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Abstract

Real-time position sensing has a wide range of applications in motion control systems, parts inspection

and general metrology. Vision-based position sensing systems have significant advantages over other

sensing methods, including large measurement volume, non-contact sensing, and simultaneous mea-

surement in multiple degrees-of-freedom (DOF). Existing vision-based position sensing solutions are

limited by low sampling frequency and low position accuracy. This thesis presents the theory, design,

implementation and calibration of a new high-speed stereo-vision camera system for real-time position

sensing based on CMOS image sensors.

By reading small regions around each target image rather than the full frame data of the sensor,

the frame rate and image processing speed are vastly increased. A high speed camera interface is

designed based on Camera Link technology, which allows a maximum continuous data throughput

of 2.3Gbps. In addition, this stereo-vision system also includes fixed pattern noise (FPN) correction,

threshold processing, and sub-pixel target position interpolation.

In order to achieve high position accuracy, this system is calibrated to determine its model parame-

ters. The primary error sources in this system include target image noise, mechanical installation error

and lens distortion. The image sensor is characterized, and its FPN data is extracted, by experiment.

The mechanical installation error and lens distortion parameters are identified through camera cali-

bration. The proposed camera calibration method uses the 3D position reconstruction error as its cost

function in the iterative optimization. The optimization of linear and nonlinear parameters is decoupled.

By these means, better estimation of model parameters is achieved. To verify the performance of the

proposed calibration method, it is compared with a traditional single camera calibration method in sim-

ulation and experiment. The results show that the proposed calibration method gives better parameter

estimation than the traditional single camera calibration method.

The experimental results indicate that the prototype system is capable of measuring 8 targets in 3-

DOF at a sampling frequency of 8kHz. Comparison with a coordinate measurement machine (CMM)

shows that the prototype system achieves a 3D position accuracy of 18µm (RMS) over a range of

400mm by 400mm by 15mm, with a resolution of 2µm.
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Chapter 1

Introduction

1.1 Background
Position sensing has a wide range of applications, such as parts inspection, providing motion feed-

backs for control system and general metrology. In applications, such as robotic guidance and control,

computer-assisted surgery and planar motion stage, where the position and orientation of the objects

are captured simultaneously, multiple degree-of-freedom (DOF) motion sensing is required. In high-

performance real-time motion control systems that require high bandwidth, large motion range and

high accuracy, the metrology system must provide high position sampling frequency and high position

accuracy. Conventional solutions for position sensing include linear variable differential transformer

(LVDT), capacitance probe, laser tracker, optical encoder, interferometer and accelerometer, among

others. Most conventional position sensors are limited to measurement of a single-DOF, therefore mul-

tiple conventional sensors are required when measuring multiple DOFs motion, increasing the system

complexity.

Developments in optical sensor technology make the vision-based position sensing system an at-

tractive solution for real-time position sensing where the object to be tracked has multi-DOF motion in a

large moving volume. The advantages of a vision-based position sensing system include large measure-

ment volume, non-contact measurement and simultaneous measurement in multiple DOFs. Currently,

the charge-coupled device (CCD) image sensor is a mature technology that is widely applied in many

vision systems. The image quality generated by CCD image sensors is already excellent but at a low

frame rate. Commercial products based on CCD image sensor have already been successfully used in

applications, such as computer-assisted surgery and virtual reality. However, because it is limited by

low frame rate and high power dissipation, CCD is not desirable for high-speed vision applications.

There is a tradeoff between the sampling frequency and accuracy in position sensing systems based

on CCD. On one hand, the position accuracy is increased by using high resolution CCD. On the other

hand, high resolution of image sensor increases the frame readout time, causing lower position sam-

pling frequency. Recent developments in complementary metal-oxide-semiconductor (CMOS) tech-

nology make the CMOS image sensor a promising solution for high-speed vision systems. Taking

advantage of random pixel accessibility of the CMOS image sensor, the region of interest (ROI) read-
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out is enabled by reading small regions around target image rather than the full frame image data, which

vastly reduces the readout time of the image sensor.

A preliminary prototype of the optical tracking system using a commercial CMOS camera was

developed by Yingling Huang as a proof of concept to achieve high position accuracy by using a CMOS

camera [1]. In her thesis, camera model and calibration methods are investigated and discussed. This

prototype achieves a 3D position accuracy of 40µm RMS over a range of 500mm by 500mm by 10mm

with 1m distance between the camera and the measurement volume. However, the high speed features

of the CMOS image sensor are not investigated in her thesis. Based on these results, a customized

vision-based position sensing system is developed in this thesis. In this thesis, a prototype of stereo-

vision system for real-time position sensing is designed and built based on CMOS image sensor, which

features large measurement volume, high sampling frequency and high position accuracy.

In the rest of this chapter, some backgrounds of vision-based position sensing system are presented,

and the prior art are reviewed. Next, the overview of this thesis is presented and the thesis structure is

outlined.

1.2 Prior Art
A significant amount of research effort has been devoted to the design of vision-based position sensing

systems. There are many designs reported in the literature based on various mechanisms and configu-

rations.

Vision-based position sensing systems can be classified according to the optical sensor they use.

Non-imaging sensors such as lateral effect photodiodes (LEPDs) are pure analog sensors that determine

the centroid of all the light in the field of view (FOV). They require no digital image processing,

but care must be taken to ensure that the light seen by the sensor at any given time comes from a

single bright target. These sensors are often used with active light source targets that are able to work

in time multiplexing mode. On the other hand, image sensors, such as CCD and CMOS, require

some digital computations to find the position of target in an image. They have advantages that the

positions of multiple targets can be retrieved using a single image frame. Accurate target positions

can be obtained even if there is background noise, as long as the image processing algorithm is smart

enough to distinguish the actual targets from the background.

1.2.1 LEPD-based Position Sensing Systems

Lateral effect photodiode (LEPD) is a component that generates a signal proportional to the position

of the centroid of incident light on its 2D axes. With other optical and electrical components, a system

based on this type of sensor can measure angle and distance. LEPD provides position information

which is linear and independent of the intensity profile of the illumination. Further, its linearity is

independent of the symmetrical defocusing that might occur in optical systems. The major disadvantage

of the LEPD is high noise. Because linearity considerations require a small impedance between lateral

contacts, the output signal of the LEPD is typically noisy [2].

One position sensing system based on LEPDs is the HiBall system [3]. The HiBall was developed
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by the University of North Carolina at Chapel Hill in the early 1980s. This system uses arrays of ceiling

mounted infrared light-emitting diodes (LEDs) as targets (Figure 1.1). Multiple LEPDs are installed

to detect the positions of infrared LEDs relative to the LEPD sensors. These LEPD devices generate a

current proportional to the position of the light that falls on the photodiodes. By using multiple LEPD

sensors looking outwards in different directions, the HiBall achieves a large FOV. This system achieves

a position sampling frequency of 2000Hz. However, this system only achieves an accuracy of 500µm

in position measurement.

Figure 1.1: Schematic of HiBall system adapted from [3]

1.2.2 CCD-based Position Sensing Systems

Charge-coupled device (CCD) image sensor technology was invented in the late 1960s and has domi-

nated the vision system for the past 25 years. As a result of its large dynamic range, high uniformity and

low system noise, CCD can offer high quality images at low frame rate. On the other hand, CCD are

limited by their high driving voltage, and their pixel shifting structure is unable to meet the requirement

of high-speed vision applications. These disadvantages of the CCD image sensor significantly limit its

application in high-speed vision systems [4].

Advanced Realtime Tracking Inc. designed an optical tracking system in 2000, named ARTtrack

[5]. ARTtrack uses multiple specially designed CCD cameras which emit flashes of infrared light.

These cameras are located surrounding the object being tracked. Light from the cameras bounces off

reflective spheres attached to the object and is reflected back to the camera. The orientation and position

of the retro-reflectors are known with respect to a reference point. This information is exploited to

retrieve the position and orientation of the object. This system can track multiple objects simultaneously

in a large measuring depth (up to 6m). The position sampling frequency is limited to 60Hz and the

position accuracy is 1mm.

Mathieu Herve, in 2005, introduced a 6-DOF optical tracking system for virtual reality applications,

named Cyclope [6]. The Cyclope tracker is based on a single CCD camera and infrared retro-reflectors.

The CCD camera captures the image of the retro-reflectors which have a pre-defined pattern. Given
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Figure 1.2: Working principle of three linear CCDs configuration adapted from [8]

the 3D positions of these non-coplanar retro-reflectors in the image, the position and the orientation of

the reference frame attached to the 3D points with respect to the camera reference frame are retrieved.

The Cyclope tracker runs at a position sampling frequency of 60Hz with 30ms intrinsic latency. The

position measurement error is 1mm.

The Polaris system [7], launched by Northern Digital Inc. (NDI) in 2005, is a highly versatile, low

cost, real-time stereo-vision technology, which supports the needs of medical imaging applications.

Polaris uses two area CCDs to capture the motion of active or passive targets which emit or reflect

infrared light. Based on the principle of two camera stereo-vision, the position of the target is obtained

by triangulation. The Polaris system achieves a position sampling frequency of 60Hz and position

accuracy of 250µm, and is mainly limited by its area CCD.

For CCD image sensors, the speed of delivery for pixel data sets the upper limit for frame rate. This

limit arises because a CCD sensor must transfer out all of its pixel information in order to empty its

transfer register so that it can accept the next image [4]. For a given pixel rate, the higher the image res-

olution the lower the frame rate. Based on this idea, the linear CCD with much lower image resolution

(relative to a high-resolution area CCD) was applied. In 1983, V. Macellari designed an optical tracking

system based on three linear CCDs for sensing the motion of human body [8] (shown in Figure 1.2). In

2006, NDI released the OPTOTRAK system using a similar configuration [9]. OPTOTRAK system is a

portable coordinate measurement machine (CMM) based on NDI’s optical measurement solutions. The

system’s solid mechanical design ensures a great measurement reliability. By using linear CCDs, the

readout time of a single frame is significantly reduced and a frame rate of 4kHz is achieved. However,

limited by the linear CCD configuration, OPTOTRAK can only capture one target image in a single

frame so that the position sampling frequency is reduced when measuring multiple targets. OPTO-

TRAK system must be operated with smart targets working in time-multiplexing mode. The position

sampling frequency decreases to 575Hz for 6 targets. Meanwhile, OPTOTRAK achieves a position

accuracy of 100µm.
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1.2.3 CMOS-based Position Sensing Systems

Complementary metal-oxide-semiconductor (CMOS) image sensor technology was developed in the

early 1970s, but its performance was limited by the available lithography technology at that time. How-

ever, recent developments in lithography technology and process control in CMOS fabrication make

CMOS image sensor a strong competitor to CCD [4]. Compared to CCD, CMOS image sensors have

low-power consumption. In the applications of high-speed vision systems, they allow short exposure

time and fast image readout. CMOSs have a speed advantage as on-board circuitry allows for low

propagation delays and conversion to the digital domain physically closer to the actual pixels. Fur-

ther, CMOS image sensors have the ability of direct pixel access, which allows dynamically changing

the ROI location and size. These features make the CMOS image sensor a promising technology in

high-speed vision applications. However, CMOS image sensors offer high integration, low power dis-

sipation, small system size and high speed at the expense of image quality [4].

Ulrich Muehlmann, in 2004, designed a new high-speed vision system for real-time tracking ap-

plications, combining CMOS image sensors, field programmable gate array (FPGA) technology and

universal serial bus (USB) interface [10]. The main advantage of this vision system is the application of

the ROI readout of the CMOS image sensor. By this means, when the system is tracking small targets

in a wide background, only the small areas around each target are read out, significantly reducing the

amount of raw image data which needs to be read in a single frame (Figure 1.3). The position sampling

frequency of this system is 800Hz for 8 targets. The correction of image noise is integrated on board.

Since the exposure time and illumination conditions affect the image noise data, different calibration

maps under different conditions are stored on the board memory. The main bottle neck of this system

comes from its USB 2.0 interface between camera modules and host PC. The camera control infor-

mation, including ROI size, ROI position, etc., and the raw image data share the same USB interface

operating in host-slave mode. However, the bandwidth of this USB interface is limited to 480Mbps,

and there is high latency due to its inherent micro-frame synchronization mechanism so that the data

throughput is greatly limited, causing low position sampling frequency. In addition, this system lacks a

good motion predictor to estimate the ROI positions in the next frame. A full frame recovery is required

if any target is lost.

Figure 1.3: Working principle of Muehlmann’s Design (tracking 1, 3, and 8 targets) adapted from
[10]
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Crispin D. Lovell-Smith designed and implemented a prototype inside-out vision-based position

sensing system in 2009, named Black Spot [11]. A CMOS image sensor was integrated with digital

signal processor (DSP), and multiple camera modules are used to form a camera hub to achieve large

measurement volume. The idea of ROI-based image processing is applied: only small regions which

contain the target image are processed, which reduces the computation time of the system and, there-

fore, increases position sampling frequency. However, this idea is not extended to the image readout.

This design does not fully take advantage of the ROI readout capability of CMOS image sensor, thus

a full frame readout is still required for every processing cycle, severely limiting the image acquisition

speed. The universal asynchronous receiver/transmitter (UART) serial interface limits the data through-

put between the camera modules and the host PC. The position accuracy is limited to 800 µm caused

by poor camera calibration and low resolution of image data (8-bit).

1.2.4 Summary of Prior Art

To summarize the prior art of vision-based position sensing, the systems discussed above are compared

in Table 1.1. Shown in Table 1.1, none of the current commercial products or designs is able to achieve

high position sampling frequency (>10kHz) and high position accuracy (<10µm). Based on previous

designs, a novel vision-based position sensing system based on CMOS image sensor is developed in

this thesis in order to achieve the high position sampling frequency and simultaneously high position

accuracy.

Table 1.1: Comparison of prior art vision-based position sensing systems

Name Sensor Type Position Sampling Frequency Accuracy

HiBall LEPD 2000Hz 500µm

Cyclope Area CCD 60Hz 1000µm

ARTtrack Area CCD 60Hz 1000µm

Polaris Area CCD 60Hz 250µm

OPTOTRAK Linear CCD 575Hz for 6 targets 100µm

Black Spot CMOS 60Hz 800µm

Muehlmann’s Design CMOS 800Hz for 8 targets Not Available

1.3 Thesis Overview
In this thesis, a new prototype of high-speed vision-based position sensing system based on CMOS

image sensor is designed and built (shown in Figure 1.4). The goal of this thesis is to fully realize

the high speed potential of the CMOS image sensor through advanced electronics configuration, and

develop associated enabling technologies to demonstrate the achievable performance.

To demonstrate the usability of this novel high-speed position sensing system, this system is in-
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Figure 1.4: Prototype of the real-time position sensing system based on stereo-vision

tegrated as the metrology solution for a long-stroke planar motor (shown in Figure 1.5). The motion

stage moves in the range of 1m by 1m in the XW −YW plane with 10mm in ZW direction. By tracking

the position of targets mounted on the armature, the 6-DOF motion of the armature is retrieved.

The thesis is structured as follows:

Chapter 1 introduces the background of vision-based position sensing systems and reviews the prior

art. An overview of the high-speed vision-based position sensing system is presented.

Chapter 2 describes the supporting theories behind the system. The imaging model is first built

where the transformation of target position from world coordinates to pixel coordinates is given. The

ROI-based image processing is presented, including initial target detection, sub-pixel target position

interpolation and ROI position update. Further, the 3D position reconstruction algorithm is presented.

Chapter 3 covers the detailed design and implementation of the stereo-vision system hardware. It

begins by establishing the design objectives for the stereo-vision system and then presents the elec-

tronic hardware, optical and mechanical design. The electronics hardware design covers the imaging

electronic architecture and also provides details on the high-performance customized electronics devel-

opment, integration and realization. The optical and mechanical design is based on the overall system

design objectives, providing high image quality and a stable mechanical structure.

Chapter 4 presents the calibration method of the prototype system. The limitations and error sources

of vision-based position sensing system are analyzed and discussed. The image sensor is modeled

and its noise correction method is presented. Further, the calibration of the stereo-vision system is

presented. The prior art of camera calibration methods are reviewed and the proposed calibration

method is described. Simulation results are presented to demonstrate the potential performance that the
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Figure 1.5: Illustration of the metrology system of long-stroke planar motor

proposed calibration method is able to achieve.

Chapter 5 presents the experimental results of the overall system performance. First, the image sen-

sor is experimentally characterized and the effectiveness of image noise correction method is demon-

strated by experiment. Second, the position sampling frequency is measured based on different target

numbers and ROI sizes. Third, the stereo-vision system is calibrated using CMM. Multiple effects

which influence the calibration performance are investigated. Finally, the 3D reconstruction method is

realized in real-time, and its precision, repeatability and accuracy are characterized.

Chapter 6 concludes the thesis with an overview of the presented results and a discussion of the

system limitations. Future work on the prototype is outlined.

The main contributions of this thesis can be summarized as follows:

• The design and implementation of a new high-speed stereo-vision system. This vision sys-

tem is designed based on CMOS image sensors and FPGA technology, which features high-

performance image acquisition, high-speed camera interface and fast image processing. By ad-

vanced electronics design, the camera modules in this system are not only limited to the function

of raw image acquisition but also integrated with more image processing functionalities, such

as image noise correction and sub-pixel target position interpolation. Therefore, the sampling

frequency of this vision-based position sensing system is significantly increased.
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• A new calibration method designed for stereo-vision system. The proposed camera calibration

system utilizes the cost function which minimizes the 3D reconstruction error in the nonlinear

optimization. Therefore, information provided by the 3D test points are fully utilized in the

optimization. Especially in the presence of large measurement errors in sub-pixel target position,

the proposed calibration method gives better estimation of model parameters than traditional

single camera calibration methods. At the same time, this calibration method decouples the

optimization of linear and nonlinear parameters in a stereo-vision system, therefore the harmful

interaction between them is suppressed. By these means, better estimation of system model

parameters is obtained, and therefore higher position measurement accuracy is achieved.
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Chapter 2

Vision-based Position Sensing Theory

Vision-based position sensing systems use mathematical models to calculate 3D positions of targets

from their raw image data. Various parameters are incorporated in the model that describe the sys-

tem’s physical attributes, such as lens distortions, camera position and sensor pixel size [12]. In this

chapter, the position sensing system based on stereo-vision is modeled and the supporting theories

are presented. There have been many investigations and studies on the model of imaging systems

[13][14][15][16][17][18][19]. Section 2.1 presents the imaging model that describes the target position

transformation from the 3D world coordinate to the 2D image sensor coordinate. Section 2.2 presents

the idea of ROI-based image processing and investigates the supporting algorithms. The 3D position

reconstruction algorithm is presented in Section 2.3.

2.1 Imaging Model
The imaging model describes the transformation of target position from the 3D world coordinate

(XW ,YW ,ZW ) to the 2D pixel coordinate (u,v). This transformation is divided into four steps: rigid

body transformation, perspective projection, lens distortion and image digitization.

2.1.1 Rigid Body Transformation

The rigid body transformation represents the coordinate transformation from the world coordinate

PW (XW ,YW ,ZW ) to the camera coordinate PC (XC,YC,ZC) (shown in Figure 2.1). The origin of cam-

era coordinate is built at the optical center of lens; the ZC axis is the optical axis of the lens; the XC

axis is parallel with the XI axis of the image sensor; the YC axis is parallel to the YI axis of the image

sensor. The rigid body transformation uses a translation vector T and a rotation matrix R to represent

the relationship between world coordinate and camera coordinate. The transformation is expressed as XC

YC

ZC

= R

 XW

YW

ZW

+T. (2.1)

The matrix R is a 3 by 3 matrix (shown in Equation 2.2) determined by three Euler angles α , β and γ

that represent the rotation of the camera coordinate around XW -axis, YW -axis and ZW -axis, respectively.
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Figure 2.1: Illustration of the rigid body transformation

The vector T = [Tx,Ty,Tz]
T describes the translation between world coordinate and camera coordinate.

These six independent parameters which describe the rotation (α,β ,γ) and translation (Tx,Ty,Tz) are

called extrinsic parameters of the camera.

R =

 cosβ cosγ cosα sinγ + sinα sinβ cosγ sinα sinγ− cosα sinβ cosγ

−cosβ sinγ cosα cosγ− sinα sinβ sinγ sinα cosγ + cosα sinβ sinγ

sinβ −sinα cosβ cosα cosβ

 (2.2)

The rigid body transformation shown in Equation 2.1 can be reorganized into a homogeneous form:
XC

YC

ZC

1

=

[
R3×3 T3×1

01×3 1

]
XW

YW

ZW

1

 . (2.3)

2.1.2 Perspective Projection

The perspective projection (shown in Figure 2.2) is based on an ideal pinhole model that transforms

PC (XC,YC,ZC) in camera coordinate to PI (XI,YI) in image sensor coordinate.

The image position of target PC in sensor coordinate is denoted as PI , and its coordinates can be

derived as

XI =−d
XC

ZC
(2.4)

YI =−d
YC

ZC
(2.5)

where d is the distance from the lens optical center to the image sensor plane. Equation 2.4 and

Equation 2.5 can be further expressed in a homogeneous form:
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Figure 2.2: Perspective projection of a point from camera coordinate to image coordinate

 XI

YI

1

=
1

ZC

 −d

0

0

0

−d

0

0

0

1

0

0

0




XC

YC

ZC

1

 . (2.6)

2.1.3 Lens Distortion

The perspective projection presented above is an approximation of real optical projection based on the

assumption that the lens is free of optical distortion. However, this assumption is not true in real lenses.

The perspective projection is a basis that is extended with some corrections for systematically distorted

image coordinate [19]. The distorted position PD(XD,YD) in image sensor coordinate is expressed as

XD = XI +δX (XI,YI)

YD = YI +δY (XI,YI)
(2.7)

where δX (XI,YI) and δY (XI,YI) are the optical distortion terms in XI and YI directions, respectively.

Typically, lens distortion is categorized into three types based on its physical cause: curvature

distortion, decentering distortion and thin prism distortion [17].

• Curvature Distortion: curvature distortion is caused by flawed radial curvature of the lens el-

ements, generating an inward or outward displacement of a given image point from its ideal

location [14]. The curvature distortion of a perfectly centered lens has only radial components,

and its expression in polar coordinate is governed by:

δρ = K1ρ
3 +K2ρ

5 +K3ρ
7 + . . . (2.8)

where ρ is the radial distance from the principal point (u0,v0) of the image plane and K1, K2,
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K3 ... are the coefficients of radial distortion [13][17]. With positive distortion coefficients

Ki (i = 1,2, . . .), the distorted image shows a pincushion shape; on the other hand, a barrel shape

distortion is introduced by negative Ki (shown in Figure 2.3) [14].

Figure 2.3: Illustration of radial distortion adapted from [14]

At each image point represented by polar coordinate (ρ,φ), the image point can also be expressed

in terms of Cartesian coordinate (XI,YI):

XI = ρ cosφ

YI = ρ sinφ
. (2.9)

Therefore, the amount of curvature distortion in Cartesian image coordinate is derived as

δX ,r (XI,YI) = K1XI
(
X2

I +Y 2
I
)
+K2XI

(
X2

I +Y 2
I
)2

+K3XI
(
X2

I +Y 2
I
)3

+ . . .

δY,r (XI,YI) = K1YI
(
X2

I +Y 2
I
)
+K2YI

(
X2

I +Y 2
I
)2

+K3YI
(
X2

I +Y 2
I
)3

+ . . .
(2.10)

• Decentering Distortion: Actual optical systems are subject to various degrees of decentering,

that is, the optical center of lens elements are not strictly collinear [16]. This distortion has both

radial and tangential components, which is described in polar coordinate by :

δρd = 3( j1ρ2 + j2ρ4 + . . .)sin(φ −φ0)

δtd = ( j1ρ2 + j2ρ4 + . . .)cos(φ −φ0)
(2.11)

where δρd and δtd are the radial and tangential component of decentering distortion respectively,

φ0 is the angle between the positive XI axis and a line of reference where the maximum tangential

distortion happens [16][17].

Similarly, the amount of decentering distortion can be expressed in Cartesian coordinate (XI,YI)

in terms of δρd and δtd :

(
δX ,d

δY,d

)
=

(
cosφ −sinφ

sinφ cosφ

)(
δρd

δtd

)
(2.12)

Notice that cosφ = XI/ρ and sinφ = YI/ρ . By denoting P1 = − j1 sinφ0 and P2 = − j2 cosφ0, it
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yields

δX ,d (XI,YI) = P1
(
3X2

I +Y 2
I
)
+2P2XIYI +O[(XI,YI)

4]

δY,d (XI,YI) = P2
(
X2

I +3Y 2
I
)
+2P1XIYI +O[(XI,YI)

4].
(2.13)

• Thin Prism Distortion: thin prism distortion arises from imperfection in lens design and manu-

facturing as well as camera assembly. This type of distortion can be modeled by the adjunction of

a thin prism to the optical system, causing additional amounts of radial and tangential distortions

[16][20]. The thin prism distortion is described in polar coordinate as

δρ p = (i1ρ2 + i2ρ4 + . . .)sin(φ −φ1)

δt p = (i1ρ2 + i2ρ4 + . . .)cos(φ −φ1)
(2.14)

where δρ p and δt p are the radial and tangential component of thin prism distortion respectively

and φ1 is the angle between the positive XI axis and the axis of maximum tangential distortion.

Denote that S1 =−i1 and S2 = i1 cosφ1, the thin prism distortion along XI and YI axis is derived

similar to the case of decentering distortion, and it is expressed by

δX ,p (XI,YI) = S1
(
X2

I +Y 2
I
)
+O[(XI,YI)

4]

δY,p (XI,YI) = S2
(
X2

I +Y 2
I
)
+O[(XI,YI)

4]
. (2.15)

In summary, the total distortion equals to the summation of radial distortion, decentering distortion

and thin prism distortion:

δX (XI,YI) = δX ,r (XI,YI)+δX ,d (XI,YI)+δX ,p (XI,YI)

δY (XI,YI) = δY,r (XI,YI)+δY,d (XI,YI)+δY,p (XI,YI)
. (2.16)

2.1.4 Image Digitization

The output of a digital image sensor is a digitized array using pixels to represent location information

(Figure 2.4). Due to the manufacturing error of image sensor, the pixel array of the senor is not perfectly

square. Denoting the position of a distorted image point as (XD,YD), the location of this point in a

digitized pixel coordinate is described as

u = u0 +SxXD−
SxYD

tanθ
(2.17)

v = v0 +Sy
YD

sinθ
(2.18)

where θ is the skew angle between u and v axis which can be considered as 90◦ for most of image

sensors [19][18][21], (u0,v0) is the principal point where optical axis intersects with image sensor

plane, and Sx and Sy are the scaling factor in u and v axis, respectively.
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Figure 2.4: Illustration of the skewness error of image sensor

2.2 ROI-based Image Processing
ROI-based image processing is the fundamental idea which enables the system to achieve a much

higher position sampling frequency than any other available commercial product and design. A region

of interest (ROI) is a rectangular window with sides parallel to the image sensor frame which defines

the important area within the overall image (shown in Figure 2.5). By reading small regions around

each target image rather than the full frame data of sensor, the frame rate and image processing speed

are vastly increased.

Figure 2.5: Illustration of region of interest

To realize the image processing based on ROIs, several supporting algorithms are required. First,

in order to sensing the target position using ROIs, the initial positions of each target in pixel coordinate

need to be determined so that the initial ROIs can be created. Second, sub-pixel target position inter-

polation method is required to achieve high accuracy of target position in pixel coordinate. Finally,
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target position in pixel coordinate changes due to its motion in world coordinate, therefore the ROI

position needs to be updated to ensure that the target image is contained in the ROI. In general,the ROI-

based image processing is divided into three parts: initial target identification, sub-pixel target position

interpolation and ROI position update.

2.2.1 Initial Target Identification

In order to measure the target positions based on ROI, a full image frame is read out in the first stage,

and then the targets are identified from the background. Once the initial target positions are obtained,

initial ROIs are built around these targets.

One method to separate the targets from their surroundings is background subtraction [11]. This

method subtracts a reference background image frame from the initial full image frame. By this means,

an image which contains the difference between targets and background is obtained, therefore the

targets are emphasized. Considering that the target images are much brighter than the background, it is

easy to detect the bright pixels in the full image and then create the ROIs surround them. This method

is computationally cheap and independent of the shape of target image, thus easy to be implemented in

real-time embedded system.

2.2.2 Sub-pixel Target Position Interpolation

A key area of photogrammetric measurement is sub-pixel target position interpolation. The subsequent

processing in high accuracy 3D position measurement relies on the results of it. There have been a

number of theoretical studies as well as practical tests conducted in order to quantify the best per-

formance possible for sub-pixel interpolation algorithms. Shortis reviewed the previous research and

investigations on sub-pixel interpolation methods based on digital image sensor [22]. There is a general

agreement that precision of 0.01 pixels are theoretically possible, and some practical tests have realized

this level of precision. In direct triangulation systems, there appears to be a good correlation between

the prediction by simulation and the practical reality [22]. The sub-pixel interpolation precision better

than 0.01 pixels is achievable when a high signal-to-noise ratio (SNR) of target image is obtained.

There are two types of sub-pixel target position interpolation methods: threshold-based method

and intensity-based method. The threshold-based method, such as binary centroid and ellipse fitting,

converts the raw digital image to a binary image by using certain threshold value and then calculates

the sub-pixel target position based on the binary image. On the other hand, intensity-based method

does not generate a binary image but directly utilizes every pixel value in the interpolation.

Shortis investigated a number of techniques for sub-pixel interpolation [23]. The performance of

threshold-based methods and intensity-based methods is compared. Their results show that intensity-

based method achieves higher accuracy than threshold-based method in different scenarios of image

noise level, saturation level, DC offset and size of target image. Therefore, the intensity-based method

is selected. Three candidates of intensity-based method are discussed here: centroid method, squared-

centroid method and 2D Gaussian fitting.

16



Centroid Method

Calculating the centroid of an image is analogous to finding the center of mass of an object. The

centroid of an image is the intensity weighted sum of points that constitute the image. The u and v

components of the centroid with respect to the ROI origin are expressed as

ucenter =

m
∑

v=1

n
∑

u=1
I(u,v)u

m
∑

v=1

n
∑

u=1
I(u,v)

vcenter =

m
∑

v=1

n
∑

u=1
I(u,v)v

m
∑

v=1

n
∑

u=1
I(u,v)

(2.19)

where I(u,v) is the pixel value at position (u,v) within the ROI boundary.

Squared-Centroid Method

The squared-centroid method is very similar to centroid method but uses the square of pixel value as

the weight to determine the target position. The squared-centroid method is expressed as

ucenter =

m
∑

v=1

n
∑

u=1
I2(u,v)u

m
∑

v=1

n
∑

u=1
I2(u,v)

vcenter =

m
∑

v=1

n
∑

u=1
I2(u,v)v

m
∑

v=1

n
∑

u=1
I2(u,v)

. (2.20)

The squared-centroid method emphasizes the main body of target image where the pixel values are

much higher than the background [22]. As a consequence, peripheral pixels in the background of ROI

are less influential.

2D Gaussian Fitting

The Gaussian fitting method is based on the assumption that the intensity distribution of a point light

source is well approximated by a 2D Gaussian distribution (shown in Figure 2.6). It takes the array of

pixel values to approximate a 2D Gaussian distribution in the form of

I =
K

2πδuδv
√

1−ρ2
e

{
−1

2(1−ρ2)

[
( u−ucenter

δu )
2−2ρ( u−ucenter

δu )( v−vcenter
δv )+( v−vcenter

δv )
2
]}

(2.21)

where (ucenter,vcenter) is the distribution center, δu and δv are the standard deviations, ρ is the correlation

coefficient, and K is the scaling factor. Nonlinear least-square estimator is required to solve the target

center (ucenter,vcenter).

Comparing these three intensity-based methods, the centroid and squared-centroid method are more

favorable than 2D Gaussian fitting in real-time application. Though 2D Gaussian fitting method is able

to achieve high accuracy, its computation cost is much higher than the other two methods since the

nonlinear least-square estimator requires iteration to solve the fitting problem. On the other hand,

the centroid method and squared-centroid method only require multiplications and accumulations that
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Figure 2.6: 2D Gaussian distribution

can be easily realized by either hardware or software in a real-time embedded system. Chen and

Clark compared the use of the squared-centroid method with the centroid method and found small,

insignificant differences between them [24]. Shortis also reported that these two types of method

produce very similar results [22]. Their results show that both methods are very robust and produce

very close results in the experiments. Therefore, both methods are implemented in the system, and

their performance are further compared by experiment in Chapter 5.

2.2.3 ROI Update

Tracking the motion of the target from one image frame to another requires that the ROI position must

be able to follow the target’s movement. Two parameters need to be determined in ROI update: ROI

size and ROI position.

When considering the ROI size, there is a tradeoff between ROI size and the allowed target moving

speed. Large ROI size allows high moving speed of target but reduces the position sampling frequency

since more pixels are read out and processed in each frame. In the contrary, small ROI size increases

the position sampling frequency but limits the allowed speed of target motion because the target might

move outside the ROI within one frame period.

The update of ROI position can be achieved by placing the next ROI around the center of the target

image in the current image frame. As shown in Figure 2.7, the ROI position is updated between frames.

The maximum movement Smax of target image between frames is determined by the maximum allowed

target speed Vmax and frame period Tf rame. In order to guarantee that the target image is contained in

the ROI boundary, the following constraint can be derived from Figure 2.7:

W
2
≥ Smax +

d
2

(2.22)
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Figure 2.7: Schematic of ROI update adapted from [11]

W ≥ 2Smax +d = 2VmaxTf rame +d. (2.23)

Assuming that there are N targets to be tracked, the pixel period is Tpixel and the exposure time is

Texposure, ideally it yields

Tf rame = NW 2Tpixel +Texposure. (2.24)

Combining the two equations above, the ROI width must meet the constraint that

2VmaxNTpixelW 2−W +d +2VmaxTexposure ≤ 0. (2.25)

Given the desired frame rate and maximum allowed target speed, the required ROI dimension is

obtained.

2.3 3D Position Reconstruction
Shown in Figure 2.8, one target located at PW in world coordinate generates two images at PI0 and PI1

in two image sensors, respectively. The position information from single camera, such as PI0, is not

enough to reconstruct the 3D position of PW because any target located on the line PW PI0 is able to

generate its image at PI0 in image sensor 0. That is to say, the depth information is not deterministic

based on position information from single camera. Therefore, two cameras are required in order to

reconstruct the 3D position in world coordinate. The 3D position reconstruction is the inverse process

of imaging model. Assuming that the intrinsic and extrinsic camera parameters are known, the 3D

position of the target is able to be retrieved by a linear transformation [15] combining a nonlinear

correction of lens distortions.

Notice that the imaging model is linear if the lens distortion terms are removed. From Section 2.1.3,

it can be inferred that nonlinear iteration is required to solve the distortion-free position PI(XI,YI) from

the distorted position PD(XD,YD). This iterative nonlinear solver will generate computation problems

when the distortion correction algorithm is implemented in a real-time hardware. To correct the lens

distortion using an explicit expression, the inverse mapping is introduced (shown in Equation 2.26)
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Figure 2.8: Schematic of stereo-vision based on two image sensors

[18][17][19].

δX = δX ,r (XD,YD)+δX ,d (XD,YD)+δX ,p (XD,YD)

δY = δY,r (XD,YD)+δY,d (XD,YD)+δY,p (XD,YD)
. (2.26)

Different from Equation 2.16, Equation 2.26 replaces PI(XI,YI) by using the distorted position

PD(XD,YD) to represent the lens distortion terms δX and δY . This replacement is reasonable because the

distortion terms δX and δY calculated from the ideal position PI is approximately equal to that calculated

from the distorted position PD [17][19]. By this means, the correction of lens distortion is explicitly

expressed and can be computed straightforward (shown in Equation 2.27 and Equation 2.28).{
XD = (ud−u0+SxYD cotθ)

Sx

YD = (vd−v0)sinθ

Sy

(2.27)

{
XI = XD−δX (XD,YD)

YI = YD−δY (XD,YD)
(2.28)

From Section 2.1, it can be derived that the ideal target position in image sensor coordinate (XI,YI)

is

XI =−d
r11(XW −Tx)+ r12(YW −Ty)+ r13(ZW −Tz)

r31(XW −Tx)+ r32(YW −Ty)+ r33(ZW −Tz)
(2.29)

YI =−d
r21(XW −Tx)+ r22(YW −Ty)+ r23(ZW −Tz)

r31(XW −Tx)+ r32(YW −Ty)+ r33(ZW −Tz)
(2.30)
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where ri j (i = 1,2,3 and j = 1,2,3) is the component in rotation matrix R.

Equation 2.29 and Equation 2.30 are reorganized by introducing the intermediate parameters L j( j =

1,2, ...,11) [15]:

XI =
L1XW +L2YW +L3ZW +L4

L9XW +L10YW +L11ZW +1
(2.31)

YI =
L5XW +L6YW +L7ZW +L8

L9XW +L10YW +L11ZW +1
(2.32)

where D =−(r31Tx + r32Ty + r33Tz),

L1 =−dr11
D ,

L2 =−dr12
D ,

L3 =−dr13
D ,

L4 =
d(r11Tx+r12Ty+r13Tz)

D ,

L5 =−dr21
D ,

L6 =−dr22
D ,

L7 =−dr23
D ,

L8 =
d(r21Tx+r22Ty+r23Tz)

D ,

L9 =
r31
D ,

L10 =
r32
D ,

L11 =
r33
D .

It is clear that the parameters L j( j = 1,2, ...,11) are fully determined by the intrinsic and extrinsic

camera parameters. Denote that (XI,l,YI,l) and (XI,r,YI,r) are the ideal target positions in two cameras,

respectively. Applying Equation 2.31 and Equation 2.32 to the two cameras yields

XI,l =
L1,lXW +L2,lYW +L3,lZW +L4,l

L9,lXW +L10,lYW +L11,lZW +1
(2.33)

YI,l =
L5,lXW +L6,lYW +L7,lZW +L8,l

L9,lXW +L10,lYW +L11,lZW +1
(2.34)

XI,r =
L1,rXW +L2,rYW +L3,rZW +L4,r

L9,rXW +L10,rYW +L11,rZW +1
(2.35)

YI,r =
L5,rXW +L6,rYW +L7,rZW +L8,r

L9,rXW +L10,rYW +L11,rZW +1
. (2.36)

The equations above can be further rearranged into a matrix format:
XI,lL9,l−L1,l

YI,lL9,l−L5,l

XI,rL9,r−L1,r

YI,rL9,r−L5,r

XI,lL10,l−L2,l

YI,lL10,l−L6,l

XI,rL10,r−L2,r

YI,rL10,r−L6,r

XI,lL11,l−L3,l

YI,lL11,l−L7,l

XI,rL11,r−L3,r

YI,rL11,r−L7,r


 XW

YW

ZW

=


L4,l−XI,l

L8,l−YI,l

L4,r−XI,r

L8,r−YI,r

 . (2.37)
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By solving Equation 2.37, the 3D position of the target is retrieved from its 2D positions in image

sensor coordinate.

2.4 Summary
In this chapter, the theory behind vision-based position sensing system is presented. An imaging model

is built which describes the coordinate transformation from the 3D world coordinate to the 2D pixel co-

ordinate. This transformation is divided into four steps: rigid body transformation, perspective projec-

tion, lens distortion and image digitization. Section 2.2 covers the supporting algorithms of ROI-based

image processing. Background subtraction is utilized to identify the targets from image background

and find their initial positions. Based on the achievable accuracy and computation cost, the centroid

and square-centroid method are implemented in the system to calculate the sub-pixel target position in

2D pixel coordinate. The 3D position reconstruction algorithm based two-camera stereo-vision system

is given based on a linear transformation combined with a correction of nonlinear lens distortion.
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Chapter 3

System Hardware Design

System hardware, including electronics, optical and mechanical design, is the key to achieve the design

goals of high position sampling frequency and high position accuracy. This chapter presents the design

of a customized hardware prototype of stereo-vision system. Section 3.1 presents the architecture of

system and gives the design strategies. In Section 3.2, the detailed electronics design is discussed. Sec-

tion 3.3 describes the optical and mechanical design, including optical device selection, target design,

and camera body design.

3.1 Hardware Design Overview
The goals of designing a customized hardware are to achieve high position sampling frequency and

high position accuracy required by this system. The system is designed and implemented based on a

two-camera architecture (shown in Figure 3.1). The camera modules and image processing unit are

connected by a camera interface, including a data channel and a camera control channel. In image

processing unit, the 3D position of the target being tracked is computed and sent to the host PC. To

realize the design objectives, the design strategies of system hardware are discussed in this section.

High-Performance Image Acquisition

Image acquisition is the main bottleneck that limits the performance of a vision-based position sensing

system. High-performance image acquisition system features high speed, high resolution image data

and high image SNR. Fast image readout provides the foundation to achieve high position sampling

frequency. Sampling the analog output of the image sensor with high resolution and low noise improves

the achievable position accuracy.

High-Speed Camera Interface

The camera interface between camera modules and image processing unit provides functionalities of

data transmission as well as camera control. High-speed and high-resolution image data means massive

data transmission, demanding high-speed data throughput from camera module to image processing

unit with low latency.
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Figure 3.1: Overall system architecture

High-Speed Image Processing

High-speed and high-resolution image data acquisition not only requires a high-speed camera interface

but also challenges the capability of image processing. In order to obtain the 3D position of target,

the image processing involves image noise correction, sub-pixel target position interpolation and 3D

position reconstruction. Therefore, high computation capability of imaging processing hardware is

required.

Solid Camera Body and High-Quality Optics

The system is operated in a semi-controlled environment, where the ambient temperature is not fully

controlled. Since the 3D position reconstruction relies on model parameters, the temperature fluctuation

will introduce thermal deformation of the camera body structure, causing a change in some model

parameters. In order to achieve high position accuracy, a thermal-stable camera body is required. At

the same time, external vibrations cause the deformation in camera body, which can introduce error in

3D position reconstruction. The designed camera body must be solid to resist the deformation caused

by external vibrations as well as temperature fluctuations. Optical components, such as lens, should be

carefully selected so as to limit the optical distortion and obtain high spatial resolution.

3.2 High-Performance Electronics Design
Figure 3.2 shows the electronics architecture of camera module. The camera control unit plays the role

of a brain that controls the operation of camera module. The image sensor outputs analog signals of

pixel value under the timing control of camera control unit. The analog signals are conditioned and
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Figure 3.2: Electronic architecture of camera module

amplified, and then sampled by a high-speed analog-to-digital converter (ADC). On-board memory is

integrated in the camera module to store the image noise correction data. Data and control information

are transmitted through a high-speed camera interface. The detailed designs for each part are described

in this section.

3.2.1 Image Sensor

In this section, the selection criteria of image sensor are discussed based on sensor type, pixel rate,

resolution, shuttering type and etc..

CCD image sensor and CMOS image sensor are two candidates for the vision applications. CCD

image sensor was the first product in vision applications and has dominated in this field for many years.

In a CCD image sensor, every pixel’s charge is transferred through limited numbers of output nodes to

be converted to voltage, buffered, and sent off-chip as an analog signal. All pixel area can be devoted to

light capture in a CCD image sensor [4]. On the other hand, in a CMOS image sensor, both photodiode

and readout amplifier are integrated within each pixel. The voltage or current output from the pixel is

read out over X-Y wires instead of using a shift register. The use of CMOS technology permits ready

integration of on-chip timing and control electronics, as well as signal conditioning electronics. ADC

can be integrated on chip. This highly integrated imaging system is referred to as a camera-on-a-chip,

and represents a second generation solid state image sensor technology [25]. The structure of CCD and

CMOS image sensor is shown in Figure 3.3.
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Figure 3.3: Structure of CCD and CMOS image sensor adapted from [26]

When selecting an image sensor, multiple issues must be taken into consideration, relating to both

the features of CCD and CMOS devices and the requirements of application. Nixon O. presented the

idea that the application determines the choice of image sensor in [27], where criteria of application-

oriented image sensor selection are given. Dave Litwiller published a series of paper related to CCD and

CMOS imaging technologies [4][26][28], where the development, features and suitable applications of

both imaging technologies are reviewed and discussed. The features of CCD and CMOS image sensor

are summarized and compared in Table 3.1

Table 3.1: Comparison of CCD and CMOS image sensor, data from [28]

Feature CCD CMOS

ROI Readout No Yes
Responsivity Moderate High
Dynamic Range Large Moderate
Uniformity High Moderate
Power Consumption High Low

One of the most important design goals in this research is to achieve high position sampling fre-

quency (over 10kHz). When selecting the image sensor, the speed features weight more than the others.

It is clear that CMOS image sensor has absolute speed advantages over CCD image sensor. ROI read-

out plays the important role in achieving high speed image acquisition. CMOS image sensor has the

ability of direct pixel access that allows to read out a portion of the image sensor. When implementing

the CMOS image sensor in a high-speed vision system, only the small regions around each target image

are read out and processed, avoiding the time waste on the full-frame readout. ROI readout not only

reduces the readout time, but also reduces the computation time during image processing and accel-

erates the processing speed. Meanwhile, when the targets are moving from one exposure to another,
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the position and size of ROIs can be dynamically adjusted. The responsivity is the amount of signals

that an image sensor delivers per unit of input optical energy. CMOS image sensors have higher signal

response to the same light levels because amplifiers are placed at every pixel [28]. High responsivity to

illumination of the CMOS image sensor allows short exposure time. Low power consumption simpli-

fies the power distribution system (PDS) design and limits the thermal problems. Conclusively, CMOS

image sensor is the only reasonable technology suitable for the high-speed vision applications.

Assuming that the size of ROI is 20 pixels by 20 pixels and the number of ROI is 6 for tracking 6

targets, the readout time for the pixels in 6 ROIs is calculated as

treadout = 6×20×20×Tpixel <
1

10kHz
. (3.1)

where treadout is the readout time and Tpixel is the pixel output period. In order to achieve 10kHz position

sampling frequency, the pixel rate should be higher than 24MHz estimated from Equation 3.1.

In high-speed vision applications, the vision system needs a way to freeze the motion of targets. In

order to freeze the motion of targets and deliver high quality images in high-speed vision applications,

image sensors require high-speed shuttering ability. Traditional industry solutions rely on CCD image

sensors using interline transfer architecture to deliver this functionality [29]. Recent improvements in

CMOS image sensor design have enabled CMOS technology to achieve global shuttering necessary to

meet high-speed image acquisition requirement [28]. Global shuttering begins and ends exposure for

all pixels simultaneously. Not all CMOS image sensors are capable of global shuttering. Simple pixel

design, typically with three transistors structure, offers a rolling shutter. Because this type of sensor

can only capture the image row by row and each row represents the target at a different point in time,

a blurred image is obtained when capturing fast moving targets [29]. Therefore, more sophisticated

CMOS image sensors with global shuttering, typically based on five or six transistors design, are the

only candidates.

The resolution of image sensor determines the achievable position precision and accuracy. In this

research, a position accuracy of 10µm is desired in a measurement volume of 1m by 1m. Generally

speaking, the intensity-based sub-pixel target position interpolation methods can achieve 0.01 pixel

accuracy in pixel coordinate [23]. The required resolution of the image sensor is expressed as(
1m

10µm
×0.01pixel

)
×
(

1m
10µm

×0.01pixel
)
= 1000pixel×1000pixel (3.2)

In summary, the selected image sensor must satisfy the following basic criteria:

• CMOS type image sensor

• ROI readout support

• over 24MHz pixel rate

• global shuttering

• over 1000 pixels by 1000 pixels resolution
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Based on these criteria, the LUPA-4000 CMOS image sensor (Figure 3.4) from Cypress Semicon-

ductor is selected. The specifications of this image sensor are shown in Table 3.2.

Figure 3.4: LUPA-4000 CMOS image sensor from Cypress Semiconductor

Table 3.2: Specifications of LUPA-4000 image sensor, data from [30]

Parameter Specification

Sensor Type CMOS
Sensor Resolution 2048×2048
Pixel Rate 66MHz
ROI Readout Support Yes
Shutter Global Shuttering
Dynamic Range 66dB (2000:1)
Power Dissipation <200mW

According to the datasheet of LUPA-4000 [30], the theoretical frame readout time is calculated as

treadout = FOT+NROI×Ncol×
(
ROT+Nrow×Tpixel

)
(3.3)

where FOT is the frame overhead time equal to 5µs, ROT is the row overhead time equal to 200ns,

Tpixel is the pixel period equal to 15.15ns, NROI is the number of ROI, Ncol is the column number of the

ROI, and Nrow is the row number of the ROI.
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3.2.2 Camera Control Unit

Camera control unit controls and monitors the operation of the camera module. DSP and FPGA are

considered as the candidates.

DSP is a specialized processor that is designed specifically for operating complex mathematically

orientated calculations very swiftly. Compared to the Von Neumann architecture in the general pur-

pose microprocessor, Harvard architecture or extended Harvard architecture is used in the DSP where

instructions and data are stored in different caches and have their dedicated bus [31]. Faster instruction

execution is achieved in the DSP. The strong computation capability of DSP meets the requirement of

high-speed image processing. However, the processing speed of DSP is limited by its serial instruction

stream when the sampling frequency reaches the level of mega-hertz.

FPGA is the best choice for the camera control unit. FPGA contains many programmable logic el-

ements in gate level that can be combined to produce complex high level modules and be used to build

very fast algorithmic blocks. In addition, advanced FPGA allows a soft or hard core processor embed-

ded into the logic elements of FPGA. This allows the implementation of some algorithms using FPGA’s

programmable hardware and developing other parts in software. The FPGA solution is powerful be-

cause it combines a fast hardware-based approach with a flexible software-based approach. Further,

the I/O resources in FPGA are configurable, providing convenience in camera electronics design.

Spartan-3A XCSD3400A FPGA from Xilinx is selected as the camera control unit. This FPGA

is the most advanced in Extended Spartan-3A family, which provides 3400K logic gates resources,

maximum 373Kbits distributed random-access memory (RAM), 8 digital clock managers (DCMs) and

469 single ended I/Os. Spartan-3A XCSD3400A has 126 multipliers/DSP48A blocks, which offers

high computation capability. Spartan-3A XCSD3400A FPGA is able to work with two digital power

supplies: 1.2V for core power and 3.3V for I/O and auxiliary power. Simple power supply allows a

compact printed circuit board (PCB) design and potentially less power consumption. According to the

analysis based on XPower Estimator from Xilinx, Spartan-3A XCSD3400A consumes 2.3W power

based on the designed hardware description language (HDL) in worst case. As a result of low power

consumption, the heat sink and other thermal conduction structure are no longer required.

3.2.3 Analog-to-Digital Electronics Design

The selected CMOS image sensor provides pixel analog outputs and digital outputs of pixel values.

However, the on-chip ADC has low resolution (10-bit) and low sampling (10MHz). Apparently, the

on-chip ADC simplifies the peripheral circuits design of image sensor but is not able to satisfy the

design objectives. Therefore, an external analog-to-digital conversion circuit is required in order to

achieve high-speed and low-noise image acquisition.

Because the even and odd pixel have separate output amplifiers in the selected image sensor, two

identical analog-to-digital conversion circuits shown in Figure 3.5 are required for even and odd pixel,

respectively. The analog outputs of image sensor go through analog signal conditioning circuit and then

sampled by a high-speed ADC. The sensor analog output offsets for even and odd pixels are adjustable

by digital-to-analog converters (DACs).
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Figure 3.5: Analog-to-Digital conversion electronics architecture

ADC Selection

The sampling rate and resolution are two key specifications in the ADC selection. The sampling rate of

the ADC should match the pixel rate of image sensor, and higher sampling frequency allows multiple

samples in one pixel period so that multiple samples from one pixel period can be averaged to minimize

ADC readout noise. High resolution of ADC reduces the quantization noise, increasing the quality of

target image.

There is a tradeoff between ADC sampling rate and resolution. Generally speaking, fast ADCs

come with low resolution, and high resolution ADCs come with low sampling rate. Therefore, when

selecting an ADC, we should select an ADC with high resolution under the condition that it satisfies

the sampling rate requirement.

The dynamic range of of the selected image sensor is 66dB (2000:1), therefore the minimum res-

olution of the ADC should be 11-bit. The nominal pixel rate of the selected image sensor is 66MHz

which is achieved by using parallel analog output amplifiers on the image sensor under a pixel clock

frequency of 33MHz. Here, multiple-sample in one pixel rate is desired so that a ADC sampling rate

of over 66MHz is required. Considering the ADC with such a high sampling rate are generally based

on pipeline architecture, fewer conversion latency cycle is favorable. In order to simplify the power

supply design, the favorable ADC should be able to operate with single power supply of 3.3V and have

low power consumption.

Based on the criteria mentioned above, LTC2299 from Linear Technology is selected. The speci-

fications of LTC2299 is listed in Table 3.3. Since LTC2299 has two ADC channels in one package, a

compact PCB design of ADC circuit is achieved.

Voltage Offset Control of Pixel Output

Analog outputs of even and odd pixels are presented in two parallel output amplifiers in the image

sensor. The analog output ranges from 0.3V to 1.3V, and therefore the pixel output must be offset

by a DC voltage level in order to meet the input span of the selected ADC. A 0.8V DC voltage is

required theoretically to shift the pixel output to the range of -0.5V to +0.5V. Considering the imperfect

manufacturing of the image sensor, the pixel offset voltage varies between even and odd pixels so that

two dedicated DACs are used to provide the offset voltages to even and odd pixels, respectively.
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Table 3.3: Electrical specifications of LTC2299, data from [32]

Specification LTC2299

Resolution 14
Channel Number 2
Sampling Rate 80Msps
Input Span 1Vpp
SNR 73dB @ 70MHz
INL 1.2LSB
Pipeline Delay 5 cycles
Power Supply Single 3.3V
Power Consumption 444mW

Considering that this offset voltage is not required to change from pixel to pixel, a DAC with high

dynamic performance is not required. However, since any noise at the DAC output influences the input

of ADC, the selected DAC should provide low noise performance. The noise level of the selected DAC

must be limited under one least significant bit (LSB) of the selected ADC. Therefore, the noise level of

DAC should satisfy that

NoiseDAC <
1V
214 = 61µV. (3.4)

Based on the requirements above, the DAC8411 from Texas Instruments is selected. DAC8411 is a

16-bit, low-power, low-noise DAC with 6-pin small package. The output noise is 3µVpp from 0.1Hz to

10Hz.

Because the selected DAC does not have dedicated input pin of reference voltage, the noise of DAC

power supply directly couples to the output noise. As a result of the low supply current required by

DAC8411, a precision voltage reference is used to provide the required power (Figure 3.6). The voltage

reference LTC6655 from Linear Technology is selected, which features 0.67ppmRMS low voltage noise

and 1ppm/◦C temperature coefficient.

Signal Conditioning and Analog Front End Design

The input of LTC2299 ADC requires differential input in a range of 1Vpp with 1.5V common-mode

voltage, but the analog outputs from image sensor are single-ended ranging from 0.3V to 1.3V. Besides

shifting the pixel analog output by a DC offset, the analog outputs should be converted from single-

ended to differential. Further, the pixel output is unavoidably contaminated with noise, and the anti-

aliasing is required in a digital sampling system. Therefore, a signal conditioning and ADC driving

circuit is designed to meet these objectives.

Shown in Figure 3.5, the signal conditioning and ADC driving circuit is implemented based on

a high performance differential operational amplifier. The candidate differential operational amplifier

should satisfy the following criteria:

• High bandwidth for large signal swing (1Vpp): over 100MHz.
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Figure 3.6: Voltage reference as power supply to DAC8411

• High slew rate: The pixel output rate is 33MHz when the even and odd pixel outputs are presented

in parallel. The slew rate should satisfy

SlewRate≥ 2π fmaxVpeak = 2π×33MHz×0.5V = 104.6V/µs. (3.5)

The desired slew rate is set to 500V/µs.

• Short Settling Time: The pixel output period is 30.3ns, therefore the desiable settling time should

be limited within a quarter of this pixel period, that is 8ns approximately.

• Low Voltage Noise: The noise level should be lower than one LSB of ADC.

AD8138 from Analog Devices is selected based on criteria above, which features 265MHz band-

width for large signal swing, 1150V/µs slew rate, 8ns settling time with 0.01% error and 5nV/
√

Hz

voltage noise from 100kHz to 40MHz. The schematic of the signal conditioning circuit is shown in

Figure 3.7.

Analog/Digital Power Isolation

When digital and analog power planes run on the top of each other, the mutual capacitance between two

planes will couple them for high frequency signals and allow noise to transfer from the digital plane to

the analog plane. However, ADCs and DACs are components requiring both analog and digital power

sources. Clean analog power is required for their sensitive internal components, and on the other hand,

separate power source is needed for driving its high-speed digital parts. Directly connecting these

two power supplies to the same power plane introduces noise from the ADC or DAC’s digital part.

However, using the board’s digital power plane to power the digital part of ADC and DAC is not an

option since it makes the digital power plane overlap the clean analog region. To address this problem,

the digital power input pins of the ADC and DAC are connected to the analog power pins through a
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Figure 3.7: Schematic of signal conditioning circuits

passive LC filter (shown in Figure 3.8). The inductor and capacitor create a second order filter with a

-3dB bandwidth of ω−3dB = 1
/√

LC.

Figure 3.8: Passive LC filter between analog and digital power supply in ADC and DAC

3.2.4 High-Speed Camera Interface Design

High-performance vision system produces high resolution image data in high speed, requiring fast data

transmission between camera module and image processing unit. According to the literature review in

Section 1.2, the camera interface remained a bottleneck for the prior art vision systems. Communication

standards designed for more leisurely data environments have not proved adequate for handling the

demands of high-speed vision applications. To address this situation, several camera interface standards

have emerged to provide fast and reliable data transmission as well as camera control [33].

There are four major camera buses currently used in the digital vision systems - USB, IEEE 1394,

GigE Vision and Camera Link. There is no perfect one-size-fits-all solution, thus when deciding which

camera bus is right for the application, decisions and tradeoffs must be made depending on the re-

quirements of the system. Generally speaking, the candidate camera interface is evaluated from the

following criteria:

• Data Throughput: The data throughput represents the rate at which image data can be trans-

ferred over the bus. High data rate, continuous throughput and low latency is desired in our
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system. According to the hardware design, the pixel frequency is 66MHz and the resolution of

each pixel data is 14-bit, therefore, the minimum data transmission rate required is calculated as:

14bit×66MHz = 924Mbps (3.6)

Conservatively speaking, a data throughput over 1Gbps is desired.

• Interface Flexibility: Besides transferring the image data from camera module to image pro-

cessing unit, a desirable camera interface must provide the flexibility of camera control. An

independent channel for camera control information is more favorable.

• Transmission Length: The transmission length determines the maximum possible distance be-

tween the camera modules and image processing unit. Though this specification is not critical, a

desired cable length is between 5 meters to 10 meters.

• Synchronization: Applying in the application of real-time position sensing system, the vision

system is required to work synchronized the overall system. The camera triggering should be

addressed and handled easily within the camera interface.

In the rest of this section, the four currently used camera interfaces are described and compared.

The final decision is made based on the criteria presented above.

USB

USB interface cameras are generally low-cost. However, currently USB 2.0 has a limited data rate

of 480Mbps working in burst mode, and cables for USB are generally less than 5 meters without a

repeater. Lacking of a hardware specification for image acquisition devices, the widespread adoption

of USB for vision applications is obstructed [33]. USB also does not provide any camera triggering

mechanisms. Therefore, it is difficult to synchronize USB cameras with each other and the rest of

system.

IEEE 1394

IEEE 1394 was designed for vision equipment. Many IEEE 1394 cameras provide the function of

camera triggering, which simplifies system synchronization. The maximum data throughput of IEEE

1394 is 800Mbps in burst mode. IEEE 1394 interface provides point-to-point connection which is

limited to less than 5 meters without hubs or repeaters[33]. At the same time, IEEE 1394 has power

on the cable, thus most cameras can draw power off the IEEE 1394 bus without need for an external

power source.

GigE Vision

The GigE Vision standard is a new camera bus technology for vision systems. GigE Vision features of

high data rate, ubiquitous interface hardware, low cost cable, and widespread popularity, which makes

it an attractive option for vision systems. Considering the hardware limitations and software overhead,
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the practical maximum bandwidth is close to 800Mbps [33]. With the cable length reaching 100 meters,

GigE Vision is the most favorable camera bus in camera network applications.

One major disadvantage of GigE Vision is its natural drawback of Ethernet. The Ethernet network

protocol is very inefficient. When network devices simultaneously send packets of data, these packets

may collide midstream. Therefore, a retransmission of the data is required which significantly reduces

the effective network bandwidth. Busy networks with multiple network devices vying for throughput

result in an increasing number of collisions, dramatically reducing the efficiency of the network and

thereby degrading the performance of camera interface [34]. Because the latency of data delivery is

unreliable and varies depending on the events that are occurring on the network, GigE-based vision

system is not able to guarantee real-time data transmission. Another problem of GigE Vision is the

synchronization. It is difficult to use the PC to condition a trigger signal between GigE vision cameras

and the rest part of system [33].

Camera Link

Camera Link is a communication interface designed for point-to-point vision applications based on

a serial communication protocol. Camera Link interface is based on the National Semiconductor’s

ChannelLink technology which has been extended to support general-purpose low voltage differential

signaling (LVDS) data transmission. The ChannelLink chip performs a 7:1 mux and transmits data as

LVDS signals at a maximum speed of 85MHz. ChannelLink consists of a driver and receiver pair. The

driver accepts 28 single-ended data signals and one single-ended clock signal. The data is serialized

7:1, and four data streams and a dedicated clock are driven over five LVDS pairs. The receiver accepts

the four LVDS data streams and LVDS clock, and then converts to 28 bits single-ended signals and a

clock to the board [35].

Camera Link, a high-speed serial digital bus designed specifically for vision systems, features the

highest throughput of any camera bus. Camera Link provides a three-tiered bandwidth structure (base,

medium, and full) to address a variety of applications (shown in Figure 3.9). The base-configuration ac-

quires at up to 2040Mbps, although the other camera interfaces provide only 800Mbps or less. Medium

and full configuration cameras acquire the image data at up to 4080Mbps and 5440Mbps [35].

The Camera Link standard replaces expensive, custom cables with a single, low-cost standard cable

with few wires [35]. By the means of transmitting 28 parallel single-ended signals into four high-

speed differential pairs, Camera Link Standard reduces cable size and cost, as well as increasing noise

immunity and maximum cable length. The maximum cable length defined by Camera Link standard is

10 meters.

Shown in Figure 3.9, besides providing high-speed data transmission based on ChannelLink tech-

nology, Camera Link offers a serial communication between camera and frame grabber using LVDS

signals. This feature allows users to define their specific serial commands for setting camera operation

parameters, such as exposure time, ROI position and ROI size. Camera control information has its ded-

icated transmission channel separated with the image data transmission. Four Camera Control signals

are also provided by the Camera Link cable for camera triggering, offering good synchronization of

camera modules with the rest of system. Overall, Camera Link provides the most I/O flexibility and
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Figure 3.9: Block diagram of base, medium and full configuration of Camera Link adapted from
[35]
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capability comparing to other camera interfaces.

Table 3.4: Comparison of camera interfaces, data from [33]

USB IEEE 1394 GigE Vision Camera Link

Connection Type Master-Slave Point-to-Point LAN Point-to-Point
Data Throughput 480Mbps 800Mbps 1000Mbps >2000Mbps
Image Data Streaming Burst Burst Continuous Continuous
Transmission Distance 5m 4.5m 100m 10m
Real-Time Signaling No No No Yes
Synchronization Difficult Easy Difficult Easy
Camera Control Yes Yes Yes Yes

The performance of each camera interface is summarized and compared in Table 3.4. It is clear

that only GigE Vision and Camera Link are able to provide the data throughput and transmission length

required by the system. Considering that the vision system is applied in high performance real-time

position sensing applications, it is required that the image data is transferred in real-time with low

latency. Since the inherent drawback of Gigabit Ethernet, GigE Vision interface is unable to provide

real-time data transmission and its transmission latency is variable depending on the status of Ethernet

network. Therefore, Camera Link is the best option for high-speed vision applications.

A customized serial communication protocol similar to RS-232 is designed for camera control

communication. The four camera control LVDS pairs in Camera Link standard are used for the syn-

chronization between camera modules and the rest of system. The data transmission, camera control

communication and camera triggering are included in one compact Camera Link cable assembly.

3.2.5 High-Speed Image Processing

The goal of image processing in vision-based position sensing system is to retrieve the 3D position

of targets being tracked. Fast image acquisition and high resolution image data challenge the speed

of image processing. In order to match the performance of image acquisition electronics, the image

processing must be designed and implemented in a smart way.

To reconstruct the 3D position from the raw target image, the image processing involves several

cascaded sub-processes, including image noise correction, sub-pixel target position interpolation and

3D position reconstruction. For the purpose of accelerating the image processing speed, as well as

reducing the data transmission of camera interface, the image processing is divided into two parts:

the pre-processing in camera module, including image noise correction and sub-pixel target position

interpolation, and the post-processing in a dedicated image processing unit, including 3D position

reconstruction. The detailed design of each part is presented below.

Camera Built-in Image Pre-processing

Camera built-in image pre-processing plays a significant role in accelerating the speed of image pro-

cessing. Considering that the image noise correction and sub-pixel target position interpolation algo-

rithms require simple mathematic operations, such as accumulation and multiplication, they can be
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Figure 3.10: Camera module FPGA architecture

realized by hardware inside the FPGA (shown in Figure 3.10). The selected FPGA integrates DSP-48

slices which provides strong computation capability to realize the image pre-processing algorithms.

To realize the fixed pattern noise (FPN) correction, image sensor calibration is required to adapt the

CMOS image sensor to the specific lighting conditions. Considering that the FPN is a fixed spatial dis-

tribution (time invariant), it can be removed by using a pixel-by-pixel calibration. Once calibrated, the

camera modules perform real-time FPN correction of each new image. The calibration stage includes

pointing the camera at the typical scene to be imaged and adjusting the offset and gain of the image

sensor output according to the specific operation condition. Calibration images are obtained by taking

several reference images under certain operation conditions. After calibration is completed, the cali-

bration image is used in the real-time FPN correction. The main idea of the real-time FPN correction
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Figure 3.11: Tsunami real-time computer mother board developed by Kris Smeds adapted from
[36]

algorithm is based on a first order correction. The advantage of this first order correction lies in the fact

that it inherently satisfies the requirement of high-speed application as a result of simple computation

required. The detailed analysis of the FPN calibration and correction is presented in Section 4.2.

Because FPN varies with operating conditions (exposure time, pixel sampling rate, lighting con-

ditions and sensor temperature), four on-board non-volatile memory blocks are implemented in each

camera module to store the different FPN calibration maps.

Sub-pixel target position interpolation is the process which precisely and accurately determines

the target image center in the sub-pixel range based on the target image. The centroid method (Equa-

tion 2.19) and squared-centroid method (Equation 2.20) are two intensity-based algorithm widely used.

From Equation 2.19 and Equation 2.20, it is clear that these two methods require simple computation,

therefore, it is effective to implement them by using hardware in the FPGA. By this means, the sub-pixel

target position interpolation is working parallel with the target image acquisition, vastly increasing the

processing speed.

Image Post-processing in Tsunami Real-Time Computer

The reconstruction of target 3D position requires complex mathematical computations (shown in Sec-

tion 2.3). The image post-processing speed is improved by using a dedicated image processing unit.

To achieve the high processing speed, a customized real-time computer has been developed by Kris

Smeds [36].

This real-time computer is designed based on a multiprocessor architecture [36]. This real-time

computer (shown in Figure 3.11), named Tsunami, is built around the Virtex 5 FPGA and four Tiger-

SHARC DSPs. The high speed FPGA frontend provides fast digital signal interface and fast communi-

cation to host PC. The TigerSHARC DSPs offer powerful computation capability to deal with complex

computation.

Since the Tsunami real-time computer is independent of applications, users are allowed to design

their own daughter board and I/O interface based on the requirements of application. A customized
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Figure 3.12: Tsunami I/O Board Designed by Niankun Rao, Richard Graetz and Arash Jamalian

I/O board is designed for Tsunami real-time computer to interface the two camera modules (shown

in Figure 3.12). For purpose of guaranteeing the digital signal integrity, the impedance and length of

high-speed digital signal traces are controlled and matched on the camera interface board.
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Figure 3.13: Power regulation network of camera module

3.2.6 Power Distribution System Design

The IC chips on the camera module require the DC power supply at different voltage levels. The

power quality provided to the electronic devices affects their performance. Therefore, the design goal

of power distribution system is to generate the DC voltage levels required by the on-board electronics

with high power quality. The summary of the power levels and their required currents is provided in

Table 3.5. The power consumption of each camera module is 9W approximately in worst case.

Table 3.5: Summary of camera module power requirements

Voltage Supply Current [A]
Power Consumption [W]

Type Level [V] Required Designed

Digital

1.2 1.2 2 1.4
1.8 0.01 0.1 0.018
2.5 0.8 1.5 2
3.3 0.5 1 1.65

Analog
2.5 0.8 1.5 2
3.3 0.6 1 1.98

Figure 3.13 shows the power regulation network. The input 120V AC wall power is converted to

5V DC power by a AC-to-DC power adaptor. The power regulation network generates both digital

and analog power levels, and each power levels has its dedicated power regulator. This separation

guarantees that the switching noise on the digital power planes does not transfer to the analog power
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Figure 3.14: Passive LC filter between 5V DC power and input of linear regulator

planes.

Shown in Figure 3.13, linear and switching regulators are used to generate different power levels.

The linear regulator is an active device which is operating at its linear region, generating a regulated

output voltage at a specific voltage level. The output voltage of linear regulator is continuously reg-

ulated with high quality. Analog power levels are all generated by linear regulators. However, the

voltage drop between the input and output voltage of linear regulator causes a power loss on the linear

power device, reducing the efficiency and generating heat. Compared to linear regulators, switching

regulators generate a regulated output by rapidly switching the input supply. Since the supply is either

on or off, the switching regulators do not dissipate much power and achieve high efficiency above 90%.

Due to their high efficiency, switching regulators do not generate much heat. On the downside, the

output voltage of switching regulators has higher ripples due to the on-off operating principle. In the

power distribution network, switching regulators are used for generating digital power levels which

require high current but not sensitive to voltage ripples. On the other hand, linear regulators are mostly

used for generating clean analog power levels. However, the digital 1.8V and digital 2.5V are gen-

erated by linear regulators. Due to the low current requirement of the digital 1.8V power level, the

power dissipation on the linear regulator is negligible. Meanwhile, the digital 2.5V is required on the

image sensor board where lots of sensitive analog devices are located. For the purpose of preventing

switching noise contaminating the analog devices, a linear regulator is used.

Switching regulator works in on-off mode, therefore the 5V DC power is unavoidably contaminated

with noise from digital power. The voltage ripple at 5V DC power causes high frequency noises at the

input of linear regulator for analog power levels. Since linear regulator has low power ripple rejection

at the high frequency region, a passive LC filter is implemented between the 5V DC power and input

of each regulators in order to guarantee a good isolation between digital and analog power regulators

(shown in Figure 3.14). The LC network not only prevents the noise transferring from input side to

output side but also prevents the noise transmission in the opposite direction. The -3dB bandwidth of

the LC network is ω−3dB = 1
/√

LC, which is set according to the power ripple frequency.

Based on Table 3.5 and the architecture of power regulation network, the input current at 5V DC in

worst case is calculated as:
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Figure 3.15: Camera module control PCB

I5V =
1.2A×1.2V
5V×95%

+
(0.5+0.01)A×3.3V

5V×95%
+0.8A+0.6A+0.8A = 2.86A (3.7)

where the efficiency of the switching voltage regulator is 95%. Therefore, the efficiency of the designed

power distribution system in worst case is computed as:

ηPDS =
9W

5V×2.86A
×100% = 63.2% (3.8)

3.2.7 Print Circuit Board Design

Two print circuit boards is designed for each camera module. The camera control board (shown in

Figure 3.15) is a pure digital circuit board where FPGA, on-board Flash memories and camera interface

are located. The image sensor board is an analog and digital mixed circuit board where the CMOS

image sensor, ADC and DACs are located (shown in Figure 3.16).

Both boards are designed with 6 layers: 3 signal layers and 3 power planes. The layer stack-up of
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Figure 3.16: Image sensor PCB

Figure 3.17: Layer stack-up of camera module control PCB

Figure 3.18: Layer stack-up of image sensor PCB
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each board is shown in Figure 3.17 and Figure 3.18. Since the two PCBs are designed for high-speed

signals, the layer stack-up and signal trace routing are designed to ensure several requirements:

• Independent signals should not be routed in parallel for long distance so that the mutual capaci-

tance and inductance are minimized. Otherwise, the cross-talk among these signals is introduced.

• A reference power plane is required for each signal on its neighboring layer. By this means, the

power plane provides a minimized return path for the signal current and minimize the inductance

of the signal lines.

• In order to guarantee the signal integrity, signal termination is required for those high-speed

signals. In this case, the characteristic impedance of the transmission lines is required to match

the termination resistors. The trace width, trace spacing and distance between the adjacent layers

are determined by the requirements of controlled impedance. The impedance is controlled at 50Ω

for single-ended signals and 100Ω for differential signals. Further, for high speed signals, the

trace length in the same signal group, like ADC signals, ChannelLink signals and Flash memory

signals, are matched within very small difference in order to guarantee the signals in the same

signal group are transmitted with the same propagation delay.

• Both digital and analog signals run on image sensor board. The digital signals operate by fast

switching between logic high and low level. The edges of fast switching digital signal generate

noise, causing voltage spikes on power planes as well as other adjacent signals. The noise effect

on the digital signals can be minimized when the digital signals are properly routed. However, the

noise on the analog power planes undermines the precision of the analog components. reducing

the certainty of analog operation. Therefore, the analog components need to be isolated from the

noise generated by the digital devices. The digital power planes and analog power planes cannot

be overlapped with each other, and no digital signal trace can be routed into the analog region on

the board. The only common connection between analog and digital part is a single connection

between the analog and digital ground. This common connection is necessary to keep the same

reference level for both digital and analog sides. A single point connection also enforces a single

controlled current return path for interaction between analog and digital side. The controlled

current return path does not allow direct and sharp returning current. As a result, the noise

associated with the digital signals spreads out over the plane so that its effect is averaged and

minimized. Further, the long return path of digital signal current introduces addtional inductance

which is able to further filter out the high frequency noise. The analog and digital side partition

is shown in Figure 3.19.

3.3 System Optical and Mechanical Design

3.3.1 Infrared Target Design

Vision-based position sensing systems utilize image data captured from image sensors to retrieve the

3D position of an target. Multiple DOF position sensing of the object is realized by using special targets
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Figure 3.19: Analog and digital partition on image sensor board

attached to the object to be tracked. For the purpose of minimizing the side-effect of ambient light, the

target in the system usually works in the infrared light region. Based on the working principles, the

infrared target is categorized into two groups: passive target and active target.

• Passive targets are coated with a retroreflective material to reflect the infrared light back that is

generated near the camera lens. This kind of targets is mostly spherical so that a large view angle

with relative uniform reflection intensity is able to be achieved.

• Active targets use infrared light emitting elements, mostly infrared LEDs. Single or multiple

infrared LEDs can be used according to the requirement of the vision system. These infrared

LEDs are generally driven and controlled by dedicated electrical circuit.

It is clear that the spherical passive targets offers the visibility from all sides and does not require

external driving circuits. However, its sensitive surface, which is difficult to clean, affects the reflected

light illumination. Limited by the reflection efficiency, a considerable power loss is introduced, caus-

ing a low power reflective light and further requiring longer exposure time in the imaging system.

Conclusively speaking, compared to passive target, the active target is more favorable.

The infrared LED utilized in the system is HE8812SG infrared LED from Opnext. This LED emits

the infrared light with the peak wavelength of 870nm and keeps a uniform radiation intensity within a

range of±40◦ (shown in Figure 3.20). The uniformity angle can be further extended by using a diffusor

sphere at the expense of lower optical power output.
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Figure 3.20: Spectrum distribution and radiation pattern of HE8812SG Opnext Infrared LED,
from [37]

The active target requires dedicated circuits to drive and control the infrared LEDs. The optical

power of the selected infrared LED depends on its forward current IF . Therefore, a current source

circuit is designed to meet the following criteria:

• Adjustable current: 50mA to 150mA

• Low current ripple: < 5mA

• Powered by battery

• Low power dissipation by LED driving circuit

According to the design goals above, the LED driving circuit is designed as shown in Figure 3.21.

Rechargeable high capacity battery is used to supply the power. A switching DC/DC convertor is

designed to boost the battery voltage to a desired voltage level with high conversion efficiency. The

constant current source circuit is realized based on a linear regulator. The output current of the LED

driver is determined by the current control resistor R1 and R2: Iout =
Vre f erence
R1+R2

. The experimental result

shows that this LED driver achieves a current ripple (peak-to-peak) less than 2mA.

3.3.2 Lens Selection

Designers and integrators of vision systems are always looking for imaging systems with faster speeds

and higher resolutions. An imaging system’s resolution is determined by its lens and image sensor,

therefore, these two key components must be selected in tandem. Higher resolution image sensor does

not necessarily guarantee better images. Instead, lens and image sensor must be matched. Choosing a

lens is more complicated than choosing a sensor, since multiple lens characteristics must be taken into

consideration and traded off against one another [38].

The first lens characteristic asked in the lens selection criteria is the field of view, which is deter-

mined by the focal length and angular field. In our application, the object is tracked in a large working

volume. Therefore, the lens with large field of view (normally features shorter focal length) is desired.
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Figure 3.21: Infrared LED driving circuits

Figure 3.22: Illustration of the relationship between measurement volume and lens parameters

The actual focal length is determined by the desired tracking volume and physical size of image sensor.

The Figure 3.22 shows the details.

In Figure 3.22, U is the distance between target and lens; V is the distance between lens and image

sensor; W is the moving range of the target in vertical plane; S is the size of image sensor. Based on

the geometry shown in Figure 3.22, we can derive that

S
V

=
W
U
. (3.9)

Further, according to the thin lens formula, it gives that
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1
U

+
1
V

=
1
f

(3.10)

where f is the focal length of the lens. Combining Equation 3.9 and Equation 3.10 yields

f =
SU

S+W
. (3.11)

Here, the size of image sensor S is known to be 24.6mm; the target moving range W is 1m; and the

distance U is set to 1.5m. Therefore, it requires that the focal length f is smaller than 36mm. At the

same time, the minimum angular field of the lens is derived by

α = 2arctan
(

W
2U

)
= 36.8◦. (3.12)

Conservatively, the focal length is set to 25mm and the angular field is set to 40◦.

3.3.3 Camera Body Design

The accuracy of 3D reconstruction does not only depends on the image quality and sub-pixel target

position interpolation, but is also influenced by the system geometry as well as its stability. The camera

body geometry parameters, such as the distance between two camera modules, affect the measurement

sensitivity. On the other hand, the geometry parameters are limited by other considerations, including

designed measurement volume, overall system dimension and weight. Further, the stability of these

geometry parameters determine the repeatability and precision of measurement. Even though the sys-

tem is designed to operate in a semi-controlled indoor environment, the thermal deformation of camera

body due to the fluctuation of ambient temperature degrades the position sensing performance. In addi-

tion, the external vibration excites the vibration of camera body, causing a change in system geometry.

Therefore, a solid camera body is required.

A single camera module is unable to reconstruct the 3D position of a target because the informa-

tion it provides is not enough to determine the depth information. With two camera modules, additional

information is offered by the second camera, thus the 3D position is reconstructed based on triangu-

lation. Shown in Figure 3.23, the image sensor planes are parallel with the XW −YW plane, therefore,

the distance between the two camera modules does not effect the 3D position reconstruction in XW and

YW direction, but does affect the performance in retrieving the depth information. Intuitively, when

the distance between the two camera modules is zero, it is equivalent that two camera modules merge

together and become a single camera module. Under this situation, the depth information is unable

to be recovered, therefore the reconstruction error in ZW direction is infinity. When this distance in-

creases, the accuracy of the measurement in ZW direction is increasing. However, the accuracy cannot

be unlimitedly improved with the increasing distance. When the distance is large enough, the accuracy

in ZW direction does not significantly increase. In an ideal case shown in Figure 3.23 where the lens

distortion is not considered, the resolution in XW -YW plane is proportional to the resolution of sub-pixel

interpolation in image sensor plane, and this ratio is U/V . At the same time, based on the 3D position

reconstruction algorithms described in Section 2.3, the resolution in ZW direction of a 3D point is pro-
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Figure 3.23: Schematic of two-camera system

portional to 1/d. To further verify the effect of camera distance d on the reconstruction resolution in

ZW direction, a simulation is carried out based on the situation shown in Figure 3.23. In the simulation,

the measured 3D point is located at the XW -YW plane 1500mm away from the camera modules, and the

resolution of sub-pixel interpolation is assumed to be 0.01pixel. Shown in Figure 3.24, it is clear that

the resolution in ZW direction is improved when the distance between camera modules is increasing.

Meanwhile, the distance between two camera modules is limited by the designed measurement

volume. It is required that the targets to be tracked must be kept in the FOV of both camera modules.

Therefore, the actual measurement volume is the intersection of the FOV of two cameras. A larger

distance between cameras improves the 3D position reconstruction performance at the expense of losing

measurement volume. Based on this analysis, it yields from Figure 3.23 that

S
/

2
V

=
(W +d)

/
2

U
. (3.13)

Under the requirement that the measurement range W is larger than 1000mm, it gives that d < 430.2mm.

In Summary, the distance between two camera modules is set to 400mm.

Once the main geometry parameters of the camera body is determined, a solid camera body (shown

in Figure 3.25) is designed and manufactured to maintain the geometry relationship between the two

cameras. This camera body is made of invar which is a nickel steel alloy notable for its uniquely low

coefficient of thermal expansion (around 1.2ppm/◦C from 20◦C to 100◦C). On the other hand, external

vibration and self-weight cause deformation of the camera body. An I-beam structure is designed in
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Figure 3.24: Resolution in ZW VS camera distance d

Figure 3.25: Camera body SolidWorks Model

order to make the camera body solid as well as reducing the total weight of the camera body.

3.4 Summary
In this chapter, the need for a set of customized stereo-vision system hardware is explained and the

design of hardware is discussed. High-performance electronics, high-quality optics and solid camera

body are designed and manufactured as an important contribution of this thesis. The final hardware
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Figure 3.26: Hardware assembly of the prototype system

assembly is shown in Figure 3.26.

The custom electronics based on CMOS image sensor and FPGA architecture features high-performance

image acquisition, high-speed camera interface and high-speed image processing. By using the ROI

readout mechanism, over 10kHz position sampling can be achieved. The active target is designed,

providing a uniform and stable radiation intensity across the measurement volume. Optical lens are

carefully selected to satisfy the design goals as well as the selected image sensor. To minimize the ef-

fect of thermal expansion and external vibration on system geometry, a solid camera body is designed

with optimized geometry parameters, material and mechanical structure. The specifications of system

hardware are listed in Table 3.6.
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Table 3.6: Hardware specifications of the prototype system

Parameters Specification

Image Sensor Type CMOS
Pixel Rate 66MHz
Raw image data resolution 14-bit
Camera Interface Camera Link
Power Consumption 5W for two camera modules
Position Tracking System Weight 14kg
Marker Type Active infrared LED

53



Chapter 4

System Calibration

In order to achieve high position accuracy, vision-based position sensing systems are usually calibrated

to determine their model parameters. In this chapter, the calibration of the vision system is presented

in detail. Section 4.1 analyzes the primary error sources in the system. Section 4.2 and Section 4.3

present the calibration methods for each error source, including the FPN calibration of image sensor

and the calibration of optical and mechanical model parameters.

4.1 System Limitations
The system is designed and implemented based on a two-camera architecture. Ideally, each camera

module is modeled as a linear system. The target position in pixel coordinate is obtained through sub-

pixel target position interpolation. The 3D position of the target in world coordinate is reconstructed

by triangulation based on the target positions in each camera module.

In the ideal situation, there is no 3D reconstruction error if the sub-pixel target position interpo-

lation is perfect and all the model parameters are known accurately, but it is not true for a real world

application. Image sensor has noise problems in photon-to-electron conversion and electron-to-voltage

conversion, and these noises might be spatial-varying or temporal-varying, as well as temperature-

dependent. The real target image is contaminated by the noise from image sensor and its peripheral

circuits, therefore the image SNR is reduced which limits the accuracy of sub-pixel target position

interpolation. The mechanical installation always has errors, causing discrepant geometry parameters

from the nominal design. In addition, as a result of imperfect manufacturing and assembly, a real lens

introduces optical distortions. Especially when a large measurement volume is required, the wide-angle

lenses are used which usually suffer from severe optical distortions.

In order to achieve high accuracy in 3D reconstruction, these error sources must be modeled and

characterized. The block diagram of system is shown in Figure 4.1. The goal of system calibration is

to identify and extract the intrinsic and extrinsic parameters in the imaging model and use them in 3D

position reconstruction model so that more accurate 3D position is achieved.
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Figure 4.1: Block diagram of system

4.2 Fixed Pattern Noise of Image Sensor
Fixed pattern noise (FPN) is a spatial non-uniformity in an image sensor with multiple pixels. This

problem is caused by variations in the pixel size, material or interference with local circuitry. FPN usu-

ally refers to two parameters: dark signal non-uniformity (DSNU) and photo response non-uniformity

(PRNU) (shown in Figure 4.2). DSNU is the offset from the average across the image sensor with no

external illumination. The DSNU is caused by the mismatch between photodiode leakage currents of

pixels. The other type of FPN is PRNU, which describes the non-uniform gain between optical power

on a pixel versus the electrical signal output. It can be characterized as the local, pixel-dependent photo

response nonlinearity and is often simplified as a single value measured at almost saturation level to

permit a linear approximation of the non-linear pixel response [39].

Figure 4.3 shows the model of image capture in a CMOS image sensor. From Figure 4.3, the raw

output of image sensor is derived as

Iraw =
(
PRNU +SNph +K

)
×L+SNdark +SNread +DSNU (4.1)

where Iraw is the raw output of the image sensor, K is the conversion gain, SNph(I) is the photon shot

noise, SNdark is the dark-current shot noise, SNread is the readout noise from the signal conditioning and

ADC sampling, and L is the light irradiance of illumination. The photon shot noise SNph, dark-current

shot noise SNdark and readout noise SNread are temporally variant. On the other hand, FPN is spatially

variant [40].

Although FPN does not change appreciably across a series of captures, it varies with operation

conditions. V. Scheinder [41] and D. Joseph [42] investigated the temperature features of FPN in

CMOS image sensor and concluded that the FPN in CMOS image sensor is dependent on the operating
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Figure 4.2: DSNU and PRNU illustration adapted from [29]

Figure 4.3: Noise model of an image sensor adapted from [40]

temperature conditions. In addition, CMOS image sensor has the common problem of high pixel

storage node leakage (PSNL). Due to this problem, pixels that are read later in an image have higher

leakage. That is, the readout speed of the image sensor affects the FPN. Therefore, FPN is sensitive to

the operating conditions of the CMOS image sensor so that the FPN correction of one image is effective

only when this image and the FPN data are collected under the same condition.

FPN is commonly corrected by flat-field correction that uses DSNU and PRNU to linearly interpo-

late pixel output. The DSNU is measured by analyzing a set of images captured in dark condition with

no illumination. By setting L = 0, Equation 4.1 becomes

Idark = DSNU +SNdark +SNread . (4.2)
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Based on the assumption that SNdark and SNread are a temporal white noise with zero mean, the

temporal averaging of these dark images removes the term SNdark and SNread , yielding

Īdark = DSNU. (4.3)

The PRNU is obtained by exposing the pixel array to the same illumination which makes the pixel

output signal close to its saturation. Setting the saturation illumination L= Lbright in Equation 4.1 yields

Ibright =
(
PRNU +SNph(Lbright)+K

)
×Lbright +SNdark +SNread +DSNU. (4.4)

Similarly, SNph(Lbright) is treated as a temporal white noise with zero mean. Temporal averaging

of multiple bright images and substituting Equation 4.3 into Equation 4.4 give

Ībright = (PRNU +K)×Lbright + Īdark. (4.5)

Therefore, the PRNU is derived as

PRNU =
Ībright − Īdark

Lbright
−K. (4.6)

Thus, based on Equation 4.3 and Equation 4.6, the image after FPN correction is expressed as

Icorrected =
Iraw− Īdark

Ībright − Īdark
A =

L
Lbright

A (4.7)

where A is range of the image after FPN correction. It is clear from Equation 4.7 that the image after

FPN correction is proportional to the input light illumination.

4.3 Calibration of Optical and Mechanical Parameters
In a vision-based position sensing system, optical and mechanical parameters are coupled with each

other. The calibration procedure of optical and mechanical parameters in a vision system is called cam-

era calibration. Camera calibration in the context of 3D position sensing is the process of determining

internal camera geometric and optical characteristics (intrinsic parameters), and the 3D position and ori-

entation of the camera frame relative to a certain world coordinate system (extrinsic parameters)[18].

Camera calibration is an essential component of photogrammetric measurement, especially in high ac-

curacy close-range measurement. Accurate camera calibration procedures are a necessary prerequisite

of the extraction of precise and reliable 3D position information from images [43].

Because of imperfections in the design and assembly of lenses composing the camera optical sys-

tem, the lenses used in real world application cannot be modeled as an ideal pinhole model. When

the light passes through optical lens, the light path is distorted, causing an offset position PI in the

image coordinate. Furthermore, the true geometry parameters in the rigid body transformation are un-

known because of the mechanical installation errors. The optical axis of lens may not be orthogonal to

the image sensor plane and perfectly intersects with the plane at the nominal center of image sensor.

Since the 3D position reconstruction relies on the triangulation using two cameras, 3D position error is
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introduced by mechanical installation error between two cameras.

Figure 4.4: Optical and mechanical error sources in a vision system

As a result of the imperfection of lens and mechanical installation, camera calibration is neces-

sary in order to achieve high position accuracy in vision-based position sensing applications. For best

serving this purpose, the camera calibration should meet the following criteria [18]:

• Autonomous: The calibration procedure should not require operator intervention, such as giving

initial values for certain parameters, or choosing certain parameters manually.

• Accurate: The camera calibration technique should have the potential of meeting the accuracy

requirements. This requires an accurate theoretical modeling of the imaging process as well as

calibration algorithms.

• Versatile: The calibration technique should operate uniformly and autonomously for a wide

range of system setups.

In this section, the prior art of camera calibration methods are investigated and the proposed calibra-

tion method is then presented. In Section 4.3.1, the state-of-art camera calibration methods are reviewed

and discussed. The proposed camera calibration method is covered in Section 4.3.2. Section 4.3.3 gives

the simulation results to preliminarily verify the performance of the proposed calibration method.

4.3.1 Camera Calibration Methods Review

Camera calibration is an important issue in the photogrammetry community. With the increasing need

for higher accuracy measurement, it has attracted lots of research effort [15][44][45][18][17][19]. To

estimate the model parameters of a stereo-vision system, the traditional methods convert it into multiple

single camera calibration problems and solve them individually. The existing techniques for single

camera calibration can be classified into the following categories [17]:

• Closed-form solution: Model parameters are estimated based on a closed-form solution (e.g.,

[15] [46]). Intermediate parameters are defined in terms of the original parameters. The inter-

mediate parameters are computed by solving linear equations, and the original parameters are
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determined from those intermediate parameters [17]. This type of technique is fast because there

is no iterative optimization. However, the lens distortion is not incorporated so that the lens

distortion effects cannot be corrected. Furthermore, the actual constraints in the intermediate

parameters are not considered because of the objective to construct a non-iterative algorithm.

Therefore, the solution does not meet the constraints in the presence of measurement noise.

• Direct nonlinear minimization: Nonlinear model is established for the camera system. The

parameters are searched by using an iterative algorithm with the objective to minimize residual

errors of some equations. Many types of lens distortions can be incorporated in this technique.

Further, good estimation of model parameters can be achieved if the imaging model is accurate

and a good convergence is reached in optimization iteration. However, since the algorithm is

iterative, the optimization procedure may end up with a local optimum when the initial guess is

bad. In addition, the optimization can be unstable if the procedure of iteration is badly designed.

The harmful interactions between nonlinear and linear parameters can lead to divergence or false

solution.

• Multi-step methods: In this type of method, a direct solution for most of the calibration param-

eters and some iterative solution for the other parameters are conducted in sequential steps (e.g.,

[19] [17] [18]). The main advantages of this type of methods is that the major part of model

parameters can be derived from a closed-form solution, and the number of parameters to be esti-

mated through iterations is relatively small. However, some existing techniques in this category

have their own drawbacks. For instance, Tsai’s method [18] can only handle the radial lens dis-

tortion and cannot be extended to other lens distortion models. The solution is not optimal since

the information provided by the test points has not been fully utilized.

In the rest part of this section, some state-of-art camera calibration methods are reviewed, including

direct linear transformation (DLT) method [15], Tsai’ method [18] and Heikkila’s method [19].

Direct Linear Transformation Method

The DLT method is one of the classical procedures which apply space points calculation from image

coordinates. The DLT method is first introduced by Abdel-Aziz and Karara [15] in 1971 and was

refined by Hatze [44] in 1988 and Gazzani [45] in 1993. The DLT method gives a closed-form solution

which uses eleven intermediate parameters to represent the mathematical relationship between world

coordinate (XW ,YW ,ZW ) and pixel coordinate (u,v):

The intermediate parameters are computed by solving linear equations, and then the model param-

eters are retrieved from these intermediate parameters. To improve the accuracy of calibration, test

points should be included as many as possible and spread uniformly throughout the calibration volume.

Since there is no iterative optimization in the DLT method, the computation speed of this algorithm

is fast. However, the DLT method does not guarantee the physical constraints on model parameters,

such as the orthogonality of the rotation matrix R. Therefore the calibration accuracy degrades in the

presence of sub-pixel interpolation errors. In addition, the DLT method requires the test points to be

59



non-coplanar and calibration volume to be large enough in order to cover the space of measurement

volume.

Tsai’s Method

R.Y. Tsai proposed a versatile camera calibration method based on a two-stage technique in 1987 [18].

This two-stage technique is aimed at efficient computation of camera external position and orientation

relative to object reference coordinate system as well as radial lens distortion, and image scanning

parameters.

Figure 4.5: Tsai’s camera model with perspective projection and radial distortion adapted from
[18]

Tsai’s method first tries to obtain the estimation of as many parameters as possible using linear

least-square fitting methods. In the initial stage, constraints of parameters are not enforced. This

does not affect the final results, since these estimated parameters are used as the initial values for the

optimization in second stage. In the subsequent stage, the rest of parameters are obtained using a

nonlinear optimization method that searches the best fit between the observed image points and those

predicted from the identified imaging model. Parameters estimated in the first stage are refined in the

process.

The advantage of Tsai’s method is that an initial guess of some parameters is given by the first

linear stage and fewer optimized parameters in the second nonlinear iteration stage, leading to fast

computation speed. Additionally, radial lens distortion is considered here and better 3D reconstruction

accuracy is achieved by implementing radial distortion correction. Tsai’s method is able to operate
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uniformly for a wide range of setups and applications.

However, in Tsai’s method, only a small part of model parameters are optimized in the iterative

optimization. Other parameters are given by the initial linear stage so that the final results are unavoid-

ably harmed by lens distortion. Some parameters, such as the principal point (u0,v0) and image sensor

scaling factor Sx and Sy, are assumed to be known values provided by the image sensor manufacturer.

In addition, this method can only handle the first-order radial distortion and cannot be extended to other

types of lens distortion. The harmful interaction between linear parameters and nonlinear parameters

in the nonlinear iteration may gives a bad estimation of model parameters.

Heikkila’s Method

Heikkila presented a multi-step calibration procedure that is an extension to the two-step method in

1997 [19]. Similar to Tsai’s method, a closed-form solution is used to obtain the initial values of

linear parameters. All parameters are optimized in a nonlinear iteration in the second step. There are

additional steps for correcting the distorted image coordinates. The image correction is performed with

an empirical inverse model that accurately compensates for lens distortion.

Compared to Tsai’s lens distortion model, Heikkila incorporated radial and decentering distortion

in his model to correct the lens distortion.

In the iteration, Levenberg-Marquartdt (LM) optimization method is used to solve the nonlinear

least-square problem. However, LM method is a differential-based algorithm that is susceptible to

be trapped in local minimum, especially when a bad initial guess is given. Further, the linear and

nonlinear parameters are coupled in nonlinear iteration. The Heikkila method designed a cost function

in the nonlinear optimization which tries to minimize the 2D reprojection error in pixel coordinate.

Considering the errors of sub-pixel target position interpolation, the accuracy of estimation results is

decreased.

4.3.2 Proposed Camera Calibration Method

From the literature review in Section 4.3.1, it clearly shows that lots of effort have been devoted into

the research of single camera calibration method. Single camera calibration method can be extended to

a wide type of camera calibration problems. The traditional way of calibrating a stereo-vision system

converts the original problem into multiple single camera calibration problems where the model pa-

rameters of each camera are solved individually. As a result, the calibration of a multi-camera system

is simplified.

However, single camera calibration methods have their limitations. Because the 3D position in

world coordinate cannot be reconstructed with a single camera, the cost function in single camera

calibration methods minimizes the 2D reprojection error in pixel coordinate (shown in Figure 4.6). The

cost function in single camera calibration methods is express as

f (P̂) =
N

∑
i=1

{[
ui− ûi(P̂)

]2
+
[
vi− v̂i(P̂)

]2} (4.8)

where (ui,vi) is the measured target position in pixel coordinate, and
(
ûi(P̂), v̂i(P̂)

)
is the estimated
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Figure 4.6: Illustration of 2D reprojection error in image coordinate

target position in pixel coordinate based on the estimated camera parameter set P̂. The 2D reprojection

algorithms are based on the imaging model presented in Section 2.1.

It is known that the depth information of a 3D point is lost in the projection from 3D space to 2D

image. therefore the information provided by a 3D test point is not fully utilized. Limited by the SNR

of target image, the sub-pixel interpolation is not accurate. The target position in pixel coordinate is

subject to the error of sub-pixel interpolation algorithm, and therefore the model parameters estimated

from a single camera calibration method are contaminated with error and cannot guarantee a good

3D reconstruction result. Especially when these estimated model parameters are used for 3D position

reconstruction, larger reconstruction error is found in depth direction.

For stereo-vision systems, calibrating individual camera separately and combining the results to

reconstruct the 3D position does not guarantee an optimized stereo-vision system. With the goal of

calibrating a stereo-vision system, it is more reasonable to use the 3D reconstruction error as the cost

function (shown in Figure 4.7). The proposed cost function in optimization is expressed as

f (P̂) =
N

∑
i=1

{
[Xi− X̂i(P̂)]2 +[Yi− Ŷi(P̂)]2 +[Zi− Ẑi(P̂)]2

}
(4.9)

where (Xi,Yi,Zi) is the measured 3D position of test points in world coordinates, and
(
X̂i,Ŷi, Ẑi

)
is

the estimated 3D position of test points based on estimated camera parameter set P̂. The 3D position

reconstruction algorithm is based on a linear transformation combined with a nonlinear correction of

lens distortions (discussed in Section 2.3). Usually, the measured 3D position (Xi,Yi,Zi) is given by

high accuracy machines, such as CMM, therefore the accuracy of the test point position in 3D world

coordinate is guaranteed.

In most single camera calibration methods, the linear parameters and nonlinear parameters are cou-

pled in the optimization process. The harmful interaction between linear and nonlinear parameters may

introduce instability issue of the nonlinear iteration. Consider that most existing nonlinear methods

minimize the cost function using variants of conventional gradient-descent optimization, like Newton

method and Levenberg-Marquardt (LM) method. These techniques have well-known problems plagu-
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Figure 4.7: Illustration of 3D reconstruction error in world coordinate

ing these differentiation-based methods, such as poor convergence and susceptibility to be trapped in

local minimum. This problem is severe when the linear and nonlinear parameters are coupled in the

optimization iteration. Therefore, the risk of local rather than global optimization might be severe. On

the other hand, this local optimization problem is more severe when a good initial guess cannot be

given. Thus, multi-step calibration method must be used in order to provide a proper initial guess of

parameters in the first stage.

In camera calibration, the linear parameters are referred to those parameters used in linear transfor-

mation, and nonlinear parameters are the other parameters that represent the nonlinear lens distortions.

In order to suppress the harmful interaction between linear and nonlinear parameters, the optimization

of linear and nonlinear parameters is decoupled in the proposed calibration method. Figure 4.8 shows

the flow chart of the proposed calibration method. The initial guess of linear parameters are given by a

linear optimization in the first step. In order to obtain a good initial guess of linear parameters, the test

points close to image center are used so that the lens distortion effect is minimized. In the second step,

the linear parameters are fixed and only nonlinear parameters are optimized. Further in the next step,

the nonlinear parameters are fixed and linear parameters are optimized. The optimization iteration is

terminated when the 3D reconstruction error satisfies pre-defined constraints.

4.3.3 Simulation Results

In this section, the proposed camera calibration method (named NK method) is compared with the

Heikkila method based on the simulation environment. The stereo-vision system to be calibrated is

based on a two-camera configuration. Further comparisons by experiment are presented in Section 5.4.

63



Figure 4.8: Flow chart of the proposed calibration method

In the simulation environment, 192 test points in 3D world coordinate are used, and their target

locations in pixel coordinate are obtained based on the imaging model described in Section 2.1. These

test points are evenly distributed in a cubic space of 500mm by 500mm by 10mm. To evaluate the

calibration performance, the estimated camera parameters are compared with their ground true values

which are pre-defined in the simulation. In addition, the 3D reconstruction errors are also compared.

Three cases are studied in this section. In case 1, the lens distortion is assumed to be zero, and

there is assumed to be no sub-pixel interpolation error. Case 2 compares the calibration performance in

the presence of lens distortion but no sub-pixel interpolation error. In case 3, both lens distortion and

sub-pixel interpolation error are considered.

Case 1

Case 1 is a very ideal case where the lens is assumed to be perfect without optical distortion and the sub-

pixel interpolation algorithm is perfectly accurate. In this scenario, the imaging model is simplified to a

linear model so that both calibration methods should give a perfect estimation with zero error. Indeed,
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the simulation results demonstrate that both methods give zero estimation error of camera parameters.

The estimation results are shown in Table 4.1 and Table 4.2. Since the estimation of model parameters

is perfect, zero 3D reconstruction error is obtained.

Table 4.1: Simulation case 1 - calibration results of Camera 0

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 2.000 2.000

β [deg] 5 5.000 5.000

γ [deg] -179 -179.000 -179.000

Tx [mm] 100 100.000 100.000

Ty [mm] 200 200.000 200.000

Tz [mm] -900 -900.000 -900.000

fx = dSx 2141.67 2141.67 2141.67

fy = dSy 2141.67 2141.67 2141.67

u0 [pixel] 1024 1024.000 1024.000

v0 [pixel] 1024 1024.000 1024.000

Table 4.2: Simulation case 1 - calibration results of Camera 1

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 2.000 2.000

β [deg] -20 -20.000 -20.000

γ [deg] -179 -179.000 -179.000

Tx [mm] 100 100.000 100.000

Ty [mm] 500 500.000 500.000

Tz [mm] -900 -900.000 -900.000

fx = dSx 2141.67 2141.67 2141.67

fy = dSy 2141.67 2141.67 2141.67

u0 [pixel] 1024 1024.000 1024.000

v0 [pixel] 1024 1024.000 1024.000

Case 2

Compared to case 1, the lens distortion of lens is considered in case 2 but the sub-pixel interpolation

error is assumed to be zero. As a result of lens distortion, the imaging model is nonlinear so that

nonlinear iteration is required to solve the model parameters. Considering the numerical error in non-

linear iteration, the calibration method cannot obtain a perfect estimation of the model parameters. The
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estimation results are shown in Table 4.3 and Table 4.4. Based on these two tables, it clearly shows

that the Heikkila method and the NK method achieves very close estimation of the camera parameters.

Therefore, the RMS 3D position reconstruction error from each method are compared in Table 4.5. It

clear shows that the NK method gives slightly better 3D reconstruction result than the Heikkila method

when sub-pixel interpolation error is set to zero and only lens distortion is considered.

Table 4.3: Simulation case 2 - calibration results of Camera 0

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 2.000 1.999

β [deg] 5 4.999 5.000

γ [deg] -179 -179.000 -179.000

Tx [mm] 100 99.990 99.997

Ty [mm] 200 200.001 200.005

Tz [mm] -900 -899.986 -899.981

fx = dSx 2141.67 2141.652 2141.641

fy = dSy 2141.67 2141.651 2141.589

u0 [pixel] 1024 1024.000 1024.000

v0 [pixel] 1024 1024.000 1024.000

K1 [mm−2] −1×10−4 −1.005×10−4 −1.005×10−4

K2 [mm−4] 1.2×10−7 1.026×10−7 1.027×10−7

P1 [mm−1] 2×10−5 2.057×10−5 2.063×10−5

P2 [mm−1] −1×10−5 −1.034×10−5 −0.999×10−5

Case 3

In case 3, the sub-pixel interpolation error is considered. Here it is assumed that the sub-pixel interpo-

lation error is a white noise with zero mean. Table 4.6 and Table 4.7 show the estimation results of each

camera respectively, assuming a random sub-pixel interpolation error with 0.1 pixel standard deviation.

It is clear that the estimation error of the Heikkila method increases when the sub-pixel interpolation

error is considered. On the other hand, as a result of using 3D reconstruction error as the cost function,

the NK method achieves better estimation of model parameters in the presence of sub-pixel interpola-

tion error. This simulation result is consistent with the theoretical expectation in the previous section.

To further verify the performance of the NK method, the 3D reconstruction error at different sub-pixel

interpolation error level is investigated. In this simulation, varying sub-pixel interpolation error level is

considered, and the calibration as well as the 3D reconstruction is conducted at each sub-pixel interpo-

lation error level. From Figure 4.9, it clearly shows that the 3D reconstruction error of each method is

very close when the sub-pixel interpolation error is small but the NK method gives slightly better 3D

reconstruction result when the sub-pixel interpolation error keeps increasing.
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Table 4.4: Simulation case 2 - calibration results of Camera 1

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 2.002 2.002

β [deg] -20 -20.001 -20.001

γ [deg] -179 -178.999 -178.999

Tx [mm] 500 500.018 499.992

Ty [mm] 200 200.002 199.996

Tz [mm] -900 -900.071 -899.987

fx = dSx 2141.67 2141.800 2141.641

fy = dSy 2141.67 2141.800 2141.712

u0 [pixel] 1024 1023.990 1024.000

v0 [pixel] 1024 1023.990 1024.000

K1 [mm−2] −1×10−4 −1.006×10−4 −1.005×10−4

K2 [mm−4] 1.2×10−7 1.038×10−7 1.028×10−7

P1 [mm−1] 2×10−5 2.052×10−5 2.013×10−5

P2 [mm−1] −1×10−5 −1.032×10−5 −1.100×10−5

Table 4.5: Simulation case 2 - comparison of 3D position reconstruction error

Heikkila’s Method NK Method

3D Error RMS [µm] 6.73 6.46

4.4 Summary
The primary limitations on position accuracy of vision-based position sensing systems come from me-

chanical installation error, lens optical distortion and noise of target image. FPN, including DSNU and

PRNU, is a spatial noise of image sensor. A flat-field correction that uses DSNU and PRNU to linearly

interpolate the local image non-uniformity is implemented in the system to correct the FPN of image

sensor. Further, mechanical installation error and lens distortion introduce error in 3D reconstruc-

tion. The camera geometry and optical parameters can be estimated by camera calibration. Traditional

camera calibration methods convert a stereo-vision calibration problem to multiple single camera cali-

bration problems. As a result, the reprojection error in 2D pixel coordinate is used as the cost function

in optimization process. Considering the error in sub-pixel target position interpolation, the parameter

estimation of traditional methods is unavoidably contaminated by large error. The proposed calibration

method uses the reconstruction error in 3D world coordinate and decouples the optimization of linear

and nonlinear model parameters. The simulation results show that the proposed calibration method

achieves more accurate calibration results than the Heikkila method, especially in the presence of large

error in sub-pixel target position interpolation.
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Table 4.6: Simulation case 3 - calibration results of Camera 0 (0.1 pixel sub-pixel interpolation
error)

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 1.966 1.998

β [deg] 5 4.933 5.002

γ [deg] -179 -179.002 -179.000

Tx [mm] 100 99.449 99.998

Ty [mm] 200 198.825 200.005

Tz [mm] -900 -891.199 -899.971

fx = dSx 2141.67 2121.200 2141.606

fy = dSy 2141.67 2120.851 2141.600

u0 [pixel] 1024 1018.490 1024.000

v0 [pixel] 1024 1023.300 1024.000

K1 [mm−2] −1×10−4 −0.98×10−4 −1.005×10−4

K2 [mm−4] 1.2×10−7 0.89×10−7 1.029×10−7

P1 [mm−1] 2×10−5 2.421×10−5 2.068×10−5

P2 [mm−1] −1×10−5 −0.47×10−5 −0.980×10−5

Table 4.7: Simulation case 3 - calibration results of Camera 1 (0.1 pixel sub-pixel interpolation
error)

Camera Parameters True Value Heikkila’s Method NK Method

α [deg] 2 1.961 2.003

β [deg] -20 -20.105 -20.001

γ [deg] -179 -179.011 -178.999

Tx [mm] 500 504.058 499.990

Ty [mm] 200 200.405 199.991

Tz [mm] -900 -906.671 -899.980

fx = dSx 2141.67 2159.800 2141.641

fy = dSy 2141.67 2158.609 2141.702

u0 [pixel] 1024 1023.550 1023.990

v0 [pixel] 1024 1025.890 1024.000

K1 [mm−2] −1×10−4 −0.98×10−4 −1.006×10−4

K2 [mm−4] 1.2×10−7 1.007×10−7 1.029×10−7

P1 [mm−1] 2×10−5 3.711×10−5 2.015×10−5

P2 [mm−1] −1×10−5 −1.023×10−5 −1.190×10−5
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Figure 4.9: 3D reconstruction error VS. sub-pixel interpolation error
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Chapter 5

Experimental Results

This chapter presents the experimental characterization of the system. The FPN of image sensor is

characterized, and the effectiveness of the FPN correction method is demonstrated by experiment. The

position sampling frequency for different ROI sizes and target quantities is characterized. In addition,

the stereo-vision system is calibrated to determine its model parameters using a CMM. The 3D position

reconstruction accuracy is characterized and examined within the measurement volume. The vision-

based position sensing system is integrated as the metrology solution for a prototype of planar motion

stage.

5.1 FPN Characterization and Correction
The image sensor is not perfect. In order to achieve a high quality image, the FPN of the image sensor

must be characterized and corrected. Based on theoretic analysis in Section 4.2, multiple black images

are collected and averaged to obtain the DSNU data of the image sensor. The DSNU data is shown in

Figure 5.1.

To verify the effectiveness of DSNU correction, Figure 5.2 compares the histogram of a raw black

image and the black image after DSNU correction. It is clear that DSNU correction significantly

reduced the spatial standard deviation of black image.

Theoretically, in order to obtain the PRNU of every pixel, a uniform light is required to illuminate

the entire the image sensor. However, it is very difficult to generate a uniform light illumination on the

entire area of the image sensor. As a result, a pixel-by-pixel PRNU correction is difficult to achieve.

Considering that there are two separate analog channels for even and odd pixels, the average gain

non-uniformity between even and odd pixels is obtainable. Therefore, the correction of the gain non-

uniformity is downgraded from a pixel-by-pixel correction to an even-odd pixel correction. The image

sensor model described in Section 4.2 gives

IEven(u,v) = (GainEven(u,v))×L(u,v)+SNdark +SNread +DSNU(u,v)

IOdd(u,v) = (GainOdd(u,v))×L(u,v)+SNdark +SNread +DSNU(u,v)
(5.1)

Assuming that the ADC readout noise SNread and dark current shot noise SNdark are white noise

with zero mean, the average gain ratio between even and odd pixels is calculated as
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Figure 5.1: DSNU of the image sensor at 10µs exposure time

GainEven

GainOdd
=

∑(IEven(u,v)−DSNU(u,v))
∑(IOdd(u,v)−DSNU(u,v))

(5.2)

where GainEven and GainOdd are the average gain of even and odd pixels respectively; IEven and IOdd

are the raw pixel values of even and odd pixels, respectively; DSNUEven and DSNUOdd are the odd and

even pixels’ DSNU, respectively.

To obtain the average gain ratio between even and odd pixels, the image sensor is illuminated by

a light source which generates a continuous light intensity distribution across the entire sensor area.

Multiple bright images are obtained, and then the average gain ratio between even and odd pixels is

calculated based on Equation 5.2. Ten full frame bright images are collected and the average gain ratio

between even and odd pixels is calculated for each bright image (shown in Table 5.1).

Table 5.1: Average gain ratio between even and odd pixels before compensation

Image Index 1 2 3 4 5

GainEven
GainOdd

1.0209 1.0204 1.0206 1.0203 1.0203

Image Index 6 7 8 9 10

GainEven
GainOdd

1.0196 1.0197 1.0193 1.0193 1.0189

From Table 5.1, it is clear that there is about 2% gain difference between even and odd pixels.

After implementing the average gain ratio compensation, another 5 full bright images are collected

and the average gain ratio between even and odd pixels are investigated (shown in Table 5.2). After

compensation, the average gain difference between even and odd pixels are reduced below 0.1%.

The compensation results shown in Table 5.2 are for the full frame image scale. However, the
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Figure 5.2: Histogram comparison between a raw black image and the image after DSNU correc-
tion (The mean value is removed)

Table 5.2: Average gain ratio between even and odd pixels after compensation

Image Index 1 2 3 4 5

GainEven
GainOdd

0.9992 0.9995 1.0005 1.0001 0.9997

image processing in the system is ROI-based. In order to verify the effectiveness of this average gain

ratio compensation, the average gain ratio between even and odd pixels in the ROI scale is investigated.

Nine ROI groups located in different areas of the image sensor are read out (shown in Figure 5.3). The

average gain ratio before compensation and after compensation is shown in Table 5.3. It is clear that this

average gain ratio compensation improves the performance for most of the test regions. Considering

the average gain compensation value is calculated based on the global image sensor, it is reasonable

that the performance is reduced in some local test regions.

To verify its effectiveness, the FPN correction method is applied in the processing of a real infrared

LED image. Figure 5.4 compares the raw LED image and its image after correction. It is clear that the

correction method suppresses the spatial non-uniformity of the image sensor.
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Figure 5.3: Distribution of test regions for average gain difference compensation

Table 5.3: Average gain ratio between even and odd pixels of small regions

Test Region Index 1 2 3 4 5

GainEven
GainOdd

before compensation 1.0134 1.0208 1.01 1.0151 1.022

GainEven
GainOdd

after compensation 0.9903 0.9953 0.986 1.0028 1.0059

Test Region Index 6 7 8 9

GainEven
GainOdd

before compensation 1.0262 1.006 1.0146 0.9989

GainEven
GainOdd

after compensation 0.9989 0.9876 1.0015 0.9849

5.2 Position Sampling Frequency Characterization
The position sampling frequency is one of the most important performance characteristics of a position

sensing system. As stated in Section 2.2, high position sampling frequency is achieved by ROI-based

image readout and processing. Based on the datasheet of the selected image sensor, the theoretical

frame period is calculated as

Tframe = Texposure +FOT+NTarget×Ncol×
(
ROT+Nrow×Tpixel

)
(5.3)

where Texposure is the exposure time, FOT is the frame overhead time, ROT is the row overhead time,

Tpixel is the pixel period, NTarget is the number of ROI, Ncol is the column number of ROI, and Nrow is

the row number of ROI. Figure 5.5 shows the ideal relationship of frame rate and ROI size and number

of ROI, by ignoring exposure time, frame overhead time and row overhead time.

However, the ideal frame period cannot be achieved due to hardware limitations. First, larger frame
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Figure 5.4: Comparison of a raw LED image and the image after FPN correction

overhead time (FOT) and row overhead time (ROT) are required to guarantee that the pixel analog

signal becomes stable before readout. Second, the ROI position must be given and loaded to the sensor

before the ROI is read, causing an additional ROI update overhead time between the readout of each

ROI. Considering all these factors, the actual frame rate is measured and shown in Figure 5.6.

The frame rate is the main bottle neck which limits the achievable position sampling frequency.

Based on the ROI readout mechanism of the CMOS image sensor, the frame rate is vastly increased.

However, the frame rate is not the only limitation of the position sampling frequency. The sub-pixel

target location inside the camera module and the 3D reconstruction computation in the Tsunami real-

time computer add additional computation delay. Based on the experimental characterization of the

system’s computation capability, this system is able to achieve a position sampling frequency of 8kHz

for measuring 8 targets in 3-DOF, where the ROI size is set to 14 by 14 pixels.
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Figure 5.5: Ideal frame rate vs. ROI size and number of target

5.3 Characterization of Sub-pixel Target Position Interpolation
In Section 2.2.2, the sub-pixel target position interpolation algorithms are discussed. Based on the

computation cost and achievable sub-pixel interpolation precision, the centroid and squared-centroid

method are implemented in each camera module. The sub-pixel target position interpolation is realized.

To characterize the performance of the real-time sub-pixel target position interpolation methods, some

experiments are conducted and the experimental results are discussed. Limited by the test conditions,

the true target position in the image coordinate frame is not accessible, and therefore it is impossible

to evaluate the accuracy of sub-pixel target position interpolation methods. Instead, resolution, rather

than accuracy, is characterized in this section.

In this experiment, the 3D position of a target is given by the CMM and fixed in the measurement

volume. The target position in the pixel coordinate frame is continuously output from the camera

module at the position sampling frequency of 8kHz. For each sub-pixel interpolation method, 1000

target positions in image sensor coordinate are collected. The resolution of sub-pixel interpolation is

calculated as the standard deviation of these target positions in image sensor coordinate.

The effect of threshold processing is investigated. As presented in Section 5.1, the FPN of the

image sensor is relatively constant in the temporal scale, but the experimental result still shows a 6LSB

temporal deviation of the sensor FPN with 13-bit ADC resolution. As a result, the online FPN correc-

tion is not able to perfectly suppress the ROI background to zero. In order to fully remove the ROI

background, threshold processing is considered. The threshold processing is defined as
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Figure 5.6: Real frame rate vs. ROI size and number of target

IOUT =

{
IRaw−Threshold,IRaw ≥ Threshold

0, IRaw< Threshold
(5.4)

where IRaw is the raw pixel value; IOUT is the pixel value after threshold processing.

The effect of threshold level on the sub-pixel interpolation resolution is shown in Figure 5.7. The

experimental result clearly shows that the threshold level has a larger effect on the resolution of the

centroid method than the resolution of squared-centroid method. Considering that the squared-centroid

method emphasizes the main body of the target image where pixel values are much higher than the

background, the background pixels have very small influence on the target location result. As a con-

sequence, further removing the background by threshold processing does not significantly improve its

resolution. On the other hand, with a cleaner background, the centroid method achieves better resolu-

tion. From Figure 5.7, it is found that the centroid method is able to achieve the same resolution as the

squared-centroid when using a threshold to remove the ROI background.

In conclusion, the DSNU correction significantly increases the resolution of both centroid and

squared-centroid methods. The threshold processing has a greater influence on the resolution of the

centroid method than the squared-centroid method. By using thresholding to remove the background

noise, the centroid method is able to achieve the same resolution as the squared-centroid method.

Limited by test condition, the accuracy of the sub-pixel interpolation method cannot be experimentally

characterized at this point. The effect of sub-pixel interpolation method on 3D reconstruction accuracy

will be studied in later sections.
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Figure 5.7: Threshold effect on sub-pixel interpolation resolution

5.4 Camera Calibration and Off-line 3D Reconstruction
Camera calibration is one of the key procedures in order to achieve high 3D position accuracy. In

this section, the system is calibrated and the calibration performance of different methods is evaluated.

The effects of sub-pixel interpolation, DSNU correction, average gain compensation, threshold level,

distribution and quantity of test points, and lens distortion model are investigated.

In this section, the performance of the Heikkila camera and NK camera calibration method are

compared. The camera model used in both camera calibration methods is described in Section 2.1. In

order to make a fair comparison between these two calibration methods, the NK method uses the same

lens distortion correction algorithm of the Heikkila method. This lens distortion correction considers

the curvature and decentering distortion, and it is describe in Equation 5.5.

XI = XD−
[
K1XD

(
X2

D +Y 2
D
)
+K2XD

(
X2

D +Y 2
D
)2

+P1
(
3X2

D +Y 2
D
)
+2P2XDYD

]
YI = YD−

[
K1YD

(
X2

D +Y 2
D
)
+K2YD

(
X2

D +Y 2
D
)2

+P2
(
X2

D +3Y 2
D
)
+2P1XDYD

] (5.5)

Unlike the simulation comparisons in Section 4.3.3, the true values of model parameters in the

real system are unknown. Therefore, it is impossible to evaluate the camera calibration performance

based on the accuracy of the estimated model parameters. Considering that better estimation of model
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parameters gives higher 3D position reconstruction accuracy, we used the off-line 3D reconstruction

error to evaluate the calibration performance. The 3D reconstruction RMS error is calculated as

εXW =

√
1
N ∑

(
XW,est(P̂)−XW,CMM

)2 (5.6)

εYW =

√
1
N ∑

(
YW,est(P̂)−YW,CMM

)2 (5.7)

εZW =

√
1
N ∑

(
ZW,est(P̂)−ZW,CMM

)2 (5.8)

ε3D =

√
1
N ∑

[(
XW,est(P̂)−XW,CMM

)2
+
(
YW,est(P̂)−YW,CMM

)2
+
(
ZW,est(P̂)−ZW,CMM

)2
]

(5.9)

where
(
XW,est(P̂),YW,est(P̂),ZW,est(P̂)

)
is the reconstruction 3D position based on the estimated camera

parameters P̂, (XW,CMM,YW,CMM,ZW,CMM) is the 3D position given by CMM, εXW , εYW , εZW , ε3D are the

reconstruction RMS errors in XW , YW , ZW and 3D, respectively, and N is the number of points.

In the experiments, the 3D position of the test points are given by a CMM. The CMM used in the

experiments is Crysta-Apex C7106 manufactured by Mitutoyo. The specifications of this CMM are

shown in Table 5.4. In Table 5.4, MPEE is the maximum permissible error for length measurement,

MPEP is the maximum permissible error for probing and MPETHP is the maximum permissible error

for scanning probing. The detailed definition of these parameters can be found in the EN ISO 10360

[47].

Table 5.4: Specifications of Crysta-Apex C7106, data from [47]

Parameter Specification

Range
X-axis 705mm
Y-axis 1005mm
Z-axis 605mm

Resolution 0.1µm

Accuracy
MPEE (1.7+3L/1000)µm
MPEP 1.7µm

MPETHP 2.3µm

The camera system is located approximately 960mm from the back of measurement volume to the

front surface of camera body. The test points are distributed in a volume of 400mm×400mm×15mm.

Test points are distributed in four different XW −YW planes. The illustration of the calibration setup is

shown in Figure 5.8. Figure 5.9 shows the block diagram of the camera calibration and its performance

evaluation. In order to fairly evaluate the performance of camera calibration method, the 3D test points

used for camera calibration and 3D reconstruction accuracy evaluation are not the same.

The test points used for calibration and evaluation are interlaced (shown in Figure 5.10) and cover

the measurement volume. Two hundred test points are used for camera calibration and a separate 200
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Figure 5.8: Illustration of camera calibration setup

test points are used for evaluation.

Effect of DSNU Correction

The effect of DSNU correction is investigated in this section. The 3D reconstruction results are shown

in Figure 5.11.

From Figure 5.11, it is clear that DSNU correction significantly improves the off-line 3D recon-

struction accuracy when using either centroid or squared-centroid methods to do the sub-pixel interpo-

lation. Further, Figure 5.11 shows that higher 3D accuracy is achieved by using the squared-centroid

method. At the same time, the proposed NK calibration method achieves better estimation of the

camera parameters than the Heikkila method, which is reflected by higher 3D reconstruction accuracy

when using NK method to calibrate the camera system. A significant improvement is found when us-

ing NK method, especially in the accuracy in depth direction (ZW direction). Based on the theoretical

analysis in Section 4.3.2, the NK method utilizes the 3D reconstruction error as the cost function in

the optimization process, compared to a 2D image reprojection error used as the cost function in the

Heikkila method. As a result, the Heikkila method is more sensitive to sub-pixel interpolation error,

especially the larger error in the presence of no DSNU correction. If these estimated camera parameters

are used to reconstruct the 3D position, large 3D position reconstruction error in the depth direction is

introduced.
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Figure 5.9: Block diagram of camera calibration and its performance evaluation

Effect of Average Gain Compensation

Limited by test conditions, it is impossible to have a pixel-by-pixel PRNU correction for each individual

pixel value. Considering that the even and odd pixel signals are amplified, conditioned and sampled

through two independent analog channels, the average gain difference between even and odd pixels

is measured. From the results in Section 5.1, the average gain compensation is able to attenuate the

average gain difference between even and odd pixels to less than 0.1%. In this section, the effect of

average gain compensation on the calibration and 3D reconstruction accuracy is investigated. At this

point, all results shown in Figure 5.12 are DSNU corrected.

Figure 5.12 shows that the the gain compensation does not remarkably improve the 3D reconstruc-

tion accuracy. The experimental results in Table 5.1 shows that the average gain difference between

even and odd pixels is about 2%. The gain compensation is based on the global measurement of full

image sensor, and therefore gain compensation is unable to perfectly compensate the gain difference in

every local region. As a result, the effect of gain compensation on 3D reconstruction accuracy is very

small.
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Figure 5.10: Test points distribution 1

Effect of Threshold Level

The DSNU correction is unable to fully remove the background noise in a ROI as a result of the

temporal noise like ADC readout noise and sensor dark current shot noise. In order to remove the

background noise, threshold processing is used (shown in Equation 5.4). The effect of threshold level

on the resolution of sub-pixel target position interpolation method is investigated in Section 5.3. The

experimental results show that threshold processing improves the resolution of the centroid method,

while the resolution of the squared-centroid method benefits less from threshold processing. In this

section, the effect of threshold processing on the calibration and 3D reconstruction accuracy is studied.

The experimental results are shown in Figure 5.13.

Similar to the effect of average gain compensation, the threshold does not vastly improve the 3D

reconstruction accuracy. Especially, the squared-centroid method emphasizes the main body of target

image in the ROI. As a result, small background noise has very little influence on the target location

result using the squared-centroid method.

Effect of Test Point Distribution

In the previous investigations, the test points for calibration and evaluation are evenly distributed in

the measurement volume. However, it is desirable that the calibration results obtained from part of the

volume can be effectively extended to the entire volume. This feature greatly improves the calibration

efficiency, which is generally better when the measurement volume is large.

Based on the investigation in the previous section, we know that DSNU correction significantly

improves the accuracy of 3D position reconstruction. In addition, average gain compensation and

threshold processing are able to further improve the accuracy slightly. In order to make a fair compari-

son, the DSNU correction, average gain compensation and threshold processing are all enabled in this
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Figure 5.11: Effect of DSNU correction on calibration performance

section. Three types of test point distribution are studied.

The test point distribution shown in Figure 5.10 is denoted as test point distribution 1. For test

point distribution 2, the test points located in ZW = 0mm and ZW = 5mm planes are used for calibration

and test points in ZW = 10mm and ZW = 15mm planes are used for accuracy evaluation (shown in

Figure 5.14). The other test point distribution is shown in Figure 5.15, and is denoted as test point

distribution 3.

The 3D reconstruction accuracy of each test point distribution is summarized in Figure 5.16. It

is clearly found that the 3D reconstruction accuracy slightly degrades when the calibration results are

extended for the 3D reconstruction in other regions. However, this accuracy degradation is very small.
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Figure 5.12: Effect of average gain compensation on calibration performance

Effect of Test Point Quantity

Four hundred test points in total are collected in the previous investigations: 200 test points for cali-

bration and the other 200 test points for evaluation. Increasing the number of test points increases the

calibration performance in the presence of sub-pixel interpolation errors. On the other hand, a large

quantity of test points increases data collection time and computation time in off-line calibration, caus-

ing low efficiency. In this section, the effect of test point quantity is studied. An extensive test point

data collection is conducted where 800 test points in the measurement volume are collected. Three

different cases are compared: 1) 200 test points for calibration and 200 test points for evaluation; 2)
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Figure 5.13: Effect of threshold on calibration performance

400 test points for calibration and 200 test points for evaluation; 3) 600 test points for calibration and

200 test points for evaluation. In these cases, calibration test points and evaluation test points are evenly

distributed in the measurement volume similar to Figure 5.10. DSNU correction, average gain compen-

sation and threshold processing are all enabled. The off-line 3D reconstruction results are compared in

Figure 5.17. It is found that increasing the quantity of test points is able to improve the calibration per-

formance (higher 3D reconstruction accuracy is achieved). However, it is clear that this improvement

is not very significant.
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Figure 5.14: Test points distribution 2

Figure 5.15: Test points distribution 3

Effect of Camera Model

The performance of camera calibration is not only decided by the calibration procedure, but also in-

fluenced by the camera model. As shown in Section 4.3.1, different researchers used different camera

models in their calibration methods. The major difference in their camera models is the optical dis-

tortion of lens. In this part of discussion, the effect of the lens distortion model on the calibration

performance of the NK method is investigated.

First, the effect of different types of lens distortion is studied. In the previous discussions, the
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Figure 5.16: Effect of test point distribution on calibration performance

Figure 5.17: Effect of test point quantity on calibration performance

curvature distortion and decentering distortion are considered in the lens distortion correction. Shown

in Section 2.1.3, there is a third type of lens distortion, thin prism distortion, that is considered by other

researchers. The calibration performance of the NK method in three scenarios are compared. In the first

scenario, only the curvature distortion is considered where the third and fifth order components of radial

distortion are included (shown in Equation 5.10). The lens distortion model in the second scenario is

the same as we used in previous discussions where the decentering distortion (shown in Equation 5.11)

is added to the model. In the third scenario, the thin prism distortion is taken into account where its first

order component is included (shown in Equation 5.12). DSNU correction, average gain compensation

and threshold processing are enabled in all scenarios.
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Shown in Table 5.5, it is clear that the curvature distortion is the dominant part in lens distortion,
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and incorporating the decentering distortion further improves the calibration performance. On the other

hand, the effect of thin prism distortion is negligible in the lens we used. Therefore, the curvature and

decentering distortion are the dominant distortion components in the lens we used.

Table 5.5: Effect of types of lens distortion on the calibration performance of the NK method

Distortion Types Curvature Curvature and Decentering Curvature, Decentering and Thin Prism

3D Error RMS [µm] 16.5 13.4 13.4

Further, the effect of order of curvature distortion is investigated. It is known that the curvature

distortion is the dominant distortion component of the lens used in this system. In the previous discus-

sions, the third and fifth order components of curvature distortion are included in the model (shown in

Equation 5.10). In this part, the seventh order component of curvature distortion is further incorporated

(shown in Equation 5.13). At the same time, the decentering distortion is considered here. Shown in

Table 5.6, the third and fifth order components are dominant in curvature distortion. However, the cali-

bration performance does not benefit much by incorporating the seventh order component of curvature

distortion.
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Table 5.6: Effect of order of curvature distortion on the calibration performance of the NK method

Order of Curvature Distortion 3rd order 3rd and 5th order 3rd, 5th and 7th order

3D Error RMS [µm] 109.6 13.4 13.3

In some camera calibration methods [15][19][18][17], the skew angle of image sensor (shown in

Figure 2.4) is considered as 90◦. To further verify this assumption, the calibration performance of the

NK method is investigated under the situation with and without considering of this skew angle. The

results are shown in Table 5.7. It is clear that incorporating the skewness of the image sensor into the

system model does not significantly improve the 3D reconstruction accuracy.

Table 5.7: Effect of skew angle on the calibration performance of the NK method

Model without Skew Angle Model with Skew Angle

3D Error RMS [µm] 13.4 13.2

Based on investigation above, it is concluded that

• The accuracy of sub-pixel target position interpolation is the key to improve the calibration per-

formance and 3D reconstruction performance. However, limited by the SNR of the target image,

the sub-pixel interpolation is unavoidably contaminated with error. The proposed NK calibration

method minimizes the 3D reconstruction error and is able to achieve better performance com-

pared to the Heikkila method, especially in the reconstruction of depth information. On the other
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hand, since parameters of every camera module are simultaneously optimized in the NK method,

the convergence speed of the NK method is much slower than the Heikkila method. As shown in

the previous results, the Heikkila method is able to achieve close performance as the NK method

does when the sub-pixel interpolation accuracy is improved, but the computation time of the

Heikkila method is much shorter than the NK method.

• Generally speaking, the squared-centroid method achieves better performance compared to the

centroid method. Especially in the presence of background noise, the squared-centroid method

emphasizes the main body of the target image, therefore the background noise has insignificant

influence on the target location result.

• DSNU correction is able to significantly improve calibration performance and 3D reconstruction

accuracy. On the other hand, the effect of average gain compensation and threshold processing

is not significant.

• It is desirable that the test points fill the entire test volume as much as possible. However, larger

quantity and broader distribution of test points makes the calibration procedure time-consuming.

According to the experimental results, when the camera model and calibration method are prop-

erly selected, the model parameters estimated from part of the test volume can be extended to

the whole test volume for a small performance loss. In addition, when the quantity of test points

is large enough, increasing the number of test points does not provide remarkable benefits to the

calibration performance.

• The calibration performance is not only determined by the calibration procedure but also influ-

enced by the camera model. For the selected wide-angle lens in this system, radial distortion and

decentering distortion are the dominant components in lens distortion, and need to be identified

in the calibration and corrected in 3D position reconstruction. On the other hand, the effect of

thin prism distortion is negligible in this system. At the same time, experimental results show

that the third and fifth order components of curvature distortion is dominant and need to be iden-

tified. However, this conclusion is not universally true for all optical lenses. Generally speaking,

all types of distortion should be considered if their effect is not characterized.

To finalize the calibration results, an extensive calibration experiment is conducted. In this exper-

iment, DSNU correction, average gain compensation and threshold processing are enabled. A CMM

is used to move a single infrared LED accurately in a grid of reference positions throughout the test

volume. Several samples are taken at each grid point and averaged in order to reduce the measurement

noise. To guarantee that enough data are collected to determine the camera parameters with sufficient

accuracy, 800 grid points are used. The camera parameter estimation results of the Heikkila method

and the NK method are presented in Table 5.8 and Table 5.9. The camera extrinsic parameters (Euler

angles and translations) are relative to the absolute world coordinates given by the CMM. Based on

the experimental results above, curvature distortion with third and fifth order components and decen-

tering distortion are incorporated in the lens distortion model. The skew angle of the image sensor is

considered as 90◦.
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Table 5.8: Calibration results of the Heikkila Method

Camera Parameters Camera 0 Parameters Camera 1 Parameters

α [deg] 0.85 0.98

β [deg] 0.13 0.29

γ [deg] -89.07 -90.02

Tx [mm] 381.52 -18.57

Ty [mm] 210.00 207.36

Tz [mm] -905.37 -904.71

fx = dSx 2179.80 2178.63

fy = dSy 2180.05 2178.89

u0 [pixel] 1021.03 1035.35

v0 [pixel] 1019.38 1019.01

K1 [mm−2] −1.32×10−4 −1.31×10−4

K2 [mm−4] 1.93×10−7 1.91×10−7

P1 [mm−1] −5.34×10−6 8.99×10−6

P2 [mm−1] −8.13×10−6 1.17×10−6

For calibration data obtained from grids of test points, the spatial errors at each test point is de-

termined by comparing the reconstructed positions to their corresponding reference positions given by

the CMM on a point-by-point basis. The root-mean-square (RMS) errors are obtained and given in

Table 5.10.

5.5 Characterization of Real-time 3D Reconstruction
In Section 5.4, the stereo-vision system is calibrated with different calibration methods and the camera

parameters are obtained. In this section, the 3D position reconstruction is implemented in the Tsunami

real-time computer.

According to the investigation in Section 5.4, DSNU correction, average gain compensation and

threshold processing are able to improve the position accuracy. Therefore, these image pre-processing

functions are enabled in the investigations of this section. Secondly, different camera parameters are

estimated based on the Heikkila and NK methods. The 3D position reconstruction accuracy using these

two sets of camera parameters is compared. In addition, the effect of sub-pixel interpolation methods

on the real-time 3D position reconstruction is further investigated in this section.

Resolution of Real-time 3D Reconstruction

The position of the infrared LED target is given by CMM and is fixed in the measurement volume. The

system records 1000 targets’ 3D positions continuously at the sampling frequency of 8kHz. It is found
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Table 5.9: Calibration results of the NK Method

Camera Parameters Camera 0 Parameters Camera 1 Parameters

α [deg] 0.83 0.97

β [deg] 0.12 0.30

γ [deg] -89.07 -90.02

Tx [mm] 381.70 -18.63

Ty [mm] 202.46 215.05

Tz [mm] -905.89 -904.62

fx = dSx 2185.00 2174.71

fy = dSy 2181.12 2179.02

u0 [pixel] 1016.87 1040.71

v0 [pixel] 1019.22 1018.61

K1 [mm−2] −1.32×10−4 −1.32×10−4

K2 [mm−4] 1.92×10−7 1.94×10−7

P1 [mm−1] 3.45×10−6 7.95×10−6

P2 [mm−1] −8.69×10−6 7.27×10−6

Table 5.10: RMS error of calibration results

RMS Error Heikkila Method NK Method

XW [µm] 4.0 4.0
YW [µm] 7.1 6.9
ZW [µm] 12.3 10.6
3D [µm] 14.8 13.3

that the 3D reconstruction resolution obtained from the Heikkila camera parameters and NK camera

parameters is the same: approximately 2µm resolution in XW −YW plane and 5µm resolution in ZW .

Accuracy of Real-time 3D Reconstruction

To characterize the accuracy of the real-time 3D reconstruction, we use the CMM to move a single

infrared LED target in a grid of reference positions filling the measurement volume. At each refer-

ence point, the real-time reconstruction result is compared with the result given by CMM, and the

reconstruction error is recorded. The 3D reconstruction accuracy is evaluated by the RMS value of the

reconstruction errors at every reference point. The reference test points used here are different from

those test points used in calibration to ensure a fair characterization. The accuracy results are shown in

Figure 5.19.

In the best case, a 3D position accuracy of 18.7µm is achieved by using squared-centroid method

and model parameters from the NK method. However, the overall volume 3D RMS position error is
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Figure 5.18: Real-time 3D reconstruction resolution at 8kHz sampling frequency

limited in its ability to represent the full accuracy specifications. Much of the underlying information

that is necessary to assess the system is hidden. The overall volume RMS position error indicates

the typical position error magnitude only in the ideal case where the position error is free of systematic

bias, follows a normal distribution and is spatially distributed uniformly across the test volume. Indeed,

position sensing systems may not meet these requirements because of the substantial systematic errors

that do not satisfy a normal distribution and are not spatially distributed in a uniform way [12]. As a

result, the accuracy specification must be carefully examined.

For instance, in the situation where 3D reconstruction is based on the squared-centroid method, the

NK camera parameters and 8kHz position sampling frequency, we achieve a position RMS error of

7.4µm in XW , 10.1µm in YW , 13.8µm in ZW . In this case, the histogram of 3D reconstruction error in

each direction is examined (shown in Figure 5.20). The error distributions in XW , YW and ZW clearly fol-

low a normal distribution with zero mean error. However, it is found that the distribution of 3D position

error is not normal and is skewed to higher errors, which is expected because the 3D position errors are

defined positive: 3D Error=
√(

XW,est(P̂)−XW,CMM
)2

+
(
YW,est(P̂)−YW,CMM

)2
+
(
ZW,est(P̂)−ZW,CMM

)2.

However, plotting the position errors histogram does not reflect the spatial distribution of 3D recon-

struction errors, because the position error is spatially dependent. The position errors generally increase
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Figure 5.19: Real-time 3D reconstruction accuracy at 8kHz sampling frequency

with the distance from the camera (ZW direction). Figure 5.21 plots the position errors as a 1D plot

as a function of the sequence in which the test points were collected. In Figure 5.21, the vertical axis

represents the 3D reconstruction error and the horizontal axis represents the test point index. Shown

in Figure 5.8, the camera system is installed at ZW =-960mm. In the test, 400 test points are collected

starting at the back of test volume (ZW =0mm plane), progressing through the same XW -YW plane, and

then moving forward to the next plane. Therefore, the test points with indices from 1 to 100 are located

at ZW =0mm plane; the test points with indices from 101 to 200 are located at ZW =-5mm plane; the test

points with indices from 201 to 300 are located at ZW =-10mm plane; and the test points with index

from 301 to 400 are located at ZW =-15mm plane. The 3D reconstruction error (in RMS) is calculated
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Figure 5.20: Histogram of 3D reconstruction error

for each plane respectively (shown in Figure 5.21). Since the measurement volume is approximately

960mm away from the camera system and the depth of measurement volume (ZW direction) is very

small (15mm), the 3D reconstruction accuracy is not significantly improved when the test point moves

from ZW =0mm plane to ZW =-15mm plane.

5.6 Case Study: Long-Stroke Planar Motion Stage
Position-sensing systems have a large range of applications in motion control systems. High per-

formance real-time motion control systems require a metrology solution with high position sampling

frequency and positioning accuracy. X-Y motion stage systems are a typical motion control system
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Figure 5.21: 3D reconstruction error plotted in test point sequence

widely used in manufacturing, assembly and inspection. In a planar motion stage system, multi-DOF

motion is achieved on a moving body.

The purpose of this case study is to demonstrate the usability of the vision-based position sensing

system in an application of real-time motion control. The planar motion stage used for this case study

is an novel long-stroke magnetic planar stage developed by Xiaodong Lu and Irfan Usman. This planar

motion stage achieves significant advantages over existing solutions, including frictionless 6-DOF ac-

tuation over meters-long stroke, and very low system complexity. To capture the 6-DOF motion of the

moving stage in a large motion range, 4 infrared LED targets are mounted on the moving stage (shown

in Figure 5.22). By sensing the 3D position of each target, the 6-DOF motion of the moving stage is

recovered.

The prototype planar motion stage achieves an active planar motion range of 480mm by 270mm

with a levitation motion range of 10mm, using a moving stage of 185mm by 185mm by 62mm. The

prototype is capable of 5g continuous acceleration with a 2.3kg moving mass. Figure 5.23 shows the

installation of the position sensing system for the planar motion stage.

Figure 5.24 shows the measurement resolution when sensing 6-DOF motion. In this experiment,

the moving stage is fixed in the measurement volume, and 1000 samples are recorded at 8kHz sampling

frequency. It shows that the prototype system achieves high resolution in 6-DOF measurement: 5µm

in position and 0.0014 degrees in rotation. Limited by test conditions, the accuracy and repeatability of
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Figure 5.22: Infrared LED targets mounting on the moving stage

6-DOF measurement is not obtained.

A closed-loop motion bandwidth of 50Hz is achieved for the initial demonstration of this long-

stroke planar motion stage. However, higher bandwidth is achievable because of high linearity of this

actuator. Considering that the motion sensing system is working at 8kHz sampling frequency, the

limitations on motion bandwidth do not come from the speed of motion feedback loop.

5.7 Summary
This chapter presents the experimental results of our system, including image sensor calibration and

FPN correction, position sampling frequency characterization, investigation of sub-pixel target posi-

tion interpolation methods, camera calibration experiments, and characterization of real-time 3D re-

construction performance.

The image sensor of each camera module is calibrated in Section 5.1. The DSNU maps are collected

and analyzed. The experimental results show that DSNU correction is able to significantly suppress

the non-uniformity in the black image. Limited by test conditions, pixel-by-pixel PRNU correction

is unable to be implemented. Instead, average gain compensation between even and odd pixels are

implemented.

In Section 5.2, the position sampling frequency with different target numbers and ROI sizes is

studied. The system is able to track 8 targets at 8kHz position sampling frequency. Higher position

sampling frequency is achievable when sensing fewer targets or using smaller ROIs.

Section 5.3 investigates the performance of two sub-pixel target position interpolation methods:
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the centroid method and the squared-centroid method. The effect of DSNU correction, average gain

compensation and threshold processing on the resolution of these two methods is studied. Experimental

results show that a sub-pixel interpolation resolution less than 1% pixel is achieved.

In Section 5.4, the stereo-vision system is calibrated. The Heikkila calibration method and our pro-

posed calibration method (the NK method) are compared. Meanwhile, the effects of DSNU correction,

average gain compensation, test point quantity and distribution, and optical distortion model on the per-

formance of both calibration methods are investigated. The experimental results clearly demonstrate

that the proposed NK method achieves better performance than the Heikkila method does.

The resolution and accuracy of the real-time 3D reconstruction are characterized in Section 5.5.

At the sampling frequency of 8kHz, this system achieves approximately 2µm resolution in XW -YW

plane and 5µm resolution in ZW . Further, the 3D reconstruction accuracy is examined not only using

RMS values but also investigated in histogram and spatial distribution. A real-time 3D reconstruction

accuracy of 18.7µm RMS is achieved over a range of 400mm by 400mm by 15mm with 8kHz position

sampling frequency.

A case study is conducted where the prototype system is integrated as the metrology solution of a

novel long-stroke planar motion stage. The 6-DOF motion of the moving stage is obtained from the

position sensing system in an active motion range of 480mm by 270mm by 10mm. When sensing

the 6-DOF motion, the prototype system achieves high measurement resolution of 4µm in position

and 0.0014 degrees in rotation. A closed-loop motion bandwidth of 50Hz is achieved for the initial

demonstration of this long-stroke planar motion stage. Considering that the motion sensing system is

able to work at 8kHz sampling frequency, the motion feedback loop is not the essential bottle neck to

achieve higher motion bandwidth.
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Figure 5.23: Installation of the position sensing system for a long-stroke planar motion stage
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Figure 5.24: Resolution of 6-DOF measurement
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Chapter 6

Conclusions and Future Work

6.1 Consclusions
This thesis presents the theory, design, implementation and calibration of a new high-speed stereo-

vision system for real-time position sensing.

A novel stereo-vision system hardware prototype is designed and manufactured. The custom elec-

tronics is designed based on CMOS image sensor and FPGA architecture. It features high-performance

image acquisition, high-speed camera interface and high-speed image processing. Taking advantage of

the random pixel accessibility of the CMOS image sensor, image readout and processing based ROI is

enabled. By reading small regions around each target image rather than the full frame data of image

sensor, the frame rate and image processing speed are vastly increased. In addition, the system also

integrates functionalities of FPN correction, threshold processing, and sub-pixel target position inter-

polation. A high-speed camera interface based on Camera Link technology provides the capability of

fast data transmission between camera and image processing unit in real-time with low latency. Good

design and implementation of analog and digital circuits provide a high SNR of target image, increas-

ing the achievable resolution and accuracy of sub-pixel interpolation. High quality optical components,

including lens and active targets, are carefully selected in order to satisfy the design objectives. To

minize the effect of thermal expansion and external vibration, a solid camera body is designed and

manufactured with optimized geometry, material and mechanical structure.

The calibration theory of stereo-vision system is investigated. The primary error sources of vision-

based position sensing system include noise of target image, lens distortions and mechanical installation

errors. Based on the modeling of FPN in the image sensor, the FPN is corrected by using DSNU and

PRNU to linearly interpolate the pixel output. Further, the proposed calibration method for optical

and mechanical parameters is presented. The proposed calibration method is designed based on multi-

step calibration procedure where the optimization of linear and nonlinear optimization parameters is

decoupled. In the nonlinear optimization, the 3D position reconstruction error rather than the 2D

reprojection error in pixel coordinates is used as the cost function. Simulations are carried out to

compare the performance of the proposed calibration method to the Heikkila method. The simulation

results show that the proposed calibration method achieves better estimation of camera parameters than
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the Heikkila method, especially in the presence of large error in sub-pixel target position interpolation.

The performance of this prototype system is characterized by experiment. A multi-target position

sensing experiment demonstrates that the system can measure 8 targets in 3-DOF at 8kHz sampling

frequency. Higher sampling frequency is able to achieve with fewer targets and smaller ROIs. Further,

the system is calibrated using the CMM. The proposed calibration method and the Heikkila method

are compared. The experimental results show that the proposed calibration method achieves higher

calibration performance compared to the Heikkila method. Third, the resolution and accuracy of real-

time 3D position reconstruction is characterized. This system achieves a 3D measurement resolution

of 1.9µm in X , 2.1µm in Y and 4.9µm in Z at 8kHz sampling frequency. Comparing the real-time

3D reconstruction results with the CMM, a 3D position accuracy of 18.7µm (RMS) is achieved over a

range of 400mm by 400mm by 15mm.

A case study is conducted where the system is used as the metrology solution of a novel long-

stroke planar motion stage. The 6-DOF motion of the moving stage is obtained from this position

sensing system over an active motion range of 480mm by 270mm by 10mm. When sensing the 6-DOF

motion, the prototype system achieves high measurement resolution of 5µm in position and 0.0014

degrees in rotation. A closed-loop motion bandwidth of 50Hz is achieved for the initial demonstration

of this long-stroke planar motion stage. Considering that the motion sensing system is able to work at

8kHz sampling frequency, the motion feedback loop is not the essential bottle neck to achieve higher

motion bandwidth.

Table 6.1 summarizes the specifications of the system.

Table 6.1: Specifications of the prototype system

Parameter Specification

Position Sampling Frequency 8kHz for 8 Targets

Measurement Volume 400mm×400mm×15mm

Resolution 1.9µm (X), 2.1µm(Y ), 4.9µm(Z)

Accuracy (RMS) 7.4µm(X), 10.1µm(Y ), 13.8µm(Z), 18.7µm(3D)

Target Type Active infrared LED

Dimensions 515×115×140mm

Weight 14kg

Camera Interface Camera Link

This system also has its limitations. First, the experimental characterization results of the image

sensor show that the DSNU, which is supposed to be temporally invariant, has a temporal standard de-

viation of 6 LSB in 13-bit ADC resolution. This number is higher than the noise floor of ADC circuits.

Therefore, the increase of DSNU temporal deviation comes from the image sensor. The SNR of the tar-

get image is limited by the image sensor, which further limits the resolution and accuracy of sub-pixel

target position interpolation and eventually limits the achievable 3D position reconstruction accuracy.

Second, the experimental results show that the FPN is very sensitive to the operation conditions. To
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guarantee the effectiveness of the FPN correction, it must be ensured that the operation conditions when

the FPN map is collected is the same as the raw image is taken. Third, the proposed calibration method

for stereo-vision system utilizes the conventional gradient-descent optimization method in the non-

linear iteration. This kind of optimization technique suffers from susceptibility to be trapped in a local

minimum. Therefore, camera model parameters obtained from the proposed calibration method do not

guarantee a global optimization over the measurement volume. Meanwhile, because model parameters

of two camera modules are simultaneously optimized in the nonlinear iteration, the convergence of the

nonlinear least-square optimization is slow. Lack of a better synchronization mechanism between the

CMM and the stereo-vision system, the test point data collection is time-consuming and labored. Fi-

nally, this system lacks a detection and prediction mechanism when the camera module loses the track

of target. Therefore, the system requires a full recovery if any target is lost during the position sensing.

6.2 Future Work
Several threads for future work in vision-based position sensing system have emerged from this re-

search.

One of the fundamental limitations in the vision-based position sensing system is the achievable

resolution and accuracy of sub-pixel target position interpolation. The performance of sub-pixel posi-

tion interpolation is significantly influenced by the SNR of target image. Based on the current imaging

electronics, we achieve a target image SNR of 56.5dB after DSNU correction. Higher SNR is achiev-

able with better electronics design. Meanwhile, limited by test conditions, pixel-by-pixel PRNU cor-

rection is not achievable. Instead, average gain compensation is used to compensate the gain difference

between even and odd pixels. However, the effect of this average gain compensation is very small

according to experimental results. Further investigations on the pixel-by-pixel PRNU correction are

suggested in order to improve the SNR of target image.

The performance of camera calibration is affected by the combination of camera model and param-

eter estimation methods. In this thesis, we use the camera model from prior art. Higher calibration

performance is able to achieve with a more accurate camera model. In the estimation of camera param-

eters, this thesis utilizes the cost function that minimizes the 3D reconstruction error in the nonlinear

optimization iteration. However, the nonlinear iteration used in this thesis is a conventional gradient-

descent optimization. This kind of optimization techniques have problems of poor convergence and

susceptibility to be trapped in local minimum. Even though a good initial guess of model parame-

ters is given in the first step of calibration, the selected optimization method still has the risk of local

rather than global optimization. Research efforts are suggested to devote to the investigation of better

optimization algorithms in order to guarantee a global optimization.

The prototype system is calibrated off-line using the CMM and then uses the estimated model

parameters to realize the real-time 3D reconstruction. However, the camera parameters might change

with operating environment. Especially for the extrinsic parameters of camera geometry, they are more

sensitive to the temperature change and external vibrations. Once these camera parameters change as a

result of variant operating environment, the system is required to be re-calibrated in order to guarantee

the position accuracy. In the current design, the camera body is carefully designed to minimize the
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effect of thermal deformation and external vibrations. Current design is a passive solution that mitigates

the change of model parameters. Meanwhile, materials with very good thermal stability are generally

very expensive and hard to machine since the camera body structure is complicated. In order to solve

this problem, online camera calibration should be implemented in the future.
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