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Abstract

Among the many ways in which information technology has transformed

business, the application of IT to the pursuit of innovation offers perhaps

the greatest potential. Improved innovation processes allow firms to reduce

production costs and offer new products more rapidly and with less risk,

leading to competitive advantage. While researchers have studied the link

between innovation and productivity, the role of IT in this context has not

been established. We seek to understand this relationship by conducting

empirical research in three complementary investigations. First, relative to

R&D, how much does IT contribute to the creation of innovative knowledge?

Second, does IT-enabled innovation contribute to production? Third, do IT

and R&D work together to improve the efficiency of capital and labour?

In the first study, we analyze a panel of large U.S. manufacturing firms

and find IT is positively associated with innovation output. The relationship

between IT, R&D, and innovation is robust across multiple econometric

methodologies and is particularly strong in the mid to late 1990s, a period

of rapid technological innovation.

The second study incorporates IT-enabled knowledge creation in a model

of overall production to compare the effect of IT in the two contexts. Our

findings highlight the indirect contribution of IT, through the innovation

process, as being more evident than its direct role in production.

The third study extends these findings with a more nuanced model of IT-

and innovation-driven production efficiency. We hypothesize that process-

oriented R&D further enhances the ability of IT capital to increase produc-

tivity by leveraging traditional forms of capital and labour. We estimate

these relationships using two panels of US industries for the periods 1987–

1998 and 1999–2005. The results indicate qualified support for a synergistic
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effect of R&D and IT investment in both samples.

Taken together, these findings establish the innovation-enabling capabil-

ities of IT—an important aspect of IT’s contribution to business value. Our

results disentangle the direct and indirect effects of IT in the production

and innovation contexts. Managerial implications of this research suggest

that general IT investments may be leveraged to assist innovation, and IT

performance benchmarks could include innovation outcomes.
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Chapter 1

Introduction

Information technology has evolved rapidly from a tool to assist scientific

calculation to a ubiquitous aspect of life in industrialized societies. Both

governments and industry have embraced IT as a means to improve quality,

speed and timeliness in myriad processes, from the sourcing of raw materials

to the delivery of the final, sometimes “virtual,” product or service. The

rise of IT hardware and software as an increasingly dominant form of capital

investment in firms has attracted significant attention from researchers, who

have attempted to understand and quantify its contribution to all aspects

of economic performance. While early investigations focused on productiv-

ity and profitability, IT business value research has more recently examined

the mechanisms by which firms harness IT to create value. Among these

many mechanisms, the application of IT to the pursuit of innovation offers

vast potential. Improved innovation processes allow firms to reduce produc-

tion costs and offer new products more rapidly and with less risk, leading

to competitive advantage. While researchers have studied the link between

innovation and productivity, the role of IT in this context has not been

established. We examine this important relationship by conducting empiri-

cal research in three complementary investigations. In doing so, we aim to

reveal and quantify a crucial role for IT investments.

We begin at the firm level, where we focus on innovation as an intermedi-

ate production process. We propose a IT-augmented knowledge production

function, wherein R&D and IT are inputs to knowledge production, and

citation-weighted patents are a measure of its output. We analyze a panel

of large U.S. manufacturing firms from the period 1987-1997 and find, de-

spite the dominant role of R&D, IT is positively associated with innovation

output, with an elasticity of 0.166. The relationship between IT, R&D,
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and innovation is robust across multiple econometric methodologies and is

particularly strong in the mid to late 1990s, a period of rapid technological

innovation. One interesting finding is that IT elasticities are greater for in-

cremental innovations, while highly-cited breakthrough innovations are less

responsive to IT investment. Overall, however, our results underscore the

role of firm-wide IT investment as an input to the innovation process.

Next, we consider the innovation process in the broader context of the

firm-level production function. By incorporating IT-enabled knowledge cre-

ation in a model of overall production, we estimate the effect of IT in both

its direct and indirect roles. The combined innovation and production model

is estimated using structural equation modeling. Our findings show an indi-

rect contribution of IT, through the innovation process, that has a positive

impact on production. However, limitations in both the data available and

the estimation approach do not allow us to conclude that IT has a direct

effect relative to the other inputs.

Finally, we introduce a more nuanced model of IT- and innovation-driven

production efficiency at the industry level. We hypothesize that process-

oriented R&D further enhances the ability of IT capital to increase pro-

ductivity by leveraging traditional forms of capital and labour. We use a

Cobb-Douglas production function approach with indirect effects to capture

the direct and indirect effects of IT, along with R&D, on the other factor

inputs, enabling more sophisticated controls for panel error structures. We

estimate these relationships using two panels of US industries for the peri-

ods 1987–1998 and 1999–2005. The results offer evidence of a synergistic

effect of R&D and IT investment. In the first sample, we find that, relative

to the traditional Cobb-Douglas model, the output elasticity of IT is lower

once the indirect effects of R&D and IT are included. However, the indirect

effects of R&D and the combination of R&D and IT are positive. In the

second sample, we find an increased estimate of IT elasticity (relative to the

Cobb-Douglas model), suggesting that the net effect of IT (augmented by

R&D) does improve the efficiency of labour and capital.

Taken together, these findings establish the innovation-enabling capabil-

ities of IT—an important aspect of IT’s contribution to business value. Our

2



results disentangle the direct and indirect effects of IT in the production

and innovation contexts. While IT continues to demonstrate its role as a

key factor of production, our analyses show that IT assets are linked to im-

proved innovation productivity and production efficiency. Having identified

this important new role for IT as enabler of innovation, we suggest the man-

agerial implications of this research include the general IT investments may

be leveraged to assist innovation, and IT performance benchmarks could be

expanded to include innovation outcomes.
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Chapter 2

Information Technology and

Intangible Output: The

Impact of IT Investment on

Innovation Productivity

2.1 Introduction

Innovation is a key contributor to a firm’s competitive success. Product

innovations can enable a company to earn abnormal profits as well as pro-

vide an avenue for expansion into new markets and industries (Roberts,

1999; Agarwal and Bayus, 2002). Process innovations create new methods

of performing firm activities that can reduce costs or generate new lines of

revenue growth (Baily and Chakrabarti, 1988; Dougherty and Hardy, 1996).

Together, these benefits motivate firms to invest in the innovation process.

In recent decades, new information technologies and their widespread

application have led to three evolutionary changes in the innovation pro-

cess (Quinn, Baruch, and Zien, 1997). Information technologies such as

communication and database applications have helped improve the man-

agement of innovation knowledge. Researchers, for example, distributed

across company research centers can now share knowledge assets across re-

mote geographies and time (Thomke, 2006). Innovation production has been

improved through IT-based digital methods of design, prototype, and test

(Sudarsan, Fenves, and Sriram, 2005; Thomke, 2006). IT-based networks

and real-time data flows enable external innovation collaboration (Thomke,
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2006). Through the outsourcing of innovation production elements (design,

prototype development, test, etc.), firms gain access to specialized knowl-

edge and other innovation components that can be incorporated into new

products, services, and processes (Chan, Nickerson, and Owan, 2007). The

application of information technologies provides the links necessary for ef-

fective information sharing and partner monitoring and reduces transaction

costs that arise when working with multiple innovation partners in open

environments (Dodgson, Gann, and Salter, 2006; Thomke, 2006; Brockhoff,

1992).

In short, through the management of knowledge assets, production sup-

port, and interorganizational coordination, information technologies have

improved the speed and efficiency of firm innovation. As a result, IT has

become essential to product development in firms, especially those in the au-

tomobile, consumer products, apparel, and textile industries (Sangiovanni-

Vincentelli, 2003; Teresko, 2004; Istook, 2000). Yet, despite the ability of

IT to improve the innovation process, innovation remains a costly and risky

endeavor. One estimate puts the failure rate of new products at over 90%

(Brown and Eisenhardt, 1995). Does this imply that, collectively, informa-

tion technology has little impact on the firm innovation process? If the

innovation creation process remains uncertain and firms run the risk of re-

ceiving little or no benefit from these activities, should firms continue to

invest in innovation-related IT?

We investigate these research questions by building upon existing prelim-

inary work that considers the relationship between information technology

and innovation output (Kleis, Chwelos, Ramirez, and Kraemer, 2003; Han

and Ravichandran, 2006). Specifically, we contribute to the literature by ap-

plying the knowledge production function (KPF) to (1) evaluate the role of

IT in innovation creation across a more extensive time frame; (2) introduce a

quality-adjusted measure of innovation output to evaluate the contribution

of IT to quality innovation; and (3) conduct an in-depth analysis that pro-

vides a richer understanding of the IT innovation relationship. This includes

the examination of how the role of IT evolves over our sample period, how

the contributions of IT vary across industries that produce versus use IT
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and, finally, whether IT plays a role in the development of both incremental

and breakthrough innovations.

In this study, we utilize a unique data set comprised of annual informa-

tion on innovation spending research and development (R&D), IT spending,

and citation-weighted patents (a quality-adjusted measure of innovation out-

put) for large U.S. firms between 1987 and 1997. We analyze more than

1800 observations using a robust set of econometric methods to test the

relationships between IT, R&D, and innovation performance. Our econo-

metric estimates indicate that IT capital has a positive and significant effect

on knowledge output. We find a marked increase in the contribution of

IT to innovation in the early to late 1990s. However, the evidence does

not suggest a significant role for IT in the creation of breakthrough innova-

tions. Rather, as highlighted in existing research, non-IT factors (strategic

orientation, organization practices, R&D management, etc.) may hold the

key to innovation leadership (Enkel, Gassmann, and Chesbrough, 2009; Ma-

jchrzak, Cooper, and Neece, 2004; Malhotra, Majchrzak, Carman, and Lott,

2001; Balachandra and Friar, 1997). Nonetheless, the core result remains:

information technology makes a consistent, positive contribution to the in-

novation creation process.

The remainder of the paper is organized as follows. In the next section,

we review theory related to information technology and innovation creation.

In § 2.3, we discuss our research design, methodology, and data. We present

our empirical analysis and results in § 2.4 and provide a discussion of our

findings and a conclusion in §§ 2.5 and 2.6.

2.2 Theory

Firms pursue innovation to build or maintain competitiveness. This is ac-

complished through the creation of productivity-improving value chain ac-

tivities (process innovations) or through the extraction of rents generated

by the sale of new products or services (product innovations). Preliminary

research has identified information technology as a potential contributor to

firm innovation efforts. In particular, Kleis et al. (2003) proposed a KPF
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framework to perform a preliminary test of the IT-innovation relationship.

Their analysis found no conclusive results. Han and Ravichandran (2006)

test a similar model using panel estimators and find evidence of an indirect

IT-innovation relationship (interaction of R&D and IT). Our study builds

upon this nascent work and provides a value-added and thorough examina-

tion of the role of IT in innovation by using a more extensive time frame,

a more complete measure of innovation output, and a more comprehensive

evaluation of the direct IT-innovation relationship across multiple contexts.

We now explicate the theoretical underpinnings of the role of IT in knowl-

edge production.

2.2.1 Innovation

Technological innovations are created when a new idea or concept is trans-

formed into a product or process for internal or commercial use (Baily and

Chakrabarti, 1988). Process innovations are changes to existing processes

or the creation of new processes used by an organization to deliver products

or services. Product and service innovations are new products or services

introduced into the marketplace (Dibrell, Davis, and Craig, 2008). Inno-

vations can arise from raw ideas borne within the firm or result from the

adaptation of new knowledge found outside of the firm. This includes basic

scientific knowledge generated by corporate and university laboratories as

well as inventions spawned by other firms.

Firm innovation proceeds in two stages. First, research is conducted to

create or determine the efficacy of an invention in addressing some identi-

fied problem. Next, the firm undertakes development activities related to

readying the proposed product or process for its production or application,

including design and testing. Because the Federal Accounting Standards

Board (FASB) definition of R&D activities mirrors this two-stage process,

R&D expense may be considered a good measure of invention and innovation

activity in U.S. firms.1

1FASB Statement of Financial Accounting Standards nos. 2 and 86 provide a defi-
nition of research and development. Research is defined as a planned search or critical
investigation aimed at the discovery of new knowledge with the hope that such knowledge
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To model innovation, we adopt a theoretical model from earlier research

in economics and R&D literature (Pakes and Griliches, 1984). The KPF

represents the knowledge output generated by a firm as a function of inputs

used in its innovation process. We augment the traditional KPF with an

information technology input to reflect our notion that information technol-

ogy contributes to the production of knowledge in a firm. Similar to the

“black box” in production theory, the innovation creation process is inher-

ently unobservable.

2.2.2 IT and the Innovation Process

The application of IT contributes to the innovation process through three

primary mechanisms. First, information technology contributes to the man-

agement of knowledge used in innovation production. Second, information

technology enables critical elements of the innovation production process,

including opportunity identification, concept development, and innovation

design. Third, information technology enables the interorganizational coor-

dination between the focal firm and its external innovation partners.

IT and Innovation Knowledge Management

The management of knowledge is an activity critical to the creation of new

innovations. Research and development knowledge, combined with opera-

tions knowledge, is used by a firm to develop and produce new products

and services (Tanriverdi, 2005). Information technology helps to create an

infrastructure for capturing and sharing knowledge across the enterprise on

a scale previously unattainable (Tanriverdi, 2005; Majchrzak et al., 2004;

Lee and Choi, 2003). The participants involved in the innovation process

are interconnected by a knowledge network, sharing, combining, and reusing

will be useful in developing a new product or service, or a new process or technique, or in
bringing about a significant improvement to an existing product or process. Development
is defined as the translation of research findings or other knowledge into a plan or de-
sign for a new product or process or for a significant improvement to an existing product
or process whether intended for sale or use. See FASB statements nos. 2 or 86 for full
definitions at http://www.fasb.org/st/.
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knowledge in the creation of new goods and services (Nerkar and Paruchuri,

2005). Each participant has a specific skill or knowledge that he or she

contributes to the innovation process, either directly to the item being cre-

ated or indirectly through the transfer of knowledge to other actors who

then apply it directly in the innovation process. At times, gaps can arise in

the knowledge network from links that are missing between participants or

from a knowledge element that is missing but is necessary for the innova-

tion process to generate value-added output (Nerkar and Paruchuri, 2005).

Information technology helps close these knowledge gaps by enabling the

collection of new knowledge assets through improved search capabilities and

data mining techniques. Information technology also enables the intercon-

nection of participants who may not be directly involved with the network

but who can be temporarily connected to provide a valued knowledge as-

set that will contribute to the innovation effort. New technologies help to

capture internally generated knowledge that can be used throughout the in-

novation process. The electronic laboratory notebook (ELN), for example,

enables scientists to capture and record experiment data electronically versus

traditional paper-based lab books, which improves efficiency and eliminates

transcription errors (Elliott, 2006). ELNs help to create a central repository

of data accessible by other scientists and other drug development systems.

Front-end technologies can also be used to capture innovation-related

knowledge. Customer data used in new product development, for example,

is captured through company retail websites and through other commu-

nication technologies (e.g., e-mail, telecommunication systems) utilized in

customer contact interactions (Zahay, Griffin, and Fredericks, 2004). These

data enable a firm to develop in-depth knowledge of its customers and create

new innovations that better fit customer needs. In the end, this increases

the value of a firm’s products to its customers and, ultimately, customer

satisfaction (Mithas, Krishnan, and Fornell, 2005b,a).

After new knowledge is collected, information technology is critical for

the sharing and reuse of knowledge throughout an enterprise (Lee and Choi,

2003). Corporate IP-based networks, telecommunications, and e-mail sys-

tems all facilitate the transfer of knowledge between innovation participants.
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E-mail, for example, has been shown to be an effective communications and

information sharing tool between participants in an R&D network (Rice,

1994). These technologies also provide the infrastructure to facilitate the

virtual, interpersonal interactions among R&D teams that ensure the trans-

fer of both explicit and tacit knowledge (Lee and Choi, 2003; Rice, 1994).

External knowledge is also critical for successful innovation. The transfer

of external knowledge used in the innovation process can take place through

the acquisition of new knowledge, licensing of external innovations, acquisi-

tion of firms with unique knowledge, and the hiring of experts with relevant

knowledge (Cassiman and Veugelers, 2006). General infrastructure IT (e.g.,

personal computers (PCs), e-mail, etc.) can assist in this type of knowledge

acquisition (Cassiman and Veugelers, 2006). Network and Internet-related

communications technologies, for example, have increased the flow of and

access to scientific information contained in electronic versions of scholarly

journals and public research databases, both of which are important to the

R&D process (Kremp and Mairesse, 2004). Computer networks and on-

line access are also critical for the discovery and sharing of competitive and

regulatory factors that must be incorporated into new product development

innovations (Zahay et al., 2004). IT-based knowledge sharing was the case at

Aventis, a major pharmaceutical manufacturer, where the implementation

of a chemical biology platform enabled the sharing of knowledge between

the virtual community of drug discovery project teams and resulted in a

more productive innovation process (Narayanan, Douglas, Schirlin, Wess,

and Geising, 2004).

The benefits of IT-enabled innovation have been demonstrated in an aca-

demic setting (Hamermesh and Oster, 2002; Agrawal and Goldfarb, 2008).

Indeed, the decreasing costs of IT and, subsequently, the costs of communi-

cating and sharing innovation-related knowledge information is motivating

an increased use of IT in academic innovation networks (Agrawal and Gold-

farb, 2008). E-mail, fax, and telecommunication technologies, for example,

have enabled distributed innovation teams to complete new academic re-

search valued by the economics research community (Hamermesh and Oster,

2002). The use of Bitnet, a cooperative U.S. university network predating
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the Internet, increased the use of multi-institutional partnerships and par-

ticipation of new actors in university engineering research (Agrawal and

Goldfarb, 2008). In summary, whether in a business or academic setting,

information technology supports the interactive flow of knowledge between

networked participants involved in innovative activity (Swink, 2006; Horn,

2005; Brennan and Dooley, 2005).

IT and Innovation Production

Firms apply and utilize knowledge within an innovation process to produce

new products and services. Innovation production has evolved over time

from a linear, push-oriented process to a parallel design that incorporates

customer and supplier input (Rothwell, 1994). Schilling and Hill (1998)

model innovation production as a series of five activities that can occur in

parallel and include opportunity identification, concept development, prod-

uct design, process design, and commercial production. Similarly, Rothwell

(1994) models innovation production as six parallel and integrated activi-

ties that include marketing, R&D, product development, production engi-

neering, parts manufacturing, and product manufacturing. Although there

are slight differences in these models, this research indicates that innova-

tion production involves idea and concept development (new technologies,

needs analysis), product development (design), engineering (prototyping),

and manufacturing.2

Information technology contributes to innovation production in multiple

stages. In the idea stage, customer relationship management (CRM) systems

act as an information input to innovation production. The information flow-

ing from CRM systems enables a firm to analyze its customers and identify

needs that are not being met by current products and services (Nambisan,

2003). This helps the firm generate new product ideas that account for

unmet or evolving demand-side factors and contributes to new product suc-

cess (Rothwell, 1994; Narver, Slater, and MacLachlan, 2004; Mithas et al.,

2Consistent with research (Rothwell, 1994; Schilling and Hill, 1998; Tatikonda and
Rosenthal, 2000) and the majority of awarded, patented innovations, we focus our process
discussion on product innovation.
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2005b,a).

Information technology also enables efficient design capabilities. Tech-

nology such as computerbased design applications (e.g., CAD/CAM sys-

tems) help to digitize a new product’s design and make it available through-

out the innovation production process. This allows team members to inte-

grate their design efforts, whether located in local or distant R&D centers,

from product conception through final assembly (Sudarsan et al., 2005; Gor-

don, Tarafdar, Cook, Maksimoski, and Rogowitz, 2008; Bartholomew, 2005).

Computer-based design software also allows team members to develop vir-

tual prototypes. Engineers can use digital prototypes to run computer sim-

ulations to test component compatibility, overall workability, and failure

analysis. Digital-based prototypes and simulation, such as those used in

automobile, computer, and pharmaceutical manufacturing, not only reduce

the cost of traditional wood and clay methods but also allow prototypes to

be developed and used much earlier in the innovation production process

(Rothwell, 1994). This allows poor designs to be filtered out much earlier

in the process and improves overall innovation process efficiency (Thomke,

2006; Rothwell, 1994).

Finally, IT is being used to integrate design and production systems,

which enables greater precision and overall product introduction efficiency

(Hatch and Mowery, 1998). The use of software-based manufacturability

testing, for example, can help designers identify the most efficient ordering

of parts that should be used during the manufacturing of final products

(Konicki, 2002). CAD systems improve the linkages between design and

manufacturing, which helps to integrate the two departments and reduce

errors of information transfer and translation (Rothwell, 1994). This serves

to minimize manufacturing costs as well as improve the efficiency of produc-

tion throughput for the new innovation.

IT and External Innovation Collaboration

The production of new innovations involves collaboration between team

members working together to create new products, services, or processes.
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The distributed team shares a common goal of innovation creation, with

each member adding value to the innovation under production (Majchrzak

et al., 2004). Traditionally, this process occurred within the firm’s bound-

ary and thus required the acquisition and development of innovation-related

inputs. However, a shift in innovation practices occurred in the 1980s when

firms began to source some of these inputs externally (Rothwell, 1994). As

a result, team membership expanded to encompass internal and external

participants in both local and geographically distant sites.

Many factors have motivated the inclusion of external partners in innova-

tion. These include the complexity and pace of industrial and technological

change, global competition, greater range of available innovation partners,

and the mobility and global availability of knowledge workers (Dodgson

et al., 2006; Rothwell, 1994; Enkel et al., 2009). The result has been an

opening up of the firm’s boundary and the creation of an integrated innova-

tion network involving the focal firm, customers, suppliers, and other sources

of new knowledge (Dodgson et al., 2006; Rothwell, 1994; Enkel et al., 2009;

Christensen, Olesen, and Kjaer, 2005). The movement toward a more open

innovation process has had an effect on the propensity of a firm to innovate

and has helped improve the fit of new products and the overall efficiency

of innovation (Dodgson et al., 2006; Enkel et al., 2009; Schilling and Hill,

1998).

Information technology is a critical enabler of collaborative innovation

by providing the necessary linkages for information exchange with external

partners. Infrastructure technologies such as PCs, laptops, data and voice

networks, and communications applications (e.g., e-mail) are instrumental

to these collaborative efforts (Majchrzak et al., 2004; Enkel et al., 2009).

These technologies facilitate the exchange of information to and from exter-

nal participants in the innovation partnership. An aerospace manufacturer,

for example, created specialized Web interfaces to enable company team

members to exchange information with external team participants (Malho-

tra et al., 2001). Within 54 innovation teams across 15 industries includ-

ing manufacturing, basic infrastructure technologies (e.g., networks, e-mail,

NetMeeting, etc.) were utilized as communication infrastructures for the ex-
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change of information across the teams including members external to the

firm (Majchrzak et al., 2004). Indeed, from the focal firm perspective, in-

formation and communications technologies play a critical connectivity role

in the open innovation era (Dodgson et al., 2006; Enkel et al., 2009).

Beyond connectivity, information technology plays an important role in

creating an effective partnership between a firm and an external service

provider. In today’s open innovation process, a focal firm can choose to

hire and work with an external organization to outsource innovation ac-

tivities such as design, component development, and test (Dodgson et al.,

2006; Nellore and Balachandra, 2001). In such situations, the use of infor-

mation technology enhances the relationship between the firm and service

provider and contributes to partnership success. Indeed, in IT outsourcing

and other collaborative relationships, the deployment of information tech-

nology has been shown to have a positive effect on communication, trust,

and shared understanding, all of which contributes to the success of the

business relationships (Ryssel, Ritter, and Gemunden, 2004; Paulraj, Lado,

and Chen, 2008; Malhotra et al., 2001; Ba and Pavlou, 2002). Research

in an innovation setting found that interorganizational technologies have a

positive effect on external new product development relationships in disk

drive manufacturing (Scott, 2000). In the long run, such effective innova-

tion relationships produce value-added inputs to a focal firm’s innovation

process. Ultimately, these value-added inputs contribute to successful inno-

vation production (Dodgson et al., 2006; Nellore and Balachandra, 2001).

In summary, information technology contributes to the firm innovation

process by enabling innovation knowledge management, innovation produc-

tion, and external innovation collaboration. The end result is a collaborative

innovation process, enabled through IT, that creates new value-added inno-

vations in a productive manner. Indeed, Kortum and Lerner (1998) conclude

after examining innovation production from the 1990s onward that the rise

in innovation output (measured in patenting activity) is mainly because of

the application of new information technologies developed during the same

time period. Thus, it is reasonable to expect a relationship between infor-

mation technology and the innovation production process (Lee and Choi,
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2003).

2.3 Research Design and Methodology

Our conceptual model of knowledge production, based on the KPF (Pakes

and Griliches, 1984), is presented in Figure 2.1. Consistent with existing

literature, research and development activity is a primary input to knowl-

edge production in a firm (Hall, Griliches, and Hausman, 1986; Henderson

and Cockburn, 1994; Hall and Mairesse, 1995; Madsen, 2008). To incorpo-

rate the proposed role of information technology in innovation, we introduce

information technology as an additional input to knowledge production.

R&D 

IT 

Patents Knowledge 

Figure 2.1: Augmented Knowledge Production Function

The output of a firm’s knowledge production is new innovation (e.g., new

products, services, processes, etc.), with patents being used as the primary,

observable output indicator (Griliches, 1990; Hall, Jaffe, and Trajtenberg,

2005). Patents offer many attractive characteristics in this regard. First and

foremost, the patent application examination process in the United States

imparts a third-party, objective evaluation of an innovation, where the inno-

vation must be novel, nonobvious, and useful, i.e., having a useful purpose

and operativeness (USPTO, 2006). In addition, the USPTO standard has

been relatively stable over time, making comparisons across years and in-

dustries more robust. Second, a patent provides a detailed record of the
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inventor, the industrial field into which the invention is classified, and cita-

tions of prior patents upon which it builds. The enforcement of the last by

patent examiners is especially important because it documents a recognition

of “prior art” from which the researcher can draw inferences based on the

nature and quantity of cited patents.

Our research model can be expressed in Cobb-Douglas form:

P = αRDβ1IT β2 , (2.1)

where P is citation-weighted patents awarded, RD is R&D expense in 1993

dollars, and IT is IT capital services in 1993 dollars. The statistical model

that we estimate for firm i at time t can be expressed as

Pit = αRDβ1
it IT

β2
it εit, (2.2)

where εit is a multiplicative stochastic error term. For estimation, we trans-

form the model into log-linear form and include controls Zit :

lnPit = α+ β1 lnRDit + β2 ln IT it + γZit + εit. (2.3)

We control for firm size, time, and industry. All three have been iden-

tified as necessary controls in previous IT and R&D value research (Bryn-

jolfsson and Hitt, 2003; Bresnahan, Brynjolfsson, and Hitt, 2002; Griliches,

1990). Firm size is represented by the log of firm sales in 1993 dollars. Time

is represented through the use of year indicator variables. Industry con-

trols are created through the use of Standard Industrial Classification (SIC)

codes. Based on earlier research, we utilize a 1.5-digit SIC scheme that ag-

gregates a number of 2-digit SIC industries into a more cohesive and stable

10-industry structure (Bresnahan et al., 2002; Brynjolfsson and Hitt, 2003).

Because of the limitations of our sample, only four of these industry groups

remain in our analysis: durable, nondurable, process, and high-technology

manufacturing.
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2.3.1 Data

The estimation of our model utilizes data from three principal sources. First,

we use patents as the observable measure of knowledge production output.

When considering such a measure, we could utilize raw patent counts as in

several existing studies (Pakes and Griliches, 1984; Hall et al., 1986; Crepon,

Duguet, and Mairesse, 1998; Han and Ravichandran, 2006). However, the

benefits of this type of measure are mitigated by their inability to distin-

guish the variability in patent quality (Hall, Jaffe, and Trajtenberg, 2002).

IT-related research supports the use of quality-based innovation output mea-

sures. In particular, Gao and Hitt (2011) consider trademark counts “more

appropriate” than raw patent counts because the latter do not incorporate

the notion of product variety and differentiation.

Recognizing the limitation of raw patent counts, Hall et al. (2002) devel-

oped a patent measure that incorporates a citation-weighting methodology

to account for variations in the quality or value of firm innovation. This

measure weights each patent by the number of citations received by sub-

sequent patents and then normalizes the citation frequency across certain

dimensions. Citation weighting has been used in research concerning the

economic value of a firm’s innovations (Trajtenberg, 1990; Hall et al., 2005)

and innovation productivity and its impact (e.g., Hall and Ziedonis (2001);

Thompson and Fox-Kean (2005)) We employ this method to create our de-

pendent variable P .

The raw patent and citation elements of our dependent variable are ob-

tained from the National Bureau of Economic Research (NBER) Patent

Citation Database (Hall et al., 2002), which contains nearly three million

successful U.S. patent applications made between 1975 and 1999 as well as

citations of them by subsequent patents. Although this data set contains

many details about each patent, it unfortunately does not distinguish be-

tween product and process innovations. The NBER data set contains one

row for each patent received by each firm. A separate table contains one

row for each citation a patent has received up to the end of 1999. We join

these tables to obtain a count of citations for each patent and update the
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citation count information to 2004 using USPTO data. These patent data

are then linked to the Compustat database of publicly traded U.S. firms.3

Following the Hall et al. (2002) methodology, we then correct for two

underlying factors in our output measure: trends (i.e., inflation) in citation

accretion across both time and field4 and the truncation of accumulated ci-

tations for a given patent vintage. Inflation may be addressed by using a

fixed-effects benchmarking method to normalize the citations, purging them

of year, field, and year-field effects. However, because it is desirable to al-

low variation among fields, the result is adjusted by dividing the number of

citations received by a given patent by the corresponding year-field mean

(Hall et al., 2002, p.30). This converts the output data from a count to a

continuous-based measure. The truncation effect is addressed by augment-

ing the NBER data with citation count data from the USPTO to 2004.

Hall et al. (2002) suggest that a three-year safety lag is prudent to allow

for citation accretion and that a two-year lag for patent application process-

ing should be observed. Taking this into account, the more recent USPTO

citation history allows us to use the patent data from 1997 but not from

1998 or 1999 because these years may not contain all of the patent appli-

cations that were eventually granted. Finally, we generate a new, alternate

citation count based on the citations received within a fixed window of five

years from the application date of each patent, and we rescale these cita-

tions as described earlier. This removes the vintage effect of older patents

for which time has allowed extra citations to accrue. Taken together, these

three measures provide a robust assessment of each patent’s quality.

When using patents as the basis for an innovation output measure, one

must consider whether patents reflect the final innovation output of a firm.

The granting of a patent does not guarantee a commercially successful inno-

vation, given the extraordinarily complex task of integrating inventions and

existing components into products valued by the marketplace (Fleming and

3The patents are matched to the Compustat universe of firms as of 1989. This has the
effect of limiting our sample to those firms that belonged to the Fortune 1000 as of 1989.

4Hall et al. (2002) define field as the USPTO classification of technological categories
for which they provide a simplified taxonomy of 6 fields from more than 10,000 fields in
the USPTO classification scheme.
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Sorenson, 2003). In addition, some inventions may not meet patentability

requirements while, in other cases, firms may choose alternate methods of

collecting economic rents from the inventions.5 This may be reflected in a

low patents-to-R&D ratio in some firms. Despite these possibilities, recent

evidence from innovation survey data shows broad agreement between the

propensity of firms to apply for patents in relation to their innovation activ-

ities (Mairesse and Mohnen, 2005; Ramirez and Kleis, 2010). In addition,

research indicates that such phenomena, when they do occur, tend to be in-

dustry specific (Hall et al., 2002; Baily and Chakrabarti, 1988). To control

for some of this environmental patent variation, we include industry and

year fixed effects in our econometric analysis.

We obtain data on information technology investment between 1987 and

1998 from the Computer Intelligence Infocorp (CI) database, which details

the value of installed IT capital stock at approximately 800 of the Fortune

1000 firms annually. To create the database, CI collects data annually on

the quantity of IT hardware in firms (e.g., mainframe, peripherals, mini-

computers, personal computer (PC) systems, etc.) using surveys, site visits,

physical audits, and telephone interviews. The hardware counts, collected at

the site and establishment level, were aggregated to the firm level by CI and

a value of a firm’s total IT stock was calculated based upon CI’s estimate

of hardware asset market value.

Because of its detail, the CI data have been used widely in IT business

value research (Brynjolfsson, Hitt, and Yang, 2002; Melville, Gurbaxani,

and Kraemer, 2007). However, because of a definition change in 1995, we

follow the methodology of Chwelos, Ramirez, Kraemer, and Melville (2010),

wherein hedonic methods are used to create an IT stock measure that is con-

sistent across the entire 1987–1998 time frame.6 We then create a measure

5As Scotchmer (2004) points out, patents are but one way to protect intellectual prop-
erty, and they come with the significant trade-off of full disclosure. A firm may decide
to use other methods such as “speed to market” or trade secrets depending upon the
patenting environment, industry competitiveness, and firm strategy.

6Hedonic methods are used to determine the prices of IT components during the 1987–
1994 time frame (prior to the definition change in 1995). These prices are applied across
the entire 1987-1998 time frame and the resulting technology values are grouped into de-
centralized and centralized computing categories. These values are then adjusted through
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of annual capital services flowing from the IT stock in constant quality-

adjusted dollars. These IT measures represent the flow of services from (or,

equivalently, payments to) IT assets that are used but not consumed in the

production process (Jorgenson and Griliches, 1967). Payments to employees

are traditionally measured in a manner similar to R&D expenses. The use of

IT capital service variables allows for analysis using both R&D and IT flow

variables. Finally, the use of IT capital service measures also accounts for

measurement errors that are introduced by stock-based measures (Chwelos

et al., 2010).

The yearly value of IT capital services is calculated using the rental

price approach used by the Bureau of Labor Statistics (BLS). Rental prices

reflect the user cost of capital and are defined as the sum of the rate of

return, the rate of depreciation, and the expected rate of asset price change,

net of income, and property taxes. Rental prices were created for 12 SIC

industries for 2 classes of IT assets, reflecting both decentralized computing

(PCs) and centralized computing (central processing equipment) (CPE).

Capital services estimates for a firm are then calculated by multiplying the

IT capital stock of a firm by the appropriate rental price, given the type of

IT capital (PC or CPE) and industry of the firm.

Finally, from the Compustat database, we add a measure of R&D to

our data set. R&D activities are recorded annually as R&D expense and

are reported in company financial statements. Accounting rules allow firms

to expense research, defined as the “planned search or critical investigation

aimed at discovery of new knowledge” that is specifically directed at a new

or improved output (Oliver, 2003, p.46). Development is defined as trans-

forming “research findings or other knowledge into a plan or design,” which

can include prototyping and building and operating pilot plants. Declared

R&D expense also accounts for in-process research assets and intangibles

purchased from other companies. Thus, the R&D expense measures in our

the application of hardware-specific price indexes. The adjustment takes into account price
changes in similar technology over time are also controls for quality changes in these tech-
nologies. Analysis indicates that in both the pre- and post-1994 periods, these adjusted
values are highly correlated with the original.
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data set include both capital and labor spending put into use by firms to

create new product, service, or process innovations. These measures have

been widely used as an operationalized representation of the economic in-

puts to innovation (Pakes and Griliches, 1984; Griliches, 1981; Hall et al.,

1986; Hall and Mairesse, 1995; Han and Ravichandran, 2006).

Because a firm’s knowledge accumulates (and depreciates) over time,

Pakes and Griliches (1984) include lagged R&D spending as part of their

model’s input. However, subsequent research on the lag structure shows a

lack of influence of past R&D spending on future patent output (Hall et al.,

1986). Because the impact of R&D on increments to the firm’s knowledge

stock is almost entirely contemporaneous, current R&D expenditure suffi-

ciently captures the input magnitude.

The merged data set generated from matching the patent, IT, and R&D

data sources consists of 260 Fortune 1000 manufacturing firms with an initial

total of 1,937 observations between 1987 and 1997. As firms choose to apply

for patents relatively early in the R&D cycle (Griliches, 1990), patent appli-

cation year is matched to the year in which the R&D expense is recorded.

To exclude firms with anomalous patent production (perhaps through acqui-

sition of firms with in-process R&D), we further restrict our sample to firms

that registered patents in at least 4 years between 1987 and 1997, leaving

us with a final count of 201 firms for a total of 1,829 observations. Over

the 11-year period, the median firm in the sample has $2.6 billion in annual

sales, $62.7 million in annual R&D expense, and $9.6 million in annual IT

capital services (Table 2.1).7 The sample includes 162,381 patents, with the

median firm obtaining 24 successful patent applications per year. A total of

1,777,276 citations were recorded through the end of 2004, with the median

firm receiving 208 citations on its patents in a given year.8

7All yearly financial data are indexed to 1993. Sales and R&D data are deflated us-
ing industry-specific gross domestic product price indexes from the Bureau of Economic
Analysis (BEA). IT data are deflated using the PC price index from Berndt and Rap-
paport (2001) and the BEA price index for computers and peripheral equipment for all
other classes of IT (i.e., mainframes, minicomputers, networking equipment, and computer
peripherals), following Chwelos et al. (2010).

8Our summary statistics use medians rather than averages because the patent and
citation data is heavily skewed, as we discuss in § 2.4.2.
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The panel is unbalanced, although over half the firms report patents in

all 11 years and almost two-thirds of the firms have at least 10 observations.

We restrict our sample to the Fortune 1000 manufacturing sector because

the number of firms in the service sector that engage in significant R&D

and patenting is small. Over the entire sample, each of the major service

sectors (e.g., financial, transportation, etc.) is represented by only four or

fewer firms. Finally, as shown in Table 2.2, the manufacturing firms in our

sample are categorized into four industries.

2.4 Empirical Analysis

We conduct two sets of analyses. The first involves a thorough examina-

tion of our core research questions. We begin with our base Cobb-Douglas

specification and then conduct additional analyses to ensure robustness to

issues such as unobserved variables, endogeneity, and choice of controls. The

second involves further analysis of the impact of information technology on

innovation output. This includes an examination of unique time periods

including the mid to late 1990s, returns to IT capital in IT-using versus

IT-producing industries, and the contribution of IT to highly valued, block-

buster innovations.

2.4.1 Core Analysis

Our initial approach to estimating the KPF is ordinary least-squares (OLS)

regression, using the Cobb-Douglas specification given in (3) and including

controls for firm size (log of sales), industry (1.5-digit SIC scheme), and

year. Because our data set contains repeated observations of the same firm,

we can not assume independence of errors within firms. To address this, we

perform the OLS estimation with the errors clustered within firms. The clus-

tered errors approach also includes the Huber-White adjustment to control

for arbitrary forms of heteroskedasticity. The results of our base regression

model are found in Column 1 of Table 2.3. The estimates provide evidence

of the relationship between R&D and IT on citation-weighted patent output.
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Both inputs have a positive and statistically significant effect (p < 0.10), but

the effect of R&D is approximately five times as large. The effect of sales

(firm size control) is negative, which is consistent with the earlier finding

that large firms are not as effective as small firms at producing patents per

dollar of R&D (Griliches, 1990). All of the year and industry controls are

statistically significant, which supports the expected impact of the competi-

tive environment over time upon the KPF.9 The model has an R-squared of

61%, indicating that a substantial portion of the variation in patent output

is explained by the independent variables.

To determine if the relative contributions of the inputs to the KPF

changed over the course of our sample frame, we divide the sample into

two periods (1987–1992 and 1993–1997) and estimate the model for each

period. These results (Table 2.3, Columns 2 and 3) show that, although the

estimated R&D coefficient remains remarkably stable, the IT coefficient is

not statistically significant in the first six years of the sample. In contrast

to the estimate for the overall sample, the IT coefficient for the latter five

years is larger and significant at the 5% level. We will address this finding

in more detail in § 2.4.2.

To relax the assumptions of the Cobb-Douglas form, we extend our base

analysis and estimate a translog specification of the KPF. The model to be

estimated in logs is

lnPit =α+ β1 lnRDit + β2 ln IT it + β3 lnRD2
it

+ β4 ln IT 2
it + β5 lnRDitIT it + γZit + εit. (2.4)

The estimation results are shown in Column 4 of Table 2.3. The calculated

partial elasticity estimates of R&D and IT (ηR&D and ηIT ) are shown in

Table 2.3 below the coefficient estimates. The partial elasticities of R&D

and IT are similar to the OLS elasticity estimates for the entire sample

and the 1987-1992 and 1993-1997 periods (Columns 5 and 6). Because the

coefficient estimate for the R&D-IT interaction term is not significant, we

9More granular industry controls such as 2- and 3-digit SIC schemes also produce
significant control estimates.
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can not infer that R&D and IT capital combine in some synergistic way to

produce nonlinear increases in patent output.

Because the panel structure of the data violates the OLS assumption of

independence of observations, OLS estimates can be inefficient. In addition,

because there is added potential for firm-specific omitted variables to per-

sist through time, the problem of omitted variable bias must be addressed.

Typically, a fixed-effects or random-effects panel estimator is used to model

firm-level time-invariant unobserved variables.10 We use the Hausman test

to compare the estimates from fixed-effects and random-effects variations of

our model and find that we can not conclusively reject the null hypothesis,

which indicates qualified support for a random-effects approach.

We evaluate several random-effects estimators11 but find them prone to

computational difficulties and unstable estimates of coefficients and standard

errors. The basic random-effects estimator requires strong assumptions of

exogeneity and a firm-specific error term that is uncorrelated with observ-

ables. We find that this estimator fails to produce statistically significant

estimates of our principal variables. A more general approach, using the

population-averaged random-effects estimator, allows for correlations within

a firm to vary over time. A potential disadvantage of this approach is that

it can run out of degrees of freedom over longer panels, which is what we

encounter. Because of this limitation, we are only able to calculate estimates

for subsamples of the first six and the latter five years (Table 2.3, Columns

7 and 8). The results show positive and significant coefficient estimates

for R&D in both periods and for IT in the latter period, which echoes the

OLS estimates (albeit at a lower magnitude). In light of these difficulties,

we propose that the clustered standard errors approach is in the spirit of

random-effects estimators in that it allows the error component to contain

omitted variables that are orthogonal to the model variables but common

10The firm-level fixed-effects (FFE) model is relatively common in IT value research,
as in Brynjolfsson and Hitt (1995) who found that FFE explained a sizeable amount of
the output elasticity of IT. We find that this approach results in nonsignificant coefficient
estimates when applied to our context.

11We thank the senior editor and associate editor for their helpful suggestions in this
regard.
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within the firm. Because the results from the population-averaged random-

effects estimator are qualitatively similar to the clustered OLS results, we

proceed under the assumption that the latter estimates establish the upper

bound of the output elasticities of our model variables. Our secondary anal-

ysis will also provide evidence that unobserved variables are not driving the

results of our estimations.

These results consistently demonstrate a positive relationship between

both IT and R&D with quality-adjusted patent production. However, we

need to account for the possibility of endogenous factors that may influence

the relationship between the independent variables and the dependent vari-

able. Although it is intuitive to think of R&D as an input to the production

of patents, the opposite may also be true because the development and com-

mercialization of a patented invention requires additional resources that will

be reflected in the firm’s reported R&D expense. In addition, innovations

may stimulate further spending on the firm’s IT infrastructure or projects

related to marketing or implementing the innovation. This reciprocal re-

lationship may cause the independent variables to be correlated with the

model error term, which may lead to inconsistent OLS estimates.

To address these issues, we propose a set of instrumental variables to

test for endogeneity and to estimate the model using two-stage least-squares

(2SLS). The criteria for a good instrument are a high correlation with the en-

dogenous independent variable but no correlation with the error term.12 For

R&D, we use competitors’ R&D spending,13 the BLS wage index for white

collar nonsales occupations, and the firm’s own one-period lagged R&D. For

IT, we use competitors’ IT14 and the firm’s own one-period lagged IT capi-

tal services. Lagged R&D has been identified in earlier research as a useful

instrument (Blundell et al. 1999). The wage index influences R&D spend-

12The correlations between R&D and the instruments are as follows: competitors’
R&D=0.514; BLS wage index=0.093; and own lagged R&D = 0.990. The correlations
between IT capital and the instruments are competitors’ IT = 0.148 and own lagged IT
capital services=0.986.

13Competitors are defined as all firms reporting R&D within the same 4-digit SIC code
in the Compustat database.

14Competitors are defined as all firms within the same 4-digit SIC code in the CI
database.
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ing but not patent output. Competitors’ spending is expected to influence a

firm’s R&D and IT investments although industry factors such as technical

change (Allred and Swan, 2005) and IT-driven competitive strategies (Sam-

bamurthy, Bharadwaj, and Grover, 2003) are known to influence a firm’s

investment decisions.

We also validate our instrumental variables using statistical tests. The

Hansen J statistic for our main model (Table 2.3, Column 6) tests for overi-

dentification of all the instruments. Under the joint null hypothesis, the

instruments are uncorrelated with the error term and the exclusion restric-

tions are correct. Using the Stata command ivreg2 (Baum, Schaffer, and

Stillman, 2003), the test statistic is J = 0.469 (p = 0.791), and thus we fail to

reject the null hypothesis. Furthermore, we test the orthogonality conditions

of the instruments using competitors’ R&D and IT. The C statistic (Baum

et al., 2003) tests for exogeneity of a selected instrument by comparing the

Sargan-Hansen statistics of the model with and without the instrument. The

computed C statistics are C = 0.282 (p = 0.596) and C = 0.113 (p = 0.737),

respectively. Thus, we fail to reject the null hypothesis that both models

are valid.

Having selected the instrumental variables, the Durbin-Wu-Hausman

test (Davidson and MacKinnon, 1993) can offer evidence of the presence

of endogeneity. We conduct the test separately for R&D and IT. In both

cases, we reject the null hypothesis that the OLS estimates are consistent.

The results of the 2SLS estimation (again using the clustered standard er-

ror method), shown in Table 2.4, are comparable to the OLS estimates.15

This offers some reassurance that endogeneity is not a major concern.16 We

find both IT and R&D have positive and significant coefficients over the full

sample and in the latter half of the sample frame. In the 1987–1992 period,

15The number of observations in this analysis is slightly lower due to cases that were
dropped when firms did not have consecutive years of data for lagged independent and
patent output variables.

16We acknowledge that using lagged variables as instruments without controlling for
firm-level unobservables is not ideal because the instruments may reflect the same endo-
geneity as the independent variables. Our analysis shows that, in this case, much of the
explanatory power of the 2SLS estimation comes from the inclusion of lagged variables.
Consequently, we must use caution when interpreting these results.
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however, the estimated contribution of IT is not significant.

Robustness Checks We now verify the robustness of our core results

against a number of alternative influences based upon past findings in IT

value and KPF research. These are lag effects of IT upon innovation, our

method of adjusting patent output for quality, the coarseness of our industry

controls, and our adjustments for citation truncation.

First, we test for the influence of lagged IT and R&D on current in-

novation output. Although it is possible that innovation output responds

slowly to variation in KPF inputs, we did not find evidence of a consistent

lag structure for either variable. This is likely due to the very stable nature

of both R&D expenses and IT capital flows within firms over time. Our

results confirm prior research on the slowly-evolving relationship between

R&D and patent output (Hall et al., 1986).

Second, we wish to verify that our model is not sensitive to the ad-

justment methods for patent citations. We re-estimate our model using

unadjusted citation counts and unadjusted patent counts. We find that

in both cases the results are generally similar to the OLS estimates using

citation-weighted patents (Table 2.5). Using a Poisson regression for count

data, we find the R&D elasticity to be 0.883 and 0.592 for citations and

patents, respectively. The estimates for IT elasticity are 0.370 and 0.452,

respectively. All estimates are significant at the 0.10% level. However, these

larger estimates do not account for the quality differences among patents

or the panel nature of the data, which we have found tends to reduce the

magnitude of the IT elasticity estimates.17

Third, to address the concern that our 1.5-digit SIC industries insuffi-

ciently capture industry-level sources of unobserved influential factors, we

re-estimate the model using the 19 2-digit and 73 3-digit SIC industry codes

as control variables. We find that the inclusion of this many additional

intercepts reduces the significance of our estimate of IT capital below the

17We repeated our unweighted patent counts analysis using OLS and 2SLS models. The
estimates remain similar in sign, relative magnitude, and significance level to the estimates
made using citation-weighted patent counts.
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10% level (Table 2.6). Given the lack of efficiency in the clustered standard

errors approach, this result is not surprising; as the number of intercepts

increases, their share of variance explained rises at the expense of our IT

coefficient estimate. However, the industry controls themselves are, for the

most part, statistically significant. This effect is robust to 2-digit and 3-digit

SIC industry fixed effects.

Finally, all estimations were repeated with the patent citations restricted

to a 5-year window. The coefficient estimates and R-squared values are qual-

itatively similar in all cases. This result reinforces the validity of weighting

patent output by citations received, since the results are robust to the length

of time each patent is allowed to accrue citations.

2.4.2 Supplementary Analysis

We now explore several aspects of IT value analysis identified in prior litera-

ture that add depth to our examination of the IT-innovation relationship.18

First, we test whether the role of IT evolved in support of innovation over

the course of our sample period. Research examining economic growth in

the 1990s identified an acceleration in labor productivity and total factor

productivity since the mid 1990s. An increase in the rate of decline in

technology prices and the deployment of IT in substitution for other more

expensive firm inputs are highlighted as key contributors to the resurgence

in growth (Jorgenson, 2001). It is possible that research and development is

a firm activity that presents opportunities for further deepening in IT invest-

ment. Beyond investment motivated by price declines, quality improvements

in IT could lead to new IT capabilities that complement other firm inputs

(Chwelos et al., 2010) including those used in innovation production.

Adding to this line of research, we examine the contribution of informa-

tion technology to innovation over the mid to late 1990s. As IT has been

highlighted as a source of economic growth throughout the 1990s (Jorgenson,

2001) and given the time frame of our data set, we estimate and compare

the contribution of IT to innovation between the time periods of 1987–1992

18We thank the associate editor and reviewers for these insightful suggestions.
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and 1993–1997.

Accordingly, we perform all of our estimations on both time periods

(Table 2.3, Columns 2 and 3, Columns 5 and 8). This analysis highlights

the stability of the positive and significant R&D elasticity estimate over the

two periods. On the other hand, we find that all estimates show IT elasticity

to be larger and stronger in significance during the latter time period when

compared with the former. This result is consistent with earlier research

showing that investments in information technology provided a higher level

of impact during the mid to late 1990s versus its return during the start of

the decade (Chwelos et al., 2010; Stiroh, 2002; Gordon, 2000).

Our second supplementary analysis seeks to compare our findings to

prior research that examined the contribution of technology to the U.S. eco-

nomic revival in the 1990s—in particular, whether IT-producing or IT-using

industries were the source of U.S. productivity growth. The results of these

analyses are mixed, with some research highlighting IT-producing industries

as the main contributors to economic growth (Gordon, 2000) while other re-

search identifies both IT-producing and IT-using industries as contributing

to the productivity rivalry (Stiroh, 2002; Jorgenson, 2001).

We expand our analysis to examine the relationship between informa-

tion technology and innovation within these two industry categories. If they

did have differential impacts on U.S. productivity growth, is this reflected

in the IT-innovation relationship? To test this possibility, we divide our

sample according to the 3-digit SIC codes associated with information and

communication technology manufacturing. The division resulted in 1,311

IT-using firm observations and 254 IT-producing firm observations. Com-

pared with the entire sample (Table 2.7, Column 1), the results for IT-using

firms (Table 2.7, Column 2) are similar, which suggests that firms of this

type are benefiting from IT used in the creation of product and process in-

novations. On the other hand, in IT-producing firms (Table 2.7, Column

3), the estimated IT elasticity is not significant while the estimated R&D

elasticity is noticeably larger (1.255% at p < 0.001) than that for all firms

and for IT-using firms.

There are several possible explanations for the results involving IT-
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producing firms. First, some IT producers such as Cisco Systems pur-

sue a model of innovation through acquisition. Rather than investing in

R&D and related IT similar to traditional industrial-era firms, these IT-

producing firms identify and acquire new innovations outside their orga-

nizational boundaries. Effectively, traditional innovation investment shifts

from the R&D function to the mergers and acquisitions function in some IT

producers. As a result, the amount of R&D expensed may be lower while

the contribution of R&D to patent output becomes larger relative to their

IT capital. An alternative interpretation is that the creation of innovation-

intensive IT products is more dependent upon the firm’s stock of intangible

knowledge rather than the application of tangible information technology

assets. Unfortunately, the low number of observations for the IT-producing

subsample (some 20 per year) demands that we exercise caution when in-

terpreting these results.

Our third supplementary analysis concerns the contribution of IT to

breakthrough or radical innovations. Although rare, such “blockbuster” in-

novations can create superior value by unleashing market-changing forces.

Indeed, some innovation-focused firms such as those in the pharmaceutical

industry design their business models around the pursuit of these unique

creations (Gilbert, Henske, and Singh, 2003). Research has identified the

number of citations a patent receives as an indicator of the value of an

innovation, with blockbuster patents accruing far more citations than the

average patent (Owen-Smith and Powell, 2003; Hall et al., 2002). The link

between IT and blockbuster innovation has not been examined in the IT

literature prior to this study. However, university-level research has iden-

tified knowledge flows and access to information for external partners as

key factors related to the creation of high-impact patents (Owen-Smith and

Powell, 2003). We expect that information technology enables these factors

in a firm’s pursuit of blockbuster innovations, and that this relationship will

be reflected in our data.

The distribution of patents by citation frequency exhibits a very long tail

(Figure 2.2), with the median falling at 6.4 citations amid a range from 0 to

over 400 among the more than 162,000 patents in our data. By restricting
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the sample for each firm year to only those patents with citation counts in

a certain quartile or above a certain percentile threshold, we may estimate

the associated output elasticity of IT and R&D expenditure with innova-

tions ranging from incremental to radical. The results from these restricted

samples are reported in Table 2.8.
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Figure 2.2: Histogram of Citations Received by Individual Patents

By comparing the estimated output elasticities across the columns of

Table 2.8, it is evident that the contribution of additional IT capital is

greatest for patents in the lowest (1st and 2nd) quartiles of citation frequency

but declines when applied to more frequently cited patents. The results

suggest that the contribution of IT capital to “blockbuster” patents (in the

90th or greater percentile) is not statistically significant. R&D, on the other

hand, has a higher output elasticity estimate for the quartiles that include

more frequently cited patents.

These results imply that the effect of general firmwide investment in IT is

more likely to facilitate incremental innovation. It appears that IT-enabled
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improvements in the innovation process, such as data capture, sharing, anal-

ysis, and test, etc., are more applicable to building upon current knowledge.

In contrast, the contribution of R&D to the production of more innovative

patents may highlight the nontechnical nature of the radical creative process.

It is possible that data related to such blockbuster ideas are not available

in forms than can be captured and analyzed using IT. Rather, such raw

and innovative data exist in nonexpressive forms only available to the minds

of research and development personnel. Such knowledge does not become

available until newly developed ideas have advanced enough to be translated

into tangible, binary forms. Such radically new concepts are so novel and

unique that they can only be produced with inputs other than information

technology.

Overall, our estimates of the innovation elasticity of IT and R&D are

stable within the range of 0.14 to 0.28 and 0.65 to 0.90, respectively, and

appear robust to different specifications and methods. Furthermore, we

show that the contribution of IT to innovation is more evident in specific

firms, periods, and innovation quality strata. Taken together, these findings

reduce the likelihood that unobserved variables are driving the relationship

between IT and innovation output. Although an unknown cause of firm-

level heterogeneity could influence our results, such a factor(s) would have

to apply only to incremental innovation, IT-using firms, and the period

1993–1997.

The positive and significant output elasticity identified for IT across mul-

tiple assumptions and specifications presents strong evidence of the critical

role of IT in innovative activity. Although the magnitude of R&D elasticity

is larger by comparison, this reflects the central role in innovation creation

of R&D-related intangibles (e.g., scientists’ knowledge, skill, creativity, etc.)

in innovation. It is possible that the point estimate of IT elasticity could be

higher and more accurate with the inclusion of other IT spending dimen-

sions (software, labor, etc.). However, if such data were available, we would

expect its relative magnitude to remain smaller than that of R&D.
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2.5 Discussion

The contribution of IT to firm-level productivity has been demonstrated in

prior research, yet much remains unknown about the mechanisms by which

this is accomplished. The production of intangible organizational outputs

such as knowledge is a key area in which to look for the contribution of IT to

a firm’s operations and, ultimately, the value of IT. In an effort to uncover

the contribution of IT to the creation of new knowledge, we augment the

KPF (Pakes and Griliches 1984) to include IT capital input, a variable

previously excluded in innovation research. To examine the relationships

between IT, innovation activity, and innovation output, we analyze a unique

data set containing annual data on R&D expenditures, IT capital flows, and

patent citations for 201 Fortune 1000 firms for the years 1987 to 1997.

Our estimates indicate that IT and R&D both play positive and signif-

icant roles in innovation production. In our panel of large manufacturing

firms, a 1% increase in IT capital services is associated with an increase in

(citation-weighted) patent output of 0.166% in the 1987–1997 period. Fur-

thermore, we find evidence that the role of IT in innovation became stronger

in the last five years of our sample as firms increased their IT investments

dramatically. Beyond capital deepening, the contribution of IT during this

time frame is also due, in part, to new IT capabilities being introduced at

the time, namely, networking and Internet-based interconnectivity. Indeed,

research at the economy level lends credence to this supposition (Jorgenson,

2001; Stiroh, 2002).

Our estimates of the augmented KPF are consistent with earlier research

in two key respects: R&D has a positive impact on citation-weighted patent

output while firm size is inversely related to patent output. Indeed, the

impact on patent output of a 1% increase in R&D is 0.896%, about 5 times

larger than that of IT. This larger magnitude is expected because R&D

spending is a direct input to innovation process while firmwide IT investment

will support the firm’s productive and administrative processes in addition

to supporting the innovation creation process. The firm size effect is also

confirmed to the extent that our OLS and 2SLS estimates of the control
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variable (sales) are negative (with the exception of the patents with first-

quartile citation frequencies).

Our results also demonstrate an important aspect of IT and the inno-

vation creation process: Although firms invest specifically in R&D inputs

including dedicated IT spending within R&D programs, the impact of IT

on innovation goes beyond R&D-specific IT spending. Specifically, our re-

sults suggest that general infrastructure and enterprise technologies of a

firm (networks, e-mail, telephony, accounting, and finance ERP modules,

etc.) also contribute to the innovation process. Interestingly, we also find

that the effect of IT on innovation was strongest for “incremental” patents

and nonsignificant for “blockbuster” patents. This suggests that although

IT contributes broadly and significantly to innovation whether measured by

patents or citations, IT alone does not lead to breakthrough innovations.

Rather, breakthrough or radical innovations may be more dependent on

other factors such as the tacit knowledge of R&D scientists and engineers.

Finally, we contextualize our results in terms of market value impact.

Using a sample of 4,864 publicly traded U.S. firms over the period 1979–

1998, Hall et al. (2005) found that if the average number of citations received

by a firm’s patents increases by one, the market value of the firm increases

by 3%. Assuming that this result is generalizable to our sample, we can

estimate the marginal impact of IT investment on innovation output and

extrapolate it to obtain the expected increase in market value. Using our

upper- and lower-bound IT elasticities for the period 1993-1997, we estimate

that the median firm in our sample would need to increase its IT capital

flows by 39% to 81% ($3.8 to 7.7 million) to obtain one additional citation

for each of its patents. Although this amount is rather large at first glance,

we note that, between 1993 and 1997, the median firm increased its IT

capital services by 26% ($2.5 million). Furthermore, the innovation-driven

3% market value increase predicted by Hall et al. (2005) would amount to

$41 million for the median firm in our sample. Thus, our estimates of the

return to investment for IT-driven innovation appear to be economically

meaningful.

Although our results confirm many of our expectations, we recognize
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several limitations of our work. First, our data set is not without its short-

falls; the Compustat R&D data can not be broken down into spending by

the type of innovation pursued (e.g., product or process). Doing this would

allow for a refined analysis to identify the types of innovation efforts that are

more likely to pay off in a finished and highly valued innovation. The R&D

measure also does not encompass any spending information on informal in-

novation activity that may be conducted in firms. However, given explicit

FASB rules and definitions, annual R&D expenditures must be reported,

which thereby constrains off-the-books innovation spending.

Also, although our information technology construct incorporates all

types of IT elements including hardware, software, IT skill, and organiza-

tional complements, the CI measures are based exclusively on IT hardware.

For example, product innovation may require investments in both IT and

new marketing skills as a firm moves into new marketplaces or new produc-

tion processes to manufacture new products (Garcia and Calantone, 2002).

This data shortfall limits the identification of exact-point estimates of the

impact of IT on innovation output. However, insofar as investments in IT

hardware are associated with these other factors, our IT measures provide

reasonable insight into the IT construct.

The CI data also can not be broken down into measures of IT that di-

rectly support R&D and those that do not. Although the availability of more

focused measures of R&D-related IT spending19 would provide a more com-

prehensive and precise estimate of the impact of IT on innovation, such data

are prohibitively difficult to obtain. However, our data set is not without

its merits in relation to innovation activity analysis. The CI data represent

a comprehensive, firm-level measure of information technologies primarily

devoted to infrastructure. Such technologies (e.g., networking technologies,

19R&D-related IT spending measures would provide a more direct match to our IT
construct. The ideal measure would include the percentage cost of enterprise infrastruc-
ture technologies that support R&D (networks, e-mail, etc.) as well as incremental IT
investments made specifically for R&D projects. Project-specific R&D-related IT could
include specialized technologies such as CAD/CAM systems used in new product design,
data analysis applications such as specialized statistical programs for market research, and
customized software for the creation of innovative process-specific activities (e.g., a new
transaction process such as Amazon’s 1-click).
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e-mail applications, databases, etc.) have been explicitly mentioned as en-

abling collaboration and R&D (Kumar and van Dissel, 1996; Rice, 1994).

As a result, the CI data, although not ideal, does offer insight into the

contribution of IT to firm innovation.

Patents are a good proxy for measuring the output of firm innova-

tion efforts: however, they represent only one type of outcome associated

with innovation and are not guaranteed at that. In addition, as Griliches

(1990) summarized, “not all inventions are patentable, not all inventions

are patented, and the inventions that are patented differ greatly in . . . the

magnitude of inventive output associated with them” (p. 1669). Hence,

although our data represent patented innovations with adjustments to re-

flect their quality, we recognize that they do not represent all incremental

innovations of a firm.

Beyond facing the aforementioned data challenges, in the spirit of the

KPF literature stream (Pakes and Griliches, 1984; Crepon et al., 1998),

future research could jointly estimate production and patent functions. In

this way, one could examine the direct effects of IT on firm performance

while accounting for the indirect effects of IT that take place through new

innovations. Market value performance would be a natural first area for

examination because a rich, independent literature stream exists in both

the IT and R&D areas (see Melville, Kraemer, and Gurbaxani (2004); Hall

(2000) for literature surveys).

Future research could also draw on the natural link between innovation

and location-specific effects. Although innovation research has long acknowl-

edged the importance of proximity to other innovators and the nature of a

firm’s external business environment, these factors are a relatively new area

of inquiry for IT business value research. In the context of the Internet era

as well as the shift of some IT knowledge work overseas, it is possible that

today’s IT is reshaping the notion of what is “location specific” as applied

to innovation.
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2.6 Conclusion

Empirical researchers have accumulated significant evidence of the contribu-

tion of IT to firm-level productivity. However, the underlying mechanisms

by which this effect occurs are not well-understood. By examining intangi-

ble outputs such as innovation, we shed new light on the use of IT to create

firm value. In particular, we identify IT as a new and effective input to the

R&D-driven innovation process. Finally, by using patent citations as a mea-

sure of quality-adjusted innovation output, we overcome a major limitation

of innovation measurement associated with the KPF. By doing so, we help

set the stage for greater understanding of the value of innovation and IT in

the overall production context.
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Table 2.1: Descriptive Statistics

Variable Obs. Median St. dev. Min Max
Sales* 1,829 2,642.93 15,728.26 440.64 166,620.20
R&D expense* 1,829 62.76 784.87 0.46 8,359.77
IT capital services* 1,829 9.68 53.10 0.10 787.00
Patents 1,829 24.00 191.80 1.00 2,405.00
Patent citations received 1,829 208.00 2,423.85 1.00 31,733.00
Patent citations received 1,829 211.09 2,464.27 1.00 36,683.25

(adjusted)
5-yr capped citations 1,820 104.00 1,598.27 1.00 27,082.00

received
5-yr capped citations 1,820 105.44 1,496.93 0.79 23,145.31

received (adjusted)

* Millions, 1993 dollars

Table 2.2: Sample Composition by Industry

Observations Firms
Industry N % N %
Nondurable manufacturing 112 (6.1) 12 (6.0)
Durable manufacturing 571 (31.0) 63 (31.3)
Process manufacturing 517 (28.1) 57 (28.4)
High-tech manufacturing 639 (34.7) 69 (34.3)

The industry classification is motivated by prior IT value
research (Bresnahan et al., 2002) and derived from group-
ing 20 2-digit SIC firms into 10 categories. The firms in
our sample represent only 4 of these 10 categories.
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Table 2.3: Estimation Results

1 2 3 4 5 6 7 8
OLS (Cobb-Douglas) OLS (translog) Random-effects panel

(clustered robust standard errors) (clustered robust standard errors) (population averaged)
All years 1987–1992 1993–1997 All years 1987–1992 1993–1997 1987–1992 1993–1997

ln(RD) 0.896∗∗∗ 0.893∗∗∗ 0.897∗∗∗ 0.885∗∗∗ 0.939∗∗∗ 0.814∗∗∗ 0.766∗∗∗ 0.658∗∗∗
(0.0701) (0.0755) (0.0860) (0.0953) (0.123) (0.126) (0.0683) (0.0709)

ln(IT ) 0.166∗ 0.0970 0.259 ∗ ∗ 0.267 ∗ ∗ 0.191 0.377 ∗ ∗ 0.0880 0.142∗
(0.0946) (0.0947) (0.128) (0.126) (0.213) (0.167) (0.0787) (0.0755)

ln(Sales) −0.229 ∗ ∗ −0.202∗ −0.254∗ 0.0536 0.0750 0.135 −0.0628 0.0310
(0.104) (0.103) (0.133) (0.0473) (0.104) (0.0905) (0.0975) (0.105)

ln(RD)× ln(IT ) −0.0205 −0.0232 −0.0472
(0.0264) (0.0460) (0.0407)

ln(RD)2 0.00254 −0.0131 −0.0775
(0.0311) (0.0683) (0.0736)

ln(IT )2 −0.257 ∗ ∗ −0.246 ∗ ∗ −0.260∗
(0.112) (0.119) (0.140)

Constant 3.196∗ 4.598 ∗ ∗ 2.143 4.891∗ 5.412 ∗ ∗ 5.005 2.296 −0.936
(1.933) (1.867) (2.391) (2.482) (2.701) (3.069) (1.646) (1.868)

Observations 1,829 1,006 823 1,831 1,008 823 1,006 823
R2 0.610 0.627 0.596 0.611 0.625 0.598 — —

ηRD 0.896∗∗∗ 0.893∗∗∗ 0.897∗∗∗ 0.896∗∗∗ 0.890∗∗∗ 0.900∗∗∗ 0.766∗∗∗ 0.658∗∗∗
(0.0701) (0.0755) (0.0860) 0.069 0.078 0.085 (0.0683) (0.0709)

ηIT 0.166∗ 0.0970 0.259 ∗ ∗ 0.177∗ 0.112 0.239∗ 0.0880 0.142∗
(0.0946) (0.0947) (0.128) 0.103 0.116 0.132 (0.0787) (0.0755)

Dependent variable: log of citation-weighted patents.
Estimates for year and industry indicators omitted from results.
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 2.4: 2SLS Estimation Results

All years 1987–1992 1993–1997
ln(RD) 0.896∗∗∗ 0.900∗∗∗ 0.889∗∗∗

(0.0769) (0.0850) (0.0911)
ln(IT ) 0.198∗ 0.114 0.287∗

(0.111) (0.111) (0.150)
ln(Sales) −0.263 ∗ ∗ −0.234 ∗ ∗ −0.286 ∗ ∗

(0.114) (0.117) (0.142)
Constant 3.472∗ 4.867 ∗ ∗ 2.458

(1.995) (2.041) (2.421)
Observations 1,565 788 777
R2 0.613 0.633 0.599

Dependent variable: log of citation-weighted patents.
Cluster-adjusted robust standard errors.
Estimates for Year and Industry indicator variables
omitted from results.
*** p < 0.01, ** p < 0.05, * p < 0.10.

Table 2.5: Poisson Regressions

Dependent Variable:
Raw citations Raw patents

ln(RD) 0.883 ∗ ∗∗ 0.592 ∗ ∗∗
(0.00115) (0.00351)

ln(IT ) 0.370 ∗ ∗∗ 0.452 ∗ ∗∗
(0.00145) (0.00474)

ln(Sales) −0.393 ∗ ∗∗ −0.152 ∗ ∗∗
(0.00138) (0.00440)

Constant 3.572 ∗ ∗∗ −3.581 ∗ ∗∗
(0.0240) (0.0775)

Observations 1,839 1,839

Standard errors in parentheses.
Year and Industry indicator variables estimates
omitted.
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 2.6: Granular Industry Controls

SIC controls
1.5-digit 2-digit 3-digit

ln(RD) 0.896∗∗∗ 0.901∗∗∗ 1.002∗∗∗
(0.0769) (0.0822) (0.136)

ln(IT ) 0.198∗ 0.107 0.166
(0.111) (0.106) (0.118)

ln(Sales) −0.263 ∗ ∗ −0.138 −0.291
(0.114) (0.123) (0.181)

Constant 3.472∗ 2.140 4.034
(1.995) (2.282) (3.531)

Observations 1,565 1,565 1,565
R2 0.613 0.650 0.717

Standard errors in parentheses.
Year and Industry indicator variables estimates omit-
ted.
*** p < 0.01, ** p < 0.05, * p < 0.10.

Table 2.7: IT-producing vs. IT-using industries

IT-using IT-producing
All firms 3-digit SIC 3-digit SIC

ln(RD) 0.896∗∗∗ 0.786∗∗∗ 1.255∗∗∗
(0.0769) (0.0938) (0.304)

ln(IT ) 0.198∗ 0.211∗ 0.0683
(0.111) (0.125) (0.229)

ln(Sales) −0.263 ∗ ∗ −0.185 −0.359
(0.114) (0.136) (0.326)

Constant 3.472∗ 1.926 6.039
(1.995) (2.381) (7.134)

Observations 1,565 1,311 254
R2 0.613 0.6 0.525

Dependent variable: log of citation-weighted patents.
Cluster-adjusted robust standard errors.
Estimates for Year and Industry indicator variables omitted
from results.
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 2.8: Blockbuster Patents Analysis

Entire sample 1st 2nd 3rd 4th 90th 95th 99th
quartile quartile quartile quartile percentile percentile percentile

Lower bound 0 2.71 6.4 13.6 25.6 37.04 72.58
(citation frequency)
ln(RD) 0.922∗∗∗ 0.471∗∗∗ 0.496∗∗∗ 0.519∗∗∗ 0.698∗∗∗ 0.636∗∗∗ 0.606∗∗∗ 0.424∗∗∗

(0.0311) (0.0270) (0.0259) (0.0257) (0.0312) (0.0377) (0.0461) (0.0631)
ln(IT ) 0.178∗∗∗ 0.249∗∗∗ 0.260∗∗∗ 0.183∗∗∗ 0.119∗∗∗ 0.0351 0.00833 0.0145

(0.0474) (0.0403) (0.0391) (0.0376) (0.0449) (0.0497) (0.0563) (0.0676)
ln(Sales) −0.240∗∗∗ 0.0887∗∗ 0.0426 0.0634 −0.142∗∗∗ −0.117 ∗ ∗ −0.155∗∗∗ −0.159 ∗ ∗

(0.0505) (0.0422) (0.0409) (0.0402) (0.0473) (0.0528) (0.0599) (0.0731)
Constant 2.649∗∗∗ −6.562∗∗∗ −5.765∗∗∗ −4.756∗∗∗ −0.246 0.282 1.316 1.823

(0.786) (0.662) (0.633) (0.630) (0.727) (0.819) (0.964) (1.143)
R2 0.626 0.613 0.615 0.610 0.545 0.465 0.376 0.255
Observations 1,809 1,591 1,632 1,629 1,470 1,078 786 348

Dependent variable: log of citation-weighted patents using 5-year capped citation window.
All estimations use cluster-adjusted robust standard errors.
Estimates for Year and Industry indicator variables omitted from results.
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Chapter 3

The Knowledge Factory:

Innovation and IT

Investment in Manufacturing

3.1 Introduction

Research concerning the business value of IT has become increasingly fo-

cused on the mechanisms by which firms harness IT to create value. Among

intermediate value-creating processes, innovation has long been considered

vital to the competitive advantage of firms. Since innovation is tied to the

creation and recombination of knowledge, IT has been recognized as playing

a central role in the discovery and refinement of new products and manufac-

turing processes. The goal of this investigation is to evaluate a model that

will incorporate IT as a key input to both the direct production process and

the intermediate innovation process. The empirical validation and estima-

tion of this model will shed light on the dual role of IT in the production

and innovation processes of firms.

3.2 Background

Productivity is an economic concept that expresses the ratio between the

quantity of output produced by some input or combination of inputs. Econo-

mists model and estimate the nature of production of firms and economies

using production economics, which represents the process of generating eco-

nomic value as a mathematical formulation relating inputs to outputs. Such
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production functions are used to model this relationship at the firm, indus-

try, or economy level. Productivity is considered an important indicator of

economic growth and general prosperity.

The classical factor inputs in production functions are labour and capital.

Formally, the aggregate production function in a Cobb-Douglas form is:

Y = AKαLβ, (3.1)

where Y is output in GDP, K is capital and L is labour. The exponent

terms, α and β, represent the share elasticity of the factors. The constant

A represents technological change–also known as multifactor productivity

or the Solow residual, since it explains the growth left over after accounting

for labour and capital as having arisen from structural shifts, mainly due

to technology (Lee, Gholami, and Tong, 2005). Although other specifica-

tions of production functions have been advanced, researchers continue to

find the Cobb-Douglas form useful in empirical analyses due to the ease of

interpreting the regression estimates. By taking the log of both sides of the

equation, one may interpret the regression coefficients of labour and capital

as output elasticities in percentage form.

3.2.1 IT Productivity Research

In the late 1980s, a number of economists and IS researchers began to address

the question of IT productivity at the economy level and found disturbingly

small, and even negative, results. Nobel laureate Robert Solow attracted

widespread attention with his 1989 remark that “one sees computers ev-

erywhere except the productivity statistics.” By 1993 this so-called “pro-

ductivity paradox” was considered an economic issue of great importance

because, despite massive technological improvements in computing power

and widespread large-scale investment in IT, much of the literature found

this capital build-up had a negligible-to-negative relationship with produc-

tivity at the overall and at the factor levels. In his widely-cited review of

IT productivity literature, Brynjolfsson (1993) suggested measurement error

as a primary reason as to why the results to date had been so disappoint-
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ing. His survey included four studies at the economy level and fourteen at

the firm level, conducted between 1983 and 1993 and published in business

and economics journals and related conference proceedings. Typically, such

studies used the production function approach, with IT capital modeled as a

separate variable from “conventional” capital (denoted Z in equation (3.2),

below),

Y = AKαLβZγ . (3.2)

Brynjolfsson identified several difficulties with this approach: the direc-

tion of causality is unknown, and the results are sensitive to the assumptions

of functional form and measurement (such as price deflators and industry

categorizations). However, the research also showed that traditional inputs

had the expected (positive) influence on output, affirming the production

function approach and presenting some reason to suspect that measurement

error may not be entirely to blame. Other research around this time showed

that the nature of IT investment varied widely across firms and that these

differences could explain why earlier studies found mixed results. Brynjolfs-

son and Hitt (1995) analyzed a panel of firms that had been used in previous

studies and found that firm fixed effects helped explain as much as half the

productivity gains ascribed to IT. Weill (1992) pointed out the sensitivity

of the IT-productivity relationship to the form of IT: gains from strate-

gic IT investments were competed away, while transactional IT investments

appeared to have a stronger connection to improved firm performance.

Recent summaries of subsequent research findings (Dedrick, Gurbaxani,

and Kraemer, 2003; Kohli and Devaraj, 2003; Melville et al., 2004) have

largely put to rest the macroeconomic productivity paradox, but at the mi-

cro level the consensus is more cautious and qualified, contingent on comple-

mentary investments and environmental moderators. Questions remain as

to factors explaining the variation in the contribution of IT to productivity

at the firm and industry levels, as well as in the form that productivity takes.

At the industry level, recent research suggests that gains in labour produc-

tivity (in response to IT investment) have been mostly positive between the

1989–95 and 1995–99 periods (Council of Economic Advisors, 2001), but
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changes in this contribution are different across industries. This is likely

related to the second question, which is whether researchers are correctly

modeling the form of productivity improvements that can be attributed to

IT. In contrast to standard measures of output, IT may be contributing more

to intermediate processes such as the deployment of new business models,

gathering of market intelligence, and innovation. Indeed, this was the con-

clusion of Barua, Kriebel, and Mukhopadhyay (1995) who found evidence

of a relationship between IT capital investments and intermediate-level in-

dicators such as capacity utilization and inventory turnover.

3.2.2 Knowledge Production Function

Among economic models of innovation, one of the most compelling is that

proposed by Pakes and Griliches (1984). Similar to the neoclassical produc-

tion function (NPF) given in 3.1, the knowledge production function (KPF)

represents the knowledge output generated by a firm as a function of the in-

puts used within its innovation process. The KPF, represented by the lower

half of Figure 3.1, links the neoclassical production function in the upper

half (with inputs denoted X1..j , with error terms v1..j , and several potential

measures of output, such as Value Added or productivity, denoted by Z1..j)

to the influence of knowledge on these production processes. In the KPF, the

knowledge created by a firm, denoted K, is a function of R&D expenditure

R (subject to a stochastic disturbance u reflecting the uncertainty of knowl-

edge creation). This new knowledge is inherently unobservable. However,

patented inventions, P , can serve as an observable indicator of the produc-

tion of new knowledge. Pakes and Griliches estimated their specification of

the KPF and found a positive and statistically significant contribution of

R&D to patent output. Due to limitations of data and computation, how-

ever, it was not feasible to estimate the larger model at the time of their

publication.

The use of patents as indicators of inventive activity has proven fruitful

to researchers due to several factors (see Griliches (1990) and Hall et al.

(2005) for extensive reviews). First and foremost, the patent application
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Figure 3.1: Microeconomic Model of Production including Knowledge Pro-
duction Function (Pakes and Griliches, 1984)

examination process imparts objectivity. In the US, patent law requires the

process or product to be novel and non-obvious, as well as “useful,” i.e.

having a useful purpose and operativeness (USPTO, 2006). This standard

has been relatively stable over time, making comparisons across years and

industries more robust. Second, a patent also provides a detailed record

of the inventor, the industrial field into which the invention is classified,

and citations of prior patents upon which it builds. The enforcement of

the latter by patent examiners is especially important since it documents a

recognition of “prior art,” allowing the researcher to draw inferences based

on the nature and quantity of cited patents.

Although patents are a rich and robust indicator of innovation output,

there are two principal shortcomings that have been discussed in the litera-

ture. First, patents do not measure all of a firm’s inventive output (see § 2.3.1

for a discussion of this aspect of patent data and related literature). The

second shortcoming is the influence exerted by regulatory and competitive

climate on the decision of firms to pursue patents. Researchers investigating

the determinants of patenting have noted the roles of industry concentration

and rates of technological progress in patenting, and the differences of these
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on the propensity to register process versus product patents (Lunn, 1987).

Arora and Ceccagnoli (2006) show that more effective protection of patents

provides, not surprisingly, an increased incentive for firms to seek patentable

innovations. Differences in incentives may arise at the firm level if the firm

possesses specialized complementary assets that make it more difficult to

license an innovation.

3.3 Model

The objective of this research is to integrate IT capital as a distinct input

from labour and capital in the original overall model, and then estimate the

path coefficients to understand the simultaneous contribution of IT capital

on both indicators of patents and output. The model proposed by Pakes

and Griliches (1984) resembles a structural equation model (SEM). Knowl-

edge is a latent (unobservable) construct, to which R&D may be considered

a formative indicator and patent output a reflective indicator. In the SEM

tradition, this is a multiple-indicators multiple-causes (MIMIC) model be-

cause there are no endogenous latent constructs. The updated structural

equation model for this research, an operationalized Knowledge Production

Function, is presented in Figure 3.2. The upper portion of the model (rep-

resenting the neoclassical production function) does not contain a latent

variable, but it is straightforward to consider the X variables as forma-

tive indicators of a new latent construct we shall call Productive Resources

(PR). Thus, PR represents an index of the firm’s available resources with

which it produces output. A path from Knowledge to PR maintains the

original model’s hypothesis that innovation (positively) influences the firm’s

productivity.

The top half of the structural equation model represents the IT-augmented

neoclassical production function (equation (3.2)). The traditional inputs

labour, L, conventional (non-IT) capital, K, and IT capital, Z, are modeled

as formative indicators of the PR latent variable. Output, Y , is measured by

Value Added. As the single output indicator of PR, Y is considered to have

no measurement error. The lower half of the model represents the KPF, with
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Figure 3.2: Structural Equation Model

the latent construct Knowledge (now denoted KN) having formative indi-

cators Z and R, and output indicator P , citation-weighted patent output.

As a control for firm size, the number of employees (denoted S) is included

because of the theoretical and empirically-verified diseconomies of scale on

innovation. Griliches (1990), for example, found smaller firms (having less

than 1,000 employees or spending less than two million dollars per year on

R&D) in his sample of publicly-traded companies obtained more patents in

proportion to their size than larger ones.

There are several unusual aspects to the measurement model. First,

guidelines for SEM research recommend having at least three indicators per

construct. In our basic model, we are not able to provide three indicators

due to data limitations. Second, our hypothesis is that IT capital influences

both direct production and intermediate knowledge production. Therefore

the indicator Z has paths leading to both the PR and KN constructs. Com-

putationally, this has an attenuating effect on the loading of the indicator

on both paths. Finally, the R&D factor, R, is a subset (in some unob-

servable combination) of all three production function inputs L, K, and Z
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(e.g. scientists, research labs, and computer equipment). This results in

some double-counting of the firm’s overall labour, non-IT capital and IT

capital inputs since some portion of each of these is also included in R&D.

The double-counting of these inputs in the knowledge-creation process may

result in inflated measurement errors for the estimation of the path loadings.

3.4 Data

The estimation of the model utilizes data gathered from three principal

sources, as detailed in the previous chapter of this dissertation. A summary

of these sources and the data adjustment process is given here. First, we

obtain the dependent variable for the KPF from the NBER Patent Citation

Database (Hall et al., 2002), which details the successful patent applications

between 1975 and 1999 for a large number of U.S. firms. This database has

updated by including citations up to 2004 to allow patents near the end of the

sample period enough time to receive adequate citation counts. Second, we

obtain data on IT capital from the Computer Intelligence Infocorp database,

which gives details on the value of installed IT at nearly 800 Fortune 1000

firms from the period 1987–1999. Finally, the R&D expense, labour expense,

(non-IT) capital book value and annual Value Added output for the firms

in the union of the first two data sets is obtained from Standard and Poors

Compustat, a database of financial and stock market information.

The NBER Patent Citation database (Hall et al., 2002) records, for each

successful patent application, the date of application and the date the patent

was granted. Using the application date is more appropriate for our purpose

since R&D expense tends to be recorded early in the patenting process.

As mentioned earlier, patents are not a perfect indicator of innovative

activity. Insofar as they do measure an actual innovation, however, an ad-

ditional concern is that patents do not account for variations in the quality

or value of the innovation. We address this through the use of citation-

weighting methodology proposed by Hall et al. (2002). Since the citation of

prior patents is enforced by the USPTO, the number of citations a patent

receives by subsequent patents can be taken as an indicator of its economic
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value (Hall et al., 2005; Trajtenberg, 1990). To prevent older patents from

accumulating more citations at sample time than new patents, we generated

a citation count based on the citations received within a fixed window of five

years from the application date of each patent.

All variables are expressed in “flow,” rather than “stock,” terms. The

yearly value of IT and non-IT capital services is calculated using the rental

price approach used by the U.S. Bureau of Labor Statistics. Although non-

IT capital rental prices have been used extensively in production economics

research, the history of difficulty with price deflators for IT capital requires

a specialized approach. Based on the IT capital stock data provided by

Computer Intelligence, Chwelos et al. (2010) create a measure of annual

capital services flowing from this stock of IT in constant quality-adjusted

dollars. Rental prices reflect the cost of capital and include the rate of

return, depreciation and expected rate of asset price change, net of income

and property taxes. Value Added output is calculated by subtracting non-

labour expenses from sales. Finally, R&D expense is an item reported in

firms’ financial statements. To improve tractability, the natural log of all

variables has been taken.

The balanced panel of 123 firms includes observations from 1993 to 1997.

Summary statistics are reported in Table 3.1. The 1993–1997 period was

chosen because it captures the rise of the internetworking era of computing,

in which communications technologies enabled vast improvements, using

other forms of IT, in co-ordination of teams and operations on a global

scale. The sample includes 72,565 patents, with the median firm obtaining

36 successful patent applications per year. A total of 680,649 citations were

recorded by these patents to the end of 2004, with the median patent re-

ceiving 230 citations. The data are restricted to the manufacturing sector

because the number of firms in the service sector that engaged in significant

R&D and patenting was very small.
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3.5 Methods and Results

The partial least-squares (PLS) approach is considered a primarily exploratory

approach, which is appropriate here since although theory has established

the model form, the constructs have not been tested in the operationalized

model. Previous research investigating the KPF and neoclassical production

functions has predominantly employed least-squares regression, especially

with panel (i.e. cross-sectional time series) data. Our research model in-

corporates both a NPF and the KPF, and since common unobservables are

likely to affect both processes with the firm, analyzing the production model

as a system offers the advantage of explaining variation in both processes in

a single estimation. We use a component-based PLS approach implemented

in the SmartPLS program (version 2.0(beta)) (Ringle, Wende, and Will,

2005).

We estimate the model in two variations. First, we model the production

of goods and knowledge in a single year and repeat the analysis for period

1993–1997. Second, we reformulate the model to allow for multiple obser-

vations of the same firm over the 5-year period in a single estimation. This

will allow for a closer comparison to existing KPF and IT capital research

using similar data.

The objective of the first round of analysis is to estimate the single-year

model for each year in the sample. This produces five sets of results, from

1993 to 1997. In order to estimate the single-year MIMIC model in the

SmartPLS software package, two latent variables are created to represent

each construct (Productive Resources: PR and PR′; and Knowledge: KN

and KN ′) in the model (Figure 3.3). This is necessary because SmartPLS

will not allow a construct to have both formative and reflective indicators.

However, the result of the estimations is equivalent since the two latent

variables represent the same construct and there are no other paths that

influence either of the constructs. The path between them tests the validity

of the formative indicators (Chin, 1998).

To analyze the model in this form, an additional estimation stage is re-

quired. The first stage (above) validates the formative model for the NPF
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Figure 3.3: First-stage model: MIMIC Validation

and (separately) the formative model for the KPF. Having established the

indicators are valid formative measures of the constructs, a second estima-

tion is performed using the latent variable scores (PRscore and KNscore)

from the first estimation to predict the influence of KN on PR, as seen

in Figure 3.4. If the entire model were to be estimated in one stage, the

MIMIC validation becomes unreliable since the path from KN to PR acts

as another influence on PR. In other words, it becomes difficult to interpret

the path weights as either an indication of formative indicator validity or

prediction from one construct to the other. By performing the prediction

separately, we isolate the validation and prediction estimates.

The estimation results from this two-stage single-year model are reported

in Table 3.2. For the first-stage estimation of the validation coefficients, Chin

(1998) suggests this coefficient should be at least 0.8 and preferably above

0.9. The PR construct (path coefficient from PR to PR′) is validated for all

years 1993 to 1997, with validation path coefficients in the range of 0.975 to

0.980. The validity coefficient for the KN construct (KN to KN ′) closely

approaches Chin’s cut-off, in the range of 0.750 to 0.795, with the exception
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Figure 3.4: Second-stage model: Predictor Estimation

of 1996 (0.602).

The estimated indicator weights for K, L and R are significant at the

5% level (t-values greater than 1.96) for all years in the sample. While the

indicator weights for Z on PR are not significant in any of the sample years,

the weights of Z on KN are significant for the years 1993–1995. Because

the output indicators Y and P are modeled as singular indicators, they

are considered error-free measures and their loadings are reported as 1.00,

accordingly.

In addition to examining each formative indicator’s weight, it is useful

to consider its loading : the bivariate correlation of an indicator to its con-

struct (Cenfetelli and Bassellier, 2009). These are interpreted as the absolute

(rather than relative) importance of an indicator. Notably, the loadings for

all indicators are consistently high (Table 3.3), including the loadings for Z.

On the Productive Resources construct, Z loadings are consistently in the

0.81 to 0.85 range, and in the 0.66 to 0.81 range for the Knowledge con-

struct. This indicates that while the unconditional effect of IT capital on

Productive Resources is high, the partialled effect is not significant once the

model controls for the effects of non-IT capital and labour. This is likely a
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result of multicollinearity, given the high correlation between Z and L (0.79

to 0.86) and Z and K (0.71 to 0.75). Thus, while we cannot predict the

outcome of a marginal change in the amount of IT capital, we also cannot

dismiss altogether its importance to the firm’s Productive Resources.

We examine several measures of reliability that pertain to this model

specification. The latent constructs, PR and KN , capture a large portion

of the variation in the model. For all sample years, the R-squared for PR

is consistently above 95%, while the R-squared for the KN construct is be-

tween 56% and 63%, with the exception of 1996 (36%). Due to the MIMIC

structure of the latent variables, additional measures of construct reliability

(Average Variance Extracted (AVE) and Cronbach’s alpha) are not com-

puted by SmartPLS. Finally, the path coefficient between KN and PR is

strong and significant at the 1% level for all sample periods, ranging from

0.623 to 0.721.

3.5.1 Multiple-Observations Model

The second set of estimates, below, are from the multi-year variation on

the original model. In this multiple-observations model, presented in Fig-

ure 3.5, each formative indicator (K, L, etc.) from the original model is

implemented as a latent variable with a cluster of formative indicators com-

posed of three years of observations for that variable for 1993–1995 (e.g.

k93, k94, k95). The original latent constructs (representing Knowledge and

Productive Resources) become endogenous constructs, with reflective (out-

put) indicators for value-added output and patent citations for 1995–1997,

respectively. The objective of modeling the KPF in this way is to incorpo-

rate additional information on the composition of the firm’s Knowledge and

Productive Resources. By accumulating a series of input flows over time, we

create constructs that represent stocks of the resources used in both knowl-

edge production and direct production in subsequent periods. The labour

construct will thereby approximate the stock of human capital—skills and

tacit knowledge—built up over several years through wage expenses. Simi-

larly, the non-IT and IT capital constructs will capture the firm’s stock of
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equipment that, over time, is allocated to provide the most efficient deploy-

ment. The firm’s overall stock of intellectual property is also built up over

time, as reflected in the accumulations of R&D expenditures and patent

citation output.

Figure 3.5: Multi-year Model

The indicator weights on the first-order latent variables are reported

in Table 3.4. Among the inputs to the model, R&D is the only indicator

that has significant weights for all years. Labour, non-IT capital, IT capital

and the control variable Size exhibit a pattern where the weights on 1995

have higher t-values than 1993 and 1994. The input indicators with weights

significant at the 5% or better level are: k94, k95, l95, r93, r94, and r95. The

output indicators, va95 · · · va97 and p95 · · · p97, are significant at the 1% level

in all years.
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Although the number of indicators with insignificant (or negative) weights

is curious at first glance, it is likely that multicollinearity is responsible. The

indicators for both IT and non-IT capital are driven by the same slowly-

evolving capital stocks in the firm; similarly, labour and size (sales) will also

be driven by related underlying phenomena. A non-significant path weight

or negative path weight in this context can result from a high correlation of,

for example, r94 with the other indicators on the construct R, and should

be seen as the effect of the indicator after having controlled for the other

indicators’ influence on the construct (Cenfetelli and Bassellier, 2009). The

negative sign on the k94 and r94 indicators should not be interpreted as a

deleterious effect of non-IT capital or R&D in 1994.

Indicator loadings are reported in Table 3.5. All indicators have high

loadings of at least 0.88. In contrast to the single-year model, the indicator

loadings in this model are less informative since they represent the correla-

tions of three observations of an indicator of the same type to a formative

construct. As such, we would expect high loading values since firms tend not

to make fundamental changes to their factor mix (or, indeed, R&D budget)

over a short period of time.

Support for construct validity is high, with AVE (Table 3.7) for the

latent variables being higher than their respective correlation to all other

variables (Table 3.8). The reliability of the PR and KN constructs is also

very good, indicated by Cronbach’s alpha (0.996 and 0.951, respectively)

and R-squared for the constructs (95.5% and 65.2%, respectively).

The path coefficients are reported in Table 3.6. The paths between the

input and output constructs are significant at the 1% level with the exception

of the Z → KN path, which is significant at the 10% level. The path weights

are generally consistent with prior regression-based estimates, showing that

labour and non-IT capital have the largest influence on production output

and that R&D is a strong predictor of Knowledge. However, there is a small,

negative path weight on Z → PR, significant at the 5% level, which was not

expected.

Finally, the path coefficient from Knowledge to Productive Resources is

0.106 and significant at the 1% level. In relative terms it is not as influential
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as the conventional NPF inputs (0.379 for non-IT capital and 0.655 for

labour), but it nonetheless confirms the hypothesized relationship from the

KPF to the NPF.

3.6 Discussion

The estimation results from both variations of the model shed light on the

relative contribution of IT capital vis-à-vis the traditional factors of pro-

duction in an integrated model of knowledge and conventional production.

Controlling for the simultaneous processes of knowledge-creation and con-

ventional production, IT capital’s role in direct production appears limited.

However, we find some confirmation that IT capital works to increase the

firm’s stock of Knowledge, which in turn has an influence on the firm’s over-

all Productive Resources. An advantage of this modeling approach is that

the formative indicators composing the constructs are factors of production;

thus, the model makes actionable predictions that can inform managerial

decision-making.

In the single-year model, results for the five year period 1993 to 1997

roughly confirm earlier production function research. The indicator weights

give an indication of the relative importance of a factor given the effect of

the other factors, similar to regression coefficients. The results show strong

contributions from K and L in the NPF (i.e. relating to the PR construct)

and R in the KPF (the KN construct). The lack of statistically significant

weights for the Z indicators in the neoclassical production function are not

surprising given past research has found this effect to be small in comparison

to K and L, and sensitive to industry and firm differences. Further, as

mentioned earlier, we expect the indicator weights for Z to be attenuated

due to the shared paths from Z to KN and PR.

In the knowledge production function, the indicator weights for Z and S

on KN are positive and significant for 1993–1995 but not 1996–1997. This

could indicate a shift in the relative importance of Z in the KPF in the

post-1995 period. However, a broader perspective must acknowledge that

insignificant weights are a relative measure, indicating that Z is unable to
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make a measurable contribution once the influence of the other factors has

been accounted for. The strong indicator loadings suggest that all factors,

including IT capital, are making strong absolute contributions to the latent

constructs, and that these contributions are very consistent throughout the

sample time frame.

A very important finding is the strong, positive and significant path

coefficient from KN to PR across all five sample years. This indicates that

knowledge is making a strong contribution to the production process, taking

into account the use of all the formative indicators. The path weight is

interpreted as the predicted increase in Productive Resources: for each unit

increase in Knowledge, the predicted increase in PR is estimated between

.649 to .707 standard deviations.

While the results across the years are roughly consistent, there are some

anomalies. The PR construct estimates and R-squared remain stable, but

the KN construct has low R-squared and a non-significant validity coef-

ficient (KN → KN ′) for the 1996 sample year. Since these return to

more typical values for 1997, it may be that anomalous events distorted

the usual relationship between the indicators and the latent constructs re-

lated to Knowledge. Second, it is notable that the path weight on Z → PR

is increasing over time, while for Z → KN it increases to 1994, decreases in

1995, and is not significant afterwards. This may indicate that, over time,

firms emphasized the application of IT capital resources for production effi-

ciencies while de-emphasizing the role of IT in knowledge-generation.

The multiple-year model estimation produces results that confirm the

conventional factors of production for the NPF and R&D for the KPF,

but do not support a role for IT capital. The path from KN to PR is

positive and significant, and the formative constructs for labour (L) and

non-IT capital (K) retain their strong explanatory power with significant

paths on the output construct (PR). The path coefficient from Z to PR

is significant at the 5% level, and has a small negative magnitude. This

unexpected result may be due to multicollinearity with other inputs. In the

latent variable correlation scores (Table 3.8), the Z construct has a high

correlation with K and L (along with R and S in the KPF). However, the
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path coefficients from the IT capital construct (Z) to PR are not statistically

significant. Further, the indicator weights for Z93 · · ·Z95 are not significant,

calling into question the validity of the Z construct. Overall, the results

from this estimation suggest that, controlling for the other inputs, firms’

accumulated IT resources from the 1993–1995 period did not explain the

Productive Resources or Knowledge outputs in the 1995–1997 period.

3.6.1 Limitations and Future Research

The SEM techniques used here have not been widely applied to econometric

data, and panel data in particular. One of the shortcomings of the SEM

approach is that it does not allow one to control for firm fixed effects or

industry effects. Both effects have featured prominently in the IT produc-

tivity literature. In past research using patent statistics, there is evidence

of clear differences across industries in their propensity to patent (Griliches,

1990). This variation arises from the different stages in technological evo-

lution, general industry maturity, level of competition and the degree to

which patents are seen as effective methods for securing intellectual prop-

erty rights. For similar reasons, propensity to patent varies from year to

year, as well as the employment of various factors of production according

to unobserved environmental changes, such as tax policy.

Future extensions to this line of inquiry could harness additional indi-

cators of knowledge-creation in order to model KN . As mentioned earlier,

one of the deficiencies of patents as indicators of knowledge is that they

do not capture many less-formal forms of innovation—many of which may

be supported extensively by IT. One potential indicator that has been re-

cently explored is the number of trademarks obtained by a firm (Gao and

Hitt, 2011). Firms often register new trademarks when adding new product

lines as a result of innovations. If this and several other reliable measures

of knowledge-accretion could be found, a more robust structural equation

model could be estimated. Such analysis could provide further insights about

the measurement and structure of the knowledge-creation process.
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3.7 Conclusion

Information Technology has provided industry with ever-improving tools to

capture, analyze and communicate information—-activities which are com-

mon to both production and innovation processes. Accordingly, as firms

increase their IT investment, it is expected that their general productivity,

as well as their returns to innovation, should improve. By applying struc-

tural equation modeling techniques we test a model that incorporates IT

as a distinct form of capital and estimate its simultaneous contribution to

both areas. Our results indicate this effect, for the 1993–1995 period, to be

mediated through the knowledge production process. This provides quali-

fied support for the proposition that IT creates value at intermediate stages

of production. Future applications of this technique, using expanded data,

will shed light on both the viability of the model and patterns of influence

across different manufacturing industries.

61



Table 3.1: Summary statistics: entire sample

Variable Median Std. Dev. Min Max

Y Value-Added Output 1,614.28 7,143.52 256.95 62,882.66
K Non-IT capital 102.71 682.32 8.71 6,620.23
L Labour 954.14 3,646.02 106.40 31,916.19
Z IT capital 23.71 67.12 0.66 463.81
R R&D 94.70 973.73 4.49 8,359.77
S Employees 20,100.00 77,706.95 2,335.00 750,000.00
P Patent Citations 134.66 2,068.26 0.00 23,145.30

Balanced panel, 615 observations, 1993-1997.
All measures in millions of 1993 dollars, except Employees (in persons)
and Patent Citations (in units).
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Table 3.2: Single-Year Model: Path Weights

Indicator Construct 1993 1994 1995 1996 1997

K PR 0.305∗∗∗ 0.299∗∗∗ 0.349∗∗∗ 0.407∗∗∗ 0.363∗∗∗

(5.924) (6.867) (9.228) (12.192) (8.530)
L 0.754∗∗∗ 0.741∗∗∗ 0.696∗∗∗ 0.620∗∗∗ 0.676∗∗∗

(14.366) (12.905) (14.483) (14.038) (12.111)
Z −0.029 −0.005 0.000 0.028 0.015

(0.741) (0.104) (0.005) (0.805) (0.381)
Z KN 0.443∗∗∗ 0.460∗∗∗ 0.267∗ 0.146 0.096

(3.103) (3.128) (1.715) (1.074) (0.612)
R 0.987∗∗∗ 0.891∗∗∗ 0.940∗∗∗ 1.142∗∗∗ 1.045∗∗∗

(8.626) (6.993) (10.322) (7.994) (9.282)
S −0.463∗∗∗ −0.372∗∗∗ −0.213 −0.380 −0.168

(3.211) (2.674) (1.277) (1.519) (0.957)

PR→PR’ 0.978∗∗∗ 0.975∗∗∗ 0.978∗∗∗ 0.980∗∗∗ 0.976∗∗∗

(160.472) (163.167) (172.238) (203.943) (168.407)
KN→KN’ 0.785∗∗∗ 0.785∗∗∗ 0.795∗∗∗ 0.602∗∗∗ 0.750∗∗∗

(16.802) (17.686) (21.483) (5.916) (16.011)
KN→PR 0.665∗∗∗ 0.700∗∗∗ 0.721∗∗∗ 0.623∗∗∗ 0.704∗∗∗

(10.704) (12.476) (12.573) (8.769) (12.814)

PR R2 0.956 0.951 0.957 0.960 0.953
KN R2 0.616 0.632 0.632 0.362 0.563

t-values in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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Table 3.3: Single-Year Model: Indicator Loadings

Indicator Construct 1993 1994 1995 1996 1997

K PR 0.920 0.913 0.914 0.924 0.907
L 0.987 0.986 0.979 0.969 0.974
Z 0.854 0.841 0.831 0.824 0.811

Z KN 0.779 0.656 0.807 0.714 0.750
R 0.969 0.968 0.989 0.975 0.995
S 0.632 0.656 0.685 0.573 0.666
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Table 3.4: Multi-year Model: Outer Weights

K KN L PR R S Z

k93 0.926

(1.290)

k94 −2.362∗∗

(2.025)

k95 2.425∗∗∗

(4.076)

l93 −0.420

(0.943)

l94 0.604

(1.196)

l95 0.812∗∗∗

(3.930)

p95 0.404∗∗∗

(134.890)

p96 0.296∗∗∗

(13.829)

Continued on next page
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Table 3.4 – continued from previous page

K KN L PR R S Z

p97 0.368∗∗∗

(73.565)

r93 2.657∗∗∗

(3.511)

r94 −4.371∗∗∗

(4.097)

r95 2.680∗∗∗

(3.623)

s93 0.862

(0.524)

s94 −0.876

(0.477)

s95 1.017

(1.241)

va95 0.338∗∗∗

(734.692)

va96 0.336∗∗∗

(1502.295)

Continued on next page66



Table 3.4 – continued from previous page

K KN L PR R S Z

va97 0.329∗∗∗

(557.592)

z93 0.142

(0.343)

z94 0.325

(0.408)

z95 0.539

(0.998)

t-values in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 3.5: Multi-year Model: Outer Loadings

K KN L PR R S Z

k93 0.957
k94 0.969
k95 0.990

l93 0.970
l94 0.985
l95 0.998

p95 0.959
p96 0.878
p97 0.953

r93 0.957
r94 0.938
r95 0.954

s93 0.960
s94 0.960
s95 0.996

va95 0.994
va96 0.997
va97 0.993

z93 0.977
z94 0.995
z95 0.995
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Table 3.6: Multi-year Model: Path Coefficients

KN PR

K 0.379∗∗∗

(9.151)
KN 0.106∗∗∗

(3.693)
L 0.655∗∗∗

(11.297)
R 0.777∗∗∗

(10.114)
S −0.208

(1.458)
Z 0.222∗ −0.086∗∗

(1.661) (2.166)

t-values in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Table 3.7: Multi-year Model: Reliability Measures

AVE R Squared Cronbach’s Alpha

KN 0.867 0.652 0.923
PR 0.990 0.955 0.995

Table 3.8: Multi-year Model: Latent Variable Correlations

K KN L PR R S Z

K 1.000
KN 0.491 1.000
L 0.817 0.507 1.000

PR 0.901 0.572 0.948 1.000
R 0.687 0.798 0.691 0.770 1.000
S 0.811 0.506 0.986 0.934 0.680 1.000
Z 0.757 0.615 0.820 0.804 0.729 0.834 1.000
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Chapter 4

Productivity, IT and

Innovation

4.1 Introduction

The modern pursuit of innovation depends heavily upon information tech-

nology. Most of the new things and new ways of doing things we now

encounter, if not entirely consisting of IT, have been shaped by it in some

way. Advances in computing power and applications are not only evident in

everything from smartphones to cars, but are inextricably involved in the de-

velopment of new drugs, logistics services and mass customization processes.

Yet we do not fully understand the relationship between IT and innovation.

In its ubiquity, IT plays multiple roles: input to innovation, output of inno-

vation (as a class of innovative products), and enabler of innovation-driven

changes. Making the distinction between these three roles is critical to un-

derstanding the economic impacts of IT.

Some research has posited IT as an antecedent to innovation, arguing

firms use IT to innovate more quickly by automating, communicating and

managing data, and enabling new methods of exploration (Thomke, 1998).

Conversely, as the output of the innovation process, IT is seen as a new

form of capital, displacing labour and complementing traditional capital

(Chwelos et al., 2010). Another challenge facing researchers is determining

which industries are originating such technical advances, and which are re-

alizing the benefits (Cheng and Nault, 2007, 2011). Finally, the advent of

e-commerce, e-procurement and e-services has enabled firms to take advan-

tage of IT-enabled process innovations, such as mass customization, global
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supply chains, and vendor-managed inventories.

While IT-driven innovation has gained prominence, firms continue to

invest in established research and development (R&D) approaches to inno-

vation with the goal of improving their processes and products. As they im-

plement such innovations in their manufacturing operations, we may expect

new opportunities will arise for IT to contribute to the firm’s productivity.

Consider a firm that develops an innovative production process: once imple-

mented, it must reallocate some of its factor inputs (labour, non-IT capital,

IT capital) to accommodate the new process. At this stage, we hypothesize

that IT plays an enabling role in the implementation of the process inno-

vation. IT has been shown to improve flexibility of production within an

existing manufacturing setup (Bartel, Ichniowski, and Shaw, 2007), and to

enable new possibilities for production scaling and new product introduction

(Gao and Hitt, 2011) that could facilitate the successful implementation of

a process innovation. If this is the case, we should see that the impact of

R&D on total factor productivity (TFP) has some relationship with the pro-

ductivity of IT, and that IT and R&D together have an indirect relationship

with the other inputs.

4.2 Innovation and IT Productivity Research

4.2.1 IT Productivity Literature

Existing IT productivity research has established the role of IT as a distinct

form of capital investment. Evidence from empirical studies suggests IT

contributes to productivity by substituting for less-efficient labour and, in

some cases, capital (Dewan and Min, 1997; Mohammad, Zhang, Cheng, and

Nault, 2009; Chwelos et al., 2010). Using industry-level data over a 30-year

period, Hu and Quan (2005) addressed the question of causality: whether

IT investments lead to improved industry performance, or vice-versa. Em-

ploying the Granger causality model they found evidence that IT investment

does lead to productivity growth (measured in GDP per employee) in most

industries. Further, the authors found evidence of feedback from these pro-
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ductivity gains to subsequent increases in IT spending.

While there is a clear role for IT in automation, it is the capacity for

transforming business that has offered the greatest ongoing potential for pro-

ductivity gains. David (1990) proposed that IT is a general purpose technol-

ogy (GPT) which, like electricity or the steam engine, creates the conditions

for widespread technological change due to its flexibility and stimulation of

innovation. Empirical research in this arena has investigated the ability of

IT to enable new organizational forms and improve the quality and variety

of a firm’s products (Brynjolfsson and Hitt, 2000; Brynjolfsson et al., 2002;

Gao and Hitt, 2011). One way of measuring this transformative capacity

from a production theory perspective is to consider the augmented produc-

tive capacity of the traditional labour and capital inputs owing to IT capital.

Using this approach, Mittal and Nault (2009) found evidence of such scaling

in a study of US manufacturing industries from 1953–2000, with a greater

effect over time and in the most IT-intensive industries.

In sum, researchers have made the case that IT capital has both a direct

effect, altering the mix of factor inputs, and an indirect effect, by aug-

menting the other inputs to production by changing the way the firm does

business (Mittal and Nault, 2009). Measuring the extent of this success and

the mechanisms by which it is manifested has, however, proven difficult.

Notably, the rapid price declines and quality improvements in IT lead to

potential productivity mismeasurement across industries (Cheng and Nault,

2007; Han, Kauffman, and Nault, 2010). In this research, we propose to

further disentangle the direct and indirect effects of IT and how these re-

late to innovation and productivity. Despite a great deal of interest in both

IT business value and innovation, few researchers have focused on this in-

teraction. In the context of patent output, Kleis, Chwelos, Ramirez, and

Cockburn (2011) found no evidence of an interaction between R&D and IT

at the firm level. However, Bardhan, Krishnan, and Lin (2010) found an

interaction effect for R&D and IT that relates positively to Tobin’s q. To

the best of our knowledge, there has been no prior research on the R&D-IT

interaction relationship in the context of productivity at the industry level.
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4.2.2 Innovation and Productivity

Considerable research has attempted to model and measure the relationship

between R&D and productivity. Griliches (1988, ch.15) summarized the

general approach taken by researchers: extending the production function

approach to include research and development activities.

Q = Tf(C,L)

T = g(K,O)

K =
∑

wiRt−i

“Where Q is output, C and L are capital and labour input

respectively, T is the current level of (average) technological ac-

complishment (total factor productivity), K is a measure of ac-

cumulated and still productive (social or private) research capital

(“knowledge”), O represents other forces affecting productivity,

Rt measures the real gross investment in research in period t,

and wi’s connect the levels of past research to the current state

of knowledge.” (Griliches, 1988, p.246)

Let us consider each of Griliches’ equations as a way of organizing the

literature. The first equation concerns production and technological change:

how does productivity advance beyond increased quantities of the inputs?

The answer is through technology. In the growth accounting framework,

the factor-neutral technology constant, in essence, sets an intercept for the

firm’s ability to efficiently transform inputs into outputs. It is a residual

because it is not modeled explicitly; it is the leftover portion of productivity

that cannot be explained by changes in the quantities of the factor inputs.

Extensive research in economics has sought to better understand the

measurement and sources of changes in production technology. Researchers

have long argued that knowledge drives the technological state of firms

(Griliches, 1994; Nelson, 1982). However, there are many difficulties with

this framework, not the least of which is the measurement of innovation

inputs and outputs (spillovers, R&D, patents); the appropriability of inno-
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vations (Griliches, 1979); and the measurement of quality of output (Hulten,

1992; Siegel, 1994).

In the foregoing framework, R&D enters the production function via a

system of equations, and is not considered a factor input in the classical

sense of capital and labour (the first equation). Although some researchers

have taken the approach that R&D should be treated as a stock of knowledge

that is a factor input, beginning with Griliches (1979) and continuing to the

present (for reviews, see Mairesse and Sassenou (1991); Hall, Mairesse, and

Mohnen (2009)), other researchers have included knowledge stock as part of

the technology residual (Lichtenberg and Siegel, 1991; Siegel, 1997).

The accumulation of R&D expenditures into a stock of knowledge is,

however, common to these approaches. There are three main reasons why

it is appropriate to construct such a measure. First, stock is the more ap-

propriate concept in production because the innovation process exploits an

accumulated stock of knowledge. This knowledge stock changes over time

in response to many internal and external factors, of which R&D invest-

ments are the most directly observable. A given year’s R&D expenditure

can be compared to annual additions to capital stock, which may renew or

expand some portion of the capacity of capital to generate output, but do

not explain the overall capital capacity of the firm. There are several notable

differences between capital and R&D stocks, such as resale value, observ-

ability, rate of obsolescence, spillovers and appropriability. One difference

relevant to this discussion is that, while the relationship between capital

and production is largely deterministic, innovation is a stochastic process.

There is no certainty that a stock of R&D knowledge will produce an ex-

pected output of viable innovations. The stock produces some proportion

of innovations that are viable, but since the “effective” portions of the R&D

stock cannot be isolated, we must consider the entire R&D stock as a kind

of productive stock. Second, the knowledge stock concept facilitates the lag

structure linking R&D spending with innovation output. Intuitively, there

is some delay between the R&D investment and its effect on performance.

However, there is good reason to believe this lag varies across industry and

time. A more general way to incorporate heterogeneity in the lag is to rep-
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resent the total knowledge available to an industry using an R&D stock

variable. Finally, the knowledge stock concept is germane to industry-level

analysis due to intra-industry knowledge spillovers. For example, a firm may

create an innovation, implement it internally, and later decide to license it to

another firm in the same industry. There may thus be a lag between R&D

expenditure, implementation and spillover. A stock will more appropriately

make this R&D investment available to the eventual output of the industry

than would a flow measure of R&D. In addition, research suggests the re-

ceiving firm’s R&D expenditure is complementary to spillovers by creating

absorptive capacity (Cohen and Levinthal, 1990; Cockburn and Henderson,

1998).

In Griliches’ second equation, we suppose that T (technology) originates

from knowledge and “other factors.” A persistent feature of this litera-

ture has concerned research spillovers and how they add to the available

stock of knowledge. Knowledge and R&D spillovers, in particular, are of

interest (Scherer, 1982; Griliches and Lichtenberg, 1984; Griliches, 1992).

Although measurement of spillover effects has proven difficult, researchers

have suggested several factors that are believed to influence this process.

The importance of industry concentration and R&D intensity is a primary

factor (Acs and Audretsch, 1991, ch.1). Another important concept is that

the flow of spillovers is proportional to the flow of trade between industries

(Los and Verspagen, 2002). Using either the Input-Output matrix or by

analyzing technology flow through patent-tracing, “borrowed R&D” comes

from purchases, and accounts for more of the return-to-R&D than the indus-

try’s own R&D (Nadiri, 1993). While there is evidence of some substitution

effect of spillover R&D for own R&D, the findings generally indicate firms

need to spend on R&D in order to appropriate spillovers, as mentioned in

the previous paragraph.

Finally, in the third equation, Griliches proposes that the genesis of

knowledge is the R&D process. Many researchers have addressed the con-

struction of measures for the stock of knowledge and its rate of accre-
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tion/depreciation.20 The R&D “knowledge production function” (Griliches,

1979) has featured prominently in this literature. However, even “private”

R&D can be subject to external characteristics and influences, through

contract R&D and government-funded research. Howells (1999) provides

some examples of the “push” and “pull” factors that influence a firm’s

choice to outsource R&D: complexity of research (i.e. costs and risks); gov-

ernment policies (including government–funded R&D and defense–related

R&D) which likely vary by industry. Pisano (1990) studies the decision to

do R&D internally or contract out in the context of Transaction Cost the-

ory. With a sample of 92 biotechnology R&D projects, the probability of

contracting R&D is modeled as a function of variables such as size, rivalry

and asset specificity.

4.2.3 Summary

In this research we will extend the IT productivity research, drawing on the

innovation literature, by investigating the indirect effects of R&D and IT

on output (via non-IT capital and labour). In doing so, we will be able to

offer evidence of the presence and size of these effects and compare them to

the estimates from traditional approaches to productivity analysis. We will

estimate if these indirect effects exist, to what degree they vary over time and

across industries, and to what extent they are salient. We will distinguish

between the indirect effects of R&D and IT, and estimate the interaction of

the two, which represents the synergistic effect of R&D in concert with IT

upon the traditional factor inputs. In addition to our analysis of this aspect

of IT value, we offer new insights into the influence of innovation and how

these translate to productivity at the industry level.

4.3 Modeling the R&D–IT Productivity Link

We hypothesize that a knowledge stock of process-oriented R&D improves

the efficiency of the factor inputs by means of an indirect effect. This can

20Hall (2005) explores some of the difficulties in estimating the true rate of R&D de-
preciation.
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be expressed in the following generalized form of a production function:

Y = f(h1K,h2L, h3Z),

where output, Y, is a function of non-IT capital K, labour L, and IT capital

Z, and the terms h1, h2 and h3 represent the indirect (augmenting) effects

on the inputs. In other words, h3, for instance, can be characterized as a

scaling factor applied to Z, so that h3Z represents the effective quantity

available for production.

If we assume a standard Cobb-Douglas functional form, we have:

Y = A[h1K]β1 [h2L]β2 [h3Z]β3 , (4.1)

where A is the technological change parameter, also known as total fac-

tor productivity. Subscripts for industry and time are omitted for ease of

exposition.

We hypothesize that h3, the indirect effect on Z, is a function of the

knowledge stock of process-oriented R&D, denoted R below. However, past

research offers evidence that Z creates indirect effects on K and L. Building

on this, we model the indirect effects on K and L (h1 and h2, respectively)

as being driven by both R&D and the R&D-augmented-IT capital. This

structure allows R&D stock to enter the production function in a novel

way. Since it is not directly involved in production, modeling R&D as a

factor input can be problematic. Rather, in this model we conceive of it as

a parallel business endeavour in which the industry invests and receives a

dividend in the form of a scaling factor on the industry’s effective quantity of

the factor inputs. While some innovation may be applied directly to non-IT

capital and labour, we propose that the capabilities of IT to improve input

efficiencies also provide a mechanism by which process innovations may be

implemented in production. In other words, the efficiency improvements

from R&D on IT capital “flow through” to improve the efficiency of non-IT

capital and labour, along with the conventional indirect effect of R&D on

non-IT capital and labour.
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Figure 4.1 presents this diagrammatically, with the dashed lines repre-

senting indirect effects (labeled α, α′, α′′, to be introduced below) and solid

lines representing direct effects. The measured amounts of K,L,Z,R and Y

are depicted in square boxes, and the effective amounts of K∗, L∗ and Z∗

in rounded boxes.

Figure 4.1: Indirect Effects Model of R&D
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The structure of the scaling factors may be expressed as:

h1 = f1(R,Z(R))

h2 = f2(R,Z(R))

h3 = f3(R).
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Now, let us define these terms with specific exponential forms:

h1 = e(α1R+(α
′
1+α

′′
1R)Z)

h2 = e(α2R+(α
′
2+α

′′
2R)Z)

h3 = eα3R.

With these equations, we model the indirect effect of R&D through IT as

a multiplicative effect. Although IT and R&D each drive productivity im-

provements in labour and non-IT capital, they produce an additional effect

in combination.

We now adopt the assumption that the indirect effect of Z acts upon K

and L in the same way, i.e. for a given investment in IT capital, the effective

amounts of non-IT capital and labour are changed by the same factor. This

generalization allows us to estimate a general effect of Z (and, separately,

ZR) on both K and L. Although the magnitudes of the indirect effects may

be different, this is not essential to our research question. Let us impose the

following constraints, based on the assumption that the indirect effects of

Z(R) and Z are independent of K and L : α
′
1 = α

′
2 = α

′
and α

′′
1 = α

′′
2 = α

′′
.

Now,

h1 = e(α1R+(α
′
+α

′′
R)Z) (4.2)

h2 = e(α2R+(α
′
+α

′′
R)Z) (4.3)

h3 = eα3R. (4.4)

Substituting the terms into the Cobb-Douglas production function (equation

(4.1)), we have:

Y = A[e(α1R+α
′
Z+α

′′
ZR)K]β1 [e(α2R+α

′
Z+α

′′
ZR)L]β2 [eα3RZ]β3.
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Taking the log of both sides and collecting the terms, we have:

y = a+ β1k + β2l + β3z + (β1α1 + β2α2 + β3α3)R

+ α
′
(β1 + β2)Z + α

′′
(β1 + β2)ZR

= a+ β1k + β2l + β3z + θ1R+ θ2Z + θ3ZR, (4.5)

where θ1 = β1α1 + β2α2 + β3α3, θ2 = α
′
(β1 + β2), and θ3 = α

′′
(β1 + β2).

Lowercase letters are used for variables where the natural log has been taken.

Note the estimates of α
′

and α
′′

are recoverable, but α1, α2 and α3 are not

separately recoverable. Thus we will be able to estimate the indirect effect

of R on K,L and Z collectively, and the indirect effect of Z and ZR on K

and L, collectively.21

4.3.1 Interpreting the Coefficients

A useful property of the Cobb-Douglas production function is that the main-

effect coefficients, β1 and β2, are interpreted as the output elasticities for

each input. Thus, β1 is the expected percentage change in Y for a percentage

change in K, and β2 is the equivalent for L. However, our main interest in

this research is whether the estimates of the indirect effects of IT capital

and R&D, and their interaction, are significant and positive. By specifying

the production function with both direct and indirect effects, we are able

to separately estimate the direct contribution of IT capital to production,

along with its indirect impact on labour and non-IT capital. We expect this

to be positive in confirmation of the existing literature (Mittal and Nault,

2009). We also expect to find a positive indirect effect of R&D. Although θ1

and θ2 represent a part of these effects, the overall indirect effect of R and

Z also depends on ZR. Therefore we compute the estimate of the partial

elasticity for R, and the output elasticity of Z (which will include all direct

21We may impose α1 = α2 = α3 = α, i.e. the indirect effect of R&D is the same on
non-IT capital, IT capital and labour. Under this restriction, we could identify all the
parameters in the model, as θ1 = α(β1 + β2 + β3). However, it is reasonable to expect
that Z and R have differing indirect effects on K and L (i.e. h1 6= h2), and comparing
their magnitudes will be a useful exercise toward understanding their roles in actualizing
process innovations.
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and indirect effects of IT capital).

The partial elasticity of R is derived from the production function (equa-

tion (4.5)), and is given by:

∂lnY

∂R
= (β1α1 + β2α2 + β3α3) + α

′′
(β1 + β2)Z (4.6)

= θ1 + θ3Z.

Since R is not in log form, the partial elasticity expresses the percentage

change in Y given a unit change in R (in our estimates, the unit is billions

of dollars). Since the elasticity is dependent on the level of Z, it would be

evaluated at the mean or median value of Z.

We estimate the output elasticity of IT, given by:

∂lnY

∂lnZ
= β3 + θ2Z + θ3ZR,

which expresses the expected percentage change in Y given a percentage

change in Z, including both direct and indirect effects. This may be com-

pared to the output elasticity of Z in the Cobb-Douglas specification to see

the change induced by adding indirect effects to the estimation.

Finally, we test three additional hypotheses regarding the statistical sig-

nificance of the indirect coefficients. First, we want to know if the indirect

effect of Z is the same as ZR. If this is true, then the overall indirect effect

of Z(R) upon both K and L is the same. To determine this, we test for

equality of the indirect effects of Z on K and L: under the null, α
′

= α
′′

= 0

(or θ2 = θ3). If either coefficient is not equal to 0, then we also reject the

hypothesis that Z has no indirect effects on K and L. The third hypoth-

esis tests if all the indirect effects (arising from both R and Z(R)) are the

same upon all inputs K,L and Z. To determine this, we specify the test as

follows: under the null, θ1 = θ2 = θ3.
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4.4 Data

Using data from U.S. government agencies, we construct two datasets: 1987–

1998 and 1998–2005, based on the Standard Industrial Classification (SIC)

and North American Industry Classification System (NAICS) standards, re-

spectively. Due to the change from SIC to NAICS in 1998, the data are not

directly comparable across eras. Both datasets are constructed in a similar

manner. We obtain multifactor productivity (MFP) data from the Bureau

of Labor Statistics (BLS).22 Research and development expenditures are

obtained from the National Science Foundation (NSF) survey of industrial

research and development (National Science Foundation, 2009), which re-

ports domestic private-sector R&D expenditures (from both company and

federal government sources) at the industry level. All data is publicly avail-

able on the respective agencies’ websites. Summary statistics are reported

in Table 4.1.

4.4.1 Dataset I: 1987–1998

Dataset I is a balanced panel of 276 observations (23 manufacturing in-

dustries) for the years 1987–1998. The following paragraphs explain the

construction of this dataset.

MFP Data The MFP data is the same as that used in Cheng and Nault

(2007, 2011), which was originally collected by the BLS. The BLS tracks

gross output, capital, labour hours, and intermediate inputs (energy, ma-

terials and services) for all domestic industries. For the period 1987–1999,

there are 140 industries in the data at the 3-digit SIC level. The variables

consist of output and intermediate purchases in millions of nominal dollars.

Capital equipment is in millions of nominal dollars, while labour is measured

in millions of hours.

In order to prepare the data for analysis we perform several manipula-

tions. First, we drop any observation where any data element is missing.

22In Dataset II we obtain data on value added from the Bureau of Economic Analysis
(BEA), but the remaining components of the MFP data are obtained from the BLS.
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Second, our research is primarily concerned with manufacturing industries,

so we drop service and government industries. Third, to create separate

amounts of IT capital stock and non-IT capital stock, we identify five asset

types that comprise IT and related equipment(computers & related equip-

ment, office equipment, communication, instruments, photocopy & related

equipment) in the capital stock data, which are expressed in constant 1987

dollars. The remaining 25 categories become non-IT capital stock.23 Fourth,

value added is calculated as gross output less intermediate inputs, each of

which is deflated to constant 1987 dollars (using the output and intermediate

input deflators, respectively).

R&D Data The NSF Survey of Industrial Research and Development has

been an ongoing effort since the late 1950s to provide data about corporate

R&D for policymakers, researchers and industry. The survey is based on

a sample that seeks to include all for-profit companies that perform R&D,

and automatically includes all companies with 1000 or more employees (the

1987 sample size was 154,000 companies). The NSF updates the sample

annually to ensure that firms previously excluded on the basis of not having

R&D activity are included if they begin to undertake R&D. The survey is

administered by the Bureau of the Census and firms are required by law

to respond. Individual surveys are sent to establishments (i.e. prominent

research labs or manufacturing installations) but are aggregated by company,

and the company is categorized into the SIC designation based on the type

of business which had the highest dollar share of payroll. Additional details

of the NSF’s sampling technique are available on its website.24

For the purposes of measuring company and federally-funded R&D, the

data covers the period 1967–1998. It is organized by SIC; however, individ-

ual SIC codes at the 2-digit and 3-digit level are sometimes combined into

aggregated categories. The NSF table H-3 reports company-funded R&D

23The BLS classifies productive capital into five classes: structures, equipment, land,
rental residential capital and inventories. In our definition of capital and non-IT capital,
the last three classes are excluded.

24http://www.nsf.gov/statistics/srvyindustry/

83



spending at U.S. locations.25 The amount of R&D is reported in millions

of nominal dollars. We use the GDP deflator to convert these amounts to

constant 1987 dollars.26

Since the R&D data are aggregated at different SIC levels, some adjust-

ments are required in order to merge with the MFP and other data from

BLS. Of the 31 NSF industry groups, 4 are at the 2-digit level, 5 are combina-

tions of 2-digit industries, 6 are at the 3-digit level, and 10 are combinations

of 3-digit industries. To preserve the largest number of observations, we use

this scheme as the basis for aggregating MFP data. Wherever possible, we

match 3-digit industries from both sources. Where one source aggregates

several 3-digit industries, or reports only the 2-digit industry, we replicate

this aggregation in the other source. Finally, we drop any industries missing

an observation in either the first or last year. When combined with MFP

data, this yields an integrated data set of 276 observations with 23 indus-

tries over the years 1987–1998.27 Some industries do not have R&D data for

certain years due to NSF confidentiality policies. One industry is missing

an observation for 1989, and 5 industries are missing observations in 1991.

We use linear interpolation to generate these observations. Table 4.2 lists

the industry groups by which the dataset is organized.

The NSF data provides the annual industry expenditure on R&D. How-

ever, as previously discussed, the concept of a stock of R&D-related knowl-

edge is more useful when modeling the innovation process and its relation-

ship with productivity. Most researchers have used the perpetual inventory

method with an assumed depreciation rate (δ) of 15% to create a measure

25Although NSF collects and reports separate amounts for total (including federal funds)
and contract R&D performed outside the firm, many of these observations are obscured
in the public reports to avoid identifying individual firm responses. This would reduce
our potential sample size to only 132 complete observations.

26In an attempt to improve the measurement of R&D investment over time, the BEA
has produced an R&D input price index for the years 1987–1999. However, the correlation
to the GDP index is 0.9995. Given this close correlation and the unavailability of the R&D
index for our second dataset, we chose to use the GDP deflator.

27It is also important that R&D data is available from 1982 for all 23 industries, which
we later use construct our measure of R&D stock.
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of R&D stock. The initial amount of R&D stock is calculated as:

Stockt0 =
Expendituret0

(1− δ)
,

where Expendituret0 is the expenditure in a base year. For each subsequent

year, the stock is computed:

Stockt = (1− δ)Stockt−1 + Expendituret.

Ideally, one should begin calculating the stock several years prior to the first

year for which the measure is used in analysis in order to smooth out any

unusual movements in the annual R&D expense. For Dataset I, we begin

with the R&D data for 1982 and apply this formula to compute a stock for

1983–1998.

4.4.2 Dataset II: 1998–2005

Dataset II consists of a balanced panel of 200 observations (25 industries).

It is a continuation of the first dataset, but differs in two material ways.

The industries, although comparable in number, are aggregated into larger

groups. It also includes non-manufacturing industries, such as Information

and Finance, Insurance and Real Estate.

MFP Data Other than being organized by NAICS, the MFP data and

their construction are comparable to those in the first dataset. Labour hours,

IT and non-IT capital stock are obtained from the BLS. To calculate value

added, we subtract intermediate inputs from gross output by 3-digit NAICS

industry. These amounts, expressed in constant 2005 dollars, are obtained

from the BEA.

R&D Data As with Dataset I, we obtain R&D data from the NSF’s

annual R&D in Industry reports that present the results of their Survey of

Industrial Research and Development. Beginning with 1999, the industries

are grouped by NAICS. In order to facilitate the transition to NAICS, the
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NSF also provides bridge tables for 1997 and 1998. Thus, NAICS-based

data are available from 1997 to 2008. We use 1997 as the base year for our

R&D stock calculation. We omit 2006–2008 due to changes made by the

NSF to the industry aggregations in 2006 and again in 2008, which result

in the data not being comparable to earlier years.

As with the earlier SIC-based reports, the NSF does not report R&D

on a consistent level of NAICS industry aggregation. Some industries are

aggregated to the 2-digit level, while others are broken down to the 4-digit

level. To facilitate matching to the MFP data, we choose the 3-digit level

where available, using the 2-digit level where necessary. Table 4.3 lists the

industry groups by which the dataset is organized.

We obtain the amount of company- and non-federally-funded R&D from

NSF table A-7 for 1998, NSF table 12 for 1999–2003, and NSF table 1

for 2004–2005. These tables report R&D performed within the company’s

U.S. facilities, funded (predominantly) by the company or outside organi-

zations excluding the federal government. Because company-funded R&D

is unavailable for two industries (NAICS 312 and 324) in 1999, the missing

observations are generated by linear interpolation. Two major industries,

wholesale trade and retail trade, are unavailable prior to 2002 so we exclude

these industries. In all cases, the amount of R&D is reported in millions of

nominal dollars. We use the BEA GDP deflator (as published August 20,

2009) to convert these amounts to constant 2005 dollars.

Lastly, we create the R&D stock variable as before, with the exception

of the fixed rate of depreciation. The standard 15% rate is used for most

industries but for three industries in particular, the BEA recommends dif-

ferent rates on the basis of a review of the literature (Mead, 2007). These

depreciation rates are given in Table 4.3.

4.5 Analysis

We present our analysis in three parts. We first describe the estimation

strategies and econometric adjustments appropriate to industry-level panel

data. Next, we estimate several variations of our research model using three
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panel regression approaches. Finally, we check for the robustness of our

main results by exploring subsamples and decompositions of our data, and

by testing an alternative model.

Except where noted, the dependent variable in all estimations is the

natural log of value added. The variables are first rescaled to billions of

dollars to improve the readability of the estimates. Where variables are

shown in lowercase, the natural log has been taken. In all estimations, we

assume a multiplicative error structure on the production function (in its

log form).

4.5.1 Econometric Adjustments

Ordinary least-squares (OLS) regression techniques are sensitive to a num-

ber of violations of underlying assumptions with respect to error structure,

which can bias the estimation results. In the present study we address the

violation of the assumption of independent, identically distributed (IID) er-

rors. Since our data includes repeated observations of the same industries

through time, we expect time-invariant unobservables exist and require cor-

responding adjustment in our estimations. Two common approaches for

panel regressions are fixed effects and random effects. Fixed effects control

for a portion of the error that does not vary within each industry over time

by separating the industry-specific portion of the error term from the total

error. The random effects panel estimator uses a matrix-weighted average

of the fixed-effects and between-effects panel model estimates.

While the IT productivity literature has featured fixed effects in a num-

ber of studies, the approach is not without its drawbacks. By removing

time-invariant industry unobservables, a potentially large share of the over-

all variation within panels is eliminated, leaving relatively little for the model

variables to explain. This can also reduce the impact of variables that vary

only slightly through time, which is often the case with R&D spending. Re-

cent studies using substantially similar data (Cheng and Nault, 2011; Han

et al., 2010) have also found problems with fixed effects. This is the case in

our attempts to estimate the model using fixed effects, which produce im-
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plausible coefficient estimates and low R2. A less restrictive approach is to

use coarser fixed effects at the sector level. We use a 1.5-digit SIC scheme of

four manufacturing sector-level controls, but find it fails to produce reason-

able estimates with our Dataset I. Similarly, using MFP data similar to our

Dataset II, Han et al. (2010) found that using sector-level fixed effects (clas-

sifying their 60 industries into 13 sectors) inflated the standard errors of the

estimate for IT capital compared to other estimation strategies. Cheng and

Nault (2011) had more success with sectoral dummies, albeit with a much

larger sample of industries. Using two different sectoral dummies schemes

they found similar results to their baseline regression (using generalized least

squares (GLS)).

We explore a number of alternatives to the fixed effects approach to con-

trolling for industry-level unobservables: random effects, panel-corrected

OLS and GLS estimators. The random effects estimator assumes the indus-

try-specific component of the error term arises from a random process that

is not correlated with the regressors. An advantage of this approach over

the fixed effects approach is that it can accommodate time-invariant unob-

servables, as well as cross-sectional unobservables. One drawback is that

it is not possible to control for heteroskedastic error structures using this

approach (a concern which we discuss in further detail below).

While not directly intended to address unobservables, the GLS estimator

can be used with several techniques to account for problems that may arise

from cross-sectional time series data, including unobservables. The adjust-

ment for heteroskedastic panels addresses the panels having different error

variance. Autocorrelation can also be a problem, which is addressed by es-

timating a portion of the error term arising from serial correlation within

panels. Allowing estimates of the autocorrelation parameter to vary across

panels incorporates some of the industry-level unobservable factors insofar

as they contribute to autocorrelation.

Dataset I tests Heteroskedasticity and autocorrelation are common in

panel data, and prior literature in this area gives us reason to suspect there

may be autocorrelation patterns in the error term. We use the likelihood
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ratio (LR) test to understand if heteroskedasticity is present in our data.

The LR test compares the log-likelihood of the model under the assumptions

of heteroskedastic and homoskedastic errors. The null hypothesis is that a

nonhetereoskedastic model is nested in a heteroskedastic model. The test

statistic (χ2=444.76) is highly significant, so we reject the null hypothesis.

An alternative test is the modified Wald test for groupwise heteroskedasticity

in time-series feasible GLS model (implemented in the Stata 11 software

package as xttest3). Under the null hypothesis, σ2i = σ2 for all i. The test

statistic (χ2 =41873.53), is highly significant at any reasonable level. Thus

we conclude there is strong evidence for heteroskedasticity in the sample

and we must correct for it.

We also expect autocorrelation to be present, since some of our measures

rely on smoothing procedures (price deflators and R&D knowledge stock)

and because industry reactions to economic shocks may correlate through

time. To test for first-order autocorrelation of errors (AR(1)), we use the

Wooldridge test. Since the test is a post-estimation procedure we run it

following our estimation of both the Cobb-Douglas and full model specifi-

cations using GLS. Under the null hypothesis, there is no first-order auto-

correlation. The F-statistics are F(1,22)=40.951 and 57.612, respectively,

with p-values well below 0.001. Thus we may reject the null hypothesis of

no autocorrelation.

We also test for whether the amount of autocorrelation is widely dis-

tributed across our industries. If it is, the panel-specific AR(1) (denoted

PSAR1) adjustment can allow for this by estimating a different AR(1) ρ

coefficient each group (industry). To determine if this is appropriate we per-

form a Likelihood Ratio test of PSAR1 vs. AR1. This tests whether, under

H0, ρ1 = . . . = ρ25; under H1, the correlations are not equal. The differ-

ence in likelihoods (PSAR1-AR1) for the indirect effects model in equation

(4.5) is 144.863. The critical value of χ2 with (i-1=22) d.f. = 40.289 at 1%

significance. As an additional confirmation, we test the Cobb-Douglas spec-

ification and find the difference in likelihoods is 138.052. Therefore we reject

the null hypothesis that the ρ coefficients are equal to one another, and con-

clude that there is evidence to support using a panel-specific autocorrelation
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parameter.

Dataset II tests The foregoing tests are repeated on Dataset II. The LR

test statistic (χ2=364.54) is highly significant, so we reject the null hypoth-

esis. The modified Wald test statistic (χ2 =39658.04) is highly significant

at any reasonable level. Thus we conclude that, as with Dataset I, there

is strong evidence for heteroskedasticity in Dataset II and we must correct

for it. The Wooldridge test for first-order autocorrelation of errors returns

F-statistics of F(1,24)=28.131 and 27.428, respectively, with p-values well

below 0.001. Thus we may reject the null hypothesis of no autocorrelation.

The difference in likelihoods for the LR test of PSAR1 vs. AR1 with the

indirect effects model is 59.026. For verification, the same calculation for the

Cobb-Douglas specification is 43.870. The critical value of χ2 with (i-1=24)

d.f. = 42.98 at 1% significance. Thus, as with Dataset I, we reject the null

and conclude PSAR1 is recommended.

In summary, our tests conclude that both Datasets I and II warrant

econometric adjustments for groupwise heteroskedasticity and panel-specific

autocorrelation.

4.5.2 Estimation Results

Several random effects panel estimators can correct for both heteroskedastic-

ity and autocorrelation. We estimate the model using three estimators: the

generalized least-squares (GLS) regression with heteroskedastic panels and

panel-specific autocorrelation (hereafter labeled He+PSAR1), the panel-

corrected standard errors (PCSE) regression with AR1 (labeled He+PCSE),

and a random-effects estimation with first-order autoregressive errors (la-

beled AR1). In the He+PSAR1 and He+PCSE estimates we employ the

adjustment for heteroskedastic panels. We control for cross-sectional tem-

poral unobservables by adding a dummy variable for each year to all re-

gressions (for brevity we omit these coefficient estimates from the results

tables).
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He+PSAR1 In light of the foregoing tests of panel error structure, we

begin with the GLS estimator with adjustments for heteroskedastic error

and panel-specific autocorrelation. The results are presented in Tables 4.4

and 4.5. In these estimations we obtain a reasonable result from the Cobb-

Douglas specification in column (1): all three inputs are positive and signifi-

cant, with magnitudes relatively close to the findings of other researchers on

similar samples. In column (2) we add the indirect effect of IT by estimat-

ing the θ2 parameter from equation (4.5), representing the indirect effect of

Z. The negative and significant estimate is unexpected, given the positive

finding of Mittal and Nault (2009) with this specification. However, we note

that our estimate of Z with this specification is not significant in any of our

other estimations (with both Dataset I and II). We also find a nonsignifi-

cant estimate of Z when using the more general He+AR1 (GLS estimation

with adjustments for heteroskedasticity and first-order autoregressive error)

adjustment with this model, suggesting the estimate may be an artifact of

the PSAR1 controls. In column (3) we add the indirect effect of R&D by

estimating the θ1 parameter. This is a simplified variation of our full model,

without the interaction of R&D and IT indirect effects. The estimates are

similar to the previous results for the k, l, z and Z parameters, but the coef-

ficient estimate for R is not significant. Finally, we estimate our full research

model in column (4). The estimated coefficients are positive and significant

for k, l, and z, while the indirect effect of Z is negative and significant. The

indirect effect of R is not significant, but the interaction term θ3 is positive

and significant. This suggests that the while the indirect effect of IT on the

other inputs may not be positive, there is a positive indirect effect when

combined with R&D. Because of the interaction (and, in the case of Z, the

overall direct effect), the net effects need to be evaluated according to the

elasticities in equations (4.6) and (4.7), while the indirect effects may be

evaluated in the context of the scaling factors in equations (4.2) and (4.3).

With Dataset II (table 4.5), the Cobb-Douglas parameter estimates are

qualitatively similar to those in Dataset I. The θ2 parameter, however, is

not significant in columns (2) and (3), while the θ1 parameter is negative

and significant in column (3). In the full model in column (4), all coefficient
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estimates are significant. The estimates for Z and R are negative, while the

interaction term ZR is positive.

He+PCSE An alternative estimation approach that adjusts for autocor-

relation and heteroskedasticity is panel-corrected standard errors estimation.

The PCSE estimator uses OLS regression but adjusts the estimated stan-

dard errors for correlation within panels. It is theoretically more efficient

than fixed-effect OLS estimators under heteroskedasticity and autocorrela-

tion while being less susceptible to underestimating the variability of esti-

mates in finite samples than GLS methods (Beck and Katz, 1995). We run

the estimation using the adjustments for heteroskedastic panels and AR(1)

autocorrelation structure.28

The results are presented in Table 4.6 and Table 4.7 for Datasets I and

II, respectively. In Table 4.6, the first column shows the Cobb-Douglas

results, where we note that the estimate of k is not significant while the

significant estimate for z seems unusually high at 0.38. The addition of

the Z and R variables in columns (2) and (3) have little impact on the

factor input coefficient estimates, while the indirect coefficient for Z remains

non-significant. However, in column (3) the estimate for R is marginally

significant at the 10% level. For the full model in column (4), all variables,

with the exception of l, are significant. In Dataset II, the direct coefficient

estimates k, l, and z are positive and significant in all model variations.

However, the only significant indirect coefficient estimate is that for R in

the full model (column (4)). Interpretation of the overall effect of Z depends

upon the computed value of the elasticity, to be discussed below.

AR1 Finally, we report our estimations using the random effects AR1

approach on Dataset I. In Table 4.8, column (1) reports the standard Cobb-

Douglas production function as a base model to check for reasonableness.

For all model variations in columns (1) through (4), the sign, significance and

magnitude of the direct and indirect effect estimates are very similar to those

28Although a PSAR1 option exists, the panel-specific error correction will include con-
temporaneous correlation at the panel level.
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found using the He+PCSE estimator, with the exception of the estimate for

k which is not significant. In Dataset II, Table 4.9 shows all model variations

have k and l have positive and significant estimates (again similar to the

He+PCSE estimates) but z is not significant. None of the indirect effects

have significant coefficient estimates, except for the interaction term in the

full model in column (4). In sum, the AR1 estimator produces similar

estimates with somewhat larger standard errors, perhaps due to the coarser

treatment of autocorrelation error structures compared with He+PSAR1 or

the lack of adjustment for heteroskedasticity.

Elasticities

The output elasticities of labour, non-IT capital and IT capital are relatively

straightforward to calculate and interpret in our model. However, since we

introduce R&D through an indirect effect in our model, we calculate a partial

elasticity that has a slightly different interpretation. We evaluate three

aspects of the direct and indirect effects in our model. First, we evaluate the

output elasticity of Z and compare this with the earlier estimates. Second,

we compute the Z and Z(R) components of the scaling factors (α
′

and α
′′
),

to the extent made possible by our model. Third, we compute the partial

elasticity of R to estimate the influence of the indirect effect of R&D on the

factor inputs.

In Dataset I, for the full model (Table 4.4, column (4)), the estimated

output elasticity ηZ is 0.169 when evaluated at the mean (.168 at the me-

dian), with a standard error of 0.035. This does not suggest an improvement

over the estimated direct effect of 0.322. Rather, we might infer that once

the indirect effects of R&D and IT capital are included in the model, the true

elasticity of IT capital is lower than the traditional Cobb-Douglas elasticity.

This follows from the estimates of the scaling factor components α
′

(-.0573)

and α
′′

(0.00138); the indirect effect of Z is negative, while for ZR it is pos-

itive. Thus it would appear that IT capital has a small, negative indirect

effect on K and L, which is not entirely mitigated by the interaction of IT

with R&D. However, R&D appears to have the expected positive marginal

93



effect on output through its collective indirect effects on the factor inputs

(α). The partial elasticity estimate for R is 0.101 with SE of 0.044 (t=2.29),

although the model specification does not allow us to decompose this effect

into different amounts for K, L, and Z. In our estimations using PCSE and

AR1, the elasticities follow the same pattern of sign and significance.

In Dataset II, for the full model (Table 4.5, column (4)), the estimated

output elasticity ηZ is .229 when evaluated at the mean (.261 at the median),

with a standard error of 0.036. This exceeds the estimated Cobb-Douglas

output elasticity of 0.172, indicating that the true impact of IT capital

is larger than first estimated, once the indirect effects are included in the

model. The estimate of α
′

is -0.00365, and the estimate of α
′′

is 0.0000279.

Thus, the indirect effect of Z is negative, but the interaction ZR (along

with the larger direct effect of Z) results in a larger net output elasticity.

This result is again confirmed by the PCSE and AR1 estimates. In contrast,

the partial elasticity estimate for R is -0.071, with standard error of 0.031

(t=-2.25). In the PCSE and AR1 estimations, the partial elasticity of R is

not significant. Thus, it seems that R&D on its own has a negative effect (if

any) on the factor inputs collectively, although we cannot isolate the scaling

effect on each input.

Hypothesis Tests We test the hypotheses as discussed in section 3.3. We

use the He+PSAR1 results for both datasets. For the first test, we compare

the indirect effect of Z and Z(R). Under the null, α
′

= α
′′

= 0 (or θ2 = θ3).

For Dataset I, we reject the null (χ2 = 9.52, p < 0.01). For Dataset II, we

reject the null (χ2 = 16.21, p < 0.001). Thus we reject the null hypothesis

that the indirect effect of Z and Z(R) are indistinguishable. We also reject

the hypothesis that Z has no indirect effect (alone or in conjunction with

R&D) on K and L.

Next, we test the hypothesis that all the indirect effects (arising from

both R and Z(R)) are the same upon all inputs K, L and Z (θ1 = θ2 = θ3).

For Dataset I, we reject the null (χ2 = 12.0, p < 0.01). For Dataset II, we

reject the null (χ2 = 24.01, p < 0.001). Thus we conclude that the indirect

effects of R, Z, and ZR are different from one another.

94



4.5.3 Robustness Checks on Sample Partitions

We now check the robustness of our results by performing supplementary

analyses. First, we analyze a subset of Dataset II (restricted to the manufac-

turing sector) and compare it with Dataset I, in which only manufacturing

industries are included. Summary statistics for this subsample are listed

in Table 4.1, and Table 4.3 shows the sector membership of each indus-

try. Second, we separate our sample into IT-intensive and non-IT-intensive

industries to see if the indirect effects differ between the two groups.

Table 4.10 reports the estimation results when the Dataset II sample is

restricted to the 16 manufacturing industries. Using the He+PSAR1 estima-

tor, the Cobb-Douglas model estimate of z in column (1) is not significant,

as with the full model estimation in column (4). In the full model we note

that k is no longer significant, and none of the indirect effect estimates are

significant. As a result the elasticities are also not significant: the output

elasticity of Z evaluated at the mean is 0.144 (at median, 0.187), but is not

significant at the 10% level (standard error of 0.192). The partial elasticity

of R at the mean is -0.0730 and is not significant at any meaningful level.

We thus cannot conclude the earlier results are robust to the manufacturing

sector in Dataset II. However, the estimates are highly sensitive to changes

in the model, suggesting the estimation approach is hindered by the smaller

number of industries representing the same (manufacturing) sector of the

economy.

We next partition the sample by IT intensity. We compute a measure

of mean IT intensity (Z/K) for each industry over the sample years in each

dataset and use a scree plot to identify the break point between the inten-

sive and non-IT-intensive industries. In both datasets, nine industries are

considered IT-intensive (indicated in Tables 4.2 and 4.3 with the † symbol).

We present the analyses of our full model on each dataset in tables 4.11

and 4.12. In columns (1) and (2) we estimate the model using the IT- and

non-IT-intensive subsamples, respectively, using He+AR1. We repeat this

in columns (3) and (4) using He+PSAR1. We include both AR1 and PSAR1

estimation approaches because the additional parameters estimated in the
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latter can be problematic with smaller sample sizes.

For the IT-intensive group of industries, some of the estimates are out of

line with expectations and may be artifacts of the smaller sample size (108

and 72 observations in Dataset I and II, respectively). In Dataset I, (Ta-

ble 4.2, columns (1)), the estimate for k is not significant under He+AR1,

while under He+PSAR1 (column (3)), the k estimate is negative and sig-

nificant. Similarly, in Dataset II, the estimate for k is not significant or

negative and significant for the IT-intensive group (Table 4.2, columns (1)

and (3), respectively).

The estimates for the non-IT-intensive industries display some evidence

of the estimation problems described above, and we proceed cautiously given

the only slightly larger sample size. In Dataset I, both AR1 and PSAR1 ap-

proaches (Table 4.2, columns (3) and (4)) result in a non-significant estimate

of one of the inputs (k and z, respectively). The ZR estimate is positive

in both cases, but significantly smaller than in the full sample. In Dataset

II (Table 4.3, columns (3) and (4)), the ZR estimate is positive but signifi-

cant only under He+AR1 estimation, and only at the 10% level. Given the

unstable and sometimes nonsensical results, in addition to the potential for

estimation problems with the smaller sample sizes in these analyses, we find

it difficult to make inferences based on the IT-intensity sample splits.

Finally, in columns (5) and (6) we estimate the full sample using a

dummy variable (“intensive1”) to indicate the industries’ membership in

either group. In Dataset I (Table 4.2), the estimations under both He+AR1

and He+PSAR1 report k as not significant, while the coefficient for z is much

larger than Cobb-Douglas, and only under AR1 are the indirect effects sig-

nificant for Z and ZR (negative and positive, respectively). In Dataset II

(Table 4.3), both He+AR1 and He+PSAR1 estimations return significant

estimates for the direct effects and Z, but not R and ZR. In both datasets,

the dummy variable estimate is negative and significant, though the inter-

pretation of this result is not meaningful beyond its qualitative implication

(that the intercept for the IT-intensive industries is lower than that for other

industries).
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Variable Coefficients Model

An alternative approach to the indirect effects model presented in equa-

tion (4.1) is to define the exponents of the Cobb-Douglas form such that

R&D forms a component of the exponent rather than a scaling factor on

the quantity of the input. This model has the advantage of being more

straightforward to interpret, but does not feature the indirect effect of Z on

the other inputs nor the interaction Z(R) of the indirect effects model. We

define the model as follows:

Y = AKαLβZγ ,

where

α = ak + bkR

β = al + blR

γ = az + bzR.

All variables share the same definitions as the foregoing indirect effects

model. Taking the log of both sides yields:

y = a+ akk + bkkR+ all + bllR+ azz + bzzR. (4.7)

We present our estimates of this model in Tables 4.13 and 4.14. For

Dataset I, using He+AR1 estimation in column (3), we find positive and sig-

nificant coefficients for the direct effects, but none of the interaction terms

are significant. Using the panel-specific estimator (He+PSAR1), k is not

significant, l is very large, and only the lR interaction is significant (nega-

tive). The output elasticity of z is 0.205 at the mean (0.185 at the median)

using He+AR1, with a standard error of 0.057. Using PSAR1, the elasticity

of z is 0.256 at the mean (0.255 at the median), with a standard error of

0.043. These compare roughly to the Cobb-Douglas elasticity of 0.212.

In Dataset II, He+PSAR1 estimation (column (4)) returns positive and

significant coefficient estimates for the direct effects. Non-IT capital and

labour are similar in magnitude to their Cobb-Douglas counterparts, while
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IT capital is somewhat larger. The interaction of kR is negative and signifi-

cant, while the zR term is positive and significant. The output elasticity of

z is 0.229 at the mean (0.187 at the median) using He+AR1, with a stan-

dard error of 0.0532. Using PSAR1, the elasticity of z is 0.343 at the mean

(0.263 at the median), with a standard error of 0.0391. Compared to the

Cobb-Douglas elasticity of 0.234, the variable coefficient model produces a

similar or noticeably larger elasticity, depending on the choice of AR1 or

PSAR1.

Overall, it is difficult to draw conclusions from the variable coefficients

model results. For Dataset II, the results confirm and extend the Cobb-

Douglas form while lending some support to the positive impact of R&D

on IT capital, at the apparent expense of the effective quantity of non-IT

capital. On the other hand, the results from Dataset I seem unreasonable

using He+PSAR1 estimation, while the He+AR1 estimator gives results

qualitatively similar to the Cobb-Douglas specification, finding no indirect

effect of R&D.

4.6 Discussion and Conclusion

In this research, we propose a model of the indirect effects of IT and R&D on

production. The results of our analyses shed some light on the relationship

between innovation and IT, and how they combine to influence production

efficiencies at the industry level.

In the first dataset, covering the years 1987–1998, the elasticity of IT

capital in the indirect effects model is lower than that of the Cobb-Douglas

model. Decomposing this net effect, we find that IT capital has a slightly

deleterious indirect effect on non-IT capital and labour that outweighs the

positive indirect effect of the interaction of R&D and IT. Nevertheless, the

estimated net marginal contribution of IT capital to productivity remains

positive. We find the net effect of R&D knowledge stock is positive, indicat-

ing R&D investments enable the factor inputs to perform more efficiently.

Furthermore, part of this net effect arises from the interaction of R&D with

IT.
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In the second dataset (1998–2005), the net marginal contribution of IT

capital is larger in the full model than in the Cobb-Douglas model, suggest-

ing that the production efficiencies are enhanced by the indirect effects of

IT. More specifically, since the indirect effect of IT alone is negative, it is

the interaction indirect effect of IT with R&D that creates the overall in-

crease in net effect. However, for R&D, the estimated net effect is negative

or nonsignificant. Thus it appears that, for our second sample, IT drives

productivity enhancements in the presence of R&D, but R&D on its own

does not. We are unable to determine if this is due to the different nature of

the sample (inclusion of non-manufacturing industries, grouping by NAICS)

or other factors, such as a shift in the way that industries use IT and R&D

to improve production efficiency. There is reason to believe that widespread

improvements in productivity in the late 1990s and early 2000s arose from

IT and complementary organizational investments and practices that helped

firms and industries capitalize on earlier IT capital investments (Brynjolf-

sson and Hitt, 2003; Jorgenson, Ho, and Stiroh, 2008). Thus, part of this

effect may owe to process innovation efficiencies captured by the indirect

effects in our model.

These results contribute to our understanding of how and when indus-

tries have increased the efficiency of inputs through investment in IT and

R&D. Although neither IT capital nor R&D are individually found to aug-

ment the effective quantity of non-IT capital and labour, the scaling factor

of IT capital, in combination with R&D, is positive. This supports our

hypothesis that process innovations are enabled by IT investments. Our

analysis of the first sample reinforces earlier research findings regarding the

returns to R&D. The results from our second sample, however, raise the

question of whether IT now dominates R&D in the role of augmenting the

efficiency of factor inputs.

4.6.1 Limitations

Several limitations of our data should be noted. First, the level of aggre-

gation of industries is not at a consistent level, due to the limitations of
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the NSF R&D data. Ideally we would prefer to match the MFP data at

the 3-digit SIC or 4-digit NAICS code with R&D data at the same level,

but this is not possible. We presume that having observations that rep-

resent a more homogeneous grouping of firms would produce results with

more robust findings. Second, the lack of a long history of NAICS-based

R&D data limits the generation of the R&D stock variable in Dataset II

to a shorter smoothing period. Third, we are unable to separate the por-

tion of the factor inputs that are dedicated to R&D, so these amounts are

double-counted. Fourth, our measure of R&D does not distinguish between

process- and product-related innovation. Although our hypotheses focus on

production efficiencies arising from process innovation, product innovation

commands a significant share of R&D spending in many industries (Cohen

and Klepper, 1996). Thus our use of R&D amounts is a rough proxy for the

resources dedicated to innovations which aim to affect efficiency, while an

unknown proportion is devoted to product improvement. We also note that

a number of industries were eliminated from our analyses in both datasets

due to the NSF’s intentional withholding of R&D survey data. While it is

possible that this may bias our results, it occurs only where a very small

number of firms perform R&D within an industry. As such, these industries

may be unusual in structure and therefore unsuitable for inclusion in our

sample.

In addition to the data limitations, our conclusions regarding the differ-

ent nature of indirect effects between the samples must be taken cautiously.

While it is tempting to conclude that a change has taken place in the way

industries implement process innovations, the comparison of the two sets

of results is hindered by differences in the makeup of the samples. The

observations in the second sample represent very different industries. As

can be noted from the summary statistics in Table 4.1, the industries are

much larger due to the higher level of NAICS aggregation. Further, the

inclusion of non-manufacturing industries, such as finance and information,

introduces different characteristics with respect to measurement of outputs

and their methods of production compared to manufacturing industries. In

our supplemental analysis we restrict the second dataset to manufacturing
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industries, but differences in the aggregation of industries and the small

number of observations prevent a straightforward comparison.

4.6.2 Future Research

Extensions to this research could explore several dimensions of the R&D

knowledge stock, which can be split into internal, contract research, and

government-funded research. In addition, the NSF R&D survey has ex-

panded to include additional data on the breakdown of spending on different

R&D activities. This may make it possible to remove the labour, IT capital

and non-IT capital components of R&D from the factor inputs, resulting in

a more accurate estimate of our model.

Another area for further exploration is the effect of R&D spillovers on

innovation and the indirect effect of IT. The scaling effect of R&D and

IT may not be isolated within firms but extend across an industry and

between industries. Economists have found empirical support for R&D

spillovers (Griliches and Lichtenberg, 1984; Griliches, 1992), and more re-

cently, spillover phenomena have also captured the attention of Information

Systems researchers (Stiroh, 2002; Hitt and Tambe, 2006). Such industry-

level effects are worth investigating given the nature of IT, which lends itself

to rapid communication, replication and discovery.
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Table 4.1: Summary Statistics

N Mean Std. Dev. Min Max

Dataset I: 1987–1998
(millions of 1987 dollars)

Value added 276 44,944.83 48,406.65 1,674.66 505,614.00
Non-IT capital 276 74,960.50 57,521.65 2,897.80 223,860.90
Labour (millions of hours) 276 1,509.49 1,048.20 119.80 3,972.50
IT capital 276 6,073.78 5,932.29 258.50 39,195.20
R&D stock 276 14,648.24 14,443.52 915.41 60,509.25
R&D expense 276 2,526.91 2,656.55 51.90 11,330.51

Dataset II: 1998–2005
(millions of 2005 dollars)

Value added 200 342,022.70 524,093.70 30,097.00 2,606,450.00
Non-IT capital 200 473,052.90 605,868.20 20,340.00 2,584,289.00
Labour (hours) 200 7,262.45 11,839.93 259.30 60,110.00
IT capital 200 56,754.75 82,130.94 832.00 381,533.00
R&D stock 200 39,927.73 62,945.78 238.57 241,671.90

Dataset II: 1998–2005 - Manufacturing Sector only
(millions of 2005 dollars)

Value added 128 88,077.37 50,818.17 30,097.00 193,132.00
Non-IT capital 128 153,246.50 92,431.69 20,340.00 330,068.00
Labour (hours) 128 2,171.33 1,147.28 259.30 4,769.40
IT capital 128 15,193.91 16,291.97 832.00 62,336.00
R&D stock 128 46,689.48 71,480.34 238.57 241,671.90102



Table 4.2: Dataset I Industries

Industry SIC Codes Major Industry Subordinate Industry

2† 13, 29 Petroleum refining and extraction

4 20, 21 Food, kindred, and tobacco products

5 22, 23 Textiles and apparel

6 24, 25 Lumber, wood products, and furniture

7 26 Paper and allied products

8† 27, 31, 39 Other manufacturing industries

10† 281–82, 286 Chemicals and allied products Industrial chemicals

11† 283 Drugs and medicines

12† 284–85, 287–89 Other chemicals

13 30 Rubber products

14 32 Stone, clay, and glass products

99* 331–32, 3398–99 Primary metals Ferrous metals and products

99* 333–36 Nonferrous metals and products

18 34 Fabricated metal products

20 351–56, 358–59 Machinery Other machinery, except electrical

† = IT-intensive industry

* The two Primary Metals industries are combined into a single industry to

facilitate matching to the MFP industry aggregation

Continued on next page
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Table 4.2 – continued from previous page

Industry SIC Codes Major Industry Subordinate Industry

21 357 Office, computing, and accounting

machines

23 361–64, 369 Electrical equipment Other electrical equipment

24† 365 Radio and TV receiving equipment

25 366 Communication equipment

26 367 Electronic components

28 371 Transportation equipment Motor vehicles and motor vehicles

equipment

30† 373–75, 379 Other transportation equipment

32† 381–82 Professional and scientific instruments Scientific and mechanical measuring

instruments

33† 384–87 Optical, surgical, photographic, and

other instruments

† = IT-intensive industry
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Table 4.3: Dataset II Industries

Industry Sector NAICS Codes Description δ

1 NM 21 Mining, extraction, and support activities 0.15

2† NM 22 Utilities 0.15

3 NM 23 Construction 0.15

5 M 311–312 Food, beverage and tobacco products 0.15

7 M 313–316 Textiles, apparel, and leather 0.15

8 M 321 Wood products 0.15

9 M 322–323 Paper, printing, and support activities 0.15

10 M 324 Petroleum and coal products 0.15

11† M 325 Chemicals 0.11

12 M 326 Plastics and rubber products 0.15

13 M 327 Nonmetallic mineral products 0.15

14 M 331 Primary metals 0.15

15 M 332 Fabricated metal products 0.15

16† M 333 Machinery 0.15

17† M 334 Computer and electronic products 0.165

† = IT-intensive industry

Sector M = Manufacturing, NM = Non-manufacturing

δ = R&D annual depreciation rate

Continued on next page
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Table 4.3 – continued from previous page

Industry Sector NAICS Codes Description δ

18 M 335 Electrical equipment, appliances, and components 0.15

19† M 336 Transportation equipment 0.18

20 M 337 Furniture and related products 0.15

21 M 339 Miscellaneous manufacturing 0.15

24† NM 48–49 Transportation and warehousing 0.15

25† NM 51 Information 0.15

26 NM 52–53 Finance, insurance, and real estate 0.15

27† NM 54 Professional, scientific, and technical services 0.15

28† NM 621–623 Health care services 0.15

29 NM 55, 56, 61, 624, Other non-manufacturing 0.15

71, 72, 81

† = IT-intensive industry

Sector M = Manufacturing, NM = Non-manufacturing

δ = R&D annual depreciation rate
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Table 4.4: GLS He+PSAR1 Regression Results

Dataset I: 1987–1998

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.135*** 0.185*** 0.118*** 0.178***
(0.0516) (0.0548) (0.0416) (0.0431)

l 0.710*** 0.634*** 0.703*** 0.650***
(0.0542) (0.0570) (0.0448) (0.0474)

z 0.246*** 0.299*** 0.301*** 0.322***
(0.0330) (0.0384) (0.0380) (0.0549)

Z -0.0162*** -0.0125** -0.0474***
(0.00483) (0.00554) (0.0153)

R 0.00217 -0.00231
(0.00252) (0.00357)

ZR 0.00114**
(0.000475)

Constant 2.468*** 2.312*** 2.495*** 2.383***
(0.178) (0.183) (0.142) (0.155)

Observations 276 276 276 276
ηZ (mean) 0.246 0.201 0.225 0.169
ηZ (median) 0.246 0.223 0.243 0.168

ηK + ηL + ηZ 1.091 1.02 1.046 0.997
(mean)

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.5: GLS He+PSAR1 Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.338*** 0.370*** 0.283*** 0.266***
(0.0380) (0.0412) (0.0476) (0.0448)

l 0.520*** 0.546*** 0.477*** 0.506***
(0.0279) (0.0288) (0.0381) (0.0336)

z 0.172*** 0.101** 0.285*** 0.315***
(0.0330) (0.0474) (0.0480) (0.0437)

Z 0.000641 -0.000458 -0.00282***
(0.000494) (0.000452) (0.000701)

R -0.00228*** -0.00364***
(0.000764) (0.000919)

ZR 2.15e-05***
(5.86e-06)

Constant 2.036*** 1.984*** 2.155*** 2.190***
(0.139) (0.136) (0.173) (0.164)

Observations 200 200 200 200
ηZ (mean) 0.172 0.138 0.259 0.229
ηZ (median) 0.172 0.115 0.275 0.261

ηK + ηL + ηZ 1.03 1.054 1.019 1.001
(mean)

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.6: PCSE He+AR1 Regression Results

Dataset I: 1987–1998

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.0819 0.0726 0.110 0.0906
(0.162) (0.157) (0.133) (0.135)

l 0.646*** 0.665*** 0.669*** 0.636***
(0.191) (0.193) (0.169) (0.173)

z 0.380*** 0.350*** 0.260*** 0.539***
(0.0727) (0.0927) (0.0774) (0.108)

Z 0.00512 0.00177 -0.0911***
(0.0131) (0.0119) (0.0278)

R 0.00981* -0.0142*
(0.00525) (0.00817)

ZR 0.00298***
(0.000879)

Constant 2.511*** 2.554*** 2.388*** 2.670***
(0.554) (0.542) (0.458) (0.475)

Observations 276 276 276 276
R-squared 0.820 0.828 0.847 0.856
ηZ (mean) 0.380 0.381 0.271 0.338
ηZ (median) 0.380 0.374 0.268 0.290

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.7: PCSE He+AR1 Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.317*** 0.324*** 0.247*** 0.248***
(0.0590) (0.0640) (0.0685) (0.0675)

l 0.439*** 0.438*** 0.391*** 0.405***
(0.0647) (0.0655) (0.0678) (0.0678)

z 0.227*** 0.209*** 0.328*** 0.353***
(0.0609) (0.0797) (0.0850) (0.0886)

Z 0.000319 1.13e-05 -0.00126
(0.000730) (0.000690) (0.00124)

R -0.00212 -0.00302*
(0.00130) (0.00157)

ZR 1.25e-05
(9.72e-06)

Constant 2.110*** 2.112*** 2.333*** 2.299***
(0.217) (0.217) (0.240) (0.235)

Observations 200 200 200 200
R-squared 0.968 0.968 0.969 0.969
ηZ (mean) 0.227 0.227 0.329 0.325
ηZ (median) 0.227 0.215 0.328 0.329

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.8: Random Effects AR(1) Regression Results

Dataset I: 1987–1998

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.113 0.104 0.115 0.0944
(0.113) (0.114) (0.0979) (0.0937)

l 0.604*** 0.626*** 0.652*** 0.614***
(0.120) (0.123) (0.105) (0.100)

z 0.386*** 0.335*** 0.272** 0.561***
(0.0884) (0.112) (0.107) (0.118)

Z 0.0102 0.00435 -0.0940***
(0.0137) (0.0127) (0.0240)

R 0.00790* -0.0180***
(0.00426) (0.00673)

ZR 0.00318***
(0.000671)

Constant 2.392*** 2.433*** 2.375*** 2.683***
(0.395) (0.398) (0.347) (0.338)

Observations 276 276 276 276
ηZ (mean) 0.386 0.397 0.298 0.366
ηZ (median) 0.386 0.382 0.292 0.310

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.9: Random Effects AR(1) Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.449*** 0.450*** 0.432*** 0.418***
(0.108) (0.109) (0.104) (0.105)

l 0.417*** 0.417*** 0.429*** 0.442***
(0.0901) (0.0900) (0.0859) (0.0866)

z 0.105 0.0990 0.111 0.155
(0.0958) (0.107) (0.110) (0.113)

Z 0.000105 8.44e-05 -0.00138
(0.000739) (0.000739) (0.00113)

R 0.000345 -0.00110
(0.00113) (0.00143)

ZR 1.48e-05*
(8.58e-06)

Constant 1.782*** 1.786*** 1.824*** 1.836***
(0.437) (0.437) (0.409) (0.411)

Observations 200 200 200 200
ηZ (mean) 0.105 0.105 0.115 0.128
ηZ (median) 0.105 0.101 0.112 0.129

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.10: Manufacturing Industries GLS He+PSAR1 Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4)
VARIABLES Cobb-Douglas Indirect Z Uninteracted Full Model

k 0.387*** 0.325** 0.307* 0.337
(0.111) (0.161) (0.162) (0.210)

l 0.476*** 0.364*** 0.306*** 0.491***
(0.0997) (0.111) (0.101) (0.112)

z 0.0215 0.214 0.273** 0.0843
(0.0792) (0.131) (0.137) (0.205)

Z -0.00645 -0.00330 0.00280
(0.00597) (0.00704) (0.0107)

R -0.00177 -0.000240
(0.00123) (0.00259)

ZR -3.44e-05
(6.07e-05)

Constant 2.059*** 2.032*** 2.089*** 2.148***
(0.370) (0.563) (0.567) (0.680)

Observations 128 128 128 128
ηZ (mean) 0.0215 0.116 0.222 0.0651
ηZ (median) 0.0215 0.169 0.249 0.0999

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.11: IT-intensity Sample Partition Regression Results

Dataset I: 1987–1998

(1) (2) (3) (4) (5) (6)
IT-intensive non-IT-intensive IT-intensive non-IT-intensive IT-intensive dummy

VARIABLES He+AR1 He+AR1 He+PSAR1 He+PSAR1 He+AR1 He+PSAR1

k −0.0408 0.189 −0.184∗ 0.249∗∗∗ 0.0600 0.0285
(0.0952) (0.129) (0.104) (0.0913) (0.0906) (0.0662)

l 0.410∗∗∗ 0.399∗∗∗ 0.840∗∗∗ 0.380∗∗∗ 0.495∗∗∗ 0.670∗∗∗

(0.0757) (0.130) (0.145) (0.0708) (0.0804) (0.0646)
z 0.649∗∗∗ 0.235∗∗ 0.432∗∗ 0.0512 0.440∗∗∗ 0.403∗∗∗

(0.119) (0.108) (0.185) (0.0687) (0.0823) (0.0787)
Z −1.07e−05 −3.47e−05 4.25e−05 6.94e−06 −3.22e−05∗∗ −2.28e−05

(2.45e−05) (2.27e−05) (3.04e−05) (2.02e−05) (1.41e−05) (1.79e−05)
R 1.21e−06 −1.56e−05∗∗ 8.75e−06 2.35e−06 −9.00e−06 −5.55e−06

(7.60e−06) (7.61e−06) (7.89e−06) (5.28e−06) (5.50e−06) (5.15e−06)
ZR −4.04e−10 2.64e−09∗∗∗ −1.97e−09∗∗ 2.27e−09∗∗∗ 1.16e−09∗∗ 4.28e−10

(7.75e−10) (6.40e−10) (9.67e−10) (5.97e−10) (4.67e−10) (5.62e−10)
intensive1 −0.432∗∗∗ −0.299∗

(0.149) (0.162)
Constant 2.326∗∗∗ 3.865∗∗∗ 2.554∗∗∗ 4.551∗∗∗ 3.009∗∗∗ 2.277∗∗∗

(0.619) (1.191) (0.605) (0.954) (0.725) (0.475)

Observations 108 168 108 168 276 276
Industries 9 14 9 14 23 23

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added. Year dummies omitted from results.
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Table 4.12: IT-intensity Sample Partition Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4) (5) (6)
IT-intensive non-IT-intensive IT-intensive non-IT-intensive IT-intensive dummy

VARIABLES He+AR1 He+AR1 He+PSAR1 He+PSAR1 He+AR1 He+PSAR1

k −0.201∗∗ 0.226∗∗ −0.334∗∗∗ 0.364∗∗∗ 0.201∗∗∗ 0.282∗∗∗

(0.0901) (0.100) (0.0747) (0.0740) (0.0534) (0.0606)
l 0.261∗∗∗ 0.332∗∗∗ 0.233∗∗∗ 0.555∗∗∗ 0.479∗∗∗ 0.549∗∗∗

(0.0979) (0.0488) (0.0872) (0.0595) (0.0491) (0.0473)
z 0.488∗∗∗ 0.511∗∗∗ 0.478∗∗∗ 0.295∗∗∗ 0.382∗∗∗ 0.315∗∗∗

(0.151) (0.119) (0.126) (0.109) (0.0782) (0.0734)
Z −0.00271∗∗ −0.00230 −0.00329∗∗∗ −8.32e−05 −0.00146∗ −0.00118∗

(0.00136) (0.00195) (0.00122) (0.00168) (0.000768) (0.000707)
R −0.00348∗∗∗ −0.00755∗ −0.00655∗∗∗ −0.0113∗∗∗ 0.000193 −0.00133

(0.00112) (0.00458) (0.00121) (0.00414) (0.000811) (0.00125)
ZR 2.15e−05∗∗∗ 0.000183∗ 2.99e−05∗∗∗ 6.19e−05 8.86e−06 9.40e−06

(7.42e−06) (0.000110) (6.91e−06) (9.51e−05) (6.55e−06) (6.26e−06)
intensive1 −0.284∗∗ −0.452∗∗∗

(0.116) (0.143)
Constant 4.702∗∗∗ 2.215∗∗∗ 5.832∗∗∗ 1.800∗∗∗ 2.354∗∗∗ 2.075∗∗∗

(0.731) (0.329) (0.665) (0.240) (0.178) (0.198)

Observations 72 128 72 128 200 200
Industries 9 16 9 16 25 25

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added. Year dummies omitted from results.
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Table 4.13: Variable Coefficients Model Regression Results

Dataset I: 1987–1998

(1) (2) (3) (4)
Cobb-Douglas Cobb-Douglas VC Model VC Model

VARIABLES He+AR1 He+PSAR1 He+AR1 He+PSAR1

k 0.177 0.135*** 0.237*** 0.0137
(0.111) (0.0516) (0.0677) (0.0396)

kR -0.000687 -0.000695
(0.00233) (0.00182)

l 0.618*** 0.710*** 0.599*** 0.909***
(0.119) (0.0542) (0.0866) (0.0571)

lR -0.00334 -0.0168***
(0.00542) (0.00419)

z 0.212*** 0.246*** 0.141*** 0.253***
(0.0700) (0.0330) (0.0509) (0.0405)

zR 0.00442 0.000214
(0.00366) (0.00323)

Constant 2.390*** 2.468*** 2.198*** 2.884***
(0.413) (0.178) (0.244) (0.145)

Observations 276 276 276 276
Industries 23 23 23 23

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Table 4.14: Variable Coefficients Model Regression Results

Dataset II: 1998–2005

(1) (2) (3) (4)
Cobb-Douglas Cobb-Douglas VC Model VC Model

VARIABLES He+AR1 He+PSAR1 He+AR1 He+PSAR1

k 0.261*** 0.338*** 0.272*** 0.281***
(0.0409) (0.0380) (0.0476) (0.0351)

kR -0.000642 -0.00231***
(0.000568) (0.000649)

l 0.509*** 0.520*** 0.574*** 0.511***
(0.0311) (0.0279) (0.0430) (0.0406)

lR -0.00146 -0.000976
(0.000969) (0.00145)

z 0.234*** 0.172*** 0.170*** 0.229***
(0.0334) (0.0330) (0.0448) (0.0329)

zR 0.00150* 0.00284***
(0.000907) (0.00110)

Constant 2.278*** 2.036*** 2.319*** 2.301***
(0.153) (0.139) (0.177) (0.135)

Observations 200 200 200 200
Industries 25 25 25 25

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
Dependent variable: Value Added.
Year dummies omitted from results.
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Chapter 5

Conclusion

To further the understanding of how IT creates value, this research examines

its role in the innovation context and presents three major findings. First,

we find that IT contributes positively to innovation-related knowledge pro-

duction at the firm level, as evidenced by a positive elasticity to patent

output. Second, expanding on this, we find the IT-augmented knowledge

production process contributes to the overall production process. Third, we

find the direct and indirect effects of IT are present at the industry level.

Importantly, the indirect effect is synergistic with innovation-related invest-

ments, indicating an innovation-enabling role for IT. These findings bring to

light a new role for IT in value-creation. In the context of overall IT business

value research, our work complements other researchers’ efforts to quantify

the intangible value arising from IT investments, such as increased prod-

uct variety and strategic flexibility. We also contribute a new IT-centred

dimension to research concerning innovation and productivity.

The research in this work draws on approaches well-established in pro-

ductivity and innovation literature. Our patent and production data are

obtained from US government agencies, and are thus prepared using trans-

parent procedures, and have been scrutinized by auditors. The patent data

is quality-adjusted by citation-weighting to distinguish between incremental

and breakthrough innovations. However, some limitations must be noted.

First, our data is limited in detail, size and scope by the sources from which

we have obtained it. Regrettably, both input and output measures of innova-

tion are limited to formal innovation activities. Further, there is insufficient

detail on the composition of R&D by type of input (labour, capital, IT cap-

ital). Our analysis approaches also introduce limitations. In particular, the

SEM approach has no ability to control for fixed effects or panel error struc-
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tures, both of which feature in the literature relating to IT productivity. On

the other hand, regression approaches (such as those used in chapters 2 and

4) cannot prove causality and have limitations with respect to small sample

sizes and the influence of unobservable effects. We have, where possible,

taken measures to mitigate these shortcomings, but prudence demands we

interpret the results with some caution. Finally, innovation research has

noted the influence of location-specific factors, such as government R&D

incentives and the availability of research-related skilled labour and tech-

nology. Thus, there are limitations to the generalizability of our results to

other countries, given our sample data draws exclusively from US firms and

industries.

We believe this research creates a foundation upon which future research

into the IT-innovation relationship may build. Improved measures, such as

greater detail and scope of innovation outputs (including informal innova-

tion), will become available with expanded industrial R&D survey programs

of the National Science Foundation and statistical agencies in other coun-

tries. Although it is challenging to keep pace with the changes IT has intro-

duced to innovation (e.g. open-source software and crowd-sourced innova-

tion competitions), the increased availability of some kinds of transactional

and network-oriented data offer some promise to future research endeav-

ours. Another avenue for extending this research involves the examination

of intra-industry spillovers of innovation, which could explain some of the

industry heterogeneity with respect to innovation dynamics.
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