
High-Order Time-Adaptive
Numerical Methods For The

Allen-Cahn and Cahn-Hilliard
Equations

by

Mark Ryerson Willoughby

B.Sc., Brock University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2011

c© Mark Ryerson Willoughby 2011

Abstract

In some nonlinear reaction-diffusion equations of interest in applications,

there are transition layers in solutions that separate two or more materials

or phases in a medium when the reaction term is very large. Two well known

equations that are of this type: The Allen-Cahn equation and the Cahn-

Hillard equation. The transition layers between phases evolve over time and

can move very slowly. The models have an order parameter ε. Fully devel-

oped transition layers have a width that scales linearly with ε. As ε→ 0, the

time scale of evolution can also change and the problem becomes numerically

challenging.

We consider several numerical methods to obtain solutions to these equa-

tions, in order to build a robust, efficient and accurate numerical strategy.

Explicit time stepping methods have severe time step constraints, so we di-

rect our attention to implicit schemes. Second and third order time-adaptive

methods are presented using spectral discretization in space. The implicit

problem is solved using the conjugate gradient method with a novel pre-

conditioner. The behaviour of the preconditioner is investigated, and the

ii

Abstract

dependence on ε and time step size is identified.

The Allen-Cahn and Cahn-Hilliard equations have been used extensively to

model phenomena in materials science. We strongly believe that our high-

order adaptive approach is also easily extensible to higher order models with

application to pore formation in functionalized polymers and to cancerous

tumor growth simulation. This is the subject of ongoing research.

iii

Table of Contents

Abstract . ii

Table of Contents . iv

List of Tables . vii

List of Figures . ix

Acknowledgements . xiii

1 Introduction . 1

2 Analytical Methods . 10

3 Basic Numerical Methods . 16

3.1 Forward Euler Method . 18

3.2 Backward Euler Method . 20

3.3 Finite Differences for Spatial Derivatives 21

3.4 Discretization . 23

3.5 Newton Iteration . 25

iv

Table of Contents

3.6 Backward Euler Solution . 27

3.7 Convergence . 28

3.8 Adaptive Time Stepping . 30

3.9 Local Error Method . 31

3.10 Ripening Time . 36

3.11 Numerical Experiment - Allen-Cahn 37

3.11.1 Comparison to Uniform Method 40

3.12 Numerical Experiment - Cahn-Hilliard 41

4 Solution Techniques . 46

4.1 Conjugate Gradient . 46

4.2 Preconditioning . 49

5 Spectral Methods in Space . 55

5.1 Using the Fast Fourier Transform 62

6 High-Order Time step Techniques 64

6.1 Runge Kutta Methods . 64

6.1.1 Singly Diagonal Implicit Runge Kutta 2 (SDIRK2) . . 67

6.1.2 Singly Diagonal Implicit Runge Kutta 3 (SDIRK3) . . 69

6.2 Linear Multi Step Methods 71

6.2.1 Adams-Bashforth 2 (AB2) 71

6.2.2 Adams-Bashforth 3 (AB3) 73

6.2.3 Backward Difference Formula 2 (BDF2) 74

v

Table of Contents

6.2.4 Backward Difference Formula 3 (BDF3) 76

6.3 BDF2 with AB2 Local Error Estimation and SDIRK2 Restart 76

6.3.1 Ripening Time . 80

6.4 BDF3 with AB3 Local Error Estimation and SDIRK3 Restart 82

6.4.1 Ripening Time . 83

7 Numerical Experiments . 86

7.1 Allen-Cahn in 1D . 87

7.2 Cahn-Hilliard in 1D . 91

7.3 Allen-Cahn in 2D . 95

7.4 Cahn-Hilliard in 2D . 99

8 Conclusions and Future Work 104

8.1 Future Work . 106

Bibliography . 109

vi

List of Tables

3.1 First order convergence in time for Backward Euler Method. . 29

3.2 Second order convergence in space for Backward Euler Method. 30

3.3 Convergence of the ripening time for Allen-Cahn using BE-FE

time stepping method. 37

3.4 Required number of time steps for BE-FE vs uniform for de-

creasing δtol. 41

6.1 Runge Kutta Butcher Tableau with p stages. 66

6.2 Backward Euler Butcher Tableau. 66

6.3 SDIRK2 Butcher Tableau. 67

6.4 Second order convergence in time for SDIRK2. 68

6.5 SDIRK3 Butcher Tableau. 69

6.6 Third order convergence in time for SDIRK3. 70

6.7 Convergence of the ripening time for BDF2-AB2. 80

6.8 Required number of time steps for BDF2-AB2 vs uniform for

decreasing δtol. 81

vii

List of Tables

6.9 Convergence of the ripening time for BDF3-AB3 time stepping

method. 84

6.10 Required number of time steps for BDF3-AB3 vs uniform for

decreasing δtol. 85

7.1 Statistics for the Allen-Cahn equation in 1D for each method

for δtol = 10−4. 90

7.2 Statistics for the Allen-Cahn equation in 1D for each method

for δtol = 10−8. 90

7.3 Statistics for the Cahn-Hilliard equation in 1D for each method

for δtol = 10−5. 94

7.4 Statistics for the Cahn-Hilliard equation in 1D for each method

for δtol = 10−7. 94

7.5 Statistics for the Allen-Cahn equation in 2D for each method

for δtol = 10−4. 98

7.6 Statistics for the Allen-Cahn equation in 2D for each method

for δtol = 10−7. 99

7.7 Statistics for the Cahn-Hilliard equation in 2D for each method

for δtol = 10−3. 102

7.8 Statistics for the Cahn-Hilliard equation in 2D for each method

for δtol = 10−7. 102

viii

List of Figures

1.1 Three EBSD maps of the stored energy in an Al-Mg-Mn al-

loy after exposure to increasing recrystallization temperature.

The volume fraction of recrystallized grains (light) increases

with temperature for a given time. Source: Manchester Uni-

versity (2003) . 3

1.2 Recrystallization of a metallic material (a → b) and crystal

grains growth (b → c → d). Source: Wikipedia Commons. . . 3

2.1 Possible initial conditions with transition layers between u = ±1. 11

2.2 (a). Matching requirement for u = −1 and u = +1 at x = x0.

(b). Numerical solution showing transition layer near x = x0. . 12

2.3 Transition layer solution to match stable solutions u = ±1. . . 15

3.1 Graphical interpretation for Newton Iteration. 25

3.2 Backward Euler Solution with γ = 2 vs. γ = 4 in 1D. 34

3.3 Number of changes of time step with the time steps required

with varying γ in the BE-FE solution. 35

ix

List of Figures

3.4 BE-FE Solution with Adaptive Time Stepping for Allen-Cahn

in 1D for f(x) = sin(x) + 0.8 on [0, 2π]. 38

3.5 BE-FE Solution - Evolution of time step k vs time t for Allen-

Cahn. 39

3.6 BE-FE Solution for Allen-Cahn - Liapunov energy vs time step

k and Number of Newton Iterations. 40

3.7 BE-FE Solution with Adaptive Time Stepping for Cahn-Hilliard

in 1D for f(x) = cos(2x) + 0.01ecos(x+0.1) on [0, 2π]. 42

3.8 BE-FE Solution - Evolution of time step k vs time t for Cahn-

Hilliard. 43

3.9 BE-FE Solution - Initial condition and final solution for Cahn-

Hilliard. 44

3.10 BE-FE Solution for Cahn-Hilliard - Liapunov energy vs time

step k and Number of Newton Iterations. 44

4.1 The solution in 1D where most is ±1. 51

4.2 (a) Eigenvalues of the Jacobian J . (b) Clustering of Eigenval-

ues by P−1J near 1. 52

4.3 Number of iterations vs. time steps for Allen-Cahn using CG

vs. PCG. 53

4.4 Number of CG iterations vs. Time steps for Cahn-Hilliard

using CG vs. PCG. 54

5.1 Finite grid hZ on [0, 2π]. 58

x

List of Figures

5.2 Spectral aliasing. Both cos(2πx) and cos(8πx) are equal on π
5
Z. 59

5.3 Spectral order accuracy versus Finite Difference, on a test

problem for the second derivative of f(x) = esinx taken as

a periodic function on [0, 2π]. 62

6.1 Restart: Increasing time step for BDF2-AB2. 78

6.2 Restart: Decreasing time step for BDF2-AB2. 79

6.3 Restart: Increasing time step for BDF3-AB3. 82

6.4 Restart: Decreasing time step for BDF3-AB3. 83

7.1 Space-Time plot for Allen-Cahn in 1D for ε = 0.12, γ = 3 for

the BDF3-AB3 method. 88

7.2 Evolution of time step k vs. t for Allen-Cahn in 1D for ε =

0.12, γ = 3. 88

7.3 Evolution of PCG iterations vs. time for Allen-Cahn in 1D for

ε = 0.12, γ = 3. 89

7.4 Space-Time plot for the Cahn-Hillard in 1D for ε = 0.22, γ = 3

with the BDF3-AB3 Method. 92

7.5 Evolution of time step for Cahn-Hillard in 1D for ε = 0.22, γ = 3. 93

7.6 Evolution of PCG Iterations vs. time for Cahn-Hillard in 1D

for ε = 0.22, γ = 3. 93

7.7 Time evolution plots for Allen-Cahn in 2D for ε = 0.18, γ = 3. 96

7.8 Evolution of time step for Allen-Cahn in 2D for ε = 0.18, γ = 3. 97

xi

List of Figures

7.9 Evolution of PCG iterations vs. time for Allen-Cahn in 2D for

ε = 0.18, γ = 3. 98

7.10 Time evolution plots for Cahn-Hilliard in 2D for ε = 0.18, γ = 2.100

7.11 Evolution of time step for Cahn-Hilliard in 2D for ε = 0.18, γ =

2. 101

7.12 Evolution of PCG iterations vs. time for Cahn-Hilliard in 2D

for ε = 0.18, γ = 2. 101

8.1 Composite grid used in adaptive-in-space methods. 107

xii

Acknowledgements

I would like to thank my supervisor Dr. Brian Wetton. His help throughout

this project has been invaluable, and I appreciate his patience and many

observations and directions throughout our meetings. It continues to be an

honour to work with Brian and our research group. I also would like to thank

Lee Yupitun, the math graduate secretary, for all her administrative help.

I would also like to thank Dr. Scott MacLachlan. His contribution of a

linear model preconditioner is the highlight and main contribution of this

thesis.

My research colleagues, Iain Moyles, Michael Lindstrom, Kai Rothauge and

Ricardo Alves-Martins have also been valuable editors and contributors, and

they offer discussion as well as support and friendship. I have watched the

development of our research group since I have been involved and I am proud

to be in company of such extraordinary people.

My family also has been a pillar of support throughout this project. I want

xiii

Acknowledgements

to thank my mother and sister for always being there for me. I also want

to thank my father. While you may not be here with me now, I am here

because of you.

xiv

Chapter 1

Introduction

Reaction-diffusion equations are one of the most significant tools in material

sciences modelling. When the overall effect of reaction kinetics is larger than

diffusion, transition layers form which physically represent a separation of

two unique states or phases. Phase separation of metals in alloys as well

as crystal grains in a metal that grow in competition with each other dur-

ing annealing are examples of this transition layer behaviour. Two common

equations that model the reaction kinetics in reaction-diffusion systems in

material science, as well as diffusion-convection models in fluid dynamics are

the Allen-Cahn and Cahn-Hilliard equations.

The Allen-Cahn equation was first introduced and named after Allen and

Cahn in 1979 [1], and the Cahn-Hilliard by Cahn and Hilliard in 1958 [2].

Discretization and specific solutions to both equations have been studied ex-

tensively, see [3, 4, 5, 6, 7]. Analytical methods such as asymptotic analysis

will not yield the full dynamics of the solution in general. Therefore an ef-

ficient and robust numerical strategy is needed to adequately describe the

solution. We expect that the solution will admit transition layers. However,

1

Chapter 1. Introduction

these layers are not static which means that care will have to be given in

the time stepping procedure. Numerical methods for time stepping that are

explicit will encounter severe time step constraints for stability, thus we seek

implicit schemes. We will consider second and third order time-adaptive

methods using spectral discretization in space. Using a novel preconditioner,

the implicit problem is solved using the conjugate gradient method. This

thesis will investigate these numerical schemes.

Consider annealing, the process by which metal, glass etc. is heated and

allowed to cool slowly. In the context of metal, this will harden or strengthen

the metal, relieve stresses and improve the structure and ductility. Common

examples in practice are the metals: copper, steel, silver and brass. The

metal is heated above the recrystallization temperature and kept at that

temperature for a length of time. Diffusion of the atoms inside the metal will

achieve an equilibrium state. Three stages of annealing consist of recovery,

recrystallization and equilibrium. The first stage results in softening of the

metal through removal of crystal defects. The second stage exhibits grains

that nucleate and grow to replace those deformed by internal stresses. The

third stage is the state by which this growth has reached equilibrium [8]. Re-

crystallization is the process that can be modelled with the Allen-Cahn and

Cahn-Hilliard models; deformed grains are replaced by undeformed grains

that nucleate and grow until the original grains have been entirely consumed.

Consider the Aluminum-Magnesium-Manganese alloy shown in Figure 1.1.

2

Chapter 1. Introduction

Figure 1.1: Three EBSD maps of the stored energy in an Al-Mg-Mn alloy
after exposure to increasing recrystallization temperature. The volume frac-
tion of recrystallized grains (light) increases with temperature for a given
time. Source: Manchester University (2003)

As the alloy is heated, deformation is removed and a new collection of grains

begin to grow, slowing consuming one another until equilibrium. This process

is simplified in Figure 1.2.

Figure 1.2: Recrystallization of a metallic material (a→ b) and crystal grains
growth (b → c → d). Source: Wikipedia Commons.

3

Chapter 1. Introduction

As stated, the behaviour of annealing, and many other problems, can be mod-

elled using the Allen-Cahn equation, which is a partial differential equation

having the general form

ut = ε2∆u− f(u), x ∈ Ω, ε� 1, (1.1)

u(x, 0) = u0(x),

where we have variables t for time and x for position, f(u) is nonlinear, and

with boundary conditions dependent on the problem for a domain Ω. The

variable u can be considered the concentration, volume difference or phase

state between materials. The small parameter ε > 0 is known as the inter-

action length, and also describes the thickness of the transition boundary

between materials, also called the transition layer. We assume that ε is small

with respect to the length scale of the domain of the problem. This captures

the dominating effect of the reaction kinetics and appears in the equation to

represent an effective diffusivity.

Like most material science applications, we can assume a certain periodicity

in the lattice structure and so we will impose periodic boundary conditions

to mimic a large system [9]. The rationale is that a small square section of

the metal can be repeated to simulate the entire plate. With this being said,

we consider our domain, Ω = [0, 2π]d where d is the dimension of the prob-

lem. We have chosen this domain due to our application of spectral methods

4

Chapter 1. Introduction

which we will investigate in chapter 5. The initial value problems that we

will then consider in this thesis are the Allen-Cahn equation



ut = ε2∆u− w′(u), x ∈ [0, 2π]d, ε� 1,

Periodic Boundary Conditions,

u(x, 0) = u0(x),

w(u) = 1
4
(1− u2)2,

(1.2)

where our nonlinear term f(u) = w′(u). The term w(u) is known as the

Ginzburg-Landau double well potential. We also consider the Cahn Hilliard

problem



ut = −∆ [ε2∆u− w′(u)] , x ∈ [0, 2π]d, ε� 1,

Periodic Boundary Conditions,

u(x, 0) = u0(x),

w(u) = 1
4
(1− u2)2,

(1.3)

which is fourth order in space. Equations (1.2) and (1.3) both have solutions

that describe the separation of the medium we desire to model, where there is

an abrupt change from one phase u = 1 to the other u = −1, the transition

layers, such as we see in Figure 1.1. The transition layers between these

phases will move slowly over time for the problems we are considering. As

such, we are interested in the behaviour of long time scales when ε → 0.

An important feature of the Allen-Cahn and Cahn-Hilliard equations is that

5

Chapter 1. Introduction

they can be viewed as the gradient flow of the Liapunov energy functional

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + w(u)

)
dx, (1.4)

where we intend to minimize E(u) [4]. The rapid changes in the solution of

these equations with the time scale of evolution, and the steep gradients in

the transition layers, must be resolved. The ideal numerical solution should

have high accuracy while computing the solution efficiently. We will show

the transition layers developed in the solution are of width O(ε), which gives

us the constraint that we require a sufficient number of grid points in the

transition layer to compute an accurate solution. Since the solution outside

the transition layer is not contributing to the dynamics, an adaptive-in-space

numerical method is preferred. However, a significant improvement in effi-

ciency can be found by using adaptive time stepping alone. This thesis will

examine the subject of adaptive time stepping methods, which will reduce

the number of time steps we will need to solve, as well as an efficient solution

for each step.

Using asymptotic analysis in chapter 2, we will develop a first order approxi-

mation to the transition layer for the Allen-Cahn equation in 1D. This yields

the steady state solution and the approximate dynamics of the transition

layer as ε → 0. However, the full dynamics of the solution will require our

numerical methods. We then investigate several time stepping techniques,

6

Chapter 1. Introduction

starting with a first order method in chapter 3 using our most basic methods.

The simplest method to implement is Backward Euler. For small ε, we will

show that an approximation using uniform time steps cannot compute the

solution to its steady state in a reasonable time, and adaptivity in time is

essential. We will compute the solution using Forward Euler as a predictor,

and show that the difference between these solutions will estimate the local

error, which then can be used to decide if we increase or decrease the time

step. We will see the solution quickly reaches a metastable state, where the

transition layer has formed and now moves slowly.

To solve the nonlinear system of equations for each time step, we use Newton

Iteration. In chapter 4 we develop a Conjugate Gradient method to solve for

each iteration, where a linear system must be solved. We then develop a

Preconditioned Conjugate Gradient method for this linear problem with a

novel preconditioner that is a constant coefficient version of the system at

the pure phase states u = ±1, suggested to us by Scott MacLachlan of Tufts

University [11]. The width of the transition layers in our problem are much

smaller than the entire domain for small ε. The dynamics of the solution

do not change outside of the layer, thus a linear model would be a good

candidate as a preconditioner. We will show that indeed a linear model will

improve each CG solve for our methods. The development and investigation

of this solver is the main contribution of this thesis.

7

Chapter 1. Introduction

It is our goal to show that adaptivity in time is sufficient for an efficient

numerical method. This is achieved by using spectral methods in space.

In chapter 5, we develop a Fourier periodic spectral method. As a result, at

each time step we will require a solution to a more dense system of discretized

equations. However, since this system is composed of N Fourier basis func-

tions, a sufficient N will introduce almost no spatial error as a result [12].

We can approximate the solution with a minimum number of basis functions

growing linearly with 1/ε. We will show that spectral methods give a good

efficient solution to our problem.

We then consider higher order time stepping methods to compare to our

first order method. In chapter 6, we will look at second and third order

singly-diagonal implicit Runge Kutta methods as well as linear multi step

methods to obtain second and third order adaptive-in-time methods. Each

adaptive time stepping method derives its adaptivity from the local error

estimator. There are several estimators that can be used, but an efficient

estimator will be a explicit method which is quick to calculate and is of the

same order of the method. We have chosen the explicit Adams-Bashforth

method for this purpose. At each time step, we then calculate a pair of so-

lutions, implicit and explicit, and use the maximum norm of the difference

as our local error estimator.

In chapter 7 several full numerical simulations will be presented for both

8

Chapter 1. Introduction

Allen-Cahn and Cahn-Hilliard in 1D and 2D for small ε. The programming

for each method will be done in MATLAB and detailed comparison will be

used to determine the advantages and disadvantages of each method. We

will show that our second and third order methods are more efficient than

the simple Backward Euler method.

Phenomena in material science have often been modelled using the Allen-

Cahn and Cahn-Hilliard equations. We strongly believe that the methods

proposed in this thesis will be easily extensible to higher order models and

applications, such as pore formation in functionalized polymers or Polymer

Electrolyte Membranes (PEM) of fuel cells [14], or to cancerous tumor growth

simulation (using a sixth order Cahn-Hilliard equation) used in cancer re-

search [15].

9

Chapter 2

Analytical Methods

Considerable work has been done using analytical methods to understand the

behaviour of solutions to the Allen-Cahn and Cahn-Hilliard equations, see [5,

16, 17, 18, 19]. While explicit analytic solutions cannot be found in general,

we can use analytical techniques to gain insight into the dynamics. One such

way to explore dynamics is to look for steady state solutions through the use

of asymptotic analysis. Consider the Allen-Cahn equation in one dimension

(1D)

ut = ε2uxx + u− u3. (2.1)

Consider situations when the diffusion is negligible because ε� 1. This oc-

curs in regions where the composition consists almost entirely of one material.

The boundary between materials will be the region of interest for diffusion.

Neglecting diffusion in (2.1) leads to ut = u − u3, which is an ordinary dif-

ferential equation (ODE) which has steady state solutions of u∗ = 0,±1. We

can perform a linear stability analysis in the absence of diffusion of the form

u = u∗+φeλt for eigenvalues λ. We conclude that the eigenvalues for u∗ = ±1

10

Chapter 2. Analytical Methods

are negative while the eigenvalue for u∗ = 0 is positive. Consequently, the

states u∗ = ±1 are stable while the state u∗ = 0 is unstable.

Starting from general initial conditions, values of u will tend to u = ±1

for most values of x as shown in the example in Figure 2.1. There is a tran-

sition layer between each of the adjacent regions which will exhibit a steep

profile for small ε. Each boundary is not static and thus it may move slowly

which is referred to as metastability until they merge or are annihilated. It

is these steep transition layers which we would like to investigate.

Figure 2.1: Possible initial conditions with transition layers between u = ±1.

Using asymptotic analysis, we now consider the case of one transition layer

when diffusion is not negligible. We look at x far away from the transition

layer, the outer problem, where we expect u → ±1. We need to construct

a transition layer so that it connects our two outer solutions u = ±1. If we

center this layer around x = x0 then we can form a boundary layer near this

point, shown in Figure 2.2.

11

Chapter 2. Analytical Methods

Figure 2.2: (a). Matching requirement for u = −1 and u = +1 at x = x0.
(b). Numerical solution showing transition layer near x = x0.

Focusing on the small region between the outer solution u = ±1, we can

define an inner region variable, y = x−x0
ε

, −∞ < y < ∞ so that the inner

problem becomes

ut = uyy + u− u3. (2.2)

The scaling on y is chosen so that diffusion is not negligible. The power of ε

that appears in y indicates that the transition layer has a width of O(ε). We

can look for steady state solutions of (2.2) by looking at the problem

uyy = u3 − u.

12

Chapter 2. Analytical Methods

Multiplying by uy on both sides gives

uyuyy = uyu
3 − uyu

1

2
(u2

y)y =
1

4
(u4)y −

1

2
(u2)y.

Integrating both sides with respect to y yields

∫
(u2

y)y dx =
1

2

∫
(u4)y dx−

∫
(u2)y dx

u2
y =

1

2
u4 − u2 + C,

where C is an arbitrary constant. To determine the constant C we consider

the boundary conditions uy → 0 and u → ±1 when y → ±∞ which corre-

sponds to the appropriate matching conditions with x− x0, which is O(1) in

the outer solution. We have

C = u2 − 1

2
u4

∣∣∣∣
u=±1

=
1

2

Then our problem for uy is now

uy = ±
√

1

2
u4 − u2 +

1

2

= ± 1√
2

√
(u2 − 1)2

= ± 1√
2

(u2 − 1).

13

Chapter 2. Analytical Methods

Since we have chosen our matching condition to go from u = −1 to u = +1

we take the negative square root. Separating variables and integrating, we

have

∫
1

u2 − 1
du = − 1√

2
y +D.

Upon performing the integration we get

−arctanh(u) = − 1√
2
y +D

u = tanh

(
y√
2

+D

)
.

Returning to the outer variable x, we have

u = tanh

(
x− x0√

2ε
+D

)
.

The constant D in this case is due to the translational invariance of this

function on an infinite domain. Since we chose to center the transition layer

at x = x0 then we are imposing that u = 0 there. This then determines that

the constant D must be zero. Therefore, the solution to the transition layer

that describes the transition between the stable states u = ±1 is

u = tanh

(
x− x0√

2ε

)
, (2.3)

as shown in Figure 2.3 which matches our numerical transition layer shown

14

Chapter 2. Analytical Methods

earlier in Figure 2.2 (b).

Figure 2.3: Transition layer solution to match stable solutions u = ±1.

This solution describes one transition layer, while there could be several layers

that develop depending on initial conditions. For the methodology discussed

so far, we are only considering steady-states and thus we are ignoring any

transient periods that may occur. The transients can involve the slow move-

ment and interaction of transition layers. Some aspects of these metastable

dynamics can be described with more elaborate asymptotic methods [5], but

in general, numerical approximation is required. This will be the approach

for the remainder of this thesis.

15

Chapter 3

Basic Numerical Methods

Due to the complexity associated with many partial differential equations,

analytical techniques are often unable to provide us with explicit solutions.

Though there are many approaches to obtain insight into a partial differ-

ential equation (PDE), it is our goal to obtain an accurate solution using

a numerical method. To do this, we restrict the domain of the problem to

only a finite number of points (xi, tn), i = 0, 1, ..., I, n = 0, 1, ..., N , called the

computational domain. The scope of this thesis will be a periodic domain

[0, 2π]d, where d is the dimension of the problem. At each of the finite points

x0, x1, ..., xI , which we call a mesh, we numerically evaluate a solution u to

the PDE for a time interval [0, T]. We first consider how the time derivative

is computed in the context of a numerical scheme. By partitioning the given

time interval [0, T] into N subintervals t0, t1, ..., tN , and time step k, we can

compute a numerical approximation to the time derivative. If we consider a

uniform time step k = tn+1 − tn, then we would call this a regular interval.

Consider first the scalar initial value problem

du

dt
= f(t, u(t)), u(t0) = u0. (3.1)

16

Chapter 3. Basic Numerical Methods

Using the computational mesh, we construct an algebraic approximation to

(3.1). We use Taylor expansion to approximate the derivatives at each of the

points of the mesh for each time tn. We know that if a function has contin-

uous derivatives, i.e. f(x) ∈ C∞, it can be approximated by its power series

or Taylor series. When this series is truncated to a finite number of terms,

we have a Taylor polynomial, which we use to numerically approximate func-

tions. If a function f(x) ∈ CN+1, then we can write f(x) = PN(x) + RN(x)

where PN(x) is a polynomial and RN(x) is the remainder. Using the mean

value theorem, we can express the remainder in Lagrange form. We write

f(x) =
N∑
n=0

f (n)(a)

n!
(x− a)n +

fN+1(c)

(N + 1)!
(x− a)N+1,

for some c between x and a. If we expand this polynomial, we have

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +O

(
(x− a)3

)
. (3.2)

To approximate the first derivative of f(x), we solve (3.2) for f ′(a) to get

f ′(a) =
f(x)− f(a)

x− a
+O(x− a),

where the higher order terms would be considered a truncation error of O(x−

a). This is the definition of the derivative of f(x) in the limit of a small

distance x−a. With this framework, we now consider the simplest numerical

approximation to the time derivative, the Forward Euler method.

17

3.1. Forward Euler Method

3.1 Forward Euler Method

We want to approximate the time derivative ut in our PDE (1.2) for a solution

u = u(x, t) at a time tn for time step k. If we want to find the solution at the

next time step u(tn + k), we can approximate it with the Taylor expansion

of u. In this case, x in (3.2) will be our next time step tn+1 and a will be the

previous time step tn. With the notation of k = tn+1 − tn, we write

u(tn + k) = u(tn) + k
du

dt
(tn) +

k2

2

d2u

dt2
(tn) +O(k3). (3.3)

From (3.1) we can substitute du
dt

(tn) = f(tn, u(tn)) and by the chain rule the

second derivative is given by

d2u

dt2
(tn) =

df

dt
(tn, u(tn)) +

df

du
(tn, u(tn))f(tn, u(tn))

=
df

dt
+
df

du
f,

for f = f(tn, u(tn)). Then (3.3) becomes

u(tn + k) = u(tn) + kf +
k2

2

(
df

dt
+
df

du
f

)
+O(k3). (3.4)

This is the method employed by Leonhard Euler in 1768 in his book Institu-

tiones Calculi Integralis [21]. His idea was to take the first two terms of this

18

3.1. Forward Euler Method

expansion, where we arrive at the Forward Euler (FE) approximation

u(tn + k) ≈ u(tn) + kf(tn, u(tn)). (3.5)

In compact notation, we would write the numerical approximation as un+1 =

un + kf(tn, u
n). This method is first order, which we can see by returning to

(3.3). Rearranging, the approximation for ut(tn) is given by

du

dt
(tn) =

u(tn + k)− u(tn)

k
− k

2

d2u

dt2
(tn) +O(k2) (3.6)

which is first order error in time. Namely, the error we expect is a constant

C times k. We see that the error term from (3.6) contains a constant C = 1
2
,

called the error constant. While this is the simplest method to implement, we

will see in this thesis that constructing higher order methods in this fashion

will allow us to reduce the error to higher order terms.

Notice how the right hand side (rhs) of (3.5) consists entirely of the pre-

vious time step. The process allows us to approximate the next time step for

each mesh point as an explicit formula provided that we only know the pre-

vious time step. One of the computational problems with explicit methods is

that they suffer from time step restrictions on this type of problem. That is,

excessively small time steps must be taken to make the explicit time stepping

methods stable or bounded. These time steps are much smaller than needed

for accuracy, and this leads to inefficiencies in the method. This leads us to

19

3.2. Backward Euler Method

implicit methods, where the simplest of these is the Backward Euler method.

3.2 Backward Euler Method

Now suppose we step forward in time, but arrange the formula so that we

step from tn to tn+k but evaluate the derivative at time tn+k. Our expansion

(3.4) then becomes

u(tn) = u(tn + k)− kf(tn + k, u(tn + k)) +
k2

2
(ft + fuf)−O(k3). (3.7)

Again taking the first two terms, we arrive at the so called Backward Euler

(BE) approximation

u(tn + k) = u(tn) + kf(tn + k, u(tn + k)), (3.8)

which now has the truncation error of −k
2
d2u
dt2

, similar to FE but with the op-

posite sign, which is again first order O(k) in time. The error constant for the

BE method is then C = −1
2
. Now the rhs of (3.8) consists of the next time

step and thus we are no longer able to solve explicitly for u(tn+k) and hence

we have an implicit method. Implicit methods are more desirable, since they

have better stability properties, with BE having unconditional stability [20].

Since both the FE and BE methods have the same dominant error term with

opposite signs, we can use FE to generate a predicted solution, named the

predictor, and use that as an initial condition in BE, the corrector, in order

20

3.3. Finite Differences for Spatial Derivatives

to find the correct solution and efficiently estimate the error made in a given

time step.

The estimated error associated with this predictor-corrector method can be

constructed from our Taylor series (3.6) and (3.7). We want to estimate the

listed term as an approximation of δ, the magnitude of the local truncation

error for BE. Taking the difference of the FE and BE approximations, which

are consistent so the O(1) terms cancel, we are left with the error term

uBE − uFE ≈ (CBE − CFE)k2d
2u

dt2
.

Our approximation to the local error for BE is then

δ ≈
∣∣∣∣−1

2
k2d

2u

dt2

∣∣∣∣ ≈ ∣∣∣∣ CBE
CBE − CFE

∣∣∣∣ ||uBE − uFE||, (3.9)

where CBE = −1
2

and CFE = 1
2

calculated above. We have looked at the

time derivative, now we will look at how the space derivative is computed in

the context of a numerical scheme.

3.3 Finite Differences for Spatial Derivatives

The Allen-Cahn equation contains the spatial derivative ∆u. If we consider

a uniform mesh in 1D then our spatial grid is regular with a distance h =

xi+1 − xi between each mesh point. We can again use Taylor expansion in

21

3.3. Finite Differences for Spatial Derivatives

space to approximate ∆u(xi, tn). To achieve this we use center differencing

that uses both the left and right neighbour xi−1 and xi+1 of a point xi. The

Taylor expansion in 1D for the left and right neighbouring points are

u(xi+1, tn) = u(xi, tn) + hux|xi,tn +
h2

2!
uxx|xi,tn +

h3

3!
uxxx|xi,tn +O(h4)

u(xi−1, tn) = u(xi, tn)− hux|xi,tn +
h2

2!
uxx|xi,tn −

h3

3!
uxxx|xi,tn +O(h4)

where a negative sign appears in the left neighbour since xi − xi−1 = −h.

Adding these two equations will eliminate the odd order derivatives. Rear-

ranging, we can approximate uxx|xi,tn with

uxx|xi,tn =
u(xi+1, tn)− 2u(xi, tn) + u(xi−1, tn)

h2
+

2h2

4!
uxxxx|xi,tn +O(h4).

(3.10)

Taking the first two terms, we arrive at the standard finite difference (FD)

formula

uxx|xi,tn =
u(xi+1, tn)− 2u(xi, tn) + u(xi−1, tn)

h2
+O(h2)

which is second order withO(h2) error in space, with error term 2h2

4!
uxxxx|xi,tn+

O(h4). Since the FD formula applies at all mesh points, let us introduce the

notation U = U(xi, tn) to denote the discretized u(x, t) at each point. The

22

3.4. Discretization

second derivative approximation would read

Uxx ≈ ∆hU,

where ∆h, the discretized Laplacian, is the matrix

∆h =
1

h2



−2 1 0 0 · · · 1

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
...

...
...

. . .
...

1 0 0 0 · · · −2


where our periodic boundary conditions are incorporated. Now that we have

considered how the derivatives are computed, we can construct a full dis-

cretization of the Allen-Cahn equation.

3.4 Discretization

Using a BE approximation to ut and the discretized Laplacian for ∆u, the

discretization of the Allen-Cahn equation (1.2) is

Un+1 − Un

k
= ε2∆hU

n+1 − w′(Un+1).

23

3.4. Discretization

Rearranging to have Un+1 on the left hand side and in matrix notation we

have

(I − kε2∆h)U
n+1 + kw′(Un+1) = Un

where I is the identity. Since we only know previous information Un we need

to solve this vector equation for Un+1. The equation would read

F (Un+1) = 0, (3.11)

where F is defined as

F (Y) = (I − kε2∆h)Y + kw′(Y)− Un, (3.12)

where by w′(Y) we mean the vector with components w′(Yj). F (Y) is a

nonlinear equation which we will solve using Newton iterations. At each

iteration, a system of linear equations must be solved. Solving this type of

system efficiently is the main goal of this thesis. We give a brief overview of

Newton Iteration.

24

3.5. Newton Iteration

3.5 Newton Iteration

Consider the scalar equation

f(x) = 0. (3.13)

Newton iteration, attributed to Sir Issac Newton, is an iterative method to

approximate the roots or zeros of (3.13) starting with an initial guess x0.

Assuming that f(x) is differentiable, we can approximate the root by calcu-

lating the tangent line at x0. The x-intercept of this tangent line will usually

be a better approximation to the current guess. If this is the case, then

successive iterations will converge to the true root, as shown in Figure 3.1.

Figure 3.1: Graphical interpretation for Newton Iteration.

The tangent line from f(xm) to the x-intercept at xm+1 is given by

f ′(xm) =
f(xm)− 0

xm − xm+1

25

3.5. Newton Iteration

which leads to the iterative formula

xm+1 = xm −
f(xm)

f ′(xm)
.

Returning to (3.11), a matrix equation, let V m ≈ Un+1 denote the mth

iterate that will be converging to Un+1. This iterative formula would now be

written as

V m+1 = V m − η,

where η is the solution to the matrix equation J(V m)η = F (V m). J is the

Jacobian, the first derivative of F , namely Jij = ∂Fi

∂Uj
. We can calculate J

from (3.12) by taking the derivative with respect to U to give

J(U) = (I − kε2∆j) + kW ′′(U) (3.14)

where W ′′(U) denotes the diagonal matrix with entries w′′(Uj). Newton

iteration can fail to converge or find a different root to the one sought after

if the function has many inflection points or if the initial guess is not close

enough. For our purposes, we will not run into these cases as our initial guess

computed using FE will be sufficiently close for sufficiently small time step

k in our BE solution.

26

3.6. Backward Euler Solution

3.6 Backward Euler Solution

We now have a Backward Euler approximation to ut, a standard Lapacian for

∆u and the means to solve the resulting nonlinear discrete equations. Using

the Forward Euler predictor as an initial guess, we use Newton iteration to

solve for the next time step. Numerically, Newton iteration will continue

until we are satisfied with the accuracy to the actual root. Given a tolerance

tol newton specified by the user, we calculate the residual R = ||F (un+1)||,

until it is less than the tolerance, where we are using the maximum norm.

Because of the condition number of J , machine precision is not achievable.

Approximation of the Allen-Cahn equation is now possible with Algorithm 1.

Algorithm 1 Backward Euler Approximation to Allen-Cahn

Require: h, T, k, ε, mesh X, tol newton, F, J and U0

for time steps n = 0, 1, ..., T − 1 do

Y = Un

while residual< tol newton do

Solve J(Y)η = F (Y) for η, then Y = U − η

residual= ||F (Y)||

end while

Un+1 = Y

end for

end

27

3.7. Convergence

In section 3.2 we calculated using Taylor series that the BE method is first

order in time, and in section 3.3 that FD is second order in space. We now

can confirm these results by explicitly calculating the order of convergence.

3.7 Convergence

Suppose we had an exact solution u to our PDE and our approximation to

that exact solution ũ. The global error Ei is the absolute value of the dif-

ference between the true solution and the exact solution at each mesh point.

Our method is said to converge if this error vanishes as h → 0 and k → 0.

The order of the error is then the order of the method. In this case, we have

O(k) error from Backward Euler and O(h2) error from finite difference. Then

the total error in our current method is E = O(k) + O(h2). For one step in

this method, the local truncation error is O(k2) + O(kh2). This is the error

associated with the approximation to the derivatives as we calculated earlier

in this chapter. The local truncation error is different than the global error,

that is, each time step introduces a local error. The first O(k2) error comes

from the time derivative approximation from (3.7) where the truncated Tay-

lor series has the error term k2

2
utt(tn) ≈ O(k2) for one step. The second

O(kh2) term comes from the spatial second derivative approximation from

(3.10) where the truncated Taylor series has the error term h2

4!
uxxxx(xi, tn)

for one step and is multiplied by k in the discrete equation.

28

3.7. Convergence

We now use our code to show that our Backward Euler method is indeed

first order in time and second order in space. To check first order in time, we

fix the number of mesh points. This is done so that the spatial error O(h2)

remains constant and will not affect convergence. We then divide the time

step successively by 2. The error is calculated by taking the maximum norm

of each successive approximations and comparing the ratio. The ratio for the

estimated convergence rate can be written as

CR = log2

(
||Uk/4 − Uk/2||∞
||Uk/2 − Uk||∞

)
,

where we take the ratio of successive differences in the solution for each mesh.

We take the log of this quantity for convenience to obtain convergence to 1

for first order and 2 for second order. First order convergence in time is

clearly seen Table 3.1.

Time Step k Error CR
3.1494e-05 5.1651e-03 1.0804
1.5747e-05 2.5396e-03 1.0242
7.8735e-06 1.2566e-03 1.0150
3.9368e-06 6.2356e-04 1.0109
1.9684e-06 3.1039e-04 1.0064
9.8419e-07 1.5479e-04 1.0038

Table 3.1: First order convergence in time for Backward Euler Method.

To check second order in space, we now fix the time step as k = h2 so

our error is now E = O(h2). We then double the number of mesh points

29

3.8. Adaptive Time Stepping

successively. Similarly, the error is calculated by taking the maximum norm

of each successive approximations and comparing the ratio. The estimate for

the convergence rate can be written as

CR = log2

(
||Uh/4 − Uh/2||∞
||Uh/2 − Uh||∞

)
.

The results are shown in Table 3.2, and we see that indeed we achieve second

order convergence.

Mesh Size (I) Error CR
125 3.1309e-02 3.3054
249 6.6459e-03 2.2361
497 1.5605e-03 2.0904
993 3.5452e-04 2.1381

Table 3.2: Second order convergence in space for Backward Euler Method.

Now that we have established a first order method, we now consider the case

where our solution remains in a metastable state for a long period of time.

Increasing the time step would be an advantage in this case, which we explore

in the next section.

3.8 Adaptive Time Stepping

The previous method that we have used so far has used a uniform time step.

As we stated, a transition layer forms for small ε in O(1) time then moves

in a very slow time scale, possibly asymptotically slow as ε → 0. Thus, a

30

3.9. Local Error Method

uniform time step method will be inefficient in this part of the computation.

For small enough ε the transition layer will move slowly enough that an in-

ordinate number of time steps are required to resolve the dynamics.

To reduce the amount of work required, adaptivity in time should be used for

these problems. This is enabled by computing a local error estimate (LEE)

for each time step. If this LEE is within a tolerance that we have chosen, we

accept the solution for the current time step and increase the next time step.

And if this tolerance is violated, we decrease the time step. This method is

described in the local error method.

3.9 Local Error Method

We estimate the LEE for each time step to justify whether the solution should

be accepted and then determine the next time step. The time step will then

evolve with the dynamics of the solution, allowing us to compute the solution

efficiently far in time through the slow dynamics of the transition. We will

use the uniform time step solution as our basis of comparison to the methods

outlined in this chapter. The general algorithm of an adaptive time step

method is:

1. Calculate the next time step.

2. Compute the LEE.

31

3.9. Local Error Method

3. Accept/Reject the solution and adjust the time step.

An estimate of the LEE is found by the local error method [22]. The LEE,

denoted as δ, is given by the difference between two solutions, a predictor

and a corrector. The corrector solution will be our BE method, our intended

solution to the next time step. The predictor solution should be a best guess,

with the most efficient and quickest method to calculate the next time step.

This will be given by the Forward Euler method, an explicit and easy to

calculate solution. We then calculate a BE-FE pair for each time step. Then

the LEE is given by (3.9).

We can now adjust the time step to make δ smaller than the user speci-

fied tolerance δtol =tol delta. At each time step, we allow an increase in

the time step k by a factor of ξ or decrease by a factor of 1
ξ
, for ξ to be

determined. Suppose δ is smaller than δtol, we would like to increase k by

the highest amount without violating the tolerance inequality that we are

currently satisfying for the next time step. We need to determine ξ such that

δn+1 → ξp+1δn,

where p is the order of the method, p = 1 for the BE time stepping described

so far. The reason that ξ has the power p+ 1 is because the local truncation

error is of order kp+1.

32

3.9. Local Error Method

If we require that δ < 1
γ
δtol, γ > 1, for a user defined γ, which then warrants

an increase in k, then by multiplying kn+1 = γ1/(p+1)kn will result in the next

δ to be near δtol. To make sure we are not too close to δtol we introduce the

safety factor θ = 0.8. Then ξ will be

ξ = p+1
√
θγ.

We determine the action to take after each time step with the following

algorithm similar to [22].

• if δ
δtol

< 1
γ
. Accept u, kn+1 = ξkn (Increase time step).

• else if δ
δtol
∈
[

1
γ
, 1
)

. Accept u, kn+1 = kn (Keep the same time step).

• else, Reject u, kn = 1
ξ
kn (Reduce time step).

We take this approach rather than smoothly varying k because we will con-

sider higher order multi step methods in later sections which require fixed

time steps to be efficient. When γ is increased, there is a decrease in the

number of instances we adjust the time step, however more time steps would

be required. For example, if we take γ = 2 and apply it to our BE-FE so-

lution for Allen-Cahn, the evolution of the time step is shown in Figure 3.2

compared to γ = 4.

33

3.9. Local Error Method

Figure 3.2: Backward Euler Solution with γ = 2 vs. γ = 4 in 1D.

In the context of a first order method, we only require one previous time

step. Thus there is no consequence to the previous data in increasing or

decreasing the time step. Figure 3.3 shows the number of time steps required

and number of times we increase or decrease k as we vary γ.

34

3.9. Local Error Method

Figure 3.3: Number of changes of time step with the time steps required with
varying γ in the BE-FE solution.

We see that while increasing γ reduces the number of changes in k, the num-

ber of time steps required increases. However, we shall see that in higher

order methods, each increase or decrease in the time step does affect previ-

ous data and larger γ will allow us to reduce the number of times we need

to restart or recalculate this previous data. This may be more beneficial if

a moderate increase in time steps are required. In Figure 3.3, by setting

γ = 3 or 4, we get a decrease in the number of times we change k with only

a moderate increase in the total number of time steps required.

While the optimal γ in this case is 3 or 4, it is problem specific and should be

determined depending on the problem. We now want to assess the confidence

we have in our method, and we introduce the idea of a ripening time.

35

3.10. Ripening Time

3.10 Ripening Time

The ripening time Tr is a chosen moment in the dynamics of the solution that

will allow us to compare to other methods. In the case of the Allen-Cahn or

Cahn-Hilliard equations, with the appropriate initial condition, the solution

will have a region that quickly forms transition layers from the u = +1 to

u = −1 regions. As the transition layers move through time, the regions will

start to move toward the dominate region. In our cases, smaller regions in

the u = −1 regime eventually cross the zero axis into the u = +1 regime.

The moment this happens, we call the ripening time. This can be monitored

by looking at the minimum of our current solution. As we let δtol → 0

we expect these ripening time estimates to converge, corresponding to our

solution converging to a accurate solution. We also expect the number of

time steps M(δtol) required to follow linearly as M(δtol/10)
M(δtol)

= p+1
√

10, where

p is the order of the method, in this case p = 1. This is because as we

decrease δtol by a factor of 10, the error we had would be δold ≈ Ckp+1 and

the next error will be δnew ≈ C(νk)p+1 = νp+1Ckp+1 = νp+1δold, for constant

ν. Thus to reduce the local error by a factor of 10, the time step size should

be reduced by a factor of about p+1
√

10. The results of this numerical test

for the Allen-Cahn problem to be presented in the next section are shown in

Table 3.3.

36

3.11. Numerical Experiment - Allen-Cahn

δtol Tr M(δtol)
M(δntol)

M(δn−1
tol)

1.0000e-04 541.8487 645 3.0861
1.0000e-05 545.2975 2,000 3.1008
1.0000e-06 546.2953 6,275 3.1375
1.0000e-07 546.6366 20,169 3.2142
1.0000e-08 546.7448 62,480 3.0978
1.0000e-09 546.7788 199,630 3.1951

Table 3.3: Convergence of the ripening time for Allen-Cahn using BE-FE
time stepping method.

We see that our solution converges to Tr = 546.8 and as we expected, the

ratio of M(δtol) also converges close to 2
√

10 = 3.1622, and we thus confident

in to application of our method to this problem. We will use these results to

compare to our higher-order methods.

3.11 Numerical Experiment - Allen-Cahn

For Allen-Cahn, after we have passed the ripening time, the solution will

then evolve to a steady state, and in our case it will be u = 1. Our initial

condition is u0(x) = sinx + 0.8 on [0, 2π]. This is chosen so that the region

above u = 0 is slightly larger than below u = 0 which avoids symmetry.

We are interested in the case where we have a dominant region, and the

subdominant region is eventually absorbed. The parameters we have chosen

37

3.11. Numerical Experiment - Allen-Cahn

are

ε = 0.16, n = 128,

T = 537, tol delta = 10−4,

θ = 0.8, tol newton = 10−8,

γ = 3, u0(x, 0) = sin(x) + 0.8.

.

As we begin the simulation, we expect the initial dynamics to require small

time steps as the transition layer is formed. Figure 3.4 shows the evolution

of the solution as we form the transition layer, metastable state and then

reach the stable state.

Figure 3.4: BE-FE Solution with Adaptive Time Stepping for Allen-Cahn in
1D for f(x) = sin(x) + 0.8 on [0, 2π].

We see the fast dynamics from the initial condition to the metastable state,

where two transition layers are formed. Then, during the metastable state

the time step k is rapidly increased as shown in Figure 3.5.

38

3.11. Numerical Experiment - Allen-Cahn

Figure 3.5: BE-FE Solution - Evolution of time step k vs time t for Allen-
Cahn.

We see rapid growth initially and gradual decline as we leave the metastable

state. The total number of time steps for this experiment was 811. We will

show a comparison to the uniform method in the next section. We also plot

the Liapunov energy (1.4) to show that we indeed are reducing the energy in

time, and the number of Newton iterations, shown in Figure 3.6, where the

average number of iterations is 3.39, with a maximum of 11.

39

3.11. Numerical Experiment - Allen-Cahn

Figure 3.6: BE-FE Solution for Allen-Cahn - Liapunov energy vs time step
k and Number of Newton Iterations.

Now that we have established an adaptive-in-time method, we can compare

our method to the standard uniform time step method.

3.11.1 Comparison to Uniform Method

To compare our BE-FE adaptive method to uniform time steps we first com-

pute a very accurate uniform time step solution which ends at the ripening

time T = 546.8. We will be using k = h3, which will require 1,149,820 time

steps. Using this solution as our approximation to the exact solution for

comparison, we show the number of time steps required for the BE-FE so-

lution for various values of δtol. Each solution produces an error, decreasing

as δtol → 0. To compare to the uniform solution, we find the number of

uniform time steps which produces the same error when compared to our

highly accurate “exact” solution. The results are shown in Table 3.4 where

we see that our BE-FE method using our simple adaptive strategy is more

40

3.12. Numerical Experiment - Cahn-Hilliard

efficient than uniform time steps as we let δtol → 0.

δtol Error
||uadap−uexact||

Time steps
(Adaptive)

Error
||uuni−uexact||

Time steps
(Uniform)

1.0000e-04 7.9679e-01 657 7.9691e-01 516
1.0000e-05 1.0668e-01 1,700 1.0657e-01 6,775
1.0000e-06 3.3542e-02 5,239 3.3525e-02 21,270
1.0000e-07 1.2659e-02 16,627 1.2667e-02 49,415

Table 3.4: Required number of time steps for BE-FE vs uniform for decreas-
ing δtol.

As we expected, our problem contains a significant length of time where the

solution is in the metastable state and no dynamics are occurring, and we see

the reduction in time steps required for the adaptive method which increases

the step rapidly during this time. This is the most prominent gain over the

uniform method. We can also apply this method to the other equation we

are investigating, the Cahn-Hillard equation.

3.12 Numerical Experiment - Cahn-Hilliard

The Cahn-Hilliard equation is volume or mass preserving, and we expect

qualitatively different dynamics. We look at problem (1.3), which is fourth-

order in space, where the discretization is now

Un+1 − Un

k
= −ε2∆2

hU
n+1 + ∆hw

′(Un+1).

41

3.12. Numerical Experiment - Cahn-Hilliard

with ∆2
h the Biharmonic operator. Our method that we applied to the Allen-

Cahn problem will extend to this problem in the same manner. Our initial

condition is u0(x, t) = cos(2x) + 0.01ecos(x+0.1) on [0, 2π]. This is chosen to

have two similar regions with one slightly smaller than the other. We are

interested in the case where the two regions will eventually absorb into one

region. The parameters we have chosen are

ε = 0.22, n = 128,

T = 1, 033, tol delta = 10−4,

θ = 0.8, tol newton = 10−8,

γ = 3, u0(x, 0) = cos(2x) + 0.01ecos(x+0.1).

.

This configuration demonstrates the two separate regions, as we see that both

regions will eventually be absorbed together as we observe in Figure 3.7.

Figure 3.7: BE-FE Solution with Adaptive Time Stepping for Cahn-Hilliard
in 1D for f(x) = cos(2x) + 0.01ecos(x+0.1) on [0, 2π].

42

3.12. Numerical Experiment - Cahn-Hilliard

As we have seen in the Allen-Cahn case, we also see the fast dynamics

from the initial condition to the metastable state, where transition layers

are formed. Since one region is slightly smaller than the other, we expect the

time step k to be increased rapidly as shown in Figure 3.8.

Figure 3.8: BE-FE Solution - Evolution of time step k vs time t for Cahn-
Hilliard.

The final result occurs when the center transition layer is eventually ab-

sorbed, shown in Figure 3.9 where both regions have joined together.

43

3.12. Numerical Experiment - Cahn-Hilliard

Figure 3.9: BE-FE Solution - Initial condition and final solution for Cahn-
Hilliard.

We also plot the Liapunov energy (1.4) to show that we indeed are reducing

the energy in time, and we also plot the number of Newton iterations, shown

in Figure 3.6, where we have an average 4.34 and a maximum of 12.

Figure 3.10: BE-FE Solution for Cahn-Hilliard - Liapunov energy vs time
step k and Number of Newton Iterations.

The method of solving our equations during Newton Iteration up to this

44

3.12. Numerical Experiment - Cahn-Hilliard

point include the standard Laplacian and standard techniques such as A/b in

MATLAB with A defined as a sparse matrix. What we are now interested in

is a more efficient method to solve these equations. This comes in the form

of a Conjugate Gradient method and Spectral Methods, which we will now

investigate.

45

Chapter 4

Solution Techniques

In this chapter we look at the Conjugate Gradient (CG) method and employ

our preconditioner for Preconditioned CG (PCG). In Section 3.5, we solve a

linear system of equations for each time step. The CG method is an iterative

method that is potentially an efficient method to solve the system

Ax = b,

where A is symmetric positive definite (spd), where all the entries are real.

That is, for an n × n matrix A, it is symmetric (AT = A), positive definite

(xTAx > 0) ∀ nonzero vectors x ∈ Rn. The specific system we will be

solving is given in (3.12). The CG method is in a class called Krylov subspace

methods. We will give brief background and then present the CG algorithm

as this method plays a central role in the methods presented in this thesis.

4.1 Conjugate Gradient

For a small and dense linear system, direct methods would be the most effi-

cient solution to the system. However, in the case of simulating solid cancer

46

4.1. Conjugate Gradient

tumor growth [15], for example, the system is very large and sparse where

iterative methods will be the most efficient [23].

Krylov subspace methods, [23, 24, 25], are intended to iteratively converge

to the solution to the system Ax = b when A ∈ Rn×n. The approxima-

tions are in a Krylov subspace, which is a subspace spanned by vectors of

the form p(A)v where p is a polynomial of degree up to k − 1. That is, for

any real, n × n nonsingular matrix A and vector b of the same length, the

k-dimensional Krylov Subspace of A with respect to b is defined by the space

spanned by powers of A, written as Kk(A,b) = span
{
b, Ab, A2b, ..., Ak−1b

}
[26]. Then, the solution to our system x = A−1b can be solved in a more

efficient manner by approximating A−1b with p(A)b, an element of this sub-

space.

The CG method is in a class called gradient descent where we can write

the iteration as

xk+1 = xk + αkpk,

where pk is known as the search direction and

αk =
〈rk, rk〉
〈pk, Apk〉

47

4.1. Conjugate Gradient

is the step size, where 〈x,y〉 = xTy is the inner product [26]. In terms of a

Krylov subspace, we have xk ∈ Kk and pk ∈ Kk+1. The idea behind gradient

descent is that the search direction is found by taking the gradient or find

the minimizer of

φ(x) =
1

2
xTAx− bTx.

If we take the gradient of φ(x) we get r = b − Ax which is known as the

residual [26]. If our initial guess was x0 = 0, then our first search direction

will be p1 = b. In the CG method, we require that the remaining pk are

each orthogonal, or conjugate to this gradient, which gives its name. The

main feature of pk is that they are A-conjugate, namely that pTkApj = 0 for

k 6= j [26]. The next search direction is a linear combination of the previous

search direction and current residual as

pk+1 = rk+1 + βkpk

for βk calculated in [26], given by

βk =
〈rk+1, rk+1〉
〈rk, rk〉

.

Full details into the derivation and discussion about CG can be found in

[26, 23]. The conjugate gradient method is given in Algorithm 2.

Algorithm 2 Conjugate Gradient Method

48

4.2. Preconditioning

Require: r0 = b− Ax0, p0 = r0

for k = 0, 1, ..., until convergence do

αk = 〈rk, rk〉/〈pk, Apk〉

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = 〈rk+1, rk+1〉/〈rk, rk〉

pk+1 = rk+1 − βkpk

end for

end

4.2 Preconditioning

Preconditioning is the method by which a matrix P is applied as a trans-

formation to our problem Ax = b which gives a more suitable problem to

solve. This is related to the condition number of the matrix A. The condition

number κ(A) of A, is the ratio of the maximum and minimum eigenvalues

of A. If κ(A) is large, the number of iterations required to converge to the

solution can also be large. In general, the number of CG iterations to reach

a specific residual tolerance is O
(√

κ(A)
)

. Even if the condition number

is large, convergence better than this generic result can be obtained if the

eigenvalues are well clustered. A preconditioner P used in the CG algorithm

will be a spd matrix such that P−1 approximates the inverse of A. Then our

CG method would solve a problem where the matrix P−1A has a lower con-

49

4.2. Preconditioning

dition number, preferably with eigenvalues clustered near 1. Our CG method

with preconditioning is now shown in Algorithm 3.

Algorithm 3 Preconditioned Conjugate Gradient Method

Require: r0 = b− Ax0, Pp0 = r0

for k = 0, 1, ..., until convergence do

αk = 〈rk, rk〉/〈pk, Apk〉

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = 〈rk+1, rk+1〉/〈rk, rk〉

Solve Py = rk+1 for y

pk+1 = y − βkpk

end for

end

If we want to employ a standard preconditioner to our iterative method, such

as Incomplete LU (ILU), it would have to be calculated for each Newton step.

This is because the Jacobian changes for each iteration. This is very ineffi-

cient, and we would like to use a preconditioner that avoids calculation at

every iteration for each implicit time step. We can employ a linear model

preconditioner as suggested to us by Scott MacLachlan. Consider (3.12),

the implicit problem to be solved at each time step for the discretization of

the Allen-Cahn Equation (1.2). For each Newton iteration, the next iterate

50

4.2. Preconditioning

requires a solve with the Jacobian coefficient matrix given in (3.14).

The matrix J is dense but symmetric and multiplication by J can be done ef-

ficiently using the fast Fourier transform and diagonal multiplication, which

leads to our use of CG as a solution technique. We use the preconditioner

P−1 where P is the discretization of the constant coefficient problem

P = I − kε2∆h + 2kI, (4.1)

which can be inverted efficiently. This is motivated heuristically by the ob-

servation that during ripening, the solution will have values approximated

±1 at most grid points, as shown in Figure 4.1.

Figure 4.1: The solution in 1D where most is ±1.

In our CG method used with spectral methods, this matrix can be inte-

grated efficiently into the CG algorithm since it is diagonalized by the dis-

51

4.2. Preconditioning

crete Fourier transform. In Figure 4.2 we plot the eigenvalues of the Jacobian

J used in our method versus the preconditioned matrix P−1J for the Cahn-

Hilliard problem in section 3.12.

Figure 4.2: (a) Eigenvalues of the Jacobian J . (b) Clustering of Eigenvalues
by P−1J near 1.

The desired effects of clustering the the eigenvalues near 1 and reducing the

condition number are achieved. For the condition numbers for this problem,

for a chosen time during the metastable state are κ(J) = 2.23 × 105 and

κ(P−1J) = 28.23. In practice computing the inverse of P explicitly would

defeat any gains in efficiency since inverting a matrix is computationally

expensive. However, we will use a fast method based on the fast Fourier

transform to do the solve with coefficient matrix P .

We now compare our PCG with our preconditioner P versus straight CG

for the number of iterations required for each time step, as shown in Fig-

ure 4.3, for the problem we considered in chapter 3.

52

4.2. Preconditioning

Figure 4.3: Number of iterations vs. time steps for Allen-Cahn using CG vs.
PCG.

We see that both methods are relatively the same through the metastable

state. As we leave the metastable state our preconditioner reduces the num-

ber of iterations required from 35 to 6 and continues to improve as we ap-

proach the ripening time. A PCG iteration is roughly twice the computation

cost of a CG one. This improvement can also be seen more dramatically

as we look at our Cahn-Hilliard problem considered in 3, which is shown in

Figure 4.4.

53

4.2. Preconditioning

Figure 4.4: Number of CG iterations vs. Time steps for Cahn-Hilliard using
CG vs. PCG.

Here we see a significant reduction of iterations required, from 13922 to 689,

and continues to improve during the metastable state. The linear model pre-

conditioner suggested to us by Scott MacLachlan has allowed us to improve

our CG by reducing the number of iterations to converge, which for the thou-

sands of time steps required for both problems, presents an advantage as we

notice a significant speed up when we run our programs. As we stated, our

preconditioner is diagonalized through the fast Fourier transform, therefore

we now investigate spectral methods to improve our solution and provide an

efficient spatial discretization to our problem.

54

Chapter 5

Spectral Methods in Space

Spectral methods are a class of numerical methods to solve differential equa-

tions, usually including the Fast Fourier Transform. They were introduced

by Steven Orszag in 1969 [10]. While they are fast to compute, they also

have the best possible error properties for our application, specifically called

spectral accuracy. We will give a simplified introduction to Spectral Methods

below. The material in this chapter is largely adapted from [12].

As we have seen in Chapter 3, the finite difference approximations we make

of the derivatives in a differential equation at a point xj are found using the

neighbouring points in the mesh. If we are given initial data U = {u1, ...uI}

at each point {xj} = {x1, ..., xI} in the domain, then we can approximate

the derivatives in this fashion. For example, our familiar second derivative

approximation of u at xj, u
′′
j = u′′j (xj) is

u′′j ≈
uj+1 − 2uj + uj−1

h2

55

Chapter 5. Spectral Methods in Space

We can write this in matrix form as

U ′′ ≈ DU,

where D is differentiation matrix given by

D =
1

h2



−2 1 0 1

1 −2 1
. . .

. . .

. . . 1 −2 1

1 0 1 −2


(5.1)

where we have assumed a periodic domain to coincide with our problem. We

can also define a fourth order approximation to the second derivative as

u′′j ≈
−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2

12h2

where the fourth order differentiation matrix D is

56

Chapter 5. Spectral Methods in Space

D =
1

12h2



. . . −1 16

. . . −1 −1

. . . 16
. . .

. . . −30
. . .

. . . 16
. . .

−1 −1
. . .

16 −1
. . .



(5.2)

The error we expect from using (5.1) and (5.2) will be second and fourth

order respectively. We see in Figure 5.3 at the end of this section that we

indeed have second and fourth order accuracy, but we require a large number

of grid points I for very high accuracy. As we increase the order of accuracy,

the more terms D will contain. The number of diagonals of D is called the

bandwidth. The spectral approximation results when this bandwidth is ex-

tended in a limit. Then we have that D will be a dense matrix.

To introduce the spectral differentiation matrix, we first consider the Discrete

Fourier Transform (DFT) and its inverse (IDFT), and we also introduce the

phenomenon known as aliasing. Consider the finite grid shown in Figure 5.

57

Chapter 5. Spectral Methods in Space

· · · t t t t t t t t
x1 xI/2 xI

2ππ0 ︷ ︸︸ ︷h

Figure 5.1: Finite grid hZ on [0, 2π].

The spacing of the grid is h = 2π/I or

π

h
=
I

2
.

with the convention that the number of grid points is even. Consider a

function v(x), x ∈ Z, evaluated at grid points vj = v(xj), the DFT and

IDFT are defined as

v̂α = h
I∑
j=1

e−iαxjvj, α = −I
2

+ 1, ...,
I

2
, (5.3a)

vj =
1

2π

I/2∑
α=−I/2

eiαxj v̂k, j = 1, ..., I. (5.3b)

Since this is discrete, we are dealing with a finite problem, where the DFT

and IDFT act on vectors. To introduce the phenomenon of aliasing, consider

the two complex functions f(x) = eiα1x and g(x) = eiα2x where f 6= g if

α1 6= α2. On our finite grid we only consider the value of these two functions

at the discrete points xj. The values are equal on the finite grid if α1 − α2

is an integer multiple of 2π/h. This is shown in Figure 5.2 for functions

cos(2πx) and cos(8πx), where they are equal on π
5
Z on [0, 2π]. We can not

58

Chapter 5. Spectral Methods in Space

distinguish between the wave modes, which is what is referred to as aliasing.

High frequency and low frequency modes are seen as the same.

Figure 5.2: Spectral aliasing. Both cos(2πx) and cos(8πx) are equal on π
5
Z.

To construct the spectral derivative, we introduce an interpolant using (5.3b).

Given a v̂, define the interpolant p as

p(x) =
1

2π

I/2∑′

α=−I/2

eiαxv̂(α) dk, x ∈ [0, 2π] (5.4)

where p(xj) = vj ∀ j. The prime indicates that the terms k = ±I/2 are

multiplied by 1/2, which is a special case v̂−I/2 = v̂I/2 to impose a zero

derivative when we take the inverse transform [12]. The interpolant can be

constructed explicitly by considering first vj as the Kroneker delta function.

In this case, v̂α takes on a constant value of h. From [12], computing (5.4)

with the delta function yields the periodic Sinc function

SI(x) =
sin(πx/h)

(2π/h) tan(x/2)
.

59

Chapter 5. Spectral Methods in Space

This interpolation is a translation-invariant process in the sense that for any

m, the interpolant of δj−m is SI(x− xm) [12]. Then a linear combination of

translated Sinc functions can also be written to describe the interpolant

p(x) =
1

2π

I∑
j=1

vjSI(x− xj).

To find the spectral second derivative matrix, we simply compute the second

derivative of SI(x).

S ′′I (xj) =

 −
π2

3h2
− 1

6
, j ≡ 0 (mod I),

1
2
(−1)j csc2(jh/2), j 6= 0 (mod I).

And the second derivative matrix D can be written as

D
(2)
I =

1

h



...

−1
2

csc2 3h
2

. . . 1
2

csc2 h

. . . 1
2

csc2 h
2

. . . − π2

3h2
− 1

6

. . .

1
2

csc2 h
2

. . .

−1
2

csc2 h
. . .

1
2

csc2 3h
2

...



(5.5)

Now using (5.5) as our approximation to the second derivative, we see in

60

Chapter 5. Spectral Methods in Space

Figure 5.3 that the approximation to the second derivative of f(x) = esinx

achieves very high accuracy with a significantly less number of grid points

compared to (5.1) and (5.2) up to 1012. What we observe once N > 30 is

an accuracy that has reached machine precision. Therefore we can choose

a much smaller N than our standard methods, and any larger N will not

achieve any better accuracy, as shown in the cloud of data points in Fig-

ure 5.3.

Aliasing is the only source of error in this approach, small for C∞ func-

tions because v̂(α) decays like 1/αp for every vj ∈ C∞. Such a high accurate

approximation is limited by machine precision and no further improvement

is possible. It can be shown that the approximation is asymptotically better

than any fixed convergence order when applied to smooth (C∞) functions

[12]. This is what is referred to as spectral accuracy. In contrast to finite

differences, where the error decreases like O(hp) for a p-order approximation,

we achieve O(hp) convergence for any p assuming the solution is infinitely dif-

ferentiable. The spectral differentiation matrix is diagonalized by the DFT,

which is evaluated efficiently using the FFT. And using Newton iteration, we

can solve our problem as we have before now with the spectral differentiation

matrix.

61

5.1. Using the Fast Fourier Transform

Figure 5.3: Spectral order accuracy versus Finite Difference, on a test prob-
lem for the second derivative of f(x) = esinx taken as a periodic function on
[0, 2π].

5.1 Using the Fast Fourier Transform

Instead of using the full spectral differentiation matrix (5.5), we can use the

FFT and IFFT to compute approximations of second derivatives of u in a

faster way on the uniform grid with I grid points [13]. Recall the DFT in

(5.3a) and IFDT in (5.3b). We first obtain I discrete Fourier coefficients v̂α

by taking the FFT of uj on grid points xj. However, as stated, because of

aliasing the spectral method provides us with ûj for |αj| ≤ I/2 and all other

62

5.1. Using the Fast Fourier Transform

modes of αj + I are indistinguishable on the grid. We write the vector α as

α =

(
0, 1, ...,

I

2
− 1,

I

2
,−I

2
+ 1, ...,−2,−1

)
.

In Fourier representation, differentiation is diagonal multiplication by iα.

Second derivatives are achieved by multiplication by −α2
j . Second derivative

values are then obtained using the IFFT. To summarize,

D
(2)
I = F−1Λ2F,

where F is the matrix representation of the DFT and Λ2 is a diagonal matrix

with entries −α2
j . Note that although D

(2)
I is a full matrix, we can multiply

by D
(2)
I efficiently with this representation. This allows for efficient PCG

solution of the problems from implicit time stepping for our models.

63

Chapter 6

High-Order Time step

Techniques

In this chapter, we investigate higher order time stepping methods. Backward

Differentiation Formula (BDF) methods are often used for efficient solution

of stiff problems. For example, the MATLAB routine ode15s optionally uses

BDF techniques. We implement BDF time stepping of order 2 and 3 on

our problems, with order 2 and 3 Adams Bashforth explicit methods as our

predictor, and we will use implicit Runge-Kutta (RK) methods for initial

time steps and restarts when the time step is changed.

6.1 Runge Kutta Methods

Consider the initial value problem posed in (3.1). Following [28], Runge

considered the midpoint rule in 1895 to improve on the O(k) error of the

Euler Method. An intermediate Euler step between tn and tn + k with step

64

6.1. Runge Kutta Methods

size k
2

gives the first Runge method as

K1 = f(tn, u(tn)),

K2 = f

(
tn +

k

2
, u(tn) +

k

2
K1

)
,

u(tn + k) = u(tn) + kK2.

It is shown in [28] that by adding this intermediate step, we now have a

method that is of O(k2), which is a improvement to the Euler method. We

can then construct higher order Runge Kutta methods by using more inter-

mediate stages in its calculation.

The general form of a Runge Kutta method to solve the equation ut =

f(t, u), u = u(x, t) is as follows. Let aij, bi and ci =
∑i−1

j=1 aij, i = 1, ..., s be

real coefficients. The method

Ki = f

(
tn + cik, u

n + k

p∑
j=1

aijKj

)
, i = 1, ..., p

un+1 = un + k

p∑
i=1

biKi, (6.1)

is called an p-stage Runge Kutta Method. From Butcher (1964b), we can

express a RK method in a table called a Butcher tableau, a general form

shown in Table 6.1.

65

6.1. Runge Kutta Methods

c1 a11 a12 · · · a1p

c2 a21 a22 · · · a2p
...

...
...

. . .
...

cp ap1 ap2 · · · app
b1 b2 · · · bp

Table 6.1: Runge Kutta Butcher Tableau with p stages.

When aij = 0 for i ≤ j, a lower triangular matrix, then we have a explicit RK

method. If aij = 0 for i < j and at least one aii 6= 0, then we have a diagonal

implicit RK method (DIRK). Further, if all diagonal elements are equal, we

have a singly diagonal implicit method (SDIRK) [29]. An SDIRK method

also has the property that the last step is similar to the last intermediate

step, or the last row is equal to the bi in the Tableau. For example, the

Backward Euler scheme can be expressed in a Butcher Tableau as shown in

Table 6.2.

1 1
1

Table 6.2: Backward Euler Butcher Tableau.

From this table we substitute the values into (6.1) with p = 1 to get

K1 = f (un + kK1) ,

un+1 = un + kK1,

66

6.1. Runge Kutta Methods

or, more simply as

un+1 = un + kf(un+1).

In our problem we will consider the SDIRK methods of order two and three

for use in our second and third order methods.

6.1.1 Singly Diagonal Implicit Runge Kutta 2

(SDIRK2)

For higher order multi-step methods described in section 6.2 it is usually re-

quired to have p previous values for a p order method. Runge Kutta methods

do not have this requirement. Therefore these methods are desirable, but are

computationally expensive due to the intermediate steps for only one time

step. Thus, we will use them to compute previous values needed for multi-

step methods initially and when the time step size changes. The Butcher

Tableau for SDIRK2 is given by

1 β 0
1 1− β β

1− β β

Table 6.3: SDIRK2 Butcher Tableau.

67

6.1. Runge Kutta Methods

From (6.1), this gives the formula

K1 = f(un + kβK1),

K2 = f(un + k(1− β)K1 + kβK2), β = 1−
√

2

2
,

un+1 = un + k[(1− β)K1 + βK2], (6.2)

where β is found as the root of the polynomial 1
2
− 2β+β2. This polynomial

arises from the order conditions derived in [29], where each order of SDIRK

method consists of a p order polynomial to obtain β . Similar to Section

3.7 where we computed the convergence of the BE solution for the Allen-

Cahn equation, we can check that SDIRK2 is indeed second order in time of

O(k2). We divide the time step k by 2 successively with a fixed mesh, shown

in Table 6.4.

k Error CR
6.0239e-04 1.6938e-06 2.0030
3.0120e-04 4.2301e-07 2.0015
1.5060e-04 1.0570e-07 2.0007
7.5299e-05 2.6419e-08 2.0004
3.7650e-05 6.6038e-09 2.0002

Table 6.4: Second order convergence in time for SDIRK2.

SDIRK2 will become very useful as a second order method in our adaptive

time stepping techniques. It allows us to compute initial conditions and

restart our methods while maintaining second order accuracy so that the

entire method is second order.

68

6.1. Runge Kutta Methods

6.1.2 Singly Diagonal Implicit Runge Kutta 3

(SDIRK3)

The Butcher Tableau for SDIRK3 is given by

1 β 0
1 T2 − β β
1 b1 b2 β

b1 b2 β

Table 6.5: SDIRK3 Butcher Tableau.

where

T2 =
1 + β

2
,

b1 = −6β2 − 16β + 1

4
,

b2 =
6β2 − 20β + 5

4
.

From (6.1), this gives the formula

K1 = f(un + kβK1),

K2 = f [un + k(T2 − β)K1 + kβK2],

K3 = f [un + k(b1K1 + b2K2) + kβK3],

un+1 = un + k[b1K1 + b2K2 + βK3], (6.3)

where β is found as the root of the polynomial 1
6
− 3

2
β + 3β2 − β3 = 0, The

69

6.1. Runge Kutta Methods

derivation of this formula is found in [29]. The root β to this equation will

be irrational, and up to 20 digits we have

β = 0.43586652150845899942.

Now we can check that this method is indeed third order in time of O(k3).

Again similar to Section 3.7 where we computed the convergence of the BE

solution for the Allen-Cahn equation, we look at the convergence of SDIRK3

for time step k by dividing k by 2 successively with a fixed mesh, shown in

Table 6.6.

k Error CR
6.0239e-04 4.7413e-08 2.9531
3.0120e-04 6.0273e-09 2.9757
1.5060e-04 7.5990e-10 2.9876
7.5299e-05 9.5400e-11 2.9937
3.7650e-05 1.1952e-11 2.9967
1.8825e-05 1.4957e-12 2.9984

Table 6.6: Third order convergence in time for SDIRK3.

SDIRK3 will be used in our third order method for restarts to maintain

a fully third order method. Now we will consider our predictor, where we

require a second and third order explicit formulas to coincide with our second

and third order methods. We have chosen Adams Bashforth methods, which

are linear multi step methods.

70

6.2. Linear Multi Step Methods

6.2 Linear Multi Step Methods

A linear multi step method (LMM) of n steps requires the use of previous

information in the last n time steps. Using more than one previous time

step is different than RK methods, and we need a method to compute this

additional information. We will use implicit SDIRK methods to compute the

previous time steps needed for use with LMM’s. The general form of LMM’s

are

n∑
j=0

ajun−j = k
n∑
j=0

bjfn−j

where n is the number of steps in the method, and aj, bj are coefficients

specific to the method.

6.2.1 Adams-Bashforth 2 (AB2)

Explicit LMM’s such as Adams-Bashforth (AB) solve the equation ut = f(u)

with

un+1 = un +

∫ tn

tn−1

f(t, u(t))dt,

where f(t, u(t)) is approximated by an explicit interpolation polynomial,

which does not involve the value of un+1. Hence, these are explicit meth-

ods that will only be used in the estimation our solution, as we will see in

our adaptive time stepping methods. For our second order method we will

71

6.2. Linear Multi Step Methods

be using the second order AB2 which has formula

un+1 = un +
k

2

[
3f(un)− 1

2
f(un−1)

]
. (6.4)

Similar to our BE-FE adaptive in time solution in Chapter 3, we use the

difference between this explicit predicted value and the solution from the

implicit time step described below to estimate the local error δ made in the

time step. As a first step, we calculate the error constant C for the AB2

method.

Error Constant

For a second order method, we expect the local error to be approximately a

constant C times k3 times uttt. We can explicitly calculate this constant for

AB2 using Taylor series. Assuming we have continuity and differentiability

up to the third derivative, expanding a Taylor series of un+1 and un with

respect to the next time step tn+1, where tn+1− tn = k, tn+1− tn−1 = 2k and

f(u) = ut, we have

un+1 = u

un = u− kut +
k2

2
utt −

k3

3!
uttt + ...

f(un) = ut − kutt +
k2

2
uttt + ...

f(un−1) = ut − 2kutt + 2k2uttt + ... (6.5)

72

6.2. Linear Multi Step Methods

Substituting (6.5) into (6.4), we have

u = u− kut +
k2

2
utt −

k3

3!
uttt

+
k

2

(
3ut − 3kutt + 3

k2

2
uttt + ...− 1

2
ut + kutt − k2uttt − ...

)
.

Looking at each term in orders of k, we have

O(1) : (1− 1)u = 0

O(k) :

(
−1 +

3

2
− 1

2

)
kut = 0

O(k2) :

(
1

2
− 3

2
+ 1

)
k2utt = 0

O(k3) :

(
−1

6
− 3

4
− 1

4

)
k3uttt =

5

12
k3uttt

This leaves one term of 5
12
k3uttt. Thus the error constant for AB2 is C = 5

12
.

6.2.2 Adams-Bashforth 3 (AB3)

The third order AB3 is given by

un+1 = un +
k

12
(23f(un)− 16f(un−1) + 5f(un−2)), (6.6)

which will be used as our explicit predictor in our third order method. Similar

to our calculation in Section 6.2.1 for the error constant, using Taylor series

we calculate the constant C as a first step to correctly estimate δ. The term

that does not vanish is 3
8
k4utttt. Thus the error constant for AB3 is C = 3

8
.

73

6.2. Linear Multi Step Methods

We now look at our corrector schemes to be used in our methods.

6.2.3 Backward Difference Formula 2 (BDF2)

Backward Difference Formulas (BDF) are implicit LMM’s, and are commonly

used for stiff problems. Also, BDF formulas interpolate values of u instead

of the rhs f . In the case of the second order BDF (BDF2), our discretization

of the equation ut = f(u) is

3

2
un+1 − 2un +

1

2
un−1 = kf(un+1), (6.7)

where we now require two previous time steps. Given the initial condition, we

will use the SDIRK2 method to calculate these previous time steps, although

it is more work than Crank Nicholson or BE because it preserves the local

truncation order of BDF2 and has good stability properties.

Error Constant

Similar to AB, we can compute the error constant for BDF2. expanding a

Taylor series of un+1 and un with respect to the next time step tn+1, where

74

6.2. Linear Multi Step Methods

un+1 − un = k, un+1 − un−1 = 2k and f(u) = ut, we have

un+1 = u

un = u− kut +
k2

2
utt −

k3

3!
uttt +

k4

4!
uttt − ...

un−1 = u− 2kut + 2k2utt −
4k3

3
uttt +

2k4

3
uttt − ... (6.8)

Substituting (6.8) into (6.7), we have

3

2
u− 2

(
u− kut +

k2

2
utt −

k3

3!
uttt + ...

)
+

1

2

(
u− 2kut + 2k2utt −

4k3

3
uttt + ...

)
= kut.

Looking at each term in orders of k, we have

O(1) :

(
3

2
− 2 +

1

2

)
u = 0

O(k) : (2− 1− 1)kut = 0

O(k2) : (−1 + 1)k2utt = 0

O(k3) :

(
1

3
− 2

3

)
k3uttt = −1

3
k3uttt

This leaves one term of −1
3
k3uttt. Thus the error constant for BDF2 is C =

−1
3
.

75

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

6.2.4 Backward Difference Formula 3 (BDF3)

In the case of the third order BDF (BDF3), our discretization of the equation

ut = f(u) is

11

6
un+1 − 3un +

3

2
un−1 − 1

3
un−2 = kf(un+1). (6.9)

Similar to Section 6.2.3, we can calculate the error constant C for BDF3

using Taylor series. The term that does not vanish is −1
4
k4utttt. Thus the

error constant for BDF3 is C = −1
4
.

6.3 BDF2 with AB2 Local Error Estimation

and SDIRK2 Restart

We have seen in Chapter 3 the performance of the BE-FE solution. The local

solution can be predicted more accurately using the second order Adams-

Bashforth method (AB2) [30]. Then we compute a BDF2-AB2 pair for each

time step in the same manner as we did for BE-FE. Since BDF2 is a second

order method, we would prefer a second order method to compute the first

time step, as well as the restart when we adjust the time step. We will use the

SDIRK2 method given in section 6.1.1. The local error estimate is carried

out by calculating the explicit AB2 method, given by (6.4). We use Newton

iteration for our solution, both in the SDIRK2 method and BDF2 method.

At each time step we will compare our AB2 explicit solution to our BDF2

76

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

solution to determine how we adjust the time step. For each time step in

BDF2, we employ the following steps:

1. Compute the AB2 solution uAB2.

2. Compute the BDF2 solution uBDF2 using Newton iteration and the

AB2 solution as an initial guess.

3. Compute the relative local error estimate δ = C||uBDF2 − uAB2||.

4. Accept or Reject this new solution based on this error and update the

time step accordingly.

The constant C is given by C =
∣∣∣ CBDF2

CBDF2−CAB2

∣∣∣, which we have calculated, so

C = 1/3
1/3+5/12

= 4
9
.

Once we have calculated the AB2 and BDF2 solution, we use the same δ

requirements as the BE-FE method. The requirements were:

• if δ
δtol

< 1
γ
. Accept u, kn+1 = ξkn (Increase time step).

• else if δ
δtol
∈
[

1
γ
, 1
)

. Accept u, kn+1 = kn (Keep the same time step).

• else, Reject u, kn = 1
ξ
kn (Reduce time step).

where ξ = p+1
√
θγ, our computed time step factor developed in section 3.9,

for user defined values θ and γ. In this case, p = 2 for a second order method.

The first case is if δ
δtol

< 1
γ
. We accept the solution and increase the time

77

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

step. Unlike our first order method, we now are required to restart our time

stepping method. As illustrated in Figure 6.1, we take our computed solution

un+1 as our new u∗0 initial condition and calculate the next time step u∗1 using

SDIRK2 that will be used in the next iteration.

t t t t
u0 u1 un+1

u∗0 u∗1

-

︷ ︸︸ ︷k ︷ ︸︸ ︷αk

Figure 6.1: Restart: Increasing time step for BDF2-AB2.

We then continue our computation with the next BDF2 solution and check

our local error again. The second case of our method is when our solution is

acceptable and δ
δtol
∈
[

1
γ
, 1
)

. Then we are satisfied with the current state of

the solution and will continue on to the next step with no change.

The third case, if δ
δtol

> 1, we reject the time step because the local er-

ror is too large. We restart the computation, now with u1 as our new u∗0 and

compute the next time step u∗1 using SDIRK2 with the reduced time step.

We then continue the computation with the next BDF2 solution. This is

illustrated in Figure 6.2.

78

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

t tt
u0 u1

u∗1u∗0

-

︷ ︸︸ ︷k ︷ ︸︸ ︷k/α

Figure 6.2: Restart: Decreasing time step for BDF2-AB2.

Now we have computed previous time steps for the new time step, and we

continue the iteration. In the case where we have rejected a time step, re-

duced k, and the next time step fails again, we go back and restart again

from the last accepted solution. This requires us to retain the last accepted

solution as a separate variable. The act of rejecting a time step is also used

when our Newton iteration fails to converge, or there are too many CG steps

taken. Tolerances tol its newton and tol its cg are checked during each

Newton iteration. If these counters exceed the given tolerance, we decrease

the time step in the same manner. In practice, we do not see any violation

of our tolerance for Newton iteration.

Our computation continues to increase or decrease the time step through-

out the computation until the time when our given final time is reached.

The last time step is found when our next time step exceeds our user de-

fined end time T . When this occurs, we calculate the last time step using a

SDIRK2 step. We now want to again assess the confidence we have in our

method using the ripening time.

79

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

6.3.1 Ripening Time

The ripening time Tr for BDF2-AB2 should be consistent with our BE-FE

solution for us to be confident in both methods. We again compute the

ripening time by looking at the minimum of our current solution. As we let

δtol → 0 we expect our solution to converge to this ripening time as we did

in Chapter 3. We also expect the number of time steps M(δtol) to increase

as δtol is reduced by a factor of 10 by a factor of p+1
√

10, where p is the order

of the method, in this case p = 2. Using the same problem for Allen-Cahn

as we did in section 3.11, the results are shown in Table 6.7.

δtol Tr M(δtol)
M(δntol)

M(δn−1
tol)

1.0000e-04 546.0982 154 2.3692
1.0000e-05 546.6408 361 2.3442
1.0000e-06 546.8019 787 2.1801
1.0000e-07 546.7919 1,696 2.1550
1.0000e-08 546.7929 3,796 2.2382
1.0000e-09 546.7970 8,288 2.1834

Table 6.7: Convergence of the ripening time for BDF2-AB2.

We see that our solution converges to Tr = 546.8 which matches our first

order method, and as we expected, the ratio of M(δtol) also converges to

3
√

10 = 2.15443. We will use these results to compare to our third order

method. We also see a reduction in required time steps as δtol → 0 compared

to our first order method.

To compare our BDF2-AB2 adaptive method to uniform time steps we carry

80

6.3. BDF2 with AB2 Local Error Estimation and SDIRK2 Restart

out the same method in chapter 3. We first compute a very accurate solution

using BDF2 with k = h3 as the approximated exact solution and compute

the number of time steps required for the BDF2-AB2 solution for various

values of δtol. To compare to the uniform solution, we find the number of

uniform time steps which produces the same error using BDF2 time stepping

when compared to our highly accurate exact solution. The results are shown

in Table 6.8 where we see that our BDF2-AB2 method using our spectral

method adaptive strategy is more efficient than uniform time steps as we let

δtol → 0.

δtol Error
||u−uexact||

Time steps
(Adaptive)

Error
||uuni−uexact||

Time steps
(Uniform)(BDF2)

1.0000e-03 4.2091e-01 64 4.1955e-01 549
1.0000e-04 1.3908e-01 140 1.1478e-01 1,079
1.0000e-05 4.2383e-02 332 4.2127e-02 2,450
1.0000e-06 1.0426e-02 730 1.0365e-02 5,150
1.0000e-07 1.7655e-03 1,598 1.7250e-03 14,800

Table 6.8: Required number of time steps for BDF2-AB2 vs uniform for
decreasing δtol.

We see a significant decrease in time steps required using our second order

adaptive method. Now we will look at our third order method.

81

6.4. BDF3 with AB3 Local Error Estimation and SDIRK3 Restart

6.4 BDF3 with AB3 Local Error Estimation

and SDIRK3 Restart

We consider here a third order scheme similar to the second order scheme

described above. BDF3 time stepping is used with an AB3 predictor and

using an SDIRK3 scheme for restarts.

We now require two initial time steps to start BDF3 initially and three

previous time steps kept throughout the computation. This leads to the

use of SDIRK3 for the initial time steps and restarts. Our BDF3-AB3 time

stepping method follows the same construct as our BDF2-AB2 method. The

local error is now given by

δ =
2

5
||uBDF3 − uAB3||.

The acceptance of our solution based on this error follows the same method

as our second order method, however now that we have three time steps, we

now do two SDIRK3 steps for each restart as illustrated in Figure 6.3.

t t t t t t
u0 u1 u2 un+1

u∗0 u∗1 u∗2

- -

︷ ︸︸ ︷k ︷ ︸︸ ︷αk

Figure 6.3: Restart: Increasing time step for BDF3-AB3.

82

6.4. BDF3 with AB3 Local Error Estimation and SDIRK3 Restart

Similarly, when we reject a time step, we follow the same method in our sec-

ond order method computing the two new initial conditions from u2 required

as illustrated in Figure 6.4.

t t t t t
u0 u1 u2

u∗0 u∗1 u∗2

- -

︷ ︸︸ ︷k ︷ ︸︸ ︷k/α

Figure 6.4: Restart: Decreasing time step for BDF3-AB3.

Similarly, we retain the last acceptable solution, in this case u2. For repeated

rejection of a time step, we restart from this last solution. We will see in

chapter 7 that this occurs several times for our third order methods since the

time step is increased much larger than our lower order methods. To convince

ourselves that our third order method matches our lower order methods, we

again compute the ripening time for the same problem.

6.4.1 Ripening Time

The ripening time Tr for BDF3-AB3 should be consistent with both our BE-

FE and BDF2-AB2 solutions for us to be confident in both methods. We

again compute the ripening time by looking at the minimum of our current

solution. We also expect the number of time steps M(δtol) to increase as δtol

is reduced by a factor of 10 by a factor of p+1
√

10, where p = 3. Using the

same problem for Allen-Cahn as we did in chapter 3, the results are shown

83

6.4. BDF3 with AB3 Local Error Estimation and SDIRK3 Restart

in Table 6.9.

δtol Tr M(δtol)
M(δntol)

M(δn−1
tol)

1.0000e-04 546.9734 72 1.3585
1.0000e-05 546.7535 130 1.8056
1.0000e-06 546.8286 270 2.0769
1.0000e-07 546.8152 551 2.0407
1.0000e-08 546.7992 1,055 1.9147
1.0000e-09 546.7976 2,087 1.9782

Table 6.9: Convergence of the ripening time for BDF3-AB3 time stepping
method.

We see that our solution converges to Tr = 546.8 which matches our first

order method in section 3.10 and second order method in section 6.3.1. As

we expected, the ratio of M(δtol) also converges close to 4
√

10 = 1.778279. We

have shown that all three methods converge to the same ripening time, which

gives us confidence in these methods of adaptive time stepping. We also see

a reduction in required time steps as δtol → 0 compared to our second order

method.

To compare our BDF3-AB3 adaptive method to uniform time steps we carry

out the same method in section 6.3.1. We use BDF3 time stepping for our

uniform solutions. The results are shown in Table 6.10 where we see that

our BDF3-AB3 method using our spectral method adaptive strategy is more

efficient than uniform time steps as we let δtol → 0.

84

6.4. BDF3 with AB3 Local Error Estimation and SDIRK3 Restart

δtol Error
||u−uexact||

Time steps
(Adaptive)

Error
||uuni−uexact||

Time steps
(Uniform)(BDF3)

1.0000e-03 1.5457e-02 47 1.5368e-02 692
1.0000e-04 1.0360e-02 65 1.0587e-02 741
1.0000e-05 8.6347e-03 115 8.6618e-03 765
1.0000e-06 1.8725e-03 254 1.8257e-03 915

Table 6.10: Required number of time steps for BDF3-AB3 vs uniform for
decreasing δtol.

We have now established a time stepping technique which has a first, second

and third order versions. We would like to establish the amount of work

required for each method, which can be compared using the total number of

PCG iterations for the problems we investigate. We now present our methods

on problems with small ε in both 1D and 2D to show the differences of our

three methods.

85

Chapter 7

Numerical Experiments

In this chapter, we focus on the solution to the Allen-Cahn and Cahn-Hilliard

problems with small ε. As we have shown in chapter 3, our adaptive-in-time

strategy is more efficient than uniform time steps in this case. We will now

employ our time stepping methods with spectral discretization and using

PCG to solve for each Newton iteration at each time step. We begin in one

space dimension with the Allen-Cahn equation, where the initial condition

is chosen to be periodic and having the property that only two transitions

from u = ±1 result as the solution progresses. In the case of the Allen-

Cahn equation, this one hump solution will be eventually consumed into one

region of u = 1, while in the Cahn-Hilliard case we consider initial conditions

in which four transition layers appear in early dynamics. Since this model is

volume preserving, the regions of u = −1 cannot disappear but the dynamics

will result in both regions joining together.

86

7.1. Allen-Cahn in 1D

7.1 Allen-Cahn in 1D

For the Allen-Cahn equation in 1D, we apply our method to the same problem

in chapter 3, but now with ε = 0.12. We compute the solution for all three

methods to show how our second and third order methods perform versus

our first order method. In this problem however, the time scale is very large,

with T = 31, 055. Our initial condition is again u0(x) = sinx+0.8 on [0, 2π].

The parameters we have chosen are

ε = 0.12, n = 128,

T = 31, 055, tol delta = 10−4,

θ = 0.8, tol newton = 10−8,

γ = 3, tol cg = 10−9.

.

What we observe is three phases in the solution. A fast transition from the

initial condition to the metastable state. We then experience a long time

scale in this state, and then eventually we pass the ripening time, which

again is fast as the solution arrives at stable state of u = +1. The behaviour

where the activity between phases is confined to the start and end of the

computation with a long metastable state can be seen in Figure 7.1.

87

7.1. Allen-Cahn in 1D

Figure 7.1: Space-Time plot for Allen-Cahn in 1D for ε = 0.12, γ = 3 for the
BDF3-AB3 method.

In this figure we show the BDF3-AB3 solution that exhibits large time steps

during the metastable state, seen by increasing distance of grid lines, and a

similar situation occurs with our BE-FE and BDF2-AB2 methods. This is

seen more clearly in Figure 7.2.

Figure 7.2: Evolution of time step k vs. t for Allen-Cahn in 1D for ε =
0.12, γ = 3.

88

7.1. Allen-Cahn in 1D

We see larger growth in the time step for our higher order methods as we ex-

pect. The time step as it is increased reaches very high numbers, which could

not be used in a uniform method. Our PCG method, shown in Figure 7.3,

displays the number of PCG iterations vs. time for all three methods.

Figure 7.3: Evolution of PCG iterations vs. time for Allen-Cahn in 1D for
ε = 0.12, γ = 3.

There are significantly less time steps required as we move to higher order

methods, with only a small increase in the number of CG steps. In Table 7.1

we show the statistics found for each method.

89

7.1. Allen-Cahn in 1D

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 1,027 83 1.3645 4 8.2924 42 8,508

BDF2-AB2 174 72 1.8023 5 15.9186 64 2,738

BDF3-AB3 89 83 1.6163 5 18.3140 66 1,575

Table 7.1: Statistics for the Allen-Cahn equation in 1D for each method for
δtol = 10−4.

For this problem, we again see an improvement in the number of time steps

for higher order methods with maintaining similar results for both Newton

solves and PCG iterations for each time step. While an increase in PCG

iterations per time step is experienced for higher order, the reduction of time

steps is more dominant. This problem could not have been calculated in a

realistic time using uniform time steps. As we have seen in chapters 3 and 6,

for our three methods to agree on a solution, which we have determined to

be at the ripening time, we require δtol to be smaller. Computing the same

problem with δtol = 10−8 we have the following statistics, shown in Table 7.2.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 55,754 68 1.0000 1 1.8402 7 102,599

BDF2-AB2 4,059 1,375 1.0000 1 3.1627 8 12,831

BDF3-AB3 2,148 714 1.0000 1 4.9855 8 10,694

Table 7.2: Statistics for the Allen-Cahn equation in 1D for each method for
δtol = 10−8.

Here we observe that the Newton scheme converges within one iteration.

This is because the solution does not change significantly over one time step.

90

7.2. Cahn-Hilliard in 1D

However, computing our methods for small δtol has a cost of increased time

steps but less PCG iterations per time step. We see a large reduction in the

number of time steps required for our higher order methods versus our first

order method. This is again a significant advantage of our high order meth-

ods. We now apply our three methods to the Cahn-Hilliard equation, which

has the property that it is volume preserving. While the Allen-Cahn solu-

tions always approach the stable states u = ±1, the Cahn-Hilliard equation

will result in one dominant region.

7.2 Cahn-Hilliard in 1D

In the Cahn-Hilliard case, we now have two separate regions where our initial

condition is u0(x, t) = cos(2x) + 0.01ecos(x+0.1). This is chosen to have two

similar regions with one slightly smaller than the other similar to chapter 3.

However, in this case we choose ε = 0.22, where we expect this to result a

longer time scale than our previous problem in chapter 3. The parameters

we have chosen are

ε = 0.22, n = 128,

T = 1, 062, tol delta = 10−5,

θ = 0.8, tol newton = 10−8,

γ = 3, tol cg = 10−9.

.

91

7.2. Cahn-Hilliard in 1D

Similarly to Allen-Cahn, in early dynamics the solution tends to u = ±1 in

regions with transition layers of width O(ε) between them. This metastable

state evolves slowly in time as the center between the two u = −1 regions will

eventually decrease in size and becomes absorbed. This type of dynamic can

be explained as exponential tails for each region interacting with each other

[5]. We observe the entire solution in a space-time plot shown in Figure 7.4.

Figure 7.4: Space-Time plot for the Cahn-Hillard in 1D for ε = 0.22, γ = 3
with the BDF3-AB3 Method.

Figure 7.4 is situated with the end in front to show that indeed both regions

were absorbed into one. Similar to the Allen-Cahn model in the previous sec-

tion, the evolution of the time step has the same type of peak from increasing

to decreasing as we pass through the metastable state, shown in Figure 7.5.

92

7.2. Cahn-Hilliard in 1D

Figure 7.5: Evolution of time step for Cahn-Hillard in 1D for ε = 0.22, γ = 3.

In this case we observe a similar increase in time step as in our Allen-Cahn

problem. The number of PCG iterations vs. time are also similar, shown in

Figure 7.6.

Figure 7.6: Evolution of PCG Iterations vs. time for Cahn-Hillard in 1D for
ε = 0.22, γ = 3.

93

7.2. Cahn-Hilliard in 1D

If we reduce δtol, we will see a reduction in PCG steps as we saw in the

Allen-Cahn case. The statistics for this problem for δtol = 10−5 are shown in

Table 7.3.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 2,244 68 1.4900 3 18.4383 57 41,357

BDF2-AB2 412 102 2.0512 6 30.2195 117 12,390

BDF3-AB3 154 118 2.1457 6 42.8146 164 6,465

Table 7.3: Statistics for the Cahn-Hilliard equation in 1D for each method
for δtol = 10−5.

Again, we see an improvement with our higher order methods while main-

taining similar Newton and PCG iterations. Our 1D solution computes very

fast even on a laptop and using our BDF3-AB3 method we see a substan-

tial increase in efficiency. To obtain agreement between methods, we again

compute the solution for small δtol, shown in Table 7.4.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 20,243 52 1.1733 2 9.3623 28 189,511

BDF2-AB2 1,814 428 1.3604 3 14.3819 57 26,060

BDF3-AB3 716 359 1.5975 3 18.4404 55 13,148

Table 7.4: Statistics for the Cahn-Hilliard equation in 1D for each method
for δtol = 10−7.

Agreement between our methods for small δtol is achieved with the cost of

increased time steps but for less PCG iterations per time step. Again, we

see a large reduction in the number of time steps needed for our higher order

94

7.3. Allen-Cahn in 2D

methods versus our first order method. We now present problems in 2D for

both the Allen-Cahn and Cahn-Hilliard equations.

7.3 Allen-Cahn in 2D

In two space dimensions, we now have the domain Ω = [0, 2π]2, and our

methods are easily extended to this case. Our discretization is now

Un+1 − Un

k
= ε2DUn+1 + w′(Un+1),

where U is a matrix corresponding to each mesh point in the domain. The

matrix D is now the spectral approximation of the 2D Laplacian. The only

difference from the method that we have been using in one space dimension

is the mesh and the Liapunov energy. In our spectral method, we also use

the 2D version of the FFT. We consider the initial condition u0(x, y, t) =

2e(sinx+sin y−2) + 2.2e(− sinx−sin y−2) − 1. The parameters we have chosen are

ε = 0.18, n = 64,

T = 33, tol delta = 10−5,

θ = 0.8, tol newton = 10−8,

γ = 3, tol cg = 10−9.

.

We choose ε = 0.18, and we expect that the smaller region will be annihilated

first followed by the second larger region which occurs at T = 33. This is

95

7.3. Allen-Cahn in 2D

shown in Figure 7.7, that display the solution as a contour plot for chosen

times through the computation.

Figure 7.7: Time evolution plots for Allen-Cahn in 2D for ε = 0.18, γ = 3.

We observe that indeed it is the case that the smaller region is annihilated

prior to the larger region. Both eventually reach the stable state of u = −1,

as we expect. We observe similar results for the evolution of the time step

in Figure 7.8.

96

7.3. Allen-Cahn in 2D

Figure 7.8: Evolution of time step for Allen-Cahn in 2D for ε = 0.18, γ = 3.

Again, this problem is also difficult to solve using uniform time steps. Our

higher order methods increase the time step rapidly and require far less than

we would with a uniform method. The number of PCG iterations required

is shown in Figure 7.9.

97

7.3. Allen-Cahn in 2D

Figure 7.9: Evolution of PCG iterations vs. time for Allen-Cahn in 2D for
ε = 0.18, γ = 3.

While we see an increase in PCG steps for our higher order methods, in

Table 7.5 we present statistics for δtol = 10−4.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 2,970 28 1.0000 1 2.6639 4 7,909

BDF2-AB2 492 48 1.0000 1 4.2898 7 2,102

BDF3-AB3 175 52 1.0000 1 5.4302 8 934

Table 7.5: Statistics for the Allen-Cahn equation in 2D for each method for
δtol = 10−4.

Again, we see a substantial improvement with our higher order methods. To

obtain agreement between methods, we again compute the solution for small

δtol, shown in Table 7.6.

98

7.4. Cahn-Hilliard in 2D

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 29,099 25 1.0000 1 1.0000 1 29,098

BDF2-AB2 2,384 41 1.0000 1 1.6495 3 3,929

BDF3-AB3 699 51 1.0000 1 2.2773 4 1,585

Table 7.6: Statistics for the Allen-Cahn equation in 2D for each method for
δtol = 10−7.

For 2D, we see that our higher order methods are far more efficient than first

order.

7.4 Cahn-Hilliard in 2D

Using the same initial condition as in the Allen-Cahn equation, now with

T = 81, the parameters we have chosen are

ε = 0.18, n = 128,

T = 81, tol delta = 10−3,

θ = 0.9, tol newton = 10−7,

γ = 2, tol cg = 10−8.

.

We show the evolution of the solution for the Cahn-Hilliard problem in 2D

in Figure 7.10.

99

7.4. Cahn-Hilliard in 2D

Figure 7.10: Time evolution plots for Cahn-Hilliard in 2D for ε = 0.18, γ = 2.

In this case, since Cahn-Hilliard is volume preserving, we observe the same

behaviour as in 1D, where the larger region consumes the smaller. The

evolution of this problem is longer than the Allen-Cahn case with the same

initial condition. As shown in Figure 7.11, we observe the increase in time

step between our methods.

100

7.4. Cahn-Hilliard in 2D

Figure 7.11: Evolution of time step for Cahn-Hilliard in 2D for ε = 0.18, γ =
2.

In Figure 7.12 we observe the PCG iterations required versus time.

Figure 7.12: Evolution of PCG iterations vs. time for Cahn-Hilliard in 2D
for ε = 0.18, γ = 2.

101

7.4. Cahn-Hilliard in 2D

In Table 7.7 we again see the improvement our higher order methods have

on the the number of time steps required to compute the solution.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 380 77 2.4617 5 44.9763 248 17,046

BDF2-AB2 125 102 2.6667 8 70.7642 338 8,704

BDF3-AB3 90 99 2.2414 7 73.0920 307 6,359

Table 7.7: Statistics for the Cahn-Hilliard equation in 2D for each method
for δtol = 10−3.

Again, to obtain agreement between methods, we again compute the solution

for small δtol, shown in Table 7.8, we we see our most improvement in the

problems presented.

Method Time steps k changes Newton Its PCG Its
Average Max Average Max Total

BE-FE 11,162 69 1.1992 2 9.8847 22 110,323

BDF2-AB2 1,309 461 1.3940 2 17.2510 34 22,547

BDF3-AB3 516 274 1.6589 2 22.7018 40 11,646

Table 7.8: Statistics for the Cahn-Hilliard equation in 2D for each method
for δtol = 10−7.

The problems presented here show cases where adaptive time stepping meth-

ods are far superior to uniform methods. In addition, we have shown the

efficiency gains of using higher order BDF time stepping methods. For very

small ε, we have shown that these problems exhibit behaviour that can only

be calculated in this manner, and we have increased efficiency while not los-

ing accuracy. We have also shown that as we request more accuracy through

102

7.4. Cahn-Hilliard in 2D

δtol, we have a relationship between an increase of time steps and a decrease

in PCG steps. The code for these problems can be easily extended to other

problems of this type, such as higher order or vector gradient flows coming

from material science models.

103

Chapter 8

Conclusions and Future Work

We have presented a numerical method for solving the Allen-Cahn and Cahn-

Hilliard equations as it relates to material science. Steep transition layers

between materials that we see in applications such as annealing, can be re-

solved and a fast and efficient solution is found using adaptive time stepping

techniques. The method presented addresses the challenges in a numerical

solution for these problems and offers increased efficiency and the ability to

compute problems can can not be solved using traditional methods.

Using asymptotic analysis, we have shown that we expect the transition

layers to behave as a tanh function between u = ±1, with width O(ε) as

they move slowly in time. To build a numerical model, we first develop the

first order Forward Euler explicit scheme as our predictor and the Backward

Euler implicit scheme as our corrector. For our discretization in space we

use standard finite difference methods. What results is a nonlinear system

of equations to solve for each time step, and we employ Newton iteration

to solve this system. Our adaptive strategy is to use the difference between

the predictor and corrector as the local error δ. Once δ is within a preset

104

Chapter 8. Conclusions and Future Work

tolerance, the time step k is then increased. We increase the time step by a

factor of ξ, or decrease by a factor of 1/ξ, for preset values given by the user.

The parameter ξ is set up so that our increase will not violate our tolerances

for the local error in the next time step. This method is applied to a problem

that presents challenges for a uniform method and we show that it is indeed

more efficient than the uniform method.

We then utilize spectral methods for the spatial discretization that make the

spatial error negligible for a sufficient number of grid points I, and presents

a substantial increase in efficiency. We now solve for each Newton iteration

using preconditioned conjugate gradient method, where we have developed a

linear model preconditioner. It is a constant coefficient version of the system,

suggested to us by Scott MacLachlan. The preconditioner for this problem

is one of the major contributions of this work. The preconditioner reduces

the CG iterations by a significant factor and can be implemented efficiently

using the fast Fourier transform.

As the Backward Euler method is a first order time stepping technique,

it is natural to consider second and third order methods. Using backward

difference formulas of second and third order, coupled with Adams Bashforth

methods as our predictor of the same orders, we show that these methods are

even more efficient than our first order model. In our numerical experiments,

we show that our third order method is the most efficient.

105

8.1. Future Work

There are many applications of the Allen-Cahn and Cahn-Hilliard equations,

with higher order and vector relatives of these equations where our method

can be applied. It is our intention to present code that can be easily exten-

sible to these other problems.

8.1 Future Work

While we have shown the power of adaptivity in time for 1D and 2D, for large

3D problems such as cancerous tumor growth the domain may be largely one

material and relying on a uniform spatial grid to calculate the solution may

no longer be feasible. The computation, as was presented in [15], can be

greatly improved with adaptivity in space and time. Since the most activity

that occurs during the computation is in the transition layer, it is natural to

include more grid points in this area, while less grid points are required far

away from the transition layer. In future work, we plan to consider spatially

adaptive discretization coupled with multigrid solvers.

There are three general approaches to compute a solution with a non-uniform

grid. Consider the layered grid in Figure 8.1.

106

8.1. Future Work

Figure 8.1: Composite grid used in adaptive-in-space methods.

The first method is the Fast Adaptive Composite (FAC) Method by Mc-

Cormick and Thomas [33]. This method utilizes the entire grid and solves

the problem using multigrid. The operators used in the equations are calcu-

lated using linear or quadratic interpolation.

The second and third methods are the Multi Level Adaptive Technique

(MLAT) and the Fast Approximation Scheme (FAS), both by Brandt [34].

These method uses the same type of composite grid as FAC, but computes

each sub grid independently, building the solution for each level again using

multigrid. These three methods can be used in conjunction with our adap-

tive in time method to provide an even more efficient model, especially for

large problems.

There are many problems where both adaptive in space and adaptive in

time will be most beneficial. This thesis has investigated the first step in

107

8.1. Future Work

this direction, where we find that a substantial increase in efficiency can be

found in adaptive-in-time methods.

We are also interested in more efficient use of CG, such as variable toler-

ances depending on the performance of the Newton scheme. Since there are

a relatively small number of Newton steps in our problems for each time step,

it may be beneficial to explore these avenues to gain more efficiency.

108

Bibliography

[1] S.M. Allen and J.W. Cahn. A microscopic theory for antiphase boundary

motion and its application to antiphase domain coarsening. Acta Metall.

Mater. 27 (1979), 1085-1095.

[2] J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I.

interfacial free energy. J. Chem. Phys. 28 (1958), 258-267.

[3] L. Bronsard, D. Hilhorst. On the slow dynamics for the Cahn-Hilliard

equation in one space dimension. Proceedings: Mathematical and Phys-

ical Sciences 439, 1907 (1992), 669-682.

[4] J. Shen, X. Yang. Numerical approximations of Allen-Cahn and Cahn-

Hilliard equations [Preprint]

[5] M. Ward. Metastable bubble solutions for the Allen-Cahn equation with

mass conservation. SIAM Journal on Applied Mathematics 56, 5 (1996).

[6] C. Grantt and E. Vleckts. Slowly-migrating transition layers for the

discrete Allen-Cahn and Cahn-Hilliard equations. Nonlinearity 8 (1995),

861.

109

Bibliography

[7] P. Bates, S. Brown, J. Han, Numerical analysis for a nonlocal Allen-

Cahn equation, Numerical Analysis and Modeling 6, 1 (2009), 33-49.

[8] J.D. Verhoeven, Fundamentals of Physical Metallurgy, (1975) Wiley,

New York.

[9] E. V. L. de Mello, O. T. S. Filho, Numerical study of the Cahn-Hilliard

equation in one, two and three dimensions, Physica A 347 (2005), 429-

443.

[10] S. A. Orszag, Numerical methods for the simulation of turbulence, Phys.

Fluids Supp. II, 12 (1969) 250-257

[11] MacLachlan, S. (Tufts University), Personal Communication, October

5, 2010

[12] L. Trefethen, Spectral Methods in MATLAB, (2000) Society for Indus-

trial and Applied Mathematics.

[13] Canuto, C. et. al., Spectral Methods in Fluid Dynamics, (1988) Springer-

Verlag.

[14] K. Promislow, B. Wetton, PEM fuel cells: a mathematical overview.

Siam J. Appl. Math 70, 2 (2009), 359-409.

[15] S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm

for simulating solid tumor growth using mixture models, Mathematical

and Computer Modelling 53 (2011), 120.

110

Bibliography

[16] P.W. Bates, E.N. Dancer, J. Shi, Multi-spike stationary solutions of the

Cahn-Hilliard equation in higher-dimension and instability, Advances in

Diff. Eqts. 4 (1999), 1-69.

[17] P. Howard, Asymptotic behavior near planar transition fronts for the

Cahn-Hilliard equation, Physica D: Nonlinear Phenomena 229, 2 (2007)

123-165.

[18] A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-

Hilliard system, Physica D: Nonlinear Phenomena 137, 1-2 (2000) 1-24.

[19] S. Liu, F. Wang, H. Zhao, Global existence and asymptotics of solutions

of the CahnHilliard equation, Journal of Differential Equations 238, 2

(2007) 426-469.

[20] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential

Equations, (2005) Cambridge University Press.

[21] Euler, L. Institutiones Calculi Integralis (1768)

[22] S. Minkoff, N. Kridler. A comparison of adaptive time stepping meth-

ods for coupled flow and deformation modeling. Applied Mathematical

Modelling (2005).

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, (2003) Society

for Industrial and Applied Mathematics.

[24] J. Demmel, Applied Numerical Linear Algebra, (1997) SIAM.

111

Bibliography

[25] L. Trefethen, D. Bau, Numerical Linear Algebra, (1997) SIAM.

[26] U. Ascher, C. Grief, A First Course on Numerical Methods, (2011) So-

ciety for Industrial and Applied.

[27] J. R. Higgins, Five Short Stories About The Cardinal Series, Bull. Amer.

Math. Soc. 12 (1985), 45-89.

[28] E. Hairer, S.P. Nørsett, G. Wanner. Solving Ordinary Differential Equa-

tions I - Nonstiff Problems. (1993) Springer-Verlag Berlin Heidelberg

[29] E. Hairer, S.P. Nørsett, G. Wanner. Solving Ordinary Differential Equa-

tions II - Stiff and Differential-Algebraic Problems. (1991) Springer-

Verlag Berlin Heidelberg

[30] P. Gresho, D. Griffiths, D. Silvester. Adaptive time-stepping for incom-

pressible flow part I: scalar advection-diffusion. SIAM J. Sci. Comput.

30, 4 (2008), 2018-2054.

[31] J. Evans, Course notes for mathematical modelling and industrial math-

ematics, University of Bath.

[32] Fasshauer, G. E. Newton iteration with multiquadrics for the solution

of nonlinear PDEs. Journal of Computers and Mathematics with Appli-

cations, 43 (2002), 423-438.

112

Bibliography

[33] S. McCormick, J. Thomas, The fast adaptive composite grid (FAC)

method for elliptic equations. Mathematics of Computation, 46:174

(1986) 439-456

[34] A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical

solution to boundary value problems. (1973)

113

