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Abstract

The crust of a neutron star plays an important role in the emission observed

from it. The thermal emission generated in the core of the neutron star

passes through the crust, thus it is important to know what is in the crust in

order to understand how the emission is shaped and altered. The crust itself

may be responsible for the observations of glitches from neutron stars and

also as a source of gravitational waves. This thesis is two-fold. The first goal

is to calculate the composition of the neutron star crust of a non-accreting

neutron star. The second is to use the calculated crustal compositions in

molecular dynamics simulations in order to determine the shear modulus

and breaking strain of the crustal material.

The composition of the crust is found to be dependent on how the neu-

tron star cooled. Nuclear reactions within the crust are quenched as the star

cools. The composition of the crust, envelope, and atmosphere are calcu-

lated after the nuclear reactions are quenched. With the settling timescales

of the various isotopes in the crust, some of these isotopes are able to float

up to the neutron star surface and form the atmosphere. Three different

cooling methods were used in these calculations – modified Urca cooling,

a thick crust and a thin crust – each produces different atmospheric and

crustal compositions.

The calculated crustal abundances are then used as initial conditions

in molecular dynamics simulations. A shear force is introduced by de-

forming the simulation box. The shear modulus and breaking strain are

calculated for the three different crustal compositions as well as for per-

fect pure face-centered cubic (FCC) and body-centered cubic (BCC) sys-

tems. The upper limit, from the perfect crystal lattice structure, on the

breaking strain is found to ∼ 0.11 − 0.12 and the shear modulus is found
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Abstract

to be 6.5 × 1030 dyne/cm2. These properties predict glitch amplitudes of

∆Ω/Ω∼10−3. The gravitational wave strain amplitudes for PSR J2124-

3358 are also predicted to be greater than the observed upper limits. This

indicates that the neutron star crust is not a perfect BCC lattice which

deformed to 10% of the maximum.
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Chapter 1

Introduction

1.1 Neutron Star Structure

Metallurgy is the study of metals and their properties. The periodic table

has many metals, including iron. A handful of iron, a volume of 60 cm3,

weighs less than half a kilogram. Taking the same volume of neutron star

material in one hand would be a bone-breaking mass of over 1010 tonnes!

Neutron stars are objects which are all about extremes and in this thesis

the material properties of neutron stars are examined.

Neutron stars are born in the aftermath of a Type ii supernova, resulting

from the core collapse of a star with a mass greater than 8 M�1 (e.g., Lat-

timer & Prakash, 2004). The upper limit on the mass of the progenitor star

that would form a neutron star after its nuclear fuel is consumed depends

on the metallicity of the star; for a metal-poor star the upper limit is 25 M�.

This upper limit increases with metallicity (Heger et al., 2003). The newly

formed neutron star is hot, with temperatures in the core reaching in excess

of 1010 K (Page et al., 2006). After the neutron star is formed, it quickly

cools by neutrino emission and after about one day the temperature drops

to 109 − 1010 K, with neutrino cooling dominating for the next ∼103 years

(e.g., Shapiro & Teukolsky, 1986).

Neutron stars are extremely dense objects, with masses on the order of

∼1.5 M� and radii of ∼12 km (Lattimer & Prakash, 2004). The average

neutron star density is ∼4 × 1014 g cm−3, greater than the density of an

atomic nucleus, 2.3 × 1014 g cm−3. The masses of some neutron stars have

been determined from binary pulsar systems. The most precisely measured

neutron star masses range from 1.25 to 1.44M� (Thorsett & Chakrabarty,

1One M� is the mass of the sun, 1.9889×1033 g.
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1.1. Neutron Star Structure

1999). Recently, the highest neutron star mass has been measured to be

1.97 ± 0.04 M� in the binary millisecond pulsar system PSR J1614-2230

(Demorest et al., 2010).

The radii of neutron stars are harder to measure. Observing the thermal

spectra of neutron stars results in a measurement of the gravitational red-

shift, which depends on both the radius and the mass of the star. With one

observation the mass and radius can not become untangled. In recent work,

different spectroscopic observations of the same source have been used to

independently determine its mass and radius (Özel et al., 2010a). Neutron

stars are not only extreme in terms of their density, they also have extreme

magnetic fields, reaching more than 1015 Gauss (Kaspi, 2010).

For this discussion the structure of a neutron star is divided into six

regions: inner core, outer core, inner crust, outer crust, envelope, and at-

mosphere. These regions are displayed schematically in Figure 1.1 and are

briefly described below.

Inner Core: (ρcore) The majority of the neutron star mass is found within

the core (Lattimer & Prakash, 2004). The behaviour of the inner core

is not well understood as it is at super-nuclear densities (Lattimer &

Prakash, 2007). The inner core is thought to be composed of exotic

particles such as pions or kaons, or even strange quark matter (Lat-

timer & Prakash, 2004). The mass measurement of PSR J1614-2230

indicates that a transition to quark matter can occur within the core

(Özel et al., 2010b).

Outer Core: (∼2×1014 g cm−3 ≤ ρ ≤ ρcore) The outer core is a superfluid

and superconductor containing a mixture of nucleons, electrons and

muons (Lattimer & Prakash, 2004).

Inner Crust: (4.3 × 1011 g cm−3 ≤ ρ ≤ 2 × 1014 g cm−3) The inner and

outer crust together extend 1-2 km below the neutron star surface

(Lattimer & Prakash, 2004). The inner crust is bounded on the lower

density side by neutron drip, the point at which neutrons leaked out of

the atomic nuclei, at ρ = 4.3× 1011 g cm−3. Electrons, protons, nuclei

2



1.1. Neutron Star Structure

Inner Core

Outer Core

Surface: Atmosphere and Envelope

Outer Crust

Inner Crust

Neutron Drip
ρ=10

6

~10km

2×10

~100m

~1km

11

14

4.3×10

Figure 1.1: A schematic of the different regions of a neutron star. The
density of the regions, in units of g/cm3, are listed on the left side of the
diagram and the boundaries of the regions are labelled on the right. The
atmosphere and envelope contain a small fraction of the neutron star mass.
The outer crust is a lattice of nuclei. The inner crust begins at neutron
drip with free neutrons increasing in number as the density increases. The
outer core is a superfluid and superconductor. Details of the inner core are
unknown.
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1.2. Neutron Star Flavours

and free neutrons exist together within the inner crust. As the density

increases, so does the number of free neutrons (Shapiro & Teukolsky,

1986).

Outer Crust: (106 g cm−3 ≤ ρ ≤ 4.3 × 1011 g cm−3) The outer crust is a

solid lattice of nuclei, without any free neutrons (Shapiro & Teukolsky,

1986). In the cold catalyzed matter hypothesis the outer crust is a

body-centered cubic (BCC) of iron, 56Fe (Chamel & Haensel, 2008).

Envelope: The envelope is involved with thermal transport of energy (Lat-

timer & Prakash, 2004) and is also referred to as the neutron star

ocean. This layer of the neutron star is in the liquid phase and is

composed of electrons and nuclei (Potekhin, 2010).

Atmosphere: The atmosphere shapes the emerging thermal spectrum (Lat-

timer & Prakash, 2004). The bottom of the atmosphere is where the

optical thickness is close to unity (Potekhin, 2010). The composition of

the atmosphere depends on whether the neutron star has gone through

any accretion events. More on the expected composition of neutron

star atmosphere is discussed in Section 1.3.

It is the upper regions of the neutron star – the atmosphere, the envelope,

and especially the outer crust – which are the focus of this thesis, with

regards to the composition of each layer, as well as the mechanical properties

of the crust.

1.2 Neutron Star Flavours

Neutron stars were first theorized in 1934 as the transition from an ordinary

star via a supernova explosion (Baade & Zwicky, 1934). The high temper-

ature of their formation led to the expectation that neutron stars would be

observed in the form of X-ray sources (Chiu & Salpeter, 1964). However,

it was in the form of radio pulsars that neutron stars were first observed

in 1967 (Hewish et al., 1968). Since these first observations many different

4
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flavours of neutron stars have subsequently been observed. These differ-

ent types of neutron stars have been reviewed by Kaspi (2010), Mereghetti

(2001), and Popov (2008). The focus of this thesis is on young neutron stars.

The types of stars that will be discussed include radio pulsars, magnetars

– which includes anomalous X-ray pulsars (AXPs) and soft gamma-ray re-

peaters (SGRs) – X-ray dim isolated neutron stars, and strange or quark

matter stars. Each type is summarized below.

Radio Pulsars: These neutron stars are observed at radio frequencies.

They have regular periodic pulses, with the prototypical radio pulsar

being the Crab pulsar (Kaspi, 2010). Pulsars are observed to slow their

rotation period over time. This ‘spin-down’ is a result of the magnetic

field slowing down the rotation, releasing energy (Kaspi, 2010).

Magnetars: Magnetars are slowly rotating neutron stars with extremely

strong magnetic fields, B > 1014G (Woods & Thompson, 2006). The

high magnetic field is the source of the observed emission (Mereghetti,

2008). Magnetars can be divided into two subclasses: Anomalous

X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs). The

AXPs are named for their pulsed X-ray emission. The SGRs are known

for their short bursts, but in three sources giant flares have also been

observed. These giant flares emit more energy than the short bursts,

and after this massive release of energy the light curves display a decay

into a softer energy tail with pulsations (Woods & Thompson, 2006).

X-ray Dim Isolated Neutron Stars: There are seven confirmed X-ray

dim isolated neutron stars. These neutron stars are young and, be-

cause of their low luminosity, they are nearby with distances of ∼
500 pc, or closer (Kaplan, 2008). X-ray dim isolated neutron stars have

thermal X-ray spectra, with no indications of a non-thermal compo-

nent, and they do not have radio counterparts (Kaspi, 2010).

Strange Stars: Strange stars may form if at high pressures there is a

phase transition from normal matter to quark matter(Alcock & Olinto,

1988). Unlike normal neutron stars, where the equation of state has
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pressure vanish as the density goes to zero, strange stars, like most

solid matter, are self-bound and the pressure vanishes at a finite den-

sity (Lattimer & Prakash, 2001). The surface of a strange star could

either be bare or have a thin crust of material which is the same as

the outer crust of a neutron star, where there are no free neutrons

(Alcock & Olinto, 1988). Currently, there is no strong evidence for

the existence of strange stars.

The composition of the upper regions of the neutron star is calculated

in this thesis for the case where the neutron star has not undergone any

accretion events, from either fallback or the interstellar medium. This is

an unphysical situation whose closest approximation is a X-ray dim isolated

neutron star. The compositions are calculated using various cooling curves,

including a cooling curve appropriate for strange matter stars. Though the

case of a completely non-accreting neutron star is strictly speaking unphys-

ical, the mechanical properties of such a crust can be used as a limiting case

when considering radio pulsar glitches, SGR giant flares and gravitational

wave emission.

1.3 Neutron Star Atmospheres

The thermal emission of a neutron star is embedded with the signature of the

composition of the atmosphere. In order to understand the thermal emission,

these observations have been fit with black body models. Analysis of the

fits have indicated that the observations deviate from a pure black body

spectrum (Zavlin & Pavlov, 2002). Subsequently, atmosphere compositions

such as hydrogen, carbon, as well as silicon have been used to model the

observed thermal emission. The composition of the neutron star atmosphere

depends on the details of accretion, as well as nuclear reactions occurring

on the surface.

In a situation where there has not been many accretion events, an iron

atmosphere would be expected for a young hot neutron star (Rajagopal

et al., 1997). After a neutron star is formed, light elements such as hydrogen
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and helium may be found on the surface. These lighter elements could

then undergo nuclear reactions, depleting their abundance. Thus, without

additional accretion or convective mixing, an iron atmosphere would be

produced (Chiu & Salpeter, 1964).

Due to gravitation settling, the atmosphere of a neutron star which has

undergone accretion would be composed of the lightest isotope accreted (Za-

vlin & Pavlov, 2002). For example, as hydrogen is the lightest element, any

accreted mixture containing hydrogen, to an abundance for it to be optically

thick, would result in a hydrogen atmosphere. The neutron star atmosphere

can change with time as nuclear reactions occur. The hydrogen in the at-

mosphere can diffuse to a lower depth and become depleted due to proton

capture reactions (Chang et al., 2010). This diffusive nuclear burning could

lead to a helium atmosphere, but recently a neutron star with a carbon at-

mosphere has been observed (Ho & Heinke, 2009), indicating that helium

can be consumed in a similar process as hydrogen. Heavier atmospheres

have been examined, such as silicon models. Silicon atmosphere models

have been used to describe the thermal spectra of the isolated neutron star

RX J185635-3754 (Pons et al., 2002; Walter et al., 2004). This silicon at-

mosphere could result from nuclear reactions within the crust, as will be

explored in Chapter 2.

1.4 Crustal Cracking

The outer crust of a neutron star is at subnuclear densities and as a result

is composed of a lattice of nuclei. For this study of the properties of the

neutron star crust, magnetic fields are not applied and accretion is ignored;

material with these properties is known as cold catalyzed matter. In the

case of cold catalyzed matter the outer crust would be a body-centered

cubic (BCC) lattice of 56Fe (Chamel & Haensel, 2008). Stresses, either due

to rotation effects or the magnetic field, applied to the neutron star crust

could induce crustal cracking events, which are known as ‘starquakes’, or

‘crustquakes’.

Observational phenomena which have been attributed to starquakes as a
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possible explanation include pulsar glitches and SGR bursts. The properties

of the crust are also important for the emission of gravitational waves from

the neutron star. Observations of events associated with starquakes have

been found to share similar statistical properties to terrestrial earthquakes

(Cheng et al., 1996). In order to determine the role that crustal cracking may

play on these observed phenomena the shear modulus and breaking strain of

the crustal material must be determined. The breaking strain indicates the

degree of deformation at which the material yields. The shear modulus is

the ratio of the applied shear stress to the degree of shear strain in the linear

regime. The shear modulus is also dependent on the direction in which the

shear stress is applied. The mechanical properties of the crust not only have

implications for starquakes but also for the possibility of mountains forming

on the neutron star. These mountains on the surface could be a source of

gravitational waves. The neutron star phenomena of glitches, SGR bursts,

as well as gravitational waves are discussed in Sections 1.4.1, 1.4.2, and 1.4.3,

respectively.

1.4.1 Glitches

Glitches are phenomena that have been observed in timing observations

of radios pulsars and have also been observed in anomalous X-ray pulsars

(AXPs). The rotation of neutron stars slows down due to magnet dipole

emission. A glitch is an event where there is a sudden increase in the rotation

frequency and then the period decays back toward the pre-glitch rotation

period, but the period derivative changes (Lyne et al., 2000). A schematic

of an idealized glitch is shown in Figure 1.2. In the case of AXP glitches,

the glitch has on occasion been observed to coincide with a burst event

(Woods & Thompson, 2006). Two models which have been used to explain

glitches are the starquake model and the other is the superfluid vortex model

(Chamel & Haensel, 2008). These two models are discussed below.

In the starquake model the glitches are due to a change in the moment of

inertia of the neutron star resulting from the crust cracking and readjusting

its shape (Chamel & Haensel, 2008). The discussion of starquakes as applied
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Figure 1.2: A schematic of a pulsar glitch. The rotation frequency of a
neutron star typically decreases with time. The glitch is the point where
there is a sudden increase the rotation frequency, but eventually the neutron
star returns to the pre-glitch rotation frequency.
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to glitches follows Ruderman (1969). The strain, at the point of cracking,

of the neutron star surface is given by:

φ =
7R5

8GM
(ω2
I − ω2) sin2 2θ, (1.1)

where ωI is the initial angular velocity, ω is the current angular velocity, θ

is the polar angle, R is the radius and M is the mass of the neutron star.

As the neutron star rotation slows, the shape of the star changes from an

oblate to a more spherical shape. This induces a stress on the crust until

the breaking strain is reached. By approximating the interior of the neutron

star as having constant density the change in the surface of the neutron star

as the maximum breaking strain, φm, is reached due to the rigidity, or shear

modulus of the crust, is given by:

δR(θ)

R
∼ 95µφmR

7GMρ

[
1−

(
Ri
R

)7
]

(1− 3 cos2 θ), (1.2)

where Ri is the inner radius of the crust, µ is the shear modulus, and θ is the

polar angle. After the crust yields to the applied stress there is a decrease in

the moment of inertia, and thus an increase in the angular frequency. This

change in the angular frequency, ∆Ω, is related to the change of the moment

of inertia through:

∆Ω

Ω
=
−∆I

I
= 2

δR(θ = π/2)

R
, (1.3)

where ∆I is the change in the moment of inertia. With the starquake model

of neutron star glitches, it is possible to predict the time between subsequent

glitches. The glitch amplitude is related to the time between glitches as:

∆Ω

Ω
< ε

δt

τ
, (1.4)

where ε is proportional to Ω2, τ = Ω̇/2Ω, and δt is the time between glitches

(Chamel & Haensel, 2008). The starquake model has been found to be con-

sistent with some observations, for example the Crab pulsar, but it fails to
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predict the time interval of glitches for the Vela pulsar (Shapiro & Teukolsky,

1986).

Another interpretation of the pulsar glitches considers not only the solid

outer crust region, but also the superfluid interior of the neutron star, the

superfluid vortex model. In this interpretation of pulsar glitches angular

momentum is transferred between these two regions (Chamel & Haensel,

2008). The following discussion follows that in Lyne et al. (2000). The

superfluid within the neutron star is rotating in quantized vortices which

are pinned to the crust. As the rotation of the neutron star changes with

time, the superfluid region rotates at a different rate than the crust. With

these two regions rotating at different rates, the pinned vortices become

unpinned to the crust. This unpinning releases angular momentum to the

crust, resulting in a glitch. It is also possible that the unpinning of the

vortices could lead to the crust cracking.

1.4.2 Bursts from Soft Gamma-ray Repeaters

The SGRs are classified by the observations of short bursts of low-energy

gamma-rays which can reach a peak luminosity of 1041 erg s−1 (Woods &

Thompson, 2006). There have been eleven observed SGRs, 7 confirmed and

4 candidates2. Three of these 11 sources have been observed to produce

giant flares. The giant flares are events which emit more energy than the

short bursts and are observed to decay into a softer-energy tail which has

pulsations (Woods & Thompson, 2006). The first giant flare was observed

on March 5, 1979 from SGR 0526-66 (Mazets et al., 1979). This giant flare

had a peak luminosity of around 5× 1044 erg s−1(Helfand & Long, 1979). In

the decay of the burst, oscillations with a periodicity of ∼8 s were discovered

in the gamma-ray emission (Terrell et al., 1980). The second giant flare to

be observed was from SGR 1900+14 on August 27, 1998; this flare had a

periodicity of 5.126 s in the decay tail (Hurley et al., 1999). The giant flare

on December 27, 2004 from SGR 1806-20 was the third giant flare observed

and at its peak was ∼100 times more energetic than the August 1998 flare

2Data from the McGill SGR/AXP online catalog, http://www.physics.mcgill.ca/ pul-
sar/magnetar/main.html
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and the tail had a periodicity of 7.56 s (Hurley et al., 2005). Both the giant

flares with the subsequent oscillations and the bursts are believed to be

associated with crustal events.

These bursts from SGRs can be interpreted as being due to stresses

placed on the crust from the magnetic field inducing crustal cracking (Chamel

& Haensel, 2008). The magnetic field required to produce a burst is related

to the breaking strain as,

B = 1015
(
ESGR

1041erg

)−1/2 ( l

1km

)(
φm

10−3

)
G, (1.5)

where ESGR is the energy of the burst and l is the length of the fracture

(Thompson & Duncan, 1995). As on Earth, such a large event on the surface

would likely cause vibrations to propagate throughout the star (Chamel &

Haensel, 2008).

1.4.3 Gravitational Waves

A neutron star symmetric about its rotation axis does not radiate gravita-

tional waves, but a deformation on the surface of the neutron star would

result in the emission of gravitational waves (Chamel & Haensel, 2008). An-

other signature of an asymmetrically shaped neutron star would be in the

free precession of the star (Stairs et al., 2000). In the context of the me-

chanical properties of the crust, the emission of gravitational waves due to a

deformation on the crust would be the focus of this study. The amplitude of

the quadrupole moment, Qmax22 , depends on the breaking strain of the crust,

Qmax22 ≈ 1038g cm2
(
φm

10−2

)
, (1.6)

where φm is the breaking strain of the crust (Haskell et al., 2006). The

gravitational waves emitted from the neutron star would be observed at

Earth to have a strain amplitude of

h =
16

5

(
π

3

)1/2 GQ22 Ω2

d c4
, (1.7)
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where Ω is the angular frequency and d is the distance to the neutron star

(Ushomirsky et al., 2000). The strain amplitude of a neutron star can be

predicted based on the mechanical properties of the crust. Observation up-

per limits have been placed on the gravitational wave strain amplitude of 78

radio pulsars using the Laser Interferometer Gravitational Wave Observa-

tory (LIGO) (Abbott et al., 2007). A detection of gravitational waves from

a neutron star, with a comparison to predicted strain amplitudes, would put

constraints on the strength and structure of the crust.

1.5 Current Crustal Understandings

The strength of the crust has been examined using various methods: ex-

amining the conditions required for shear waves, using molecular dynamics

simulations and other methods including perturbation theory. The break-

ing strain of a neutron star has been predicted to range between φm =

10−5 and φm = 10−2, and the shear modulus has been predicted to be

µ = 1030dyne cm−2 (Smoluchowski, 1970). The breaking strain prediction

in Smoluchowski (1970) is based on arguments that the neutron star crust

would be expected to be impure in composition and also contain various

defects. As a result, the crust would be weaker than theoretical calculations

of perfect crystals of less dense, terrestrial matter (see Kittel, 1976). The

shear modulus prediction results from treating the crust as a Coulomb lattice

which has the approximate relationship of µ ∼ (Ze)2n4/3, where the charge

Z ranges between 30 and 50, and n is the number density (Smoluchowski,

1970).

In order to understand what happens to the crust at the point in which

it yields to the applied stresses, Jones (2003) compared the nature of the

neutron star fault planes to that of tectonic earthquakes. In Jones (2003)

the shear modulus was assumed to be µ = 1030 dyne cm−2, near neutron

drip for a BCC lattice. The pressure exerted by the neutron star is found

to be orders of magnitude larger then the shear modulus, and as a result

the crust can not support a void for a long enough time-span. Jones (2003)

finds that brittle fractures cause by Maxwell stresses are not expected to
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occur in the neutron star crust, though this work was calculated for a case

of a pure crust.

Recently, molecular dynamics simulations have been performed in order

to understand the crust of an accreting neutron star, which would contain

impurities. The composition of an accreting crust was calculated by Gupta

et al. (2007). As a result of these simulations, it was found that chemical

separation occurs in the crustal regions, with a liquid ocean being enhanced

with low atomic elements compared to the solid crust. The chemical sep-

aration could then have an impact on the shear modulus (Horowitz et al.,

2007). This chemical phase separation analysis was followed up with semi-

analytic Monte Carlo calculations that were able to reproduce the same

chemical compositions in the liquid and solid regions of the crust (Medin &

Cumming, 2010).

Molecular dynamics simulations have also been used to calculate the

breaking strain of an accreted neutron star crust in Horowitz & Kadau

(2009). The breaking strain of this type of crust was found to be close to

φm = 0.1 and could support a mountain on the neutron star which would

produce gravitational waves detectable by LIGO. It has also been found by

using molecular dynamics simulations that the breaking stress of the crust

is dependent on the temperature of the simulation (Chugunov & Horowitz,

2010)

The shear modulus has also been calculated using thermodynamic per-

turbation theory, as in Baiko (2011). With this type of calculation, both the

classical and quantum regimes of ion motion are considered, whereas molec-

ular dynamics simulations only consider the classical regime. The quantum

effects are found to only become important for light elements which are at

high densities.

1.6 Methods Employed

In order to investigate the properties of the neutron star crust, various meth-

ods have been employed in this thesis. The isotopes in the crust interact with

each other via a Yukawa, or screened Coulomb, potential. A nuclear reaction
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network was used in the calculation of the isotopes of the crustal compo-

sition. In order to investigate the mechanical crustal properties, molecular

dynamics simulations were employed. The Yukawa potential, nuclear reac-

tion networks and molecular dynamics are briefly discussed below.

1.6.1 The Yukawa Potential

Due to the high densities and pressures of the neutrons in the crust, the ions

are pressure ionized and interact via a screened Coulomb or Yukawa poten-

tial. The electrons are relativistic and degenerate. The Yukawa potential is

given as:

Vij =
ZiZke

2

r
e−κr, (1.8)

where Zi and Zj are the ion charges, r is the pair separation and κ is the

inverse electron screening length. The inverse screening length can be given

by the inverse Fermi screening length, κ = 2α1/2kF /π
1/2, where kF is the

electron Fermi momentum and α is the fine structure constant. The inverse

screening length is parameterized by introducing the parameters λ = κa,

where a = n−1/3 is the characteristic particle spacing.

Yukawa systems have been studied extensively and the work of Robbins

et al. (1988) will be referred to frequently in this work. In Robbins et al.

(1988) the phase diagram and dynamics of a Yukawa system were studied

using molecular dynamics. The study explored the melting transition of the

Yukawa system, as well as the transition from face-centered cubic (FCC)

to body-centered cubic (BCC) crystal phases. The melting transition in

Robbins et al. (1988) will be compared to current calculations in Chapter 5.

1.6.2 Nuclear Reaction Network

In Chapter 2, a nuclear reaction network is used to calculate crustal compos-

tions. Such nuclear reaction networks are discussed in Hix & Meyer (2006).

A nuclear reaction network is composed of a system of first-order differen-

tial equations. The differential equations describe the abundance of each

isotope considered in the network. Sparse matrices are often used in these
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types of calculations in order to decrease memory usage and computational

time. The sparse matrices are a result of neglecting reactions between cer-

tain species and instead focusing on those reactions which occur at faster

rates, such as the capture or release of neutrons, protons, α-particles, or

photons. These differential equations are integrated with the isotope abun-

dances updated for the next time-step of the calculation.

1.6.3 Molecular Dynamics

This thesis uses molecular dynamics simulation to investigate the mechani-

cal properties of the crust. The simulations are performed with the software

LAMMPS, the Large Atomic/Molecular Massively Parallel Simulator, which is

discussed in Chapter 3. The technique of molecular dynamics is discussed

in depth in Allen (2004). The term, molecular dynamics, refers to solving

Newton’s equations of motion for a system of particles. The particles in the

systems of interest for this thesis interact via the Yukawa potential. With an

initial configuration of particle positions the particle motions are calculated

with a velocity-Verlet algorithm (Swope et al., 1982). For each particle,

the position, velocity, and acceleration is calculated, and with this data the

thermodynamic properties of the system can be determined. The molecular

dynamics simulations completed in this work make use of neighbour lists in

order to decrease the computational time for each calculation. Instead of

calculating the potential between all the particles in the system, the neigh-

bour list identifies the particles within a specified distance from the particle

of interest. It is only the particles within the neighbour list for which the

potential is calculated. The parameters for the cut-off length used for the

neighbour list are examined in Chapter 4.

1.7 Thesis Goals

The main focus of this thesis is to investigate the properties of a non-

accreting neutron star crust. The first part of this investigation of neutron

star properties is the calculation of the composition of the non-accreting
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crust. This calculation of the crust composition is discussed in Chapter

2, which also discusses the composition of the atmosphere. These crustal

abundances are used with molecular dynamics for an investigation of the me-

chanical properties of the crust. The molecular dynamics simulation package

LAMMPS and the characterization of the output are discussed in Chapter 3.

The cut-off radius used in the simulations is covered in Chapter 4. The

phase transition of a Yukawa system is calculated in Chapter 5 and com-

pared to that of Robbins et al. (1988). Before performing the molecular

dynamics simulations on the crustal compositions, the shear modulus and

breaking strain of a pure FCC and BCC crystal are calculated in Chapter 6.

The same types of simulations are then applied to the crustal compositions

in Chapter 7. The results of the impure crust calculations are compared to

observations linked to crustal cracking in Chapter 8 in order to determine

if fracturing is a workable model for some of the observed phenomena in

neutron stars. Finally Chapter 9 summarizes and concludes what has been

found in this thesis, and what the future may bring.

17



Chapter 2

Compositional Freeze-Out of

Neutron Star Crusts3

2.1 Introduction

In order to determine the detailed composition of the envelope and atmo-

sphere, the chemical evolution as nuclear reactions abate are calculated for

three different cases of neutron star crusts. For all of these calculations, the

crustal properties are investigated for neutron stars without fallback accre-

tion. The three cases are distinguished by the method of cooling: neutron

star cooling via a modified Urca process without the thermal influence of

the crust, and direct Urca process with both a thick crust and a thin crust.

The Urca process is a method of neutron star cooling via neutrino emission

due to beta decay (Shapiro & Teukolsky, 1986).

The neutron star crust extends 1-2 km below the surface inward to a

density of around 1014 g/cm3. The neutron star envelope is defined to be

the upper layer of the crust that throttles the heat flow running from a

density of 107 g/cm3 outward (Hernquist & Applegate, 1984; Heyl & Hern-

quist, 2001). The atmosphere lies at relatively a low density and comprises

a column density of about 1 g/cm2. Though the envelope and atmosphere

contain a negligible amount of the neutron star mass (or the mass of the

crust for that matter), they both play a crucial role in shaping the observed

properties of neutron stars. In order to fully interpret the observed emission,

it is important to understand the crustal composition, especially the lightest

trace elements that can float to the neutron star surface and form the en-

3A version of this chapter has been published. Hoffman, K. & Heyl, J. (2009) Compo-
sitional freeze-out of neutron star crusts MNRAS 400, 1986.
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velope and atmosphere. As the atmosphere shapes the emergent spectrum,

understanding the composition could yield predictions of spectral features in

the neutron star thermal emission. Since the envelope influences the trans-

port and release of thermal energy, a change in its composition also changes

the thermal conductivity and inferred surface temperature of the neutron

star (Lattimer & Prakash, 2004). Trace light elements among the calculated

isotopes may have enough time to float to the surface of the neutron star

before the layer crystallizes and form the atmosphere or envelope.

Without fallback from the supernova or other accretion, a neutron star

is expected to have an atmosphere of iron-group elements (Chiu & Salpeter,

1964). An example of a family of neutron stars which are closest to this

idealized situation are the X-ray dim isolated neutron stars. The isolated

neutron star RX J185635-3754 has been studied extensively. Its surface

composition was estimated by fitting the X-ray spectra to various model at-

mospheres, including models attributed to fallback accretion. These models

have included: blackbody, hydrogen, helium, iron, silicon-ash atmospheres

(Pons et al., 2002), and later extended to two blackbodies, pure silicon, low-

iron silicon ash and magnetic hydrogen atmospheres (Walter et al., 2004).

An atmosphere model deviates from a blackbody resulting a different deter-

minations of the effective temperature of the star and the different atmo-

sphere compositions also have different opacities (Zavlin & Pavlov, 2002).

The model atmospheres that best fit the spectrum of RX J185635-3754 are

those with heavy elements, though the predicted absorption lines associated

with the atmosphere composition are not seen (Pons et al., 2002; Walter

et al., 2004).

After the star has cooled to the point where the nuclear reactions are

quenched, the mass fractions in the crust are calculated. These crustal abun-

dances have an effect on the atmospheric composition. The nuclear reactions

quench when the cooling timescale is shorter than the inverse of the reaction

rate. The mass fractions are calculated by using the 489 isotope reaction

network torch (Timmes et al., 2000), for each of the cooling cases. The

results from the modified Urca case are compared to analytic calculations

of the freeze-out of the neutron star crust using the nuclear statistical equi-
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librium program nse (Seitenzahl et al., 2008). The compositions calculated

in this chapter are used later in the study of the mechanical properties of

the neutron star crust in Chapter 7.

2.2 Programs Utilized

In order to calculate the composition of the neutron star crust the programs

nse (Seitenzahl et al., 2008) and torch (Timmes et al., 2000) were used.

Both of these codes were written by Frank X. Timmes and are available on

his website4. The nse code calculates the abundances for a system in nuclear

statistical equilibrium. The torch code is a nuclear reaction network which

calculates the abundances of isotopes of a system that is not necessarily in

nuclear statistical equilibrium. Each of the codes uses the cooling curves

and the density of the neutron star crust as input. These two codes are

discussed below.

2.2.1 Nuclear Statistical Equilibrium

At high temperatures and densities, the nuclei may be in nuclear statistical

equilibrium (Shapiro & Teukolsky, 1986). The code nse (Seitenzahl et al.,

2008) calculates the abundances of isotopes using the nuclear statistical Saha

equations. Nuclear statistical equilibrium relations have the form:

(Z,A) + p ⇀↽ (Z + 1, A+ 1) + γ (2.1)

(Z,A) + n ⇀↽ (Z,A+ 1) + γ, (2.2)

where Z is the atomic charge and A is the atomic mass. These reactions

maintain a balance. Here, only reactions of the simplified form:

A ⇀↽ B + C, (2.3)

4http://cococubed.asu.edu/code pages/codes.shtml
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will be discussed. For a reaction of the type A → B + C the nuclear Saha

equation is

nBnC
nA

=
1

h3

(
2π mB mC kT

mA

)3/2 GBGC
GA

e−Q/kT , (2.4)

where ni is the number density of the atom, mi is the mass, Q is the dif-

ference of the binding energies: Q = (mB + mC − mA)c2, and Gi is the

statistical weight:

Gi =
∑

(2Ir + 1)e−Er/kBT , (2.5)

where Ir is the spin of the rth excited state and Er is the energy above the

ground state. The nse code contains the reaction rates for 47 isotopes up to

nickel. The code takes the temperature, density and electron fraction, Ye,

as initial arguments and calculates the abundances of the isotopes in these

conditions.

2.2.2 Nuclear Reactions

The torch (Timmes et al., 2000) code is a nuclear reaction network which

contains the reaction rates for 489 isotopes, up to technetium. The abun-

dances of the various isotopes are calculated at a specified density, tempera-

ture and burning time. The nuclear reaction network construction is covered

in detailed in Timmes et al. (2000) and is summarized below.

The reaction network begins by determining the mass fraction, X, of

an isotope, i: Xi = ρi/ρ and the corresponding molar abundance of the

isotope: Yi = Xi/Ai, where ρi is the mass density of the specific isotope, ρ

is the total mass density, and Ai is the mass number of the isotope. From

the continuity equation of the isotope, a set of partial differential equations

is constructed:
dYi
dt

+∇ · (YiVi) = Ṙi (2.6)

where Ṙi is the total reaction rate and Vi is the mass diffusion velocity,

which is set to zero. As a result the reaction network is composed of a set
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2.3. Cooling Curves

of ordinary differential equations:

dYi
dt

= Ṙi. (2.7)

This system of ordinary differential equations is integrated using a Bader-

Deuflhard method coupled with MA28 sparse matrices. Three methods for

integrating and eight different matrix packages are compared in Timmes

(1999). This code was adapted to read cooling curve files, which contain the

temperature and time step, for a specified density. The calculation starts

in nuclear statistical equilibrium, but subsequent steps use the abundances

calculated in the previous step as initial conditions.

2.3 Cooling Curves

Three different cooling curves were used in order to calculated the crustal

abundances. These cooling curves included a modified Urca process, cooling

of a thick crust, and the cooling curve for a thin crust. Each of the cooling

curves start near a temperature of 1010 K and cool until the nuclear reactions

are quenched.

In the case of the modified Urca process the nuclear reactions are quenched

before a year has past. The core temperature and the cooling time are de-

termined by the modified Urca equation (Shapiro & Teukolsky, 1986):

∆t = 1yrT−69 (f)

{
1−

[
T9(f)

T9(i)

]6}
, (2.8)

where T9(f) is the temperature of the outer core (Tc) in units of 109 K.

For simplicity the temperature of the crust is assumed to be isothermal at

densities above 107 g/cm3 (e.g. Heyl & Hernquist, 2001).

As the crust of the neutron star cools via the diffusion of heat to the

interior in the form of a cooling wave, the surface of the star is expected to

remain hotter than the core until the heat reservoir of the crust has been

exhausted (Lattimer et al., 1994). The thick and the thin crust cooling

models take into account this thermal disconnect between the crust and
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2.3. Cooling Curves

core, whereas the modified Urca model does not.

The cooling curve for a thick crust is based on the model in Lattimer

et al. (1994). In this model the core is cooling rapidly and the cooling wave

takes 15 years to diffuse through the crust. This model is appropriate for a

normal neutron star. The nuclear reactions in the crust are quenched before

the cooling wave passes through the crust, thus the core cooling does not

affect the reactions in the crust. The cooling curve used in this work is

taken from Figure 3 in Lattimer et al. (1994), where the hottest parts of

each curve set the age and temperature of the neutron star.

The thin crust cooling curve is appropriate for a strange star and the

expression for the cooling curve is described next. In the thin crust case

the core is cooling via the direct Urca process, where the temperature re-

lation is t ∼ 20 T−49 s (Lattimer et al., 1991). The crust of the thin crust

neutron star is cooled by crustal bremsstrahlung. The cooling of the crust

is determined from the crustal luminosity and the total thermal energy

of the crust. The luminosity of crustal bremsstrahlung goes as Lbrems ∼
(5× 1039 erg/s)(Mcr/M�), where Mcr is the mass of the neutron star crust

and the total thermal energy of the crust is Ucr = 3
2kT

Mcr
Amu

(Shapiro &

Teukolsky, 1986), where A is the average atomic mass and mu is the mass

unit. The crust of a strange star reaches a density of a few times 1010 g/cm3,

instead of neutron drip in the case of a normal neutron star (Stejner & Mad-

sen, 2005). For a crustal density of 4.8×1010 g/cm3 the equilibrium nucleus

is 80Zn (Shapiro & Teukolsky, 1986). Using Figure 1 of Brown et al. (1998),

the time scale for the cooling wave to pass through the crust is on the order

of a month. As a result, for the thin crust case the crustal cooling is domi-

nated by the crustal bremsstrahlung for the first month. After a month has

passed the direct Urca process dominates. The temperature of the crust can

thusly be described as

T = Tbrems(e
−(t/month)2) + TDU (1− e−(t/month)2), (2.9)

where Tbrems is the temperature of crustal bremsstrahlung and TDU is the

temperature at a specific time step using the equation for direct Urca cooling.
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2.4. Crustal Mass Fraction Calculations

The Tbrems starts at a temperature of 1010 K and decreases by 0.1% each

step. The time, or age, of the star is given by the crustal bremsstrahlung

equation for a thin crust

t =
3

10
kb

M�
Amu

2× 10−31
s K

erg
T−59

[
1− T 5

10

]
(2.10)

for a neutron star starting at a temperature of 1010 K, where T10 is the

temperature in units of 1010 K.

The cooling curves for the three cases are shown in Figure 2.1. For

densities above 107 g/cm3 the crust is assumed to be isothermal and Figure

2.1 reflects the cooling curves appropriate for densities at 107 g/cm3 and

greater. For densities below 107 g/cm3 the input temperature is interpolated

between the core (Tc) and the surface (Ts):

log(T ) =

[
log(Tc)− log(Ts)

7

]
log(ρ) + log(Ts), (2.11)

where the surface temperature is given as: Ts = (10 K1/2Tc)
2/3 (Shapiro &

Teukolsky, 1986).

2.4 Crustal Mass Fraction Calculations

For each of the densities investigated, the system within torch is started

in nuclear statistical equilibrium. The temperature and the length of time

at which the system burns is determined by the cooling curve. After the

reactions have quenched the abundances at a specific density are calculated

and the isotopes which are sufficiently abundant to compose the atmosphere

and envelope are determined.

In order for an isotope to form the atmosphere it needs to have a surface

density greater than 1 g/cm2 ∼ σT /mp, the ratio of the Thompson cross-

section to the mass of the proton. The first step in determining which

isotopes rise to the surface is to calculate the total pressure at the density of

the calculation. For densities greater than 106 g/cm3 the pressure is given
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Cooling Curves
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Figure 2.1: The three different cooling curves used for the abundance calcu-
lations. The methods for cooling include the modified Urca, thick crust and
a thin crust. These curves are appropriate for densities at 107 g/cm3 and
above. For densities less than 107 g/cm3, the curves would be interpolated
between the surface temperature and the temperature at 107 g/cm3. The
modified Urca equation is given in Shapiro & Teukolsky (1986). The thick
crust is taken from Lattimer et al. (1994) and is appropriate for a normal
neutron star. The cooling curve for the thin crust is presented in this work
and is appropriate for a strange star.
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2.4. Crustal Mass Fraction Calculations

by:

P =
1.2435× 1015

µ
4/3
e

(
ρ

1 g/cm3

)4/3

dyne/cm2, (2.12)

where it is assumed that relativistic electrons dominate the pressure and

that µe = 2. For the case where a density of 106 g/cm3 is used in the mass

fraction calculation the pressure is given by:

P = 1.42180× 1025φ(x) dyne/cm2, (2.13)

where

φ(x) =
1

8π2
[x
√

1 + x2(2x2/3− 1) + ln(x+
√

1 + x2 )] (2.14)

and x = pf/mec, the ratio of Fermi momentum (pf ) to the product of the

mass of the electron and the speed of light (Shapiro & Teukolsky, 1986).

With the pressure calculated the next step is to calculate the column

density between the particular density and the neutron star surface: P/gNS,

where gNS is the surface gravity given by:

gNS =
GM

R2

(
1− 2GM

c2R

)−1/2
. (2.15)

For a 10 km and 1.4 M� neutron star the surface gravity is 2.43×1014 cm/s2.

Finally, the minimum mass fraction required for an isotope to rise to form

the atmosphere is given by the ratio of 1 g/cm2 to the calculated column

density.

For a mass fraction to be sufficient to form the envelope the isotopes

which have abundances on the order of parts per million over the entire

crust are of interest. On the other hand, in the atmosphere the isotopes

need to have abundances on the order of parts per billion or less. Using a

typical column density of about 4× 109 g/cm2 and 1 g/cm2 for the envelope

and atmosphere, respectively, the minimum mass fractions required for an

isotope to float to form the envelope is calculated by scaling according to

column densities.
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2.5. Timescales: Freeze-Out

2.5 Timescales: Freeze-Out

To calculate the neutron star freeze-out three different timescales need to

be considered: the cooling time (τc, for example Eq. (2.8) for the modified

Urca case), the settling time (τs), and the nuclear reaction timescale (τrxn).

The composition of the neutron star depends on the timescales; for the case

τrxn < τc < τs, the particular species are expected to be in nuclear statistical

equilibrium (NSE); for τc < τrxn < τs the particular nuclear reactions are

quenched – the star is cooling faster than the reactions can occur; for the

case τs < τrxn < τc the isotopes can float up faster than the reactions bring

them to NSE. For the case τs < τfreeze the light isotopes can float all the

way up to the top before the layer freezes.

The time when the particular layer of the neutron star freezes is deter-

mined by comparing the potential energy between the ions that compose

the crust to their kinetic energy (Shapiro & Teukolsky, 1986),

Γ =
Potential Energy

Kinetic Energy
=

(Z e)2

ra T kb
, (2.16)

where e is the electron charge and ra is the ion radius such that the product

of (4/3)πr3a and the ion number density is unity. When Γ > 180 the layer

freezes out, or crystallizes, and the light species can no longer float upward.

2.5.1 Settling Timescale

As well as determining the lightest isotopes which are optically thick, it is

important to calculate if the isotopes can even reach the surface before the

layer freezes. The gravitational settling could also be so efficient that the

light isotopes could float up before the layer cools and the nuclear reactions

quench. Thus, it is important to estimate the settling time of the isotopes

of interest.
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2.6. Results

Brown et al. (2002) calculated the sedimentation or settling timescale

for a neutron star atmosphere,

τs ≈ 105s

[
Z3.9
1 Z0.3

2 ρ1.35

A1.8
1 g142T 0.3

7 (A2Z1 −A1Z2)

]
. (2.17)

This is an estimate of the time for a nuclide to settle down over a pres-

sure scale height — a negative value means that the nuclide ascends. This

timescale is typically around a few years for the envelope and about 106 yr for

the outer crust (ρ < 1012 g cm−3) for Silicon-28 in a background of Iron-56.

In particular, until the bulk of the Nickel-56 has decayed the settling time

for Silicon-28 is much larger because A2Z1 − A1Z2 � 1; consequently, the

nucleons differentiate gravitationally after the nuclear reactions effectively

cease, i.e. τrxn < τs.

2.5.2 Reaction Timescale

In the modified Urca cooling case the reaction rate timescales were calcu-

lated using the subroutines in torch. Each of the reaction rate calculations

depends only on the input temperature and the densities of the various

species. As there are many different ways to make a specific isotope, e.g.
28Si, the rates which lead to the creation of the isotope are added together

to get the timescale of the reaction rate, τrxn.

In order to calculate the abundance of the alpha particles and the other

species the nuclear statistical Saha equations as implemented in nse are

used. A particular species is assumed to freeze out of equilibrium when the

reaction timescale exceeds the cooling timescale. The abundance in nuclear

statistical equilibrium at the freeze out temperature gives an alternative

estimate of the final abundance of the nuclides.

2.6 Results

In order to determine the expected composition of the neutron star crust

and atmosphere, in the cases of the modified Urca and the thick crust, a
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density of 107g/cm3 was examined. For the thin crust a density of 107g/cm3

would crystallize before any of the isotopes had time to reach the surface,

so a density of 106g/cm3 was examined. The higher density regions of the

crust freeze before the lower density, thus the isotopes would have more

time to float to the surface from the lower density regions of the crust.

The results from the nuclear reaction network are compared with those of

a semi-analytic freeze-out calculation in the modified Urca case. Due to

gravitational stratification the lightest isotope which can reach the surface

would form the atmosphere. Each of the three cases are discussed below,

with Table 2.1 summarizing the lightest isotopes which could form the at-

mosphere as well as the top three isotopes with the highest mass fractions

which thus compose the crust.

2.6.1 Case 1: Modified Urca

Mass Fractions

At a density of 107 g/cm3 the corresponding pressure is: 1.1×1024 dyne/cm2.

At this pressure the column density to the surface is: 4.4 ×109 g/cm2. The

resulting minimum mass fraction required for an isotope to be optically thick

on the surface is: 2.3×10−10 at this density.

Isotopes with a mass fraction greater than 2.3×10−10 will have a surface

density of 1 g/cm2. The lightest elements to be optically thick on the surface

and have time to reach the surface before crystallization of the layer occurs

are shown in Figure 2.2, where the horizontal line indicates the minimum

mass fraction required to be optically thick on the surface. The lightest

elements to rise to the surface which are optically thick are: 28Si, 32S, 34S,

and 36Ar. In particular the abundance of 28Si is about 3 × 10−9 so a layer

∼10 g/cm3 of silicon lies on the surface of the star. Due to the overabundance

of silicon and the effects of gravitational stratification other isotopes would

not be visible. The top three isotopes of the crust at this layer are 56Fe,
54Fe, and 60Ni.
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Structure Modified Urca Thick Thin
Isotope X Isotope X Isotope X

Atmosphere 28Si 2.695×10−9 50Cr 6.108×10−10 40Ca 2.859×10−8
32S 5.956×10−9 53Mn 3.228×10−6 50Cr 5.967×10−5
34S 1.164×10−9 54Fe 7.474×10−6 53Mn 1.337×10−4
36Ar 2.639×10−9 55Fe 1.751×10−5 54Fe 6.477×10−1

— — 57Co 1.492×10−6 55Fe 5.470×10−3

Crust 56Fe 0.559 56Fe 0.9286 54Fe 0.6477
54Fe 0.3187 60Ni 0.03138 58Ni 0.2209
60Ni 0.05175 52Cr 0.02485 56Fe 0.1018

Table 2.1: A summary of the atmosphere and crust compositions along with the mass fraction, X, of each isotope
for the three different types of cooling.
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Freeze-Out

Using the steps outlined in Section 2.5 the cooling (τc), settling (τs), and

the nuclear reaction (τrxn) timescales for the case of 28Si are calculated.

The results of these calculations are displayed in Figure 2.3. These calcu-

lations compare the age of the neutron star to the settling, crystallization

temperature, creation and destruction timescales of 28Si for two densities:

107 g/cm3 and 1012 g/cm3. The temperatures at which the layers crystal-

lize are 4.8 × 107 K and 2.2 × 109 K, for the densities of 107 g/cm3 and

1012 g/cm3, respectively. The creation and destruction rates are given as

d lnXi/dt, where Xi is the abundance of the 28Si isotope. These rates are

calculated by using the reaction rate routines in torch to determine the

energy release per unit mass, these are then multiplied by the abundances

calculated from the nse code. The abundances were also calculated using

the nuclear Saha equation and are the output of the nse routine. The two

different methods for calculating the relative abundances, the output from

torch and using nse, are displayed in Figure 2.2. It is clear that the results

from torch do not follow nuclear statistical equilibrium precisely.

With Figure 2.3 the quenching temperature for the silicon reactions are

determined. The reactions become quenched when the reaction rate time

becomes longer than the age of the neutron star. From the plot the quench-

ing temperature for the reactions which destroy silicon are 2.12× 109 K and

2.15×109 K for the densities of 1012 g/cm3 and 107 g/cm3, respectively. The

reactions which create silicon are quenched at 3.05 × 109 K for both of the

densities. These approximately give the temperature range over which the

abundance of silicon levels out in Figure 2.2.

2.6.2 Case 2: Thick Crust

In the case of the thick crust, the density of 107 g/cm3 was examined for the

isotopes which can rise to the surface. The pressure, column density to the

surface and the minimum mass fraction required to be optically thick are

the same for the modified Urca case. For the thick crust the lightest isotopes

which are optically thick and can rise to the surface are 50Cr, 53Mn, 54Fe,
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Figure 2.2: Lightest isotopes for which the mass fraction abundance would
be great enough that the isotope will be optically thick on the neutron star
surface for modified Urca cooling. All of these isotopes have time to reach
the surface before the layer crystallizes. These are the mass fractions for
the density of 107 g/cm3. The corresponding pressure and column density
for this neutron star density are 1.1 × 1024 dyne/cm2 and 4.4×109 g/cm2,
respectively. The horizontal line indicates the minimum abundance required
for an isotope to have a surface density of 1 g/cm2 to be optically thick. The
abundances for 28Si, 32S, and 36Ar in nuclear statistical equilibrium using
nse are depicted for comparison by the nearly dashed vertical lines, the
colours correspond to the isotope type.
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Figure 2.3: Comparing the cooling, settling, and nuclear reaction timescales
of 28Si for the neutron star densities of 107 g/cm3 (solid lines) and 1012 g/cm3

(dotted lines) for modified Urca cooling. The black vertical line denotes the
temperature at which the layer at 1012 g/cm3 crystallizes, the temperature
for the crystallization of the layer at 107 g/cm3 is cooler than 108.5 K and so
lies to the left of the plot. The layer of 1012 g/cm3 crystallizes at 2.2×109 K,
and the layer at 107 g/cm3 crystallizes at 4.8× 107 K. Note that the cooling
and the creation reaction timescales overlap for the two densities.
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55Fe, and 57Co, as shown in Figure 2.4. The three most abundant isotopes

of this crust were found to be 56Fe, 60Ni, and 52Cr.

2.6.3 Case 3: Thin Crust

For the thin crust the isotopes which had the possibility to be optically

thick could not reach the surface before the layer crystallized for densities at

107 g/cm3 and higher; consequently, the layer at a density of 106 g/cm3 was

examined. At this density the corresponding pressure is: 2.3×1022 dyne/cm2.

The column density to the surface at this pressure is 9.6 × 107 g/cm2, re-

quiring a minimum mass fraction of 1.0×10−8 for an isotope to be optically

thick on the surface. The isotopes which are not only optically thick, but

can also rise to the surface are shown in Figure 2.5. These isotopes include
40Ca, 50Cr, 53Mn, 54Fe, and 55Fe. The isotopes with the top abundances for

the crust at this layer were found to be 54Fe, 58Ni, and 56Fe.

2.7 Conclusions

In the case of cooling via the modified Urca process, without the thermal

influence of a crust, the results (e.g. Fig. 2.3) show that silicon has sufficient

time to float to the top from a density of 107 g/cm3 before the layer freezes

or the neutron star is observed. However, the settling time from 1012 g/cm3

is found to be too long for light species to float up before the crust freezes;

therefore, the atmosphere in this case is likely to be composed of silicon but

the envelope is likely to be composed of iron-group elements that have been

chemically separated by gravitational settling. Deeper layers are unlikely to

be chemically separated, at least by gravity.

The torch code has been used in order to calculate the lightest isotopes

which would rise to the neutron star surface and these results were compared

to semi-analytic calculations. Using the torch code the mass fractions at

a density of 107 g/cm3 were calculated. The lightest isotopes found to rise

to the surface and be optically thick in the atmosphere are: 28Si, 32S, 34S,

and 36Ar. On the other hand, there is not sufficient time for light elements
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Figure 2.4: The lightest isotopes for which the mass fraction abundances
are large enough that the isotopes which can reach the surface are optically
thick for a thick crust. The mass fractions are calculated for a density of
107 g/cm3. The horizontal line indicates the minimum abundance required
for an isotope to have a surface density of 1 g/cm2 and be optically thick.
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Figure 2.5: The lightest isotopes which can reach the surface and are also
optically thick in the case of a thin crust. These isotopes are calculated for
a density of 106 g/cm3. The corresponding pressure and column density at
this density are 2.3× 1022 dyne/cm2 and 9.6× 107 g/cm2, respectively. The
horizontal line indicates the minimum mass fraction required in order for an
isotope to be optically thick.
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to percolate from high density, such as a density of 1012 g/cm3, to form the

envelope. However, calculations of freeze-out at higher densities are required

to determine the precise composition of the envelope.

Semi-analytic calculations of the freeze-out of 28Si were performed, for

the modified Urca case, assuming local thermodynamic equilibrium until

the cooling rate exceeds the reaction rate. The rates from torch and the

abundances from the code nse were used in order to calculate the rates of

nuclear reactions involving 28Si; the reactions become quenched when the

reaction time is longer than the age of the neutron star. The creation reac-

tions are quenched at a temperature of 3.05× 109K for both the densities of

107 g/cm3 and 1012 g/cm3. The reactions which destroy silicon are quenched

at 2.12× 109 K and 2.15× 109 K at a density of 1012 g/cm3 and 107 g/cm3,

respectively. The calculated quenching temperatures of the silicon reactions

agree with the results calculated using the torch code directly.

In the case of the thick crust, the atmosphere could be formed by 50Cr

rising to the surface from a density of 107 g/cm3. For a neutron star with

a thin crust and direct Urca cooling the layers at 107 g/cm3 and higher

crystallize before the isotopes could have time to reach the surface. The

atmosphere in the thin crust case could be formed from 40Ca raising to

the surface from a layer at a density of 106 g/cm3. The neutron stars with

crusts stay hotter longer than a star cooling via modified Urca, thus there is

more time with these hotter stars to use up the lighter elements in nuclear

reactions.

Unless there has been significant accretion from either the supernova

debris, the interstellar medium or a companion, neutron star atmospheres

are unlikely to be composed of iron, helium or hydrogen. In the case where

some accretion occurs, due to the reactive surface on these neutron stars,

diffusive nuclear burning could destroy the accreted material (Chang et al.,

2010). The type of isotope composing the atmosphere depends on the cool-

ing mechanism at work in the star: 28Si for modified Urca, 50Cr for a thick

crust, and 40Ca for a thin crust and direct Urca cooling. The formation

of these atmospheres can provide additional justification, with fallback ac-

cretion, for isolated neutron stars fit with intermediate atmosphere models.
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Understanding how this novel composition of the atmospheres affects the

neutron star emission may provide new insights on the observed spectra of

neutron stars. The model thermal spectrum as well as the predicted spec-

tral lines for the calculated compositions could be calculated in the future

and compared to the emission observed from isolated neutron stars. The

composition of the neutron star crust for each of the three cases were also

calculated and will be used in subsequent chapters in order to investigate

the mechanical properties of each of these crusts.
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Chapter 3

Molecular Dynamics

3.1 Introduction

In the previous Chapter it was described how various crustal compositions

are computed. This Chapter explores how mechanical properties are de-

termined using the Large Atomic/Molecular Massively Parallel Simulator

(LAMMPS). LAMMPS is a software that computes molecular dynamics simula-

tions. The output of these simulations can not only be used to determine

the breaking strain of the material but also the crystalline structure of the

sample material. The Radial Distribution Function (RDF) is used to char-

acterize the structure of the simulation as either liquid or solid. In the case

where a solid is formed, the type of crystal configuration can also be deter-

mined, such as FCC or BCC. Chemical separation in the crust can also be

investigated with the calculated RDF of the different types of atoms in the

system. Molecular dynamics simulations in general and the LAMMPS software

are discussed below. This is followed by a discussion of the calculation of

the RDF, which is applied to four example simulations.

3.2 Molecular Dynamics Simulations

Two main computational methods which could be used to calculate the

mechanical properties are either Monte Carlo or molecular dynamics simu-

lations of a system. The Monte Carlo method calculates the probability of

a system being in one state versus another state at any specific time. With

molecular dynamics simulations the thermodynamic properties are derived

by integrating Newton’s equations of motion. Both computational meth-

ods calculate the properties of a system of many particles. With molecular
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dynamics a specific force can be applied collectively to the system, instead

of atoms being randomly selected, as in Monte Carlo, in order to calculate

the effect of the applied force. Molecular dynamics calculations are able to

provide a direct determination of the dynamical properties of the system of

intrest and will be used in order to understand the neutron star crust.

This discussion of molecular dynamics follows Allen (2004). As men-

tioned above, molecular dynamics solves Newton’s equations of motion for

a system of particles:

dri
dt

= vi

dvi
dt

= − 1

mi

N∑
j=1,i 6=j

∂

∂ri
V (|ri − rj |), (3.1)

where mi is the mass of atom i, ri and vi are the position and velocity

vectors, and V is the potential. The potential with which the particles

interact in this work is the screened Coulomb or Yukawa potential:

Vij =
ZiZje

2

rij
e−rijκ, (3.2)

where Z is the charge of the particle, rij is the distance between the two

interacting particles is rij , and κ is the inverse screening length.

With the positions of each of the particles interacting via a defined poten-

tial, the equations of motion define the motion of the particles at a moment

of time. A typical algorithm used to follow the evolution of particle motion

is the velocity-Verlet (Swope et al., 1982), which calculates the positions,

velocities and accelerations of all the particles with time. The velocity-

Verlet algorithm is similar to the Leapfrog algorithm (Hockney & Eastwood,

1988), both being variations of Verlet integration (Verlet, 1967), a method

to integrate Newton’s equations of motion. With Leapfrog integration the

position and velocity calculation are offset by half a time-step, whereas for

velocity-Verlet integration the position and velocity are calculated at the

same time-step. The velocity-Verlet algorithm results from an expansion of
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3.2. Molecular Dynamics Simulations

the particle position with time, r(t+ ∆t),

r(t+ ∆t) = r(t) + v(t)∆t+
a(t)

2
∆t2 + ... (3.3)

and is time reversible. As ṙi = ṗi/mi and ṗi = fi the velocity-Verlet algo-

rithm can be expressed as:

pi(t+
1

2
∆t) = p +

1

2
∆t fi(t)

ri(t+ ∆t) = ri(t) + ∆t pi(t+
1

2
∆t)/mi

pi(t+ ∆t) = pi(t+
1

2
∆t) +

1

2
∆t fi(t+ ∆t). (3.4)

The velocity-Verlet algorithm works by evaluating the above equations, as

well as calculating the force for each of the interactions of the particles in

the system.

The thermodynamic properties of the system are determined by averag-

ing the properties of all the particles in the system. For example, consider

the calculation of the kinetic energy. The kinetic energy for each particle

is given by: 1/2mv2. An average of the kinetic energy of all the particles

would result in the measured kinetic energy thermodynamic property of the

system.

In order to decrease the number of calculations performed and thus short-

ening the time required for the simulations to complete, neighbour lists can

be constructed. With neighbour lists the particles which are within a cut-

off radius from a particular particle are listed and it is only these particles

which have their interactions calculated. The neighbour list construction

is schematically displayed in Figure 3.1. The determination of the cut-off

radius for a simulation is discussed in Chapter 4. An extra ‘buffer’ region is

also defined in order to keep track of particles which could cross over into

the cut-off radius boundary during each time step. The frequency at which

the list is constructed is defined for each of the simulations.

Molecular dynamics simulations typically utilize periodic boundary con-

ditions. The use of periodic boundary conditions decreases the surface effects
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3.3. LAMMPS

Figure 3.1: An illustration, based on Figure 6 from Allen (2004), of the
neighbour list construction. The potential cut-off radius is indicated by the
solid circle, and the buffer region is indicated by the dashed circle. The
white particles would have the potentials calculated, the gray particles are
kept track of in the neighbour list, but do not have the potential calculated.
The black particles are not included in the neighbour list at all.

which result from small simulation sizes. With periodic boundary conditions

particle images are created such that a particular atom interacts with the

neighbouring particles, as well as the particle images. In the situation where

an atom leaves the simulation box, the potential between the particle of in-

terest and the incoming particle are considered in the calculation. Periodic

boundary conditions are used in all the simulations discussed within this

thesis.

3.3 LAMMPS

The molecular dynamics simulations presented in this thesis were computed

with the software LAMMPS (Large Atomic/Molecular Massively Parallel Sim-

ulator). LAMMPS is an open-source software made available by Sandia Lab-

oratories5 and is fully documented on the LAMMPS website6. LAMMPS is con-

5http://lammps.sandia.gov
6http://lammps.sandia.gov/doc/Manual.html
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3.3. LAMMPS

structed to run on and take advantage of parallel computing systems (Plimp-

ton, 1995), which can significantly decrease the time it takes for a simulation

to complete. Neighbour lists are also utilized within LAMMPS in order to in-

crease computational efficiency. All the simulations presented in this thesis

used the velocity-Verlet algorithm to integrate the equations of motion. All

the simulations use reduced units. The reduced units are based on the

Yukawa potential,

Vij =
ZiZke

2

r
e−κr, (3.5)

where r is the distance between particles, Z is the charge and κ is the inverse

screening length. For the reduced units, characteristic quantities are now

introduced: a characteristic length scale, energy, mass and charge. The

characteristic length scale, a, is parameterized by a = n−1/3, where n is the

number density. The characteristic energy scale, Uo, is given by

Uo =
(Z e)2

a
, (3.6)

which is expressed with respect to a charge of Z = 26. The characteristic

mass, ma, is expressed in units of the mass of iron, ma = 56/A, thus ma = 1

for iron. The characteristic charge is expressed in units of the iron charge,

Z = 26, thus Za = Z/26. The reduced units are related to the physical

quantities through these characteristic quantities; these relationships are

listed in Table 3.1. For example, the characteristic quantities for 56Fe at a

density of ρ = 1011 g/cm3 are a characteristic length of a = 10−11 cm and a

characteristic energy of Uo = 10−5 erg. Using the reduced units the Coulomb

parameter can be expressed as

Γ =
(Ze)2

rkbT
=

(〈Z〉
Z26

)2 1

T ∗
a

r
, (3.7)

where 〈Z〉 is the average charge of the system and r is the ion spacing. In

the simulations the number density is set to unity, thus both a and Uo are

unity for the simulations. When Γ = 180 a transition between liquid and

solid occurs.
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3.4. Characterization of the Output

Unit Reduced Unit

Temperature T* = T kb
Uo

Energy E* = E
Uo

Distance r*= r
a

Pressure P* = P a3

Uo

Time t* = t/(ma
2

2Ua
)1/2

Table 3.1: The reduced unit system used in the LAMMPS simulations. Pa-
rameter values quoted in this thesis from the simulations are in reduced
units. The physical quantities are determined by using appropriate values
the characteristic distance, a, and energy, Uo, parameters for the material.

Different versions of LAMMPS were used for the work in this thesis. The

bulk of the calculations of the mechanical properties the LAMMPS version

21 Jul 2010 was used. When other versions are were used in calculations,

the version of LAMMPS is stated. All simulations were performed with pe-

riodic boundary conditions. As the number density is set to unity for all

simulations, the number of unit cells dictates the box size of each of the

simulations. The number of particles and the box lengths are listed in Table

3.2 for the five sizes of simulation box sizes used in this thesis for FCC and

BCC crystals. The time for a calculation to be performed increases with the

number of particles in the simulation box. In Section 6.3.1 the simple shear

results from the different box sizes are examined, though a thorough test

of the dependence on particle number and the calculated properties would

require a larger range of simulation box sizes. There are always twice as

many particles in the FCC boxes as the BCC boxes.

3.4 Characterization of the Output

The output of the molecular dynamics simulations are then characterized by

calculating the radial distribution function (RDF) of the sample. With the

RDF it is possible to examine correlations between all the particles of the

sample, particles of the same type and cross correlations between particles

of different types. The state of the system – liquid or crystal – can also be
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Unit Cell BCC FCC
Volume Particles Box Length Particles Box Length

10× 10× 10 2000 12.599 4000 15.874
12× 12× 12 3456 15.119 6912 19.049
20× 20× 20 16000 25.1984 32000 31.748
25× 25× 25 31250 31.498 62500 39.685
35× 35× 35 85750 44.0972 171500 55. 559

Table 3.2: The number of particles and box length in reduced units for BCC
and FCC crystals for the different box sizes used in this thesis. These values
are for a number density set to unity.

examined. In this section the method for calculating the RDF is discussed.

The procedure for the RDF is applied to example simulations: FCC and

BCC crystals, of one atom type and two, which are subsequently melted.

The RDF is calculated both in the initial solid configuration and in the final,

liquid, configuration.

3.4.1 Radial Distribution Function: RDF

The RDF is the same as the pair correlation function. The calculation

indicates at which distances scales there is structure, or a lack thereof. Peaks

in the RDF are indicative of structure occurring on those length scales, while

valleys indicate voids of structure. The distance scales considered for the

RDF calculations are from r = 0 to half the box length size, L/2, where L

is the total box length.

The parameters required for the RDF calculation are a list of all the

particle positions and the box length, L. The box is divided into 1000 shells

of thickness dr, where dr = (L/2)/1000. The RDF is calculated by essen-

tially creating a histogram of the number of pairs, g[k], within a distance

interval or shell r + dr. In this histogram, k = r/dr, which determines the

bin number, ensuring the g[k] array begins at g[0]. The distance between

each pair of particles is calculated as:

distance =
√

(∆x)2 + (∆y)2 + (∆z)2. (3.8)
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Due to the periodic boundary conditions there are two possible distances

between particle pairs. In order to account for the pair distance degeneracy,

the smallest distance between particles is used in the RDF calculation. For

example, if ∆x is greater than L/2, the distance ∆x is subtracted from

the box length L: ∆x2 = L − ∆x1, and it is this ∆x2 which is used in

the calculation of the pair distance. As long as this pair distance is within

L/2 the pair is used in the calculation g[k]. The actual RDF, g(r), is then

calculated by normalizing, with respect to density, the histogram g[k]:

g(r) =
2 g[k]

(4π/3) n N (r3upper − r3lower)
, (3.9)

where n is the number density and N is the total number of atoms in

the sample investigated, rlower and rupper are the bounds of the shell, with

rlower = k dr and rupper = dr+rlower, and r is the midpoint of the shell. This

normalization ensures that g(r) = 1 for an isotropic distribution, though the

cross-correlation RDF calculations do not normalize to unity. The RDF was

calculated for four example simulations, in crystal and liquid state. The ex-

amples include simulations with two atom types in which cross correlations

are also investigated.

3.4.2 Parameters of Example Simulations

In order to demonstrate the RDF calculation, four example systems were

examined. These example simulations consist of FCC and BCC crystals

with one atom type, and FCC and BCC crystals with two different types

of atoms. These systems began in a crystalline state and then were heated

to form a liquid. There were 62500 atoms used in the FCC crystal case

and 31250 atoms in the BCC crystal case. The mass of each atom is the

same value of 1.0, corresponding to an atomic mass of A = 56, and the

initial temperature was 0.001. Each simulation had a time step of 0.09 and

ran for 1 million steps. The atoms interacted via the Yukawa potential.

The temperature increase was controlled by a Langevin thermostat. With a

Langevin thermostat the system of particles in the simulation are within a
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3.4. Characterization of the Output

heat bath. From collisions of the simulation particles with the heat bath a

frictional force as well as a random force, which imparts a random velocity

kick, controls the temperature of the system (Schneider & Stoll, 1978). The

Langevin thermostat just controls the simulation temperature, the time in-

tegration was performed with the nve fix: constant number, volume, and

energy, which accounts for the modified forces due to the Langevin thermo-

stat. The 7 July 2009 version of LAMMPS was used in these simulations.

The inverse screening length values appropriate for FCC and BCC crys-

tals were taken from Robbins et al. (1988). A discussion of the cut-off radius

determination is covered in Chapter 4. For the FCC crystal simulations the

atoms interacted via the Yukawa potential with an inverse screening length

of κ = 3.74 and a cut-off radius of interaction of rc = 3.07 reduced units.

The temperature was increased from 0.001 to 0.004. In the FCC crystal

case of one atom type the pair coefficient, Z2e2, was set to 1.0 for all atoms.

For the two atomic types simulations, there were 15625 atoms of type 1 and

46875 atoms of type 2, 1/4 and 3/4 of the total number, respectively. The

type 1 atoms interacted with a pair coefficient of (Ze)2 = 1.0, the type 2

atoms interacted with a pair coefficient of (Ze)2 = 1.1598 and the type 1

and type 2 particles interacted with each other with a pair coefficient of

(Ze)2 = 1.0769. The two atom types correspond to 56Fe and 56Ni for type

1 and 2, respectively. These pair coefficients for the two types of atoms

simulations are listed in Table 3.3. The mass of all atoms, even of different

types, was the same value at 1.0 mass units.

For the BCC crystal simulations the atoms interacted via the Yukawa

potential with an inverse screening length of κ = 0.88 and a cut-off radius of

interaction of rc = 9.0 reduced units. In order to melt the crystal the tem-

perature was increased from 0.001 to 0.04. For the BCC crystal simulation

of one atomic type, all the particles interacted with the same pair coefficient

of (Ze)2 = 1.0. In the case of the BCC crystal simulation with two types

of atoms, there were 15625 atoms of type 1 and 15625 atoms of type 2, half

of the total number each. The pair coefficients used and the mass of the

particles in the simulations are the same in the BCC case as the FCC case.
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Type 1 2

1 1.0 1.0769
2 1.0769 1.1598

Table 3.3: Pair coefficients, (Ze)2, used in the simulations containing two
atom types, for both the FCC and BCC lattice example simulations. The
type 1 atoms correspond to 56Fe and the type 2 atoms correspond to 56Ni.

3.4.3 RDF: One Atomic Type

The RDF was calculated of the initial structure of the simulation and the

structure after melting the FCC and BCC crystals. In this section only the

results of the FCC and BCC crystals containing one atomic type, where the

pair coefficient is set to 1.0 for all particles, are investigated. The distance

scale in the RDF plots are to a distance of r = 6 in order to display the short-

length scale structure. The initial crystalline structures of the two different

crystals are compared in Figure 3.2. The FCC and BCC crystals present

different spacings in the peaks of the RDF. Both crystals were heated until

a liquid formed and the RDFs of the liquid FCC and BCC structures are

compared in Figure 3.3. Both the FCC and BCC curves display structure

on the small distances, but at large distances both FCC and BCC curves

go to unity, indicating a lack of large distance scale structure in the liquid

form.
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Figure 3.2: The RDFs of the initial FCC and BCC crystal structures. The
atoms in both crystal types interacted via a Yukawa potential. The FCC
atoms interacted with an inverse screening length of κ = 3.74 and a cut-off
radius of rc = 3.07. In the case of the BCC crystal, an inverse screening
length of κ = 0.88 was used with a cut-off radius of rc = 9.0. The two
different crystals have the same initial peak, but different peak spacings
after the initial peak.
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Figure 3.3: The RDFs of the melted FCC and BCC crystals. The atoms
interacted via a Yukawa potential with an inverse screening length of κ =
3.74 and a cut-off radius of rc = 3.07 for the FCC crystal and κ = 0.88
with rc = 9.0 for the BCC crystal. The temperature was increased from
a value of T ∗ = 0.001 to T ∗ = 0.004 in the FCC case and T ∗ = 0.001 to
T ∗ = 0.04 in the BCC case. Both curves demonstrate that there is structure
on small distance scales, but not at the larger distances. The FCC simulation
contained twice the number of atoms as the BCC simulation.
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3.4.4 RDF: Two Atomic Types

Simulations of melting FCC and BCC crystals composed of two types of

atoms were also performed in order to investigate the structure and cross-

correlations in these simulations. The type 1 atoms correspond to 56Fe and

the type 2 atoms correspond to 56Ni, with the pair coefficients listed in Table

3.3. The two atom type FCC crystal consisted of 15625 type 1 atoms, with

a number density of 0.25, and 46875 type 2 atoms, with a number density

of 0.75. The FCC unit cell has four atoms, the type 1 atoms are placed

at one point of the unit cell and the type 2 atoms at the other three. In

the BCC crystal case, of a total 31250 atoms in the simulation, half were

type 1 and the other half of the atoms type 2, for a number density of

0.5 for each type. The BCC unit cell has 2 atoms, as a result each type

is at one of the unit cell points. The RDF was calculated for the type 1

particles, the type 2 particles, and for the cross-correlations of the two types

of particles in both the FCC and BCC crystal cases. These different RDFs

are compared in Figures 3.4 and 3.5 for the initial FCC and BCC crystalline

structure, respectively. For the FCC crystal, Figure 3.4, the two atom types

have different peak spacings, due to the location of each atom type in the

unit cell. For the BCC crystal, Figure 3.5, the number densities of each

atom type are the same and the RDFs of the two atom types have the same

spacings.

As in the one atomic type FCC and BCC crystals, the two atom type

crystals were heated to melting and RDFs were taken of the liquid state of

the two atom types as well as for the cross-correlations between the two types

of atoms. The liquid state RDFs of the FCC crystal are shown in Figure

3.6. The three curves – type 1, type 2, and cross-correlation – display similar

shapes and at large distances a lack of structure. The pair correlations of

just the type 1 and just the type 2 atoms go to unity at large distances. The

cross-correlations between type 1 and type 2 atoms do not normalize to unity

at large distances, but the flat curve does indicate a lack of structure. The

melted BCC crystal curves are compared in Figure 3.7, in the liquid state

all – type 1, type 2, and cross-correlation – indicate that at large distances
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there is no structure evident. These different RDFs are not typically used

in astronomy studies and these examples demonstrate the different types of

situations which will be examined with regards to the neutron star crust.

The possibility of chemical phase separation can be investigated with the

use of these example RDFs. A signature of chemical phase separation in

the RDFs would be, for example, one type of atom to be in the liquid state

and another atom type in the solid state. Chemical phase separation in the

neutron star crust is investigated in Section 7.3.

3.5 Conclusions

Molecular dynamics is a useful computational tool in order to determine not

only the mechanical properties of a material, but also the structure of the

sample. Molecular dynamics simulations solve Newton’s equations of motion

for a system of particles interacting with a defined potential. The molecular

dynamics simulations in this work are performed using the software LAMMPS.

The structure of the results to these calculation can be characterized using

the RDF. FCC and BCC example simulations have been calculated and the

output characterized with the RDF. These example simulations are useful

for comparison to simulations in subsequent chapters. The RDFs of the

FCC and BCC crystals have been shown to have different spacings of the

peaks. Calculating RDFs of a solid is a method which can be used to

discriminate between a FCC or BCC global structure. By computing RDFs

it is also possible to investigate the possibility of chemical phase separation

in a situation where there are different types of particles. With chemical

phase separation certain atom types may be found in the liquid state or in

the solid state, which would be indicated in the RDFs of individual atom

types. The radial distribution function calculation will be used in following

chapters in order to characterize the structure of the neutron star crust.

52



3.5. Conclusions

g(
r)

FCC: two types, Crystal
0

10
20

30
0

10
20

30

radius
0 1 2 3 4 5 6

5
10

15

type 1

type 2

cross

Figure 3.4: The RDFs of the initial two atomic type FCC crystal. The
simulation contains 15625 type 1 atoms and 46875 type 2 atoms. The atoms
interacted with a screening length of κ = 3.74 with a cut-off radius of rc =
3.07. The pair coefficients between the two atom types are listed in Table
3.3. The top figure is the RDF of just type 1 atoms, the middle figure is the
RDF of type 2 atoms, and the bottom figure is the cross-correlations of the
two atoms types. Each of the RDFs show different spaces of the peaks.
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Figure 3.5: The RDFs of the initial two atomic type BCC crystal. The
simulation contains 31250 type 1 atoms and 31250 type 2 atoms. The atoms
interacted with a screening length of κ = 9.0 with a cut-off radius of rc =
0.88. The pair coefficients between the two atom types are listed in Table
3.3. The top figure is the RDF of just type 1 atoms, the middle figure is
the RDF of type 2 atoms, and the bottom figure is the RDF of the cross-
correlations of the two atom types. The peak spacings of the type 1 and
type 2 RDFs are the same in this case, unlike the FCC crystal. This is to
be expected as the BCC unit cell only has two atoms.
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Figure 3.6: The RDFs of the melted two atomic types FCC crystal. The
temperature was increased from T ∗ = 0.001 to T ∗ = 0.004. The simulation
parameters are the same as for Figure 3.4. The top figure is the RDF of
just type 1 atoms, the middle figure is the RDF of type 2 atoms, and the
bottom figure is the RDF of the cross-correlations of the two atom types.
The curves, which behave in similar fashions, have a lack of structure for
large distances indicated by the flat curve.
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Figure 3.7: The RDFs of the melted two atomic types BCC crystal. In
order to melt the crystal the temperatur was increased from T ∗ = 0.001 to
T ∗ = 0.04. The parameters for the simulation are the same as for Figure 3.5.
The top figure is the RDF of just type 1 atoms, the middle figure is the RDF
of type 2 atoms, and the bottom figure is the RDF of the cross-correlations
of the two atom types. The curves are all very similar with g(r) becoming
flat at large distances, indicating a lack of structure.
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Chapter 4

Cut-Off Radius and Total

Energy

4.1 Introduction

In molecular dynamics simulations the interactions between all the vari-

ous particle pairs are calculated. However, since the potential decreases

with increasing separation, the impact of particle-particle interactions be-

comes unimportant for large relative distances. This property can be used

to speed up the time it takes for each calculation, with a cut-off radius uti-

lized in conjunction with a neighbour list. By employing a cut-off radius

only the interactions between particle pairs within the specified radius are

calculated, those particles outside the cut-off radius are not included in any

pair-interaction calculations. In order to determine the optimal cut-off ra-

dius to use, the total energy at zero temperature is calculated for varying

cut-off radii. This calculation of the total energy at zero temperature results

in just the energy due to pair interactions via the Yukawa potential. The

total energy at zero temperature as a function of cut-off radius is an indi-

cation of how much energy due to Yukawa interactions is being neglected

and optimal cut-off radius which balances speed and energy. An arbitrarily

selected difference of 1% between the expected total energy and the total

energy is used as an indication of the optimal cut-off radius to be used in

the molecular dynamics simulations. This choice for the optimal cut-off ra-

dius was calculated for both FCC and BCC crystal configurations and the

results of these calculations were compared to the cut-off radius employed

in Robbins et al. (1988).
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4.2 Simulation Set-Up

The calculations of the total energy of the FCC and BCC crystals were

performed on an Opteron-Beowulf cluster using the July 21, 2010 version of

LAMMPS. For the FCC energy calculations 62500 atoms were used. The BCC

energy calculations contained 31250 atoms. See Table 3.2 for the relationship

to box size. Only one calculation was required for each of these simulations:

the total energy at the start of the run where the temperature is zero. At

zero temperature the non-thermal energy component is determined. For

each of these runs the cut-off radius was varied in order to determine the

effect of the cut-off radius on the total energy at zero temperature. For all

the simulations periodic boundary conditions were used.

4.3 Results: FCC Crystal

For the FCC crystal simulations an inverse screening length of κ = 3.74 was

used. The cut-off radius for calculating particle interactions ranged from 1.0

to 10.0 in reduced distance units. The results of the total energy calculations

at zero temperature as a function of cut-off radius are listed in Table 4.1.

At a cut-off radius of 7.0 the total energy converges to the 10−9 level, as

displayed in Figure 4.1. The point where the total energy is within 1% of

the maximal total energy occurs between a cut-off radius of 2.0 and 3.0; the

horizontal line in Figure 4.1 indicates this radius value. A cut-off radius of

3.0 is found to be within 0.04% of the maximal total energy.

4.4 Results: BCC Crystal

For the BCC crystal calculations an inverse screening length of κ = 0.8835,

appropriate for a charge of Z = 26, where κ = (24α3/2 π1/2 nZ)1/3 with a

number density of 1.0, was used. The cut-off radius was varied from 1.0

to 15.0 for these calculations. The results of the total energy calculations

for the 31250 particle BCC crystal are listed in Table 4.2, and graphically

in Figure 4.2. In the FCC case the total energy was found to converge to
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rc Energy % Discrepancy

1.0 0 100
1.5 0.080317068 11.6
2.0 0.089598473 1.34
3.0 0.090773608 0.042
4.0 0.090808517 0.0036
5.0 0.090811738 7.2×10−5

6.0 0.090811801 2.2×10−6

7.0 0.090811803 0
8.0 0.090811803 0
9.0 0.090811803 0
10.0 0.090811803 0

Table 4.1: The calculated total energy of a κ = 3.74, 62500 particle, FCC
crystal at zero temperature for various cut-off radii. The percent discrepancy
listed in the table is the discrepancy of the simulation energy from the
converged energy value of 0.090811803 energy units.

the 0.01% level, whereas the energy calculations for the BCC crystal do

not converge to the same degree for the cut-off radii investigated. Another

method is employed in order to determine the total energy expected, and also

the radius at which there is a 1% difference between the total and expected

energy. In order to determine the total energy expected, the number of

pairs, NP (r), within a shell of ∆r thickness, and the energy at the shell

midpoint r is calculated as:

E(r) =
NP (r)

NT

e−κr

r
, (4.1)

where NT is the total number of particles for the crystal. The energy at

the specific radius is a summation of all energies calculated at smaller radii.

This E(r) is plotted with the total energy from the simulations in Figure

4.2. The two energies appear to be in agreement with each other. The 1%

difference from the maximum pair energy is indicated by the horizontal line.

At a cut-off radius of rc = 8 the calculated energy is within the 1% level.
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rc Energy % Discrepancy

1.0 0 0
1.5 2.1803033 68.8
2.0 2.877923 58.9
3.0 4.9195019 29.7
4.0 5.9864294 14.4
5.0 6.4834227 7.3
6.0 6.7404808 3.6
7.0 6.8817533 1.6
8.0 6.9400936 0.79
9.0 6.9730391 0.32
10.0 6.9862956 0.13
11.0 6.9920647 0.051
12.0 6.9948678 0.011
13.0 6.9961824 0.0076
14.0 6.9967485 0.016
15.0 6.9969933 0.019

Table 4.2: The total energy calculations for a κ = 0.8835, 31250 particle,
BCC crystal at zero temperature for various cut-off radii. The percent
discrepancy listed in the table is the discrepancy of the energy calculated
from the simulations to the maximum energy calculated using the RDF of
the particle positions. The maximum energy from the RDF calculations
is 6.995648, note that the simulations at larger cut-off radii have a larger
energy than this value.

4.5 Discussion and Conclusions

In order to determine the ideal cut-off radius for calculating the pair in-

teraction, simulations at zero temperature for a varying cut-off radius were

performed. Both FCC and BCC crystals were investigated. For the FCC

simulation, using a cut-off radius of rc = 3.0, or κrc = 11.48, the total en-

ergy is within 1% of the maximum total energy. For the BCC crystal the

total energy is within 1% of the calculated maximum total energy with a

cut-off radius of rc = 8.0, or κrc = 7.068.

In Robbins et al. (1988) for a λ = κa ≥ 3, where a = n−1/3, a cut-off ra-

dius of rc = 3.07a was used, or that κrc ≥ 8 was required to achieve accurate

60



4.5. Discussion and Conclusions

molecular dynamics simulations. At zero temperature the crystal structure

is BCC below λ = 1.72 and FCC above this value (Robbins et al., 1988).

This κrc ≥ 8 limit from Robbins et al. (1988) is based on molecular dynam-

ics simulations which demonstrate the force decreasing at large distances,

as well as the pair-correlation function flattening for distances greater than

rc = 8/κ. The results in these current simulations are in agreement with

the cut-off radius as defined in Robbins et al. (1988). As a result, for λ ≥ 3

a cut-off radius of 3.07a is used in future simulations, and a cut-off radius

of rc = 8/κ is used for smaller λ values in the simulations.
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Figure 4.1: The total energy at zero temperature for a 62500 particle FCC
crystal as a function of cut-off radius. At a cut-off radius of 7 the total
energy calculated converges, see Table 4.1 for energy values. The horizontal
line labelled ‘FCC-1%’ indicates the total energy which is within 1% of the
converged total energy.
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where the simulation energy agrees to the maximal pair energy to the 1%
level.
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Chapter 5

The Effect of Electron

Screening on Melting

Temperature

5.1 Introduction

Two different methods were used in order to determine the appropriate cut-

off radius to use in the molecular dynamics simulations. In Chapter 4 the

cut-off radius was determined using the total energy at zero temperature.

In this chapter another method is used to determine appropriate simulation

parameters – calculating the melting temperature of the system of particles

and then comparing the results to those in Robbins et al. (1988). In Rob-

bins et al. (1988) the phase diagrams and dynamical properties of a Yukawa

system of particles were investigated. This studied resulted in the melting

transition line of as a function of screening length, as well as the transition

line from FCC to BCC crystals. Comparing the calculated melting temper-

ature at various cut-off radii to the phase diagram in Robbins et al. (1988)

provides not only a test of the cut-off radii as determined in Chapter 4 but

also sets a benchmark for the molecular dynamics simulations as performed

with LAMMPS.

In the limit where the inverse screening length, κ, goes to zero the

Coulomb limit of the Yukawa system is reached. This Coulomb limit is also

known as a one component plasma (Robbins et al., 1988). In the Coulomb

limit the melting temperature can be characterized by the Coulomb coupling

parameter Γ, which is the ratio of the potential and thermal energy (see Eq.
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5.1. Introduction

2.16). When Γ becomes large enough, crystallization occurs (Shapiro &

Teukolsky, 1986). This transition, between liquid and solid, has been in-

vestigated via Monte Carlo simulations; in Stringfellow et al. (1990), for

example, the phase transition was found to depend on the structure of the

material, with ΓBCC = 178 and ΓFCC = 192. The properties of dense ion-

ized matter have also been covered in a series of papers. In particular, in

Pollock & Hansen (1973) Monte Carlo simulations were performed in which

a melting parameter of Γm = 155±10 was determined. Potekhin & Chabrier

(2000) found the phase transition to be Γm = 175.0 ± 0.4 in the Coulomb

limit when an analytic equation of state was employed.

The melting temperature in a Yukawa system with a non-zero inverse

screening length has been investigated many times, for example in Meijer

& Frenkel (1991), Robbins et al. (1988), and Vaulina et al. (2002). In such

systems the melting temperature can be characterized by the Lindemann

criterion, where an ion lattice melts when the thermally-induced root-mean

squared fluctuations of the ion position compared to the original ion position

(
√
〈δr〉2/r), reach a high enough value (Shapiro & Teukolsky, 1986). Melting

was found to occur at values of 0.19 and 0.16 for BCC and FCC structures,

respectively (Meijer & Frenkel, 1991). In Robbins et al. (1988) the melting

of Yukawa systems with varying screening lengths was found to occur near

0.19 for both BCC and FCC structures. The inclusion of electron screening

effects increases the temperature at which a crystal melts (Robbins et al.,

1988). In Vaulina et al. (2002) a single parameter was found to determine

the melting line of a multicomponent plasma within the Yukawa regime.

This parameter was a modified Coulomb coupling parameter.

In this chapter LAMMPS is used in order to determine how the melting

temperature depends on the value of the inverse screening length, κ. These

melting temperature results are then compared to the phase transition re-

sults of Robbins et al. (1988). The goal of this comparison is the first check

the determination of the cut-off radius to be used in future simulations and

second, using the Robbins et al. (1988) as a benchmark as indication if there

are problems with the LAMMPS simulations. The phase diagram of a Yukawa

system has been extensively studied, any major deviations found from this
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5.2. Electron Screening Length

would be an indication of possible errors within the simulation. The version

of LAMMPS used for these simulations is 7 Jul 2009. Initial structure of the

crystal in the simulation was determined by the BCC to FCC transition as

discussed in Robbins et al. (1988).

5.2 Electron Screening Length

In the case of degenerate, relativistic electrons, the electron screening length

can be determined by the Thomas-Fermi approximation. In this approxi-

mation the inverse screening length is given as κ = 2α1/2kF /π
1/2, where kF

is the electron Fermi momentum. The Fermi momentum is given by:

kF =

(
3π2

ρ

mu

Z

A

)1/3

, (5.1)

where ρ is the mass density, mu is the atomic mass unit, A is the mass

number, and Z is the charge number. Substituting the Fermi momentum

into the expression for inverse screening length results in an expression for

κ,

κ =
2α1/2

π1/2

(
3π2

ρ

mu

Z

A

)1/3

, (5.2)

which depends on mass density and the ratio of Z/A.

Following Robbins et al. (1988), the unitless parameter λ is now intro-

duced, where λ = κa. As in Robbins et al. (1988), a is the characteristic

inter-particle distance, a = n−1/3, where n is the number density. Us-

ing the λ parameter a relationship between the inverse screening and the

charge Z can be determined. The Fermi momentum can be expressed as

kF = (3π2ne)
1/3, where ne is the electron number density. The electron num-

ber density is related to the number density as ne = 〈Z〉n. Thus, the Fermi

momentum can be expressed as: kF = (3π2〈Z〉n)1/3. As a result the λ pa-

rameter is related to the Fermi momentum with λ = κa = 2α1/2kF n
−1/3/π1/2

or

λ = κa = (24α3/2π1/2〈Z〉)1/3. (5.3)

66



5.3. Expected Melting: Robbins et al. (1988)

With this equation it is thus possible to relate the inverse screening length to

the charge of the system of particles, and this equation is used to specify the

inverse screening length for the pure and impure neutron star crusts,which

is presented in Chapters 6 and 7, respectively.

5.3 Expected Melting: Robbins et al. (1988)

Simulations are performed in which a crystal is heated past its melting

point. These melting temperatures calculated from the LAMMPS simulations

are used in comparison to the results of Robbins et al. (1988). In Robbins

et al. (1988) the melting temperature as a function of λ was found to have

the following relationship:

T̃ = 0.00246 + 0.000274λ, (5.4)

where T̃ is defined to be kbT/(ma
2ω2

E) and ωE is the Einstein frequency and

ω2
E = 〈ω〉2, where 〈ω〉2 is the mean squared phonon frequency.

In order to compare the melting temperature (equation 5.4) to the results

of the simulations, both T̃ and the simulation results are expressed in terms

of the unitless energy ratio kBT/Ua, where Ua = Uo e
−λ and the energy

Uo = (Ze)2/a. The parameter T̃ is related to the energy ratio using the

values of mω2
Ea

2/Uo as a function of λ found in Table 1 of Robbins et al.

(1988). Setting the value of mω2
Ea

2/Uo found in the table as a parameter

β(λ), T̃ can be rewritten as:

T̃ =
kbT

ma2ω2
E

=
kbT

βλUo
=

kbT

β(λ)Ua eλ
, (5.5)

with Uo = Uae
λ. As a result, the expression for kbT/U in terms of the T̃

parameter is:
kBT

Ua
= T̃ βeλ. (5.6)

In this manner the expression for the melting temperature can be compared

to the melting temperature from the LAMMPS simulations. The β(λ) value
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5.4. Simulation Parameters and Calculations

used to convert T̃ to the energy ratio is dependent on the structure, either

FCC or BCC. For values of λ = 3 and smaller the structure is BCC and

FCC for the larger λ values.

5.4 Simulation Parameters and Calculations

The melting temperature simulations were run with the 7 July 2009 version

of LAMMPS. The simulations were performed with constant Number, Volume,

and Energy (NVE) and the temperature was controlled with a Langevin

thermostat (Schneider & Stoll, 1978). The simulations contained one type

of atom with all particles interacting with a Yukawa potential with the

pair-coefficient, (Ze)2, set to unity. The atom mass was was also set to

unity. The FCC simulations used 4000 atoms and 2000 atoms were used

in the BCC simulations. The melting temperature values are calculated

at various inverse screening lengths, with the inverse screening length was

varying from κ = 0.5 to κ = 6.45. For simulations with κ > 3 the initial

lattice structure is FCC, and BCC below this value. Four different cut-off

radii were investigated; rc = 16/κ, 8/κ, 4/κ, and 3.07a. For three of the

cases the cut-off radius is dependent on the value of the inverse screening

length, while the fourth case sets the cut-off radius to a value based on the

particle spacing. Each simulation was heated over 2× 106 steps with a 0.09

time step. In every case the crystal had melted by the end of the simulation.

The mean squared displacement (MSD) of the particles was calculated

as the temperature increased and is used in determining the melting temper-

ature. The melting temperature in this work is defined as the temperature

where the largest jump in the mean squared displacement occurs. Another

method which could of been used to determine the melting temperature

would be to equate the free energy of the liquid and solid phase of the sys-

tem. Examples of how the melting temperature is determined are shown

in Figure 5.1, which plots the logarithm of the MSD as a function of the

reduced temperature for simulations with κ = 0.5 and κ = 1.29. The crystal

was found to melt for the κ = 0.5 case at a temperature of T ∗ = 0.0104433.

The data for the κ = 1.29 case shows multiple jumps in the MSD, but the
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5.5. Results: Melting Temperature

melting occurred at the largest jump, at a temperature of T ∗ = 0.0106.

The reduced temperature from the simulations can be related to both

the energy ratio, kbT/Ua and the T̃ parameter from Robbins et al. (1988).

The reduced temperature is defined as T ∗ = kbT/Uo, and since Ua = Uo e
−λ,

T ∗ =
kbT

Uo
=

kbT

Ua eλ
. (5.7)

As a result, the energy ratio is simply kbT/Ua = T ∗ eλ. In order to relate T ∗

to T̃ , ma2ω2
E is equated to 2/3λ2Ut, where Ut is the total potential energy

(Robbins et al., 1988), thus

T̃ =
kBT

ma2ω2
E

=
3kBT

2λ2Ut
. (5.8)

As kbT = T ∗Uo and the total potential energy is the kinetic energy sub-

tracted from the total energy (ET ), then in reduced units Ut = E∗T − 3/2T ∗.

Substituting the expression for the total energy into the above equation for

T̃ gives the relationship:

T̃ =
3T ∗

2λ2(ET − 3/2T ∗)
, (5.9)

since the characteristic energy, Uo = 1 for these simulations.

5.5 Results: Melting Temperature

The crystal melting simulations were performed for crystals of inverse screen-

ing length κ = 0.5 to κ = 6.45 with cut-off radii rc = 16/κ, 8/κ, 4/κ, and

3.07a, where a is the characteristic spacing of the atoms. The calculated

melting temperatures for each of the cut-off radii are presented in Table 5.1,

along with the initial structure of the crystal. The entries with asterisks

indicate simulations which had mean squared displacements with multiple

jumps. The empty entries occur in the cases where the cut-off radius is close

to or less than the characteristic particle spacing; in these cases the particles

would not interact with any nearby particles.
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Figure 5.1: Two examples of how the melting temperatures from the simula-
tions are determined. The melting temperature is defined as the temperature
where the jump in the logarithm of the mean squared displacement (MSD)
is the largest. In the example of κ = 0.5 with a rc = 8/κ the melting oc-
curs at T ∗ = 0.0104433. In the κ = 1.29 example, which has a rc = 4/κ,
there are multiple jumps in the MSD, but the largest occurs at T ∗ = 0.0106,
indicating the melting temperature.
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5.6. Results: Simulation Length and Temperature

Each of the melting temperatures calculated at the different inverse

screening lengths and cut-off radii are compared to the Robbins et al. (1988)

melting temperatures. The calculations at each cut-off radius are compared

to the expected melting temperatures in terms of kBT/Ua and T̃ as shown

in Figures 5.2 and 5.3, respectively. At small values of λ all the energy ratios

in Figure 5.2 appear to agree, except for the cut-off radius of rc = 3.07a. At

larger values of λ the calculated melting temperatures are larger than the

Robbins et al. (1988) result. In comparing the T̃ melting values in Figure

5.3 differences between the expected result and the simulated results are

more apparent. At a cut-off radius of rc = 3.07a there is a large degree

of discrepancy from the expected melting temperature for values of λ < 3.

This indicates that for κ < 3, a cut-off radius of rc = 3.07a is inappropriate.

The melting temperatures calculated using a cut-off radius of rc = 4/κ, like

for the cut-off radius of rc = 3.07a, are found to differ from the expected

melting temperature for certain values of λ. The melting temperatures cal-

culated with the larger cut-off radii are found to be closer to the the expected

melting temperature. At larger values of λ the melting temperatures show

better agreement with the expected melting temperature at the various cut-

off radii. This result is not unexpected considering the results from Chapter

4, where for κ = 4.74, which corresponds to λ = 3.74, a cut-off radius of

rc = 3.0 was found to be appropriate. At a κ = λ = 0.8835 a larger cut-off

radius of rc = 8.0, or rc = 7.068/κ was required.

5.6 Results: Simulation Length and Temperature

An additional investigation was undertaken in order to determine if the

calculated melting temperature is sensitive to the rate at which the crystal

is heated. This is a test to see if the number of steps used in the simulations

are appropriate. For this, one case was considered; a FCC λ = 6 crystal

with a cut-off radius of 3.07a, which corresponds to rc = 18.42/κ. With

the simulations discussed in Section 5.4, 2 × 106 steps were taken in order

melt the crystal. Additional simulations of 1 × 106 and 3 × 106 steps were

performed on a FCC crystal with κ = 6.0 and rc = 3.07a in order to compare
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Figure 5.2: Comparing the energy ratio at the melting temperature for
various cut-off radii to the results from Robbins et al. (1988) (labelled Rob-
bins 1988). The label indicates the cut-off radius used in the calculation,
rc = 16/κ, 8/κ, 4/κ, or 3.07a. Note that there are only values for rc = 4/κ
for λ ≥ 3.23, as above this value of λ the cut-off radius was too short for
there to be interactions between particles.
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Figure 5.3: Comparing the T̃ melting value of the different cut-off radii
melting temperature calculations to the Robbins et al. (1988) result of T̃m =
0.00246 + 0.000274λ. Simulations with smaller values of λ require a longer
cut-off radius in order to agree with the expected melting temperature. Note
that for a cut-off radius of rc = 4/κ at λ = 3.23 the cut-off radius is rc = 1.23.
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5.7. Results: Fitting for Melting Temperature

Structure κ T∗m T∗m T∗m T∗m
rc = 16/κ rc = 8/κ rc = 4/κ rc = 3.07a

BCC 0.5 0.0110142 0.0104433 0.0101333* 0.02*
BCC 0.71 0.0105465* 0.0107639 0.0125488* 0.017*
BCC 0.81 0.0107369 0.0105282 0.00950195* 0.014*
BCC 0.92 0.0103464 0.00990401 0.00893095 0.013*
BCC 1.08 0.0100772 0.0100009 0.0125845 0.012*
BCC 1.29 0.0094542 0.00945241 0.0106* 0.010*
BCC 1.61 0.00870435 0.0088535 0.0074933* 0.00889075*
BCC 2.15 0.00712177* 0.00719909 0.0074511 0.00734446
FCC 3.23 0.00444924 0.00428558 0.00613765* 0.00439987
FCC 3.74 0.00323955 0.00326031 – 0.00329566
FCC 4.5 0.00206131 0.00205862 – 0.00211135
FCC 5.5 0.0010634 0.00100772 – 0.00106841*
FCC 6.0 0.000742646 0.000736148 – 0.000740376
FCC 6.45 0.000538555 0.00063504 – 0.000541194

Table 5.1: Melting temperatures for the various cut-off radii. Those entries
with an asterisk (*) beside the temperature are simulations in which there
are multiple jumps in the mean squared displacement. These results are also
displayed in Figures 5.2 and 5.3.

the melting temperature of the three different heating rates. The melting

temperature, T ∗m, and the energy ratio, kBT/Ua, for the three simulations

are compared in Table 5.2. These calculations indicate that the melting

temperature is not strongly dependent on how the fast the crystals were

heated. This is a limited range of heating rates and larger range of heating

rates may indicate at which rate there is a strong dependence on the number

of steps used in the simulation.

5.7 Results: Fitting for Melting Temperature

The calculation of the interactions between particles is cut-off at a prescribed

radius in order to decrease the time it takes for a simulation to run. In an

ideal situation each of the particles would interact with all the other parti-

cles; thus, the cut-off radius would be infinite. A method to approximate
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5.7. Results: Fitting for Melting Temperature

Steps T ∗m kBT/Ua
1× 106 0.000753143 0.30383957
2× 106 0.000740376 0.298688996
3× 106 0.000744994 0.33055203

Table 5.2: Dependence of the melting temperature and the energy ratio on
how quickly the crystal is heated. These melting temperatures are calculated
for a FCC crystal with an inverse screening length of κ = 6.0 and a cut-off
radius of 3.01a.

the value of the melting temperature at an infinite cut-off radius would be to

extrapolate to the value. The melting temperature has been calculated for

various cut-off radius values listed in Table 5.1. The intercept of the melting

temperature as a function of 1/rc, as well as 1/(rc κ), provides an estimate

of the melting temperature at 1/rc = 0 or rc = ∞. The relationship of the

melting temperature as a function of 1/(rc κ) is displayed in Figure 5.4. The

data in this figure also shows the data sets at cut-off radius regimes used for

fitting for the melting temperature at an infinite cut-off radius. The linear

fitting results of the data are discussed below in Section 5.7.1 and the fitting

of the more difficult data sets are discussed in Section 5.7.2.

5.7.1 Linear Fitting

Linear fitting was performed on all of the sets of data, each set is indicated in

Figure 5.4. Since the melting temperatures calculated for λ = 0.5 to 1.61 for

a cut-off radius of rc = 3.07 disagree from the temperature calculations for

the other cut-off radii, see Figure 5.3, these temperatures are not included

in the fits. The cut-off radius at 4/κ for λ = 3.23 is also discrepant and

is similarly not included in the fitting. The data was fit to a straight line

using χ2 minimization, assuming equal errors for all data points (Press et al.,

1992). The fits to the melting temperature data are listed in Table 5.3. The

intercept of the linear fit of the melting temperature as function of 1/rc is

the melting temperature that the crystal would have if all the particles in

the simulations were interacting with each other.
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Figure 5.4: The melting temperature of the various screening lengths for
the different cut-off radius regimes. These are the data sets used for the
fitting of the melting temperature at infinite cut-off radius. Where the
data intercepts the y-axis indicates the expected melting temperature if all
particles interacted with each other.
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κ intercept inter err slope slope err χ2 goodness

0.5 0.0111692 0.00027227 -0.0087625 0.00329307 4.94208×10−8 1
0.71 0.00965406 0.000441867 0.0157652 0.00376363 1.30166×10−7 1
0.81 0.01125 0.0001993 -0.00841777 0.00148797 2.648×10−8 1
0.92 0.0108329 2.88825×10−5 -0.00824202 0.000189852 5.56131×10−10 1
1.08 0.00878542 0.000895635 0.0133468 0.00501508 5.3478×10−7 1
1.29 0.0088804 0.000376806 0.00507717 0.00176646 9.46544×10−8 1
1.61 0.00864728 7.68895×10−5 0.000807452 0.000336397 2.87792×10−9 1
2.15 0.00701236 6.06399×10−5 0.000842561 0.000174097 5.11456×10−9 1
3.23 0.00461823 9.22479×10−5 -0.000773071 0.000287032 1.70762×10−9 1
3.74 0.00324459 8.2951×10−5 6.01302×10−5 0.000233286 1.5094×10−9 1
4.5 0.0021084 7.33018×10−5 -8.03213×10−5 0.000179266 1.46898×10−9 1
5.5 0.00112122 2.40744×10−6 -0.000165155 4.99476×10−6 2.07394×10−12 1
6.0 0.000745889 3.26158×10−6 -1.2749×10−5 6.27981×10−6 4.24711×10−12 1
6.45 0.000464251 2.0473×10−5 0.000209779 3.69968×10−5 1.82231×10−10 1

Table 5.3: The linear fitting parameters of each of the sets of inverse screening length. The intercept gives the
extrapolated melting temperature of the specific inverse screening length as if all the atoms in the simulation
interacted with each other. The linear fitting of the data was performed without errors attached to the entries.
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5.7.2 Dealing with Hockey Sticks

For some of the simulations there is a ‘hook’ in the data, or rather the data

set takes on the shape of a hockey stick. In these cases the data was refit

using only two of the data points which are at the largest rc values from

the data sets. The data sets which were refit in this manner did not have

errors calculated with the linear fit, as the fitting routine requires three

data points for the error calculation. The refit data along with the resulting

intercept and slope are listed in Table 5.4. The final melting temperatures

including this refit data, corresponding to an infinite cut-off radius, are

compared to the results from Robbins et al. (1988) in Figure 5.5. The

melting temperatures are taken from Table 5.4 for the κ values that had

to be refit; all other melting temperatures are taken from Table 5.3. The

comparison of the extrapolated melting temperature to that of Robbins et al.

(1988) – see in Figure 5.5 – shows good agreement.

κ intercept slope

1.08 0.0101535 -0.00113034
1.29 0.00945599 -2.2199
3.74 0.00309697 0.00609982
4.5 0.00174493 0.0011249
6.0 0.000725367 4.60792×10−5

6.45 0.000552303 -3.41039×10−5

Table 5.4: Linear fitting parameters from using only two data points from
the set. This table only includes data files which were refit due to the hook
in the data, other fits are the same as in Table 5.3. This fit was performed
without attaching errors to the data.

5.8 Conclusions

In order to test that the LAMMPS simulations were performing as expected

and also to confirm the required cut-off radius values found in Chapter 4, the

melting temperature was calculated for different values of inverse screening

length. The cut-off radius value was also varied for each value of inverse
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Figure 5.5: Comparing the the energy ratio of the fitted melting tempera-
tures found from the LAMMPS to the results of Robbins et al. (1988). The
two are in good agreement, especially at the smaller values of λ.
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5.8. Conclusions

screening length. The crystal structure used in the simulations depended

on the value of inverse screening length: for simulations with κ > 3 the

initial structure used was FCC and for inverse screening lengths below, the

structure used was BCC. Each initial crystal was heated and the melting

temperature was determined. The melting temperature in these simulations

was defined as the temperature at which there is the largest jump in the

MSD. In order to approximate the conditions where all the particles interact

with each other, the cut-off radius was varied, the value of the melting

temperature at infinie cut-off radius can be found by extrapolating the data

set for a specific screening length. The melting temperature found in the

extrapolation was then compared to the results from Robbins et al. (1988).

The simulation and Robbins et al. (1988) results were found to be in good

agreement, especially at smaller values of inverse screening lengths.

The determination of the melting temperature can be affected by the

simulation parameters and can be measured with different methods. The

effect of the rate at which the crystal was heated on the melting temperature

was investigated by changing the number of steps for the heating to occur

over. The range of rates used in this chapter did not indicate a dependence

of the melting temperature with the heating rate. The heating rates, with a

larger range of values than investigated, may start to indicate the number of

simulation steps at which the heating rate becomes important for the melt-

ing temperature. The inverse screening length and the corresponding cut-off

radius used may also change the dynamics of the system, and would need to

be further investigated in the future. The melting temperature could also be

calculated in a different manner, such as equating the free energy of the liq-

uid and solid phases of the simulation. The method used in this chapter for

determine the melting temperature via the MSD could be double checked

by recrystallizing the melted material and calculating the crystallization

temperature. If there is no hysteresis than the melting and crystallization

temperatures would be in agreement. With these considerations, from the

comparisons fo the results of the melting temperatures calculated in this

chapter the Robbins et al. (1988), indicates that the melting criterion be-

tween the two is not very different. Comparing the melting temperatures
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5.8. Conclusions

at the different cut-off radii indicated that at small values of λ, or small

inverse screening lengths, a larger cut-off radius is required than for those

simulations with larger inverse screening lengths. With these simulations the

results from Chapter 4 are confirmed in terms of the cut-off radius required

at a value of κ and the method of implementing the molecular dynamics

using LAMMPS is also confirmed.
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Chapter 6

Mechanical Properties of

Pure FCC and BCC Crystals

6.1 Introduction

The mechanical properties of a crystal, such as the breaking strain and

shear modulus, can be determined using molecular dynamics simulations.

In the context of understanding a neutron star crust, molecular dynam-

ics simulations have previously been performed to understand the breaking

strain (Horowitz & Kadau, 2009) and also the breaking stress (Chugunov

& Horowitz, 2010) of both an accreted neutron star crust composition as

well as pure BCC lattices. A pure crystal was simulated in Horowitz &

Kadau (2009) as well as simulations which contained impurities, defects and

grain boundaries. The various types of defects in the simulated samples

were found to only slightly reduce the measured breaking strain to a value

around 0.1. In Chugunov & Horowitz (2010) the maximum value of the

stress-strain relationship, the breaking stress, was explored. For these sim-

ulations a sample containing only one type of ion was calculated. With this

sample the breaking stress at various inverse temperatures and strain rates

was examined. Within the timescales simulated in Chugunov & Horowitz

(2010) the breaking stress was found to have a strong dependence on the

temperatures.

In this chapter the tools which are used to examine the neutron star

crust are developed and applied to pure FCC and BCC crystals. In Chapter

7 the techniques discussed here are used to characterize the nature of a non-

accreting neutron star crust. From these simulations the shear modulus and
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6.2. Applying Shear

breaking strain are calculated by applying a shear to the sample crystal.

This chapter is divided in the following manner: the process for applying

shear in a simulation, the calculation of the thermodynamic and mechanical

properties, and the simulation results of applying a simple shear to pure FCC

and BCC crystals. Studies were also conducted to investigate additional

properties of the crystals through simulations looking for a second break,

running the simulation forward and then reversing the direction of shear,

and the temperature dependence on the shear modulus and breaking strain.

The simulations discussed in this chapter are primarily used to create a

molecular dynamics tool kit which will be applied to the neutron star crust

material in Chapter 7.

6.2 Applying Shear

In Horowitz & Kadau (2009) two different methods were used to introduce

the shear to the simulations. The first method was to deform the periodic

boundaries of the simulation box. The second method was to create three

layers of atoms, top and bottom boundary layers where the atoms do not

interact and an active region, the two boundary move opposite to each other

to introduce the shear (see Horstemeyer et al., 2001). For the simulations in

this chapter a shear was introduced using LAMMPS version 21 Jul 2010 by

deforming the simulation box containing the crystal lattice, either FCC or

BCC. The particles in the box continued to interact via the Yukawa poten-

tial while the deformation was applied. For each simulation calculations of

the thermodynamic and mechanical properties were performed. The defor-

mation, simulation parameters, and calculations are discussed fully below.

6.2.1 Deformation

In order to deform a crystal using LAMMPS the command fix deform was

invoked. With this command the box was deformed in the X-direction. A

velocity was also defined which specifies the rate at wich the tilt of the box,

or strain, was changed. This is the same as specifying a strain rate with
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6.2. Applying Shear

ṡ = v/l, where ṡ is the strain rate, v is the velocity and l is the original box

length in the direction perpendicular to the direction of shear. A schematic

of the box deformation is shown in Figure 6.1, where the box is deformed in

the x-direction and the ratio ∆x/l is the strain.

l

∆x

Figure 6.1: The box is deformed in the x-direction. The strain is calculated
by taking the ratio of ∆x to l, where ∆x is the amount the top of the box
has moved, and l is the length of the box in the y-direction. Strain measures
the degree of deformation.

6.2.2 Simulation Parameters

In both FCC and BCC cases pure crystals were simulated and the mass of

all atoms in the system was set to unity. The pair coefficient, (Ze)2, was also

set to unity for both cases. An inverse screening length of κ = 3.74 was used

in the FCC simulations. With this κ value a cut-off radius of rc = 3.07a is

appropriate. In the BCC simulations a κ = 0.8835 was used with a cut-off

radius of rc = 9.055, or rc = 8/κ.

Before the box was deformed, the simulation first underwent a stage

of thermal equilibration. This was done by giving the particles an initial

velocity, which was below the melting point of the crystal. The simulations

were performed with NVE time integration – constant number, volume and

energy. Thermal equilibration of the system was performed for 200 steps,

with a time step size of 0.01. Constant temperature during the deformation
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6.2. Applying Shear

was maintained by rescaling the temperature to a specified value when it

exceeded set bounds in a manner similar to Horowitz et al. (2007) rather

than a Langevin thermostat because the temperature rescaling allows for

direct and rigid temperature control.

6.2.3 Calculation of Material Properties

Temperature and Energy

The system temperature and energy were both calculated within the LAMMPS

simulations. The temperature of the system of particles was calculated as:

3/2N k T = KE, where KE is the sum of the kinetic energy of the particles,

KE =
∑

1/2mv2. Constant temperature was maintained and controlled

through temperature re-scaling. The deformation of the simulation box

contributes an additional velocity to the simulation, where particles near the

top of the box have a larger additional velocity than the particles near the

bottom of the box. This is a non-thermal contribution and was subtracted

from the temperature measurement. The total energy of the simulations is

the summation of the kinetic and potential energies of the system.

Pressure and Stress

The pressure and stress tensors were calculated for all particles in the sim-

ulation within LAMMPS. The pressure tensor includes a kinetic energy term

and the calculation of these values did not include the non-thermal contri-

bution due to deformation of the box. Pressure and stress tensors differ

in the direction: pressure has the opposite direction of the stress, or the

pressure is the negative of the stress. Along with the pressure tensor calcu-

lation, the total pressure of the system of particles was also calculated. In

order to calculate the stress tensor, the stress tensor for each atom was first

calculated. The global stress tensor of the system was then calculated by

taking a summation of the per-atom values which was then divided by the

volume of the simulation.
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Stress-Strain Relationship

The amount of strain is a measure of the degree of deformation of the simu-

lation box. Strain is measured by taking the ratio between the displacement

in the direction of applied shear, in this case the displacement is in the X-

direction, and the original length of the box. Thus, the strain is measured as

∆x/l, as displayed schematically in Figure 6.1. In order to ensure the sim-

ulation was not being overstrained, the rate of strain, ṡ, is chosen such that

ṡ/ωp < 1, where ωp is the plasma frequency. The plasma frequency of a ma-

terial is: ωp = (4πZ2e2ni/mi)
1/2. In the simulations described here, mass,

mi, number density, ni, and charge, Z2e2 are all set to unity for pure FCC

and BCC simulations. Thus, in the simulation units, the plasma frequency

is simply ωp = (4π)1/2. Note that in Chugunov & Horowitz (2010) ratios

of ṡ/ωp between 10−4 and 10−7 were used in their work. The strain rate is

the velocity of the shear applied divided by the length of the box: v/l, thus

velocity of the shear in the simulations is kept much below v = l (4π)1/2.

The stress-strain relationship, the amount of stress or pressure compared

to the degree of strain, can give an indication of how strong the material

is and when the material yields. A schematic of the expected stress-strain

relationship is shown in Figure 6.2. The shear modulus is the slope of

the linear region. At the point where the stress-strain relationship is no

longer linear in nature, the material has yielded to the applied stress. The

breaking strain in this work is the strain at which the material has yielded

to the applied shear forces. The breaking stress is the amount of stress at

the point of yielding.

6.3 Breaking Strain of Pure Crystals

The breaking strain and shear modulus of both pure FCC and BCC crystals

were calculated. The effects of the simulation size was first investigated by

examining five different FCC and BCC box sizes which all had a 20× 10−6

strain rate applied. A shear was applied to the FCC and BCC simulations

until a strain of ∆x/l = 0.2, 20% deformation, was reached. To determine
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Figure 6.2: A schematic of a stress-strain relationship. The shear modulus
of the material is the slope of the linear region. The breaking strain is the
point at which there is a change from the linear increase of stress with strain,
this is labeled ‘Yield’.

the breaking strain and shear modulus a range of strain rates were applied

to the crystals in order to determine if the simulations had converged to the

same values of breaking strain and shear modulus.

6.3.1 Box Size Effects

The effect which the size of the simulation box has on the stress-strain results

was tested by comparing simulations with unit cell volumes of 10× 10× 10,

12 × 12 × 12, 20 × 20 × 20, 25 × 25 × 25, and 35 × 35 × 35, for both the

FCC and BCC structures. The corresponding number of particles used in

the simulations are listed in Table 3.2. The simulations with smaller unit

cell volumes correspond to fewer particles in the simulation. A strain rate

of 20 × 10−6 was applied in all cases. The stress-strain relationships of the
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five sizes of the FCC and BCC crystals are compared in Figures 6.3 and 6.4,

respectively. For the five sizes of the FCC and BCC crystal simulations the

shear modulus is found to be the same. The figures indicate differences in

the breaking strain for the different sizes. The FCC crystals with the largest

box sizes yield before the smaller boxes. The BCC crystal with the largest

box sizes also yield first, but the two smaller box sizes yield at nearly the

same point. The difference in the breaking strain is likely due to the number

of particles in the simulation. Simulations of pure crystals with a simulation

box size of 25× 25× 25 unit cells are presented next.

6.3.2 Pure FCC Crystal

The FCC simulations with various applied strain rates contained 62500

atoms. Strain rates of 20, 5, 2.5, and 1.25×10−6 were applied to the crys-

tal. The breaking strain and shear modulus determined for each strain

rate are listed in Table 6.1, as well as the stress-strain relationships for the

different strain rates are shown in Figure 6.5. This figure indicates that

the shear modulus for the four strain rates are simular, but the breaking

strain has a dependence on the strain rate applied. The largest strain rate

of ṡ = 20 × 10−6 is found to yield after the smaller strain rates, whereas

the smaller strain rates yield at approximately the same strain. The total

energy as function of strain is displayed in Figure 6.6 for an FCC crystal.

This plot displays the same yielding events, with the smaller scale plastic

events occurring after the crystal fails the first time. The breaking strain is

approximately 0.1 and the shear modulus is approximately 0.086 in reduced

pressure units in the FCC case.

6.3.3 Pure BCC Crystal

The BCC simulations contained 31250 particles. This crystal case represents

a perfect 56Fe BCC crystal. Strain rates of 20, 5, and 2.5×10−6 were applied

to the perfect crystal. The breaking strain and shear modulus are listed in

Table 6.2 for the three different strain rates, with the stress-strain relation-

ships compared in Figure 6.7. The shear modulus is the same for the three
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Figure 6.3: The stress-strain relationship of a pure FCC crystal comparing
five different sizes of simulations. The number of particles range from 4000
in the smallest simulation box to 171500 in the largest, the particle numbers
are listed in Table 3.2. For the same applied strain rate, ṡ = 20× 10−6, the
five sizes share the same shear modulus, but different breaking strains. The
larger simulations yield before the smaller.
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Figure 6.4: The stress-strain relationship of a pure BCC crystal comparing
five different sizes of simulations. In the smallest simulation box there are
2000 particles and 85750 particles in the largest simulation box. The range
of the number of particles in the simulation boxes are listed in Table 3.2. For
the same applied strain rate of ṡ = 20 × 10−6 the five sizes of simulations
share the same shear modulus, but the breaking strain is different. The
larger simulation boxes are found to yield before the smaller.
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Figure 6.5: The stress-strain relationship for a 62500 particle, pure FCC
crystal with an inverse screening length of κ = 3.74 with applied strain
rates of 20, 5, 2.5, and 1.25 ×10−6. The shear modulus is the same for all
the strain rates and the breaking strain is similar at small strain rates.
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Figure 6.6: The energy corresponding the the deformation of a pure FCC
crystal with an inverse screening length of κ = 3.74 for the strain rates of
20, 5, 2.5, and 1.25 ×10−6. After the initial breaking point, at ∼0.1 smaller
yield events occur.
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Strain Rate ṡ/ωp Breaking Shear
(×10−6) (×10−7) Strain Modulus

20 56.42 0.104669 0.08570
5 3.979 0.0998332 0.08569

2.5 1.989 0.100611 0.08576
1.25 0.995 0.0998332 0.08573

Table 6.1: The breaking strain and shear modulus for a 62500 particle, pure
FCC crystal, with κ = 3.74 for strain rates of 20, 5, 2.5, and 1.25×10−6.
The ṡ/ωp ratio is below unity for all strain rates.

values of ṡ and the breaking strain converges for smaller values of the strain

rate. The breaking strain of a perfect BCC crystal was found to be approx-

imately 0.11 and the shear modulus was determined to be approximately

0.27 in reduced pressure units.

Strain Rate ṡ/ωp Breaking Shear
(×10−6) (×10−7) Strain Modulus

20 56.42 0.114508 0.27217
5 3.979 0.112896 0.27219

2.5 1.989 0.111395 0.27220

Table 6.2: The breaking strain and shear modulus for a pure BCC crystal,
with κ = 0.8835 for the three different strain rates. The value of ṡ/ωp was
kept below unity for all strain rates investigated.

6.4 Second Break

After the first break in some of the breaking strain simulations the pressure

began to once again increase linearly with strain. This is likely to be an

indication that the crystal is undergoing a second major yielding event.

In order to investigate the possibility that the system undergoes a second

yielding event, or second break, the simulations are run with a strain rate

of 20 × 10−6 for a total strain of ∆x/l = 0.4, twice as much strain as the

previous simulations. The FCC and BCC crystal cases were both examined
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Figure 6.7: The stress-strain relationship of a 31250 particle pure BCC
crystal with an inverse screening length of κ = 0.8835 with applied strain
rates of 20, 5, and 2.5×10−6. The shear modulus for the three strain rates
is the same at ∼0.27 reduced pressure units. The breaking strain is ∼0.11.

94



6.5. Forward and Reverse

for the occurrence of a second break. The stress-strain relationship for the

FCC crystal is shown in Figure 6.8. The FCC simulation did not show any

evidence for a second break occurring for the strain rate of ṡ = 20 × 10−6.

The strain-strain relationship for the BCC crystal is presented in Figure 6.9.

The BCC simulations did show an indication of a second break occurring.

The shear modulus for the first and second break were different with a shear

modulus of µ∼ 0.27 before the crystal first yields and a shear modulus of

µ∼ 0.11 before the second break. The shear modulus of the second break

was measured to occur between a strain of 0.133 and 0.186.

6.5 Forward and Reverse

Simulations were also performed where the direction of applied shear was

changed after the material yielded. These simulations were conducted to

investigate the effect changing the direction of shear has on the shear mod-

ulus of the crystal and if the yield event is reversible. If the yielding event

was reversible, the same shear modulus would be found in both directions.

These simulations were performed on both the FCC and the BCC crystals.

The crystals were deformed at a rate of 20 × 10−6 until the fracturing oc-

curred and then the same rate of strain was applied in the reverse direction.

For plotting purposes the strain measurements in the figures continues to

increase after reversing the shear direction as (step size×∆t × 20 × 10−6).

For the FCC crystal, a strain of 0.106 was reached and then the deforma-

tion of the crystal was reversed. The stress-strain relationship of the FCC

crystal is shown in Figure 6.10 with both the forward and reverse directions.

The shear modulus changes from µ∼ 0.087 in the forward deformation, to

a shear modulus of µ∼ 0.079 when the deformation is reversed. The shear

modulus in the reverse direction was measured between a strain of 0.165

to 0.188 for the FCC crystal. In the BCC case, the initial shear modulus

was measured to be µ∼ 0.27. The box deformation was reversed at a strain

of 0.12, and a shear modulus of µ∼ 0.17 was measured between a strain of

0.175 and 0.2115 in the reverse direction. The stress-strain relationship of

the BCC crystal is shown in Figure 6.11. As the shear modulus is not the
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Figure 6.8: The stress-strain relationship of a 62500 particle, pure FCC
crystal with an inverse screening length of κ = 3.74 for a strain rate of
20 × 10−6. This simulation was run to a larger deformation in order to
investigate a second yielding event. There is no indication that a second
break occurred at this strain rate for the FCC crystal.
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BCCFe: Second Break

Strain

σ
x
y
[P
re
ss
u
re
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

Figure 6.9: The stress-strain relationship of a 31250 particle, pure BCC
crystal with an inverse screening length of κ = 0.8835 for a strain rate of
20 × 10−6. The simulation box was deformed to a strain of ∆x/l = 0.4 in
order to investigate the occurrence of a second material failure. A second
break occurred for the BCC crystal between a strain of 0.133 to 0.186 with
a shear modulus of µ ∼ 0.11 in reduced pressure units.
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same in both directions, the yielding event is not reversible for either case

of crystal structure.

6.6 Temperature Dependence

The temperature dependence of the shear modulus and breaking strain was

also investigated with the molecular dynamics simulations. Pure FCC and

BCC crystals were run at hotter and colder temperatures relative to the

original simulations. The temperature for the hotter simulation was held at

0.002, and the temperature of the colder simulations were held at 0.0005.

The temperature of the original simulation was held at 0.001 in reduced

temperature units. All these temperatures are below the melting tempera-

tures of the two crystal types. For the FCC crystal the melting temperature

is approximately 0.003 and the melting temperature is approximately 0.01

for the BCC crystal. All temperature simulations were run at a strain rate

of 20 × 10−6. The stress-strain relationship for all three temperatures are

compared in Figure 6.12 for a FCC crystal and in Figure 6.13 for a BCC

crystal. The simulations for both FCC and BCC crystals have different

shear moduli and breaking strains at each temperature, as listed in Table

6.3. The BCC simulations indicate small differences for the temperature

dependence. In both the FCC and BCC simulations the shear modulus was

largest for colder simulations. The temperature dependence on the breaking

strain for FCC and BCC crystals are different; for FCC crystal the hottest

simulation yielded first, whereas the coldest simulations in the BCC case

yielded to the shear first.

6.7 Conclusions

A molecular dynamics toolkit was developed in this chapter for understand-

ing neutron star crust material and applied to two sample cases: a pure

FCC and a pure BCC crystal. The crystal structures within the simula-

tion boxes were deformed with the molecular dynamics simulations in order

to determine the shear modulus and breaking strain of the crystals. For
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Figure 6.10: The stress-strain relationship of a pure FCC crystal with an
inverse screening length of κ = 3.74 and a strain rate of 20×10−6. After the
material yielded, the box deformation is reversed. The line labelled ‘Flipped’
indicates the stress applied in the reverse direction. The shear modulus in
the forward direction was ∼ 0.087 and in the reverse direction the shear
modulus was ∼ 0.079 measured between a strain of 0.165 and 0.188.
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Figure 6.11: The stress-strain relationship of a pure BCC crystal with an
inverse screening length of κ = 0.8835 and a strain rate of 20 × 10−6. The
deformation of the box was reversed after the material yields. In the forward
direction the shear modulus was µ ∼ 0.27, after the box deformation was
reversed the shear modulus is µ ∼ 0.17. The shear modulus was measured
between a strain of 0.175 and 0.2115.
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Figure 6.12: The stress-strain relationships for FCC crystals at different tem-
peratures. The melting temperature for the FCC crystal is approximately
0.003. All simulations had a strain rate of ṡ = 20× 10−6 applied. The shear
moduli differ for all three temperatures with the colder simulations having
the largest shear modulus. The hottest simulation broke first.
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BCCFe: Temperature
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Figure 6.13: The stress-strain relationship for BCC crystals at different
temperatures. At a temperature of approximately 0.01 the BCC crystal
melts. A strain rate of ṡ = 20 × 10−6 was applied in all three cases. For
each temperature the shear modulus and breaking strain differ, though T
= 0.001 and T= 0.0005 were found to be very similar. The shear modulus
of the colder simulation was slightly larger then the warmer simulations.
The colder simulation breaks before the hotter simulations, unlike the FCC
simulations.
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Structure Temperature Temperature Breaking Shear
T ∗ K Strain Modulus

FCC 0.002 6.9×108 0.0738188 0.05185
0.001 3.5×108 0.104669 0.08570
0.0005 1.7×108 0.11673 0.08973

BCC 0.002 6.5×108 0.11712 0.26069
0.001 3.5×108 0.114508 0.27217
0.0005 1.7×108 0.112285 0.27821

Table 6.3: The temperature, breaking strain and shear modulus for a pure
FCC and BCC crystal. The temperature and shear modulus are in reduced
units. Note that the FCC crystal melts at T ∗∼0.003 and the BCC crystal
at T ∗∼0.01. The physical temperature is at the base of the crust at ρ =
1014 g/cm2. For a FCC crystal the difference with temperature for both the
breaking strain and the shear modulus was greater than those for the BCC
simulations.

simulations run at a temperature of T ∗ = 0.001 the FCC crystal is found

to have a shear modulus of µ∼ 0.086 and a breaking strain of ∼ 0.1. The

BCC crystal at this same temperature had a shear modulus of µ∼ 0.27 and

yielded to the applied shear at ∼ 0.11. Only one crystal orientation was

investigated in all the various simulations, the same shear force applied on

a different orientation of the crystal could result in a different stress-strain

relationship.

Additional simulations were performed in order to characterize the ma-

terials. Both simulations were deformed to a strain of ∆x/l = 0.4, twice

as much as the first set of simulations, at a strain rate of ṡ = 20 × 10−6

in order to investigate the possibility of a second yielding event. The FCC

crystals did not show any indications of a second break, but the BCC crys-

tal did. The shear modulus for the second break of the BCC lattice had a

different shear modulus compared to the first break: µ∼ 0.11 for the sec-

ond break versus µ∼ 0.27 for the first break. Simulations were performed

where the crystal was deformed to the point of yielding, at which point the

deformation was reversed. These simulations showed a change in the shear

modulus when the simulation was reversed, indicating that the system was
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not reversible after the yielding event occurred. With a rate of strain of

ṡ = 20 × 10−6 the FCC forward shear modulus was found to be µ∼ 0.087

but µ∼ 0.079 on the reverse direction. For the BCC case, with a strain rate

of ṡ = 20 × 10−6, the shear modulus was µ∼ 0.27 in the forward direction

and µ∼ 0.17 in the reverse direction.

The temperature dependence on the shear modulus and the breaking

strain was tested by running simulations at the strain rate of ṡ = 20× 10−6

but at three different temperatures, T ∗ = 0.002, 0.001, and 0.0005, for

both FCC and BCC crystals. Note that at T ∗∼ 0.003 the FCC crystal

melts and at T ∗∼ 0.01 the BCC crystal melts. The shear modulus was

larger for the cooler simulations for both the FCC and BCC cases, though

in the BCC case it is not significant as found in the FCC simulations. The

shear modulus was expected to decrease linearly with increasing temperature

(Nadal & Le Poac, 2003). The breaking strain in the FCC case was larger

at colder temperatures. The BCC crystal was found to fail earlier with

cooler temperatures. The differences in the breaking strain are small as

the material cools and this could have implications for SGR burst activity.

Due to the small changes in the breaking strain with temperature for these

perfect crystals the bursting activity would not be expected to change for a

SGR as the crust cools.

These different types of simulations will be used on the impure crystals

which represent the different neutron star crust compostions in order to

probe the mechanical properties of the crust. The pure BCC case from this

chapter will be compared to the impure cases in the next chapter. The

breaking strain for the BCC crystal simulation of ∼ 0.11 is in agreement

with the results found by Horowitz & Kadau (2009). Continuing to deform

the simulation box past the first yielding event and observing that a second

yielding event can occur is important to do further studies on, as it may

have implications on the energetics of subsequent SGR bursts.
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Chapter 7

Mechanical Properties of

Neutron Star Crusts

7.1 Introduction

With the tool kit developed using the pure crystal cases from Chapter 6

the properties of impure crystals are now investigated. The impure crystals

used are representative of different neutron star crust compositions. The

crystals have a perfect BCC structure, which sets an upper limit on the

shear modulus and breaking strain of the neutron star crust. The addition

of defects to the perfect crystal would be expected to decrease the breaking

strain and shear modulus, though Horowitz & Kadau (2009) found this to

only be a modest effect in the case of the composition of an accreting neutron

star crust. Also in the case of the accreted neutron star crust material

chemical phase separation was found to occur, where the liquid ocean was

enriched with elements with low atomic numbers (Horowitz et al., 2007).

In the case of a non-accreting neutron star crust, which is the focus of

this chapter, the crustal composition is not pure iron, but includes some

impurities.

There are three cases for which the crustal abundances were calculated

for a non-accreting neutron star. The abundances used for the crusts were

calculated using the reaction network torch, as discussed in Chapter 2. The

abundance calculations were based on the cooling curves of three cases of

non-accreting neutron stars: a neutron star which cooled via the modified

Urca process, a neutron star with a thick crust, and a neutron star with

a thin crust. Each of the differently cooled neutron star crusts resulted in
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different compositions, these crustal compositions are listed in Table 2.1.

For each of the three cases the melting temperature, occurrence of chemical

separation and stress-strain relationship were investigated. The simulations

include neutron star crust compositions which have previously not yet been

explored. As well, simulations were run where the box is strained beyond

the first yielding event and also where the strain is reversed, these types of

simulations have also not been previously studied. The stress-strain rela-

tionships of these impure crystals were also compared to the pure crystal

from Chapter 6.

7.2 Simulation Set-up

In order to add impurities to the simulation, a data file was created for

a perfect BCC lattice structure and the different atoms were randomly as-

signed to lattice locations, weighted by the number abundance of each of the

isotopes. A FCC structure was not considered since the inverse screening

length for the crustal compositions were appropriate for a BCC structure.

Each of the simulations contained 31250 atoms. The number of each type of

atom was determined from the mass fractions of the isotopes. These mass

fractions were calculated by torch, as discussed in Chapter 2. The nuclear

reaction network software torch produced abundances for 489 isotopes, but

only the top three of these were used in the simulations. As a result the

mass fractions from torch were rescaled so that the mass fractions of the

three isotopes add up to unity. For a neutron star cooling via the modified

Urca process the top three most abundant isotopes were found to be 56Fe,
54Fe, and 60Ni. The three most abundant isotopes for a neutron star with a

thick crust were 56Fe, 60Ni, and 52Cr. A thin crust had 54Fe, 58Ni, 56Fe as

the three most abundant isotopes.

The fraction of the number of types was found by starting with mass

fraction: Xi = ρi/ρ, where ρi = nimuAi and ni = Ni/V , which is the

number density. Substituting the last two expressions into the equation for
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Xi gives:

Xi =
ρi
ρ

=
NimuAi
ρ V

, (7.1)

and ρ = Mtotal/V = N 〈A〉mu/V , then Xi is:

Xi =
NimuAiV

V N 〈A〉mu
. (7.2)

Re-arranging and solving for the number fraction gives:

Ni

N
= Xi

〈A〉
Ai

. (7.3)

The average mass is given by 〈A〉, the definition of which is described below.

The total number of isotopes in the simulation is the sum of the different

types of atoms: Ni +NJ +Nk = N ; using the equation for number fraction,

the total number is given as N〈A〉(Xi/Ai + Xj/Aj + Xk/Ak) = N . Thus,

the average mass is:
1

〈A〉 =
Xi

Ai
+
Xj

Aj
+
Xk

Ak
. (7.4)

The number density of electrons is given as ne = 〈Z〉nion, thus the

average charge is the ratio of the two number densities: ne/nion. The total

number of electrons is Ne,total = Ne,i +Ne,j +Ne,k. As the number density

of an ion type is ni = Xi ρ/(muAi), the number density of electrons for a

type of atom is:

ne,i =
ZiXi ρ

muAi
. (7.5)

The number density is n = N/V and the density is ρ = mtotal/V , now:

ne,i =
Ne,i

V
=

ZiXi

muAi

mtotal

V
=

ZiXi

muAi

N mu 〈A〉
V

, (7.6)

re-arranging to solve for the number of electrons results in:

Ne,i =
ZiXiN 〈A〉

Ai
. (7.7)
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As a result the total number of electrons is then:

Ne = N〈A〉
(
ZiXi

Ai
+
ZjXj

Aj
+
ZkXk

Ak

)
. (7.8)

The average charge is found from the ratio of electron density to isotope

density, 〈Z〉 = ne/nion = Ne/Nion, thus:

〈Z〉 = 〈A〉
(
ZiXi

Ai
+
ZjXj

Aj
+
ZkXk

Ak

)
, (7.9)

which was used as the charge in the calculation of the inverse screening

length, κ = (24α3/2 π1/2 〈Z〉)1/3. The average charge of the isotopes dictate

the inverse screening length of the system. The degree of impurity of a

sample can be quantified by the impurity factor, Qimp. The impurity factor

is Qimp = 〈Z2〉 − 〈Z〉2, or (Itoh & Kohyama, 1993):

Qimp = n−1ion
∑
i

ni (Zi − 〈Z〉)2, (7.10)

where Qimp = 0 for a sample without impurities. The larger the value of

Qimp the larger the amount of impurities in the sample.

The top three most abundant isotopes of 489 calculated from torch were

used for the three different cooling curve cases: the modified Urca, a thick

crust, and a thin crust. Table 7.1 summarizes the top three isotopes for each

method of cooling along with the original mass fraction of each isotope from

the torch calculations. The rescaled mass fraction, the number fraction of

each isotope, and the mass value used in the molecular dynamics simulations

is also listed in the table.

All the particles in the simulation interact via a Yukawa potential. The

parameters used for determining the interactions between particles for each

composition are listed in Table 7.2, this includes 〈Z〉, which is used to cal-

culate the inverse screening length κ, the cut-off radius, and the Qimp pa-

rameter are also included in the table. The pair coefficients, (Ze)2 for the

pair interactions of each of the crustal compositions are listed in Table 7.3

for the modified Urca crust, Table 7.4 for the thick crust, and Table 7.5 for
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Isotope A Z Mass Fraction Rescaled X Number Fraction Mass

Modified Urca Composition
56Fe 56 26 0.559 0.6014 0.5961 1.0
54Fe 54 26 0.3187 0.3429 0.3524 0.964
60Ni 60 28 0.05175 0.0557 0.0515 1.071

Thick Crust Composition
56Fe 56 26 0.9286 0.9429 0.9431 1.0
60Ni 60 28 0.03138 0.0319 0.0298 1.071
52Cr 52 24 0.02485 0.0252 0.0271 0.929

Thin Crust Composition
54Fe 54 26 0.6477 0.6675 0.6808 0.964
58Ni 58 28 0.2209 0.2276 0.2161 1.036
56Fe 56 26 0.1018 0.1049 0.1031 1.0

Table 7.1: The top three isotopes from the torch calculations for three
different cooling curves: modified Urca, thick crust, and thin crust cool-
ing. The original mass fraction from the torch calculations, as well as the
rescaled mass fraction (X) are included. The number fractions determine the
number of each type of isotope used in the molecular dynamics simulations.
The mass value is a scaled mass for the molecular dynamics simulations,
where the mass is unity for A = 56.

the thin crust. The value of the pair coefficient was scaled depending on the

value of Z. In the case where Z = 26 the pair coefficient (Ze)2 = 1.

7.3 Melting Simulations

In each of the crustal composition cases the impure BCC crystals were sub-

jected to an increase of temperature and then cooled down to the starting

temperature. These simulations allowed for a calculation of the melting tem-

perature and to confirm the structure of the system after re-crystallization.

The crystals were heated from T ∗ = 0.001 to a value of T ∗ = 0.02 over

106 steps. Note that a pure BCC crystal was found to melt at T ∗∼0.01 in

Chapter 6. Once melted, the liquid was allowed equilibrate by fixing the

temperature at T ∗ = 0.02 for an additional 106 steps. During the equilib-

rium portion of the simulation the atoms were able to cross the length of the
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〈A〉 〈Z〉 κ rc Qimp
mod Urca 55.501 26.103 0.8847 9.043 0.195
thick 56.011 26.005 0.8836 9.054 0.228
thin 55.071 26.432 0.8884 9.005 0.678

Table 7.2: The inverse screening length and cut-off radius used in the simu-
lations. The parameters 〈A〉 and 〈Z〉 were used in the calculation simulation
parameters. The Qimp value indicates the degree of impurity of the sample.

type 1 2 3

1 1.0 1.0 1.0769
2 – 1.0 1.0769
3 – – 1.1598

Table 7.3: Pair coefficients, (Ze)2, of the Yukawa potential for the modified
Urca composition. Type 1 atoms are 56-Fe, type 2 atoms are 54-Fe and the
type 3 atoms represent 60-Ni.

simulation box over ∼ 500 times, allowing the system to equilibrate. The

simulation was next cooled down to the original temperature over 2 × 106

steps, resulting in a re-crystallization of the solid. It was important to know

the structure of the final crystal for future simulations. For example if the

sample was BCC or FCC. Also, the pair correlation functions of each type

of atom would indicate if there was chemical separation occurring in the

simulations.

The melting temperatures of the crusts were calculated in the same man-

ner as described in Chapter 5, by defining the melting temperature as the

temperature corresponding to the largest jump in the mean squared dis-

placement. Following this method, the melting temperature of the modified

Urca crust was found to be T ∗ = 0.0103312. The thick crust had a melting

temperature of T ∗ = 0.010131087. In the case of the thin crust the tran-

sition from solid to liquid occurred at a temperature of T ∗ = 0.0104601.

The three different crusts were observed to melt near the same temperature

with the thin crust melting at the highest temperature. The melting tem-

peratures for the impure crusts are also similar to that of the pure BCC
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type 1 2 3

1 1.0 1.0769 0.9231
2 – 1.1598 0.9941
3 – – 0.8521

Table 7.4: Pair coefficients, (Ze)2, of the Yukawa potential used in the
simulations for the thick crust compositions. Type 1 atoms are 56-Fe, type
2 atoms are 60-Ni and type 3 atoms are 52-Cr.

type 1 2 3

1 1.0 1.0769 1.0
2 – 1.1598 1.0769
3 – – 1.0

Table 7.5: Pair coefficients, (Ze)2, of the Yukawa potential used in the
simulations for the thin crust composition. Type 1 atoms are 54-Fe, type 2
atoms are 58-Ni and type 3 atoms are 56-Fe.

crystal of Chapter 6. At a density of ρ = 1011 g/cm3 these melting tem-

peratures correspond to ∼ 7 × 108 K. In the simulations where the crystal

was deformed the temperature of the simulations was always less than the

melting temperature.

The final structure and the possibility of chemical separation were quan-

tified via pair correlations between the particles of the sample. The radial

distribution function (RDF) of all the particles was calculated for the re-

crystallized crust at the end of the simulation. The RDF of all the particles

at the end of the simulation was compared to the RDF of a BCC crystal in

all three cases. The RDF was also calculated for each isotope type, in order

to look for signatures of chemical separation.

The RDF of all isotope types in the modified Urca crustal composition

was compared to that of a BCC lattice as shown in Figure 7.1. The am-

plitude of the peaks, g(r), was scaled down by a factor of 5 in order to

visually compare the spacings of the two structures. The spacings of g(r)

for the modified Urca crustal composition correspond to those of the BCC

lattice structure. The individual pair correlations for each type of isotope
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are compared in Figure 7.2. Evidence of chemical phase separation would be

apparent if different types of isotopes had different RDFs, such as one type

of isotope being in the solid state and another in the liquid state. The RDFs

of each of the isotopes did not exhibit a signature of chemical separation.

In the case of the thick crust composition, the final structure from the

cooling of the crustal melt was compared to a BCC lattice as presented in

Figure 7.3. As in the modified Urca case the amplitude of the peaks are

scaled down. Comparing the spacings of the peaks of the thick crust to

that of a BCC lattice indicates the thick crust lattice corresponds to a BCC

lattice. Figure 7.4 compares the RDFs of individual isotope types in order

to investigate chemical separation, but there are no signatures evident.

For the thin crust composition the RDF of all the atom types was com-

pared to a BCC structure and is shown in Figure 7.5, where again the am-

plitude of the BCC RDF is scaled down for visual comparison. The RDFs

of each of the atom types in the thin crust are compared in Figure 7.6. The

structures of each of the different types of isotopes did not indicate chem-

ical separation. The lack of evidence for chemical phase separation in all

three cases could be due to the final temperature of the simulations, perhaps

the final temperature was low enough that all atom types crystallized and

thus different phases were not evident. At hotter temperatures chemical

separation may become evident.

7.4 Stress-Strain Relationships

Following the procedure outlined in Chapter 6 the mechanical properties,

such as breaking strain and shear modulus, were calculated for the three dif-

ferent crustal compositions. For the deformation simulations, perfect BCC

lattices were used with impurities randomly assigned to lattice locations.

The results of the impure BCC crystals were also compared to the pure

BCC crystal case. Strain rates of 20× 10−6, 5× 10−6, and 2.5× 10−6 were

used in these simulations with the lattice deformed to a 0.2 strain. As per-

fect BCC lattices were used in these simulations and it is unlikely that a

neutron star would have a perfect BCC lattice crust, the results of the shear
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Figure 7.1: The RDF of all the atomic types in the recrystallized modified
Urca composition compared to that of a BCC structure. The BCC structure
is scaled down in amplitude in order to compare the spacings of the peaks.
The spacings of the modified Urca agree with those of the BCC lattice.
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Figure 7.2: The RDFs of individual atom types within the recrystallized
modified Urca composition. Differences in the RDFs, such as one indicating
a liquid structure, would be an indication of chemical phase separation.
There is no evidence of chemical phase separation in this crustal composition.

114



7.4. Stress-Strain Relationships

Thick End: All types

radius

g(
r)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1
2

3
4

5
6

7

Thick data

BCC

Figure 7.3: The RDF of all atomic types in the recrystallized thick crust
composition compared to that of a BCC structure. The BCC structure is
scaled down in amplitude in order to compare the spacings. The spacings
of the thick crust RDF correspond to those of the BCC lattice.
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Figure 7.4: The RDFs of individual atoms types within the recrystallized
thick crust composition. Differences in the peak spacings of the RDFs would
be an indication of chemical separation. There is no evidence of chemical
separation in this composition.
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Figure 7.5: The RDF of all atomic types in the recrystallized thin crust
composition compared to that of a BCC structure. The BCC structure is
scaled down in amplitude in order to compare the spacings. The spacings
of the thin crust composition correspond to those of a BCC lattice.
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Figure 7.6: The RDFs of individual atom types in the recrystallized thin
crust composition. Differences in the RDFs between the types of atoms
would be an indication of chemical phase separation. There is no evidence
of chemical phase separation for the thin crust composition.
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modulus and the breaking strain set upper limits, as adding in defects would

likely work to weaken the structure, decreasing the breaking strain.

The calculations of the breaking strain and the shear modulus for the

three strain rates are compiled in Table 7.6 for the modified Urca compo-

sition, Table 7.7 for the thick crust composition and Table 7.8 for the thin

crust composition. These results were also compared to those of the pure

BCC lattice from Chapter 6. An example of a stress-strain relationship of

the three impure BCC lattices compared to the pure BCC lattice at a strain

rate of ṡ = 20 × 10−6 is displayed in Figure 7.7. The modified Urca and

thick crust display similar properties to the pure BCC lattice. The thin

crust is found to yield to the stress at a larger degree of deformation than

the other compostions. For all three strain rates, ṡ = 20 × 10−6, 5 × 10−6,

and 2.5× 10−6, the modified Urca and thick crust compositions shared sim-

ilar shear moduli and breaking strains to the pure BCC lattice; the thin

crust composition consistently has a higher breaking strain. All three com-

positions have shear moduli of ∼ 0.27. The breaking strain for the modified

Urca and thick crust occurred at φm∼ 0.11, and at φm∼ 0.12 the thin crust

yielded to the applied stress.

Strain Rate ṡ/ωp Breaking Shear
(×10−6) (×10−7) Strain Modulus

20 56.42 0.115620 0.2735
5 3.979 0.113396 0.2736

2.5 1.989 0.113174 0.2735

Table 7.6: The breaking strain and shear modulus for a perfect BCC lattice
with a composition of the modified Urca crust.

As mentioned earlier the calculated shear modulus and breaking strain

for the above perfect crystals set an upper limit for the neutron star crust

as the neutron star crust is unlikely to be a perfect crystal. Applying a

strain to the recrystallized structure found in Section 7.3 places a limit on

the stress-strain relationship for an imperfect crystal. The imperfect crystal

was created by using the results from the melting simulation runs. For the
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Figure 7.7: The stress-strain relationship for the three crustal compositions:
modified Urca (mu3), thick crust (thick), and thin crust (thin), compared
to a pure BCC lattice (bccfe). A strain rate of 20 × 10−6 was used in all
four simulations. The shear modulus was found to be similar for all the
simulations. The thin crust yielded to the deformation at a higher strain
than the other three simulations. As these results use a perfect BCC lattice
structure, these simulations set an upper limit for the shear modulus and
breaking strain of a neutron star crust.
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Strain Rate ṡ/ωp Breaking Shear
(×10−6) (×10−7) Strain Modulus

20 56.42 0.113285 0.27179
5 3.979 0.111895 0.27178

2.5 1.989 0.111673 0.27179

Table 7.7: The breaking strain and shear modulus for a perfect BCC lattice
structure with a thick crust composition.

Strain Rate ṡ/ωp Breaking Shear
(×10−6) (×10−7) Strain Modulus

20 56.42 0.122846 0.26644
5 3.979 0.120122 0.27620

2.5 1.989 0.119455 0.27711

Table 7.8: The breaking strain and shear modulus for a perfect BCC lattice
containing a thin crust composition.

melting simulations a perfect BCC crystal with impurities is melted and

recrystallized. Though the recrystallized material has a global structure of

BCC, in the cooling process defects, such as grains are introduced, creating

an imperfect crystal. The stress-strain relationship for the thick crust in

the perfect and imperfect crystal cases are compared in Figure 7.8. The

two cases show large differences with regards to the shapes of the curves.

In Figure 7.9 the imperfect crystal is shown in more detail. Unlike perfect

crystals, imperfect crystals display plastic activity occurring at small strains.

The properties such as shear modulus, breaking strain, and breaking stress

are different between the perfect crystal and the imperfect crystal containing

defects. The figure is for a thick crust, but all three impure crystals displayed

this same type of behaviour for the imperfect crystals. This result is different

than that observed in Horowitz & Kadau (2009).
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Figure 7.8: Comparing the stress-strain relationships of a perfect and an
imperfect crystal containing defects for the thick crust composition. A strain
rate of ṡ = 20×10−6 was applied in both simulations. The two crystals show
different behaviours in their stress-strain relationship.
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Figure 7.9: The imperfect crystal, which contains defects, for the thick crust
composition with a strain rate of ṡ = 20 × 10−6 applied. At small strain
values small yielding events can be observed.
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7.5 Second Break

Simulations were performed in order to investigate the possibility of a second

yielding event occurring after the first in the case of perfect BCC crystals.

These simulations were run to a strain of ∆l/l = 0.4, which is twice as large

as the original simulations. A strain rate of ṡ = 20 × 10−6 was applied in

all of the cases. The stress-strain relationship of the three different crustal

compositions is compared in Figure 7.10. In all three cases the shear modulus

of the second fracturing event decreases as compared to the first event. For

the modified Urca composition the shear modulus decreased from µ∼ 0.27

to µ∼ 0.21 for the second break, measured between 0.13 to 0.17 strain. In

the case of the thick crust composition the shear modulus decreased from

µ∼ 0.27 before the first break to µ∼ 0.12, measured between a strain of

0.14 to 0.2, for the second break. Finally, for the thin crust composition the

shear modulus was µ∼ 0.28 prior to the first break and µ∼ 0.05 prior to the

second break, determined between 0.13 to 0.16 strain.

7.6 Forward and Reverse

Simulations where the crystal is deformed to the point where the lattice

yields, and then the deformation is reversed were performed in order to

investigate the reversibility of the yield event. These simulations were per-

formed on all three impure compositions with perfect BCC lattices at a

strain rate of ṡ = 20 × 10−6. When the breaking point was reached the

same strain rate was applied but in the reverse direction. The stress-strain

relationships for the three different crustal compositions are compared in

Figure 7.11. For plotting purposes, the strain measurements on the x-axis

of the figure continue to increase after reversing the shear direction as (step

size×∆t× 20× 10−6). For both the modified Urca and thick crust composi-

tions a strain of 0.12 was reached before reversing the direction. For the thin

crust composition a strain of 0.1265 was reached before reversing direction.

In all three cases the shear modulus decreased after reversing the direction

of shear. For the modified Urca composition the shear modulus changed
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Figure 7.10: The stress-strain relationship of the three impure compositions.
The simulations were deformed to a total strain of 0.4 at a strain rate of
20× 10−6 in order to search for a second yielding event. The shear modulus
was found to decrease from the first break to the second. In the case of the
thin crust the shear modulus dramatically decreased.
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from µ∼ 0.27 in the forward direction to µ∼ 0.24, measured between a total

strain of 0.19 and 0.21, in the reverse direction. The shear modulus was

found to be µ∼ 0.27 in the forward direction and µ∼ 0.23, between a total

strain of 0.2 and 0.24, in the reverse direction for the thick crust composi-

tion. In the thin crust composition the shear modulus was µ∼ 0.28 in the

forward direction and µ∼ 0.2 in the reverse direction, measured between

0.13 to 0.20 total strain.

7.7 Temperature Dependence

The temperature dependence of the breaking strain and shear modulus was

investigated in the perfect BCC crystals with crustal compositions, as was

done for the pure crystal cases discussed in Chapter 6. The original sim-

ulations were performed at a temperature of T ∗ = 0.001 and additional

simulations were performed at a hotter temperature of T ∗ = 0.002 and a

colder temperature of T ∗ = 0.0005. The melting temperature of the three

different compositions was found to be T ∗∼ 0.01, thus all the additional

temperatures are below the melting temperature of the crystal. A strain

rate of ṡ = 20 × 10−6 was applied in these simulations. Each of the three

crustal compositions were simulated in this investigation of the temperature

dependence of the stress-strain relationship. The stress-strain relationships

of the three different temperatures are compared for the modified Urca com-

position in Figure 7.12, for the thick crust composition in Figure 7.13 and

finally for the thin crust in Figure 7.14. For all three different compositions

the colder simulation, T ∗ = 0.0005, had a larger shear modulus and break-

ing stress. For the modified Urca and the thick crust simulations the colder

simulations have breaking strains smaller compared to the hotter simula-

tions, which is the same behaviour observed for the pure BCC case. For

the thin crust simulations, the shear modulus was observed to differ for the

three simulation temperatures, however the breaking strain was found to be

very similar. Table 7.9 compares the breaking strain, shear modulus and

the peak energy for the different temperatures and compositions.
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Figure 7.11: The stress-strain relationship at a strain rate of 20 × 10−6

for three different crustal compositions. In these simulations the box is
deformed to the breaking point and then the direction of deformation is
reversed, dotted lines indicate the reverse direction. The shear modulus in
the reverse direction is less than in the forward direction.
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Figure 7.12: The stress-strain relationship at a strain rate of 20 × 10−6

for different temperatures of a perfect BCC lattice with a modified Urca
composition. The colder temperature run has the largest shear modulus
and breaking stress.
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Figure 7.13: The stress-strain relationships for a BCC lattice with a thick
crust composition at three different temperatures. The simulations all had
a strain rate of 20× 10−6 applied. The melting temperature of a thick crust
is approximately 0.01, above the temperatures of the runs. The coldest
simulation is found to have a steeper slope, or larger shear modulus than
the other two temperatures.

129



7.7. Temperature Dependence

Thin: Temperature

Strain

σ
x
y
[P
re
ss
u
re
]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

T = 0.002

T = 0.001

T = 0.0005

Figure 7.14: The stress-strain at three temperatures for a BCC lattice con-
taining the composition of a thin crust. A strain rate of 20×10−6 was applied
in all three cases. All three simulations have similar breaking strains, though
the coldest simulation has the largest shear modulus and breaking stress.
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Structure Temperature Breaking Shear
T ∗ Strain Modulus

Modified 0.002 0.116064 0.26253
Urca 0.001 0.115620 0.27351

0.0005 0.112952 0.29558

Thick 0.002 0.115397 0.26052
Crust 0.001 0.113285 0.27179

0.0005 0.112396 0.27789

Thin 0.002 0.122846 0.26644
Crust 0.001 0.121901 0.27637

0.0005 0.122401 0.28060

Table 7.9: The temperature, breaking strain and shear modulus for the three
different crustal compositions. The three different crust compositions melt
at approximately 0.01, all temperature simulations are below the melting
temperature. At a density of ρ = 1014 g/cm3 the corresponding physical
temperaturs are 6.9×108 K for T ∗ = 0.002, 3.5×108 K for T ∗ = 0.001 and
1.7× 108 K for T ∗ = 0.0005.

7.8 Discussion and Conclusions

Using the compositions calculated for a non-accreting neutron star, the me-

chanical properties of these crusts have been investigated. The compositions,

as discussed in Chapter 2, are dependent on how the neutron star cools. A

neutron star cooled via the modified Urca process, a neutron star with a thick

crust and one with a thin crust were considered in this study. The melting

temperature and structure of recrystallization have been investigated in all

three cooling cases. The structure and chemical phase separation of the

three cases were investigated through the RDFs of all the particles, as well

as each type of particle. With using the RDFs, chemical phase separation

would be evident if RDFs suggesting a solid state structure and a liquid state

were present for different isotopes. Horowitz et al. (2007) found for an ac-

creted crust composition lighter Z isotopes to be preferentially in the liquid

phase. None of the simulations of the non-accreted crusts showed any evi-

dence for chemical separation. This lack of evidence of chemical separation

could be due to the temperature at which this calculation was computed; at
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a higher temperature chemical separation may occur. The isotopes in the

non-accreted crust also have charges which are very similar and this could

have also had an impact on the occurrence of chemical phase separation.

The calculation of the static structure factor (see Horowitz & Berry, 2009)

is left for future work.

The three compositions were used in simulations to determine the shear

modulus and breaking strain of the crustal type and compared that of a

pure iron BCC crystal. The modified Urca and the thick crust were found

to have shear moduli very similar to the pure iron BCC crystal. A change

of compositions in Horowitz & Kadau (2009) was also found to have little

effect on the stress-strain relationship. The simulations used perfect BCC

lattices with the impurities randomly placed at lattice locations. With the

perfect crystal structure upper limits can be placed on the neutron star

crust, as defects, if anything, would be expected to decrease the rigidity

of the crust. The thin crust has a breaking strain which is larger then

the two other impure simulations and the pure BCC simulation. Imperfect

crystals with the same compostions compared to perfect crystals indicate

the two systems behave differently with the same applied stress. This result

is different from the results observed in Horowitz & Kadau (2009), where

there were 6 grains introduced to the simulation box and only moderately

effected the stress-strain relationship. The effect of the number of grains

and the resulting stress-strain relationship is something to be investigated

in futre work. Note that the results presented here for the non-accreted crust

compositions have a different applied strain rate than those in Horowitz &

Kadau (2009).

Simulations were also performed to have the perfect crystal deform past

the first point of breaking in order to search for a second breaking event.

The shear modulus was found to be less for the second breaking event as

compared to the first time the crystal yielded to the deformation. Simula-

tions which deformed the crystal to the point of breaking and then had the

deformation reversed indicate that the shear modulus in the reverse direc-

tion is less compared to the shear modulus in the forward direction, thus

the yielding event is not reversible. The temperature dependence on the
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shear modulus and the breaking strain was also investigated for all three

crustal compositions of the non-accreting crusts. Hotter temperatures were

found to have the smallest shear modulus for all three crustal compositions.

The failure of the crystals were found to occur at smaller strains at colder

temperatures. The breaking stress was found to be greatest for the colder

temperatures. As in the pure crystal simulations the change in breaking

strains with temperature is small, suggesting that SGR burst activity would

also not change much as the neutron star cools. Simulations of the imperfect

crystals at various temperatures would help to constrain the expectations

for SGR burst activity. The results of the upper limits placed on the shear

modulus and breaking strain for the different compositions are applied to

neutron star observations in the next chapter.
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Chapter 8

Application of Breaking

Strain

8.1 Introduction

The observational consequences of crustal cracking are investigated in this

chapter using the calculated shear modulus and breaking strain. The shear

modulus and breaking strain from the perfect crystal simulations for the

three different crustal compositions and pure iron crust are considered in

context of crustal cracking. The amplitude of glitches, elastic energy of Soft

Gamma-ray Repeaters, and gravitational wave detection are considered in

terms of the results of the simulations. The modified Urca and thick crust

compositions have shear moduli and breaking strains close to that of a pure

iron BCC lattice, so it is expected that these three cases will have similar

observational consequences.

The shear modulus calculated from the simulations is measured in re-

duced pressure units and is scalable with density. From Table 3.1 the reduced

pressure is expressed as:

P ∗ = P
a3

Uo
, (8.1)

where P is the physical pressure, Uo is the characteristic energy and a = n−1/3

is the characteristic distance. By substituting the values of Uo and a into

the above equation for the system of interest, the physical pressure can be

determined. The value of the shear modulus was found to be the same

for the three impure and the pure iron crusts, 0.27 in reduced units. The

shear modulus in physical units is given by the expression µ = 0.27Uo/a
3 =

0.27 (Ze)2/a4, using the unit conversions discussed in Section 3.3.
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The observational consequences of crustal cracking are typically investi-

gated at the bottom of the neutron star crust, at a density of ρ = 1014 g/cm3.

The results for the simulations of the crusts from Chapter 7 are appropriate

for densities ranging from ∼106 g/cm3 to ∼1011 g/cm3, but in order to com-

pare to previous work, the simulation results are extrapolated to the greater

density. At the bottom of the crust the neutron fraction is higher than at

lower densities which are closer to the surface. At the bottom of the crust

the neutron fraction is Xn = 0.8, also the charge can be set to Z = 20 and

the atomic mass can be set to A = 88 (Ushomirsky et al., 2000). With the

above considerations the number density is related to the neutron fraction

as:

n = a−3 =
ρ

m
(1−Xn) =

1014 g/cm3

88mu
× 0.2, (8.2)

where mu is the atomic mass unit. At the density at the bottom of the crust,

ρ = 1014 g/cm3, the characteristic length is a = n−1/3 = 1.94 × 10−12 cm

or 19.4 fm. The characteristic energy at the bottom of the neutron star

crust is Uo = (Ze)2/a = 4.76× 10−5 erg, which is ∼30 MeV, for a charge of

Z = 20. As a result the shear modulus at the bottom of the neutron star

crust is µ = 6.5× 1030 dyne/cm2, which is close to the previously used value

of 1030 dyne/cm2 (for example Ruderman, 1969). Note that at a density

of ρ = 1011 g/cm3 the shear modulus would be µ ∼ 1027 dyne/cm2. The

maximal breaking strain is a unitless quantity, thus the simulation values

are the physical values with a breaking strain of φm ∼ 0.11− 0.12 used in

order to compare the simulation results to observations. The breaking strain

found for the non-accreted neutron star crust is in agreement of the breaking

strain calculated in Horowitz & Kadau (2009) of close to φm = 0.1, for an

accreted crustal composition.

8.2 Glitches

Using the shear modulus and breaking strain as calculated from the crustal

simulations it is possible to now calculate the corresponding glitch ampli-

tude, ∆Ω/Ω, where ∆Ω is the change in angular frequency. As discussed in

135



8.2. Glitches

Chapter 1, following Ruderman (1969) the glitch amplitude is related to the

shear modulus and breaking strain as

∆Ω

Ω
= 2

(
95µφmR

7GMρ

[
1−

(
∆R

R

)7
])

, (8.3)

where µ is the shear modulus, φm is the breaking strain, and ∆R is the

crust thickness. Following Ruderman (1969) a density of 1014 g/cm3 is also

used to calculate the glitch amplitude. The shear modulus calculated from

the simulations at a density of ρ = 1014 g/cm3 is µ = 6.5 × 1030 dyne/cm2.

With the calculated breaking strain of φm ∼ 0.1 and for a neutron star with

a crustal thickness of 1 km, a radius of 10 km and a mass of 1.4 M�, the

corresponding calculated glitch amplitude is ∆Ω/Ω ∼ 10−3 for glitches at

the bottom of the crust.

Glitch amplitudes have been observed to range primarily from 10−9 to

10−6 (Lyne et al., 2000), with PSR B2334+61 having the largest observed

glitch amplitude of ∆Ω/Ω = 20.5× 10−6 (Yuan et al., 2010). The calcu-

lated glitch amplitude of ∆Ω/Ω∼10−3, using the value of breaking strain

and shear modulus for a crust with perfect crystal structure, is much larger

than has been observed from neutron stars. Two possible explanations for

this difference between the calculated and observed glitch amplitude are, first

a question of the structure of the crust and second, the origin of glitches.

The shear modulus and breaking strain used in the glitch amplitude calcu-

lations are from a perfect crystal. These perfect crystal parameters place

an upper limit on the glitch amplitude, a smaller breaking strain would

result in smaller glitch amplitudes. The neutron star crust is unlikely to

be a perfect crystal. In Section 7.4 an imperfect crystal neutron star crust

demonstrated different behaviour in the stress strain curves than the perfect

crystals. The breaking strain of the neutron star crust is likely dependent on

the structure of the crust and how close the structure is to a perfect crystal.

The differences found in the breaking strain and shear modulus in Section

7.4 for the perfect versus the imperfect would likely lead to a prediction

of smaller glitch amplitudes for an imperfect crystal neutron star crust. In

terms of glitch origins, glitches are also unlikely to involve starquakes alone,
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they might also require vortex unpinning in the neutron star superfluid and

subsequent transfer of angular momentum (Lyne et al., 2000).

8.3 Soft Gamma-ray Repeaters

A total of eleven Soft Gamma-ray Repeaters (SGRs), seven confirmed and

four candidates, have been observed7. The characteristic bursts from these

SGRs have reached peak luminosities of 1041 erg/s (Woods & Thompson,

2006). Three of the total eleven SGRs have been observed to also exhibit gi-

ant flare events, which have been observed to reach a luminosity of 1044 erg/s

(Helfand & Long, 1979). The bursts can be interpreted as being triggered

by crustal cracking due to stresses placed on the crust from the magnetic

field (Chamel & Haensel, 2008). The strength of the magnetic field required

to crack the neutron star crust and release the observed burst energy, is

dependent on the breaking strain of the material:

B = 1015
(
ESGR

1041erg

)−1/2 ( l

km

)(
φm

10−3

)
G, (8.4)

where ESGR is the energy of the burst, l is the length of the crustal fracture

and φm is the breaking strain (Thompson & Duncan, 1995). A limit on

the size of the crust fracture can be estimated using the observed energy

emitted during the burst, the neutron star’s magnetic field strength, and

the breaking strain calculated from the simulations.

The estimated size of the crustal fracture can be used as an indication of

if the bursting event can be attributed to crustal events alone or if the burst

is related to another region of the neutron star. If the fracture length is too

large, the burst can not be attributed to the crust alone. Using Equation

8.4, the length of the fracture can be expressed as:

l =

(
B

1015 G

)(
ESGR

1041 erg

)(
10−3

φm

)
km. (8.5)

7Data from the McGill SGR/AXP online catalog, http://www.physics.mcgill.ca/ pul-
sar/magnetar/main.html
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In the case of typical SGR bursts, with burst energies of ESGR = 1041 erg,

assuming a magnetic field of B = 1015 G and using the perfect crystal break-

ing strain value, φm ∼ 0.1, the size of the fracture is l = 10 m. But, in the

case of giant flares, the energy associated is 1000 times larger than the typ-

ical bursts with ESGR = 1044 erg. Using the giant flare energetics and the

same values for the magnetic field and breaking strain as for the typical

bursts, the fracture length is l = 300 m.

The crust of the neutron star extends to a depth of approximately 1 km,

with the outer crust itself extending ∼100 m. Whether the SGR bursts can

be attributed to crustal cracking depends on if the fracture length associated

with observed energy is within the bounds of the crust. With a fracture

length of l = 10 m, for the lower energy SGR burst events, the typical SGR

bursts could be due to crustal cracking, for crusts which have a breaking

strain of φm = 0.1. The giant flare events require a much larger fracture

length, l = 300 m. A fracture of this size would encompass ∼15 − 30%

of the crust depth, so the fracture could propagate along the surface or

vertically. The fracture length required to reach the giant flare energetics is

within the size constraints of the neutron star crust, and thus the giant flares

could be attributed to crustal cracking. These crustal fracture lengths were

calculated using the breaking strain found for perfect crystal configurations.

The perfect and imperfect crystals were found to display different mechanical

properties. For a neutron star crust with a smaller breaking strain, the

fracture length required for a burst would increase. Depending on how close

the crust is to a perfect or imperfect structure would dictate either how the

fracture propagates, along the surface or vertically with depth, or if crustal

cracking could be ruled out as a mechanism for SGR bursts.

8.4 Gravitational Waves

A neutron star perturbed to be asymmetric about its rotation axis may have

a varying quadrupole moment and may be a source of gravitational waves.

A neutron star with a varying quadrupole moment could result from either

the star undergoing precession or from a mountain on the star surface. The
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free precession of a neutron star is a possible result from an asymmetrically

shaped star (Stairs et al., 2000). From these gravitational wave emitting

sources the observed strain amplitude of the wave at Earth is expressed in

terms of a sinusoidally varying quadrupole:

h =
16

5

(
π

3

)1/2 GQ22 Ω2

d c4
, (8.6)

where Q22 is amplitude of the varying quadrupole moment, Ω is the angular

frequency and d is the distance to the neutron star (Ushomirsky et al., 2000).

With respect to the study of the mechanical properties of the crust, it is the

gravitational waves emitted due to mountains on the neutron star surface

which are of interest. The strength, or breaking strain, of the crust dictates

the mountain size and thus, the maximum quadrupole which a neutron star

can support.

The maximum quadruple is found to depend directly on the breaking

strain of the crust. The calculation of the maximum quadrupole is covered

in Ushomirsky et al. (2000). Following this calculation, the quadrupole can

be related to both the breaking strain and shear modulus. In Ushomirsky

et al. (2000) the maximum quadrupole is expressed as Q22 = γ φm I, where

γ is a factor which depends on the mass and radius of the neutron star, φm

is the breaking strain, and I is an integral which is directly proportional to

the shear modulus, as a result Q22 is also directly proportional to the shear

modulus, µ. For a shear modulus of µ = 1030 dyne/cm2, the quadrupole is

expressed as: Q22 = 1038 g cm2(φm/10−2). Introducing the directly propor-

tional dependence of Q22 on the shear modulus results in the relationship:

Q22 = 1038 g cm2
(
φm

10−2

)(
µ

1030dyne/cm2

)
. (8.7)

For the simulation results of the perfect crystal structure with a breaking

strain of φm = 0.1 and at a density of ρ = 1014 g/cm3, where µ = 6.5 ×
1030 dyne/cm2, the quadrupole is Q22 = 6.5× 1039g cm2, assuming the crust

is maximally deformed.

With the calculated quadrupole, it is possible to compare calculated
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limits of gravitational wave strain amplitudes to the observed limits. Ob-

servational upper limits using LIGO have been placed on the gravitational

wave strain amplitudes of 78 pulsars in Abbott et al. (2007). The observa-

tional limits of three of the 78 pulsars are compared to the results of the

simulations. The three pulsars examined are: PSR J1603-7202, PSR J2124-

3358, and PSR J0534+2200, the Crab pulsar. Two of the three pulsars

are recycled and as such have undergone periods of accretion, as well, the

Crab pulsar is in a supernova remanent and may have accreted some mat-

ter. Even though the three pulsars investigated are not necessarily pristine,

the breaking strain results found for the non-accreting neutron star crust

composition do agree with that of the accreted crust reported in Horowitz

& Kadau (2009). The strain amplitudes are calculated using Equation 8.6

and the quadrupole calculated for a maximally deformed, perfect crystal

crustal structure. The LIGO observational limits of the gravitational wave

strain amplitude, h, are compared to the strain amplitudes predicted for

each pulsar based on the simulation results in Table 8.1. The distance, d,

and the spin frequency, ν, are also listed in the table.

Pulsar d ν LIGO Predicted
kpc Hz Maximum log(h) Maximum log(h)

PSR J1603-7202 1.64 67.38 -24.58 -25.2
PSR J2124-3358 0.32 202.71 -24.31 -23.5
PSR J0534+2200 2 29.80 -23.51 -25.0

Table 8.1: The distance, d, spin frequency, ν, the observational and predicted
gravitational wave strain amplitude, h, for the three pulsars of interest. The
predicted gravitational wave strain amplitudes are below the observational
LIGO upper limits for two of the cases. For pulsar PSR J2124-3358 the
predicted strain amplitudes indicate that if the crust was perfectly BCC
in structure and maximally deformed, than gravitational waves should have
been detected from this source. The distances of each pulsar were taken from
the ATNF Pulsar Catalogue (www.atnf.csiro.au/people/pulsar/psrcat
(Manchester et al., 2005). The spin frequency and LIGO upper limits are
from Abbott et al. (2007). The predicted maximum strain amplitudes are
calculated using the distance and spin frequency of each of the pulsars, as
well as the quadrupole as calculated using the simulation results.
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The comparison of the LIGO observational limits and the predicted

strain amplitudes in Table 8.1 indicate which neutron stars would be ex-

pected to have gravitational waves detected, if the crust is perfectly BCC

and maximally deformed. Of the three pulsars examined, PSR J2124-3358

has a predicted strain amplitude greater than the observational limit. This

means if PSR J2124-3358 had a perfect BCC lattice and the crust was

maximally deformed, or deformed to even ten percent of the maximum,

gravitational waves would have been detected from this source. With the

reasonable assumption that the crustal strain is uniformly distributed up

to the breaking point, the non-detection of the gravitational waves suggests

that the neutron star crust is not a perfect BCC crystal. The non-detection

of gravitational waves could also result from the crust not being maximally

deformed. The search for gravitational waves from pulsars could be used as

a method to determine the structure, strength, or degree of deformation of

the neutron star crust.

8.5 Conclusions

The observational consequences of crustal cracking were investigated us-

ing the shear modulus and breaking strain calculated using the molecular

dynamics simulations. The observation consequences of crustal cracking

considered included glitches, SGR bursts, and gravitational waves. The

shear modulus from the simulations scales with density and at a density

of ρ = 1014 g/cm2, the bottom of the crust, the shear modulus is µ =

6.5× 1030 dyne/cm2, for a perfect BCC crystal configuration. The breaking

strain used for comparison to observation was φm ∼ 0.1, for a perfect BCC

crystal for the three different crustal compostions as well as the pure iron

crust. These two parameters were used in all the comparisons to observa-

tions.

The glitch amplitude for a perfect crystal at a density of ρ = 1014 g/cm2

was found to be ∆Ω/Ω ∼ 10−3, which is much larger than the largest ob-

served glitch. The differences between the calculated and observed glitches

could result from the actual structure of the crust, as well as the glitch ori-

141



8.5. Conclusions

gins. The crust may not be a perfect BCC crystal as thus have a different

breaking strain. Also, the glitches may not be due to crustal cracking alone,

but may also require vortex unpinning. In terms of SGR bursts, the frac-

ture length required in order to release the observed energy was calculated.

Crustal cracking could be a possible explanation for the SGR bursts if the

fracture length is within the constraints of the crust. For the typical SGR

burst of ESGR = 1041 erg the fracture length was found to be 10 m, small

enough to occur in the crust depth. The energy associated with giant flares

require fracture lengths of ∼300 m, which would encompass a large fraction

of the crust. For the gravitational waves, the strain amplitude for a max-

imally deformed, perfect crystal crust, was compared to the observational

limits placed by LIGO. The maximal gravitational wave strain amplitude

predicted for PSR J2124-3358 was found to be ten times larger than the

upper limits determined from LIGO. If PSR J2124-3358 had perfect BCC

crystal lattice crust and was deformed to ten percent of its maximum, than

gravitational waves would have been detected from this pulsar. The non-

detection of gravitational waves suggests that a neutron star crust is not a

perfect BCC crystal lattice or that the crust is not deformed to even ten

percent of the maximum.
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Chapter 9

Conclusions

9.1 Summary

The outer layers of the neutron star: atmosphere, envelope, and crust all

play an important role in the observations of neutron stars. The atmosphere

shapes the emerging thermal spectrum, while the envelope regulates the

thermal transport of energy (Lattimer & Prakash, 2004). The strength of the

crust and its ability to fracture has been tied to observations of glitches, SGR

bursts and the possibility of eventually observing gravitational wave emission

from a neutron star. In order to understand these upper regions of the

neutron star, the compositions of the regions were first calculated for three

different methods of cooling. With the calculated crustal compositions upper

limits on mechanical properties such as the shear modulus and breaking

strain of the neutron star crust were also calculated. Several observational

consequences of these upper limits were also calculated: predicted glitch

amplitudes, energy from SGR bursts, and predicted strain amplitudes of

gravitational waves.

The composition of the atmosphere and the crust was calculated using

the nuclear reaction network torch. For the composition calculations a non-

accreting neutron was considered, as a result the atmosphere of such a star

would be dependent on isotopes produced due to nuclear reactions in the

crust floating to the surface of the neutron star before the crust freezes.

Three methods of cooling were considered in these calculations: a neutron

star cooling via the modified Urca process, a neutron star with a thick crust,

and one with a thin crust. Each of the different methods of cooling resulted

in a different atmosphere composition. For a neutron star which cooled by

the modified Urca process the atmosphere would be 28Si. A neutron star
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with a thick crust would have a 50Cr atmosphere. Finally a thin crust would

be expected to have a 40Ca atmosphere.

A non-accreting neutron star would be expected to have an iron crust.

The composition calculations indicated that this was not the case and the

three crusts contained various impurities. The isotopes which were calcu-

lated to compose the crust were used in molecular dynamics simulations in

order to determine the shear modulus and breaking strain of the systems. In

each case a perfect BCC lattice structure was initially used. With the per-

fect crystal structure an upper limit could be placed on the shear modulus

and breaking strain. The three impure cases were also compared to a pure

perfect BCC lattice. All three impure crusts share a simular shear modulus

to the pure lattice, µ = 6.5× 1030 dyne/cm2 at a density of ρ = 1014 g/cm3.

The breaking strains were also similar to the pure system, with the modi-

fied Urca and thick crust having a breaking strain of φm∼ 0.11, which is the

same as the pure system. The thin crust composition was found to have a

breaking strain of φm∼ 0.12.

These perfect crystals set upper limits to the properties of the neutron

star crust. The behaviour of the imperfect versus the perfect crystals is

quite different. The imperfect crust simulation boxes were created from

re-crystallized melted perfect BCC crystals. The imperfect crystals display

multiple plastic events at small amounts of strain before a larger yielding

event. The perfect crystals do not show the small events before the crystal

fails. More simulations will need to be performed in order to fully understand

the properties of an imperfect crust.

The observational consequences of the calculated upper limits were con-

sidered in terms of glitches, SGR bursts, and gravitational waves. The glitch

amplitudes are predicted to be on the order of ∆Ω/Ω∼ 10−3, which is much

larger than the largest observed glitch (see Yuan et al., 2010). For the SGRs,

the size of the fracture required for the energy release in the burst to be as-

sociated with crustal cracking was calculated. For the typical SGR bursts

of E = 1041 erg the fracture would be on the order of ∼ 10 m. In the case of

giant flares with E = 1044 erg the required fracture size is ∼ 300 m. In terms

of gravitational wave emission the gravitational wave strain amplitude was
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calculated for three different pulsars. For PSR J2124-3358 the predicted

maximal strain amplitude is ten times greater than the upper limit from

LIGO (see Abbott et al., 2007). This indicates that PSR J2124-3358 does

not have a crust which is a perfect BCC lattice that has been maximally

deformed, or deformed to 10% of the maximum.

9.2 Future Work

The work in this thesis can be used as a starting point for several different

extensions. The atmosphere has been calculated for three different neutron

star cooling methods, but the thermal evolution of the atmosphere can also

be examined. With the molecular dynamics tool kit developed in this the-

sis, the role the neutron star crust plays in giant flares from SGRs can be

explored further. Other extreme matter besides neutron star crusts can be

investigated using molecular dynamics, such as the matter in the interiors

of planets.

9.2.1 Atmosphere Thermal Evolution

With the calculation of the atmospheric composition, the three different

cooling curves resulted in different atmospheres. These calculations were

based on the material being fully ionized. As the neutron star cools there is

a possibility that the atmosphere composition could change. As the neutron

star cools, the material may no longer be fully ionized, which results in a

change of the settling timescales of the isotopes. As the settling timescales

change, the atmospheric compositions could change over time without ac-

cretion occurring. This introduces the possibility that self-consistent cooling

models could be created, where the type of atmosphere which fits the ob-

served thermal emission would indicate the cooling processes within the

neutron star. The surface composition for the different neutron stars were

found not to be iron, but to be isotopes with nuclear free energy. This re-

active surface would also change the expected surface composition after an

accretion event of matter onto the star (Chang et al., 2010).
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9.2.2 Bursts from Soft Gamma-ray Repeaters

The study of the shear modus and breaking strain of neutron star crusts

can be extended to understanding what happens to the neutron star before

and after a burst occurs. The crust may become more brittle or stronger

after a bursting event. Subsequent bursts would be affected by changes

in the structure of the crust, which could be characterized via the static

structure factor. The mechanical properties of the crust are thought to be

associated with the observed quasi-periodic oscillations observed in the tails

of giant flares from SGRs. In order to predict the frequencies at which the

oscillations occur astroseismology models can be developed. These types of

models would give further understanding of neutron star structure.

9.2.3 Planetary Interiors

Neutron stars are not the only astrophysical objects which can be further

understood with molecular dynamics, these types of simulations can also

be performed in order to understand planetary interiors. Calculating the

melting temperature of carbon and iron at extreme pressures is important

for giant planets and Earth-massed planets. It has been suggested that

Uranus and Neptune contain a layer of carbon (Ross, 1981). Molecular

dynamics simulations have been performed to calculate the melting curve of

carbon at extreme pressures and temperatures (Correa et al., 2006). These

simulations contained 128 and 256 atoms and size effects were noted in the

results of the simulations. Larger simulations could be performed in order to

avoid these size effects. For exoplanets with Earth-like masses the question

of whether they have a liquid or solid core has implications for the strength of

a magnetic field. Calculating the melting curve for iron at extreme pressures

would help to answer this question. Chemical separation may also occur in

giant planets (Helled et al., 2011). Simulations of the giant planets would

be used for understanding the distribution of material in the planet interior.

Performing molecular dynamics simulations on planets would help to create

a self-consistent model for the evolution of planets.

In this thesis the outer layers of the neutron star have been studied. Due
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to nuclear reactions in the crust, a non-accreting neutron star has been found

to not have an iron atmosphere, but instead a reactive surface. The strength

of the crust had also been explored with molecular dynamics simulations.

Using perfect crystal lattices, upper limits have been placed on the shear

modulus and breaking strain of the crust. With the tools developed in this

thesis there are many different areas for future study, including the evolution

of the neutron star atmosphere, as well as the extreme matter of neutron

star crusts and also the interiors of both giant and rocky planets.
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