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Abstract 
 

This study engages in the thermal analysis of water jet cooling of a hot moving steel strip on a 

run-out table. General 3D FE programs are developed for the direct and inverse heat transfer 

analysis. Studies show that gradient-based inverse algorithms suffer from high sensitivity to 

measurement noise and instability in small time steps. These two shortcomings limit their 

application in modeling of the real problems. 

Artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization 

(PSO) methods are applied to the inverse heat conduction problem in order to overcome the 

challenges faced by the gradient-based methods. Among them, GA and PSO are found to be 

effective. CRPSO, a variation of PSO, shows the best computational performance. However, 

compared to the gradient-based methods, these algorithms are very slow. Thus, a set of 

modifications were performed in this research to accelerate their convergence rate. Sequential 

formulation using the future time steps, multi-objective optimization, and inexact pre-evaluation 

using surrogate models are some of these modifications. 

Inverse analysis of experimental data shows that heat transfer behavior on the plate is mainly a 

function of the surface temperature, and can be categorized into three zones: High, mid, and low 

temperature. The effects of jet line configuration, jet line spacing, and plate moving speed were 

studied. The most uniform distribution happens in the case of fully staggered configuration. In 

higher jet line distances, the interaction effects become less significant, and a more uniform 

distribution is observed. The plate speed affects the heat transfer rate under the impingement 

point for the higher surface temperatures. In the high entry temperatures, the impingement heat 

transfer rate is lower when the plate is moving at a higher velocity. The plate speed does not 

significantly change the heat transfer behavior in the parallel flow zone. 

Finally, the results of the heat transfer analysis were coupled with the microstructure and 

structure fields, to study the thermal stresses and deflection occurring in the strips during the 

cooling process. It was found that fully-staggered jet configuration, larger spacing between jet 

lines, and lower plate speeds result in a less deformed steel strip. 
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1. Introduction 

1.1 Motivations for Controlled Cooling of Steel 

Steel is one of the most widely used materials in today’s industries. The development of 

advanced high strength steels (AHSS) is very crucial in many different aspects of industry. Steel 

strips are used in various applications ranging from automobile bodies to drink cans. Roughly, 

25 to 30% of this production includes the hot rolling process [1]. Hot rolled steel sheets can be 

used for piping and tubing, automotive parts, rail cars, and many more applications. The above 

factors stimulate the research and need for more detailed study on the procedure of steel 

production and how to control the resulting mechanical properties. 

The microstructure and mechanical properties of steel strips can be highly modified by 

the controlled cooling on the runout table. A finer grain can be achieved by using this process, 

which in turn results in an increase in strength, an improved notch toughness and resistance to 

brittle fracture, and contributes to a significant reduction in carbon content, while still 

maintaining the same strength level. The lower carbon content improves formability and 

contributes to superior notch toughness and weldability. In short, controlled cooling process will 

assure a balanced combination of mechanical properties. Controlled cooling can also eliminate 

the troublesome differences in strength among samples taken from the head, body and tail of a 

steel coil. 

Detailed study of the effect of cooling profile on the properties of steel began in the early 

sixties, mainly in the Swinden Laboratories in England [2]. Reference [3] is an early publication 

that describes the advantages of this kind of treatment. Recognizing the major influence of 

“time-temperature cycle during cooling” on the grain properties, a research program at J&L steel 

company started in 1961, in order to design an optimum cooling curve [2]. Since then there has 

been a great amount of effort to study and design the cooling process [1,4-11]. 

In a typical production line, the slabs are reheated in a furnace to a hot rolling temperature close 

to 850 °C, then rolled through roughing and finishing mills, and then they are cooled down to a 

coiling temperature of 550 – 650 °C while rolling on a so-called runout table (ROT). Figure  1.1 

shows a schematic view of such a configuration in a steel mill. 
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• Establishing quantitative correlations between chemistry, microstructure, and property as 

a guide for steel grade (alloy) design and steel processing. 

• Developing new methods for inverse heat conduction problem (IHCP) to model the 

moving heat flux front on the cooled surface. 

• Investigation of the errors included in surface temperature measurements due to the 

presence of thermocouples and possible ways to remedy the problem. 

• Developing a special 2D program to model the runout table applications with direct and 

inverse heat transfer analysis capabilities. 

• Conducting experiments on the heat transfer of a single jet or multiple jets impinging on 

stationary and moving plates. 

• Studying the effect of the flow rate and inclination angle of a bottom jet. 

• Conducting experiments and numerical simulation of the jet impingement 

hydrodynamics. 

1.3 The Need for Inverse Heat Conduction Solver 

Solving the original Navier-Stokes and energy equations directly, in order to have a 

proper estimate of the heat flux to the model is quite difficult, and requires a lot of 

simplifications. Instabilities in the vapour / liquid interface are very common due to the larger 

density of the liquid that overrides the vapour. Turbulence will be present and its modeling is 

extremely challenging. Heat generation inside the strip due to a phase change in steel is another 

factor that complicates the study of these problems. Water moving speed is usually approximated 

with very simplified models and correlations. The different physical fields, i.e. hydrodynamics, 

heat transfer, microstructural, etc. are highly coupled. Boiling heat transfer is also strongly 

affected by factors such as surface roughness that are very difficult to implement in the current 

numerical simulation models. While these mechanistic models [33,34] provide a valuable insight 

into the physics of the jet impingement boiling, there is still a need to study the jet impingement 

boiling process in larger scales and using the experimental data. Experimental measurements that 

may be used to adjust and verify the numerical models are also quite challenging. As shown in 

Figure  1.7, recent studies in the group [25] show that errors in the thermocouple measurement of 

the top plate surface may exceed 200 oC. As indicated in Reference [25], there are several 

parameters that contribute to these significant errors. One of these factors is the thermal mass of 



 
 

 

 
 

 

the th

due 

insul

surfa

betw

distor

meas

of th

on th

 

 

indus

simu

surfa

hermocouple

to the heat 

ating vapour

ace. More im

een their two

rtion in the 

suring the su

ermocouples

he surface. 

F

An appro

stry-scale ex

lations. This

ace temperatu

es and wires

conduction

r layer on th

mportantly, s

o junctions, 

electric cur

urface tempe

s inside a pl

Figure  1.7. Tem

oach that ma

xperiments a

s approach r

ures and/or h

 on the plate

n through th

he surface an

since the th

and water is

rrent and th

eratures usin

late, and use

mperature Pro

ay overcom

and only util

requires inve

heat fluxes th

e surface, wh

he wires. A

nd create a co

hermocouple

s a conductiv

hus, some er

ng thermocou

e numerical 

ofiles During t

e some of t

lize inner su

erse heat tran

hat would be

hich causes 

Also, the pre

ontact betwe

s work thro

ve medium f

rror in the 

uples, it is m

simulations 

the Water Jet

the above p

ub-surface te

nsfer conduc

e used in con

some chang

esence of w

een the liqui

ough creatin

for electricit

measuremen

more accurat

to find the 

t Impingemen

problems is 

emperature 

ction (IHTC

nsequent sim

ge in the ther

wires may b

id water and 

g an electri

ty, there will

nts. Thus, in

te to use the 

boundary co

t [25]. 

to use the r

measuremen

C) analysis to

mulations. 

7 
 

rmal field 

break the 

the plate 

c current 

l be some 

nstead of 

readings 

onditions 

 

results of 

nts in the 

o find the 



 
 

 

8 
  
 

 

1.4 Inverse Heat Conduction Analysis Methods 

In an inverse heat conduction problem, the boundary conditions, initial conditions, or 

thermophysical properties of material are not fully specified, and they are determined from 

measured internal temperature profiles. The main problem is that the effect of changes in 

boundary conditions are normally damped or lagged, i.e. the varying magnitude of the interior 

temperature profile lags behind the changes in boundary conditions and is generally of lesser 

magnitude. Therefore, such a problem would be a typically ill-posed problem and would 

normally be sensitive to the measurement errors. Thus, in general, the uniqueness and stability of 

the solution are not guaranteed [35-37]. Inverse problems can be formulated either as parameter 

estimation or function estimation problems.  

Inverse heat conduction problems, like most of the inverse problems encountered in 

science and engineering may be reformulated as an optimization problem. Therefore, many 

available techniques of solving the optimization problems are available as methods of solving 

the inverse problems. However, the corresponding objective function of the inverse problems 

can be highly nonlinear or non-monotonic, may have a very complex form, or in many practical 

applications, its analytical expression may be unknown. The objective function usually involves 

the squared difference between measured and estimated unknown variables. If Y and T are the 

vectors of the measured and estimated temperatures, then the objective function will be in the 

form of ܷ = ሾࢅ − ࢅሿ்ሾࢀ −  ሿ       ( 1.1)ࢀ

However, normally there is need for another term, called “regularization” in order to 

eliminate the oscillations in the results and make the solution more stable. The effect of this term 

and the strategy of choosing it will be discussed in details in the subsequent chapters. 

The above equation is only valid, if the measured temperatures and the associated errors have the 

following statistical characteristics [38]: 

 The errors are additive, i.e. 

      Yi = Ti + εi      ( 1.2) 

where εi is the random error associated with the ith measurement. 

 The temperature errors have zero mean. 

 The errors have constant variance. 



 
 

 

9 
  
 

 

 The errors associated with different measurements are uncorrelated. 

 The measurement errors have a normal (Gaussian) distribution. 

 The statistical parameters describing the errors, such as their variance, are known. 

 Measured temperatures are the only variables that contain measurement errors. Measured 

time, positions, dimensions, and all other quantities are all accurately known. 

 There is no more prior information regarding the quantities to be estimated. If such 

information is available, it should be utilized to improve the estimates. 

While classical methods, such as the least square regularization method [35,39], the 

sequential function specification method [36,39,40], the space marching method [41], conjugate 

gradient method [42,43], steepest descent method [44], online input estimation [45,46] and the 

model reduction model [47-49] are vastly studied in the literature, and applied to the problems in 

thermal engineering [50-56], including water cooling on run-out table [57], there are still some 

unsolved problems: 

• The solution often shows some kinds of overshoot and undershoot, which may result in 

non-physical answers. 

• Very high heat flux peak values such as those experienced in jet impingement cooling are 

normally damped and considerably underestimated. 

• Results are very sensitive to the quality of input. Measurement errors are intrinsic in 

laboratory experiments, so we need a more robust approach in solving the inverse 

problem. 

• The time step size that can be used with these methods is bounded from below, and 

cannot be less than a specific limit [35]. This causes temporal resolutions that are not 

sufficient for some real world applications, where changes happen very fast, such as a hot 

steel strip traveling at a high speed on a run-out table. 

State of the art and more recent optimization techniques may be used in the solution of the 

IHTC problem to aid in stability, solution time, and to help in achieving global minimum 

solutions. Some of these recent techniques are briefly reviewed in the following section:  

• Genetic Algorithm: This technique has been widely adopted to solve inverse problems 

[58-60]. Genetic algorithms (GAs) belong to the family of computational techniques 

originally inspired by the living nature. They perform random search optimization 

algorithms to find the global optimum to a given problem. The main advantage of GAs 
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may not necessarily be their computational efficiency, but their robustness, i.e. the search 

process may take much longer than the conventional gradient-based algorithms, but the 

resulting solution is usually the global optimum. Also, they can converge to the solution 

when other classical methods become unstable or diverge. However, this process can be 

time consuming since it needs to search through a large tree of possible solutions. 

Luckily, they are inherently parallel algorithms, and can be easily implemented on 

parallel structures. Another remedy is to use them in conjunction with other classical 

methods to overcome the disadvantages of both methods.  

There are mainly two approaches that may be used to overcome the difficulties of GA. 

One approach is to use the solution of classical approach with large time steps as an 

initial guess to GA. Since GAs do not require any information about the derivatives, they 

can be used with smaller time steps. This can also improve the quality of the results in 

terms of reducing the undershoots and overshoots, and reduce the dispersion and 

diffusion of the peak values. Another approach is to use the solution of classical approach 

as the initial guess, then using some previous knowledge of the final answer as a way to 

find the problematic parts of the curve, then using GAs to modify the values of those 

sections.  

• Neural Networks: Artificial neural networks can be successfully applied in the solution 

of inverse heat conduction problems [61-63]. They are capable of dealing with significant 

non-linearities and are known to be effective in damping the measurement errors. 

• Self-learning finite elements: This methodology combines neural network with a 

nonlinear finite element program in an algorithm which uses very basic conductivity 

measurements to produce a constitutive model of the material under study. Through 

manipulating a series of neural network embedded finite element analyses, an accurate 

constitutive model for a highly nonlinear material can be evolved [64,65]. It is also 

shown to exhibit a great stability when dealing with noisy data. 

• Maximum entropy method: This method seeks the solution that maximizes the entropy 

functional under given temperature measurements. It converts the inverse problem to a 

non-linear constrained optimization problem. The constraint is the statistical consistency 

between the measured and estimated temperatures. It can guarantee the uniqueness of the 



 
 

 

11 
  
 

 

solution. When there is no error in the measurements, maximum entropy method can find 

a solution with no deterministic error [66]. 

• Proper Orthogonal Decomposition: Here, the idea is to expand the direct problem 

solution into a sequence of orthonormal basis vectors, describing the most essential 

features of spatial and temporal variation of the temperature field. This can result in the 

filtration of the noise in the field under study [67]. 

• Particle Swarm Optimization (PSO): This is a population based stochastic optimization 

technique developed by Eberhart and Kennedy in 1995 [68], inspired by social behavior 

of bird flocking or fish schooling. Like GA, the system is initialized with a population of 

random solutions and searches for optima by updating generations. However, unlike GA, 

PSO has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current 

optimum particles. Compared to GA, the advantages of PSO are the ease of 

implementation and that there are few parameters to adjust. Some researchers showed 

that it requires less computational expense when compared to GA for the same level of 

accuracy in finding the global minimum [69]. PSO has been successfully applied in many 

areas, e.g. function optimization, artificial neural network training, fuzzy system control, 

and other areas where GA can be applied. It has also been successfully employed by 

many researchers in solving inverse heat transfer problem, mainly inverse radiation [70]. 

In this research, we will study the genetic algorithm, neural network, and particle swarm 

optimization techniques in more details. We will investigate their strengths and weaknesses, and 

try to modify them in order to increase their efficiency, i.e. to lower their computational cost, and 

to increase their effectiveness, i.e. to lower their sensitivity to the measurement errors, in solving 

inverse heat conduction problems. 

1.5 Jet Impingement Heat Transfer 

Jet impingement cooling has been one of the most active areas of research in heat transfer 

for many years. However, due to the complex nature of the involved phenomena, and the ever 

increasing applications of this technique, it continues to attract a considerable amount of 

attention. The major industrial applications of jet impingement are cooling of electronic 

components and controlled cooling of metals after being subjected to hot processes. In each of 
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these applications, a large number of sub-processes are involved, and each of them is very 

complex in nature. Furthermore, in the case of controlled cooling of metals, the hot surface is 

normally moving, and there are multiple jets in various configurations impinging on its surface. 

Between different kinds of jets, round jets especially benefit from a higher specific cooling 

performance (ability of removing more heat per unit volume of the coolant), and can create more 

uniform cooling patterns on the plate surface, compared to the sprays and planar jets [71]. 

Hence, a more detailed study of the behavior of multiple circular jets impinging on a moving 

surface seems to be highly beneficial.  

 A good amount of research in this field has been focused on understanding the basic 

underlying mechanism of the jet impingement cooling. Thus, the studies are mainly focused on 

one single jet impinging on a stationary surface. While many researchers have tried to study the 

effects of multiple jets, or a moving surface, these two parameters are not adequately considered 

together in order to understand their coupled impacts. Also, previous studies usually categorize 

the wet area only into two zones: the impingement zone, and the parallel flow zone. While this 

may be an acceptable classification system for a stationary plate and a single nozzle, it is not 

very suitable for multiple jets impinging on a moving surface. The main problem with this 

classification is that there is no distinction between the parallel flow zone within a row of jets 

and the parallel flow zone between two consecutive jet rows. Moreover, many researchers have 

performed their experiments on a scaled down setup, while in this research we are using a large 

experimental industrial scale facility similar to the runout table facilities in material processing 

industries. 
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easier for experimentally investigation and numerical modeling, this case does not exist in 

industrial applications. 

What happens in a typical steel mill is water cooling of a moving hot surface. In the 

moving case, heat transfer caused by the impinging jets is no longer symmetrical. On one side, 

where the water flow and the work piece move in the same direction, the vapour layer thickness 

in the film boiling region decreases. On the other hand, the thickness of the vapour layer is 

increased in the side that the water flow and the hot surface move in the opposite direction [1].  

Another factor that makes the analysis of the cooling process more complicated is the 

dependency of the thermal conductivity and the specific heat of the steel on temperature. Also, 

phase transformation in the steel affects the thermal field through the latent heat of 

transformation. 

Ochi et al. [15] experimentally investigated the transient boiling heat transfer to a circular 

water jet impinging on a hot plate. The temperature at the bottom was measured, and the 

temperature and flux at the top cooling surface were inversely calculated using the finite 

difference method. In the experiment, it was observed that a stable film boiling was maintained 

over the whole cooling surface of the heated plate, and the temperature fell linearly with time.  

Vader et al. [73,74] studied the convective nucleate boiling on a heated surface cooled by 

an impinging planar water jet under a steady-state condition. The temperatures were measured 

by TCs at the opposite dry face to the cooled top surface. The temperature and heat flux at the 

cooled surface were found by solving the steady state equation. In the calculations, the boundary 

conditions were assigned from the least squares cubic spline fit of the measured temperatures.  

Kumagi et al. [52] studied the transient cooling of a hot plate with an impinging water jet. 

Temperatures were measured at four points at different depths along the plate thickness and at 

nine locations in the width direction. An exponential equation with three coefficients was used to 

describe the temperature profile along the thickness, and then the coefficients were determined 

from the measured temperatures and the least squares method. The approximate temperature 

curve was extrapolated to the surface to obtain the surface temperature. The gradient at the 

surface produced the heat flux. 

Many researchers have studied the jet impingement under steady state conditions, i.e., the 

sample is constantly heated while being cooled by jet impingement. Some good examples are the 

works of Robidou et al. [10,75]. They use a 2D inverse heat conduction solver to find the local 
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heat fluxes and corresponding temperature. They found that in the forced convection regime, 

heat fluxes increase with an increase of subcooling, jet velocity, and decrease of the distance 

from the stagnation line, while in the fully developed nucleate boiling regime, no influence of jet 

velocity, subcooling, and nozzle to plate spacing on the heat flux is observed.  

Xu and Gadala [76] used their developed inverse algorithm [1] to study the heat transfer 

behaviour in the impingement zone under a circular water jet. They found out that the heat 

transfer behaviour in the stagnation zone is mainly affected by the water flow rate, with mild 

effect from the steel grades. Their developed code is 2D, so it cannot predict the effect of 

staggered jet configurations, in addition to not being able of modeling the heat transfer in the 

width of the strip. The study is also mainly focussed on the stagnation region in the stationary 

plate with only a single jet. 

One of the key research papers studying the interaction zone between multiple jets was 

published in 1977 by Ishigai et al. [77]. Unfortunately, this research is focused on the non-

boiling heat transfer. They found that the radial location of interference is an important factor for 

both the hydrodynamics and thermal properties of the flow field. Different behaviors were 

attributed to different values of film Froude number and the Reynolds number based on the 

radius from the center of the jet. The reported thermal quantities are the surface temperature, and 

not the heat flux.  

 Sakhuja et al. [78] used experiments to study the effect of multiple jets on the boiling 

heat transfer on a steady plate. They found that at smaller jet spacing, the area that is covered by 

each jet is small, and crossflow causes a reduction in the heat transfer coefficient. On the other 

hand, a larger distance between the jets results in a smaller ratio of the impinging area to the 

coverage area, which again, reduces the overall heat transfer coefficient. So an optimum heat 

transfer is obtained when the jet spacing is in a bounded range. They found this range to be 

between 8 to 12 times of the one jet diameter.  

 Monde et al. [79] studied the effect of multiple jets on a stationary plate. Between two 

and four circular free surface jets were used. While they concluded that the degree of scatter in 

the results is typical for nucleate boiling, and thus, the number or location of jets has little or no 

effect on the heat transfer behavior, a more careful scrutiny of their data by Wolf et al. [13], 

suggested that they actually do have an effect, and additional investigation is required. 
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 Slayzak et al. [80] studied the effects of interaction between adjacent free surface planar 

jets under non-boiling condition. They observed a strong upwelling of flow (called an interaction 

fountain) in the region between two planar jets. Interestingly, they found that the heat transfer 

under this fountain can be comparable to those related to the jet impingement region. They tried 

to explain this behavior based on the oscillatory nature of the interaction zone, which can 

encourage a strong mixing and intermittent disruption of the thermal boundary layers in the 

interaction region. They also studied the effect of interaction between adjoining rows of circular 

jets under non-boiling condition [81]. Again, an interaction fountain was observed. However, 

unlike the case of planar jets, where a well-defined interaction zone appears midway between the 

impinging jets, the interaction zone between circular jets was found to be irregular, and at a 

location different from the midway point. Also, there is no splattering or hydraulic jump 

occurring in their tests. Obviously, both the splattering and the hydraulic jump can increase the 

complexity of the flow and thermal fields.  

 Filipovic, et al. [71] studied the heat transfer behavior of an array of round jets impinging 

on a moving surface. They have used some correlations for the boiling heat transfer in different 

regions, sometimes even from the stationary plates, and have made some assumptions regarding 

the extent of each zone. These correlations are applied, and the model is solved numerically. In 

their validation, they only consider the starting and coiling temperatures, and not the transient 

behavior of the thermal field. They found out that around 50% of the cooling is done by the film 

boiling mechanism, and the jet impingement regions are responsible for about 30% of the total 

heat extraction. 

 The uniformity of temperature distribution across the plate width when using multiple 

impinging jets was studied by Haraguchi and Hariki [82]. They used a radiation thermometer in 

their experimental setup on a stationary plate. They found the interaction zone to reduce the heat 

transfer coefficient around the impingement locations. To obtain a more uniform temperature 

distribution in the plate, they suggested decreasing the nozzle pitch. Unfortunately, this resulted 

in a reduction of heat transfer coefficient in those areas as well. 

 Liu [8] also studied the effect of jet interaction between adjacent water jets on the heat 

transfer behavior in a simulation of steel runout table. By visual inspection of the experiments, 

he observed that the dark areas that are associated with the high heat flux regions develop 

immediately at the stagnation points under the jets, and then gradually move toward the 
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interaction boundary, where they stabilize. He also observed a strong fountain at the interaction 

zone, accompanied by sizeable water splashes. However, the cooling intensity of water was 

weakened at the interaction region when boiling was the mechanism of heat transfer. He also 

studied the case where jets had different flow rates. In that case, the heat transfer rate under the 

weaker jet was reduced due to the existence of a cross flow created by the stronger jet.  

 Jondhale et al. [83] studied the heat transfer behavior on the top surface of a moving hot 

plate cooled by multiple impinging jets. They observed that there is a huge discrepancy between 

the heat transfer in the impingement zone and interaction zone, until the plate entry temperature 

reaches 200°C, when the water can wet the surface between the nozzles. They also observed that 

larger nozzle spacing in a jet row can actually increase the heat extraction rate under the jet, 

because it prevents having a submerged jet. The heat flux is however reduced in the interaction 

zone when having larger jet spacing. 

 Gradeck et al. [84] studied the effect of moving of the hot surface by impinging a planar 

water jet on a rotating cylinder with an initial temperature of 500 – 600 °C. They observed that 

the heat transfer is significantly changed when the surface is moving. The first effect was a 

homogenization of the boiling curves, and elimination of the “shoulder of flux”. They also 

observed a reduction in the value of the critical heat flux.  

 In this work, we are going to study the boiling heat transfer characteristics of two rows of 

three impinging jets on a moving hot plate. Experiments are conducted in an industrial scale 

setup, and thermocouples are used to measure the temperatures just under the plate surface. Then 

these temperatures are used as the input in an inverse heat conduction algorithm to find the 

boundary heat flux variations in space and time across the width and along the length of the 

moving flat plate. The effects of nozzle configuration, jet line spacing, and plate speed are going 

to be investigated. 

1.6 Thermal Stress and Deflection 

As a result of an uneven temperature distribution in the strip, significant thermal stress 

occurs. This is even more magnified by the steel phase transformation. These stresses can result 

in local deformation and residual stresses. The flatness of the hot rolled products on the run-out 

table has not been sufficiently studied in the literature. Only a few researchers have investigated 

the thermal stresses of hot rolled strips [85].  
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Yoshida [86] was one of the first researchers to numerically study the non-flatness of hot 

rolled steel strips after cooling in a run-out table by applying finite-difference methods. Earlier, 

experiments had shown that the edge wave occurs after cooling in most cases, unless the strip is 

coiled at temperatures higher than 570 °C. He stated that the non-flatness occurs when the 

compressive residual thermal stress becomes larger than the critical buckling stress of a long thin 

plate. The thermal distribution was found using simple correlations for water and air cooling heat 

transfer coefficient, and the phase change was calculated based on a time-temperature-

transformation (TTT) diagram. He found out that reducing the transverse variation of finishing 

temperature and cooling rate, coiling at higher temperatures and water cooling in the final 

sections of a run-out table can prevent the occurrence of edge waves. Among them, a uniform 

cooling rate across the strip was the most beneficial.  

Nakata and Yoshida [87] later extended the above study to further study the effect of the 

cooling uniformity in the strip flatness using both experimental measurements and numerical 

simulations. The thermal model was validated against the measured surface temperature 

distributions using an infrared camera. It was confirmed that the non-uniform cooling along the 

length of the strip can cause non-flatness in the strip. 

Han et al. [88], calculated the elastic strain, the volumetric strain caused by the thermal 

loads and phase transformation, the plastic strain, and the transformation induced superplastic 

strain, to estimate the total deformation of steel strips on a run-out table. The model was two-

dimensional, and cooling conditions were set using simple correlations for two separate zones 

cooled by air or water.  

Zhou et al. [89] calculated the thermal expansion coefficient as a function of the cooling 

rate, phase composition and temperature. They used a plane stress finite element model based on 

the assumption that the through-thickness stress is negligible in thin strip. The validation was 

done only based on qualitative agreement of the predicted results by the results of a simple 

method in a confidential report. Thermal boundary conditions were applied in the form of 

simplified temperature distributions. They found that the temperature distribution in the length of 

the strip has little effect on the residual stress, but the thermal field across the width of the plate 

has a large contribution to the stress field. In a later study [90], they investigated the flatness of 

the plate under the controlled cooling process using three-dimensional shell elements. They 
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found that the severity of buckling in the strip increases with the transverse temperature gradient 

across the plate, i.e. it resulted in a lower wavelength and higher amplitude. 

As discussed above, most of the existing studies in the literature use simplified models 

for the thermal boundary conditions, usually based on some generalized correlations of heat 

transfer in two cooling zones (under impingement and parallel flow zones), or temperature 

measurements in few stages in the strip. They are also normally using simplified models for 

phase transformation. In the present study, we are going to use the results of our inverse heat 

conduction solver [76,91] to extract the boundary heat fluxes from the readings of thermocouples 

in an extensive set of experiments [1,31], and use a more refined and modern algorithm to 

calculate the phase transformation. We will study the cases of both the stationary and moving 

plates, and different jet configurations. 

1.7 Objectives of This Study 

The following steps are taken in this research: 

1) Developing a three-dimensional gradient-based inverse heat conduction program 

In order to be able to model different jet configurations accurately, and to obtain accurate 

heat flux values, a three-dimensional finite element heat conduction simulator is needed. The 

code should be capable of taking into account the heat generation caused by the steel phase 

transformation and the temperature and phase dependency of thermophysical properties. The 

model should be able to capture the interaction between several jets. Unlike the case of 

interacting planar jets, where a well-defined interaction zone exists in midway between the jets, 

interaction zones between arrays of circular jets are irregular and do not necessarily occur in the 

midway [81]. Thus, an iterative and sequential three-dimensional inverse heat conduction code is 

developed. The algorithm is based on the least-square technique, sequential function 

specification, and regularization. The code needs to be capable of handling unsteady cases, and 

moving boundary conditions. 

2) Investigating various categories of stochastical inverse heat conduction solvers 

The above mentioned inverse solver, while being computationally efficient, suffers from 

some problems related to its gradient-based nature, such as sensitivity to the measurement errors, 

and instability in handling small time steps. Other forms of inverse solvers will be studied and 

modified to find a more effective algorithm. Modifications will be performed in order to improve 

not only the stability and effectiveness of the method, but also its computational expense. 
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3) Determination of surface heat flux and heat transfer behaviour in multiple jet impingement on 

a moving plate 

Existing numerical models are mainly focussed on the case of single water jet. While 

they are useful for understanding the physics and to validate the algorithm, they are far from the 

real situation in industry. Multiple jets with different configurations should be modelled to make 

the case closer to the industrial applications. The developed inverse algorithms will be used to 

determine the heat fluxes occurring during the water jet cooling process. We will be especially 

focused on cases where multiple jets (several jet lines, each including more than one nozzle) 

imping on a moving plate, which are closer to what really happens in an industrial run-out table. 

4) Studying the effect of plate speed, jet line stagger, and jet line spacing on heat transfer 

Effect of these parameters on the maximum heat extraction, uniformity of cooling pattern 

and temperature distribution, and the overall efficiency of the run-out table will be studied. 

5) Modeling the thermal stresses caused by the water jet cooling of stationary and moving plates 

As a result of non-uniform cooling on the plate, thermal stresses and deflection are 

expected. A model will be devised that will be capable of modeling the phase change process as 

well.  
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2.1.2 Formulation 

The general governing equation for the 3D conduction heat transfer problems, shown in 

Figure 1, is written in the form: 

t
Tcq
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x p
b
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∂=+

∂
∂

∂
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∂
∂
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∂ ρ)()()(            ( 2.1) 

where T is the temperature, °C; qb is the heat generation per unit volume, W/m3; kx, ky, and kz are 

the conductivities in the x-, y-, and z-directions, respectively, W/m⋅°C; ρ  is the density, kg/m3; 

cp is the specific heat, J /kg⋅°C;  t is the time, s ; and x, y, and z are the Lagrangian coordinates of 

the point.  

  The boundary conditions may be one or a combination of the followings cases: 

Prescribed temperature: This is an example of a Dirichlet boundary condition (BC). The 

prescribed temperature Ts (°C) may be a function of time and boundary coordinate (spatial 

function): 
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      ( 2.2) 

Prescribed heat flow of flux: Specified heat flux (qs) may be a spatial function or a function of 

time: 
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where qs is the specified rate of heat flow per unit area (W/m2).  Prescribed heat flow is an 

example of Cauchy’s or Neumann boundary conditions.  If qs is zero, it will represent natural 

boundary conditions. 

Convection heat exchange: When there is a convective heat transfer on part of the body surface 

due to contact with a fluid medium, we have: 
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( 2.4) 

where h is the convection heat transfer or film coefficient (W/m2⋅°C), which may be temperature 

dependent (nonlinear), Ts is the surface temperature (°C) and Tf is the fluid temperature (°C), 

which may be a spatial or time function. 

Radiation: Assuming grey body, this boundary condition is given by:  
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where ε  is the emissivity of the surface of the body, σ  is the Stefan-Boltzmann constant 

(W/m2⋅°K4), Tsr is the absolute temperature of surface S5 (°K) and Tr is the known absolute 

temperature of the external radiative source (°K). The radiation boundary condition may be dealt 

with as a nonlinear convective boundary condition with an equivalent temperature dependent 

film coefficient,κ , where: 

    ( )( )rsrrsr TTTT ++= 22εσκ       ( 2.6) 

2.1.3 Numerical Modeling 

Using a weighted residual Galerkin procedure, the final finite element equations may be 

written as: 

QKTTC =+&        ( 2.7) 

where C is the equivalent heat capacity matrix; K is the equivalent heat conduction matrix; T 

and T&  are vectors of the nodal temperature and its derivatives, respectively; and Q is the 

equivalent load vector. Detailed expressions of the matrices in equation (2.7) are given in 

Appendix-A.    

A general family of solution algorithms may be obtained by introducing a parameter α 

where      ( 0.10.0 ≤≤ α ) such that  
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If α = 0, an explicit Euler forward method is obtained; if α= ½, an implicit trapezoidal rule is 

obtained; and if α = 1, an implicit Euler backward method is obtained. Substituting equation 

(2.8) into equation (2.7) and applying Newton-Raphson iterations yields: 
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where 0≠α . The definition of all terms is given in Appendix-A and all quantities at time 

(t+αΔt) are calculated from a relation similar to equation (2.9).  

Depending on the value of α, the procedure may be either conditionally stable (α<0.5) or 

unconditionally stable 5.0≥α .  
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2.1.4 Special Considerations 

The thermal properties of steel normally change with a change in the temperature. This 

results in a nonlinear behaviour of the thermal field. The exact correlation depends on the 

chemical composition of each steel sample. For example, for DQSK steel, the relationship 

between the thermal conductivity and the temperature is: ࢑ = ૟૙. ૞ૠ૚ − ૙. ૙૜ૡ૝ૢ	 ×  (2.11 )     ℃.࢓/ࢃ	࢔࢏	(℃)	ࢀ

and for SS316 steel, the correlation is: 

࢑	          = ૚૚. ૚૝૚ + ૙. ૙૚૝ ×  (2.12 )     ℃.࢓/ࢃ	࢔࢏	(℃)	ࢀ

These equations are valid from zero to 1000 °C. So the finite element code should be capable of 

handling these nonlinearities. 

It is also important to integrate the microstructure evolution models into the heat transfer 

analysis [1,92]. Since during the cooling process, the austenite will transform into other phases, a 

latent heat is released. While some researchers have ignored this effect [93], the accuracy of the 

simulations can be enhanced by incorporating this heat into the model [1,94]. In our 

implementation, following the procedure in Reference [1], the heat generation per volume is 

calculated by: 

FHQ &⋅=  
( 2.13) 

 

where H is the mole of material considered, and F& is the transformation rate of austenite to 

ferrite and pearlite per volume. This value is going to be calculated in a subroutine, and the 

values will be included in the source term Qb in equation (2.10). 

2.1.5 Implementation and Validation 

In the developed program, the geometry can be discretized using isoparametric 3D 

elements. By default, the elements will have eight nodes and will resemble a brick. However, 

other 3D shapes can also be created. The program is capable of dealing with a mixture of 

element types. The program is also capable of dealing with all different types of boundary 

conditions, as mentioned above. The boundary conditions can be a function of space and/or time. 

The nonlinearities caused by the dependence of the thermophysical properties on the temperature 

can be handled in a step-wise staggered approach, i.e. the values of the parameters at the current 
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step are calculated based on the temperature at the previous step, and are assumed to be constant 

during the current step. The program is capable of handling both the steady and transient 

problems.  

Various verification cases were modeled and the results were compared with the results 

obtained by the commercial program ANSYS [95]. In all cases, the results were shown to be 

within less than 1% of each other. Some of the test cases are shown here.  

Geometry and Mesh 

Figure  2.2 shows a schematic of the geometry and the discretized domain. The width of 

the block (x direction) is 1.5 m, the height (y direction) is 0.5 m, and the length (z direction) is 

5.0 m. The thermal conductivity is following equation (2.11), the density, ρ, is 7850 3mkg , and 

the heat capacity, Cp is 475 kgKJ . 

Test Case I 

The initial temperature of the block is 14 °C. The top surface of the block is subjected to 

a convection boundary condition with a film coefficient of 60 W/(m2.°C) and a fluid temperature 

of 40 °C. The comparison between the developed code and ANSYS is displayed in Figure  2.3(a). 

Test Case II 

Starting from an initial temperature of 8 °C, the top surface of the block is subjected to a 

constant heat flux of 100 W/m2. The comparison between the developed code and ANSYS is 

displayed in Figure  2.3(b). 

Test Case III 

Starting from an initial temperature of 1 °C, the top surface of the block is subjected to a 

radiation boundary condition with a surrounding temperature of 100 °C. The comparison 

between the developed code and ANSYS is displayed in Figure  2.3(c). 
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solution, and make the algorithm more stable in dealing with noisy measurement data, it is very 

common to include some kind of regularization terms that penalize the large magnitude error in 

the objective function. A common choice in inverse heat transfer problems is to use a scalar 

quantity based on the boundary heat fluxes, with a weighting parameter α, which is normally 

called the regularization parameter. The regularization term can be related to the values of heat 

flux, or their first or second derivatives with respect to time or space. Based on the previous 

experience [76], as well as our own trial of different regularization terms, we choose to use the 

heat flux values (zeroth-order regularization). The objective function is then 

( )∑ ∑∑
= ==

⎟
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22,
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( 2.14)

 

where 
,i meas

jT and 
,i calc

jT are the values of expected (measured) and calculated temperatures at the 

ith time step and the jth spatial location, respectively; α is the regularization coefficient; and 
i
jq  is 

the boundary heat flux vector at the ith time step and the jth spatial location, N is the total number 

of time steps, and J is the number of spatial components of temperature vectors. 

Due to the parabolic nature of the heat equation, there are basically two categories of 

approaches in solving the inverse transient heat conduction problems. One method is to try to 

find components of heat flux in each step of the solution. This is possible since the temperature 

distribution at the end of each time step is only a function of the temperature distribution at the 

previous time step and the boundary conditions during the present time step. These methods are 

normally called “sequential”. In these methods, in each step of the inverse analysis, the direct 

problem is not solved for the whole history, and is solved for only one (or a few) time steps. The 

optimization problem is then solved for the temperatures at that step, and then the problem is 

marched in time to the next steps. The other solution method is to treat the whole history of heat 

fluxes as an unknown in the optimization problem. In this formulation, which is usually called 

the “whole domain” approach, the direct problem will be solved over the whole time history. 

 Due to the diffusive nature of transient heat conduction and from a computational 

expense perspective, sequential estimation techniques are highly preferred over whole-domain 

inverse analysis techniques [35]. Unfortunately, there is an important drawback in using 
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sequential methods, and that is the high sensitivity of the solution to the experimental errors. 

That is why we will be using the future time steps concept.  

Due to the fact that inverse problems are generally ill-posed, the solution may not be 

unique and is generally sensitive to measurement errors. To decrease such sensitivity and 

improve the simulation in function specification methods, a number of future time steps (nFTS) 

are often utilized in the analysis of each time step [35]. This means that in addition to the 

measured temperature at the present time step T i, the measured temperatures at future time steps, 
FTSniii TTT +++ ,....,, 21 , are also used to approximate the heat flux qi. In this process, a temporary 

assumption is usually considered for the values FTSniii qqq +++ ,....,, 21 .  The simplest and most widely 

used one is to assume iki qq =+  for FTSnk ≤≤1 , which is also used in our work. Also in this work, 

we combine the regularization concept with the future time step data. This is analogous to the 

combined function specification-regularization method, initially introduced by Beck and Murio 

[96]. 

The sequential algorithm for time step M, when using r future time steps (the heat flux is 

known for t < tM), is presented below: 

1. An assumption is made for the heat flux function at times tM, tM+1,…, tM+r (usually qM = 

qM+1=…=qM+r). 

2. The direct problem is solved with meas
MT 1−  as the initial condition and the heat flux values 

from step 1 as its transient boundary conditions. The temperatures at these r time steps 

are calculated ( calc
rM

calc
M

calc
M TTT ++ ,,, 1 L ). 

3. The objective function is then evaluated using the heat fluxes from step 1, the calculated 

temperatures from step 2, and the known temperatures from the measurement                  

( meas
rM

meas
M

meas
M TTT ++ ,,, 1 L ). The new form of the objective function becomes: 
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4. The algorithm is repeated until we reach a desired low value for the objective function, 

or after a certain number of iterations. The solution vector will be the spatial components 

of heat fluxes for the r time steps. 

5. The values of qM, as obtained from step 4, are used, and the values for the rest of the 

heat fluxes (qM+1, …, qM+r) are discarded. 

6. The above procedure is repeated (M = M+1) as you move to the next time step. 

In theory, it is possible to use multiple sensors instead of multiple future time steps to improve 

the stability of the method. However, this idea is not practical since adding thermocouples to the 

sample is not only more expensive, but also distorts the temperature field. For a detailed 

discussion of the effect of thermocouple hole on the thermal field, see References [25,97-101]. 

Using future time steps introduces a bias in the solution. This bias is normally observed 

in the form of rounding the spikes in oscillatory boundary condition histories, and an early 

prediction of these oscillations [35]. To obtain an appropriate level of regularization, the number 

of future time steps (or more accurately, the size of the look-ahead time window, i.e. the product 

of the number of future time steps and time step size) and the value of the regularization 

parameter must be chosen with respect to the errors involved in the temperature readings. The 

residual principle [36,102] can be used to determine these parameters based on the accuracy of 

thermocouples in the relative temperature range. In this method, the number of future time steps 

is increased until the RMS error of the estimation falls below the standard deviation of noise in 

the measured temperatures.  

Choosing proper values for the regularization parameter and the number of future time 

steps is a very challenging task, and although there are some methods to find the range of 

appropriate values, the fine tuning still remains more like an art rather than an exact science. 

Basically, there are five main approaches to choose a close to optimal value for these parameters 

[103]. They are the maximum likelihood (ML), the ordinary cross-validation (OCV), the 

generalized cross-validation (GCV), the L-curve, and the discrepancy principle (DP) methods. 

All these methods require some kind of knowledge about the solution characteristics. One 

important piece of information is the level of errors in the solution domain. Luckily, the 

thermocouples that are normally used in experiments are well documented, and their accuracy 

levels are well investigated and understood. In our experiments, we are using type K 
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thermocouples that have an error level of ±2.5 °C in temperatures below 333 °C, and an error 

level of ±0.75% of the measured temperatures between 333 °C and 1200 °C. Among these five 

methods, the discrepancy principle (DP) method is known to produce the best estimate of the 

regularization parameter for inverse heat conduction problems [103]. This method requires that 

the problem be solved so that the residual norm is the same as the norm of errors in the 

measurements, denoted by δ: 

ට∑ ଙതതതത࢓ࢀ) − ࢏ࢉࢀ )૛࢏ࡸୀ૚ =  (2.16 )     ࢾ

When the values of the regularization parameter and the number of future time steps for one case 

are obtained, the same values can be normally used for similar problems. 

2.2.2 Gradient Based Calculation of Heat Flux 

The heat flux and temperature vectors are 
TN ][ 21 qqqq K=      ( 2.17) 

                                     Ti
J

iii qqq ][ 21 K=q       ( 2.18) 

                            Ti
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m

i
m

i
m TTT ][ 21 K=T       ( 2.19) 

Ti
Lc

i
c

i
c

i
c TTT ][ 21 K=T       ( 2.20) 

where L is the number of measurement points, J the number of heat flux components that can be 

determined for the flux space distribution on a surface. It should be noted that J must be less 

than or equal to L, the number of measurement points.  It should also be noted that the 

dimensions of the heat flux vector q 
i at each step are 1×J while the total heat flux vector q is 

J×N as it includes the data in N steps; and the temperature vector T 
i at each step is 1×L. 

Also, the temperature Tk is only determined or affected by the heat fluxes qm where m ≤ 

k.  Mathematically, we may express Tk as an implicit function of the heat flux: 

  ),,,( 21 kk
c f qqqT K=                          ( 2.21)                   

or in a successive form as: 
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and the following equation is also valid 
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The values with a ‘*’ superscript in the above equation may be considered as initial guess values 

ultimately lead to the temperature *k
cT . 

Now we define the first derivative of temperature i
cT  with respect to heat flux qi as the 

sensitivity matrix: 
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where i=1, 2…N, r =1, 2…L and s=1, 2…J. The sensitivity matrix Xi is an L×J matrix. 

The optimality of the objective function may be obtained by letting 0/ =∂∂ qf , and we get the 

following set of equations (note that q∂∂ /f should be done with respect to each component qi, 

with i=1, 2…N): 
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where *jq is the initial guess of heat fluxes, and Tc
i*

  is the calculated temperature vector with the 

initial guess values.   
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Recalling equations (2.20) and (2.21), equation (2.22) may be rearranged and written in 

the following form: 
**))(( ** qTXqqIXX qqqq αα −Δ=−+

==
TT     ( 2.26) 

where X is labeled as the total sensitivity matrix for a multi-dimensional problem and has the 

following form: 
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and 

( )TN*
c

N
m

*
cm

*
cm TTTTTTT −−−=Δ K2211      ( 2.28) 

Note that the dimension of matrix X is (L×N)×(J×N) and ΔT has dimensions of (L×N). Also, 

note that the calculations in equation (2.23) may easily be done in the time domain and no 

function specification for iq is needed. If the total sensitivity is known, no iteration is required to 

get a final solution. 

2.2.3 Convergence Criteria 

In each time step, the iterative procedure is used until the inversely predicted temperature 

Tc converges to the measured temperature Tm. Convergence criteria used to define the 

acceptance of the predicted temperature are based on an error norm defined by:  

Error-norm n =|| TΔ n||      ( 2.29) 

Two convergence criteria for ending the iteration process at each time step are used: 

Error-norm n ≤ δT      ( 2.30) 

or  

ε
 norm-Error

norm-Error-norm-Error
n

n1n

≤
+

     ( 2.31) 

The values of δT and ε depend on the measurement error level. The rationale behind using 

absolute criteria is that while the norm at a given previous iteration is already very small, the 

relative norm criterion is still not satisfied in the last iteration.  
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a) The FMM heavily relies on the flow direction on the boundary. In three-dimensional cases, 

and especially in the cases with moving plates and multiple impinging jets in each row and 

multiple successive jet rows, it is increasingly hard to determine the upstream and downstream 

directions. The flow pattern is very complex, with stagnation zones in the area between two 

impinging jets. The shape and location of these areas are also irregular [81]. 

b) In order to obtain accurate results, the exact value of the water velocity must be known, since 

it is the speed at which the nodal heat flux values move from one node to the other. Again, there 

is currently no accurate way to predict these speeds, and while recent studies [32] have started 

looking in more details at the velocity of the water propagation, we are still far from having a 

robust and useful correlation for the water velocity, especially in cases with multiple jets and a 

moving surface. This is especially important when one notices that the “step mismatch”, i.e. 

moving of the heat flux from one node to the other at a speed higher (overstepping) or lower 

(understepping) than the real velocity, may produce lower quality results than the FZM [1]. 

c) One of the main characteristics of the heat transfer in the jet impingement cooling is the sharp 

heat flux peaks in the impingement zone. The FMM is, in nature, an interpolating and smoothing 

scheme, which tends to change the sudden behaviours into gradual changes. This has caused a 

dampening of the heat flux peak values, as well as a virtual negative heat flux before the real 

sharp increase [1]. Adjusting the waterfront speed may reduce the magnitude of this problem, but 

then it will be another parameter that is needed to be addressed and will increase the complexity 

of the program, and make it harder to be used as an off-the-shelf code. 

d) In the FMM, the following equation is used to find the time step at which the heat fluxes 

should move to the next node and the solution should be repeated [1]: 

௜ݐ∆ = ௗೕ௩೔ೕ       ( 2.32) 

where Δti is the time step size in the ith step, dj is the jth spatial distance between thermocouples, 

and vij is the water moving speed over this distance in that time step. So in the cases of higher 

water moving speed, the denominator of the above equation becomes large, resulting in a very 

small time step size. This will result in either a large computational cost, or in many cases, to the 

instability of the gradient-based inverse algorithm, as will be discussed later in Section  2.3.4.  
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e) It is very crucial to notice that the problem with the FZM can be mitigated if smaller time 

steps are used. By refining the temporal resolution, the assumption that the heat flux is not 

moving in each smaller time step, will not significantly reduce the accuracy. Fortunately, the 

data provided by the data acquisition system is in very small intervals, so the limitation will not 

be caused by the experiments, but by the failure of the gradient-based inverse solvers to deal 

with smaller time steps. The remedy may be using inverse solvers that are not gradient-based. 

This will be studied in the next chapter. 

2.2.6 Different Techniques for Calculating Sensitivities 

The form of the governing differential equation for both the temperature T (x, t) and the 

sensitivity coefficient X (x, t) is the same [35] and, therefore, the same finite element program 

may be used to calculate them. While this is efficient from the programming point of view, it 

may not be practical, especially when the temperature time history is somewhat long and the 

density of mesh is high, and also because of the fact that not all the coefficients at all points are 

needed to get the heat flux q. 

An alternative way is that the sensitivity matrices at each time step for the measurement 

points be calculated. Such a procedure would still require intensive calculation time and cost 

when the number of total time steps considered and/or the number of heat flux components are 

reasonably large. 

A perturbation algorithm [8] was used to obtain the sensitivity matrices. First, a given 

value is assumed for all components of the heat flux vector as input in the direct heat transfer 

calculation to get the temperature distribution for the given future steps at each thermocouple 

location. Then, one of the components of the heat flux vector is increased by a reasonable 

amount, such as 10%, to obtain new temperatures. While a perturbation of 10% looks larger than 

normal, we should notice that if the perturbation is small, the change in inside temperatures will 

be very small, due to the lagging and dampening of boundary changes in internal points, and the 

resulting sensitivity will be very small as well, and sometimes very close to zero. This can result 

in divergence or “division-by-zero” errors. The ratios of temperature difference at each 

thermocouple location to the applied increase in heat flux component are the sensitivity 

coefficients. Such perturbation is repeated for each component of the heat flux until all the 

sensitivity matrix components are obtained. 
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One important consideration in calculating the sensitivity is the nonlinearity. The whole 

sensitivity matrix is independent of the heat flux only if the thermal properties of the material are 

constant with temperature. For most materials, the thermophysical properties are temperature 

dependent.  In such cases, all properties should be updated at the beginning of each time step, 

which is time consuming, especially for large size models. Moreover, such changes in properties 

would not be very large and would not significantly change the magnitude of the sensitivity 

coefficients.  Also, updating the material properties at the beginning of each time step would be 

based on the temperatures Tk* obtained from the initially given values of the heat flux q*, which 

is essentially an approximation.  So, we may opt for updating the sensitivity matrix every M 

steps (in our numerical experiments, M=10). The results obtained under this assumption are very 

close to those obtained by updating the values at each step, so the assumption is justified. 

Another approach was also investigated in this research to replace the normal 

perturbation method in calculating the sensitivity coefficients. The suggested new approach is 

called the complex step method, and is basically based on a complex number, instead of a real 

number, perturbation. To introduce this method, we first write the Taylor series expansion of the 

real valued function f about both a real )( hx +  and a complex )( ihx + numbers. 
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Based on these expansions, the following three approximations of the first derivative of f with 

respect to x is possible: 
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The first one is a normal forward difference scheme, which is similar to the perturbation scheme 

that was previously described, the second expression is a central difference scheme, and the third 

one that uses the complex number perturbation is the basis for our complex step method. 
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When compared with the forward difference scheme, the complex step method is of higher order 

(2 instead of 1), and it does not involve a difference operation, so we can choose small steps, 

with no loss of accuracy due to subtractive cancellation. In comparison with the central 

difference algorithm, the complex step again does not involve a difference operation, so we can 

choose small steps, with no loss of accuracy. Also, unlike the central difference scheme, the 

complex step method does not need to evaluate the function at a third point (x-h). 

In our inverse problem, the sensitivity matrix, X, is calculated using a perturbation 

method, which is similar to the forward difference algorithm: 

q
qTqqT

q
TX

Δ
−Δ+=

∂
∂= )()( **

 ( 2.38)

where q*  is the initial guess for the value of the heat flux, and Δq is the perturbation, which is 

typically about 10% of the value of heat flux. Using the complex step idea, the sensitivity will be 

calculated as 
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 ( 2.39)

This approach was tested in our problem. We found that unless the problem is highly nonlinear 

(more than what heat conduction problems normally are), there is no tangible difference between 

the first order perturbation method, and the second order complex step algorithm. This approach 

also could not solve the problem of gradient based inverse heat conduction algorithms, such as 

time step size limitation, or sensitivity to the measurement errors. 

2.3 Results and Discussion 
In this section, a few test cases are introduced and developed algorithms are tested in 

their capability of solving one-, two-, and three-dimensional problems. The effect of noise in the 

domain on the performance of the inverse algorithm is studied. Also, the effects of using 

regularization parameters, future time steps, and different time step sizes are also investigated. 

Finally, 1D, 2D, and 3D inverse algorithms are compared. 

2.3.1 Test Cases 

Five test cases are introduced. They include one-, two-, and three-dimensional heat 

conduction problems, in transient or steady conditions, and both linear and nonlinear in nature. 
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standard deviation; and σ is the standard deviation. In this work, the maximum additive random 

error is ± 3 °C. 

There are several ways to make an inverse algorithm more stable when dealing with 

noisy data. For example, Gadala and Xu [57] have shown that increasing the number of “future 

time steps” in their sequential function specification algorithm results in greater stability. They 

have also demonstrated that increasing the regularization parameter, α, improves the ability of 

the algorithm to handle noisy data. However, these approaches were also shown to greatly 

increase the required number of iterations, and in many cases the solution may diverge. 

2.3.3 Effects of the Regularization Parameter and Future Time Steps 

Both the regularization method, proposed by Tikhonov, and the future time steps concept 

in sequential function specification, proposed by Beck, have the same purpose of stabilizing the 

solution of the inverse heat conduction problem. In this research, these two methods have been 

combined, and their effects cannot be separated from each other. This approach is based on the 

idea of a regularized function specification method, and is shown to be more effective and more 

computationally efficient than using just one of these methods [104].  

Notice that the future time steps concept is only applicable to the transient problems, so 

in test case III, which is a steady-state problem, only the Tikhonov regularization can be used. 

For the other test cases, while the exact value of the regularization parameter and the number of 

future time steps vary slightly, the same trends are always observed. We chose test case IV to 

show the effect of using a regularization parameter in Figure  2.12, and the effect of using more 

future time steps in Figure  2.13. As seen in Figure  2.12, increasing the value of the regularization 

coefficient results in a smoother profile for the predicted heat flux. Increasing the number of 

future steps has the same effect, as seen in Figure  2.13. These two effects can be combined. 

However, there are two main problems in using these techniques. First of all, the computational 

expense increases significantly when a higher number of future time steps are used. The other 

problem, which is more significant, is that there is a limit to the improvement that can be 

obtained by these two techniques. Increasing either of these parameters after a certain limit can 

cause divergence of the whole inverse solver. 
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jet line between several impinging jets, or between two successive rows of jets. The simple 1D 

model assumes that the heat transfer is only happening in the normal direction to the plate. The 

2D model also considers the heat flow between two neighbouring thermocouples. However, the 

3D model is capable of modeling the heat flow in all directions, and is supposed to be a more 

physical simulation for the problem. 

Due to different modeling assumptions, especially different treatment of the boundary 

conditions, the values of heat fluxes that will be obtained from the same set of temperature 

readings will be different for each of these models. For example, because in the 1D and 2D 

models, one or two sides of the domain are assumed adiabatic, i.e. there is no heat exchange 

through them, the heat flux in the cooling process needs to cool down a smaller thermal mass, so 

the values that will be obtained in these cases for the peak heat flux will be lower.  

To investigate this, a set of known boundary heat fluxes are applied to the top surface of 

test case V, and the problem is directly simulated. The temperatures at the internal sensor 

locations are calculated and stored. Then the 1D, 2D, and 3D inverse algorithms are employed to 

use the stored temperatures and recover the missing boundary conditions. The time step size in 

the initial direct problem is selected to be smaller than the one used in inverse algorithms, in 

order to avoid the so-called “inverse crime” [105].  

Figure  2.15 shows the result of the 1D, 2D, and 3D algorithms, in addition to the known 

applied heat flux. Note that due to the ill-posed nature of the inverse problem, even in the case of 

the 3D algorithm, some discrepancy between the expected heat flux and the results is observed. 

However, the 1D and 2D algorithms show a significant dampening in the predicted value of the 

heat flux. As mentioned previously, these algorithms study each thermocouple location in 

complete isolation (1D), or just consider the heat transfer in one lateral direction to the 

neighboring thermocouple(s) (2D). This means that a lower amount of thermal mass needs to be 

cooled. Thus, the predicted heat fluxes are smaller. Also, some of the details of the heat flux 

profiles, e.g. the shoulder before the first rise, and the small shoulder after it are not sensed in the 

1D and 2D models. These effects are caused by the cooling of the neighboring thermocouple 

locations, and are not sensed in these algorithms. 
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3. Gradient-Free Methods of Solving the Inverse Heat Conduction Problem 
As shown in Chapter-2, the gradient-based methods for solving the inverse heat 

conduction problem suffer from some shortcomings, such as instability in the presence of noise 

and in the smaller time step sizes. This can hinder their application in real-world problems, such 

as in the characterization of the jet impingement boiling heat transfer on the run-out table in a 

steel mill, where huge changes in the boundary conditions happen in short intervals, and the 

thermocouple readings are always erroneous. In this chapter, we try to investigate some gradient-

free optimization methods and utilize them in the inverse heat conduction problem to mitigate 

these shortcomings, and to find a more suitable inverse solver for our applications. Three major 

techniques that are studied are: the artificial neural networks (ANN), the genetic algorithm (GA), 

and the particle swarm optimization (PSO). First, we introduce the basic algorithm and its 

formulation. Then, we test it in the solution of an inverse heat conduction problem, and try to 

optimize the performance parameters associated with that method to make it both more efficient, 

i.e. requiring lower computational expense, and more effective in handling noisy data. Finally, 

comparisons are made between different methods and their variations, and their advantages and 

disadvantages are studied. Also, in the last part of this chapter, a general modification is 

introduced that can be applied to the stochastical methods in inverse problems to accelerate their 

convergence.  

3.1. Inverse Formulation 
The boundary inverse heat conduction problem can be formulated as an optimization 

problem in which we try to minimize the norm of difference between the experimentally 

measured temperatures and the calculated temperatures obtained from a direct solution of the 

problem with some guessed boundary conditions. In order to dampen the oscillations in the 

solution, and make the algorithm more stable in dealing with noisy measurement data, it is very 

common to include some kind of regularization terms that make the problem more stable, 

especially in the case of noisy domains. As mentioned in the previous chapter, based on previous 

experience [76], as well as our own trial of different regularization terms, we chose to use the 

heat flux values (zeroth-order regularization). The objective function will then be 
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 ( 3.1)

where and are the values of expected (measured) and calculated temperatures at the 

ith time step and the jth spatial location, respectively; α is the regularization coefficient; and  is 

the boundary heat flux vector at the ith time step and the jth spatial location, N is the total number 

of time steps, and J is the number of spatial components of temperature vectors. 

3.2. Artificial Neural Networks 
Artificial Neural Networks (ANN) are motivated by the efficiency of brain in performing 

computations. These networks are made of a large number of processing units (neurons) that are 

interconnected through weighted connections, similar to synapses in the brain. In order for the 

network to perform the expected tasks, it should first go through a “learning” process. There are 

two main categories of learning: supervised, or unsupervised. In supervised learning, the 

network learning is achieved by practicing on pre-designed training sets, while in unsupervised 

learning, the network is presented with a set of patterns, and learns to group these patterns into 

certain categories. The supervised learning is useful in function fitting and prediction, while 

unsupervised learning is more applicable to pattern recognition and data clustering. Since the 

learning process in our application is a supervised one, we focus on this type of learning process. 

While there are several major classes of neural networks, in this research we studied only 

two of them, which are introduced in this section. 

3.2.1. Feedforward Multilayer Perceptrons (FMLP) 

In a feedforward network, the nodes are arranged in layers, starting from the input layer, 

and ending with the output layer. In between these two layers, a set of layers called hidden 

layers, are present, with the nodes in each layer connected to the ones in the next layer through 

some unidirectional paths. See Figure  3.1 for a presentation of the topology. It is common to 

have a different number of elements in the input and output vectors. These vectors can occur 

either concurrently (order is not important), or sequentially (order is important). In inverse heat 

transfer applications, normally the order of elements is important, so sequential vectors                  

are used. 
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Figure  3.2. An RBF Network Topology 

3.2.3. Implementation in Inverse Heat Conduction Problem 

In order to use the artificial neural networks in the inverse heat conduction problem, we 

first started with a direct heat conduction finite element code, and applied several sets of heat 

fluxes in the boundary. The resulting temperatures in locations inside the domain, which 

correspond to the thermocouple locations in the experiments, were obtained. The neural network 

was then trained using the internal temperature history as an input, and the corresponding 

applied heat flux as the target. The assumption was that this way, the neural network should be 

able to act as an inverse analysis tool, and given a set of measured thermocouple readings, be 

able to reproduce the heat fluxes.  

The obtained results were, however, far from satisfactory. It seemed that the relationship 

between the actual values of temperatures and heat fluxes is a complicated one, which is very 

hard for the neural networks to understand and simulate, at least when using a reasonably small 

number of layers. Thus, we decided to reformulate the problem, and use the change in the 

temperature in each time step as the input. In this formulation, neural networks performed much 

better, and a good quality was achieved in the solution in a reasonable amount of time.  

Further investigations showed that if the time step size is varying, we can use a derivative 

of temperature with respect to the heat flux as the input, i.e. divide the temperature change by the 

time step size. The results were again satisfactory; however, more bookkeeping is needed, which 

complicates the implementation and makes the algorithm more prone to coding errors. This 
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practice is not normally recommended, unless it can result in a considerable reduction in the 

solution time. 

3.4. Genetic Algorithm (GA) 

Genetic algorithm is probably the most popular stochastic optimization method. It is also 

widely used in many heat transfer applications, including inverse heat transfer analysis [106]. 

Figure  3.3 shows a flowchart of the basic GA. Similar to PSO, GA starts its search from a 

randomly generated population. This population evolves over successive generations (iterations) 

by applying three major operations. The first operation is “Selection”, which mimics the 

principle of “Survival of the Fittest” in nature. It finds the members of the population with the 

best performance, and assigns them to generate the new members for future generations. This is 

basically a sort procedure based on the obtained values of the objective function. The number of 

elite members that are chosen to be the parents of the next generation is also an important 

parameter. Usually, a small fraction of the less fit solutions are also included in the selection, to 

increase the global capability of the search, and prevent a premature convergence. The second 

operator is called “Reproduction” or “Crossover”, which imitates mating and reproduction in 

biological populations. It propagates the good features of the parent generation into the offspring 

population. In numerical applications, this can be done in several ways. One way is to have each 

part of the array come from one parent. This is normally used in binary encoded algorithms. 

Another method that is more popular in real encoded algorithms is to use a weighted average of 

the parents to produce the children. The latter approach is used in this research. The last operator 

is “Mutation”, which allows for global search of the best features, by applying random changes 

in random members of the generation. This operation is crucial in avoiding the local minima 

traps. More details about the genetic algorithm may be found in references [107,108]. 
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probability is 0.2, and the probability of adjustment mutation is 0.9. These settings were found to 

be the most effective based on our experience with this problem. A mutation rate of 0.9 may 

seem higher than normal. This is because we start the process with a random initial guess, which 

needs a higher global search capability. However, if smarter initial guessing is utilized, a lower 

rate of mutation may be more effective. Genes in the present application of GA consist of arrays 

of real numbers, with each number representing the value of the heat flux at a certain time step, 

or a spatial location. 

3.5. Particle Swarm Optimization 

We start this section by giving a description of the basic concepts of the algorithm. Then 

a brief description of the three variations of the PSO algorithm that are used in this study is 

given. Finally we investigate some modifications in the PSO algorithm to make it a more robust 

and efficient solver of the inverse heat conduction problem. 

3.5.1. Basic Concepts 

Particle swarm optimization (PSO) is a high-performance stochastical search algorithm 

that can also be used to solve inverse problems. The method is based on the social behavior of 

species in nature, e.g., a swarm of birds or a school of fish. It was originally developed by 

Eberhart and Kennedy in 1995 [68]. 

In the basic PSO algorithm, if a member of the swarm finds a desirable position, it will 

influence the traveling path of the rest of the swarm members. Every member searches in its 

vicinity, and not only learns from its own experience (obtained in the previous iterations), but 

also benefits from the experiences of the other members of the swarm, especially from the 

experience of the best performer. The original PSO algorithm includes the following components 

[109]:  

• Particle Position Vector x: For each particle, this vector stores its current location in the 

search domain. These are the values for which the value of the objective function is calculated, 

and the optimization problem is solved. 

• Particle Velocity Vector v: For every particle, this vector determines the magnitude and 

direction of change in the position of that particle in the next iteration. This is the factor that 

causes the particles to move around the search space. 
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• Best Solution of a Particle p: For each particle, this is the position that has produced the 

lowest value of the objective function (the best solution with the lowest error in our case). So if f 

is the objective function that is supposed to be minimized, i is the index for each particle, and m 

is the iteration counter, then: 

( )( )s
i

ms

m
i xfp

≤≤
=

0
minarg

 
( 3.4)

• Best Global Solution g: This is the best single position found by all particles of the swarm, 

i.e., the single p point that produces the lowest value for the objective function, among all the 

swarm members. In other words, if n is the swarm size, then: 

( )( )s
k

nkms

m xfg
≤≤≤≤

=
1,0
minarg

 
( 3.5)

The number of particles in the swarm (n) needs to be specified at the beginning. Fewer 

particles in the swarm results in lower computational effort in each iteration, but possibly a 

higher number of iterations is required to find the global optimum. On the other hand, a larger 

population will have a higher computational expense in each iteration, but will likely require less 

iterations to reach the global optimum point. Earlier studies have shown that a smaller 

population is normally preferred [110,111]. This was also observed in our study; however, its 

effect on the convergence speed seems to be insignificant.  

The steps involved in the basic PSO algorithm are detailed below [109]: 

1. Randomly initialize the positions and velocities for all the particles in the swarm. 

2. Evaluate the fitness of each swarm member (objective function value at each position point). 

3. At iteration m, the velocity of the particle i, is updated as: 

( ) ( )1
0 1 1 2 2

m m m m m m
i i i i iv c v c r p x c r g x+ = + − + −  ( 3.6)

where m
ix and m

iv are the position and velocity of particle i at the m-th iteration, respectively; m
ip

and mg are the best positions found up to now by this particle (local memory) and by the whole 

swarm (global memory) so far in the iterations, respectively; c0 is called the inertia coefficient or 
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the self-confidence parameter and is usually between zero and one; c1 and c2 are the acceleration 

coefficients that pull the particles toward the local and global best positions; and r1 and r2 are 

random vectors in the range of (0,1). The ratio between these three parameters controls the effect 

of the previous velocities and the trade-off between the global and local exploration capabilities.  

4. Update the position of each particle using the updated velocity and assuming unit time: 

1 1m m m
i i ix x v+ += +  ( 3.7)

5. Repeat (2) – (4) until a convergence criterion (an acceptable fitness value or a certain 

maximum number of iterations) is satisfied. 

The first step of the above algorithm may be improved, if instead of using random numbers, we 

initialize the algorithm with some meaningful initial guess, i.e. a set of values close to the ones 

that we expect the final solution to be. We chose not to do so in this research, because we wanted 

to compare the efficiency of different algorithms, and for that reason, decided to let them 

perform with minimum supervision. On the other hand, efficiency of the gradient based 

algorithms is less affected by the values of the initial guess. However, in those methods one may 

fall into the local minima of the function. The iterations in this research were carried out until the 

best value of the objective function normalized with respect to the best value of the objective 

function in the first iteration was less than 10-6 or the average value of the best objective function 

became less than the variance of added artificial noise. 

There are some considerations that must be taken into account when updating the 

velocity of the particles (step 3 of the above algorithm). First, we need a value for the maximum 

velocity. A rule of thumb requires that, for a given dimension, the maximum velocity, max,iv , 

should be equal to one-half the range of possible values for the search space. For example, if the 

search space for a specific dimension is the interval [0, 100], we will take a maximum velocity 

of 50 for this dimension. If the velocity obtained from Equation ( 3.6) is higher than max,iv , then 

we will substitute the maximum velocity with 1+m
iv . The reason for having this maximum 

allowable velocity is to prevent the swarm from “explosion” (divergence). Another popular way 

of preventing divergence is a technique called “constriction”, which dynamically scales the 

velocity update [109]. The first method was used in the previous research by the authors [112]. 
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However, further investigation showed that a better performance is obtained when combining the 

constriction technique while limiting the maximum velocity. In this research, the velocity 

updates are done using constriction and can be written as: 

( ) ( )( )1
1 1 2 2

m m m m m m
i i i i iv K v c r p x c r g x+ = + − + −

 
( 3.8)

where K is the constriction factor, and is calculated as [109]: 

2

2

2 4
K

ϕ ϕ ϕ
=

− − −
 

( 3.9)

where φ = c1 + c2. Here, following the recommendations by Clerc [109], the initial values for c1 

and c2 are set to 2.8 and 1.3, respectively. These values will be modified in subsequent iterations, 

as discussed below.  

As mentioned above, the relation between the self-confidence parameter, c0, and the 

acceleration coefficients, c1 and c2, determines the trade-off between the local and global search 

capabilities. When using the constriction concept, the constriction factor is responsible for this 

balance. As we progress in time through iterations, we get closer to the best value. Thus, a 

reduction in the value of the self-confidence parameter will limit the global exploration, and a 

more localized search will be performed. In this research, if the value of the best objective 

function is not changed by a certain number of iterations (10 iterations in our case), the value of 

K is multiplied by a number less than one (0.95 for our problems) to reduce it (i.e. oldnew KK 95.0=

). These numbers are mainly based on the authors’ experience, and the performance is not very 

sensitive to their exact values. Some other researchers have used a linearly decreasing function 

to make the search more localized after the first few iterations [110]. These techniques are called 

“dynamic adaptation”, and are very popular in recent implementations of PSO [113]. 

Also, in updating the positions, one can impose a lower and upper limit for the values, 

usually based on the physics of the problem. For example, in a heat transfer application, if we 

know that cooling is happening at the boundary, then the heat fluxes are going to be negative, 

and we can assign an upper limit of zero for these values. If the position values fall outside this 

range, several treatments are possible. In this research, we set the value to the limit that has been 

passed by the particle. Other ideas include substituting that particle with a randomly chosen 
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particle in the swarm, or penalizing this solution by increasing the value of the objective 

function. 

The above steps are illustrated in Figure  3.4. Figure  3.5 shows a flowchart of the whole 

process of basic PSO algorithm for each time step. 

 

Figure  3.4.  Velocity and Position Updates in the Basic Particle Swarm Optimization Algorithm 
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Figure  3.5. Flowchart of the Basic Particle Swarm Optimization Procedure 

3.5.2. Variations 

Unfortunately, the basic PSO algorithm may get trapped in a local minimum, which can 

result in a slow convergence rate, or even premature convergence, especially for complex 

problems with many local optima. Therefore, several variants of PSO have been developed to 

improve the performance of the basic algorithm [114]. Some variants try to add a chaotic 

acceleration factor to the position update equation, in order to prevent the algorithm from being 
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trapped in local minima [115]. Others try to modify the velocity update equation to achieve this 

goal. One of these variants is called the Repulsive Particle Swarm Optimization (RPSO), and is 

based on the idea that repulsion between the particles can be effective in improving the global 

search capabilities and finding the global minimum [70,116]. The velocity update equation for 

RPSO is 

( ) ( )1
0 1 1 2 2 3 3

m m m m m m
i i i i j i rv c v c r p x c r p x c r v+ = + − + − +  ( 3.10)

where m
jp is the best position of a randomly chosen particle among the swarm, c3 is an 

acceleration coefficient, r3 is a random vector in the range (0,1), and rv is a random velocity 

component. Here c2 is -1.43, and c3 is 0.5. These values are based on recommendations by Clerc 

[109]. Based on our own experience, minor changes in these values do not significantly impact 

the performance. The newly introduced third term on the right-hand side of Eq. ( 3.10), with a 

negative coefficient ( 2c ), causes repulsion between the particle and the best position of another 

randomly chosen particle. The third term’s role is to prevent the population from being trapped 

in a local minimum. The fourth term generates noise in the particle’s velocity in order to take the 

exploration to new areas in the search space. Once again, we are gradually decreasing the weight 

of the self-confidence parameter. Note that the third term on the right-hand side of Eq. ( 3.6), i.e., 

the tendency toward the global best position, is not included in a repulsive particle swarm 

algorithm in most of the literature.  

The repulsive particle swarm optimization technique does not benefit from the global 

best position found. A modification to RPSO that also uses the tendency towards the best global 

point is called the “Complete Repulsive Particle Swarm Optimization” or CRPSO [112]. The 

velocity update equation for CPRSO will be: 

( ) ( ) ( )1
0 1 1 2 2 3 3 4 4

m m m m m m m m
i i i i i j i rv c v c r p x c r g x c r p x c r v+ = + − + − + − +  ( 3.11)

In CRPSO, by having both an attraction toward the particle’s best performance, and a repulsion 

from the best performance of a random particle, we are trying to create a balance between the 

local and global search operations. 
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3.5.3. Elite Particle and Elite Velocity 

This modification has been proposed by Fourie and Groenwold [117] in structural 

optimization applications, and is borrowed from the genetic algorithm, where the gene that has 

the best characteristics never leaves the population. Here, we replace the particle with the worst 

value of objective function with the best global solution, g. Also, if a particle’s velocity caused 

an improvement in the best global solution during the mth iteration, it is allowed to continue with 

the same velocity, without being influenced by other particles. In other words, if m
kv caused an 

improvement on g, then: 

1
0

m
k

m m
k k

g x

x g c v+

=

= +  
( 3.12)

3.6. Application in Inverse Heat Conduction 

As the first step in our study of these techniques, we investigate their capability in 

solving a general inverse heat conduction problem similar to the problem on the run-out table, 

such as the test cases introduced in the previous chapter. In order to save space and since the 

results of PSO and GA are very similar, we only present the graphs of some of the test cases. 

However, other test cases will be used later in this manuscript to study the different 

modifications in the original algorithm. 

We start by applying the artificial neural networks to the inverse heat conduction 

problem. This is different from GA and PSO, since those methods perform a stochastical search 

and are similar in many aspects, while the artificial neural networks are more like a correlation 

between the inputs and outputs. Figure  3.6 shows the result of the application of the radial basis 

function neural networks for the whole history of the heat fluxes on the runout table. 

Temperatures start at 700 ºC and go down to 176 ºC. The heat flux vs. time profile is plotted in 

Figure  3.6. As can be seen from this figure, neural networks are generally capable of dealing 

with the whole range of the cooling history. 
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Figure  3.6. Test Case II; Time History of Heat Fluxes in a Typical Run-Out Table Application; Expected 

Results (Squares) vs. the RBF Network Results (Line) 

 

However, this method has limitations, as observed in Figure  3.6, and in more details in 

Figure  3.7. The latter figure shows a close-up view of the peaks of heat flux that happen during 

the cooling process on the run-out table, i.e. the peaks in Figure  3.6. The circles are the expected 

heat flux, and the plusses are the result of NNs. The top left sub-figure is the first peak heat flux 

in time, and then it moves to the right, and then to the next row. Note that each even sub-figure 

(2nd, 4th, and so on) is a very smaller peak which is associated with the second row of jets. These 

peaks are not very obvious in Figure  3.6, due to the scaling. Going through the subfigures of heat 

fluxes, it is apparent that the success or failure of NNs is not that much related to the temperature 

range, or the magnitude of heat fluxes, but on the actual shape of the heat flux profile. If the heat 

flux has a clear thin peak and two tails before and after the peak, the NN is doing a good job. 

However, the existence of other details in the heat flux profile reduces the quality of the NN 

predictions. Also, considering the ill-posed nature of the problem, and all the complications that 

are involved, we can generally say that in most cases (about 75% of the cases) it does a decent 

job. Overall we can say that NNs are more useful in getting a general picture of the solution, 

rather than producing a very accurate and detailed answer to the IHCP. Also, it should be noted 

that if parameters such as the number of jets, plate speed, or the distance between jet rows are 

changed, we need to train a new neural network. 
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3.7. Time Step Size 

One of the main problems of the classical approaches, such as the sequential function 

specification method, is their instability when small time steps are used. Unlike direct problems 

where the stability requirement gives the upper limit of the time step size, in inverse problems 

the time step is bounded from below. Figure  3.10(a) [112] shows the oscillation in the results 

obtained by the function specification method and a time step size of 0.01 (s), which corresponds 

to the onset of instability. For time steps smaller than this, the whole process diverges. Luckily, 

PSO, GA, and NNs can successfully produce the results for the same time step size, as shown in 

Figure  3.10(b) for PSO. Note that the oscillations here are not due to the instability caused by the 

time step size, and can be improved by performing more iterations, as is shown in Figure  3.10(c). 

Figure  3.10(d) shows the final results of the GA method. It is, however, important to mention 

that the time requirements for these techniques are much higher than those of the classical 

function specification approaches.  
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variants suffer from high computational cost. RBF neural networks perform much faster than GA 

and PSO, but they are still slower than the gradient-based methods, such as function 

specification. 

Table  3.1. Comparison of the Typical Solution Time for Different Inverse Analysis Algorithms for the Whole 

Cooling Process on a Run-Out Table 

 
Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN

Solution Time 

(s) 
1406 8430 6189 5907 6136 7321 2316 

However, due to the limitations mentioned in the previous chapter for the gradient-based 

methods, and in the previous sections of this chapter for the neural networks, in many cases one 

has to choose between GA and PSO variations. Then, among the slower algorithms, the 

efficiency of the algorithm becomes even more important. Thus, in the remainder of this section, 

we will compare the performance of GA and PSO variations in more details.  

The six different comparison tests performed are presented in Table  3.2. Because of the 

stochastic nature of these methods, they may perform differently for various runs. Therefore, a 

statistical approach is needed to compare their performances.  

Table  3.2. Performed Comparison Tests 

Test # 1 2 3 4 5 6 

Method1 GA GA GA PSO PSO RPSO 

Method2 PSO RPSO CRPSO RPSO CRPSO CRPSO 

The statistical t-test [118] is used to compare the number of function evaluation calls 

(number of times that the direct solver is executed) of 10 runs of each algorithm, which means a 

sample size of 10 is used. The purpose of performing this test is to determine whether or not the 

difference between our two averages is large in comparison with the standard deviation. All of 

the runs used in the performance evaluation test are tested for the accuracy of the results, and 

have proven to produce acceptable results.  

If we represent the number of function evaluations for methods 1 and 2 with NE1 and NE2, 

respectively, then the average number of function evaluations for method 1 is 
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where 1n is the number of executions of method 1 (in these examples, n1 = n2 = 10). The same 

equation holds for method 2. The standard deviation of each sample can be calculated as 
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The t-value can then be calculated as 
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where s is the standard deviation of both samples and is calculated as 
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( 3.16)

The objective of the test is to check whether generally 12 EE NN < . The null hypothesis in this test 

will be: 12 EE NN ≥ . The test is a one-sided test of significance of comparison of two means 

[118], with a significance level of 5%, and a 10+10-2=18 degrees of freedom, which gives a 

critical t-value of 1.73. 

Table  3.3 shows the results of the comparison tests. The shaded values show the cases 

where the null hypothesis is accepted, i.e., the second method does not perform better than the 

first one. In the other cases, which are the majority of the tests, using the second method 

improves the performance, i.e., reduces the number of function evaluations, at least in 95% of 

the occurrences.  
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Table  3.3. Calculated t-Values for the Combination of 2 Solution Methods; tcritical = 1.73 

 Test Case I Test Case II Test Case III Test Case IV Test Case V

Test 1 4.88 10.08 8.26 10.20 13.43 

Test 2 6.60 12.52 9.41 15.05 15.46 

Test 3 10.78 17.76 13.41 19.55 12.44 

Test 4 1.49 3.32 1.27 4.39 8.21 

Test 5 4.63 7.59 7.92 9.71 10.90 

Test 6 3.04 3.45 7.75 10.01 9.22 

 

Since an important requirement for the validity of the t-test results is the normality of the 

distributions for both categories that are compared, and it normally requires a larger number of 

simulations, the t-test statistics may not be a perfectly sound comparison tool. Thus, we have 

also used the Mann-Whitney non-parametric statistical test [118] to investigate our results. 

Table  3.4 shows the U-values for the Mann-Whitney U-test. Again the lowest U values occur at 

the same cases as the t-test, and only these two aren’t acceptable with a significance level of 5%, 

for a one-sided Mann-Whitney U-test. 

 

Table  3.4. Calculated U-Values for the Combination of 2 Solution Methods 

 Test Case I Test Case II Test Case III Test Case IV Test Case V

Test 1 97 100 100 100 100 

Test 2 100 100 100 100 100 

Test 3 100 100 100 100 100 

Test 4 72 87.5 62 88 94 

Test 5 94 100 100 94 100 

Test 6 84 88 99 94 94 
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The following observations can be made regarding the results: 

1. PSO variations are generally less computationally expensive than GA in solving inverse heat 

conduction problems. 

2. The advantage of PSO over GA is more pronounced in more complex cases (more unknowns 

and fewer data points). 

3. Between the three variations of PSO, the difference is less significant, but generally, CRPSO 

performs better than the other two variations. 

Table  3.5 shows the required number of computational units (i.e., solutions of the direct 

problem, and obtaining the norm of difference between that solution and the expected one), the 

relative speedup of each variation of PSO with respect to GA, and the relative computational 

cost of each method. From the table, speedups of up to 36% are possible when using some PSO 

variations instead of GA in an inverse heat conduction problem.  
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Table  3.5. Number of Computational Units of Different Gradient-Free Solution Methods, Their Speedup with 

Respect to GA, and Their Relative Cost with Respect to the Most Efficient Method 

 GA PSO RPSO CRPSO

Test Case I 

No. of Direct Calculations 5075 4582 4427 4155 

Speedup 1.00 1.11 1.15 1.22 

Relative Cost 1.22 1.10 1.06 1.00 

Test Case II 

No. of Direct Calculations 13499 11382 10659 9939 

Speedup 1.00 1.19 1.27 1.36 

Relative Cost 1.36 1.14 1.07 1.00 

Test Case III 

No. of Direct Calculations 23903 21119 20872 19611 

Speedup 1.00 1.13 1.15 1.22 

Relative Cost 1.22 1.08 1.06 1.00 

Test Case IV 

No. of Direct Calculations 31050 24187 23451 23218 

Speedup 1.00 1.28 1.32 1.34 

Relative Cost 1.34 1.04 1.01 1.00 

Test Case V 

No. of Direct Calculations 57438 47497 44321 42475 

Speedup 1.00 1.21 1.30 1.35 

Relative Cost 1.35 1.12 1.04 1.00 

 

Table  3.6 shows the required time to perform one computational unit for each test case. 

Note that these values have no impact on the performance comparison of the tested optimization 

algorithms, and are similar for all the optimization methods. 
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Table  3.6. Time Required to Perform One Computational Unit for each Test Case 

 
Test 

Case I 

Test Case 

II 

Test Case 

III 

Test Case 

IV 

Test Case 

V 

Time for one computational 

unit (s) 
1.65 10.82 5.41 5.06 8.11 

The difference between the behaviors of PSO and GA can be attributed to the different 

underlying mechanisms in these two evolutionary algorithms. For example, mutation in GA 

occurs in all directions, while the mutation-like behavior in PSO is directional.  

3.9. Sequential vs. Whole Domain 

Due to the parabolic nature of the heat equation, there are basically two categories of 

approaches in solving the inverse transient heat conduction problems. One method is to try to 

find components of heat flux in each step of the solution. This is possible since the temperature 

distribution at the end of each time step is only a function of the temperature distribution at the 

previous time step and the boundary conditions during the present time step. These methods are 

normally called “sequential”. In these methods, in each step of the inverse analysis, the direct 

problem is not solved for the whole history, and is solved for only one (or a few) time steps. The 

optimization problem is then solved for the temperatures at that step, and then the problem is 

marched in time to the next steps. The other solution method is to have the whole history of heat 

fluxes as the unknown in the optimization problem. In this formulation, which is usually called 

the “whole domain” approach, the direct problem will be solved over the whole time history. 

Due to the diffusive nature of transient heat conduction, from the computational expense 

perspective, sequential estimation techniques are highly preferred over the whole-domain inverse 

analysis techniques [35]. Unfortunately, there is an important drawback in using sequential 

methods, and that is the high sensitivity of the solution to experimental errors. That is why we 

will be using the concept of future time steps. 

Table  3.7 shows the average solution time for ten simulations of the test cases using 

different solution methods and whole domain and sequential formulations. Test case III is a 

steady-state problem, and thus is not included here. As seen in the table, sequential formulation 

always accelerates the solution process. Here, the speedup is defined as the whole domain 
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solution time over the sequential solution time, and is usually somewhere between 30 and 60 

percent. 
Table  3.7. Comparison of Efficiency for Whole Domain and Sequential Implementations 

 
 

Whole Domain 

Solution Time (s)

Sequential Solution  

Time (s) 

 

Speedup

Test  

Case  

I 

PSO 8316 5904 1.41 

RPSO 8107 5107 1.59 

CRPSO 8020 5293 1.52 

Test  

Case  

II 

PSO 15052 11759 1.28 

RPSO 14501 11069 1.31 

CRPSO 14115 10942 1.29 

Test  

Case  

IV 

PSO 79978 58384 1.37 

RPSO 76784 56820 1.35 

CRPSO 74266 55208 1.34 

Test  

Case  

V 

PSO 121870 81348 1.50 

RPSO 109539 82910 1.32 

CRPSO 116449 81824 1.42 

3.10. Noisy Domain Solution 

To investigate the behavior of different inverse algorithm variations in dealing with noise 

in the data, a known boundary condition is first applied to the direct problem. The temperature at 

some internal point(s) will be calculated and stored. Then random errors are imposed onto the 

calculated exact internal temperatures with the following equation: 

rTT exactm ⋅+= σ  ( 3.17)

where Tm is the virtual internal temperature that is used in the inverse calculations instead of the 

exact temperature, Texact; r is a normally distributed random variable with zero mean and unit 

standard deviation; and σ is the standard deviation. Virtual errors of 0.1%, 0.3%, 0.5%, and 1% 

of the temperature magnitude are investigated in this research. Since the temperature is changing 

from 700 to 176 ºC, the magnitude of the noise can be as high as 7 ºC for the initial peaks. 
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As can be seen in Figure  3.16 (for α = 10-10), and more quantitatively in Table  3.8 (for α 

= 10-10 and 10-12), increasing the value of the self-confidence parameter results in better handling 

of the noisy data. This trend was observed for values up to approximately 1.3, after which the 

results become worse, and diverge. The same trend was also observed in the other test cases. 

One possible explanation is that increasing the ratio of the self-confidence parameter with 

respect to the acceleration coefficients results in a more global search in the domain, and 

therefore increases the capability of the method to escape from the local minima caused by the 

noise, and find values closer to the global minimum. This effect was observed to be weaker in 

highly noisy domains. However, in the presence of a moderate amount of noise (which is the 

case in most experimental setups), increasing the self-confidence ratio results in more 

effectiveness in dealing with noisy data. Table  3.9 shows the same trend when using different 

variations of the PSO algorithm on test cases I, IV, and V. As can be seen in Table  3.9, the best 

effectiveness is normally obtained by RPSO, closely followed by CRPSO. Considering the 

higher efficiency of CRPSO, it is still recommended for the inverse heat conduction analysis. 

 

Table  3.9. Effect of the Self-Confidence Parameter on the L2 Norm of Error in the Solution 

C0 0.7 0.8 0.95 1.1 1.2 

Test Case I 

PSO 0.07466 0.06722 0.06113 0.05651 0.05397 

RPSO 0.05546 0.05010 0.04362 0.04096 0.03728 

CRPSO 0.05798 0.05163 0.04415 0.04262 0.04043 

Test Case II 

PSO 8.105e+4 7.532e+4 7.079e+4 6.823e+4 6.257e+4

RPSO 7.577e+4 7.064e+4 6.685e+4 6.346e+4 5.816e+4

CRPSO 7.611e+4 6.739e+4 6.117e+4 5.999e+4 5.822e+4

Test Case III 

PSO 1.641e+5 1.477e+5 1.322e+5 1.282e+5 1.222e+5

RPSO 1.328e+5 1.272e+5 1.203e+5 1.184e+5 1.158e+5

CRPSO 1.361e+5 1.288e+5 1.221e+5 1.184e+5 1.143e+5
 

 

Table  3.10 shows the value of L2 norm of error in the solution, for ±1% added noise, and 

for different algorithms. It can be seen that the RBF neural networks perform better than the 
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function specification method, and somewhere between the genetic algorithm and PSO variants. 

The most noise resistant algorithms are PSO variants, and the least stable algorithm is the 

gradient-based function specification method.  

 

Table  3.10. The L2 Norm of Error in the Solution in a Noisy Domain for Different Algorithms 

 
Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN

L2 Norm of 

Error 
9.14e4 6.61e4 5.24e4 4.82e4 5.02e4 8.91e4 5.91e4

3.11. Future Time Step Regularization 

There are also other ways to make an inverse algorithm more stable when dealing with 

noisy data. One of them is using the concept of future time steps that was also discussed in the 

function specification method in the previous chapter. Due to the fact that inverse problems are 

generally ill-posed, the solution may not be unique and would, in general, be sensitive to 

measurement errors. To decrease such sensitivity and to improve the simulation in function 

specification methods, a number of future time steps (nFTS) are often utilized in the analysis of 

each time step [35]. This means that in addition to the measured temperature at the present time 

step T i, the measured temperatures at future time steps, , are also used to 

approximate the heat flux qi. In this process, a temporary assumption would usually be 

considered for the values of .  The simplest and the most widely used one is to 

assume  for , which is also used in our work. Also in this work, we combine 

the regularization concept with the future time step data. This is analogous to the combined 

function specification-regularization method, initially introduced by Beck and Murio [96]. 

The sequential algorithm for time step M when using r future time steps (the heat flux is 

known for t < tM) is presented below: 

1. An assumption is made for the heat flux function at times tM, tM+1,…, tM+r (usually qM = 

qM+1=…=qM+r). 

FTSniii TTT +++ ,....,, 21

FTSniii qqq +++ ,....,, 21

iki qq =+
FTSnk ≤≤1
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2. Direct problem is solved with  as the initial condition and the heat flux values from step 

1 as its transient boundary conditions. The temperatures at these r time steps are calculated    

( ). 

3. The objective function is then evaluated using the heat fluxes from step 1, the calculated 

temperatures from step 2, and the known temperatures from the measurement                  

( ). The new form of the objective function will be: 

 
( 3.18)

4. Steps 1 to 3 are repeated for each swarm member, and the GA or PSO algorithm is repeated 

until we reach a desired low value for the objective function, or after a certain number of 

iterations. The solution vector will be the spatial components of heat fluxes for the r time 

steps. 

5. Values of qM are used as obtained from step 4 and the values for the rest (qM+1, …, qM+r) are 

discarded. 

6. The above procedure (M = M+1) is repeated as you move to the next time step. 

In theory, it is possible to use multiple sensors instead of multiple future time steps to improve 

the stability of the method. However, this idea is not practical since adding thermocouples to the 

sample is not only more expensive, but also distorts the temperature field. 

Using future time steps introduces a bias in the solution. This bias is normally observed 

in the form of rounding the spikes in oscillatory boundary condition histories, and an early 

prediction of these oscillations [35]. To obtain an appropriate level of regularization, the number 

of future time steps (or more accurately, the size of the look-ahead time window, i.e. the product 

of the number of future time steps and time step size) and the value of the regularization 

parameter must be chosen with respect to the errors involved in the temperature readings. The 

residual principle [36,102] can be used to determine these parameters based on the accuracy of 

thermocouples in the relative temperature range. In this method, the number of future time steps 
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is increased until the RMS error of the estimation falls below the standard deviation of noise in 

the measured temperatures. 

Figure  3.17 shows the results of applying the basic PSO-based inverse analyzer to the 

first test case, when a moderate amount of noise is added to the temperature data. As can be seen 

in part (a) of the figure, the method with default settings and no regularization term shows a very 

unruly behavior. While addition of the zeroth-order Tikhonov regularization term and the tuning 

of the self-confidence parameter can enhance the behavior, as seen in parts (b) and (c) of 

Figure  3.17, there is a limit to these modifications, i.e. after a certain limit the method will 

become very slow or will diverge. However, using the future time step concept, can increase the 

stability of the algorithm, as seen in Figure  3.17(d). Table  3.11 also shows the L2 norm of error 

in the solution after each stage of algorithm modifications. Figure  3.18, Figure  3.19 and 

Table  3.12 show the same trend for the first and second set of heat fluxes applied to the three-

dimensional problem. As expected, the norm of error in the solution in each case decreases after 

each set of modifications is applied. Also, investigating the numbers in Table  3.11 and 

Table  3.12 shows that among the three variations of PSO, RPSO is the most effective one in 

handling noisy data, closely followed by CRPSO. This is in agreement with the findings in 

Reference [112], shown earlier in this chapter. As can be seen from the figures, in the cases 

without the future time step method, the predicted heat fluxes overestimate the peak heat flux 

values, but when future time steps are used, due to the anticipation of the temperature in the 

following time steps, the predicted peak better matches the expected results. 
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Table  3.11. The L2 Norm of Error in the Solution of Test Case I After Modifications in a Noisy Domain 

Method 
No 

Regularization 

Tikhonov 

Regularization 

Tikhonov 

Regularization + 

Tuning of the c0 

parameter 

Tikhonov 

Regularization + 

Tuning of the c0 

parameter + Future 

time steps 

PSO 0.10845 0.07466 0.05397 0.02108 

RPSO 0.10070 0.05546 0.03728 0.01855 

CRPSO 0.10148 0.05798 0.04043 0.01876 

 

 

Table  3.12. The L2 Norm of Error in the Solution of Test Cases IV and V After Modifications in a Noisy 

Domain 

Method 
No 

Regularization

Tikhonov 

Regularization 

Tikhonov 

Regularization 

+ Tuning of the 

c0 parameter 

Tikhonov 

Regularization + 

Tuning of the c0 

parameter + 

Future time 

steps 

1st Set 

of 

Heat 

Fluxes 

PSO 1.504E+05 8.105E+04 6.257E+04 3.179E+04 

RPSO 1.393E+05 7.577E+04 5.816E+04 2.813E+04 

CRPSO 1.418E+05 7.611E+04 5.822E+04 2.837E+04 

2nd Set 

of 

Heat 

Fluxes 

PSO 2.712E+05 1.641E+05 1.222E+05 6.305E+04 

RPSO 2.448E+05 1.328E+05 1.158E+05 5.400E+04 

CRPSO 2.495E+05 1.361E+05 1.143E+05 5.440E+04 
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While using Tikhonov regularization, tuning the value of the self-confidence parameter 

and using future time steps can improve the quality of the solution when dealing with noisy data, 

but it also increases the number of parameters that should be controlled. Luckily, once these 

parameters are set for one simulation of a specific test case, they can be used again, and there is 

no need to determine the most effective values in each run. Also, these modifications can 

increase the required solution time, so there will always be a compromise between the level of 

accuracy and the computational expense, which should be considered according to the 

requirements of each application. 

3.12. Effect of Non-linearity 

While methods such as GA and PSO are based on a stochastical search of the whole 

domain, and therefore are not significantly affected by nonlinearity, the neural networks are 

more sensitive to nonlinearity. In other words, since the same drop in temperature values can be 

caused by different values of heat flux, a neural network that is trained with the relationship 

between the temperature change values and heat flux magnitudes may not be correctly capable of 

recognizing this nonlinear pattern, and as a result the performance will suffer. To investigate this 

effect, two kinds of expressions are used for thermal conductivity in this study. In one, we 

assume a constant thermal conductivity of 40 W/m.°C, while in the other a temperature-

dependent expression is used: 

W/m.°C ( 3.19)

As expected, the nonlinearity will weaken the performance of both feedforward and radial basis 

function neural networks. The effect is seen as the training of the network stalls after a number 

of epochs. In order to deal with this, increasing the number of hidden layers, increasing the 

number of neurons in each layer, and choosing different types of transfer functions were 

investigated. However, none of these methods showed a significant improvement in the behavior 

of the network. The other methods of solving the inverse problem that are introduced in this 

research, are much less sensitive to the effect of nonlinearity. Table  3.13 compares the error in 

the solution for both the linear and nonlinear cases, if the same numbers of iterations, 

generations, and epochs are used for different methods of solving the inverse heat conduction. 

As can be seen, the neural networks perform very poorly in the nonlinear cases, while the other 

methods, either gradient based or stochastical, are immune to the problems caused by 

Tk ×−= 03849.0571.60
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nonlinearity. Basically, neural networks, at least in the form that is used in this research, see 

nonlinearity as a kind of noise. It should be noted that neural networks can be useful in making 

rough estimates of the answer, or combined with some other techniques employed as an inverse 

solver for nonlinear cases [64].   However, on their own, they are not a suitable choice for an 

accurate prediction of the boundary conditions in a nonlinear inverse heat conduction problem. 

Table  3.13.The L2 Norm of Error in the Solution in an Exact Domain for Different Algorithms 

 
Function Specification 

Method 
GA PSO RPSO CRPSO FMLP RBFN

Linear 1.81e2 7.62e2 3.85e2 3.42e2 3.17e2 9.90e2 5.35e2

Nonlinear 2.14e2 7.71e2 4.46e2 5.12e2 4.26e2 3.57e4 2.76e4

3.13. Effect of Elite Members 

In this section, the effect of including the elite particle’s position and velocity in the 

performance of the sequential PSO-based inverse solver is studied. We first take a look at the 

average speedup as the result of introducing the elite members into the algorithm. Here, the 

speedup is defined as the ratio of the required solution time in the case without the elite members 

to the solution time after the elite members are utilized. Obviously, a higher speedup means that 

the concept of using the elite particles was more effective. Table  3.14 shows the average speedup 

of 10 runs for each algorithm. As can be seen from the table, in some cases, an improvement of 

14% can be achieved as a result of using elite particles and velocities. 

While the introduction of this concept usually improved the performance, this 

improvement did not take place in all the simulations. One must especially remember that the 

performance of PSO, like any other random search algorithm, can vary from one simulation to 

another. In order to take care of this randomness in the simulations, a Mann-Whitney non-

parametric statistical test [118] is used to compare the solution time for the 10 runs of each 

algorithm for each test case and assess the improvement caused by the inclusion of the elite 

particle concept. All of the runs used in the performance evaluation test are tested for result 

accuracy, and proved to produce acceptable solutions. 
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The objective of the test is to check whether, generally, the algorithm with the elite 

member is faster than the same variation without the elite member. The null hypothesis in this 

test is that the introduction of the elite particle concept does not improve the solution time, i.e.: 

. The test is a one-sided test of significance of 

the comparison of two means [118]. If for each simulation with elite members, we count the 

number of simulations without elite members that are slower than it, and then sum these counts 

for all the simulation set, we obtain the U-value. A significance level of 5%, and an equal 

number of samples for both sides ( ) gives a critical U-value of 73.  

Table  3.15 shows the U-values for the Mann-Whitney U-test. The only case that does not 

pass the test is the basic PSO algorithm applied to the last test case. As seen in the table, RPSO 

always performs better when the elite particles are introduced. Based on the results of this table, 

including the elite particle in the PSO algorithm to solve the inverse heat conduction problem is 

justified. 

memberselitewithmemberselitewithout meSolutionTimeSolutionTi −−−− ≤

1021 == nn
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Table  3.14. The Average Speedup in Each Algorithm After Using Elite Particles and Velocities 

 Whole Domain Sequential 

Test  

Case  

I 

PSO 1.126 1.129 

RPSO 1.173 1.133 

CRPSO 1.138 1.131 

Test  

Case  

II 

PSO 1.020 1.174 

RPSO 1.152 1.147 

CRPSO 1.011 1.279 

Test  

Case  

III 

PSO 1.132 1.237 

RPSO 1.205 1.065 

CRPSO 1.129 1.086 

Test  

Case  

IV 

PSO 1.052 1.105 

RPSO 1.112 1.116 

CRPSO 1.093 1.104 

Test  

Case  

V 

PSO 1.043 1.050 

RPSO 1.052 1.096 

CRPSO 1.082 1.101 
 

Table  3.15. Calculated U-Values to Study the Effect of Elite Particles on the Performance 

 Test Case I Test Case II Test Case III Test Case IV Test Case V

PSO 100 88 88 84 72 

RPSO 100 100 100 100 100 

CRPSO 100 88 84 97 88 

3.14. Multi-Criteria Formulation Based on Spatial Location 
It is common in inverse heat conduction applications to have more than one sensor inside 

the sample. In the case of inverse boundary problems, the number of these sensors is often equal 

to the number of spatial components of the missing boundary heat flux. The formulation of Eq. 

( 3.1) uses a norm of the difference between the calculated and measured temperatures that take 
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into account all of the thermocouples. In other words, the objective is to minimize some sort of 

overall difference between these two sets of temperatures. Thus, when searching for the best 

solution, the method does not distinguish between different spatial components. One way to 

devise a more intelligent search algorithm is to define a multi-criteria formulation, in which each 

of the spatial components of the missing boundary condition is treated as an individual search 

space. This way, if one of the spatial components of the heat flux vector gets close to the 

expected value, it will not be discarded due to the poor quality of the other components. In this 

formulation, the objective function will be a vector, and each of its components will represent 

one of the sensor locations. We can write this objective function as:  

 

( 3.20)

It should be noted that this is not equal to decoupling of the thermocouples, because the direct 

problem would still be solved as a whole. 

The performance of multi-criteria optimization (vector objective function) is compared 

with the case where the objective function is a single scalar quantity. Test cases IV and V are 

solved, and the history of the best value of the objective function in the swarm is normalized 

with respect to the best value of the objective function in the first iteration, and is plotted versus 

the iteration number. As can be seen in Figure  3.20, this modification greatly improves the 

convergence rate of the PSO-based inverse analyzer.  

Comparing the two parts of Figure  3.20, we observe that while the increased number of 

thermocouples causes a lower rate of convergence, both when the vector or scalar formulation is 

used, the relative speedup of the vector formulation stays in the same range. 
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3.15.2. Procedure 

The procedure for constructing the surrogate models has five major stages: 

1. Design of experiments. In this stage, we choose the samples in the design space that are 

going to be used for constructing the surrogate model. Since the number of chosen samples is 

much smaller than all the possible cases, it should be a good representative of the domain. Some 

of the methods that can be used for the design of experiments are random, error-based, density-

based, gradient-based, and some hybrids of these. A random sample selection scheme is used in 

this study.  

2. Full numerical simulation of the selected samples. The high-fidelity and expensive numerical 

simulation technique is used to evaluate the samples that were chosen in the previous stage.  

3. Model selection. In this step, we choose between several types of available surrogate models, 

such as polynomial, radial basis function, neural networks, etc. Choosing the most suitable 

surrogate model type is a problem-related decision in most cases. There are a number of criteria 

that can be used to rank different surrogate modeling techniques. Some of the most common 

measures are the accuracy, efficiency, and robustness of the models. Other criteria may include 

transparency, i.e. capability of explicitly showing the relationship between the input and output, 

and the ease of implementation [119]. In this research, we are going to compare the implemented 

methods in term of robustness and efficiency, which are more crucial in our inverse heat 

conduction applications. 

4. Model identification. Here we tune the parameters of the selected model type to maximize 

the capability of the algorithm. Another evolutionary optimization algorithm may be applied to 

find the best set of parameters. The available options are different for each model type. 

5. Model validation. In this stage, we make sure that the model is capable of producing 

acceptable results for some other samples that were not used in the previous steps. Some 

available algorithms are validation set, cross-validation, leave-one-out, and model difference. 

Cross-validation is used in this research. 

3.15.3. Surrogate Model Types 

 Four types of surrogate models were tested in this research: Polynomial models, Radial 

Basis Function models, Kriging models, and Feedforward Neural Networks. Some researchers 

have previously compared the performance of several surrogate model types in solving some 
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benchmark optimization problems [119]. In this study, we directly focus on their performance in 

inverse heat conduction problems. 

Polynomial Models 

A second-order polynomial model is the most popular polynomial model, and is also 

used in this research. It can be written in the following form: 

0 1
1 1

ˆ i i n i j i j
i n i j n

y x x xβ β β − + +
≤ ≤ ≤ ≤ ≤

= + +∑ ∑  ( 3.21)

where ŷ is the estimated response, x is the vector of inputs, β values are the coefficients that need 

to be estimated, and i and j are the indices of the input parameters. This is normally done using 

the least square method [120].  

Radial Basis Function  

Using the same definitions for x and y as above, the radial basis function model can be 

expressed as: 

( )
1

ˆ i i i
i n

y x cωψ
≤ ≤

= −∑  ( 3.22)

where ωi is the selected weight for each parameter, ci denotes the ith basis function center, and ψ 

is the basis function. The main strength of this model arises from the fact that it is linear in terms 

of the basis function weights; however it is capable of predicting highly nonlinear responses 

[120]. 

Kriging Models 

One of the most popular types of surrogate models is the Kriging method. In this 

variation, the basis function is of the form: 

߰(௜) = expቌ−෍ߠ௝ቚݔ௝(௜) − ௝ቚ௣ೕ௞ݔ
௝ୀଵ ቍ ( 3.23)

The vector ࣂ = 	 ሼߠଵ, ,ଶߠ … ,  ௞ሽ represents the width of the basis function, and it can change fromߠ

variable to variable. Also, the exponent values, p, can also vary from one variable to another. 

Basically, a higher value for the exponent increases the smoothness of the function around that 
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variable [120]. In estimating the output of the Kriging model, it is necessary to perform matrix 

inversions [121]. This can significantly increase the computational costs of this method when the 

dimensions are high.  

Feedforward Neural Networks 

The MATLAB implementation of neural networks is also used as a surrogate model. A 

feedforward multilayer perceptron uses three or more layers of neurons (nodes) with nonlinear 

activation functions. The learning process in this type of neural network takes place by altering 

the connection weights after each segment of data is processed, based on the amount of error in 

the output compared to the expected result. 

3.15.4. Surrogate Modeling (SUMO) Toolbox 

In this research, the SUrrogate MOdeling (SUMO) MATLAB toolbox [122] is used to 

construct the surrogate models. This open source toolbox is developed by the IBCN research 

group of the Department of Information Technology (INTEC) at Ghent University. It has 

excellent extensibility, making it possible for the user to add, customize and replace any element 

of the modeling procedure. It also has a wide range of built-in test functions and test cases, as 

well as support for many different model types.  

In SUMO, first, an initial design is generated and evaluated. Then, a set of models is 

constructed, and the accuracy of these models is approximated using a set of measures, such as 

cross-validation or an external validation test set. Each type of model has a number of 

parameters which can be customized, e.g. degrees of freedom for rational models, smoothness 

for RBF models, number and size of hidden layers in neural networks, etc. These parameters are 

adjusted using an optimization method, and additional models are produced until no additional 

improvement can be made by changing the model parameters. If the desired accuracy has not so 

far been reached, an adaptive sampling algorithm is employed to generate a new set of sample 

locations, and the algorithm starts from the beginning.  

3.15.5. Model Management 

One drawback of using surrogate models in the context of evolutionary algorithms is the 

convergence to a “false optimum”, i.e. a solution that is an optimum to the approximate 

surrogate model, and not to the original objective function [123]. In order to overcome this 
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problem, it is crucial to use the surrogate model with the original objective function. The 

approach that is used to select some (or all) of the individuals to be used with the original fitness 

function is called model management [124]. It can be divided into two major forms: 

• Fixed Evolution Control. A fixed percentage of the individuals are chosen to be evaluated by 

the original model. The individual members can be chosen randomly, or based on the value of 

the approximate objective function, i.e. choosing the ones that seem to be more promising based 

on the pre-evaluation using the surrogate model. If a lower portion of the individuals are chosen, 

it results in a faster iteration, but it is possible to miss the global optimum, and a larger number 

of iterations may be required.  

• Adaptive Evolution Control. In this strategy, the number of members that are chosen to be 

evaluated by the original model can be different in each iteration. The selection criteria can be a 

function of the values generated by the surrogate model, the iteration number, the degree of 

improvement in the results, or other factors based on the nature of the problem and the chosen 

optimization algorithm. In this research, we investigate the usage of two different strategies of 

adaptive evolution control. The first one is based on the concept of “index of improvement” 

[125]. If ࣹ௠௜௡ is the current minimum of the objective function, and መࣹ(ݔ) is the predicted value 

of the objective function by a new point x, then the index of improvement can be defined as (ݔ)ܫ = ቊ 0 ݂݅ መࣹ(ݔ) > ࣹ௠௜௡	ࣹ௠௜௡ − መࣹ(ݔ) ݁ݏ݅ݓݎℎ݁ݐ݋  ( 3.24)

If a point has a large value of this index of improvement, then it is more likely to improve the 

value of the objective function and should be evaluated using the full simulation method. In our 

research we started testing all the samples with (ݔ)ܫ ≥ 0.1	ࣹ௠௜௡ in the initial iterations, and then 

gradually relaxed this condition in later iterations, where the values are closer to each other, and 

improvements are smaller. The second type of adaptive evolution control, employed in this 

research, is based on the iteration number, i.e. a smaller ratio of the solutions were fully tested in 

the first iterations, and then this number was gradually increased to include nearly all of the 

solutions in the final iterations. This strategy is based on the observation that the candidate 

solutions in the later iterations generally have better qualities, and also, that the search in these 

later stages is more localized. Since the values of the objective function are going to be closer to 

each other, surrogate modeling may not be able to correctly sort them, and a high fidelity 

solution is more desirable. 
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3.15.6. Model Configuration 

In the inverse problems with multiple sensors, such as in test cases IV and V, there are 

two different strategies in designing the surrogate model. One is to construct a simple model for 

a single thermocouple location and its respective boundary heat flux. In this case, we will need to 

run this model for the number of sensors in the problem. The other strategy is to create a larger 

model that takes the whole boundary heat flux matrix as its input (with rows for different time 

steps and columns for different sensor locations), and its output is also a matrix including the 

temperature responses in all the thermocouple locations. In this strategy, only one surrogate 

model is needed, but it will be larger and more complicated. This latter form is a more physical 

representation of the real problem. In this research, for test cases IV and V, we use both 

strategies. The first one will be called “3D – 1 sensor”, and the second method will be called “3D 

– 9 sensors” and “3D – 18 sensors” for test cases IV and V, respectively. We will also study the 

application of surrogate modeling in a simple case, by investigating test case I. In this test case, 

since there is only one sensor in the domain, only one kind of surrogate model is used; “1D – 1 

sensor”. Their performances will be compared in terms of the time needed to construct the 

model, the prediction time, the total solution time, and their accuracy in predicting the results 

and in dealing with noisy domains. 

3.15.7. Results 

The iterations were continued until the normalized value of the best objective function 

with respect to the best value of the objective function in the first iteration became smaller than 

10-7. Hence, the qualities of the results in all cases were very similar. However, the time and 

computational expense required for the method to reach such a solution were very different. 

Figure  3.21 shows the typical results of the applied algorithm.  
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Table  3.16. Required Time (in Seconds) to Construct the Model for the Linear Case 

 Polynomial RBF Kriging FF Neural Network

1D – 1 sensor < 1 4.42 43.70 9.63 

3D – 1 sensor 12.14 15.46 306.73 43.81 

3D – 9 sensors 96.68 125.38 2183.97 316.53 

3D – 18 sensors 146.47 187.44 2915.53 550.76 

 

Table  3.17. Required Time (in Seconds) for 1000 New Predictions 

 Polynomial RBF 
Kriging FF Neural 

Network 

1D – 1 sensor < 1 9.13 6.65 9.55 

3D – 1 sensor < 1 11.19 7.43 14.47 

3D – 9 sensors 5.14 90.75 68.44 119.45 

3D – 18 sensors 9.05 147.92 125.24 205.45 

 

As can be seen from Table  3.16 and Table  3.17, the polynomial regression model is the 

fastest model to develop and implement. Radial basis function and feedforward neural networks 

have comparable implementation times (both much more than the polynomial method), but in 

terms of model construction, the radial basis function model is faster. The construction time for 

the Kriging model is high, especially for the cases with more sensors. As expected, using a more 

complex model (more sensors) will increase the time required for both constructing the model 

and making predictions. 

3.15.9. Accuracy and Noise Resistance 

Another important measure for evaluating the surrogate modeling methods is their 

accuracy in predicting the exact values, and also their effectiveness in dealing with noisy 

domains. To examine this latter property, we add artificial noise to the results of the direct 

solution for the points that are used to construct the model. Then the model is evaluated for 
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another set of points to see how it is affected by the noise. Random errors are imposed onto the 

calculated exact internal temperatures with the following equation: 

rTT exactm ⋅+= σ  ( 3.25)

where Tm is the modified temperature that is used instead of the exact temperature, Texact; r is a 

normally distributed random variable with zero mean and unit standard deviation; and σ is the 

standard deviation.  

To compare the methods, the R2 value is calculated for 20 samples: 

( ) ( )∑∑
==

−−−=
n

i
i

n

i
ii yyyyR

1

2

1

22 ˆ1  ( 3.26)

where iŷ is the predicted value, corresponding to the expected value iy , and y is the mean of the 

expected values. Obviously, a higher value of R2 (closer to 1) is more desirable. Table  3.18 

shows the value of R2 for different methods, for both the exact and noisy domains, for the linear 

case, i.e. when the thermal conductivity is a constant value. Table  3.19 shows the same results, 

but for the nonlinear case, i.e. the temperature dependent thermal conductivity.  

 

Table  3.18. R2 Values for Different Surrogate Models in the Exact and Noisy Domains for the Linear Case 

 Polynomial RBF Kriging FF Neural Network

1D – 1 sensor 
exact 0.99 0.99 0.99 0.99 

noisy 0.90 0.95 0.84 0.96 

3D – 1 sensor 
exact 0.99 0.98 0.99 0.99 

noisy 0.88 0.93 0.81 0.96 

3D – 9 sensors 
exact 0.99 0.99 0.99 0.99 

noisy 0.90 0.94 0.85 0.97 

3D – 18 sensors 
exact 0.99 0.99 0.99 0.99 

noisy 0.91 0.94 0.85 0.97 
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Table  3.19. R2 Values for Different Surrogate Models in the Exact and Noisy Domains for the Nonlinear Case 

 Polynomial RBF Kriging FF Neural Network

1D – 1 sensor 
exact 0.69 0.87 0.92 0.78 

noisy 0.64 0.80 0.70 0.75 

3D – 1 sensor 
exact 0.58 0.86 0.90 0.75 

noisy 0.56 0.82 0.71 0.73 

3D – 9 sensors 
exact 0.60 0.86 0.91 0.77 

noisy 0.57 0.83 0.71 0.74 

3D – 18 sensors 
exact 0.60 0.87 0.92 0.77 

noisy 0.57 0.83 0.72 0.75 

 

As seen from Table  3.18, when there is no noise in the domain, and the problem is linear, 

the three methods produce results with very similar levels of accuracy. However, in the case of 

noisy domains, the feedforward neural networks are the safest choice, followed closely by RBF. 

Polynomials and Kriging show the worst performance. Comparing Table  3.19 with Table  3.18 

shows that the nonlinearity in the problem considerably lowers the accuracy of all surrogate 

techniques. This is especially pronounced in the case of polynomials. The Kriging model 

performs better than the rest in the case where the data is exact. However, addition of noise 

significantly reduces its accuracy. In the nonlinear problem with noisy data, the RBF model is 

the most accurate one. Since most real-world inverse heat conduction problems are nonlinear and 

noisy, the RBF method seems most suitable.  

3.15.10. Surrogate Model Management 

Since the most significant part of the computational expense is created by the full exact 

solution of the direct problem, the effect of model management (number of the most promising 

particles that have been solved exactly using finite element techniques) is studied in Figure  3.22. 

The RBF model is used in this section, since in the previous section, it was found to be the most 

robust surrogate model for inverse heat conduction problems. The “Adaptive I” strategy is based 

on the concept of the index of improvement, as mentioned in Equation ( 3.24). The “Adaptive II” 
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strategy is based on changing the percentage of exactly evaluated members based on the iteration 

number. The figure shows the value of the objective function attained by the best performing 

particle in each iteration, normalized to the best value in the first generation, versus the total 

number of full direct simulations of the direct problem using the 3D finite element code for test 

case IV. As is seen in Figure  3.22, the computational expense is reduced considerably if only a 

smaller portion of promising members are evaluated (e.g., 20% in this problem). However, 

choosing a very small percentage (10% in this example) is inefficient, since it requires more 

iterations, and the total number of direct solutions will be more than the 20% case. Also notice 

that the strategy of evaluating 100% of the particles is equivalent to not using surrogate 

modeling at all. In this sense, we can say that using surrogate modeling can speed up the PSO-

based inverse algorithm up to around 3 times and the GA-based inverse algorithm up to around 

4.5 times. 

Table  3.20 shows the effect of using the surrogate models on CPU time. A considerable 

amount of speedup is observed when using a suitable ratio for the number of exactly evaluated 

swarm members. Also, it seems that using simpler model configurations (1 sensor instead of 9 or 

18) is preferable. This is reasonable considering that the nature of surrogate modeling is based on 

approximation, and not a full detailed solution. As can be seen from Table  3.21, the speedup of 

the nonlinear case is similar to the one in the linear case, and RBF seems to perform a very good 

job there as well. This can also be explained as the main role of the surrogate models is ranking 

of candidates, and even though in the nonlinear case, the accuracy of the prediction is lower, the 

RBF model can still choose which candidates will perform better. 
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Table  3.21. Effect of Using Surrogate Models on the Total Solution Time (s) for the Nonlinear Case 

% of fully evaluated members 100% 40% 20% 10% Adaptive I Adaptive II

1D – 1 sensor 
GA 6036 3584 2354 3397 2422 4070 

PSO 3483 1995 1268 1864 1162 2256 

3D – 1 sensor 
GA 16071 9394 5511 8139 4189 10103 

PSO 9174 5282 2991 3537 2473 5325 

3D – 9 sensors 
GA 16071 11821 5625 7117 4281 9360 

PSO 9174 6409 3178 3424 2102 4306 

3D – 18 sensors 
GA 16071 12818 5634 6713 3629 7254 

PSO 9174 7054 3251 3567 1915 3710 

3.16. Conclusion 

In order to overcome the shortcomings associated with the gradient-based inverse heat 

conduction solvers in our steel cooling applications, such as the instabilities due to the 

thermocouple reading noise, and low temporal resolution, some gradient-free algorithms were 

investigated in this chapter. These methods are artificial neural networks, genetic algorithms, and 

particle swarm optimization.  

The artificial neural networks are capable of capturing the whole thermal history on the 

run-out table, but are not very effective in restoring the detailed behavior of the boundary 

conditions. Also, they behave poorly in nonlinear cases and where the boundary condition 

profile is different. Thus, their application in the run-out table heat transfer analysis will be 

limited to a general prediction of the whole history. 

GA and PSO are more effective in finding a detailed representation of the time-varying 

boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. 

Comparison was made between GA and PSO variations in terms of both the computational 

efficiency and effectiveness in dealing with noisy data. PSO was found to improve efficiency 
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(i.e., reduce the required computational effort), especially in more complex test cases. A 

variation of the basic PSO, called CRPSO in this research, showed the best performance among 

the three versions. The effectiveness of PSO was also studied in the presence of noise. PSO 

proved to be effective in handling noisy data, especially when its performance parameters were 

tuned. The proper choice of the regularization parameter helped PSO deal with noisy data, 

similar to the way it helps the classical function specification approaches. An increase in the self-

confidence parameter was also found to be effective, as it increased the global search capabilities 

of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed 

by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it 

combines the efficiency, i.e. a lower computational expense, and effectiveness, i.e. resistance to 

the measurement errors, required by these problems. 

Sequential formulation, i.e. solving the inverse problem for each separate time step was 

found more efficient than a whole domain implementation. Also, in the case of multi-

dimensional problems with multiple sensors, the proposed multi-objective optimization was very 

successful in accelerating the solution. The relative speedup seemed to be independent of the 

number of spatial components. Introducing the concept of elite members to the algorithm also 

resulted in a faster convergence; however, the improvement was of less magnitude. It also 

looked more effective in simpler cases, i.e. smaller problems with fewer internal measurement 

points. In order to stabilize the algorithm, especially making it more effective in dealing with 

noisy measurement data, the concept of future time steps was borrowed from the function 

specification methods, and was applied to the sequential algorithm. It was very helpful in making 

the method more stable, especially when used in combination with a Tikhonov regularization 

term and tuning of the self-confidence parameter in PSO. The developed modified formulation 

for the inverse heat conduction problem and PSO implementation seem to be promising in terms 

of stability and performance for the cases similar to those studied in this research. 

While evolutionary optimization methods are very effective in dealing with inverse heat 

conduction problems in terms of stability and handling of noisy data, their very high 

computational expenses hinder the wide usage of these algorithm. Inexact pre-evaluation using 

surrogate models can be used to enhance the speed of evolutionary algorithms in solving the 

inverse heat conduction problems. In this strategy, the entire candidate solutions are first roughly 

evaluated using a much simpler surrogate model, and only the top performing members are 
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exactly evaluated using the full direct solvers, e.g. finite element method. Polynomial methods 

are the cheapest selection, both during the model construction phase, and the implementation. 

Radial basis function and feedforward neural networks have similar construction time, but in 

making predictions, RBF models perform faster. Kriging model is the slowest, especially when 

the number of unknowns increases. All the investigated surrogate models perform very well in 

predicting linear cases with no added noise. Nonlinear domains are much harder to predict. The 

most suitable model for noisy nonlinear cases is the RBF model. Since real-world cases of 

inverse heat conduction problem are normally nonlinear and noisy, this method is recommended 

for these applications. The best performing model management strategy is an adaptive selection 

scheme, based on the expected improvement of the objective function. Also, the most 

appropriate way to construct the surrogate model is to make a separate model for each sensor. If 

done properly, surrogate modeling can speed up the stochastical methods of solving the inverse 

heat conduction problem up to around 5 times. 

Finally, based on the performance that was measured on the test cases in this research, a 

sequential implementation of the CRPSO algorithm, using a multi-criteria formulation of the 

objective function, and using future time steps, Tikhonov regularization, and a tuned self-

confidence parameter, in conjunction with a single-sensor RBF surrogate model, using the 

adaptive selection based on the expected improvement of the objective function, is the most 

appropriate solution method for solving inverse heat conduction problems similar to the ones 

studied in this research, with characteristics like the ones encountered on a steel run-out table. 
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4. Heat Transfer Behaviour under Multiple Circular Water Jets Impinging 

on a Moving Plate 
In this chapter, we study the boiling heat transfer characteristics of two rows of three 

impinging jets on a moving hot plate. Experiments are conducted in an industrial scale setup, and 

thermocouples are used to measure the temperatures just under the plate surface. Then these 

temperatures are used as the input in our inverse heat conduction algorithm to find the boundary 

heat flux variations in space and time across the width and along the length of the moving flat 

plate. The effects of nozzle configuration, jet line spacing, and plate speed are investigated. The 

results in this chapter are obtained using our developed CRPSO algorithm, as introduced in the 

previous chapter. The sequential implementation is always used, and multi-criteria formulation 

of the objective function, future time steps, Tikhonov regularization, and a tuned self-confidence 

parameter are adopted to increase the stability of the method. Also, a single-sensor RBF 

surrogate model, using the adaptive selection based on the expected improvement of the 

objective function is utilized to reduce the computational costs. 

4.1. Experimental Setup 

The general characteristics of the experimental run-out table facility were described in 

chapter 1. In the experiments that are analyzed in this chapter, there are eighteen thermocouples 

attached to each plate. The ones that are located along the lateral direction are 12.6 mm apart 

from each other. The distance between the two sets of thermocouples is either 25.2 cm, or 50.4 

cm, based on the distance between jet lines for that experiment. Figure  4.1 shows a top view of 

the TC configuration on the plate. 

 

 

Figure  4.1. A Sample Plate, Showing the Dimensions and Thermocouple Locations 
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The pressure at the stagnation point is given by  

 ( 4.3)

where Pa is the atmospheric pressure and ρ is the density of water. In this case, the pressure at the 

stagnation point will be about 116,389 Pa. The saturation temperature of water at this condition 

can be found from a saturation table of water, and is around 103.6 °C. 

The plate passes through the system several times, so the input plate temperature varies 

from around 700 °C, down to just slightly more than 100 °C. This gives us the opportunity of 

studying different boiling heat fluxes, due to the various levels of temperature gradient. The 

experimental database used in this research is developed by Franco [31]. 

Twelve different experimental setups are analyzed, each with a different combination of 

jet line spacing, nozzle stagger, and plate speed. Table  4.1 shows these setups. In the following 

sections, we are going to study the effect of these parameters on the heat transfer behavior on the 

plate surface. 

 
Table  4.1. Test Matrix. 

Set-up 
Jet Line 

Spacing (cm)

Nozzle 

Stagger (mm)

Plate Speed 

(m/s) 

S1 25.4 0 0.35 

S2 25.4 0 1.0 

S3 25.4 25.4 0.35 

S4 25.4 25.4 1.0 

S5 25.4 50.8 0.35 

S6 25.4 50.8 1.0 

S7 50.8 0 0.35 

S8 50.8 0 1.0 

S9 50.8 25.4 0.35 

S10 50.8 25.4 1.0 

S11 50.8 50.8 0.35 

S12 50.8 50.8 1.0 
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In order to determine the heat fluxes caused by impinging water jets on the surface of hot 

moving plate, we need to find the surface temperatures. Unfortunately, measuring the surface 

temperatures directly is not accurate. Our initial experiments with placing thermocouples on the 

plate surface showed an error of around 250 ºC, when the surface temperature was around 700 

ºC [25]. Other methods such as infrared thermography may not be influenced by the water 

interaction on the surface, but are very hard to get in our application, since the water vapor 

covers the plate surface. Also these methods provide a snapshot of the surface temperature at 

each step rather than a continuous recording of temperature history during time. As a result, 

researchers use thermocouple readings from inside the plate to obtain the boundary heat flux 

values. The inverse algorithms that were developed in the previous chapters are used to obtain 

the surface temperature and heat fluxes during the water cooling process. 

4.2. Uncertainty Analysis 

As it was mentioned before, type K thermocouples that are used in this study, have an 

error of approximately 2 °C. There is also some uncertainty in the values of thermophysical 

properties, such as heat conduction coefficient, and heat capacity. Thermocouple position and 

depth are the other sources of uncertainty. Since these values are the inputs of the inverse heat 

conduction analysis, their uncertainties will propagate through the algorithm, and will result in 

an uncertainty band around the output values, such as the surface heat flux and temperature. 

While it is possible to use analytical equations to calculate the uncertainty in boundary heat 

fluxes for simple linear inverse heat conduction problems, in case of nonlinear problems with 

multiple sensors, a numerical procedure is normally required [126]. This approach is called the 

“computerized uncertainty analysis” [127]. While there are several methods available for this 

approach [128], in this research, we have used a finite difference method, based on the 

sequentially perturbing the inputs, as detailed in [127]. 

Our calculations indicated that the uncertainty in the values of surface heat flux and 

temperature is between ±8% for the parallel flow zones, away from the stagnation point, and 

±16% under the impinging jet. Also, it should be noted that the several sets of repeatability 

measurements were performed, and the data showed excellent repeatability [31]. 
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4.3. Time Histories of Temperature and Heat Flux 

Based on our observations, the most significant factor affecting the heat transfer behavior 

is the range of plate surface temperature when entering the jet line. Thus, we have presented 

many of our results in three different entry temperature ranges: High (500 – 750 °C), mid (250 – 

500 °C), and low (100 – 250 °C). Figure  4.3 - Figure  4.5 show the time history of thermocouple 

readings (inside temperature) from the experiments, and surface temperature just above the 

thermocouple and the heat flux at the location of thermocouple, both obtained by our inverse 

analysis, at five cross-section locations, for three different entry temperature ranges: high 

temperature (around 700 °C, Figure  4.3), mid temperature (around 400 °C, Figure  4.4), and low 

temperature (around 120 °C, Figure  4.5). The data shown here is from the S6 setup, i.e. a jet line 

spacing of 25.4 cm, a nozzle stagger of 50.8 cm (full stagger), and a plate speed of 1.0 m/s are 

used. That means that for the first pass, the 3rd thermocouple is under the impingement, and for 

the 2nd pass, the 7th one is in the impingement zone. 

As it can be seen in Figure  4.3(a), the inside temperature is initially around 700 °C (A). 

All temperatures fall after the line reaches the first jet line (B). The magnitude of the temperature 

drop is much higher for the TC location under the jet (E). For the rest of the TCs, the magnitude 

of the drop is more or less of the same order, but very gradually decreases when we move away 

from the impingement point (TCs 1 and 7). When the plate moves away from the jet line, the 

temperature partially recovers, due to the thermal mass of the plate (C). However, the existence 

of the second jet line stops the recovery process, and reduces the temperature once again (D). 

Note that the second jet line is impinging on a plate with a quite non-uniform temperature 

distribution, which is also lower than the initial entry temperature. Due to this non-uniformity, 

the history of the second jet line shows a larger diversity in behavior. Once again, the most 

significant temperature drop occurs at the impingement location (TC 7 this time). After moving 

away from the 2nd jet line, temperature again recovers, and due to the lack of a new jet line, the 

temperature distribution starts to become uniform again (G). 

Figure  4.3(b) shows the surface temperatures at the location of each TC. These values are 

obtained by using the inverse analysis. As expected these values are smaller than the inner 

temperatures, and if examined carefully, exhibit an earlier response to the jet line. This is of 

course due to the time lag that exists for the boundary conditions to be sensed inside the plate. It 

is also observed that the amount of the temperature drop is larger for the surface compared to the 
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temperature drop inside the plate. This is also related to the damping of changes in boundary 

condition inside the plate. These two effects (time lag and damping) are always present in 

inverse heat transfer analysis and contribute to the complexity of such problems. 

Figure  4.3(c) displays the surface heat flux at the location of each TC for the same 

experiment, again obtained by the inverse analysis. The heat fluxes are initially very small, and 

close to zero (A). After the TCs reach the first jet line, there is a rise in the amount of heat fluxes 

(B), with the impingement zone, experiencing the largest value of heat flux (E). The same thing 

happens for the second jet line, however since now the temperature distribution is not uniform 

anymore; there is a larger diversity in the heat flux behaviors.  

Figure  4.4(a), (b), and (c) show similar results as Figure  4.3(a), (b) and (c), respectively, 

but for an entry temperature of around 400 °C. The trends are qualitatively similar to the higher 

entry temperature case, but values are different. This is especially obvious when comparing the 

heat flux curves. As is seen in Figure  4.4(c), the peak heat flux value reaches a value more than 

twice of the peak heat flux of Figure  4.3(c). This shows that a more effective boiling mechanism 

is present in the mid range of surface temperatures. This can be related to a thinner vapor layer 

on the plate surface in this temperature range. This layer is thicker in the high temperature range, 

which means a film boiling heat transfer mechanism. In the mid temperature range, the 

momentum of the vertical impinging jet can break the thinner layer apart, and liquid can touch a 

wider area, so a partially nucleate boiling mechanism is responsible for higher heat fluxes. 

Finally, Figure  4.5(a) represents the last series of TC readings for the low entry 

temperature range. With an initial inner temperature of 120 °C (A), i.e. just about 20 °C higher 

than the boiling point, the plate is subjected to the first row of jets. As shown in Figure  4.5(b), 

this causes the surface temperatures to drop below the boiling point. Interestingly, in this case, 

there is not a major difference between the cross sectional locations, i.e. the impingement and 

parallel flow zones exhibit a more uniform temperature drop. This is more clear in Figure  4.5(c). 

As is seen in this figure, the peak values of heat flux (B) are not as different as previous cases. 

This is in accordance with the findings of Jondhale [83] that the significance of boiling heat 

transfer in the impingement zone compared to the boiling in the parallel flow zone is reduced 

when the surface temperature falls below 200 ºC. This is even more pronounced when the (even 

colder) plate passes the second jet line (D). Interestingly, in both cases of peak heat flux (B and 

D), the maximum heat flux is not at the location of impingement, but at somewhere between the 
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two adjacent impinging circular jets. This is in agreement with the findings of Slayzack et al. 

[81] about the water fountain in the interaction zone between two jets. 

Therefore, the high entry temperature range causes a relatively thick vapor layer that acts 

as insulation, and the heat transfer mechanism is film boiling, unless when an impinging jet with 

high momentum breaks down that layer. In the mid entry temperature range, the thinner vapor 

layer is a weaker insulation, and the dominant mode of heat transfer is mostly transition boiling. 

In the low entry temperature range, the local surface temperature falls quickly below the boiling 

point, and the heat transfer mode is non-boiling forced convection.  
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4.4. Heat Flux vs. Surface Temperature 

Figure  4.6 show the variation of surface heat flux and heat transfer coefficient (h) versus 

the surface temperature, during a two jet line experiment for high, mid, and low entry 

temperatures, and for five of the thermocouples across the width of the plate. Remember that 

both the surface heat flux and surface temperature are obtained by running an inverse analysis on 

the readings of internal thermocouples. The surface heat transfer coefficient is simply obtained 

by dividing the values of heat flux by the temperature difference between the surface and the 

cooling water. Since the cooling water in all these experiments has a temperature of 25 °C, the 

heat transfer coefficient will be 

( ) ( )25−
=

−
=

surface

surface

watersurface

surface

T
q

TT
q

h  ( 4.4)

Figure  4.6(a) and (b), respectively show the heat flux and heat transfer coefficient vs. 

surface temperature for the high entry temperature range (around 700°C). The letters on the 

graph correspond to the same letters in Figure  4.3. As we move from (A) to (B), the temperature 

will fall very fast, as the impingement point will produce the highest heat flux (E) for the 

thermocouple that is directly under the jet. After passing the first jet line, the surface temperature 

partially recovers (C). The same thing happens during the impingement of the second jet line, 

however, with a lower initial surface temperature and a more non-uniform distribution. The plate 

finally exits both jet lines with a surface temperature of around 670 °C (G). 

Figure  4.6(c) and (d) show the same thing but for the mid entry temperature range 

(around 400 °C). Here the behavior is very much like the previous case, however, the heat 

transfer rate is much higher. This is especially significant in the under impingement area (E and 

F). Also during the temperature recovery after impingement (moving toward points C and G), 

there is a dent in the graph, i.e. the temperature starts to recover at a high rate, then stops, a little 

bit of cooling occurs, and then temperature recovers at a slower rate. This should be related to 

the lower thermal energy that is stored in the plate.  

Finally, Figure  4.6(e) and (f) show the same quantities, but for a low entry temperature 

experiment (around 130 °C). Here the behavior is very different from the previous two cases, 

especially because after the first jet line, the surface temperature falls below the boiling point, so 

for the second jet line, the heat transfer mechanism is not boiling, but a forced convection by the 

water flowing over the plate. Again, for both jet lines, maximum heat transfer is not happening 
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in the impingement point, but somewhere between the two jets that the interaction fountain is 

formed.  
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4.5. Lateral Distribution of the Heat Flux 

Since we only have nine thermocouples that are clustered in the central part of the plate 

(see Figure  4.1), we are going to use the three nozzle configurations (see Figure  4.2) to study the 

variation of the heat flux under and between the nozzles. The lateral location between the jets is 

normalized with respect to the distance between the first and last thermocouples (101.6 mm) 

with TC1 and TC9 at the normalized locations of zero and one, respectively. The lateral 

distribution of heat flux is displayed in Figure  4.7, for the moment of impingement of the first jet 

line. In the three cases, the jet impinges on thermocouples 5 (Figure  4.7 (a)), 4 (Figure  4.7 (b)), 

and 3 (Figure  4.7 (c)). For each case, three heat flux distributions are displayed, one for each of 

the three temperature ranges (high, mid, and low). 

As is observed in these figures, the maximum heat flux values happen at the mid entry 

temperature range. Here, we see that the heat flux distribution is more non-uniform in the mid 

entry temperature range as well, with the peak heat flux occurring at the point of impingement. 

Also, we see that at low temperature range, the maximum heat flux is not occurring at the 

impingement point. The heat flux distribution is nearly symmetrical around the impingement 

point for the inline nozzle configuration. However, half-staggered and full-staggered nozzle 

configurations result in more complicated flow fields that result in an unsymmetrical heat 

transfer behavior around the impingement zone. This is especially more pronounced when the 

entry temperature is in the high or low temperature ranges. These profiles are going to be 

especially useful in studying the thermal stresses in plates during a cooling process on the runout 

table in a material processing mill, which may sometime result in a deformation in the cooled 

plate.  
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4.6. Lateral Distribution of the Surface Temperature 

Figure  4.8 shows the surface temperature distribution across the plate after the second jet 

line has passed versus the normalized lateral location between TC1 and TC9. This data is also 

going to be highly useful in studying the thermal stresses in the plate, as well as making sure that 

different parts of the plate follow a similar temperature history profile, and thus, the mechanical 

properties are going to be uniform. Again for each nozzle configuration, three lateral temperature 

distributions are displayed, one for each of the three temperature ranges (high, mid, and low). 

As it is seen in Figure  4.8(c), the most uniform distribution is happening in the case of 

fully staggered nozzle configuration. This is especially true at low entry temperature range. The 

most severe case of non-uniform temperature distribution is usually the case of mid entry 

temperature. Since this figure shows the temperature profile after both jet lines have hit the plate, 

one can also judge the time that it takes for the plate to reach a more homogeneous temperature 

distribution. As is seen in parts (b) and (c) of Figure  4.8, where the lateral location of the second 

line of nozzles is different than the first, the effect of the first jet line is dissipated more slowly in 

mid surface temperature range. This can be due to the fact that at mid surface temperature range, 

there is a very high heat flux occurring at the impingement point, resulting in a very effective 

temperature drop.  
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4.7. Longitudinal Distribution of the Heat Flux 

As discussed earlier, although many researchers do not distinguish the two different 

parallel flow zones, the flow and heat transfer fields between two successive jet rows is different 

from the ones between two nozzles in one jet line. One reason is the jet rows have more distance 

from each other compared to the nozzles in one jet line. Also, the plate velocity vector is now 

oriented in a different direction with respect to the spreading water. Nozzle stagger configuration 

and jet line spacing are the two parameters that affect the longitudinal distribution of heat flux.  

Figure  4.9 shows the heat flux distribution between two successive jet lines for some of 

the thermocouples (across the plate width) for the high temperature range. Figure  4.9(a), (b), and 

(c) show the heat flux distribution for jet line spacing of 25.4 cm, and for no stagger, half-

staggered, and full-staggered configurations. Figure  4.9(d) shows the distribution for the half-

staggered configuration, but for a jet line spacing of 50.8 cm. As it can be seen in this figure, the 

heat flux is more or less uniform between two successive jet lines in this temperature range. 

Only in the half-staggered case, with a jet line spacing of 25.4 cm (Figure  4.9(b)), there is an 

increase in the heat flux somewhere between the two jet lines, probably due to some kind of a 

stagnation line. Comparing parts (b) and (d) of this figure shows that increasing the jet line 

spacing may result in the dissipation of this heat flux spike. Also, notice that in all cases the heat 

flux between two jet lines is smaller than the one between two impinging jets in one jet line. 

Figure  4.10 displays the same graphs but for the mid temperature range. As shown in 

these figures (in this temperature range and for a low nozzle spacing, cases-a, b, and c) the heat 

flux in the interaction zone between two jet lines rises to a value that is comparable to the value 

of heat flux in the interaction zone between two nozzles of a same jet line. This effect is, 

however, dissipated when the jet line spacing is increased, probably due to a weaker interaction 

fountain between two successive jet rows. Also notice that the heat flux values are higher to the 

right of the peak values in the impingement point. It means that the heat transfer in the 

downstream of the impingement line (where the plate motion and the water spreading directions 

are the same) is higher. 

Figure  4.11 shows the same graphs for the low entry temperature range. Here, there is a 

considerable amount of heat flux happening in the region between two jets. The reason is that in 

this region, the water remains longer on the surface before evaporation and the pool of water is 

still cooling the plate when the thermocouple is between two impinging jets. Also the vapor layer 
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the surface temperature. Figure  4.12(a) and (b) display the value of heat flux under the 

impingement zone, each for 6 sets of experiments, with jet line spacings of 25.4 and 50.8 cm, 

respectively. The symbols on the graph show the four different combinations of plate speed and 

jet line spacing, and the connecting line pattern is representing the nozzle stagger configuration. 

Solid lines represent the cases with no stagger, while dashed and dotted lines stand for the half-

staggered and full staggered configurations, respectively. As it can be observed in these figures, 

there is not a clear difference between different setups in the temperatures below 400 °C. 

However, in the temperatures higher than this there is a clear difference between six setups with 

a plate speed of 0.35 m/s (higher branch) and the ones with a plate velocity of 1 m/s (lower 

branch). In other words, in the high entry temperatures, the heat transfer rate is much lower when 

the plate is moving at a higher velocity. This can be related to the fact that at high plate speeds, 

the vapor layer that is formed on the surface, and works like an insulator, is more strongly 

attached to the plate, so the impinging jet has a bigger challenge in breaking down the vapor 

layer and getting in touch with plate. As a result, a more stable film boiling heat transfer will be 

present, which causes lower heat transfer rates. This temperature range in which the plate speed 

affects the heat transfer rate is in accordance with the experiments done by Gradeck et al. [84]. 

Obviously, in order to better understand this behavior, more experiments are needed with a wider 

range and variety of plate speeds. Notice that this effect is only limited to the impingement zone. 

Figure  4.12 (c) and (d) display the variation of the surface heat flux between two nozzles versus 

the surface temperature. Here, however, there is not any clear correlation between the plate speed 

and the heat transfer rate.  
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transfer behaviour on the plate. At high temperatures, the plate surface is covered with a 

condensed vapour layer that acts as an insulation blanket, and requires an impinging jet with 

high momentum to break it down. This translates into a stable film boiling regime, with reduced 

values of heat fluxes. Heat transfer rate increases at medium temperatures where the vapour 

thickness is smaller. For low entry temperatures in a multi jet line experiment, the heat transfer is 

lowered again. In the low temperature region, the maximum heat flux does not occur at the 

impingement point, but at a location between the jets, due to formation of an interaction water 

fountain. The most important effect of nozzle stagger is the uniformity of heat transfer across the 

width of the plate. The most uniform distribution is happening in the case of fully staggered 

configuration. The heat transfer between two successive rows of jet lines is affected by the jet 

line distance. In higher jet line distances, the interaction effects become less significant, and a 

more uniform distribution is observed. However, when the jet lines are closer, the effect of 

interaction is more pronounced. In medium and high temperatures, there is a spike in the heat 

flux values in the interaction zone. In the low temperature range, because the water does not 

evaporate quickly, a pool of water forms on the plate surface, resulting in a flattened heat flux 

versus time profile. The plate speed affects the heat transfer rate under the impingement point for 

the higher surface temperatures. In the high entry temperatures, the impingement heat transfer 

rate is lower when the plate is moving at a higher velocity. The plate speed however does not 

significantly change the heat transfer behavior in the other parts of the plate surface. 
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5.1. Phase Transformation Modeling 

There are three main approaches to find the state of phase transformation during the 

cooling:  

1. Using the laws of thermodynamics, kinetics, and diffusion.  

2. Using the continuous cooling transformation (CCT) diagram: 
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where X0 is described as the volumetric rate of intended phase at transformation termination, Ts 

and Tf are the transformation start and finish temperatures, respectively, and n and b are 

constants. Because the cooling rate at each point is different, we will have different values for Tf, 

Ts, n and b. This approach was developed by Boyadjiev, et al. [130]. 

3. Using the isothermal temperature-time transformation (TTT) diagrams: The initial time 

should be defined as the time that the transformation begins under continuous cooling 

conditions.  

The first category of the models are the most accurate ones, but have not been used 

extensively in the literature due to the lack of information about the exact characteristics of 

thermal field history and the model calibration coefficients. Previous research (in UBC group) 

has provided the required information to use in the above models [131,132]. The algorithm that 

is used here is based on the work of Liu, et al. [132], and falls in the first family of the models. In 

this algorithm, the static recrystallization kinetics is simulated by the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) theory. The transformation start temperature was also found following the 

method suggested in the work of Militzer, et al. [131]. 
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( )
( ) ( )ieqieq

ieqeq

TcTc
cTc

f αγ

γ

α −
−

= 0  ( 5.5)

and the real transformed fraction can be obtained as: 

eqfFf ααα ⋅=  ( 5.6)

where at T = Ts the value of ܨఈ is 0.001, and at each next time step, it is updated through: 

 t
dt

dFFF oldnew Δ+= α
αα  ( 5.7)

where 

( )( )αα
α FTb

dt
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i −= 1  ( 5.8)

and 
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−−−=

α
α f

cTTb ii 1
24.11860001.04.4exp 0  ( 5.9)

For a more detailed discussion of this model, as well as the physical significance of various 

terms, refer to [131,132]. 

5.2. Thermal Stress Modeling 

If the temperature in a homogenous body changes by ΔT, the total strain in the body is 

consisted of two parts, the free thermal expansion, plus the strains related to the stress state in the 

body, and can be expressed by the following equations: 
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where ε is the strain, σ is the stress, ν is the Poisson’s ratio, E is the Young’s modulus, and G is 

the shear modulus. Solving the above equations for stress yields: 
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where λ, μ, and β are defined as: 
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The equations of equilibrium for temperature change in the body are: 
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where X, Y, and Z are the body forces per unit volume. The boundary conditions are given by: 
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where l, m, and n are the direction cosines of the outward drawn normal and Xs, Ys, and Zs are the 

surface forces per unit area. 

In cases where the boundary conditions, temperature distribution, geometry, or material 

properties are more complicated, using analytical methods to solve for the thermo-mechanical 

properties is impossible. Using numerical methods, such as finite elements is very common to 

study these problems. 

While in the above equations, we assumed that the change in the temperature affects the 

strain values only through the thermal expansion coefficients, however in these controlled 

cooling applications, there are normally two main sources for the strain in the steel. One is the 

thermal strain that is related to the temperature gradient and the thermal expansion coefficient of 

the mixture of phases (obtained using the rule of mixtures). The other one is the volumetric 
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strain associated with the phase transformation, i.e. the change in the volume of the same amount 

of steel during austenite to ferrite transformation.  

In this research, we combine the effects of these sources by creating a total coefficient of 

expansion: 

changephasethermaltotal −+= ααα  ( 5.15)

where αtotal is the total expansion coefficient, αthermal is the weighted average of the thermal 

expansion coefficients of the phases in each location in the steel sample, and αphase-change is the 

phase change expansion coefficient. This latter component can be calculated in each time step i 

as: 
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− 3
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1α   ( 5.16)

where Vi and Vi-1 are the mixture specific volumes in the current and the last steps, respectively. 

In each step, the mixture specific volume can be obtained using the rule of mixtures: 

( )iii XVXVV −⋅+⋅= 1γα   ( 5.17)

and αV  and γV are the specific volumes of ferrite and austenite, respectively. These values are 

related to the lattice parameters of ferrite and austenite (aα and aγ, respectively), as: 

( ) 321 αα aV =  and ( ) 341 γγ aV =  ( 5.18)

The lattice parameters vary with temperature, and in the case of austenite also with the carbon 

fraction value [133]. 

5.3. Computational Modeling 

A commercial finite element software is used to model the coupled thermal and structural 

field. Shell elements are used to discretize the domain. On the top surface of the plate, the heat 

fluxes are applied as the thermal boundary condition. After the thermal and microstructure 

simulations are performed, results are written to a file, which is subsequently read by the 

structural simulation. Since the effect of structural field on the thermal and microstructural fields 

is weak (see Figure  5.1), there is no need to feed the structural results back into the 

thermal/microstructural models. In all the following validation cases, as well as the new 

simulations, grid and time step independency has been investigated, i.e the mesh is refined until 

changes in the results were less than 5%.  
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5.6.1. Single Passes 

Single pass simulations were performed for three temperature zones (high, mid, and low 

temperatures). Figure  5.15 - Figure  5.17 show the results of these simulations for different 

setups. In each case, we are assuming that the plate is entering the cooling station with uniform 

temperature distribution and no initial stress or deflection. 
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Figure  5.15. Single Pass Results for High Temperature Range Cooling 
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Figure  5.16. Single Pass Results for Mid Temperature Range Cooling. 
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Figure  5.17. Single Pass Results for Low Temperature Range Cooling 
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As seen in the above figures, higher maximum temperature difference across the plate 

width results in a higher maximum von Mises stress, and maximum displacement. In each of 

these figures, values are typically larger for the no-stagger (inline) cases (S1, S2, S7, and S8), 

followed by the half-staggered ones (S3, S4, S9, and S10). The fully-staggered setups (S5, S6, 

S11, and S12) have the lowest values of the lateral temperature variations, as well as the lowest 

values of the von Mises stress and displacement. The most significant factor in controlling the 

stress and flatness in the strips is the jet configuration, and the most desirable configuration is the 

one that promotes a more uniform distribution of temperature across the plate width.  

Among the cases with the same nozzle configuration, plate speed is the next important 

factor in determining the values of stress and deformation. Plates traveling at slower speeds are 

cooled down more uniformly, and will have less stress and deflection in them. Finally, longer jet 

spacing gives the opportunity of a more uniform cooling and causes less deflection in the plate. 

However, the effect of jet line spacing and plate speed is much less significant than the effect of 

jet stagger. 

As expected, the cooling in the low temperature zone has the lowest effect on the plate 

deformation. It should be noted that in this temperature range, there is practically no phase 

transformation and already all of the steel is transformed to ferrite. 

5.6.2. Multiple Passes 

For the results in the previous section, we were assuming an initial uniform temperature 

distribution, and no initial stress or deflection in the plate. In Figure  5.18 - Figure  5.20, we will 

study the effect of the initial non-uniform temperature distribution and stress and deflection in 

the plate. In order to do this, we start with a uniform hot plate with no stress and deflection, 

coming out of furnace at about 750 °C, and then through multiple passes through the cooling 

station, we lower the temperature to 500, 300, and 100 °C, and display the results in Figure  5.18, 

Figure  5.19, and Figure  5.20, respectively. 
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Figure  5.18. Results for a Plate Cooled Down to 500 °C 
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Figure  5.19. Results for a Plate Cooled Down to 300 °C 
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Figure  5.20. Results for a Plate Cooled Down to 100 °C 
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The trend for the effect of jet stagger, jet line spacing, and plate speed are similar to those 

observed in section  5.6.1. It is also observed that lowering the final coiling temperature will 

result in lowering the stress and deflection. This is due to the fact that thermal contraction of 

ferrite will cancel out some of the volumetric expansion due to the austenite to ferrite 

transformation.  

5.6.3. Effect of Plate Thickness 

Figure  5.21 shows the variation of the maximum out of plane displacement for the 

moving plate versus the strip thickness, for case S1, when continuously cooled down to around 

300 °C. The trends for all of the moving plate cases are similar, and resemble the trend for the 

stationary plate, as depicted in Figure  5.13. 

 

 

Figure  5.21. Maximum Out of Plane Displacement vs. Strip Thickness for the Moving Plate 
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Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The model is validated using sample cases 

in the literature.  

The cooling of both the stationary and the moving plates were studied. It was found that 

the maximum temperature difference across the plate width is directly affecting the maximum 

von Mises stress and displacement. Also, these values are typically larger for the no-stagger 

(inline) cases, followed by the half-staggered ones. The fully-staggered setups have the lowest 

values of the lateral temperature variations, as well as the lowest values of the von Mises stress 

and displacement. The most significant factor in controlling the stress and flatness in the strips is 

the jet configuration, and the most desirable configuration is the one that promotes a more 

uniform distribution of temperature across the plate width.  

Plate speed is the next important factor in determining the values of stress and 

deformation. Plates traveling at slower speeds are cooled down more uniformly, and will have 

less stress and deflection in them. Finally, longer jet spacing gives the opportunity of a more 

uniform cooling and causes less deflection in the plate. It was also observed that increasing the 

plate thickness, increases the maximum deflection, due to a larger temperature gradient through 

the thickness. 
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6. Conclusion and Future Work 

6.1. Conclusion 

The controlled cooling of steel strips on run-out table is a crucial procedure that can 

result in obtaining desired mechanical properties. Despite being used in steel mills for decades, 

the process is still mainly based on trial-and-error. This is due to the complicated nature of the 

events that happen, and the highly coupled nature of the thermal, fluid flow, microstructure, and 

mechanical fields. Thus, there is still a need to study this process in more details. 

The present study is a part of a comprehensive research project undertaken in UBC 

[1,8,9,27-32]. Here, we first established a reliable inverse analysis tool that can be used to obtain 

the boundary heat fluxes from the temperature history of thermocouples implemented inside the 

plate. Then, these heat fluxes were studied to understand the heat transfer behavior of boiling 

water impinged on a moving hot plate through multiple circular jets. Finally, the heat fluxes 

were coupled with the microstructure and mechanical fields to study the thermal stresses and 

deflection or warping in the steel plates. Recommendations were made to the industry about the 

ways to improve the cooling performance, and reduce the adverse structural effects. The 

following subsections summarize the findings and contributions of this research. 

6.1.1. 3D Finite Element Program for the Inverse Heat Conduction Analysis 

A gradient-based algorithm for the inverse heat conduction analysis is developed. In this 

method, the least-square method, future time step technique, zeroth order regularization, and 

sequential function specification are used. The program can account for the heat generation 

during the phase transformation as a source term in the heat transfer equation. The results 

showed that the method is highly sensitive to the measurement errors, and becomes unstable in 

small time steps, thus limiting its application in real run-out table studies. 

As a remedy for the shortcomings related to the gradient-based inverse heat conduction 

solvers in our steel cooling applications, such as the instabilities due to the thermocouple reading 

noise and low temporal resolution, three gradient-free algorithms were studied. These methods 

are the artificial neural networks, genetic algorithms, and particle swarm optimization. 

6.1.2. Study of the Neural Network Algorithms for Inverse Heat Conduction Analysis 

Several types of artificial neural networks were studied in this research. Our 

investigations showed that a suitable formulation for the inverse heat conduction problems in 
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neural networks should relate the gradient (and not the values) of the inside temperature to the 

boundary heat fluxes. Also, it was found that the radial basis function is the most suitable type of 

neural networks for inverse heat conduction problems.  

The artificial neural networks were shown to be capable of capturing the whole thermal 

history on the run-out table, but not very effective in restoring the detailed behavior of the 

boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary 

condition profile is different. Thus, their application in the run-out table heat transfer analysis 

will be limited to a general prediction of the whole history. 

6.1.3. Study of the GA and PSO Algorithms for Inverse Heat Conduction Analysis 

While GA has been previously used for inverse heat conduction analysis, the application 

of PSO to these problems was first studied in this research. GA and PSO are more effective in 

finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear 

cases. However, their convergence takes longer. For the first time, comparison was made 

between GA and PSO variations in terms of both the computational efficiency and effectiveness 

in dealing with the noisy data in inverse heat conduction problems. PSO was found to improve 

efficiency (i.e., reduce the required computational effort), especially in more complex test cases. 

In addition to the basic PSO algorithm, two other variations were studied in this research. One of 

them, the complete repulsive PSO (CRPSO), was introduced for the first time in this work. 

CRPSO showed the best performance among three other versions. The effectiveness of PSO was 

also studied in the presence of noise in inverse heat conduction applications. PSO proved to be 

effective in handling noisy data, especially when its performance parameters were tuned. The 

proper choice of the regularization parameter helped PSO deal with noisy data, similar to the 

way it helps the classical function specification approaches. This research showed that an 

increase in the self-confidence parameter is also effective, as it increases the global search 

capabilities of the algorithm. RPSO was found to be the most effective variation in dealing with 

noise, followed closely by CRPSO. The latter variation was recommended for inverse heat 

conduction problems, as it combines the efficiency and effectiveness required by these problems. 
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6.1.4. Improvements in the Efficiency and Effectiveness of Gradient-free Algorithms for 

IHC Analysis 

This research showed that while both GA and PSO are capable of overcoming many of 

the shortcomings faced by the classical inverse analysis algorithms, they suffer from a slow 

convergence rate. Several modifications were proposed for the first time in this research that 

resulted in a faster algorithm for inverse analysis of heat transfer. Sequential formulation, i.e. 

solving the inverse problem for each separate time step was found more efficient than a whole 

domain implementation. Also, in the case of multi-dimensional problems with multiple sensors, 

we proposed a multi-objective optimization formulation that was very successful in accelerating 

the solution. The relative speedup seemed to be independent of the number of spatial 

components. Introducing the concept of elite members to the PSO algorithm also resulted in a 

faster convergence; however, the improvement was of less magnitude. It also looked to be more 

effective in simpler cases, i.e. smaller problems with fewer internal measurement points. 

Also, the concept of future time steps was borrowed from the function specification 

methods, and for the first time was applied to the sequential stochastic inverse algorithms. It 

proved to be very helpful in making the method more stable, especially when used in 

combination with a Tikhonov regularization term and tuning of the self-confidence parameter in 

PSO. The developed modified formulation for the inverse heat conduction problem and PSO 

implementation seem to be promising in terms of stability and performance, and make an 

effective and efficient algorithm for inverse heat conduction problem. 

6.1.5. Surrogate Model Based Acceleration of GA and PSO Solvers 

In order to further improve the convergence characteristics of the proposed stochastic 

inverse heat conduction algorithms, the concept of inexact pre-evaluation using surrogate models 

was introduced and used to enhance the speed of evolutionary algorithms in solving the inverse 

heat conduction problems. In this strategy, the entire candidate solutions are first roughly 

evaluated using a much simpler surrogate model, and only the top performing members are 

exactly evaluated using the full direct solvers, such as finite element method. It was found that 

polynomial methods are the cheapest selection, both during the model construction phase, and 

the implementation. Radial basis function (RBF) and feedforward neural networks have similar 

construction time, but in making prediction, RBF models perform faster. Kriging model is the 

slowest, especially when the number of unknowns increases. All the investigated surrogate 
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models perform very well in predicting linear cases with no added noise. Nonlinear domains are 

much harder to predict. The most suitable model for noisy nonlinear cases is the RBF model. 

Since real-world cases of inverse heat conduction problem are normally nonlinear and noisy, this 

method was recommended for these applications in this study. An adaptive selection scheme 

based on the expected improvement of the objective function was found to be the best 

performing model management strategy. Also, making a separate model for each sensor was 

found to be the most appropriate way to construct the surrogate model. If done properly, 

surrogate modeling can speed up the stochastical methods of solving the inverse heat conduction 

problem up to around 5 times. Creating the structure for a stable, accurate, and fast inverse heat 

conduction solver is one of the major contributions of this research. 

6.1.6. Characterization of the Water Jet Impingement Cooling on a Moving Plate 

Boiling heat transfer on a hot plate cooled by multiple water jets and multiple jet lines in 

an industrial scale experimental setup was studied in this research. Nozzle configuration, plate 

speed, and jet line spacing were varied in the experiments. Thermocouple readings were 

analyzed using a 3D inverse heat conduction procedure. It was found that the surface 

temperature is the most significant factor affecting the heat transfer behaviour on the plate. At 

high temperatures, the plate surface is covered with a condensed vapour layer that acts like an 

insulation blanket, and requires an impinging jet with high momentum to break it down. This 

translates into a stable film boiling regime, with reduced values of heat fluxes. Heat transfer rate 

was shown to increase at medium temperatures where the vapour thickness is smaller. For low 

entry temperatures in a multi jet line experiment, the heat transfer is lowered again. One of the 

very interesting findings of this study was the fact that in the low temperature region, the 

maximum heat flux does not occur at the impingement point, but at a location between the jets, 

due to the formation of an interaction water fountain.  

The most important effect of nozzle stagger is the uniformity of heat transfer across the 

width of the plate. The most uniform distribution is happening in the case of fully staggered 

configuration. The heat transfer between two successive rows of jet lines is affected by the jet 

line distance. In higher jet line distances, the interaction effects become less significant, and a 

more uniform distribution is observed. However, it was shown that when the jet lines are closer, 

the effect of interaction is more pronounced. In this study, it was observed that in medium and 

high temperatures, there is a spike in the heat flux values in the interaction zone. In the low 



 
 

 

161 
  
 

 

temperature range, because the water does not evaporate quickly, a pool of water forms on the 

plate surface, resulting in a flattened heat flux versus time profile. The plate speed affects the 

heat transfer rate under the impingement point for the higher surface temperatures. In the high 

entry temperatures, the impingement heat transfer rate is lower when the plate is moving at a 

higher velocity. The plate speed however does not significantly change the heat transfer behavior 

in the other parts of the plate surface. 

6.1.7. Study of the Structural Effects of the Controlled Cooling of Steel Strips 

It is desirable that the strips maintain their flatness throughout the controlled cooling 

process. Thus, it was necessary to study the effect of cooling patterns on the structure of the 

strips. A literature survey shows that the previous researches in this field are very preliminary, 

and include major simplifications. One of the major simplifications in the previous studies is the 

oversimplified phase transformation model. For the first time in this work, an advanced phase 

transformation model, developed in UBC, is used in association with the thermal and structural 

models. In this algorithm, the static recrystallization kinetics is simulated by the Johnson-Mehl-

Avrami-Kolmogorov (JMAK) theory. This model is based on the real physics of the problem, 

and enhances the accuracy of our simulations.  

Another improvement in the structural modeling in this research is the use of real heat 

flux data as the boundary conditions in the thermal field. The other researches assume a very 

simplified distribution of temperature or heat flux across the plate, and assume a linear decrease 

in temperature during the cooling on the run-out table. This research uses the results of a 3D 

inverse analysis of the thermal field, and applies an accurate heat flux boundary condition on the 

surface of the plate.  

Also, it was shown that the most significant factor in controlling the stress and flatness in 

the strips is the jet configuration, and the most desirable configuration is the one that promotes a 

more uniform distribution of temperature across the plate width. Plate speed was found to be the 

next important factor in determining the values of stress and deformation. Plates traveling at 

slower speeds are cooled down more uniformly, and will have less stress and deflection in them. 

Finally, longer jet spacing gives the opportunity of a more uniform cooling and causes less 

deflection in the plate. It was also observed that increasing the plate thickness, increases the 

maximum deflection, due to a larger temperature gradient through the thickness. 
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6.2. Suggestions for Future Work 

6.2.1. Experimental Study of Higher Plate Speeds, Different Flow Rates, and Water 

Temperatures 

Using a higher plate speed will make the simulation closer to the real case happening in a 

steel mill. Also, water flow rate and temperature are the other parameters that can be used in a 

steel mill, in order to control the characteristics of the heat transfer. Thus, an experimental study 

of the effect of these parameters will be beneficial.   

6.2.2. Correlations for Heat Transfer of Multiple Jets Impinging on a Hot Moving Plate 

More data points are needed to create correlations for the important heat transfer 

characteristics, such as the maximum heat flux and total extracted heat, as functions of the plate 

speed, number and configuration of the jets, and the water temperature and flow rate.  

6.2.3. Coupling of Hydrodynamics and Heat Transfer Models 

A proper heat transfer model requires information about the water velocity and pressure 

distribution on the plate surface. The experimental and numerical study of the hydrodynamics of 

the water jet impingement on a moving plate has been started in UBC [32]. It should be coupled 

with the heat transfer studies, in order to provide a more comprehensive model for the 

phenomena in the jet impingement cooling of the hot moving plates.  

6.2.4. Experimental Measurements and Correlations for Thermal Stresses and Deflections 

The thermal stresses and deflection on a water cooled hot plate should be investigated 

experimentally. The results of the existing numerical model should be compared with the 

experimental values. Also, similar to the heat transfer case, correlations should be developed in 

order to find the effect of cooling parameters on the structural field. The effect of steel 

composition and physical properties on the structural results should also be investigated to make 

future predictions possible, regardless of the type of steel that is used. 
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6.2.5. Developing Mechanistic Models for Moving Plate Jet Impingement Boiling 

The knowledge that is gained by studying the heat transfer and hydrodynamics of the jet 

impingement on a moving plate can be used to develop and validate a mechanistic model for the 

different zones of the jet impingement boiling heat transfer. 
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Appendix A. Definition of Terms in the Finite Element Heat Conduction 
Formulation 

 

Table A. 1. Definition of the Terms in the FE General Heat Conduction Equation 

[ ] [ ] [ ]∫=
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T dVNNcC ρ  Thermal capacity matrix 

[ ] [ ] [ ][ ]∫=
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c dVBKBK  Thermal conductivity matrix 

[ ] [ ] [ ]∫=
S

sTs
h dSNNhK  Thermal conductivity matrix due to convection B.C. 
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r dSNNK κ  Thermal conductivity matrix due to radiation B.C. 
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Table A. 2. Definition of the Terms in the Heat Transfer Equation 
Term Name Expression 
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