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Abstract 

The overall purpose of this dissertation is to investigate how outliers affect the decisions 

about the number of factors in exploratory factor analysis (EFA) as determined by four 

widely used and/or highly recommended methods. Very few studies have looked into this 

issue in the literature and the conclusions are contradictory— i.e., with studies disagreeing as 

to whether outliers result in extra factors or a reduced number of factors. For this dissertation 

I systematically studied the impact of outliers arising from different sources and matched 

outlier simulation models with different type of outliers.  

Chapter 1 provides an overview of the gap between statistical theory regarding outliers 

and researchers‘ day-to-day practice and their understanding of the effects of outliers. 

Chapter 2 presents a review of EFA with an emphasis on the four commonly used or highly 

recommended decision methods on the number of factors as well as a review of outliers 

which includes the sources of outliers and problems of outliers in factor analysis. Chapter 3 

examines the effects of outliers arising from errors using the deterministic and slippage 

models. The results revealed that outliers can inflate, deflate, or have no effects on the 

decisions about the number of factors, which depends on the decision method used and the 

magnitude and number of outliers. Chapter 4 investigates the effects of outliers arising from 

an unintended and unknowingly included subpopulation using the mixture contamination 

model. The general conclusions are similar to chapter 3, but chapter 4 also reveals that 

symmetric and asymmetric contamination has different effects on different decision methods 
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and the effects of outliers do not depend on sample size. Chapter 5 provides a general 

discussion of the findings of this dissertation, describes four novel contributions, and points 

out the limitations of the present research as well as the future research directions.  

This dissertation aims to bridge the gap from day-to-day researchers‘ practice and 

understanding of the effects of outliers to current outlier research that emphasizes robust 

statistics. The findings of this dissertation address the contradictory conclusions made in 

previous studies.  
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Preface 

Chapters 3 and 4 can be considered as stand-alone papers. A version of chapters 3 and 4 have 

been accepted for publication. The citation for the first publication is: Liu, Y., Zumbo, B. D., 

& Wu, D. W. (in press). A demonstration of the impact of outliers on the decisions about the 

number of factors in exploratory factor analysis. Educational and Psychological 

Measurement. The citation for the second publication is: Liu, Y., & Zumbo, B. D. (in press). 

Impact of outliers arising from unintended and unknowingly included subpopulations on the 

decisions about the number of factors in exploratory factor analysis. Educational and 

Psychological Measurement. My contribution was in the formulation of the research 

questions, the design of the studies, the computer simulation, the data analyses and 

interpretation of the results, and the manuscript preparation. Dr. Bruno D. Zumbo contributed 

to the formulation of the research questions, the design of the studies, interpretation of the 

results and the manuscript preparation of both chapters 3 and 4. Dr. Amery D. Wu 
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Chapter 1: Introduction 

The concern about outliers dates back to at least 1777, when Bernoulli first discussed 

the practice of discarding outlying observations (Beckman & Cook, 1983). Since then, the 

field of statistics was formally created and numerous studies of outliers have been published, 

promoting various methods to deal with outliers. A substantial review can be found in articles 

or books by Anscombe (1960), Barnett (1978), Barnett and Lewis, (1978, 1994), Beckman 

and Cook (1983), Grubbs (1969), and Hawkins (1980). A sub-field of statistics is devoted to 

robust estimation, testing, and data analysis (including data visualization and graphics). 

Many researchers and statisticians have made considerable contributions to robust estimation 

methods, such as Huber (1981), Rousseeuw and Leroy (1987), Wilcox (2001, 2005), and 

Yuan and Bentler (2007). 

A variety of definitions of outliers have been provided across different contexts, but 

generally we can understand outliers using Grubbs‘ (1969) definition: ―an outlying 

observation, or outlier, is one that appears to deviate markedly from the other members of the 

sample in which it occurs‖ (p. 1). Although Grubbs‘ definition is widely cited, it is not 

particularly practical or useful and leaves too many ambiguities, such as, ―what is the 

criterion for this?‖ It is also noteworthy that Grubbs‘ definition is sample-based and hence a 

model or population, per se, is not involved in the definition. A single standard definition of 

outliers cannot be found in the literature because outliers are always relative to some 

reference such as the sample data or a model that the researcher assumes to be correct. 
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Therefore, using Grubbs‘ terminology, a broad definition may be that outliers are data points 

that deviate markedly from: (i) the sample in which they occur, or (ii) the assumed model, be 

it a probability distribution or a statistical model such as the least squares regression model. 

This broad definition allows one to operationalize various strategies for investigating outliers 

by defining ―markedly deviate‖ and ―the model.‖ Furthermore, this broad definition reminds 

us that an outlier is defined relative to a model or assumed distribution. For example, when 

studying income, a data point may be regarded as an outlier if income is believed to be 

normally distributed, but not an outlier if income is believed to be distributed as a skewed 

random variable such as a member of the exponential, gamma, or chi-square families of 

distributions (Dragulescu & Yakovenko, 2001). Another commonly seen example is that an 

observation may not be an outlier in terms of a univariate distribution, but becomes an outlier 

when put into a multiple regression model. For example, when regressing height onto age, a 

score of six foot tall is not an outlier but a six foot tall together with 10 year old may well be 

an outlier.  

In the nineteenth century, researchers began to specify the criterion for rejecting 

outliers. Peirce (1852, 1878) was the first person to propose a specific criterion for the 

rejection of outliers. In 1863, Chauvenet proposed his criterion for rejecting a single outlier 

(c.f. Beckman & Cook, 1983). In the 20
th

 century, a great number of articles on the methods 

to identify, reject or accommodate outliers have been published. For example, Thompson 

(1935) used what would now be called studentized residuals for the rejection of outliers. 

Mahalanobis‘ distance, which was first introduced in 1936 when investigating the dispersion 
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of multivariate data (Mahalanobis, 1936), has been adapted for identifying outliers and is 

currently widely used and recommended (Tabachnick & Fidell, 1989). This index measures 

how far a point is from the center of the sample distribution of points, taking into account the 

covariance among the variables (Berkane & Bentler, 1988; Rousseeuw & Van Zomeren, 

1990). In addition, a variety of robust estimators of the mean have been developed by 

down-weighting observations in order to accommodate outliers into the data, such as, 

L-estimators, M-estimators, and R-estimators (Barnett & Lewis, 1994).  

Given that outliers have been studied for over 200 years, it might be expected that we 

have developed a good understanding of effects of outliers and statistical techniques to deal 

with them. However, there seems to be a large gap between the statistical theory of outliers 

and the day-to-day research and data analysis practice. Hunter and Schmidt (1990) pointed 

out that statistical artifacts, such as measurement errors, might result in apparent variability in 

findings across studies of the same phenomena. Orr, Sackett, and Dubois (1991) also pointed 

out that researchers‘ different attitudes towards outliers and their practice in the treatment of 

outliers might be a source of variation of study findings. Motivated by this idea, they 

conducted a survey of 100 senior authors who published papers using correlation or 

regression analysis in the Journal of Applied Psychology or Personnel Psychology from 1984 

to 1987, to investigate attitudes towards detecting and handling outliers. Their results 

revealed that 67% of these authors advocated removing outliers if there were appropriate 

reasons, whereas 29% were against removing outliers in any situation, and few of them used 

multivariate outlier detection techniques. Along the same lines, Bates, Holton, and Burnett 
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(1999) examined regression studies published from 1993 to 1997 in five leading journals in 

organizational and human resources research: Academy of Management Journal, Human 

Resource Development Quarterly, Journal of Applied Psychology, Journal of Vocational 

Behavior, and Personnel Psychology. Their results showed that 15% of papers reported that 

authors checked data and assessed the assumptions of regression analysis, while only 3% 

reported that authors screened for outliers. 

Although statisticians have provided a great number of outlier detection methods and 

robust estimators for dealing with outliers, many day-to-day researchers have not appreciated 

statisticians‘ efforts, rarely using these advanced statistical techniques. This may be because 

researchers have a limited understanding about how or in what way outliers can affect the 

model parameter estimates and inferences obtained from some common statistical methods. 

However, assuming that the effects of outliers are well-known, statisticians have primarily 

focused on developing and testing statistical methods that are robust to (i.e., not affected by) 

outliers and have paid less attention to the ―effects‖ of outliers on conventional methods – the 

idea being that these conventional methods should be superseded by the robust methods. 

Robust methods have not yet overtaken conventional methods in day-to-day practice, leaving 

published literature based on conventional methods that may be distorted by outliers; 

ignoring the effects of outliers on conventional methods does not resolve this issue. Hence it 

would be helpful to know the effects of outliers when reading and interpreting the extant 

literature. Clearly, there is a great need to bridge this gap and help day-to-day researchers 

have a fundamental understanding about the effects of outliers on conventional statistics. 
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In the literature, a group of researchers have already been making efforts to bridge 

this gap. Some researchers have demonstrated that even a single outlier can seriously bias 

descriptive and inferential statistics (Cohen, Cohen, West, & Aiken, 2003; Huber, 1981; 

Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Zimmerman & Zumbo, 1993). For instance, 

Cohen et al. (2003, p. 392) pointed out that, in the presence of outliers, analysis results may 

reflect a small number of atypical cases rather than a general relationship observed in the data. 

To illustrate, they showed that in a sample with even one outlier the regression coefficient 

became not statistically significant and R-square dropped from .43 in the original data 

(without outliers) to zero in the presence of the outlier. In a correlation study, Devlin, 

Gnanadesikan, and Kettenring (1981) demonstrated that, using a sample of 29 observations, 

the correlation coefficient can change from .99 to zero due to a single outlier. 

Other researchers pointed out that outliers can result in means shifted further either to 

the right or left of a distribution, variances can be inflated or deflated, regression coefficients 

can be biased, estimates of reliability can be inflated, and the inferences made from t-tests 

and F-tests may be biased (e.g., Blair & Higgins, 1980; Bradley, 1980; Cook & Weisberg, 

1980; Evans, 1999; Lind and Zumbo, 1993; Stevens, 1984; Wilcox, 2005). For example, 

Zumbo and Jennings (2002) systematically investigated the effects of outliers on one sample 

t-tests using a Monte Carlo simulation, which showed that the type I error rate of t-tests was 

inflated greatly when the proportion of outliers was large. Liu and Zumbo (2007) and Liu, 

Wu and Zumbo (2010) showed that estimates of Cronbach‘s coefficient alpha can be severely 

inflated for continuous as well as ordinal scale item responses, which can be inflated from .40 
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to .90 in some cases.  

However, there has been no systematic study on how outliers affect the decisions on 

the number of factors in exploratory factor analysis (EFA). EFA is a widely used analytical 

technique for the purpose of test construction and validation in many fields, such as 

psychology, education, sociology, marketing, political science, and the social, behavioral and 

health sciences more generally. Most previous studies focused on identifying and rejecting 

outliers and developing robust estimators for factor analysis models (e.g., Comrey, 1985; 

Mavridis & Moustaki, 2008; Pison, Rousseeuw, Filzmoser & Bentler, 2003; Yuan & Bentler, 

1998). A few studies have investigated how outliers affect factor analysis, which include EFA 

and confirmatory factor analysis (CFA), but most of them, using empirical data, only 

examined effects of outliers on factor loadings, residual variances or chi-square tests (Bollen, 

1987; Bollen & Arminger, 1991; Yuan, Marshall, and Bentler, 2002; Yuan & Zhong, 2008). 

Little is known about how outliers affect the number of factors determined by the commonly 

used decision methods.  

In addition, as Barnett and Lewis (1978, 1994) point out, it has been known that 

outliers may come from different sources, such as typographical errors, and mistakes in 

recording data. However, many previous outlier studies used the same mathematical or 

simulation model to investigate the effects of outliers, neglecting the sources of outliers, 

which gave researchers the wrong impression that outliers should be treated as errors in their 

practice no matter what caused the appearance of outliers. Therefore, it is crucial to show 

day-to-day researchers that outliers can come from different sources and may have different 
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impacts on the statistical methods currently used by researchers. 

The purpose of this dissertation is to provide more information to understand the 

effects of outliers on decisions about the number of factors in EFA, as determined by four 

commonly used methods – the Kaiser-Guttman/eigenvalue-greater-than-one rule, parallel 

analysis, minimum average partial, and 2

ML  sequential tests. To systematically investigate 

the effects of outliers, the present research examined two types of outliers in separate studies 

(i.e., outliers arising from errors and those from a subpopulation), matched outlier simulation 

models with the types of outliers, and conducted follow-up studies to provide insight into the 

potential causes of the findings.  

This dissertation is organized as follows. Chapter two provides a brief review of 

exploratory factor analysis (EFA), which emphasizes four commonly used methods for 

deciding the number of factors, and a review of outliers, which provides a description of 

outlier sources and outlier problems in factor analysis, and closes with the study purpose. 

Chapter 3 examines how outliers arising from errors affect decisions about the number of 

factors determined by four commonly used methods, with a follow-up study to explain the 

potential causes. Similar to the purpose of chapter 3, chapter 4 investigates effects of outliers 

arising from a subpopulation. While chapters 3 and 4 can be considered as stand-alone papers 

(a version of chapters 3 and 4 are accepted in Educational and Psychological Measurement), 

these chapters also form part of a larger program of my research aimed at providing a 

systematic investigation of the impact of outliers. The last chapter discusses the results in a 

more general context, focusing on types of outliers, major findings of the dissertation, 
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implications for day-to-day researchers, novel contributions, limitations, and future research 

directions. 
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Chapter 2: Review of Exploratory Factor Analysis and Outliers 

2.1 Review of Exploratory Factor Analysis (EFA) 

2.1.1 Introduction to EFA  

Factor analysis is a statistical method used to describe associations among observed 

variables with respect to one or more unobserved (latent) variables which are called factors. 

These factors, such as intelligence, depression, or personality, cannot be measured directly 

like people‘s weight or height, but can be generated from a set of observed variables or 

indicators to account for the covariances among the observed variables. In other words, the 

generated factor(s) partitions the variance of an observed variable into two parts: common 

variance that is explained by the factor and residual variance comprised of random 

measurement error as well as specific variance not accounted for by the factor(s). 

The major purposes of using factor analysis are: (a) identifying and interpreting the 

underlying constructs, (b) developing operational representatives/observed indicators of the 

underlying constructs, (c) validating measures/questionnaires using different samples, and (d) 

providing measurement error free factor scores for subsequent analyses. Since the invention 

of factor analysis, the first three purposes have been commonly seen in many fields, such as 

psychology, education, sociology, marketing, political science, and the social sciences, 

behavioral sciences and health sciences more generally. The last purpose in the list, providing 

factor scores for subsequent analyses, has recently become a more frequently used strategy 
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since the development of structural equation modeling (SEM). For example, factor models 

can be embedded in a path diagram or regression model, hence no longer necessitating factor 

score estimation. Tests of hypotheses in models with embedded latent variables are generally 

more statistically powerful because factor scores, unlike the observed variables, are 

measurement error free.  

Generally speaking, there are two classes of factor analysis: exploratory factor 

analysis (EFA) and confirmatory factor analysis (CFA). EFA is often used when researchers 

are investigating the underlying structure, the meaning of factors identified and the 

relationships between these factors in an exploratory way. In contrast, CFA is used when 

researchers want to test a model or hypothesis based on substantive theory and/or prior 

empirical experiences in a confirmatory way. Correspondingly, in order to use CFA 

researchers must have a clear idea of the number of factors, definition of these factors, the 

relationships among factors, and also relationships between factors and observed variables. In 

terms of psychometrics, Gorsuch (1983) pointed out that test development should start with 

EFA to accumulate researchers‘ knowledge of the possible factors, the meaning of factors and 

operational representatives/observed indicators, whereas CFA is used in later stages with 

different samples to test the quality of scales. Due to the purpose of this dissertation, the 

present research only focuses on EFA, and more specifically, the four commonly used 

decision methods to determine the number of factors in EFA studies. 
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2.1.2 Four Methods for Determining the Number of Factors in EFA  

EFA investigates the associations among observed variables without any constraints 

on their structure. Each of p observed variables ( jY ) is modeled as a linear combination of m 

factors ( m ) and a uniqueness component ( j ). A fundamental equation of the EFA model 

can be expressed as follows: 

jmjmjjjjY   ...332211            

where jY  denotes the observed scores for j items/indicators obtained from a sample of N 

independent subjects, j = 1, 2, 3, …, J; m  denotes the factor, m = 1, 2, 3, …, M; 

jm denotes the factor loading relating the jth indicator to the mth factor; j  is the residual 

variance that is unique to the jth indicator. The j  captures both the ―uniqueness‖ and the 

―random measurement error‖ components of the observed variables in an undifferentiated 

manner. 

One of the major purposes for using EFA is to identify the factor structure. One or 

more factors derived in this manner can account for the maximum amount of information 

among a number of observed variables. The decision about the number of factors in the 

model is very important as either under- or over-extraction (i.e., too few or too many factors, 

respectively) can distort the factor solution and lead to misleading interpretations of the 

resultant factor structure. Under-extraction is a serious problem for EFA because it results in 

loss of information and introduces substantial errors, and hence the true factor structure 

cannot be portrayed (Cattell, 1952; Cattell, 1978; Comrey, 1973; Gorsuch, 1983; Thurstone, 
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1947). Over-extraction is less problematic than under-extraction, but can lead to the ―factor 

splitting‖ problem, particularly when varimax rotation is used (Comrey, 1973, 1978; Comrey 

& Lee, 1992). When over-extracting, some trivial factors are created at the price of important 

factors— the magnitudes of factor loadings of important factors decrease and one or more 

trivial factors load high on one or more observed variables, which makes the trivial factors 

artificially important.   

Many studies have shown the detrimental effects of both under- and over-extraction. 

Using real data, Dingman, Miller, and Eyman (1964) found that simple factor structure was 

obscured when more factors than needed were retained. Levonian and Comery (1966) noted 

a complete change in factor structure when more factors were retained using real data sets in 

their study. In two simulation studies, Fava, and Velicer (1992, 1996) found that 

over-extraction resulted in degradations of factor scores in the cases of low population factor 

loadings and small sample sizes, and under-extraction led to substantial degradations of 

factor scores. Also in a simulation study, Wood, Tataryn, and Gorsuch (1996) showed that 

estimated factor loadings were distorted when over-extraction occurred and the distortion 

was worse when under-extraction occurred and, as expected, they also found that 

over-extraction resulted in factor splitting.  

In practice, researchers may formulate a construct with an important factor missing 

when under-extraction occurs or formulate a complicated construct with a lot of noise and 

nuisance factors when over-extraction occurs. In both situations, the factor structure and 

relationships between variables and factors can be seriously distorted, and therefore it will 
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lead to confusion in the later stage when researchers test a theory based on a misspecified 

factor analysis. In addition, Hoyle and Duvall (2004) suggested that Heywood cases (i.e., 

negative residual variance) often result from over-extraction (and sometimes under-extraction) 

when using maximum likelihood (ML) estimation in factor analysis. Thus, the determination 

of the number of factors to extract is a crucial step in conducting an EFA study. 

Over the course of the last 60 years, a variety of methods have been developed to 

determine the number of factors to retain in the model. The most widely used or highly 

recommended methods can be categorized into two branches: principal component analysis 

(PCA) based procedures and Goodness-of-fit statistics. PCA-based procedures, which are 

eigenvalue related methods, cannot test the adequacy of model-data-fit but rather serve as 

pointers to the number of factors to retain. The PCA-based procedures include: (i) 

Kaiser-Guttman (K-G) rule (i.e., eigenvalue-greater-than-one), (ii) parallel analysis (PA), and 

(iii) minimum average partial (MAP) test. Unlike the PCA-based methods, the 

goodness-of-fit statistics test the adequacy of model-data-fit. The goodness-of-fit methods are 

used in a sequential manner such that one starts with a one-factor solution and multiple 

models are sequentially fit and tested (adding one factor at a time) until the models fit the 

data adequately, and one can decide the number of factors. The most commonly used 

goodness-of-fit test, also included in many statistical program packages (e.g., SPSS), is the 

sequential chi-square tests based on maximum likelihood (ML) estimation (i.e., 2

ML  

sequential tests). These four decision methods are briefly reviewed below. 
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2.1.2.1 K-G Rule 

Guttman (1954) provided procedures for estimating the lower bound for the number 

of factors, which includes the currently used eigenvalue-greater-than-one rule (Gorsuch, 

1983, p.161). Kaiser (1960) further studied the application of Guttman‘s lower bound 

methods and developed the rationale for the use of the eigenvalue-greater-than-one rule. To 

acknowledge the contribution of both of these psychometricians the 

eigenvalue-greater-than-one rule is called the Kaiser-Guttman or K-G rule. The K-G rule is 

the most popular and frequently used method to retain factors among researchers. Its 

popularity is probably because it has been the default option for many years in widely used 

statistical software packages such as SPSS and SAS (Conway & Huffcutt, 2003; Fabrigar, 

Wegener, MacCallum & Strahan, 1999; Ford, MacCallum & Tait, 1986).  

Eigenvalues represent the amount of standardized total variance of observed variables 

explained by each factor. Eigenvalues used in the K-G rule are calculated from the principal 

component analysis (PCA)
1
 extraction method of the correlation matrix. The Pearson 

product-moment correlation matrix is used for PCA extraction with unit ―1‖ on the diagonal. 

The variance that each observed variable contributes is one, so the total amount of variance 

explained in PCA is the total number of observed variables. Using the K-G rule, a factor that 

can explain more variance than 1.0 is regarded a significant factor and should be retained in 

the model. Kaiser argued that factors which explain variance less than 1.0 should not be 

                                                        
1 EFA divides the total variance into two parts, common variance and residual variance, and works on the common variance 

whereas PCA explains the total variance. 



 

 

15 

considered because the internal consistency of component scores approaches zero or becomes 

negative when eigenvalues are less than 1.0.  

However, most psychometric and methodological studies reported that the K-G rule 

often retains too many factors (e.g., Browne, 1968; Lee & Comrey, 1979; Linn, 1968; Zwick 

& Velicer, 1980, 1986). This is contrary to the conclusion made by Guttman (1954) that the 

K-G rule is a lower bound of the number of factors estimated (i.e., tending to underestimate 

the number of factors). Cliff (1988) explained that the Guttman lower bound rule was 

developed with respect to the population correlation matrix, but most decisions were based 

on sample data, which resulted in the overestimation of factor numbers. In general, 

over-extraction most likely occurs in data with low communalities, a large number of 

variables, and small sample size. Gorsuch (1983, p. 164) summarized that the K-G rule is 

more likely to be effective when the sample size is large, the number of variables is less than 

40, and the ratio of the number of factors to the number of variables is between 1:3 and 1:5.  

2.1.2.2 Parallel Analysis (PA) 

Parallel analysis (PA) (Horn, 1965) has received substantial attention recently and is a 

highly recommended statistical technique for determining the number of factors. Though not 

available directly in commonly used software packages, the programs to implement parallel 

analysis in SPSS and SAS are made available by O‘Connor (2000) online at 

http://flash.lakeheadu.ca/~boconno2/nfactors.html. The PA method has been suggested as the 

most accurate decision criterion among all currently used eigenvalue-based methods by many 

http://flash.lakeheadu.ca/~boconno2/nfactors.html
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studies. For instance, Humphreys and Montanelli (1975) found parallel analysis to be 

superior to chi-square tests based on ML estimation. Zwick and Velicer (1986) compared five 

methods in their simulation study and found the performance of parallel analysis to be the 

best across all situations.  

As a brief description of PA, building on Kaiser and Guttman‘s idea (i.e., 

eigenvalue-greater-than-one), Horn (1965) suggested that the meaningful factors from a real 

data set should account for more variance than the factors derived from random data in which 

variables are uncorrelated. More specifically, factors or components should be retained as 

long as the eigenvalues obtained from the real data are larger than the corresponding 

eigenvalues from random data. The random data are generated from an identity correlation 

matrix with all zeros on the off-diagonals and the same sample size and number of variables 

as the original data. The average eigenvalues from random data generated by computer 

simulation are used in Horn‘s original procedure. Recently, PA has been further developed 

and a highly recommended practice is to use eigenvalues that correspond to a desired 

percentile (e.g. 95
th

 percentile) of the distribution of eigenvalues obtained from random data. 

This practice is regarded as more accurate than the practice of using average eigenvalues 

(Cota, Longman, Holden, Fekken, & Xinaris, 1993; Glorfeld, 1995; Turner, 1998). Both 

average and percentile eigenvalues are available in O‘Connor‘s program. 

Russell (2002) pointed out that parallel analysis is a variant on the scree plot. 

Researchers can implement the idea of a scree plot into parallel analysis and make parallel 

analysis a visualized plot. The scree plot is a commonly used graphical tool to decide on the 



 

 

17 

number of factors to retain (Cattell, 1966). To use this method, first one needs to plot 

eigenvalues of factors in a descending order and then one needs to look for a break in the plot, 

where there is a substantial drop in the eigenvalues. The number of factors to retain is the 

number of factors prior to this drop. Problems arise when there is no obvious break or there 

are several breaks, both of which lead to a more subjective judgment and low interrater 

reliability (e.g., Gorsuch, 1983; Kaiser, 1970; Crawford & Koopman, 1979).  

One way to conceptualize PA is that it improves the utilization of the scree plot. To 

integrate scree plots into parallel analysis, one needs to plot the eigenvalues derived from 

random data as well as those obtained from a real data set in one plot, and then look for the 

point where the two lines cross. The factors with eigenvalues from the real data dropping 

below those from random data are trivial factors, which should not be retained in the model. 

Unfortunately, the parallel plot is not available yet in either SPSS or SAS. Researchers need 

to make a plot using other software programs, such as Excel. It should be noted, however, 

that a numerical comparison of the eigenvalues from real and random data is, of course, 

functionally equivalent to the plot. 

2.1.2.3 Minimum Average Partial (MAP)  

Velicer (1976) developed the MAP method in the PCA framework. A partial 

correlation matrix is calculated after each component is partialled out of the correlation 

matrix and the average of the squared correlations of the off-diagonal partial correlation 

matrix (i.e., MAP criterion) is computed. The number of factors to retain is determined by the 
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point where the minimum average of squared partial correlations is obtained. The rationale of 

the MAP method described by Velicer is that, as common variance is partialled out of the 

correlation matrix for each successive component, the MAP criterion will continue 

decreasing until the point where the common variance has been removed and further 

extraction of additional components will result in partialling out unique variance, which will 

lead to the increase of the MAP criterion. 

Following the description of Velicer, Eaton, and Fava (2000), the specific procedure 

of MAP is summarized as follows. The first step is to obtain a partial correlation matrix after 

the first component is partialled out of the original correlation matrix. The partial covariance 

matrix needs to be computed first, 

'AARC    

where C is the partial covariance matrix, R is the original correlation matrix, and A is the 

pattern matrix. Then the partial correlation matrix is computed  

2/12/1*  CDDR  

where *R  is the partial correlation matrix and D is the diagonal of the partial covariance 

matrix. The second step is to calculate the average of squared coefficients in the off diagonals 

of the resulting partial correlation matrix (i.e., the MAP criterion) via the following equation. 
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*

ijr is the value in row i and column j of the partial correlation matrix and p is the total 

number of observed variables, m is the mth component (i.e., the first component here). 
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These two steps are repeated until the p - 1 components (i.e., the number of variables 

minus one step) are extracted from the correlation matrix. The reason for not extracting p 

components is that partialling out p components would result in a null partial covariance 

matrix. Finally, the average values of squared partial correlations from all steps are compared 

and the number of components is determined by the component analysis which results in the 

lowest average of squared partial correlations. The average of the squared coefficients in the 

original correlation matrix (i.e., 0MAP ) is also computed, and if this value is lower than the 

lowest average squared partial correlation, then there is no need to extract any components. 

Zwick and Velicer (1982, 1986) showed that the MAP test generally performed better 

than the K-G rule and scree test across all situations, especially when the average number of 

variables per component was large, and was not seriously influenced by sample size. 

However, they found that the MAP test consistently underestimated the number of 

components in the cases of low population factor loadings and a low number of variables per 

component.  

2.1.2.4 Sequential Chi-square Tests  

Currently, the commonly used significance tests to determine the number of factors in 

statistical software packages are chi-square tests based on Maximum Likelihood (ML). ML 

estimation is used to maximize the likelihood of the parameters given the data, or, stated 

differently, to minimize the discrepancy function (i.e., fitting function) of the form:  

      pSStrFML   log)(log 1 ,              
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where  denotes the model implied covariance matrix, S denotes the sample covariance 

matrix, and again p denotes the number of observed variables. When  =S, )( 1Str = p and 

hence MLF  becomes zero. The value of zero indicates a perfect fit, which leads one to 

conclude that the model implied covariance matrix perfectly predicts the sample covariance 

matrix.  

The asymptotic distribution of MLFN )1(   is a chi-square distribution ( 2

ML ) with 

tpp  )1(
2

1
 degrees of freedom, where, again, N is the sample size and t is the number of 

free parameters (Browne, 1982; Jöreskog, 1967, 1969). Bollen (1989, pp. 263-269) showed 

how the chi-square test based on ML is derived, which is also called the likelihood ratio test. 

Bartlett (1950, 1951) provided an alternative multiplier which is called the Bartlett correction 

that was claimed to improve the approximation of the chi-square distribution (Hayashi, 

Bentler, & Yuan, 2007; Lawley & Maxwell, 1971, Equation 4.30). The chi-square 

distributions with Bartlett correction are written as MLFmpN ]6/)542()1[(  , where m 

is the number of factors and all other notations are the same as defined above. The null 

hypothesis states that the discrepancy between the maintained factor model with m factors 

and the saturated model is not statistically significant, that is, 0H : = S. In contrast to most 

significance tests, we expect that the null hypothesis is not rejected so that a non-significant 

chi-square test indicates a good model-data fit. Therefore, the chi-square test is applied to a 

sequential set of analyses in which one more factor is added into the model at a time until the 

obtained chi-square test is not significant.  

However, when applied to EFA, chi-square tests tend to lead to over-extraction 
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(Gorsuch, 1983; Harris & Harris, 1971; Linn, 1986; Hakstian, Rogers, & Cattell, 1982; 

Hayashi et al., 2007; Zwick & Velicer, 1986). Many researchers have pointed out that there 

are several reasons for being cautious in the use of the chi-square test: small sample size, 

violation of the normal distribution requirements (i.e., kurtosis and skewness), and Heywood 

cases in which one or more communality estimates exceed 1.0 that results in one or more 

residual variances with negative values or approaching zero (Bentler & Yuan, 1999; 

Boomsma，1983; Browne, 1984; Geweke & Singleton, 1980; Lawley & Maxwell, 1971; 

Satorra & Bentler, 1988). In a simulation study, Hayashi et al. (2007) demonstrated that 

over-extraction can distort the chi-square distribution, which results in substantial skewness 

and kurtosis and lead to biased chi-square tests. 

2.1.3 A Demonstration of the Four Decision Methods  

 The four decision methods described above are illustrated with a real data set from 

Holzinger and Swineford (1939), which is also used for studies in chapters 3 and 4. This data 

set consists of 24 psychological ability tests of 301 junior high school students. The data have 

been used throughout the history of factor analysis and are widely studied in the literature 

(See Appendix for a list of the 24 tests). The data have been shown to consist of four 

interpretable factors by many researchers, though some researchers found five factors (e.g., 

Brown, 2001; Gorsuch, 1983; Harman, 1976; Preacher & MacCallum, 2003; Tucker & Lewis, 

1973; Wu, 2008). 

Table 2.1 presents the results of the number of factors determined by the four methods 
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(i.e., K-G, PA, MAP and sequential 2

ML  tests). The second column of Table 2.1 shows 

eigenvalues obtained from the original data, suggesting four factors based on the K-G rule, 

that is, eigenvalues-greater-than-one. The third column shows the eigenvalues obtained from 

5000 random data sets with the same number of variables (24) and sample size (301), which 

suggested four factors, as the fifth eigenvalue from the original data was smaller than the 

fifth from the random data. Following the recommendations in the literature, we adopted the 

practice of 95
th

 percentile in this demonstration as well as all studies in this dissertation. 

Integrating a scree plot into the PA method, Figure 2.1 shows the plot with eigenvalues from 

the real data as well as the random data with triangles representing eigenvalues from the 

original data and circles representing those from the random data. The plot shows that the 

fifth eigenvalue from the original data was smaller than that from the random data, which 

suggests a solution of four factors. 

The fourth column presents the average of squared coefficients in the original 

correlation matrix (0.086) and a list of MAP criterion values (Velicer, 1976) obtained from 

extraction of each component. It suggested four factors be retained with the lowest value of 

0.014 as the stopping point. Chi-square sequential tests are presented in the last two columns 

with 2

ML  values and the corresponding degrees of freedom as well as p-values. Using 

p-value of .05 as a cut-off criterion, the 2

ML  test became non-significant (p=0.297) when six 

factors were retained in the model. Hence, sequential 2

ML  tests suggested six factors to 

retain, which is different from the decision of four factors suggested by all other methods. 
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Table 2.1  A Demonstration of Four Decision Methods 

Number of  K-G PA MAP Sequential Chi-square Tests  

Components (eigenvalue) (eigenvalue)   
2

ML  p-value 

0   0.086    

1 7.282  1.636  0.026  1157.10 (df=252) < .001 

2 2.401  1.524  0.018  644.97 (df=229) < .001 

3 1.819  1.447  0.015  416.92 (df=207) < .001 

4 1.606  1.381  0.014  263.06 (df=186) < .001 

5 0.987  1.326  0.016  203.09 (df=166) 0.026 

6 0.903  1.274  0.019  155.66 (df=147) 0.297 

7 0.826  1.228  0.022    

8 0.786  1.184  0.028    

9 0.700  1.142  0.034    

10 0.682  1.102  0.040    

11 0.634  1.063  0.046    

12 0.599  1.026  0.055    

13 0.573  0.990  0.069    

14 0.535  0.955  0.085    

15 0.498  0.921  0.102    

16 0.485  0.887  0.119    

17 0.448  0.854  0.149    

18 0.423  0.819  0.174    

19 0.382  0.786  0.227    

20 0.361  0.752  0.307    

21 0.337  0.718  0.350    

22 0.319  0.682  0.516    

23 0.215  0.644  1.000    

24 0.202  0.601        

 

Figure 2.1  A Demonstration of Parallel Analysis 
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2.2 Review of Outliers 

2.2.1 Sources of Outliers 

In the literature of outlier studies, some researchers have discussed the potential 

causes of outliers (Barnett & Lewis, 1994; Beckman & Cook, 1983). Liu and Zumbo (2007) 

summarized the sources of outliers and described three general categories. The first category 

includes errors that occur during data collection and errors in preparing data for analysis (e.g., 

data recording or entry errors). The outliers generated from such sources are illegitimate 

observations and should, where possible, be corrected. 

The second category refers to the unpredictable measurement-related errors from 

participants, such as participant guessing, inattentiveness, which may be caused by fatigue or 

participants‘ lack of interest in participation, or misresponding, which happens when, for 

example, participants misunderstand the instructions or the descriptors on the response scale 

(Barnette, 1999; Gelin, Beasley, & Zumbo, 2003; Zumbo & Ochieng, 2003).  

The third category occurs when researchers unknowingly recruit some individuals 

who are not members of the target population. For example, a researcher planned to target 

English as second language (ESL) students and study their language proficiency but 

unknowingly includes a subgroup of individuals whose first language is English.  

Beckman and Cook (1983) pointed out that the appearance of outliers can also be 

caused by an inappropriate model that fails to provide an adequate model data fit. For 
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instance, Cohen, Cohen, West, and Aiken (2003) demonstrated that some response variables 

were treated as outliers when a linear regression model was applied, but became legitimate 

data points when a non-linear regression model was used. It should be noted that the presence 

of outliers in a normal distribution may cause skewness, but skewness is not necessarily 

caused by outliers as the nature of such data is inherently non-normal. Liu and Zumbo (2007) 

did not include this source of outliers because they defined outliers based on the assumption 

that the model was correct for the target population. In this case, if replacing the model with a 

correct model, outlying data points are not outliers anymore. 

Given the characteristics of outliers and mechanisms of outlier simulation models, 

these three categories of outliers were recast into two general types of outliers in this 

dissertation: outliers arising from errors and those arising from subpopulations. The first type 

of outliers are errors, including Liu and Zumbo‘s (2007) first category and part of the second 

category of outliers, such as data entry errors, data recording errors, or random measurement 

errors caused by participants‘ fatigue. Because outliers are errors and are sample specific, it 

does not make sense to talk about this type of outliers in terms of a population.  

The second type of outliers refers to the situation in which one or more 

subpopulations, which are unplanned and unknowingly recruited, are mixed with the target 

population. This type of outlier includes Liu and Zumbo‘s (2007) third category as well as 

part of the second category of outliers. The observations should be regarded as a 

subpopulation if outliers in Liu and Zumbo‘s second category are systematic measurement 

errors because of characteristics of respondents, such as inherent inattentiveness of 
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respondents instead of temporary inattentiveness.  

In the outlier literature, slippage models and mixture contamination/mixed 

contamination models have been widely used (Barnett & Lewis, 1994). Both of these models 

were adopted for simulating outliers from different sources in this dissertation. In addition, 

deterministic models were also utilized in the present research. The descriptions of these two 

types of outliers and outlier simulation models are given in details in chapters 3, 4 and 5. This 

section only gives a simple description of the distinction of these two types of outliers to 

facilitate the understanding of the material that is forthcoming in this and other chapters. 

From a psychometric point of view, one can investigate outliers at either the scale or 

item level. At the scale level, outliers are defined in terms of scale scores or subscale scores, 

whereas, at the item level, outliers are defined with respect to item responses. In line with my 

research interest in continuous variables, outliers in terms of subscale scores or visual 

analogue scales
2
 are considered in the present research because the use of subscales is a 

common practice in educational, social, behavioral, and psychological studies. In addition, 

visual analogues scales have gained popularity in computer-based surveys in recent years.  

2.2.2 Problems of Outliers in Factor Analysis Models 

In the literature discussing outliers in factor analysis, researchers have focused on 

different techniques for detecting and removing outliers (e.g., Comrey, 1985; 

                                                        
2 Visual analogue scale is used widely in assessing human well-being, quality of life, happiness, and psychological and 

health status; the response format is usually a continuous line between a pair of descriptors that represents opposite ends of a 

continuum (e.g., ―no pain at all‖ and ―worst pain I have ever had‖). 
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Castaño-Tostado & Tanaka, 1991; Kwan & Fung, 1998; Mavridis & Moustaki, 2008; Tanaka 

& Odaka, 1989) and robust factor analysis models to handle outliers (e.g., Pison, Rousseeuw, 

Filzmoser, & Bentler, 2003; Yuan & Bentler, 1998). However, few studies have 

systematically investigated how, and to what extent, outliers affect the performance of factor 

analysis, especially how outliers affect the decisions about the number of factors in EFA 

determined by widely used decision methods.  

Using the classical dataset of Holzinger and Swineford (1939) with 24 psychological 

variables collected from 145 subjects, Yuan, Marshall, and Bentler (2002) manipulated one or 

two subjects‘ scores, making their values 2 to 5 times larger than the original values, to create 

outliers in their illustrations. In general, they found that the outliers changed the factor 

solutions based on ML estimation in the case without robust treatment: (a) the extreme value 

of outliers, 5 times of the original value, diminished the number of factors from the original 

five to one, and (b) factor loadings were distorted and lost simple structure. In addition, their 

study showed that the 2  tests, which include the conventional one, defined as (N-1)*F, the 

one with Bartlett‘s correction, and other rescaled 2  tests, were not affected by one outlier, 

but were affected by two outliers. In their study, Yuan et al. only examined the K-G rule and 

2  tests for determining the number of factors. 

Using the same Holzinger and Swineford data, Yuan and Zhong (2008) chose nine 

observed variables from the data, manipulated different outlier conditions and investigated 

how outliers affected the CFA model parameter estimates as well as 2

ML  tests. In general, 

their findings showed that all of the parameter estimates (factor loadings, residual variances, 
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and factor correlations) were distorted to a large magnitude in the presence of outliers and the 

type I error rate of 2

ML  tests were inflated. 

A few other studies also examined the effect of outliers in CFA. Bollen (1987) and 

Bollen and Arminger (1991), using empirical data (Cermak & Bollen, 1983), demonstrated 

that outliers can cause negative residuals (i.e., Heywood cases), but had relatively less effect 

on factor loadings. Bollen and Arminger as well as Huber (1981) conjectured, without testing 

it empirically or via simulation, that a large outlier may create an extra factor. Bollen and 

Arminger‘s conjecture was not found to hold up in Yuan, Marshall, and Bentler's (2002) 

study. Yuan et al. found, using real data, that the number of factors diminished in the presence 

of outliers.  

Selecting four variables from a data set from the National Basketball Association 

(NBA) descriptive statistics for 105 point guards (a position on the basket team) for the 

1992-1993 basketball season (Chatterjee, Handcock, & Simonoff, 1995), Yuan and Bentler 

(2001) showed that the values of 2

ML  tests in a unidimensional factor analysis model were 

inflated by outliers, that is, the Type I error rate was inflated, and thus pointed out that the 

presence of outliers could result in misleading results, such as the model failing to fit the data, 

even if the model is correct. 

The results from previous studies showed that outliers could create problems for the 

decision about the number of factors in EFA, parameter estimates, and model fit indices. 

However, most of the previous studies are based on empirical data, which are sample 

dependent, so that we cannot generalize the findings of these studies to other samples or 
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more general outlier conditions. In addition, there are apparent contradictory conclusions in 

the literature about how outliers affect the number of factors in EFA, for example 

Bollen-Arminger-Huber‘s conjecture of extra factors vs. Yuan-Marshall-Bentler‘s conclusion 

of a reduction in factors. Hence, there is a need for more research to systematically 

investigate how outliers affect factor structure, parameter estimates and fit indices. It should 

also be noted that, in these studies, investigation of the effects of outliers was not the primary 

purpose of the studies but rather was used to motivate the need for the mathematical work 

being presented on outlier detection and/or robust estimation. Therefore, these studies never 

intended to comprehensively understand the effect of outliers, which is the purpose of this 

dissertation. 

2.3 Study Purpose 

Given that there is lack of systematic studies on effects of outliers in EFA in the 

literature, the purpose of this dissertation was to investigate how outliers affect the decisions 

about the number of factors determined by four widely used or highly recommended methods 

(i.e., K-G, PA, MAP and sequential 2

ML  tests) for continuous observed variables. The 

effects of outliers were investigated in chapters 3 and 4 with each chapter focusing on a 

different type of outliers.  

Chapter 3, consisting of three studies, investigates outliers arising from errors. In the 

first study, the classic data from Holzinger and Swineford (1939) were manipulated to 

mimic outliers. In the second study, based on the estimates obtained from the data used in 
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the first study, a Monte Carlo simulation study was conducted with 100 replications for each 

research design condition. Three outlier conditions were manipulated in both studies: the 

magnitude of outliers (i.e., 2-5 times of the original values of variables), number of subjects 

who have outlying responses, and number of variables with outliers. The third study was 

conducted in order to provide insight into the causes of the findings obtained from the first 

two studies.  

Chapter 4, consisting of two studies, investigates outliers arising from an unintended 

and unknowingly included subpopulation. A Monte Carlo simulation study was conducted, in 

which the outlier conditions were manipulated using five factors that resulted in both 

symmetric and asymmetric outlier conditions (i.e., mean shift, standard deviation shift, 

proportions of contamination, number of variables having outliers, and sample size). Similar 

to chapter 3, a follow-up study was also presented after the first study. 
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Chapter 3: Effects of Outliers Arising from Errors  

3.1 Introduction 

Exploratory factor analysis (EFA) is a widely used analytical technique for the 

purpose of test construction and validation in many fields such as psychology, education, 

sociology, marketing, and the political, social, behavioral and health sciences. Although 

several studies have documented the impact of outliers on commonly used statistics and 

methods, such as the estimation of the center of a distribution (e.g., the mean or median) (e.g., 

Andrews et al, 1972; Barnett & Lewis, 1994), the estimation of Cronbach‘s coefficient alpha 

of reliability (Liu & Zumbo, 2007, Liu, Wu, & Zumbo, 2010), estimated regression 

coefficients (Cohen, Cohen, Aiken, & West, 2003), and type I and type II error rates of the 

t-test or analysis of variance (ANOVA) (e.g., Zimmerman & Zumbo, 1993; Zumbo & 

Jennings, 2002), the impact of outliers on EFA is still largely undocumented.  

In discussing the limited use of robust estimators in day-to-day research practice in 

the social and behavioral sciences, Lind and Zumbo (1993) pointed out the following:  

It is often assumed, for example, that data which are observed to deviate only 

slightly in form from that of the familiar normal curve, will only slightly distort the 

usual estimates of means, standard deviations, correlations and associated 

hypothesis tests… Over the past several decades, research in statistics has 

demonstrated that a continuity principle of the form described above for normal 

theory based statistics is invalid … A single outlying observation, for example, can 
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strongly bias these statistics and thereby provide misleading or invalid results. (p. 

407-408) 

For example, Cohen et al. (2003, p. 407-409) demonstrated that one outlier distorted the 

regression parameter estimates greatly. Devlin, Gnanadesikan, and Kettenring (1981) 

likewise showed that the correlation coefficient dropped from .99 to zero in the presence of a 

single outlier in a sample of 29 observations.  

It should be noted that, to date, a large portion of the multivariate statistical and 

psychometric research has focused on identifying outliers or developing robust methods for 

factor analysis models (Castaño-Tostado & Tanaka, 1991; Tanaka & Odaka, 1989; Kwan & 

Fung, 1998) rather than documenting the impact of outliers, per se. It is as if the impact of 

outliers is widely known and appreciated, and it most certainly is for those researchers 

working on the statistical theory of robust estimators, so that they have focused on providing 

a solution (i.e., robust estimators) to what is a known but, at least for applied researchers, 

widely undocumented statistical problem. A number of robust methods have been developed 

such as R-estimators, L-estimators, and M-estimators to down-weight the influence of 

outliers (e.g., Barnett & Lewis, 1994; Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 

1981). These terrific statistical advances are largely ignored by day-to-day researchers 

because of a belief that a small deviation from the familiar normal curve will only slightly 

distort the usual estimates of means, standard deviations, correlations and associated 

hypothesis tests (i.e., the continuity principle described above), as pointed out by Lind and 

Zumbo (1993). A pernicious contributing factor is the limited availability of robust 
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techniques in widely used statistical software programs such as SPSS and SAS. We believe, 

however, that the software will come along and respond to market demands when researchers 

insist on having robust methods at their disposal. The purpose of this paper is to demonstrate 

to day-to-day researchers the impact of outliers on the decision about the number of factors to 

extract in EFA and along the way shed some light on apparent contradictory conclusions in 

the literature to date.  

We found very few studies discussing the effect of outliers on EFA performance, 

particularly the issue of determining the number of factors, and furthermore these studies had 

somewhat contradictory conclusions. Bollen and Arminger (1991) discussed how outliers 

affected factor analysis models and conjectured, without testing it empirically or via 

simulation, that a large outlier may create an extra factor. Likewise, in his description of 

robust covariance and correlation matrices, Huber (1981, p. 199) also briefly mentioned that 

sample covariance matrices are excessively sensitive to outliers and that one or two outliers 

may create an extra factor. The findings from Yuan, Marshall, and Bentler‘s (2002) study, 

however, do not support Bollen and Arminger‘s or Huber‘s conjecture. Yuan et al. found that 

the number of factors was reduced in the presence of outliers using the Kaiser-Guttman (K-G) 

rule (eigenvalues greater than one) – for example, in the extreme case, the number of factors 

decreased from five factors to one factor. It is worth noting that the purpose of Yuan et al.‘s 

study was focused on the introduction and description of new robust methods so they, in 

essence, did a very limited study of the impact of outliers to set the stage for their statistical 

work on robust estimation.   
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It is important for day-to-day researchers, when reading the extant literature or 

interpreting their own new findings, to understand whether outliers may have an impact, to 

what degree, and in what way on the results of exploratory factor analysis. This is a 

particularly important issue for the essential question of the number of factors to extract 

during the process of factor analysis. There are many possible sources of outliers (Liu & 

Zumbo, 2007). The sources of outlier generation in the present study are representative of 

Liu and Zumbo‘s first category of outlier sources, that is, errors that mainly occur during data 

collection or errors in preparing data for analysis (e.g, typographical errors), which are 

extreme data points. The outliers that resulted from such sources are illegitimate observations 

and should, when possible, be corrected or removed.  

The first two studies reported here demonstrate the impact of outliers on decisions 

about the number of factors in EFA. In addition, a third study is intended to aid readers in 

understanding how outliers affect correlation matrices and the eventual decision about the 

number of factors. The first study is not a simulation, per se, but rather a demonstration of the 

effects of outliers by systematically inducing outliers and tracing the resultant effects on the 

decisions about the number of factors. Simulation was used in Studies 2 and 3 because of the 

need to induce the presence of outliers and document their resultant influence on the decision 

about the number of factors (in study 2) and the correlation matrix (in study 3). All three 

studies are influenced by Yuan et al.‘s (2002) work. In particular, like Yuan et al, the classic 

data set of Holzinger and Swineford (1939) is used as to mimic a real data situation.  

The effect of outliers was investigated herein using the same framework as Yuan et 
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al.‘s (2002) study, except that in the present research more outlier conditions and more 

decision methods for deciding the number of factors were included. Alternatively, rather than 

using real data or simulation, one could investigate the impact of outliers by deriving the 

mathematical influence function, but the finite sample (empirical) influence function for the 

statistical test of number of factors such as those based on likelihood theory is a complex 

mathematical result and not accessible to day-to-day researchers (e.g., Pison, Rousseeuw, 

Filzmoser, & Croux, 2003). This inaccessibility is further complicated for psychometric tools 

like the eigenvalues greater than one rule or parallel analysis that are pointers to the number 

of factors and not founded on a statistical sampling theory; the influence functions for these 

methods are intractable. And most importantly, our purpose is to demonstrate the impact of 

outliers to day-to-day researchers in the social and behavioral sciences. Hence, for our target 

audience, demonstrating the effects of outliers via computer simulation is likely more 

persuasive and more appropriate than a complex derivation and mathematical analysis. 

Therefore, in summary, three studies are reported to demonstrate how outliers 

affected the decisions about the number of factors to extract using four commonly used or 

recommended decision methods. The first study is based on real data which are manipulated 

to mimic outliers. The second study is a more typical Monte Carlo simulation with 

replications for each design condition; however, the estimates obtained from the real data 

used in the first study are used as input population parameters. The first study has high 

fidelity with real data situations; however it lacks replications, which the second study 

overcomes. The final investigation is a focused simulation of a small correlation matrix that 



 

 

37 

is a follow-up to the first two studies and is meant to provide insight into how the outliers are 

altering the elements of the correlation matrix and the corresponding eigenvalues.  

3.2 Study 1: Demonstration of the Impact of Outliers with a Classic Data Set 

3.2.1 Method 

Study design 

As a follow up to Yuan et al.‘s (2002) study, the present study examined how outliers 

affect four decision methods to determine the number of factors using Holzinger and 

Swineford‘s (1939) data. The data set consists of 24 psychological ability test scores from 

junior high school students. There exist two versions of this classic data set -- a smaller 

version with a sample of 145 subjects, which was used in Yuan et al.‘s (2002) study and a 

larger version with 301 subjects, which was used for the present study
3
. This classic data set 

is one of the most widely studied data sets in the factor analysis literature. Previous studies 

concluded that there are either four or five factors, depending on the decision rule researchers 

used – with the four factor solution recommended by most researchers (e.g., Gorsuch, 1983; 

Harman, 1976).  

To create outliers for the computer simulation, Yuan et al. (2002) manipulated the raw 

scores of either the very last subject or the last two subjects in the data set for all 24 variables. 

Readers should note that Yuan et al.‘s purpose was to illustrate their new robust estimation 

                                                        
3 The larger sample size was used for two reasons. First, most of the previous studies of these variables reported the factor 

structure based on this larger sample. Second, the larger sample size was used because most guidelines in the literature 

advocate for large sample size of at least 200 to obtain high-quality factor analysis solutions (Jung & Lee, 2011).  
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methods, and not to systematically study the impact of outliers, per se; therefore, their study 

is limited by its very nature. The new scores (i.e., outliers) were two to five times that of the 

original raw scores of the subjects. Therefore Yuan et al.‘s study was a 2×4 completely 

crossed factorial design for the outlier conditions—that is, two levels of number of subjects 

having outlying responses, and four levels of outlier magnitude (2, 3, 4, and 5 times the 

original scores). Yuan et al. only investigated the K-G rule for deciding the number of factors. 

Although chi-square tests were used as a reference, they did not conduct chi-square tests in a 

sequential manner.  

The first study mimicked outliers by increasing the magnitude of original raw scores, 

which is an extension of Yuan et al.‘s study design, by varying three factors in a factorial 

design: (1) the magnitude of outliers, (2) the number of subjects who had outlying responses, 

and (3) the number of variables with outliers. Like Yuan et al.‘s study, new scores (outliers) 

were 2 to 5 times the original raw scores for some proportion of the last subjects in the data 

file and a certain number of variables. Adopting the same outlier percentage used by previous 

studies (Liu & Zumbo, 2007; Liu et al., 2010), the percentage of subjects who had outlying 

responses was, approximately, 1%, 8% and 15% of the sample size – in this case the last 3, 

24 and 45 subjects in the data file. The number of variables with outliers was set at 1, 6, 12 

and 24. These numbers of variables with outliers were chosen to represent different degree of 

outlier contamination, which covered the entire range from the case of only one variable 

having outliers to the extreme case of all variables having outliers – the latter case was the 

condition Yuan et al. studied. Therefore, the present study design was a 3×4×4 completely 
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crossed factorial design (48 design conditions) – that is, three levels of the number of outlier 

cases, four levels of the outlier magnitude, and four levels of the number of variables with 

outliers, as well as one baseline condition, the original data. 

Given that our purpose was to inform day-to-day research practice, the methods for 

deciding on the number of factors to extract were chosen based on day-to-day practice. A 

review of decision methods used for deciding the number of factors in EFA was conducted 

using three journals that routinely report psychometric applications of EFA: Psychological 

Assessment, International Journal of Educational and Psychological Assessment, and 

European Journal of Psychological Assessment. Between the years 2000 and 2010, a total of 

48 applied factor analysis papers appeared in these journals. Four of these papers did not 

indicate what method was used for deciding the number of factors. Each of the remaining 

papers reported using one or more decision rules to determine the number of factors to retain. 

Among these 44 papers, 28 used the K-G rule (eigenvalues greater than one), 24 used the 

scree plot, 6 used PA method, 4 used minimum average partial (MAP) method, and 4 used a 

sequential chi-square test method based on maximum likelihood (ML) estimation. The results 

of our review are similar to previous reviews (Conway & Huffcutt, 2003; Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Ford, MacCallum, & Tait, 1986). Therefore, we included the 

K-G rule, PA, MAP and sequential chi-square test for our study because they are either 

commonly used or recommended in the literature (Gorsuch, 2003; Hoyle & Duvall, 2004; 

Slocum-Gori & Zumbo, in press; Zwick & Velicer, 1986). The use of a scree plot was 

excluded as it is a subjective tool involving personal judgment. 
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The first three decision methods (K-G, PA, and MAP) are based on some variation of 

principal component analysis (PCA), and hence are pointers to help decide on the number of 

factors whereas the last one is a goodness-of-fit test. Therefore, K-G, MAP, and PA methods 

are used to help the researcher decide on the region of the possible number of factors wherein 

the correct number of factors may lie, hence described as ‗pointers‘, whereas the chi-square, 

as a test of fit, is used to help a researcher decide if she/he has specified the correct number 

of factors in the model. In some cases, a researcher may start with the pointers and then use 

the fit test to decide on which of the alternative number of factors is correct. It should be 

noted that the application of factor rotations is not a matter of concern for the decision rules 

because we only focused on the number of factors suggested by the decision methods, but not 

on the interpretability of the factor solution. 

Procedure 

Given that our aim is to inform day-to-day researchers, all the analyses were 

performed using factor analysis and ―Very Simple Structure‖ packages in the software 

R2.12.1. Considering that SPSS is a popular software program in many fields, we compared 

the results of the first simulation study in R with those obtained from SPSS and no difference 

was found for the K-G approach. The sequential 2

ML  tests showed no difference when 

convergence was reached; however, a 12% increase in non-convergence was found with R 

due to differing default values compared to SPSS for convergence in the estimation method. 

The MAP and PA approaches were also conducted using O‘Connor‘s (2000) SPSS syntax, 

and the results obtained from the original version of MAP (1976) and the 95
th

 percentile of 
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PA were found to be the same as those in R. It should be noted that the chi-square test was 

applied in a sequential manner beginning with the extraction of a single factor and an 

additional factor was added at each step until the obtained chi-square test was not statistically 

significant (Hoyle & Duvall, 2004, p. 307)  

3.2.2 Results 

Table 3.1 present the results of the first simulation study. The dependent variable is 

the difference between the number of factors obtained from the data with outliers and the 

number of factors from the original data – such that zero indicates no effect of outliers and a 

negative (positive) number means that the outliers decreased (increased) the number of 

factors. The numbers of factors obtained from the four decision methods based on the 

original data set, without manipulated outliers, were: four factors based on the K-G rule, PA 

and MAP approaches; and six factors based on the sequential 2

ML test. 

Table 3.1 shows the results of the K-G rule, PA, MAP, and sequential 2

ML  tests. Let 

us take the K-G rule as an example to describe the format of all of the tables. The K-G rule 

section of Table 1 is divided into four sub-sections for each of the conditions of 1, 6, 12 and 

24 variables with outliers. Within each section (e.g., the one outlier variable condition) the 

subtable was arranged by the magnitude of outliers (rows) and the number of subjects with 

outliers (columns). For example, for the K-G rule with the magnitude of outliers being twice 

the original data, the outcome of the K-G rule was the same as the original data (therefore 

zeros in the table) for the case of three subjects with outliers, but was inflated by resulting in 
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an additional factor in the cases wherein there were 24 or 45 subjects with outliers.  

From Table 3.1, it is evident that, in the presence of outliers, the number of factors 

sometimes increased and other times decreased depending on the degree of outlier 

contamination as well as the decision methods used. Some general patterns were found. For 

the K-G rule, the number of factors increased when the outlier contamination was low and 

decreased dramatically, from four to one, when more variables had outliers (12 & 24 

variables) with 8% and 15% subjects with outliers. For the MAP method, the number of 

factors was not affected at low outlier contamination (one variable with outliers), but showed 

strange patterns as the outlier conditions worsened: increasing, decreasing and then returning 

to the original number of factors. Compared to the other three methods, the PA approach was 

more resistant to outliers when either one or six variables had outliers. Finally, it is important 

to note that for the sequential 2

ML  tests nonconvergence occurred most often in extreme 

outlier conditions. 
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Table 3.1  Change in the Number of Factors from Four Approaches Based on the 

Original Data 

K-G 

Magnitude 

of Outliers 

Number of Outlying Subjects 

3 24 45 

1 Variable with Outliers 

2 0 1 1 

3 0 1 1 

4 0 1 1 

5 0 1 1 

 6 Variables with Outliers 

2 1 1 1 

3 1 1 1 

4 1 1 1 

5 1 1 1 

 12 Variables with Outliers 

2 1 1 1 

3 1 -1 -1 

4 1 -1 -1 

5 1 -1 -1 

 24 Variables with Outliers 

2 1 -1 -2 

3 0 -2 -3 

4 0 -3 -3 

5 -1 -3 -3 
 

MAP 

Magnitude 

of Outliers 

Number of Outlying Subjects 

Subjects 3 24 45 

1 Variable with Outliers 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

 6 Variables with Outliers 

2 0 1 1 

3 1 1 1 

4 1 1 1 

5 1 1 1 

 12 Variables with Outliers 

2 0 1 0 

3 1 -1 -1 

4 1 -1 -1 

5 0 -1 -1 

 24 Variables with Outliers 

2 1 0 -1 

3 -1 0 0 

4 -1 0 0 

5 -1 0 0 
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Table 3.1 Continued. 

PA 

Magnitude 

of Outliers 

Number of Outlying Subjects 

3 24 45 

1 Variable with Outliers 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

 6 Variables with Outliers 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

 12 Variables with Outliers 

2 0 -1 -1 

3 0 -1 -1 

4 -1 -1 -1 

5 -1 -1 -1 

 24 Variables with Outliers 

2 0 -2 -3 

3 -2 -3 -3 

4 -2 -3 -3 

5 -2 -3 -3 
 

Sequential Chi-square (ML) Tests 

Magnitude 

of Outliers  

Number of Outlying Subjects 

3 24 45 

1 Variable with Outliers 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

 6 Variables with Outliers 

2 0 0 0 

3 0 0 0 

4 0 1 * 

5 0 * * 

 12 Variables with Outliers 

2 1 0 0 

3 1 1 0 

4 1 * 0 

5 1 * 1 

 24 Variables with Outliers 

2 1 2 * 

3 1 * * 

4 1 * * 

5 * * * 
 

Note: The * denotes a cell where there was non-convergence for the sequential 
2

ML  tests. 
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3.3 Study-2: A Monte Carlo Simulation Documenting the Effects of Outliers 

3.3.1 Methods 

Study Design 

Like Study 1, Study 2 also investigated the effect of outliers on the decisions about 

the number of factors for the four decision methods. The design of the second simulation 

study is the same as Study 1 except that the dataset used for outlier manipulation was 

simulated based on a four-factor model rather than manipulating the elements of a real data 

set. A four-factor solution based on maximum likelihood exploratory factor analysis was 

obtained using Holzinger and Swineford‘s (1939) data. The resulting reproduced correlation 

matrix (i.e., the implied correlation matrix with "1s" on the diagonal, rather than the 

reproduced communalities) was used as the population correlation matrix in the simulation to 

generate multivariate normal datasets with the same number of variables (24) and subjects 

(301) as the original data. Therefore in Study 2, the numbers of factors obtained from 

different outlier conditions were compared to a common (known) criterion in the population, 

four factors.  

As in Study 1, the study design was a 3×4×4 completely crossed factorial design 

(48 design conditions) – that is, three levels of the number of outlier cases, four levels of the 

outlier magnitude and four levels of the number of variables with outliers. One hundred 

replications were conducted for each cell in the design. It should be noted that, unlike the 
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first simulation, which, in essence, has only one replication per cell, the average value of the 

number of factors obtained from 100 replications is reported for each cell in the design. As 

such, the number of factors reported in each cell need not be a whole number. 

Data Analysis 

Following the data analysis strategy in Liu and Zumbo (2007) and Liu et al. (2010), 

three-way ANOVAs (3x4x4) were conducted with the number of factors extracted as the 

dependent variable and with the different outlier conditions as independent variables 

separately for the K-G, MAP and PA approaches4. An ANOVA was not conducted for 

sequential 2

ML  tests because, due to the non-convergence problem, there were empty cells 

in the design that substantially complicated the ANOVA. As in Study 1, we presented the 

change in the number of factors in a tabular manner for the chi-square method.  

Following the analytic strategy in our earlier papers, given the large sample size 

(4800), we utilized eta-squared ( 2 ) to orthogonally partition the explained variance from 

the fixed effect ANOVA models instead of looking at the statistical significance. The 

proportion of explained variance was used to aid our interpretation of the simulation results. 

This principle is a akin to the strategy in regression analysis involving variable ordering in 

terms of the most important variables, or practically significant effects, contributing to the 

                                                        
4 We recognize that our dependent variable is a count variable and hence specialized regression techniques such as the 

Poisson or negative binomial can be used. We used the ANOVA (i.e., a linear regression model) rather than the Poisson or 

negative binomial because ours is a descriptive purpose to partition the observed variation in the dependent variable rather 

than specifying a predictive model and/or focusing on significance tests. Furthermore, as Gardner, Mulvey, and Shaw (1995) 

note, the specialized models are needed when the assumptions of linear regression models are violated – such as normality 

and homogeneity of variances. However, in our situation those assumptions are not seriously violated, and likewise the 

variances of our dependent variables are much smaller than the mean which is counter to the expectation for Poisson or 

negative binomial models.  
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model 2R  (Thomas, Hughes, & Zumbo, 1998). Like 2R  in regression analysis, 2  is 

defined as the sum squares of factors under study divided by the total sum squares. Following 

Ferguson (2009), we used the effect size of 0.04 as the criterion to judge the importance of 

the main effects and interactions. That is, in Ferguson's terminology, this is the minimum 

effect size representing a practically significant effect. In addition, if interactions appeared in 

the model, only higher order interactions were interpreted because main effects and lower 

order interactions are not interpretable in the presence of higher order interactions. 

3.3.2 Results 

The results obtained in Study 2 were similar to the first study. Table 3.2 presents the 

results for the sequential chi-square method. Tables 3.3 to 3.5 present the results for K-G, 

MAP and PA approaches, respectively, and Figures 1 to 3 depict the higher order interactions 

or the main effects identified as the important factors using 2 . 

As in Study 1, Table 3.2 contains the change on the number of factors for the 2

ML  

method. With only one variable having outliers, there was no change at all compared to the 

number of factors in the population (i.e., the method resulted in 4 factors) regardless of the 

magnitude of outliers and number of subjects with outliers. However, the number of factors 

was inflated from 4 to 10 when the number of variables with outliers increased, and 

non-convergence problems were found starting with 6 variables with outliers.  

Tables 3.3 to 3.5 present the results of sum squares, 2  values, as well as the 

proportion of variance explained by main effects and interactions for the K-G, MAP and PA 
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methods. From Table 3.3, one can see that the three important variables for the K-G rule were: 

(i) main effect of the number of variables with outliers, (ii) the interaction of number of 

variables with outliers and number of subjects with outliers, as well as (iii) the interaction of 

number of variables with outliers and the magnitude of the outliers. Figure 3.1 shows the 

plots of these two interactions. Both plots showed similar patterns wherein the number of 

factors was inflated when less than 24 variables had outliers. However, when all 24 variables 

had outliers the number of factors was deflated. Table 3.4, one can see that the important 

variables for MAP include a main effect of the number of variables having outliers and a 

three-way interaction of the number of variables having outliers, the number of subjects 

having outliers and magnitude of outliers. This three-way interaction is plotted in Figure 3.2. 

Like Study 1, the number of factors was not affected when only one variable had outliers, but 

otherwise inflated or deflated based on the various outlier conditions. Table 3.5 lists the 

ANOVA results for the PA method: only a main effect of the number of variables with 

outliers was identified as an important factor, as depicted in Figure 3.3. There was no effect 

of outliers for 1 and 6 variables with outliers but otherwise outliers resulted in a deflation in 

the number of factors extracted. 
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Table 3.2  Change in the Number of Factors Based on the Sequential Chi-square (ML) 

Test 

 

Magnitude of 

Outliers 

Number of Outlying Subjects 

3 (1%) 

 

24 (8%) 45 (15%) 

1 Variable with Outliers 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

 6 Variables with Outliers 

2 .8 1.1 1.0 

3 1.0 1.2 1.2 

4 1.1 1.5 1.5 (2) 

5 1.3 1.8 (3) 1.8 (3) 

 12 Variables with Outliers 

2 .8 1.2 1.3 

3 1.2 2.3 (1) 2.4 (11) 

4 1.4 3.4 (11) 3.2 (16) 

5 1.8 4.1 (32) 3.7 (40) 

 All 24 Variables with Outliers 

2 .9 2.3 (11) 3.0 (44) 

3 1.5 6.0 (99) * 

4 2.0 (6) * * 

5 2.3 (47) * * 

    Note. The number in brackets for indicates the number of replications, out of 100, with 

    non-convergence. The * denotes a cell where none of the 100 replications reached convergence. 
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Table 3.3  Variable Ordering for a Three-way ANOVA on the Number of Factors 

Extracted by the K-G Rule 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

Intercept 75715.853   

var# 4635.455 0.610 67.8 

var# * sub# 799.059 0.105 11.7 

var# * magnitude 756.917 0.100 11.1 

sub# 282.313 0.037 4.1 

Magnitude 257.928 0.034 3.8 

var# * sub# * magnitude 79.180 0.010 1.2 

sub# * magnitude 29.255 0.004 0.4 

Error 762.040   

Total 83318.000   

Corrected Total 7602.147   

Note. R-Square = .90. In terms of notation, var# denotes the number of variables with outliers, sub# 

denotes the number of subjects with outliers, and magnitude denotes the magnitude of the outliers.  

 

Figure 3.1 Graphs for Two-way Interactions of Variables vs. Subjects with outliers and 

Variables vs. Magnitude of Outliers on the Number of Factors Extracted by the K-G 

Rule 
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Table 3.4  Variable Ordering for a Three-way ANOVA on the Number of Factors 

Extracted by the MAP Approach 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

Intercept 85843.625   

var# 620.316 0.231 56.3 

var# * sub# * magnitude 132.762 0.049 12.1 

var# * magnitude 105.779 0.039 9.6 

sub# * magnitude 95.263 0.035 8.6 

var# * sub# 87.021 0.032 7.9 

Magnitude 33.464 0.012 3.0 

sub# 26.840 0.010 2.4 

Error 1585.930   

Total 88531.000   

Corrected Total 2687.375   

Note. R-Square = .41. In terms of notation, var# denotes the number of variables with outliers, sub# 

denotes the number of subjects with outliers, and magnitude denotes the magnitude of the outliers. 
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Figure 3.2 Graphs for Three-way Interactions of Variables, Subjects with Outliers and 

the Magnitude of outliers on the Number of Factors Extracted by MAP Approach 
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Table 3.5  Variable Ordering for a Three-way ANOVA on the Number of Factors 

Extracted by the PA Approach 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

Intercept 46270.710   

var# 5082.966 0.804 87.2 

var# * sub# * magnitude 189.020 0.030 3.2 

var# * magnitude 178.246 0.028 3.1 

sub# * magnitude 154.734 0.024 2.7 

var# * sub# 149.207 0.024 2.6 

Magnitude 46.372 0.007 0.8 

sub# 31.735 0.005 0.5 

Error 488.010   

Total 52591.000   

Corrected Total 6320.290   

Note. R-Square = .92. In terms of notation, var# denotes the number of variables with outliers, sub# 

denotes the number of subjects with outliers, and magnitude denotes the magnitude of the outliers. 

 

Figure 3.3 Graphs for Main Effect of Variables with Outliers on the Number of Factors 

Extracted by PA Approach 
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3.4 Study 3: A Focused Simulation Study to Demonstrate the Effects of Outliers on 

the Correlation Matrix  

The simulation methods used herein, as well as by Yuan et al. (2002), were meant to 

demonstrate the effects of outliers and not necessarily provide an explanation for what causes 

the effects. However, a small example may help us get an understanding for why the various 

methods performed differently in the presence of outliers. The statistical engine of factor 

analysis involves the analysis of a correlation matrix; therefore, a focused study of how 

outliers affect this matrix may provide some explanatory insights. Table 3.6 is comprised of a 

table of five rows and two columns of correlation matrices– each cell of the table is a 

correlation matrix. In addition, the far right column lists the eigenvalues resulting from a 

PCA of the corresponding correlation matrix on the far left– listed in descending order of 

magnitude. 

Focusing on the far left column in the table, the top left cell is the original correlation 

matrix of the first four variables of the Holzinger and Swineford (1939) data computed from 

a simulated data set of 10,000 subjects from a multivariate normal distribution. This is the 

population analogue of that correlation matrix and hence, by definition, allows us to 

demonstrate the effect of outliers setting aside any influence of sample size. The remaining 

four rows of the left column of Table 3.6 are the correlation matrices that result from one to 

all four variables having 15% of the cases with outliers of a magnitude of 2. In short, we 

simulated data using our simulation methodology with only the number of variables with 
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outliers allowed to vary. 
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Table 3.6  Demonstration of Changes in Correlation Coefficients and Eigenvalues of a 

4-Variable data in the Presence of Outliers Comparing to the No-Outlier Condition  

Correlation Matrix Change of Correlation Coefficients Eigenvalues 

No Outliers 

 v1 v2 v3 v4 

V1 1    

v2 .343 1   

v3 .298 .224 1  

v4 .443 .341 .280 1 
 

 

 

 

1.976 

.788 

.680 

.556 
 

One Variable with Outliers 

 v1 v2 v3 v4 

v1 1    

v2 .210 1   

v3 .173 .224 1  

v4 .262 .341 .280 1 
 

 

 v1 v2 v3 v4 

v1     

v2 -0.133     

v3 -0.126  0.00   

v4 -0.181  0.00 0.00  
 

 

1.753 

.829 

.775 

.643 
 

Two Variables with Outliers 

 v1 v2 v3 v4 

v1 1    

v2 .770 1   

v3 .173 .112 1  

v4 .262 .176 .280 1 
 

 

 v1 v2 v3 v4 

v1     

v2 0.427    

v3 -0.126  -0.112    

v4 -0.181  -0.166  0.00  
 

 

1.965 

1.097 

.713 

.224 
 

Three Variables with Outliers 

 v1 v2 v3 v4 

v1 1    

v2 .770 1   

v3 .748 .767 1  

v4 .262 .176 .146 1 
 

 

 v1 v2 v3 v4 

v1     

v2 0.426     

v3 0.450  0.543    

v4 -0.181  -0.166  -0.134   
 

 

2.595 

.939 

.243 

.223 
 

Four Variables with Outliers 

 v1 v2 v3 v4 

v1 1    

v2 .766 1   

v3 .762 .768 1  

v4 .626 .584 .551 1 
 

 

 v1 v2 v3 v4 

v1     

v2 0.423     

v3 0.464  0.544    

v4 0.183  0.243  0.271   
 

 

3.039 

.501 

.232 

.229 
 

 

The original correlation matrix, which is on the top of the table, has coefficients 
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ranging from .224 to .443. The middle column of Table 3.6 are the matrices that result from 

comparing the corresponding matrix with outliers (to the left of each cell) with the original 

correlation matrix at the top left cell in the table. Therefore, the matrices in the middle 

column reflect the change in the correlation matrix due to the outliers. Dashed lines are used 

to indicate which variables had outliers. 

In the case of one variable with outliers, the first variable, the correlations between 

the first variable and other variables decreased (-0.133, -0.126 and -0.181) and all other 

coefficients remained the same (zeros). Focusing on the third row of the table, when the first 

two variables were manipulated with outliers, the correlation between these two variables 

increased by .427 (increased from .343 to .770), whereas the correlations between these two 

variables and the others were deflated (ranging from -0.121 to-0.181), and the correlation 

between the variables without outliers was, as expected, the same as the original. The cell in 

the third row shows the inflation, deflation, and no effect depending on the number of 

variables with outliers. When three variables had outliers, the correlation matrix showed 

either inflation or deflation. When all the variables had outliers, the whole correlation matrix 

was inflated with coefficient changes ranging from .183 to .544.  

It should be noted that, in general, the inflation in the magnitude of correlations of 

some subset of the variables, when substantial, will, by definition, create an additional factor. 

Interestingly, if all of the correlations are inflated this creates one dominant factor – in 

essence enhancing the salience of the dominant factor. One can get a sense of how the 

number of variables with outliers affects the number of factors extracted by the PCA-based 
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methods by focusing on the far right column of Table 3.6, the eigenvalues. In short, one can 

see that an additional factor would be retained, based on the K-G method, when there were 

two variables with outliers; however, in the case of more than two variables, the first factor 

was made more salient by the extra-correlation induced by the outliers. This demonstrates the 

corresponding effects found in Studies 1 and 2 for the K-G and MAP methods. It is difficult 

to demonstrate the effects on PA because it is sample size dependent; however, with very 

large sample sizes (i.e., the asymptotic case), PA is the same as K-G. 

Unlike the PCA-based approaches, the inflation and deflation of the correlation 

coefficients when a subset of the variables had outliers did not have a differential effect on 

the chi-square method. Outliers caused inflation in the number of factors extracted by the 

sequential chi-square (ML) method and then eventually non-convergence in the extreme 

outlier condition wherein all variables had outliers. In our studies, as a result of the type of 

outliers being simulated, both the skewness and kurtosis of the observed variables were 

greatly inflated by inducing outliers. That is, for our simulated data, the skewness and 

kurtosis went from nearly zero in the original data to 1.7 and 2.9, respectively, in the extreme 

case.  

As suggested by Boomsma (1983) and Browne (1984), the inflation in skewness and 

kurtosis would lead to an inflation of the type I error of chi-square tests and correspondingly 

lead to too many factors being decided by chi-square tests. As for the appearance of 

non-convergence in the extreme outlier conditions, it happened because of a combination of 

two sources— Heywood case and failure to find local minimum of the empirical likelihood 
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solution. A review of the error messages from running ML estimation in our first two studies 

indicated that, during iterations, one or more communality estimates were greater than one; 

that is, negative residual variances appeared. Similar to our findings, Bollen (1989, p. 282) 

showed that outliers can create a Heywood case and result in a negative residual variance. 

Hoyle and Duvall (2004) also suggested that Heywood cases often result from 

over-extraction (and sometimes under-extraction) when using maximum likelihood (ML) 

estimation in factor analysis.  

3.5 Discussion 

Studies 1 and 2 complement each other in that the first has high fidelity with real data 

situations because it used real data to mimic errors that mainly occur during data collection or 

errors in preparing data for analysis (e.g., data entry errors)– that is, Liu and Zumbo‘s (2007) 

first category of outlier sources. These types of outliers are illegitimate observations and in 

practice should, when identified, be corrected or removed. The second study was, in essence, 

a replication of the first with an eye toward repeated sampling from a population with a 

known number of factors. This second study also had high fidelity because the population 

analogue to the number of factors was based on the real data from Study 1. 

Our findings, like Yuan et al. (2002), should not be generalized beyond Liu and 

Zumbo‘s (2007) first category of outlier sources– that is, errors that occur during data 

collection and or data entry. Future research should investigate Liu and Zumbo‘s second and 

third outlier sources using a probabilistic mixture of probability distributions to reflect a 
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subgroup of individuals for whom the measure operates differently than for the target 

population due to unpredictable measurement-related errors, or unknowingly recruiting some 

individuals who are not members of the target population.  

In terms of situating our findings in the theoretical psychometric and statistical 

literature, our findings supported both (a) the Bollen-Arminger-Huber‘s conjecture that 

outliers would result in extra factors, and (b) the Yuan-Marshall-Bentler conclusion that 

outliers reduced the number of factors. That is, outliers inflated, deflated, or had no effect on 

the number of factors extracted depending on which decision method was used and the extent 

of outlier contamination. Applied researchers, however, can be assured that when reading the 

extant measurement literature or when analyzing their own data that the decisions about the 

number of factors may be seriously distorted by outliers. For instance, our second study 

showed that, in some cases, the number of factors was reduced from four to one if using the 

K-G rule or PA approach, but increased to as many as ten if using the sequential chi-square 

test. Of course, in some situations outliers had no effect on the decision about the number of 

factors. However, day-to-day practicing researchers are left with the dis-ease of not knowing, 

in the context of their own data, which of the situations they may be in: the benign case or the 

many possible cases of either inflation, deflation of the number of factors, or simply having 

non-convergence due to outliers. 

In terms of day-to-day research practice, like our earlier research on the effect of 

outliers on the estimation of coefficient alpha (Liu et al., 2010; Liu & Zumbo, 2007), this 

study is a call for day-to-day researchers to use robust estimators and robust methods, such as 
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those proposed by Yuan and his colleagues (e.g., Yuan & Bentler, 2007; Yuan & Zhong, 

2008) and by Pison et al. (2003) when determining the number of factors to extract in their 

EFA studies. The number of factors that one extracts for an EFA is sensitive to outliers and 

can unduly influence theory development and psychometric practice. 
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Chapter 4: Effects of Outliers Arising from an Unintended and 

Unknowingly Included Subpopulation  

4.1 Introduction 

Exploratory factor analysis (EFA) is a widely used statistical technique in the 

psychosocial, behavioral and health sciences. However, the matter of the impact of outliers 

on the decisions about the number of factors to retain is largely undocumented in the 

psychometric and methodological literature. Recently, Liu, Zumbo and Wu (in press) 

demonstrated the impact of outliers on the decision about the number of factors. Their study 

focused on outliers that are errors in the data – that is, Liu and Zumbo‘s (2007) first category 

of outlier sources. Liu et al. found that this type of outliers inflated, deflated, or had no effect 

on the number of factors retained depending on the extent of outlier contamination and which 

decision method (e.g., parallel analysis, Kaiser-Guttman‘s eigenvalues-greater-than-one, 

minimum average partial, or sequential chi-square tests) was used. 

The purpose of the present paper is to continue this line of research and investigate 

Liu and Zumbo‘s (2007) second and third categories of outliers using a probabilistic mixture 

of distributions. With this purpose in mind, we first discuss the connection between the 

various sources of outliers and the models used for simulating them in psychometric studies. 

Next, two studies are reported. The first study demonstrates the impact of these types of 

outliers on the decision about the number of factors to retain. The second study is a follow-up 

to the first study, including a focused simulation study of a small correlation matrix and a 
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report on the skewness and kurtosis of variables that were simulated using the same 

simulation design as in study 1. The second study provides insight into how the outliers 

altered the properties of the correlation matrix. Readers interested in a review of the literature 

as well as a discussion of the need to study outliers in terms of deciding on the number of 

factors to retain should see Liu et al. (in press).  

 As Zumbo and Zimmerman (1993) state, computer simulation (including Monte Carlo 

simulation) is an empirical method of experimental mathematics that is loosely defined as the 

mimicking of the rules of a model (in our case, a psychological or psychometric phenomenon) 

via random processes. The key concept in this definition is the correspondence of the 

psychometric or psychological process to how it is being mimicked in the simulation. For 

example, in the case of the study of outliers, it is important that the simulation method 

matches the source of outliers being considered.  Below, I briefly review a taxonomy of 

sources of outliers and then address the simulation methods that can be used to mimic these 

outliers. 

4.1.1 Sources of Outlier Contamination  

In terms of psychometric analysis, Liu and Zumbo (2007) described three categories 

of possible sources of outliers in item responses – that is, a univariate distribution of item 

responses. As noted above, the first category usually refers to ―errors‖ in the data; 

instantiations of which include errors that occur during data collection, data recording, or 

data entry. The outliers generated from such sources are obviously illegitimate observations 
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and should, when found, be corrected. This first category of outliers arise from mistakes and 

are hence specific to a particular data set, so that they are a property of a sample but not of a 

population. For example, typically it does not make sense to talk about the number of 

typographical data entry errors in a population; however, it does make sense to talk about the 

number of such typos in a sample. Because of this characteristic, this type of outliers 

distinguishes itself from the other two categories of outliers in terms of the outlier generation 

models used in methodological and simulation studies – i.e., deterministic or slippage 

simulation models.  

The second category of outliers refers to the unpredictable measurement-related 

errors from participants, including guessing and inattentiveness during item responding 

which may be caused by fatigue or participants‘ lack of interest in participation. Another 

example of this category includes item misresponding which happens when, for example, 

participants misunderstand the instructions or the descriptors on the response scale (e.g., 

Barnette, 1999). Unlike the first category, which are clearly errors and sample specific, 

depending on the particular psychological processes in item responding, the second category 

of outliers may be considered either (sample specific) errors or characteristics and 

propensities of respondents and hence a population characteristic. For example, 

misunderstanding the item response instructions may be due to something that reflects 

momentary inattention or an inherent inattentiveness by the respondent. The former is a 

sample specific error (and hence akin to an error of the kind in the first category) whereas the 

latter is, by definition, a characteristic of respondents and hence may reflect a sub-group of 
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inattentive respondents in the population of possible item respondents.  

Liu and Zumbo‘s (2007) third category of outliers occurs when researchers 

unknowingly recruit some individuals who are not members of the target population, 

resulting in a sub-population for whom the measure operates differently than for the target 

population. Liu and Zumbo described an example of this in the context of self-concept 

research conducted with a student population wherein some study participants are from Asian 

countries for which self-concept may be a different construct. There are many examples of 

this sort of problem as evidenced by the growing number of papers on construct 

comparability and test adaptation (e.g., Hambleton, Merenda, & Spielberger, 2005). 

Outliers from the third category as well as the second category (when they are a 

characteristic of respondents) reflect an unintended and unknowingly included (here forth 

referred to as ―unintended‖) subgroup in one's target population, which are usually simulated 

via probability models. Although they represent different psychological phenomena, these 

outliers behave the same mathematically and hence can be simulated by the same outlier 

generation models.  

4.1.2 Models Used in Simulation Studies 

In the statistical literature, one sees reference to three common models for simulating 

outliers: deterministic, slippage, and mixture models. Deterministic and slippage models are 

typically used for the first category and for sample-specific errors in the second category, 

whereas mixture models are typically used for the second category of outliers that are a 
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characteristic of respondents (and, hence, a population characteristic) and for the third 

category of outliers. Whether it is the second or third categories, the mixture model is used to 

mimic unintended sub-populations. It should be noted, however, that the slippage model can, 

in particular instances, also be used to model unintended sub-populations except that the 

number of outliers, in this case, would be fixed from replication to replication.    

Deterministic Model.  The first category of outliers, errors in the data, has been 

simulated using a deterministic model (Barnett & Lewis, 1994). Because this type of outliers 

is sample specific, the number of outliers is fixed for a sample and rejection of the null 

hypothesis of no outliers is deterministically correct as these outliers are obviously different 

from the majority of observations (Barnett & Lewis, 1994). One way to simulate outliers 

using a deterministic model is simply to alter the original data, by either multiplying or 

adding a constant to raw scores. Examples of this type abound in the literature and include 

EFA studies by Yuan, Marshall, and Bentler (2002) and Study 1 of Liu et al. (in press). In 

both examples, outliers were created by multiplying raw scores of one or more variables by a 

constant (2, 3, 4, or 5) for a certain proportion of subjects in a sample.  

Slippage Model.  Another common strategy of simulating outliers as errors in the data 

(i.e., the first category of outliers) is the slippage model. Like the deterministic model, the 

number of outliers in a sample is fixed from replication to replication in a simulation study; 

however, with the slippage model, these outliers arise from some probability distribution.  

The slippage model has been widely discussed and used in the literature (e.g., 

Anscombe, 1960; Barnett & Lewis, 1978; Dixon, 1950; Liu, et al., in press). In its general 
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form, the null model (without outliers) is  

),...,2,1(: njFxH j   

The alternative model is  

),,...,2,1(: IiFxH i    ),...,2,1( PpGxp  , 

where I + P = n; F denotes an target distribution (sometimes called parent distribution); G 

denotes a contamination distribution with a different mean and/or variance; n denotes the 

total number of observations in a sample; I is the number of observations from a target 

distribution; and P is the number of observations from a contamination distribution. In the 

null model, all observations are assumed to come from the same population distribution. In 

the alternative model, a small number of observations are assumed to come from a 

contamination distribution and the total number of observations in a sample is the sum of 

observations from a target distribution and from a contamination distribution (Balakrishnan 

& Childs, 2001). 

Mixture of Distributions. One can think of this model intuitively as mixing two 

different population distributions together. A psychological example may help make this 

concrete: people from Denmark typically rate their life satisfaction as much higher than 

people from Hungary (OECD, 2005). If we targeted people in Denmark for an investigation, 

but unknowingly also recruited a small group of people who just immigrated to Denmark 

from Hungary, the observations recruited are from a mixture of two populations and 

responses from Hungarian people might appear as outliers. To mimic this kind of outliers, 
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one would use a mixture of distributions5, which has been widely used in the research 

literature and also is utilized in the present research.  

A mixture of two distributions is a general model, comprising two weighted probability 

distributions with positive weights that sum up to one (Blischke, 1978). As the weights 

represent a probability distribution, the mixture is also a probability distribution. The two 

distributions thus mixed, depending on the parameter values for the mixing, representing 

different populations. These components of a mixture of distributions can be normal 

distributions or non-normal distributions (e.g., Poisson, Negative Binomial distributions). In 

the statistical and psychometric research literatures, a mixture of two normal distributions has 

been frequently used for simulating outliers. One of the most well-known and widely used 

mathematical models is the mixture contamination model -- also referred to as the mixed 

normal distribution, which was introduced by Tukey (1962) and later extended by Huber 

(1964), Mosteller and Tukey (1968), and Barnett and Lewis (1994). This mixture 

contamination model is the one used herein. It is generated by including two normal 

distributions, a target distribution with mean  and standard deviation , N ),(  , denoted 

by F, and a contamination distribution with some values of mean and/or standard deviation 

different from F, denoted by G.  

Given a sample of n independent observations, iX (i = 1, 2, …, n), the majority of the 

data points follow the target distribution F and the proportion of the sample is denoted by 1-p, 

                                                        
5 Although we do not discuss them in detail herein, ―mixture of statistical models‖ can also be used in this context. It 

involves situations in which the observed data are a mixture of two statistical models that are different (e.g., one is a 

one-dimensional and the other a two-dimensional factor analysis model). These sorts of structured populations may be 

characterized as multi-group factor analysis in the psychometric literature. 
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while a small fraction, p, follows the contamination distribution G. The mixed contamination 

model is a mixture of F and G. The null model is  

)(: xFxH j   

The alternative model is  

)(*)(*)1(: xGpxFpxH j  , 0 < p <1/2               (1) 

where the amount of contamination/outliers p must be less than one half, and often 

substantially less, which indicates the probability that an observation arises from a 

contamination distribution G. If the amount of outliers is as large as near half, any outlier 

treatment methods, such as robust methods, are not legitimate to apply to these outliers in 

practice and the outliers should be modeled as another population. It is important to note that, 

in a simulation study with, for example, 100 replications, the proportion of the sample from 

the G distribution is itself a random variable whose average over the 100 replications (i.e., 

the expected value) is the proportion p – i.e., the proportion of outliers varies from sample to 

sample, however, on average it will be p. In the results section, the varying proportion of 

outliers from sample to sample was shown in the description of our simulation method (Table 

4.1). 

Slippage models and the mixture contamination model share some similarities, but 

have some fundamental differences. Barnett and Lewis (1994) pointed out that the number of 

outliers is fixed in a slippage model and outliers are regarded as fixed contamination whereas 

the number of outliers is a random variable in a mixture contamination model and hence 

outliers are regarded as random contamination. It should be noted that it is not appropriate to 
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use a mixture of distributions model to simulate outliers from Liu and Zumbo‘s (2007) first 

category, but is more appropriate to simulate outliers from their second and third categories. 

As the first category of outliers is obvious (typographical) errors and sample specific, the 

randomness of mixture of distributions models does not fit into the fixed property of outliers 

from the first category. However, slippage models can be used for this kind of outliers 

because the number of outliers is fixed in each sample. 

There are two contamination conditions: symmetric and asymmetric contamination. 

The contamination is symmetric if the population is a mixture of N ),(  and N ),(  b where 

b is a positive constant greater than one and hence can generate a contamination distribution 

with a larger standard deviation (SD) than the parent distribution, which is called SD shift in 

this paper. It is worth noting that if b is less than one, the condition of inliers should be 

considered instead of outliers, which is not of interest of the present study. The contamination 

is asymmetric when the population is a mixture of N ),(  and N ),(  a  or N ),(  and 

N ),(  ba where a is a constant and a ≠0. The mean and standard deviation of F are 

usually defined as 0 and 1, respectively, that is N )1,0( , so adding or subtracting any value to 

zero will result in the mean shift of a contamination distribution from the center of the 

population distribution, and hence lead to the asymmetric contamination. Therefore, a variety 

of contamination conditions can be generated by increasing the three outlier factors, that is, 

the proportion of contamination, mean shift, and SD shift of the contamination distribution.  

An example of outliers in a mixed contamination model is given in Figure 4.1. Figure 

4.1a is a normal distribution, N )1,0(   . Figure 4.1b presents a case of symmetric 
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outliers with 15% of outliers, consisting of a parent distribution N )1,0(    and a 

contamination distribution N )3,0(   . Outliers are shown as long and heavy tails at 

each side of the distribution. Figure 4.1c demonstrates a case of asymmetric outliers with 

15% of outliers, consisting of a parent distribution N )1,0(    and a contamination 

distribution N )1,3(   . Outliers are shown as a heavy tail on one side of the distribution. 

Figure 4.1d shows another case of asymmetric outliers with a parent distribution 

N )1,0(    and a contamination distribution N )3,3(   . Outliers make the 

distribution have a heavy tail as well as a high peak. 

Figure 4.1 An Example of Symmetric and Asymmetric Outliers (Proportion of 

Contamination=0.15) 

(a) Normal Distribution 

 

(b) 3,0  cc 

 

(c) 1,3  cc   (d) 3,3  cc   
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Building on the findings of Liu et al. (in press), the purpose of the present research 

was to investigate how outliers, arising from an unintended and unknowingly recruited 

subpopulation (Liu and Zumbo‘s second and third categories of outliers), affected the 

decisions about the number of factors to retain using four commonly used methods, that is, 

parallel analysis (PA), Kaiser-Guttman‘s eigenvalues-greater-than-one (K-G), minimum 

average partial (MAP), or sequential chi-square tests based on maximum likelihood 

estimation ( 2

ML ). The results of a Monte Carlo simulation study were reported first, in which 

the outlier conditions were manipulated using five factors (i.e., mean shift, SD shift, 

proportions of contamination of subjects, number of variables with outliers, and sample size). 

A follow-up study was also presented in order to provide insight into potential causes of our 

findings.  



 

 

73 

4.2 Study 1: Investigating the Effects of Outliers from a Subpopulation Using the 

Mixture Contamination Model  

4.2.1 Method 

Study Design   

A Monte Carlo simulation study was used to investigate the effects of outliers on 

decisions about the number of factors by the four decision methods. This study 

systematically varied five factors with 100 replications for each outlier condition (i.e., 

simulation condition). These five factors are as follows: 

(a) mean shift of a contamination distribution (0, 1.5, 3)  

(b) standard deviation (SD) shift of a contamination distribution (1, 1.5, 3)  

(c) proportion of contamination (i.e., proportion of the subjects from the contamination 

distribution) (.01, .08, .15)  

(d) sample size (250, 500, 1000), and 

(e) number of variables with outliers (1, 6, 12, 24). 

The study design is therefore a 3x3x3x3x4 completely crossed factorial design with 324 

conditions, which also includes the no-outlier conditions (i.e., the comparison condition) that 

has mean shift of zero and SD shift of one.  

To ensure a systematic investigation of outlier effects, the selection of the magnitude of 

three factors (mean shift, SD shift and proportion of contamination), which are the 

parameters of a typical mixture contamination model, were guided by previous studies, Blair 
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and Higgins (1981), Liu and Zumbo (2007), Mosteller and Tukey (1968), and Zumbo and 

Jennings (2002). Following these studies, the present study adopted similar values of model 

parameters with some modifications to fit the purpose of the present study. The number of 

variables with outliers was also included in the present study as it was demonstrated to be an 

influential factor in determining the number of factors in Liu et al.‘s (in press) study. In 

addition, sample size was found in the literature to affect the performance of the K-G rule as 

well as chi-square tests (e.g., Gorsuch, 1983, p.164; Hubbard & Allen, 1987; Zwick & 

Welicer, 1986). Hence, we included samples size as a factor in the present study. 

Data Generation  

In line with the earlier work by Liu and Zumbo (2007), Liu et al. (in press) and the 

psychometric context of our study, the outliers are induced in the item responses, that is, the 

marginal distributions. The item response format being simulated applies to continuous 

variables, such as those generated from subscale scores and visual analogue responses. 

For the mixture contamination model in equation (1), both the target and contamination 

data were generated based on the population correlation matrix from Holzinger and 

Swineford‘s (1939) classic data set. The original data set consists of 24 psychological ability 

test scores from 301 junior high school students with a four-factor solution recommended by 

many researchers (e.g., Gorsuch, 1983; Harman, 1976; Liu, et al., in press). As in Liu et al.‘s 

studies, a four-factor solution based on maximum likelihood exploratory factor analysis was 

obtained using Holzinger and Swineford's data. The resulting reproduced correlation matrix 

(i.e., the implied correlation matrix with "1s" on the diagonal, rather than the reproduced 
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communalities) was used as the population correlation matrix in the simulation to generate 

multivariate normal datasets with specified marginal means and standard deviations, 

depending on the experimental condition, that correspond to the target or contamination 

distribution in equation (1). Multivariate normal data were generated in software R 2.12.1, 

using a method akin to the Kaiser and Dickman (1962) method wherein, for computational 

efficiency, we used Cholesky decomposition rather than principal components analysis in the 

computation. Generating data from a model with a known (pre-specified) number of factors 

allowed us to compare the number of factors obtained from different outlier conditions to a 

common criterion in the population: four factors.  
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Outcome Variable 

In each of the 324 experimental conditions, and for each of the 100 replications, the 

number of factors to retain for the EFA was determined, separately, by the K-G rule, PA, 

MAP and sequential 2

ML  tests. The number of factors retained is the dependent variable for 

each of these four methods respectively in this simulation study. It should be noted that, as in 

Liu et al.‘s (in press) study 2, for each outlier design condition, an average of the number of 

factors over 100 replications was obtained and hence the number of factors reported might 

not be a whole number. 

Analysis of the Simulation Results 

 Following the data analysis strategy used in Liu and Zumbo (2007) and Liu et al. (in 

press) five-way ANOVAs (3x3x3x3x4) were conducted with the number of factors retained 

as the dependent variable separately for each of the four decision methods, that is, the K-G 

rule, PA, MAP and 2

ML  sequential test. Given the large sample size (32400-- i.e., 324 cells 

in design with 100 replications per cell), we used eta-square ( 2 ) to orthogonally partition 

the explained variance obtained from the fixed effect ANOVA models instead of looking at 

the statistical significance. The proportion of explained variance was used to aid our 

interpretation of the simulation results, which is like R-square in regression analysis. 

Following Liu et al. (in press), we used Ferguson's (2009) minimum effect size of 2  of 

0.04 as the criterion to judge the importance of the main effects and interactions. In addition, 

if interactions appeared in the model, only higher order interactions were interpreted because 

main effects and lower order interactions are not interpretable in the presence of higher order 
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interactions.  

The sequential 2

ML  test can result in no decision about the number of factors to retain 

because of non-convergence. Therefore, the non-convergence problem can result in 

unbalanced data for the ANOVA, which can, in turn, distort the orthogonal partition of 

variance in the outcome variable. We therefore adopted the Type III sum-of-squares method 

in SPSS, an often-used method for handling unbalanced data with no missing cells (SPSS 

Inc., 2009), for the data analysis of the simulation results. 

4.2.2 Results 

Proportion of outliers in a given sample 

As noted earlier, when using the mixture contamination model to simulate outliers, the 

proportion of outliers in a sample can vary across replications – that is, from sample to 

sample. To our knowledge, the central tendency and variability in sample-to-sample 

proportions of outliers has not been documented in simulation studies. To better understand 

these statistics, we recorded the proportion of outliers across 100 replications for a single 

variable. 

Table 4.1 lists the central tendency (mean, median) and variability (standard deviation, 

quartiles, minimum and maximum values) for the proportion of outliers for the various 

conditions in the current simulation study across the 100 replications. Starting from the far 

left in Table 4.1, one can find the population value of the proportion of contamination, the 

sample size, and then the seven descriptive statistics computed across the 100 replications. 
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One can see that, as expected, the mean is equal to the population value of contamination in 

every case. However, also as expected, there is variability in the proportion of contamination 

across the samples which depends on the sample size and the population proportion of 

contamination.  

 

Table 4.1  Documenting Simulations Using Mixture of Distributions: Proportion of 

Outliers in Each Sample across 100 Replications 

Pc n Mean  SD Minimum 
1st 

Quartile 
Median 

3rd 

Quartile 
Maximum 

0.010  1000  0.010  0.003  0.003  0.008  0.010  0.012  0.018  

 500  0.010  0.004  0.000  0.008  0.010  0.012  0.022  

  250  0.010  0.007  0.000  0.004  0.008  0.012  0.028  

0.080  1000  0.080  0.010  0.060  0.073  0.080  0.088  0.106  

 500  0.080  0.011  0.054  0.072  0.082  0.088  0.106  

  250  0.080  0.019  0.040  0.068  0.076  0.088  0.128  

0.150  1000  0.150  0.010  0.121  0.143  0.150  0.156  0.178  

 500  0.150  0.015  0.108  0.140  0.149  0.162  0.184  

  250  0.150  0.023  0.104  0.132  0.150  0.168  0.200  

Note. Pc denotes proportion of contamination in the population; n denotes sample size; SD denotes 

standard deviation. 

 

Results of the simulation study 

Tables 4.2 to 4.5 present the results for the four decision methods (K-G, MAP, PA and 

sequential 2

ML  tests), respectively. Figures 4.2 to 4.5 show the corresponding highest order 

interactions for these four methods identified as important factors using 2 . For the K-G, 

MAP and PA methods, the highest order interaction was the same: mean shift by the number 

of variables having outliers by the proportion of contamination. Hence, we only interpreted 
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this 3-way interaction for the K-G, MAP and PA methods and not any of the lower order 

interactions and main effects.  

Table 4.2 presents the results of the variance decomposition for the K-G rule and Figure 

4.2 shows the corresponding plot of the 3-way interaction. With a mean shift of zero (i.e., 

symmetric outliers), the number of factors was not affected by outliers, which was also the 

case for the MAP and PA methods. With mean shift of 1.5 and 3 (i.e., asymmetric outliers), 

the change in the number of factors depended on the number of variables having outliers and 

the proportion of contamination. When mean shift was 1.5, the number of factors was not 

affected when one variable and all variables (24) had outliers, but was inflated (from 4 up to 

5 factors) when 6 and 12 variables had outliers. With a mean shift of 3, the number of factors 

was not affected when only one variable had outliers, was inflated (from 4 up to 5 factors) 

when 6 and 12 variables had outliers, but deflated when all 24 variables had outliers (from 4 

to an average of 2.7 factors). There was more deflation with an increase in the proportion of 

contamination.  

Table 4.3 presents the results of the variance decomposition for the MAP method, with 

the corresponding plots in Figure 4.3. Figure 4.3 showed that the number of factors was not 

affected when the mean shift was zero and 1.5, but inflated from four to five when the mean 

shift increased to 3 for the cases of 6 and 12 variables having outliers. The magnitude of the 

inflation increased with the increase of the proportion of contamination. It is worth noting 

that the number of factors retained was not affected when all variables had outliers in the 

MAP method, which was different from the K-G and PA methods.  
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Table 4.4 presents the results of the variance decomposition for the PA method and 

Figure 4.4 is the corresponding interaction plot. Similar to the performance of the K-G and 

MAP methods, PA method was robust to symmetric outliers. In general, the PA method was 

accurate in retaining the number of factors in the presence of asymmetric outliers, however, it 

became dysfunctional when all variables had outliers: (a) the number of factors was deflated 

slightly when the mean shift was 1.5 and deflated dramatically when the mean shift increased 

to 3; and (b) the magnitude of deflation increased when the proportion of contamination 

increased.  

Unlike the three PCA-based methods, for the sequential 2

ML  test, the highest order 

interaction identified as important using 2  was found to be: SD shift by the number of 

variables having outliers by the proportion of contamination. Table 4.5 presents the results of 

the variance decomposition for the sequential 2

ML  test and Figure 4.5 shows the 

corresponding interaction plot. The SD shift played an important role in the interaction, 

which indicated that the symmetric outliers affected the performance of the sequential 2

ML  

test. When the SD was one (no shift) or 1.5 (mild increase on variations for the 

contamination distribution), the number of factors retained was either not affected or inflated 

by a small magnitude. However, the number of factors retained was inflated dramatically 

when the SD shift increased to 3, and especially when all variables had outliers, the number 

of factors retained increased from 4 (baseline) to almost 12.  

It should be noted that non-convergence was found for the sequential 2

ML  tests, 

ranging from 1 to 19 percent of the replications in a cell of the experimental design. As 
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shown in Table 4.6, the non-convergence occurred for experimental conditions wherein the 

SD shift was 3, which we saw in Figure 4.1 involved high kurtosis for the variable with 

outliers. Within the conditions involving an SD shift of 3, non-convergence happened when 

the proportion of contamination was either .08 or .15 and either 12 or 24 variables had 

outliers, and was more likely to happen when all 24 variables had outliers. Sample size also 

seemed to interact in this finding, wherein the non-convergence occurred predominantly with 

sample sizes of 1000. Like the findings of Liu et al. (in press), in inspecting the statistical 

output from the simulation, the non-convergence problem resulted from a combination of a 

Heywood case and failure to find local minimum of the empirical likelihood solution.  
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Table 4.2  Variable Ordering for a Five-way ANOVA on the Number of Factors 

Extracted by the K-G Rule 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

vars * mean 

Vars 

pc * vars * mean 

pc * vars 

Pc 

pc * mean 

vars * SD 

N 

SD 

Mean 

pc * vars * mean * SD 

pc * vars * SD 

vars * mean * SD 

n * SD 

n * vars * SD 

pc * SD 

pc * mean * SD 

n * vars * mean 

n * vars * mean * SD 

n * mean 

n * mean * SD 

n * pc * vars * mean 

n * pc * mean 

mean * SD 

n * pc * vars 

n * vars 

n * pc * vars * mean * SD 

n * pc * mean * SD 

n * pc * vars * SD 

n * pc 

n * pc * SD 

Error 

Total 

Corrected Total 
 

1929.155  

1742.855  

930.368  

887.323  

242.723  

238.286  

233.350  

232.309  

169.119  

165.230  

91.428  

81.851  

65.865  

56.401  

44.155  

37.587  

37.478  

37.212  

30.391  

26.433  

25.753  

24.026  

23.618  

19.424  

15.457  

14.537  

11.692  

10.674  

3.998  

2.270  

2.220  

2373.010  

581401.000  

9806.198  
 

0.197  

0.178  

0.095  

0.090  

0.025  

0.024  

0.024  

0.024  

0.017  

0.017  

0.009  

0.008  

0.007  

0.006  

0.005  

0.004  

0.004  

0.004  

0.003  

0.003  

0.003  

0.002  

0.002  

0.002  

0.002  

0.001  

0.001  

0.001  

0.000  

0.000  

0.000  
 

25.953  

23.447  

12.516  

11.937  

3.265  

3.206  

3.139  

3.125  

2.275  

2.223  

1.230  

1.101  

0.886  

0.759  

0.594  

0.506  

0.504  

0.501  

0.409  

0.356  

0.346  

0.323  

0.318  

0.261  

0.208  

0.196  

0.157  

0.144  

0.054  

0.031  

0.030  
 

Note. R-Square = 0.758. ANOVA = analysis of variance; K-G = Kaiser-Guttman rule; mean = mean shift 

of the contamination distribution; SD = standard deviation shift of the contamination distribution; pc = 
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proportion of contamination in the population; n = sample size; vars = number of variables having outliers 
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Figure 4.2  Graphs for Three-way Interactions of Variables with Outliers vs. 

Proportion of Contamination by Three Levels of Mean Shift on the Number of Factors 

Extracted by the K-G Rule 
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Table 4.3  Variable Ordering for a Five-way ANOVA on the Number of Factors 

Extracted by the MAP Approach 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

vars * mean 

Mean 

Vars 

pc * vars * mean 

pc * mean 

pc * vars 

Pc 

N 

SD 

pc * vars * mean * SD 

vars * SD 

pc * SD 

vars * mean * SD 

n * pc * vars * mean 

n * mean 

n * vars * mean 

pc * mean * SD 

n * pc * mean 

n * vars * SD 

pc * vars * SD 

n * pc * vars * SD 

n * SD 

n * pc * vars * mean * SD 

mean * SD 

n * vars 

n * pc 

n * vars * mean * SD 

n * pc * vars 

n * pc * SD 

n * pc * mean * SD 

n * mean * SD 

Error 

Total 

Corrected Total 
 

564.060  

543.740  

414.457  

292.322  

273.508  

204.590  

166.922  

28.671  

14.232  

6.649  

5.894  

5.838  

4.605  

4.435  

4.411  

4.298  

4.121  

4.038  

3.618  

3.613  

2.343  

2.169  

2.156  

2.028  

1.838  

1.513  

1.390  

1.061  

1.025  

1.020  

0.234  

1471.610  

542513.000  

4042.407  
 

0.140  

0.135  

0.103  

0.072  

0.068  

0.051  

0.041  

0.007  

0.004  

0.002  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  
 

21.940  

21.149  

16.121  

11.370  

10.638  

7.958  

6.493  

1.115  

0.554  

0.259  

0.229  

0.227  

0.179  

0.173  

0.172  

0.167  

0.160  

0.157  

0.141  

0.141  

0.091  

0.084  

0.084  

0.079  

0.071  

0.059  

0.054  

0.041  

0.040  

0.040  

0.009  
 

Note. R-Square =0.636. ANOVA = analysis of variance; MAP = Minimum Average Partial; mean = mean 
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shift of the contamination distribution; SD = standard deviation shift of contamination distribution; pc = 

proportion of contamination in the population; n = sample size; vars = number of variables having outliers 
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Figure 4.3  Graphs for Three-way Interactions of Variables with Outliers vs. 

Proportion of Contamination by Three Levels of Mean Shift on the Number of Factors 

Extracted by MAP Approach 
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Table 4.4  Variable Ordering for a Five-way ANOVA on the Number of Factors 

Extracted by the PA Approach 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

vars * mean 

Vars 

pc * vars * mean 

Mean 

pc * vars 

pc * mean 

Pc 

N 

n * vars * mean 

n * vars 

vars * mean * SD 

vars * SD 

mean * SD 

n * pc * vars * mean 

SD 

n * mean 

pc * vars * mean * SD 

pc * vars * SD 

pc * mean * SD 

pc * SD 

n * pc * vars 

n * pc 

n * pc * mean 

n * pc * vars * mean * SD 

n * pc * mean * SD 

n * vars * mean * SD 

n * mean * SD 

n * pc * vars * SD 

n * vars * SD 

n * pc * SD 

n * SD 

Error 

Total 

Corrected Total 
 

2280.285  

1985.020  

1069.485  

1006.276  

940.891  

498.573  

410.573  

234.027  

120.726  

107.233  

104.751  

97.287  

94.225  

84.549  

80.244  

75.325  

64.773  

60.835  

50.661  

48.762  

42.428  

41.678  

27.678  

15.749  

10.429  

9.840  

8.414  

7.395  

1.617  

0.393  

0.291  

2039.620  

485484.000  

11620.035  
 

0.196  

0.171  

0.092  

0.087  

0.081  

0.043  

0.035  

0.020  

0.010  

0.009  

0.009  

0.008  

0.008  

0.007  

0.007  

0.006  

0.006  

0.005  

0.004  

0.004  

0.004  

0.004  

0.002  

0.001  

0.001  

0.001  

0.001  

0.001  

0.000  

0.000  

0.000  

 

 

 
 

23.802  

20.720  

11.163  

10.504  

9.821  

5.204  

4.286  

2.443  

1.260  

1.119  

1.093  

1.015  

0.984  

0.883  

0.838  

0.786  

0.676  

0.635  

0.529  

0.509  

0.443  

0.435  

0.289  

0.164  

0.109  

0.103  

0.088  

0.077  

0.017  

0.004  

0.003  

 

 

 
 

Note. R-Square =0.824. ANOVA=analysis of variance; PA = Parallel Analysis; mean = mean shift of the 
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contamination distribution; SD=standard deviation shift of contamination distribution; pc =proportion of 

contamination in the population; n = sample size; vars =number of variables having outliers 
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Figure 4.4  Three-way Interactions of Variables with Outliers vs. Proportion of 

Contamination by Three Levels of Mean Shift on the Number of Factors Extracted by 

PA Approach 
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Table 4.5  Variable Ordering for a Five-way ANOVA on the Number of Factors 

Decided by the Sequential Chi-square (ML) test 

Model Sum Squares Eta-square 

Percentage of 

R-Square 

vars * SD 

SD 

Vars 

pc * vars * SD 

Pc 

pc * SD 

pc * vars 

Mean 

vars * mean 

N 

n * vars * SD 

n * SD 

pc * vars * mean 

pc * mean 

mean * SD 

n * vars 

n * pc * vars * SD 

vars * mean * SD 

pc * mean * SD 

pc * vars * mean * SD 

n * pc * vars * mean 

n * pc * mean 

n * pc * SD 

n * pc 

n * pc * vars 

n * pc * vars * mean * 

SD 

n * mean 

n * vars * mean * SD 

n * mean * SD 

n * vars * mean 

n * pc * mean * SD 

Error 

Total 

Corrected Total 
 

27625.757  

19436.831  

13616.464  

7747.121  

5190.159  

4856.412  

4018.700  

765.987  

642.238  

214.615  

134.941  

131.215  

119.643  

117.121  

100.804  

99.760  

88.972  

74.092  

62.435  

48.162  

31.810  

29.125  

26.532  

24.936  

22.889  

18.122  

10.558  

8.307  

8.049  

7.478  

5.091  

8922.025  

855330.000  

90140.908  
 

0.306  

0.216  

0.151  

0.086  

0.058  

0.054  

0.045  

0.008  

0.007  

0.002  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.001  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  

0.000  
 

32.393  

22.791  

15.966  

9.084  

6.086  

5.694  

4.712  

0.898  

0.753  

0.252  

0.158  

0.154  

0.140  

0.137  

0.118  

0.117  

0.104  

0.087  

0.073  

0.056  

0.037  

0.034  

0.031  

0.029  

0.027  

0.021  

0.012  

0.010  

0.009  

0.009  

0.006  
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Note. R-Square = .946. ANOVA = analysis of variance; mean = mean shift of the contamination 

distribution; SD = standard deviation shift of the contamination distribution; pc = proportion of 

contamination in the population; n = sample size; vars = number of variables having outliers 
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Figure 4.5  Three-way Interactions of Variables with outliers vs. Proportion of 

Contamination by Three Levels of Standard Deviation Shift on the Number of Factors 

Decided by the Sequential 2

ML  Test 
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Table 4.6  Percentage of Non-convergent Replications with the Sequential Chi-square 

(ML) Tests  

Pc Vars 

SD Shift of 3 

 Mean Shift  

.0 1.5 3.0 

 

.08 

 

12     1 (n=250) 

 

24 

3 (n=500)           

8 (n=1000) 

4 (n=500)       

15 (n=1000) 

3 (n=500)          

18 (n=1000) 

.15 

 

24 

                               

3 (n=500)          

19 (n=1000) 

1 (n=250)         

4 (n=500)        

17 (n=1000) 

1 (n=250)               

10 (n=500)         

16 (n=1000) 

     Note. SD= standard deviation; Pc = proportion of contamination in the population; 

          Vars = number of variables having outliers 
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Study 2: Demonstrations of Effects of Outliers on Correlation Matrix, and Kurtosis and 

Skewness of Item Responses 

The purpose of Study 2 was to facilitate our understanding about why these decision 

methods performed differently in the presence of outliers. As Liu et al. (in press) pointed out; 

correlation matrices are the engine for the PCA-based methods, and hence are the input data 

for them. Furthermore, skewness and kurtosis are related to the performance of the 2

ML  test 

in factor analysis (Boomsma, 1983; Browne, 1984). We, therefore, include two 

demonstrations in Study 2: a small, focused simulation to show how outliers distort the 

correlation matrix and eigenvalues as well as a demonstration of the change in kurtosis and 

skewness in the presence of outliers.  

4.2.3 Demonstration 1 

Researchers usually ignored the effects of outliers on factor analysis partly because they 

believed that a few outliers should not substantially change the correlation matrix and, as 

such, a factor analysis should not be affected by outliers. The present small-scale simulation 

aimed to demonstrate how outliers may distort properties of a correlation matrix. Following 

Liu et al.‘s (in press) study, we also used the original correlation matrix of the first four 

variables from Holzinger and Swineford‘s (1939) classic data as the population correlation 

matrix for simulating multivariate normal data sets. For demonstration purposes, we only 

included extreme outlier conditions (mean shift=3 and/or SD shift=3) as well as a no-outlier 

condition with either two or all four variables having outliers. Across all outlier conditions, 
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the proportion of contamination was 0.15. In Study 1 we did not find sample size effects; 

therefore, in this demonstration we ruled out this factor and used data sets with 100,000 

observations so as to have population analogues. 

To examine the change in the correlation matrix under outlier conditions, we used the 

matrix‘s condition number to document if it is ill-conditioned and the magnitude of 

ill-condition -- with larger condition number indicating more ill-conditioned. The advantage 

of using the condition number is that, when the correlation matrix is close to being singular, 

we can still obtain a solution, which disguises the problem of being ill-conditioned, but the 

condition number can reflect if the matrix is ill-conditioned and if the properties of the matrix 

are distorted. The condition number is a product term, 1)(  AAAcond , where A 

denotes a correlation matrix, A  denotes matrix norm, 1A  denotes the inverse of a matrix, 

and 1A  denotes the matrix norm for the inverse of a matrix (Watkins, 2010, p. 122). 

Given that a correlation matrix is a special case of a square matrix that is symmetric about the 

major diagonal that contains ones, A  is the largest eigenvalue of a correlation matrix, and 

1A  is the largest eigenvalue of the inverse of a correlation matrix (Golub & Van Loan, 

1993, p. 58).  

Table 4.7 presents the results of the simulation with four rows and seven columns. The 

first column indicates the outlier conditions (i.e., mean shift and SD shift), the second column 

shows the resulting correlation matrix with only two variables having outliers, the third and 

fourth columns are the corresponding condition number and eigenvalues, the fifth column 

shows the resulting correlation matrix with all four variables having outliers, and the sixth 
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and seventh columns are the corresponding condition number and eigenvalues.  

The top row presents the results for the correlation matrix in the no-outlier condition. 

The second row shows the results for symmetric outlier condition, with no mean shift and a 

SD shift of 3. The effects of outliers were not found for either the case of two variables 

having outliers or that of all variables having outliers. Some of the correlation coefficients 

were deflated to a small degree when two variables had outliers, and the condition number as 

well as the magnitude of eigenvalues was not affected by symmetric outliers.  

However, there were dramatic changes for the asymmetric outlier condition with mean 

shift only (mean shift=3, SD shift=1). Echoed in the findings of Liu et al. (in press), we also 

found that when two variables had outliers, the correlation coefficient for those two variables 

was inflated, whereas the remaining correlations in the matrix were either deflated when 

involving combinations of variables with and without outliers or were unchanged when only 

involving variables without outliers. The complex pattern created an extra factor and resulted 

in an increase of the condition number from 3.415 (baseline) to 6.481. When all of the 

variables had outliers, the correlation coefficients were all inflated resulting in the creation of 

a more dominant (or salient) factor and a large increase in the condition number from 3.415 

to 11.363.  

For the asymmetric outlier condition with both mean shift and SD shift (mean shift=3, 

SD shift=3), the effects of outliers were reduced to some degree. Compared to the mean shift 

only condition (mean shift=3, SD shift=1), the magnitude of inflation in correlation 

coefficients became smaller; the condition number dropped to some extent, from 6.481 and 
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11.363 to 4.465 and 7.093; the second eigenvalue for two variables having outliers was not 

greater than one anymore (i.e., dropped from 1.009 to 0.955); and the magnitude of the 

largest eigenvalue for all variables having outliers decreased from 3.047 to 2.666. 

The interesting findings here were that symmetric outliers did not affect the correlation 

matrix whereas the asymmetric outliers, especially in the mean shift only condition, distorted 

the correlation matrix, which either created an extra factor or led to the appearance of a 

dominant factor that could reduce the number of factors if there were more than one factor. 

This helps us to understand why mean shift and the number of variables having outliers 

played important roles for PCA-based methods whereas SD shift did not. Although they are 

all PCA-based, K-G, MAP and PA methods adopt different procedures and hence one should 

not be surprised to find some variation among these methods when determining the number 

of factors, which was shown in our study 1.  
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Table 4.7  Demonstration of Changes in Correlation Coefficients, Condition Number and Eigenvalues Using a Four-Variable Data 

Set in the Presence of Outliers (15%) Compared to the No-Outlier Condition 

Design Correlation Matrix 

(Two Variables Having Outliers) 

Condition 

Number 

Eigenvalue Correlation Matrix 

(All Variables Having Outliers) 

Condition 

Number 

Eigenvalue 

m=0,SD=1 

(No outliers) 

1    

0.338 1   

0.309 0.231 1  

0.423 0.328 0.281 1 

    
 

3.415 

 

1.963 

0.776 

0.686 

0.575 
 

   

m=0,SD=3 

(SD shift only) 

1    

.342 1   

.272 0.202 1  

.374 0.290 0.281 1 

    
 

3.070  

 

1.888 

0.807 

0.691 

0.615 
 

1    

0.342 1   

0.315 0.231 1  

0.431 0.334 0.287 1 
 

3.489 

 

1.979  

0.776  

0.679  

0.567  
 

m=3,SD=1 

(Mean shift only) 

1    

0.691 1   

0.212 0.159 1  

0.287 0.222 0.281 1 

    
 

6.481  1.975 

1.009 

0.712 

0.305 
 

1    

0.691 1   

0.678 0.642 1  

0.731 0.686 0.665 1 
 

11.363 

 

3.047  

0.362  

0.322  

0.268  
 

m=3,SD=3 

(Mean shift & SD 

shift) 

1    

0.566 1   

0.222 0.164 1  

0.302 0.233 0.281 1 
 

4.465  

 

1.910 

0.955 

0.708 

0.429 
 

1    

0.566 1   

0.550 0.496 1  

0.623 0.561 0.531 1 
 

7.093 

 

2.666  

0.509  

0.450  

0.376  
 

 Note. m = mean; SD = standard deviation; dashed lines are used to indicate which variables had outliers.
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4.2.4 Demonstration-2 

Our findings from study 1 revealed that, for the sequential 2

ML  test, the number of 

factors was inflated with an increase in the magnitude of SD shift, the proportion of 

contamination, and the number of variables having outliers. Unlike the PCA-based methods, 

SD shift played an important role, but mean shift did not. In this demonstration, we followed 

the simulation design in study 1, but did not manipulate the number of variables having 

outliers. The purpose was to demonstrate the univariate skewness and kurtosis for a single 

variable in each outlier condition. Like demonstration 1, we did not manipulate sample size 

and hence reported the population analogues – that is, we reported the values of kurtosis and 

skewness for a data set with 100,000 observations. 

Table 4.8 comprises two parts: the upper part reports kurtosis and the lower part reports 

skewness6. The kurtosis was inflated when the SD shifted from 1 to 1.5, and greatly inflated 

when SD shift became 3. Mean shift affected kurtosis to some degree for the proportion of 

contamination of .01 and .08, but not much for a proportion of contamination of .15. It 

should be noted that the kurtosis was inflated to 8.62 (mean shift=3, SD shift=3) for the 

proportion of contamination of .08, but was 5.96 for the proportion of contamination of .15. 

This suggests that a higher level of proportion of contamination (.15) led to less inflation in 

kurtosis than a lower level (.08). As shown mathematically by Pena and Prieto (2001), 

                                                        
6 Although, due to space limitations, we do not report it herein, our interpretation of the effects of the outlier factors on the 

kurtosis and skewness are supported by results of ANOVAs of the kurtosis and skewness data in Table 4.8 with an 

unreplicated design. Please see Liu and Zumbo (2007) for a description of the ANOVA model and the partitioning of the 

eta-squared with unreplicated simulation designs.  
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symmetric outliers increase the kurtosis and a small proportion of asymmetric outliers also 

increase kurtosis, but a large proportion of asymmetric outliers can make kurtosis smaller.  

The lower part of Table 4.8 shows that, as expected, skewness was inflated when the 

mean shifted to 1.5 and 3 and SD shifted to 1.5 and 3. The largest increase of skewness is 

1.98 for the mean shift of 3 and SD shift of 3 with .08 proportion of contamination. However, 

the inflation of skewness was not as large as the inflation of kurtosis. Hence, the inflation in 

kurtosis likely drove the inflation of type-I error rate of chi-square (ML) sequential tests in 

our simulation, in which SD shift was an influential factor. This might reflect why SD shift 

played an important role in explaining the inflation of number of factors in sequential 2

ML  

tests. 

 

Table 4.8  Demonstration of Effects of Outliers on Kurtosis and Skewness  

      Kurtosis    

     Mean     

    0.0    1.5    3.0   

   SD   SD   SD  

  1.0  1.5  3.0  1.0  1.5  3.0  1.0  1.5  3.0  

 0.01  -0.02  0.01  1.31  0.01  0.18  2.06  0.61  1.13  4.51  

Pc 0.08  0.01  0.37  5.89  0.17  1.05  6.86  1.22  2.57  8.62  

 0.15  0.00  0.48  5.27  0.11  1.09  5.68  0.56  1.72  5.96  

   Skewness    

         Mean     

    0.0    1.5    3.0    

   SD   SD   SD  

  1.0  1.5  3.0  1.0  1.5  3.0  1.0  1.5  3.0  

 0.01  0.02  0.02  0.01  0.05  0.10  0.33  0.25  0.34  0.77  

Pc 0.08  0.00  -0.01  -0.08  0.17  0.44  1.13  0.78  1.07  1.98  

 0.15  0.00  -0.01  -0.03  0.22  0.58  1.24  0.77  1.09  1.90  
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Note. Mean= mean shift; SD = standard deviation shift; Pc = proportion of contamination 

 

4.3 Discussion 

The common practices to deal with outliers in data analysis are either to: (a) remove or 

correct them if they are errors, or (b) use a robust estimator if one is uncertain about the 

source of the outliers or if one is uncertain that outliers are present (e.g., outliers in high 

dimensional data are very difficult to detect). However, it should be noted that not all outliers 

are typographical or data entry (or recording) errors. If outliers arise from unintentionally and 

unknowingly included subpopulations other than the target population, the outliers are not 

errors of the first kind described in Liu and Zumbo (2007) but rather, in that sense, legitimate 

observations that arise from a sub-population different than the target population in a study. 

The example we provided earlier of the study of life satisfaction in Denmark demonstrates 

the subtle issues of unintentionally and unknowingly invoking an assumption of 

measurement universality with heterogeneous populations involved in a multicultural and 

globalized assessment environment (Hambleton, et al., 2005).   

The purpose of the present research was to investigate the effects of outliers, arising 

from an unintentionally and unknowingly recruited subpopulation, on decisions about the 

number of factors to retain in an EFA using four decision methods separately. Four important 

findings are summarized as follows. First, the effects of outliers did not depend on the sample 

size. This is an important finding because many practitioners believe that having a larger 

sample size makes them immune to the effects of outliers, which has been shown herein (and 
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elsewhere) to not be the case. Second, the performance of the three PCA-based methods (K-G, 

MAP, and PA) was not affected by symmetric contamination, but that of sequential 2

ML  

tests was affected with inflation of the number of factors retained. Third, for the asymmetric 

contamination, the number of factors retained was inflated for the MAP method, deflated for 

the PA method, and either inflated or deflated for the K-G rule, depending on the number of 

variables having outliers, the proportion of contamination and the level of mean shift, 

whereas mean shift did not affect sequential 2

ML  tests. Finally, the MAP and PA methods 

are, in general, more resistant to outliers than the K-G rule and sequential 2

ML  tests. 

However, it should be noted that both MAP and PA are still affected by outliers under certain 

conditions, so they are not fully resistant to outliers. 

The present study, along with the earlier study by Liu et al. (in press), provide a broad 

picture of the effects of outliers on the decisions about the number of factors to retain in an 

EFA study. When reading extant literature, or conducting an EFA study, readers can be 

assured that outliers in the item response distributions are likely to have a significant impact 

on the conclusions, either inflating or deflating the number of factors retained depending on 

the decision methods used, outlier sources (Liu & Zumbo, 2007), and manifestation of 

outliers (e.g., asymmetric or symmetric outliers) in the sample. The take-home message in 

this line of research, however, is still the same: researchers are strongly encouraged to use 

robust methods in their day-to-day research practice (Wilcox, 2010, in press) and that not 

doing so may lead to misleading empirical conclusions. 

The present research has high fidelity with real data situations, which provides useful 
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information for applied researchers. However, utilizing real data for simulation also brings 

some limitations, such as we only mimic one real data situation, so we did not vary the 

number of variables and number of factors and manipulate different levels of factor loadings 

and factor correlations. We would encourage future research to investigate these variables 

when examining the effects of outliers on the decision about the number of factors. 
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Chapter 5: General Discussion 

Given that the findings reported from chapters 3 and 4 have been discussed in their 

respective chapters, the purpose of this chapter is to set the findings in a broader context, 

summarize the common and unique features across these two chapters, describe the 

implications for day-to-day research practice, present the novel contributions, and discuss the 

limitations and future directions.  

5.1 Two Types of Outliers and Distinction of Intended and Unintended 

Subpopulations 

Liu and Zumbo (2007) described three categories of outlier sources. Based on the 

characteristics of the outliers and the mathematical and statistical models (i.e., deterministic, 

slippage, and mixture contamination models) used to simulate the outliers, these three 

categories were recast into two general categories herein: outliers arising from errors and 

outliers arising from an unintended and unknowingly included subpopulation. Both types of 

outliers were investigated in this dissertation. 

Outliers are prevalent in day-to-day research practice. For example, human errors often 

occur during data collection and data preparation. Although researchers have been trying very 

hard to minimize these error sources, it seems very difficult, if not impossible, to eliminate 

them. A recent study by Barchard and Pace (2011) compared a single data entry method with 

more elaborate double entry and visual checking7 methods, using a group of trained 

                                                        
7In the single data entry method, one person enters the data once and is done; in a double entry procedure that one person 
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undergraduate students. Their results revealed that double entry had the fewest errors; visual 

checking was as bad as single entry, resulting in nearly three times the number of errors as 

double entry. As Barchard and Pace demonstrated, these data entry errors affected certain 

statistics tremendously; that is, the coefficient alpha estimate was reduced by as much as .40, 

correlations turned to zero, and t-tests became non-significant.  

In addition to data entry errors, outliers can also arise from an unintended subpopulation 

or subpopulations. These are also likely to appear in day-to-day research practice because the 

samples that researchers recruit are usually not homogeneous and researchers may not realize 

that observations from an unintended subpopulation are included in the sample. In social, 

behavioral, health, and psychological studies, the population under investigation is likely to 

be heterogeneous because it inherently includes subpopulations, such as gender groups, age 

groups, or ethnic groups (e.g., Lubke & Muthén, 2005). For example, Orth, Trzesniewski, 

and Robins (2010) showed that levels of self-esteem and changes in self-esteem differed 

across age, ethnicity and level of education. In heterogeneous samples, it is essential to 

distinguish the unintended from the intended subgroups, which affects our decisions 

regarding the identification of outliers and subsequent analyses. 

If a subgroup (or subgroups) in a sample is intended, but is found to behave differently 

from other observations, the subgroup should not be regarded as outliers. In this case, an 

alternative model or multi-group model should be adopted. A large amount of related work 

                                                                                                                                                                            
enters the data twice, and the two entries are compared using a computer program to identify mismatches that can be 

corrected; in a visual checking procedure, one person enters the data once and then visually compares the entries against the 

original paper measures, correcting errors if discrepancies are found.  
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can be found in psychometrics. For example, differential item functioning (DIF)8 using item 

response theory (IRT) is checked for gender groups or ethnic groups in high stakes testing, 

which is used to ensure that the questions do not put different groups at a disadvantage. 

Similarly, measurement invariance in confirmatory factor analysis (CFA) should be examined 

for different groups, as researchers want to ensure that observations are measured on the 

same metric. If group differences are found, either an alternative model is used for modeling 

the subgroup or multi-group models are adopted, such as partial invariance methods in 

multi-group confirmatory factor analysis (MG-CFA), to allow parameter estimates to be 

different for different groups in data analysis. 

In addition to observed subpopulations, a heterogeneous population may also include 

unobserved subpopulations that are unknown to the researcher. Again, these subpopulations 

should not be regarded as outliers. These subpopulations may be characterized by a complex 

profile and interaction of variables, not just a single variable such as male/female gender. 

Conventional statistical methods are not very helpful for modeling unobserved 

subpopulations. A growing research has shown that latent class analysis or latent mixture 

models can be a useful tool to model a heterogeneous population/sample when 

subpopulations or subgroups are unidentified or unobserved (e.g., Lubke & Muthén, 2005; 

Sawatzky, Ratner, Kopec, Johnson, & Zumbo, 2009). Rather than using one manifest 

(observed) variable (e.g., ethnicity) in conventional multi-group analysis, a subgroup or 

                                                        
8 DIF occurs when respondents from different populations or subpopulations respond differently to test items or 

variables in a test or questionnaire after controlling/matching for their true ability or attribute. 
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subgroups in latent class analysis or latent mixture models can be characterized by a profile 

comprised of a number of background variables included in the data.  

Using factor mixture models, Lubke and Muthén (2005) conducted an investigation of 

population heterogeneity in American youth taking math and science achievement tests, 

whereas Sawatzky et al. (2009) examined the sample heterogeneity of adolescents‘ life 

satisfaction. Both studies indicated that the latent groups explained the heterogeneity of a 

population or a sample and background variables were useful for explaining the 

characteristics of latent populations or groups. Based on the idea that DIF might not be 

perfectly correlated with manifest groups if a subgroup or subgroups experience, for example, 

different cognitive processes, mixture IRT models have also been applied to psychometrics to 

investigate if DIF is caused by latent groups (DeMars & Lau, 2011). Cohen and Bolt (2005) 

and Samuelsen (2008) showed that mixture IRT models may be a more useful tool than 

conventional IRT model to identify latent groups and DIF sources. 

When a subgroup in a sample is unintended and behaves differently from other 

observations, these observations should be defined as outliers. If the data include a variable 

to identify this subgroup, researchers can remove these outliers or model them in a more 

complex statistical model (e.g., simultaneous multi-group models). Unfortunately, because an 

unintended subgroup (subgroups) is unknowingly included in a sample, it is, by definition, 

impossible to identify and incorporate into multi-group models. In these cases, robust 

statistics are a good option to deal with outliers. Because the idea underlying the use of latent 

class analysis or latent mixture models is to find unobserved groups, it is possible that latent 
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mixture models can be used to model a subgroup (subgroups) and distinguish outliers from 

other observations instead of discarding or down-weighting outliers.  

There are two key points to take from this section. First, we have characterized two 

types of outliers: (1) errors, and (2) unintended and unknowingly included sub-populations. 

Second, this distinction not only differentiates types of outliers but also implies how one 

should treat them. During data analysis, if these subpopulations are planned, then observed 

grouping variables are used in simultaneous multi-group models or used as a design matrix in 

a single model. If these subpopulations are unplanned then they should be considered outliers 

and, for example, latent class (factor mixture) analysis may be used to detect and model them. 

Outliers arising from subpopulations are seldom considered in day-to-day practice and in 

recommendations in textbooks. Outliers are often only discussed as errors but this is both 

limiting and problematic.  

5.2 Review of Outlier Simulation & Major Findings 

5.2.1 Outlier Simulation 

Because different types of outliers are a result of different sources, simulation models 

used and the design of outlier conditions are also different for studying these outliers. This 

section summarizes the three simulation models used for outlier generation in this 

dissertation and highlights the distinction between these statistical models.  

Chapter 3 investigated outliers arising from errors. Outliers were obtained by simply 
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multiplying a constant (2, 3, 4, 5) to raw scores. Three factors were examined, that is, 

magnitude of outliers, number of variables having outliers, and number of subjects having 

outlying responses. Error type outliers are usually sample specific and thus the number of 

error type outliers is fixed for a sample. In this chapter, deterministic and slippage models 

were utilized in study 1 and study 2 separately. Although both models were used for 

simulating error type outliers and shared some commonality, there are some differences 

between them.  

In study 1 of chapter 3, the original raw data were manipulated for mimicking outliers 

based on a deterministic model which resulted in only one possible outcome, in this case only 

one manipulated data set for each outlier condition, and thus the process is deterministic. In 

study 2, a slippage model was utilized and the data were simulated based on the parameter 

estimates obtained from the real data with 100 replications for each outlier condition, which 

is a typical Monte Carlo simulation. In a slippage model, a fixed number of aberrant 

observations arise independently from a modification of the original distribution; the two 

distributions (i.e., the original distribution and the modified distribution) are regarded as 

random variables. Therefore, although the number of outliers was fixed for a sample in both 

models, the deterministic model deals with one possible outcome whereas the slippage model 

involves a stochastic process with random outcomes with a central tendency across 

replications.  

Chapter 4 investigated outliers arising from an unintended and unknowingly included 

subpopulation. In that chapter, symmetric and asymmetric outliers were examined as were 
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proportion of contamination, number of variables having outliers and sample size. In this 

case of outliers, two populations are mixed together and the subpopulation (outliers) usually 

has a different probability distribution from the targeted population. Unlike the error type 

outliers, these outliers are legitimate observations and should not be treated as errors. In 

addition, rejection of these outliers is not as easy as error type outliers because it might be 

hard to identify these outliers in some situations, such as high dimensional data. The mixture 

contamination model, which is usually used to mix two normal distributions, was used in the 

simulation study reported in chapter 4. As was shown therein, the number of outliers was a 

random variable and varied across 100 replications in the simulation, which is different from 

the slippage model used in Study 2 of chapter 3.  

5.2.2 Major Findings 

The purpose of this dissertation is to investigate how outliers affect the decision about 

the number of factors by four commonly used decision methods (i.e., K-G, MAP, PA, and 

sequential 2

ML  tests). Chapter 3 focused on error type outliers while chapter 4 focused on 

outliers arising from an unintended and unknowingly included subpopulation. Some common 

findings were found across chapters 3 and 4: (a) depending on the decision method and 

outlier condition, the number of factors retained could be inflated, deflated, or remain the 

same as the baseline model; (b) MAP and PA methods performed relatively better than the 

K-G rule and sequential 2

ML  tests, although MAP and PA were still affected by outliers; (c) 

the number of factors was either unchanged or deflated for the PA method; and (d) the 
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number of factors was either unchanged or inflated for the sequential 2

ML  tests.  

Given the differences across these studies, some findings were unique to each chapter 

as well. In chapter 3, the results showed: (a) the number of variables having outliers was an 

influential factor across all methods and it was the only factor affecting the PA method, (b) 

for the K-G rule, the number of factors retained was inflated when some variables had 

outliers, but deflated when all variables had outliers; (c) the performance of MAP method 

was not affected when only one variable had outliers, but showed strange patterns with the 

increase in the outlier contamination; and (d) the PA method was the most robust to outliers 

but was affected by outliers when the number of variables with outliers increased to more 

than six. 

In chapter 4, the results showed: (a) symmetric contamination affected the performance 

of the sequential 2

ML  tests, but did not affect that of other three PCA-based methods (i.e., 

K-G, MAP and PA); (b) for asymmetric contamination, the number of factors retained was 

inflated for the MAP method, deflated for the PA method, and either inflated or deflated for 

the K-G rule, whereas mean shift did not affect sequential 2

ML  tests; and (c) effects of 

outliers did not depend on sample size. 

In summary, all decision methods could give researchers misleading results in the 

presence of outliers. MAP and PA methods were more resistant to outliers than other methods, 

but they were still not robust to outliers. The studies in this dissertation remind day-to-day 

researchers to be aware of outliers when conducting factor analysis or reading the extant 

literature, and to be aware of the implications of the misleading results. 
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5.3 Implications for Day-to-Day Researchers  

This dissertation is a call for day-to-day researchers to be aware of outliers when 

conducting an EFA study in their own research and to be cautious when they read the extant 

literature. There are three common pitfalls of researchers‘ understanding about outliers in 

day-to-day practice. First, many researchers, as Lind and Zumbo (1993) pointed out, believe 

that a small deviation from the normal curve will only slightly distort the usual estimates of 

means, standard deviations, correlations, and associated hypothesis tests. However, even a 

single outlier can lead to biased results and cause misleading conclusions (e.g., Barchard & 

Pace, 2011; Cohen, Cohen, West, & Aiken, 2003; Devlin, Gnanadesikan, & Kettenring, 1981; 

Wilcox, 1998). 

The second pitfall is that most researchers believe that having a larger sample size can 

make them immune to the effects of outliers if only a small proportion of outliers are 

included in the data. However, chapter 4 showed that the effects of outliers were not 

eliminated or reduced by larger sample sizes. This has also been shown in other studies. For 

example, when examining how outliers affected Cronbach‘s coefficient alpha, Liu and 

Zumbo (2007) found that outlier effects were not dependent on sample size in their 

simulation study.  

The third common pitfall is that many researchers assume all outliers are errors and 

hence illegitimate observations that can be easily identified using histograms or box-plots, 

and feel safe whenever no obvious outlying data points are found in the data. It is worth 
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noting that not all outliers are errors. If arising from subpopulations, outliers are legitimate 

observations and should not be treated as errors. Moreover, although the standard outlier 

identification tools can be used for detecting them in some cases, they may not identify 

outliers in complex cases such as high dimensional data. 

Our findings showed that inclusion of outliers can mislead researchers about the 

dimensionality of the construct they are studying. This can bring deleterious effects on 

researchers‘ work in theory building or theory testing, in validation studies, and in 

operational testing programs, such as the SAT and GRE. Using an example of the 

development of social desirability theory, researchers have been trying to identify the number 

of factors and interpret the meaning of these factors, but the existing studies have shown 

different numbers of factors obtained for the same scale (e.g., Marlowe-Crowne Social 

Desirability Scale) using different samples (Helmes, 2000; Leite & Beretvas, 2011). When 

reading the literature with inconsistent conclusions like this example, researchers should be 

aware if these were caused by the inclusion of outliers, arising from either errors or 

subgroups. As our studies showed, the dimensionality of the construct can be seriously 

distorted by outliers.  

Researchers or test developers often want to adapt existing tests to other regions or 

cultures in order to use them efficiently as well as to save money for developing new tests. In 

the case of adapting a life satisfaction scale across cultures, for example, validation studies 

are needed to provide construct validity evidence of the scale based on samples from the 

range of cultures. If researchers unintentionally include outliers in a new sample, the data 
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may show a different number of factors, suggesting that the construct under investigation is 

different across cultures when, in fact, it is not.  

Similarly, in operational testing programs, such as the SAT or GRE, outliers may result 

in artificial differences in factor structures based on different samples even though the 

number of factors is invariant across samples. Generally, more factors suggest that the test is 

measuring more skills for a sample of students, whereas fewer factors suggest that a test may 

be less complex for a sample of students. The inclusion of a few outliers will result in some 

serious consequences, such as abandoning the items under question and spending more 

money to develop new items, or scaling test scores for students regarded as disadvantaged. 

As the serious consequences herein highlight, there is a need for using modern robust 

statistical methods whenever one is uncertain about the sources of outliers or whether the 

data include outliers. Robust statistical methods have been demonstrated to provide better 

estimates than the standard statistical methods, such as Student‘s t-tests, 

ANOVA, and least squares regression analysis when the data have outliers, are non-normal, 

or do not have equal population variances across groups (e.g., Huber, 1981; Wilcox, 1998, 

2005; Wilcox, Charlin, & Thompson, 1986). Some research has shown that robust estimators 

provided better parameter estimates and less biased model fit indices in EFA as well as CFA 

(e.g., Yuan, Marshall, & Bentler, 2002; Yuan & Zhong, 2008). Some statistical software 

programs, such as Mplus, have already made robust estimation available for researchers.  

However, as Erceg-Hurn and Mirosevich (2008) pointed out, most day-to-day 

researchers either do not realize the existence of robust statistical methods or do not know 
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how to use these robust methods due to lack of exposure to these methods and lack of 

availability of these methods in commonly used statistical software packages, such as SPSS. 

Most researchers are taught the standard statistical methods, such as t-tests, F-tests, least 

squares regression, and factor analysis in graduate school, but are rarely exposed to modern 

robust methods. Most methodology books rarely mention modern robust methods, either 

paying no attention to outliers or only talking about effects of outliers and how to identify 

and remove them. Table 5.1 lists how the issue of outliers was addressed in a sample of eight 

widely used textbooks or methodology books on the topics of structure equation modeling or 

factor analysis. This sample of books, listed by chronological order, shows that early books 

did not mention outliers at all, which echoed what Wilcox (1998, p. 300) described in his 

article, but paid more attention to outliers since the late 1980s and tended to move towards 

robust estimation methods. However, modern robust methods are still not emphasized 

enough in the currently used statistics textbooks or methodology books. Therefore, this 

dissertation is also a call for more teaching on modern robust statistical methods at graduate 

schools.  
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Table 5.1  Review of Outlier Related Issues in a Sample of Structural Equation 

Modeling or Factor Analysis Books 

Book by Authors Effects of Outliers Detection Methods Robust Estimators 

Fruchter (1954) - - - 

Lawley (1971) - - - 

McDonald (1985) - - - 

Cuttance & Ecob 

(1987) 

Effects of outliers on 

model fit statistics  

(demonstrations) 

- - 

Bollen (1989) Heywood case,  

Effects on Chi-square tests  

(demonstrations) 

Univariate & 

Multivariate outlier 

detection 

- 

Comery & Lee 

(1992) 

- Described an outlier 

detection program 

(Comery, 1985) 

- 

Hancock & 

Mueller (2006) 

Effects of non-normal data 

on some fit statistics 

(not specific to outliers) 

- - 

Brown (2006) Collinearity, 

non-normality,  

- Robust estimators 

for non-normal 
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Heywood cases  

(brief description) 

data, i.e., RML, 

WLSM, WLSMV 

5.4 Novel Contributions 

In this dissertation, I made four novel contributions to understanding how outliers affect 

the decisions about the number of factors in an EFA study and how outliers arising from 

different sources are connected to different outlier simulation models.  

The first contribution of this dissertation is that it is the first attempt to systematically 

document the impact of outliers arising from different sources on the decisions about the 

number of factors in EFA. In the literature, a few studies had some discussions about how 

outliers affect the number of factors in EFA or presented small demonstrations, but no 

systematic study on this issue has been found. As was discussed in chapter 3, statisticians 

have focused on developing robust estimation methods and often take it for granted that the 

deleterious effects of outliers are well-known. With an eye toward communicating with social 

and behavioral researchers, this dissertation is aimed at showing practitioners, as well as 

statisticians and psychometricians, the impact of outliers on the decision about the number of 

factors to retain in a factor analysis. 

This dissertation systematically studied the impact of outliers in terms of three aspects. 

First, outliers were classified based on the sources they come from and were studied 

separately. The categorization of outliers is very important because outliers from different 

sources have different characteristics and statistical behaviors and hence may have different 
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impacts on statistical methods. However, this has been paid little attention in the literature.  

Moreover, the simulation designs used in the dissertation covered a variety of outlier 

conditions and different simulation models focused on different outlier conditions. For 

instance, when investigating error type outliers, magnitude of outliers was examined; when 

examining outliers arising from a subpopulation, symmetric as well as asymmetric 

contamination was examined. Hence, this dissertation provided a broad picture for 

day-to-day researchers as well as researchers in statistical methods. 

In addition, this is the first study to consider and systematically investigate the number 

of variables with outliers. The mathematical statistics literature on robust estimation, as well 

as the earlier psychometric research such as those by Yuan, Marshall, and Bentler (2002) and 

Liu and Zumbo (2007), only considered the case in which all variables had outliers. In 

psychometric theory, however, it is common to consider items as being either sampled or 

exchangeable with items in a larger domain (or hypothetical set of items). This puts items on 

a similar footing as respondents (or examinees) in conventional mathematical statistics. This 

approach to items is widely known as the "item sampling model" of psychometric theory. 

From this vantage point, the inferences one makes about the items and the examinees (or, 

more generally, the respondents), and hence the measurement validity, is bounded by this 

exchangeability of sampled and unsampled items (Zumbo, 2007). The implication of this 

framework for the study of outliers is that outliers do not need to be equally prevalent for all 

items, and some items can have no outliers whereas others can have many outliers. In short 

then, measurement validity itself can be compromised by the presence of outliers in the item 
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responses. 

The second contribution is that the findings from this dissertation resolved the 

contradictory conclusions in the literature. In the literature, some researchers conjectured, 

without testing it empirically or via simulation, that a large outlier might create an extra 

factor (Bollen & Arminger, 1991; Huber, 1981, p. 199), whereas others showed the number 

of factors was reduced in the presence of outliers (Yuan, Marshall, & Bentler, 2002). The 

findings from this dissertation showed that outliers could inflate, deflate, or have no effect on 

the number of factors retained, depending on the decision methods used as well as outlier 

conditions. Therefore, these contradictory conclusions in the literature were correct under 

different outlier conditions. 

The third contribution is that this dissertation included follow-up studies in order to 

provide insight into the potential causes of the obtained findings. In practice, day-to-day 

researchers usually ignore effects of outliers, possibly because the input data in EFA are 

correlation matrices and researchers believe that a few outliers will not change correlation 

matrices and hence assume that outliers will not affect factor analysis. These follow-up 

studies demonstrated how outliers distorted the properties of correlation matrices and inflated 

skewness and kurtosis, which help readers to understand why outliers affected these decision 

methods. 

Finally, this dissertation made a unique contribution to outlier research. This 

dissertation articulated the connection between outlier sources and outlier simulation models 

and demonstrated which simulation models suited different kinds of outliers in three studies. 
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In chapter 3, deterministic and slippage models were used for simulating error type outliers in 

which the number of outliers was fixed in the sample. In chapter 4, a mixture contamination 

model was used for simulating outliers arising from a subpopulation and along the way the 

central tendency and sample-to-sample variation over 100 replications was documented, 

which has never been done in the literature on outlier research.  

5.5 Limitations and Suggestions for Future Research 

The present research has high fidelity with real data situations, which provides useful 

information for researchers in practice. However, utilizing real data for a simulation also 

brings some limitations, namely that I only mimic one real data situation, and did not vary 

the number of variables, number of factors, or levels of factor loadings and factor 

correlations. Effects of outliers may not depend on the number of variables and factors, but 

may be moderated by the magnitude of factor loadings and factor correlations. I would 

encourage future research to include these variables when investigating the effects of outliers 

on the decision about the number of factors. 

This dissertation investigated outliers arising from errors as well as from a 

subpopulation, which provides a broad picture for researchers, but it did not exhaust all kinds 

of outlier situations. For example, the mixture contamination model adopted in chapter 4 

used two normal distributions. However, it may happen that the subpopulation arises from a 

non-normal distribution, so effects of outliers should be studied based on a mixture of a 

normal distribution and a non-normal distribution. Another example is that a mixture of 
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populations includes a target population and possibly two or more subpopulations; these 

subpopulations may have different means and standard deviations or have different 

distribution functions. Therefore, there is a need for more studies to examine how different 

kinds of outliers affect statistical properties and to what extent. 

Building on the findings in this dissertation, and particularly the consideration of 

outliers as unintended and unknowingly included subpopulations, my program of research 

has expanded to include a more focused study of statistical methods to investigate outliers. 

Although outliers are often regarded as either errors or noise in our data, outliers may also 

come from subpopulations and sometimes provide us valuable information and lead to new 

discoveries. In his presidential address to the American Statistical Association, Kruskal (1988, 

p. 929) pointed out that ―[i]t is widely argued of outliers that investigation of the mechanism 

for outlying may be far more important than the original study that led to the outlier; the 

discovery of penicillium is given as an example‖. This is why Kruskal, as a poetic turn of 

phrase, called outliers 'miracles'. 

My program of research has now expanded to include a study of finite mixture models. 

The development of latent mixture models in recent years has made it possible to model 

outliers and some researchers have made attempts to identify or model outliers via latent 

mixture models, such as latent class analysis (e.g., Elliott & Stettler, 2007). As Magidson and 

Vermunt (2004) pointed out, the basic idea underlying these latent mixture models is that 

some of the parameters of a postulated statistical model differ across unobserved subgroups. 

Most importantly, in the spirit of Kruskal's quotation, conditional mixture models can be used 
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in the context in which one might have either variables that are predictors of class 

membership or provide a profile description of the classes. It might become a new direction 

for researchers to use latent mixture models to model outliers, rather than discarding them or 

downweighting them. However, latent mixture models are not designed for dealing with 

outliers, per se, so there is a great need to explore how latent mixture models work in the 

presence of outliers, to determine when they can or cannot be used effectively in this way.  
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Appendix  

The 24 Psychological Ability Tests in Holzinger and Swineford‘s (1939) Data 

 

T1: Visual perception 

T2: Cubes 

T3: Paper form board 

T4: Flags 

T5: General information 

T6: Paragraph comprehension 

T7: Sentence completion 

T8: Word classification 

T9: Word meaning 

T10: Addition 

T11: Code 

T12: Counting dots 

T13: Straight-curved capitals 

T14: Word recognition 

T15: Number - recognition 

T16: Figure recognition 

T17: Object - number 

T18: Number - figure 

T19: Figure - word 

T20: Deduction 

T21: Numerical puzzles 

T22: Problem reasoning 

T23: Series completion 
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T24: Arithmetic problems 

 


