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Abstract

Recently, convex relaxations have achieved notable success in solving NP-
hard optimization problems. This thesis studies semidefinite and second-
order cone programming convex relaxations of the maximin dispersion prob-
lem. Providing nontrivial approximation bounds, we believe that our SDP
and SOCP relaxation methods are useful in large-scale optimization.

The thesis is organized as follows. We begin by recalling some basic con-
cepts from convex analysis, nonsmooth analysis, and optimization. We then
introduce the weighted maximin dispersion optimization problem; locating
point(s) in a given region X ⊆ ℝn that is/are furthest from a given set of
m points. Also given are several reformulations of the original problem, in-
cluding a convex relaxation problem and semidefinite and second order cone
programming relaxations. Using well known results on Lipschitz functions
and subdifferentials of Lipschitz functions we then derive a theoretical char-
acterization of the optimal solutions for a given convex region X and equal
weights. Next, we provide a proof that the weighted maximin dispersion
problem is NP-hard even in the case where X is is a box and the weights are
equal. We then propose an algorithm for finding an approximate solution
using the SDP relaxation, and derive an approximation bound that depends
on the subset X . In the case that X is a box or a product of low-dimensional
spheres, we show that the convex relaxation reduces to a second-order cone
program, and provide further results on the bound provided. Lastly, we pro-
vide numerical examples using the SDP and SOCP relaxations, and suggest
future work.
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Chapter 1

Introduction

The fundamental building blocks of all studies in optimization can be
found in calculus, linear algebra and analysis. This chapter collects back-
ground materials and known facts which will be used in later chapters. Sec-
tions 1.1, 1.3 and 1.4 give a brief overview of the necessary results from these
fields which are used to build the basic theoretical results of optimization.
Sections 1.5.1 and 1.5 then introduce concepts which are required specifi-
cally for solving non-convex optimization problems, like the one presented
in this thesis.

1.1 Preliminaries

In this work the geometry of problems is mainly concerned with Eu-
clidean space and finding solutions that are subsets of ℝn. In this section
we discuss the geometry and fundamental concepts of the real vector space
ℝn. We also recall a few very basic definitions from calculus which are
required throughout the rest of this thesis.

We denote the set of n-dimensional real vectors by ℝn, and for any
x ∈ ℝn we denote the itℎ component of x by xi. Thus, each x ∈ ℝn is a
column vector

x =

⎛⎜⎜⎜⎝
x1

x2
...
xn

⎞⎟⎟⎟⎠ .

For any x, y ∈ ℝn we define the inner product ⟨⋅, ⋅⟩ by

⟨x, y⟩ = xT y =
n∑
i=1

xiyi. (1.1)

Definition 1.1. A norm ∥⋅∥ on ℝn is a function that assigns a scalar ∥x∥
to every x ∈ ℝn with the following properties:

1. ∥x∥ ≥ 0 for all x ∈ ℝn.

1



1.1. Preliminaries

2. ∥x∥ = 0 if and only if x = 0.

3. ∥�x∥ = ∣�∣ ∥x∥ for all � ∈ ℝ and x ∈ ℝn.

4. ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ ℝn. This is known as the Triangle
Inequality.

Throughout this thesis we will be working exclusively with the Euclidean
norm

∥x∥2 =
(
xTx

)1/2
=

(
n∑
i=1

x2
i

)1/2

(1.2)

and so we will drop the subscript, so that ∥x∥ refers to the Euclidean norm.
Based on the definition of a norm we have the notion of distance. In

general, the distance between two vectors x and y is given by

d(x, y) = ∥x− y∥ . (1.3)

The Euclidean distance between two vectors x, y ∈ ℝn is given by:

∥x− y∥2 =
√

(x− y)T (x− y) =

(
n∑
i=1

(xi − yi)2

)1/2

. (1.4)

As this is the only distance measure used throughout this thesis, we will
again drop the subscript.

A useful inequality that we will apply throughout this thesis is the
Cauchy-Schwarz inequality:

Fact 1.2. (Cauchy-Schwarz Inequality) [9] Let x, y ∈ ℝn. Then

∣⟨x, y⟩∣ ≤ ∥x∥ ∥y∥ , (1.5)

with equality holding if x and y are collinear, i.e., x being a scalar multiple
of y or vice versa.

A basic result of analysis is that

Fact 1.3. All norms in ℝn are equivalent. More precisely, suppose that ∥⋅∥a
and ∥ ⋅ ∥b are norms in ℝn, then there exists �, � > 0 such that

�∥x∥a ≤ ∥x∥b ≤ �∥x∥a ∀x ∈ ℝn.

2



1.2. Existence of Maximizers and Minimizers

1.2 Existence of Maximizers and Minimizers

Definition 1.4. The domain of a function f , denoted dom (f), is given by

dom (f) = {x ∈ ℝn∣ f(x) < +∞}.

Example 1.5. The domain of some common functions:

− dom (x2) = ℝ

− dom (
√
x) = {x ∈ ℝ ∣ x ≥ 0}

− dom ( 1
x) = {x ∈ ℝ ∣ x ∕= 0}

Definition 1.6. We say that the function f is proper if its domain is
nonempty and f > −∞.

Definition 1.7. The �-sublevel set of a function f is the set

{x ∈ dom f ∣f(x) ≤ �} (1.6)

and the epi-graph of f is the set

epi (f) =
{

(x, r) ∈ ℝn+1 ∣x ∈ dom f and f(x) ≤ r} . (1.7)

The indicator function associated with S ⊆ ℝn is defined by

�S(x) =

{
0, if x ∈ S;

+∞, otherwise.

Associated with f : ℝn → [−∞,+∞] we let

argminf = {x ∈ ℝn ∣ f(x) = min f} (1.8)

and
argmaxf = {x ∈ ℝn ∣ f(x) = max f} . (1.9)

Recall that

Definition 1.8. A set S ⊂ ℝn is compact if it is closed and bounded.

A continuous function on a compact set always has maximizers and min-
imizers.

3



1.3. Matrix Algebra

Theorem 1.9. (Extreme Value Theorem) [9] Assume that f : ℝn → ℝ is
continuous and X ⊂ ℝn is compact. Then

argmin (f + �X ) =

{
x ∈ X

∣∣∣∣ f(x) = min
X

f

}
∕= ∅ (1.10)

and

argmax (f + �X ) =

{
x ∈ X

∣∣∣∣ f(x) = max
X

f

}
∕= ∅. (1.11)

Building on the vector space ℝn, the next section focuses on real matri-
ces; that is, the set of all p× q matrix with entries aij ∈ ℝ. Given the vector
space ℝn, the Euclidean norm, and the theories of linear algebra presented
in the next section, we can define many optimization problems of interest.

1.3 Matrix Algebra

For any matrix A, we denote its i, jtℎ element by Ai,j . The transpose
of A, denoted AT is defined by ATi,j = Aj,i. For an n × n matrix, we write
A ∈ ℝn×n.

Definition 1.10. Let A be a square matrix. We say that A is symmetric if

A = AT . (1.12)

The space of all n× n symmetric matrices is denoted Sn.

Definition 1.11. The n × n identity matrix is a diagonal matrix whose
diagonal elements are equal to 1, and is denoted I or sometimes In. That
is, Ij,j = 1 for j = 1, . . . , n and Ii,j = 0 for all i ∕= j.

Definition 1.12. The trace of an n × n square matrix A is defined to be
the sum of the elements on the main diagonal. That is,

trace(A) = tr(A) =
n∑
i=1

Ai,i. (1.13)

Definition 1.13. For A,B ∈ Sn we define the inner product by

⟨A,B⟩ = tr(AB). (1.14)

4



1.3. Matrix Algebra

Fact 1.14. ([24] p.29 and p.45) For any A,B ∈ Sn we have

tr(AB) = tr(BA) (1.15)

and
tr(A+B) = tr(A) + tr(B). (1.16)

Definition 1.15. A matrix A ∈ Sn is said to be positive definite if

xTAx > 0 for all x ∈ ℝn∖ {0} (1.17)

and we write A ≻ 0. The matrix A ∈ Sn is negative definite if

xTAx < 0 for all x ∈ ℝn∖ {0} (1.18)

and we write A ≺ 0.

Definition 1.16. A matrix A ∈ Sn is said to be positive semidefinite if

xTAx ≥ 0 for all x ∈ ℝn (1.19)

and we write A ર 0. The matrix A ∈ Sn is negative semidefinite if

xTAx ≤ 0 for all x ∈ ℝn (1.20)

and we write A ⪯ 0.

Definition 1.17. The set of a positive semidefinite symmetric matrices is
denoted Sn+.

Definition 1.18. Let A be any n×n square matrix. A principal submatrix
of A is any m × m submatrix of A obtained by deleting n − m rows and
corresponding columns.

Example 1.19. Let A =

⎡⎢⎢⎣
a b c d
e f g ℎ
i j k l
m n o p

⎤⎥⎥⎦. One example of a principal

submatrix of A is obtained by deleting the second and third columns and
rows: [

a d
m p

]
. (1.21)

Another principal submatrix might delete just the fourth column and
row, or the first and third, etc.

5



1.3. Matrix Algebra

Proposition 1.20. If A ∈ Sn is positive semidefinite, then every principal
submatrix of A is symmetric positive semidefinite.

Proof. Let Ap be any principal submatrix of A. First, note that since we
have deleted corresponding rows and columns of A, a symmetric matrix, the
submatrix Ap must be symmetric.

Now, let xp be any nonzero vector of size p. “Enlarge” xp to a vector
x of size n by inserting zeros into the positions corresponding to the rows
(and columns) of A which were deleted to form Ap. Then we have that

xTpApxp = xTAx ≥ 0. (1.22)

Hence, Ap is positive semidefinite.

Corollary 1.21. Let A ∈ Sn be positive semidefinite. Then for each i =
1, . . . , n− 1 we have [

Ai,i Ai,n
Ai,n An,n

]
ર 0. (1.23)

This follows directly from Proposition 1.20.

Definition 1.22. The eigenvalues of an n × n matrix A are the values
�1, . . . , �n (not necessarily distinct) such that det(A− �I) = 0.

Fact 1.23. ([24] p.278) The determinant and trace of an n × n matrix A
can be expressed in terms of the eigenvalues of A by:

det(A) =
n∏
i=1

�i tr(A) =
n∑
i=1

�i. (1.24)

Fact 1.24. ([24] p.309) An n × n matrix A is positive semidefinite if and
only if all of the eigenvalues of A are nonnegative.

Proposition 1.25. If A is a 2 × 2 symmetric matrix, then A is positive
semidefinite if and only if det(A) ≥ 0 and trace(A) ≥ 0.

Proof. Suppose first that A is positive semidefinite. Then by Fact 1.24 we
have �1, �2 ≥ 0. Then by Fact 1.23 we have

det(A) =
2∏
i=1

�i = �1�2 ≥ 0 (1.25)

and

trace(A) =

2∑
i=1

�i = �1 + �2 ≥ 0 (1.26)

6



1.4. Convex Analysis

as required.

Now, suppose that det(A) ≥ 0 and trace(A) ≥ 0. By Fact 1.23 we have
that

det(A) =
2∏
i=1

�i = �1�2 ≥ 0 (1.27)

so that �1 and �2 must have the same parity. Furthermore, by Fact 1.23 we
also have

trace(A) =
2∑
i=1

�i = �1 + �2 ≥ 0 (1.28)

and thus we can conclude that �1, �2 ≥ 0 and hence A is positive semidefi-
nite.

Fact 1.26. (The Cholesky Factorization, [18] page 154.) Let A ∈ Sn be
positive definite. Then A = LTL, where L is a nonsingular upper triangular
matrix.

1.4 Convex Analysis

Recent applications of optimization are focused strongly on finding opti-
mal solutions to non-convex problems. The approach to solving non-convex
problems however, often involves creating convex relaxation problems which
can then be solved by existing optimization methods. The following section
provides a brief overview of convex analysis.

1.4.1 Convex Sets and Convex Functions

Definition 1.27. A set C ⊆ ℝn is affine if, for any x1, x2 ∈ C and � ∈ ℝ
we have

�x1 + (1− �)x2 ∈ C. (1.29)

That is, an affine set contains the linear combination of any two points
in the set, provided the coefficients sum to one. A point of the form
�1x1 + ⋅ ⋅ ⋅+ �kxk, where �1 + ⋅ ⋅ ⋅+ �k = 1, is called an affine combination of
the points x1, . . . , xk.

Definition 1.28. A set C ⊆ ℝn is convex if, for any x1, x2 ∈ C and 0 ≤
� ≤ 1 we have

�x1 + (1− �)x2 ∈ C. (1.30)

7



1.4. Convex Analysis

Graphically, a set C is convex if the line segment between any two points
in C is also contained in C, see Figure 1.1. Every affine set is convex, since
if a set contains the line through any two points, it must obviously contain
the line between those two points. Given �i ≥ 0 with �1 + ⋅ ⋅ ⋅+ �k = 1 and
points x1, . . . , xk ∈ C, we say that the point �1x1 + ⋅ ⋅ ⋅ + �kxk is a convex
combination of the points x1, . . . , xk.

Figure 1.1: Examples of convex sets.

Figure 1.2: Examples of nonconvex sets.

Definition 1.29. The convex hull of a set C is the set of all convex combi-
nations of points in C:

conv (C) =

{
k∑
i=1

�ixi

∣∣∣∣∣ xi ∈ C, �i ≥ 0, i = 1, . . . , k,

k∑
i=1

�i = 1, k ≥ 1

}
.

(1.31)

The convex hull of the set C is the smallest convex set that contains C.
That is, if D is any convex set such that C ⊆ D then conv (C) ⊆ D.

8



1.4. Convex Analysis

Figure 1.3: The convex hull of some nonconvex sets.

Fact 1.30. [22] If C ⊆ ℝn is compact, i.e. closed and bounded, then conv(C)
is compact.

Corollary 1.31. Given x1, x2, . . . , xk in ℝn, conv {x1, . . . , xk} is compact.

Definition 1.32. A set K ⊆ ℝn is called a cone if, for any x ∈ K and � ≥ 0
we have �x ∈ K.

A set K is a convex cone if it is convex and a cone; that is, for any
x1, x2 ∈ K and �1, �2 ≥ 0 we have

�1x1 + �2x2 ∈ K. (1.32)

Example 1.33.

− ℝ+ = {x ∣ x ≥ 0} is a convex cone in ℝ.

− ℝn+ = {(x1, . . . , xn) ∣ x1 ≥ 0, . . . , xn ≥ 0} is a convex cone in ℝn.

− Sn+ = {A ∣ A is an n× n matrix, A is positive semidefinite} is a con-
vex cone.

A point of the form �1x1 + ⋅ ⋅ ⋅ + �kxk, where �i ≥ 0 for i = 1, . . . , k is
called a conic combination of the points x1, . . . , xk.

Definition 1.34. Let K ⊆ ℝn be a cone. The dual cone of K, denoted K∗
is the set

K∗ =
{
y ∈ ℝn

∣∣yTx ≥ 0 ∀x ∈ K
}

(1.33)

Definition 1.35. A hyperplane is a set of the form{
x ∈ ℝn

∣∣aTx = b
}

(1.34)

where a ∈ ℝn, a ∕= 0 and b ∈ ℝ.

9



1.4. Convex Analysis

Analytically, a hyperplane is the solution set of a nontrivial linear equa-
tion. Geometrically, the hyperplane H =

{
x
∣∣aTx = b

}
can be interpreted

as the set of points with constant inner product to a given vector a; that is,
a hyperplane with normal vector a. Note that a hyperplane is affine (and
thus convex).

Definition 1.36. A (closed) halfspace is a set of the form{
x ∈ ℝn

∣∣aTx ≤ b} (1.35)

where a ∕= 0.

A hyperplane divides ℝn into two halfspaces (see Figure 1.4). Ana-
lytically, a halfspace is the solution set of one nontrivial linear inequality.
Halfspaces are convex, but not affine.

a 

bxaT ≥  

bxaT ≤  

Figure 1.4: A hyperplane with normal vector a divides ℝ2 into two half-
spaces.

10



1.4. Convex Analysis

Some frequently seen convex sets are listed below:

− The closed norm ball in ℝn with center xc and radius r is given by

Br[xc] = {x ∈ ℝn ∣ ∥x− xc∥ ≤ r} (1.36)

where r > 0 and ∥⋅∥ denotes any norm on ℝn.

− The norm cone associated with any norm ∥⋅∥ is given by

{(x, t) ∣ ∥x∥ ≤ t, x ∈ ℝn, t ∈ ℝ} ⊆ ℝn+1. (1.37)

The norm cone is a convex cone. See Figure 1.5 for an example of the
norm cone associated with the Euclidean norm.

− A polyhedron is the solution set of a finite number of linear equalities
and inequalities, and is of the form{

x ∈ ℝn
∣∣aTj x ≤ bj , j = 1, . . . ,m, cTk x ≤ dk, k = 1, . . . , p

}
. (1.38)

Graphically, a polyhedron is the intersection of a finite number of
halfspaces and hyperplanes.

Note that the norm cone associated with the Euclidean norm is referred
to as the second-order cone or Lorentz cone.

Definition 1.37. The Lorentz cone is the cone in ℝn defined as

ℒ =

{
x ∈ ℝn

∣∣∣∣∣x2
n ≥

n−1∑
i=1

x2
i , xn ≥ 0

}
. (1.39)

Figure 1.5: The Euclidean norm cone in ℝ3.

11



1.4. Convex Analysis

1a  

6a  
5a  

4a  

3a  

2a  

Figure 1.6: A polyhedron.

Definition 1.38. A function f : ℝn → (−∞,∞] is said to be a convex
function if dom f is a convex set and, for all x, y ∈ dom f and 0 < � < 1
we have

f (�x+ (1− �) y) ≤ �f(x) + (1− �)f(y). (1.40)

Graphically, a function f is convex if the line segment joining (x, f(x))
and (y, f(y)) lies above the graph of f , (see Figure 1.7). A function f
is strictly convex if strict inequality holds in (1.40) whenever x ∕= y and
0 < � < 1. We say that the function f is concave if −f is convex, and
strictly concave if −f is strictly convex.

(x, f (x)) 

( y, f (y)) 

Figure 1.7: A convex function.

Remark 1.39. A function f is convex if and only if epi (f) is a convex set.

Fact 1.40. Every norm is a convex function on ℝn.

12



1.4. Convex Analysis

Proof. Let 0 ≤ � ≤ 1, and consider

f(�x+ (1− �)y) = ∥�x+ (1− �)y∥ (1.41)

≤ ∥�x∥+ ∥(1− �)y∥ (1.42)

= � ∥x∥+ (1− �) ∥y∥ (1.43)

= �f(x) + (1− �)f(y). (1.44)

Hence, f is convex.

Alternatively, simply note that the epigraph of the function f(x) = ∥x∥
is given by

epi (f) = {(x, t) ∣ ∥x∥ ≤ t} (1.45)

which is a convex set in ℝn+1 (the norm cone), and so by Remark 1.39 f is
a convex function.

Definition 1.41. Let f : ℝn → ℝm and x ∈ int dom f . If f is differentiable
at x, its Jacobian matrix ∇f(x) ∈ ℝm×n is given by

∇f(x)ij =
∂fi(x)

∂xj
(1.46)

for all i = 1, . . . ,m, j = 1, . . . , n.

Definition 1.42. For a real-valued function f : ℝn → ℝ, if f is twice
differentiable at x, its Hessian matrix ∇2f(x) ∈ ℝn×n is given by

∇2f(x)ij =
∂2f

∂xi∂xj
(1.47)

for all i, j = 1, . . . , n.

Convexity of a differentiable function can also be established using the
following conditions:

Fact 1.43. (First order convexity condition)
Suppose f is differentiable on an open set O ⊆ ℝn. Then f is convex on O
if and only if O is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (1.48)

for all x, y ∈ O ([22] page 46).
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1.4. Convex Analysis

Fact 1.44. (Second order convexity condition)
Assume f is twice differentiable on an open set O ⊆ ℝn. Then f is convex
on O if and only if O is convex and ∇2f is positive semidefinite; i.e.,

∇2f(x) ર 0 (1.49)

for every x ∈ O ([22] page 46).

Fact 1.45. The function

fi(x) = wi
∥∥x− xi∥∥2

(1.50)

is a convex function on ℝn, where wi > 0 ∈ ℝ and xi ∈ ℝn is fixed.

This follows from the second order convexity condition, and the fact that
∇2fi(x) = 2wiI ર 0.

Definition 1.46. A vector v ∈ ℝn is said to be a subgradient of the convex
function f at the point x if

f(y) ≥ f(x) + ⟨v, y − x⟩ , ∀y ∈ dom f. (1.51)

The set of all subgradients of f is called the subdifferential of f at x, and is
denoted ∂f(x).

A subdifferential mapping, being a surrogate for derivative, is fundamen-
tally important in convex analysis and optimization.

Definition 1.47. A vector x∗ is said to be normal to the convex set C at
the point x ∈ C if

⟨y − x, x∗⟩ ≤ 0 ∀y ∈ C. (1.52)

The set of all vectors x∗ that are normal to C at the point x is called the
Normal Cone to C at x, and is denoted NC(x). If x /∈ C, then NC(x) = ∅.

Recall that for C ⊆ ℝn, x is an interior point of C if there exists � > 0
such that B�(x) ⊆ C. The set of interior points of C will be denoted by
int(C).

Example 1.48. Let C ⊆ ℝn. Immediately from the definition of ∂�C , we
have

∂�C = NC .

Moreover, if x ∈ int(C), then ∂�C(x) = {0}, i.e. NC(x) = {0} .
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1.4. Convex Analysis

Definition 1.49. Let f : ℝn → [−∞,∞], and let x be a point such that
∣f(x)∣ <∞. The one-sided directional derivative of f at x with respect to a
vector y is defined to be the limit

f ′(x; y) := lim
�↓0

f(x+ �y)− f(x)

�
(1.53)

if it exists (here ±∞ are allowed as limits).

Definition 1.50. Let f : ℝn → [−∞,∞], and let x be a point such that
∣f(x)∣ <∞. We say that f is differentiable at x if and only if there exists a
vector x∗ with the property

lim
z→x

f(z)− f(x)− ⟨x∗, z − x⟩
∥z − x∥

= 0. (1.54)

Such an x∗, if it exists, is called the gradient of f at x and is denoted ∇f(x).

Fact 1.51. If f is differentiable at x, then f ′(x; y) exists and is a linear
function of y for all y. In particular,

f ′(x; y) = ⟨∇f(x), y⟩ ∀y ∈ ℝn. (1.55)

Fact 1.52. [2, Proposition 2.3.2] Let x̄ ∈ int(C), C ⊂ ℝn. Suppose that
continuous functions g0, g1, . . . , gm : C → ℝ are differentiable at x̄, that g is
the max function

g(x) = max
i=0,...,m

gi(x) (1.56)

and define the index set I = {i ∣gi(x̄) = g(x̄)} . Then for all directions d in
ℝn, the directional derivative of g is given by

g′(x̄; d) = max
i∈I
{⟨∇gi(x̄), d⟩} . (1.57)

It turns out that the directional derivative of a convex function can be
used to compute its subdifferential.

Fact 1.53. [19, Theorem 23.2] Let f : ℝn → (−∞,+∞] be convex and
x ∈ dom f . Then f ′(x; y) exists for every y ∈ ℝn. Moreover,

∂f(x) = {v ∈ ℝn∣ f ′(x; y) ≥ ⟨v, y⟩ ∀y ∈ ℝn}.
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1.5. Nonsmooth Analysis

1.4.2 Minimizers or Maximizers of Convex Functions

Theorem 1.54. [19, page 264] For a convex function f , we have that

x ∈ argminf ⇔ 0 ∈ ∂f(x). (1.58)

Remark 1.55. We say that x ∈ D is an extremal point of D if

x = �y + (1− �)z (1.59)

with 0 < � < 1, y, z ∈ D implies that y = z.

Theorem 1.56. [22, Theorem 32.3] Let f : ℝn → ℝ be convex, and K ⊆ ℝn
be compact and convex. Then

max
x∈K

f(x) = max
x∈ext(K)

f(x) (1.60)

where ext(K) denotes the extremal points of K.

1.5 Nonsmooth Analysis

Since maximin problems are nonconvex in general, in Subsection 1.5.1
and 1.5.2 below we introduce the concept of a Lipschitz function and nons-
mooth analysis. They are used in Section 3.2 to derive necessary optimality
conditions for the solutions of nonconvex maximin optimization problem.

1.5.1 Locally Lipschitz Functions

Definition 1.57. Given a function f : ℝn → ℝ, we say that f is locally
Lipschitz continuous at a point x0 if there exists � > 0 and Λ > 0 such that
whenever ∥x− x0∥ < � and ∥y − x0∥ < � we have

∣f(x)− f(y)∣ ≤ Λ ∥x− y∥ . (1.61)

Fact 1.58. If f is locally Lipschitz at x0, then −f is locally Lipschitz at x0.

The above fact follows directly from

∣−f(x)− (−f(y))∣ = ∣−(f(x)− f(y))∣ = ∣f(x)− f(y)∣ . (1.62)

Fact 1.59. If f1, f2 are locally Lipschitz at x0, then

max {f1, f2} (1.63)

and
min {f1, f2} (1.64)

are locally Lipschitz at x0.
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1.5. Nonsmooth Analysis

Proof. Since f1 is locally Lipschitz at x0, there exists �1 > 0 and Λ1 > 0
such that

∣f1(x)− f1(y)∣ ≤ Λ1 ∥x− y∥ (1.65)

whenever ∥x− x0∥ < �1 and ∥y − x0∥ < �1. Similarly, there exists �2 > 0
and Λ2 > 0 such that

∣f2(x)− f2(y)∣ ≤ Λ2 ∥x− y∥ (1.66)

whenever ∥x− x0∥ < �2 and ∥y − x0∥ < �2.

Set � = min {�1, �2}, and Λ = max {Λ1,Λ2} so that whenever ∥x− x0∥ <
� and ∥y − x0∥ < � we have

− Λ ∥x− y∥ ≤ f1(x)− f1(y) ≤ Λ ∥x− y∥ (1.67)

−Λ ∥x− y∥ ≤ f2(x)− f2(y) ≤ Λ ∥x− y∥ . (1.68)

From this we have

f1(x)−max {f1(y), f2(y)} ≤ Λ ∥x− y∥ (1.69)

f2(x)−max {f1(y), f2(y)} ≤ Λ ∥x− y∥ . (1.70)

Combining the above two equations we have

max {f1(x), f2(x)} −max {f1(y), f2(y)}
= max {f1(x)−max {f1(y), f2(y)}, f2(x)−max {f1(y), f2(y)}}
≤ Λ ∥x− y∥ . (1.71)

Similarly,

− Λ ∥x− y∥ ≤ f1(x)− f1(y) ⇒ f1(y)− f1(x) ≤ Λ ∥x− y∥ (1.72)

−Λ ∥x− y∥ ≤ f2(x)− f2(y) ⇒ f2(y)− f2(x) ≤ Λ ∥x− y∥ (1.73)

(1.74)

so that

f1(y)−max {f1(x), f2(x)} ≤ Λ ∥x− y∥ (1.75)

f2(y)−max {f1(x), f2(x)} ≤ Λ ∥x− y∥ (1.76)

and thus

max {f1(y), f2(y)} −max {f1(x), f2(x)} ≤ Λ ∥x− y∥
⇒ max {f1(x), f2(x)} −max {f1(y), f2(y)} ≥ −Λ ∥x− y∥ . (1.77)
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1.5. Nonsmooth Analysis

Hence, whenever ∥x− x0∥ < � and ∥y − x0∥ < � we have that

∣max {f1(y), f2(y)} −max {f1(x), f2(x)}∣ ≤ Λ ∥x− y∥ (1.78)

which shows that max {f1, f2} is locally Lipschitz at x0.

Now,
min {f1, f2} = −max {−f1,−f2}. (1.79)

Using Fact 1.58 we know that −f1,−f2 are both locally Lipschitz at x0.
Then max {−f1,−f2} is locally Lipschitz at x0 by the above proof. Applying
Fact 1.58 once more, we have that −max {−f1,−f2} and thus min {f1, f2}
is locally Lipschitz at x0.

Remark 1.60. Fact 1.59 can also be seen by using

max{f1, f2} =
f1 + f2

2
+
∣f1 − f2∣

2
,

min{f1, f2} =
f1 + f2

2
− ∣f1 − f2∣

2
.

Fact 1.61. Assume that fi is locally Lipschitz at x0 for i = 1, . . . ,m. Then

max {f1, . . . , fm} (1.80)

and
min {f1, . . . , fm} (1.81)

are locally Lipschitz at x0.

Proof. This follows directly from applying induction to the results of Fact
1.59.

1.5.2 Subdifferentials and Critical Points

Let O ⊆ ℝn be an open set. For a locally Lipschitz function f : O → ℝ,
and x ∈ O, we define its Clarke directional derivative with respect to v ∈ ℝn
by

fo(x; v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
(1.82)

and the Clarke subdifferential

∂of(x) = {x∗ ∈ ℝn ∣ fo(x; v) ≥ ⟨x∗, v⟩ ∀v ∈ ℝn} . (1.83)

The Clarke subdifferential plays a fundamental role in optimization problems
involving nonconvex functions. Some key properties are:
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Theorem 1.62. Let f, g : O ⊂ ℝn → ℝ be locally Lipschitz and x ∈ O.
Then

1. ∂of(x) is compact and convex ([7] page 40).

2. ∂o(f + g)(x) ⊆ ∂of(x) + ∂og(x) ([7] Proposition 2.3.3).

3. ∂o(−f)(x) = −∂of(x) ([7] Proposition 2.3.1).

4. If f is a convex function on O, then ∂of = ∂f ([7] Proposition 2.2.7).

5. If f is continuously differentiable on O, then ∂of(x) = {∇f(x)} ([7]
Proposition 2.2.7).

Theorem 1.63. [23, Proposition 7.4.7] If f is locally Lipschitz about x̄ and
x̄ is a local minimizer or a local maximizer of f , then 0 ∈ ∂of(x̄).

Theorem 1.64. [23, Proposition 7.4.7] Let I be a finite set, and for all
i ∈ I let gi : ℝn → ℝ be locally Lipschitz continuous around x̄. Let g be the
max-function defined as

g(x) = max {gi(x) ∣ i ∈ I } (1.84)

and define the active index set at x̄ by

I(x̄) = {i ∈ I ∣ gi(x̄) = g(x̄)} . (1.85)

Suppose that gi is differentiable at x̄. Then the Clarke subdifferential of g at
x̄ is given by

∂og(x̄) = conv {∇gi(x̄) ∣ i ∈ I(x̄)} . (1.86)

1.6 Some Convex Optimization Problems

In this section we give the general and standard forms of a semidefinite
programming optimization problem (SDP) and a second-order cone pro-
gramming problem (SOCP), which we will use in section 2.2. For a convex
cone K ⊂ ℝp and x ∈ ℝp, we write x રK 0 if x ∈ K.

Definition 1.65. ([4]) A conic form program (or conic program) is an op-
timization problem which has a linear objective function and one inequality
constraint function

min cTx (1.87)

s.t. Fx+G રK 0

Ax = b
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where c, x ∈ ℝp, A ∈ ℝm×p, b ∈ ℝm, F ∈ Sp, G ∈ ℝp and K is a convex
cone in ℝp.

Definition 1.66. When K is Sn+, the cone of positive semidefinite n × n
matrices, the associated conic form problem is called a semidefinite program,
and has the form

min cTx (1.88)

s.t. x1F1 + ⋅ ⋅ ⋅+ xmFm +G ર 0

Ax = b

where c, x ∈ ℝm, G,F1, . . . , Fm ∈ Sn and A ∈ ℝp×m.

A standard SDP in inequality form is

min cTx (1.89)

s.t. x1A1 + ⋅ ⋅ ⋅+ xmAm ⪯ B

where A1, . . . , Am, B ∈ Sn, c, x ∈ ℝm.
A standard SDP is in the following form:

min ⟨C,X⟩ (1.90)

s.t. ⟨Ai, X⟩ = bi i = 1, . . . ,m

X ર 0

where C,X,Ai ∈ Sn and bi ∈ ℝ. One can show that (1.90) has a dual given
by

max bTx (1.91)

s.t. x1A1 + ⋅ ⋅ ⋅+ xmAm ⪯ C

which is in the form of (1.89), see [4, Example 5.11], [29].

Definition 1.67. ([4]) The second-order cone program (SOCP) is of the
form

min fTx (1.92)

s.t. ∥Aix+ bi∥ ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

where f, x ∈ ℝn, Ai ∈ ℝn×n and F ∈ ℝp×n.
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Constraints of the form ∥Ax+ b∥ ≤ cTx+d are called second-order cone
constraints because the affinely defined variables u = Ax+b and t = cTx+d
must belong to the second order cone. Note that SOCP is a special case of
SDP by using

∥Aix+ bi∥ ≤ cTi x+ di ⇔
(

(cTi x+ d)I Aix+ bi
(Aix+ bi)

⊺ (cTi x+ d)

)
ર 0.

Further readings on SDP and SOCP may also be found in [32], [27], [29].

1.7 NP-Complete Problems

In this section we will give a brief overview to the concept of complexity
theory and NP-completeness. In order to begin discussing complexity of
problems however, we first need a few basic definitions.

Definition 1.68. [12] A problem is a general question to be answered, usu-
ally containing several parameters with values left unspecified. A problem
is described by giving a general description of all of its parameters, and a
statement of what properties the answer (or solution) is required to satisfy.
An instance of a problem is obtained by specifying particular values for all
the problem parameters.

Definition 1.69. [12] An algorithm is a general, step-by-step procedure for
solving a problem.

For concreteness, we often think of algorithms as being computer pro-
grams written in a precise computer language. We say that an algorithm
solves a problem Π if that algorithm can be applied to any instance I of Π
and be guaranteed to provide a solution for that instance.

Definition 1.70. [12] The input length for an instance I of a problem Π is
defined to be the number of symbols in the description of I obtained from
the encoding scheme for Π.

Definition 1.71. [12] The time complexity function for an algorithm ex-
presses its time requirement by giving, for each possible input length, the
largest amount of time needed by the algorithm to solve a problem instance
of that size.

Note that by this definition, this function is not well-defined until the
encoding scheme to be used for determining input length and the computer
model for a particular problem are fixed. However, the particular choices
made for these have little effect on the broad distinctions made in the theory
of NP-completeness ([12] p.6).
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1.7.1 The Theory of NP-Completeness

In this section we discuss measures for the complexity of algorithms, and
introduce the concept of NP-complete problems.

Definition 1.72. [12] We say that a function f(n) is O(g(n)) whenever
there exists a constant c such that

∣f(n)∣ ≤ c ⋅ ∣g(n)∣ (1.93)

for all values of n ≥ 0.

Definition 1.73. [12] A polynomial time algorithm is defined to be one
whose complexity function is O(p(n)) for some polynomial function p, where
n is used to denote the input length. Any algorithm whose time complexity
function can not be so bounded is called an exponential time algorithm.

Note that this definition includes certain non-polynomial time complex-
ity functions (like nlogn) which are not normally regarded as exponential
functions.

Definition 1.74. [12] A problem is called intractable if no polynomial time
algorithm can possibly solve it.

The idea of polynomial time reducibility is integral to the theory of NP-
completeness, and refers to reductions for which the transformation can be
executed by a polynomial time algorithm. This is significant, since if we
have a polynomial time reduction from one problem to another, then this
ensures that any polynomial time algorithm for the second problem can
be converted into a corresponding polynomial time algorithm for the first
problem.

The simplest way to explain the idea of NP-completeness is as follows.
First, define two classes of problems:

1. The class of problems with solution algorithms bounded by a polyno-
mial of fixed degree, P [8].

2. The class of problems with solutions that are verifiable in polynomial
time, NP. That is, given a solution S to problem Π, a polynomial
time algorithm exists to verify that S is in fact a solution of Π [31].

Fact 1.75. [8] P ⊆ NP.
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One of the most important open questions in theoretical computer sci-
ences is whether or not P=NP. The notation NP stands for “non-deterministic
polynomial time”, since the original definition of the class NP is the class
of problems which can be solved by a non-deterministic Turing machine in
polynomial time [31].

A problem Pi is NP-hard if every problem in NP is polynomially re-
ducible to Pi. One can say that

Pi is NP-hard⇔ If Pi is solved in a polynomial time, then P = NP.

A problem Pi is NP-complete if it is both NP-hard and an element of NP.
In essence, the NP-complete problems are the “hardest” problems in NP
[12]. The question of whether NP-complete problems are intractable is still
a major open problem in mathematics and computer science (See [31] and
references therein).

How to show that a problem Pi is NP-hard? One often uses a reduction
argument:

1. Confirm that Pi is a decision problem;

2. Take one problem Pj that is already known to be NP-hard or NP-
complete;

3. Show that the problem Pj is polynomially reducible to Pi;

4. This shows that Pi is NP-hard.

This is what we will use in the thesis.

1.7.2 Some NP-Hard Problems

Based on the previous section, we see that the simplest way to prove
that a problem is NP-complete is to reduce it in polynomial time to another
problem which is known to be NP-complete (or NP-hard). In order for this
to be possible, we require a compendium of problems which are already
known to be NP-complete (or NP-hard). There are many books and papers
including lists of problems that have been proven to be NP-complete or NP-
hard (for example, see [12], [17], [6]). Here, we provide two examples of
NP-hard problems that are integral to the work of this thesis.

Fact 1.76. [6, MP1] It is NP-hard to determine the solvability of the integer
linear program

By = b, y ∈ {−1, 1}q , (1.94)

with B ∈ ℤp×q, b ∈ ℤp.
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Given an undirected graph G = (V,E) with weights wij = wji = 1 on
the edges (i, j) ∈ E, the Max Cut Problem is that of finding the set of
vertices S ⊆ V that maximizes the weight of the edges in the cut (S, S).
Put wij = 0 if (i, j) ∕∈ E. The weight of a cut (S, S) is

w(S, S) =
∑

i∈S,j ∕∈S
wij .

The Max Cut problem is to

max
S⊂V

w(S, S).

Assume that the graph has q nodes, i.e., ∣V ∣ = q. Define two q×q symmetric
matrices A = (aij) and W respectively by setting aij = aji = wij , and

W = Diag(Ae)−A ∈ ℤq×q

where e = (1, . . . , 1)⊺ ∈ ℝq.

Definition 1.77. (See [21, page 309], [27], [14]) The MaxCut problem on a
graph with q nodes may be formulated as

max
y∈{−1,1}q

yTWy, (1.95)

where W ∈ ℤq×q and W ર 0.

The Max Cut problem has long been known to be NP complete.

Fact 1.78. ([14, page.1116], [21]) The Maxcut problem (1.95) is NP-hard.

For further details on complexity theory and NP-hard problems, see [12].

1.7.3 The Complexity of Algorithms for Solving SDP and
SOCP

To some extent, SDP is very similar to linear programming. Given any
� > 0, SDPs can be solved within an additive error of � in polynomial time
(� is part of the input, so the running time dependence on � is polynomial in
log(1/�)), [14]. This is can be done through ellipsoid algorithm, polynomial
algorithms for convex programming, as well as interior point methods. See
[14], [15], [1]. If the feasible region is bounded, then SOCPs can also be
solved to arbitrary fixed precision in polynomial time, [13]. For the current
state of the art in SDP, see [32].

Currently, available software packages solving SDPs and SOCPs include
SeDuMi (self-dual minimization) [25], CVX (a modeling system for disci-
plined convex programming) [11] and SDPT3.
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Chapter 2

The Weighted Maximin
Location Problem

2.1 General Problem and Motivation

Definition 2.1. The problem of finding a point x in a closed set X ⊆ ℝn
(n ≥ 1) that is furthest from a given set of points x1, . . . , xm in ℝn in a
weighted maximin sense is given by

�p := max
x∈X

f (x) with f (x) := min
i=1,...,m

wi
∥∥x− xi∥∥2

, (2.1)

where wi > 0. This is known as the weighted maximin dispersion prob-
lem.

In general ∥⋅∥ denotes the Euclidean norm; in the case that we consider
another norm we will make the distinction explicit.

In the equal weight case of w1 = ⋅ ⋅ ⋅ = wm, (2.1) has the geometric in-
terpretation of finding the largest Euclidean sphere with center in X and en-
closing no given point. To illustrate, let B�(x) = {y ∣ ∥y − x∥ < �, y ∈ ℝn} ,

and f(x) = mini=1,...,m

∥∥x− xi∥∥2
.

Example 2.2. Set r =
√
f(x). Then Br(x) ∩

{
x1, . . . , xm

}
= ∅.

Proof. Indeed, r2 ≤
∥∥x− xi∥∥2 ∀i = 1, . . . ,m by definition. If xi0 ∈ Br(x)

then
∥∥x− xi0∥∥ < r, so

∥∥x− xi0∥∥2
< r2. Thus we have

r2 ≤
∥∥x− xi0∥∥2

< r2 (2.2)

which is a contradiction. Hence, Br(x) ∩
{
x1, . . . , xm

}
= ∅.
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2.1. General Problem and Motivation

Our interest in the minimax distance problem arises from deterministic
function modeling in statistics [16]. We begin with a deterministic computer
code which models a complex physical system. It is assumed that the code
is very costly to run, and so our goal is to build a computationally cheap
surrogate of the computer code. The statistical approach to this problem is
to place a prior belief on the function space, X , and then use the weighted
maximin distance criteria to choose a set of sites in X at which to run the
computer code, so that we may model the resulting deterministic output as
a stochastic process (see [26]).

In general, the weighted maximin problem also has many diverse appli-
cations in facility location, spatial management and pattern recognition (see
[10], [30] and references therein). One applied example in facility location
would be the determining of the location for a new and highly polluting in-
dustry within some region X . Suppose that there are m cities within region
X , represented by the points x1, . . . , xm. One criteria in choosing a location
for the facility could be that the amount of pollution reaching any city be
minimized. Then the optimization problem (2.1) may be used in choosing
the location of the facility, provided we can assume that the amount of pol-
lutant reaching a city is monotonically decreasing function of the distance
between the city and the facility.

For ease of notation throughout this thesis we define

fi(x) = wi
∥∥x− xi∥∥2

(2.3)

where wi > 0 is a fixed constant and xi ∈ ℝn. Thus, the maximin dispersion
problem becomes

max
x∈X

f(x) (2.4)

where, for all x ∈ ℝn, i ∈ {1, . . . ,m}

f(x) = min
1≤i≤m

fi(x). (2.5)

In particular, we will focus on the case that X in (2.1) is convex under
componentwise squaring:

X =
{
x ∈ ℝn

∣∣∣(x2
1, . . . , x

2
n, 1
)T ∈ K} , (2.6)

for some closed convex cone K ⊆ ℝn+1. We will examine two specific cases:
the case where X = [−1, 1]n (a box) corresponding to

K =
{
y ∈ ℝn+1 ∣yj ≤ yn+1, j = 1, . . . , n} , (2.7)
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2.1. General Problem and Motivation

and the case of a unit Euclidean ball X =
{
x ∈ ℝn

∣∣∣ ∥x∥2 ≤ 1
}

correspond-

ing to
K =

{
y ∈ ℝn+1 ∣y1 + ⋅ ⋅ ⋅+ yn ≤ yn+1} . (2.8)

Even in the simple case of a box, X = [−1, 1]n, the function f(x) can
become complex quite quickly. Figure 2.1 shows f(x) for two sets of points
in X ; the set S = {(−1,−1), (−1, 1), (1,−1), (1, 1), (0, 0)} and the set T , a
randomly generated set of 10 points in X .

Figure 2.1: Plots of f(x) for X = [−1, 1]2, with the set S on the left and set
T on the right.

Remark 2.3. The function

f (x) := min
i=1,...,m

wi
∥∥x− xi∥∥2

(2.9)

in Equation (2.1) is neither convex nor concave whenever m ≥ 2 and xi ∕= xj .

This is illustrated in Figure 2.1.

Proposition 2.4. The optimal value of the maximin dispersion problem
satisfies

�p > 0.

Proof. Take x ∈ X with x ∕= xi for i = 1, . . . ,m. We have f(x) > 0. Then
�p ≥ f(x) > 0.

Since the weighted maximin dispersion problem is a nonconvex problem,
we cannot apply convex programming methods. The goal of this thesis then
is to consider convex relaxations of the problem, the solutions of which can be
found using known techniques. The solutions to the relaxation problems can
then provide a nontrivial lower bound for the original nonconvex problem.
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2.2. Convex Relaxations

2.2 Convex Relaxations

In this section we give several alternative formulations of the original
problem (2.1) as well as defining the convex relaxation problems. First note
that

Proposition 2.5. If we let

Ai =

[
I −xi

−
(
xi
)T ∥∥xi∥∥2

]
∈ Sn+1

and

X =

[
xxT x
xT 1

]
∈ Sn+1

where I ∈ ℝn×n, then

tr[AiX] = ∥x∥2 − 2
(
xi
)T
x+

∥∥xi∥∥2
.

Proof. We have

AiX =

[
I −xi

−
(
xi
)T ∥∥xi∥∥2

] [
xxT x
xT 1

]
=

[
xx⊺ − xix⊺ x− xi

−(xi)⊺xx⊺ + ∥xi∥2x⊺ −(xi)⊺x+ ∥xi∥2
]

so that

trAiX = tr(xx⊺ − xix⊺)− (xi)⊺x+ ∥xi∥2

= tr(xx⊺)− tr(xix⊺)− (xi)⊺x+ ∥xi∥2

= tr(x⊺x)− tr(x⊺xi)− (xi)⊺x+ ∥xi∥2

= ∥x∥2 − 2(xi)⊺x+ ∥xi∥2.

For any x ∈ ℝn and i ∈ {1, . . . ,m}, by Proposition 2.5 we have∥∥x− xi∥∥2
= ∥x∥2 − 2

(
xi
)T
x+

∥∥xi∥∥2
=

〈
Ai,

[
xxT x
xT 1

]〉
, (2.10)

where

Ai :=

[
I −xi

−
(
xi
)T ∥∥xi∥∥2

]
(2.11)
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2.2. Convex Relaxations

and
⟨A,Z⟩ = tr[AZ].

By substituting X =

[
xxT x
xT 1

]
, we can reformulate the original prob-

lem (2.1) as

�p := max
X,�

� (2.12)

s.t. wi
〈
Ai, X

〉
≥ �, i = 1, . . . ,m

(X11, . . . , Xnn, 1)T ∈ K
Xn+1,n+1 = 1

X ર 0

rankX = 1,

where “s.t.” abbreviates for “subject to”, K is given as in either (2.7) or
(2.8), and Ai is given in (2.11).

Proposition 2.6. Let n ≥ 2. The rank function rank : ℝn×n → [0, n] :
X 7→ rankX is neither convex nor Lipschitz.

Proof. It suffices to consider the case when n = 2. Consider matrices

X1 =

(
1 0
0 0

)
, X2 =

(
0 0
0 1

)
.

We have

rank

(
1

2
X1 +

1

2
X2

)
= 2 > 1 =

1

2
rankX1 +

1

2
rankX2,

which implies that X 7→ rankX is not convex.
Now let � > 0 and

Y =

(
1 0
0 �

)
.

We have
∣rankX1 − rankY ∣ = ∣1− 2∣ = 1, ∥X1 − Y ∥ = �

which gives
∣rankX1 − rankY ∣
∥X1 − Y ∥

=
1

�
→ +∞

when � ↓ 0. Therefore, rank is not Lipschitz at X1.
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2.2. Convex Relaxations

Since the rank function is neither convex nor Lipschitz, we drop the
rank-1 constraint. This yields a convex programming relaxation of (2.1):

�cp := max
X,�

�

s.t. wi
〈
Ai, X

〉
≥ �, i = 1, . . . ,m

(X11, . . . , Xnn, 1)T ∈ K
Xn+1,n+1 = 1
X ર 0.

(2.13)

As (2.13), a convex relaxation of (2.12), is obtained by relaxing some of
the constraints (2.12), all possible solutions of (2.12) are feasible for (2.13).
Hence,

Proposition 2.7.
�cp ≥ �p.

Our SDP and SOCP relaxations are formulated in next two subsections.

2.2.1 SDP Relaxation

We will make the mild assumption that (2.13) has an optimal solution.
This holds whenever X is compact. If X is convex, then we can strengthen
this relaxation by adding the constraints (X1,n+1, . . . , Xn,n+1)T ∈ X . Since
�p > 0, � ∕= 0 at an optimal solution of (2.13). By making the substitution
Z = X/�, we can reformulate (2.13) more compactly as

1

�cp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K
Z ર 0.

(2.14)

Note that when K is a polyhedral set having a tractable algebraic repre-
sentation, for example (2.7), then (2.14) reduces to a semidefinite program
(SDP), so we will refer to this as the semidefinite-programming relaxation
of (2.1).

Lemma 2.8. Let Z∗ ∈ S(n+1)×(n+1) be an optimal solution of (2.14). Then
Z∗n+1,n+1 > 0
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2.2. Convex Relaxations

Proof. This follows from

1

Z∗n+1,n+1

= �cp ≥ �p > 0.

Theorem 2.9. When K =
{
y ∈ ℝn+1 ∣ yj ≤ yn+1, j = 1, . . . , n} , we have

1. X solves the convex relaxation problem (2.13) ⇔ X
�cp

solves (2.14).

2. Z solves (2.14) ⇔ X = Z�cp = Z 1
Zn+1,n+1

solves (2.13).

3. If Z∗ solves (2.14), then �cp = 1
Z∗
n+1,n+1

.

2.2.2 SOCP Relaxation

Lastly, we consider a further relaxation that replaces the semidefinite-
cone constraint, Z ર 0, of (2.14) with the following constraints[

Zjj Zj,n+1

Zj,n+1 Zn+1,n+1

]
ર 0, j = 1, . . . , n. (2.15)

Lemma 2.10. The constraints of equation (2.15),[
Zj,j Zj,n+1

Zj,n+1 Zn+1,n+1

]
ર 0 i = 1, . . . , n (2.16)

are equivalent to second order cone constraints.

Proof. For each j = 1, . . . , n, let Zj denote the matrix

Zj =

[
Zj,j Zj,n+1

Zj,n+1 Zn+1,n+1

]
. (2.17)

Then by Proposition 1.25 we know that the constraints Zj ર 0 are equivalent
to the constraints det(Zj) ≥ 0 and trace(Zj) ≥ 0 for j = 1, . . . , n. Now,

det(Zj) ≥ 0 ⇔ Zj,jZn+1,n+1 − (Zj,n+1)2 ≥ 0

⇔ Zj,jZn+1,n+1 ≥ (Zj,n+1)2 (2.18)

and
trace(Zj) ≥ 0 ⇔ Zj,j + Zn+1,n+1 ≥ 0. (2.19)
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2.2. Convex Relaxations

We will show that (2.18) and (2.19) are equivalent to second order cone
constraints, namely∥∥∥∥[ 2Zj,n+1

Zj,j − Zn+1,n+1

]∥∥∥∥ ≤ Zj,j + Zn+1,n+1, (2.20)

0 ≤ Zj,j + Zn+1,n+1. (2.21)

To see that (2.18) and (2.20) are equivalent, consider the following:∥∥∥∥[ 2Zj,n+1

Zj,j − Zn+1,n+1

]∥∥∥∥ ≤ Zj,j + Zn+1,n+1

⇔
∥∥∥∥[ 2Zj,n+1

Zj,j − Zn+1,n+1

]∥∥∥∥2

≤ (Zj,j + Zn+1,n+1)2

⇔ 4(Zj,n+1)2 + (Zj,j)
2 − 2Zj,jZn+1,n+1 + (Zn+1,n+1)2

≤ (Zj,j)
2 + 2Zj,jZn+1,n+1 + (Zn+1,n+1)2

⇔ 4(Zj,n+1)2 ≤ 4Zj,jZn+1,n+1

⇔ (Zj,n+1)2 ≤ Zj,jZn+1,n+1 (2.22)

Equation (2.21) is exactly equation (2.19), which is already a second order
cone constraint. That is, we have

∥Ax+ b∥ ≤ Zj,j + Zn+1,n+1 (2.23)

with A = 0 and b = 0.

Thus, substituting (2.15) for Z ર 0 in (2.14) yields the second-order cone
programming (SOCP) relaxation of (2.1):

1

�socp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K[
Zjj Zj,n+1

Zj,n+1 Zn+1,n+1

]
ર 0, j = 1, . . . , n.

(2.24)

Theorem 2.11. One always has

�p ≤ �cp ≤ �socp.
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2.2. Convex Relaxations

Corollary 2.12. Let Z∗ ∈ Sn+1 be an optimal solution of (2.24). Then
Z∗n+1,n+1 > 0.

Proof. This follows from

1

Z∗n+1,n+1

= �socp ≥ �cp ≥ �p > 0.

We have �socp = 1
z∗n+1,n+1

if Z∗ solves (2.24).

2.2.3 More Properties on the Constraints of Convex
Relaxations

(1) Constraint (Z11, . . . , Znn, Zn+1,n+1)T ∈ K.
In either (2.14) or (2.24), what does the constraint

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K (2.25)

look like? We explicitly consider two cases:
Box case: When

K = {y ∈ ℝn+1∣ yj ≤ yn+1, j = 1, . . . , n}

(2.25) transpires to

Zjj ≤ Zn+1,n+1 ∀j = 1, . . . , n. (2.26)

Ball case: When

K = {y ∈ ℝn+1∣
n∑
j=1

yj ≤ yn+1}

(2.25) transpires to
n∑
j=1

Zjj ≤ Zn+1,n+1. (2.27)

In both cases, (2.25) consists of linear inequalities.
(2) Constraint wi

〈
Ai, Z

〉
≥ 1. In both (2.14) and (2.24), what does the

constraint
wi⟨Ai, Z⟩ ≥ 1 (2.28)

look like?
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2.2. Convex Relaxations

We can exploit the structure of Ai! For a matrix Z ∈ Sn+1, let

z = (Z1,n+1, . . . , Zn,n+1)T

and

Z∗ =

⎡⎢⎣ Z11

∗∗ . . . ∗∗
Znn

⎤⎥⎦
so that we can write

Z =

[
Z∗ z

(z)T Zn+1,n+1

]
. (2.29)

into a block form.
Now consider the trace:

⟨Ai, Z⟩ = Tr

([
I −xi

−
(
xi
)T ∥∥xi∥∥2

]
Z

)

= Tr

([
I −xi

−
(
xi
)T ∥∥xi∥∥2

] [
Z∗ z

(z)T Zn+1,n+1

])

= Tr

([
Z∗ − xizT z − xiZn+1,n+1

−
(
xi
)T
Z∗ +

∥∥xi∥∥2
zT −(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

])
= Tr

(
Z∗ − xizT

)
+ Tr

(
−(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)
=

⎛⎝ n∑
j=1

Zjj − (xi)T z

⎞⎠+
(
−(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)

=
n∑
j=1

Zjj − 2(xi)T z +
∥∥xi∥∥2

Zn+1,n+1. (2.30)

Hence (2.28) is equivalent to

wi

( n∑
j=1

Zjj − 2(xi)T z +
∥∥xi∥∥2

Zn+1,n+1

)
≥ 1. (2.31)

(3) The feasible region of (2.24) is strictly larger than the one in (2.14).
A special case suffices. To this end, let n = 2, we consider the matrix

Z =

⎛⎝1 2 1
2 1 0
1 0 2

⎞⎠
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2.2. Convex Relaxations

We have (
Z11 Z13

Z31 Z3,3

)
=

(
1 1
1 2

)
∈ S2

+

and (
Z22 Z23

Z32 Z3,3

)
=

(
1 0
0 2

)
∈ S2

+,

but Z ∕∈ S3
+ because its principle submatrix(

Z11 Z12

Z21 Z22

)
=

(
1 2
2 1

)
∕∈ S2

+.

This shows that algthough

Z ≽ 0 ⇒
[

Zjj Zj,n+1

Zj,n+1 Zn+1,n+1

]
≽ 0 ∀ j = 1, . . . , n

always holds, the converse implication fails.
The above discussions allow us to conclude:

Theorem 2.13 (box case). Let

K = {y ∈ ℝn+1∣ yj ≤ yn+1, j = 1, . . . , n}.

Then

1. The SDP relaxation (2.14) has an explicit form:

1

�cp
= min

Z
Zn+1,n+1

s.t. wi

(∑n
j=1 Zjj − 2(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)
≥ 1, i = 1, . . . ,m

Zjj ≤ Zn+1,n+1 j = 1, . . . , n
Z ર 0,

(2.32)
where z = (Z1,n+1, . . . , Zn,n+1)T .
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2.2. Convex Relaxations

2. The SOCP relaxation (2.24) has an explicit form:

1

�socp
= min

Z
Zn+1,n+1

s.t. wi

(∑n
j=1 Zjj − 2(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)
≥ 1, i = 1, . . . ,m

Zjj ≤ Zn+1,n+1 j = 1, . . . , n[
Zjj Zj,n+1

Zj,n+1 Zn+1,n+1

]
ર 0, j = 1, . . . , n,

(2.33)
where z = (Z1,n+1, . . . , Zn,n+1)T .

Theorem 2.14 (ball case). Let

K = {y ∈ ℝn+1∣
n∑
j=1

yj ≤ yn+1}.

Then

1. The SDP relaxation (2.14) has an explicit form:

1

�cp
= min

Z
Zn+1,n+1

s.t. wi

(∑n
j=1 Zjj − 2(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)
≥ 1, i = 1, . . . ,m∑n

j=1 Zjj ≤ Zn+1,n+1

Z ર 0,

(2.34)
where z = (Z1,n+1, . . . , Zn,n+1)T .

2. The SOCP relaxation (2.24) has an explicit form:

1

�socp
= min

Z
Zn+1,n+1

s.t. wi

(∑n
j=1 Zjj − 2(xi)T z +

∥∥xi∥∥2
Zn+1,n+1

)
≥ 1, i = 1, . . . ,m∑n

j=1 Zjj ≤ Zn+1,n+1[
Zjj Zj,n+1

Zj,n+1 Zn+1,n+1

]
ર 0, j = 1, . . . , n,

(2.35)
where z = (Z1,n+1, . . . , Zn,n+1)T .
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2.2. Convex Relaxations

Remark 2.15. Note that in both box case and ball case, the SOCP relaxation
only relies on (Z11, . . . , Znn, Zn+1,n+1) and z = (Z1,n+1, . . . , Zn,n+1)T .

Remark 2.16. In both box case and ball case, the feasible regions are un-
bounded. Indeed, if Z is feasible, then kZ is also feasible for every k ≥ 1.
Amazingly, in next section we show that both (2.14) and (2.24) do have
optimal solutions!

2.2.4 Why Does the SDP or SOCP Relaxation Have an
Optimal Solution?

For a matrix Z ∈ ℝn×n we define its norm by

∥Z∥2 = max{∥Zu∥ ∥u∥ ≤ 1}.

Fact 2.17. For every Z ∈ ℝn×n, we have

∥Z∥2 = �max(Z
⊺Z).

Theorem 2.18 (box case). Let

K = {y ∈ ℝn+1∣ yj ≤ yn+1, j = 1, . . . , n}.

Then the following hold:

1. The SDP relaxation (2.14) has �cp < +∞ and at least one optimal
solution.

2. The SOCP relaxation (2.24) has �socp < +∞ and at least one optimal
solution.

Proof. Part 1. First we show that �cp < ∞. Assume to the contrary that

�cp =∞. Then there exists a sequence Z
(k)
n+1,n+1 ↓ 0 when k →∞. Since by

(2.26),

0 ≤ Z(k)
jj ≤ Z

(k)
n+1,n+1 ∀ j = 1, . . . , n

we have limk→∞ Z
(k)
jj = 0. Now the matrix Z(k) ર 0 implies[
Z

(k)
jj Z

(k)
j,n+1

Z
(k)
j,n+1 Z

(k)
n+1,n+1

]
ર 0 j = 1, . . . , n (2.36)

so that
Z

(k)
n+1,n+1Z

(k)
jj ≥ (Z

(k)
j,n+1)2 ≥ 0
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2.2. Convex Relaxations

from which limk→∞ Z
(k)
j,n+1 = 0. By (2.31), we obtain that

wi

( n∑
j=1

Z
(k)
jj − 2(xi)T z(k) +

∥∥xi∥∥2
Z

(k)
n+1,n+1

)
≥ 1 (2.37)

where (z(k))⊺ = (Z
(k)
1,n+1, . . . , Z

(k)
n,n+1). When k → ∞, (2.37) gives 0 ≥ 1, a

contradiction.
Next we show that �cp is achieved. Assume that there exists a feasible

sequence (Z(k))∞k=1 such that Z
(k)
n+1,n+1 ↓ 1/�cp when k → ∞. Since 0 ≤

Z
(k)
jj ≤ Z

(k)
n+1,n+1 for j = 1, . . . , n, the sequence (Z

(k)
jj )∞k=1 is bounded for j =

1, . . . , n. This shows that (trZ(k))∞k=1 is bounded. As the largest eigenvalue

0 ≤ �max(Z(k)) ≤ trZ(k)

we see that (�max(Z(k)))∞k=1 is bounded. Note that

∥Z(k)∥2 = �max(Z(k))

because Z(k) ∈ Sn+1
+ . Since all norms are equivalent in finite dimensional

space S(n+1)×(n+1), this means that (Z(k))∞k=1 is bounded. Therefore, there
exists a subsequence of (Z(k))∞k=1 converges to a Z∗ ∈ Sn+1

+ . In particular,

Z∗ is feasible because each Z(k) is feasible. Without relabeling, let us assume

that Z(k) → Z∗. Then Z
(k)
n+1,n+1 → Z∗n+1,n+1 and Z∗n+1,n+1 = 1/�cp. Hence

Z∗ is an optimal solution.
Part 2. Apply the similar arguments as in Part 1.

Theorem 2.19 (ball case). Let

K = {y ∈ ℝn+1∣
n∑
j=1

yj ≤ yn+1}.

Then the following hold:

1. The SDP relaxation (2.14) has �cp < +∞ and at least one optimal
solution.

2. The SOCP relaxation (2.24) has �socp < +∞ and at least one optimal
solution.

Proof. The proof is similar to that of Theorem 2.18. Instead of using (2.26),
we use (2.27).
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Chapter 3

A Necessary Condition for
Optimal Solutions

In this Chapter we prove general results about the objective functions of
the maximin dispersion problem, as well as deriving a necessary condition
for the optimal solutions of (2.1).

3.1 Properties of the Maximin Objective
Functions

In this section, we will apply the results of Sections 1.4, 1.5 and 1.5.1 to
the objective functions of the maximin dispersion problem, (2.3).

First, we show that f(x) as defined in (2.1) is locally Lipschitz at any
x0 in ℝn.

Theorem 3.1. The function fi as defined in (2.3) is locally Lipschitz at
any x0 ∈ ℝn.

Proof. Fix x0 ∈ ℝn and choose x, y ∈ ℝn such that ∥x− x0∥ ≤ � and
∥y − x0∥ ≤ � for some � > 0. We have

∣fi(x)− fi(y)∣ =
∣∣∣wi ∥∥x− xi∥∥2 − wi

∥∥y − xi∥∥2
∣∣∣ (3.1)

= wi
∣∣(∥∥x− xi∥∥− ∥∥y − xi∥∥) (∥∥x− xi∥∥+

∥∥y − xi∥∥)∣∣
= wi

∣∣(∥∥x− xi∥∥− ∥∥y − xi∥∥)∣∣ (∥∥x− xi∥∥+
∥∥y − xi∥∥)

≤ wi
(∥∥(x− xi)− (y − xi)

∥∥) (∥∥x− xi∥∥+
∥∥y − xi∥∥)

= wi (∥x− y∥)
(∥∥x− xi∥∥+

∥∥y − xi∥∥) .

39



3.1. Properties of the Maximin Objective Functions

Now, ∥∥x− xi∥∥ ≤ ∥x∥+
∥∥xi∥∥

= ∥x− x0 + x0∥+
∥∥xi∥∥

≤ ∥x− x0∥+ ∥x0∥+
∥∥xi∥∥

≤ � + ∥x0∥+
∥∥xi∥∥

= L1 <∞. (3.2)

Similarly, there exists L2 <∞ such that
∥∥y − xi∥∥ ≤ L2. Then∥∥x− xi∥∥+

∥∥y − xi∥∥ ≤ L1 + L2 (3.3)

so that by setting M = wi(L1 + L2) we have

∣fi(x)− fi(y)∣ ≤ wi ∥x− y∥ (L1 + L2) (3.4)

= M ∥x− y∥

whenever ∥x− x0∥ ≤ � and ∥y − x0∥ ≤ �, and hence fi is locally Lipschitz
at x0.

Corollary 3.2. The function

f(x) = min
i=1,...,m

fi(x) = min
i=1,...,m

wi
∥∥x− xi∥∥2

(3.5)

is locally Lipschitz at any x0 ∈ ℝn.

This follows directly from Theorem 3.1 and Fact 1.61.

Lastly, we characterize the gradient of fi(x) as defined in (2.3), and give
a theorem for the existence of solutions.

Fact 3.3. For each i = 1, . . . ,m, and every x ∈ X the function fi is differ-
entiable, with derivative

∇fi(x) = 2wi
(
x− xi

)
. (3.6)

Proof. This follows from that

fi(x) = wi⟨x− xi, x− xi⟩ = wi
(
⟨x, x⟩+ 2⟨xi, x⟩+ ∥xi∥2

)
.
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3.2. Characterization of Optimal Solutions

Theorem 3.4. Assume that X is a compact subset of ℝn. Then

argmaxx∈X f ∕= ∅.

Proof. This follows directly from Theorem 1.9.

Remark 3.5. If X is not compact, then it may happen that argmaxf = ∅.
For example, let X = ℝn. Then

sup
x∈ℝn

f =∞

so that argmaxx∈ℝnf = ∅.

3.2 Characterization of Optimal Solutions

In this section we will provide a theoretical result that gives a necessary
condition for x̄ to be an optimal solution of the equally weighted maximin
dispersion problem, which is (2.1) with wi = ⋅ ⋅ ⋅ = wm = w.

To begin, first rewrite the original problem (2.1) as

min
x∈X

(
max

1≤i≤m
−fi
)

(3.7)

and note that this is equivalent to

min
x∈X

(
max

1≤i≤m
−fi + �X

)
. (3.8)

Theorem 3.6. Let x̄ belong to the interior of X , and let

f(x) = min
i=1,...,m

w
∥∥x− xi∥∥2

. (3.9)

We have that if x̄ is an optimal solution of

maxx∈X f(x) (3.10)

then
x̄ ∈ conv

{
xi ∣i ∈ I(x̄)} (3.11)

where

I(x̄) =

{
i

∣∣∣∣ ∥∥x̄− xi∥∥2
= min

i=1,...,m

∥∥x̄− xi∥∥2
}
. (3.12)
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3.2. Characterization of Optimal Solutions

Proof. Since x̄ is a critical point of f if and only if x̄ is a critical point of −f ,
we begin by converting our min-function f(x) into a max-function −f(x) as
follows:

− f(x) = − min
i=1,...,m

w
∥∥x− xi∥∥2

(3.13)

−f(x) = max
i=1,...,m

(
−w

∥∥x− xi∥∥2
)

(3.14)

−f(x) = max
i=1,...,m

gi(x) (3.15)

where gi(x) = −w
∥∥x− xi∥∥2

= −fi(x).

Now, by Theorem 3.1, we know that fi(x) is locally Lipschitz at any
x ∈ ℝn, and so applying Fact 1.58 we know that gi(x) is locally Lipschitz
at any x ∈ ℝn. Furthermore, by applying Fact 1.59 we know that the
max of a family of locally Lipschitz functions is locally Lipschitz, so that
−f(x) = maxi=1,...,m gi(x) is locally Lipschitz at any x ∈ ℝn. Thus, by
applying Theorem 1.63 we know that if x̄ is a possible critical point of
−f + �X , then we must have 0 ∈ ∂o(−f + �X )(x̄) ⊆ ∂o(−f)(x̄) + ∂o�X (x̄).
Thus, in order to derive a necessary condition for x̄ to be a critical point of
−f(x), we need to characterize ∂o(−f)(x̄). Since −f(x) is locally Lipschitz
at any x̄ ∈ ℝn and gi is differentiable for each i, by Theorem 1.64 the Clarke
subgradient of −f at x̄ is given by

∂(−f(x̄)) = conv {∇gi(x̄) ∣ i ∈ I(x̄)} . (3.16)

Applying Fact 3.3 to the equally weighted case, we have that the derivative
of the functions gi is

∇gi(x) = −2w(x− xi) (3.17)

so that
∂o(−f(x̄)) = conv

{
−2w(x̄− xi) ∣ i ∈ I(x̄)

}
. (3.18)

Thus 0 ∈ ∂o(−f)(x̄) + ∂o�X(x̄) implies that

0 ∈ conv
{
−2w(x̄− xi) ∣ i ∈ I(x̄)

}
+ ∂�X (x̄).

Dividing both sides by w and using the fact that ∂o�X (x̄) = NX (x̄) is a cone,
we have

⇔ 0 ∈ conv
{
−(x̄− xi) ∣ i ∈ I(x̄)

}
+ ∂o�X (x̄) (3.19)

⇔ 0 ∈ −x̄+ conv
{
xi ∣ i ∈ I(x̄)

}
+ ∂o�X (x̄). (3.20)
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3.2. Characterization of Optimal Solutions

Since x̄ ∈ intX , we have ∂o�X (x̄) = 0 by Example 1.48 so that

x̄ ∈ conv
{
xi ∣ i ∈ I(x̄)

}
. (3.21)

Lastly, since i ∈ I(x̄) if and only if

gi(x̄) = −f(x̄) (3.22)

⇔ −w
∥∥x̄− xi∥∥2

= −f(x̄) (3.23)

⇔ w
∥∥x̄− xi∥∥2

= f(x̄) (3.24)

⇔ w
∥∥x̄− xi∥∥2

= min
i=1,...,m

w
∥∥x̄− xi∥∥2

(3.25)

⇔
∥∥x̄− xi∥∥2

= min
i=1,...,m

∥∥x̄− xi∥∥2
(3.26)

we have that x̄ is a critical point of f(x) = mini=1,...,mw
∥∥x− xi∥∥2

if and
only if

x̄ ∈ conv
{
xi ∣i ∈ I(x̄)} (3.27)

where

I(x̄) =

{
i

∣∣∣∣ ∥∥x̄− xi∥∥2
= min

i=1,...,m

∥∥x̄− xi∥∥2
}
. (3.28)

Thus, we have provided a necessary condition for x̄ ∈ ℝn to be a possible
maximizer for the equally weighted maximin dispersion problem.

Remark 3.7. Let f be given as in (3.9). Then x̄ is an optimal solution of
maxx∈X f(x) only if

0 ∈ ∂o(−f)(x̄) +NX (x̄).

That is,

0 ∈ conv
{
−w(x̄− xi) ∣ i ∈ I(x̄)} +NX (x̄) (3.29)

⇔x̄ ∈ conv
{
xi ∣ i ∈ I(x̄)} +NX (x̄) (3.30)

⇔x̄ ∈ conv
{
xi ∣ i ∈ I(x̄)} +NX (x̄). (3.31)

See Theorem 1.30.
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Chapter 4

NP-Hardness Results

Fact 4.1. The general weighted maximin distance problem is known to be
NP-hard, even in the case where the distances satisfy the triangle inequality
[20].

In this chapter we focus on a particular subset of maximin distance
problems, such that w1 = ⋅ ⋅ ⋅ = wm, X = [−1, 1]n and x1, . . . , xm are in
X . We show that even in this reduced case of equal weighting and X an
n-dimensional hypercube, the problem is still NP-hard (see Theorem 4.5).
We also present a suggested heuristic for solving (2.1) which involves solving
restricted subproblems, and show that the restricted subproblems are still
NP-hard.

4.1 The Case That X is a Box

In this section we will show that the equally weighted maximin optimiza-
tion problem given by

max
x∈[−1,1]n

min
i=1,...,m

w
∥∥x− xi∥∥2

(4.1)

is NP-hard.
In order to prove this result, we first provide some preliminary results.

Proposition 4.2. The following are equivalent to solve:

1. y is a solution of the integer linear program

By = b, y ∈ {−1, 1}q , (4.2)

with B ∈ ℤp×q, b ∈ ℤp.

2. x is a solution to

Cx ≤ 0, x ∈ {−1, 1}q+1 , (4.3)

with C :=

[
B −b
−B b

]
.
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4.1. The Case That X is a Box

Note that when we say that (4.2) and (4.3) are equivalent to solve, we
mean it in the following sense:

y ∈ {−1, 1}q solves (4.2) ⇒ (y,−1) solves (4.3).

x = (x1, . . . , xq, xq+1) solves (4.3) ⇒
(

x1

xq+1
, ⋅ ⋅ ⋅ , xq

xq+1

)
solves (4.2).

Proof. Consider:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 ⋅ ⋅ ⋅ B1q −b1
B21 B22 ⋅ ⋅ ⋅ B2q −b2

...
...

Bp1 Bp2 ⋅ ⋅ ⋅ Bpq −bp
−B11 −B12 ⋅ ⋅ ⋅ −B1q b1

...
...

−Bp1 −Bp2 ⋅ ⋅ ⋅ −Bpq bp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x1

x2
...

xq+1

⎤⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎣

0
0
...
0

⎤⎥⎥⎥⎦ (4.4)

⇔

⎧⎨⎩

B11x1 +B12x2 + ⋅ ⋅ ⋅+B1qxq − b1xq+1 ≤ 0
B21x1 +B22x2 + ⋅ ⋅ ⋅+B2qxq − b2xq+1 ≤ 0

...
Bp1x1 +Bp2x2 + ⋅ ⋅ ⋅+Bpqxq − bpxq+1 ≤ 0

+B11x1 +B12x2 + ⋅ ⋅ ⋅+B1qxq − b1xq+1 ≥ 0
...

+Bp1x1 +Bp2x2 + ⋅ ⋅ ⋅+Bpqxq − bpxq+1 ≥ 0

⇔

⎧⎨⎩
b1xq+1 ≤ B11x1 +B12x2 + ⋅ ⋅ ⋅+B1qxq ≤ b1xq+1

...
bpxq+1 ≤ Bp1x1 +Bp2x2 + ⋅ ⋅ ⋅+Bpqxq ≤ bpxq+1

And thus, since xi = ±1 for i = 1, .., q we obtain

xq+1b ≤ Bx ≤ xq+1b

⇔ Bx = xq+1b

⇔ B

(
x

xq+1

)
= b. (4.5)

Since xq+1 = ±1, we have x
xq+1

∈ {−1, 1}q, and x
xq+1

solves (4.2).

Proposition 4.3. The following are equivalent to solve:
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4.1. The Case That X is a Box

1. x is a solution to

Cx ≤ 0, x ∈ {−1, 1}q+1 , (4.6)

with C :=

[
B −b
−B b

]
∈ Z2p×(q+1).

2. x is a solution to

2Cx ≤ �e, x ∈ {−1, 1}q+1 , (4.7)

for any 0 < � ≤ 1, where e = (1, . . . , 1)T .

In this case, when we say that (4.6) and (4.7) are equivalent to solve, we
mean that

x solves (4.6) ⇔ x solves (4.7) .

Proof. We can rewrite the inequality (4.7) in item 2 as

Cx ≤ �

2
e, x ∈ {−1, 1}q+1 . (4.8)

Now, since 0 < � ≤ 1 we have 0 < �
2 ≤

1
2 . Furthermore, as C ∈ ℤ2p×(q+1)

and x ∈ {−1, 1}q+1 it is obvious to see that Cx ∈ ℤ2p so that solving
Cx ≤ 1

2e is equivalent to solving Cx ≤ 0.

Proposition 4.4. The integer linear program (1.94) is reducible in polyno-
mial time to the equally weighted maximin dispersion problem

max
x∈[−1,1]q+1

min
i=1,...,2p

∥∥x− xi∥∥2
. (4.9)

Moreover,

max
x∈[−1,1]q+1

min
i=1,...,2p

∥∥x− xi∥∥2
= max

x∈{−1,1}q+1
min

i=1,...,2p

∥∥x− xi∥∥2
. (4.10)

Proof. From Fact 1.76 we know that it is NP-hard to determine the solv-
ability of

By = b, y ∈ {−1, 1}q , (4.11)

with B ∈ ℤp×q, b ∈ ℤp. By Proposition 4.2 this is equivalent to

Cx ≤ 0, x ∈ {−1, 1}q+1 , (4.12)
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4.1. The Case That X is a Box

with C :=

[
B −b
−B b

]
.

By Proposition 4.3, it is equivalent to solve

2Cx ≤ �e, x ∈ {−1, 1}q+1 , (4.13)

for any 0 < � ≤ 1, where e = (1, . . . , 1)T .

We assume without loss of generality that C has no zero row. Let ci

denote the ith column of CT . Then (ci)T is the ith row of C so that
∥∥ci∥∥ ∕= 0.

Let
xi := %ic

i ∈ ℝq+1 with %i :=
�

∥ci∥2
, i = 1, . . . , 2p. (4.14)

Then %i� = �2

∥ci∥2
=
∥∥xi∥∥2

, since∥∥xi∥∥ =
∥∥%ici∥∥ =

�

∥ci∥2
∥∥ci∥∥ =

�

∥ci∥
.

Furthermore, we have

2Cx = 2
[(
c1
)T (

c2
)T ⋅ ⋅ ⋅ (c2p

)T ]T
x =

⎡⎢⎢⎢⎢⎣
2
(
c1
)T
x

2
(
c2
)T
x

...

2
(
c2p
)T
x

⎤⎥⎥⎥⎥⎦ (4.15)

and thus

2Cx ≤ �e ⇔ 2
(
ci
)T
x ≤ � ∀i = 1, . . . , 2p

⇔ 2%i
(
ci
)T
x ≤ %i� ∀i = 1, . . . , 2p

⇔ 2
(
xi
)T
x ≤

∥∥xi∥∥2
, ∀i = 1, . . . , 2p. (4.16)

Then (4.13) is equivalent to

2
(
xi
)T
x ≤

∥∥xi∥∥2
, i = 1, . . . , 2p, x ∈ {−1, 1}q+1 . (4.17)

Now, from
∥∥xi − x∥∥2

=
∥∥xi∥∥2 − 2

(
xi
)T
x+ ∥x∥2, we have∥∥xi∥∥2 ≥ 2

(
xi
)T
x i = 1, . . . , 2p

⇔
∥∥xi − x∥∥2

+ 2
(
xi
)T
x− ∥x∥2 ≥ 2

(
xi
)T
x i = 1, . . . , 2p

⇔
∥∥xi − x∥∥2 ≥ ∥x∥2 i = 1, . . . , 2p

⇔
∥∥xi − x∥∥2 ≥ q + 1 i = 1, . . . , 2p (4.18)
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4.1. The Case That X is a Box

(since x ∈ {−1, 1}q+1 implies ∥x∥2 = q + 1). Hence, (4.17) is in turn is
equivalent to

q + 1 ≤
∥∥xi − x∥∥2

, i = 1, . . . , 2p, x ∈ {−1, 1}q+1 . (4.19)

Thus (1.94) has a solution if and only if the optimal value of

max
x∈{−1,1}q+1

min
i=1,...,2p

∥∥xi − x∥∥2
(4.20)

is no less than q + 1. That is,

∃ x ∈ {−1, 1}q+1 such that q + 1 ≤
∥∥xi − x∥∥2 ∀i

⇔ ∃ x ∈ {−1, 1}q+1 such that q + 1 ≤ min
i=1,...,2p

∥∥xi − x∥∥2

⇔ q + 1 ≤ max
x∈{−1,1}q+1

min
i=1,...,2p

∥∥xi − x∥∥2
. (4.21)

Now, we show that (4.20) is equivalent to

max
x∈[−1,1]q+1

min
i=1,...,2p

∥∥xi − x∥∥2
. (4.22)

.
Indeed, since

∥∥xi∥∥ = �
∥ci∥ , we can take

� = min

{
1,min

i

∥∥ci∥∥ /3} , (4.23)

so that
∥∥xi∥∥ < 1

2 for all i. To see this, simply note that by (4.23) we have

� ≤ min
i

∥∥ci∥∥
3
⇒ � ≤

∥∥ci∥∥
3
∀ i

⇒ �

∥ci∥
≤ 1

3
∀ i.

Now we show that the objective function value of (4.22) is strictly im-
proved by setting x = {±1}q+1:
For any x ∈ [−1, 1]q+1, if 0 ≤ xj < 1 for some j ∈ {1, . . . , q + 1}, then, for
each i ∈ {1, . . . , 2p}, either
(i) xij ≤ xj so that∣∣xj − xij∣∣ = xj − xij < 1− xij =

∣∣1− xij∣∣ , or (4.24)

48



4.2. NP-Hardness of Restricted Problems

(ii) xij > xj so that

∣∣xj − xij∣∣ = xij − xj ≤ xij <
1

2
< 1− xij =

∣∣1− xij∣∣ . (4.25)

Then the objective function value of (4.22) is strictly improved by setting
xj = 1. Similarly, if 0 ≥ xj > −1 for some j ∈ {1, . . . , q + 1}, then the
objective function value of (4.22) is strictly improved by setting xj = −1.

Lastly, it is readily seen that the size of x1, . . . , x2p (encoded in binary)
is polynomial in the size of [B b] ([12] p.9-10, p.21). Thus the solvability of
(1.94) is reducible in polynomial time to the optimization problem (4.22).

We now state the main theorem of this Chapter:

Theorem 4.5. Let w > 0. The equally weighted maximin optimization
problem given by

max
x∈[−1,1]n

min
i=1,...,m

w
∥∥x− xi∥∥2

(4.26)

is NP-hard.

Proof. By Proposition 4.4, we know that the integer linear program (1.94) is
reducible in polynomial time to (4.22). Since (1.94) is NP-hard (Fact 1.76),
this implies that (4.22) is NP-hard. Lastly, since (4.22) is simply (4.26) with
wi = 1 for all i, we thus have that (4.26) is NP-hard.

4.2 NP-Hardness of Restricted Problems

In [30], the author describes an heuristic approach for solving (2.1) based
on partitioning X into m Voronoi cells

X i :=
{
x ∈ X

∣∣∣wi ∥∥x− xi∥∥2 ≤ wj
∥∥x− xj∥∥2 ∀j ∕= i

}
i = 1, . . . ,m, (4.27)

and maximizing
∥∥x− xi∥∥2

over x ∈ X i, for i = 1, . . . ,m. However, since
(2.1) is NP-hard, at least one of these restricted problems (or subproblems)
is NP-hard. In fact, we show below that the restricted problem is NP-hard
even when w1 = ⋅ ⋅ ⋅ = wm and X = ℝn.

Theorem 4.6. We have
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4.2. NP-Hardness of Restricted Problems

1.

f(x) = min
1≤i≤m

wi
∥∥x− xi∥∥2

=

⎧⎨⎩
w1

∥∥x− x1
∥∥2

if x ∈ X 1

w2

∥∥x− x2
∥∥2

if x ∈ X 2

...

wm ∥x− xm∥2 if x ∈ Xm

(4.28)

where

X i =
{
x ∈ X

∣∣∣ wi ∥∥x− xi∥∥2 ≤ wj
∥∥x− xj∥∥2 ∀ j ∕= i

}
,

for i = 1, . . . ,m.

2.

max
x∈X

f(x) = max

{
max
x∈X 1

f(x), . . . , max
x∈Xm

f(x)

}
.

3. If w1 = ⋅ ⋅ ⋅ = wm, then each X i is a convex set, since{
x ∈ X

∣∣∣ wi ∥∥x− xi∥∥2 ≤ wj
∥∥x− xj∥∥2

, j ∕= i
}

=
{
x ∈ X

∣∣∣〈xj − xi, x〉 ≤ ∥∥xj∥∥2 −
∥∥xi∥∥2

, j ∕= i
}
.

Note that maxx∈X i f(x) is:

max
x∈X i

f(x) = max
x∈X i

∥∥x− xi∥∥2

s.t.
∥∥x− xi∥∥2 ≤

∥∥x− xj∥∥2
j ∕= i. (4.29)

Let W ∈ ℤq×q and assume that W is positive semidefinite and symmet-
ric. We have the following Lemma:

Lemma 4.7. The MaxCut problem on a graph with q nodes

max
y∈{−1,1}q

yTWy, (4.30)

is equivalent to the following problem:

max
y∈[−1,1]q

yT (W +D) y, (4.31)

where D ∈ ℝq×q is any diagonal matrix chosen so that W + D is positive
definite.
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4.2. NP-Hardness of Restricted Problems

To prove Lemma 4.7 we recall Theorem 1.56, which states that if D ⊂ ℝn
is compact and convex and f : ℝn → ℝ is convex, then

max
x∈D

f = max
x∈ext(D)

f (4.32)

where ext(D) is the set of extremal points of D.

Proof. Note that the set of extremal points of [−1, 1]q is {−1, 1}q. Then

max
y∈[−1,1]q

yT (W +D) y = max
y∈{−1,1}q

{
yTWy + yTDy

}
= max

y∈{−1,1}q

⎧⎨⎩yTWy +

q∑
j=1

y2
jDjj

⎫⎬⎭
= max

y∈{−1,1}q

⎧⎨⎩yTWy +

q∑
j=1

Djj

⎫⎬⎭
= max

y∈{−1,1}q
yTWy +

q∑
j=1

Djj . (4.33)

Since
∑q

j=1Djj is constant, it is equivalent to solve

max
y∈{−1,1}q

yTWy. (4.34)

Now, since W +D is nonsingular, positive definite, by Fact 1.26 we can
decompose W + D = LTL where L ∈ ℝq×q is a nonsingular and upper (or
lower) triangular matrix, and make the substitution x = Ly, which leads to
the following lemma:

Lemma 4.8. Solving (4.31) is equivalent to solving

max
x∈ℝq

∥x∥2

s.t. 2
(
ui
)T
x ≤ 1, −2

(
ui
)T
x ≤ 1, i = 1, . . . , q, (4.35)

where ui denotes the ith column of
(
L−1

)T
/2.
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4.2. NP-Hardness of Restricted Problems

Proof. This follows from

(
L−1

)T
= (2u1, . . . , 2uq)⇒ L−1 =

⎡⎢⎢⎢⎣
2uT1
2uT2

...
2uTq

⎤⎥⎥⎥⎦ (4.36)

so that

x = Ly ⇒ y = L−1x =

⎡⎢⎢⎢⎣
2uT1
2uT2

...
2uTq

⎤⎥⎥⎥⎦x⇒ yi = 2 (ui)
T x i = 1, . . . , q (4.37)

and

∣yi∣ ≤ 1 ∀i = 1, . . . , q ⇔
∣∣∣2 (ui)T x∣∣∣ ≤ 1 ∀i = 1, . . . , q (4.38)

Lastly, it is easily seen that

∥x∥2 = ⟨Ly,Ly⟩ = yT
(
LTL

)
y = yT (W +D) y. (4.39)

Remark 4.9. x solves (4.35) if and only if y = L−1x solves (4.31).

Lemma 4.10. Problem (4.35) can be written as

max
x∈ℝq

∥x∥2

s.t. ∥x∥2 ≤
∥∥x− xi∥∥2

, i = 1, . . . , 2q.
(4.40)

where ui denotes the ith column of
(
L−1

)T
/2 and

xi := �iu
i, xi+q := −�iui, with �i :=

1

∥ui∥2
, i = 1, . . . , q. (4.41)

Proof. By definition of xi, we have
∥∥xi∥∥ =

∥∥�iui∥∥ = 1
∥ui∥2

∥∥ui∥∥ = 1
∥ui∥ , so

that

∥x∥2 ≤
∥∥x− xi∥∥2

= ∥x∥2 − 2
〈
x, xi

〉
+
∥∥xi∥∥2

⇔ 0 ≤ −2
〈
x, xi

〉
+

1

∥ui∥2
= −2

〈
x, xi

〉
+ �i

⇔ 2
〈
x, xi

〉
≤ �i, i = 1, . . . , 2q (4.42)

⇔
∣∣2 〈x, �iui〉∣∣ ≤ �i, i = 1, . . . , q

⇔
∣∣2 〈x, ui〉∣∣ ≤ 1.
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Theorem 4.11. The MaxCut problem on a graph with q nodes is reducible
in polynomial time to the problem (4.40),

max
x∈ℝq

∥x∥2

s.t. ∥x∥2 ≤
∥∥x− xi∥∥2

, i = 1, . . . , 2q.
(4.43)

Proof. By applying Lemmas 4.7, 4.8 and 4.10 we know that the MaxCut
problem is reducible to solving (4.40). Since W ≥ 0, W ∈ ℤq×q, and by
choosing D appropriately, we can ensure that x1, . . . , x2q have rational en-
tries and the size of x1, . . . , x2q (encoded in binary) is polynomial in the size
of W ([12]). Thus MaxCut is reducible in polynomial time to the restricted
problem (4.40).

Corollary 4.12. The restricted problems of the heuristic method of [30],

max
x∈ℝq

∥x∥2

s.t. ∥x∥2 ≤
∥∥x− xi∥∥2

, i = 1, . . . , 2q.
(4.44)

are NP-hard.

Proof. By Theorem 4.11, we know that MaxCut is reducible in polynomial
time to the restricted problem (4.40). Thus, since the MaxCut problem is
NP-hard (Fact 1.78), we have that (4.40) must be NP-hard.

Corollary 4.13. One of the restricted problems

max
x∈X i

f(x)

must be NP-hard.

Proof. Apply Corollary 4.12 and Theorem 4.6 part 2.
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Chapter 5

Convex Relaxation Based
Algorithms

Given that (2.1) is NP-hard, see Chapter 4, in general it is very im-
portant to explore methods for finding approximate solutions to (2.1). In
this chapter, we outline an algorithm which can be used to find approximate
solutions to (2.1) using our convex SDP (2.14) and SOCP (2.24) relaxations.

5.1 Auxiliary Results

Let Z∗ ∈ Sn+1 be an optimal solution of the SDP relaxation (2.14).
Then Z∗ ∈ Sn+1

+ so that Z∗jj ≥ 0 for j = 1, . . . , n + 1. For i = 1, . . . ,m, let

bi ∈ ℝn be given by

bij =
√
Z∗jjx

i
j , j = 1, . . . , n (5.1)

where xi, i = 1, . . . ,m are the given set of points from (2.1).
To prove our main result, Theorem 5.4, we require the following tail

estimate by Ben-Tal, Nemirovski, and Roos; see [3]. For completeness, we
include the proof.

Lemma 5.1. Let � ∈ {−1, 1}n be a random vector, componentwise inde-
pendent, with

Pr (�j = 1) = Pr (�j = −1) =
1

2
∀j = 1, . . . , n. (5.2)

Then for any � > 0,

Pr
((
bi
)T
� ≥
√
�
∥∥bi∥∥) ≤ e−�/2, i = 1, . . . ,m.

Proof. (based on proof of Lemma A.3 in [3]):
First, note that � is a random variable and bi is fixed for each i, so (bi)T �

is a random variable. Since � > 0 and
∥∥bi∥∥ are fixed, (bi)T � −

√
�
∥∥bi∥∥ is
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also a random variable.
Now, for any random variable y with density function f , for any � ≥ 0 we
have

E (e�y) =

∫ 0

−∞
e�yf(y)dy +

∫ ∞
0

e�yf(y)dy

≥ 0 +

∫ ∞
0

f(y)dy (since e�y ≥ 1 for y ≥ 0)

= Pr (y ≥ 0) . (5.3)

Hence, substituting y = (bi)T � −
√
�
∥∥bi∥∥, we have:

Pr
(
(bi)T � ≥

√
�
∥∥bi∥∥) = Pr

(
(bi)T � −

√
�
∥∥bi∥∥ ≥ 0

)
≤ E

(
e�((bi)T �−

√
�∥bi∥)

)
= E

(
e�((bi)T �)

)
e−�
√
�∥bi∥ (5.4)

and thus

E
(
e�((bi)T �)

)
=

n∏
j=1

E
(
e�b

i
j�j
)

=
n∏
j=1

1

2

(
e�b

i
j + e−�b

i
j

)
(from 5.2)

=

n∏
j=1

cosh (�bij) (5.5)

Apply the inequality cosh t ≤ e
1
2
t2 (which holds by Taylor’s series) to obtain

E
(
e�((bi)T �)

)
≤

n∏
j=1

e
1
2
�2(bij)

2

= e
1
2
�2(
∑n
j=1(bij)

2)

= e
1
2
�2∥bi∥2 .

Hence, we have for � ≥ 0

Pr
(
(bi)T � ≥

√
�
∥∥bi∥∥) ≤ E

(
e�((bi)T �)

)
e−�
√
�∥bi∥

≤
(
e

1
2
�2∥bi∥2

)
e−�
√
�∥bi∥

= e
1
2
�2∥bi∥2−�√�∥bi∥. (5.6)
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5.2. SDP Relaxation Based Algorithm

The right hand side of this equation is minimized at � =
√
�/
∥∥bi∥∥, with

e
1
2

(
√
�/∥bi∥)2∥bi∥2−(

√
�/∥bi∥)√�∥bi∥ = e−

�
2 (5.7)

Thus, we have

Pr
((
bi
)T
� ≥
√
�
∥∥bi∥∥) ≤ e−�2 (5.8)

as required.

5.2 SDP Relaxation Based Algorithm

In this section, we consider the case of (2.6) and propose an algorithm for
constructing an approximate solution of (2.1) based on the SDP relaxation
(2.14), with an approximation bound of

1−
√
�
∗

2
�cp. (5.9)

We will see in Section 6.1 that, in the case of X = [−1, 1]n, this yields an
approximation bound that is uniformly bounded away from zero as n→∞.
First we give some elementary properties of optimal solutions to the SDP
relaxation.

Lemma 5.2 (box case). Let

K =
{
y ∈ ℝn+1 ∣yj ≤ yn+1, j = 1, . . . , n} . (5.10)

If the SDP

1

�cp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K
Z ર 0.

has a solution, then it has a solution Z∗ ∈ Sn+1 such that

Z∗jj = Z∗n+1,n+1 ∀ j = 1, . . . , n.

In particular, Z∗jj > 0 for j = 1, . . . , n.
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5.2. SDP Relaxation Based Algorithm

Proof. The constraint (Z11, . . . , Znn, Zn+1,n+1)T ∈ K gives

Zjj ≤ Zn+1,n+1 ∀ j = 1, . . . , n. (5.11)

The constraint wi
〈
Ai, Z

〉
≥ 1 gives

wi

( n∑
j=1

Zjj +
∥∥xi∥∥2

Zn+1,n+1 − 2
(
xi
)T
z∗
)
≥ 1. (5.12)

If Z is a feasible solution, by (5.11)

Diag(Zn+1,n+1 − Z11, . . . , Zn+1,n+1 − Znn, 0) ર 0.

Then

Z̃ := Z + Diag(Zn+1,n+1 − Z11, . . . , Zn+1,n+1 − Znn, 0) ર 0

and also verifies (5.11) and (5.12), so Z̃ is feasible. Moreover,

Z̃jj = Zn+1,n+1 ∀ j = 1, . . . , n.

Hence any optimal solution Z∗ to the SDP can be modified so that

Z∗jj = Z∗n+1,n+1 ∀ j = 1, . . . , n.

The proof is complete by using Lemma 2.8.

Lemma 5.3 (ball case). Let

K = {y ∈ ℝn+1∣
n∑
j=1

yj ≤ yn+1} (5.13)

If the SDP

1

�cp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K
Z ર 0.

has a solution, then it has a solution Z∗ ∈ Sn+1 such that

n∑
j=1

Z∗jj = Z∗n+1,n+1.

In particular,
∑n

j=1 Z
∗
jj > 0.

57



5.2. SDP Relaxation Based Algorithm

Proof. The constraint (Z11, . . . , Znn, Zn+1,n+1)T ∈ K gives

n∑
j=1

Zjj ≤ Zn+1,n+1. (5.14)

The constraint wi
〈
Ai, Z

〉
≥ 1 gives

wi

( n∑
j=1

Zjj +
∥∥xi∥∥2

Zn+1,n+1 − 2
(
xi
)T
z∗
)
≥ 1. (5.15)

If Z is a feasible solution, by (5.14)

Diag(Zn+1,n+1 −
n∑
j=1

Zjj , 0, . . . , 0) ર 0.

Then

Z̃ := Z + Diag(Zn+1,n+1 −
n∑
j=1

Zjj , 0, . . . , 0) ર 0

and also verifies (5.14) and (5.15), so Z̃ is feasible. Moreover,

n∑
j=1

Z̃jj = Zn+1,n+1.

Hence any optimal solution Z∗ to the SDP can be modified so that
n∑
j=1

Z∗jj = Z∗n+1,n+1.

The proof is complete by using Lemma 2.8.

Theorem 5.4. Let Z∗ ∈ Sn+1 be an optimal solution of the SDP-relaxation
problem (2.14)

1

�cp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K
Z ર 0

and define


∗ :=
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

.

Then there exists a feasible solution x̃ for the original optimization problem
(2.1) such that
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5.2. SDP Relaxation Based Algorithm

1.

x̃ =

⎛⎝ √
Z∗11�1√

Z∗n+1,n+1

,

√
Z∗22�2√

Z∗n+1,n+1

, ⋅ ⋅ ⋅ ,
√
Z∗nn�n√
Z∗n+1,n+1

⎞⎠ (5.16)

where � = (�1, . . . , �n) satisfies � ∈ {−1, 1}n and (bi)T � <
√
�
∥∥bi∥∥,

and � = 2 ln (m/�).

2.

f (x̃) = min
i=1,...,m

wi
∥∥x̃− xi∥∥2 ≥ 1−

√
�
∗

2
�cp. (5.17)

3. f(x̃) ≥ 1−
√
�
∗

2 �p.

Before proving Theorem 5.4 we provide some Propositions and defini-
tions. Recall that in Section 5.1 we let Z∗ ∈ Sn+1 be an optimal solution of
the SDP relaxation (2.14), and for i = 1, . . . ,m, we let bi ∈ ℝn be given by

bi =
(√

Z∗11x
i
1, . . . ,

√
Z∗nnx

i
n

)
. (5.18)

Proposition 5.5. Fix any 0 < � < 1, and set � = 2 ln (m/�). Then

Pr
((
bi
)T
� ≥
√
�
∥∥bi∥∥) ≤ �

m
, i = 1, . . . ,m. (5.19)

Proof. Indeed, by Lemma 5.1 we have

Pr
((
bi
)T
� ≥
√
�
∥∥bi∥∥) ≤ e−(2 ln m

�

)
/2

= e
− ln m

�

= eln �
m

=
�

m
. (5.20)

Proposition 5.6. Fix any 0 < � < 1, and set � = 2 ln (m/�). We have

Pr
((
bi
)T
� <
√
�
∥∥bi∥∥ , i = 1, . . . ,m

)
≥ 1− � > 0, (5.21)

so that there exists a � ∈ {−1, 1}n satisfying(
bi
)T
� <
√
�
∥∥bi∥∥ , i = 1, . . . ,m. (5.22)
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Proof. Consider:

Pr
((
bi
)T
� <
√
�
∥∥bi∥∥ , i = 1, . . . ,m

)
= 1− Pr

((
bi
)T
� ≥
√
�
∥∥bi∥∥ for some i ∈ {1, . . . ,m}

)
≥ 1−

m∑
i=1

Pr
((
bi
)T
� ≥
√
�
∥∥bi∥∥)

≥ 1−
m∑
i=1

�

m
(Apply Proposition 5.5)

= 1− � > 0. (5.23)

How do we find the random vector � verifying (5.22)? Such a �
can be found by repeated random sampling, and the probability of finding
such a � after N samples is at least 1 − �N . That is, the probability that
we do not find such a � in each sample is less than or equal to �, so the
probability of finding such a � in N samples is greater than or equal to 1−�N .

Now, set z̃ ∈ ℝn and z̃n+1 according to

z̃j =
√
Z∗jj�j , j = 1, . . . , n, z̃n+1 =

√
Z∗n+1,n+1. (5.24)

Then
z̃ = (

√
Z∗11�1, . . . ,

√
Z∗nn�n), (5.25)(

z̃2
1 , . . . , z̃

2
n, z̃

2
n+1

)T
=
(
Z∗11, . . . , Z

∗
nn, Z

∗
n+1,n+1

)T ∈ K.
We will show that

∥∥z̃ − xiz̃n+1

∥∥2
is not too small for all i, yielding a non-

trivial approximation bound.

Proposition 5.7. With z̃ given in (5.24), we have

∥∥z̃ − xiz̃n+1

∥∥2
=

n∑
j=1

Z∗jj − 2
(
bi
)T
�
√
Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1 (5.26)

For i = 1, . . . ,m.

Proof. First,∥∥z̃ − xiz̃n+1

∥∥2
= ∥z̃∥2 − 2

(
xi
)T
z̃z̃n+1 +

∥∥xi∥∥2
z̃2
n+1. (5.27)
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Then apply (5.1):

bij =
√
Z∗jjx

i
j ⇒ xij =

bij√
Z∗jj

(5.28)

and

(xi)T z̃ =
n∑
j=1

xij z̃j =
n∑
j=1

bij√
Z∗jj

√
Z∗jj�j = (bi)T � (5.29)

to get the desired result.

Now, define


∗ :=
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

. (5.30)

Proposition 5.8. We have

n∑
j=1

Z∗jj − 2
(
bi
)T
�
√
Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1 (5.31)

≥
n∑
j=1

Z∗jj − 2

√√√⎷�
∗
n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1.

Proof. First, since � satisfies
(
bi
)T
� <
√
�
∥∥bi∥∥ , i = 1, . . . ,m, we have that

n∑
j=1

Z∗jj − 2
(
bi
)T
�
√
Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1

≥
n∑
j=1

Z∗jj − 2
√
�
∥∥bi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1. (5.32)

Furthermore, we have∥∥bi∥∥2
=

n∑
j=1

Z∗jj
(
xij
)2

≤
(

max
j=1,...,n

Z∗jj

) n∑
j=1

(xij)
2

=

(
max

j=1,...,n
Z∗jj

)∥∥xi∥∥2

=

⎛⎝
∗ n∑
j=1

Z∗jj

⎞⎠∥∥xi∥∥2
(5.33)
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by (5.28) and (5.30). Then

n∑
j=1

Z∗jj − 2
√
�
∥∥bi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1 (5.34)

≥
n∑
j=1

Z∗jj − 2

√√√⎷�
∗
n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1.

Combining equations (5.32) and (5.33) gives the desired result.

Proposition 5.9. We have

n∑
j=1

Z∗jj − 2

√√√⎷�
∗
n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1

≥
(

1−
√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.35)

Proof. First,

n∑
j=1

Z∗jj − 2

√√√⎷�
∗
n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1 (5.36)

=
(

1−
√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠+
√
�
∗

⎛⎝√√√⎷ n∑
j=1

Z∗jj −
∥∥xi∥∥√Z∗n+1,n+1

⎞⎠2

which can be seen by simply expanding and grouping terms:

(
1−

√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠+
√
�
∗

⎛⎝√√√⎷ n∑
j=1

Z∗jj −
∥∥xi∥∥√Z∗n+1,n+1

⎞⎠2

= (1−
√
�
∗)

n∑
j=1

Z∗jj + (1−
√
�
∗)

∥∥xi∥∥2
Z∗n+1,n+1

+
√
�
∗

⎛⎝ n∑
j=1

Z∗jj − 2

√√√⎷ n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1 +

∥∥xi∥∥2
Z∗n+1,n+1

⎞⎠
=

n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1 − 2

√√√⎷�
∗
n∑
j=1

Z∗jj
∥∥xi∥∥√Z∗n+1,n+1. (5.37)
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Then simply note that

√
�
∗

⎛⎝√√√⎷ n∑
j=1

Z∗jj −
∥∥xi∥∥√Z∗n+1,n+1

⎞⎠2

≥ 0. (5.38)

and hence

(
1−

√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠+
√
�
∗

⎛⎝√√√⎷ n∑
j=1

Z∗jj −
∥∥xi∥∥√Z∗n+1,n+1

⎞⎠2

≥
(

1−
√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.39)

Next, we provide results that will help to establish our lower bound.

Proposition 5.10. For each i = 1, . . . ,m,

1

wi
≤ 2

⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.40)

Proof. Recall that in (2.14) our first constraint is that wi
〈
Ai, Z

〉
≥ 1 or

1
wi
≤
〈
Ai, Z

〉
for i = 1, . . . ,m. Consider the following sequence of inequali-

ties, which we will justify later:

1

wi
≤

〈
Ai, Z∗

〉
=

〈[
I −xi

−
(
xi
)T ∥∥xi∥∥2

]
, Z∗

〉

=
n∑
j=1

Z∗jj − 2
(
xi
)T
z∗ +

∥∥xi∥∥2
Z∗n+1,n+1 (5.41)

≤ 2

⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.42)

For (5.41), let

z∗ =
(
Z∗1,n+1, . . . , Z

∗
n,n+1

)T
63



5.2. SDP Relaxation Based Algorithm

and

Z∗∗ =

⎡⎢⎣ Z∗11

∗∗ . . . ∗∗
Z∗nn

⎤⎥⎦
so that we can write

Z∗ =

[
Z∗∗ z∗

(z∗)T Z∗n+1,n+1

]
. (5.43)

Now consider the trace:

Tr

([
I −xi

−
(
xi
)T ∥∥xi∥∥2

]
Z∗

)

Tr

([
I −xi

−
(
xi
)T ∥∥xi∥∥2

] [
Z∗∗ z∗

(z∗)T Z∗n+1,n+1

])

= Tr

([
Z∗∗ − xi(z∗)T z∗ − xiZ∗n+1,n+1

−
(
xi
)T
Z∗∗ +

∥∥xi∥∥2
(z∗)T −(xi)T z∗ +

∥∥xi∥∥2
Z∗n+1,n+1

])
= Tr

(
Z∗∗ − xi(z∗)T

)
+ Tr

(
−(xi)T z∗ +

∥∥xi∥∥2
Z∗n+1,n+1

)
=

⎛⎝ n∑
j=1

Z∗jj − (xi)T z∗

⎞⎠+
(
−(xi)T z∗ +

∥∥xi∥∥2
Z∗n+1,n+1

)

=
n∑
j=1

Z∗jj − 2(xi)T z∗ +
∥∥xi∥∥2

Z∗n+1,n+1. (5.44)

For (5.42), we have that Z∗ ર 0 so that[
Z∗jj Z∗j,n+1

Z∗j,n+1 Z∗n+1,n+1

]
ર 0, j = 1, . . . , n. (5.45)

Then (
Z∗jj
) (
Z∗n+1,n+1

)
−
(
Z∗j,n+1

)2 ≥ 0 for j = 1, . . . , n (5.46)
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and thus

2
∣∣∣(xi)T z∗∣∣∣ ≤ 2

∥∥xi∥∥ ∥z∗∥ (Cauchy-Schwarz)

= 2
∥∥xi∥∥

√√√⎷ n∑
j=1

(
Z∗j,n+1

)2
(5.47)

≤ 2
∥∥xi∥∥

√√√⎷ n∑
j=1

Z∗jjZ
∗
n+1,n+1 (see (5.46))

= 2
(∥∥xi∥∥√Z∗n+1,n+1

)⎛⎝√√√⎷ n∑
j=1

Z∗jj

⎞⎠
≤

∥∥xi∥∥2
Z∗n+1,n+1 +

n∑
j=1

Z∗jj (2ab ≤ a2 + b2).

Hence,

n∑
j=1

Z∗jj − 2
(
xi
)T
z∗ +

∥∥xi∥∥2
Z∗n+1,n+1

≤
n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1 +
n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

= 2

⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.48)

5.3 Proof of Theorem 5.4: SDP Relaxation
Based Algorithm

Using the results of the previous section (5.2) we now provide the proof
of Theorem 5.4.

Proof. First, by combining Propositions 5.7, 5.8 and 5.9, we have

∥∥z̃ − xiz̃n+1

∥∥2 ≥
(

1−
√
�
∗

)⎛⎝ n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1

⎞⎠ . (5.49)
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Combining the equation (5.49) with Proposition 5.10 we have that

min
i=1,...,m

wi
∥∥z̃ − xiz̃n+1

∥∥2 ≥
(1−

√
�
∗)

(∑n
j=1 Z

∗
jj +

∥∥xi∥∥2
Z∗n+1,n+1

)
2
(∑n

j=1 Z
∗
jj + ∥xi∥2 Z∗n+1,n+1

)
=

1−
√
�
∗

2
. (5.50)

Thus x̃ ∈ ℝn given by

x̃ :=
z̃

z̃n+1
, (5.51)

belongs to X given by (2.6), since, by (5.24)

(
x̃2

1, . . . , x̃
2
n

)
=

(
Z∗11

Z∗n+1,n+1

, . . . ,
Z∗nn

Z∗n+1,n+1

)
, (5.52)

and
(
Z∗11, . . . , Z

∗
nn, Z

∗
n+1,n+1

)
∈ K by feasibility. Since K is a convex cone,

1

Z∗n+1,n+1

(
Z∗11, . . . , Z

∗
nn, Z

∗
n+1,n+1

)
∈ K, (5.53)

so that
(
x̃2

1, . . . , x̃
2
n, 1
)
∈ K and thus x̃ ∈ X . This establishes part 1.

Furthermore, x̃ satisfies

f (x̃) = min
i=1,...,m

wi
∥∥x̃− xi∥∥2 ≥ 1−

√
�
∗

2

1

z̃2
n+1

=
1−
√
�
∗

2
�cp, (5.54)

since, by (5.49),

min
i=1,...,m

wi
∥∥x̃− xi∥∥2

= min
i=1,...,m

wi

∥∥∥∥ z̃

z̃n+1
− xi

∥∥∥∥2

= min
i=1,...,m

wi
z̃2
n+1

∥∥z̃ − xiz̃n+1

∥∥2

≥ 1−
√
�
∗

2

1

z̃2
n+1

. (5.55)

Now, Z∗ is an optimal solution to (2.14) and z̃2
n+1 = Z∗n+1,n+1, so that

by (2.14)
1

z̃2
n+1

=
1

Z∗n+1,n+1

= �cp.

66



5.4. Examples on the Lower Bound 
∗

Thus, we have shown that there exists a feasible solution x̃ of the original
problem (2.1) such that

f (x̃) ≥ 1−
√
�
∗

2
�cp (5.56)

as required in part 2.
Finally, part 3 follows by combining part 2 and Theorem 2.11.

Remark 5.11. Notice that we do not need Z∗ ર 0 but only (5.45) to estab-
lish (5.17). Since (5.45) is equivalent to second-order cone constraints, see
section 2.2.2 or [3, 25], it suffices to solve a second-order program (SOCP)
instead of an SDP, which is computationally much more expensive.

To summarize, the key point is to find
(
Z∗11, . . . , Z

∗
n+1,n+1

)
using the SDP

or SOCP relaxations. Upon obtaining
(
Z∗11, . . . , Z

∗
n+1,n+1

)
, we can construct

a feasible solution x̃ of (2.1) as follows:

1. Find
(
Z∗11, . . . , Z

∗
n+1,n+1

)
, which is obtained from a solution Z∗ to the

SDP (2.14) or SOCP (2.24) relaxation.

2. Generate � ∈ {−1, 1}n as in Proposition 5.6.

3. Set

x̃(�) =
z̃

z̃n+1
=

1√
Z∗n+1,n+1

(√
Z∗11�1, . . . ,

√
Z∗nn�n

)
. (5.57)

5.4 Examples on the Lower Bound 
∗

We would like 
∗ to be small for the bound (5.17) to be tight. In this
section we provide concrete examples of calculating the lower bound 
∗.

Example 5.12. Let X = {−1, 1}n, corresponding to

K =
{
y ∈ ℝn+1 ∣yj = yn+1, j = 1, . . . , n} . (5.58)

As
(
Y ∗11, . . . , Y

∗
nn, Y

∗
n+1,n+1

)T ∈ K, in particular, Y ∗ ≽ 0, we have

Y ∗jj = Y ∗n+1,n+1, j = 1, . . . , n, (5.59)

so that


∗ =
maxj=1,...,n Y

∗
jj∑n

j=1 Y
∗
jj

=
Y ∗n+1,n+1

nY ∗n+1,n+1

=
1

n
. (5.60)
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∗

Example 5.13. Suppose n is even, and let

X =
{
x ∈ ℝn

∣∣x2
j−1 + x2

j = 1, j = 2, 4, . . . , n
}
.

This corresponds to

K =
{
y ∈ ℝn+1 ∣yj−1 + yj = yn+1, j = 2, 4, . . . , n} . (5.61)

As
(
Y ∗11, . . . , Y

∗
nn, Y

∗
n+1,n+1

)T ∈ K, in particular Y ∗ ≽ 0, we have

n∑
j=1

Y ∗jj = (Y ∗11 + Y ∗22) + ⋅ ⋅ ⋅+
(
Y ∗n−1,n−1 + Y ∗nn

)
=
n

2
Y ∗n+1,n+1 (5.62)

and
Y ∗jj ≤ Y ∗n+1,n+1, j = 1, . . . , n. (5.63)

Thus,


∗ =
maxj=1,...,n Y

∗
jj∑n

j=1 Y
∗
jj

≤
Y ∗n+1,n+1
n
2Y
∗
n+1,n+1

=
2

n
. (5.64)

More examples of 
∗ will be given in Chapter 6.

68



Chapter 6

Numerics and Examples

In this chapter we begin by considering two specific cases of the weighted
maximin problem, and use the results of section 5.2 to derive approximation
bounds. In the last section, we numerically compute the SDP and SOCP
approximation bounds for a few specific examples, and (where applicable)
compare these results to an alternate approximate solution based on a grid
search method.

6.1 Approximation Bounds: Box Case

Lemma 6.1. If X = [−1, 1]n so that K is given by (2.7), i.e.

K =
{
y ∈ ℝn+1 ∣ yj ≤ yn+1, j = 1, . . . , n}

then the relaxation problem (2.14) given by

1

�cp
= min

Z
Zn+1,n+1

s.t. wi
〈
Ai, Z

〉
≥ 1, i = 1, . . . ,m

(Z11, . . . , Znn, Zn+1,n+1)T ∈ K
Z ર 0.

(6.1)

has at least one optimal solution Z∗ with Z∗jj = Z∗n+1,n+1 for j = 1, . . . , n,
corresponding to which 
∗ = 1/n.

Proof. Since X = [−1, 1]n which is compact, (2.14) has an optimal solution
Z∗. Suppose that Z∗

j̄j̄
< Z∗n+1,n+1 for some j̄ ∈ {1, . . . , n}. Then, for

i = 1, . . . ,m, by (5.44) we have〈
Ai, Z∗

〉
=

n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1 − 2
(
xi
)T
z∗,

which is increasing with Z∗
j̄j̄

. Thus, increasing Z∗
j̄j̄

to Z∗n+1,n+1 will maintain

all constraints in (2.14) to be satisfied while not changing the objective
function value. Hence, Z∗jj = Z∗n+1,n+1 ∀j = 1, . . . , n, and so 
∗ = 1

n as in
Example 5.12.
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6.2. Approximation Bounds: Ball Case

It follows from � = 2 ln (m/�), (5.17) and Lemma 6.1 that the feasible
solution x̃ of (2.1) found by the SDP-based algorithm in Section 5.2 satisfies

f(x̃) ≥
1−

√
2 ln (m/�)/n

2
�cp. (6.2)

Thus, 1 ≥ f(x̃)/�cp ≥ 1−
√
�

2 whenever 2 ln (m/�)/n ≤ � < 1. As we noted
at the end of Section 5.2, the approximation bound (6.2) still holds when we
further relax the SDP constraint Z ર 0 in (2.14) to the SOCP constraints.
To our knowledge, this is the first nontrivial approximation bound for an
NP-hard problem based on SOCP relaxation.

Theorem 6.2. If K is given by (2.7), then when n→∞,

lim inf
n→∞

f(x̃)

�cp
≥ 1

2
. (6.3)

Moreover,

lim inf
n→∞

f(x̃)

�p
≥ 1

2
.

Proof. This follows from Lemma 6.1 and the fact that as n→∞,
(2 ln (m/�)/n)→ 0 so that

lim inf
n→∞

f(x̃)

�cp
= lim inf

n→∞

1−
√

2 ln (m/�)/n

2
≥ 1

2
. (6.4)

As �p ≤ �cp and f(x̃) > 0, we have

f(x̃)

�p
≥ f(x̃)

�cp

so that

lim inf
n→∞

f(x̃)

�p
≥ lim inf

n→∞

f(x̃)

�cp
≥ 1

2
.

6.2 Approximation Bounds: Ball Case

In this section we consider the case of

X = {x ∈ ℝn ∣∥x∥ ≤ 1} ,
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6.2. Approximation Bounds: Ball Case

and derive analogous results for an approximation bound as we did in sec-
tion 6.1.

As noted in section 5.2, we want 
∗ to be small for the bound to be tight,
so we begin by placing a lower bound on 
∗.

Lemma 6.3. If X = {x ∈ ℝn ∣∥x∥ ≤ 1} is a Euclidean ball so that

K =
{
y ∈ ℝn+1 ∣y1 + y2 + ⋅ ⋅ ⋅+ yn ≤ yn+1}

as in (2.8), then 
∗ ≥ 1/n. Furthermore, 
∗ = 1/n when Z∗jj = 1
nZ
∗
n+1,n+1

for j = 1, . . . , n.

Proof. In order to minimize 
∗ =
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

we want to maximize
∑n

j=1 Z
∗
jj

while minimizing maxj=1,...,n Z
∗
jj . From the definition of K it obvious that∑n

j=1 Z
∗
jj is maximized at Z∗n+1,n+1. Now, setting Z∗jj = 1

nZ
∗
n+1,n+1 for

j = 1, . . . , n yields
∑n

j=1 Z
∗
jj = Z∗n+1,n+1, and


∗ =
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

=
1
nZ
∗
n+1,n+1

Z∗n+1,n+1

=
1

n
. (6.5)

To show that this solution minimizes 
∗, suppose that Z∗jj = 1
�j
Z∗n+1,n+1 for

j = 1, . . . , n so that
∑n

j=1 Z
∗
jj = Z∗n+1,n+1, but assume that 1

�j
< 1

n for some

j ∈ {1, 2, . . . , n}. Then we must have 1
�k
> 1

n for some k ∕= j in 1, . . . , n (in

order that
∑n

j=1 Z
∗
jj = Z∗n+1,n+1 is still satisfied). Thus,


∗ =
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

=
Z∗n+1,n+1 maxj=1,...,n

1
�j

Z∗n+1,n+1

>
1
nZ
∗
n+1,n+1

Z∗n+1,n+1

>
1

n
. (6.6)

Then we have an analogous result to Lemma 6.1 for the Euclidean ball
bounded case:

Lemma 6.4. If K is given by (2.8), then (2.14) has an optimal solution Z∗

with Z∗jj = 1
nZ
∗
n+1,n+1 for j = 1, . . . , n corresponding to which 
∗ = 1/n.

Proof. Since X is compact, (2.14) has an optimal solution, Z∗. We know
that 〈

Ai, Z∗
〉

=
n∑
j=1

Z∗jj +
∥∥xi∥∥2

Z∗n+1,n+1 − 2
(
xi
)T
z∗ (6.7)
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is increasing with
∑n

j=1 Z
∗
jj . Then setting Z∗jj = 1

nZ
∗
n+1,n+1 maximizes∑n

j=1 Z
∗
jj at Z∗n+1,n+1, which maintains all constraints of (2.14) while not

changing the objective function value. Thus, applying Lemma 6.3, we have

∗ = 1/n.

Then, as in section 6.1, we can set � = 2 ln (m/�), and apply (5.17) and
Lemma 6.4 so that the feasible solution x̂ of (2.1) found by the SDP-based
algorithm in Section 5.2 satisfies

f(x̂) ≥
1−

√
2 ln (m/�)/n

2
�cp. (6.8)

Theorem 6.5. If K is given by (2.8), then when n→∞,

lim inf
n→∞

f(x̃)

�cp
≥ 1

2
. (6.9)

Moreover,

lim inf
n→∞

f(x̃)

�p
≥ 1

2
.

The proof is analogous to the proof of Theorem 6.2.

6.3 Where the SDP Relaxation Fails

In this section we consider the approximation bound (6.2) for the case
that n is small and m is large. The following example shows that the SDP
relaxation (2.14) can be a poor approximation of (2.1) in such a case, so
(6.2) cannot be significantly improved upon.

Example 6.6. Suppose n = 1 (i.e. in ℝ), wi = 1, and xi = 2(i−1)
m − 1,

for i = 1, . . . ,m + 1. Since x1, . . . , x(m+1) form a grid of equal spacing on
X = [−1, 1], we will have an optimal point (call it x∗), at the halfway point
between any two xi. For convenience, choose x1 = −1 and x2 = −1 + 2

m , so
that x∗ = −1 + 1

m . Then the optimal solution is given by

�p =
∣∣x∗ − x1

∣∣2
=

∣∣∣∣−1 +
1

m
− (−1)

∣∣∣∣2
=

∣∣∣∣−1

m

∣∣∣∣2
=

1

m2
.
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6.3. Where the SDP Relaxation Fails

On the other hand, Z = I is a feasible solution of (2.14) with objective
function value of 1.
To see that Z = I2×2 is feasible, need to show the following:

−
〈
Ai, Z

〉
≥ 1. Recall that

〈
Ai, Z

〉
= trace[AiZ]. Then we have

AiZ = AiI = Ai =

⎡⎣ 1 −
(

2(i−1)
m − 1

)
−
(

2(i−1)
m − 1

) (
2(i−1)
m − 1

)2

⎤⎦
⇒
〈
Ai, Z

〉
= 1 +

(
2(i− 1)

m
− 1

)2

≥ 1

− Here X = [−1, 1] so that K =
{
y ∈ ℝ2 ∣y1 ≤ y2} . Then (Z11, Z22) =

(1, 1) ∈ K is obvious.

− Z = I ર 0.

Thus we have that 1
�cp

= minZ Zn+1,n+1 ≤ 1 so that �cp ≥ 1.

Hence, �cp ≥ 1 is significantly larger than �p = 1
m2 . In fact,

�cp ≥ m2�p

which shows that in the case of n small and m large, �cp is a poor approxi-
mation for �p.

6.3.1 Necessary Condition for Non-trivial Bounds

In order for the approximation bounds to be useful, we need to ensure
that they yield non-trivial results (bounds > 0). In this section we give con-
ditions on the values of m and n for the case that X is a box or a ball and
thus 
∗ = 1/n which will ensure that the approximation bounds provided
by the SDP and SOCP relaxation problems are bounded away from 0.

To obtain a non-trivial lower bound, we require that

1−
√

2 ln(m/�)/n

2
�cp > 0. (6.10)
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6.4. An Alternate Approach

Since �cp > 0 (since �cp ≥ �p), we need only verify that

1−
√

2 ln(m/�)/n

2
> 0 (6.11)

⇔ 1 >
√

2 ln(m/�)/n (6.12)

⇔ n

2
> ln(

m

�
) (6.13)

⇔ m

�
< exp

(n
2

)
⇒ m < exp

(n
2

)
. (6.14)

Thus, we can guarantee that the approximation bounds provided by the SDP
and SOCP based algorithms will yield a non-trivial lower bound whenever
n and m satisfy m/� < exp(n2 ).

Table 6.1 shows the largest value of m that will yield a non-trivial bound
for a given value of n (setting � = 1): m = ⌊exp n

2 ⌋, i.e m = the largest
integer ≤ exp n

2 .

n 1 2 3 4 5 6 7 8 9 10

m 1 2 4 7 12 20 33 54 90 148

Table 6.1: Maximal value of m yielding a non-trivial approximation.

Note that this means that we can not guarantee a non-trivial bound for
cases that m ≥ exp(n2 ).

Remark 6.7. Consider the function

g : (0, 1]→ ℝ : � 7→
1−

√
2/n ln(m/�)

2
.

Since � 7→ ln(m/�) is a decreasing function, g is an increasing function,
therefore g(1) = max�∈(0,1] g(�).

6.4 An Alternate Approach

Of course, SDP relaxation is not the only way to construct an approxi-
mate solution of (2.1). For example, consider the following simple procedure
for constructing an approximate solution that is not based on SDP.

Definition 6.8. The ceiling, or least-integer function, is a function from
the real numbers ℝ to the integers ℤ, that maps any real number x to the
the smallest integer y such that y ≥ x. It is denoted by ⌈x⌉. For example,
we have ⌈1.5⌉ = 2, ⌈−3.2⌉ = −3 and ⌈4⌉ = 4.
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6.5. Numerical Results

Example 6.9. Let N :=
⌈
(m+ 1)1/n

⌉
. We partition X = [−1, 1]n into

Nn boxes of length 2/N in each dimension. Since this box contains the
Euclidean ball centered at x̂ of radius 1/N , we have

∥∥x̂− xi∥∥ ≥ 1/N for all
i. Hence

f(x̂) = min
i=1,...,m

wi
∥∥x̂− xi∥∥2 ≥ miniwi

N
=

miniwi⌈
(m+ 1)1/n

⌉ .
Also x̂ ∈ X . Assuming that x1, . . . , xm are in X so that

∥∥x− xi∥∥2 ≤ 4n for
all x ∈ X , then �p ≤ 4nminiwi. Therefore

f(x̂) ≥ 1

4n
⌈
(m+ 1)1/n

⌉ �p.
The approximate solution x̂ is good when x1, . . . , xm are distributed “uni-
formly” over X but can be arbitrarily bad when x1, . . . , xm are clustered
near each other. In particular, unlike (6.2), the above approximation bound
tends to zero as n→∞; namely

lim
n→∞

1

4n⌈(m+ 1)1/n⌉
= 0. (6.15)

6.5 Numerical Results

In this section, we use cvx [11], an optimization package for Matlab, to
numerically compare the SDP and SOCP approximation bounds.

cvx is a modeling system for disciplined convex prgramming (DCP).
DCP’s are convex programming problems that are described using a limited
set of construction rules. cvx can solve standard problems such as linear
programs (LPs), quadratic programs (QPs), second-order cone programs
(SOCPs) and semidefinite programs (SDPs), as well as many other more
complex convex optimization problems.

Since the original optimization problems in the examples do not have
a simple closed form solution, a Matlab program was written to find the
approximate optimal point, yielding an approximate solution to the original
weighted maximin dispersion problem (see Appendix C). Note that this code
depends upon the full factorial (fullfact) function in Matlab, so that for
high dimensional problems or very large grid sizes the computational time
is very high, and thus this program is not meant to take the place of more
complex solvers.

75



6.5. Numerical Results

Example 6.10. Suppose that X = [−1, 1]5, wi = 1 for i = 1, . . . , 3 and

x1 = (1, 0, 0, 0, 0) (6.16)

x2 = (0, 0, 1, 0, 0) (6.17)

x3 = (0, 0, 0, 0, 1) (6.18)

so that we have the following equally-weighted maximin dispersion problem:

max
x∈[−1,1]5

min
i=1,2,3

∥∥x− xi∥∥2
. (6.19)

Remark 6.11. We can easily derive the exact optimal solution for (6.19). Set
x = (x1, x2, x3, x4, x5). Then

min
i=1,2,3

∥∥x− xi∥∥2

= min
{

(x1 − 1)2 + x2
2 + x2

3 + x2
4 + x2

5, x
2
1 + x2

2 + (x3 − 1)2 + x2
4 + x2

5,

x2
1 + x2

2 + x2
3 + x2

4 + (x5 − 1)2
}

= min
{

(x1 − 1)2 + x2
3 + x2

5, x
2
1 + (x3 − 1)2 + x2

5, x
2
1 + x2

3 + (x5 − 1)2
}

+x2
2 + x2

4.

Thus, the optimal solution requires that x1 = x3 = x5 = −1. Then we can
set x1 = x3 = x5 = −1 and x2 = ±1 and x4 = ±1 to obtain an optimal
point, corresponding to the optimal solution of

�p = 4 + 2 + 2 = 8.

First, we obtain an approximate solution of (6.19) on a grid using the
Matlab code from Appendix A:
Using grid sizes of 5, 9 and 11, we have an approximate solution of

�p = 8 (6.20)

in each case, with the optimal value being achieved at one of four points:

x∗1 = (−1,−1,−1,−1,−1)

x∗2 = (−1, 1,−1,−1,−1)

x∗3 = (−1,−1,−1, 1,−1)

x∗4 = (−1, 1,−1, 1,−1) . (6.21)

Now, we want to solve the SDP and SOCP relaxation problems using cvx

and Matlab to compare the approximation bounds. Since X = [−1, 1]5 is a
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polyhedral set having a tractable algebraic representation, equation (2.14)
yields the following semidefinite program:

1

�cp
= min

Z
Z66

s.t.
〈
Ai, Z

〉
≥ 1, i = 1, 2, 3

(Z11, . . . , Z66)T ∈ K
Z ર 0.

(6.22)

while equation (2.24) yields the following second-order cone program:

1

�socp
= min

Z
Z66

s.t.
〈
Ai, Z

〉
≥ 1, i = 1, 2, 3

(Z11, . . . , Z66)T ∈ K[
Zjj Zj,6
Zj,6 Z6,6

]
ર 0, j = 1, . . . , 5.

(6.23)

where K =
{
y ∈ ℝ6 ∣yj ≤ y6 for j = 1, . . . , 5} .

Solving both the SDP and SOCP relaxation problems using cvx yield
an optimal solution value of

1

�cp
=

1

�socp
= 0.125. (6.24)

See Appendix B. Interestingly, 1
�cp

= 0.125 ⇒ �cp = 8, so that in this case,
�cp = �p. However, this is not the case in general, and from our results in
this paper we can only say with certainty that

�p ≥
1−

√
2 ln(3/�)/5

2
�cp.

Substituting �cp = 8 and choosing � = 1 (recall that 0 < � ≤ 1), we have
the following lower bound on the optimal solution:

�p ≥
1−

√
2 ln(3)/5

2
8 ≈ 1.348.

Since this is a case where n and m are both quite small, �cp is not a
very good approximation of the true solution �p. However, in cases where
X is a box and n and m are small, it is certainly feasible to use the Matlab
code provided in Appendix A to obtain an approximate solution to (2.1).
We begin by examining the case where n = 5, which is still feasible to solve
using the code in Appendix A to yield an approximation bound and we
compare the results to those produced using cvx.
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Example 6.12. Suppose that X = [−1, 1]5, wi = 1 for i = 1, . . . , 3 and
we have m = 3, 4, . . . , 12 points where each point xj is randomly selected
from X . Using a grid size of 11 the following table compares the lower bound
based on the optimal values �cp and �socp resulting from solving the SDP and
SOCP relaxation problems with cvx to the approximate optimal solution �g
found using the grid solver. Table 6.2 summarizes the results of using the
grid solver and CVX (setting � = 1). Since n is small we expect the bound
to not be very good, and this expectation is confirmed form the reults in
Table 6.2. However, for small values of m the bound will significantly help
in narrowing the search space for finding the optimal solution.

m
1−
√

2 ln(m)/5

2 �cp
1−
√

2 ln(m)/5

2 �socp �gGrid

3 1.2100 1.2100 6.9436
4 0.8238 0.8238 5.7219
5 0.7549 0.7549 6.1027
6 0.5184 0.5184 5.3748
7 0.5189 0.5189 5.8145
8 0.3272 0.3272 5.4333
9 0.2482 0.2482 5.7362
10 0.1341 0.1341 5.9963
11 0.0868 0.0868 4.9257
12 0.0119 0.0119 5.0090

Table 6.2: Numerical Results for Large n = 5.

What we are more interested in is cases where n and m are large, so that
applying the grid program becomes impossible. In particular, we examine a
few cases where n is “large” (n > 5) and m < exp

(
n
2

)
(setting � = 1), which

guarantees that the SDP and SOCP based algorithms will yield a non-trivial
lower bound.

Example 6.13. Let X = [−1, 1]n, wi = 1 for i = 1, . . . ,m, and x1, . . . , xm

are a set of randomly generated points in X . The following table gives the
lower bound to the original problem 2.1 based on the approximate solutions
�cp and �socp resulting from using cvx to solve the relaxation problems (2.14)
and (2.24):

From this example it is once again apparent that the optimal solution
to the simpler SOCP relaxation problem is identical to the optimal value of
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n m
1−
√

2 ln(m)/n

2 �cp
1−
√

2 ln(m)/n

2 �socp
6 20 0.0025 0.0025
7 33 0.0027 0.0027
8 54 0.0061 0.0061
9 90 0.0001 0.0001
10 148 0.0016 0.0016
11 244 0.0016 0.0016
12 403 0.0006 0.0006
13 665 0.0001 0.0001

Table 6.3: Numerical Results for Large n and m.

the SDP relaxation. Since the original problem is NP-hard, and the values
of n and m are large enough that applying the grid solution is not feasible,
we do not have a way to compare these results to the actual solution of the
problem. However, since all of the bounds given are strictly greater than
zero, Table 6.3 at least confirms that the lower bound for (2.1) resulting
from the SDP and SOCP relaxation problems is a non-trivial bound.
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Chapter 7

Conclusions and Future
Work

7.1 Results

The purpose of this thesis has been to develop SDP and SOCP convex
relaxations for tackling the weighted maximin dispersion problem, which is
NP-hard.

We began by describing the general weighted maximin dispersion prob-
lem in Section 2.1, and defining the convex relaxation problems in Section
2.2. Next, in Section 3.2, we used theoretical results from nonsmooth anal-
ysis to derive a necessary condition for the optimal solutions of the equally
weighted maximin problem. Provided that the set X is convex, we showed
that x̄ ∈ int(X ) is a possible solution of

max
x∈X

min
i=1,...,m

w
∥∥x− xi∥∥2

(7.1)

only if x̄ ∈ conv
{
xi ∣i ∈ I(x̄)} .

Chapter 4 was dedicated to the theory of NP-completeness. While it is
well known that the general weighted maximin distance problem is NP-hard,
we have provided a proof to show that even in the case of equally weighting
and X is a box, the problem is NP-hard. That is, the problem given by

f(x) = max
x∈[−1,1]n

min
i=1,...,m

w
∥∥x− xi∥∥2

(7.2)

is NP-hard. Also in this Chapter, we investigated an heuristic approach
based on partitioning the space X into Voronoi cells and considering sub-
problems based on restricting x to be in one of m Voronoi cells. Again, we
showed that even in the case of equal weighting and X = ℝn, the restricted
subproblems are NP-hard.

Finally, in Chapter 5, we used the convex relaxations problems given in
Section 2.2 to develop an algorithm to construct an approximate solution
to the general weighted maximin dispersion problem. Pulling results from
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7.2. Future Work

statistics, convex analysis and matrix algebra, we showed that there exists
a feasible solution x̃ to the original problem

max
x∈X

min
i=1,...,m

wi
∥∥x− xi∥∥2

(7.3)

such that

f(x̃) ≥ 1−
√
�
∗

2
�cp (7.4)

where 1/�cp is the optimal value of the SDP relaxation problem (2.14), and


∗ =
maxj=1,...,n Z

∗
jj∑n

j=1 Z
∗
jj

, � = 2 ln

(
m

�

)
. (7.5)

Chapter 6 began by focusing on two specific examples - the case that
X is a box, and the case that X is a ball. We showed that in either case,
there exists an optimal solution to problem (2.10) with Z∗jj = Z∗n+1,n+1

for j = 1, . . . , n and 
∗ = 1/n. Finally, Chapter 6 finished with a few
numerical examples to apply the SDP relaxation based algorithm developed
in Chapter 5. Matlab code was provided for implementing the algorithm
developed in Chapter 5, as well as Matlab code that was developed for
finding approximate solutions over a grid.

7.2 Future Work

Possible directions for further investigation into the weighted maximin
dispersion problem and the approximation bounds derived in this paper are:

1. Can we extend Lemma 6.1, or Lemma 6.4 to other X of the form (2.6)?
Or more generally, when X is invariant under permutation.

2. Is (2.1) NP-hard for other choices of X besides the box (e.g., X is the
Euclidean ball)?

3. Can the above results be extended to locate multiple points in X ?
And maxsum dispersion problems?

4. Can we improve the approximation bound by using the rank reduction
scheme of Goemans-Williamson [14] (also see [28]) or its variant pro-
posed by Bertsimas and Ye [5]? In particular, instead of generating �
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7.2. Future Work

uniformly on {−1, 1}n, generate � ∼ N(0, Z∗), the real-valued normal
distribution, and set

�j =

{
1 if �j > 0;
−1 else,

j = 1, . . . , n.

Note that this requires Z∗ ર 0. Analyzing this will likely require new
large deviation estimates.

5. Create specialized algorithms to solve the SOCP relaxation more effi-
ciently when n and m are large (and large number of points to locate).

6. Find the lower bound for the performance of the SOCP relaxation.

7. One always has �cp ≥ �p. Under what conditions do the convex re-
laxation problems (2.14) or (2.24) yield the exact solution. That is,
under what conditions will we have �cp = �p?

8. Do some comparisons of our SDP and SOCP relaxations to existing
relaxation methods, such as [16, 30, 33].

9. In the thesis, we are considering the Maximin problem only for m
points in ℝn. What happen if we consider the Maximin problem for
m convex sets in ℝn?
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Appendix A

Matlab Code

The following matlab code was used to produce 3-dimensional pictures of
the minimum distance function. Note that this function calls the MinNorm

function, the code for which is also given.

% Plot the minimum distance function over [-1,1]ˆ2

% define the range over which to calculate the minimum distances

x1=(-1:0.01:1)’;

x2=(-1:0.01:1)’;

xmat=[kron(x1,ones(length(x2),1)) kron(ones(length(x1),1),x2)];

[x y]=meshgrid(x1,x2);

% create two sets (S and T) of 10 points

% in the 2-D unit square

% S is a "nice" set of points

S=[[-1,1];[1,-1];[1,1];[-1,-1];[0,0]];

% T is a random set of points

t=randi([-10,10],[10,2]);

T=t/10;

% get the function values for S and T

fminS=MinNorm(xmat,S);

fminT=MinNorm(xmat,T);

zS=reshape(fminS,length(x1),length(x2));

zT=reshape(fminT,length(x1),length(x2));

figure(1)

surf(x,y,zS,’edgecolor’, ’none’)

print(’-f1’, ’MinDistExS.eps’,’-depsc2’)
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figure(2)

surf(x,y,zT,’edgecolor’, ’none’)

print(’-f2’, ’MinDistExT.eps’,’-depsc2’)

The following code was written to estimate the optimal solution to (2.1)
when X = [−1, 1]n and wi = 1 for all i. Using a grid of size q + 1, we find
the point in x∗ ∈ X that is furthest away from the given set of points S,
using the maximin distance criteria.

function [Mx, P]=MaximinGrid(q,S)

%This function takes a set of points S and finds the

% furthest point in [-1,1]ˆ{n} based on the maximin distance

% criteria, using a q+1 grid

% S is an m by n array, where n is the number of dimensions

% and m is the number of points (each ROW is a point)

[m n]=size(S);

% create the q+1 grid on [-1,1]ˆn:

x=((q+1)*ones([n,1]));

% a vector of length n with entries q+1

X=fullfact(x);

% a grid of size (q+1)ˆ{2} by n

% scale the grid to be in [-1,1]

[r c]=size(X);

Y=-1+2*((X-1)/q);

d=999*ones([r,1]);

% a vector that stores the mindist from each point

% on the grid to the closest point in S

for ii=1:r

% for each point on the grid

k=0;

% condition for the while loop

while k==0

% enter loop

for jj=1:m
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% for each point in S

D = sum( (Y(ii,:)-S(jj,:)).ˆ2);

% calculate the distance

if D==0

% if the grid point is in S

d(ii)=D;

% so it won’t have the max value of 1!

k=1;

% skip this point by exiting the while loop

break;

elseif D < d(ii)

% if the new distance is smaller but not equal 0

d(ii) = D;

% store the new mindist

end

end

k=1;

end

end

Mx=max(d);

% get the maximin distance

ind=(d==Mx);

P=Y(ind,:);

Mx=max(d);

end
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Matlab Output

In this section we provide the Matlab output from Example 6.10.
Solve Example 6.10 using the MaximinGrid function with different grid

sizes q1 = 4, q2 = 8 and q3 = 10:

% Find the approximate optimal point for Numerics Example 1

% Do a couple of trials with different grid sizes

% Define the given set of points S

x1 = [1,0,0,0,0];

x2 = [0,0,1,0,0];

x3 = [0,0,0,0,1];

S = [x1; x2; x3];

% Choose the different mesh sizes for the grid

q1=4;

q2=8;

q3=10;

% Find the optimal points using the different grids

[d1 p1]=MaximinGrid(q1,S);

d1 = 8

p1 =

-1 -1 -1 -1 -1

-1 1 -1 -1 -1

-1 -1 -1 1 -1

-1 1 -1 1 -1

[d2 p2]=MaximinGrid(q3,S);

d2 = 8

[d3 p3]=MaximinGrid(q3,S);

d3 = 8
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Output from solving the SDP relaxation for Example 6.10:

Calling sedumi: 29 variables, 8 equality constraints

------------------------------------------------------------

SeDuMi 1.21 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500

eqs m = 8, order n = 15, dim = 45, blocks = 2

nnz(A) = 39 + 0, nnz(ADA) = 64, nnz(L) = 36

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 4.82E+000 0.000

1 : -9.09E-002 1.99E+000 0.000 0.4133 0.9000 0.9000 2.47 1 1 2.7E+000

2 : 1.32E-001 8.58E-001 0.000 0.4308 0.9000 0.9000 4.31 1 1 4.4E-001

3 : 1.26E-001 2.41E-001 0.000 0.2805 0.9000 0.9000 1.57 1 1 1.0E-001

4 : 1.25E-001 1.18E-002 0.000 0.0489 0.9900 0.9900 1.22 1 1 4.8E-003

5 : 1.25E-001 3.71E-005 0.000 0.0032 0.9990 0.9990 1.01 1 1 1.5E-005

6 : 1.25E-001 7.28E-006 0.000 0.1960 0.9000 0.8959 1.00 1 1 2.9E-006

7 : 1.25E-001 5.39E-007 0.423 0.0741 0.9900 0.9438 1.00 1 1 2.2E-007

8 : 1.25E-001 6.57E-009 0.000 0.0122 0.9902 0.9900 1.00 1 1 3.3E-009

iter seconds digits c*x b*y

8 0.8 8.1 1.2500000099e-001 1.2499999993e-001

|Ax-b| = 2.7e-009, [Ay-c]_+ = 3.7E-010, |x|= 5.3e-001, |y|= 3.5e-001

Detailed timing (sec)

Pre IPM Post

4.836E-001 7.800E-001 1.560E-001

Max-norms: ||b||=1, ||c|| = 1,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 316.544.

------------------------------------------------------------

Status: Solved

Optimal value (cvx_optval): +0.125

Z =

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.0000 0.1250 -0.0000 -0.0000 -0.0000 0.0000

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.0000 -0.0000 -0.0000 0.1250 -0.0000 0.0000

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.1250 0.0000 -0.1250 0.0000 -0.1250 0.1250
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Output from solving the SOCP relaxation for Example 6.10:

Calling sedumi: 23 variables, 12 equality constraints

------------------------------------------------------------

SeDuMi 1.21 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500

eqs m = 12, order n = 19, dim = 29, blocks = 6

nnz(A) = 47 + 0, nnz(ADA) = 144, nnz(L) = 78

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 3.80E+000 0.000

1 : -1.05E-001 1.62E+000 0.000 0.4249 0.9000 0.9000 2.47 1 1 2.8E+000

2 : 1.35E-001 6.38E-001 0.000 0.3950 0.9000 0.9000 4.86 1 1 3.3E-001

3 : 1.24E-001 5.51E-002 0.000 0.0863 0.9900 0.9900 1.45 1 1 2.4E-002

4 : 1.25E-001 5.14E-004 0.358 0.0093 0.9945 0.9945 1.07 1 1 2.3E-004

5 : 1.25E-001 1.23E-005 0.000 0.0240 0.9900 0.9900 1.00 1 1 5.9E-006

6 : 1.25E-001 6.14E-007 0.082 0.0498 0.9900 0.9356 1.00 1 1 3.1E-007

7 : 1.25E-001 1.11E-008 0.000 0.0182 0.9905 0.9900 1.00 1 1 8.7E-009

iter seconds digits c*x b*y

7 0.1 7.5 1.2500000462e-001 1.2500000087e-001

|Ax-b| = 3.6e-009, [Ay-c]_+ = 2.7E-009, |x|= 5.0e-001, |y|= 3.5e-001

Detailed timing (sec)

Pre IPM Post

6.240E-002 6.240E-002 3.120E-002

Max-norms: ||b||=1, ||c|| = 1,

Cholesky |add|=1, |skip| = 0, ||L.L|| = 108.52.

------------------------------------------------------------

Status: Solved

Optimal value (cvx_optval): +0.125

Z =

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.0000 0.1250 -0.0000 -0.0000 -0.0000 0.0000

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.0000 -0.0000 -0.0000 0.1250 -0.0000 0.0000

0.1250 -0.0000 0.1250 -0.0000 0.1250 -0.1250

-0.1250 0.0000 -0.1250 0.0000 -0.1250 0.1250
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