
Towards Scalar Synchronization in SIMT Architectures

by

Arun Ramamurthy

B.Eng, McMaster University, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Masters of Applied Science

in

THE FACULTY OF GRADUATE STUDIES

(Electrical And Computer Engineering)

The University Of British Columbia

(Vancouver)

September 2011

c© Arun Ramamurthy, 2011

Abstract

An important class of compute accelerators are graphics processing units (GPUs).

Popular programming models for non-graphics computation on GPUs, such as

CUDA and OpenCL, provide an abstraction of many parallel scalar threads. Con-

temporary GPU hardware groups 32 to 64 scalar threads as a single warp or wave-

front and executes this group of scalar threads in lockstep. The inherent mismatch

between scalar programming model and vector hardware creates a challenge when

developing applications that employ synchronization on the GPU. This challenge

arises from the use of a hardware stack to manage control flow divergence among

scalar threads.

This thesis explains the porting of the Apriori benchmark to a GPU which led

to the research on synchronization in SIMT hardware. It then proposes instruc-

tion set and hardware changes that simplify the implementation of mutual exclu-

sion when porting multiple-instruction, multiple data (MIMD) programs with syn-

chronization to accelerators employing single-instruction, multiple thread (SIMT)

hardware. These instructions when compared with more complex software only

solutions, achieve similar performance. This thesis also implements and evaluates

queue based mutual exclusion on SIMT hardware.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgments . ix

1 Introduction . 1
1.1 Motivation . 2

1.2 Contributions . 4

1.3 Background . 5

1.3.1 Baseline GPU architecture 5

1.3.2 Stack Based Reconvergence Mechanism 6

1.3.3 Atomic Functions . 9

2 Apriori Benchmark . 11
2.1 Algorithm . 11

2.2 Methodology . 13

2.2.1 Dynamic Memory Allocator on the GPU 13

2.2.2 Race Condition in Apriori 14

2.2.3 Recursive Functions in Reconvergence Stack 14

2.2.4 Locks to Protect Insertion into Hash Tree 17

3 Problems with Synchronization in SIMT hardware 18

iii

3.1 Mutex . 19

3.2 Semaphores . 23

3.3 Barriers . 25

4 Proposed Lock and Unlock Instruction 27
4.1 Lock Instruction . 28

4.2 Unlock Instruction . 29

4.3 Interaction of Control Flow and Synchronization. 30

4.4 Nested Locks . 32

4.5 Limitations of the Solution . 35

5 Queuing Lock Requests . 37
5.1 Related Work . 37

5.1.1 Queue on Sync Bit Primitive 37

5.1.2 Array Based Lock Queuing 38

5.1.3 Lock Queuing Using Linked Lists 39

5.2 Lock Queuing on GPUs . 39

5.2.1 Queueing Requests in GPU Memory Partition 40

5.2.2 Interaction of Nested Locks with Lock Queuing 41

6 Methodology . 43
6.1 Background on GPGPU-Sim . 43

6.1.1 Shader Core . 44

6.1.2 Interconnect . 45

6.1.3 Memory Unit . 45

6.2 Implementing Lock and Unlock Instructions 46

6.3 Implementing Queuing of Lock Requests 46

6.4 Baseline Configuration . 47

6.5 Benchmarks . 47

6.5.1 BarnesHut N-Body algorithm 47

6.5.2 Apriori . 50

6.5.3 Interac . 51

7 Experimental Results . 52

iv

7.1 Performance of Lock and Unlock Instructions 53

7.2 Performance of Lock Queuing 54

7.3 Hardware Cost . 55

8 Related Work . 57
8.1 Synchronization using Full/Empty Bits in Memory 57

8.2 Register Based Synchronization Mechanisms 57

8.3 Synchronization State Buffer . 58

8.4 Synchronization Primitives in SMT processors 58

9 Future Work And Conclusion . 60
9.1 Summary and Conclusion . 60

9.2 Future Work . 61

9.2.1 Backoffs for Lock Requests 61

9.2.2 Try Locks . 61

9.2.3 Alternative to the Reconvergence Stack 62

Bibliography . 63

v

List of Tables

Table 6.1 GPGPU-Sim Configuration 48

Table 7.1 Storage Used for Lock Queuing 56

vi

List of Figures

Figure 1.1 Hardware Stack for Example 1 3

Figure 1.2 Baseline Architecture . 6

Figure 1.3 Shader Core . 7

Figure 1.4 Control Flow Graph and Hardware Stack (Note: This Stack

Based Reconvergence Mechanism Can Handle Arbitrary Lev-

els of Nested Control Flow and Loops) 8

Figure 2.1 Example of a HashTree . 13

Figure 2.2 Hardware Stack for Example 2 (Grey Indicates Entry That is

Being Popped from Stack). 16

Figure 2.3 Hardware Stack That Uses Call Entry 17

Figure 3.1 Control Flow Graph and Hardware Stack for Example 4 . . . 20

Figure 3.2 Control Flow Graph and Hardware Stack for Example 6 . . . 23

Figure 4.1 Hardware Stack During Execution of Lock Instruction (Grey

Indicates Newly Added Stack Entries). 28

Figure 4.2 Hardware Stack After Execution of Unlock Instruction (Grey

Indicates Stack Entries That Have Been Popped). 30

Figure 4.3 Control Flow Graph and Hardware Stack for Example 10 (Grey

Indicates Stack Entries That Have Been Popped) 31

Figure 4.4 Control Flow Graph and Hardware Stack for Example 11 (Grey

Indicates Stack Entries That Have Been Popped) 34

Figure 7.1 Normalized Execution Cycles of Proposed Instructions Against

Unmodified Benchmarks That Use Atomics for Synchronizations 52

vii

Figure 7.2 Number of Critical Sections That Do Not Insert into the Tree

Normalized to Total Critical Sections Executed 53

Figure 7.3 Normalized Execution Cycles of Proposed Instructions with

Lock Queuing Against Unmodified Benchmarks That Use Atomic

for Synchronizations . 54

Figure 7.4 Number of Writes of an Implementation with Lock Queuing

Normalized to One Without 55

viii

Acknowledgments

I would like to thank my parents and my brother for motivating and inspiring me to

pursue a higher education and for their constant support throughout the endeavour.

I would like to thank my supervisor Dr.Tor Aamodt for his guidance. I want to

acknowledge and thank Wilson Fung and other members of my research lab for

their help and encouragement. Also, I could not have completed my degree without

the support of my friends and thank them deeply. Last but not least, I thank the

owners of curry point restaurant and their spicy potatoes for providing me with

delicious sustenance during my time at UBC.

ix

Chapter 1

Introduction

GPUs were originally conceived to speed up graphics processing. They are de-

signed to exploit data parallelism and provide performance by maximizing through-

put. However, the replacement of fixed function pipelines with programmable

hardware in the mid 2000s [26] has allowed them to be used to speed up general

purpose compute applications [20, 37, 39]. This branch of computing is popularly

known as General Purpose GPU computing or GPGPU. Each generation of GPU

hardware has increased the language features available to programmers and has

steadily moved GPGPU into the mainstream. Several manufacturers are now even

offering integrated CPU-GPU chips [12]. The work presented in this thesis looks

at synchronization on GPUs and how it can be improved.

GPUs follow a Single Instruction Multiple Thread (SIMT) execution model [27].

In this model multiple threads are grouped together and executed in lock-step,

meaning they execute the same instruction with different data. The groups of

threads are known warp (NVIDIA terminology) or wavefront (ATI terminology).

Control flow divergence in each warp is handled by a hardware SIMT stack [10,

25]. When a warp encounters a branch instruction, two entries are pushed on the

stack. Each entry represents a sub-group of threads, grouped based on the results

of the branch instructions i.e one entry for threads that took the branch and one for

threads that did not. The sub-group of threads whose entry is at the top of the SIMT

stack are executed first. Their execution continues up to a reconvergence point, a

pre-determined instruction that is common to both sub-groups of threads. When a

1

sub-group reaches the reconvergence point, the top entry is popped from the SIMT

stack. This allows the other sub group of threads to execute code, reach the recon-

vergence point and pop the top entry from the SIMT stack. Now the sub-groups

are merged again and all of them will execute the remaining code. This serializa-

tion, where sub-groups of threads are executed one after each other, causes unex-

pected behaviour when synchronization code is implemented in a single threaded

paradigm is executed in a SIMT fashion.

The thesis examines the implementations of various synchronization mecha-

nisms in the context of SIMT. It then proposes instructions to simplify the im-

plementation of certain synchronizations. The rest of this chapter describes the

motivation behind this thesis, lists its contributions and explains the baseline GPU

architecture.

1.1 Motivation
Example 1 shows the pseudo code of a spin lock. This kind of synchronization

code which is written in the context of a single thread is what we refer to as scalar

synchronization. We will now show what happens when this scalar synchronization

code is executed in a SIMT architecture. In this example, all threads in a warp

attempt to acquire a lock. To simplify the explanation, we assume that all the

threads are attempting to acquire the same lock. Figure 1.1(a) shows the hardware

stack before execution of the loop. When a thread acquires the lock, it exits the

while loop and diverges from other threads in the warp. The reconvergence point

for this while loop is immediately after the while loop and before the critical region

(the reason for which is explained in more detail in Section 1.3.2 of this Chapter).

Thus, the thread that obtained the lock, will wait to reconverge with the other sub-

group of threads before executing the critical section and the lock release operation.

Figure 1.1(b) shows the hardware stack after a thread has acquired the lock. Since

the thread that has acquired the lock has already reached the RPC, it does not have

an entry on the stack. The other threads in the warp are now waiting for a lock that

is not available. Since they cannot acquire it, they will not be able to reach the RPC

and this causes a deadlock.

Similarly the implementation of other blocking synchronizations such as mu-

2

Example 1 Pseudo code of a spin lock

while(acquire(lock)); (A)
//CRITICAL SECTION (B)
Release(lock); (C)

NPC RPC Active Mask
B -1 11111111

A B 11111110

NPC = Next PC. Next
Instruction to be
executed

RPC = Reconvergence
PC. Instruction at which
the TOS entry is popped

TOS = Top of Stack.
Sub-group of threads that
are currently being
executed.

Active Mask = A bit mask
that stores which threads
that are active

LEGEND

TOS

NPC RPC Active Mask
A -1 11111111TOS

(a) Hardware stack BEFORE
execution of while loop

(b) Hardware stack AFTER a thread
acquires the lock.

Figure 1.1: Hardware Stack for Example 1

texes, semaphores and barriers requires threads to spin in loops until they can sat-

isfy the condition of the synchronization. When this synchronization takes place

between threads in the same warp these loops can cause deadlocks unless they are

tailored to consider the reconvergence mechanism. Even if threads in the same

warp are not competing for the same resources, the synchronization acts on a per

warp basis instead of the per thread basis expected by the programmer. The work

presented in this thesis addresses these issues and works towards the goal of using

scalar synchronization code in SIMT architectures.

Contemporary GPU hardware is architected with graphics applications in mind.

These applications are inherently parallel and where synchronization is required,

raster graphics specific hardware is employed. The goal of a graphics application

3

is to render a three dimensional scene onto the screen. This involves calculation of

vertices by a vertex processor whose output is fed into a rasterizer, which in turn

produces pixel fragments [27, 32]. Each pixel fragment represents the contribution

of an object in the scene to a pixel’s colours. Pixel shader programs are responsible

for determining the colour of each fragment. A process known as alpha blending

is performed on the output of the pixel shader programs and it calculates the final

colour of each pixel [46]. The primary need for synchronization occurs in this al-

pha bending phase when two different objects might want to update the same pixel.

This requires an exclusive read-modify-write operation on a memory location [46]

and the microarchitecture handles this with atomic functions [27, 31]. At first

glance these atomic functions seem ideal to implement various synchronizations.

However, these atomic functions are not designed to interact with the scalar con-

trol flow of a shader program and can cause unexpected behavior. In this thesis, we

propose adding new instructions that are capable of operating in co-operation with

the SIMT stack to simplify the implementation of synchronization mechanisms.

1.2 Contributions
This thesis makes the following contributions:

1. It explains the Apriori benchmark and the challenges faced in porting it to a

GPU. Porting Apriori led to the research on implementing synchronizations

on a GPU

2. It proposes new instructions that perform lock and unlock operations and

simplify the implementation of mutexes on GPUs

3. It explores the implementation of queuing synchronization requests on a

GPU.

4. It evaluates these instructions and the effect of queuing synchronizations on

several applications including Apriori.

5. It identifies and fixes an issue where recursive functions did not execute cor-

rectly with a post dominator based SIMT stack.

4

1.3 Background
In this thesis we study the use of GPUs as compute accelerators. CUDA [35, 37]

and OpenCL [20] are two programming models we use for this purpose. This sec-

tion describes the hardware architecture of contemporary GPUs and the compute

model they use.

1.3.1 Baseline GPU architecture

A GPU is designed to exploit data parallelism by executing a large number of

threads in parallel. A GPU program is executed by launching a kernel from the

CPU. This kernel comprises the code to be executed and the number of threads

that should execute it. These threads are divided into thread blocks, with the total

number of blocks and number of threads per block specified by the programmer.

Each thread block is assigned to be executed on a shader core. These shader cores

form the backbone of the architecture. A shader core picks a group of threads

and executes them in lock-step i.e. they execute the same instruction, albeit with

different data. This model of execution is called Single Instruction Multiple Thread

(SIMT) [27] and the group of threads are known as a warp or wavefront. These

thread groupings are fixed and threads cannot be move around between warps. The

shader core is capable of executing warps from different thread blocks and the

number of thread blocks that a core can execute simultaneously is dependent on

the specific GPU. If a kernel contains more thread blocks than can be scheduled

they have to wait until other thread blocks finish executing before being scheduled.

Figure 1.2 depicts this baseline GPU architecture.

A shader core can be thought of as its own independent unit of execution with

dedicated resources. It consists of an Instruction fetch and decode unit that is

shared among multiple SIMT lanes as seen in Figure 1.3. Each of these lanes has its

own ALUs and is responsible for executing the given instruction for a single thread.

The shader core has a single register file which is banked and can be accessed in

parallel by all the threads.

Each thread in the GPU has access to several different memory spaces. To

begin with, a thread has its own private local memory. Even though this memory

space is per thread, it is actually stored in the global DRAM. Next, each shader

5

Shader
Core

Shader
Core

Shader
Core

Interconnect Network

Memory
Controller

Memory
Controller

Memory
Controller

L2 Cache

Off-Chip
DRAM

L2 Cache

Off-Chip
DRAM

L2 Cache

Off-Chip
DRAM

GPU

CPU

Thread
Block 0

Thread
Block 1

Kernel

Thread
Block 2

Figure 1.2: Baseline Architecture

core has its own fast shared memory and it can be used by threads inside of a thread

block to communicate with each other. The off chip DRAM memory is known as

global memory and is accessible by all threads on the GPU. Threads from different

blocks cannot communicate other than by writing values to global memory.

As mentioned before, shader cores execute threads in a warp in lock-step.

When a warp encounters a branch instruction, it can cause control flow divergence

if not all threads in the warp take the branch. This control flow divergence is han-

dled by the use of a hardware stack. Section 1.3.2 of this chapter will give more

details on this stack.

1.3.2 Stack Based Reconvergence Mechanism

Note that this mechanism is not exactly the same as described in [10, 25], but

behaves in essentially the same way.

When a warp is scheduled for execution the SIMD hardware reads the stack

for this warp. It uses the information in the top of the stack (TOS) to determine

which instruction to execute and the threads that should execute it. Each stack

entry consists of:

1. Next PC (NPC): The address of the next instruction to be executed by this

warp.

6

Instruction Fetch

L
A
N
E

L
A
N
E

L
A
N
E

Warp Scheduler

Decode

Register File

Memory

Shader Core

Writeback

Figure 1.3: Shader Core

2. Active Mask: A bit mask specifying which threads in the warp should exe-

cute this next instruction.

3. Reconvergence PC (RPC): The address of the instruction where these threads

converge with other threads in the warp.

Figure 1.4 illustrates an examples of how the stack handles control flow diver-

gence. Figure 1.4(a) shows the control flow graph (CFG) of a program where the

labels refer to instructions of the program. Figure 1.4(b) shows the contents of the

stack as the warp executes the program. At the start of the program the TOS entry

for the warp indicates that all threads in the warp must execute the instruction at

address X . Once this instruction has been executed, the stack is updated to reflect

7

A

P

B

C

D

F
Q

Z

Z -1 11111111

P Z 11100000

B Z 00011111

A -1 11111111TOS

TOS

Z -1 11111111

P Z 11100000

Z Z 00011111

TOS

Z -1 11111111

Z Z 11100000

TOS

X

RPC Active Mask
X -1 11111111TOS

EXIT

ENTRY

(a) Control Flow Graph (b) Hardware Stack

T
I
M
E

RPC Active Mask

RPC Active Mask

RPC Active Mask

NPC RPC Active Mask

NPC

NPC

NPC

NPC

1

2

3

4

Figure 1.4: Control Flow Graph and Hardware Stack (Note: This Stack
Based Reconvergence Mechanism Can Handle Arbitrary Levels of
Nested Control Flow and Loops)

the PC of the next instruction (1). When the next instruction at A is executed

the threads in the warp diverge, with some threads going to P and other threads

to B. Two entries are added on to the stack (2) (in alternate implementation spe-

cial instructions are used to manage the stack [10, 24]). The Active Mask of one

entry contains the bit mask of the threads that follow the control flow path of the

branch and its NPC is the target of the branch. The Active Mask of the next entry

represents the threads that did not take the branch and its NPC is the address of

the instruction that follows the branch. The NPC of the original TOS stack entry

and the RPC of both the new entries is the address of the instruction where the

the threads reconverge and return to being executed in lock-step. This reconver-

gence PC is determined by the assembler using control flow analysis to find the

immediate post dominator [33] of the branch instruction.

8

In a control flow graph, a node M is said to post-dominate a node N if all paths

to the exit starting at node N must pass through M. In the control flow graph for

our program F post dominates C as all paths to the exit node from C must pass

through F . The RPC of a branch instruction is determined by analysing the control

flow graph of a program and finding the immediate post dominator of that branch

instruction. In our example Z and F are the immediate post dominators and thus

the RPC of branch instructions A and C respectively.

The stack is also capable of handling nested control flow and if a group of diver-

gent threads reaches another branch instruction, two additional entries are pushed

on to the stack in the same manner as described above. The stacks are sized to

handle complete divergence where every thread in the warp is executing a different

PC and thus can handle any level of nested control flow. The SIMD hardware con-

tinues executing the threads in the TOS entry until the NPC of this entry matches

the RPC (3). At this point, the TOS is updated by popping a stack entry. Once the

next group of threads reach the RPC (4), the TOS is updated again. Now the two

groups of threads from branch A have reconverged and will continue execution in

lock-step.

This stack-based divergence mechanism is typically considered a hardware de-

tail and the programming model for GPUs abstracts it away [21, 37]. Chapter 3

examines the issues faced when implementing synchronization in the presence of

this hardware stack. However, before we examine synchronization, it is necessary

to explain the atomic functions that are used to implement them.

1.3.3 Atomic Functions

Our Baseline architecture provides hardware support for atomic functions which

are available in both CUDA [37] and OpenCL [21]. An atomic function is one

which is guaranteed to be executed without interference from other threads. It can

perform a read-modify-write operation on any 32- bit or 64-bit address residing in

global or shared memory. Two functions of particular importance to us are:

1. AtomicExchange (Address,Value) abbreviated in this thesis as atomicExch.

It replaces the contents at memory location Address with Value.

9

2. AtomicCompareAndSwap (Address, Compare, NewValue) abbreviated

in this thesis as atomicCAS. It reads the memory location Address, checks if

its value is equal to Compare and if so, swaps it for NewValue. It also returns

the original contents at Address.

These functions are implemented in hardware as a single instruction in the ISA.

Before we examine the implementation of synchronization on a GPU, Chapter 2

describes the Apriori benchmark which helped discover the problems with syn-

chronization presented in Chapter 3.

10

Chapter 2

Apriori Benchmark

Apriori comes from the RMS-TM [19] benchmark suite and is part of an emerging

class of algorithms knows as Recognition, Mining and Synthesis. These algorithms

have been tailored towards CMPs [19] and hence present opportunities for the use

of GPUs. Apriori was ported over to a GPU as it is a scalable parallel algorithm. It

also requires fine grained synchronization in its parallel region, making it ideal to

evaluate the instruction that will be proposed in Chapter 4. This chapter describes

the algorithm, the methodology used and challenges faced in porting it

2.1 Algorithm
Apriori is an Association Rule Mining algorithm [3]. The algorithm works on

databases where each record contains a list of items sorted in ascending order.

These items are taken from a known fixed set of items. For example if we assume

10 types of items, a record in the database could be (1,4,6,8,10) and another might

be (2,4,8,9).

The goal of the algorithm is to find the most frequent sub-sets in a given

database of records. It starts by forming sets of two known as candidate sets some

examples of candidate sets are (1,2), (1,3) ,(1,4), (4,7), etc. The support level for

each set is its frequency of occurrence among all the records of the given database.

The algorithm scans the database and increments a support counter for each candi-

date set. A minimum support level is specified as input parameter to the algorithm

11

and any candidate sets below that frequency level are dropped. The remaining can-

didate sets are then used to generate new candidate sets of size three in accordance

with the Apriori property. This property states that if K is the size of the current

candidate set, all sub sets of candidate set size (K+1) must also meet the minimum

support level [3]. For example, let us say that after counting the support level the

candidate sets remaining are (1,2), (1,4), (1,6), (2,6), (3,7), (5,7). A candidate set

of (1,2,4) would not be included in the new list as (2,4) did not meet the minimum

support level. However, a candidate set (1,2,6) would be included. Each iteration

of the algorithm repeats this process and increases the size of the candidate set by

one. The algorithm terminates if the candidate set list contains only one set after

support level have been counted or if it cannot generate a new candidate set list (as

per the Apriori property).

Once a candidate set list has been created, each candidate set is inserted into

a Hash Tree data structure. Each node of a Hash Tree contains a hash table that

indexes the nodes below it and the leaves of the Hash Tree contain candidate sets.

The hash function is applied to the element of the candidate set with the same depth

as the node. For example, in a candidate set of (1,4,6,8,9,15) 1 will be hashed in

the root node which will lead to a leaf node where 4 will be hashed followed by

6 etc until a leaf node is reached. An example of the Hash Tree data structure is

shown in Figure2.1.

The HashTree grows when the number of candidate sets in a leaf node crosses

a pre-set threshold. A process known as rehashing converts the leaf node into an

internal node and distributes its candidate sets among newly created leaf nodes.

The original Apriori benchmarks used transactions when inserting or rehashing

the Hash Tree to enable parallelism. This insertion into the Hash Tree and the

generation of the candidate sets formed the AprioriGen function. Counting the

frequency of candidate sets in the database was done by the subset function. These

functions were the main focus of porting the benchmark to a GPU. The following

section will detail the methodology used to do so.

12

NODE

1,4,7,10 2,5,8,11 3,6,9,12

NODE NODE{2,5,6}
{5,10,11}

{1,4,9}
{1,6,9}

NODE

{1,5,10} {1,5,9}{1,5,11}

{1,4,12} {1,6,11}
{3,4,9}

{3,6,9}

{3,4,12}
{3,6,11}

{3,5,9}
{3,5,8}

Hash
Function

Leaf Node
(contains

candidate sets)

Branch Node
(contains hashtable)

Figure 2.1: Example of a HashTree

2.2 Methodology
The original benchmark was written in C++ and used Intel STM[41] compiler

primitives to implement transactional memory[17]. It was ported to run on a GPU

using CUDA 3.1[35, 37]. Initially the benchmark was used for research on trans-

actional memory on GPUs. It was then adopted for research on synchronization in

GPUs. The original RMS-TM version of the benchmark will here be referred to as

Apriori-Orig. The CUDA version that uses transactions will be called Apriori-TM

and the CUDA version that used locks will be called Apriori-Lock

2.2.1 Dynamic Memory Allocator on the GPU

The linked list used to store the candidate sets and the Hash Tree data structures

both required dynamic memory allocation. At the time of porting, CUDA did not

support the use of new and delete. Hence it was necessary to create a parallel dy-

namic memory allocator for the GPU. The original benchmark was instrumented

and profiled to obtain the maximum memory needed per iteration for both the

linked list and hash tree data structures. The memory required for several tempo-

rary data structures was also determined. Each type of data structure was given

a empty list that was a statically allocated array of that data structure. A separate

counter variable for each empty list was used to index the array. The calls to new

13

were replaced by a function that performed an atomic increments on the counter

and returned an index to the array. The atomics were used as threads running in

parallel could request for new objects at the same time and this ensured each thread

received a different index for the empty list. The counters were reset every iteration

and the same memory was reused.

2.2.2 Race Condition in Apriori

Apriori-Orig was to be used as a gold standard to verify correct execution of the

CUDA version. Each iteration of the benchmark printed the number of candidate

sets in the list before insertion in the Hash Tree and also the remaining number

after counting the frequency. The Apriori algorithm is deterministic and given

fixed input parameters, should have the same output for every run. However, in

Apriori-Orig, some iterations produced different number of candidate sets across

multiple runs.

The issue was the improper use of transactions in the benchmark. The original

benchmark accessed a variable outside the critical section, that could potentially

be changed inside the critical section. This boolean variable leaf was a member

of each Hash Tree node and indicated whether the node was a leaf node or not.

The variable was accessed outside the transaction to determine if the Hash Tree

should be traversed further or if insertion should be attempted. During insertion,

if the rehash process described in section 2.1 occurs, the value of the leaf variable

will change inside the transaction. This led to a race condition among the threads

and produced different outputs. The critical section was expanded by moving the

transaction boundaries to include the access of the leaf variable. This resulted in

consistent outputs for Apriori-Orig with no impact on performance. After this fix

was applied, Apriori-Orig became the gold standard.

2.2.3 Recursive Functions in Reconvergence Stack

Apriori used recursive functions to traverse the Hash Tree data structure. These

recursive functions did not execute as expected with the reconvergence mechanism

described in Section 1.3.2. In this mechanism, two divergent thread groups re-

converge when they have both reached a pre-determined RPC (reconvergence PC).

14

However, this mechanism does not take into account the level of recursion of a

thread and can erroneously converge thread groups. Example 2 shows a code snip-

pet where this can occur. Figure 2.2 & 2.3 shows the operation of the stack where

the subscripts for the NPC and RPC entries show the level of nesting. It is to be

noted that entries in these figures where NPC = RPC are shown for illustration

purposes. A real hardware stack would not add such entries as they have already

reconverged and will simply be removed when they become the TOS entry. In this

example we assume that the RecursiveFunction is initially called from a location

outside the function with parameter X = 0 . In this example all the threads in a warp

reach the branch instruction at B and execute it. This causes the threads to diverge

as seen in Figure 2.2(a). The threads with thread.id > 4 take the branch, execute

the function call at C and call RecursiveFunction again, as seen in Figure 2.2(b).

When these threads reach the branch instruction at B, they do not take the branch

and the NPC becomes D. This will result in the reconvergence mechanism think-

ing that the threads have reached their RPC and the TOS entry of the stack will be

popped as seen in Figure 2.2(c). All the threads will now execute the code at D

and exit the function. This will result in X = 3 for threads with thread.id > 4 and

X = 2 for the other threads. This is incorrect as threads with thread.id > 4 should

have returned X = 4. These threads should have executed the code at D before

reconverging in addition to having executed it after reconvergence.

Example 2 Reconvergence Stack and Recursive Functions

RecursiveFunction (int x)
{

x=x+1 (A)
if (x==1 && thread.id>4) (B)

RecursiveFunction(x) (C)
x=x+1 (D)
return x (E)

}

To rectify this problem, a new stack entry is added. Example 2 is reused

to explain this mechanism. Figure 2.3(a) shows the stack before threads with

thread.id > 4 execute the function call at C. After the call, a new entry known

15

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000

TOS C₀ D₀ 00001111

(a) Hardware stack AFTER
execution of branch instruction

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000

TOS A₁ D₀ 00001111

(b) Hardware stack AFTER
function call has been executed

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000TOS

D₁ D₀ 00001111

(c) Hardware stack AFTER execution of
branch instruction INSIDE the recursive call

Thread Id: 123 4 5678

Figure 2.2: Hardware Stack for Example 2 (Grey Indicates Entry That is Be-
ing Popped from Stack).

as call entry is added to the stack as shown in Figure 2.3(b). This entry has the

same Active Mask as the previous entry, the NPC corresponds to the start of the

function and the RPC is set to -1. The NPC of the stack entry below the call entry is

changed to the return PC of the function. The threads with thread.id > 4 will now

execute till E and return from the function, at which point the call entry is removed

from the stack. The two entries below the call entry have NPC = RPC and will

be removed by the reconvergence mechanism as seen in Figure 2.3(c). The entire

warp will then execute the code at D and exit the function. Since the threads with

thread.id > 4 executed the code at D twice, they will correctly return X = 4. Thus,

the call entry creates a boundary around function calls and prevents reconvergence

of threads with different nesting depths. It is to be noted that any divergence within

the function will be handled in the normal way by adding more entries to the stack

above the call entry.

16

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000

TOS C₀ D₀ 00001111

(a) Hardware stack AFTER
execution of branch instruction

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000

TOS

D₀ D₀ 00001111

(b) Hardware stack AFTER
function call has been executed

A₁ -1 00001111

CALL
ENTRY

RETURN
PC FOR

FUNCTION

NPCRPC Active Mask

D₀ -1 11111111

D₀ D₀ 11110000

TOS

D₀ D₀ 00001111

(c) Hardware stack AFTER
function returns

E₁ -1 00001111

Figure 2.3: Hardware Stack That Uses Call Entry

2.2.4 Locks to Protect Insertion into Hash Tree

Apriori-TM, the first GPU version used transactions to allow parallel insert of can-

didate sets into the Hash tree. This benchmark was used for work on implementing

a transactional memory system on a GPU. However, the development of Apriori-

Lock required implementing spin locks on a GPU. The next chapter details the

challenges associated with this and other synchronizations.

17

Chapter 3

Problems with Synchronization in
SIMT hardware

Contemporary GPU hardware achieves performance by maximizing throughput

per unit hardware cost. They are perfect for applications that have a large amount

of data parallelism but require little synchronization. However, there exists a large

class of parallel applications that require synchronization to take advantage of their

data parallelism [23]. The synchronization mechanism used by traditional parallel

programs can broadly be classified into the following categories:

1. Mutex: Algorithms where a thread can only enter a critical section after

acquiring exclusive access to one or more locks.

2. Semaphores: Threads wait until a resource is available and signal when they

are finished with the resource.

3. Barriers: A barrier is a point in the source code where a thread must stop

and cannot continue until all other threads have reached the same location.

The rest of this chapter details how the reconvergence based hardware stack

explained in Chapter 1.3.2 complicates the implementation of the above synchro-

nization methods.

18

3.1 Mutex
Mutexes are used to avoid the simultaneous use of shared data by multiple threads.

They can be subdivided into:

1. Blocking: The lock operation on the mutex does not return until the lock is

acquired.

2. Non-blocking: The lock operation attempts to acquire the mutex once and

return regardless of success or failure.

The implementation of non-blocking mutexes is straightforward and can be

achieved by the use of atomics described in Chapter 1.3.3. This work shows how

the implementation of blocking mutexes on a GPU does not behave as expected.

Specifically, it demonstrates how a programmer cannot ignore the SIMT behavior

as advocated by contemporary GPU programming models [21, 37].

Example 3 shows the CPU implementation of a spinlock. The atomicCAS

function as described in Section 1.3.3 is also available on CPUs [22] and is a pop-

ular method to implement this lock [30].

Example 3 Spin lock using atomic compare and swap

//Spin until lock is acquired
while(atomicCAS(lock,-1,Unique_ID)!=-1));
//CRITICAL SECTION
atomicExch(lock,-1); \\Release Lock

In Example 3, the unique ID would be a unique index assigned to the thread at

the beginning of the program that does not change for the lifetime of the program.

The threads spin on the while loop until one of them is able to replace the value

of the lock with its unique ID. At this point, no other threads can enter the critical

section as the atomicCAS does not succeed for them and mutual exclusion is guar-

anteed. Since GPUs provide support for atomic functions, a programmer wishing

to port CPU code that uses locks would reuse the existing CPU version of the spin

lock and expect it to execute correctly on the GPU. However, the code does not

behave as expected and leads to deadlock among the threads.

19

A

B

C

D

E

NPC RPC Active Mask

D -1 11111111

A D 11110000TOS

NPC RPC Active Mask

C -1 11111111TOS

(a) Control Flow
Graph

(b) Hardware stack
BEFORE execution of

branch instruction

(c) Hardware stack
AFTER execution of
branch instruction

Thread Id: 123 4 5678 Thread Id: 1 23 4 5678

Figure 3.1: Control Flow Graph and Hardware Stack for Example 4

Example 4 shows pseudo assembly code for Example 3. The code has been

labelled with letters which correspond to the control flow graph for this code shown

in Figure 3.1(a). The hardware stack before the execution of the branch instruction

at C is show in Figure 3.1(b). In Example 4 at A, threads 1 and 5 are contending for

lock W , threads 2 and 6 are contending for lock X , threads 3 and 7 are contending

for lock Y and threads 4 and 8 are contending for lock Z

Example 4 Pseudo assembly code of a spin lock on a GPU

Begin Loop:
atomic.CAS $address,$compare,$new,$old; (A)
compare $old, -1, $result; (B)
Branch ($result == 1) Go To Begin Loop; (C)
//Critical Section Code (D)
atomic.exch $address,-1 //Release Lock (E)

After the execution of the branch instruction, the warp consists of two groups

of threads, one group consists of the threads that acquired locks (threads 5,6,7,8)

and the other is all the threads that did not. For the purpose of this discussion

we will refer to a subgroup of threads in a warp as a subwarp. The NPC of the

subwarp containing the threads that acquired locks is D, which is the same as the

RPC, therefore this subwarp has reconverged and no entry is pushed to the stack.

The locks acquired by these threads are not released since this subwarp has not

20

reached the instruction E. Next, the SIMD hardware pushes a stack entry for the

other subwarp as shown in Figure 3.1(c) (the shaded entry indicates a newly added

stack entry). This allows threads 1,2,3 and 4 to execute and contend for the locks

they require. Since the locks have not yet been released, the threads waiting for the

lock cannot exit the loop and reach the RPC at D. Thus, the stack entry is never

removed and results in deadlock.

The problem of code not behaving as expected is relevant even if all the threads

in the warp were trying to acquire different locks. In this scenario, all threads in the

warp trying to acquire the lock, have to succeed and reconverge before executing

the critical section. This leads to warp level synchronization as opposed to the

thread level synchronization expected by the programmer. Also, even if each thread

in the warp contends for a different lock, we could still get deadlocks. Consider

two warps A and B which have eight threads. The corresponding threads in each

warp contend for the same lock. Threads 1 to 4 of warp A and threads 5 to 8 of

warp B succeed in acquiring the locks they are contending for. Now threads 5 to

8 in warp A are waiting for locks held by warp B. Similarly threads 1 to 4 in warp

B are waiting for locks acquired by warp A. Since neither warp can make forward

progress, a deadlock is encountered.

Example 5 Implementation of a spin lock on a GPU [42]

loop_continue=true;
while(loop_continue){
if(atomicCAS(&lock,-1,thread_Index)==-1){

//critical section
atomicExch(lock,-1); //Release Lock
loop_continue=false; // exit loop

}
}

To overcome this issue, a programmer who has a good understanding of the re-

convergence stack mechanism would have to code the locks in a manner such that

a RPC is reachable by both the subwarps. One such implementation is shown in

Example 5 [42]. The pseudo assembly code obtained from compiling Example 5 is

shown in Example 6. The hardware stack entries before and after the execution of

21

Example 6 Pseudo assembly code of Example 5

store $loop_exit,true; (A)
Outer Loop:

atomic.CAS $address,$compare,$new,$old; (B)
compare $old, -1, $result; (C)
Branch ($result == 0) Go To Check Loop; (D)
//Critical Section Code (E)
atomic.exch $address,-1; //Release Lock (F)
store $loop_exit,false; (G)

Check Loop:
compare $loop_exit,true,$result; (H)
Branch ($result == 1)goto Outer Loop; (I)
exit; (J)

this branch are shown in Figure 3.2(a) and Figure 3.2(b). In this example the sub-

warp of threads that acquired the lock can execute the critical section and release

the lock before reconverging with the other subwarp at H as shown in Figure 3.2(c).

When the next branch instruction at I is encountered, the threads that have executed

the critical section diverge and the new entries pushed on to the stack are show in

Figure 3.2(d). Note that if the NPC of a subwarp is the same as the RPC, an entry

is not pushed on to the stack. The threads that have finished execution wait for the

rest of the threads at J. In the next iteration of the while loop, it is possible that only

a subset of the threads acquire the lock. If this happens the warp diverges again

at instruction D and a new entry is pushed on to the hardware stack as shown in

Figure 3.2(e). Once again, the threads that acquired the lock, complete the critical

section, reconverge at H, diverge again at I and wait for remaining threads at J. This

process continues until all threads in the warp have completed their critical section

thus achieving a spin lock among the threads in a warp.

The code provided in Example 5 could conceivably be reused as macros for

programs where the lock and unlock operations are at the beginning and end of the

critical sections. However this is not always the case, radiosity from the SPLASH-

2 benchmark suite is one such application. An excerpt of code from radiosity
is shown in Example 7. Adding another while loop to replace A would require

the break statement at E to be moved below F . Additional code to predicate the

22

A

B

C

D

E

F

G

H

I

J

RPC Active Mask
H -1 11111111
E H 00001111TOS

NPC RPC Active Mask
D -1 11111111TOS

(a) Control Flow
Graph

(a) Hardware stack BEFORE
execution of branch instruction

at D in first iteration

(b) Hardware stack AFTER
execution of branch

instruction at D

NPC RPC Active Mask
J -1 11111111
H J 11110000

TOS

(c) Hardware stack AFTER
reconvergence at H

NPC RPC Active Mask
J -1 11111111
B J 11110000TOS

(d) Hardware stack AFTER
execution of branch

instruction at I

NPC RPC Active Mask
H -1 11111111

H 00110000

(e) Hardware stack AFTER
execution of branch

instruction at D in second
iteration

E

TOS

NPC

Figure 3.2: Control Flow Graph and Hardware Stack for Example 6

execution of this break on the execution of C also needs to be added.

Every time programmers encounter a different combination of lock and unlock

operations separated by control flow, they would have to spend time adapting the

code to a SIMT model. This adds development overhead to porting applications

onto a GPU and could deter the more widespread adoption of GPUs for general

purpose compute applications.

3.2 Semaphores
Semaphores are used to protect access to shared resources and differ from locks

by allowing an arbitrary resource count. In a semaphore the signal operation in-

crements a resource count and the wait operation checks for resource availability

before proceeding. Semaphores are divided into two categories:

1. Busy waiting: The wait operation repeatedly checks if the resource count is

available and returns only when it has acquired a resource and decremented

the count. The signal operation just increments the resource count.

23

Example 7 Excerpt from Radiosity application in SPLASH-2 benchmark suite

while (...){
if(...){

LOCK(); (A)
if(...){ (B)

.

. (C)

.
UNLOCK(); (D)
break ; (E)

}
UNLOCK(); (F)

}
} (G)

2. Blocking: The wait operation checks if the resource count is zero and if not

puts the thread to sleep. It also inserts it into a waiting queue. The signal

operation wakes up the first thread in the queue or increments the resource

count if the queue is empty.

The blocking semaphores are used in operating systems where resources can

be conserved by putting threads to sleep. Since contemporary GPUs do not yet

provide this functionality, this work focuses on busy waiting semaphores and shows

how their implementation is complicated by the interaction of the SIMT stack and

the hardware based reconvergence mechanism described in Chapter 1.3.2

Example 8 shows one way a counting semaphore could be implemented on

a CPU. It is necessary for the wait operation to acquire a lock and ensure that

only one thread at a time is updating the semaphore. In this example, the mutex

is implemented such that the RPC G for the branch at A is reachable by both the

divergent subwarps. However, in this case, even this is insufficient and subtleties

in the code make the semaphore behave differently then expected.

A thread that acquires the lock and decreases the semaphore exits the outer

while loop and waits to reconverge with other threads at I. This means a thread

that has acquired the semaphore does not execute the critical section until all other

threads in the warp trying to acquire the semaphore have also done so.

24

Once again, synchronization code written for a single threaded model does not

behave as expected when executed in a SIMT model. Also, it reiterates that the

code structure provided in Example 5 is not sufficient to implement every form of

synchronization.

Semaphores are an important synchronization mechanism and a solution to

implement them on GPUs is left for future work.

Example 8 Implementation of a Semaphore

lock=-1 ; // lock to protect the semaphore.
s=10; // Number of resources available
void kernel(){

Wait(s)
//Critical Section

Signal(s)
}
void Wait(int s){
bool loop_continue=true;
while(loop_continue){

//LOCK
if (atomicCAS(lock,-1,unique ID)==-1){ (A)

if(s>0){ (B)
s--; (C)
loop_continue=false; (D)

} (E)
//UNLOCK
atomicExch(lock,-1); (F)
} (G)

} (H)
} (I)
void Signal(int s){

atomicCAS(lock,-1,unique ID);
s++;
atomicExch(lock,-1);

}

3.3 Barriers
Barriers are meant to provide a global synchronization point that all threads in a

kernel have to reach before proceeding further. Contemporary GPU programming

25

models provide some support for synchronization of threads within a thread block

but not across the whole kernel [21, 37]. They propose implementing synchro-

nization barriers by breaking down the algorithm before and after the barrier into

separate kernel calls. However, launching a kernel has some overhead associated

with it and this method becomes inefficient for algorithms that do not have enough

work in between barriers. Furthermore, the more kernels that an algorithm is bro-

ken into, the more data structures that will have to be placed in global memory.

This reduces the chances to optimize the kernel performance by placing data in the

low latency shared memory.

Xiao et al. proposed implementing barriers in software by using an array in

global memory to synchronize all thread blocks [49]. However, this solution cannot

be used when there are more thread blocks in a kernel than can be scheduled on a

core. This can only be handled by context switching the thread blocks that have

reached the barrier with waiting blocks. Contemporary GPUs do not yet provide

support for such operations. Also, the proposed solution uses the intrinsic thread

block barrier in its implementation of the global kernel barrier. Wong et al. showed

that the barrier operates on a per warp level as opposed to the per thread level as

expected by a programmer [47]. Thus by extension, the use of Xiao et al.’s solution

in different control flow paths could also produce unexpected behaviour.

We would like to identify barriers on a GPU as an important part of the prob-

lems with synchronization on a GPU. However providing hardware support for

implementing them is beyond the scope of this work.

26

Chapter 4

Proposed Lock and Unlock
Instruction

The goal of the solution is to aid programmers by simplifying the implementation

of synchronization. To address the problems described in Chapter 3.1, we propose

adding two instructions to the ISA:

1. Lock $address

2. Unlock $address

These instructions are exposed to the programmer through corresponding API calls

and enables them to maintain the level of abstraction detailed in the programming

model. It allows them to focus on optimizing the code for a GPU instead of reim-

plementing synchronization mechanisms. Example 9 shows how these instructions

can be used to implement the spinlock shown in Example 3

Example 9 Implementation of a spinlock with new instructions

Lock (lockAddress); (A)
//Critical Section (B)
Unlock (lockAddress); (C)
// More Code (D)

27

PC RPC Active Mask
A -1 11111111

A -1 11111111

(a) Hardware stack AFTER
execution of lock instruction

PC RPC Active Mask
A -1 11111111

A -1 11111111

TOS

(b) Hardware stack AFTER locks
have been acquired by threads

B -1 11110000

TOS

-1

LR

-1

LR

L

Type

Type

Figure 4.1: Hardware Stack During Execution of Lock Instruction (Grey In-
dicates Newly Added Stack Entries).

4.1 Lock Instruction
The goal of this instruction is to push entries on the stack that represent the threads

trying to acquire a lock and the threads that succeeded in doing so. These en-

tries coordinate the requirements of synchronization with the reconvergence mech-

anism.

The instructions send out an atomic memory request which performs the same

function as the atomicCAS described in Chapter 1.3.3. The request replaces the

value of the lock with the unique thread index if the lock is available and sends

a reply to the core indicating the success or failure of acquiring the lock. Once

the write requests have been sent a lock retry entry is pushed on to the stack. An

extra field is added to the stack to indicate the lock retry (LR) entry as displayed

in Figure 4.1(a). The Active Mask of this entry is copied from the previous TOS

entry and represents all the threads that have sent out write requests to acquire the

lock. The NPC is the PC of the lock instruction and the RPC of this entry is set to

-1. This prevents the entry from being popped by the reconvergence mechanism.

The warp is taken out of the scheduling queue and is rescheduled only when all

threads have received a reply for their atomic write request.

28

If any of the threads have succeeded in acquiring the lock, a lock entry(L) is

pushed on to the stack as show in Figure 4.1(b). The bits of the Active Mask are

set to 1 for all the threads that acquired the lock. The NPC is the address of the

instruction following the lock instruction and the RPC is set to -1 similar to the

lock retry entry. The TOS entry of the stack now allows threads that have acquired

their locks to execute the critical section.

However, if none of the threads succeeded in acquiring the lock, no new entry

is added on to the stack. In this case the TOS entry of the stack is the lock retry

entry and when the warp is executed the threads will again attempt to acquire locks.

This process is repeated until at least one of the threads is able to acquire a lock.

4.2 Unlock Instruction
The unlock instruction determines when entries are popped from the stack. The

reconvergence mechanism of the hardware stack pops entries from the stack when

there NPC is equal the RPC. Since, the lock and lock retry entries have an RPC of

-1, these entries never satisfy this condition and cannot be popped by the reconver-

gence mechanism.

The instruction sends out an atomic request which functions like the atom-

icExch described in Chapter 1.3.3. It release’s the lock by setting its value to -1.

The Active Mask of the lock entry is XORed with that of the of the lock retry entry

and then it is popped from the stack as shown in Figure 4.2.

Since the boundaries of the critical section are not known when requesting the

lock, a thread waits until it reaches the unlock instruction. The instruction follow-

ing the unlock instruction (D in Example 9) is to be executed when all threads have

finished their critical section. Thus the NPC of the entry below the lock retry entry

is update to the this PC as shown in Figure 4.2.

Once the lock entry has been removed, the Active Mask of the lock retry entry

is checked. If it is zero, all threads have finished executing their critical section and

this entry can be popped from the stack. The next time this warp is scheduled, the

NPC of the TOS entry is the instruction after the unlock instruction and the warp

execute code after the critical section.

29

PC RPC Active Mask
D -1 11111111

A -1 00001111TOS
B -1 11110000

-1

LR

L

Type

Figure 4.2: Hardware Stack After Execution of Unlock Instruction (Grey In-
dicates Stack Entries That Have Been Popped).

4.3 Interaction of Control Flow and Synchronization.
The unlock instruction described above will function when there is no divergence

among the threads entering the critical section. However, as seen in the excerpt of

code from radiosity in Example 10, this is not always the case.

Example 10 Excerpt from Radiosity application in SPLASH-2 benchmark suite

while (...){
if(...){

LOCK(); (A)
if(...){ (B)

.

. (C)

.
UNLOCK(); (D)
break ; (E)

}
UNLOCK(); (F)

}
} (G)

In this example, we are presented with two issues:

1. The branch instruction inside the critical region has an RPC that is after the

unlock instruction. When a divergent thread group from this branch reaches

the unlock instruction, the stack will contain two additional entries above the

lock entry and cannot directly pop the lock entry.

2. The multiple unlock instructions mean that after all threads finish their criti-

cal section, they will not all continue execution from the same PC.

30

NPCRPC Active Mask

A -1 11111111

A -1 11111111

G -1 11110000

A

B

C

D

F

F G 11000000

G

E

(a) Control
Flow Graph

(b) Hardware stack BEFORE
execution of unlock instruction at D

(c) Hardware stack AFTER
execution of unlock instruction at D

NPC RPC Active Mask

A -1 11111111

A -1 11001111

G -1 11000000

F G 11000000

NPCRPC Active Mask

G -1 11111111

A -1 00001111TOS

G -1 00000000

(d) Hardware stack AFTER execution
of unlock instruction at F

LR

-1

L

-1

Type

LR

-1

L

Type

LR

-1

L

-1

Type

TOS D G 00110000 -1

TOS E G 00110000 -1
G G 11000000 -1

Figure 4.3: Control Flow Graph and Hardware Stack for Example 10 (Grey
Indicates Stack Entries That Have Been Popped)

To handle the above issues, the unlock instruction is adjusted to not pop the

TOS entry. Figure 4.3(a) shows the CFG for Example 10 and Figure 4.3(b) shows

the hardware stack before execution of the unlock instruction at D. When the un-

lock instruction is executed, the stack entries below the TOS entry are searched to

find the lock and lock retry entry. The Active mask of the TOS entry will be XORed

with these two entries to indicate that they have finished the critical section as show

in Figure 4.3(c). Instead of popping the TOS entry, the NPC will be updated. The

subwarp continues execution until it reaches G, the RPC. Now, the reconvergence

mechanism will pop the TOS entry. Next, the other subwarp executes the unlock

instruction at F . The process described above is repeated and the lock entry be-

comes the TOS entry as shown in Figure 4.3(d). However, since its Active mask

is zero, it is also popped from the stack. The NPC of the entry below the lock

retry entry is also updated to the NPC of the lock entry. This last step ensures that

31

threads that diverged inside the critical section reach their RPC and continue at the

correct PC once they have finished their critical section.

4.4 Nested Locks
Mutual exclusion is not restricted to one lock. Threads might need to acquire

several locks before entering a critical region or acquire another lock during their

execution. This would require management of multiple lock and lock retry entries

on the stack. The subtle interactions of these entries is explained using Example 11

Example 11 Nested Locking

Lock(lockAddress_1); (A)
Lock (lockAddress_2); (B)
// Critical Section (C)
if (..){ (D)

// Some code (E)
Unlock(lockAddress_2); (F)

}else{
// Other code (G)
Unlock(lockAddress_2); (H)

}
//More Code (I)
Unlock(lockAddress_1); (J)

In this example there are three locks at addresses X , Y and Z. Thread 1 requires

lock X and Y and thread 2 requires lock Y and Z. A classic synchronization method

to avoid deadlocks is to introduce ordering among the locks. In this example the

address for locks Z > Y > X and the threads have to acquire the lock with the

lower address first. At A, thread 1 in the warp acquire lock at address X and thread

2 acquires lock at address Y . At B, thread 2 acquires Z but thread 1 cannot acquire

Y and waits. Thread 2 executes the code from C and release lock Z at F . As per

the mechanism described in Chapter 4.3, the lock entry is popped from the stack.

The lock retry entry for the lock at B is at the TOS and thread 1 will contend for

lock Y . However, thread 2 has not released lock Y as it has not executed the unlock

at J. This causes a deadlock even though lock ordering is supposed to prevent it.

This scenario can also occur between threads of different warps if they are holding

32

locks required by each other at different nesting depths.

To avoid deadlocks, we introduce a mechanism where threads that have ac-

quired locks must release all of them before allowing any other threads in the warp

to contend for locks. This is done with the use of counters to track the nesting

depth which is defined as the number of locks a thread has not yet released. A per

warp lock counter is incremented every time a lock retry is pushed on the stack.

A per thread unlock counter is incremented whenever an unlock instruction is ex-

ecuted. The unlock counter is subtracted from the lock counter to determine the

nesting depth of the thread. This nesting depth along with the unlock counter will

determine which stack entries should be modified.

Example 11 is reused to explain this mechanism. Figure 4.4(a) shows the con-

trol flow graph for this example. Threads 1,2,3,4,7 and 8 acquire locks at A and

threads 1,2,3,4 acquire locks at B. At D, the branch instruction causes thread 1 and

2 to diverge as shown in Figure 4.4(b). After executing the unlock at F , the unlock

counters for threads 1,2. Once the unlock counter is incremented, the nesting depth

is obtained by subtracting it from the lock counter.

If the unlock counter is 1, the threads have just released the most recently ac-

quire lock and still have more locks to release. In this case, the Active Mask of the

TOS entry is XORed with the lock retry entry as shown in Figure 4.4(c). The lock

entry is left unchanged and will be used to execute the code at I. Since the RPC for

the branch at D is I, the stack entry for threads 1,2 is poped after executing F (if

the RPC was at a later point, the threads would have continued execution and no

changes would have been made to the TOS). Threads 3 and 4 execute the unlock

instruction at H, repeat the above process and converge with threads 1 and 2 at I as

shown in Figure 4.4(d). Since the unlock counters are per thread, all four threads

will now have the same value of 1. These threads continue to J and execute the

unlock instruction, at which point their unlock counters will be incremented to 2.

When the unlock counter is greater than 1, the nesting depth is calculated by

subtracting the lock counter from the unlock counter. The nesting depth (zero in

this case) is used to find thelock retry entry (bottom most in this case) for the lock

being released. The Active Mask of the TOS entry is XORed with all stack entries

between the top most lock retry entry and the lock retry entry is found using the

nesting depth as seen in Figure 4.4(e). This stack adjustment reflects the fact that

33

A

B

C

E

I

F

(a) Control Flow
Graph

G

H

D

J

K

NPC RPC Active Mask

A -1 11111111

A -1 11110011

B -1 00110011

I -1 11110000

G I 00110000

L

LR

LR

L

-1

Type

2

Lock Counter

TOS

I I 11000000 -1

1

Unlock
Counter for

thread 1

NPC RPC Active Mask

A -1 11111111

A -1 11110011

B -1 00000011

I -1 11110000

L

LR

LR

L

Type

TOS

NPCRPC Active Mask

A -1 00001111

A -1 00000011

B -1 00000011

J -1 00000000

L

LR

LR

L

Type

TOS

2

Lock Counter

1

Unlock
Counter for

thread 1

Lock Counter

2

Unlock
Counter for

thread 1

(c) Hardware Stack and counters
AFTER the execution of unlock

instruction at F

(d) Hardware Stack and counters
BEFORE the execution of unlock

instruction at J

(e) Hardware Stack and counters
AFTER the execution of unlock

instruction at J

NPC RPC Active Mask

A -1 11111111

A -1 11110011

B -1 11110011

I -1 11110000

G I 00110000

L

LR

LR

L

-1

Type

2

Lock Counter

TOS E I 11000000 -1

0

Unlock
Counter for

thread 1

(b) Hardware Stack and counters AFTER
the execution of branch instruction at D

2

Figure 4.4: Control Flow Graph and Hardware Stack for Example 11 (Grey
Indicates Stack Entries That Have Been Popped)

these threads have already executed the code at I.

This mechanism can handle any level of nesting and continues till the nesting

depth value is zero. This indicates that the last lock has been released and the Active

Mask of the TOS entry is XORed with the top most lock entry. In this example, the

TOS and lock entry are the same when the nesting depth becomes zero. Therefore,

the active mask becomes zero and the lock entry is removed from the stack as

shown in Figure 4.4(e). Now threads 1,2,3 and 4 have released all the locks they

have acquire and threads 7,8 can contend for the locks at B. These threads will

repeat the same mechanism till they have executed both unlock instructions. At

this point, the active mask of all entries above the bottom most lock retry entry will

be zero and the entries will be removed. This will allows threads 5 and 6 to contend

for locks at A.

The per thread unlock counter is reset when the nesting depth becomes zero and

the lock counter is decremented when a lock retry entry is popped from the stack.

34

The PC of the instructions at which all threads should continue after finishing the

critical section is updated when the lock counter value becomes zero.

Note, the mechanism described here is different from that of section 4.3 where

there is control flow divergence and only one lock. The lock counter is examined

to determine which mechanism to use. If it is greater than 1, the process described

here is used, otherwise the unlock instruction behaves as described in section 4.3.

This gives us the flexibility to handle nested locks and some control flow diver-

gence.

4.5 Limitations of the Solution
In examining the PARSEC [9] and SPLASH-2 [48] multithreaded benchmarks

suites, we could not identify any synchronization code that could not be imple-

mented by the proposed instructions. However, in the interest of providing a com-

prehensive solution we identify areas where the solution falls short.

Consider a scenario when a divergent instruction outside the critical section

has an RPC inside the critical section as shown in Example 12. The RPC for

the branch A is E and upon execution of this branch, two stack entries are added

with the RPC E. The subwarp that branched into B completes its critical section,

removes the lock and lock retry entries at F and update its NPC to G. Now the

entry for this subwarp cannot be popped as it cannot reach its RPC at E and this

leads to deadlock.

One way of overcoming this issue is to use compiler directives to mark the lock

and unlock instructions. The compiler must then ensure that any branches outside

this region must have an RPC that is also outside this region. In Examples 12, if

the RPC of the branch instruction at A is set to G instead of E, there will be no

deadlock. Moving the RPC of a branch instruction would have a negative effect on

the SIMT efficiency of this code as it causes larger sections of code to be executed

by diverged subwarps and not the whole warp. The magnitude of this effect would

depend on the size of the critical section and is the trade off for simplifying the im-

plementation of this scenario on a GPU. These compiler modifications are outside

the scope of this work.

Nested locking suffers from the same issue along with an added problem. Ex-

35

Example 12 Code scenario that limits the solution

if(...){ (A)
Lock (lockAddress); (B)
//Critical Section (C)

}else{
Lock (lockAddress); (D)

}
// More code (E)
Unlock(lockAddress); (F)
// More Code (G)

ample 13 shows code that seems like it could be handled by the proposed solution.

However, let us take a case where threads 1 and 2 acquire locks X and Y at A. Then,

threads 1 and 2 diverge at B with only thread 1 wanting to acquire lock Y at C. This

causes a deadlock as thread 2 cannot execute until thread 1 reaches the RPC at F

and cannot release lock Y . This creates a situation where a thread is waiting for

a lock held by another thread which is not at the top of the reconvergence stack.

Since this other thread is not active, it cannot make forward progress and causes

deadlock.

Example 13 Code scenario that limits nested locking solution

Lock(lockAddress1) (A)
if(...){ (B)

Lock (lockAddress2); (C)
//Critical Section (D)
Unlock(lockAddress2); (E)

}
// More code (F)
Unlock(lockAddress1); (G)

Chapter 9 discusses future work that could address these and other shortcom-

ings.

36

Chapter 5

Queuing Lock Requests

The lock instruction described in section 3.1 can be categorized as a busy wait

synchronization. This means every time a thread receives a reply that indicates

failure to acquire the lock, it will send out another request. This is repeated until

it succeeds in acquiring the lock. If threads are waiting for a lock that is currently

being held, they will use up resources sending lock requests and receiving failure

replies for the duration of the critical region. These requests cause contention in

the interconnect and memory system and degrade performance. This situation is

even more drastic on a GPU where programs can contain thousands of threads, po-

tentially consuming a significant amount of resources. Queuing up the requests for

an acquired lock until its released would eliminate the need for failure messages.

This is the motivation behind the research into lock queuing on GPUs.

5.1 Related Work
To the authors knowledge, queuing of lock requests on a GPU is a novel proposal.

However, there is significant literature on lock queueing in the context of CPUs,

which is discussed in this section.

5.1.1 Queue on Sync Bit Primitive

Goodman et al. propose the first hardware queue synchronization primitive known

as Queue on Sync Bit [15]. A sync bit as described by Goodman et al “enforces

37

mutual exclusion when a particular protocol is followed by the parallel tasks”. The

QOSB primitive adds the thread requesting synchronization to a syncbit queue. It

is used in addition with a Test and Set operation to implement synchronizations.

Example 14 taken from Goodman et al.[15] shows a spin lock implemented using

the QOSB.

Example 14 Spin Lock using OQSB from Goodman et al. [15]

procedure lock (addr)
begin

QOSB(addr)
while(TEST_AND_SET(addr)) do

QOSB(addr)
end

In this example, the QOSB primitive adds the thread to the queue and the Test

and Set operation returns true if the thread is at the head of the queue. The QOSB

primitive is ignored if the thread is already in the queue. The Test and Set spins

on a flag local to the thread which avoids sending messages over the interconnect.

When a request reaches the head of the queue, the requesting thread is informed,

which allows the Test and Set to succeed.

5.1.2 Array Based Lock Queuing

Anderson proposed a software mechanism that uses array based lock queuing [5].

A thread requesting a lock, reads a counter for that lock, performs an atomic incre-

ment and gets a unique sequence number. When a thread has finished executing its

critical section, it passes the lock to the next sequence number. Example15 shows

pseudo code for the lock and unlock instructions as provided by Anderson [5].

Graunke and Thakkar [16] independently proposed a similar algorithm that uses

atomic swaps instead of increments. In both these proposals, threads spin on local

locations which avoids sending messages over the interconnect.

Experimental results prove that array based locking scales better than locks

implemented with test and set. However this mechanism was not compared to the

QOSB proposal from Goodman et al. [15]. The storage required for array based

locks is proportional to the number of threads being executed.

38

Example 15 Spin Lock from Anderson [5]

Init flags[0]:= HAS_LOCK;
flags[1...P-1]:= MUST_WAIT;
queueLast:=0;

Lock myPlace:= ReadAndIncrement (queueLast);
while(flags[myPlace mod P] == MUST_WAIT);

Unlock flags[myPlace mod P] := MUST_WAIT;
flags[(myPlace + 1) mod P] := HAS_LOCK;

5.1.3 Lock Queuing Using Linked Lists

Mellor-Crummey et al. proposed using linked lists to queue lock requests [30].

This software proposal called the MCS lock allocates a record for each thread re-

questing a lock in a memory location local to the thread. The lock address contains

a pointer to the tail of a queue of these records. Each new request is added to the

end of the queue and the tail pointer is updated. The thread that releases the lock

uses these links to pass the lock to the next thread. Example 16 taken from [30]

shows the implementation of this lock. Craig [11] and Magnusson et all [28] also

proposed lock queues that used linked lists with each thread linked to its predeces-

sor instead of its successor.

Experiments by the Mellor-Crummey et al. proved that the MCS lock per-

formed better than array based locking on non cache coherent machines. This is

because spinning on local locations cannot directly be implemented without coher-

ent caches. On cache coherent machines, both methods performed similarly. The

MCS lock requires space linear only to the number of locks being acquired by a

processor which is an improvement over array based locking.

5.2 Lock Queuing on GPUs
The prior work on lock queuing took advantage of existing cache coherence pro-

tocols or relied on fast locally accessible memory. At the moment GPUs do not

have either of these. L1 caches are not coherent and the shared memory per shader

core is accessible only to threads in a CTA. Hence, it cannot be used to commu-

39

Example 16 MCS lock from [30]

type qnode=record
next:qnode
locked:Boolean

type lock=qnode

//parameter I below points to a qnode record allocated
//(in a enclosing scope) in shared memory locally accessible
// to the invoking processor
procedure acquire_lock(L: lock, I: qnode)

I->next=nil
predecessor:qnode= fetch_and_store (L,I)

if predecessor != nil //queue was non empty
I->locked=true
predecessor->next=I
repeat while I->locked //spin

procedure release_lock(L: lock, I:qnode)
if I->next=nil //no known succesor

if compare_and_swap (L, I, nil)
return // compare and swap return true iff it swapped

repeat while I->next=nil //spin
I->next->locked=false

nicate between threads of different blocks or shader cores. Instead to implement

lock queuing on GPUs we propose adding additional hardware to the memory con-

trollers.

5.2.1 Queueing Requests in GPU Memory Partition

A GPU memory partition consists of the memory controller, L2 cache and ports to

the off chip DRAM. The memory controller is responsible for processing incoming

memory requests, either from the cache or by forwarding these requests to the

DRAM.

A table is added to this memory controller that stores the head and tail pointers

for queues. When a thread sends a lock request using the proposed instructions, the

memory controller will check this table to see if the lock address has a queue. If

there is no queue for this address, a new entry and a new queue record are allocated

40

and the table is updated. However, if a queue already exists, a new queue record

is allocated and added to the end of the list. Storing the tail pointer speeds up

insertion by eliminating the need to traverse the whole list. Each queue record

stores the unique thread identifier and a pointer to the next queue record. The

queue record themselves can be stored in memory and cached in the L2.

If a queue is created or a queue record moves to the head of the queue, the

lock is available and the request can be processed. The queue record of the thread

holding the lock remains at the head of the queue for the duration of the critical

section. It is popped from the queue by the unlock instruction at which point the

lock passes to the thread in the next queue record.

This design is based on the MCS lock queue described in section 5.1 of this

chapter and the storage space required is linear to the number of threads acquiring

locks. However, in our experiments we use an idealized model where this is no

limitation on the size of a queue or the number of queues. A more realistic model

could limit both of these factors and implement a back off mechanism for threads

when the storage limit is reached. This is an area of future work and is discussed

in Chapter 9. Additionally due to time constraints, we do not model the DRAM

operations associated with adding and removing and entries from the queue. We

hypothesize that If these queuing operations become a bottleneck to performance,

an additional SRAM could be added to store the queues and therefore these addi-

tional operations are not a significant design constraint.

5.2.2 Interaction of Nested Locks with Lock Queuing

Queueing of lock requests for nested locks creates a deadlock condition similar to

the one described in Chapter 4.5. Without lock queuing, when threads in a warp re-

quest locks, the warp waits for all replies to come back and only schedules threads

that have acquired the locks. However, with lock queuing, any thread that receives

a reply will immediately be scheduled for execution. This cause divergence with

the top stack entry containing the active thread. It is possible that during the ex-

ecution of the critical section, other threads in the warp receive replies indicating

successful lock acquisition. If the active thread requires a lock that has been ac-

quired by a thread not at the top of the stack, it causes a deadlock. This limitation

41

prevents us from implementing lock queuing for nested locks.

42

Chapter 6

Methodology

A modified version of GPGPU-Sim (version 2.1.1b) [7] is used to model the pro-

posed changes. GPGPU-Sim is a cycle accurate GPU simulator that does perfor-

mance simulations of CUDA and OpenCL programs. The next section gives an

overview of the simulator followed by the change made to implement the proposed

instructions.

6.1 Background on GPGPU-Sim
GPGPU-Sim models the architecture described in Chapter 1.3. Applications to

be executed on the simulator use the same tool chains that a normal GPU program

would use. CUDA programs are compiled with nvcc (a NVIDIA compiler) and

OpenCL program with any C compiler that supports the OpenCL extensions. The

compiler generates an executable containing PTX code that is to run on the GPU

and host code that runs on the CPU. Upon execution, the program would normally

use the CUDA or OpenCL runtime libraries to interface with the GPU. However,

GPGPU-Sim implements the API for CUDA and OpenCL providing custom shared

runtime libraries. By dynamically linking the executables to these custom libraries,

the GPU code is executed on the simulator instead of the GPU hardware.

GPGPU-Sim provides a functional simulator that executes the PTX assembly

code and a performance simulator that models the GPU microarchitecture. Parallel

Thread Execution (PTX) is a pseudo assembly language used by NVIDIA and is

43

described as an ISA for general purpose parallel thread execution[38]. As the name

suggests, the functional simulator executes the PTX instructions and mimics what

a GPU program would expect from hardware. It also provides input to the perfor-

mance simulator that models the Shader Core pipeline, interconnect and memory

systems. Each of these subsystem are described in the following sections.

6.1.1 Shader Core

The shader cores consist of a five stage in order pipeline with no forwarding. The

stages are simulated in reverse order, which is a well known simulator design. It

avoids having two copies of the same pipeline register. During the execution of a

stage, the pipeline register that feeds the next stage is checked. If the register is

non-empty, it indicates a stall in the next stage and the current stage is stalled as

well. Regardless of a stall, the current stage is executed as normal. However, the

pipeline registers are copied to the next stage only when a stall is not detected.

The fetch stage selects a warp for execution from a pool of ready warps. A

ready warp is one where no active threads in the warp are waiting for memory

operations to complete. It fetches the instructions for the warp from the instructions

buffer and copies the PC and thread IDs into the pipeline of the decode register. It

also marks the warp as issued to prevent it from being rescheduled until it has

passed through the pipeline.

The decode stage functionally executes instruction for all active threads in the

warp. It determines the Next PC for every thread and this information is used

by the performance model to handle branch divergence. The branch divergence

model used is the model described in Chapter 1.3.2. The functional simulator also

determines the addresses for any memory operations required by the thread. The

performance simulator then coalesces these requests and generates memory request

packets. Coalescing is a process where memory requests from scalar threads are

checked to see if they are contiguous. If so, the requests are combined into fewer

wide memory accesses. This reduces the number of messages required between

shader cores and DRAM and increases efficiency

The execute stage is not modelled in GPGPU-Sim as the functional execution

is already performed in the decode stage. The simulator moves on to the memory

44

stage instead. This stage examines the coalesced memory requests and forwards

them to the appropriate memory unit. Requests are classified as shared memory

or global memory. For shared memory requests, bank conflicts are checked and

the requests are returned after the appropriate number of cycles. For global mem-

ory requests, the local cache is first checked for hits. If any accesses miss in the

cache, the memory stage forwards a request to the memory system through the in-

terconnect. The warp is marked as waiting for memory operations and will not be

scheduled until a reply is received.

The writeback processes replies from the memory system. It updates the status

of warps to ready when all its outstanding requests have been received. This will

allow the fetch stage to continue execution of the warp.

6.1.2 Interconnect

The interconnect system transports messages from the shader core to the memory

system and vice versa. Booksim a flit level simulator is used to implement this

model [1]. GPGPU-Sim interfaces with the interconnect at the memory stage of

the shader core and the L2 cache of the memory unit. The interconnect system

can be configured through configuration files and can model different topologies,

routing model, virtual channels, flow control models etc. It is only aware of the

size of the packet being transmitted and does not operate on its contents.

6.1.3 Memory Unit

The memory space of a GPU is split into several memory partition units. Each

unit contains, the L2 cache, memory controller and DRAM chips for a portion of

the memory space. Before being injected into the interconnect, memory requests

are decoded to determine which memory partition unit they must be sent to. On

arrival at a unit, requests that miss in the L2 cache are forwarded to the DRAM.

The DRAM access model is detailed and takes into account the latency for row

accesses, column accesses, pre charges etc.

The atomic instructions described in Chapter 1.3.3 are implemented in GPGPU-

Sim by using callback functions. In this model, the decode stage generates memory

requests for atomic instructions and sets function pointers. These functions are then

45

executed when the memory request has reached the memory partition unit. This

mimics the execution of atomics in hardware, which is performed by ALU units in

the memory controller.

6.2 Implementing Lock and Unlock Instructions
To simplify the implementation and avoid modification to the nvcc compiler, the

lock and unlock instructions are modelled as function calls. This allows us to use

the instructions in benchmarks by adding empty function definitions. The func-

tional calls are intercepted by the simulator and treated as instructions. Similar

to the execution of atomics, they set callback functions and generate memory re-

quests in the decode stage. Each warp keeps count of the lock requests sent out and

the warp is marked as not ready till all outstanding requests have been processed.

This prevents the fetch unit from scheduling the warp for execution. The memory

requests generated are also marked to indicate that they are lock or unlock requests.

When the memory requests reach the memory partition unit, they are processed

by the memory controller. It is here that the callback functions are executed, which

check the availability of locks and acquire or release the locks. The replies gener-

ated by these requests are forwarded back to the shader cores through the intercon-

nect. Upon arrival at the shader cores, the writeback unit examines the replies to

determine which threads have acquired the locks. The writeback unit waits till all

outstanding lock/unlock requests for active threads in a warp have returned. The

writeback unit then performs the updated to the PDOM mask as described in Chap-

ter 4.1 and 4.2. The warp is then marked ready and can be scheduled by the fetch

unit for execution.

6.3 Implementing Queuing of Lock Requests
To implement lock queuing, the memory controller was modified to create a map

of addresses and queues. Every lock request is checked against this map. If the

queue is empty, the request is added to the head of the queue and processed. If

the queue is non-empty the request is added to the queue and removed from the

memory pipeline. Unlock instructions are allowed to pass through the memory

pipeline as normal. After the execution of an unlock instruction, the requests at

46

the head of the queue is removed and the next request is inserted into the memory

pipeline. If this next request cannot be inserted into the DRAM memory access

queue due to resources constraints, it will be inserted into a separate buffer. On

the next cycle, requests in this buffer are given priority over incoming memory

requests from shaders to avoid starvation of lock requests.

In this implementation, outstanding lock requests in a warp might not all come

back at the same time. The writeback unit is modified to account for this. If a reply

is received indicating success in acquiring a lock, the PDOM mask of the warp is

updated and the warp can be scheduled for execution regardless of the number of

outstanding requests. This means that replies to lock requests can come in when

a warp is executing the critical section. If this happens, the writeback unit will

not update the PDOM mask. Instead, when the warp finishes executing an unlock

instruction, the other active threads in the warp trying for locks are checked. If any

of them have acquired locks, the PDOM stack is updated accordingly and the warp

is scheduled for execution. This ensures that threads in a warp requesting different

locks can receive replies in any order.

6.4 Baseline Configuration
The modified GPGPU-Sim models the architecture described in Chapter 1.3.1. Ta-

ble 6.1 shows the major configuration parameters used. Section 6.5 discusses the

benchmarks used in this study. This configuration is similar to an NVIDIA’s Fermi

architecture [36] and is used to evaluate the proposed instructions.

6.5 Benchmarks
Apriori, BarnesHut and interac are the benchmarks used in this thesis. They are

discussed in the following sections.

6.5.1 BarnesHut N-Body algorithm

N-Body algorithms calculates the force on a particles from all other particles in the

system. The Barnes-Hut N-Body algorithm has an O(nlogn) when compared to

a direct sum algorithm of order O(n2) [8]. The algorithm is given the location of

47

Table 6.1: GPGPU-Sim Configuration

Streaming Multiprocessors 30
Warp Size 32

SIMD Pipeline Width 8
Number of Threads / Core 1024
Number of Registers / Core 16384

Shared Memory / Core 16KB
Constant Cache Size / Core 8KB
Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8
L2 Unified Cache 1MB/Memory Channel, 64B line, 64-way assoc.

Compute Core Clock 1300 MHz
Interconnect Clock 650 MHz

Memory Clock 800 MHz
DRAM request queue capacity 32

Branch Divergence Method PDOM [14]
Warp Scheduling Policy Loose Round Robin

GDDR3 Memory Timing tCL=10 tRP=10 tRC=35 tRAS=25 tRCD=12 tRRD=8
Memory Channel BW 8 (Bytes/Cycle)

each particle in the system as an input. It starts by creating a cube that encloses

all the particles in the system. The cube is then divided into 8 equal quadrants

knows as cells. Each cell is repeatedly divided into 8 cells until each particle in

the system is in its own cell. This information is stored by creating an Oct-tree, a

tree where each node has eight children. The nodes of the tree are the cells and the

leaves are the particles. When calculating force on a given particle, the algorithm

only considers particles from nearby cells individually. Particles from distant cells

are treated as a single large particle located at the centre of mass for these distant

particles.

This algorithm was ported to CUDA by Burtscher et al. [29]. It uses atomics

to implement synchronization when multiple threads access the Oct-tree. A thread

traverses the tree to a leaf node before attempting insertion. Each leaf must be

locked by a thread before inserting a particle. If it is an empty leaf, the particle is

inserted. If not, the leaf is converted into a node and new leafs are added to it. The

existing particle and the particle being inserted are then distributed to these leaf

nodes. Example 17 shows the synchronization code used for this purpose. This

48

Example 17 Synchronization in BarnesHut from [29]

// initialize
cell = find insertion point(body);
child = get insertion index(cell, body);
if (child != locked) {
// ACQUIRE LOCK
if (child == atomicCAS(&cell[child], child, lock)) {

//critical section
child=-2 // RELEASE LOCK

}
}
syncthreads(); // wait for other warps to finish insertion

synchronization is non-blocking meaning it returns after a single attempt, regard-

less of success or failure in acquiring the lock. The if (child!=locked) statement

before the lock, checks the lock availability and reduces contention by not sending

a request if the lock is already taken. If the lock availability check fails or if the

thread cannot acquire the lock, it traverses the Oct-tree again to a leaf node(this

traversal code is omitted from Example 17. Example 18 shows the same code with

the proposed instructions.

As explained in Chapter 4.1, the lock instructions does not return until the lock

is successfully acquired. This results in a subtlety in Example 18 which is best

explained by an example. Two threads X and Y are contending for the same leaf.

This leaf already has a particle in it but is not locked by any other thread. Since the

lock is available, both threads pass the lock check and execute the lock instruction.

Thread X succeeds in acquiring the lock, upon which it expands the Oct-tree and

converts the leaf into a node. Thread X releases the lock and it is then acquired

by Thread Y. Thread Y must not insert into this node as it is not a leaf. Additional

code was added to the check for this scenario and immediately release the lock if

it is encountered.

This situation does not occur in the original code show in Example 17, where

thread Y would have failed to acquire the lock on the first attempt and re-traversed

the tree. The lock availability check would prevent thread Y from attempting the

lock on the same node again and it will spin in the tree traversal loop. When

49

thread X release the lock, it would have already expanded the tree and thread Y

will traverse to a new leaf node before trying to acquiring a lock. This form of

synchronization that returns after a single attempt is called a try lock. Extending

the proposed instructions to implement try locks is an area of future work and is

discussed in Chapter 9.

Burtscher et al. state “As long as at least one thread per warp succeeds in ac-

quiring a lock, thread divergence temporarily disables all the threads in the warp

that did not manage to acquire a lock until the successful threads have completed

their insertions and released their locks” [29]. From this we infer that the authors

required an understanding of the SIMT behaviour to optimize this code. The sync-

threads() in Example 17 is another example of the same. The reason for which is

described by Burtscher et al. as “This barrier throttles warps that would otherwise

most likely not be able to make progress but would slow down the memory access

of the successful threads”. The benchmark was chosen to show that the proposed

instructions can achieve similar performance and free the author from understand-

ing the intricacies of the SIMT behaviour.

Example 18 Synchronization using proposed instructions in BarnesHut

// initialize
cell = find insertion point(body);
child = get insertion index(cell, body);
if (child != locked) {

lock (child) // ACQUIRE LOCK
//critical section

unlock (child) // RELEASE LOCK
}

6.5.2 Apriori

A data mining application from the Minebench benchmark suite [34] described in

Chapter 2.

50

6.5.3 Interac

A microbenchmark that simulates bank transactions that run in parallel. A transac-

tion consists of two accounts, with money withdrawn from one and deposited into

the other account. Before executing a transaction, a thread must acquire locks on

both the bank accounts. To avoid deadlock, threads acquire the locks in order i.e

the lock for the smaller account number is acquired first. This is a classic deadlock

avoidance technique used when threads have to acquire more than one lock. Ex-

ample 19 shows the nested locks implemented using atomics and loops. We would

like to note that the atomic implementation required some trial and error due to

compiler optimization of loops. These optimizations caused the divergence prob-

lems described in Chapter 3.1. This is another example of complications that can

be avoided by using the proposed instructions as shown in Example 20.

Example 19 Synchronization using atomics in Interac

while(!transaction_done) {
if(has_acc1 || atomicCAS(&acc1->lock, 0, 1) == 0) {

has_acc1 = 1;
if(atomicCAS(&acc2->lock, 0, 1) == 0) {

src->balance -= action->amount; // do transaction
dest->balance += action->amount;
acc2->lock = 0; // release locks
acc1->lock = 0;
transaction_done = 1;

}
}

}

Example 20 Synchronization using proposed instructions in Interac

lock(A);
lock(B) ;
src->balance -= action->amount; // do transaction
dest->balance += action->amount;
unlock(B); //locks release;
unlock(A);

51

Chapter 7

Experimental Results

The instructions proposed in Chapter 4.1 are evaluated on the benchmarks de-

scribed in Chapter 6.5. Section 7.1 discusses the comparison of the proposed in-

structions against synchronizations using atomics. Section 7.2 shows the results of

implementing lock queuing.

14.59	

6.21	

4.05	

0.99	 1.03	

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

16.00	

BarnesHut-‐50K	 BarnesHut	 -‐100K	 BarnesHut-‐300K	 Apriori	 Interac	

Figure 7.1: Normalized Execution Cycles of Proposed Instructions Against
Unmodified Benchmarks That Use Atomics for Synchronizations

52

7.1 Performance of Lock and Unlock Instructions
Figure 7.1 shows the number of execution cycles of the proposed instructions nor-

malized to the unmodified benchmarks that use atomics for synchronizations. In

Figure 7.1, the number following BarnesHut is the size of the input data set (the

number of particles being simulated) Apriori and interac achieve our goal of sim-

plifying the implementation of synchronizations while providing similar perfor-

mance. The slowdowns experience by BarnesHut can be attributed to two factors.

First, as explained in Chapter 6.5.1, our proposed instructions implement block-

ing synchronization and may result in threads acquiring locks, but performing no

insertion into the tree. Even though no insertions take place, threads spend time

waiting to acquire locks as opposed to the original benchmark where they are in a

tree traversal loop. This wait time and the cycles required to execute the critical

section with no insertion contribute to the slow downs seen for BarnesHut. Fig-

ure 7.2 shows the number of critical sections executed where no insertions take

place normalized to the total number of critical sections executed. From this fig-

ure, we can infer that there is a direct relationship between the number of wasteful

critical sections executed and the slowdown achieved.

0.15	

0.08	

0.03	

0.15	

0.08	

0.03	

0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

0.16	

BarnesHut-‐50K	 BarnesHut	 -‐100K	 BarnesHut-‐300K	

w/o	 Lock	 Queueing	

w/	 Lock	 Queuing	

Figure 7.2: Number of Critical Sections That Do Not Insert into the Tree Nor-
malized to Total Critical Sections Executed

Secondly, the proposed lock instruction keeps sending out requests till it ac-

53

quires the lock. Even with the lock availability check described in Chapter 6.5.1, it

results in a large number of retries for lock requests. This causes contention in the

interconnect and memory system and is another factor in the performance degrada-

tion. The implementation of lock queuing greatly reduces this contention and the

results are discussed in section 7.2.

7.2 Performance of Lock Queuing

5.78	

2.62	

1.69	

1.00	

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

BarnesHut-‐50K	 BarnesHut	 -‐100K	 BarnesHut-‐300K	 Apriori	

Figure 7.3: Normalized Execution Cycles of Proposed Instructions with
Lock Queuing Against Unmodified Benchmarks That Use Atomic for
Synchronizations

Figure 7.3 shows the execution cycles of the proposed instructions with lock

queuing (as described in Chapter 5.2) normalized to the synchronization with atom-

ics. The Apriori benchmark is not bottlenecked by contention in the interconnect

and memory system and implementing lock queuing does not affect its perfor-

mance by much. The complexities involved in implementing lock queuing for

nested locks (as described in Chapter 5.2.2) prohibited the inclusion of the interac

benchmark in this experiment.

As expected, all BarnesHut data sets show a significant improvement in per-

formance with the implementation of lock queueing. The data packets sent by the

54

0.07	

0.18	

0.27	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

BarnesHut-‐50K	 BarnesHut	 -‐100K	 BarnesHut-‐300K	

Figure 7.4: Number of Writes of an Implementation with Lock Queuing Nor-
malized to One Without

lock and unlock instructions are modelled as memory writes in our experiments.

Figure 7.4 shows the number of writes executed in the implementation with lock

queuing normalized to the implementation without. These reductions in write traf-

fic reduce the contention and contribute to the improved performance. However,

the implementation of lock queuing does not effect the number of wasteful critical

sections executed as shown in Figure 7.2. The remaining performance slowdown

can be attributed to these critical section. It may be possible to eliminate this slow-

down by implementing try locks, which is an area of future work and discussed

further in Chapter 9.

7.3 Hardware Cost
The main cost of implementing the proposed instructions is the changes required

to the hardware stack. Since the instructions can update entries that are not at

the TOS, it changes the behaviour of the stack mechanism. Additional logic and

registers would be needed to implement stack traversal capabilities. This logic will

55

Table 7.1: Storage Used for Lock Queuing

BarnesHut-50K 0.34 MB
BarnesHut-100K 0.63 MB
BarnesHut-100K 1.77 MB

Apriori 0.006 MB

only be used by the proposed instructions and the rest of the system will continue

to use the stack in the traditional manner. Support for nested locking would require

additional registers to store the per thread and per warp counter as described in

Chapter 4.4.

In our experiments with lock queuing we use an idealized model where there

is no limit on the number of requests that can be queued. Each queue request

consists of an integer to store the thread ID and a pointer to the next queue request.

Assuming 4 bytes each to store an integer and the pointer, Table 7.1 shows the

total storage space in MB used by benchmarks to store requests. Even with this

idealized model, the storage required is not a significant constraint.

The existing hardware stack is sized to handle divergence of every thread in the

warp. Since the proposed instructions can add more entries to the stack, it could

have more entries than the number of threads in the warp. To handle these extra

synchronization entries, the depth of the stack would need to be increased with

overflow being handled by spilling the stack to memory.

56

Chapter 8

Related Work

8.1 Synchronization using Full/Empty Bits in Memory
One method of implementing fine grained synchronization in multiprocessor ar-

chitecture is to add extra bits to each memory location. This bit, known as the ful-

l/empty bit along with special instructions can implement synchronization directly

in hardware. These synchronization instructions complete only if the memory loca-

tion is in a pre-determined state or else they return a failure message. For example,

a load to a memory location will check if the bit is full and a store will check if

the bit is empty before executing. These instructions also change the full/empty bit

appropriately. Tera [4] and Sparcle [2] are two multiprocessor architectures where

this was implemented. The obvious overhead of this method is the storage required

as every memory location requires a full/empty bit. In addition these instructions

implemented non-blocking synchronization and software mechanisms were still

required to manage retries.

8.2 Register Based Synchronization Mechanisms
The M-Machine[13, 18] associated full/empty bits with registers instead of mem-

ory locations. Writes to a register only succeed if bit is set to empty and threads

could explicitly clear the bit after reading the register. This allowed waiting threads

to stall as opposed to spinning, which is a form of blocking synchronization. Ex-

57

perimental results showed that register based communication performed better than

associating bits with memory [18]. The Cray X-MP[6] also used this mechanism

but decoupled the synchronization bits from the data registers by using separate

one bit synchronization registers. These registers could be used to protect any of

the data registers.

8.3 Synchronization State Buffer
The synchronization state buffer (SSB) proposed by Zhu et al. [50] is based on the

observation that the number of synchronization variables in use at a given time, is

usually smaller than the number of memory locations. It uses a separate storage

buffer to keep track of the full/empty bits for the memory locations in use. In

the context of producer-consumer synchronizations, if a producer’s write operation

arrives first, a SSB entry is allocated and a success message is returned to the

thread. Any subsequent loads from consumers will also receive a success message.

However, if a load from a consumer arrives first, a wait message is returned to the

thread. The thread then goes to sleep until it is woken up by a write operation. This

reduces the overhead of adding one bit to every memory location. The extended

SSB from Ributzka et al. [40] builds on this proposal by eliminating the return

messages. If a consumer’s read arrives first, it stores the request in the E-SSB

and does not return anything until the producer’s write operation is complete. The

processor uses scoreboarding to keep track of outstanding memory requests. This

mechanism will allow it to schedule other instructions that are not related to the

synchronization operation. This can be considered a form of lock request queueing,

similar to methods described in Chapter 5.1.

8.4 Synchronization Primitives in SMT processors
Tullsen et al. [45] proposes a synchronization mechanism for simultaneous multi-

threaded processors (SMT) with explicit acquire and release operations. This work

takes into account the special properties of an SMT processor and tries to reduce

the usage of all shared resources. It uses a lock box which contains one entry
per hardware thread. Since threads cannot be blocked on more than one lock, this

is sufficient to keep track of lock requests. When a thread fails to acquire a lock

58

using the acquire operation, the lock address and thread ID are stored in the lock

box and the thread is blocked. When a release operation for a lock is executed, the

processor checks the lock box and allows a thread blocked on this lock to execute.

This mechanism differs from our proposal in that it does not have to deal with a

reconvergence stack.

59

Chapter 9

Future Work And Conclusion

This chapter summarizes and the concludes the work presented. Finally it discusses

areas of future work that could address the shortcomings identified throughout this

paper.

9.1 Summary and Conclusion
The implementation of synchronizations on GPUs is complicated by the SIMT

execution model of the GPU. We show how mutexes, semaphore and barriers do

not behave as expected because of this SIMT model and the reconvergence stack

it uses. We propose instructions that simplify the implementation of mutexes on

a GPU. These instructions modify the hardware stack in a novel way, using spe-

cial entries to manage the retries for lock requests. Further, the proposed solution

is amended to handle scenarios where synchronization is interleaved with control

flow (as seen in certain benchmarks). We expose the subtleties of implementing

nested locking in a SIMT stack and provide a solution that can handle some com-

mon cases. To improve the performance of these requests, we propose implement-

ing lock queuing in GPUs. This minimizes the synchronization messages sent over

the interconnect and the pressure on the memory system. Finally we evaluate the

performance of these instructions as compared to synchronizations implemented

using atomics and show that have similar performance. These instructions repre-

sent the first step towards providing a wide range of synchronization primitives

60

for GPUs. They will aid the development of application on a GPU and improve

programmer productivity.

9.2 Future Work
In this section we discuss proposals that can improve the performance of these

instruction. We also present other areas of research that this work could lead to.

9.2.1 Backoffs for Lock Requests

An approach often used in CPUs is to introduce delays between synchronization

requests. Delays could either be inserted after the lock has been released or after

every request to acquire the lock. The duration of the delay can range from a simple

constant to being increased by linear or exponential factors. In [5], Anderson

explores these alternatives and concludes that exponential backoff provides the best

performance and scalability for spin locks. Backoff algorithms have generally not

been combined with queuing lock requests in the CPUs and are seen as orthogonal

proposals. However in a GPU, we could implement backoffs for threads when the

storage for queued locks requests is full. Extending the proposed instructions to

implement Backoff and evaluating its performance is an area of future work.

9.2.2 Try Locks

As described in Chapter 7.1, the BarnesHut algorithm implements a form of try

lock. In the implementation using atomics, only a single attempt is made and the

program executes alternate code on failure. However, certain algorithm could re-

quire that the lock is tried for a certain duration of time or number of attempts

before giving up. Scott et all have proposed and evaluated several version of try

locks including solutions that timeout in lock queues [43, 44]. In order to adopt

this work to GPUs, future work should investigate how to remove threads from the

stack retry mechanism and ensure that they execute alternate code, if any.

61

9.2.3 Alternative to the Reconvergence Stack

As explained in Chapter 1.3.2, a reconvergence stack is used to handle control flow

in a SIMT execution model. This means that during the execution of a program, not

all threads in a GPU maybe active. These non-active threads can cause problems

with synchronization if they are holding resources required by active threads as de-

scribed in Chapter 4.5. These problems could be avoided if all thread in the GPU

are allowed to make forward progress. Fung et al. propose a mechanism that elim-

inates the hardware stack by dynamically grouping threads into warps [14]. In this

proposal the scheduler examines all threads in a thread block and creates a warp

from threads executing the same instruction. This means a stack is not required and

upon control flow divergence, threads in the warp are assigned to different warps

based on the result of the branch. This mechanism allows all threads to make for-

ward progress. This eliminates the problem of non-active threads holding resources

and causing deadlocks. Adopting this mechanism to implement synchronizations

and manage retries is an area of future work.

62

Bibliography

[1] Booksim interconnection network simulator.
http://nocs.stanford.edu/booksim.html.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B. Lim, D. Yeung, G. D’Souza, and
M. Parkin. Sparcle: an evolutionary processor design for large-scale
multiprocessors. Micro, IEEE, 13(3):48 –61, jun 1993. ISSN 0272-1732.
http://dx.doi.org/10.1109/40.216748doi:10.1109/40.216748.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
pages 487–499, 1994.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The tera computer system. SIGARCH Comput. Archit. News, 18:
1–6, June 1990. ISSN 0163-5964.
http://dx.doi.org/http://doi.acm.org/10.1145/255129.255132doi:http:
//doi.acm.org/10.1145/255129.255132. URL
http://doi.acm.org/10.1145/255129.255132.

[5] T. E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1:6–16,
January 1990. ISSN 1045-9219.
http://dx.doi.org/10.1109/71.80120doi:10.1109/71.80120. URL
http://portal.acm.org/citation.cfm?id=628891.628973.

[6] M. August, G. Brost, C. Hsiung, and A. Schiffleger. Cray x-mp: the birth of
a supercomputer. Computer, 22(1):45 –52, jan 1989. ISSN 0018-9162.
http://dx.doi.org/10.1109/2.19822doi:10.1109/2.19822.

[7] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed GPU
Simulator. In Int’l Symp. on Perf. Analysis of Systems and Software
(ISPASS), pages 163–174, April 2009.

63

[8] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm.
Nature, 324(6096):446–449, Dec. 1986.
http://dx.doi.org/10.1038/324446a0doi:10.1038/324446a0. URL
http://dx.doi.org/10.1038/324446a0.

[9] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[10] B. W. Coon et al. United States Patent #7,353,369: System and Method for
Managing Divergent Threads in a SIMD Architecture (Assignee NVIDIA
Corp.), April 2008.

[11] T. Craig. Building fifo and priority-queuing spin locks from atomic swap.
Technical report, 1993.

[12] David Kanter. AMD Fusion Architecture and Llano.
http://www.realworldtech.com/page.cfm?ArticleID=RWT062711124854p=2.

[13] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich,
and Whay. The m-machine multicomputer, 1995.

[14] W. Fung et al. Dynamic Warp Formation and Scheduling for Efficient GPU
Control Flow. In Proc. 40th IEEE/ACM Int’l Symp. on Microarchitecture,
2007.

[15] J. R. Goodman, M. K. Vernon, and P. J. Wwst. Efficient synchronization
primitives for large-scale cache-coherent multiprocessors. pages 64–75,
1989.

[16] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory
multiprocessors, pages 26–35. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1995. ISBN 0-8186-6502-5. URL
http://portal.acm.org/citation.cfm?id=201711.201712.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support
for lock-free data structures. In Proceedings of the 20th annual international
symposium on computer architecture, ISCA ’93, pages 289–300, New York,
NY, USA, 1993. ACM. ISBN 0-8186-3810-9.
http://dx.doi.org/http://doi.acm.org/10.1145/165123.165164doi:http:
//doi.acm.org/10.1145/165123.165164. URL
http://doi.acm.org/10.1145/165123.165164.

64

[18] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and W. S. Lee.
Exploiting fine-grain thread level parallelism on the mit multi-alu processor.
In Proceedings of the 25th annual international symposium on Computer
architecture, ISCA ’98, pages 306–317, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-8186-8491-7.
http://dx.doi.org/http://dx.doi.org/10.1145/279358.279399doi:http:
//dx.doi.org/10.1145/279358.279399. URL
http://dx.doi.org/10.1145/279358.279399.

[19] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and M. Valero. RMS-TM: A
transactional memory benchmark for recognition, mining and synthesis
applications. In TRANSACT ’09: 4th Workshop on Transactional
Computing, feb 2009.

[20] Khronos Group. OpenCL. http://www.khronos.org/opencl/.

[21] The OpenCL Specification. KHRONOS group, 1.1 edition, 2010.

[22] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization of
multiprocessors with shared memory. In Proceedings of the fifth annual
ACM symposium on Principles of distributed computing, PODC ’86, pages
218–228, New York, NY, USA, 1986. ACM. ISBN 0-89791-198-9.
http://dx.doi.org/http://doi.acm.org/10.1145/10590.10609doi:http:
//doi.acm.org/10.1145/10590.10609. URL
http://doi.acm.org/10.1145/10590.10609.

[23] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C. J. Hughes,
C. Kim, V. W. Lee, and A. D. Nguyen. Atomic vector operations on chip
multiprocessors. Computer Architecture, International Symposium on, 0:
441–452, 2008. ISSN 1063-6897.
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISCA.2008.38doi:
http://doi.ieeecomputersociety.org/10.1109/ISCA.2008.38.

[24] A. Levinthal and T. Porter. Chap - A SIMD Graphics Processor. In 11th
Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH),
pages 77–82, 1984.

[25] A. Levinthal and T. Porter. Chap - a simd graphics processor. In
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’84, pages 77–82, New York, NY, USA,
1984. ACM. ISBN 0-89791-138-5.
http://dx.doi.org/http://doi.acm.org/10.1145/800031.808581doi:http:

65

//doi.acm.org/10.1145/800031.808581. URL
http://doi.acm.org/10.1145/800031.808581.

[26] E. Lindholm, M. J. Kligard, and H. P. Moreton. A user-programmable vertex
engine. In SIGGRAPH’01, pages 149–158, 2001.

[27] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. Micro, IEEE, 28(2):39–55,
March-April 2008.

[28] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent
multiprocessors. In In Proceedings of the 8th International Symposium on
Parallel Processing, pages 165–171. IEEE Computer Society, 1994.

[29] Martin Burtscher and Keshav Pingali. An Efficient CUDA Implementation
of the Tree-based Barnes Hut n-Body Algorithm. Chapter 6 in GPU
Computing Gems Emerald Edition, pages 75–92, January 2011.

[30] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans. Comput.
Syst., 9:21–65, February 1991. ISSN 0734-2071.
http://dx.doi.org/http://doi.acm.org/10.1145/103727.103729doi:http:
//doi.acm.org/10.1145/103727.103729. URL
http://doi.acm.org/10.1145/103727.103729.

[31] S. Molnar, J. Eyles, and J. Poulton. Pixelflow: high-speed rendering using
image composition. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’92, pages
231–240, New York, NY, USA, 1992. ACM. ISBN 0-89791-479-1.
http://dx.doi.org/http://doi.acm.org/10.1145/133994.134067doi:http:
//doi.acm.org/10.1145/133994.134067. URL
http://doi.acm.org/10.1145/133994.134067.

[32] J. Montrym and H. Moreton. The geforce 6800. Micro, IEEE, 25(2):41 – 51,
march-april 2005. ISSN 0272-1732.
http://dx.doi.org/10.1109/MM.2005.37doi:10.1109/MM.2005.37.

[33] S. S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN
1-55860-320-4.

[34] R. Narayanan, B. zs. Ikylmaz, J. Zambreno, G. Memik, and A. Choudhary.
Minebench: A benchmark suite for data mining workloads. In 2006 IEEE

66

International Symposium on Workload Characterization, pages 182–188,
2006.

[35] J. Nickolls et al. Scalable Parallel Programming with CUDA. ACM Queue,
6(2):40–53, Mar.-Apr. 2008.

[36] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA,
October 2009.

[37] NVIDIA CUDA Programming Guide. NVIDIA Corporation, 3.1 edition,
2010.

[38] NVIDIA Compute PTX: Parallel Thread Execution ISA Version 2.1.
NVIDIA Corporation, CUDA Toolkit 3.1 edition, 2010.

[39] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics
hardware. In Eurographics 2005, State of the Art Reports, pages 21–51,
Aug. 2005.

[40] J. Ributzka, Y. Hayashi, J. B. Manzano, and G. R. Gao. The elephant and the
mice: the role of non-strict fine-grain synchronization for modern many-core
architectures. In ICS’11, pages 338–347, 2011.

[41] B. Saha, A. reza Adl-tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg.
Mcrt-stm: a high performance software transactional memory system for a
multi-core runtime. In In Proc. of the 11th ACM Symp. on Principles and
Practice of Parallel Programming, pages 187–197. ACM Press, 2006.

[42] Sarnath. Spinlock on a GPU.
http://forums.nvidia.com/index.php?showtopic=98444&st=40/, June 2009.

[43] M. L. Scott. Non-blocking timeout in scalable queue-based spin locks. In IN
PROCEEDINGS OF THE 21TH ANNUAL ACM SYMPOSIUM ON
PRINCIPLES OF DISTRIBUTED COMPUTING, pages 31–40. ACM, 2002.

[44] M. L. Scott and W. N. S. III. Scalable queue-based spin locks with timeout.
In PPOPP, pages 44–52, 2001.

[45] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting fine-grained
synchronization on a simultaneous multithreading processor. In
High-Performance Computer Architecture, 1999. Proceedings. Fifth
International Symposium On, pages 54 –58, jan 1999.
http://dx.doi.org/10.1109/HPCA.1999.744326doi:
10.1109/HPCA.1999.744326.

67

[46] B. A. Wallace. Merging and transformation of raster images for cartoon
animation. In Proceedings of the 8th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’81, pages 253–262, New
York, NY, USA, 1981. ACM. ISBN 0-89791-045-1.
http://dx.doi.org/http://doi.acm.org/10.1145/800224.806813doi:http:
//doi.acm.org/10.1145/800224.806813. URL
http://doi.acm.org/10.1145/800224.806813.

[47] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
Demystifying GPU microarchitecture through microbenchmarking. In Int’l
Symp. on Perf. Analysis of Systems and Software (ISPASS), pages 235–246,
March 2010.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: characterization and methodological considerations. In
Proceedings of the 22nd annual international symposium on Computer
architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995. ACM.
ISBN 0-89791-698-0.
http://dx.doi.org/http://doi.acm.org/10.1145/223982.223990doi:http:
//doi.acm.org/10.1145/223982.223990. URL
http://doi.acm.org/10.1145/223982.223990.

[49] S. Xiao and W. chun Feng. Inter-block gpu communication via fast barrier
synchronization.

[50] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao. Synchronization state buffer:
supporting efficient fine-grain synchronization on many-core architectures.
In Proceedings of the 34th annual international symposium on Computer
architecture, ISCA ’07, pages 35–45, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-706-3.
http://dx.doi.org/http://doi.acm.org/10.1145/1250662.1250668doi:http:
//doi.acm.org/10.1145/1250662.1250668. URL
http://doi.acm.org/10.1145/1250662.1250668.

68

