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Abstract

In this thesis I develop several models examining how genetic evolution can
affect evolutionary processes at a broader scale.

First, I ask how evolution would proceed at a locus that governs the mutation
rate between alleles mediating interactions between hosts and parasites. By
relaxing several simplifying assumptions I am able to explore the affects of sex
and recombination. I find that, when the modifier locus is completely linked, the
mutation rate evolves toward the optimum rate. With looser linkage, however,
lower mutation rates evolved. This work can potentially explain the high rates
of antigenic switching observed in many asexual taxa.

Second, I investigate how ploidy levels and the genetic model underlying
species interactions affect how evolution proceeds from a free-living to a par-
asitic life-history. I find that the transition to parasitism occurs over a broader
range of parameters when the parasite is haploid. The role of host ploidy is
more complicated, depending on the model governing host-parasite interac-
tions. These results provide a first characterization of how genetic architecture
affects selection on life-history in antagonistic species interactions.

Third, I develop a model of sexual selection in an environment with spatial
variation in the carrying capacity, but no variation in resource type. I show that,
when searching for a mate is costly, this variation can stabilize demographic
fluctuations, facilitating long-term coexistence of species differing only in sex-
ual traits. This is the first study to demonstrate the existence of conditions
under which sexual selection alone can promote the long-term coexistence of
ecologically equivalent species in sympatry.

Finally, I develop a model characterizing the effects of mating preferences on
species interactions in hybrid zones. I find that the spatial distribution of geno-
types observed in many “mosaic” hybrid zones might be better explained by
species-specific differences in mating than by differences in ecology (the com-
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mon explanation). In addition, I develop a statistical method that can be applied
to empirical hybrid zone data to estimate how “mosaic” the hybrid zone is. I
test this statistic on data from the Mytilus edulis and M. galloprovincialis hybrid
zone.
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Chapter 1

Introduction

To fully understand the complexities of the biological world it is necessary that
we have both empirical documentation of a particular process, as well as a con-
ceptual understanding of the mechanisms causing that process to occur. For
many simple biological processes it is possible to easily intuit the outcome of
a particular interaction. However, in many cases, such intuition is not possi-
ble without some aid. By providing us with additional computational power
and/or methods of analysis, theoretical models can provide such an aid, and
thus facilitate our understanding in these more difficult cases.

In addition to helping us understand documented biological phenomena,
theoretical models can change how we understand existing data and, in some
cases, lead to empirical discoveries that would not have occurred otherwise. For
example, theoretical investigations of interactions between hybridizing species
have led to a number of predictions about the expected spatial genetic patterns
in the region where the two types overlap and form hybrid offspring (i.e., in
their “hybrid zone”; Barton and Hewitt, 1985, 1989). One such prediction is
that a hybrid zone should often move in space, until finally settling in a region
of low population density. Several empirical studies have since found convinc-
ing evidence that such a process really does occur in nature. For example,
Saitoh and Katakura (1996) found that the boundaries between three parapatric
species of flightless leaf beetles mostly occur along streams or cliffs where pop-
ulation densities are low to non-existent. Similarly Barrowclough et al. (2005)
found that the range of overlap between the northern spotted owl and the Cal-
ifornia spotted owl is restricted to a narrow band within the region of lowest
documented owl density. Such empirical findings as these serve to illustrate the
critical role theoretical models can play in biology.

A central focus in evolutionary biology is on understanding how processes
occurring at one level of biological organization affect evolutionary dynamics
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Chapter 1

at another level (e.g., how cellular processes affect organismal behaviour or
how the behaviour of an individual may affect the dynamics of a population
or group; Maynard Smith and Szathmary, 1997; Okasha, 2007). Because inter-
actions between multiple levels of organization are complex and can easily be
obscured by more direct interactions, many insights on this topic derive from
theoretical work. At the most general level, the chapters of my thesis can be
summarized as a series of theoretical models focusing on these interactions be-
tween different evolutionary levels. In chapters 2 and 3 I have examined the
relationship between species-level interactions and the genetic architecture of
the traits regulating those interactions, both in the context of host-parasite in-
teractions, and in chapters 4 and 5 I have examined the relationship between
population-level interactions and individual behaviour (namely female mating
behaviour). I will now briefly summarize each of my chapters.

1.1 Genetics and host-parasite co-evolution

Historically host-parasite interactions have received substantial attention be-
cause of the implications any findings may have for disease control and/or
pest management. Host-parasite interactions are of particular interest to evo-
lutionary biologists, however, because they represent one of the most complex
and highly-evolved relationships between separate species. In many cases, the
two interacting species are locked in a perpetual evolutionary “arms race”, with
selection constantly favouring novel mechanisms allowing hosts to evade their
parasites and parasites to invade these same hosts. Understanding how these
interactions can affect selection at the most basic genetic level is critical if we
hope to understand how parasite genomes evolve in response to their biotic
environment.

Mutation is the fundamental source of genetic variation, without which
adaptation could not occur. Models of the evolution of mutation rates in a con-
stant environment have shown that asexual species evolve an optimal mutation
rate that balances the costs and benefits of producing adaptive and deleterious
mutations. In a host-parasite system, however, the fitness effect of a mutation
is not constant but instead depends on the current composition of the other
species. In chapter 2 I use modifier theory to ask how evolution would proceed
at a locus that governs the mutation rate between alleles that mediate host-
parasite interactions. In my analysis I am able to relax a number of common
simplifying assumptions, and also explore the effects of sex and recombination.
I find that when the modifier locus is completely linked to the locus mediat-
ing the host-parasite interaction, the mutation rate evolves toward the optimum

2



Chapter 1

rate. With looser linkage, however, lower mutation rates evolve.
Complementary to studies that focus on how host-parasite interactions se-

lect for changes in genetic parameters (like that above) are those that investi-
gate how genetic parameters affect evolution of host-parasite interactions. Such
studies are necessary if we hope to fully understand the origins of broad-scale
macro-evolutionary patterns. In the context of hosts and parasites, such an un-
derstanding is essential as we try to characterize the traits that make a particular
species more or less prone to adopting a parasitic life-style.

One assumption that is common in models of host-parasite co-evolution is
that species are either completely parasitic or completely non-parasitic. While
many species do fit this assumption, there are numerous examples for which
this assumption is not appropriate. For example, a number of species from a
range of taxonomic groups have been shown to be facultatively parasitic: ciliates
(Reynolds, 1936; Thompson and Moewus, 1964), flatworms (Hooge and Tyler,
1999), fungi (Morin et al., 1993), nematodes (Benham, 1974). These species are
parasitic if the opportunity arises, but are otherwise free-living and capable of
reproduction without the aid of a host species. In chapter 3 I use modifier the-
ory to investigate how evolution proceeds from a free-living to a parasitic life-
history and, in particular, I investigate how the ploidy levels of the interacting
species and the genetic model underlying species interactions affects whether
selection favours a more or less parasitic life-cycle. In general, I find that the
transition to parasitism occurs over a broader range of parameters when the
parasite is haploid. The role of host ploidy is more complicated, depending on
the model governing host-parasite interactions.

1.2 Sexual selection and co-existence

Just as genetic architecture can affect higher-level species interactions, so can
the behaviour of an individual affect higher-level population dynamics. For
example, the mating behaviour of females can sometimes select for particu-
lar traits in males which, under the right conditions, can split a population
into multiple reproductively isolated groups (Lande, 1981; Kirkpatrick, 1982;
Seger, 1985). In some situations, therefore, sexual selection (an individual-level
process) seems to promote the generation of diversity (a population-level pro-
cess). While appearing to be capable of generating diversity, sexual selection
has not been thought to be capable of promoting the long-term co-existence of
distinct types, and thus not capable of maintaining biodiversity. This is because
changes in mating behaviour or preferences do not lead to niche divergence,
which is generally considered to be a necessary precondition for co-existence
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when species’ ranges overlap (Weissing et al., 2011).
In chapter 4 I develop a model of sexual selection in an environment with

variation in resource quantity but no heterogeneity in resource type across
space. I show that the resultant variation in the number of individuals can
stabilize demographic fluctuations, which then allows for the stable long term
co-existence of populations differing only in their mating preferences. While
costs associated with searching for a mate do not enable co-existence on their
own, they turn out to be critical in facilitating co-existence in this spatially ex-
plicit model.

1.3 Hybrid zones

In addition to maintaining biodiversity amongst or within populations, female
mating preferences are also likely to have an impact on the spatial distribu-
tion of diverse types. The most natural place to investigate spatial interactions
between distinct genotypes is in the region where their ranges meet. If repro-
ductive isolation is not complete, then hybridization can occur. These hybrid
zones are, therefore, an ideal setting for observing the forces that maintain
and/or break down species boundaries (Barton and Hewitt, 1989, 1985). The
majority of theoretical investigations of hybrid zones have focused on ecologi-
cal differences between species, which are often assumed to exist despite mixed
empirical support (Harrison and Rand, 1989; Cain et al., 1999; Bridle et al.,
2001). In chapter 5 I develop and analyze a model characterizing the poten-
tial effects of mating preferences on spatial interactions between distinct mating
types in hybrid zones. Interestingly, I find that the spatial distribution of geno-
types observed in many “mosaic” hybrid zones (those characterized by patchy
species distributions) is consistent with patterns generated by species-specific
differences in mating preferences. In cases where there is little evidence for eco-
logical differences between the interacting species, divergent mating preferences
may, therefore, provide a better explanation for this mosaic pattern. In addition
to the primary model, I develop a new statistical method that can be applied
to empirical hybrid zone data to estimate how “mosaic” the hybrid zone is. I
test this statistic on data from three loci from the hybrid zone of the marine
mussels Mytilus edulis and M. galloprovincialis. The estimated “mosaicity” is sig-
nificantly higher for one of these three loci, suggesting that this particular locus
or a linked region may, at least partially, underlie assortative mating and/or
local adaptation..

4



Chapter 1

1.4 Conclusions

In addition to providing insight into several interesting topics in biology, the
chapters in this thesis also illustrate the general importance of theoretical re-
search. Theory has enabled us to fully understand many complex processes
and, additionally, revealed many interesting avenues for future theoretical and
empirical work. In each of the following chapters I will discuss the empiri-
cal implications of my work, as well as any possible future directions for both
theoretical and empirical research. In doing so I hope to demonstrate the impor-
tance of theoretical work to empirical biology, and vice versa. Without theory,
many potentially interesting components of the natural would remain unknown
to us and without empirical tests, the relevance of theoretical research (and its
potential contradictions) would be greatly under-appreciated.
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Chapter 2

Mutating away from your enemies:
the evolution of mutation rate in a
host-parasite system

2.1 Summary

The rate at which mutations occur in nature is itself under natural selection.
While a general reduction of mutation rates is advantageous for species inhabit-
ing constant environments, higher mutation rates can be advantageous for those
inhabiting fluctuating environments that impose on-going directional selection.
Analogously, species involved in antagonistic co-evolutionary arms-races, such
as hosts and parasites, can also benefit from higher mutation rates. We use mod-
ifier theory, combined with simulations, to investigate the evolution of mutation
rate in such a host-parasite system. We derive an expression for the evolution-
ary stable mutation rate between two alleles, each of whose fitness depends on
the current genetic composition of the other species. Recombination has been
shown to weaken the strength of selection acting on mutation modifiers, and ac-
cordingly, we find that the evolutionarily attracting mutation rate is lower when
recombination between the selected and the modifier locus is high. Cyclical
dynamics are potentially commonplace for loci governing antagonistic species
interactions. We characterize the parameter space where such cyclical dynam-
ics occur and show that the evolution of large mutation rates tends to inhibit
cycling and thus eliminates further selection on modifiers of mutation rate. We
then find using computer simulations that stochastic fluctuations in finite pop-
ulations can increase the size of the region where cycles occur, creating selection
for higher mutation rates. We finally use simulations to investigate the model
behaviour when there are more than two alleles, finding that the region where
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cycling occurs becomes smaller and the evolutionarily attracting mutation rate
lower when there are more alleles.

2.2 Introduction

Mutation is the fundamental source of genetic variation, without which adap-
tation could not occur. The rate at which mutations occur has, therefore, been
of long-standing interest to evolutionary biologists (Muller, 1928; Mukai, 1964;
Drake et al., 1998). The notion that mutation rates themselves are subject to nat-
ural selection has been well documented empirically (Sniegowski et al., 1997,
2000; Baer et al., 2007). It would seem at first that there should be a strong selec-
tive pressure to eliminate mutation altogether, due to the high probability that
any particular mutation will have deleterious effects. This general reduction
principle has been shown to hold in theoretical models pioneered by Sam Kar-
lin and colleagues (Karlin and McGregor, 1974; Liberman and Feldman, 1986)
for populations at equilibrium in non-changing environments, where there is no
cost to increased replication fidelity. However, when higher replication fidelity
entails a cost (due to, for example, increased energy allocation during tran-
scription), then selection favours an intermediate mutation rate that balances
the fitness cost associated with deleterious mutations and the energy savings
associated with a higher mutation rate (André and Godelle, 2006).

While reducing mutation rates is evolutionarily favoured in a constant en-
vironment, were it not for costs, the same is not true in a novel environment.
In a novel environment a mutator lineage (one with a higher mutation rate)
still carries the burden of an increased deleterious mutation load. However, it
now also has a higher probability of experiencing a beneficial mutation. When
such a beneficial mutation occurs in a mutator lineage it can pull the mutator
allele to a higher frequency (a mechanism referred to as genetic hitch-hiking;
Maynard Smith and Haigh, 1974). The above ideas have been confirmed in a
number of theoretical models (Kimura, 1967; Leigh, 1970; Johnson, 1999).

Because modifiers of mutation rate are primarily subject to indirect selection
via their effects at other loci (the cost of replication fidelity being the excep-
tion to this rule), modifier dynamics are highly sensitive to their rate of recom-
bination with the target loci that are the subject of both mutation and direct
selection. Recombination has been shown to weaken the strength of indirect
selection acting on mutation modifiers (Kimura, 1967; Leigh, 1970; Sniegowski
et al., 1997). This can be understood as follows. Suppose a beneficial mutant
arises in a mutator lineage. With a high enough recombination rate, it is proba-
ble that the beneficial allele will recombine into the non-mutator lineage during
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its spread. In this way the mutator lineage “shares” the benefits of the benefi-
cial mutants it creates. Meanwhile deleterious mutations will accumulate on the
mutator background more rapidly than on the non-mutator background. While
recombination allows some of these mutator lineages to escape the deleterious
effects of their mutations, a large number of mutator lineages will be eliminated
by purifying selection before any recombination occurs. Consequently, because
beneficial mutations have a longer sojourn time within a population, on aver-
age, than deleterious mutations, the benefits of producing beneficial mutations
are dissipated over time by recombination, while the costs of producing dele-
terious mutations are more immediately felt. This intuitive argument has been
considered explicitly in models of directional selection (Johnson, 1999).

A novel environment is not the only scenario that has been shown capable of
selecting for higher mutation rates. For example, a number of theoretical mod-
els have shown that increased mutation rates can be advantageous in fluctuating
environments, where the direction of selection periodically changes (see Leigh,
1970, 1973; Ishii et al., 1989). In this situation individuals are repeatedly un-
der pressure to adapt. Antagonistic co-evolutionary interactions, such as those
that occur between hosts and parasites, can also create selection for increased
mutation rates. Because adaptive changes in one species often have detrimental
effects on the other, hosts and parasites repeatedly create “novel” environments
for one another (this is commonly referred to as the “Red Queen” hypothe-
sis; Van Valen, 1973). Within host-parasite interactions, it has been shown that
mean fitness is optimized by high or non-zero mutation rates, in a manner simi-
lar to that found with fluctuating abiotic environments (Nee, 1989; Sasaki, 1994;
Haraguchi and Sasaki, 1996). There is also empirical evidence that host-parasite
co-evolution can favour increased mutation rates. For example, Pal et al. (2007)
recently found that co-evolution with viruses drove up the mutation rates in the
bacterium Pseudomonas fluorescens.

Host-parasite interactions are commonly mediated through antigen molecules,
which are expressed on the surface of parasite cells. For hosts, a pathogen’s
antigen molecule provides a useful target to aid in its detection and thus elim-
ination. Consequently, hosts have evolved sophisticated mechanisms enabling
them to detect and respond to a wide array of possible antigen types, while
parasites have evolved complex mechanisms allowing them to regularly pro-
duce offspring with antigens differing from their own. This process of “antigen
switching” in parasites has been well documented empirically (Brannan et al.,
1994; Turner, 1997; Frank, 2002), and consequently many of the mechanisms
that have evolved in order to make the process more efficient are now well
understood. A good summary of many of these is available in Frank (2002).
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Frank describes, for example, the process of “gene conversion,” whereby some
parasites can copy one of several non-expressed archival antigen alleles into a
single expressed site. In this way they are able to store many variant antigen
alleles in their genome, while only ever expressing a single one. Because each
mutant is drawn from a pool of alleles that have been historically exposed to
selection, switching in this way is more likely than random mutation to pro-
duce viable mutants. Such a strategy can be found in Trypanosoma brucei, which
causes “sleeping sickness” in several African mammals. This particular parasite
has been shown to carry hundreds of alternative loci in its genome (Pays and
Nolan, 1998). For discussions of similar mechanisms see also Donelson (1995)
(in Borrelia hermsii); Svard et al. (1998) (in Giardia lamblia); Kusch and Schmidt
(2001) (in free-living protozoa).

In a theoretical model of host-parasite co-evolution using mean fitness argu-
ments, Nee (1989) found that antagonistic interactions can lead to an indefinite
escalation of mutation rates in both species, provided that the selection induced
by these interactions is strong relative to mutation rates. Haraguchi and Sasaki
(1996) later extended this model to consider the effects of deleterious mutations
and found that only a small amount of unconditionally deleterious mutation
was sufficient to prevent the above reported indefinite escalation of mutation
rates.

Like Haraguchi and Sasaki (1996), we consider a modifier extension to the
model introduced in Nee (1989). Unlike Haraguchi and Sasaki, however, we
allow recombination to occur between the mutation modifier and the selected
locus. We find that under certain conditions, this addition results in a qualita-
tively different outcome, with recombination acting to reduce the evolutionarily
attracting mutation rate by distributing the benefits of advantageous mutations.
We closely follow the methods of Gandon and Otto (2007), who analyzed a
modifier of the rate of recombination between two loci mediating host-parasite
interactions. We supplement our analytical model with computer simulations,
which allow us to investigate extensions to finite populations, as well as to more
alleles.

2.3 Methods and results

2.3.1 Model description

We consider two co-evolving haploid species: a host and a parasite. We follow
haplotype frequencies through a life cycle consisting of a census, selection, and
reproduction. Mating is random within each species, and (except where noted)
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population sizes are assumed constant and large enough that drift can be ig-
nored. Antagonistic interactions between species are mediated through a single
locus in hosts and a single locus in parasites, each with two alleles (Ah/ah in
hosts and Ap/ap in parasites). A second locus in each species determines the
rate of mutation between Ai and ai, where forward and backward mutation
rates are assumed equal. Throughout i denotes the species type: h for hosts, p
for parasites. We denote the two alleles at this mutator locus by Mi and mi. The
four haplotypes within a species are thus {aimi, ai Mi, Aimi, Ai Mi}. We let xi,j

denote the frequency of the jth genotype in species i (labelled in the order given
above).

Fitness is determined by a matching-alleles model, introduced by Hamilton
(1980). Specifically, when the host genotype matches that of the parasite (e.g.,
Ap parasite and Ah host, or ap parasite and ah host), the parasite experiences a
fitness increase of ap > 0 and the host a fitness decrease of ah < 0. The fitness
of the jth genotype in species i is then given by

wi,j = 1 + ai(z j(xī,1 + xī,2) + (1 � z j)(xī,3 + xī,4)) (2.1)

where z j is equal to 1 for j 2 {1, 2} and 0 for j 2 {3, 4} and where an overbar
denotes the other species type (h̄ = p, p̄ = h). If µi,M (µi,m) is the probability
that mutation occurs at the A-locus in an individual of species i carrying the Mi

(mi) allele at the M-locus (with µi,m and µi,M both  1/2), then the frequencies
after selection and mutation, but before sex and recombination are given by

x0i,1 = (1 � µi,m)(wi,1/wi)xi,1 + µi,m(wi,3/wi)xi,3

x0i,2 = (1 � µi,M)(wi,2/wi)xi,2 + µi,M(wi,4/wi)xi,4

x0i,3 = (1 � µi,m)(wi,3/wi)xi,3 + µi,m(wi,1/wi)xi,1

x0i,4 = (1 � µi,M)(wi,4/wi)xi,4 + µi,M(wi,2/wi)xi,2

(2.2)

where wi (the mean fitness of species i) is given by

wi =
4

Â
j=1

wi,jxi,j.

In the text, we assume that the modifier allele only alters the mutation rate
at the A-locus, but in appendix A.1 we also include a cost to the modifier of
producing unconditionally deleterious alleles. Letting yi denote the product of
the probability that a haploid individual engages in sexual reproduction and
the probability of recombination between the A and the M loci in species i,
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genotype frequencies after sex and recombination are given by

x00i,1 = x0i,1 � yiD0
i

x00i,2 = x0i,2 + yiD0
i

x00i,3 = x0i,3 + yiD0
i

x00i,4 = x0i,4 � yiD0
i

(2.3)

where D0
i denotes the linkage disequilibrium in species i after mutation and

selection. It can be computed as D0
i = x0i,1x0i,4 � x0i,2x0i,3.

Denoting the frequency of A by pi,A, and the frequency of M by pi,M, we
have

pi,A = xi,3 + xi,4

pi,M = xi,2 + xi,4
(2.4)

In the matching-alleles model, allele frequencies typically fluctuate around 1/2
over time. The key simplification that we make is that these fluctuations are
relatively small, so that the allele frequencies remain near 1/2. If we define
di,A as the departure of the frequency of the A allele from 1/2, so that di,A =

(xi,3 + xi,4) � 1/2, we may then convert the recursion equations described in
equation (2.3) into a new system of recursion equations involving di,A, pi,M, and
Di.

Assuming that di,A is small, specifically that it is of the order of a small
term e, and that the modifier also has a small effect on the mutation rate, such
that µi,M � µi,m is also of order e, we find that disequilibrium rapidly evolves
to a level that is of order e2 (see appendix A.2 for details). With the above
assumptions it is possible to simplify the recursion for di,A. Up to order e we
get  

dh,A[t + 1]
dp,A[t + 1]

!
= M

 
dh,A[t]
dp,A[t]

!
(2.5)

where

M =

 
(1 � 2µh,M) ah

(2+ah)
(1 � 2µh,M)

ap
(2+ap)

(1 � 2µp,M) (1 � 2µp,M)

!
.

While this approach requires that disequilibrium is small (order e2), it is not
necessary that it remains at the steady state values predicted by the current
state of the population, as is the case in a quasi-linkage equilibrium analysis
(for more information on quasi-linkage equilibrium analyses see Barton, 1995).
Thus equation (2.5) can be applied even when selection is large relative to the
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rates of sex and recombination.
The point dh,A = dp,A = 0 is an equilibrium of equation (2.5), as well as of

the full recursion equations. A local stability analysis shows that this point is
unstable with complex eigenvalues as long as

R =
q

det(M) =

s

(1 � 2µp,M)(1 � 2µh,M)
(1 + ap/2 + ah/2)

(1 + ap/2)(1 + ah/2)
(2.6)

is greater than one, where det(M) is the determinant of the matrix M and R is
the magnitude of the leading eigenvalue of M.

When R from is greater than one, the frequencies in a species cycle sinu-
soidally outwards with time. However, when R is near one the cycles remain
small for extended periods of time. Without loss of generality we let t = 0
denote the time at which the allele frequency in the host first passes 1/2 (equiv-
alently dh,A first passes zero). This allows us to express the general solution to
(2.5), after simplifying, as

dh,A[t] = Rt�1(1 � 2µh,M)
ah

(ah + 2)
sin[ft]
sin[f]

dp,A[0] (2.7a)

dp,A[t] = Rt�1
q

R2 � (1 � 2µh,M)(1 � 2µp,M)
sin[ft + s]

sin[f]
dp,A[0] (2.7b)

where f denotes the speed of evolutionary cycles (the period is 2p/f), and s is
the phase difference between the host and parasite cycles:

f = cos�1

(1 � µp,M � µh,M)

R

�
(2.8a)

s = cos�1

2

4 µp,M � µh,Mq
R2 � (1 � 2µp,M)(1 � 2µh,M)

3

5 (2.8b)

The asymmetry between (2.7a) and (2.7b) is a consequence of our starting time
when dh,A[0] = 0.

Recalling that ah < 0 and ap > 0 it can be shown that R increases with the
strength of selection (magnitude of ai). Thus, we can see from equation (2.8a)
that cycle period decreases as selection becomes stronger in either species. This
is illustrated in figure 2.1. Similarly the period decreases as µi,M (the mutation
rate) increases in either species.

Figure 2.2 shows how the phase difference between host and parasite cycles
(s) depends on the mutation rates in the two species. Our results qualitatively
confirm those of Nee (1989). When the mutation rates are equal the two species
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cycle 90� out of phase, regardless of the strength of selection in either species
(see equation 2.8b). When the hosts have a higher mutation rate the cycles are
> 90� out of phase, and when the parasites have a higher mutation rate they
are < 90� out of phase. If all else is equal, the phase difference s is larger when
selection is weak. This is because changes in one species take longer to induce a
response in the other species. Interestingly, in this model only small deviations
from 90� are possible in the parameter region where cycling occurs (R > 1), as
indicated by the small range of the y-axis in figure 2.2. Nee (1989) argued that
large phase shifts cannot occur, because they require that at some point in each
cycle one of the two species evolves away from the currently favoured allele. For
the parameters investigated here (e.g., those in figure 2.1) the phase difference
from a 90� shift is always less than what would result from a single generation
of evolution in the wrong direction. Thus, the phase differences from 90� that
occur in this model result from slight overshooting based on allele frequencies
from the previous generation.

Having described the dynamics of the selected locus, we turn now to the
dynamics of the modifier locus. After selection and sexual reproduction, the
change in frequency of the modifier allele is exactly given by

Dpi,M[t] = pi,M[t + 1]� pi,M[t] =
4Di[t]aidī,A[t]

2 + ai(1 + 4di,A[t]dī,A[t])
(2.9)

This is analogous to equation (29a) in Gandon and Otto (2007). In appendix
A.2, we solve for the disequilibrium in species i. We show that when di,A is
assumed small (of order e), the effect of the mutation rate modifier is assumed
weak (of order e), and the disequilibrium in the previous generation (Di) has
reached order e2, the general solution for the disequilibrium is

Di[t] = 2(1 � yi)(µi,m � µi,M)(1 � pi,M)pi,M

t

Â
t=1

Xt�1
i

✓
di,A[t � t] +

ai
(ai + 2)

dī,A[t � t]

◆
(2.10)

where Xi = (1 � yi)(1 � 2µi,M) and the influence of the initial conditions is
assumed to have dissipated. Substituting (2.10) into (2.9) yields

Dpi,M =
8ai(1 � yi)(µi,m � µi,M)(1 � pi,M)pi,Mdī,A[t]

2 + ai(1 + 4di,A[t]dī,A[t])

⇥
t

Â
t=1

Xt�1
i

✓
di,A[t � t] +

ai
(ai + 2)

dī,A[t � t]

◆
(2.11)
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which is the analog for a mutation modifier of equation (33) for the recombi-
nation modifier in Gandon and Otto (2007). Because Xi < 1 whenever there is
some sex/recombination or mutation, the sum may be evaluated explicitly us-
ing equation (2.7). We can then average the change in modifier allele frequency
over one co-evolutionary cycle, ignoring transient dynamics due to the initial
conditions. We also average over all possible starting points in the host-parasite
cycle. Doing so, we find that the modifier allele M that increases the mutation
rate in species i spreads whenever the following is positive

sign[ Dpi,M ] ' sign[c1Xi(1 � µī,M � µi,M)/2 � (µī,M � µi,M)(Xi � (1 � 2µī,M))]

(2.12)
where c1 is the positive constant �ahap/(2 + ah + ap). The first term in equa-
tion (2.12) is always positive and thus always favours higher mutation rates.
It is largest when sex/recombination is rare (small yi and large Xi) and when
selection is strong (large c1). We may re-write equation (2.12) as

sign[ Dpi,M ] ' sign[(R2 � (1 � 2µi,M)(1 � µi,M � µī,M))Xi + R2(µī,M � µi,M)]

(2.13)
in order to facilitate interpretation. Because R > 1 when there are cycles, the
first term must be positive. It tends to dominate when linkage is tight (Xi large)
and when the mutation rates are similar (second term small). Conditioning
upon the existence of cycles (R > 1), equation (2.13) can become negative and
favour lower mutation rates only when µi,M is sufficiently greater than µī,M. It
follows that selection will tend to increase the mutation rate in a species, unless
that mutation rate is substantially higher than the mutation rate in the other
species. This creates a “ratcheting-up” effect, where an increase in the mutation
rate in one species creates selection for a corresponding increase in the other
species.

2.3.2 Evolutionarily attracting mutation rate

Assuming mutation rates start small we expect, based on our reasoning above,
that they will increase until the second term in equation (2.13) becomes nega-
tive. Thus setting equation (2.13) (or equivalently equation 2.12) equal to zero
allows us to find the evolutionarily attracting level of mutation (µ⇤

i ), for a given
mutation rate in the other species. Defining the positive constants

c2,i =
c1

2 � c1

✓
1 +

1
2(1 � yi)

◆
+

yi
2(1 � yi)
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allows us to simplify µ⇤
i , giving

µ⇤
i = µī,M + (1/2 � µī,M)

 
�c2,i +

s

c2
2,i + 2

✓
c1

2 � c1

◆!
(2.14)

As the terms in parentheses are positive, equation (2.14) shows that the evolu-
tionarily attracting mutation rate is higher than that of the antagonistic species.
Figure 2.3 plots the evolutionarily attracting mutation rate in hosts (solid line)
as a function of the strength of selection in parasites (left panels) and in hosts
(right panels). The shaded region indicates where cycling ceases (R < 1) and
thus where selection on mutation modifiers becomes neutral. We expect pop-
ulations with low initial mutation rates to evolve until they reach µ⇤

i , or until
mutation rates become large enough that cycles at the selected locus disappear
(R  1). In figure 2.3, therefore, we would expect population mutation rates
starting at or near zero to proceed upwards until they reach the minimum of
the black line or the border of the grey region.

2.3.3 Different generation times

A main assumption in our model is that host and parasite generation times
are equal. We relaxed this assumption using two methods (described in more
detail in appendix A.3). In both cases we varied host generation time, while
assuming parasite dynamics to be governed by the same equations as in the
main text. We first assumed that all hosts were subject to selection and mutation
at each time step, but that only a subset of the individuals reproduced sexually.
We then changed the assumption that all individuals were subject to mutation
at each time step, and assumed instead that mutations only occurred when
individuals reproduced sexually. In both cases we found that, when hosts lived
longer, the evolutionarily attracting mutation rate in hosts was higher than it
was when generation times were equal. This is because individuals who live
longer undergo less recombination per unit time, and thus remain linked to the
beneficial mutations they produce for more time steps (see Introduction).

2.3.4 One-species model

To help understand the effects of the speed versus the amplitude of evolutionary
cycles we considered a simplified one-species model where selection fluctuated
deterministically over time (see appendix A.4). We found that the speed of cy-
cles was important in deciding whether a modifier of mutation rate was selected
for or against (see equation A.4), with faster cycles selecting for higher mutation
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rates. In contrast to the results of our two-species model, however, a one-species
model revealed that the strength of selection at the selected locus only affected
the strength of selection at the modifier locus, not the direction of selection.
This qualitative difference occurs as a result of the dependence of cycle speed
(f) on selection strength (ah and ap) in the two-species model, whereas in the
one-species model cycle speed is fixed. As in the two-species model we also find
that higher recombination rates reduce the evolutionary attracting mutation rate
in the one-species model.

2.3.5 Numerical simulations

We ran computer simulations to investigate separately the effects of two ad-
ditional factors: drift in finite populations, and more than two alleles at the
selected locus. We considered a Wright-Fisher model with constant population
size. Each generation consisted of selection followed by recombination and then
mutation. Host-parasite interactions were governed by the same fitness matrix
as was used in the analytical model. Mutation rate was first allowed to evolve
in only one species at a time. While it is theoretically clearer this way, it may
also be biologically realistic in the case where one of the species is more con-
strained in its ability to modify mutation rates. All individuals in the evolving
population were initialized with mutation rates equal to zero. A single novel
mutator allele was introduced at the M-locus in a randomly drawn individual
whenever fixation at that locus occurred. The mutation rate of the novel muta-
tor was drawn from a Gaussian distribution centered at the current population
mean and with a standard deviation of 0.01 (negative mutation rates were set
to 0). All simulations were run for 107 generations.

For very large populations (109 individuals in each species), where drift
is negligible, simulations matched up perfectly with analytical predictions (see
solid black points in figure 2.3). In smaller populations (1000 individuals in each
species), however, stochastic fluctuations in allele frequency created additional
opportunities that favoured the evolution of higher mutation rates (for example,
by creating fluctuations when cycles would not be expected based on analytical
predictions). Thus, for small populations higher mutation rates evolved (see
open circles in figure 2.3)

We also used simulations to investigate the effects of higher numbers of al-
leles at the selected locus. With k possible alleles at the selected locus, mutation
was set so that an allele of type i had a uniform probability of mutating to any of
the other k � 1 types. There was a significant reduction in the size of the region
in which cycling occurred with more alleles (see figure 2.4), and where cycling
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did occur, the period was longer. The combination of these two changes led to
an overall reduction in the evolutionarily attracting mutation rate. However, the
dependence on the strength of selection and recombination exhibited qualita-
tively similar results to those for the two-allele case. For example, in figure 2.4a
high recombination causes a reduction in the evolutionarily attracting mutation
rate into the region where cycles persist.

Finally, we investigated co-evolution between hosts and parasites by allow-
ing mutation rates to evolve simultaneously in both species. As before, a single
novel mutator allele was introduced into either host or parasite populations
when either became monomorphic at the mutation rate locus. We focused on
the two-allele case at the locus mediating species interactions. When popula-
tions were large, escalation of mutation rates in both species led to the eventual
cessation of cycles, at which point evolution stopped (figure 2.5a). As before,
however, when populations were small stochastic fluctuations drove mutation
rates to higher values than expected, based on our analytical model (figure 2.5b).
When the strength of selection differed between the species, mutation rates rose
to higher levels in the species with the larger selection coefficient. In essence, the
species with more at stake kept ahead in the co-evolutionary arms race (figure
2.5).

2.4 Discussion

We have used analytical and simulation models to investigate the evolution of
mutation rate in a co-evolving host-parasite system. In order to maintain con-
sistency with other similar articles we have based our models on the matching-
alleles model of host-parasite interactions, where each host allele can be matched
by one parasite allele (whether matching causes infection or resistance is imma-
terial in the haploid two-allele model because we are free to define the alleles
such that Ap parasites are able to infect Ah hosts; Otto and Michalakis (1998)).
We followed host and parasite populations over multiple generations, where
interactions between the two species occurred at random at each time step.

We derived an expression for the evolutionary attracting mutation rate be-
tween two alleles, each of whose fitness was dependent on the current genetic
composition of the other co-evolving species (see equation 2.14). We found,
in accordance with previous literature for directional selection (Kimura, 1967;
Leigh, 1970; Sniegowski et al., 1997), that lower mutation rates are expected to
evolve with higher levels of recombination (figure 2.3).

In order to account for the higher number of deleterious mutations that often
accompany increased mutation rates, several authors have imposed additional
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fitness costs on individuals with higher mutation rates (Sasaki, 1994; Haraguchi
and Sasaki, 1996). In our model individuals with a higher mutation rate suffer
a fitness cost at certain points in the cycle through their elevated probability of
mutating from the more fit to the less fit allele. However, to maintain consis-
tency with other authors, we also considered a general cost to increased mu-
tation rates (see appendix A.1). We found, not surprisingly, that higher costs
reduced the evolutionarily attracting mutation rate.

Because an imbalance in allele frequencies in one species creates selection
for an imbalance in the opposite direction in the other species, cyclical fluctua-
tions can occur at the selected locus. When these fluctuations are absent allele
frequencies at the selected locus converge to a stable polymorphism, at which
point selection at the mutation rate locus disappears. We characterized the pa-
rameter space in which cycling does or does not occur (see non-shaded and
shaded regions in figures 2.3 and 2.4) and showed that large mutation rates can
inhibit cycling (a result previously shown by both Seger 1988 and Nee 1989).
We, therefore, expect that evolution will lead populations with initially small
mutation rates to our predicted evolutionarily attracting mutation rate (µ⇤

i from
equation 2.14) or until the point where cycles disappear, should this occur first.
This prediction was tested with computer simulations, which confirmed our
expectations when population sizes were very large (see solid circles in figure
2.3). However, when population sizes were small, higher than expected muta-
tion rates evolved. Drift in small populations can create stochastic fluctuations
in allele frequencies (Seger and Hamilton, 1988). Such fluctuations extend the
region where selection on a modifier occurs, accounting for an increased evolu-
tionarily attracting mutation rate.

From figures 2.3 and 2.4, it is apparent that the evolutionarily attracting mu-
tation rate predicted in our model, when interpreted as a “per site” mutation
rate is extraordinarily high. When viewed as an antigenic “switching rate”, or a
“per trait” mutation rate, however, it is not as unrealistic and is consistent with
theoretically predicted switching rates for parasites based on within host dynam-
ics (Sasaki, 1994). By not including an explicit cost to high mutation rates in the
text, we have implicitly assumed that the modifier has a very localized effect
on the mutation rate at the locus mediating the host-parasite interaction. While
mutation rates can be highly site specific (Frank, 2002), it is likely that mutation
rate modification is an intricate process, and therefore probable that modifiers
of mutation rate will have pleiotropic deleterious effects. Accounting for this
in our model by including additional costs reduced the predicted mutation rate
toward which the system evolved (see appendix A.1), as was the case in both
Sasaki (1994) and Johnson (1999). It is also possible that very high mutation
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rates would be evolutionarily favoured at loci that mediate host-parasite inter-
actions, but that such high rates take a long time to evolve (or may not evolve
at all because of genetic constraints), so that real populations may not have
reached such high levels.

A major assumption in our analytical model is that there are only two possi-
ble alleles at the selected locus. Seger (1988) has shown that dynamics can differ
qualitatively with multiple alleles. We, therefore, used computer simulations to
investigate more than two alleles. We found that the evolutionarily attracting
mutation rate decreased, and in accordance with Seger (1988), the region where
cycling occurred became smaller with more alleles (see figure 2.4). As in the
case for two alleles, mutation rates did not always evolve simply to the point
where cycles stopped. This can be seen by comparing points in figure 2.4a and
observing that when selection is strong and recombination is high the evolution-
arily attracting mutation rate lies in the region where cycling persists. Because
hosts and parasites usually have a large number of potential beneficial alleles
(Frank, 2002), we would predict, based on the above, that most real populations
would exhibit much lower mutation rates than those predicted by a two-allele
model.

Factors that led to longer cycles decreased the evolutionarily attracting muta-
tion rate. Cycles were longer when selection was weak in either species (see fig-
ure 2.1), when the difference between host and parasite mutation rates was large
(see equation (2.8a)), and when there were more alleles (results not shown). Be-
cause cycles in one species create a fluctuating selective pressure in the other
species, the observed decrease in the evolutionarily attracting mutation rate
with each of the above factors is consistent with previous findings that in fluc-
tuating environments the optimal mutation rate is proportional to the inverse
of the length of selective episodes (Leigh, 1970, 1973; Ishii et al., 1989).

When cycles persisted in our model, we observed that hosts and parasites
were usually very close to 90� out of phase. This is consistent with the results
of Nee (1989) who argued that large deviations from 90� cannot be sustained,
because they would require one of the two species to regularly evolve in the
“wrong” direction. While in our model, the phase shift s can theoretically
range from to 0� to 180�, we found that cycles disappear well before s becomes
too different from 90� and large deviations were, therefore, never observed (see
figure 2.2). For large population sizes, cycles also never appeared drastically
more or less than 90� out of phase in our simulations. However, in small pop-
ulations, where cycles were largely driven by genetic drift, large phase shifts
were observed (not shown), as was also noted by Gandon and Nuismer (2009)
for a spatially structured population.
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For a wide range of parameters, cycles were ephemeral, disappearing once
mutation rates had evolved to sufficiently high levels (see figure 2.3). Further-
more, the range of parameters where cycles persist became smaller as the num-
ber of alleles increased (see figure 2.4). These findings question the legitimacy of
the pervasive assumption that loci governing host-parasite interactions exhibit
cyclical dynamics. A lack of empirical evidence for recurrent cycles further
questions this assumption’s legitimacy. To our knowledge, there is only a single
empirical study that presents data supporting cyclical dynamics (i.e. changes
in allele frequency which eventually return to the same value; several addi-
tional studies show change consistent with either cycles or directional selective
sweeps). Stahl et al. (1999) used coalescence theory to argue that a 9.8 million
year old polymorphism for disease resistance in Arabidopsis thaliana must have
been maintained by frequency-dependent selection, and furthermore, showed
signs of having historically differed in frequency. While consistent with cycling,
their results are also consistent with an alternative explanation; a recent change
in the environment could have altered the relative fitness cost of the resistance
allele, resulting in a shift in allele frequencies. More long-term empirical data
are, therefore, needed to determine whether true cycles occur in host-parasite
systems.
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Figure 2.1: Period of co-evolutionary cycles (in generations) as a function of
the strength of selection in parasites. Other parameters were µh,M = µp,M =
1 ⇥ 10�3 per generation.
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Figure 2.3: Evolutionarily attracting per generation mutation rate in hosts as a
function of the strength of selection in parasites (a, c, e) and in hosts (b, d, f).
The rate at which sex and recombination (yi) occurs is given in each panel. Solid
black lines denote the predicted mutation rate corresponding to equation (2.14)
and shaded regions indicate where cycling does not occur (R < 1). ah = �1 in
panels a, c, e, and ap = 100 in panels b, d, f. Filled and open circles correspond
to simulations with population sizes of 109 and 103 (in both hosts and parasites),
respectively. µp was 0.002 in all panels (results are very similar unless µp � 0).
Evoloved mutation rates in hosts are the mean of 50 replicate runs, each of
which was averaged over the last 5 ⇥ 106 of 107 generations.
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Figure 2.4: Evolutionarily attracting per generation mutation rate in hosts with
multiple alleles at the selected locus. The shaded light grey regions indicate
where cycling did not occur in the three (panel a) and ten (panel b) allele model,
and the shaded dark grey region indicates where cycling did not occur in the
two allele model and is included for reference. Shaded regions were generated
using simulations; cycling was considered absent whenever the allele frequency
range over the last 500 generations of the simulations fell below 0.005. With
two alleles, this region corresponded well to the region where R < 1. For the
large population sizes used here (109 hosts and 109 parasites), a clear transition
from cycling to no cycling occurs. Recombination rates were set to 0.5 (filled
circles) and 0 (open circles), ah = �1, and µp = 0.002. Each point is the mean
of 10 replicate runs, each of which was averaged over the last 5 ⇥ 106 of 107

generations.

24



Chapter 2

0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

Index

N
U

LL

●

●

●

●

●

●

●

●

●

a Selection stronger in parasites
Equal strength of selection
Selection stronger in hosts

0.0 0.1 0.2 0.3
Index

N
U

LL

●

●

●

●

●

●

●

●

●

b

Host Mutation Rate

Pa
ra

si
te

 M
ut

at
io

n 
R

at
e

Figure 2.5: Co-evolutionarily trajectories in simulations with differing strengths
of selection in hosts and parasites. Each curve represents the mean of 100 repli-
cate runs. Initial mutation rates were either: 0 in both hosts and parasites, 0

in hosts and 0.15 in parasites, or 0.15 in hosts and 0 in parasites. Points repre-
sent final values after 107 generations. The light shaded regions indicate where
cycles are not expected in the analytical model (R < 1) for ah = �0.9, ap = 9
and the dark shaded regions indicate where cycles are not expected for both
ah = �0.9, ap = 99 and ah = �0.99, ap = 9. Population sizes in both hosts
and parasites were 109 in (a) and 104 in (b). When the strength of selection
was equal in both species we used ah = �0.9 and ap = 9; when selection was
stronger in the parasites we used ah = �0.9 and ap = 99; finally, when selection
was stronger in the hosts we used ah = �0.99 and ap = 9. The dotted line has
a slope of one and is included for reference. Recombination rates were set to 0.
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Ploidy and the evolution of
parasitism

3.1 Summary

Levels of parasitism are continuously distributed in nature. Models of host-
parasite co-evolution, however, typically assume that species can be easily char-
acterized as either parasitic or non-parasitic. Consequently, it is poorly under-
stood which factors influence the evolution of parasitism itself. We investigate
how ploidy level and the genetic mechanisms underlying infection influence
evolution along the continuum of parasitism levels. In order for parasitism to
evolve, the selective benefits to successful invasion of hosts must outweigh the
losses when encountering resistant hosts. However, we find that exactly where
this threshold occurs depends not only on the strength of selection, but also
on the genetic model of interaction, the ploidy level in each species, and the
nature of the costs to virulence and resistance. With computer simulations we
are able to incorporate more realistic dynamics at the loci underlying species
interactions and to extend our analyses in a number of directions, including
finite population sizes, multiple alleles, and different generation times.

3.2 Introduction

Understanding the complex ecological and evolutionary interactions between
parasites and their hosts has long been a central focus in the biological sciences.
This is largely due to the important consequences that advances in this field
have had on the development of new strategies for disease and pest manage-
ment. The continued need for progress has led to high levels of communication
between theoreticians and empiricists, which has helped propel research in both
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fields (e.g., Frank, 2002; Galvani, 2003). Consequently, there are numerous the-
oretical models covering a wide range of topics, including: the evolution of
virulence (e.g., May and Anderson, 1983; Frank, 2002; Galvani, 2003), sex (e.g.,
Hamilton et al., 1990; Peters and Lively, 2007), recombination and mutation
rates (e.g., Gandon and Otto, 2007; M’Gonigle et al., 2009), the evolution of host
resistance (e.g., Boots and Bowers, 1999; Miller et al., 2005), and local adaptation
(e.g., Gandon, 2002).

One typical assumption of theoretical host-parasite models is their treatment
of species as either parasitic or non-parasitic (e.g., Sasaki, 1994; Haraguchi and
Sasaki, 1996; Gandon, 2002; Day and Proulx, 2004; Nuismer and Otto, 2004;
Gandon and Otto, 2007). In other words, models typically operate under the
assumption that a species lives strictly as a parasite. While many species do
fit this assumption (e.g., those for whom the very completion of their life-cycle
depends on the successful infection of a host, such as the plasmodium species
that cause malaria), there are numerous examples of species for whom this as-
sumption is not appropriate. For example, a number of species from a range of
taxonomic groups have been shown to be “facultatively parasitic”; e.g., ciliates
(Reynolds, 1936; Thompson and Moewus, 1964), flatworms (Hooge and Tyler,
1999), fungi (Morin et al., 1993), nematodes (Benham, 1974). These species are
parasitic if the opportunity arises but are otherwise free-living and capable of
reproduction without the aid of a host species. Levels of parasitism should thus
be seen as distributed along a continuum in which “completely parasitic” and
“completely non-parasitic” define the extreme cases. One question that then
arises is, how does evolution occur along this continuum, and what are the
main factors that determine whether evolution occurs toward higher or lower
levels of parasitism?

Empirical work on a number of different host-parasite systems has uncov-
ered a variety of genetic mechanisms employed by hosts and parasites to gener-
ate the phenotypic variation needed to defend against and invade one another
(Frank, 2002). For example, a single allele in flax (Linum usitatissimum) causes
resistance to the fungal pathogen Melampsora lini, and a single virulent allele
in the pathogen allows infection of both non-resistant and resistant strains of
flax (a “gene-for-gene” interaction (Flor, 1942, 1955, 1956)). Host-parasite inter-
actions have also been shown to exert strong selection on the underlying genes
that modulate species interactions (e.g., favouring changes in expression level
(Nuismer and Otto, 2005) or ploidy level (Nuismer and Otto, 2004)). That there
are many ways species can interact on a genetic level, and that these interac-
tions have been shown to be under selection, suggests that the nature of the
genetic interactions between species also exerts a selective force on the degree
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of parasitism. Here we ask how ploidy level, an important component of such
genetic interactions, influences evolutionary transitions along the continuum
from free-living to parasitic life-histories.

Using a combination of analytical models and simulations, we examine evo-
lution at a locus that modifies the amount of time a facultatively parasitic species
spends parasitizing its host species. This is done in the context of each of the
three models of host-parasite interactions that are thought to describe a large
number of host-parasite systems (Nuismer and Otto, 2004).

3.3 Model summary

We consider two interacting species, denoted H and P for hosts and parasites,
respectively. The term “parasite” is used loosely here, as the species in question
can spend anywhere from 0 to 100% of its time as a parasite. Species interactions
are governed by a single locus (from here on referred to as the A-locus) with
two alleles in each species (AH and aH in hosts, and AP and aP in parasites). We
suppose that parasites spend a proportion of their life cycle parasitizing hosts,
and the remaining proportion as free-living organisms. A second locus (from
here on referred to as the M-locus or the “modifier” locus) determines how a
parasitic individual partitions its time between these two strategies; individuals
of genotype i spend a proportion fi of their life cycle as parasites (see table C.1
for a complete list of parameters and their descriptions).

We consider here three models of host-parasite interactions. The matching-
alleles model (abbreviated MAM) is based on a system of self/non-self recogni-
tion (Hamilton, 1980; Frank, 1994; Peters and Lively, 1999; Grosberg and Hart,
2000), as typically occurs in immune systems that develop via the elimination of
self-compatible MHC molecules. In this model hosts are susceptible to parasites
carrying only alleles that mimic or “match” their own cell signals and are re-
sistant to parasites possessing any non-matching alleles. The inverse-matching-
alleles model (abbreviated IMAM) is essentially the opposite of the MAM; hosts
can defend against parasites carrying any matching alleles and are susceptible to
parasites carrying only non-matching alleles (Frank, 1994). This model describes
components of the vertebrate MHC system, where host alleles influence the ar-
ray of antigen molecules that can be detected. Hosts can only defend against
parasites whose antigens they can detect. In the gene-for-gene model (abbrevi-
ated GFG), avirulent parasite alleles produce signal molecules that bind to cell
surface receptors on resistant host cells, triggering an immune response and
thus unsuccessful invasion (Albersheim and Anderson-Prouty, 1975; Gabriel
and Rolfe, 1990). Virulent pathogens, however, are able to suppress the pro-
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duction of these elicitors and are, therefore, able to invade both resistant and
non-resistant hosts. These systems are typically characterized by dominant re-
sistance alleles and recessive virulence alleles (Frank, 2002); we shall assume
these dominance interactions throughout. Gene-for-gene interactions were first
discovered and have since been shown to be quite common in plant-pathogen
interactions (Gabriel and Rolfe, 1990).

Because we are interested in the effects of ploidy on species interactions, we
will consider all combinations of haploid and diploid hosts and parasites. We let
{xH,1[t], . . ., xH,k[t]} and {xP,1[t], . . ., xP,l [t]} denote the frequencies of the k host
and l parasite genotypes at time t. As a free-living organism, each individual
has some basal fitness, which we arbitrarily set to 1. Selection coefficients for
other life stages are then measured relative to this fitness. Parasitic individuals
that successfully infect hosts experience a fitness gain of aP, while those that
encounter resistant hosts experience a fitness loss of bP. If a parasite attempts to
find a host, but fails, and if it can no longer reproduce as a free-living organism,
then fitness would be lower in both cases. Infection by a parasite is assumed to
lower host fitness by aH.

We define the indicator variable hi,j to equal 1 if parasites of genotype i can
infect hosts of genotype j, and 0 otherwise. Table 3.2 summarizes the infection
patterns for each of the models considered here. The fitness of a genotype i
parasite at time t is then given by

wP,i[t] = (1 � fi) + fi

k

Â
j=1

(1 + a
hi,j
P · (�bP)

(1�hi,j))xH,j[t], (3.1)

and the fitness of a genotype i host is given by

wH,i[t] = 1 � aH

l

Â
j=1

hj,i f jxP,j[t]. (3.2)

The above ignores demographic fluctuations and assumes that each individual
engages in at most one host-parasite interaction per time-step.

Costs of resistance and virulence have been demonstrated in some GFG sys-
tems (Tian et al., 2003; Thrall and Burdon, 2003). Without such costs, we would
expect the resistant host alleles and/or virulent parasite alleles to spread to
fixation. We, therefore, assume that both the virulent parasite allele and the
resistant host allele are costly. In hosts we assume that the resistant allele (AH)
reduces the fitness of its carriers by an amount cH. In parasites, we consider two
types of costs: a conditional cost (cP,c) that only impacts individuals involved
in host-parasite interactions (e.g., reduces growth within a host), and an un-
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conditional cost (cP,u) that impacts all virulent individuals (e.g., reduces growth
within and outside of hosts). The effects of these costs act additively, so that the
fitness of a virulent individual of genotype i is reduced by ( ficP,c + cP,u). The
frequency of genotype i in species j (j = H or j = P) after selection may then be
computed as

x0j,i =
xj,i[t]wj,i[t]

w̄j[t]
, (3.3)

where w̄j[t] = Âi xj,i[t]wj,i[t] is the mean fitness of species j (the sum is taken
over all genotypes).

While we largely focus on the effects of ploidy and the model of genetic
interaction, it is worth mentioning that the above model also captures possi-
ble ecological changes in the opportunity for parasitism; if the environment
clearly favours one life-history strategy over another (as may occur, for exam-
ple, when a new host species becomes available), then parasitism would be
expected to evolve, regardless of the genetic architecture underlying species
interactions. This possibility would be captured by high values of aP (large
advantages of successful invasion) and potentially low values of bP (weak host
defenses against the parasite). In cases where the environmental forces favour-
ing parasitism are not absolute, however, our analysis will help predict how the
underlying genetics shapes the course of evolution.

We let yH and yP denote the proportion of hosts and parasites, respectively,
that undergo sexual reproduction at each time step, and we assume that the
remaining individuals consist of surviving parents or asexual offspring. We let
x00H,i and x00P,i denote the frequency of genotype i individuals in hosts and para-
sites, respectively, formed through random mating within the parental genera-
tion after selection. In both hosts and parasites all sexual individuals contribute
their gametes to a general gamete pool, out of which offspring are selected
at random. Recombination between the modifier and the A-locus occurs dur-
ing meiosis in parasites at rate r. After reproduction, genotype frequencies in
species j are then given by

xj,i[t + 1] = (1 � yj)x0j,i + yjx00j,i . (3.4)

3.4 Analytical results

We make the assumption that selection is weak (aH, aP, and bP are all on the
same order as some small term e), and that most individuals are sexual in both
species (yH and yP are on the order of 1-e; this assumption is relaxed in the
Appendix). We also assume that the modifier has a small effect (i.e. we set
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fM = fm + DM or fMm = fmm + DMm and fMM = fmm + DMM and then assume
that the D’s are also of order e). Performing a change of variables allows us
to describe the system in terms of the departure from a frequency of 0.5 at the
A locus in each species (dH [t] in hosts and dP[t] in parasites), the frequency of
the modifier in parasites (pM[t]), and several higher order association measures,
such as the departure from Hardy-Weinberg equilibrium and linkage disequi-
librium (as defined in Barton and Turelli, 1991).

A quasi-linkage equilibrium analysis (Barton and Turelli, 1991) showed that
all genetic associations are of order e2 or higher, and that changes in allele fre-
quency at the M-locus are governed largely by terms of order e, which describe
differences in fitnesses of the different genotypes. Specifically, a modifier M
of parasitism level will spread only if the difference between the marginal fit-
nesses of alleles M and m, which we denote by w̄diff = w̄M � w̄m, is positive.
The expressions for w̄diff for an allele that increases parasitism for the four com-
binations of host/parasite ploidy levels are given in table 3.3.

As is typical in models of host-parasite co-evolution, dynamics at the A-
locus are characterized by cyclical fluctuations (figure 3.1). In the matching-
alleles and the inverse-matching-alleles models, these cycles are symmetric about
an allele frequency of 0.5 (equivalently, about dH = 0 and dP = 0). By assuming
(for these cases) that these cycles are small (e.g., that both dH and dP are also
on the order of the small term e), we are able to find simple conditions under
which selection favours increased levels of parasitism (table 3.4).

It is clear from the expressions in table 3.4 that the fitness effects of match-
ing versus not matching the genotype of the host, aP/bP, must be sufficiently
beneficial for parasites to adopt a less free-living life-cycle in both MAM and
IMAM. However, where this threshold occurs depends on both the model of
genetic interactions and the ploidy level of each species (figure 3.2). In gen-
eral, the matching-alleles model tends to favour parasitism more strongly than
the inverse-matching-alleles model (compare figure 3.2A to figure 3.2B), mainly
because it is easier for a parasite to mimic hosts that are heterozygous diploid
(MAM) than to evade detection by them (IMAM). In both MAM and IMAM, the
transition to parasitism occurs over a broader range of parameters when the par-
asite is haploid, because such parasites express only one antigen allele (compare
solid to dashed lines in figure 3.2). The role of host ploidy is more complicated,
however. Diploidy allows for the appearance of heterozygous hosts that are in-
fected by any type of parasite in MAM, but resistant to every type of parasite
in IMAM. Thus host diploidy favours (disfavors) the evolution of parasitism in
MAM (IMAM) (compare thick to thin lines in figure 3.2).

Because cycles in the gene-for-gene model are not typically centered around
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0.5 we take a slightly different approach in this case. We first solve for the
equilibrium dH and dP, and then substitute these into the expressions for w̄diff.
Assuming weak selection, we are again able to simplify the expressions for w̄diff.
For all ploidy combinations, we find

w̄diff =
(aP � cP,c) f 2aH � cHcP,u

f 2aH
, (3.5)

where f denotes the resident parasitism level ( f = fm for haploid parasites and
fmm for diploid parasites). Unlike for MAM and IMAM models, there are no
major effects of ploidy on the evolution of parasitism in the GFG. While quali-
tative dynamics at the A-locus differ between cases, parasitism is favoured for
the same combinations of selection and cost parameters across all ploidy levels.
This contrasting result for GFG is a consequence of our empirically motivated
assumption of complete dominance. With both the resistant allele in hosts and
the virulent allele in parasites completely dominant, the two species are essen-
tially composed of only two types, and thus effectively interact as haploids.

In contrast to ploidy, the nature of costs of virulence are critically important
to the evolution of parasitism in the GFG (figure 3.3). Consider setting cP,u equal
to zero. With just conditional costs (cP,c), we find,

w̄diff = aP � cP,c , (3.6)

and thus parasitism should evolve whenever the benefits to successful invasion,
aP, are greater than the conditional cost of the virulent allele cP,c. In contrast,
when cP,c equals zero,

w̄diff =

✓
aP � cP,u

cH

f 2aH

◆
. (3.7)

Here the cost term is weighted by 1/ f 2. With lower resident parasitism levels
(smaller f values), a larger selective benefit to parasitism (aP) is required in or-
der for selection to favour further increases in parasitism. This makes it exceed-
ingly difficult for parasitism to evolve from initially low levels when costs are
unconditional. Intuitively, because the unconditional cost is paid by all virulent
individuals, it is unlikely that any fitness gains acquired through parasitism will
sufficiently compensate for the costs of virulence when the chance of infecting
a host is low.
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3.5 Simulation model summary

We ran computer simulations to investigate the robustness of our model to vio-
lations of its assumptions, such as small cycles (figures B.1, B.2), weak selection
(figure B.3), infinite population sizes (figure B.4), and high rates of sexual repro-
duction (figure B.5). We also investigated the effect of differences in generation
times (figure B.6) and of multiple alleles (figure B.7) on the evolution of par-
asitism. In each case we employed a Wright-Fisher model with constant and
finite population size. Each time step consisted of selection followed by sex
and recombination (with r=0.5). Because population sizes were finite, mutation
between alleles at the A-locus was necessary to ensure that allelic variation at
this locus was not permanently lost. Mutation between alternative alleles at the
A-locus occurred in both species at rate µ per generation.

In order to investigate the evolution of parasitism we initialized populations
with low levels of parasitism ( f = 0.1), and tracked evolution at the modifier lo-
cus. We also ran simulations initialized with high levels of parasitism ( f = 0.9),
but because the final level of parasitism attained was typically similar, these
results are not presented. Where this change did affect the final outcome, we
provide a more detailed discussion. All individuals were initially identical at
the modifier locus, and whenever fixation occurred, a novel modifier allele was
introduced at low frequency (we used 0.01), and in linkage equilibrium with
the A-locus. The parasitism level ( f ) corresponding to the novel modifier was
drawn from a Gaussian distribution centered on the current level of parasitism
with a standard deviation of 0.1 (parasitism levels were re-drawn if they fell out-
side the range [0, 1]). While introducing a mutant allele into the population at
linkage equilibrium is not biologically realistic, it eliminates unwanted artifacts
that may result from biased initial associations between the modifier and the
A-locus. It is also worth mentioning that the initial frequency of the new modi-
fier and the standard deviation used to draw new mutants did not qualitatively
affect results, but they did affect the speed of the simulations.

We examined a number of extensions to our model (see Appendix). Most
extensions had little effect on our results. Here we focus on only the simplest
and most informative extensions. Unless specified otherwise, simulations were
run for 106 generations and initial frequencies at the A-locus in each species
were drawn independently from a uniform distribution.
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3.5.1 MAM/IMAM simulation results

Small cycles

We begin by examining the simpler case when cycles at the A-locus are small
in amplitude. To constrain cycle size in the simulations we increased the muta-
tion rate, which pushes allele frequencies toward intermediate values and thus
dampens cycles (exposure to multiple parasites per time step has also been
shown to dampen cycles (Lively, 2010)). With intermediate to high mutation
rates, cycles were characterized by smooth sinusoidal curves (figure 3.1C, 3.1D ;
note that for very high mutation rates cycles were absent altogether, as in figure
3.1A, 3.1B). When cycles were absent or small, increased levels of parasitism
evolved as predicted in table 3.4 (columns 1 and 2 in figure B.1).

Large cycles

Large amplitude cycles are observed with lower mutation rates (figure 3.1E,
3.1F). Mutation to other serotypes in Borrelia hermsii has been estimated to oc-
cur at a rate somewhere between 10�3 and 10�4 per generation (Stoenner et al.,
1982), and new variant surface glycoproteins arise in trypanosomes at a rate
somewhere between 10�2 and 10�6, per cell doubling time (Turner and Barry,
1989). We thus set µ = 10�5 to investigate realistic mutation rates. With large
amplitude cycles a few cases did not match the small-cycle analytical approxi-
mations in table 3.4 (figure 3.4), although the large-cycle conditions in table 3.3
continued to hold, given the observed dynamics for dH and dP (results available
upon request). We will describe these cases in turn.

When parasites were diploid and hosts were haploid, large cycles led to a
reduction in the size of the region where parasitism evolved (figure 3.4C and
3.4D). Because in MAM and IMAM heterozygous parasites could not invade
either haploid host, parasites responded slowly to changes in allele frequency
in the hosts. Consequently, the proportion of time parasites spent “losing” the
host-parasite arms race grew as cycle size increased (left column in figure 3.1),
and thus the region where parasitism was favoured shrunk.

When parasites were haploid and hosts were diploid, the opposite scenario
occurred. Here it was the diploid hosts that were slow to respond to allele
frequency changes in the haploid parasites. Furthermore, because heterozy-
gous hosts in IMAM are more resistant than homozygous hosts, cycles tended
to dampen (remaining near di = 0), whereas a slow coevolutionary response
in hosts was observed in MAM (right column, figure 3.1). The region where
parasitism was favoured thus grew slightly with MAM (figure 3.4E).
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When both species were diploid, general conclusions could not be drawn
about which species would lag behind in the arms race. Unlike the previous
comparisons, whether the region where parasitism was favoured slightly grew
or shrunk depended more sensitively on the strength of selection in hosts (aH,
see figures B.2 and B.3).

3.5.2 GFG simulation results

Because high mutation rates drive allele frequencies to 1/2, which is not gener-
ally the equilibrium in the gene-for-gene model, we only consider low mutation
rates and thus large cycles in this case. With conditional costs our simulations
exactly matched our predictions, and parasitism evolved whenever the fitness
benefit of successfully invading a host, aP, was greater than the cost of the
virulent allele, cP,c (figures 3.3A, B.8). As predicted for unconditional costs,
the initial level of parasitism present in the population strongly affected which
parameter combinations favoured further evolution of parasitism (figures 3.3B,
B.9). In large populations (N = 106 individuals) and initially low levels of par-
asitism ( f = 0.1), increased parasitism never evolved, as expected. With high
initial levels of parasitism, however, evolution of a more parasitic life history
was possible. In other words, the system exhibited bistability. Interestingly, in
regions where the evolution of a free-living life cycle was expected, the GFG
system would often converge to an M/m polymorphism fixed for allele a. That
is, the initial mA/ma polymorphism involving a costly virulent allele and a
sensitive allele was replaced with an Ma/ma polymorphism involving sensitive
alleles with higher and lower levels of parasitism (explaining why the regions
in figures B.8 and B.9 were grey rather than white). With unconditional costs
the effect of initial conditions described above disappeared altogether in small
populations (figure B.10). Stochastic fluctuations in allele frequency at the in-
teraction locus, combined with drift at the modifier locus, allowed occasional
excursions into the parameter space in which further evolution of parasitism
became advantageous.

3.6 Discussion

We have used analytical and simulation methods to investigate the evolution
of parasitism in a pair of co-evolving species. Our results provide an initial
characterization of how genetic architecture affects selection on life-history in
antagonistic species interactions.

By and large, the evolution of parasitism depends on the mean fitness of
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allelic variants at a locus governing how much time a species spends as a para-
site and is not strongly influenced by genetic associations. By comparing mean
fitness of these allelic variants we were able to characterize the conditions un-
der which high levels of parasitism were expected to evolve. While the fitness
effects of matching or not matching the genotype of the host had to be suffi-
ciently beneficial in order for parasites to adopt a more parasitic life-cycle, the
exact threshold depended on both the model of genetic interactions and, in most
situations, the ploidy level of each species. In situations where hosts are only
able to defend against parasites for which they have the correct allele, as with
IMAM, hosts that carry a larger suite of alleles (diploids) or parasites that carry
few alleles (haploids) tend to thrive. Thus lower ploidy levels in either species
tend to increase the benefits to parasitism. In contrast, in situations where par-
asites must match host genotypes in order to invade (e.g., MAM), diploid hosts
can be infected by a greater number of parasite types, and thus diploidy in
hosts tends to favour parasitism, while haploidy in parasites is again most con-
ducive to further evolution of parasitism. With GFG interactions ploidy had
little impact on the evolution of parasitism because of the complete dominance
assumed.

The above predictions were derived under a number of assumptions, the
most significant being intermediate allele frequencies at the locus governing
host-parasite interactions (i.e., small cycles). Using simulations we were able to
investigate our model’s behaviour when no such constraints were imposed on
allele frequencies. The predictions based on small cycles were altered slightly
under some conditions (panels C-E, G, H in figure 3.4), although the main qual-
itative results continued to hold under all conditions. The differences from our
predictions occurred mostly when host and parasite fluctuations were not 90�

out of phase with one another (figure 3.1). Typically this occurred when het-
erozygotes of one species had low fitness (e.g., hosts in MAM and parasites
in IMAM). These low fitness heterozygotes reduced the efficacy of selection in
this species, as beneficial alleles, when rare, were found almost exclusively in
the heterozygous form. As a result this species responded slowly to changes in
allele frequency in the other species. This meant that more time was spent in a
population configuration that favoured the faster responding species, and thus
the region of parameter space where parasitism evolved was shifted in favour
of that species. Violations of our other main assumptions (infinite population
sizes, weak selection, and primarily sexual populations) were also tested using
simulations and shown to have only minor effects (see Appendix).

In nature, parasites typically have much shorter generation times than their
hosts, and furthermore, many host-parasite interactions are governed by more
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than two alleles (e.g., trypanosomes are known to possess hundreds of allelic
antigen variants (Van Der Ploeg et al., 1982)). Using simulations we investigated
how these extensions changed our general conclusions. While neither led to any
qualitative changes across ploidy combinations, more alleles at the interaction
locus had significant and opposite effects in the matching-alleles and inverse-
matching-alleles models. Because higher genetic diversity among hosts with
more alleles makes them resistant to a larger number of parasites in MAM,
more alleles were less conducive to the evolution of parasitism. Similarly, with
MAM, high diversity in parasites tends to help hosts recognize their parasites
as genetically distinct. The opposite held true in the IMAM, where greater
genetic diversity in hosts allows parasites to invade a greater proportion of
host genotypes and greater genetic diversity in parasites allows them to remain
undetected by more host genotypes. Thus, the more alleles segregating at the
genes mediating host-parasite interactions, the more conducive IMAM systems
are to the evolution of parasitism.

Another factor found to have a large influence on the evolution of para-
sitism was the nature of the costs to virulence in the GFG models. Interestingly,
conditional costs were much more conducive to the evolution of parasitism.
When parasitism is rare, unconditional costs of virulence typically outweigh
the benefits of being parasitic and result in the spread of sensitive parasites and
resistant hosts, which prevents the evolution of further parasitism. Had uncon-
ditional costs been weak enough to allow parasitism to increase when low, then
they would have been too weak to prevent the fixation of virulent alleles once
parasitism levels were high. In the absence of factors such as strong genetic
drift, which may stochastically shift parasitism levels upward, a predominantly
free-living life history is thus expected with substantial unconditional costs of
virulence.

Previous theoretical work has shown that transitions between haploidy and
diploidy are expected as a consequence of host-parasite interactions (Nuismer
and Otto, 2004). In particular, haploidy is most favoured in parasites because of
the advantage of reducing antigenic expression to a single allele, while diploidy
is more often favoured in hosts because of the advantage (in many cases) of het-
erozygous hosts being able to recognize multiple parasites. In accordance with
the above theoretical predictions, a survey of empirical data revealed an associa-
tion between ploidy and life history (Nuismer and Otto, 2004); parasitic protists
are three to four times as likely as non-parasitic protists to be haploid. This
pattern would, however, be consistent with either parasites evolving more hap-
loid life-cycles (Nuismer and Otto, 2004), or haploids evolving more parasitic
life cycles (herein). Indeed, if transitions in parasitism occur more frequently
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than transitions in ploidy, transitions in parasitism may be more important in
explaining the association between parasitism and haploidy.

Some groups of species today are almost wholly parasitic (e.g., Apicom-
plexa), while others contain a mixture of both free-living and parasitic individ-
uals (e.g., dinoflagellates) (Als et al., 2004; Moran and Wernegreen, 2000), and
many are wholly non-parasitic. In groups such as dinoflagellates, the ability to
photosynthesize and thus produce ones own food may make the switch between
parasitic and free-living life-styles relatively easy, whereas in other groups it
appears that the ability to regain a free-living lifestyle has been altogether lost
(e.g., no Borrelia sp. proliferating in an environment outside of a vertebrate or
invertebrate host has been observed (Barbour and Hayes, 1986)). A comparative
phylogenetic analysis of closely related groups of species, which differ in their
proportions of parasitic species, would provide additional insight into exactly
what sorts of traits facilitate acquisition or loss of parasitism, and furthermore,
just how common such transitions have been.

There are a number of worthwhile extensions to our model. Ample em-
pirical evidence suggests that many, if not most, host-parasite interactions are
governed by more than a single locus (May and Anderson, 1983). For exam-
ple, the brown planthopper (Nilaparvata lugens), a pest on rice in South East
Asia, was originally assumed to be engaged in a GFG interaction, but it has
since been shown to contain several biotypes, each determined by different co-
adapted gene complexes (Thompson and Burdon, 1992). Extending our model
to include multiple interaction genes would allow us to consider the buildup
of the co-adapted gene complexes that facilitate life-history transitions. Fur-
thermore, the model presented here assumes that some level of parasitism is
already present or that at least the genetic architecture is already in place for
proper parasitic invasion of hosts. De novo evolution of parasitism realistically
requires more than a single mutational event, perhaps mediated by intermedi-
ate stages involving mutualistic or trophic interactions. More detailed models
on these early stages could provide insight into how parasitic life styles have
evolved out of non-parasitic ones.
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Table 3.1: Description of parameters.

Parameter Description

fi proportion of time spent as a parasite by genotype i
xi,j frequency of genotype j in species of type i (i = H or P)
aP fitness gained by a parasite that successfully infects a host
bP fitness lost by a parasite that attempts but fails to infect a resistant host
aH fitness lost by hosts when they are infected
hi,j indicator variable defined to equal 1 if parasites of genotype i can

infect hosts of genotype j, and 0 otherwise
wi,j fitness of genotype j in species of type i
cH cost of the resistant allele in hosts (GFG only)
cP,c conditional cost of the virulent allele in parasites (GFG only)
cP,u unconditional cost of the virulent allele in parasites (GFG only)
yi proportion of species of type i that reproduce sexually
r recombination rate in parasites
DM effect size of the modifier (haploid parasites)
DMm effect size of the modifier when present in heterozygotes (diploid parasites)
DMM effect size of the modifier when present in homozygotes (diploid parasites)
di deviation from a frequency of 0.5 at the A-locus in species i
pM frequency of the modifier in parasites
w̄M, w̄m marginal fitnesses of alleles M and m
w̄diff difference between marginal fitnesses (i.e., w̄M � w̄m)
µ mutation rate at the A-locus in both species (simulations only)

Table 3.2: Invasion matrices. Each entry represents the outcome of interactions
in the three models in the following order {matching-alleles, inverse-matching-
alleles, gene-for-gene}. I is used to denote infection (hi,j = 1 in equations (3.1)
and (3.2)) and R resistance (hi,j = 0). Both haploid and diploid hosts and para-
sites are included in the table.

Host
AH or AH AH AHaH aH or aHaH

Parasite

AP or AP AP {I,R,I} {I,R,I} {R,I,I}
APaP {R,R,R} {I,R,R} {R,R,I}
aP or aPaP {R,I,R} {I,R,R} {I,R,I}
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Table 3.3: The fitness advantage of the modifier allele, w̄diff = w̄M � w̄m, when genetic associations are weak. We have dropped a
factor DM from the haploid parasite cases and (pM(DMM � DMm) + (1 � pM)DMm) from the diploid parasite cases; these terms can
be interpreted as the average effect size of the modifier.

Model Host Parasite w̄diff
ploidy ploidy

MAM

1 1 (aP � bP)/2 + (aP + bP)(2dHdP)
1 2 (aP � 3bP)/4 + (aP + bP)(2dHdP + d2

P)
2 1 (3aP � bP)/4 + (aP + bP)(2dHdP � d2

H)
2 2 (5aP � 3bP)/8 + (aP + bP)(4dHdP(1 + dHdP)� 3d2

H + d2
P)/2

IMAM

1 1 (aP � bP)/2 � (aP + bP)(2dHdP)
1 2 (aP � 3bP)/4 � (aP + bP)(2dHdP � d2

P)
2 1 (aP � 3bP)/4 � (aP + bP)(2dHdP � d2

H)
2 2 (aP � 7bP)/8 � (aP + bP)(4dHdP(1 � dHdP)� d2

H � d2
P)/2

GFG

1 1 (3aP � bP)/4 + (aP + bP)(dP � dH(1 � 2dP))/2 � cP,c(1 + 2dP)/2
1 2 (7aP � bP)/8 + (aP + bP)(2(1 + 2dH)(1 � dP)dP � dH)/4�

cP,c(3/4 + (1 � dP)dP)
2 1 (5aP � 3bP)/8 + (aP + bP)(3dP + 2(1 � 2dP)(d

2
H � dH))/4 � cP,c(1 + 2dP)/2

2 2 (13aP � 3bP)/16+(aP + bP)(d
2
H(1� 2dP)

2 � dH(1� 2dP)
2 + 3(1� dP)dP)/4�

cP,c(3/4 + (1 � dP)dP)

4
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Table 3.4: Invasion condition for a modifier that increases the level of parasitism
in MAM and IMAM, assuming small cycles around allele frequencies of 1/2 (or
dH = dP = 0).

Model Host Parasite Invasion
ploidy ploidy condition

MAM

1 1 aP > bP

1 2 aP > 3bP

2 1 aP > bP/3
2 2 aP > 3bP/5

IMAM

1 1 aP > bP

1 2 aP > 3bP

2 1 aP > 3bP

2 2 aP > 7bP
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Figure 3.1: Sample trajectories from simulations (after a burn-in period) in the
matching-alleles model with complete parasitism ( f = 1). Column labels indi-
cate ploidy levels and row labels mutation rates. The background is coloured
grey to indicate when the parasite is “losing” the arms race with the host, and
white when it is “winning”. Other parameters were aP = 0.05, bP = 0.05,
aH = 0.05, yH = yP = 1, r = 0.5, and population sizes were 106 in both species.
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Figure 3.2: Invasion conditions in the matching-alleles (A) and inverse-
matching-alleles model (B). Solid (dashed) lines correspond to haploid (diploid)
parasites, and thick (thin) lines to haploid (diploid) hosts. For a given case, par-
asitism is expected to evolve when selection is such that the point (aP, bP) lies
below the corresponding line. The slopes of these lines can be inferred from
the invasion conditions in table 3.4. Note that there are two lines with the same
slope in panel (B).
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Figure 3.3: Invasion conditions in the gene-for-gene model with conditional (A)
and unconditional costs (B). For a given case, parasitism is expected to evolve for
all ploidy combinations when aP lies to the right of the plotted line. The three
curves for each unconditional cost in panel (B), from left to right, correspond
to different initial parasitism levels of f = 0.9, 0.7, and 0.5. aH = 0.05 and
cH = 0.01.
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Figure 3.4: Evolutionary convergent level of parasitism ( f ) as a function of
the strength of selection in parasites under the matching-alleles model (column
1) and the inverse-matching-alleles model (column 2). The mutation rate was
(µ = 10�5), and thus large cycles occurred in all cases except in panel F. Dashed
lines denote the analytical invasion condition assuming small cycles (table 3.4).
Cells are shaded based on the mean level of parasitism present in the population
after 106 generations of evolution in a single simulation (darker = higher, see
grayscale in panel H). Initial frequencies at the A-locus were randomly drawn
for each cell. Different ploidy combinations are indicated on the right hand
side. Other parameters were as in figure 3.1.
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Sexual selection enables long-term
coexistence despite ecological
equivalence

4.1 Summary

Empirical data indicate that sexual preferences are critical for maintaining species
boundaries (Eberhard, 1985; Seehausen and Van Alphen, 1999; Gray and Cade,
2000; Wilson et al., 2000; Irwin et al., 2001; Huber, 2003), yet theoretical work
has suggested they can play only a minimal role in maintaining biodiversity
on their own (Turner and Burrows, 1995; Panhuis et al., 2001; Van Doorn et al.,
2004; Johansson and Ripa, 2006; Weissing et al., 2011). This is because long-term
coexistence within overlapping ranges is thought to be unlikely in the absence
of ecological differentiation Weissing et al. (2011). Here we challenge this widely
held view by generalizing a standard model of sexual selection to include two
ubiquitous features of populations with sexual selection: spatial variation in
local carrying capacity and mate-search costs in females. We show that, when
these two features are combined, sexual preferences can single-handedly main-
tain coexistence. Remarkably, coexistence can occur for spatial variation in lo-
cal carrying capacity that is so slight that it might go unnoticed empirically.
This is the first study to demonstrate that sexual selection alone can promote
the long-term coexistence of ecologically equivalent species with overlapping
ranges, thus providing a novel explanation for the maintenance of biodiversity.
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4.2 Introduction

A central objective of evolutionary ecology is to understand the mechanisms
that allow species to coexist. One such mechanism is ecological differentiation.
By occupying different niches, species in overlapping ranges are able to reduce
direct competition among one another (Schluter, 2000). While there are numer-
ous examples of closely related species occupying different ecological niches,
many recently diverged and coexisting taxa are known to differ most dramati-
cally in their secondary sexual characters, exhibiting few, if any, ecological dif-
ferences (Eberhard, 1985; Seehausen and Van Alphen, 1999; Gray and Cade,
2000; Wilson et al., 2000; Irwin et al., 2001; Huber, 2003). It seems, therefore,
that sexual selection is an important mechanism for maintaining coexistence.
Indeed, models of sexual selection have shown that populations of choosy fe-
males and their preferred males can arise and, under various conditions, form
reproductively isolated mating groups (Fisher, 1930; Lande, 1981, 1982; Kirk-
patrick, 1982; Seger, 1985). However, because sexual selection does not lead
to ecological differentiation, species differing only in their mating preferences
compete for the same ecological niche. This has traditionally led to the conclu-
sion that, if their ranges overlap, one of these species will eventually displace
the other (Turner and Burrows, 1995; Panhuis et al., 2001; Van Doorn et al., 2004;
Johansson and Ripa, 2006; Weissing et al., 2011).

Coexistence can become less difficult when species are able to reduce their
range overlap. Sexual selection provides a natural mechanism whereby they
may accomplish this. Any process that creates spatial variation in female pref-
erences indirectly also creates selection on male display traits, locally favouring
those males that are most preferred by the local females. As a consequence, spa-
tially segregated mating domains, characterized by the co-occurrence of match-
ing display and preference traits, can emerge from populations with an initially
random spatial distribution. Once segregated, interactions between different
mating types are limited to individuals at the peripheries of these domains. In
finite populations, however, the mating domains may shrink or grow, and the in-
terface between them may drift randomly in space. Such fluctuations eventually
lead to one mating domain replacing all others (Fig. 4.1A, C). In a pioneering
study, Payne and Krakauer (Payne and Krakauer, 1997) argued that lower dis-
persal in males with better mating prospects facilitates spatial segregation and
maintains coexistence. In finite populations, however, such mating-dependent
dispersal fails to stabilize coexistence (Fig. C.3). Given these difficulties associ-
ated with sexual selection, a recent review concluded that sexually divergent,
but ecologically equivalent, species cannot coexist for significant lengths of time
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(Weissing et al., 2011).

4.3 Model summary

Here we report model results that suggest the contrary and demonstrate that
sexual selection can promote long-term coexistence, even without any ecological
differentiation. Building on a standard model of sexual selection (Kirkpatrick,
1982), we develop an individual-based model, which naturally allows us to con-
sider finite populations and to examine the long-term fate of species differing
only in their secondary sexual characters in an ecologically neutral context. We
assume a simple genetic structure with individuals characterized by two un-
linked haploid loci: the first locus (with alleles Q and q) governs a display trait
that is expressed only in males, while the second (with alleles P and p) gov-
erns a preference trait that is expressed only in females (we later generalize
this to more than two alleles and quantitative mating traits; see Supplemen-
tary Information (SI) and Fig. 4.4D–E). Because we are interested in coexistence,
and not speciation, we assume that the genetic variation at both loci is already
present, for example, due to recent migration from allopatric ranges. All else
being equal, females bearing a P (p) allele prefer (Kirkpatrick, 1982; Seger, 1985;
Payne and Krakauer, 1997) to mate with males carrying a Q (q) allele by a factor
a, and a female’s preference for a given male attenuates with increasing distance
between them. Likewise, competition decreases as the distance between indi-
viduals increases. Competition is assumed to reduce an individual’s probability
of surviving until it reaches reproductive maturity. Importantly, hybrids suffer
no intrinsic fitness costs, other than potentially carrying mismatched preference
and trait alleles. Further model details are provided in the SI.

Mating domains can be lost either through movement of the interface be-
tween them (as described above), or when individuals of one mating type colo-
nize the domain of another mating type. In particular, because selection at the
preference locus disappears when there is no variation at the display locus, for-
eign preference alleles may drift into regions with low variation in male display
alleles, eventually leading one mating type to displace the other. Loss of mating
domains can, however, be prevented by the inclusion of two features ubiquitous
in populations experiencing sexual selection: spatial variation in local carrying
capacity and mate-search costs in females. Spatial variation in carrying capacity
is present in most, if not all, biological systems (see Figs. 4.1 and 4.4 and the SI
for model details). Mate-search costs occur if a female spends time and energy
looking for a suitable mate and rejecting non-preferred males, thereby reducing
her ability to invest in offspring. To account for such costs we assume that the
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fecundity of a particular female increases from 0 to a maximum level with the
local density of available males, weighted according to her preference (SI).

4.4 Results and discussion

Our model confirms the longstanding view that sexual selection in homoge-
neous spatial models, without mate-search costs, does not facilitate coexistence
and can, in fact, hasten the demise of species (compare Fig. 4.2A to 4.2B). Spatial
variation in local carrying capacity, on its own, also has little, if any, effect in
stabilizing populations (compare Fig. 4.2B to 4.2C). Sexual selection with mate-
search costs slightly prolongs coexistence in a spatially homogeneous environ-
ment by helping to prevent mixing of the mating domains, but this effect is weak
(Fig. 4.2D). However, in an environment with spatial variation in local carrying
capacity, sexual selection with mate-search costs dramatically increases coexis-
tence times (compare Fig. 4.2E to Fig. 4.2B and also Fig. 4.1A, C to Fig. 4.1B, D).
In this case, mate-search costs curb the neutral drift of preference alleles, thus
preventing the dilution of mating domains, while areas of high local carrying
capacity provide spatial “anchors”, stabilizing the mating domains at a rela-
tively constant size and location (Fig. 4.1B, D). This anchoring is a consequence
of the net flow of migrants that occurs each generation from the high-density
regions into the low-density regions.

While neither spatial variation in local carrying capacity nor mate-search
costs suffice on their own to stabilize populations, surprisingly little of both
can be enough to ensure the long-term persistence of divergent mating types
(Fig. 4.3). When mate-search costs in females are high, coexistence can be main-
tained with less than 20% spatial variation in local carrying capacity. When
mate-search costs are low, 50% spatial variation in local carrying capacity is
sufficient to stabilize mating domains. Throughout our analyses, we have kept
population sizes relatively small, so as to exacerbate the challenge of coexis-
tence owing to drift in finite populations. When population sizes are larger, we
find that less than 10% variation in local carrying capacity is needed to stabilize
mating domains (Fig. C.4D). Because movement and demographic stochastic-
ity obscure spatial variation in local carrying capacity across space, levels of
variation in this range would be virtually undetectable in nature.

The stabilizing effect of spatial variation in local carrying capacity and mate-
search costs readily extends to more realistic and natural landscapes (Fig. 4.4)
and also to multiple genotypes (Fig. 4.4D–E) . While the spatial distribution of
mating types becomes less predictable in complex environments, coexistence is
again greatly facilitated. As long as spatial variation in local carrying capac-
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ity does not become so insignificant that it hardly affects the landscape, or so
asymmetric that a single local population dominates, different mating domains
are maintained in mosaic sympatry Mallet (2008); Mallet et al. (2009) (Fig. C.7).
Our findings are also robust to changes in female preference strength, mate-
search distance, movement distance, and competition distance (Figs. C.4A, C.5),
to changes in the relative importance of ecological competition versus sexual
selection (Fig. C.4B–C), to changes in the genetic architecture of the display and
preference traits (Fig. C.8), and to the inclusion of fitness differences caused by
the male display trait (Fig. C.9). Generally, coexistence will be maintained if fe-
male preferences are sufficiently strong to prevent extensive interbreeding, and
if individuals move and interact on a spatial scale such that they are affected
by spatial variation in local carrying capacity. This phenomenon can be inter-
preted in terms of a more general mechanism: whenever positive frequency
dependence creates multiple possible stable states, global coexistence of these
states can become possible in a spatially structured environment if this structure
allows the states to become anchored in space. Our results in Fig. 4.4 also ex-
tend a previous finding from theoretical work on hybrid zones, predicting that
the spatial interface between species moves in space until settling in a region of
low population density (Barton and Hewitt, 1985, 1989). Similarly, earlier theo-
retical work (Dieckmann, 2004) using reflective boundaries for such anchoring,
has shown that ecologically equivalent types can coexist when fecundity drops,
or mortality or mobility rise, in the company of heterospecifics.

Because both spatial variation in local carrying capacity and costs associated
with mate search are ubiquitous in nature, our model may provide an explana-
tion for the coexistence of many species whose reproductive barriers are primar-
ily sexual. For example, local habitat availability and quality vary around the
shoreline of Lake Victoria. It is, therefore, possible that the mechanism reported
here could explain how ecologically similar cichlid species can coexist in such
vast diversity. That sexual differences have been the primary force maintaining
species boundaries in this group is supported by the increasing frequency of
hybridization that is occurring as a consequence of high turbidity levels, which
reduce a female’s ability to discern different male phenotypes (Seehausen et al.,
1997). Similar explanations could plausibly be applied to other species pairs
that seem to be largely maintained by sexual selection (e.g., species of fruit flies
(Hollocher et al., 1997), weakly electric fish (Feulner et al., 2008), frogs (Ryan and
Wilczynski, 1988), crickets (Gray and Cade, 2000), and grasshoppers (Tregenza
et al., 2000), among others). To test this hypothesis, one could analyse spatial
associations between mating domains and local carrying capacity: Fig. 4.4 sug-
gests that boundaries of mating domains should often align with troughs of
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low local carrying capacity (occasionally mating domains span such troughs,
and very rarely they abut where ridges of high local carrying capacity are nar-
row).

Our work demonstrates that under reasonable conditions, with variation
in local carrying capacity over space and costs to females that encounter few
preferred mates, sexual selection can maintain species that are not ecologically
differentiated. This is in stark contrast to the widespread opinion that sexual
selection, on its own, is unable to maintain ecologically equivalent species that
overlap in space. Throughout, we have deliberately avoided making any claims
about the emergence of diversity and speciation, choosing instead to focus on
the coexistence of mating types. Further theoretical work is, therefore, needed
to determine which conditions are most conducive to the initial appearance of
variation in mating preferences, as well as to the maintenance of these variants.
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Figure 4.1: Sexual selection enables long-term coexistence of ecologically equiv-
alent species. We consider a population distributed across a continuous habitat
in one dimension (columns A, B) or two dimensions (columns C, D) with a lo-
cal carrying capacity that is either spatially uniform (A, C: top panels) or that
exhibits two peaks (B, D: top panels). Each peak is of Gaussian shape with stan-
dard deviation sk. The level v of spatial variation may be altered by changing
the height of these peaks relative to the base. A value of v = 0.25, as shown in B
and D, means that local carrying capacity is elevated by 25% at the peaks. The
four lower rows show model runs through time. Each generation, individuals
survive after a round of local competition and reproduce after a round of local
mating, followed by offspring movement and the death of all parents. Competi-
tion between individuals decreases with their distance according to a Gaussian
function with standard deviation ss. Coloured curves in A and B show the
effective local density of competitors of each type (weighted by their competi-
tive effect, SI, Eq. C.4), across the one-dimensional arena, while dots in C and
D show surviving adults. Individuals are coloured according to their geno-
type at the display locus (similar patterns are observed at the preference locus;
Fig. C.2). Females are a times more likely to mate with a preferred male, when
encountered. Males are encountered with a probability that decreases with the
distance between male and female according to a Gaussian function with stan-
dard deviation sf. Female fecundity declines with the strength of mate-search
costs m (SI). Movement distances are drawn from a Gaussian function with
standard deviation sm, centered at 0, with wrap-around boundaries. The total
carrying capacity is K = 500, supporting the survival of approximately half of
the N = 1000 offspring produced each generation; other parameters: sk = 0.1,
ss = 0.05, a = 5, sf = 0.05, sm = 0.05, and m/K = 1 (roughly halving fecundity,
Fig. C.1).
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Figure 4.2: Conditions for long-term coexistence. Panels show distributions of
allele frequencies at the display locus through time across 1000 model runs in
a two-dimensional landscape; coexistence occurs only while these frequencies
remain intermediate. Inset panels depict the spatial variation in local carrying
capacity as viewed along transects at y = 0.25. A. Homogeneous environment
with no sexual selection (a = 1). B. Same as A, except that females are choosy
(a = 5). C. Same as B, except with variation in local carrying capacity (v = 0.25).
D. Same as B, except with mate-search costs in females (m/K = 1). E. Same as
B, except with spatial variation in local carrying capacity (v = 0.25) and mate-
search costs in females (m/K = 1); only when both features are combined is
long-term coexistence observed. To focus on the maintenance of coexistence, we
begin with two equally sized and spatially segregated populations of PQ and
pq genotypes (all individuals on the left half of the arena initially have the PQ
genotype, while all individuals on the right initially have the pq genotype). This
mimics a scenario in which types that previously arose in allopatry come back
into contact, revealing the conditions under which they can persist in sympatry.
All other parameters are as in Fig. 4.1.
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Figure 4.3: Conditions for long-term coexistence. Shading indicates the number
of generations that polymorphism at the display locus persists when females
are choosy (a = 5) in a two-dimensional landscape (darker = longer). Each cell
represents the mean time to loss of polymorphism for 10 replicate model runs.
Letters indicate parameter combinations used to generate the lower four panels
in Fig. 4.2. Side panels illustrate the extent of spatial variation in local carrying
capacity for the three parameter values shown along the vertical axis. Model
runs are initialized as in Fig. 4.2. All other parameters are as in Fig. 4.1.
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Figure 4.4: Mosaic sympatry. Four representative model runs in a patchy two-
dimensional landscape with random variation in local carrying capacity. Panel
A depicts the underlying spatial variation in local carrying capacity, while pan-
els B–E show results from independent model runs after 10, 000 generations
overlaid on the local carrying capacity. Panels B and C are initialized with
two types, whereas panels D and E are initialized with ten display alleles and
ten corresponding preference alleles, all at equal frequencies and distributed
randomly across the arena (SI, Section C.2.2). Some of these alleles are then
lost during the colonization phase. As in Fig. 4.1, individuals are coloured ac-
cording to their genotype at the display locus. The spatial arena is eight times
larger than in Fig. 4.1 and the total carrying capacity is K = 4000, supporting
the survival of approximately half of the N = 8000 offspring produced each
generation. All other parameters are as in Fig. 4.1.

54



Chapter 5

Assortative mating and spatial
structure in hybrid zones

5.1 Summary

The spatial genetic composition of hybrid zones exhibits a range of possible
patterns, with many characterized by patchy distributions. While several hypo-
thetical explanations exist for the maintenance of these “mosaic” hybrid zones,
they remain virtually unexplored theoretically. Using computer simulations
we investigate the roles of dispersal and assortative mating in the formation
and persistence of hybrid zone structure. To quantify mosaic structure we de-
velop a likelihood method, which we apply to simulation and empirical data.
We find that long distance dispersal can lead to a patchy distribution that as-
sortative mating can then reinforce, ultimately producing a mosaic capable of
persisting over evolutionarily significant periods of time. By reducing the mat-
ing success of rare males, assortative mating creates a positive within-patch
frequency-dependent selective pressure. Selection against heterozygotes can
similarly create a rare-type disadvantage and we show that it can also preserve
structure. We find that mosaic structure is maintained across a range of as-
sumptions regarding the form and strength of assortative mating. Interestingly,
we find that higher levels of mosaic structure are sometimes observed for inter-
mediate assortment strengths. The high incidence of assortment documented in
hybrid zones suggests that it may play a key role in stabilizing their form and
structure.
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5.2 Introduction

Hybrid zones provide a natural setting in which to study the effects of selection
and gene flow on alleles or combinations of alleles (Barton and Hewitt, 1985,
1989). Theoretical studies have provided methods to infer important quantities
such as the strength of selection against hybrids and dispersal distance from em-
pirical measurements of the spatial distribution of genotypes within a hybrid
zone. Consequently, genetic spatial structure can be an informative property of
a hybrid zone (Barton, 1979; Barton and Hewitt, 1985, 1989). To date the major-
ity of theory has assumed that a monotonic change in genetic composition will
be observed along a transect through a hybrid zone; that is, the hybrid zone will
be “clinal” (Bazykin, 1969; Barton and Hewitt, 1985, 1989). However, a number
of hybrid zones exhibit significant departures from a cline, with patches alter-
nating in species composition (e.g., Howard, 1986; Harrison and Rand, 1989;
Bierne et al., 2003). These “mosaic” hybrid zones are a spatial patchwork of
populations, each fixed (or nearly fixed) for only one of the parental species’
types.

Of the factors capable of generating mosaic patterns, habitat heterogeneity
has received the most attention (Harrison and Rand, 1989; Cain et al., 1999; Bri-
dle et al., 2001; Bridle and Butlin, 2002). This hypothesis assumes that the hybrid
zone consists of alternating patches of different habitats and that the individuals
preferentially occupy their own parent’s habitat. The patchy species distribution
then reflects the patchy environmental distribution. This hypothesis has been
tested in a number of empirical studies (e.g., Howard and Harrison, 1984b,a;
Howard et al., 1993; Harrison and Bogdanowicz, 1997; Bridle et al., 2001; Bridle
and Butlin, 2002; Vines et al., 2003). However, where ecological patterns reflect-
ing the patchiness of the hybrid zone have been found, they often explain only
a small proportion of the deviations from a clinal distribution (e.g., Bridle et al.,
2001; Bridle and Butlin, 2002; Bierne et al., 2002b).

Long distance dispersal during colonization has also been shown to be ca-
pable of creating patchy population structures (see Nichols and Hewitt, 1994;
Ibrahim et al., 1996; Le Corre et al., 1997; Bialozyt et al., 2006). However, with-
out any reinforcing mechanism, the spatial structure created by this process will
tend to be transient, reverting to a cline over many generations. The pattern of
dispersal on its own is not, therefore, sufficient to explain the persistence of
structure observed in many hybrid zones. Several authors (e.g., Cruzan and
Arnold, 1993; Jiggins and Mallet, 2000; Bridle and Butlin, 2002; Bailey et al.,
2004) have suggested that assortative mating may also contribute to stabilizing
the observed mosaic distribution in hybrid zones, but this idea has yet to be
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theoretically tested.
In this paper we develop a simulation model to investigate the role of as-

sortative mating and colonization patterns in the formation and maintenance
of mosaic spatial structure within a hybrid zone without habitat heterogene-
ity. We also develop a likelihood method to quantify the level of “mosaicity”
within a hybrid zone. We find that when dispersal during colonization contains
sufficiently many long distance dispersers, assortative mating can reinforce the
initial spatial distribution of colonists to enhance the mosaic pattern. This mo-
saic structure is then able to persist for prolonged periods of time, even in the
face of high levels of dispersal.

5.3 Model description

We consider the population dynamics of a one-dimensional hybrid zone us-
ing a computer simulation to investigate the role of migration and assortative
mating in generating mosaic structure. Our simulation proceeds with discrete
generations, tracking genotypes at two loci for diploid individuals along 30

ecologically identical patches, flanked on the left and right by pure patches of
two different species. Individuals at the left boundary were assumed fixed for
allele a at the first locus and allele b at the second, while those at the right
were assumed fixed for alleles A and B. The A-locus is always assumed to af-
fect assortative mating, while the role of the B-locus changes depending on our
analyses. Recombination occurs between the loci at rate r. Each generation,
individuals reproduce sexually within their patch to create the next generation
and then die. The offspring then may migrate to a different patch, and new
individuals migrate in from the pure edge populations. Hybrids are assumed
to be completely viable and fertile for the majority of our analyses, but we also
consider viability selection against hybrids through under-dominance at the B-
locus. All interior patches were initially empty, and initial colonization occurred
via dispersal from the edge populations.

5.3.1 Reproduction and population growth

We assume that population growth within each patch is logistic, with growth
rate r and carrying capacity K (we used r = 1.25 and K = 1000 for the major-
ity of our simulations). Each individual has a Poisson distributed number of
offspring with mean

1 + r(K � n)/K
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where n is the current patch population size. When viability selection acts, indi-
viduals heterozygous at the B-locus survive to reproduce with probability 1 + s
(s being the strength of selection for or against hybrids). Assortative mating
occurs through female preference. Females mate assortatively using the “best
of N” scheme presented in Seger (1985). In this model a female surveys N
males and then chooses a mate. For brevity we will often use the term “lek”
to refer to the group of N males sampled by a female, even though this is not
the precise meaning of the term. We chose the best of N mating scheme for
its generality. Where N = 1, this model reduces to random mating for all fe-
male preference strengths, whereas at the other extreme where N is the whole
patch, the model becomes equivalent to the “fixed relative-preference” scheme
of Kirkpatrick (1982). We will use N = frp to denote this case. Assortment usu-
ally occurs with respect to the A-locus, however, when we consider two-locus
assortment (see below), then both loci are assumed to affect female preferences.
We let yi,j denote the probability that a female of genotype i mates with a male
of genotype j from among the males in her lek, and c denote the strength of a
female’s preference, ranging from one (random mating) to infinity (mating only
with preferred males, if present). yi,j can be interpreted as a combination of all
pre-zygotic isolating factors, including both pre-mating (e.g., female choosiness)
and post-mating, pre-zygotic factors (e.g., conspecific sperm precedence). We
consider the following three models of assortative mating.

Linear-preference (k loci)

While we investigate assortative mating based on at most two loci, we will
describe a general version of this preference model for k loci. In this model
preferences of parental species towards hybrids are intermediate between their
preferences towards the pure types. If a female of type i and a male of type
j share a total of t alleles across the k bi-allelic loci that underlie assortative
mating (that is, both have t alleles from the same source population), then the
probability that female i mates with male j in her lek is

yi,j =

✓
1 +

t
2k

(c � 1)
◆

f j (5.1)

where f j denotes the frequency of genotype j males in the female’s sample of N,
and the yi,j’s are standardized across all males. For example, in the one-locus
case, if c = 2, then, if there were equal genotype frequencies, a homozygous
female is twice as likely to mate with a conspecific than a heterospecific and 1.5
times as likely to mate with a heterozygous individual. A heterozygous female
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in this case would be 1.5 times as likely to mate with another heterozygote than
with either con-specific.

Self-preference

In this model a female prefers males of her own genotype by an equal factor
(c) over all other males in her lek, discriminating equally against any other
genotype. The probability that a female of genotype i mates with a male of
genotype j is then given by

yi,j = cdi,j f j (5.2)

where fj again denotes the frequency of genotype j males in the female’s sample
of N, and di,j is Kronecker’s Delta, which is equal to one when i = j and zero
otherwise. Again the yi,j’s are standardized across all males.

Dominant-preference

In this model we assume that heterozygous males and females are indistinguish-
able from homozygous individuals characteristic of the source populations on
the right side of the hybrid zone. Equation (5.2) then applies where di,j is one if
the phenotypes of i and j are the same.

5.3.2 Dispersal

There are two types of dispersal in our model: internal dispersal among the 30

patches and dispersal of new immigrants from the pure edge patches. In the
internal patches, after reproduction each individual disperses with probability
m. Individual dispersal distances were drawn randomly from a mixture of two
exponential distributions, generating a leptokurtic (fat-tailed) dispersal kernel
(Clark, 1998):

pE(µs) + (1 � p)E(µl) (5.3)

where E(µ) is an exponential distribution with mean µ. We assumed that µs <

µl , so that p represents the proportion of short-distance dispersers. Dispersal
distance was measured as the number of patches away from the focal patch,
with an equal probability of being in either direction. Individuals that dispersed
beyond the edge patches and into the pure source populations were assumed to
have a negligible impact, and thus were removed from the system. In addition
to local migration between patches, a fixed number I of individuals arrived each
generation from each of the pure patches. These migrated according to the same
dispersal kernel as above, relative to the edge of the pure patches.
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5.3.3 Analyzing simulation results

To analyze the results of our simulation we developed a likelihood method
to quantify the degree of “mosaicity” of a hybrid zone (i.e., deviation from a
monotonic cline). We fit a series of horizontal steps to allele frequency data
along a transect through the hybrid zone (figure 5.1). In order to compute
the allele frequency within a patch we sampled every individual. A model
with k steps is defined by k step locations s = {s1, s2, · · · , sk} and k � 1 step
heights h = {h1, h2, · · · , hk�1}, where hi is the height between steps si and si+1.
Because we assumed that the edge patches were fixed for each parental type,
we added an initial step of height 0 and a final step of height 1 (figure 5.1).
In appendix D.1 we show how the likelihood of the observed allele frequency
data given this model can be computed. For a set of data and given number
of steps, we found the set of step locations and heights that maximize this
likelihood and then used likelihood ratio tests to find the number of statistically
significant steps required to best explain the data (see appendix D.1 for details).
A similar approach to ours was used by Macholán et al. (2008) in order to fit step
models through data collected from the Mus musculus musculus/M. m. domesticus
hybrid zone. However, Macholán et al. constrained their step heights to change
monotonically through the hybrid zone, and thus their approach cannot be used
to make inferences as to the level of mosaic structure a hybrid zone displays.

Once the step-wise model is fit to the allele frequencies, any measure of
mosaicity may be investigated. Here, we focus on the sum of the magnitudes
of the downward step sizes as a measure of the “mosaicity” of a data set, given
by:

M =
k�2

Â
i=1

max(0, hi � hi+1) (5.4)

(figure 5.1). This quantity has a minimum of zero for a clinal model (monotoni-
cally increasing steps), regardless of the steepness of the cline, and grows as the
number and size of reversals in step height increases, attaining its maximum
possible value when the hybrid zone consists of patches alternating between
fixation on one or the other allele. For such cases (where each patch is fixed for
either the a or the A allele), M is equal to the number of times the frequency of
the A allele changes in frequency from 1 to 0 and back to 1 again.

Because wider hybrid zones (e.g., those with more patches) have a greater
number of possible locations where reversals in allele frequency may occur, M
may be inflated in hybrid zones with finer levels of sampling. Accounting for
the number of samples when computing M, however, would lead to the same
hybrid zone having different mosaicity scores when sampled at different scales
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(an undesireable outcome). Thus we have assumed that the scale of sampling
has been chosen so that it appropriately captures the spatial distribution of alle-
les across the hybrid zone, that is, no patches are missed during sampling. We
have not, therefore, included the number of patches in our measure of mosaic-
ity. Four sample best fit models with associated M values are shown in figure
5.2.

Other measures of structure

Two additional measures that are commonly applied to quantify other aspects
of genetic structure within a hybrid zone are linkage disequilibrium and bi-
modality. Linkage disequilibrium measures the association between alleles at
different loci, and bimodality measures the lack of heterozygotes at a single lo-
cus, compared with the expectation under Hardy-Weinberg equilibrium (Jiggins
and Mallet, 2000). We also assess these measures in our simulations.

To compute linkage disequilibrium we use Lewontin’s D0, which is link-
age disequilibrium standardized by its maximum possible value given the ob-
served allele frequencies (see Lewontin, 1988, for details). This statistic varies
from -1 to 1, with -1 representing a population composed entirely of A/b and
a/B genotypes, 1 representing a population composed entirely of A/B and a/b
genotypes, and 0 representing a population with no associations between loci.
To measure bimodality we use FIS, as presented in Jiggins and Mallet (2000),
which is computed as

FIS = 1 � pAa
2pA pa

(5.5)

where pAa is the frequency of heterozygotes and pA and pa denote the frequen-
cies of the two alleles. This statistic lies between -1 and 1, with 0 implying
that a population is at Hardy-Weinberg equilibrium, and 1 (-1) representing a
complete lack of heterozygotes (homozygotes).

To compute both FIS and D0 for a given population we pooled individuals
from all patches. Alternatively, we could have computed a patch average of
each statistic. Because many patches were often fixed or nearly fixed for a
single genotype, however, we found that such an approach did not provide
meaningful results. In particular a mosaic hybrid zone consisting of patches
alternating in state, from fixation on one allele to fixation on the other, would
have a maximum mosaicity score, but in each patch both FIS and D0 would be
undefined. At the other extreme, if hybrids never survive, FIS and D0 would be
maximal within each patch, regardless of whether the mosaicity score were low
or high. Thus, we see that the mosaicity score provides a distinct measure of
the “patchiness” of the hybrid zone.
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5.4 Results

Because our findings are largely insensitive to which model of assortative mat-
ing was used, we primarily present results from the one-locus linear-preference
model, and will only explicitly state when this is not the case. We compute mo-
saicity for the one-locus linear model at the A-locus, which governs assortative
mating (figure 5.2).

We found that a combination of long distance dispersal and assortative mat-
ing allow mosaic population structure to form (figures 5.2, 5.3) and persist for
long periods of time (figure 5.4A). The initial mosaic structure is generated by
individuals leap-frogging over heterospecific populations during colonization
to found new populations. These processes have been discussed in detail else-
where (e.g., Nichols and Hewitt, 1994; Ibrahim et al., 1996). In contrast with
these previous studies, which assumed random mating, we found that once a
mosaic population structure establishes, female preference acts to preserve the
mosaic patterns (figure 5.4A). This is a consequence of a within-patch mating
advantage to males of the more abundant female type, leading to within-patch
fixation (or near fixation) on whichever mating type attains a higher frequency
during the early stages of colonization. Once patches have reached carrying
capacity, invasion by the other mating type becomes unlikely, and thus the fi-
nal mosaic pattern persists, even with relatively high levels of between-patch
dispersal (m = 0.01, Nm ⇡ 10).

The strength of assortative mating strongly affected the final level of mosaic
structure observed in any particular hybrid zone (figure 5.2). Where mating
was random, the constant arrival of foreign migrants biases patches on the left
toward one allele and patches on the right toward the other, creating a grad-
ual, roughly monotonic cline (figure 5.2A). With weak female preference mo-
saic structure was not stable over time. While sexual selection was a sufficiently
strong force to reduce the extent of within patch co-existence of the two mat-
ing types, it was not strong enough to prevent the occasional invasion by the
rare mating type. The constant arrival of different migrant types from each
end of the zone, combined with migration among patches eventually removes
any traces of the founding population structure, producing a cline that was
both steeper and more monotonic than when mating was random (figure 5.2B).
Weak female preference thus resulted in slightly lower final mosaicity values
than those obtained in the neutral case (figure 5.4A). For stronger assortative
mating the hybrid zone became a mosaic of alternating patches of each geno-
type (figure 5.2C, 5.2D). Due to the near fixation of each patch on one allele type
or the other, the mosaicity scores in these cases can be interpreted as approxi-
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mately counting the number of complete reversals in patch genotype frequency
(e.g., figure 5.2D has three nearly complete down-steps and a mosaicity score of
2.91).

The effects of assortative mating extended to other loci in the genome. Link-
age disequilibrium between the assortative mating locus and an unlinked neu-
tral locus persisted at higher levels with stronger female preference (figure 5.4B).
Tighter linkage further increases the level of disequilibrium (figure 5.4B). Bi-
modality at both loci was also higher with stronger female preferences (figure
5.4C), achieving nearly the maximum possible value at the assortative mating
locus when c = 10.

When migration distances were short, dispersal did not create a sufficient
level of genetic patchiness for assortative mating of any level to reinforce, and
thus no mosaics were observed. Increasing the mean of the long distance dis-
persal component (µl) led to a roughly linear increase in the observed level of
mosaicity, when assortative mating was sufficiently strong enough to maintain
a mosaic pattern (figure 5.3). To account for changes in mean dispersal dis-
tance that occur when increasing µl we ran a separate set of simulations where
we decreased µs whenever we increased µl , in order to maintain a constant
mean dispersal distance. Results remained qualitatively identical and thus have
not been included. Similarly, increasing the proportion of individuals within
a patch that disperse each generation (m), or the number of foreign migrants
arriving each generation (I), sped up the rate at which colonization occurred,
but did not qualitatively change results. Varying either population growth rate
(r) or carrying capacity (K) also had little effect, and thus further exploration of
these parameters has not been included.

The level of mosaic structure not only depended on the strength of female
preference, but also on her lek size (figure 5.5A). Whenever mating was non-
random (e.g., for lek sizes greater than 1), the level of mosaicity increased with
female mate preferences from c ⇡ 1.5. For small leks mosaicity scores remained
high throughout the entire range of strong female preferences (e.g., N = 2, 5 in
figure 5.5A). Surprisingly, however, large leks displayed a decline in mosaicity
with very strong female preferences (e.g., N = 20, frp in figure 5.5A). This
implies that when a female samples only a small number of individuals from
the population before mating, mosaic structure is more stable than when she has
access to many males. This occurs because, when females only sample a few
males, there is a high chance that the lek of a rare female will not contain any
males of her preferred type and she will, therefore, mate with a more common
male, which further reduces the expected mating success of the rare males.
Conversely, when females sample many males, the lek of a rare female will often
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contain at least one male of her preferred type. A few males and females may, in
this case, be sufficient to colonize a patch occupied by heterospecifics. At very
strong mate preferences and large lek sizes the population structure reduces to
a noisy cline, with different alleles often co-existing in the same patch. However,
the mosaicity level is approximately 2-3 times that for random mating (figure
5.5A). The higher mosaicity score is due to a complete lack of heterozygotes,
whose presence in the random mating case acts to reduce differences in allele
frequencies between adjacent patches and thus the average step size. A drop
in mosaicity values below those of the random mating case can be observed for
intermediate mating preferences in the limiting case where a female samples
the entire patch of males before mating (see figure 5.5 and the c = 1000 curve in
figure 5.3). With intermediate c values, rare types are selected against, but not
so strongly that they do not occasionally fix. The constant arrival of migrants
from the boundaries thus eventually overwhelms any traces of the founding
population structure, eventually creating a steep monotonic cline.

Changing the model of female preference did not qualitatively affect re-
sults (see figure 5.5B). However, with both the dominant and self-preference
models the strength of female preferences required to overwhelm the mosaic
structure was weaker than in the one-locus linear model (compare the c ⇡ 102

region in the dominant and self-preference models to the c ⇡ 103 region in the
one-locus linear model). This occurs because the weak discrimination against
hybrids combined with the reduced preference strength of hybrids in the linear
model effectively reduces the efficacy of assortative mating for a given prefer-
ence strength, compared to the other two models. Mean mosaicity scores were
lower with the dominant-preference model, due to there being a slight bias to-
ward patches fixing the dominant allele. In the two-locus linear model results
were qualitatively unchanged when female preferences were weak. When pref-
erences were stronger, however, curves appeared qualitatively more similar to
those from the one-locus model with a smaller lek size than used in the sim-
ulations. This shift is likely a consequence of recombination breaking down
genotypes of rare individuals, making co-existence and thus invasion more dif-
ficult for that species.

So far we have treated hybrids as having equal fitness as parentals. In a
similar manner to assortative mating, an intrinsic reduction in hybrid viability
or fertility can create a frequency-dependent selective pressure against the rarer
of the two parental species within a patch (figure 5.6). This is because each hy-
bridization event represents a larger fraction of the rare species’ matings, and
thus each hybrid death reduces the fitness of the rare species by a proportionally
larger amount. Barton and Whitlock (1997) showed that stabilizing selection on

64



Chapter 5

polygenic traits can similarly induce frequency-dependent selection against rare
genotypes and thus, through an analagous process to that described above, can
also lead to the maintenance of different allelic combinations between popula-
tions, provided migration rates are low enough. As expected, we found that
as the strength of selection against heterozygotes increased a tighter correla-
tion emerged between mosaicity scores at the assortative mating locus and the
viability locus. When hybrids were lethal, recombination never occured and
the two loci were in essence completely linked. With strong assortative mating
there was higher concordance between mosaicity scores at both loci, even when
viability selection was relatively weak (figure 5.6C). The marginal decline in mo-
saicity observed for strong viability selection arises due to a slight reduction in
the initial establishment of highly mosaic populations and does not represent a
reduction in the stability of mosaics, once established.

In the simulation results presented, we assumed that allele frequencies were
determined from the entire patch (K = 1000 individuals). The majority of em-
pirical hybrid zone data most certainly contain many fewer samples. In order
to investigate this sampling effect we sampled 100 individuals from each patch
(without replacement) and then fit the best model to the sampled data. Results
remained largely unchanged, with sampled data usually producing a model
missing a few small steps but having a nearly identical mosaicity score.

Although we have only presented models consisting of 30 patches here, it
is worth mentioning that the width of the cline or mosaic for any particular
run often fluctuated well within the limits of these 30 patches, typically settling
down to a much narrower final width than is possible with 30 patches. The
resultant clines or mosaics were thus flanked on either side by large regions
consisting of pure parental genotypes (e.g. figure 5.2). To assess whether the
width of the hybrid zones would differ noticeably with more patches, we ran
simulations with twice the number of patches (60). Indeed the hybrid zones in
these cases settled into a comparable width as with 30 patches, but with larger
flanking regions of pure parental species on either side. Thus our results are
not likely to be affected by the number of patches in the hybrid zone.

5.4.1 Application to Mytilus edulis and M. galloprovincialis hybrid zone data

The smooth-shelled mussels Mytilus edulis and M. galloprovincialis form a mo-
saic hybrid zone that stretches around the coast of western Europe. While dif-
ferences in temperature, salinity, and wave exposure affect species composition
within the hybrid zone (Gardner, 1994; Bierne et al., 2002b), Bierne et al. (2002b)
argued that local adaptation was not sufficient on its own to explain the ob-
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served pattern in this hybrid zone. In a separate study Bierne et al. (2002a)
suggested that the presence of assortative fertilization has likely contributed
in maintaining the current population structure. To test our methods we fit
models to three separate loci from this hybrid zone, using data presented in
Bierne et al. (2003) (figure 5.7). Mosaicity scores and 95% bootstrap confidence
intervals were 3.66 (3.08, 3.85) for Glu-5’, 2.43 (1.88, 2.70) for mac-1’, and 2.72

(2.14, 2.97) for Efbis. The mosaicity score for Glu-5’ is significantly higher than
that for both mac-1’ and Efbis, despite similar sample sizes, suggesting that Glu-
5’ is possibly more closely linked to a locus influencing assortative mating or
experiencing under-dominant selection. Furthermore, this difference between
mosaicity scores demonstrates our method’s ability to detect differences among
loci from the same species with realistic levels of empirical sampling.

5.5 Discussion

Our results show that assortative mating, when coupled with long-distance dis-
persal during colonization, can lead to the stable persistence of mosaic patterns,
even in the absence of ecological differences between incipient species. Fur-
thermore, these results are robust to changes in a variety of assumptions about
migration, female mating behaviour, and the fitness of hybrids. It has been
previously demonstrated that founder effects caused by long distance dispersal
into vacant habitats during colonization can create spatially mosaic populations
(Nichols and Hewitt, 1994; Ibrahim et al., 1996), and it is this process that drives
the initial mosaic patterns observed in our simulations. However, this process
alone can not explain the long-term persistence of spatial structure in these
populations (figure 5.4). Rather, assortative mating and/or hybrid inviability
are essential to stabilize the mosaic structure in the absence of environmental
heterogeneity.

We have further shown that the effects of assortative mating will likely carry
over to other regions of the genome, even with high levels of recombination.
The combination of continued immigration of pure AB and ab genotypes into
the hybrid zone, and the slow decay of linkage disequilibrium which has been
shown to characterize stepping-stone models (De and Durret, 2007), led to a
non-zero final value of D0, even when mating was random (figure 5.4). These
equilibrium values of linkage disequilibrium were noticeably higher when fe-
male preference was stronger and/or when linkage to the assortative mating
locus was tighter (figure 5.4B). Furthermore, higher levels of bimodality can be
maintained at neutral loci with stronger female preferences (figure 5.4C). Sam-
pling at a neutral locus will, therefore, not tend to reveal just how mosaic the
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hybrid zone may be at loci directly involved in assortative mating. However,
such data can still potentially provide insight into whether a hybrid zone does
have an underlying mosaic structure.

While our results indicate that assortative mating can stabilize mosaic hy-
brid zones for extensive periods of time, it is likely that other factors work in
concert with this process. For example, habitat heterogeneity could strengthen
the mosaic effect observed here. The combination of ecological differences be-
tween incipient species and a patchy environment could create a small degree
of initial spatial segregation within a population. Assortative mating could then
help push sub-populations towards fixation on one or the other type, whichever
is locally more abundant. Similarly, in some cases the combined effects of via-
bility selection against hybrids (which we have shown can also preserve mosaic
structure) and assortative mating may allow for the preservation of a highly
mosaic structure, where each force in isolation would not be sufficient to do so.

We have also presented a method that can be used to fit step-wise models
through one-dimensional empirical hybrid zone data in order to objectively es-
timate their level of mosaicity. Our mosaicity statistic measures the number of
reversals in allele frequency. It is not proposed as an alternative to the types of
cline fitting that have been traditionally used in mosaic hybrid zones (e.g., see
Bridle et al., 2001), but instead provides a complementary measure. To test our
method we applied it to data from the Mytilus edulis/M. galloprovincialis hybrid
zone (Bierne et al., 2003). Our best fit models exhibited high mosaicity scores
at all three loci, demonstrating that it is informative when applied to empirical
data sets. Interestingly, we found a statistically higher mosaicity score at Glu-
5’, suggesting linkage to a locus involved in assortment, hybrid inviability, or
ecological adaptation.

How common is assortment likely to be in hybrid zones? Assortative mat-
ing is thought to evolve as a consequence of divergence, with recently diverged
species being more likely to hybridize (Felsenstein, 1981; Coyne and Orr, 1997).
Bailey et al. (2004) documented strong assortative mating between the field
grasshoppers Chorthippus brunneus and C. jacobsi, which form a mosaic hybrid
zone in northern Spain. The reported “isolation index” of I = 0.59 between
these species corresponds to a c of 3.9 in our model. Bridle et al. (2006) have
also recently argued that this assortative mating, through preferences for male
song, likely plays an important role in maintaining the observed structure in
this hybrid zone. Howard and Gregory (1993) conducted sperm competition
experiments between the ground crickets Allonemobius fasciatus and A. socius,
which form a mosaic hybrid zone in northeastern United States (Britch et al.,
2001). When mated to both types of males A. socius females exhibited a con-
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specific sperm precedence of at least 95%, and A. fasciatus females of at least
98%. These translate into c values of approximately 42.5 and 49 respectively.
The strength of assortative mating documented in both of these hybrid zones is
sufficiently strong to lead to a high level of mosaicity in our model, provided
that patchiness was initially present.

In some systems, however, assortative mating will likely play only a small
role, if one at all. In the Bombina bombina – B. variegata (fire-bellied toad) hybrid
zone, MacCallum et al. (1998) found that B. bombina-like hybrids were most
often associated with pond habitats, whereas B. variegata-like hybrids were most
often found in puddles. This strong habitat specialization explains most of the
observed spatial variation, leaving little need for additional processes.

Mosaic hybrid zones may be more common than has been reported. The
pattern observed in any particular hybrid zone may reflect the scale at which
individuals are sampled (Schilthuizen, 2000; Ross and Harrison, 2002). When
sampling is too coarse a mosaic pattern can appear clinal. Harrison and Bog-
danowicz (1997) provided a simple characterization of hybrid zones, based on
the shape of the genotypic distribution at the cline center. Mosaic hybrid zones
tend to exhibit an overabundance of parental types, relative to hybrids and thus
have a bimodal genotypic distribution. Resampling our mosaic hybrid zones
on a coarser spatial scale would, on average, lead to a clinal pattern with a
bimodal distribution of genotypes. This suggests that many bimodal hybrid
zones may be mosaic at a finer spatial scale than measured. Jiggins and Mal-
let (2000) found a strong positive correlation between the measured strength
of assortative mating and the level of bimodality in a survey of several empir-
ical hybrid zones. While bimodality does not necessarily imply that a hybrid
zones is mosaic (Cruzan and Arnold, 1993; Emms and Arnold, 1997), the study
by Jiggins and Mallet (2000) suggests that an underlying correlation between
mosaicity and assortativity may exist.

Understanding the mechanisms by which assortative mating occurs in hy-
brid zones would provide insight into the applicability of our model, as well
as possibly reveal interesting theoretical extensions to other models of sexual
selection. Our findings depend on sexual selection inducing positive frequency-
dependent selection; rare males are always at a disadvantage in the best of N
mating scheme. This is not necessarily the case with other models of assorta-
tive mating. In a “grouping-based” model, females mate within some group of
individuals with a fixed probability and otherwise mate with a male drawn ran-
domly from the population (Felsenstein, 1981; Otto et al., 2008). Because group
membership may be frequency independent (e.g., groups could be chosen based
on spatial or temporal proximity), this model does not necessarily induce a rare-
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type disadvantage, and thus we would expect it to yield a qualitatively different
outcome.

Our model assumes an underlying demic system. Consideration of a sim-
ilar model in continuous space may provide an interesting avenue for future
research. In a homogeneous environment, where there are no patch boundaries
stabilizing the sizes of pure (or nearly pure) populations, we would expect fluc-
tuations in population size to lead to the eventual loss of mosaic structure. This
may not be the case, however, in heterogenous environments. Ecologically het-
erogeneous environments that favour some degree of local adaptation, or envi-
ronments where the carrying capacity and thus the density of individuals varies
in space, may stabilize population sizes of the different mating types, and thus
allow for the preservation of mosaic structure. Temporal fluctuations in popula-
tions size, or regularly occuring local extinctions followed by re-colonization via
long distance dispersal may also allow for the long term persistence of mosaic
structure, although, in this case it would vary spatially in time.

Despite having received significant empirical attention, mosaic hybrid zones
have remained largely unexplored in the theoretical literature, and the majority
of models so far have assumed an underlying clinal structure. Both theoreti-
cal and empirical work have demonstrated, however, that clinal models do not
always make accurate predictions about evolutionary processes occurring in a
mosaic hybrid zone. For example, Cain et al. (1999) found that reinforcement
evolved under a much wider set of circumstances for a mosaic hybrid zone than
for a clinal one, and the empirical hybrid zones described in Bridle and Butlin
(2002) and Cruzan and Arnold (1993) did not conform well to the clinal model
expectations. Given that our current estimate of the prevalence of mosaic hybrid
zones in nature is probably underestimated (because their detection is sensitive
to the scale of sampling) and that predictions based on clinal models may not
apply to mosaic hybrid zones, it is important that theory be developed to help
understand the forces creating and maintaining mosaic hybrid zones and the
effects that these mosaic hybrid zones have on evolutionary processes.
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Figure 5.1: An example model fitted to hypothetical allele frequency data along
a transect through a hybrid zone. This model has five fitted steps. The height
between step si and step si+1 is hi. Because there is only a single down-step
the mosaicity score, M, is simply the magnitude of this step (i.e., h2 � h3, see
equation 5.4).
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Figure 5.2: Example simulated hybrid zones with varying strengths of assorta-
tive mating (increasing across panels A to D), after 1000 generations. The most
likely stepwise model is indicated by the line through the data. Assortative
mating was based on the one-locus linear-preference model. Parameters were
µs = 1, µl = 15, m = 0.01, p = 0.75, r = 1.25, K = 1000, I = 50, and N = 5.
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Figure 5.3: Mosaicity as a function of long distance dispersal distance (µl) in the
one-locus linear-preference model. Each point is the mean of 100 replicate sim-
ulations. Different curves correspond to different female preference strengths
(indicated by labels). Error bars denote ± one standard error. Other parameters
were as in figure 5.2 with N = frp. Curves were plotted after 1000 generations.
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for clarity. Other parameters were as in figure 5.2 with N = frp.
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Figure 5.7: Best fit models for three diagnostic loci in the Mytilus edulis/M.
galloprovincialis hybrid zone (data from Bierne et al., 2003). Mosaicity scores
and 95% bootstrap confidence intervals were 3.66 (3.08, 3.85) for Glu-5’, 2.43

(1.88, 2.70) for mac-1’, and 2.72 (2.14, 2.97) for Efbis.
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Conclusions

Overall, the above models illustrate how mathematics can be a useful tool in
guiding our understanding when interactions between populations or species
lead to complex dynamics.

In chapter 2 I used modifier theory to investigate the evolution of mutation
rate at a locus regulating host-parasite interactions. I found that lower mu-
tation rates evolved when recombination occurred between those loci and the
loci regulating mutation rate. This finding can potentially help to explain the
high rates of antigenic switching that have evolved in many asexual taxa, where
linkage is complete. In this model, higher mutation rates tended to dampen
the cycles in allele frequency characteristic of host-parasite interactions. When
mutation rates evolved to be sufficiently high, cycles disappeared altogether,
effectively eliminating selection at the modifier locus. In small populations,
however, stochastic fluctuations in allele frequency still occurred and thus led
to higher mutation rates than expected from the deterministic theory.

In chapter 3 I developed a model to investigate how ploidy and the archi-
tecture of the genetic interactions between hosts and their parasites might affect
the evolution of parasitism itself. Because parasites who possess only a single
allele are often able to better evade detection by hosts (i.e., homozygotes or hap-
loids often outperform heterozygotes), I found that the transition to parasitism
occurred over a broader range of parameters when the parasite was haploid.
The role of host ploidy was more complicated and depended on the model gov-
erning host-parasite interactions. These results provide a first characterization
of how genetic architecture affects selection on life-history strategies in antago-
nistic species interactions.

In chapter 4 I investigated the implications of mating interactions for long-
term co-existence of biological diversity. I found that, when two criteria were
met (spatial variation in the carrying capacity and search costs associated with

76



Chapter 6

rarity in females), sexual selection dramatically prolonged co-existence times.
Essentially, these criteria together ensure that rare males and rare females arriv-
ing into a high density area of another type have low fitness and that such areas
are relatively fixed in space and time. This is the first study to demonstrate
the existence of conditions under which sexual selection alone can promote the
long-term co-existence of ecologically equivalent populations with overlapping
ranges even in the face of drift. This work thus marks an important contribution
to our understanding of the role played by sexual selection in the maintenance
of biodiversity.

In chapter 5 I considered the effects of mating preferences on the spatial
distribution of genotypes observed in hybrid zones. I found that the distri-
bution of genotypes observed in many so-called “mosaic” hybrid zones might
be better explained by species-specific differences in mating preferences rather
than by differences in ecology, the more commonly invoked cause. In analyzing
the model I also developed a statistic to quantify the level of “mosaicity” of a
particular hybrid zone. I tested this statistic on empirical data from the coastal
hybrid zone between the mussel species Mytilus edulis and M. galloprovincialis
(Bierne et al., 2003). I found that “mosaicity” was significantly higher for one
of the three loci analyzed. This suggests that that locus or a linked locus, at
least partially, underlies assortative mating and/or local adaptation. Interest-
ingly, previous observations indicate that assortative mating does occur in this
hybrid zone, consistent with the potential role of mating preferences in shaping
the mosaic nature of the zone (Bierne et al., 2002a).

6.1 Future directions

Because the natural world is vastly complex, models are necessarily simplifi-
cations of the actual processes occurring in real ecosystems. For this reason,
mismatches between models and the systems they are meant to represent are
to be expected. Mismatches should not, however, be viewed as “failures” of the
theoretical models, but instead, as opportunities for future insights (e.g., under-
standing why there was a discrepancy). Only through direct empirical tests can
we identify when and where such mismatches occur. Such empirical tests are,
therefore, indispensable as we seek to develop models that better map onto the
world around us.

Many theoretical models address questions that are currently beyond the
realm of empirically testable hypotheses. For example, there is little, if any, em-
pirical support for or against the ubiquitous theoretical assumption that allele
frequencies at loci regulating host-parasite interactions display cyclical dynam-
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ics. Thus, there is still a need for experimental tests of many of the most basic
assumptions and/or findings of some of the earliest and simplest theoretical
models. With this caveat, however, I will discuss some of the most promising
empirically testable hypotheses that emerge from the models discussed above.

The primary finding in chapter 2 that lower mutation rates evolve with a
higher recombination rate between the loci regulating host-parasite interactions
and the loci regulating mutation rate could possibly be tested experimentally.
For example, comparing mutation assays for antibiotic resistance in closely re-
lated species of microbes that differ in their level of sexuality would allow one
to evaluate whether a correlation between sexuality and mutation rate exists
in nature. The secondary finding that higher mutation rates evolved in small
populations could also be experimentally tested by, for example, controlling
population size in a microbial host-parasite system, and then measuring the
rate of accumulation of mutations allowing hosts or parasites to invade and/or
evade one another.

In chapter 4, the primary finding that sexually divergent, but ecologically
equivalent, species can co-exist depended critically on two assumptions. The
first of these (that there exists spatial variation in the carrying capacity) is surely
met in most, if not all habitats. However, the same is not necessarily true for
the second assumption, namely that rare mating types suffer a fitness cost. It
is well known that female preferences can create frequency-dependent selection
against males possessing non-preferred traits. While an analogous cost to rarity
in females is often assumed to exist, to my knowledge, there is little empir-
ical support for or against such an assumption. Such a cost seems plausible
(e.g., females who rarely encounter their preferred male phenotypes may have
to spend longer searching for a mate), however, an empirical justification for
such an assumption would be valuable. Once the more basic assumptions re-
garding costs to rarity have been experimentally verified, it seems realistic that
an experiment could directly test the main result presented in this paper (e.g.,
using a spatially structured grid of connected vials with varying resources and
Drosophila strains with divergent preferences).

In addition to mismatches with empirical work, the simplicity of theoreti-
cal models should not be viewed as necessarily limiting their potential power.
Often, it is this simplicity that can lead to general wide-ranging hypotheses
and findings. For example, because the models I have developed above are not
based on any particular species (or pairs of species in the case of hosts and par-
asites), the main findings should apply to any species (or pairs of species) that
satisfy the central assumptions. This creates opportunities for potentially inter-
esting comparative analyses testing whether species that fit the assumptions of
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a model confirm its predictions better than less relevant species. Furthermore,
those cases where the models do not seem to apply provide avenues for future
theoretical exploration. There are a number of comparative analyses and the-
oretical studies that would provide interesting avenues for future research as
follow-ups to the models presented here.

In chapter 3 I investigated how the genetic architecture regulating host-
parasite interactions might select for increases or decreases in the level of para-
sitism of the parasitic species. I found that, in general, parasitism should more
easily evolve in haploids than in diploids. This is similar to a finding by Nuis-
mer and Otto (2004), who used a theoretical model to show that, in order to
better evade detection by hosts, parasites should more often evolve toward hap-
loid genomes than diploid ones. A survey of protists confirmed their prediction
(i.e., there was a correlation between parasitism and haploidy). Such a finding
is, however, also consistent with my model (i.e., haploids more readily evolve
parasitism). Comparative analyses, such as those presented in Pagel (1994),
could be used to evaluate whether parasites more often evolve haploidy or hap-
loids more often evolve parasitism.

In addition to the above comparative study, there is a challenging, but po-
tentially interesting theoretical follow-up. In the model, as presented, evolution
of parasitism from a non-parasitic life-style can occur in a single evolutionary
step. This is because we assumed from the outset that all of the machinery was
in place for parasitism to evolve (e.g., only a mutation at a modifier locus was
necessary in order for parasitism to initially appear; all the alleles necessary for
successful invasion and resistance were already present in both species). As a
result, this model does not fully address the initial stages in the evolution of
parasitism. Such a model is needed in order for us to appreciate why some
species might be more likely to undergo large shifts in life-history strategies. It
is possible that parasitism could evolve through a number of complex evolu-
tionary pathways (e.g., degradation of a mutualistic relationships or a gradual
exploitation of a newly encountered species are two such possibilities). In addi-
tion to helping understand the origins of parasitism and life-history shifts, such
a model may also provide insight into how adaptation proceeds when many
complex genetic changes are required.

In chapter 4 I investigated how sexual selection might enable long-term
co-existence of ecologically equivalent species. In doing so, however, I as-
sumed that genetic variation in mating preferences and trait displays was al-
ready present in the population. How the most basic assumptions of my model
inhibit or facilitate the process of speciation and the generation of this variation
is, therefore, necessary if we hope to gain a full appreciation of the model’s
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generality. If it turns out that costs to rarity in females and variation in the
local carrying capacity prevent sympatric speciation by sexual selection, then
my model is most applicable in cases of secondary contact between sexually
divergent mating types, but it cannot help explain origins of diversity. If, on
the other hand, the parameter space in which long-term co-existence occurs in
my model overlaps with that where speciation can occur by sexual selection,
then my model may provide a general mechanism whereby sympatric specia-
tion can produce species capable of stable co-existence, without any disruptive
ecological selection or allopatry. Additionally, generalizing the model (e.g., to
quantitative or multi-dimensional preference and display traits) would provide
insight into the broader applicability and robustness of these results.

In chapter 5 I suggested that variation in mating preferences between species
might provide a better explanation for the spatial structure observed in some
mosaic hybrid zones. In order to assess whether such mating preferences really
do provide a better explanation it would be worthwhile to conduct a meta-
analysis of hybrid zone data, quantifying the level of “mosaicity” within each
hybrid zone, and testing for a correlation between that trait and the docu-
mented level of assortative mating, versus ecologically relevant attributes. In
some species, it might also be possible to conduct reciprocal transplants among
patches in a mosaic hybrid zone. If individuals survive to reproduction equally
well in the different patches, but suffer reduced mating success, that would
indicate that the explanation provided here may be the more appropriate one.

In most complex biological systems, intuitively understanding the outcome
of a particular process can be difficult, if not impossible. In my thesis I have
developed models demonstrating how the use of additional theoretical tools can
aid in our pursuit of a fuller understanding. Often these models can provide
unexpected insights and, additionally, exciting directions for future research,
both empirical and theoretical.
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Mutating away from your enemies
(Chapter 2)

A.1 Cost of deleterious mutations

Here we modify the model by including an explicit cost to modifiers that in-
crease the mutation rate. This cost reflects the assumption that mutators will
suffer from a higher load of unconditionally deleterious mutations at sites other
than the A-locus. Rather than model these other sites explicitly, we incorpo-
rate a cost Ciµi of having a mutation rate of µi. Technically this is equivalent
if the unconditionally deleterious mutations are lethal. To incorporate costs of
producing unconditionally deleterious mutations we add the following step be-
tween mutation/selection (equation 2.2) and sex/recombination (equation 2.3).

x00i,1 = (1 � Ciµi,m)/C̄i x0i,1
x00i,2 = (1 � Ciµi,M)/C̄i x0i,2
x00i,3 = (1 � Ciµi,m)/C̄i x0i,3
x00i,4 = (1 � Ciµi,M)/C̄i x0i,4

C̄i = 1 � Ciµi,m(x0i,1 + x0i,3)� Ciµi,M(x0i,2 + x0i,4)

(A.1)

A mutation modifier M that increases the mutation rate by (µi,M � µi,m) will ex-
perience a reduction in frequency each time step that is proportional to Ci(µi,M �
µi,m). In order that costs do not dominate dynamics at the modifier locus (i.e.,
they are not so large as to drive all mutation rates to 0) we must assume that the
Ci are of order e2, where e is a small term, as discussed prior to equation (2.10).
An analysis similar to that in the main text shows that a modifier that increases
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the mutation rate invades whenever the following is positive

Dpi,M = c3[c1Xi(1 � µī,M � µi,M)/2 � (µī,M � µi,M)(Xi � (1 � 2µī,M))]

� Ci(1 � pi,M)pi,M(µi,M � µi,m)
(A.2)

where c3 is the positive constant

c3 =
(R

4p
f � 1)f csc2[f]a2

h(1 � yi)(1 � pi,M)pi,M(µi,M � µi,m)(dp,A[0])2

p log[R](R2 � 2 cos[f]XiR + X2
i )(ai + 2)2(1 � 2µī,M)

(A.3)

Costs always select against higher mutation rates, but as long as the costs are
sufficiently weak that equation (A.2) is positive when the mutation rate in a
species is zero, then evolution will lead the system toward a non-zero level of
mutation. The evolutionarily attracting mutation rate can be determined by
setting Dpi,M equal to 0 using equation (A.2) and numerically solving for µi.

We used simulations to investigate model behaviour when costs differed be-
tween hosts and parasites (see main text for simulation methods). In accordance
with Haraguchi and Sasaki (1996), we found that when mutation rates were al-
lowed to co-evolve from low initial values (zero in each species), populations
experienced an initial phase of selection for high mutation rates followed by
a subsequent phase of selection for decreased rates in the species bearing the
higher costs (see trajectories beginning at the origin in figure A.1). In contrast to
Haraguchi and Sasaki (1996), however, mutation rates in our model remained
at non-zero values in both species (convergence toward equilibrium values oc-
curred from both directions; figure A.1). Furthermore, unlike Haraguchi and
Sasaki (1996), we did not observe any asymmetries between hosts and parasites.
This is because parasite populations did not require hosts for their survival in
our model, whereas in the model of Haraguchi and Sasaki (1996), parasite sur-
vival was dependent on their ability to find a host. Consequently, Haraguchi
and Sasaki (1996) find that it is more often the hosts that tend to retreat towards
a zero mutation rate, due to their having less at stake.

Interestingly, we did not observe a large effect of population size when costs
were included (compare left and right panels of figure A.1). Because sufficiently
large costs can outweigh any indirect benefits to mutation rate modifiers, selec-
tion for higher mutation rates is likely to disappear while rates are still low
enough to permit co-evolutionary cycling (as was the case for the parameters
presented in figure A.1). When this happens, the added indirect benefits created
by stochastic allele frequency fluctuations in small populations have only a small
effect and thus do not significantly change the final outcome of co-evolution.
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A.2 Solving the recursion equations for the
disequilibrium

Here we derive recursion equations for the disequilibrium in species i. By defi-
nition

D00
i = x00i,1 x00i,4 � x00i,2 x00i,3

We can then use equations (2.2) and (2.3) to write D00
i in terms of genotype

frequencies from the previous generation. Making the following substitutions

xi,1 = 1/2 (1 � pi,M)(1 � 2di,A) + Di

xi,2 = 1/2 pi,M(1 � 2di,A)� Di

xi,3 = 1/2 (1 � pi,M)(1 + 2di,A)� Di

xi,4 = 1/2 pi,M(1 + 2di,A) + Di

gives us a recursion equation for Di.
We next assume that di,A is small (specifically on the order of a small term

e) and that the mutation rate modifier has a small effect (i.e. µi,M � µi,m is also
of order e). A simple analysis of the first three terms in in the Taylor series of
Di (taken with respect to e) shows that the O(e2) term is the first that could
possibly grow in a single generation (both the O(1) and O(e) terms only decay
by a factor proportional to Xi = (1 � yi)(1 � 2µi,M)). It follows that any initial
disequilibrium in the system will rapidly evolve to a level that is at most of
order e2. We, therefore, make the assumption that disequilibrium is already
of this order in order to avoid any transient effects of initial conditions. Our
recursion equation for Di can then be simplified to

Di[t] = (1 � yi)


(1 � 2µi,M)Di[t � 1]+

2pi,M(1 � pi,M)(µi,m � µi,M)

✓
di,A[t � 1] +

ai
(ai + 2)

dī,A[t � 1]
◆�

+ O(e3).

We assume that enough time has passed that the initial disequilibrium Di[0] ex-
erts negligible influence. With this assumption we can solve the above recursion
equation to get

Di[t] = 2(1 � yi)(µi,m � µi,M)(1 � pi,M)pi,M

t

Â
t=1

((1 � yi)(1 � 2µi,M))t�1
✓

di,A[t � t] +
ai

(ai + 2)
dī,A[t � t]

◆
+ O(e3).
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A.3 Different generation times

Here we relax the assumption made in the main text that host and parasite
generation times are equal. We assume that parasite dynamics remain exactly
as they are in the main text, and then vary the generation times in hosts in two
ways.

In the first model we assume that all hosts are subject to mutation and selec-
tion at every time step, but that only a proportion g take part in sexual repro-
duction. This is incorporated by replacing equation (2.3) in the main text (for
hosts only), with

x00h,1 = (1 � g)x0h,1 + g(x0h,1 � yhD0
h) = x0h,1 � gyhD0

h

x00h,2 = (1 � g)x0h,2 + g(x0h,2 + yhD0
h) = x0h,2 + gyhD0

h

x00h,3 = (1 � g)x0h,3 + g(x0h,3 + yhD0
h) = x0h,3 + gyhD0

h

x00h,4 = (1 � g)x0h,4 + g(x0h,4 � yhD0
h) = x0h,4 � gyhD0

h

(A.1)

It is clear from equation (A.1) that when g = 1 the model reduces to that pre-
sented in the main text. It is also clear that this modification effectively scales
recombination rates in hosts by the factor g. This has the net effect of reducing
the recombination rate in hosts (by a factor g), which will ultimately increase
the evolutionarily attracting mutation rate, provided it is predicted to lie within
a region where cycles occur (see figure 2.3). Thus, increasing host generation
time (smaller g) results in hosts evolving a higher mutation rate.

In our second model we assume that all hosts are subject to selection every
time step, but only a proportion g take part in sexual reproduction, at which
point mutation and recombination occur. This can be incorporated by replacing
our recurrence equation (2.3) in the main text (for hosts only) with

x000h,1 = (1 � g)x0h,1 + g(x00h,1 � yhD00
h )

x000h,2 = (1 � g)x0h,2 + g(x00h,2 + yhD00
h )

x000h,3 = (1 � g)x0h,3 + g(x00h,3 + yhD00
h )

x000h,4 = (1 � g)x0h,4 + g(x00h,4 � yhD00
h )

(A.2)

where x0h,j denotes the frequency of genotype j after selection and x00h,j denotes
the frequency of genotype j after selection and mutation. Again it is clear that
when g = 1 our model reduces to that in the main text. A similar analysis to
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that in the main text then yields

dh,A[t] = Rt�1(1 � 2gµh,M)
ah

(ah + 2)
sin[ft]
sin[f]

dp,A[0]

dp,A[t] = Rt�1
q

R2 � (1 � 2gµh,M)(1 � 2µp,M)
sin[ft + s]

sin[f]
dp,A[0]

where R, f and s are:

R =

s

(1 � 2µp,M)(1 � 2gµh,M)
(1 + ap/2 + ah/2)

(1 + ap/2)(1 + ah/2)

f = cos�1

(1 � µp,M � gµh,M)

R

�

s = cos�1

2

4 µp,M � gµh,Mq
R2 � (1 � 2µp,M)(1 � 2gµh,M)

3

5

The recursion equation for Dh[t] (equation 2.10) also changes becoming:

Dh[t] = 2(1 � yh)g(µh,m � µh,M)(1 � ph,M)ph,M

t

Â
t=1

Xt�1
i

✓
dh,A[t � t] +

ah
(ah + 2)

dp,A[t � t]

◆

where Xh = 1 � gyh � 2gµh,M + 2gµh,Myh.
An analysis following that in the main text shows that a modifier of mutation

rate in hosts can invade whenever the following is positive

sign[ Dph,M ] '
sign

⇥
c1Xh(1 � µp,M � gµh,M)/2 + (gµh,M � µp,M)(Xh � (1 � 2µp,M))

⇤ (A.3)

and in parasites

sign[ Dpp,M ] '
sign

⇥
c1Xp(1 � gµh,M � µp,M)/2 + (µp,M � gµh,M)(Xp � (1 � 2gµh,M))

⇤ (A.4)

From the first of these equations, it can be seen that lengthening the generation
time in hosts (reducing g) increases the relative importance of the first term in
equation (A.3), which will tend to increase the evolutionarily attracting muta-
tion rate in the host. The reverse is true in the parasite, where all else being
equal a longer host generation time effectively reduces the host’s mutation rate
per unit time, which reduces selection for increased mutation rates in the para-
site.
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A.4 One-species model

Here we consider a simplified version of the model above where instead of two
interacting species there is only a single species under a fluctuating selection
regime. As before we consider two loci, each with two alleles. The four possible
haplotypes are then am, aM, Am and AM. We let xj denote the frequency of
the jth genotype (labelled in the order just given).

The A-locus is assumed to be under a fluctuating selection regime. That is,
the fitness of genotype j in the tth generation is given by

wj[t] =

(
1 + a sin[bt] if j = 1, 2
1 � a sin[bt] if j = 3, 4

(A.1)

As in the two-species model we construct recursion equations, beginning
with selection, then mutation, and finally sex and recombination. Performing
a change of variables allows us to describe the system with recursions for the
linkage disequilibrium (D[t]), the departure from a frequency of 0.5 at the A
locus (d[t]), and the frequency of the modifier (pM[t]). In addition to the order
assumptions made in the two-species model (see the main text preceding equa-
tion 2.5), we must assume here that selection is also weak (a is on the order of
e; this assumption wasn’t necessary in the two-species model, but there we as-
sumed dh,A and dp,A were both small). It can then be shown in a similar manner
to that in appendix A.2 that, transient initial effects aside, the disequilibrium
will remain of order at most e2. With these assumptions we can find a general
solution for d[t] which, after simplification, is given by

d[t + 1] =
a(1 � 2µM)((1 � 2µM) sin[bt]� sin(b[t � 1]))

4(2µ2
M + (1 � cos[b](1 � 2µM)))

. (A.2)

As in the two species model we next find a general solution for the linkage
disequilibrium (D[t]), again ignoring transient effects of initial conditions. This
can be simplified to

D[t] = (1�y)(1� pM)pM(µm �µM)
t

Â
t=1

((1�y)(1� 2µM))t�1(2d[t� t]� a sin[b(t� t)])

(A.3)
Finally we consider the change in frequency of a mutation rate modifier, av-
eraged over a complete selective cycle. The expected change per generation is
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then

E[DpM[t]] ⇡ (1�y)(µm �µM)pM(1� pM)
a2(cos[b](1 + Xq)� X � q)

(1 + X2 � 2X cos[b])(1 + q2 � 2q cos[b])
(A.4)

where q = (1 � 2µM). It is apparent from equation (A.4) that the direction of
selection on a modifier depends on the speed of evolutionary cycles (b), with
faster cycles (larger b) selecting for higher mutation rates. In contrast to the
two-species model, where the direction of selection was also dependent on the
strength of selection (because the speed of evolutionary cycles f contained both
ah and ap), we find that the strength of selection, a, in the one-species model
does not affect the sign of selection on a modifier, although it does affect the
strength of indirect selection.
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Figure A.1: Co-evolutionarily trajectories in simulations with differing costs
associated with mutation rate modifiers. Each curve represents the mean of
100 replicate runs. Solid points represent final values after 107 generations for
trajectories initialized with both host and parasite mutation rates set to 0 and +
symbols represent final values for populations initialized with mutation rates
of 0 in hosts and 0.165 in parasites, or 0.165 in hosts and 0 in parasites. The
shaded region indicates where cycles are not expected in the analytical model
(R < 1). Population sizes were 109 (left panel) and 103 (right panel) in both
hosts and parasites. When costs were equal we used Ch = Cp = 0.5 and when
they differed we used Ch = 0.25, Cp = 0.5 and Ch = 0.5, Cp = 0.25. The dotted
line has a slope of one and is included for reference. Recombination rates were
set to 0, ah to �0.9, and ap to 1/(1+ ah)� 1 (so that the strength of selection was
the same in both species). The parameters in this figure are identical to figure
2.5 with ah = �0.9 and ap = 9, except for the addition of costs of mutation.
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Ploidy and the evolution of
parasitism (Chapter 3)

B.1 Additional analyses

Quasi-linkage equilibrium analyses were also performed relaxing the assump-
tion that yH and yP were near one. The main difference is that the departure
from Hardy-Weinberg at the A locus (denoted FA,H in hosts and FA,P in para-
sites) then becomes substantial (see table B.1 for the full expressions for FA,H

and FA,P). Full expressions for w̄diff are given in table B.2. Because FA,H and
FA,P are still on the same order as the strength of selection, however, these terms
again drop out when we assume selection is weak and focus on the leading
order terms.

B.2 Simulations

We summarize here a number of extensions to our model that were examined
using simulations. Simulations matched our analytical predictions when mu-
tation rates were high and cycles were small in every case, except when we
considered more alleles at the interaction locus (discussed below). Where dis-
crepancies were observed, they could be explained by accounting for the allele
frequency dynamics (i.e., calculating dH and dP in every generation and using
these in table 3.3). Also note that in each case, any shifts that did occur did
not affect our main conclusions that parasitism is more likely to evolve under
MAM than IMAM (but see results with three alleles) and that haploid parasites
are more likely to evolve higher parasitism levels than diploids.

• Figure B.1: simulations of MAM/IMAM comparing low and high muta-
tion rates (µ = 10�1 versus µ = 10�5).
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• Figure B.2: same as figure B.1, except with selection in hosts reduced
(aH = 0.01).

• Figure B.3: same as figure B.1, except with stronger selection in hosts
(aH = 0.5) and in parasites (0 < aP < 1).

• Figure B.4: same as figure B.1, except with population sizes of 103 in both
species.

• Figure B.5: same as figure B.1, except with some hosts reproducing asexu-
ally (yH = 0.2). Mutations were introduced at the same rate during sexual
and asexual reproduction.

• Figure B.6: same as figure B.1, except with different generation times in
hosts and parasites. Only 20% of hosts reproduced at each time step,
and thus had, on average, a generation time five times that of parasites.
Mutations were introduced only during reproduction, so that hosts had
20% the rate of mutations per unit times as parasites.

• Figure B.7: same as figure B.1, except with three alleles at the A-locus in
each species. See below for a more detailed description of this case.

• Figure B.8: evolutionary convergent level of parasitism in the GFG with
conditional costs to virulence.

• Figure B.9: evolutionary convergent level of parasitism in the GFG with
unconditional costs to virulence.

• Figure B.10: same as figure B.9, except with population sizes of 103 in both
species.

B.2.1 Three alleles at the interaction locus

Qualitative shifts occurred in all cases when there were three alleles at the A-
locus. These shifts could be described analytically by developing the model
explicitly for multiple alleles. With MAM, the region where parasitism evolved
shrunk with more alleles, whereas with IMAM it grew (figure B.7). This is
because with MAM the heterozygous parasites can infect a lower proportion
of the genotypes when there are more alleles present, whereas the opposite is
true in the IMAM. For example, with three or more alleles, a host homozygous
for an allele not present in a heterozygous parasite cannot be invaded by that
parasite in the matching-alleles model, whereas when there are only two alleles
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a heterozygous parasite can invade all possible host genotypes. In the inverse-
matching-alleles model the opposite is true, with new host genotypes providing
additional targets for heterozygous parasites (in the case of two alleles, het-
erozygous parasites cannot invade any host genotypes, but with three they can
invade hosts homozygous for the allele that the parasite does not carry). Large
cycles had the same effect with three alleles as they did with two, reducing and
enlarging the same regions (figure B.7).
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Table B.1: Equations for FA,H and FA,P when yH and yP are not assumed to be near 1.

Model Host Parasite w̄diff
ploidy ploidy

MAM/IMAM

1 2 FA,P = (1/4 � d2
P)

2 fmm(aP + bP)(1 � yP)/yP
2 1 FA,H = (1/4 � d2

H)
2 fmaH(1 � yH)/yH

2 2 FA,H = (1/4 � d2
H)

2(3/4 � d2
P)2 fmmaH(1 � yH)/yH,

FA,P = (1/4 � d2
P)

2(1/4 + d2
H + FA,H)2 fmm(aP + bP)(1 � yP)/yP

GFG

1 2 FA,P = (1/4 � d2
P)

2(cP,u + fmmcP,c � fmm(aP + bP)(1/2 + dH))(1 � yP)/yP
2 1 FA,H = (1/4 � d2

H)
2(cH � fmaH(1/2 � dP))(1 � yH)/yH

2 2 FA,H = (1/4 � d2
H)

2(cH � fmmaH(1/2 � dP)
2)(1 � yH)/yH,

FA,P = (1/4 � d2
P)

2(cP,u + fmmcP,c + fmm(aP + bP)(d
2
H � dH � 3/4))(1 �

yP)/yP

1
0

2
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Table B.2: Full equations for w̄diff = w̄M � w̄m, without assuming high levels of sexual reproduction in either species (e.g., without
assuming yH and yP are on the order of 1 � e).

Model Host Parasite w̄diff
ploidy ploidy

MAM

1 1 (aP � bP)/2 + (aP + bP)(2dHdP)
1 2 (aP � 3bP)/4 + (aP + bP)(2dHdP + d2

P + FA,P)
2 1 (3aP � bP)/4 + (aP + bP)(2dHdP � d2

H � FA,H)
2 2 (5aP � 3bP)/8 + (aP + bP)[4dHdP(1 + dHdP)� 3d2

H + d2
P+

(1 + 4d2
H)FA,P � (3 � 4d2

P)FA,H + 4FA,PFA,H ]/2

IMAM

1 1 (aP � bP)/2 � (aP + bP)(2dHdP)
1 2 (aP � 3bP)/4 � (aP + bP)(2dHdP � d2

P � FA,P)
2 1 (aP � 3bP)/4 � (aP + bP)(2dHdP � d2

H � FA,H)
2 2 (aP � 7bP)/8 � (aP + bP)[4dHdP(1 � dHdP)� d2

H � d2
P�

(1 + 4d2
H)FA,P � (1 + 4d2

P)FA,H � 4FA,H FA,P/]2

GFG

1 1 (3aP � bP)/4 + (aP + bP)(dP � dH(1 � 2dP))/2 � cP,c(1 + 2dP)
1 2 (7aP � bP)/8 + (aP + bP)(2(1 + 2dH)(1 � dP)dP � dH � 2(2dH + 1)FA,P)/4�

cP,c(3/4 + (1 � dP)dP � FA,P)
2 1 (5aP � 3bP)/8 + (aP + bP)(3dP + 2(1 � 2dP)(d

2
H � dH + FA,H))/4 � cP,c(1 +

2dP)
2 2 (13aP � 3bP)/16 + (aP + bP)[d

2
H(1 � 2dP)

2 � dH(1 � 2dP)
2 � 3(dP � 1)dP+

(1 � 2dP)
2FA,H + (4d2

H � 4dH � 3)FA,P + 4FA,H FA,P]/4�
cP,c(3/4 + (1 � dP)dP + FA,P)

1
0
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Figure B.1: Evolutionary convergent level of parasitism ( f ) in MAM and IMAM.
Right two columns are identical to figure 3.4. Left two columns report simula-
tions with µ = 10�1 for comparison. Dashed red lines denote the analytical
invasion condition assuming small cycles (table 3.4). Cells are shaded based
on the mean level of parasitism present in the population after 106 generations
of evolution in a single simulation (darker = higher, see grayscale in panel P).
Parameters were aH = 0.05, yH = yP = 1, r = 0.5 and population sizes of 106 in
both species.
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Figure B.2: Same as figure B.1, except with aH = 0.01.
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Figure B.3: Same as figure B.1, except with stronger selection in hosts (aH = 0.5)
and in parasites (note change in axes ranges).
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Figure B.4: Same as figure B.1, except with population sizes of 103 in both
species.

107



Appendix B

0

0.05

0.1

0

0.05

0.1

0

0.05

0.1

0 0.05 0.1
0

0.05

0.1

0 0.05 0.10 0.05 0.1 0 0.05 0.1

A B C D

E F G H

I J K L

M N O P

 αP 

 βP 

 µ = 10−1  µ = 10−5

MAM IMAM MAM IMAM

Haploid Hosts /
Haploid Parasites

Haploid Hosts /
Diploid Parasites

Diploid Hosts /
Haploid Parasites

Diploid Hosts /
Diploid Parasites

Figure B.5: Same as figure B.1, except with some hosts reproducing asexually
(yH = 0.2). Mutations were introduced at the same rate during sexual and
asexual reproduction.
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Figure B.6: Same as figure B.1, except with different generation times in hosts
and parasites. Only 20% of hosts reproduced at each time step, and thus had,
on average, a generation time five times that of parasites. Mutations were in-
troduced only during reproduction, so that hosts had 20% the rate of mutations
per unit times as parasites.
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Figure B.7: Same as figure B.1, except with three alleles at the A-locus in each
species. Dashed red lines denote the analytical invasion condition for the two-
allele case, as given in table 3.4, and are included for comparison.
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Figure B.8: Evolutionary convergent level of parasitism ( f ) in the GFG with
conditional costs to virulence, as indicated by column headings. Dashed red
lines denote the value of aP for which w̄diff in eq. (3.6) is zero. Other parameters
were as in figure B.1, along with µ = 10�5 and cH = 0.01.
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Figure B.9: Evolutionary convergent level of parasitism ( f ) in the GFG with
unconditional costs to virulence and differing initial levels of parasitism, as in-
dicated by column headings. Dashed red lines denote the value of aP for which
w̄diff in eq. (3.7) is zero. The poor fit for small bP (grey triangular regions to the
right of the dashed red lines) is a consequence of selection being insufficiently
strong to maintain the costly virulent allele, thereby reducing the advantage of
being parasitic. Thus cycles do not occur and parasitism does not evolve. Other
parameters were as in figure B.1, along with µ = 10�5 and cH = 0.01.
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Figure B.10: Evolutionary convergent level of parasitism ( f ) in the GFG with
unconditional costs to virulence, differing initial levels of parasitism, and small
populations. All parameters are as in figure B.9, except population sizes were
103.
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Sexual selection enables co-existence
(Chapter 4)

C.1 Model description

We consider an individual-based model with discrete non-overlapping genera-
tions in one- or two-dimensional continuous space with wrap-around bound-
aries. Below, we describe the two-dimensional model, from which the corre-
sponding one-dimensional model is readily generated by removing the spatial
y-dimension. Each individual has a spatial location and is characterized by a
display trait (expressed only in males) and a preference trait (expressed only in
females). In our main set of model runs, these traits are assumed to be gov-
erned by separate unlinked haploid loci, each with two alleles (display alleles
are denoted by Q/q and preference alleles by P/p). Each generation, N individ-
uals are produced and compete for resources, with those experiencing stronger
competition being more likely to die before reaching reproductive maturity. Re-
sources in our model may be interpreted in the broadest possible sense, describ-
ing the biotic and abiotic factors that are subject to local ecological competition.
Among the individuals surviving ecological competition, females choose mates,
with the probability of a specific male being chosen depending on her mating
preference and the spatial distance separating them. Females produce offspring
in proportion to their fecundities. Offspring then disperse from their natal loca-
tion and the parents die. Below we detail these steps in the order in which they
occur. The names and descriptions of all parameters and variables are listed in
Table C.1.
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C.1.1 Competition for resources

The habitat at each location (x, y) is characterized by the local density k(x, y)
of available resources. The total amount of resources over the spatial arena is
given by K =

RR
k(x, y) dx dy. The function relating resource gain to survival is

chosen such that if every individual received an equal share of these resources,
the expected number of survivors would be K. Consequently, we refer to k(x, y)
as the local carrying capacity and to K as the total carrying capacity. Except for
Figs. 4.4 and C.7, we investigate a local carrying capacity that is bimodal, with
peaks located at (x, y) = (0.25, 0.25) and (0.75, 0.25). To do so, we combine two
Gaussian functions according to

k(x, y) =

 
exp(� (x � 0.25)2 + (y � 0.25)2

2s2
k

) + exp(� (x � 0.75)2 + (y � 0.25)2

2s2
k

) + b

!
k0 ,

(C.1)
where sk denotes the width of the two Gaussian peaks. The parameters b and k0

allow us to adjust the average height and degree of variation in k(x, y). Specif-
ically, the height is adjusted such that the total carrying capacity equals K, and
the degree of variation is adjusted to give the desired relation between peaks
and troughs. Specifically, we measure the degree of spatial variation in local
carrying capacity as

v =
max k(x, y)� min k(x, y)

min k(x, y)
. (C.2)

A value of v = 0.25 therefore means that the local carrying capacity is 25%
higher at the peaks than at the troughs. For Fig. C.7, landscapes are generated
in a similar way, except that the heights and widths of the two peaks differ. For
Fig. 4.4, the landscape is generated by adding white noise to the baseline level,
filtered to have a reasonable amount of spatial autocorrelation, with the highest
peak set to twice the height of the lowest trough.

Through competition, each individual obtains a share of the local carrying
capacity, which we refer to as its resource share,

ri =
k(xi, yi)

Âj nij
, (C.3)

where nij is the contribution of individual j to the effective density of competi-
tors at the location of individual i, and the sum extends over all N individu-
als. The competitive impact of individual j on individual i decreases with the
distance dij separating them, according to a Gaussian function with standard
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deviation ss,
nij = exp(�d2

ij/(2s2
s ))/(2ps2

s ) ; (C.4)

in the one-dimensional model, the divisor is
p

2pss. Note that the effect nii of
an individual i on itself declines as ss increases, because the individual then
competes for resources over larger distances and thus has less of a negative
impact on its available resources.

As defined, the resource share of an individual i is approximately K/N.
This can be seen by assuming that the N individuals in the population are
distributed over the arena according to the local carrying capacity, so that their
expected density is N k(x, y)/K. Replacing the sum over individuals in Eq. C.3
with an integral over space, we obtain

ri =
k(xi, yi)

RR N k(x,y)
K

exp(�d2
ij/(2s2

s ))

2ps2
s

dx dy

⇡ K/N + O(v) ,

(C.5)

where the second line assumes that spatial variation in the local carrying ca-
pacity is low. In our individual-based model runs, departures from the above
occur due to clumping, fecundity variation over space (Section C.1.4), as well as
discrepancies due to replacing the sum in Eq. C.3 with the integral in Eq. C.5
(especially when ss is very small or large relative to the arena). That said, the
mean resource share is typically close to K/N in our model runs.

In Fig. C.1 we show the effect of spatial variation in local carrying capac-
ity k(xi, yi) on various components of fitness, including the resource share, ri.
Interestingly, ecological competition is weaker (ri is higher) in regions of low
carrying capacity (Fig. C.1A), increasing the survival probability of individuals
in these regions (si, Fig. C.1B). This occurs because females are less likely to
encounter preferred males wherever the carrying capacity is low, causing their
fecundity to be lower due to increased mate-search costs (ci; Section C.1.4 and
Fig. C.1C). Consequently, fewer offspring are produced than expected based on
the low local carrying capacity, resulting in weaker competition among those
offspring. The net result of lower ecological competition and higher search
costs in regions with low local carrying capacity is that females have roughly
equal fitness across space.

C.1.2 Survival

We assume that individuals that gain more resources are more likely to survive
to reproductive maturity. The probability si of such survival is assumed to
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be zero when an individual fails to gain any resources, to rise approximately
linearly with its resource share ri when that share is small, and to taper off at
a maximal survival probability of smax (ranging between 0 and 1). Specifically,
we use a hyperbolic (or Holling type-2) function (Coulson et al., 2011) to relate
resource share to the probability of survival,

si =
smax

1 + r/ri
, (C.6)

where r is the resource share that must be obtained for an individual to sur-
vive with a probability equal to half the maximal survival probability. Unless
stated otherwise, we assume that the maximum probability smax of surviving to
reproductive maturity equals 1.

The value of r is chosen to ensure that, on average, K individuals survive to
reproduce if all individuals obtain an equal share of resources (ri = K/N). By
setting the expected survival probability si to K/N in Eq. C.6 and substituting
ri = K/N, we obtain r = smax � K/N. With this choice of r, approximately K
individuals survive each generation (with a variance that is typically small). For
example, in Fig. C.1, the average survival probability was 0.484, close to the ex-
pected value of K/N = 1/2. While competition for resources causes substantial
mortality, survival probabilities across the arena differ only slightly (Fig. C.1B).
Importantly, the survival of an individual does not depend on whether or not it
is a hybrid.

C.1.3 Mating

Of the individuals that survive to mate, the probability that female i chooses
male j as a mate depends on whether his display trait matches her preference
trait and on the spatial distance separating them. Females bearing a P (p) al-
lele prefer males bearing a Q (q) allele by a factor a. We assume that females
encounter males in the vicinity of their home location. Specifically, each female
spends a proportion of time at distance dij from her home that is described
by a Gaussian distribution with standard deviation sf, so that her encounter
probability eij with a male at distance dij is proportional to

eij = exp(�d2
ij/(2s2

f ))/(2ps2
f ) ; (C.7)

in the one-dimensional model, the divisor is
p

2psf. In our main model, we
assume that females encounter resources and males over the same spatial scales
(i.e., sf = ss); we relax this assumption in Fig. C.5. The probability that female i
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chooses male j as a mate is proportional to

pij = adij�1eij , (C.8)

where dij equals 1 when the display trait of male j matches the preference trait
of female i, and 0 otherwise. Once a female chooses a mate, we assume that all
her offspring are sired by that male (monogamy).

C.1.4 Reproduction

The fecundity of a female i is given by:

fi = fmax(1 � ci) , (C.9)

where fmax is the maximum fecundity and ci (ranging from 0 to 1) measures the
cost associated with finding a preferred mate for female i. The factor 1 � ci is
assumed to be zero when there are no preferred males locally, to rise approxi-
mately linearly with the local density of preferred males,

µi = Â
males j

pij , (C.10)

and to taper off at 1 when preferred mates are readily encountered, resulting in
maximal fecundity. Specifically, we use a hyperbolic (or Holling type-2) function
(Doebeli and Dieckmann, 2003),

1 � ci =
1

1 + m/µi
, (C.11)

where m is the value of µi at which a female’s fecundity is halved by mate-search
costs. Because µi is obtained by summing over the entire male population, its
value can be large, on the order of the number of surviving males, so values of
m on the order of the surviving population’s size K are needed for costs to be
appreciable. This is why we express m relative to K, specifying the ratio m/K
in the figures. We refer to ci as the mate-search cost of female i and to m as the
strength of mate-search costs.

Unless noted otherwise, we use m = 500. In our main simulations (with
m/K = 1), mate-search costs reduce female fecundity by about 50%, on average,
from the maximum fecundity (Fig. C.1C), with relatively minor differences in
fecundity among females over space. Other values for m are explored in Fig. 4.3.
For m = 0, all females have equal and maximal fecundity. As m is raised,
fecundity declines, on average, and becomes more variable, with females in low-
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density regions or surrounded by non-preferred males having lower fecundity
(Fig. C.2).

After mating, offspring are produced. Inheritance at both loci is Mendelian,
and we assume no linkage between the display and preference loci, except
where noted (Section C.2.6). To allow us to explore various parameters re-
lating to competition and mate-search costs independently, we hold the total
number of offspring constant at N. For each offspring, a mother is chosen in
proportion to the females’ fecundities. Consequently, the maximum fecundity
fmax only matters insofar as it is high enough to result in at least N offspring
being produced across the population. Similar patterns are observed when fmax

is fixed and offspring numbers are given by a Poisson distribution with a mean
of fi for each female (data not shown). We consider N to be the total number
of offspring surviving the phase during which resources are largely provided
by the parents, after which the offspring migrate and begin the next phase of
competition for resources.

C.1.5 Movement

Each offspring moves from its mother’s location according to a distance drawn
from a Gaussian function with mean 0 and standard deviation sm. Movements
occur in all directions with equal probability.

C.2 Model extensions

To assess the robustness of our results, we consider several extensions and/or
modifications to our main model described above.

C.2.1 Incorporating mating-dependent dispersal

To compare our results with those of Payne and Krakauer (1997), we con-
sider mating-dependent dispersal. In their model, male movement distances
are lower for males with better mating prospects, and we thus assume that the
movement distance of male j is drawn from a Gaussian function with mean 0
and standard deviation

sm,j = sm exp
✓
�l

Âi pij

Âik pik

◆
, (C.12)

where l determines how quickly movement distances decrease with increasing
mating prospects and pij is given by Eq. C.8 in Section C.1.3. For l = 0, the above
reduces to our main model. We find that the addition of mating-dependent
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dispersal in males extends coexistence times only marginally, if at all (compare
Fig. C.3A to C.3B). We also examine the related case in which males with low
mating prospects move farther, but again, coexistence times are not appreciably
prolonged in our individual-based model.

C.2.2 Introducing multiple allelic types

To examine whether coexistence of more than two types is possible, we extend
our main model so that one of n alleles p1, . . . , pn can occur at the preference
locus and one of n alleles q1, . . . , qn can occur at the display locus. Specifically,
in Fig. 4.4, we consider n = 10 preference and display types. A female with
preference allele pi prefers males with display allele qi to all other males by the
factor a. All other components of mate choice remain the same as for our main
model with n = 2 mating types.

C.2.3 Allowing competition to impact fecundity

In our main model, competitive interactions reduce the survival probability of
an individual. Alternatively, individuals that gain fewer resources might sur-
vive, but have lower fecundity. To explore this possibility, we allow all N off-
spring to survive, while reducing their reproductive success according to the
impact of competition, as measured by si. Specifically, for males, the probabil-
ity of being chosen as a mate is set to pij = adij�1eijsi. Likewise for females,
fecundity is set to fi = fmax(1 � ci)si. Such competition-dependent fecundity
generates less demographic stochasticity, because all individuals reach repro-
ductive maturity and can mate, albeit with reduced probability when their re-
source share ri is low. Indeed, all else being equal, incorporating competitive
effects on fecundity, rather than survival, enables long-term coexistence over a
wider range of parameters (compare Fig. C.6 to Fig. 4.3).

C.2.4 Altering the strength of density-dependent competition

To measure the strength of density dependence on survival, we may define
l = r/(1 � K/N), with r = smax � K/N (Section C.1.2). In our main model, the
maximum survival rate smax is set to 1 so that l = 1, indicating that survival
is strongly density-dependent. At the other extreme, if smax is set to K/N, all
individuals survive with probability smax = K/N, regardless of their resource
share, so there is no density-dependent effect on survival (l = 0). As shown
in Fig. C.4B, coexistence does not occur in the absence of density dependence
(l = 0); spatial variation in local carrying capacity then becomes irrelevant and
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cannot stabilize mating domains in space. As the importance of competition
increases (larger l, or equivalently, larger smax), coexistence can occur over a
broader parameter space. Once about half of the mortality is due to density-
dependent competition (l > 0.5), results become similar to those for l = 1
(Fig. C.4B).

We also explored the effects of density-dependent competition by varying
the total carrying capacity K (Fig. C.4C), while holding the total number of off-
spring constant. Because we are interested in the effects of population size per
se, we also keep constant the relative strength of mate-search costs (m/K = 1),
so the ease with which females encounter preferred mates remains unaffected
by variation in K. Again, when density-dependent competition is weak (K near
N), coexistence requires much higher levels of spatial variation in local carrying
capacity. Conversely, when K is very small, stochasticity in survival becomes so
great that coexistence is not maintained without high levels of spatial variation
in local carrying capacity. Thus, intermediate values of K, relative to N, best
facilitate co-existence.

The effects of demographic stochasticity can also be seen in Fig. C.4D, where
the strength of density dependence and the expected survival probability K/N
are held constant (l = 1 and K/N = 1/2), while the total number N of offspring
is varied, as is the time point at which co-existence is evaluated (at generation
5N). Again, we also keep constant the relative strength of mate-search costs
(m/K = 1). All else being equal, larger population sizes facilitate the mainte-
nance of coexisting types, as expected given the reduced stochasticity.

C.2.5 Altering the spatial scale of competition, mate-search, and migration

In the main model, we specified the spatial scale of several phenomena, in-
cluding the breadth of the competition function (ss = 0.05), the breadth of the
mate-search function (sf = 0.05), and movement distances (sm = 0.05). Fig. C.5
illustrates the minimum level of variation, v, in local carrying capacity required
for coexistence to occur in our simulations for at least 5N generations. Coex-
istence is easier to maintain when females search in smaller regions for males
(small sf) and when movement is localized (small sm ) because mating types
that predominate in different spatial locations remain more isolated. By con-
trast, coexistence is easier to maintain when competition occurs across a broad
spatial range (large ss) because individuals near the resource peaks compete
more strongly for resources available in the troughs, reducing the population
size in the troughs and promoting isolation of the mating types near each peak.
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C.2.6 Incorporating alternative genetic architectures

Our main model assumes free recombination between the trait and preference
loci. Fig. C.8 explores the effect of linkage, finding no substantive differences
between complete linkage and free recombination between the trait and prefer-
ence loci.

To test whether our findings are robust to changes in the number of loci, we
consider a quantitative genetic model in which an individual’s preference and
display trait are determined by two quantitative characters. This model can be
interpreted as assuming that a large (infinite) number of additive loci code for
each of the two traits. Complementing our main model, which features a finite
number of alleles, this extension allows for arbitrarily many mating types. In
this quantitative genetic model, the probability that female i mates with male j
is proportional to

pij = exp(�(pi � qj)
2/(2s2

p))eij , (C.13)

where pi � qj is the difference between the preference trait of female i and the
display trait of male j, sp denotes the strength of female preference (smaller sp

means females are choosier), and eij is proportional to the encounter probability
between female i and male j, as defined in Eq. C.7. Offspring trait values are
drawn from a Gaussian function centred at the mean of the parental phenotypes
for each trait, with a standard deviation so that measures the variation among
offspring due to segregation, recombination, and mutation. All other details of
the quantitative genetic model are the same as for our main model.

Despite the different genetic assumptions, the behaviour of the quantitative
genetic model closely resembles that of the allelic model (Fig. C.8). Coexistence
of mating domains is again possible over a wide range of parameters, provided
female preferences are sufficiently strong (small sp). As in the allelic model,
loss of mating domains in the quantitative model, when it happens, tends to
occur through the replacement of one type by the other. Compared with the al-
lelic model, the quantitative genetic model exhibits two additional mechanisms
through which mating domains may be lost. First, when female preference is
weak (large sp), interbreeding between adjacent mating domains may become
so common that the resultant offspring form their own mating domains, fa-
cilitating the merging of the original domains. Second, the random drift of
matched trait and preference values in one mating domain may cause them to
coincide by chance with the values in an adjacent mating domain, so the two
originally separate domains may merge due only to the random genetic drift
of quantitative mating traits that results from segregation, recombination, and
mutation in finite populations.
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We note that our results bear some connection to those of Day (2000), who
analyzed a spatial model of costly sexual preferences and male traits using a
quantitative genetic model. A key difference is that Day (2000) incorporated
ecological differences across space, with natural selection favoring different op-
timal male traits as a function of position (essentially incorporating niche differ-
ences across space). In parallel to our results, costly female preferences evolved
and could maintain more diversity in male traits than expected based on the
variation in the optimum trait across space.

C.2.7 Incorporating asymmetric display costs

Display traits can incur fitness costs in males. Our main model assumes that
such costs, if present, affect all individuals equally. It may often be the case,
however, that display traits differ in their effects on fitness. We therefore exam-
ine what happens when the Q allele causes males to have a reduced survival
probability relative to those carrying the q allele (i.e., for Q-bearing individ-
uals, the survival probability si is reduced by a factor 1 � a, with a ranging
between 0 and 1). Provided that the resultant cost is not so strong that the sta-
bilizing effect of spatial variation in local carrying capacity is overwhelmed by
selection against Q-bearing males, our main findings remain largely unchanged
(Fig. C.9).
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Symbol Eq. Description
Model parameters
a Strength of selection against Q-bearing males (only C.2.7)
k(x, y) C.1 Local carrying capacity at location (x, y)
l C.12 Strength of mating-dependence in male dispersal (only C.2.1)
m C.11 Strength of mate-search costs
smax C.6 Maximum survival probability
v C.2 Spatial variation in local carrying capacity
K Total carrying capacity
N Number of offspring
a C.8 Strength of female preference
fmax C.9 Maximum female fecundity
l Strength of density-dependent competition
sf C.8 Width of mate-search distribution
sk C.1 Width of peaks in local carrying capacity
sm Width of movement distribution
so Width of offspring distribution (only C.2.6)
sp C.13 Width of female preference (only C.2.6)
ss C.4 Width of competition distribution
Model variables
ci C.11 Mate-search costs of female i
dij C.4 Spatial distance between individuals i and j
eij C.7 Propensity for female i to encounter male j
fi C.9 Fecundity of female i
nij C.4 Competitive effect of individual j on individual i
pij C.8 Propensity for female i to choose male j as a mate
si C.6 Survival probability of individual i
µi C.10 Local density of preferred males as seen by female i
ri C.3 Resource share of individual i

Table C.1: Model parameters and model variables.
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Figure C.1: Variation in three components of fitness as a function of the local
carrying capacity experienced by each individual at t = 1000 for the model run
in Fig. 4.1D. Individuals are coloured according to their genotype at the display
locus. A. Resource share ri in males and females. B. Survival probability si of
males and females. C. Mate-search costs ci of females. Lines show least-squares
regression lines.
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Figure C.2: Mate-search costs for the model run in Fig. 4.1D. Panels in column
A are identical to those in Fig. 4.1D, except that only females are shown and
they are coloured according to their preference allele. Panels in column B show
the costs associated with searching for a mate and rejecting non-preferred males
for each female (Eq. C.9), as a function of her location y. For m/K = 1, female
fecundity is typically only halved by mate-search costs.
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Figure C.3: Effects of mating-dependent dispersal in males. Panels show dis-
tributions of allele frequencies at the display locus through time across 1000
replicate model runs in a two-dimensional homogeneous landscape; coexistence
occurs only while these frequencies remain intermediate. Darker shading indi-
cates a higher probability of observing a given frequency of the Q allele. Panel A
is identical to Fig. 4.2B. Panel B is the same as A, except with mating-dependent
dispersal in males (l = 100). Results for other values of l are qualitatively iden-
tical. Model runs are initialized as in Fig. 4.2. All other parameters are as in
Fig. 4.1B.
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Figure C.4: Minimum level of spatial variation v in local carrying capacity
needed to ensure long-term coexistence (grey regions) in a two-dimensional bi-
modal landscape. v was increased until the average persistence time of 20 repli-
cate runs exceeded 5N generations (vertical lines indicate standard errors). A.
Effect of the strength a of female preference. Coexistence becomes more likely
as female preferences become stronger (larger a), although once preference ex-
ceeds a ⇡ 5, its impact is small. B. Effect of the strength l of density-dependent
competition (varying smax while holding K = 500 and N = 1000). The limit
l = 0 corresponds to completely density-independent survival, while the limit
l = 1 corresponds to completely density-dependent survival. C. Effect of the
expected survival probability K/N (N = 1000, l = 1, and m/K = 1 are held
constant). Values near K/N = 0 correspond to very small mating populations,
while the limit K/N = 1 corresponds to the absence of ecological competi-
tion. D. Effect of population size N (holding constant K/N = 0.5, l = 1, and
m/K = 1). All other parameters are as in Fig. 4.1D.

127



Appendix C

0.03 0.04 0.05 0.06 0.07 0.08
0.0

0.1

0.2

0.3

0.4

0.5

Movement distance, σm , competitive effect distance, σs ,

Sp
at

ia
l v

ar
ia

tio
n 

in
 c

ar
ry

in
g 

ca
pa

ci
ty,

  v

 σm 

 σf 

 σs 

or mate−search distance, σf

Figure C.5: Minimum level of spatial variation v in local carrying capacity
needed to ensure long-term coexistence (grey regions) in a two-dimensional
bimodal landscape. v was increased until the average persistence time of 20
replicate runs exceeded 5N generations (vertical lines indicate standard errors).
The three curves show the effects of the competition width ss (red), the width
of the mate-search distribution sf (green), and the width of the movement dis-
tribution sm (blue), while holding all other parameters constant at their values
in Fig. 4.1D.
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Figure C.6: Conditions for long-term coexistence with competition-dependent
fecundity (Section C.2.3) in a two-dimensional bimodal landscape. All parame-
ters are as in Fig. 4.3.
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Figure C.7: Effects of altering the shape of the local carrying capacity (Eq. C.1)
in a two-dimensional bimodal landscape. Shading indicates how long polymor-
phism persists at the display locus (darker = longer). Each cell represents the
mean time to loss of polymorphism for 10 replicate model runs. Side panels
indicate the extent of spatial variation in local carrying capacity along transects
at y = 0.25 for nine parameter combinations indicated by the closest black cir-
cle. The inset at the bottom center corresponds to the parameter combination
used in Fig. 4.3. Spatial variation in local carrying capacity is relatively weak
throughout this figure, with v ranging from 0.28 for sk = 0.01 (far left) to 0.038
for sk = 0.2 (far right). All other parameters are as in Fig. 4.1D.
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Figure C.8: Effects of changes in genetic architecture in a two-dimensional bi-
modal landscape. Variance in display trait after 5, 000 (A) and 25, 000 (B) gen-
erations for a variety of genetic architectures, averaged over 20 replicate model
runs (vertical lines indicate standard errors). The dashed line indicates the max-
imum possible variance in the allelic model (0.25). For determining variances in
the allelic model, alleles Q and q are assigned trait values 0 and 1, respectively.
In the quantitative genetic model, the initial preference/display trait values are
set to 0/0 or 1/1 (corresponding to P/Q or p/q in the allelic model) with equal
probability, yielding an initial variance of 0.25. Over time, the variance of 0.25
can be exceeded due to random genetic drift. For comparison, the red curve
shows results of our main model. Model runs are initialized as in Fig. 4.2. All
other parameters are as in Fig. 4.1; in the quantitative model, so = 0.01.

130



Appendix C

0 0.25 0.5
0.0

0.1

0.2

0.3

A

t  = 5,000

0 0.25 0.5

B

t  = 25,000

a = 0
a = 0.01
a = 0.05
a = 0.1

Spatial variation in local carrying capacity,  v 

Va
ria

nc
e 

in
 d

is
pl

ay
 tr

ai
t

Figure C.9: Effects of asymmetric fitness costs of display traits in the allelic
model in a two-dimensional bimodal landscape. Variance in display trait after
5, 000 (A) and 25, 000 (B) generations when males bearing the Q allele have
their survival lowered by a factor 1 � a relative to males bearing the q allele,
averaged over 20 replicate model runs (vertical lines indicate standard errors).
The dashed line indicates the maximum possible variance in this allelic model
(0.25). For comparison, the red curve (identical to that in Fig. C.8) shows results
of our main model, corresponding to the limit a = 0. Model runs are initialized
as in Fig. 4.2. All other parameters are as in Fig. 4.1.
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Hybrid zones (Chapter 5)

D.1 Hybrid zone structure likelihood method

Here we describe a likelihood method for fitting a series of steps to allele fre-
quency data, as in figure 5.1. We consider a one-dimensional transect through
a hybrid zone, with m “patches”. We assume an initial step height at zero,
before the first patch, and a final step height at one, after the last patch. A
stepwise model through the hybrid zone will consist of k step locations s =

{s1, s2, · · · , sk} and k � 1 step heights (in addition to the first and last step
heights fixed at zero and one), h = {h1, h2, · · · , hk�1}, where hi is the height
between steps si and si+1. The stepwise model “partitions” the patches, and we
will refer to a particular partition as the set of patches between two adjacent
model steps. The step heights correspond to the estimated allele-frequency for
each partition. Our method aims to quantify both the number and placement
of these steps using a maximum likelihood approach.

Suppose that the expected genotype frequencies within the ith patch are
Ei[AA], Ei[Aa], and Ei[aa], and the ith patch has observed genotype counts
of xi,AA, xi,Aa, and xi,aa for the genotypes AA, Aa and aa. The likelihood of
sampling (with replacement) from the underlying frequencies is given by the
multinomial probability

✓
ni

xi,AA xi,Aa xi,aa

◆
Ei[AA]xi,AA Ei[Aa]xi,Aa Ei[aa]xi,aa

where ni = xi,AA + xi,Aa + xi,aa is the number of individuals in the ith patch and
( n

x1 x2 x3
) is the multinomial coefficient defined as n!/(x1!x2!x3!).

The expected genotypic frequencies are a function of the allele frequencies
given by the partition allele frequency and the inbreeding coefficient for the
patch, fi. Since fi is not directly of interest we set it to its most likely value,
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given the local genotypic values; that is, we define fi as

fi = 1 � xi,Aa
2pi(1 � pi)ni

where pi is the observed allele frequency in the ith patch. If the ith patch is
within the jth partition, it shares that partition’s step height, hj, and its expected
frequencies are

Ei[AA] =h2
j + fihj(1 � hj)

Ei[Aa] =2hj(1 � hj)(1 � fi)

Ei[aa] =(1 � hj)
2 + fihj(1 � hj)

In cases where an expected frequency was negative, that frequency was set to
zero and the other expectations were standardized appropriately.

The likelihood of observing the data across all m patches can then be calcu-
lated as

Pr(x|s, h) =
m

’
i=1

✓
ni

xi,AA, xi,Aa, xi,aa

◆
Ei[AA]xi,AA Ei[Aa]xi,Aa Ei[aa]xi,aa (D.1)

where the product is taken over all m patches. For a given set of step locations
s we find the heights h that maximize equation (D.1) using univariate optimiza-
tion in R (R Development Core Team, 2008).

For a given number of steps, k, equation (D.1) must be maximized with
respect to step locations. For large data sets it is not feasible to exhaustively
search for the best model, as the number of possible models is on the order
of m! for m patches. Instead, we used a genetic algorithm to identify the best
model for a given number of steps. The algorithm begins with a randomly gen-
erated initial pool of k-step models. It then runs through multiple generations
of mutation, recombination and selection. Mutation randomly replaces one or
more steps within a model with other possible steps, recombination switches
steps between different models (while maintaining step number), and selection
samples the best models, weighted by their log-likelihood, to initiate the next
generation.

To find the number of statistically significantly steps required to best ex-
plain the data, we started with the best single step model (k = 1) and added
steps until the difference between the best k step model and k + 1 step model
was not statistically significant following a likelihood ratio test. Each step re-
quires two additional parameters (a step location and a step height), so we
compared the likelihood ratio with a Chi-squared distribution with two de-
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grees of freedom. Simulations revealed that our use of two degrees of freedom
was in fact a conservative assumption, while one degree of freedom was not.
This method to fit mosaic hybrid zone data is available as an R package at
http://www.zoology.ubc.ca/prog/mosaic/
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