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Abstract 

 

In this research, an efficient numerical method is developed to determine the steady-state 

waiting time distribution of a GI/G/1 queue by solving the discrete-time version of Lindley’s 

equation, when the queue is bounded on a finite interval. Then, by using Little’s Formula, we 

calculate the stationary distribution for the total number of customers in the queue. The 

derivations are based on the Wiener-Hopf factorization of random walks. The method is 

carried out using a successive approximation method, by improving the weighted average. 

Finally, to prove the effectiveness of our method, we apply the algorithm for Uniform, 

Geometric, and Gamma distributions, to find an approximation. An analytical interpretation 

is also presented to find the waiting time distribution for the Geom/Geom/1 queue, which is 

not based on a finite interval, as an example of the GI/G/1 queue. Moreover, compare to the 

other related methods it has been proven that our method is numerically stable, simple, and 

robust.   
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Chapter 1  

Introduction 

 

1.1  Mathematical Model 
A queueing system consists of “customers” arriving at random times to some facility where 

they receive service of some kind and depart. We use “customer” as a generic term. 

There are varieties of applications of Queueing Theory in our daily life, such as in traffic 

flow (vehicles, aircraft, people and communications), in scheduling (patients in hospitals, 

jobs on machines) and also in facility design (banks, post office, fast food restaurants) and so 

on. Queueing systems are classified according to 

1. The input process, the probability distribution of the pattern of arrivals of customers in 

time; 

2. The service distribution, the probability distribution of the random time to serve a 

customer (or group of customers in the case of batch service); and 

3. The queue discipline, the number of servers and the order of customer service. 

1. The input process: Input is the pattern of customer arrival and conjunction with the 

system. It is given by the distribution time between successive arrivals which is known as the 

interarrival time distribution. While a variety of input processes may arise in practice, two 

simple and frequently occurring types are mathematically tractable. First is the scheduled 

input where customers arrive at a fixed time ܶ, 2ܶ, 3ܶ,… and the second most common 

model is the “completely random” arrival process where the times of customer arrivals form 

a Poisson process. Exponentially distributed interarrival times then corresponds to a Poisson 

process of arrival as a special case. The input can be characterized by the arrival rate which 

gives the expected number of arrival per time unit. The number of arriving customers and 

potential customers for a queueing system can be finite or infinite, and they can arrive 
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individually or in groups. Once customers join in the system, a waiting line is formed. It may 

also happen that customers cannot join in the system because the system is fully occupied. 

2. The service distribution: The service pattern describes the way customers are served. With 

each customer, associate a service time. We will always assume that the duration of service 

for individual customers is independent and identically distributed which are nonnegative 

random variables and it is independent of the arrival process. An important measure to 

describe the service pattern is the service rate, which is the reciprocal of the expected service 

time. The service rate gives the expected number of services completed per time unit. The 

situation in which all service times is in the same fixed duration, ܦ, is then a special case. 

The number of servers in a queueing system is an important parameter. A queueing system 

may have only a single stage of service (e.g., hair styling salon) and multistage service 

(physical examination procedure). If the number of servers is infinite, then all customers can 

enter the service facility immediately, therefore no waiting line will be formed. 

3. The queue discipline: The queueing discipline is the order according to which customers 

are served. The most common queue discipline is first come, first serve (FCFS) where 

customers are served in the same order in which they arrive, for example, people are served 

by the cashier at a supermarket by following FCFS. The model we consider here is of this 

type; however, this is certainly not the only possible queue discipline. Another one 

commonly used discipline is the last come, first serve (LCFS), which means that the 

customer selected for serving is the one who enters the system latest, for example, jobs 

arriving in a production facility with one or more machining centers are often scheduled 

according to last-come-first-served basis because of ease of access to stored jobs or in order 

to meet due date requirements. Customers may also be served according to service in random 

order (SRO), which means that the service order for customer is decided randomly, for 

example, the procedure of checking the quality of the commodities in the industry is 

followed by service in random order. The priority discipline is another common process that 

is employed in queueing systems. In the priority queue, customers are allowed to be of 

different types and both the service discipline and the service time distribution may vary with 

the customer type. 
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Queueing models aid the design process by predicting system performance. For example, a 

queueing model might be used to evaluate the costs and benefits of adding server to an 

existing system. The models enable us to calculate system performance measures in terms of 

their basis quantities. Some important measures of the system behaviour are: 

1) The probability distribution of the number of customers in the system. Not only do 

customers in the system often incur costs, but generally in many systems, physical space for 

waiting customers must be planed for and provided.  

2) The utilization of the server(s).Idle servers may incur costs without contributing to 

system performance. 

3) System throughput. The long run number of customers passing through the system in a 

direct measure of system performance. 

4) Customers waiting time. Long waits for service are annoying in the simplest queueing 

situations and are directly associated with major costs in many large systems, such as patients 

awaiting emergency care at a hospital. 

The subject of queueing theory originated from the studies of telephone conversations. The 

Danish mathematician A.K. Erlang was the pioneer researcher in this area in the early 1900s. 

Later, in the 1930s, F. Pollaczek did further research and expanded much of Erlang’s work. 

Moreover, one of the most powerful relationships in queueing theory was developed by John 

D.C. Little in the early 1960s. Little related the steady-state mean system sizes to the steady-

state average customer waiting times. Let 

 the average number of customers in the system = ܮ          

 the rate of arrival of customers to the system and = ߣ         

        ܹ = the average time spent by a customer in the system. 

The equation ܮ ൌ  is known as Little’s formula, which directly relates to the two of our ,ܹߣ

important measures of system performance, the mean queue size and the mean customer 

waiting time in steady-state. 

The total waiting time in the system is the sum of the waiting time before service, plus the 

service time. The busy period is the length of time during which the server is continuously 
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busy for serving the customers, and the length of time when the server is not serving or there 

are no customers in the system, is called the idle period. For a single server queue, the 

probability of the system being idle is the same as the probability of a server being idle. 

If we denote the average rate of customers entering the queueing system as ߣ  and the 

average rate of serving customers as ߤ, then the ratio of the rate of input and the rate of 

service is known as traffic intensity which is denoted by  ߩ ൌ ఒ

ఓ
 . The ratio of the arrival rate 

to the service rate plays a significant role in measuring the performance of queueing system. 

The higher the ratio, the longer the customer will tend to wait. If ߣ ൏ ,ݎ݋ሺ	ߤ ߩ ൏ 1ሻ, then the 

queue has a steady-state distribution. In a steady-state situation, ߩ is the probability that the 

server is busy, and therefore it gives the expected number in service. As ߩ increases, the 

length of the busy period also increases. When ߩ ൐ 1ሺݎ݋, ߣ ൐  ሻ, the average number ofߤ

arrivals in the system exceeds the service rate of the system, and the queue size never settles 

down, so no steady-state exists. It turns out that for steady-state results to exist, ߩ must be 

less than 1. When   ߩ ൌ 1, unless arrivals and service are deterministic and perfectly 

scheduled, no steady state exists. The quantity  ߩ is sometimes referred to as the offered load, 

since, on average, each customer requires 1 ⁄ߤ  time units of service and the average number 

of customers arriving per unit time is ߣ, so that the product ߣሺ1 ⁄ߤ ሻ is the average amount of 

work arriving in to the system per unit time. The limiting behaviours, ߩ → 0	and ߩ → 1, are 

known as light traffic and heavy traffic intensities, respectively. 

A standard shorthand is used in much of the queueing literature for identifying simple 

queueing models. The shorthand assumes that the arrival times form a renewal process, and 

the format ܤ/ܣ/ܿ uses ܣ to describe the interarrival time distribution, ܤ to specify the 

individual customer service time distribution, and ܿ to indicate the number of servers. There 

are some well known queueing models like /ܫܩ ,1/ܫܩ /ܯ ,∞/ܯ /ܯ ,1/ܯ /ܯ	ܧ ,1/ܯ௞/ ܯ ,1/ܯ/ 

 Markovian or) ܯ and so on, which are very common in queuing systems. The symbol 1/ܦ

memoryless) is used for exponential distribution, 	ܧ௞(Erlang) for the gamma distribution 

order ݇, and  ܦ for a deterministic distribution, a schedule of arrivals or fixed service times. 

The symbol ܩ represents a general or arbitrary probability distribution. 
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1.2  Objective of the Thesis 

The use of Markov models in queueing theory is very common because they are appropriate 

for basic systems and they lend themselves to easy applications. But real-world systems are 

so complex and so general that simple Markov and renewal process models do not represent 

them well. Thus, the importance of general queueing model has proved useful in handling 

emerging complex situations.  

In this study, we discuss the steady state waiting time distribution and the expected queue 

length of a discrete GI/G/1 queue and then present a numerical method for calculating these.   

The notation GI stands for general independent interarrival time distribution, G stands for 

general service time distribution and number 1 means that there is one server in the system. 

More clearly, this symbol G represents a general or arbitrary probability distribution; that is, 

no assumption is made as to the precise form of the distribution and results in these cases are 

applicable to any probability distribution. These general-time distributions, however, are 

required to represent independent and identically distributed random variables. Moreover, 

this GI/G/1 queue can be used for both the discrete and continuous case, which means that 

the interarrival and service times could be discrete or continuous. 

As we mentioned, we consider discrete-time queues in our work, that is, the queues where 

the times between arrivals and service are both integers. In general, when the interarrival and 

service times are discrete random variables in a general queueing model, then it is called 

discrete GI/G/1 queue. In discrete-time queues, the time axis is segmented into a sequence of 

equal intervals (of unit duration), called slots, and arrivals and departures of customers are 

assumed to take place at the slot boundaries.  

On the other hand, when the interarrival and service times are continuous random variables, 

the queue is known as a continuous GI/G/1 queue. The calculation of the waiting time 

distribution in the continuous GI/G/1 queue is more difficult. In this case, one needs to 

discretize the distribution function of the interarrival and service times for the numerical 

analysis. Some authors showed that under certain conditions, the continuous GI/G/1 queue 

can be approximated quite well by a discrete GI/G/1 queue. In our numerical analysis, we use 

Gamma/Geom/1 queue, where the interarrival times are continuously distributed. 
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Approaches in our case, based on Lindley’s equation and the derivations are based on a 

Wiener- Hopf factorization of random walks, using ladder height distribution. This is carried 

out using a successive approximation method, first suggested by Grassmann [11].  

By solving a discrete-time version of Lindley’s equation [24], several authors, including 

Ponstein [28], Konheim [22], Ackroyd [1], Grassmann and Chaudhry [13], Grassmann [11], 

and Fryer and Winsten [10], also numerically determined the waiting time distribution of the 

arithmetic GI/G/1 queue, when the queue is bounded on a finite interval. It was mentioned 

repeatedly [13, 1, 10] that the discrete-time version of Lindley’s equation is mathematically 

equivalent to certain equations arising in bulk queues. We will introduce their methods in the 

following chapters. A number of alternatives to Lindley’s approach have also been 

suggested. For instance, one can approximate the GI/G/1 queue by the GI/PH/1 queue, an 

approach originally devised by Neuts [26]. One can also use approximations rather than the 

exact results to find the important measures of the GI/G/1 queue [37, 34]. This approximation 

may be satisfactory in a given situation.  

At present, there are several approaches available to solve such queueing problems. We 

consider first an approach where one can set up generating functions, and uses partial 

fraction expansions to invert these generating functions by using the Wiener-Hopf 

factorization method. Generally, these expansions require one to find the roots of an equation 

of degree ݃ ൅ ݄, where 	݃ and ݄ are certain parameters that considered as the finite bounds of 

that equation. It turns out that ݃ of the roots of this expression lie inside the unit circle of the 

complex plane and that ݄ of them lie outside the unit circle. Moreover, the coefficients of the 

factor whose roots are the ݃ inner roots are equal to the ratios of the steady state 

probabilities; that the server idles ݆ units of time between a departure and the next arrival, 

݆ ൌ 0,1, … , ݃. The numerical method consists in first finding an approximation of the 

probabilities from which an approximate factor of outer roots ݄ is obtained to find out the 

steady state probabilities of the waiting time distribution. However, by following the iterative 

method given by [12] a numerical method is presented in this study by improving the 

weighted average to find an approximation for the waiting time distribution of a GI/G/1 

queue which eventually converges faster than the method given by [12]. Applying 

approximating techniques to these general formulae seems to cause problems if the traffic 
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intensity ߩ is close to one. The technique developed here has been applied successfully with 

traffic intensities of up to 0.99. We also compare this approximation to the other procedures 

to find the benefit and effectiveness of our method. 

1.3  Outline of the Thesis 

The thesis consists of seven chapters including an appendix. In the first chapter, a brief 

summary of GI/G/1 queues is given and the objective of the thesis is stated. 

The second chapter states some important definitions on the related topics. 

The third chapter includes an overview of the literature of different authors in solving the 

waiting time distribution of the GI/G/1 queue, and different solution techniques are outlined. 

Chapter 4 explains about the Wiener-Hopf factorization method and how to use it to obtain 

the discrete waiting time distribution. Based on this method and the algorithm given by 

Grassmann and Jain [12], we also introduce an efficient algorithm by improving the weighted 

average to solve the discrete waiting time distribution. Then, by using Little’s formula, we 

calculate the average queue length of the system. We also use this algorithm for the 

numerical experimentation. 

Moreover, chapter 5 deals with an analytical interpretation of finding the waiting time for the 

Geom/Geom/1 queue, which is not based on a finite interval, as an example of the GI/G/1 

queue. 

We give some numerical examples with different distribution like uniform, gamma and 

geometric, in Chapter 6.  

Chapter 7 summarises the thesis and offers conclusion, and some ideas for the future 

research. 

Finally, MATLAB programs for numerical experimentation are included in the appendix.  
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Chapter 2  

Preliminaries 

 

Stochastic process  

Definition 2.1: Stochastic process is a family (sequence) of random variables, ܺ௧, where ݐ is 

a parameter that runs over a suitable index set ܶ. (Where convenient, we write ܺሺݐሻ instead 

of ܺ௧) ሼܺ௧: ݐ ∈ ܶሽ . 

In a common situation, the index ݐ corresponds to a discrete unit of time and the index set is 

ܶ ൌ ሼ0,1,2, … ሽ.   

Examples 2.1:  

݅ሻ			ܺ௧ = Temperature at time ݐ ∈ ሾ0,∞ሻ 

݅݅ሻ	ܺ௧ = Number of students present in the class on day ݐ ∈{0, 1, 2, 3, 4, 5, 6, 7, 8}. 

a. If  ܶ is countable (or finite), then the process is called a discrete-time process.   

b. If it consists of a set of finite or infinite intervals on the time axis, it is a continuous- time 

process. 

Markov process 

Definition 2.2: A discrete parameter stochastic process 	ሼܺሺݐሻ, ݐ ൌ 0, 1, 2, … ሽ or a 

continuous parameter stochastic process  ሼܺሺݐሻ, ݐ ൐ 0ሽ	 is said to be a Markov process if for 

any set of time points ݐଵ ൏ ଶݐ ൏ ⋯ ൏  ௡ in the index set or time range of the process, theݐ

conditional distribution of ܺሺݐ௡ሻ, given the values of  ܺሺݐଵሻ, ܺሺݐଶሻ, ܺሺݐଷሻ,…, ܺሺݐ௡ିଵሻ, 

depends only on the immediately preceding value  ܺሺݐ௡ିଵሻ; 

More precisely, for any real numbers  ݔଵ, ,ଶݔ ,ଷݔ … ,  ,௡ݔ
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௡ሻݐሼܺሺݎܲ ൑ ଵሻݐ௡|ܺሺݔ ൌ ,ଵݔ … , ܺሺݐ௡ିଵሻ ൌ   ௡ିଵሽݔ

ൌ ௡ሻݐሼܺሺݎܲ ൑ ௡ିଵሻݐ௡|ܺሺݔ ൌ                                            . ௡ିଵሽݔ

Thus, the process is memoryless. 

Markov Chain 

Definition 2.3: A Markov chain is a discrete-time Markov process with discrete state space 

which is stationary and satisfies, 

ሼܺ௡ାଵݎܲ ൌ ݆|ܺ௡ ൌ ݅ሽ ൌ    .௜௝݌

Here, ݌௜௝ represents the probability that a system in state ݅ will enter state ݆ at the next 

transition. 

Examples 2.2:  

 State may be a certain level of energy for an atom. 

 In the public opinion poll, state may be one of the voter’s possible state of mind. 

 Weather has two states → wet and dry. 

 

Theorem 2.1: A Markov process is completely defined by its transition probability matrix 

and the initial state ܺ଴. 

 

Steady-state probability  

Definition 2.5: Consider a discrete-parameter Markov chain and suppose that lim௡→∞ ௜௝݌
ሺ௡ሻ ൌ

 ௝ (for all ݅), which is independent of ݊. That is, after a long time, the probability that theߨ

process is in state ݆ given that it started in state ݅, is independent of the starting state i. We 

call ሼߨ௝ሽ the limiting or steady-state probability of Markov chain. 

 The steady-state or equilibrium distribution of a Markov chain is given by the following 

equations 

௝ߨ             ൌ ∑ ௜ߨ
∞
௜ୀ଴ ݆			,௜௝݌ ൒ 0 and 	∑ ௝ߨ ൌ 1∞

௝ୀ଴  . 
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 Transition probability Matrix or Markov matrix: 

ܲ ൌ ൫݌௜௝൯ ൌ ቈ
଴଴݌ ଴ଵ݌ ଴ଶ݌ …
ଵ଴݌ ଵଵ݌ ଵଶ݌ …
⋮ ⋮ ⋮

቉,  ݌௜௝ ൒ 0; 		݅, ݆ ൌ 0,… ,∞ and  ∑ ௜௝݌ ൌ 1		∀	݅∞
௝ୀଵ  [each row’s 

sum = 1]. 
 
Irreducible Markov Chain 

Definition 2.6: A Markov chain is said to be irreducible if there is only one class of states,  

that is all states communicate with each other. 

State ݆ is accessible from state ݅ if ݌௜௝
ሺ௡ሻ ൐ 0 for some integer ݊ ൒ 0. In a regular chain, each 

state is accessible from each other. 

Random Walk 

Definition 2.7: When we discuss random walks, it is an aid to intuition to speak about the 

state of the system as the position of a moving “particle”. 

A one-dimensional random walk is a Markov chain whose state space is a finite or infinite 

subset of the integers, in which the particle, if it is in state ݅, can in a single transition either 

stay in ݅ or move to one of the neighbouring states ݅ െ 1, ݅ ൅ 1. 

If the state space is taken as the nonnegative integers, the transition matrix of a random walk 

has the form 

                     		0								1								2… 								݅						݅ െ 1			݅ ൅ 1	 

      ܲ =  

i

.

.

2

1

0
     

........

...

...

.

.

.

.

0

.

.

.

.

.

.

.

.
...00...0

...00...

...00...0

22

111

00

iii prq

rq

prq

pr

                                                  

 

where ݌௜ ൐ 0, ௜ݍ ൐ 0, ௜ݎ ൒ 0, and ݍ௜ ൅ ௜ݎ ൅ ௜݌ ൌ 1, ݅ ൌ 1,2, …	,  

଴݌            ൒ 0, ଴ݎ ൒ 0, ଴ݎ ൅ ଴݌ ൌ 1. 

Specifically, if ܺ௡ ൌ ݅ then, for ݅ ൒ 1, 
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ሼܺ௡ାଵݎܲ         ൌ ݅ ൅ 1|ܺ௡ ൌ ݅ሽ ൌ ሼܺ௡ାଵݎܲ ,௜݌ ൌ ݅ െ 1|ܺ௡ ൌ ݅ሽ ൌ  ,௜ݍ

        and 

ሼܺ௡ାଵݎܲ         ൌ ݅|ܺ௡ ൌ ݅ሽ ൌ ݅ ௜, with obvious modifications holding forݎ ൌ 0. 

Example 2.3: i) The path of a person moving randomly one step forward or backward gives 

us a realization of the random walk. 

                      ii) The fortune of a player engaged in a series of contests is often depicted by a 

random walk process. 

Renewal (counting ) process 

Definition 2.8: A renewal process  ሼܰሺݐሻ, ݐ ൒ 0ሽ is a nonnegative integer-valued stochastic 

process that registers the successive occurrences of an event during the time intervalሺ0,  ,ሿݐ

where the time durations between consecutive events are positive, independent, identically 

distributed random variables. 

Let the successive occurrence times between events be ሼܺ௞ሽ௞ୀଵ
∞  such that ௜ܺ is the elapsed 

time from the ሺ݅ െ 1ሻݐݏ event until the occurrence of the ݄݅ݐ event. We write 

ሻݔሺܨ        ൌ ሼܺ݇ݎܲ ൑ ሽݔ ,			,			݇ ൌ 1, 2, 3, … 

For the common probability distribution of ଵܺ, ܺଶ, … , a basic stipulation for renewal 

processes is ܨሺ0ሻ ൌ 0, signifying that ଵܺ, ܺଶ, … are positive random variables. We refer to 

        ܵ௡ ൌ ଵܺ ൅	ܺଶ ൅ ⋯൅ ܺ௡	, ݊ ൒ 1  (ܵ଴ ൌ 0, by convention) 

as the waiting time until the occurrence of the nth event. Therefore, in this case, ܵ௡ is the sum 

of ݊ random variables. 

Queueing System 

Definition 2.9: A queueing system can be described as customers arriving for service, 

waiting for service if the server is not idle, receive service, then leaving the system after 

being served.  

Queues are common in everyday life. Customers wait to be served in front of service 

facilities. For example, people wait to use the autoteller in the bank, cars wait to be repaired 

in an autobody shop, airplanes wait to take off at an airport, machines wait to be repaired in a 
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factory, people wait to use the phones in phones booths. These are but a few examples among 

many about the waiting lines. 

Figure 2.1  Queueing process.                            

                                                                                                                            

There are six basic characteristics of queueing processes provide that an adequate 

description of a queueing system: (1) arrival pattern of customers, (2) service pattern of 

servers, (3) queue discipline, (4) system capacity, (5) number of service channels and (6) 

number of service stages. 

Queueing model 

Definition 2.10: A queueing process is a process in which customers arrive at some 

designated place where a service of some kind is being arranged, for example, at the teller’s 

window in a bank or beside the cashier at a supermarket. It is assumed that the time between 

arrivals, or interarrival time, and the time that is spent in providing a service for a given 

customer, are governed by the probabilistic laws. In short, this procedure is known as 

queueing model. 

Queueing models assist the design process by predicting system performance. For example, a 

queueing model might be used to evaluate the costs and benefits of adding a server to an 

existing system. A standard shorthand is used in much of the queueing literature for 

identifying simple queueing models. The shorthand assumes that the arrival times form a 

renewal process, and the format A/B/c uses ܣ to describe the interarrival distribution, ܤ to 

specify the individual customer service time distribution, and ܿ to indicate the number of 

servers. 

The following are some definitions of some of the most popular queueing models: 

The ࡹ/ࡹ/૚ queueing model 

Definition 2.10.1: The 1/ܯ/ܯ model is known as a single-server exponential queueing 

system. In this case, arrivals follow a Poisson process, service times are exponentially 

distributed, and there is a single server. 

QueueArriving customer Service facility Departure 
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In general, ܯ refers mainly to three facts: 

(1) Arrival is Poisson and interarrival time distribution is exponential, 

(2) Service time distribution is also exponential, 

(3) Thus, the process is memoryless or Markovian. 

Since the successive times for interarrival and service are continuously distributed, they are 

therefore exponential. The number of customers in the system at time ݐ forms a birth and 

death process where arrivals can be considered as “births” to the system, and departures can 

be considered as “deaths”. 

The parameters ߣ and ߤ represent the rates for the arrivals and service per unit time. 

The 1/ࡵࡳ/ࡹ queueing model 

Definition 2.10.2: In this model there are Poisson arrivals with rate ߣ, but arbitrarily 

distributed service times which are i.i.d. with mean  1 ⁄ߤ  and server is single. The analysis 

proceeds with the help of an embedded Markov chain. 

The 1/ࡹ/ࡵࡳ queueing model 

Definition 2.10.3: In the 1/ܯ/ܫܩ model, service times have the Markovian property. From 

the notation it is apparent that the model is a single-server system with an arbitrary or general 

distribution function of interarrival times which are i.i.d. with mean 1 ⁄ߣ , and the service 

times are i.i.d. exponential random variables. 

 

The ࡰ/ࡹ/c queue 

Definition 2.10.4: This is a multiserver queueing model where customers arrive in a Poisson 

process with the rate ߣ, and service times are constant or deterministic. 

 

The ࢅࡹ/ࢄࡹ/c queue 

Definition 2.10.5: The ܯ௑/ܯ௒/c is also a multiserver Markovian queueing model. In a 

queueing system, if customer arrivals and /or service occur in groups, then the system is 

known as a bulk queue. Here, 
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 ௑           means customers arrive in group of size ܺ, where ܺ a is random variable greaterܯ 

than zero and the group of arrival occurs in a Poisson process with rate ߣ. 

 ௒          means that customers are served in a group of size ܻ and the service timeܯ

distribution is exponential with rate ߤ. 

Phase-Type distribution 

Definition 2.10.6: A phase-type distribution is a probability distribution that results from a 

system of one or more inter-related Poisson process occurring in sequence, or phases. The 

sequence in which each of the phases occur may itself be a stochastic process. The 

distribution can be represented by a random variable describing the time until absorption of a 

Markov process with one absorbing state. Each of the states of the process represents one of 

the phases. 

Some distributions that use the concept of phases are the Erlang, Hyperexponential, hypo 

exponential or generalized Erlang, and Coxian distribution. 

The 1/࢑ࡱ/࢐ࡱ model  

Definition 2.10.7: The ܧ௝/ܧ௞/1 is a single server queueing model with arrival rate ߣ and 

service rate ߤ (i.e. each arrival phase has rate ݆ߣ and each service phase has rate ݇ߤ). 

Specifically, ܧ௞ represents the sum of ݇ i.i.d. exponential random variables with mean 1 ൗߤ݇ , 

which is also known as Erlang type-	݇ distribution. 

The Erlang family provides more flexibility in modeling than the exponential family, which 

only has one parameter.  

Example 2.4: There are some practical examples of Erlang distribution in our daily life. 

                        i. In a visa office, people have to follow some steps to enter in the system. 

                        ii. For the physical examination in a pathology centre, a patient needs to pass         

                            several stages to get the service. 
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Figure 2.2  Use of the Erlang for phased service. 

 

  

 

 

The ࡳ/ࡵࡳ/૚ queueing model 

Definition 2.10.8: The symbol ܩ represents a general or arbitrary probability distribution; 

that is, no assumption is made as to the precise form of the distribution. Results in these cases 

are applicable to any probability distribution. Thus, by 1/ܩ/ܫܩ, we mean that  

I.     The inter-arrival times are i.i.d with a distribution function ்ܨ having mean  
1  , 

II.    The service times independent of arrival times are i.i.d with a distribution function  ܨௌ          

         having mean  1 ⁄ߤ  , 

III.    The service is provided by one server, 

IV.    Infinite waiting space is available and 

 V.    The queue discipline is FCFS. 

 

Waiting time  

Definition 2.9: The amount of time a new arrival has to wait until its service begins, is 

known as the waiting time. 

 

Queue length  

Definition 2.10: The actual number of customers in the system, is called the queue length. 

Busy period 

Definition 2.11: The length of time during which the server is continuously busy with 

serving their customers is called the busy period. 

Step 1         Step 2          Step 3        Step 4

 1 ⁄ߤ4          1 ⁄ߤ4              1 ⁄ߤ4         1 ⁄ߤ4      



16 
 

Idle period 

Definition 2.12: The length of time when the server is not serving or there are no customers 

in the system is called the idle period. 

Probability generating function  

Definition 2.13: Suppose, 

ܲሺݖሻ ൌ ∑ ௡ݖ௡݌ ൌ ଴݌ ൅ ∞ݖଵ݌
௡ୀ଴ ൅ ଶݖଶ݌ ൅ ⋯  

If the series converges for some range of ݖ, then ܲሺݖሻ is called  a generating function of the 

sequence  ሼ݌௡ሽ. 

Let,  ܺ be a random variable with ܲݎሼܺ ൌ ݊ሽ ൌ ݊				,	௡݌ ൌ 0, 1, 2, …  and  ∑ ∞௡݌
௡ୀ଴ ൌ 1. Then 

ܲሺݖሻ ൌ ∑ ∞௡ݖ௡݌
௡ୀ଴ , which is known as the probability generating function (p.g.f) of  ܺ. 

Probability generating function can be used to directly obtain moments of a random variable. 

If we take the first derivatives of ܲሺݖሻ with respect to ݖ at ݖ ൌ 1, then we can calculate the 

moment. Therefore, we get 

ܲ′ሺݖሻ ൌ ∑ ∞௡ିଵݖ௡݌݊
௡ୀଵ  and then evaluate ܲ′ሺݖሻ at ݖ ൌ 1, to get ܲ′ሺ1ሻ ൌ ∑ ௡݌݊ ൌ ∞ሾܺሿܧ

௡ୀଵ . 

Moreover, we can determine the variance of a random variable from the probability 

generating function. In this case, we also need to take the second derivatives of ܲሺݖሻ with 

respect to ݖ at ݖ ൌ 1, since, we know,  Var	ሾܺሿ ൌ ሾܺଶሿܧ െ  ,ଶሾܺሿ. Thusܧ

ܲ′ሺݖሻ ൌ ∑ ∞௡ିଵݖ௡݌݊
௡ୀଵ , 

ܲ′′ሺݖሻ ൌ ∑ ݊ሺ݊ െ 1ሻ݌௡ݖ௡ିଶ∞
௡ୀଶ , and then by evaluating ܲ′ሺݖሻ and ܲ′′ሺݖሻ at ݖ ൌ 1, we get 

ܲ′ሺ1ሻ ൌ ∑ ௡݌݊ ൌ ∞ሾܺሿܧ
௡ୀଵ  and ܲ′′ሺ1ሻ ൌ ∑ ݊ሺ݊ െ 1ሻ݌௡ ൌ ሾܺሺܺܧ െ 1ሻሿ∞

௡ୀଶ . Now, Var	ሾܺሿ 

can be obtained from ܲ′ሺ1ሻ and ܲ′′ሺ1ሻ: 

Var	ሾܺሿ ൌ ሺܧሾܺଶሿ െ ሾܺሿሻܧ ൅ ሾܺሿܧ െ   .ଶሾܺሿܧ

Generally, p.g.f can be used to determine the probabilities ݌଴, ,ଵ݌ … and ܲሺݖሻ is written as a 

power series and ݌௡ is the coefficient in front of  ݖ௡ in the series. 
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Chapter 3 

Review of the Literature  

 

The queueing model GI/G/1 has been of much interest to queueing theorists and practitioners 

since the 1950’s, and the study of this model is becoming more significant, since it has wide 

applications in computers, communication systems and networks of queues. The most 

important and much-studied aspect of this model is the steady-state distribution of the actual 

queue time of a customer. The analysis of the waiting time of a customer has been given by 

several authors, including Ponstein [28], Konheim [22], Ackroyd [1], Grassmann and 

Chaudhry [13], Grassmann [11], Grassmann and Jain [12] and Fryer and Winsten [10]. All of 

these authors numerically determined the waiting time distribution of the arithmetic GI/G/1 

queue by solving a discrete-time version of Lindley’s equation (Lindley [24]). Before doing 

so, one can demand that the random variables ሼ ௡ܶሽ and ሼܵ௡ሽ be discrete and that their 

distribution functions are both defined on finite intervals. It was pointed out many times that 

the discrete-time version of Lindley’s equation is mathematically equivalent to certain 

equations arising in bulk queues (Grassmann and Chaudhry [13]; Fryer and Winsten [10]). In 

this case, there are various methods of finding the waiting time distribution in a GI/G/1 

queue. In this chapter, we present some of these approaches to deal with the waiting time 

distribution of the GI/G/1 queue. 

The method presented by Grassmann and Jain [12] is an efficient numerical method for 

calculating the waiting time and idle time distribution of the arithmetic GI/G/1 queue. The 

method is based on Wiener – Hopf factorization, and compared to related methods of others, 

their method appears to perform very well and is often faster by several orders of magnitude 

than other methods. There are three algorithms suggested by them which we will introduce in 

chapter 4. However, based on the same procedure, our method works better than their 

methods in numerical experimentations. 
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Here, I should also mention the work of Konheim [22], who gave an elementary method for 

calculating the stationary distribution of waiting time in a GI/G/1 queue. Konheim based his 

method on generating function techniques, and his solution required only the ability to factor 

polynomials, which is part of our method as well. Konheim set a relation ܵሺݖሻ ൌ

ሺ1 െ ܷሺݖሻሻ ሺ1 െ ⁄ሻݖ , where ሺ1 െ ܷሺݖሻሻ is the same as in our Eq. (4.25) and ܷሺݖሻ ൌ

௚ିݖ௚ିݑ ൅ ⋯൅ ௛ for െ݃ݖ௛ݑ ൑ ܷ ൑ ݄. Then, he factored ܵሺݖሻ into ܵାሺݖሻ and ܵିሺݖሻ, where 

ܵାሺݖሻ contains all the zeros of ܵሺݖሻ outside the unit circle, and ܵିሺݖሻ contains all other 

zeroes. The purpose of this factorization is to find the roots of  ܵሺݖሻ which are outside the 

unit circle. Moreover, ܵାሺݖሻ is scaled such way that ܵାሺ1ሻ ൌ 1. Konheim showed that the 

generating function of waiting time distribution ܹሺݖሻ can be obtained through the equation 

ܹሺݖሻ ൌ 1 ܵାሺݖሻ⁄ , which is essentially our Eq. (4.30). A similar factorization was also 

suggested by Ackroyd [1]. Konheim basically used ݄ zeros of 1 െ ܷሺݖሻ to find ܣሺݖሻ for 

obtaining the waiting time distribution, where ܣሺݖሻ is a polynomial that has ݄ roots outside 

the unit circle. In Eq. (4.26), we also mentioned ܣሺݖሻ ൌ ∑ ௜ݖ௜ߙ
ஶ
௜ୀଵ , is the generating function 

for the distribution that the server remains busy for serving the customers in the system. 

Some authors, in particular Fryer and Winsten [9] also followed the same procedure as [22] 

to find ܣሺݖሻ. 

A number of methods have been suggested to find ܣሺݖሻ iteratively. The earliest such attempt 

was done by Ponstein [28], who solved the waiting time distribution in a discrete GI/G/1 

queueing model, by a method based upon Markov chains. He also defined ݑ௞ ൌ Prሺܷ௡ ൌ ݇ሻ 

for ݇ ൌ െܭଵ,… , , where ܷ௡	ଶܭ ൌ ܵ௡ െ ௡ܶ is the difference between the service time of 

customer ܥ௡, and the interarrival time of the ܥ௡ and ܥ௡ାଵ customers. In our work, we used ݃ 

and ݄ for ܭଵ and 	ܭଶ. Ponstein then formed a Markov chain with a one-step transition matrix, 

ܳ ൌ ሾ݌௝௞ሿ, where ݌௝௞ represents the one-step transition probability that if the queueing 

system is in state, say ܨ௝, for some time unit, the system will be in state ܨ௞ for the next time 

unit, and ݌௝௞ is given as ݌௝௞ ൌ  ௝ for some time unit generallyܨ ௞ି௝. Here the state is inݑ

stands for a nth customer waits ݆ units of time before being served, ݆ ൌ 1, 2, …, or the server 

idles ሺെ݆ሻ consecutive units of time before a customer arrives, ݆ ൌ 0,െ1,… ,െܭଵ. Then, as a 

standard procedure in Markov chains, let the steady-state probabilities for the queueing 

system in state ܨ௝ for some time units be ∑ ൌ ൫ିߨ௄భ
ᇱ, ௄భାଵିߨ

ᇱ, , … , ,଴ᇱߨ ,ଵᇱߨ … ൯. When the 
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system is in equilibrium, it is considered that ∑ܳ ൌ ∑ and ݍଵ ൌ ௄భିߨ
ᇱ , . . . , ௄భݍ ൌ ଵିߨ

ᇱ ; ଴ߨ	 ൌ

௄భିߨ
ᇱ ൅ ⋯൅ ଵିߨ

ᇱ ൅ ଴ߨ
ᇱ  and ߨ௝ ൌ ௝ߨ

′ 	for	݆ ൌ 1, 2, …. Note that according to the definition of 

௝ߨ
ᇱ, the ߨ௝, ݆ ൌ 1, 2, … gives the required waiting time distribution and ݍ௝, for	݆ ൏ 0	 gives the 

idle time distribution. Moreover, Ponstein gave an algorithm in order to find the ߨ௝s	for	݆ ൌ

1, 2, …. He also factored ܳሺݖሻݖ௄భ, where ܳሺݖሻ ൌ 1 െ ܷሺ1 ⁄ݖ ሻ to locate the roots outside and 

inside of the unit circle. Here, ܷሺݖሻ ൌ ݖ௄భିݑ
ି௄భ ൅ ⋯൅ ݖ௄మݑ

௄మ. It is also noticed that the 

main difference between Ponstein’s method and Konheim’s [22] method is: those roots 

which are inside the unit circle, or inner roots, in Konheim’s  method corresponds to those 

roots which are outside the unit circle, or outer roots, in Ponstein’s method and those outer 

roots in Konheim’s  method corresponds to those inner roots in Ponstein’s method. 

Powell [29] used a an efficient implementation of Newton’s method to find the zeros of 

1 െ ܷሺݖሻ in the case of bulk queues, and in his particular case, Newton’s method may be 

more efficient than our method. However, in the case of bulk queues, ܷሺݖሻ have a very 

special form, and Powell’s method can thus only be used to solve very special GI/G/1 

queues.  

Another useful method was suggested by Ackroyd [1], who used complex logarithms to 

separate the zeros inside and outside the unit circle. This can be done very efficiently, using 

Fast Fourier Transforms.  

Grassmann and Chaudhry [13] combined the approach of Neuts, which is known as the 

matrix-geometric methods, with their method. Neuts’ method can also be used to find ܣሺݖሻ.. 

In Neuts’ approach, a matrix ܴ of dimension ݄ ൈ ݄ was determined, which satisfied a certain 

matrix equation. Grassmann and Chaudhry mainly modified the method of Neuts. According 

to [13], the ߙ௝ were given by only the first column of this matrix ܴ, which reduced the 

number of operations in their algorithm by a factor of ݄. In order to determine the waiting 

time in the queue of a GI/G/1 model, they first set up a Markov chain by following the 

Ponstein method [28]. In their Markov chain, they considered the state spaces as the waiting 

times rather than the number of customers in the system. However, the number of iterations 

to obtain ܴ in Neuts’ method was often high, it may be 50 or more, and the number of 

operations per iteration is on the order ݄ଶ݃. The algorithm that was developed by these 
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authors, is a faster and efficient algorithm to solve many queueing problems efficiently and 

precisely. 

Grassmann [11] also developed a method to find the equilibrium distribution of the queue 

length at a certain epoch for such Markov chains which can be applied to the MX /MY /c 

queue, the M /GIX /c queue, the discrete GI/G/1  queue,  and many other related problems in 

an efficient way. He numerically solved the steady-state distribution of some finite Markov 

chain models by using the state reduction method. The problem was solved by factorizing 

1 െ ܷሺݖሻ, and thus, this method also can be used to find ܣሺݖሻ. Moreover, the algorithm 

proposed in [11] can be used for continuous-time Markov processes without any change. 

However, the author claimed that the approach in [11] is better than the Neuts’ method and 

he also mentioned that it converged quickly and was numerically stable. He asserted that 

there was a probabilistic significance in all steps, which made the algorithm easy to 

understand. For the calculation of ܣሺݖሻ, he also used idea of the inside and outside zeros of 

the polynomial 1 െ ܷሺݖሻ. As we see, the idea of our method for successive approximation 

algorithm to investigate the waiting time process of the GI/G/1 queue, was first used in [11].   

Whitt [38] showed a method to develop a closed form approximation for the mean steady-

state workload or virtual waiting time in a GI/G/1 queue. This approximation can be solved 

by using the first two moments of service-time distribution and the first three moments plus 

the density at the origin of the interarrival-time distribution. The approximation was based on 

light and heavy traffic limiting behaviour. Basically, Whitt used S.L.Brumelle’s formula,  

൫ܧ ఘܼ൯ ൌ ൫ܧߩ ఘܹ൯ ൅
ఘ൫௖ೞమାଵ൯

ଶ
, to relate the mean workload to the mean waiting time, and K.T. 

Marshall’s formula, ܧ൫ ఘܹ൯ ൌ
ா൫ሺఘషభ்ିௌሻ൯

మ

ଶாሺሺఘషభ்ିௌሻሻ
െ

ா൫ூഐమ൯

ଶாሺூഐሻ
; 0 ൏ ߩ ൏ 1, to relate the mean waiting 

time to the first two moments of the idle period. The interpolation between light and heavy 

traffic limits was chosen to satisfy the differentiability and monotonicity regularity 

conditions. Finally, the approximation was compared with the exact values of some queueing 

models. Moreover, according to Whitt, heavy traffic derivative is more useful than light 

traffic derivative for determining the normalized mean workload. However, Whitt utilized 

approximations in his method, but, in our research, we are dealing with exact methods. In 

particular, we can get as close to the true value as desired by using our method.  
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A discrete time version of the system GI/G/1/N was analyzed by Hasslinger [15], using a 

two-component state model at the arrival and departure instants of customers. The 

equilibrium equations were solved by a polynomial factorization method and the steady state 

distribution of the queue size was then represented as a linear combination of geometric 

series, whose parameters were evaluated by closed formulae depending on the roots of a 

characteristic polynomial. Considering modified boundary constraints, systems with finite 

waiting room or with an exceptional first service in each busy period, were also included.  

Hasslinger [16] also considered a workload-based approach to the single server queue in a 

discrete time domain with semi-Markov arrivals (SMP/GI/1). He mainly investigated the 

SMP/GI/1queue, extending a GI/G/1 algorithm by [12], which performs a Wiener-Hopf 

factorization with the help of rapidly converging iteration. By deviding the busy period into 

phases, these authors generalized a computationally attractive algorithm for the discrete-time 

GI/G/1 queue, and also computed the stationary distributions of the waiting and idle time, as 

well as the moments of the busy period. Moreover, performance results were given for 

deterministic servers with autoregressive input, and the output process of a server was 

modeled by adapting a SMP with a few states to information obtained from busy and idle 

period analysis. 

Rao and Feldman [31] focused on easily computable numerical approximation for the 

distribution and moments of the steady-state waiting times in a stable GI/G/1 queue and their 

approximation methodology is based on the theory of Fredholm integral equations.  Making 

comparisons with the competing approaches established by others, they claimed that their 

methodology was not only more accurate, but also more amenable for obtaining waiting time 

approximations from the operational data. Approximations were also obtained for the 

distributions of the steady-state idle times and interdeparture times. 

Kim and Chaudhry [20] first established a discrete-time version of what is called the 

distributional Little’s Law (DDL); a relation between the stationary distributions of the 

number of customers in a system (or queue length), and the number of slots a customer 

spends in that system (or waiting time). Based on this relation, they then presented a simple 

computational procedure to obtain the queue-length distribution of the discrete-time GI/G/1 

queue from its waiting time distribution, which is readily available by various existing 
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methods: such as, the method based on the zeros of the so-called charateristic equation 

(Konheim [22], Chaudhry and Gupta [5]), the iterative method based on the Wiener-Hopf 

factorization (Grassmann and Jain [12], Hasslinger [16]) and the matrix-analytic method. 

Using the same procedure, they also obtained the queue-length distribution of the discrete-

time multi-server GI/D/c queue in a unified manner. 

Thus, there is a great deal of literature dealing with the waiting time distribution of GI/G/1 

models. There are especially a number of good algorithms available to solve the waiting time 

of the GI/G/1 queue numerically, for a discrete-time version of Lindley’s equation. Of the 

algorithms that are competitive, none dominates the other consistently, and the best one 

depends on the situation. The strengths of the algorithm that has been used in this thesis are 

that it is easily programmed, generally very efficient and very robust. These properties 

suggest that the algorithm we used in our work is an ideal algorithm compared to others. 
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Chapter 4 

Methodology 

 

4.1 Overview 
In this chapter, we present the approach to solve Lindley’s equation based on Wiener-Hopf 

factorization. 

We use the same notation as given in [12] in the following discussion: 

The aim of this project is to find out the waiting time distribution in equilibrium (i.e., how 

much time required for ሺ݊ ൅ 1ሻth arrival to get into the service if we know the position of the 

݊th customer), and then calculate the average queue length of the system for the discrete-time 

queue GI/G/1. Thus, the basic assumptions are as follows: 

Assuming customers ...,..., 10 nCCC  arrive singly at a service station at epochs ሼ߬௡: 0 ൑ ݊ ൏

∞ሽ, ሺ߬଴ ൌ 0ሻ and are served by a single server in the order of their arrivals.  

In this case there are four types of random variables: 

1. ௡ܶ is the  interarrival time between the ݊th and ሺ݊ ൅ 1ሻth customer. The interarrival 

times	ሼ ௡ܶ ൌ ߬௡ െ ߬௡ିଵ: 0 ൑ ݊ ൏ ∞ሽ are i.i.d random variables distributed as	ܶ with 

probability distribution 

ሺܶݎܲ             ൌ ݇ሻ ൌ  .௞ݍ

2.  ܵ௡ is the service time of the ݊th customer. The service times ሼܵ௡: 0 ൑ ݊ ൏ ∞ሽ are i.i.d 

random variables distributed as	ܵ with probability distribution. 

ሺܵݎܲ             ൌ ݇ሻ ൌ  . ௞݌

3.   ܷ௡ ൌ ܵ௡ െ ௡ܶ, which could be negative, zero or positive. 
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4.  ௡ܹ is the waiting time (in queue) for  ݊th customer. 

Customer ܥ௡ waits in queue for a time,	 ௡ܹ, and the service time is ܵ௡. Thus, for ܥ௡, the time 

in the system in his waiting time plus his service time, i.e. ௡ܹ ൅ ܵ௡, and he leaves at the 

moment ߬௡ ൅ ௡ܹ ൅ ܵ௡. If ܥ௡ାଵ arrives before that time, therefore, if ߬௡ାଵ ൏ ߬௡ ൅ ௡ܹ ൅ ܵ௡, 

௡ାଵ has to wait for ߬௡ܥ ൅ ௡ܹ ൅ ܵ௡ െ ߬௡ାଵ. Since ௡ܶ ൌ ߬௡ାଵ െ ߬௡ , we have 

௡ܹାଵ ൌ ߬௡ ൅ ௡ܹ ൅ ܵ௡ െ ߬௡ାଵ                                                                                             (4.1) 

          ൌ ௡ܹ ൅ ܵ௡ െ ௡ܶ  if ௡ܹ ൅ ܵ௡ െ ௡ܶ ൒ 0 

Otherwise, 

௡ܹାଵ ൌ 0 .                                                                                                                           (4.2) 

Moreover, the idle time for the server becomes 

௡ܫ ൌ െሺ ௡ܹ ൅ ܵ௡ െ ௡ܶሻ ൐ 0, if  ௡ܹ ൅ ܵ௡ െ ௡ܶ ൏ 0.                                                            (4.3)  

We denote ܷ௡ ൌ ܵ௡ െ ௡ܶ                                                                                                     (4.4) 

which is the difference between the service time of customer ܥ௡, and interarrival time of the 

  .௡ାଵ customersܥ ௡ andܥ

Therefore, (4.1) and (4.2) can be written in terms of ܷ௡: 

௡ܹାଵ ൌ ൜ ௡ܹ ൅ ܷ௡	, ݂݅		 ௡ܹ ൅ ܷ௡	 ൒ 0
0	,														݂݅			 ௡ܹ ൅ ܷ௡	 ൏ 0   .                                                                             (4.5) 

This relation was first established by Linley [23]. 

Using the notation ሺݔሻା ≡ maxሾ0,   ሿ, (4.5) can be written asݔ

௡ܹାଵ ൌ ሺ ௡ܹ ൅ ܷ௡	ሻା. 

The sequence of random variables ሼ ௡ܶሽ, for ݊ ൒ 0, is a sequence of i.i.d. random variables, as 

is ሼܵ௡ሽ, for ݊ ൒ 0. Consequently, the sequence of random variables ሼܷ௡	ሽ, for ݊ ൒ 0, is also a 

sequence of identically distributed random variables. Moreover, ௡ܶ is independent of  

௡ܶିଵ, ௡ܶିଶ, …, and independent of ܵ௡, ܵ௡ିଵ, …, which means that the ܷ௡	are also independent 
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random variables. Let ܷሺݔሻ be the distribution function of the random variables ܷ௡	(which 

obviously can take negative values with a positive probability, according to its definition). 

From (4.4), it is not difficult to obtain the following expression, which is commonly known 

as Lindley’s equation: 

ܹሺ௡ାଵሻሺݐሻ ൌ ቊ׬ ܹሺ௡ሻሺݐ െ 0				ሻ,ݔሻܷ݀ሺ௡ሻሺݔ ൑ ݐ ൏ ∞
௧
ିஶ

0																															otherwise
                                                     (4.6) 

 where ܹሺ௡ሻሺݐሻ is the waiting time distribution function for ௡ܹ, i.e. 

ܹሺ௡ሻሺݐሻ ൌ ሾݎܲ ௡ܹ ൑   ሿݐ

 and 

ܷሺݔሻ ൌ ׬ ܲሺݕሻܳሺݕ െ ሻݔ
ஶ
଴                                                                                                    (4.7) 

where ܳሺݐሻ and ܲሺݐሻ are the distribution functions of the distributions of ௡ܶ and ܵ௡, 

respectively. 

If  ܳሺݐሻ and ܲሺݐሻ have probability density functions, then we define the probability density 

of ܳሺݐሻ and ܲሺݐሻ respectively by, 

ሻݐሺݍ ൌ ௗொሺ௧ሻ

ௗ௧
  

ሻݐሺ݌ ൌ ௗ௉ሺ௧ሻ

ௗ௧
  

Moreover, in this case (4.7) becomes 

ሻݔሺݑ ൌ ׬ ݕሺݍሻݕሺ݌ െ ݕሻ݀ݔ
ஶ
଴ ൌ ሻݔሺെݍ ∗ ሻݔሺݑ ሻ whereݑሺ݌ ൌ ௗ௎ሺ௫ሻ

ௗ௨
 and ∗ denotes the 

convolution. 

If the random variables ௡ܶ , ܵ௡ are discrete,  

௞ݍ ൌ ሺݎܲ ௡ܶ ൌ ݇߬ሻ and ݌௞ ൌ ሺܵ௡ݎܲ ൌ ݇߬ሻ, where ݇ is an integer, and ߬ is a real number. 

In this case, ܷ௡ ൌ ܵ௡ െ ௡ܶ is also discrete. Moreover, if ܿ௞ ൌ ሺܷ௡ݎܲ ൌ ݇߬ሻ, 
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 then the discrete version of (4.7) becomes 

ܿ௞ ൌ ∑ ௞ା௜ିݍ
ஶ
௜ୀ଴  ௜ .                                                                                                             (4.8)݌

It has been shown by Lindley [23] that a necessary and sufficient condition for a stable 

system is ܧሺܷ௡ሻ ൏ 0.  If we substitute ܷ௡ by ܵ௡ െ ௡ܶ according to (4.4), then 

ሺܵ௡ܧ  െ ௡ܶ	ሻ ൌ ሺܵ௡ሻܧ െ ሺܧ ௡ܶሻ ൏ 0, 

from which we obtain the usual stable condition for a queueing system, namely 

the utilization factor ߩ ൌ ሺܵ௡ሻܧ ሺܧ ௡ܶሻ ൏ 1⁄ , where ߩ is the traffic intensity.  Under this 

stable condition, there exist a ܹሺݐሻ such that  

 lim௡→ஶ ሾݎܲ ௡ܹ ൑ ሿݐ ൌ ܹሺݐሻ 

and the Lindley’s equation in (4.6) becomes 

ܹሺݐሻ ൌ ቊ׬ ܹሺݐ െ ݐ		ሻݔሻܷ݀ሺݔ ൒ 0
௧
ିஶ
ݐ																														0							 ൏ 0

                                                                                 (4.9) 

 or 

ܹሺݐሻ ൌ ൜െ׬ ܹሺݔሻܷ݀ሺݐ െ ݐ		ሻݔ ൒ 0
ஶ
଴

ݐ																																	0							 ൏ 0
                                                                             (4.10) 

Note that the waiting time distribution function ܹሺݐሻ depends only on the distribution 

function ܷሺݔሻ, rather than on the individual distribution function ܳሺݐሻ and ܲሺݐሻ, and the 

(4.9) and (4.10) is an integral equation of the Wiener-Hopf type. 

It is further assumed that the ܷ௡s are i.i.d. random variables, which can only assume the 

values –݃ߜ, ሺെ݃ ൅ 1ሻߜ,… ,0, ,ߜ ,ߜ2 … ,  where ݃ and ݄ are integers. Without loss of ,ߜ݄

generality, we take ߜ ൌ 1  by choosing ߜ as the time unit, these time values become integers. 

Our aim is to find the waiting-time in equilibrium, which can assume only the values 

0, 1, 2, ….  
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4.2 Wiener-Hopf Factorization Method 

In this section, we introduce one of the most important factorization methods which is known 

as the Wiener-Hopf factorization method. 

As we mentioned in section 4.1, Lindley’s integral equation, as given by (4.9) or (4.10), is of 

Wiener-Hopf type; therefore, using Wiener-Hopf factorization method becomes the intuitive 

approach.   

The Wiener-Hopf factorization ultimately facilitates us to determine the actual distributions 

of limiting waiting and idle times. This factorization also involves the difficult task of 

locating zeros of a complex function. As it will be shown, this method can be used to solve 

the waiting time distribution for both continuous GI/G/1 queues and discrete GI/G/1 queues. 

In particular, based on the Wiener-Hopf factorization technique, a method was given in [12] 

to calculate the waiting time distribution for a discrete GI/G/1 queue and we present their 

method elaborately in this chapter. 

The powerful tool to link queueing theory and Wiener-Hopf factorization is the theory of 

random walks. Since our derivations are based on the Wiener-Hopf factorization of random 

walks, at first, it is necessary to briefly discuss how the Wiener-Hopf method factored the 

discrete version of Lindley’s equation.  

In our work, the waiting time is shown to be the maximum of a random walk sequence 

constrained at zero. The distribution of a maximum is related to ladder points and ladder 

heights of the random walks. 

Consider ሼܺ௡ሽ as a set of random variables. Then the discrete-time process ሼ ௡ܻ, ݊ ൌ 0, 1, … ሽ 

where 

଴ܻ ൌ 0, 

௡ܻ ൌ ଵܺ ൅ ܺଶ ൅ ⋯൅ ܺ௡  

     ൌ ௡ܻିଵ ൅ ܺ௡      ݊ ൌ 1, 2, … 
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is called a random walk on the real line. It may be thought of as a particle moving from a 

state ௡ܻିଵ at stage ݊ െ 1 to ௡ܻ at the next stage by an amount ܺ௡. 

Therefore, in our case, ௡ܹ is the maximum of partial sums of ܷ௡	, ܷ௡ିଵ, … , ଵܷ. We also have 

assumed that the queue begins in an empty state, so that ଴ܹ ൌ 0. Thus,	 ௡ܹ is also a random 

walk. However, in section 4.1, we already defined, ܷ௡ ൌ ܵ௡ െ ௡ܶ to be the difference 

between the service time of customer ܥ௡, and the interarrival time of the ܥ௡ and ܥ௡ାଵ 

customers, and ௡ܹ to be the waiting time (in queue) for  ݊th customer.  

One commonly uses the following definitions from [9]: 

Definition 4.2.2: Consider the sequence of the points ሺ݊	, ௡ܻሻ for ൌ 1, 2,… ; the first strict 

ascending ladder point ሺߚଵ, ଵሻ is the first term in the above sequence for which ௡ܻߛ ൐ 0, i.e. 

ሼߚଵ ൌ ݊ሽ ൌ ሼ ଵܻ ൑ 0, ଶܻ ൑ 0,… , ௡ܻିଵ ൑ 0, ௡ܻ ൐ 0ሽ and ߛଵ ൌ ఉܻభ.  

 The variable ߚଵ is called first ladder epoch, ߛଵ is the first ladder height. 

Definition 4.2.3: Consider the sequence of the points ሺ݊	, ௡ܻሻ for ൌ 1, 2,… ; the first weak 

descending ladder point	ሺߚଵതതത, ଵഥߛ ሻ is the first term in the sequence for which ௡ܻ ൑ 0, i.e. 

൛ߚଵതതത ൌ ݊ൟ ൌ ሼ ଵܻ ൐ 0, ଶܻ ൐ 0,… , ௡ܻିଵ ൐ 0, ௡ܻ ൑ 0ሽ and ߛଵഥ ൌ ܻఉభതതതത.  

Definition 4.2.4: A probability distribution function ܨ is defective if ܨሺ∞ሻ ൏ 1, and its 

defect is defined to be 1 െ  .ሺ∞ሻܨ

Let ܪ௡ሺݔሻ and ܬ௡ሺݔሻ be the joint distribution function of ሺߚଵ, ,ଵതതതߚଵሻ and ሺߛ ଵഥߛ ሻ, then  

ሻݔ௡ሺܪ  ൌ ଵߚሼݎܲ ൌ ݊, ଵߛ ൑ ;ሽݔ ݔ	 ൐ 0 

 and 

ሻݔ௡ሺܬ   ൌ ଵതതതߚ൛ݎܲ ൌ ݊, ଵഥߛ ൑ ;ൟݔ ݔ	 ൑ 0. 

The marginal distributions are given by  

ଵߚሼݎܲ ൌ ݊ሽ ൌ ,	௡ሺ∞ሻܪ ݊ ൌ 1, 2, … , 
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ଵߛ	ሼݎܲ ൑ ሽݔ ൌ 	∑ ሻஶݔ௡ሺܪ
௡ୀଵ ൌ ݔ			ሻݔሺܪ ൐ 0  

 and 

ଵതതതߚ൛ݎܲ ൌ ݊ൟ ൌ ݊					௡ሺ∞ሻܬ ൌ 1, 2, …	 , 

ଵഥߛሼݎܲ ൑ ሽݔ ൌ ∑ ሻஶݔ௡ሺܬ
௡ୀଵ ൌ ݔ							ሻݔሺܬ ൑ 0 . 

The random variables ߚଵ, ଵ have the same defect 1ߛ െ ,ଵതതതߚ  ሺ∞ሻ, andܪ ଵഥߛ  have the same 

defect, 1 െ  .ሺ∞ሻܬ

The section of the random walk ൫0, ௝ܻାଵ െ	 ௝ܻ, … , ௞ܻ െ ௝ܻ൯			݇ ൒ ݆ following the first ladder 

point is a probabilistic replica of the whole random walk. Its first ladder point is the second 

point of the whole random walk with the property that ௡ܻ ൐ ଴ܻ, ௡ܻ ൐ ଵܻ, …	, ௡ܻ ൐ ௡ܻିଵ, and it 

is called the second strict ascending ladder point of the entire random walk. It has the form 

ሺߚଵ ൅ ,ଶߚ ଵߛ	 ൅ ,ଵߚ) ଶሻ.The pairsߛ ,ଶߚଵሻ and ሺߛ  .ଶሻ are i.i.dߛ

Similarly, we can define rth ascending ladder point (if it exists), and obviously it is in the 

form of  ሺߚଵ ൅ ଶߚ ൅ ⋯൅ ,	௥ߚ ଵߛ ൅ ଶߛ ൅ ⋯൅ ,௞ߚ௥ሻ and the pairs ሺߛ ݇		௞ሻߛ ൌ 1, 2, … ,  are ݎ

mutually independent and have the common distribution function ܪ௡ሺݔሻ. The expected 

number of ladder points in ሺ0, ݔሿ  ሺݔ ൒ 0ሻ	can be found as  

Ψሺݔሻ ൌ ∑ ሻஶݔ௡ሺ∗ܪ
௡ୀ଴   

where ܪ∗଴ሺݔሻ and Ψ଴ሺݔሻ are defined as 

Ψ଴ሺݔሻ ൌ ሻݔ଴ሺ∗ܪ ൌ 	 ቄ1				ݔ ൒ 0
ݔ				0 ൏ 0

  

Since the strict ascending ladder heights form a renewal process, one can obtain by using the 

renewal equation (Feller [9], page 359), 

Ψሺݔሻ ൌ 	Ψ଴ሺݔሻ ൅ ׬ Ψሺݔ െ ሻݕሺܪሻ݀ݕ
௫
଴     

  or 

Ψ ൌ Ψ଴ ൅ Ψ ∗  (4.11)                                                                                                              . ܪ
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Furthermore, a relation between Ψ and ܬ exists as given by the following theorem: 

Theorem 4.1: If ܭሺݔሻ ൌ ሼܺ௞ݎܲ ൑ ,ሽݔ ݇ ൌ 0, 1, 2, …, then 

ሻݔሺܬ ൌ ׬ ݔሺܭ െ ሻ݀ݕ
ஶ
଴శ Ψሺݕሻ		ݔ ൑ 0                                                                                   (4.12) 

 and 

Ψሺݔሻ ൌ 	Ψ଴ሺݔሻ െ ሺ0ሻܬ ൅ ׬ ݔሺܭ െ ሻ݀ݕ
ஶ
଴శ Ψሺݕሻ			ݔ ൐ 0 .                                                   (4.13) 

Proof:  (see [9] chap. XII. Section 3) 

Since ܬሺݔሻ ൌ ݔ  ሺ0ሻ  forܬ ൒ 0 and Ψሺݔሻ ൌ 0 for ݔ ൑ 0, then (4.12) and (4.13) can be written 

as  

ሻݔሺܬ  ൅ 	Ψሺݔሻ ൌ 	Ψ଴ሺݔሻ ൅ Ψ ∗  ሻ .                                                                               (4.14)ݔሺܭ

Equation (4.14) is called the Wiener-Hopf factorization equation. 

Using the renewal equation (4.11) and convolving (4.14) with Ψ଴ െ  we have ,ܪ

ሺܬ ൅ Ψሻ ∗ ሺΨ଴ െ ሻܪ ൌ ሺΨ଴ ൅ Ψ ∗ ሻܭ ∗ ሺΨ଴ െ  .ሻܪ

Hence, 

ܬ  ∗ Ψ଴ െ ܬ ∗ ܪ ൅ Ψ ∗ Ψ଴ െ Ψ ∗ ܪ ൌ Ψ଴ ∗ Ψ଴ െ Ψ଴ ∗ ܪ ൅ Ψ ∗ ܭ ∗ Ψ଴ െ Ψ ∗ ܭ ∗  .ܪ

Finally, we have 

ܭ ൌ ܪ ൅ ܬ െ ܬ ∗  (4.15)                                                                                                           . ܪ

Let ܭ∗ሺݏሻ,   ሻ be the two-sided Laplace-Stieltjes transform (LST) ofݏሺ∗ܬ ሻ andݏሺ∗ܪ

,ሻݔሺܭ  ሻ respectively, and take the Laplace-Stieltjes transform on both sides ofݔሺܬ ሻ andݔሺܪ

Eq. (4.15), one has 

ሻݏሺ∗ܭ ൌ ሻݏሺ∗ܪ ൅ ሻݏሺ∗ܬ െ  ሻ .                                                                             (4.16)ݏሺ∗ܪሻݏሺ∗ܬ

This gives 

൫1 െ ሻ൯ݏሺ∗ܭ ൌ ൫1 െ ሻ൯ሺ1ݏሺ∗ܪ െ  ሻሻ.                                                                          (4.17)ݏሺ∗ܬ
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Definition 4.2.5: Laplace transform: Let ݂ሺݐሻ be a real-valued function defined on the 

interval 0 ൑ ݐ ൏ ∞. The Laplace transform (LT) of  ݂ is 

ࣦሼ݂ሺݐሻ	ሽ ≡ ݂ሺ̅ݏሻ ≡ ׬ ݁ି௦௧݂ሺݐሻ݀ݐ
ஶ
଴ , where  ݏ is a complex variable. 

Definition 4.2.6: Laplace-Stieltjes transform: Let ܨሺݐሻ be a real-valued function defined 

on the interval 0 ൑ ݐ ൏ ∞. The Laplace-Stieltjes transform (LST) of  ܨሺݐሻ is 

ࣦ∗ሼܨሺݐሻ	ሽ ≡ ሻݏሺ∗ܨ ≡ ׬ ݁ି௦௧݀ܨሺݐሻ
ஶ
଴ . We consider ܨሺݐሻ to be the CDF of a nonnegative 

random variable ܺ, so ܨ∗ሺݏሻ ≡ ሾ݁ି௦௑ሿܧ ൌ ׬ ݁ି௦௧݀ܨሺݐሻ
ஶ
଴ . 

Laplace transform is useful in solving the differential equations and also used for 

transforming the continuous function. Two useful properties of Laplace transform are the 

following:  

First, there is a one-to-one correspondence between probability distributions and their 

transforms. Thus a  probability distribution can be uniquely determined from its LST. 

Second, the LST of the convolution of independent random variables is the product of the 

LSTs of the individual random variables. That is, if ܨ∗ሺݏሻ is the LST of ܺ and ܩ∗ሺݏሻ is the 

LST of ܻ, then ܨ∗ሺݏሻܩ∗ሺݏሻ is the LST of ܺ ൅ ܻ, provided ܺ and ܻ are independent. Because 

the inverse of the LST is unique, this allow one to determine the distribution of a sum of 

random variables by inverting the LST resulting from the product of individual LSTs. 

The LST of a random variable evaluated at ݏ is the same as its moment generating function 

evaluated at –  .is a complex variable ݏ where ,ݏ

Definition 4.2.7: Moment Generating Function (MGF): If ܺ is a random variable with 

CDF ܨሺݔሻ, then 

ሻݐ௑ሺܯ ≡ ሾ݁௧௑ሿܧ ൌ ׬ ݁௧௫݀ܨሺݔሻ
ஶ
଴  . This is similar to the LST, but with ݐ replacing –  In .ݏ

other words, ܯ௑ሺݐሻ ൌ  .ሻݐሺെ∗ܨ

Moment generating functions have properties similar to Laplace transform. In particular,  

there is a one-to-one correspondence between moment generating functions and probability 
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distribution, and the MGF of the sum of independent random variables is the product of the 

MGFs of the individual random variables. 

However, as shown in [9], because of (4.3), ܬሺݔሻ surprisingly gives the idle time distribution. 

For the waiting time distribution, we have the following result: 

Proposition 4.2.1: The waiting time distribution is the same as the distribution of the 

maximum of the random walk ሼ ௡ܻሽ. The distribution is given as  

ܹሺݐሻ ൌ ሾ1 െ ∑ሺ∞ሻሿܪ ሻஶݐ௡ሺ∗ܪ
௡ୀ଴   

         ൌ ሾ1 െ  ሻ,                                                                                                  (4.18)ݐሺߖሺ∞ሻሿܪ

where ߖሺݐሻ is completely determined by ܪሺݐሻ, because it is the renewal measure generated 

by ܪሺݐሻ. 

The Wiener-Hopf factorization in Eq. (4.15) can be used for both discrete and continuous 

cases, but for numerical application purposes, we consider a discrete GI/G/1 queue. Eq.(4.16) 

is derived by taking the LST on both sides of Eq. (4.15), therefore this relation in (4.16) is 

Wiener-Hopf factorization for continuous case. On the other hand, the Z-transform plays an 

important role in discrete analysis. Its role in discrete analysis is same as that of Laplace 

transform in continuous system. Thus, if we use Z-transform in a function that we get by 

using Laplace transforms in (4.16), we can get a relation for Wiener-Hopf factorization in 

discrete case.  

Definition 4.2.8: Z-transform: In Mathematics and signal processing, the Z-transform 

converts a discrete-time domain signal, which is a sequence of real or complex numbers, into 

a complex frequency domain representation. The Z-transform of a sequence ሼݔ௡ሽ is denoted 

as ܼሾሼݔ௡ሽ	ሿ. It is defined as  

ܼሾሼݔ௡ሽ	ሿ ൌ ܺሺݖሻ ൌ ∑ ௡ஶିݖ௡ݔ
௡ୀିஶ  , where ݖ is a complex number and ܺሺݖሻ is the Z-transform 

of ሼݔ௡ሽ.  

We already defined the generating function and probability generating function in definition 

2.15 of chapter 2. The generating function is closely related to the one sided z-transform and 

defined as ∑ ௡ஶିݖ௡ݔ
௡ୀ଴ . On the other hand, the probability generating function for an integer-
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valued random variable is similar to the moment generating functions, but with ݖ replacing 

݁௧, i.e. ܺሺݖሻ ≡ ሻݐ௑ሺܯ ௑ሿ. In definition 4.2.5, we defineݖሾܧ ≡ ሾ݁௧௑ሿܧ ൌ ׬ ݁௧௫݀ܨሺݔሻ
ஶ
଴ . If we 

use Z-transform in this relation, we get ܺሺ݁ି௧ሻ ൌ ∑ ሺ݉ሻ݁௧௠ஶݔ
௠ୀ଴ , which implies 

ܺሺݖሻ ൌ ∑ ௠ஶିݖሺ݉ሻݔ
௠ୀ଴ , by replacing ݁ି௧ with z and we assume ݉ to take integer values 

from 0 to ∞.  

According to the definition of random walk,  the strict ascending ladder heights and the weak 

descending ladder heights, we construct the following probability distribution functions:  

௜ݑ ൌ ሼܷ௞ݎܲ ൌ ݅ሽ         െ݃ ൑ ݅ ൑ ݄ 

௜ߙ ൌ ௞ߛሼݎܲ ൌ ݅ሽ         ݅ ൌ 1, 2, … 

ܾ௜
ᇱ ൌ ௞തതതߛሼݎܲ ൌ െ݅ሽ and ܾ௜ ൌ ܾି௜

ᇱ ൌ ௞തതതߛሼݎܲ ൌ ݅ሽ      ݅ ൌ 0, 1, … 

and also define the following probability generating function for the random variables	ܷ, ܣ,  

and ܤ, respectively: 

ܷሺݖሻ ൌ ∑ ௜ݖ௜ݑ
ஶ
௜ୀିஶ ሻݖሺܣ ,  ൌ ∑ ௜ݖ௜ߙ

ஶ
௜ୀଵ , and ܤሺݖሻ ൌ ∑ ܾ௜ݖ௜

ஶ
௜ୀ଴ .  

Here ܣ is the strong ascending ladder height and ܤ is the weak descending ladder height, and 

  .is a complex number ݖ

Now, using Z-transform in Eq. (4.16), we get the following relation 

ܷሺݖሻ ൌ ሻݖሺܣ ൅ ሺ1ܤ ⁄ݖ ሻ െ ሺ1ܤሻݖሺܣ ⁄ݖ ሻ                                                                            (4.19) 

which is equivalent to  

1 െ ܷሺݖሻ ൌ ൫1 െ ሻ൯൫1ݖሺܣ െ ሺ1ܤ ⁄ݖ ሻ൯                                                                              (4.20) 

which is known as the Wiener-Hopf factorization of ܷሺݖሻ in discrete case for the GI/G/1 

queue. We discuss more about the use of Wiener-Hopf factorization in (4.20), in the 

following section. 

 By equating the coefficients of  ݖ௝, ݆ ൌ 0,1, 2, … and ିݖ௝, ݆ ൌ 1, 2, …, we get 
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௝ݑ ൌ ௝ߙ െ ∑ ܾ௜
ᇱ଴

௜ୀିஶ   ௝ି௜ߙ

     ൌ ௝ߙ െ ∑ ܾି௜
ᇱஶ

௜ୀଵ ௝ା௜ߙ െ ܾ଴
ᇱߙ௝ 

    ൌ ௝ߙ െ ∑ ௝ା௜ܾ௜ߙ
ஶ
௜ୀଵ െ ܾ଴ߙ௝  ,                                                                                          (4.21) 

 or, 

௝ߙ ൌ ൫ݑ௝ ൅ ∑ ௝ା௜ܾ௜ߙ
ஶ
௜ୀଵ ൯ ሺ1 െ ܾ଴ሻ⁄   

 and 

௝ିݑ ൌ ܾି௝
ᇱ െ ∑ ܾି௝ି௜

ᇱஶ
௜ୀଵ ௜ ൌߙ ௝ܾ െ ∑ ௝ܾା௜ߙ௜

ஶ
௜ୀଵ  , 

or, ௝ܾ ൌ ௝ିݑ ൅ ∑ ௝ܾା௜ߙ௜
ஶ
௜ୀଵ  .                                                                                               (4.22) 

Depending on the above derivation of Wiener –Hopf factorization, the following theorem 

was proposed in [12], 

Theorem 4.2: (Wiener –Hopf factorization)  

For ߩ ൏ 1 ሺ	݁ݎ݄݁ݓ	ߩ ൌ ߣ ⁄ߤ ሻ there exists a unique defective distribution given by                         

௜ߙ ൌ ܣሼݎܲ ൌ ݅ሽ, ݅ ൐ 0, and a unique proper distribution given by ܾ௜ ൌ ܤሼݎܲ ൌ ݅ሽ, ݅ ൒ 0 such 

that,  

௝ܾ ൌ ௝ିݑ ൅ ∑ ,௜ܾ௜ା௝ߙ ݆ ൌ 0, 1, … , ݃ஶ
௜ୀଵ                                                                              (4.23) 

௝ߙ ൌ
௨ೕା∑ ఈ೔శೕ௕೔

ಮ
೔సభ

ଵି௕బ
, ݆ ൌ 1, 2, … , ݄.                                                                                     (4.24) 

The Wiener-Hopf factorization of ܷሺݖሻ is as follows,   

1 െ ܷሺݖሻ ൌ ൫1 െ ሻ൯ሺ1ݖሺܣ െ ሺ1ܤ ⁄ݖ ሻሻ                                                                              (4.25) 

with 

ሻݖሺܣ ൌ ∑ ௜ݖ௜ߙ
ஶ
௜ୀଵ  and  ܤሺݖሻ ൌ ∑ ܾ௜ݖ௜

ஶ
௜ୀ଴                                                                           (4.26)                         
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Eq. (4.23) and (4.24) can easily be derived similar to Eq. (4.21) and (4.22), which represent 

the Wiener-Hopf factorization for the discrete case and they also can easily derived from 

([9], page 400).  

Since we considering the waiting time distribution of the arithmetic GI/G/1 queue, when 

queue is bounded on a finite interval, for that reason, we assume ܷሺݖሻ ൌ ∑ ௜ݖ௜ݑ
௛
௜ୀି௚ 	where 

we set ݑ௜ ൌ 0 for ݅ ൏ െ݃ and ݅ ൐ ݄. This convention allows us to make the sum from െ∞ to 

൅∞. 

Moreover,  we consider ݓ௜ ൌ Pr	ሼܹ ൌ ݅ሽ is the equilibrium distribution of ௡ܹ and ܹሺݖሻ ൌ

∑ ௜ݖ௜ݓ
ஶ
௜ୀ଴  denote the probability generating functions (p.g.f) of the random variable ܹ. 

According to the discrete version of Lindley’s equation, ݓ௝ is given by 

௝ݓ ൌ ∑ ,௜ݑ௝ି௜ݓ ݆ ൐ 0௛
௜ୀି௚                                                                                                 

and                                                                                                                                     (4.27)  

଴ݓ ൌ ∑ ∑ ௜ݑ௞ݓ
ି௜
௞ୀ଴

଴
௜ୀି௚  (when there are no wait in queue), where we assume that  ݓ௞ ൌ 0 for 

݇ ൏ 0.  

Theorem 4.2 is helpful to find the solution of (4.27). 

Example 4.2.1: To understand clearly the formation of Lindley’s equation in our case, which 

is given by equation (4.27), consider a transition matrix say, ܯ of ܷ where service time and 

interarrival time are discrete, and also consider, ݃ ൌ ݄ ൌ 2,  

                                                        ܵ 

                                           0									1								2							3						4              

            ܶ                 

4

3

2

1

0

       

012

1012

21012

2101

210

00

0

0

00

uuu

uuuu

uuuuu

uuuu

uuu








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Here, the columns represent the service time and the rows represent the interarrival time.                         

Suppose ܯݓ ൌ  .denotes the above transition matrix ܯ in an equilibrium situation, where ݓ

Then, ሾݓ଴, ,ଵݓ … ሿܯ ൌ ሾݓ଴,ݓଵ, … ሿ.  

Now, if we use the second column, we get 

ଵݓ ൌ ଵݑ଴ݓ ൅ ଴ݑଵݓ ൅ ଵିݑଶݓ ൅ ଶିݑଷݓ ൌ ∑ ௜ݑଵି௜ݓ
ଶ
௜ୀିଶ  , which is same as ݓ௝	in equation 

(4.27) when ݆ ൌ 1. 

4.3 Our Explanation for using the Wiener-Hopf Factorization Method in ૚ െ  ሻࢠሺࢁ

Consider an expression in terms of a power series of	ܷሺݖሻ for െ݃ ൑ ݅ ൑ ݄ and expand it 

after using the Z-transform,   

ܷሺݖሻ ൌ ௚ݖ௚ିݑ ൅ ⋯൅ ଶݖଶିݑ ൅ ଵݖଵିݑ ൅ ଴ݖ଴ݑ ൅ ଵିݖଵݑ ൅ ଶିݖଶݑ ൅ ⋯൅  ௛             (4.28)ିݖ௛ݑ

If we substitute ݖ ൌ ଵ

௭
 in (4.28), we get the following relation for ܷሺݖሻ,  

ܷ ቀଵ
௭
ቁ ൌ ௚ିݖ௚ିݑ ൅ ⋯൅ ଶିݖଶିݑ ൅ ଵିݖଵିݑ ൅ ଴ݖ଴ݑ ൅ ଵݖଵݑ ൅ ଶݖଶݑ ൅ ⋯൅   ௛ݖ௛ݑ

This series in (4.28) is known as Laurent’s series that contains negative and positive finite 

powers of ݖ. The series	ܷሺݖሻ converges when 0 ൏ |ݖ| ൑ 1. 

Moreover, if we consider ܷ ቀଵ
௭
ቁ ൌ ܴሺݖሻ, then we will get ܴሺݖሻ ൌ ∑ ௜ݖ௜ݎ

௛
௜ୀି௚ , where ܴሺݖሻhas 

the same form of a probability generating function. 

We have from (4.19), 

ܷሺݖሻ ൌ ሻݖሺܣ ൅ ሺ1ܤ ⁄ݖ ሻ െ ሺ1ܤሻݖሺܣ ⁄ݖ ሻ which is known as the Wiener-Hopf factorization of 

ܷሺݖሻ in discrete case for the GI/G/1 queue. Then, we get (4.20), after factoring the above 

relation which is 

1 െ ܷሺݖሻ ൌ ൫1 െ ሻ൯൫1ݖሺܣ െ ሺ1ܤ ⁄ݖ ሻ൯. The main reason of factoring Eq. (4.19) is to obtain 

two separate expressions for ܣሺݖሻ and	ܤሺ1 ⁄ݖ ሻ in R.H.S. Surprisingly, it is factored in such a 

way that ൫1 െ ሺ1ܤ ⁄ݖ ሻ൯ contains the constant and positive powers of ݖ and ൫1 െ  ሻ൯ݖሺܣ

contains the negative powers of ݖ.  
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Clearly, (4.28) is equivalent to  

1 െ ܷሺݖሻ ൌ 1 െ ௚ݖ௚ିݑ െ ⋯െ ଶݖଶିݑ െ ଵݖଵିݑ െ ଴ݖ଴ݑ െ ଵିݖଵݑ െ ଶିݖଶݑ െ ⋯െ   .௛ିݖ௛ݑ

and (4.20) can also be expressed in the following way 

1 െ ௚ݖ௚ିݑ െ ⋯െ ଶݖଶିݑ െ ଵݖଵିݑ െ ଴ݖ଴ݑ െ ଵିݖଵݑ െ ଶିݖଶݑ െ ⋯െ ௛ିݖ௛ݑ ൌ ሺ1 െ ଵିݖଵߙ െ

ଶିݖଶߙ െ ⋯െ ௛ሻሺ1ିݖ௛ߙ െ ܾ଴ െ ܾଵݖଵ െ ܾଶݖଶ െ ⋯െ ܾ௚ݖ௚ሻ                                             (4.29) 

where 	ܷሺݖሻ ൌ ∑ ௜ିݖ௜ݑ
௛
௜ୀି௚ ሻݖሺܣ , ൌ ∑ ௜ିݖ௜ߙ

௛
௜ୀଵ  and  ܤሺݖሻ ൌ ∑ ܾ௜ିݖ௜

௚
௜ୀ଴ . 

Previously, we discussed how to convert a moment generating function of the continuous 

case to the discrete case, by using the Z-transformation. Moreover, we defined 	ܺሺݖሻ ൌ

∑ ௡ஶିݖ௡ݔ
௡ୀ଴  and clearly ܺሺ1 ⁄ݖ ሻ ൌ ∑ ௡ஶݖ௡ݔ

௡ୀ଴ . It is also noticed that in moment generating 

function ܯ௑ሺݐሻ ≡ ሾ݁௧௑ሿܧ ൌ ׬ ݁௧௫݀ܨሺݔሻ
ஶ
଴ , if ݐ ൏ 0, then ݁௧ converges inside the unit circle 

and if ݐ ൐ 0, then ݁௧ converges outside the unit circle. Furthermore, we know that a 

probability generating function converges inside the unit circle and therefore, ܺሺ1 ⁄ݖ ሻ ൌ

∑ ௡ஶݖ௡ݔ
௡ୀ଴ , will converge inside the unit circle. On the other hand, it is clear that the function 

we get by using Z-transformation,	ܺሺݖሻ ൌ ∑ ௡ஶିݖ௡ݔ
௡ୀ଴ , will  converge outside the unit circle. 

Moreover, in the property of the Z-transform, it is assured that the Z-transform of a causal 

sequence converges outside the unit circle. 

The number of degree in 1 െ ܷሺݖሻ is ݃ ൅ ݄. Among the two factors in R.H.S of (4.29), 

clearly ܣሺݖሻ has the same formation as the Z-transform, thus it converges outside the unit 

circle and contains ݄ zeros in ሼ:ݖ	ݖ|| ൐ 1ሽ that means ݄ zeros lie outside the unit circle. On 

the other hand, ܤሺ1 ⁄ݖ ሻ converges inside the unit circle and it contains ݃ zeros where ݃ zeros 

in ሼ:ݖ	ݖ|| ൏ 1ሽ which means that ݃ zeros lie inside or on the unit circle. Therefore, by using 

the Wiener-Hopf Factorization method in (4.29), we also can locate the zeros inside and 

outside of the unit circle easily. 

The Wiener-Hopf factorization given by theorem 4.2 have some probabilistic interpretations; 

 .is the weak descending ladder height ܤ is the strong ascending ladder height and ܣ

Moreover, ߙ௜ is the probability that the server remains busy (always have a queue) and ௝ܾ is 

the probability that the server remains idle. It is very interesting to notice that ߙ௜ and ௝ܾ in 
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Eq. (4.21) and (4.22) also have some probabilistic interpretations as indicated in [11] and 

[13]. For example, 	ߙ௜  is interpreted as the probability that the system goes from state ݆ െ ݅ 

to state ݆ without visiting any state ݇ ൏ ݆ in between. 

Therefore, the Wiener-Hopf factorization method is significant in research on queueing 

systems.  

Moreover, Equation (4.23) and (4.24) represent the solutions of Wiener-Hopf factorization 

for the discrete case can easily be derived from equation (4.25) by equating the coefficients 

of  ݖ௝, ݆ ൌ 1, 2, … , ݄ and ିݖ௝, ݆ ൌ 0, 1, 2, … , ݃ if we expand (4.25) as the form of a p.g.f in the 

following way: 

Table 4.1  Results by equating the coefficients of ࢐ࢠ  and ࢐ିࢠ of Eq. (4.25) 

              L.H.S                   R.H.S 

Constant 

power of  ݖ 

1 െ  ଴ݑ
ሺ1 െ ܾ଴ሻ ൅෍ߙ௜ܾ௜

ஶ

௜ୀଵ

 

 ௝ିݑ௝ െିݖ
෍ߙ௜ܾ௜ା௝ െ ௝ܾ

ஶ

௜ୀଵ

 

 ௝ݑ௝                   െݖ
ሺ1 െ ܾ଴ሻߙ௝ ൅෍ߙ௜ା௝ܾ௜

ஶ

௜ୀଵ

 

 

Therefore, by equating the coefficients of  ିݖ௝ , we get 

െିݑ௝ ൌ ∑ ௜ܾ௜ା௝ߙ െ ௝ܾ
ஶ
௜ୀଵ  which implies ௝ܾ ൌ ௝ିݑ ൅ ∑ ,௜ܾ௜ା௝ߙ ݆ ൌ 0, 1, … , ݃ஶ

௜ୀଵ ,  

and by equating the coefficients of ݖ௝, we have 

െݑ௝ ൌ ሺ1 െ ܾ଴ሻߙ௝ ൅ ∑ ௜ା௝ܾ௜ߙ
ஶ
௜ୀଵ  which implies ߙ௝ ൌ

௨ೕା∑ ఈ೔శೕ௕೔
ಮ
೔సభ

ଵି௕బ
, ݆ ൌ 1, 2, … , ݄. 

Example 4.3.1: To clarify the solution of Wiener-Hopf factorization, let us discuss it with an 

example by representing (4.25) as a matrix notation, where we consider  ݃ ൌ 2  and ݄ ൌ 3: 
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 																																																																						1 െ ܾ଴ 													ܾଵ 									ܾଶ 

                                               
െߙଵ
െߙଶ
െߙଷ

    
െߙଵሺ1 െ ܾ଴ሻ 	െߙଵܾଵ െߙଵܾଶ
െߙଶሺ1 െ ܾ଴ሻ 		െߙଶܾଵ െߙଶܾଶ
െߙଷሺ1 െ ܾ଴ሻ 		െߙଷܾଵ െߙଷܾଶ

 

 

Here, ߙ௝, ݆ ൌ 1, 2, 3 is the coefficients of ݖ௝ and ௝ܾ , ݆ ൌ 0, 1, 2 is the coefficients of ିݖ௝. To 

get ݑ଴, we have to add  all  the coefficients of ݖ଴ diagonally, from the above matrix, which 

are definitely the constant part of (4.25). Moreover, we can get (4.24) for ݆ ൌ 1 by equating 

the coefficients of ݖଵ and adding them together. If we add all coefficients of ିݖଵ, we get 

(4.23) for ݆ ൌ 1.  

Once ߙ௜ are found, the waiting time distribution can be obtained without difficulties, as the 

following theorem shows and we give our explanation to proof it: 

Theorem 4.3:  The probability generating function (p.g.f) ܹሺݖሻ is given by 

ܹሺݖሻ ൌ ଴ݓ ሺ1 െ ⁄ሻሻݖሺܣ  ,                                                                                                  (4.30)    

or, 

௜ݓ ൌ 0	when ݅ ൏ 0,   

଴ݓ ൌ 1 െ ଵߙ െ ଶߙ െ⋯െ  ௛ ,                                                                                           (4.31)ߙ

௜ݓ ൌ ∑ ௝ߙ௜ି௝ݓ
௛
௝ୀଵ      ݅ ൐ 0.                                                                                                (4.32) 

Proof: Eq. (4.32) is the discrete version of Eq. (4.18). Eq. (4.32) can be found directly by 

applying the Wiener- Hopf method to solve Lindley’s equation. 

Furthermore, Eq. (4.30) and (4.31) can be derived from (4.32) by using p.g.f  ܹሺݖሻ and the 

fact   ∑ ௜ݓ ൌ 1ஶ
௜ୀ଴ . The derivation of (4.30) is shown as follows,  

ܹሺݖሻ ൌ ∑ ௜ݖ௜ݓ
∞
௜ୀ଴   

												ൌ ଴ݓ ൅ ∑ ௜ݖ௜ݓ
∞
௜ୀଵ   
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          ൌ ݓ଴ ൅ ∑ ሺ∑ ௝ߙ௜ି௝ݓ
௛
௝ୀଵ ሻ∞

௜ୀଵ ௜ݓ ,௜  [Sinceݖ ൌ ∑ ௝ߙ௜ି௝ݓ
௛
௝ୀଵ ] 

          ൌ ଴ݓ ൅ ∑ ௝ߙ
௛
௝ୀଵ ∑ ௜ݖ௜ି௝ݓ

∞
௜ୀଵ   

          ൌ ଴ݓ ൅ ∑ ௝ߙ
௛
௝ୀଵ ∑ ௞ା௝ݖ௞ݓ

∞
௞ୀ଴     [By replacing ݅ െ ݆ by ݇] 

          ൌ ଴ݓ ൅ ∑ ௝ߙ
௛
௝ୀଵ ∑௝ሺݖ ௞ݖ௞ݓ

∞
௞ୀ଴ ሻ  

          ൌ ଴ݓ ൅  .ሻݖሻܹሺݖሺܣ

Rearranging the relation, we get 

ܹሺݖሻ൫1 െ ሻ൯ݖሺܣ ൌ   ,଴ݓ

Thus, ܹሺݖሻ ൌ ௪బ
ሺଵି஺ሺ௭ሻሻ

   which is our Eq.(4.30). 

We know the p.g.f of ܹ is  ܹሺݖሻ ൌ ∑ ௜ݖ௜ݓ
∞
௜ୀ଴  and we can write this in the following way 

ܹሺݖሻ ൌ ଴ݓ ൅ ݖଵݓ ൅⋯൅ ௛ݖ௛ݓ ൅ ⋯ , where ܹሺݖሻ is analytic in |ݖ| ൏ 1. Thus the series 

converges when |ݖ| ൑ 1. 

In order to interpret the formation of Eq. (4.30), we consider  

ܹሺݖሻ൫1 െ ܷሺݖሻ൯ ൌ ܸሺݖሻ, where ܸሺݖሻ is such a function that satisfies this equation. 

Therefore, ሺݖሻ ൌ ௏ሺ௭ሻ

൫ଵି௎ሺ௭ሻ൯
 ൌ	 ௏ሺ௭ሻ

൫ଵି஺ሺ௭ሻ൯ሺଵି஻ሺଵ ௭⁄ ሻሻ
. 

As we know, ܹሺݖሻ is analytic in unit circle on L.H.S, so the R.H.S must be analytic in unit 

circle in the above relation. However, a rational function can be analytic if the denominator is 

not equal to zero inside the unit circle. We know that the zeros of ሺ1 െ ሺ1ܤ ⁄ݖ ሻሻ lie inside the 

unit circle in the denominator. On the other hand, we assume ܸሺݖሻ is a polynomial that also 

has the same number of zeros as ሺ1 െ ሺ1ܤ ⁄ݖ ሻሻ inside the unit circle. Therefore, we can 

cancel the common zeros from the numerator and denominator. Finally, the rest of the zeros 

in the numerator are considered together as a constant term, ݓ଴. Thus, ultimately we get 

ܹሺݖሻ ൌ ௪బ
ଵି஺ሺ௭ሻ

 which is clearly analytic in |ݖ| ൏ 1. Therefore, one needs to find  ߙ௜ to 

calculate the waiting time distribution as it is the probability that the system remains busy.  
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Definition 4.3.1: Analytic Function: A single valued function ݂ሺݖሻ which is differentiable 

at ݖ ൌ ݖ  ଴ is said to be Analytic at the pointݖ ൌ  .଴ݖ

By taking the first derivative of Eq. (4.30), in terms of ݖ and evaluating at ݖ ൌ 1, we can 

easily find the expectation of the waiting time,  

ܹሺݖሻ ൌ ௪బ
ଵି∑ ఈ೔௭೔

ಮ
೔సభ

ൌ ଴൫1ݓ െ ௜൯ݖ௜ߙ∑
ିଵ

 . 

ܹᇱሺݖሻ ൌ ଴ݓ ቂቄെ൫1 െ ௜൯ݖ௜ߙ∑
ିଶ
ቅ ∙ ൛െ∑  , ௜ିଵൟቃݖ௜ߙ݅

           ൌ ௪బ∙∑ ௜ఈ೔௭೔షభ

൫ଵି∑ఈ೔௭೔൯
మ  . 

By putting  ݖ ൌ 1, we get 

ܹᇱሺ1ሻ ൌ ሺܹሻܧ ൌ ௪బ.∑ ௜ఈ೔
௪బమ

ൌ
∑ ௜ఈ೔
௪బ

  (since ݓ଴ ൌ 1 െ ∑ ௜ߙ
௛
௜ୀଵ ). 

Thus, ܧሺܹሻ ൌ ∑ ௜ߙ݅ ଴ൗݓ .  

In order to obtain the variance of the waiting time distribution, we are considering the p.g.f of 

ܹ which is  ܹሺݖሻ ൌ ∑ ௜ݖ௜ݓ
ஶ
௜ୀ଴ .  

By taking the first derivative of ܹሺݖሻ in terms of ݖ and evaluating at ݖ ൌ 1, we obtain,  

ܹᇱሺݖሻ ൌ ∑ ௜ିଵݖ௜ݓ݅
ஶ
௜ୀଵ  and  ܹᇱሺ1ሻ ൌ ሾܹሿܧ ൌ ∑ ௜ݓ݅

ஶ
௜ୀଵ . 

We need to take the second derivatives of ܹሺݖሻ in terms of ݖ and need to evaluate at ݖ ൌ 1, 

for calculating the variance of the waiting time; since we know, ܸܽݎ	ሾܺሿ ൌ ሾܺଶሿܧ െ  .ଶሾܺሿܧ

ܹᇱᇱሺݖሻ ൌ ∑ ݅ሺ݅ െ 1ሻݓ௜ݖ௜ିଶ
ஶ
௜ୀଶ  and ܹᇱᇱሺ1ሻ ൌ ሾܹሺܹܧ െ 1ሻሿ ൌ ∑ ݅ሺ݅ െ 1ሻݓ௜

ஶ
௜ୀଶ . 

Therefore, 

ሺܹሻݎܸܽ ൌ ሺܧሾܹଶሿ െ ሾܹሿሻܧ ൅ ሾܹሿܧ െ   ,ଶሺܹሻܧ

                ൌ ∑ ݅ሺ݅ െ 1ሻݓ௜
ஶ
௜ୀଶ ൅ ∑ ௜ݓ݅

ஶ
௜ୀଵ െ  ,ଶሺܹሻܧ
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                ൌ ∑ ݅ଶݓ௜
ஶ
௜ୀଶ െ ∑ ௜ݓ݅ ൅ ∑ ௜ݓ݅

ஶ
௜ୀଵ െ ଶሺܹሻஶܧ

௜ୀଶ , 

                ൌ ∑ ݅ଶݓ௜
ஶ
௜ୀଵ െ ଵݓ െ ∑ ௜ݓ݅ ൅ ଵݓ ൅ ∑ ௜ݓ݅

ஶ
௜ୀଵ െ ଶሺܹሻஶܧ

௜ୀଵ , 

                ൌ ∑ ݅ଶݓ௜
ஶ
௜ୀଵ െ  .ଶሺܹሻܧ

Finally, we note that ܤ represents the idle time, and the moments of the idle time can be 

found by straightforward calculation. From equation (4.26), it is easy to see that 

ሻݖሺܤ ൌ ∑ ܾ௜ݖ௜
ஶ
௜ୀ଴ . By differentiating with respect to ݖ, we get 

ሻݖᇱሺܤ ൌ ∑ ܾ݅௜
ஶ
௜ୀ଴ ݖ  ௜ିଵ. Now the moment of idle time atݖ ൌ 1 is ܧሺܤሻ ൌ ᇱሺ1ሻܤ ൌ ∑ ܾ݅௜

ஶ
௜ୀ଴ . 

4.4 Wiener-Hopf Factorization by Successive Substitution 

In this section, we will show a method to determine the ߙ௜ and ௝ܾ from (4.23) and (4.24). 

When doing this, one may conceivably obtain the wrong factorization. Hence, criteria to 

determine whether or not a given factorization is Wiener-Hopf, become important. In [12], 

the following conditions are sufficient to assure that a given factorization is the correct 

Wiener –Hopf factorization. 

Theorem 4.4: [Sufficient condition for Wiener –Hopf factorization] 

௜ߙ ൒ 0, ݅ ൌ 1,2, …                                                                                                               (4.33)                         

௝ܾ ൒ 0, ݆ ൌ 0,1,2,…                                                                                                            (4.34) 

∑ ௝ܾ
ஶ
௝ୀ଴ ൌ 1                                                                                                                         (4.35) 

To satisfy (4.34), set   ܵ ൌ 1 െ ܾ଴ ൌ ∑ ௝ܾ
ஶ
௝ୀଵ  and notice that ܽ௜ ൌ ௜ሺ1ߙ െ ܾ଴ሻ.  

If we consider, ܽ଴ ൌ ܾ଴, ܽ௜ ൌ ௜ሺ1ߙ െ ܾ଴ሻ, and ܵ ൌ 1 െ ܾ଴ ൌ 1 െ ܽ଴, and using these 

assumptions in Eq. (4.21) and (4.22) , we can get the two new solutions of Wiener –Hopf 

factorization,  which are as follows: 

 ௝ܽ ൌ ൫ݑ௝ ൅ ∑ ܽ௜ା௝ܾ௜
ஶ
௜ୀଵ ൯ ܵ⁄ 					݆ ൒ 0                                                                                 (4.36) 

 and 
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 ௝ܾ ൌ ௝ିݑ ൅ ∑ ܽ௜ܾ௜ା௝ ܵ				݆ ൒ 0				⁄ஶ
௜ୀଵ .                                                                                (4.37)   

The recursive equation (4.36) and (4.37) are the starting point of the algorithm 1 in [12]. In 

[12], they combine (4.21), (4.22) to give the following three algorithms in order to obtain ߙ௜ 

and ௝ܾ. Here we give a proof for Algorithm 1, where the solution obtained in this way always 

converges to the Wiener-Hopf factorization.  

Algorithm 1by [12]:   

1. ܽ௜
଴ ൌ 0,					݅ ൌ 1, 2, … , ݄ 

    ௝ܾ
଴ ൌ 0,					݆ ൌ 0, 1, 2, … , ݃ . 

2. For  ݉ ൌ 0, 1, 2, …  do the following until ݉ܽݔ൫หܽ௜
௠ െ ܽ௜

௠ାଵห൯ ൏ ߳. 

2.1. ௝ܾ
௠ାଵ ൌ ௝ିݑ ൅ ∑ ܽ௜

௠ܾ௜ା௝
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௜ୀଵ ,    ݆ ൌ 0, 1, … , ݃. 

2.2. ௝ܽ
௠ାଵ ൌ ௝ݑ ൅ ∑ ܽ௜ା௝

௠ ܾ௜
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௜ୀଵ ,      ݆ ൌ 1, 2, … , ݄. 

Proof:  We want to prove that the values of  ௝ܽ
௠ and ௝ܾ

௠ of Algorithm 1 converge to the 

Wiener-Hopf factorization.  

To see this, set up two sequences ሼܽ௜
௠ሽ  and  ሼܾ௝

௠ሽ as follows: 

1. For  ݆ ൌ 0, 1, … , ݃ and ݅ ൌ 1, 2, … , ݄; it is given that ௝ܾ
଴ ൌ 0 and ܽ௜

଴ ൌ 0. 

Define 

2.1.   ௝ܾ
௠ାଵ ൌ ௝ିݑ ൅ ∑ ܽ௜

௠ܾ௜ା௝
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௜ୀଵ  

2.2. ܽ௜
௠ାଵ ൌ ௜ݑ ൅ ∑ ܽ௞ା௜

௠ ܾ௞
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௞ୀଵ  and they work recursively in terms of m. 

Let ܽ௜ and ௝ܾ be the solutions of the Wiener-Hopf factorization, and let ܽ௜
௠ ൑ ܽ௜ for all m. 

We have, 

  ܽ௜
௠ାଵ ൌ ௜ݑ ൅ ∑ ܽ௞ା௜

௠ ܾ௞
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௞ୀଵ  
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                      ൑	ݑ௜ ൅ ∑ ܽ௞ା௜ܾ௞
ஶ
௞ୀଵ ሺ1 െ ܾ଴ሻ ൌ 	ܽ௜⁄  [from Eq. (4.36)]  

Thus,   ܽ௜
௠ାଵ ൑ ܽ௜   for all ݉ and clearly ܽ௜

௠ାଵ ൒ ܽ௜
௠.                                                     (4.38) 

 Similarly, for ൛ ௝ܾ
௠ൟ if ௝ܾ

௠ ൑ ௝ܾ, for all ݉, then 

௝ܾ
௠ାଵ ൌ ௝ିݑ ൅ ∑ ܽ௜

௠ܾ௜ା௝
௠ ሺ1 െ ܾ଴

௠ሻ⁄ஶ
௜ୀଵ   

            ൑ ௝ିݑ ൅ ∑
௔೔௕೔శೕ
ଵି௕బ

ஶ
௜ୀଵ ൌ ௝ܾ  

Correspondingly for ܽ௜, we also have 

ܽ௜
ሺ௠ାଵሻାଵ ൌ ௜ݑ ൅ ∑ ܽ௞ା௜

௠ାଵܾ௞
௠ାଵ ሺ1 െ ܾ଴

௠ାଵሻ⁄ஶ
௞ୀଵ  which implies ܽ௜

௠ାଶ ൒ ܽ௜
௠ାଵ.               (4.39)                         

Note: Let, ܾ଴
௠ ൑ ܾ଴ or, െܾ଴

௠ ൒ െܾ଴  

i.e. 1 െ ܾ଴
௠ ൒ 1 െ ܾ଴ or,   

ଵ

ଵି௕బ
೘ ൑ ଵ

ଵି௕బ
 . 

We now prove that ܽ௜
௠ାଵ ൒ ܽ௜

௠.  

This is clearly true for ݉ ൌ 0, because we get  ܽ௜
ଵ ൒ ܽ௜

଴ [This is also clear from step 1 and 

the 1st iteration]. 

We then use induction to prove it for all ݉. Suppose, the statement ܵሺ݉ሻ in our case is: 

ܵሺ݉ሻ ൌ 	ܽ௜
௠ାଵ ൒ ܽ௜

௠.                                                   

When ݉ ൌ 1, ܽ௜
ଶ ൒ ܽ௜

ଵ and consequently, the statement is also true for ݉ ൌ 1. 

Now, if  ܽ௜
௠ାଵ ൒ ܽ௜

௠ , then clearly, ܽ௜
௠ାଶ ൒ ܽ௜

௠ାଵ and similarly, we can show that ௝ܾ
௠ାଵ ൒

௝ܾ
௠ and ௝ܾ

௠ାଶ ൒ ௝ܾ
௠ାଵ. 

Thus, the statement is true by the principle of induction, which follows that  ܽ௜
௠ is bounded 

and monotonic with respect to	݉. In a similar way, we can show that  ௝ܾ
௠ is also bounded 

and monotonic. 

So, the sequences ሼܽ௜
௠ሽ and ሼܾ௝

௠ሽ converge to the Wiener-Hopf solution. 
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Algorithm 2 by [12]: 

௜ߙ .1
଴ ൌ 0, ݅ ൌ 1, 2, … , ݄. 

2. For  ݉ ൌ 0, 1, 2, …  do the following until ݉ܽݔ൫หܽ௜
௠ െ ܽ௜

௠ାଵห൯ ൏ ߳. 

2.1. ௝ܾ
௠ ൌ ௝ିݑ ൅ ∑ ௜ߙ

௠ିଵ
௝ܾା௜
௠ஶ

௜ୀଵ ,    ݆ ൌ ݃, ݃ െ 1,… , 0. 

2.2.  ܵ௠ ൌ ∑ ௝ܾ
௠ஶ

௝ୀଵ . 

௝ߙ  .2.3
௠ ൌ

൫ݑ௝ ൅ ∑ ௜ା௝ߙ
௠ ܾ௜

௠ஶ
௜ୀଵ ൯

ܵ௠
൘ ,   ݆ ൌ ݄, ݄ െ 1,… , 1. 

In Algorithm 2 in [12], the sequence ሼߙ௝
௠ሽ is considered instead of ሼܽ௜

௠ሽ and used ܵ௠ ൌ

∑ ௝ܾ
௠ஶ

௝ୀଵ  in step 2.2 to get ߙ௝
௠. For this algorithm [12], it is assumed that ߙ௝

௠ and ௝ܾ
௠ 

converges to the Wiener-Hopf factorization, and it is also verified that Algorithm 2 will 

always satisfy (4.32), (4.33) and (4.34). Hence, they did not show it theoretically that ߙ௝
௠ 

remains bounded, we derive a simple proof to show that ߙ௝
௠ is indeed bounded, as it follows: 

Step 2.1 assures that ௝ܾ
௠ ൐  ,௝ିݑ

which implies that ܵ௠ ൐ ∑ ௜ିݑ
ஶ
௜ୀଵ . 

From step 2.3, in [12] is already shown that  

௝ߙ 
௠ ൌ

௨ೕ
ௌ೘

൅ ∑ ௜ା௝ߙ
௠ஶ

௜ୀଵ 	
௕೔
೘

∑ ௕ೖ
೘ಮ

ೖసభ
 

       ൏	
௨ೕ

∑ ௨೔
ಮ
೔సభ .

൅ 	max௞வ௝ሼߙ௞
௠ሽ. 

To see that the above inequality is true, let  ܮ ൌ max௞வ௝ሼߙ௞
௠ሽ.Thus, ߙ௜ା௝

௠ ൑ ݅	ሾܵ݅݊ܿ݁ ܮ ൅ ݆ ൐

݆ሿ and clearly,  ∑ ௜ା௝ߙ
௠ஶ

௜ୀଵ 	
௕೔
೘

∑ ௕ೖ
೘ಮ

ೖసభ
	൑ 	∑ ஶ.ܮ

௜ୀଵ 	
௕೔
೘

∑ ௕ೖ
೘ಮ

ೖసభ
 

                                                 ൌ .ܮ ∑
௕೔
೘

∑ ௕ೖ
೘ಮ

ೖసభ

ஶ
௜ୀଵ   

                                                 ൌ .ܮ
∑ ௕೔

೘ಮ
೔సభ

∑ ௕ೖ
೘ಮ

ೖసభ
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                                                 ൌ ܮ ൌ 	max௞வ௝ሼߙ௞
௠ሽ.                       

The following algorithm (Algorithm 3 in [12]) is a combined form of some of the features of 

Algorithm 1 and 2. In [12], it was also not proved theoretically that the given sequences 

converge, nor it obtains the Wiener-Hopf factorization. 

Algorithm 3 by [12]: 

௜ߙ .1
଴ ൌ 0,				݅ ൌ 1, 2, … , ݄. 

2. For  ݉ ൌ 0, 1, 2, …  do the following until ݉ܽݔ൫หܽ௜
௠ െ ܽ௜

௠ାଵห൯ ൏ ߳ for given ߳ ൐ 0. 

2.1. ௝ܾ
௠ ൌ ௝ିݑ ൅ ∑ ௜ߙ

௠ିଵ
௝ܾା௜
௠ஶ

௜ୀଵ ,    ݆ ൌ ݃, ݃ െ 1,… , 0. 

2.2.  ܵ௠ ൌ
൫1 െ ܾ଴

௠ ൅ ∑ ௝ܾ
௠௚

௝ୀଵ ൯
2
൘ . 

௝ߙ  .2.3
௠ ൌ

൫ݑ௝ ൅ ∑ ௜ା௝ߙ
௠ ܾ௜

௠ஶ
௜ୀଵ ൯

ܵ௠
൘ ,   ݆ ൌ ݄, ݄ െ 1,… , 1. 

Like [12], we couldn’t prove mathematically that Algorithm 3 converges to the Wiener-Hopf 

factorization.  

Moreover, we have the following important theorem from [12] and we add our explanation to 

make the proof clear: 

Theorem 4.5:                                                                                                           

There are exactly two solutions satisfying (4.23), (4.24), (4.33) and (4.34). Of these two 

solutions, one satisfies (4.35), whereas the other one satisfies 

 ∑ ௜ߙ
ஶ
௜ୀଵ ൌ ሺ1ሻܣ ൌ 1 .                                                                                                        (4.40)                        

Proof: At first, it is showed that there are two factorizations satisfying (4.23), (4.24), (4.33) 

and (4.34): 
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Let ߙ௜
ሺଵሻ and ௝ܾ

ሺଵሻ be the Wiener-Hopf solution, and let ܣଵሺݖሻ and ܤଵሺݖሻ be the corresponding 

p.g.f.s. We now generate a second solution as follows: ߙ௜
ሺଶሻ, ௝ܾ

ሺଶሻ, ܣଶሺݖሻ and ܤଶሺݖሻ. Because 

ሻݖଵሺܣ ,ሻ is the p.g.f of a defective distributionݖଵሺܣ ൏ 1. For ݖ ൐  ሻ is monotonouslyݖଵሺܣ ,0

increasing with ܣଵሺ∞ሻ ൌ ∞.  

Note: We know, ܣଵሺݖሻ ൌ ∑ ௜ߙ
ଵݖ௜ஶ

௜ୀଵ  and ܣଵሺ1ሻ ൌ ∑ ௜ߙ
∞
௜ୀଵ ൏ 1. Since, ܣଵሺ0ሻ ൌ 0, thus ܣଵሺݖሻ 

increases monotonously when  ݖ ൐ 0. Moreover, 1 െ ሻ is decreasing, but 1ݖଵሺܣ െ ଵሺ0ሻܣ ൌ

1, hence 1 െ  .ሻ has one rootݖଵሺܣ

Consequently, 1 െ ݖ  ሻ has exactly one positive zeroݖଵሺܣ ൌ ଴ݖ ଴, whereݖ ൐ 1. Using this 

zero and also the zero ݖ ൌ 1 of 1 െ ଵሺ1ܤ ⁄ݖ ሻ, one can write (4.25) as 

1 െ ܷሺݖሻ ൌ ൫ሺ1 െ ݖ ⁄଴ݖ ሻܣ∗ሺݖሻ൯൫ሺ1 െ 1 ⁄ݖ ሻܤ∗ ሺ1 ⁄ݖ ሻ൯,                                                    (4.41) 

Since, 1 െ ሻݖଵሺܣ ൌ ሺݖ଴ െ ሻݖሺܣሻ̅ݖ ൌ ሺ1 െ ݖ ⁄଴ݖ ሻ൫ݖ଴̅ܣሺݖሻ൯, 

                                                       ൌ ሺ1 െ ݖ ⁄଴ݖ ሻܣ∗ሺݖሻ and  

           1 െ ଵሺ1ܤ ⁄ݖ ሻ=(	ݖ െ ሻݖതሺܤ	(1 ൌ ሺ1 െ 1 ⁄ݖ ሻ൫ܤݖതሺݖሻ൯ 

                                                         ൌ ሺ1 െ 1 ⁄ݖ ሻܤ∗ ሺ1 ⁄ݖ ሻ, 

 where, ܣ∗ሺݖሻ and ܤ∗ሺݖሻ are polynomials of the form 

ሻݖሺ∗ܣ   ൌ 1 ൅ ଵߙ
ݖ∗ ൅ ଶߙ

ଶݖ∗ ൅ ⋯൅ ௛ିଵߙ
∗  ௛ିଵݖ

ሻݖሺ∗ܤ  ൌ ሺ1 െ ܾ଴ሻ ൅ ܾଵ
ݖ∗ ൅ ܾଶ

ଶݖ∗ ൅ ⋯൅ ܾ௚ିଵ
∗  . ௚ିଵݖ

Here, 1 and ሺ1 െ ܾ଴ሻ of ܣ∗ሺݖሻ and ܤ∗ሺݖሻ are considered to be the constant part, respectively, 

where 1 comes in both cases, by factoring the polynomials 1 െ ሻ and 1ݖଵሺܣ െ ଵሺ1ܤ ⁄ݖ ሻ. 

Since  1 െ ሻݖଵሺܣ ൌ ሺ1 െ ݖ ⁄଴ݖ ሻܣ∗ሺݖሻ, one has 

1 െ ∑ ௜ߙ
ଵݖ௜ஶ

௜ୀଵ ൌ ሺ1 െ ݖ ⁄଴ݖ ሻ∑ ௜ߙ
௜௛ିଵݖ∗

௜ୀଵ  . 

By expanding ∑ ௜ߙ
ଵݖ௜௛

௜ୀଵ  and ∑ ௜ߙ
௜௛ିଵݖ∗

௜ୀଵ , we get 
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1 െ ଵߙ
ଵݖଵ െ ଶߙ

ଵݖଶ െ ⋯െ ௛ߙ
ଵݖ௛ ൌ ∑ ௜ߙ

௜௛ିଵݖ∗
௜ୀଵ െ ݖ ⁄଴ݖ ሺߙଵ

ଵݖ∗ ൅ ଶߙ
ଶݖ∗ ൅ ⋯൅ ௛ିଵߙ

∗   ௛ିଵሻݖ

By rearranging the above, one yields  

1 െ ଵߙ
ଵݖଵ െ ଶߙ

ଵݖଶ െ ⋯െ ௛ߙ
ଵݖ௛

ൌ ሺߙଵ
ଵݖ∗ ൅ ଶߙ

ଶݖ∗ ൅ ⋯൅ ௛ିଵߙ
∗ ௛ିଵሻݖ െ 1 ଵߙ଴ሺݖ

ଶݖ∗ ൅ ଶߙ
ଷݖ∗ ൅ ⋯൅ ௛ିଵߙ

∗ ⁄௛ሻݖ  

Now, equating the coefficients of  ݖଵ, ݖଶ,…,	ݖ௛, we finally get 

െߙ௜
ሺଵሻ ൌ ௜ߙ

∗ െ ௜ିଵߙ
∗ ⁄଴ݖ ,						݅ ൌ 1,2, …                                                                                (4.42) 

Equation (4.42), together with ߙ௛
∗ ൌ 0, implies that ߙ௜

∗, ݅ ൐ 0 is nonnegative, nonincreasing 

in ݅, as we subtract ߙ௜ିଵ
∗ ⁄଴ݖ  from ߙ௜

∗. This can easily be shown by complete induction. 

Similarly, ௝ܾ
∗ satisfies  

െ ௝ܾ
ሺଵሻ ൌ ௝ܾ

∗ െ ௝ܾିଵ
∗ .                                                                                                             (4.43) 

௝ܾ
∗ are also nonnegative. In fact, one has  

௝ܾ
∗ ൌ 1 െ ܾ଴

ሺଵሻ െ ܾଵ
ሺଵሻ െ ⋯െ ௝ܾ

ሺଵሻ ൒ 0  (Because of equation (4.33) and (4.34)). 

Since, 

ሺ1 െ ݖ ⁄଴ݖ ሻሺ1 െ 1 ⁄ݖ ሻ ൌ 1 ⁄଴ݖ ሺ1 െ ሻሺ1ݖ െ ଴ݖ ⁄ݖ ሻ . 

Equation (4.25) can also be written as 

1 െ ܷሺݖሻ ൌ ଴ݖ
ିଵሺ1 െ ሻሺ1ݖሺ∗ܣሻݖ െ ଴ݖ ⁄ݖ ሻܤ∗ሺ1 ⁄ݖ ሻ,  

                 ൌ ൫1 െ ሻ൯ሺ1ݖଶሺܣ െ ଶሺ1ܤ ⁄ݖ ሻሻ. 

where, 

ሻݖଶሺܣ ൌ ሺ1 െ  ሻ                                                                                                       (4.44)ݖሺ∗ܣሻݖ

ሻݖଶሺܤ ൌ ሺ1 െ ଴ݖ ⁄ݖ ሻܤ∗ሺݖሻ ⁄଴ݖ .                                                                                          (4.45) 
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Hence, the ܣଶሺݖሻ and ܤଶሺݖሻ define a factorization of 1 െ ܷሺݖሻ, and it remains to show that 

all the coefficients ߙ௜
ሺଶሻ and ௝ܾ

ሺଶሻ are nonnegative. Using (4.42) and (4.44), one has 

 െߙ௜
ሺଶሻ ൌ ௜ߙ

∗ െ ௜ିଵߙ
∗  

												൏ ௜ߙ
∗ െ ௜ିଵߙ

∗ ⁄଴ݖ ൌ െߙ௜
ሺଵሻ ൑ 0 . 

Similarly, from (4.45), one finds 

െ ௝ܾ
ሺଶሻ ൌ ௝ܾ

∗ െ ଴ݖ ௝ܾିଵ
∗   

		         < ௝ܾ
∗ െ ௝ܾିଵ

∗ = െ ௝ܾ
ሺଵሻ. 

Now, we can conclude that  

௜ߙ
ሺଶሻ ൐ ௜ߙ

ሺଵሻ ൒ 0, and  ௝ܾ
ሺଶሻ ൐ ௝ܾ

ሺଵሻ ൒ 0.                                                                             (4.46)  

Thus, it is clear from the above discussion that there are two factorizations satisfying 

equation (4.23), (4.24), (4.33) and (4.34). 

Now we show that there are no other factorization satisfying (4.23), (4.24), (4.33) and (4.34). 

To do this, we classify the zeros of 1 െ ܷሺݖሻ, and by using equation (4.41), one can divide 

these zeros into 3 groups: 

The first group consists of the two positive zeros ݖ ൌ 1 and ݖ ൌ  ଴, the second groupݖ

includes all zeros of ܣ∗ሺݖሻ, and the third group has all zeros of ܤ∗ሺ1 ⁄ݖ ሻ. 

All zeros of  ܣ∗ሺݖሻ must satisfy the condition 0 ൑ |ݖ| ൏   ଴. This is because all zeros ofݖ

ሻ are also zeros of 1ݖሺ∗ܣ െ  ሻ increasesݖଵሺܣ ሻ, which is true from equation (4.41). Sinceݖଵሺܣ

from  ܣଵሺ0ሻ, reaching 1 at ݖ ൌ   ଴, clearlyݖ

1 െ ሻݖଵሺܣ ൌ ሺ1 െ ଴ݖ ⁄଴ݖ ሻܣ∗ሺݖሻ ൌ 0 which implies, ܣଵሺݖሻ ൌ 1 .  

But,  ܣଵሺݖሻ ൏ 1,  0 ൑ ݖ ൏  ଴                                                                                             (4.47)ݖ
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Since ܣଵሺݖሻ has only positive coefficients, ܣଵሺݖሻ ൏  ,ሻ, and because of (4.47)|ݖ|ଵሺܣ

ሻ|ݖ|ଵሺܣ ൏ 1 for |ݖ| ൏ ଴. For example, if we consider  1ݖ െ ሻݖଵሺܣ ൐ 0 for ݖ ൐  ଴, thenݖ

1 െ  ,଴. Becauseݖ ሻ have zeros inside a circle of radiusݖଵሺܣ

1 െ ሻݖଵሺܣ ൌ ሺ1 െ ݖ ⁄଴ݖ ሻܣ∗ሺݖሻ  

                 ൌ	െ ∙ ߜ ൏ 0 (which satisfies). 

Note:  δ indicate any number.  

and if  ݖ ൏ ଴, 1ݖ െ ሻݖଵሺܣ ൌ ൅ߜ	 ൐ 0 .  

Hence, 1 െ  ,଴, and as a consequenceݖ ሻ cannot have any zeros inside a circle of radiusݖଵሺܣ

all zeros of  ܣ∗ሺݖሻ must lie outside this circle. 

By using a similar argument shows that all zeros of ܤ∗ሺݖሻ must lie outside the unit circle, 

which means that the zeros of ܤ∗ሺ1 ⁄ݖ ሻ must lie inside the unit circle. 

If  1 െ ሻ is a factor of 1ݖଵሺܣ െ ܷሺݖሻ, the only two zeros available of this factor are ݖ ൌ  ଴ݖ

and ݖ ൌ 1. Suppose, we let ݖ ൌ  ሻ. If this is the case, oneݖሺܣ ଴ be the unique positive zero ofݖ

can show by applying essentially the same arguments as before, that all other zeros of ܣሺݖሻ 

have a modulus greater than ݖ଴ i.e. |ݖ| ൐   .଴ݖ

Moreover, for complex ܣ  ,ݖሺݖሻ ൑ ሻ|ݖ|ሺܣ ൏ 1, which implies that there are no zeros, 

|ݖ| ൏  ሻ. Since a similarݖሺ∗ܣ ሻ can only include zeros ofݖሺܣ ,଴ is real. Henceݖ ଴ whereݖ

condition can be shown to hold for ܤሺݖሻ. Thus, it follows that ܣሺݖሻ must include all zeros of 

ሻݖሺܣ ,ሻ, that isݖሺ∗ܣ ൌ  ሻ must be equal toݖሺܣ ሻ. In a similar fashion, it can be shown thatݖଵሺܣ

ݖ ሻ, ifݖଶሺܣ ൌ 1 is chosen as the unique positive zero of  ܣሺݖሻ.  

Therefore, depending on the two available zeros are ݖ ൌ ݖ ଴ andݖ ൌ 1 for ܣሺݖሻ, and similarly 

for ܤሺݖሻ respectively, it is proved that there are no other factorizations that can satisfy (4.23), 

(4.24), (4.33) and (4.34). This completes the proof of theorem 5. 
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Chapter 5 

Analytical Comparison of GI/G/1 Queue with 

Geom/Geom/1 Queue 

 

5.1 Overview 
As we know, the notation GI stands for general independent interarrival time distribution, G 

stands for general service time distribution and number 1 means that there is one server in the 

system. More clearly, this symbol G represents a general or arbitrary probability distribution; 

that is, no assumption is made as to the precise form of the distribution and results in these 

cases are applicable to any probability distribution. But, in our work, we are interested about 

the arithmetic GI/G/1 queue where the interarrival and service times are discrete random 

variables and their distribution functions are both defined on finite intervals.  

So far, we have discussed several methods to determine the waiting time distribution in a 

discrete GI/G/1 queue in chapters 3 and 4. Now we are interested to use Geom/Geom/1 

queue as an example of a GI/G/1 queue to explore what happens when the interval is 

infinite to obtain the waiting time distribution. This is the topic we are going to discuss in 

this chapter. 

 

To do so, let the Geom/Geom/1 queue be defined first. Geom/Geom/1 is a single-server 

queue where interarrival and service times are geometrically distributed. In this situation, 

the time axis is segmented into a sequence of time intervals (slots) of unit duration, but the 

times are unbounded like exponential distribution. Moreover, it is known that the 

Geom/Geom/1 queue is the discrete analogue of the M/M/1 queue. First of all, we need to 

make ourselves clear about the difference between the M/M/1 queue and the Geom/Geom/1 

queue. M/M/1 queue means exponential interarrival time, exponential service time and one 

single server queueing system. In general, M refers mainly to three facts: (1) The customers 
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arrive according to a Poisson process and the interarrival time distribution is exponential, 

(2) the service time distribution is also exponential, (3) Thus, the process is memoryless or 

Markovian. Since the successive times for interarrival and service are continuously 

distributed, they are therefore exponential. 

However, we already came to know, in the case of arithmetic GI/G/1 queue which is based 

on a finite interval, that  ݃ of the roots of the polynomial 1 െ 	ܷሺݖሻ ൌ ൫1 െ ሻ൯ሺ1ݖሺܣ െ

ሺ1ܤ ⁄ݖ ሻሻ lie inside or on the unit circle of the complex plane and that ݄ of them lie outside 

the unit circle. On the other hand, if we use the above polynomial for Geom/Geom/1 queue 

having the infinite intervals for the interarrival times and service times, clearly the degree of 

this polynomial goes to infinity and the number of roots must be infinite.  

In order to verify our idea, at first we assume that the waiting time of Eq.(4.29) for the 

Geom/Geom/1 queue is geometrically distributed. 

5.2 The Waiting Time Distribution for the Geom/Geom/1 Queue 

In this section, we discuss if the Geom/Geom/1 queue has strictly geometric distribution or 

not. 

We considered the same notation for the Geom/Geom/1 queue by following the chapter 4:  

௡ାଵܣ .௡, ௡ܶ is the interarrival time, i.eܥ ௡ is the time of ݊th arrivalܣ ൌ ௡ܣ ൅ ௡ܶ and ܵ௡ is the 

service time of ܥ௡. 

௡ܹ is the waiting time of ܥ௡. Then we have, ௡ܹାଵ ൌ ௡ܦ െ ௡ାଵܣ ൌ ௡ܦ െ ௡ܣ െ ௡ܶ, where ܦ௡ 

is the departure time of ܥ௡ and  ܦ௡ ൌ ௡ܣ ൅ ௡ܹ ൅ ܵ௡ . 

Hence, ௡ܹାଵ ൌ ௡ܣ ൅ ௡ܹ ൅ ܵ௡ െ ௡ܣ െ ௡ܶ ൌ ௡ܹ ൅ ܵ௡ െ ௡ܶ .                                             (5.1) 

Since we are dealing with the Geom/Geom/1 queue, ܵ௡ and ௡ܶ are both geometrically 

distributed. We assume that ܵ௡ ൐ 0 and ௡ܶ ൐ 0.Thus, we know the probability density 

functions of  ܵ௡ and ௡ܶ are ܲݎሺܵ௡ ൌ ݅ሻ ൌ ௜ሺ1݌ െ ,ሻ݌ ݅ ൌ 1, 2, … ; and ܲݎሺ ௡ܶ ൌ ݅ሻ ൌ

௜ሺ1ݍ െ ,ሻݍ ݅ ൌ 1, 2, … ;	respectively, where ݌ and	ݍ are the corresponding parameters. 
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We know, the difference between the service time of customer ܥ௡, and interarrival time of 

the ܥ௡ and ܥ௡ାଵ customers, is 	ܷ௡ ൌ ܵ௡ െ ௡ܶ. We now have to find ܲݎሺܷ௡ ൌ ݅ሻ for the 

Geom/Geom/1 queue. To do so, set  ܷ௡ ൌ ݅ if ܵ௡ ൌ ݇ ൅ ݅ and ௡ܶ ൌ ݇. 

Thus, ܲݎሺܷ௡ ൌ ݅ሻ ൌ ∑ ሺܵ௡ݎܲ ൌ ݇ ൅ ݅	ሻܲݎሺ ௡ܶ ൌ ݇ሻஶ
௞ୀ଴   

                           ൌ ∑ ௞ା௜ሺ1݌ െ ௞ሺ1ݍሻ݌ െ ሻஶݍ
௞ୀ଴  

                           ൌ ௜ሺ1݌ െ ሻሺ1݌ െ ∑ሻݍ ௞ஶݍ௞݌
௞ୀ଴  

                           ൌ ௜ሺ1݌ െ ሻሺ1݌ െ ሻݍ
ሺ1 െ ሻ൘ݍ݌ .                                                                 (5.2) 

For ݅ ൏ 0, we can easily exchange ݌ and ݍ and get the following: 

ሺܷ௡ݎܲ ൌ െ݅ሻ ൌ ௜ሺ1ݍ െ ሻሺ1݌ െ ሻݍ
ሺ1 െ ሻ൘ݍ݌ .                                                                     (5.3) 

Now, Eq.(5.1) allow us to find a relation for the distribution of ௡ܹ for the Geom/Geom/1 

queue in the following way  

ሺݎܲ ௡ܹାଵ ൌ ݆ሻ ൌ ∑ ሺݎܲ ௡ܹ ൌ ݇ሻܲݎሺܷ௡ ൌ ݆ െ ݇ሻ													݆ ൐ 0ஶ
௞ୀ଴ .                                    (5.4) 

Then we consider, the distribution of ௡ܹ is geometric with unknown parameter ݔ  

ሺݎܲ  ௡ܹାଵ ൌ ݆ሻ ൌ ሺݎܲ ௡ܹ ൌ 0ሻ ∙ ௝ݔ ൌ  ௝                                                                        (5.5)ݔ଴ߨ

                                                          ൌ ሺݎܲ ௡ܹ ൌ ݆ሻ; because in equilibrium ௡ܹ and 

௡ܹାଵeventually have the same distribution.  

Now, using (5.5) in (5.4), we get 

௝ݔ଴ߨ ൌ ∑ ሺܷ௡ݎ௞ܲݔ଴ߨ ൌ ݆ െ ݇ሻஶ
௞ୀ଴   

By cancelling ߨ଴ from both sides, one yeilds 

௝ݔ	 ൌ ∑ ௞௝ݔ
௞ୀ଴ ሺܷ௡ݎܲ ൌ ݆ െ ݇ሻ ൅ ∑ ௞ஶݔ

௞ୀ௝ାଵ ሺܷ௡ݎܲ ൌ ݆ െ ݇ሻ  
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                ൌ ൣ∑ ௞௝ݔ
௞ୀ଴ ௝ି௞݌ ൅ ∑ ௞ஶݔ

௞ୀ௝ାଵ ௞ି௝൧ݍ ∙
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
 

Therefore, ݔ௝ ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂ݌௝ ∙ ଵିሺ௫ ௣⁄ ሻೕశభ

ଵିሺ௫ ௣⁄ ሻ
൅ ଵ

௤ೕ
∙ ௫

ೕశభ௤ೕశభ

ଵି௫௤
ቃ  

                       ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂ݌௝ ∙ ቀଵିሺ௫ ௣⁄ ሻೕశభ

ଵିሺ௫ ௣⁄ ሻ
ቁ ൅ ௫ೕశభ∙௤

ଵି௫௤
ቃ  .                                                    (5.6) 

We then need to find the value for ݔ to know the waiting time for Geom/Geom/1 queue. In 

order to simplify the above relation, we get from (5.6) 

௝ݔ ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
൤௣

ೕି	௫ೕశభ ௣ൗ

ଵିሺ	௫ ௣ൗ ሻ
൅ ௤௫ೕశభ

ଵି௫௤
൨  

     ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂ௣

ೕశభି௫ೕశభ

௣ି௫
൅ ௤௫ೕశభ

ଵି௫௤
ቃ 

 i.e. ݔ௝ ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂݔ௝ାଵ ቂ ௤

ଵି௫௤
െ ଵ

௣ି௫
ቃ ൅ ௣ೕశభ

௣ି௫
ቃ 

            ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂݔ௝ାଵ ቂ

ሺ௣ି௫ሻ௤ିଵା௫௤

ሺଵି௫௤ሻሺ௣ି௫ሻ
ቃ ൅ ௣ೕశభ

௣ି௫
ቃ 

            ൌ
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
ቂݔ௝ାଵ ∙ ௣௤ିଵ

ሺଵି௫௤ሻሺ௣ି௫ሻ
൅ ௣ೕశభ

௣ି௫
ቃ. 

Now by multiplying  
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
 with ݔ௝ାଵ ∙ ௣௤ିଵ

ሺଵି௫௤ሻሺ௣ି௫ሻ
൅ ௣ೕశభ

௣ି௫
 , we get 

௝ݔ ൌ െሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௝ାଵݔ ∙ ଵ

ሺଵି௫௤ሻሺ௣ି௫ሻ
൅

ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
∙ ௣

ೕశభ

௣ି௫
  

i.e. ሺ݌ െ ௝ݔሻݔ ൌ ௝ାଵ݌ ∙
ሺଵି௣ሻሺଵି௤ሻ

ଵି௣௤
െ ௝ାଵݔ ∙

ሺଵି௣ሻሺଵି௤ሻ

ሺଵି௫௤ሻ
 

i.e. ሺ݌ െ ௝ݔሻݔ ൅ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௫ೕశభ

ሺଵି௫௤ሻ
ൌ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௣

ೕశభ

ଵି௣௤
  

i.e. ݔ௝ ቂሺ݌ െ ሻݔ ൅ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௫

ሺଵି௫௤ሻ
ቃ ൌ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௣

ೕశభ

ଵି௣௤
  

i.e. ݔ௝ ቂ
ሺ௣ି௫ሻሺଵି௫௤ሻାሺଵି௣ሻሺଵି௤ሻ௫

ଵି௫௤
ቃ ൌ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௣

ೕశభ

ଵି௣௤
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i.e. 	ݔ௝ ቂ௣ା௫
మ௤ି௫ሺ௣ା௤ሻ

ଵି௫௤
ቃ ൌ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௣

ೕశభ

ଵି௣௤
  .                                                               (5.7) 

If we let ݔ ൌ 1 in (5.7), it works out as 

 
௣ା௤ି௣ି௤

ଵି௤
ൌ 0 ൌ ሺ1 െ ሻሺ1݌ െ ሻݍ ∙ ௣

ೕశభ

ଵି௣௤
 . 

and if we let ݔ ൌ 0 in (5.7), this does not work to give a solution. 

Now, if we consider the first case where ݔଶݍ െ ݌ሺݔ ൅ ሻݍ ൅ ݌ ൌ 0, we can solve it for ݔ. 

Therefore, 

ݔ ൌ ௣ା௤േඥሺ௣ା௤ሻమିସ௣௤

ଶ௤
 ൌ ௣ା௤േሺ௣ି௤ሻ

ଶ௤
ൌ ݌

ൗݍ ,   or 1.                                                                (5.8) 

Thus, the waiting time distribution in the Geom/Geom/1 queue which is the discrete analogue 

of the M/M/1 queue, is asymptotically geometric with ݔ ൌ ݌
ൗݍ . 
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Chapter 6 

Numerical Experiment 

 

6.1 Numerical Results and Examples  

A GI/G/1 queue is frequently used in the performance evaluation of manufacturing, 

telecommunications and computer systems. The steady-state waiting time is an important 

measure of the effectiveness of this model. The closed form expressions for the distribution 

and moments of the steady-state waiting times are available for particular cases of this 

model. However, the exact analysis, in many cases, has been difficult. The numerical 

approximations presented in this chapter are intended to bridge this gap. 

In this section, we use the various techniques discussed in previous chapters to solve the 

steady-state waiting time and the average queue length for the discrete time GI/G/1 queue. 

We use Uniform distribution, Geometric distribution and Gamma distribution to calculate the 

computed waiting time distribution, and then we compare them with the closed form 

approximation formula in order to determine the effectiveness of our method. 

We now find the waiting time distribution in a discrete GI/G/1 queue with the method 

described in chapter 4. An algorithm is developed by us for the purpose of figuring this out 

and is given below: 

Our Algorithm: 

௜ߙ .1
଴ ൌ 0, ݅ ൌ 1,2, … , ݄. 

2. For ݉ ൌ 0, 1, 2, … do the following until ݉ܽݔ൫หߙ௜
௠ െ ௜ߙ

௠ାଵห൯ ൏ ߳ 

2.1. ௝ܾ
௠ ൌ ௝ିݑ ൅ ∑ ௜ߙ

௠ିଵ
௝ܾା௜
௠ 	,ஶ

௜ୀଵ 	݆ ൌ ݃, ݃ െ 1,… ,0 

2.2. For 0 ൑ ݐ ൑ 1,  
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      ܵ௠ ൌ ൫ሼሺ1 െ ሻݐ ∗ ሺ1 െ ܾ଴
௠ሻሽ ൅ ሼݐ ∗ ∑ ௝ܾ

௠௚
௝ୀଵ ሽ൯ 

௝ߙ .2.3
௠ ൌ

ቀ௨ೕା∑ ఈ೔శೕ
೘ಮ

೔సభ ௕೔
೘ቁ

ௌ೘
	, ݆ ൌ ݄, ݄ െ 1,… ,1. 

Our Algorithm is identical to Algorithm 3 in [12]. In step 2.2, we use the fact that ܵ௠ ൌ

൫ሼሺ1 െ ሻݐ ∗ ሺ1 െ ܾ଴
௠ሻሽ ൅ ሼݐ ∗ ∑ ௝ܾ

௠௚
௝ୀଵ ሽ൯ for 0 ൑ ݐ ൑ 1. In Algorithm 3, Grassmann and Jain 

[12] considered ݐ ൌ ଵ

ଶ
 as the weight in step 2.2, but we are considering ሺ1 െ  as the ݐ ሻ andݐ

weights for ሺ1 െ ܾ଴
௠ሻ and ∑ ௝ܾ

௠௚
௝ୀଵ , respectively, instead of  

ଵ

ଶ
. We utilize 100 different 

values of ݐ between 0 and 1, where ݐ increases by 0.01 and thus, we can justify at which 

values of ݐ the convergence is faster, apart from ݐ ൌ ଵ

ଶ
. On the other hand, we increase the 

value of ݉ from 0 to a maximum value for which the condition ݉ܽݔ൫หߙ௜
௠ െ ௜ߙ

௠ାଵห൯ ൏ ߳ is 

fulfilled. For each value of ݉, we do the calculation repeatedly by using our Algorithm. 

Furthermore, the approximations for the expected waiting time and the average queue length 

can be obtained at each value of	ݐ and the number of iteration can also be easily investigated. 

Obviously, we are considering the minimum number of iteration for a particular value of ݐ, 

which is always less than or equal to the number of iterations in Algorithm 3 in [12]. In 

addition, it is possible to calculate the total time required to converge for each value of ݐ by 

using our method and thus we can find the time required for those values	of ݐ, where we get 

the minimum number of iteration. In this way, the best value of ݐ can be determined such that 

we reach to an optimal situation. We can also find the actual number of iteration to get ߙ௝ and 

௝ܾ. In all the numerical experiments, our Algorithm always converges to the correct solution, 

and most of the time, its convergence is faster than the convergence of Algorithm 3. 

However, analytically so far there is no proof that our Algorithm will converge, and even if it 

does, there is no proof that it obtains the Wiener-Hopf factorization. 

For our numerical calculations, the precision ߳ of our Algorithm is set to 0.000001, and it is 

possible to solve problems with ݄ and ݃ above 2000 by using our Algorithm. Several values 

of ߩ are used and the number of iteration are also provided.  

Then by using Little’s formula (ܮ௤ ൌ ߣ ∙ ௤ܹ), we can easily calculate the approximate 

average queue length, which we call ܮ௤భ. Thus, ܮ௤భ ൌ ߣ ∙ ௤ܹభ. 
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Uniform Distributions: A random variable, ܺ, is said to have a discrete uniform distribution 

on the integers 1, 2, … , ܰ, if the probability density function (pdf) has the form 

݂ሺݔሻ ൌ 1 ܰ	; ݔ		 ൌ 1, 2, … ,ܰ⁄ ሺܺሻܧ , ൌ ேାଵ

ଶ
  and  ܸܽݎሺܺሻ ൌ

ሺேାଵሻሺேିଵሻ

ଵଶ
. 

In our case, 

ሺݎܲ ௡ܶ ൌ ݅ሻ ൌ ଵ

ே
; 		݅ ൌ 1, 2, … ,ܰ and ሺܵ௡ ൌ ݅ሻ ൌ ଵ

ே
; 		݅ ൌ 1, 2, … ,ܰ.  

The following tables give results of some queues with uniform interarrival and service times. 

In all cases, the minimal service time is 1, as is the minimal interarrival time. The maximum 

interarrival and service times vary, as shown in Table 6.1-6.4. 

Table 6.1 contains the results obtained by Algorithm 3 of [12], as well as the results obtained 

by our method. In all cases, we get better approximation for ܧሺܹሻ and in most of the cases; 

the number of iteration in our method is less than in theirs.                                                     

Table 6.1  Results of using Uniform Distributions by using our Algorithm and by  

 Algorithm 3 [12] 

Case Max (T) Max (S) ࣋ Algorithm 3 Iter. Our 

method 

Iter. 

 ሻࢃሺࡱ ሻࢃሺࡱ

   1   50   25 0.510  3.720   5     3.7199   4 

   2   50   40 0.804  24.9   5    24.8725   5 

   3   49   48 0.980  381.0   6   380.9675   5 

   4   66   65 0.985  700.1   6   700.0980   5 

   5   99   98 0.990  1596.6   6 1594.4171   5 

 

Note: Iter. is representing the number of iteration, in all the Tables of chapter 6.   
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Table 6.2 represents the results of the approximation for average Queue Length in queue 

which is calculated by using our method. We also include the optimal values of t and 

required time (sec) for minimum iteration. 

Table 6.2  Results for the Average Queue Length in queue using our method  

Case Max 

(T) 

Max 

(S) 

  Our method   Our method Our method 

 Queue Length 

           ࢗࡸ         

Optimum values of ࢚ Best value of ࢚ & 
required time (sec) 
for minimum iter. 

  1   50   25 0.1459 0.22 to 0.42      0.42  

(time=0.0014) 

  2   50   40 0.9754 0.43 to 0.62     0.60 

(time=0.0023) 

  3   49   48      15.2387 0.57 to 0.67     0.60 

(time=0.0025) 

  4   66   65 20.8984 0.53, 0.54, 0.56 
to 0.67 

    0.60 

(time=0.0034) 

  5   99   98 31.8883 0.53 to 0.67     0.55 

(time=0.0053) 

 

In table 6.1 and 6.2, we get more than 10 values of ݐ between 0 and 1 where we have the 

optimal situation. But, in each case, we choose the best approximation among the results at 

the optimal points depending on the minimum number of iterations, where the required time 

for convergence is also shortest. For example, in our first case, the minimum number of 

iteration is 4 for t = 0.22 to t = 0.42 and the shortest time that required for this iteration 

among these values of t is 0.0014 sec. at t = 0.22, 0.25, 0.26, 0.27, 0.30, 0.31, 0.32, 0.35, 

0.36, 0.37, 0.41, and 0.42. Therefore, we can choose any of these values as the best value of t 

and we have chosen o.42 as the best value of t for the first case in table 6.2. However, we 

noticed that in some cases, we have the same approximation in all 100 points of ݐ, but the 

number of iterations are not same. 

Table 6.3 & 6.4 shows that with our algorithm, we can easily compute the parameters with h 

and g exceeding 2000. In the last two rows we worked with h and g, which exceeding 2000 



60 
 

and mentioned by new data and therefore, we do not have results for Algorithm 3. However, 

in most of cases, the numbers of iterations are similar to Algorithm 3. 

Table 6.3  Results for Uniform Distributions with Large Bounds by using our  

 Algorithm and by Algorithm 3 [12] 

Max (T) Max (S) ࣋ Algorithm 3 Algorithm 3 Our method Our 
method 

.ሻ    Iterࢃሺࡱ  .ሻ   Iterࢃሺࡱ

  200   180 0.9 260.4 5 260.4448 

 (at t=0.50) 

4 

  500   450 0.9 651.1 4 651.0762 

 (at t=0.55) 

4 

  1000   900 0.9 1302.2 4 1302.097  

(at t=0.63) 

4 

  2000   1800 0.9 2604.5 4 2602.44 

(at t=0.65) 

4 

  2700   2400 0.9  New data New data 3072.3 

(at t=0.65) 

4 

  3000   2700 0.9  New data  New data 3901.3 

(at t=0.66) 

4 
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Table 6.4  Results for the Average Queue Length in queue using our method  

Case Max (T) Max (S) Our method Our method Our method 

Queue Length 
 ࢗࡸ

Optimum values 
of  ࢚ 

Best value of ࢚ and 
required time (sec) for 
minimum iter. 

  1   200   180 2.5915 0.50     0.50 

(time=0.0099) 

  2   500   450 2.5991 

(at t=0.55) 

0.49 to 0.51 
& 0.55 to 
0.62 

    0.55 

(time=0.0355) 

  3   1000   900 2.6016 

(at t=0.63) 

0.48 to 0.63     0.63 

(time=0.0882) 

  4   2000   1800 2.6011 

(at t=0.65) 

0.47 to 0.65     0.65 

(time=0.2801) 

  5   2700   2400 2.2749 

(at t=0.65) 

0.45 to 0.65     0.65 

(time=0.5037) 

  6   3000   2700 2.6000 

(at t=0.66) 

0.46 to 0.66     0.66 

(time=0.5848) 

 

In the tables, 6.3 and 6.4, we have mentioned the optimal values of ݐ where we have 

minimum number of iteration for convergence. Therefore, we selected the better 

approximation of ܧሺܹሻ and ܮ௤ from the set of optimal points of ݐ where the total number of 

iterations also takes less time. It is apparent that, if we start going to the right from the point 

0.50, we usually get the optimum situation. But, in the first case, we see that 0.50 is the only 

point where we have the minimum number of iteration and can get the required 

approximation. 

Geometric Distributions: The following tables (Table 6.5, Table 6.6) contain the results for 

the GI/G/1 Queue, where we used the geometric distribution for both the interarrival and 

service time. In this case, we have  
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ሺݎܲ ௡ܶ ൌ ݅ሻ ൌ ሺ1 െ ݅				,௜ିଵݍሻݍ ൌ 1, 2, … ሺܧ ; ௡ܶሻ ൌ
ଵ

ଵି௤
ሺݎܸܽ  ; ௡ܶሻ ൌ

௤

ሺଵି௤ሻమ
 . 

ሺܵ௡ݎܲ ൌ ݅ሻ ൌ ሺ1 െ ݅				,௜ିଵ݌ሻ݌ ൌ 1, 2, … ሺܵ௡ሻܧ ; ൌ
ଵ

ଵି௣
ሺܵ௡ሻݎܸܽ  ; ൌ

௣

ሺଵି௣ሻమ
 . 

 

But, our Algorithm does not work in this case because the service times and the interarrival 

times are both unbounded in the above situation. Hence, we need to truncate them. For the 

purpose of computation, one has to truncate the distribution function to avoid a possible 

overflow and to define on a finite range. Thus, the truncated geometric distribution for both 

the interarrival time and the service time is  

ሺݎܲ ௡ܶ ൌ ݅ሻ ൌ ሺ1 െ ௜ିଵݍሻݍ ሺ1 െ ⁄௠ሻݍ ; 				݅ ൌ 1, 2, … ,݉.  

ሺܵ௡ݎܲ ൌ ݅ሻ ൌ ሺ1 െ ௜ିଵ݌ሻ݌ ሺ1 െ ⁄௠ሻ݌ ; 				݅ ൌ 1, 2, … ,݉ . 

ሺܧ ௡ܶሻ ൌ
ଵିሺ௠ାଵሻ௤೘ା௠௤೘శభ

ሺଵି௤ሻሺଵି௤೘ሻ
ሺܵ௡ሻܧ     ; ൌ

ଵିሺ௠ାଵሻ௣೘ା௠௣೘శభ

ሺଵି௣ሻሺଵି௣೘ሻ
;    

ሺݎܸܽ ௡ܶሻ ൌ
ଵିଶ௤ିሺ௠ାଵሻమ௤೘ାሺ௠మାଶ௠ାଶሻ௤೘శభ

ሺଵି௤ሻሺଵି௤೘ሻ
;  

ሺܵ௡ሻݎܸܽ ൌ
ଵିଶ௣ିሺ௠ାଵሻమ௣೘ାሺ௠మାଶ௠ାଶሻ௣೘శభ

ሺଵି௣ሻሺଵି௣೘ሻ
.  

 

We consider different values for the parameter ݍ and ݌. For example, if we let ݍ ൌ 0.6 for 

the interarrival time, and ݌ ൌ 0.2 for the service time, we get approximately ߩ ൌ 0.5. 

Table 6.5 gives us a comparison of some queues with the geometric interarrival and the 

service times. In all cases the minimal service time is 1, as are the minimal interarrival times. 

The maximum service and interarrival times vary, as shown in the table below. The first row 

of Table 6.5, compares the results obtained in [12] with ours, where the approximations 

obtained in our case are better than their results. For the rest of the cases, we used the 

Algorithm 3 of [12] to compare the results with ours, which were not shown in [12]. In all 
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cases, the number of iteration is less than Algorithm 3, which is still considered as a fast 

convergence. 

Table 6.5  Results of using Truncated Geometric Distributions by using our  

 Algorithm and by Algorithm 3 [12] 

Max 
(T) 

Max 
(S) 

 ࣋

   

Algorithm 3   Iter. Our method  Iter. 

 ሻࢃሺࡱ ሻࢃሺࡱ

  10   10   0.51 0.2636   4  0.2537   3 

  20   20   0.61 0.3952   4  0.3952   3 

  50   50   0.75 0.7500   6  0.7500   3 

  65   65   0.88 1.7500   9  1.7500   4 

  99   99   0.99      10.8764  15 10.8764   4 

 

 

Table 6.6 contains the results of the same cases which we have used in Table 6.5 above, and 

gives the average queue length in queue by using our method. We also include the optimum 

values of t and required time (sec) for minimum iteration.                                                                
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Table 6.6  Results for the Average Queue Length in queue using our method  

Case Max 
(T) 

Max 
(S) 

 Our method  Our method Our method ࣋

Queue 
Length  ࢗࡸ 

Optimum values 
of ࢚ 

Best value of ࢚ & 
required time (sec) 
for minimum iter.      

  1   10   10 0.512 
ݍ ൌ 0.6, ݌ ൌ 0.2 

 
ߣ	 ൌ 0.4, ߤ ൌ 0.8

  0.1040 

 

0.46 to 0.48      0.46 

(time = 0.0004) 

  2   20   20 0.612 
 

ݍ ൌ 0.51, ݌ ൌ 0.2 
 

ߣ ൌ 0.49, ߤ ൌ 0.8 

   0.1936 0.55 & 0.56 0.55 
(time = 0.0045) 

  3   50   50 0.75 
	

ݍ ൌ 0.4, ݌ ൌ 0.2	
 

ߣ ൌ 0.6, ߤ ൌ 0.8 

   0.4500 Only at 0.66 0.66 
(time = 0.0015) 

  4   65   65 0.88 
	

ݍ ൌ 0.3, ݌ ൌ 0.2	
 

ߣ ൌ 0.7, ߤ ൌ 0.8 
 

   1.2250 0.74 to 0.77 0.76 
(time = 0.0026) 

  5   99   99 0.99 
 
ݍ ൌ 0.12, ݌ ൌ 0.11	
	
ߣ		 ൌ ߤ ,0.88 ൌ 0.89 

 

   9.5712 0.90 & 0.91 0.90 
(time = 0.0043) 

 

In the tables, 6.5 and 6.6, we get the same approximations at all optimum points for the 

Geom/Geom/1 queue. For the first four cases we obtained the same results of ܧሺܹሻ and ܮ௤ 

for all 100 values of ݐ, but for case 5, the results vary at the different points of ݐ. We also 

included the values of the parameters for the interarrival time distribution, ݍ, and the service 

time distribution, ݌, in Table 6.6 which eventually help us to determine ߣ and	ߤ from the 

truncation formula of  ܧሺ ௡ܶሻ and ܧሺܵ௡ሻ. In addition, in Table 6.6, we mentioned the result 

where ݐ is optimum and also mentioned the best value of ݐ where the minimum iteration 

takes shorter time. However, in case 3, we have an optimal situation only at ݐ ൌ 0.66, which 

is apparently the best value of ݐ. 



65 
 

Note: It makes a huge difference whether one starts the interarrival and service time at 0 or at 

1 when ݌ and ݍ not close to 1 and this does not affect the waiting-time distribution. The 

waiting time depends on the difference between	݌ and ݍ, but it does affect ,ߣ 	ߤ and	

 significantly. We can check this easily because starting with 1 rather than with 0, increases  ߩ

the expected interarrival time and service time by 1.  

 

Gamma distributions: A continuous variable ܺ is said to have a gamma distribution with 

parameter ݇ ൐ 0	and ߠ ൐ 0 if it has a pdf of the form 

݂ሺݔ; ,ߠ ݇ሻ ൌ ቊ
ଵ

ఏೖ୻ሺ௞ሻ
௞ିଵ݁ି௫ݔ ఏ⁄ ; ݔ				 ൐ 0

			0; ݔ																														 ൑ 0
 . 

CDF: If ܺ~Γሺߠ, ݊ሻ, where ݊ is a positive integer, then the CDF can be written as 

;ݔሺܨ ,ߠ ݊ሻ ൌ 1 െ ∑ ሺ௫ ఏሻ⁄ ೕ

௝!
௡ିଵ
௝ୀ଴ ݁ି௫ ఏ⁄ ሺܺሻܧ  ; ൌ ሺܺሻݎܸܽ  ,݇ߠ ൌ  .ଶߠ݇

Gamma/Geom/1 queue: The following table (Table 6.7) contains the results for the GI/G/1 

queue, where we used the gamma distribution for the interarrival time and the truncated 

geometric distribution for the service time. So far, we discussed several methods to solve the 

waiting time distribution in a discrete GI/G/1 queue. But, can we obtain the waiting time 

distribution for a GI/G/1 queue if the given interarrival time distribution and service time 

distribution are continuous distribution function? Since all computers are digital machines, 

the logical way to obtain the waiting time distribution in a continuous GI/G/1 queue is to first 

discretize the given distribution function, and we can do this by replacing it with a sequence 

of discrete distribution function. 

It has been suggested by Kimura [18] that to discretize the distribution functions of the 

interarrival time ܳሺݐሻ and the service time ܲሺݐሻ in a GI/G/1 queue, we let the probability 

distribution of interarrival time ሼ ௡ܶሽ be ݍ௜ ൌ ܳ௜ െ ܳ௜ିଵ	 and the probability distribution of 

service time ሼܵ௡ሽ be ݌௜ ൌ ௜ܲ െ ௜ܲିଵ. 

e.g.  ݌ଵ ൌ ሺ0ݎܲ ൑ ܺ ൑ 0.1ሻ ൌ ሺ0.1ሻܨ െ   ሺ0ሻ andܨ
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ଶ݌         ൌ ሺ0.1ݎܲ ൑ ܺ ൑ 0.2ሻ ൌ ሺ0.2ሻܨ െ  .ሺ0.1ሻ, and so onܨ

In this case, we compare the results of our method versus Algorithm 3 [12], though this was 

not done in [12]. This is our new idea, to show how well Gamma distribution works for the 

interarrival times where the service times are considered as the truncated geometric 

distribution. Since the service time has the truncated geometric distribution, we use the same 

formula as we used in the previous discussion in order to find the probability density 

function, mean and variance. The minimal time for both service and interarrival is 1 and the 

maximal time is varying which is the same as shown in Tables, 6.5 and 6.6. In the case of 

Gamma distribution for the interarrival time, we have not truncated it, even though it is not 

compactly supported (not bounded). But in each case, we have considered the maximum time 

for interarrival as its upper bound. Moreover, we considered different values for the 

parameters  ݇ and ߠ to get ߣ as well different values for ݌ to get ߤ. In all cases, the results of 

 ሺܹሻ obtained by Algorithm 3 coincide with ours. We also calculated the average queueܧ

length in queue in Table 6.8.  

݇	assume	we	:܍ܜܗۼ ൌ ߠ and ܣ ൌ  	.program	computer	our	in	ܤ
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Table 6.7  Results of using Gamma distribution for the interarrival time and  

                      truncated Geometric distribution for the service time by using our  

                      Algorithm and by Algorithm 3 [12] 

Case Max(T) Max (S) ࣋ 

 

   Algorithm 3   Iter. Our method    Iter. 

 ሻࢃሺࡱ ሻࢃሺࡱ

  1   10   10 0.5 
݌ ൌ 0.2,
ܣ ൌ 2,
ܤ ൌ 1.25 

0.1611   4    0.1601   3 

  2   20   20 0.61  
݌	 ൌ 0.2,
ܣ ൌ 2 ,
ܤ ൌ 1.02 

0.2397   4    0.2429	   3 

  3   50   50 0.75 
݌ ൌ 0.2,
ܣ ൌ 2	,	 
ܤ ൌ 0.83 

0.3621   5    0.3821 

 

  3 

  4   65   65 0.88 
݌ ൌ 0.2,
ܣ ൌ 2	,	 
ܤ ൌ 0.71 

 

0.4896   6    0.5653   3 

  5   99   99 0.99 
݌ ൌ 0.2,
ܣ ൌ 2 
ܤ ൌ 0.63 
 

0.600   6    0.7970   3 
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Table 6.8  Results for the Average Queue Length in queue using our method  

Max 

(T) 

Max 

(S) 
 ࣋

 

   Our method    Our method   Our method 

Queue Length 

 ࢗࡸ

Optimum values 

for ࢚ 

Best value of ࢚ and 

required time (sec) 

for minimum iter.          

  10   10   0.5 

 

     0.0640 

 

from 0.45 to 0.50 0.45 

(time = 0.0003) 

  20   20   0.61  

 

     0.1191 

 

0.55 to 0.58  0.58 

 (time = 0.0005) 

  50   50   0.75 

 

     0.2302 0.65, 0.66  0.65 

(time = 0.0037) 

  65   65   0.88 

 

     0.3981 

 

0.72   0.72 

 (time = 0.0051) 

  99   99   0.99 

 

     0.6325 0.77  0.77 

(time = 0.0086) 

 

  

In Table 6.7 & 6.8, we see that there are many optimal values of ݐ between 0 and 1. Except in 

the fourth case, we get only one optimal point of ݐ. We choose the best approximation among 

those points of ݐ where we get the lowest value for ܧሺܹሻ and ܮ௤ for the minimum number of 

iteration. We also added the required time for the minimum number of iteration. Moreover, 

in all cases, the number of iteration in our method is less than Algorithm 3, which is still 

considered as a fast convergence. 

The above output shows that most of the cases the best values for t of the U/U/1, the 

Geom/Geom/1 and the Gamma/Geom/1 queue are found when we start going to the right 
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from the point 0.50, where we usually get the optimum situation by using our method. 

Moreover, we also showed that we are always able to get a better approximation for ܧሺܹሻ 

and our execution times are shorter compare to Algorithm 3. Thus, between the two 

algorithms (ours and Algorithm 3), our result always proves its superiority. 

6.2 Charts for the Queue Lengths  

In figures 6.2.1 to 6.2.4, we added some charts to show the results of the average queue 

length in queue, ܮ௤, with different values of traffic intensity (ߩ) for the U/U/1 queue (Figure 

6.2.1 and Figure 6.2.2), the Geom/Geom/1 queue (Figure 6.2.3), and the Gamma/Geom/1 

queue (Figure 6.2.4). 

Figure 6.2.1  The Average Queue Length in queue for the U/U/1 queue based on the   

data in Table 6.1 and 6.2. 
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Figure 6.2.2  The Average Queue Length of large bound for the U/U/1 queue based                         

on the data in Table 6.3. 

 

 

 

Figure 6.2.3  The Average Queue Length in queue for the Geom/Geom/1 queue based  

                     on the data in Table 6.4. 
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Figure 6.2.4  The Average Queue Length for the Gamma/Geom/1 queue in queue  

 based on the data in Table 6.7. 
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Chapter 7 

Conclusion and Recommendations for Future Work 

 

7.1 Conclusions 
In this thesis, we have discussed some of the popular methods of finding the waiting time 

distribution of the arithmetic GI/G/1 queue. In particular, the methods given by Grassmann 

[11], Grassmann and Jain [12], Konheim [22] and Ponstein [28], respectively could be the 

best ways of obtaining the discrete waiting time distribution. Other techniques for solving the 

problem of finding the waiting time distribution were also mentioned. Furthermore, based on 

the theory of random walk and the Wiener-Hopf factorization method, Grassmann and Jain 

[12] gave an efficient algorithm which we described in some detail. We also explained the 

reasons for using the Wiener-Hopf factorization method for 1 െ ܷሺݖሻ. Moreover, we added 

our proofs for Algorithm 1of [12], where we showed why it is monotonic and converges to 

the Wiener-Hopf factorization. Furthermore, we added our explanation for Algorithm 2 of 

[12] to show ߙ௜
௠ to be bounded. In addition, we thoroughly discussed the preliminary ideas 

related to our topic. We also indicated the various probabilistic interpretations in the above-

mentioned methods and more importantly, we demonstrated that all of these techniques [11, 

12, 22, 28] are fully equivalent.  

Moreover, we discussed an analytical interpretation to investigate the waiting time 

distribution of the Geom/Geom/1 queue, which is based on an infinite interval, as an example 

of the arithmetic GI/G/1 queue. Thereby, we proved that the waiting time distribution of the 

Geom/Geom/1 queue is asymptotically geometric.   

The most important part we have done in this thesis is, based on Grassmann and Jain’s [12] 

method, we developed a new algorithm by improving the weighted average and nicely 

represented how one can implement this technique to find the waiting time distribution in a 
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discrete GI/G/1 queue. We also calculated the average queue length in queue by using 

Little’s formula. 

Finally, we gave some numerical examples to conclude this thesis. At first, we implement 

this method in numerical test for the U/U/1 queue and it worked out nicely. We also applied 

this in the Geom/Geom/1 queue where we truncated the distribution, and we briefly 

discussed the approach of truncation and showed the convergence of the waiting time 

distribution for the truncation case. Furthermore, our method could be used not only for the 

discrete type input distribution functions, but also for the continuous type input distribution 

function. Discretizing a continuous distribution function into a discrete sequence is a critical 

step in practical computation in queueing models. However, for the Gamma/Geom/1 queue, 

we used Gamma distribution for the interarrival time and we also discussed the technique of 

discretizing the gamma distribution function. Moreover, we numerically experimented with it 

and we found that very precise results are achievable. It can be concluded from the above 

discussion that the method shown in this research is numerically stable, effective, simple and 

robust. 

7.2 Future Works          

We numerically experimented with our method in the Uniform distribution and Geometric 

distribution for the interarrival time and service time, and also with gamma distribution for 

the interarrival time. In future, we could implement our method in various ways to develop 

the concept of our work. For example, we could try to develop our method to work for the 

Geom/Gamma/1 queue, which is not possible by using our method. We could also compare 

the different ݐ with the other distributions, like Poisson, Normal, Log Normal, etc., and then 

make a comparison with the above distributions in such a way that one easily figures out 

which distribution works better in order to find the best value for ݐ by our method. 

Furthermore, we could also try to find a better ݐ for both the discrete and continuous cases by 

using the hyperbola concept. Additionally, we could explore the roots of ߙ௜ and ௝ܾ of 

1 െ ܷሺݖሻ by using the Geom/Geom/1 queue, which is based on an infinite interval, as an 

example of the arithmetic GI/G/1 queue                                  
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Appendix 

 

Program Listing 

1. % THIS IS THE PROGRAM TO SOLVE THE U/U/1 WAITING TIME 

DISTRIBUTION PROBLEM 

clear; 
Max_S=25;Max_T=50; 
P_S(1:Max_S)=1/(Max_S);P_T(1:Max_T)=1/(Max_T);UJ(1:Max_S-
1)=0;U_J(1:Max_T)=0; 
  
for k=1:Max_S-1 
    for i=1+k:Max_S 
        PST=P_S(i)*P_T(i-k);UJ(k)=UJ(k)+PST; 
    end 
end 
for k=0:Max_T-1 
    if k<=Max_T-Max_S 
        for i=k:Max_S+k-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    else  
        for i=k:Max_T-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    end 
end 
  
g=Max_T-1; h=Max_S-1; Epsl=1e-6;t=0;Count_t=1; TIME=[]; 
 
for t=0:0.01:1 
      tic;alfa(1:h,1)=0; m=1; 
    b(1:g+1,m)=U_J(1:g+1)';S(1)=0; 
    m=2;b(1:g+1,m)=U_J(1:g+1)'; 
    S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
    alfa(1:h+h,m)=0; 
    for j=h:-1:1 
        alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
    end 
    Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
    if Max_dif<Epsl 
        disp(':(=)'); 
    else 
            while Max_dif>Epsl 
                m=m+1;M(Count_t)=m; 
                b(1:g+h+1,m)=0; 
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                for j=g:-1:0 
                    b(j+1,m)=U_J(j+1)+alfa(1:h,m-1)'*b(j+2:j+1+h,m); 
                end 
                S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
                alfa(1:h+h,m)=0; 
                for j=h:-1:1 
                    alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
                end 
                Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
            end 
    end 
 
A123=1:h;w0=1-sum(alfa(1:h,m));Exp_w(Count_t)=(A123*alfa(1:h,m))/w0; 
Time_exp=toc;TIME(Count_t)=Time_exp; 
 
A321=fliplr(alfa(1:h,m)'); 
W=[w0 zeros(1,h)]; 
for i=1:h 
    W(i+1)=[A321(h-i+1:h) zeros(1,h-i+1)]*W'; 
end 
EXP_w(Count_t)=A123*W(2:h+1)'; 
variance(Count_t)=((A123.^2)*W(2:h+1)')- EXP_w(Count_t)^2; 
%variance(Count_t)=(A123.^2)*alfa(1:h,m)/w0+(Exp_w(Count_t))^2; 
Count_t=Count_t+1; 
end 
 
Opt_m=min(M); 
Exp_w(find(M<=Opt_m)); 
%variance=(A123.^2)*alfa(1:h,m)/w0-(Exp_w).^2; 
 
rho=(Max_S+1)/(Max_T+1); 
lamda=1/((1+Max_T)/2); 
L=lamda*Exp_w; 
Miu=1/((1+Max_S)/2); 
Var_T=((Max_T)^2-1)/12; 
Var_S=((Max_S)^2-1)/12; 
SCV_T=(lamda)^2*Var_T; 
SCV_S=(Miu)^2*Var_S; 
 
%COMPARING WITH THE FOLLOWING APPROXIMATE FORMULA  
W_q=((SCV_T+SCV_S)/2)*(rho/(1-rho)*(1/Miu)); 
L_q=lamda*W_q; 
 

 
2. % THIS IS THE PROGRAM TO SOLVE THE Geom/Geom/1 WAITING TIME 
DISTRIBUTION PROBLEM 
clear; 
Max_S=65;Max_T=65;p=0.2;q=0.3 ; 
for ai=1:Max_S 
    P_S(ai)=((1-p)*p^(ai-1))/(1-p^(Max_S)); 
end 
for ai=1:Max_T 
    P_T(ai)=((1-q)*q^(ai-1))/(1-q^(Max_T)); 
end 
  
UJ(1:Max_S-1)=0;U_J(1:Max_T)=0; 
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for k=1:Max_S-1 
    for i=1+k:Max_S 
        PST=P_S(i)*P_T(i-k);UJ(k)=UJ(k)+PST; 
    end 
end 
for k=0:Max_T-1 
    if k<=Max_T-Max_S 
        for i=k:Max_S+k-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    else  
        for i=k:Max_T-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    end 
end 
  
g=Max_T-1; h=Max_S-1; Epsl=1e-6;t=0;Count_t=1; TIME=[]; 
 
for t=0:0.01:1 
      tic;alfa(1:h,1)=0; m=1; 
    b(1:g+1,m)=U_J(1:g+1)';S(1)=0; 
    m=2;b(1:g+1,m)=U_J(1:g+1)'; 
    S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
    alfa(1:h+h,m)=0; 
    for j=h:-1:1 
        alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
    end 
    Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
    if Max_dif<Epsl 
        disp(':(=)'); 
    else 
            while Max_dif>Epsl 
                m=m+1;M(Count_t)=m; 
                b(1:g+h+1,m)=0; 
                for j=g:-1:0 
                    b(j+1,m)=U_J(j+1)+alfa(1:h,m-1)'*b(j+2:j+1+h,m); 
                end 
                S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
                alfa(1:h+h,m)=0; 
                for j=h:-1:1 
                    alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
                end 
                Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
            end 
    end 
 
A123=1:h;w0=1-sum(alfa(1:h,m));Exp_w(Count_t)=(A123*alfa(1:h,m))/w0; 
Time_exp=toc;TIME(Count_t)=Time_exp; 
 
A321=fliplr(alfa(1:h,m)'); 
W=[w0 zeros(1,h)]; 
for i=1:h 
    W(i+1)=[A321(h-i+1:h) zeros(1,h-i+1)]*W'; 
end 
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EXP_w(Count_t)=A123*W(2:h+1)'; 
variance(Count_t)=((A123.^2)*W(2:h+1)')-EXP_w(Count_t)^2; 
%variance(Count_t)=(A123.^2)*alfa(1:h,m)/w0+(Exp_w(Count_t))^2; 
Count_t=Count_t+1; 
end 
 
 
Opt_m=min(M) 
Exp_w(find(M<=Opt_m)) 
%variance=(Exp_w).^2 + (A123.^2)*alfa(1:h,m)/w0; 
 
lamda=((1-q^(Max_T))*(1-q))/(1-(Max_T+1)*q^Max_T+Max_T*q^(Max_T+1)); 
L=lamda*Exp_w; 
Miu=((1-p^Max_S)*(1-p))/(1-(Max_S+1)*p^(Max_S)+Max_S*p^(Max_S+1)); 
rho=lamda/Miu; 
Var_T=(1-2*q-
(Max_T+1)^2*(q^(Max_T))+((Max_T)^2+2*Max_T+2)*q^(Max_T+1))/((1-
q^Max_T)*(1-q)); 
Var_S=(1-2*p-
(Max_S+1)^2*(p^(Max_S))+((Max_S)^2+2*Max_S+2)*p^(Max_S+1))/((1-
p^Max_S)*(1-p)); 
SCV_T=(lamda)^2*Var_T; 
SCV_S=(Miu)^2*Var_S; 
 
% COMPARING WITH THE FOLLOWING APPROXIMATE FORMULA 
W_q=((SCV_T+SCV_S)/2)*(rho/(1-rho)*(1/Miu)); 
L_q=lamda*W_q; 

 
 

3. % THIS IS THE PROGRAM TO SOLVE THE Gamma/Geom/1 WAITING 
TIME DISTRIBUTION PROBLEM 
 
clear; 
Max_S=10;Max_T=10;p=0.2;A=2;B=1.25; 
for ai=1:Max_S 
    P_S(ai)=((1-p)*p^(ai-1))/(1-p^(Max_S)); 
end 
% for ai=1:Max_T 
%     if ai==1 
%         P_T(1)=gamcdf(1,A,B); 
%     else P_T(ai)=gamcdf(ai,A,B)-P_T(ai-1); 
%     end 
%      
% end 
  
for ai=1:Max_T 
%  GMCDF=0; 
%  for N=0:1:A-1 
%  GCDF=((ai/B)^N)*(exp(-ai/B))/factorial(N); 
%  GMCDF=GMCDF+GCDF; 
%  end 
% Gama_CDF=1-GMCDF; 
% P_T(ai)=Gama_CDF-F0; 
% F0=Gama_CDF; 
% N=0:A-1; 
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% Secndprt=((ai/B).^N)./factorial(N); 
% P_T(ai+1)=1-exp(-ai/B)*sum(Secndprt)-P_T(ai); 
  
P_T(ai)=((B^-A)*(ai^(A-1))*exp(-ai/B))/factorial(A-1); 
end 
UJ(1:Max_S-1)=0;U_J(1:Max_T)=0; 
  
for k=1:Max_S-1 
    for i=1+k:Max_S 
        PST=P_S(i)*P_T(i-k);UJ(k)=UJ(k)+PST; 
    end 
end 
for k=0:Max_T-1 
    if k<=Max_T-Max_S 
        for i=k:Max_S+k-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    else  
        for i=k:Max_T-1 
            P_ST=P_S(i+1-k)*P_T(i+1);U_J(k+1)=U_J(k+1)+P_ST; 
        end 
    end 
end 
  
g=Max_T-1; h=Max_S-1; Epsl=1e-6;t=0;Count_t=1;TIME=[]; 
for t=0:0.01:1 
    tic;alfa(1:h,1)=0; m=1; 
    b(1:g+1,m)=U_J(1:g+1)';S(1)=0; 
    m=2;b(1:g+1,m)=U_J(1:g+1)'; 
    S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
    alfa(1:h+h,m)=0; 
    for j=h:-1:1 
        alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
    end 
    Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
    if Max_dif<Epsl 
        disp(':(=)'); 
    else 
            while Max_dif>Epsl 
                m=m+1;M(Count_t)=m; 
                b(1:g+h+1,m)=0; 
                for j=g:-1:0 
                    b(j+1,m)=U_J(j+1)+alfa(1:h,m-1)'*b(j+2:j+1+h,m); 
                end 
                S(m)=((1-t)*(1-b(1,m))+t*sum(b(2:g+1,m))); 
                alfa(1:h+h,m)=0; 
                for j=h:-1:1 
                    alfa(j,m)=(UJ(j)+alfa(j+1:h+j,m)'*b(2:h+1,m))/S(m); 
                end 
                Max_dif=max(abs(alfa(1:h,m-1)-alfa(1:h,m))); 
            end 
    end 
A123=1:h;w0=1-
sum(alfa(1:h,m));Exp_w(Count_t)=(A123*alfa(1:h,m))/w0;Time_exp=toc;TIME(Co
unt_t)=Time_exp; 
A321=fliplr(alfa(1:h,m)'); 
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W=[w0 zeros(1,h)]; 
for i=1:h 
    W(i+1)=[A321(h-i+1:h) zeros(1,h-i+1)]*W'; 
end 
EXP_w(Count_t)=A123*W(2:h+1)'; 
variance(Count_t)=((A123.^2)*W(2:h+1)')- EXP_w(Count_t)^2; 
%variance(Count_t)=(A123.^2)*alfa(1:h,m)/w0+(Exp_w(Count_t))^2; 
Count_t=Count_t+1; 
end 
Opt_m=min(M) 
Exp_w(find(M<=Opt_m)); 
%variance=(Exp_w).^2 + (A123.^2)*alfa(1:h,m)/w0; 
lamda=1/(A*B); 
L=(lamda)*(Exp_w); 
Miu=((1-p^Max_S)*(1-p))/(1-(Max_S+1)*p^(Max_S)+Max_S*p^(Max_S+1)); 
rho=lamda/Miu 
Var_T=A*B^2; 
Var_S=(1-2*p-
(Max_S+1)^2*(p^(Max_S))+((Max_S)^2+2*Max_S+2)*p^(Max_S+1))/((1-
p^Max_S)*(1-p)); 
SCV_T=1/A; 
SCV_S=(Miu)^2*(Var_S); 
% COMPARING WITH THE FOLLOWING APPROXIMATE FORMULA 
W_q=((SCV_T+SCV_S)/2)*(rho/(1-rho)*(1/Miu)); 
L_q=lamda*W_q; 
  

 
 


