. Clearly, in photovoltaic solar cell design, minimization

of the series resistance is of paramount importance.

4.8 The solar spectrum and photovoltaic solar

cell performance

The solar spectra that were introduced in Chapter 2 may now be em-

ployed in order to determine the performance of a photovoltaic solar cell.

Assuming that each photon with energy in excess of the semiconductor

bandgap, Eg, corresponds to a collected charge, the photocurrent may be

shown to be

IL = qA

∫ ∞
Eg

S(ω)

h̄ω
dω, (4.10)
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Figure 4.12: The power delivered to an external load as a function of the applied

voltage for various selections of Rs. For the purposes of this analysis,

Io set to 10−9 A, IL set to 100 mA, and the temperature set to 300 K.
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Figure 4.13: The fill-factor, FF , as a function of the series resistance, Rs, for a

photovoltaic solar cell, modeled as in Figure 4.9, as a function of the

series resistance, Rs. For all cases, Io is set to 10−9 A, IL is set to

100 mA, and the temperature is set to 300 K.
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where S(ω) denotes the corresponding solar spectrum, h̄ω represents the

photon energy, q is the electron charge, and A is the cross sectional area of

the device. The efficiency of a device provides for the percentage of the solar

radiation that may be delivered to the external load. At optimal conditions,

this corresponds to

efficiency =
Pmax
Psolar

, (4.11)

where Pmax corresponds to the maximum power delivered to the load and

Psolar refers to the overall integrated solar flux received by the solar cell,

i.e.,

Psolar =

∫ ∞
0

S(ω) dω. (4.12)

From Eq. (4.1), it is seen that

Pmax = FFILVoc, (4.13)

where the short-circuit current, IL, is set to Isc, and Voc may be determined

using Eq. (4.4).

The resultant efficiencies are plotted as a function of the energy gap, Eg,

in Figure 4.14. This analysis is performed for the AM0 and AM1.5 solar

spectra. Results corresponding to the blackbody solar spectrum are also de-

picted. It is interesting to note that in all cases the efficiency is maximized

for energy gaps around 1.5 eV. This is very close to the energy gap corre-

sponding to c-GaAs. As a result, solar cells produced using this material

tend to be more efficient than those produced using their c-Si counterparts.
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Figure 4.14: The efficiency as a function of energy gap, Eg, for the AM0 and

AM1.5 solar spectra. The efficiency corresponding to the blackbody

solar spectra is also depicted.
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4.9 Recombination within solar cells

As was mentioned previously, the elementary empirical current-voltage

device characteristic employed for the purposes of the analysis presented in

Section 4.5 leads to erroneous results when the ideality factor is increased

beyond unity. In order to assess the true role that recombination processes

play in influencing these current-voltage device characteristics, the original

equation that was developed in Section 3.7, i.e., Eq. (3.48), will be em-

ployed instead for reasonable selections of Jso and Jro. For the case of a

device with a cross-sectional area, A, set to 1 cm2, for the selections of

Jso set to 10 nA/cm2 and Jro set to 1 µA/cm2, the current-voltage de-

vice characteristic associated with such a p-n junction may be determined.

With the solar flux controlled current source added, following the Prince ap-

proach [30], the resultant current-voltage device characteristics, neglecting

parasitic resistances, may be expressed as

I(v) = Io

[
exp

(
qV

kT

)
− 1

]
+ Iro

[
exp

(
qV

2kT

)
− 1

]
− IL, (4.14)

where Io = AJso, Iro = AJro, and IL denotes the photocurrent.

This current-voltage device characteristic is plotted as a function of the

voltage across the p-n junction device terminals in Figure 4.15, for the case

of Io set to 10−9 A, Iro set to 1 µA, IL set to 100 mA, and the temperature

set to 300 K. The power delivered to an external load, p(v) = −I(v)v, can be

plotted as a function of the voltage using Eq. (4.14), as is seen in Figure 4.16.

It is seen that the maximum power delivered to the load, Pmax, is 30 mW.

Thus, the corresponding fill-factor is 0.76, which is noted to be lower than

that found for the ideal case; recall, for the ideal case, the fill-factor is 0.7928.
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Figure 4.15: This current-voltage device characteristic plotted as a function of the

voltage across the p-n junction device terminals. For the purposes

of this analysis, Io is set to 10−9 A, Iro is set to 1 µA, IL is set to

100 mA, and the temperature is set to 300 K.
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In Figure 4.17, the fill-factor is plotted as a function of the photocurrent,

IL, for the case of Io set to 10−9 A, Iro set to 1 µA, and the temperature

set to 300 K. The result obtained is contrasted with that determined for

the ideal case; recall Figure 4.8. It is noted that in all cases, recombination

processes reduce the corresponding fill-factor. Thus, the performance is

reduced with recombination processes taken into account. This is in accord

with experimental observation [15].
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Figure 4.16: The power delivered to the external load as a function of the applied

voltage across the terminals of the p-n junction. For all cases, Io is

set to 10−9 A, Iro is set to 1 µA, IL is set to 100 mA, and the

temperature is set to 300 K.
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Figure 4.17: Fill-factor as a function of IL. Both the ideal case and the case with

the recombination processes taken into account are considered. For

all cases, Io is set to 10−9 A, Iro is set to 1 µA, IL is set to 100 mA,

and the temperature is set to 300 K.
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Conclusions

In conclusion, an elementary model for the analysis of a photovoltaic so-

lar cell has been introduced. This analysis was rooted in the current-voltage

device characteristics associated with a p-n junction, in conjunction with a

model for the solar flux controlled current source, following the procedure

of Prince [30]. Recombination processes were modeled through two means:

(1) an empirical expression for the current-voltage device characteristics

with an associated ideality factor, η, whose value determines the role of re-

combination processes, and (2) a more advanced expression that includes a

recombination current. It is shown that the simplified, empirical expression

is overly simplified and that its use leads to artifacts, i.e., the suggestion

that recombination processes could actually increase the fill-factor. In con-

trast, a more realistic current-voltage device characteristic, i.e., Eq. (4.14),

suggests that recombination processes actually reduce the fill-factor. This

later observation is in accord with experimental observation.

There are a number of issues that could be further explored. The devel-

opment of a model, that includes both recombination processes and parasitic

resistances, would be useful. The development of a means of extracting the

underlying parameter values, from experimental current-voltage device char-

acteristics, would also be useful. Finally, the development of a first principles
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analysis, i.e., based on a combination of the charge continuity equation and

the ambipolar diffusion equations, would be helpful. These issues will have

to be examined in the future.
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