

A MODIFIED PARTICLE SWARM OPTIMIZATION AND ITS
APPLICATION IN THERMAL MANAGEMENT OF AN

ELECTRONIC COOLING SYSTEM

by

Mohammed R.A Alrasheed

B.Sc., King Saud University, 1997

M.Sc., Carnegie Mellon University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

 in

THE FACULTY OF GRADUATE STUDIES

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2011

© Mohammed R.A. Alrasheed, 2011

ii

Abstract

Particle Swarm Optimization (PSO) is an evolutionary computation technique, which

has been inspired by the group behavior of animals such as schools of fish and flocks of

birds. It has shown its effectiveness as an efficient, fast and simple method of optimization.

The applicability of PSO in the design optimization of heat sinks is studied in this thesis.

The results show that the PSO is an appropriate optimization tool for use in heat sink design.

PSO has common problems that other evolutionary methods suffer from. For example,

in some cases premature convergence can occur where particles tend to be trapped at local

optima and not able to escape in seeking the global optimum. To overcome these problems,

some modifications are suggested and evaluated in the present work. These modifications

are found to improve the convergence rate and to enhance the robustness of the method.

The specific modifications developed for PSO and evaluated in the thesis are:

 Chaotic Acceleration Factor

 Chaotic Inertia Factor

 Global Best Mutation

The performance of these modifications is tested through benchmarks problems, which are

commonly found and used in the optimization literature. Detailed comparative analysis of

the modifications to the classical PSO approach is made, which demonstrates the potential

performance improvements.

In particular, the modified PSO algorithms are applied to problems with nonlinear

constraints. The non-stationary, multi-stage penalty method (PFM) is implemented to handle

iii

nonlinear constraints. Pressure vessel optimization and welded beam optimization

are two common engineering problems that are used for testing the performance of

optimization algorithms and are used here as benchmark testing examples. It is found that

the modified PSO algorithms, as developed in this work, outperform many classical and

evolutionary optimization algorithms in solving nonlinear constraint problems.

The modified PSO algorithm is applied in heat sink design and detailed results are

presented. The commercially available software package Ansys Icepak is used in the present

work to solve the heat and flow equations in implementing the optimal design variables

resulting from the modified PSO algorithms. The main contributions the work are

summarized and suggestions are made for possible future work.

iv

Preface

1. A version of Chapter 3 has been published:

 Alrasheed, M.R., de Silva, C.W., and Gadala, M.S., "Evolutionary

optimization in the design of a heat sink," Editor: de Silva C.W.,

Mechatronic Systems: Devices, Design, Control, Operation and

Monitoring, pp. 55-78, CRC Press, Boca Raton, FL , 2007.

 Alrasheed, M. R. , de Silva, C. W., and Gadala, M. S. ,“A new

extension of particle swarm optimization and its application in

electronic heat sink design,” in ASME Conference Proceeding (IMECE

2007), Seattle, Washington, pp.1221-1230, November 2007.

2. A version of Chapter 5 has been submitted for publication:

 Alrasheed, M.R., de Silva, C.W., and Gadala, M.S., " Application of

PSO with Novel Chaotic Acceleration, Chaotic Inertia factors and Best

Global Mutation Algorithms to solve Constrained Nonlinear

Engineering Problems,” (Submitted).

3. A version of Chapter 6 has been submitted for publication:

 Alrasheed, M.R., de Silva, C.W., and Gadala, M.S., "Applying

Modified Particle Swarm Optimization in Heat Sink Design by using

Chaotic Acceleration and Global Mutation," (Submitted).

v

Table of Contents
Abstract.. ii

Preface .. iv

Table of Contents ... v

List of Tables ... viii

List of Figures ... ix

Nomenclature…………………………………………………………………….………..…xi

Acknowledgementsxvi

Dedication .. xvii

Chapter 1 Optimization Techniques .. 1

1.1 Introduction ... 1

1.2 Classical Optimization Methods .. 3

1.2.1 The Steepest Descent Algorithm ... 3

1.2.2 Simplex Method ... 4

1.2.3 Newton Raphson Method………………………………………………….. ... 5

1.3 Evolutionary Algorithms (EAs) ... 5

1.3.1 Evolution Strategy (ES) ... 6

1.3.2 Genetic Algorithms (GA) .. 6

1.3.3 Particle Swarm Optimization (PSO) ... 7

1.4 Research Goals and Objectives ... 9

1.5 Thesis Structure .. 10

Chapter 2 Literature Review ... 11

2.1 Introduction ... 11

2.2 History of PSO .. 11

2.3 Developments of PSO ... 18

2.4 Comparing PSO with Other Evolutionary Methods ... 21

2.5 Applications of PSO .. 22

Chapter 3 Applicability of PSO in Heat Sink Design Optimization 24

3.1 Problem Statement ... 24

3.2 PSO Implementation.. 27

3.2.1 Numerical Results ... 27

3.3 Summary ... 28

vi

Chapter 4 New Extensions to PSO and Analysis ... 29

4.1 Introduction ... 29

4.2 Proposed Developments .. 30

4.2.1 Chaotic Acceleration Factor (Ca) ... 30

4.2.2 Chaotic Inertia Weight Factor (ωc) .. 31

4.2.3 Global Best Mutation .. 32

4.3 Parameter Sensitivity Analysis ... 36

4.3.1 Population Size ... 37

4.3.2 Chaotic Acceleration Factor (Ca) .. 37

4.3.3 Results of Parameter Sensitivity Analysis .. 37

4.4 Benchmarks .. 46

4.4.1 Sphere Function .. 46

4.4.2 Griewank’s Function .. 46

4.4.3 Rosenbrock Function ... 47

4.4.4 Rastrigin Function .. 47

4.5 Results and Evaluation... 47

4.6 Summary ... 65

Chapter 5 Application of Modified PSO Algorithms to Solve Constrained Nonlinear
Engineering Problems .. 66

5.1 Introduction .. 66

5.2 The Penalty Function Methods ... 67

5.3 Test Problems ... 69

5.3.1 Pressure Vessel Optimization .. 70

5.3.2 Weld Beam Optimization .. 73

5.4 Summary .. 77

Chapter 6 Applying Modified PSO in Heat Sink Design by Using Chaotic Acceleration
and Global Mutation .. 78

6.1 Introduction .. 78

6.2 Entropy Generation Minimization (EGM) of a Heat Sink .. 79

6.3 Optimization Results .. 88

6.4 CFD Solution .. 92

6.5 Summary ... 93

Chapter 7 Conclusion ... 94

vii

7.1 Contributions and Significances ... 94

7.2 Possible Future Work ... 95

Bibliography .. 97

Appendices .. 103

 Appendix A: Rosenbrock Simulations ... 103

 Appendix B: Rastrigrin Simulation Results .. 105

 Appendix C: Griewank Simulation Results .. 107

 Appendix D: Pressure Vessel Optimization (Simulation Results) 109

 Appendix E: Weld Beam Optimization (Simulation Results) ... 111

 Appendix F: Computer Codes ... 113

viii

List of Tables
Table 3.1: Results obtained in this work and the paper by Shih and Liu 27

Table 4.1: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for PSO method ... 38

Table 4.2: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSO method ... 39

Table 4.3: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOS method ... 40

Table 4.4: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOT method... 40

Table 4.5: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOM method ... 42

Table 4.6: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOMS method ... 43

Table 4.7: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOMT method ... 44

Table 4.8: Sphere function optimization with D=10 .. 49

Table 4.9: Sphere function optimization with D=20 .. 51

Table 4.10: Sphere function optimization with D=30 .. 51

Table 4.11: Griewank function optimization with D=10 ... 53

Table 4.12: Griewank function optimization with D=20 .. 54

Table 4.13: Griewank function optimization with D=30 ... 56

Table 4.14: Rastrigrin function optimization with D=10 ... 57

Table 4.15: Rastrigrin function optimization with D=20 .. 58

Table 4.16: Rastrigrin function optimization with D=30 ... 60

Table 4.17: Rosenbrock function optimization with D=10 .. 61

Table 4.18: Rosenbrock function optimization with D=20 .. 63

Table 4.19: Rosenbrock function optimization with D=30 .. 64

Table 5.1: Best results of pressure vessel optimization for PSO and modified algorithms .. 72

Table 5.2: Comparison of results for design of pressure vessel .. 73

Table 5.3: Results of designing welded beam for PSO and modified PSO algorithms 75

Table 5.4: Comparison of results for design of weld beam ... 76

Table 6.1: Optimization results of non dimensional entropy generation rate 88

ix

List of Figures

Figure 2.1 : Movement of a particle in search space ... 16

Figure 2.2 : Flow chart describes the search mechanism of particle swarm optimization
algorithm (PSO) ... 18

Figure 3.1: Schematic diagram of a plate-fin sink. .. 24

Figure 3.2: Optimum entropy generation rate with vary of N (PSO and GA) 28

Figure 0.1: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for PSO m .. 38

Figure 0.2: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSO method .. 39

Figure 4.3: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOS method .. 40

Figure 4.4: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOT method .. 41

Figure 4.5: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOM method .. 43

Figure 4.6: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOMS method .. 44

Figure 4.7: Parameter sensitivity analysis of learning factors ρ1 and ρ2 with different
population number for CPSOMT method .. 45

Figure 4.8: Sphere function optimization with D=10 .. 49

Figure 4.9 : Sphere function optimization with D=20 ... 50

Figure 4.10: Sphere function optimization with D=30 .. 52

Figure 4.11: Griewank function optimization with D=10 .. 53

Figure 4.12: Griewank function optimization with D=20 .. 54

Figure 4.13: Griewank function optimization with D=30 .. 55

Figure 4.14: Rastrigrin function optimization with D=10 .. 57

Figure 4.15: Rastrigrin function optimization with D=20 .. 58

Figure 4.16: Rastrigrin function optimization with D=30 .. 59

Figure 4.17 : Rosenbrock function optimization with D=10 .. 61

Figure 4.18: Rosenbrock function optimization with D=20 ... 62

Figure 4.19: Rosenbrock function optimization with D=30 ... 64

Figure 5.1: Schematic diagram of pressure vessel .. 71

x

Figure 5.2: Schematic diagram of welded beam ... 74

Figure 6.1: Schematic diagram of a general fin in convective heat transfer 82

Figure 6.2: Geometrical configuration of a plate-fin sink ... 86

Figure 6.3: Optimization of non dimensional entropy generation rate 89

Figure 6.4: Optimum entropy generation rate with vary of N ... 89

Figure 6.5: Optimum entropy generation rate and optimum flow velocity with different
values of N .. 90

Figure 6.6: Optimum entropy generation rate and optimum thickness of fin with different

values of N .. 91

Figure 6.7: Optimum entropy generation rate and optimum height of fin with different
values of N .. 91

Figure 6.8: Temperature distribution through cross section of the heat sink 92

Figure 6.9: Velocity profile through the heat sink .. 93

xi

Nomenclature
List of Symbols

a Height of fin, m.

Ac Cross-sectional area of the fin, m2.

b Base thickness, mm.

Ca Chaotic acceleration factor.

d Thickness of the fin, m.

Dh Hydraulic diameter of the channel, m.

fapp Apparent friction factor.

 .ௗ Drag force, Nܨ

fi Current solution that is achieved by a particle i.

fg Global solution that is achieved by all particles.

݂.ܴ݁஽h Fully developed flow factor Reynolds number group.

 .Objective Function (ݔ)݂

 .Penalty factor (ݔ)ܩ

݃௜(ݔ) Inequality constraints.

h Heat transfer coefficient, W/m2 K.

ℎ௜(ݔ) Equality constraints.

ℎ(ݐ) Penalty value.

iterationcurrent Current iteration number.

iterationmax Total number of iteration.

k Thermal conductivity of the heat sink, W/m.K.

kf Thermal conductivity of air, W/m.K.

 .௖ Contraction loss coefficientܭ

 .௘ Expansion loss coefficientܭ

L Base length, mm.

 .Dimensionless fin length ∗ܮ

m Mass, kg.

xii

݉̇ Mass flow rate, kg/s.

N Total number of fins.

௦ܰ̇ Non-dimensional Entropy generation rate.

Nsize Swarm size.

௨ܰ௕ Nusselt number on heat sink in flow direction.

P Perimeter, m.

௜ܲௗ Best solution of the objective function that has been discovered by a

particular particle.

௚ܲௗ Best global solution of the objective function that has been discovered

by all the particles of the population.

 .Violated function of the constraints (ݔ)௜ݍ

Q Total heat dissipation , W.

R Overall heat sink resistance, K/W.

Rfin Thermal resistance of a single fin, K/W.

 .ଵ Random number݀݊ܽݎ

 .ଶ Random number݀݊ܽݎ

ܴ݁௕∗ Reynolds number.

s Spacing between the fins, m.

ܵ̇௚௘௡ Entropy generation rate, W/k.

Tb Base temperature, K.

Te Ambient air temperature, K.

Tw Wall temperature, K.

௜ௗ௧ݒ Current velocity for particle i.

 .௜ௗ௧ାଵ New velocity for particle iݒ

Vch Channel velocity, m/s.

௙ܸ Stream velocity, m/s.

௠ܸ௔௫ Maximum velocity, m/s.

W Heat sink width, m.

௜ௗ௧ݔ Current location of the solution for each particle in the search space.

 .௜ௗ௧ାଵ New location of the solution for each particle in the search spaceݔ

 .௜௣ Lower boundsݔ

xiii

 .௨௣ Upper boundsݔ

List of Greek Symbols
 .Assignment function ((ݔ) ௜ݍ)ߠ

 .Control parameter ߤ

 Kinematical viscosity coefficient, m2/s.

 Air density, kg/m.

ρ1 Cognitive parameter.

ρ2 Social parameter.

 .Power of the penalty function ((ݔ)௜ݍ)߰

τ Mutation operator.

߱ Inertia factor.

߱௖ Chaotic inertia weight factor.

߱௠௜௡ Minimum value of inertia factor.

߱௠௔௫ Maximum value of inertia factor.

List of Subscripts
amb Ambient.

app Approach.

ch Channel.

d Dimension number

D Total number of dimensions

f Fluid.

fin Single fin.

i Particle number

xiv

List of Abbreviations
CPSO Chaotic Particle Swarm Optimization.

CPSOM Chaotic Particle Swarm Optimization with Mutation.

CPSOMS Chaotic Particle Swarm Optimization with Mutation (Chaotic

Acceleration added to Second Term of Velocity equation).

CPSOMT Chaotic Particle Swarm Optimization (Chaotic Acceleration added to

Third Term of Velocity equation).

CPSOS Chaotic Particle Swarm Optimization (Chaotic Acceleration added to

Second Term of Velocity equation).

CPSOT Chaotic Particle Swarm Optimization (Chaotic Acceleration added to

Third Term of Velocity equation).

ES Evolution Strategy.

EAs Evolutionary Algorithms.

GA Genetic Algorithms.

LP Linear programming problems.

MAs Memetic Algorithms.

NLP Nonlinear programming problem.

PFM Non-stationary, Multi-stage Penalty Method.

PSO Particle Swarm Optimization.

QP Quadratic programming problems.

SFL Shuffled Frog Leaping algorithm.

xv

Acknowledgments

I would like to thank Dr. C.W. de Silva and Dr. M.S. Gadala, my supervisors, for

the opportunity they provided me to complete my doctoral studies under their

exceptional guidance. Without their unending patience, constant encouragement,

guidance and expertise, this work would not have been possible.

My colleagues in Dr. de Silva’s Industrial Automation Laboratory and Dr.

Gadala’s research group also deserve many thanks for their support.

Most of all, I want to thanks my parents and my wife for endless support and

encouragements throughout my various studies and life endeavors.

xvi

Dedication

To my parents

1

Chapter 1

Optimization Techniques

1.1. Introduction

Optimization may be defined as the art of obtaining the best ways or solutions to satisfy

a certain objective and at the same time satisfying fixed requirements or constraints [1]. The

practice of optimization is as old as the civilization. According to the Greek historian

Herodotus, the Egyptians applied an early version of optimization technique when they tried

to figure out farmland taxes taking into account any change in value of each land resulting

from annual flooding of Nile river [2].

Optimization is the branch of computational science that searches for the best

solution of problems that are encountered in mathematics, physics, chemistry, biology,

engineering, architecture, economics, management, and so on. The rapid advancement in the

digital computing power and the enormous practical need for solving optimization problems

have helped researchers in exploring different areas of science and in coming up with new

methods that have the capability to solve hard and complicated problems.

An optimization problem consists of the following basic components:

 The quantity to be optimized (maximized or minimized) which is termed the

objective function (or, cost function or performance index or fitness function).

 The parameters which may be changed in the search for the optimum, which are

2

called design variables (or, parameters of optimization).

 The restrictions or limits placed on the parameter values (design variables) of

optimization, which are known as constraints.

The optimization scheme finds the values (design variables) that minimize or maximize

the objective function while satisfying the constraints. Thus, the standard form of an

optimization problem can be expressed as follows:

 Minimize ݂(ݔ), ݔ = ,ଶݔ,ଵݔ) … … … … , ௡)் 1-1ݔ

 Subject to:

 ℎ௜(ݔ) = 0, ݅ = 1, … . ,݉ 1-2

 ݃௜(ݔ) ≤ 0, ݅ = 1, … . , 3-1 ݍ

≥ ௟௣ݔ ௜ݔ ≤ ௨௣ 1-4ݔ

where ݂(ݔ) is the objective function and x is the column vector of the n independent

variables. Constraint equations of the form ℎ௜(ݔ) = 0 are termed equality constraints, and

those of the from ݃௜(ݔ) ≤ 0 are termed inequality constraints. The equations ݔ௟௣ ≤ ௜ݔ ≤

 ௨௣ are bounds on optimization variables. In summary, the formulation of an optimizationݔ

problem involves the following:

Selecting one or more design variables or parameters

 Choosing an objective function

 Identifying a set of constraints as applicable

The objective function(s) and the constraint(s) must be functions of one or more design

variables.

3

The optimization problems are mainly classified into these four types:

 Unconstrained problems: these problems have an objective function with no

constraints. Problems with simple bounds can be treated as unconstrained problems.

 Linear programming problems (LP): if the objective function and all the constraints

are linear functions, then the problem is called a linear programming problem.

 Quadratic programming problems (QP): if the objective function is a quadratic

function and all the constraints are linear functions, then the problem is called a

quadratic programming problem.

 Nonlinear programming problem (NLP): a general constrained optimization problem

where one or more functions are nonlinear is called a nonlinear programming

problem.

The majority of engineering applications are classified under these categories of problems.

In practice, there are many optimization algorithms and they may be classified into

classical and stochastic methods [2]. Classical methods converge toward the solution by

making deterministic decisions. They are considered to be less expensive in terms of the

computational time. In the next section, the steepest descent algorithm, the Simplex method,

and the Newton’s method will be described briefly as they are considered among the most

common classical algorithms.

1.2. Classic Optimization Methods

1.2.1 The Steepest Descent Algorithm

The steepest descent algorithm, which may be traced back to the French mathematician

Cauchy in 1847 [2], is a first-order optimization algorithm to find the minimum value of a

4

function. It uses the gradient of a function (or the scalar derivative, if the function is single-

valued) to determine the direction in which the function is increasing or decreasing most

rapidly. If the minimum points exist, the method is guaranteed to locate them after an

(infinite number, theoretically) of iterations. The method is a simple, stable, and easy to

implement but it has some major drawbacks as follows:

 It guarantees the convergence to a local minimum but does not ensure finding the

global minimum.

 It is good for unconstrained optimization problems only.

 It is generally a slow algorithm.

 It tends to have poor performance if it is used by itself, not in conjunction with other

optimizing methods.

1.2.2 Simplex Method

Simplex method is a conventional direct search algorithm for solving linear

programming problems, which was created by George Dantzig in 1947 [3]. In this method

the best solution lies on the vertices of a geometric figure in N-dimensional space made of a

set of N+1 points. The method compares the objective function values at the N+1 verteces

and moves towards the optimum point, iteratively. The simplex method is very efficient in

practice, generally taking 2m to 3m iterations at most (where m is the number of equality

constraints) [2], and converging in expected polynomial time for certain distributions of

random inputs. The movement of the simplex algorithm is achieved by reflection,

contraction, and expansion. It has drawbacks including the following:

 it is costly in terms of computational time

5

 it does not ensure convergence to global optimum and there exists the possibility

of cycling

1.2.3 Newton Raphson Method

In 1669, Isaac Newton found an algorithm to solve for the roots of a polynomial

equation. Later, in 1690, Joseph Raphson modified Newton's method by using the derivative

of a function to find its roots. That modified method is called the Newton-Raphson method

[4]. In mathematics, it is the most widely used one of all root-locating algorithms. It can also

be used to find local maxima and minima of functions, as theses extreme values are the roots

of the derivative function. As the Newton-Raphson method uses the first derivative of the

function to find the root, it is necessary that the function should be differentiable.

1.3. Evolutionary Algorithms (EAs)

In optimization problems where the functions do not satisfy convexity conditions or

when the solution space is discontinuous, the deterministic methods are not applicable.

However, stochastic methods, which make random decisions to converge to a solution, are

known to be suitable for these problems. Most stochastic methods are usually considered to

be computationally expensive but this may be offset by the advancements in computer

technology. For this reason many researchers have heavily investigated the applicability of

stochastic methods in different areas of science, engineering, economics, and so on.

Evolutionary algorithms (EAs) are considered one of stochastic methods that take their

inspiration from natural selection and survival of the fittest in the biological world [5]. EAs

differ from other optimization techniques in that they involve a search from a "population"

of solutions, not from a single point. Each iteration of an EA involves a competitive

6

selection, which wipes out poor solutions. Evolution Strategy (ES), Genetic Algorithms

(GA), and PSO are examples of EAs [6] and they will be described briefly in the

subsequent paragraphs.

1.3.1 Evolution Strategy (ES)

Evolution Strategy (ES) is a stochastic search method based on the ideas of adaptation

and evolution. The concept of ES was introduced by Ingo Rechenberg at Berlin Technical

University in 1973 but was not developed as an algorithm to be used in the optimization

field, but rather used as a method to find optimal parameter settings in laboratory

experiments. Later on, through the work of Schwefel [5], ES was introduced as a method to

solve optimization problems. ES merely concentrates on translating the fundamental

mechanisms of biological evolution for technical optimization problems [7]. In ES, the

individuals, which are the problem potential solutions, consist of the objective variables plus

some other parameters such as the step size to guide the search. Search steps are taken

through stochastic variation, called mutation [8]. The mutation is usually carried out by

adding a realization of a normally distributed random vector. The parameters that

parameterize the mutation distribution are called strategy parameters. The parameterization

of an ES is highly customizable [9].

1.3.2 Genetic Algorithms (GA)

Genetic Algorithms (GA), under the umbrella of evolutionary methods work by

mimicking natural evolution and selection in nature according to Darwin’s theory. GA was

proposed by John Holland and his colleagues in the early part of the 1970s [10]. Simply,

GA encodes a possible solution to a specific problem in the form of a simple chromosome

(encoded string) and applies recombination operators to these structures in such a way as to

7

keep and store critical information of the problem. A collection of such strings is called

a population. Associated with each chromosome is its fitness value. Those chromosomes

which represent a better solution to the target problem are given more opportunity to

reproduce than those that are poorer solutions [11]. If the processes of natural reproduction

combined with the biological principle of survival of the fittest are applied, then in each

generation progresses, good chromosomes with high values of fitness are predicted to be

achieved. GA is known to be a useful substitute to traditional search and optimization

methods, especially for problems with highly complex, non-analytic, or ill-behaved

objective functions. A key element in a GA is that it maintains a population of candidate

solutions that evolves over time [12]. The population allows the chromosomes to continue to

explore new areas of the search space that potentially appear to have optimum solutions.

1.3.3 Particle Swarm Optimization (PSO)

More recently, an evolutionary computation technique called particle swarm

optimization (PSO) has evolved as a population-based stochastic optimization technique. It

was developed by Kennedy and Eberhart [13] and has been inspired by the group behavior

of animals such as schools of fish and flocks of birds. Unlike other heuristic techniques of

optimization, PSO has a flexible and well-balanced mechanism to enhance and adapt to the

global and local exploration abilities. PSO has its roots primarily in two methodologies [14].

Perhaps more obvious are its ties to artificial life (A-life), and the behavior of flocks of

birds, schools of fish, and swarms in particular. It is also related to evolutionary

computation, and has ties to genetic algorithms and evolutionary strategies [15]. It exhibits

some evolutionary computation attributes such as its initialization with a population of

random solutions, searching for optima by updating generations, and updating based on the

previous generations.

8

 In general, PSO is based on a relatively simple concept, and can be implemented in a

few lines of computer code. Furthermore, it requires only simple mathematical operators,

and is computationally inexpensive in terms of both memory requirement and speed. In test

functions of evolutionary algorithms PSO has been proved to perform well and has been

used to solve many of the same kinds of problems as for evolutionary algorithms. PSO was

initially used to handle continuous optimization problems. Subsequently, PSO has been

expanded to handle combinatorial optimization problems, with both discrete and continuous

variables. Early testing has found the implementation to be effective in complex practical

problems.

 PSO does not suffer from some of the difficulties of EA. For example, a particle

swarm system has memory, which the genetic algorithm (GA) does not have. In PSO,

individuals who fly past the optima are pulled to return toward them, and knowledge of

good solutions is retained by all particles [16]. Unlike other evolutionary computing (EC)

techniques, PSO can be realized using a relatively simple program, which is an important

advantage when compared with other optimization techniques. In summary, compared with

other methods, PSO has the following advantages [17]:

 Faster and more efficient: PSO may get results of the same quality in significantly

fewer fitness and constraint evaluations.

 Better and more accurate: In demonstrations and various application results, PSO is

found to give better and more accurate results than other algorithms reported in the

literature by its ability to converge to a good solution and escape local optima.

 Less expensive and easier to implement: The algorithm is intuitive and does not need

specific domain knowledge to solve the problem. There is no need for transformations

9

or other complex manipulations. Implementation in difficult optimization areas

requires relatively simple and short coding.

The PSO method and the EAs seem to be promising alternatives to deterministic

techniques. First, they do not rely on any assumptions such as differentiability or continuity.

Second, they are capable of handling problems with nonlinear constraints, multiple

objectives, and time-varying components. Third, they have shown superior performance in

numerous real-world applications.

1.4. Research Goals and Objectives

The main objectives of the present work are the following:

 Investigate possible adaptations of the PSO method for enhancing the thermal

performance and efficiency of electronic cooling systems by applying PSO in heat

sink design.

 Develop new extensions as performance enhancement strategies for the conventional

PSO method. These modifications should not significantly complicate the algorithm

and should improve its computational speed, its robustness and its ability to escape

local minima.

 Study the enhanced PSO as an optimization tool in the present class of applications,

using minimization of the entropy generation rate on the thermal performance of a

heat sink.

 Apply the modified PSO method to design a heat sink for a practical electronic

device. Compare its performance with that obtained using classical optimization

methods, through computer simulation.

10

 Utilize numerical procedures (e.g., FD) in solving the flow and heat transfer (HT)

equations of the heat sink problem.

1.5 Thesis Structure

A brief background of the optimization theory and the classical and non-classical

techniques of optimization were presented in the first part of the present chapter (Chapter 1).

In Chapter 2, a comprehensive literature review of PSO including its structure, how it works,

suggested developments to improve PSO, and its applications are highlighted. Chapter 3

shows the applicability of PSO in heat sink design optimization. Chapter 4 presents the

modifications (Chaotic Acceleration Factor, Chaotic Inertia Factor, and Best Global

Mutation) to the PSO algorithm, in the present work, to enhance its performance. In

Chapter 5, the performance of the modified PSO algorithms when they are applied to

nonlinear constraint problems is studied. Chapter 6 presents a detailed study of application

of the modified PSO algorithm in heat sink design. In Chapter 7 the main conclusions of the

present work are drawn and avenues for future research are suggested.

11

Chapter 2

Literature Review

2.1 Introduction
The particle swarm optimization (PSO) is a relatively new generation of combinatorial

metaheuristic algorithms and is based on mimicking the group behavior of animals; for

example, flocks of birds or schools. In test functions of evolutionary algorithms, PSO has

proved to perform well and has been used to solve many of the same kinds of problems as

evolutionary algorithms. In this chapter PSO will be explained in detail in terms of its

history, how it works, modifications that have been added to improve its research ability, and

its applications.

2.2 History of PSO
In 1995, two scientists introduced a new optimization technique and they named it

“Particle Swarm Optimization.” The technique was inspired by A-life, biological evaluation

and natural selection of species [6]. Simply, the method uses a population of individual

particles where each particle has a position, a velocity, and memory of the location of its

best fitness found during the search process. Each particle updates its velocity according to

its momentum, its memory, and the shared memory of the other particles in its

neighborhood. By adding the newly found velocity of the particle to its current position, the

particle will move to a new position in the search space. The PSO method appears to rely on

the five basic principles of swarm intelligence, as defined by [18]:

 Proximity: the swarm should handle simple space and time computations

12

 Quality: the swarm should be a able to respond to quality factors in the environment

 Diverse response: the swarm should not commit its activities along excessively

narrow channels

 Stability: the swarm should not change its behavior every time the environment

varies

 Adaptability: the swarm must be able to change its behavior when the computational

cost is not prohibitive.

The PSO in its original form is defined by (see [14]):

Velocity Update Equation:

௜ௗ௧ାଵݒ = ௜ௗ௧ݒ + .ଵߩ .ଵ݀݊ܽݎ (௜ܲௗ − ௜ௗ௧ݔ) + .ଶߩ .ଶ݀݊ܽݎ ൫ ௚ܲௗ − ௜ௗ௧ݔ ൯ 2-1

Position Update Equation:

௜ௗ௧ାଵݔ = ௜ௗ௧ݔ + ௜ௗ௧ାଵ 2-2ݒ

where

 Particle position vector ࢊ࢏࢞: This vector contains the current location of the solution

for each particle in the search space.

 Particle velocity vector ࢊ࢏࢜: This vector represents the degree to which vector ࢊ࢏࢞

(both vectors have consistent units) will change in magnitude and direction in the

next iteration. The velocity is the step size—the amount by which a change in the

 values changes the direction of motion in the search space; it causes the particle ࢊ࢏࢜

to make a turn. The velocity vector is used to control the range and resolution of the

search.

13

 Best solution Pi: This is the best solution of the objective function that has been

discovered by a particular particle.

 Best Global Solution Pg : This is the best global solution of the objective function

that has been discovered by all the particles of the population.

 ρ1 and ρ 2: Learning factors applied to influence the best position and the global

best position, respectively, of a particle.

 rand1 and rand2 : are random numbers.

Kennedy and Eberhart [18] introduced their new method to researchers by highlighting

its potential as an effective optimization method while testing it in depth. They tested three

variations of PSO: GBEST, where all particles have knowledge about the group’s best

fitness, and two of the “LBEST” versions, one with a neighborhood of six particles and one

with a neighborhood of two particles. They tested PSO by using it to train the weights of a

neural network and showed that it is as effective as the usual error back-propagation method,

and compared the performance of PSO to published benchmarks results for genetic

algorithms (GAs). PSO outperformed GAs as it found the global optimum in each run, and

appears to have fairly similar results to that reported for GAs in [19] in terms of the number

of evaluations required to reach specified performance levels.

In 1997 Kennedy [20] studied the effect of both social and cognition components on the

performance of the algorithm by examining four models of PSO. These are “cognition-

only,” “social-only,” the full, and the “selfless” models. The first model was the “cognition-

only” model where he considered only the cognition component

௜ௗ௧ାଵݒ = ௜ௗ௧ݒ + .ଵߩ .ଵ݀݊ܽݎ (௜ܲௗ − ௜ௗ௧ݔ) 2-3

14

 The second model was “social-only" where the only social component was considered.

௜ௗ௧ାଵݒ = .ଶߩ .ଶ݀݊ܽݎ ൫ ௚ܲௗ − ௜ௗ௧ݔ ൯ 2-4

The “selfless” model was identical to the “social-only” model, with the exception that

the neighborhood did not contain the individual's own previous best performance, that is, i ≠

g. Therefore, none were attracted to their own successes, but rather only followed one

another through the hyperspace. Also, he introduced Vmax to control the particle’s velocity as

he realized that some particles tend to have an explosive growth in their velocities. Kennedy

compared the above-mentioned models with varying values of ρ1, ρ 2, and Vmax, by applying

these four models in finding the weights of a neural network. He found that:

 In order to help particles avoid trapping at local minimum, Vmax should be

sufficiently high.

 Both “social-only” and “selfless” models showed better performance when compared

to the full model. On other hand, the “cognition-only” model showed the worst

performance among the four models.

In 1998, Shi and Eberhart [21] introduced the inertia factor w which plays a very crucial

role in enhancing the search capability of the PSO algorithm. The inertia factor w is a

parameter that is used to control the impact of the previous velocities on the current velocity.

Hence, it influences the trade-off between the global and local exploration abilities of

particles. When w is small, the PSO is more like a local search algorithm. If there is an

acceptable solution within the initial search space, the PSO will find the global optimum

quickly; otherwise, it will not find the global optimum. When w is large (>1.2), the PSO

tends to exploit new areas, which are beyond the search space limit. Consequently, the PSO

will take more iterations to find the global optimum and have more chances of failing to find

15

the global optimum. When ߱ is 0.8 < ߱ <1.2 , the PSO will have the best chance to find the

global optimum with a moderate number of iterations. According to Shi [21] it is

recommended to start with a large value 1.4 for ߱ and linearly decrease the value to 0.5 in

order to realize better convergence at reasonable speed. The inertia factor w can be

computed according to the following equation:

 ߱ = ߱௠௔௫ + ఠ೘ೌೣିఠ೘೔೙
௜௧௘௥௔௧௜௢௡೘ೌೣ

∗ ௖௨௥௥௘௡௧ 2-5݊݋݅ݐܽݎ݁ݐ݅

where

 ߱: the inertia factor

 ߱௠௔௫ and ߱௠௜௡: the maximum and minimum values of inertia factor, which is

assigned according to the behavior of the problem

 iterationmax = total number of iteration

 iterationcurrent = current iteration number

 The velocity equation after adding the inertia factor is as follows:

௜ௗ௧ାଵݒ = ߱. ௜ௗ௧ݒ + .ଵߩ .ଵ݀݊ܽݎ (௜ܲௗ − ௜ௗ௧ݔ) + .ଶߩ .ଶ݀݊ܽݎ ൫ ௚ܲௗ − ௜ௗ௧ݔ ൯ 2-6

The heart of the PSO algorithm is the process by which vid is modified in equation (2-6),

forcing the particles to search through the most promising areas of the solution space again

and again adding the particle’s velocity vector vid to its location vector xid to obtain a new

location, as shown in Figure 2-1. Without modifying the values in vid, the particle would

simply take uniform steps in a straight line through the search space and beyond.

At each iteration, the previous values of vid constitute the momentum of a particle. This

momentum is essential, as it is this feature of PSO that allows the particles to escape local

16

optima. The velocities of the particles in each dimension are clamped to a maximum

velocity Vmax, as described before, which is an important parameter in determining the

optimum value of the objective function, with which the regions between the present

position and the best target position thus far are searched. If Vmax is too high, the particles

might fly past good solutions.

Figure 2.1: Movement of a particle in the search space.

ଵߩ ∗ ଵ݀݊ܽݎ ∗ (௜ܲ − (௜௧ݔ

 ௜௧ାଵݔ

௜௧ݔ

௚ܲ
௧

௜ܲ
௧

ଶߩ ∗ ଶ݀݊ܽݎ ∗ (௚ܲ − (௜௧ݔ

௜௧ݒ

 ௜௧ାଵݒ

17

On the other hand, if Vmax is too small, the particles might not explore sufficiently

beyond locally good regions. In fact, they could become trapped in local optima, unable to

move far enough to reach a better position in the problem space [22]. The acceleration

constants ρ1 and ρ2 in equation (2-6) represent the weightings of the stochastic acceleration

terms that direct each particle toward the pbest and gbest positions. They can be set to a

value of 2.0 in a typical optimization problem [19]. Population size is related to the search

space. If the population size is too small, is easy for the algorithm to converge to a local

optimum; if the size is too large, it will occupy a large computer memory and will need long

calculation time [18]. According to past work, 30–50 is a good population size, which will

ensure good search space convergence and a reasonable computational time [23]. Figure 2.2

presents a flow chart that describes the search mechanism of the PSO algorithm.

18

Figure 2.2: Flow chart of the search mechanism of the PSO algorithm.

2.3 Developments of PSO

The PSO algorithm has shown some important advances by providing high speed of

convergence in specific problems. However, it has also been reported that the algorithm has

a tendency to get stuck in a near optimal solution and it is difficult to improve the solution

accuracy by fine tuning. The present work proposes a new variation of the PSO model

where a new method of providing nonlinear variation of the inertia weight along with a

19

particle's old velocity are used to improve the speed of convergence as well as to fine tune

the search in the multidimensional space. Also a new method of determining and setting a

complete set of free parameters for any given problem is presented. This eliminates the

tedious trial and error-based approach to determine these parameters for a specific problem.

The performance of the proposed PSO model, along with the fixed set of free parameters, is

amply demonstrated by applying it to several benchmark problems and comparing with

several competing popular PSO and non-PSO combinatorial metaheuristic algorithms.

Ratnaweera et al. [24] suggested a new acceleration coefficient and called it time-

varying acceleration coefficient (TVAC). It improves convergence to the global solution by

applying the linearly varying inertia weight (Equation 2-5) to adjust the acceleration

constants.

Fan [25] introduced an adaptive scaling term into the PSO algorithm in order to

improve its convergence rate and reduce the number of objective function evaluations. The

modified PSO algorithm was empirically studied with a suite of four well-known benchmark

functions, and was further examined with a practical application case—neural-network-

based modeling of aerodynamic data.

Chatterjee and Siarry [26] introduced a nonlinear variation of inertia weight along

with a particle's old velocity to improve the speed of convergence as well as to fine tune the

search in the multidimensional space.

Higashi and Iba [27] combined PSO with Gaussian mutation. This method combines

the traditional velocity and position update rules with the idea of Gaussian mutation. Stacey

et al. [28] introduced a mutation operator into the PSO algorithm. This operator is a number

randomly generated from a Cauchy distribution.

20

 Secrest and Lamond [29] presented a new visualization approach based on the

probability distribution of the swarm; thus the random nature of PSO is properly visualized.

They suggested a new algorithm based on moving the swarm a Gaussian distance from the

global and the local best.

Liu et al. [30] introduced a mutation mechanism into PSO to increase its global

search ability and to escape from local minima. The variable gbest mutated with Cauchy

distribution.

Xiang at al. [31] introduced a piecewise linear chaotic map (PWLCM) to perform the

chaotic search. An improved PSO algorithm combined with PWLCM (PWLCPSO) was

proposed subsequently, and experimental results were used to verify its superiority.

Selvakumar and Thanushkodi [32] proposed what was called a split-up in the

cognitive behavior. Making each particle remember its worst position helps the particles to

explore the search space very effectively. In order to exploit the promising solution region, a

simple local random search (LRS) procedure was integrated with PSO.

Angeline, a well known researcher in the evolutionary computation area, suggested a

hybrid version of the PSO algorithm [33]. The hybrid PSO incorporates a standard and

explicit tournament selection method from the evolutionary programming algorithm. A

comparison was performed between hybrid swarm and particle swarm, which showed that

the new development provided an advantage for some but not all complex functions. For

example, the hybrid PSO performed much worse than the standard PSO in evaluating the

Griewank function, which is a complex function with many local minima.

21

2.4 Comparison of PSO with Other Evolutionary
Methods

Angeline in 1998 [34] did an early study to compare the particle swarm approach and

evolutionary computation in terms of their performance in solving four nonlinear functions,

which have been well-studied in the evolutionary optimization literature. He concluded that

the performance of the two methods was competitive. Particularly, PSO often locates the

near-optimum significantly faster than by evolutionary optimization but cannot dynamically

adjust its velocity step size to continue optimization.

Kennedy and Spears [35] compared the PSO algorithm with three versions of genetic

algorithm (GA), without mutation; without crossover; and the standard GA which has

crossover, mutation and selection, in a factorial time-series experiment. They found that all

algorithms improved over time, but the PSO found the global optimum on every trial, under

every condition. In short, PSO appears to be robust and shows superiority over all versions

of GA in almost every cases.

Hasen et al. [36] examined the effectiveness of PSO in finding the true global

optimal solution and made a comparison between PSO and GA in terms of their

effectiveness and their computational efficiency by implementing statistical analysis and

formal hypothesis testing. The performance comparison of the GA and PSO was

implemented using a set of benchmark test problems as well as two problems of space

system design optimization, namely, telescope array configuration and spacecraft reliability-

based design. They showed that the difference in the computational effort between PSO and

the GA was problem dependent. It appears that PSO outperforms GA by a large differential

in computational efficiency when used to solve unconstrained nonlinear problems with

22

continuous design variables and with low efficiency differential when applied to constrained

nonlinear problems with continuous or discrete design variables.

Lee et al. [37] implemented PSO and compared it with GA to find technical trading

rules in stock market. It was found that PSO could reach the global optimal value with less

iteration and kept equilibrium when compared to GA. Moreover, PSO showed the

possibility of solving complicated problems without using the crossover, mutation, and other

manipulations as in GA but using only basic equations.

Elbeltagi et al. [38] compared five evolutionary algorithms: GAs, Memetic

Algorithms (MAs), PSO, and Shuffled Frog Leaping algorithm (SFL) in solving two

benchmark continuous optimization test problems. The PSO method was generally found to

perform better than the other algorithms in terms of the success rate and the solution quality,

while being second best in terms of the processing time.

Allahverdi and Al-anzi [39] conducted extensive computational experiments to

compare the three methods: PSO, Tabu search, and Earliest Due Date (EDD) along with a

random solution in solving an assembly flow shop scheduling problem. The computational

analysis indicated that the PSO significantly outperformed the others for difficult problems.

2.5 Applications of PSO
PSO, since its introduction in 1995, has been extensively applied to a wide range of

areas such engineering, science, medicine, and finance. Some examples of major areas of

applications are given below.

23

 DNA reach: Chang et al. [40] successfully applied PSO to protein sequence motif

discovery problem. Their simulation results indicated that PSO could be used to obtain

the global optimum of protein sequence motifs.

 Power and voltage control: Abido [41] applied PSO to solve the optimal power flow

(OPF) problem. The results were promising and showed the effectiveness and robustness

of the proposed approach.

 Biomedical imaging: Wachowiak et al. [42] introduced a version of hybrid PSO to

biomedical image registration. The hybrid PSO technique produced more accurate

registrations than by the evolutionary strategies in many cases, with comparable

convergence. These results demonstrated the effectiveness of the PSO in image

registration, and emphasized the need for hybrid approaches for difficult registration

problems.

 Heat sink design in electronic cooling: Alrasheed et al. [43] applied PSO in the area

of electronic cooling to heat sink design optimization. This work will be explained in

more detail later in the thesis.

Through a comparative evaluation using the results available in the literature, the

following comments may be made:

 PSO uses objective function information to guide the search in the problem space.

Therefore, it can easily accommodate non-differentiable and non-convex objective

functions. Additionally, this property relieves PSO of analytical assumptions and

approximations that are often required for traditional optimization methods.

 PSO uses probabilistic rules for particle movements, not deterministic rules. Hence,

it is a type of stochastic optimization algorithm that can search a complicated and

uncertain area, which makes PSO more flexible and robust than conventional method.

24

Chapter 3

Applicability of PSO in Heat Sink Design

Optimization1

In this chapter, the particle swarm optimization (PSO) is applied to design a heat sink

system. In the presented approach, a plate-fin heat sink design is realized for maximum

dissipation of the heat generated from electronic components, as represented by the entropy

generation rate.

3.1 Problem Statement

Figure 3.1: Schematic diagram of a plate-fin sink.

 1 Alrasheed, M.R., de Silva, C.W., and Gadala, M.S., "Evolutionary optimization in the design of a heat sink," Editor: de Silva C.W.,
Mechatronic Systems: Devices, Design, Control, Operation and Monitoring, pp. 55-78, CRC Press, Boca Raton, FL, , 2007.

 Alrasheed, M. R. , de Silva, C. W., and Gadala, M. S. ,“A new extension of particle swarm optimization and its application in

electronic heat sink design,” in ASME Conference Proceeding (IMECE 2007), Seattle, Washington, pp.1221-1230, November 2007.

L

a s

W

d

25

Figure 3.1 shows the geometrical configuration of a plate-fin sink with horizontal

inlet cooling flow. Configuration data are as follows:

 Both the base length L and the width W are 50 mm.

 The total heat dissipation of 30 W is uniformly applied over the base plate of the heat

sink with a base thickness b of 2 mm.

 The thermal conductivity of the heat sink k is 200 W/m.K.

 The ambient air temperature Te is 278 K.

 The conductivity of air kf is 0.0267 W/m.K.

 The air density  is 1.177 kg/m.

 The kinematical viscosity coefficient  is 1.6 (10-5) m2/s.

The goal is to establish the optimal number of fins N, optimum height of fins a, optimum

thickness of each fin d, and the optimum flow velocity of cooling flow Vf. The objective is

to minimize entropy generation rate:

 ܵ̇௚௘௡ = ொ
మோ

೐்
మ + ி೏௏೑

೐்
 3-1

Where

ܵ̇௚௘௡ : Entropy generation rate, W/k.

ܳ : Heat dissipation rate, W

ܴ : Overall thermal resistance of the total finned surface K/W.

 ௗ : Drag force, Nܨ

௙ܸ : Stream velocity, m/s.

26

௘ܶ : Ambient temperature, K.

N : Total number of fins

a : Height of fin, m.

d : Thickness of the fin, m.

s : The spacing between the fins, m.

W : Heat sink width, m.

and the design variables [x1, x2, x3, x4]T = [N, a, d, Vf].

The design boundaries corresponding to each design variable are

 2 ≤ ଵݔ ≤ 40

 25 mm ≤ ଶݔ ≤ 140 mm

 0.2 mm ≤ ଷݔ ≤ 2.5 mm

 0.5 m s⁄ ≤ ସݔ ≤ 40 m s⁄

The number of fins must be an integer that can be restricted in the following domain:

 2 ≤ ܰ ≤ ݐ݊݅ ቂ1 + ቀௐିௗ
ௗ
ቁቃ 3-2

The spacing s between two fins is given by:

ݏ = ቀௐିௗ
ேିଵ

ቁ − ݀ 3-3

The first example in the paper of Shih and Liu [44, 44] is considered here, for a comparative

evaluation.

27

3.2 PSO Implementation

Initially, several runs were carried out with different values for the PSO key parameters

such as the initial inertia weight and the maximum allowable velocity. In the present

implementation, the initial inertia weight w is set to 0.9. Other parameters are set as: number

of particles n = 35, ߩଵ = ଶߩ = 2.0. The search is stopped if the number of iterations

reaches 300.

3.2.1 Numerical Results

 Table 3.1 presents the results that were obtained by applying the PSO method, and a

compassion of the obtained results with those by Shih and Liu in which they used the

Newton-Raphson Method [44]. The last column shows the total structural volume of the

heat sink, which is indicated as VoL (mm3). The larger value of VoL represents the higher

structural mass required to manufacture the heat sink.

Table 3.1: Comparison of the results obtained in this work and in [44].

 N A (mm) d (mm) Vf (m/s) s (mm) ܵ̇௚௘௡ (
ܹ
ܭ) VoL (mm3)

Current Work 21 106 1.4 1.25 1.2 0.002504 155820

[44] 20 134 1.61 1.05 .9368 0.002967 220740

The optimal solution of the entropy generation rate is 0.002504 W/K. A comparison

has been done between PSO and GA and is shown in Figure 3.2. It shows both solutions of

PSO and GA for different values of N. Both of PSO and GA have reached very close to the

global solution but PSO has outperformed GA.

28

Figure 3.2: Variation of optimal entropy generation rate with number of fins, N (PSO and

GA Solutions).

3.3 Summary

The applicability of the PSO algorithm to the optimal heat sink design has been

investigated and the PSO process was presented for the design of a plate-fin heat sink, with

the objective of achieving maximum dissipation of the heat generated from electronic

components. The entropy generation rate was used in the fitness function, to realize the

highest heat transfer efficiency. The results are quite promising and indicate that PSO may

be successfully applied in heat sink optimization. Also, PSO outperforms both GA and the

classical optimization method as shown in Figure 3.2 and Table 3.1.

29

Chapter 4

New Extensions to PSO and Analysis

4.1 Introduction

In the previous chapters, the method of particle swarm optimization (PSO) was

introduced in detail and it was shown that it is an effective, efficient, fast and simple

method, which can outperform other available techniques of optimization. However, it

entails several problems that other evolutionary methods suffer from. For example, in some

cases, the particles tend to be trapped at local minima and are not able to escape them,

resulting in premature convergence. In this chapter some innovative modifications are

proposed to deal with these problems and to improve the robustness and convergence rate of

PSO. Specifically, the following modifications are introduced and investigated:

 Chaotic Acceleration Factor

 Chaotic Inertia Factor

 Best Global Mutation

The performance of these enhancements will be tested through benchmark equations that are

commonly used in the optimization field.

30

4.2 Proposed Innovations

From numerical experiments it is observed that in the final stage of searching, PSO

suffers from a lack of diversity of the population. Because of premature convergence,

particles will not be able to adequately explore the feasible domain, and they may eventually

get trapped at local optima.

4.2.1 Chaotic Acceleration Factor (Ca)

Although there is no standard definition of chaos, it may be defined as a behavior

between perfect regularity and pure randomness [45]. There are typical features that a

system should possess for it to be described as chaotic system. These features include the

following:

(a) It is nonlinear.

(b) It has deterministic rules that every future state of the system must follow.

(c) It is sensitive to initial conditions.

Historically, the study of chaos began in mathematics and physics in 1963 when

Lorenz [46] introduced the canonical chaotic attractor. It then expanded into engineering,

and more recently into information and social sciences. Subsequently, the use of chaos as a

tool to enhance optimization algorithms has attracted many researchers due to its ease of

implementation and special ability to avoid trapping in local minima [47-54].

 Due to the dynamic properties of the variables of chaos, the use of certain chaotic

sequences, rather than random numbers, may alter the characteristics of optimization

algorithms toward better solutions, by escaping from local optima.

31

In the present thesis a new parameter called the chaotic acceleration factor (Ca) is

introduced into a new position equation of the PSO algorithm, to improve the speed and

efficiency of the search. In particular, Ca is extracted from the logistic map equation, which

is one of the chaotic sequences, as follows:

ା૚࢚ࢇ࡯ = ࣆ ∙ ࢚ࢇ࡯ (૚ − ࢚ࢇ࡯) 4-1

where ߤ is the control parameter and t is the iteration number. While equation (4-1) is

deterministic, it exhibits chaotic dynamics when ߤ = 4 and ܥ௔଴ ≠ {0, 0.25, 0.5, 0.75, 1.0};

that is, it exhibits sensitive dependence on initial conditions, which is a basic characteristic

of chaos. The chaotic phenomenon is incorporated into PSO by using Ca n order to improve

the quality of solutions and to ensure that the particles properly explore the search space.

Moreover, Ca can enrich the searching behavior and improve the computational speed.

4.2.2 Chaotic Inertia Weight Factor (ωc)

 In the standard PSO equation, the inertia weight factor ω was introduced by Shi and

Eberhart [15, 16, 21,] to control the momentum of the particle by weighing the contribution

of the previous velocity; i.e., controlling how much the knowledge (memory) of the previous

flight direction will influence the new velocity. We used a starting value of 0.9 for the inertia

factor and decreased it gradually with time until it reached 0.4. In order to ensure

maintaining diversity of the population during all stages of the optimization process, a

chaotic inertia weight factor (߱௖) is proposed here instead of the regular inertia weight factor

(ω). The chaotic inertia weight factor (߱௖) can be computed as:

ࢉ࣓
࢚ = ࢚ࢇ࡯))૛ ∗ 4-2 ࢚࣓

Where

32

߱௖ ∶ the chaotic inertia weight factor

ω : the regular inertia weight factor

Ca : the chaotic acceleration factor

4.2.3 Global Best Mutation

It has been observed through simulations with numerical benchmarks that PSO

quickly finds a good local solution but it sometimes remains in a local optimum solution for

a considerable number of iterations (generations) without any improvement [43]; i.e.,

particles are trapped at one of the local optimum solutions. To get rid of this tendency, the

global search is improved by the introduction of a mutation process, which has some

conceptual similarity to the mutation in genetic algorithms (GAs). Under this new

modification, when the global optimum solution does not improve with the increasing

number of generation, the mutation operator (τ) is computed as follows:

 ߬ =
∑ ห௙೒ି௙೔หಿ
೔సభ

ே
 4-3

Where

fg = the global solution that is achieved by all particles

fi = the current solution that is achieved by a particle i

Nsize = swarm size

When τ is too small, it indicates that particles may be trapped at a local optimum solution.

So, if τ is less than a designated value σ, then the mutation process will start working by

changing the updated velocity equation to be of the form:

ା૚࢚ࢊ࢏࢜ = ࢚ࢊ࢏࢜ + .ࢍ࢖ ࢋ
࣓૛ࢇ࡯

ࡺ
 4-5

33

The following pseudocode shows how mutation process takes place in the PSO scheme:

begin

initialize the population

for i=1 to number of particles

 evaluate the fitness

 update Pid and Pg

 for d = 1 to number of dimensions

 if ߬ ≤ ߪ

௜ௗ௧ାଵݒ = ௜ௗ௧ݒ + .௚݌ ௘
ഘమ಴ೌ

ே

 else

௜ௗ௧ାଵݒ = ߱௖ଶ ∙ ௜ௗ௧ݒ + ଵߩ ∙ ଵ݀݊ܽݎ ∙ ௜ௗ݌) − ௜ௗ௧ݔ) + ଶߩ ∙ ଶ݀݊ܽݎ ∙ ௚݌) − ௜ௗ௧ݔ)

 end if

 update the position

 increase d

 increase i

 end

 end

34

The effect of incorporating these proposed modifications into the PSO method is

evaluated using the six versions of modified PSO listed below, in terms of both convergence

rate and performance of the modified PSO.

Version 1 (CPSO): ߱௖ replaces the regular inertia factor in the first right-hand term of

velocity- update equation so that the new velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ࢍ࢖) − ࢚ࢊ࢏࢞) 4-6

Ca is introduced to the second right-hand term in the position-update equation:

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-7࢚ࢊ࢏࢜

Version 2 (CPSOS): ߱௖ replaces the regular inertia factor in the first right-hand term and Ca

is introduced to the second right-hand term of velocity- update equation so that the new

velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ . ࢇ࡯ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ൫ࢍ࢖ − ࢚ࢊ࢏࢞ ൯ 4-8

Ca is introduced to the second right-hand term in the position-update equation:

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-9࢚ࢊ࢏࢜

Version 3 (CPSOT): ߱௖ replaces the regular inertia factor in the first right-hand term and Ca

is introduced to the third right-hand term of the velocity-update equation so that the new

velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋. ࢇ࡯ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ൫ࢍ࢖ − ࢚ࢊ࢏࢞ ൯ 4-10

Ca is introduced to the second right-hand term in the position-update equation:

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-11࢚ࢊ࢏࢜

35

Version 4 (CPSOM): ߱௖ replaces the regular inertia factor in the first right-hand term of

velocity-update equation so that the new velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ࢍ࢖) − ࢚ࢊ࢏࢞) 4-12

Note that if ߬ ≤ the update velocity equation given above will be replaced by what is ߪ

called the mutated velocity equation:

ା૚࢚ࢊ࢏࢜ = ࢚ࢊ࢏࢜ + .ࢍ࢖ ࢋ
࣓૛ࢇ࡯

ࡺ
 4-13

Also, Ca is introduced to the second right-hand term in the position-update equation:

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-14࢚ࢊ࢏࢜

Version 5 (CPSOMS): ߱௖ replaces the regular inertia factor in the first right-hand term and

Ca is introduced to the second right-hand term of the velocity-update equation so that the

new velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ࢇ࡯ ∙ ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ൫ࢍ࢖ − ࢚ࢊ࢏࢞ ൯ 4-15

If ߬ ≤ the update velocity equation given above will be replaced by what is called the ߪ

mutated velocity equation:

ା૚࢚ࢊ࢏࢜ = ࢚ࢊ࢏࢜ + .ࢍ࢖ ࢋ
࣓૛ࢇ࡯

ࡺ
 4-16

Aloso Ca is introduced to the second right-hand term in the position-update equation,

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-17࢚ࢊ࢏࢜

36

Version 6 (CPSOMT): ߱௖ replaces the regular inertia factor in the first right-hand term and

Ca is introduced to the third right-hand term of the velocity-update equation so that the new

velocity of the particle is given as:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ࢇ࡯ ∙ ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ൫ࢍ࢖ − ࢚ࢊ࢏࢞ ൯ 4-18

If ߬ ≤ the update velocity equation as given above will be replaced by what is called the ߪ

mutated velocity equation:

ା૚࢚ࢊ࢏࢜ = ࢚ࢊ࢏࢜ + .ࢍ࢖ ࢋ
࣓૛ࢇ࡯

ࡺ
 4-19

Also, Ca is introduced to the second right-hand term in the position-update equation:

ା૚࢚ࢊ࢏࢞ = ࢚ࢊ࢏࢞ + ା૚࢚ࢇ࡯ ∙ ା૚ 4-20࢚ࢊ࢏࢜

 The modified PSO method, as presented in this thesis, is termed mean PSO (or

MPSO). All modifications that are incorporated into PSO are validated next against the

original PSO using benchmark functions that are well known in the field of optimization.

4.3 Parameter Sensitivity Analysis

The PSO algorithm has several parameters that play a crucial role in the performance of

the algorithm in finding a good solution. These parameters are:

 Number of particles in the population, Nsize

 Inertia parameter, ω

 Cognitive parameter, ρ1

 Social parameter, ρ2

37

In order to find the best set of parameters, a sensitivity analysis for determining the

optimal values of the population size Nsize and the two learning factors ρ1 and ρ2 has been

done and will be presented in Section 4.3.2.

4.3.1 Population Size

 Population size is related to the scale of the search space. If the population size is too

small, the algorithm can easily converge to a local optimum; if it is too large, it will require a

significant amount of computer memory and correspondingly increased computational time

[20, 56]. In fact, the selected population size is problem-dependent.

4.3.2. Learning Factors (ρ1) and (ρ2)

 The two learning factors ρ1 and ρ2 in the velocity-update equation represent the

weighting of the stochastic acceleration terms that direct each particle toward the positions

Pi and Pg. Early experience with PSO led to setting each of the acceleration constants ρ1 and

ρ2 at 2.0 for typical applications [14]. However, for the newly modified versions of PSO the

parameter sensitivity analysis will be done to decide if the settings of the classical PSO

parameters are still adequate to achieve a good optimal solution.

4.3.3 Results of Parameter Sensitivity Analysis

In order to perform the parameter sensitivity analysis, the sphere function is used as

the fitness function with 20 dimensions, and each PSO version is run for 5 times. The

resulting average fitness values are listed in the following tables. Tables 4.1 through Table

4.7 present the experimental results of optimal values for both population size Nsize and two

learning factors ρ1 and ρ2.

38

Table 4-1: Sensitivity of learning factors ρ1 and ρ2 with different population number for
PSO.

Nsize
ρ1 = 0.5
 ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
ρ2 =2.5

ρ1 = 2.0
ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10 1.05E-01 4.60E-03 4.65E-04 1.54E-03 4.41E-03 1.00E-02 5.44E-01

20 2.00E-02 3.30E-04 2.79E-06 5.56E-09 2.21E-09 6.13E-05 7.19E-02

30 4.70E-02 1.19E-04 1.96E-06 2.13E-09 8.60E-11 4.54E-05 6.60E-02
40 5.00E-03 1.30E-04 1.53E-08 5.36E-12 9.55E-18 6.06E-07 4.80E-02

Figure 4.1: Sensitivity of learning factors ρ1 and ρ2 with different population number for
PSO.

39

Table 4.2: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSO.

Nsize
ρ1 = 0.5
 ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
 ρ2 =2.5

ρ1 = 2.0
 ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10 8.80E-05 2.8E-04 2.20E-03 6.70E-05 4.40E-03 6.70E-03 8.E-02
20 1.90E-08 2.6E-12 1.60E-12 1.00E-08 1.30E-07 2.50E-04 2.E-02
30 6.90E-16 1.9E-17 4.56E-23 6.70E-14 9.50E-10 1.20E-06 1.E-03
40 2.80E-17 2.7E-21 4.90E-30 9.60E-19 9.90E-12 7.50E-07 2.E-04

Figure 4.2: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSO.

40

Table 4.3: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOS.

Nsize
ρ1 = 0.5
 ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
 ρ2 =2.5

ρ1 = 2.0
 ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10 1. 38E 06 2.80E-05 2.20E-03 8.50E-05 1.08E-02 8.98E-03 1.63E-01

20 3.31E-09 2.60E-11 6.43E-11 8.20E-09 1.90E-07 2.54E-06 1.07E-01

30 8.54E-16 1.90E-15 9.12E-20 3.26E-13 2.23E-09 4.55E-08 1.63E-01

40 6.43E-18 2.70E-20 5.67E-24 5.53E-17 2.01E-11 2.08E-10 8.27E-02

Figure 4.3: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOS.

41

Table 4.4: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOT.

Nsize
ρ1 = 0.5
 ρ2 = 3.5

ρ1 = 1.0
 ρ2 =3.0

ρ1 = 1.5
 ρ2 =2.5

ρ1 = 2.0
 ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10
9.10E-05 2.90E-04 2.28E-03 6.93E-05 4.55E-03 6.93E-03 8.27E-02

20
2.87E-08 3.92E-12 2.41E-17 1.51E-08 1.96E-07 3.77E-04 3.02E-02

30
6.92E-16 1.91E-17 4.92E-28 6.72E-15 9.53E-10 1.20E-06 1.00E-03

40
3.74E-17 3.61E-25 6.54E-36 1.28E-30 1.32E-11 1.00E-06 2.67E-04

Figure 4.4: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOT.

42

Table 4.5: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOM.

Nsize
ρ1 = 0.5
ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
ρ2 =2.5

ρ1 = 2.0
ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10
9.10E-05 2.90E-04 2.28E-03 6.93E-05 4.55E-03 6.93E-03 8.27E-02

20
2.87E-08 3.92E-12 2.41E-12 1.51E-08 1.96E-07 3.77E-04 3.02E-02

30
6.92E-16 1.91E-17 4.92E-21 6.72E-14 9.53E-10 1.20E-06 1.00E-03

40
3.74E-17 3.61E-21 6.54E-25 1.28E-18 1.32E-11 1.00E-06 2.67E-04

43

Figure 4.5: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOM.

Table 4.6: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOMS.

Nsize
ρ1 = 0.5
ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
ρ2 =2.5

ρ1 = 2.0
ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10
1.85E-04 5.90E-04 4.64E-03 1.41E-04 9.26E-03 1.41E-02 1.68E-01

20
7.20E-08 9.83E-12 6.05E-12 3.79E-08 4.92E-07 9.46E-04 7.58E-02

30
7.16E-16 1.98E-17 5.09E-21 6.95E-14 9.86E-10 1.24E-06 1.03E-03

40
4.99E-17 4.82E-21 8.73E-24 1.71E-18 1.76E-11 1.34E-06 3.57E-04

44

Figure 4.6: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOMS.

Table 4.7: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOMT.

Nsize
ρ1 = 0.5
ρ2 = 3.5

ρ1 = 1.0
ρ2 =3.0

ρ1 = 1.5
ρ2 =2.5

ρ1 = 2.0
ρ2 = 2.0

ρ1 = 2.5
ρ2 = 1.5

ρ1 = 3.0
ρ2 = 1.0

ρ1 = 3.5
ρ2 = 0.5

10
8.31E-05 2.65E-04 2.08E-03 6.33E-05 4.16E-03 6.33E-03 7.55E-02

20
2.42E-08 3.30E-12 2.03E-12 1.27E-08 1.65E-07 3.18E-04 2.54E-02

30
6.52E-16 1.80E-17 4.63E-23 6.33E-14 8.98E-10 1.13E-06 9.42E-04

40
2.70E-18 2.61E-22 4.73E-29 9.26E-20 9.55E-13 7.23E-08 1.93E-05

45

Figure 4.7: Sensitivity of learning factors ρ1 and ρ2 with different population number for
CPSOMT.

 It is noticed from the results that, generally, if we increase the number of particles

(population size), all PSO versions provide a better fitness function value, and this supports

what is published in the literature. On the other hand, we cannot come to the same

conclusion on the two learning factors ρ1 and ρ2. According to literature [56], it is a common

practice to set the values of both learning factors ρ1 and ρ2 to be 2.0. However, there are

better values for the two learning factors ρ1 and ρ2 that can be chosen. According to the

numerical experiments performed in the present work, the optimal values of ρ1 and ρ2 in

PSO are 2.5 and 1.5, respectively, as noted in Table 4.1 and Figure 4.1. However, the

optimal values of ρ1 and ρ2 in CPSO, CPSOS, CPSOT, CPSOM, CPSOMS, and CPSOMT

46

are 1.5 and 2.5, respectively, when the swarm size is greater than or equal to 20, as clear

from Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7, and Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7.

Otherwise, the optimal values of ρ1 and ρ2 in CPSO, CPSOS, CPSOT, CPSOM, CPSOMS,

and CPSOMT are chosen to be 2.

4.4 Benchmarks

In evolutionary optimization methods several well-known benchmarks have been used

to evaluate their performance, primarily with regard to the optimum solution after a

predefined number of iterations and the rate of convergence to the optimum solution. Four

well-known benchmark functions are given in the following sections. These functions are

used in the present work to assess the proposed modifications to the PSO.

4.4.1 Sphere Function

This is known as De-Jong’s function. The definition of this function is:

(࢞)૚ࢌ = ∑ ࡰ૛ࢊ࢞
ୀ૚ࢊ 4-21

Its global minimum is ଵ݂(ݔ) = ௗݔ ;0.0 = 0, ݀ = . ܦ,1

4.4.2 Griewank’s Function

Griewank’s function is a highly multimodal problem and many optimization

methods normally get trapped in its local minima. The definition of this function is:

(࢞)૛ࢌ = ૚
૝૙૙૙

∑ ࡰ૛ࢊ࢞
ୀ૚ࢊ + ∏ ࢊ࢞

ࢊ√
ࡰ
ࢊ 4-22

Its global optimum is ଶ݂(ݔ) = .ௗ=0, d = 1, Dݔ ,0

47

4.4.3 Rosenbrock Function

Rosenbrock’s valley is also known as the Banana function. The global optimum is

inside a long, narrow and parabolic shaped flat valley with many local minima. Arriving at

the neighborhood of the valley is trivial, but converging to the global optimum is difficult.

The definition of this function is:

(࢞)૜ࢌ = ∑ ૚૙૙ ିࡰ૚
ୀ૚ࢊ ା૚ࢊ࢞) − ૛)૛ࢊ࢞ + (૚ − ૛ 4-23(ࢊ࢞

Its global optimum is ଷ݂(ݔ) = .ௗ=0, d = 1, Dݔ ,0

4.4.4 Rastrigin Function

This is a nonlinear multimodal function. This function is a fairly difficult problem

due to its large search space and its large number of local minima. The definition of this

function is:

(࢞)૝ࢌ = ∑ ା૚ࢊ࢞) −
૞૚
૝࣊

૛
૛ࢊ࢞ + ૞

࣊
ࢊ࢞ − ૟)૛ିࡰ૚

ୀ૚ࢊ + ૚૙ ∗ ቀ૚ − ૚
ૡ࣊
ቁ ∗ (ࢊ࢞)࢙࢕ࢉ + ૚૙ 4-24

Its global optimum is ସ݂(ݔ) = .ௗ=0, d = 1, Dݔ ,0

4.5 Results and Evaluation
The original PSO and the newly modified CPSO, CPOS, CPSOT, and CPSOM,

CPSOMS and CPSOMT2 methods are applied to the four benchmark functions presented

above (Sphere, Rastrigin, Griewank, and Rosenbrock). All benchmarks are tested with 10,

20, and 30 dimensions and the search domain for all benchmark functions is {-5,5}. For

each function, 20 trials3 are carried out. The resulting average solution, best solution, worst

2 Computer codes of PSO and modified PSO algorithms are included on Appendix F.
3 Results of all trials for Rosenbrok, Rastrigin, and Griewank functions are listed on Appendix A, B, and C
respectively .

48

solution, and the standard deviation (S.D.) are presented in Tables 4.8 through 4.19 and

Figure 4.8 through Figure 4.19. All benchmark functions have the global optimum values of

0.0. All benchmark functions are multidimensional. In the simulation exercises, the modified

and original PSO algorithms are implemented in MATLAB 7.1 and run on a Pentium 4

computer with a 3.20 GHz processor and 1GB of RAM.

It is clear from the results given in Tables 4.8 through 4.19, that in general, the

modified PSO algorithms as proposed in the present thesis have been able to reach the true

solution for each test function more successfully than the original PSO. In particular, CPSO,

CPSOT and CPSOS are found to be superior to the other methods considered here in most

test cases. With regard to the convergence rate, most methods have reached the global

solution within the allowed number of iterations, which was 2000 taking into consideration

that in each iteration all algorithms do a number of fitness function evaluations. When a

population-based optimization method is applied to solve a real world problem, a trade-off

has to be struck between the convergence rate and the precision of the solution. The

modified PSO algorithms as proposed in the present work have demonstrated both good

convergence rate and solution precision, which make them appropriate for solving complex

optimization problems.

Figure 4.8 and Table 4.8 show simulation results of applying all PSO algorithms to

minimize a Sphere function with 10 design variables (D = 10). It is clear that all PSO

algorithms are able to reach a good solution within allowable iteration number. However, all

modified PSO algorithms show superiority over the traditional PSO in terms of the quality

of solution and convergence rate. CPSOT outperformed all other algorithms and achieved

the best solution which was 1.8E-108. Moreover, the traditional PSO needed very long time

to escape from local minima whereas all other modified PSO algorithms were able to escape

49

a local minimum in shorter time. In terms of number of iterations needed to reach the

optimum, PSO needed around 1000 iteration whereas all modified PSO algorithms needed

180 to 450 iterations to achieve their goals.

Table 4.8: Sphere function optimization with D=10.

D=10 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 1.3E-43 5.04E-96 8.6E-93 1.8E-108 2.67E-75 6.22E-73 8.38E-80
Worst 3.3E-39 5.04E-96 6.0E-81 4.86E-90 3.49E-71 7.03E-64 2.67E-78
Average 1.3E-39 1.40E-82 2.4E-81 1.94E-90 1.40E-71 2.81E-64 1.17E-78
STDEV 1.6E-39 8.06E-83 3.0E-81 2.4E-90 1.76E-71 3.54E-64 1.3E-78

Figure 4.8: Sphere function optimization with D=10.

50

Figure 4.9 and Table 4.9 show simulation results of applying all PSO algorithms to

minimize a Sphere function with 20 design variables (D = 20). It is clear that all PSO

algorithms are able to reach a good solution within allowable iteration number. However, all

modified PSO algorithms show superiority over the traditional PSO in terms of the quality

of solution and convergence rate. CPSOT outperformed all other algorithms and achieved

the best solution which was 2.1E-36. Moreover, the traditional PSO needed very long time

to escape from local minima whereas all other modified PSO algorithms were able to escape

a local minimum in shorter time. In terms of number of iterations needed to reach the

optimum, PSO needed around 1200 iteration whereas all modified PSO algorithms needed

450 to 700 iterations to achieve their goals.

Figure 4.9: Sphere function optimization with D=20.

51

Table 4.9: Sphere function optimization with D=20.

D=20 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 9.70E-18 1.00E-31 7.31E-26 2.1E-36 4.09E-25 7.56E-20 3.70E-30
Worst 4.91E-17 5.43E-29 2.60E-24 8.4E-35 1.98E-24 1.72E-19 1.52E-27
Average 6.83E-18 3.64E-30 4.87E-25 2.1E-36 5.43E-25 6.48E-25 8.93E-28
STDEV 2.37E-17 3.03E-29 1.3E-24 4.7E-35 8.71E-25 8.62E-20 7.62E-28

Figure 4.10 and Table 4.10 show simulation results of applying all PSO algorithms

to minimize a Sphere function with 30 design variables (D = 30). It is clear that all PSO

algorithms are able to reach a good solution within the allowable iteration number.

However, all modified PSO algorithms show superiority over the traditional PSO in terms of

the quality of the solution and the convergence rate. In particular, CPSO, CPSOT, and

CPSOM have outperformed all other algorithms and have achieved the best solution which

was 0. In terms of the number of iterations needed to reach the optimum, PSO needed

around 1500 iteration whereas all the modified PSO algorithms needed 700 to 850 iterations

to achieve their goals.

Table 4.10: Sphere function optimization with D=30.

D = 30 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 6.598E-11 0 2.1E-14 0 0 2.79E-09 2.307E-12
Worst 5.246E-09 1.03E-10 4.06E-09 8E-15 1.088E-07 3.62E-06 1.35E-09
Average 2.41E-09 4.52E-11 1.78E-09 3.75E-15 4.754E-08 1.58E-06 6.01E-10
STDEV 1.77E-09 4.773E-11 1.868E-09 3.192E-15 4.99E-08 1.311E-06 4.82E-10

52

Figure 4.10: Sphere function optimization with D=30.

Figure 4.11 and Table 4.11 show simulation results of applying all PSO algorithms to

minimize a Griewank function with 10 design variables (D = 10). It is clear that all PSO

algorithms are able to reach a good solution within the allowable iteration number.

However, all modified PSO algorithms show superiority over the traditional PSO in terms of

the quality of solution and convergence rate. Specifically, CPSO, CPSOS, CPSOT, CPSOM

and CPSOMT have outperformed all other algorithms and achieved the average solution.

Moreover, the traditional PSO needed a very long time to escape from local minima whereas

all other modified PSO algorithms were able to escape a local minimum in a shorter time. In

terms of the number of iterations needed to reach the optimum, PSO needed around 1000

53

iteration whereas all modified PSO algorithms needed 250 to 400 iterations to achieve their

goals.

 Figure 4.11: Griewank function optimization with D=10.

Table 4.11: Griewank function optimization with D=10.

D=10 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 0 0 0 0 0 0 0
Worst 0.085313 0.007396 0.007396 0.007396 0.007396 0.043659 0.00739604
Average 0.027272 0.002853 0.002219 0.0028 0.003381 0.011411 0.002852758
STDEV 0.028536 0.003819 0.003118 0.003573 0.003819 0.013485 0.003819299

Figure 4.12 and Table 4.12 show simulation results of applying all PSO algorithms

to minimize a Griewank function with 20 design variables (D = 20). It is clear that all PSO

algorithms have been able to reach a good solution within the allowable iteration number.

All PSO algorithms were able to achieve the known global optimum. However, all modified

PSO algorithms show superiority over the traditional PSO in terms of the quality of solution

54

and the convergence rate. In particular, CPSO and CPSOM outperformed all other

algorithms and achieved the average solution. Moreover, the traditional PSO needed a very

long time to escape from local minima whereas all other modified PSO algorithms were able

to escape a local minimum in a shorter time. In terms of the number of iterations needed to

reach the optimum, PSO needed around 1200 iteration whereas all modified PSO algorithms

needed 550 to 620 iterations to achieve their goals.

Table 4.12: Griewank function optimization with D=20.

D=20 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 0 0 0 0 0 0 0
Worst 0.009396 0.007396 0.007396 0.007396 0.007397 0.007405 0.007398195
Average 0.003415 0.001233 0.002193 0.00281 0.001233 0.002855 0.001849378
STDEV 0.004206 0.002465 0.003291 0.003609 0.002466 0.003638 0.003261846

Figure 4.12: Griewank function optimization with D=20.

55

 Figure 4.13 and Table 4.13 show simulation results of applying all PSO algorithms

to minimize a Griewank function with 30 design variables (D = 30). It can be seen that all

PSO algorithms have been able to reach a good solution within allowable iteration number.

All modified PSO algorithms were able to achieve the known global optimum except

CPSOMT. However, all modified PSO algorithms show superiority over the traditional

PSO in terms of the quality of solution and the convergence rate. It is seen that CPSO,

CPSO, CPOST, CPSOM and CPSOMS outperformed all other algorithms in terms of the

average solution and the best solution. Moreover, the traditional PSO needed a very long

time to escape from local minima whereas all other modified PSO algorithms were able to

escape a local minimum in relatively a shorter time. In terms of the number of iterations

needed to reach the optimum, PSO needed around 1300 iteration whereas all modified PSO

algorithms needed 750 to 850 iterations to achieve their goals.

Figure 4.13: Griewank function optimization with D=30.

56

Table 4.13: Griewank function optimization with D=30.

D=30 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 1.06E-11 0 0 0 0 0 3E-15
Worst 0.007396 0.001396 0.002567 0.00604 0.008222 0.008026 0.007443829
Average 0.002602 0.000336 0.000903 0.001454 0.001979 0.004542 0.002686594
STDEV 0.003118 0.000589 0.001082 0.002547 0.0026 0.003957 0.003593766

Figure 4.14 and Table 4.14 show the simulation results of applying all PSO

algorithms to minimize a Rastrigrin function with 10 design variables (D = 10). Rastrigrin

function is one of the most difficult functions to be optimized as it has a large number of

local minima. It is seen that all PSO algorithms have been able to reach a good solution

within the allowable iteration number. In particular, CPSO, CPSOMS and CPSOMT

algorithms were able to achieve the known global optimum. However, all modified PSO

algorithms show superiority over the traditional PSO in terms of the quality of solution and

the convergence rate. In particular, CPSO, CPSOMS and CPSOMT outperformed all other

algorithms in terms of the average solution and the best solution. Moreover, the traditional

PSO needed a very long time to escape from local minima whereas all other modified PSO

algorithms were able to escape a local minimum in a relatively shorter time. In terms of the

number of iterations needed to reach the optimum, PSO needed around 1600 iteration

whereas all modified PSO algorithms needed 1100 to 1200 iterations to achieve their goals.

57

Figure 4.14: Rastrigrin function optimization with D=10.

Table 4.14: Rastrigrin function optimization with D=10.

D=10 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 4.974795285 2E-15 1.989918 1.989918 0.995383 0 0
Worst 7.959672457 5.969754 7.959667 3.979836 4.974799 3.013232 5.969754
Average 6.910442906 3.464267 3.979835 2.695435 3.227677 1.835103 2.813475
STDEV 0.96122177 1.694354 2.149356 0.914304 1.303357 1.131792 1.843339

Figure 4.15 and Table 4.15 show simulation results of applying all PSO algorithms

to minimize a Rastrigrin function with 20 design variables (D = 20). It is clear that all PSO

algorithms have been able to reach an acceptable solution within the allowable iteration

number. In particular, CPSO, CPSOMS and CPSOMT algorithms were able to achieve the

known global optimum. However, all modified PSO algorithms show superiority over the

58

traditional PSO in terms of the quality of solution and the convergence rate. In particular,

CPSO, and CPSOS outperformed all other algorithms in terms of the average solution and

the best solution. Moreover, the traditional PSO needed a very long time to escape from

local minima whereas all other modified PSO algorithms were able to escape a local

minimum in a relatively shorter time.

Table 4.15: Rastrigrin function optimization with D=20.

D=20 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 15.91934491 7.959672 10.94454 10.94455 17.92058 11.94915 10.97153
Worst 28.50376999 17.90926 21.88908 16.91429 26.32373 26.87325 23.98774
Average 21.09443762 13.16813 15.39171 12.98059 20.905 19.33908 16.4983
STDEV 4.470941433 3.416182 3.555032 2.300148 3.498989 5.794101 4.13588

Figure 4.15: Rastrigrin function optimization with D=20.

59

Figure 4.16 and Table 4.16 show simulation results of applying all PSO algorithms

to minimize a Rastrigrin function with 30 design variables (D = 30). It is seen that CPSO,

CPSOMS and CPSOMT algorithms have been able to achieve the known global optimum.

However, all modified PSO algorithms show superiority over the traditional PSO in terms of

the quality of solution and the convergence rate. In particular, CPSO outperformed all other

algorithms in terms of the average solution and the best solution. Moreover, the traditional

PSO needed a very long time to escape from local minima whereas all other modified PSO

algorithms were able to escape a local minimum in a relatively shorter time. In terms of the

number of iterations needed to reach the optimum, PSO needed around 1600 iteration

whereas all modified PSO algorithms needed 1100 to 1200 iterations to achieve their goals.

Figure 4.16: Rastrigrin function optimization with D=30.

60

Table 4.16: Rastrigrin function optimization with D=30.

D=30 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 26.86389454 8.954632 17.90925 15.91934 18.17345 19.43948 13.17637
Worst 43.8588536 33.82858 36.81344 40.79325 40.78773 40.40168 36.20901
Average 33.65625578 22.70315 26.74327 24.27848 33.43253 33.38235 28.6357
STDEV 6.879109055 8.007193 6.137811 7.831487 6.222735 6.570589 6.494845

Figure 4.17 and Table 4.17 show simulation results of applying all PSO algorithms

to minimize a Rosenbrock function with 10 design variables (D = 10). Rosenbrock function

is one of the most difficult functions to be optimized as it has a large number of local

minima. It is clear that all PSO algorithms have been able to reach a good solution within

the allowable iteration number. In particular, CPSO and CPSOT were able to achieve the

known global optimum. However, all modified PSO algorithms show superiority over the

traditional PSO in terms of the quality of solution and the convergence rate. In particular,

CPSOT outperformed all other algorithms in terms of the average solution and the best

solution. Moreover, the traditional PSO needed a very long time to escape from local

minima whereas all other modified PSO algorithms were able to escape a local minimum in

a relatively shorter time. In terms of the number of iterations needed to reach the optimum,

PSO needed around 2000 iteration whereas all modified PSO algorithms needed 500 to 1000

iterations to achieve their goals.

61

 Figure 4.17: Rosenbrock function optimization with D=10.

Table 4.17: Rosenbrock function optimization with D=10.

D=10 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 0.090054 0.001282 0.001639 6.6E-06 0.090054 0.090054 0.020679
Worst 3.940706 1.840562 4.038685 2.451469 2.437366 3.327898 4.157364
Average 1.909339 0.955371 0.873332 0.50586 1.54684 1.584687 1.650556
STDEV 1.628303 0.742766 1.23413 0.868776 0.754985 1.227509 1.252528

Figure 4.18 and Table 4.18 show simulation results of applying all PSO algorithms

to minimize a Rosenbrock function with 20 design variables (D = 20). It is clear that all

PSO algorithms have been able to reach a good solution within the allowable iteration

number. CPSO, CPSOS and CPSOT algorithms were able to achieve the known global

optimum. However, all modified PSO algorithms show superiority over the traditional PSO

62

in terms of the quality of solution and the convergence rate. In particular, CPSO, CPSOS

and CPSOT outperformed all other algorithms in terms of the average solution and the best

solution. Moreover, the traditional PSO needed a very long time to escape from local

minima whereas all other modified PSO algorithms were able to escape a local minimum in

a relatively shorter time. In terms of the number of iterations needed to reach the optimum,

PSO needed around 2000 iterations whereas all modified PSO algorithms needed 650 to 800

iterations to achieve their goals.

Figure 4.18: Rosenbrock function optimization with D=20

63

Table 4.18: Rosenbrock function optimization with D=20.

D=20 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 12.65441 0.002623 0.00032 0.000709 9.608504 10.46939 11.60427
Worst 14.9686 12.13264 12.39382 12.22404 15.31318 15.60611 15.08629
Average 13.69032 3.725323 2.585996 2.600068 11.61442 12.06622 12.8114
STDEV 0.815488 4.849451 5.022837 4.948742 1.584104 1.503618 1.120934

Figure 4.19 and Table 4.19 show simulation results of applying all PSO algorithms

to minimize a Rosenbrock function with 30 design variables (D = 30). It is seen that all PSO

algorithms have been able to reach a good solution within the allowable iteration number.

However, all modified PSO algorithms show superiority over the traditional PSO in terms of

the quality of solution and the convergence rate. In particular, CPSO, CPSOS and CPSOT

outperformed all other algorithms in terms of the average solution and the best solution.

Moreover, the traditional PSO needed a very long time to escape from local minima whereas

all other modified PSO algorithms were able to escape a local minimum in a relatively

shorter time. In terms of the number of iterations needed to reach the optimum, PSO needed

around 2000 iteration whereas all modified PSO algorithms needed 850 to 950 iterations to

achieve their goals.

64

Figure 4.19: Rosenbrock function optimization with D=30.

Table 4.19: Rosenbrock function optimization with D=30.

D=30 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 21.95872 0.131364 0.882529 0.24779 20.15327 20.32102 0.24779
Worst 25.52825 23.27029 24.16119 23.41681 24.96864 24.09354 25.01151
Average 23.49714 7.753474 8.680051 8.199372 22.68379 22.67154 9.550961
STDEV 1.26055 6.710197 6.399701 6.247195 1.652533 1.241008 7.182383

As it is easy to be figured out, the classical PSO is out performed by all modified PSO

algorithms suggested in this thesis. Because of velocity playing a crucial role in PSO’s

performance and the change in velocity in the classical PSO decreases especially when

particles reach a local optimum and makes particles not able to explore new area so that the

classical PSO reaches a stagnation period. Whereas in modified PSO Algorithms, this

problem has been avoided by incorporating chaos phenomena in PSO by introducing a

65

chaotic acceleration factor and modified inertia factor and velocity equation. By having such

modifications, population diversity is ensured and maintained through search process and

particles may travel over the whole search space.

In most cases, modified PSO algorithms without mutation factor generally performed better

than other modified PSO with mutation. The mutation factor should be reconsidered and

also velocity during mutation process.

4.6 Summary
The PSO algorithm is known to have superior features compared with the traditional

optimization methods. The PSO algorithms use objective-function information to guide the

search in the problem space. Therefore, they can easily deal with non-differentiable and non-

convex objective functions. This property relieves PSO algorithms of numerous analytical

assumptions and approximations, which are often, required for traditional optimization

methods. The PSO algorithms use probabilistic rules for particle movements, not

deterministic rules. Hence, they are a type of stochastic optimization algorithm that can

search a complicated and uncertain area. This feature makes the PSO algorithms more

flexible and robust than the conventional methods. However, improving the convergence of

the PSO algorithm is an important objective when solving complex real-world problems. In

this chapter, novel modifications were incorporated into the original PSO method, in

different formats, to improve its convergence performance. The performance of the

proposed PSO methods were studied and compared with the original PSO method by using a

suite of four well-known test functions. All modified PSO methods proposed in this chapter

showed superior performance over the original PSO in terms of the quality of solution and

the convergence rate.

66

Chapter 5

Application of Modified PSO Algorithms to

Solve Constrained Nonlinear Engineering

Problems4

5.1 Introduction
Constraint handling is a challenging problem in numerous applications such as

engineering design, finance, mathematics, economics, and structural engineering. A general

constrained optimization problem may be defined as:

Minimize ݂(࢞), ࢞ = ,ଶݔ,ଵݔ) … … … … , ்(௡ݔ

 Subject to

 ݃௜(ݔ) ≤ 0, ݅ = 1, … . ,݉

≥ ௟௣ݔ ௜ݔ ≤ ௨௣ݔ

where)(xf is the objective function, and x is the column vector of n independent variables.

݃௜(ݔ) ≤ 0 are inequality constraints and ݔ௟௣ ≤ ௜ݔ ≤ ௨௣ are bounds on the optimizationݔ

 4 Alrasheed, M.R. ,de Silva, C.W. and Gadala, M.S., " Application of PSO with Novel Chaotic Acceleration,
Chaotic Inertia factors and Best Global Mutation Algorithms to solve Constrained Nonlinear Engineering
Problems”, (Submitted)

67

variables. Nonlinear optimization problem is complex and unpredictable. Therefore

applying deterministic approaches to it may be not be feasible if the objective function has

discontinuity or is non-differentiable. Thus, applying evolutionary algorithms (EAs) and

PSO to solve nonlinear constraint problems shows better promise over the classical

optimization algorithms. Parsopoulos and Vrahatis [57] compared the ability of PSO with

EAs such as genetic algorithms (GAs) to solve nonlinear constrained optimization problems.

They found that PSO in most cases outperformed the other EAs in terms of convergence to

better solutions. There are different techniques to handle constraints in evolutionary

computing optimization algorithms and PSO. Michalewicz [58] classified these techniques

into several areas as follows:

 Techniques based on penalty functions

 Techniques based on the rejection of infeasible solutions

 Techniques based on repair algorithms

 Techniques based on specialized operators

 Techniques based on behavioral memory

5.2 The Penalty Function Methods
The penalty function methods-based techniques are common approaches to

constraint handling optimization problems. In these techniques, a constrained problem is

transformed into a non-constrained problem by penalizing the constraints and forming a

single objective function as:

(࢞)݂ = ൜ ݂
∋ ࢞ (࢞) ݊݋݅݃݁ݎ ݈ܾ݁݅ݏ݂ܽ݁

(࢞)݂ + ∌ ࢞ (࢞) ݕݐ݈ܽ݊݁݌ ݊݋݅݃݁ݎ ݈ܾ݁݅ݏ݂ܽ݁ ൠ 5-1

68

where (ݔ) ݕݐ݈ܽ݊݁݌ is zero if no constraint is violated and is positive otherwise. The

feasible region is where ݔ satisfies all constraints and the unfeasible region is where at least

one of constraints has been violated.

(࢞)݂ = (࢞)݂ + 5-2 (࢞) ݕݐ݈ܽ݊݁݌

The penalty functions are classified into two main types according the penalty values. If the

fixed penalty values have to be used, then the penalty function is called a stationary penalty

function. In contrast, if the penalty values are adjusted dynamically, then the penalty

function is called a non-stationary penalty function [57].

If the penalty values are high, the optimization algorithms usually get trapped in

local minima. However, if the penalty values are low, this may lead to slow and difficult

convergence in optimization algorithms. Non-stationary penalty functions generally show

superiority over the stationary penalty functions [57]. Consequently, the penalty function

methods require a fine tuning of both the penalty functions and the penalty values to avoid

premature convergence. In this chapter a non-stationary, multi-stage penalty method (PFM)

for constraint handling with PSO and modified PSO algorithms are implemented to solve

two engineering problems.

Non-stationary, Multi-stage Penalty Method (PFM):

The non-stationary, multi-stage penalty method (PFM) for constraint handling was first

introduced by Parsopoulos and Vrahatis in [57, 59]. The (ݔ) ݕݐ݈ܽ݊݁݌ is the product of a

penalty value ℎ(ݐ) and a penalty factor (ݔ)ܩ. So, the (ݔ) ݕݐ݈ܽ݊݁݌ can be written as:

(ݔ) ݕݐ݈ܽ݊݁݌ = ℎ(ݐ) ∗ 3-5 (ݔ)ܩ

where ℎ(ݐ) is a dynamically modified penalty value, t is the current iteration, and (ݔ)ܩ is a

penalty factor. So, an objective function may be defined as:

(ݔ)݂ = (ݔ)݂ + ℎ(ݐ) ∗ 4-5 (ݔ)ܩ

69

 :a penalty factor, is defined as follows , (ݔ)ܩ

(ݔ)ܩ = ∑ ((ݔ) ௜ݍ)ߠ ∗ ట(௤೔(௫))௠(ݔ)௜ݍ
௜ୀଵ 5-5

where

 ݍ௜(ݔ) = ݔܽ݉ {0 ,݃ ௜(ݔ)} , ݅ = 1, …݉ . And ݃ ௜(ݔ) are the constraints.

So, ݍ௜(ݔ) is a violated function of the constraints

 ߠ(ݍ௜ (ݔ)) is an assignment function

 ߰(ݍ௜(ݔ)) is the power of the penalty function

For the problems that are optimized in this chapter, a violation tolerance is used for

constraints. Therefore, a constraint ݃ ௜(ݔ) is considered to be violated if ݃ ௜(ݔ) > 10ିହ.

The following values (reported in Yang et al.[60]) are used for the penalty function:

 If ݍ௜(ݔ) < 1, then ߠ(ݍ௜ (ݔ)) = 10, else if ߰൫ݍ௜(ݔ)൯ = 2;

 If ݍ௜(ݔ) < 0.001, then ߰൫ݍ௜(ݔ)൯ = 1,

else if ݍ௜(ݔ) < 0.1, then ݍ)ߠ௜ ((ݔ) = 20,

else if ݍ௜(ݔ) ≤ 1, then ݍ)ߠ௜ ((ݔ) = 100,

otherwise ݍ)ߠ௜ ((ݔ) = 100;

 The penalty value ℎ(ݐ) is set to ℎ(ݐ) = ݐ ∗ ݐ√

5.3 Test Problems
A non-stationary, multi-stage penalty function method (PFM) for constraint handling

with the original PSO and the proposed modified CPSO, CPOS, CPSOT, and CPSOM,

CPSOMS and CPSOMT methods are applied to two engineering problems with constraints:

Pressure vessel design optimization and Weld beam optimization. Both problems are tested

70

in 30 dimensions. For each problem, 50 trials5 are carried out. The resulting average

solution, best solution, worst solution, and the standard deviation (S.D.) are presented in

Tables 5.1 and Table 5.3. In the simulation, the modified and the original PSO algorithms

are implemented in MATLAB 7.1 and run on a Pentium 4 computer with a 3.20 GHz

processor and 1GB of RAM.

5.3.1 Pressure Vessel Optimization

Pressure vessel (see Figure 5-1) design is an important structural engineering

optimization problem. The objective is typically to find the lowest cost including the cost of

material, forming and welding. The problem involves discontinuous and non-differentiable

problems, so we have to consider stochastic optimization algorithms. Here we specifically

apply the PSO and Modified PSO algorithms. The objective of the problem of the pressure

vessel design is to minimize the total cost, including the cost of material, forming and

welding. There are four design variables: ௦ܶ (thickness of the shell, ݔଵ), ௛ܶ (thickness of the

head, ݔଶ), R (inner radius, ݔଷ) and L (length of the cylindrical section of the vessel, not

including the head, ݔସ).

5 Results of all trials for Vessel design optimization and Weld beam optimization are listed on Appendix D,
and E respectively

71

Figure 5-1: Schematic diagram of a pressure vessel.

Using the same notation as given by Kannan and Kramer [61] and Coello [62], the

problem may be stated as follows:

Minimize

(ݔ)݂ = 0.6224 ∗ ଵݔ ∗ ଷݔ ∗ ସݔ +

 1.7781 ∗ ଷଶݔ ∗ ଶݔ + 3.1661 ∗ ଵଶݔ ∗ ସݔ +

 19.84 ∗ ଵଶݔ ∗ ଷ 5-6ݔ

Subject to:

 ݃ଵ(ݔ) = ଵݔ− + 0.0193 ∗ ଷݔ ≤ 0 5-7

 ݃ଶ(ݔ) = ଶݔ− + 0.00954 ∗ ଷݔ ≤ 0 5-8

 ݃ଷ(ݔ) = ߨ− ∗ ଷଶݔ) ∗ −(ସݔ 0.75 ∗ ߨ ∗ (ଷଷݔ) + 1296000 ≤ 0 5-9

 ݃ସ(ݔ) = ସݔ − 240 ≤ 0 5-10

The following ranges of variables are used:

1 ≤ ଵݔ ≤ 99

Th

R

L

R

Ts

72

1 ≤ ଶݔ ≤ 99

10 ≤ ଷݔ ≤ 200

Table 5.1 shows the simulations results of the PSO and suggested modified PSO algorithms

when they were applied to solve the pressure vessel design problem.

Table 5.1: Results of pressure vessel optimization with PSO and modified PSO.

PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT

Best 8796.867 5835.759 5829.556 5864.28 5831.785 5878.712 5862.23

Worst 10176.55 7190.018 6376.388 6388.048 6399.267 6470.638 7209.17

Average 9075.586 6050.966 6044.642 6038.196 6087.259 6138.296 6121.879

S.D 315.3599 246.6402 132.3832 120.0518 128.0795 134.7369 217.2764

Some observations may be made from the results given in Table 5.1:

 All modified PSO algorithms have converged to a solution much better than the

one achieved by the PSO algorithm and there are no big differences in the

solutions that were achieved by the modified PSO algorithms as proposed in the

present work.

 CPSOS has outperformed all modified PSO algorithms in terms of achieving the

optimum result of 5829.5.

 CPSOT has converged to the best average solution of 6038.19 among all the

algorithms

The pressure vessel design problem has been studied by many researchers. To make

a comparison between the modified PSO algorithms proposed in the present work and

other classical and evolutionary algorithms, the following results are selected from the

literature:

1. Deb and Gene [63] used Genetic Adaptive Search

2. Kannan and Kramer [61] used an augmented Lagrangian Multiplier approach

73

3. Coello [64] employed Genetic Algorithm (GA)

4. Parsopoulos and Varahatis [59] used a modified particle swarm approach, a unified

PSO algorithm.

A table of comparison is given below.

Table 5.2: Comparison of results for pressure vessel optimization.

Best Solution
PSO 8796.867
CPSO 5835.759
CPSOS 5829.556
CPSOT 5864.28
CPSOM 5831.785
CPSOMS 5878.712
CPSOMT 5862.23
Deb 6410.3811
Kannan 7198.0428
Coello 6069.3267
Parsopoulos 6154.7

As indicated in the table, the modified PSO algorithms have generated better results over the

other methods, and the lowest cost is obtained by CPSOS, as 5829.556

5.3.2 Welded Beam Optimization

Now a welded beam is designed for minimum cost of weld subject to constraints on

shear stress(τ), bending stress in the beam (σ), buckling load on the bar (௖ܲ), end deflection

of the beam (δ), and side constraints. There are four design variables as shown in Figure 5.2:

ℎ (ݔଵ), ݈ (ݔଶ), ݐ (ݔଷ), ܾ (ݔସ).

Using the same notation as given by Rao [65] , the problem is stated as follows:

(ݔ)݂ = 1.10471 ∗ ଵଶݔ ∗ ଶݔ + 0.0481 ∗ ଷݔ ∗ ସݔ ∗ (14.0 + ଶ) 5-11ݔ

Subject to:

 ݃ଵ(ݔ) = −(ݔ)߬ ߬௠௔௫ ≤ 0 5-12

74

 ݃ଶ(ݔ) = −(ݔ)ߪ ௠௔௫ߪ ≤ 0 5-13

Figure 5-2: Schematic diagram of a welded beam.

 ݃ଷ(ݔ) = 0.010471 ∗ ଵଶݔ + 0.0481 ∗ ଷݔ ∗ ସݔ ∗ (14.0 + −(ଶݔ 5.0 ≤ 0 5-14

 ݃ସ(ݔ) = ଵݔ− + 0.125 ≤ 0 5-15

 ݃ହ(ݔ) = ଵݔ − ସݔ ≤ 0 5-16

 ݃଺(ݔ) = −(ݔ)ߜ ௠௔௫ߜ ≤ 0 5-17

 ݃଻(ݔ) = ܲ − ௖ܲ(ݔ) ≤ 0 5-18

Where

(ݔ)߬ = ට(߬ ′)ଶ + 2߬ ′߬ ′′ ௫మ
ଶோ

+ (߬ ′′)ଶ 5-19

 ߬ ′ = ௉
√ଶ௫భ∗௫మ

 5-20

 ߬ ′′ = ெ∗ோ
௃

 5-21

ܯ = ܲ ∗ ܮ) + ௫మ
ଶ

) 5-22

 ܴ = ට௫మమ

ସ
+ ቀ௫భା௫య

ଶ
ቁ
ଶ
 5-23

h

b

l
L

t

P

75

ܬ = 2 ൜√2ݔଵ ∗ ଶݔ ൤
௫మమ

ଵଶ
+ ቀ௫భା௫య

ଶ
ቁ
ଶ
൨ൠ 5-24

(ݔ)ߪ = ଺௉∗௅
௫ర∗௫యమ

 5-25

(ݔ)ߜ = ସ∗௉∗௅య

ா∗௫యయ∗௫ర
 5-26

 ௖ܲ(ݔ) =
ସ.଴ଵଷ∗ா∗ට

ೣయ
మ∗ೣర

ల

యల
௅మ

ቊ1− ௫య
ଶ∗௅

ට ா
ସ∗ீ
ቋ 5-27

ܲ = ܾܫ 6000

ܮ = 14 ݅݊

ܲ = 30 × 10଺ ݅ݏ݌

ܩ = 12 × 10଺ ݅ݏ݌

௠௔௫ߪ = ݅ݏ݌ 30000

௠௔௫ߜ = 0.25 ݅݊

The following ranges of the variables are used:

0.1 ≤ ଵݔ ≤ 2.0

0.1 ≤ ଶݔ ≤ 2.0

0.1 ≤ ଷݔ ≤ 10.0

0.1 ≤ ସݔ ≤ 2.0

Table 5.3 shows the results of the PSO and suggested modified PSO algorithms for the

welded beam problem.

Table 5.3: Results of welded beam design using PSO and modified PSO.

 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
Best 1.724852 1.724839 1.724839 1.724839 1.72537 1.725078 1.725056
Worst 1.814283 1.772954 1.833444 1.775117 1.784874 1.830611 1.762249
Average 1.801827 1.726503 1.729617 1.727479 1.731995 1.730727 1.729492
S.D 0.031178 0.007085 0.016825 0.008333 0.010338 0.015052 0.006407

76

Some observations may be made from the results given in Table 5.3:

 All modified PSO algorithms have converged to a solution much better than the one

achieved by the conventional PSO algorithm, and there are no big differences of the

solutions that were achieved by the modified PSO algorithms.

 CPSO, CPSOS, and CPSOT outperformed the other modified PSO algorithms in

terms of achieving the optimum result of 1.724839.

 CPSO was able to converge to the best average solution of 1.726503 among all the

algorithms.

The weld beam problem has been studied by many researchers. The following work is

selected for comparison:

1. Deb [66] used Genetic algorithm to solve the problem;

2. Ragsdell and Phillips [66] used geometric programming

3. Parsopoulos and Varahatis [59] use a modified particle swarm technique, a unified

PSO algorithm.

As seen from Table 5.4, the modified PSO algorithms have achieved better results than from

other methods. The lowest cost, as obtained by CPSO, CPSOS, CPSOT is 1.72839.

Table 5.4: Comparison of the results for the weld beam design.

Best Solution
PSO 1.724852
CPSO 1.724839
CPSOS 1.724839
CPSOT 1.724839
CPSOMT 1.72537
CPSOMS 1.725078
CPSOMT 1.725056
Deb 2.4331160
Ragsdell 2.38593732
Parsopoulos 1.7558

77

5.4 Summary
In the present chapter, the optimization performance of the modified PSO

algorithms, as proposed in the proposed thesis, in solving constraints engineering problems

was investigated, by applying these algorithms for optimal design of a pressure vessel and a

welded beam. The modified PSO algorithms have been able to generate better solutions, in

comparison to the regular PSO and other approaches found in the literature, for both design

problems. It may be concluded that the proposed modifications to PSO show potential for

solving more complicated and real life engineering problems and in finding the global

optimum with fewer iterations.

78

Chapter 6

Heat Sink Design by Using Modified PSO6

6.1 Introduction
The recent trend in the electronic device industry is toward denser and larger heat flux

densities. As a result, more powerful products require higher thermal performance through

efficient cooling. For example, some 900 million computers are in use in the world today,

with personal computers comprising approximately half the total. This growth is reasonable

in view of the projections taking into account that some 400 million computers were in use

by the end of 2001 [67]. These rapid advances in computer systems and other digital

hardware have led to the associated increase in the thermal dissipation from microelectronic

devices. This trend has fueled the interest of the engineers and researchers in controlling the

maximum operating temperature, and achieving long term reliability and efficient

performance of electronic components.

In electronic equipment, the temperature of each component must be maintained

within an allowable upper limit, specified for each component from the viewpoint of

operating performance and reliability. The power density in electronic systems is growing

due to the high speeds of operation that are attained and the miniaturization of the associated

components and devices. Generally, heat sinks are used to maintain the operating

temperature for reliable operation of the electronic device. Choosing a suitable heat sink has

become crucial to the overall performance of electronic packages. The forced-air cooling

6 Alrasheed, M.R. , de Silva, C.W., and Gadala, M.S., " Applying Modified Particle Swarm Optimization in Heat Sink
Design by using Chaotic Acceleration and Global Mutation," (Submitted).

79

technique, which is one of the effective methods for thermal management of electronic

equipment cooling, is commonly used in the electronic cooling area [68]. The development

of a systematic and rather optimal design methodology for air-cooling heat sinks is

undoubtedly very important in satisfying the current thermal necessities and for successful

heat removal in the future generations of critical electronic components [69].

The performance of forced air convection heat sinks in electronic devices depends on

a number of parameters including the thermal resistance, dimensions of the cooling

channels, location and concentration of the heat sources, and the airflow bypass due to flow

resistance through the channel. In general, an important goal of the heat sink design is to

reduce the overall thermal resistance [70]. An alternative and related criterion for designing

a heat sink is to maximize the thermal efficiency. Both criteria would affect the maximum

heat dissipation. In a practical industrial design, different criteria are chosen depending on

whether the primary objective is to maximize the heat transfer, minimize the pumping

power, or achieve the minimum device volume or weight under the prescribed constraints

such as component size and heat transfer time [71].

6.2 Entropy Generation Minimization of a Heat Sink
The idea of using the entropy generation rate to estimate the heat transfer

enhancement was first proposed by Bejan [72] as a performance assessment criterion for

thermal systems. A fin can generate the entropy associated with the external flow and

because the fin is non-isothermal it can also generate entropy internally. The entropy

generation rate that is associated with the heat transfer in a heat sink can serve as the

capability of transferring heat to the surrounding cooling medium. As in all thermodynamic

systems, the entropy in a heat sink is generated from the irreversibility of heat transfer with

80

finite temperature differences and the friction of fluid flow. The basic thermodynamic

equations for the stream channel as an open system in steady flow are:

݉̇௜௡ = ݉̇௢௨௧ = ݉̇ 6-1

݉̇ ℎ௜௡ + ′′ݍ∬ ܣ݀ − ݉̇ ℎ௢௨௧ 6-2

 ܵ̇௚௘௡ = ௢௨௧ݏ ̇݉ − ௜௡ݏ ̇݉ −∬ ௤′′ௗ஺
்ೢ

 6-3

The canonical form ݀ℎ = ݏ݀ ܶ + ൫1 ൗߩ ൯݀ܲ may be written as:

 ℎ௢௨௧ − ℎ௜௡ = ௘ܶ ௢௨௧ݏ) − (௜௡ݏ + ൫1 ൗߩ ൯ (௢ܲ௨௧ − ௜ܲ௡) 6-4

where it is assumed that the temperature and density do not change significantly between the

inlet and the outlet. Combining equations (6-2) through (6-4), the entropy generation rate

can be written in this form:

 ܵ̇௚௘௡ = ∬ ′′ݍ
஺ ቀ ଵ

೐்
− ଵ

்ೢ
ቁ ܣ݀ − ௠̇

ఘ೐ ೐்
(௢ܲ௨௧ − ௜ܲ௡) 6-5

Knowing that:

 ݉̇ = ௘ ௙ܸ 6-6ߩ ܣ

ௗܨ =)ܣ ௢ܲ௨௧ − ௜ܲ௡) 6-7

We obtain:

 ܵ̇௚௘௡ = ଵ

೐்
మ∬ ′′ݍ

஺ (௪ܶ − ௘ܶ)݀ܣ − ଵ

೐்
ௗܨ ௙ܸ 6-8

where Fd is the drag force.

81

Equation (6-8) represents the entropy generation rate associated with the fin heat

transfer in external flow. As shown in Figure 6.1, a fin also generates entropy internally

since the fin is nonisothermal:

 ൫ܵ̇௚௘௡൯௜௡௧௘௥௡௔௟ = ∬ ′′ݍ
஺ ܣ݀ − ொ

்್
 6-9

where wT and Tb represent the local temperature and the base temperature, respectively, and

Q is the heat dissipation rate of the heat sink.

Adding equations (6-8) and (6-9) the entropy generation rate for a single fine can be

written as:

 ܵ̇௚௘௡ = ொ Δ்

೐்
మ + ி೏௏೑

೐்
 6-10

A uniform stream with velocity Vf and the absolute temperature Te passes through the fin as

shown in Figure 6.1. Fluid friction appears in the form of the drag force Fd along the

direction of Vf. Equation (6-10) shows that fluid friction and inadequate thermal

conductivity jointly contribute to degrading of the thermodynamic performance of the fin.

Thus, the optimal thermodynamic size of the fin can be computed by minimizing the entropy

generation rate given by equation (6-10) subjected to necessary design constraints.

82

Figure 6.1: Schematic diagram of a general fin in convective heat transfer.

The heat transfer rate between the fin and the stream is q  and theoretically a heat sink is

required to satisfy an equation of the form

 11-6 ܳ≅ ܣ݀′′ݍ∬

For a heat sink set, the temperature excess of ∆ܶ is related to the overall heat sink thermal

resistance as

 Δܶ = ܳ.ܴ 6-12

where Q is the heat dissipation rate of the heat sink and R is the overall heat sink thermal

resistance. The first term of the entropy generation in (6-10) can be written as (Q ∆ܶ / Te
2).

The temperature difference (∆ܶ) is represented as (Tb - Te). So, the entropy change rate of a

heat sink set can be written as

 ܵ̇௚௘௡ = ொ
మோ

೐்
మ + ி೏௏೑

೐்
 6-13

Tb

q 

fV

eT

Q

Tw

83

The entropy generation rate in equation (6-13) is a function of both heat sink resistance and

viscous dissipation. The viscous dissipation term is small and may be neglected under low

velocity conditions such as buoyancy-induced flow [67]. The simplified expression for the

dimensional entropy generation rate can be written as:

 ௦ܰ̇ = ௌ̇೒೐೙
ொమ௏೑ ௞ ௩ ்ೌ ೘್

మ⁄
 6-14

Where

 ௦ܰ̇ is the dimensionless entropy generation rate

 ௔ܶ௠௕ is the ambient temperature

 ݒ is the kinetic viscosity of the fluid

In the general thermal design of a heat sink, the goal can be either to minimize the

total thermal resistance or to maximize the total efficiency. The minimization of the entropy

generation rate is equivalent to the minimization of the total thermal resistance. Therefore,

the design strategy of minimizing entropy generation rate has the same effect as maximizing

the thermal efficiency, surface area, and convective coefficients. Additionally, the optimal

flow velocity and viscous dissipation can be found through minimization of the entropy

generation rate.

In the heat sink optimization, one important implication is that since the size

parameter is naturally linked directly to the volume and the weight, it should be considered

as one of the design constraints in the minimization of the entropy generation rate. The

overall heat sink resistance is given by

 ܴ = ଵ
൫ே ோ೑೔೙⁄ ൯ା௛(ேିଵ)௦ ௅

+ ௕
௞ ௅ ௐ

 6-15

84

where N is the number of fins and Rfin is the thermal resistance of a single fin given by:

 ௙ܴ௜௡ = ଵ
ඥ(௛ ௉ ௞ ஺೎) ௧௔௡௛(௠௔)

 6-16

with

 ݉ = ට ௛ ௉
௞ ஺೎

 6-17

Also P is the perimeter of the fin and Ac is the cross-sectional area of the fin. The total drag

force on the heat sink may be obtained by considering a force balance on the heat sink.

Specifically,

 ி೏
(ଵ ଶ⁄) ఘ ௏೎೓

మ
= ௔݂௣௣ ܰ (2 ܽ ܮ + (ܮ ݏ + (ܹ ܽ)௖ܭ + ௘(ܽ ܹ) 6-18ܭ

where fapp is the apparent friction factor for hydrodynamically developing flow. The channel

velocity Vch is related to the free stream velocity by

 ௖ܸ௛ = ௙ܸ(1 + ௗ
௦
) 6-19

The apparent friction factor fapp for a rectangular channel may be computed using a form of

the model developed by Muzychka [73] for developing laminar flow:

௔݂௣௣ ܴ݁஽೓ = ൤ቀଷ.ସସ
√௅∗

ቁ
ଶ

+ ൫݂ ܴ݁஽೓൯
ଶ
൨
଴.ହ

 6-20

where

∗ܮ = ௅
஽೓ ோ௘ವ೓

 6-21

85

Here Dh is the hydraulic diameter of the channel and DhRe.f is the fully developed flow

factor Reynolds number group, given by

݂.ܴ݁஽೓ = 24 − 32.537 ቀ
ݏ
ܽቁ +

 + 46.721 ቀ௦
௔
ቁ
ଶ
− 40.829 ቀ௦

௔
ቁ
ଷ
+

 +22.954 ቀ௦
௔
ቁ
ସ
− 6.089 ቀ௦

௔
ቁ
ହ
 6-22

The expansion and contraction loss coefficients may be computed using the simple

expressions for a sudden contraction and a sudden expansion:

௖ܭ = 0.42 ൤1 − ቀ1 − ே ௗ
ௐ
ቁ
ଶ
൨ 6-23

௘ܭ = ൤1 − ቀ1− ே ௗ
ௐ
ቁ
ଶ
൨
ଶ
 6-24

The heat transfer coefficient h can be computed using the model developed by Teertstra et

al. [74].

 ௨ܰ௕ = ቈቀோ௘್
∗ ௉௥
ଶ

ቁ
ିଷ

+ ൬0.664 ඥܴ݁௕∗ ܲݎଵ ଷ⁄ ට1 + ଷ.଺ହ
ඥோ௘್∗

൰
ିଷ
቉
ିଵ ଷ⁄

 6-25

where

 ܴ݁௕∗ = ܴ݁௕ ቀ
௦
௅
ቁ 6-26

The spacing s between two fins is given by:

86

ݏ = ቀௐିௗ
ேିଵ

ቁ − ݀ 6-27

 ௨ܰ௕ = ௛ ௦
௞೑

 6-28

Figure 6.2: Geometrical configuration of a plate-fin sink.

Configuration data are as follows:

 Both the base length L and the width W are 50 mm.

 The total heat dissipation of 30 W is uniformly applied over the base plate of the heat

sink with a base thickness b of 2 mm.

 The thermal conductivity of the heat sink k is 200 W/m.K.

L

a s

W

d

87

 The ambient air temperature Te is 278 K.

 The conductivity of the air kf is 0.0267 W/m.K.

 The air density  is 1.177 kg/m.

 The kinematical viscosity coefficient   is 1.6 (10-5) m2/s.

The goal is to get the optimal number of fins N, optimum height of fins a, optimum

thickness of each fin d, and the optimum flow velocity of cooling flow Vf. The objective

function is

 ௦ܰ̇ = ௌ̇೒೐೙
ொమ௏೑ ௞ ௩ ்ೌ ೘್

మ⁄
 6-29

and the design variables are: [x1, x2, x3, x4]T = [N, a, d, Vf].

Subject to

 ݃ଵ = 1 − ቀௐିௗ
ேିଵ

− 1ቁ ≤ 0 6-30

 ݃ଶ = ቀௐିௗ
ேିଵ

− 1ቁ − ݀ − 5 ≤ 0 6-31

 ݃ଷ = 0.01 − ௔
௦
≤ 0 6-32

 ݃ସ = ௔
௦
− 19.40 ≤ 0 6-33

 ݃ହ = 0.001− ට௦௏೎೓
௩
∗ ௦
௅

 ≤ 6-34

The design boundaries corresponding to the design variable are:

 2 ≤ ଵݔ ≤ 40

 25݉݉ ≤ ଶݔ ≤ 140݉݉

88

 0.2݉݉ ≤ ଷݔ ≤ 2.5݉݉

 0.5 ݉ ⁄ݏ ≤ ସݔ ≤ 40 ݉ ⁄ݏ

6.3 Optimization Results

CPSO Algorithm is applied here as it has shown its superiority over other modified PSO
algorithms.

(CPSO): ߱௖ replaces the regular inertia factor in the first right-hand term of velocity-update

equation so that the new velocity of the particle is given by:

ା૚࢚ࢊ࢏࢜ = ࢉ࣓
૛ ∙ ࢚ࢊ࢏࢜ + ૚࣋ ∙ ૚ࢊ࢔ࢇ࢘ ∙ ࢊ࢏࢖) − ࢚ࢊ࢏࢞) + ૛࣋ ∙ ૛ࢊ࢔ࢇ࢘ ∙ ࢍ࢖) − ࢚ࢊ࢏࢞) 6-35

Also, Ca is introduced to the second right-hand term in the position-update equation as

௜ௗ௧ାଵݔ = ௜ௗ௧ݔ + ௔௧ାଵ 6-36ܥ

Table 6.1 and Figure 6-3 present the results that were obtained by applying the CPSO

algorithm. Note that by definition, the nondimensional parameters ௦ܰ̇ is a very small

quantity by order of 10-7. The last column in Table 6.1 gives the total structural volume of

the heat sink, indicated as VoL (mm3). The larger value of VoL indicates the further structural

mass required to manufacture the heat sink.

Table 6.1: Optimization results of non-dimensional entropy generation rate.

 N A (mm) d (mm) Vf (m/s) s (mm) ௦ܰ̇ VoL (mm3)

Solution 17 117.8 1.95 1.49 1.07 2.9e-8 195253.5

89

Figure 6.3: Optimization of non-dimensional entropy generation rate.

Figure 6.4: Variation of optimum entropy generation rate with N.

90

Figure 6.4 shows that as N the number of fins increases the entropy generation rate

will decrease dramatically due to increasing the surface area of the heat sink. When N

reaches 22 fins and up then the entropy generation rate will start increasing gradually and

the search will start go away from the optimal solution location. As it is clear from the figure

the optimal solution location is located N values vary between 15 and 20 fins. The optimal

solution of the entropy generation rate is 0.002679 W/K.

Figure 6.5: Variation optimum entropy generation rate and optimum flow velocity with N.

91

Figure 6.6: Variation of optimum entropy generation rate and optimum thickness of fin with
N.

Figure 6.7: Variation of optimum entropy generation rate and optimum height of fin with

different values of N.

92

Figure 6.5, Figure 6.6, and Figure 6.7 show the behavior of the design variables (Vf = flow

velocity, a = height of fin, d = thickness of fin) in the optimization process of the entropy

generation rate for different values of N.

 6.4 CFD Solution

The optimal values of N, a, d, and Vf are applied using Ansys IcePak, which uses the

finite volume method to solve computational fluid dynamic problems. Figures 6.8 and

6.9 show the temperature distribution through the cross-section of a heat sink and

velocity distribution through the heat sink as analyzed by Ansys Icepak. The results

show that the highest base temperature is approximately 43.2o.

Figure 6.8: Temperature distribution through the cross-section of heat sink.

93

Figure 6.9: Velocity profile through the heat sink.

6.5 Summary

The applicability of the modified PSO algorithm to the optimal heat sink design has

been investigated in this chapter. The modified PSO algorithm was presented for the design

of a plate-fin heat sink, with the objective of realizing the maximum dissipation of the heat

generated from electronic components. The entropy generation rate was used in the fitness

function, to realize the highest heat transfer efficiency. A practical application was presented

as an illustrative example.

94

Chapter 7

 Conclusion

The particle swarm optimization (PSO) algorithm is known to have superior features

compared with the traditional optimization methods. The PSO algorithms use objective-

function information to guide the search in the problem space. Therefore, they can easily

deal with non-differentiable and non-convex objective functions. Additionally, this property

relieves PSO algorithms of various analytical assumptions and approximations, which are

often required by traditional optimization methods. PSO algorithms use probabilistic rather

than deterministic rules for particle movement. Hence, they are types of stochastic

optimization algorithm that can search a complicated and uncertain area. This feature makes

PSO algorithms more flexible and robust than conventional methods. However, improving

the convergence of a PSO algorithm is an important objective when solving complex real-

world problems. To the best knowledge of the author, the present thesis represents the first

study of the applicability of PSO in the optimization of the heat sink design Optimization.

7.1 Contributions and Significance
In this thesis, a novel Chaotic Acceleration Factor, Chaotic Inertia Factor, and Global

Best Mutation have been incorporated into the original PSO method, in different formats, to

improve its convergence performance. The performance of the modified PSO methods are

studied in the present thesis and compared with the original PSO method by using well-

known test functions. All modified PSO methods proposed in this work show superior

95

performance over the classical PSO with regard to the quality of the solution and the

convergence rate.

The performance of the modified PSO algorithms when applied to nonlinear

constraints problems has been studied as well in the thesis. Non-stationary, multi-stage

penalty method (PFM) was implemented within the modified algorithms to handle nonlinear

constraints. Pressure vessel optimization and welded beam optimization are two common

engineering problems that are usually used for testing the performance of optimization

algorithms. These two examples have been used as benchmark testing examples in the

present work. The modified PSO algorithms, developed in this work, have outperformed

many classical and evolutionary optimization algorithms in solving nonlinear constraints

problems.

Finally in the present thesis, the modified PSO algorithm was applied in heat sink

design and detailed results were presented. Ansys Icepak was used to solve the heat and

flow equations by implementing the optimal design variables resulting from the application

of the modified PSO algorithms.

7.2 Possible Future Work
Even though the work presented in this thesis is complete in its entirety, there are several

possibilities of further work in this area. Some suggestions in this regard are listed below.

 It would be useful to study the performance of the modified PSO algorithms when

they are applied to high dimensional problems.

 Although the incorporation of the proposed modifications has significantly improved

the performance of the PSO algorithm in most cases, the modified PSO algorithms

occasionally experienced premature convergence. Hybridization with other

96

optimization algorithms might be a possible solution to this problem provided that

the new hybridization technique retain the good features of PSO.

 It is also of interest to develop parallel versions of the modified PSO algorithms, so

that they can be made more efficient when applied to highly constrained problems.

97

Bibliography

[1] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1998.

[2] Nocedal, J., and Wright, S.J., Numerical Optimization, Springer Series in Operations
Research, Springer, Berlin, Germany, 2000.

[3] Nelder, J., and Mead, R., "A Simplex Method for Function Minimization," The
Computer Journal, Vol. 7, No.4, pp. 308-313, 1965.

[4] Tjalling J. Ypma, "Historical Development of the Newton-Raphson Method," SIAM
Review, Vol.37, No.4, pp. 531-551, 1995.

[5] Bäck, T., Hammel, U., and Schwefel, H. P., "Evolutionary Computation: Comments on
the History and Current State," IEEE Transactions on Evolutionary Computation, Vol.1,
No.1, pp. 3-17, 1997.

[6] Kennedy, J., And Eberhart, R. , "Particle swarm optimization," Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ. pp. 1942–1948, 1995.

[7] Beyer, H.G., 2001, The theory of evolution strategies, Springer, Berlin, 2001.

[8] Mezura-Montes, E., and Coello, C. A. C., "A Simple Evolution Strategy to Solve
Constrained Optimization Problems," IEEE Transactions on Evolutionary Computation,
Vol.9, No.1, pp. 1- 17, 2005.

[9] Hansen, N., and Ostermeier, A., "Completely Derandomized Self-Adaptation in
Evolution Strategies," Evolutionary Computation, Vol.9, No.2, pp. 159-195, 2001

[10] Forrest, S., "Genetic Algorithms," ACM Computing Surveys (CSUR), Vol.28, No.1, pp.
77-80, 1996.

[11] Maulik, U., and Bandyopadhyay, S., "Genetic Algorithm-Based Clustering Technique,"
Pattern Recognition, Vol.33, No.9, pp. 1455-1465, 2000.

[12] Whitley, D., "A Genetic Algorithm Tutorial," Statistics and Computing, Vol.4, No.2,
pp. 65-85, 1994.

[13] Kennedy, J., Eberhart, R., and Shi, Y., Swarm Intelligence, Springer, Berlin, Germany,
2001.

[14] Eberhart, R. C., and Kennedy, J., "A New Optimizer using Particle Swarm Theory,"
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
New York, NY , 1995.

98

[15] Abido, M., "Optimal Power Flow using Particle Swarm Optimization," International
Journal of Electrical Power and Energy Systems, Vol.24, No.7, pp. 563-571, 2002.

[16] Fukuyama, Y., "Fundamentals of Particle Swarm Techniques," Editors: Lee, K.Y., El-
Sharkawi, M.A., Modern Heuristic Optimization Techniques with Applications to Power
Systems, Vol.51, pp. 45-51, 2002.

[17] Hu, X., Eberhart, R. C., and Shi, Y., "Engineering Optimization with Particle Swarm,"
Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, pp. 53–57,
2003.

[18] Eberhart, R. C., and Kennedy, J., "A New Optimizer using Particle Swarm Theory,"
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
New York, NY, 1995 .

[19] Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY,
1991.

[20] Kennedy, J., "The Particle Swarm: Social Adaptation of Knowledge," IEEE
International Conference on Evolutionary Computation, Indianapolis, IN, pp. 303-308,
1997.

[21] Shi, Y. and Eberhart, R.," Modified Particle Swarm Optimizer," Proceedings of the
IEEE Congress on Evolutionary Computation, Piscataway, NJ, pp. 69-73, 1998

[22] Eberhart, R. C., and Shi, Y., "Particle Swarm Optimization: Developments,
Applications and Resources," Proceedings of the Congress on Evolutionary Computation,
Piscataway, NJ, pp. 81-86, 2001.

[23] Carlisle, A., Applying the Particle Swarm Optimizer to Non-Stationary Environments,
PhD Thesis, Auburn University, Auburn, AL, 2002.

[24] Ratnaweera, A., Halgamuge, S. K., and Watson, H. C., "Self-Organizing Hierarchical
Particle Swarm Optimizer with Time-Varying Acceleration Coefficients," Evolutionary
Computation, Vol. 8, No.3, pp. 240-255, 2004.

[25] Fan, H., "A Modification to Particle Swarm Optimization Algorithm," Engineering
Computations, Vol.19, No.8, pp. 970-989,2002.

[26] Chatterjee, A., and Siarry, P., "Nonlinear Inertia Weight Variation for Dynamic
Adaptation in Particle Swarm Optimization," Computers & Operations Research, Vol.33,
No.3, pp. 859-871, 2006.

[27] Higashi, N., and Iba, H., "Particle Swarm Optimization with Gaussian Mutation,"
Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, pp. 72-79,
2003.

99

[28] Stacey, A., Jancic, M., and Grundy, I., "Particle Swarm Optimization with Mutation,"
Proceedings of the IEEE Congress on Evolutionary Computation, Canberra, Australia, pp.
1425-1430, 2003.

[29] Secrest, B. R., and Lamont, G. B., "Visualizing Particle Swarm Optimization-Gaussian
Particle Swarm Optimization," Proceeding of IEEE Swarm Intelligence Symposium,
Indianapolis, IN, , pp. 198-204, 2003.

[30] Liu, J., Xu, W., and Sun, J., 2005, "Quantum-behaved Particle Swarm Optimization
with Mutation Operator," Proceedings of 17th International Conference on Tools with
Artificial Intelligence, Hong Kong (China), pp.230-240, 2005.

[31] Xiang, T., Liao, X., and Wong, K., "An Improved Particle Swarm Optimization
Algorithm Combined with Piecewise Linear Chaotic Map," Applied Mathematics and
Computation, Vol.190, No.2, pp. 1637-1645, 2007.

[32] Selvakumar, A. I., and Thanushkodi, K., "A New Particle Swarm Optimization
Solution to Nonconvex Economic Dispatch Problems," IEEE Transactions on Power
Systems, Vol. 22, No.1, pp. 42-51, 2007.

[33] Angeline, P. J., "Using selection to improve Particle Swarm Optimization," IEEE
World Congress on Computational Intelligence, Anchorage, AK , pp. 84-89, 1998.

[34] Angeline, P. J., "Evolutionary Optimization Versus Particle Swarm Optimization:
Philosophy and Performance Differences," Lecture Notes in Computer Science, pp. 601-610,
1998.

[35] Kennedy, J., and Spears, W. M., "Matching Algorithms to Problems: an Experimental
Test of the Particle Swarm and some Genetic Algorithms on the Multimodal Problem
generator," Proceedings of the IEEE International Conference on Evolutionary
Computation, Anchorage, AK , pp. 78–83, 1998.

[36] Hassan, R., Cohanim, B., De Weck, O., "A Comparison of Particle Swarm
Optimization and the Genetic Algorithm," Proceedings of the 1st AIAA Multidisciplinary
Design Optimization Specialist Conference, Austin, TX , 2005.

[37] Lee, J., Lee, S., Chang, S., "A Comparison of GA and PSO for Excess Return
Evaluation in Stock Markets," Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach, pp. 221-230,2005.

[38] Elbeltagi, E., Hegazy, T., and Grierson, D., "Comparison among Five Evolutionary-
Based Optimization Algorithms," Advanced Engineering Informatics, Vol.19, No.1, pp. 43-
53, 2005.

100

[39] Allahverdi, A., and Al-Anzi, F. S., "A PSO and a Tabu Search Heuristics for the
Assembly Scheduling Problem of the Two-Stage Distributed Database Application,"
Computers & Operations Research, Vol.33, No.4, pp. 1056-1080, 2006.

[40] Chang, B. C. H., Ratnaweera, A., Halgamuge, S. K., "Particle Swarm Optimisation for
Protein Motif Discovery," Genetic Programming and Evolvable Machines, Vol.5, No.2, pp.
203-214, 2004.

[41] Abido, M. A., "Optimal Power Flow using Particle Swarm Optimization," International
Journal of Electrical Power and Energy Systems, Vol.24, No.12, pp. 563-571, 2002.

[42] Wachowiak, M. P., Smolíková, R., Zheng, Y., "An Approach to Multimodal
Biomedical Image Registration Utilizing Particle Swarm Optimization," IEEE Transactions
on Evolutionary Computation, Vol.8, No.3, pp. 289-301, 2004.

[43] Alrasheed, M.R., de Silva, C.W., and Gadala, M.S., "Evolutionary optimization in the
design of a heat sink," Editor: de Silva C.W., Mechatronic Systems: Devices, Design,
Control, Operation and Monitoring, pp. 55-78CRC Press, Boca Raton, FL, , 2007.

[44] Shih, C. J., and Liu, G. C., "Optimal Design Methodology of Plate-Fin Heat Sinks for
Electronic Cooling using Entropy Generation Strategy," IEEE Transactions on Components
and Packaging Technologies, Vol.27, No.3, pp. 551-559, 2004.

[45] Ditto, W., and Munakata, T., "Principles and Applications of Chaotic Systems,"
Communications of the ACM, Vol.38, No.11, pp. 96-102, 1995.

[46] Lorenz, E. N., "Deterministic Nonperiodic Flow," Journal of the Atmospheric Sciences,
Vol.20, pp. 130-141, 1963.

[47] Elwakil, A., and Ozoguz, S., "Chaos in Pulse-Excited Resonator with Self Feedback,"
Electronics Letters, Vol.39, No.11, pp. 831-833, 2003.

[48] Li, B., and Jiang, W., "Optimizing Complex Functions by Chaos Search," Cybernetics
and Systems, Vol.29, No.4, pp. 409-419, 1998.

[49] Liu, S., and Hou, Z., "Weighted gradient direction based chaos optimization algorithm
for nonlinear programming problem," Proceedings of the 4th World Congress on Intelligent
Control and Automation, Vol. 3, Shanghai, China, pp. 1779-1783, 2002.

[50] Lu, Z., Shieh, L. S., Chen, G., "Simplex Sliding Mode Control for Nonlinear Uncertain
Systems Via Chaos Optimization," Chaos, Solutions & Fractals, Vol. 23, No.3, pp. 747-
755, 2005.

[51] Wang, S., Jiang, Y., and Yang, H., "Chaos optimization strategy on fuzzy-immune-PID
control of the turbine governing system," IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, China, pp. 1594-1598, 2006.

101

[52] Yan, X. F., Chen, D. Z., and Hu, S. X., "Chaos-Genetic Algorithms for Optimizing the
Operating Conditions Based on RBF-PLS Model," Computers & Chemical Engineering,
Vol.27, No.10, pp. 1393-1404, 2003.

[53] Yang, D., Li, G., and Cheng, G., "On the Efficiency of Chaos Optimization Algorithms
for Global Optimization," Chaos, Solutions & Fractals, Vol. 34, No.4, pp. 1366-1375, 2007.

[54] Zilong, G., Sun'an, W., and Jian, Z., "A Novel Immune Evolutionary Algorithm
Incorporating Chaos Optimization," Pattern Recognition Letters, Vol. 27, No.1, pp. 2-8,
2006.

[55] Shi, Y., and Eberhart, R., "Parameter Selection in Particle Swarm Optimization,"
Proceedings of the 6th International Conference on Evolutionary Programming,
Indianapolis, IN, pp. 591-600, 1997.

[56] Kennedy, J., and Eberhart, R. C., "Particle Swarm Optimization," Proceedings of IEEE
International Conference on Neural Networks, Perth, Australia, pp. 1942-1948, 1995.

[57] Parsopoulos, K. E., and Vrahatis, M. N., "Particle Swarm Optimization Method for
Constrained Optimization Problems," Intelligent Technologies–Theory and Application:
New Trends in Intelligent Technologies, pp. 214–220, 2002.

[58] Michalewicz, Z., "A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods," Evolutionary Programming, Vol.4, pp. 135, 1995.

[59] Parsopoulos, K., and Vrahatis, M., 2005, "Unified Particle Swarm Optimization for
Solving Constrained Engineering Optimization Problems," Advances in Natural
Computation, pp. 582-591.

[60] Yang, J. M., Chen, Y. P., Horng, J. T, "Applying Family Competition to Evolution
Strategies for Constrained Optimization," Evolutionary Programming VI, Springer, pp. 201-
211, 1997.

[61] Kannan, B., and Kramer, S. N., "An Augmented Lagrange Multiplier Based Method for
Mixed Integer Discrete Continuous Optimization and its Applications to Mechanical
Design," Journal of Mechanical Design, Vol.116, pp. 405-423, 1994.

[62] Coello, C., and Carlos, A., "Theoretical and Numerical Constraint-Handling
Techniques used with Evolutionary Algorithms: A Survey of the State of the Art," Computer
Methods in Applied Mechanics and Engineering, Vol. 191, No.11, pp. 1245-1287, 2002.

[63] K. Deb, A. S. Gene, Evolutionary Algorithms in Engineering Applications, Springer
Verlag, Berlin, pp. 497-514, 1997.

[64] Coello, C. A. C., "Constraint-Handling using an Evolutionary Multiobjective
Optimization Technique," Civil Engineering and Environmental Systems, Vol. 17, No.4, pp.
319-346, 2000.

102

[65] Rao, S.S., Engineering optimization: theory and practice, John Wiley and Sons, New
York, NY, 1996.

[66] Regsdell. K.M., Phillips, D.,T., "Optimal Design of a Class of Welded Structures using
Geometric Programming," ASME Journal of Engineering for Industries, Vol. 98, No.3, pp.
1021-1025, 1976.

[67] Bar-Cohen, A., and Iyengar, M., "Least-Energy Optimization of Air-Cooled Heat Sinks
for Sustainable Development," IEEE Transactions on Components and Packaging
Technologies, Vol. 26, No.1, pp. 16-25, 2003.

[68] Ogiso, K., "Assessment of overall Cooling Performance in Thermal Design of
Electronics Based on Thermodynamics," Journal of Heat Transfer, Vol.123, pp. 999-1118,
2001.

[69] Shih, C., and Liu, G., "Optimal Design Methodology of Plate-Fin Heat Sinks for
Electronic Cooling using Entropy Generation Strategy," IEEE Transactions on Components
and Packaging Technologies, Vol. 27, No.3, pp. 551-559, 2004.

[70] Iyengar, M., and Bar-Cohen, A., 2003, "Least-Energy Optimization of Forced
Convection Plate-Fin Heat Sinks," IEEE Transactions on Components and Packaging
Technologies, Vol.26, No.1, pp. 62-70.

[71] Wei, X., and Joshi, Y., "Optimization Study of Stacked Micro-Channel Heat Sinks for
Micro-Electronic Cooling," IEEE Transactions on Components and Packaging
Technologies, Vol.26, No.1, pp. 55-61, 2003.

[72] Bejan, A., "Fundamentals of Exergy Analysis, Entropy Generation Minimization, and
the Generation of Flow Architecture," International Journal of Energy Research, Vol.26,
No.7, pp. 11-43, 2002.

[73] Muzychka, Y., and Yovanovich, M., "Modeling Friction Factors in Non-Circular Ducts
for Developing Laminar Flow," AIAA Theoretical Fluid Mechanics Meeting, Albuquerque,
NM, pp. 98-111, 1998.

[74] Teertstra, P., Yovanovich, M., and Culham, J., "Analytical Forced Convection
Modeling of Plate Fin Heat Sinks," Journal of Electronics Manufacturing, Vol.10, No.4,
pp. 253-262, 2000.

103

Appendix A: Rosenbrock Simulations

D=10
 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT

3.640832 1.840562 0.884144 1.699185 1.16701 1.044121 0.020679
3.640832 0.318817 0.303438 2.451469 2.437366 3.327898 2.25528
3.940706 0.296693 0.877698 0.332115 1.108192 2.003032 0.650753
3.799521 0.023535 4.038685 0.058462 2.105517 0.506606 0.397768
3.546718 0.001282 0.748705 0.053166 1.84968 0.799626 0.62545
3.434511 0.219986 0.052233 0.003459 2.161527 0.090054 1.892486
2.72171 1.402038 0.003762 0.002182 2.37336 3.32764 0.95937
0.432756 1.103641 0.001639 6.6E-06 1.422613 1.35959 0.349325
0.173356 1.729728 0.023514 0.001191 2.356026 2.923288 0.622895
0.090054 1.522814 0.002521 0.128525 0.090054 0.506606 4.157364
0.090054 0.001282 0.001639 6.6E-06 0.090054 0.090054 0.020679
2.5421 0.84591 0.693634 0.472976 1.707134 1.588846 1.193137
3.940706 1.840562 4.038685 2.451469 2.437366 3.327898 4.157364
0.090054 0.001282 0.001639 6.6E-06 0.090054 0.090054 0.020679
3.940706 1.840562 4.038685 2.451469 2.437366 3.327898 4.157364
1.909339 0.955371 0.873332 0.50586 1.54684 1.584687 1.650556
1.628303 0.742766 1.23413 0.868776 0.754985 1.227509 1.252528

 D=20

 PSO CPSO CPSO1 CPSO2 CPSOM CPSOM1 CPSOM2
14.77538 12.13264 12.39382 12.22404 15.31318 15.60611 15.08629
14.9686 9.04781 9.127112 9.506127 14.14127 14.09401 14.2138
13.86907 5.087471 5.729692 6.045682 13.34389 13.61235 12.31349
13.83683 2.30223 1.70002 2.526545 11.85639 12.80462 11.98918
13.6464 0.305469 0.171469 0.456638 11.25901 12.81378 13.17808
14.34583 0.012199 0.015282 0.073817 11.65092 12.20007 13.76581
14.74087 0.002623 0.00032 0.021811 11.34093 10.84917 12.53197
13.23384 3.990205 0.002849 0.00418 11.46004 10.80718 11.91513
12.65441 3.990836 0.000939 0.000709 10.48114 10.91709 11.63848
12.84771 3.990278 0.005093 0.00345 9.608504 10.46939 11.60427
12.65441 0.002623 0.00032 0.000709 9.608504 10.46939 11.60427
14.9686 12.13264 12.39382 12.22404 15.31318 15.60611 15.08629
13.87849 4.416418 3.461728 3.590646 12.11475 12.52077 12.91059

104

 D=20
 PSO CPSO CPSO1 CPSO2 CPSOM CPSOM1 CPSOM2

12.65441 0.002623 0.00032 0.000709 9.608504 10.46939 11.60427
14.9686 12.13264 12.39382 12.22404 15.31318 15.60611 15.08629
13.69032 3.725323 2.585996 2.600068 11.61442 12.06622 12.8114
0.815488 4.849451 5.022837 4.948742 1.584104 1.503618 1.120934

 D=30
 PSO CPSO CPSO1 CPSO2 CPSOM CPSOM1 CPSOM2

25.44421 23.27029 24.16119 23.41681 22.3762 22.82363 25.01151
25.24805 20.78994 21.10782 20.00034 24.35923 20.32102 17.3837
24.38584 18.24011 17.55898 17.3837 22.11317 24.09354 13.8474
25.52825 15.03935 14.7054 13.8474 20.57749 23.54891 11.09909
24.69256 10.98845 12.37957 11.09909 20.90991 22.57798 9.044747
23.96387 7.786614 9.204992 9.044747 21.81795 23.64399 5.872516
23.43649 5.444626 6.200303 5.872516 24.96864 23.18691 4.153748
22.83932 2.68628 3.843773 4.153748 24.69238 22.85872 1.586254
21.95872 0.737856 1.499634 1.586254 24.13376 22.66534 0.24779
22.63532 0.131364 0.882529 0.24779 20.15327 22.87414 22.31824
21.95872 0.131364 0.882529 0.24779 20.15327 20.32102 0.24779
25.52825 23.27029 24.16119 23.41681 24.96864 24.09354 25.01151
23.9683 10.70971 11.38233 10.85975 22.60199 22.75073 11.31869
21.95872 0.131364 0.882529 0.24779 20.15327 20.32102 0.24779
25.52825 23.27029 24.16119 23.41681 24.96864 24.09354 25.01151
23.49714 7.753474 8.680051 8.199372 22.68379 22.67154 9.550961
1.26055 6.710197 6.399701 6.247195 1.652533 1.241008 7.182383

105

Appendix B: Rastrigrin Simulation Results

D=10
 PSO CPSO CPSO1 CPSO2 CPSOM CPSOM1 CPSOM2

7.959672457 1.989918 5.969754 1.989918 3.979841 2.984896 0.994959
6.9647134 5.969754 3.979836 2.984877 0.995383 0.99521 4.974795
7.959672457 1.989918 1.989918 3.979836 3.979853 2.984877 2.984877
7.959672457 2E-15 7.959667 3.979836 2.98488 2.984879 5.969754
7.959672457 3.979836 1.989918 1.989918 2.985448 0.994984 0
7.959672457 4.974795 1.989918 1.989918 3.624665 3.013232 2.985722
6.9647134 2.984877 5.969754 2.984877 3.775655 2.984878 2.984877
4.974795285 2.984877 1.989918 1.989918 0.996019 0 1.99357
6.9647134 3.979836 4.974795 3.979836 4.974799 1.989918 4.974795
7.959672457 3.979836 2.984877 1.989918 3.979859 2.984881 2.984921
4.974795285 2E-15 1.989918 1.989918 0.995383 0 0
7.362697022 3.283365 3.979836 2.785885 3.22764 2.191775 3.084827
7.959672457 5.969754 7.959667 3.979836 4.974799 3.013232 5.969754
4.974795285 2E-15 1.989918 1.989918 0.995383 0 0
7.959672457 5.969754 7.959667 3.979836 4.974799 3.013232 5.969754
6.910442906 3.464267 3.979835 2.695435 3.227677 1.835103 2.813475
0.96122177 1.694354 2.149356 0.914304 1.303357 1.131792 1.843339

D=20

 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
16.91430397 14.92438 12.93446 17.90925 17.92058 13.0003 12.04297
15.91934491 15.91933 13.92942 11.9395 24.91385 23.08105 17.91471
18.90422208 17.90926 21.88908 16.91429 17.92058 25.87178 20.95621
16.91430397 7.959672 10.94454 11.9395 25.3492 23.88613 17.93904
15.91934492 17.90925 13.92942 11.9395 26.32373 13.99532 13.83725
26.32372571 10.94454 11.93951 10.94455 17.92058 11.94915 10.97153
16.91430397 9.949591 13.92942 11.9395 17.92058 25.42521 23.98774
28.50376999 11.9395 11.9395 12.93446 17.92058 20.8488 12.85887
16.91430397 15.91931 17.90925 12.93446 20.50377 16.01282 15.39511
18.90422208 12.93446 18.90421 12.93446 19.96834 26.87325 17.94496
15.91934491 7.959672 10.94454 10.94455 17.92058 11.94915 10.97153
28.50376999 17.90926 21.88908 17 26.32373 26.87325 23.98774
19.71291337 13.51485 15.0902 13.35617 20.90884 19.98052 16.56731
15.91934491 7.959672 10.94454 10.94455 17.92058 11.94915 10.97153
28.50376999 17.90926 21.88908 16.91429 26.32373 26.87325 23.98774
21.09443762 13.16813 15.39171 12.98059 20.905 19.33908 16.4983
4.470941433 3.416182 3.555032 2.300148 3.498989 5.794101 4.13588

106

D=30

 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
27.8588536 8.954632 17.90925 15.91934 32.22532 19.43948 13.17637
27.8588536 11.9395 23.879 31.83866 29.75289 29.4346 31.84311
28.85381266 27.85883 28.85379 40.79325 18.17345 40.40168 24.29034
26.86389454 28.85377 34.82354 29.84873 29.08372 29.17302 23.21942
26.86389455 33.82858 23.87901 16.9143 37.90482 38.51367 29.86681
26.86389454 27.85883 19.89918 22.88403 35.50147 34.47192 36.20901
43.8588536 23.879 24.87396 17.90926 36.04048 40.3305 32.02557
43.8588536 21.88909 29.84875 19.89917 34.6957 36.22407 32.37525
27.8588536 15.91936 22.88404 23.879 40.78773 36.25866 29.22827
27.8588536 18.90422 36.81344 26.86388 32.74896 28.96988 28.96801
26.86389454 8.954632 17.90925 15.91934 18.17345 19.43948 13.17637
43.8588536 33.82858 36.81344 40.79325 40.78773 40.40168 36.20901
31.61011384 21.88909 26.53222 25.28852 32.15631 32.75489 27.54896
26.86389454 8.954632 17.90925 15.91934 18.17345 19.43948 13.17637
43.8588536 33.82858 36.81344 40.79325 40.78773 40.40168 36.20901
33.65625578 22.70315 26.74327 24.27848 33.43253 33.38235 28.6357
6.879109055 8.007193 6.137811 7.831487 6.222735 6.570589 6.494845

107

Appendix C: Griewank Simulation Results

 D=10
 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT

0 0.007396 0 0 0 0 0.00739604
0 0.007396 0.007396 0.007396 0 0 0.00739604
0.043476 0 0 0 0 0 0
0.085313 0 0 0 0 0.007396 0
0.007396 0.007396 0 0.007396 0.007396 0.007396 0.00739604
1E-15 0 0 0 0.007396 0 0
0.041013 0 0.007396 0 0 0 0
0 0.007396 0 0.007396 0.007396 0.007396 0.00739604
0.007396 0 0 0 0 0.043659 0
0.007396 0 0 0 0.007396 0 0
0 0 0 0 0 0 0
0.019199 0.002958 0.001479 0.002219 0.002958 0.006585 0.002958416
0.085313 0.007396 0.007396 0.007396 0.007396 0.043659 0.00739604
0.085313 0.007396 0.007396 0.007396 0.007396 0.043659 0.00739604
0.027272 0.002853 0.002219 0.0028 0.003381 0.011411 0.002852758
0.028536 0.003819 0.003118 0.003573 0.003819 0.013485 0.003819299

 D=20
 PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT

0 0 0.007396 0 0.007397 0.007402 0.007398195
0.009396 0 0 0 0 0 0
0 0.007396 0.004126 0.007396 0 0.007399 0
0.007396 0 2E-15 0.004134 0 0 0
0 0 0 0 0 0 0
0.007396 1E-15 0 0.007396 0 0 0
0 0 0 0 0 0.007405 0
0 0 0 0 0 0 0
0.007396 0 0.007396 0.007396 0 0.004653 0.007396148
0 0 0 0 1E-15 0 0
0 0 0 0 0 0 0
0.009396 0.007396 0.007396 0.007396 0.007397 0.007405 0.007398195
0.003415 0.001233 0.002193 0.00281 0.001233 0.002855 0.001849378
0.004206 0.002465 0.003291 0.003609 0.002466 0.003638 0.003261846

108

D=30
PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
1.06E-11 3.01E-12 0 1E-15 0.008222 0.005822 8.9E-13
8.04E-11 3E-15 4.87E-12 0 8.63E-12 0.007594 3.074E-12
6.07E-11 9E-15 5.3E-14 0 5.8E-14 3.69E-08 0.007443829
7.19E-11 0.001396 2.24E-13 2E-14 1.04E-10 5.88E-09 6.76E-13
2.32E-11 4E-15 6.4E-14 0 1.93E-13 3.57E-08 3E-15
1.53E-11 8.9E-14 2.91E-13 0.00604 0 0.008026 1.4505E-11
2.28E-11 1.7E-14 0.002567 3.9E-14 1.1E-11 0 6.7E-14
1.14E-11 3.7E-14 0 0 6.55E-12 0.007925 2.5492E-11
0.007396 1E-14 0 0 2.75E-12 0.007588 0.007431741
2.1E-11 0 0 1E-15 7.4E-14 0.005139 3.6E-14
1.06E-11 0 0 0 0 0 3E-15
0.007396 0.001396 0.002567 0.00604 0.008222 0.008026 0.007443829
0.001233 0.000233 0.000428 0.001007 0.00137 0.004177 0.00185995
1.06E-11 0 0 0 0 0 3E-15
0.007396 0.001396 0.002567 0.00604 0.008222 0.008026 0.007443829
0.002602 0.000336 0.000903 0.001454 0.001979 0.004542 0.002686594
0.003118 0.000589 0.001082 0.002547 0.0026 0.003957 0.003593766

109

Appendix D: Pressure Vessel Optimization

(Simulation Results)

PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
8796.884 7190.018 5989.492 6054.759 6399.267 5986.464 7209.17
8796.915 7003.932 5829.556 5932.188 5954.443 6092.014 6458.71
8797.004 6010.459 5861.232 6175.754 6228.004 6183.503 6283.905
8796.916 6020.994 5853.971 6119.498 6131.617 6055.247 5995.457
8796.896 6305.108 5989.457 5939.382 6209.942 6248.179 6197.416
8796.926 6248.081 6208.878 5864.28 6190.718 6014.459 5953.12
8796.913 6065.531 5873.009 5916.384 6060.783 5937.829 6261.098
8796.88 5925.38 6216.601 6091.931 5993.087 6158.28 6327.716
8796.876 6017.54 6195.007 6067.776 6014.935 5958.566 5927.957
8796.959 6153.132 5915.469 6236.646 6201.671 6241.259 5934.56
8796.892 6158.924 6001.134 6036.32 6024.932 6137.546 5935.668
8796.867 6035.853 5885.866 6091.923 5945.187 6243.576 6287.962
8796.87 5916.74 6063.848 6086.912 6081.729 5920.963 6103.301
8796.883 6015.536 5880.652 5910.816 5949.104 6034.898 6038.42
8796.947 6027.925 6076.797 5899.785 5987.478 6168.116 6071.911
8796.899 6116.141 5956.658 5995.417 5891.553 6164.952 6067.235
8796.871 6207.858 5954.31 5923.049 6177.071 6188.045 5977.582
8796.879 5988.475 5932.31 5962.83 6242.64 5992.153 5998.207
8796.885 5903.546 6074.185 6015.271 6090.186 6157.67 6032.622
8796.893 5987.078 5982.897 6100.399 6028.456 6328.228 6135.064
8796.867 5957.708 6179.165 6099.233 6028.003 6073.127 6069.775
8796.891 5932.197 6065.439 5979.789 6061.138 6265.008 6320.782
8796.895 5884.556 6220.362 6163.729 5831.785 6470.638 5984.26
8796.919 5962.767 5979.058 5933.845 6269.179 6335.704 6107.06
8796.871 6059.238 6087.931 6016.159 6224.667 6067.95 5895.28
8796.903 5857.927 6050.008 5877.105 6177.402 5878.712 6027.583
10176.55 5886.025 6039.791 5982.907 5872.66 6051.509 5892.388

110

PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
9342.754 5934.718 6097.069 6064.499 6175.912 5926.959 6108.169
9342.754 5962.668 5966.112 6137.385 6026.005 6117.226 6118.399
9342.754 5940.455 6101.746 5945.35 5886.543 6137.593 6121.822
9342.754 5910.321 6325.312 5936.039 6325.642 6277.084 6005.888
9342.754 6126.18 6005.179 6045.959 6064.574 6133.279 6102.08
9342.754 6192.029 6095.219 6106.576 6249.599 6395.565 6103.644
9342.754 6059.53 6049.481 5938.562 6010.594 6320.367 6376.837
9342.754 5835.759 6376.388 6202.906 6094.165 6234.844 6231.615
9342.754 6048.66 6045.709 5981.825 6093.162 6178.271 6376.061
9342.754 5861.292 6075.187 5899.497 6129.368 6099.708 6107.417
9342.754 6043.429 5860.821 6016.819 6052.186 6233.715 5940.814
9342.754 5927.741 5990.364 6105.484 5931.346 6293.671 6055.253
9342.754 5968.521 5931.883 6324.294 6026.83 6066.763 6025.135
9342.754 5836.176 5847.605 5904.54 6171.415 6356.82 5880.311
9342.754 5971.621 6102.715 5942.242 6087.72 6039.884 5862.23
9342.754 5912.351 5948.469 5997.299 5902.177 6048.295 6402.254
9342.754 5939.627 5997.607 6009.198 5921.249 6101.446 6308.219
9342.754 6333.629 6096.572 5988.621 6070.329 6055.331 6205.76
9342.754 5934.336 6143.406 5937.637 6126.126 6139.207 6073.765
9342.754 5867.223 6189.761 6301.411 6297.317 6220.028 6180.54
9342.754 5937.88 6037.557 6058.344 6178.109 5986.954 6002.698
9342.754 6180.656 6266.767 6388.048 6066.641 5951.942 5913.174
9342.754 5984.83 6318.091 6203.16 6208.309 6245.236 6097.64

111

Appendix E: Welded Beam Optimization

(Simulation Results)

PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
1.81428 1.72484 1.725005 1.726163 1.726586 1.743457 1.725143
1.814279 1.72484 1.724839 1.724868 1.729601 1.725709 1.725965
1.814279 1.724839 1.724839 1.72531 1.72957 1.725536 1.737385
1.814279 1.72484 1.724839 1.724846 1.740152 1.727841 1.729866
1.81428 1.726325 1.724843 1.740583 1.726071 1.741822 1.728633
1.81428 1.731532 1.724918 1.725166 1.728371 1.738443 1.727109
1.81428 1.724898 1.755606 1.724839 1.726196 1.726774 1.725896
1.814279 1.729475 1.724839 1.726643 1.72652 1.726875 1.726273
1.81428 1.724849 1.724841 1.724839 1.727664 1.725511 1.762249
1.81428 1.72484 1.72484 1.72484 1.728795 1.726096 1.731086
1.81428 1.724844 1.734566 1.724859 1.732981 1.726919 1.731236
1.814279 1.726098 1.833444 1.724839 1.738247 1.72806 1.730059
1.814279 1.724849 1.724854 1.72484 1.725804 1.727204 1.729139
1.81428 1.72484 1.72485 1.738992 1.731919 1.728399 1.72852
1.814281 1.725079 1.727079 1.724843 1.727055 1.732553 1.728771
1.814279 1.724998 1.724839 1.724839 1.736438 1.728774 1.725056
1.81428 1.724894 1.725759 1.724848 1.726573 1.725757 1.731783
1.81428 1.724855 1.724855 1.729096 1.729529 1.727897 1.730413
1.81428 1.724839 1.724849 1.72513 1.72948 1.726885 1.727682
1.814279 1.724848 1.724882 1.724903 1.725975 1.726114 1.726617
1.814279 1.729492 1.725104 1.724839 1.726924 1.726837 1.725142
1.814279 1.724854 1.739738 1.724839 1.728194 1.727484 1.734987
1.814283 1.772954 1.725939 1.72484 1.729634 1.730017 1.728455
1.81428 1.724839 1.725228 1.72484 1.731365 1.725723 1.735446
1.81428 1.724839 1.751026 1.724839 1.736005 1.72936 1.736384
1.81428 1.724848 1.724872 1.724875 1.72537 1.728552 1.725134
1.81428 1.724839 1.724839 1.734895 1.725756 1.727168 1.725573
1.814279 1.725056 1.724839 1.724839 1.726782 1.830611 1.729475

112

PSO CPSO CPSOS CPSOT CPSOM CPSOMS CPSOMT
1.814279 1.72485 1.725454 1.724839 1.729434 1.730033 1.725468
1.814279 1.724839 1.724839 1.724839 1.733766 1.729947 1.725624
1.814279 1.724868 1.724839 1.724841 1.726944 1.725078 1.729982
1.81428 1.724946 1.72484 1.724851 1.731285 1.728233 1.727708
1.814282 1.724841 1.724839 1.724839 1.726727 1.72632 1.725663
1.81428 1.724847 1.724876 1.733023 1.784874 1.7272 1.725487
1.81428 1.725769 1.725005 1.725237 1.733297 1.727176 1.725085
1.81428 1.724865 1.724861 1.725145 1.72538 1.726277 1.732099
1.81428 1.724839 1.724886 1.724842 1.734863 1.743071 1.727105
1.814279 1.724842 1.724844 1.724839 1.727989 1.726331 1.726081
1.814279 1.725345 1.724839 1.724839 1.733662 1.728173 1.726268
1.81428 1.724859 1.724843 1.72484 1.725761 1.725996 1.726016
1.81428 1.724839 1.724839 1.724885 1.727021 1.726528 1.726407
1.81428 1.738619 1.72511 1.748989 1.758437 1.725278 1.727995
1.81428 1.724898 1.724975 1.775117 1.733731 1.726811 1.749225
1.724852 1.724839 1.724863 1.72484 1.728956 1.726374 1.726936
1.724902 1.72484 1.731118 1.724839 1.732136 1.72576 1.725726
1.72486 1.724897 1.759771 1.724845 1.732397 1.733052 1.728529
1.726184 1.72484 1.72517 1.72484 1.732625 1.725097 1.7266
1.724852 1.724841 1.724839 1.724851 1.761494 1.729005 1.726723
1.726626 1.724841 1.725245 1.72484 1.727125 1.729705 1.729205
1.725056 1.724852 1.724975 1.724845 1.728287 1.732513 1.735197

113

Appendix F: Computer Codes

PSO%% Particle Swarm Optimization Simulation

% Simulates the movements of a swarm to minimize the objective function
% The swarm matrix is
% swarm(index, [location, velocity, best position, best
% value], [x, y components or the value component])
%%
%% %%%%%%%%%%%%%%Initialization%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc

correction_factor1 = 2;
correction_factor2 = 2;
wmax=1.2;
wmin=0.2;
iterations =100;
swarm_size = 40;
D=4;

for NR =1:1
for d=1:D
%%%%%%%%%%%Welding
 xmin=[0.1; 0.1; 0.1 ;0.1];
 xmax=[2.0; 10.0; 10.0; 2.0];
%%%%%%%%%%%%%%%%%%%%
 %xmin=[0;0];
%xmax=[6;6];
 xmin=[5 ;0.025; 0.0002; 0.5];
xmax=[40; 0.14; 0.002; 1.5];
%d1=0.0625;
xmin = [1;1;10;10];
d2=d1*99;
%xmax = [99; 99; 200; 200];
%xmin(d)=-5;
%xmax(d)=+5;
%xmin=[-5;0];
%xmax=[10;15];
end
%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size
 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 end

114

end

% Asumming of Global best value so far
swarm(:, 4, 1) = 100;
swarm(:, 3, 1) =200;
%initial velocity
swarm(:, 2, :) = 0;
gbest=4;

%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 val=moh(swarm,i,D,iter);

 % Stopping=abs(val-swarm(gbest,4,1));

 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;
 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 end
 end
 temp = global best position
 gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation=swarm(gbest,1,:);
 Fittness(iter,1)=temp;
 %%%------------------------------
 %--- updating velocity vectors

 for d=1:D

 swarm(i, 2, d) =(W(iter)*swarm(i, 2, d)...
 +correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
 + correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1,
d)));

 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=Vmax(d);

 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-Vmax(d);
 end

 %update particle's position

115

 swarm(i, 1, d) =(swarm(i, 1, d) +swarm(i, 2, d));

 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=xmin(d);
 end
 end
 end
 Final(NR,1)=temp;
 if Stopping<0.0001

 toc
 break
 end

end
AFinal(NR,1)=temp;
Ploting A good Figures
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white
h=plot(Fittness);
get(gcf);
get(gca);
get(h);
o modify the line style. Possible options are ':' dotted, '-' solid, '--'
dashed, '-.' dash-dotted
set(h,'linestyle','--');
set(h,'color','r');
set(h,'linewidth',5);
set(h,'marker','+');
set(h,'markersize',1);
set(gca,'box','off');
xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
 % 'fontweight','bold');
Legend('PSO','CSPO','CPSO1','CPSO2','CPSOM','CPSOM1','CPSOM2');
grid;
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white
hleg1 = legend('PSO','CPSOM','CPSO','CPSO1');
plot(Fittness,'k-')
[glob,iterF]=min(Fittness(:,1));
FINAL=glob;
FinalLocation=bestLocation(iterF,1,:);
plot (bestLocation,'dg-.','DisplayName', 'Fittness', 'YDataSource',
'Fittnes'); figure(gcf)

 Defines limits for x and y axes, and sets title, labels and legends
axis([0 2*pi -1.5 1.5])
title('2D plots', 'fontsize', 12)
xlabel('iteration')
ylabel('Fucntion Minimization')
legend('cos(x)', 'sin(x)')
axis([0 1000 0 0.5]);
hold on

116

end

CPSO

for NR =1:1
D=30
for d=1:D
xmin=[0; 0];
xmax=[6; 6];
%d1=0.0625;

%xmin = [1;1;10;10];
%d2=d1*99;
%xmax = [99; 99; 200; 200];
%%%%%%%%%%%%%%%%%%%%%%%
%xmin(d)=-5;
%xmax(d)=+5;
%xmin=[-5;0];
%xmax=[10;15];
End
gbest=3;
correction_factor1 = 2;
correction_factor2 = 2;
wmax=1.2;
wmin=0.2;
iterations =500;
swarm_size =40;

%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size
 swarm(i, 4, 1) =100;

 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 swarm(i, 2, d) = 0;
 end
end

% Asumming of Global best value so far
% initial velocity
%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 val=moh(swarm,i,D,iter);

 % Stopping=abs(val-swarm(gbest,4,1));

 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;

117

 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 end
 end
temp = global best position
 gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation(:,1,:)=swarm(gbest,1,:);
 Fittness(iter,1)=swarm(gbest,4,1);
 %%%------------------------------
 %--- updating velocity vectors

 for d=1:D
 f1=rand;
 f2=4.*f1.*(1-f1)
 swarm(i, 2, d) =f2^0.5*(W(iter)*swarm(i, 2, d)...
 +correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
 + correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1, d)));

 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=f2*Vmax(d);
 end
 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-f2*Vmax(d);
 end

 %update particle's position

 swarm(i, 1, d) =(swarm(i, 1, d) +f2*swarm(i, 2, d));

 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=f2*xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=f2*xmin(d);
 end
 end
 end
 Final(NR,1)=temp;
 if Stopping<0.0001
 Fiter=iter;
 toc
 break
 %end

end
 AFinal(NR,1)=temp;
%plot(Fittness,'k-')
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white
h=plot(Fittness);
get(gcf);
get(gca);
get(h);
%o modify the line style. Possible options are ':' dotted, '-' solid, '--'
%dashed, '-.' dash-dotted
set(h,'linestyle','--');
set(h,'color','c');
set(h,'linewidth',5);
set(h,'marker','d');
set(h,'markersize',1);

118

set(gca,'box','off');
xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
 'fontweight','bold');
Legend('PSO','CSPO','CPSO1','CPSO2','CPSOM','CPSOM1','CPSOM2');
grid;
 [glob,iterF]=min(Fittness(:,1));
FINAL=glob;
FinalLocation=bestLocation(iterF,1,:);
plot (bestLocation,'dg-.','DisplayName', 'Fittness', 'YDataSource', 'Fittnes');
figure(gcf)

% Defines limits for x and y axes, and sets title, labels and legends
axis([0 2*pi -1.5 1.5])
title('2D plots', 'fontsize', 12)
xlabel('iteration')
ylabel('Fucntion Minimization')
legend('cos(x)', 'sin(x)')
axis([0 1000 0 0.5]);
hold on
end

CPSOS

%% Particle Swarm Optimization Simulation
% Simulates the movements of a swarm to minimize the objective function
% The swarm matrix is
% swarm(index, [location, velocity, best position, best
% value], [x, y components or the value component])
%%
%% %%%%%%%%%%%%%%Initialization%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc
correction_factor1 = 2;
correction_factor2 = 2;
wmax=1.2;
wmin=0.2;
iterations =100;
swarm_size = 40;
for NR =1:1
for d=1:D
 xmax = [99; 99; 200; 200];
 xmin=[2 ;0.025; 0.0002; 0.5];
xmax=[40; 0.14; 0.002; 1.5];
%xmin(d)=-5;
%xmax(d)=+5;
%xmin=[-5;0];
%xmax=[10;15];
end
%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size
 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 end

119

end
% Asumming of Global best value so far
swarm(:, 4, 1) = 100;
%swarm(:, 3, 1) =200;
% initial velocity
swarm(:, 2, :) = 0;
%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 val=moh(swarm,i,D,iter);
 Stopping=abs(val-swarm(gbest,4,1));
 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;
 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 end
 end
 % temp = global best position
 gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation(iter,1,:)=swarm(gbest,1,:);
 Fittness(iter,1)=temp;
 %%%------------------------------
 %--- updating velocity vectors
 for d=1:D
 f1=rand;
 f2=4.*f1.*(1-f1);
 swarm(i, 2, d) =f2^0.5*(W(iter)*swarm(i, 2, d)...
 +f2*correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
 + correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1, d)));
 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=f2*Vmax(d);
 end
 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-f2*Vmax(d);
 end
 %update particle's position
 swarm(i, 1, d) =(swarm(i, 1, d) +f2*swarm(i, 2, d));
 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=f2*xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=f2*xmin(d);
 end
 end
 end
 Final(NR,1)=temp;
 if Stopping<0.0001
 Fiter=iter;
 toc
 break
 %end
end
AFinal(NR,1)=temp;
plot(Fittness,'k-')
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white

120

h=plot(Fittness);
get(gcf);
get(gca);
get(h);
o modify the line style. Possible options are ':' dotted, '-' solid, '--'
dashed, '-.' dash-dotted
set(h,'linestyle','-.');
set(h,'color','k');
set(h,'linewidth',5);
set(h,'marker','*');
set(h,'markersize',1);
set(gca,'box','off');
xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
 'fontweight','bold');
Legend('PSO','CSPO','CPSO1','CPSO2','CPSOM','CPSOM1','CPSOM2');
grid;
[glob,iterF]=min(Fittness(:,1));
FINAL=glob;
FinalLocation=bestLocation(iterF,1,:);
plot (bestLocation,'dg-.','DisplayName', 'Fittness', 'YDataSource', 'Fittnes');
figure(gcf)

% Defines limits for x and y axes, and sets title, labels and legends
axis([0 2*pi -1.5 1.5])
title('2D plots', 'fontsize', 12)
xlabel('iteration')
ylabel('Fucntion Minimization')
legend('cos(x)', 'sin(x)')
axis([0 1000 0 0.5]);
hold on
end

CPSOT
gbest=3;
correction_factor1 = 2;
correction_factor2 = 2;
wmax=1.2;
wmin=0.2;
iterations =500;
swarm_size = 40
for NR =1:50
for d=1:D
%xmax = [99; 99; 200; 200];
xmin(d)=-5;
xmax(d)=+5;
xmin=[-5;0];
xmax=[10;15];
end
%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size
 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 end
end

121

% Asumming of Global best value so far
swarm(:, 4, 1) = 100;
%swarm(:, 3, 1) =200;
% initial velocity
swarm(:, 2, :) = 0;
%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 val=weld(swarm,i,D,iter);
 % Stopping=abs(val-swarm(gbest,4,1));
 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;
 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 end
 end
 % temp = global best position
 % gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation(iter,1,:)=swarm(gbest,1,:);
 Fittness(iter,1)=temp;
 %%%------------------------------
 %--- updating velocity vectors
 for d=1:D
 f1=rand;
 f2=4.*f1.*(1-f1);
 swarm(i, 2, d) =f2^0.5*(W(iter)*swarm(i, 2, d)...
 +correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
+ f2*correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1, d)));
 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=f2*Vmax(d);
 end
 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-f2*Vmax(d);
 end
 %update particle's position
 swarm(i, 1, d) =(swarm(i, 1, d) +f2*swarm(i, 2, d));
 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=f2*xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=f2*xmin(d);
 end
 end
 end
 % Final(NR,1)=temp;
 %if Stopping<0.0001
 % Fiter=iter;
 % toc
 % break
 %end

end
AFinal(NR,1)=temp;

fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white

122

h=plot(Fittness);
get(gcf);
get(gca);
get(h);
%o modify the line style. Possible options are ':' dotted, '-' solid, '--'
%dashed, '-.' dash-dotted
set(h,'linestyle','-.');
set(h,'color','g');
set(h,'linewidth',5);
set(h,'marker','x');
set(h,'markersize',1);
set(gca,'box','off');
xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
 'fontweight','bold');
Legend('PSO','CSPO','CPSO1','CPSO2','CPSOM','CPSOM1','CPSOM2');
grid;

CPSOM

correction_factor1 = 1.5;
correction_factor2 = 2.5;
wmax=1.2;
wmin=0.2;
iterations =100;
swarm_size = 40;
D=4;
for NR =1:1
for d=1:D
%xmin=[-5;0];
%xmax=[10;15];
end
%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size

 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 end
end

% Asumming of Global best value so far
swarm(:, 4, 1) = 100;
%swarm(:, 3, 1) =200;
% initial velocity
swarm(:, 2, :) = 0;
%gbest=4;
%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 swarm(i, 1, 1)=int8(swarm(i, 1, 1));
 val=moh(swarm,i,D,iter);

123

 Stopping=abs(val-swarm(gbest,4,1));
 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;
 AAAAAA(iter,1)=val;
 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 AQQ(iter,d)= swarm(i, 1, d);
 end
 end
 % temp = global best position
 % gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation(1,:)=swarm(gbest,1,:);
 Fittness(iter,1)=temp;
 %%%------------------------------
 %--- updating velocity vectors
 for d=1:D
 f1=rand;
 f2=4.*f1.*(1-f1);
 swarm(i, 2, d) =f2^0.5*(W(iter)*swarm(i, 2, d)...
 +correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
 + correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1, d)));
 if iter >= iterations/2
 swarm(i, 2, d)= swarm(i, 2, d)+swarm(gbest,3, d)/swarm_size*exp
(W(iter)^2*f2);
 end
 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=f2*Vmax(d);
 end
 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-f2*Vmax(d);
 end
 %update particle's position
 swarm(i, 1, d) =(swarm(i, 1, d) +f2*swarm(i, 2, d))
 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=f2*xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=f2*xmin(d);
 end
 end
 end
 Final(NR,1)=temp;
 if Stopping<0.0001
 Fiter=iter;
 toc
 break
 end

end
AFinal(NR,1)=temp;
%======Ploting Nice figure
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white
h=plot(Fittness);
get(gcf);
get(gca);
get(h);
%o modify the line style. Possible options are ':' dotted, '-' solid, '--'
%dashed, '-.' dash-dotted
set(h,'linestyle',':');

124

set(h,'linewidth',5);
set(h,'marker','o');
set(h,'markersize',1);
set(gca,'box','off');
xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
grid;

%hleg1 = legend('CPSOM');
%plot(Fittness,'-bo')

%[glob,iterF]=min(Fittness(:,1));
%FINAL=glob;
%FinalLocation=bestLocation(iterF,1,:);
%plot (bestLocation,'dg-.','DisplayName', 'Fittness', 'YDataSource', 'Fittnes');
figure(gcf)

% Defines limits for x and y axes, and sets title, labels and legends
%axis([0 2*pi -1.5 1.5])
%title('2D plots', 'fontsize', 12)

%legend('cos(x)', 'sin(x)')
%axis([0 1000 0 0.5]);

hold on
end

CPSOMS

%% Particle Swarm Optimization Simulation
% Simulates the movements of a swarm to minimize the objective function
% The swarm matrix is
% swarm(index, [location, velocity, best position, best
% value], [x, y components or the value component])
%%
%% %%%%%%%%%%%%%%Initialization%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc

gbest=3;
correction_factor1 = 1.5;
correction_factor2 = 2.5;
wmax=1.2;
wmin=0.2;
iterations =500;
swarm_size = 40;
D=4;

for NR =1:50
for d=1:D
 %%%%%%%%%%%Welding
 xmin=[0.1; 0.1; 0.1 ;0.1];
 xmax=[2.0; 10.0; 10.0; 2.0];
%%%%%%%%%%%%%%%%%%%%
 %d1=0.0625;
%xmin = [1;1;10;10];
%d2=d1*99;

%xmax = [99; 99; 200; 200];

125

%xmin(d)=[2 ;0.025; 0.0002; 0.5];
%xmax=[40; 0.14; 0.002; 1.5];
%xmin(d)=-5;
%xmax(d)=+5;
%xmin=[-5;0];
%xmax=[10;15];
end
%--%
%tic
for iter=1:iterations
W(iter)=wmax-((wmax-wmin)/iterations)*iter;
end
% ---- initial swarm position -------------------------%
for d=1:D
 f2=0.3;
 Vmax(d)=f2*(xmax(d)-xmin(d));
end
for i=1:swarm_size
 for d= 1 : D
 swarm(i, 1, d) =(xmax(d)-xmin(d));
 end
end

% Asumming of Global best value so far
swarm(:, 4, 1) = 100;
%swarm(:, 3, 1) =200;
% initial velocity
swarm(:, 2, :) = 0;
%gbest=4;

%%%%%%%%%%%%% PSO search strat%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 %-----------------------------
 %%%%%fitness evaluation
 val=weld(swarm,i,D,iter);

 % Stopping=abs(val-swarm(gbest,4,1));

 if val < swarm(i, 4, 1)
 % local best valu
 swarm(i, 4, 1) = val;
 % if new position is better
 for d=1:D
 % update position of best solution of each particle
 swarm(i, 3, d) = swarm(i, 1, d);
 end
 end
 % temp = global best position
 % gbest= the particle that discoverd the best Solution
 [temp, gbest] = min(swarm(:, 4, 1));
 temp1=gbest;
 bestLocation(iter,1,:)=swarm(gbest,1,:);
 Fittness(iter,1)=temp;
 %%%------------------------------
 %--- updating velocity vectors

 for d=1:D

 f1=rand;
 f2=4.*f1.*(1-f1);

 swarm(i, 2, d) =f2^0.5*(W(iter)*swarm(i, 2, d)...

126

 +f2*correction_factor1*rand*(swarm(i, 3, d)- swarm(i, 1, d))...
 + correction_factor2*rand*(swarm(gbest, 1, d)- swarm(i, 1, d)));

 if iter >= iterations/2
 swarm(i, 2, d)= swarm(i, 2, d)+swarm(gbest,3, d)/swarm_size*exp
(W(iter)^2*f2);
 end
 if (swarm(i,2,d)>Vmax(d))
 swarm(i,2,d)=f2*Vmax(d);
 end
 if (swarm(i,2,d)<-Vmax(d))
 swarm(i,2,d)=-f2*Vmax(d);
 end

 %update particle's position

 swarm(i, 1, d) =(swarm(i, 1, d) +f2*swarm(i, 2, d));

 if (swarm(i,1,d)>xmax(d))
 swarm(i,1,d)=f2*xmax(d);
 end
 if (swarm(i,1,d)<xmin(d))
 swarm(i,1,d)=f2*xmin(d);
 end
 end
 end
 % Final(NR,1)=temp;
 %if Stopping<0.0001
 % Fiter=iter;
 % toc
 % break
 %end

end
AFinal(NR,1)=temp;
%plot(Fittness,'k-')
fh = figure(1); % returns the handle to the figure object
set(fh, 'color', 'white'); % sets the color to white
h=plot(Fittness);
get(gcf);
get(gca);
get(h);
%o modify the line style. Possible options are ':' dotted, '-' solid, '--'
%dashed, '-.' dash-dotted
set(h,'linestyle','-');
set(h,'color','y');
set(h,'linewidth',5);
set(h,'marker','s');
set(h,'markersize',1);
set(gca,'box','off');

xlabel('iteration','fontsize',12,...
 'fontweight','bold');
ylabel('Fucntion Minimization','fontsize',12,...
 'fontweight','bold');
%Legend('PSO','CSPO','CPSO1','CPSO2','CPSOM','CPSOM1','CPSOM2');

grid;

%[glob,iterF]=min(Fittness(:,1));
%FINAL=glob;
%FinalLocation=bestLocation(iterF,1,:);

127

%plot (bestLocation,'dg-.','DisplayName', 'Fittness', 'YDataSource', 'Fittnes');
figure(gcf)

% Defines limits for x and y axes, and sets title, labels and legends
%axis([0 2*pi -1.5 1.5])
%title('2D plots', 'fontsize', 12)
%xlabel('iteration')
%ylabel('Fucntion Minimization')
%legend('cos(x)', 'sin(x)')
%axis([0 1000 0 0.5]);

Benchmark Functions

function val= asd(swarm,i,D)
for d=1:D
 x(d)=swarm(i,1,d);
end
 val=0;
%-----------------------
Sphere
for d=1:D
val=val+x(d)^2;end
%--
%%Rosenbrock &&&&&&&x1&x2=[-5,5]
 for d=1:D-1
 a1=x(d+1)-(x(d))^2;
 b1=1-x(d);
 val=val+((100*(a1)^2+(b1)^2));
 end
%--
% Brianin function x1=[-5,10]& x2=[0,15]
val =(x(2)-(5.1/(4*pi^2))*x(1)^2+(5/pi)*x(1)-6)^2+(10*(1-
(1/(pi*8)))*cos(x(1))+10);
%---
 %Rastrigrin
 val=x(1)^2+x(2)^2-cos(18*x(1))-cos(18*x(2));
val=x(1)^2+x(2)^2-cos(18*x(1))-cos(18*x(2));
val=(4-(2.1*x(1)^2+x(1)^4/3))*x(1)^2+(x(1)*x(2))+(-4+4*x(2)^2)*x(2)^2;
for d=1:D
 val=val+(x(d)^2-(10*cos(2*pi*x(d)))+10);
 end
 %===========================
 % Griewank function
 n=D;
 fr = 4000;
 s = 0;
 p = 1;
 for d = 1:n; s = s+x(d)^2; end
 for d = 1:n; p = p*cos(x(d)/sqrt(d)); end
 val = s/fr-p+1;
%========================

