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Abstract 

The hole-drilling method for measuring residual stresses is generally applied to 

two extreme cases.  In the “thick” case, the specimen depth is very large compared with 

the hole depth.  The far boundary is then sufficiently distant that its effect can be 

neglected.  In the “thin” case, the specimen has the form of a thin plate through which the 

hole penetrates fully.  The thin plate creates plane-stress conditions and it is usually 

assumed that the associated residual stresses are uniform through the plate thickness.  

This research focuses on the intermediate case where the specimen has a thickness 

modestly greater than the hole depth.  The far boundary is then near enough to give 

significant influence, and the through-thickness residual stresses are non-uniform.  The 

finite specimen thickness and non-uniform residual stresses create significant bending 

deformations of the specimen during hole-drilling that are not present in either extreme 

case.  This bending effect creates out-of-plane deformations that can provide an 

opportunity for a novel measurement approach.  The “intermediate” case is investigated 

using an analytical model and by finite element analysis.  Experimental measurements 

are made using Electronic Speckle Pattern Interferometry (ESPI), and a comparison is 

made of the theoretical and experimental results.   
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Chapter 1 Introduction 

1.1 Residual Stress 

  Residual stresses are self-equilibrating stresses that exist within a material without 

an externally applied load.  They are often formed in the manufacturing process, for 

example by milling, forging, welding, and rapid temperature changes [1].  Consider the 

example of a metal rod at high temperature that is being quenched.  As the outside of the 

rod cools rapidly it will contract causing a tensile stress in the outer edge of the rod 

(figure 1a). This stress may cause some localized yielding in the outer edge of the rod as 

the stresses attempt to equalize (figure 1b).  Then as the interior of the rod starts to cool 

and shrink the outside of the rod becomes subject to a longitudinal compressive stress 

while the interior experiences a self-equilibrating tensile stress (figure 1c).   

 

       (a)                                              (b)                                            (c) 

Figure 1:  Showing the formation of residual stresses in a quenched metal bar. 

High levels of residual stresses also create problems when working with material.  

When milling highly stressed material, material removal causes the rest of the part to 

deform as the remaining stresses equalize.  This makes it very difficult to maintain 

accuracy when working with such parts, causing loss of time and material [2].  Some 

residual stresses can be beneficial and are deliberately introduced.  Shot peening 

purposefully induces high levels of compressive residual stresses in the surface layer of a 

part in order to increase fatigue resistance.  No matter the origin of the residual stresses it 

is imperative to be able to determine the magnitude and direction of these stresses 

accurately. 

1.2 Current Measurement Techniques 

  Because they exist without any external load, residual stresses cannot be 

measured by conventional stress measurement techniques.  There are several specialized 

Compression  

Tension 
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methods for measuring residual stresses.  These methods vary greatly in accuracy, ease of 

implementation and the depth into the part to which they can measure.   

1.2.1 Non-Destructive Tests 

As the name implies, non-destructive residual stress measurement techniques 

do not damage the target part during measurement.  These are non-contact techniques that 

include X-ray diffraction, neutron diffraction and ultrasonic methods.  These methods 

cause no damage to the work piece, but the results are often limited to those stresses very 

close to the surface of the part or else require major capital equipment. 

Diffraction methods rely on the change in crystal structure of a material under a 

load.  The workpiece is exposed to radiation close to the interplanar spacing of the crystal 

structure and the resulting scatter is imaged by a detector.  Using the observed scatter the 

stresses can be calculated using Bragg‟s Law [3].  This method allows for both the 

magnitude and principal direction of the stresses to be measured with no damage to the 

part.  This technique does have some drawbacks.  Firstly the use of X-ray or neutron 

radiation makes certain safety precautions necessary and makes it a very equipment 

intensive technique.  This method also suffers from very limited depth of measurement.  

When using X-rays, only those stresses in the surface of the part that can be penetrated by 

the radiation can be measured, for metals this is just a few microns.  Neutron diffraction 

measurements can identify deep interior stresses, but require the use of a specialized 

nuclear reactor. 

The ultrasonic method can also be used to measure residual stresses.  This method 

relies on the fact that elastic wave propagation in a solid depends on the mechanical 

stress within the solid.  An emitter generates ultrasonic waves that can then be detected 

and the stress calculated from the propagation characteristics [4].  This method is popular 

for measuring the strength of welds as no damage is done to the part and test equipment 

can be made fairly portable.  However, the technique requires detailed calibration and the 

results have only modest accuracy.   

1.2.2 Destructive Tests and Hole Drilling 

  There are several destructive methods to measure residual stresses.  The most 

common residual stress measurement method is the hole drilling method.  The hole 

drilling method involves drilling a small hole in the surface of a part and measuring the 

deformation of the surrounding surface and is detailed in the ASTM standard E-837 [5].  

This method is known as a semi-destructive method because the damage caused by 

drilling a small hole often does not seriously affect the functionality of the part. 

The hole drilling residual stress measurement method has been in use for many 

years.  Mathar first proposed the idea in the 1930s and since then the methods and 
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application have developed extensively [6].  There are several variations to this 

technique.  Slitting, excising and ring coring are fundamentally the same idea as hole 

drilling.  They all involve removing stressed material and measuring the local response of 

the material [7].   

 

1.2.3 Measurement Methods 

   The surface deformations can be measured in several ways.  Strain gauges are 

often used as the required equipment is relatively cheap and easy to set up and gives 

reliable results.  There are special three and six element strain gauge rosettes for use with 

hole drilling.  One drawback to using strain gauges is that they need to be glued to the 

surface of the part.  When a great number of tests are being done their cost and 

installation time can become quite significant. 

Several different optical methods can be used to measure the deformations of a 

drilled surface.  For example, Electronic Speckle Pattern Interferometry (ESPI) can be 

used to provide full-field measurements of surface deformations.  The sensitivity of this 

method depends on the wavelength of light being used, typically some hundreds of nano-

meters.  This method involves shining coherent laser light on a surface and imaging it 

with a CCD camera.  A hole is then drilled and the surface re-imaged.  The motion of the 

surface can then be computed by resulting phase change [8].  This method has several 

advantages: it is a full-field, non-contact method, and it can detect both in plane and out 

of plane motion of the surface. 

 

1.3 Range of Use  

The hole drilling method has been applied to two distinct cases.  The first case is 

the „thin‟ case where the hole penetrates the entire thickness of the part.   This is used for 

thin parts, such as sheet metal or thin plates.  The analytical solution to this case is given 

by the classical Kirsch solution and can be readily calculated.  With current procedures, 

stress profiling is not possible in this case.   

The second case is the „thick‟ case in which the thickness of the part is large 

compared with the hole diameter.  A minimum thickness of 1.2 times the diameter of the 

gauge circle is recommended by the ASTM standard [5].  In this case the part can be 

treated as being infinitely thick so all the deformations that occur from the drilling of the 

hole happen near the part and are not influenced by the part thickness.  The calibration 

constants for this case have been found experimentally and with finite element analysis 
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and are listed in the ASTM standard.  Stress profiling is possible for this case because 

there is no dependency on the depth of the hole in relation to the total part thickness. 

1.4 Introduction of Intermediate Case  

Many parts in the real world do not fall into either the thin or the thick categories.  

The far boundary is often likely to be close enough to play a significant role in the 

behaviour of the response.  This demonstrates the need for a hole drilling solution to the 

intermediate thickness work pieces.  Moreover, it is found that the behaviour of the 

intermediate case has elements that are not seen in either the thick or the thin case, which 

would lead to serious error if the cases are simply interpolated between the extreme 

cases, as is the implicit suggestion in ASTM E837.   

In the intermediate case there exists significant bending deformation.  This 

behaviour is not seen in either of the two previous cases.  In the thin case this is not 

present because the part is symmetric.  In the thick case, the substantial thickness of the 

part inhibits any significant bending.  This bending dominates the response for cases just 

thicker than the hole depth and makes a simple interpolation scheme infeasible.  This 

bending behaviour also provides critical insight needed to develop a mathematical model 

for the intermediate part. 

1.5 Proposed Method and Objectives 

The objective of this research is to enable application of the hole drilling method 

to specimens of any relative thickness, not just the two extreme cases.  The approach 

taken uses finite element analysis to conduct computer simulation of the behaviour of the 

intermediate case.  Numerical models of the behaviour are developed from these.  This 

method conveys the needed calibration constants through analytical equations which 

present the information much more compactly than if tables were made for each relative 

thickness.  The proposed method should also allow stress profiling on thin plates, which 

was not previously possible. 
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Chapter 2 Research Method 

This research uses a three-stage approach.  First the behaviour of the intermediate 

case is analysed using finite-element simulation.  This allows the case to be explored and 

to physically understand what is happening.  The second stage is to derive analytical 

equations that will allow the results to be applied easily.  The objective is to avoid the 

need for an extensive set of empirical calibration tables.  As an alternative to this, 

analytical equations are derived to reduce the use of tables needed to a more manageable 

amount.  The final stage is to perform physical experiments to validate the new method.  

This will ensure that the finite element analysis and mathematical approximations are 

valid for practical applications. 

2.1  Finite Element Analysis (FEA) 

Finite element analysis is used in this research for its ability to produce accurate 

data for many different cases accurately and to develop a deep intuitive understanding of 

the behaviour of the intermediate thickness specimen.  This intuitive understanding was 

critical to the success of the research because it helped identify the controlling behaviour 

described by the mathematical model. 

2.1.1 Case A 

  Two calibration constants are needed for the hole drilling method.  The two 

constants are ā and Ђ, indicated by the red arrows.  These constants relate the measured 

strains to the residual stresses as seen in equation 1.  The need for these constants arises 

from the fact that the strains, ε, are not measured at the location of the stresses, σy, σx and 

τxy.  E is defined as Young‟s modulus, υ is Poisson‟s ratio, and θ is the angle from the 

principle stress direction. 

      (1) 

 

The first term of equation 1 relates the axisymmetric stresses to the measured 

strain.  This is termed the “A” case.  The second term of the equation similarly relates the 

45-degree shear stress and the axial shear stress.  This is termed the “B” case and will be 

discussed later. 
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2.1.1.1 Axis-Symmetry 

The A case exhibits rotational symmetry about the center of the hole.  This allows 

the analysis to be reduced to a 2-D problem for which axisymmetric finite elements can 

be used.  By reducing the problem from a 3-D to a 2-D problem, the model is simplified 

and the computation time substantially reduced. 

2.1.1.2 Loads and Constraints 

To simulate the residual stresses in a workpiece, a load is applied at the inner edge 

of the hole, as indicated by the arrows in figure 2.  By superposition, this is shown to be 

an appropriate method to model the stresses relieved by hole drilling [9].   The inner edge 

of the model must be constrained in the radial direction and the outer edge must be 

pinned in the normal direction to fully constrain the model.  The model is 40 times the 

hole radius wide and varies in thickness from the hole depth to 20 times the hole depth.  

These outer boundaries are found to be sufficiently far as increasing it further has no 

impact.   

  

Figure 2: Diagram of FEA analysis showing loads applied at inner edge of hole and 

constraints. 

 

2.1.2 Case B 

  The second term in equation 1 describes the effect of shear stresses.  This is 

termed the “B” case and uses the calibration constant Ђ to relate the measured strains to 

the stresses.  This case can be examined the same way that case A is but with the addition 

of cos2θ and sin2θ terms.  All deformations have the same trigonometric variations and 
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so the model can still be reduced to a two dimensional problem.  Specialized, “axi-

harmonic” finite elements are available to handle this case.  The finite element analysis is 

performed similar to case A with the appropriate changes.    

2.1.3 Out of Plane Bending 

  When the intermediate specimen is analysed, a behaviour not seen in either the 

thin case or the thick case is present.  Out-of-plane bending occurs which is seen in 

neither of the previous cases, and shown in figure 3.  This bending is caused by the loss 

of symmetry exhibited in the thin case and the lack of stiffness of the thick case.   

 

Figure 3:  Finite element analysis showing out of plane bending for a workpiece just 

thicker than the thin case. 

  The out-of-plane bending affects the response of the A case as it transitions from 

thin, through to intermediate and then to thick.  Specifically, the bending augments the 

displacements, which in turn increases the calibration constant ā.  Figure 4 shows the 

variation of calibration constant ā with specimen thickness for four different hole depths.  

The points at the left side of the graph correspond to the “thin” case.  They are all equal 

because the stress distribution around the drilled hole is independent of plate thickness.  

The points at the right side of the graph correspond to the “thick” case.  Both of these sets 

of points are separately tabulated in ASTM Standard Test Procedure E-837.   Figure 4 

shows that the “intermediate” behaviour is not a simple interpolation of the extreme 

cases. The prominent peaks on the left side of the graph are caused by the out-of-plane 

bending illustrated in Figure 3. 
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Figure 4:  Calibration constant ā for a type “A’ strain gauge rosette (ASTM E837) for a 

range of material thickness.  Previously known calibration constants are plotted at the two 

extreme ends and show good agreement with the finite element analysis. 

 

2.2 Analytical Model 

  Currently the calibration constants are listed in the ASTM standard in sets of 

tables.  This works for the current application because there is only a dependence on the 

hole diameter, depth and rosette type used.  This means that the calibration constants can 

be shown effectively within a compact set of tables.  However, in the intermediate case a 

fourth dependence is created, specifically the part thickness.  This adds a new dimension 

that greatly multiplies the number of tables required, thus making this approach 

impractical.  By deriving analytical equations that convey this information, it is possible 

to handle the intermediate case using the equation and existing tables only, and without 

requiring any further tables. 

2.2.1 Ring-Disk Approximation 

  The behaviour of this model is complex so simplifying assumptions must be made 

in order to create a workable equation.  Using the insight from the finite element analysis, 

to the plate and hole are modeled as an inner disk surrounded by an outer ring, as shown 

in Figures 5 and 6.   



9 

 

 

Figure 5: Deformed shape of a thin plate with drilled hole, illustrating the associated bending 

deformation.   

 

Figure 6: Showing the bending of the ring and disk. 

 

2.2.2 Load Distribution 

  The reaction of the part is a combination of both the horizontal displacement and 

the bending.   The load is shared by both the inner disk and the outer ring.  Forces and 

moments are shown in figure 7.  Equations are derived for the load balance of the part to 

enforce equilibrium. 

 

 

Figure 7: Defining the loads on the inner ring and outer disk. 
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Equivalent radial force, S, from the pressure, P, on the inner wall, where h is the hole 

depth and a is the hole radius. 

           (2) 

Net radial force on inner disk 

 

Net radial force on outer ring 

      (3) 

Net moment acting on inner disk 

 

 

Net moment acting on outer ring 

             (4) 

 

 

Figure 8: Defining the displacements of the system. 

 

The horizontal motion at center of outer ring at the ring-disk boundary is defined 

as Δ, and the horizontal motion at center of inner disk at the ring-disk boundary is defined 

as δ, as shown in figure 8.  These can be related to each other by equation 5. 

       (5) 
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Elastic stiffness for the inner disk and outer ring are defined as k1 and k2 

respectively.  Where small k represents the horizontal stiffness and big K represents the 

bending stiffness. 

       (6) 

      (7)  

Using equations 3, 4 and 5, δ and θ are solved for  

              (8) 

       (9) 

 

Given  the net moment acting on outer ring is: 

    
                      

     
                 

           (10) 

The net horizontal force C is similarly: 

    
                       

                     
            (11) 

 

For case A the stiffness values are given below: 

     
      

   
     

  

   
    

 (11a) 

               
       

       
                 

   

       
          

  

 

2.2.3 Equations for Case A 

  Four separate equations are needed.  Equations are required for the bending of the 

inner disk and outer ring, as well as for the radial displacement of the inner disk and outer 
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ring.  These equations can then be combined to evaluate the load distribution and finally 

the surface displacements. 

  For the A case the analytical equation for the outer ring‟s horizontal displacement 

is easily calculated.  The equation comes from the horizontal displacement of a thick 

cylinder with a pressure applied at the inner edge. 

The in-plane stresses in the radial and tangential directions are described by the Lamé 

equations: 

       (12) 

      (13) 

For the case with a pressure, P, applied at the inner edge, substitute the boundary 

conditions        at r = a and      at r = ∞ gives 

 

     
   

  
          (14) 

 

   
   

  
          (15) 

Applying Hooke‟s law:  

      (16) 

 

and noting that for axi-symmetric geometry the radial displacement is 

              (17) 

Then the radial displacement for the outer ring is  

                  (18) 
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The equations for the bending of the outer ring can be found in [10].  The case 

described in the test is a ring with an inner radius of a and an outer radius of b.  This ring 

is then loaded by a moment r at the inner boundary. 

    

    
                                                        

                
  (19) 

The case of interest for this analysis is the infinite case where b goes to infinity. 

   

    
                                     

         
   (20) 

 

    
                                

         
         (21) 

   

  
  

 

   

      
       (22) 

Where D is the elastic stiffness 

     (23) 

This gives the angular deflection as a function of r 

 

 

  
  

 

         

           (24) 

Integrating this gives the vertical displacement 
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              (25) 

    (26) 

               (27) 

Setting the vertical displacement at the hole edge equal to 0  

             (28) 

    (29) 

     (30) 

   (31) 

Combining terms gives the vertical displacement as a function of radius 

            (32) 

 

 

The in-plane displacements come from two sources: the horizontal displacement 

of the outer ring and from the out-of-plane bending of the ring.  These contributions are 

illustrated in figure 9. 

  

Figure 9: Demonstrating the contributions to horizontal surface displacement. 

  The net force and net moment acting on the outer ring are given by Q, the net 

moment (eq 10) and C, the net force (eq 11).  The displacement from the horizontal 

displacement of the outer ring is given by: 
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    (33) 

The portion of the radial displacement contributed by the bending of the ring is 

given by the sin of the angular deflection times the thickness of the part.  

 

               
 

 
         (34) 

This term is then simplified by taking the Taylor expansion of the sin term. 

  

               
 

 
   

  

  
 

  

  
     (35) 

Dropping all but the first term gives 

 

               
 

 
      (36) 

Theta at any radial location is given by the equation 

  
  

 

         

       (37) 

Substituting Q (net moment) in for M and combining with equation 36 

    (38) 

Combining the two contributions gives the total radial displacement as a function 

of r using the load distribution from equations 10 and 11 

   (39) 

 

This equation can then be used to calculate the known value ā using the method 

described in [11].  Equation 40 calculates the strain gauge response from displacement 

data. 
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       ,             ,     

    

 
   

 
             

    

 
   

     (40) 

 

Figure 10: Strain gauge grid lines.  The strain is calculated by summing the 

displacements at each end point as described in equation 40. 

  

Where Y(j) is the value of grid line n and X1(j) and X2(j) are the values of the end 

points as can be seen in figure 10.  The displacements are then calculated at each end 

point and summed to compute ε* 
then from there ā can be calculated using equation 41.  

Where σA is the equi-biaxial stress field, σA = σx = σy . 

   

  
  

   
     (41) 
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Figure 11: Comparison of calibration constant ā for mathematical solution and 

finite element solution.   

The mathematical solution agrees well for relatively thin parts, but does not agree 

with the finite element analysis as the part thickness gets large in relation to hole depth.  

This is illustrated in figure 11.  The cause of this discrepancy comes from the simplifying 

assumptions.  The mathematical model treats the workpiece as a thin plate.  As the 

thickness becomes great the deformations all occur locally to the hole edge.  This is not 

problematic, because the response for the thick case is already well known.  A non-linear 

interpolation function is used to bridge thin and thick cases. 

  
 

 
    

 

 
                

 

 
          (42) 

 Where        
 

 
          

 

 
 
 

 
   

 

  

The interpolation function was chosen because it spans the range 1 to 0 as W/h 

varies from 1 to infinity.  Near W/h=1, the function has unit value with zero gradient to 

allow the mathematical solution to apply over a significant range of small W/h.  For large 

W/h, the function tends to zero so that the interpolation moves to the ASTM solution.  

The weighting given to each solution is shown in figure 12. The 0.2h/a factor in the 

equation was found empirically. 
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Figure 12: Showing weighting of mathematical solution and known thick case 

solution for interpolation function. 

 

Figure 13 plots the calibration constant ā in the same way as figure 11, but with 

the additional interpolation function to the thick case.  Looking at the graph of the 

calibration constants with the modified math solution and the interpolation function it is 

clear that the adjustments are effective in producing useable data. 

 

Figure 13: Comparing calibration constant ā for mathematical solution and finite 

element solution with adjustment and interpolation. 
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ESPI measurements have the advantage that they can measure either in plane 

displacements or out of plane displacements.    The equations for the out of plane motion 

can also be used with the load distribution derived above.  The equation for the vertical 

displacement as a function of radius shown previously is combined with the net moment 

acting on the outer ring. 

 

 

Figure 14: Out-of-plane relative displacements 

The out-of-plane bending case shown in Fig.14 needs no interpolation to the thick 

case because as the part gets thicker the stiffness increases such that the out of plane 

bending tends to zero.  The intermediate case will be sensitive for thicknesses modestly 

greater than the thin case but cannot be used for very thick specimens.   

 

2.2.4 Equations for Case B 

The second case needed to analyse hole drilling data is the shear stress case.  This 

case corresponds to the calibration constant ƀ.  The equations for the B case are derived 

in a similar fashion as those for the A case.  There is an additional dependency because 

these equations are no longer axi-symmetric; the equations all vary with the sine or 

cosine of 2θ.  The load distribution is the same as in the A case but with different values 

for the stiffness‟s of the inner disk and outer ring.  The new values are: 
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 (43) 

                     
       

       
          

   

      
    

The net horizontal force C and moment Q can then be calculated by substituting 

the new „k‟ values into the previously derived equations. 

    
                      

     
                 

           (44) 

    
                       

                     
            (45) 

The load distribution equations may then be applied to the equations of motion for 

the outer ring.   

For the B case the in-plane displacements are given by the equation for a thin 

plate with a hole with a pressure, P, applied at the inner edge.  The derivation for this 

equation can be found in [2]. 

   
  

 
  

  

  
      

  

  
             (46) 

   

   
  

 
       

  

  
      

  

  
              (47) 

The equations bending of the outer ring for the B case were derived from the 

general plate solution laid out in [12].  The bending of the outer ring is an anticlastic 

bending case that forms a saddle shape.   

The equation for a thin plate with no lateral load is 

         (48) 

Where 

       (49) 

For the anticlastic case  

        (50) 
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Using the general solution of form  

    (51) 

Integrating this equation leads to 

      (52) 

 

For a nontrivial solution, n = -2, 0, 2 or 4 

      (53) 

The integration can be evaluated from here using the boundary conditions. 

                         (54) 

               

Using the general solutions from [12]. 

           (55) 

            (56) 

           (57) 

           (58) 

For 

                
  

  
   

   

  
          (59) 

                                   (60) 

Using the above equation sets, the constants of integration C1 and C2 can be 

solved for.   
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                          (61) 

Inserting this into the original equation gives the out of plane displacement as a 

function of radius and theta for a bi-harmonic moment applied at the hole edge. 

   ,    
        

     
                    (62) 

Differentiating this in the radial direction gives radial slope. 

   
  

  
  

      

   

  

  
                    (63) 

Differentiating in the tangential direction gives tangential slope. 

   
 

 

  

  
  

      

   

  

  
                    (64)  

As in the A case the total radial displacement is the sum of the in-plane and 

bending deformation. 

    ,                  
 

 
              (65) 

The B case also has a tangential displacement not seen in the A case.  This can be 

calculated in the same way that the radial displacement is found. 

    ,                  
 

 
             (66) 

Substituting previous equations and the load distribution, Q and C, into these we 

find the radial and tangential displacement for the B case as a function of r and θ. 

    ,     
  

   
  

  

  
      

  

  
  

 

 

      

   

  

  
            (67) 

    ,     
  

   
       

  

  
      

  

  
  

 

 

      

   

  

  
                (68) 

Using the same procedure outlined above for the A case, the displacement data is 

used to compute the calibration coefficient Ђ.  These results are then plotted the same 

way as the A case and shown in figure 15. 
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Figure 15: Calibration constant Ђ for various normalized hole depths as relative 

part thickness increases. 

The above graph shows significant discrepancies between the mathematical 

solution and the known solution.  This is caused by the deflection at the boundary 

between the outer ring and the inner disk.  This deflection is more significant than the A 

case because the stress concentration factor for the B case is double that of the A case.  

The boundary between the inner disk and outer ring staying linear is one of the initial 

assumptions.  The fact that this is not the case, as shown in figure 16, means that the 

equations are no longer valid.  Adjustments to the mathematical solution are proposed to 

account for this discrepancy.   
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Figure 16: Displacements through part thickness at various radiuses for case B 

comparing finite element analysis data to math solution.  

 (Displacements are plotted r+ur  for clarity) 

The adjustments were selected so that a minimum change to the equations was 

made while still getting good agreement.  These adjustments were found empirically by 

examining the finite element data.  The surface deformations over a wide range of 

thicknesses and hole depths were used as well as the through thickness information. 
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The area at the hole boundary still does not agree but this is admissible due to the 

fact that the deformations are measured further away from the edge of the hole for both 

ESPI and strain gauge measurements.  Measuring away from the edge of the hole also 

helps to avoid the local damage that may be caused during the drilling process.  The 

displacements from the modified mathematical solution are displayed in figure 17. 
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Figure 17: Displacements through part thickness at various radiuses for case B 

comparing finite element analysis data to the modified math solution (equation 69-71).  

 (Displacements are plotted r+ur  for clarity) 

These new equations are then used to reproduce the previous graph showing the 

variation of the calibration constant Ђ with respect to part thickness.   
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Figure 18: Calibration constant Ђ for various hole depths as relative part 

thickness increases with adjustments to math. 

The results in figure 18 compare much better than with the unadjusted math.  The 

interpolation disused in the previous chapter is now applied in the same way that it was 

for the A case.  The resulting graph is presented in figure 19 and the out of plane graph is 

shown in figure 20. 
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Figure 19: Calibration constant Ђ for various hole depths as relative part 

thickness increases with adjustments to math and thick case interpolated. 

 

Figure 20: Relative out-of-plane displacements for various hole depths as relative 

part thickness increases. 
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2.2.5 Stress Profiling 

In residually stressed parts, the stresses are often not uniform through the 

thickness of the part.  The stress profile describes how the stresses vary with respect to 

depth.  The stress profile is often of specific interest because processes such as shot 

peening or other surface treatments create stresses whose magnitude changes 

significantly with depth.  

 

Figure 21:  Stress profiles for average stress measurements (a), and stress profiling 

measurements (b)  (adapted from [13]) 

The stress profile is measured by drilling incrementally into the workpiece.  The 

strain around the hole is measured after each incremental depth is drilled.  The stresses 

are then calculated at each step.  Several methods for determining the stress profile exist 

in the literature including the Incremental Strain Method, Average Stress Method, Power 

Series Method and Integral Method.  A good overview of the various methods is given in 

[13] and [14].  The Integral Method for determining stress profiles is the most accurate.  

The stress at each depth can be calculated from equation 72 given below.  For clarity the 

A case is discussed here, but the B case can be analyzed similarly by simply substituting 

the corresponding B values for the A values here. 
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       (72) 

 
Where ε  = Measured strain relaxation after the ith hole depth increment 

   = Equivalent uniform stress within the jth hole depth increment 

    = Strain relaxation due to a unit stress within increment j of a hole i increments deep   

which can be calculated from equation 41 

n = total number of hole depth increments 

 

 

Figure 22:  Physical interpretation of     from equation 72   (adapted from [13]) 

Having a mathematical solution that can calculate     and     for any part 

thickness allows the application of stress profiling methods to the thin and intermediate 

thickness workpiece. This significantly broadens the application of the hole drilling 

method as measuring stress profiles for thin workpieces is often quite desirable.   
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Chapter 3 Application of Results 

 

3.1 Experimental Validation 

In order to validate the equations derived above, the equations are compared to 

physical tests.  Test specimens were prepared so as to have minimal residual stresses.  

These specimens were then bent to a known curvature to impart a known stress state.  

The specimens were then measured with the newly derived technique and results 

compared to the expected values.   

 

3.2 Experimental Setup 

The experimental setup is shown in figure 23.  All elements in the experimental 

setup are mounted on an optical table which can be seen in the background.  This allows 

everything to be rigidly fixed to the base.  The optical table then sits on air bearings to 

minimize the vibrations from the surroundings and the entire setup is enclosed in a 

housing to prevent air currents or dust from disturbing the setup. 

 

Figure 23:  Layout of experimental setup. 1  Specimen, 2  Reference beam mirror, 3  Drill, 

 4  ESPI box, 5  Drill stage, 6  CCD Camera 

 2 

 3 

 5 

 4 

 1 

 6 
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The specimen is held in the specimen holder figure 23 object 1 and figure 24.  

The specimen holder consists of a base with slots for bolts to mount it to the optical table 

and a machined curve on the front with a section milled out.  The specimen is bolted to 

the curved front of the specimen holder.  The curvature bends the specimen to a known 

radius and this imparts calculable stresses.  These stresses can be calculated using 

equation 73 and figure 25.  The milled out area allows the specimen to be free from 

behind so the thin case assumptions hold true.  For the specimen holder used in this 

experiment the bend radius,       , is 561.8 mm. 

 

Figure 24:  Specimen holder.  Note the curvature on the front where the specimen mount and the slot 

machined out to allow for the thin case assumption. 

 

  
 

      
         (73) 

 

 

Figure 25:  Bending of specimen showing linearly varying stresses through the thickness of the part 

 Y 

 r curve 

 W 
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 A standard test specimen is shown in figure 26.  Proper specimen preparation is 

paramount to obtaining good results.  The specimen must be free of any initial residual 

stresses.  Annealing the specimen is not an option as this weakens the material too much 

and plastic yielding occurs.  Specimen are cut out of 6061 T-6 aluminum and are 

skimmed with a fly cutter.  Skimming the specimen removes ten to twenty thousandths of 

an inch of material off each side.  High levels of residual stresses are often present in this 

area from the rolling process used to make the sheet metal.  The skimming operation 

imparts minimal stresses back into the material because fly cutters provide single point 

contact cutting and low thermal gradients.  As a final step, the surface of the specimen is 

painted with a thin layer of white paint.  This provides the needed surface roughness for 

ESPI speckles and reduces glare giving a more evenly illuminated surface. 

 

 

Figure 26: Specimen.  This specimen has been skimmed to remove the surface stresses and painted with 

a thin coat of white paint. 

 

The surface of the part is illuminated by a custom built ESPI setup, figure 23 

object 4.  This provides the interference pattern and phase stepping needed for the 

measurement tecnique, and will be discussed later. 

The mirror noted by object 2 in figure 23 is needed to reflect the reference beam 

back onto the specimen as shown in figure 27.  Having the two beams shine on the 

specimen at these angles produces a sensitivity vector in the x plane of the specemine.  

From this overhead view, that would be horizontal on the surface of the part.  This means 

that the displacements in the X direction are the only diplacements measured directly. 
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Figure 27:  Path layout of object beam (right) and reference beam (left) from ESPI box to specimen 

holder. 

  The speckle pattern is imaged by a camera, figure 23 object 6.  The image is then 

stored on the computer for computation.   

  The drill, figure 23 object 3, is a high speed drill.  Using a high speed drill helps 

to minimize stresses induced by the drilling process.  A vacuum tube is attached to the 

head of the drill in an effort to capture chips as they are ejected.  After the hole is drilled 

the part is lightly blown with compressed air which helps to remove any of the chips that 

may have landed on the part surface. 

  The drill is actuated by a three axis stage, figure 23 object 5, which is computer 

controlled.  This stage is accurate to plus or minus twenty thousandths of a millimetre.  

This allows the depth of cut to be controlled accurately and also ensures that subsequent 

depth steps are positioned concentrically. 

    The drill is fitted with an electrical contact sensor.  This senses when the metal 

drill comes into contact with the part surface.  This is ensures that the surface is correctly 

known so that the first depth step is the correct depth.  Using electrical contact to sense 

the part surface also allows the thin layer of paint to be drilled through and the actual 

surface detected. 
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3.3 Electronic Speckle Patten Interferometry 

The experimental setup uses Electronic Speckle Pattern Interferometry (ESPI) to 

measure surface displacements as a hole is drilled in a specimen.  The stresses in the 

specimen are known and compared to the measured values to determine the accuracy of 

the method.   

The ESPI box was designed and fabricated specifically for this experiment.  The 

design was focused in providing maximum stiffness to all parts, compactness of space 

and reliability.  This design and fabrication represented significant investment of time 

and energy and a significant contribution to the lab.  Stiffness of each component is 

critical as the ESPI method relies on all components remaining stable and even variations 

on the order of tens of nano-meters is enough to disrupt the measurement.  The lenses 

need to be adjustable so the beams can be made parallel but rigid as well posing 

challenging design constraints.  Compactness of space for the entire setup is desirable as 

the workspace is fairly constrained already.  Reliability and ease of trouble shooting is 

important to the design for future use.  The setup should be easily used and maintained 

for many future experiments.  The entire circuitry is fuse protected and several status 

LEDs alert the user to potential problems and the current state of the device.  Previous 

iterations did not include this feature and caused problems as the laser was overheating 

and becoming unstable.  This was causing poor measurement quality, but the variations 

in laser intensity were not noticeable to the naked eye, making the problem hard to trace.  

These LEDs make future similar problems easy to identify and fix should they arrive. 

The ESPI setup is pictured in figure 28 and the beam path is illustrated in figure 

29.  The apparatus consists of a laser that passes through a beam expander and a 

cylindrical lens.  The purpose of the cylindrical lens is to create a uniform intensity 

distribution on the surface of the part knowing that the beam will impinge obliquely.  The 

beam then travels through a series of mirrors and a beam splitter that diverges the beam 

into two paths.  One beam path travels directly out the front of the apparatus, while the 

other reflects off a piezo mounted mirror before traveling out the front parallel to the first 

beam.  Just before the beams travel out the front of the apparatus they go through a final 

lens to collimate the beam.  The final result is two parallel collimated beams, one of 

which can be stepped by the piezo.  
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Figure 28:  Layout inside ESPI box.  1  Collimating mirrors, 2  Laser, 3  Beam splitter, 4  Piezo stepped 

mirror, 5  Status LEDs, 6  Power supply, 7  Power, fuse protection and lock out key, 8  Power 

button 

 

Figure 29:  Beam path of the ESPI box.   

 

Electronic speckle pattern interferometry is an optical method of measuring 

surface deformation [15].  ESPI relies on the interference of two coherent beams.  

Various beam arrangements can be made for measuring deformations either in-plane or 

out-of-plane.  The setup used in this research measures in-plane displacements.  When 

1 2 3 4 5 

6 7 8 
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the two beams combine on the surface of the part, the light scatters off the roughness of 

the part and the constructive or destructive interference of the light creates speckles.  The 

interference of the beams due to the surface roughness is shown in figure 30.  The 

speckles in this method are said to be subjective because their size depends on the 

aperture of the lens that they are viewed by.   

 

 

 

Figure 30:  Ray diagram for ESPI speckles.  Showing two beams reflecting off rough surface and 

resulting interference being imaged by camera. 

 

The ESPI method uses two sets of four images, one set taken before the hole is 

drilled, figure 31, and one set taken after the hole is drilled, figure 32.  Each one of the 

four images corresponds to the phase step of 90 degrees.  

 

 

 Beam 1 

 Beam 2 

 Image sensor 
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Figure 31:  Set of four reference images for ESPI measurement.  Images correspond to phase 

steps 0, 90, 180 and 270. 
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Figure 32:  Set of four measurement images for ESPI measurement.  Images correspond to phase 

steps 0, 90, 180 and 270.  Notice the hole in the center of the image.   

 

  The intensity of each pixel, I, is a function of the two beams, Ia and Ib, and their 

relative phase shift,   R -  .  If they are in phase they will combine constructively, and if 

they are out of phase they will cancel each other out.  The intensity of a pixel for each 

phase step is shown below.   

       
    

                 (74) 

        
    

               

         
    

               

         
    

               

These four equations can be combined to solve for the relative phase change using 

the following equation.  This is demonstrated visually in figure 33. 

            
            

           
          (75) 

This phase change can then be used to find the surface displacement. 
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Figure 33:  Using phase stepping and intensity data to compute relative phase change.  Adapted 

from[16]. 

 

  Plotting the relative phase change at each pixel creates an image like the one in 

figure 34.  This is known as a fringe image.  The fringe image can be converted into a 

displacement image knowing that each variation from light to dark is one quarter 

wavelength, which for the green laser used in this experiment is 133nm.  This gives an 

idea of the accuracy that this method has.  Due to the minute scale that these deflections 

are measured, great care must be taken. 
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Figure 34:  Fringe image derived from phase shift between reference set and measurement set. 

  The image above has clearly visible fringes, but there exists a certain level of 

noise in the image which appears as the black and white speckling.  This comes from 

several sources, pixels that are over exposed or minute dust particles in the air or on the 

optical equipment.  This can be minimized to a certain degree.  If the pixel is bad it can 

be ignored and its value interpolated from its neighbours. This modified image is shown 

in figure 35.  
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Figure 35:  Fringe image with interpolation of bad pixels and outliers. 

 

  The phase images are converted into displacement maps and compared to the 

analytical solution.  From this comparison the residual stresses relieved by drilling the 

hole can be calculated.   

 

3.4 Experimental Results 

  Experimental tests were conducted to determine the validity of the newly derived 

equations.  The equations were used with the experimental setup discussed above for 

ESPI measurement tests.  If the stresses measured by the experimental method match the 

known stresses imparted by the specimen holder the method can be considered validated.  

  The test specimen is prepared as discussed in section 3.2.  For this test the 

specimen is 6061-T6 aluminum with a modulus of elasticity of 71GPa.  The thickness of 

the workpiece is 2.2mm and the drill bit used had a radius of 1.2 mm. 
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  Initially the stresses were calculated using the displacement equations directly.  

This produced substantial errors in the measured stress levels compared to the expected 

values.  The cause of the errors was found to be the discrepancies very near the hole.  The 

equations for case B produce the best results mainly over the radii used for strain gauge 

measurements.  When using these equations very near the hole edge the magnitude of the 

stress response was incorrect.  To avoid the errors caused by this the stresses were 

calculated as described in chapter 3.3 using the ASTM method.  This produces results 

that assume the stress response of the thick case.  The ratio of the response from the thick 

case to the specific intermediate case is then calculated.  The results are then scaled 

appropriately by dividing the thick case by the ratio between the two.  This produces 

results for the intermediate case.  The results of these tests are shown below in figures 36.   

 

Figure 36:  Experimental results for stress in the X direction compared to known value. 

 

The tests chosen for this method are stress profiling measurements.  These results 

allow us not only to compare the magnitude of the measurements, but also the trend.  The 

results from several tests are compared the expected values shown on the graph as the 

solid line (figure 36).  The stresses in the X direction compare quite well to the expected 

values.  The first hole step contains slightly more error than subsequent steps.  This is 

typical of the measurement and could be from several factors.  Not detecting the surface 
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exactly or surface damage from chips that scratch the surface could cause this error.  

Once the hole has been started, the chips will exit more away from the part and have a 

lesser chance of scratching the surface.  Subsequent depth steps have slightly better 

accuracy because of this.  As the hole depth increases, the stresses are being calculated 

deep in the part relative to the surface where the displacements are measured.  This 

causes significant errors after the hole depth surpasses 1.4 times the hole radius.   
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Chapter 4 Conclusions 

The hole drilling method has historically been applied to cases where the 

workpiece was either very thin or very thick.  This research addresses the intermediate 

thickness case and provides six major contributions.  

1.  This research provides insight into the behavior of the intermediate case and 

helps to develop a fundamental understanding of what is happening. Using finite element 

analysis the behavior of the specimen is examined visually over a wide range of hole 

depths and part thicknesses.  Plots of the deformed shape and stress contour maps convey 

intuitively how the part reacts to the releasing of stresses as the hole is drilled.  The 

bending phenomenon seen in the intermediate case had not been previously noted.  These 

plots also illustrate how the deformations occur more locally as the part is thickened and 

the stiffness increases.  The fact that the stress concentration of the B case is double that 

of the A case is clearly visible and helps to develop the modifications needed to account 

for this.   

2.  The intuitive understanding of the intermediate case provides the insight for 

the ring-disk approximation.  This approximation helps to capture the complex behavior 

of the intermediate case in a way that can be easily understood.  The ring-disk 

approximation also suggests that the response will not vary linearly between the thin and 

the thick case.  The ring-disk approximation is central to the development of the 

mathematical model.  This simplifying assumption works well for cases where the 

thickness of the part is modestly greater than the hole depth, but as the part thickness 

increases the assumption begins to break down. 

3.  The bending that occurs in the intermediate thickness provides an additional 

displacement contribution.  This additional contribution makes the response not vary 

linearly between the thin and the thick cases.   For cases where the thickness of the part is 

just greater than the hole depth, the response is actually greater than the response for the 

thin case.  As the thickness increases in relation to the hole depth the response peaks and 

then starts to decrease as the thickness increases the stiffness and the bending diminishes.  

This nonlinear variation between the thin and thick cases necessitates more than a simple 

interpolation between the two cases.   

4.  A mathematical model is developed to compactly convey the surface 

displacements around the hole to the stress relieved by the hole drilling.  The 

mathematical model comes from the insights that were gained from the finite element 

analysis and relies on the ring disk approximation.  By finding the stiffness of the inner 

disk and outer ring the load distribution is found.  The response is then calculated for the 

horizontal displacements and the bending contribution of the outer disk.  These two 

components constitute the total displacement.  For the B case this mathematical model is 

adjusted to account for the larger stress concentration factor.  An interpolation is added as 
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well to make this applicable to any thickness.  The interpolation covers the transition 

between where the ring-disk approximation breaks down and the thick case.  These 

mathematical equations can be used in ESPI measurements or can be converted to strain 

gauge calibration coefficients.  This effectively extends the application of hole drilling 

residual stress measurement to workpieces of any thickness. 

5.  Stress profiling on the thin case was not previously possible.  This severely 

limited the application of the method.  Stress profiling can be applied to the thin case by 

treating the thin case as a series of intermediate cases and calculating the stress at each 

depth step.  This method produces valid results, but the errors may be slightly more than 

stress profiling for the thick case because of the increased flexibility of the part.   

6.  The design and creation of an experimental setup is also a very valuable result 

of the project.  The workpiece holder with the back removed creates an accurate way to 

test the intermediate case.  The ESPI setup created for this experiment will be valuable to 

future research.  The setup was created to be durable and easy to use and adjust while 

filling a minimum footprint so as to leave as much space to work with around it.  The 

setup was designed with a focus on the stiffness of each part, a design consideration 

critical to achieving high quality experimental measurements.  The circuit incorporates 

status LED‟s to help future troubleshooting and fuse protection to ensure long component 

life.  A lock out key is also included to comply with laser safety guidelines. 

 

Opportunities exist for future work on this research topic.  This method assumes 

that the boundary between the inner disk and outer ring remains straight.  A revision to 

the mathematical model that incorporated the nonlinearity of this line could improve the 

method.  A model that included considerations for this would not need the modifications 

to the math for the B case.  This could also help to increase the accuracy of the method 

and broaden its application.  The cause of the nonlinear boundary at the hole edge is the 

stress concentration and local deformations.  Developing a mathematical model that can 

account for the local deformations around the hole may allow the solution to be applied 

without the need for an interpolation to the thick case. 
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