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Abstract

This study engages in the thermal analysis of water jet cooling of a hot moving steel strip on a
run-out table. General 3D FE programs are developed for the direct and inverse heat transfer
analysis. Studies show that gradient-based inverse algorithms suffer from high sensitivity to
measurement noise and instability in small time steps. These two shortcomings limit their
application in modeling of the real problems.

Artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization
(PSO) methods are applied to the inverse heat conduction problem in order to overcome the
challenges faced by the gradient-based methods. Among them, GA and PSO are found to be
effective. CRPSO, a variation of PSO, shows the best computational performance. However,
compared to the gradient-based methods, these algorithms are very slow. Thus, a set of
modifications were performed in this research to accelerate their convergence rate. Sequential
formulation using the future time steps, multi-objective optimization, and inexact pre-evaluation
using surrogate models are some of these modifications.

Inverse analysis of experimental data shows that heat transfer behavior on the plate is mainly a
function of the surface temperature, and can be categorized into three zones: High, mid, and low
temperature. The effects of jet line configuration, jet line spacing, and plate moving speed were
studied. The most uniform distribution happens in the case of fully staggered configuration. In
higher jet line distances, the interaction effects become less significant, and a more uniform
distribution is observed. The plate speed affects the heat transfer rate under the impingement
point for the higher surface temperatures. In the high entry temperatures, the impingement heat
transfer rate is lower when the plate is moving at a higher velocity. The plate speed does not
significantly change the heat transfer behavior in the parallel flow zone.

Finally, the results of the heat transfer analysis were coupled with the microstructure and
structure fields, to study the thermal stresses and deflection occurring in the strips during the
cooling process. It was found that fully-staggered jet configuration, larger spacing between jet

lines, and lower plate speeds result in a less deformed steel strip.
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1. Introduction

1.1 Motivations for Controlled Cooling of Steel

Steel is one of the most widely used materials in today’s industries. The development of
advanced high strength steels (AHSS) is very crucial in many different aspects of industry. Steel
strips are used in various applications ranging from automobile bodies to drink cans. Roughly,
25 to 30% of this production includes the hot rolling process [1]. Hot rolled steel sheets can be
used for piping and tubing, automotive parts, rail cars, and many more applications. The above
factors stimulate the research and need for more detailed study on the procedure of steel
production and how to control the resulting mechanical properties.

The microstructure and mechanical properties of steel strips can be highly modified by
the controlled cooling on the runout table. A finer grain can be achieved by using this process,
which in turn results in an increase in strength, an improved notch toughness and resistance to
brittle fracture, and contributes to a significant reduction in carbon content, while still
maintaining the same strength level. The lower carbon content improves formability and
contributes to superior notch toughness and weldability. In short, controlled cooling process will
assure a balanced combination of mechanical properties. Controlled cooling can also eliminate
the troublesome differences in strength among samples taken from the head, body and tail of a
steel coil.

Detailed study of the effect of cooling profile on the properties of steel began in the early
sixties, mainly in the Swinden Laboratories in England [2]. Reference [3] is an early publication
that describes the advantages of this kind of treatment. Recognizing the major influence of
“time-temperature cycle during cooling” on the grain properties, a research program at J&L steel
company started in 1961, in order to design an optimum cooling curve [2]. Since then there has
been a great amount of effort to study and design the cooling process [1,4-11].

In a typical production line, the slabs are reheated in a furnace to a hot rolling temperature close
to 850 °C, then rolled through roughing and finishing mills, and then they are cooled down to a
coiling temperature of 550 — 650 °C while rolling on a so-called runout table (ROT). Figure 1.1

shows a schematic view of such a configuration in a steel mill.
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Figure 1.1. A Typical Production Line of Steel Rolls [2].

There are three main types of cooling systems used on the runout table: water spray,
laminar flow (circular jet) and water curtain, as shown in Figure 1.2 [12]. Blazevic [5] performed
a comparison of the performance of aspired sprays, sprays, and planar and circular jets by using
the same volume of water. However, he compared the jets using different conditions, such as
areas of cooling, impact time, and surface temperature, which provided some conflicting results.
In summary, not enough research has been completed yet on the advantages of each cooling
system. Nowadays a combination of these methods is used in steel industries. Relative position
of each mechanism and the amount of cooling in each of them vary from one steel mill to

another, and is mainly based on their own trial and error experiments.

Laminar Water curtain Spray

Figure 1.2. Three Different Types of Cooling on a Run-out Table [12].

Although accelerated cooling is already widely adopted by steel manufacturers, there is
still a lack of fundamental understanding of the process, which limits the ability of accurately
predicting the temperature in the metal during cooling, and hinders the appropriate design of the
process. The complications in the process arise from the presence of a huge number of coupled
sub processes, the lack of real-life experimental measurements, as well as from the issues

regarding the large dimensions and temperatures of the industrial applications. Several



researchers have studied the water jet cooling process experimentally and/or numerically [13-
23]. However, there is still a need to study many important aspects of controlled cooling on the
runout table.

Proper control of roll and strip cooling process requires achieving several goals.
Following a desired time — temperature profile, attaining the desired finishing and coiling
temperatures at the end, minimizing temperature gradients in the strip in all directions, and

minimizing the coolant consumption are some of the main objectives.

1.2 Research at UBC
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Figure 1.3. ROT Test Facility at UBC [24].

By recognizing the need to further investigate the water jet impingement cooling of steel,
a ROT facility with industrial scale has been constructed at the University of British Columbia in
the Advanced Materials Processing Lab (AMPL). It consists of two water banks and two
headers, one at the top and the other at the bottom, a water pump, pipe circuits, flow control
valves, a furnace, and devices for heating water and measuring water temperature. The nozzles
can be set up onto the top header and can be easily changed if necessary. Nozzle dimensions are
comparable with those used in steel industry. The distance between the top nozzles is adjustable
from 50 to 90 mm. The vertical distance between the top nozzle exit and the test plate can be
adjusted from 0.6 to 2 m. Only one nozzle is available on the bottom header whose distance to
the plate is fixed. The alignment angle of the bottom nozzle to the plate may be changed.

The maximum water flow capacity is 138 1/min. The water can be heated up to 90 °C.

The above listed parameters are very close to those actually used in steel industry. The initial



temperatures of the test plates are roughly 700 — 900 °C (the furnace is capable of heating
samples up to 1200 °C), to make it more similar to an actual steel mill.

Due to the considerable amount of steam generated during these experiments, as a result
of the quick evaporation of water on the hot surface of steel, methods such as infrared
measurements that highly rely on a visual inspection of the plate are not applicable. Also, most
of these methods normally provide us with a snapshot of the thermal field, rather than a
continuous measurement that are required for this research. Thus, thermocouples (TCs) of type
K are used in all experiments. These TCs would normally have an error of approximately 0.75%
of the largest temperature, when used at a temperature higher than 277 °C. At each sensor
location, an internal TC is installed in a blind hole with a diameter of 1.6 mm that is drilled from
the plate’s bottom surface. The measuring junction is fixed onto the end surface of the hole that
is about 1 mm below the plate’s top surface. In order to reduce the response time of the
thermocouples, the individual wires are spot welded directly to the surface of the metal, as seen
in Figure 1.4. This type of junction, called intrinsic junction, can greatly reduce the thermal
inertia of junction and hence decrease the response time of TC close to zero [25]. Figure 1.5
shows a schematic arrangement of the thermocouples in the plate, and Figure 1.6 shows a

schematic view of the test plate, including the thermocouple wires and the mounting device.

Figure 1.4. Intrinsic thermocouple junction
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Figure 1.6. Schematic View of Test Plate Setup [26].

The establishment of the industrial scale runout table facility in UBC has facilitated intensive
research in this area for both stationery and moving plates [1,8,9,27-32]. The research done at

UBC may be categorized as:

e Studying and modeling the evolution of austenite microstructure and the optimum
“conditioning” of austenite before transformation of optimum grain refinement.

e Studying the thermal behaviour of stationary and moving steel plate, cooled by circular
jets under cooling conditions similar to those found in industry.

e Studying and modeling the austenite decomposition of steel under complex cooling

conditions.



e [Establishing quantitative correlations between chemistry, microstructure, and property as
a guide for steel grade (alloy) design and steel processing.

e Developing new methods for inverse heat conduction problem (IHCP) to model the
moving heat flux front on the cooled surface.

e Investigation of the errors included in surface temperature measurements due to the
presence of thermocouples and possible ways to remedy the problem.

e Developing a special 2D program to model the runout table applications with direct and
inverse heat transfer analysis capabilities.

e Conducting experiments on the heat transfer of a single jet or multiple jets impinging on
stationary and moving plates.

e Studying the effect of the flow rate and inclination angle of a bottom jet.

e Conducting experiments and numerical simulation of the jet impingement

hydrodynamics.

1.3 The Need for Inverse Heat Conduction Solver

Solving the original Navier-Stokes and energy equations directly, in order to have a
proper estimate of the heat flux to the model is quite difficult, and requires a lot of
simplifications. Instabilities in the vapour / liquid interface are very common due to the larger
density of the liquid that overrides the vapour. Turbulence will be present and its modeling is
extremely challenging. Heat generation inside the strip due to a phase change in steel is another
factor that complicates the study of these problems. Water moving speed is usually approximated
with very simplified models and correlations. The different physical fields, i.e. hydrodynamics,
heat transfer, microstructural, etc. are highly coupled. Boiling heat transfer is also strongly
affected by factors such as surface roughness that are very difficult to implement in the current
numerical simulation models. While these mechanistic models [33,34] provide a valuable insight
into the physics of the jet impingement boiling, there is still a need to study the jet impingement
boiling process in larger scales and using the experimental data. Experimental measurements that
may be used to adjust and verify the numerical models are also quite challenging. As shown in
Figure 1.7, recent studies in the group [25] show that errors in the thermocouple measurement of
the top plate surface may exceed 200 °C. As indicated in Reference [25], there are several

parameters that contribute to these significant errors. One of these factors is the thermal mass of



the thermocouples and wires on the plate surface, which causes some change in the thermal field
due to the heat conduction through the wires. Also, the presence of wires may break the
insulating vapour layer on the surface and create a contact between the liquid water and the plate
surface. More importantly, since the thermocouples work through creating an electric current
between their two junctions, and water is a conductive medium for electricity, there will be some
distortion in the electric current and thus, some error in the measurements. Thus, instead of
measuring the surface temperatures using thermocouples, it is more accurate to use the readings

of thermocouples inside a plate, and use numerical simulations to find the boundary conditions
on the surface.
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Figure 1.7. Temperature Profiles During the Water Jet Impingement [25].

An approach that may overcome some of the above problems is to use the results of
industry-scale experiments and only utilize inner sub-surface temperature measurements in the
simulations. This approach requires inverse heat transfer conduction (IHTC) analysis to find the

surface temperatures and/or heat fluxes that would be used in consequent simulations.



1.4 Inverse Heat Conduction Analysis Methods

In an inverse heat conduction problem, the boundary conditions, initial conditions, or
thermophysical properties of material are not fully specified, and they are determined from
measured internal temperature profiles. The main problem is that the effect of changes in
boundary conditions are normally damped or lagged, i.e. the varying magnitude of the interior
temperature profile lags behind the changes in boundary conditions and is generally of lesser
magnitude. Therefore, such a problem would be a typically ill-posed problem and would
normally be sensitive to the measurement errors. Thus, in general, the uniqueness and stability of
the solution are not guaranteed [35-37]. Inverse problems can be formulated either as parameter
estimation or function estimation problems.

Inverse heat conduction problems, like most of the inverse problems encountered in
science and engineering may be reformulated as an optimization problem. Therefore, many
available techniques of solving the optimization problems are available as methods of solving
the inverse problems. However, the corresponding objective function of the inverse problems
can be highly nonlinear or non-monotonic, may have a very complex form, or in many practical
applications, its analytical expression may be unknown. The objective function usually involves
the squared difference between measured and estimated unknown variables. If Y and T are the
vectors of the measured and estimated temperatures, then the objective function will be in the
form of

U=[Y-TI'[Y - T] (1.1)

However, normally there is need for another term, called “regularization” in order to
eliminate the oscillations in the results and make the solution more stable. The effect of this term
and the strategy of choosing it will be discussed in details in the subsequent chapters.

The above equation is only valid, if the measured temperatures and the associated errors have the
following statistical characteristics [38]:

= The errors are additive, i.e.

Yi=Ti+8i (12)

. . . .th
where ¢g; is the random error associated with the i measurement.

= The temperature errors have zero mean.

= The errors have constant variance.



The errors associated with different measurements are uncorrelated.

The measurement errors have a normal (Gaussian) distribution.

The statistical parameters describing the errors, such as their variance, are known.
Measured temperatures are the only variables that contain measurement errors. Measured
time, positions, dimensions, and all other quantities are all accurately known.

There is no more prior information regarding the quantities to be estimated. If such

information is available, it should be utilized to improve the estimates.

While classical methods, such as the least square regularization method [35,39], the

sequential function specification method [36,39,40], the space marching method [41], conjugate

gradient method [42,43], steepest descent method [44], online input estimation [45,46] and the

model reduction model [47-49] are vastly studied in the literature, and applied to the problems in

thermal engineering [50-56], including water cooling on run-out table [57], there are still some

unsolved problems:

The solution often shows some kinds of overshoot and undershoot, which may result in
non-physical answers.

Very high heat flux peak values such as those experienced in jet impingement cooling are
normally damped and considerably underestimated.

Results are very sensitive to the quality of input. Measurement errors are intrinsic in
laboratory experiments, so we need a more robust approach in solving the inverse
problem.

The time step size that can be used with these methods is bounded from below, and
cannot be less than a specific limit [35]. This causes temporal resolutions that are not
sufficient for some real world applications, where changes happen very fast, such as a hot

steel strip traveling at a high speed on a run-out table.

State of the art and more recent optimization techniques may be used in the solution of the

IHTC problem to aid in stability, solution time, and to help in achieving global minimum

solutions. Some of these recent techniques are briefly reviewed in the following section:

Genetic Algorithm: This technique has been widely adopted to solve inverse problems
[58-60]. Genetic algorithms (GAs) belong to the family of computational techniques
originally inspired by the living nature. They perform random search optimization

algorithms to find the global optimum to a given problem. The main advantage of GAs
9



may not necessarily be their computational efficiency, but their robustness, i.e. the search
process may take much longer than the conventional gradient-based algorithms, but the
resulting solution is usually the global optimum. Also, they can converge to the solution
when other classical methods become unstable or diverge. However, this process can be
time consuming since it needs to search through a large tree of possible solutions.
Luckily, they are inherently parallel algorithms, and can be easily implemented on
parallel structures. Another remedy is to use them in conjunction with other classical
methods to overcome the disadvantages of both methods.

There are mainly two approaches that may be used to overcome the difficulties of GA.
One approach is to use the solution of classical approach with large time steps as an
initial guess to GA. Since GAs do not require any information about the derivatives, they
can be used with smaller time steps. This can also improve the quality of the results in
terms of reducing the undershoots and overshoots, and reduce the dispersion and
diffusion of the peak values. Another approach is to use the solution of classical approach
as the initial guess, then using some previous knowledge of the final answer as a way to
find the problematic parts of the curve, then using GAs to modify the values of those
sections.

Neural Networks: Artificial neural networks can be successfully applied in the solution
of inverse heat conduction problems [61-63]. They are capable of dealing with significant
non-linearities and are known to be effective in damping the measurement errors.
Self-learning finite elements: This methodology combines neural network with a
nonlinear finite element program in an algorithm which uses very basic conductivity
measurements to produce a constitutive model of the material under study. Through
manipulating a series of neural network embedded finite element analyses, an accurate
constitutive model for a highly nonlinear material can be evolved [64,65]. It is also
shown to exhibit a great stability when dealing with noisy data.

Maximum entropy method: This method seeks the solution that maximizes the entropy
functional under given temperature measurements. It converts the inverse problem to a
non-linear constrained optimization problem. The constraint is the statistical consistency

between the measured and estimated temperatures. It can guarantee the uniqueness of the
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solution. When there is no error in the measurements, maximum entropy method can find
a solution with no deterministic error [66].

Proper Orthogonal Decomposition: Here, the idea is to expand the direct problem
solution into a sequence of orthonormal basis vectors, describing the most essential
features of spatial and temporal variation of the temperature field. This can result in the
filtration of the noise in the field under study [67].

Particle Swarm Optimization (PSO): This is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [68], inspired by social behavior
of bird flocking or fish schooling. Like GA, the system is initialized with a population of
random solutions and searches for optima by updating generations. However, unlike GA,
PSO has no evolution operators such as crossover and mutation. In PSO, the potential
solutions, called particles, fly through the problem space by following the current
optimum particles. Compared to GA, the advantages of PSO are the ease of
implementation and that there are few parameters to adjust. Some researchers showed
that it requires less computational expense when compared to GA for the same level of
accuracy in finding the global minimum [69]. PSO has been successfully applied in many
areas, e.g. function optimization, artificial neural network training, fuzzy system control,
and other areas where GA can be applied. It has also been successfully employed by

many researchers in solving inverse heat transfer problem, mainly inverse radiation [70].

In this research, we will study the genetic algorithm, neural network, and particle swarm

optimization techniques in more details. We will investigate their strengths and weaknesses, and
try to modify them in order to increase their efficiency, i.e. to lower their computational cost, and
to increase their effectiveness, i.e. to lower their sensitivity to the measurement errors, in solving

inverse heat conduction problems.

1.5 Jet Impingement Heat Transfer

Jet impingement cooling has been one of the most active areas of research in heat transfer

for many years. However, due to the complex nature of the involved phenomena, and the ever
increasing applications of this technique, it continues to attract a considerable amount of
attention. The major industrial applications of jet impingement are cooling of electronic

components and controlled cooling of metals after being subjected to hot processes. In each of
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these applications, a large number of sub-processes are involved, and each of them is very
complex in nature. Furthermore, in the case of controlled cooling of metals, the hot surface is
normally moving, and there are multiple jets in various configurations impinging on its surface.
Between different kinds of jets, round jets especially benefit from a higher specific cooling
performance (ability of removing more heat per unit volume of the coolant), and can create more
uniform cooling patterns on the plate surface, compared to the sprays and planar jets [71].
Hence, a more detailed study of the behavior of multiple circular jets impinging on a moving
surface seems to be highly beneficial.

A good amount of research in this field has been focused on understanding the basic
underlying mechanism of the jet impingement cooling. Thus, the studies are mainly focused on
one single jet impinging on a stationary surface. While many researchers have tried to study the
effects of multiple jets, or a moving surface, these two parameters are not adequately considered
together in order to understand their coupled impacts. Also, previous studies usually categorize
the wet area only into two zones: the impingement zone, and the parallel flow zone. While this
may be an acceptable classification system for a stationary plate and a single nozzle, it is not
very suitable for multiple jets impinging on a moving surface. The main problem with this
classification is that there is no distinction between the parallel flow zone within a row of jets
and the parallel flow zone between two consecutive jet rows. Moreover, many researchers have
performed their experiments on a scaled down setup, while in this research we are using a large
experimental industrial scale facility similar to the runout table facilities in material processing

industries.
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Figure 1.8. Different Boiling Regions Present During Top Jet Impingement [14].

On its simplest form, the area on the top surface of a hot plate that is cooled by a water
jet can be divided into five different heat transfer regions, as displayed in Figure 1.8 [14]. The
first zone is the impingement zone, and is located just underneath the impinging jet. This region
is characterized by single-phase forced convection and a very effective cooling rate. Based on
some operating conditions, such as plate speed, flow rate, and jet cross section, this region can
extend about 2 to 4 times the nozzle diameter [14,72-74].

With the movement of the waterfront, the water is heated, the surface temperature is kept
at a higher level, and the onset of boiling is finally reached, creating a relatively narrow nucleate
boiling region. In the third region, the forced convection film boiling occurs, resulting in a
reduced heat transfer rate. Thereafter, due to surface tension, the water may agglomerate into
pools, overriding the vapour layer. Finally, the last region is where the plate is still dry, Heat
transfer in this zone occurs by radiation and convection to the surrounding air.

The study of the water jet impingement cooling in the literature can be divided into two
main categories of stationary and moving surfaces. For stationary cases, the cooled area is
symmetrical with respect to the water jet line in the cases of water curtains or a row of jets, and

axisymmetrical around the stagnation point in the case of a single circular jet. Although, much
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easier for experimentally investigation and numerical modeling, this case does not exist in
industrial applications.

What happens in a typical steel mill is water cooling of a moving hot surface. In the
moving case, heat transfer caused by the impinging jets is no longer symmetrical. On one side,
where the water flow and the work piece move in the same direction, the vapour layer thickness
in the film boiling region decreases. On the other hand, the thickness of the vapour layer is
increased in the side that the water flow and the hot surface move in the opposite direction [1].
Another factor that makes the analysis of the cooling process more complicated is the
dependency of the thermal conductivity and the specific heat of the steel on temperature. Also,
phase transformation in the steel affects the thermal field through the latent heat of
transformation.

Ochi et al. [15] experimentally investigated the transient boiling heat transfer to a circular
water jet impinging on a hot plate. The temperature at the bottom was measured, and the
temperature and flux at the top cooling surface were inversely calculated using the finite
difference method. In the experiment, it was observed that a stable film boiling was maintained
over the whole cooling surface of the heated plate, and the temperature fell linearly with time.

Vader et al. [73,74] studied the convective nucleate boiling on a heated surface cooled by
an impinging planar water jet under a steady-state condition. The temperatures were measured
by TCs at the opposite dry face to the cooled top surface. The temperature and heat flux at the
cooled surface were found by solving the steady state equation. In the calculations, the boundary
conditions were assigned from the least squares cubic spline fit of the measured temperatures.

Kumagi et al. [52] studied the transient cooling of a hot plate with an impinging water jet.
Temperatures were measured at four points at different depths along the plate thickness and at
nine locations in the width direction. An exponential equation with three coefficients was used to
describe the temperature profile along the thickness, and then the coefficients were determined
from the measured temperatures and the least squares method. The approximate temperature
curve was extrapolated to the surface to obtain the surface temperature. The gradient at the
surface produced the heat flux.

Many researchers have studied the jet impingement under steady state conditions, i.e., the
sample is constantly heated while being cooled by jet impingement. Some good examples are the

works of Robidou et al. [10,75]. They use a 2D inverse heat conduction solver to find the local
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heat fluxes and corresponding temperature. They found that in the forced convection regime,
heat fluxes increase with an increase of subcooling, jet velocity, and decrease of the distance
from the stagnation line, while in the fully developed nucleate boiling regime, no influence of jet
velocity, subcooling, and nozzle to plate spacing on the heat flux is observed.

Xu and Gadala [76] used their developed inverse algorithm [1] to study the heat transfer
behaviour in the impingement zone under a circular water jet. They found out that the heat
transfer behaviour in the stagnation zone is mainly affected by the water flow rate, with mild
effect from the steel grades. Their developed code is 2D, so it cannot predict the effect of
staggered jet configurations, in addition to not being able of modeling the heat transfer in the
width of the strip. The study is also mainly focussed on the stagnation region in the stationary
plate with only a single jet.

One of the key research papers studying the interaction zone between multiple jets was
published in 1977 by Ishigai et al. [77]. Unfortunately, this research is focused on the non-
boiling heat transfer. They found that the radial location of interference is an important factor for
both the hydrodynamics and thermal properties of the flow field. Different behaviors were
attributed to different values of film Froude number and the Reynolds number based on the
radius from the center of the jet. The reported thermal quantities are the surface temperature, and
not the heat flux.

Sakhuja et al. [78] used experiments to study the effect of multiple jets on the boiling
heat transfer on a steady plate. They found that at smaller jet spacing, the area that is covered by
each jet is small, and crossflow causes a reduction in the heat transfer coefficient. On the other
hand, a larger distance between the jets results in a smaller ratio of the impinging area to the
coverage area, which again, reduces the overall heat transfer coefficient. So an optimum heat
transfer is obtained when the jet spacing is in a bounded range. They found this range to be
between 8 to 12 times of the one jet diameter.

Monde et al. [79] studied the effect of multiple jets on a stationary plate. Between two
and four circular free surface jets were used. While they concluded that the degree of scatter in
the results is typical for nucleate boiling, and thus, the number or location of jets has little or no
effect on the heat transfer behavior, a more careful scrutiny of their data by Wolf et al. [13],

suggested that they actually do have an effect, and additional investigation is required.
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Slayzak et al. [80] studied the effects of interaction between adjacent free surface planar
jets under non-boiling condition. They observed a strong upwelling of flow (called an interaction
fountain) in the region between two planar jets. Interestingly, they found that the heat transfer
under this fountain can be comparable to those related to the jet impingement region. They tried
to explain this behavior based on the oscillatory nature of the interaction zone, which can
encourage a strong mixing and intermittent disruption of the thermal boundary layers in the
interaction region. They also studied the effect of interaction between adjoining rows of circular
jets under non-boiling condition [81]. Again, an interaction fountain was observed. However,
unlike the case of planar jets, where a well-defined interaction zone appears midway between the
impinging jets, the interaction zone between circular jets was found to be irregular, and at a
location different from the midway point. Also, there is no splattering or hydraulic jump
occurring in their tests. Obviously, both the splattering and the hydraulic jump can increase the
complexity of the flow and thermal fields.

Filipovic, et al. [71] studied the heat transfer behavior of an array of round jets impinging
on a moving surface. They have used some correlations for the boiling heat transfer in different
regions, sometimes even from the stationary plates, and have made some assumptions regarding
the extent of each zone. These correlations are applied, and the model is solved numerically. In
their validation, they only consider the starting and coiling temperatures, and not the transient
behavior of the thermal field. They found out that around 50% of the cooling is done by the film
boiling mechanism, and the jet impingement regions are responsible for about 30% of the total
heat extraction.

The uniformity of temperature distribution across the plate width when using multiple
impinging jets was studied by Haraguchi and Hariki [82]. They used a radiation thermometer in
their experimental setup on a stationary plate. They found the interaction zone to reduce the heat
transfer coefficient around the impingement locations. To obtain a more uniform temperature
distribution in the plate, they suggested decreasing the nozzle pitch. Unfortunately, this resulted
in a reduction of heat transfer coefficient in those areas as well.

Liu [8] also studied the effect of jet interaction between adjacent water jets on the heat
transfer behavior in a simulation of steel runout table. By visual inspection of the experiments,
he observed that the dark areas that are associated with the high heat flux regions develop

immediately at the stagnation points under the jets, and then gradually move toward the
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interaction boundary, where they stabilize. He also observed a strong fountain at the interaction
zone, accompanied by sizeable water splashes. However, the cooling intensity of water was
weakened at the interaction region when boiling was the mechanism of heat transfer. He also
studied the case where jets had different flow rates. In that case, the heat transfer rate under the
weaker jet was reduced due to the existence of a cross flow created by the stronger jet.

Jondhale et al. [83] studied the heat transfer behavior on the top surface of a moving hot
plate cooled by multiple impinging jets. They observed that there is a huge discrepancy between
the heat transfer in the impingement zone and interaction zone, until the plate entry temperature
reaches 200°C, when the water can wet the surface between the nozzles. They also observed that
larger nozzle spacing in a jet row can actually increase the heat extraction rate under the jet,
because it prevents having a submerged jet. The heat flux is however reduced in the interaction
zone when having larger jet spacing.

Gradeck et al. [84] studied the effect of moving of the hot surface by impinging a planar
water jet on a rotating cylinder with an initial temperature of 500 — 600 °C. They observed that
the heat transfer is significantly changed when the surface is moving. The first effect was a
homogenization of the boiling curves, and elimination of the “shoulder of flux”. They also
observed a reduction in the value of the critical heat flux.

In this work, we are going to study the boiling heat transfer characteristics of two rows of
three impinging jets on a moving hot plate. Experiments are conducted in an industrial scale
setup, and thermocouples are used to measure the temperatures just under the plate surface. Then
these temperatures are used as the input in an inverse heat conduction algorithm to find the
boundary heat flux variations in space and time across the width and along the length of the
moving flat plate. The effects of nozzle configuration, jet line spacing, and plate speed are going

to be investigated.

1.6 Thermal Stress and Deflection

As a result of an uneven temperature distribution in the strip, significant thermal stress
occurs. This is even more magnified by the steel phase transformation. These stresses can result
in local deformation and residual stresses. The flatness of the hot rolled products on the run-out
table has not been sufficiently studied in the literature. Only a few researchers have investigated

the thermal stresses of hot rolled strips [85].
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Yoshida [86] was one of the first researchers to numerically study the non-flatness of hot
rolled steel strips after cooling in a run-out table by applying finite-difference methods. Earlier,
experiments had shown that the edge wave occurs after cooling in most cases, unless the strip is
coiled at temperatures higher than 570 °C. He stated that the non-flatness occurs when the
compressive residual thermal stress becomes larger than the critical buckling stress of a long thin
plate. The thermal distribution was found using simple correlations for water and air cooling heat
transfer coefficient, and the phase change was calculated based on a time-temperature-
transformation (TTT) diagram. He found out that reducing the transverse variation of finishing
temperature and cooling rate, coiling at higher temperatures and water cooling in the final
sections of a run-out table can prevent the occurrence of edge waves. Among them, a uniform
cooling rate across the strip was the most beneficial.

Nakata and Yoshida [87] later extended the above study to further study the effect of the
cooling uniformity in the strip flatness using both experimental measurements and numerical
simulations. The thermal model was validated against the measured surface temperature
distributions using an infrared camera. It was confirmed that the non-uniform cooling along the
length of the strip can cause non-flatness in the strip.

Han et al. [88], calculated the elastic strain, the volumetric strain caused by the thermal
loads and phase transformation, the plastic strain, and the transformation induced superplastic
strain, to estimate the total deformation of steel strips on a run-out table. The model was two-
dimensional, and cooling conditions were set using simple correlations for two separate zones
cooled by air or water.

Zhou et al. [89] calculated the thermal expansion coefficient as a function of the cooling
rate, phase composition and temperature. They used a plane stress finite element model based on
the assumption that the through-thickness stress is negligible in thin strip. The validation was
done only based on qualitative agreement of the predicted results by the results of a simple
method in a confidential report. Thermal boundary conditions were applied in the form of
simplified temperature distributions. They found that the temperature distribution in the length of
the strip has little effect on the residual stress, but the thermal field across the width of the plate
has a large contribution to the stress field. In a later study [90], they investigated the flatness of

the plate under the controlled cooling process using three-dimensional shell elements. They
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found that the severity of buckling in the strip increases with the transverse temperature gradient
across the plate, i.e. it resulted in a lower wavelength and higher amplitude.

As discussed above, most of the existing studies in the literature use simplified models
for the thermal boundary conditions, usually based on some generalized correlations of heat
transfer in two cooling zones (under impingement and parallel flow zones), or temperature
measurements in few stages in the strip. They are also normally using simplified models for
phase transformation. In the present study, we are going to use the results of our inverse heat
conduction solver [76,91] to extract the boundary heat fluxes from the readings of thermocouples
in an extensive set of experiments [1,31], and use a more refined and modern algorithm to
calculate the phase transformation. We will study the cases of both the stationary and moving

plates, and different jet configurations.

1.7 Objectives of This Study
The following steps are taken in this research:
1) Developing a three-dimensional gradient-based inverse heat conduction program

In order to be able to model different jet configurations accurately, and to obtain accurate
heat flux values, a three-dimensional finite element heat conduction simulator is needed. The
code should be capable of taking into account the heat generation caused by the steel phase
transformation and the temperature and phase dependency of thermophysical properties. The
model should be able to capture the interaction between several jets. Unlike the case of
interacting planar jets, where a well-defined interaction zone exists in midway between the jets,
interaction zones between arrays of circular jets are irregular and do not necessarily occur in the
midway [81]. Thus, an iterative and sequential three-dimensional inverse heat conduction code is
developed. The algorithm is based on the least-square technique, sequential function
specification, and regularization. The code needs to be capable of handling unsteady cases, and
moving boundary conditions.
2) Investigating various categories of stochastical inverse heat conduction solvers

The above mentioned inverse solver, while being computationally efficient, suffers from
some problems related to its gradient-based nature, such as sensitivity to the measurement errors,
and instability in handling small time steps. Other forms of inverse solvers will be studied and
modified to find a more effective algorithm. Modifications will be performed in order to improve

not only the stability and effectiveness of the method, but also its computational expense.
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3) Determination of surface heat flux and heat transfer behaviour in multiple jet impingement on
a moving plate

Existing numerical models are mainly focussed on the case of single water jet. While
they are useful for understanding the physics and to validate the algorithm, they are far from the
real situation in industry. Multiple jets with different configurations should be modelled to make
the case closer to the industrial applications. The developed inverse algorithms will be used to
determine the heat fluxes occurring during the water jet cooling process. We will be especially
focused on cases where multiple jets (several jet lines, each including more than one nozzle)
imping on a moving plate, which are closer to what really happens in an industrial run-out table.
4) Studying the effect of plate speed, jet line stagger, and jet line spacing on heat transfer

Effect of these parameters on the maximum heat extraction, uniformity of cooling pattern
and temperature distribution, and the overall efficiency of the run-out table will be studied.
5) Modeling the thermal stresses caused by the water jet cooling of stationary and moving plates

As a result of non-uniform cooling on the plate, thermal stresses and deflection are
expected. A model will be devised that will be capable of modeling the phase change process as

well.
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2. Three-dimensional Direct and Inverse Heat Conduction Analyses

In this chapter, we discuss the development of a 3D finite element heat conduction
program. Then, a classical gradient-based inverse algorithm is developed based on the 3D code.
Some modifications and considerations are discussed. Finally, some test cases are introduced and

solved, and the effect of these modifications are observed and discussed.

2.1 Direct Three-Dimensional Heat Conduction Analysis

The core of any inverse heat conduction code is a direct heat conduction solver. It is
mainly used to evaluate the value of objective functions; thus, it needs to be as accurate and as
stable as possible. It should also allow for the modeling of all complications in the geometry,
boundary conditions, material properties, and transient behaviour. In this section, the formulation

and development of such a solver is discussed.

2.1.1 The Need for Three-Dimensional Modeling

In the case of multiple jets impinging on a moving surface, significantly different heat
fluxes may be produced. This can result in a large temperature gradient across a jet line, as well
as between two successive jet lines. Figure 2.1 shows the distribution of heat fluxes on the top
surface of a moving plate [31]. In addition to this considerable variation in the values across the
top surface, there is also a gradient across the thickness of the plate, between the top and bottom
surfaces. This is due to the fact that the cooling pattern on the bottom surface is essentially

different than the top surface, mainly due to the lack of pool boiling regions [28].
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Figure 2.1. Contour Plot Showing Surface Heat Flux (W/m?) in a Staggered Nozzle Configuration [31]
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2.1.2 Formulation
The general governing equation for the 3D conduction heat transfer problems, shown in

Figure 1, is written in the form:

9 or. 9, oT. 9, T, aT
T L, D Lk gt = p oL 2.1
R A G R nl G m U (2.1)

where T is the temperature, °C; qb is the heat generation per unit volume, W/m3; ky, ky, and k. are
the conductivities in the x-, y-, and z-directions, respectively, W/m-°C; p is the density, kg/m’;
¢, 1s the specific heat, J /kg-°C; ¢ 1is the time, s ; and x, y, and z are the Lagrangian coordinates of
the point.

The boundary conditions may be one or a combination of the followings cases:
Prescribed temperature: This is an example of a Dirichlet boundary condition (BC). The

prescribed temperature 7, (°C) may be a function of time and boundary coordinate (spatial

function):
I'=T(x,y,2,1) (2.2)
Prescribed heat flow of flux: Specified heat flux (g;) may be a spatial function or a function of
time:
aT oT oT
_(kxg-’-kyg-'_kzgj_qs(xayozat) (23)

where g, is the specified rate of heat flow per unit area (W/m?). Prescribed heat flow is an
example of Cauchy’s or Neumann boundary conditions. If g, is zero, it will represent natural
boundary conditions.

Convection heat exchange: When there is a convective heat transfer on part of the body surface
due to contact with a fluid medium, we have:

oT oT oT
—\k,—+k,—+k,— |=h(T,-T 2.4
(xax-’_ y ay+ ZaZJ (S f) ( )

where / is the convection heat transfer or film coefficient (W/m®.°C), which may be temperature

dependent (nonlinear), 7y is the surface temperature (°C) and 7 is the fluid temperature (°C),
which may be a spatial or time function.

Radiation: Assuming grey body, this boundary condition is given by:

aT aT T 4 o4
-k, —+k,—+k,— |=¢0|l, T, 2.
( X ax + y ay + z aZ] go—[ sr r] ( 5)
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where & is the emissivity of the surface of the body, o is the Stefan-Boltzmann constant
(W/m2-°K4), T, is the absolute temperature of surface Ss (°K) and 7, is the known absolute
temperature of the external radiative source (°K). The radiation boundary condition may be dealt
with as a nonlinear convective boundary condition with an equivalent temperature dependent
film coefficient, kX', where:

x=eo(T} +T )T, +T,) (2.:6)

2.1.3 Numerical Modeling
Using a weighted residual Galerkin procedure, the final finite element equations may be
written as:
CT + KT =Q (2.7)
where C is the equivalent heat capacity matrix; K is the equivalent heat conduction matrix; T

and T are vectors of the nodal temperature and its derivatives, respectively; and Q is the
equivalent load vector. Detailed expressions of the matrices in equation (2.7) are given in
Appendix-A.

A general family of solution algorithms may be obtained by introducing a parameter a
where  (0.0< @ <1.0) such that

| B 1
Lt tT_tT - t+uAtT_tT 28
t( ) t( ) ( )

t+aAt T _

t+uAtT =0(t+AtT + (1 _ 0[)tT (29)
If o = 0, an explicit Euler forward method is obtained; if o= 2, an implicit trapezoidal rule is

obtained; and if oo = 1, an implicit Euler backward method is obtained. Substituting equation

(2.8) into equation (2.7) and applying Newton-Raphson iterations yields:

[+ oAt Q-1 . -
{KﬁL(Lj_C}Z AT(Z):H—aAt(Qb+Qsj+l+aA[(()h+Qr)(l 1)_!+0{At(éc+‘ic)(1 1) (2.10)
oAt

where a#0 The definition of all terms is given in Appendix-A and all quantities at time
(t+0aAt) are calculated from a relation similar to equation (2.9).
Depending on the value of o, the procedure may be either conditionally stable (t<0.5) or

unconditionally stable ¢>0.5.
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2.1.4 Special Considerations

The thermal properties of steel normally change with a change in the temperature. This
results in a nonlinear behaviour of the thermal field. The exact correlation depends on the
chemical composition of each steel sample. For example, for DQSK steel, the relationship

between the thermal conductivity and the temperature is:

k=60.571-0.03849 X T (°C) inW/m.°C (2.11)

and for SS316 steel, the correlation is:

k=11.141+0.014 X T (°C) inW/m.°C (2.12)
These equations are valid from zero to 1000 °C. So the finite element code should be capable of
handling these nonlinearities.

It is also important to integrate the microstructure evolution models into the heat transfer
analysis [1,92]. Since during the cooling process, the austenite will transform into other phases, a
latent heat is released. While some researchers have ignored this effect [93], the accuracy of the
simulations can be enhanced by incorporating this heat into the model [1,94]. In our
implementation, following the procedure in Reference [1], the heat generation per volume is
calculated by:

O_H.F (2.13)

where H is the mole of material considered, and F is the transformation rate of austenite to
ferrite and pearlite per volume. This value is going to be calculated in a subroutine, and the

values will be included in the source term Q” in equation (2.10).

2.1.5 Implementation and Validation

In the developed program, the geometry can be discretized using isoparametric 3D
elements. By default, the elements will have eight nodes and will resemble a brick. However,
other 3D shapes can also be created. The program is capable of dealing with a mixture of
element types. The program is also capable of dealing with all different types of boundary
conditions, as mentioned above. The boundary conditions can be a function of space and/or time.
The nonlinearities caused by the dependence of the thermophysical properties on the temperature

can be handled in a step-wise staggered approach, i.e. the values of the parameters at the current
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step are calculated based on the temperature at the previous step, and are assumed to be constant
during the current step. The program is capable of handling both the steady and transient
problems.

Various verification cases were modeled and the results were compared with the results
obtained by the commercial program ANSYS [95]. In all cases, the results were shown to be

within less than 1% of each other. Some of the test cases are shown here.

Geometry and Mesh

Figure 2.2 shows a schematic of the geometry and the discretized domain. The width of

the block (x direction) is 1.5 m, the height (y direction) is 0.5 m, and the length (z direction) is
5.0 m. The thermal conductivity is following equation (2.11), the density, p, is 7850 kg/m” , and
the heat capacity, C, is 475 J/kgK .

Test Case 1

The initial temperature of the block is 14 °C. The top surface of the block is subjected to
a convection boundary condition with a film coefficient of 60 W/(m>.°C) and a fluid temperature

of 40 °C. The comparison between the developed code and ANSYS is displayed in Figure 2.3(a).
Test Case 11

Starting from an initial temperature of 8 °C, the top surface of the block is subjected to a
constant heat flux of 100 W/m®. The comparison between the developed code and ANSYS is
displayed in Figure 2.3(b).

Test Case 111

Starting from an initial temperature of 1 °C, the top surface of the block is subjected to a
radiation boundary condition with a surrounding temperature of 100 °C. The comparison

between the developed code and ANSYS is displayed in Figure 2.3(c).
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Test Case IV

Starting from an initial temperature of 1 °C, the top surface of the block is subjected to a
specified temperature boundary condition of T, = 2x + 5z + 10. The comparison between the

results of the developed code and ANSYS for a point at y = 0.25 m is displayed in Figure 2.3(d).

Figure 2.2. Geometry and mesh for the validation of the direct 3D code
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Figure 2.3. The results of validation for the 3D direct code

2.2 Formulation of Inverse Analysis

2.2.1 Objective Function

The boundary inverse heat conduction problem can be formulated as an optimization

problem in which we try to minimize the norm of difference between the experimentally
measured temperatures and the calculated temperatures obtained from a direct solution of the

problem with some guessed boundary conditions. In order to dampen the oscillations in the

27



solution, and make the algorithm more stable in dealing with noisy measurement data, it is very
common to include some kind of regularization terms that penalize the large magnitude error in
the objective function. A common choice in inverse heat transfer problems is to use a scalar
quantity based on the boundary heat fluxes, with a weighting parameter a, which is normally
called the regularization parameter. The regularization term can be related to the values of heat
flux, or their first or second derivatives with respect to time or space. Based on the previous
experience [76], as well as our own trial of different regularization terms, we choose to use the

heat flux values (zeroth-order regularization). The objective function is then

(2.14)

f(q) = Z(Z(]}mes _ Tji,calc)z n (XZ (q; )zj

j=1\Ui=l

i,meas i,calc

where */  and "/  are the values of expected (measured) and calculated temperatures at the

i™ time step and the /™ spatial location, respectively; a is the regularization coefficient; and 9; is
the boundary heat flux vector at the i time step and the /™ spatial location, N is the total number
of time steps, and J is the number of spatial components of temperature vectors.

Due to the parabolic nature of the heat equation, there are basically two categories of
approaches in solving the inverse transient heat conduction problems. One method is to try to
find components of heat flux in each step of the solution. This is possible since the temperature
distribution at the end of each time step is only a function of the temperature distribution at the
previous time step and the boundary conditions during the present time step. These methods are
normally called “sequential”. In these methods, in each step of the inverse analysis, the direct
problem is not solved for the whole history, and is solved for only one (or a few) time steps. The
optimization problem is then solved for the temperatures at that step, and then the problem is
marched in time to the next steps. The other solution method is to treat the whole history of heat
fluxes as an unknown in the optimization problem. In this formulation, which is usually called
the “whole domain™ approach, the direct problem will be solved over the whole time history.

Due to the diffusive nature of transient heat conduction and from a computational
expense perspective, sequential estimation techniques are highly preferred over whole-domain

inverse analysis techniques [35]. Unfortunately, there is an important drawback in using
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sequential methods, and that is the high sensitivity of the solution to the experimental errors.
That is why we will be using the future time steps concept.

Due to the fact that inverse problems are generally ill-posed, the solution may not be
unique and is generally sensitive to measurement errors. To decrease such sensitivity and
improve the simulation in function specification methods, a number of future time steps (nr7s)
are often utilized in the analysis of each time step [35]. This means that in addition to the
measured temperature at the present time step 7', the measured temperatures at future time steps,
T 2 T | are also used to approximate the heat flux ¢'. In this process, a temporary

assumption is usually considered for the values ¢'*',¢"**,...,¢"""= . The simplest and most widely

used one is to assume ¢'** =4’ for 1<k < n., which is also used in our work. Also in this work,

we combine the regularization concept with the future time step data. This is analogous to the
combined function specification-regularization method, initially introduced by Beck and Murio

[96].

The sequential algorithm for time step M, when using » future time steps (the heat flux is

known for ¢ < t)), is presented below:

1.  An assumption is made for the heat flux function at times #y;, tus+1, ..., ty+r (usually gy =

qm+1=-... :qM+r)-

2. The direct problem is solved with 7,74 as the initial condition and the heat flux values
from step 1 as its transient boundary conditions. The temperatures at these » time steps

calc calc calc
are calculated (7,,, T}/, == > Tyrer )-

3. The objective function is then evaluated using the heat fluxes from step 1, the calculated

temperatures from step 2, and the known temperatures from the measurement

meas meas meas b . b .
(T, T -+, T ). The new form of the objective function becomes:

M+r M+r

f(q)=Z_‘,(Z(Tj”"€““ ST ) (qj-)zj (2.15)
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4. The algorithm is repeated until we reach a desired low value for the objective function,
or after a certain number of iterations. The solution vector will be the spatial components

of heat fluxes for the  time steps.

5. The values of gy, as obtained from step 4, are used, and the values for the rest of the

heat fluxes (qu+1, ..., qu+r) are discarded.
6. The above procedure is repeated (M = M+1) as you move to the next time step.

In theory, it is possible to use multiple sensors instead of multiple future time steps to improve
the stability of the method. However, this idea is not practical since adding thermocouples to the
sample is not only more expensive, but also distorts the temperature field. For a detailed
discussion of the effect of thermocouple hole on the thermal field, see References [25,97-101].

Using future time steps introduces a bias in the solution. This bias is normally observed
in the form of rounding the spikes in oscillatory boundary condition histories, and an early
prediction of these oscillations [35]. To obtain an appropriate level of regularization, the number
of future time steps (or more accurately, the size of the look-ahead time window, i.e. the product
of the number of future time steps and time step size) and the value of the regularization
parameter must be chosen with respect to the errors involved in the temperature readings. The
residual principle [36,102] can be used to determine these parameters based on the accuracy of
thermocouples in the relative temperature range. In this method, the number of future time steps
is increased until the RMS error of the estimation falls below the standard deviation of noise in
the measured temperatures.

Choosing proper values for the regularization parameter and the number of future time
steps is a very challenging task, and although there are some methods to find the range of
appropriate values, the fine tuning still remains more like an art rather than an exact science.
Basically, there are five main approaches to choose a close to optimal value for these parameters
[103]. They are the maximum likelihood (ML), the ordinary cross-validation (OCV), the
generalized cross-validation (GCV), the L-curve, and the discrepancy principle (DP) methods.
All these methods require some kind of knowledge about the solution characteristics. One
important piece of information is the level of errors in the solution domain. Luckily, the
thermocouples that are normally used in experiments are well documented, and their accuracy

levels are well investigated and understood. In our experiments, we are using type K
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thermocouples that have an error level of £2.5 °C in temperatures below 333 °C, and an error
level of +£0.75% of the measured temperatures between 333 °C and 1200 °C. Among these five
methods, the discrepancy principle (DP) method is known to produce the best estimate of the
regularization parameter for inverse heat conduction problems [103]. This method requires that
the problem be solved so that the residual norm is the same as the norm of errors in the

measurements, denoted by d:

\/Zfﬂ(ﬁ ~TH)?2=4§ (2.16)
When the values of the regularization parameter and the number of future time steps for one case

are obtained, the same values can be normally used for similar problems.

2.2.2 Gradient Based Calculation of Heat Flux

The heat flux and temperature vectors are

q=[q' q* ... q"T (2.17)
9=l ¢ - ¢ (2.18)
T, =[T}, Ti, .. T,T (2.19)
T=[f, T, .. T,V (2.20)

where L is the number of measurement points, J the number of heat flux components that can be
determined for the flux space distribution on a surface. It should be noted that J must be less
than or equal to L, the number of measurement points. It should also be noted that the
dimensions of the heat flux vector ¢ * at each step are /xJ while the total heat flux vector g is
JXN as it includes the data in N steps; and the temperature vector T at each step is /xL.
Also, the temperature T* is only determined or affected by the heat fluxes ™ where m <
k. Mathematically, we may express T*as an implicit function of the heat flux:
T =/(q.q"....q") 2.21)

or in a successive form as:
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T! = f(T/".q")
Tckfl — f(TCkfz,qkfl)

: (2.22)
T = f(T..q°)
T. = f(T.q")
and the following equation is also valid
T =T+ g—T§<ql q)+ @ =gt g —a) (223)
q 9q 9q

The values with a “*’ superscript in the above equation may be considered as initial guess values

ultimately lead to the temperature T*" .

Now we define the first derivative of temperature T. with respect to heat flux q' as the
sensitivity matrix:
T’
= %
ay (@) a,@) ... a,0)

ay (@) an(@) ... ay,@)

X[

(2.24)

a, (@) a,@ ... a,@)

. oT'
a (i)=—=
}’S( ) aq;
where i=1, 2...N, r =1, 2...L and s=1, 2...J. The sensitivity matrix X' is an LxJ matrix.
The optimality of the objective function may be obtained by letting df /dq =0, and we get the

following set of equations (note thatdf /dq should be done with respect to each component q,

with i=1, 2...N):

v (T (aT” ] e (aT" jT A .
¢ —< +oli(q’ —q’ )= . T -T )-aq’
{[Z}(aqj l.f_qj* aqj q.f:q/* :Z=1: aqj q/_q;*( ) (2'25)

j=12,...,N

where q’ is the initial guess of heat fluxes, and T, is the calculated temperature vector with the

initial guess values.
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Recalling equations (2.20) and (2.21), equation (2.22) may be rearranged and written in

the following form:

X X _-+taD@-q)=XAT-aq (2.26)

q
where X is labeled as the total sensitivity matrix for a multi-dimensional problem and has the

following form:

X' 0 0 0
2 1
x| X X 00 (2.27)
: : . 0
XN XZ Xl
and
AT=(T -T" -1 ... T -1/ (2.28)

Note that the dimension of matrix X is (LXN)X(JxN) and AT has dimensions of (LxN). Also,
note that the calculations in equation (2.23) may easily be done in the time domain and no
function specification for q'is needed. If the total sensitivity is known, no iteration is required to

get a final solution.

2.2.3 Convergence Criteria
In each time step, the iterative procedure is used until the inversely predicted temperature
T. converges to the measured temperature T, Convergence criteria used to define the
acceptance of the predicted temperature are based on an error norm defined by:
Error-norm " =|| AT"| (2.29)
Two convergence criteria for ending the iteration process at each time step are used:
Error-norm " < 8T (2.30)

or

1
Error-norm"" - Error - norm”

- <eg (2.31)
Error - norm

The values of OT and € depend on the measurement error level. The rationale behind using
absolute criteria is that while the norm at a given previous iteration is already very small, the

relative norm criterion is still not satisfied in the last iteration.
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2.2.4 Flux Zoning Method (FZM)

The boundary heat flux, which is the output of the developed inverse algorithm, will be
in vector form. We need to assign this discretized vector form to the target surface. A common
technique is to divide the target surface into several zones, each corresponding to one
temperature measurement. The heat fluxes for each zone will be constant for that zone, and may
differ from one to the next, as shown in Figure 2.4. This approach is called the Flux Zoning
Method (FZM) [1].

This approach is fairly easy to understand and implement. It is a very good solution for
the case where the heat flux is nearly constant or does not dramatically change spatially in a
subregion. However, some researchers have recognized it as inappropriate in the case of a

moving boundary heat flux, such as the case with the moving waterfront [1].

qi

(2

Figure 2.4. FZM Model for Inverse Calculation of the Boundary Heat Flux

2.2.5 Flux Marching Method (FMM)
An alternative approach to the FZM is the Flux Marching Method (FMM) [1], which
tries to match the movement of the heat flux on the boundary. In its original form, this method

determines the heat flux distribution in each region using the following algorithm:

1. The heat flux at each given node at the current time step is generally assumed to be equal to

the heat flux on the neighbouring upstream node at the previous time step.

2. The heat flux on the other nodes at the current time step is generally assumed to be the value

on the prior node at the several previous time steps.

While in simple cases, and mostly in theoretical testing, this method may perform better than the
FZM, there are several serious problems that hinder its application in real cases. Some of these

problems are:

34



a) The FMM heavily relies on the flow direction on the boundary. In three-dimensional cases,
and especially in the cases with moving plates and multiple impinging jets in each row and
multiple successive jet rows, it is increasingly hard to determine the upstream and downstream
directions. The flow pattern is very complex, with stagnation zones in the area between two

impinging jets. The shape and location of these areas are also irregular [81].

b) In order to obtain accurate results, the exact value of the water velocity must be known, since
it is the speed at which the nodal heat flux values move from one node to the other. Again, there
is currently no accurate way to predict these speeds, and while recent studies [32] have started
looking in more details at the velocity of the water propagation, we are still far from having a
robust and useful correlation for the water velocity, especially in cases with multiple jets and a
moving surface. This is especially important when one notices that the “step mismatch”, i.e.
moving of the heat flux from one node to the other at a speed higher (overstepping) or lower

(understepping) than the real velocity, may produce lower quality results than the FZM [1].

c¢) One of the main characteristics of the heat transfer in the jet impingement cooling is the sharp
heat flux peaks in the impingement zone. The FMM is, in nature, an interpolating and smoothing
scheme, which tends to change the sudden behaviours into gradual changes. This has caused a
dampening of the heat flux peak values, as well as a virtual negative heat flux before the real
sharp increase [1]. Adjusting the waterfront speed may reduce the magnitude of this problem, but
then it will be another parameter that is needed to be addressed and will increase the complexity

of the program, and make it harder to be used as an off-the-shelf code.

d) In the FMM, the following equation is used to find the time step at which the heat fluxes

should move to the next node and the solution should be repeated [1]:

d .
At; =2 (2.32)

vij
where At; is the time step size in the ith step, d; is the jth spatial distance between thermocouples,
and vj; is the water moving speed over this distance in that time step. So in the cases of higher
water moving speed, the denominator of the above equation becomes large, resulting in a very

small time step size. This will result in either a large computational cost, or in many cases, to the

instability of the gradient-based inverse algorithm, as will be discussed later in Section 2.3.4.
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e) It is very crucial to notice that the problem with the FZM can be mitigated if smaller time
steps are used. By refining the temporal resolution, the assumption that the heat flux is not
moving in each smaller time step, will not significantly reduce the accuracy. Fortunately, the
data provided by the data acquisition system is in very small intervals, so the limitation will not
be caused by the experiments, but by the failure of the gradient-based inverse solvers to deal
with smaller time steps. The remedy may be using inverse solvers that are not gradient-based.

This will be studied in the next chapter.

2.2.6 Different Techniques for Calculating Sensitivities

The form of the governing differential equation for both the temperature T (x, t) and the
sensitivity coefficient X (x, t) is the same [35] and, therefore, the same finite element program
may be used to calculate them. While this is efficient from the programming point of view, it
may not be practical, especially when the temperature time history is somewhat long and the
density of mesh is high, and also because of the fact that not all the coefficients at all points are
needed to get the heat flux q.

An alternative way is that the sensitivity matrices at each time step for the measurement
points be calculated. Such a procedure would still require intensive calculation time and cost
when the number of total time steps considered and/or the number of heat flux components are
reasonably large.

A perturbation algorithm [8] was used to obtain the sensitivity matrices. First, a given
value is assumed for all components of the heat flux vector as input in the direct heat transfer
calculation to get the temperature distribution for the given future steps at each thermocouple
location. Then, one of the components of the heat flux vector is increased by a reasonable
amount, such as 10%, to obtain new temperatures. While a perturbation of 10% looks larger than
normal, we should notice that if the perturbation is small, the change in inside temperatures will
be very small, due to the lagging and dampening of boundary changes in internal points, and the
resulting sensitivity will be very small as well, and sometimes very close to zero. This can result
in divergence or “division-by-zero” errors. The ratios of temperature difference at each
thermocouple location to the applied increase in heat flux component are the sensitivity
coefficients. Such perturbation is repeated for each component of the heat flux until all the

sensitivity matrix components are obtained.
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One important consideration in calculating the sensitivity is the nonlinearity. The whole
sensitivity matrix is independent of the heat flux only if the thermal properties of the material are
constant with temperature. For most materials, the thermophysical properties are temperature
dependent. In such cases, all properties should be updated at the beginning of each time step,
which is time consuming, especially for large size models. Moreover, such changes in properties
would not be very large and would not significantly change the magnitude of the sensitivity
coefficients. Also, updating the material properties at the beginning of each time step would be
based on the temperatures T*" obtained from the initially given values of the heat flux q°, which
is essentially an approximation. So, we may opt for updating the sensitivity matrix every M
steps (in our numerical experiments, M=10). The results obtained under this assumption are very
close to those obtained by updating the values at each step, so the assumption is justified.

Another approach was also investigated in this research to replace the normal
perturbation method in calculating the sensitivity coefficients. The suggested new approach is
called the complex step method, and is basically based on a complex number, instead of a real
number, perturbation. To introduce this method, we first write the Taylor series expansion of the

real valued function fabout both a real (x+%) and a complex (x+ik) numbers.

f(x+h)=f(x>+hf’<x>+h2fT(j‘)+h3%+~- (2.33)
f(x+ih) = f(x)+ihf’(x)—h* S ”z(!x) _in ”;(!x) . (2.34)

Based on these expansions, the following three approximations of the first derivative of f with

respect to x is possible:

PR LD C YA YA C I 235)
R '”;(!") . (2.36)
0= Im[f(;”h)hhz A zgx) oo (2.37)

The first one is a normal forward difference scheme, which is similar to the perturbation scheme
that was previously described, the second expression is a central difference scheme, and the third

one that uses the complex number perturbation is the basis for our complex step method.
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When compared with the forward difference scheme, the complex step method is of higher order
(2 instead of 1), and it does not involve a difference operation, so we can choose small steps,
with no loss of accuracy due to subtractive cancellation. In comparison with the central
difference algorithm, the complex step again does not involve a difference operation, so we can
choose small steps, with no loss of accuracy. Also, unlike the central difference scheme, the
complex step method does not need to evaluate the function at a third point (x-/).

In our inverse problem, the sensitivity matrix, X, is calculated using a perturbation
method, which is similar to the forward difference algorithm:

_ 9T _T(q +A9)-T(q)
dq Aq

X

(2.38)

where ¢ is the initial guess for the value of the heat flux, and Aq is the perturbation, which is
typically about 10% of the value of heat flux. Using the complex step idea, the sensitivity will be
calculated as

_ar _im|r(q" +ing)]
e Ag

X (2.39)

This approach was tested in our problem. We found that unless the problem is highly nonlinear
(more than what heat conduction problems normally are), there is no tangible difference between
the first order perturbation method, and the second order complex step algorithm. This approach
also could not solve the problem of gradient based inverse heat conduction algorithms, such as

time step size limitation, or sensitivity to the measurement errors.

2.3 Results and Discussion

In this section, a few test cases are introduced and developed algorithms are tested in
their capability of solving one-, two-, and three-dimensional problems. The effect of noise in the
domain on the performance of the inverse algorithm is studied. Also, the effects of using
regularization parameters, future time steps, and different time step sizes are also investigated.

Finally, 1D, 2D, and 3D inverse algorithms are compared.

2.3.1 Test Cases
Five test cases are introduced. They include one-, two-, and three-dimensional heat

conduction problems, in transient or steady conditions, and both linear and nonlinear in nature.
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Notice that these test cases are also going to be used in the next chapter, and will not be repeated

there.

Test Case I: 1D Transient Problem

In this case, the triangular heat flux history, popularized by Beck et al. [35] is used as the
input heat flux at the left end of the sample. For simplicity, the parameters are first taken as pc =
L = 1. The problem was once solved with a constant £k = 1 (linear case), and then with the

thermal conductivity varying with the temperature at x = L as:
k=082+T(x=1L) (2.40)

The heat flux history is given in the following form:

0 £<0.24
sy =) 7024 02451084 241)
—t+144 084<t<144 :

0 t>1.44

Figure 2.5 shows the geometry of the problem, and its boundary conditions.

x=0 x=L

R \@\\ N
[
o

Figure 2.5. Problem Geometry and Boundary Conditions, Test Case I

The direct problem is solved and the temperatures at the right end (x = L) are obtained and
stored. The goal is to minimize the difference between these temperatures (simulated

measurements) and those that can be obtained by applying an arbitrary input heat flux.

Test Case II: 2D Transient Problem

In this transient 2D problem, the heat flux at the top surface (see Figure 2.6(a)) is chosen
to resemble the one in water cooling of steel strips on the run-out table in a steel mill. In these

experiments, in order to determine the surface heat flux, or the heat transfer coefficient during
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the water cooling process, thermocouples are placed on the opposite side of the plate, or within
the plate and 1.0 mm below the top surface, as depicted in Figure 2.6(b). Inverse analysis is then
used to obtain the boundary conditions on the surface, based on the readings of these internal
thermocouples. As shown in Figure 2.6(b), the thermocouple is located in a blind hole, with a
diameter of 1.6 mm that is drilled from the bottom surface of the plate. The measurement
junction of the thermocouple is fixed to the end surface of the hole, which is about 1 mm below
the top surface of the plate. The problem is solved as an axisymmetric case. The boundary
condition of the top surface is prescribed heat flux. The other boundaries are assumed to be

adiabatic. The left boundary is axisymmetric. The density, p, is 7850kg/m* , C, is 475 J/keK ,
and the thermal conductivity, &, is 44.5 w/mK . These are very close to the physical properties of

the steel strips that are used in our controlled cooling experiment. Results are obtained at a point
inside the object, which is the assumed position of a thermocouple. Inverse analysis is conducted

to obtain the transient heat flux profile at the top surface.

5mm

1mm___‘!L P

0.8 m

Sensor
Location

Water

6.65 mm

NN

NN

N

TC TC

| Thermocouple

(@ (b)

Figure 2.6. Test Case II; (a) Model, (b) Problem Description [1]

Test Case I11: 3D Steady Problem

The third test case is a 3D steady heat conduction problem in a slab, with dimensions of
3, 1, and 10, in the x, y, and z directions, respectively. The top surface of the slab (y = 1) is

subjected to a specified temperature boundary condition that varies as Tr,, = 25x + 100z + 10.
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The other boundaries are adiabatic. The material properties are the same as in the previous test
case. Figure 2.7 displays the temperature distribution inside the slab, obtained by 3D finite

element modeling.

Figure 2.7. Temperature Distribution Inside the Slab

Unlike the previous test cases where there was only one data point in the solution field, in
this problem, there are three sensors located inside the domain. They are located at the centerline

with respect to the x and y coordinates (y = 0.5, x = 1.5), and at the z locations of 2, 5, and 8.

Test Case IV: 3D Transient Problem — Nine Thermocouples

A block containing nine thermocouples is modeled for each pass of water jet cooling of a
steel strip. The length of the block is 114.3 mm (9 sections of each 12.7 mm). The width and
thickness are 12.7 mm and 6.65 mm, respectively. To model the thermocouple hole, a cylinder of
radius 0.5 mm and height 5.65 mm is taken out of the block. Isoparametric eight-node brick
elements are used to discretize the domain. Figure 2.8(a) shows the whole domain, and
Figure 2.8(a) is a close-up view of one of the TC holes.

The boundary condition of the top surface is prescribed heat flux which is chosen to
resemble the one in water cooling of steel strips. Figure 2.9(a) shows the applied heat flux at five
of the nine thermocouple locations. It is very similar to an actual heat flux happening on a run-
out table with two rows of staggered circular jets, impinging on the third and seventh
thermocouple locations [91]. Figure 2.9(b) is the temperature history at five of the nine
thermocouple locations inside the plate, obtained from direct finite element simulation. The
direct finite element code has been validated, and grid independence studies were performed, i.e.
the mesh was refined until the changes in the results were less than 5%. However, due to space
limitations, we are not presenting them here. The other boundaries are assumed to be adiabatic.
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The density, p, is 7850 kg/m> , C, 1s 475 J/KgK, and the thermal conductivity, £, is first assumed

to be constant and equal to 40 W/m.°C (linear problem), and later changed to be depending on

temperature (nonlinear problem) as

k =60.571—0.03849x T W / m -°C (2.42)

These are the physical properties of the steel strips that are used in our controlled cooling
experiment. Results are obtained at the top of the cylindrical hole, which is the assumed position
of a thermocouple. Inverse analysis is conducted to obtain the transient heat flux profile at the

top surface.

(b)

(@)

Figure 2.8. (a) The Whole Block Consisting of Nine Thermocouples; (b) A Close View of the TC Hole from
the Bottom
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Figure 2.9. (a) The Applied Heat Flux on the Top Surface; (b) The Thermocouple Readings Used for Inverse
Analysis

Test Case V: 3D Transient Problem — Eighteen Thermocouples

Another row of thermocouples is added to the previous test case in the y-direction, as
shown in Figure 2.10, increasing the width of the block to 25.4 mm. Again the top surface
boundary condition is set to resemble the heat fluxes occurring in the water cooling of steel strips
by impinging jets. However, in this test case, each thermocouple line is under a different line of
impinging jets [91], i.e. there are two lines of nine thermocouples, and the heat flux applied on
the top surface of each line is set to resemble the water jet cooling heat fluxes. Figure 2.11 shows
the boundary heat fluxes on the top surface of five of the thermocouples and the temperature
histories for the new line of added thermocouples. The main reason for using this test case is to
study the effect of the number of thermocouples on the performance of the designed inverse
analyzer, especially to investigate the effect of multi-criteria objective function formulation,

which will be discussed in the next chapter.
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Analysis; Second Line of Thermocouples, Test Case V

2.3.2 Noisy Domains

To study the effects of measurement errors in internal temperatures on the inversely
calculated boundary conditions, random errors are imposed onto the calculated exact internal

temperatures with the following equation:

exact

T,=T,., +0r (2.43)

where 7, is the virtual internal temperature that is used in the inverse calculations instead of the

exact temperature, T,.,.; 7 is a normally distributed random variable with zero mean and unit
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standard deviation; and o is the standard deviation. In this work, the maximum additive random

error is = 3 °C.

There are several ways to make an inverse algorithm more stable when dealing with
noisy data. For example, Gadala and Xu [57] have shown that increasing the number of “future
time steps” in their sequential function specification algorithm results in greater stability. They
have also demonstrated that increasing the regularization parameter, o, improves the ability of
the algorithm to handle noisy data. However, these approaches were also shown to greatly

increase the required number of iterations, and in many cases the solution may diverge.

2.3.3 Effects of the Regularization Parameter and Future Time Steps

Both the regularization method, proposed by Tikhonov, and the future time steps concept
in sequential function specification, proposed by Beck, have the same purpose of stabilizing the
solution of the inverse heat conduction problem. In this research, these two methods have been
combined, and their effects cannot be separated from each other. This approach is based on the
idea of a regularized function specification method, and is shown to be more effective and more

computationally efficient than using just one of these methods [104].

Notice that the future time steps concept is only applicable to the transient problems, so
in test case III, which is a steady-state problem, only the Tikhonov regularization can be used.
For the other test cases, while the exact value of the regularization parameter and the number of
future time steps vary slightly, the same trends are always observed. We chose test case IV to
show the effect of using a regularization parameter in Figure 2.12, and the effect of using more
future time steps in Figure 2.13. As seen in Figure 2.12, increasing the value of the regularization
coefficient results in a smoother profile for the predicted heat flux. Increasing the number of
future steps has the same effect, as seen in Figure 2.13. These two effects can be combined.
However, there are two main problems in using these techniques. First of all, the computational
expense increases significantly when a higher number of future time steps are used. The other
problem, which is more significant, is that there is a limit to the improvement that can be
obtained by these two techniques. Increasing either of these parameters after a certain limit can

cause divergence of the whole inverse solver.

45



1E+07

)

8E+06

W/m2

ux (

WsE+06

Boundgry Hea
m
+
o
(o)

2E+06

L S B B S S S B ey S s B

04 06 08
Time (s)

o
ofs
[N]

()

1E+07 |-

@

E+06

6E+06

n

E+06

Boundary Heat Flux (W/m2)

2E+06

(b)

1E+07 -

SE+06 [

6E+06 [~

ry Heat Flux (W/m2)

4E+06 |-

Boundal

2E+06 [~

0.4
Time (s)

©

Figure 2.12. Effect of Regularization Parameter; 4 Future Steps; Error level =£3°C; (a) a = 1e-12 (L, Norm
of Error = 4.63e5); (b) a = 1e-11 (L, Norm of Error = 2.56e5); (¢) o = le-10 (L, Norm of Error = 1.18e5).

46



1E+07

@

E+06

6E+06

n

E+06

Boundary Heat Flux (W/m2)

2E+06

LA B S s s S e s s e s s s ey s s
T T T T T

0.4
Time (s)

(@)

1E+07

)

N R— 1

i —— - Tc3
. TC5
L TC7
. TC9

8E+06

W/m2

6E+06

N

E+06

Boundary Heat Flux (

2E+06

—r T T T T T T T T T T

04
Time (s)

(b)

1E+07

8E+06

)

E+06

N

E+06

Boundary Heat Flux (W/m2)

2E+06

—T T T T T T T T T T T

0 02 0.4 0.6 0.8
Time (s)

©

Figure 2.13. Effect of Future Time Steps; a = 1e-11; Error Level = £3°C; (a) 4 Steps (L, Norm of Error =
4.63e5); (b) 6 Steps (L, Norm of Error = 1.72e5); (c) 8 Steps (L., Norm of Error = 1.34e5)

47



2.3.4 Effect of Time Step Size

It is well known that gradient based algorithms for solving inverse problems become
unstable when the time step size becomes smaller than a certain limit. This is due to the ill-
conditioning of the sensitivity matrix in smaller time steps. Basically, by reducing the time step
size, huge non-physical oscillations are produced in the results (see Figure 2.14 for the
oscillations that occurred in the solution of Test Case II). If we continue reducing the time step

size, the whole program diverges.
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Figure 2.14. Threshold of Divergence in the Solution of Test Case II Due to Small Time Step Size

This time step limitation can result in an unacceptably low temporal resolution, which
may cause us to miss some of the main features of the heat flux profile. For example, in the
cooling of steel products on the run-out table, if the sample is moving at a speed of 10 m/s, and
the distance between two jet lines is 10 cm, we need time steps of less than 0.01 s, just in order
to have one data point for each jet impingement moment. This is quite a low value for the
gradient-based inverse solvers in problems with the thermophysical properties of steel. One way
to overcome this problem is to use inverse solvers that are not gradient-based. This will be

discussed in more details in the next two chapters.

2.3.5 Comparison of 1D, 2D and 3D Algorithms
One of the reasons for using a 3D inverse solver instead of a 2D model [1] is the

temperature gradients between different thermocouple locations. These gradients can exist in a
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jet line between several impinging jets, or between two successive rows of jets. The simple 1D
model assumes that the heat transfer is only happening in the normal direction to the plate. The
2D model also considers the heat flow between two neighbouring thermocouples. However, the
3D model is capable of modeling the heat flow in all directions, and is supposed to be a more
physical simulation for the problem.

Due to different modeling assumptions, especially different treatment of the boundary
conditions, the values of heat fluxes that will be obtained from the same set of temperature
readings will be different for each of these models. For example, because in the 1D and 2D
models, one or two sides of the domain are assumed adiabatic, i.e. there is no heat exchange
through them, the heat flux in the cooling process needs to cool down a smaller thermal mass, so
the values that will be obtained in these cases for the peak heat flux will be lower.

To investigate this, a set of known boundary heat fluxes are applied to the top surface of
test case V, and the problem is directly simulated. The temperatures at the internal sensor
locations are calculated and stored. Then the 1D, 2D, and 3D inverse algorithms are employed to
use the stored temperatures and recover the missing boundary conditions. The time step size in
the initial direct problem is selected to be smaller than the one used in inverse algorithms, in
order to avoid the so-called “inverse crime” [105].

Figure 2.15 shows the result of the 1D, 2D, and 3D algorithms, in addition to the known
applied heat flux. Note that due to the ill-posed nature of the inverse problem, even in the case of
the 3D algorithm, some discrepancy between the expected heat flux and the results is observed.
However, the 1D and 2D algorithms show a significant dampening in the predicted value of the
heat flux. As mentioned previously, these algorithms study each thermocouple location in
complete isolation (1D), or just consider the heat transfer in one lateral direction to the
neighboring thermocouple(s) (2D). This means that a lower amount of thermal mass needs to be
cooled. Thus, the predicted heat fluxes are smaller. Also, some of the details of the heat flux
profiles, e.g. the shoulder before the first rise, and the small shoulder after it are not sensed in the
1D and 2D models. These effects are caused by the cooling of the neighboring thermocouple

locations, and are not sensed in these algorithms.
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Direct 3D Problem

2.4 Conclusion

In this chapter, equations for the direct and inverse simulation of the heat conduction
problem were introduced, and a gradient-based inverse solver was extended to 3D to obtain the
missing boundary conditions based on the readings of internal thermocouples, especially for
applications in the controlled cooling of steel on a run-out table. The results show that the
method is very sensitive to measurement errors, and becomes unstable when small time steps are
used. In the next chapter, we will try to find algorithms that are capable of solving the inverse

heat conduction problem without the shortcomings of the gradient-based methods.
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3. Gradient-Free Methods of Solving the Inverse Heat Conduction Problem

As shown in Chapter-2, the gradient-based methods for solving the inverse heat
conduction problem suffer from some shortcomings, such as instability in the presence of noise
and in the smaller time step sizes. This can hinder their application in real-world problems, such
as in the characterization of the jet impingement boiling heat transfer on the run-out table in a
steel mill, where huge changes in the boundary conditions happen in short intervals, and the
thermocouple readings are always erroneous. In this chapter, we try to investigate some gradient-
free optimization methods and utilize them in the inverse heat conduction problem to mitigate
these shortcomings, and to find a more suitable inverse solver for our applications. Three major
techniques that are studied are: the artificial neural networks (ANN), the genetic algorithm (GA),
and the particle swarm optimization (PSO). First, we introduce the basic algorithm and its
formulation. Then, we test it in the solution of an inverse heat conduction problem, and try to
optimize the performance parameters associated with that method to make it both more efficient,
1.e. requiring lower computational expense, and more effective in handling noisy data. Finally,
comparisons are made between different methods and their variations, and their advantages and
disadvantages are studied. Also, in the last part of this chapter, a general modification is
introduced that can be applied to the stochastical methods in inverse problems to accelerate their

convergence.

3.1. Inverse Formulation

The boundary inverse heat conduction problem can be formulated as an optimization
problem in which we try to minimize the norm of difference between the experimentally
measured temperatures and the calculated temperatures obtained from a direct solution of the
problem with some guessed boundary conditions. In order to dampen the oscillations in the
solution, and make the algorithm more stable in dealing with noisy measurement data, it is very
common to include some kind of regularization terms that make the problem more stable,
especially in the case of noisy domains. As mentioned in the previous chapter, based on previous
experience [76], as well as our own trial of different regularization terms, we chose to use the

heat flux values (zeroth-order regularization). The objective function will then be
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fl@)= Z(Z(T, — Ty +aZ ¢! )Zj (3.1)

where T]’ " and T ].i’c"’" are the values of expected (measured) and calculated temperatures at the

i"™ time step and the /™ spatial location, respectively; « is the regularization coefficient; and q; is

the boundary heat flux vector at the i time step and the /™ spatial location, N is the total number

of time steps, and J is the number of spatial components of temperature vectors.

3.2. Artificial Neural Networks

Artificial Neural Networks (ANN) are motivated by the efficiency of brain in performing
computations. These networks are made of a large number of processing units (neurons) that are
interconnected through weighted connections, similar to synapses in the brain. In order for the
network to perform the expected tasks, it should first go through a “learning” process. There are
two main categories of learning: supervised, or unsupervised. In supervised learning, the
network learning is achieved by practicing on pre-designed training sets, while in unsupervised
learning, the network is presented with a set of patterns, and learns to group these patterns into
certain categories. The supervised learning is useful in function fitting and prediction, while
unsupervised learning is more applicable to pattern recognition and data clustering. Since the
learning process in our application is a supervised one, we focus on this type of learning process.

While there are several major classes of neural networks, in this research we studied only

two of them, which are introduced in this section.

3.2.1. Feedforward Multilayer Perceptrons (FMLP)

In a feedforward network, the nodes are arranged in layers, starting from the input layer,
and ending with the output layer. In between these two layers, a set of layers called hidden
layers, are present, with the nodes in each layer connected to the ones in the next layer through
some unidirectional paths. See Figure 3.1 for a presentation of the topology. It is common to
have a different number of elements in the input and output vectors. These vectors can occur
either concurrently (order is not important), or sequentially (order is important). In inverse heat
transfer applications, normally the order of elements is important, so sequential vectors

are used.

52



S =)

Hidden Layers

Figure 3.1. A Feedforward Network Topology

3.2.2. Radial Basis Function Networks (RBFN)
The basic RBFN includes only an input layer, a single hidden layer, and an output layer.
See Figure 3.2 for a visual representation. The form of the radial basis function can be generally

given by

f,-(x)=r{M] (32)

o.

1

in which x is the input vector, and v; is the vector denoting the center of the receptive field unit f;
with o; as its unit width parameter. The most popular form of this function is the Gaussian kernel

function, given as

fi(x)= exp[M} (3.3)

20,

These networks normally require more neurons than the feedforward networks, but they
can be designed and trained much faster. However, in order to have good performance, the

training set should be available in the beginning of the process.
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3.2.3. Implementation in Inverse Heat Conduction Problem

In order to use the artificial neural networks in the inverse heat conduction problem, we
first started with a direct heat conduction finite element code, and applied several sets of heat
fluxes in the boundary. The resulting temperatures in locations inside the domain, which
correspond to the thermocouple locations in the experiments, were obtained. The neural network
was then trained using the internal temperature history as an input, and the corresponding
applied heat flux as the target. The assumption was that this way, the neural network should be
able to act as an inverse analysis tool, and given a set of measured thermocouple readings, be
able to reproduce the heat fluxes.

The obtained results were, however, far from satisfactory. It seemed that the relationship
between the actual values of temperatures and heat fluxes is a complicated one, which is very
hard for the neural networks to understand and simulate, at least when using a reasonably small
number of layers. Thus, we decided to reformulate the problem, and use the change in the
temperature in each time step as the input. In this formulation, neural networks performed much
better, and a good quality was achieved in the solution in a reasonable amount of time.

Further investigations showed that if the time step size is varying, we can use a derivative
of temperature with respect to the heat flux as the input, i.e. divide the temperature change by the
time step size. The results were again satisfactory; however, more bookkeeping is needed, which

complicates the implementation and makes the algorithm more prone to coding errors. This
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practice is not normally recommended, unless it can result in a considerable reduction in the

solution time.

3.4. Genetic Algorithm (GA)

Genetic algorithm is probably the most popular stochastic optimization method. It is also
widely used in many heat transfer applications, including inverse heat transfer analysis [106].
Figure 3.3 shows a flowchart of the basic GA. Similar to PSO, GA starts its search from a
randomly generated population. This population evolves over successive generations (iterations)
by applying three major operations. The first operation is “Selection”, which mimics the
principle of “Survival of the Fittest” in nature. It finds the members of the population with the
best performance, and assigns them to generate the new members for future generations. This is
basically a sort procedure based on the obtained values of the objective function. The number of
elite members that are chosen to be the parents of the next generation is also an important
parameter. Usually, a small fraction of the less fit solutions are also included in the selection, to
increase the global capability of the search, and prevent a premature convergence. The second
operator is called “Reproduction” or “Crossover”, which imitates mating and reproduction in
biological populations. It propagates the good features of the parent generation into the offspring
population. In numerical applications, this can be done in several ways. One way is to have each
part of the array come from one parent. This is normally used in binary encoded algorithms.
Another method that is more popular in real encoded algorithms is to use a weighted average of
the parents to produce the children. The latter approach is used in this research. The last operator
is “Mutation”, which allows for global search of the best features, by applying random changes
in random members of the generation. This operation is crucial in avoiding the local minima

traps. More details about the genetic algorithm may be found in references [107,108].
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Figure 3.3. Flowchart of a General Implementation of Genetic Algorithm (GA)

Among the many variations of GAs, in this study, we use a real encoded GA with

roulette selection, intermediate crossover, and uniform high-rate mutation [107]. The crossover
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probability is 0.2, and the probability of adjustment mutation is 0.9. These settings were found to
be the most effective based on our experience with this problem. A mutation rate of 0.9 may
seem higher than normal. This is because we start the process with a random initial guess, which
needs a higher global search capability. However, if smarter initial guessing is utilized, a lower
rate of mutation may be more effective. Genes in the present application of GA consist of arrays
of real numbers, with each number representing the value of the heat flux at a certain time step,

or a spatial location.

3.5. Particle Swarm Optimization

We start this section by giving a description of the basic concepts of the algorithm. Then
a brief description of the three variations of the PSO algorithm that are used in this study is
given. Finally we investigate some modifications in the PSO algorithm to make it a more robust

and efficient solver of the inverse heat conduction problem.

3.5.1. Basic Concepts

Particle swarm optimization (PSO) is a high-performance stochastical search algorithm
that can also be used to solve inverse problems. The method is based on the social behavior of
species in nature, e.g., a swarm of birds or a school of fish. It was originally developed by

Eberhart and Kennedy in 1995 [68].

In the basic PSO algorithm, if a member of the swarm finds a desirable position, it will
influence the traveling path of the rest of the swarm members. Every member searches in its
vicinity, and not only learns from its own experience (obtained in the previous iterations), but
also benefits from the experiences of the other members of the swarm, especially from the
experience of the best performer. The original PSO algorithm includes the following components

[109]:

e Particle Position Vector x: For each particle, this vector stores its current location in the
search domain. These are the values for which the value of the objective function is calculated,

and the optimization problem is solved.

e Particle Velocity Vector v: For every particle, this vector determines the magnitude and
direction of change in the position of that particle in the next iteration. This is the factor that

causes the particles to move around the search space.
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e Best Solution of a Particle p: For each particle, this is the position that has produced the
lowest value of the objective function (the best solution with the lowest error in our case). So if f
is the objective function that is supposed to be minimized, i is the index for each particle, and m

is the iteration counter, then:

p =argmin(/(x)) (34)

0<s<m

e Best Global Solution g: This is the best single position found by all particles of the swarm,
i.e., the single p point that produces the lowest value for the objective function, among all the

swarm members. In other words, if # is the swarm size, then:

g" = argmin (f(x})) (3.5)

0<s<m,I<k<n

The number of particles in the swarm (n) needs to be specified at the beginning. Fewer
particles in the swarm results in lower computational effort in each iteration, but possibly a
higher number of iterations is required to find the global optimum. On the other hand, a larger
population will have a higher computational expense in each iteration, but will likely require less
iterations to reach the global optimum point. Earlier studies have shown that a smaller
population is normally preferred [110,111]. This was also observed in our study; however, its

effect on the convergence speed seems to be insignificant.
The steps involved in the basic PSO algorithm are detailed below [109]:
1. Randomly initialize the positions and velocities for all the particles in the swarm.
2. Evaluate the fitness of each swarm member (objective function value at each position point).

3. At iteration m, the velocity of the particle i, is updated as:

m m

V; “ :Covim +Clr1 (pzm - X )+Czl"2 (gm _xim) (36)

where x/" and v;" are the position and velocity of particle i at the m-th iteration, respectively; p;”
and g™ are the best positions found up to now by this particle (local memory) and by the whole

swarm (global memory) so far in the iterations, respectively; ¢ is called the inertia coefficient or
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the self-confidence parameter and is usually between zero and one; ¢, and c; are the acceleration
coefficients that pull the particles toward the local and global best positions; and r; and r, are
random vectors in the range of (0,1). The ratio between these three parameters controls the effect

of the previous velocities and the trade-off between the global and local exploration capabilities.

4. Update the position of each particle using the updated velocity and assuming unit time:

=Xy (3.7)
5. Repeat (2) — (4) until a convergence criterion (an acceptable fitness value or a certain

maximum number of iterations) is satisfied.

The first step of the above algorithm may be improved, if instead of using random numbers, we
initialize the algorithm with some meaningful initial guess, i.e. a set of values close to the ones
that we expect the final solution to be. We chose not to do so in this research, because we wanted
to compare the efficiency of different algorithms, and for that reason, decided to let them
perform with minimum supervision. On the other hand, efficiency of the gradient based
algorithms is less affected by the values of the initial guess. However, in those methods one may
fall into the local minima of the function. The iterations in this research were carried out until the
best value of the objective function normalized with respect to the best value of the objective
function in the first iteration was less than 10 or the average value of the best objective function
became less than the variance of added artificial noise.

There are some considerations that must be taken into account when updating the
velocity of the particles (step 3 of the above algorithm). First, we need a value for the maximum

velocity. A rule of thumb requires that, for a given dimension, the maximum velocity, v

should be equal to one-half the range of possible values for the search space. For example, if the
search space for a specific dimension is the interval [0, 100], we will take a maximum velocity

of 50 for this dimension. If the velocity obtained from Equation (3.6) is higher than v then

we will substitute the maximum velocity with v*'. The reason for having this maximum
allowable velocity is to prevent the swarm from “explosion” (divergence). Another popular way
of preventing divergence is a technique called “constriction”, which dynamically scales the

velocity update [109]. The first method was used in the previous research by the authors [112].
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However, further investigation showed that a better performance is obtained when combining the
constriction technique while limiting the maximum velocity. In this research, the velocity

updates are done using constriction and can be written as:
=K (v en (Pl =)+ e (g7 —x")) (3.8)

where K is the constriction factor, and is calculated as [109]:

2
K =

3.9

‘2—¢—\/¢2—4¢ (39)

where ¢ = ¢; + ¢,. Here, following the recommendations by Clerc [109], the initial values for ¢,
and c; are set to 2.8 and 1.3, respectively. These values will be modified in subsequent iterations,
as discussed below.

As mentioned above, the relation between the self-confidence parameter, ¢y, and the
acceleration coefficients, ¢; and c,, determines the trade-off between the local and global search
capabilities. When using the constriction concept, the constriction factor is responsible for this
balance. As we progress in time through iterations, we get closer to the best value. Thus, a
reduction in the value of the self-confidence parameter will limit the global exploration, and a
more localized search will be performed. In this research, if the value of the best objective
function is not changed by a certain number of iterations (10 iterations in our case), the value of

K is multiplied by a number less than one (0.95 for our problems) to reduce it (i.e. K" =0.95K°

). These numbers are mainly based on the authors’ experience, and the performance is not very
sensitive to their exact values. Some other researchers have used a linearly decreasing function
to make the search more localized after the first few iterations [110]. These techniques are called
“dynamic adaptation”, and are very popular in recent implementations of PSO [113].

Also, in updating the positions, one can impose a lower and upper limit for the values,
usually based on the physics of the problem. For example, in a heat transfer application, if we
know that cooling is happening at the boundary, then the heat fluxes are going to be negative,
and we can assign an upper limit of zero for these values. If the position values fall outside this
range, several treatments are possible. In this research, we set the value to the limit that has been

passed by the particle. Other ideas include substituting that particle with a randomly chosen
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particle in the swarm, or penalizing this solution by increasing the value of the objective

function.

The above steps are illustrated in Figure 3.4. Figure 3.5 shows a flowchart of the whole

process of basic PSO algorithm for each time step.

bi
gm
q ) " particle
" memory
new effect
Veloc1tyl

Figure 3.4. Velocity and Position Updates in the Basic Particle Swarm Optimization Algorithm
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Figure 3.5. Flowchart of the Basic Particle Swarm Optimization Procedure

3.5.2. Variations

Unfortunately, the basic PSO algorithm may get trapped in a local minimum, which can
result in a slow convergence rate, or even premature convergence, especially for complex
problems with many local optima. Therefore, several variants of PSO have been developed to
improve the performance of the basic algorithm [114]. Some variants try to add a chaotic

acceleration factor to the position update equation, in order to prevent the algorithm from being
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trapped in local minima [115]. Others try to modify the velocity update equation to achieve this
goal. One of these variants is called the Repulsive Particle Swarm Optimization (RPSO), and is
based on the idea that repulsion between the particles can be effective in improving the global

search capabilities and finding the global minimum [70,116]. The velocity update equation for

RPSO is

m+

Vi = v +aon (p;n —xi'")+c2r2 (p;n —xi"’)+c3r3vr (3.10)

where p7'is the best position of a randomly chosen particle among the swarm, c; is an

acceleration coefficient, r; is a random vector in the range (0,1), and v, is a random velocity

component. Here ¢, is -1.43, and c; is 0.5. These values are based on recommendations by Clerc
[109]. Based on our own experience, minor changes in these values do not significantly impact
the performance. The newly introduced third term on the right-hand side of Eq. (3.10), with a

negative coefficient (¢, ), causes repulsion between the particle and the best position of another

randomly chosen particle. The third term’s role is to prevent the population from being trapped
in a local minimum. The fourth term generates noise in the particle’s velocity in order to take the
exploration to new areas in the search space. Once again, we are gradually decreasing the weight
of the self-confidence parameter. Note that the third term on the right-hand side of Eq. (3.6), i.e.,
the tendency toward the global best position, is not included in a repulsive particle swarm
algorithm in most of the literature.

The repulsive particle swarm optimization technique does not benefit from the global
best position found. A modification to RPSO that also uses the tendency towards the best global
point is called the “Complete Repulsive Particle Swarm Optimization” or CRPSO [112]. The
velocity update equation for CPRSO will be:

m+

vt =" + e (pi’” —xl.'”)+czr2 (g’” —xl.'”)+c3r3 (p;" —xl.'”)+c4r4vr (3.11)

In CRPSO, by having both an attraction toward the particle’s best performance, and a repulsion
from the best performance of a random particle, we are trying to create a balance between the

local and global search operations.
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3.5.3. Elite Particle and Elite Velocity

This modification has been proposed by Fourie and Groenwold [117] in structural
optimization applications, and is borrowed from the genetic algorithm, where the gene that has
the best characteristics never leaves the population. Here, we replace the particle with the worst
value of objective function with the best global solution, g. Also, if a particle’s velocity caused
an improvement in the best global solution during the m™ iteration, it is allowed to continue with

the same velocity, without being influenced by other particles. In other words, if v}’ caused an

improvement on g, then:

— m
8 =X

m+1

i (3.12)
X, =g+,
3.6. Application in Inverse Heat Conduction

As the first step in our study of these techniques, we investigate their capability in
solving a general inverse heat conduction problem similar to the problem on the run-out table,
such as the test cases introduced in the previous chapter. In order to save space and since the
results of PSO and GA are very similar, we only present the graphs of some of the test cases.
However, other test cases will be used later in this manuscript to study the different
modifications in the original algorithm.

We start by applying the artificial neural networks to the inverse heat conduction
problem. This is different from GA and PSO, since those methods perform a stochastical search
and are similar in many aspects, while the artificial neural networks are more like a correlation
between the inputs and outputs. Figure 3.6 shows the result of the application of the radial basis
function neural networks for the whole history of the heat fluxes on the runout table.
Temperatures start at 700 °C and go down to 176 °C. The heat flux vs. time profile is plotted in
Figure 3.6. As can be seen from this figure, neural networks are generally capable of dealing

with the whole range of the cooling history.
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Figure 3.6. Test Case II; Time History of Heat Fluxes in a Typical Run-Out Table Application; Expected
Results (Squares) vs. the RBF Network Results (Line)

However, this method has limitations, as observed in Figure 3.6, and in more details in
Figure 3.7. The latter figure shows a close-up view of the peaks of heat flux that happen during
the cooling process on the run-out table, i.e. the peaks in Figure 3.6. The circles are the expected
heat flux, and the plusses are the result of NNs. The top left sub-figure is the first peak heat flux
in time, and then it moves to the right, and then to the next row. Note that each even sub-figure
(2™, 4™ and so on) is a very smaller peak which is associated with the second row of jets. These
peaks are not very obvious in Figure 3.6, due to the scaling. Going through the subfigures of heat
fluxes, it is apparent that the success or failure of NNs is not that much related to the temperature
range, or the magnitude of heat fluxes, but on the actual shape of the heat flux profile. If the heat
flux has a clear thin peak and two tails before and after the peak, the NN is doing a good job.
However, the existence of other details in the heat flux profile reduces the quality of the NN
predictions. Also, considering the ill-posed nature of the problem, and all the complications that
are involved, we can generally say that in most cases (about 75% of the cases) it does a decent
job. Overall we can say that NNs are more useful in getting a general picture of the solution,
rather than producing a very accurate and detailed answer to the IHCP. Also, it should be noted
that if parameters such as the number of jets, plate speed, or the distance between jet rows are

changed, we need to train a new neural network.
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Figure 3.7. Individual Heat Flux Peaks vs. Time from a Typical Run-Out Table Application; Expected
Results (Circles) vs. the RBF Network Results (Pluses)

On the other hand, GA and PSO algorithms show reasonably good predictions of the
details of the missing boundary conditions. Notice that we still need to have some form of
regularization for these methods to work properly. See Figure 3.8 and Figure 3.9 for the solution
to test cases I and III. As mentioned before, the solutions to the other test cases will be shown in

the next subsections, while studying the effect of modifications in the algorithms.
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3.7. Time Step Size

One of the main problems of the classical approaches, such as the sequential function
specification method, is their instability when small time steps are used. Unlike direct problems
where the stability requirement gives the upper limit of the time step size, in inverse problems
the time step is bounded from below. Figure 3.10(a) [112] shows the oscillation in the results
obtained by the function specification method and a time step size of 0.01 (s), which corresponds
to the onset of instability. For time steps smaller than this, the whole process diverges. Luckily,
PSO, GA, and NNs can successfully produce the results for the same time step size, as shown in
Figure 3.10(b) for PSO. Note that the oscillations here are not due to the instability caused by the
time step size, and can be improved by performing more iterations, as is shown in Figure 3.10(c).
Figure 3.10(d) shows the final results of the GA method. It is, however, important to mention
that the time requirements for these techniques are much higher than those of the classical

function specification approaches.
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3.8. Efficiency

In this section, we first compare the solution time required for the gradient-based
function specification method with GA, the three variations of PSO, and the feedforward and
radial basis function neural networks. We assume that there is no noise in the solution, and we
compare the time that is required to get a certain accuracy in the heat flux predictions. Table 3.1
compares the solution time for different inverse analysis algorithms for solving the whole
thermal history problem of cooling steel on a run-out table. The fastest solution technique is the

gradient-based function specification method. The stochastical methods such as GA and PSO
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variants suffer from high computational cost. RBF neural networks perform much faster than GA
and PSO, but they are still slower than the gradient-based methods, such as function

specification.

Table 3.1. Comparison of the Typical Solution Time for Different Inverse Analysis Algorithms for the Whole

Cooling Process on a Run-Out Table

Function Specification

Method

GA PSO RPSO CRPSO FMLP RBFN

Solution Time

O

1406 8430 6189 5907 6136 7321 2316

However, due to the limitations mentioned in the previous chapter for the gradient-based
methods, and in the previous sections of this chapter for the neural networks, in many cases one
has to choose between GA and PSO variations. Then, among the slower algorithms, the
efficiency of the algorithm becomes even more important. Thus, in the remainder of this section,
we will compare the performance of GA and PSO variations in more details.

The six different comparison tests performed are presented in Table 3.2. Because of the
stochastic nature of these methods, they may perform differently for various runs. Therefore, a

statistical approach is needed to compare their performances.

Table 3.2. Performed Comparison Tests

Test # 1 2 3 4 5 6

Methodl GA GA GA PSO PSO RPSO
Method2 PSO RPSO CRPSO RPSO CRPSO CRPSO

The statistical #-test [118] is used to compare the number of function evaluation calls
(number of times that the direct solver is executed) of 10 runs of each algorithm, which means a
sample size of 10 is used. The purpose of performing this test is to determine whether or not the
difference between our two averages is large in comparison with the standard deviation. All of
the runs used in the performance evaluation test are tested for the accuracy of the results, and

have proven to produce acceptable results.

If we represent the number of function evaluations for methods 1 and 2 with Ng; and Ng,,

respectively, then the average number of function evaluations for method 1 is
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RE (3.13)

_ _i=1
NEl -

m

where n,is the number of executions of method 1 (in these examples, n; = n, = 10). The same

equation holds for method 2. The standard deviation of each sample can be calculated as

m _
Z (NEl- =N )
= ' (3.14)
s(Ng)=A=
n —1
The #-value can then be calculated as
N, -N,,
t=— S T—— (3.15)
s(NE)\/l/n1 +1/n,
where 5 is the standard deviation of both samples and is calculated as
_ 2 _ 2
n+n,—2

The objective of the test is to check whether generally N, < N, . The null hypothesis in this test
will be: N, 2 N, . The test is a one-sided test of significance of comparison of two means

[118], with a significance level of 5%, and a 10+10-2=18 degrees of freedom, which gives a

critical #-value of 1.73.

Table 3.3 shows the results of the comparison tests. The shaded values show the cases
where the null hypothesis is accepted, i.e., the second method does not perform better than the
first one. In the other cases, which are the majority of the tests, using the second method
improves the performance, i.e., reduces the number of function evaluations, at least in 95% of

the occurrences.
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Table 3.3. Calculated #-Values for the Combination of 2 Solution Methods; t . isca = 1.73
Test Case I Test Case Il Test Case III Test Case IV Test Case V

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

4.88

6.60

10.78

1.49

4.63

3.04

10.08

12.52

17.76

3.32

7.59

3.45

8.26

941

13.41

1.27

7.92

7.75

10.20

15.05

19.55

4.39

9.71

10.01

13.43

15.46

12.44

8.21

10.90

9.22

Since an important requirement for the validity of the #-test results is the normality of the

distributions for both categories that are compared, and it normally requires a larger number of

simulations, the #-test statistics may not be a perfectly sound comparison tool. Thus, we have

also used the Mann-Whitney non-parametric statistical test [118] to investigate our results.

Table 3.4 shows the U-values for the Mann-Whitney U-test. Again the lowest U values occur at

the same cases as the #-test, and only these two aren’t acceptable with a significance level of 5%,

for a one-sided Mann-Whitney U-test.

Table 3.4. Calculated U-Values for the Combination of 2 Solution Methods

Test CaseI Test Case Il Test CaseIII Test Case IV Test Case V

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

97

100

100

72

94

84

100

100

100

87.5

100

88

100

100

100

62

100

99

100

100

100

88

94

94

100

100

100

94

100

94
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The following observations can be made regarding the results:

1. PSO variations are generally less computationally expensive than GA in solving inverse heat
conduction problems.

2. The advantage of PSO over GA is more pronounced in more complex cases (more unknowns
and fewer data points).

3. Between the three variations of PSO, the difference is less significant, but generally, CRPSO

performs better than the other two variations.

Table 3.5 shows the required number of computational units (i.e., solutions of the direct
problem, and obtaining the norm of difference between that solution and the expected one), the
relative speedup of each variation of PSO with respect to GA, and the relative computational
cost of each method. From the table, speedups of up to 36% are possible when using some PSO

variations instead of GA in an inverse heat conduction problem.
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Table 3.5. Number of Computational Units of Different Gradient-Free Solution Methods, Their Speedup with
Respect to GA, and Their Relative Cost with Respect to the Most Efficient Method
GA PSO RPSO CRPSO

No. of Direct Calculations 5075 4582 4427 4155

Test Case I Speedup 1.00 1.11 1.15 1.22
Relative Cost 1.22 1.10 1.06 1.00

No. of Direct Calculations 13499 11382 10659 9939

Test Case I1 Speedup 1.00 1.19 1.27 1.36
Relative Cost 1.36 1.14 1.07 1.00

No. of Direct Calculations 23903 21119 20872 19611

Test Case IIT Speedup 1.00 1.13 1.15 1.22
Relative Cost 1.22  1.08 1.06 1.00

No. of Direct Calculations 31050 24187 23451 23218

Test Case IV Speedup 1.00 1.28 1.32 1.34
Relative Cost 1.34 1.04 1.01 1.00

No. of Direct Calculations 57438 47497 44321 42475

Test Case V Speedup 1.00 1.21 1.30 1.35
Relative Cost 1.35 1.12 1.04 1.00

Table 3.6 shows the required time to perform one computational unit for each test case.
Note that these values have no impact on the performance comparison of the tested optimization

algorithms, and are similar for all the optimization methods.
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Table 3.6. Time Required to Perform One Computational Unit for each Test Case
Test Test Case Test Case Test Case Test Case

Casel II I1I v \%

Time for one computational
1.65 10.82 541 5.06 8.11
unit (s)

The difference between the behaviors of PSO and GA can be attributed to the different
underlying mechanisms in these two evolutionary algorithms. For example, mutation in GA

occurs in all directions, while the mutation-like behavior in PSO is directional.

3.9. Sequential vs. Whole Domain

Due to the parabolic nature of the heat equation, there are basically two categories of
approaches in solving the inverse transient heat conduction problems. One method is to try to
find components of heat flux in each step of the solution. This is possible since the temperature
distribution at the end of each time step is only a function of the temperature distribution at the
previous time step and the boundary conditions during the present time step. These methods are
normally called “sequential”. In these methods, in each step of the inverse analysis, the direct
problem is not solved for the whole history, and is solved for only one (or a few) time steps. The
optimization problem is then solved for the temperatures at that step, and then the problem is
marched in time to the next steps. The other solution method is to have the whole history of heat
fluxes as the unknown in the optimization problem. In this formulation, which is usually called
the “whole domain™ approach, the direct problem will be solved over the whole time history.

Due to the diffusive nature of transient heat conduction, from the computational expense
perspective, sequential estimation techniques are highly preferred over the whole-domain inverse
analysis techniques [35]. Unfortunately, there is an important drawback in using sequential
methods, and that is the high sensitivity of the solution to experimental errors. That is why we
will be using the concept of future time steps.

Table 3.7 shows the average solution time for ten simulations of the test cases using
different solution methods and whole domain and sequential formulations. Test case III is a
steady-state problem, and thus is not included here. As seen in the table, sequential formulation

always accelerates the solution process. Here, the speedup is defined as the whole domain
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solution time over the sequential solution time, and is usually somewhere between 30 and 60

percent.
Table 3.7. Comparison of Efficiency for Whole Domain and Sequential Implementations

Whole Domain  Sequential Solution

Solution Time (s) Time (s) Speedup
Test | PSO 8316 5904 1.41
Case | RPSO 8107 5107 1.59
I | CRPSO 8020 5293 1.52
Test | PSO 15052 11759 1.28
Case | RPSO 14501 11069 1.31
II | CRPSO 14115 10942 1.29
Test | PSO 79978 58384 1.37
Case | RPSO 76784 56820 1.35
IV | CRPSO 74266 55208 1.34
Test | PSO 121870 81348 1.50
Case | RPSO 109539 82910 1.32
V | CRPSO 116449 81824 1.42

3.10. Noisy Domain Solution

To investigate the behavior of different inverse algorithm variations in dealing with noise
in the data, a known boundary condition is first applied to the direct problem. The temperature at
some internal point(s) will be calculated and stored. Then random errors are imposed onto the

calculated exact internal temperatures with the following equation:

T =T +0r (3.17)

exact

where T, is the virtual internal temperature that is used in the inverse calculations instead of the
exact temperature, T, 7 1S @ normally distributed random variable with zero mean and unit
standard deviation; and ¢ is the standard deviation. Virtual errors of 0.1%, 0.3%, 0.5%, and 1%
of the temperature magnitude are investigated in this research. Since the temperature is changing

from 700 to 176 °C, the magnitude of the noise can be as high as 7 °C for the initial peaks.
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We start by studying the effectiveness of the neural networks in handling noisy domains.
Generally, the stability of the neural networks is on the same order as other inverse methods. It
may be possible to tune the parameters to make them a little bit more stable, but generally it does
not look promising in terms of noise resistance, since such modifications exist for almost all
other methods, such as PSO. Figure 3.11 - Figure 3.14 show the results of the RBF network
(pluses) versus the expected results (circles) for individual heat flux peaks during the cooling
history of the plate. The amount of added noise in these figures is +0.1%, +0.3%, +0.5%, and

+1%, respectively.
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Figure 3.11. Individual Heat Flux Peaks vs. Time from a Typical Run-Out Table Application; Expected
Results (Circles) vs. the RBF Network Results (Pluses); Artificial Noise Added: ¢ =+0.1%
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Figure 3.14. Individual Heat Flux Peaks vs. Time from a Typical Run-Out Table Application; Expected
Results (Circles) vs. the RBF Network Results (Pluses); Artificial Noise Added: ¢ =+1%

There are several ways to make an inverse algorithm more stable when dealing with
noisy data. For example, Gadala and Xu [57] have shown that increasing the number of “future
time steps” in their sequential function specification algorithm resulted in greater stability. They
have also demonstrated that increasing the regularization parameter, a, improves the ability of
the algorithm to handle noisy data. However, the latter approach was shown to greatly increase
the required number of iterations, and in many cases the solution may diverge. In this work, we
first examine the effect of the regularization parameter, and then investigate an approach unique

to the PSO method, to improve the effectiveness of the inverse algorithm in dealing with noise.

Figure 3.15 shows the effect of varying the regularization parameter value on the
reconstructed heat flux, using the basic particle swarm optimization technique. Stable and
accurate results are obtained for a range of values of « = 10" to 10™'°. These results are very
close to those reported in [57], i.e., the proper values of a are very similar for the sequential

specification approach and PSO.
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Another factor that can affect the performance of a PSO inverse approach in dealing with
noisy data is the value of the self-confidence parameter, ¢y, or the ratio between this parameter
and the acceleration coefficients. To show the effect of this parameter, test case II is studied
again, with the same level of noise as in Figure 3.15, and a regularization parameter equal to 10
' (Figure 3.15(c)). The acceleration coefficients are set to the default value of 1.42. The initial

value of the self-confidence parameter, ¢, is changed from the default value of 0.7. The results

are shown below.
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Table 3.8. Effect of Self-Confidence Parameter: L, Norm of the Error (W/m?)

Co 0.5 0.6 0.7 1.0 1.2

a=10" 588e+5 524et5 4.47e+5 3.81e+5 2.98e+5

a=10"" 485¢+5 430e+5 3.19et+5 2.36et+5 2.10e+5
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As can be seen in Figure 3.16 (for a = 10™'%), and more quantitatively in Table 3.8 (for «
=10"" and 10™'%), increasing the value of the self-confidence parameter results in better handling
of the noisy data. This trend was observed for values up to approximately 1.3, after which the
results become worse, and diverge. The same trend was also observed in the other test cases.
One possible explanation is that increasing the ratio of the self-confidence parameter with
respect to the acceleration coefficients results in a more global search in the domain, and
therefore increases the capability of the method to escape from the local minima caused by the
noise, and find values closer to the global minimum. This effect was observed to be weaker in
highly noisy domains. However, in the presence of a moderate amount of noise (which is the
case in most experimental setups), increasing the self-confidence ratio results in more
effectiveness in dealing with noisy data. Table 3.9 shows the same trend when using different
variations of the PSO algorithm on test cases I, IV, and V. As can be seen in Table 3.9, the best
effectiveness is normally obtained by RPSO, closely followed by CRPSO. Considering the

higher efficiency of CRPSO, it is still recommended for the inverse heat conduction analysis.

Table 3.9. Effect of the Self-Confidence Parameter on the L, Norm of Error in the Solution

Co 0.7 0.8 0.95 1.1 1.2

PSO 0.07466  0.06722  0.06113  0.05651  0.05397

Test CaseI | RPSO | 0.05546 0.05010 0.04362 0.04096 0.03728
CRPSO | 0.05798 0.05163  0.04415 0.04262  0.04043
PSO | 8.105¢+4 7.532¢+4 7.079e+4 6.823e+4 6.257¢+4
Test Case I | RPSO | 7.577e+4 7.064e+4 6.685¢+4 6.346e+4 5.816e+4
CRPSO | 7.611et4 6.739¢+4 6.117e+4 5.999¢e+4 5.822¢+4

PSO | 1l.64let5S 1.477e+5 1.322e+5 1.282e+5 1.222e+5

Test Case III | RPSO | 1.328e+5 1.272e+5 1.203e+5 1.184e+5 1.158e+5
CRPSO | 1.361e+5 1.288e+5 1.221e+5 1.184e+5 1.143e+5

Table 3.10 shows the value of L, norm of error in the solution, for £1% added noise, and

for different algorithms. It can be seen that the RBF neural networks perform better than the
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function specification method, and somewhere between the genetic algorithm and PSO variants.
The most noise resistant algorithms are PSO variants, and the least stable algorithm is the

gradient-based function specification method.

Table 3.10. The L, Norm of Error in the Solution in a Noisy Domain for Different Algorithms
Function Specification

Method

GA PSO RPSO CRPSO FMLP RBFN

L, Norm of
9.14¢e4 6.61e4 524e4 4.82e4 5.02¢4 891led 591ed
Error

3.11. Future Time Step Regularization

There are also other ways to make an inverse algorithm more stable when dealing with
noisy data. One of them is using the concept of future time steps that was also discussed in the
function specification method in the previous chapter. Due to the fact that inverse problems are
generally ill-posed, the solution may not be unique and would, in general, be sensitive to
measurement errors. To decrease such sensitivity and to improve the simulation in function
specification methods, a number of future time steps (nrrs) are often utilized in the analysis of

each time step [35]. This means that in addition to the measured temperature at the present time

i+ s i+
T, ... T

step T ', the measured temperatures at future time steps, , are also used to

approximate the heat flux ¢'. In this process, a temporary assumption would usually be

1 i+2 qH'”FTS

i+
considered for the values of 4 >4 > . The simplest and the most widely used one is to

l+k = l . . . . . .
assume? =9 for 1SKkSnprs , which is also used in our work. Also in this work, we combine
the regularization concept with the future time step data. This is analogous to the combined

function specification-regularization method, initially introduced by Beck and Murio [96].

The sequential algorithm for time step M when using » future time steps (the heat flux is

known for ¢ < t)) is presented below:

1. An assumption is made for the heat flux function at times #y; far+y, ..., tyrr (usually gy =

GM+1= - =qM+r).-
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meas

2. Direct problem is solved with “#-1 as the initial condition and the heat flux values from step

1 as its transient boundary conditions. The temperatures at these » time steps are calculated

Tcaln Tcalc Tcalc

M+1> " L )

3. The objective function is then evaluated using the heat fluxes from step 1, the calculated

temperatures from step 2, and the known temperatures from the measurement

M+1 >

T T, Toes oo T, A}"i”f) The new form of the objective function will be:

f@)= Z[i(r meas _ icaley? +af (qj)zj (3.18)

j=l1

4. Steps 1 to 3 are repeated for each swarm member, and the GA or PSO algorithm is repeated
until we reach a desired low value for the objective function, or after a certain number of
iterations. The solution vector will be the spatial components of heat fluxes for the » time

steps.

5. Values of gy are used as obtained from step 4 and the values for the rest (qus+s, ..., gur+r) are

discarded.
6. The above procedure (M = M+1) is repeated as you move to the next time step.

In theory, it is possible to use multiple sensors instead of multiple future time steps to improve
the stability of the method. However, this idea is not practical since adding thermocouples to the

sample is not only more expensive, but also distorts the temperature field.

Using future time steps introduces a bias in the solution. This bias is normally observed
in the form of rounding the spikes in oscillatory boundary condition histories, and an early
prediction of these oscillations [35]. To obtain an appropriate level of regularization, the number
of future time steps (or more accurately, the size of the look-ahead time window, i.e. the product
of the number of future time steps and time step size) and the value of the regularization
parameter must be chosen with respect to the errors involved in the temperature readings. The
residual principle [36,102] can be used to determine these parameters based on the accuracy of

thermocouples in the relative temperature range. In this method, the number of future time steps
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1s increased until the RMS error of the estimation falls below the standard deviation of noise in

the measured temperatures.

Figure 3.17 shows the results of applying the basic PSO-based inverse analyzer to the
first test case, when a moderate amount of noise is added to the temperature data. As can be seen
in part (a) of the figure, the method with default settings and no regularization term shows a very
unruly behavior. While addition of the zeroth-order Tikhonov regularization term and the tuning
of the self-confidence parameter can enhance the behavior, as seen in parts (b) and (c) of
Figure 3.17, there is a limit to these modifications, i.e. after a certain limit the method will
become very slow or will diverge. However, using the future time step concept, can increase the
stability of the algorithm, as seen in Figure 3.17(d). Table 3.11 also shows the L, norm of error
in the solution after each stage of algorithm modifications. Figure 3.18, Figure 3.19 and
Table 3.12 show the same trend for the first and second set of heat fluxes applied to the three-
dimensional problem. As expected, the norm of error in the solution in each case decreases after
each set of modifications is applied. Also, investigating the numbers in Table 3.11 and
Table 3.12 shows that among the three variations of PSO, RPSO is the most effective one in
handling noisy data, closely followed by CRPSO. This is in agreement with the findings in
Reference [112], shown earlier in this chapter. As can be seen from the figures, in the cases
without the future time step method, the predicted heat fluxes overestimate the peak heat flux
values, but when future time steps are used, due to the anticipation of the temperature in the

following time steps, the predicted peak better matches the expected results.
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Figure 3.17. PSO Behavior in Handling Noisy Data in Test Case I; (a) No Regularization; (b) Addition of

Regularization Term (a = 10™"); (c) Tuning of Self-Confidence Parameter (c, = 1.2); (d) Introduction of

Future Time Step Data (10 time steps)
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Figure 3.18. PSO Behavior in Handling Noisy Data for Test Case IV; (a) No Regularization; (b) Addition of

Regularization Term (a = 10™"); (c) Tuning of Self-Confidence Parameter (c, = 1.2); (d) Introduction of

Future Time Step Data (10 time steps)
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Table 3.11. The L, Norm of Error in the Solution of Test Case I After Modifications in a Noisy Domain

Tikhonov
Tikhonov
Regularization +
No Tikhonov Regularization +
Method Tuning of the ¢
Regularization Regularization Tuning of the ¢
parameter + Future
parameter
time steps
PSO 0.10845 0.07466 0.05397 0.02108
RPSO 0.10070 0.05546 0.03728 0.01855
CRPSO 0.10148 0.05798 0.04043 0.01876

Table 3.12. The L2 Norm of Error in the Solution of Test Cases IV and V After Modifications in a Noisy

Domain
Tikhonov
Tikhonov Regularization +
No Tikhonov Regularization  Tuning of the ¢,
Method
Regularization Regularization + Tuning of the parameter +
co parameter Future time
steps
1% Set PSO 1.504E+05 8.105E+04 6.257E+04 3.179E+04
of
RPSO 1.393E+05 7.577E+04 5.816E+04 2.813E+04
Heat
Fluxes | CRPSO 1.418E+05 7.611E+04 5.822E+04 2.837E+04
2" Set PSO 2.712E+05 1.641E+05 1.222E+05 6.305E+04
of
RPSO 2.448E+05 1.328E+05 1.158E+05 5.400E+04
Heat
Fluxes | CRPSO 2.495E+05 1.361E+05 1.143E+05 5.440E+04
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While using Tikhonov regularization, tuning the value of the self-confidence parameter
and using future time steps can improve the quality of the solution when dealing with noisy data,
but it also increases the number of parameters that should be controlled. Luckily, once these
parameters are set for one simulation of a specific test case, they can be used again, and there is
no need to determine the most effective values in each run. Also, these modifications can
increase the required solution time, so there will always be a compromise between the level of
accuracy and the computational expense, which should be considered according to the

requirements of each application.

3.12. Effect of Non-linearity

While methods such as GA and PSO are based on a stochastical search of the whole
domain, and therefore are not significantly affected by nonlinearity, the neural networks are
more sensitive to nonlinearity. In other words, since the same drop in temperature values can be
caused by different values of heat flux, a neural network that is trained with the relationship
between the temperature change values and heat flux magnitudes may not be correctly capable of
recognizing this nonlinear pattern, and as a result the performance will suffer. To investigate this
effect, two kinds of expressions are used for thermal conductivity in this study. In one, we
assume a constant thermal conductivity of 40 W/m.°C, while in the other a temperature-
dependent expression is used:

k =60.571—0.03849%T W/m.°C (3.19)

As expected, the nonlinearity will weaken the performance of both feedforward and radial basis
function neural networks. The effect is seen as the training of the network stalls after a number
of epochs. In order to deal with this, increasing the number of hidden layers, increasing the
number of neurons in each layer, and choosing different types of transfer functions were
investigated. However, none of these methods showed a significant improvement in the behavior
of the network. The other methods of solving the inverse problem that are introduced in this
research, are much less sensitive to the effect of nonlinearity. Table 3.13 compares the error in
the solution for both the linear and nonlinear cases, if the same numbers of iterations,
generations, and epochs are used for different methods of solving the inverse heat conduction.
As can be seen, the neural networks perform very poorly in the nonlinear cases, while the other

methods, either gradient based or stochastical, are immune to the problems caused by
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nonlinearity. Basically, neural networks, at least in the form that is used in this research, see
nonlinearity as a kind of noise. It should be noted that neural networks can be useful in making
rough estimates of the answer, or combined with some other techniques employed as an inverse
solver for nonlinear cases [64]. However, on their own, they are not a suitable choice for an

accurate prediction of the boundary conditions in a nonlinear inverse heat conduction problem.

Table 3.13.The L, Norm of Error in the Solution in an Exact Domain for Different Algorithms

Function Specification
GA PSO RPSO CRPSO FMLP RBFN

Method
Linear 1.81e2 7.62e2 3.85¢2 3.42e2 3.17e¢2 9.90e2 5.35¢2
Nonlinear 2.14e2 7.71e2 4.46e2 5.12¢2 4.26e2 3.57¢e4 2.76¢e4

3.13. Effect of Elite Members

In this section, the effect of including the elite particle’s position and velocity in the
performance of the sequential PSO-based inverse solver is studied. We first take a look at the
average speedup as the result of introducing the elite members into the algorithm. Here, the
speedup is defined as the ratio of the required solution time in the case without the elite members
to the solution time after the elite members are utilized. Obviously, a higher speedup means that
the concept of using the elite particles was more effective. Table 3.14 shows the average speedup
of 10 runs for each algorithm. As can be seen from the table, in some cases, an improvement of

14% can be achieved as a result of using elite particles and velocities.

While the introduction of this concept usually improved the performance, this
improvement did not take place in all the simulations. One must especially remember that the
performance of PSO, like any other random search algorithm, can vary from one simulation to
another. In order to take care of this randomness in the simulations, a Mann-Whitney non-
parametric statistical test [118] is used to compare the solution time for the 10 runs of each
algorithm for each test case and assess the improvement caused by the inclusion of the elite
particle concept. All of the runs used in the performance evaluation test are tested for result

accuracy, and proved to produce acceptable solutions.
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The objective of the test is to check whether, generally, the algorithm with the elite
member is faster than the same variation without the elite member. The null hypothesis in this
test is that the introduction of the elite particle concept does not improve the solution time, i.e.:
. The test is a one-sided test of significance of

SolutionTime < SolutionTime

without—elite—members with—elite—members
the comparison of two means [118]. If for each simulation with elite members, we count the
number of simulations without elite members that are slower than it, and then sum these counts
for all the simulation set, we obtain the U-value. A significance level of 5%, and an equal

number of samples for both sides (n, =n, =10) gives a critical U-value of 73.

Table 3.15 shows the U-values for the Mann-Whitney U-test. The only case that does not
pass the test is the basic PSO algorithm applied to the last test case. As seen in the table, RPSO
always performs better when the elite particles are introduced. Based on the results of this table,
including the elite particle in the PSO algorithm to solve the inverse heat conduction problem is

justified.
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Table 3.14. The Average Speedup in Each Algorithm After Using Elite Particles and Velocities

Whole Domain Sequential

Test | PSO 1.126 1.129
Case | RPSO 1.173 1.133
I | CRPSO 1.138 1.131
Test | PSO 1.020 1.174
Case | RPSO 1.152 1.147
II | CRPSO 1.011 1.279
Test | PSO 1.132 1.237
Case | RPSO 1.205 1.065
III | CRPSO 1.129 1.086
Test | PSO 1.052 1.105
Case | RPSO 1.112 1.116
IV | CRPSO 1.093 1.104
Test | PSO 1.043 1.050
Case | RPSO 1.052 1.096
V | CRPSO 1.082 1.101

Table 3.15. Calculated U-Values to Study the Effect of Elite Particles on the Performance

Test Case I Test Casell Test CaseIll Test CaseIV Test CaseV

PSO 100

RPSO 100

CRPSO 100

88

100

88

88

100

84

84 72
100 100
97 88

3.14. Multi-Criteria Formulation Based on Spatial Location

It is common in inverse heat conduction applications to have more than one sensor inside

the sample. In the case of inverse boundary problems, the number of these sensors is often equal

to the number of spatial components of the missing boundary heat flux. The formulation of Eq.

(3.1) uses a norm of the difference between the calculated and measured temperatures that take
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into account all of the thermocouples. In other words, the objective is to minimize some sort of
overall difference between these two sets of temperatures. Thus, when searching for the best
solution, the method does not distinguish between different spatial components. One way to
devise a more intelligent search algorithm is to define a multi-criteria formulation, in which each
of the spatial components of the missing boundary condition is treated as an individual search
space. This way, if one of the spatial components of the heat flux vector gets close to the
expected value, it will not be discarded due to the poor quality of the other components. In this
formulation, the objective function will be a vector, and each of its components will represent

one of the sensor locations. We can write this objective function as:

M+r M+r

Z(T;i,meas _T;i,cal(‘,)Z +0~Z (qlz)2
flq)= l; (I =Ty +0‘l§ (q;)l (3.20)
Mtr A :1 , Mmooy
S Ty 0y (g))
i=M i=M

It should be noted that this is not equal to decoupling of the thermocouples, because the direct
problem would still be solved as a whole.

The performance of multi-criteria optimization (vector objective function) is compared
with the case where the objective function is a single scalar quantity. Test cases IV and V are
solved, and the history of the best value of the objective function in the swarm is normalized
with respect to the best value of the objective function in the first iteration, and is plotted versus
the iteration number. As can be seen in Figure 3.20, this modification greatly improves the
convergence rate of the PSO-based inverse analyzer.

Comparing the two parts of Figure 3.20, we observe that while the increased number of
thermocouples causes a lower rate of convergence, both when the vector or scalar formulation is

used, the relative speedup of the vector formulation stays in the same range.
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3.15. Surrogate Modeling

3.15.1. Motivation

In many engineering applications, when we are faced with an inverse problem, or we
simply want to find the optimum design of a system, it is necessary to perform multiple direct
simulations. While conventional methods of numerical simulation (finite difference, finite
volume, finite element, etc.) are capable of producing very accurate results in most cases, the
process is normally very computationally expensive. While it is very common to simplify the
numerical simulations using simplified physical (inviscid flow instead of viscous), or
geometrical (two-dimensional instead of 3D) models, they are still time-demanding. This is even
more unreasonable in the case of rank-based evolutionary algorithms, such as genetic algorithm
or particle swarm. In these techniques, the actual value of the objective function is not important,
but only the sorting of the members matters. The exact magnitude of the objective function is
normally discarded, especially in the initial steps of the algorithm. So, it seems logical not to
spend a large amount of computational resources on exactly evaluating these cost function
values. Instead an inexact pre-evaluation approach using surrogate models may be adopted to
identify the promising members, and later perform the full evaluations only for these candidate

solutions.
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3.15.2. Procedure

The procedure for constructing the surrogate models has five major stages:

1. Design of experiments. In this stage, we choose the samples in the design space that are
going to be used for constructing the surrogate model. Since the number of chosen samples is
much smaller than all the possible cases, it should be a good representative of the domain. Some
of the methods that can be used for the design of experiments are random, error-based, density-
based, gradient-based, and some hybrids of these. A random sample selection scheme is used in
this study.

2. Full numerical simulation of the selected samples. The high-fidelity and expensive numerical
simulation technique is used to evaluate the samples that were chosen in the previous stage.

3. Model selection. In this step, we choose between several types of available surrogate models,
such as polynomial, radial basis function, neural networks, etc. Choosing the most suitable
surrogate model type is a problem-related decision in most cases. There are a number of criteria
that can be used to rank different surrogate modeling techniques. Some of the most common
measures are the accuracy, efficiency, and robustness of the models. Other criteria may include
transparency, i.e. capability of explicitly showing the relationship between the input and output,
and the ease of implementation [119]. In this research, we are going to compare the implemented
methods in term of robustness and efficiency, which are more crucial in our inverse heat
conduction applications.

4. Model identification. Here we tune the parameters of the selected model type to maximize
the capability of the algorithm. Another evolutionary optimization algorithm may be applied to
find the best set of parameters. The available options are different for each model type.

5. Model validation. In this stage, we make sure that the model is capable of producing
acceptable results for some other samples that were not used in the previous steps. Some
available algorithms are validation set, cross-validation, leave-one-out, and model difference.

Cross-validation is used in this research.

3.15.3. Surrogate Model Types
Four types of surrogate models were tested in this research: Polynomial models, Radial
Basis Function models, Kriging models, and Feedforward Neural Networks. Some researchers

have previously compared the performance of several surrogate model types in solving some
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benchmark optimization problems [119]. In this study, we directly focus on their performance in

inverse heat conduction problems.

Polynomial Models

A second-order polynomial model is the most popular polynomial model, and is also

used in this research. It can be written in the following form:

y=p4+ Z Bx, + Z B XX (3.21)

I<isn 1<i<j<n

where j is the estimated response, x is the vector of inputs, £ values are the coefficients that need

to be estimated, and i and j are the indices of the input parameters. This is normally done using

the least square method [120].

Radial Basis Function

Using the same definitions for x and y as above, the radial basis function model can be
expressed as:

§= oy(|x-cl) (3.22)

I<i<n

where w; 1s the selected weight for each parameter, c; denotes the ith basis function center, and y
is the basis function. The main strength of this model arises from the fact that it is linear in terms
of the basis function weights; however it is capable of predicting highly nonlinear responses

[120].

Kriging Models

One of the most popular types of surrogate models is the Kriging method. In this

variation, the basis function is of the form:

k

0= e Yofo s

j=1

pj
| (3.23)

The vector @ = {04, 0,, ..., 0, } represents the width of the basis function, and it can change from
variable to variable. Also, the exponent values, p, can also vary from one variable to another.

Basically, a higher value for the exponent increases the smoothness of the function around that
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variable [120]. In estimating the output of the Kriging model, it is necessary to perform matrix
inversions [121]. This can significantly increase the computational costs of this method when the

dimensions are high.

Feedforward Neural Networks

The MATLAB implementation of neural networks is also used as a surrogate model. A
feedforward multilayer perceptron uses three or more layers of neurons (nodes) with nonlinear
activation functions. The learning process in this type of neural network takes place by altering
the connection weights after each segment of data is processed, based on the amount of error in

the output compared to the expected result.

3.15.4. Surrogate Modeling (SUMO) Toolbox

In this research, the SUrrogate MOdeling (SUMO) MATLAB toolbox [122] is used to
construct the surrogate models. This open source toolbox is developed by the IBCN research
group of the Department of Information Technology (INTEC) at Ghent University. It has
excellent extensibility, making it possible for the user to add, customize and replace any element
of the modeling procedure. It also has a wide range of built-in test functions and test cases, as
well as support for many different model types.

In SUMO, first, an initial design is generated and evaluated. Then, a set of models is
constructed, and the accuracy of these models is approximated using a set of measures, such as
cross-validation or an external validation test set. Each type of model has a number of
parameters which can be customized, e.g. degrees of freedom for rational models, smoothness
for RBF models, number and size of hidden layers in neural networks, etc. These parameters are
adjusted using an optimization method, and additional models are produced until no additional
improvement can be made by changing the model parameters. If the desired accuracy has not so
far been reached, an adaptive sampling algorithm is employed to generate a new set of sample

locations, and the algorithm starts from the beginning.

3.15.5. Model Management
One drawback of using surrogate models in the context of evolutionary algorithms is the
convergence to a “false optimum”, i.e. a solution that is an optimum to the approximate

surrogate model, and not to the original objective function [123]. In order to overcome this
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problem, it is crucial to use the surrogate model with the original objective function. The
approach that is used to select some (or all) of the individuals to be used with the original fitness

function is called model management [124]. It can be divided into two major forms:

e Fixed Evolution Control. A fixed percentage of the individuals are chosen to be evaluated by
the original model. The individual members can be chosen randomly, or based on the value of
the approximate objective function, i.e. choosing the ones that seem to be more promising based
on the pre-evaluation using the surrogate model. If a lower portion of the individuals are chosen,
it results in a faster iteration, but it is possible to miss the global optimum, and a larger number
of iterations may be required.
e Adaptive Evolution Control. In this strategy, the number of members that are chosen to be
evaluated by the original model can be different in each iteration. The selection criteria can be a
function of the values generated by the surrogate model, the iteration number, the degree of
improvement in the results, or other factors based on the nature of the problem and the chosen
optimization algorithm. In this research, we investigate the usage of two different strategies of
adaptive evolution control. The first one is based on the concept of “index of improvement”
[125]. If #min is the current minimum of the objective function, and #(x) is the predicted value
of the objective function by a new point x, then the index of improvement can be defined as

1Go) = { 0 if G > Fuin (3.24)

Fmin — F(x) otherwise

If a point has a large value of this index of improvement, then it is more likely to improve the
value of the objective function and should be evaluated using the full simulation method. In our
research we started testing all the samples with I(x) > 0.1 #,,,;, in the initial iterations, and then
gradually relaxed this condition in later iterations, where the values are closer to each other, and
improvements are smaller. The second type of adaptive evolution control, employed in this
research, is based on the iteration number, i.e. a smaller ratio of the solutions were fully tested in
the first iterations, and then this number was gradually increased to include nearly all of the
solutions in the final iterations. This strategy is based on the observation that the candidate
solutions in the later iterations generally have better qualities, and also, that the search in these
later stages is more localized. Since the values of the objective function are going to be closer to
each other, surrogate modeling may not be able to correctly sort them, and a high fidelity

solution is more desirable.
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3.15.6. Model Configuration

In the inverse problems with multiple sensors, such as in test cases IV and V, there are
two different strategies in designing the surrogate model. One is to construct a simple model for
a single thermocouple location and its respective boundary heat flux. In this case, we will need to
run this model for the number of sensors in the problem. The other strategy is to create a larger
model that takes the whole boundary heat flux matrix as its input (with rows for different time
steps and columns for different sensor locations), and its output is also a matrix including the
temperature responses in all the thermocouple locations. In this strategy, only one surrogate
model is needed, but it will be larger and more complicated. This latter form is a more physical
representation of the real problem. In this research, for test cases IV and V, we use both
strategies. The first one will be called “3D — 1 sensor”, and the second method will be called “3D
— 9 sensors” and “3D — 18 sensors” for test cases IV and V, respectively. We will also study the
application of surrogate modeling in a simple case, by investigating test case L. In this test case,
since there is only one sensor in the domain, only one kind of surrogate model is used; “1D — 1
sensor”. Their performances will be compared in terms of the time needed to construct the
model, the prediction time, the total solution time, and their accuracy in predicting the results

and in dealing with noisy domains.

3.15.7. Results

The iterations were continued until the normalized value of the best objective function
with respect to the best value of the objective function in the first iteration became smaller than
107. Hence, the qualities of the results in all cases were very similar. However, the time and
computational expense required for the method to reach such a solution were very different.

Figure 3.21 shows the typical results of the applied algorithm.
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Figure 3.21. Results of Surrogate Based PSO for (a) Test Case I; (b) Test Case IV

3.15.8. Solution Time

First, we are going to compare the four previously mentioned surrogate modeling
techniques (polynomial, radial basis function, Kriging, and feedforward neural networks) and
modeling strategies (1 sensor, 9 sensors, and 18 sensors) in terms of computational efficiency.
Efficiency is simply related to the amount of time required for a method to reach a certain goal.
However, in surrogate modeling there are two distinct kinds of efficiency. The first one is related
to the time it takes to construct a model. The second kind of computational efficiency is related
to the time required to perform new predictions using the constructed model. In this research, we
compare both kinds of efficiency of the four surrogate modeling techniques. All of the
simulations are done on a PC with an Intel Pentium D 2.80 GHz CPU, with 2 GB of RAM, and
running Microsoft Windows XP Professional. Table 3.16 and Table 3.17 show the required time

for constructing and implementing the models, respectively.
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Table 3.16. Required Time (in Seconds) to Construct the Model for the Linear Case

Polynomial RBF Kriging FF Neural Network
1D - 1 sensor <1 4.42 43.70 9.63
3D —1 sensor 12.14 15.46 306.73 43.81
3D - 9 sensors 96.68 125.38 2183.97 316.53
3D - 18 sensors 146.47 187.44 2915.53 550.76

Table 3.17. Required Time (in Seconds) for 1000 New Predictions

Kriging FF Neural
Polynomial RBF
Network
1D — 1 sensor <1 9.13 6.65 9.55
3D — 1 sensor <1 11.19 7.43 14.47
3D — 9 sensors 5.14 90.75 68.44 119.45
3D — 18 sensors 9.05 147.92 125.24 205.45

As can be seen from Table 3.16 and Table 3.17, the polynomial regression model is the
fastest model to develop and implement. Radial basis function and feedforward neural networks
have comparable implementation times (both much more than the polynomial method), but in
terms of model construction, the radial basis function model is faster. The construction time for
the Kriging model is high, especially for the cases with more sensors. As expected, using a more
complex model (more sensors) will increase the time required for both constructing the model

and making predictions.

3.15.9. Accuracy and Noise Resistance

Another important measure for evaluating the surrogate modeling methods is their
accuracy in predicting the exact values, and also their effectiveness in dealing with noisy
domains. To examine this latter property, we add artificial noise to the results of the direct

solution for the points that are used to construct the model. Then the model is evaluated for
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another set of points to see how it is affected by the noise. Random errors are imposed onto the

calculated exact internal temperatures with the following equation:

T,=T, to-r (3.25)

where T, is the modified temperature that is used instead of the exact temperature, Toyer; 7 1S @
normally distributed random variable with zero mean and unit standard deviation; and o is the

standard deviation.

To compare the methods, the R’ value is calculated for 20 samples:

n

R=1=3 -0 [ 307 (326)

i=1

where 7, is the predicted value, corresponding to the expected value y,, and yis the mean of the
expected values. Obviously, a higher value of R’ (closer to 1) is more desirable. Table 3.18
shows the value of R’ for different methods, for both the exact and noisy domains, for the linear
case, i.e. when the thermal conductivity is a constant value. Table 3.19 shows the same results,

but for the nonlinear case, i.e. the temperature dependent thermal conductivity.

Table 3.18. R* Values for Different Surrogate Models in the Exact and Noisy Domains for the Linear Case

Polynomial RBF Kriging FF Neural Network
exact 0.99 0.99 0.99 0.99
1D — 1 sensor
noisy 0.90 0.95 0.84 0.96
exact 0.99 0.98 0.99 0.99
3D -1 sensor
noisy 0.88 0.93 0.81 0.96
exact 0.99 0.99 0.99 0.99
3D -9 sensors
noisy 0.90 0.94 0.85 0.97
exact 0.99 0.99 0.99 0.99
3D — 18 sensors
noisy 0.91 0.94 0.85 0.97
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Table 3.19. R* Values for Different Surrogate Models in the Exact and Noisy Domains for the Nonlinear Case

Polynomial RBF Kriging FF Neural Network
exact 0.69 0.87 0.92 0.78
1D -1 sensor
noisy 0.64 0.80 0.70 0.75
exact 0.58 0.86 0.90 0.75
3D -1 sensor
noisy 0.56 0.82 0.71 0.73
exact 0.60 0.86 0.91 0.77
3D - 9 sensors
noisy 0.57 0.83 0.71 0.74
exact 0.60 0.87 0.92 0.77
3D — 18 sensors
noisy 0.57 0.83 0.72 0.75

As seen from Table 3.18, when there is no noise in the domain, and the problem is linear,
the three methods produce results with very similar levels of accuracy. However, in the case of
noisy domains, the feedforward neural networks are the safest choice, followed closely by RBF.
Polynomials and Kriging show the worst performance. Comparing Table 3.19 with Table 3.18
shows that the nonlinearity in the problem considerably lowers the accuracy of all surrogate
techniques. This is especially pronounced in the case of polynomials. The Kriging model
performs better than the rest in the case where the data is exact. However, addition of noise
significantly reduces its accuracy. In the nonlinear problem with noisy data, the RBF model is
the most accurate one. Since most real-world inverse heat conduction problems are nonlinear and

noisy, the RBF method seems most suitable.

3.15.10. Surrogate Model Management

Since the most significant part of the computational expense is created by the full exact
solution of the direct problem, the effect of model management (number of the most promising
particles that have been solved exactly using finite element techniques) is studied in Figure 3.22.
The RBF model is used in this section, since in the previous section, it was found to be the most
robust surrogate model for inverse heat conduction problems. The “Adaptive I” strategy is based

on the concept of the index of improvement, as mentioned in Equation (3.24). The “Adaptive II”
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strategy is based on changing the percentage of exactly evaluated members based on the iteration
number. The figure shows the value of the objective function attained by the best performing
particle in each iteration, normalized to the best value in the first generation, versus the total
number of full direct simulations of the direct problem using the 3D finite element code for test
case IV. As is seen in Figure 3.22, the computational expense is reduced considerably if only a
smaller portion of promising members are evaluated (e.g., 20% in this problem). However,
choosing a very small percentage (10% in this example) is inefficient, since it requires more
iterations, and the total number of direct solutions will be more than the 20% case. Also notice
that the strategy of evaluating 100% of the particles is equivalent to not using surrogate
modeling at all. In this sense, we can say that using surrogate modeling can speed up the PSO-
based inverse algorithm up to around 3 times and the GA-based inverse algorithm up to around

4.5 times.

Table 3.20 shows the effect of using the surrogate models on CPU time. A considerable
amount of speedup is observed when using a suitable ratio for the number of exactly evaluated
swarm members. Also, it seems that using simpler model configurations (1 sensor instead of 9 or
18) is preferable. This is reasonable considering that the nature of surrogate modeling is based on
approximation, and not a full detailed solution. As can be seen from Table 3.21, the speedup of
the nonlinear case is similar to the one in the linear case, and RBF seems to perform a very good
job there as well. This can also be explained as the main role of the surrogate models is ranking
of candidates, and even though in the nonlinear case, the accuracy of the prediction is lower, the

RBF model can still choose which candidates will perform better.
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Figure 3.22. Effect of Surrogate Model Management on the Performance of Inverse Analyzer; (a) GA Solver;

(b) PSO Solver

Table 3.20. Effect of Using Surrogate Models on the Total Solution Time (s) for the Linear Case

% of fully evaluated members | 100% 40% 20% 10% Adaptivel Adaptive II
GA | 5831 3341 2317 3386 2241 3712
1D -1 sensor
PSO | 3394 1986 1268 1811 1152 2105
GA [15301 8869 5460 7345 4060 9895
3D -1 sensor
PSO | 8951 5006 2685 3498 2194 4715
GA [15301 11404 5253 6977 3820 8324
3D - 9 sensors
PSO | 8951 6257 2891 3374 1889 3822
GA [15301 11852 5323 6120 3569 6809
3D — 18 sensors
PSO | 8951 7010 3090 3187 1812 3683
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Table 3.21. Effect of Using Surrogate Models on the Total Solution Time (s) for the Nonlinear Case

% of fully evaluated members | 100% 40% 20% 10% Adaptive I Adaptive II
GA | 6036 3584 2354 3397 2422 4070
1D — 1 sensor
PSO | 3483 1995 1268 1864 1162 2256
GA |[16071 9394 5511 8139 4189 10103
3D -1 sensor
PSO | 9174 5282 2991 3537 2473 5325
GA |16071 11821 5625 7117 4281 9360
3D - 9 sensors
PSO | 9174 6409 3178 3424 2102 4306
GA |16071 12818 5634 6713 3629 7254
3D — 18 sensors
PSO | 9174 7054 3251 3567 1915 3710

3.16. Conclusion

In order to overcome the shortcomings associated with the gradient-based inverse heat
conduction solvers in our steel cooling applications, such as the instabilities due to the
thermocouple reading noise, and low temporal resolution, some gradient-free algorithms were
investigated in this chapter. These methods are artificial neural networks, genetic algorithms, and
particle swarm optimization.

The artificial neural networks are capable of capturing the whole thermal history on the
run-out table, but are not very effective in restoring the detailed behavior of the boundary
conditions. Also, they behave poorly in nonlinear cases and where the boundary condition
profile is different. Thus, their application in the run-out table heat transfer analysis will be
limited to a general prediction of the whole history.

GA and PSO are more effective in finding a detailed representation of the time-varying
boundary conditions, as well as in nonlinear cases. However, their convergence takes longer.
Comparison was made between GA and PSO variations in terms of both the computational

efficiency and effectiveness in dealing with noisy data. PSO was found to improve efficiency
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(i.e., reduce the required computational effort), especially in more complex test cases. A
variation of the basic PSO, called CRPSO in this research, showed the best performance among
the three versions. The effectiveness of PSO was also studied in the presence of noise. PSO
proved to be effective in handling noisy data, especially when its performance parameters were
tuned. The proper choice of the regularization parameter helped PSO deal with noisy data,
similar to the way it helps the classical function specification approaches. An increase in the self-
confidence parameter was also found to be effective, as it increased the global search capabilities
of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed
by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it
combines the efficiency, i.e. a lower computational expense, and effectiveness, i.e. resistance to
the measurement errors, required by these problems.

Sequential formulation, i.e. solving the inverse problem for each separate time step was
found more efficient than a whole domain implementation. Also, in the case of multi-
dimensional problems with multiple sensors, the proposed multi-objective optimization was very
successful in accelerating the solution. The relative speedup seemed to be independent of the
number of spatial components. Introducing the concept of elite members to the algorithm also
resulted in a faster convergence; however, the improvement was of less magnitude. It also
looked more effective in simpler cases, i.e. smaller problems with fewer internal measurement
points. In order to stabilize the algorithm, especially making it more effective in dealing with
noisy measurement data, the concept of future time steps was borrowed from the function
specification methods, and was applied to the sequential algorithm. It was very helpful in making
the method more stable, especially when used in combination with a Tikhonov regularization
term and tuning of the self-confidence parameter in PSO. The developed modified formulation
for the inverse heat conduction problem and PSO implementation seem to be promising in terms
of stability and performance for the cases similar to those studied in this research.

While evolutionary optimization methods are very effective in dealing with inverse heat
conduction problems in terms of stability and handling of noisy data, their very high
computational expenses hinder the wide usage of these algorithm. Inexact pre-evaluation using
surrogate models can be used to enhance the speed of evolutionary algorithms in solving the
inverse heat conduction problems. In this strategy, the entire candidate solutions are first roughly

evaluated using a much simpler surrogate model, and only the top performing members are
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exactly evaluated using the full direct solvers, e.g. finite element method. Polynomial methods
are the cheapest selection, both during the model construction phase, and the implementation.
Radial basis function and feedforward neural networks have similar construction time, but in
making predictions, RBF models perform faster. Kriging model is the slowest, especially when
the number of unknowns increases. All the investigated surrogate models perform very well in
predicting linear cases with no added noise. Nonlinear domains are much harder to predict. The
most suitable model for noisy nonlinear cases is the RBF model. Since real-world cases of
inverse heat conduction problem are normally nonlinear and noisy, this method is recommended
for these applications. The best performing model management strategy is an adaptive selection
scheme, based on the expected improvement of the objective function. Also, the most
appropriate way to construct the surrogate model is to make a separate model for each sensor. If
done properly, surrogate modeling can speed up the stochastical methods of solving the inverse
heat conduction problem up to around 5 times.

Finally, based on the performance that was measured on the test cases in this research, a
sequential implementation of the CRPSO algorithm, using a multi-criteria formulation of the
objective function, and using future time steps, Tikhonov regularization, and a tuned self-
confidence parameter, in conjunction with a single-sensor RBF surrogate model, using the
adaptive selection based on the expected improvement of the objective function, is the most
appropriate solution method for solving inverse heat conduction problems similar to the ones

studied in this research, with characteristics like the ones encountered on a steel run-out table.
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4. Heat Transfer Behaviour under Multiple Circular Water Jets Impinging

on a Moving Plate

In this chapter, we study the boiling heat transfer characteristics of two rows of three
impinging jets on a moving hot plate. Experiments are conducted in an industrial scale setup, and
thermocouples are used to measure the temperatures just under the plate surface. Then these
temperatures are used as the input in our inverse heat conduction algorithm to find the boundary
heat flux variations in space and time across the width and along the length of the moving flat
plate. The effects of nozzle configuration, jet line spacing, and plate speed are investigated. The
results in this chapter are obtained using our developed CRPSO algorithm, as introduced in the
previous chapter. The sequential implementation is always used, and multi-criteria formulation
of the objective function, future time steps, Tikhonov regularization, and a tuned self-confidence
parameter are adopted to increase the stability of the method. Also, a single-sensor RBF
surrogate model, using the adaptive selection based on the expected improvement of the

objective function is utilized to reduce the computational costs.

4.1. Experimental Setup

The general characteristics of the experimental run-out table facility were described in
chapter 1. In the experiments that are analyzed in this chapter, there are eighteen thermocouples
attached to each plate. The ones that are located along the lateral direction are 12.6 mm apart
from each other. The distance between the two sets of thermocouples is either 25.2 cm, or 50.4
cm, based on the distance between jet lines for that experiment. Figure 4.1 shows a top view of

the TC configuration on the plate.
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Figure 4.1. A Sample Plate, Showing the Dimensions and Thermocouple Locations
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Thermocouple signals, as well as the flow rates from the flow meter, are gathered by two
data acquisition boards, and are sent to a PC that uses DASYLab® 7.0 data acquisition software.
The same software also controls the water flow rate that exits the nozzles.

In our experiments, the nozzles are placed 1.5 m above the plate. The spacing between the two
successive jet lines is either 25.4 cm or 50.8 cm. The nozzle diameter is 19 mm. There are three
possible jet configurations: in-line (no stagger), half staggered, and fully staggered. These three
configurations are shown in Figure 4.2. The plate speed is set to either 0.35 or 1.0 m/s. The water
flow rate is constant at 15 l/min, which gives an outlet velocity of 0.88 m/s. The water

temperature is 25 °C.
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Figure 4.2. Nozzle Configuration with Respect to Thermocouples; (a) In-line; (b) Half-staggered; (c) Full-
staggered [31].

The jet velocity (impact velocity) is the velocity at which the water hits the plate, and can

be calculated by

V,=\V}+2gH (4.1)

where V; is the jet velocity, m/s; V, is the water velocity at nozzle exit, g is the gravitational
acceleration, m/sz; and H is the vertical distance from the nozzle exit to the plate surface, m. For
our experiments the jet velocity will be 5.49 m/s.

The diameter of the water jet D, can be calculated by
D, =D, - Vn/Vj 4.2)

where D, is the nozzle diameter. In our case, the water jet diameter at the stagnation point will be

7.6 mm.
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The pressure at the stagnation point is given by
1
Ps :Pa +EpV/2 (43)

where P, is the atmospheric pressure and p is the density of water. In this case, the pressure at the
stagnation point will be about 116,389 Pa. The saturation temperature of water at this condition
can be found from a saturation table of water, and is around 103.6 °C.

The plate passes through the system several times, so the input plate temperature varies
from around 700 °C, down to just slightly more than 100 °C. This gives us the opportunity of
studying different boiling heat fluxes, due to the various levels of temperature gradient. The
experimental database used in this research is developed by Franco [31].

Twelve different experimental setups are analyzed, each with a different combination of
jet line spacing, nozzle stagger, and plate speed. Table 4.1 shows these setups. In the following
sections, we are going to study the effect of these parameters on the heat transfer behavior on the

plate surface.

Table 4.1. Test Matrix.

Jet Line Nozzle Plate Speed
Set-u Spacing (cm) Stagger (mm) (m/s)
Sl 254 0 0.35
S2 254 0 1.0
S3 254 254 0.35
S4 254 25.4 1.0
S5 254 50.8 0.35
S6 254 50.8 1.0
S7 50.8 0 0.35
S8 50.8 0 1.0
S9 50.8 254 0.35
S10 50.8 254 1.0
S11 50.8 50.8 0.35
S12 50.8 50.8 1.0
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In order to determine the heat fluxes caused by impinging water jets on the surface of hot
moving plate, we need to find the surface temperatures. Unfortunately, measuring the surface
temperatures directly is not accurate. Our initial experiments with placing thermocouples on the
plate surface showed an error of around 250 °C, when the surface temperature was around 700
°C [25]. Other methods such as infrared thermography may not be influenced by the water
interaction on the surface, but are very hard to get in our application, since the water vapor
covers the plate surface. Also these methods provide a snapshot of the surface temperature at
each step rather than a continuous recording of temperature history during time. As a result,
researchers use thermocouple readings from inside the plate to obtain the boundary heat flux
values. The inverse algorithms that were developed in the previous chapters are used to obtain

the surface temperature and heat fluxes during the water cooling process.

4.2. Uncertainty Analysis

As it was mentioned before, type K thermocouples that are used in this study, have an
error of approximately 2 °C. There is also some uncertainty in the values of thermophysical
properties, such as heat conduction coefficient, and heat capacity. Thermocouple position and
depth are the other sources of uncertainty. Since these values are the inputs of the inverse heat
conduction analysis, their uncertainties will propagate through the algorithm, and will result in
an uncertainty band around the output values, such as the surface heat flux and temperature.
While it is possible to use analytical equations to calculate the uncertainty in boundary heat
fluxes for simple linear inverse heat conduction problems, in case of nonlinear problems with
multiple sensors, a numerical procedure is normally required [126]. This approach is called the
“computerized uncertainty analysis” [127]. While there are several methods available for this
approach [128], in this research, we have used a finite difference method, based on the
sequentially perturbing the inputs, as detailed in [127].

Our calculations indicated that the uncertainty in the values of surface heat flux and
temperature is between +8% for the parallel flow zones, away from the stagnation point, and
+16% under the impinging jet. Also, it should be noted that the several sets of repeatability

measurements were performed, and the data showed excellent repeatability [31].
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4.3. Time Histories of Temperature and Heat Flux

Based on our observations, the most significant factor affecting the heat transfer behavior
is the range of plate surface temperature when entering the jet line. Thus, we have presented
many of our results in three different entry temperature ranges: High (500 — 750 °C), mid (250 —
500 °C), and low (100 — 250 °C). Figure 4.3 - Figure 4.5 show the time history of thermocouple
readings (inside temperature) from the experiments, and surface temperature just above the
thermocouple and the heat flux at the location of thermocouple, both obtained by our inverse
analysis, at five cross-section locations, for three different entry temperature ranges: high
temperature (around 700 °C, Figure 4.3), mid temperature (around 400 °C, Figure 4.4), and low
temperature (around 120 °C, Figure 4.5). The data shown here is from the S6 setup, i.e. a jet line
spacing of 25.4 cm, a nozzle stagger of 50.8 cm (full stagger), and a plate speed of 1.0 m/s are
used. That means that for the first pass, the 3" thermocouple is under the impingement, and for
the 2™ pass, the 7" one is in the impingement zone.

As it can be seen in Figure 4.3(a), the inside temperature is initially around 700 °C (A).
All temperatures fall after the line reaches the first jet line (B). The magnitude of the temperature
drop is much higher for the TC location under the jet (E). For the rest of the TCs, the magnitude
of the drop is more or less of the same order, but very gradually decreases when we move away
from the impingement point (TCs 1 and 7). When the plate moves away from the jet line, the
temperature partially recovers, due to the thermal mass of the plate (C). However, the existence
of the second jet line stops the recovery process, and reduces the temperature once again (D).
Note that the second jet line is impinging on a plate with a quite non-uniform temperature
distribution, which is also lower than the initial entry temperature. Due to this non-uniformity,
the history of the second jet line shows a larger diversity in behavior. Once again, the most
significant temperature drop occurs at the impingement location (TC 7 this time). After moving
away from the 2™ jet line, temperature again recovers, and due to the lack of a new jet line, the
temperature distribution starts to become uniform again (G).

Figure 4.3(b) shows the surface temperatures at the location of each TC. These values are
obtained by using the inverse analysis. As expected these values are smaller than the inner
temperatures, and if examined carefully, exhibit an earlier response to the jet line. This is of
course due to the time lag that exists for the boundary conditions to be sensed inside the plate. It

is also observed that the amount of the temperature drop is larger for the surface compared to the
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temperature drop inside the plate. This is also related to the damping of changes in boundary
condition inside the plate. These two effects (time lag and damping) are always present in
inverse heat transfer analysis and contribute to the complexity of such problems.

Figure 4.3(c) displays the surface heat flux at the location of each TC for the same
experiment, again obtained by the inverse analysis. The heat fluxes are initially very small, and
close to zero (A). After the TCs reach the first jet line, there is a rise in the amount of heat fluxes
(B), with the impingement zone, experiencing the largest value of heat flux (E). The same thing
happens for the second jet line, however since now the temperature distribution is not uniform
anymore; there is a larger diversity in the heat flux behaviors.

Figure 4.4(a), (b), and (c) show similar results as Figure 4.3(a), (b) and (c), respectively,
but for an entry temperature of around 400 °C. The trends are qualitatively similar to the higher
entry temperature case, but values are different. This is especially obvious when comparing the
heat flux curves. As is seen in Figure 4.4(c), the peak heat flux value reaches a value more than
twice of the peak heat flux of Figure 4.3(c). This shows that a more effective boiling mechanism
is present in the mid range of surface temperatures. This can be related to a thinner vapor layer
on the plate surface in this temperature range. This layer is thicker in the high temperature range,
which means a film boiling heat transfer mechanism. In the mid temperature range, the
momentum of the vertical impinging jet can break the thinner layer apart, and liquid can touch a
wider area, so a partially nucleate boiling mechanism is responsible for higher heat fluxes.

Finally, Figure 4.5(a) represents the last series of TC readings for the low entry
temperature range. With an initial inner temperature of 120 °C (A), i.e. just about 20 °C higher
than the boiling point, the plate is subjected to the first row of jets. As shown in Figure 4.5(b),
this causes the surface temperatures to drop below the boiling point. Interestingly, in this case,
there is not a major difference between the cross sectional locations, i.e. the impingement and
parallel flow zones exhibit a more uniform temperature drop. This is more clear in Figure 4.5(c).
As is seen in this figure, the peak values of heat flux (B) are not as different as previous cases.
This is in accordance with the findings of Jondhale [83] that the significance of boiling heat
transfer in the impingement zone compared to the boiling in the parallel flow zone is reduced
when the surface temperature falls below 200 °C. This is even more pronounced when the (even
colder) plate passes the second jet line (D). Interestingly, in both cases of peak heat flux (B and

D), the maximum heat flux is not at the location of impingement, but at somewhere between the
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two adjacent impinging circular jets. This is in agreement with the findings of Slayzack et al.
[81] about the water fountain in the interaction zone between two jets.

Therefore, the high entry temperature range causes a relatively thick vapor layer that acts
as insulation, and the heat transfer mechanism is film boiling, unless when an impinging jet with
high momentum breaks down that layer. In the mid entry temperature range, the thinner vapor
layer is a weaker insulation, and the dominant mode of heat transfer is mostly transition boiling.
In the low entry temperature range, the local surface temperature falls quickly below the boiling

point, and the heat transfer mode is non-boiling forced convection.
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4.4. Heat Flux vs. Surface Temperature

Figure 4.6 show the variation of surface heat flux and heat transfer coefficient (%) versus
the surface temperature, during a two jet line experiment for high, mid, and low entry
temperatures, and for five of the thermocouples across the width of the plate. Remember that
both the surface heat flux and surface temperature are obtained by running an inverse analysis on
the readings of internal thermocouples. The surface heat transfer coefficient is simply obtained
by dividing the values of heat flux by the temperature difference between the surface and the
cooling water. Since the cooling water in all these experiments has a temperature of 25 °C, the

heat transfer coefficient will be

b= qsurface qsurface

(nurface -T water ) (Tsm_‘face -2 5)

Figure 4.6(a) and (b), respectively show the heat flux and heat transfer coefficient vs.

(4.4)

surface temperature for the high entry temperature range (around 700°C). The letters on the
graph correspond to the same letters in Figure 4.3. As we move from (A) to (B), the temperature
will fall very fast, as the impingement point will produce the highest heat flux (E) for the
thermocouple that is directly under the jet. After passing the first jet line, the surface temperature
partially recovers (C). The same thing happens during the impingement of the second jet line,
however, with a lower initial surface temperature and a more non-uniform distribution. The plate
finally exits both jet lines with a surface temperature of around 670 °C (QG).

Figure 4.6(c) and (d) show the same thing but for the mid entry temperature range
(around 400 °C). Here the behavior is very much like the previous case, however, the heat
transfer rate is much higher. This is especially significant in the under impingement area (E and
F). Also during the temperature recovery after impingement (moving toward points C and G),
there is a dent in the graph, i.e. the temperature starts to recover at a high rate, then stops, a little
bit of cooling occurs, and then temperature recovers at a slower rate. This should be related to
the lower thermal energy that is stored in the plate.

Finally, Figure 4.6(e) and (f) show the same quantities, but for a low entry temperature
experiment (around 130 °C). Here the behavior is very different from the previous two cases,
especially because after the first jet line, the surface temperature falls below the boiling point, so
for the second jet line, the heat transfer mechanism is not boiling, but a forced convection by the

water flowing over the plate. Again, for both jet lines, maximum heat transfer is not happening
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in the impingement point, but somewhere between the two jets that the interaction fountain is

formed.
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4.5. Lateral Distribution of the Heat Flux

Since we only have nine thermocouples that are clustered in the central part of the plate
(see Figure 4.1), we are going to use the three nozzle configurations (see Figure 4.2) to study the
variation of the heat flux under and between the nozzles. The lateral location between the jets is
normalized with respect to the distance between the first and last thermocouples (101.6 mm)
with TC1 and TC9 at the normalized locations of zero and one, respectively. The lateral
distribution of heat flux is displayed in Figure 4.7, for the moment of impingement of the first jet
line. In the three cases, the jet impinges on thermocouples 5 (Figure 4.7 (a)), 4 (Figure 4.7 (b)),
and 3 (Figure 4.7 (c)). For each case, three heat flux distributions are displayed, one for each of
the three temperature ranges (high, mid, and low).

As is observed in these figures, the maximum heat flux values happen at the mid entry
temperature range. Here, we see that the heat flux distribution is more non-uniform in the mid
entry temperature range as well, with the peak heat flux occurring at the point of impingement.
Also, we see that at low temperature range, the maximum heat flux is not occurring at the
impingement point. The heat flux distribution is nearly symmetrical around the impingement
point for the inline nozzle configuration. However, half-staggered and full-staggered nozzle
configurations result in more complicated flow fields that result in an unsymmetrical heat
transfer behavior around the impingement zone. This is especially more pronounced when the
entry temperature is in the high or low temperature ranges. These profiles are going to be
especially useful in studying the thermal stresses in plates during a cooling process on the runout
table in a material processing mill, which may sometime result in a deformation in the cooled

plate.
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4.6. Lateral Distribution of the Surface Temperature

Figure 4.8 shows the surface temperature distribution across the plate after the second jet
line has passed versus the normalized lateral location between TC1 and TC9. This data is also
going to be highly useful in studying the thermal stresses in the plate, as well as making sure that
different parts of the plate follow a similar temperature history profile, and thus, the mechanical
properties are going to be uniform. Again for each nozzle configuration, three lateral temperature
distributions are displayed, one for each of the three temperature ranges (high, mid, and low).

As it is seen in Figure 4.8(c), the most uniform distribution is happening in the case of
fully staggered nozzle configuration. This is especially true at low entry temperature range. The
most severe case of non-uniform temperature distribution is usually the case of mid entry
temperature. Since this figure shows the temperature profile after both jet lines have hit the plate,
one can also judge the time that it takes for the plate to reach a more homogeneous temperature
distribution. As is seen in parts (b) and (c) of Figure 4.8, where the lateral location of the second
line of nozzles is different than the first, the effect of the first jet line is dissipated more slowly in
mid surface temperature range. This can be due to the fact that at mid surface temperature range,
there is a very high heat flux occurring at the impingement point, resulting in a very effective

temperature drop.
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4.7. Longitudinal Distribution of the Heat Flux

As discussed earlier, although many researchers do not distinguish the two different
parallel flow zones, the flow and heat transfer fields between two successive jet rows is different
from the ones between two nozzles in one jet line. One reason is the jet rows have more distance
from each other compared to the nozzles in one jet line. Also, the plate velocity vector is now
oriented in a different direction with respect to the spreading water. Nozzle stagger configuration
and jet line spacing are the two parameters that affect the longitudinal distribution of heat flux.

Figure 4.9 shows the heat flux distribution between two successive jet lines for some of
the thermocouples (across the plate width) for the high temperature range. Figure 4.9(a), (b), and
(c) show the heat flux distribution for jet line spacing of 25.4 cm, and for no stagger, half-
staggered, and full-staggered configurations. Figure 4.9(d) shows the distribution for the half-
staggered configuration, but for a jet line spacing of 50.8 cm. As it can be seen in this figure, the
heat flux is more or less uniform between two successive jet lines in this temperature range.
Only in the half-staggered case, with a jet line spacing of 25.4 cm (Figure 4.9(b)), there is an
increase in the heat flux somewhere between the two jet lines, probably due to some kind of a
stagnation line. Comparing parts (b) and (d) of this figure shows that increasing the jet line
spacing may result in the dissipation of this heat flux spike. Also, notice that in all cases the heat
flux between two jet lines is smaller than the one between two impinging jets in one jet line.

Figure 4.10 displays the same graphs but for the mid temperature range. As shown in
these figures (in this temperature range and for a low nozzle spacing, cases-a, b, and c) the heat
flux in the interaction zone between two jet lines rises to a value that is comparable to the value
of heat flux in the interaction zone between two nozzles of a same jet line. This effect is,
however, dissipated when the jet line spacing is increased, probably due to a weaker interaction
fountain between two successive jet rows. Also notice that the heat flux values are higher to the
right of the peak values in the impingement point. It means that the heat transfer in the
downstream of the impingement line (where the plate motion and the water spreading directions
are the same) is higher.

Figure 4.11 shows the same graphs for the low entry temperature range. Here, there is a
considerable amount of heat flux happening in the region between two jets. The reason is that in
this region, the water remains longer on the surface before evaporation and the pool of water is

still cooling the plate when the thermocouple is between two impinging jets. Also the vapor layer
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on the surface is not present or is very thin, so the vertical momentum of the water jet is not

necessary in order to break it down in the low entry temperatures. Notice that in this case and for

some of the thermocouples, the peak heat flux is not happening on the water impingement line,

but in the parallel flow zone after the jet line. This is similar to the observation that for this range

of entry temperature, the peak heat flux across the plate width is not under the impingement

point.
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4.8. Effect of the Plate Speed

The ratio between the plate speed and jet line spacing determines the time it takes
between two impinging jet lines to hit the plate, and hence the amount of temperature recovery,
which in turn changes the surface temperature for the second jet line, and hence, affects the

whole heat transfer process. Also, plate speed has an effect on the values of the heat flux versus
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the surface temperature. Figure 4.12(a) and (b) display the value of heat flux under the
impingement zone, each for 6 sets of experiments, with jet line spacings of 25.4 and 50.8 cm,
respectively. The symbols on the graph show the four different combinations of plate speed and
jet line spacing, and the connecting line pattern is representing the nozzle stagger configuration.
Solid lines represent the cases with no stagger, while dashed and dotted lines stand for the half-
staggered and full staggered configurations, respectively. As it can be observed in these figures,
there is not a clear difference between different setups in the temperatures below 400 °C.
However, in the temperatures higher than this there is a clear difference between six setups with
a plate speed of 0.35 m/s (higher branch) and the ones with a plate velocity of 1 m/s (lower
branch). In other words, in the high entry temperatures, the heat transfer rate is much lower when
the plate is moving at a higher velocity. This can be related to the fact that at high plate speeds,
the vapor layer that is formed on the surface, and works like an insulator, is more strongly
attached to the plate, so the impinging jet has a bigger challenge in breaking down the vapor
layer and getting in touch with plate. As a result, a more stable film boiling heat transfer will be
present, which causes lower heat transfer rates. This temperature range in which the plate speed
affects the heat transfer rate is in accordance with the experiments done by Gradeck et al. [84].
Obviously, in order to better understand this behavior, more experiments are needed with a wider
range and variety of plate speeds. Notice that this effect is only limited to the impingement zone.
Figure 4.12 (c) and (d) display the variation of the surface heat flux between two nozzles versus
the surface temperature. Here, however, there is not any clear correlation between the plate speed

and the heat transfer rate.
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4.9. Conclusion

Boiling heat transfer on a hot plate cooled by multiple water jets and multiple jet lines in
an industrial scale experimental setup is studied. Nozzle configuration, plate speed, and jet line
spacing are varied in the experiments. Thermocouple readings are analyzed using an inverse heat

conduction procedure. Surface temperature is the most significant factor affecting the heat
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transfer behaviour on the plate. At high temperatures, the plate surface is covered with a
condensed vapour layer that acts as an insulation blanket, and requires an impinging jet with
high momentum to break it down. This translates into a stable film boiling regime, with reduced
values of heat fluxes. Heat transfer rate increases at medium temperatures where the vapour
thickness is smaller. For low entry temperatures in a multi jet line experiment, the heat transfer is
lowered again. In the low temperature region, the maximum heat flux does not occur at the
impingement point, but at a location between the jets, due to formation of an interaction water
fountain. The most important effect of nozzle stagger is the uniformity of heat transfer across the
width of the plate. The most uniform distribution is happening in the case of fully staggered
configuration. The heat transfer between two successive rows of jet lines is affected by the jet
line distance. In higher jet line distances, the interaction effects become less significant, and a
more uniform distribution is observed. However, when the jet lines are closer, the effect of
interaction is more pronounced. In medium and high temperatures, there is a spike in the heat
flux values in the interaction zone. In the low temperature range, because the water does not
evaporate quickly, a pool of water forms on the plate surface, resulting in a flattened heat flux
versus time profile. The plate speed affects the heat transfer rate under the impingement point for
the higher surface temperatures. In the high entry temperatures, the impingement heat transfer
rate is lower when the plate is moving at a higher velocity. The plate speed however does not

significantly change the heat transfer behavior in the other parts of the plate surface.
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5. Structural Effects of the Thermal Field during Water Jet Cooling

In this chapter, we investigate the effect of thermal field during the water impingement
cooling of steel strips on the structure of the strips. A finite element based approach is presented
that uses the heat flux histories during the controlled cooling of steel strips (as discussed in the
previous chapter) as the input, and calculates the steel phase composition in each time step, and
simulates the structural behavior, including the stress and deflection values. The DQSK steel is
used in all the studies in this chapter, for both the stationary and moving plates. For the
validation cases, the steel properties are chosen based on the test case in the literature.

It is important to notice that there are three different types of physics involved in this
problem. These are the thermal, microstructural, and structural fields, and all three of them are
mutually coupled. However, as Figure 5.1 shows, the levels of these couplings are different
[129]. The thermal field strongly affects the other two physics as described in details later in this
chapter. Microstructure field also strongly affects the mechanical field through changing the
mechanical properties, as well as change in the volume. This also is described in details later in
this chapter. Changing the phase composition also changes the thermal properties, such as the
heat conduction coefficient, and thermal capacity. However, this last effect is relatively less
significant, and is handled through the temperature dependency of the thermal properties.
Finally, the effect of the mechanical field on the thermal and microstructural fields is very weak,
and is often neglected. In this study, we model the strong and medium couplings, but neglect the

weak ones.
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Figure 5.1. Different Kinds of Coupling between the Three Physical Fields in Cooling of Steel Strips
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5.1. Phase Transformation Modeling

There are three main approaches to find the state of phase transformation during the
cooling:
1. Using the laws of thermodynamics, kinetics, and diffusion.

2. Using the continuous cooling transformation (CCT) diagram:

n

TS—T
X=X <1—-expl b .1
0 p T —T (5.1)

s f

where X) is described as the volumetric rate of intended phase at transformation termination, 7
and Ty are the transformation start and finish temperatures, respectively, and » and b are
constants. Because the cooling rate at each point is different, we will have different values for 7},
T;, n and b. This approach was developed by Boyadjiev, et al. [130].

3. Using the isothermal temperature-time transformation (TTT) diagrams: The initial time
should be defined as the time that the transformation begins under continuous cooling
conditions.

The first category of the models are the most accurate ones, but have not been used
extensively in the literature due to the lack of information about the exact characteristics of
thermal field history and the model calibration coefficients. Previous research (in UBC group)
has provided the required information to use in the above models [131,132]. The algorithm that
is used here is based on the work of Liu, et al. [132], and falls in the first family of the models. In
this algorithm, the static recrystallization kinetics is simulated by the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) theory. The transformation start temperature was also found following the

method suggested in the work of Militzer, et al. [131].
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t

Figure 5.2. Schematic Representation of Cooling on the Run-out Table (Temperature vs. Time)

The first step in this algorithm is finding the transformation start temperature, 7s. In
Figure 5.2, Ty 1s the temperature where the nucleation starts, and is known and equal to 797 °C.
Starting from this point, we divide the cooling path to small segments, each with the length of

At. Then, the following summation value is calculated along the cooling path, starting from 7 :

n e’ (T)-c
R = 32D (1) A 5.2
J% S 1)-en(r) 62
where
8339.9¢,(1-c,) 1
D, (T)=453000| 1+ 0o — (17767 — 26436 —0.00022
A7) ( T+273 jeXp[ ( C°>(T+273 ﬂ (53)

and ¢y is the atomic fraction, ch and cgg are the equilibrium concentrations of carbon in

austenite and ferrite, respectively, which are known as a function of temperature for each steel,
and T7; is the temperature at the ith time step in degrees Celsius. Transformation starts, i.e. 7; =

Ts, when the value of R, becomes larger than a critical value, R*, where:

. 0.25¢,

R iy (5.4)

eq
where de 7 is the effective austenite grain size, and is again known for each steel composition.
The next step would be to calculate the fraction of austenite that is transformed to ferrite,

fa- These calculations start at 7 = Ts. In each time step, we define the equilibrium transformed

fraction as:
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e (T))-c,
eq _ eq N1
fa Ce}:] Tl.)—C:; TI) (55)

and the real transformed fraction can be obtained as:
Jo=Fy Jo' (5.6)
where at T = T the value of F, is 0.001, and at each next time step, it is updated through:

dF

FI = F' + —% At (5.7)
dt
where
dF,
«—p (T)1-F 5.8
- =b(T)1-F,) (58)
and
ba(i):exp{4.4—0.001(860—Ti)—11.24 % } (5.9)

For a more detailed discussion of this model, as well as the physical significance of various

terms, refer to [131,132].

5.2. Thermal Stress Modeling

If the temperature in a homogenous body changes by AT, the total strain in the body is
consisted of two parts, the free thermal expansion, plus the strains related to the stress state in the
body, and can be expressed by the following equations:

e =adT +|o —v(a +o j/E
X X y oz

€ =aAT+[0 —v(a +0 )/E
y y X z7]

e =adT +|o —v(a +o j/E (5.10)
z |z x oy
= G
Xy ny/
=0 /G
yz o yz
=0 /G
ZX X

137



where ¢ is the strain, o is the stress, v is the Poisson’s ratio, £ is the Young’s modulus, and G is
the shear modulus. Solving the above equations for stress yields:

o, =(A+2u)e, +Ale, +e.)- pAT

o, =(A+2u)e, + Ale, +¢€,)- PAT

o, :(/l+2ﬂ)€z+/l(gx+gy)—/)’AT 1D
O-xy = lugxy 5 O-yz = lugyz;ze = lugxz
where 4, u, and f are defined as:
A=VvE/(1+v)1-2v)
p=E[21+v) (5.12)
B=Ea/(1-2v)
The equations of equilibrium for temperature change in the body are:
Jdo
99, +—= +ao-” +X=0
ox oy 0z
do, do, J0,
L+—2L+—E4+Y =0 (5.13)
ox dy oz
Jo
90, +—= +8az +7Z=0
ox dy 0oz

where X, Y, and Z are the body forces per unit volume. The boundary conditions are given by:
ol+o,m+o.n=X;
ol+tom+o,. n=Y (5.14)
o.l+to.m+on=2Z

where /, m, and n are the direction cosines of the outward drawn normal and X;, Y and Z; are the

surface forces per unit area.

In cases where the boundary conditions, temperature distribution, geometry, or material
properties are more complicated, using analytical methods to solve for the thermo-mechanical
properties is impossible. Using numerical methods, such as finite elements is very common to
study these problems.

While in the above equations, we assumed that the change in the temperature affects the
strain values only through the thermal expansion coefficients, however in these controlled
cooling applications, there are normally two main sources for the strain in the steel. One is the
thermal strain that is related to the temperature gradient and the thermal expansion coefficient of

the mixture of phases (obtained using the rule of mixtures). The other one is the volumetric

138



strain associated with the phase transformation, i.e. the change in the volume of the same amount
of steel during austenite to ferrite transformation.
In this research, we combine the effects of these sources by creating a total coefficient of

expansion:

Qiotal = Cthermal +ta

phase-change (5 . 1 5 )

where oy 1s the total expansion coefficient, ounemar 1S the weighted average of the thermal
expansion coefficients of the phases in each location in the steel sample, and ophase-change 15 the

phase change expansion coefficient. This latter component can be calculated in each time step i

V.-V,
(Xphase—change = |:(ZVZ_1]/{|/AT (5 . 16)
i-1

where V; and V;.; are the mixture specific volumes in the current and the last steps, respectively.

as:

In each step, the mixture specific volume can be obtained using the rule of mixtures:

V=V, X;+V,-(1-X,) (5.17)
and 7, and V7, are the specific volumes of ferrite and austenite, respectively. These values are
related to the lattice parameters of ferrite and austenite (a, and a,, respectively), as:

Vo =(1/2)az, and v, =(1/4)a, (5.18)
The lattice parameters vary with temperature, and in the case of austenite also with the carbon

fraction value [133].

5.3. Computational Modeling

A commercial finite element software is used to model the coupled thermal and structural
field. Shell elements are used to discretize the domain. On the top surface of the plate, the heat
fluxes are applied as the thermal boundary condition. After the thermal and microstructure
simulations are performed, results are written to a file, which is subsequently read by the
structural simulation. Since the effect of structural field on the thermal and microstructural fields
is weak (see Figure 5.1), there is no need to feed the structural results back into the
thermal/microstructural models. In all the following validation cases, as well as the new
simulations, grid and time step independency has been investigated, i.e the mesh is refined until

changes in the results were less than 5%.
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5.4. Validation Cases
In order to validate the modeling of thermal stresses on the run-out table, two of the
similar cases from literature are simulated here, and the results are compared with the ones

available in the literature.

5.4.1. Validation Case I

This test case is based on the work of Yoshida [86]. As was mentioned in Chapter 1, he
uses a convection correlation to model the thermal boundary condition on the top surface of the
moving plate, a simplified time-temperature-transformation (TTT) for the phase transformation
model, and a two-dimensional finite difference method to simulate the thermal and structural
fields in the plate. Figure 5.3 shows a schematic of the problem, and the simple thermal
boundary conditions. Residual stresses are then plotted versus the distance from the edge of plate
at different locations and under different cooling strategies, e.g. uniform, early stage, and later

stage cooling.
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Figure 5.3. Problem Dimensions and Temperature History in Validation Case I by Yoshida [86].

Figure 5.4 shows the results of Yoshida’s study (strain gauge readings as well as the
numerical simulation results), and the results obtained by the present study. A very good

agreement is observed between the results.
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Figure 5.4. Validation Case I; Comparison between the Current Results and the Experimental and Numerical

Results in the Literature [86].

5.4.2. Validation Case I1

The work done by Zhou, et al. [90] is the basis of the second validation case. They apply
a simplified temperature-time curve as the cooling boundary condition in their model. Figure 5.5
shows the geometry, and Figure 5.6 displays the transverse and longitudinal thermal boundary
conditions. Again, a TTT diagram is used for finding the phase transformation during the
process. ABAQUS finite element code is used to simulate the thermal and structural fields, and
the residual stresses and displacements are reported for different cooling strategies, and at

different locations.
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Figure 5.5. Geometry of Validation Case II [89]
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Figure 5.6. Temperature Distribution in Validation Case II in (a) Transverse and (b) Longitudinal Directions
[89]

Figure 5.7 shows Zhou’s results, as well as the results obtained by this study. The

maximum difference is less than 7%, which validates our solution method.
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Figure 5.7. Validation Case II; Comparison between the Current Results and the Numerical Results in the

Literature [90]
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5.5. Stationary Plate
In this section, we have used the heat fluxes obtained by Xu and Gadala [76] to study the
structural field in a hot stationary steel plate cooled by a circular impinging water jet. This, to

our knowledge, has not been studied in the literature.

Figure 5.8 shows the steel plate under the impinging jet, and the eight thermocouples that
are implemented inside of it at different radii. Since the plate is stationary and the water jet is
impinging on its center, we are assuming that the temperature distribution will be symmetric.
The plate surface is 240 by 240 mm, and is 6 mm thick. The thermocouples are 16 mm apart, and
the tip of the thermocouple is 1 mm under the top surface of the plate. The plate is originally
heated up to 900 °C, and then is cooled down by the impinging water jet. Thermocouple readings
are fed into the CRPSO inverse solver that was developed in Chapter 3, which produces the heat
fluxes for each thermocouple location, i.e. different radial locations. Figure 5.9 shows the

readings of the first to the eighth thermocouple, in order from left to right.
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Figure 5.8: Schematic Arrangement of Thermocouples under Impinging Jet
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Figure 5.9: Top Surface Heat Flux History Obtained By Inverse Analysis of Temperature Readings at

Thermocouple Locations.

Based on the symmetry assumption, only one quarter of the plate is modeled in the
structural analysis. Figure 5.10 shows the whole geometry and the modeled area (shaded). The
jet is impinging on the center and the water moves radially over plate. In order to discretize the
domain, shell elements are used.

Figure 5.11 shows the temperature distribution on the top surface of the plate a few
seconds after the start of the cooling process. Figure 5.12(a) shows the contours of the vertical,
out of the plane displacement (in mm) at the end of the cooling process when the temperature
over the plate reaches a nearly uniform value of around 130 °C. Figure 5.12(b) shows the
contours of von Mises stress at the same time. Figure 5.13 shows the maximum out of plane
deflection vs. the strip thickness at the end of the cooling process. As expected, in thicker strips

the difference in temperature across the plate increases, which results in a higher deformation.

Impingement

Symmetry Boundary

Figure 5.10: Plate Geometry; Only the Shaded Area is Modeled.
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Figure 5.11: Temperature Distribution in the Plate a Few Seconds after the Start of the Cooling Process
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Figure 5.12: Contours of (a) Z Displacement (Out of Plane) in Millimeters and (b) von Mises Stress in Pascals

at the End of the Cooling Process
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Figure 5.13. Maximum Out of Plane Displacement vs. Strip Thickness for the Stationary Plate
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5.6. Moving Plate

In this section, we use the results of Chapter 4 (heat fluxes vs. time for moving plates) to
model the structural field during the cooling process. The parameters that were studied in the
previous chapter will also be studied here. These parameters are the plate moving speed, the jet
configuration (inline, half-staggered, and full-staggered), and jet line spacing.

There are several ways that one can study the history of the structural field. We can study
each pass in isolation, starting with a flat plate with no residual stress in it. While this may be
interesting from an academic point of view, it is not a good representation of what happens in
reality. The other approach would be to start with a hot flat plate with no residual stress, just out
of the furnace, and then apply the boundary conditions in time, until the temperature reaches the
coiling temperature, or any lower temperature that we might be interested in. In this research,
both of these strategies are used. First, we apply three isolated passes of the heat flux, each in
one of the three temperature zones discussed in the previous chapter (high, mid, and low
temperature). Then, we start from the hot plate coming out of the furnace, and apply the heat
fluxes until it reaches temperatures of around 500, 300, and 100 °C. Note that in all these
simulations, instead of a moving plate, the heat fluxes move over the plate with respect to time.

Figure 5.14 shows an oblique view of the deformed moving strip, as well as the edge of

the undeformed one.

I ——

Figure 5.14. The Deformed and the Edge of the Undeformed Strip in a Moving Case
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5.6.1. Single Passes

Single pass simulations were performed for three temperature zones (high, mid, and low
temperatures). Figure 5.15 - Figure 5.17 show the results of these simulations for different
setups. In each case, we are assuming that the plate is entering the cooling station with uniform

temperature distribution and no initial stress or deflection.
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Figure 5.15. Single Pass Results for High Temperature Range Cooling
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Figure 5.16. Single Pass Results for Mid Temperature Range Cooling.
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Figure 5.17. Single Pass Results for Low Temperature Range Cooling
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As seen in the above figures, higher maximum temperature difference across the plate
width results in a higher maximum von Mises stress, and maximum displacement. In each of
these figures, values are typically larger for the no-stagger (inline) cases (S1, S2, S7, and S8),
followed by the half-staggered ones (S3, S4, S9, and S10). The fully-staggered setups (S5, S6,
S11, and S12) have the lowest values of the lateral temperature variations, as well as the lowest
values of the von Mises stress and displacement. The most significant factor in controlling the
stress and flatness in the strips is the jet configuration, and the most desirable configuration is the
one that promotes a more uniform distribution of temperature across the plate width.

Among the cases with the same nozzle configuration, plate speed is the next important
factor in determining the values of stress and deformation. Plates traveling at slower speeds are
cooled down more uniformly, and will have less stress and deflection in them. Finally, longer jet
spacing gives the opportunity of a more uniform cooling and causes less deflection in the plate.
However, the effect of jet line spacing and plate speed is much less significant than the effect of
jet stagger.

As expected, the cooling in the low temperature zone has the lowest effect on the plate
deformation. It should be noted that in this temperature range, there is practically no phase

transformation and already all of the steel is transformed to ferrite.

5.6.2. Multiple Passes

For the results in the previous section, we were assuming an initial uniform temperature
distribution, and no initial stress or deflection in the plate. In Figure 5.18 - Figure 5.20, we will
study the effect of the initial non-uniform temperature distribution and stress and deflection in
the plate. In order to do this, we start with a uniform hot plate with no stress and deflection,
coming out of furnace at about 750 °C, and then through multiple passes through the cooling
station, we lower the temperature to 500, 300, and 100 °C, and display the results in Figure 5.18,
Figure 5.19, and Figure 5.20, respectively.
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Figure 5.18. Results for a Plate Cooled Down to 500 °C
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Figure 5.19. Results for a Plate Cooled Down to 300 °C
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Figure 5.20. Results for a Plate Cooled Down to 100 °C
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The trend for the effect of jet stagger, jet line spacing, and plate speed are similar to those
observed in section 5.6.1. It is also observed that lowering the final coiling temperature will
result in lowering the stress and deflection. This is due to the fact that thermal contraction of

ferrite will cancel out some of the volumetric expansion due to the austenite to ferrite

transformation.

5.6.3. Effect of Plate Thickness

Figure 5.21 shows the variation of the maximum out of plane displacement for the
moving plate versus the strip thickness, for case S1, when continuously cooled down to around
300 °C. The trends for all of the moving plate cases are similar, and resemble the trend for the

stationary plate, as depicted in Figure 5.13.
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Figure 5.21. Maximum Out of Plane Displacement vs. Strip Thickness for the Moving Plate

5.7. Conclusion

In this chapter, the structural behavior of a hot steel strip when subjected to cooling by
circular water jets was studied, by combining the heat transfer, phase transformation, and
structural models. The heat transfer model uses the heat fluxes obtained by an inverse analysis of

the thermocouple readings, and the phase change model is a detailed simulation using the
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Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The model is validated using sample cases
in the literature.

The cooling of both the stationary and the moving plates were studied. It was found that
the maximum temperature difference across the plate width is directly affecting the maximum
von Mises stress and displacement. Also, these values are typically larger for the no-stagger
(inline) cases, followed by the half-staggered ones. The fully-staggered setups have the lowest
values of the lateral temperature variations, as well as the lowest values of the von Mises stress
and displacement. The most significant factor in controlling the stress and flatness in the strips is
the jet configuration, and the most desirable configuration is the one that promotes a more
uniform distribution of temperature across the plate width.

Plate speed is the next important factor in determining the values of stress and
deformation. Plates traveling at slower speeds are cooled down more uniformly, and will have
less stress and deflection in them. Finally, longer jet spacing gives the opportunity of a more
uniform cooling and causes less deflection in the plate. It was also observed that increasing the
plate thickness, increases the maximum deflection, due to a larger temperature gradient through

the thickness.
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6. Conclusion and Future Work

6.1. Conclusion

The controlled cooling of steel strips on run-out table is a crucial procedure that can
result in obtaining desired mechanical properties. Despite being used in steel mills for decades,
the process is still mainly based on trial-and-error. This is due to the complicated nature of the
events that happen, and the highly coupled nature of the thermal, fluid flow, microstructure, and
mechanical fields. Thus, there is still a need to study this process in more details.

The present study is a part of a comprehensive research project undertaken in UBC
[1,8,9,27-32]. Here, we first established a reliable inverse analysis tool that can be used to obtain
the boundary heat fluxes from the temperature history of thermocouples implemented inside the
plate. Then, these heat fluxes were studied to understand the heat transfer behavior of boiling
water impinged on a moving hot plate through multiple circular jets. Finally, the heat fluxes
were coupled with the microstructure and mechanical fields to study the thermal stresses and
deflection or warping in the steel plates. Recommendations were made to the industry about the
ways to improve the cooling performance, and reduce the adverse structural effects. The

following subsections summarize the findings and contributions of this research.

6.1.1. 3D Finite Element Program for the Inverse Heat Conduction Analysis

A gradient-based algorithm for the inverse heat conduction analysis is developed. In this
method, the least-square method, future time step technique, zeroth order regularization, and
sequential function specification are used. The program can account for the heat generation
during the phase transformation as a source term in the heat transfer equation. The results
showed that the method is highly sensitive to the measurement errors, and becomes unstable in
small time steps, thus limiting its application in real run-out table studies.

As a remedy for the shortcomings related to the gradient-based inverse heat conduction
solvers in our steel cooling applications, such as the instabilities due to the thermocouple reading
noise and low temporal resolution, three gradient-free algorithms were studied. These methods

are the artificial neural networks, genetic algorithms, and particle swarm optimization.

6.1.2. Study of the Neural Network Algorithms for Inverse Heat Conduction Analysis
Several types of artificial neural networks were studied in this research. Our

investigations showed that a suitable formulation for the inverse heat conduction problems in
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neural networks should relate the gradient (and not the values) of the inside temperature to the
boundary heat fluxes. Also, it was found that the radial basis function is the most suitable type of
neural networks for inverse heat conduction problems.

The artificial neural networks were shown to be capable of capturing the whole thermal
history on the run-out table, but not very effective in restoring the detailed behavior of the
boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary
condition profile is different. Thus, their application in the run-out table heat transfer analysis

will be limited to a general prediction of the whole history.

6.1.3. Study of the GA and PSO Algorithms for Inverse Heat Conduction Analysis

While GA has been previously used for inverse heat conduction analysis, the application
of PSO to these problems was first studied in this research. GA and PSO are more effective in
finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear
cases. However, their convergence takes longer. For the first time, comparison was made
between GA and PSO variations in terms of both the computational efficiency and effectiveness
in dealing with the noisy data in inverse heat conduction problems. PSO was found to improve
efficiency (i.e., reduce the required computational effort), especially in more complex test cases.
In addition to the basic PSO algorithm, two other variations were studied in this research. One of
them, the complete repulsive PSO (CRPSO), was introduced for the first time in this work.
CRPSO showed the best performance among three other versions. The effectiveness of PSO was
also studied in the presence of noise in inverse heat conduction applications. PSO proved to be
effective in handling noisy data, especially when its performance parameters were tuned. The
proper choice of the regularization parameter helped PSO deal with noisy data, similar to the
way it helps the classical function specification approaches. This research showed that an
increase in the self-confidence parameter is also effective, as it increases the global search
capabilities of the algorithm. RPSO was found to be the most effective variation in dealing with
noise, followed closely by CRPSO. The latter variation was recommended for inverse heat

conduction problems, as it combines the efficiency and effectiveness required by these problems.
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6.1.4. Improvements in the Efficiency and Effectiveness of Gradient-free Algorithms for
IHC Analysis

This research showed that while both GA and PSO are capable of overcoming many of
the shortcomings faced by the classical inverse analysis algorithms, they suffer from a slow
convergence rate. Several modifications were proposed for the first time in this research that
resulted in a faster algorithm for inverse analysis of heat transfer. Sequential formulation, i.e.
solving the inverse problem for each separate time step was found more efficient than a whole
domain implementation. Also, in the case of multi-dimensional problems with multiple sensors,
we proposed a multi-objective optimization formulation that was very successful in accelerating
the solution. The relative speedup seemed to be independent of the number of spatial
components. Introducing the concept of elite members to the PSO algorithm also resulted in a
faster convergence; however, the improvement was of less magnitude. It also looked to be more
effective in simpler cases, i.e. smaller problems with fewer internal measurement points.

Also, the concept of future time steps was borrowed from the function specification
methods, and for the first time was applied to the sequential stochastic inverse algorithms. It
proved to be very helpful in making the method more stable, especially when used in
combination with a Tikhonov regularization term and tuning of the self-confidence parameter in
PSO. The developed modified formulation for the inverse heat conduction problem and PSO
implementation seem to be promising in terms of stability and performance, and make an

effective and efficient algorithm for inverse heat conduction problem.

6.1.5. Surrogate Model Based Acceleration of GA and PSO Solvers

In order to further improve the convergence characteristics of the proposed stochastic
inverse heat conduction algorithms, the concept of inexact pre-evaluation using surrogate models
was introduced and used to enhance the speed of evolutionary algorithms in solving the inverse
heat conduction problems. In this strategy, the entire candidate solutions are first roughly
evaluated using a much simpler surrogate model, and only the top performing members are
exactly evaluated using the full direct solvers, such as finite element method. It was found that
polynomial methods are the cheapest selection, both during the model construction phase, and
the implementation. Radial basis function (RBF) and feedforward neural networks have similar
construction time, but in making prediction, RBF models perform faster. Kriging model is the

slowest, especially when the number of unknowns increases. All the investigated surrogate
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models perform very well in predicting linear cases with no added noise. Nonlinear domains are
much harder to predict. The most suitable model for noisy nonlinear cases is the RBF model.
Since real-world cases of inverse heat conduction problem are normally nonlinear and noisy, this
method was recommended for these applications in this study. An adaptive selection scheme
based on the expected improvement of the objective function was found to be the best
performing model management strategy. Also, making a separate model for each sensor was
found to be the most appropriate way to construct the surrogate model. If done properly,
surrogate modeling can speed up the stochastical methods of solving the inverse heat conduction
problem up to around 5 times. Creating the structure for a stable, accurate, and fast inverse heat

conduction solver is one of the major contributions of this research.

6.1.6. Characterization of the Water Jet Impingement Cooling on a Moving Plate

Boiling heat transfer on a hot plate cooled by multiple water jets and multiple jet lines in
an industrial scale experimental setup was studied in this research. Nozzle configuration, plate
speed, and jet line spacing were varied in the experiments. Thermocouple readings were
analyzed using a 3D inverse heat conduction procedure. It was found that the surface
temperature is the most significant factor affecting the heat transfer behaviour on the plate. At
high temperatures, the plate surface is covered with a condensed vapour layer that acts like an
insulation blanket, and requires an impinging jet with high momentum to break it down. This
translates into a stable film boiling regime, with reduced values of heat fluxes. Heat transfer rate
was shown to increase at medium temperatures where the vapour thickness is smaller. For low
entry temperatures in a multi jet line experiment, the heat transfer is lowered again. One of the
very interesting findings of this study was the fact that in the low temperature region, the
maximum heat flux does not occur at the impingement point, but at a location between the jets,
due to the formation of an interaction water fountain.

The most important effect of nozzle stagger is the uniformity of heat transfer across the
width of the plate. The most uniform distribution is happening in the case of fully staggered
configuration. The heat transfer between two successive rows of jet lines is affected by the jet
line distance. In higher jet line distances, the interaction effects become less significant, and a
more uniform distribution is observed. However, it was shown that when the jet lines are closer,
the effect of interaction is more pronounced. In this study, it was observed that in medium and

high temperatures, there is a spike in the heat flux values in the interaction zone. In the low
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temperature range, because the water does not evaporate quickly, a pool of water forms on the
plate surface, resulting in a flattened heat flux versus time profile. The plate speed affects the
heat transfer rate under the impingement point for the higher surface temperatures. In the high
entry temperatures, the impingement heat transfer rate is lower when the plate is moving at a
higher velocity. The plate speed however does not significantly change the heat transfer behavior

in the other parts of the plate surface.

6.1.7. Study of the Structural Effects of the Controlled Cooling of Steel Strips

It is desirable that the strips maintain their flatness throughout the controlled cooling
process. Thus, it was necessary to study the effect of cooling patterns on the structure of the
strips. A literature survey shows that the previous researches in this field are very preliminary,
and include major simplifications. One of the major simplifications in the previous studies is the
oversimplified phase transformation model. For the first time in this work, an advanced phase
transformation model, developed in UBC, is used in association with the thermal and structural
models. In this algorithm, the static recrystallization kinetics is simulated by the Johnson-Mehl-
Avrami-Kolmogorov (JMAK) theory. This model is based on the real physics of the problem,
and enhances the accuracy of our simulations.

Another improvement in the structural modeling in this research is the use of real heat
flux data as the boundary conditions in the thermal field. The other researches assume a very
simplified distribution of temperature or heat flux across the plate, and assume a linear decrease
in temperature during the cooling on the run-out table. This research uses the results of a 3D
inverse analysis of the thermal field, and applies an accurate heat flux boundary condition on the
surface of the plate.

Also, it was shown that the most significant factor in controlling the stress and flatness in
the strips is the jet configuration, and the most desirable configuration is the one that promotes a
more uniform distribution of temperature across the plate width. Plate speed was found to be the
next important factor in determining the values of stress and deformation. Plates traveling at
slower speeds are cooled down more uniformly, and will have less stress and deflection in them.
Finally, longer jet spacing gives the opportunity of a more uniform cooling and causes less
deflection in the plate. It was also observed that increasing the plate thickness, increases the

maximum deflection, due to a larger temperature gradient through the thickness.
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6.2. Suggestions for Future Work

6.2.1. Experimental Study of Higher Plate Speeds, Different Flow Rates, and Water

Temperatures

Using a higher plate speed will make the simulation closer to the real case happening in a
steel mill. Also, water flow rate and temperature are the other parameters that can be used in a
steel mill, in order to control the characteristics of the heat transfer. Thus, an experimental study

of the effect of these parameters will be beneficial.
6.2.2. Correlations for Heat Transfer of Multiple Jets Impinging on a Hot Moving Plate

More data points are needed to create correlations for the important heat transfer
characteristics, such as the maximum heat flux and total extracted heat, as functions of the plate

speed, number and configuration of the jets, and the water temperature and flow rate.
6.2.3. Coupling of Hydrodynamics and Heat Transfer Models

A proper heat transfer model requires information about the water velocity and pressure
distribution on the plate surface. The experimental and numerical study of the hydrodynamics of
the water jet impingement on a moving plate has been started in UBC [32]. It should be coupled
with the heat transfer studies, in order to provide a more comprehensive model for the

phenomena in the jet impingement cooling of the hot moving plates.
6.2.4. Experimental Measurements and Correlations for Thermal Stresses and Deflections

The thermal stresses and deflection on a water cooled hot plate should be investigated
experimentally. The results of the existing numerical model should be compared with the
experimental values. Also, similar to the heat transfer case, correlations should be developed in
order to find the effect of cooling parameters on the structural field. The effect of steel
composition and physical properties on the structural results should also be investigated to make

future predictions possible, regardless of the type of steel that is used.
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6.2.5. Developing Mechanistic Models for Moving Plate Jet Impingement Boiling

The knowledge that is gained by studying the heat transfer and hydrodynamics of the jet
impingement on a moving plate can be used to develop and validate a mechanistic model for the

different zones of the jet impingement boiling heat transfer.
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Appendix A. Definition of Terms in the Finite Element Heat Conduction

Formulation

Table A. 1. Definition of the Terms in the FE General Heat Conduction Equation

[c]=], peINT [NJav

Thermal capacity matrix

k1= [B]' [K]Blav

Thermal conductivity matrix

[, 1= J b I v las

Thermal conductivity matrix due to convection B.C.

[, 1= [l v las

Thermal conductivity matrix due to radiation B.C.

{of =] «"INTav

Heat flux vector due to internal heat generation

foy =[ ¢'In]as

Heat flux vector due to input surface flux

{fof =7, In"Tas

Heat flux vector due to convection B.C.

fof = [ xz|nv T as

Heat flux vector due to radiation B.C.

{r}, i}

Vector of global nodal temperatures and temperature

gradients, respectively.

xk=eo(T)+T )T, +T,)

Equivalent heat transfer coefficient due to radiation

{g_i} _ aa_X(N,T,- )=[BYT¥

Partial derivative of temperature

k. 0 0
[K]= k, 0 Element conductivity matrix
sym k,
Approximation or shape function , n is the number of
IN]=[N, W, N,]

nodes per element
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Table A. 2. Definition of the Terms in the Heat Transfer Equation

Term Name Expression
Nodal heat flux A I S( . . 1))
t+At t+At i— t+At t+At i—
L = h""'N° N T,-—%T -dS
\ ~,cu |contribution  due  to Q ISh /
+At
Q . . . T (i=1)
convection B.C, nonlinear | Nqte- J’ A DN NS L gS= K
Sh
and transient effects
Nodal heat flux . .
t+AtQh<‘ ) — t+AtK.(i—1)NS NS(t+AtT —HAtT(i_l))'dS
Ay | contribution  due  to Si '
t+At r
Q radiation B.C., nonlinear Note: J' A EDNSTNS L g =K
Sh
and transient effects
Nodal heat flux
At (Y T t+At g7 (i-1) AL (i-1)
Ay | contribution  due  to Q = .[VB KT B T -dy
+At c
Q .. . )
conductivity,  nonlinear | Njqe- IBT HA D B gy =t g
v
and transient effects
Nodal heat flux
contribution due to o A A
o z+Az(fic‘ b _ IV +A! (pc)(z—l) N’ N- [(H—At T(I_l)—tT)/Al]'dV
t+At ~Ac

thermal capacity,
nonlinear and transient

effects

A (i) [1+At 6Dt T]/ At
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