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AbstratThe growth of omputer power and storage apaity allowed engineers to takleengineering design as an optimization problem. For transport airraft, drag mini-mization is ritial to inrease range and redue operating osts. Lift and geometrionstraints are added to the optimization problem to meet payload and rigidity on-straints of the airraft. Higher order methods in CFD simulations have proved tobe a valuable tool and are expeted to replae urrent seond order CFD methodsin the near future; therefore, exploring the use of higher order CFD methods inaerodynami optimization is of great researh interest and is one goal of this thesis.Gradient-based optimization tehniques are well known for fast onvergene, butthey are only loal minimizers; therefore their results depend on the starting pointin the design spae. The gradient-independent optimization tehniques an �ndthe global minimum of an objetive funtion but require vast omputational e�ort;therefore, for global optimization with reasonable omputational ost, a hybrid op-timization strategy is needed.A new least-squares based geometry parametrization is used to desribe airfoilshapes and a semi-torsional spring analogy mesh morphing tool updates the grideverywhere when the airfoil geometry hanges during shape optimization.For the gradient based optimization sheme, both seond and fourth order sim-ulations have been used to ompute the objetive funtion; the adjoint approah,well known for its low omputational ost, has been used for gradient omputa-tion and mathes well with �nite di�erene gradient. The gradient based optimizerhave been tested for subsoni and transoni inverse design problems and for dragminimization without and with lift onstraint to validate the developed optimizer.The optimization sheme used is Sequential Quadrati Programming (SQP) with theBFGS approximation of the Hessian matrix. A mesh re�nement study is presentedfor an aerodynamially onstrained drag minimization problem to show how seondii



and fourth order optimal results behave with mesh re�nement.A hybrid partile swarm / BFGS sheme has been developed for use as a globaloptimizer. It has been tested on a drag minimization problem with a lift onstraint;the hybrid sheme obtained a shok free pro�les, while gradient-based optimizationould not in general.
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Chapter 1INTRODUCTIONDrag redution of transport airraft is of great importane beause it redues airraftfuel onsumption and thereby redues operating osts and environmental impat inthe form of pollution and global warming. Drag, lift and other aerodynami foresan be predited using CFD simulations, whih have beome an essential tool foraerodynami analysis and design. CFD simulations arried out using unstruturedgrids give aurate aerodynami fore preditions, and unstrutured grids have theadvantage of easily representing any omplex shape. As most transport airrafttravel at transoni speed, it is of great importane to redue the wave drag byweakening or entirely eliminating shok waves on the wing. Aerospae engineers useCFD simulations with numerial optimization tehniques for aerodynami design;the optimization problem is to minimize an aerodynami objetive (often drag) byhanging geometri design variables, given an initial aerodynami shape and subjetto some geometri and aerodynami onstraints. This proess requires aurateassessment of the aerodynami harateristis of a given geometry. The �ow modelused in this researh is Euler's �ow model; although this model neglets visous �owe�ets, reduing the drag using this invisid �ow model will ultimately redue thedrag on real on�gurations as the invisid drag is about 40% of the total drag [47℄.A higher order �nite volume CFD solver developed by C. Ollivier-Gooh and o-workers [68, 61, 56℄ is used in this researh.Optimization shemes an be divided into two main ategories: gradient-basedand non-gradient-based shemes. Gradient-based shemes require omputing the ob-jetive funtion value and its gradient with respet to the design variables, while thenon-gradient-based tehniques require only omputing the objetive funtion value.Gradient-based shemes are fast to onverge to a loal optimal point in the designspae ompared to the non-gradient-based methods, but the optimal solution foundby gradient-based optimization depends on the starting point [33℄. Non-gradient-1



based shemes an �nd global minimum solution regardless of the starting point,but with larger omputational ost ompared to gradient-based sheme.
1.1 Finite Volume Flow SolverThe two dimensional integral form of Euler's equation an be written for a ontrolvolume Ωi as
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Un = nxu+ nyvwhere is the �uid density, u and v are the Cartesian veloity omponents, p is thepressure, and E is the energy per unit volume. Un is the veloity in the diretionnormal to the ontrol volume boundary. Other thermodynami relations like thespei� heats at onstant pressure (Cp) and onstant volume (Cv), the ratio of spei�heats γ an be expressed in terms of the gas onstant for air, R:
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For a thermally and alorially perfet gas, thermodynami properties an be relatedby
P = ρRT
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γRTwhere T is the temperature, e is the spei� internal energy, et is the spei� totalenergy, h is the spei� enthalpy, and a is the speed of sound.For disrete solution of the Euler equations, �ow properties are normalized bysome referene values in order to redue the round-o� errors in the disretized linearsystem; for external aerodynamis, the normalized �ow properties are as follows
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LWith this normalization, the normalized Euler equations are idential to their di-mensional form with the addition of [̄·] to every variable. From this point on, thenormalized �ow properties are used and therefore [̄·] will be dropped.The �ux is evaluated using Roe �ux di�erene splitting tehnique [74℄ and eval-uated at eah ell fae κ using the following formula
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as follows
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) (1.3)The Roe-averaged Jaobian matrix Ã has four eigenvalues. Three of these are dis-tint, but the eigensystem is omplete. The Roe dissipation matrix an be writtenin terms the eigenvalues and eigenvetors of the Jaobian as
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∣∣∣ 0

0 0 0
∣∣∣Ũn − ã
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where X̃ is the eigenvetor matrix evaluated using Roe-averaged �ow quantities; theterm ∣∣∣Ã
∣∣∣ (QR −QL) an be written aording to Frink as follows [27, 26℄
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ã2

)



1

ũ
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h̃o ± Ũnã




△ρ = ρR − ρL, △u = uR − uL, △v = vR − vL,

△P = PR − PL, △U = nx△u+ ny△vHigher-order auray is obtained by least-squares reonstrution of the non-onservedvariables U =
[
ρ u v p

]T and Gauss quadrature in �ux integration [68, 61℄.After integrating �uxes around eah ontrol volume in the mesh, an impliit timedisretization leads to a sparse system of linear equations, whih for the simplestase of a global time step an be written as,
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is the global Jaobian matrix, and Ris the residual. The steady state solution is obtained iteratively when △Q → 0. Inpratie, we use a quasi-Newton generalization of Eq. 1.6 that inludes residual-basedloal time stepping [57℄ and solve the system using GMRES [75℄.1.2 Numerial Aerodynami OptimizationAerodynami design used to rely on CFD simulations in onjuntion with experimen-tal testing and engineering intuition of the designer. With the growth of high speedomputers, integrating numerial optimization shemes with CFD simulations has5



beome possible and is now used for aerodynami design and optimization. Gradient-based optimization tehniques are widely used beause they reah an optimized shapeafter a reasonable exeution time; however, the �nal optimal shape is the loal min-imum loated downhill from the optimization starting point. Non-gradient-basedmethods like geneti algorithm (GA) or partile swarm (PS) are slower to �nd anoptimum but an �nd the global minimum regardless of the starting point; theirdrawbak is the large number of iterations required to reah this minimum om-pared to gradient-based shemes.1.2.1 Gradient-based aerodynami optimizationGradient-based optimization depends on evaluating the gradient of the objetivefuntion with respet to the design variables and using the gradient in a linearmodel (steepest desent) or a quadrati model (Newton or quasi-Newton model)to �nd a searh diretion; this searh diretion is the diretion in whih the de-sign variables should hange their values to minimize the objetive funtion [66℄.Gradient-based tehniques have been widely used in aerodynami optimization duetheir fast onvergene to an optimal solution. The obtained optimal shape is bi-ased by the optimization starting point (initial aerodynami shape), and there isno guarantee that gradient-based methods an �nd the global best optimal shapein the design spae [2℄. Hiks and Henne where among the �rst to apply gradient-based optimization tehniques in aerodynami design in the late 1970's [35℄. Sinethen many researhers have investigated the use of gradient-based optimization teh-niques like steepest desent and quadrati programming in aerodynami optimiza-tion [17, 31, 28℄. The most expensive part of gradient-based optimization is thegradient alulation. Hiks and Henne used �nite di�erene rules to alulate theobjetive funtion gradient. This means that two CFD simulations were required foreah design variable to ompute the gradient (using a entral �nite di�erene rule),whih is omputationally expensive. The same strategy was applied by Consentinoand Holst to optimize transoni wings [17℄. The use of the adjoint method, whihwas originally applied to aerodynamis problems by Jameson, to ompute the gra-dient redued the omputational ost of gradient alulation to the ost of one �owsimulation regardless of the number of design variables [41, 43, 60, 38, 39, 42, 11, 62℄.6



Figure 1.1: Airfoil aerodynami optimization yle using gradient-based optimizationNumerous researhers have applied gradient-based optimization using the ad-joint approah in aerodynami optimization sine the early 1990's. Reuther and hiso-workers applied the adjoint approah for aerodynami optimization of airrafton�guration using Euler's �ow model [73℄. Jameson developed an adjoint formula-tion for the Navier-Stokes equations and applied it to transoni wing optimization[43℄; in this work, Jameson suggested that an optimal pressure distribution �rst beobtained using Euler's �ow model then used as a target pressure for an inverse designoptimization problem using a Navier-Stokes adjoint optimizer to redue the overallomputational ost. However, Jameson treated the eddy visosity as onstant whihwas later shown to be a bad assumption. Anderson and Bonhaus examined the e�etof the strength of oupling of the turbulene model to the �ow equations. They om-pared the adjoint gradient of the �ow equations, with the eddy visosity frozen, withthe �nite di�erene gradient of the ombined �ow and turbulene equations, andfound that freezing the eddy visosity an lead to signi�ant error in the omputedgradient. Therefore, they developed a �ow solver that ouples the Spalart-Allmarasone-equation turbulene model with the �ow equations; their oupled solver used
5× 5 bloks for two dimensional �ows and 6× 6 bloks for three dimensional ases.They found that this oupling of the turbulene equations with the �ow equations led7



to an aurate adjoint gradient [3℄. The same observation was veri�ed by Nielsen andKleb who extended their adjoint solver to deal with hemially reating �ows [65℄.Zymaris et al developed a ontinuous adjoint optimizer for turbulent �ow using the
k − ε turbulene model and applied it to dut optimization; they showed also thatthe assumption of onstant eddy visosity leads to great inauray in the omputedgradient and this leads to a poor searh diretion [88℄.Regarding the optimization tehnique used, early researhers used the steepestdesent sheme, in whih the design variables are updated on a searh diretionexatly opposite to the gradient of the objetive funtion [66, 4℄. This sheme hasbeen implemented by Jameson and other researhers [37, 41, 73, 3℄, but as thesteepest desent sheme requires a large number of iterations to onverge to minimalpoint, the sequential quadrati programming (SQP) sheme seems to be an attrativeandidate as an optimization tehnique. The use of SQP requires omputing theHessian of the objetive funtion with respet to the design variables. The exatHessian is expensive to ompute and may not be positive de�nite; therefore, theBroyden�Flether�Goldfarb�Shanno (BFGS) approximate formula is often adoptedto approximate the Hessian using objetive funtion gradient history [12, 13, 87℄. TheBFGS approximation always gives a positive de�nite approximate Hessian, thereforea real optimization searh diretion is guaranteed. Dadone et. al used BFGS inaerodynami optimization for transoni and supersoni wings and ompared BFGSand steepest desent; there results showed that the BFGS method is more e�ientin �nding the optimal solution and is less sensitive to any inauray aused byapproximation in gradient omputations [19℄. BFGS optimization has also been usedby Neme and Zingg in subsoni and transoni turbulent aerodynami optimizationof two dimensional airfoil [63℄.1.2.2 Gradient free optimizationGradient free or gradient independent optimization methods, also known as heuris-ti optimization methods, are optimization tehniques that do not require objetivefuntion gradient omputation and therefore an be applied to non-di�erentiableproblems. They an be ategorized as evolutionary shemes (inluding geneti algo-rithms) and random searh shemes (like the partile swarm tehnique).8



Geneti algorithm optimization is an evolutionary optimization algorithm thatis inspired by Darwin's theory of evolution and natural seletion [30℄. The designvariables are treated as hromosomes and optimization is arried out by rossing andmutating these hromosome to �nd a better solution that minimizes the objetivefuntion. The initial population is randomly generated, the objetive funtion valueis omputed using CFD for eah population member and a �tness value is omputedbased on that; some members are seleted based on their �tness to be the parents ofthe next generation and are used to generate the hromosomes of the o�spring of thenext optimization iteration. Transoni wing optimization using a geneti algorithmwas explored by Gregg and Misegades [32℄ and by Gage and Kroo [29℄ in the late1980's to minimize drag with lift onstraint. Somewhat later, Anderson applieda geneti algorithm in subsoni wing optimization with strutural onstraints [1℄;he added the geometri and aerodynami onstraints to the objetive funtion aspenalty terms. Jang and Lee applied a geneti algorithm in subsoni and transoniinvisid airfoil optimization; their objetive was to maximize the lift-to-drag ratioof an airfoil, beginning from the NACA 00121 [44℄. Oyama et al applied a genetialgorithm with a Navier-Stokes solver for transoni wing optimization [70℄. Theyalso explored the use of fratal analysis in GA aerodynami optimization [71℄.The partile swarm method (PSOpt) is a stohasti optimization searh methoddeveloped by Eberhart and Kennedy in 1995, inspired by the soial behavior of bird�oks [46, 21℄. The general idea of the partile swarm optimization is to randomlygenerate a swarm of partiles in the design spae. For eah partile a �tness valueis alulated based on CFD simulation. Then partiles ��y� in the design spaeaording to a simple formula that takes into aount that partile's own best �t-ness position and the swarm's overall best �tness position [22℄. PSOpt is known tosu�er from premature onvergene prior to disovering the true global minimizer;Evers suggests an automati regrouping PSO (RegPSO) that automatially triggersswarm regrouping when premature onvergene is deteted. The suggested regroup-ing strategy aims to liberate partiles from sub-optimal solutions and enables �ndingthe global minimum [24℄. Although the PSO algorithm has been applied to a wide1The National Advisory Committee for Aeronautis (NACA) airfoil family geometri oordinatesan be found at University of Illinois Urbana-Champaign website http://www.ae.illinois.edu/m-selig/ads/oord_database.html. An explanation of the meaning of the digits in the NACA airfoilnaming sheme an be found in [36℄. 9



range of engineering problems in the literature, very few aerodynami optimizationappliations are known. Venter and Sobieszzanski applied the partile swarm op-timization tehnique in the multidisiplinary optimization of a wing; the objetivewas to maximize the airraft range by maximizing lift-to-drag ratio and reduingthe wing weight subjet to geometri onstraints [85℄. Chandrashekarappa and Du-vigneau [15℄ used partile swarm optimization sheme to aerodynamially optimizewings in supersoni onditions; Duvigneau also applied partile swarm optimizationto aerodynami optimization of wings at transoni speed with free stream Mahnumber unertainty [20℄.1.3 Contributions of the ThesisHigh order CFD methods an ompute an aurate value of an aerodynami objetivefuntion at lower omputational ost than required when a seond order method isused. The �rst major ontribution of this thesis is a study of whether the e�ieny ofhigh order methods for CFD analysis translates into improved e�ieny for gradient-based aerodynami optimization.Gradient based optimization tehniques are known to be loal minimizers, withresults depending on the starting airfoil geometry. The seond major ontributionof this thesis is the development and study of an optimization sheme that anreah a true global optimum (for invisid transoni aerodynamis, a shok free airfoilsubjet to aerodynami and geometri onstraints) after a reasonable number of CFDsimulations. This sheme is a hybrid (BFGS + regrouped partile swarm) shemethat takes the advantages of gradient-based and gradient-free optimization shemes.To ahieve these goals, the following omponents were needed, in addition to thepre-existing high-order aurate �ow solver:An e�ient geometry parametrization method. For optimization purposes, theairfoil shape must be represented by a �nite number of design variables. Chap-ter 2 desribes the requirements on suh a parametrization and presents a newleast-squares spline parametrization method developed for this work.Robust mesh movement. As the airfoil shape hanges during optimization, theomputational mesh must be updated. Beause mesh regeneration will intro-10



due unaeptably large hanges in the disretization error, mesh movement isstrongly preferred. Chapter 3 desribes the semi-torsional spring mesh move-ment sheme used in this thesis.Mesh sensitivity alulation. Calulating the gradient of the objetive funtionaurately and e�iently requires information about the movement of the meshwith hanges in design variables. Setion 3.3 desribes this proess, whih om-bines aspets of the geometri parametrization and mesh movement shemes.Objetive funtion gradient alulation. E�ient gradient alulation requiresthe solution of the adjoint to the governing �ow equations. Chapter 4 desribeshow this is done. A key innovation of the thesis is e�ient solution of thedisrete adjoint problem for a high-order aurate �ow solution sheme. Inaddition to showing the formulation of the gradient alulation, this hapterompares �nite di�erene and adjoint gradients for subsoni and transoni �owsfor seond and fourth order �nite volume shemes. For transoni �ow, resultsare presented both with and without limiting of the omputational solution toprevent overshoots.Optimization drivers. The gradient-based optimizer using in this thesis is theBFGS-based quasi-Newton solver in Matlab's optimization toolbox. Gradientbased optimization test ases for inverse design problems and for drag mini-mization with and without a lift onstraint is shown in Chapter 6. Also, theimpat of mesh re�nement on the seond and fourth order optimal results isstudied.The regrouped partile swarm optimization ode was written by the author.This sheme and its hybridization with the BFGS sheme is presented in Chap-ter 7. Examples are given to show the e�etiveness of the hybrid sheme in�nding global optima when the gradient-based sheme is unable to.
11



Chapter 2GEOMETRYPARAMETRIZATIONThe geometry of engineered objets is de�ned mathematially in omputer-aideddesign (CAD) software, then exported as a group of points or polygons whih ap-proximates the original geometry. This disrete data provides input to mesh gener-ation software that reates a disrete representation of the omputational domain (amesh), whih in turn is used as input for CFD analysis. Aerodynami design andoptimization modi�es the aerodynami shape by hanging a set of geometri designvariables. An obvious hoie is to use all the surfae grid points of a wing, but thisapproah auses two problems. First, it makes the design spae very large and thismay lead to a highly expensive optimization. Seond, it may lead to a non-smoothgeometry due to the displaement independene of a surfae mesh point; this prob-lem an be solved by the use of a smoothing funtion, as desribed by Jameson [41℄.To avoid these problems, most optimization approahes rely on some form of geo-metri parametrization. Geometri parametrization tehniques an be lassi�ed asanalytial; piee-wise spline �tting; CAD based; and free form deformation (FFD)approahes. In Setion 2.1, a review of various geometry parametrization tehniquesis presented. Setion 2.2 desribes in detail the geometry parametrization tehniqueused in this researh, a novel piee-wise least-squares �tting tehnique [5, 6℄.2.1 Survey of Geometri Parametrization TehniquesIn this review, various tehniques applied to aerodynami optimization are presented;the basis of these tehniques and their appliation limitations are disussed, inlud-ing referene to the original papers desribing them in more detail .12



2.1.1 Analytial parametrizationThe analytial approah was �rst applied by Hiks and Henne for airfoil optimiza-tion [35℄. They suggest that weighted sinusoidal displaement shape funtions beadded to the base geometry to modify the airfoil shape; the weights are the opti-mization design variables. The sinusoidal displaement shape funtion is expressedas
h(x) =

(
sin

(
πx

ln(0.5)
ln(b)

))a

0 < x < 1 (2.1)where a and b are onstants to ontrol the peak loation and the width of thesinusoidal displaement shape funtion. a = 4 is reommended for most ases, while
b must be between 0 and 1 [45℄.The Class-Shape funtion-Transformation method (CST) is another analytialgeometry parametrization tehnique presented by Kulfan [49, 48℄. CST parametrizesthe airfoil geometry using the following formula

y = x0.5(1− x)S (x) + x△ZTE (2.2)where S (x) is the shape funtion and △ZTE is the �nite thikness of the trailingedge. Kulfan and Bussoletti reommended using a weighted Bernstein binomial oforder n as a shape funtion
S (x) =

n∑

i=0

bi
n!

i! (n− i)!
xi (1− x)n−i (2.3)where the weights bi are used as the design variables. Although CST gives non-wavypro�les, it is not apable of representing omplex geometries. Mousavi and Nadiragahompared the impat of using di�erent geometry parametrization tehniques on theoptimal wing shape; using CST parametrization gave drag oe�ients higher byabout 15% than the optimal geometry from a B-spline parametrization [58℄ for athree-dimensional lift-onstrained transoni drag minimization problem.13



2.1.2 Piee-wise spline parametrizationBezier urves an be used for airfoil shape parametrization. Obayashi used Bezierurve for aerodynami optimization using geneti algorithm [67℄; he notied thatthe Bezier urve representation fails to represent geometries that gives rooftop pres-sure distributions2 beause Bezier urves are always onvex. B-splines, a general-ization of Bezier urves, were found to be more suitable. A ubi B-spline rep-resentation is a very good geometry parametrization tehnique. Better ontrol ofthe ubi spline representation an be obtained by inreasing the number of splinesthat represent the airfoil; Li et al. optimized the NACA 0012 at single point andmulti-point operating onditions with a lift onstraint using spline representation asgeometry parametrization tehnique [50℄. CAD systems typially use non-uniformrational B-spline (NURBS) representation for geometry modeling, allowing them torepresent any omplex geometry; a detailed disussion of NURBS an be foundin The NURBS Book [72℄. Mengistu and Ghaly applied suessfully a NURBSparametrization sheme to turbomahine blade aerodynami optimization using agradient-free method [53℄. While piee-wise spline parametrization is well-suited fortwo-dimensional shapes and simple three-dimensional geometries, omplex shapesrequire a large number of ontrol points, reduing the e�etiveness of gradient-basedoptimization tehniques [76℄.2.1.3 CAD parametrizationComputer aided design pakages have evolved to implement NURBS for geometryrepresentation due the exellent properties of NURBS. Linking the CAD and gridgeneration software an be done using an API that allows aess to the CAD system'sinternal interfae [81, 8℄. However, imposing geometri onstraints is still an obsta-le. Mesh sensitivity alulation is another obstale for gradient-based optimizationtehniques based of CAD parametrization: analytial mesh sensitivity with respetto geometry design variables � the NURBS knots � an in priniple be omputedwith the use of automati di�erentiation of the CAD software but this is not possiblewithout CAD soure ode and is unlikely to be pratial even then, given the size of2Distributions for whih pressure remains almost unhanged over a signi�ant hordwise dis-tane. 14



the CAD ode base. This derivative an also be omputed using �nite di�erenes,but the risk of poor auray still exists, and omputational osts are higher [76, 77℄.2.1.4 Free form deformation (FFD)Computer graphis requires large graphial deformations suh as strething, twistingand other surfae morphing operations; soft objet animation (SOA) algorithms weredeveloped to help with the geometry morphing required in graphis animation [86℄.In SOA algorithms, the objet surfae is treated as a piee of rubber and the desireddeformation an be obtained by applying loads on it, so geometry morphing an beobtained without a hange in surfae topology. The surfae itself an be parametrizedusing Bezier or B-splines or even NURBS splines. A related approah, the free formdeformation algorithm (FFD) treats the geometry as a void in a box-shaped piee ofrubber. Deformation an be ontrolled by moving ontrol points plaed on the outersurfae of the box; the interior of the rubber box with its void is parametrized usinga tensor produt of three spline representations (one in eah oordinate diretion).Sederberg and Parry developed an algorithm that uses the FFD onept with Beziertri-variate volume representation [78℄. A disadvantage of the FFD method is that itrequires large numbers of ontrol points to obtain loal deformation in the deformedgeometry. However, Borrel and Rappoport presented a method to allow loal shapedeformation via FFD by introduing a set of ontrol points with onstrained loalB-splines that an be used to obtain deformation in a radius of in�uene determinedby the designer [10℄.2.1.5 Multidisiplinary aerodynami/strutural shapeoptimization using deformations (MASSOUD)The MASSOUDmethod is an analogy to analytial methods that tries to parametrizethe deformations in the geometry rather than the geometry itself. It also uti-lizes SOA algorithms and allows strong loal deformation ontrol. The MASSOUDparametrization requires few design variables beause it parametrizes the deforma-tion. Samareh has applied the MASSOUD method to parametrize a simple wing, awing body blend, and a omplex airraft on�guration with suess [76℄. Nielsen andAnderson suessfully adopted the MASSOUD parametrization sheme for aerody-15



nami optimization of turbulent �ow using unstrutured grids [64℄.2.2 New Least Squares Parametrization TehniqueA new least-squares based surfae parametrization method is presented in this se-tion; the airfoil surfae is parametrized using piee-wise polynomials whose oe�-ients are found by solving a least squares problem [6℄. This setion also desribeshow to implement a thikness onstraint with the new parametrization and presentssome validation test ases.2.2.1 Airfoil geometry parametrizationIn the proposed tehnique, the geometry is parametrized using piee-wise polyno-mials found by a least-squares �t. The parametrization polynomials are ontrolledby a set of ontrol points and satisfy C2 ontinuity at their meeting points. Theairfoil upper and lower surfaes are represented using two least square splines foreah surfae as shown in Fig. 2.1. The polynomials3 used are
P1(x) = a0

√
x+ a1x+ a2x

2 + a3x
3 0 < x < L1

P2(x) = b0 + b1x+ b2x
2 + b3x

3 L1 < x < L (2.4)where x is the normalized hord-wise position, L1 is hord-wise position that sep-arates the polynomial regions, and L = 1. These polynomials are suitable for anairfoil with a rounded leading edge due to the existene of the √
x term in P1 (x),whih gives an in�nite slope at x = 0. The x and y oordinates of the design ontrolpoints shown in Fig. 2.1 are used to �nd the values of the polynomial oe�ients.These polynomials must satisfy ontinuity of value, slope, and urvature at theirmeeting point x = L1. These onditions an be written as� Value ontinuity:

P1(L1)− P2(L1) = 0 (2.5)3Tehnially, P1 is not a polynomial beause of the presene of the √x term used to give in�niteslope and �nite radius of urvature at x = 0. However, the label is onvenient and not overlyonfusing. 16



� Slope ontinuity:
P

′

1(L1)− P
′

2(L1) = 0 (2.6)� Curvature ontinuity:
P

′′

1 (L1)− P
′′

2 (L1) = 0 (2.7)An additional onstraint should be added on P2(L) to assure zero thikness at thetrailing edge. The above �hard� onstraints should be stritly satis�ed by the geom-etry parametrization polynomials; they an be written in matrix form as
BP = 0where

B =




√
L1 L1 L2

1 L3
1 −1 −L1 −L2

1 −L3
1

1
2
√
L1

1 2L1 3L2
1 0 −1 −2L1 −3L2

1

−1

4
√

L3
1

0 2 6L1 0 0 −2 −6L1

0 0 0 0 1 L L2 L3



, P =





a0

a1

a2

a3

b0

b1

b2

b3



The free parameters are hosen to best approximate the y oordinates of the airfoilshape ontrol points; the x oordinates of the ontrol points are �xed. The resultingleast square system with onstraints applied an be expressed as

min ‖AP − c‖2 subjet to BP = 0 (2.8)where A ontains powers of the x oordinates at the design points so that AP givesthe y oordinates of the parametrized shape at the design points and c ontain theatual y oordinates of the design points. I have used a set of ontrol points thatontrols the airfoil shape funtions instead of using the oe�ients of the shapefuntions to ease onstraints and boundary de�nitions. To give an example of howthis least-squares system is onstruted, onsider the parametrized airfoil surfae17



Figure 2.1: Least square surfae presentation of RAE 2822 airfoil using two polyno-mials P1 (x) & P2 (x) �tted using nine ontrol points.shown in Fig. 2.1. Six ontrol points lies in the region of the polynomial P1 (x),while three points lies in the P2 (x) region. The orresponding least-squares systemis 


√
x1 x1 x21 x31 0 0 0 0

√
x2 x2 x22 x32 0 0 0 0

√
x3 x3 x23 x33 0 0 0 0

√
x4 x4 x24 x34 0 0 0 0

√
x5 x5 x25 x35 0 0 0 0

√
x6 x6 x26 x36 0 0 0 0

0 0 0 0 1 x7 x27 x37
0 0 0 0 1 x8 x28 x38
0 0 0 0 1 x9 x29 x39
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y3
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(2.9)
Beause the onstraint equation, Eq. 2.8, has a zero right hand side, the solutionvetor P must lie in the null spae of the onstraint equations, i.e. it should be alinear ombination of the null spae basis of the onstraint equations. The matrix Bis full row rank and to �nd the null spae basis of it, QR fatorization an be used:

BT = QR18



Q =
[ −→q1 −→q2 −→q3 −→q4 | −→q5 −→q6 −→q7 −→q8

]
=
[
Q1 | Q2

]The vetors of the [Q2] matrix are unit vetors forming a basis of the null spae ofmatrix B. The solution vetor P must be a linear ombination of the vetors of thematrix Q2

P = z1 · −→q5 + z2 · −→q6 + z3 · −→q7 + z4 · −→q8 = Q2z (2.10)Substituting Eq. 2.10 into Eq. 2.8
AP = AQ2z = c (2.11)Solving the least-squares system by singular value deomposition for numerial sta-bility,
z = [AQ2]

† c (2.12)where the retangular matrix [AQ2]
† is the pseudo-inverse of [AQ2]. Finally,

P = Q2 [AQ2]
† c (2.13)Equation 2.13 gives the relationship between the polynomial oe�ients P and the

y loations of the ontrol points c.
The sensitivity of the polynomial oe�ients with respet to the y loation ofthe ith ontrol point, whih is needed to alulate the mesh sensitivity ∂M/∂D, isthe ith olumn of the matrix Q2 [AQ2]

†.The dependeny of an airfoil surfae point
−→rb =

[
xa

ya

]on a design variable Di an be found from
∂−→rb
∂Di

=

[
0

∂a0
∂Di

√
xa +

∂a1
∂Di

xa +
∂a2
∂Di

x2a +
∂a3
∂Di

x3a

]
0 < xa < L1 (2.14)

∂−→rb
∂Di

=

[
0

∂b0
∂Di

+ ∂b1
∂Di

xa +
∂b2
∂Di

x2a +
∂b3
∂Di

x3a

]
L1 < xa < L19



where [ ∂a0
∂Di

∂a1
∂Di

∂a2
∂Di

∂a3
∂Di

∂b0
∂Di

∂b1
∂Di

∂b2
∂Di

∂b3
∂Di

]T is the ith vetor of the on-strained pseudo inverse matrix Q2 [AQ2]
†. This proedure an be extended toparametrize airfoil surfae using any number of piee-wise polynomials, with an a-ompanying inrease in system size. Leading edge radius and trailing edge thiknessonstraints an be added to the C2 ontinuity requirements forming the onstraintsystem BP = d, and the ontrol point oordinates are used to onstrut the system

AP = {yc}.In pratie, all airfoil surfae points are used in the least squares system to �ndthe polynomials oe�ients. After �nding the polynomials oe�ients, the designeran selet a set of ontrol points whih lies on the parametrized surfae; the leastnumber of ontrol points is two per polynomial. The less ontrol points used, theless ontrol of airfoil geometry. I have seleted nine ontrol points at spei� hord-wise x-stations based on my engineering sense; it turns out that my seleted set ofontrol points were able to produe shok free optimal pro�les as will be shown inthe next hapters, however, seletion of the ontrol points x-stations an be madeby formulating a simple minimization problem. In this problem, a set of airfoilgeometri data gathered and the objetive is to minimize the RMS error betweenthe original airfoil surfaes and the parametrized airfoil surfaes, where the designvariables are the ontrol points x-stations.2.2.2 Thikness onstraintSome airraft fuel tanks are plaed inside the wing, and the main landing gear ofsome airraft are stored in the wings after being retrated. In addition, the wing musthave su�ient bending rigidity from a strutural point of view; therefore, the wingthikness is a onstraint at some hord-wise stations. This subsetion demonstrateshow to add a thikness onstraint to the parametrization.Suppose the airfoil is parametrized using four polynomials, as shown in Fig. 2.2:two for the upper surfae
P1(x) = a0

√
x+ a1x+ a2x

2 + a3x
3 0 < x < L1

P2(x) = b0 + b1x+ b2x
2 + b3x

3 L1 < x < L20



Figure 2.2: Parametrized airfoil using four polynomials
and two for the lower surfae

P3(x) = c0
√
x+ c1x+ c2x

2 + c3x
3 0 < x < L1

P4(x) = d0 + d1x+ d2x
2 + d3x

3 L1 < x < L

If the thikness tc need to be onstrained at a station xc where 0 < xc ≤ L1 ,this onstraint will be
Ct : P1(xc)− P3(xc) = tc (2.15)

Ct :
(
a0
√
xc + a1xc + a2x

2
c + a3x

3
c

)
−
(
c0
√
xc + c1xc + c2x

2
c + c3x

3
c

)
= tcEquation 2.15 provides a link between the upper and lower surfae polynomials;therefore, a oupled least-squares system needs to be onstruted and solved; the21



�hard� onstraint equations are expressed as



B 0

0 B

P1(xc) {0}1×4 −P3(xc) {0}1×4








a0

a1...
d2

d3





=





0

0...
0

tc





(2.16)
[Ba] {Pa} = {da} (2.17)The global least-squares system is

[
A 0

0 A

]
{Pa} =

{
cu

cl

} (2.18)
[Aa] {Pa} = {ca}The above hard onstraint equations do not have a null right hand side due tothe thikness onstraint; therefore, the solution (polynomials oe�ients) does notbelong to the null spae of Ba. The solution proedure for the onstrained least-squares problem expressed by Eq. (2.16,2.18) is desribed by Masuda et al [52℄:� Apply QR fatorization to get BT

a = QR.� Let Q =
[
Q1 Q2

]
, R =

[
R1

0

] where Q1ontains the �rst 7 olumns of
Q and Q2 ontains the rest of the olumns, and R1is the �rst 7× 7 sub matrixof R.� The hard onstraints an now be written as BPa ≡ RTQTPa = da� Let QTPa =

[
y

z

]
. Then Pa = Q

[
y

z

]
= Q1y +Q2z

∴ RTQTPa =

[
RT

1

0

]
·
[
Q1 Q2

]T
Pa = da 7−→ RT

1 y + 0 = da

∴ y = R−T
1 da (2.19)22



� Beause R is upper triangular, Equation 2.19 an be solved using forwardsubstitution.� The soft onstraints in equation 2.18 an be rewritten as
AaPa = Aa

[
Q1y Q2z

]
= ca (2.20)

∴ AaQ2z = ca −AaQ1y (2.21)
∴ z = [AaQ2]

† [ca −AaQ1y] (2.22)� Finally, the polynomial oe�ients an be found as Pa = Q1y +Q2z:
Pa =

[
Q1 −Q2 [AaQ2]

†AaQ1

]
R−T

1 da +Q2 [AaQ2]
† ca (2.23)Using the last equation we notie that the sensitivity of the polynomial oe�-ients with respet to the ith ontrol point y loation, yci, is the ith vetor ofthe matrix [Q2] [AQ2]

†.2.2.3 Validation asesIn this subsetion, testing of the proposed least-squares surfae parametrization isarried out; parametrization of various types of airfoils is done to show that theproposed geometry parametrization sheme has the required �exibility to representvarious types of airfoils. These airfoils inlude NACA 4-, 5-, and 6-digit series,laminar �ow, supersoni, and super-ritial airfoil setions.4 Figures 2.3�2.10 showthe least-squares �tting polynomials for various airfoils, while Table 2.1 shows theRMS error in the parametrized geometry for upper and lower surfaes.The last parametrized airfoil, the laminar LV25 airfoil of German AerospaeCenter, was parametrized using 10 polynomials, 5 for eah of its surfaes. Althoughthe RMS error is small (order of 10−5hord for all parametrization method), as shownin Table 2.1, Fig. 2.11 shows that the di�erene of the surfae pressure distribution,espeially at the peak veloity at the leading edge upper surfae, is still signi�ant.There are many x-stations at whih LV2 airfoil hanges its urvature, and also a4Readers interested in partiulars for the NACA airfoils are referred to Abbott and von Doen-ho�'s textbook [36℄. The seminal referene for the RAE airfoil is Cook et al [18℄.5LV2 geometry obtained by personal ontat with German Aerospae Center (DLR) researhers.23



Figure 2.3: Parametrized NACA 0011SC, 'O' are the original airfoil ordinates

Figure 2.4: Parametrized NACA 0012, 'O' are the original airfoil ordinates24



Figure 2.5: Parametrized NACA 6509, 'O' are the original airfoil ordinates

Figure 2.6: Parametrized NACA 16006, 'O' are the original airfoil ordinates25



Figure 2.7: Parametrized NACA 63412, 'O' are the original airfoil ordinates

Figure 2.8: Parametrized NACA 644421, 'O' are the original airfoil ordinates26



Figure 2.9: Parametrized RAE2822, 'O' are the original airfoil ordinateslong interval of almost in�nite urvature value whih makes it hard for the geometryparametrization sheme to aurately present it and this auses the �utuation inpressure resulted in the parametrized airfoil beause of lak of aurate presentationof urvature �utuations. Better mathing an be obtained but this will inrease thenumber of geometry design variables signi�antly. This ase illustrates learly thetrade o� between aurately representing the geometry (whih will hange duringoptimization iteration) and hoosing a reasonable number of design variables; thishoie must be left for the designer. If the hange in pressure distribution beomesunaeptable, or if the pressure distribution requires large number of airfoil ontrolpoints (design variables) to be aurately represented, parametrization the geometryperturbation is the more attrative option.The values of RMS error in Table 2.1 are small ompared to the maximum airfoilthikness value: only the NACA 0011SC has an RMS error of more than 0.2% ofmaximum thikness. However, if the RMS error was large, inreasing the number ofsurfae parametrization polynomials would redue the error.27



Figure 2.10: Parametrized LV2 laminar airfoil, parametrized using 5 polynomialsper surfae, 'O' are the original airfoil ordinates

Figure 2.11: LV2 airfoil parametrized using di�erent methods with 20 design vari-ables, presented with permission of Brezillon.28



Airfoil Upper surfae error Lower surfae error Maximum ThiknessNACA 0011SC 6.37 · 10−4 6.37 · 10−4 11 · 10−2NACA 0012 2.35 · 10−4 2.35 · 10−4 12 · 10−2NACA 6409 9.28 · 10−5 1.24 · 10−4 9 · 10−2NACA 16-006 1.31 · 10−6 2.03 · 10−5 6 · 10−2NACA 63-412 1.17 · 10−5 5.63 · 10−5 12 · 10−2NACA 64-421 1.70 · 10−4 7.50 · 10−5 21 · 10−2RAE 2822 1.20 · 10−5 3.20 · 10−5 slightly > 12 · 10−2LV2 1.45 · 10−5 3.22 · 10−5 slightly > 12 · 10−2Table 2.1: RMS error in di�erent parametrized airfoil geometries
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Chapter 3MESH MORPHING AND MESHSENSITIVITY3.1 Mesh MorphingThe modi�ation of the aerodynami shape during optimization requires a hangeof the mesh that presents the shape. This an be done by grid regeneration aroundthe new geometry but this is time onsuming and will hange the disretizationerror [51℄. Another strategy is to adapt the old mesh to �t the new shape of theairfoil using mesh movement.The tension spring analogy is one of the most widely used mesh deformationstrategies for aerodynami optimization. The main idea is to replae the grid edgesby springs with sti�ness inversely proportional to their length. The boundary pointsthat lie on the airfoil surfae are moved with displaement spei�ed by the optimizer,far �eld points are kept �xed, and the interior point displaements are determined byequilibrium of the spring network [7℄. For large grid displaements, the linear springanalogy is not robust, and negative area ells an present after mesh morphing.Farhat et. al. improved the tension spring analogy by adding torsional springsat the grid nodes to prevent element �ipping [25℄. Eah edge faes two angles asshown in Fig. 3.1; the edge sti�ness is modi�ed to inlude terms with the reiproalof the sine of these angles. This allows the edge sti�ness to grow to in�nity if theangle tends to be zero and therefore prevent element �ipping.Another strategy is to modify the mesh by solving a linear elastiity problem inwhih the boundary displaements are known [14℄; the element modulus of elastiityan be the reiproal of the distane from the wall, or it an be the reiproal ofthe element size [82℄. The later strategy was applied by Stein et al. and the resultsshowed that this method is robust, espeially for visous alulations. In this ase,30



Figure 3.1: Shemati drawing of an edge pq and its faing angles a and b.the elements of the boundary layer experiened small geometrial hange while theelements away from the airfoil experiened larger hanges [80℄. However, the linearelastiity mesh movement sheme is omputationally expensive ompared to thespring analogy method. The semi-torsional spring analogy method is adopted inthis researh due to its simpliity and robustness.Consider the edge pq shown in Fig 3.1. The relationship between the fores andthe node displaements when treating this edge as a spring follows Hooke's Law as
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(3.1)where lpq is the length of edge pq, and θa and θb are the angles faing the edge. Afterthe assembly of the global sti�ness matrix, the system of equations that relates gridpoint displaement with nodal fores an be written as
[

Kii Kib

Kbi Kbb

]{
Ui

Ub

}
=

{
0

Fb

} (3.2)31



where Ui and Ub are the interior and boundary mesh point displaements respetively.We do not need to know the values of boundary nodal fores Fb beause the boundarypoints displaement vetor Ub is known expliitly: it is the deformation required inthe airfoil pro�le to minimize the objetive funtion. Therefore, Eq 3.2 an be writtenas [
Kii Kib

0 I

]{
Ui

Ub

}
=

{
0

Ub

} (3.3)Substituting Uk
i =

−−→
rk+1
i −

−→
rki , Ub =

−→rb −−→rboin Eq 3.3 we get
[

Kii Kib

0 I

]k{ −−→
rk+1
i
−→rb

}
=

[
Kii Kib

0 I

]k{ −→
rki
−→rbo

}
+

{
0

Ub

} (3.4)where −→rbo is the initial position vetor of the boundary points before mesh morphing.The sti�ness matries [Kii] and [Kib] depend on the mesh fae lengths, whih hangeduring the mesh morphing stage; therefore, Eq. 3.4 is a non-linear equation and needsto be solved iteratively.3.2 Testing Mesh MorphingFarhat et al [25℄ demonstrated the robustness of the semi-torsional mesh movementsheme. In this setion, testing results are presented to demonstrate that the ur-rent implementation of this sheme shows the same good behavior for several high-deformation ases. The �rst test ase is an unstrutured triangular mesh around aNACA 0012. The thikness of the airfoil is doubled, whih means that the airfoilsurfae points will translate by several omputational ells in the y-diretion. Fig-ure 3.2 shows that even with this large displaement (multiple ells) of the boundary,no ells are inverted and no edges interseted with another. Displaement dereaseswith the distane from the airfoil surfae, and there is almost no movement on thesymmetry line.The seond ase tests mesh movement when the outer boundary is hanging.The original mesh is an unstrutured triangular mesh (shown in Fig 3.3a). Theouter boundaries are hanged, reduing the total area by almost 50% and turningthe original right-angled orners nearly into usps. Figure 3.3b shows that the semi-32



Figure 3.2: Mesh movement sheme results of doubling the thikness of NACA 0012torsional mesh movement was apable of adapting the mesh in the entire �eld withoutelement �ipping.3.3 Mesh SensitivityFor gradient-based optimization, as shown in the next hapter, the gradient ompu-tation requires alulation of the dependeny of the residual on the design variables
∂R/∂D, whih in turn depends on the evaluation of mesh sensitivity. The meshsensitivity tells how mesh points translate in the (x, y) plane with the perturbationof the geometri parametrization ontrol points (design variables). This translation,obviously, depends on the mesh movement sheme. Truong et. al. ompared al-gebrai mesh movement to linear elastiity mesh movement shemes to study theimpat of the adopted mesh movement sheme on the �nal optimized shape. Therewas a notieable di�erene between the �nal optimal airfoil shapes for a subsoniase, although the di�erene in the optimal objetive funtion value was of order ofdisretization error. For a transoni test ase, the di�erene in the optimal shapeswas almost negligible [83℄.The mesh sensitivity with respet to one of the design variables ∂M/∂Di (that is,33



(a) Initial mesh (b) Final meshFigure 3.3: Mesh movement results, large outer boundary deformation of a retan-gular domainthe hange in mesh point loations with a hange of a design variable) is alulatedby di�erentiating Eq. 3.3:
[

Kii Kib

0 I

]{
∂Ui

∂Di
∂Ub

∂Di

}
=

{
0
∂−→rb
∂Di

}

∴

{
∂M

∂Di

}
=

{
∂Ui

∂Di
∂Ub

∂Di

}
=

[
Kii Kib

0 I

]−1{
0
∂−→rb
∂Di

} (3.5)where ∂−→rb/∂Di is obtained using Eq. 2.14 and is related to the design variables viathe pseudo inverse of the onstrained least-squares system solved in parametrizingthe geometry.
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Chapter 4GRADIENT CALCULATIONUSING ADJOINT APPROACHGradient alulation plays a key role in gradient-based optimization. The traditional�nite di�erene strategy is omputationally expensive as it requires at least as manyCFD simulations as the number of design variables to ompute the gradient; eah ofthese is the solution to a large non-linear system of equations. The forward strategyto ompute the gradient is less expensive as it requires the alulation of the �owsensitivity with respet to the design variables, and uses the omputed �ow sensitivityto ompute the gradient; the forward strategy requires solving a number of linearsystems equal to the number of design variables to �nd the �ow property sensitivitywith respet to all the design variables. The adjoint strategy is omputationallyheaper; it requires the solution of one linear system whose right hand side is thedependeny of the aerodynami objetive funtion on the �ow �eld properties. Dueto its numerial e�ieny and the orresponding redution in omputational e�ort,the adjoint strategy is adopted in this researh.4.1 Forward and Adjoint FormulationsThe objetive funtion, F , for aerodynami optimization is a funtion of the designvariables, D, and the �ow �eld solution at the surfae points of the boundary ontrolvolumes Us

F = F (Us,D) (4.1)
Us is expressed most onveniently in primitive variables: U =

(
ρ u v P

)T .Consider, for instane, the lift and drag fores of a two dimensional airfoil, whihare perpendiular and parallel, respetively, to the inoming �ow, whih is inlined35



at an angle α to the airfoil hord. These an be evaluated as follows:
FL = −

{
˛

Psnx ds

}
sinα+

{
˛

Psny ds

}
cosα

FD =

{
˛

Psnx ds

}
cosα+

{
˛

Psny ds

}
sinαor in disrete form,

FL = −
∑

wsPsnx sinα+
∑

wsPsny cosα (4.2)
FD =

∑
wsPsnx cosα+

∑
wsPsny sinα (4.3)where Ps is the pressure at surfae integration point pressure, nx and ny are the unitnormal omponents at the surfae integration point, α is the angle of attak, and wsis the ar length assoiated with the surfae integration point. Note that this formuses the dimensional pressure and oordinates gives the dimensional lift and dragfores. The lift and drag oe�ients, whih are the non-dimensional equivalents, areidential in form but use non-dimensional pressure and oordinates.These disrete integrals expressed as a funtion of geometri and �ow propertiesof the ontrol volume suh as the length of eah fae and the unit normal at eahGauss point. The geometri properties depend on the design variables through themesh sensitivity, while the �ow properties at the Gauss points depend on the �owproperties of the ontrol volume itself and its neighbors, whih in turns depend onthe mesh and the boundary shape whih ultimately depends on the geometri designvariables. The gradient of the objetive funtion an be obtained by using the hainrule

dF

dD
=

∂F

∂Ubg

∂Ubg

∂U

∂U

∂M

∂M

∂D
+

∂F

∂M

∂M

∂D
(4.4)where Ubg is the boundary Gauss point �ow properties, U is the ontrol volumeaveraged solution written in primitive variables, and M is the mesh point loations.

∂M/∂D is the mesh dependeny on the design variables whih omputations arepresented in details in Chapter 3. The residual of the �ow governing equations anbe written as a funtion of the �ow �eld solution U and mesh geometri designvariables D. If we apply the onstraint that the �ow solution is onverged regardless36



of variations in the design variables, we an write
dR

dD
=

∂R

∂M

∂M

∂D
+

∂R

∂U

∂U

∂M

∂M

∂D
= 0 (4.5)Solving this for the solution sensitivity ∂U

∂D
≡ ∂U

∂M
∂M
∂D

, we get
∂U

∂M

∂M

∂D
= −

[
∂R

∂U

]−1

· ∂R

∂M

∂M

∂D
= −

[
∂R

∂Q

∂Q

∂U

]−1

·
{

∂R

∂M

∂M

∂D

} (4.6)where the last equality expands the residual Jaobian with respet to the primitive�ow variables into the produt of the residual Jaobian with respet to the onserved�ow variables (whih is used in impliit �ow solvers) and a hange of variables foronserved to non-onserved. Note that ∂Q
∂U

is a blok diagonal matrix.Substituting Eq.4.6 in Eq. 4.4, we get the forward formulation for gradientomputation
dF

dD
= − ∂F

∂Ubg

∂Ubg

∂U

[
∂R

∂Q

∂Q

∂U

]−1

·
{

∂R

∂M

∂M

∂D

}
+

∂F

∂M

∂M

∂D
(4.7)This form of the gradient requires solving as many linear systems as there are designvariables in the optimization problem.Taking the transpose of Eq. 4.7,

dF

dD

T

= −
{

∂R

∂M

∂M

∂D

}T

·
[
∂R

∂Q

∂Q

∂U

]−T { ∂F

∂Ubg

∂Ubg

∂U

}T

+

{
∂F

∂M

∂M

∂D

}T (4.8)where the residual sensitivity to mesh movement an be written using the hain ruleas:
∂R

∂M
=

∂R

∂AΩi

∂AΩi

∂M
+

∑faesΩi

{
∂R

∂nx

dnx

dM
+

∂R

∂ny

dny

dM
+ (4.9)

∂R

∂wi

dwi

dM
+

∂R

∂Ufae ∂Ufae∂M

}We get the adjoint method, presented by A. Jameson [37, 41, 43, 38, 40℄. Nowonly one linear system solve is required. However, this linear system solve requires37



expliitly forming the global Jaobian matrix ∂R
∂Q

beause its transpose is required.Beause the CFD solver used in this thesis an form the global Jaobian matrixexpliitly (author?) [57℄, the transpose of the Jaobian an easily be formed aswell. The Jaobian from the last GMRES iteration is re-used, so the omputationale�ort of solving the adjoint problem is redued to solving this linear system, a oston the order of 1% of the CFD simulation omputational e�ort.To ease the programming e�ort when hanging the objetive funtion, we formthree adjoint problems, one eah for the lift oe�ient CL, the drag oe�ient CD,and the moment oe�ient CM to �nd ∂CL/∂D, ∂CD/∂D and ∂CM/∂D, respe-tively. These aerodynami oe�ient gradients an be used to evaluate any objetivefuntion gradient for a funtion that depends on aerodynami fores:
dF

dD
= f

(
dCL

dD
,
dCD

dD
,
dCM

dD

)The solution proedure of the three adjoint problems an be summarized as follows,� Using the steady state �ow solution, we onstrut the CFD simulation Jaobianmatrix ∂R/∂Q expressed in Eq. 1.6.� We onstrut ∂R/∂U as:
∂R

∂U
=

∂R

∂Q

∂Q

∂Uwhere ∂Q/∂U is the transformation matrix from onservative to primitive �owvariables and is blok diagonal.� We onstrut ∂F
∂Ubg

∂Ubg

∂U
, where ∂F/∂Ubg is the analyti dependeny of the ob-jetive funtion on the primitive �ow properties at the airfoil surfae points,and ∂Ubg/∂U is the dependeny of surfae point primitive �ow properties onthe ontrol volume average values of the primitive �ow properties. The latteris known as a side e�et of solution reonstrution.� We solve the three linear systems [∂R

∂U

]T
ΨL,D,M =

[
∂CL,D,M

∂Ubg

∂Ubg

∂U

]T to get theadjoint vetors ΨL,D,M .� We onstrut the objetive funtion gradient vetor dCL,D,M

dD

T
=
{

∂F
∂M

∂M
∂D

}T −{
∂R
∂M

∂M
∂D

}T
ΨL,D,M , whih requires only a vetor dot produt for eah design38



variable.As an example of how to use dCL,D,M

dD
to onstrut the gradient of an aerodynamifuntion, onsider the following objetive funtion whih represents a typial dragminimization funtion with a lift onstraint applied using a penalty term

F = CD + k1 (CL − CLc)
2 (4.10)The gradient of the above funtion an be written as

dF

dD
=

dCD

dD
+ 2k1 (CL − CLc)

dCL

dD
(4.11)also

∂F

∂D
=

∂CD

∂D
+ 2k1 (CL − CLc)

∂CL

∂D
(4.12)The disrete (invisid) forms of CL and CD follow from the non-dimensionalizationof Eqs. 4.2 and 4.3, where now the pressure and oordinates are non-dimensionalized:

CL = −
(∑

wsPsnx

)
sinα+

(∑
wsPsny

)
cosα (4.13)

CD =
(∑

wsPsnx

)
cosα+

(∑
wsPsny

)
sinαand their partial derivatives with respet to the geometry design variables are

∂CL

∂D
= −

(∑ ∂ws

∂D
Psnx

)
sinα+

(∑ ∂ws

∂D
Psny

)
cosα (4.14)

−
(∑

wsPs
∂nx

∂D

)
sinα+

(∑
wsPs

∂ny

∂D

)
cosα

∂CD

∂D
=

(∑ ∂ws

∂D
Psnx

)
cosα+

(∑ ∂ws

∂D
Psny

)
sinα+

(∑
wsPs

∂nx

∂D

)
cosα+

(∑
wsPs

∂ny

∂D

)
sinαUsing Eq. 4.9 to alulate ∂R/∂M , we need to ompute the terms ∂AΩi

/∂M ,
∂nx/∂M , ∂ny/∂M , and ∂wi/∂M , whih only depend on mesh points' spatial loa-tions, while the terms ∂R/∂nx and ∂R/∂ny are obtained by diret di�erentiation ofthe Roe �ux, and �nally (∂R/∂Uface) · (∂Uface/∂M) is obtained by di�erentiating39



Figure 4.1: Shemati drawing of an element fae κ, and illustration of its left andright sides
the fae property reonstrution sheme whih depends on CFD solver tehnology.The remainder of this setion will fous on the derivatives of the residual R, withthe derivatives on the geometri terms in the following setion.Let us onsider the residual ontribution of fae κ of the ontrol volume Ωi shownin Fig. 4.1.The disrete form of this edge's residual ontribution to the ontrol volume Ωi is

Rκ,Ωi
=

1

AΩi

J∑

j=1

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)
wj

} (4.15)where J = 1 when using one Gauss integration point at the middle of faeκ fora seond order aurate sheme. For the fourth order sheme, we have two Gaussintegration points, i.e. J = 2, on the fae κ. wj is the integration weight assoiatedwith the Gauss point j. 40



To �nd ∂Rκ,Ωi
/∂AΩi

, Eq. 4.15 an be diretly di�erentiated to get
∂Rκ,Ωi

∂AΩi

= − 1

(AΩi
)2

∑

j

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)
wj

}
= − 1

AΩi

Rκ,Ωi(4.16)
The term ∂Rκ,Ωi

/∂nx,y an be written as
∂Rκ,Ωi

∂nx,y
=

1

AΩi

∑

j

{
1

2

(
∂ ~FRj

∂nx,y
+

∂ ~FLj

∂nx,y
−

∂ |△F1|j
∂nx,y

−
∂ |△F4|j
∂nx,y

−
∂ |△F5|j
∂nx,y

)
wj

}(4.17)where omponent terms an be expanded using the de�nition of the Roe �ux to give:
∂ ~FR,Lj

∂nx
=




(ρu)R,L(
ρu2 + p

)
R,L

(ρuv)R,L

({E + p}u)R,L



,

∂ ~FR,Lj

∂ny
=




(ρv)R,L

(ρuv)R,L(
ρv2 + p

)
R,L

({E + p} v)R,L


and

∂ |△F1|j
∂nx

=
uŨn√
Ũ2
n





(
△ρ− △P

ã2

)



1

ũ

ṽ
ũ2+ṽ2

2



+ ρ̃




0

△u− nx△U

△v − ny△U

ũ△u+ ṽ△v − Ũn△U








+

∣∣∣Ũn

∣∣∣




ρ̃




0

−△U − nx△u

−ny△v

−ũ△U − Ũn△u
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∂ |△F1|j
∂ny

=
vŨn√
Ũ2
n





(
△ρ− △P

ã2

)



1

ũ

ṽ
ũ2+ṽ2

2



+ ρ̃




0

△u− nx△U

△v − ny△U

ũ△u+ ṽ△v − Ũn△U








+

∣∣∣Ũn

∣∣∣




ρ̃




0

−nx△u

−△U − ny△v

−ṽ△U − Ũn△v








∂
∣∣∣△F̃4,5

∣∣∣
∂nx

=

(
Ũn ± ã

)
ũ

√(
Ũn ± ã

)2

(△P ± ρ̃ã△U

2ã2

)



1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã



+

∣∣∣Ũn ± ã
∣∣∣
(±ρ̃ã△u

2ã2

)



1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã



+

∣∣∣Ũn ± ã
∣∣∣
(△P ± ρ̃ã△U

2ã2

)



0

±ã

0

±ũã
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∂
∣∣∣△F̃4,5

∣∣∣
∂ny

=

(
Ũn ± ã

)
ṽ

√(
Ũn ± ã

)2

(△P ± ρ̃ã△U

2ã2

)



1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã



+

∣∣∣Ũn ± ã
∣∣∣
(±ρ̃ã△v

2ã2

)



1

ũ± nxã

ṽ ± nyã

h̃o ± Ũnã



+

∣∣∣Ũn ± ã
∣∣∣
(△P ± ρ̃ã△U

2ã2

)



0

0

±ã

±ṽã


To �nd ∂Rκ,Ωi

/∂wj , Eq. 4.15 is di�erentiated; we get
∂Rκ,Ωi

∂wj
=

1

(AΩi
)

{
1

2

(
~FRj

+ ~FLj
− |△F1|j − |△F4|j − |△F5|j

)} (4.18)The dependeny of the fae residual ontribution Rκ,Ωi
on the reonstruted �owproperties at the fae Ufae an found as the sum of the dependeny on the rightand left fae �ow properties as

∂Rκ,Ωi

∂Ufae =
∂Rκ,Ωi

∂UR
+

∂Rκ,Ωi

∂UL
(4.19)

=
1

(AΩi
)

∑ 1

2






∂ ~FRj

∂UR
+

∂ ~FLj

∂UL
−

∂
{
|△F1|j + |△F4|j + |△F5|j

}

∂UR

−
∂
{
|△F1|j + |△F4|j + |△F5|j

}

∂UL


wj



The terms in Eq. 4.19 an be obtained using symboli manipulator like Maple®or Matlab®. Another possible approah is to use an automati di�erentiation pak-age to di�erentiate the C, C++, or FORTRAN funtion that omputes the fae �ux.43



Figure 4.2: General triangular element with unit normal n̂ on one of its faes κ.Finite di�erenes an also be easily implemented to evaluate ∂RκΩi
/∂Ufae

∂Rκ,Ωi

∂Ufae =
Rκ,Ωi

(UR + ǫ)−Rκ,Ωi
(UR − ǫ)

2ǫ
+
Rκ,Ωi

(UL + ǫ)−Rκ,Ωi
(UL − ǫ)

2ǫ
+o (ǫ)2(4.20)where ǫ is hosen to be 10−8 in the above entral �nite di�erene formula so thatthe error will be on the order of mahine zero. The ANSLib CFD ode an use bothapproahes; they lead to nearly idential answers.4.2 Element and Fae Geometri PropertiesDependeny on Mesh CoordinatesElement and fae geometri properties depend diretly on the spatial oordinatesof the verties. Fig. 4.2 shows a shemati drawing of a triangular element usedfor ell entered �nite volume simulations, with its three verties and one of itsthree faes labeled for later referene. In the next subsetions, the proedure forevaluating geometri properties like element area, fae length, and fae normals willbe presented in addition to the mesh oordinate dependeny of these properties.44



4.2.1 Element area mesh dependenyThe element area of the triangular element shown in Fig 4.2an be obtained as halfof the ross produt of the two vetors −→r12,−→r13
A = σ

(x2 − x1) (y3 − y1)− (y2 − y1) (x3 − x1)

2
(4.21)The verties' spatial loations are related to the airfoil surfae points via the meshmovement sheme, while the airfoil surfae points are related to the design vari-ables through the pseudo inverse matrix in the least-squares �t during geometryparametrization. It worth mentioning that any general polygon an be split intoseveral triangles and the area of eah triangle an be alulated using Eq. 4.21.The element area mesh dependeny an be alulated by diret di�erentiation ofEq. 4.21

dA

dM
=

∂A

∂x1

∂x1
∂M

+
∂A

∂x2

∂x2
∂M

+
∂A

∂x3

∂x3
∂M

(4.22)
+
∂A

∂y1

∂y1
∂M

+
∂A

∂y2

∂y2
∂M

+
∂A

∂y3

∂y3
∂Mwhere

∂A

∂x1
=

σ (y2 − y3)

2

∂A

∂x2
=

σ (y3 − y1)

2

∂A

∂x3
=

σ (y1 − y2)

2

∂A

∂y1
=

σ (x3 − x2)

2

∂A

∂y2
=

σ (x1 − x3)

2

∂A

∂y3
=

σ (x2 − x1)
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σ = sgn ((x2 − x1) (y3 − y1)− (y2 − y1) (x3 − x1))

4.2.2 Fae length mesh dependenyThe length of fae κ in Fig. 4.2, whih is a general straight fae in the mesh, an bealulated as
L =

√
(x3(M)− x2(M))2 + (y3(M)− y2(M))2 (4.23)The fae length mesh dependeny an be obtained as

dL

dM
=

∂L

∂x2

∂x2
∂M

+
∂L

∂x3

∂x3
∂M

+
∂L

∂y2

∂y2
∂M

+
∂ L

∂y3

∂y3
∂Mwhere

∂L

∂x2
=

−x3 + x2√
(x3 − x2)

2 + (y3 − y2)
2
=

− (x3 − x2)

L

∂L

∂x3
=

x3 − x2√
(x3 − x2)

2 + (y3 − y2)
2
=

(x3 − x2)

L

∂L

∂y2
=

−y3 + y2√
(x3 − x2)

2 + (y3 − y2)
2
=

− (y3 − y2)

L

∂L

∂y3
=

y3 − y2√
(x3 − x2)

2 + (y3 − y2)
2
=

(y3 − y2)

LThe previous relations are for straight faes whih exist all over the domaininterior, but for higher order shemes, the boundary faes are urved to enablehigher order �ux integration. A boundary element with one urved fae is shown inFig. 4.3The urved fae length is obtained using numerial integration, therefore to avoiddi�erentiating the numerial integration sheme, ∂L/∂x2,3 and ∂L/∂y2,3 are evalu-46



Figure 4.3: Boundary element with urved fae for high order integration sheme
ated using �nite di�erenes as

∂L

∂x2,3
=

L(x2,3 + ǫ)− L(x2,3 − ǫ)

2ǫ

∂L

∂y2,3
=

L(y2,3 + ǫ)− L(y2,3 − ǫ)

2ǫ
(4.24)For a seond order sheme, only one Gauss integration point exists at the middle ofthe fae with wi = L, therefore

dwi

dM
=

dL

dMFor the fourth order sheme, two Gauss integration points are required for �uxintegration. Figure 4.2.2 shows a shemati drawing of a urved edge with twoGauss points on it. Table 4.1 shows their integration weights and their parametriloations ki on the fae starting from the point x2, y2.47



Figure 4.4: Shemati drawing of a urved fae with two Gauss points used
Point 1 Point 2

wi L/2 L/2

ki (12 − 1√
12
)L (12 +

1√
12
)LTable 4.1: Two point Gauss quadrature rule

48



4.2.3 Fae normal mesh dependenyThe unit normal vetor of fae κ that points outward from element Ωi (shown inFig. 4.2) an be found using the three verties of the element as
n̂ =

[
nx

ny

]
=

(~c3 − βr̂23)

‖~c3 − βr̂23‖
(4.25)where

~c3 =

[
2/3x3 − (1/3x1 + 1/3x2)

2/3 y3 − (1/3 y1 + 1/3 y2)

]

r̂23 =




x3−x2√
(|−x3+x2|)2+(|−y3+y2|)2

y3−y2√
(|−x3+x2|)2+(|−y3+y2|)2




β =
(x3 − x2) (2/3x3 − (1/3x1 + 1/3x2))√

(|−x3 + x2|)2 + (|−y3 + y2|)2

+
(y3 − y2) (2/3 y3 − (1/3 y1 + 1/3 y2))√

(|−x3 + x2|)2 + (|−y3 + y2|)2The mesh dependeny of the unit normal an be written as
dn̂

dM
=

∂n̂

∂x1

∂x1
∂M

+
∂n̂

∂x2

∂x2
∂M

+
∂n̂

∂x3

∂x3
∂M

+
∂n̂

∂y1

∂y1
∂M

+
∂n̂

∂y2

∂y2
∂M

+
∂n̂

∂y3

∂y3
∂M

(4.26)where
∂n̂

∂xi
=

α1 − α2

‖~c3 − βr̂23‖2

α1 = ‖~c3 − βr̂23‖ ·
∂

∂xi
(~c3 − βr̂23)

α2 = (~c3 − βr̂23) ·
∂

∂xi
‖~c3 − βr̂23‖49



∂n̂

∂yi
=

α3 − α4

‖~c3 − βr̂23‖2

α3 = ‖~c3 − βr̂23‖ ·
∂

∂yi
(~c3 − βr̂23)

α4 = (~c3 − βr̂23) ·
∂

∂yi
‖~c3 − βr̂23‖

i = 1, 2, 3The terms in the last equations an be found using automati di�erentiation of theunit normal expression.4.3 Fae Flow Properties Dependeny on The MeshThe evaluation of the ∂Ufae/∂M term in the mesh sensitivity of the residual, usingEq. 4.9, depends on the details of the CFD solver. The CFD solver used in thisresearh is the Advaned Numerial Simulation Library (ANSLib) whih is a multi-physis �nite volume solver apable of onduting CFD simulations up to fourth or-der auray; this solver has been built by Ollivier-Gooh and o-workers [61, 56, 54℄.In ANSLib, the �ow properties are assumed to hange within eah ontrol volumeaording to a linear polynomial for seond order simulations, or a ubi polynomialfor fourth order simulations. These polynomials are found using a least-squares re-onstrution; the least-squares system depends on the ontrol volume properties likemoments of area whih eventually depend on mesh point loations. In the next twosubsetions, the reonstrution and mesh dependeny of �ow properties at faes willbe presented.4.3.1 Fae �ow properties reonstrutionSolution reonstrution is the key to determine solver auray. The solution isassumed to vary linearly within the ontrol volume for seond order auray; forhigher order methods, �ow properties are assumed to vary aording to higher orderpolynomial; variation aording to ubi polynomial is fourth order aurate. The�ow solution reonstrution method presented in this subsetion follows the methoddesribed in Ollivier-Gooh and Van Altena [68℄ and Ollivier-Gooh et al [69℄.50



For seond order solution reonstrution, the primitive variables U =
[
ρ u v p

]Tare reonstruted at the fae Gauss points as
UR
2 (x, y) = Uref + (x− xref )

∂U

∂x

∣∣∣∣
ref

+ (y − yref )
∂U

∂y

∣∣∣∣
ref

(4.27)For fourth order solution reonstrution, the reonstrution polynomial takes theform of a third degree Taylor series expansion in two variables:
UR
4 (x, y) = UR

2 (x, y) +
(x− xref )

2

2

∂2U

∂x2

∣∣∣∣
ref

(4.28)
+ (x− xref) . (y − yref)

∂2U

∂x∂y

∣∣∣∣
ref

+
(y − yref )

2

2

∂2U

∂y2

∣∣∣∣
ref

+
(x− xref )

3

6

∂3U

∂x3

∣∣∣∣
ref

+
(x− xref)

2 (y − yref)

2

∂3U

∂x2∂y

∣∣∣∣
ref

+
(x− xref ) (y − yref )

2

2

∂3U

∂x∂y2

∣∣∣∣
ref

+
(y − yref)

3

6

∂3U

∂y3

∣∣∣∣
refThe referene point ~xref is hosen to be the triangle enter for ell-entered �nitevolume sheme and the vertex loation for vertex-entered sheme.A onstrained least-squares system is onstruted to �nd the reonstrution poly-nomial oe�ient. The hard onstraint is that the reonstrution polynomial shouldpreserve the omputed ontrol volume average solution. The rest of the equations �whih are satis�ed only in a least-squares sense � are obtained by requiring that theaverage of the reonstrution polynomial approximates the ontrol volume averagesolution for neighboring ontrol volumes. Neighbors are hosen based on their topo-logial distane from the element, and entire layers of neighbors is added until thenumber of neighbor elements in the stenil equals or exeeds 4 for the seond ordersheme and 16 for the fourth order sheme. Figure 4.5 shows a shemati drawingof an element k and its neighbor layers.The mean onstraint equation is obtained by requiring onservation of the ontrol51



Figure 4.5: Shemati drawing of �rst, seond and third neighbor layers of triangularelement k.

volume average by the reonstrution polynomial and an be written as
Uk =

1

Ak

ˆ

Ak

UR
k dA ≡ Uk ref + xk

∂U

∂x

∣∣∣∣
k ref

+ yk
∂U

∂y

∣∣∣∣
k ref

+ (4.29)
x2k
2

∂2U

∂x2

∣∣∣∣
k ref

+ xyk
∂2U

∂x∂y

∣∣∣∣
k ref

+
y2k
2

∂2U

∂y2

∣∣∣∣
k ref

+ ...where
xnymk =

1

Ak

¨

Ak

(x− xk ref )
n (y − yk ref )

m dA52



Mathing the ontrol volume average in a neighbor j would require that
U j =

1

Aj

ˆ

Aj

UR
k dA ≡ Uk ref +

1

Aj

ˆ

Aj

(x− xk ref )
∂U

∂x

∣∣∣∣
ref

dA+ (4.30)
1

Aj

ˆ

Aj

(y − yk ref )
∂U

∂y

∣∣∣∣
ref

dA+
1

Aj

ˆ

Aj

(x− xk ref )
2

2

∂2U

∂x2

∣∣∣∣
ref

dA+

1

Aj

ˆ

Aj

(x− xk ref ) (y − yk ref )
∂2U

∂x∂y

∣∣∣∣
ref

dA+

1

Aj

ˆ

Aj

(y − yk ref )
2

2

∂2U

∂y2

∣∣∣∣
ref

dA+ ...Using
(x− xk ref ) = (x− xj ref )− (xk ref − xj ref )and
(y − yk ref ) = (y − yj ref )− (yk ref − yj ref ) ,we get

U j =
1

Aj

ˆ

Aj

UR
k dA ≡ Uk ref + x̂k,j

∂U

∂x

∣∣∣∣
k ref

+ ŷk,j
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k ref
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n ·
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n!

q! (n− q) !
(xj ref − xk ref )

q ·

(yj ref − yk ref )
r xn−q

j ref y
m−r
j reffor simpliity, the term x, yk ref will be written as x, yk, and x, yj ref will be replaed
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with x, yj . The resulting onstrained least-squares system an be written as



1 xk yk x2k xyk y2k · · ·
1 x̂k,1 ŷk,1 x̂2k,1 x̂yk,1 ŷ2k,1 · · ·
1 x̂k,2 ŷk,2 x̂2k,2 x̂yk,2 ŷ2k,2 · · ·
1 x̂k,3 ŷk,3 x̂2k,3 x̂yk,3 ŷ2k,3 · · ·... ... ... ... ... ... . . .
1 x̂k,N ŷk,N x̂2k,N x̂yk,N ŷ2k,N · · · · · ·







U
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2
∂2U
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∂2U
∂x∂y
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∂2U
∂y2...




k

=




Uk

U1

U2

U3...
UN


(4.32)This onstrained least squares system an be rewritten as

min
∥∥∥[ARec]

(
P̃Rec

)
−
(
URec − Uk

)∥∥∥

satisfying [BRec] (PRec) =
(
Uk

)where
[ARec] =




x̂k,1 − xk, ŷk,1 − yk, x̂2k,1 − x2k, x̂yk,1 − xyk, ŷ2k,1 − y2k, · · ·
x̂k,2 − xk, ŷk,2 − yk, x̂2k,2 − x2k, x̂yk,2 − xyk, ŷ2k,2 − y2k, · · ·
x̂k,3 − xk, ŷk,3 − yk, x̂2k,3 − x2k, x̂yk,3 − xyk, ŷ2k,3 − y2k, · · ·... ... ... ... ... . . .
x̂k,N − xk, ŷk,N − yk, x̂2k,N − x2k, x̂yk,N − xyk, ŷ2k,N − y2k, · · · · · ·
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The least-squares system is solved to obtain the reonstrution polynomial oef-�ients using singular value deomposition method to �nd the pseudo inverse of theleast-squares oe�ient matrix as follows
ARec = UΣV T

A†
Rec = V Σ†UT
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2
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k

=




x̂k,1 − xk, ŷk,1 − yk, x̂2k,1 − x2k, x̂yk,1 − xyk, ŷ2k,1 − y2k, · · ·
x̂k,2 − xk, ŷk,2 − yk, x̂2k,2 − x2k, x̂yk,2 − xyk, ŷ2k,2 − y2k, · · ·
x̂k,3 − xk, ŷk,3 − yk, x̂2k,3 − x2k, x̂yk,3 − xyk, ŷ2k,3 − y2k, · · ·... ... ... ... ... . . .
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(4.33)
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(4.34)
The unlimited fae �ow properties an be found at fae Gauss points (xfi , yff )55



as follows
Ufi = Uk + (xfi − xk)
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To ensure monotoniity and solution onvergene, a limiter is applied in ordernot to reate a new extremum at the ontrol volume fae; the limited �ow propertiesat the fae an be written as
Ufi = Uk + φk

(
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)where φk is the limiter value in the ontrol volume k. ANSLib uses two limiterfuntions to alulate φ: Venkatakrishnan's limiter [84℄ and a higher-order limiter [56℄designed not to degrade the auray of high-order shemes for smooth �ows. Wewill derive the fae properties-mesh dependeny for the limited ase; the unlimitedase an be obtained by simpli�ation of the limited ase by setting φk = 1.56



4.3.2 Mesh dependene of the fae �ow property reonstrution
The term ∂Ufae/∂M for the limited ase an be obtained using diret di�erentiationof Eq. 4.36

∂Ufi

∂M
=

∂Uk

∂M
+

∂φk

∂M

(
(xfi − xk)

∂U

∂x

∣∣∣∣
k

+ (yfi − yk)
∂U

∂y

∣∣∣∣
k

+ (4.37)
(xfi − xk)

2

2

∂2U

∂x2

∣∣∣∣
k

+ (xfi − xk) (yfi − yk)
∂2U

∂x∂y

∣∣∣∣
k

+

(yfi − yk)
2

2

∂2U

∂y2

∣∣∣∣
k

+ ...

)
+

φk

(
∂ (xfi − xk)

∂M

∂U

∂x

∣∣∣∣
k

+
∂ (yfi − yk)

∂M

∂U

∂y

∣∣∣∣
k

+

∂
(xfi

−xk)
2

2

∂M

∂2U

∂x2

∣∣∣∣
k

+
∂ (xfi − xk) (yfi − yk)

∂M

∂2U

∂x∂y

∣∣∣∣
k

+

∂
(yfi−yk)

2

2

∂M

∂2U

∂y2

∣∣∣∣
k

+ ...


+

φk


(xfi − xk)

∂ ∂U
∂x

∣∣
k

∂M
+ (yfi − yk)

∂ ∂U
∂y

∣∣∣
k

∂M
+

(xfi − xk)
2

2

∂ ∂2U
∂x2

∣∣∣
k

∂M
+ (xfi − xk) (yfi − yk)

∂ ∂2U
∂x∂y

∣∣∣
k

∂M
+

(yfi − yk)
2

2

∂ ∂2U
∂y2

∣∣∣
k

∂M
+ ...


The unlimited fae �ow property-mesh dependeny an be obtained by setting φk = 1and ∂φk/∂M = 0 in Eq. 4.37.In Eq. 4.37, the term ∂φk/∂M an be obtained by di�erentiating the limiter57



expression, and the terms ∂ ∂nU
∂xm∂yn−m

∣∣∣
k
/∂M an be evaluated as follows:
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and
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Chapter 5GRADIENT VALIDATIONIn this setion, the omparison of the gradient auray evaluated using seond andfourth order shemes is arried out. Both seond and fourth order gradients areevaluated using the adjoint approah and ompared to their orresponding �nitedi�erene gradient. We present three test ases: subsoni, non-limited transoni andlimited transoni test ases. In all test ases we use 18 design points to parametrizethe airfoil geometry.5.1 Subsoni Test CaseIn this test ase, the evaluation of the lift oe�ient gradient with respet to theairfoil geometri design ontrol points is presented for both seond and fourth ordershemes, inluding a omparison with a �nite di�erene gradient alulated usingthe same order of auray in the �ow solver. The airfoil used in this test aseis NACA 0012 at subsoni onditions M = 0.5 and α = 2o. Figure 5.1 shows arepresentative omparison between the �eld of pressure sensitivity with respet toone of the geometry design points omputed using �nite di�erenes and the solutionsensitivity alulation of Eq. 4.6 for both seond and fourth order aurate ompu-tations. Agreement is exellent in all ases; this is also true for the other designontrol points. The exellent mathing of the pressure sensitivity when omparingthe seond order and the fourth order results indiates that the two shemes willgive similar gradient vetors and similar optimization desent diretions for subsoni�ow optimization.Table 5.1 shows quantitatively an exellent mathing between the objetive fun-tion gradient magnitude (less than half a perent di�erene) and diretion (less thana half a degree di�erene) when omparing �nite di�erenes and the adjoint ap-proah of Eq. 4.8 for both seond and fourth order shemes. Figure 5.1 shows good60



(a) Seond order sensitivity alulation (b) Seond order �nite di�erene
() Fourth order sensitivity alulation (d) Fourth order �nite di�ereneFigure 5.1: The pressure sensitivity with respet to one of the design ontrol pointsomputed for subsoni �ow over NACA 0012, omparing the sensitivity alulationof Eq. 4.6 with �nite di�erene results.agreement between the objetive funtion gradient omponents ∂CL/∂yi, where yiare the y loations of the design ontrol points, omputed using adjoint and �nitedi�erene approahes for both seond and fourth order omputations. The maxi-mum error, normalized by the gradient magnitude, is only 0.005 whih gives a highlevel of auray for the omputed gradient. Taken together, these results imply thatthe order of disretization error has little e�et on the omputed gradient vetor forsubsoni �ow.5.2 Transoni Test Case with No LimiterIn this test ase, the sensitivity analysis is arried out for NACA 0012 airfoil with M= 0.8 and α = 2◦. The drag oe�ient gradient is evaluated without using limitersin the CFD simulation, so overshoot/undershoot at the shok loation is expeted.Figure 5.3 shows good agreement of the pressure sensitivity omputed using Eq. 4.661



Seond order Fourth orderAdjoint FD Adjoint FDGradient vetor magnitude 18.605 18.561 18.575 18.655Angle with seond order adjoint 0◦ 0.247◦ 1.117◦ 1.330◦Angle with fourth order adjoint 1.117◦ 0.917◦ 0◦ 0.249◦Table 5.1: The magnitude of seond and fourth order CL gradients and angles be-tween the evaluated gradients for NACA 0012 in subsoni �ow.

Figure 5.2: CL gradient error in seond and fourth order shemes with respet tothe design points normalized by gradient magnitude.
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(a) Seond order sensitivity alulation (b) Seond order �nite di�erene
() Fourth order sensitivity alulation (d) Fourth order �nite di�ereneFigure 5.3: The pressure sensitivity with respet to one of the design ontrol pointsomputed for an unlimited transoni �ow around NACA 0012, omparing the sensi-tivity alulation of Eq. 4.6 with �nite di�erene results.and �nite di�erene; the �gure also shows that for transoni �ows, the pressuresensitivity omputed using seond order and fourth order aurate adjoint shemeare di�erent, espeially near the shok loation.Table 5.2 shows again the exellent mathing between the omputed adjoint and�nite di�erene gradient with a diretion di�erene less than a degree and nearlyidential magnitude. Figure 5.4 shows that for unlimited transoni �ow, both se-ond and fourth order adjoint gradients are an exellent math to the orresponding�nite di�erene gradient, with the seond order shemes mathing more losely thanthe fourth order sheme. Comparison of the seond and fourth order gradient vetorsshows little di�erene between them (about 4% in magnitude and 2◦ in diretion).Again, we expet that the seond and fourth order shemes will give similar opti-mization searh diretions. 63



Seond order Fourth orderAdjoint FD Adjoint FDGradient vetor magnitude 1.895 1.895 1.814 1.813Angle with seond order adjoint 0◦ 0.252◦ 2.236◦ 1.997◦Angle with fourth order adjoint 2.236◦ 2.354◦ 0◦ 0.518◦Table 5.2: The magnitude of seond and fourth order CD gradients and anglesbetween the evaluated gradients for NACA 0012 in an unlimited transoni �ow.

Figure 5.4: CD gradient error in seond and fourth order shemes with respet tothe design points, normalized by gradient magnitude.
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(a) Seond order sensitivity alulation (b) Seond order �nite di�erene
() Fourth order sensitivity alulation (d) Fourth order �nite di�ereneFigure 5.5: The pressure sensitivity with respet to one of the design ontrol pointsomputed for an unlimited transoni �ow around NACA 0012.5.3 Transoni Test Case with LimiterIn this test ase, the impat of using a limiter in the CFD simulation on the aurayof the omputed gradient for seond order and fourth order shemes is studied. Twodi�erent limiters are used, the Venkatakrishnan limiter [84℄ and the higher orderlimiter of Mihalak and Ollivier-Gooh [56℄. Figure 5.5 shows very good mathingof the seond order pressure sensitivity omputed using adjoint and �nite di�erenetehniques with the use of Venkatakrishnan limiter.Mathing is less good between the pressure sensitivity and �nite di�erene resultsfor the fourth order aurate sheme; this lower level of pressure sensitivity mathingwill lead to less aurate gradient values when using the limited fourth order sheme.Table 5.3 shows that with the use of the Venkatakrishnan limiter, the seond ordergradient magnitude is a very good math with the orresponding �nite di�erenegradient; the larger error in gradient value observed for the fourth order sheme isomparable to the di�erene in magnitude between seond and fourth order shemes65



Seond order Fourth orderAdjoint FD Adjoint FDGradient vetor magnitude 1.897 1.895 1.887 1.812Angle with seond order adjoint 0◦ 3.612◦ 2.292◦ 3.334◦Angle with fourth order adjoint 2.292◦ 5.275◦ 0◦ 4.873◦Table 5.3: Magnitudes of seond and fourth order CD gradients and angles betweenthe evaluated gradients for NACA 0012 in Venkatakrishnan limited transoni �owSeond order Fourth orderAdjoint FD Adjoint FDGradient vetor magnitude 1.676 1.753 1.576 1.672Angle with seond order adjoint 0◦ 2.845◦ 30.1◦ 18.8◦Angle with fourth order adjoint 30.1◦ 21.05◦ 0◦ 18.9◦Table 5.4: The magnitude of seond and fourth order CD gradients and angles be-tween the evaluated gradients for NACA 0012 using higher order limiter in transoni�ow.for the unlimited transoni ase. Also, the di�erene in �nite di�erene and adjointgradient diretion grows to several degrees with the use of Venkatakrishnan limiter.Table 5.4 shows the same behavior with the higher order limiter of C. Mihalakand C. Ollivier-Gooh. It shows also that the error in the gradient magnitude islarger ompared to the Venkatakrishnan results. The mathing in adjoint and �nitedi�erene gradient diretions is good for the seond order sheme but it is not for thefourth order sheme with the use of higher order limiter. It is well known that the useof limiters auses onvergene problem due to the non-di�erentiability of the limitingproedure [55℄. The limiter a�ets both the right and left hand sides of Eq. 1.6. Wespeulate that the poor mathing between �nite di�erene and adjoint gradients forthe high-order limiter is related to the non-di�erentiability of the limiting proedureand that this e�et will vary in strength from one limiting proedure to another.To redue the in�uene of ∂Ri/∂D in ontrol volume i when alulating theadjoint gradient, the fourth order Jaobian was modi�ed numerially by making thenon zero struture of the fourth order Jaobian matrix the same as the non zerostruture of the seond order Jaobian, and dropping the rest of values in the fourthorder Jaobian matrix. The right hand side is still onstruted with fourth order66



Mod 4th orderLimiter Venkat. HOGradient sheme Adj. FD Adj. FDGradient vetor magnitude 1.735 1.812 1.966 1.672Angle with mod 4th order Venkat. adjoint 0◦ 2.845◦ 6.247◦ 3.338◦Angle with mod 4th order HO. adjoint 6.247◦ 7.256◦ 0◦ 7.207◦Table 5.5: The magnitudes and angles between the evaluated modi�ed fourth order
CD gradients using adjoint, and �nite di�erene for NACA 0012 using Venkatakr-ishnan and higher order limiters in transoni �ow.auray. The above modi�ation doesn't a�et the auray of the CFD simulationbeause the right hand side remains fourth order aurate. The omputed gradientusing this approah is presented in Table 5.5 and shows a redution in the error in thefourth order omputed adjoint gradient, espeially in the diretion of the gradient.The limiter used from now on is the Venkatakrishnan limiter as it produes an adjointomputed gradient with better mathing to the �nite di�erene gradient omparedwith the high order limiter.5.4 Sensitivity of �nite di�erene gradient toperturbation magnitudeIn the previous setions, I have used perturbation amplitude ǫ = 10−6 and using theentral di�erene formula to evaluate the �nite di�erene gradient. In this setion,the sensitivity of the evaluated gradient with respet to ǫ is presented for the hardestase, transoni �ow with limiter. The limiter used in the transoni simulation isVenkatakrishnan's limiter. Table 5.6 shows the norm of the drag gradient for di�erentvalues of perturbation amplitude ǫ; it shows also that dereasing ǫ to be less than
10−6 will not pratially hange the value of the omputed gradient norm. Therefore,
ǫ = 10−6 is hosen.
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Figure 5.6: The normalized CD gradient error in seond, fourth, and modi�edfourth order shemes with respet to the design points in a limited transoni �ow(Venkatakrishnan limiter)

Figure 5.7: The normalized CD gradient error in seond, fourth, and modi�ed fourthorder shemes with respet to the design points in a limited transoni �ow (higherorder limiter). 68



ǫ Seond order ∥∥∥∂CD

∂D

∥∥∥ Fourth order ∥∥∥∂CD

∂D

∥∥∥
10−3 1.90237 1.86814
10−6 1.90275 1.87105
10−9 1.09278 1.87114Table 5.6: Finite di�erene drag gradient sensitivity with respet to perturbationamplitude ǫ
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Chapter 6GRADIENT BASEDOPTIMIZATION TEST CASESIn this setion we present four optimization test ases; in all of them we omparethe optimal shape resulting from using seond and fourth order shemes. The �rsttwo ases are inverse design problems, one subsoni and the other transoni. Inboth test ases, a target pressure distribution is obtained using CFD simulation of aparametrized NACA 2412 airfoil and the starting geometry is a NACA 0012 airfoil.The optimizer will try to �nd the geometry whose surfae pressure distributionmathes the target pressure distribution. Those two test ases are important, as thedesign spae has only one solution point at whih the resulting pressure distributionfrom the optimal geometry will math the target pressure distribution. The thirdtest ase is a transoni drag minimization with no lift onstraint starting from theRAE 2822 airfoil. The objetive of this test ase is to minimize CD at M = 0.73 andangle of attak = 2◦. In this test ase a strong shok wave is formed near mid hordof the initial airfoil geometry and we are seeking a shok free geometry, or at leasta geometry that produes a muh weaker shok wave. Geometri onstraints areapplied so the airfoil thikness will be positive all the way along the airfoil setion.The fourth test ase repeats test ase three but adds the lift oe�ient as a onstraint;in this ase, we ompare the resulting optimal shape with the optimization resultsof Brezillon and Gauger [11℄ .6.1 Subsoni Inverse DesignIn this test ase, the target pressure distribution is obtained for the parametrizedNACA 2412 at a subsoni ondition, M = 0.5 and α = 2◦ , using seond and fourthorder CFD simulations. The starting geometry is the parametrized NACA 0012.70



The objetive funtion to be minimized is
F =

˛

(PT − Pi)
2 dS (6.1)The above objetive funtion and its gradient an be expressed in disrete form as

F =
∑

(PT − Pi)
2 ws (6.2)

dF

dxd
=
∑

2 (PT − Pi)

(−∂Pi

∂xd

)
ws + (PT − Pi)

2 ∂ws

∂xd
(6.3)where ws is the ar length assoiated with the surfae Gauss point.Figure 6.1 shows the target pressure distribution of the NACA 2412, the initialpressure distribution of NACA 0012, and the optimized airfoil pressure distributionobtained by the seond order and fourth order shemes; both shemes suessfullyreahed the target pressure distribution. Figures 6.2 and 6.3 show the onvergenehistory and gradient norm history for both shemes. Both shemes took aboutthe same number of optimization iterations (28 for seond order and 32 for fourthorder) to drop the objetive funtion value by eight orders of magnitude. Figures 6.4and 6.5 show how lose the optimized NACA 0012 is to the NACA 2412 using bothseond order and fourth order shemes. The error between the target geometry andthe optimized pro�le is larger in the fourth order sheme due to inauray of thepressure interpolation sheme used to evaluate the objetive funtion; neverthelessthe resulting geometry is an exellent math with the NACA 2412, with an error ofless 0.1% of the surfae movement.6.2 Transoni Inverse DesignIn this test ase, the target pressure is obtained using CFD simulation of the �owover a NACA 2412 airfoil at transoni onditions, M = 0.73, α = 2◦. The obje-tive funtion to be minimized is again the integration of the square of the pressuredi�erene between the target pressure and the optimized pressure as expressed inEq. 6.1. The fourth order optimization is based on the modi�ed fourth order gra-dient evaluation strategy. Figure 6.6 shows the initial, target, and the optimized71



(a) Seond order (b) Fourth orderFigure 6.1: Subsoni NACA 2412 inverse design pressure distributions for the initial,target, and optimized airfoil pro�les
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Figure 6.2: Seond and fourth order optimization onvergene history.
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Figure 6.3: Gradient norm history

Figure 6.4: Subsoni inverse design optimal airfoil shapes73
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(a) Upper surfae (b) Lower surfaeFigure 6.5: The di�erene between the target pro�le and the optimized pro�les,seond and fourth orderpressure distribution. The onvergene history and gradient norm history are shownin Figs. 6.7 and 6.8; the fourth order sheme is slower to onverge ompared tothe seond order sheme, due to the use of larger number of airfoil surfae Gaussquadrature points used in the fourth order omputations (double the number usedfor the seond order sheme) whih makes the minimizer slower to onverge. Theobjetive funtion dropped only three order of magnitudes before onvergene stall.This stall is due to the high non-linearity in the target pressure distribution beauseof the existene of a strong shok wave in it. The noise in the pressure sensitivitygenerated by the shok wave in the target pressure distribution doesn't allow furtheronvergene; however, the gradient magnitude dropped four order of magnitudesfrom its initial value. Figures 6.9 and 6.10 show that the optimal shapes for the twoshemes di�er by less than 10−4 of the hord length on the lower surfae and lessthan 10−3 hord length on the upper surfae (where the strong shok wave exists);both optimal shapes are in good agreement with the NACA 2412: the maximumdeviation is about 5% of maximum surfae movement.6.3 Drag Minimization without Lift ConstraintIn this test ase, minimization of the drag oe�ient will be arried out with nolift onstraint applied. The airfoil to be optimized is an RAE 2822 at transoni74



(a) Seond order (b) Fourth orderFigure 6.6: Subsoni NACA 2412 inverse design pressure distributions for the initial,target, and optimized airfoil pro�les

Figure 6.7: Seond and fourth order optimization onvergene history.
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Figure 6.8: Gradient norm history

(a) Upper surfae (b) Lower surfaeFigure 6.9: The di�erene between the target pro�le and the optimized pro�les,seond and fourth order
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Figure 6.10: Transoni inverse design optimal airfoil shapes.
CL CL optimized airfoil CD CD optimized airfoilSeond order 0.865 0.765 0.0081 0.00466Fourth order 0.849 0.759 0.0099 0.0047Table 6.1: Aerodynami oe�ients of original and optimized RAE 2822 airfoil attransoni onditions.onditions: M = 0.73 and α = 2◦. Fig. 6.11 shows the initial solution with a strongshok wave standing at 70% hord. Geometri onstraints are added to insure thatthere is no intersetion between the airfoil upper and lower surfaes along the airfoil.Figure 6.12 shows the optimal shapes and the optimized pressure �elds resultingfrom using seond and fourth order shemes.Figures 6.12 and 6.13 show that the di�erene between the seond and fourthorder optimal pro�les is notable on both upper and lower surfaes. The surfaepressure distribution of the original RAE 2822 airfoil and of the optimized airfoil forseond and fourth order shemes is shown in Fig. 6.14. Both shemes suessfullyprodued a similar shok free pressure distribution but with di�erent pro�les. Theoriginal and optimized CD are shown in Table 6.1. A drag redution of about 50%is ahieved by both shemes. The value of the CD of the seond order optimizedairfoil is obtained from fourth order aurate CFD simulation over the optimizedseond order airfoil pro�le to eliminate the di�erenes in disretization error in the�nal results.Figure 6.16 shows the onvergene history of the optimization. Both shemesreahed their optimal solution in about the same number of optimization iterations.77



Figure 6.11: Pressure ontours of RAE 2822 at Mah 0.73 and angle of attak 2

Figure 6.12: Optimized RAE 2822.
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(a) Upper surfae (b) Lower surfaeFigure 6.13: Optimization surfae displaements of the original RAE2822 surfaes.

Figure 6.14: Pressure distribution omparison for the original and the optimizedgeometries.
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(a) Seond order response surfae (b) Fourth order response surfaeFigure 6.15: Objetive funtion response surfae along positive and negative gradientdiretions entered at the optimal pro�le of RAE 2822 transoni drag minimizationwithout lift onstraint.The number of CFD simulations for the seond order sheme is 50 ompared to 45for the fourth order sheme, yet the overall omputational ost of the seond ordersheme is 40% less than the fourth order omputations. The gradient of the objetivefuntion is not zero at the optimal point; to understand the reasons for that, I haveplotted the objetive funtion values along positive and negative gradient diretionat the optimal solution point as shown in Fig 6.15. The seond order response surfaeshows that the obtained optimal solution is a possible loal optimum and the shapeof the objetive funtion shows that the gradient omputed using �nite di�erene willnot be zero at the optimal point. For the fourth order omputations, the �gure showsthat the optimizer reahed a near optimal solution. While a slightly lower value isavailable,the small di�erene between the objetive funtion value at the obtainedoptimal point and the minimum value along the negative gradient diretion (on theorder of the disretization error) may ause a line searh failure due to insu�ientderease in the objetive funtion.6.4 Drag Minimization with Lift ConstraintThis test ase represents a typial optimization task required in aerospae industry,as it is required to minimize the drag while the lift is unhanged. Therefore the liftoe�ient CL will be an aerodynami onstraint. The original RAE 2822 geometry80



Figure 6.16: Seond and fourth order optimization onvergene history.will be used as a starting shape; the objetive funtion to be minimized is
F = CD + 10 · (CL − CLC

)2 (6.4)where CLC
is the original lift oe�ient of RAE 2822 atM = 0.73 and α = 2◦. In thistest ase both geometri and aerodynami onstraints are applied to avoid getting anon-feasible airfoil geometry, while not a�eting airfoil lift oe�ient. The nonlinearonstraint, the lift oe�ient, is added as a penalty term in the objetive funtionas shown in Eq. 6.4. Figure 6.17 show the optimized airfoil's pressure distributionfor both seond and fourth order shemes. Both seond and fourth order shemestravel 99% of the way towards their optimal objetive funtion after 7 iterations;the seond order sheme then beomes very slow to reah its optimal value. Theseond order sheme osts 112 CFD simulations to reah its optimum ompared to49 CFD simulations for the fourth order. Figure 6.20 shows a notieable di�erenebetween the optimized pro�les, inluding a notably larger nose radius and less afthamber for the fourth order sheme. A shok free geometry is obtained with weakompression waves on the airfoil upper surfae. Drag is redued by about 50%, asshown in Table 6.2, while the lift oe�ient is about 1% higher than its originalvalue. 81



CL CL optimized airfoil CD CD optimized airfoilSeond order 0.865 0.871 0.0081 0.00477Fourth order 0.849 0.853 0.0099 0.0051Table 6.2: Aerodynami oe�ients of original and optimized RAE 2822 airfoil attransoni onditions.

Figure 6.17: Surfae pressure distribution, of the initial and optimized geometries

Figure 6.18: Seond and fourth order optimization onvergene history.82



Figure 6.19: Optimal shapes omparison: seond order, fourth order, and optimizedpro�le by Brezillon and Gauger ompared with the original RAE2822.

(a) Upper surfae (b) Lower surfaeFigure 6.20: Seond and fourth order optimized pro�le surfae displaements fromthe initial shape.
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Figure 6.22: initial and optimal pressure distribution obtained by Brezillon andGauger [11℄ (presented with permission)airfoil surfae hanges only slightly from the original surfae pressure distribution ofthe RAE2822. This similarity in the optimized pressure distribution suggests thatwhatever geometry parametrization tehnique is used, the surfae pressure hangeswill be qualitatively similar.The lift penalty fator used in this test ase is seleted suh that violating thelift onstraint by one lift ount (10−2) auses 10 drag ounts (10−3) inrease in theobjetive funtion value. Table 6.3 shows the e�et of the lift onstraint penaltyweighting fator on the optimal objetive funtion value, as well as the optimal dragand lift oe�ients; these results are based on seond order omputations.85



Lift penalty weight Fopt CDopt CLopt Lift penalty5 0.0052 0.0047 0.873 3.2 × 10−410 0.0051 0.0047 0.871 3.6 × 10−420 0.0082 0.0080 0.868 1.8 × 10−4Table 6.3: Lift penalty weight e�et on Drag minimization of RAE 2822 with liftonstraint
6.5 Mesh Re�nement Study of a Drag Minimizationwith Lift Constraint
In the last test ase, Table 6.2 shows that the optimal value of CD is di�erentwhen omparing seond and fourth order sheme results. This subsetion examinesthe impat of mesh re�nement on the optimal value of CD. Three mesh grid sizesare used, with 5000, 11000, and 15000 triangles, respetively. In all test ases,
CLC

= 0.84 is used as a lift onstraint value for both seond and fourth orderomputations. Figure 6.23 ompares the di�erene in the optimal CD value forseond and fourth order shemes with mesh re�nement; the plotted value of seondorder CD optimal are obtained using fourth order CFD simulation on the optimalshape obtained using seond order sheme.86



Figure 6.23: Optimal CD value with mesh re�nementThe �gure shows that the two shemes tend to reah the same value of theoptimal CD with mesh re�nement with only one drag ount di�erene (whih ison order of the disretization error). This behavior is expeted as transoni CFDsimulations using seond and fourth order shemes for the same geometry produealmost the same surfae pressure distribution and hene objetive funtion value.The root mean square of di�erene between the seond and fourth order optimizedairfoil pro�les of drops from 3 · 10−5 on the oarsest mesh to 2 · 10−5 on the �nestgrid.
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Chapter 7PARTICLE SWARMOPTIMIZATION AND A NEWHYBRID OPTIMIZATIONMETHOD7.1 Introdution to Gradient Free OptimizationGradient based optimization results depend on the optimization starting point. To�nd a global optimal solution, gradient independent methods are an obvious an-didate. Perhaps the best-known non-gradient based optimization tehnique is thegeneti algorithm [30℄, a biologially-inspired approah whih an �nd the globaloptimal point of an objetive funtion with multiple loal optima. In geneti al-gorithm optimization, a randomly generated population of andidate solutions aregenerated; their �tness is determined by the value of the objetive funtion [29℄. So-lution points with the best �tness are seleted to be parents of the next generation.A new generation of o�spring is generated by rossover and mutation of the parents'geneti harateristis (that is, the parents' solution point loations in the designspae). This proedure is repeated until the globally optimal solution is obtained.The number of individuals in eah generation should not be less than the numberof design variables, otherwise poor optimization onvergene will result. Figure 7.1shows a �owhart of a simple geneti algorithm optimizer. The dependeny of thepopulation size on the number of design variables and the large number of genera-tions required to onverge to the global optimum ombine to make geneti algorithmimpratially expensive for large aerodynami optimization problems. Geneti algo-88



rithm optimization has been used for aerodynami optimization problems by manyresearhers. A geneti algorithm was used for transoni wing drag minimizationwith a lift onstraint by Gage and Kroo [29℄. Anderson used GA for wing aerody-nami shape optimization with strutural onstraints [1℄. Jang and Lee used GA tomaximize lift to drag ratio of an airfoil using the Euler �ow model with the NACA0012 as a starting geometry [44℄. Oyama et al applied a geneti algorithm with aNavier-Stokes solver for transoni wing optimization [70℄. They also explored theuse of fratal analysis in GA aerodynami optimization [71℄.Partile swarm optimization is a random searh tehnique �rst introdued in1995 as a tehnique that simulate the behavior of a herd of predators hunting forfood [46℄. This tehnique has proved to be faster than geneti algorithm to reahthe global optimal by many researhers (for example, [34, 59℄); swarm intelligenehas the advantage of not being highly sensitive to problem dimensions [79℄, whihis not true for evolutionary optimization like geneti algorithm. The partile swarmoptimization method (desribed in Setion 7.2) an be made more e�ient by hy-bridizing it with sequential quadrati programming, as desribed in Setion 7.3. Thee�etiveness of this hybrid approah for unonstrained and onstrained aerodynamioptimization is demonstrated in Setion 7.4.7.2 Swarm IntelligenePartile swarm optimization is a random searh method that searhes for the globaloptimal solution of an objetive funtion. It uses a number of swarm partiles thatsans the design spae looking for the global optimal solution. Eah swarm parti-le represents a point in the design spae and it moves through the design spaeaording to a simple formula. A partile's veloity depends on its inertia, its ownexperiene, and soial experiene gained by ommuniating with other swarm par-tiles. The partile swarm tehnique keeps a reord of loation of the best objetivefuntion value for eah partile (−→pi ) as well the global best loation (−→g ), whih isthe best loation among the −→pi 's. Algorithm 7.1 is the general pseudo ode of thepartile swarm tehnique.The veloity of the partile in an optimization iteration depends on� Its veloity in the previous iteration (momentum part)89



Figure 7.1: Geneti Algorithm optimization
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Algorithm 7.1 Partile swarm pseudo odeFor eah partile i in the swarmInitialize partile position −→xiSet its best position to be its initial position: −→pi = −→xiInitialize its veloity −→
Vi = ~0EndSet the global best position: −→g = −→pi where F (−→pi ) < F (−→pj ) for all i 6= jDoFor eah partile iCalulate its veloity−→ViUpdate its position −→xiCalulate its objetive funtion value (�tness) F (−→xi)If the urrent �tness value is better than its best �tness (F (−→xi) < F (−→pi ))Set the urrent partile position to be its best position: −→pi = −→xiEnd ifEnd forSelet the best partile objetive funtion and position to be the global best if itis better than the stored valueWhile max iteration ount not reahed or onvergene riterion not met.
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� Its distane from its known best value −→pi (ognitive part)� Its distane from the swarm global best value −→g (soial part)Figure 7.2 shows shematially how the above three fators a�et the partile ve-loity, the veloity of eah partile and its position update are obtained using thefollowing formulas
−→
Vi(k + 1) = w

−→
Vi(k) + c1 [

−→r1 ] · {−→pi −−→xi(k)} + c2 [
−→r2 ] · {−→g −−→xi(k)} (7.1)

−→xi(k + 1) = −→xi(k) +
−→
Vi(k + 1), i = 1..N (7.2)where w = 0.73 is the inertial weight fator, c1 = c2 = 1.49 are the ognitiveand soial aeleration fators respetively; these onstants are seleted aordingto Cler's onstrition models [16℄. −→r1 and −→r2 are two random vetors of size Nwhose elements are independent and uniformly randomly seleted from the uniformdistribution on the interval [0, 1]. The � ·� operation is a omponent by omponentmultipliation not a dot produt and this is true from this point through the rest ofthe hapter.Partile swarm optimization su�ers from solution stagnation one the partileshave onverged to a high quality loally optimal solution whih is not a true globallyoptimal point [23℄. To avoid this problem, a restart strategy is suggested whenpremature onvergene is deteted [9℄. At eah restart, swarm partiles start fromnew positions in the design spae and onverge to an optimal solution; restarting isarried out m times, and the optimal solution is the best of all global bests. Thistehnique is alled the multi-start partile swarm optimization (MPSO). A drawbakof this mehanism is that restarting may ause repetition of the searh omputations.Evers and Ben Ghalia suggested a more e�ient mehanism to esape from highquality loal wells. They re-satter the partiles around the onvergene point in aregion with radius smaller than the design spae norm, and large enough some at leastsome partiles to be outside the basin of attration of the loal optimum [24, 23℄;their sheme is alled the regrouped partile swarm optimization (RegPSO). Themain three elements in their sheme are� Prematurity detetion. 92



Figure 7.2: Veloity omponents and position update of a partile� Rede�ning upper and lower boundaries for deision (design) variables.� Regrouping the partiles by sattering them on a searh domain de�ned by thenew upper and lower boundaries.In the following subsetions, the above three elements of the RegPSO strategy willbe presented; interested readers are enouraged to onsult Evers and Ben Ghalia [23℄for more detail. All onstants presented in the next subsetions were found by Eversand Ben Ghalia using numerial optimization experiments on standard benhmarkoptimization problems.7.2.1 Premature onvergene detetionConvergene is deteted when all partiles onverge to an optimal solution and startto lose their momentum; this loss of momentum prevents esaping from the neigh-borhood of a high quality loal optimal solution. Premature onvergene an bedeteted when the greatest distane between a swarm partile and the global bestpoint −→g falls below a ertain threshold. This was suggested by Van den Bergh andadopted in Ever's work with suess [9, 23℄.93



For multidimensional optimization problem of size n andm partiles, the deisionvariables −→x =
[
x1 x2 x3 · · · xn

]T have initial upper and lower limits −→
x0U =

[
x1U x2U x3U · · · xnU

]T and −→
x0L =

[
x1L x2L x3L · · · xnL

]T . First,the range is de�ned as
−−−→range (Ω) = −→xU −−→xL (7.3)Also the normalized swarm radius an be found aording to

δnorm =
maxi=1...m ‖−→xi (k)−−→g (k)‖

‖−−−→range (Ω)‖ (7.4)Convergene is deteted when the normalized swarm radius δnorm drops below
ε = 1.1 · 10−4.7.2.2 Rede�ning deision variables rangeOne onvergene is deteted, the upper and lower limits of the deision variablesfor the regrouped swarm are omputed. The initial range of partile j an be foundusing its upper limit x0jU and lower limit x0jLasrangej (Ω0

)
= x0jU − x0jL (7.5)Upper and lower limits of the deision variables are hanged when onvergene isdeteted in order to satter swarm partiles in a ball surrounding the onvergedsolution. Changing the range of eah deision variable j in a regrouping stage r isdone aording to the following formula [23℄:rangej (Ωr) = max

(rangej (Ω0
)
, 1.2 × 104 max

i=1...m

∣∣∣∣
−−→
xr−1
i,j −

−−→
gr−1
j

∣∣∣∣
) (7.6)When the urrent range of design variables rangej is su�iently small, the optimiza-tion problem is onsidered onverged.7.2.3 Regrouping and position lippingRegrouping partiles in a region surrounding the best position −→g not only movesthem away from the loal minimum but allows them to reover their momentum,94



whih had been lost due to onvergene. Regrouping is done aording to the fol-lowing formula
−→xi = −→g + [−→ri ]T · −−−−−−−→range (Ωr)− 1

2

−−−−−−−→range (Ωr) (7.7)where −−−−−−−→range (Ωr) = [range1 (Ωr) , range2 (Ωr) , . . . , rangen (Ωr)]T .Equation 7.7 requires position lipping to keep the partiles within the on-strained design spae, i.e xrj,L ≦ xi,j ≦ xrj,U . The upper and lower limits of theomponents of partile's deision vetor an be found as
xrj,L = max

(
x0j,L, g

r−1
j − 1

2
rangej (Ωr)

) (7.8)
xrj,U = min

(
x0j,U , g

r−1
j +

1

2
rangej (Ωr)

)

7.3 Hybrid SQP-RegPSO TehniqueSwarm intelligene starts with a set of randomly generated position points in thedesign spae and de�nes its initial best loation, −→g , as the point of best �tness amongthe swarm partiles; this best point at as a gravity enter in the design spae andattrats other partiles to it; if the initial best point is of high quality, this reduesthe total omputational e�ort to �nd the global optimal solution. The tehnique weare proposing here for hybridization of sequential quadrati programing (SQP) andpartile swarm optimization is to use SQP to �nd the initial high quality −→g beforeusing RegPSO tehnique. The pseudo-ode of the hybrid sheme is summarized inAlgorithm 7.2.7.4 Optimization Test CasesThis setion will examine the e�ieny of the proposed hybrid sheme and ompareit with the original RegPSO tehnique. To do so, a drag optimization that seeks ashok free pro�le with CL = 0.4 at M = 0.8 and angle of attak α = 1.5◦ is arriedout. Two distint starting points were seleted to explore the existene of a unique95



Algorithm 7.2 Hybrid SQP-RegPSO pseudo odeFor eah partile in the swarmInitialize partile position −→xiSet its best position to be its initial position: −→pi = −→xiInitialize its veloity −→
Vi = 0EndSet the global best position: −→g = −→pi where F (−→pi ) < F (−→pj ) for all i 6= j, or the SQPoptimal solution, whihever is betterSet δnorm = 1Set t = 1DoFor eah partile iCalulate its veloity−→ViUpdate its position −→xiClip position suh that xL,j ≤ xi,j ≤ xU,jCalulate its objetive funtion value (�tness) F (−→xi)If the urrent �tness value is better than its best �tness (F (−→xi) < F (−→pi ))Set the urrent partile position to be its best position: −→pi = −→xiEnd ifEnd forSelet the best partile objetive funtion and position to be the global best if itis better than the stored value

t = t+ 1Compute δnorm using Eq 7.4If δnorm ≤ εCompute the range of eah deision variable range (Ωr
j

)Satter the partiles around −→g aording to Eq 7.7Apply position lipping with limits de�ned aording to Eq 7.8End ifWhile (δnorm > ε and t ≤ max iterations).
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global best8; the �rst is to start from NACA 0012, the seond one is to start fromNACA 00083 airfoil.9 These ases were hosen beause experiments showed that SQPoptimization with these two starting points onverged to distint optimal solutionswith signi�antly di�erent objetive funtion values. All the omputations here areseond order as we aiming to �nd a global optimization method with reasonableomputational ost, not to ompare seond and fourth order optimal results.7.4.1 Constrained drag optimization of the NACA 0012In this test ase, drag optimization of the NACA 0012 at a lift oe�ient of CL = 0.4,
M = 0.8 and angle of attak α = 2◦ is presented. The objetive funtion an bewritten as

F = CD + 10 · (CL − 0.4)2 (7.9)SQP optimization is used �rst to �nd a loal optimum and thus provide an initialhigh quality −→g as a starting point for the RegPSO sheme. The optimal pro�lefound by SQP optimization with BFGS Hessian approximation was not shok free.RegPSO is used after SQP and suessfully reahed a shok free pro�le. In this testase, the swarm size was 10 partiles and the number of deision variables is 18. The�rst phase of the hybrid sheme (SQP optimization) osts 92 CFD simulations whilethe seond phase osts 490 CFD simulations whih makes the total ost 582 CFDsimulations to reah shok free pro�le.Using RegPSO alone as an optimization tehnique with a maximum of 1000 CFDsimulations does not result in a shok free pro�le, as the optimization has not yetonverged to a global optimum. Fig 7.4.1 shows the pressure distribution of theoriginal NACA 0012 at transoni onditions, the SQP optimal pro�le, the RegPSOoptimal shape, and the hybrid shok free pro�le. Drag has been redued from 150drag ounts at the initial loal optimum found by SQP optimization to 8.89 dragounts at the �nal global optimum.Figure 7.4 shows the surfae pressure distribution of the original NACA 0012 air-foil, and the optimized pro�le using SQP with BFGS approximate Hessian, RegPSO,8In the ase of a �nite region in the design spae for whih the �ow is shok free, there may bea region of global �best� solutions di�ering only in the amount of disretization error present.9That is, an airfoil from the 4-digit NACA series with 8.3% maximum thikness.97



NACA 0012 Original BFGS Optimal
RegPSO 1000 CFD simulations Hybrid 492 Total CFD simulationsFigure 7.3: Pressure Field of the original NACA 0012 and the optimized pro�les

Figure 7.4: Surfae pressure distribution of original NACA 0012 and the optimizedpro�les 98



Figure 7.5: Airfoil shapes of original NACA 0012 and the optimized pro�lesand hybrid BFGS-RegPSO tehniques. Figure 7.5 shows the di�erent optimized air-foil pro�les resulted from the three optimization tehniques, note that the initialglobal best point of the hybrid sheme is the SQP optimal shape. To study thefuntion variation between the initial best known shape, whih results from SQP op-timization, and the �nal best shape of the hybrid sheme, the vetor that onnetsthese two points in design spae was divided into 100 steps and the objetive fun-tion value at eah of these points omputed. Figure 7.7 shows that there is a desentdiretion (the vetor that onnets the initial and �nal −→g ) at the SQP optimal pointbut the SQP optimizer an not �nd it. Possible reasons for that inlude:1. An error in the omputed adjoint gradient.2. The SQP gradient and the vetor that onnets the initial and �nal −→g areperpendiular due to the in�uene of numerial noise and of the behavior of theEuler �ow model physis in the SQP gradient as the desent diretion resultingfrom adjoint omputations tends to minimize the drag by shifting the shokwave forward so it ours at lower Mah number to redue its strength, whilethis mehanism to redue the drag is not stritly followed by RegPSO sheme. 99



Figure 7.6: Funtion minimization iterations in the seond phase of the hybridsheme (RegPSO) with a NACA 0012 airfoil as the starting point.To determine the real reason, we omputed the adjoint gradient and the �nite dif-ferene gradient at the SQP loal optimum, then omputed the angles between the� Adjoint omputed gradient vetor.� Finite di�erene omputed gradient vetor.� Vetor that onnets the SQP (loal) optimum and the hybrid (global) opti-mum.Table 7.1 shows the angles between those three vetors. The adjoint and �nitedi�erene gradient diretions are in exellent agreement but are almost perpendiularto the third vetor that onnets loal and global optima. This observation supportsthe hypothesis that the in�uene of numerial noise and Euler �ow model physisprevents �nding that desent diretion; however, this needs to be veri�ed by anothertest ase. 100
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Figure 7.7: Objetive funtion values between SQP and hybrid optimal points (start-ing geometry: NACA 0012).
Angle in degreesAdjoint and �nite di�erene gradients 1.78Adjoint gradient and SQP-hybrid vetor 86.6Finite di�erene gradient and SQP-hybrid vetor 86.7Table 7.1: Angles between adjoint, FD., and SQP-hybrid vetors
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7.4.2 Constrained drag minimization of NACA 00083In this test ase, the same drag optimization problem is studied at the same transonionditions, but starting from a thinner airfoil. Again, SQP ould not eliminate theshok wave on the airfoil's upper surfae, but a shok free optimal shape is obtainedusing RegPSO in the seond phase as shown in Fig 7.8.Figure 7.9 shows a omparison of the surfae pressure of the original NACA00083, SQP with BFGS approximate Hessian (loal) optimum, and hybrid BFGS-RegPSO (global) optimum results. The BFGS optimal pro�le weakens the shokstrength to redue the drag, but the hybrid sheme eliminates the shok wave om-pletely. Figure 7.10 shows a pro�le omparison of the original NACA 00083, BFGSoptimal, and the hybrid optimal pro�le.The drag oe�ient is redued from 32 drag ounts at the BFGS optimal solutionto 8.89 drag ounts at the hybrid optimal solution. The optimal value of the dragoe�ient found by the hybrid sheme in this test ase is the same as the valueobtained in the previous ase and in both ases, it is of order of the disretizationerror. The total number of CFD simulations is 1080, 80 for the SQP phase and 1000for the RegPSO phase.Again, to study the objetive funtion variation between the BFGS (loal) opti-mum, and the �nal (global) optimum of the hybrid sheme, we took 100 steps on thevetor that onnets these points and ompute the objetive funtion values. Figure7.12 shows the variation in the objetive funtion value along that vetor, whih isnot a desent vetor at the BFGS optimal point. Also, there is numerial noise in theobjetive funtion values at some stations along that vetor, in addition to an ap-pearane then vanishing of a shok wave. As in the previous test ase, we omputedthe objetive funtion gradient at the initial gBest using adjoint and �nite di�erenestrategy and alulated its angle with the vetor that onnets the initial and the�nal best position vetors −→g obtained using the hybrid sheme. Table7.2 shows thatthe vetor onnet the initial and �nal best solutions is almost perpendiular to theadjoint and �nite di�erene gradients; it shows also that adjoint and �nite di�erenegradients are a very good math. The orthogonality of these vetors was previouslynoted in the last test ase as well. This strongly suggests that numerial noise inthe gradient and the in�uene of the �ow model physis prevents �nding a desent102



NACA 00083 original BFGS Optimal
Hybrid OptimalFigure 7.8: Pressure surfae of NACA 00083 and the optimized pro�lesAngle in degreeAdjoint and Finite di�erene 0.27Adjoint and SQP-hybrid vetor 86.93Finite di�erene and SQP-hybrid vetor 86.87Table 7.2: Angles between adjoint, FD, and BFGS-hybrid best solutions vetorsdiretion that leads from the SQP loal optimum to the shok free global optimum.

7.4.3 Aerodynami and thikness onstraint drag minimization ofNACA 0012In this test ase thikness is onstrained to be tc = 0.1 at xtc = 0.35, in addition tothe lift onstraint CLc = 0.4 at transoni onditions, M = 0.8 and α = 1.5◦. SQPwith BFGS Hessian approximation optimization tehnique is �rst used, the objetive103



Figure 7.9: Surfae pressure of NACA 00083 and the optimized pro�les

Figure 7.10: Pro�le omparison of NACA 00083, BFGS optimal, and hybrid optimalairfoils 104



Figure 7.11: Funtion minimization iterations in the seond phase of the hybridsheme (RegPSO) of NACA 00083 start
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funtion to be minimized is
F = CD + 10 (CL − 0.4)2 (7.10)subjet tot (xtc) = tcThe thikness onstraint an be ast as an equality onstraint equation using thesurfae parametrization matrixQ2 [AQ1]

†; for this test ase, xc < L1, so the thiknessonstraint equation an be written as
t (xtc) = P1(xtc)− P3(xtc) = tc (7.11)
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= tcReall that the relationship of polynomial oe�ients and the design variables anbe found using Q2 [AQ1]

† as
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†
)
i,j

yj (7.12)Equation (7.12) an be used with Eq (7.11) to derive an algebrai linear equationthat relates the thikness onstraint tc to design variables diretly; this last equationan be used as a onstraint equation added to the optimization problem and thisonstraint will be satis�ed using a Lagrange multiplier.For the seond phase of the hybrid sheme, the thikness onstraint is satis�edusing a penalty term in the objetive funtion; the objetive funtion for RegPSOphase an be written as
F = CD + 10 (CL − 0.4)2 + (t (xtc)− tc)

2 (7.13)The penalty method is used to approximately satisfy the thikness onstraint termdue to the lak of Lagrange multiplier in non-gradient based optimization tehniques.Drag oe�ient have been redued from 230 to 120 drag ounts in the �rst phase,then redued to 9 drag ounts using the hybrid sheme, a shok free pro�le is obtainedas shown in Figs (7.13, 7.14) ; this shok free pro�le is obtained with 900 CFDsimulations in total. 106



NACA 0012 original Hybrid OptimalFigure 7.13: Pressure surfae of NACA 0012 and the optimized pro�les with thiknessonstraint

Figure 7.14: Surfae pressure of NACA 0012 and the optimized pro�le with thiknessonstraint
107



NACA 00083 original Hybrid OptimalFigure 7.15: Pressure surfae of NACA 00083 and the optimized pro�les with thik-ness onstraint7.4.4 Aerodynami and thikness onstraint drag minimization ofNACA 00083This test ase is a repeat of the last one, but the starting geometry is di�erent. Thestarting geometry is NACA 00083 whih does not satisfy the thikness onstraint.The SQP optimizer is used �rst;it satis�es the thikness onstraint after the �rst fewiterations, then it starts to minimize the drag. Drag is redued from 60 drag ountsto 40 drag ounts in the �rst phase. The seond (RegPSO) phase redued the dragto 9 drag ounts and produed a shok free optimal shape, as shown in Figs. 7.15and 7.16.Comparison of the optimized pro�les of the last two test ases are shown inFig. 7.17. The two pro�les are very lose in upper surfae shape, whih is tightlyonstrained by the need to eliminate the shok wave; there is more di�erene in thelower surfae on whih the �ow is subsoni. The last observation suggests that forinvisid �ow simulations, there is a region of global optimal solution rather than onepoint global optimum. More preisely, one a shok-free solution is obtained, theobjetive funtion is too �at to distinguish reliably between the drag of shok-freesolutions; this is not surprising, onsidering that the drag for shok-free invisid �owsis due solely to disretization error.In all test ases, the new hybrid sheme was able to �nd a shok free airfoil pro�leregardless of the starting points. Only ten partiles were using in the swarm to santhe design spae, whih is roughly half of the number of design variables. This islower than the reommended population size required by GA to onverge well. The108



Figure 7.16: Surfae pressure of NACA 00083 and the optimized pro�le with thik-ness onstraintoptimization omputational ost is four to nine times the ost of SQP optimization.Using SQP optimization with ten di�erent starting geometries might lead to a shokfree pro�le, but there is no guarantee for that. As the results above show, there isa high hane of getting trapped in loal minima or su�ering a breakdown in theoptimization proess beause of solution noise.Table 7.3 shows the e�et of the thikness penalty weight on the optimizationresults using seond order aurate omputations. It shows that a thikness penaltyweight of 10 is su�ient to satisfy the thikness geometri onstraint, but it willinrease the value of CDopt and may prevent obtaining a shok free optimal pro�le.Figure Shows a omparison of the optimal pro�les using two di�erent thiknesspenalty weights; the maximum thikness of the optimized airfoils were 0.077 and0.095 respetively for thikness penalty of 1 and 10. Therefore it is reommendedto use a thikness penalty of order of 10 in order to satisfy a maximum thiknessonstraint. Figure 7.18 shows a omparison of the optimal pressure distribution ofthe two optimal pro�les; a shok free pressure distribution is obtained using thiknesspenalty weight of 1. The drag oe�ient for this pro�le is 9 drag ounts whih is109



Figure 7.17: Pro�le omparison of the hybrid sheme optimal pro�les, starting ge-ometries NACA 0012 and NACA 00083
of order of disretization error. It shows also that with thikness penalty weight10, there is a weak ompression wave on the airfoil upper surfae whih auses aninrease in the drag oe�ient to 17 drag ounts.
Thik. penalty Fopt CDopt

CLopt t (xtc) Lift penalty Thik. penaltyweight1 0.00134 0.00088 0.3997 0.077 0.000001 0.0004810 0.00208 0.0017 0.4005 0.095 0.0000026 0.00025Table 7.3: Thikness penalty weight impat on the optimization results of NACA00083 using hybrid sheme 110
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Figure 7.18: Thikness penalty weight impat on the Optimal pressure distributionof NACA 00083 using hybrid optimization sheme.
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Algorithm 7.3 Pseudo ode of RegPSO-SQP �hybridT� optimization sheme1. Use the initial geometry as the initial global best −→g .2. Randomly generate swarm.3. Add the initial geometry as a swarm member.4. Use RegPSO strategy with stopping riterion of max 900 CFD simulations to�nd an estimated global best −→g .5. Use SQP with starting point −→g to �nd better global best solution.7.5 Comparing SQP-RegPSO with RegPSO-SQPoptimization strategiesI have presented results of the proposed hybrid optimization sheme in whih SQPoptimization is used to obtain a reasonably good upper bound on the global optimum.Based on the results of previous test ases, this sheme seems to be a promisingglobal optimization sheme. Another hybrid sheme in whih RegPSO preedes SQPoptimization is possible. In this setion I will ompare the optimization results of thelast �ve optimization problems using the proposed hybrid sheme with the resultsof RegPSO-SQP sheme; I will refer to the latter sheme as hybridT. Algorithm 7.3shows a pseudo ode of hybridT optimization.Both shemes has two phases, SQP phase and RegPSO phase, but they di�erin the order of the phases. Tables 7.4 and 7.5 summarize the optimization resultsfor both shemes. Figures 7.20�7.24 show a omparison of the obtained pressuredistribution of the optimal shape obtained using these shemes. These omparisonsshow that the hybrid sheme is better than the hybridT for all ases; in Case II, theshemes are nearly idential in drag oe�ient though di�erent in �nal shape. Thiswas expeted beause in hybridT if the �rst (RegPSO) phase ould not reah thebasin of attration of the global minimum, the seond (SQP) phase will not be able to�nd it. Tables 7.4, 7.5 show a omparison of Phase I and Phase II optimal objetivefuntion value for both hybrid and hybridT for the �ve test ases in this hapter. Asa hybridization quality measure, the ratio of the optimal objetive funtion phase112



Case Phase I Opt (SQP) Phase II Opt (RegPSO) Phase II/II10 0.0150 0.0009 0.0600II11 0.0032 0.0009 0.2813III 12 0.0120 0.0013 0.1083IV 13 0.0040 0.0013 0.3250V14 0.0040 0.0021 0.525Table 7.4: Optimization results of the hybrid sheme in Phase I, IICase Phase I Opt (RegPSO) Phase II Opt (SQP) Phase II/II 0.0137 0.0049 0.358II 0.0019 0.0011 0.579III 0.0125 0.0125 1.0IV 0.0017 0.0017 1.0V 0.0052 0.0052 1.0Table 7.5: Optimization results of the hybridT sheme in Phase I, IIII to Phase I optimal is used and the smaller this value the more suessful thehybridization sequene is. The tables show also that the sequene used in hybrid isbetter than hybridT.
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Figure 7.20: Hybrid and hybridT optimal pressure distribution for NACA 0012 (CaseI).
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Figure 7.21: Hybrid and hybridT optimal pressure distribution for NACA 00083(Case II).
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Figure 7.22: Hybrid and hybridT optimal pressure distribution for NACA 0012 with10% thikness onstraint and unit thikness penalty weight (Case III).
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Figure 7.23: Hybrid and hybridT optimal pressure distribution for NACA 00083 with10% thikness onstraint and unit thikness penalty weight (Case IV).
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Figure 7.24: Hybrid and hybridT optimal pressure distribution for NACA 00083 with10% thikness onstraint and ten thikness penalty weight (Case V).
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Chapter 8CONCLUSIONS ANDRECOMMENDATIONS8.1 Contributions and ConlusionsThis thesis presents the �rst study of the use of high order �nite volume CFDmethods in aerodynami optimization. I have developed the �rst �nite volume basedoptimization ode that uses high order Jaobian in gradient omputations using theadjoint tehnique. A new geometry parametrization tehnique has been developedand presented; this new tehnique is based on least squares surfae �tting. To developan e�ient global optimizer, a new hybrid SQP-RegPSO sheme has been developedto �nd the global optimal solution in the feasible design spae.I presented both onstrained and unonstrained aerodynami optimization usingsequential quadrati programming with the use of adjoint method to ompute theobjetive funtion gradient. The omputations were based on higher order �nitevolume method on unstrutured grids. I took advantage of evaluating the exatJaobian matrix to ompute the �ow adjoint �eld and �ow solution sensitivity. Theomputed gradient based on the adjoint method is an exellent math with theorresponding �nite di�erene gradient in subsoni �ow for both seond and fourthorder shemes. For transoni �ow, the seond order Jaobian mathes well withthe orresponding order of auray �nite di�erene gradient; on the other hand,the fourth order Jaobian does not math the �nite di�erene gradient well whenusing a limiter. This error in the fourth order gradient is attributed to the highsensitivity of the fourth order Jaobian matrix to the use of the limiter in transoni�ow whih tends to a�et the diagonal dominane of the Jaobian matrix. To taklethis problem and to enhane the diagonal dominane of the fourth order Jaobianmatrix, we used the same non-zero struture of the seond order Jaobian matrix119



and dropped the rest of the non-zero elements; this tends to inrease the diagonaldominane of the modi�ed fourth order Jaobian matrix and improves its onditionnumber.I have developed a new approah for smooth parametrization of airfoil shapes,based on a least-squares �t of the parameters of two polynomials to a set of ontrolpoints. Compared with using all mesh points as design variables, this approahredues the size of the design spae and eliminates osillations in the shape. We usea semi-torsional spring analogy to deform the mesh grid in the entire �ow �eld whenthe surfae shape evolves during optimization. It is used also to alulate the meshsensitivity terms in the adjoint gradient.To test the developed gradient based optimizer; I have used the optimizer totakle inverse design problems in whih only one optimal solution point in the de-sign spae exists. Additional transoni drag minimization test ases have been pre-sented with and without lift onstraint. As a summary of test ases observations: Asubsoni inverse design test ase shows that both seond and fourth order shemesreahed their target geometry after almost the same number of iterations. The samebehavior is observed for transoni inverse design test ase. This indiates that theonvergene is independent of the order of auray of the spatial disretization. Ina drag minimization test ase without lift onstraint, both seond and fourth ordersheme reahed their optimum shape after almost the same number of optimiza-tion iterations. The di�erene of the resulting optimal airfoil shape is small. Bothshemes redued the drag by almost 50% of its original value but the lift also wentdown.In a drag minimization test ase with lift onstraint, the fourth order shemewas faster to reah its optimal shape with 8 optimization iterations (whih ost49 CFD simulations), while the seond order sheme took 13 iterations (112 CFDsimulations) to reah its optimum. Both shemes reahed their optimum with almostthe same wall lok run time and found nearly idential airfoil optimal shapes. Basedon all the test ases we presented, we onlude that the spatial disretization errorprodues a systemati error in the objetive funtion and has a little e�et on the�nal optimal shape.A mesh re�nement study shows that both seond and fourth order shemes tendto give the same optimal value for the objetive funtion as we re�ne the mesh.120



Based on the results of this researh, I reommend the use of a high order method forobjetive funtion value omputations and for aurate predition of fores and shokwave apture in transoni �ows, and the use of a seond order method (but based onthe obtained forth order solution) to ompute the objetive funtion gradient neededfor gradient based optimizer. If the mesh resolution makes seond and fourth ordersimulation results similar, using the seond order sheme for optimization will beeonomial.I have developed also a new hybrid gradient/non-gradient based optimizationtehnique that uses sequential quadrati programming with BFGS Hessian approx-imation tehnique in an initial gradient based optimization phase, followed by theregrouped partile swarm optimization method in the non-gradient random searhphase. The SQP optimization phase leads to a high quality initial best-solutionpoint that redues the total omputational e�ort of the RegPSO to reah a shokfree pro�le.Unlike with the SQP sheme, the transoni drag optimization with lift onstraintof the NACA 0012 and NACA 00083 takled with the hybrid sheme lead to shokfree optimal shapes; in both ases, the objetive funtion gradient vetor is almostperpendiular to the vetor that onnets the SQP optimum and the hybrid opti-mum. This explains why the gradient based optimization an not reah the globaloptimal, and also shows that its optimal solution depends on the starting geometry.The objetive funtion behavior along the vetor that onnets the SQP and thehybrid optima shows that numerial noise may have a harmful impat on gradientbased optimization as well.Transoni drag optimization of NACA 0012 and NACA 00083 have been tak-led with both aerodynami and geometri onstraints. For RegPSO, the geometrionstraint is satis�ed using penalty method; in both ases, shok free pro�les havebeen obtained. The last test ase (drag redution of NACA 00083 with a thiknessonstraint) shows that the hybrid sheme was able to �nd a shok free pro�le despiteinreasing the thikness during optimization. The omputational expense of the hy-brid sheme is four to nine times more than SQP optimization, but in all ases, aglobal optimal (shok free) pro�le obtained, and in aerospae industry, this is worththe inrease in omputational e�ort. 121



8.2 Future WorkWe intend to apply non gradient-based optimization tehniques like partile swarmalgorithm to study the e�et of CFD sheme order of auray on the �nal optimalshape in the near future. Another obvious extension of the urrent work is aero-dynami optimization using RANS with turbulene models. The �ow solver shouldsolve the turbulene equations oupled with the mean �ow equations; otherwise, the�ow sensitivity values will be less inaurate. Thus, for a three dimensional �owsimulation with k − ǫ turbulene model, the blok size of the Jaobian matrix is
7× 7. Fully oupled solvers have also been shown to onverge more e�iently.For three-dimensional problems, the geometry parametrization should be re-plaed with a perturbation parametrization (parametrization of the hange in theshape). This will redue the required number of design variables whih is veryimportant for three dimensional optimization problems. Importantly, perturbationparametrization also prevents the hange in the initial pressure distribution whenparametrizing the geometry itself.Exploring the e�et of the geometry parametrization tehnique used on SQP opti-mization results is needed. We speulate that using the right geometry parametriza-tion tehnique may lead to a design spae in whih aerodynami onstraints aresimply onneted and an SQP optimizer an �nd a globally optimal solution.
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