Abstract

A practical algorithm for solving an arbitrary Thue-Mahler equation is presented, and its correctness is proved. Methods of algebraic number theory are used to reduce the problem of solving the Thue-Mahler equation to the problem of solving a finite collection of related Diophantine equations having parameters in an algebraic number field. Bounds on the solutions of these equations are computed by employing the theory of linear forms in logarithms of algebraic numbers. Computational Diophantine approximation techniques based on lattice basis reduction are used to reduce the upper bounds to the point where a direct enumerative search of the solution space becomes possible. Such an enumerative search is carried out with the aid of a sieving procedure to finally determine the complete set of solutions of the Thue-Mahler equation. The algorithm is implemented in full generality as a function in the Magma computer algebra system. This is the first time a completely general algorithm for solving Thue-Mahler equations has been implemented as a computer program.
Table of contents

Abstract ... ii

Table of contents ... iii

Acknowledgements ... iv

Dedication ... v

1 Introduction ... 1

2 Decompositions of primes and polynomials; p-adic embeddings; p-adic val-
 uations ... 6

3 First steps .. 8

4 The prime ideal removing lemma 10

5 Factorization of the Thue-Mahler equation 14

6 The S-unit equation ... 17

7 The p-adic logarithm ... 20

8 A small upper bound for n_l in a special case 22

9 Choosing the indices j and k in the p_l-adic cases 25

10 The general strategy for bounding the n_i and the a_i 27

11 A lower bound for linear forms in p-adic logarithms 28

12 A lower bound for linear forms in real/complex logarithms 30

13 A bound for n_l in terms of $\log H$ 31

14 A bound for A when $\min_{1 \leq i \leq n} |x - y\theta(i)|$ is large 33

15 A bound for A when $\min_{1 \leq i \leq n} |x - y\theta(i)|$ is small 36

16 A bound for H ... 41

17 The reduction strategy .. 42

18 Lattice basis reduction 43

19 Preliminaries for the p_l-adic reduction procedure 45

20 Basic p_l-adic reduction 48

21 Basic real reduction ... 52

22 Refined p_l-adic reduction 59

23 Refined real reduction .. 65

24 The sieving procedure 70

25 Conclusion .. 72

References ... 76

Appendix: The implementation in Magma 79
Acknowledgements

I am indebted to Dr. Michael A. Bennett for suggesting to me the line of research on which this thesis is based and for numerous comments and suggestions that helped me to improve this thesis. I also thank Dr. Dragos Ghioca for helping me to improve the style of this thesis.

This research was funded in part by a National Sciences and Engineering Research Council Postgraduate Scholarship and a Li Tze Fong Memorial Fellowship.
Dedication

To my mom.
1 Introduction

A Thue-Mahler equation is an equation of the form

$$F(x, y) = a p_1^{z_1} \cdots p_v^{z_v},$$

(1)

where F is an irreducible binary form over \mathbb{Z} of degree $n \geq 3$, a is a nonzero integer, p_1, \ldots, p_v are rational primes, and the unknowns x, y, z_1, \ldots, z_v are integers with $(x, y) = 1$ and $z_i \geq 0$ ($i = 1, \ldots, v$). Thue-Mahler equations generalize Thue equations, which are simply equations of the form $F(x, y) = a$ without the condition $(x, y) = 1$. The condition $(x, y) = 1$ in the definition of a Thue-Mahler equation is important, for without it every Thue-Mahler equation with at least one solution would trivially have infinitely many solutions. In 1933, Mahler [Mah] proved that an arbitrary Thue-Mahler equation has only finitely many solutions. His proof was ineffective in the sense that it provided no means to actually find the solutions. In the mid-1960s, Baker proved his ground-breaking results on effective lower bounds for linear forms in logarithms of algebraic numbers. By generalizing Baker’s results to the p-adic case, it was proved by Sprindžuk and Vinogradov [SV] and by Coates [Coa1], [Coa2] that the solutions of any Thue-Mahler equation could, at least in principle, be determined effectively. The first general ideas on the practical computation of the solutions of an arbitrary Thue-Mahler equation are due to Tzanakis and de Weger (cf. [dW1], [dW2], [TW1], [TW2]). These ideas were inspired in part by the method that Agrawal, Coates, Hunt, and van der Poorten used in [ACHP] to solve a specific Thue-Mahler equation. In [TW2], Tzanakis and de Weger gave a practical procedure for finding all the solutions of an arbitrary Thue-Mahler equation.

Up until now, no general algorithm for solving an arbitrary Thue-Mahler equation had been implemented as a computer program. Anyone wishing to solve a Thue-Mahler equation would need to apply the method of [TW2] (or a more specialized method if the equation was of a special form) to the equation themselves. The numerous computational tasks involved in the method would, of course, be performed with the assistance of a computer, but the set-up for these tasks could represent a significant challenge to the would-be solver. The main novel contribution of this thesis is the implementation of a modified version of Tzanakis and de Weger’s procedure for solving an arbitrary Thue-Mahler equation as a computer program. Hence, to solve a given Thue-Mahler equation now, one only needs to enter the parameters of the equation into our program and wait for the list of solutions to be returned.
Following [TW2], we present in this thesis a practical algorithm for finding all the solutions of an arbitrary Thue-Mahler equation. The general outline of the algorithm consists of six steps.

Step 1. We reduce the problem of solving the given Thue-Mahler equation to the problem of solving a collection of finitely many Diophantine equations whose defining parameters belong to a certain algebraic number field K. The collection is such that if we know the solutions of each equation in the collection, then we can easily derive all of the solutions of the Thue-Mahler equation. So this is a reduction indeed. The principle computational work here consists of: computing some data for K (including an integral basis, a system of fundamental units, and a splitting field); computing the factorizations of the primes p_1, \ldots, p_v into prime ideals in the ring of integers of K; finding the roots of the defining polynomial of K in \mathbb{C} and in the algebraic closure of the p-adic field \mathbb{Q}_p for $p \in \{p_1, \ldots, p_v\}$; applying a lemma of Tzanakis and de Weger to ensure that the collection of Diophantine equations that we will need to solve is small; and, finally, computing the defining parameters of these Diophantine equations.

We perform the next four steps for each of the Diophantine equations in our collection.

Step 2. We perform numerous p-adic computations to make optimal choices for certain parameters which arise and (whenever possible) to either determine exact values for or find small bounds on certain variables involved in the Diophantine equation under consideration. These computations, in general, ultimately reduce the amount of computation needed in subsequent steps. Specifically, we (potentially) reduce the number of linear forms that need to be considered considered in Steps 3 and 4, as well as reduce the number of terms in the linear forms that are considered. This results in smaller bounds and fewer computations in Step 3, in lower dimensional and fewer approximation lattices in Step 4, and in a smaller number of candidate solutions to test in Step 5. All of these features help to decrease the overall computation involved in Steps 3-5. The individual computations involved in this step are not very difficult (the most involved being probably the evaluation of p-adic logarithms), but if there are many possibilities for the parameters, this step could take some time. However, it is very unlikely that the computational cost of this step is anywhere near that of the most costly steps in the algorithm.
Step 3. We use the theory of linear forms in real/complex and p-adic logarithms of algebraic numbers to derive very large bounds on those variables in the Diophantine equation that were not bounded in the previous step. For this purpose we use the best theorems available. In the real/complex case we appeal to the results of Matveev [Mat], and in the p-adic case we employ the results of Yu [Yu2]. The most difficult computations for this step involve factoring rational primes into ideals in the splitting field of K, constructing a specific subfield of the splitting field, and computing heights of specific elements of the splitting field.

Step 4. We drastically reduce the upper bounds derived in Step 3 by using computational Diophantine approximation techniques. These techniques involve applying LLL-lattice basis reduction methods to approximation lattices associated with the linear forms in logarithms considered in Step 3. The main computations here involve using the LLL algorithm to compute an LLL-reduced basis for a given lattice and using the Fincke-Pohst algorithm to enumerate all the short vectors in a given lattice.

Step 5. We use a sieving procedure to find all the solutions of the Diophantine equation that live in the box defined by the bounds derived in the previous three steps. The procedure essentially works by first running through all the possible solutions in the box and ‘sieving’ out the vast majority of non-solutions by checking congruence conditions that have relatively low computational cost to check, and then testing the small number of possible solutions that remain for the Diophantine equation directly. Though we expect the bounds defining the box to be small, there can still be a very large number of possible solutions to check (especially if the number of primes involved in the Thue-Mahler equation is large and/or the number of elements in a system of fundamental units for K is large). The computations performed on each individual candidate solution are relatively simple, but the sheer number of candidates often makes this step the computational bottleneck of the entire algorithm.

Step 6. Having performed Steps 2-5 for each Diophantine equation in our collection, we now know all the solutions of each such equation, and we use this knowledge to determine all the solutions of the Thue-Mahler equation. The individual computations involved in this step are practically trivial, and there should not be very many to do.
The above steps more or less accurately describe our algorithm for solving an arbitrary Thue-Mahler equation. However, we have omitted two important details in order to make the algorithm easier to understand upon first reading. The first omitted detail is that during Step 4 we will likely accumulate a number of explicitly known exceptional candidate solutions that don’t fit in the final reduced box that we will run through in Step 5. Since we know them explicitly, these exceptional candidates don’t hold us back from reducing the size of the box, but we must test them as solutions of the Thue-Mahler equation separately. The second omitted detail is that, instead of waiting to perform Step 6 until after Step 5 has been performed for every equation in the collection, we will essentially perform a portion of Step 6 at the end of each Step 5. More explicitly, as we are finding the solutions of each Diophantine equation, we will also find the corresponding solutions of the Thue-Mahler equation. We do this to improve efficiency.

We mentioned above that Step 5 could be the main bottleneck for the algorithm. This will be the case in general except possibly when the degree of K (which is the degree of $F(x,y)$) is large or when the degree of the splitting field of K is very large. When the degree of K is large, computing a system of fundamental units and/or performing certain other necessary computations in K can be extremely time consuming. In particular, the worst-case complexity of calculating a system of fundamental units is exponential in the degree of K. Performing the necessary computations in the splitting field of K can likewise be very difficult if the splitting field has large degree. It is difficult to say much about the precise computational complexity of the algorithm without delving into a very complicated analysis. However, since the sieving process will often be the computational bottleneck for the algorithm, we feel it is important to give a rough estimate of its running time. Let $E(k)$ denote the time required for modular exponentiation when the exponent is a k-bit integer and $M(k)$ denotes the time required to multiply two k-bit integers. It is reasonable to assume $E(k) = O(k)$ and $M(k) = O(k^2)$. The running time for our implementation of the sieve procedure is roughly $O \left((E(d^{-1} \log N) + M(n^{-1}N^{1/d}))dN \right)$ bit operations, where N is the total number of tuples that need to be searched through, n is the degree of K, and d is the sum of the number v of rational primes in the Thue-Mahler equation and the number r of elements in a complete set of fundamental units for K. Note that N will depend exponentially on d.

The algorithm lends itself well to being implemented in parallel in a master/slave paradigm as follows. The master process performs Step 1 and then, for each Diophantine
equation in the collection it builds, farms out Steps 2-5 to a slave. Once the slaves are done, each slave passes back the list of solutions for its Diophantine equation to the master process, and the master process performs Step 6. Alternatively, each slave could perform a part of Step 6 itself after finishing Step 5 as discussed above.

Our algorithm is very similar to that of Tzanakis and de Weger [TW2]. Indeed, the overall strategy is the same and every Lemma and Theorem that we present appears (at least implicitly) in [TW2]. However, our algorithm does differ from Tzanakis and de Weger’s in a few minor ways that can potentially result in significant computational savings. One difference is that our algorithm puts more work into minimizing how often the most computationally expensive techniques are employed; this work is mostly done in Step 2 above. Another difference is that our algorithm does more work to optimize the bounds arising from the theory of linear forms in logarithms. We have endeavoured to present the algorithm essentially in the manner in which it is implemented. As a consequence, our exposition differs from [TW2] in both overall structure and in the increased level of practical detail provided in the various steps.

The implementation of our algorithm as a function in the Magma computer algebra system [BCP] can be found in the Appendix.
2 Decompositions of primes and polynomials; p-adic embeddings; p-adic valuations

In this section, we give a concise description of the relationships between how a rational prime p decomposes in the ring of integers of a number field K, how the defining polynomial of K decomposes over the field \mathbb{Q}_p of p-adic numbers, how K embeds into the algebraic closure of \mathbb{Q}_p, and how the p-adic valuation on \mathbb{Q}_p extends to a p-adic valuation on K. We also discuss how the p-adic valuation on \mathbb{Q}_p extends to larger fields. As references for this material we give [BS] (especially Theorem 3 in Chapter 4, Section 2), [Ca] (especially Lemma 2.1 in Chapter 9), [Ha] (especially Chapter 18), [Ko] (especially Chapter 3, Section 2), and [Na] (especially Theorem 6.1).

Let p be a rational prime. Let $g(t)$ be an irreducible polynomial in $\mathbb{Q}[t]$ of degree n, and let $K = \mathbb{Q}(\theta)$, where $g(\theta) = 0$. There are one-to-one correspondences between each of the following four sets of objects:

- The prime ideals in (the ring of integers of) K that divide p.
- The irreducible polynomial factors of $g(t)$ in $\mathbb{Q}_p[t]$.
- The classes of conjugate embeddings of K into the algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p.
- The extensions of the p-adic valuation ord_p on \mathbb{Q} to K.

In what follows, we will describe the important features of these correspondences. Note that two embeddings of K into $\overline{\mathbb{Q}_p}$ are called conjugate if they map θ to roots of the same irreducible polynomial in $\mathbb{Q}_p[t]$. Note also that what we call a p-adic valuation is sometimes called a p-adic order.

Let

$$(p) = p_1^{e_1} \cdots p_m^{e_m}$$

be the decomposition of (p) into prime ideals in \mathcal{O}_K (the ring of integers of K), and let f_i be the residue degree of p_i over p. For $x \in K$, let $\text{ord}_{p_i}(x)$ denote the p_i-adic valuation of x, i.e., the exponent of p_i in the prime ideal factorization of the (fractional) ideal (x). Let K_{p_i} denote the completion of K with respect to ord_{p_i}. Let

$$g(t) = g_1(t) \cdots g_m(t)$$

be the decomposition of $g(t)$ into irreducible polynomials in $\mathbb{Q}_p[t]$. For each $i \in \{1, \ldots, m\}$, let $n_i = \deg g_i(t)$. The correspondence $p_i \leftrightarrow g_i(t)$ is such that $n_i = e_i f_i$ and $K_{p_i} \simeq \mathbb{Q}_p(\theta_i)$,
where \(g_i(\theta_i) = 0 \).

There are \(n \) embeddings of \(K \) into \(\overline{\mathbb{Q}}_p \), and each one fixes \(\mathbb{Q} \) and maps \(\theta \) to a root of \(g \) in \(\overline{\mathbb{Q}}_p \). Let \(\theta_i^{(1)}, \ldots, \theta_i^{(n_i)} \) denote the roots of \(g_i(t) \) in \(\overline{\mathbb{Q}}_p \). For \(i = 1, \ldots, m \) and \(j = 1, \ldots, n_i \), let \(\sigma_{ij} \) be the embedding of \(K \) into \(\mathbb{Q}_p(\theta_i^{(j)}) \) defined by \(\theta \mapsto \theta_i^{(j)} \). The \(m \) classes of conjugate embeddings are \(\{ \sigma_{i1}, \ldots, \sigma_{in_i} \} \) \((i = 1, \ldots, m) \). Note that \(\sigma_{ij} \) coincides with the embedding \(K \hookrightarrow K_\mathfrak{p}_i \simeq \mathbb{Q}_p(\theta_i) \simeq \mathbb{Q}_p(\theta_i^{(j)}) \).

For any finite extension \(L \) of \(\mathbb{Q}_p \), the \(p \)-adic valuation on \(\mathbb{Q}_p \) extends uniquely to \(L \) as
\[
\text{ord}_p(x) = \frac{1}{[L : \mathbb{Q}_p]} \text{ord}_p \left(N_{L/\mathbb{Q}_p}(x) \right). \tag{2}
\]
This definition is independent of the field \(L \) containing \(x \). So, since each element of \(\overline{\mathbb{Q}}_p \) is by definition contained in some finite extension of \(\mathbb{Q}_p \), (2) can be used to define the \(p \)-adic valuation of any \(x \in \overline{\mathbb{Q}}_p \). Every finite extension of \(\mathbb{Q}_p \) is complete with respect to \(\text{ord}_p \), but \(\overline{\mathbb{Q}}_p \) is not. The completion of \(\overline{\mathbb{Q}}_p \) with respect to \(\text{ord}_p \) is denoted by \(\mathbb{C}_p \). Note that the formulas
\[
\text{ord}_p(xy) = \text{ord}_p(x) + \text{ord}_p(y), \quad \text{ord}_p(x + y) \geq \min\{\text{ord}_p(x), \text{ord}_p(y)\}
\]
still hold when \(x, y \in \mathbb{C}_p \). It is convenient to record here that an element \(x \in \mathbb{C}_p \) having \(\text{ord}_p(x) = 0 \) is called a \(p \)-adic unit.

The \(m \) extensions of the \(p \)-adic valuation on \(\mathbb{Q} \) to \(K \) are just multiples of the \(p_i \)-adic valuations on \(K \):
\[
\text{ord}_p(x) = \frac{1}{e_i} \text{ord}_{p_i}(x) \quad (i = 1, \ldots, m).
\]
We can also view these extensions as arising from the various embeddings of \(K \) into \(\overline{\mathbb{Q}}_p \). Indeed, the extension to \(\mathbb{Q}_p(\theta_i^{(j)}) \) of the \(p \)-adic valuation on \(\mathbb{Q}_p \) induces a \(p \)-adic valuation on \(K \) via the embedding \(\sigma_{ij} \) as
\[
\text{ord}_p(x) = \text{ord}_p(\sigma_{ij}(x)),
\]
and we have
\[
\text{ord}_p(\sigma_{ij}(x)) = \frac{1}{e_i} \text{ord}_{p_i}(x) \quad (i = 1, \ldots, m; \ j = 1, \ldots, n_i). \tag{3}
\]
3 First steps

Fix a nonzero integer a and a set of distinct rational primes p_1, \ldots, p_v. Let

$$F(x, y) = c_0 x^n + c_1 x^{n-1} y + \cdots + c_{n-1} x y^{n-1} + c_n y^n$$

be an irreducible binary form over \mathbb{Z} of degree $n \geq 3$. We want to solve the Thue-Mahler equation

$$F(x, y) = a p_1^{z_1} \cdots p_v^{z_v} \tag{4}$$

for unknown integers x, y, z_1, \ldots, z_v with $(x, y) = 1$ and $z_i \geq 0$ for $i = 1, \ldots, v$. We will assume that $c_0 = 1$ and that $(a, p_i) = 1$ for $i = 1, \ldots, v$.

The assumption $(a, p_i) = 1$ for $i = 1, \ldots, v$ results in no loss of generality because a tuple (x, y, z_1, \ldots, z_v) is a solution of (4) if and only if the tuple $(x, y, z'_1, \ldots, z'_v)$ with $z'_i = z_i + \text{ord}_{p_i}(a)$ for $i = 1, \ldots, v$ is a solution of

$$F(x, y) = a' p_1^{z'_1} \cdots p_v^{z'_v},$$

where $a' = a/(a, p_1 \cdots p_v)$. To see that we can assume $c_0 = 1$ without loss of generality, first note that at least one of c_0 and c_n is nonzero, and that solving (4) is equivalent to solving

$$C_0 X^n + C_1 X^{n-1} Y + \cdots + C_{n-1} X Y^{n-1} + C_n Y^n = a p_1^{z'_1} \cdots p_v^{z'_v},$$

where $C_i = c_{n-i}$ for $i = 0, \ldots, n$, $X = y$, and $Y = x$. These facts clearly imply we can assume $c_0 \neq 0$. We claim that, under the assumptions $(a, p_i) = 1$ for $i = 1, \ldots, v$ and $c_0 \neq 0$ (both of which we proved we are free to make), each solution (x, y, z_1, \ldots, z_v) of (4) with $(x, y) = 1$ is such that, for some divisor d of c_0,

$$X^n + C_1 X^{n-1} Y + \cdots + C_{n-1} X Y^{n-1} + C_n Y^n = a' p_1^{z'_1} \cdots p_v^{z'_v}, \quad (X, Y) = 1 \tag{5}$$

holds with $C_i = c_i c_0^{-1}$ for $i = 1, \ldots, n$, $a' = a/(a, d)$, $X = c_0 x/d$, $Y = y/d$, and $z'_i = z_i - \text{ord}_{p_i}(d)$ for $i = 1, \ldots, v$. The claim reduces the problem of finding all solutions of (4) with $(x, y) = 1$ to the problem of finding all the solutions $(X, Y, z'_1, \ldots, z'_v)$ of (5) for each divisor d of c_0. As the coefficient of X^n in (5) is 1, establishing the claim will thus show that we can take $c_0 = 1$ in (4) without loss of generality. To prove the claim, consider any solution (x, y, z_1, \ldots, z_v) of (4) with $(x, y) = 1$, and let $d = (c_0, y)$. Then $(c_0 x/d, y/d) = 1$.
and d divides $ap^z_1 \cdots p^z_v$. The latter fact combined with the assumption $(a, p_i) = 1$ for $i = 1, \ldots, v$ implies

$$\frac{ap^z_1 \cdots p^z_v}{d} = \frac{a}{(a, d)} p_1^{z_1 - \text{ord}_{p_1}(d)} \cdots p_v^{z_v - \text{ord}_{p_v}(d)}.$$

On the other hand, multiplying (4) by c_0^n/d^n gives

$$\left(\frac{c_0x}{d}\right)^n + c_1 \left(\frac{c_0x}{d}\right)^{n-1} \left(\frac{y}{d}\right) + \cdots + c_{n-1}c_0^{n-2} \left(\frac{c_0x}{d}\right) \left(\frac{y}{d}\right)^{n-1} + c_n c_0^{n-1} \left(\frac{y}{d}\right)^n = \frac{c_0^{n-1} ap^z_1 \cdots p^z_v}{d^{n-1}}.$$

Putting everything together and converting to the notation $C_i = c_i c_0^{i-1}$ ($i = 1, \ldots, n$), $a' = a/(a, d)$, $X = c_0x/d$, $Y = y/d$, and $z'_i = z_i - \text{ord}_{p_i}(d)$ yields (5), and, therefore, proves the claim.

Put $g(t) = F(t, 1) = t^n + c_1 t^{n-1} + \cdots + c_{n-1} t + c_n$ and note that $g(t)$ is irreducible in $\mathbb{Z}[t]$. Let $K = \mathbb{Q}(\theta)$ with $g(\theta) = 0$. Then (4) is equivalent to the norm equation

$$N_{K/\mathbb{Q}}(x - y\theta) = ap^z_1 \cdots p^z_v. \quad (6)$$

Let

$$(p_i) = \prod_{j=1}^{m_i} p^{e_{ij}}_{ij}$$

be the factorization of p_i into prime ideals in the ring of integers \mathcal{O}_K of K, and let f_{ij} be the residue degree of p_{ij} over p_i. Then, since $N(p_{ij}) = p_i^{f_{ij}}$, (6) implies finitely many ideal equations of the form

$$(x - y\theta) = a \prod_{j=1}^{m_1} p^{z_{ij}}_{1j} \cdots \prod_{j=1}^{m_v} p^{z_{vj}}_{vj}, \quad (7)$$

where a is an ideal of norm $|a|$ and the z_{ij} are unknown nonnegative integers related to the z_i by $\sum_{j=1}^{m_i} f_{ij} z_{ij} = z_i$.

Our first task will be to cut down the number of variables appearing in (7). We will do this by showing that only a few prime ideals can divide $(x - y\theta)$ to a large power.
4 The prime ideal removing lemma

In this section, we establish the key lemma that will allow us to cut down the number of prime ideals that can appear to a large power in the factorization of \((x - y\theta)\).

Let \(p\) be a rational prime and keep the same notation as in Section 2.

Lemma 4.1. (The Prime Ideal Removing Lemma).

(a) For every pair \(i \neq j \in \{1, \ldots, m\}\), if
\[
\mathrm{ord}_p(x - y\theta) > \max \{e_i, e_j\} \min_{k,l} \mathrm{ord}_p(\theta_i^{(k)} - \theta_j^{(l)}),
\]
then
\[
\mathrm{ord}_p(x - y\theta) \leq \max \{e_i, e_j\} \min_{k,l} \mathrm{ord}_p(\theta_i^{(k)} - \theta_j^{(l)}).
\]
(b) For every \(i \in \{1, \ldots, m\}\),
\[
\mathrm{ord}_p(x - y\theta) \leq e_i \min_{k,l} \mathrm{ord}_p(\theta_i^{(k)} - \theta_j^{(l)}).
\]

Note that the right-hand side of (10) is finite if and only if \(e_if_i > 1\).

Proof. Let \(i, j \in \{1, \ldots, m\}\). Put \(v_i = \mathrm{ord}_p(x - y\theta)\), \(v_j = \mathrm{ord}_p(x - y\theta)\). It suffices to show
\[
\frac{\min \{v_i, v_j\}}{\max \{e_i, e_j\}} \leq \mathrm{ord}_p(\theta_i^{(k)} - \theta_j^{(l)})
\]
for every \(k \in \{1, \ldots, n_i\}\), \(l \in \{1, \ldots, n_j\}\). In view of (3), we have \(\frac{v_i}{e_i} = \mathrm{ord}_p(x - y\theta_i^{(k)})\) and \(\frac{v_j}{e_j} = \mathrm{ord}_p(x - y\theta_j^{(l)})\). Hence,
\[
\frac{\min \{v_i, v_j\}}{\max \{e_i, e_j\}} \leq \min \left\{ \frac{v_i}{e_i}, \frac{v_j}{e_j} \right\} \leq \mathrm{ord}_p((x - y\theta_i^{(k)}) - (x - y\theta_j^{(l)})) \leq \mathrm{ord}_p(\theta_i^{(k)} - \theta_j^{(l)}) + \mathrm{ord}_p(y).
\]
If \(p \nmid y\), we are done. In case \(p\) divides \(y\), each prime ideal above \(p\) also divides \(y\). But a prime ideal dividing \(y\) cannot divide \((x - y\theta)\) because \((x, y) = 1\). So if \(p\) divides \(y\), the left-hand sides of (8)-(10) are zero.

\(\square\)
If \(m > 1 \), let
\[
D_i = \min \left\{ \max_{1 \leq j < k \leq m} \left(\max_{h,l} \{ e_j, e_k \} \min_{h,l} \ord_p (\theta_j^{(h)} - \theta_k^{(l)}) \right), e_i \min_{h,l} \ord_p (\theta_i^{(h)} - \theta_i^{(l)}) \right\}
\]
for \(i = 1, \ldots, m \).

Corollary 4.2. If \(m > 1 \), there is at most one \(p_i \) dividing \(p \) with
\[
\ord_{p_i}(x - y\theta) > D_i,
\]
and it satisfies \(e_i = f_i = 1 \) (if it exists).

Proof. Immediate from Lemma 4.1. \(\square \)

Corollary 4.3. There is at most one \(p_i \) dividing \(p \) with
\[
\ord_{p_i}(x - y\theta) > \frac{1}{2} \max \{ e_1, \ldots, e_m \} \ord_p (\Discr g(t)), \tag{11}
\]
and it satisfies \(e_i = f_i = 1 \) (if it exists).

Proof. Let \(\theta^{(1)}, \ldots, \theta^{(n)} \) denote the roots of \(g \) in \(\overline{\mathbb{Q}}_p \). Since
\[
\Discr g(t) = \prod_{1 \leq h < h' \leq n} (\theta^{(h)} - \theta^{(h')})^2,
\]
and since \(\theta \) is an algebraic integer, we have
\[
\ord_p (\Discr g(t)) = \sum_{1 \leq h < h' \leq n} 2 \ord_p (\theta^{(h)} - \theta^{(h')}) \geq 2 \ord_p (\theta^{(h)} - \theta^{(h')})
\]
for any two distinct roots \(\theta^{(h)}, \theta^{(h')} \). So if \(i \neq j \in \{1, \ldots, m\} \), we have \(\ord_p (\Discr g(t)) \geq 2 \ord_p (\theta^{(h)} - \theta^{(h')}) \) for all \(k, l \). It follows from this fact and Lemma 4.1(a) that if (11) holds for some \(p_i \), then it fails to hold for every \(p_j \) with \(j \neq i \). If a \(p_i \) has either \(e_i > 1 \) or \(f_i > 1 \), then there are (at least) two distinct roots \(\theta^{(k)}, \theta^{(l)} \), and we have \(\ord_p (\Discr g(t)) \geq 2 \ord_p (\theta^{(k)} - \theta^{(l)}) \). It follows from Lemma 4.1(b) that (11) cannot hold for such a \(p_i \). \(\square \)

Since Corollary 4.3 is vacuously true when \(m = 1 \), one can also deduce Corollary 4.3 from Corollary 4.2 by observing that
\[
\frac{1}{2} \max \{ e_1, \ldots, e_m \} \ord_p (\Discr g(t)) \geq D_i
\]
for every \(i \in \{1, \ldots, m\} \) when \(m > 1 \).
In light of the results above, we see that for each solution \((x, y, z_1, \ldots, z_v)\) of (4) and each \(p \in \{p_1, \ldots, p_v\}\), there can be at most one prime ideal \(p_k\) above \(p\) whose exponent in the factorization of \((x - y\theta)\) need not be bounded by either \(\frac{1}{2} \max\{e_1, \ldots, e_m\} \text{ord}_p(\text{Discr} g(t))\) or \(D_k\). We call such a \(p_k\) the unconstrained prime above \(p\). We know that the unconstrained prime must have \(e_k = f_k = 1\). For each choice of unconstrained prime \(p_k\) above \(p\), there are only finitely many possibilities for the exponents of the other primes above \(p\) in the factorization of \((x - y\theta)\). If there is no prime ideal \(p_k\) above \(p\) with \(e_k = f_k = 1\), there can be no unconstrained prime above \(p\), and there are only finitely many possibilities for the exponent of each prime above \(p\) in the factorization of \((x - y\theta)\).

Now we describe an algorithm that, for a given \(p \in \{p_1, \ldots, p_v\}\), computes for each choice of unconstrained prime above \(p\) the set of all possible combinations of exponents that the other primes above \(p\) can have in the factorization of \((x - y\theta)\). If there can be no unconstrained prime above \(p\) (i.e., if there is no prime ideal above \(p\) with residue degree and ramification index both equal to 1), the algorithm computes the set of all possible combinations of exponents that the primes above \(p\) can have in the factorization of \((x - y\theta)\).

The Prime Ideal Removing Algorithm.

Input: One of the primes \(p_l\) along with its prime ideal factorization \((p_l) = p_1^{e_1} \cdots p_{m_l}^{e_{m_l}}\) in \(\mathcal{O}_K\) and the residue degrees \(f_i\) of the \(p_{li}\).

Output: If \(p_l\) has at least one prime ideal \(p_{lk}\) above it with \(e_k = f_k = 1\), then for each such prime ideal \(p_{lk}\) above \(p_l\) with \(e_k = f_k = 1\), the algorithm outputs the set \(A_k\) of all tuples \((a_{l1}, \ldots, a_{lm_l})\) such that, for each \(i \in \{1, \ldots, m_l\} \setminus \{k\}\), \(a_{li}\) is a possible exponent of the prime ideal \(p_{li}\) in the factorization of \((x - y\theta)\), and such that \(a_{lk} = 0\). If there is no prime ideal \(p_{lk}\) above \(p_l\) with \(e_k = f_k = 1\), then the algorithm outputs the set \(A_0\) of all tuples \((a_{l1}, \ldots, a_{lm_l})\), where, for each \(i \in \{1, \ldots, m_l\}\), \(a_{li}\) is a possible exponent of the prime ideal \(p_{li}\) in the factorization of \((x - y\theta)\).

Algorithm:

For \(i = 1, \ldots, m_l\), compute the roots \(\theta_i^1, \ldots, \theta_i^{m_i}\) of the irreducible factor of \(g(t)\) in \(\mathbb{Q}_{p_l}[t]\) that corresponds to \(p_{li}\).

For each \(i, j \in \{1, \ldots, m_l\}\), compute

\[
e_{ij} = \max\{e_i, e_j\} \min_{k,l} \left\{\text{ord}_{p_l}(\theta_i^{(k)} - \theta_j^{(l)})\right\}.
\]

If \(m_l > 1\), set \(C_i = D_i\) for each \(i \in \{1, \ldots, m_l\}\).
If $m_l = 1$, set

$$C_i = \min \left\{ \frac{1}{2} \max \{e_1, \ldots, e_m\} \text{ord}_p(\text{Disc}g(t)), e_i \min \text{ord}_p(\theta_i^{(k)} - \theta_i^{(l)}) \right\}$$

for each $i \in \{1, \ldots, m_l\}$.

IF there is some $k \in \{1, \ldots, m_l\}$ such that $e_k = f_k = 1$ THEN

FOR each $k \in \{1, \ldots, m_l\}$ such that $e_k = f_k = 1$ DO

//Consider p_{lk} as the unconstrained prime above p_l.

Form the set A_k of all tuples $(a_{l1}, \ldots, a_{lm_l})$ of nonnegative integers subject to the constraints

(a) $a_{li} \leq C_i$, $1 \leq i \leq m$
(b) $a_{li} > c_{ij} \Rightarrow a_{lj} \leq c_{ij}$, $1 \leq i, j \leq m$, $i \neq j$
(c) $a_{lk} = 0$

END FOR

ELSE //there is no $k \in \{1, \ldots, m_l\}$ such that $e_k = f_k = 1$.

Form the set A_0 of all tuples $(a_{l1}, \ldots, a_{lm_l})$ of nonnegative integers subject to the constraints

(a) $a_{li} \leq C_i$, $1 \leq i \leq m$
(b) $a_{li} > c_{ij} \Rightarrow a_{lj} \leq c_{ij}$, $1 \leq i, j \leq m$, $i \neq j$

END IF

END FOR

Note that the algorithm above is a simplified version of the one we actually implement.
5 Factorization of the Thue-Mahler equation

Upon running the Prime Ideal Removing Algorithm (see Section 4) for each p_i ($i = 1, \ldots, v$), the task of solving the finite set of equations represented by (7) is reduced to the task of solving the set of equations of the form

\[(x - y\theta) = abp_1^{u_1} \cdots p_v^{u_v}\]

in integer variables x, y, u_1, \ldots, u_v with $u_i \geq 0$ for $i = 1, \ldots, v$. Here

- a is an ideal of O_K of norm $|a|$.
- p_i is a prime ideal of O_K above p_i with ramification index and residue degree both equal to 1, provided one exists. If there are no such prime ideals, $p_i = (1)$ and $u_i = 0$.
- b is an ideal of O_K whose prime ideal factors are those that divide one of the p_i, but are not equal to one of the p_i.
- $u_i + \text{ord}_{p_i}(N(b)) = z_i$.

To be precise, b is of the form

\[b = \prod_{j=1}^{m_1} p_1^{a_{ij}} \cdots \prod_{j=1}^{m_v} p_v^{a_{vij}},\]

where each $(a_{i1}, \ldots, a_{im_i})$ is a tuple from the Prime Ideal Removing Lemma Algorithm that corresponds to p_i being the unconstrained prime above p_i. So, in particular, if $p_i = p_{ik}$, we have $a_{ik} = 0$. Of course, we must add the qualification that if there are no primes above p_i with ramification index and residue degree both equal to 1, $(a_{i1}, \ldots, a_{im_i})$ is a tuple from the set A_0 output by the Prime Ideal Removing Algorithm. Note $\text{ord}_{p_i}(N(b)) = \sum_{j=1}^{m_i} f_{ij} a_{ij}$.

Consider a particular instance of (12). That is, fix choices for a, b, p_1, \ldots, p_v. Fix a complete set of fundamental units for O_K: $\varepsilon_1, \ldots, \varepsilon_r$. Here $r = s + t - 1$, with s denoting the number of real embeddings of K into \mathbb{C}, and t denoting the number of complex conjugate pairs of non-real embeddings of K into \mathbb{C}. For $i = 1, \ldots, v$, let h_i be the smallest positive integer for which $p_i^{h_i}$ is principal and let $\pi_i \in O_K$ be a generator for $p_i^{h_i}$. Then

\[(x - y\theta) = abp_1^{s_1} \cdots p_v^{s_v} (\pi_1^{n_1} \cdots (\pi_v^{n_v})\]

where the unknown integers $s_1, \ldots, s_v, n_1, \ldots, n_v$ satisfy

\[u_i = h_i n_i + s_i, \quad n_i \geq 0, \quad 0 \leq s_i < h_i.\]
Since the s_i vary in a finite set, we treat them as parameters. Now fix values for s_1, \ldots, s_v. The ideal $abp_1^{s_1} \cdots p_v^{s_v}$ is necessarily principal (because the set of nonzero fractional principal ideals forms a subgroup of the group of nonzero fractional ideals). Fix $\alpha \in \mathcal{O}_K$ such that

$$abp_1^{s_1} \cdots p_v^{s_v} = (\alpha).$$

Since (13) is an equality of principal ideals and since generators of principal ideals are determined only up to multiplication by units, we are led to the equation

$$x - y\theta = \alpha \zeta a_1^{n_1} \cdots a_r^{n_r} \pi_1^{n_1} \cdots \pi_v^{n_v}$$

with unknowns $a_i \in \mathbb{Z}$, $n_i \in \mathbb{Z}_{\geq 0}$, and ζ in the set T of roots of unity in \mathcal{O}_K. Since T is finite, we will treat ζ as another parameter.

To summarize, our original problem of solving (4) has been reduced to the problem of solving finitely many equations of the form (14) for the variables $x, y, a_1, \ldots, a_r, n_1, \ldots, n_v$. Since the π_i are determined by the p_i, and since α is a fixed generator of $abp_1^{s_1} \cdots p_v^{s_v}$, the parameters in (14) are $\zeta, a, b, p_1, \ldots, p_v, s_1, \ldots, s_v$. We must solve (14) for each combination of possible values of these parameters. Note that each solution (x, y, z_1, \ldots, z_v) of (4) corresponds to a solution $(x, y, n_1, \ldots, n_v, a_1, \ldots, a_r)$ of some instance of (11), where

$$z_i = n_i h_i + s_i + t_i$$

with $t_i = \text{ord}_{p_i}(N(b))$.

Note that we only need to consider half the elements in T as possible values for the parameter ζ. More specifically, we can restrict ζ to a subset T' of T formed by starting with T and removing one member of each pair $\zeta_0, -\zeta_0$. This is justified by the observation that if $\zeta_0 \in T$, and if $(x, y, n_1, \ldots, n_v, a_1, \ldots, a_r)$ satisfies an instance of (14) with $\zeta = \zeta_0$, then $(-x, -y, n_1, \ldots, n_v, a_1, \ldots, a_r)$ satisfies the corresponding instance of (14) with $\zeta = -\zeta_0$ and all other parameters unchanged.

We make one final observation. If $l \in \{1, \ldots, v\}$ is an index such that p_l has no unramified degree one prime ideals of \mathcal{O}_K above it, we have $\pi_l = 1$ and $n_l = 0$. Thus, we can essentially remove such indices from consideration in the algorithm entirely. Specifically, we won’t need to worry about bounding n_l at all, and we can remove the terms corresponding to l from the linear forms Λ_i ($i \neq l$) and Λ_0 (see Sections 8 and 15 for the definitions of these forms). This will significantly reduce the amount of computation we will need to do. We must still consider the index l in the numerators of c'_8 and c'_9, and when we test
candidate solutions of (4). In the implementation of the algorithm, if their are indices l such that p_l has no unramified degree one prime ideals dividing it, we proceed as described above. However, to save us some tedious bookkeeping in the exposition, we will assume from now on that, for each $i \in \{1, \ldots, v\}$, there is at least one prime ideal of \mathcal{O}_K above p_i with ramification index and residue degree both equal to 1.

In what follows, we assume that we have fixed a particular choice of values for the parameters in (14).
6 The S-unit equation

From (14) we will deduce a so-called S-unit equation. In doing so, we will eliminate the variables x, y and set ourselves up to bound the exponents $a_1, \ldots, a_r, n_1, \ldots, n_v$.

Let $p \in \{p_1, \ldots, p_v, \infty\}$. Denote the roots of $g(t)$ in $\overline{\mathbb{Q}}_p$ (where $\overline{\mathbb{Q}}_\infty = \mathbb{R} = \mathbb{C}$) by $\theta^{(1)}, \ldots, \theta^{(n)}$. Let $i_0, j, k \in \{1, \ldots, n\}$ be distinct indices and consider the three embeddings of K into $\overline{\mathbb{Q}}_p$ defined by $\theta \mapsto \theta^{(i_0)}, \theta^{(j)}, \theta^{(k)}$. From the identity

$$(\theta^{(i_0)} - \theta^{(j)}) (x - y \theta^{(k)}) + (\theta^{(j)} - \theta^{(k)}) (x - y \theta^{(i_0)}) + (\theta^{(k)} - \theta^{(i_0)}) (x - y \theta^{(j)}) = 0,$$

we deduce

$$\lambda = \frac{\theta^{(i_0)} - \theta^{(j)}}{\theta^{(i_0)} - \theta^{(k)}} \frac{x - y \theta^{(k)}}{x - y \theta^{(j)}} - 1 = \frac{\theta^{(j)} - \theta^{(k)}}{\theta^{(k)} - \theta^{(i_0)}} \frac{x - y \theta^{(i_0)}}{x - y \theta^{(j)}} \quad (16)$$

Note λ is being defined by (16). Using (14) to substitute for $x - y \theta$ yields the S-unit equation

$$\lambda = \delta_1 \prod_{i=1}^{v} \left(\frac{\pi_i^{(j)}}{\pi_i^{(k)}} \right)^{n_i} \prod_{i=1}^{r} \left(\frac{\xi_i^{(j)}}{\xi_i^{(k)}} \right)^{a_i} - 1 = \delta_2 \prod_{i=1}^{v} \left(\frac{\pi_i^{(i_0)}}{\pi_i^{(j)}} \right)^{n_i} \prod_{i=1}^{r} \left(\frac{\xi_i^{(i_0)}}{\xi_i^{(j)}} \right)^{a_i} \quad (17)$$

where

$$\delta_1 = \frac{\theta^{(i_0)} - \theta^{(j)}}{\theta^{(i_0)} - \theta^{(k)}} \frac{\alpha^{(k)}}{\alpha^{(j)}} \frac{\zeta^{(k)}}{\zeta^{(j)}}, \quad \delta_2 = \frac{\theta^{(j)} - \theta^{(k)}}{\theta^{(k)} - \theta^{(i_0)}} \frac{\alpha^{(i_0)}}{\alpha^{(j)}} \frac{\zeta^{(i_0)}}{\zeta^{(j)}}.$$

Note that δ_1 and δ_2 are constants (they don’t depend on $x, y, n_1, \ldots, n_v, a_1, \ldots, a_r$).

We now restrict attention to those $p \in \{p_1, \ldots, p_v\}$ and study the p-adic valuations of the numbers appearing in (17). Recall that an element $z \in \mathbb{C}_p$ having $\text{ord}_p(z) = 0$ is called a p-adic unit.

Lemma 6.1. Let p be a rational prime. If $\gamma \in \mathcal{O}_K$ and $p \nmid N_{K/\mathbb{Q}}(\gamma)$, then $\gamma^{(h)} \in \mathbb{C}_p$ is a p-adic unit for every $h \in \{1, \ldots, n\}$.

Proof. In the notation of Section 2, there is $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n_i\}$ such that $\gamma^{(h)} = \sigma_{ij}(\gamma)$. So, according to (3), $e_i \text{ord}_p(\gamma^{(h)}) = \text{ord}_{p_i}(\gamma)$. Therefore, if $\gamma^{(h)}$ is not a p-adic unit, we have that p_i divides γ, which implies $N(p_i) = p^f_i$ divides $N_{K/\mathbb{Q}}(\gamma)$. \qed
Let \(l \in \{1, \ldots, v\} \).

Lemma 6.2.

(a) For every \(i \in \{1, \ldots, r\} \), \(\varepsilon_i^{(i_0)} / \varepsilon_i^{(j)} \) and \(\varepsilon_i^{(k)} / \varepsilon_i^{(j)} \) are \(p_l \)-adic units.

(b) For every \(i \in \{1, \ldots, v\} \) with \(i \neq l \), \(\pi_i^{(i_0)} / \pi_i^{(j)} \) and \(\pi_i^{(k)} / \pi_i^{(j)} \) are \(p_l \)-adic units.

Proof. Consider any \(i \in \{1, \ldots, r\} \). Since \(\varepsilon_i \) is a unit in \(\mathcal{O}_K \), we have \(N_{K/Q}(\varepsilon_i) = \pm 1 \), and hence \(\varepsilon_i^{(i_0)}, \varepsilon_i^{(j)}, \varepsilon_i^{(k)} \) are \(p_l \)-adic units by Lemma 6.1. Now consider an \(i \in \{1, \ldots, v\} \). Since \(N_{K/Q}(\pi_i) = \pm N(p_l^{e_h}) = \pm p_l^{e_h} \), Lemma 6.1 implies \(\pi_i^{(i_0)}, \pi_i^{(j)}, \pi_i^{(k)} \) are \(p_l \)-adic units if \(i \neq l \).

To conclude it suffices to observe that, since \(\mathrm{ord}_{p_l}(x/y) = \mathrm{ord}_{p_l}(x) - \mathrm{ord}_{p_l}(y) \), any ratio of \(p_l \)-adic units is a \(p_l \)-adic unit. \(\square \)

From now on we make the following choice for the index \(i_0 \). Let \(g_l(t) \) be the irreducible factor of \(g(t) \) in \(\mathbb{Q}_{p_l}[t] \) corresponding to the prime ideal \(p_l \). Since \(p_l \) has ramification index and residual degree equal to 1, \(\deg g_l(t) = 1 \). We choose \(i_0 \in \{1, \ldots, n\} \) so that \(\theta^{(i_0)} \) is the root of \(g_l(t) \). The indices \(j, k \) are fixed, but arbitrary.

Lemma 6.3.

(a) \(\pi_l^{(k)} / \pi_l^{(j)} \) is a \(p_l \)-adic unit.

(b) \(\mathrm{ord}_{p_l} \left(\frac{\pi_l^{(i_0)}}{\pi_l^{(j)}} \right) = h_l \).

Proof. Consider the factorization of \(g(t) \) in \(\mathbb{Q}_{p_l}[t] \): \(g(t) = g_1(t) \cdots g_m(t) \). Note \(\theta^{(j)} \) is a root of some \(g_h(t) \neq g_l(t) \). Let \(p_h \) be the corresponding prime ideal above \(p_l \) and \(e_h \) its ramification index. Then \(p_h \neq p_l \) and, since \((\pi_l) = p_l^{h_l} \), (3) implies

\[
\mathrm{ord}_{p_l}(\pi_l^{(j)}) = \frac{1}{e_h} \mathrm{ord}_{p_h}(\pi_l) = 0.
\]

An analogous argument gives \(\mathrm{ord}_{p_l}(\pi_l^{(k)}) = 0 \). On the other hand,

\[
\mathrm{ord}_{p_l}(\pi_l^{(i_0)}) = \frac{1}{e_l} \mathrm{ord}_{p_l}(\pi_l) = h_l.
\]

Exploiting the identity \(\mathrm{ord}_{p_l}(x/y) = \mathrm{ord}_{p_l}(x) - \mathrm{ord}_{p_l}(y) \) yields the result. \(\square \)
The next lemma deals with a special case in which n_l can be computed directly.

Lemma 6.4. If $\text{ord}_{p_l}(\delta_1) \neq 0$, then

$$n_l = \frac{1}{h_l} \left(\min \{\text{ord}_{p_l}(\delta_1), 0\} - \text{ord}_{p_l}(\delta_2) \right).$$

Proof. Applying Lemmas 6.2 and 6.3 to both expressions for λ in (17) yields $\text{ord}_{p_l}(\lambda) = \min \{\text{ord}_{p_l}(\delta_1), \text{ord}_{p_l}(1)\}$ and $\text{ord}_{p_l}(\lambda) = \text{ord}_{p_l}(\delta_2) + n_l h_l$.

In Section 9, we will discuss how to choose the indices j and k in the p_l-adic cases. We will work with the indices i_0, j, k in the $p = \infty$ case in Section 15.
7 The p-adic logarithm

In this section, we introduce the p-adic logarithm function, extend its domain to include all p-adic units in \mathbb{Q}_p, and state several of its important properties.

Fix a rational prime p. For $z \in \mathbb{C}_p$ with $\text{ord}_p(z - 1) > 0$, the p-adic logarithm of z is defined to be

$$\log_p z = -\sum_{i=1}^{\infty} \frac{(1 - z)^i}{i}.$$

By the n^{th} term test, the series converges precisely in the region where $\text{ord}_p(z - 1) > 0$.

Three important properties of the p-adic logarithm are:

1. $\log_p(xy) = \log_p(x) + \log_p(y)$ whenever $\text{ord}_p(x - 1) > 0$ and $\text{ord}_p(y - 1) > 0$;
2. $\log_p(z^k) = k \log_p(z)$ whenever $\text{ord}_p(z - 1) > 0$ and $k \in \mathbb{Z}$;
3. $\text{ord}_p(\log_p z) = \text{ord}_p(z - 1)$ whenever $\text{ord}_p(z - 1) > 1/(p-1)$.

Proofs of the first and last property can be found in [Ha] (pp. 264-265). The second property follows from the first.

We will use the following lemma to extend the definition of the p-adic logarithm to all p-adic units in \mathbb{Q}_p.

Lemma 7.1. Let z be a p-adic unit belonging to a finite extension L of \mathbb{Q}_p. Let e and f be the ramification index and residue degree of L.

(a) There is a positive integer r such that $\text{ord}_p(z^r - 1) > 0$.

(b) If r is the smallest positive integer having $\text{ord}_p(z^r - 1) > 0$, then r divides $p^f - 1$, and an integer q satisfies $\text{ord}_p(z^q - 1) > 0$ if and only if it is a multiple of r.

(c) If r is a nonzero integer with $\text{ord}_p(z^r - 1) > 0$, and if k is an integer with $p^k(p-1) > e$, then

$$\text{ord}_p(z^{rp^k} - 1) > \frac{1}{p-1}.$$

Proof. The residue field of L is the quotient R/m, where $R = \{z' \in L : \text{ord}_p(z') \geq 0\}$ and $m = \{z' \in L : \text{ord}_p(z') > 0\}$. It is a finite field containing p^f elements. Since z is a p-adic unit, the image of z in R/m belongs to the multiplicative group $(R/m)^\times$. Let r be the order of the image of z in $(R/m)^\times$. So, by definition, r is the smallest positive integer with $\text{ord}_p(z^r - 1) > 0$, and it follows that r divides $p^f - 1$ and that an integer q satisfies $\text{ord}_p(z^q - 1) > 0$ if and only if it is a multiple of r. We have now proved (a) and (b). For
the proof of (c), let \(r \) be any nonzero integer with \(\text{ord}_p(z^r - 1) > 0 \) and let \(k \) be an integer with \(p^k(p - 1) > e \). Write

\[
z^{rp^k} = (1 + (z^r - 1))^{p^k} = 1 + \sum_{l=1}^{p^k-1} \binom{p^k}{l} (z^r - 1)^l + (z^r - 1)^{p^k}.
\]

(18)

The least positive value that \(\text{ord}_p \) attains on \(L \) is \(1/e \), so we know \(\text{ord}_p(z^r - 1) \geq 1/e \). Applying this inequality and the fact that \(p \) divides \(\binom{p^k}{l} \) for \(l = 1, \ldots, p^k - 1 \) in (18) yields

\[
\text{ord}_p(z^{rp^k} - 1) \geq \min \left\{ 1 + \frac{1}{e}, \ldots, 1 + \frac{p^k - 1}{e}, \frac{p^k}{e} \right\} > \frac{1}{p - 1},
\]

where the last inequality follows from definition of \(k \).

For \(z \) a \(p \)-adic unit in \(\mathbb{Q}_p \), we define

\[
\log_p z = \frac{1}{q} \log_p z^q,
\]

where \(q \) is an arbitrary nonzero integer such that \(\text{ord}_p(z^q - 1) > 0 \). To see that this definition is independent of \(q \), let \(r \) be the smallest positive integer with \(\text{ord}_p(z^r - 1) > 0 \), note that \(q/r \) is an integer, and use the second property of \(p \)-adic logarithms above to write

\[
\frac{1}{q} \log_p z^q = \frac{1}{r(q/r)} \log_p z^{r(q/r)} = \frac{1}{r} \log_p z^r.
\]

Choosing \(q \) such that \(\text{ord}_p(z^q - 1) > 1/(p-1) \) helps to speed up and control the convergence of the series defining \(\log_p \) (cf. [Sm] (pp. 28-30) and [Coh2] (pp. 263-265)).

It is straightforward to see that Properties 1 and 2 above extend to the case where \(x, y, z \) are \(p \)-adic units. Combining this fact with Property 3, we obtain:

Lemma 7.2. Let \(z_1, \ldots, z_m \in \mathbb{Q}_p \) be \(p \)-adic units and let \(b_1, \ldots, b_m \in \mathbb{Z} \). If

\[
\text{ord}_p(z_1^{b_1} \cdots z_m^{b_m} - 1) > \frac{1}{p - 1}
\]

then

\[
\text{ord}_p(b_1 \log_p z_1 + \ldots + b_m \log_p z_m) = \text{ord}_p(z_1^{b_1} \cdots z_m^{b_m} - 1).
\]
8 A small upper bound for n_l in a special case

Let $l \in \{1, \ldots, v\}$. In this section, we will identify conditions under which n_l can be bounded by a small explicit constant. We will need to assume that $\text{ord}_{p_l} (\delta_1) = 0$.

Here (and in Sections 19-23) we find it convenient to use the notation

$$ b_1 = 1, \quad b_{1+i} = n_i \quad (i = 1, \ldots, v), \quad b_{1+v+i} = a_i \quad (i = 1, \ldots, r). $$

Put

$$ \alpha_1 = \log_{p_l} \delta_1, \quad \alpha_{1+i} = \log_{p_l} \left(\frac{\pi_i^{(k)}}{\pi_i^{(j)}} \right) \quad (i = 1, \ldots, v), \quad \alpha_{1+v+i} = \log_{p_l} \left(\frac{\epsilon_i^{(k)}}{\epsilon_i^{(j)}} \right) \quad (i = 1, \ldots, r). $$

Define

$$ \Lambda_l = \sum_{i=1}^{1+v+r} b_i \alpha_i $$

Let L be a finite extension of \mathbb{Q}_{p_l} containing δ_1, $\pi_i^{(k)}/\pi_i^{(j)}$ ($i = 1, \ldots, v$), $\epsilon_i^{(k)}/\epsilon_i^{(j)}$ ($i = 1, \ldots, r$). Since finite extensions of p-adic fields are complete, $\alpha_i \in L$ for $i = 1, \ldots, 1+v+r$ also. Choose $\phi \in \overline{\mathbb{Q}_{p_l}}$ such that $L = \mathbb{Q}_{p_l}(\phi)$ and $\text{ord}_{p_l}(\phi) \geq 0$. It is always possible to satisfy the second condition because $\mathbb{Q}_{p_l}(\phi') = \mathbb{Q}_{p_l}(p^m \phi')$ for every integer m and every $\phi' \in \overline{\mathbb{Q}_{p_l}}$. Let $G(t)$ be the minimal polynomial of ϕ over \mathbb{Q}_{p_l}, and let s be its degree. For $i = 1, \ldots, 1+v+r$, write

$$ \alpha_i = \sum_{h=1}^{s} \alpha_{ih} \phi^{h-1}, \quad \alpha_{ih} \in \mathbb{Q}_{p_l}. $$

Then

$$ \Lambda_l = \sum_{h=1}^{s} \Lambda_{th} \phi^{h-1} \quad (19) $$

with

$$ \Lambda_{th} = \sum_{i=1}^{v+r+1} b_i \alpha_{ih} \quad (h = 1, \ldots, s). $$

Lemma 8.1. For every $h \in \{1, \ldots, s\}$, we have

$$ \text{ord}_{p_l}(\Lambda_{th}) \geq \text{ord}_{p}(\Lambda_l) - u_l, \quad (20) $$

where

$$ w_l = \text{ord}_{p_l} \left(\prod_{1 \leq j < k \leq s} (\phi^{(k)} - \phi^{(j)}) \right) = \frac{1}{2} \text{ord}_{p_l} (\text{Discr} G(t)). $$

22
Proof. Taking the images of (19) under the conjugation maps \(\phi \mapsto \phi^{(h)} \) \((h = 1, \ldots, s)\) gives

\[
\begin{bmatrix}
\Lambda_t^{(1)} \\
\vdots \\
\Lambda_t^{(s)}
\end{bmatrix} =
\begin{bmatrix}
1 & \phi^{(1)} & \cdots & \phi^{(1)s-1} \\
\vdots & \vdots & & \vdots \\
1 & \phi^{(s)} & \cdots & \phi^{(s)s-1}
\end{bmatrix}
\begin{bmatrix}
\Lambda^{(1)} \\
\vdots \\
\Lambda^{(s)}
\end{bmatrix}.
\]

The \(s \times s \) matrix \((\phi^{(h)i-1})\) above has inverse

\[
\frac{1}{\prod_{1 \leq j < k \leq s} (\phi^{(k)} - \phi^{(j)})}
\begin{bmatrix}
\gamma_{11} & \cdots & \gamma_{1s} \\
\vdots & & \vdots \\
\gamma_{s1} & \cdots & \gamma_{ss}
\end{bmatrix},
\]

where each \(\gamma_{jk} \) is a polynomial in the entries of \((\phi^{(h)i-1})\) having integer coefficients. Since \(\operatorname{ord}_{p_t}(\phi) \geq 0\) and since \(\operatorname{ord}_{p_t}(\phi^{(h)}) = \operatorname{ord}_{p_t}(\phi) \) for every \(h \), it follows that \(\operatorname{ord}_{p_t}(\gamma_{jk}) \geq 0\) for every \(\gamma_{jk} \). Therefore, since \(\Lambda_{th} = \sum_{i=1}^{s} \gamma_{hi} \Lambda_t^{(i)} \), we have

\[
\operatorname{ord}_{p_t}(\Lambda_{th}) \geq \min_{1 \leq i \leq s} \operatorname{ord}_{p_t}(\Lambda_t^{(i)}) - u_t = \operatorname{ord}_{p_t}(\Lambda_t) - u_t
\]

for every \(h \in \{1, \ldots, s\} \).

Lemma 8.2. If \(n_t > \frac{1}{h_t} \left(\frac{1}{p - 1} - \operatorname{ord}_{p_t}(\delta_2) \right) \), then

\[
\operatorname{ord}_{p_t}(\Lambda_t) = n_t h_t + \operatorname{ord}_{p_t}(\delta_2).
\]

Proof. Immediate from Lemma 7.2.

Lemma 8.3.

(a) If \(\operatorname{ord}_{p_t}(\alpha_1) < \min_{2 \leq i \leq 1+v+r} \operatorname{ord}_{p_t}(\alpha_i) \), then

\[
n_t \leq \max \left\{ \left[\frac{1}{h_t} \left(\frac{1}{p_t - 1} - \operatorname{ord}_{p_t}(\delta_2) \right) \right], \left[\frac{1}{h_t} \left(\min_{2 \leq i \leq 1+v+r} \operatorname{ord}_{p_t}(\alpha_i) - \operatorname{ord}_{p_t}(\delta_2) \right) \right] - 1 \right\}.
\]

(b) For all \(h \in \{1, \ldots, s\} \), if \(\operatorname{ord}_{p_t}(\alpha_{1h}) < \min_{2 \leq i \leq 1+v+r} \operatorname{ord}_{p_t}(\alpha_{ih}) \), then

\[
n_t \leq \max \left\{ \left[\frac{1}{h_t} \left(\frac{1}{p_t - 1} - \operatorname{ord}_{p_t}(\delta_2) \right) \right], \left[\frac{1}{h_t} \left(u_t + \min_{2 \leq i \leq 1+v+r} \operatorname{ord}_{p_t}(\alpha_{ih}) - \operatorname{ord}_{p_t}(\delta_2) \right) \right] - 1 \right\}.
\]

Proof. The proof of (a) is analogous to (and simpler than) the proof of (b). Hence we prove only (b). Let \(h \in \{1, \ldots, s\} \). First observe that

\[
\operatorname{ord}_{p_t}(\alpha_{1h}) = \operatorname{ord}_{p_t} \left(\Lambda_{th} - \sum_{i=2}^{1+v+r} b_i \alpha_{ih} \right) \geq \min \left(\operatorname{ord}_{p_t}(\Lambda_{th}), \min_{2 \leq i \leq 1+v+r} \operatorname{ord}_{p_t}(\alpha_{ih}) \right).
\]
Therefore, it suffices to show that

\[\text{ord}_{p_l}(\Lambda_{th}) \geq \min_{2 \leq i \leq 1 + v + r} \text{ord}_p(\alpha_{ih}) \]

assuming the inequalities

\[n_t > \frac{1}{h_t} \left(\frac{1}{p_t - 1} - \text{ord}_{p_t}(\delta_2) \right), \quad n_t \geq \frac{1}{h_t} \left(u_t + \min_{2 \leq i \leq 1 + v + r} \text{ord}_p(\alpha_{ih}) - \text{ord}_{p_t}(\delta_2) \right). \]

By Lemma 8.2, the first inequality implies \(\text{ord}_{p_t}(\Lambda_t) = n_t h_t + \text{ord}_{p_t}(\delta_2) \). Combining this with (20) yields

\[\text{ord}_{p_t}(\Lambda_{th}) \geq n_t h_t + \text{ord}_{p_t}(\delta_2) - u_t. \]

The desired result now follows from the second assumed inequality. \(\square \)
9 Choosing the indices j and k in the p_l-adic cases

We give here some guidelines for choosing the indices j and k discussed in Section 6 in the p_l-adic cases.

Let $l \in \{1, \ldots, v\}$ be given. Recall that we require the indices i_0, j, k to be distinct. Also recall that i_0 has already been chosen so that $\theta(i_0)$ is the root of a particular linear factor of $g(t)$ in $\mathbb{Q}_{p_l}[t]$. We list the guidelines in the order in which they should be followed:

1. If possible, one should choose j, k such that $\text{ord}_{p_l}(\delta_1) \neq 0$ so that Lemma 6.4 applies and yields n_l exactly. If this is not possible we know that $\text{ord}_{p_l}(\delta_1) = 0$ for every choice of j, k.
2. Try to choose j, k in such a way that Lemma 8.3 can be used to obtain an upper bound for n_l. Such an upper bound will be essentially equal to the smallest upper bound that could possibly be obtained through our general procedure for bounding n_l (which we will describe in later sections). Moreover, the general procedure is typically much more computationally expensive than the process of searching through the possible values of j, k and checking the hypotheses of Lemma 8.3.
3. If $g(t)$ has three or more linear factors in $\mathbb{Q}_{p_l}[t]$, choose j, k so that $\theta(j), \theta(k)$ are roots of such factors.
4. If $g(t)$ has an irreducible factor in $\mathbb{Q}_{p_l}[t]$ of degree two, choose j, k so that $\theta(j), \theta(k)$ are the roots of such a factor.
5. If $g(t)$ has a nonlinear irreducible factor in $\mathbb{Q}_{p_l}[t]$ that splits completely in the extension of \mathbb{Q}_{p_l} that it generates, choose j, k so that $\theta(j), \theta(k)$ are roots of such a factor.
 To check whether $g(t)$ has such a factor, it may be helpful to use the fact that the extension of \mathbb{Q}_{p_l} generated by an irreducible factor $g_i(t)$ of $g(t)$ is isomorphic to the completion of \mathcal{K} at the prime ideal above p_l to which $g_i(t)$ corresponds.
6. Try to choose j, k, so that $\alpha_1, \ldots, \alpha_{1+v+r}$ (see Section 8) all belong to \mathbb{Q}_{p_l}.
7. Try to choose j, k, so that there exists an index $i' \in \{2, \ldots, 1 + v + r\}$ such that $\alpha_{i'} = \min_{2 \leq i \leq 1 + v + r} \text{ord}_{p_l}(\alpha_i)$ and $\alpha_i/\alpha_{i'} \in \mathbb{Q}_{p_l}$ for $i = 1, \ldots, 1 + v + r$.
8. Select a nonlinear irreducible factor of $g(t)$ in $\mathbb{Q}_{p_l}[t]$ of minimal degree and choose j, k so that $\theta(j), \theta(k)$ are roots of this polynomial. The case where $g(t)$ has no nonlinear factors in $\mathbb{Q}_{p_l}[t]$ is handled in Guideline 3.

Guidelines 1, 2, 6, and 7 involve searching through all possible choices of j, k until a choice satisfying certain conditions is found. Note that we can restrict these searches to
those choices with $j < k$. This is because going from the choice $j = i_1, k = i_2$ to the choice $j = i_2, k = i_1$ just has the effect of multiplying $\text{ord}_p(\delta_1)$ and the α_i by -1.

If we are successful in choosing j, k such that $\text{ord}_p(\delta_1) \neq 0$, then we know the value of n_l (by Lemma 6.4). If n_l is not an integer or if $n_l < 0$, we know the particular instance of (14) we are considering has no solutions. If n_l is a nonnegative integer, we can absorb $\pi_i^{n_l}$ into α and essentially remove the index $l \in \{1, \ldots, v\}$ from consideration in the rest of the algorithm. Specifically, we can skip any work we would do to n_l, and we can remove the terms corresponding to l from the linear forms $\Lambda_i (i \neq l)$ and Λ_0 (see Sections 8 and 15 for the definitions of these forms). This will save us a substantial amount of computation time. Note that we will still need to consider the index l in the numerators of c'_8 and c'_9, and when we test candidate solutions of (4). We do all of what we have just described in the implementation of the algorithm. However, in order to simplify the exposition, we will assume from now on that $\text{ord}_p(\delta_1) = 0$.

26
10 The general strategy for bounding the n_i and the a_i

Here we outline our strategy for bounding the a_i and for bounding those n_i to which lemma 8.3 does not apply. Put

$$N = \max \{n_1, \ldots, n_v\}, \quad A = \max \{|a_1|, \ldots, |a_r|\}, \quad H = \max \{N, A\}.$$

We will find an explicit upper bound for H. Our strategy depends on the simple observation that if H satisfies an inequality of the form

$$H \leq a + b \log H,$$

for some constants a, b, then H must be bounded (see Lemma 10.1 below). To obtain such an inequality for H, we will bound N and A by linear functions of $\log H$ separately. To bound N, we will utilize the theory of linear forms in p-adic logarithms. For A, we will appeal to the theory of linear forms in real/complex logarithms.

Lemma 10.1. Let a and b be real numbers with $b \geq e^2$. If $x \leq a + b \log x$, then $x < 2(a + b \log b)$.

Proof. Let y be the number defined by $x = (1 + y)b \log b$. Then

$$x \leq a + b \log x = a + b \log(1 + y) + b \log b + b \log \log b \leq a + by + b \log b + b \log \log b$$

By substituting $y = x/b \log b - 1$ in the last expression and rearranging, we find

$$x \leq b \log b + \frac{\log b}{\log b - 1} \left(a + b \log \log b\right) < b \log b + 2 \left(a + \frac{1}{2} b \log b\right),$$

where the last inequality assumes that $b \geq e^2$. \qed
11 A lower bound for linear forms in p-adic logarithms

For α an algebraic number, the absolute logarithmic height of α is

$$h(\alpha) = \frac{1}{N} \log \left(a \prod_{i=1}^{N} \max \left\{ 1, \left| \alpha^{(i)} \right| \right\} \right),$$

where a, N, and $\alpha^{(1)}, \ldots, \alpha^{(N)}$ denote, respectively, the leading coefficient, degree, and roots in \mathbb{C} of the minimal polynomial of α over \mathbb{Z}.

Fix a rational prime p. Let $\alpha_1, \ldots, \alpha_m$ be nonzero algebraic numbers and let L be a number field of degree D containing the α_i. Let \mathfrak{p} be a prime ideal of the ring of integers of L lying above p. Let e_p and f_p be, respectively, the ramification index and residue degree of \mathfrak{p}. If $p = 2$, define

$$d = \begin{cases} D & \text{if } e^{2\pi i/3} \in L, \\ 2D & \text{if } e^{2\pi i/3} \not\in L, \end{cases} \quad f = \begin{cases} f_p & \text{if } e^{2\pi i/3} \in L, \\ \max \{2, f_p\} & \text{if } e^{2\pi i/3} \not\in L. \end{cases}$$

If $p \geq 3$ and $p^f_p \equiv 3 \pmod{4}$, set

$$d = D, \quad f = f_p.$$

Finally, if $p \geq 3$ and $p^f_p \equiv 1 \pmod{4}$, set

$$d = \begin{cases} D & \text{if } e^{2\pi i/4} \in L, \\ 2D & \text{if } e^{2\pi i/4} \not\in L, \end{cases} \quad f = \begin{cases} f_p & \text{if } e^{2\pi i/4} \in L \text{ or } p \equiv 1 \pmod{4}, \\ \max \{2, f_p\} & \text{if } e^{2\pi i/4} \not\in L \text{ and } p \equiv 3 \pmod{4}. \end{cases}$$

Put

$$\kappa = \left\lfloor \frac{2e_p \log p}{p - 1} \right\rfloor$$

and

$$(\kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5, \kappa_6) = \begin{cases} (160, 32, 40, 276, 16, 8) & \text{if } p = 2, \\ (759, 16, 20, 1074, 8, 4) & \text{if } p = 3, d \geq 2, \\ (537, 16, 20, 532, 8, 4) & \text{if } p = 3, d = 1, \\ (1473, 8\tau, 10, 394\tau, 8, 4) & \text{if } p \geq 5, e_p = 1, p \equiv 1 \pmod{4}, \\ (1282, 8\tau, 10, 366\tau, 8, 4) & \text{if } p \geq 5, e_p = 1, p \equiv 3 \pmod{4}, d \geq 2, \\ (1288, 8\tau, 10, 396\tau, 8, 4) & \text{if } p \geq 5, e_p = 1, p \equiv 3 \pmod{4}, d = 1, \\ (319, 16, 20, 402, 8, 4) & \text{if } p = 5, e_p \geq 2, \\ (1502, 16, 20, 1372, 8, 4) & \text{if } p \geq 7, e_p \geq 2, p \equiv 1 \pmod{4}, \\ (2190, 16, 20, 1890, 8, 4) & \text{if } p \geq 7, e_p \geq 2, p \equiv 3 \pmod{4}, \end{cases}$$
where $\tau = (p - 1)/(p - 2)$. Set
\[
q = \begin{cases}
3 & \text{if } p = 2, \\
2 & \text{if } p \geq 3.
\end{cases}
\]

\[
L' = \begin{cases}
L(e^{2\pi i/3}) & \text{if } p = 2, \\
L(e^{2\pi i/4}) & \text{if } p \geq 3 \text{ and } p^{f_p} \equiv 1 \pmod{4}, \\
L & \text{if } p \geq 3 \text{ and } p^{f_p} \equiv 3 \pmod{4}.
\end{cases}
\]

Define $u = \max \left\{ t \in \mathbb{N} : e^{2\pi i/q^t} \in L' \right\}$, so that q^u is the order of the maximal q-subgroup of the group of roots of unity in L'. Set
\[
c_2 = \frac{(m + 1)^m d^{m+2}}{(m - 1)!} \frac{p^{f_p}}{(f \log p)^3} \max \left\{ 1, \log d \right\} \max \left\{ \log(e^4(m + 1)d), c_p, f \log p \right\}
\]
\[
c'_3 = \kappa_1 \kappa_2^m \left(\frac{m}{f \log p} \right)^{m-1} \prod_{i=1}^m \max \left\{ h(\alpha_i), \frac{f \log p}{\kappa_3(m + 4)d} \right\}
\]
\[
c''_3 = \kappa_4 (e \kappa_5)^m \left(\frac{m}{f \log p} \right)^{m-1} \prod_{i=1}^m \max \left\{ h(\alpha_i), \frac{f \log p}{e^2 \kappa_6 p^d} \right\}.
\]

Let $b_1, \ldots, b_m \in \mathbb{Z}$, and put
\[
\lambda = \alpha_1^{b_1} \cdots \alpha_m^{b_m} - 1, \quad B = \max \left\{ |b_1|, \ldots, |b_m| \right\}.
\]

The following theorem is a consequence of Theorems 1 and 3 of [Yu2] and the lemma in the appendix of [Yu1].

Theorem 11.1. Assume $\text{ord}_p(\alpha_i) = 0$ for $i = 1, \ldots, m$. If $\lambda \neq 0$ and $B \geq 3$, then
\[
\text{ord}_p(\lambda) < \frac{c_2 \min \{c'_3, c''_3\}}{q^u} \log B.
\]

A slightly weaker but computationally easier version of the theorem is obtained upon replacing q^u by
\[
Q = \begin{cases}
3 & \text{if } p = 2, \\
4 & \text{if } p \geq 3 \text{ and } p^{f_p} \equiv 1 \pmod{4}, \\
1 & \text{if } p \geq 3 \text{ and } p^{f_p} \equiv 3 \pmod{4}.
\end{cases}
\]
12 A lower bound for linear forms in real/complex logarithms

Let $\alpha_1, \ldots, \alpha_m$ be nonzero algebraic numbers and let L be a number field of degree d containing the α_i. Let L be embedded into \mathbb{C} and identify the α_i with their images. For $i = 1, \ldots, m$, fix a nonzero determination of $\log \alpha_i$. If L is embedded in \mathbb{R}, set $\kappa = 1$; otherwise, set $\kappa = 2$. Put

$$c_{17} = \min \left\{ \frac{1}{\kappa} \left(\frac{1}{2} \right)^{em} \right\} \left(\begin{array}{c} 30^{m+3} m^{7/2} \log(m+20) \end{array} \right) d^2 \log(ed) \prod_{i=1}^{m} \max \{ \text{Re}(\alpha_i), |\log \alpha_i|, 0.16 \}.$$

Let $b_1, \ldots, b_m \in \mathbb{Z}$, and put

$$\Lambda = b_1 \log \alpha_1 + \cdots + b_m \log \alpha_m, \quad B = \max \{|b_1|, \ldots, |b_m|\}.$$

The following theorem is Corollary 2.3 of [Mat].

Theorem 12.1. If $\Lambda \neq 0$, then

$$|\Lambda| > \exp(-c_{17} \log B - c_{17}).$$
13 A bound for n_l in terms of $\log H$

In this section, we show how the theory of linear forms in p-adic logarithms can be used to bound each n_l by a linear function of $\log H$.

Lemma 13.1. For each $l \in \{1, \ldots, v\}$, there is an effectively computable constant $c_1(l)$ such that

$$n_l < \frac{c_1(l)}{h_l} \log H - \frac{1}{h_l} \ord_{p_l}(\delta_2)$$

holds whenever $H > 2$.

Proof. Fix $l \in \{1, \ldots, v\}$. By Lemmas 6.2 and 6.3 applied to (17), we have $n_l h_l = \ord_{p_l}(\lambda) - \ord_{p_l}(\delta_2)$. So it suffices to find an effectively computable constant $c_1(l)$ such that $\ord_{p_l}(\lambda) < c_1(l) \log H$.

Let F be the splitting field of g over \mathbb{Q} and let σ be an embedding of F into \mathbb{C}_{p_l}. Put $\alpha_1 = \sigma^{-1}(\delta_1)$, $\alpha_1+i = \sigma^{-1}\left(\frac{\pi_i^{(k)}}{\pi_i^{(j)}}\right)$ (i = 1, \ldots, v), $\alpha_{1+v+i} = \sigma^{-1}\left(\frac{\varepsilon_i^{(k)}}{\varepsilon_i^{(j)}}\right)$ (i = 1, \ldots, r).

Since the preimages of $\theta^{(i_0)}$, $\theta^{(j)}$, $\theta^{(k)}$ are easy to determine and since $\pi_1, \ldots, \pi_v, \varepsilon_1, \ldots, \varepsilon_r \in \mathbb{Q}(\theta)$, it is straightforward to calculate the α_i. Set $L = \mathbb{Q}(\alpha_1, \ldots, \alpha_{1+v+r})$. Since the restriction of σ to L is an embedding of L into \mathbb{C}_{p_l}, it corresponds to a prime ideal p of L above p_l (precisely speaking, it is the equivalence class of embeddings of L into \mathbb{C}_{p_l} to which the restriction of σ belongs that corresponds to p, not the embedding itself). So we are in the situation of Section 11 (with $p = p_l$ and $m = 1 + v + r$), and we can compute the constants q^u, c_2, c_3', c_3'' appearing there. Note that these constants depend on the embedding σ chosen only through the ramification index e_p and residue degree f_p of p. Put

$$c_1(l) = \frac{c_2 \max\{c_3', c_3''\}}{e_p q^u}.$$

By Lemmas 6.2 and 6.3 and since $\ord_{p_l}(\delta_1) = 0$, we know the $\sigma(\alpha_i)$ are p_l-adic units. Therefore, $\ord_{p}(\alpha_i) = e_p \ord_{p_l}(\sigma(\alpha_i)) = 0$ for all i. Identify λ with its preimage $\alpha_1^{b_1} \cdots \alpha_{1+v+r}^{b_1+v+r}-1$ in L. By (17), $\lambda \neq 0$. So, by Theorem 11.1, we have

$$\ord_{p_l}(\lambda) = \frac{1}{e_p} \ord_p(\lambda) \leq \frac{c_2 \max\{c_3', c_3''\}}{e_p q^u} \log H = c_1(l) \log H$$

provided $H > 2$. To reduce the work involved in computing $c_1(l)$, we can replace q^u above by the constant Q from Section 11.
Here is a simple method to choose the embedding σ and determine the prime ideal p of L corresponding to it. Just choose a prime ideal \mathfrak{p} of F that divides p_l and take σ to be the embedding of F into the completion $F_{\mathfrak{p}}$. Then p is the unique ideal of L below \mathfrak{p}: $p = \mathfrak{p} \cap L$. \hfill \Box

For each $l \in \{1, \ldots, v\}$ for which Lemma 8.3 yields upper bounds for n_l, let N_l^* be the smallest such upper bound. Let I be the set of all indices $l \in \{1, \ldots, v\}$ for which Lemma 8.3 does not furnish an upper bound for n_l.

Put
\[
c'_4 = \max_{l \in I} \frac{c_1(l)}{h_l}, \quad c''_4 = \max_{l \notin I} N_l^*, \quad c_4 = \max \{c'_4, c''_4\}, \quad c_5 = \max_{l \in I} \frac{-1}{h_l} \text{ord}_{p_l}(\delta_2).
\]

Lemma 13.2. If $H > 2$, we have
\[
N \leq c_4 \log H + c_5.
\]

Proof. Immediate from Lemma 13.1. \hfill \Box

Put
\[
c_6 = \left\lceil 2 \max_{l \in I} \left(\frac{-1}{h_l} \text{ord}_{p_l}(\delta_2) + \max \left\{ \frac{c_1(l)}{h_l}, e^2 \right\} \log \left(\max \left\{ \frac{c_1(l)}{h_l}, e^2 \right\} \right) \right) \right\rceil - 1.
\]

Lemma 13.3. If $H = N$, we have
\[
N \leq c_7 = \max \{2, c'_4, c_6\}.
\]

Proof. We have $N = n_l$ for some $l \in \{1, \ldots, v\}$. If $l \notin I$, then $N \leq N_l^* \leq c''_4$, and we are done. If $l \in I$, then, since $H = N$, Lemma 13.1 says we have
\[
N < \frac{c_1(l)}{h_l} \log N - \frac{1}{h_l} \text{ord}_{p_l}(\delta_2)
\]
whenever $N > 2$. It follows from Lemma 10.1 that
\[
N < 2 \left(\frac{-1}{h_l} \text{ord}_{p_l}(\delta_2) + \max \left\{ \frac{c_1(l)}{h_l}, e^2 \right\} \log \left(\max \left\{ \frac{c_1(l)}{h_l}, e^2 \right\} \right) \right)
\]
if $N > 2$. \hfill \Box
14 A bound for \(A \) when \(\min_{1 \leq i \leq n} |x - y\theta^{(i)}| \) is large

In this section, we establish an upper bound for \(A \) in terms of \(\log H \) in the case where \(\min_{1 \leq i \leq n} |x - y\theta^{(i)}| \) is large.

Here and in the next section, \(\theta^{(1)}, \ldots, \theta^{(n)} \) will denote the roots of \(g(t) \in \mathbb{C} \), and \(z^{(i)} \) will denote the image of \(z \) under the embedding \(\theta \mapsto \theta^{(i)} \) of \(K \) into \(\mathbb{C} \). Put

\[
\begin{align*}
c'_8 &= \log \frac{|a| p_1^{s_1+t_1} \cdots p_v^{s_v+t_v}}{\min_{1 \leq i \leq n} |\alpha^{(i)} \epsilon^{(i)}|}, \\
c'_9 &= \log \frac{p_1^{h_1} \cdots p_v^{h_v}}{\min_{1 \leq i \leq n} |\pi_1^{(i)} \cdots \pi_v^{(i)}|}, \\
c''_8 &= \log \max_{1 \leq i \leq n} |\alpha^{(i)} \zeta^{(i)}|, \\
c''_9 &= \log \max_{1 \leq i \leq n} |\pi_1^{(i)} \cdots \pi_v^{(i)}|.
\end{align*}
\]

For any \(r \times r \) matrix \(U = (u_{ij}) \), the row-norm of \(U \) is

\[
\|U\| = \max_{1 \leq i \leq r} \sum_{j=1}^r |u_{ij}|.
\]

For each set \(\kappa = \{k_1, \ldots, k_r\} \subseteq \{1, \ldots, s + t\} \) of indices with \(k_1 < \cdots < k_r \), define

\[
U_\kappa = (u_{ij}) = \left(\log |\psi_j^{(k_i)}| \right).
\]

Note each \(U_\kappa \) is invertible because its determinant is a multiple of the regulator of \(K \). Set

\[
c_{10} = \frac{1}{\min_{\kappa} \|U_\kappa^{-1}\|},
\]

and let \(c_{11} \) be any number satisfying

\[
0 < c_{11} < \frac{c_{10}}{n - 1}.
\]

So we have

\[
c_{10} - c_{11} > c_{10} - (n - 1)c_{11} > 0.
\]

Lemma 14.1. If \(\min_{1 \leq i \leq n} |x - y\theta^{(i)}| > e^{-c_{11}A} \), we have

\[
A < \frac{c'_8 + c'_9 N}{c_{10} - (n - 1)c_{11}} \quad \text{or} \quad A < \frac{c''_8 + c''_9 N}{c_{10} - c_{11}}.
\]

Proof. Let \(\kappa_0 = \{k_1, \ldots, k_r\} \) be an index set such that

\[
\|U_{\kappa_0}^{-1}\| = \min_{\kappa} \|U_\kappa^{-1}\| = \frac{1}{c_{10}}.
\]
Put $\varepsilon = \varepsilon_1 \ldots \varepsilon_r$. Since
\[\log |\varepsilon^{(k_i)}| = \sum_{j=1}^{r} a_j \log |\varepsilon_j^{(k_i)}| \quad (i = 1, \ldots, r), \]
we have
\[a_i = \sum_{j=1}^{r} u'_{ij} \log |\varepsilon^{(k_j)}| \quad (i = 1, \ldots, r), \]
where $(u'_{ij}) = U_{k_0}^{-1}$. Choose $k \in \kappa_0$ such that
\[|\log |\varepsilon^{(k)}|| = \max_{k \in \kappa_0} |\log |\varepsilon^{(i)}||. \]
Then
\[A = \max_{1 \leq i \leq r} a_i \leq \max_{1 \leq i \leq r} \sum_{j=1}^{r} |u'_{ij}| |\log |\varepsilon^{(k_j)}|| \leq |\log |\varepsilon^{(k)}|| \max_{1 \leq i \leq r} \sum_{j=1}^{r} u'_{ij} = |\log |\varepsilon^{(k)}|| ||U_{k_0}^{-1}||. \]
It follows that we have either $|\varepsilon^{(k)}| \leq e^{-c_{10}A}$ or $|\varepsilon^{(k)}| \geq e^{c_{10}A}$. According to (14),
\[|\varepsilon^{(k)}| = \frac{|x - y \theta^{(k)}|}{\alpha^{(k)} |\zeta^{(k)}||\pi_1^{(k)}|^{n_1} \cdots |\pi_v^{(k)}|^{n_v}}. \]
So $|\varepsilon^{(k)}| \leq e^{-c_{10}A}$ implies
\[e^{-c_{10}A} \geq \frac{|x - y \theta^{(k)}|}{\alpha^{(k)} |\zeta^{(k)}||\pi_1^{(k)}|^{n_1} \cdots |\pi_v^{(k)}|^{n_v}} \]
\[> \max_{1 \leq i \leq n} \alpha^{(i)} |\zeta^{(i)}| \max_{1 \leq i \leq n} |\pi_1^{(i)} \cdots \pi_v^{(i)}| \]
\[= \exp \left(-c_{11}A - c''_8 - c''_9 N \right), \]
whence
\[A < \frac{c''_8 + c''_9 N}{c_{10} - c_{11}}. \]
By (6) and (15),
\[|x - y \theta^{(k)}| = |a| p_1^{x_1} \cdots p_v^{x_v} \prod_{i \neq k} |x - y \theta^{(k)}|^{-1} < |a| p_1^{n_1 h_1 + s_1 + t_1} \cdots p_v^{n_v h_v + s_v + t_v} e^{(n-1)c_{11}}. \]
So \(|\varepsilon(k)| \geq e^{c_{10}A}\) implies

\[
e^{c_{10}A} < \frac{|x - y\theta(k)|}{\alpha^{(k)}(k)\pi^{(k)}_v n_v} \cdot e^{(n-1)c_{11}A}
\]

or

\[
< \frac{|a|}{\alpha^{(k)}(k)\pi^{(k)}_v n_v} \cdot \left(\frac{p_h^{(i)1} \cdot p_h^{(i)v}}{\min |\alpha^{(i)}(i)|} \right)^N \cdot e^{(n-1)c_{11}A}
\]

\[
= \exp (c'_8 + c'_9N + (n-1)c_{11}A),
\]

from which we deduce

\[
A < \frac{c'_8 + c'_9N}{c_{10} - (n-1)c_{11}}.
\]

Put

\[
c_{12}' = \frac{c'_8 + c_5c'_9}{c_{10} - (n-1)c_{11}}, \quad c_{13}' = \max \left\{ \frac{c_4c'_9}{c_{10} - (n-1)c_{11}}, e^2 \right\},
\]

\[
c_{12}'' = \frac{c''_8 + c_5c''_9}{c_{10} - c_{11}}, \quad c_{13}'' = \max \left\{ \frac{c_4c''_9}{c_{10} - c_{11}}, e^2 \right\}
\]

Lemma 14.2. If \(\min_{1 \leq i \leq n} |x - y\theta^{(i)}| > e^{-c_{11}A}\) and \(H = A\), then

\[
H \leq c_{14},
\]

where

\[
c_{14} = \max \left\{ \left[2(c'_{12} + c'_{13} \log c'_{13}) \right] - 1, \left[2(c''_{12} + c''_{13} \log c''_{13}) \right] - 1, 2 \right\}.
\]

Proof. Assume \(H > 2\). Then Lemmas 13.2 and 14.1 imply that we have either

\[
A < \frac{c'_8 + c_5c'_9}{c_{10} - (n-1)c_{11}} + \frac{c_4c'_9}{c_{10} - (n-1)c_{11}} \log H
\]

or

\[
A < \frac{c''_8 + c_5c''_9}{c_{10} - c_{11}} + \frac{c_4c''_9}{c_{10} - c_{11}} \log H.
\]

Since \(H = A\), Lemma 10.1 and the first inequality imply \(H < 2(c'_{12} + c'_{13} \log c'_{13})\), while Lemma 10.1 and the second inequality yield \(H < 2(c''_{12} + c''_{13} \log c''_{13})\). \(\square\)

Note that (except for the requirement \(0 < c_{11} < c_{10}/(n-1)\)) \(c_{11}\) is a free parameter that we will use later to optimize bounds that depend on it.
15 A bound for A when $\min_{1 \leq i \leq n} |x - y^{(i)}|$ is small

In Section 14, we established an upper bound for A in terms of $\log H$ in the case $\min_{1 \leq i \leq n} |x - y^{(i)}| > e^{-c_{11}A}$. In this section, we will prove an analogous estimate when $\min_{1 \leq i \leq n} |x - y^{(i)}| \leq e^{-c_{11}A}$. Unless $s = 0$, we will need to use the theory of linear forms in real/complex logarithms.

Put

$$c_{15} = \begin{cases} \max \left\{ \left\lfloor \frac{1}{c_{11}} \log \min_{s+1 \leq j \leq s+t} |\text{Im} \theta^{(j)}| \right\rfloor, 0 \right\} & \text{if } t > 0, \\ 0 & \text{if } t = 0. \end{cases}$$

Lemma 15.1. If $t > 0$, $i \in \{s+1, \ldots, s+2t\}$, and $|x - y^{(i)}| \leq e^{-c_{11}A}$, then

$$A \leq c_{15}.$$

Proof. If $y = 0$, we have $x = \pm 1$ (since $(x, y) = 1$), and it follows from (14) that $A = 0$. If $|y| \geq 1$, then

$$e^{-c_{11}A} \geq |x - y^{(i)}| \geq |\text{Im} \theta^{(i)}| \geq \min_{s+1 \leq j \leq s+t} |\text{Im} \theta^{(j)}|,$$

whence $A \leq c_{15}$. \hfill \Box

The following lemma takes care of the $s = 0$ case.

Lemma 15.2. If $\min_{1 \leq i \leq n} |x - y^{(i)}| \leq e^{-c_{11}A}$ and $s = 0$, then

$$A \leq c_{15}.$$

Proof. Immediate from Lemma 15.1 \hfill \Box

For the $s > 0$ case, we will work with the indices $i_0, j, k \in \{1, \ldots, n\}$ from the $p = \infty$ case of Section 6. We order the roots of $g(t)$ in \mathbb{C} so that

$$\theta^{(1)}, \ldots, \theta^{(s)} \in \mathbb{R}, \quad \theta^{(s+1)} = \overline{\theta^{(s+t+1)}}, \ldots, \theta^{(s+t)} = \overline{\theta^{(s+t+2)}}, \quad \theta^{(s+t+2)} \in \mathbb{C} \setminus \mathbb{R},$$

where $n = s+2t$. Our method for computing an upper bound for A requires that we choose i_0 to be an index satisfying $|x - y^{(i_0)}| = \min_{1 \leq i \leq n} |x - y^{(i)}|$. As this condition depends on (x, y), we cannot make a definite choice for i_0 without actually solving (14). We can
overcome this difficulty by computing a bound for A for each of the cases $i_0 = 1, \ldots, n$ and then taking the largest of the bounds obtained. In fact, since Lemma 15.1 yields an upper bound for A when $i_0 \in \{ s + 1, \ldots, s + 2t \}$, $t > 0$, we only need to concern ourselves with the cases $i_0 = 1, \ldots, s$.

For each $i_0 \in \{ 1, \ldots, s \}$, we define numbers $j = j(i_0)$, $k = k(i_0)$, $\Lambda_0 = \Lambda_0(i_0)$, $c_{16} = c_{16}(i_0)$, $c_{17} = c_{17}(i_0)$, $c_{18} = c_{18}(i_0)$, and (in the $s = 1, 2$ case) $a_0 = a_0(i_0)$ as follows. We separate the two cases $s \geq 3$ and $s = 1, 2$. These are called, respectively, the real case and the complex case. In both cases, j, k will be indices in $\{ 1, \ldots, n \}$ such that $i_0 \neq j \neq k \neq i_0$. If $s \geq 3$, we stipulate that $j, k \in \{ 1, \ldots, s \}$ in order to have $\theta(i_0), \theta(j), \theta(k) \in \mathbb{R}$. If $s = 1, 2$, we require that $j \in \{ s + 1, \ldots, s + t \}$ and $k = j + t$ so that $\theta(j) = \theta(k)$. Subject to these restrictions, we fix a choice for j, k that minimizes the number

$$c_{16} = \frac{2}{|\theta(i_0) - \theta(j)|} \left| \frac{\theta(j) - \theta(k)}{\theta(k) - \theta(i_0)} \right|.$$

In the real case, put

$$\Lambda_0 = \log(|1 + \lambda|) = \log |\delta_1| + \sum_{i=1}^{v} n_i \log \left| \frac{\pi_i^{(k)}}{\pi_i^{(j)}} \right| + \sum_{i=1}^{r} a_i \log \left| \frac{\epsilon_i^{(k)}}{\epsilon_i^{(j)}} \right|.$$

By the choice of j, k, the numbers $1 + \lambda, \delta_1, \pi_i^{(k)}/\pi_i^{(j)}$ ($i = 1, \ldots, v$), $\epsilon_i^{(k)}/\epsilon_i^{(j)}$ ($i = 1, \ldots, r$) are all real, so taking their absolute values just multiplies them by ± 1. Let F be the splitting field of g over \mathbb{Q} and let σ be an embedding of F into \mathbb{C}. Put

$$\alpha_1 = \sigma^{-1}(|\delta_1|), \quad \alpha_{1+i} = \sigma^{-1} \left(\frac{\pi_i^{(k)}}{\pi_i^{(j)}} \right) \quad (i = 1, \ldots, v),$$

$$\alpha_{1+v+i} = \sigma^{-1} \left(\frac{\epsilon_i^{(k)}}{\epsilon_i^{(j)}} \right) \quad (i = 1, \ldots, r).$$

As with the α_i from the proof of Lemma 13.1, the α_i here are straightforward to calculate. Set $L = \mathbb{Q}(\alpha_1, \ldots, \alpha_{1+v+r})$. We are now in the situation of Section 12 (with L embedded into \mathbb{C} via σ and $m = 1 + v + r$), and we can compute the constant c_{17} appearing there. Note that the value of c_{17} depends on the embedding σ chosen only through the number κ. Note also that Λ_0 is equal to Λ from Section 12 (with the obvious identifications for the b_i). So, according to Theorem 12.1,

$$|\Lambda_0| > \exp(-c_{17} \log H - c_{17}) \quad (21)$$

if $\Lambda_0 \neq 0$.

37
In the complex case, define \(\Lambda_0 = \frac{1}{i} \log(1 + \lambda) \).

Here \(\log(z) \) denotes the principal branch of the logarithm of \(z \), so \(\text{Re}(\log(z)) = \log|z| \) and \(\text{Im}(\log(z)) \in (-\pi, \pi] \). We have

\[
i\Lambda_0 = \log(1 + \lambda) = \log \left(\frac{\theta^{(i_0)} - \theta^{(j)}}{\theta^{(i_0)} - \theta^{(k)}} x - y \theta^{(k)} \right) = \log (\delta_1) + \sum_{i=1}^{v} n_i \log \left(\frac{\alpha^{(i_0)}}{\pi_i^{(j)}} \right) + \sum_{i=1}^{r} a_i \log \left(\frac{\xi_i^{(k)}}{\xi_i^{(j)}} \right) + 2\pi i a_0
\]

for some integer \(a_0 \). As \(\theta^{(i_0)} \in \mathbb{R} \) and \(\theta^{(j)} = \bar{\theta^{(k)}} \), each logarithm above has real part equal to zero and, therefore, modulus less than or equal to \(\pi \). So by the triangle inequality

\[
2\pi |a_0| \leq 2\pi + \sum_{i=1}^{v} n_i \pi + \sum_{i=1}^{r} a_i \pi \leq (2 + (v + r)H)\pi \leq (1 + v + r)H\pi \tag{22}
\]

for \(H \geq 2 \). Since \(\pi i = \log(-1) \), \(i\Lambda_0 \) is a linear form in logarithms of \(2 + v + r \) complex numbers. So, as in the real case, we can compute the constant \(c_{17} \) from Section 12, and we have

\[
|\Lambda_0| > \exp(-c_{17} \log(\max \{H, 2 |a_0|\}) - c_{17}) \geq \exp(-c_{17} \log((1 + v + r)H) - c_{17}) \tag{23}
\]

if \(\Lambda_0 \neq 0 \) by Theorem 12.1 and (22).

Finally, put

\[
c_{18} = \begin{cases}
\log(2(\log 2)c_{16}) + c_{17} & \text{if } s \geq 3, \\
\log(4 \sin^{-1}(1/4)c_{16}) + c_{17}(1 + \log(1 + v + r)) & \text{if } s = 1, 2.
\end{cases}
\]

Lemma 15.3. Assume \(\min_{1 \leq i \leq n} |x - y \theta^{(i)}| \leq e^{-c_{11} A}, H \geq 2 \), and \(s > 0 \). For each \(i_0 \in \{1, \ldots, s\} \), if \(|x - y \theta^{(i_0)}| = \min_{1 \leq i \leq n} |x - y \theta^{(i)}| \) and

\[
A \geq \max \left\{ \left[\frac{\log(2c_{16}(i_0))}{c_{11}} \right], 1 \right\},
\]

then

\[
A < \frac{1}{c_{11}} (c_{18}(i_0) + c_{17}(i_0) \log H).
\]

For the proof of Lemma 15.3, we will need the following two simple lemmas.
Lemma 15.4. Let $z \in \mathbb{C}$ and $0 < c < 1$. If $|e^z - 1| \leq c$, then

$$|z| \leq - \frac{\log(1 - c)}{c} |e^z - 1|.$$

Proof.

$$|z| = |\log(e^z)| = \left| \sum_{i=1}^{\infty} \frac{(-1)^{i-1}(e^z - 1)^i}{i} \right| \leq |e^z - 1| \sum_{i=1}^{\infty} \frac{c^{i-1}}{i} = - \frac{\log(1 - c)}{c} |e^z - 1|.$$

Lemma 15.5. Let $-\frac{\pi}{2} < z \leq \frac{\pi}{2}$ and $0 < c < 1$. If $|\sin z| \leq c$, then

$$|z| \leq \frac{\sin^{-1}(c)}{c} |\sin z|.$$

Proof. The inequality $-c \leq \sin z \leq c$ implies $-\sin^{-1}(c) \leq z \leq \sin^{-1}(c)$. So, since the function $u \mapsto u / \sin u$ has even symmetry and is increasing on $(0, \sin^{-1}(c)]$, it follows that

$$\frac{|z|}{|\sin z|} \leq \frac{\sin^{-1}(c)}{\sin(\sin^{-1}(c))} = \frac{\sin^{-1}(c)}{c}$$

when $z \neq 0$. \hfill \square

Proof of Lemma 15.3. Let $i_0 \in \{1, \ldots, s\}$, and assume $|x - y\theta^{(i_0)}| = \min_{1 \leq i \leq n} |x - y\theta^{(i)}|$ and $A \geq \max \{\log(2c_{16})/c_{11}, 1\}$. Since $A > 0$, we have $|y| \geq 1$ (by the first sentence in the proof of Lemma 15.1). Therefore,

$$|\theta^{(i_0)} - \theta^{(j)}| \leq |y(\theta^{(i_0)} - \theta^{(j)})| = |(x - y\theta^{(i_0)}) - (x - y\theta^{(j)})| \leq 2|x - y\theta^{(j)}|.$$

So by (16)

$$|\lambda| = \frac{|x - y\theta^{(i_0)}|}{|x - y\theta^{(j)}|} \cdot \left\| \frac{\theta^{(j)} - \theta^{(k)}}{\theta^{(k)} - \theta^{(i_0)}} \right\| \leq c_{16} |x - y\theta^{(i_0)}| \leq c_{16} e^{-c_{11}A}.$$

Since $A \geq \log(2c_{16})/c_{11}$, it follows that $|\lambda| \leq \frac{1}{2}$. By (16), we also have $\lambda \neq 0$.

In the real case, $\lambda \in \mathbb{R}$. So, since $0 < |\lambda| \leq \frac{1}{2}$, we have $0 < 1 + \lambda < 1$. Then $|e^{\lambda_0} - 1| = |\lambda| \leq \frac{1}{2}$ and, therefore, by Lemma 15.4 (with $z = \Lambda_0$ and $c = \frac{1}{2}$),

$$|\Lambda_0| \leq - \log \left(1 - \frac{1}{2}\right) |e^{\Lambda_0} - 1| = 2(\log 2) |\lambda| \leq 2(\log 2)c_{16} e^{-c_{11}A}.$$
Additionally, since $0 < 1 + \lambda < 1$, we have $\Lambda_0 \neq 0$, and so
\[
|\Lambda_0| > \exp(-c_{17} \log H - c_{17}).
\]
by (21). Combining these bounds for $|\Lambda_0|$ yields
\[
c_{11}A \leq \log(2(\log 2)c_{16}) + c_{17} + c_{17} \log H = c_{18} + c_{17} \log H.
\]

In the complex case, we have $\Lambda_0 \in (-\pi, \pi]$ and
\[
|\Lambda_0| \leq 2 \left| \sin \left(\frac{1}{2} \Lambda_0 \right) \right| = 4 \sin^{-1}(1/4) |\lambda| \leq 4 \sin^{-1}(1/4)c_{16}e^{-c_{11}A}.
\]

On the other hand, since $\lambda \neq 0$, we have $\Lambda_0 \neq 0$. Thus, by (23),
\[
|\Lambda_0| > \exp(-c_{17} \log((1 + v + r)H) - c_{17}).
\]

Putting the upper and lower bounds for $|\Lambda_0|$ together leads to
\[
c_{11}A \leq \log(2(\log 2)c_{16}) + c_{17} + c_{17} \log H = c_{18} + c_{17} \log H.
\]

Proof. Assume $A > \max\{c_{15}, c_{19}, 1\}$, and let $i_0 \in \{1, \ldots, n\}$ be an index such that $|x - y^{(i_0)}| = \min_{1 \leq i \leq n} |x - y^{(i)}|$. By Lemma 15.1, we know that $i_0 \in \{1, \ldots, s\}$. So, since
\[
H = A \geq \max\{\lfloor \log(2c_{16}(i_0))/c_{11} \rfloor, 2\},
\]
Lemma 15.3 implies
\[
A < \frac{c_{18}(i_0)}{c_{11}} + \frac{c_{17}(i_0)}{c_{11}} \log A.
\]
It then follows from Lemma 10.1 that
\[
A < 2 \left(\frac{c_{18}(i_0)}{c_{11}} + \max\left\{ \frac{c_{17}(i_0)}{c_{11}}, e^2 \right\} \log \left(\max\left\{ \frac{c_{17}(i_0)}{c_{11}}, e^2 \right\} \right) \right),
\]
whence $A \leq c_{20}$.

Put
\[
c_{19} = \max_{1 \leq i_0 \leq s} \left[\frac{\log(2c_{16}(i_0))}{c_{11}} \right] - 1,
\]
\[
c_{20} = \left[2 \max_{1 \leq i_0 \leq s} \left(\frac{c_{18}(i_0)}{c_{11}} + \max\left\{ \frac{c_{17}(i_0)}{c_{11}}, e^2 \right\} \log \left(\max\left\{ \frac{c_{17}(i_0)}{c_{11}}, e^2 \right\} \right) \right) \right] - 1.
\]

Lemma 15.6. If $\min_{1 \leq i \leq n} |x - y^{(i)}| \leq e^{-c_{11}A}$, $s > 0$, and $H = A$, then
\[
A \leq c_{21} = \max\{c_{15}, c_{19}, c_{20}, 1\}
\]
A bound for H

By combining Lemma 13.3, Lemma 14.2, and (depending on the value of s) either Lemma 15.2 or Lemma 15.6, we obtain the following explicit and unconditional upper bound on H.

Theorem 16.1.

$$H \leq c_{22} = \begin{cases} \max \{c_7, c_{14}, c_{15}\} & \text{if } s = 0 \\ \max \{c_7, c_{14}, c_{21}\} & \text{if } s > 0 \end{cases}$$

The constants c_{14}, c_{15}, c_{21} depend on the parameter c_{11}, which we are free to choose so that the upper bound c_{21} is optimized (subject to the condition $0 < c_{11} < c_{10}/(n - 1)$). In practice, the constants $c_1(l), c_4,$ and c_{17}, which arise directly from the estimates for linear forms in logarithms, will be very large. The same goes for all constants depending on $c_1(l), c_4,$ and c_{17}. All the other constants will be comparatively small. If $s = 0$, c_{22} will therefore be essentially of the size

$$\max \left\{c_4, \frac{c_4}{c_{10} - (n - 1)c_{11}} \right\},$$

and an optimal choice for c_{11} will be near $(c_{10} - 1)/(n - 1)$. In case $s > 0$, c_{22} will be of the size

$$\max \left\{c_4, \frac{c_4}{c_{10} - (n - 1)c_{11}}, c_{17}/c_{11} \right\}.$$

So if $c_4 \gg c_{17}$, an optimal choice for c_{11} will be roughly c_{17}/c_4. If $c_4 \ll c_{17}$, an optimal choice for c_{11} will be of the size $c_{10}/(n - 1)$. And if $c_4 \approx c_{17}$, the size of the optimal c_{11} will be somewhere between the size of c_{17}/c_4 and the size of $c_{10}/(n - 1)$.

Corollary 16.2. For each $l \in \{1, \ldots, v\}$,

$$n_l \leq \min \left\{c_{22}, \max \left\{\left[\frac{c_1(l)}{h_l} \log c_{22} - \frac{1}{h_l} \ord_p(\delta_2)\right] - 1, 2\right\} \right\}$$

Proof. If $n_l > 2$, then $H > 2$, so Lemma 13.1 and Theorem 16.1 imply

$$n_l \leq \left[\frac{c_1(l)}{h_l} \log H - \frac{1}{h_l} \ord_p(\delta_2)\right] - 1 \leq \left[\frac{c_1(l)}{h_l} \log c_{22} - \frac{1}{h_l} \ord_p(\delta_2)\right] - 1.$$

Evidently, one should use Corollary 16.2 rather than Theorem 16.1 to bound n_l when $l \in I$.

41
17 The reduction strategy

The upper bounds on $A = \max \{|a_1|, \ldots, |a_r|\}$ and the n_l furnished by Theorem 16.1 and its corollary are expected to be very large. Indeed, bounds of the size 10^{40} are typical even when the degree n and the number v of primes are both small. Enumeration of the solutions of (14) by a naive search at this stage would be virtually impossible. In order to make a search feasible, we need to reduce the upper bounds on A and the n_l considerably. In this section, we outline our strategy for doing just that.

Our strategy has several steps, and the best known upper bounds on A and the n_l will change from step to step. In each step, N_l will denote the current best upper bound for n_l $(l = 1, \ldots, v)$, and A_0 will denote the current best upper bound for A. We will also use H_0 to denote the best known upper bound for $H = \max \{n_1, \ldots, n_v, |a_1|, \ldots, |a_r|\}$ in a given step. So $H_0 = \max \{N_1, \ldots, N_v, A_0\}$. We will use the b_i notation (see Section 8) frequently in Sections 19-23. It will therefore be convenient to let B_i stand for the current best upper bound for $|b_i|$ $(i = 1, \ldots, 1 + v + r)$. We will never bound the a_i individually, so we will always have

$$B_1 = 1, \quad B_{1+i} = N_i \quad (i = 1, \ldots, v), \quad B_{1+v+i} = A_0 \quad (i = 1, \ldots, r).$$

As we remarked in Section 9, for each index $l \in \{1, \ldots, v\}$ for which Lemma 8.3 gives an upper bound for n_l, there is no need to reduce that upper bound further. Recall that I denotes the set of all indices l in $\{1, \ldots, v\}$ to which Lemma 8.3 does not apply. There are four types of reduction procedures involved in the strategy. We refer to them as ‘basic p-adic reduction’, ‘basic real reduction’, ‘refined p-adic reduction’, and ‘refined real reduction’.

Now for the strategy itself. First, for each $l \in I$ in turn, we perform the basic p_l-adic reduction procedure to (ideally) reduce N_l to the size of $\log H_0$. Next we perform the basic real reduction procedure to reduce A_0. If everything goes as planned, the new A_0 will be the size of $\log H_0$ also. We repeat the steps above (p_l-adics, then real) until the bounds stop improving. Then we move onto the refined reduction procedures. We start by performing the refined p_l-adic reduction procedure for each $l \in I$ to reduce the bounds N_l. Then we perform the refined real reduction procedure to improve A_0. As with the basic procedures, we expect a reduction to something like $\log H_0$ in each step, and we repeat until we stop making progress with the bounds.
18 Lattice basis reduction

The four types of reduction procedures involved in our reduction strategy all rely on Diophantine approximation techniques involving lattice basis reduction. In this section, we present those aspects of the theory of lattice basis reduction that we will need.

An n-dimensional lattice is a subset of \mathbb{R}^n of the form

$$\Gamma = \left\{ \sum_{i=1}^{n} x_i c_i : x_i \in \mathbb{Z} \right\},$$

where c_1, \ldots, c_n are vectors forming a basis for \mathbb{R}^n. We say that the vectors c_1, \ldots, c_n form a basis for Γ, or that they generate Γ. The following basic fact about lattice bases will be useful: If A and B are invertible $n \times n$ real matrices, then the lattice generated by the columns of A is equal to the lattice generated by the columns of B if and only if there is a unimodular integer matrix U such that $AU = B$.

Let Γ be a lattice with basis c_1, \ldots, c_n. Define vectors $c_i^* (i = 1, \ldots, n)$ and real numbers $\mu_{ij} (1 \leq j < i \leq n)$ inductively by

$$c_i^* = c_i - \sum_{j=1}^{i-1} \mu_{ij} c_j^*, \quad \mu_{ij} = \frac{\langle c_i, c_j^* \rangle}{\langle c_j^*, c_j^* \rangle}$$

(this is just the Gram-Schmidt process). The basis c_1, \ldots, c_n is called LLL-reduced if

$$|\mu_{ij}| \leq \frac{1}{2} \quad \text{for} \ 1 \leq j < i \leq n,$$

$$\frac{3}{4} |c_{i-1}^*|^2 \leq |c_i^* + \mu_{ii-1} c_{i-1}^*|^2 \quad \text{for} \ 1 < i \leq n.$$

These properties imply that an LLL-reduced basis is approximately orthogonal and that, generically, its constituent vectors are of roughly the same length. Every n-dimensional lattice has an LLL-reduced basis and such a basis can be computed very quickly using the so-called LLL algorithm (see [LLL]). The LLL algorithm takes as input an arbitrary basis for a lattice and outputs an LLL-reduced basis for the lattice. The algorithm is typically modified to additionally output a unimodular integer matrix U such that $B = AU$, where A is the matrix whose column-vectors are the input basis and B is the matrix whose column-vectors are the LLL-reduced output basis. Several versions of this algorithm are implemented in Magma, including de Weger’s exact integer version (see [dW1] (Section 3.5), [Sm] (Section V.4), or [Coh1] (Section 2.6.3)) and Nguyen and Stehlé’s exact floating
point version (see [NS], [St]). Note that Nguyen and Stehlé’s algorithm requires a slight modification of the notion of LLL-reduced given above.

For Γ an n-dimension lattice and \mathbf{y} a vector in \mathbb{R}^n, we define

$$l(\Gamma, \mathbf{y}) = \min_{\mathbf{x} \in \Gamma \setminus \{\mathbf{y}\}} |\mathbf{x} - \mathbf{y}|.$$

The most important property of an LLL-reduced basis for us is the following lemma.

Lemma 18.1. Let Γ be a lattice with LLL-reduced basis $\mathbf{c}_1, \ldots, \mathbf{c}_n$ and let \mathbf{y} be a vector in \mathbb{R}^n.

(a) If $\mathbf{y} = 0$, then $l(\Gamma, \mathbf{y}) \geq 2^{-(n-1)/2} |\mathbf{c}_1|.$

(b) Assume $\mathbf{y} = s_1\mathbf{c}_1 + \cdots + s_n\mathbf{c}_n$, where $s_1, \ldots, s_n \in \mathbb{R}$ with not all $s_i \in \mathbb{Z}$. Put $J = \{j \in \{1, \ldots, n\} : s_j \notin \mathbb{Z}\}$. For each $j \in J$, set $\delta(j) = \max_{i > j} ||s_i|| |\mathbf{c}_i|$ if $j < n$, and set $\delta(j) = 0$ if $j = n$. Here $||\cdot||$ denotes the distance to the nearest integer. We have

$$l(\Gamma, \mathbf{y}) \geq \max_{j \in J} \left(2^{-(n-1)/2} ||s_j|| |\mathbf{c}_1| - (n - j)\delta(j)\right).$$

Lemma 18.1(a) is Proposition 1.11 in [LLL]; proofs can be found in [LLL], [dW1] (Section 3.4), or [Sm] (Section V.3). Lemma 18.1(b) is a combination of Lemmas 3.5 and 3.6 in [dW1]. Note that the assumption in Lemma 18.1(b) is equivalent to $\mathbf{y} \notin \Gamma$.

In the refined reduction procedures, we will need to compute all the vectors in a given lattice which have norm less than or equal to some constant. This can be done efficiently using an algorithm of Fincke-Pohst (cf. [FP], [Coh1]). A version of this algorithm with some improvements due to Stehlé is implemented in Magma. A function to estimate the computational cost of this algorithm is also available.
19 Preliminaries for the p_l-adic reduction procedure

In this section, we set some notation and give some preliminaries for the p_l-adic reduction procedures. We will refer to the notation of Section 8.

Consider a fixed $l \in I$. We have

$$\text{ord}_{p_l}(\alpha_1) \geq \min_{2 \leq i \leq 1 + v + r} \text{ord}_{p_l}(\alpha_i), \quad \text{ord}_{p_l}(\alpha_{1h}) \geq \min_{2 \leq i \leq 1 + v + r} \text{ord}_{p_l}(\alpha_{ih}) \quad (h = 1, \ldots, s).$$ (24)

Let I' be the set of all indices $i' \in \{2, \ldots, 1 + v + r\}$ for which $\alpha_{i'} = \min_{2 \leq i \leq 1 + v + r} \text{ord}_{p_l}(\alpha_i)$. We distinguish two cases, which we call the special case and the general case. The special case is when there is some index $i' \in I'$ such that $\alpha_i/\alpha_{i'} \in \mathbb{Q}_{p_l}$ for $i = 1, \ldots, 1 + v + r$. The general case is when there is no such index.

In the special case, we let \hat{i} be an arbitrary index in I' for which $\alpha_i/\alpha_{\hat{i}} \in \mathbb{Q}_{p_l}$ for $i = 1, \ldots, 1 + v + r$. We further define

$$\beta_i = -\frac{\alpha_i}{\alpha_{\hat{i}}} \quad (i = 1, \ldots, 1 + v + r),$$

and

$$\Lambda'_l = \frac{1}{\alpha_{\hat{i}}} \Lambda_l = \frac{1 + v + r}{\sum_{i=1}^{1 + v + r} b_i(-\beta_i)}.$$

In the general case, we first fix an $h \in \{1, \ldots, s\}$ arbitrarily. Then we let \hat{i} be an index in $\{2, \ldots, 1 + v + r\}$ such that

$$\text{ord}_{p_l}(\alpha_{ih}) = \min_{2 \leq i \leq 1 + v + r} \text{ord}_{p_l}(\alpha_{ih}),$$

and define

$$\beta_i = -\frac{\alpha_{ih}}{\alpha_{\hat{i}h}} \quad (i = 1, \ldots, 1 + v + r),$$

and

$$\Lambda'_l = \frac{1}{\alpha_{\hat{i}h}} \Lambda_{lh} = \sum_{i=1}^{1 + v + r} b_i(-\beta_i).$$

Note that in both cases we have $\beta_i \in \mathbb{Z}_{p_l}$ for $i = 1, \ldots, 1 + v + r$. This is clear for $i = 2, \ldots, 1 + v + r$. For $i = 1$, it follows from (24).
Lemma 19.1. Suppose
\[n_l > \frac{1}{h_l} \left(\frac{1}{p_l - 1} - \text{ord}_{p_l}(\delta_2) \right). \]
In the special case, we have
\[\text{ord}_{p_l}(\Lambda_l') = n_l h_l + d_l \]
with
\[d_l = \text{ord}_{p_l}(\delta_2) - \text{ord}_{p_l}(\alpha_1) \]
In the general case, we have
\[\text{ord}_{p_l}(\Lambda_l') \geq n_l h_l + d_l \]
with
\[d_l = \text{ord}_{p_l}(\delta_2) - u_l - \text{ord}_{p_l}(\alpha_{i_h}) \]

Proof. Immediate from Lemmas 8.1 and 8.2, and the definition of \(\Lambda_l' \). \(\square\)

Now we state several relatively-easy-to-check conditions that each imply that we are in the special case. In fact, each condition implies that we have \(\alpha_{i_1}/\alpha_{i_2} \in \mathbb{Q}_{p_l} \) for every \(i_1, i_2 \in \{1, \ldots, 1 + v + r\} \). Note that these conditions correspond to the guidelines 3-6 for choosing \(j \) and \(k \) in Section 9.

(a) \(\alpha_1, \ldots, \alpha_{1+v+r} \) belong to \(\mathbb{Q}_{p_l} \).

(b) \(g(t) \) has three or more linear factors in \(\mathbb{Q}_{p_l}[t] \), and \(\theta^{(i_0)}, \theta^{(j)}, \theta^{(k)} \) are roots of such polynomials.

(c) \(g(t) \) has an irreducible factor in \(\mathbb{Q}_{p_l}[t] \) of degree two, and \(\theta^{(j)}, \theta^{(k)} \) are the roots of this factor.

(d) \(g(t) \) has a nonlinear irreducible factor in \(\mathbb{Q}_{p_l}[t] \) that splits completely in the extension of \(\mathbb{Q}_{p_l} \) that it generates, and \(\theta^{(j)}, \theta^{(k)} \) are roots of this factor.

It is obvious that (a) implies \(\alpha_{i_1}/\alpha_{i_2} \in \mathbb{Q}_{p_l} \) for every \(i_1, i_2 \in \{1, \ldots, 1 + v + r\} \). If (b) holds, then \(\delta_1, \pi_i^{(k)}/\pi_i^{(j)} \) \((i = 1, \ldots, v) \), \(\varepsilon_i^{(k)}/\varepsilon_i^{(j)} \) \((i = 1, \ldots, r) \) all belong to \(\mathbb{Q}_{p_l} \), which, since \(\mathbb{Q}_{p_l} \) is complete, implies (a). It is clear that (c) implies (d). We claim that (d) implies \(\alpha_{i_1}/\alpha_{i_2} \in \mathbb{Q}_{p_l} \) for every \(i_1, i_2 \in \{1, \ldots, 1 + v + r\} \). To see that the claim holds, assume (d), let \(L \) be the extension of \(\mathbb{Q}_{p_l} \) generated by the factor of \(g(t) \) in question, and consider
any \(\alpha, \beta \in L \). The automorphism of \(L \) that maps \(\theta^{(j)} \) to \(\theta^{(k)} \) multiplies the logarithms \(\log_{p_l} (\alpha^{(k)}/\alpha^{(j)}) \) and \(\log_{p_l} (\beta^{(k)}/\beta^{(j)}) \) by \(-1\) and hence fixes the quotient

\[
\frac{\log_{p_l} (\alpha^{(k)}/\alpha^{(j)})}{\log_{p_l} (\beta^{(k)}/\beta^{(j)})}.
\]

(25)

Therefore, since \(L \) is Galois, this quotient belongs to \(\mathbb{Q}_{p_l} \). Since \(\alpha_{i_1}/\alpha_{i_2} \) is of the form (25) for every \(i_1, i_2 \in \{1, \ldots, 1 + v + r\} \), the claim is proved.

When performing the computations associated with the refined reduction procedures (Section 22 and Section 23), we will encounter the situation where we have computed \(\alpha_1, \ldots, \alpha_{1+v+r} \) and \(\beta_1, \ldots, \beta_{1+v+r} \), we have explicit integers \(b_1, \ldots, b_{1+v+r} \), and we wish to verify the conclusions of Lemma 8.2 and Lemma 19.1. Moreover, we will encounter this situation a large number of times, so it is desirable to perform the verifications as efficiently as possible. In the special case, the conclusions of Lemmas 8.2 and 19.1 are equivalent. Thus we can save on computation time by checking the conclusion for just one of the two lemmas. This explains why we bother distinguishing the special case from the general case. In both the special and general cases, verifying the conclusion of Lemma 8.2 requires us to compute \(\Lambda_{l} \), which typically involves working in a nontrivial extension of \(\mathbb{Q}_{p_l} \). Verifying the conclusion of Lemma 19.1 necessitates computing \(\Lambda'_{l} \), which only involves calculations in \(\mathbb{Z}_{p_l} \). Hence, in the special case, it is preferable to skip checking Lemma 8.2 in favour of Lemma 19.1. In the general case, while we cannot simply skip checking one of the two lemmas, we can discuss which lemma we should check first. There are two competing factors to consider. The first factor is that the situation where we will need to verify the conclusions of the two lemmas will be such that if we find that the conclusion of one of the two lemmas does not hold, then we don’t need to check the conclusion of the other lemma. So, since the conclusion of Lemma 8.2 implies the conclusion of Lemma 19.1, and not conversely, we have reason to favour checking Lemma 8.2 before Lemma 19.1. The second factor is that, as we noted above, it is computationally cheaper to check the conclusion of Lemma 19.1 than to check the conclusion of 8.2. This second factor suggests that we should check Lemma 19.1 before Lemma 8.2. In our experience, we have found it slightly preferable (from a speed perspective) to test Lemma 19.1 before Lemma 8.2, indicating that the second factor may more important than the first. However, it is not clear which order of testing the lemmas (if any) is optimal in general.
20 Basic p_l-adic reduction

Here we describe the basic p_l-adic reduction procedure.

Fix $l \in I$. We start with some preliminaries. Let $m, W_2, \ldots, W_{1+v+r}$ denote positive integers. These are parameters that we will need to balance in order to obtain a good reduction of the upper bound for n_l. We will discuss how to choose them later in this section. For each $x \in \mathbb{Z}_{p_l}$, $x^{(m)}$ will stand for the unique rational integer in $[0, p^m_{l} - 1]$ such that $\text{ord}_{p_l}(x - x^{(m)}) \geq m$ (i.e., $x \equiv x^{(m)} \pmod{p^m_{l}}$). Let Γ_m be the $(v + r)$-dimensional lattice generated by the column-vectors of the matrix

$$A_m = \begin{bmatrix}
W_2 & \cdots & 0 \\
& \ddots & \vdots \\
0 & \cdots & W_{1+v+r} \\
W_1 i_2 \beta^{(m)} & \cdots & W_1 i_1 \beta^{(m)} & \cdots & W_1 i_{1+v+r} \beta^{(m)} & W_1 p_l^m
\end{bmatrix}.$$

Put

$$\lambda = \frac{1}{p^m} \sum_{i=1}^{1+v+r} b_i \left(-\beta_i^{(m)}\right)$$

and

$$y = \begin{bmatrix}
0 \\
\vdots \\
0 \\
W_1 i_1 \beta^{(m)}
\end{bmatrix} \in \mathbb{Z}^{v+r}.$$

Evidently, we must compute the β_i to p-adic precision at least m in order to avoid errors here. We observe that $y \in \Gamma_m$ if and only if $y = 0$. To see that this is true, note that $y \in \Gamma_m$ means there are integers z_1, \ldots, z_{v+r} such that $y = A_m[z_1, \ldots, z_{v+r}]^T$. The last equation forces $z_1 = \cdots = z_{v+r-1} = 0$ and $-\beta_1^{(m)} = z_{v+r} p_l^m$. Since $\beta_1^{(m)} \in [0, p^m_{l} - 1]$, we must then have $z_{v+r} = 0$ also. Hence $y = 0$. Our observation means that Lemma 18.1 is available to estimate $l(\Gamma_m, y)$.

Put

$$Q = \sum_{i=2}^{1+v+r} W_i^2 B_i^2.$$

48
Lemma 20.1. If \(l(\Gamma_m, y) > Q^{1/2} \), then

\[n_t \leq \max \left\{ \left\lfloor \frac{1}{h_t} \left(\frac{1}{p_t - 1} - \text{ord}_{p_t}(\delta_2) \right) \right\rfloor, \left\lceil \frac{1}{h_t}(m - d_t) \right\rceil - 1, 0 \right\} \]

Proof. We prove the contrapositive. Assume \(n_t > \left(\frac{1}{h_t} \right) \left(\frac{1}{p_t - 1} - \text{ord}_{p_t}(\delta_2) \right) \), \(n_t \geq \left(\frac{1}{h_t} \right)(m - d_t) \), and \(n_t > 0 \). Consider the vector

\[
x = A_m \begin{bmatrix} b_2 \\ \vdots \\ b_{i-1} \\ b_{i+1} \\ \vdots \\ b_{1+v+r} \\ \lambda \end{bmatrix} = \begin{bmatrix} W_2b_2 \\ \vdots \\ W_{i-1}b_{i-1} \\ W_{i+1}b_{i+1} \\ \vdots \\ W_{1+v+r}b_{1+v+r} \\ W_i\lambda \end{bmatrix} + y.
\]

By Lemma 19.1,

\[
\text{ord}_{p_t} \left(\sum_{i=1}^{1+v+r} b_i(-\beta_i) \right) = \text{ord}_{p_t}(\Lambda'_t) \geq n_t h_t + d_t \geq m.
\]

Since \(\text{ord}_{p_t}(\beta_i^N - \beta_i) \geq m \) for \(i = 1, \ldots, 1 + v + r \), it follows that

\[
\text{ord}_{p_t} \left(\sum_{i=1}^{1+v+r} b_i(-\beta_i^N) \right) \geq m,
\]

which means \(\lambda \in \mathbb{Z} \). Hence \(x \in \Gamma_m \). Since \(b_{i+1} = n_t > 0 \), we cannot have \(x = y \). Therefore,

\[
l(\Gamma_m, y)^2 \leq |x - y|^2 = \sum_{i=2}^{1+v+r} W_i^2 b_i^2 \leq \sum_{i=2}^{1+v+r} W_i^2 B_i^2 = Q.
\]

\[\square\]

The reduction procedure works as follows. Taking \(A_m \) as input, we first compute an LLL-reduced basis for \(\Gamma_m \). Then we find a lower bound for \(l(\Gamma_m, y) \) using Lemma 18.1. If the lower bound is greater than \(Q^{1/2} \), Lemma 20.1 gives a new upper bound for \(n_t \). If not, we should increase \(m \) and try the procedure again. In such a situation, we can take advantage of the computations already done by starting with a partially reduced basis for the new lattice \(\Gamma'_m \) \((m' > m)\) rather than the basis given by \(A_m' \). We will have computed, for a certain \(m \), a matrix \(B_m \) whose columns form a LLL-reduced basis for \(\Gamma_m \), and a
unimodular integer matrix U_m such that $A_m U_m = B_m$. We want to compute a reduced basis for $\Gamma_{m'}$. Instead of using $A_{m'}$ as the input basis for the LLL algorithm, we can use the partially reduced basis for $\Gamma_{m'}$ given by the columns of $A_{m'} U_m$. If we find that several increases of m have failed to yield a new upper bound for n_l and that the value of m has become significantly larger than it was initially, then we should move on to the next $l \in I$ (or onto the real reduction procedure if there is no next $l \in I$).

Now we discuss how to choose m and the so-called weights W_i. To optimize the bound for n_l produced by the reduction procedure, one should take m as small as possible while ensuring that the lower bound for $l(\Gamma_m, y)$ furnished by Lemma 18.1 is large enough that the hypothesis of Lemma 20.1 is satisfied. We will use a heuristic argument to determine an approximately optimal choice for m. The main step in the argument is finding an inequality involving m and the W_i that is roughly equivalent to the hypothesis of Lemma 20.1. Let c_1, \ldots, c_{v+r} denote any LLL-reduced basis for Γ_m and let B_m be the matrix having c_1, \ldots, c_{v+r} as its column-vectors. Since the columns of both A_m and B_m are bases for Γ_m, there is a unimodular matrix U_m such that $A_m U_m = B_m$. Therefore, $|\det A_m| = |\det B_m|$. On the one hand, we see that $|\det A_m| = p_l^m \prod_{i=2}^{1+v+r} W_i$. On the other hand, since c_1, \ldots, c_{v+r} are nearly orthogonal, we have $|\det B_m| \approx |c_1| \cdots |c_{v+r}|$.

Since we can expect that the c_i are all of approximately the same length, we thus have $|c_1|^{v+r} \approx p_l^m \prod_{i=2}^{1+v+r} W_i$. The lower bound for $l(\Gamma_m, y)$ from Lemma 18.1 is therefore of the size $2^{-(v+r)/2} (p_l^m \prod_{i=2}^{1+v+r} W_i)^{1/(v+r)}$. Thus the hypothesis of Lemma 20.1 is essentially the inequality

$$2^{-(v+r)/2} \left(\prod_{i=2}^{1+v+r} W_i \right)^{1/(v+r)} > \left(\sum_{i=2}^{1+v+r} W_i^2 B_i^2 \right)^{1/2},$$

which is equivalent to

$$m > \frac{v + r}{2 \log p} \log \left(\frac{2^{v+r} \sum_{i=2}^{1+v+r} W_i^2 B_i^2}{\prod_{i=2}^{1+v+r} W_i^{1/(v+r)}} \right).$$

Hence the optimal value of m will be approximately

$$m_0 = \frac{v + r}{2 \log p} \log \left(\frac{2^{v+r} \sum_{i=2}^{1+v+r} W_i^2 B_i^2}{\prod_{i=2}^{1+v+r} W_i^{1/(v+r)}} \right).$$
We are free to choose the weights W_i to minimize this expression, but this is not easy to do in general. Instead, we consider two simple candidate choices for the weights. With the choice $W_i = 1$ for all i, we have

$$\frac{\sum_{i=2}^{1+v+r} W_i^2 B_i^2}{\left(\prod_{i=2}^{1+v+r} W_i^2\right)^{1/(v+r)}} = \sum_{i=2}^{v+r} B_i^2 \leq (v + r)H_0^2. \quad (26)$$

If we choose W_i as the positive integer nearest H_0/B_i for all i, then

$$\frac{\sum_{i=2}^{1+v+r} W_i^2 B_i^2}{\left(\prod_{i=2}^{1+v+r} W_i^2\right)^{1/(v+r)}} \approx \frac{(v + r)H_0^2}{\left(\prod_{i=2}^{1+v+r} H_0^2/B_i^2\right)^{1/(v+r)}} = (v + r)\left(\prod_{i=2}^{1+v+r} B_i^2\right)^{1/(v+r)} \leq \sum_{i=2}^{1+v+r} B_i^2. \quad (27)$$

We are thus inclined to prefer the second choice of weights over the first. Here, and elsewhere in this thesis, when we refer to the integer nearest to a given real number, we decide arbitrarily whether to round up or down in the case the real number is a half-integer. The correctness of the algorithm is completely insensitive to these decisions.

Note that we are free to make a choice for m that is smaller than m_0. A smaller value of m will produce a better upper bound for n_l if the hypothesis of Lemma 20.1 is satisfied. However, if the hypothesis of Lemma 20.1 cannot be verified, one will incur the cost of computing another LLL-reduced basis after increasing m.

We expect $(1/h_l)(1/(p_l - 1) - \text{ord}_{p_l}(\delta_2))$ to be small, so the upper bound for n_l produced by the reduction procedure will generally look like $(1/h_l)(m - d_l)$. Therefore, the inequalities (26) and (27) imply that, with m the size of m_0 and with either of the two simple choices for the weights considered above, we expect to get a bound of size $\log H_0$, as desired.
21 Basic real reduction

Now we describe how the basic real reduction procedure works.

Under certain conditions, we can feed the improved upper bounds on the \(n_t \) obtained through the \(p_l \)-adic reduction procedures into Lemma 14.1 and combine the result with Lemma 15.1 to immediately obtain a new upper bound on \(A \). In particular, we have the following lemma.

Lemma 21.1. If \(i_0 \in \{s + 1, \ldots, s + 2t\} \) and \(|x - y^{(i_0)}| = \min_{1 \leq i \leq n} |x - y^{(i)}| \), then for any \(0 < c_{11} < c_{10}/(n - 1) \) we have

\[
A \leq \max \left\{ c_{15}, \left[\frac{c_8 + c_9N_0}{c_{10} - (n - 1)c_{11}} \right] - 1, \left[\frac{c_8'' + c_9''N_0}{c_{10} - c_{11}} \right] - 1 \right\},
\]

where \(N_0 = \max \{N_1, \ldots, N_v\} \).

Proof. This follows immediately from Lemmas 14.1 and 15.1.

Note that \(c_8, c_9, \) and \(c_{15} \) are expected to be small and that we are free to choose the parameter \(c_{11} \) in such a way that the upper bound for \(A \) in Lemma 21.1 becomes optimal.

If \(s = 0 \), then \(\{s + 1, \ldots, s + 2t\} = \{1, \ldots, n\} \), and so we must have \(|x - y^{(i_0)}| = \min_{1 \leq i \leq n} |x - y^{(i)}| \) for some \(i_0 \in \{s + 1, \ldots, s + 2t\} \). Hence Lemma 21.1 gives a new upper bound on \(A \) when \(s = 0 \).

In the \(s > 0 \) case, we will need to use a lattice reduction based Diophantine approximation method (similar to the one used in the basic \(p_l \)-adic reduction procedures) to improve the bound on \(A \). We first treat the real case \((s \geq 3) \). Let \(C, W_2, \ldots, W_v+r \) be positive integers. Later in this section, we will discuss how to choose \(C \) and the \(W_i \) (the weights) to obtain a good reduction of \(A_0 \). Note that \(\log C \) is the analog of \(m \) from the \(p_l \)-adic reduction procedures.

Let \(i_0 \in \{1, \ldots, s\} \), and let \(j = j(i_0), k = k(i_0), c_{16} = c_{16}(i_0), \) and \(\Lambda_0 = \Lambda_0(i_0) \) be as in Section 15. Put

\[
\alpha_1 = \log |\delta_1|, \quad \alpha_{1+i} = \log \left(\frac{\pi_i^{(k)}}{\pi_i^{(j)}} \right) (i = 1, \ldots, v), \quad \alpha_{1+v+i} = \log \frac{\xi_i^{(k)}}{\xi_i^{(j)}} (i = 1, \ldots, r).
\]
Then
\[\Lambda_0 = \sum_{i=1}^{1+v+r} b_i \alpha_i. \]

For \(i = 2, \ldots, v+r \), let \(\phi_i \) be the nearest integer to \(C\alpha_i \). Let \(\phi_{1+v+r} \) be the nearest integer to \(C\alpha_{1+v+r} \) such that \(|\phi_{1+v+r}| \geq 2 \), and let \(\phi_1 \) be the nearest integer to \(C\alpha_1 \) such that \(\phi_1/\phi_{1+v+r} \notin \mathbb{Z} \). We must, of course, compute the \(\alpha_i \) to precision at least \(\log C/\log 10 \) to avoid errors here.

Let \(\Gamma_C \) be the \((v+r)\)-dimensional lattice generated by the column-vectors of the matrix
\[
A_C = \begin{bmatrix}
W_2 & \cdots & 0 \\
0 & W_{v+r} \\
\phi_2 & \cdots & \phi_{v+r} & \phi_{1+v+r}
\end{bmatrix}.
\]

Put
\[
y = \begin{bmatrix}
0 \\
\vdots \\
0 \\
-\phi_1
\end{bmatrix} \in \mathbb{Z}^{v+r}.
\]

If we had \(y \in \Gamma_C \), there would be integers \(z_1, \ldots, z_{v+r} \) such that
\[
y = A_m [z_1, \ldots, z_{v+r}]^T.
\]

This would then force \(z_1 = \cdots = z_{v+r-1} = 0 \) and \(-\phi_1 = z_{v+r} \phi_{1+v+r}. \) But this last equality contradicts the fact that \(\phi_1/\phi_{1+v+r} \notin \mathbb{Z} \). Therefore we have \(y \notin \Gamma_C \), and, consequently, we will be able to apply Lemma 18.1 to bound \(l(\Gamma_C, y) \) from below after computing a LLL-reduced basis for \(\Gamma_C \). Put
\[
R = \sum_{i=1}^{1+v+r} B_i |\phi_i - C\alpha_i|, \quad S = \sum_{i=2}^{v+r} W_i^2 B_i^2.
\]

Lemma 21.2. Suppose \(i_0 \in \{1, \ldots, s\} \) and \(|x - y\theta(i_0)| = \min_{1 \leq i \leq n} |x - y\theta(i)| \). Let \(D \) be any number such that \(l(\Gamma_C, y) \geq D \). If \(D > (R^2 + S)^{1/2} \), then for any \(0 < c_{11} < c_{10}/(n-1) \) we have
\[
A \leq \max \left\{ \left| \frac{1}{c_{11}} \left(\log(2\log 2)c_{16}(i_0) \right) + \log C - \log \left((D^2 - S)^{1/2} - R \right) \right|
, \left| \frac{c_8 + c_9 N_0}{c_{10} - (n-1)c_{11}} \right| - 1
, \left| \frac{c_8 + c_9 N_0}{c_{10} - c_{11}} \right| - 1
, \left| \frac{\log(2c_{16}(i_0))}{c_{11}} \right| - 1
, 0 \right\}
\]

As with Lemma 20.1, we are free to choose \(c_{11} \) in Lemma 21.2 so that the upper bound on \(A \) becomes optimal.
Proof. Assume \(l(\Gamma_C, y) > (R^2 + S)^{1/2} \). Consider the lattice point

\[
\mathbf{x} = A \begin{bmatrix} b_2 \\ \vdots \\ b_{1+v+r} \end{bmatrix} = \begin{bmatrix} W_2b_2 \\ \vdots \\ W_{v+r}b_{v+r} \end{bmatrix} + y,
\]

where

\[
\Phi = \sum_{i=1}^{1+v+r} b_i \phi_i.
\]

We have

\[
|\Phi| \leq |\Phi - C\Lambda_0| + |C\Lambda_0| = \left| \sum_{i=1}^{1+v+r} b_i (\phi_i - C\alpha_i) \right| + |C\Lambda_0| \leq R + |C\Lambda_0|,
\]

and so, since \(y \notin \Gamma_C \),

\[
l(\Gamma_C, y)^2 \leq |\mathbf{x} - y|^2 = \sum_{i=2}^{v+r} W_i^2b_i^2 + |\Phi|^2 \leq S + (R + |C\Lambda_0|)^2.
\]

Since \(l(\Gamma_C, y) > (R^2 + S)^{1/2} \), the inequality above can be rearranged to give

\[
(l(\Gamma_C, y)^2 - S)^{1/2} - R \leq |C\Lambda_0|.
\]

Now assume

\[
A \geq \frac{c'_8}{c_{10} - (n-1)c_{11}}, \quad A \geq \frac{c'_9N}{c_{10} - c_{11}}, \quad A \geq \left\lceil \frac{\log(2c_{16}(i_0))}{c_{11}} \right\rceil, \quad A \geq 1
\]

By Lemma 14.1, the first two inequalities imply \(|x - y\theta(i_0)| \leq e^{-c_{11}A} \). Then the third and fourth inequalities give, as in the proof of Lemma 15.3,

\[
|\Lambda_0| \leq 2(\log 2)c_{16}(i_0)e^{-c_{11}A}.
\]

Therefore we have

\[
(D^2 - S)^{1/2} - R \leq 2(\log 2)c_{16}(i_0)Ce^{-c_{11}A},
\]

which is equivalent to

\[
A \leq \frac{1}{c_{11}} \left(\log(2(\log 2)c_{16}(i_0)) + \log C - \log \left((D^2 - S)^{1/2} - R\right) \right).
\]

\(\square\)
Now we describe the reduction procedure. For a given \(i_0 \in \{1, \ldots, n\} \), we will call a number \(U \) an \(i_0 \)-conditional upper bound for \(A \) if \(A \leq U \) holds in the case \(|x - y\theta^{(i_0)}| = \min_{1 \leq i \leq n} |x - y\theta^{(i)}| \). For each \(i_0 \in \{1, \ldots, n\} \), we will use \(A_0(i_0) \) to denote the best \(i_0 \)-conditional upper bound for \(A \) that we have at the current stage in the procedure. At the start of the procedure, \(A_0(i_0) = A_0 \) for every \(i_0 \in \{1, \ldots, n\} \). For each \(i_0 \in \{1, \ldots, n\} \) in turn, we compute an LLL-reduced basis for \(\Gamma_C \), and then use Lemma 18.1 to find a lower bound \(D \) for \(l(\Gamma_C, y) \). If \(D \) is greater than \((R^2 + S)^{1/2}\), Lemma 21.2 gives an \(i_0 \)-conditional upper bound for \(A \) that we hope reduces \(A_0(i_0) \). If \(D \leq (R^2 + S)^{1/2} \), we should increase \(C \) somewhat and try again. Furthermore, when \(D \) is greater than \((R^2 + S)^{1/2} \), but the \(i_0 \)-conditional bound produced by Lemma 21.2 does not improve \(A_0(i_0) \), we should also increase \(C \) and try again. As in Section 20, if \(C \) needs to be increased to \(C' \) we should take as input to the LLL algorithm the partially reduced basis for \(\Gamma'_C \) given by the columns of \(A'_CU_C \) (where \(U_C \) is the unimodular integer matrix for which the columns of \(A_CU_C \) form the LLL-reduced basis we computed for \(\Gamma_C \)) rather than the basis given by \(A_C \).

Once we run through all \(i_0 \in \{1, \ldots, s\} \), we use Lemma 21.1 to compute a number that is an \(i_0 \)-conditional upper bound \(A \) for each \(i_0 \in \{s + 1, \ldots, s + 2t\} \). Since we must have \(|x - y\theta^{(i_0)}| = \min_{1 \leq i \leq n} |x - y\theta^{(i)}| \) for some \(i_0 \in \{1, \ldots, n\} \), we know that \(\max_{i_0 \in \{1, \ldots, n\}} A_0(i_0) \) is an unconditional upper bound for \(A \). Note that this will be an improvement on the upper bound for \(A \) we had at the start of the procedure if and only if every \(i_0 \)-conditional upper bound for \(A \) calculated in the procedure is smaller than the starting upper bound for \(A \). Therefore, if, for a given \(i_0 \in \{1, \ldots, s\} \), we have found no new \(i_0 \)-conditional upper bound for \(A \) after several increases of \(C \), and the value of \(C \) has become significantly larger than it was initially, then we should terminate the procedure (there is no point in moving on to the next value of \(i_0 \in \{1, \ldots, s\} \)).

Now we discuss how to choose \(C \) and the weights \(W_i \). To optimize the \(i_0 \)-conditional upper bounds for \(A \) produced by Lemma 21.2, we want the expression

\[
\log(2(\log 2)c_{16}(i_0)) + \log C - \log((D^2 - S)^{1/2} - R)
\]

(28)

to be as small as possible while still ensuring \(D > (R^2 + S)^{1/2} \). Here \(D \) is the lower bound for \(l(\Gamma_C, y) \) from Lemma 18.1. Arguing heuristically as in Section 20, we see that \(D \) is of the size of \(2^{-(s+r)/2} (C |\alpha_1|^{s+r}) \prod_{i=2}^{s+r} W_i)^{1/(s+r)} \). Using that \(R \approx \sum_{i=1}^{1+s+r} B_i/2 \), we find
that \(D > (R^2 + S)^{1/2} \) is essentially equivalent to the inequality \(C > C_0 \), where

\[
C_0 = \left(\frac{\left(\sum_{i=1}^{1+v+r} B_i/2 \right)^2 + \sum_{i=2}^{v+r} W_i^2 B_i^2}{2^{-(v+r)} \left(|\alpha_{1+v+r}| \prod_{i=2}^{v+r} W_i \right)^{2/(v+r)}} \right)^{(v+r)/2}.
\]

It follows that as \(C \) decreases towards \(C_0 \), \(D \) decreases towards \((R^2 + S)^{1/2} \), and, therefore, \(- \log ((D^2 - S)^{1/2} - R)\) increases towards infinity. However, \(- \log ((D^2 - S)^{1/2} - R) \leq 0\) if we have \(D > ((R + 1)^2 + S)^{1/2} \), which is essentially equivalent to

\[
C > \left(\frac{\left(1 + \sum_{i=1}^{1+v+r} B_i/2 \right)^2 + \sum_{i=2}^{v+r} W_i^2 B_i^2}{2^{-(v+r)} \left(|\alpha_{1+v+r}| \prod_{i=2}^{v+r} W_i \right)^{2/(v+r)}} \right)^{(v+r)/2}.
\]

The difference between the expression on the right-hand side of this inequality and \(C_0 \) is negligible in our approximation. Therefore, we can safely choose a value the size of \(C_0 \) for \(C \), and this choice is essentially the best possible with respect to minimizing the contribution of \(\log C \) to the upper bound for \(A \). We can do better with the bound for \(A \) if we try to minimize the contribution of the expression \(\log C - \log ((D^2 - S)^{1/2} - R) \) as a whole. This expression will be essentially minimized if we select \(C \) so that the two terms are equal, i.e., if \(C^{-1} = (D^2 - S)^{1/2} - R \). Using the same approximations for \(D \) and \(R \) as before, this leads to a polynomial equation for \(C \) like

\[
2^{-(v+r)^2} \left| \prod_{i=2}^{v+r} W_i \right|^{v+r} \left(1 + C \sum_{i=1}^{1+v+r} B_i/2 \right)^{2/(v+r+1)} = \left(1 + C \sum_{i=1}^{1+v+r} B_i/2 \right)^{2/(v+r+1)} + C^2 \sum_{i=2}^{v+r} W_i^2 B_i^2 \right)^{v+r}.
\]

We can try to find an approximate solution to this equation that satisfies \(C > C_0 \) and use that as our choice of \(C \). As long as we choose weights that are independent of \(C \), we can solve this equation numerically. An easier method is to start with a value for \(C \) of the size of \(C_0 \), and then increment \(C \) (with some convenient step size) until \(C^{-1} \approx (D^2 - S)^{1/2} - R \), where \(D \approx 2^{-(v+r)/2} (C \left| \prod_{i=2}^{v+r} W_i \right|^{1/(v+r)} \right)^{1/(v+r)} \).

For the weights \(W_i \), either choosing \(W_i = 1 \) for all \(i \) or choosing \(W_i \) to be the nearest positive integer to \(H_0/B_i = \max_{2 \leq j \leq v+r} B_j/B_i \) for all \(i \) works well. It is not immediately obvious that one choice of weights is strictly better than the other. However, the second
choice tends to give a more balanced lattice, which improves the quality of the lower bound on \(l(\Gamma, y)\) and the quality of the heuristics we used above.

We expect that the maximum of the upper bounds for \(A\) coming from Lemmas 21.2 and 21.1 will be of the size \(\log C\). Since the discussed choices for \(C\) and the weights \(W_i\) will tend to give \(\log C \approx \log H_0\), we thus expect a new bound for \(A\) like \(\log H_0\).

The complex case \((s = 1, 2)\) is nearly identical to the real case. Let \(i_0 \in \{1, \ldots, s\}\), and let \(j = j(i_0), k = k(i_0), c_{16} = c_{16}(i_0), \Lambda_0 = \Lambda_0(i_0), \) and \(a_0 = a_0(i_0)\) be as in Section 15. Let \(C, W_2, \ldots, W_{1+v+r}\) be positive integers. We will discuss how to choose \(C\) and the weights \(W_i\) at the end. Put \(b_{2+v+r} = 2a_0\). It follows from the proof of Lemma 15.3 that \(|b_{2+v+r}|\) is bounded by \(B_{2+v+r} = 2 \sin^{-1}(1/4)/\pi + \sum_{i=1}^{1+v+r} B_i\). Define

\[
\alpha_1 = \text{Im}(\log(\delta_1)), \quad \alpha_{1+i} = \text{Im}
\left(\log\left(\frac{\pi_i^{(k)}}{\pi_i^{(j)}}\right)\right) \quad (i = 1, \ldots, v),
\]

\[
\alpha_{1+v+i} = \text{Im}
\left(\log\left(\frac{\varepsilon_i^{(k)}}{\varepsilon_i^{(j)}}\right)\right) \quad (i = 1, \ldots, r), \quad \alpha_{2+v+r} = \text{Im}(\log(-1)) = \pi.
\]

Then

\[
\Lambda_0 = \sum_{i=1}^{2+v+r} b_i \alpha_i.
\]

For \(i = 2, \ldots, 1+v+r\), let \(\phi_i\) be the nearest integer to \(C\alpha_i\). Let \(\phi_{1+v+r}\) be the nearest integer to \(C\alpha_{1+v+r}\) such that \(|\phi_{1+v+r}| \geq 2\) and let \(\phi_1\) be the nearest integer to \(C\alpha_1\) such that \(\phi_1/\phi_{2+v+r} \notin \mathbb{Z}\). Let \(\Gamma_C\) be the \((1 + v + r)\)-dimensional lattice generated by the column-vectors of the matrix

\[
A_C = \begin{bmatrix}
W_2 & & \\
& \ddots & 0 \\
0 & W_{1+v+r} & \\
\phi_2 & \cdots & \phi_{1+v+r} & \phi_{2+v+r}
\end{bmatrix}.
\]

Put

\[
y = \begin{bmatrix}
0 \\
\vdots \\
0 \\
-\phi_1
\end{bmatrix} \in \mathbb{Z}^{1+v+r}.
\]

As in the real case, \(y \notin \Gamma_C\), so Lemma 18.1 can be applied to bound \(l(\Gamma_C, y)\) from below.
It is easily proved that Lemma 21.2 holds with
\[R = \sum_{i=1}^{2+v+r} B_i |\phi - C\alpha_i|, \quad S = \sum_{i=2}^{1+v+r} W_i^2 B_i^2, \]
and with the expression 2(log 2) replaced by 4sin⁻¹(1/4). The reduction procedure runs exactly as in the real case. An analysis like the one from the real case indicates choosing
\[
C \approx \left(\frac{\left(\sum_{i=1}^{2+v+r} B_i/2 \right)^2 + \sum_{i=2}^{1+v+r} W_i^2 B_i^2}{2^{-(v+r+1)} \left(|\alpha_{2+v+r}| \prod_{i=2}^{1+v+r} W_i \right)^{2/(v+r+1)}} \right)^{(v+r+1)/2}
\]
is optimal when it comes to minimizing the contribution of the log C term in the bound produced by (the complex case version of) Lemma 21.2. Adjusting the value of C a bit so that \(C^{-1} \) is closer to \((D^2 - S)^{1/2} - R \) (where we use the approximation \(D \approx 2^{-(v+r+1)/2} (C |\alpha_{2+v+r}| \prod_{i=2}^{1+v+r} W_i)^{1/(1+v+r)} \)) will help improve the bound further. The choice of weights \(W_i = 1 \) for all \(i \) is, of course, valid. For the same reason as in the real case, taking \(W_i \) equal to the nearest positive integer to \(H_0/B_i = \max_{2 \leq j \leq 1+v+r} B_j/B_i \) for all \(i \) tends to be preferable.
22 Refined p_l-adic reduction

In this section, we explain the refined p_l-adic reduction procedure.

Fix $l \in I$. Let m be a positive integer. The solutions of (14) fall into one of two cases:

Case 1.

$$n_l > \frac{1}{h_l} \left(\frac{1}{p_l - 1} - \text{ord}_{p_l}(\delta_2) \right) \quad \text{and} \quad n_l \geq \frac{1}{h_l}(m - d_l)$$

Case 2.

$$n_l \leq \max \left\{ \frac{1}{h_l} \left(\frac{1}{p_l - 1} - \text{ord}_{p_l}(\delta_2) \right), \left\lceil \frac{1}{h_l}(m - d_l) \right\rceil - 1 \right\}$$

The refined p_l-adic reduction procedure is essentially a technique to efficiently find all the solutions of (14) in the Case 1. So, at the end of the procedure, we will then know all the solutions that have yet to be found satisfy

$$n_l \leq \max \left\{ \left(1/h_l\right) \left(1/(p_l - 1) - \text{ord}_{p_l}(\delta_2)\right), \left\lfloor \left(1/h_l\right)(m - d_l) \right\rfloor - 1 \right\}.$$

Thus, if m is small enough, we will have found an improvement of the upper bound for n_l. We will further discuss the choice of m later in this section.

Choose positive integers $W_2, \ldots, W_1 + v + r$ with W_2, \ldots, W_{v+1} even. As with m, we postpone the details of how to choose the W_i until later in this Section. Define Γ_m, A_m, and λ as in Section 20. If $2 \leq i \leq v + 1$, set

$$y = \begin{bmatrix} \frac{1}{2}W_2B_2 \\ \vdots \\ \frac{1}{2}W_{i-1}B_{i-1} \\ \frac{1}{2}W_iB_i \\ \vdots \\ \frac{1}{2}W_{i+1}B_{i+1} \\ 0 \\ \vdots \\ 0 \\ -W_i\beta^{(m)}_i + \frac{1}{2}W_iB_i \end{bmatrix} \in \mathbb{Z}^{v+r},$$
otherwise set
\[
\begin{bmatrix}
\frac{1}{2}W_2B_2 \\
\vdots \\
\frac{1}{2}W_{v+1}B_{v+1} \\
0 \\
\vdots \\
0 \\
-W_i\beta_1^{\{m\}}
\end{bmatrix} \in \mathbb{Z}^{v+r}.
\]

Choose a vector \(z \in \Gamma_m \) that is close to \(y \). An efficient way to do this is as follows. Compute a matrix \(B_m \) whose column-vectors \(c_1, \ldots, c_{v+r} \) form an LLL-reduced basis for \(\Gamma_m \), and write
\[
y = s_1c_1 + \cdots + s_{v+r}c_{v+r}, \quad s_i \in \mathbb{R}
\]
(in other words, compute \([s_1, \ldots, s_{v+r}]^T = B_m^{-1}y \)). Choose \(t \in \mathbb{Z}^{v+r} \) such that \(|t_i - s_i| \leq 1 \) for all \(i \) and \(|y - B_m t| \) is minimal. Then \(B_m t \) is likely the closest lattice vector to \(y \), so we take \(z = B_m t \).

Set
\[
D = \left(\sum_{i=2}^{v+1} \left(\frac{1}{2}W_iB_i \right)^2 + \sum_{i=2+v}^{1+v+r} (W_iB_i)^2 \right)^{1/2} , \quad D_0 = D + |y - z|.
\]

Lemma 22.1. In Case 1, the tuple \((b_2, \ldots, b_{1+v+r}) \) satisfies \(x - z \in \Gamma_m \) and \(|x - z| \leq D_0 \), where
\[
x = A_m \begin{bmatrix}
b_2 \\
\vdots \\
b_{i-1} \\
b_{i+1} \\
\vdots \\
b_{1+v+r} \\
\lambda
\end{bmatrix}.
\]

Proof. Suppose \(n_l > (1/h_l)(1/(p_l - 1) - \text{ord}_{p_l}(\delta_2)) \) and \(n_l \geq (1/h_l)(m - d_l) \). Then, as in the proof of Lemma 20.1, \(\lambda \in \mathbb{Z} \). So \(x \) belongs to \(\Gamma_m \), and, therefore, \(x - z \in \Gamma_m \) also. If
2 \leq \hat{i} \leq v + 1, then

\[
x - y = \begin{bmatrix}
W_2 b_2 - \frac{1}{2} W_2 B_2 \\
\vdots \\
W_{i-1} b_{i-1} - \frac{1}{2} W_{i-1} B_{i-1} \\
W_{i+1} b_{i+1} - \frac{1}{2} W_{i+1} B_{i+1} \\
\vdots \\
W_{v+1} b_{v+1} - \frac{1}{2} W_{v+1} B_{v+1}
\end{bmatrix},
\]

(29)

while if \(v + 2 \leq \hat{i} \leq 1 + v + r \), we have

\[
x - y = \begin{bmatrix}
W_2 b_2 - \frac{1}{2} W_2 B_2 \\
\vdots \\
W_{i-1} b_{i-1} - \frac{1}{2} W_{i-1} B_{i-1} \\
W_{i+1} b_{i+1} - \frac{1}{2} W_{i+1} B_{i+1} \\
\vdots \\
W_{v+2} b_{v+2}
\end{bmatrix},
\]

(30)

Either way,

\[
|x - y| \leq \left(\sum_{i=2}^{v+1} \left(\frac{1}{2} W_i B_i \right)^2 + \sum_{i=2+v}^{1+v+r} (W_i B_i)^2 \right)^{1/2} = D.
\]

Hence the lattice vector \(x - z \) must satisfy

\[
|x - z| = |x - y| + |y - z| \leq D_0.
\]

\(\square \)

We now use the Fincke-Pohst algorithm to efficiently compute all vectors \(u \in \Gamma_m \) with \(|u| \leq D_0\). Each such \(u \) is a candidate to have \(u = x - z \). For each \(u \), we compute
the corresponding tuple \((b_2, \ldots, b_{1+v+r})\) assuming \(u = x - z\). This assumption lets us write \(x - y = u + z - y\), and so, since \(u, y, z\) are known explicitly, we can easily compute \((b_2, \ldots, b_{1+v+r})\) using (29) or (30), as appropriate. Each tuple \((b_2, \ldots, b_{1+v+r})\) that satisfies (14) (for some \(x, y\)) and satisfies the Case 1 inequalities must be one of the tuples computed in this way. However, the computed tuples are not necessarily all solutions of (14), so they will need to actually be tested for (14). This can be done, for example, by computing the coefficients of the right-hand side of (14) and verifying that the coefficients of \(\theta^2, \ldots, \theta^{n-1}\) of (14) all vanish. However, due to the large number of tuples likely to be computed, it is not practical at this stage to test every tuple for (14) immediately. It is preferable to first perform on each tuple a series of tests (see below) that rule-out non-solutions with minimal computational effort. Then, if a tuple manages to survive these tests, we can test it for (14). In practice, very few non-solutions will survive the series of computationally cheap tests. One could also choose to store those tuples that pass the series of computationally cheap tests for further testing later, rather than test the tuple for (14) at this stage.

We now make a remark on implementation. There are likely to be a large number of lattice vectors with norm less than or equal to \(D_0\). To save on memory usage, immediately after each vector \(u\) is found, one should extract the tuple, test it, and, if and only if it corresponds to a solution, store it. One should not store all the computed vectors or all the extracted tuples.

Now we discuss a series of efficient tests that we can apply to the tuple \((b_2, \ldots, b_{1+v+r})\) to eliminate a non-solution. Note that the remarks in Section 19 about verifying the conclusions of Lemmas 8.2 and 19.1 concern the last few tests we will describe below. As a first test, we check that the \(b_i\) are all integers. After that, we check that the tuple satisfies the current bounds for the \(b_i\): \(|b_i| \leq B_i\) for all \(i\), and \(b_2, \ldots, b_{1+v} \geq 0\). Next, we eliminate the tuple if it satisfies \(n_i \leq \max \{((1/h_l) (1/(p_l - 1) - \text{ord}_{p_l}(\delta_2)) , ([1/h_l](m - d_l)) - 1\} \) because we are only looking for those solutions that fall into Case 1. By Lemma 19.1, a tuple that survives the last test must satisfy \(\text{ord}_{p_l}(\Lambda'_l) \geq n_l h_l + d_l\) if it corresponds to a solution. If this inequality does not hold, we eliminate the tuple. Note that if we are in the special case described in Section 19, Lemma 19.1 implies the tuple must actually satisfy \(\text{ord}_{p_l}(\Lambda'_l) = n_l h_l + d_l\). At this point, we have verified that the tuple does not contradict the instance of Lemma 19.1 corresponding to our fixed \(l \in I\). We next check that the tuple does not contradict Lemma 19.1 for those indices \(l_1 \in I\) with \(l_1 \neq l\). More precisely, for each \(l_1 \in I \setminus \{l\}\) with \(n_{l_1} > (1/h_{l_1})(1/(p_{l_1} - 1) - \text{ord}_{p_{l_1}}(\delta_2))\), we check whether \(\text{ord}_{p_{l_1}}(\Lambda'_{l_1}) \geq \)
\(n_{l_1} h_{l_1} + d_{l_1} \) holds (whether \(\text{ord}_{p_{l_1}} (\Lambda'_{l_1}) = n_{l_1} h_{l_1} + d_{l_1} \) holds if we are in the special case) and discard the tuple if not. Now, a tuple that has survived up to this stage must satisfy \(n_l > \left(\frac{1}{h_l} \right) (\frac{1}{(p_l - 1) - \text{ord}_{p_l}(\delta_2)}) \) (a tuple with \(n_l \leq \left(\frac{1}{h_l} \right) (\frac{1}{(p_l - 1) - \text{ord}_{p_l}(\delta_2)}) \) would have been eliminated at a previous stage). Hence, if the tuple corresponds to a solution, Lemma 8.2 implies that \(\text{ord}_{p_l}(\Lambda_{l_1}) = n_{l_1} h_{l_1} + \text{ord}_{p_l}(\delta_2) \). If this equation does not hold, we eliminate the tuple. Note that there is no point in checking this equation if we are in the special case (see the comments made in Section 19). Finally, if the tuple has still not been ruled-out, we test it for the versions of Lemma 8.2 corresponding to those indices \(l_1 \in I \setminus \{ l \} \) for which the general case of Section 19 applies. That is, for each such index \(l_1 \), if \(n_{l_1} > \left(\frac{1}{h_{l_1}} \right) (\frac{1}{(p_{l_1} - 1) - \text{ord}_{p_{l_1}}(\delta_2)}) \), we check whether \(\text{ord}_{p_{l_1}}(\Lambda_{l_1}) = n_{l_1} h_{l_1} + \text{ord}_{p_{l_1}}(\delta_2) \), and, if this equality does not hold, we discard the tuple. Note that it is easy to compute \(\Lambda_l \) and \(\Lambda'_l \) (and \(\Lambda_{l_1} \) and \(\Lambda'_{l_1} \)) because the \(\alpha_i \) and \(\beta_i \) will have already been computed and the \(b_i \) are given to us.

Note that it is possible to make a different choice for \(y \). However, the one we have chosen produces a bound \(D_0 \) that is reasonably small in terms of the weights. For a given lattice and numbers \(0 < D_1 < D_2 \), it is of course cheaper to enumerate the smaller set consisting of those lattice vectors with norm less than \(D_1 \) than to enumerate the larger set of lattice vectors with norm less than \(D_2 \). Since the parameters \(m \) and \(W_i \) determine the lattice, it is advantageous to have \(D_0 \) be small in terms of them.

Now we discuss how to choose the weights. If the \(W_i \) are taken to be small, \(D_0 \) will also be small and we might hope that this will make the process of enumerating all the vectors with norm less than or equal to \(D_0 \) fast. However, small weights produce short basis vectors for the lattice \(\Gamma_C \), which in turn produce more short vectors in the lattice overall. This offsets the decrease in the norm bound. Hence having smaller weights does not necessarily reduce the enumeration cost. There is a balance to be struck between the size of \(D_0 \) and the number of short vectors in the lattice. The following choice works well. For \(i = 2, \ldots, v + 1 \), define \(W_i \) so that \(\frac{1}{2} W_i \) is the nearest positive integer to \(H_0 / B_i \). For \(i = v + 2, \ldots, 1 + v + r \), let \(W_i \) be the nearest positive integer to \(H_0 / B_i \). This choice also prevents the lattice from being badly skewed (having a skewed lattice makes the enumeration more difficult).

Finally, we discuss the value of \(m \). To make the new upper bound for \(n_l \) as small as possible, we should take \(m \) as small as possible. Unlike with the simple \(p_l \)-adic reduction, there is now no condition (like \(l(\Gamma_m, y) > Q^{1/2} \)) to limit how small \(m \) can theoretically
be chosen. However, if we take m too small, the lattice Γ_m will have so many vectors of norm less than or equal to D_0 that the computational cost to enumerate (and test) them all will be prohibitive. Choosing m as in Section 20 seems to work well in practice. In fact, we have found that a significantly smaller choice of m (like $3/4$ the size suggested in Section 20) works fine. Note that it is possible to estimate the cost of the Fincke-Pohst enumeration for a given lattice and norm bound before performing the enumeration. If the estimated cost is too large, one should increase m and try the procedure again. If several increases of m yield no new upper bound for n_l, we should move on to the next $l \in I$ (or onto the real reduction if there is no next $l \in I$).
23 Refined real reduction

Here we describe the refined real reduction procedure.

The outline of the refined real reduction procedure is the same as for the basic procedure. If $s = 0$, Lemma 21.1 immediately gives a new upper bound for A exactly as in the basic procedure. For the $s > 0$ case, we first perform lattice computations to find i_0-conditional upper bounds for A for each $i_0 \in \{1, \ldots, s\}$ and use Lemma 21.1 to find an upper bound on A that is i_0-conditional for every $i_0 \in \{s + 1, \ldots, s + 2t\}$. Then the maximum of all these upper bounds is taken as an unconditional upper bound for A. We describe below how the i_0-conditional upper bounds for A are computed for $i_0 \in \{1, \ldots, s\}$. This is the only point on which the refined and basic reduction procedures differ.

Suppose first that we are in the real case ($s \geq 3$). Let C, W_2, \ldots, W_{v+1} be positive integers with W_2, \ldots, W_{v+1} even. We will discuss how to choose C and the weights W_i later in this section. Let $i_0 \in \{1, \ldots, s\}$ and let $j = j(i_0)$, $k = k(i_0)$, $c_{16} = c_{16}(i_0)$, and $\Lambda_0 = \Lambda_0(i_0)$ be as in Section 15. Define α_i, ϕ_i ($i = 1, \ldots, 1 + v + r$), A_C, Γ_C, R, and S as in Section 21. Put

$$y = \begin{bmatrix} \frac{1}{2}W_2B_2 \\ \vdots \\ \frac{1}{2}W_{v+1}B_{v+1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{Z}^{v+r}$$

Choose a vector $z \in \Gamma_C$ that is close to y (see Section 22 for a method to do this). Choose a number $D > (R^2 + S)^{1/2}$ and set

$$D_0 = D + |y - z|.$$

Let c_{11} be any number satisfying $0 < c_{11} < c_{10}/(n - 1)$. The solutions of (14) are divided into two cases depending on A:

Case 1.

$$A \geq \max \left\{ \frac{1}{c_{11}} \left(\log(2\log 2)c_{16}(i_0) + \log C - \log(D^2 - S)^{1/2} - R \right), \frac{c_s' + c_9'N_0}{c_{10} - (n - 1)c_{11}}, \frac{c_s'' + c_9''N_0}{c_{10} - c_{11}}, \frac{\log(2c_{16}(i_0))}{c_{11}}, 1 \right\}$$
Case 2.

\[A \leq \max \left\{ \frac{1}{c_{11}} \left(\log(2(\log 2)c_{16}(i_0)) + \log C - \log \left((D^2 - S)^{1/2} - R \right) \right) \right\} - 1, \]

\[\frac{c_s' + c_9 N_0}{c_{10} - (n - 1)c_{11}} - 1, \]

\[\frac{c_s'' + c_9' N_0}{c_{10} - c_{11}} - 1, \]

\[\frac{\log(2c_{16}(i_0))}{c_{11}} - 1, 0 \]

Note that one should select \(c_{11} \) to minimize the upper bound for \(A \) in Case 2.

The main computational step in the procedure is finding all the solutions of (14) that fit the first case and that have \(\|x - y\theta(i_0)\| = \min_{1 \leq i \leq n} \|x - y\theta(i)\| \). Once that is done, we know that all the solutions of (14) with \(\|x - y\theta(i_0)\| = \min_{1 \leq i \leq n} \|x - y\theta(i)\| \) that still need to be found belong to the second case. So, if \(C \) is small enough, we will have found an improvement of the upper bound for \(A \) subject to the condition \(\|x - y\theta(i_0)\| = \min_{1 \leq i \leq n} \|x - y\theta(i)\| \). This is the \(i_0 \)-conditional upper bound for \(A \) we seek.

Lemma 23.1. Suppose \(i_0 \in \{1, \ldots, s\} \) and \(\|x - y\theta(i_0)\| = \min_{1 \leq i \leq n} \|x - y\theta(i)\| \). In Case 1, the tuple \((b_2, \ldots, b_{1+v+r}) \) satisfies \(x - z \in \Gamma_C \) and \(\|x - z\| \leq D_0 \), where

\[x = A_C \begin{bmatrix} b_2 \\ \vdots \\ b_{1+v+r} \end{bmatrix}. \]

Proof. Since \(x \) and \(z \) both belong to \(\Gamma_C \), \(x - z \in \Gamma_C \) as well. By Lemma 14.1 and the inequalities

\[A \geq \frac{c_s' + c_9 N}{c_{10} - (n - 1)c_{11}}, \quad A \geq \frac{c_s'' + c_9' N}{c_{10} - c_{11}}, \]

we have \(\|x - y\theta(i_0)\| \leq e^{-c_{11} A} \). Then, as in the proof of Lemma 15.3, it follows from the inequality \(A \geq \max \{ \log(2c_{16}(i_0)) / c_{11} \}, 1 \} \) that

\[|\Lambda_0| \leq 2(\log 2)c_{16}(i_0)e^{-c_{11} A}. \]

So since

\[x - y = \begin{bmatrix} W_2 b_2 - \frac{1}{2} W_2 B_2 \\ \vdots \\ W_{v+1} b_{v+1} - \frac{1}{2} W_{v+1} B_{v+1} \\ W_{v+2} b_{v+2} \\ \vdots \\ W_{v+r} b_{v+r} \end{bmatrix} \]

(31)
with
\[\Phi = \sum_{i=1}^{1+v+r} b_i \phi_i, \]
we have
\[|x - y|^2 \leq S + \Phi^2 \leq S + (|CA_0| + |CA_0 - \Phi|)^2 \leq S + (2(\log 2)c_{16}(i_0)Ce^{-c_{11}A} + R)^2. \]
As
\[A \geq \frac{1}{c_{11}} \left(\log(2(\log 2)c_{16}(i_0)) + \log C - \log((D^2 - S)^{1/2} - R) \right), \]
it follows that \(|x - y|^2 \leq D^2 \), whence \(|x - z| \leq D_0 \).

Lemma 23.1 justifies the following method for computing the solutions of (14) in Case 1 having \(|x - y^{(i_0)}| = \min_{1 \leq i \leq n} |x - y^{(i)}| \). We compute (using the Fincke-Pohst algorithm) all vectors \(u \in \Gamma_C \) with \(|u| \leq D_0 \). For each such \(u \), we compute the corresponding tuple \((b_2, \ldots, b_{1+v+r}) \) assuming \(u = x - z \). This assumption lets us write \(x - y = u + z - y \), so, since \(u, y, z \) are known explicitly, we can easily compute \((b_2, \ldots, b_{1+v+r}) \) using (31). We then put the tuples through a series of tests (see below) that will eliminate most nonsolutions through a small amount of computation. Finally, the few tuples that remain are tested for (14). As with the refined \(p_l \)-adic reduction procedure, it would be impractical to simply test in (14) every tuple we compute.

The tests we apply to the tuple \((b_2, \ldots, b_{1+v+r}) \) are the essentially the same as in the refined \(p_l \)-adic reduction. First, we check that the \(b_i \) are all integers and that the current bounds \(b_2, \ldots, b_{1+v}, \geq 0 \) and \(|b_i| \leq B_i \) hold. Next, if the tuple satisfies the Case 2 inequality for \(A \) (i.e., the soon to be new \(i_0 \)-conditional upper bound for \(A \)), then it can be discarded because we are only looking for tuples that fit into Case 1. After that, we check, for each \(l \in I \), that the tuple does not contradict Lemma 19.1. If a tuple passes those tests, we perform the same check for Lemma 8.2 for all \(l \in I \). Note that this last test is redundant for those \(l \in I \) for which we are in the special case described in Section 19.

Let us now discuss the choice of \(C \). As it was in Section 22 with \(m \) and \(\Gamma_m \), taking \(C \) too small will produce a lattice \(\Gamma_C \) that has more vectors with norm less \(D_0 \) than can be enumerated in a reasonable amount of time. It seems to work well in practice to choose \(C \) somewhat (but not too much) smaller than suggested in Section 21. For instance, a reasonable choice is to select a value of \(C \) that makes \(\log C \) about \(3/4 \) the size it would be if one used the value for \(C \) suggested in Section 21.
It is recommended that one estimates the cost of the enumeration before performing it. If the estimate is too large, one should increase \(C \), recalculate the necessary quantities (like a basis for \(\Gamma_C \)) and estimate the enumeration cost again. Once a small enough estimate is found, the enumeration can proceed. If several increases of \(C \) have yielded no new \(i_0 \)-conditional upper bound for \(A \) and \(C \) has become significantly larger than it was initially, the procedure should be terminated.

It is advantageous to choose a small value of \(D \) to keep the cost of the enumeration down. However, taking \(D \) too close to its lower limit \((R^2 + S)^{1/2}\) will cause the term \(-\log((D^2 - S) - R)\) in the \(i_0 \)-conditional upper bound for \(A \) (i.e., in the Case 2 inequality) to blow up. Note that the choice \(D = ((R + 1)^2 + S)^{1/2} \) is reasonably close \((R^2 + S)^{1/2}\) and makes \(-\log((D^2 - S) - R) = 0\).

Now comes the choice of the weights. Since \(S = \sum_{i=2}^{v+1} \left(\frac{1}{2} W_i B_i \right)^2 + \sum_{i=v+2}^{v+r} (W_i B_i)^2 \), the smaller the weights are, the smaller \(D \) can be. For a given lattice, a smaller value of \(D \) leads to a lower cost to enumerate the vectors of norm less than \(D \) that smaller weights produce. There is a balance to be struck between the size of \(D \) and the size of the weights. The following choice of weights seems to work well. For \(i = 2, \ldots, 1 + v \), choose \(W_i \) so that \(\frac{1}{2} W_i \) is the nearest positive integer to \(\max_{2 \leq j \leq v+r} B_j / B_i \). For \(i = 2 + v, \ldots, v + r \), \(W_i \) is the nearest positive integer to \(\max_{2 \leq j \leq v+r} B_j / B_i \).

The complex case \((s = 1, 2)\) is identical to the \(s \geq 3 \) case except for a few modifications. We let \(C, W_2, \ldots, W_{1+v+r} \) be positive integers with \(W_2, \ldots, W_{v+1} \) even. Let \(i_0 \in \{1, \ldots, s\} \) and let \(j = j(i_0), k = k(i_0), c_{16} = c_{16}(i_0), \Lambda_0 = \Lambda_0(i_0) \), and \(a_0 = a_0(i_0) \) be as in Section 15. Define \(\alpha_i, \phi_i \) \((i = 1, \ldots, 2 + v + r), b_{2+v+r}, A_C, \Gamma_C, R, \) and \(S \) as in Section 21. Define \(y \) as in the real case but with an extra zero entry so that \(y \in \mathbb{Z}^{v+r+1} \). Choose a vector \(z \) in \(\Gamma_C \) close to \(y \) and a number \(D > (R^2 + S)^{1/2} \).

The two cases into which we divide the solutions of (14) are:

Case 1.

\[
A \geq \max \left\{ \frac{1}{c_{11}} \left(\log(4 \sin^{-1}(1/4)c_{16}(i_0)) + \log C - \log((D^2 - S)^{1/2} - R) \right), \frac{c_8' + c_9 N_0}{c_{10} - (n - 1)c_{11}}, \frac{c_8'' + c_9' N_0}{c_{10} - c_{11}} \right\},
\]

68
Case 2.

\[
A \leq \max \left\{ \left[\frac{1}{c_{11}} \left(\log(4 \sin^{-1}(1/4)c_{16}(i_0)) + \log C - \log((D^2 - S)^{1/2} - R) \right) \right], -1 \right\}
\]

\[
\left[\frac{c'_8 + c'_9 N_0}{c_{10} - (n - 1)c_{11}} - 1, \left[\frac{c''_8 + c''_9 N_0}{c_{10} - c_{11}} \right] - 1, \left[\frac{\log(2c_{16}(i_0))}{c_{11}} \right] - 1, 0 \right]
\]

Here \(c_{11}\) is a parameter to be chosen strictly between \(0 < c_{11} < c_{10}/(n - 1)\). It is advantageous to choose \(c_{11}\) in such a way that the upper bound for \(A\) in Case 2 is minimized.

Now Lemma 23.1 holds with \(x = A_C[b_1, \ldots, b_{2+v+r}]^T\) and with \((b_1, \ldots, b_{1+v+r})\) replaced by \((b_1, \ldots, b_{2+v+r})\). The method for computing the solutions of (14) in Case 1 having \(|x - y\theta(i)| = \min_{1 \leq i \leq n} |x - y\theta(i)|\) runs as before, but with the tuple \((b_1, \ldots, b_{2+v+r})\). There are a couple of additional tests that we can perform on the tuple \((b_1, \ldots, b_{2+v+r})\). Namely, we can check that \(b_{2+v+r}\) is an even integer (since it should be equal to \(2a_0\)) and that \(|b_{2+v+r}| \leq B_{2+v+r}\). The considerations for the choices of \(D, C,\) and the \(W_i\) are analogous to the \(s \geq 3\) case. We note that the choice of weights should be modified as follows. For \(i = 2, \ldots, 1 + v\), choose \(W_i\) so that \(\frac{1}{2} W_i\) is the nearest positive integer to \(\max_{2 \leq j \leq 1+v+r} \frac{B_j}{B_i}\). For \(i = 2 + v, \ldots, 1 + v + r\), choose \(W_i\) as the nearest positive integer to \(\max_{2 \leq j \leq 1+v+r} \frac{B_j}{B_i}\).
In this final stage, we have upper bounds N_1, \ldots, N_v, A_0 for $n_1, \ldots, n_v, A = \max |a_i|$, respectively, that (we hope) are very small. We therefore have $(N_1+1) \cdots (N_v+1)(2A_0+1)^r$ tuples $(n_1, \ldots, n_v, a_1, \ldots, a_r)$ to test as solutions to (14). We can do this by checking whether the coefficients of $\theta^2, \ldots, \theta^{n-1}$ for the right-hand side of (14) are all zero. Since the number of tuples to test is likely very large, the cost of the field arithmetic involved makes this method impractical. We thus prefer the following strategy that uses chiefly modular arithmetic to sieve the set of tuples.

First some set-up. Let q be a rational prime having at least three distinct degree one prime ideals q_1, q_2, q_3 in its factorization in O_K. Since $O_K/q_i \cong \mathbb{Z}/q_i \mathbb{Z}$ for $i = 1, 2, 3$, we can find, for each i, explicit rational integers $m_i, A_i, P_{i1}, \ldots, P_{iv}, E_{i1}, \ldots, E_{ir}$ such that

$$\theta \equiv m_i, \quad \alpha \zeta \equiv A_i, \quad \pi_j \equiv P_{ij} \quad (j = 1, \ldots, v), \quad \varepsilon_j \equiv E_{ij} \quad (j = 1, \ldots, r) \quad (\text{mod } q_i).$$

It follows from (14) that

$$x - ym_i \equiv A_i P_{i1}^{n_1} \cdots P_{iv}^{n_v} E_{i1}^{a_1} \cdots E_{ir}^{a_r} \quad (\text{mod } q_i) \quad (i = 1, 2, 3).$$

Note that each of these congruences holds modulo q as well. So combining these congruences with the identity

$$(m_2 - m_3)(x - ym_1) + (m_3 - m_1)(x - ym_2) = (m_2 - m_1)(x - ym_3)$$

yields

$$(m_2 - m_3)A_1 P_{11}^{n_1} \cdots P_{1v}^{n_v} E_{11}^{a_1} \cdots E_{1r}^{a_r} + (m_3 - m_1)A_2 P_{21}^{n_1} \cdots P_{2v}^{n_v} E_{21}^{a_1} \cdots E_{2r}^{a_r} = (m_2 - m_1)A_3 P_{31}^{n_1} \cdots P_{3v}^{n_v} E_{31}^{a_1} \cdots E_{3r}^{a_r} \quad (\text{mod } q).$$

Since (32) is an integer congruence, testing the tuple $(n_1, \ldots, n_v, a_1, \ldots, a_r)$ for it is computationally easy.

The sieving procedure runs as follows. We select several primes q_1, \ldots, q_k that each have at least three distinct degree one prime ideals in their factorizations in O_K. For each $q \in \{q_1, \ldots, q_k\}$, we compute the integers $m_i, A_i, P_{i1}, \ldots, P_{iv}, E_{i1}, \ldots, E_{ir}$ $(i = 1, 2, 3)$. Each tuple $(n_1, \ldots, n_v, a_1, \ldots, a_r)$ is then tested for the congruences (32) modulo $q = q_1, \ldots, q_k$. Heuristically, we expect that only one out of q random tuples will satisfy (32) modulo q. Thus, it is efficient to check the congruences in decreasing order of the sizes...
of the q_j. Moreover, we expect all the non-solutions to be eliminated by the end of the procedure provided we select primes q_1, \ldots, q_k such that $q_1 \cdots q_k$ is at least as large as the number of tuples to be tested. If the tuple survives every congruence test, we check it for (14) and then finally for (4) itself (utilizing (15)). Note the method of checking (14) described above gives the values of x and y. We can also skip the check of (14) and check (4) immediately. To do this, we need to compute the x and y corresponding to the tuple $(n_1, \ldots, n_v, a_1, \ldots, a_r)$. This can be done as follows. Put $\beta = \alpha \zeta_1^{a_1} \cdots \zeta_r^{a_r} \pi_1^{n_1} \cdot \cdots \cdot \pi_v^{n_v}$ and choose two embeddings of K into \mathbb{C}: $\theta \mapsto \theta^{(i)}$ ($i = 1, 2$). By (14),

$$x - y\theta^{(1)} = \beta^{(1)}, \quad x - y\theta^{(2)} = \beta^{(2)},$$

and so

$$x = \frac{\beta^{(1)} - \beta^{(2)}}{\theta^{(1)} - \theta^{(2)}}, \quad y = -\frac{\beta^{(1)} - \beta^{(2)}}{\theta^{(1)} - \theta^{(2)}}.$$

If K is not totally real, we need only look at one embedding. For if $\theta \mapsto \theta^{(1)} \in \mathbb{C} \setminus \mathbb{R}$, then with $\theta^{(2)} = \overline{\theta^{(1)}}$ the above gives

$$x = \beta^{(1)} - \theta^{(1)} \frac{\text{Im}\beta^{(1)}}{\text{Im}\theta^{(1)}}, \quad y = -\frac{\text{Im}\beta^{(1)}}{\text{Im}\theta^{(1)}}.$$
Conclusion

In this thesis, we presented and proved the correctness of an algorithm to completely solve an arbitrary Thue-Mahler equation. We also presented an implementation the algorithm as a computer program using the Magma computer algebra system. The algorithm itself is due essentially to Tzanakis and de Weger [TW2], though our presentation introduced some minor modifications. Our implementation of the algorithm is completely original, and, to the best of our knowledge, it is the first fully general implementation.

There are several potential applications for our Thue-Mahler equation solver (i.e., the program we have written). In [BD], Bennett and Dahmen show that the problem of solving the generalized superelliptic equation

\[F(x, y) = z^l \]

(33)

in integers \(x, y, z, l \) with \((x, y) = 1 \), where \(F(x, y) \) is an irreducible binary form over \(\mathbb{Z} \), is closely tied to the problem of solving families of Thue-Mahler equations. In particular, they show that, for a large, explicit class of irreducible binary forms \(F(x, y) \in \mathbb{Z}[x, y] \) of degree 3, 4, 6, or 12, the equation (33) has at most finitely solutions in integers \(x, y, z, l \) with \((x, y) = 1 \) and \(l \) sufficiently large whenever an associated pair of Thue-Mahler equations have no solutions in integers. Hence, one can use our Thue-Mahler equation solver to prove that many specific generalized superelliptic equations (33) have only finitely many integer solutions when \(l \) is large. Moreover, since our Thue-Mahler equation solver makes it possible to solve a large number of Thue-Mahler equations in a reasonable time frame with minimal personal effort on the part of the researcher, it may be useful in further developing the connection between solving generalized superelliptic equations and solving families of Thue-Mahler equations by allowing one to test conjectures and heuristics. Indeed, Bennett and Dahmen use a Thue-Mahler equation solver for degree three equations for this purpose in [BD].

Our Thue-Mahler equation solver can also be applied to the task of determining all elliptic curves over \(\mathbb{Q} \) having prescribed conductor. Indeed, the problem of determining all elliptic curves of conductor \(N = p_1^{a_1} \ldots p_v^{a_v} \) (where the \(p_i \) are given rational primes, and the \(a_i \) are given nonnegative integers) can generally be reduced to the task of solving finitely many Thue-Mahler equations involving the primes \(p_1, \ldots, p_v \). Note that finding all the elliptic curves of conductor 11 was the impetus for Agrawal, Coates, Hunt, and van der Poorten to solve the Thue-Mahler equation \(x^3 - x^2 y + xy^2 + y^3 = \pm 11^l \) using
linear forms in logarithms (see [ACHP]). As we mentioned in Section 1, the method used for solving this equation inspired Tzanakis and de Weger to develop their algorithm. The principle method that has been used to compute elliptic curves of a given conductor is the so-called modular symbol method. In fact, this method has been used by J. Cremona to determine all elliptic curves over \mathbb{Q} of conductor less than 19000 (see [Cr] for a description of Cremona’s work for curves with conductor up to 13000). However, it may be that the Thue-Mahler equation method for computing elliptic curves over \mathbb{Q} is superior to the modular symbol method for conductors having certain forms.

Another potential future research direction that stems even more directly from this thesis would be to perform a detailed complexity analysis for the algorithm we presented. Having access to a fully-general implementation of the algorithm will certainly be useful for one wishing to undertake such an analysis.

There are a few improvements that can be made to the algorithm presented in this thesis. For one thing, there are better results available for linear forms in real/complex and p-adic logarithms in the special case of two or three logarithms than the general results of Matveev [Mat] and Yu [Yu2] that we have used (see [BL], [La], [Mi1], and [Mi2]). Using the superior results would produce a smaller upper bound for H in Section 16. This would (potentially) reduce the computation time for the reduction procedures by reducing the total number of iterations of the procedures and by reducing the sizes of the entries in the basis vectors generating the approximation lattices (which would speed up the LLL algorithm and the Fincke-Pohst algorithm). Note, however, that a substantial reduction in relative computation time would be obtained only when the general theorems of Matveev and Yu produce a bound on H that is was very much larger than the bound produced by the theorems for two or three logarithms. Such a large discrepancy in the size of the bounds is unlikely to occur as the general results and the two/three-logarithm results depend on a common set of parameters, and do so in roughly the same way.

Another modification that can be made to the algorithm concerns the choice of approximation lattices in the p_l-reduction procedures, particularly, in the general case described in Section 19. When we choose the index $h \in \{1, \ldots, s\}$ in the general case, we are effectively choosing which coefficient Λ_{lh} of $\Lambda_l = \sum_{h=1}^s \Lambda_{lh} \phi^{h-1}$ we will be trying to prove has small p_l-adic valuation. However, what we really want is to prove that Λ_l has small p_l-adic value. (Considering Lemmas 8.1 and 8.2 should make all this clear.) So, since $\text{ord}_{p_l}(\Lambda_l) \geq \min_{1 \leq h \leq s} \text{ord}_{p_l}(\Lambda_{lh})$, and since working with the element Λ_l of $\mathbb{Q}_{p_l}(\phi)$ directly
presents problems when it comes to defining an approximation lattice, we should aim to prove that Λ_{lh} has small p_l-adic valuation for every $h \in \{1, \ldots, s\}$. One way to do this would be to run the whole reduction procedure for each $h \in \{1, \ldots, s\}$ separately. However, a more efficient way is to consider each $h \in \{1, \ldots, s\}$ simultaneously by working, not with the $(v + r)$-dimensional lattice Γ_m generated by the columns of the matrix A_m (see Section 20), but with the $(v + r + s - 1)$-dimensional lattice generated by the columns of the matrix

$$A'_m = \begin{bmatrix} W_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & W_{i+1} \\ W_i \beta_{2,1}^{(m)} & \cdots & W_i \beta_{i-1,1}^{(m)} & W_i \beta_{i+1,1}^{(m)} & \cdots & W_i \beta_{1+v+r,1}^{(m)} & W_i p_i^m & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots \\ W_i \beta_{2,s}^{(m)} & \cdots & W_i \beta_{i-1,s}^{(m)} & W_i \beta_{i+1,s}^{(m)} & \cdots & W_i \beta_{1+v+r,s}^{(m)} & 0 & \cdots & W_i p_i^m \end{bmatrix},$$

where $\beta_{i,h} = \alpha_{ih}/\alpha_{i\hat{h}}$ for $i = 1, \ldots, 1 + v + r$ and $h = 1, \ldots, s$, and where \hat{i} and \hat{h} are indices in $\{2, \ldots, 1 + v + r\}$ and $\{1, \ldots, s\}$, respectively, for which

$$\text{ord}_{p_l}(\alpha_{i\hat{h}}) = \min_{2 \leq i \leq 1+v+r} \left(\min_{1 \leq h \leq s} \text{ord}_{p_l}(\alpha_{ih}) \right).$$

We are assuming here, of course, that $l \in I$. With this modification to the approximation lattices, analogs of Lemmas 20.1 and 22.1 are readily established, and both the basic and refined p_l-adic reduction procedures work virtually the same as before (cf. Chapter IV of Smart’s book [Sm]). The best modern versions of the LLL algorithm have worst-case running time $O(d^3(d + \log B)(\log B)M(d))$, where d denotes the dimension of the lattice, B denotes an upper bound for the Euclidean norm of the input basis vectors, and $M(k)$ denotes the time required to multiply two k-bit integers (cf. [NS]). One can safely assume $M(k) = O(k^2)$. Since the worst-case running time of the LLL algorithm (and, consequently, of the Fincke-Pohst algorithm) increases as the dimension of the lattice increases, it is not immediately clear that replacing our original approximation lattices with higher-dimensional ones will improve the efficiency of the algorithm. However, because of how m is chosen, an increase in lattice dimension will decrease the expected size of m. So, since m is proportional to the bound B, the running time of the LLL algorithm decreases...
as m decreases. Moreover, smaller values of m mean smaller bounds are produced by the reduction procedures, which reduces the total number of iterations of the reduction procedure needed. This rough analysis is clearly not definitive, but, according to Smart [Sm], the overall effect of using the $(v + r + s - 1)$-dimensional lattices rather than $(v + r)$-dimensional is that the computational cost of the p_l-reduction procedures is lowered.

Though we expect there are numerous improvements and optimizations that can be made in our implementation of the algorithm, we believe the implementation to be generally good. Improving the implementation of the sieving process is likely the most important improvement that could be made in the program since this process appears to be the principle bottleneck in the algorithm in practice (at least in cases when the degree of the equation and the number of primes and fundamental units is not very large).
References

[BL] Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques (French) [Effective lower bound for the p-adic distance between powers of algebraic numbers], *Journal of Number Theory* **61** (1996), 311-342.

Appendix: The implementation in Magma

```magma
function ThueMahlerSolver(c,p,a)

// Description of Input

/*
c is the (integer) sequence of coefficients of F(x,y). c[i]=c_i from (3). The
coefficient c_0 of x^n is not to be entered.
It is assumed that c_0=1.
It is also assumed that F(x,y) is irreducible.

p is the sequence of rational primes. p[i]=p_i from (3)

a is the integer a from (3).

It is assumed that (a,p_i)=1 for i=1,...,v.

For the example equation solved in [TW2], we would use
c:=-23,5,24];
p:=[2,3,5,7];
a:=1;
*/

// Description of Output:

/*
A list of solutions [X,Y,z_1,...,z_v] of the Thue-Mahler equation
*/
```
//Define the n = degree of g(t) and v = number of primes

n := \#c; //degree of F(t,1)=g(t)\n
v := \#p; //number of primes

//List of Solutions

Solutions := []; //to be filled

//Define g and compute its discriminant

Zt\langle t \rangle := \text{PolynomialRing} (\text{Integers}());
g := t^n + c[n];
for i := 1 to n-1 do
g := g + c[i] * t^{n-i};
end for;

\text{DiscriminantOfg} := \text{Discriminant}(g);

//Define K and compute number field data

//define K=Q(\theta)
K<\theta> := \text{NumberField}(g);

//Compute the ring of integers OK of K
OK := \text{MaximalOrder}(K);

//Compute an integral basis for K
\text{IntegralBasisK} := \text{IntegralBasis}(K);
// For each element of the integral basis for K, compute its
// coefficients on the power basis of K: 1, \theta, ..., \theta^{n-1}
CoefficientsOfIntegralBasisElement := [];
for i := 1 to n do
CoefficientsOfIntegralBasisElement[i] :=
Eltseq(IntegralBasisK[i]);
end for;

// s = number of real embeddings, 2t = number of complex
// embeddings
s, t := Signature(K);

// number of fundamental units
r := s + t - 1;

// Compute a set of fundamental units and
// express them as elements in \mathcal{O}_K in terms of the integral basis
// they are represented by their coefficients on the integral basis
U, psi := UnitGroup(\mathcal{O}_K);
eps := [];
for i := 1 to r do
eps[i] := psi(U.(i+1));
end for;
eps[s+t] := psi(U.1); // generator for units of finite order

// Compute the divisors of the class number of K
DivisorsOfClassNumberOfK := Divisors(ClassNumber(K));

/*
Compute the splitting field F of g over \mathbb{Q} (FFF), the roots of g in F
(rootsofginFFF), and the ring of integers of F (OF)
*/
FFF,rootsofginFFF:=SplittingField(g);
OF:=MaximalOrder(FFF);

/**

/*
Set precision for real/complex and p-adic computations

We want the precision for real/complex computations (realprecision) to
be about four times as large as the largest value of \(\log(C)/\log(10)\) (the
number of decimal digits in C) that we expect will occur in the real
reduction step (Section 19). C will about the size of \(H_0^{-(v+r)}\), so we
want to take realprecision \(\approx 2*(v+r)*\log(H_0)/\log(10)\). (We would
be fine if instead of "four times as large" it was just "larger" than.
We go four times as large as a safety factor to avoid having to back up
and do all the calculations again with an increased precision.)

We want to choose the precision for \(p_i\)-adic computations
(padicprecision[i]) is about four times as large as the largest value of
\(m\) that we expect will occur in the \(p_i\)-adic reduction step (Section 18).
\(m\) will be of a size that makes \(p_i^{-m} \approx H_0^{-(v+r)}\), so we want to
take padicprecision[i] \(\approx 2*(v+r)*\log(H_0)/\log(p[i])\). (We would be
fine if instead of "four times as large" it was just "larger" than. We
go four times as large as a safety factor to avoid having to back up
and do all the calculations again with an increased precision.)

We cannot calculate \(H_0\) a priori. But we know \(H_0\) will be essentially of
the size of that largest of the constants coming from using Yu's and
Matveev's theorems to bound the relevant linear forms in logarithms.

The constant \(c_2 \cdot \min\{ c_3', c_3' \}\) from Yu's
theorem will be bounded by something of the size

\[
(16*\exp(1)*\deg(F))^{2*(2+v+r)} * (1+v+r)^3 * \log(\deg(F)*(1+v+r)) * \max(p[1],...,p[v])^{\deg(F)} * (10)^{(1+v+r)}
\]
The constant c_{17} from Matveev’s Theorem will be bounded by something of the size

$$2^{-(6\times(1+v+r)+20)} \times \text{Degree}(F)^{3+v+r} \times \log(\text{Degree}(F)) \times 10^{-(1+v+r)}$$

Here we are assuming that the absolute logarithmic heights involved are ≤ 10.

We set up a loop so that, if the precisions are not high enough, we back up and start again with more precision.

```plaintext
RealPrecisionMultiplier := 1;
PadicPrecisionMultiplier := [];
for i := 1 to v do
    PadicPrecisionMultiplier[i] := 1;
end for;

for PrecisionLoopVariable := 1 to 5 do
    if PrecisionLoopVariable eq 5 then
        print("Something is wrong. The required precision for the computation seems to be too large.");
        break PrecisionLoopVariable;
    end if;

    H0estimate := Max([ (16*\exp(1)*\text{Degree}(FFF))^{2\times(2+v+r)} \times (1+v+r)^3 \times \
                        \log(\text{Degree}(FFF)\times(1+v+r)) \times \text{Max}(p)^{\text{Degree}(FFF)} \times 10^{-(1+v+r)},
                      2^{-(6\times(1+v+r)+20)} \times \text{Degree}(FFF)^{3+v+r} \times \log(\text{Degree}(FFF)) \times 10^{-(1+v+r)} ]);
```
realprecision:=4*Ceiling((v+r)*Log(H0estimate)/Log(10));
realprecision:=realprecision*RealPrecisionMultiplier;

padicprecision:=[];
for i:=1 to v do
 padicprecision[i]:=4*Ceiling((v+r)*Log(H0estimate)/Log(p[i]));
 padicprecision[i]:=padicprecision[i]*PadicPrecisionMultiplier[i];
end for;

SetDefaultRealField(RealField(realprecision));
PI:=Pi(RealField());

/*
print("padicprecision");
padicprecision;
print("realprecision");
realprecision;
*/

//

/*
For each prime p[i], compute the primes of OK dividing p[i] (pp[i][j]),
their number (m[i]), their ramification indices (e[i][j]), and their
residue degrees (f[i][j]).

For each pp[i][j] with e[i][j]=f[i][j]=1 (i.e. for each unramified degree
one prime ideal above p[i]), compute the least positive integer h[i][j]
such that pp[i][j]^h[i][j] is principal and the generator pi[i][j] of
pp[i][j]^h[i][j].

Also store the indices j of the unramified degree one primes pp[i][j]
above p[i].
*/

///
pp:=[[]; m:=[[]; e:=[[]; f:=[[];
IndicesOfUnramifiedDegreeOnePrimesAbovep:=[[];
h:=[]; pi:=[[];
DecompositionOfp:=[];
for i:=1 to v do
 pp[i]:=[[];
 e[i]:=[[];
 f[i]:=[[];
 IndicesOfUnramifiedDegreeOnePrimesAbovep[i]:=[[];
 h[i]:=[[];
 pi[i]:=[[];
 DecompositionOfp[i]:=Decomposition(OK,p[i]);
 m[i]:=#DecompositionOfp[i]; //number of distinct prime factors of p[i]
 for j:=1 to m[i] do
 pp[i][j]:=DecompositionOfp[i][j][1];
 e[i][j]:=DecompositionOfp[i][j][2];
 f[i][j]:=InertiaDegree(pp[i][j]);
 if e[i][j]*f[i][j] eq 1 then
 Append(~IndicesOfUnramifiedDegreeOnePrimesAbovep[i],j);
 for k:=1 to #DivisorsOfClassNumberOfK do
 if IsPrincipal(pp[i][j]^DivisorsOfClassNumberOfK[k]) then
 h[i][j]:=DivisorsOfClassNumberOfK[k];
 end if;
 end for;
 else
 h[i][j]:=0; //initialization, never used
 end if;
 end for; //end j loop
end for; //end i loop

//
/*
Compute completion of K at each pp[i][j] (Kpp[i][j]) and the embedding of
K into Kpp[i][j] (mKpp[i][j]). Also, for each pp[i][j], compute the
corresponding factor of g(t) in \QQ_{p[i]}[t] (gp[i][j])
*/
//

Kpp:=[];
mKpp:=[];
gp:=[**];
for i:=1 to v do
 Kpp[i]:=[];
 mKpp[i]:=[**];
 gp[i]:=[];
 for j:=1 to m[i] do //m[i]:=number of distinct prime factors of p[i]
 Kpp[i][j], mKpp[i][j]:=Completion(K,pp[i][j] :
 Precision :=padicprecision[i]);
 gp[i][j]:=MinimalPolynomial(mKpp[i][j](theta), PrimeField(Kpp[i][j]));
 end for;
end for;

LocalFactorization(PolynomialRing(pAdicRing(p[i] :
 Precision:=20)) ! g : Ideals:=true);

/*
For each p[i], compute the completion FFFppF of FFF at a prime ideal ppF
of OF. Also compute the embedding of FFF into FFFppF (mFFFppF).

Note FFFppF contains the splitting field of g over \QQ_{p[i]}.

86
MAGMA currently does not support the direct computation of the splitting field of \(g \) over \(\mathbb{Q}_p \). The function that purports to do this fails for \(p \) that ramify in the \(K \).

Note that since \(F/\mathbb{Q} \) is Galois, every prime ideal of \(\mathcal{O}_F \) above \(p \) has the same ramification index and residue degree

```magma
ppvF:=[ ]; //ppvF[l] is a prime of \( F \) above \( p[l] \) selected essentially
    //arbitrarily
eF:=[ ]; //eF[l] is the ramification index of \( ppF \) over \( \mathbb{Q} \)
fF:=[ ]; //fF[l] is the residue degree of \( ppF \) over \( \mathbb{Q} \)
FFFppF:=[ ];
mFFFppF:=[**];
SS:=[ ]; //SS[l] is the degree of \( FppF[l] \) over \( \mathbb{Q}_p[l] \)
DecompositionInFFFOfp:=[];

for i:=1 to v do
    DecompositionInFFFOfp[i]:=Decomposition(OF,p[i]);
eF[i]:=DecompositionInFFFOfp[i][1][2];
fF[i]:=InertiaDegree(DecompositionInFFFOfp[i][1][1]);
ppvF[i]:=DecompositionInFFFOfp[i][1][1];
FFFppF[i],mFFFppF[i]:=Completion(FFF,ppvF[i]:Precision:=padicprecision[i]);
SS[i]:=AbsoluteDegree(FFFppF[i]);
end for; //end i loop
```

Magma’s Completion() function will make \(FppF[l] \) as one the following types of field extensions:
1. an unramified extension over the \(p[l] \)-adic field
2. a totally ramified extension over a \(p[l] \)-adic field
3. an unramified extension over an unramified extension over a \(p[l] \)-adic field
4. a totally ramified extension over an unramified extension over a p-adic field

We will later want to find the coefficients of elements of $\mathbb{F}_{p^F}[l]$ on the (canonical) power basis of $\mathbb{F}_{p^F}[l]$ over \mathbb{Q}_{p_l}. For this, it will be important to know what type of extension $\mathbb{F}_{p^F}[l]$ is. The variable \mathbb{F}_{p^F}Type will indicate this.

The first two types are easy to identify and they come as simple extensions, which will let us use MAGMA built-in function for finding the coefficients of elements on the power basis.

The third type seems to be a quirk of Magma. The top extension always has degree 1 relative to the intermediate extension. Moreover, the minimal polynomial of the top extension over the intermediate extension is always x. Finding the coefficients of elements on the power basis will be only slightly harder than in cases 1. and 2.

For the fourth type, the top extension will always have relative degree greater than one. We will have to work a bit harder to find coefficients of elements here.

First we find an element generator[l] that generates $\mathbb{F}_{p^F}[l]$ over \mathbb{Q}_{p_l}. Then we construct a matrix $A[l]$ containing the information necessary to find the coefficients of elements of $\mathbb{F}_{p^F}[l]$ on the basis 1,generator[l],...,generator[l]^(d3 - 1), where $d3 = \text{degree of } \mathbb{F}_{p^F}[l]$ over \mathbb{Q}_{p_l}. We will actually need the inverse of this matrix, so we take it now.

More explicitly, we construct $A[l]$ as follows.

Let α be the generator of $\mathbb{F}_{p^F}[l]$ over its coefficient field
Let β be the generator of the coefficient field of $\mathbb{F}_{p^F}[l]$ over \mathbb{Q}_{p_l}
d1 = degree of $\mathbb{F}_{p^F}[l]$ over its coefficient field
d2 = degree of the coefficient field over \mathbb{Q}_{p_l}
d3 = d1*d2 = degree of \(\text{FFpFF}[l] \) over \(\mathbb{Q}_{p_l} \)

Let \(c_{ijk} \) be the numbers in \(\mathbb{Q}_{p_l} \) such that

\[
\text{generator}^{(k-1)} = \sum_{i,j} c_{ijk} \alpha^{(i-1)} \beta^{(j-1)}
\]

Here \(i \) ranges from 1 to \(d1 \), \(j \) ranges from 1 to \(d2 \), \(k \) ranges from 1 to \(d3 \).

\[
A[l] =
\begin{array}{cccc}
 c_{1 1 1} & \cdots & c_{1 1 d3} \\
 \vdots & \ddots & \vdots \\
 c_{1 d2 1} & \cdots & c_{1 d2 d3} \\
 \vdots & \ddots & \vdots \\
 c_{d1 1 1} & \cdots & c_{d1 1 d3} \\
 \vdots & \ddots & \vdots \\
 c_{d1 d2 1} & \cdots & c_{d1 d2 d3}
\end{array}
\]

We also define here \(u[l] = (1/2) * \text{ord}_{p_l}(\text{Discr G(t)}) \) from Section 8

\[
u[l] := (1/2) * \text{Valuation}(\text{Discriminant}(\text{DefiningPolynomial(CoefficientField(\text{FFpFF}[l])))});
\]

```latex
*/

………

FFFppFType:=[ ];
generator:=[**];
Ainverse:=[ ];
d1:=[ ];
d2:=[ ];
d3:=[ ];
u:=[RationalField() | ];
for l:=1 to v do
```
FFFppFType[1]:=5; //initialize
generator[1]:=FFFppF[1].1; //initialize, only used in case
 //FFFppFType[1]=4
Ainverse[1]:=1; //initialize
d1[l]:=Degree(FFFppF[l],CoefficientField(FFFppF[l]));
d2[l]:=Degree(CoefficientField(FFFppF[l]),PrimeField(FFFppF[l]));
d3[l]:=Degree(FFFppF[l],PrimeField(FFFppF[l]));
u[1]:=1;

if AbsoluteRamificationIndex(FFFppF[1]) eq 1 then
 FFFppFType[1]:=1;
u[1]:=(1/2)*Valuation(Discriminant(DefiningPolynomial(FFFppF[1])));
if Valuation(FFFppF[1].1) lt 0 then print("Error. Generator has negative
valuation. Results invalid. l="); l; end if;
end if;

if AbsoluteInertiaDegree(FFFppF[1]) eq 1 then
 FFFppFType[1]:=2;
 DefiningPolynomial(FFFppF[1]);
 Discriminant(DefiningPolynomial(FFFppF[1]));
 Parent((1/2)*Valuation(Discriminant(DefiningPolynomial(FFFppF[1]))));
 (1/2)*Valuation(Discriminant(DefiningPolynomial(FFFppF[1])));*/
u[1]:=(1/2)*Valuation(Discriminant(DefiningPolynomial(FFFppF[1])));
if Valuation(FFFppF[1].1) lt 0 then print("Error. Generator has negative
valuation. Results invalid. l="); l; end if;
end if;

if AbsoluteInertiaDegree(FFFppF[1]) gt 1 and d1[1] eq 1 then
 FFFppFType[1]:=3;
u[1]:=(1/2)*Valuation(Discriminant(DefiningPolynomial(
 CoefficientField(FFFppF[1]))));
if Valuation(CoefficientField(FFFppF[1]).1) lt 0 then print("Error.
Generator has negative valuation. Results invalid. l="); l; end if;
end if;

90
if d1[l] gt 1 and d2[l] gt 1 then

FFFppFType[l]:=4;

k:=1;
while true do
 generator[l] := k*FFFppF[l].1 + (FFFppF[l] ! CoefficientField(FFFppF[l]).1);
 if Degree(MinimalPolynomial(generator[l],PrimeField(FFFppF[l]))) eq d3[l] then
 break;
 end if;
 k +:= 1;
end while;

u[l]:=(1/2)*Valuation(Discriminant(MinimalPolynomial(
generator[l],PrimeField(FFFppF[l])))�);

if Valuation(generator[l]) lt 0 then print("Error. Generator has negative valuation. Results invalid. l="); l; end if;

//Note: d3[l]:=d1[l]*d2[l];
A:=ZeroMatrix(PrimeField(FFFppF[l]), d3[l], d3[l]); //initialize
temp1:=Coefficients(generator[l]); //initialize
temp2:=Coefficients(temp1[l]); //initialize
for k:=1 to d3[l] do
 temp1:=Coefficients(generator[l]^(k-1));
 for i:=1 to d1[l] do
 temp2:=Coefficients(temp1[i]);
 for j:=1 to d2[l] do
 A[(i-1)*d2 + j,k]:=temp2[j];
 end for;
 end for;
end for;
Ainverse[l]:=A^(-1);

end if;

if FFFppFType[l] eq 5 then print("Error in FFFppFType. l:"); l; end if;
end for; //end l loop

///
/*
Define a function to compute the coefficients of an element x in FFFppF[l]
*/
///

function GetCoefficients(x,l)
/*
Input: l in {1,...,v}, x = an element of FFFppF[l]
Output: The coefficients of x on the basis power basis for FFFppF[l]
over Q_{p_l}.
*/
output:=Coefficients(x);
if FFFppFType[l] eq 3 then output:=Coefficients(Coefficient(x,1)); end if;
if FFFppFType[l] eq 4 then
B:=ZeroMatrix(PrimeField(FFFppF[l]), d3, 1);
temp1:=Coefficients(x);
temp2:=Coefficients(temp1[l]); //initialize
for i:=1 to d1[l] do
 temp2:=Coefficients(temp1[i]);
 for j:=1 to d2[l] do
 B[(i-1)*d2[l] + j,1]:=temp2[j];
 end for;
end for;
C:=Ainverse[l]*B;
output:=[];
for i:=1 to d3[l] do
output[i]:=C[i][1];
end for;
end if;
return output;
end function;

///
/*
thetap[l][i][j]:= theta_i^{(j)} from Section 3 with p=p_l
*/
///
thetap:=[];
for l:=1 to v do
thetap[l]:=[];
for i:=1 to m[l] do
thetap[l][i]:=[];
temp:=Roots(gp[l][i],FFPpF[l]);
for j:=1 to #temp do // #temp = degree of gp[l][i] =
 // = e[l][i]*f[l][i]
 thetap[l][i][j]:=temp[j][1];
end for;
end for;
end for;

///
/*
ImageOfIntegralBasisElementp[L][i][j][k] = image of the kth element in
the integral basis for K under the embedding of K into
\overline{\QQ_{p_L}} defined by the map
theta --> thetap[L][i][j]
*/
///
ImageOfIntegralBasisElementp:=[];
for l:=1 to v do
ImageOfIntegralBasisElementp[l]:=[];
for i:=1 to m[l] do
 ImageOfIntegralBasisElementp[l][i]:=[];
for j:=1 to e[l][i]*f[l][i] do
 ImageOfIntegralBasisElementp[l][i][j]:=0;
for k:=1 to n do
 ImageOfIntegralBasisElementp[l][i][j][k]:=0;
for ii:= 1 to n do
 ImageOfIntegralBasisElementp[l][i][j][k] :=
 ImageOfIntegralBasisElementp[l][i][j][k] +
 CoefficientsOfIntegralBasisElement[k][ii]*thetap[l][i][j]^(ii-1);
end for; //ii
end for; //k
end for; //j
end for; //i
end for; //l

//
/*
ImageOfpip[L][k][l][i][j] := the image of pi[L][k] under the embedding of K into \overline{\QQ_{p_l}} defined by the map theta --> thetap[l][i][j].
Recall pi[L][k] is the generator of pp_{Lk}^h[L][k].
*/
//

ImageOfepsp[L][l][i][j] := the image of eps[L] under the embedding of K into \overline{\QQ_{p_l}} defined by the map theta --> thetap[l][i][j].

Image0fipip:=[];
for L:=1 to v do
 Image0fipip[L]:=[];
for k:=1 to m[L] do
 if e[L][k]*f[L][k] eq 1 then
 Image0fipip[L][k]:=[];
 end if;
for l:=1 to v do
 Image0fipip[L][k][l]:=[];
end for; //l
end for; //k
end for; //j
end for; //i
end for; //l
end for; //L
for i:=1 to m[l] do
 ImageOfpip[L][k][l][i]:=[**];
 for j:=1 to e[l][i]*f[l][i] do
 ImageOfpip[L][k][l][i][j]:=0;
 for ii:= 1 to n do
 ImageOfpip[L][k][l][i][j]:=ImageOfpip[L][k][l][i][j]
 + pi[L][k][ii]*ImageOfIntegralBasisElementp[l][i][j][ii];
 end for; //ii
 end for; //j
end for; //i
end for; //l
else
 ImageOfpip[L][k]:=[[[*0*]]];
end if;
end for; //k
end for; //L

ImageOfepsp:=[[];
for L:=1 to r do
 ImageOfepsp[L]:=[];
 for l:=1 to v do
 ImageOfepsp[L][l]:=[];
 for i:=1 to m[l] do
 ImageOfepsp[L][l][i]:=[**];
 for j:=1 to e[l][i]*f[l][i] do
 ImageOfepsp[L][l][i][j]:=0;
 for ii:= 1 to n do
 ImageOfepsp[L][l][i][j]:=ImageOfepsp[L][l][i][j]
 + eps[L][ii]*ImageOfIntegralBasisElementp[l][i][j][ii];
 end for; //ii
 end for; //j
 end for; //i
 end for; //l
 end for; //L

95
\[\text{thetaC} := \text{Conjugates}(\text{theta});\]

\[\text{ImageOfIntegralBasisElementC}[i][k] := \text{image of the kth element in the integral basis for K under the embedding of K into \CC defined by the map theta --> thetaC[i]};\]

\[\text{ImageOfpiC}[L][k][i] := \text{the image of pi[L][k] under the embedding of K into \CC defined by the map theta --> thetaC[i]. Recall pi[L][k] is the generator of pp_{Lk}^h[L][k].}\]
ImageOfepsC[L][i] := the image of eps[L] under the embedding of K into \CC defined by the map theta --> thetaC[i].

ImageOfpiC:=[];
for L:=1 to v do
 ImageOfpiC[L]:=[];
 for k:=1 to m[L] do
 if e[L][k]*f[L][k] eq 1 then
 ImageOfpiC[L][k]:=[**];
 for i:=1 to n do
 ImageOfpiC[L][k][i]:=0;
 end for; //i
 end if;
 end for; //k
end for; //L

ImageOfepsC:=[];
for L:=1 to r do
 ImageOfepsC[L]:=[**];
 for i:=1 to n do
 ImageOfepsC[L][i]:=0;
 end for; //i
end for; //L
Recall F = the splitting field of g over Q

θ_F: the conjugates of θ as elements in F

= the roots of the minimal polynomial of θ (i.e. of g) in F

$\text{ImageOfIntegralBasisElement}_F[i][k]$ = image of the kth element in the
integral basis for K under the embedding of K into F defined by the map
$\theta \rightarrow \theta_F[i]$

$\text{ImageOfIntegralBasisElement}_F := []$;

for $i := 1$ to n do

$\text{ImageOfIntegralBasisElement}_F[i] := [**]$;

for $k := 1$ to n do

$\text{ImageOfIntegralBasisElement}_F[i][k] := 0$;

for $ii := 1$ to n do

$\text{ImageOfIntegralBasisElement}_F[i][k] := \text{ImageOfIntegralBasisElement}_F[i][k]$

+ CoefficientsOfIntegralBasisElement[k][ii] * $\theta_F[i]^{(ii-1)}$;

end for; //ii

end for; //k

end for; //i
ImageOfpiF[L][k][i] := the image of pi[L][k] under the embedding of K into F defined by the map theta --> thetaF[i].
Recall pi[L][k] is the generator of pp_{Lk}^h[L][k].

ImageOfepsF[L][i] := the image of eps[L] under the embedding of K into F defined by the map theta --> thetaF[i].

* /

ImageOfpiF:=[];
for L:=1 to v do
 ImageOfpiF[L]:=[];
 for k:=1 to m[L] do
 if e[L][k]*f[L][k] eq 1 then
 ImageOfpiF[L][k]:=[**];
 for i:=1 to n do
 ImageOfpiF[L][k][i]:=0;
 for ii:= 1 to n do
 ImageOfpiF[L][k][i]:=ImageOfpiF[L][k][i] + pi[L][k][ii]*ImageOfIntegralBasisElementF[i][ii];
 end for; //ii
 end for; //i
 else
 ImageOfpiF[L][k]:=[*0*];
 end if;
 end for; //k
end for; //L

ImageOfepsF:=[];
for L:=1 to r do
 ImageOfepsF[L]:=[**];
 for i:=1 to n do
 ImageOfepsF[L][i]:=0;
 end for; //i
end for; //L
\[
\text{ImageOfepsF}[L][i] := \text{ImageOfepsF}[L][i] \\
+ \text{eps}[L][ii]\times\text{ImageOfIntegralBasisElementF}[i][ii]; \\
\text{end for}; //ii \\
\text{end for}; //i \\
\text{end for}; //L
\]

///
/*
Compute the constant constant c_{10} = c_{\{10\}} from Section 12

Note: If kappa = \{k_1,...,k_r\} with 1 \leq k_1 < ... < k_r \leq s+t, then
there is a unique index k* in \{1,...,s+t\}-\{k_1,...,k_r\} and U_kappa from
Section 12 is equal to the matrix formed by starting with the r by s+t
matrix.
U = (\log|\text{eps}_j^{(i)}|) and removing the k*th row.

We use this equivalent definition of U_kappa below.
*/
///

//Function to compute maximum absolute row sum of an r by r matrix U
function MaximumAbsoluteRowSum(U,r)
max:=0;
for i:=1 to r do
sum:=0;
for j:=1 to r do
sum:=sum+Abs(U[i][j]);
end for;
if sum gt max then max:=sum; end if;
end for;
return max;
end function;
U:=ZeroMatrix(ComplexField(),s+t,r);
for i:=1 to s+t do
 for j:=1 to r do
 U[i][j]:=Log(Abs(ImageOfepsC[j][i]));
 end for;
end for;

currentmin:=MaximumAbsoluteRowSum(RemoveRow(U,1)^(-1),r);
for skippedindex:=1 to s+t do //skipped index = k*
 potentialmin:=MaximumAbsoluteRowSum(RemoveRow(U,skippedindex)^(-1),r);
 if potentialmin lt currentmin then
 currentmin:=potentialmin;
 end if;
end for;

c10:=1/currentmin;

//Now we go essentially in the order of the thesis starting at Section 6.

//Apply Prime Ideal Removing Lemma

/*
The elements of ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L] will
be of the form [[k],aaa].

If k <= m[L], then k has the meaning that pp[L][k] is the unconstrained
prime above p[L] (pp[L][k] must have e[L][k]=f[L][k]=1).

If k = m[L]+1, there is no prime above p[L] with ramification index and
residue degree equal to one, hence no unconstrained prime above p[L].

In either case, aaa is a tuple of nonnegative integers such that that
PowerProduct(pp[L],aaa) is the factor of bb=\mathfrak{b} consisting of
primes above p[L].

Note \(\text{aaa}[k] = 0 \) if \(k \leq m[L] \).

/*

*/

///

/*
Define the procedures we need
*/

///

procedure BuildListOfValidTuplesWhenppLkIsTheUnconstrainedPrimeAbovepL(
i,L,k,\text{aaa},\text{D},m,\text{CC},\text{LIST})
for \(l = 0 \) to \(\text{D}[i] \) do
 \text{aaa}[i] := l;
 if \(i = m[L] \) then
 //\text{aaa}[k] := 0;
 Include(\text{LIST},[[k],\text{aaa}]);
 else
 for \(j = i + 1 \) to \(m[L] \) do
 if \(\text{aaa}[i] > \text{CC}[i][j] \) then \(\text{D}[j] := \min(\text{D}[j],\text{CC}[i][j]) \); end if;
 end for;
 BuildListOfValidTuplesWhenppLkIsTheUnconstrainedPrimeAbovepL(
i+1,L,k,\text{aaa},\text{D},m,\text{CC},\text{LIST});
 end if;
end for;
end procedure;

procedure BuildListOfValidTuplesWhenNoUnramifiedDegreeOnePrimesAbovepL(
i,L,k,\text{aaa},\text{D},m,\text{CC},\text{LIST})
for \(l = 0 \) to \(\text{D}[i] \) do
 \text{aaa}[i] := l;
 if \(i = m[L] \) then

Include(~LIST,[[k],aaa]);
else
for j:=i+1 to m[L] do
if aaa[i] gt CC[i][j] then D[j]:=Min(D[j],CC[i][j]); end if;
end for;
BuildListOfValidTuplesWhenNoUnramifiedDegreeOnePrimesAbovepL(i+1,L,k,~aaa,~D,~m,~CC,~LIST);
end if;
end for;
end procedure;

//
//The algorithm
//
ListOfTuplesOfExponentsForPrimesDividingbbAbovep:=[*];
for L:=1 to v do
ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]:=[];

//
/*
CC[i][j]:= \max\{e_i, e_j\} \cdot \min_{k,l} \{ord_p(\theta_i^{(k)} - \theta_j^{(l)})\}
*/
//
CC:=[];
for i:=1 to m[L] do
CC[i]:=[];
for j:=1 to i-1 do
 temp:=[];
 for k:=1 to #thetap[L][i] do
 for l:=1 to #thetap[L][j] do
 Append(~temp, Valuation(thetap[L][i][k] - thetap[L][j][l]));
 end for;
 end for;
end for;

end function;
\[CC[i][j] := \max([e[L][i], e[L][j]]) \times \min(temp) \]
end for;
end for;

for i:=1 to m[L] do
if \(e[L][i] \times f[L][i] \) eq 1 then
\[CC[i][i] := 2^{-15} \] // placeholder, never used
else
\[temp := []; \]
for k:=1 to \#thetap[L][i] do
for l:=k+1 to \#thetap[L][i] do
\[\text{Append}(~temp, \text{Valuation(thetap[L][i][k] - thetap[L][i][l]) }); \]
end for;
end for;
\[CC[i][i] := e[L][i] \times \min(temp); \]
end if;
end for;

for i:=1 to m[L] do
for j:=i+1 to m[L] do
\[CC[i][j] := CC[j][i]; \]
end for;
end for;

\[DD := \lfloor (1/2) \times \max(e[L]) \times \text{Valuation(DiscriminantOfg, p[L])} \rfloor; \]
if m[L] gt 1 then
\[DD := 0; \]
for i:=1 to m[L] do
for j:=i+1 to m[L] do
if \(CC[i][j] > DD \) then \[DD := CC[i][j]; \] end if;
end for;
end for;
end if;

///
For each unramified degree 1 prime $pp[L][k]$ above $p[L]$, list all valid tuples assuming $pp[L][k]$ is the unconstrained prime ideal above $p[L]$ dividing $(x-y\theta)$.

The assumption means that, for $i=1,\ldots,m[L], i \neq k$, we assume the exponent of the prime ideal $pp[L][i]$ above $p[L]$ in the factorization of $(x-y\theta)$ is $\leq (1/2)*\max(e[L][1],\ldots,e[L][m[L]])*\text{ord}_p(D_g)$. We assume nothing about the exponent $\text{ord}_pp[L][k](x-y\theta)$ of $pp[L][k]$ in the factorization of $(x-y\theta)$.

For $i=1,\ldots,m[L], i \neq k$, $D[i]$ is an upper bound on the exponent of the prime ideal $pp[L][i]$ above $p[L]$ in the factorization of $bb=\mathfrak{b}$

The exponent of $pp[L][k]$ in the factorization of $(x-y\theta)$ is $\text{ord}_pp[L][k](x-y\theta)$ (obviously). Suppose $A < B$. The valid tuples aaa when $\text{ord}_pp[L][k](x-y\theta) = B$ are a subset of the valid tuples aaa when $\text{ord}_pp[L][k](x-y\theta) = A$. So we only need to consider $\text{ord}_pp[L][k](x-y\theta) \leq DD+1$ to find all valid tuples in when $\text{ord}_pp[L][k](x-y\theta) > DD+1$ and when $\text{ord}_pp[L][k](x-y\theta) \leq DD$. Hence the definition of $D[k]$ below.

```plaintext
for kk:=1 to #IndicesOfUnramifiedDegreeOnePrimesAbovep[L] do
k:=IndicesOfUnramifiedDegreeOnePrimesAbovep[L][kk];
//k will go through all the indices of primes ideals above p=p[L] with 
//e_i=f_i=1

D:=[ ];

for i:=1 to k-1 do
if e[L][i]*f[L][i] eq 1 then
D[i]:=DD;
else
```
D[i] := Min(CC[i][i], DD);
end if;
end for;

D[k] := DD + 1;

for i := k + 1 to m[L] do
if e[L][i] * f[L][i] eq 1 then
D[i] := DD;
else
D[i] := Min(CC[i][i], DD);
end if;
end for;

/*
Populate ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L] assuming
pp[L][k] is the unconstrained prime ideal above p[L] dividing (x-y\theta) */
aaa := [];
BuildListOfValidTuplesWhenppLkIsTheUnconstrainedPrimeAbovepL(1, L, k, ~aaa, ~D, ~m, ~CC, ~ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]);

/*
Remove redundant tuples from
ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]
*/
CopyOfListOfTuplesOfExponentsForPrimesDividingbbAbovepL := ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L];
i1 := 1;
while i1 le #CopyOfListOfTuplesOfExponentsForPrimesDividingbbAbovepL do
bbb := CopyOfListOfTuplesOfExponentsForPrimesDividingbbAbovepL[i1];
if bbb[1][1] ne k then i1 := i1 + 1; continue; end if;
IndexOfTupleToRemove := -1;
for i2:=1 to #ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L] do
ccc:=ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L][i2];

if ccc[1][1] ne k then continue i2; end if;
for i:=1 to k-1 do
if bbb[2][i] ne ccc[2][i] then continue i2; end if;
end for; //end i loop
for i:=k+1 to #bbb[2] do
if bbb[2][i] ne ccc[2][i] then continue i2; end if;
end for; //end i loop
if bbb[2][k] le ccc[2][k] then continue i2; end if;
//know we know that bbb covers ccc
IndexOfTupleToRemove:=i2;
break i2;
end for;
if IndexOfTupleToRemove ne -1 then
Remove(~ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L],
IndexOfTupleToRemove);
else
i1:=i1+1;
end if;
end while;
/*
Done removing tuples
*/

end for; //end kk loop

/*
Remove more redundant tuples from

ListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L]

*/

CopyOfListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L]:= ListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L];
i1:=1;
while i1 le #CopyOfListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L] do
 bbb:=CopyOfListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L][i1];
 if bbb[2][bbb[1][1]] ne DD+1 then i1:=i1+1; continue; end if;
 IndexOfTupleToRemove:=-1;
 for i2:=1 to #ListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L] do
 ccc:=ListOfTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L][i2];
 if ccc[2][ccc[1][1]] eq DD+1 then continue i2; end if;
 //now we know ccc[2][ccc[1][1]] le DD
 for i:=1 to bbb[1][1]-1 do
 if bbb[2][i] ne ccc[2][i] then continue i2; end if;
 end for;
 for i:=bbb[1][1]+1 to #bbb[2] do
 if bbb[2][i] ne ccc[2][i] then continue i2; end if;
 end for;
 //know we know that bbb covers ccc
 IndexOfTupleToRemove:=i2;
 break i2;
 end for;
 if IndexOfTupleToRemove ne -1 then
 Remove(~ListofTuplesOfExponentsForPrimesDividing\(bb\)Above\(p\)[L],
 IndexOfTupleToRemove);
 else
 i1:=i1+1;
 end if;
end while;

/*
Go through and set aaa[k]=0 for each \([k],aaa\) in

108
for \(i_1 := 1\) to \(#\text{ListOfTuplesOfExponentsForPrimesDividingbbAbovep}[L]\) do

\(\text{ListOfTuplesOfExponentsForPrimesDividingbbAbovep}[L][i_1][2][\text{ListOfTuplesOfExponentsForPrimesDividingbbAbovep}[L][i_1][1][1]] := 0;\)

end for;

///

List all valid tuples in the case there are no unramified degree one primes above \(p[L]\).

For \(i=1, \ldots, m[L]\), \(D[i]\) is an upper bound on the exponent of the prime ideal \(p[L][i]\) above \(p[L]\) in the factorization of \(b = \mathfrak{b}\).

Should remove \(p[L]\) from consideration in certain things below.

if \(#\text{IndicesOfUnramifiedDegreeOnePrimesAbovep}[L]\) eq 0 then

\(k := m[L] + 1;\)

\(D := [];\)

for \(i := 1\) to \(m[L]\) do

if \(e[L][i] \times f[L][i] \text{ eq } 1\) then

\(D[i] := D;\)

else

end if

end for;
D[i]:=\text{Min}(CC[i][i],DD);
end if;
end for;

//Populate ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]
aaa:=[];
BuildListOfValidTuplesWhenNoUnramifiedDegreeOnePrimesAbovepL(
1,L,k,\text{"aaa,"}D,\text{"m,"}CC,
\text{"ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]}
);
end if;

PLICATION OF PRIME IDEAL REMOVING LEMMA

//END Application of Prime Ideal Removing Lemma

///
//Build ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep
///
/*
For each p[L], if there are unramified degree one prime ideals of \(\text{OK} \) above p[L], we augment ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L] by taking a given choice of unbounded prime p[L][k] and allowing for all the possible values of the parameter s_{Lk}=s[L][k], which are 0,...,h[L][k]-1 (cf. Section 6)

More precisely, for L = 1,...,v we do the following:
For each element \([k],aaa\) of ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L],
we form the elements \([k],aaa,[0]\),...,[k],aaa,[h[L][k]-1]) and adjoin
them to a new list
ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep[L].

If there are no unramified degree one prime ideals of OK above p[L], then for each element [[k],aaa] of ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L], we form the element [[k],aaa,0] and adjoin them to ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep[L].

As a minor optimization, all this could be done as part of building ListOfTuplesOfExponentsForPrimesDividingbbAbovep.

*/
///
ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep:=[**];
for L:=1 to v do
ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep[L]:=[];
for i:=1 to #ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L] do
k:=ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L][i][1][1];
if k ne m[L]+1 then
for s:=0 to h[L][k]-1 do
Append(~ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep[L],
Append(ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L][i],[s]));
end for;
else //k eq m[L]+1
Append(~ModifiedListOfTuplesOfExponentsForPrimesDividingbbAbovep[L],
Append(ListOfTuplesOfExponentsForPrimesDividingbbAbovep[L][i],[0]));
end if;
end for;
delete ListOfTuplesOfExponentsForPrimesDividingbbAbovep;

//

/*
Compute
ListOfIdealsOfNorma = list containing a representation of each ideal in OK having norm a.

The representation is such that the ideal corresponding to ListIdealsOfNorma[i] ideals is PowerProduct(pI, ListIdealsOfNorma[i]), where pI is the sequence of the prime ideals of OK that divide a.

We follow the strategy laid out in the Example on p.125 of [ST] */

//

procedure BuildListOfIdealsOfNorma(k,~bbb,~epI,~NpI,~ListOfIdealsOfNorma)
for j:=0 to epI[k] do
 bbb[k]:=j;
 if k eq #epI then
 prod:=1;
 for i:=1 to #epI do
 prod:=prod*NpI[i]^bbb[i];
 end for;
 if prod eq a or prod eq -a then Append(~ListOfIdealsOfNorma,bbb); end if;
 else
 BuildListOfIdealsOfNorma(k+1,~bbb,~epI,~NpI,~ListOfIdealsOfNorma);
 end if;
end for;
end procedure;

ListOfIdealsOfNorma:=[];
if a eq 1 or a eq -1 then
 pI:=[ideal<OK|1>];
 ListOfIdealsOfNorma:=[[1]];
else
 // I = ideal<OK|a> = principal ideal generated by a
 FI:=Factorization(ideal<OK|a>);
 pI:=[];
 epI:=[];
 NpI:=[];
for i:=1 to #FI do
pI[i]:=FI[i][1]; //ith prime ideal in the factorization of I
epI[i]:=FI[i][2]; //ramification index of pI[i]
NpI[i]:=Norm(FI[i][1]);
end for;
bbb:=[];
BuildListOfIdealsOfNorma(1,~bbb,~epI,~NpI,~ListOfIdealsOfNorma);
end if;

/***/
/*
Form the list of all units of finite order \zeta in OK (i.e, the list of
all roots of unity \zeta in OK) with the understanding that we include
only one of \zeta and -\zeta.
*/
/***
ListOfUnitsOfFiniteOrder:=[eps[s+t]];
zeta:=eps[s+t]^2;
while(zeta ne eps[s+t]) do
Append(~ListOfUnitsOfFiniteOrder,zeta);
zeta:=zeta*eps[s+t];
end while;
CopyOfListOfUnitsOfFiniteOrder:=ListOfUnitsOfFiniteOrder;
NumberOfUnitsOfFiniteOrder:=#ListOfUnitsOfFiniteOrder;
for i:=1 to NumberOfUnitsOfFiniteOrder do
if CopyOfListOfUnitsOfFiniteOrder[i] in ListOfUnitsOfFiniteOrder
and -CopyOfListOfUnitsOfFiniteOrder[i] in ListOfUnitsOfFiniteOrder then
Exclude(~ListOfUnitsOfFiniteOrder,-CopyOfListOfUnitsOfFiniteOrder[i]);
end if;
end for;

delete CopyOfListOfUnitsOfFiniteOrder;
delete NumberOfUnitsOfFiniteOrder;
T:=TorsionUnitGroup(K);
a:=[];
for u in T do
 Append(~a,u);
end for;
a;

Construct ListOfCases = the list of all cases of the factorized Thue-Mahler equation (11) that we need to solve.

Each element in ListOfCases will be a sequence. Consider ListOfCases[i]. For L = 1 to v, ListOfCases[i][L] is of the form [[k],aaa,[s]]. The meaning here is that pp[L][k] is the unbounded prime above p[L], PowerProduct(pp[L],aaa) is the factor of bb consisting of primes above pp[L] and s is the value of the parameter s_{kl}.

ListOfCases[i][v+1] has the meaning that the value of the parameter aa is PowerProduct(pI,ListOfCases[i][v+1]).

Finally, ListOfCases[i][v+2] is the value of the parameter \zeta

procedure BuildListOfCases(L,~bbb,~LIST,~ListOfCases)
for i:=1 to #LIST[L] do
 bbb[L]:=i;
 if L eq v+2 then
 temp:=[[**]];
 for j:=1 to v+2 do
 temp[j]:=LIST[j][bbb[j]];
 end for;
 end if;
end for;
Append(~ListofCases,temp);
else
BuildListofCases(L+1,~bbb,~LIST,~ListofCases);
end if;
end for;
end procedure;

///
//preprocessing
ModifiedListofTuplesOfExponentsForPrimesDividingbbAbovep[v+1]:=
ListofIdealsOfNorma;
ModifiedListofTuplesOfExponentsForPrimesDividingbbAbovep[v+2]:=
ListofUnitsOfFiniteOrder;

//Populate the list of cases
bbb:=[];
ListofCases:=[];
BuildListofCases(1,~bbb,
~ModifiedListofTuplesOfExponentsForPrimesDividingbbAbovep,~ListofCases);
delete ModifiedListofTuplesOfExponentsForPrimesDividingbbAbovep;

///

/*
Now we are ready to start the loop through the cases.
We first declare the procedures that we will need in the loop.
We also initialize some variables that we will use in the loop. We
initialize them now to avoid having to add additional inputs for the
procedures.
*/

///
function MaxAbsLog(a)
/*
Input: a = number field element
Output: The maximum of the numbers |Log(a^{(1)})|,..., =|Log(a^{(n)})|,
where the a^{(i)} are the conjugates of a in \mathbb{C} and Log denotes the
principle branch of the complex logarithm
*/
minpoly:=MinimalPolynomial(a,IntegerRing());
ConjugatesOfa:=Roots(PolynomialRing(ComplexField()) ! minpoly);
deg:=Degree(minpoly);
max:=Modulus(Log(ConjugatesOfa[1][1]));
for i:=2 to deg do
 temp:=Modulus(Log(ConjugatesOfa[i][1]));
 if temp gt max then max:=temp; end if;
end for;
return max;
end function;

function SmallestNonnegativeRemainderModpLToThem(x,l,m)
/*
Input: l = integer in \{1,\ldots,v\}, m = positive integer,
x = an element in the \mathbb{p}_l-adic field \mathbb{Q}_{\mathbb{p}_l} that belongs to the subring
\mathbb{Z}_{\mathbb{p}_l} (the ring of \mathbb{p}_l-adic integers in \mathbb{Q}_{\mathbb{p}_l}).
Output: The unique integer x^{m} in [0,\mathbb{p}_l^{m} - 1] with
\text{ord}_{\mathbb{p}_l}(x - x^{m}) \geq m
*/
y:=pAdicRing(p[l] : Precision:=padicprecision[l]) ! x;
y:=pAdicQuotientRing(p[l], m) ! y;
y:=IntegerRing() ! y;
if y < 0 then y := y + p^m; end if;
return y;
end function;

function LengthOfVector(v)
/*
Input: v = n by 1 column matrix
Output: The length of v = the square root of the sum of the squares of
the entries of v.
*/
size := NumberOfRows(v);
length := 0;
for i := 1 to size do
 length := length + v[i][1]*v[i][1];
end for;
length := length^(1/2);
return length;
end function;

function pAdicLog(x, p)
/*
Input: p = rational prime, x = p-adic unit belonging to a finite
extension of Q_p
Output: the p-adic logarithm of x
*/
e := AbsoluteRamificationIndex(Parent(x));
f := AbsoluteInertiaDegree(Parent(x));
CandidateOrders := Divisors(p^f - 1);

o := 1;
for oo in CandidateOrders do

117
if Valuation(x^oo - 1) gt 0 then o:=oo; break; end if;
end for;
j:=1;
while p^j le e do
 j +:= 1; //j:=j+1;
end while;

return Log(x^(o*p^j))/(o*p^j);
end function;

switch
func DistanceToNearestInteger(x)
return Min([x-Floor(x), Ceiling(x)-x]);
end function;

switch
func RoundP(x)
/*
Input: x = a real number
Output: The nearest positive integer to x. If two positive integers are
the same distance to x, take the largest of the two.
*/
y:=Round(x);
if y eq 0 then y:=1; end if;
return y;
end function;

procedure Choosettt(~yyy,~ttt,~potentialttt,~Floorsss,~min,~Bm,~mm,k)
/*
Assumption: sss is a mm by 1 column vector with real entries
Input: Floorsss is a mm by 1 column vector with Floorsss[i][1]=
Floor(sss[i][1])
Input: yyy is a given mm by 1 vector with real entries
Input: Bm is a given mm by mm matrix with real entries
Input: potentialtttt is a mm by 1 vector used as a placeholder by this procedure

tti is a mm by 1 column vector
Input: min is a real number
Assumption: This procedure calls itself. When it is called by the user, we assume min is equal to the length of the column vector
Bm*Floorsss - yyy
Input: k is a postive integer
Assumption: This procedure calls itself. When this procedure is called by the user, we assume k=1.
Result: If the three assumptions above hold, then, after this procedure is completed ttt, will be a mm by 1 column vector with integer entries such that
|tti[i][1] - sss[i][1]| <= 1
and such that the length of Bm*tti - yyy is minimal
(among all choices of ttt with integral and |tti[i][1] - sss[i][1]| <= 1).
Also, min will be the length of Bm*tti - yyy.
*/
if k eq mm+1 then

potentialmin:=LengthOfVector(Bm*potentialtttt - yyy);
if potentialmin lt min then
ttt:=potentialtttt;
min:=potentialmin;
end if;
else

for j:=0 to 1 do
potentialtttt[k][1]:=Floorsss[k][1]+j;
Choosettt(yyy,ttt,potentialtttt,Floorsss,min,Bm,mm,k+1);
end for;
procedure CongruenceTest(~bbb,hhh,~passes,~Q,~J)
/*
Input: bbb is a sequence of \#JJJ-1 integers.
Input: hhh is a positive integer
Assumption: Q[hhh] is a sequence of \#JJJ+1 elements of the finite field Z/qZ, where q is a rational prime.
Input: A boolean variable
Assumption: bbb[i] = b_{JJJ[1+i]}, i=1 to \#JJJ-1
Note: bbb[i] = b_{JJJ[1+i]} = b_{1+J[i]}=n_{J[i]} for i:=1 to \#J
Note: bbb[\#J+i] = b_{JJJ[1+#J+i]} = b_{1+v+i}=a_i for i:=1 to r
Assumption: q has at least three residue degree one prime ideals of OK above it. Assumption: For i=1,2,3,
Qh[i]=\{\text{numbers from Section 22 corresponding to three residue degree one prime ideals of OK above q.}
Assumption: passes = true on entry to this procedure
Result: Provided the assumptions hold, passes will have the value true if b_{JJJ[i+1]} satisfies the congruence (25) (with those Pij,n_j with j not in J removed) and will have the value false otherwise.
*/
prod1:=Q[hhh][1][\#J+r+1];
for ii:=1 to \#J+r do
prod1 *=: Q[hhh][1][ii]~bbb[ii];
end for;
prod2:=Q[hhh][2][\#J+r+1];
for ii:=1 to \#J+r do
prod2 *:= Q[hhh][2][ii]^bbb[ii];
end for;

prod3:=Q[hhh][3][#J+r+1];
for ii:=1 to #J+r do
 prod3 *:= Q[hhh][3][ii]^bbb[ii];
end for;

if not IsZero(
 (Q[hhh][2][#J+r+2]-Q[hhh][3][#J+r+2])*prod1 +
 (Q[hhh][3][#J+r+2]-Q[hhh][1][#J+r+2])*prod2 +
 (Q[hhh][1][#J+r+2]-Q[hhh][2][#J+r+2])*prod3
) then
 passes:=false;
end if;
end procedure;

--
procedure ThueMahlerEquationTest(~bbb,~Solutions,~ImageOfzetaC,
~ImageOfalphaC,~J,~ValueOfn,~kk,~hh,~ss,~tt);
/*
Use the tuple bbb (where bbb[i]=b_{JJJ[1+i]}, i=1 to #JJJ-1) and the
sequence ValueOfn to get the tuple bb (where bb[i] = b_{1+i}=n_i, i=1
to v).

Compute the corresponding X,Y. We can actually compute X,Y before the
getting bb because \pi_{l}^{n_{l}} for l not in J is already part of
\alpha. We do this.

Test if (X,Y,b_{2},...,b_{1+v+r}) gives solution of the Thue-Mahler
equation (1) and record it if so.

Note: bbb[i]=b_{JJJ[1+i]} = b_{1+J[i]}=n_{J[i]}=bb[J[i]] for i:=1 to #J
Note: $bbb[#J+i] = b_{JJJ[1+#J+i]} = b_{1+v+i} = a_i = bb[v+i]$ for $i:=1$ to r

`*/

//Calculate X,Y
if $t > 0$ then

$BETA1 := \text{ImageOfzetaC}[s+1] \times \text{ImageOfalphaC}[s+1]$;
for $i:=1$ to $#J$ do
$BETA1 *:= \text{ImageOfpiC}[J[i]][kk[J[i]]][s+1]^bbb[i]$;
end for;
for $i:=1$ to r do
$BETA1 *:= \text{ImageOfepsC}[i][s+1]^bbb[#J+i]$;
end for;
$THETA1 := \thetaC[s+1]$;

$Y := -\text{Imaginary}(BETA1)/\text{Imaginary}(THETA1)$;
$X := \text{Round}(\text{Real}(BETA1 + THETA1 \times Y))$;
$Y := \text{Round}(Y)$;

else // $t=0$

$BETA1 := \text{ImageOfzetaC}[1] \times \text{ImageOfalphaC}[1]$;
for $i:=1$ to $#J$ do
$BETA1 *:= \text{ImageOfpiC}[J[i]][kk[J[i]]][1]^bbb[i]$;
end for;
for $i:=1$ to r do
$BETA1 *:= \text{ImageOfepsC}[i][1]^bbb[#J+i]$;
end for;
$THETA1 := \thetaC[1]$;

$BETA2 := \text{ImageOfzetaC}[2] \times \text{ImageOfalphaC}[2]$;
for $i:=1$ to $#J$ do
$BETA2 *:= \text{ImageOfpiC}[J[i]][kk[J[i]]][2]^bbb[i]$;
end for;
for $i:=1$ to r do

122
BETA2 *=: ImageOfepsC[i][2]^bbb[#J+i];
end for;
THETA2:=thetaC[2];

Y:= Real(-(BETA1 - BETA2)/(THETA1 - THETA2));
X:=Round(Real(BETA1 + Y*THETA1));
Y:=Round(Y);

end if;

//Get the tuple bb from bbb and ValueOfn
bb:=[];
for i:=1 to v do
bb[i]:=ValueOfn[i]; //initialize
end for;
for i:=1 to #J do
bb[J[i]]:=bbb[i];
end for;
/*for i:=1 to r do
bb[v+i]:=bbb[#J+i];
end for;*/

//Build RHS and LHS expressions
RHSexpression:=a;
for i:=1 to v do
RHSexpression *=: p[i]^(bb[i]*hh[i] + ss[i] + tt[i]);
end for;
LHSexpression:= X^n + c[n]*Y^n;
for i:=1 to n-1 do
LHSexpression:=LHSexpression + c[i]*X^(n-i)*Y^i;
end for;

/*test if (X,Y,bb[1],...,bb[v])=(X,Y,b_{2},...,b_{1+v}) gives a solution
of the sign-relaxed Thue-Mahler equation (in the form |LHS|-|RHS| = 0) */
if IsZero(Abs(LHSexpression) - Abs(RHSexpression)) and Gcd(X,Y) eq 1 then
 temp:=[X,Y];
 for i:=1 to v do
 Append(~temp, bb[i]*hh[i] + ss[i] + tt[i]);
 end for;
 Include(~Solutions,temp);
end if;

end procedure;

/////////
procedure SieveBox(~bbb,~Solutions,~count,~Blower,~Bupper,~Q,~J, ~JJJ,~ValueOfn,~kk,~hh,~ss,~tt,~ImageOfzetaC,~ImageOfalphaC,k)
/*
This procedure calls itself.

When this procedure is called by the user, we assume that k=1 and
Solutions is a (possibly empty) list of solutions for the Thue-Mahler
equation.

After this procedure is finished executing its call by the user,
Solutions will contain all the solutions (X,Y,n_1,...,n_v,a_1,...,a_r) of
the sign-relaxed version of the Thue-Mahler equation that satisfy the
currently known bounds on the n_i and the a_i and that satisfy the
current case of (11). Note that these bounds miss finitely many
explicitly known exceptional tuples.

Recall: Every solution of the Thue-Mahler equation satisfies some case
of (11).
*/

if k gt #J+r then //done k-1 loops and k-1 >= #J+r loops. So the tuple is
 //built

 //Test the tuple bbb for the congruences (25)
passes:=true;
for hhh:=1 to #Q do
//test the tuple for the q=q_hhh congruence (25)
CongruenceTest(~bbb,hhh,~passes,~Q,~J);
if passes eq false then break hhh; end if;
end for;

if passes eq true then

/* Use the tuple bbb (where bbb[i]=b_{JJJ[1+i]}, i=1 to #JJJ-1) to get
the tuple bb (where bb[i] = b_{1+i}, i=1 to v). Compute the corresponding
X,Y. Test if (X,Y,b_{2},...,b_{1+v}) gives a solution of the sign-relaxed
version of the Thue-Mahler equation (1) and record it if so. */
ThueMahlerEquationTest(~bbb,~Solutions,~ImageOfzetaC,~ImageOfalphaC,~J,
~ValueOfn,~kk,~hh,~ss,~tt);

end if;

count +:= 1;
if count eq 1000000 then print("done a millon tuples"); count:=0; end if;

else //k le #J+r. Done k-1 loops and k-1 < #J+r, so the tuple is not
//built. Only k-1 entries of the tuple have been picked.
for i:=Blower[k] to Bupper[k] do
bbb[k]:=i;
SieveBox(~bbb,~Solutions,~count,~Blower,~Bupper,~Q,~J,~ValueOfn,
~kk,~hh,~ss,~tt,~ImageOfzetaC,~ImageOfalphaC,k+1);
end for;
end if;

end procedure;
Start the loop over cases.
The loop variable is iiii.

Give easy-to-use names to the parameters determining the case of the
factorized Thue-Mahler equation (11) that we are working with. Do the
same for some numbers derived from these parameters. These names
essentially coincide with the names given to them in Section 6.

numberOfCases := #ListOfCases;
time for iiii := 1 to numberOfCases do
 //if iiii eq 3 then continue iiii; end if;
 //time for iiii := 3 to 3 do

zeta := ListOfCases[iiii][v+2];
kk:=[];
ppp:=[];
ppi:=[];
hh:=[];
ss:=[];
tt:=[];
for L:=1 to v do
 kk[L]:=ListOfCases[ii][L][1][1]; //index of the unconstrained prime
 //above p[L]

 if kk[L] ne m[L] + 1 then
 ppp[L]:=pp[L][kk[L]]; //the unconstrained prime above p[L]
 hh[L]:=h[L][kk[L]]; //smallest positive integer such that ppp[L]^hh[L] is
 //principal
 else //kk[L] eq m[L] + 1
 //there are no unramified degree one primes above p[L]
 ppp[L]:=ideal<OK | 1>;
 hh[L]:=1;
 ppi[L]:=OK ! 1;
 end if;
 ss[L]:=ListOfCases[ii][L][3][1]; // the parameter s_L
 tt[L]:=0;
 for j:=1 to m[L] do
 tt[L]:=tt[L] + f[L][j]*ListOfCases[ii][L][2][j]; //tt[L] =
 //ord_p[L](N(bb))
 end for;
end for; //end L loop

/*
The last thing to do is compute a generator alpha for the ideal
\mathfrak{a} \mathfrak{b} \mathfrak{p}_1^{s_1} \ldots \mathfrak{p}_v^{s_v}
from Section 6, provided it is principle.
If the case of (11) we are considering has a solution, this ideal must be
principal. So if it is not principle, we no there are no solutions to case of (11) under consideration and skip directly to the next case (by using the continue command)

```
aa:=PowerProduct(pI,ListOfCases[iiii][v+1]);

aatimesbb:=aa;
for L:=1 to v do
  aaa:=ListOfCases[iiii][L][2];
  aatimesbb:=aatimesbb*PowerProduct(pp[L],aaa);
end for;

TheIdeal:=aatimesbb;
for L:=1 to v do
  TheIdeal:=TheIdeal*(ppp[L]^ss[L]);
end for;

IsTheIdealPrinciple,alpha:=IsPrincipal(TheIdeal);
//print("alpha");
//alpha;
if IsTheIdealPrinciple eq false then continue iiii; end if;

delete aa;
delete aatimesbb;
delete TheIdeal;
```
into $\overline{\mathbb{Q}_{p_1}}$ defined by the map $\theta \rightarrow \theta_{l[i][j]}$. /*

ImageOfzetap:=[];
for l:=1 to v do
 ImageOfzetap[l]:=[];
 for i:=1 to m[l] do
 ImageOfzetap[l][i]:=[];
 for j:=1 to e[l][i]*f[l][i] do
 ImageOfzetap[l][i][j]:=0;
 for ii:=1 to n do
 ImageOfzetap[l][i][j]:=ImageOfzetap[l][i][j] + zeta[ii]*ImageOfIntegralBasisElementp[l][i][j][ii];
 end for; //ii
 end for; //j
 end for; //i
end for; //l

ImageOfalphap:=[];
for l:=1 to v do
 ImageOfalphap[l]:=[];
 for i:=1 to m[l] do
 ImageOfalphap[l][i]:=[];
 for j:=1 to e[l][i]*f[l][i] do
 ImageOfalphap[l][i][j]:=0;
 for ii:=1 to n do
 ImageOfalphap[l][i][j]:=ImageOfalphap[l][i][j] + alpha[ii]*ImageOfIntegralBasisElementp[l][i][j][ii];
 end for; //ii
 end for; //j
 end for; //i
end for; //l

end for; //v

end for; //l
/*
ImageOfzetaC[i] := the image of zeta under the embedding of K into \CC
defined by the map theta --> thetaC[i].

ImageOfalphaC[i] := the image of alpha under the embedding of K into \CC
defined by the map theta --> thetaC[i].
*/

ImageOfzetaC:=\texttt{[ComplexField() |]};
for i:=1 to n do
ImageOfzetaC[i]:=0;
for ii:= 1 to n do
ImageOfzetaC[i]:=ImageOfzetaC[i]
+ zeta[ii]*ImageOfIntegralBasisElementC[i][ii];
end for; //ii
end for; //i

ImageOfalphaC:=\texttt{[ComplexField() |]};
for i:=1 to n do
ImageOfalphaC[i]:=0;
for ii:= 1 to n do
ImageOfalphaC[i]:=ImageOfalphaC[i]
+ alpha[ii]*ImageOfIntegralBasisElementC[i][ii];
end for; //ii
end for; //i

///

/*
For each p[l]:

If we are NOT in the case where there are no unramified degree one primes
above p[l], we fix the index i0 as in Section 7. We will represent i0 by
the unique pair of integers (i,j) such that
theta\textasciitilde{(i_0)} = theta_i\textasciitilde{(j)}.
*/

130
\(i_0[l] \) will be a sequence of two integers such that
\(\theta^{(i_0)} \) is represented by \(\theta^{(i_0[l][1])}[i_0[l][2]] \)

If there are no unramified degree one primes above \(p[l] \), \(i_0[l] \) will still be a sequence of two integers, but it will have no real meaning.

\[
\begin{align*}
\text{i0:=[]} & ; \\
\text{for l:=1 to v do} & \\
\text{i0[l]:=[kk[l],1];} & \\
\text{end for;} & \\
\end{align*}
\]

For each \(p[l] \):

If we are NOT in the case where there are no unramified degree one primes above \(p[l] \), we choose the indices \(j,k \) according to the guidelines in Section 9. As with \(i_0 \) we represent \(j \) by a sequence of two integers \(jj[j][l] \) in such a way that \(\theta^{(j)} \) is represented by \(\theta^{(jj[j][l][1])}[jj[j][l][2]] \). Similarly, for \(k \).

Suppose we find a choice of \(j,k \) that lets us use Lemma 7.4 to compute \(n_l \) immediately. If we compute a value for \(n_l \) that is not a nonnegative integer, we move onto the next case using the continue command. If we compute a value for \(n_l \) that is nonnegative, then we absorb \(\pi[l]^n_l = p[l]^n_l \) into \(\alpha \) and stop considering the index \(l \) in the rest of the algorithm, except in the last steps.

If there are no unramified degree one primes above \(p[l] \), we know that the value of \(n_l \) is zero and we will stop considering the index \(l \) in the algorithm, except in the last steps.

For \(l = 1, \ldots, v \):
If we know the value of n_l, then $\text{ValueOfn}[l] :=$ that value
If we don’t know the value of n_l, then $\text{ValueOfn}[l] := -1$

$JJ =$ set of those indices l in $\{1,\ldots,v\}$ for which there is at least one unramified degree one prime above $p[l]$.

By the end of this block of code,
$J =$ the set of all indices in $\{1,\ldots,v\}$ that we need to consider in the rest of the algorithm, except the last steps. These are the indices l for which there is at least one unramified degree one prime above $p[l]$ and there is no choice of j,k that lets us use Lemma 7.4 to compute n_l.

It will be convenient to have defined the following set of indices
$JJJ := \{1\} \cup \{1+l : l \text{ in } J\} \cup \{1+v+i : i \text{ in } \{1,\ldots,r\}\}$

$I =$ set of those l in J for which there is no choice of j,k that lets us use Lemma 8.3 to bound n_l.

$I_2 = J - I$.

For each l in I, $j[l][l]$ is the unique index such that $JJJ[j[l][l]] = l+1$.

We will compute δ_1 and δ_2 for each l in J

We will compute the numbers α_i from Section 8 for each l in J:
$\alpha_i = \text{LogarithmicAlphap}[l][i]$,

We could compute the α_i and δ_1, δ_2 from Section 8 for each l in $\{1,\ldots,v\}$ for which there is at least one unramified degree one prime above $p[l]$ or even for each l in $\{1,\ldots,v\}$, but we don’t

For l in I:
$\text{SpecialCase}[l] = \text{true}$ if the choice of j,k puts us in the special case of Section 17.
$\text{SpecialCase}[l] = \text{false}$ otherwise (general case)
$N_{star}[l] = N_{l}^{*}$ from Section 11.

Initialize $istar[l]$.

Eventually, $istar[l]$ will be the index in $\{2, \ldots, 1+v+r\}$ such that $ihat[l] = JJJ[istar[l]]$.

Possibly define $ihat[l]$ and $istar[l]$ for some l.

```plaintext
ValueOfn:=[];
for l:=1 to v do
    ValueOfn[l]:=-1; //initialize
end for;

Nstar:=[];
for l:=1 to v do
    Nstar[l]:=padicprecision[l]+1; //initialize
    /*the largest possible value of Valuation(x) for x an element of FFFppF[l] is padicprecision[l]*/
end for;

u:=[];
for l:=1 to v do
    u[l]:=-1; //initialize
end for;

SpecialCase:=[];
for l:=1 to v do
    SpecialCase[l]:=false; //initialize
end for;
```
ihat:=[];
for l:=1 to v do
ihat[l]:=0; //initialize to a value that ihat[l] can never assume
end for;

istar:=[];
for l:=1 to v do
istar[l]:=0; //initialize to a value that ihat[l] can never assume
end for;

//start with J={1,...,v}
J:=[];
for l:=1 to v do
J[l]:=l;
end for;

/*
Remove from J all the indices l such that p[l] has no unramified degree one primes above it. After they are removed, we know that, for every l in J, g has at least one linear factor in Q_{p_l}. Also set the value of n_l for these indices l.
*/
for l:=1 to v do
if kk[l] eq m[l]+1 then /*no degree one unramified primes above p_l*/
ValueOfn[l]:=0;
/* now absorb pi_l^n_l = ppi[l]^n_l into alpha and remove the index l from J */
alpha:=alpha*ppi[l]^ValueOfn[l];
Exclude(~J,l);
end if;
end for;

/*JJ = set of those indices l in {1,...,v} for which there is at least one unramified degree one prime above p[l].*/
JJ:=J;
I:=J;

//initialize delta1,delta2
delta1:=[**];
delta2:=[**];
for l:=1 to v do
delta1[l]:=FFFppF[l] ! 1;
delta2[l]:=FFFppF[l] ! 1;
end for;

//Now select j,k. We will remove indices from J and I (if possible) as
//we go.

jjj:=[];
kkk:=[];
LogarithmicAlphap:=[[];
CoefficientsLogarithmicAlphap:=[[];
for l:=1 to v do
LogarithmicAlphap[l]:=[**];
CoefficientsLogarithmicAlphap[l]:=[**];
for i:=1 to 1+v+r do
LogarithmicAlphap[l][i]:=0;
CoefficientsLogarithmicAlphap[l][i]:=0;
end for;
end for;

for l in JJ do
/*try to find a choice of j,k that gives ord_{p_l}(delta_1) \neq 0*/
for i:=1 to m[l] do
if i eq i0[l][1] then continue i; end if;
end for;
for j:=1 to e[l][i]*f[l][i] do
 j jj[l]:=i,j;
 for ii:=i to m[l] do
 if ii eq i0[l][1] then continue ii; end if;
 for jj:=1 to e[l][ii]*f[l][ii] do
 if ii eq i and jj le j then continue jj; end if;
 kkk[l]:=[ii,jj];
 /*the last if statement ensures that we never try both j=a,k=b and j=b,k=a*/
 delta1[l]:= ((thetap[l][i0[l][1]][i0[l][2]] -
 thetap[l][jjj[l][1]][jjj[l][2]])
 /
 (thetap[l][i0[l][1]][i0[l][2]] - thetap[l][kkk[l][1]][kkk[l][2]]))
 *(Image0fzetap[l][kkk[l][1]][kkk[l][2]]
 /
 Image0fzetap[l][jjj[l][1]][jjj[l][2]])
 *(Image0alphap[l][kkk[l][1]][kkk[l][2]]
 /
 Image0alphap[l][jjj[l][1]][jjj[l][2]]);
 if Valuation(delta1[l]) ne 0 then
 /*
 print("Valuation(delta1[l]):");
 Valuation(delta1[l]);
 print("iiii");
 iiiii;
 print("l:");
 l;
 print("jjj[l] and kkk[l]";
 jjj[l];
 kkk[l];
 */
 end if;
 delta2[l]:= ((thetap[l][jjj[l][1]][jjj[l][2]] -
 thetap[l][kkk[l][1]][kkk[l][2]] -
 thetap[l][jjj[l][1]][kkk[l][2]]
 /
 (thetap[l][i0[l][1]][i0[l][2]] - thetap[l][kkk[l][1]][kkk[l][2]]))
 *(Image0fzetap[l][kkk[l][1]][kkk[l][2]]
 /
 Image0fzetap[l][jjj[l][1]][jjj[l][2]])
 *(Image0alphap[l][kkk[l][1]][kkk[l][2]]
 /
 Image0alphap[l][jjj[l][1]][jjj[l][2]]);
 end if;
 end for;
end for;
thetap[l][kkk[l][1]][kkk[l][2]]
/ (thetap[l][kkk[l][1]][kkk[l][2]] - thetap[l][i0[l][1]][i0[l][2]])
*(ImageOfzetap[l][i0[l][1]][i0[l][2]]
/ ImageOfzetap[l][jjj[l][1]][jjj[l][2]])
*(ImageOfalphap[l][i0[l][1]][i0[l][2]]
/ ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);
//print("Valuation(delta2[l])");
//Valuation(delta2[l]);

Value0fn[l]:=
(Min([Valuation(delta1[l]),0]) - Valuation(delta2[l]))/hh[l];
//print("Value0fn[l]");
//Value0fn[l];

if not IsIntegral(Value0fn[l]) or Value0fn[l] lt 0 then continue iiii; end if; // b/c no solutions

/* now absorb pi_l^n_l = ppi[l]^n_l into alpha and remove the index l from J */

//print("alpha");
//alpha;
//print("ppi[l]"pname="alpha")
//ppi[l];
alpha:=alpha*ppi[l]^Value0fn[l];
Exclude(~J,l);
//print("alpha");
//alpha;

//Recompute Image0alphap[l]
Image0alphap[l]:=[];
for i1:=1 to m[l] do
 ImageOfalphap[l][i1]:=[**];
 for j1:=1 to e[l][i1]*f[l][i1] do
 ImageOfalphap[l][i1][j1]:=0;
 for ii1:= 1 to n do
 ImageOfalphap[l][i1][j1]:=ImageOfalphap[l][i1][j1] + alpha[ii1]*ImageOfIntegralBasisElementp[l][i1][j1][ii1];
 end for; //ii1
 end for; //j1
end for; //i1

//Recompute ImageOfalphaC
ImageOfalphaC:=[ComplexField()];
for i1:=1 to n do
 ImageOfalphaC[i1]:=0;
 for ii1:= 1 to n do
 ImageOfalphaC[i1]:=ImageOfalphaC[i1] + alpha[ii1]*ImageOfIntegralBasisElementC[i1][ii1];
 end for; //ii1
end for; //i1

//done choosing j,k for the current l, move onto the next l
continue l;
end if;
end for; //end jj loop
end for; //end ii loop
end for; //end j loop
end for; //end i loop
end for; //end l loop

//We are now finished defining J
/*J = the set of all indices in \{1,\ldots,v\} that we need to consider in the rest of the algorithm, except the last steps. These are the indices l*/
for which there is at least one unramified degree one prime above $p[l]$
and there is no choice of j,k that lets us use Lemma 7.4 to compute n_l.*/

\\\\\\\\\\
/*
It will be convenient to have defined the following set of indices

$\text{JJJ} := \{1\} \cup \{1+l : l \in J\} \cup \{1+v+i : i \in \{1, \ldots, r\}\}$

*/
\\\\\\\\\\
JJJ:=\{1\};
for l in J do
 Append(~JJJ,1+l);
end for;
for i:=1 to r do
 Append(~JJJ,1+v+i);
end for;

/*we start with $I = J$ and remove indices from I as we go.
Want to make $I = \{ \text{those } l \in J \text{ for which there is no choice of } j,k \text{ that lets us use Lemma 8.3 to bound } n_l. */
I:=J;

for l in J do
 /*
 if the program makes it this far, we know that there is no choice of j,k
such that $ord_{p_l}(\delta_1) \neq 0$.
Now we try to find a choice of j,k such that Lemma 8.3 can be used to
find an upper bound on n_l
 */
 for i:=1 to m[l] do
 if i eq i0[l][1] then continue i; end if;
 for j:=1 to e[l][i]*f[l][i] do
 j[j:][l]:=[i,j];
 for ii:=i to m[l] do
if ii eq i0[l][1] then continue ii; end if;
for jj:=1 to e[l][ii]*f[l][ii] do
if ii eq i and jj le j then continue jj; end if;
kkk[l]:=[ii,jj];
/*the last if statement ensures that we never try both j=a,k=b and
j=b,k=a*/

//define delta1[l] and delta2[l]
delta1[l]:= ((thetap[l][i0[l][1]][i0[l][2]] -
 thetap[l][jjj[l][1]][jjj[l][2]])
 /
 (thetap[l][i0[l][1]][i0[l][2]] - thetap[l][kkk[l][1]][kkk[l][2]]))
 *(ImageOfzetap[l][kkk[l][1]][kkk[l][2]]
 /
 ImageOfzetap[l][jjj[l][1]][jjj[l][2]])*
 (ImageOfalphap[l][kkk[l][1]][kkk[l][2]]
 /
 ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

delta2[l]:= ((thetap[l][jjj[l][1]][jjj[l][2]]
 - thetap[l][kkk[l][1]][kkk[l][2]])
 /
 (thetap[l][kkk[l][1]][kkk[l][2]] - thetap[l][i0[l][1]][i0[l][2]]))
 *(ImageOfzetap[l][i0[l][1]][i0[l][2]]
 /
 ImageOfzetap[l][jjj[l][1]][jjj[l][2]])*
 (ImageOfalphap[l][i0[l][1]][i0[l][2]]
 /
 ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

//define alpha_i’s for i in JJJ
LogarithmicAlphap[l][1]:=pAdicLog(delta1[l],p[l]);
for iii in J do
 LogarithmicAlphap[l][1+iii]:=
pAdicLog(ImageOfpip[iii][kk[iii]][l][kkk[l][1]][kkk[l][2]]/
ImageOfpip[iii][kk[iii]][1][jjj[l][1]][jjj[l][2]],p[l]);
end for;
for iii:=1 to r do
LogarithmicAlphap[l][1+v+iii]:=
pAdicLog(ImageOfeps[pl][kk[kk[l][1]][kk[l][2]]/ImageOfeps[pl][jjj[l][1]][jjj[l][2]],p[l]);
end for;

//get the coefficients of the alpha_i’s: the alpha_{ih}’s
for iii in JJJ do
CoefficientsLogarithmicAlphap[l][iii]:=GetCoefficients(LogarithmicAlphap[l][iii],l);
end for;

/*Check if Lemma 8.3 can be applied and, if so, compute Nstar[l] = N_{l}^{*}.*/
min:=Valuation(LogarithmicAlphap[l][JJJ[2]]);
for iii:=2 to #JJJ do
if Valuation(LogarithmicAlphap[l][JJJ[iii]]) < min then
min:=Valuation(LogarithmicAlphap[l][JJJ[iii]]);
end if;
end for;
if Valuation(LogarithmicAlphap[l][1]) < min then
temp:=Max([Floor((1/hh[l])*(1/(p[l]-1) - Valuation(delta2[l]))), Ceiling((1/hh[l])*min - Valuation(delta2[l]))-1]);
if temp > 0 then continue iiii; end if; //no solutions in the current case
if temp < Nstar[l] then Nstar[l]:=temp; end if;
end if;
for hhh:=1 to SS[l] do
min:=Valuation(CoefficientsLogarithmicAlphap[l][JJJ[2]][hhh]);
for iii:=2 to #JJJ do
if Valuation(CoefficientsLogarithmicAlphap[l][JJJ[iii]][hhh]) lt min then
 min:=Valuation(CoefficientsLogarithmicAlphap[l][JJJ[iii]][hhh]);
end if;
end for; //end iii loop
if Valuation(CoefficientsLogarithmicAlphap[l][1][hhh]) lt min then
 temp:=Max([Floor((1/hh[l])*(1/(p[l]-1) - Valuation(delta2[l]))),
 Ceiling((1/hh[l])*(u[l] + min - Valuation(delta2[l])))-1]);
 if temp lt 0 then continue iii; end if; //no solutions in the current
 //case
 if temp lt Nstar[l] then Nstar[l]:=temp; end if;
end if;
end for; //end hhh loop

if Nstar[l] lt padicprecision[l]+1 then
 //we've found a choice of j,k that lets us use Lemma 8.3 to bound n_l
 Exclude(~I,l);
 continue l;
end if;
end for;
end for;
end for;
end for;
end for;

/*
If the program makes it this far, we know that there is no choice of j,k
such that \text{ord}_{p_l}(\delta_1) \neq 0 and also there is no choice of j,k
that lets us use Lemma 8.3 to get an upper bound on n_l. So we will
eventually need to use linear forms in logs + lattice reduction to get a
small upper bound on n_l

Now we try to find a choice of j,k according to the remaining guidlines
in Section 9. The whole point is to try to choose \(j, k \) so that
\[\alpha_i / \alpha_{\hat{i}} \] is in \(\mathbb{Q}_{p_l} \) for all \(i \in J \).

For each candidate \(j, k \), we first do some simple checks for conditions
that imply \(\alpha_i / \alpha_{\hat{i}} \) is in \(\mathbb{Q}_{p_l} \) for all \(i \in J \). If
we are forced to check directly whether \(\alpha_i / \alpha_{\hat{i}} \) is in
\(\mathbb{Q}_{p_l} \) for all \(i \), we do this for all candidates for \(\hat{i} \). If we find a
candidate for \(\hat{i} \) that works, we remember it.

/*
check if we can take \(j, k \) so that \(\theta^{(j)}, \theta^{(k)} \) are roots of
linear factors of \(g(t) \) in \(\mathbb{Q}_{p_l}[t] \) */

jfound:=false;
for i:=1 to m[l] do
if i eq i0[l][1] then continue i; end if;
if Degree(gp[l][i]) eq 1 then
if jfound eq false then
jjj[l]:=[i,1];
jfound:=true;
continue i;
end if;
if jfound eq true then
kkk[l]:=[i,1];/* we've found a choice for \(j, k \) so that \(\theta^{(j)}, \theta^{(k)} \) are roots
of linear factors of \(g(t) \) in \(\mathbb{Q}_{p_l}[t] \) Section 17 */
SpecialCase[l]:=true;
continue l;
end if;
end if;
end for; //end i loop
check if we can take \(j, k \) so that \(\theta^{(j)}, \theta^{(k)} \) are the roots of a degree 2 factor of \(g(t) \cdot \mathbb{Q}_{p_l}[t] \)

*/
for \(i := 1 \) to \(m[l] \) do
if Degree(gp[l][i]) eq 2 then
 j[j][l]:=[i,1];
 k[k][l]:=[i,2];
 /*
 we've found a \(j, k \) so that \(\theta^{(j)}, \theta^{(k)} \) are the roots of a degree 2 factor of \(g(t) \cdot \mathbb{Q}_{p_l}[t] \)
 */
 SpecialCase[l]:=true;
 continue l;
end if;
end for;

/*
If there is a nonlinear factor \(g'(t) \) of \(g(t) \) in \(\mathbb{Q}_{p_l}[t] \) such that the extension of \(\mathbb{Q}_{p_l} \) that \(g'(t) \) generates contains all the roots of \(g'(t) \) (equivalently, the extension is Galois), then taking \(j, k \) so that \(\theta^{(j)}, \theta^{(k)} \) are two roots of \(g'(t) \) will ensure that \(\alpha_i / \alpha_{i\hat{a}} \) is in \(\mathbb{Q}_{p_l} \) for all \(i \).

If an irreducible polynomial over \(\mathbb{Q}_{p_l}[t] \) is neither inertial nor eisenstein, MAGMA does not support directly constructing the extension of \(\mathbb{Q}_{p_l} \) generated by the polynomial. However, we know that the extension of \(\mathbb{Q}_{p_l} \) generated by \(g'(t) \) is isomorphic to the completion of \(K \) at the prime ideal above \(p_l \) which corresponds to \(g'(t) \).

Note also that irreducible polynomials over \(p \)-adic fields have no
repeated roots (since p-adic fields have characteristic zero).

for i:=1 to m[l] do
 if Degree(gp[l][i]) gt 1 and
 #Roots(gp[l][i],Kpp[l][i]) eq Degree(gp[l][i]) then
 j jj[1]:=[i,1];
 k kk[1]:=[i,2];
 /*
 we’ve found j,k that ensure alpha_i / alpha_{ihat} is in Z_{p_l} for all
 i and all candidates for ihat.
 */
 SpecialCase[l]:=true;
 continue l;
 end if;
end for;

/*
Now we do the more difficult checks to see if we can choose j,k such
that alpha_i / alpha_{ihat} is in Z_{p_l} for all i,j
*/

for i:=1 to m[l] do
 if i eq i0[l][1] then continue i; end if;
 for j:=1 to e[l][i]*f[l][i] do
 jjj[l]:=[i,j];
 for ii:=i to m[l] do
 if ii eq i0[l][1] then continue ii; end if;
 for jj:=1 to e[l][ii]*f[l][ii] do
 if ii eq i and jj le j then continue jj; end if;
 kkk[l]:=[ii,jj];
 end for;
 end for;
 end for;
end for;
//define delta1[l] and delta2[l]
delta1[l]:= ((\text{thetap}[l][i0[l][1]][i0[l][2]]
- \text{thetap}[l][jjj[l][1]][jjj[l][2]])
/ (\text{thetap}[l][i0[l][1]][i0[l][2]] - \text{thetap}[l][kkk[l][1]][kkk[l][2]])
)*(ImageOfzetap[l][kkk[l][1]][kkk[l][2]]
/ ImageOfzetap[l][jjj[l][1]][jjj[l][2]])
*(ImageOfalphap[l][kkk[l][1]][kkk[l][2]]
/ ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

delta2[l]:= ((\text{thetap}[l][jjj[l][1]][jjj[l][2]]
- \text{thetap}[l][kkk[l][1]][kkk[l][2]])
/ (\text{thetap}[l][kkk[l][1]][kkk[l][2]] - \text{thetap}[l][i0[l][1]][i0[l][2]])
)*(ImageOfzetap[l][i0[l][1]][i0[l][2]]
/ ImageOfzetap[l][jjj[l][1]][jjj[l][2]])
*(ImageOfalphap[l][i0[l][1]][i0[l][2]]
/ ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

//define alpha_i's for i in JJJ
LogarithmicAlphap[l][1]:=pAdicLog(delta1[l],p[l]);
for iii in J do
LogarithmicAlphap[l][1+i]:= pAdicLog(ImageOfpip[iii][kk[iii]][l][kkk[l][1]][kkk[l][2]]
/ImageOfpip[iii][kk[iii]][l][jjj[l][1]][jjj[l][2]],p[l]);
end for;
for iii:=1 to r do
LogarithmicAlphap[l][1+v+i]:= pAdicLog(ImageOfepsp[iii][l][kkk[l][1]][kkk[l][2]]
/...
/Image0fes[p[iii][1][jjj[1][1]][jjj[1][2]],p[1]]; end for;

//get the coefficients of the alpha_i’s: the alpha_{ih}’s
for iii in JJJ do
CoefficientsLogarithmicAlphap[l][iii]:= GetCoefficients(LogarithmicAlphap[l][iii],1);
end for;

/*/ Check if there is a choice of j,k such that the alpha_i (i in JJJ) all belong to \mathbb{Q}_{p_l}. */
flag:=true;
for iii in JJJ do
for hhh:=2 to SS[l] do
if not IsZero(CoefficientsLogarithmicAlphap[l][iii][hhh]) then
flag:=false; break iii; end if;
end for;
end for;
if flag eq true then
//we’ve found a choice of j,k with desired properties
SpecialCase[l]:=true;
continue l;
end if;

/*/ Now we check directly whether we have alpha_i / alpha_{ihat} in Q_{p_l} for all i. We do this for all candidates for istar. */

//find all candidates for istar (hence for ihat)
candidatesforistar:=[];
min:=Valuation(LogarithmicAlphap[l][JJJ[2]]);
if Valuation(LogarithmicAlphap[l][iii]) lt min then
min:=Valuation(LogarithmicAlphap[l][iii]);
end if;
end for;
for iiii:=2 to #JJJ do
iii:=JJJ[iiiii];
if min eq Valuation(LogarithmicAlphap[l][iii]) then
Append(~candidatesforistar,iiiiii); end if;
end for;

/* For all candidates for ihat, check whether alpha_i / alpha_{ihat} in Q_{p_l} for all i in JJJ */
temp:=[];
for istarstar in candidatesforistar do
ihathat:=JJJ[istarstar];
for iii in JJJ do
temp[iii]:=GetCoefficients(LogarithmicAlphap[l][iii]
/LogarithmicAlphap[l][ihathat],l);
end for;
flag:=true;
for iii in JJJ do
for hhh:=2 to SS[l] do
if not IsZero(temp[iii][hhh]) then flag:=false; break iii; end if;
end for;
end for;
if flag eq true then
/* we’ve found a choice of j,k with the desired properties */
.SpecialCase[l]:=true;
ihat[l]:=ihathat;
istar[l]:=istarstar;
continue l;
end if;
end for;
end for; //jj
end for; //ii
end for; //j
end for; //i

/*
If the program makes it this far, it means there is no choice of j,k for
which ord_{p_l}(delta_1) = 0, no choice for which Lemma 8.3 gives an
upper bound for n_l, and no choice which puts us in the special case of
Section 17 (alpha_i / alpha_{ihat} in Z_{p_l} for all i).

We know that there are at most two degree one factors of g(t) in
Q_{p_l}[t] and there are no degree two factors. So there is at least one
factor of degree >= 3. We choose a nonlinear factor of g(t) in
Q_{p_l}[t] of minimal degree and choose j,k so that \theta^{(j)},
\theta^{(k)} are roots of that factor.
*/

minimaldegreegreaterthan1:=Degree(FFFppF[l],PrimeField(FFFppF[l]));
//initialize, no gp[l][i] can have degree strictly larger than this

for i:=1 to m[l] do
if Degree(gp[l][i]) gt 1 and
Degree(gp[l][i]) lt minimaldegreegreaterthan1 then
minimaldegreegreaterthan1:=Degree(gp[l][i]);
jjj:=[i,1];
kkk:=[i,2];
end if;
end for;
end for; //end l loop

I2:=J; //J = I union I2, I intersect I2 = empty
for l in I do
 Exclude(~I2,l);
end for;

//For each l in I, jl[l] is the unique index such that JJJ[jl[l]]=l+1.
jl:=[];
for i:=1 to v do
 jl[i]:=0;
end for;
for l in I do
 for i:=2 to 1+#J do
 if JJJ[i] eq l+1 then jl[l]:=i; break i; end if;
 end for;
end for;

//
/*
For each l in I, we will find a value for the index ihat
and compute the beta_i’s from Section 17: ihat[l], beta[l][i]

We also define d_l from Section 17: dd[l]

It can be that a choice of ihat[l] was already made in the last step.
If ihat[l] >0, we know this choice has been made. Otherwise, ihat[l] = 0
and we know a choice hasn’t been made yet.
*/
//

beta:=[];
dd:=[];
for l:=1 to v do
 beta[l]:=[**];
end for;
for l in I do

 //define delta1[l] and delta2[l]
 delta1[l] := ((thetap[l][i0[l][1]][i0[l][2]])
 - thetap[l][jjj[l][1]][jjj[l][2]])
 / (thetap[l][i0[l][1]][i0[l][2]] - thetap[l][kkk[l][1]][kkk[l][2]])
 *(ImageOfzetap[l][kkk[l][1]][kkk[l][2]])
 / ImageOfzetap[l][jjj[l][1]][jjj[l][2]])
 *(ImageOfalphap[l][kkk[l][1]][kkk[l][2]])
 / ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

 delta2[l] := ((thetap[l][jjj[l][1]][jjj[l][2]])
 - thetap[l][kkk[l][1]][kkk[l][2]])
 / (thetap[l][kkk[l][1]][kkk[l][2]] - thetap[l][i0[l][1]][i0[l][2]])
 *(ImageOfzetap[l][i0[l][1]][i0[l][2]])
 / ImageOfzetap[l][jjj[l][1]][jjj[l][2]])
 *(ImageOfalphap[l][i0[l][1]][i0[l][2]])
 / ImageOfalphap[l][jjj[l][1]][jjj[l][2]]);

 //define alpha_i’s
 LogarithmicAlphap[l][1] := pAdicLog(delta1[l],p[l]);
 for iii in J do
 LogarithmicAlphap[l][1+iii] := pAdicLog(ImageOfpip[iii][kk[iii][l]][kkk[l][1]][kkk[l][2]]
 / ImageOfpip[iii][kk[iii][l]][jjj[l][1]][jjj[l][2]],p[l]);
 end for;
 for iii := 1 to r do

LogarithmicAlphap[l][1+v+i]:=
pAdicLog(ImageOfepsp[iii][l][kkk[l][1]]*ImageOfepsp[iii][l][jjj[l][1]],p[l]);
end for;

if SpecialCase[l] eq true then

if ihat[l] eq 0 then
min:=Valuation(LogarithmicAlphap[l][JJJ[2]]);
ihat[l]:=JJJ[2];
istar[l]:=2;
for i:=3 to #JJJ do
iii:=JJJ[i];
if Valuation(LogarithmicAlphap[l][iii]) lt min then
min:=Valuation(LogarithmicAlphap[l][iii]);
ihat[l]:=iii;
istar[l]:=i;
end if;
end for;
end if;

for iii:=1 to 1+v+r do
beta[l][iii] := -LogarithmicAlphap[l][iii]/LogarithmicAlphap[l][ihat[l]];
/*
For l in I, we know that the beat_i’s live in \(\mathbb{Z}_{p_l} \). So their coefficients on the power basis for \(\mathbb{F}_{p_l} \) are all zero, except for the first. We can use this to save on computations with the beta_i’s:
*/
beta[l][iii] := GetCoefficients(beta[l][iii],l)[1];
end for;

dd[l]:=Valuation(delta2[l]) - Valuation(LogarithmicAlphap[l][ihat[l]]);

else //SpecialCase[l] eq false //general case
// get the coefficients of the alpha_i's: the alpha_{ih}'s
for iii:=1 to 1+v+r do
CoefficientsLogarithmicAlphap[l][iii]:= GetCoefficients(LogarithmicAlphap[l][iii],1);
end for;

// Choose an index hhh in {1,...,S[l]} arbitrarily
hhh:=1;

if ihat[l] eq 0 then
min:=Valuation(CoefficientsLogarithmicAlphap[l][JJJ[2]][hhh]);
ihat[l]:=JJJ[2];
istar[l]:=2;
for i:=3 to #JJJ do
iii:=JJJ[i];
if Valuation(CoefficientsLogarithmicAlphap[l][iii][hhh]) lt min then
min:=Valuation(CoefficientsLogarithmicAlphap[l][iii][hhh]);
ihat[l]:=iii;
istar[l]:=i;
end if;
end for;
end if;

for iii:=1 to 1+v+r do
beta[l][iii] := -CoefficientsLogarithmicAlphap[l][iii][hhh]
// CoefficientsLogarithmicAlphap[l][ihat[l]][hhh];
end for;

dd[l]:=Valuation(delta2[l]) - Valuation(LogarithmicAlphap[l][ihat[l]])
- u[l];

end if;

end for; //end l
Compute \(c_1(l) = c1[l] \) for each \(l \) in \(I \)

For each \(l \) in \(I \):

Find preimages in \(F \) of \(\theta^{(i_0)} \), \(\theta^{(j)} \), \(\theta^{(k)} \) under the embedding \(\sigma = mFFFppF[l] \) of \(F \) into \(FFFppF[l] \). We choose not to use MAGMA's built-in preimage-finder to avoid round-off errors.

To find the preimage of \(\theta^{(i_0)} \), we actually find the index \(ii0 \) in \(\{1, \ldots, n\} \) such that \(mFFFppF[l](\thetaF[ii0]) = \thetap[l][i0[1]][i0[2]]. \) Similarly for \(\theta^{(j)} \), \(\theta^{(k)} \).

\(Preimage0alphaj = \) preimage in \(F \) of \(\alpha^{(j)} \) under the embedding \(\sigma = mFFFppF[l] \) of \(F \) into \(FFFppF[l] \)

\(Preimage0zetaj = \) preimage in \(F \) of \(\zeta^{(j)} \) under the embedding \(\sigma = mFFFppF[l] \) of \(F \) into \(FFFppF[l] \)

\(Preimage0alphak = \) preimage in \(F \) of \(\alpha^{(k)} \) under the embedding \(\sigma = mFFFppF[l] \) of \(F \) into \(FFFppF[l] \)
PreimageOfzetak = preimage in \(\text{FFF}\) of \(\zeta^{(k)}\) under the embedding
\(\text{sigma} = \text{mFFFppF}[L]\) of \(\text{FFF}\) into \(\text{FFFppF}[1]\)

We also find the preimages of
\(\pi_{i}^{(j)}, \pi_{i}^{(k)}, \varepsilon_{i}^{(j)}, \varepsilon_{i}^{(k)}\)

//intialization
c1:=[];
rootsofginFFFppF:=[];
PreimageOfalphaj:=[];
PreimageOfzetaj:=[];
PreimageOfalphak:=[];
PreimageOfzetak:=[];
for \(l:=1\) to \(v\) do
\(c1[l]:=0;\)
rootsofginFFFppF[l]:=mFFFppF[l](rootsofginFFF);
end for;

for \(l\) in \(I\) do

//find preimage of \(\theta^{(i_0)}\)
max:=\(\text{Valuation}(\text{thetap}[l][i0[l][1]][i0[l][2]] - \text{rootsofginFFFppF}[l][1])\);
\(\text{ii0}:=1;\)
for \(i:=2\) to \(n\) do
if \(\text{Valuation}(\text{thetap}[l][i0[l][1]][i0[l][2]] - \text{rootsofginFFFppF}[l][i])\) \(>\) \(\text{max}\) then
max:=\(\text{Valuation}(\text{thetap}[l][i0[l][1]][i0[l][2]] - \text{rootsofginFFFppF}[l][i])\);
\(\text{ii0}:=i;\)
end if;
end for;

//find preimage of \(\theta^{(j)}\)
max:=Valuation(thetap[1][jjj[1][1]][jjj[1][2]] - rootsofginFFFppF[1][1]);

ijjj:=1;
for i:=2 to n do
 if Valuation(thetap[1][jjj[1][1]][jjj[1][2]] - rootsofginFFFppF[1][i]) gt max then
 max:=Valuation(thetap[1][jjj[1][1]][jjj[1][2]] - rootsofginFFFppF[1][i]);
 ijjj:=i;
 end if;
end for;

//find preimage of \theta^{(k)}
max:=Valuation(thetap[1][kkk[1][1]][kkk[1][2]] - rootsofginFFFppF[1][1]);

ikkk:=1;
for i:=2 to n do
 if Valuation(thetap[1][kkk[1][1]][kkk[1][2]] - rootsofginFFFppF[1][i]) gt max then
 max:=Valuation(thetap[1][kkk[1][1]][kkk[1][2]] - rootsofginFFFppF[1][i]);
 ikkk:=i;
 end if;
end for;

PreimageOfzetaj:=0;
for i:= 1 to n do
 PreimageOfzetaj:=PreimageOfzetaj + zeta[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i

PreimageOfalphaj:=0;
for i:= 1 to n do
 PreimageOfalphaj:=PreimageOfalphaj + alpha[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i

PreimageOfzetak:=0;
for i:= 1 to n do
 PreimageOfzetak:=PreimageOfzetak + zeta[i]*ImageOfIntegralBasisElementF[ikkk][i];
end for; //i
end for; //i
PreimageOfalphak:=0;
for i:= 1 to n do
 PreimageOfalphak:=PreimageOfalphak
 + alpha[i]*ImageOfIntegralBasisElementF[i][kkk][i];
end for; //i

/*
 Note that:
 preimage of \(\pi_i^{(j)} \) = ImageOfpiF[i][kk[i]][jjj]
 preimage of \(\pi_i^{(k)} \) = ImageOfpiF[i][kk[i]][kkk]
 preimage of \(\eps_i^{(j)} \) = ImageOfepsF[i][jjj]
 preimage of \(\eps_i^{(k)} \) = ImageOfepsF[i][kkk]
*/

/*
 Define the alpha_i for i in J, construct L, and find the prime ideal of L
 corresponding to sigma (see Section 11).
*/

alphaALGEBRAIC:=[FFF];
for i:=1 to 1 + v + r do
 alphaALGEBRAIC[i]:=1; //initialize
end for;
alphaALGEBRAIC[1]=
(thetaF[i0] - thetaF[ijjj] / thetaF[i0] - thetaF[ikkk])
(PreimageOfalphak/PreimageOfalphaj)(PreimageOfzetak/PreimageOfzetaj);
for i in J do
 if i+1 then
 ImageOfpiF[i][kk[i]][kkk]/ImageOfpiF[i][kk[i]][jjj];
 end for;
end for;
for i:=1 to r do
 alphaALGEBRAIC[1+v+i]=
 ImageOfepsF[i][kkk]/ImageOfepsF[i][jjj];
end for;

LL:=sub<FFF | alphaALGEBRAIC>;
LLx<x>:=PolynomialRing(LL);
D:=Degree(LL);
mm:=1+#J+r;

ppL:=ppF[l] meet MaximalOrder(LL);
eppL:=RamificationIndex(ppL);
fppL:=InertiaDegree(ppL);

///
/*
Compute all the constants that go into Yu’s Theorem
*/
///
///

d:=D;
ff:=fppL;

if p[l] eq 2 and IsIrreducible(x^2 + x + 1) then
d:=2*D;
ff:=Max([2,fppL]);
end if;

if p[l] ge 3 and ((p[l]^fppL mod 4) eq 1) and
IsIrreducible(x^3 + x^2 + x + 1) then
d:=2*D;
ff:=Max([2,fppL]);
end if;

delete x;
delete LLx;

kappa:=Floor(2*eppL*Log(p[l])/(p[l]-1));
// note d \geq 2 for us

// default case: p=2
kappa1:=160;
kappa2:=32;
kappa3:=40;
kappa4:=276;
kappa5:=16;
kappa6:=8;

if p[l] eq 3 then
kappa1:=759;
kappa2:=16;
kappa3:=20;
kappa4:=1074;
kappa5:=8;
kappa6:=4;
end if;

if p[l] ge 5 then
kappa5:=8;
kappa6:=4;
end if;

if epl eq 1 then
kappa2:=8*(p[l]-1)/(p[l]-2);
kappa3:=10;
if p[l] mod 4 eq 1 then
kappa1:=1473;
kappa4:=394*(p[l]-1)/(p[l]-2);
end if;
if p[l] mod 4 eq 3 then
kappa1:=1282;
kappa4:=366*(p[l]-1)/(p[l]-2);
end if;
end if;

if eppL \geq 2 then
 \kappa_2 := 16;
 \kappa_3 := 20;
 if p[l] eq 5 then
 \kappa_1 := 319;
 \kappa_4 := 402;
 end if;
 if p[l] \geq 7 and p[l] mod 4 eq 1 then
 \kappa_1 := 1502;
 \kappa_4 := 1372;
 end if;
 if p[l] \geq 7 and p[l] mod 4 eq 3 then
 \kappa_1 := 2190;
 \kappa_4 := 1890;
 end if;
end if;

c_2 := \left(\frac{((mm+1)^{mm+2}) \cdot d^{mm+2}}{(\text{Factorial}(mm-1))} \right) \times \frac{p[l]^f}{(ff \cdot \log(p[l]))^3} \times \text{Max}(1, \log(d)) \times \text{Max}(4 + \log(mm+1) + \log(d), eppL, ff \cdot \log(p[l])) ;

halphaALGEBRAIC := [];
for i := 1 to 1+v+r do
 halphaALGEBRAIC[i] := \text{AbsoluteLogarithmicHeight}(\alphaALGEBRAIC[i]);
end for;

c_3' := \kappa_1 \cdot \kappa_2^{mm} \cdot \frac{mm}{ff \cdot \log(p[l])}^{mm-1};
for i in JJJ do
 c_3' := c_3' \times \text{Max}(\text{halphaALGEBRAIC[i]}, \frac{ff \cdot \log(p[l])}{(\kappa_3 \cdot (mm+4) \cdot d)}) ;
end for;
c3primeprime := kappa4 * kappa5^mm * Exp(mm) * p[l]^(kappa*(mm-1));
for i in JJJ do
 c3primeprime := c3primeprime * Max([halphaALGEBRAIC[i],
 ff*Log(p[l])/(Exp(2)*kappa6*(p[l]^kappa)*d)]); end for;

qu := 4; //default case: p \geq 3, p^f_pp \equiv 1 mod 4
if p[l] eq 2 then qu := 3; end if;
if p[l] ge 3 and p[l]^fppL mod 4 eq 3 then qu := 1; end if;
c1[l] := (1/eppL)*(c2/qu)*Max([c3prime, c3primeprime]);
end for; //end l loop

//
/*
Done computing c1[l] for all l in I
*/
//

//
/*
Compute c4, c5 (with primed versions), c7
*/
//

c4prime := 0;
for l in I do
 if c4prime lt c1[l]/hh[l] then c4prime := c1[l]/hh[l]; end if;
end for;

c4primeprime := 0;
c5primeprime := 0;
for l in I2 do
if c4primeprime < Nstar[l] then c4primeprime := Nstar[l]; end if;
end for;

c4 := c4prime;
if c4prime < c4primeprime then c4 := c4primeprime; end if;

c5 := 0;
for l in I do
if c5 < -Valuation(delta2[l])/hh[l] then
c5 := -Valuation(delta2[l])/hh[l];
end if;
end for;

c6 := 0;
if not IsEmpty(I) then
l := I[1];
max := c1[l]/hh[l]; if Exp(2) > max then max := Exp(2); end if;
c6 := 2*(-Valuation(delta2[l])/hh[l] + max*Log(max));
for l in I do
max := c1[l]/hh[l]; if Exp(2) > max then max := Exp(2); end if;
if 2*(-Valuation(delta2[l])/hh[l] + max*Log(max)) > c6 then
c6 := 2*(-Valuation(delta2[l])/hh[l] + max*Log(max));
end if;
end for;
c6 := Ceiling(c6) - 1;
end if;

c7 := 2;
if c4primeprime > c7 then c7 := c4primeprime; end if;

\[c7 = \text{Max}([2, c_{\prime \prime}', c_6]); \]

//
/*
Compute \(c_8\), \(c_{8\prime}\), \(c_{9\prime}\), \(c_{9\prime\prime}\),
\(c_{9\prime\prime}\)
*/
//
min := \text{Abs}(\text{ImageOfalphaC}[1] \times \text{ImageOfzetaC}[1]);
for i := 2 to n do
\text{if} \ \text{Abs}(\text{ImageOfalphaC}[i] \times \text{ImageOfzetaC}[i]) < min \ \text{then}
min := \text{Abs}(\text{ImageOfalphaC}[i] \times \text{ImageOfzetaC}[i]); \ \text{end if};
\text{end if};
c_{8\prime} := \text{Abs}(a);
for i := 1 to v do
\text{if} \ i \ \text{in} \ J \ \text{then}
c_{8\prime} := c_{8\prime} \times p[i]^{ss[i] + tt[i]};
\text{else}
c_{8\prime} := c_{8\prime} \times p[i]^{ss[i] + tt[i] + ValueOfn[i] \times hh[i]};
\text{end if};
\text{end if};
c_{8\prime} := \text{Log}(c_{8\prime}/min);

prod := 1;
for i \ \text{in} \ J \ \text{do}
l := i;
prod := prod \times \text{ImageOfpiC}[i] [kk[i]] [1];
\text{end for};
min := \text{Abs}(prod);
for ii := 2 to n do
prod := 1;
for i \ \text{in} \ J \ \text{do}
l := i;
prod := prod \times \text{ImageOfpiC}[i] [kk[i]] [ii];
\text{end for};
if Abs(prod) lt min then min:=Abs(prod); end if;
end for;
c9prime:=1;
for i in J do
c9prime:=c9prime*p[i]**hh[i];
end for;
c9prime:=Log(c9prime/min);
max:=Abs(ImageOfalphaC[i]*ImageOfzetaC[i]);
for i:=2 to n do
 if Abs(ImageOfalphaC[i]*ImageOfzetaC[i]) gt max then
 max:=Abs(ImageOfalphaC[i]*ImageOfzetaC[i]); end if;
 end for;
c8primeprime:=Log(max);
prod:=1;
for i in J do
 prod:=prod*ImageOfpiC[i][kk[i]][1];
end for;
max:=Abs(prod);
for ii:=2 to n do
 prod:=1;
 for i in J do
 prod:=prod*ImageOfpiC[i][kk[i]][ii];
 end for;
 if Abs(prod) gt max then max:=Abs(prod); end if;
 end for;
c9primeprime:=Log(max);

 polygons
if s > 0:
 For each i0 in {1,...,s}, compute the indices j=j(i0), k=k(i0), and the numbers c16=c16(i0), c17=c17(i0), c18=c18(i0).
*/
if s ge 3 then

sFFF:=Signature(FFF); //sFFF = number of real embeddings of \CC
LogarithmicAlphaC:=[];

for i0i0i0:=1 to s do

 ///
 /*
 Choose j,k and compute c16
 */
 ///
 max:=0;
 for j:=1 to s do
 if j eq i0i0i0 then continue j; end if;
 for k:=j+1 to s do
 if k eq i0i0i0 then continue k; end if;
 OneOverc16:=(Abs(thetaC[i0i0i0] - thetaC[j])/2)
 *(Abs(thetaC[k] - thetaC[i0i0i0])/Abs(thetaC[j] - thetaC[k]));
 if OneOverc16 gt max then
 max:=OneOverc16;
 jjjjjj[i0i0i0]:=j;
 kkkkkk[i0i0i0]:=k;
 end if;
 end for;
 end for;
end if;
end for;
end for;
c16[i0i0i0]:=1/max;

……………………………………
/*
Select an embedding (sigma in Section 13) of FFF into the complex numbers
by selecting a conjugate in \CC (phidot) of the generator of FFF (FFF.1).

Find the images of the roots of g in \CC under this embedding:
rootsofginC

Embedding FFF into \RR will produce a smaller constant c17[i0i0i0].

Define kappa.
*/
……………………………………
kappa:=1;
if sFFF eq 0 then kappa:=2; end if;
phidot:=Conjugates(FFF.1)[1];
rootsofginC:=[];
for i:=1 to n do
trootsofginC[i]:=0*phidot;
for ii:=1 to Degree(FFF) do
trootsofginC[i]:=trootsofginC[i]+rootsofginFFF[i][ii]*phidot^(ii-1);
end for;
end for;

……………………………………
/*
Find preimages in FFF of theta^{(i_0)}, theta^{(j)}, theta^{(k)} under
the embedding sigma of FFF into \CC. We choose not to use MAGMA’s bulit
in preimage-finder to avoid round-off errors.

To find the preimage of theta^{(i_0)}, we actually find the index ii0 in
{1,...,n} such that \(\sigma(\theta_{F[ii0]}) = \theta_{C[i0i0i0]} \).
Similarly for \(\theta^{-\{(j)\}} \), \(\theta^{-\{(k)\}} \).

\text{PreimageOfalphaj} = \text{preimage in FFF of } \alpha^{-\{(j)\}} \text{ under the embedding sigma of FFF into \CC}

\text{PreimageOfzetaj} = \text{preimage in FFF of } \zeta^{-\{(j)\}} \text{ under the embedding sigma of FFF into \CC}

\text{PreimageOfalphak} = \text{preimage in FFF of } \alpha^{-\{(k)\}} \text{ under the embedding sigma of FFF into \CC}

\text{PreimageOfzetak} = \text{preimage in FFF of } \zeta^{-\{(k)\}} \text{ under the embedding sigma of FFF into \CC}

We also find the preimages of
\(\pi_{\{i\}}^{-\{(j)\}} \), \(\pi_{\{i\}}^{-\{(k)\}} \), \(\epsilon_{\{i\}}^{-\{(j)\}} \), \(\epsilon_{\{i\}}^{-\{(k)\}} \)

```plaintext
/*

//find preimage of \( \theta^{-\{i_0\}} \)
min:=Abs(\( \theta_{C[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[1]});
ii0:=1;
for i:=2 to n do
if Abs(\( \theta_{C[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[i]})) lt min then
min:=Abs(\( \theta_{C[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[i]});
ii0:=i;
end if;
end for;

//find preimage of \( \theta^{-\{j\}} \)
min:=Abs(\( \theta_{C[jjjjjj[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[1]});
iijj:=1;
for i:=2 to n do
if Abs(\( \theta_{C[jjjjjj[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[i]})) lt min then
min:=Abs(\( \theta_{C[jjjjjj[i0i0i0]} \) - \text{roots}\text{of}\text{ginC[i]});
end if;
end for;
```
ijjj:=i;
end if;
end for;

//find preimage of $\theta^{(k)}$
min:=Abs(thetaC[kkkkkk[i0i0i0]] - rootsofginC[1]);
ikkk:=1;
for i:=2 to n do
if Abs(thetaC[kkkkkk[i0i0i0]] - rootsofginC[i]) lt min then
min:=Abs(thetaC[kkkkkk[i0i0i0]] - rootsofginC[i]);
ikkk:=i;
end if;
end for;

PreimageOfzetaj:=0;
for i:= 1 to n do
PreimageOfzetaj:=PreimageOfzetaj
+ zeta[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i
PreimageOfalphaj:=0;
for i:= 1 to n do
PreimageOfalphaj:=PreimageOfalphaj
+ alpha[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i
PreimageOfzetak:=0;
for i:= 1 to n do
PreimageOfzetak:=PreimageOfzetak
+ zeta[i]*ImageOfIntegralBasisElementF[ikkk][i];
end for; //i
PreimageOfalphak:=0;
for i:= 1 to n do
PreimageOfalphak:=PreimageOfalphak
+ alpha[i]*ImageOfIntegralBasisElementF[ikkk][i];
end for; //i
/
Note that:
preimage of \(\pi_i^{(j)} \) = ImageOf\(\pi_iF[i][kk[i]][ijjj] \)
preimage of \(\pi_i^{(k)} \) = ImageOf\(\pi_iF[i][kk[i]][ikkk] \)
preimage of \(\varepsilon_i^{(j)} \) = ImageOf\(\varepsilon_iF[i][ijjj] \)
preimage of \(\varepsilon_i^{(k)} \) = ImageOf\(\varepsilon_iF[i][ikkk] \)
*/

///////////////////////////////////////
/*
Define the alpha_i for i in J, construct L, and find the prime ideal of L corresponding to sigma (see Section 11).
*/
///////////////////////////////////////
alphaALGEBRAIC:=\[FFF|\];
for i:=1 to 1 + v + r do
alphaALGEBRAIC[i]:=1; //initialize
end for;
alphaALGEBRAIC[1]:=(\thetaF[ii0] - \thetaF[ijjj]/\thetaF[ii0] - \thetaF[iikkk])
*(PreimageOfalphak/PreimageOfalphaj)
*(PreimageOfzetak/PreimageOfzetaj);
for i in J do
alphaALGEBRAIC[1+i]:=ImageOf\(\pi_iF[i][kk[i]][ikkk] \)
/ImageOf\(\pi_iF[i][kk[i]][ijjj] \);
end for;
for i:=1 to r do
alphaALGEBRAIC[1+v+i]:=ImageOf\(\varepsilon_iF[i][ikkk]/ImageOf\varepsilon_iF[i][ijjj] \);
end for;
LL:=sub<FFF | alphaALGEBRAIC>;
d:=Degree(LL);
mm:=1+#J+r;

169
/*
Compute c17.

Also compute the alpha_i as defined in Sections 18 and 20:
LogarithmicAlphaC[i0i0i0][i]
*/

LogarithmicAlphaC[i0i0i0]:=[RealField() |];
for i:=1 to 1+v + r do
LogarithmicAlphaC[i0i0i0][i]:=0;
end for;

temp:=((thetaC[i0i0i0] - thetaC[jjjjjj[i0i0i0]])
/(thetaC[i0i0i0] - thetaC[kkkkkk[i0i0i0]]))
*(ImageOfzetaC[kkkkkk[i0i0i0]]/ImageOfzetaC[jjjjjj[i0i0i0]])
*(ImageOfalphaC[kkkkkk[i0i0i0]]/ImageOfalphaC[jjjjjj[i0i0i0]]);
LogarithmicAlphaC[i0i0i0][1]:=Log(Abs(temp));
H:=Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[1]),
Abs(Log(Abs(temp))), 0.16]);
for i in J do
 temp:=ImageOfpiC[i][kk[i]][kkkkkk[i0i0i0]]
 /ImageOfpiC[i][kk[i]][jjjjjj[i0i0i0]];
 LogarithmicAlphaC[i0i0i0][1+i]:=Log(Abs(temp));
 H:=H*Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[1+i]),
 Abs(Log(Abs(temp))), 0.16]);
end for;
for i:=1 to r do
 temp:=ImageOfepsC[i][kkkkkk[i0i0i0]]/ImageOfepsC[i][jjjjjj[i0i0i0]];
 LogarithmicAlphaC[i0i0i0][1+v+i]:=Log(Abs(temp));
 H:=H*Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[1+v+i]),
 Abs(Log(Abs(temp))), 0.16]);
end for;
c17[i0i0i0] := Min([((1/kappa)*((Exp(1)*mm/2)^(kappa))*(30^((mm+3))*(mm^(3.5))),
(2^(6*mm+20))))*(d^2)*(1+Log(d))*H;

/////////////////////////////
/*
Compute c18
*/
/////////////////////////////
c18[i0i0i0] := Log(2*Log(2)*c16[i0i0i0]) + c17[i0i0i0];
end for; //end i0i0i0 loop
end if;

//
/*
s=1,2 case
*/
//
if s eq 1 or s eq 2 then
sFFF:=Signature(FFF); //sFFF = number of real embeddings of \CC
LogarithmicAlphaC:=[];
for i0i0i0:=1 to s do

="/**/
/*/ Choose j,k and compute c16
*/
="/**/
max:=0;
for i:=1 to t do
j:=s-1 + 2*i;
k:=j+1;
OneOverc16:=(Abs(thetaC[i0i0i0] - thetaC[j])/2)*
(Abs(thetaC[k] - thetaC[i0i0i0])/Abs(thetaC[j] - thetaC[k]));
if OneOverc16 gt max then
max:=OneOverc16;
jjjjjj[i0i0i0]:=j;
kkkkkk[i0i0i0]:=k;
end if;
end for;
c16[i0i0i0]:=1/max;

//
/*
Select an embedding (sigma in Section 13) of FFF into the complex numbers
by selecting a conjugate in \CC (phidot) of the generator of FFF (FFF.1).

Find the images of the roots of g in \CC under this embedding:
rootsofginC

Embedding FFF into \CC will produce a smaller constant c17[i0i0i0].

Define kappa.
*/
//
kappa:=1;
if sFFF eq 0 then kappa:=2; end if;
phidot:=Conjugates(FFF.1)[1];
rootsofginC:=[];
for i:=1 to n do
 rootsofginC[i]:=0*phidot;
 for ii:=1 to Degree(FFF) do
 rootsofginC[i]:=rootsofginC[i]+rootsofginFFF[i][ii]*phidot^((ii-1);
 end for;
end for;
/*
Find preimages in \(F \) of \(\theta^{(i_0)}, \theta^{(j)}, \theta^{(k)} \) under the embedding \(\sigma \) of \(F \) into \(\mathbb{C} \). We choose not to use MAGMA's built in preimage-finder to avoid round-off errors.

To find the preimage of \(\theta^{(i_0)} \), we actually find the index \(ii_0 \) in \(\{1, \ldots, n\} \) such that \(\sigma(\theta^{(i_0)}) = \theta^{(i_0 i_0)} \).
Similarly for \(\theta^{(j)}, \theta^{(k)} \).

\(\text{PreimageOfalphaj} = \text{preimage in } F \text{ of } \alpha^{(j)} \text{ under the embedding } \sigma \text{ of } F \text{ into } \mathbb{C} \)

\(\text{PreimageOfzetaj} = \text{preimage in } F \text{ of } \zeta^{(j)} \text{ under the embedding } \sigma \text{ of } F \text{ into } \mathbb{C} \)

\(\text{PreimageOfalphak} = \text{preimage in } F \text{ of } \alpha^{(k)} \text{ under the embedding } \sigma \text{ of } F \text{ into } \mathbb{C} \)

\(\text{PreimageOfzetak} = \text{preimage in } F \text{ of } \zeta^{(k)} \text{ under the embedding } \sigma \text{ of } F \text{ into } \mathbb{C} \)

We also find the preimages of
\(\pi_{(i)}^{(j)}, \pi_{(i)}^{(k)}, \varepsilon_{(i)}^{(j)}, \varepsilon_{(i)}^{(k)} \)
*/

//find preimage of \(\theta^{(i_0)} \)
min:=Abs(thetaC[i0i0i0] - rootsofginC[1]);
ii0:=1;
for i:=2 to n do
if Abs(thetaC[i0i0i0] - rootsofginC[i]) lt min then
 min:=Abs(thetaC[i0i0i0] - rootsofginC[i]);
 ii0:=i;
end if;

end for;

//find preimage of \theta^{(j)}
min:=Abs(thetaC[jjjjjj[i0i0i0]) - rootsofginC[1]);
ijjj:=1;
for i:=2 to n do
if Abs(thetaC[jjjjjj[i0i0i0]) - rootsofginC[i]) lt min then
min:=Abs(thetaC[jjjjjj[i0i0i0]) - rootsofginC[i]);
ijjj:=i;
end if;
end for;

//find preimage of \theta^{(k)}
min:=Abs(thetaC[kkkkkk[i0i0i0]) - rootsofginC[1]);
ikkk:=1;
for i:=2 to n do
if Abs(thetaC[kkkkkk[i0i0i0]) - rootsofginC[i]) lt min then
min:=Abs(thetaC[kkkkkk[i0i0i0]) - rootsofginC[i]);
ikkk:=i;
end if;
end for;

PreimageOfzetaj:=0;
for i:= 1 to n do
PreimageOfzetaj:=PreimageOfzetaj
+ zeta[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i
PreimageOfalphaj:=0;
for i:= 1 to n do
PreimageOfalphaj:=PreimageOfalphaj
+ alpha[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i
PreimageOfzetak:=0;
for i:= 1 to n do
PreimageOfzetak:=PreimageOfzetak
+ zeta[i]*ImageOfIntegralBasisElementF[ijjj][i];
end for; //i
\[+ \, \zeta[i] \ast \text{ImageOfIntegralBasisElementF}[ikkk][i]; \]
end for; //i

\text{PreimageOfalphak}:=0;

for i:= 1 to n do
\text{PreimageOfalphak}:=\text{PreimageOfalphak} + \alpha[i] \ast \text{ImageOfIntegralBasisElementF}[ikkk][i];
end for; //i

/*
Note that:
\text{preimage of } \pi_{i}^{(j)} = \text{ImageOfpiF}[i][kk[i]][jjj]
\text{preimage of } \pi_{i}^{(k)} = \text{ImageOfpiF}[i][kk[i]][kkk]
\text{preimage of } \varepsilon_{i}^{(j)} = \text{ImageOfepsF}[i][jjj]
\text{preimage of } \varepsilon_{i}^{(k)} = \text{ImageOfepsF}[i][kkk]
*/

\\\
end for;

LL:=sub<FFF | alphaALGEBRAIC>;
d:=Degree(LL);
mm:=2+#J+r;

////////////////////////////////////
/*
Compute c17.

Also compute the alpha_i as defined in Sections 18 and 20:
LogarithmicAlphaC[i0i0i0][i]
*/
////////////////////////////////////
LogarithmicAlphaC[i0i0i0]:=[RealField() |];
for i:=1 to 1+v + r do
LogarithmicAlphaC[i0i0i0][i]:=0;
end for;

temp:=((thetaC[i0i0i0] - thetaC[jjjjj[j0i0i0]])
/(thetaC[i0i0i0] - thetaC[kkkkkk[i0i0i0]]))
*(ImageOfzetaC[kkkkkk[i0i0i0]]/ImageOfzetaC[jjjjj[j0i0i0]])
*(ImageOfalphaC[kkkkkk[i0i0i0]]/ImageOfalphaC[jjjjj[j0i0i0]]);
LogarithmicAlphaC[i0i0i0][1]:=Imaginary(Log(temp));
H:=Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[1]),
Abs(Log(temp)), 0.16]);

for i in J do
temp:=ImageOfpiC[i][kk[i]][kkkkkk[i0i0i0]]
/ImageOfpiC[i][kk[i]][jjjjjj[i0i0i0]];
LogarithmicAlphaC[i0i0i0][1+i]:=Imaginary(Log(temp));
H:=H*Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[1+i]),
Abs(Log(temp)), 0.16]);
end for;

for i:=1 to r do
 temp:=ImageOfepsC[i][kkkkkk[i0i0i0]]/ImageOfepsC[i][jjjjjj[i0i0i0]];
 LogarithmicAlphaC[i0i0i0][1+v+i]:=Imaginary(Log(temp));
 H:=H*Max([d*AbsoluteLogarithmicHeight(alphaALGEBRAIC[i0i0i0]),
 Abs(Log(temp)), 0.16]);
end for;

LogarithmicAlphaC[i0i0i0][2+v+r]:=PI; // = Im Log(-1)

H:=H*Max([d*0, PI, 0.16]); //AbsoluteLogarithmicHeight(-1) = 0

c17[i0i0i0]:= Min([(1/kappa)*((Exp(1)*mm/2)^(kappa))*(30^(mm+3))*((mm)^3.5),
 (2^(6*mm+20))]*d^2)*(1+Log(d))*H;

 //
 /*
 Compute c18
 */
 //

c18[i0i0i0]:= Log(4*Arcsin(1/4)*c16[i0i0i0]) + c17[i0i0i0]
 + c17[i0i0i0]*Log(#JJJ);

end for; //end i0i0i0 loop
end if;

略
Choose c_{11} to minimize the value of c_{22}, the upper bound for H. In the process, compute the constants that depend on c_{11}: $c_{11}, c_{12}, c_{13}, c_{14}, c_{15}, c_{19}, c_{20}, c_{21}, c_{22}$

```cpp
if s > 0 then
    $c_{11} := (1/1000000) * c_{10}/(n - 1)$;

    $c_{12}^{prime} := (c_{8}^{prime} + c_5 * c_{9}^{prime})/(c_{10} - (n - 1) * c_{11})$;
    $c_{13}^{prime} := c_4 * c_{9}^{prime}/(c_{10} - (n - 1) * c_{11})$;
    if $c_{13}^{prime} < \text{Exp}(2)$ then $c_{13}^{prime} := \text{Exp}(2)$; end if;
    $c_{12}^{prime prime} := (c_{8}^{prime prime} + c_5 * c_{9}^{prime prime})/(c_{10} - c_{11})$;
    $c_{13}^{prime prime} := c_4 * c_{9}^{prime prime}/(c_{10} - c_{11})$;
    if $c_{13}^{prime prime} < \text{Exp}(2)$ then $c_{13}^{prime prime} := \text{Exp}(2)$; end if;

    $c_{14} := 2 * \text{Ceiling}(c_{12}^{prime} + c_{13}^{prime} * \text{Log}(c_{13}^{prime})) - 1$;
    if $c_{14} < 2 * \text{Ceiling}(c_{12}^{prime prime} + c_{13}^{prime prime} * \text{Log}(c_{13}^{prime prime})) - 1$ then
        $c_{14} := 2 * \text{Ceiling}(c_{12}^{prime prime} + c_{13}^{prime prime} * \text{Log}(c_{13}^{prime prime})) - 1$;
    end if;
    if $c_{14} < 2$ then $c_{14} := 2$; end if;

    $c_{15} := 0$;
if t > 0 then
```
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;
c19:=Ceiling(Log(2*c16[1])/c11)-1;
max1:=c17[1]/c11;
if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[1]/c11) + max1*Log(max1));
for i0i0i0:=2 to s do
 c19:=Ceiling(Log(2*c16[i0i0i0])/c11)-1;
 max1:=c17[i0i0i0]/c11;
 if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[i0i0i0]/c11) + max1*Log(max1));
end for;
c20:=Ceiling(c20)-1;
c21:=Max([c15,c19,c20,1]);
c22:=Max([c7,c14,c21]);

////
c11:=((1000000 - 1)/1000000)*c10/(n-1);
c12prime:=(c8prime + c5*c9prime)/(c10 - (n-1)*c11);
c13prime:=c4*c9prime/(c10 - (n-1)*c11);
if c13prime lt Exp(2) then c13prime:=Exp(2); end if;
c12primeprime:=(c8primeprime + c5*c9primeprime)/(c10 - c11);
c13primeprime:=c4*c9primeprime/(c10 - c11);
if c13primeprime lt Exp(2) then c13primeprime:=Exp(2); end if;
c14:=2*Ceiling(c12prime + c13prime*Log(c13prime))-1;
if c14 lt 2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1
then
c14:=2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1;
end if;
if c14 lt 2 then c14:=2; end if;

if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

c19:=Ceiling(Log(2*c16[1])/c11)-1;
max1:=c17[1]/c11;
if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[1]/c11) + max1*Log(max1));
for i0i0i0:=2 to s do
c19:=Ceiling(Log(2*c16[i0i0i0])/c11)-1;
max1:=c17[i0i0i0]/c11;
if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[i0i0i0]/c11) + max1*Log(max1));
end for;
c21:=Max([c15,c19,c20,1]);

if Max([c7,c14,c21]) gt c22 then c22:=Max([c7,c14,c21]); end if;

///
for i:=1 to 999 do

c11:=(i/1000)*c10/(n-1);

c12prime:=(c8prime + c5*c9prime)/(c10 - (n-1)*c11);
c13prime:=c4*c9prime/(c10 - (n-1)*c11);
if c13prime lt Exp(2) then c13prime:=Exp(2); end if;
c12primeprime:=(c8primeprime + c5*c9primeprime)/(c10 - c11);
c13primeprime:=c4*c9primeprime/(c10 - c11);
if c13primeprime lt Exp(2) then c13primeprime:=Exp(2); end if;

c14:=2*Ceiling(c12prime + c13prime*Log(c13prime))-1;
if c14 lt 2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1
then
 c14:=2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1;
end if;
if c14 lt 2 then c14:=2; end if;

if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

c19:=Ceiling(Log(2*c16[1])/c11)-1;
max1:=c17[1]/c11;
if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*(c18[1]/c11 + max1*Log(max1));
for i0i0i0:=2 to s do
c19:=Ceiling(Log(2*c16[i0i0i0])/c11)-1;
max1:=c17[i0i0i0]/c11;
if max1 lt Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[i0i0i0]/c11) + max1*Log(max1));
end for;
c21:=Max([c15,c19,c20,1]);

if Max([c7,c14,c21]) gt c22 then c22:=Max([c7,c14,c21]); end if;
end for; //end i

else //s = 0

//hubu
for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) < min then min:=Abs(Imaginary(thetaC[j]));
 end if;
end for; //end ii
if Floor(-Log(min)/c11) > 0 then c15:=Floor(-Log(min)/c11); end if;
end if;
c19:=Ceiling(Log(2*c16[1])/c11)-1;
max1:=c17[1]/c11;
if max1 < Exp(2) then max1:=Exp(2); end if;
c20:=2*(c18[1]/c11) + max1*Log(max1)
for i0i0i0:=2 to s do
 c19:=Ceiling(Log(2*c16[i0i0i0])/c11)-1;
 max1:=c17[i0i0i0]/c11;
 if max1 < Exp(2) then max1:=Exp(2); end if;
c20:=2*(c18[i0i0i0]/c11) + max1*Log(max1)
end for;
c21:=Max([c15,c19,c20,1]);
c22:=Max([c7,c14,c21]);

 c11:=(1000000 - 1)/1000000*c10/(n-1);
c12prime:=(c8prime + c5*c9prime)/(c10 - (n-1)*c11);
c13prime:=c4*c9prime/(c10 - (n-1)*c11);
if c13prime < Exp(2) then c13prime:=Exp(2); end if;
c12primeprime:=(c8primeprime + c5*c9primeprime)/(c10 - c11);
c13primeprime:=c4*c9primeprime/(c10 - c11);
if c13primeprime < Exp(2) then c13primeprime:=Exp(2); end if;
c14:=2*Ceiling(c12prime + c13prime*Log(c13prime))-1;
if c14 < 2*Ceiling(c12'' + c13''*Log(c13''))-1
then
c14:=2*Ceiling(c12'' + c13''*Log(c13''))-1;
end if;
if c14 < 2 then c14:=2; end if;

c15:=0;
if t > 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) < min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) > 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

c19:=Ceiling(Log(2*c16[1])/c11)-1;
max1:=c17[1]/c11;
if max1 < Exp(2) then max1:=Exp(2); end if;
c20:=2*((c18[1]/c11) + max1*Log(max1));
for i0i0i0:=2 to s do
 c19:=Ceiling(Log(2*c16[i0i0i0])/c11)-1;
 max1:=c17[i0i0i0]/c11;
 if max1 < Exp(2) then max1:=Exp(2); end if;
 c20:=2*((c18[i0i0i0]/c11) + max1*Log(max1));
end for;

c21:=Max([c15,c19,c20,1]);

if Max([c7,c14,c21]) > c22 then c22:=Max([c7,c14,c21]); end if;

///

for i:=1 to 999 do
c11:=(i/1000)*c10/(n-1);

c12prime:=(c8prime + c5*c9prime)/(c10 - (n-1)*c11);
c13prime:=c4*c9prime/(c10 - (n-1)*c11);
if c13prime lt Exp(2) then c13prime:=Exp(2); end if;
c12primeprime:=(c8primeprime + c5*c9primeprime)/(c10 - c11);
c13primeprime:=c4*c9primeprime/(c10 - c11);
if c13primeprime lt Exp(2) then c13primeprime:=Exp(2); end if;

c14:=2*Ceiling(c12prime + c13prime*Log(c13prime))-1;
if c14 lt 2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1 then c14:=2*Ceiling(c12primeprime + c13primeprime*Log(c13primeprime))-1; end if;
if c14 lt 2 then c14:=2; end if;

c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

if Max([c7,c14,c15]) gt c22 then c22:=Max([c7,c14,c15]); end if;
end for; //end i

end if;

///
/*
UpperBoundForH:= current best upper bound for H = H_0 from Section 15.

UpperBoundForA:= current best upper bound for A = A_0 from Section 15.

ConditionalUpperBoundForA[i0]:= current best i_0-conditonal upper bound for A
= A_0(i_0) from Section 19.

UpperBoundForn[l]:= current best upper bound for n_l = N_l from Section 15.

UpperBoundForN:= current best upper bound for N

For l in I2, N_{l}^{*}\{\ast\} bounds n_l.
For l in I, we use Corollary 14.2.

B[i]:= current best upper bound for |b_i| = B_i from section 15.
*/

///
UpperBoundForn:=[];
ConditionalUpperBoundForA:=[];
UpperBoundForH:=c22;
UpperBoundForA:=UpperBoundForH;
for i0:=1 to s do
 ConditionalUpperBoundForA[i0]:=UpperBoundForA;
end for;
for l:=1 to v do
 UpperBoundForn[l]:=1; //initialize
end for;
for l in I2 do
 UpperBoundForn[l]:=Nstar[1];
end for;
for l in I do
 UpperBoundForn[l]:
Ceiling((c1[l]/hh[l])*Log(c22) - (1/hh[l])*Valuation(delta2[l])) - 1;
if 2 gt UpperBoundForn[l] then UpperBoundForn[l]:=2; end if;
if c22 lt UpperBoundForn[l] then UpperBoundForn[l]:=c22; end if;
end for;

UpperBoundForN:=Max(UpperBoundForn);

B:=[];
for i:=1 to 1+v+r do
B[i]:=0; //initialize
end for;
B[1]:=1;
for i in J do
B[1+i]:=UpperBoundForn[i];
end for;
for i:=1 to r do
B[1+v+i]:=UpperBoundForA;
end for;

//
/*
If UpperBoundForA < 0, then we know there are no solutions for the
current case of (11).

If UpperBoundForn[i] < 0 for some i in J, then we know there are no
solutions for the current case of (11).
*/
//

print("Starting basic reduction procedures.");

///
/*
Start Of Loop For Repeated Simple Reductions
*/
Improvement:=true;

while Improvement do
 Improvement:=false;

for l in I do
 //print("basic p_l, l=");
 //l;
end for;

Define:
W[i] = W_i (weights) for p_l (Section 18)
QQ = Q (Section 18)
mmmm = m for p_l (Section 18)

Initialize:
betam[i] = beta_i^(m) for p[L],
Tm, where Transpose(Tm) = U_m from Section 18

W:=[];
for i:=1 to 1+v+r do
 W[i]:=0; //initialize
end for;
W[1]:=0;
for i:=2 to #JJJ do
W[JJJ[i]]:=RoundP(UpperBoundForH/B[JJJ[#JJJ]]);
end for;
//print("weights: ");
//W;

//print("B");
//B;

QQ:=0;
for i in JJJ do
QQ:=QQ+(W[i]^2)*(B[i]^2); //recall W[1]=0
end for;

prod:=1;
for i:=2 to #JJJ do
prod:=prod*W[JJJ[i]];
end for;

/*
mmmm:=Ceiling(
((#JJJ - 1)/(2*Log(p[l])))*Log(2^((#JJJ - 1)
* QQ / prod^((2/(#JJJ - 1)))
));
*/

mmmm:=Ceiling(
((#JJJ - 1)/(2*Log(p[l])))*Log(QQ / prod^((2/(#JJJ - 1)))
));

betam:=[];
for i:=1 to 1+v+r do
betam[i]:=0;
end for;
Tm:=ScalarMatrix(IntegerRing(),#JJJ-1,1);
/*initialize as #JJJ-1 by #JJJ-1 identity matrix*/

//
/*
Start while loop that will increase m until the p_l-adic reduction yeilds
a new upper bound for n_l or until a number of increases has been made
with no success
*/
///
flag:=true;
RunThroughNumber:=0;
while flag do
//print("RunThroughNumber");
//RunThroughNumber;

///
/*
Increase mmmm = m (if this is not the first attempt with the basic
p_l-reduction procedure).
Calculate betam[i] = beta_i^(m).
*/
///
mmmm:=Ceiling(mmmm + (RunThroughNumber/20)*mmmm);
//print("mmmm");
//mmmm;

if mmmm gt (0.95)*padicprecision[l] then
PadicPrecisionMultiplier[l] := PadicPrecisionMultiplier[l] + 1;
continue PrecisionLoopVariable;
end if;

for i in JJJ do
betam[i]:= SmallestNonnegativeRemainderModpLToThem(beta[l][i],l,mmmm);
end for;

Thông số: Am = A_m for p[L]
Gamma_m = lattice generated by columns of A_m

Am := ZeroMatrix(IntegerRing(), v+r+2, v+r+2);
for i := 1 to v+r+1 do
 Am[i][i] := W[i];
end for;
for j := 1 to v+r+1 do
 Am[v+r+2][j] := W[ihat[l]]*betam[j];
end for;
for i := 1+v+r to 2 by -1 do
 if i eq ihat[l] or not i in JJJ then
 RemoveColumn(~Am, i);
 RemoveRow(~Am, i);
 end if;
end for;
RemoveColumn(~Am, 1);
RemoveRow(~Am, 1);
//Am is now a #JJJ-1 by #JJJ-1 matrix
Am := Am*Transpose(Tm); //Transpose(Tm) = Um from Section 15
/* If this is the first run through, Tm is the identity. If this is not
the first run through, this will save computation time.

191
Compute an LLL reduced basis for the lattice Γ_m generated by columns of A_m. The algorithm used is de Weger's exact integer version of LLL.

Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it the transpose of A_m. Similarly, it spits out the transpose of B_m and the transpose of U_m.

Here $T_m^* \cdot A_m = B_m$. So with $U_m = T_m^*$ we have $A_m \cdot U_m = B_m$, and With $V_m = B_m \cdot U_m \cdot B_m^{-1} = A_m \cdot T_m \cdot A_m^\sim(-1)$, we have $V_m^* \cdot A_m = B_m$.

Compute the lower bound for $\lambda(\Gamma_m, y)$ using Lemma 16.1. If it is large enough (bigger than \sqrt{Q}), compute the new upper bound for $n[L]$. Otherwise, increase m and reduce again (go back to the start of the while loop).
lowerbound:=0;

//START IF
if betam[1] eq 0 then //y = 0 case (vectors)

//c1 = Transpose(Bm)[1]
lowerbound:= 2^(-(JJJ-2)/2)*Norm(Transpose(Bm)[1])^(1/2);

else //y neq 0 case

yyy:=ZeroMatrix(RationalField(),J-JJJ+1,1);
yyy[J-JJJ+1][1]:=-W[ihat[l]]*betam[1];
sss:=(Bm^(-1))*yyy;

IndicesjWithsjNotIntegral:=[];
for j:=1 to J-JJJ do
 if not IsIntegral(sss[j][1]) then
 Append(IndicesjWithsjNotIntegral,j);
 end if;
end for;

delta:=[RealField() |];
for j:=1 to J-JJ do
 delta[j]:=0;
 for i:=j+1 to J-JJJ do
 if delta[j] lt DistanceToNearestInteger(sss[i][1])*Norm(Transpose(Bm)[i])^(1/2) then
 delta[j]:= DistanceToNearestInteger(sss[i][1])*Norm(Transpose(Bm)[i])^(1/2);
 end if;
 end for;
end for;
delta[J-JJJ-1]:=0;
max:=0;
for j in IndicesjWithsjNotIntegral do
if max lt
2^(-(#JJJ-2)/2) * DistanceToNearestInteger(sss[j][1])
* Norm(Transpose(Bm)[1])^(1/2) - (#JJJ - 1 - j)*delta[j]
then
max:=2^(-(#JJJ-2)/2) * DistanceToNearestInteger(sss[j][1])
* Norm(Transpose(Bm)[1])^(1/2) - (#JJJ - 1 - j)*delta[j];
end if;
end for;
lowerbound:=max;
end if;
//END IF

if lowerbound gt QQ^(1/2) then
flag:=false; //ready to get out of while loop that increases m if
//necessary
OldUpperBoundForn[l]:=UpperBoundForn[l];

NewUpperBoundForn[l]:= Max([
Floor((1/hh[l])*(1/(p[l] - 1) - Valuation(delta2[l]))),
Ceiling((1/hh[l])*(mmmm-dd[l]))-1,
0
]);

if NewUpperBoundForn[l] lt OldUpperBoundForn[l] then
Improvement:=true;
UpperBoundForn[l]:=NewUpperBoundForn[l];
B[1+l]:=UpperBoundForn[l];
end if;
else

RunThroughNumber+:=1; //increase m and try again

/*
If increasing m 20 times (in which case m will be double its original
value) fails to produce a new upper bound for n_l, move onto the next
value of l in I. Also, print a message indicating that the basic
p_l-adic reduction procedure was unsuccessful.
*/

if RunThroughNumber eq 20 then
print("Basic p-adic reduction taking too long");
print("Case:");
iiii;
print("l:");
l;
continue l;
end if;

end if; /* IF controlled by lowerbound gt QQ^(1/2) */

end while; /*this is the loop that increases m if necessary, the while
loop controlled by flag*/

if UpperBoundForn[l] lt 0 then
//there are no solutions of the current case of (11)
continue iii;
end if;
end for; // end l loop

UpperBoundForN:=Max(UpperBoundForn);

/*
print("Starting basic real reduction");
*/
print("Log_10 of Upper Bound For A");
Log(UpperBoundForA)/Log(10);
*/

///
/*
Basic Real Reduction (Section 19)
*/
///
for i0:=1 to s do
 ConditionalUpperBoundForA[i0]:=UpperBoundForA;
end for;

///
/*
Totally Complex Case, i.e, s=0
*/
///
if s eq 0 then

//Choose c11 to find an choose optimal upper bound for A from Lemma 19.1
MIN:=UpperBoundForA;

 c11:=(1/1000000)*c10/(n-1);
c15:=0;
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
 end for; //end ii
 if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max \lt
Ceiling($((c_{8primeprime} + c_{9primeprime} \cdot \text{UpperBoundForN})/(c_{10} - c_{11})) - 1$)
then
max := Ceiling($((c_{8primeprime} + c_{9primeprime} \cdot \text{UpperBoundForN})/(c_{10} - c_{11})) - 1$);
end if;
if max \lt c_{15} then max := c_{15}; end if;
// now max is the upper bound for A in Lemma 19.1 with a certain value of
// c_{11}
if max \lt MIN then MIN := max; end if;

c_{11} := ((1000000 - 1)/1000000) * c_{10}/(n-1);

c_{15} := 0;
min := Abs(Imaginary(thetaC[s+1]));
for ii := 2 to t do
j := s - 1 + 2*ii;
if Abs(Imaginary(thetaC[j])) \lt min then min := Abs(Imaginary(thetaC[j]));
end if;
end for; // end ii
if Floor(-Log(min)/c_{11}) \gt 0 then c_{15} := Floor(-Log(min)/c_{11}); end if;

max := Ceiling($((c_{prime} + c_{prime} \cdot \text{UpperBoundForN})/(c_{10} - (n-1) \cdot c_{11})) - 1$)
if max \lt
Ceiling($((c_{primeprime} + c_{primeprime} \cdot \text{UpperBoundForN})/(c_{10} - c_{11})) - 1$)
then
max := Ceiling($((c_{primeprime} + c_{primeprime} \cdot \text{UpperBoundForN})/(c_{10} - c_{11})) - 1$);
end if;
if max \lt c_{15} then max := c_{15}; end if;
// now max is the upper bound for A in Lemma 19.1 with a certain value of
// c_{11}
if max \lt MIN then MIN := max; end if;

for i := 1 to 999 do
c_{11} := (i/1000) * c_{10}/(n-1);

c15:=0;
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1 with a certain value of //c11
if max lt MIN then MIN:=max; end if;
end for; //end i loop

OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=MIN;

if NewUpperBoundForA lt OldUpperBoundForA then
Improvement:=true;
UpperBoundForA:=NewUpperBoundForA;
end if;

else //s > 0

/*
 s>0 Case
 */
Real Case, i.e., $s \geq 3$

if $s \geq 3$ then // $s \geq 3$ real case

JumpToEndOfRealReduction:=false;
for i0:=1 to s do
 //print("basic real, i0=");
 //i0;

Define weights $W[i]$ (Section 19)
R (Section 19)
S (Section 19)
CCCCC = C (Section 19)

Initialize:
TC, where Transpose(TC) = U_C from Section 19
phi[i]:= phi_i from Section 19

W:=[];
for i:=1 to 1+v+r do
 W[i]:=0; //initialize
end for;

H0prime:=0;
for i:=2 to #JJJ-1 do
 if H0prime lt B[J JJ[i]] then H0prime:=B[J JJ[i]]; end if;
end for;

W[1]:=0;
for i:=2 to #JJJ-1 do
W[JJJ[i]]:=RoundP(H0prime/B[JJJ[i]]);
end for;
//print("weights");
//W;
//print("B");
//B;

R:=0;
for i in JJJ do
R:=R + B[i];
end for;
R:=(1/2)*R;
//this is just an approximation to R

S:=0;
for i:=2 to #JJJ-1 do
S:=S+(W[JJJ[i]]^2)*(B[JJJ[i]]^2);
end for;

prod:=1;
for i:=2 to #JJJ-1 do
prod:=prod*W[JJJ[i]];
end for;

/*
LogC:= ((#JJJ-1)/2)*Log(
(R^2 + S) / (2^(-(#JJJ-1)) * (Abs(LogarithmicAlphaC[i0][JJJ[#JJJ]])*prod)^(2/(#JJJ-1)))
);
*/
LogC := ((#JJJ-1)/2)*Log((R^2 + S) / (2^{-(2*(#JJJ-1))} * \text{Abs(LogarithmicAlphaC[i0][JJJ[#JJJ]])}^{2/(#JJJ-1)} * \text{prod})^{2/(#JJJ-1)})

/*
LogC/Log(10);
LogC :=430;
LogC := ((#JJJ-1)/2)*Log((#JJJ-1) * \text{Max([UpperBoundForA,Max(UpperBoundForn)])}^2);
LogC/Log(10);
break iiii;
*/

//CCCCC:=Ceiling(Exp(LogC));

TC:=ScalarMatrix(IntegerRing(),#JJJ-1,1);
//#JJJ-1 by #JJJ-1 identity matrix

phi:=[];
for i:=1 to 1+v+r do
phi[i]:=0;
end for;

///
/*
Start the while loop where C will be increased until a new
conditional upper for A is found that improves on the unconditional upper bound for A

201
or until a number of increases of C have been made with no success.
/
//
RunThroughNumber1:=0;
RunThroughNumber2:=0;
flag:=true;
while flag do

//
/*
Increase CCCCCC = C (if this is not the first attempt the basic real
reduction procedure).

Calculate the phi_i for i in JJJ.

Calculate R.
*/
//
CCCCCC:=
Ceiling(Exp(LogC + ((RunThroughNumber1 + RunThroughNumber2)/20)*LogC));
if RunThroughNumber1 eq 21 and UpperBoundForA gt 100000 then
CCCCCC:=Ceiling(Exp(LogC + 9*LogC));
end if;
if RunThroughNumber1 eq 22 and UpperBoundForA gt 100000 then
CCCCCC:=Ceiling(Exp(LogC + 9*LogC));
end if;
if LogC/Log(10) gt (0.95)*realprecision then
RealPrecisionMultiplier := RealPrecisionMultiplier + 1;
continue PrecisionLoopVariable;
end if;

//print("Log_10 (C)");
//Floor(LogC/Log(10));
for i in JJJ do
phi[i]:=Round(CCCCCC*LogarithmicAlphaC[i0][i]);
end for;
phi[1]:=Round(CCCCCC*LogarithmicAlphaC[i0][1]);

if Abs(phi[JJJ[#JJJ]]) lt 2 then
if CCCCCC*LogarithmicAlphaC[i0][JJJ[#JJJ]] ge 0 then
phi[JJJ[#JJJ]]:=2;
else
phi[JJJ[#JJJ]]:=-2;
end if;
end if;

if IsIntegral(phi[1]/phi[JJJ[#JJJ]]) then
if Abs(phi[1]+1 - CCCCCC*LogarithmicAlphaC[i0][1]) le 1 then
phi[1]:=phi[1]+1;
else
phi[1]:=phi[1]-1;
end if;
end if;

R:=0;
for i in JJJ do
R:=R + B[i]*Abs(CCCCCC*LogarithmicAlphaC[i0][i] - phi[i]);
end for;

/***/
/*
Compute:
AC = A_C
*/
/**/
AC:=ZeroMatrix(IntegerRing(),v+r+1,v+r+1);
for i:=1 to v+r do
AC[i][i]:=W[i];
end for;
for j:=1 to v+r+1 do
AC[v+r+1][j]:=phi[j];
end for;

for i:=1+v+r to 2 by -1 do
if not i in JJJ then
RemoveColumn(~AC,i);
RemoveRow(~AC,i);
end if;
end for;

RemoveRow(~AC,1);
RemoveColumn(~AC,1);

//AC is now a #JJJ-1 by #JJJ-1 matrix

AC:=AC*Transpose(TC);
/* If this is the first run through Transpose(TC) is the identity.
Otherwise Transpose(TC) is UC. This will time in the LLL reduction. */
//print("AC[#JJJ-1]:");
//AC[#JJJ-1];

//

/* Compute LLL reduced basis for the lattice Gamma_C generated by columns of
A_C. The algorithm used is de Weger’s exact integer version of LLL.

Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it
the transpose of A_C. Similarly, it spits out the transpose of B_C and
the transpose of U_C
*/
//
temp, TC, rank := LLL(Transpose(AC) : Proof := true, Method := "Integral",
Delta := 0.75, Eta := 0.5);

BC := MatrixRing(RationalField(), JJJ-1) ! Transpose(temp);
// columns are LLL-reduced basis for Gamma_C

/*
Here TC * Transpose(AC) = Transpose(BC).
So with UC = Transpose(TC) we have AC * UC = BC,
and With
VC = BC * Transpose(TC) * BC^(-1) = AC * Transpose(TC) * AC^(-1), we have
VC * AC = BC.
*/

Thông báo: 2^(-(#JJJ-2)/2)*Norm(Transpose(BC)[1])^(1/2);
print("Thông báo, y=0:");
Thông báo;
else

yyy := ZeroMatrix(RationalField(), JJJ-1, 1);

//START IF
if phi[1] eq 0 then // y = 0 case (vectors)
 // never happens by choice of phi[1]

// \vec{c}_1 = Transpose(BC)[1]
lowerbound := 2^(-(#J-2)/2)*Norm(Transpose(BC)[1])^(1/2);
print("lowerbound, y=0:");
lowerbound;
else // y neq 0 case

yyy := ZeroMatrix(RationalField(), JJJ-1, 1);
yyy[#JJJ-1][1]:=-phi[1];
sss:=(BC^(-1))*yyy;

IndicesjWithsjNotIntegral:=[];
for j:=1 to #JJJ-1 do
if not IsIntegral(sss[j][1]) then
Append(~IndicesjWithsjNotIntegral,j);
end if;
end for;

delta:=[RealField() |];
for j:=1 to #JJJ-2 do
delta[j]:=0;
for i:=j+1 to #JJJ-1 do
if delta[j] lt
DistanceToNearestInteger(sss[i][1])*Norm(Transpose(BC)[i])^(1/2) then
delta[j]:=
DistanceToNearestInteger(sss[i][1])*Norm(Transpose(BC)[i])^(1/2);
end if;
end for;
end for;
delta[#JJJ-1]:=0;

max:=0;
for j in IndicesjWithsjNotIntegral do
if max lt
2^(-(#JJJ-2)/2) * DistanceToNearestInteger(sss[j][1])
* Norm(Transpose(BC)[1])^(1/2) - (#JJJ - 1 - j)*delta[j] then
max:=2^(-(#JJJ-2)/2) * DistanceToNearestInteger(sss[j][1])
* Norm(Transpose(BC)[1])^(1/2) - (#JJJ - 1 - j)*delta[j];
end if;
end for;
lowerbound:=max;

/*
print("lowerbound, y ne 0:");
Floor(lowerbound);
print("IndicesjWithsjNotIntegral");
IndicesWithsNotIntegral;
*/

/*
print("DistanceToNearestInteger(sss[#JJJ-1][1]);");
RealField() ! DistanceToNearestInteger(sss[#JJJ-1][1]);
print("DistanceToNearestInteger(sss[#JJJ-2][1]);");
RealField() ! DistanceToNearestInteger(sss[#JJJ-2][1]);
*/

/*
print("Norm(Transpose(BC)[1]^(1/2))");
Norm(Transpose(BC)[1])^(1/2);
print("2^-(#JJJ-2)/2")
2^-(#JJJ-2)/2;
*/

end if;
//END IF

/*
print("(R^2 + S)^(1/2):")
Floor((R^2 + S)^(1/2));
*/
/*
print("lowerbound / (R^2 + S)^(1/2)")
lowerbound / (R^2 + S)^(1/2);
*/

if lowerbound gt (R^2 + S)^(1/2) then

/////////
/*
Choose c11 to find an optimal i0-conditional upper bound for A from Lemma 19.2
*/

MIN := UpperBoundForA;

c11 := (1/1000000)*c10/(n-1);
max := Max[
 Floor((1/c11)*(Log(2*Log(2)*c16[i0]) + Log(CCCCCC) - Log((lowerbound^2 - S)^(1/2) - R))),
 Ceiling((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
 Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
 Ceiling(Log(2*c16[i0])/c11)-1,
 0
];
if max lt MIN then MIN := max; end if;

for i := 1 to 999 do
 c11 := (i/1000)*c10/(n-1);
 max := Max[
 Floor((1/c11)*(Log(2*Log(2)*c16[i0]) + Log(CCCCCC) - Log((lowerbound^2 - S)^(1/2) - R))),
 Ceiling((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
 Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
 Ceiling(Log(2*c16[i0])/c11)-1,
 0
];
 if max lt MIN then MIN := max; end if;
end for;
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1, Ceiling(Log(2*c16[i0])/c11)-1, 0);
if max lt MIN then MIN:=max; end if;
end for; //end i loop

OldUnconditionalUpperBoundForA:=UpperBoundForA;
NewConditionalUpperBoundForAi0:=MIN;

if NewConditionalUpperBoundForAi0 lt OldUnconditionalUpperBoundForA then
ConditionalUpperBoundForA[i0]:=NewConditionalUpperBoundForAi0;
flag:=false; //ready to get out of while loop that increases C if
//necessary
else
RunThroughNumber2:=RunThroughNumber2+1; //increase C and try again
////////
/*
In case we find a new conditional upper bound that fails to improve on
the current unconditional upper bound for A, and this occurs 5 times wth
log(C) being increased 5% each time, then we abort the real reduction
procedure. There is no need to print a message in this case.
*/
////////
if RunThroughNumber2 eq 5 then
JumpToEndOfRealReduction:=true;
break i0;
end if;
end if; /*controlled by NewConditionalUpperBoundForAi0 lt
OldUnconditionalUpperBoundForA*/

else //controlled by lowerbound gt (R^2 + S)^(1/2)
RunThroughNumber1:=RunThroughNumber1+1; //increase C and try again

/////
/*
If increasing log(C) 22 times (with log(C) being increased 5% the first
twenty times and by 1000% the last two times, so that log(C) will be
20 times original value) fails to produce a new conditional upper
bound for A, then we abort the real reduction procedure. Also, print
a message to the user indicating the basic real reduction procedure
was unsuccessful for this reason. Note: tries 21 and 22 only happen
if the upper for A has not been reduced much (or at all) from the linear
forms in logs bound.
*/
\\
\\
if RunThroughNumber1 eq 23 then
print("basic real reduction taking too long");
print("case");
iiii;
print("i0");
i0;
print("Improvement");
Improvement;
UpperBoundForn;
UpperBoundForA;
JumpToEndOfRealReduction:=true;

/*
GammaC:=Lattice(Transpose(AC));
w:=CoordinateSpace(GammaC) ![0,yyy[2][1]];
ClosestVectorsMatrix(GammaC,w : Max:=5);
*/

break i0;
end if;
end if; //controlled by lowerbound gt (R^2 + S)^(1/2)
end while; /* This is the loop that increases log(C) if necessary. The
while loop controlled by flag */
end for; //end i0 loop

if JumpToEndOfRealReduction eq false then

/* Choose c11 to find an optimal i0-conditional upper bound for A for i0 in
{s+1,...,s+2t} from Lemma 19.1 */
MIN:=UpperBoundForA;
c11:=(1/1000000)*c10/(n-1);
c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;
max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

c11:=((1000000 - 1)/1000000)*c10/(n-1);

c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
 c15:=0;
 if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
 end for;
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;
end for; //end i loop

////////
/*
Compute the new unconditional bound for A
*/
////////

OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=Max([Max(ConditionalUpperBoundForA),MIN]);

if NewUpperBoundForA lt OldUpperBoundForA then
Improvement:=true;
UpperBoundForA:=NewUpperBoundForA;
for i:=1 to r do
B[1+v+i]:=UpperBoundForA;
end for;
end if;
end if; //controlled by JumpToEndOfRealReduction

if UpperBoundForA lt 0 then
//there are no solutions to the current case of (11)
continue iii;
end if;

///
/*
Complex Case, i.e., s = 1,2
*/
///
else //s=1,2 complex case

B[2+v+r]:=Floor(2*Arcsin(1/4)/PI);
for i in JJJ do
B[2+v+r]:=B[2+v+r] + B[i];
end for;

JumpToEndOfRealReduction:=false;
for i0:=1 to s do

///
/*
Define
weights W[i] (Section 19)
R (Section 19)
S (Section 19)
CCCCCC = C (Section 19)

Initialize:
TC, where Transpose(TC) = U_C from Section 19
phi[i]:= phi_i from Section 19
*/
///
W:=[];
for i:=1 to 1+v+r do
W[i]:=0; //initialize
end for;

H0prime:=0;
for i:=2 to #JJJ do
if H0prime lt B[JJJ[i]] then H0prime:=B[JJJ[i]]; end if;
end for;

W[1]:=0;
for i:=2 to #JJJ do
W[JJJ[i]]:=RoundP(H0prime/B[JJJ[i]]);
end for;
//print("weights");
//W;
//print("B");
//B;

R:=B[2+v+r];
for i in JJJ do
R:=R + B[i];
end for;
R:=(1/2)*R;
//this is just an approximation to R

S:=0;
for i:=2 to #JJJ do
S:=S+(W[JJJ[i]]^2)*(B[JJJ[i]]^2);
end for;

prod:=1;
for i:=2 to #JJJ do
prod:=prod*W[JJJ[i]];
end for;
/*
LogC:= ((#JJJ)/2)*Log(
(R^2 + S) / (2^(-(#JJJ))
* (Abs(LogarithmicAlphaC[i0][2+v+r])*prod)^(2/(#JJJ)))
);
*/
LogC:= ((#JJJ)/2)*Log(
(R^2 + S) / (2^-2*(#JJJ))
* (Abs(LogarithmicAlphaC[i0][2+v+r])*prod)^(2/(#JJJ)))
);

//CCCCC:=Ceiling(Exp(LogC));

TC:=ScalarMatrix(IntegerRing(),#JJJ,1);
//#JJJ by #JJJ identity matrix

phi:=[[];
for i:=1 to 2+v+r do
phi[i]:=0;
end for;

///

Start the while loop where C will be increased until a new conditional
upper for A is found that improves on the unconditional upper bound for A
or until a number of increases of C have been made with no success.
///

RunThroughNumber1:=0;
RunThroughNumber2:=0;
flag:=true;
while flag do
Increase CCCCCC = C (if this is not the first attempt the basic real reduction procedure).

Calculate the phi_i for i in JJJ.

Calculate R.

CC CCC C:=
Ceiling(Exp(LogC + ((RunThroughNumber1 + RunThroughNumber2)/20)*LogC));
if RunThroughNumber1 eq 21 and UpperBoundForA gt 100000 then
 CCCCCC:=Ceiling(Exp(LogC + 9*LogC));
end if;
if RunThroughNumber1 eq 22 and UpperBoundForA gt 100000 then
 CCCCCC:=Ceiling(Exp(LogC + 19*LogC));
end if;

if LogC/Log(10) gt (0.95)*realprecision then
 RealPrecisionMultiplier := RealPrecisionMultiplier + 1;
 continue PrecisionLoopVariable;
end if;

for i in JJJ do
 phi[i]:=Round(CCCCCC*LogarithmicAlphaC[2+v+r][i]);
end for;
phi[2+v+r]:=Round(CCCCCC*LogarithmicAlphaC[2+v+r][2+v+r]);

/*This will never happen because LogarithmicAlphaC[2+v+r] = Pi */
if Abs(phi[2+v+r]) lt 2 then
 if CCCCCC*LogarithmicAlphaC[2+v+r] ge 0 then
 phi[2+v+r]:=2;
 else
 phi[2+v+r]:=-2;
 end if;
else
 phi[2+v+r]:=-2;
end if;
end if;
end if;

if IsIntegral(phi[1]/phi[2+v+r]) then
if Abs(phi[1]+1 - CCCCCC*LogarithmicAlphaC[i0][1]) le 1 then
phi[1]:=phi[1]+1;
else
phi[1]:=phi[1]-1;
end if;
end if;

R:=B[2+v+r]*Abs(CCCCCC*LogarithmicAlphaC[i0][2+v+r] - phi[2+v+r]);
for i in JJJ do
R:=R + B[i]*Abs(CCCCCC*LogarithmicAlphaC[i0][i] - phi[i]);
end for;

///
/*
Compute:
AC = A_C
*/
///
AC:=ZeroMatrix(IntegerRing(),v+r+2,v+r+2);

for i:=1 to 1+v+r do
AC[i][i]:=W[i];
end for;
for j:=1 to v+r+2 do
AC[v+r+2][j]:=phi[j];
end for;

for i:=1+v+r to 2 by -1 do
if not i in JJJ then
RemoveColumn(~AC,i);
RemoveRow(~AC,i);
end if;
end if;
end if;
end for;

RemoveRow(~AC,1);
RemoveColumn(~AC,1);

//AC is now a #JJJ by #JJJ matrix

AC:=AC*Transpose(TC);
/* If this is the first run through Transpose(TC) is the identity.
Otherwise Transpose(TC) is UC. This will time in the LLL reduction. */

///
/*
Compute LLL reduced basis for the lattice Gamma_C generated by columns of
A_C. The algorithm used is de Weger's exact integer version of LLL.

Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it
the transpose of A_C. Similarly, it spits out the transpose of B_C and
the transpose of U_C
*/
///
//time
temp,TC,rank:=LLL(Transpose(AC) : Proof:=true, Method:="Integral",
Delta:=0.75, Eta:=0.5);

BC:=MatrixRing(RationalField(),#JJJ) ! Transpose(temp);
//columns are LLL-reduced basis for Gamma_C

/*/
Here TC*Transpose(AC) = Transpose(BC).
So with UC=Transpose(TC) we have AC*UC = BC,
and With
VC = BC*Transpose(TC)*BC^(-1) = AC*Transpose(TC)*AC^(-1), we have VC*AC = BC.
Compute the lower bound for \(l(\Gamma_{\mathcal{C},y}) \). If it is large enough (bigger than \(\sqrt{R^2 + S} \)), compute the new upper bound for \(n[L] \). Otherwise, increase \(C \) and reduce again (go back to the start of the while loop).

//START IF
if \(\phi[1] \) eq 0 then //y = 0 case (vectors) //never happens by choice of //\phi[1]

// \(\vec{c}_1 = \text{Transpose}(\mathcal{B}C)[1] \)
lowerbound:= 2\(^{-(#JJJ-1)/2}\) * \(\text{Norm}(\text{Transpose}(\mathcal{B}C)[1]) \)\(^{(1/2)}\);

else //y neq 0 case

\(\vec{y} \):= \text{ZeroMatrix}(\text{RationalField()},#JJJ,1);
\(\vec{y}[#JJJ][1]:=-\phi[1]; \)
\(\vec{ss}:= (\mathcal{B}C^{-1}) \ast \vec{y}; \)

IndicesJSWithJSNotIntegral:=[];
for \(j:=1 \) to #JJJ do
if not \(\text{IsIntegral}(\vec{ss}[j][1]) \) then
Append("IndicesJSWithJSNotIntegral",j);
end if;
end for;

delta:=[\text{RealField()} |];
for \(j:=1 \) to #JJJ-1 do
delta[j]:=0;
for \(i:=j+1 \) to #JJJ do
if delta[j] lt
DistanceToNearestInteger(sss[i][1])\times \text{Norm}(\text{Transpose}(BC)[i])^{(1/2)} \text{ then}
\delta[j] :=
\text{DistanceToNearestInteger}(sss[i][1]) \times \text{Norm}(\text{Transpose}(BC)[i])^{(1/2)};
\text{end if;}
\text{end for;}
\text{end for;}
\delta[#JJJ] := 0;

\text{max} := 0;
\text{for } j \text{ in } \text{Indices} j \text{ With } j \text{ Not Integral do}
\text{if } \text{max} \text{ lt }
2^{(-(#JJJ-1)/2)} \times \text{DistanceToNearestInteger}(sss[j][1]) \times \text{Norm}(\text{Transpose}(BC)[1])^{(1/2)} - (#JJJ - j)\delta[j] \text{ then}
\text{max} := 2^{(-(#JJJ-1)/2)} \times \text{DistanceToNearestInteger}(sss[j][1]) \times \text{Norm}(\text{Transpose}(BC)[1])^{(1/2)} - (#JJJ - j)\delta[j];
\text{end if;}
\text{end for;}
\text{lowerbound} := \text{max;}
\text{end if;}
//END IF

\text{if } \text{lowerbound} \text{ gt } (R^2 + S)^{(1/2)} \text{ then}

///////////
/*
Choose \text{c11} to find an optimal \text{i0}-conditional upper bound for \text{A} from
Lemma 19.2
*/
///////////
\text{MIN} := \text{UpperBoundForA;}

\text{c11} := (1/1000000) \times c10/(n-1);
\text{max} := \text{Max([}
\text{Floor}((1/c11) \times (\text{Log}(4\times \text{Arccsin}(1/4) \times c16[i0]) + \text{Log}(\text{CCCCCCC})}
\[
\log((\text{lowerbound}^2 - S)^{(1/2)} - R)), \\
\text{Ceiling}((c_8' + c_9'\cdot\text{UpperBoundForN})/(c_{10} - (n-1)c_{11}))-1, \\
\text{Ceiling}((c_8'' + c_9''\cdot\text{UpperBoundForN})/(c_{10} - c_{11}))-1, \\
\text{Ceiling}(\log(2c_{16}[i0])/(c_{11}))-1, \\
0 \\
]\]

if max < MIN then MIN:=max; end if;

c_{11}:=(1000000-1)/1000000)*c_{10}/(n-1);
max:=Max([\\
\text{Floor}((1/c_{11})*(\log(4\cdot\arcsin(1/4)\cdot c_{16}[i0]) + \log(CCCCCC) \\
- \log((\text{lowerbound}^2 - S)^{(1/2)} - R)), \\
\text{Ceiling}((c_8' + c_9'\cdot\text{UpperBoundForN})/(c_{10} - (n-1)c_{11}))-1, \\
\text{Ceiling}((c_8'' + c_9''\cdot\text{UpperBoundForN})/(c_{10} - c_{11}))-1, \\
\text{Ceiling}(\log(2c_{16}[i0])/(c_{11}))-1, \\
0 \\
]);
if max < MIN then MIN:=max; end if;

for i:=1 to 999 do \\
c_{11}:=(i/1000)*c_{10}/(n-1);
max:=Max([\\
\text{Floor}((1/c_{11})*(\log(4\cdot\arcsin(1/4)\cdot c_{16}[i0]) + \log(CCCCCC) \\
- \log((\text{lowerbound}^2 - S)^{(1/2)} - R)), \\
\text{Ceiling}((c_8' + c_9'\cdot\text{UpperBoundForN})/(c_{10} - (n-1)c_{11}))-1, \\
\text{Ceiling}((c_8'' + c_9''\cdot\text{UpperBoundForN})/(c_{10} - c_{11}))-1, \\
\text{Ceiling}(\log(2c_{16}[i0])/(c_{11}))-1, \\
0 \\
]);
if max < MIN then MIN:=max; end if;
end for; //end i loop

\\
NewUnconditionalUpperBoundForA:=UpperBoundForA;

222
NewConditionalUpperBoundForAi0 := MIN;

if NewConditionalUpperBoundForAi0 < OldUnconditionalUpperBoundForA then
 ConditionalUpperBoundForA[i0] := NewConditionalUpperBoundForAi0;
 flag := false; // ready to get out of while loop that increases C if
 // necessary
else
 RunThroughNumber2 := RunThroughNumber2 + 1; // increase C and try again
end if;

/*
In case we find a new conditional upper bound that fails to improve on
the current unconditional upper bound for A, and this occurs 5 times with
log(C) being increased 5% each time, then we abort the real reduction
procedure. There is no need to print a message in this case.
*/

if RunThroughNumber2 eq 5 then
 JumpToEndOfRealReduction := true;
 break i0;
end if;

end if; /* controlled by NewConditionalUpperBoundForAi0 <
 OldUnconditionalUpperBoundForA*/

else // controlled by lower bound gt (R^2 + S)^(1/2)

RunThroughNumber1 := RunThroughNumber1 + 1; // increase C and try again

/*
If increasing log(C) 22 times (with log(C) being increased 5% the first
twenty times and by 1000% the last two times, so that log(C) will be
20 times original value) fails to produce a new conditional upper
bound for A, then we abort the real reduction procedure. Also, print
a message to the user indicating the basic real reduction procedure
was unsuccessful for this reason. Note: tries 21 and 22 only happen
if the upper for A has not been reduced much (or at all) from the linear

223
forms in logs bound.

if RunThroughNumber1 eq 23 then
 print("basic real reduction taking too long");
 print("case");
 print("i0");
 print("Improvement:");
 JumpToEndOfRealReduction:=true;
 break i0;
end if;

end if; //controlled by lowerbound gt (R^2 + S)^{(1/2)}

end while; /* this is the loop that increases log(C) if necessary, the
while loop controlled by flag */

end for; //end i0 loop

if JumpToEndOfRealReduction eq false then
 Choose c11 to find an optimal i0-conditional upper bound for A for i0 in
 \{s+1,\ldots,s+2t\} from Lemma 19.1
 c11:=(1/1000000)*c10/(n-1);

 c15:=0;

 */
 MIN:=UpperBoundForA;

224
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;
c11:=((1000000 - 1)/1000000)*c10/(n-1);

c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then

\[
\text{max} := \text{Ceiling}\left(\frac{(c_{8}'' + c_{9}'' \times \text{UpperBoundForN})}{(c_{10} - c_{11})}\right) - 1;
\]

end if;

if max lt c_{15} then max := c_{15}; end if;

//now max is the upper bound for A in Lemma 19.1

if max lt MIN then MIN := max; end if;

for i := 1 to 999 do

\[
c_{11} := \frac{(i/1000) \times c_{10}}{(n-1)};
\]

\[
c_{15} := 0;
\]

if t gt 0 then

\[
\text{min} := \text{Abs}(\text{Imaginary}(\theta_{C}[s+1]));
\]

for ii := 2 to t do

\[
j := s-1 + 2 \times ii;
\]

if Abs(Imaginary(\theta_{C}[j])) lt min then min := Abs(Imaginary(\theta_{C}[j]));
end if;

end for; //end ii

if Floor(-Log(min)/c_{11}) gt 0 then c_{15} := Floor(-Log(min)/c_{11}); end if;
end if;

\[
\text{max} := \text{Ceiling}\left(\frac{(c_{8}' + c_{9}' \times \text{UpperBoundForN})}{(c_{10} - (n-1) \times c_{11})}\right) - 1;
\]

end if;

if max lt Ceiling((c_{8}'' + c_{9}'' \times \text{UpperBoundForN})/(c_{10} - c_{11}))-1 then

\[
\text{max} := \text{Ceiling}\left(\frac{(c_{8}'' + c_{9}'' \times \text{UpperBoundForN})}{(c_{10} - c_{11})}\right) - 1;
\]

end if;

if max lt c_{15} then max := c_{15}; end if;

//now max is the upper bound for A in Lemma 19.1

if max lt MIN then MIN := max; end if;
end for; //end i loop

//MIN is now an i0-conditional upper bound for A for i0 in \{s+1,\ldots,s+2t\}

/////
/*
Compute the new unconditional bound for A
/*

OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=Max([Max(ConditionalUpperBoundForA),MIN]);

if NewUpperBoundForA lt OldUpperBoundForA then
 Improvement:=true;
 UpperBoundForA:=NewUpperBoundForA;
 for i:=1 to r do
 B[1+v+i]:=UpperBoundForA;
 end for;
end if;

end if; //controlled by JumpToEndOfRealReduction

if UpperBoundForA lt 0 then
 //there are no solutions to the current case of (11)
 continue iiii;
end if;

end if; //end of IF for distinguishing (s>=3) (s=1,2) cases

end if; //end of IF for s=0, s>=3, s=1or2 cases

//done finding new upper bound for A

UpperBoundForH:=Max([UpperBoundForN, UpperBoundForA]);
//print("at end of improvement loop: ");
print("Upper bounds for the n_l and A, respectively: ");
UpperBoundForn;
Floor(UpperBoundForA);

end while; //end loop for repeated simple reductions
 //(the improvement loop)

///
/*
End Of Loop For Repeated Simple Reductions (the improvement loop)
*/
///

print("Starting refined reduction procedures.");

///
/*
Initialize the set of exceptional tuples. It will be filled as we work
through the refined reduction procedures.

At the end, it will consist of the tuples that pass all the easy tests.
The tuples will not have been tested for (11) directly and they won’t all
necessarily be solutions of (11). We will test them more in the final
sieve step.

Each element of ExceptionalTuples will be a sequence of the form
[b_{JJJ[2]},...,b_{JJJ[#JJJ]}].
*/
///
ExceptionalTuples:=[[];

///
///
///
/*
Start Of Loop For Repeated Refined Reductions
*/

Improvement:=true;
while Improvement do
 Improvement:=false;

/*
If the number of tuples to sieve through is small enough, jump directly
to the final sieving procedure.
If the number of exceptional tuples has grown excessively large, jump to
the final sieving procedure and inform that user that this has been done.
*/

prod:=1;
for i in J do
 prod:=prod*(UpperBoundForn[i]+1);
end for;
prod:=prod*(2*UpperBoundForA + 1)^r;
if prod lt 5000000 then print("The number of tuples to sieve is small.
Jumping to the final sieving procedure."); break; end if;
//prod = number of tuples to sieve

if #ExceptionalTuples gt 100000 then
 print("The number of exceptional tuples is large.
Jumping to the final sieving procedure.");
 print("Case:");
 iiii;
 print("Upper bounds bor the n_i:");
 UpperBoundForn;
 print("Upper bound for A:");
 Floor(UpperBoundForA);
 break;
end if;
for l in I do

W:=[];
for i:=1 to 1+v+r do
 W[i]:=0; //initialize
end for;
W[1]:=0;
for i:=2 to #JJJ do
 W[JJJ[i]]:=RoundP(UpperBoundForH/B[JJJ[i]]);
end for;
for i in J do
 W[1+i]:=2*W[i+1];
end for;
//print("weights");
//W;
//print("B");
//B;

QQ:=0;
for i in JJJ do
QQ:=QQ+(W[i]^2)*(B[i]^2); //recall W[1]=0
end for;

prod:=1;
for i:=2 to #JJJ do
prod:=prod*W[JJJ[i]];
end for;

/*
 mmmm:=Ceiling(
 (3/4)*((#JJJ - 1)/(2*Log(p[l]))) *Log(2^((#JJJ - 1)
 * QQ / prod^2(#JJJ-1)))
);
*/

mmmm:=Min([
 Ceiling(
 (3/4)*((#JJJ - 1)/(2*Log(p[l]))) *Log(QQ / prod^2(#JJJ-1)))
),
 Ceiling((3/4)*UpperBoundForn[l])
]);

betam:=[];
for i:=1 to 1+v+r do
betam[i]:=0;
end for;
Tm:=ScalarMatrix(IntegerRing(),#JJJ-1,1);
/*initialize as #JJJ-1 by #JJJ-1 identity matrix*/

 ///
/*
Start while loop that will increase m until the p_l-adic reduction yeilds
a new upper bound for n_l or until a number of increases has been made
with no success
*/
 ///
flag:=true;
RunThroughNumber:=0;
while flag do

 ///
/*
Increase mmmm = m (if this is not the first attempt with the basic
p_l-reduction procedure).
Calculate betam[i] = beta_i^(m).
*/
 ///
mmmm:=Ceiling(mmmm + (RunThroughNumber/20)*mmmm);
for i in JJJ do
betam[i]:= SmallestNonnegativeRemainderModpLToThem(beta[l][i],l,mmmm);
end for;
//print("mmmm");
//mmmm;

 ///
/*
Compute the (soon to be) new upper bound for n_l. If it is better than
the old upper bound, then we do the enumeration procedure. If it is not
better, there is no need to do the enumeration and we move on to the next
l in I
*/
NewUpperBoundFornl:=Max([
Floor((1/hh[l])*(1/(p[l]-1) - Valuation(delta2[l]))),
Ceiling((1/hh[l])*(mmmm-dd[l]))-1
]);

OldUpperBoundFornl:=UpperBoundForn[l];

if NewUpperBoundFornl ge OldUpperBoundFornl then
continue l;

else // NewUpperBoundFornl lt OldUpperBoundFornl

Am:=ZeroMatrix(IntegerRing(), v+r+2, v+r+2);
for i:=1 to v+r+1 do
Am[i][i]:=W[i];
end for;
for j:=1 to v+r+1 do
Am[v+r+2][j]:=W[ihat[l]]*betam[j];
end for;
Am[v+r+2][v+r+2]:=W[ihat[l]]*p[l]^mmmm;

for i:=1+v+r to 2 by -1 do
if i eq ihat[l] or not i in JJJ then
RemoveColumn(~Am,i);
RemoveRow(~Am,i);
end if;

*/

Define:
Am = A_m for p[L]
Gamma_m = lattice generated by columns of A_m
*/
end for;

RemoveColumn(~Am,1);
RemoveRow(~Am,1);

//Am is now a #JJJ-1 by #JJJ-1 matrix

Am:=Am*Transpose(Tm); //Transpose(Tm) = Um from Setion 15
/* If this is the first run through, Tm is the identity. If this is not
the first run through, this will save computation time.
*/

/***/
/* Compute an LLL reduced basis for the lattice Gamma_m generated by columns
of A_m. The algorithm used is de Weger's exact integer version of LLL.
Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it
the transpose of A_m. Similarly, it spits out the transpose of B_m and
the transpose of U_m
*/
/***/
//time
temp,Tm,rank:=LLL(Transpose(Am) : Proof:=true, Method:="Integral",
Delta:=0.75, Eta:=0.5);

Bm:=MatrixRing(RationalField(),#JJJ-1) ! Transpose(temp);
//columns are LLL-reduced basis for Gamma_m

/*
Here Tm*Transpose(Am) = Transpose(Bm).
So with Um=Transpose(Tm) we have Am*Um = Bm,
and With
Vm = Bm*Transpose(Tm)*Bm^(-1) = Am*Transpose(Tm)*Am^(-1), we have
Vm*Am = Bm.
*/
Define:

\(\vec{y} \) from Section 20
\(\vec{s} \) from Section 20
\(\vec{t} \) from Section 20
\(\vec{z} \) from Section 20
\(D \) from Section 20

\[
\begin{aligned}
\vec{y} &:= \text{ZeroMatrix}(\text{RationalField}(), 2+v+r, 1); \\
&\text{for } i:=1 \text{ to } v \text{ do} \\
&\quad \vec{y}[1+i][1] := (1/2)*W[i+1]*B[i+1]; \\
&\text{end for}; \\
&\text{for } i:=1+v+r \text{ to } 2 \text{ by } -1 \text{ do} \\
&\quad \text{if } i \text{ eq } \vec{i} \text{ or not } i \text{ in } JJJ \text{ then} \\
&\quad \text{RemoveRow}(\vec{y}, i); \\
&\quad \text{end if}; \\
&\text{end for}; \\
&\text{RemoveRow}(\vec{y}, 1); \\
&\text{// \vec{y} is now a } #JJJ-1 \text{ by 1 column vector} \\
&\text{if } \vec{i} \leq 1+v \text{ then} \\
&\quad \vec{y}[#JJJ-1][1] := -W[\vec{i}] \ast \text{betam}[1] \ast (1/2) \ast W[\vec{i}] \ast B[\vec{i}]; \\
&\text{else } // \vec{i} \gt 1+v \\
&\quad \vec{y}[#JJJ-1][1] := -W[\vec{i}] \ast \text{betam}[1]; \\
&\text{end if}; \\
\end{aligned}
\]

\[\vec{s} := (\text{Bm}^{-1}) \ast \vec{y};\]

\[\vec{t} := \vec{s};\]

\text{for } i:=1 \text{ to } #JJJ \text{ do} \\
\quad \vec{t}[i][1] := \text{Floor}(\vec{s}[i][1]);
\]
end for;
Floorssss:=ttt;
potentialtttt:=ttt;
min:=LengthOfVector(Bm*ttt - yyy);

mm:=#JJJ-1;
Choosettt(~yyy,~ttt,~potentialtttt,~Floorssss,~min,~Bm,~mm,1);

zzz:=Bm*ttt;

DDD:=0;
for i in J do
 DDD:=DDD + ((1/2)*W[1+i]*B[1+i])^2;
end for;
for i:=1 to r do
 DDD:=DDD + (W[1+v+i]*B[1+v+i])^2;
end for;
DDD:=DDD^(1/2);
DDD:=DDD+min;

//
/*
Construct the lattice Gamma_m. The MAGMA function Lattice() assumes
Use the function EnumerationCost to compute an estimate the number of
nodes in the tree to be visited during the execution of the algorithm
that will enumerate all lattice vectors u with |u| \leq D. The number
of nodes is essentially directly proportional to the time needed for the
enumeration.

If the number of nodes is too large for the enumeration to be done in a
reasonable amount of time, we increase m and try the reduction procedure
again. If several increases of m fail to result in a small enough
estimate for the number of nodes, then we move onto the next l in I.

236
In Stehle and Watkins (2006), it is asserted that MAGMA’s enumeration algorithm has a traversal rate of about 7.5 million nodes per second. Based on the examples in the MAGMA Handbook, the rate appears to be 20 to 40 million nodes per second. We will assume a traversal rate of 10 million nodes per second. Assuming we want the enumeration to take less than 10 minutes, we want to abort if the estimated number of nodes is > 10*60*10^7 = 6000000000

Note: To MAGMA, Norm(v) = |v|^2.

Gammam:=Lattice(Transpose(Bm));

if EnumerationCost(Gammam,RealField() ! DDD^2) gt 6000000000 then

RunThroughNumber+:=1; //increase m and try again

If increasing m 20 times (with m being increased by 5% each time, so that m will be double its original value after 20 increases) fails to result in a sufficiently small estimate for the number of nodes, then we move on to the next value of l in I. Also, print a message indicating that the refined p_l-adic reduction procedure was unsuccessful.

if RunThroughNumber eq 20 then

print("Refined p-adic reduction taking too long.");
print("Case: ");
iiii;
print("l: ");
l;
continue l;
end if;

else // EnumerationCost(Gammam,UpperBoundForu^2) <= 6000000000
flag:=false; // ready to get out of while loop that increases m
 // if necessary
///
/*
Create a process P to enumerate all the vectors u in the lattice Gamma_m
with length squared |u|^2 <= D^2 (equivalently length |u| <= D).

To enumerate the vectors, we will need to repeatedly call NextVector(P).
Calling NextVector(P) will return the next vector found in the
enumeration (along with its norm).

IsEmpty(P) returns true if the process P has finished enumerating all the
vectors. It returns false otherwise.
*/
///
P:=ShortVectorsProcess(Gammam,Floor(DDD^2));

///
/*
Enumerate those lattice vectors u with ||u|| <= D, extract
the corresponding tuples, and test those tuples.

Extracted tuple = (b_{JJJ[2]},...,b_{JJJ[#JJJ]})

bbb[i] = b_{JJJ[i]}, i=1 to #JJJ

Recall: For each ll in I, jl[ll] is the unique index such that
JJJ[jl[ll]]=ll+1.
So bbb[jl[ll]] = b_{ll+1} = n_ll
*/
///
bbb:=[RationalField() |];
while not IsEmpty(P) do

uuu:=NextVector(P);

//Extract tuple (b_{J J J[2]},...,b_{J J J[#J J J]})
bbb[1]:=1;
if ihat[1] le 1+v then

for i:=2 to istar[l]-1 do
bbb[i]:=(uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[J J J[i]]*B[J J J[i]])/W[J J J[i]];
end for;
bbb[istar[l]]:=(uuu[#J J J-1]-(yyy[#J J J-1][1]-zzz[#J J J-1][1])
+ (1/2)*W[J J J[istar[l]]]*B[J J J[istar[l]]])/W[J J J[istar[l]]];
for i:=istar[l]+1 to 1+#J do
bbb[i]:=(uuu[i-2]-(yyy[i-2][1]-zzz[i-2][1])
+ (1/2)*W[J J J[i]]*B[J J J[i]])/W[J J J[i]];
end for;
for i:=2+#J to #J J J do
bbb[i]:=(uuu[i-2]-(yyy[i-2][1]-zzz[i-2][1]))/W[J J J[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
bbb[i]:=(uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[J J J[i]]*B[J J J[i]])/W[J J J[i]];
end for;
for i:=2+#J to istar[l]-1 do
bbb[i]:=(uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1]))/W[J J J[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
bbb[i]:=(uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[J J J[i]]*B[J J J[i]])/W[J J J[i]];
end for;
for i:=2+#J to istar[l]-1 do
bbb[i]:=(uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1]))/W[J J J[i]];
end for;
bbb[istar[1]] := (uuu[#JJJ-1]-(yyy[#JJJ-1][1]-zzz[#JJJ-1][1]))
/W[JJJ[istar[1]]];
for i := istar[1]+1 to #JJJ do
bbb[i] := (uuu[i-2]-(yyy[i-2][1]-zzz[i-2][1]))/W[JJJ[i]];
end for;
end if;

/*
if bbb[1] ne 1 then
print("something is wrong!"); bbb[1]; istar[1]; break iiii; end if;
*/

//test the tuple
passes := true;
while true do //this while loop is a hack to provide a way to
 //"jump to line X"
for i := 2 to #JJJ do
 if not IsIntegral(bbb[i]) then passes := false; break; end if;
end for;
if passes eq false then break; end if;

for i := 2 to 1+#J do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes := false; break; end if;
end for;
if passes eq false then break; end if;

for i := 2+#J to #JJJ do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then
 passes := false; break; end if;
 end for;
 if passes eq false then break; end if;

/*test if tuple fits in the new box. If so, throw it away (it’s not
exceptional). Recall \(b_{l+1} = n_l \)
\[
\text{if } b_{l+1} \leq \text{NewUpperBoundFor}n_l, \text{ then } \text{passes} := \text{false}; \text{ break; } \text{end if;}
\]

\[
\text{LAMBDAprime} := 0;
\]
\[
\text{for } i := 1 \text{ to } \#\text{JJJ} \text{ do}
\]
\[
\text{LAMBDAprime} := \text{LAMBDAprime} + b_{i} \cdot \beta_{i}[JJJ[i]];
\]
\[
\text{end for;}
\]
\[
\text{if } \text{SpecialCase}[l] = \text{true} \text{ then}
\]
\[
\text{if } \text{Valuation}(\text{LAMBDAprime}) \neq b_{j}[l] \cdot h[l] + d[l] \text{ then}
\]
\[
\text{passes} := \text{false}; \text{ break; } \text{end if;}
\]
\[
\text{else } //\text{SpecialCase}[l] \text{ eq false}
\]
\[
\text{if } \text{Valuation}(\text{LAMBDAprime}) < b_{j}[l] \cdot h[l] + d[l] \text{ then}
\]
\[
\text{passes} := \text{false}; \text{ break; } \text{end if;}
\]
\[
\text{end if;}
\]

\[
\text{for } \text{ll in I do}
\]
\[
\text{if } \text{ll ne l then}
\]
\[
\text{LAMBDAprime} := 0;
\]
\[
\text{for } i := 1 \text{ to } \#\text{JJJ} \text{ do}
\]
\[
\text{LAMBDAprime} := \text{LAMBDAprime} + b_{i} \cdot \beta_{i}[JJJ[i]];
\]
\[
\text{end for;}
\]
\[
\text{if } \text{SpecialCase}[ll] = \text{true} \text{ then}
\]
\[
\text{if } b_{j}[ll] > (1/h[ll]) \cdot (1/(p[ll] - 1) - \text{Valuation}(\delta[ll]))
\]
\[
\text{and } \text{Valuation}(\text{LAMBDAprime}) \neq b_{j}[ll] \cdot h[ll] + d[ll] \text{ then}
\]
\[
\text{passes} := \text{false}; \text{ break ll;}
\]
\[
\text{end if;}
\]
\[
\text{else } //\text{SpecialCase}[ll] \text{ eq false}
\]
\[
\text{if } b_{j}[ll] > (1/h[ll]) \cdot (1/(p[ll] - 1) - \text{Valuation}(\delta[ll]))
\]
\[
\text{and } \text{Valuation}(\text{LAMBDAprime}) < b_{j}[ll] \cdot h[ll] + d[ll] \text{ then}
\]
\[
\text{passes} := \text{false}; \text{ break ll;}
\]
\[
\text{end if;}
\]
\[
\text{end if;}
\]
end if;
end for;
if passes eq false then break; end if;

if SpecialCase[l] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*LogarithmicAlphap[l][JJJ[i]];
end for;
if Valuation(LAMBDA) ne bbb[jl[l]]*hh[l] + Valuation(delta2[l]) then
passes:=false; break; end if;
end if; //end IF controlled by SpecialCase[l]

for ll in I do
if ll ne l then
if SpecialCase[ll] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
end for;
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
passes:=false; break ll;
end if;
end if; //end IF controlled by SpecialCase[ll]
end if;
end for;
if passes eq false then break; end if;

break;
end while; //end hack while loop
//If the tuple passes all the tests, add it to the list of exceptional
//tuples
if passes eq true then Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;

//Since the enumeration process only spits out one of u and -u, we now
//need to do the same thing with -u.

uuu:=-uuu;

//Extract tuple (b_{JJJ[2]},...,b_{JJJ[#JJJ]})
bbb[1]:=1;

if ihat[1] le 1+v then

for i:=2 to istar[1]-1 do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;

bbb[istar[1]]:=(uuu[#JJJ-1]- (yyy[#JJJ-1][1]-zzz[#JJJ-1][1])
+ (1/2)*W[JJJ[istar[1]]]*B[JJJ[istar[1]]])/W[JJJ[istar[1]]];

for i:=istar[1]+1 to 1+#J do
 bbb[i]:=(uuu[i-2]- (yyy[i-2][1]-zzz[i-2][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])
/W[JJJ[i]];
end for;

for i:=2+#J to #JJJ do
 bbb[i]:=(uuu[i-2]- (yyy[i-2][1]-zzz[i-2][1]))/W[JJJ[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;

//Since the enumeration process only spits out one of u and -u, we now
//need to do the same thing with -u.

uuu:=-uuu;

//Extract tuple (b_{JJJ[2]},...,b_{JJJ[#JJJ]})
bbb[1]:=1;

if ihat[1] le 1+v then

for i:=2 to istar[1]-1 do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;

bbb[istar[1]]:=(uuu[#JJJ-1]- (yyy[#JJJ-1][1]-zzz[#JJJ-1][1])
+ (1/2)*W[JJJ[istar[1]]]*B[JJJ[istar[1]]])/W[JJJ[istar[1]]];

for i:=istar[1]+1 to 1+#J do
 bbb[i]:=(uuu[i-2]- (yyy[i-2][1]-zzz[i-2][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])
/W[JJJ[i]];
end for;

for i:=2+#J to #JJJ do
 bbb[i]:=(uuu[i-2]- (yyy[i-2][1]-zzz[i-2][1]))/W[JJJ[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;

else //ihat[1] gt 1+v

for i:=2 to 1+#J do
 bbb[i]:=(uuu[i-1]- (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;
for i:=2+#J to istar[l]-1 do
 bbb[i] := (uuu[i-1]-(yyy[i-1][1]-zzz[i-1][1]))/W[JJJ[i]];
end for;

bbb[istar[l]] := (uuu[#JJJ-1]-(yyy[#JJJ-1][1]-zzz[#JJJ-1][1]))
 /W[JJJ[istar[l]]];
for i:=istar[l]+1 to #JJJ do
 bbb[i] := (uuu[i-2]-(yyy[i-2][1]-zzz[i-2][1]))/W[JJJ[i]];
end for;
end if;

/*
if bbb[1] ne 1 then print("something is wrong!"); end if;
*/

//test the tuple
passes := true;
while true do //this while loop is a hack to provide a way to
 //"jump to line X"
 for i:=2 to #JJJ do
 if not IsIntegral(bbb[i]) then passes := false; break; end if;
 end for;
 if passes eq false then break; end if;

 for i:=2 to 1+#J do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes := false; break; end if;
 end for;
 if passes eq false then break; end if;

 for i:=2+#J to #JJJ do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then
passes:=false; break; end if;
end for;
if passes eq false then break; end if;

/*test if tuple fits in the new box. If so, throw it away (it’s not exceptional). Recall bbb[jl[l]] = b_{l+1} = n_l*/
if bbb[jl[l]] le NewUpperBoundFornl then passes:=false; break; end if;

LAMBDAprime:=0;
for i:=1 to #JJJ do
LAMBDAprime:=LAMBDAprime + bbb[i]*beta[l][JJJ[i]];
end for;

if SpecialCase[l] eq true then
if Valuation(LAMBDAprime) ne bbb[jl[l]]*hh[l] + dd[l] then
passes:=false; break; end if;
else //SpecialCase[l] eq false
if Valuation(LAMBDAprime) lt bbb[jl[l]]*hh[l] + dd[l] then
passes:=false; break; end if;
end if;

for ll in I do
if ll ne l then
LAMBDAprime:=0;
for i:=1 to #JJJ do
LAMBDAprime:=LAMBDAprime + bbb[i]*beta[ll][JJJ[i]];
end for;
if SpecialCase[ll] eq true then
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and Valuation(LAMBDAprime) ne bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
else //SpecialCase[ll] eq false
if bbb[jl[ll]] > (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and
Valuation(LAMBDAprime) < bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
end if;
end if;
end for;
if passes eq false then break; end if;

if SpecialCase[l] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*LogarithmicAlphap[l][JJJ[i]];
end for;
if Valuation(LAMBDA) ne bbb[jl[l]]*hh[l] + Valuation(delta2[l]) then
passes:=false; break; end if;
end if; //end IF controlled by SpecialCase[l]

for ll in I do
if ll ne l then
if SpecialCase[ll] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
end for;
if bbb[jl[ll]] > (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and
Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
passes:=false; break ll;
end if;
end if;
end if; //end IF controlled by SpecialCase[l1]
end if;
end for;
if passes eq false then break; end if;

break;
end while; //end hack while loop

//If the tuple passes all the tests, add it to the list of exceptional //tuples
if passes eq true then Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;

end while; //enumeration loop

//Enumeration done

Improvement:=true;
UpperBoundForn[1]:=NewUpperBoundForn1;
B[1+l]:=UpperBoundForn[1];

end if; // end of IF controlled by EnumerationCost(Gammam,D^2)

end if; // end of IF controlled by NewUpperBoundForn1 ge OldUpperBoundForn1
 // OldUpperBoundForn1

end while; //this is the loop that increases m if needed
end for; // end l loop

UpperBoundForN:=Max(UpperBoundForn);
for i0:=1 to s do
 ConditionalUpperBoundForA[i0]:=UpperBoundForA;
end for;

if s eq 0 then
 c11:=(1/1000000)*c10/(n-1);
 c15:=0;
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then
 min:=Abs(Imaginary(thetaC[j]));
 end if;
 end for;
 if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
 max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
 if max lt
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

c11:=((1000000 - 1)/1000000)*c10/(n-1);

c15:=0;
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do

c11:=(i/1000)*c10/(n-1);

end if;
c15:=0;
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;
end for; //end i loop

OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=MIN;

if NewUpperBoundForA lt OldUpperBoundForA then
Improvement:=true;
UpperBoundForA:=NewUpperBoundForA;
end if;

else //s > 0
///
/*
s>0 Case
*/
///
///
/*
Real Case, i.e., s \geq 3
*/
///
if s ge 3 then // s>=3 real case
JumpToEndOfRealReduction:=false;
for i0:=1 to s do
 //print("refined real, i0=");
 //i0;

///

/*
Define
weights W[i] (Section 21)
R (approximation) (Section 21)
S (Section 21)
CCCCCCC = C (Section 21)

Initialize:
TC, where Transpose(TC) = U_C from Section 21
phi[i]:= phi_i from Section 21
*/

///

W:=[];
for i:=1 to 1+v+r do
 W[i]:=0; //initialize
end for;

H0prime:=0;
for i:=2 to #JJJ-1 do
 if H0prime lt B[JJJ[i]] then H0prime:=B[JJJ[i]]; end if;
end for;

W[1]:=0;
for i:=2 to #JJJ-1 do
 W[JJJ[i]]:=RoundP(H0prime/B[JJJ[i]]);
end for;
for i in J do
 W[1+i]:=2*W[i+1];
end for;
//print("weights");
//W;
//print("B");
//B;

R:=0;
for i in JJJ do
 R:=R + B[i];
end for;
R:=(1/2)*R;
//this is just an approximation to R

S:=0;
for i:=2 to #JJJ-1 do
 S:=S+(W[JJJ[i]]^2)*(B[JJJ[i]]^2);
end for;

prod:=1;
for i:=2 to #JJJ-1 do
 prod:=prod*W[JJJ[i]];
end for;

/*
LogC:= (3/4) * ((#JJJ-1)/2) * Log(R^2 + S) / (2^-(#JJJ-1))
 * (Abs(LogarithmicAlphaC[i0][JJJ[#JJJ]])*prod)^(-2/(#JJJ-1))
 */

LogC:= Min([(3/4) * ((#JJJ-1)/2) * Log(R^2 + S) / (2^-(#JJJ-1))
 * (Abs(LogarithmicAlphaC[i0][JJJ[#JJJ]])*prod)^(-2/(#JJJ-1))])

252
(3/4)*UpperBoundForA
]];

//CCCCC:=Ceiling(Exp(LogC));

TC:=ScalarMatrix(IntegerRing(),#JJJ-1,1);
//#JJJ-1 by #JJJ-1 identity matrix

phi:=[[];
for i:=1 to 1+v+r do
phi[i]:=0;
end for;

///
/*
Start the while loop where C will be increased until we find a new
conditional upper for A that is smaller than the unconditional upper
bound for A or until a number of increases of C have been made with no
success.
*/
///
RunThroughNumber1:=0;
RunThroughNumber2:=0;
flag:=true;
while flag do

///
/*
Increase CCCCCC = C (if this is not the first attempt the basic real
reduction procedure).
*/
///
CCCCCC:=

253
Ceiling(Exp(LogC + ((RunThroughNumber1 + RunThroughNumber2)/20)*LogC));
//print("CCCCCC");
//CCCCCCC;

///
/*
Compute the (soon to be) new i0-conditional upper bound for A. We choose
c11 to optimize this bound.

If it is better than the old unconditional upper bound, then we do the
enumeration procedure. If it is not better, then we first retry several
times with larger values of C, but if that doesn't work we abandon the
refined real reduction procedure (there is no point in moving on to the
next i0 in {1,...,s} because the unconditional upper bound on A will not
be improved).
*/
///
MIN:=UpperBoundForA;

c11:=(1/1000000)*c10/(n-1);
max:=Max([Ceiling((1/c11)*(Log(2*Log(2)*c16[i0]) + Log(CCCCCC)
- Log((lowerbound^2 - S)^(1/2) - R)))-1,
Ceiling((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
Ceiling(Log(2*c16[i0])/c11)-1,
0]);
if max lt MIN then MIN:=max; end if;

c11:=((1000000-1)/1000000)*c10/(n-1);
max:=Max([Ceiling((1/c11)*(Log(2*Log(2)*c16[i0]) + Log(CCCCCC)
- Log((lowerbound^2 - S)^(1/2) - R)))-1,
Ceiling((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
0]);
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
Ceiling(Log(2*c16[i0])/c11)-1,
0
]);
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
 max:=Max([Ceiling((1/c11)*(Log(2*Log(2)*c16[i0]) + Log(CCCCCC) - Log((lowerbound^2 - S)^(1/2) - R)))-1,
 Ceiling((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
 Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
 Ceiling(Log(2*c16[i0])/c11)-1,
 0
]);
if max lt MIN then MIN:=max; end if;
end for; //end i loop

NewConditionalUpperBoundForAi0:=MIN;
OldUnconditionalUpperBoundForA:=UpperBoundForA;

if NewConditionalUpperBoundForAi0 ge OldUnconditionalUpperBoundForA then
 RunThroughNumber2:=RunThroughNumber2+1; //increase C and try again

/*
In case we find a new conditional upper bound that fails to improve on
the current unconditional upper bound for A, and this occurs 5 times with
log(C) being increased 5% each time, then we abort the real reduction
procedure. There is no need to print a message in this case.
*/

if RunThroughNumber2 eq 5 then
 JumpToEndOfRealReduction:=true;
 print("RunThroughNumber2 = ");
RunThroughNumber2;
break i0;
end if;

else //NewConditionalUpperBoundForAi0 lt OldUnconditionalUpperBoundForA

///
/*
Calculate the phi_i for i in JJJ.

Calculate R.
*/
///
for i in JJJ do
phi[i]:=Round(CCCCCC*LogarithmicAlphaC[i0][i]);
end for;

if Abs(phi[JJJ[#JJJ]]) lt 2 then
if CCCCCC*LogarithmicAlphaC[i0][JJJ[#JJJ]] ge 0 then
phi[JJJ[#JJJ]]:=2;
else
phi[JJJ[#JJJ]]:=-2;
end if;
end if;

if IsIntegral(phi[1]/phi[JJJ[#JJJ]]) then
if Abs(phi[1]+1 - CCCCCC*LogarithmicAlphaC[i0][1]) le 1 then
phi[1]:=phi[1]+1;
else
phi[1]:=phi[1]-1;
end if;
end if;

R:=0;
for i in JJJ do
R := R + B[i] * Abs(CCCCCC * LogarithmicAlphaC[i0][i] - phi[i]);
end for;

///
/*
Compute
AC = A_C
*/
///
AC := ZeroMatrix(IntegerRing(), v+r+1, v+r+1);

for i := 1 to v+r do
AC[i][i] := W[i];
end for;

for j := 1 to v+r+1 do
AC[v+r+1][j] := phi[j];
end for;

for i := 1+v+r to 2 by -1 do
if not i in JJJ then
RemoveColumn(~AC, i);
RemoveRow(~AC, i);
end if;
end for;

RemoveRow(~AC, 1);
RemoveColumn(~AC, 1);

//AC is now a #JJJ-1 by #JJJ-1 matrix

AC := AC * Transpose(TC);
/* If this is the first run through Transpose(TC) is the identity.
Otherwise Transpose(TC) is UC. This will save time in the LLL
reduction. */
Compute an LLL reduced basis for the lattice Γ_C generated by columns of A_C. The algorithm used is de Weger's exact integer version of LLL.

Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it the transpose of A_C. Similarly, it spits out the transpose of B_C and the transpose of U_C.

```
temp,TC,rank:=LLL(Transpose(AC) : Proof:=true, Method:="Integral", Delta:=0.75, Eta:=0.5 );
```

```
BC:=MatrixRing(RationalField(),#JJJ-1) ! Transpose(temp);
```

//columns are LLL-reduced basis for Γ_C

```
Here TC*Transpose(AC) = Transpose(BC).
So with UC=Transpose(TC) we have AC*UC = BC,
and With
VC = BC*Transpose(TC)*BC^(-1) = AC*Transpose(TC)*AC^(-1), we have
VC*AC = BC.
```

Define:
```
yyy = \vec{y} from Section 21
sss = \vec{s} from Section 21
ttt = \vec{t} from Section 21
zzz = \vec{z} from Section 21
DDD = D from Section 21
```

258
yyy:=ZeroMatrix(RationalField(),1+v+r,1);
for i:=1 to v do
 yyy[1+i][1]:=(1/2)*W[1+i]*B[1+i];
end for;
for i:=1+v+r to 2 by -1 do
 if not i in JJJ then
 RemoveRow(~yyy,i);
 end if;
end for;
RemoveRow(~yyy,1);
//yyy is now a #JJJ-1 by 1 column vector
yyy[#JJJ-1][1]:=-phi[1];

sss:=(BC^(-1))*yyy;

ttt:=sss;
for i:=1 to #JJJ-1 do
 ttt[i][1]:=Floor(sss[i][1]);
end for;
Floorsss:=ttt;
potentialttt:=ttt;
min:=LengthOfVector(BC*ttt - yyy);

mm:=#JJJ-1;
Choosetttt(~yyy,~ttt,~potentialttt,~Floorsss,~min,~BC,~mm,1);

zzz:=BC*ttt;

/*Now zzz is likely the closest vector in the lattice Gamma_C to yyy and
min = |zzz-yyy|*/

DDD:=((R+1)^2 + S)^(1/2);

//
/*
Construct the lattice Gamma_C. The MAGMA function Lattice() assumes

Use the function EnumerationCost to compute an estimate the number of
odes in the tree to be visited during the execution of the algorithm
that will enumerate all lattice vectors u with \(|u| \leq D + |y-z|\). The
number of nodes is essentially directly proportional to the time needed
for the enumeration.

If the number of nodes is too large for the enumeration to be done in a
reasonable amount of time, we increase C and try the reduction procedure
again. If several increases of C fail to result in a small enough
estimate for the number of nodes, then we abort the refined real
reduction (there is no point in moving on to the next i0 in \(\{1,\ldots,s\}\)
because the unconditional upper bound on A will not be improved).

In Stehle and Watkins (2006), it is asserted that MAGMA's enumeration
algorithm has a traversal rate of about 7.5 million nodes per second.
Based on the examples in the MAGMA Handbook, the rate is appears to be
20 to 40 million nodes per second. We will assume a traversal rate of 10
million nodes per second. Assuming we want the enumeration to take less
than 10 minutes, we want to abort if the estimated number of nodes
is > 10*60*10^7 = 6000000000

Note: To MAGMA, Norm(v) = |v|^2.
 */

Gammac:=Lattice(Transpose(BC));

if EnumerationCost(Gammac,RealField() ! (DDD+min)^2) gt 6000000000 then

RunThroughNumber1+:=1; //increase C and try again

If increasing log(C) 20 times (with log(C) being increased 5% each time,
so that log(C) will be double its original value) fails to produce a new conditional upper bound for A, then we abort the real reduction procedure. Also, print a message to the user indicating the refined real reduction procedure was unsuccessful for this reason.

*/

///
if RunThroughNumber1 eq 20 then
print("Refined real reduction taking too long.");
print("Case:");
iiii;
print("i0:");
i0;
JumpToEndOfRealReduction:=true;
break i0;
end if;

else // EnumerationCost(GammaC,(DDD+min)^2) <= 6000000000
flag:=false; //ready to get out of while loop that increases C
 //if necessary

//

/*
Create a process P to enumerate all the vectors u in the lattice Gamma_C with length squared |u|^2 <= (D+|y-z|)^2 (equivalently length |u| <= D+|y-z|).

To enumerate the vectors, we will need to repeatedly call NextVector(P). Calling NextVector(P) will return the next vector found in the enumeration (along with its norm).

IsEmpty(P) returns true if the process P has finished enumerating all the vectors. It returns false otherwise.

*/

//
P:=ShortVectorsProcess(GammaC,Floor((DDD+min)^2));
Enumerate those lattice vectors \(u \) with \(|u| \leq D + |y-z| \), extract the corresponding tuples, and test those tuples.

Extracted tuple = \((b_{JJJ[2]}, \ldots, b_{JJJ[#JJJ]}) \)

\[
bbb[i] = b_{JJJ[i]}, \quad i=1 \text{ to } #JJJ
\]

while not IsEmpty(P) do

\[
\text{uuu} := \text{NextVector}(P);
\]

//Extract tuple \((b_{JJJ[2]}, \ldots, b_{JJJ[#JJJ]}) \)

\[
bbb[1] := 1;
\]

for \(i := 2 \) to \(1 + #J \) do

\[
bbb[i] := (\text{uuu}[i-1] - (\text{yyy}[i-1][1] - \text{zzz}[i-1][1]) + (1/2) \ast \text{W}[JJJ[i]] \ast \text{B}[JJJ[i]]) / \text{W}[JJJ[i]] ;
\]

end for;

for \(i := 2 + #J \) to \(#JJJ - 1 \) do

\[
bbb[i] := (\text{uuu}[i-1] - (\text{yyy}[i-1][1] - \text{zzz}[i-1][1])) / \text{W}[JJJ[i]] ;
\]

end for;

\[
\text{sum} := 0 ;
\]

for \(i := 1 \) to \(#JJJ - 1 \) do

\[
\text{sum} := \text{sum} + bbb[i] \ast \text{phi}[JJJ[i]] ;
\]

end for;

\[
bbb[#JJJ] := (\text{uuu][:#JJJ-1] - (\text{yyy][:#JJJ-1][1] - \text{zzz}[#JJJ-1][1]) - \text{sum}) / \text{phi}[JJJ[#JJJ]] ;
\]
//Test the tuple
passes:=true;
while true do //this while loop is a hack to provide a way to
 //"jump to line X"
 for i:=2 to #JJJ do
 if not IsIntegral(bbb[i]) then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;

 for i:=2 to 1+#J do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;

 for i:=2+#J to #JJJ do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then
 passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;

 /*Test if the tuple fits in the new box. If so, throw it away (it’s not
 exceptional). */
 FitsInTheNewBox:=true;
 for i:=2+#J to #JJJ do
 if Abs(bbb[i]) gt NewConditionalUpperBoundForAi0 then
 FitsInTheNewBox:=false; break i;
 end if;
 end for;
 if FitsInTheNewBox eq true then passes:=false; break; end if;

 for ll in I do
 LAMBDAprime:=0;
 for i:=1 to #JJJ do
 LAMBDAprime:=LAMBDAprime + bbb[i]*beta[ll][JJJ[i]];
 end for;
 end for;
end for;
if SpecialCase[ll] eq true then
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDAprime) ne bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
else //SpecialCase[ll] eq false
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDAprime) lt bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;

for ll in I do
if SpecialCase[ll] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
end for;
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;

break;
end while; //end hack while loop

/*If the tuple passes all the tests, add it to the list of exceptional tuples*/
if passes eq true then Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;

//

/*Since the enumeration process only spits out one of u and -u, we now
need to do the same thing with -u.*/

uuu:=-uuu;

//Extract tuple (b_{JJJ[2]},...,b_{JJJ[#JJJ]})
bbb[1]:=1;
for i:=2 to 1+#J do
bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;
for i:=2+#J to #JJJ-1 do
bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1]))/W[JJJ[i]];
end for;
sum:=0;
for i:=1 to #JJJ-1 do
sum:=sum+bbb[i]*phi[JJJ[i]];
end for;
bbb[#JJJ] := (uuu[#JJJ-1] - (yyy[#JJJ-1][1]-zzz[#JJJ-1][1]) - sum)
/phi[JJJ[#JJJ]];
if passes eq false then break; end if;

for i:=2 to 1+#J do
if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes:=false; break; end if;
end for;
if passes eq false then break; end if;

for i:=2+#J to #JJJ do
if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then
passes:=false; break; end if;
end for;
if passes eq false then break; end if;

/*Test if the tuple fits in the new box. If so, throw it away (it’s not exceptional). */
FitsInTheNewBox:=true;
for i:=2+#J to #JJJ do
if Abs(bbb[i]) gt NewConditionalUpperBoundForAi0 then
FitsInTheNewBox:=false; break i;
end if;
end for;
if FitsInTheNewBox eq true then passes:=false; break; end if;

for ll in I do
LAMBDAprime:=0;
for i:=1 to #JJJ do
LAMBDAprime:=LAMBDAprime + bbb[i]*beta[ll][JJJ[i]];
end for;
if SpecialCase[ll] eq true then
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDAprime) ne bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
else //SpecialCase[ll] eq false
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))

266
and Valuation(LAMBDAprime) lt bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;

for ll in I do
if SpecialCase[ll] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
end for;
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;
break;
end while; //end hack while loop

/*If the tuple passes all the tests, add it to the list of exceptional
tuples*/
if passes eq true then Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;

end while; //enumeration loop

//Enumeration done
ConditionalUpperBoundForA[i0] := NewConditionalUpperBoundForAi0;

end if; //end of IF controlled by EnumerationCost(GammaC,(DDD+min)^2)

end if; /* end of IF controlled by NewConditionalUpperBoundForAi0 ge OldUnconditionalUpperBoundForA */

end while; /* this is the while loop that increases log(C) if necessary, the while loop controlled by flag */

end for; //end i0 loop

if JumpToEndOfRealReduction eq false then

 spécifique

/*
Choose c11 to find an optimal i0-conditional upper bound for A for i0 in {s+1,...,s+2t} from Lemma 19.1 */

MIN:=UpperBoundForA;

c11:=(1/1000000)*c10/(n-1);

c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;

268
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

c11:=(1000000 - 1)/1000000)*c10/(n-1);

if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;
max:=Ceiling(((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
 max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;
end for; //end i loop

/////
/*
Compute the new unconditional bound for A
*/
/////

OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=Max([Max(ConditionalUpperBoundForA),MIN]);

if NewUpperBoundForA lt OldUpperBoundForA then
 Improvement:=true;
UpperBoundForA:=NewUpperBoundForA;
for i:=1 to r do
B[1+v+i]:=UpperBoundForA;
end for;
end if;

end if; //controlled by JumpToEndOfRealReduction

if UpperBoundForA lt 0 then
//there are no solutions to the current case of (11)
continue iiiii;
end if;

///
/*
Complex Case, i.e., s = 1,2
*/
///
else //s=1,2 complex case

B[2+v+r]:=Floor(2*Arcsin(1/4)/PI);
for i in JJJ do
B[2+v+r]:=B[2+v+r] + B[i];
end for;

JumpToEndOfRealReduction:=false;
for i0:=1 to s do

///
/*
Define
weights W[i] (Section 21)
R (approximation) (Section 21)
S (Section 21)
CCCCC = C (Section 21)

Initialize:
TC, where Transpose(TC) = U_C from Section 21
phi[i]:= phi_i from Section 21
*/

W:=[];
for i:=1 to 1+v+r do
W[i]:=0; //initialize
end for;

H0prime:=0;
for i:=2 to #JJJ do
if H0prime lt B[JJJ[i]] then H0prime:=B[JJJ[i]]; end if;
end for;

W[1]:=0;
for i:=2 to #JJJ do
W[JJJ[i]]:=RoundP(H0prime/B[JJJ[i]]);
end for;
for i in J do
W[1+i]:=2*W[i+1];
end for;

R:=B[2+v+r];
for i in JJJ do
R:=R + B[i];
end for;
R:=(1/2)*R;
//this is just an approximation to R

S:=0;
for i:=2 to #JJJ do
S:=S+(W[JJJ[i]]^2)*(B[JJJ[i]]^2);
end for;

prod:=1;
for i:=2 to #JJJ do
prod:=prod*W[JJJ[i]];
end for;

/*
LogC:= (3/4) * ((#JJJ)/2) * Log(
(R^2 + S)
/ (2^-((#JJJ)) * (Abs(LogarithmicAlphaC[i0][2+v+r])*prod)^(2/(#JJJ)))
);
*/

LogC:= Min[
(3/4) * ((#JJJ)/2) * Log(
(R^2 + S) / ((Abs(LogarithmicAlphaC[i0][2+v+r])*prod)^(2/(#JJJ)))
),
(3/4)*UpperBoundForA
]

//CCCCCC:=Ceiling(Exp(LogC));

TC:=ScalarMatrix(IntegerRing(),#JJJ,1); //#JJJ by #JJJ identity matrix

phi:=[];
for i:=1 to 2+v+r do
phi[i]:=0;
end for;
Start the while loop where C will be increased until we find a new conditional upper for A that is smaller than the unconditional upper bound for A or until a number of increases of C have been made with no success.

RunThroughNumber1:=0;
RunThroughNumber2:=0;
flag:=true;
while flag do

Increase CCCCC = C (if this is not the first attempt the basic real reduction procedure).

Compute the (soon to be) new i0-conditional upper bound for A. We choose c11 to optimize this bound.

If it is better than the old unconditional upper bound, then we do the enumeration procedure. If it is not better, then we first retry several times with larger values of C, but if that doesn't work we abandon the refined real reduction procedure (there is no point in moving on to the next i0 in {1,...,s} because the unconditional upper bound on A will not be improved).
MIN:=UpperBoundForA;

c11:=(1/1000000)*c10/(n-1);
max:=Max([Celsius((1/c11)*(Log(4*Arcsin(1/4)*c16[i0]) + Log(CCCCCC)
- Log((lowerbound^2 - S)^((1/2) - R)))-1,
Celsius((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
Celsius((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
Celsius(Log(2*c16[i0])/c11)-1,
0]);
if max lt MIN then MIN:=max; end if;

c11:=((1000000-1)/1000000)*c10/(n-1);
max:=Max([Celsius((1/c11)*(Log(4*Arcsin(1/4)*c16[i0]) + Log(CCCCCC)
- Log((lowerbound^2 - S)^((1/2) - R)))-1,
Celsius((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
Celsius((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
Celsius(Log(2*c16[i0])/c11)-1,
0]);
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
 max:=Max([Celsius((1/c11)*(Log(4*Arcsin(1/4)*c16[i0]) + Log(CCCCCC)
- Log((lowerbound^2 - S)^((1/2) - R)))-1,
Celsius((c8prime + c9prime*UpperBoundForN)/(c10 - (n-1)*c11))-1,
Celsius((c8primeprime + c9primeprime*UpperBoundForN)/(c10 - c11))-1,
Celsius(Log(2*c16[i0])/c11)-1,
0]);
 if max lt MIN then MIN:=max; end if;
end for;
end for; //end i loop

NewConditionalUpperBoundForAi0:=MIN;
OldUnconditionalUpperBoundForA:=UpperBoundForA;

if NewConditionalUpperBoundForAi0 ge OldUnconditionalUpperBoundForA then
RunThroughNumber2:=RunThroughNumber2+1; //increase C and try again
/////////
/*
In case we find a new conditional upper bound that fails to improve on
the current unconditional upper bound for A, and this occurs 5 times with
log(C) being increased 5% each time, then we abort the real reduction
procedure. There is no need to print a message in this case.
*/
////////
if RunThroughNumber2 eq 5 then
JumpToEndOfRealReduction:=true;
break i0;
end if;

else //NewConditionalUpperBoundForAi0 lt OldUnconditionalUpperBoundForA

/{*
Calculate the phi_i for i in JJJ.

Calculate R.
*/
for i in JJJ do
phi[i]:=Round(CCCCCC*LogarithmicAlphaC[i0][i]);
end for;
phi[2+v+r]:=Round(CCCCCC*LogarithmicAlphaC[i0][2+v+r]);

/*This will never happen because LogarithmicAlphaC[i0][2+v+r] = Pi */
if \(\text{Abs}(\phi[2+v+r]) \lt 2 \) then
if \(\text{CCCCC*LogarithmicAlphaC[i0][2+v+r]} \geq 0 \) then
\(\phi[#JJJ] := 2; \)
else
\(\phi[#JJJ] := -2; \)
end if;
end if;

if \(\text{IsIntegral}(\phi[1]/\phi[2+v+r]) \) then
if \(\text{Abs}(\phi[1]+1 - \text{CCCCC*LogarithmicAlphaC[i0][1]}) \leq 1 \) then
\(\phi[1] := \phi[1]+1; \)
else
\(\phi[1] := \phi[1]-1; \)
end if;
end if;

R := B[2+v+r]*\text{Abs}(\text{CCCCC*LogarithmicAlphaC[i0][2+v+r]} - \phi[2+v+r]);
for i in JJJ do
R := R + B[i]*\text{Abs}(\text{CCCCC*LogarithmicAlphaC[i0][i]} - \phi[i]);
end for;

/*
Compute
AC = A_C
*/

AC := \text{ZeroMatrix(IntegerRing(),v+r+2,v+r+2)};

for i := 1 to 1+v+r do
AC[i][i] := W[i];
end for;
for j := 1 to v+r+2 do
AC[v+r+2][j] := \phi[j];
end for;
for i:=1+v+r to 2 by -1 do
if not i in JJJ then
RemoveColumn(~AC,i);
RemoveRow(~AC,i);
end if;
end for;

RemoveRow(~AC,1);
RemoveColumn(~AC,1);

//AC is now a #JJJ by #JJJ matrix

AC:=AC*Transpose(TC);
/* If this is the first run through Transpose(TC) is the identity.
 Otherwise Transpose(TC) is UC. This will time in the LLL reduction. */

///

/*
Compute an LLL reduced basis for the lattice Gamma_C generated by columns
of A_C. The algorithm used is de Weger's exact integer version of LLL.

Note: LLL(X) assumes ROWS of X span the lattice, so we need to feed it
the transpose of A_C. Similarly, it spits out the transpose of B_C and
the transpose of U_C
*/
///

//time
temp,TC,rank:=LLL(Transpose(AC) : Proof:=true, Method:="Integral",
Delta:=0.75, Eta:=0.5);

BC:=MatrixRing(RationalField(),#JJJ) ! Transpose(temp);
//columns are LLL-reduced basis for Gamma_C

/*
Here $TC^*\text{Transpose}(AC) = \text{Transpose}(BC)$.
So with $UC = \text{Transpose}(TC)$ we have $AC*UC = BC$,
and With
$VC = BC*\text{Transpose}(TC)*BC^\text{-1} = AC*\text{Transpose}(TC)*AC^\text{-1}$, we have
$VC*AC = BC$.
*/

///
/*/ Define:
yyy = \vec{y} from Section 21
sss = \vec{s} from Section 21
ttt = \vec{t} from Section 21
zzz = \vec{z} from Section 21
DDD = D from Section 21
/*/
//yyy is now a #JJJ by 1 column vector

yyy:=ZeroMatrix(RationalField(),2+v+r,1);
for i:=1 to v do
 yyy[1+i][1] := (1/2)*W[1+i]*B[1+i];
end for;
for i:=1+v+r to 2 by -1 do
 if not i in JJJ then
 RemoveRow(~yyy,i);
 end if;
end for;
RemoveRow(~yyy,1);
//yyy is now a #JJJ by 1 column vector
yyy[#JJJ][1] := -phi[1];

sss := (BC^(-1))*yyy;

ttt := sss;
for i:=1 to #JJJ do
 ttt[i][1] := Floor(sss[i][1]);
end for;
Floorssss:=ttt;
potentialtttt:=ttt;
min:=LengthOfVector(BC*ttt - yyy);

mm:=#JJJ;
Choosettt(yyy,ttt,potentialtttt,Floorssss,min,BC,mm,1);

zzz:=BC*ttt;

/*Now zzz is likely the closest vector in the lattice Gamma_C to yyy and
min = |zzz-yyy|*/

DDD:=((R+1)^2 + S)^(1/2);

Construct the lattice Gamma_C. The MAGMA function Lattice() assumes
Use the function EnumerationCost to compute an estimate the number of
nodes in the tree to be visited during the execution of the algorithm
that will enumerate all lattice vectors u with $|u| \leq D + |y-z|$. The
number of nodes is essentially directly proportional to the time needed
for the enumeration.

If the number of nodes is too large for the enumeration to be done in a
reasonable amount of time, we increase C and try the reduction procedure
again. If several increases of C fail to result in a small enough
estimate for the number of nodes, then we abort the refined real
reduction (there is no point in moving on to the next i_0 in $\{1,\ldots,s\}$
because the unconditional upper bound on A will not be improved).

In Stehle and Watkins (2006), it is asserted that MAGMA’s enumeration
algorithm has a traversal rate of about 7.5 million nodes per second.
Based on the examples in the MAGMA Handbook, the rate is appears to be
20 to 40 million nodes per second. We will assume a traversal rate of 10 million nodes per second. Assuming we want the enumeration to take less than 10 minutes, we want to abort if the estimated number of nodes is > 10*60*10^7 = 6000000000

Note: To MAGMA, Norm(v) = |v|^2.

GammaC:=Lattice(Transpose(BC));

if EnumerationCost(GammaC,RealField() ! (DDD+min)^2) gt 6000000000 then

RunThroughNumber1+:=1; //increase C and try again

if RunThroughNumber1 eq 20 then

print("Refined real reduction taking too long.");
print("Case:");
iiii;
print("i0:");
i0;
JumpToEndOfRealReduction:=true;
break i0;
end if;

else // EnumerationCost(GammaC,(DDD + min)^2) <= 6000000000

flag:=false; //ready to get out of while loop that increases C
Create a process P to enumerate all the vectors u in the lattice Gamma_C with length squared \(|u|^2 \leq (D+|y-z|)^2\) (equivalently length \(|u| \leq D+|y-z|\)).

To enumerate the vectors, we will need to repeatedly call NextVector(P). Calling NextVector(P) will return the next vector found in the enumeration (along with its norm).

IsEmpty(P) returns true if the process P has finished enumerating all the vectors. It returns false otherwise.

P:=ShortVectorsProcess(GammaC,Floor((DDD+min)^2));

/*
Enumerate those lattice vectors u with |u| \leq D+|y-z|, extract the corresponding tuples, and test those tuples.

Extracted tuple = (b_{JJJ[2]},...,b_{JJJ[#JJJ]},b_{2+v+r})

bbb[i] = b_{JJJ[i]}, i=1 to #JJJ
bbb[#JJJ+1] = b_{2+v+r}
*/

bbb:=<RationalField() | >;
bbb[1]:=1;

while not IsEmpty(P) do

uuu:=NextVector(P);
for i:=2 to 1+#J do
bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1])
+ (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;
for i:=2+#J to #JJJ do
bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1]))/W[JJJ[i]];
end for;
sum:=0;
for i:=1 to #JJJ do
sum:=sum+bbb[i]*phi[JJJ[i]];
end for;
bbb[#JJJ+1] := (uuu[#JJJ] - (yyy[#JJJ][1]-zzz[#JJJ][1]) - sum)
/phi[2+v+r];

//Test the tuple
passes:=true;
while true do //this while loop is a hack to provide a way to
 //"jump to line X"
 for i:=2 to #JJJ do
 if not IsIntegral(bbb[i]) then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;

 if not IsIntegral((1/2)*bbb[#JJJ+1]) then passes:=false; break; end if;

 for i:=2 to 1+#J do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;

 for i:=2+#J to #JJJ do
if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then
 passes:=false; break; end if;
end for;
if passes eq false then break; end if;

 passes:=false; break; end if;

/*Test if the tuple fits in the new box. If so, throw it away (it’s not exceptional). */
FitsInTheNewBox:=true;
for i:=2+#J to #JJJ do
 if Abs(bbb[i]) gt NewConditionalUpperBoundForAi0 then
 FitsInTheNewBox:=false; break i;
 end if;
end for;
if FitsInTheNewBox eq true then passes:=false; break; end if;

for ll in I do
 LAMBDAprime:=0;
 for i:=1 to #JJJ do
 LAMBDAprime:=LAMBDAprime + bbb[i]*beta[ll][JJJ[i]];
 end for;
 if SpecialCase[ll] eq true then
 if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and Valuation(LAMBDAprime) ne bbb[jl[ll]]*hh[ll] + dd[ll] then
 passes:=false; break ll;
 end if;
 else //SpecialCase[ll] eq false
 if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll])) and Valuation(LAMBDAprime) lt bbb[jl[ll]]*hh[ll] + dd[ll] then
 passes:=false; break ll;
 end if;
 end if;
end for;
if passes eq false then break; end if;

for ll in I do
if SpecialCase[ll] eq false then
LAMBDA:=0;
for i:=1 to #JJJ do
LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
end for;
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;
break;
end while; //end hack while loop

/*If the tuple passes all the tests, add it to the list of exceptional tuples*/
if passes eq true then
Remove(~bbb,#JJJ+1); Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;

//

/*Since the enumeration process only spits out one of u and -u, we now need to do the same thing with -u.*/

uuu:=-uuu;

//Extract tuple (b_{JJJ[2]},...,b_{JJJ[#JJJ]},b_{2+v+r})
for i:=2 to 1+#J do
 bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1])
 + (1/2)*W[JJJ[i]]*B[JJJ[i]])/W[JJJ[i]];
end for;
for i:=2+#J to #JJJ do
 bbb[i] := (uuu[i-1] - (yyy[i-1][1]-zzz[i-1][1]))/W[JJJ[i]];
end for;
sum:=0;
for i:=1 to #JJJ do
 sum:=sum+bbb[i]*phi[JJJ[i]];
end for;
bbb[#JJJ+1] := (uuu[#JJJ] - (yyy[#JJJ][1]-zzz[#JJJ][1]) - sum)
/phi[2+v+r];

//Test the tuple
passes:=true;
while true do //this while loop is a hack to provide a way to
 "jump to line X"
 for i:=2 to #JJJ do
 if not IsIntegral(bbb[i]) then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;
 if not IsIntegral((1/2)*bbb[#JJJ+1]) then passes:=false; break; end if;
 for i:=2 to 1+#J do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt 0 then passes:=false; break; end if;
 end for;
 if passes eq false then break; end if;
 for i:=2+#J to #JJJ do
 if bbb[i] gt B[JJJ[i]] or bbb[i] lt -B[JJJ[i]] then passes:=false; break; end if;
 end if;

286
end for;
if passes eq false then break; end if;

if bbb[#JJJ+1] gt B[2+v+r] or bbb[#JJJ+1] lt -B[2+v+r] then
passes:=false; break; end if;

/*Test if the tuple fits in the new box. If so, throw it away (it’s not
exceptional). */
FitsInTheNewBox:=true;
for i:=2+#J to #JJJ do
if Abs(bbb[i]) gt NewConditionalUpperBoundForAi0 then
FitsInTheNewBox:=false; break i;
end if;
end for;
if FitsInTheNewBox eq true then passes:=false; break; end if;

for ll in I do
LAMBDAprime:=0;
for i:=1 to #JJJ do
LAMBDAprime:=LAMBDAprime + bbb[i]*beta[ll][JJJ[i]];
end for;
if SpecialCase[ll] eq true then
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDAprime) ne bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
else //SpecialCase[ll] eq false
if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
and Valuation(LAMBDAprime) lt bbb[jl[ll]]*hh[ll] + dd[ll] then
passes:=false; break ll;
end if;
end if;
end for;
if passes eq false then break; end if;
for ll in I do
 if SpecialCase[ll] eq false then
 LAMBDA:=0;
 for i:=1 to #JJJ do
 LAMBDA:=LAMBDA + bbb[i]*beta[ll][JJJ[i]];
 end for;
 if bbb[jl[ll]] gt (1/hh[ll])*(1/(p[ll]-1) - Valuation(delta2[ll]))
 and Valuation(LAMBDA) ne bbb[jl[ll]]*hh[ll] + Valuation(delta2[ll]) then
 passes:=false; break ll;
 end if;
 end if;
end for;
if passes eq false then break; end if;
break;
end while; //end hack while loop

/*If the tuple passes all the tests, add it to the list of exceptional tuples*/
if passes eq true then
 Remove(~bbb,#JJJ+1); Remove(~bbb,1); Include(~ExceptionalTuples, bbb);
end if;
end while; //enumeration loop

//Enumeraition done

ConditionalUpperBoundForA[i0]:=NewConditionalUpperBoundForAi0;
end if; //end of IF controlled by EnumerationCost(GammaC,(DDD+min)^2)
end if; /* end of IF controlled by NewConditionalUpperBoundForAi0 ge OldUnconditionalUpperBoundForA */
end while; /* this is the while loop that increases log(C) if necessary, the while loop controlled by flag */

end for; //end i0 loop

if JumpToEndOfRealReduction eq false then

Choose c11 to find an optimal i0-conditional upper bound for A for i0 in {s+1,...,s+2t} from Lemma 19.1
*/

MIN:=UpperBoundForA;

c11:=(1/1000000)*c10/(n-1);

c15:=0;
if t gt 0 then
min:=Abs(Imaginary(thetaC[s+1]));
for ii:=2 to t do
j:=s-1 + 2*ii;
if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
end if;
end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
// now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

c11:=((1000000 - 1)/1000000)*c10/(n-1);

c15:=0;
if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
end for; // end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
 max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
// now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
 c15:=0;
 if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
 end for; // end ii
 if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

for i:=1 to 999 do
 c11:=(i/1000)*c10/(n-1);
 c15:=0;
 if t gt 0 then
 min:=Abs(Imaginary(thetaC[s+1]));
 for ii:=2 to t do
 j:=s-1 + 2*ii;
 if Abs(Imaginary(thetaC[j])) lt min then min:=Abs(Imaginary(thetaC[j]));
 end if;
 end for; // end ii
 if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

// now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;

end for; //end ii
if Floor(-Log(min)/c11) gt 0 then c15:=Floor(-Log(min)/c11); end if;
end if;

max:=Ceiling((c8prime + c9prime*UpperBoundForN)/(c10-(n-1)*c11))-1;
if max lt
Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1 then
max:=Ceiling((c8primeprime + c9primeprime*UpperBoundForN)/(c10-c11))-1;
end if;
if max lt c15 then max:=c15; end if;
//now max is the upper bound for A in Lemma 19.1
if max lt MIN then MIN:=max; end if;
end for; //end i loop

//MIN is now an i0-conditional upper bound for A for i0 in {s+1,...,s+2t}

////////
/*
Compute the new unconditional bound for A
*/
////////
OldUpperBoundForA:=UpperBoundForA;
NewUpperBoundForA:=Max([Max(ConditionalUpperBoundForA),MIN]);

if NewUpperBoundForA lt OldUpperBoundForA then
Improvement:=true;
UpperBoundForA:=NewUpperBoundForA;
for i:=1 to r do
B[1+v+i]:=UpperBoundForA;
end for;
end if;

end if; //controlled by JumpToEndOfRealReduction
if UpperBoundForA lt 0 then
 //there are no solutions to the current case of (11)
 continue iiiii;
end if;

end if; //end of IF for distinguishing (s>=3) (s=1,2) cases

end if; //end of IF for s=0, s>=3, s=1or2 cases

//done finding new upper bound for A

UpperBoundForH:=Max([UpperBoundForN, UpperBoundForA]);

print("Upperbounds for the n_l and A, respectively:"");
UpperBoundForn;
Floor(UpperBoundForA);
end while; //end loop for repeated refined reductions (the improvement loop)

///
/*
End Of Loop For Repeated Refined Reductions (the improvement loop)
*/
///

Final Sieve (Section 22)
Compute
NumberOfTuplesToCheck = the number of tuples to sieve through (excluding
the [small number of] exceptional tuples)

Select rational primes \(q_1, \ldots, q_k \) such that each \(q_i \) has at least three
prime ideal factors in \(O_K \) that have residue degree one and such that the
product \(q_1 \cdots q_k \) is > NumberOfTuplesToCheck

For each \(q = q_h \), pick three residue degree 1 prime ideal factors of \(q \) in
\(O_K \): \(qq_1, qq_2, qq_3 \). For each \(qq_i \), we compute the integers \(m_i, A_i, P_{ij}, E_{ij} \) from Section 22. Actually, we compute these not as integers
but as elements in the finite field \(\mathbb{Z}/q\mathbb{Z} \). We store these elements in the
sequence
\[
Q[h][i] = [P_{i1}, \ldots, P_{iv}, E_{i1}, \ldots, E_{ir}, A_i, m_i]
\]
\[
Q[h][i] = [P_{i,J[2]-1}, \ldots, P_{i,JJ[1+#J]-1}, E_{i1}, \ldots, E_{ir}, A_i, m_i]
\]
\[
=[P_{i,[1]}, \ldots, P_{i,[#J]}, E_{i1}, \ldots, E_{ir}, A_i, m_i]
\]

We don’t store the primes \(q_1, \ldots, q_k \) or their prime ideal factors.

*/
ProductOfAllqSelected:=1;
Q:=[**];

hhh:=0;

ej:=0;
while ProductOfAllqSelected le NumberOfTuplesToCheck do

ListOfPrimesInInterval:=PrimesInInterval(150*j+1,150*(j+1));

for i:=#ListOfPrimesInInterval to 1 by -1 do
if ProductOfAllqSelected gt NumberOfTuplesToCheck then break i; end if;
q:=ListOfPrimesInInterval[i];
DecompositionOfq:=Decomposition(OK,q);
if #DecompositionOfq ge 3 then
IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered:=[[];
for ii:=1 to #DecompositionOfq do
if InertiaDegree(DecompositionOfq[ii][1]) eq 1 then
 Append(~IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered,ii);
end if;
if #IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered eq 3 then
 break ii;
end if;
end for; //ii
if #IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered eq 3 then

hhh:=hhh+1;
Q[hhh]:=[];
ProductOfAllqSelected:=ProductOfAllqSelected*q;
ZmodqZ:=FiniteField(q, 1);
for ii in IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered do
 temp:=[[];
 for jj:=1 to #J do
 temp[jj]:=ZmodqZ ! (pi[J[jj]][kk[J[jj]]] mod DecompositionOfq[ii][1]);
 end for;
for jj:=1 to r do
 temp[#J+jj]:=ZmodqZ ! (eps[jj] mod DecompositionOfq[ii][1]);
end for;

temp[1+#J+r]:=ZmodqZ ! ((OK ! alpha*zeta) mod DecompositionOfq[ii][1]);
temp[2+#J+r]:=ZmodqZ ! ((OK ! theta) mod DecompositionOfq[ii][1]);
Append(~Q[hhh],temp);
end for; //ii

end if; // controlled by
 //#IndicesOfFirstThreeResidueDegreeOnePrimesAboveqEncountered eq 3
end if; // controlled by #DecompositionOfq ge 3
end for; //i

j:=j+1;
end while;

///
/*
 Suppose bbb[i] = b_{JJJ[i+1]}, for i=1 to #JJJ-1.
 Note: bbb[i] = b_{JJJ[i+1]} = b_{1+J[i]}=n_{J[i]} for i:=1 to #J
 Note: bbb[#J+i] = b_{JJJ[1+#J+i]} = b_{1+v+i}=a_i for i:=1 to r
*/
///

BBBupper:=[];
BBBlower:=[];
for i:=1 to #J do
 BBBupper[i]:=UpperBoundForn[J[i]];
 BBBlower[i]:=0;
end for;
for i:=#J+1 to #J+r do
BBBupper[i]:=UpperBoundForA;
BBBBlower[i]:=-UpperBoundForA;
end for;

//Solutions:=[];

///
/*
Sieve through all tuples in the box defined by the bounds on the n_i
(i in J) and the a_i
*/
///
print("Starting the sieve: ");
count:=0; //used in SieveBox for testing. Can be removed.
bbb:=[]; //needed for SieveBox() to work

SieveBox(~bbb,~Solutions,~count,~BBBBlower,~BBBupper,~Q,~J,~JJJ,
~ValueOfn,~kk,~hh,~ss,~tt,~ImageOfzetaC,~ImageOfalphaC,1);

///
/*
Sieve through all exceptional tuples that we found in the refined
reduction steps.

After this procedure is done, Solutions will contain all the exceptional
solutions (X,Y,z_1,...,z_v) of the sign-relaxed version of Thue-Mahler
equation (1) that also satisfy the current case of (11).
Recall: Every solution of the Thue-Mahler equation satisfies some case
of (11).
*/
///
bbb:=[];
//ExceptionalTuples;
//ExceptionalTuplesTest[iii]:=ExceptionalTuples;
for i:=1 to #ExceptionalTuples do

temp:=ExceptionalTuples[i];
for j:=1 to #temp do

bbb[j]:=IntegerRing() ! temp[j];
end for;

//Test the tuple bbb for the congruences (25)
passes:=true;
for hhh:=1 to #Q do

//test the tuple for the q=q_hhh congruence (25)
CongruenceTest(~bbb,hhh,~passes,~Q,~J);
if passes eq false then break hhh; end if;
end for;

if passes eq true then

/* Use the tuple bbb (where bbb[i]=b_{JJJ[i+1]}, i=1 to #JJJ-1) to get the tuple bb (where bb[i] = b_{1+i}, i=1 to v). Compute the corresponding X,Y. Test if (X,Y,b_{2},...,b_{1+v}) gives a solution of the Thue-Mahler equation (1) and record the solution if so. */

ThueMahlerEquationTest(~bbb,~Solutions,~ImageOfzetaC,~ImageOfalphaC,~J, ~ValueOfn,~kk,~hh,~ss,~tt);

end if;

end for;
At this point almost all of the solutions of the sign-relaxed version of the Thue-Mahler equation have been found. In the language of Section 6, the ones we have found come from instances of (11) with \(\zeta \) equal to an element of \(T' \). The missing ones come from instances of (11) with \(\zeta \) equal to an element of \(T \setminus T' \). The missing ones are of the form \((-x,-y,z_1,\ldots,z_v)\) where \((x,y,z_1,\ldots,z_v)\) is a solution we have found.

Now we find the missing solutions.

SolutionsCopy:=Solutions;
for ii:=1 to #SolutionsCopy do
sol:=SolutionsCopy[ii]; //sol = (X,Y,z_1,\ldots,z_v)
sol[1]:=-sol[1];
sol[2]:=-sol[2];
//now sol = (-X,-Y,z_1,\ldots,z_v)

//Build RHS and LHS expressions
RHSexpression:=a;
for i:=1 to v do
RHSexpression *:= p[i]^(sol[2+i]);
end for;
for i:=1 to n-1 do
end for;

/*test if sol=(-X,-Y,z_1,\ldots,z_v) is a solution of the Thue-Mahler equation (in the form Abs(LHSexpression) - Abs(RHSexpression) = 0). If so, append it to Solutions*/
if IsZero(Abs(LHSexpression) - Abs(RHSexpression)) then
Include(~Solutions,sol);
//SolutionsTest[iii]:=Solutions;
//print("Solutions of the sign-relaxed Thue-Mahler equation");
//Solutions;

//
/*
At this point all the solutions of the sign-relaxed version of the
Thue-Mahler equation have been found. It is now a simple matter to go
through these solutions and eliminate the ones that are not solutions of
the Thue-Mahler equation proper.

Recall: Each element of Solutions is of the form
[X,Y,z_1,...,z_v]
*/
//
SolutionsCopy:=Solutions;
for ii:=#SolutionsCopy to 1 by -1 do

//Build RHS and LHS expressions
RHSexpression:=a;
for i:=1 to v do
RHSexpression *:= p[i]^(SolutionsCopy[ii][2+i]);
end for;
LHSexpression:= SolutionsCopy[ii][1]^n + c[n]*SolutionsCopy[ii][2]^n;
for i:=1 to n-1 do
LHSexpression:=LHSexpression + c[i]*SolutionsCopy[ii][1]^(n-i)*SolutionsCopy[ii][2]^-i;
end for;
/*test if \((X,Y,z_1,...,z_v) \) is a solution of the Thue-Mahler equation (in the form \(\text{LHSexpression-RHSexpression} = 0 \)). If not, remove it from Solutions*/
if not IsZero(LHSexpression-RHSexpression) then
Remove(~Solutions,ii);
end if;
end for;

print("Done case iii=");
iiii;

///
end for; //end iii loop (the loop through the cases)
break PrecisionLoopVariable;
end for; //end the precision loop

//SolutionsTest;
//ExceptionalTuplesTest;
//Write("Solutions821.txt",SolutionsTest);

print("Solutions of the Thue-Mahler equation:");
return Solutions;
end function;