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Abstract

The growth of computer power and storage capacity allowed engineers to tackle
engineering design as an optimization problem. For transport aircraft, drag mini-
mization is critical to increase range and reduce operating costs. Lift and geometric
constraints are added to the optimization problem to meet payload and rigidity con-
straints of the aircraft. Higher order methods in CFD simulations have proved to
be a valuable tool and are expected to replace current second order CFD methods
in the near future; therefore, exploring the use of higher order CFD methods in
aerodynamic optimization is of great research interest and is one goal of this thesis.

Gradient-based optimization techniques are well known for fast convergence, but
they are only local minimizers; therefore their results depend on the starting point
in the design space. The gradient-independent optimization techniques can find
the global minimum of an objective function but require vast computational effort;
therefore, for global optimization with reasonable computational cost, a hybrid op-
timization strategy is needed.

A new least-squares based geometry parametrization is used to describe airfoil
shapes and a semi-torsional spring analogy mesh morphing tool updates the grid
everywhere when the airfoil geometry changes during shape optimization.

For the gradient based optimization scheme, both second and fourth order sim-
ulations have been used to compute the objective function; the adjoint approach,
well known for its low computational cost, has been used for gradient computa-
tion and matches well with finite difference gradient. The gradient based optimizer
have been tested for subsonic and transonic inverse design problems and for drag
minimization without and with lift constraint to validate the developed optimizer.
The optimization scheme used is Sequential Quadratic Programming (SQP) with the
BFGS approximation of the Hessian matrix. A mesh refinement study is presented

for an aerodynamically constrained drag minimization problem to show how second

il



and fourth order optimal results behave with mesh refinement.

A hybrid particle swarm / BFGS scheme has been developed for use as a global
optimizer. It has been tested on a drag minimization problem with a lift constraint;
the hybrid scheme obtained a shock free profiles, while gradient-based optimization

could not in general.
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Chapter 1

INTRODUCTION

Drag reduction of transport aircraft is of great importance because it reduces aircraft
fuel consumption and thereby reduces operating costs and environmental impact in
the form of pollution and global warming. Drag, lift and other aerodynamic forces
can be predicted using CFD simulations, which have become an essential tool for
aerodynamic analysis and design. CEFD simulations carried out using unstructured
grids give accurate aerodynamic force predictions, and unstructured grids have the
advantage of easily representing any complex shape. As most transport aircraft
travel at transonic speed, it is of great importance to reduce the wave drag by
weakening or entirely eliminating shock waves on the wing. Aerospace engineers use
CFD simulations with numerical optimization techniques for aerodynamic design;
the optimization problem is to minimize an aerodynamic objective (often drag) by
changing geometric design variables, given an initial aerodynamic shape and subject
to some geometric and aerodynamic constraints. This process requires accurate
assessment of the aerodynamic characteristics of a given geometry. The flow model
used in this research is Euler’s flow model; although this model neglects viscous flow
effects, reducing the drag using this inviscid flow model will ultimately reduce the
drag on real configurations as the inviscid drag is about 40% of the total drag [47].
A higher order finite volume CFD solver developed by C. Ollivier-Gooch and co-
workers [68, 61, 56] is used in this research.

Optimization schemes can be divided into two main categories: gradient-based
and non-gradient-based schemes. Gradient-based schemes require computing the ob-
jective function value and its gradient with respect to the design variables, while the
non-gradient-based techniques require only computing the objective function value.
Gradient-based schemes are fast to converge to a local optimal point in the design
space compared to the non-gradient-based methods, but the optimal solution found

by gradient-based optimization depends on the starting point [33]. Non-gradient-



based schemes can find global minimum solution regardless of the starting point,

but with larger computational cost compared to gradient-based scheme.

1.1 Finite Volume Flow Solver

The two dimensional integral form of Euler’s equation can be written for a control

volume €; as

2// QIV+ ¢ F-adl=0 (1.1)
ot J]a, a0

where 7. = ni + n,j is the outward pointing normal to the control volume faces;
Q@ and ? are respectively the conserved variable vector and the flux across the

boundary of control volume €2; boundaries. These can be expressed as

p pUn,
I W I e
pv pUpv + nyp
E (E+p)U,
2,2
u”+uv
p=(-1) E—P%

Un = ngu + nyv

where is the fluid density, © and v are the Cartesian velocity components, p is the
pressure, and E is the energy per unit volume. U, is the velocity in the direction
normal to the control volume boundary. Other thermodynamic relations like the
specific heats at constant pressure (Cp) and constant volume (C,), the ratio of specific

heats v can be expressed in terms of the gas constant for air, R:



For a thermally and calorically perfect gas, thermodynamic properties can be related
by

P = pRT
e=C,T
et:e+%(u2+v2)
E = pe;
h:e~|—£

p

a=+/vRT

where T is the temperature, e is the specific internal energy, e; is the specific total

energy, h is the specific enthalpy, and a is the speed of sound.

For discrete solution of the Euler equations, flow properties are normalized by
some reference values in order to reduce the round-off errors in the discretized linear

system; for external aerodynamics, the normalized flow properties are as follows

_ P

- L a- p-_LT_

Poo (20%) Poolig

U v _ P 1
U = R N = — E:— = —2 —2
U o v o 7_1+2p(u +v)
T = x -_ Y f_taoo

- YT - L

With this normalization, the normalized Euler equations are identical to their di-

mensional form with the addition of [-] to every variable. From this point on, the

normalized flow properties are used and therefore [-] will be dropped.

The flux is evaluated using Roe flux difference splitting technique |74] and eval-
uated at each cell face x using the following formula

L 1= . .

F=3[F@n+F@u-|Al@r-au)] (12)

where Qr, Qr, are the conserved flow properties at right and left of the cell face x and

the Roe averaged matrix A is the flux Jacobian OF /0Q at Roe-averaged quantities



as follows

p = PLPR

PR PR
. ur, +UR oL f}_?)L—F’URMPL
pr N PR
hy + hpg, /22 ~9 | o
~ PL 5 ~ u+v
h = = a2:(7—1)<h—7( 5 )> (1.3)
L+ \or

The Roe-averaged Jacobian matrix A has four eigenvalues. Three of these are dis-
tinct, but the eigensystem is complete. The Roe dissipation matrix can be written

in terms the eigenvalues and eigenvectors of the Jacobian as

U, 0 0 0

o 0o |0, 0 0 .

Lﬂ:x ) X1 (1.4)
0 0 m+ﬂ 0
0 0 0 m—ﬂ

where X is the eigenvector matrix evaluated using Roe-averaged flow quantities; the

term ‘fi‘ (Qr — Q1) can be written according to Frink as follows |27, 26|

A @Qr-Qu = |42
:(AELqAELﬂA&‘ (1.5)



where

1 0

- ~ AP U Au — n, AU
AF| = (U, Ap — — +p

| = < P 2) 5 g Ao — 1y AU

P49 alu+ 500 — Up AU
1

. N 5a i+ n.d
‘AF45‘ _ ‘Un:td‘ APif)aAU ZNL Ny iL
’ 2a2 U £ nya
Hiﬁ

Ap = pr—pL, Du=ur—uy,  Av=wvg—uvyL,

AP = Prp— Pp, AU = ngAu+ nyAv

Higher-order accuracy is obtained by least-squares reconstruction of the non-conserved
variables U = [ pu v D ] and Gauss quadrature in flux integration |68, 61].
After integrating fluxes around each control volume in the mesh, an implicit time
discretization leads to a sparse system of linear equations, which for the simplest

case of a global time step can be written as,

I OR
e

—+—}AW:W (1.6)

T
where AQ = [ Np NDNpu NApv AE ] , BQ is the global Jacobian matrix, and R
is the residual. The steady state solution is obtained iteratively when AQ — 0. In
practice, we use a quasi-Newton generalization of Eq.[L.6lthat includes residual-based

local time stepping [57] and solve the system using GMRES [75].
1.2 Numerical Aerodynamic Optimization
Aerodynamic design used to rely on CFD simulations in conjunction with experimen-

tal testing and engineering intuition of the designer. With the growth of high speed

computers, integrating numerical optimization schemes with CFD simulations has



become possible and is now used for aerodynamic design and optimization. Gradient-
based optimization techniques are widely used because they reach an optimized shape
after a reasonable execution time; however, the final optimal shape is the local min-
imum located downhill from the optimization starting point. Non-gradient-based
methods like genetic algorithm (GA) or particle swarm (PS) are slower to find an
optimum but can find the global minimum regardless of the starting point; their
drawback is the large number of iterations required to reach this minimum com-

pared to gradient-based schemes.

1.2.1 Gradient-based aerodynamic optimization

Gradient-based optimization depends on evaluating the gradient of the objective
function with respect to the design variables and using the gradient in a linear
model (steepest descent) or a quadratic model (Newton or quasi-Newton model)
to find a search direction; this search direction is the direction in which the de-
sign variables should change their values to minimize the objective function [66].
Gradient-based techniques have been widely used in aerodynamic optimization due
their fast convergence to an optimal solution. The obtained optimal shape is bi-
ased by the optimization starting point (initial aerodynamic shape), and there is
no guarantee that gradient-based methods can find the global best optimal shape
in the design space [2]. Hicks and Henne where among the first to apply gradient-
based optimization techniques in aerodynamic design in the late 1970’s |35]. Since
then many researchers have investigated the use of gradient-based optimization tech-
niques like steepest descent and quadratic programming in aerodynamic optimiza-
tion |17, 31, 28]. The most expensive part of gradient-based optimization is the
gradient calculation. Hicks and Henne used finite difference rules to calculate the
objective function gradient. This means that two CFD simulations were required for
each design variable to compute the gradient (using a central finite difference rule),
which is computationally expensive. The same strategy was applied by Consentino
and Holst to optimize transonic wings [17]. The use of the adjoint method, which
was originally applied to aerodynamics problems by Jameson, to compute the gra-
dient reduced the computational cost of gradient calculation to the cost of one flow
simulation regardless of the number of design variables [41, 43, 60, 38, 39, 42, 11, 62].
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Figure 1.1: Airfoil aerodynamic optimization cycle using gradient-based optimization

Numerous researchers have applied gradient-based optimization using the ad-
joint approach in aerodynamic optimization since the early 1990’s. Reuther and his
co-workers applied the adjoint approach for aerodynamic optimization of aircraft
configuration using Euler’s flow model [73|. Jameson developed an adjoint formula-
tion for the Navier-Stokes equations and applied it to transonic wing optimization
[43]; in this work, Jameson suggested that an optimal pressure distribution first be
obtained using Euler’s flow model then used as a target pressure for an inverse design
optimization problem using a Navier-Stokes adjoint optimizer to reduce the overall
computational cost. However, Jameson treated the eddy viscosity as constant which
was later shown to be a bad assumption. Anderson and Bonhaus examined the effect
of the strength of coupling of the turbulence model to the flow equations. They com-
pared the adjoint gradient of the flow equations, with the eddy viscosity frozen, with
the finite difference gradient of the combined flow and turbulence equations, and
found that freezing the eddy viscosity can lead to significant error in the computed
gradient. Therefore, they developed a flow solver that couples the Spalart-Allmaras
one-equation turbulence model with the flow equations; their coupled solver used
5 x 5 blocks for two dimensional flows and 6 x 6 blocks for three dimensional cases.

They found that this coupling of the turbulence equations with the flow equations led



to an accurate adjoint gradient [3]. The same observation was verified by Nielsen and
Kleb who extended their adjoint solver to deal with chemically reacting flows [65].
Zymaris et al developed a continuous adjoint optimizer for turbulent flow using the
k — e turbulence model and applied it to duct optimization; they showed also that
the assumption of constant eddy viscosity leads to great inaccuracy in the computed
gradient and this leads to a poor search direction [88].

Regarding the optimization technique used, early researchers used the steepest
descent scheme, in which the design variables are updated on a search direction
exactly opposite to the gradient of the objective function |66, 4]. This scheme has
been implemented by Jameson and other researchers |37, 41, 73, 3], but as the
steepest descent scheme requires a large number of iterations to converge to minimal
point, the sequential quadratic programming (SQP) scheme seems to be an attractive
candidate as an optimization technique. The use of SQP requires computing the
Hessian of the objective function with respect to the design variables. The exact
Hessian is expensive to compute and may not be positive definite; therefore, the
Broyden-Fletcher-Goldfarb—Shanno (BFGS) approximate formula is often adopted
to approximate the Hessian using objective function gradient history [12,13,87|. The
BFGS approximation always gives a positive definite approximate Hessian, therefore
a real optimization search direction is guaranteed. Dadone et. al used BFGS in
aerodynamic optimization for transonic and supersonic wings and compared BFGS
and steepest descent; there results showed that the BFGS method is more efficient
in finding the optimal solution and is less sensitive to any inaccuracy caused by
approximation in gradient computations [19]. BFGS optimization has also been used
by Nemec and Zingg in subsonic and transonic turbulent aerodynamic optimization

of two dimensional airfoil [63].

1.2.2 Gradient free optimization

Gradient free or gradient independent optimization methods, also known as heuris-
tic optimization methods, are optimization techniques that do not require objective
function gradient computation and therefore can be applied to non-differentiable
problems. They can be categorized as evolutionary schemes (including genetic algo-

rithms) and random search schemes (like the particle swarm technique).



Genetic algorithm optimization is an evolutionary optimization algorithm that
is inspired by Darwin’s theory of evolution and natural selection [30]. The design
variables are treated as chromosomes and optimization is carried out by crossing and
mutating these chromosome to find a better solution that minimizes the objective
function. The initial population is randomly generated, the objective function value
is computed using CFD for each population member and a fitness value is computed
based on that; some members are selected based on their fitness to be the parents of
the next generation and are used to generate the chromosomes of the offspring of the
next optimization iteration. Transonic wing optimization using a genetic algorithm
was explored by Gregg and Misegades [32] and by Gage and Kroo [29] in the late
1980’s to minimize drag with lift constraint. Somewhat later, Anderson applied
a genetic algorithm in subsonic wing optimization with structural constraints [1];
he added the geometric and aerodynamic constraints to the objective function as
penalty terms. Jang and Lee applied a genetic algorithm in subsonic and transonic
inviscid airfoil optimization; their objective was to maximize the lift-to-drag ratio
of an airfoil, beginning from the NACA 001 [44]. Oyama et al applied a genetic
algorithm with a Navier-Stokes solver for transonic wing optimization [70]. They
also explored the use of fractal analysis in GA aerodynamic optimization [71].

The particle swarm method (PSOpt) is a stochastic optimization search method
developed by Eberhart and Kennedy in 1995, inspired by the social behavior of bird
flocks [46, 21]. The general idea of the particle swarm optimization is to randomly
generate a swarm of particles in the design space. For each particle a fitness value
is calculated based on CFD simulation. Then particles “fly” in the design space
according to a simple formula that takes into account that particle’s own best fit-
ness position and the swarm’s overall best fitness position [22]. PSOpt is known to
suffer from premature convergence prior to discovering the true global minimizer;
Evers suggests an automatic regrouping PSO (RegPSO) that automatically triggers
swarm regrouping when premature convergence is detected. The suggested regroup-
ing strategy aims to liberate particles from sub-optimal solutions and enables finding
the global minimum [24]. Although the PSO algorithm has been applied to a wide

!The National Advisory Committee for Aeronautics (NACA) airfoil family geometric coordinates
can be found at University of Illinois Urbana-Champaign website http://www.ae.illinois.edu/m-
selig/ads/coord _database.html. An explanation of the meaning of the digits in the NACA airfoil
naming scheme can be found in [36].



range of engineering problems in the literature, very few aerodynamic optimization
applications are known. Venter and Sobieszczanski applied the particle swarm op-
timization technique in the multidisciplinary optimization of a wing; the objective
was to maximize the aircraft range by maximizing lift-to-drag ratio and reducing
the wing weight subject to geometric constraints [85]. Chandrashekarappa and Du-
vigneau [15] used particle swarm optimization scheme to aerodynamically optimize
wings in supersonic conditions; Duvigneau also applied particle swarm optimization
to aerodynamic optimization of wings at transonic speed with free stream Mach

number uncertainty [20)].

1.3 Contributions of the Thesis

High order CFD methods can compute an accurate value of an aerodynamic objective
function at lower computational cost than required when a second order method is
used. The first major contribution of this thesis is a study of whether the efficiency of
high order methods for CFD analysis translates into improved efficiency for gradient-
based aerodynamic optimization.

Gradient based optimization techniques are known to be local minimizers, with
results depending on the starting airfoil geometry. The second major contribution
of this thesis is the development and study of an optimization scheme that can
reach a true global optimum (for inviscid transonic aerodynamics, a shock free airfoil
subject to aerodynamic and geometric constraints) after a reasonable number of CFD
simulations. This scheme is a hybrid (BFGS + regrouped particle swarm) scheme
that takes the advantages of gradient-based and gradient-free optimization schemes.

To achieve these goals, the following components were needed, in addition to the

pre-existing high-order accurate flow solver:

An efficient geometry parametrization method. For optimization purposes, the
airfoil shape must be represented by a finite number of design variables. Chap-
ter [21 describes the requirements on such a parametrization and presents a new

least-squares spline parametrization method developed for this work.

Robust mesh movement. As the airfoil shape changes during optimization, the

computational mesh must be updated. Because mesh regeneration will intro-
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duce unacceptably large changes in the discretization error, mesh movement is
strongly preferred. Chapter [3] describes the semi-torsional spring mesh move-

ment scheme used in this thesis.

Mesh sensitivity calculation. Calculating the gradient of the objective function
accurately and efficiently requires information about the movement of the mesh
with changes in design variables. Section (3.3l describes this process, which com-

bines aspects of the geometric parametrization and mesh movement schemes.

Objective function gradient calculation. Efficient gradient calculation requires
the solution of the adjoint to the governing flow equations. Chapter 4 describes
how this is done. A key innovation of the thesis is efficient solution of the
discrete adjoint problem for a high-order accurate flow solution scheme. In
addition to showing the formulation of the gradient calculation, this chapter
compares finite difference and adjoint gradients for subsonic and transonic flows
for second and fourth order finite volume schemes. For transonic flow, results
are presented both with and without limiting of the computational solution to

prevent overshoots.

Optimization drivers. The gradient-based optimizer using in this thesis is the
BFGS-based quasi-Newton solver in Matlab’s optimization toolbox. Gradient
based optimization test cases for inverse design problems and for drag mini-
mization with and without a lift constraint is shown in Chapter [6l Also, the
impact of mesh refinement on the second and fourth order optimal results is
studied.

The regrouped particle swarm optimization code was written by the author.
This scheme and its hybridization with the BEFGS scheme is presented in Chap-
ter [7. Examples are given to show the effectiveness of the hybrid scheme in

finding global optima when the gradient-based scheme is unable to.
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Chapter 2

GEOMETRY
PARAMETRIZATION

The geometry of engineered objects is defined mathematically in computer-aided
design (CAD) software, then exported as a group of points or polygons which ap-
proximates the original geometry. This discrete data provides input to mesh gener-
ation software that creates a discrete representation of the computational domain (a
mesh), which in turn is used as input for CFD analysis. Aerodynamic design and
optimization modifies the aerodynamic shape by changing a set of geometric design
variables. An obvious choice is to use all the surface grid points of a wing, but this
approach causes two problems. First, it makes the design space very large and this
may lead to a highly expensive optimization. Second, it may lead to a non-smooth
geometry due to the displacement independence of a surface mesh point; this prob-
lem can be solved by the use of a smoothing function, as described by Jameson |41].
To avoid these problems, most optimization approaches rely on some form of geo-
metric parametrization. Geometric parametrization techniques can be classified as
analytical; piece-wise spline fitting; CAD based; and free form deformation (FFD)
approaches. In Section [2.1] a review of various geometry parametrization techniques
is presented. Section [2.2] describes in detail the geometry parametrization technique

used in this research, a novel piece-wise least-squares fitting technique |3, 6].

2.1 Survey of Geometric Parametrization Techniques
In this review, various techniques applied to aerodynamic optimization are presented;

the basics of these techniques and their application limitations are discussed, includ-

ing reference to the original papers describing them in more detail .
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2.1.1 Analytical parametrization

The analytical approach was first applied by Hicks and Henne for airfoil optimiza-
tion [35]. They suggest that weighted sinusoidal displacement shape functions be
added to the base geometry to modify the airfoil shape; the weights are the opti-
mization design variables. The sinusoidal displacement shape function is expressed

as

In(0.5) a
h(z) = (sin (713: n() >> 0<z<l1 (2.1)

where a and b are constants to control the peak location and the width of the
sinusoidal displacement shape function. @ = 4 is recommended for most cases, while
b must be between 0 and 1 [45].

The Class-Shape function-Transformation method (CST) is another analytical
geometry parametrization technique presented by Kulfan [49, 48]. CST parametrizes

the airfoil geometry using the following formula
y=2"°(1 —2)S () + A ZrE (2.2)

where S (z) is the shape function and AZrg is the finite thickness of the trailing
edge. Kulfan and Bussoletti recommended using a weighted Bernstein binomial of

order n as a shape function
S b _m 1—az)"" 2
(x) = E Zﬂ( Z,)!x (1—2x) (2.3)

where the weights b; are used as the design variables. Although CST gives non-wavy
profiles, it is not capable of representing complex geometries. Mousavi and Nadiragah
compared the impact of using different geometry parametrization techniques on the
optimal wing shape; using CST parametrization gave drag coefficients higher by
about 15% than the optimal geometry from a B-spline parametrization [58] for a

three-dimensional lift-constrained transonic drag minimization problem.
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2.1.2 Piece-wise spline parametrization

Bezier curves can be used for airfoil shape parametrization. Obayashi used Bezier
curve for aerodynamic optimization using genetic algorithm [67]; he noticed that
the Bezier curve representation fails to represent geometries that gives rooftop pres-
sure distribution because Bezier curves are always convex. B-splines, a general-
ization of Bezier curves, were found to be more suitable. A cubic B-spline rep-
resentation is a very good geometry parametrization technique. Better control of
the cubic spline representation can be obtained by increasing the number of splines
that represent the airfoil; Li et al. optimized the NACA 0012 at single point and
multi-point operating conditions with a lift constraint using spline representation as
geometry parametrization technique [50]. CAD systems typically use non-uniform
rational B-spline (NURBS) representation for geometry modeling, allowing them to
represent any complex geometry; a detailed discussion of NURBS can be found
in The NURBS Book |72]. Mengistu and Ghaly applied successfully a NURBS
parametrization scheme to turbomachine blade aerodynamic optimization using a
gradient-free method [53]. While piece-wise spline parametrization is well-suited for
two-dimensional shapes and simple three-dimensional geometries, complex shapes
require a large number of control points, reducing the effectiveness of gradient-based

optimization techniques [76].

2.1.3 CAD parametrization

Computer aided design packages have evolved to implement NURBS for geometry
representation due the excellent properties of NURBS. Linking the CAD and grid
generation software can be done using an API that allows access to the CAD system’s
internal interface [81, 8|. However, imposing geometric constraints is still an obsta-
cle. Mesh sensitivity calculation is another obstacle for gradient-based optimization
techniques based of CAD parametrization: analytical mesh sensitivity with respect
to geometry design variables — the NURBS knots — can in principle be computed
with the use of automatic differentiation of the CAD software but this is not possible

without CAD source code and is unlikely to be practical even then, given the size of

Distributions for which pressure remains almost unchanged over a significant chordwise dis-
tance.

14



the CAD code base. This derivative can also be computed using finite differences,

but the risk of poor accuracy still exists, and computational costs are higher |76, 77].

2.1.4 Free form deformation (FFD)

Computer graphics requires large graphical deformations such as stretching, twisting
and other surface morphing operations; soft object animation (SOA) algorithms were
developed to help with the geometry morphing required in graphics animation [86].
In SOA algorithms, the object surface is treated as a piece of rubber and the desired
deformation can be obtained by applying loads on it, so geometry morphing can be
obtained without a change in surface topology. The surface itself can be parametrized
using Bezier or B-splines or even NURBS splines. A related approach, the free form
deformation algorithm (FFD) treats the geometry as a void in a box-shaped piece of
rubber. Deformation can be controlled by moving control points placed on the outer
surface of the box; the interior of the rubber box with its void is parametrized using
a tensor product of three spline representations (one in each coordinate direction).
Sederberg and Parry developed an algorithm that uses the FFD concept with Bezier
tri-variate volume representation |78]. A disadvantage of the FFD method is that it
requires large numbers of control points to obtain local deformation in the deformed
geometry. However, Borrel and Rappoport presented a method to allow local shape
deformation via FFD by introducing a set of control points with constrained local
B-splines that can be used to obtain deformation in a radius of influence determined
by the designer [10].

2.1.5 Multidisciplinary aerodynamic/structural shape
optimization using deformations (MASSOUD)

The MASSOUD method is an analogy to analytical methods that tries to parametrize
the deformations in the geometry rather than the geometry itself. It also uti-
lizes SOA algorithms and allows strong local deformation control. The MASSOUD
parametrization requires few design variables because it parametrizes the deforma-
tion. Samareh has applied the MASSOUD method to parametrize a simple wing, a
wing body blend, and a complex aircraft configuration with success |[76]|. Nielsen and

Anderson successfully adopted the MASSOUD parametrization scheme for aerody-
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namic optimization of turbulent flow using unstructured grids |64].

2.2 New Least Squares Parametrization Technique

A new least-squares based surface parametrization method is presented in this sec-
tion; the airfoil surface is parametrized using piece-wise polynomials whose coeffi-
cients are found by solving a least squares problem [6]. This section also describes
how to implement a thickness constraint with the new parametrization and presents

some validation test cases.

2.2.1 Airfoil geometry parametrization

In the proposed technique, the geometry is parametrized using piece-wise polyno-
mials found by a least-squares fit. The parametrization polynomials are controlled
by a set of control points and satisfy C? continuity at their meeting points. The
airfoil upper and lower surfaces are represented using two least square splines for

each surface as shown in Fig. 2.1 The polynomial@ used are

Pl(a;) = aoﬁ +a1x + a2x2 + a3:1:3 O<zx< Iy
Pg(x) = by+bix+ bg$2 + b3x3 Li<zxz<lL (2.4)

where x is the normalized chord-wise position, L; is chord-wise position that sep-
arates the polynomial regions, and L = 1. These polynomials are suitable for an
airfoil with a rounded leading edge due to the existence of the \/x term in P (),
which gives an infinite slope at x = 0. The x and y coordinates of the design control
points shown in Fig. 2.1l are used to find the values of the polynomial coefficients.
These polynomials must satisfy continuity of value, slope, and curvature at their

meeting point x = L;. These conditions can be written as

e Value continuity:
Py(Ly) — P2(L1) =0 (2.5)

3Technically, P; is not a polynomial because of the presence of the 1/z term used to give infinite
slope and finite radius of curvature at x = 0. However, the label is convenient and not overly
confusing.
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e Slope continuity:
Pi(Ly) — Py(L1) =0 (2.6)

e Curvature continuity:

P/ (L) = Py (L1) =0 (2.7)

An additional constraint should be added on P»(L) to assure zero thickness at the
trailing edge. The above “hard” constraints should be strictly satisfied by the geom-

etry parametrization polynomials; they can be written in matrix form as

BP =0
where
\
ag
_ _ ai
VI, Ly 1?3 13 -1 —-L; -1} -L} ay
. 2& 1 2Ly 3L2 0 -1 —-2L; -3L2 )o@
om0 2 6L 0 0 -2 6Ly |’ ) b
1
o o o o 1 L L* L b1
i 1 b,
b3

The free parameters are chosen to best approximate the y coordinates of the airfoil
shape control points; the x coordinates of the control points are fixed. The resulting

least square system with constraints applied can be expressed as
min [|AP — ¢||* subject to BP =0 (2.8)

where A contains powers of the x coordinates at the design points so that AP gives
the y coordinates of the parametrized shape at the design points and ¢ contain the
actual y coordinates of the design points. I have used a set of control points that
controls the airfoil shape functions instead of using the coefficients of the shape
functions to ease constraints and boundary definitions. To give an example of how

this least-squares system is constructed, consider the parametrized airfoil surface
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Figure 2.1: Least square surface presentation of RAE 2822 airfoil using two polyno-
mials P (z) & P, (z) fitted using nine control points.

shown in Fig. 2.1l Six control points lies in the region of the polynomial P; (),

while three points lies in the P (x) region. The corresponding least-squares system

is
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Because the constraint equation, Eq.[2.8], has a zero right hand side, the solution

vector P must lie in the null space of the constraint equations, i.e. it should be a

linear combination of the null space basis of the constraint equations. The matrix B

is full row rank and to find the null space basis of it, QR factorization can be used:

BT = QR
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The vectors of the [Q2] matrix are unit vectors forming a basis of the null space of
matrix B. The solution vector P must be a linear combination of the vectors of the

matrix Qo
P=z G +zon - @+zn G+ &=Q»z (2.10)

Substituting Eq. into Eq. 2.8
AP = AQaz =c (2.11)

Solving the least-squares system by singular value decomposition for numerical sta-
bility,
z=[AQs]' ¢ (2.12)

where the rectangular matrix [AQs]" is the pseudo-inverse of [AQ5]. Finally,
P =Q2[AQ] ¢ (2.13)

Equation 2.13] gives the relationship between the polynomial coefficients P and the

y locations of the control points c.

The sensitivity of the polynomial coefficients with respect to the y location of
the ith control point, which is needed to calculate the mesh sensitivity OM /0D, is

the i*® column of the matrix Qo [AQQ]T.The dependency of an airfoil surface point

= [ Ta ]0n a design variable D; can be found from

Ya
o | 0

= 0<ax, <y 2.14
8D7, I Ba() \/@‘i‘ Odar xa + Baz .’1: + gLDixg ] a ( )
o | 0

= L1 < Ty < L
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oD; oD; o0D; 0D; o0D; 0D; 0D; 0D,
strained pseudo inverse matrix Q[AQs]". This procedure can be extended to

where

parametrize airfoil surface using any number of piece-wise polynomials, with an ac-
companying increase in system size. Leading edge radius and trailing edge thickness
constraints can be added to the C? continuity requirements forming the constraint
system BP = d, and the control point coordinates are used to construct the system
AP = {yc}.

In practice, all airfoil surface points are used in the least squares system to find
the polynomials coefficients. After finding the polynomials coefficients, the designer
can select a set of control points which lies on the parametrized surface; the least
number of control points is two per polynomial. The less control points used, the
less control of airfoil geometry. I have selected nine control points at specific chord-
wise x-stations based on my engineering sense; it turns out that my selected set of
control points were able to produce shock free optimal profiles as will be shown in
the next chapters, however, selection of the control points x-stations can be made
by formulating a simple minimization problem. In this problem, a set of airfoil
geometric data gathered and the objective is to minimize the RMS error between
the original airfoil surfaces and the parametrized airfoil surfaces, where the design

variables are the control points x-stations.

2.2.2 Thickness constraint

Some aircraft fuel tanks are placed inside the wing, and the main landing gear of
some aircraft are stored in the wings after being retracted. In addition, the wing must
have sufficient bending rigidity from a structural point of view; therefore, the wing
thickness is a constraint at some chord-wise stations. This subsection demonstrates
how to add a thickness constraint to the parametrization.

Suppose the airfoil is parametrized using four polynomials, as shown in Fig. 2.2}

two for the upper surface

Pi(x) = ap\/x + ar1x + (121‘2 + a3333 O<zx< Iy
PQ(ZE) = by+biz+ bg:l?z + b3$3 L1 <x<L
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Figure 2.2: Parametrized airfoil using four polynomials

and two for the lower surface

Psy(x) = coV/x + cr1x + 62:172 + 03:1:3 O<z< Iy
P4(:E) = dy+diz+ d2332 + dg:l?g Li<zxz<L

If the thickness ¢. need to be constrained at a station x. where 0 < z. < L7,

this constraint will be

Ct : Pl(xc) — Pg(xc) = tc (2.15)
Cy: (aoy/Te + arze + asx? + azal) — (coy/Te + 120 + 222 + c3xd) =t

Equation 2.15 provides a link between the upper and lower surface polynomials;

therefore, a coupled least-squares system needs to be constructed and solved; the
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“hard” constraint equations are expressed as

\

ao
0 ay 0
0 B Db = (2.16)
Pi(ze) {0}1y4 —Ps(xe) {0}154 do 0
[ d3 [ te )
[Ba] { P} = {da} (2.17)

The global least-squares system is

A 0 Cu
0 A {P} = { N } (2.18)
[Ad{FPa} = {ed}

The above hard constraint equations do not have a null right hand side due to
the thickness constraint; therefore, the solution (polynomials coefficients) does not
belong to the null space of B,. The solution procedure for the constrained least-
squares problem expressed by Eq. (2.162.18) is described by Masuda et al [52]:

e Apply QR factorization to get BY = QR.

R
o Let QQ = [ Q1 Qo ] , R= [ 01 where @Q1contains the first 7 columns of

() and @2 contains the rest of the columns, and Ryis the first 7 x 7 sub matrix
of R.

e The hard constraints can now be written as BP, = RTQTP, = d,

o Let QTP, = 4 .ThenPa:Q[y]:Q1y+Q2z
z z
T T R{ T T
SRIQTR = | .[Ql Qz] Po=dy— RFy+0=4d,

~y=RTd, (2.19)
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e Because R is upper triangular, Equation 2.19 can be solved using forward

substitution.

e The soft constraints in equation 2.18 can be rewritten as

APy = A, [ Oy Qo2 ] = ca (2.20)
L ARz = o — AQuy (2.21)
TR = [A(IQQ]T [ca - Aany] (222)

e Finally, the polynomial coefficients can be found as P, = Q1y + Q2z:

Po= |Q1— Q2[A4Q2)" A,Q1| RyTd, + Q2 [A0Q2]' ¢4 (2.23)

Using the last equation we notice that the sensitivity of the polynomial coeffi-

th

cients with respect to the "' control point y location, y.;, is the i*" vector of

the matrix [Qs] [AQ2]'.

2.2.3 Validation cases

In this subsection, testing of the proposed least-squares surface parametrization is
carried out; parametrization of various types of airfoils is done to show that the
proposed geometry parametrization scheme has the required flexibility to represent
various types of airfoils. These airfoils include NACA 4-, 5-, and 6-digit series,
laminar flow, supersonic, and super-critical airfoil sections!t Figures [2.3H2.10/ show
the least-squares fitting polynomials for various airfoils, while Table [2.1] shows the
RMS error in the parametrized geometry for upper and lower surfaces.

The last parametrized airfoil, the laminar LVﬂ airfoil of German Aerospace
Center, was parametrized using 10 polynomials, 5 for each of its surfaces. Although
the RMS error is small (order of 10~°chord for all parametrization method), as shown
in Table 2.1l Fig. 2.11l shows that the difference of the surface pressure distribution,
especially at the peak velocity at the leading edge upper surface, is still significant.

There are many x-stations at which LV2 airfoil changes its curvature, and also a

‘Readers interested in particulars for the NACA airfoils are referred to Abbott and von Doen-
hoff’s textbook [36]. The seminal reference for the RAE airfoil is Cook et al [18].
SLV2 geometry obtained by personal contact with German Aerospace Center (DLR) researchers.
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Figure 2.4: Parametrized NACA 0012, 'O’ are the original airfoil ordinates
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Figure 2.5: Parametrized NACA 6509, O’ are the original airfoil ordinates
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Figure 2.7: Parametrized NACA 63412, O’ are the original airfoil ordinates

MACARA4421
=]
[
0.1 &) B
[&)]
o)
[
0.0s o .
]
o 2]
= o}
Or o
5]
o3
o
o

L o i

-0.05 o
o
5]

_D1 1 1 1 1 1 1 1 1 1

0 01 n2 03 04 05 06 07 08 09 1

wic

Figure 2.8: Parametrized NACA 644421, 'O’ are the original airfoil ordinates
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Figure 2.9: Parametrized RAE2822, 'O’ are the original airfoil ordinates

long interval of almost infinite curvature value which makes it hard for the geometry
parametrization scheme to accurately present it and this causes the fluctuation in
pressure resulted in the parametrized airfoil because of lack of accurate presentation
of curvature fluctuations. Better matching can be obtained but this will increase the
number of geometry design variables significantly. This case illustrates clearly the
trade off between accurately representing the geometry (which will change during
optimization iteration) and choosing a reasonable number of design variables; this
choice must be left for the designer. If the change in pressure distribution becomes
unacceptable, or if the pressure distribution requires large number of airfoil control
points (design variables) to be accurately represented, parametrization the geometry
perturbation is the more attractive option.

The values of RMS error in Table [2.1] are small compared to the maximum airfoil
thickness value: only the NACA 0011SC has an RMS error of more than 0.2% of
maximum thickness. However, if the RMS error was large, increasing the number of

surface parametrization polynomials would reduce the error.

27



%2 larinar airfoil
0.08 T . . . . . T . T

Figure 2.10: Parametrized LV2 laminar airfoil, parametrized using 5 polynomials
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Figure 2.11: LV2 airfoil parametrized using different methods with 20 design vari-
ables, presented with permission of Brezillon.
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‘ Airfoil ‘ Upper surface error ‘ Lower surface error ‘ Maximum Thickness
NACA 0011SC 6.37-107% 6.37-107% 11-1072
NACA 0012 2.35-107% 2.35-107% 12-1072
NACA 6409 9.28 -107° 1.24-1074 9.1072
NACA 16-006 1.31-1076 2.03-107° 61072
NACA 63-412 1.17-107° 5.63-107° 12-1072
NACA 64-421 1.70 - 1074 7.50-107° 211072

RAE 2822 1.20-107° 3.20-107° slightly > 12 - 1072

LV2 1.45-107° 3.22-107° slightly > 12 - 1072

Table 2.1: RMS error in different parametrized airfoil geometries
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Chapter 3

MESH MORPHING AND MESH
SENSITIVITY

3.1 Mesh Morphing

The modification of the aerodynamic shape during optimization requires a change
of the mesh that presents the shape. This can be done by grid regeneration around
the new geometry but this is time consuming and will change the discretization
error [51]. Another strategy is to adapt the old mesh to fit the new shape of the
airfoil using mesh movement.

The tension spring analogy is one of the most widely used mesh deformation
strategies for aerodynamic optimization. The main idea is to replace the grid edges
by springs with stiffness inversely proportional to their length. The boundary points
that lie on the airfoil surface are moved with displacement specified by the optimizer,
far field points are kept fixed, and the interior point displacements are determined by
equilibrium of the spring network [7]. For large grid displacements, the linear spring
analogy is not robust, and negative area cells can present after mesh morphing.

Farhat et. al. improved the tension spring analogy by adding torsional springs
at the grid nodes to prevent element flipping [25]. Each edge faces two angles as
shown in Fig. 3.1} the edge stiffness is modified to include terms with the reciprocal
of the sine of these angles. This allows the edge stiffness to grow to infinity if the
angle tends to be zero and therefore prevent element flipping.

Another strategy is to modify the mesh by solving a linear elasticity problem in
which the boundary displacements are known [14]; the element modulus of elasticity
can be the reciprocal of the distance from the wall, or it can be the reciprocal of
the element size |[82|. The later strategy was applied by Stein et al. and the results

showed that this method is robust, especially for viscous calculations. In this case,

30



Figure 3.1: Schematic drawing of an edge pg and its facing angles a and b.

the elements of the boundary layer experienced small geometrical change while the
elements away from the airfoil experienced larger changes [80]. However, the linear
elasticity mesh movement scheme is computationally expensive compared to the
spring analogy method. The semi-torsional spring analogy method is adopted in

this research due to its simplicity and robustness.

Counsider the edge pg shown in Fig 3.1l The relationship between the forces and

the node displacements when treating this edge as a spring follows Hooke’s Law as

Fp:v -1 0 1 Upg
F, 1 0 -1 0 1
o= <1 + o > v b3
qu lpq sin (ea) S (9()) 1 0O -1 0 Ugz
Foy 0 1 0 -1 Ugy

where [, is the length of edge pg, and 6, and 6, are the angles facing the edge. After
the assembly of the global stiffness matrix, the system of equations that relates grid

point displacement with nodal forces can be written as

Ui}~ 1a )
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where U; and Uy, are the interior and boundary mesh point displacements respectively.
We do not need to know the values of boundary nodal forces Fj, because the boundary
points displacement vector Uy is known explicitly: it is the deformation required in

the airfoil profile to minimize the objective function. Therefore, Eq3.2lcan be written

v\ [ o
H ?

Substituting UF = rEtl ok U, = 7 — ipoin Eq 3.3 we get

3 (2

k — k
Kii Ky | K Ka 7? n 0 (3.4)
0o I 7w | | o I o Uy '

where 7, is the initial position vector of the boundary points before mesh morphing.

K Ky
0 I

The stiffness matrices [K;;] and [K;] depend on the mesh face lengths, which change
during the mesh morphing stage; therefore, Eq.[3.4lis a non-linear equation and needs

to be solved iteratively.

3.2 Testing Mesh Morphing

Farhat et al |[25| demonstrated the robustness of the semi-torsional mesh movement
scheme. In this section, testing results are presented to demonstrate that the cur-
rent implementation of this scheme shows the same good behavior for several high-
deformation cases. The first test case is an unstructured triangular mesh around a
NACA 0012. The thickness of the airfoil is doubled, which means that the airfoil
surface points will translate by several computational cells in the y-direction. Fig-
ure 3.2 shows that even with this large displacement (multiple cells) of the boundary,
no cells are inverted and no edges intersected with another. Displacement decreases
with the distance from the airfoil surface, and there is almost no movement on the
symmetry line.

The second case tests mesh movement when the outer boundary is changing.
The original mesh is an unstructured triangular mesh (shown in Fig [3.3a). The
outer boundaries are changed, reducing the total area by almost 50% and turning

the original right-angled corners nearly into cusps. Figure [3.3b shows that the semi-
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Figure 3.2: Mesh movement scheme results of doubling the thickness of NACA 0012

torsional mesh movement was capable of adapting the mesh in the entire field without

element flipping.

3.3 Mesh Sensitivity

For gradient-based optimization, as shown in the next chapter, the gradient compu-
tation requires calculation of the dependency of the residual on the design variables
OR/OD, which in turn depends on the evaluation of mesh sensitivity. The mesh
sensitivity tells how mesh points translate in the (x,y) plane with the perturbation
of the geometric parametrization control points (design variables). This translation,
obviously, depends on the mesh movement scheme. Truong et. al. compared al-
gebraic mesh movement to linear elasticity mesh movement schemes to study the
impact of the adopted mesh movement scheme on the final optimized shape. There
was a noticeable difference between the final optimal airfoil shapes for a subsonic
case, although the difference in the optimal objective function value was of order of
discretization error. For a transonic test case, the difference in the optimal shapes
was almost negligible [83].

The mesh sensitivity with respect to one of the design variables M /90D; (that is,
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the change in mesh point locations with a change of a design variable) is calculated
by differentiating Eq. [3.3k

Kii K el o

au, -\ om

U D, oD

) —1
oL [Eek) T o o
ARG N A IR |

where 974 /OD; is obtained using Eq. 2.14] and is related to the design variables via
the pseudo inverse of the constrained least-squares system solved in parametrizing

the geometry.
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Chapter 4

GRADIENT CALCULATION
USING ADJOINT APPROACH

Gradient calculation plays a key role in gradient-based optimization. The traditional
finite difference strategy is computationally expensive as it requires at least as many
CFD simulations as the number of design variables to compute the gradient; each of
these is the solution to a large non-linear system of equations. The forward strategy
to compute the gradient is less expensive as it requires the calculation of the flow
sensitivity with respect to the design variables, and uses the computed flow sensitivity
to compute the gradient; the forward strategy requires solving a number of linear
systems equal to the number of design variables to find the flow property sensitivity
with respect to all the design variables. The adjoint strategy is computationally
cheaper; it requires the solution of one linear system whose right hand side is the
dependency of the aerodynamic objective function on the flow field properties. Due
to its numerical efficiency and the corresponding reduction in computational effort,

the adjoint strategy is adopted in this research.

4.1 Forward and Adjoint Formulations

The objective function, F', for aerodynamic optimization is a function of the design
variables, D, and the flow field solution at the surface points of the boundary control
volumes Uy

F =F (Us, D) (4.1)

T
Us is expressed most conveniently in primitive variables: U = < p u v P

Counsider, for instance, the lift and drag forces of a two dimensional airfoil, which

are perpendicular and parallel, respectively, to the incoming flow, which is inclined
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at an angle « to the airfoil chord. These can be evaluated as follows:

Fr,=— {%Psnmds}sina—i— {%Psnyds}cosa
Fp = {%Psnx ds}cosa + {%Psny ds} sin o

or in discrete form,

Fr,=— ZwsPSnI sin o + ZwsPSny COoS (v (4.2)
Fp= ZwsPsnm cos o + ZwsPsny sin «v (4.3)

where P; is the pressure at surface integration point pressure, n, and n, are the unit
normal components at the surface integration point, a is the angle of attack, and wy
is the arc length associated with the surface integration point. Note that this form
uses the dimensional pressure and coordinates gives the dimensional lift and drag
forces. The lift and drag coefficients, which are the non-dimensional equivalents, are

identical in form but use non-dimensional pressure and coordinates.

These discrete integrals expressed as a function of geometric and flow properties
of the control volume such as the length of each face and the unit normal at each
Gauss point. The geometric properties depend on the design variables through the
mesh sensitivity, while the flow properties at the Gauss points depend on the flow
properties of the control volume itself and its neighbors, which in turns depend on
the mesh and the boundary shape which ultimately depends on the geometric design
variables. The gradient of the objective function can be obtained by using the chain

rule
dF OF 00Uy, OU OM  OF oM

dD _ U, 0U 0M 0D ' 0M oD

(4.4)

where Uy, is the boundary Gauss point flow properties, U is the control volume
averaged solution written in primitive variables, and M is the mesh point locations.
OM /0D is the mesh dependency on the design variables which computations are
presented in details in Chapter [3 The residual of the flow governing equations can
be written as a function of the flow field solution U and mesh geometric design

variables D. If we apply the constraint that the flow solution is converged regardless
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of variations in the design variables, we can write

dR _ OROM _OROU OM _ )
dD  OM 0D ' OUOM 0D '

Solving this for the solution sensitivity g—g = g—ﬁ%—]\g, we get

U oM [81%]_1 OR OM [8R8Q]_1 . { OR 8M} (4.6)

M oD ~— |9U] < 8M D ~  |8QaU OM oD
where the last equality expands the residual Jacobian with respect to the primitive
flow variables into the product of the residual Jacobian with respect to the conserved
flow variables (which is used in implicit flow solvers) and a change of variables for

conserved to non-conserved. Note that % is a block diagonal matrix.

Substituting Eql4.6l in Eq. 4.4 we get the forward formulation for gradient

computation

dF OF OUy, [8}28@]_1 ‘ { OR aM} OF OM ()

dD ~ U, U |0Q U oM 0D [ oM oD

This form of the gradient requires solving as many linear systems as there are design

variables in the optimization problem.

Taking the transpose of Eq. [4.7]

dET [ OROM\" [0ROQ)T [ OF 08Uy )" [0F MY o
dD oM 0D 0Q oU Uy OU oM 0D ’

where the residual sensitivity to mesh movement can be written using the chain rule

as:

oM~ 9Aq, OM

OR OR 0Aq, OR dn, OR dny
i S tle 2T 4.
2 {anmdM+8nydM+ (4.9)
faces Q;

OR dw; + OR _ OUface
duw; dM " gy, OM

We get the adjoint method, presented by A. Jameson [37, 41, 43, 38, 40]. Now

only one linear system solve is required. However, this linear system solve requires
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explicitly forming the global Jacobian matrix g—g because its transpose is required.
Because the CFD solver used in this thesis can form the global Jacobian matrix
explicitly (author?) [57|, the transpose of the Jacobian can easily be formed as
well. The Jacobian from the last GMRES iteration is re-used, so the computational
effort of solving the adjoint problem is reduced to solving this linear system, a cost
on the order of 1% of the CFD simulation computational effort.

To ease the programming effort when changing the objective function, we form
three adjoint problems, one each for the lift coefficient Cr, the drag coefficient Cp,
and the moment coefficient Cy; to find 0CL, /0D, 0Cp/OD and 9C)y;/dD, respec-
tively. These aerodynamic coefficient gradients can be used to evaluate any objective

function gradient for a function that depends on aerodynamic forces:

d_F_f dCr, dCp dC)y
dD dD’ dD’ dD

The solution procedure of the three adjoint problems can be summarized as follows,

e Using the steady state flow solution, we construct the CFD simulation Jacobian
matrix OR/0Q expressed in Eq.

e We construct R/OU as:
OR  0ROQ

oU — 0QoU
where 0Q)/0U is the transformation matrix from conservative to primitive flow

variables and is block diagonal.

e We counstruct %%, where OF/0Uy, is the analytic dependency of the ob-
g

jective function on the primitive flow properties at the airfoil surface points,
and 0U,,/0U is the dependency of surface point primitive flow properties on
the control volume average values of the primitive flow properties. The latter

is known as a side effect of solution reconstruction.

. T T
e We solve the three linear systems [%] Uy pm= [6%%85{}9] to get the
g

adjoint vectors Wp, p ar.

L : : dc T T
o We construct the objective function gradient vector =52-2" = {ZLOMAT

T . . .
g—ﬁ%—%} Wy, p,m, which requires only a vector dot product for each design
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variable.

As an example of how to use dcil'g 2L to construct the gradient of an aerodynamic

function, consider the following objective function which represents a typical drag

minimization function with a lift constraint applied using a penalty term
F=Cp+k (CL—Cr)? (4.10)

The gradient of the above function can be written as

dF _ dCp dcy,

ap ~ ap (- C)n (4.11)
also OF oC aC

oD ~ ap 2 (Cr=Cr)Hh (4.12)

The discrete (inviscid) forms of Cf, and Cp follow from the non-dimensionalization

of Egs. 4.2l and [4.3] where now the pressure and coordinates are non-dimensionalized:

C, = -— <Z wSPsnx> sin o + <Z wSPsny) COoS (v (4.13)
Cp = <Z wsPsnm) cos « + <Z wsPsny) sin «v

and their partial derivatives with respect to the geometry design variables are

% = - < %Psnm> sin o + ( %Py@) Cos o (4.14)
ong\ . ony
— ZwsPsa—D sina + ZwsPsa—D cos
aa% = < %me) cos o + ( %Pﬂ@) sin o +

ong ony\ .
<Z wsPsa—D> cosa + (Z wsPsa—D> sin o

Using Eq. to calculate OR/OM, we need to compute the terms 0Aq,/0M,
Ong/OM, On,/OM, and Ow;/OM, which only depend on mesh points’ spatial loca-
tions, while the terms OR/0n, and OR/0n, are obtained by direct differentiation of
the Roe flux, and finally (OR/0Ufqce) - (OUqce/OM) is obtained by differentiating

39



Figure 4.1: Schematic drawing of an element face x, and illustration of its left and
right sides

the face property reconstruction scheme which depends on CFD solver technology.
The remainder of this section will focus on the derivatives of the residual R, with

the derivatives on the geometric terms in the following section.

Let us consider the residual contribution of face x of the control volume §2; shown

in Fig. [4.11

The discrete form of this edge’s residual contribution to the control volume €; is

J

1 1/~ ~

Ri o, = Aq. Z {5 (FR]» + FL; — |AFI|J‘ - |AF4|]' - |AF5|J‘) wj} (4.15)
i =1

where J = 1 when using one Gauss integration point at the middle of facex for

a second order accurate scheme. For the fourth order scheme, we have two Gauss

integration points, i.e. J = 2, on the face x. w; is the integration weight associated

with the Gauss point j.
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To find OR,; o,/0Aq,, Eq. A.15] can be directly differentiated to get

OR, o, 1 1 /= -
e = AL ZJ: {5 <FRj + Fp, — |AF|; — |AFy|; - ]AF5]j) wj} =~ Bxo,

The term OR, q,/0n,, can be written as

OR.0, 1 2{1 (aﬁRj . OF,, O|AR|; O|AF, 6|AF5|j> . }
o - - - J

Ong y _AQZ. 2\ 0ngy Ongy Ong y Ong.y Ong.y

(4.17)

where component terms can be expanded using the definition of the Roe flux to give:

(PU)R,L (PU)RJJ
OFrr, | (pu®+p) RL OFR 1, _ (puv) g 1
Ong (puv)p 1, 7 Ony (pv? +p) RL
({E+ptu)gp {E+p}tv)gL
and
1 0
O|AF|; ul, AP i ) Au — ng AU
- = — Ap — =5 ~ +p +
ong 2 v Av —n, AU
ﬂz;f’z alu + 9 v — U, AU
0
i, 5 —AU — nzAu
—nyAv
— AU — U, A



1 0
9 |AF1|_7' U, AP U _ Au —ng, AU
= Ap — —5 - +p
Ony 7o 0] Av —ny AU
245 alu+ L0 — U, AU
0
- - —nzA\u
"7 —AU —nyAv
—3AU — U, Av
) ) 1
‘ﬂﬁﬁﬁ B @%id%1<APimAU> itnga |
On N N 2 2a2 54 n.d
@hid) vEmya
ot U,a

+
2a? ¥+ nyd
hy, &+ U,a
0
- 5a +4
0, + d‘ AP i~paAU a
2a2 0
+ia
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ho £ Una
1
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0
~ AP + pa\ 0
Unia( LP£panb
2a* +a
+va
To find OR,; ,/0w;, Eq. K.15lis differentiated; we get
= —(Fr, + Fr. — |AFy|, — |AFy|, — |AF5|. 4.1
o = s {5 (P By 18R - AR - 1ARL) ) @

The dependency of the face residual contribution R, o, on the reconstructed flow
properties at the face Up,., can found as the sum of the dependency on the right

and left face flow properties as

aRH Q; 8Rn Q; 8Rn Q;
) 7 — ) 2 ) K 4'1
oo OUr UL (4.19)

IS OFy, 0F, O{IOR+ AR+ AR
a (Aﬂz) 2 OUR ouy, oUg

o {|AR, + AR + AR}
a U,

wj

The terms in Eq. can be obtained using symbolic manipulator like Maple(®)
or Matlab®). Another possible approach is to use an automatic differentiation pack-
age to differentiate the C, C++, or FORTRAN function that computes the face flux.
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Figure 4.2: General triangular element with unit normal n on one of its faces .

Finite differences can also be easily implemented to evaluate OR,q,/ 8Uface

aR,@Qi _ R,.;,Qi (UR + E) — R,@Qi (UR — 6)+R,.;,Qi (UL + E) - R,.;,Qi (UL - €)+0 (6)2
Ut co 2¢ 2¢

(4.20)
where € is chosen to be 1078 in the above central finite difference formula so that
the error will be on the order of machine zero. The ANSLib CFD code can use both

approaches; they lead to nearly identical answers.

4.2 Element and Face Geometric Properties

Dependency on Mesh Coordinates

Element and face geometric properties depend directly on the spatial coordinates
of the vertices. Fig. [4.2] shows a schematic drawing of a triangular element used
for cell centered finite volume simulations, with its three vertices and one of its
three faces labeled for later reference. In the next subsections, the procedure for
evaluating geometric properties like element area, face length, and face normals will

be presented in addition to the mesh coordinate dependency of these properties.
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4.2.1 Element area mesh dependency

The element area of the triangular element shown in Fig4.2can be obtained as half

of the cross product of the two vectors 5 , 4

Tg — X — — — T3 — &
= g2 an) (g3 — 1) . (y2 — ) (w3 — 1) (4.21)
The vertices’ spatial locations are related to the airfoil surface points via the mesh
movement scheme, while the airfoil surface points are related to the design vari-
ables through the pseudo inverse matrix in the least-squares fit during geometry
parametrization. It worth mentioning that any general polygon can be split into

several triangles and the area of each triangle can be calculated using Eq. [4.21l

The element area mesh dependency can be calculated by direct differentiation of

Eq. 421

dA . 814 611)1 OA 8:172 814 611)3

I~ 00,00  0ug 90 T 925 90 (4.22)
A Op  0A Dy | 0A O
8y1 oM 8y2 oM 8y3 oM

where

3_A _ g (y2 — y3)
8:171 2
0A  _ o(ys—wy)
8%2 2
0A o(y1—y2)
8%3 2
0A  o(x3—x2)
Ay; 2
0A _ g (1’1 — xg)
Oy 2
0A o(z2—11)
Ays 2
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o =sgn((x2 —z1) (y3 —y1) — (y2 — y1) (x3 — x1))

4.2.2 Face length mesh dependency

The length of face x in Fig. [4.2] which is a general straight face in the mesh, can be

calculated as

L=/ (2a(M) — 22(M))* + (ys(M) — yo(M))? (4.23)

The face length mesh dependency can be obtained as

daL - _ 0L Ovz | OL Ovs  OL Oyo  OL Oys
AM 01y 0M O3 OM | Oy OM | Dy oM
where

3_L _ —x3+ T2 _ — (23 — x2)
o \/(xs —29)" + (y3 — 12)° L

oL T3 — X2 (w3 —m9)
Oz \/(903 —29)* + (y3 — y2)° L

oL _ Y3+ Y2 _ —(y3—w2)
0y2 \/(903 —29)* + (y3 — y2)° L

oL _ Y3 — Yo _ (Y3 — v2)
9ys \/(903 —29)* + (y3 — y2)° L

The previous relations are for straight faces which exist all over the domain
interior, but for higher order schemes, the boundary faces are curved to enable

higher order flux integration. A boundary element with one curved face is shown in

Fig. [4.3]

The curved face length is obtained using numerical integration, therefore to avoid

differentiating the numerical integration scheme, 0L/0z3 3 and 0L/0ys 3 are evalu-
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Figure 4.3: Boundary element with curved face for high order integration scheme

ated using finite differences as

oL . L(l’273 + 6) — L(l’273 — 6)
8%273 N 2¢
81/273 2e '

For a second order scheme, only one Gauss integration point exists at the middle of

the face with w; = L, therefore
dw; dL

dM ~— dM

For the fourth order scheme, two Gauss integration points are required for flux

integration. Figure [4.2.2] shows a schematic drawing of a curved edge with two
Gauss points on it. Table [4.1] shows their integration weights and their parametric

locations k; on the face starting from the point xo, yo.
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Length

Figure 4.4: Schematic drawing of a curved face with two Gauss points used

‘ ‘ Point 1 ‘ Point 2 ‘
kG- S 07 L

Table 4.1: Two point Gauss quadrature rule
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4.2.3 Face normal mesh dependency

The unit normal vector of face x that points outward from element €; (shown in

Fig. [4.2) can be found using the three vertices of the element as

P [nx ] _ (G — fry)

= ~ 4.25
ny |c3 — Brasl| (4.25)
where
B [ 2/325 — (1/321 +1/322)
C3 =
| 2/3ys — (1/3y1 +1/312)
B T3—xT2
fon = | V-astaaD)®+(-ystue))’
23 Y3—Y2
L V(—eataz])®+(1—ystu2))
B _ (1’3 — 1’2) (2/3%3 — (1/31’1 + 1/3%2))
V(=25 + 22 + (-5 + ya)?
L (s —y2) 2/3ys = (1/331 +1/3y)
V=5 + 2a)® + (|—ys + 1))
The mesh dependency of the unit normal can be written as
dn o _ 00 Ov , Oh Ory | On Ors
dM N al‘l OM 8:172 8M al‘3 OM
on 8y1 on ayg on ayg
e SR ) 4.26
TPy OM T Dya M Oys 0M (4.26)
where
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Lo 9 . .
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on a3 — Oy

8yi N ”53 — ﬂfggHQ
. . J .
az = ||cg — Pras]| - Em (C3 — Bitag)
(2
. . J .. .
ay = (C3— Pras)- En ||c3 — Brasl|
T
i=1,2,3

The terms in the last equations can be found using automatic differentiation of the

unit normal expression.

4.3 Face Flow Properties Dependency on The Mesh

The evaluation of the dUy,..,/OM term in the mesh sensitivity of the residual, using
Eq. 4.9, depends on the details of the CFD solver. The CFD solver used in this
research is the Advanced Numerical Simulation Library (ANSLib) which is a multi-
physics finite volume solver capable of conducting CFD simulations up to fourth or-
der accuracy; this solver has been built by Ollivier-Gooch and co-workers [61, 56, 54].
In ANSLib, the flow properties are assumed to change within each control volume
according to a linear polynomial for second order simulations, or a cubic polynomial
for fourth order simulations. These polynomials are found using a least-squares re-
construction; the least-squares system depends on the control volume properties like
moments of area which eventually depend on mesh point locations. In the next two
subsections, the reconstruction and mesh dependency of flow properties at faces will

be presented.

4.3.1 Face flow properties reconstruction

Solution reconstruction is the key to determine solver accuracy. The solution is
assumed to vary linearly within the control volume for second order accuracy; for
higher order methods, flow properties are assumed to vary according to higher order
polynomial; variation according to cubic polynomial is fourth order accurate. The
flow solution reconstruction method presented in this subsection follows the method
described in Ollivier-Gooch and Van Altena [68] and Ollivier-Gooch et al [69].
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T
For second order solution reconstruction, the primitive variables U = [ p U v D

are reconstructed at the face Gauss points as
ou

U2R(x7y) = Uref + (JJ - xref) %

ou

+ (y - yref) a_y (4-27)

ref ref

For fourth order solution reconstruction, the reconstruction polynomial takes the

form of a third degree Taylor series expansion in two variables:

(x — a:ref)Q 92U

R _77R
U4 (ﬂj‘,y) - U2 (ﬂj‘,y) + 9 8332 ref (428)
0*U (y — yref)® O*U
+(£L‘—l‘ref)-(y_yref) 83;—8y Tef+ B ayz vos

(33—5177“@]‘)3 o3U 4 ($_xref)2 (y_yref) *U

6 0x3 |0 2 0220y |0
+ (33 _$ref) (y_yref)2 agU (y_yref)3 83U

2 Ox0y? |, .f 6 Y3 ey

The reference point Z,.; is chosen to be the triangle center for cell-centered finite

volume scheme and the vertex location for vertex-centered scheme.

A constrained least-squares system is constructed to find the reconstruction poly-
nomial coefficient. The hard constraint is that the reconstruction polynomial should
preserve the computed control volume average solution. The rest of the equations —
which are satisfied only in a least-squares sense — are obtained by requiring that the
average of the reconstruction polynomial approximates the control volume average
solution for neighboring control volumes. Neighbors are chosen based on their topo-
logical distance from the element, and entire layers of neighbors is added until the
number of neighbor elements in the stencil equals or exceeds 4 for the second order
scheme and 16 for the fourth order scheme. Figure shows a schematic drawing

of an element k£ and its neighbor layers.

The mean constraint equation is obtained by requiring conservation of the control
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Figure 4.5: Schematic drawing of first, second and third neighbor layers of triangular
element k.

volume average by the reconstruction polynomial and can be written as

— 1 oUu ou

U, = _/ URAA = Uppes + T —— Ue 5| o (429
Ak A k f or kref k ay kres ( )
z%, 8°U __ U %, O°U
- 73 + TYy, 5 2
2 Oz kref 0x0y kref 2 Oy kref

where

- 1 m
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Ak ) a,
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Matching the control volume average in a neighbor j would require that

— 1 1 oU
= A= - a4 4.
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for simplicity, the term x, yi .y will be written as x, yx, and x, y; .y will be replaced
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with z,y;. The resulting constrained least-squares system can be written as

L oz o 2 = m T u
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L Zra Ukg 2% k1 Yk U Ux
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(4.32)
This constrained least squares system can be rewritten as
min H [ARec] <ﬁRec> — (Ugec — Ug) H
satisfying [Brec] (Prec) = (U’f)

where
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The least-squares system is solved to obtain the reconstruction polynomial coef-
ficients using singular value decomposition method to find the pseudo inverse of the

least-squares coefficient matrix as follows

Apee = UXVT
AL, = vstuT

U
Oz [~ - ~ = ) 2 o ®. o2
U Tl — Tky Ykl — Yk 332k,1 — Ly TYp1 — TYk, y2k,1 — Y
oy ~ — ~ _ ) - ~ N 5 )
102U T2 — Tky Yk,2— Yk $2k,2 — Ly LYk 2 — TYk, y2k,2 ~ Y
2 9z2 ~ - -~ — ) 2 = — > 2
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19%U
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. | Tk,N — Tk, Yk,N — Yk TN — Ty, TYpN — TYk, Yk N —Ypr

k
U, - Uy
Uy — Uy
Us — Uy, (4.33)
Uy — Uy
U
ox
U
Oy
1%y
— = = 29
U.=Uk— | T Tp = TUx Ui ] 02U (4.34)
0x0y
102U
2 Oy

The unlimited face flow properties can be found at face Gauss points (m fi’yff)
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as follows

U
U = Unt(og —an) 5 + (4.35)

k

L
N fi k ay

(zg, — ax)® 02U U
(yfz - yk)2 82U
2 oy? |,

To ensure monotonicity and solution convergence, a limiter is applied in order
not to create a new extremum at the control volume face; the limited flow properties

at the face can be written as

oU oU
U = Up+ o ((:Efz — ) o . + (yfz. — Yk) 8_y k+ (4.36)
(x5, — x)? 02U 0*U
5 927 |, + (@f, — k) (Y, — ) D20y i +
(ys, —yr)® O°U

2 oy?

)

where ¢ is the limiter value in the control volume k. ANSLib uses two limiter
functions to calculate ¢: Venkatakrishnan’s limiter [84| and a higher-order limiter [56]
designed not to degrade the accuracy of high-order schemes for smooth flows. We
will derive the face properties-mesh dependency for the limited case; the unlimited

case can be obtained by simplification of the limited case by setting ¢ = 1.
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4.3.2 Mesh dependence of the face flow property reconstruction

The term Uy, .., /OM for the limited case can be obtained using direct differentiation

of Eq.

U de (U R 4,
oM oM oM <($f’ ) 8x'k+(yﬁ ) dy k+ 40
(‘Tfi — xk)2 0*U ru
5 922 k+ (g, — @) (Yg, — yr) dzdy |,
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5 a5 . + ...+
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2
ol ooy L Oes — ) vy —w) OU

2
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+. ]+
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T — Tk % |k . _ oY |k
5 ar T (g, — x) (Y5, — Y&) onr T
92U
(y7, — uw)? 0 57|, 4
2 oM

The unlimited face flow property-mesh dependency can be obtained by setting ¢ = 1

and 0¢y/OM =0 in Eq. 437

In Eq. 437, the term O¢y/0M can be obtained by differentiating the limiter
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expression, and the terms 9 i /OM can be evaluated as follows:
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Chapter 5

GRADIENT VALIDATION

In this section, the comparison of the gradient accuracy evaluated using second and
fourth order schemes is carried out. Both second and fourth order gradients are
evaluated using the adjoint approach and compared to their corresponding finite
difference gradient. We present three test cases: subsonic, non-limited transonic and
limited transonic test cases. In all test cases we use 18 design points to parametrize

the airfoil geometry.

5.1 Subsonic Test Case

In this test case, the evaluation of the lift coefficient gradient with respect to the
airfoil geometric design control points is presented for both second and fourth order
schemes, including a comparison with a finite difference gradient calculated using
the same order of accuracy in the flow solver. The airfoil used in this test case
is NACA 0012 at subsonic conditions M = 0.5 and a = 2°. Figure [5.1] shows a
representative comparison between the field of pressure sensitivity with respect to
one of the geometry design points computed using finite differences and the solution
sensitivity calculation of Eq. for both second and fourth order accurate compu-
tations. Agreement is excellent in all cases; this is also true for the other design
control points. The excellent matching of the pressure sensitivity when comparing
the second order and the fourth order results indicates that the two schemes will
give similar gradient vectors and similar optimization descent directions for subsonic
flow optimization.

Table 5.1 shows quantitatively an excellent matching between the objective func-
tion gradient magnitude (less than half a percent difference) and direction (less than
a half a degree difference) when comparing finite differences and the adjoint ap-

proach of Eq. 4.8 for both second and fourth order schemes. Figure [5.1] shows good
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) Second order sensitivity calculation ) Second order finite difference
) Fourth order sensitivity calculation ) Fourth order finite difference

Figure 5.1: The pressure sensitivity with respect to one of the design control points
computed for subsonic flow over NACA 0012, comparing the sensitivity calculation
of Eq. with finite difference results.

agreement between the objective function gradient components 0C7,/0dy;, where y;
are the y locations of the design control points, computed using adjoint and finite
difference approaches for both second and fourth order computations. The maxi-
mum error, normalized by the gradient magnitude, is only 0.005 which gives a high
level of accuracy for the computed gradient. Taken together, these results imply that
the order of discretization error has little effect on the computed gradient vector for

subsonic flow.

5.2 Transonic Test Case with No Limiter

In this test case, the sensitivity analysis is carried out for NACA 0012 airfoil with M
= 0.8 and a = 2°. The drag coefficient gradient is evaluated without using limiters
in the CFD simulation, so overshoot/undershoot at the shock location is expected.

Figure shows good agreement of the pressure sensitivity computed using Eq.

61



Second order Fourth order
Adjoint | FD | Adjoint | FD

Gradient vector magnitude 18.605 | 18.561 | 18.575 | 18.655
Angle with second order adjoint 0° 0.247° | 1.117° | 1.330°
Angle with fourth order adjoint | 1.117° | 0.917° 0° 0.249°

Table 5.1: The magnitude of second and fourth order Cp gradients and angles be-
tween the evaluated gradients for NACA 0012 in subsonic flow.

AHOE Subsonic Flow Gradient Error
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Figure 5.2: Cf, gradient error in second and fourth order schemes with respect to
the design points normalized by gradient magnitude.
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) Second order sensitivity calculation ) Second order finite difference
) Fourth order sensitivity calculation ) Fourth order finite difference

Figure 5.3: The pressure sensitivity with respect to one of the design control points
computed for an unlimited transonic flow around NACA 0012, comparing the sensi-
tivity calculation of Eq. with finite difference results.

and finite difference; the figure also shows that for transonic flows, the pressure
sensitivity computed using second order and fourth order accurate adjoint scheme

are different, especially near the shock location.

Table [5.2] shows again the excellent matching between the computed adjoint and
finite difference gradient with a direction difference less than a degree and nearly
identical magnitude. Figure [5.4] shows that for unlimited transonic flow, both sec-
ond and fourth order adjoint gradients are an excellent match to the corresponding
finite difference gradient, with the second order schemes matching more closely than
the fourth order scheme. Comparison of the second and fourth order gradient vectors
shows little difference between them (about 4% in magnitude and 2° in direction).
Again, we expect that the second and fourth order schemes will give similar opti-

mization search directions.
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Second order Fourth order
Adjoint | FD [ Adjoint | FD

Gradient vector magnitude 1.895 1.895 1.814 1.813
Angle with second order adjoint 0° 0.252° 2.236° 1.997°
Angle with fourth order adjoint | 2.236° 2.354° 0° 0.518°

Table 5.2: The magnitude of second and fourth order Cp gradients and angles
between the evaluated gradients for NACA 0012 in an unlimited transonic flow.

Unlimited Transonic Flow Gradient Error
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Figure 5.4: Cp gradient error in second and fourth order schemes with respect to
the design points, normalized by gradient magnitude.
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) Second order sensitivity calculation ) Second order finite difference
) Fourth order sensitivity calculation ) Fourth order finite difference

Figure 5.5: The pressure sensitivity with respect to one of the design control points
computed for an unlimited transonic flow around NACA 0012.

5.3 Transonic Test Case with Limiter

In this test case, the impact of using a limiter in the CFD simulation on the accuracy
of the computed gradient for second order and fourth order schemes is studied. Two
different limiters are used, the Venkatakrishnan limiter [84] and the higher order
limiter of Michalak and Ollivier-Gooch [56]. Figure shows very good matching
of the second order pressure sensitivity computed using adjoint and finite difference
techniques with the use of Venkatakrishnan limiter.

Matching is less good between the pressure sensitivity and finite difference results
for the fourth order accurate scheme; this lower level of pressure sensitivity matching
will lead to less accurate gradient values when using the limited fourth order scheme.
Table shows that with the use of the Venkatakrishnan limiter, the second order
gradient magnitude is a very good match with the corresponding finite difference
gradient; the larger error in gradient value observed for the fourth order scheme is

comparable to the difference in magnitude between second and fourth order schemes

65



Second order Fourth order
Adjoint | FD [ Adjoint | FD

Gradient vector magnitude 1.897 1.895 1.887 1.812
Angle with second order adjoint 0° 3.612° | 2.292° | 3.334°
Angle with fourth order adjoint | 2.292° | 5.275° 0° 4.873°

Table 5.3: Magnitudes of second and fourth order Cp gradients and angles between
the evaluated gradients for NACA 0012 in Venkatakrishnan limited transonic flow

Second order Fourth order
Adjoint | FD | Adjoint | FD
Gradient vector magnitude 1.676 1.753 1.576 | 1.672

Angle with second order adjoint 0° 2.845° | 30.1° | 18.8°
Angle with fourth order adjoint | 30.1° | 21.05° 0° 18.9°

Table 5.4: The magnitude of second and fourth order Cp gradients and angles be-
tween the evaluated gradients for NACA 0012 using higher order limiter in transonic
flow.

for the unlimited transonic case. Also, the difference in finite difference and adjoint
gradient direction grows to several degrees with the use of Venkatakrishnan limiter.
Table [5.4] shows the same behavior with the higher order limiter of C. Michalak
and C. Ollivier-Gooch. It shows also that the error in the gradient magnitude is
larger compared to the Venkatakrishnan results. The matching in adjoint and finite
difference gradient directions is good for the second order scheme but it is not for the
fourth order scheme with the use of higher order limiter. It is well known that the use
of limiters causes convergence problem due to the non-differentiability of the limiting
procedure [55]. The limiter affects both the right and left hand sides of Eq. We
speculate that the poor matching between finite difference and adjoint gradients for
the high-order limiter is related to the non-differentiability of the limiting procedure
and that this effect will vary in strength from one limiting procedure to another.
To reduce the influence of OR;/0D in control volume 7 when calculating the
adjoint gradient, the fourth order Jacobian was modified numerically by making the
non zero structure of the fourth order Jacobian matrix the same as the non zero
structure of the second order Jacobian, and dropping the rest of values in the fourth

order Jacobian matrix. The right hand side is still constructed with fourth order
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Mod 4th order
Limiter Venkat. HO
Gradient scheme Adj. | FD | Adj. | FD
Gradient vector magnitude 1.735 | 1.812 | 1.966 | 1.672
Angle with mod 4th order Venkat. adjoint 0° 2.845° | 6.247° | 3.338°
Angle with mod 4th order HO. adjoint 6.247° | 7.256° 0° 7.207°

Table 5.5: The magnitudes and angles between the evaluated modified fourth order
Cp gradients using adjoint, and finite difference for NACA 0012 using Venkatakr-
ishnan and higher order limiters in transonic flow.

accuracy. The above modification doesn’t affect the accuracy of the CFD simulation
because the right hand side remains fourth order accurate. The computed gradient
using this approach is presented in Table[5.5/and shows a reduction in the error in the
fourth order computed adjoint gradient, especially in the direction of the gradient.
The limiter used from now on is the Venkatakrishnan limiter as it produces an adjoint
computed gradient with better matching to the finite difference gradient compared

with the high order limiter.

5.4 Sensitivity of finite difference gradient to

perturbation magnitude

In the previous sections, I have used perturbation amplitude € = 1076 and using the
central difference formula to evaluate the finite difference gradient. In this section,
the sensitivity of the evaluated gradient with respect to € is presented for the hardest
case, transonic flow with limiter. The limiter used in the transonic simulation is
Venkatakrishnan’s limiter. Tablel5.6lshows the norm of the drag gradient for different
values of perturbation amplitude €; it shows also that decreasing e to be less than
10~ will not practically change the value of the computed gradient norm. Therefore,

e = 1079 is chosen.
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Gradient Error For Transonic Venkatakrishnan Limited
Flow
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Figure 5.6: The normalized Cp gradient error in second, fourth, and modified
fourth order schemes with respect to the design points in a limited transonic flow
(Venkatakrishnan limiter)
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Figure 5.7: The normalized Cp gradient error in second, fourth, and modified fourth
order schemes with respect to the design points in a limited transonic flow (higher

order limiter).
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€ Second order %LDD Fourth order %LDD
1073 1.90237 1.86814
10~6 1.90275 1.87105
1079 1.09278 1.87114

Table 5.6: Finite difference drag gradient sensitivity with respect to perturbation
amplitude e
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Chapter 6

GRADIENT BASED
OPTIMIZATION TEST CASES

In this section we present four optimization test cases; in all of them we compare
the optimal shape resulting from using second and fourth order schemes. The first
two cases are inverse design problems, one subsonic and the other transonic. In
both test cases, a target pressure distribution is obtained using CFD simulation of a
parametrized NACA 2412 airfoil and the starting geometry is a NACA 0012 airfoil.
The optimizer will try to find the geometry whose surface pressure distribution
matches the target pressure distribution. Those two test cases are important, as the
design space has only one solution point at which the resulting pressure distribution
from the optimal geometry will match the target pressure distribution. The third
test case is a transonic drag minimization with no lift constraint starting from the
RAE 2822 airfoil. The objective of this test case is to minimize Cp at M = 0.73 and
angle of attack = 2°. In this test case a strong shock wave is formed near mid chord
of the initial airfoil geometry and we are seeking a shock free geometry, or at least
a geometry that produces a much weaker shock wave. Geometric constraints are
applied so the airfoil thickness will be positive all the way along the airfoil section.
The fourth test case repeats test case three but adds the lift coefficient as a constraint;
in this case, we compare the resulting optimal shape with the optimization results

of Brezillon and Gauger [11] .

6.1 Subsonic Inverse Design

In this test case, the target pressure distribution is obtained for the parametrized
NACA 2412 at a subsonic condition, M = 0.5 and o = 2° | using second and fourth
order CFD simulations. The starting geometry is the parametrized NACA 0012.
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The objective function to be minimized is
F= §£ (Pr — P)*dS (6.1)

The above objective function and its gradient can be expressed in discrete form as

F=> (Pr—P)w, (6.2)
dF - ‘ —0P; P2 Jw

where w; is the arc length associated with the surface Gauss point.

Figure shows the target pressure distribution of the NACA 2412, the initial
pressure distribution of NACA 0012, and the optimized airfoil pressure distribution
obtained by the second order and fourth order schemes; both schemes successfully
reached the target pressure distribution. Figures and show the convergence
history and gradient norm history for both schemes. Both schemes took about
the same number of optimization iterations (28 for second order and 32 for fourth
order) to drop the objective function value by eight orders of magnitude. Figures[6.4]
and show how close the optimized NACA 0012 is to the NACA 2412 using both
second order and fourth order schemes. The error between the target geometry and
the optimized profile is larger in the fourth order scheme due to inaccuracy of the
pressure interpolation scheme used to evaluate the objective function; nevertheless
the resulting geometry is an excellent match with the NACA 2412, with an error of

less 0.1% of the surface movement.

6.2 Transonic Inverse Design

In this test case, the target pressure is obtained using CFD simulation of the flow
over a NACA 2412 airfoil at transonic conditions, M = 0.73, « = 2°. The objec-
tive function to be minimized is again the integration of the square of the pressure
difference between the target pressure and the optimized pressure as expressed in
Eq. [6.1. The fourth order optimization is based on the modified fourth order gra-
dient evaluation strategy. Figure shows the initial, target, and the optimized
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Figure 6.1: Subsonic NACA 2412 inverse design pressure distributions for the initial,
target, and optimized airfoil profiles
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Figure 6.2: Second and fourth order optimization convergence history.
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Figure 6.5: The difference between the target profile and the optimized profiles,
second and fourth order

pressure distribution. The convergence history and gradient norm history are shown
in Figs. and [6.8; the fourth order scheme is slower to converge compared to
the second order scheme, due to the use of larger number of airfoil surface Gauss
quadrature points used in the fourth order computations (double the number used
for the second order scheme) which makes the minimizer slower to converge. The
objective function dropped only three order of magnitudes before convergence stall.
This stall is due to the high non-linearity in the target pressure distribution because
of the existence of a strong shock wave in it. The noise in the pressure sensitivity
generated by the shock wave in the target pressure distribution doesn’t allow further
convergence; however, the gradient magnitude dropped four order of magnitudes
from its initial value. Figures and show that the optimal shapes for the two
schemes differ by less than 10~% of the chord length on the lower surface and less
than 1073 chord length on the upper surface (where the strong shock wave exists);
both optimal shapes are in good agreement with the NACA 2412: the maximum

deviation is about 5% of maximum surface movement.

6.3 Drag Minimization without Lift Constraint

In this test case, minimization of the drag coefficient will be carried out with no

lift constraint applied. The airfoil to be optimized is an RAE 2822 at transonic
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Figure 6.6: Subsonic NACA 2412 inverse design pressure distributions for the initial,
target, and optimized airfoil profiles
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Figure 6.7: Second and fourth order optimization convergence history.
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Figure 6.9: The difference between the target profile and the optimized profiles,
second and fourth order
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Figure 6.10: Transonic inverse design optimal airfoil shapes.

‘ ‘ Cr ‘ C1, optimized airfoil ‘ Cp ‘ Cp optimized airfoil ‘
Second order | 0.865 0.765 0.0081 0.00465
Fourth order | 0.849 0.759 0.0099 0.0047

Table 6.1: Aerodynamic coefficients of original and optimized RAE 2822 airfoil at
transonic conditions.

conditions: M = 0.73 and a = 2°. Fig. shows the initial solution with a strong
shock wave standing at 70% chord. Geometric constraints are added to insure that
there is no intersection between the airfoil upper and lower surfaces along the airfoil.
Figure shows the optimal shapes and the optimized pressure fields resulting

from using second and fourth order schemes.

Figures and show that the difference between the second and fourth
order optimal profiles is notable on both upper and lower surfaces. The surface
pressure distribution of the original RAE 2822 airfoil and of the optimized airfoil for
second and fourth order schemes is shown in Fig. [6.14. Both schemes successfully
produced a similar shock free pressure distribution but with different profiles. The
original and optimized Cp are shown in Table 6.1. A drag reduction of about 50%
is achieved by both schemes. The value of the Cp of the second order optimized
airfoil is obtained from fourth order accurate CFD simulation over the optimized
second order airfoil profile to eliminate the differences in discretization error in the

final results.

Figure [6.16] shows the convergence history of the optimization. Both schemes

reached their optimal solution in about the same number of optimization iterations.
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Figure 6.11: Pressure contours of RAE 2822 at Mach 0.73 and angle of attack 2
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Figure 6.12: Optimized RAE 2822.
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Figure 6.13: Optimization surface displacements of the original RAE2822 surfaces.
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Figure 6.15: Objective function response surface along positive and negative gradient
directions centered at the optimal profile of RAE 2822 transonic drag minimization
without lift constraint.

The number of CFD simulations for the second order scheme is 50 compared to 45
for the fourth order scheme, yet the overall computational cost of the second order
scheme is 40% less than the fourth order computations. The gradient of the objective
function is not zero at the optimal point; to understand the reasons for that, I have
plotted the objective function values along positive and negative gradient direction
at the optimal solution point as shown in Figl6.15. The second order response surface
shows that the obtained optimal solution is a possible local optimum and the shape
of the objective function shows that the gradient computed using finite difference will
not be zero at the optimal point. For the fourth order computations, the figure shows
that the optimizer reached a near optimal solution. While a slightly lower value is
available,the small difference between the objective function value at the obtained
optimal point and the minimum value along the negative gradient direction (on the
order of the discretization error) may cause a line search failure due to insufficient

decrease in the objective function.

6.4 Drag Minimization with Lift Constraint

This test case represents a typical optimization task required in aerospace industry,
as it is required to minimize the drag while the lift is unchanged. Therefore the lift

coefficient C', will be an aerodynamic constraint. The original RAE 2822 geometry

80



1.20E-02

1.00E-02

8.00E-03

2nd order

w  GO0E-03 — == Ath order

4.00E-03

2.00E-03

0.00E+00 iteration

Figure 6.16: Second and fourth order optimization convergence history.

will be used as a starting shape; the objective function to be minimized is
F=Cp+10-(Cp —Cp.)? (6.4)

where C7r,, is the original lift coefficient of RAE 2822 at M = 0.73 and o = 2°. In this
test case both geometric and aerodynamic constraints are applied to avoid getting a
non-feasible airfoil geometry, while not affecting airfoil lift coefficient. The nonlinear
constraint, the lift coefficient, is added as a penalty term in the objective function
as shown in Eq. 6.4l Figure show the optimized airfoil’s pressure distribution
for both second and fourth order schemes. Both second and fourth order schemes
travel 99% of the way towards their optimal objective function after 7 iterations;
the second order scheme then becomes very slow to reach its optimal value. The
second order scheme costs 112 CFD simulations to reach its optimum compared to
49 CFD simulations for the fourth order. Figure shows a noticeable difference
between the optimized profiles, including a notably larger nose radius and less aft
chamber for the fourth order scheme. A shock free geometry is obtained with weak
compression waves on the airfoil upper surface. Drag is reduced by about 50%, as
shown in Table [6.2) while the lift coefficient is about 1% higher than its original

value.
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‘ ‘ Cr ‘ C1, optimized airfoil ‘ Cp ‘ Cp optimized airfoil
Second order | 0.865 0.871 0.0081 0.00477
Fourth order | 0.849 0.853 0.0099 0.0051

Table 6.2: Aerodynamic coefficients of original and optimized RAE 2822 airfoil at
transonic conditions.
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Figure 6.17: Surface pressure distribution, of the initial and optimized geometries
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Figure 6.18: Second and fourth order optimization convergence history.
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Figure 6.19: Optimal shapes comparison: second order, fourth order, and optimized
profile by Brezillon and Gauger compared with the original RAE2822.
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Figure 6.20: Second and fourth order optimized profile surface displacements from
the initial shape.
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Figure 6.21: Objective function response surface along positive and negative gradient
directions centered at the optimal profile of RAE 2822 transonic drag minimization
without lift constraint.

At the optimization breakdown point (optimal solution found), the gradient is not
zero, possibly due to the existence of the shock wave which causes high non-linearity
in the objective function and lift constraint behavior. Figure [6.21] shows plots of
the objective function response along negative and positive gradient direction. It
shows also that the obtained optimal solutions are local minima along the gradient
direction, and shows also that the gradient computed by finite difference is not zero.
It is also worth noting that the gradient of the objective function at the breakdown

point is dominated by the gradient of the lift constraint.

Figures and show a comparison between the optimized airfoil profiles
based on second and fourth order computations. Differences in shape are especially
noticeable near the leading edge, and in the reflexed part of the lower surface near
the trailing edge. The second order optimized profile Cy is four drag counts less than
the fourth order profile drag coefficient, nearly 10%. The same problem was studied
by Brezillon and Gauger [11]; they used the second order solver MEGAFLOW of
the German Aerospace Center and obtained their optimal profile by controlling the
camber line of the RAE 2822 via 20 control points. Comparing the optimal pressure
distribution of our second order computations shown in Fig[6.17l and that of Brezil-
lon, Fig[6.22] shows that both solvers tend to accelerate the flow near the leading
edge upper surface more than the original airfoil shape, followed by a gradual decel-

eration till the trailing edge; on the other hand, the surface pressure on the lower
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Figure 6.22: initial and optimal pressure distribution obtained by Brezillon and
Gauger [11] (presented with permission)

airfoil surface changes only slightly from the original surface pressure distribution of
the RAE2822. This similarity in the optimized pressure distribution suggests that
whatever geometry parametrization technique is used, the surface pressure changes

will be qualitatively similar.

The lift penalty factor used in this test case is selected such that violating the
lift constraint by one lift count (1072) causes 10 drag counts (1073) increase in the
objective function value. Table shows the effect of the lift constraint penalty
weighting factor on the optimal objective function value, as well as the optimal drag

and lift coefficients; these results are based on second order computations.
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Lift penalty weight Fopt CDOp ¢ CLopt Lift penalty
5 0.0052 | 0.0047 | 0.873 | 3.2x 107*
10 0.0051 | 0.0047 | 0.871 | 3.6 x 10~*
20 0.0082 | 0.0080 | 0.868 | 1.8 x 10~*

Table 6.3: Lift penalty weight effect on Drag minimization of RAE 2822 with lift
constraint

6.5 Mesh Refinement Study of a Drag Minimization
with Lift Constraint

In the last test case, Table shows that the optimal value of Cp is different
when comparing second and fourth order scheme results. This subsection examines
the impact of mesh refinement on the optimal value of C'p. Three mesh grid sizes
are used, with 5000, 11000, and 15000 triangles, respectively. In all test cases,
Cr, = 0.84 is used as a lift constraint value for both second and fourth order
computations. Figure compares the difference in the optimal Cp value for
second and fourth order schemes with mesh refinement; the plotted value of second
order C'p optimal are obtained using fourth order CFD simulation on the optimal

shape obtained using second order scheme.
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Figure 6.23: Optimal Cp value with mesh refinement

The figure shows that the two schemes tend to reach the same value of the
optimal Cp with mesh refinement with only one drag count difference (which is
on order of the discretization error). This behavior is expected as transonic CFD
simulations using second and fourth order schemes for the same geometry produce
almost the same surface pressure distribution and hence objective function value.
The root mean square of difference between the second and fourth order optimized
airfoil profiles of drops from 3 - 1075 on the coarsest mesh to 2- 107> on the finest

grid.
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Chapter 7

PARTICLE SWARM
OPTIMIZATION AND A NEW
HYBRID OPTIMIZATION
METHOD

7.1 Introduction to Gradient Free Optimization

Gradient based optimization results depend on the optimization starting point. To
find a global optimal solution, gradient independent methods are an obvious can-
didate. Perhaps the best-known non-gradient based optimization technique is the
genetic algorithm [30], a biologically-inspired approach which can find the global
optimal point of an objective function with multiple local optima. In genetic al-
gorithm optimization, a randomly generated population of candidate solutions are
generated; their fitness is determined by the value of the objective function [29]. So-
lution points with the best fitness are selected to be parents of the next generation.
A new generation of offspring is generated by crossover and mutation of the parents’
genetic characteristics (that is, the parents’ solution point locations in the design
space). This procedure is repeated until the globally optimal solution is obtained.
The number of individuals in each generation should not be less than the number
of design variables, otherwise poor optimization convergence will result. Figure [7.1]
shows a flowchart of a simple genetic algorithm optimizer. The dependency of the
population size on the number of design variables and the large number of genera-
tions required to converge to the global optimum combine to make genetic algorithm

impractically expensive for large aerodynamic optimization problems. Genetic algo-
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rithm optimization has been used for aerodynamic optimization problems by many
researchers. A genetic algorithm was used for transonic wing drag minimization
with a lift constraint by Gage and Kroo |29]. Anderson used GA for wing aerody-
namic shape optimization with structural constraints [1|. Jang and Lee used GA to
maximize lift to drag ratio of an airfoil using the Euler flow model with the NACA
0012 as a starting geometry [44]. Oyama et al applied a genetic algorithm with a
Navier-Stokes solver for transonic wing optimization [70]|. They also explored the
use of fractal analysis in GA aerodynamic optimization |71].

Particle swarm optimization is a random search technique first introduced in
1995 as a technique that simulate the behavior of a herd of predators hunting for
food |46]. This technique has proved to be faster than genetic algorithm to reach
the global optimal by many researchers (for example, [34, 59]); swarm intelligence
has the advantage of not being highly sensitive to problem dimensions |79], which
is not true for evolutionary optimization like genetic algorithm. The particle swarm
optimization method (described in Section [7.2)) can be made more efficient by hy-
bridizing it with sequential quadratic programming, as described in Section [7.3] The
effectiveness of this hybrid approach for unconstrained and constrained aerodynamic

optimization is demonstrated in Section [7.4l

7.2 Swarm Intelligence

Particle swarm optimization is a random search method that searches for the global
optimal solution of an objective function. It uses a number of swarm particles that
scans the design space looking for the global optimal solution. Each swarm parti-
cle represents a point in the design space and it moves through the design space
according to a simple formula. A particle’s velocity depends on its inertia, its own
experience, and social experience gained by communicating with other swarm par-
ticles. The particle swarm technique keeps a record of location of the best objective
function value for each particle (p;) as well the global best location (¢), which is
the best location among the s, Algorithm [7.1] is the general pseudo code of the
particle swarm technique.

The velocity of the particle in an optimization iteration depends on

e Its velocity in the previous iteration (momentum part)
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Figure 7.1: Genetic Algorithm optimization
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Algorithm 7.1 Particle swarm pseudo code
For each particle ¢ in the swarm
Initialize particle position z
%

Set its best position to be its initial position: L =11

Initialize its velocity V; = 0
End
Set the global best position: ¢ = p; where F (p;) < F (p}) for all i # j

Do
For each particle 7
Calculate its Velocityvz
Update its position 7
Calculate its objective function value (fitness) F (z})
If the current fitness value is better than its best fitness (F (z}) < F (p;))
Set the current particle position to be its best position: E) = x;
End if
End for
Select the best particle objective function and position to be the global best if it
is better than the stored value

While max iteration count not reached or convergence criterion not met.
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e Its distance from its known best value p; (cognitive part)

e Its distance from the swarm global best value ¢ (social part)

Figure shows schematically how the above three factors affect the particle ve-
locity, the velocity of each particle and its position update are obtained using the

following formulas

Vilk+1) = wVi(k) + o1 [7]- {5}~ B0} + 2 [3] (T - TR} (1)
Tk +1)=z(k) + Vi(k+1), i=1.N (7.2)
where w = 0.73 is the inertial weight factor, ¢y = co = 1.49 are the cognitive

and social acceleration factors respectively; these constants are selected according
to Clerc’s constriction models [16]. 71 and 73 are two random vectors of size N
whose elements are independent and uniformly randomly selected from the uniform
distribution on the interval [0,1]. The “-” operation is a component by component
multiplication not a dot product and this is true from this point through the rest of
the chapter.

Particle swarm optimization suffers from solution stagnation once the particles
have converged to a high quality locally optimal solution which is not a true globally
optimal point [23]. To avoid this problem, a restart strategy is suggested when
premature convergence is detected [9]. At each restart, swarm particles start from
new positions in the design space and converge to an optimal solution; restarting is
carried out m times, and the optimal solution is the best of all global bests. This
technique is called the multi-start particle swarm optimization (MPSO). A drawback
of this mechanism is that restarting may cause repetition of the search computations.
Evers and Ben Ghalia suggested a more efficient mechanism to escape from high
quality local wells. They re-scatter the particles around the convergence point in a
region with radius smaller than the design space norm, and large enough some at least
some particles to be outside the basin of attraction of the local optimum [24, 23],
their scheme is called the regrouped particle swarm optimization (RegPSO). The

main three elements in their scheme are

e Prematurity detection.
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Figure 7.2: Velocity components and position update of a particle

e Redefining upper and lower boundaries for decision (design) variables.

e Regrouping the particles by scattering them on a search domain defined by the

new upper and lower boundaries.

In the following subsections, the above three elements of the RegPSO strategy will
be presented; interested readers are encouraged to consult Evers and Ben Ghalia [23]
for more detail. All constants presented in the next subsections were found by Evers
and Ben Ghalia using numerical optimization experiments on standard benchmark

optimization problems.

7.2.1 Premature convergence detection

Convergence is detected when all particles converge to an optimal solution and start
to lose their momentum; this loss of momentum prevents escaping from the neigh-
borhood of a high quality local optimal solution. Premature convergence can be
detected when the greatest distance between a swarm particle and the global best
point ¢ falls below a certain threshold. This was suggested by Van den Bergh and

adopted in Ever’s work with success |9, 23].
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For multidimensional optimization problem of size n and m particles, the decision

T —

variables 7 = 1 Ty X3 - Ty } have initial upper and lower limits x% =
T —= T

Ty Ty X3y c TpU :| and Ty = [ 17, X2 X3L -+ TnL ] . First,

the range is defined as
rangt (Q) = =) — 1 (7.3)

Also the normalized swarm radius can be found according to

maxi—1_m | Z) (k) — g (k)|
[rangé ()|

(7.4)

51101‘111 =

Convergence is detected when the normalized swarm radius dnorm drops below
e=11-10"%

7.2.2 Redefining decision variables range

Once convergence is detected, the upper and lower limits of the decision variables
for the regrouped swarm are computed. The initial range of particle j can be found

using its upper limit x?U and lower limit :172 1,88
0 0 0
range; (") = Ty — T, (7.5)

Upper and lower limits of the decision variables are changed when convergence is
detected in order to scatter swarm particles in a ball surrounding the converged
solution. Changing the range of each decision variable j in a regrouping stage r is
done according to the following formula [23]:

range; (€2") = max (rangej (QO) 1.2 x 101 max |z ;" —g;

i=1..

o j‘) (7.6)

When the current range of design variables range; is sufficiently small, the optimiza-

tion problem is considered converged.

7.2.3 Regrouping and position clipping

Regrouping particles in a region surrounding the best position 7 not only moves

them away from the local minimum but allows them to recover their momentum,
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which had been lost due to convergence. Regrouping is done according to the fol-

lowing formula

7. =g +[r]" - range () — %range Q) (7.7)

where range (Q’") — [range; (Q"),range, (), ..., range, (")]7.
Equation [7.7 requires position clipping to keep the particles within the con-
strained design space, i.e z7 | Sz S x% ;. The upper and lower limits of the

components of particle’s decision vector can be found as

_ 1
T} = max <ZE2’L, g; - range; (Qr)> (7.8)

1
&7 1y = min <a;(;,U, g;_l + irangej (QT’)>

7.3 Hybrid SQP-RegPSO Technique

Swarm intelligence starts with a set of randomly generated position points in the
design space and defines its initial best location, ?, as the point of best fitness among
the swarm particles; this best point act as a gravity center in the design space and
attracts other particles to it; if the initial best point is of high quality, this reduces
the total computational effort to find the global optimal solution. The technique we
are proposing here for hybridization of sequential quadratic programing (SQP) and
particle swarm optimization is to use SQP to find the initial high quality 7 before
using RegPSO technique. The pseudo-code of the hybrid scheme is summarized in
Algorithm

7.4 Optimization Test Cases

This section will examine the efficiency of the proposed hybrid scheme and compare
it with the original RegPSO technique. To do so, a drag optimization that seeks a
shock free profile with Cr, = 0.4 at M = 0.8 and angle of attack o = 1.5° is carried

out. Two distinct starting points were selected to explore the existence of a unique
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Algorithm 7.2 Hybrid SQP-RegPSO pseudo code
For each particle in the swarm

Initialize particle position z

Set its best position to be its initial position: =7

Initialize its velocity V; =0
End
Set the global best position: ¢ = p; where F (p]) < F (]T;) for all i # j, or the SQP
optimal solution, whichever is better
Set (5norm =1
Sett =1

Do
For each particle ¢
Calculate its Velocity?i
Update its position z
Clip position such that z7 ; < x;; < 2y
Calculate its objective function value (fitness) F (z7)
If the current fitness value is better than its best fitness (F (z}) < F (p}))

Set the current particle position to be its best position: E) =
End if
End for

Select the best particle objective function and position to be the global best if it
is better than the stored value

t=t+1
Compute dporm using Eq 7.4
If dnorm < €
Compute the range of each decision variable range (Q;)
Scatter the particles around ? according to Eq[7.7
Apply position clipping with limits defined according to Eq[7.8]
End if
While (dporm > € and ¢ < max iterations).
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global bes; the first is to start from NACA 0012, the second one is to start from
NACA 00083 airfoilH These cases were chosen because experiments showed that SQP
optimization with these two starting points converged to distinct optimal solutions
with significantly different objective function values. All the computations here are
second order as we aiming to find a global optimization method with reasonable

computational cost, not to compare second and fourth order optimal results.

7.4.1 Constrained drag optimization of the NACA 0012

In this test case, drag optimization of the NACA 0012 at a lift coefficient of C'r, = 0.4,
M = 0.8 and angle of attack o = 2° is presented. The objective function can be
written as

F=Cp+10-(Cp —0.4)? (7.9)

SQP optimization is used first to find a local optimum and thus provide an initial
high quality 7 as a starting point for the RegPSO scheme. The optimal profile
found by SQP optimization with BFGS Hessian approximation was not shock free.
RegPSO is used after SQP and successfully reached a shock free profile. In this test
case, the swarm size was 10 particles and the number of decision variables is 18. The
first phase of the hybrid scheme (SQP optimization) costs 92 CFD simulations while
the second phase costs 490 CFD simulations which makes the total cost 582 CFD
simulations to reach shock free profile.

Using RegPSO alone as an optimization technique with a maximum of 1000 CFD
simulations does not result in a shock free profile, as the optimization has not yet
converged to a global optimum. Fig [7.4.1] shows the pressure distribution of the
original NACA 0012 at transonic conditions, the SQP optimal profile, the RegPSO
optimal shape, and the hybrid shock free profile. Drag has been reduced from 150
drag counts at the initial local optimum found by SQP optimization to 8.89 drag
counts at the final global optimum.

Figure 7.4 shows the surface pressure distribution of the original NACA 0012 air-
foil, and the optimized profile using SQP with BFGS approximate Hessian, RegPSO,

8In the case of a finite region in the design space for which the flow is shock free, there may be
a region of global “best” solutions differing only in the amount of discretization error present.
®That is, an airfoil from the 4-digit NACA series with 8.3% maximum thickness.
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NACA 0012 Original BFGS Optimal

RegPSO 1000 CFD simulations Hybrid 492 Total CFD simulations

Figure 7.3: Pressure Field of the original NACA 0012 and the optimized profiles

Figure 7.4: Surface pressure distribution of original NACA 0012 and the optimized
profiles
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Figure 7.5: Airfoil shapes of original NACA 0012 and the optimized profiles

and hybrid BFGS-RegPSO techniques. Figure shows the different optimized air-
foil profiles resulted from the three optimization techniques, note that the initial
global best point of the hybrid scheme is the SQP optimal shape. To study the
function variation between the initial best known shape, which results from SQP op-
timization, and the final best shape of the hybrid scheme, the vector that connects
these two points in design space was divided into 100 steps and the objective func-
tion value at each of these points computed. Figure[7.7shows that there is a descent
direction (the vector that connects the initial and final 7) at the SQP optimal point

but the SQP optimizer can not find it. Possible reasons for that include:
1. An error in the computed adjoint gradient.

2. The SQP gradient and the vector that connects the initial and final ¢ are
perpendicular due to the influence of numerical noise and of the behavior of the
Euler flow model physics in the SQP gradient as the descent direction resulting
from adjoint computations tends to minimize the drag by shifting the shock
wave forward so it occurs at lower Mach number to reduce its strength, while

this mechanism to reduce the drag is not strictly followed by RegPSO scheme
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Figure 7.6: Function minimization iterations in the second phase of the hybrid
scheme (RegPSO) with a NACA 0012 airfoil as the starting point.

To determine the real reason, we computed the adjoint gradient and the finite dif-

ference gradient at the SQP local optimum, then computed the angles between the

e Adjoint computed gradient vector.

e Finite difference computed gradient vector.

e Vector that connects the SQP (local) optimum and the hybrid (global) opti-

InuII.

Table [7.1] shows the angles between those three vectors. The adjoint and finite
difference gradient directions are in excellent agreement but are almost perpendicular
to the third vector that connects local and global optima. This observation supports
the hypothesis that the influence of numerical noise and FEuler flow model physics
prevents finding that descent direction; however, this needs to be verified by another

test case.
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Figure 7.7: Objective function values between SQP and hybrid optimal points (start-
ing geometry: NACA 0012).

‘ | Angle in degrees |

Adjoint and finite difference gradients 1.78
Adjoint gradient and SQP-hybrid vector 86.6
Finite difference gradient and SQP-hybrid vector 86.7

Table 7.1: Angles between adjoint, FD., and SQP-hybrid vectors
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7.4.2 Constrained drag minimization of NACA 00083

In this test case, the same drag optimization problem is studied at the same transonic
conditions, but starting from a thinner airfoil. Again, SQP could not eliminate the
shock wave on the airfoil’s upper surface, but a shock free optimal shape is obtained

using RegPSO in the second phase as shown in Fig[7.8]

Figure shows a comparison of the surface pressure of the original NACA
00083, SQP with BFGS approximate Hessian (local) optimum, and hybrid BFGS-
RegPSO (global) optimum results. The BFGS optimal profile weakens the shock
strength to reduce the drag, but the hybrid scheme eliminates the shock wave com-
pletely. Figure [7.10! shows a profile comparison of the original NACA 00083, BFGS
optimal, and the hybrid optimal profile.

The drag coefficient is reduced from 32 drag counts at the BFGS optimal solution
to 8.89 drag counts at the hybrid optimal solution. The optimal value of the drag
coefficient found by the hybrid scheme in this test case is the same as the value
obtained in the previous case and in both cases, it is of order of the discretization
error. The total number of CFD simulations is 1080, 80 for the SQP phase and 1000
for the RegPSO phase.

Again, to study the objective function variation between the BFGS (local) opti-
mum, and the final (global) optimum of the hybrid scheme, we took 100 steps on the
vector that connects these points and compute the objective function values. Figure
shows the variation in the objective function value along that vector, which is
not a descent vector at the BFGS optimal point. Also, there is numerical noise in the
objective function values at some stations along that vector, in addition to an ap-
pearance then vanishing of a shock wave. As in the previous test case, we computed
the objective function gradient at the initial gBest using adjoint and finite difference
strategy and calculated its angle with the vector that connects the initial and the
final best position vectors ¢ obtained using the hybrid scheme. Tabld7.2]shows that
the vector connect the initial and final best solutions is almost perpendicular to the
adjoint and finite difference gradients; it shows also that adjoint and finite difference
gradients are a very good match. The orthogonality of these vectors was previously
noted in the last test case as well. This strongly suggests that numerical noise in

the gradient and the influence of the flow model physics prevents finding a descent
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NACA 00083 original

BFGS Optimal

Hybrid Optimal

Figure 7.8: Pressure surface of NACA 00083 and the optimized profiles

‘ ‘ Angle in degree ‘

Adjoint and Finite difference 0.27
Adjoint and SQP-hybrid vector 86.93
Finite difference and SQP-hybrid vector 86.87

Table 7.2: Angles between adjoint, FD, and BFGS-hybrid best solutions vectors

direction that leads from the SQP local optimum to the shock free global optimum.

7.4.3 Aerodynamic and thickness constraint drag minimization of
NACA 0012

In this test case thickness is constrained to be . = 0.1 at z;, = 0.35, in addition to
the lift constraint Cr. = 0.4 at transonic conditions, M = 0.8 and o = 1.5°. SQP

with BFGS Hessian approximation optimization technique is first used, the objective
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Figure 7.9: Surface pressure of NACA 00083 and the optimized profiles

BFGS-P3
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Figure 7.10: Profile comparison of NACA 00083, BFGS optimal, and hybrid optimal
airfoils
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Figure 7.11: Function minimization iterations in the second phase of the hybrid
scheme (RegPSO) of NACA 00083 start
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Figure 7.12: Objective function values between BFGS and hybrid optimal points,
starting geometry NACA 00083
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function to be minimized is

F=Cp+10(Cp —04)? (7.10)
subject tot (zy,) = t.

The thickness constraint can be cast as an equality constraint equation using the
surface parametrization matrix Q2 [AQl]T; for this test case, . < L1, so the thickness

constraint equation can be written as

t($tc) :Pl(xtc)_P3($tC) :tc (7]_1)
- (aov/@e + a1ze + aox? + azzl) — (cov/Te + c1Te + cox? + c3al) = te

Recall that the relationship of polynomial coefficients and the design variables can
be found using Q3 [AQ1] as

a =Y (@), v (7.12)

Equation (7.12)) can be used with Eq (7.I1) to derive an algebraic linear equation
that relates the thickness constraint ¢. to design variables directly; this last equation
can be used as a constraint equation added to the optimization problem and this

constraint will be satisfied using a Lagrange multiplier.

For the second phase of the hybrid scheme, the thickness constraint is satisfied
using a penalty term in the objective function; the objective function for RegPSO

phase can be written as
F=Cp+10(Cp —0.4)% + (t (z1,) — t.)? (7.13)

The penalty method is used to approximately satisfy the thickness constraint term
due to the lack of Lagrange multiplier in non-gradient based optimization techniques.
Drag coefficient have been reduced from 230 to 120 drag counts in the first phase,
then reduced to 9 drag counts using the hybrid scheme, a shock free profile is obtained
as shown in Figs (7.13) [7.14) ; this shock free profile is obtained with 900 CFD

simulations in total.
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Figure 7.13: Pressure surface of NACA 0012 and the optimized profiles with thickness
constraint

— Hybrid optimal
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Figure 7.14: Surface pressure of NACA 0012 and the optimized profile with thickness
constraint
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NACA 00083 original Hybrid Optimal

Figure 7.15: Pressure surface of NACA 00083 and the optimized profiles with thick-
ness constraint

7.4.4 Aerodynamic and thickness constraint drag minimization of
NACA 00083

This test case is a repeat of the last one, but the starting geometry is different. The
starting geometry is NACA 00083 which does not satisfy the thickness constraint.
The SQP optimizer is used first;it satisfies the thickness constraint after the first few
iterations, then it starts to minimize the drag. Drag is reduced from 60 drag counts
to 40 drag counts in the first phase. The second (RegPSO) phase reduced the drag
to 9 drag counts and produced a shock free optimal shape, as shown in Figs.
and

Comparison of the optimized profiles of the last two test cases are shown in
Fig. [T.17. The two profiles are very close in upper surface shape, which is tightly
constrained by the need to eliminate the shock wave; there is more difference in the
lower surface on which the flow is subsonic. The last observation suggests that for
inviscid flow simulations, there is a region of global optimal solution rather than one
point global optimum. More precisely, once a shock-free solution is obtained, the
objective function is too flat to distinguish reliably between the drag of shock-free
solutions; this is not surprising, considering that the drag for shock-free inviscid flows
is due solely to discretization error.

In all test cases, the new hybrid scheme was able to find a shock free airfoil profile
regardless of the starting points. Only ten particles were using in the swarm to scan
the design space, which is roughly half of the number of design variables. This is

lower than the recommended population size required by GA to converge well. The
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Figure 7.16: Surface pressure of NACA 00083 and the optimized profile with thick-
ness constraint

optimization computational cost is four to nine times the cost of SQP optimization.
Using SQP optimization with ten different starting geometries might lead to a shock
free profile, but there is no guarantee for that. As the results above show, there is
a high chance of getting trapped in local minima or suffering a breakdown in the

optimization process because of solution noise.

Table [7.3] shows the effect of the thickness penalty weight on the optimization
results using second order accurate computations. It shows that a thickness penalty
weight of 10 is sufficient to satisfy the thickness geometric constraint, but it will

increase the value of CDO and may prevent obtaining a shock free optimal profile.

Figure Shows a compariggn of the optimal profiles using two different thickness
penalty weights; the maximum thickness of the optimized airfoils were 0.077 and
0.095 respectively for thickness penalty of 1 and 10. Therefore it is recommended
to use a thickness penalty of order of 10 in order to satisfy a maximum thickness
constraint. Figure [T.18 shows a comparison of the optimal pressure distribution of
the two optimal profiles; a shock free pressure distribution is obtained using thickness

penalty weight of 1. The drag coefficient for this profile is 9 drag counts which is
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— NACA 0012 start
—— —MACA 00053 start

Figure 7.17: Profile comparison of the hybrid scheme optimal profiles, starting ge-
ometries NACA 0012 and NACA 00083

of order of discretization error. It shows also that with thickness penalty weight
10, there is a weak compression wave on the airfoil upper surface which causes an

increase in the drag coefficient to 17 drag counts.

Thick. penalty | Fopt Cop, CLopt t(z¢,) | Lift penalty | Thick. penalty

weight
1 0.00134 | 0.00088 | 0.3997 | 0.077 0.000001 0.00048
10 0.00208 | 0.0017 | 0.4005 | 0.095 | 0.0000026 0.00025

Table 7.3: Thickness penalty weight impact on the optimization results of NACA
00083 using hybrid scheme
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Figure 7.18: Thickness penalty weight impact on the Optimal pressure distribution
of NACA 00083 using hybrid optimization scheme.
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Figure 7.19: Thickness penalty weight impact on the Optimal profile with NACA
00083 starting geometry using hybrid optimization scheme.
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Algorithm 7.3 Pseudo code of RegPSO-SQP “hybrid™ optimization scheme

1. Use the initial geometry as the initial global best ?
2. Randomly generate swarm.
3. Add the initial geometry as a swarm member.

4. Use RegPSO strategy with stopping criterion of max 900 CFD simulations to
find an estimated global best ?

5. Use SQP with starting point 7 to find better global best solution.

7.5 Comparing SQP-RegPSO with RegPSO-SQP

optimization strategies

I have presented results of the proposed hybrid optimization scheme in which SQP
optimization is used to obtain a reasonably good upper bound on the global optimum.
Based on the results of previous test cases, this scheme seems to be a promising
global optimization scheme. Another hybrid scheme in which RegPSO precedes SQP
optimization is possible. In this section I will compare the optimization results of the
last five optimization problems using the proposed hybrid scheme with the results
of RegPSO-SQP scheme; I will refer to the latter scheme as hybrid®. Algorithm [7.3]

shows a pseudo code of hybrid! optimization.

Both schemes has two phases, SQP phase and RegPSO phase, but they differ
in the order of the phases. Tables [7.4] and summarize the optimization results
for both schemes. Figures show a comparison of the obtained pressure
distribution of the optimal shape obtained using these schemes. These comparisons
show that the hybrid scheme is better than the hybrid™ for all cases; in Case II, the
schemes are nearly identical in drag coefficient though different in final shape. This
was expected because in hybrid? if the first (RegPSO) phase could not reach the
basin of attraction of the global minimum, the second (SQP) phase will not be able to
find it. Tables [7.4] show a comparison of Phase I and Phase II optimal objective
function value for both hybrid and hybrid! for the five test cases in this chapter. As

a hybridization quality measure, the ratio of the optimal objective function phase
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| Case | Phase I Opt (SQP) | Phase IT Opt (RegPSO) | Phase II/1 |

L0 0.0150 0.0009 0.0600
It 0.0032 0.0009 0.2813
III 2 0.0120 0.0013 0.1083
v 1 0.0040 0.0013 0.3250
v 0.0040 0.0021 0.525

Table 7.4: Optimization results of the hybrid scheme in Phase I, I1

‘ Case ‘ Phase I Opt (RegPSO) ‘ Phase II Opt (SQP) ‘ Phase II/I ‘

I 0.0137 0.0049 0.358
II 0.0019 0.0011 0.579
III 0.0125 0.0125 1.0
v 0.0017 0.0017 1.0
A% 0.0052 0.0052 1.0

Table 7.5: Optimization results of the hybrid!' scheme in Phase I, II

IT to Phase I optimal is used and the smaller this value the more successful the
hybridization sequence is. The tables show also that the sequence used in hybrid is
better than hybrid™.
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Figure 7.20: Hybrid and hybrid" optimal pressure distribution for NACA 0012 (Case
D).
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Figure 7.21: Hybrid and hybrid!" optimal pressure distribution for NACA 00083
(Case II).
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Figure 7.22: Hybrid and hybrid" optimal pressure distribution for NACA 0012 with
10% thickness constraint and unit thickness penalty weight (Case III).

116



1 )
— — — RegPSO-SQP
SQP-RegPSO

0.5

0.2 0.4 0.6 0.8 1
xlc

Figure 7.23: Hybrid and hybrid! optimal pressure distribution for NACA 00083 with
10% thickness constraint and unit thickness penalty weight (Case IV).
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Figure 7.24: Hybrid and hybrid! optimal pressure distribution for NACA 00083 with
10% thickness constraint and ten thickness penalty weight (Case V).
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Chapter 8

CONCLUSIONS AND
RECOMMENDATIONS

8.1 Contributions and Conclusions

This thesis presents the first study of the use of high order finite volume CFD
methods in aerodynamic optimization. I have developed the first finite volume based
optimization code that uses high order Jacobian in gradient computations using the
adjoint technique. A new geometry parametrization technique has been developed
and presented; this new technique is based on least squares surface fitting. To develop
an efficient global optimizer, a new hybrid SQP-RegPSO scheme has been developed
to find the global optimal solution in the feasible design space.

I presented both constrained and unconstrained aerodynamic optimization using
sequential quadratic programming with the use of adjoint method to compute the
objective function gradient. The computations were based on higher order finite
volume method on unstructured grids. I took advantage of evaluating the exact
Jacobian matrix to compute the flow adjoint field and flow solution sensitivity. The
computed gradient based on the adjoint method is an excellent match with the
corresponding finite difference gradient in subsonic flow for both second and fourth
order schemes. For transonic flow, the second order Jacobian matches well with
the corresponding order of accuracy finite difference gradient; on the other hand,
the fourth order Jacobian does not match the finite difference gradient well when
using a limiter. This error in the fourth order gradient is attributed to the high
sensitivity of the fourth order Jacobian matrix to the use of the limiter in transonic
flow which tends to affect the diagonal dominance of the Jacobian matrix. To tackle
this problem and to enhance the diagonal dominance of the fourth order Jacobian

matrix, we used the same non-zero structure of the second order Jacobian matrix
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and dropped the rest of the non-zero elements; this tends to increase the diagonal
dominance of the modified fourth order Jacobian matrix and improves its condition
number.

I have developed a new approach for smooth parametrization of airfoil shapes,
based on a least-squares fit of the parameters of two polynomials to a set of control
points. Compared with using all mesh points as design variables, this approach
reduces the size of the design space and eliminates oscillations in the shape. We use
a semi-torsional spring analogy to deform the mesh grid in the entire flow field when
the surface shape evolves during optimization. It is used also to calculate the mesh
sensitivity terms in the adjoint gradient.

To test the developed gradient based optimizer; I have used the optimizer to
tackle inverse design problems in which only one optimal solution point in the de-
sign space exists. Additional transonic drag minimization test cases have been pre-
sented with and without lift constraint. As a summary of test cases observations: A
subsonic inverse design test case shows that both second and fourth order schemes
reached their target geometry after almost the same number of iterations. The same
behavior is observed for transonic inverse design test case. This indicates that the
convergence is independent of the order of accuracy of the spatial discretization. In
a drag minimization test case without lift constraint, both second and fourth order
scheme reached their optimum shape after almost the same number of optimiza-
tion iterations. The difference of the resulting optimal airfoil shape is small. Both
schemes reduced the drag by almost 50% of its original value but the lift also went
down.

In a drag minimization test case with lift constraint, the fourth order scheme
was faster to reach its optimal shape with 8 optimization iterations (which cost
49 CFD simulations), while the second order scheme took 13 iterations (112 CFD
simulations) to reach its optimum. Both schemes reached their optimum with almost
the same wall clock run time and found nearly identical airfoil optimal shapes. Based
on all the test cases we presented, we conclude that the spatial discretization error
produces a systematic error in the objective function and has a little effect on the
final optimal shape.

A mesh refinement study shows that both second and fourth order schemes tend

to give the same optimal value for the objective function as we refine the mesh.
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Based on the results of this research, I recommend the use of a high order method for
objective function value computations and for accurate prediction of forces and shock
wave capture in transonic flows, and the use of a second order method (but based on
the obtained forth order solution) to compute the objective function gradient needed
for gradient based optimizer. If the mesh resolution makes second and fourth order
simulation results similar, using the second order scheme for optimization will be

economical.

I have developed also a new hybrid gradient/non-gradient based optimization
technique that uses sequential quadratic programming with BFGS Hessian approx-
imation technique in an initial gradient based optimization phase, followed by the
regrouped particle swarm optimization method in the non-gradient random search
phase. The SQP optimization phase leads to a high quality initial best-solution
point that reduces the total computational effort of the RegPSO to reach a shock
free profile.

Unlike with the SQP scheme, the transonic drag optimization with lift constraint
of the NACA 0012 and NACA 00083 tackled with the hybrid scheme lead to shock
free optimal shapes; in both cases, the objective function gradient vector is almost
perpendicular to the vector that connects the SQP optimum and the hybrid opti-
mum. This explains why the gradient based optimization can not reach the global
optimal, and also shows that its optimal solution depends on the starting geometry.
The objective function behavior along the vector that connects the SQP and the
hybrid optima shows that numerical noise may have a harmful impact on gradient

based optimization as well.

Transonic drag optimization of NACA 0012 and NACA 00083 have been tack-
led with both aerodynamic and geometric constraints. For RegPSO, the geometric
constraint is satisfied using penalty method; in both cases, shock free profiles have
been obtained. The last test case (drag reduction of NACA 00083 with a thickness
constraint) shows that the hybrid scheme was able to find a shock free profile despite
increasing the thickness during optimization. The computational expense of the hy-
brid scheme is four to nine times more than SQP optimization, but in all cases, a
global optimal (shock free) profile obtained, and in aerospace industry, this is worth

the increase in computational effort.
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8.2 Future Work

We intend to apply non gradient-based optimization techniques like particle swarm
algorithm to study the effect of CFD scheme order of accuracy on the final optimal
shape in the near future. Another obvious extension of the current work is aero-
dynamic optimization using RANS with turbulence models. The flow solver should
solve the turbulence equations coupled with the mean flow equations; otherwise, the
flow sensitivity values will be less inaccurate. Thus, for a three dimensional flow
simulation with k& — e turbulence model, the block size of the Jacobian matrix is
7 x 7. Fully coupled solvers have also been shown to converge more efficiently.

For three-dimensional problems, the geometry parametrization should be re-
placed with a perturbation parametrization (parametrization of the change in the
shape). This will reduce the required number of design variables which is very
important for three dimensional optimization problems. Importantly, perturbation
parametrization also prevents the change in the initial pressure distribution when
parametrizing the geometry itself.

Exploring the effect of the geometry parametrization technique used on SQP opti-
mization results is needed. We speculate that using the right geometry parametriza-
tion technique may lead to a design space in which aerodynamic constraints are

simply connected and an SQP optimizer can find a globally optimal solution.
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