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Abstra
tThe growth of 
omputer power and storage 
apa
ity allowed engineers to ta
kleengineering design as an optimization problem. For transport air
raft, drag mini-mization is 
riti
al to in
rease range and redu
e operating 
osts. Lift and geometri

onstraints are added to the optimization problem to meet payload and rigidity 
on-straints of the air
raft. Higher order methods in CFD simulations have proved tobe a valuable tool and are expe
ted to repla
e 
urrent se
ond order CFD methodsin the near future; therefore, exploring the use of higher order CFD methods inaerodynami
 optimization is of great resear
h interest and is one goal of this thesis.Gradient-based optimization te
hniques are well known for fast 
onvergen
e, butthey are only lo
al minimizers; therefore their results depend on the starting pointin the design spa
e. The gradient-independent optimization te
hniques 
an �ndthe global minimum of an obje
tive fun
tion but require vast 
omputational e�ort;therefore, for global optimization with reasonable 
omputational 
ost, a hybrid op-timization strategy is needed.A new least-squares based geometry parametrization is used to des
ribe airfoilshapes and a semi-torsional spring analogy mesh morphing tool updates the grideverywhere when the airfoil geometry 
hanges during shape optimization.For the gradient based optimization s
heme, both se
ond and fourth order sim-ulations have been used to 
ompute the obje
tive fun
tion; the adjoint approa
h,well known for its low 
omputational 
ost, has been used for gradient 
omputa-tion and mat
hes well with �nite di�eren
e gradient. The gradient based optimizerhave been tested for subsoni
 and transoni
 inverse design problems and for dragminimization without and with lift 
onstraint to validate the developed optimizer.The optimization s
heme used is Sequential Quadrati
 Programming (SQP) with theBFGS approximation of the Hessian matrix. A mesh re�nement study is presentedfor an aerodynami
ally 
onstrained drag minimization problem to show how se
ondii



and fourth order optimal results behave with mesh re�nement.A hybrid parti
le swarm / BFGS s
heme has been developed for use as a globaloptimizer. It has been tested on a drag minimization problem with a lift 
onstraint;the hybrid s
heme obtained a sho
k free pro�les, while gradient-based optimization
ould not in general.
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ṽ Roe avaraged y-velo
ity
~F (QR) , ~F (QL) Right and left fa
e �uxes
CD Drag 
oe�
ient
CL Lift 
oe�
ient
CM Moment 
oe�
ient
Cp, Cv Spe
i�
 heats at 
onstant pressure and volume
Di Desigen variable i
et Spe
i�
 total energy
Kib Sti�ness matrix intries relates interior nodes with boundary pointsxvii



Kii Sti�ness matrix intries relates interior points
PRec Flow property re
onstru
tion polynomial
Ps Surfa
e pressure
Q Conservative �ow variables ve
tor
QR, QL 
onserved �ow properties at right and left of the 
ell fa
e
Ubg Boundary Gauss point �ow premitive properties
Ufi Re
onstru
ted primitive �ow properties at fa
e Gaussian integration point i
Ui, Ub Interior and boundary mesh point displa
ements respe
tively
Un Velo
ity in the dire
tion normal to the 
ontrol volume boundary
ws Gaussian integration weight
yc Geometry 
ontrol point variable y ordinate (design veriable)a Speed of soundE Energy per unit volumee Spe
i�
 internal energyF Aerodynami
 obje
tive fun
tionGMRES Generalized minimal residualh Spe
i�
 enthalpyM Ma
h numberP PressureR ResidualRMS Root mean squareT Temperature xviii



A
knowledgmentsI would like to express my deepest gratitude to my supervisor Dr Carl Ollivier-Goo
h. You are su
h a great resear
h supervisor and gentleman. I would like also toa
knowledge my supervision 
ommittee, Dr Mi
hael Friedlander, Dr Philip Loewen,and Dr James Olson for their valuable remarks that helped me to justify my resear
hstrategy.I would like also to thank my fellows in the resear
h and development departmentof the Egyptian Air For
e espe
ially Col. Dr Eng. Mohamed Ibrahim Mustafa andMajor General Dr Abdalla El-Ramsisy for their great support during my resear
h inEgypt whi
h has had a great impa
t on my PhD resear
h progress.Great thanks goes also to my dear professor Dr Chen Grief for being there whenI needed his advi
e.Finally, I would like to thank my wife and the light of my life, Deena, for hersupport and bringing happiness to my life. Mohammad Baher Azab

xix



Dedi
ationTo my home 
ountry, the land of PharaohsEgyptTo the land of ho
keyCanadaTo the souls of my parentsBaher and Laila

xx



Chapter 1INTRODUCTIONDrag redu
tion of transport air
raft is of great importan
e be
ause it redu
es air
raftfuel 
onsumption and thereby redu
es operating 
osts and environmental impa
t inthe form of pollution and global warming. Drag, lift and other aerodynami
 for
es
an be predi
ted using CFD simulations, whi
h have be
ome an essential tool foraerodynami
 analysis and design. CFD simulations 
arried out using unstru
turedgrids give a

urate aerodynami
 for
e predi
tions, and unstru
tured grids have theadvantage of easily representing any 
omplex shape. As most transport air
rafttravel at transoni
 speed, it is of great importan
e to redu
e the wave drag byweakening or entirely eliminating sho
k waves on the wing. Aerospa
e engineers useCFD simulations with numeri
al optimization te
hniques for aerodynami
 design;the optimization problem is to minimize an aerodynami
 obje
tive (often drag) by
hanging geometri
 design variables, given an initial aerodynami
 shape and subje
tto some geometri
 and aerodynami
 
onstraints. This pro
ess requires a

urateassessment of the aerodynami
 
hara
teristi
s of a given geometry. The �ow modelused in this resear
h is Euler's �ow model; although this model negle
ts vis
ous �owe�e
ts, redu
ing the drag using this invis
id �ow model will ultimately redu
e thedrag on real 
on�gurations as the invis
id drag is about 40% of the total drag [47℄.A higher order �nite volume CFD solver developed by C. Ollivier-Goo
h and 
o-workers [68, 61, 56℄ is used in this resear
h.Optimization s
hemes 
an be divided into two main 
ategories: gradient-basedand non-gradient-based s
hemes. Gradient-based s
hemes require 
omputing the ob-je
tive fun
tion value and its gradient with respe
t to the design variables, while thenon-gradient-based te
hniques require only 
omputing the obje
tive fun
tion value.Gradient-based s
hemes are fast to 
onverge to a lo
al optimal point in the designspa
e 
ompared to the non-gradient-based methods, but the optimal solution foundby gradient-based optimization depends on the starting point [33℄. Non-gradient-1



based s
hemes 
an �nd global minimum solution regardless of the starting point,but with larger 
omputational 
ost 
ompared to gradient-based s
heme.
1.1 Finite Volume Flow SolverThe two dimensional integral form of Euler's equation 
an be written for a 
ontrolvolume Ωi as

∂

∂t

¨

Ωi

QdV +

˛

dΩi

−→
F · n̂dl = 0 (1.1)where n̂ = nxi + nyj is the outward pointing normal to the 
ontrol volume fa
es;

Q and −→
F are respe
tively the 
onserved variable ve
tor and the �ux a
ross theboundary of 
ontrol volume Ωi boundaries. These 
an be expressed as

Q =




ρ

ρu

ρv

E



,
−→
F · n̂ =




ρUn

ρUnu+ nxp

ρUnv + nyp

(E + p)Un




p = (γ − 1)

[
E − ρ

(
u2 + v2

)

2

]

Un = nxu+ nyvwhere is the �uid density, u and v are the Cartesian velo
ity 
omponents, p is thepressure, and E is the energy per unit volume. Un is the velo
ity in the dire
tionnormal to the 
ontrol volume boundary. Other thermodynami
 relations like thespe
i�
 heats at 
onstant pressure (Cp) and 
onstant volume (Cv), the ratio of spe
i�
heats γ 
an be expressed in terms of the gas 
onstant for air, R:
γ =

Cp

Cν
, Cp =

γR

γ − 1
, Cν =

R

γ − 12



For a thermally and 
alori
ally perfe
t gas, thermodynami
 properties 
an be relatedby
P = ρRT

e = CvT

et = e+
1

2

(
u2 + v2

)

E = ρet

h = e+
P

ρ

a =
√

γRTwhere T is the temperature, e is the spe
i�
 internal energy, et is the spe
i�
 totalenergy, h is the spe
i�
 enthalpy, and a is the speed of sound.For dis
rete solution of the Euler equations, �ow properties are normalized bysome referen
e values in order to redu
e the round-o� errors in the dis
retized linearsystem; for external aerodynami
s, the normalized �ow properties are as follows
ρ̄ =

ρ

ρ∞
, ā =

a

a∞
, P̄ =

P

ρ∞a2∞

ū =
u

a∞
, v̄ =

v

a∞
, Ē =

P̄

γ − 1
+

1

2
ρ̄
(
ū2 + v̄2

)

x̄ =
x

L
, ȳ =

y

L
, t̄ =

ta∞
LWith this normalization, the normalized Euler equations are identi
al to their di-mensional form with the addition of [̄·] to every variable. From this point on, thenormalized �ow properties are used and therefore [̄·] will be dropped.The �ux is evaluated using Roe �ux di�eren
e splitting te
hnique [74℄ and eval-uated at ea
h 
ell fa
e κ using the following formula

~F =
1

2

[
~F (QR) + ~F (QL)−

∣∣∣Ã
∣∣∣ (QR −QL)

]
κ

(1.2)where QR, QL are the 
onserved �ow properties at right and left of the 
ell fa
e κ andthe Roe averaged matrix Ã is the �ux Ja
obian ∂ ~F/∂Q at Roe-averaged quantities3



as follows
ρ̃ =

√
ρLρR

ũ =
uL + uR

√
ρR
ρL

1 +
√

ρR
ρL

, ṽ =
vL + vR

√
ρR
ρL

1 +
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ρR
ρL
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hL + hR
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ρR
ρL

1 +
√

ρR
ρL

, ã2 = (γ − 1)

(
h̃−

(
ũ2 + ṽ2

)

2

) (1.3)The Roe-averaged Ja
obian matrix Ã has four eigenvalues. Three of these are dis-tin
t, but the eigensystem is 
omplete. The Roe dissipation matrix 
an be writtenin terms the eigenvalues and eigenve
tors of the Ja
obian as
∣∣∣Ã
∣∣∣ = X̃




∣∣∣Ũn

∣∣∣ 0 0 0

0
∣∣∣Ũn

∣∣∣ 0 0

0 0
∣∣∣Ũn + ã

∣∣∣ 0

0 0 0
∣∣∣Ũn − ã

∣∣∣



X̃−1 (1.4)

where X̃ is the eigenve
tor matrix evaluated using Roe-averaged �ow quantities; theterm ∣∣∣Ã
∣∣∣ (QR −QL) 
an be written a

ording to Frink as follows [27, 26℄

∣∣∣Ã
∣∣∣ (QR −QL) =

∣∣∣Ã
∣∣∣△Q
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∣∣∣ (1.5)
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where
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ũ

ṽ
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△ρ = ρR − ρL, △u = uR − uL, △v = vR − vL,

△P = PR − PL, △U = nx△u+ ny△vHigher-order a

ura
y is obtained by least-squares re
onstru
tion of the non-
onservedvariables U =
[
ρ u v p

]T and Gauss quadrature in �ux integration [68, 61℄.After integrating �uxes around ea
h 
ontrol volume in the mesh, an impli
it timedis
retization leads to a sparse system of linear equations, whi
h for the simplest
ase of a global time step 
an be written as,
[

I

△t
+

∂R

∂Q

]n
△Qn = Rn (1.6)where △Q =

[
△ρ △ρu △ρv △E

]T , ∂R
∂Q

is the global Ja
obian matrix, and Ris the residual. The steady state solution is obtained iteratively when △Q → 0. Inpra
ti
e, we use a quasi-Newton generalization of Eq. 1.6 that in
ludes residual-basedlo
al time stepping [57℄ and solve the system using GMRES [75℄.1.2 Numeri
al Aerodynami
 OptimizationAerodynami
 design used to rely on CFD simulations in 
onjun
tion with experimen-tal testing and engineering intuition of the designer. With the growth of high speed
omputers, integrating numeri
al optimization s
hemes with CFD simulations has5



be
ome possible and is now used for aerodynami
 design and optimization. Gradient-based optimization te
hniques are widely used be
ause they rea
h an optimized shapeafter a reasonable exe
ution time; however, the �nal optimal shape is the lo
al min-imum lo
ated downhill from the optimization starting point. Non-gradient-basedmethods like geneti
 algorithm (GA) or parti
le swarm (PS) are slower to �nd anoptimum but 
an �nd the global minimum regardless of the starting point; theirdrawba
k is the large number of iterations required to rea
h this minimum 
om-pared to gradient-based s
hemes.1.2.1 Gradient-based aerodynami
 optimizationGradient-based optimization depends on evaluating the gradient of the obje
tivefun
tion with respe
t to the design variables and using the gradient in a linearmodel (steepest des
ent) or a quadrati
 model (Newton or quasi-Newton model)to �nd a sear
h dire
tion; this sear
h dire
tion is the dire
tion in whi
h the de-sign variables should 
hange their values to minimize the obje
tive fun
tion [66℄.Gradient-based te
hniques have been widely used in aerodynami
 optimization duetheir fast 
onvergen
e to an optimal solution. The obtained optimal shape is bi-ased by the optimization starting point (initial aerodynami
 shape), and there isno guarantee that gradient-based methods 
an �nd the global best optimal shapein the design spa
e [2℄. Hi
ks and Henne where among the �rst to apply gradient-based optimization te
hniques in aerodynami
 design in the late 1970's [35℄. Sin
ethen many resear
hers have investigated the use of gradient-based optimization te
h-niques like steepest des
ent and quadrati
 programming in aerodynami
 optimiza-tion [17, 31, 28℄. The most expensive part of gradient-based optimization is thegradient 
al
ulation. Hi
ks and Henne used �nite di�eren
e rules to 
al
ulate theobje
tive fun
tion gradient. This means that two CFD simulations were required forea
h design variable to 
ompute the gradient (using a 
entral �nite di�eren
e rule),whi
h is 
omputationally expensive. The same strategy was applied by Consentinoand Holst to optimize transoni
 wings [17℄. The use of the adjoint method, whi
hwas originally applied to aerodynami
s problems by Jameson, to 
ompute the gra-dient redu
ed the 
omputational 
ost of gradient 
al
ulation to the 
ost of one �owsimulation regardless of the number of design variables [41, 43, 60, 38, 39, 42, 11, 62℄.6



Figure 1.1: Airfoil aerodynami
 optimization 
y
le using gradient-based optimizationNumerous resear
hers have applied gradient-based optimization using the ad-joint approa
h in aerodynami
 optimization sin
e the early 1990's. Reuther and his
o-workers applied the adjoint approa
h for aerodynami
 optimization of air
raft
on�guration using Euler's �ow model [73℄. Jameson developed an adjoint formula-tion for the Navier-Stokes equations and applied it to transoni
 wing optimization[43℄; in this work, Jameson suggested that an optimal pressure distribution �rst beobtained using Euler's �ow model then used as a target pressure for an inverse designoptimization problem using a Navier-Stokes adjoint optimizer to redu
e the overall
omputational 
ost. However, Jameson treated the eddy vis
osity as 
onstant whi
hwas later shown to be a bad assumption. Anderson and Bonhaus examined the e�e
tof the strength of 
oupling of the turbulen
e model to the �ow equations. They 
om-pared the adjoint gradient of the �ow equations, with the eddy vis
osity frozen, withthe �nite di�eren
e gradient of the 
ombined �ow and turbulen
e equations, andfound that freezing the eddy vis
osity 
an lead to signi�
ant error in the 
omputedgradient. Therefore, they developed a �ow solver that 
ouples the Spalart-Allmarasone-equation turbulen
e model with the �ow equations; their 
oupled solver used
5× 5 blo
ks for two dimensional �ows and 6× 6 blo
ks for three dimensional 
ases.They found that this 
oupling of the turbulen
e equations with the �ow equations led7



to an a

urate adjoint gradient [3℄. The same observation was veri�ed by Nielsen andKleb who extended their adjoint solver to deal with 
hemi
ally rea
ting �ows [65℄.Zymaris et al developed a 
ontinuous adjoint optimizer for turbulent �ow using the
k − ε turbulen
e model and applied it to du
t optimization; they showed also thatthe assumption of 
onstant eddy vis
osity leads to great ina

ura
y in the 
omputedgradient and this leads to a poor sear
h dire
tion [88℄.Regarding the optimization te
hnique used, early resear
hers used the steepestdes
ent s
heme, in whi
h the design variables are updated on a sear
h dire
tionexa
tly opposite to the gradient of the obje
tive fun
tion [66, 4℄. This s
heme hasbeen implemented by Jameson and other resear
hers [37, 41, 73, 3℄, but as thesteepest des
ent s
heme requires a large number of iterations to 
onverge to minimalpoint, the sequential quadrati
 programming (SQP) s
heme seems to be an attra
tive
andidate as an optimization te
hnique. The use of SQP requires 
omputing theHessian of the obje
tive fun
tion with respe
t to the design variables. The exa
tHessian is expensive to 
ompute and may not be positive de�nite; therefore, theBroyden�Flet
her�Goldfarb�Shanno (BFGS) approximate formula is often adoptedto approximate the Hessian using obje
tive fun
tion gradient history [12, 13, 87℄. TheBFGS approximation always gives a positive de�nite approximate Hessian, thereforea real optimization sear
h dire
tion is guaranteed. Dadone et. al used BFGS inaerodynami
 optimization for transoni
 and supersoni
 wings and 
ompared BFGSand steepest des
ent; there results showed that the BFGS method is more e�
ientin �nding the optimal solution and is less sensitive to any ina

ura
y 
aused byapproximation in gradient 
omputations [19℄. BFGS optimization has also been usedby Neme
 and Zingg in subsoni
 and transoni
 turbulent aerodynami
 optimizationof two dimensional airfoil [63℄.1.2.2 Gradient free optimizationGradient free or gradient independent optimization methods, also known as heuris-ti
 optimization methods, are optimization te
hniques that do not require obje
tivefun
tion gradient 
omputation and therefore 
an be applied to non-di�erentiableproblems. They 
an be 
ategorized as evolutionary s
hemes (in
luding geneti
 algo-rithms) and random sear
h s
hemes (like the parti
le swarm te
hnique).8



Geneti
 algorithm optimization is an evolutionary optimization algorithm thatis inspired by Darwin's theory of evolution and natural sele
tion [30℄. The designvariables are treated as 
hromosomes and optimization is 
arried out by 
rossing andmutating these 
hromosome to �nd a better solution that minimizes the obje
tivefun
tion. The initial population is randomly generated, the obje
tive fun
tion valueis 
omputed using CFD for ea
h population member and a �tness value is 
omputedbased on that; some members are sele
ted based on their �tness to be the parents ofthe next generation and are used to generate the 
hromosomes of the o�spring of thenext optimization iteration. Transoni
 wing optimization using a geneti
 algorithmwas explored by Gregg and Misegades [32℄ and by Gage and Kroo [29℄ in the late1980's to minimize drag with lift 
onstraint. Somewhat later, Anderson applieda geneti
 algorithm in subsoni
 wing optimization with stru
tural 
onstraints [1℄;he added the geometri
 and aerodynami
 
onstraints to the obje
tive fun
tion aspenalty terms. Jang and Lee applied a geneti
 algorithm in subsoni
 and transoni
invis
id airfoil optimization; their obje
tive was to maximize the lift-to-drag ratioof an airfoil, beginning from the NACA 00121 [44℄. Oyama et al applied a geneti
algorithm with a Navier-Stokes solver for transoni
 wing optimization [70℄. Theyalso explored the use of fra
tal analysis in GA aerodynami
 optimization [71℄.The parti
le swarm method (PSOpt) is a sto
hasti
 optimization sear
h methoddeveloped by Eberhart and Kennedy in 1995, inspired by the so
ial behavior of bird�o
ks [46, 21℄. The general idea of the parti
le swarm optimization is to randomlygenerate a swarm of parti
les in the design spa
e. For ea
h parti
le a �tness valueis 
al
ulated based on CFD simulation. Then parti
les ��y� in the design spa
ea

ording to a simple formula that takes into a

ount that parti
le's own best �t-ness position and the swarm's overall best �tness position [22℄. PSOpt is known tosu�er from premature 
onvergen
e prior to dis
overing the true global minimizer;Evers suggests an automati
 regrouping PSO (RegPSO) that automati
ally triggersswarm regrouping when premature 
onvergen
e is dete
ted. The suggested regroup-ing strategy aims to liberate parti
les from sub-optimal solutions and enables �ndingthe global minimum [24℄. Although the PSO algorithm has been applied to a wide1The National Advisory Committee for Aeronauti
s (NACA) airfoil family geometri
 
oordinates
an be found at University of Illinois Urbana-Champaign website http://www.ae.illinois.edu/m-selig/ads/
oord_database.html. An explanation of the meaning of the digits in the NACA airfoilnaming s
heme 
an be found in [36℄. 9



range of engineering problems in the literature, very few aerodynami
 optimizationappli
ations are known. Venter and Sobiesz
zanski applied the parti
le swarm op-timization te
hnique in the multidis
iplinary optimization of a wing; the obje
tivewas to maximize the air
raft range by maximizing lift-to-drag ratio and redu
ingthe wing weight subje
t to geometri
 
onstraints [85℄. Chandrashekarappa and Du-vigneau [15℄ used parti
le swarm optimization s
heme to aerodynami
ally optimizewings in supersoni
 
onditions; Duvigneau also applied parti
le swarm optimizationto aerodynami
 optimization of wings at transoni
 speed with free stream Ma
hnumber un
ertainty [20℄.1.3 Contributions of the ThesisHigh order CFD methods 
an 
ompute an a

urate value of an aerodynami
 obje
tivefun
tion at lower 
omputational 
ost than required when a se
ond order method isused. The �rst major 
ontribution of this thesis is a study of whether the e�
ien
y ofhigh order methods for CFD analysis translates into improved e�
ien
y for gradient-based aerodynami
 optimization.Gradient based optimization te
hniques are known to be lo
al minimizers, withresults depending on the starting airfoil geometry. The se
ond major 
ontributionof this thesis is the development and study of an optimization s
heme that 
anrea
h a true global optimum (for invis
id transoni
 aerodynami
s, a sho
k free airfoilsubje
t to aerodynami
 and geometri
 
onstraints) after a reasonable number of CFDsimulations. This s
heme is a hybrid (BFGS + regrouped parti
le swarm) s
hemethat takes the advantages of gradient-based and gradient-free optimization s
hemes.To a
hieve these goals, the following 
omponents were needed, in addition to thepre-existing high-order a

urate �ow solver:An e�
ient geometry parametrization method. For optimization purposes, theairfoil shape must be represented by a �nite number of design variables. Chap-ter 2 des
ribes the requirements on su
h a parametrization and presents a newleast-squares spline parametrization method developed for this work.Robust mesh movement. As the airfoil shape 
hanges during optimization, the
omputational mesh must be updated. Be
ause mesh regeneration will intro-10



du
e una

eptably large 
hanges in the dis
retization error, mesh movement isstrongly preferred. Chapter 3 des
ribes the semi-torsional spring mesh move-ment s
heme used in this thesis.Mesh sensitivity 
al
ulation. Cal
ulating the gradient of the obje
tive fun
tiona

urately and e�
iently requires information about the movement of the meshwith 
hanges in design variables. Se
tion 3.3 des
ribes this pro
ess, whi
h 
om-bines aspe
ts of the geometri
 parametrization and mesh movement s
hemes.Obje
tive fun
tion gradient 
al
ulation. E�
ient gradient 
al
ulation requiresthe solution of the adjoint to the governing �ow equations. Chapter 4 des
ribeshow this is done. A key innovation of the thesis is e�
ient solution of thedis
rete adjoint problem for a high-order a

urate �ow solution s
heme. Inaddition to showing the formulation of the gradient 
al
ulation, this 
hapter
ompares �nite di�eren
e and adjoint gradients for subsoni
 and transoni
 �owsfor se
ond and fourth order �nite volume s
hemes. For transoni
 �ow, resultsare presented both with and without limiting of the 
omputational solution toprevent overshoots.Optimization drivers. The gradient-based optimizer using in this thesis is theBFGS-based quasi-Newton solver in Matlab's optimization toolbox. Gradientbased optimization test 
ases for inverse design problems and for drag mini-mization with and without a lift 
onstraint is shown in Chapter 6. Also, theimpa
t of mesh re�nement on the se
ond and fourth order optimal results isstudied.The regrouped parti
le swarm optimization 
ode was written by the author.This s
heme and its hybridization with the BFGS s
heme is presented in Chap-ter 7. Examples are given to show the e�e
tiveness of the hybrid s
heme in�nding global optima when the gradient-based s
heme is unable to.
11



Chapter 2GEOMETRYPARAMETRIZATIONThe geometry of engineered obje
ts is de�ned mathemati
ally in 
omputer-aideddesign (CAD) software, then exported as a group of points or polygons whi
h ap-proximates the original geometry. This dis
rete data provides input to mesh gener-ation software that 
reates a dis
rete representation of the 
omputational domain (amesh), whi
h in turn is used as input for CFD analysis. Aerodynami
 design andoptimization modi�es the aerodynami
 shape by 
hanging a set of geometri
 designvariables. An obvious 
hoi
e is to use all the surfa
e grid points of a wing, but thisapproa
h 
auses two problems. First, it makes the design spa
e very large and thismay lead to a highly expensive optimization. Se
ond, it may lead to a non-smoothgeometry due to the displa
ement independen
e of a surfa
e mesh point; this prob-lem 
an be solved by the use of a smoothing fun
tion, as des
ribed by Jameson [41℄.To avoid these problems, most optimization approa
hes rely on some form of geo-metri
 parametrization. Geometri
 parametrization te
hniques 
an be 
lassi�ed asanalyti
al; pie
e-wise spline �tting; CAD based; and free form deformation (FFD)approa
hes. In Se
tion 2.1, a review of various geometry parametrization te
hniquesis presented. Se
tion 2.2 des
ribes in detail the geometry parametrization te
hniqueused in this resear
h, a novel pie
e-wise least-squares �tting te
hnique [5, 6℄.2.1 Survey of Geometri
 Parametrization Te
hniquesIn this review, various te
hniques applied to aerodynami
 optimization are presented;the basi
s of these te
hniques and their appli
ation limitations are dis
ussed, in
lud-ing referen
e to the original papers des
ribing them in more detail .12



2.1.1 Analyti
al parametrizationThe analyti
al approa
h was �rst applied by Hi
ks and Henne for airfoil optimiza-tion [35℄. They suggest that weighted sinusoidal displa
ement shape fun
tions beadded to the base geometry to modify the airfoil shape; the weights are the opti-mization design variables. The sinusoidal displa
ement shape fun
tion is expressedas
h(x) =

(
sin

(
πx

ln(0.5)
ln(b)

))a

0 < x < 1 (2.1)where a and b are 
onstants to 
ontrol the peak lo
ation and the width of thesinusoidal displa
ement shape fun
tion. a = 4 is re
ommended for most 
ases, while
b must be between 0 and 1 [45℄.The Class-Shape fun
tion-Transformation method (CST) is another analyti
algeometry parametrization te
hnique presented by Kulfan [49, 48℄. CST parametrizesthe airfoil geometry using the following formula

y = x0.5(1− x)S (x) + x△ZTE (2.2)where S (x) is the shape fun
tion and △ZTE is the �nite thi
kness of the trailingedge. Kulfan and Bussoletti re
ommended using a weighted Bernstein binomial oforder n as a shape fun
tion
S (x) =

n∑

i=0

bi
n!

i! (n− i)!
xi (1− x)n−i (2.3)where the weights bi are used as the design variables. Although CST gives non-wavypro�les, it is not 
apable of representing 
omplex geometries. Mousavi and Nadiragah
ompared the impa
t of using di�erent geometry parametrization te
hniques on theoptimal wing shape; using CST parametrization gave drag 
oe�
ients higher byabout 15% than the optimal geometry from a B-spline parametrization [58℄ for athree-dimensional lift-
onstrained transoni
 drag minimization problem.13



2.1.2 Pie
e-wise spline parametrizationBezier 
urves 
an be used for airfoil shape parametrization. Obayashi used Bezier
urve for aerodynami
 optimization using geneti
 algorithm [67℄; he noti
ed thatthe Bezier 
urve representation fails to represent geometries that gives rooftop pres-sure distributions2 be
ause Bezier 
urves are always 
onvex. B-splines, a general-ization of Bezier 
urves, were found to be more suitable. A 
ubi
 B-spline rep-resentation is a very good geometry parametrization te
hnique. Better 
ontrol ofthe 
ubi
 spline representation 
an be obtained by in
reasing the number of splinesthat represent the airfoil; Li et al. optimized the NACA 0012 at single point andmulti-point operating 
onditions with a lift 
onstraint using spline representation asgeometry parametrization te
hnique [50℄. CAD systems typi
ally use non-uniformrational B-spline (NURBS) representation for geometry modeling, allowing them torepresent any 
omplex geometry; a detailed dis
ussion of NURBS 
an be foundin The NURBS Book [72℄. Mengistu and Ghaly applied su

essfully a NURBSparametrization s
heme to turboma
hine blade aerodynami
 optimization using agradient-free method [53℄. While pie
e-wise spline parametrization is well-suited fortwo-dimensional shapes and simple three-dimensional geometries, 
omplex shapesrequire a large number of 
ontrol points, redu
ing the e�e
tiveness of gradient-basedoptimization te
hniques [76℄.2.1.3 CAD parametrizationComputer aided design pa
kages have evolved to implement NURBS for geometryrepresentation due the ex
ellent properties of NURBS. Linking the CAD and gridgeneration software 
an be done using an API that allows a

ess to the CAD system'sinternal interfa
e [81, 8℄. However, imposing geometri
 
onstraints is still an obsta-
le. Mesh sensitivity 
al
ulation is another obsta
le for gradient-based optimizationte
hniques based of CAD parametrization: analyti
al mesh sensitivity with respe
tto geometry design variables � the NURBS knots � 
an in prin
iple be 
omputedwith the use of automati
 di�erentiation of the CAD software but this is not possiblewithout CAD sour
e 
ode and is unlikely to be pra
ti
al even then, given the size of2Distributions for whi
h pressure remains almost un
hanged over a signi�
ant 
hordwise dis-tan
e. 14



the CAD 
ode base. This derivative 
an also be 
omputed using �nite di�eren
es,but the risk of poor a

ura
y still exists, and 
omputational 
osts are higher [76, 77℄.2.1.4 Free form deformation (FFD)Computer graphi
s requires large graphi
al deformations su
h as stret
hing, twistingand other surfa
e morphing operations; soft obje
t animation (SOA) algorithms weredeveloped to help with the geometry morphing required in graphi
s animation [86℄.In SOA algorithms, the obje
t surfa
e is treated as a pie
e of rubber and the desireddeformation 
an be obtained by applying loads on it, so geometry morphing 
an beobtained without a 
hange in surfa
e topology. The surfa
e itself 
an be parametrizedusing Bezier or B-splines or even NURBS splines. A related approa
h, the free formdeformation algorithm (FFD) treats the geometry as a void in a box-shaped pie
e ofrubber. Deformation 
an be 
ontrolled by moving 
ontrol points pla
ed on the outersurfa
e of the box; the interior of the rubber box with its void is parametrized usinga tensor produ
t of three spline representations (one in ea
h 
oordinate dire
tion).Sederberg and Parry developed an algorithm that uses the FFD 
on
ept with Beziertri-variate volume representation [78℄. A disadvantage of the FFD method is that itrequires large numbers of 
ontrol points to obtain lo
al deformation in the deformedgeometry. However, Borrel and Rappoport presented a method to allow lo
al shapedeformation via FFD by introdu
ing a set of 
ontrol points with 
onstrained lo
alB-splines that 
an be used to obtain deformation in a radius of in�uen
e determinedby the designer [10℄.2.1.5 Multidis
iplinary aerodynami
/stru
tural shapeoptimization using deformations (MASSOUD)The MASSOUDmethod is an analogy to analyti
al methods that tries to parametrizethe deformations in the geometry rather than the geometry itself. It also uti-lizes SOA algorithms and allows strong lo
al deformation 
ontrol. The MASSOUDparametrization requires few design variables be
ause it parametrizes the deforma-tion. Samareh has applied the MASSOUD method to parametrize a simple wing, awing body blend, and a 
omplex air
raft 
on�guration with su

ess [76℄. Nielsen andAnderson su

essfully adopted the MASSOUD parametrization s
heme for aerody-15



nami
 optimization of turbulent �ow using unstru
tured grids [64℄.2.2 New Least Squares Parametrization Te
hniqueA new least-squares based surfa
e parametrization method is presented in this se
-tion; the airfoil surfa
e is parametrized using pie
e-wise polynomials whose 
oe�-
ients are found by solving a least squares problem [6℄. This se
tion also des
ribeshow to implement a thi
kness 
onstraint with the new parametrization and presentssome validation test 
ases.2.2.1 Airfoil geometry parametrizationIn the proposed te
hnique, the geometry is parametrized using pie
e-wise polyno-mials found by a least-squares �t. The parametrization polynomials are 
ontrolledby a set of 
ontrol points and satisfy C2 
ontinuity at their meeting points. Theairfoil upper and lower surfa
es are represented using two least square splines forea
h surfa
e as shown in Fig. 2.1. The polynomials3 used are
P1(x) = a0

√
x+ a1x+ a2x

2 + a3x
3 0 < x < L1

P2(x) = b0 + b1x+ b2x
2 + b3x

3 L1 < x < L (2.4)where x is the normalized 
hord-wise position, L1 is 
hord-wise position that sep-arates the polynomial regions, and L = 1. These polynomials are suitable for anairfoil with a rounded leading edge due to the existen
e of the √
x term in P1 (x),whi
h gives an in�nite slope at x = 0. The x and y 
oordinates of the design 
ontrolpoints shown in Fig. 2.1 are used to �nd the values of the polynomial 
oe�
ients.These polynomials must satisfy 
ontinuity of value, slope, and 
urvature at theirmeeting point x = L1. These 
onditions 
an be written as� Value 
ontinuity:

P1(L1)− P2(L1) = 0 (2.5)3Te
hni
ally, P1 is not a polynomial be
ause of the presen
e of the √x term used to give in�niteslope and �nite radius of 
urvature at x = 0. However, the label is 
onvenient and not overly
onfusing. 16



� Slope 
ontinuity:
P

′

1(L1)− P
′

2(L1) = 0 (2.6)� Curvature 
ontinuity:
P

′′

1 (L1)− P
′′

2 (L1) = 0 (2.7)An additional 
onstraint should be added on P2(L) to assure zero thi
kness at thetrailing edge. The above �hard� 
onstraints should be stri
tly satis�ed by the geom-etry parametrization polynomials; they 
an be written in matrix form as
BP = 0where

B =




√
L1 L1 L2

1 L3
1 −1 −L1 −L2

1 −L3
1

1
2
√
L1

1 2L1 3L2
1 0 −1 −2L1 −3L2

1

−1

4
√

L3
1

0 2 6L1 0 0 −2 −6L1

0 0 0 0 1 L L2 L3



, P =





a0

a1

a2

a3

b0

b1

b2

b3



The free parameters are 
hosen to best approximate the y 
oordinates of the airfoilshape 
ontrol points; the x 
oordinates of the 
ontrol points are �xed. The resultingleast square system with 
onstraints applied 
an be expressed as

min ‖AP − c‖2 subje
t to BP = 0 (2.8)where A 
ontains powers of the x 
oordinates at the design points so that AP givesthe y 
oordinates of the parametrized shape at the design points and c 
ontain thea
tual y 
oordinates of the design points. I have used a set of 
ontrol points that
ontrols the airfoil shape fun
tions instead of using the 
oe�
ients of the shapefun
tions to ease 
onstraints and boundary de�nitions. To give an example of howthis least-squares system is 
onstru
ted, 
onsider the parametrized airfoil surfa
e17



Figure 2.1: Least square surfa
e presentation of RAE 2822 airfoil using two polyno-mials P1 (x) & P2 (x) �tted using nine 
ontrol points.shown in Fig. 2.1. Six 
ontrol points lies in the region of the polynomial P1 (x),while three points lies in the P2 (x) region. The 
orresponding least-squares systemis 


√
x1 x1 x21 x31 0 0 0 0

√
x2 x2 x22 x32 0 0 0 0

√
x3 x3 x23 x33 0 0 0 0

√
x4 x4 x24 x34 0 0 0 0

√
x5 x5 x25 x35 0 0 0 0

√
x6 x6 x26 x36 0 0 0 0

0 0 0 0 1 x7 x27 x37
0 0 0 0 1 x8 x28 x38
0 0 0 0 1 x9 x29 x39








a0

a1

a2

a3

b0

b1

b2

b3





=





y1

y2

y3

y4

y5

y6

y7

y8

y9





(2.9)
Be
ause the 
onstraint equation, Eq. 2.8, has a zero right hand side, the solutionve
tor P must lie in the null spa
e of the 
onstraint equations, i.e. it should be alinear 
ombination of the null spa
e basis of the 
onstraint equations. The matrix Bis full row rank and to �nd the null spa
e basis of it, QR fa
torization 
an be used:

BT = QR18



Q =
[ −→q1 −→q2 −→q3 −→q4 | −→q5 −→q6 −→q7 −→q8

]
=
[
Q1 | Q2

]The ve
tors of the [Q2] matrix are unit ve
tors forming a basis of the null spa
e ofmatrix B. The solution ve
tor P must be a linear 
ombination of the ve
tors of thematrix Q2

P = z1 · −→q5 + z2 · −→q6 + z3 · −→q7 + z4 · −→q8 = Q2z (2.10)Substituting Eq. 2.10 into Eq. 2.8
AP = AQ2z = c (2.11)Solving the least-squares system by singular value de
omposition for numeri
al sta-bility,
z = [AQ2]

† c (2.12)where the re
tangular matrix [AQ2]
† is the pseudo-inverse of [AQ2]. Finally,

P = Q2 [AQ2]
† c (2.13)Equation 2.13 gives the relationship between the polynomial 
oe�
ients P and the

y lo
ations of the 
ontrol points c.
The sensitivity of the polynomial 
oe�
ients with respe
t to the y lo
ation ofthe ith 
ontrol point, whi
h is needed to 
al
ulate the mesh sensitivity ∂M/∂D, isthe ith 
olumn of the matrix Q2 [AQ2]

†.The dependen
y of an airfoil surfa
e point
−→rb =

[
xa

ya

]on a design variable Di 
an be found from
∂−→rb
∂Di

=

[
0

∂a0
∂Di

√
xa +

∂a1
∂Di

xa +
∂a2
∂Di

x2a +
∂a3
∂Di

x3a

]
0 < xa < L1 (2.14)

∂−→rb
∂Di

=

[
0

∂b0
∂Di

+ ∂b1
∂Di

xa +
∂b2
∂Di

x2a +
∂b3
∂Di

x3a

]
L1 < xa < L19



where [ ∂a0
∂Di

∂a1
∂Di

∂a2
∂Di

∂a3
∂Di

∂b0
∂Di

∂b1
∂Di

∂b2
∂Di

∂b3
∂Di

]T is the ith ve
tor of the 
on-strained pseudo inverse matrix Q2 [AQ2]
†. This pro
edure 
an be extended toparametrize airfoil surfa
e using any number of pie
e-wise polynomials, with an a
-
ompanying in
rease in system size. Leading edge radius and trailing edge thi
kness
onstraints 
an be added to the C2 
ontinuity requirements forming the 
onstraintsystem BP = d, and the 
ontrol point 
oordinates are used to 
onstru
t the system

AP = {yc}.In pra
ti
e, all airfoil surfa
e points are used in the least squares system to �ndthe polynomials 
oe�
ients. After �nding the polynomials 
oe�
ients, the designer
an sele
t a set of 
ontrol points whi
h lies on the parametrized surfa
e; the leastnumber of 
ontrol points is two per polynomial. The less 
ontrol points used, theless 
ontrol of airfoil geometry. I have sele
ted nine 
ontrol points at spe
i�
 
hord-wise x-stations based on my engineering sense; it turns out that my sele
ted set of
ontrol points were able to produ
e sho
k free optimal pro�les as will be shown inthe next 
hapters, however, sele
tion of the 
ontrol points x-stations 
an be madeby formulating a simple minimization problem. In this problem, a set of airfoilgeometri
 data gathered and the obje
tive is to minimize the RMS error betweenthe original airfoil surfa
es and the parametrized airfoil surfa
es, where the designvariables are the 
ontrol points x-stations.2.2.2 Thi
kness 
onstraintSome air
raft fuel tanks are pla
ed inside the wing, and the main landing gear ofsome air
raft are stored in the wings after being retra
ted. In addition, the wing musthave su�
ient bending rigidity from a stru
tural point of view; therefore, the wingthi
kness is a 
onstraint at some 
hord-wise stations. This subse
tion demonstrateshow to add a thi
kness 
onstraint to the parametrization.Suppose the airfoil is parametrized using four polynomials, as shown in Fig. 2.2:two for the upper surfa
e
P1(x) = a0

√
x+ a1x+ a2x

2 + a3x
3 0 < x < L1

P2(x) = b0 + b1x+ b2x
2 + b3x

3 L1 < x < L20



Figure 2.2: Parametrized airfoil using four polynomials
and two for the lower surfa
e

P3(x) = c0
√
x+ c1x+ c2x

2 + c3x
3 0 < x < L1

P4(x) = d0 + d1x+ d2x
2 + d3x

3 L1 < x < L

If the thi
kness tc need to be 
onstrained at a station xc where 0 < xc ≤ L1 ,this 
onstraint will be
Ct : P1(xc)− P3(xc) = tc (2.15)

Ct :
(
a0
√
xc + a1xc + a2x

2
c + a3x

3
c

)
−
(
c0
√
xc + c1xc + c2x

2
c + c3x

3
c

)
= tcEquation 2.15 provides a link between the upper and lower surfa
e polynomials;therefore, a 
oupled least-squares system needs to be 
onstru
ted and solved; the21



�hard� 
onstraint equations are expressed as



B 0

0 B

P1(xc) {0}1×4 −P3(xc) {0}1×4








a0

a1...
d2

d3





=





0

0...
0

tc





(2.16)
[Ba] {Pa} = {da} (2.17)The global least-squares system is

[
A 0

0 A

]
{Pa} =

{
cu

cl

} (2.18)
[Aa] {Pa} = {ca}The above hard 
onstraint equations do not have a null right hand side due tothe thi
kness 
onstraint; therefore, the solution (polynomials 
oe�
ients) does notbelong to the null spa
e of Ba. The solution pro
edure for the 
onstrained least-squares problem expressed by Eq. (2.16,2.18) is des
ribed by Masuda et al [52℄:� Apply QR fa
torization to get BT

a = QR.� Let Q =
[
Q1 Q2

]
, R =

[
R1

0

] where Q1
ontains the �rst 7 
olumns of
Q and Q2 
ontains the rest of the 
olumns, and R1is the �rst 7× 7 sub matrixof R.� The hard 
onstraints 
an now be written as BPa ≡ RTQTPa = da� Let QTPa =

[
y

z

]
. Then Pa = Q

[
y

z

]
= Q1y +Q2z

∴ RTQTPa =

[
RT

1

0

]
·
[
Q1 Q2

]T
Pa = da 7−→ RT

1 y + 0 = da

∴ y = R−T
1 da (2.19)22



� Be
ause R is upper triangular, Equation 2.19 
an be solved using forwardsubstitution.� The soft 
onstraints in equation 2.18 
an be rewritten as
AaPa = Aa

[
Q1y Q2z

]
= ca (2.20)

∴ AaQ2z = ca −AaQ1y (2.21)
∴ z = [AaQ2]

† [ca −AaQ1y] (2.22)� Finally, the polynomial 
oe�
ients 
an be found as Pa = Q1y +Q2z:
Pa =

[
Q1 −Q2 [AaQ2]

†AaQ1

]
R−T

1 da +Q2 [AaQ2]
† ca (2.23)Using the last equation we noti
e that the sensitivity of the polynomial 
oe�-
ients with respe
t to the ith 
ontrol point y lo
ation, yci, is the ith ve
tor ofthe matrix [Q2] [AQ2]

†.2.2.3 Validation 
asesIn this subse
tion, testing of the proposed least-squares surfa
e parametrization is
arried out; parametrization of various types of airfoils is done to show that theproposed geometry parametrization s
heme has the required �exibility to representvarious types of airfoils. These airfoils in
lude NACA 4-, 5-, and 6-digit series,laminar �ow, supersoni
, and super-
riti
al airfoil se
tions.4 Figures 2.3�2.10 showthe least-squares �tting polynomials for various airfoils, while Table 2.1 shows theRMS error in the parametrized geometry for upper and lower surfa
es.The last parametrized airfoil, the laminar LV25 airfoil of German Aerospa
eCenter, was parametrized using 10 polynomials, 5 for ea
h of its surfa
es. Althoughthe RMS error is small (order of 10−5
hord for all parametrization method), as shownin Table 2.1, Fig. 2.11 shows that the di�eren
e of the surfa
e pressure distribution,espe
ially at the peak velo
ity at the leading edge upper surfa
e, is still signi�
ant.There are many x-stations at whi
h LV2 airfoil 
hanges its 
urvature, and also a4Readers interested in parti
ulars for the NACA airfoils are referred to Abbott and von Doen-ho�'s textbook [36℄. The seminal referen
e for the RAE airfoil is Cook et al [18℄.5LV2 geometry obtained by personal 
onta
t with German Aerospa
e Center (DLR) resear
hers.23



Figure 2.3: Parametrized NACA 0011SC, 'O' are the original airfoil ordinates

Figure 2.4: Parametrized NACA 0012, 'O' are the original airfoil ordinates24



Figure 2.5: Parametrized NACA 6509, 'O' are the original airfoil ordinates

Figure 2.6: Parametrized NACA 16006, 'O' are the original airfoil ordinates25



Figure 2.7: Parametrized NACA 63412, 'O' are the original airfoil ordinates

Figure 2.8: Parametrized NACA 644421, 'O' are the original airfoil ordinates26



Figure 2.9: Parametrized RAE2822, 'O' are the original airfoil ordinateslong interval of almost in�nite 
urvature value whi
h makes it hard for the geometryparametrization s
heme to a

urately present it and this 
auses the �u
tuation inpressure resulted in the parametrized airfoil be
ause of la
k of a

urate presentationof 
urvature �u
tuations. Better mat
hing 
an be obtained but this will in
rease thenumber of geometry design variables signi�
antly. This 
ase illustrates 
learly thetrade o� between a

urately representing the geometry (whi
h will 
hange duringoptimization iteration) and 
hoosing a reasonable number of design variables; this
hoi
e must be left for the designer. If the 
hange in pressure distribution be
omesuna

eptable, or if the pressure distribution requires large number of airfoil 
ontrolpoints (design variables) to be a

urately represented, parametrization the geometryperturbation is the more attra
tive option.The values of RMS error in Table 2.1 are small 
ompared to the maximum airfoilthi
kness value: only the NACA 0011SC has an RMS error of more than 0.2% ofmaximum thi
kness. However, if the RMS error was large, in
reasing the number ofsurfa
e parametrization polynomials would redu
e the error.27



Figure 2.10: Parametrized LV2 laminar airfoil, parametrized using 5 polynomialsper surfa
e, 'O' are the original airfoil ordinates

Figure 2.11: LV2 airfoil parametrized using di�erent methods with 20 design vari-ables, presented with permission of Brezillon.28



Airfoil Upper surfa
e error Lower surfa
e error Maximum Thi
knessNACA 0011SC 6.37 · 10−4 6.37 · 10−4 11 · 10−2NACA 0012 2.35 · 10−4 2.35 · 10−4 12 · 10−2NACA 6409 9.28 · 10−5 1.24 · 10−4 9 · 10−2NACA 16-006 1.31 · 10−6 2.03 · 10−5 6 · 10−2NACA 63-412 1.17 · 10−5 5.63 · 10−5 12 · 10−2NACA 64-421 1.70 · 10−4 7.50 · 10−5 21 · 10−2RAE 2822 1.20 · 10−5 3.20 · 10−5 slightly > 12 · 10−2LV2 1.45 · 10−5 3.22 · 10−5 slightly > 12 · 10−2Table 2.1: RMS error in di�erent parametrized airfoil geometries
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Chapter 3MESH MORPHING AND MESHSENSITIVITY3.1 Mesh MorphingThe modi�
ation of the aerodynami
 shape during optimization requires a 
hangeof the mesh that presents the shape. This 
an be done by grid regeneration aroundthe new geometry but this is time 
onsuming and will 
hange the dis
retizationerror [51℄. Another strategy is to adapt the old mesh to �t the new shape of theairfoil using mesh movement.The tension spring analogy is one of the most widely used mesh deformationstrategies for aerodynami
 optimization. The main idea is to repla
e the grid edgesby springs with sti�ness inversely proportional to their length. The boundary pointsthat lie on the airfoil surfa
e are moved with displa
ement spe
i�ed by the optimizer,far �eld points are kept �xed, and the interior point displa
ements are determined byequilibrium of the spring network [7℄. For large grid displa
ements, the linear springanalogy is not robust, and negative area 
ells 
an present after mesh morphing.Farhat et. al. improved the tension spring analogy by adding torsional springsat the grid nodes to prevent element �ipping [25℄. Ea
h edge fa
es two angles asshown in Fig. 3.1; the edge sti�ness is modi�ed to in
lude terms with the re
ipro
alof the sine of these angles. This allows the edge sti�ness to grow to in�nity if theangle tends to be zero and therefore prevent element �ipping.Another strategy is to modify the mesh by solving a linear elasti
ity problem inwhi
h the boundary displa
ements are known [14℄; the element modulus of elasti
ity
an be the re
ipro
al of the distan
e from the wall, or it 
an be the re
ipro
al ofthe element size [82℄. The later strategy was applied by Stein et al. and the resultsshowed that this method is robust, espe
ially for vis
ous 
al
ulations. In this 
ase,30



Figure 3.1: S
hemati
 drawing of an edge pq and its fa
ing angles a and b.the elements of the boundary layer experien
ed small geometri
al 
hange while theelements away from the airfoil experien
ed larger 
hanges [80℄. However, the linearelasti
ity mesh movement s
heme is 
omputationally expensive 
ompared to thespring analogy method. The semi-torsional spring analogy method is adopted inthis resear
h due to its simpli
ity and robustness.Consider the edge pq shown in Fig 3.1. The relationship between the for
es andthe node displa
ements when treating this edge as a spring follows Hooke's Law as



Fpx

Fpy

Fqx

Fqy



=

1

lpq

(
1 +

1

sin (θa)
+

1

sin (θb)

)



−1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 −1








upx

upy

uqx

uqy





(3.1)where lpq is the length of edge pq, and θa and θb are the angles fa
ing the edge. Afterthe assembly of the global sti�ness matrix, the system of equations that relates gridpoint displa
ement with nodal for
es 
an be written as
[

Kii Kib

Kbi Kbb

]{
Ui

Ub

}
=

{
0

Fb

} (3.2)31



where Ui and Ub are the interior and boundary mesh point displa
ements respe
tively.We do not need to know the values of boundary nodal for
es Fb be
ause the boundarypoints displa
ement ve
tor Ub is known expli
itly: it is the deformation required inthe airfoil pro�le to minimize the obje
tive fun
tion. Therefore, Eq 3.2 
an be writtenas [
Kii Kib

0 I

]{
Ui

Ub

}
=

{
0

Ub

} (3.3)Substituting Uk
i =

−−→
rk+1
i −

−→
rki , Ub =

−→rb −−→rboin Eq 3.3 we get
[

Kii Kib

0 I

]k{ −−→
rk+1
i
−→rb

}
=

[
Kii Kib

0 I

]k{ −→
rki
−→rbo

}
+

{
0

Ub

} (3.4)where −→rbo is the initial position ve
tor of the boundary points before mesh morphing.The sti�ness matri
es [Kii] and [Kib] depend on the mesh fa
e lengths, whi
h 
hangeduring the mesh morphing stage; therefore, Eq. 3.4 is a non-linear equation and needsto be solved iteratively.3.2 Testing Mesh MorphingFarhat et al [25℄ demonstrated the robustness of the semi-torsional mesh movements
heme. In this se
tion, testing results are presented to demonstrate that the 
ur-rent implementation of this s
heme shows the same good behavior for several high-deformation 
ases. The �rst test 
ase is an unstru
tured triangular mesh around aNACA 0012. The thi
kness of the airfoil is doubled, whi
h means that the airfoilsurfa
e points will translate by several 
omputational 
ells in the y-dire
tion. Fig-ure 3.2 shows that even with this large displa
ement (multiple 
ells) of the boundary,no 
ells are inverted and no edges interse
ted with another. Displa
ement de
reaseswith the distan
e from the airfoil surfa
e, and there is almost no movement on thesymmetry line.The se
ond 
ase tests mesh movement when the outer boundary is 
hanging.The original mesh is an unstru
tured triangular mesh (shown in Fig 3.3a). Theouter boundaries are 
hanged, redu
ing the total area by almost 50% and turningthe original right-angled 
orners nearly into 
usps. Figure 3.3b shows that the semi-32



Figure 3.2: Mesh movement s
heme results of doubling the thi
kness of NACA 0012torsional mesh movement was 
apable of adapting the mesh in the entire �eld withoutelement �ipping.3.3 Mesh SensitivityFor gradient-based optimization, as shown in the next 
hapter, the gradient 
ompu-tation requires 
al
ulation of the dependen
y of the residual on the design variables
∂R/∂D, whi
h in turn depends on the evaluation of mesh sensitivity. The meshsensitivity tells how mesh points translate in the (x, y) plane with the perturbationof the geometri
 parametrization 
ontrol points (design variables). This translation,obviously, depends on the mesh movement s
heme. Truong et. al. 
ompared al-gebrai
 mesh movement to linear elasti
ity mesh movement s
hemes to study theimpa
t of the adopted mesh movement s
heme on the �nal optimized shape. Therewas a noti
eable di�eren
e between the �nal optimal airfoil shapes for a subsoni

ase, although the di�eren
e in the optimal obje
tive fun
tion value was of order ofdis
retization error. For a transoni
 test 
ase, the di�eren
e in the optimal shapeswas almost negligible [83℄.The mesh sensitivity with respe
t to one of the design variables ∂M/∂Di (that is,33



(a) Initial mesh (b) Final meshFigure 3.3: Mesh movement results, large outer boundary deformation of a re
tan-gular domainthe 
hange in mesh point lo
ations with a 
hange of a design variable) is 
al
ulatedby di�erentiating Eq. 3.3:
[

Kii Kib

0 I

]{
∂Ui

∂Di
∂Ub

∂Di

}
=

{
0
∂−→rb
∂Di

}

∴

{
∂M

∂Di

}
=

{
∂Ui

∂Di
∂Ub

∂Di

}
=

[
Kii Kib

0 I

]−1{
0
∂−→rb
∂Di

} (3.5)where ∂−→rb/∂Di is obtained using Eq. 2.14 and is related to the design variables viathe pseudo inverse of the 
onstrained least-squares system solved in parametrizingthe geometry.
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Chapter 4GRADIENT CALCULATIONUSING ADJOINT APPROACHGradient 
al
ulation plays a key role in gradient-based optimization. The traditional�nite di�eren
e strategy is 
omputationally expensive as it requires at least as manyCFD simulations as the number of design variables to 
ompute the gradient; ea
h ofthese is the solution to a large non-linear system of equations. The forward strategyto 
ompute the gradient is less expensive as it requires the 
al
ulation of the �owsensitivity with respe
t to the design variables, and uses the 
omputed �ow sensitivityto 
ompute the gradient; the forward strategy requires solving a number of linearsystems equal to the number of design variables to �nd the �ow property sensitivitywith respe
t to all the design variables. The adjoint strategy is 
omputationally
heaper; it requires the solution of one linear system whose right hand side is thedependen
y of the aerodynami
 obje
tive fun
tion on the �ow �eld properties. Dueto its numeri
al e�
ien
y and the 
orresponding redu
tion in 
omputational e�ort,the adjoint strategy is adopted in this resear
h.4.1 Forward and Adjoint FormulationsThe obje
tive fun
tion, F , for aerodynami
 optimization is a fun
tion of the designvariables, D, and the �ow �eld solution at the surfa
e points of the boundary 
ontrolvolumes Us

F = F (Us,D) (4.1)
Us is expressed most 
onveniently in primitive variables: U =

(
ρ u v P

)T .Consider, for instan
e, the lift and drag for
es of a two dimensional airfoil, whi
hare perpendi
ular and parallel, respe
tively, to the in
oming �ow, whi
h is in
lined35



at an angle α to the airfoil 
hord. These 
an be evaluated as follows:
FL = −

{
˛

Psnx ds

}
sinα+

{
˛

Psny ds

}
cosα

FD =

{
˛

Psnx ds

}
cosα+

{
˛

Psny ds

}
sinαor in dis
rete form,

FL = −
∑

wsPsnx sinα+
∑

wsPsny cosα (4.2)
FD =

∑
wsPsnx cosα+

∑
wsPsny sinα (4.3)where Ps is the pressure at surfa
e integration point pressure, nx and ny are the unitnormal 
omponents at the surfa
e integration point, α is the angle of atta
k, and wsis the ar
 length asso
iated with the surfa
e integration point. Note that this formuses the dimensional pressure and 
oordinates gives the dimensional lift and dragfor
es. The lift and drag 
oe�
ients, whi
h are the non-dimensional equivalents, areidenti
al in form but use non-dimensional pressure and 
oordinates.These dis
rete integrals expressed as a fun
tion of geometri
 and �ow propertiesof the 
ontrol volume su
h as the length of ea
h fa
e and the unit normal at ea
hGauss point. The geometri
 properties depend on the design variables through themesh sensitivity, while the �ow properties at the Gauss points depend on the �owproperties of the 
ontrol volume itself and its neighbors, whi
h in turns depend onthe mesh and the boundary shape whi
h ultimately depends on the geometri
 designvariables. The gradient of the obje
tive fun
tion 
an be obtained by using the 
hainrule

dF

dD
=

∂F

∂Ubg

∂Ubg

∂U

∂U

∂M

∂M

∂D
+

∂F

∂M

∂M

∂D
(4.4)where Ubg is the boundary Gauss point �ow properties, U is the 
ontrol volumeaveraged solution written in primitive variables, and M is the mesh point lo
ations.

∂M/∂D is the mesh dependen
y on the design variables whi
h 
omputations arepresented in details in Chapter 3. The residual of the �ow governing equations 
anbe written as a fun
tion of the �ow �eld solution U and mesh geometri
 designvariables D. If we apply the 
onstraint that the �ow solution is 
onverged regardless36



of variations in the design variables, we 
an write
dR

dD
=

∂R

∂M

∂M

∂D
+

∂R

∂U

∂U

∂M

∂M

∂D
= 0 (4.5)Solving this for the solution sensitivity ∂U

∂D
≡ ∂U

∂M
∂M
∂D

, we get
∂U

∂M

∂M

∂D
= −

[
∂R

∂U

]−1

· ∂R

∂M

∂M

∂D
= −

[
∂R

∂Q

∂Q

∂U

]−1

·
{

∂R

∂M

∂M

∂D

} (4.6)where the last equality expands the residual Ja
obian with respe
t to the primitive�ow variables into the produ
t of the residual Ja
obian with respe
t to the 
onserved�ow variables (whi
h is used in impli
it �ow solvers) and a 
hange of variables for
onserved to non-
onserved. Note that ∂Q
∂U

is a blo
k diagonal matrix.Substituting Eq.4.6 in Eq. 4.4, we get the forward formulation for gradient
omputation
dF

dD
= − ∂F

∂Ubg

∂Ubg

∂U

[
∂R

∂Q

∂Q

∂U

]−1

·
{

∂R

∂M

∂M

∂D

}
+

∂F

∂M

∂M

∂D
(4.7)This form of the gradient requires solving as many linear systems as there are designvariables in the optimization problem.Taking the transpose of Eq. 4.7,

dF

dD

T

= −
{

∂R

∂M

∂M

∂D

}T

·
[
∂R

∂Q

∂Q

∂U

]−T { ∂F

∂Ubg

∂Ubg

∂U

}T

+

{
∂F

∂M

∂M

∂D

}T (4.8)where the residual sensitivity to mesh movement 
an be written using the 
hain ruleas:
∂R

∂M
=

∂R

∂AΩi

∂AΩi

∂M
+

∑fa
esΩi

{
∂R

∂nx

dnx

dM
+

∂R

∂ny

dny

dM
+ (4.9)

∂R

∂wi

dwi

dM
+

∂R

∂Ufa
e ∂Ufa
e∂M

}We get the adjoint method, presented by A. Jameson [37, 41, 43, 38, 40℄. Nowonly one linear system solve is required. However, this linear system solve requires37



expli
itly forming the global Ja
obian matrix ∂R
∂Q

be
ause its transpose is required.Be
ause the CFD solver used in this thesis 
an form the global Ja
obian matrixexpli
itly (author?) [57℄, the transpose of the Ja
obian 
an easily be formed aswell. The Ja
obian from the last GMRES iteration is re-used, so the 
omputationale�ort of solving the adjoint problem is redu
ed to solving this linear system, a 
oston the order of 1% of the CFD simulation 
omputational e�ort.To ease the programming e�ort when 
hanging the obje
tive fun
tion, we formthree adjoint problems, one ea
h for the lift 
oe�
ient CL, the drag 
oe�
ient CD,and the moment 
oe�
ient CM to �nd ∂CL/∂D, ∂CD/∂D and ∂CM/∂D, respe
-tively. These aerodynami
 
oe�
ient gradients 
an be used to evaluate any obje
tivefun
tion gradient for a fun
tion that depends on aerodynami
 for
es:
dF

dD
= f

(
dCL

dD
,
dCD

dD
,
dCM

dD

)The solution pro
edure of the three adjoint problems 
an be summarized as follows,� Using the steady state �ow solution, we 
onstru
t the CFD simulation Ja
obianmatrix ∂R/∂Q expressed in Eq. 1.6.� We 
onstru
t ∂R/∂U as:
∂R

∂U
=

∂R

∂Q

∂Q

∂Uwhere ∂Q/∂U is the transformation matrix from 
onservative to primitive �owvariables and is blo
k diagonal.� We 
onstru
t ∂F
∂Ubg

∂Ubg

∂U
, where ∂F/∂Ubg is the analyti
 dependen
y of the ob-je
tive fun
tion on the primitive �ow properties at the airfoil surfa
e points,and ∂Ubg/∂U is the dependen
y of surfa
e point primitive �ow properties onthe 
ontrol volume average values of the primitive �ow properties. The latteris known as a side e�e
t of solution re
onstru
tion.� We solve the three linear systems [∂R

∂U

]T
ΨL,D,M =

[
∂CL,D,M

∂Ubg

∂Ubg

∂U

]T to get theadjoint ve
tors ΨL,D,M .� We 
onstru
t the obje
tive fun
tion gradient ve
tor dCL,D,M

dD

T
=
{

∂F
∂M

∂M
∂D

}T −{
∂R
∂M

∂M
∂D

}T
ΨL,D,M , whi
h requires only a ve
tor dot produ
t for ea
h design38



variable.As an example of how to use dCL,D,M

dD
to 
onstru
t the gradient of an aerodynami
fun
tion, 
onsider the following obje
tive fun
tion whi
h represents a typi
al dragminimization fun
tion with a lift 
onstraint applied using a penalty term

F = CD + k1 (CL − CLc)
2 (4.10)The gradient of the above fun
tion 
an be written as

dF

dD
=

dCD

dD
+ 2k1 (CL − CLc)

dCL

dD
(4.11)also

∂F

∂D
=

∂CD

∂D
+ 2k1 (CL − CLc)

∂CL

∂D
(4.12)The dis
rete (invis
id) forms of CL and CD follow from the non-dimensionalizationof Eqs. 4.2 and 4.3, where now the pressure and 
oordinates are non-dimensionalized:

CL = −
(∑

wsPsnx

)
sinα+

(∑
wsPsny

)
cosα (4.13)

CD =
(∑

wsPsnx

)
cosα+

(∑
wsPsny

)
sinαand their partial derivatives with respe
t to the geometry design variables are

∂CL

∂D
= −

(∑ ∂ws

∂D
Psnx

)
sinα+

(∑ ∂ws

∂D
Psny

)
cosα (4.14)

−
(∑

wsPs
∂nx

∂D

)
sinα+

(∑
wsPs

∂ny

∂D

)
cosα

∂CD

∂D
=

(∑ ∂ws

∂D
Psnx

)
cosα+

(∑ ∂ws

∂D
Psny

)
sinα+

(∑
wsPs

∂nx

∂D

)
cosα+

(∑
wsPs

∂ny

∂D

)
sinαUsing Eq. 4.9 to 
al
ulate ∂R/∂M , we need to 
ompute the terms ∂AΩi

/∂M ,
∂nx/∂M , ∂ny/∂M , and ∂wi/∂M , whi
h only depend on mesh points' spatial lo
a-tions, while the terms ∂R/∂nx and ∂R/∂ny are obtained by dire
t di�erentiation ofthe Roe �ux, and �nally (∂R/∂Uface) · (∂Uface/∂M) is obtained by di�erentiating39



Figure 4.1: S
hemati
 drawing of an element fa
e κ, and illustration of its left andright sides
the fa
e property re
onstru
tion s
heme whi
h depends on CFD solver te
hnology.The remainder of this se
tion will fo
us on the derivatives of the residual R, withthe derivatives on the geometri
 terms in the following se
tion.Let us 
onsider the residual 
ontribution of fa
e κ of the 
ontrol volume Ωi shownin Fig. 4.1.The dis
rete form of this edge's residual 
ontribution to the 
ontrol volume Ωi is

Rκ,Ωi
=

1

AΩi

J∑

j=1

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)
wj

} (4.15)where J = 1 when using one Gauss integration point at the middle of fa
eκ fora se
ond order a

urate s
heme. For the fourth order s
heme, we have two Gaussintegration points, i.e. J = 2, on the fa
e κ. wj is the integration weight asso
iatedwith the Gauss point j. 40



To �nd ∂Rκ,Ωi
/∂AΩi

, Eq. 4.15 
an be dire
tly di�erentiated to get
∂Rκ,Ωi

∂AΩi

= − 1

(AΩi
)2

∑

j

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)
wj

}
= − 1

AΩi

Rκ,Ωi(4.16)
The term ∂Rκ,Ωi

/∂nx,y 
an be written as
∂Rκ,Ωi

∂nx,y
=

1

AΩi

∑

j

{
1

2

(
∂ ~FRj

∂nx,y
+

∂ ~FLj

∂nx,y
−

∂ |△F1|j
∂nx,y

−
∂ |△F4|j
∂nx,y

−
∂ |△F5|j
∂nx,y

)
wj

}(4.17)where 
omponent terms 
an be expanded using the de�nition of the Roe �ux to give:
∂ ~FR,Lj

∂nx
=




(ρu)R,L(
ρu2 + p

)
R,L

(ρuv)R,L

({E + p}u)R,L



,

∂ ~FR,Lj

∂ny
=




(ρv)R,L

(ρuv)R,L(
ρv2 + p

)
R,L

({E + p} v)R,L
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and
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uŨn√
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n
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∂ |△F1|j
∂ny

=
vŨn√
Ũ2
n



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)
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
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∣∣∣




ρ̃




0

−nx△u

−△U − ny△v
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∂
∣∣∣△F̃4,5

∣∣∣
∂nx

=

(
Ũn ± ã

)
ũ

√(
Ũn ± ã

)2

(△P ± ρ̃ã△U

2ã2
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1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã
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+
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1

ũ± nxã

ṽ ± nyã
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±ã

0

±ũã
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∂
∣∣∣△F̃4,5
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ṽ
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∣∣∣Ũn ± ã
∣∣∣
(±ρ̃ã△v
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1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã



+

∣∣∣Ũn ± ã
∣∣∣
(△P ± ρ̃ã△U

2ã2

)



0

0

±ã

±ṽã


To �nd ∂Rκ,Ωi

/∂wj , Eq. 4.15 is di�erentiated; we get
∂Rκ,Ωi

∂wj
=

1

(AΩi
)

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)} (4.18)The dependen
y of the fa
e residual 
ontribution Rκ,Ωi
on the re
onstru
ted �owproperties at the fa
e Ufa
e 
an found as the sum of the dependen
y on the rightand left fa
e �ow properties as

∂Rκ,Ωi

∂Ufa
e =
∂Rκ,Ωi

∂UR
+

∂Rκ,Ωi

∂UL
(4.19)

=
1

(AΩi
)

∑ 1

2






∂ ~FRj

∂UR
+

∂ ~FLj

∂UL
−

∂
{
|△F1|j + |△F4|j + |△F5|j

}

∂UR

−
∂
{
|△F1|j + |△F4|j + |△F5|j

}

∂UL


wj



The terms in Eq. 4.19 
an be obtained using symboli
 manipulator like Maple®or Matlab®. Another possible approa
h is to use an automati
 di�erentiation pa
k-age to di�erentiate the C, C++, or FORTRAN fun
tion that 
omputes the fa
e �ux.43



Figure 4.2: General triangular element with unit normal n̂ on one of its fa
es κ.Finite di�eren
es 
an also be easily implemented to evaluate ∂RκΩi
/∂Ufa
e

∂Rκ,Ωi

∂Ufa
e =
Rκ,Ωi

(UR + ǫ)−Rκ,Ωi
(UR − ǫ)

2ǫ
+
Rκ,Ωi

(UL + ǫ)−Rκ,Ωi
(UL − ǫ)

2ǫ
+o (ǫ)2(4.20)where ǫ is 
hosen to be 10−8 in the above 
entral �nite di�eren
e formula so thatthe error will be on the order of ma
hine zero. The ANSLib CFD 
ode 
an use bothapproa
hes; they lead to nearly identi
al answers.4.2 Element and Fa
e Geometri
 PropertiesDependen
y on Mesh CoordinatesElement and fa
e geometri
 properties depend dire
tly on the spatial 
oordinatesof the verti
es. Fig. 4.2 shows a s
hemati
 drawing of a triangular element usedfor 
ell 
entered �nite volume simulations, with its three verti
es and one of itsthree fa
es labeled for later referen
e. In the next subse
tions, the pro
edure forevaluating geometri
 properties like element area, fa
e length, and fa
e normals willbe presented in addition to the mesh 
oordinate dependen
y of these properties.44



4.2.1 Element area mesh dependen
yThe element area of the triangular element shown in Fig 4.2
an be obtained as halfof the 
ross produ
t of the two ve
tors −→r12,−→r13
A = σ

(x2 − x1) (y3 − y1)− (y2 − y1) (x3 − x1)

2
(4.21)The verti
es' spatial lo
ations are related to the airfoil surfa
e points via the meshmovement s
heme, while the airfoil surfa
e points are related to the design vari-ables through the pseudo inverse matrix in the least-squares �t during geometryparametrization. It worth mentioning that any general polygon 
an be split intoseveral triangles and the area of ea
h triangle 
an be 
al
ulated using Eq. 4.21.The element area mesh dependen
y 
an be 
al
ulated by dire
t di�erentiation ofEq. 4.21

dA

dM
=

∂A

∂x1

∂x1
∂M

+
∂A

∂x2

∂x2
∂M

+
∂A

∂x3

∂x3
∂M

(4.22)
+
∂A

∂y1

∂y1
∂M

+
∂A

∂y2

∂y2
∂M

+
∂A

∂y3

∂y3
∂Mwhere

∂A

∂x1
=

σ (y2 − y3)

2

∂A

∂x2
=

σ (y3 − y1)

2

∂A

∂x3
=

σ (y1 − y2)

2

∂A

∂y1
=

σ (x3 − x2)

2

∂A

∂y2
=

σ (x1 − x3)

2

∂A

∂y3
=

σ (x2 − x1)
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σ = sgn ((x2 − x1) (y3 − y1)− (y2 − y1) (x3 − x1))

4.2.2 Fa
e length mesh dependen
yThe length of fa
e κ in Fig. 4.2, whi
h is a general straight fa
e in the mesh, 
an be
al
ulated as
L =

√
(x3(M)− x2(M))2 + (y3(M)− y2(M))2 (4.23)The fa
e length mesh dependen
y 
an be obtained as

dL

dM
=

∂L

∂x2

∂x2
∂M

+
∂L

∂x3

∂x3
∂M

+
∂L

∂y2

∂y2
∂M

+
∂ L

∂y3

∂y3
∂Mwhere

∂L

∂x2
=

−x3 + x2√
(x3 − x2)

2 + (y3 − y2)
2
=

− (x3 − x2)

L

∂L

∂x3
=

x3 − x2√
(x3 − x2)

2 + (y3 − y2)
2
=

(x3 − x2)

L

∂L

∂y2
=

−y3 + y2√
(x3 − x2)

2 + (y3 − y2)
2
=

− (y3 − y2)

L

∂L

∂y3
=

y3 − y2√
(x3 − x2)

2 + (y3 − y2)
2
=

(y3 − y2)

LThe previous relations are for straight fa
es whi
h exist all over the domaininterior, but for higher order s
hemes, the boundary fa
es are 
urved to enablehigher order �ux integration. A boundary element with one 
urved fa
e is shown inFig. 4.3The 
urved fa
e length is obtained using numeri
al integration, therefore to avoiddi�erentiating the numeri
al integration s
heme, ∂L/∂x2,3 and ∂L/∂y2,3 are evalu-46



Figure 4.3: Boundary element with 
urved fa
e for high order integration s
heme
ated using �nite di�eren
es as

∂L

∂x2,3
=

L(x2,3 + ǫ)− L(x2,3 − ǫ)

2ǫ

∂L

∂y2,3
=

L(y2,3 + ǫ)− L(y2,3 − ǫ)

2ǫ
(4.24)For a se
ond order s
heme, only one Gauss integration point exists at the middle ofthe fa
e with wi = L, therefore

dwi

dM
=

dL

dMFor the fourth order s
heme, two Gauss integration points are required for �uxintegration. Figure 4.2.2 shows a s
hemati
 drawing of a 
urved edge with twoGauss points on it. Table 4.1 shows their integration weights and their parametri
lo
ations ki on the fa
e starting from the point x2, y2.47



Figure 4.4: S
hemati
 drawing of a 
urved fa
e with two Gauss points used
Point 1 Point 2

wi L/2 L/2

ki (12 − 1√
12
)L (12 +

1√
12
)LTable 4.1: Two point Gauss quadrature rule
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4.2.3 Fa
e normal mesh dependen
yThe unit normal ve
tor of fa
e κ that points outward from element Ωi (shown inFig. 4.2) 
an be found using the three verti
es of the element as
n̂ =

[
nx

ny

]
=

(~c3 − βr̂23)

‖~c3 − βr̂23‖
(4.25)where

~c3 =

[
2/3x3 − (1/3x1 + 1/3x2)

2/3 y3 − (1/3 y1 + 1/3 y2)

]

r̂23 =




x3−x2√
(|−x3+x2|)2+(|−y3+y2|)2

y3−y2√
(|−x3+x2|)2+(|−y3+y2|)2




β =
(x3 − x2) (2/3x3 − (1/3x1 + 1/3x2))√

(|−x3 + x2|)2 + (|−y3 + y2|)2

+
(y3 − y2) (2/3 y3 − (1/3 y1 + 1/3 y2))√

(|−x3 + x2|)2 + (|−y3 + y2|)2The mesh dependen
y of the unit normal 
an be written as
dn̂

dM
=

∂n̂

∂x1

∂x1
∂M

+
∂n̂

∂x2

∂x2
∂M

+
∂n̂

∂x3

∂x3
∂M

+
∂n̂

∂y1

∂y1
∂M

+
∂n̂

∂y2

∂y2
∂M

+
∂n̂

∂y3

∂y3
∂M

(4.26)where
∂n̂

∂xi
=

α1 − α2

‖~c3 − βr̂23‖2

α1 = ‖~c3 − βr̂23‖ ·
∂

∂xi
(~c3 − βr̂23)

α2 = (~c3 − βr̂23) ·
∂

∂xi
‖~c3 − βr̂23‖49



∂n̂

∂yi
=

α3 − α4

‖~c3 − βr̂23‖2

α3 = ‖~c3 − βr̂23‖ ·
∂

∂yi
(~c3 − βr̂23)

α4 = (~c3 − βr̂23) ·
∂

∂yi
‖~c3 − βr̂23‖

i = 1, 2, 3The terms in the last equations 
an be found using automati
 di�erentiation of theunit normal expression.4.3 Fa
e Flow Properties Dependen
y on The MeshThe evaluation of the ∂Ufa
e/∂M term in the mesh sensitivity of the residual, usingEq. 4.9, depends on the details of the CFD solver. The CFD solver used in thisresear
h is the Advan
ed Numeri
al Simulation Library (ANSLib) whi
h is a multi-physi
s �nite volume solver 
apable of 
ondu
ting CFD simulations up to fourth or-der a

ura
y; this solver has been built by Ollivier-Goo
h and 
o-workers [61, 56, 54℄.In ANSLib, the �ow properties are assumed to 
hange within ea
h 
ontrol volumea

ording to a linear polynomial for se
ond order simulations, or a 
ubi
 polynomialfor fourth order simulations. These polynomials are found using a least-squares re-
onstru
tion; the least-squares system depends on the 
ontrol volume properties likemoments of area whi
h eventually depend on mesh point lo
ations. In the next twosubse
tions, the re
onstru
tion and mesh dependen
y of �ow properties at fa
es willbe presented.4.3.1 Fa
e �ow properties re
onstru
tionSolution re
onstru
tion is the key to determine solver a

ura
y. The solution isassumed to vary linearly within the 
ontrol volume for se
ond order a

ura
y; forhigher order methods, �ow properties are assumed to vary a

ording to higher orderpolynomial; variation a

ording to 
ubi
 polynomial is fourth order a

urate. The�ow solution re
onstru
tion method presented in this subse
tion follows the methoddes
ribed in Ollivier-Goo
h and Van Altena [68℄ and Ollivier-Goo
h et al [69℄.50



For se
ond order solution re
onstru
tion, the primitive variables U =
[
ρ u v p

]Tare re
onstru
ted at the fa
e Gauss points as
UR
2 (x, y) = Uref + (x− xref )

∂U

∂x

∣∣∣∣
ref

+ (y − yref )
∂U

∂y

∣∣∣∣
ref

(4.27)For fourth order solution re
onstru
tion, the re
onstru
tion polynomial takes theform of a third degree Taylor series expansion in two variables:
UR
4 (x, y) = UR

2 (x, y) +
(x− xref )

2

2

∂2U

∂x2

∣∣∣∣
ref

(4.28)
+ (x− xref) . (y − yref)

∂2U

∂x∂y

∣∣∣∣
ref

+
(y − yref )

2

2

∂2U

∂y2

∣∣∣∣
ref

+
(x− xref )

3

6

∂3U

∂x3

∣∣∣∣
ref

+
(x− xref)

2 (y − yref)

2

∂3U

∂x2∂y

∣∣∣∣
ref

+
(x− xref ) (y − yref )

2

2

∂3U

∂x∂y2

∣∣∣∣
ref

+
(y − yref)

3

6

∂3U

∂y3

∣∣∣∣
refThe referen
e point ~xref is 
hosen to be the triangle 
enter for 
ell-
entered �nitevolume s
heme and the vertex lo
ation for vertex-
entered s
heme.A 
onstrained least-squares system is 
onstru
ted to �nd the re
onstru
tion poly-nomial 
oe�
ient. The hard 
onstraint is that the re
onstru
tion polynomial shouldpreserve the 
omputed 
ontrol volume average solution. The rest of the equations �whi
h are satis�ed only in a least-squares sense � are obtained by requiring that theaverage of the re
onstru
tion polynomial approximates the 
ontrol volume averagesolution for neighboring 
ontrol volumes. Neighbors are 
hosen based on their topo-logi
al distan
e from the element, and entire layers of neighbors is added until thenumber of neighbor elements in the sten
il equals or ex
eeds 4 for the se
ond orders
heme and 16 for the fourth order s
heme. Figure 4.5 shows a s
hemati
 drawingof an element k and its neighbor layers.The mean 
onstraint equation is obtained by requiring 
onservation of the 
ontrol51



Figure 4.5: S
hemati
 drawing of �rst, se
ond and third neighbor layers of triangularelement k.

volume average by the re
onstru
tion polynomial and 
an be written as
Uk =

1

Ak

ˆ

Ak

UR
k dA ≡ Uk ref + xk

∂U

∂x

∣∣∣∣
k ref

+ yk
∂U

∂y

∣∣∣∣
k ref

+ (4.29)
x2k
2

∂2U

∂x2

∣∣∣∣
k ref

+ xyk
∂2U

∂x∂y

∣∣∣∣
k ref

+
y2k
2

∂2U

∂y2

∣∣∣∣
k ref

+ ...where
xnymk =

1

Ak

¨

Ak

(x− xk ref )
n (y − yk ref )

m dA52



Mat
hing the 
ontrol volume average in a neighbor j would require that
U j =

1

Aj

ˆ

Aj

UR
k dA ≡ Uk ref +

1

Aj

ˆ

Aj

(x− xk ref )
∂U

∂x

∣∣∣∣
ref

dA+ (4.30)
1

Aj

ˆ

Aj

(y − yk ref )
∂U

∂y

∣∣∣∣
ref

dA+
1

Aj

ˆ

Aj

(x− xk ref )
2

2

∂2U

∂x2

∣∣∣∣
ref

dA+

1

Aj

ˆ

Aj

(x− xk ref ) (y − yk ref )
∂2U

∂x∂y

∣∣∣∣
ref

dA+

1

Aj

ˆ

Aj

(y − yk ref )
2

2

∂2U

∂y2

∣∣∣∣
ref

dA+ ...Using
(x− xk ref ) = (x− xj ref )− (xk ref − xj ref )and
(y − yk ref ) = (y − yj ref )− (yk ref − yj ref ) ,we get

U j =
1

Aj

ˆ

Aj

UR
k dA ≡ Uk ref + x̂k,j

∂U

∂x

∣∣∣∣
k ref

+ ŷk,j
∂U

∂y

∣∣∣∣
k ref

+ (4.31)
x̂2k
2

∂2U

∂x2

∣∣∣∣
k ref

+ x̂yk,j
∂2U

∂x∂y

∣∣∣∣
k ref

+
ŷ2k,j
2

∂2U

∂y2

∣∣∣∣
k ref

+ ...where
x̂nymk,j =

1

Aj

ˆ

Aj

((x− xj ref )− (xk ref − xj ref ))
n ·

((y − yj ref )− (yk ref − yj ref ))
m dA

=

m∑

r=0

n∑

q=0

m!

r! (m− r) !

n!

q! (n− q) !
(xj ref − xk ref )

q ·

(yj ref − yk ref )
r xn−q

j ref y
m−r
j reffor simpli
ity, the term x, yk ref will be written as x, yk, and x, yj ref will be repla
ed
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with x, yj . The resulting 
onstrained least-squares system 
an be written as



1 xk yk x2k xyk y2k · · ·
1 x̂k,1 ŷk,1 x̂2k,1 x̂yk,1 ŷ2k,1 · · ·
1 x̂k,2 ŷk,2 x̂2k,2 x̂yk,2 ŷ2k,2 · · ·
1 x̂k,3 ŷk,3 x̂2k,3 x̂yk,3 ŷ2k,3 · · ·... ... ... ... ... ... . . .
1 x̂k,N ŷk,N x̂2k,N x̂yk,N ŷ2k,N · · · · · ·







U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2...




k

=




Uk

U1

U2

U3...
UN


(4.32)This 
onstrained least squares system 
an be rewritten as

min
∥∥∥[ARec]

(
P̃Rec

)
−
(
URec − Uk

)∥∥∥

satisfying [BRec] (PRec) =
(
Uk

)where
[ARec] =




x̂k,1 − xk, ŷk,1 − yk, x̂2k,1 − x2k, x̂yk,1 − xyk, ŷ2k,1 − y2k, · · ·
x̂k,2 − xk, ŷk,2 − yk, x̂2k,2 − x2k, x̂yk,2 − xyk, ŷ2k,2 − y2k, · · ·
x̂k,3 − xk, ŷk,3 − yk, x̂2k,3 − x2k, x̂yk,3 − xyk, ŷ2k,3 − y2k, · · ·... ... ... ... ... . . .
x̂k,N − xk, ŷk,N − yk, x̂2k,N − x2k, x̂yk,N − xyk, ŷ2k,N − y2k, · · · · · ·




[BRec] =
[
1 xk yk x2k xyk y2k · · ·

]and
PRec =




U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2...




k

, P̃Rec =




∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2...




k

,
(
URec − Uk

)
=




U1 − Uk

U2 − Uk

U3 − Uk...
UN − Uk



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The least-squares system is solved to obtain the re
onstru
tion polynomial 
oef-�
ients using singular value de
omposition method to �nd the pseudo inverse of theleast-squares 
oe�
ient matrix as follows
ARec = UΣV T

A†
Rec = V Σ†UT




∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2...




k

=




x̂k,1 − xk, ŷk,1 − yk, x̂2k,1 − x2k, x̂yk,1 − xyk, ŷ2k,1 − y2k, · · ·
x̂k,2 − xk, ŷk,2 − yk, x̂2k,2 − x2k, x̂yk,2 − xyk, ŷ2k,2 − y2k, · · ·
x̂k,3 − xk, ŷk,3 − yk, x̂2k,3 − x2k, x̂yk,3 − xyk, ŷ2k,3 − y2k, · · ·... ... ... ... ... . . .
x̂k,N − xk, ŷk,N − yk, x̂2k,N − x2k, x̂yk,N − xyk, ŷ2k,N − y2k, · · · · · ·




†

·




U1 − Uk

U2 − Uk

U3 − Uk...
UN − Uk




(4.33)
Uk = Uk −

[
xk yk x2k xyk y2k · · ·

]
·




∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2...




(4.34)
The unlimited fa
e �ow properties 
an be found at fa
e Gauss points (xfi , yff )55



as follows
Ufi = Uk + (xfi − xk)

∂U

∂x

∣∣∣∣
k

+ (yfi − yk)
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To ensure monotoni
ity and solution 
onvergen
e, a limiter is applied in ordernot to 
reate a new extremum at the 
ontrol volume fa
e; the limited �ow propertiesat the fa
e 
an be written as
Ufi = Uk + φk
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)where φk is the limiter value in the 
ontrol volume k. ANSLib uses two limiterfun
tions to 
al
ulate φ: Venkatakrishnan's limiter [84℄ and a higher-order limiter [56℄designed not to degrade the a

ura
y of high-order s
hemes for smooth �ows. Wewill derive the fa
e properties-mesh dependen
y for the limited 
ase; the unlimited
ase 
an be obtained by simpli�
ation of the limited 
ase by setting φk = 1.56



4.3.2 Mesh dependen
e of the fa
e �ow property re
onstru
tion
The term ∂Ufa
e/∂M for the limited 
ase 
an be obtained using dire
t di�erentiationof Eq. 4.36
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
The unlimited fa
e �ow property-mesh dependen
y 
an be obtained by setting φk = 1and ∂φk/∂M = 0 in Eq. 4.37.In Eq. 4.37, the term ∂φk/∂M 
an be obtained by di�erentiating the limiter57



expression, and the terms ∂ ∂nU
∂xm∂yn−m

∣∣∣
k
/∂M 
an be evaluated as follows:
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∂ŷk,1
∂M

∂x̂2
k,1

∂M

∂x̂yk,1
∂M
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Chapter 5GRADIENT VALIDATIONIn this se
tion, the 
omparison of the gradient a

ura
y evaluated using se
ond andfourth order s
hemes is 
arried out. Both se
ond and fourth order gradients areevaluated using the adjoint approa
h and 
ompared to their 
orresponding �nitedi�eren
e gradient. We present three test 
ases: subsoni
, non-limited transoni
 andlimited transoni
 test 
ases. In all test 
ases we use 18 design points to parametrizethe airfoil geometry.5.1 Subsoni
 Test CaseIn this test 
ase, the evaluation of the lift 
oe�
ient gradient with respe
t to theairfoil geometri
 design 
ontrol points is presented for both se
ond and fourth orders
hemes, in
luding a 
omparison with a �nite di�eren
e gradient 
al
ulated usingthe same order of a

ura
y in the �ow solver. The airfoil used in this test 
aseis NACA 0012 at subsoni
 
onditions M = 0.5 and α = 2o. Figure 5.1 shows arepresentative 
omparison between the �eld of pressure sensitivity with respe
t toone of the geometry design points 
omputed using �nite di�eren
es and the solutionsensitivity 
al
ulation of Eq. 4.6 for both se
ond and fourth order a

urate 
ompu-tations. Agreement is ex
ellent in all 
ases; this is also true for the other design
ontrol points. The ex
ellent mat
hing of the pressure sensitivity when 
omparingthe se
ond order and the fourth order results indi
ates that the two s
hemes willgive similar gradient ve
tors and similar optimization des
ent dire
tions for subsoni
�ow optimization.Table 5.1 shows quantitatively an ex
ellent mat
hing between the obje
tive fun
-tion gradient magnitude (less than half a per
ent di�eren
e) and dire
tion (less thana half a degree di�eren
e) when 
omparing �nite di�eren
es and the adjoint ap-proa
h of Eq. 4.8 for both se
ond and fourth order s
hemes. Figure 5.1 shows good60



(a) Se
ond order sensitivity 
al
ulation (b) Se
ond order �nite di�eren
e
(
) Fourth order sensitivity 
al
ulation (d) Fourth order �nite di�eren
eFigure 5.1: The pressure sensitivity with respe
t to one of the design 
ontrol points
omputed for subsoni
 �ow over NACA 0012, 
omparing the sensitivity 
al
ulationof Eq. 4.6 with �nite di�eren
e results.agreement between the obje
tive fun
tion gradient 
omponents ∂CL/∂yi, where yiare the y lo
ations of the design 
ontrol points, 
omputed using adjoint and �nitedi�eren
e approa
hes for both se
ond and fourth order 
omputations. The maxi-mum error, normalized by the gradient magnitude, is only 0.005 whi
h gives a highlevel of a

ura
y for the 
omputed gradient. Taken together, these results imply thatthe order of dis
retization error has little e�e
t on the 
omputed gradient ve
tor forsubsoni
 �ow.5.2 Transoni
 Test Case with No LimiterIn this test 
ase, the sensitivity analysis is 
arried out for NACA 0012 airfoil with M= 0.8 and α = 2◦. The drag 
oe�
ient gradient is evaluated without using limitersin the CFD simulation, so overshoot/undershoot at the sho
k lo
ation is expe
ted.Figure 5.3 shows good agreement of the pressure sensitivity 
omputed using Eq. 4.661



Se
ond order Fourth orderAdjoint FD Adjoint FDGradient ve
tor magnitude 18.605 18.561 18.575 18.655Angle with se
ond order adjoint 0◦ 0.247◦ 1.117◦ 1.330◦Angle with fourth order adjoint 1.117◦ 0.917◦ 0◦ 0.249◦Table 5.1: The magnitude of se
ond and fourth order CL gradients and angles be-tween the evaluated gradients for NACA 0012 in subsoni
 �ow.

Figure 5.2: CL gradient error in se
ond and fourth order s
hemes with respe
t tothe design points normalized by gradient magnitude.
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(a) Se
ond order sensitivity 
al
ulation (b) Se
ond order �nite di�eren
e
(
) Fourth order sensitivity 
al
ulation (d) Fourth order �nite di�eren
eFigure 5.3: The pressure sensitivity with respe
t to one of the design 
ontrol points
omputed for an unlimited transoni
 �ow around NACA 0012, 
omparing the sensi-tivity 
al
ulation of Eq. 4.6 with �nite di�eren
e results.and �nite di�eren
e; the �gure also shows that for transoni
 �ows, the pressuresensitivity 
omputed using se
ond order and fourth order a

urate adjoint s
hemeare di�erent, espe
ially near the sho
k lo
ation.Table 5.2 shows again the ex
ellent mat
hing between the 
omputed adjoint and�nite di�eren
e gradient with a dire
tion di�eren
e less than a degree and nearlyidenti
al magnitude. Figure 5.4 shows that for unlimited transoni
 �ow, both se
-ond and fourth order adjoint gradients are an ex
ellent mat
h to the 
orresponding�nite di�eren
e gradient, with the se
ond order s
hemes mat
hing more 
losely thanthe fourth order s
heme. Comparison of the se
ond and fourth order gradient ve
torsshows little di�eren
e between them (about 4% in magnitude and 2◦ in dire
tion).Again, we expe
t that the se
ond and fourth order s
hemes will give similar opti-mization sear
h dire
tions. 63



Se
ond order Fourth orderAdjoint FD Adjoint FDGradient ve
tor magnitude 1.895 1.895 1.814 1.813Angle with se
ond order adjoint 0◦ 0.252◦ 2.236◦ 1.997◦Angle with fourth order adjoint 2.236◦ 2.354◦ 0◦ 0.518◦Table 5.2: The magnitude of se
ond and fourth order CD gradients and anglesbetween the evaluated gradients for NACA 0012 in an unlimited transoni
 �ow.

Figure 5.4: CD gradient error in se
ond and fourth order s
hemes with respe
t tothe design points, normalized by gradient magnitude.
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(a) Se
ond order sensitivity 
al
ulation (b) Se
ond order �nite di�eren
e
(
) Fourth order sensitivity 
al
ulation (d) Fourth order �nite di�eren
eFigure 5.5: The pressure sensitivity with respe
t to one of the design 
ontrol points
omputed for an unlimited transoni
 �ow around NACA 0012.5.3 Transoni
 Test Case with LimiterIn this test 
ase, the impa
t of using a limiter in the CFD simulation on the a

ura
yof the 
omputed gradient for se
ond order and fourth order s
hemes is studied. Twodi�erent limiters are used, the Venkatakrishnan limiter [84℄ and the higher orderlimiter of Mi
halak and Ollivier-Goo
h [56℄. Figure 5.5 shows very good mat
hingof the se
ond order pressure sensitivity 
omputed using adjoint and �nite di�eren
ete
hniques with the use of Venkatakrishnan limiter.Mat
hing is less good between the pressure sensitivity and �nite di�eren
e resultsfor the fourth order a

urate s
heme; this lower level of pressure sensitivity mat
hingwill lead to less a

urate gradient values when using the limited fourth order s
heme.Table 5.3 shows that with the use of the Venkatakrishnan limiter, the se
ond ordergradient magnitude is a very good mat
h with the 
orresponding �nite di�eren
egradient; the larger error in gradient value observed for the fourth order s
heme is
omparable to the di�eren
e in magnitude between se
ond and fourth order s
hemes65



Se
ond order Fourth orderAdjoint FD Adjoint FDGradient ve
tor magnitude 1.897 1.895 1.887 1.812Angle with se
ond order adjoint 0◦ 3.612◦ 2.292◦ 3.334◦Angle with fourth order adjoint 2.292◦ 5.275◦ 0◦ 4.873◦Table 5.3: Magnitudes of se
ond and fourth order CD gradients and angles betweenthe evaluated gradients for NACA 0012 in Venkatakrishnan limited transoni
 �owSe
ond order Fourth orderAdjoint FD Adjoint FDGradient ve
tor magnitude 1.676 1.753 1.576 1.672Angle with se
ond order adjoint 0◦ 2.845◦ 30.1◦ 18.8◦Angle with fourth order adjoint 30.1◦ 21.05◦ 0◦ 18.9◦Table 5.4: The magnitude of se
ond and fourth order CD gradients and angles be-tween the evaluated gradients for NACA 0012 using higher order limiter in transoni
�ow.for the unlimited transoni
 
ase. Also, the di�eren
e in �nite di�eren
e and adjointgradient dire
tion grows to several degrees with the use of Venkatakrishnan limiter.Table 5.4 shows the same behavior with the higher order limiter of C. Mi
halakand C. Ollivier-Goo
h. It shows also that the error in the gradient magnitude islarger 
ompared to the Venkatakrishnan results. The mat
hing in adjoint and �nitedi�eren
e gradient dire
tions is good for the se
ond order s
heme but it is not for thefourth order s
heme with the use of higher order limiter. It is well known that the useof limiters 
auses 
onvergen
e problem due to the non-di�erentiability of the limitingpro
edure [55℄. The limiter a�e
ts both the right and left hand sides of Eq. 1.6. Wespe
ulate that the poor mat
hing between �nite di�eren
e and adjoint gradients forthe high-order limiter is related to the non-di�erentiability of the limiting pro
edureand that this e�e
t will vary in strength from one limiting pro
edure to another.To redu
e the in�uen
e of ∂Ri/∂D in 
ontrol volume i when 
al
ulating theadjoint gradient, the fourth order Ja
obian was modi�ed numeri
ally by making thenon zero stru
ture of the fourth order Ja
obian matrix the same as the non zerostru
ture of the se
ond order Ja
obian, and dropping the rest of values in the fourthorder Ja
obian matrix. The right hand side is still 
onstru
ted with fourth order66



Mod 4th orderLimiter Venkat. HOGradient s
heme Adj. FD Adj. FDGradient ve
tor magnitude 1.735 1.812 1.966 1.672Angle with mod 4th order Venkat. adjoint 0◦ 2.845◦ 6.247◦ 3.338◦Angle with mod 4th order HO. adjoint 6.247◦ 7.256◦ 0◦ 7.207◦Table 5.5: The magnitudes and angles between the evaluated modi�ed fourth order
CD gradients using adjoint, and �nite di�eren
e for NACA 0012 using Venkatakr-ishnan and higher order limiters in transoni
 �ow.a

ura
y. The above modi�
ation doesn't a�e
t the a

ura
y of the CFD simulationbe
ause the right hand side remains fourth order a

urate. The 
omputed gradientusing this approa
h is presented in Table 5.5 and shows a redu
tion in the error in thefourth order 
omputed adjoint gradient, espe
ially in the dire
tion of the gradient.The limiter used from now on is the Venkatakrishnan limiter as it produ
es an adjoint
omputed gradient with better mat
hing to the �nite di�eren
e gradient 
omparedwith the high order limiter.5.4 Sensitivity of �nite di�eren
e gradient toperturbation magnitudeIn the previous se
tions, I have used perturbation amplitude ǫ = 10−6 and using the
entral di�eren
e formula to evaluate the �nite di�eren
e gradient. In this se
tion,the sensitivity of the evaluated gradient with respe
t to ǫ is presented for the hardest
ase, transoni
 �ow with limiter. The limiter used in the transoni
 simulation isVenkatakrishnan's limiter. Table 5.6 shows the norm of the drag gradient for di�erentvalues of perturbation amplitude ǫ; it shows also that de
reasing ǫ to be less than
10−6 will not pra
ti
ally 
hange the value of the 
omputed gradient norm. Therefore,
ǫ = 10−6 is 
hosen.
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Figure 5.6: The normalized CD gradient error in se
ond, fourth, and modi�edfourth order s
hemes with respe
t to the design points in a limited transoni
 �ow(Venkatakrishnan limiter)

Figure 5.7: The normalized CD gradient error in se
ond, fourth, and modi�ed fourthorder s
hemes with respe
t to the design points in a limited transoni
 �ow (higherorder limiter). 68



ǫ Se
ond order ∥∥∥∂CD

∂D

∥∥∥ Fourth order ∥∥∥∂CD

∂D

∥∥∥
10−3 1.90237 1.86814
10−6 1.90275 1.87105
10−9 1.09278 1.87114Table 5.6: Finite di�eren
e drag gradient sensitivity with respe
t to perturbationamplitude ǫ
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Chapter 6GRADIENT BASEDOPTIMIZATION TEST CASESIn this se
tion we present four optimization test 
ases; in all of them we 
omparethe optimal shape resulting from using se
ond and fourth order s
hemes. The �rsttwo 
ases are inverse design problems, one subsoni
 and the other transoni
. Inboth test 
ases, a target pressure distribution is obtained using CFD simulation of aparametrized NACA 2412 airfoil and the starting geometry is a NACA 0012 airfoil.The optimizer will try to �nd the geometry whose surfa
e pressure distributionmat
hes the target pressure distribution. Those two test 
ases are important, as thedesign spa
e has only one solution point at whi
h the resulting pressure distributionfrom the optimal geometry will mat
h the target pressure distribution. The thirdtest 
ase is a transoni
 drag minimization with no lift 
onstraint starting from theRAE 2822 airfoil. The obje
tive of this test 
ase is to minimize CD at M = 0.73 andangle of atta
k = 2◦. In this test 
ase a strong sho
k wave is formed near mid 
hordof the initial airfoil geometry and we are seeking a sho
k free geometry, or at leasta geometry that produ
es a mu
h weaker sho
k wave. Geometri
 
onstraints areapplied so the airfoil thi
kness will be positive all the way along the airfoil se
tion.The fourth test 
ase repeats test 
ase three but adds the lift 
oe�
ient as a 
onstraint;in this 
ase, we 
ompare the resulting optimal shape with the optimization resultsof Brezillon and Gauger [11℄ .6.1 Subsoni
 Inverse DesignIn this test 
ase, the target pressure distribution is obtained for the parametrizedNACA 2412 at a subsoni
 
ondition, M = 0.5 and α = 2◦ , using se
ond and fourthorder CFD simulations. The starting geometry is the parametrized NACA 0012.70



The obje
tive fun
tion to be minimized is
F =

˛

(PT − Pi)
2 dS (6.1)The above obje
tive fun
tion and its gradient 
an be expressed in dis
rete form as

F =
∑

(PT − Pi)
2 ws (6.2)

dF

dxd
=
∑

2 (PT − Pi)

(−∂Pi

∂xd

)
ws + (PT − Pi)

2 ∂ws

∂xd
(6.3)where ws is the ar
 length asso
iated with the surfa
e Gauss point.Figure 6.1 shows the target pressure distribution of the NACA 2412, the initialpressure distribution of NACA 0012, and the optimized airfoil pressure distributionobtained by the se
ond order and fourth order s
hemes; both s
hemes su

essfullyrea
hed the target pressure distribution. Figures 6.2 and 6.3 show the 
onvergen
ehistory and gradient norm history for both s
hemes. Both s
hemes took aboutthe same number of optimization iterations (28 for se
ond order and 32 for fourthorder) to drop the obje
tive fun
tion value by eight orders of magnitude. Figures 6.4and 6.5 show how 
lose the optimized NACA 0012 is to the NACA 2412 using bothse
ond order and fourth order s
hemes. The error between the target geometry andthe optimized pro�le is larger in the fourth order s
heme due to ina

ura
y of thepressure interpolation s
heme used to evaluate the obje
tive fun
tion; neverthelessthe resulting geometry is an ex
ellent mat
h with the NACA 2412, with an error ofless 0.1% of the surfa
e movement.6.2 Transoni
 Inverse DesignIn this test 
ase, the target pressure is obtained using CFD simulation of the �owover a NACA 2412 airfoil at transoni
 
onditions, M = 0.73, α = 2◦. The obje
-tive fun
tion to be minimized is again the integration of the square of the pressuredi�eren
e between the target pressure and the optimized pressure as expressed inEq. 6.1. The fourth order optimization is based on the modi�ed fourth order gra-dient evaluation strategy. Figure 6.6 shows the initial, target, and the optimized71



(a) Se
ond order (b) Fourth orderFigure 6.1: Subsoni
 NACA 2412 inverse design pressure distributions for the initial,target, and optimized airfoil pro�les
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(a) Upper surfa
e (b) Lower surfa
eFigure 6.5: The di�eren
e between the target pro�le and the optimized pro�les,se
ond and fourth orderpressure distribution. The 
onvergen
e history and gradient norm history are shownin Figs. 6.7 and 6.8; the fourth order s
heme is slower to 
onverge 
ompared tothe se
ond order s
heme, due to the use of larger number of airfoil surfa
e Gaussquadrature points used in the fourth order 
omputations (double the number usedfor the se
ond order s
heme) whi
h makes the minimizer slower to 
onverge. Theobje
tive fun
tion dropped only three order of magnitudes before 
onvergen
e stall.This stall is due to the high non-linearity in the target pressure distribution be
auseof the existen
e of a strong sho
k wave in it. The noise in the pressure sensitivitygenerated by the sho
k wave in the target pressure distribution doesn't allow further
onvergen
e; however, the gradient magnitude dropped four order of magnitudesfrom its initial value. Figures 6.9 and 6.10 show that the optimal shapes for the twos
hemes di�er by less than 10−4 of the 
hord length on the lower surfa
e and lessthan 10−3 
hord length on the upper surfa
e (where the strong sho
k wave exists);both optimal shapes are in good agreement with the NACA 2412: the maximumdeviation is about 5% of maximum surfa
e movement.6.3 Drag Minimization without Lift ConstraintIn this test 
ase, minimization of the drag 
oe�
ient will be 
arried out with nolift 
onstraint applied. The airfoil to be optimized is an RAE 2822 at transoni
74



(a) Se
ond order (b) Fourth orderFigure 6.6: Subsoni
 NACA 2412 inverse design pressure distributions for the initial,target, and optimized airfoil pro�les

Figure 6.7: Se
ond and fourth order optimization 
onvergen
e history.
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Figure 6.8: Gradient norm history

(a) Upper surfa
e (b) Lower surfa
eFigure 6.9: The di�eren
e between the target pro�le and the optimized pro�les,se
ond and fourth order
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Figure 6.10: Transoni
 inverse design optimal airfoil shapes.
CL CL optimized airfoil CD CD optimized airfoilSe
ond order 0.865 0.765 0.0081 0.00466Fourth order 0.849 0.759 0.0099 0.0047Table 6.1: Aerodynami
 
oe�
ients of original and optimized RAE 2822 airfoil attransoni
 
onditions.
onditions: M = 0.73 and α = 2◦. Fig. 6.11 shows the initial solution with a strongsho
k wave standing at 70% 
hord. Geometri
 
onstraints are added to insure thatthere is no interse
tion between the airfoil upper and lower surfa
es along the airfoil.Figure 6.12 shows the optimal shapes and the optimized pressure �elds resultingfrom using se
ond and fourth order s
hemes.Figures 6.12 and 6.13 show that the di�eren
e between the se
ond and fourthorder optimal pro�les is notable on both upper and lower surfa
es. The surfa
epressure distribution of the original RAE 2822 airfoil and of the optimized airfoil forse
ond and fourth order s
hemes is shown in Fig. 6.14. Both s
hemes su

essfullyprodu
ed a similar sho
k free pressure distribution but with di�erent pro�les. Theoriginal and optimized CD are shown in Table 6.1. A drag redu
tion of about 50%is a
hieved by both s
hemes. The value of the CD of the se
ond order optimizedairfoil is obtained from fourth order a

urate CFD simulation over the optimizedse
ond order airfoil pro�le to eliminate the di�eren
es in dis
retization error in the�nal results.Figure 6.16 shows the 
onvergen
e history of the optimization. Both s
hemesrea
hed their optimal solution in about the same number of optimization iterations.77



Figure 6.11: Pressure 
ontours of RAE 2822 at Ma
h 0.73 and angle of atta
k 2

Figure 6.12: Optimized RAE 2822.
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(a) Upper surfa
e (b) Lower surfa
eFigure 6.13: Optimization surfa
e displa
ements of the original RAE2822 surfa
es.

Figure 6.14: Pressure distribution 
omparison for the original and the optimizedgeometries.
79



0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

−grade     −−−−−−−−−−−−−−−−BFGS Optimal −−−−−−−−−−−−−−−−−    +grad

C
D

BFGS optimal profile

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

−grade     −−−−−−−−−−−−−−−−BFGS Optimal −−−−−−−−−−−−−−−−−    +grad

C
D BFGS optimal profile

(a) Se
ond order response surfa
e (b) Fourth order response surfa
eFigure 6.15: Obje
tive fun
tion response surfa
e along positive and negative gradientdire
tions 
entered at the optimal pro�le of RAE 2822 transoni
 drag minimizationwithout lift 
onstraint.The number of CFD simulations for the se
ond order s
heme is 50 
ompared to 45for the fourth order s
heme, yet the overall 
omputational 
ost of the se
ond orders
heme is 40% less than the fourth order 
omputations. The gradient of the obje
tivefun
tion is not zero at the optimal point; to understand the reasons for that, I haveplotted the obje
tive fun
tion values along positive and negative gradient dire
tionat the optimal solution point as shown in Fig 6.15. The se
ond order response surfa
eshows that the obtained optimal solution is a possible lo
al optimum and the shapeof the obje
tive fun
tion shows that the gradient 
omputed using �nite di�eren
e willnot be zero at the optimal point. For the fourth order 
omputations, the �gure showsthat the optimizer rea
hed a near optimal solution. While a slightly lower value isavailable,the small di�eren
e between the obje
tive fun
tion value at the obtainedoptimal point and the minimum value along the negative gradient dire
tion (on theorder of the dis
retization error) may 
ause a line sear
h failure due to insu�
ientde
rease in the obje
tive fun
tion.6.4 Drag Minimization with Lift ConstraintThis test 
ase represents a typi
al optimization task required in aerospa
e industry,as it is required to minimize the drag while the lift is un
hanged. Therefore the lift
oe�
ient CL will be an aerodynami
 
onstraint. The original RAE 2822 geometry80



Figure 6.16: Se
ond and fourth order optimization 
onvergen
e history.will be used as a starting shape; the obje
tive fun
tion to be minimized is
F = CD + 10 · (CL − CLC

)2 (6.4)where CLC
is the original lift 
oe�
ient of RAE 2822 atM = 0.73 and α = 2◦. In thistest 
ase both geometri
 and aerodynami
 
onstraints are applied to avoid getting anon-feasible airfoil geometry, while not a�e
ting airfoil lift 
oe�
ient. The nonlinear
onstraint, the lift 
oe�
ient, is added as a penalty term in the obje
tive fun
tionas shown in Eq. 6.4. Figure 6.17 show the optimized airfoil's pressure distributionfor both se
ond and fourth order s
hemes. Both se
ond and fourth order s
hemestravel 99% of the way towards their optimal obje
tive fun
tion after 7 iterations;the se
ond order s
heme then be
omes very slow to rea
h its optimal value. These
ond order s
heme 
osts 112 CFD simulations to rea
h its optimum 
ompared to49 CFD simulations for the fourth order. Figure 6.20 shows a noti
eable di�eren
ebetween the optimized pro�les, in
luding a notably larger nose radius and less aft
hamber for the fourth order s
heme. A sho
k free geometry is obtained with weak
ompression waves on the airfoil upper surfa
e. Drag is redu
ed by about 50%, asshown in Table 6.2, while the lift 
oe�
ient is about 1% higher than its originalvalue. 81



CL CL optimized airfoil CD CD optimized airfoilSe
ond order 0.865 0.871 0.0081 0.00477Fourth order 0.849 0.853 0.0099 0.0051Table 6.2: Aerodynami
 
oe�
ients of original and optimized RAE 2822 airfoil attransoni
 
onditions.

Figure 6.17: Surfa
e pressure distribution, of the initial and optimized geometries

Figure 6.18: Se
ond and fourth order optimization 
onvergen
e history.82



Figure 6.19: Optimal shapes 
omparison: se
ond order, fourth order, and optimizedpro�le by Brezillon and Gauger 
ompared with the original RAE2822.

(a) Upper surfa
e (b) Lower surfa
eFigure 6.20: Se
ond and fourth order optimized pro�le surfa
e displa
ements fromthe initial shape.
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ond order response surfa
e (b) Fourth order response surfa
eFigure 6.21: Obje
tive fun
tion response surfa
e along positive and negative gradientdire
tions 
entered at the optimal pro�le of RAE 2822 transoni
 drag minimizationwithout lift 
onstraint.At the optimization breakdown point (optimal solution found), the gradient is notzero, possibly due to the existen
e of the sho
k wave whi
h 
auses high non-linearityin the obje
tive fun
tion and lift 
onstraint behavior. Figure 6.21_shows plots ofthe obje
tive fun
tion response along negative and positive gradient dire
tion. Itshows also that the obtained optimal solutions are lo
al minima along the gradientdire
tion, and shows also that the gradient 
omputed by �nite di�eren
e is not zero.It is also worth noting that the gradient of the obje
tive fun
tion at the breakdownpoint is dominated by the gradient of the lift 
onstraint.Figures 6.19 and 6.20 show a 
omparison between the optimized airfoil pro�lesbased on se
ond and fourth order 
omputations. Di�eren
es in shape are espe
iallynoti
eable near the leading edge, and in the re�exed part of the lower surfa
e nearthe trailing edge. The se
ond order optimized pro�le Cd is four drag 
ounts less thanthe fourth order pro�le drag 
oe�
ient, nearly 10%. The same problem was studiedby Brezillon and Gauger [11℄; they used the se
ond order solver MEGAFLOW ofthe German Aerospa
e Center and obtained their optimal pro�le by 
ontrolling the
amber line of the RAE 2822 via 20 
ontrol points. Comparing the optimal pressuredistribution of our se
ond order 
omputations shown in Fig 6.17 and that of Brezil-lon, Fig 6.22, shows that both solvers tend to a

elerate the �ow near the leadingedge upper surfa
e more than the original airfoil shape, followed by a gradual de
el-eration till the trailing edge; on the other hand, the surfa
e pressure on the lower84



Figure 6.22: initial and optimal pressure distribution obtained by Brezillon andGauger [11℄ (presented with permission)airfoil surfa
e 
hanges only slightly from the original surfa
e pressure distribution ofthe RAE2822. This similarity in the optimized pressure distribution suggests thatwhatever geometry parametrization te
hnique is used, the surfa
e pressure 
hangeswill be qualitatively similar.The lift penalty fa
tor used in this test 
ase is sele
ted su
h that violating thelift 
onstraint by one lift 
ount (10−2) 
auses 10 drag 
ounts (10−3) in
rease in theobje
tive fun
tion value. Table 6.3 shows the e�e
t of the lift 
onstraint penaltyweighting fa
tor on the optimal obje
tive fun
tion value, as well as the optimal dragand lift 
oe�
ients; these results are based on se
ond order 
omputations.85



Lift penalty weight Fopt CDopt CLopt Lift penalty5 0.0052 0.0047 0.873 3.2 × 10−410 0.0051 0.0047 0.871 3.6 × 10−420 0.0082 0.0080 0.868 1.8 × 10−4Table 6.3: Lift penalty weight e�e
t on Drag minimization of RAE 2822 with lift
onstraint
6.5 Mesh Re�nement Study of a Drag Minimizationwith Lift Constraint
In the last test 
ase, Table 6.2 shows that the optimal value of CD is di�erentwhen 
omparing se
ond and fourth order s
heme results. This subse
tion examinesthe impa
t of mesh re�nement on the optimal value of CD. Three mesh grid sizesare used, with 5000, 11000, and 15000 triangles, respe
tively. In all test 
ases,
CLC

= 0.84 is used as a lift 
onstraint value for both se
ond and fourth order
omputations. Figure 6.23 
ompares the di�eren
e in the optimal CD value forse
ond and fourth order s
hemes with mesh re�nement; the plotted value of se
ondorder CD optimal are obtained using fourth order CFD simulation on the optimalshape obtained using se
ond order s
heme.86



Figure 6.23: Optimal CD value with mesh re�nementThe �gure shows that the two s
hemes tend to rea
h the same value of theoptimal CD with mesh re�nement with only one drag 
ount di�eren
e (whi
h ison order of the dis
retization error). This behavior is expe
ted as transoni
 CFDsimulations using se
ond and fourth order s
hemes for the same geometry produ
ealmost the same surfa
e pressure distribution and hen
e obje
tive fun
tion value.The root mean square of di�eren
e between the se
ond and fourth order optimizedairfoil pro�les of drops from 3 · 10−5 on the 
oarsest mesh to 2 · 10−5 on the �nestgrid.
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Chapter 7PARTICLE SWARMOPTIMIZATION AND A NEWHYBRID OPTIMIZATIONMETHOD7.1 Introdu
tion to Gradient Free OptimizationGradient based optimization results depend on the optimization starting point. To�nd a global optimal solution, gradient independent methods are an obvious 
an-didate. Perhaps the best-known non-gradient based optimization te
hnique is thegeneti
 algorithm [30℄, a biologi
ally-inspired approa
h whi
h 
an �nd the globaloptimal point of an obje
tive fun
tion with multiple lo
al optima. In geneti
 al-gorithm optimization, a randomly generated population of 
andidate solutions aregenerated; their �tness is determined by the value of the obje
tive fun
tion [29℄. So-lution points with the best �tness are sele
ted to be parents of the next generation.A new generation of o�spring is generated by 
rossover and mutation of the parents'geneti
 
hara
teristi
s (that is, the parents' solution point lo
ations in the designspa
e). This pro
edure is repeated until the globally optimal solution is obtained.The number of individuals in ea
h generation should not be less than the numberof design variables, otherwise poor optimization 
onvergen
e will result. Figure 7.1shows a �ow
hart of a simple geneti
 algorithm optimizer. The dependen
y of thepopulation size on the number of design variables and the large number of genera-tions required to 
onverge to the global optimum 
ombine to make geneti
 algorithmimpra
ti
ally expensive for large aerodynami
 optimization problems. Geneti
 algo-88



rithm optimization has been used for aerodynami
 optimization problems by manyresear
hers. A geneti
 algorithm was used for transoni
 wing drag minimizationwith a lift 
onstraint by Gage and Kroo [29℄. Anderson used GA for wing aerody-nami
 shape optimization with stru
tural 
onstraints [1℄. Jang and Lee used GA tomaximize lift to drag ratio of an airfoil using the Euler �ow model with the NACA0012 as a starting geometry [44℄. Oyama et al applied a geneti
 algorithm with aNavier-Stokes solver for transoni
 wing optimization [70℄. They also explored theuse of fra
tal analysis in GA aerodynami
 optimization [71℄.Parti
le swarm optimization is a random sear
h te
hnique �rst introdu
ed in1995 as a te
hnique that simulate the behavior of a herd of predators hunting forfood [46℄. This te
hnique has proved to be faster than geneti
 algorithm to rea
hthe global optimal by many resear
hers (for example, [34, 59℄); swarm intelligen
ehas the advantage of not being highly sensitive to problem dimensions [79℄, whi
his not true for evolutionary optimization like geneti
 algorithm. The parti
le swarmoptimization method (des
ribed in Se
tion 7.2) 
an be made more e�
ient by hy-bridizing it with sequential quadrati
 programming, as des
ribed in Se
tion 7.3. Thee�e
tiveness of this hybrid approa
h for un
onstrained and 
onstrained aerodynami
optimization is demonstrated in Se
tion 7.4.7.2 Swarm Intelligen
eParti
le swarm optimization is a random sear
h method that sear
hes for the globaloptimal solution of an obje
tive fun
tion. It uses a number of swarm parti
les thats
ans the design spa
e looking for the global optimal solution. Ea
h swarm parti-
le represents a point in the design spa
e and it moves through the design spa
ea

ording to a simple formula. A parti
le's velo
ity depends on its inertia, its ownexperien
e, and so
ial experien
e gained by 
ommuni
ating with other swarm par-ti
les. The parti
le swarm te
hnique keeps a re
ord of lo
ation of the best obje
tivefun
tion value for ea
h parti
le (−→pi ) as well the global best lo
ation (−→g ), whi
h isthe best lo
ation among the −→pi 's. Algorithm 7.1 is the general pseudo 
ode of theparti
le swarm te
hnique.The velo
ity of the parti
le in an optimization iteration depends on� Its velo
ity in the previous iteration (momentum part)89



Figure 7.1: Geneti
 Algorithm optimization
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Algorithm 7.1 Parti
le swarm pseudo 
odeFor ea
h parti
le i in the swarmInitialize parti
le position −→xiSet its best position to be its initial position: −→pi = −→xiInitialize its velo
ity −→
Vi = ~0EndSet the global best position: −→g = −→pi where F (−→pi ) < F (−→pj ) for all i 6= jDoFor ea
h parti
le iCal
ulate its velo
ity−→ViUpdate its position −→xiCal
ulate its obje
tive fun
tion value (�tness) F (−→xi)If the 
urrent �tness value is better than its best �tness (F (−→xi) < F (−→pi ))Set the 
urrent parti
le position to be its best position: −→pi = −→xiEnd ifEnd forSele
t the best parti
le obje
tive fun
tion and position to be the global best if itis better than the stored valueWhile max iteration 
ount not rea
hed or 
onvergen
e 
riterion not met.
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� Its distan
e from its known best value −→pi (
ognitive part)� Its distan
e from the swarm global best value −→g (so
ial part)Figure 7.2 shows s
hemati
ally how the above three fa
tors a�e
t the parti
le ve-lo
ity, the velo
ity of ea
h parti
le and its position update are obtained using thefollowing formulas
−→
Vi(k + 1) = w

−→
Vi(k) + c1 [

−→r1 ] · {−→pi −−→xi(k)} + c2 [
−→r2 ] · {−→g −−→xi(k)} (7.1)

−→xi(k + 1) = −→xi(k) +
−→
Vi(k + 1), i = 1..N (7.2)where w = 0.73 is the inertial weight fa
tor, c1 = c2 = 1.49 are the 
ognitiveand so
ial a

eleration fa
tors respe
tively; these 
onstants are sele
ted a

ordingto Cler
's 
onstri
tion models [16℄. −→r1 and −→r2 are two random ve
tors of size Nwhose elements are independent and uniformly randomly sele
ted from the uniformdistribution on the interval [0, 1]. The � ·� operation is a 
omponent by 
omponentmultipli
ation not a dot produ
t and this is true from this point through the rest ofthe 
hapter.Parti
le swarm optimization su�ers from solution stagnation on
e the parti
leshave 
onverged to a high quality lo
ally optimal solution whi
h is not a true globallyoptimal point [23℄. To avoid this problem, a restart strategy is suggested whenpremature 
onvergen
e is dete
ted [9℄. At ea
h restart, swarm parti
les start fromnew positions in the design spa
e and 
onverge to an optimal solution; restarting is
arried out m times, and the optimal solution is the best of all global bests. Thiste
hnique is 
alled the multi-start parti
le swarm optimization (MPSO). A drawba
kof this me
hanism is that restarting may 
ause repetition of the sear
h 
omputations.Evers and Ben Ghalia suggested a more e�
ient me
hanism to es
ape from highquality lo
al wells. They re-s
atter the parti
les around the 
onvergen
e point in aregion with radius smaller than the design spa
e norm, and large enough some at leastsome parti
les to be outside the basin of attra
tion of the lo
al optimum [24, 23℄;their s
heme is 
alled the regrouped parti
le swarm optimization (RegPSO). Themain three elements in their s
heme are� Prematurity dete
tion. 92



Figure 7.2: Velo
ity 
omponents and position update of a parti
le� Rede�ning upper and lower boundaries for de
ision (design) variables.� Regrouping the parti
les by s
attering them on a sear
h domain de�ned by thenew upper and lower boundaries.In the following subse
tions, the above three elements of the RegPSO strategy willbe presented; interested readers are en
ouraged to 
onsult Evers and Ben Ghalia [23℄for more detail. All 
onstants presented in the next subse
tions were found by Eversand Ben Ghalia using numeri
al optimization experiments on standard ben
hmarkoptimization problems.7.2.1 Premature 
onvergen
e dete
tionConvergen
e is dete
ted when all parti
les 
onverge to an optimal solution and startto lose their momentum; this loss of momentum prevents es
aping from the neigh-borhood of a high quality lo
al optimal solution. Premature 
onvergen
e 
an bedete
ted when the greatest distan
e between a swarm parti
le and the global bestpoint −→g falls below a 
ertain threshold. This was suggested by Van den Bergh andadopted in Ever's work with su

ess [9, 23℄.93



For multidimensional optimization problem of size n andm parti
les, the de
isionvariables −→x =
[
x1 x2 x3 · · · xn

]T have initial upper and lower limits −→
x0U =

[
x1U x2U x3U · · · xnU

]T and −→
x0L =

[
x1L x2L x3L · · · xnL

]T . First,the range is de�ned as
−−−→range (Ω) = −→xU −−→xL (7.3)Also the normalized swarm radius 
an be found a

ording to

δnorm =
maxi=1...m ‖−→xi (k)−−→g (k)‖

‖−−−→range (Ω)‖ (7.4)Convergen
e is dete
ted when the normalized swarm radius δnorm drops below
ε = 1.1 · 10−4.7.2.2 Rede�ning de
ision variables rangeOn
e 
onvergen
e is dete
ted, the upper and lower limits of the de
ision variablesfor the regrouped swarm are 
omputed. The initial range of parti
le j 
an be foundusing its upper limit x0jU and lower limit x0jLasrangej (Ω0

)
= x0jU − x0jL (7.5)Upper and lower limits of the de
ision variables are 
hanged when 
onvergen
e isdete
ted in order to s
atter swarm parti
les in a ball surrounding the 
onvergedsolution. Changing the range of ea
h de
ision variable j in a regrouping stage r isdone a

ording to the following formula [23℄:rangej (Ωr) = max

(rangej (Ω0
)
, 1.2 × 104 max

i=1...m

∣∣∣∣
−−→
xr−1
i,j −

−−→
gr−1
j

∣∣∣∣
) (7.6)When the 
urrent range of design variables rangej is su�
iently small, the optimiza-tion problem is 
onsidered 
onverged.7.2.3 Regrouping and position 
lippingRegrouping parti
les in a region surrounding the best position −→g not only movesthem away from the lo
al minimum but allows them to re
over their momentum,94



whi
h had been lost due to 
onvergen
e. Regrouping is done a

ording to the fol-lowing formula
−→xi = −→g + [−→ri ]T · −−−−−−−→range (Ωr)− 1

2

−−−−−−−→range (Ωr) (7.7)where −−−−−−−→range (Ωr) = [range1 (Ωr) , range2 (Ωr) , . . . , rangen (Ωr)]T .Equation 7.7 requires position 
lipping to keep the parti
les within the 
on-strained design spa
e, i.e xrj,L ≦ xi,j ≦ xrj,U . The upper and lower limits of the
omponents of parti
le's de
ision ve
tor 
an be found as
xrj,L = max

(
x0j,L, g

r−1
j − 1

2
rangej (Ωr)

) (7.8)
xrj,U = min

(
x0j,U , g

r−1
j +

1

2
rangej (Ωr)

)

7.3 Hybrid SQP-RegPSO Te
hniqueSwarm intelligen
e starts with a set of randomly generated position points in thedesign spa
e and de�nes its initial best lo
ation, −→g , as the point of best �tness amongthe swarm parti
les; this best point a
t as a gravity 
enter in the design spa
e andattra
ts other parti
les to it; if the initial best point is of high quality, this redu
esthe total 
omputational e�ort to �nd the global optimal solution. The te
hnique weare proposing here for hybridization of sequential quadrati
 programing (SQP) andparti
le swarm optimization is to use SQP to �nd the initial high quality −→g beforeusing RegPSO te
hnique. The pseudo-
ode of the hybrid s
heme is summarized inAlgorithm 7.2.7.4 Optimization Test CasesThis se
tion will examine the e�
ien
y of the proposed hybrid s
heme and 
ompareit with the original RegPSO te
hnique. To do so, a drag optimization that seeks asho
k free pro�le with CL = 0.4 at M = 0.8 and angle of atta
k α = 1.5◦ is 
arriedout. Two distin
t starting points were sele
ted to explore the existen
e of a unique95



Algorithm 7.2 Hybrid SQP-RegPSO pseudo 
odeFor ea
h parti
le in the swarmInitialize parti
le position −→xiSet its best position to be its initial position: −→pi = −→xiInitialize its velo
ity −→
Vi = 0EndSet the global best position: −→g = −→pi where F (−→pi ) < F (−→pj ) for all i 6= j, or the SQPoptimal solution, whi
hever is betterSet δnorm = 1Set t = 1DoFor ea
h parti
le iCal
ulate its velo
ity−→ViUpdate its position −→xiClip position su
h that xL,j ≤ xi,j ≤ xU,jCal
ulate its obje
tive fun
tion value (�tness) F (−→xi)If the 
urrent �tness value is better than its best �tness (F (−→xi) < F (−→pi ))Set the 
urrent parti
le position to be its best position: −→pi = −→xiEnd ifEnd forSele
t the best parti
le obje
tive fun
tion and position to be the global best if itis better than the stored value

t = t+ 1Compute δnorm using Eq 7.4If δnorm ≤ εCompute the range of ea
h de
ision variable range (Ωr
j

)S
atter the parti
les around −→g a

ording to Eq 7.7Apply position 
lipping with limits de�ned a

ording to Eq 7.8End ifWhile (δnorm > ε and t ≤ max iterations).
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global best8; the �rst is to start from NACA 0012, the se
ond one is to start fromNACA 00083 airfoil.9 These 
ases were 
hosen be
ause experiments showed that SQPoptimization with these two starting points 
onverged to distin
t optimal solutionswith signi�
antly di�erent obje
tive fun
tion values. All the 
omputations here arese
ond order as we aiming to �nd a global optimization method with reasonable
omputational 
ost, not to 
ompare se
ond and fourth order optimal results.7.4.1 Constrained drag optimization of the NACA 0012In this test 
ase, drag optimization of the NACA 0012 at a lift 
oe�
ient of CL = 0.4,
M = 0.8 and angle of atta
k α = 2◦ is presented. The obje
tive fun
tion 
an bewritten as

F = CD + 10 · (CL − 0.4)2 (7.9)SQP optimization is used �rst to �nd a lo
al optimum and thus provide an initialhigh quality −→g as a starting point for the RegPSO s
heme. The optimal pro�lefound by SQP optimization with BFGS Hessian approximation was not sho
k free.RegPSO is used after SQP and su

essfully rea
hed a sho
k free pro�le. In this test
ase, the swarm size was 10 parti
les and the number of de
ision variables is 18. The�rst phase of the hybrid s
heme (SQP optimization) 
osts 92 CFD simulations whilethe se
ond phase 
osts 490 CFD simulations whi
h makes the total 
ost 582 CFDsimulations to rea
h sho
k free pro�le.Using RegPSO alone as an optimization te
hnique with a maximum of 1000 CFDsimulations does not result in a sho
k free pro�le, as the optimization has not yet
onverged to a global optimum. Fig 7.4.1 shows the pressure distribution of theoriginal NACA 0012 at transoni
 
onditions, the SQP optimal pro�le, the RegPSOoptimal shape, and the hybrid sho
k free pro�le. Drag has been redu
ed from 150drag 
ounts at the initial lo
al optimum found by SQP optimization to 8.89 drag
ounts at the �nal global optimum.Figure 7.4 shows the surfa
e pressure distribution of the original NACA 0012 air-foil, and the optimized pro�le using SQP with BFGS approximate Hessian, RegPSO,8In the 
ase of a �nite region in the design spa
e for whi
h the �ow is sho
k free, there may bea region of global �best� solutions di�ering only in the amount of dis
retization error present.9That is, an airfoil from the 4-digit NACA series with 8.3% maximum thi
kness.97



NACA 0012 Original BFGS Optimal
RegPSO 1000 CFD simulations Hybrid 492 Total CFD simulationsFigure 7.3: Pressure Field of the original NACA 0012 and the optimized pro�les

Figure 7.4: Surfa
e pressure distribution of original NACA 0012 and the optimizedpro�les 98



Figure 7.5: Airfoil shapes of original NACA 0012 and the optimized pro�lesand hybrid BFGS-RegPSO te
hniques. Figure 7.5 shows the di�erent optimized air-foil pro�les resulted from the three optimization te
hniques, note that the initialglobal best point of the hybrid s
heme is the SQP optimal shape. To study thefun
tion variation between the initial best known shape, whi
h results from SQP op-timization, and the �nal best shape of the hybrid s
heme, the ve
tor that 
onne
tsthese two points in design spa
e was divided into 100 steps and the obje
tive fun
-tion value at ea
h of these points 
omputed. Figure 7.7 shows that there is a des
entdire
tion (the ve
tor that 
onne
ts the initial and �nal −→g ) at the SQP optimal pointbut the SQP optimizer 
an not �nd it. Possible reasons for that in
lude:1. An error in the 
omputed adjoint gradient.2. The SQP gradient and the ve
tor that 
onne
ts the initial and �nal −→g areperpendi
ular due to the in�uen
e of numeri
al noise and of the behavior of theEuler �ow model physi
s in the SQP gradient as the des
ent dire
tion resultingfrom adjoint 
omputations tends to minimize the drag by shifting the sho
kwave forward so it o

urs at lower Ma
h number to redu
e its strength, whilethis me
hanism to redu
e the drag is not stri
tly followed by RegPSO s
heme. 99



Figure 7.6: Fun
tion minimization iterations in the se
ond phase of the hybrids
heme (RegPSO) with a NACA 0012 airfoil as the starting point.To determine the real reason, we 
omputed the adjoint gradient and the �nite dif-feren
e gradient at the SQP lo
al optimum, then 
omputed the angles between the� Adjoint 
omputed gradient ve
tor.� Finite di�eren
e 
omputed gradient ve
tor.� Ve
tor that 
onne
ts the SQP (lo
al) optimum and the hybrid (global) opti-mum.Table 7.1 shows the angles between those three ve
tors. The adjoint and �nitedi�eren
e gradient dire
tions are in ex
ellent agreement but are almost perpendi
ularto the third ve
tor that 
onne
ts lo
al and global optima. This observation supportsthe hypothesis that the in�uen
e of numeri
al noise and Euler �ow model physi
sprevents �nding that des
ent dire
tion; however, this needs to be veri�ed by anothertest 
ase. 100
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Figure 7.7: Obje
tive fun
tion values between SQP and hybrid optimal points (start-ing geometry: NACA 0012).
Angle in degreesAdjoint and �nite di�eren
e gradients 1.78Adjoint gradient and SQP-hybrid ve
tor 86.6Finite di�eren
e gradient and SQP-hybrid ve
tor 86.7Table 7.1: Angles between adjoint, FD., and SQP-hybrid ve
tors
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7.4.2 Constrained drag minimization of NACA 00083In this test 
ase, the same drag optimization problem is studied at the same transoni

onditions, but starting from a thinner airfoil. Again, SQP 
ould not eliminate thesho
k wave on the airfoil's upper surfa
e, but a sho
k free optimal shape is obtainedusing RegPSO in the se
ond phase as shown in Fig 7.8.Figure 7.9 shows a 
omparison of the surfa
e pressure of the original NACA00083, SQP with BFGS approximate Hessian (lo
al) optimum, and hybrid BFGS-RegPSO (global) optimum results. The BFGS optimal pro�le weakens the sho
kstrength to redu
e the drag, but the hybrid s
heme eliminates the sho
k wave 
om-pletely. Figure 7.10 shows a pro�le 
omparison of the original NACA 00083, BFGSoptimal, and the hybrid optimal pro�le.The drag 
oe�
ient is redu
ed from 32 drag 
ounts at the BFGS optimal solutionto 8.89 drag 
ounts at the hybrid optimal solution. The optimal value of the drag
oe�
ient found by the hybrid s
heme in this test 
ase is the same as the valueobtained in the previous 
ase and in both 
ases, it is of order of the dis
retizationerror. The total number of CFD simulations is 1080, 80 for the SQP phase and 1000for the RegPSO phase.Again, to study the obje
tive fun
tion variation between the BFGS (lo
al) opti-mum, and the �nal (global) optimum of the hybrid s
heme, we took 100 steps on theve
tor that 
onne
ts these points and 
ompute the obje
tive fun
tion values. Figure7.12 shows the variation in the obje
tive fun
tion value along that ve
tor, whi
h isnot a des
ent ve
tor at the BFGS optimal point. Also, there is numeri
al noise in theobje
tive fun
tion values at some stations along that ve
tor, in addition to an ap-pearan
e then vanishing of a sho
k wave. As in the previous test 
ase, we 
omputedthe obje
tive fun
tion gradient at the initial gBest using adjoint and �nite di�eren
estrategy and 
al
ulated its angle with the ve
tor that 
onne
ts the initial and the�nal best position ve
tors −→g obtained using the hybrid s
heme. Table7.2 shows thatthe ve
tor 
onne
t the initial and �nal best solutions is almost perpendi
ular to theadjoint and �nite di�eren
e gradients; it shows also that adjoint and �nite di�eren
egradients are a very good mat
h. The orthogonality of these ve
tors was previouslynoted in the last test 
ase as well. This strongly suggests that numeri
al noise inthe gradient and the in�uen
e of the �ow model physi
s prevents �nding a des
ent102



NACA 00083 original BFGS Optimal
Hybrid OptimalFigure 7.8: Pressure surfa
e of NACA 00083 and the optimized pro�lesAngle in degreeAdjoint and Finite di�eren
e 0.27Adjoint and SQP-hybrid ve
tor 86.93Finite di�eren
e and SQP-hybrid ve
tor 86.87Table 7.2: Angles between adjoint, FD, and BFGS-hybrid best solutions ve
torsdire
tion that leads from the SQP lo
al optimum to the sho
k free global optimum.

7.4.3 Aerodynami
 and thi
kness 
onstraint drag minimization ofNACA 0012In this test 
ase thi
kness is 
onstrained to be tc = 0.1 at xtc = 0.35, in addition tothe lift 
onstraint CLc = 0.4 at transoni
 
onditions, M = 0.8 and α = 1.5◦. SQPwith BFGS Hessian approximation optimization te
hnique is �rst used, the obje
tive103



Figure 7.9: Surfa
e pressure of NACA 00083 and the optimized pro�les

Figure 7.10: Pro�le 
omparison of NACA 00083, BFGS optimal, and hybrid optimalairfoils 104



Figure 7.11: Fun
tion minimization iterations in the se
ond phase of the hybrids
heme (RegPSO) of NACA 00083 start
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Figure 7.12: Obje
tive fun
tion values between BFGS and hybrid optimal points,starting geometry NACA 00083 105



fun
tion to be minimized is
F = CD + 10 (CL − 0.4)2 (7.10)subje
t tot (xtc) = tcThe thi
kness 
onstraint 
an be 
ast as an equality 
onstraint equation using thesurfa
e parametrization matrixQ2 [AQ1]

†; for this test 
ase, xc < L1, so the thi
kness
onstraint equation 
an be written as
t (xtc) = P1(xtc)− P3(xtc) = tc (7.11)

∴
(
a0
√
xc + a1xc + a2x

2
c + a3x

3
c

)
−
(
c0
√
xc + c1xc + c2x

2
c + c3x

3
c

)
= tcRe
all that the relationship of polynomial 
oe�
ients and the design variables 
anbe found using Q2 [AQ1]

† as
ai =

∑(
Q2 [AQ1]

†
)
i,j

yj (7.12)Equation (7.12) 
an be used with Eq (7.11) to derive an algebrai
 linear equationthat relates the thi
kness 
onstraint tc to design variables dire
tly; this last equation
an be used as a 
onstraint equation added to the optimization problem and this
onstraint will be satis�ed using a Lagrange multiplier.For the se
ond phase of the hybrid s
heme, the thi
kness 
onstraint is satis�edusing a penalty term in the obje
tive fun
tion; the obje
tive fun
tion for RegPSOphase 
an be written as
F = CD + 10 (CL − 0.4)2 + (t (xtc)− tc)

2 (7.13)The penalty method is used to approximately satisfy the thi
kness 
onstraint termdue to the la
k of Lagrange multiplier in non-gradient based optimization te
hniques.Drag 
oe�
ient have been redu
ed from 230 to 120 drag 
ounts in the �rst phase,then redu
ed to 9 drag 
ounts using the hybrid s
heme, a sho
k free pro�le is obtainedas shown in Figs (7.13, 7.14) ; this sho
k free pro�le is obtained with 900 CFDsimulations in total. 106



NACA 0012 original Hybrid OptimalFigure 7.13: Pressure surfa
e of NACA 0012 and the optimized pro�les with thi
kness
onstraint

Figure 7.14: Surfa
e pressure of NACA 0012 and the optimized pro�le with thi
kness
onstraint
107



NACA 00083 original Hybrid OptimalFigure 7.15: Pressure surfa
e of NACA 00083 and the optimized pro�les with thi
k-ness 
onstraint7.4.4 Aerodynami
 and thi
kness 
onstraint drag minimization ofNACA 00083This test 
ase is a repeat of the last one, but the starting geometry is di�erent. Thestarting geometry is NACA 00083 whi
h does not satisfy the thi
kness 
onstraint.The SQP optimizer is used �rst;it satis�es the thi
kness 
onstraint after the �rst fewiterations, then it starts to minimize the drag. Drag is redu
ed from 60 drag 
ountsto 40 drag 
ounts in the �rst phase. The se
ond (RegPSO) phase redu
ed the dragto 9 drag 
ounts and produ
ed a sho
k free optimal shape, as shown in Figs. 7.15and 7.16.Comparison of the optimized pro�les of the last two test 
ases are shown inFig. 7.17. The two pro�les are very 
lose in upper surfa
e shape, whi
h is tightly
onstrained by the need to eliminate the sho
k wave; there is more di�eren
e in thelower surfa
e on whi
h the �ow is subsoni
. The last observation suggests that forinvis
id �ow simulations, there is a region of global optimal solution rather than onepoint global optimum. More pre
isely, on
e a sho
k-free solution is obtained, theobje
tive fun
tion is too �at to distinguish reliably between the drag of sho
k-freesolutions; this is not surprising, 
onsidering that the drag for sho
k-free invis
id �owsis due solely to dis
retization error.In all test 
ases, the new hybrid s
heme was able to �nd a sho
k free airfoil pro�leregardless of the starting points. Only ten parti
les were using in the swarm to s
anthe design spa
e, whi
h is roughly half of the number of design variables. This islower than the re
ommended population size required by GA to 
onverge well. The108



Figure 7.16: Surfa
e pressure of NACA 00083 and the optimized pro�le with thi
k-ness 
onstraintoptimization 
omputational 
ost is four to nine times the 
ost of SQP optimization.Using SQP optimization with ten di�erent starting geometries might lead to a sho
kfree pro�le, but there is no guarantee for that. As the results above show, there isa high 
han
e of getting trapped in lo
al minima or su�ering a breakdown in theoptimization pro
ess be
ause of solution noise.Table 7.3 shows the e�e
t of the thi
kness penalty weight on the optimizationresults using se
ond order a

urate 
omputations. It shows that a thi
kness penaltyweight of 10 is su�
ient to satisfy the thi
kness geometri
 
onstraint, but it willin
rease the value of CDopt and may prevent obtaining a sho
k free optimal pro�le.Figure Shows a 
omparison of the optimal pro�les using two di�erent thi
knesspenalty weights; the maximum thi
kness of the optimized airfoils were 0.077 and0.095 respe
tively for thi
kness penalty of 1 and 10. Therefore it is re
ommendedto use a thi
kness penalty of order of 10 in order to satisfy a maximum thi
kness
onstraint. Figure 7.18 shows a 
omparison of the optimal pressure distribution ofthe two optimal pro�les; a sho
k free pressure distribution is obtained using thi
knesspenalty weight of 1. The drag 
oe�
ient for this pro�le is 9 drag 
ounts whi
h is109



Figure 7.17: Pro�le 
omparison of the hybrid s
heme optimal pro�les, starting ge-ometries NACA 0012 and NACA 00083
of order of dis
retization error. It shows also that with thi
kness penalty weight10, there is a weak 
ompression wave on the airfoil upper surfa
e whi
h 
auses anin
rease in the drag 
oe�
ient to 17 drag 
ounts.
Thi
k. penalty Fopt CDopt

CLopt t (xtc) Lift penalty Thi
k. penaltyweight1 0.00134 0.00088 0.3997 0.077 0.000001 0.0004810 0.00208 0.0017 0.4005 0.095 0.0000026 0.00025Table 7.3: Thi
kness penalty weight impa
t on the optimization results of NACA00083 using hybrid s
heme 110
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Figure 7.18: Thi
kness penalty weight impa
t on the Optimal pressure distributionof NACA 00083 using hybrid optimization s
heme.
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Figure 7.19: Thi
kness penalty weight impa
t on the Optimal pro�le with NACA00083 starting geometry using hybrid optimization s
heme.111



Algorithm 7.3 Pseudo 
ode of RegPSO-SQP �hybridT� optimization s
heme1. Use the initial geometry as the initial global best −→g .2. Randomly generate swarm.3. Add the initial geometry as a swarm member.4. Use RegPSO strategy with stopping 
riterion of max 900 CFD simulations to�nd an estimated global best −→g .5. Use SQP with starting point −→g to �nd better global best solution.7.5 Comparing SQP-RegPSO with RegPSO-SQPoptimization strategiesI have presented results of the proposed hybrid optimization s
heme in whi
h SQPoptimization is used to obtain a reasonably good upper bound on the global optimum.Based on the results of previous test 
ases, this s
heme seems to be a promisingglobal optimization s
heme. Another hybrid s
heme in whi
h RegPSO pre
edes SQPoptimization is possible. In this se
tion I will 
ompare the optimization results of thelast �ve optimization problems using the proposed hybrid s
heme with the resultsof RegPSO-SQP s
heme; I will refer to the latter s
heme as hybridT. Algorithm 7.3shows a pseudo 
ode of hybridT optimization.Both s
hemes has two phases, SQP phase and RegPSO phase, but they di�erin the order of the phases. Tables 7.4 and 7.5 summarize the optimization resultsfor both s
hemes. Figures 7.20�7.24 show a 
omparison of the obtained pressuredistribution of the optimal shape obtained using these s
hemes. These 
omparisonsshow that the hybrid s
heme is better than the hybridT for all 
ases; in Case II, thes
hemes are nearly identi
al in drag 
oe�
ient though di�erent in �nal shape. Thiswas expe
ted be
ause in hybridT if the �rst (RegPSO) phase 
ould not rea
h thebasin of attra
tion of the global minimum, the se
ond (SQP) phase will not be able to�nd it. Tables 7.4, 7.5 show a 
omparison of Phase I and Phase II optimal obje
tivefun
tion value for both hybrid and hybridT for the �ve test 
ases in this 
hapter. Asa hybridization quality measure, the ratio of the optimal obje
tive fun
tion phase112



Case Phase I Opt (SQP) Phase II Opt (RegPSO) Phase II/II10 0.0150 0.0009 0.0600II11 0.0032 0.0009 0.2813III 12 0.0120 0.0013 0.1083IV 13 0.0040 0.0013 0.3250V14 0.0040 0.0021 0.525Table 7.4: Optimization results of the hybrid s
heme in Phase I, IICase Phase I Opt (RegPSO) Phase II Opt (SQP) Phase II/II 0.0137 0.0049 0.358II 0.0019 0.0011 0.579III 0.0125 0.0125 1.0IV 0.0017 0.0017 1.0V 0.0052 0.0052 1.0Table 7.5: Optimization results of the hybridT s
heme in Phase I, IIII to Phase I optimal is used and the smaller this value the more su

essful thehybridization sequen
e is. The tables show also that the sequen
e used in hybrid isbetter than hybridT.
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Figure 7.20: Hybrid and hybridT optimal pressure distribution for NACA 0012 (CaseI).
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Figure 7.21: Hybrid and hybridT optimal pressure distribution for NACA 00083(Case II).
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Figure 7.22: Hybrid and hybridT optimal pressure distribution for NACA 0012 with10% thi
kness 
onstraint and unit thi
kness penalty weight (Case III).
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Figure 7.23: Hybrid and hybridT optimal pressure distribution for NACA 00083 with10% thi
kness 
onstraint and unit thi
kness penalty weight (Case IV).
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Figure 7.24: Hybrid and hybridT optimal pressure distribution for NACA 00083 with10% thi
kness 
onstraint and ten thi
kness penalty weight (Case V).
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Chapter 8CONCLUSIONS ANDRECOMMENDATIONS8.1 Contributions and Con
lusionsThis thesis presents the �rst study of the use of high order �nite volume CFDmethods in aerodynami
 optimization. I have developed the �rst �nite volume basedoptimization 
ode that uses high order Ja
obian in gradient 
omputations using theadjoint te
hnique. A new geometry parametrization te
hnique has been developedand presented; this new te
hnique is based on least squares surfa
e �tting. To developan e�
ient global optimizer, a new hybrid SQP-RegPSO s
heme has been developedto �nd the global optimal solution in the feasible design spa
e.I presented both 
onstrained and un
onstrained aerodynami
 optimization usingsequential quadrati
 programming with the use of adjoint method to 
ompute theobje
tive fun
tion gradient. The 
omputations were based on higher order �nitevolume method on unstru
tured grids. I took advantage of evaluating the exa
tJa
obian matrix to 
ompute the �ow adjoint �eld and �ow solution sensitivity. The
omputed gradient based on the adjoint method is an ex
ellent mat
h with the
orresponding �nite di�eren
e gradient in subsoni
 �ow for both se
ond and fourthorder s
hemes. For transoni
 �ow, the se
ond order Ja
obian mat
hes well withthe 
orresponding order of a

ura
y �nite di�eren
e gradient; on the other hand,the fourth order Ja
obian does not mat
h the �nite di�eren
e gradient well whenusing a limiter. This error in the fourth order gradient is attributed to the highsensitivity of the fourth order Ja
obian matrix to the use of the limiter in transoni
�ow whi
h tends to a�e
t the diagonal dominan
e of the Ja
obian matrix. To ta
klethis problem and to enhan
e the diagonal dominan
e of the fourth order Ja
obianmatrix, we used the same non-zero stru
ture of the se
ond order Ja
obian matrix119



and dropped the rest of the non-zero elements; this tends to in
rease the diagonaldominan
e of the modi�ed fourth order Ja
obian matrix and improves its 
onditionnumber.I have developed a new approa
h for smooth parametrization of airfoil shapes,based on a least-squares �t of the parameters of two polynomials to a set of 
ontrolpoints. Compared with using all mesh points as design variables, this approa
hredu
es the size of the design spa
e and eliminates os
illations in the shape. We usea semi-torsional spring analogy to deform the mesh grid in the entire �ow �eld whenthe surfa
e shape evolves during optimization. It is used also to 
al
ulate the meshsensitivity terms in the adjoint gradient.To test the developed gradient based optimizer; I have used the optimizer tota
kle inverse design problems in whi
h only one optimal solution point in the de-sign spa
e exists. Additional transoni
 drag minimization test 
ases have been pre-sented with and without lift 
onstraint. As a summary of test 
ases observations: Asubsoni
 inverse design test 
ase shows that both se
ond and fourth order s
hemesrea
hed their target geometry after almost the same number of iterations. The samebehavior is observed for transoni
 inverse design test 
ase. This indi
ates that the
onvergen
e is independent of the order of a

ura
y of the spatial dis
retization. Ina drag minimization test 
ase without lift 
onstraint, both se
ond and fourth orders
heme rea
hed their optimum shape after almost the same number of optimiza-tion iterations. The di�eren
e of the resulting optimal airfoil shape is small. Boths
hemes redu
ed the drag by almost 50% of its original value but the lift also wentdown.In a drag minimization test 
ase with lift 
onstraint, the fourth order s
hemewas faster to rea
h its optimal shape with 8 optimization iterations (whi
h 
ost49 CFD simulations), while the se
ond order s
heme took 13 iterations (112 CFDsimulations) to rea
h its optimum. Both s
hemes rea
hed their optimum with almostthe same wall 
lo
k run time and found nearly identi
al airfoil optimal shapes. Basedon all the test 
ases we presented, we 
on
lude that the spatial dis
retization errorprodu
es a systemati
 error in the obje
tive fun
tion and has a little e�e
t on the�nal optimal shape.A mesh re�nement study shows that both se
ond and fourth order s
hemes tendto give the same optimal value for the obje
tive fun
tion as we re�ne the mesh.120



Based on the results of this resear
h, I re
ommend the use of a high order method forobje
tive fun
tion value 
omputations and for a

urate predi
tion of for
es and sho
kwave 
apture in transoni
 �ows, and the use of a se
ond order method (but based onthe obtained forth order solution) to 
ompute the obje
tive fun
tion gradient neededfor gradient based optimizer. If the mesh resolution makes se
ond and fourth ordersimulation results similar, using the se
ond order s
heme for optimization will bee
onomi
al.I have developed also a new hybrid gradient/non-gradient based optimizationte
hnique that uses sequential quadrati
 programming with BFGS Hessian approx-imation te
hnique in an initial gradient based optimization phase, followed by theregrouped parti
le swarm optimization method in the non-gradient random sear
hphase. The SQP optimization phase leads to a high quality initial best-solutionpoint that redu
es the total 
omputational e�ort of the RegPSO to rea
h a sho
kfree pro�le.Unlike with the SQP s
heme, the transoni
 drag optimization with lift 
onstraintof the NACA 0012 and NACA 00083 ta
kled with the hybrid s
heme lead to sho
kfree optimal shapes; in both 
ases, the obje
tive fun
tion gradient ve
tor is almostperpendi
ular to the ve
tor that 
onne
ts the SQP optimum and the hybrid opti-mum. This explains why the gradient based optimization 
an not rea
h the globaloptimal, and also shows that its optimal solution depends on the starting geometry.The obje
tive fun
tion behavior along the ve
tor that 
onne
ts the SQP and thehybrid optima shows that numeri
al noise may have a harmful impa
t on gradientbased optimization as well.Transoni
 drag optimization of NACA 0012 and NACA 00083 have been ta
k-led with both aerodynami
 and geometri
 
onstraints. For RegPSO, the geometri

onstraint is satis�ed using penalty method; in both 
ases, sho
k free pro�les havebeen obtained. The last test 
ase (drag redu
tion of NACA 00083 with a thi
kness
onstraint) shows that the hybrid s
heme was able to �nd a sho
k free pro�le despitein
reasing the thi
kness during optimization. The 
omputational expense of the hy-brid s
heme is four to nine times more than SQP optimization, but in all 
ases, aglobal optimal (sho
k free) pro�le obtained, and in aerospa
e industry, this is worththe in
rease in 
omputational e�ort. 121



8.2 Future WorkWe intend to apply non gradient-based optimization te
hniques like parti
le swarmalgorithm to study the e�e
t of CFD s
heme order of a

ura
y on the �nal optimalshape in the near future. Another obvious extension of the 
urrent work is aero-dynami
 optimization using RANS with turbulen
e models. The �ow solver shouldsolve the turbulen
e equations 
oupled with the mean �ow equations; otherwise, the�ow sensitivity values will be less ina

urate. Thus, for a three dimensional �owsimulation with k − ǫ turbulen
e model, the blo
k size of the Ja
obian matrix is
7× 7. Fully 
oupled solvers have also been shown to 
onverge more e�
iently.For three-dimensional problems, the geometry parametrization should be re-pla
ed with a perturbation parametrization (parametrization of the 
hange in theshape). This will redu
e the required number of design variables whi
h is veryimportant for three dimensional optimization problems. Importantly, perturbationparametrization also prevents the 
hange in the initial pressure distribution whenparametrizing the geometry itself.Exploring the e�e
t of the geometry parametrization te
hnique used on SQP opti-mization results is needed. We spe
ulate that using the right geometry parametriza-tion te
hnique may lead to a design spa
e in whi
h aerodynami
 
onstraints aresimply 
onne
ted and an SQP optimizer 
an �nd a globally optimal solution.
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