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Abstract

In wireless communication systems, multiples copies of the transmitted signal arrive at

the receiver. This phenomenon causes channel variations in the frequency domain over

the transmission bandwidth. Conventional systems use equalizers to tackle this problem.

Another approach is to use multicarrier communication systems based on orthogonal fre-

quency division multiplexing (OFDM). In this technique, the entire bandwidth is divided

into several subchannels, and, as a result, each subchannel experiences almost a flat fading

channel.

In this dissertation, we work on three different areas in OFDM systems: (1) We propose

new analytical methods to evaluate the error rate of coded OFDM systems for a partic-

ular channel realization. (2) Assuming the instantaneous channel is known both at the

transmitter and the receiver, we introduce adaptive transmission techniques to enhance

the performance of these systems, and (3) we propose a new receiver-based technique to

recover the distortion caused by the practical non-linear power amplifier.

To address the first subject, a novel analytical method for bit error rate evaluation of

coded OFDM systems for a specific channel realization is proposed. As this method might

be too complex for some applications, we also propose a simpler formula.

As for the second subject, we introduce new adaptive bit loading and interleaving

techniques to minimize the bit error rate of the system. Also, we propose novel adaptive

bit and power loading and code rate selection techniques to minimize bit error rate, to

minimize the transmit power, or to maximize the throughput of the system.
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Abstract

To address the third subject, we propose a new method to estimate the original non-

clipped signal. The estimation is done at the receiver and makes use of the newly proposed

compressed sensing estimation technique.
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2.2 10% Outage BER versus 10 log10(Ēb/N0) from analysis (lines) and simula-

tions (markers) for the MIMO-SVD system. . . . . . . . . . . . . . . . . . 31
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4.5 BER versus 10 log10(Ēb/N0) for perfect channel estimation and an SL power

amplifier with α = 3dB. Coded and bit-loaded OFDM with an average of 4

bits per subcarrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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Chapter 1

Introduction

In single-carrier communication systems, the entire bandwidth is used by one symbol and

successive symbols are transmitted in different time slots. When the channel varies over

the transmission bandwidth, these systems require complicated equalizers at the receiver.

Multicarrier systems have been proposed as a solution to this problem. In a multicarrier

system, the available bandwidth is divided into several subchannels (or subcarriers). Each

subchannel experiences flat fading and therefore simple equalization techniques are appli-

cable. If the channel bandwidth and transmission parameters are chosen properly, each

subcarrier will be orthogonal to other subcarriers. This can be implemented in different

ways and the most popular form of implementation is called orthogonal frequency division

multiplexing (OFDM).

1.1 History of Multicarrier Communications

The history of multicarrier communications dates back to the mid 60’s, when Chang [3]

proposed the concept of parallel data transmission. Weinstein and Ebert [4] proposed using

discrete Fourier transform (DFT) to perform baseband modulation and demodulation,

eliminating the need for banks of oscillators. To combat inter-channel interference (ICI) and

inter-symbol interference (ISI), they proposed the use of a guard space between symbols.

Next, Peled and Ruiz [5] introduced using cyclic prefix (CP) instead of empty guard space

to assure the orthogonality of the subcarriers.

1



Chapter 1. Introduction

Although the idea of OFDM has been known for some time, it was only relatively

recently that it has become the dominating type of signal modulation in wireless commu-

nication systems. This is because advances in very large scale integrated (VLSI) circuit

technologies and digital signal processing (DSP) algorithms have eliminated the original

obstacles of OFDM implementation. The interested reader can refer to [6] and [7] for a

more complete history of OFDM.

1.2 Use of OFDM in Standards

Due to its many advantages, OFDM has gained considerable attention recently. One of

the first implementations of OFDM was in the xDSL (digital subscriber lines) standards.

OFDM is usually combined with binary coding and the combination is referred to as bit

interleaved coded OFDM (BIC-OFDM). BIC-OFDM has gained interest from the commu-

nications community in recent years, as evidenced by standards such as IEEE 802.11a/g

for Wireless Local Area Networks (WLANs) [8], IEEE 802.16 (broadband wireless access),

ECMA Multiband OFDM (MB-OFDM) for high-rate Ultra Wideband (UWB) [9], and

the 3GPP Long Term Evolution (LTE) wireless cellular systems. While OFDM accom-

plishes transmission in the temporal and spectral domains, multiple-input multiple-output

(MIMO) technology exploits the spatial domain by using multiple antennas at the trans-

mitter and receiver. MIMO-BIC-OFDM has been implemented in, for example, the IEEE

802.11n standard.

1.3 Bit and Power Loading for OFDM

Channel gain varies over different subcarriers of OFDM. If the channel changes slowly over

time and is known at the transmitter, the number of bits and/or transmit power in each

2
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CodedUncoded

OFDM

PAPR Problem

Tx based Rx based

Adaptation Technique

Figure 1.1: Different adaptation and PAPR reduction techniques for OFDM. Darker boxes
are the categories of the proposed techniques.

subcarrier can be chosen to maximize the total bit rate, to minimize the total transmit

power, or to minimize the bit error rate (BER) of the system. These schemes are known

as bit loading and power loading. An OFDM system can apply bit loading, power loading

or both.

The problem of maximizing the total rate through bit and power loading has long been

known and the optimal solution to power loading is called water-filling [10]. This solution

is not suitable for practical systems since the resulting bit rates are continuous. Therefore,

there have been a plethora of research projects to find loading algorithms for different sce-

narios. However, most of these loading algorithms are developed assuming either uncoded

transmission or channel coding along the bits being transmitted over individual subcarri-

ers. A new generation of algorithms which consider the combination of OFDM with BICM

has been developed in this thesis (see Section 1.6 and Figure 1.1).

1.4 Peak-to-Average Power Ratio Problem in

OFDM

The transmitted signal of OFDM is the sum of many sinusoidal signals with different

frequencies. Therefore, the resulting envelop of the OFDM signal is well approximated by

a Rayleigh distribution [11]. This leads to a high peak-to-average power ratio (PAPR) of

3
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Transmitter: source

bits
Encoder/Puncturer Interleaver Modulator Framing IFFT Cyclic Prefix Power Amplifier

Receiver: Cyclic Prefix

Removel FFT Deframing Demodulator Deinterleaver Depuncturer Decoder

Figure 1.2: Block diagram of the BIC-OFDM transmitter and receiver structure.

the transmit signal. Since practical power amplifiers (PAs) have limited dynamic range

and, the high PAPR causes signal distortion, resulting in degradation of the system BER

and out-of-band radiation. To tackle this problem, a number of transmitter as well as

receiver-based techniques have been proposed [12] (see Figure 1.1). Transmitter-based

techniques decrease the PAPR of the transmit signal, while receiver-based techniques aim

to reconstruct the original signal (the signal before power amplifier) at the receiver.

1.5 BIC-OFDM System Model

In this section, the BIC-OFDM transmission system considered in this thesis is introduced.

The BIC-OFDM transceiver block diagram is shown in Figure 1.2. We consider single-input

single-output (SISO) as well as MIMO systems.

1.5.1 Channel Encoder and Puncturer

For our channel encoding, we employ convolutional codes as they are the most common

form of encoding in practical systems. For example, IEEE 802.11a/g, IEEE 802.16, and

ECMA Multiband OFDM systems use convolutional encoding. The essence of the analysis

presented in this thesis can be extended to other classes of codes such as low-density

parity-check (LDPC) codes. The output of the encoder can be punctured to get higher

rate codes.

4
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1.5.2 Interleaver

Following encoding, the bits are interleaved. Interleaving is an important part of BICM,

because it guarantees the nearby bits from convolutional encoder to be separated over

different fading samples. Therefore, nearby bits experience different fading gains and thus

the diversity present in the channel can be exploited during decoding at the receiver.

1.5.3 Modulation

Upon interleaving, the bits are modulated using a modulation scheme such as quadrature

amplitude modulation (QAM) or phase shift keying (PSK). We consider two cases: 1) in

the first case, fixed constellation sizes are employed where all subcarriers use the same

constellation size, and 2) in the second case, a specific bit loading algorithm is applied and

subcarriers use different constellation sizes accordingly.

1.5.4 OFDM Symbol Framing

The corresponding data symbols along with the pilots are framed into an OFDM symbol.

For the MIMO-OFDM, we assume a different OFDM symbol for each antenna.

1.5.5 Time Domain Processing

Each OFDM symbol is transformed into time domain via IFFT. The cyclic prefix is added

to the beginning of the symbol and is removed at the receiver. This causes each subcarrier

to be affected by flat fading.

5
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1.5.6 Power Amplifier

The time domain signal then goes through a power amplifier. The power amplifier causes

signal distortion. There are different types of power amplifiers and each causes distortion

differently. We talk about this in more details in Chapter 4.

1.5.7 Channel

We assume a fading channel model affected by AWGN. Different channel models used in

this thesis are presented in Sections 2.2.2 and 2.2.3.

1.5.8 Receiver

At the receiver, the cyclic prefix is removed and the resulting signal passes through an

FFT. Then, the symbols go through the demodulator, the deinterleaver, and finally the

decoder.

1.6 Thesis Contributions and Organization

This thesis considers several issues regarding the analysis and design of OFDM systems.

Our contributions are summarized as follows:

1. We develop a novel analysis technique for bit-loaded coded OFDM systems as well as

bit-loaded coded MIMO-OFDM systems using singular value decomposition (MIMO-

SVD-OFDM).

2. We use the above analysis and propose:

• A new bit loading algorithm.

• Three new adaptive interleaving algorithms.

6
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• A new adaptive coded modulation algorithm.

3. We propose a simple formula for the performance of BIC-OFDM in the high SNR

regime. We then use this formula to present algorithms which are capable of finding

the optimum code rate, bit loading and power loading for the following optimization

problems:

• Minimizing the BER subject to predefined total rate and transmit power.

• Minimizing the total transmit power subject to predefined BER and total rate.

• Maximizing the throughput subject to predefined BER and transmit power.

4. We develop a technique based on compressed sensing (CS) to estimate the original

non-clipped signal at the receiver. The clippings are caused by the non-ideal power

amplifier at the transmitter.

To present these contributions, the thesis is organized as follows. In Chapter 2, we

develop a novel analytical method for the bit error rate (BER) and word error rate (WER)

estimation of bit-loaded coded OFDM and MIMO-OFDM systems using singular value

decomposition (SVD), operating over frequency-selective quasi-static channels with non-

ideal interleaving. Then, we introduce three different applications of the proposed analysis.

First, we compare the performance of several OFDM bit-loading schemes and propose a

hybrid loading scheme which selects the best loading for each channel realization from

a number of candidates. Second, we introduce three adaptive interleaving schemes: (i)

selecting the best interleaver from a number of predefined interleavers, (ii) a novel adaptive

bit interleaving algorithm based on pairwise error probability (PEP), and (iii) a spatial

interleaving scheme for MIMO-SVD-OFDM systems with separate information sources.

Third, we introduce an adaptive coded modulation algorithm by using our BER estimation

technique.

7
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In Chapter 3, we look into the problem of adaptive bit-loading, power allocation, and

code (rate) selection for BIC-OFDM. Three optimization problems are considered: BER

minimization, power minimization, and throughput maximization. We develop a frame-

work for performance evaluation of BIC-OFDM transmission over quasi-static fading chan-

nels. This analysis is based on the probability density function (PDF) of the reliability

metrics developed in [13] and the resulting expression is simpler to evaluate compared to

the expression proposed in Chapter 2. Then, the BER expression is derived based on the

knowledge of interleaver and (error correction) code structure. Furthermore, it is shown

that the optimization problem based on this approach leads to a high dimensional mixed-

integer optimization problem which (to the best of our knowledge) cannot be solved in

polynomial time. Hence, we assume that the structure of interleaver is not known, i.e.

uniform random interleaving assumption, and derive the expected value of BER with this

assumption. Then, this BER expression is further simplified assuming asymptotically-high

SNR at the receiver. We show that the optimization problem with the expected value of

BER as the objective function can be solved efficiently using greedy algorithms in poly-

nomial time. Finally, we propose a simple formula which predicts the performance of the

optimized system.

Adaptive techniques proposed in Chapters 2 and 3 as well as most of the techniques

available in the literatures are designed for the case when there is perfect channel state

information (CSI) at the transmitter. However, in practical systems, only imperfect CSI

is available which is the result of noisy channel estimation and also the estimated channel

might be outdated due to delay in the feedback channel. Therefore, a number of algorithms

are proposed for imperfect CSI [14, 15, 16].

Chapter 4 considers the problem of high peak to average power ratio (PAPR) of the

transmit signal in OFDM systems. In realistic systems, power amplifiers have a limited

8
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dynamic range and, as a result, OFDM signals will be clipped at the transmitter. This

will cause OFDM signal distortion. In this chapter, we employ pilot subcarriers to propose

methods based on compressed sensing to recover nonlinearly distorted OFDM signal. First,

we assume channel is perfectly known at the receiver and pilots are used to estimate

distortion. Second, we consider practical channel estimation when the pilot tones are

distorted by PA nonlinearity. In this case, we modify the CS-based method so that channel

estimation is also improved by our technique.

Finally, Chapter 5 summarizes the contributions of this thesis and outlines future areas

of research.
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Chapter 2

Performance Analysis for Bit-Loaded

BIC-MIMO-OFDM

2.1 Introduction

In this chapter, we develop a novel analysis technique for bit-loaded coded MIMO-OFDM

systems, extending recent results for non-loaded coded SISO OFDM [17]. This method

provides the system designers with a simple way to study the performance of different bit-

loading and channel coding schemes without resorting to lengthy simulations. We propose

novel adaptive bit loading, adaptive interleaving and adaptive coded modulation based on

the derived analysis.

There are well-known techniques for bounding the performance of convolutionally-

encoded transmission over many types of fading channels, e.g. [18, 19]. However, such

classical techniques are not applicable to the OFDM systems mentioned above for several

reasons. Firstly, the short-length channel-coded packet-based transmissions are non-ideally

interleaved, which results in non-zero correlation between adjacent coded bits. Secondly,

and more importantly, the quasi-static nature of the wireless channel limits the number of

distinct channel gains to the (relatively small) number of OFDM subcarriers. This small

number of distinct channel gains must not be approximated by the full fading distribution

for a valid performance analysis, as would be the case in a fast-fading channel. Recent

work has developed a pairwise error probability analysis for loaded coded OFDM [20, 21].

10
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However, the analysis in [20] assumes a uniform distribution of label and OFDM subcarrier

positions for coded bits and the resultant expression ([20, Ineq. (13)]) is not amenable to

numerical evaluation. The analysis in [21] is based on a Gaussian approximation [22] and

we found the resulting approximation of BER to be quite loose. As in [20], the effect of

finite interleaving is not considered in the BER expression. In [23], the authors derived the

capacity for OFDM system using bit and power loading under Rayleigh fading with Maxi-

mal Ratio Combining (MRC) at the receiver. They also proposed a bit and power loading

for the same system when coding is not used. The authors in [24] derive the formula for

the performace of the loading algorithm of [25]. Their result is accurate only if the number

of subcarriers is large or the channel is highly frequency selective.

As stated in Chapter 1, adaptive transmission in the form of adaptive bit and power

loading, is a powerful technique for performance enhancement in OFDM system [20, 25,

26, 27, 28, 29, 30, 31, 32, 33]. These algorithms aim to optimize the transmission process

utilizing the priori knowledge about the channel gains over different subcarriers. Many of

these algorithms are not directly applicable to BIC-OFDM transmission systems because

they do not take into account the effect of coding across the bits from different subcarries

[25, 30, 31, 32, 33]. They are mainly developed assuming either uncoded transmission or

channel coding along the bits being transmitted over individual subcarriers. Therefore, a

new generation of algorithms which consider the combination of OFDM with BICM have

been developed, e.g., [20, 26, 27, 28, 29]. As in almost all adaptive transmission systems,

the proposed methods require the instantaneous channel knowledge at the transmitter or

alternatively, the parameters of the optimized system. In quasi-static fading environments

such as typical indoor WLAN channels, the slow time variation of the channel makes

it feasible to implement a reverse link that sends back some channel information to the

transmitter.
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Adaptive modulation for single-carrier BICM was first introduced in [34] in which adap-

tation of constellation for a channel with correlated fading using outdated channel state

information has been considered. Furthermore, [20] has considered combined adaptation of

channel coding and bit/power allocation over different subchannels. As stated before, the

derived BER expression is too complex to be used as an optimization criterion. Therefore,

they used a heuristic criterion alike the one used in e.g. [25, 30, 35]. It has been found that

the performance of the proposed adaptive system is not desirable and further optimization

using auxiliary power allocation is needed in order to achieve considerable improvement.

Unfortunately, a heuristic approach should be used to derive this auxiliary power allocation

and its performance can only be verified through simulation. In [26] and [27] the problem

of power allocation for BIC-OFDM transmission systems was studied. In particular, the

authors of [26] developed an algorithm which optimizes the so called goodput of the system

by using a BER approximation based on the saddlepoint approximation for the pairwise

error probability (cf. [22]). Reference [27] considered BIC-OFDM transmission using bi-

nary phase-shift keying (BPSK) or quadrature phase-shift keying (QPSK) constellations

and used the BER union bound in order to formulate the problem as a convex optimization

problem. In [28], the author proposed power loading with equal constellation size for all

subcarriers and also bit loading with equal transmit power for all subcarriers subject to a

target BER and total rate. The channel model of [28] is frequency-domain block fading

with some independent fading blocks in the transmission bandwidth. The authors of [29]

proposed bit and power loading for BIC-OFDM systems to maximize the mutual infor-

mation. To render the optimization problem convex, they used irregular modulation and

power allocation which means it is possible to transmit only a fraction of a symbol over

a subcarrier. This cannot be implemented in practical systems, so the authors suggested

rounding, which results in some performance degradation.
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Different from bit and power loading, interleaver affects the performance of the system

only in the case of coded transmission. Since the analysis for coded OFDM has only

been recently considered, adaptive interleaving has only been proposed in [1, 2]. These

techniques will be explained in Section 2.4.2.

This chapter is organized as follows. In Section 2.2, the system model and notations

are introduced. The analysis technique is presented in Section 2.3. We assume identical

transmit power in all OFDM subcarriers, which is necessary for systems such as UWB

MB-OFDM, where power spectral density is constrained. In Section 2.4 we present three

applications for the proposed analysis. First, we propose and evaluate a hybrid loading

scheme which selects the best loading for each channel realization from a number of can-

didates. Second, we introduce three different adaptive interleaving algorithms. The first

algorithm is based on selecting the best interleaver among a set of interleavers. In the

second algorithm, a bit interleaver is designed based on the PEPs derived using our error

rate estimation technique. For MIMO-OFDM systems employing SVD, we propose an

adaptive space-frequency interleaving. The third application is an adaptive coded mod-

ulation scheme using our BER estimation technique. Numerical results confirming the

accuracy of our error rate estimation and illustrating the applications mentioned above are

shown in Section 2.5 for MB-OFDM UWB and IEEE 802.11a/g systems, and also for the

MIMO-SVD extension of IEEE 802.11a/g.

2.2 System Model

Before presenting the novel analysis and the improved designs, we first briefly establish the

system model for coded bit-loaded MIMO-OFDM transmission. The block diagram with

a brief explanation for each block is presented in Section 1.5.
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2.2.1 Generic Model

Let us consider an L-subcarrier MIMO-OFDM system with NT transmit and NR receive

antennas (we assume NT ≤ NR). It employs a general bit-loading scheme, which selects a

2mi,j -ary quadrature amplitude modulation (2mi,j -QAM) for subcarrier 1 ≤ i ≤ L over the

antenna 1 ≤ j ≤ NT based on the channel conditions.1 For non-square constellations, we

use the constellations proposed in [36]. We denote the average number of coded bits per

modulated symbol by m̄. The particular loading algorithms applied will be discussed in

Section 2.4.

The system employs a (possibly punctured) convolutional code of rate Rc. We assume

that the transmitter selects a vector ofB = RcLm̄NT random message bits for transmission,

denoted by

b = [b1 b2 . . . bB]T . (2.1)

The message bits are convolutionally encoded by the mapping

C : {0, 1}B → {0, 1}N (2.2)

to produce the vector

c = C(b) (2.3)

of length N = Lm̄NT . The vector c is then interleaved by the mapping

π : {0, 1}N → {0, 1}N (2.4)

resulting in the vector

cπ = π(c) (2.5)

1With a slight abuse of notation, we use the term 2-QAM to denote binary phase shift keying (BPSK).
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of length N . The interleaved bits cπ are finally modulated using 2mi,j -QAM on subcarrier

1 ≤ i ≤ L over antenna 1 ≤ j ≤ NT , where the modulation is represented by the mapping

Mh : {0, 1}N → C
NNT . (2.6)

Hence, the vector of the NNT modulated symbols is given by

x = [x1,1 x1,2 . . . x1,NT
x2,1 x2,2 . . . x2,NT

. . . xN,1 xN,2 . . . xL,NT
]T = Mh(cπ) , (2.7)

where xi,j is the symbol on subcarrier 1 ≤ i ≤ L over antenna 1 ≤ j ≤ NT .

It is important to note the dependence of Mh on the frequency-domain channel gains

as a result of the channel gain dependent loading algorithms. For a particular channel

gain, the mapping Mh is obtained by running the chosen loading algorithm in order to

select the modulation for each subcarrier. The channel gain for the ith subcarrier is given

by the NR ×NT matrix

H i =












h1,1,i h1,2,i · · · h1,NT ,i

h2,1,i h2,2,i · · · h2,NT ,i

...
...

. . .
...

hNR,1,i hNR,2,i · · · hNR,NT ,i












, (2.8)

where hk,j,i is the frequency-domain channel gain from transmit antenna j to receive an-

tenna k for the ith subcarrier. Also we define the matrix D as the block diagonal matrix

of size LNR × LNT consisting of all Hi matrices on the main diagonal.

We will assume that the MIMO-OFDM system is designed such that the cyclic prefix is

longer than the channel impulse response and that timing and frequency synchronization

have been established. Thus, we can equivalently consider the channel in the frequency
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domain and express the received symbols as

r =
√

ĒsDx+ n , (2.9)

where n is a vector of independent complex additive white Gaussian noise (AWGN) vari-

ables of length LNR with variance N0 and Ēs is the average received energy per modulated

symbol assuming that E{‖Dx‖2} = ILNR
. The average received energy per information

bit is Ēb = Ēs/(Rcm̄).

The receiver employs a soft-output detector followed by deinterleaving, depuncturing,

and Viterbi decoding, resulting in an estimate

b̂ = [̂b1 b̂2 . . . b̂B]T (2.10)

of the original transmitted information bits.

For MIMO processing, we assume singular value decomposition. Performing SVD on

H i results in

H i = U iΛiV
H
i (2.11)

where U i and V i are unitary matrices. The entries of the diagonal matrix Λi are non-

negative singular values of H i : λi,1, λi,2 . . . λi,NT
. In the standard SVD operation we have

λi,1 ≥ λi,2 ≥ · · · ≥ λi,NT
and in MIMO-SVD transmission, V i is applied to the transmitted

signal and UH
i is applied to the received signal. This will result in NT parallel subcarriers

with gains λi,j for 1 ≤ j ≤ NT . Then we put these gains in a vector λ of length LNT

according to how encoded bits are assigned to different subcarriers. For convenience, we

define the diagonal matrix Λ = diag(λ).

In the following, we describe two popular (practical) OFDM systems and channel mod-

els which we will consider in the performance evaluation in Section 2.5.
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2.2.2 MB-OFDM System and Channel Model

As the first OFDM system example, we have chosen MB-OFDM for high data-rate UWB [9,

37]. MB-OFDM uses 128 subcarriers and operates by hopping over 3 sub-bands (one hop

per OFDM symbol) in a predetermined pattern. We will assume that hopping pattern

1 of [9] is used (i.e., the sub-bands are hopped in order). As a result we can consider

MB-OFDM as an equivalent 384 subcarrier OFDM system. After ignoring pilot, guard,

and other reserved subcarriers, we have 300 data-carrying subcarriers.

Channel coding consists of classical BICM [19] with a punctured maximum free distance

rate 1/3 constraint length 7 convolutional encoder and a multi-stage block-based interleaver

(see [9] for details). In the standard, the interleaved coded bits are mapped to 4-QAM

symbols using Gray labeling. To maintain the same data rates but decrease the error

probability, we instead employ loading as described above with m̄ = 2 bits per subcarrier.

For a meaningful performance analysis of the MB-OFDM proposal, we consider the

channel model developed by IEEE 802.15 for UWB systems [38]. The channel impulse

response is based on a modified Saleh-Valenzuela model [39]. As well, the entire impulse

response undergoes an “outer” lognormal shadowing. The channel impulse response is

assumed time invariant during the transmission period of (at least) one packet (see [38] for

detailed description). We consider the UWB channel parameter sets CM1 and CM3 [38].

2.2.3 IEEE 802.11a/g System and Channel Model

The second example system we consider is IEEE 802.11a/g, which employs 64 subcarriers,

of which 48 are used for data transmission [8]. Channel coding is again BICM, with

a punctured maximum free distance rate 1/2 constraint length 7 convolutional encoder.

We adopt the quasi-static exponentially-decaying multipath Rayleigh fading model used

in [20, 21], where the gain over subcarrier i from transmit antenna k to receive antenna j
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is given by

hk,j,i =
Lm−1∑

i=0

h̄k,j(i) exp

(

−j
2πil

64

)

, (2.12)

where Lm is the number of channel taps and h̄k,j(i) is the ith component of the channel

impulse response, modeled as a complex Gaussian random variable [20, 21]

h̄k,j(i) ∼ CN (0, σ0 exp(−iTs/Trms)) , (2.13)

where

σ0 = 1 − exp(−Ts/Trms) , (2.14)

Ts = 50 ns is the receiver sampling rate, and Trms is the RMS delay spread of the channel.

We also consider the extension to this system when NT = 2 antennas are used at the

transmitter and NR = 2 antennas are used at the receiver. As stated before, we use SVD

for MIMO processing.

2.3 BER Analysis for Coded MIMO-OFDM with

Bit-Loading

We now present the method for approximating the performance of bit-loaded coded MIMO-

OFDM systems operating over frequency-selective, quasi-static fading channels. This

method is based on approximating the performance of the system over individual channel

realizations. Following the approach for non-bit-loaded SISO-OFDM in [17], we start by

considering the set of error vectors for bit-loaded OFDM.
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2.3.1 Set of Error Vectors

Consider a convolutional encoder initialized to the all-zero state, where the reference (cor-

rect) codeword is the all-zero codeword. We construct all M input sequences which cause

an immediate deviation from the all-zero state (i.e., those whose first input bit is 1) and

subsequently return the encoder to the all-zero state with an output Hamming weight of at

most wmax. Let E be the set of all vectors eℓ (1 ≤ ℓ ≤ L) representing the output sequences

(after puncturing) associated with these input sequences, i.e., E = {e1, e2, . . . , eL}. Let

lℓ be the length of eℓ (the number of output bits after puncturing), and let aℓ be the

Hamming weight of the input associated with eℓ. Note that the choice of ωmax governs the

value of M (i.e., once the maximum allowed Hamming weight is set, the number of error

events M is known).

We term eℓ an “error vector” and E the set of error vectors. The set E contains all

the low-weight error events, which are the most likely deviations in the trellis. As with

standard union-bound techniques for convolutional codes [18], the low-weight terms will

dominate the error probability. Hence, it is sufficient to choose a small wmax — for example,

the punctured MB-OFDM code of rate Rc = 1/2 [9] has a free distance of 9, and choosing

wmax = 14 (resulting in a set of M = 242 error vectors of maximum length l = 60) provides

results which are not appreciably different from those obtained using larger wmax values.

We note that in case of loading in OFDM, the combination of coding and modulation

is not a linear operation, and thus the error-rate performance will depend on the trans-

mitted codeword. Hence, it is not sufficient to consider only the all-zero word as reference

codeword. Nevertheless, for tractability and simplicity of the analysis, we always choose

one codeword (in which the message bits are randomly generated) as reference. Extensive

simulations (see also Section 2.5) have confirmed that the choice of the reference codeword

is not critical.
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2.3.2 Pairwise Error Probability

Next, we determine the PEP by considering error events starting in a given position i of the

chosen reference codeword. The set ζ of allowable starting positions i has size |ζ| = RcN ,

and each element i of ζ is an index 1 ≤ i ≤ N , which is code-dependent. For example, for

a code of rate Rc = 1/2 the allowable starting positions are ζ = {1, 3, 5, . . . , N − 1}.

We consider each error vector eℓ for 1 ≤ ℓ ≤M , and form the full error codeword

q
i,ℓ

= [0 0 . . . 0
︸ ︷︷ ︸

i−1

eℓ
︸︷︷︸

lℓ

0 0 . . . 0
︸ ︷︷ ︸

Lc−lℓ−i+1

]T (2.15)

of length N by padding eℓ with zeros on both sides as indicated above. Given the error

codeword q
i,ℓ

and given that codeword c is transmitted, the competing codeword is given

by

vi,ℓ = c⊕ q
i,ℓ
. (2.16)

Interleaving and modulation results in the vector of QAM symbols

zi,ℓ = Mh(vπ
i,ℓ) , (2.17)

where vπ
i,ℓ = π(vi,ℓ) is the interleaved version of vi,ℓ.

The PEP for the ℓth error vector starting in the ith position is then given by

PEPi,ℓ(Λ) = Q





√

Ēs

2N0
‖Λ(x− zi,ℓ)‖2

2



 . (2.18)

Note that the PEP depends on the particular channel realization D only through the

matrix of singular values Λ.
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2.3.3 Performance Analysis

The PEP from (2.18) is now used to obtain an approximation of the BER for a particular

matrix of channel gains Λ, which we denote as P (Λ). To this end, the bit error rate for the

error event starting in a position i ∈ ζ (1 ≤ i ≤ N) and error vector eℓ ∈ E (1 ≤ ℓ ≤ M)

is given by

Pi,ℓ(Λ) = aℓ · PEPi,ℓ(Λ) , (2.19)

where aℓ is the number of information bit errors associated with eℓ. Summing over all M

error vectors, we obtain an approximation of the BER for starting position i as

Pi(Λ) =

M∑

ℓ=1

aℓ · PEPi,ℓ(Λ) . (2.20)

Since all allowable starting positions are equally likely, the BER P (Λ) can be written as

P (Λ) =
1

RcN

∑

i∈ζ

min

[

1

2
,

M∑

ℓ=1

Pi,ℓ(Λ)

]

, (2.21)

where we tightened the union bound (2.20) by the maximum value of 1/2 before averaging

over starting positions.

Finally, the average BER for a given number Nc of channel realizations, where the ith

channel realization is denoted by Λ(i) (1 ≤ i ≤ Nc), is given by

P̄ =
1

Nc

Nc∑

i=1

P (Λ(i)) . (2.22)

Similarly, we can obtain the X% outage BER performance as

Pout = max
Λ

(i)∈Λin

P (Λ(i)) . (2.23)
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where (100−X)% best channel realizations are contained in Λin. This provides information

about the minimum performance that can be expected of the system given the X% outage

rate.

In pseudocode, the algorithm to calculate P (Λ) according to (2.21) is

Run loading algorithm to obtain Mh

P := 0

for i ∈ ζ do

Pi := 0

for ℓ := 1 to M

form q
i,ℓ

as per (2.15)

calculate vi,ℓ = c⊕ q
i,ℓ

as per (2.16)

form vπ
i,ℓ = π(vi,ℓ) using mapping (2.4)

calculate zi,ℓ = Mh(vπ
i,ℓ) as per (2.17)

calculate Pi,ℓ as per (2.19)

Pi := Pi + Pi,ℓ

endfor

P := P + min(1
2
, Pi)

endfor

P := P/(RcN)

The PEP formula of (2.18) can also be used to obtain the approximate word error rate

(WER) for a specific channel realization Λ, which we denote as WER(Λ). First we derive

the possibility of not having any error at position i ∈ ζ (1 ≤ i ≤ N) as

Ci(Λ) = max

[

0, 1 −
M∑

ℓ=1

PEPi,ℓ(Λ)

]

. (2.24)
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The WER is the probability of having at least one error in the frame, which can be

related to Ci(Λ) as follows

WER(Λ) = 1 −
∏

i∈ζ

Ci(Λ) . (2.25)

2.3.4 Computational Complexity

We note that the computational complexity of the analysis scales linearly with M (the size

of the set of error vectors) and with N (the codeword length). Especially the choice of M

allows to trade off complexity and accuracy (see also Section 2.5.2). But even for large

M , the analysis requires much fewer operations compared to the alternative of performing

system simulations, especially for reasonably low error rates. To provide an appreciation

of the run-time savings using the proposed method, we note that the analysis for M ≈ 250

and N = 600 takes only a few seconds per channel realization on a modern PC, and the

outage BER for a large number of channel realizations (e.g., Nc = 500) can be obtained

in the time it would take to perform simulations for only one channel realization. Finally,

we note that long packet lengths can be considered without any increase in complexity (if

they are segmented into codewords of length N , as is usually the case in practical systems),

since the error rate for each codeword will be identical as a result of the quasi-static channel

conditions.

2.4 Bit-Loading, Adaptive Interleaving and

Adaptive Coded Modulation for MIMO-OFDM

In this section we present several different algorithms to accomplish high-performance

adaptive coded MIMO-OFDM based on the analytical error-rate expressions derived in
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the previous section.

2.4.1 Bit-Loading Algorithm for Coded MIMO-OFDM

A plethora of bit loading algorithms for OFDM systems have been proposed in the lit-

erature. Some examples of these are: the Hughes-Hartogs algorithm (HHA) [6, 40], the

algorithm of Chow, Cioffi and Bingham (CCB) [35], the Piazzo algorithm [41], and the

algorithm of Fischer and Huber [25]. The reader is referred to the respective papers for

the details of each loading algorithm. Also, in [42], a new way of bit loading was proposed.

In this method, the loading algorithm is not performed for every channel realization; it is

done only for one channel realization and the resulting bit loading is just sorted for other

channel realizations according to their subcarrier gains. Therefore, it is less complex than

any other method. By using this method and using, for example, CCB as the primary

loading algorithm, we have a bit loading algorithm which we will refer to as sorted CCB.

All the mentioned algorithms have the same shortcoming: they do not guarantee that

the selected loading is appropriate for coded OFDM, i.e., BIC-OFDM. The simple reason

for this is that coding and interleaving have a great impact on the error-rate performance,

yet the above-mentioned algorithms simply do not consider them. Here, we propose a bit

loading algorithm for coded OFDM system which also considers the effects of coding and

interleaving. In our algorithm, for each specific channel realization, interleaver, average

rate, and transmit power, we compute the approximate performance of the system for a

set of bit loading algorithms and then the bit loading with minimum BER is selected.

We call our algorithm “Best Solution Loading” (BSL). We note that BSL is a pragmatic

approach to loading for coded OFDM, which explores a (hopefully promising) subset of

all possibilities for loading. The identification of the optimum loading for coded OFDM

requires a full search and thus is computationally prohibitive. It should be emphasized
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that we only consider bit loading and the power is the same for all subcarriers.

It should be noted that the proposed methodology is genereal and it is straightforward

to generalize it for the case of reducing transmit power subject to fixed BER and average

rate. All is need to be done is to run the corresponding bit loading algorithms (like

Campello Margin Maximization algorithm [30]), then calculate the BER and finally select

the one which satisfies the BER constraint and consumes less power. In this chapter, we

do not consider this type of bit loading due to space limitation.

In terms of required signaling for loading, our algorithm does not increase the required

signaling of the system. The reason is that if the algorithm is implemented at the receiver

(transmitter), then receiver (transmitter) needs to send the bit loading to the transmitter

(receiver) and the required amount of information which has to be sent as a result of our

algorithm is equal to the case when only one of the bit loading algorithms is used. Also,

our algorithm slightly increases the complexity of the system by requiring all the 5 bit

loading algorithms to be runned.

2.4.2 Adaptive Interleaving

Next, we consider adaptive interleaving. Different from bit-loading, the choice of interleav-

ing has only an effect if coded transmission is considered, and thus interleaver optimization

has received less attention than bit-loading in the literature. Recent references which ad-

dress the problem of adaptive interleaving are [1, 2]. Here, we present three adaptive

interleaving algorithms for BIC-MIMO-OFDM using the proposed error-rate analysis. We

note that adaptive interleaving can be employed on its own or in combination with bit-

loading. The former case may be preferable since no changes in signal constellations and

thus modulation and demodulation are necessary.
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Best Interleaver of a Set

The first method is based on selecting the best interleaver among a set of interleavers,

where the best interleaver is again determined using the general error-rate analysis derived

earlier. When combining this adaptive interleaving method with bit-loading, the proposed

scheme performs a search for both loading and interleaving for each channel realization. A

pragmatic choice for this search is a two-step (greedy-type) approach, which in a first step

selects the best interleaver for a non-loaded system, and in a second step selects the best

loading for this given interleaver. There are a number of options for determining the set

of candidate interleavers from which the “best” is chosen. In Section 2.5, we will present

results for both random sets and sets optimized for particular channel models.

It should be noted that this algorithm and also finding the best bit loading are fast

because for calculating the BER for each interleaver/bit loading, it is not necessary to redo

all the required steps since only the channel gain Λ is changing.

Iterative Interleaver Improvement

The second adaptive interleaver algorithm starts from an initial interleaver and improves

it by going through several iterations. Each iteration consists of the following steps:

(1) Calculate Pi,ℓ(Λ) = aℓ · PEPi,ℓ(Λ).

(2) Find the error vector and starting position of the largest Pi,ℓ(Λ), which

we denote as emax and pmax, respectively.

(3) Find the starting position of the smallest Pi,emax
(Λ), which we denote as

pmin.

(4) Find the subcarriers that contain the error vector emax at the starting

position of pmax and store them at the vector g
max

.
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(5) Find the subcarriers that contain the error vector emax at the starting

position of pmin and store them at the vector g
min

.

(6) Find the minimum of the vector g
max

and find the corresponding position

of the interleaver which we denote as indexmin.

(7) Find the maximum of the vector g
min

and find the corresponding position

of the interleaver which we denote as indexmax.

(8) Exchange the values of interleaver for indexmin and indexmax.

(9) Calculate PEP for the new interleaver.

We observe that after several iterations, the algorithm may oscillate, i.e., it may find a

repeated set of emax, pmax and pmin. In this situation, our algorithm is modified to find

the next largest Pi,ℓ(Λ) until it finds a set of emax, pmax and pmin that has not been used

before. It is worthwhile to note that the PEP calculation in step 9 is fast, since the new

interleaver is different from the old one in only two positions and, as a result, only a few

PEPs need to be recalculated.

Spatial Interleaving

A special case of MIMO-SVD transmission occurs if NT separate information streams are

transmitted.2 In this case, the MIMO-OFDM system is considered as NT parallel SISO-

OFDM systems in which the data of each information stream is transmitted over its specific

SVD subcarrier. We propose spatial interleaving for these systems. In spatial interleaving,

we first sort the singular values and then circularly shift them by one for each subcarrier.

For example, in a NT = 2, NR = 2 MIMO-SVD system, the SVD operation will result to

two singular values: λi,1, λi,2 for 1 ≤ i ≤ L. In the standard system, λi,1 is always greater

than or equal to λi,2 and therefore the resulting channel for the first source is better than

2Separate information streams per spatial layer are used in, e.g., 3GPP LTE systems.
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the second source. When we want to deploy spatial interleaving in this case, we should

keep Λi, U i and V i for the odd-numbered tones and switch the position of λi,1 and λi,2

in Λi and change U i and V i correspondingly for even-numbered tones. This way we will

have two links with almost similar quality. To evaluate the performance of these systems,

each system should be analyzed separately, and the overall performance of the system is

given by the average of these performances.

Remarks

As mentioned above, the idea of adaptive interleaving has been considered in [1, 2]. In

[1], the interleaver is symbol-based rather than bit-based as in our proposal, and the

interleaver selected for each channel realization is derived according to the channel gains

of each subcarrier such that error bursts are broken. Parallel to our work, [2] has devised

an adaptive bit-interleaving scheme, where the interleaver is designed based on the bit

level capacities of an equivalent binary channel model. However, using capacity as a

metric may not be accurate in practical systems, as it does not take the particular coding

scheme into account. Interestingly, the adaptive bit interleaver of [2] would result in the

adaptive symbol interleaver of [1] for 4-QAM with Gray labeling. This is because bit level

capacities for both bits in 4-QAM are equal and therefore, the corresponding metrics of the

algorithm of [2] are the scaled versions of the metrics of [1]. Finally, we note that the BER

approximations for coded OFDM derived in [20] and [21] are not applicable for adaptive

interleaving, since in both cases ideal interleaving is assumed.

2.4.3 Adaptive Coded Modulation

Optimization of bit-loading and adaptive interleaving entails a computational complexity

which may be too high for certain applications. An alternative to selecting the “optimal”
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constellation for each subcarrier as well as the “optimal” interleaver for BIC-OFDM is to

choose a coded modulation scheme (a code of a certain rate and a signal constellation of a

certain size, combined via a pre-defined bit-interleaver) from a finite set of such schemes.

Each of these coded modulation schemes provides different data rates, and using the de-

vised BER and WER analysis, we select the coded modulation scheme that achieves the

highest rate while not exceeding the desired target WER. If the WER constraint cannot be

achieved by any coded modulation scheme, no data is transmitted. This adaptive coded

modulation is, in terms of computational complexity, also particularly appealing, since

the WER computation does not start from scratch but rather needs only to include the

different channel realizations.

Adaptive coded modulation has also been considered in [21], where the authors select

the best combination of code rate and constellation size based on a simplified BER expres-

sion. We found, however, that this expression does not yield tight approximations of the

BER and thus is not well-suited for the purpose of adaptive coded modulation.

2.5 Results

In this section, we present numerical results to illustrate the usefulness of the analysis pre-

sented in Section 2.3 and the performance of the adaptive schemes proposed in Section 2.4.

Throughout this section, we allow mi ∈ {0, . . . , 6} bits per subcarrier, and employ loading

schemes with an average m̄ = 2 bits per subcarrier unless noted otherwise. We consider

the two OFDM systems described in Section 2.2, namely MB-OFDM (Section 2.2.2) and

802.11a/g with its MIMO extension (Section 2.2.3).
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Figure 2.1: 10% Outage BER versus 10 log10(Ēb/N0) from analysis (lines) and simulations
(markers) for various combinations of code rates and loading algorithms. MB-OFDM
system, UWB CM1 channel.

2.5.1 Accuracy of BER Approximation

First, we illustrate the accuracy of the proposed BER approximation for coded and loaded

OFDM. To this end, in Figure 2.1, we plot the 10% outage BER versus 10 log10(Ēb/N0)

from analysis (lines) as well as the corresponding simulation results (markers) for various

combinations of code rates and loading algorithms, for MB-OFDM over the UWB CM1

channel using a set of Nc = 100 channel realizations. (We note that the 10% outage BER

is a common performance measure in UWB systems, cf. e.g. [9, 37].) We can see that the

simulation results confirm the analysis for all considered code rates and loading algorithms,

with a maximum difference of 0.3 dB between simulation and analysis at low BERs.

In Figure 2.2, the 10% outage BER versus 10 log10(Ēb/N0) from analysis (lines) as
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Figure 2.2: 10% Outage BER versus 10 log10(Ēb/N0) from analysis (lines) and simulations
(markers) for the MIMO-SVD system.

well as the corresponding simulation results (markers) for 802.11a/g WLAN are plotted

for NT = 2, NR = 2 MIMO-SVD with different constellation sizes and code rates. We

consider the case where there is the same information source for all antennas (“one source”)

as well as the case where there is a separate information source for each SVD channel (“two

sources”). It can be seen that again we have a very good match between simulation and

analytical results which confirms the accuracy of our analytical expressions.

We note that obtaining the 10% outage BER via simulation is very time-consuming

due to the need to simulate the system separately for each channel realization. On the

other hand, the analysis can be performed quite quickly even for large sets of channel

realizations.

In the following, we show BER results obtained from the analytical expressions unless

31



Chapter 2. Performance Analysis for Bit-Loaded BIC-MIMO-OFDM

8 9 10 11 12 13 14
10

−6

10
−5

10
−4

10
−3

10
−2

 

 

NoLoading
HHA
Piazzo
CCB
Sorted CCB
Fischer−Huber
BSL

10 log10(Ēb/N0)
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Figure 2.3: 10% Outage BER versus 10 log10(Ēb/N0) from analysis for various loading
algorithms. MB-OFDM system with Rc = 1/2, UWB CM1 channel.

noted otherwise.

2.5.2 Bit-Loading for Coded OFDM

Next, we show results for bit-loading for coded OFDM. Firstly, the MB-OFDM system

with code rate Rc = 1/2 and transmission for the UWB CM1 is considered. Figure 2.3

shows the 10% outage BER versus 10 log10(Ēb/N0) for a number of popular loading algo-

rithms, and the proposed BSL algorithm. As a reference, the BER curve for coded OFDM

without loading is also shown. We observe that for this system and channel model, decent

gains of approximately 2 dB can be obtained by the application of loading. The Piazzo

and Fischer-Huber algorithms provide slightly smaller gains than the HHA and CCB al-

gorithms. The proposed BSL achieves the best performance, with modest additional gains
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over the conventional loading algorithms. Of course, this comes at the cost of the in-

creased complexity required to perform the BER analysis for all loadings. Interestingly,

the performance of sorted CCB is almost exactly the same as those for HHA and CCB,

which suggests use of sorted CCB also for coded OFDM due to its lower computational

complexity [42]. The slightly better performance of sorted CCB compared to CCB stems

from the fact that these bit loading algorithms are designed for uncoded systems and, as

a result, there is no guarantee that they still works good for BICM systems. In order to

reduce the computational complexity of BSL, we also performed the BSL using an error

vector set of size M = 1, i.e., we only included the minimum distance error event in the

analysis. The results obtained were identical to those in Figure 2.3. This suggests that

reduced-complexity BER estimation with small error vector sets could be an attractive

method for loading algorithms based on coded BER, such as BSL.

Secondly, we consider the 802.11a/g WLAN system with code rate Rc = 1/2 and the

channel model with RMS delay spread of Trms = 250 ns. In Figure 2.4, we again plot the

10% outage BER versus 10 log10(Ēb/N0) for the various loading algorithms. We observe

relatively smaller gains due to loading than for the UWB scenario, and the Piazzo loading

algorithm performs significantly worse than the other algorithms (see also Table 2.2 and

the discussion below). Again, BSL achieves the best performance. Furthermore, the sorted

CCB algorithm achieves a performance very similar to those of HHA and CCB.

In order to see more comprehensive statistics for the comparison of the different loading

schemes, Figure 2.5 shows the corresponding cumulative distributions of the loading gains

G = SNRNL − SNRLoading (NL: no loading) required to achieve a BER of 10−5, for the

MB-OFDM system with Rc = 1/2 over the UWB CM1 channel (SNR , 10 log10(Ēb/N0)).

Interestingly, we note that there is a small probability that the Piazzo, Fischer-Huber and

Sorted CCB loadings will result in a performance loss (negative gains), while the CCB,
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Figure 2.4: 10% outage BER versus 10 log10(Ēb/N0) from analysis for various loading
algorithms. 802.11a/g WLAN system with Rc = 1/2, channel Trms = 250 ns.
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Table 2.1: Relative use of different loading schemes as best solution. MB-OFDM, UWB
CM1 channel.

% Use (Rc = 1/2) % Use (Rc = 3/4)
Loading w/ HHA w/o HHA w/ HHA w/o HHA

No Loading 0 0 0 0
HHA [6, 40] 42 — 86 —
CCB [35] 38 65 7 27
Sorted CCB [42] 7 16 3 10
Piazzo [41] 2 1 0 1
Fischer-Huber [25] 11 18 4 62

HHA, and BSL algorithms always provide a performance gain. We again note that HHA,

CCB and Sorted CCB algorithms have similar performances. The BSL always results in

the highest loading gain. Finally, we note that gains of up to 4 dB can be expected from

loading, while gains of at least 1 dB can be expected for 50% of channel realizations.

Finally, we consider the relative use of different loading schemes for the BSL. Firstly,

Table 2.1 lists the results for the case of MB-OFDM with Rc = 1/2 and Rc = 3/4 and

the UWB CM1. Since calculating the HHA loading has a high computational complexity

compared to the other algorithms, we list the relative use both including and excluding

HHA (“w/ HHA” and “w/o HHA”, respectively). We note that for Rc = 1/2, CCB is the

most-used algorithm, while for Rc = 3/4 the Fischer-Huber algorithm is often the best.

The Piazzo algorithm is rarely the best loading for either code rate. By comparing the two

code rates, we can see that the best loading algorithm is rate dependent, indicating that

when deploying coded loaded OFDM systems, some consideration should be given to the

loading-coding combination during system design. Secondly, Table 2.2 lists the relative use

of different loading schemes in BSL for the 802.11a/g system with Rc = 1/2 and different

channel RMS delay spreads Trms. Interestingly, we note that for small Trms the best loading

is often the same modulation for all subcarriers (no loading). This is a result of the lack of
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Table 2.2: Relative use of different loading schemes as best solution. 802.11a/g, Rc = 1/2,
of (2.12), (2.13).

% Use (Trms = 50 ns) % Use (Trms = 100 ns) % Use (Trms = 250 ns)
Loading w/ HHA w/o HHA w/ HHA w/o HHA w/ HHA w/o HHA

No Loading 90 91 57 60 18 19
HHA [6, 40] 2 — 8 — 19 —
CCB [35] 1 2 6 7 14 20
Sorted CCB [42] 6 6 25 28 39 48
Piazzo [41] 0 0 1 1 2 2
Fischer-Huber [25] 1 1 3 4 8 11

variation in subcarrier channel gains due to the small delay spread. As Trms increases, the

channel gains have more variation and thus there is increased gain from loading. We also

note that the best loading is more varied for the WLAN case, indicating again that the

choice of a loading algorithm for coded OFDM systems is system-dependent and should

be carefully considered during system design.

2.5.3 Adaptive Interleaving

In this section, we show results for the three proposed adaptive interleaving algorithms.

We consider MB-OFDM with Rc = 1/2 for UWB CM1 and also MIMO IEEE 802.11a/g

with Rc = 1/2.

Impact of the Interleaver

In Figure 2.6, we plot the BER versus 10 log10(Ēb/N0) for one specific channel realization

from analysis (lines) as well as the corresponding simulation results (markers) when 3

different interleavers are used. In particular, the best and worst interleavers are chosen

among 1000 randomly generated interleavers, as well as the interleaver prescribed by the
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Figure 2.6: Comparing different interleavers for one channel realization. MB-OFDM sys-
tem with Rc = 1/2, UWB CM1 channel.

MB-OFDM standard. We can see that interleaver has a great impact on the performance

of the BICM systems. At the BER of 10−5 there is a difference of about 3.5 dB between

the performance for the best and worst interleavers. Therefore, we conclude that analyses

such as [20, 21], which consider the ideal interleaver, are not accurate in practical systems.

Best Interleaver of a Set

Next, we compare set-based adaptive interleaving using several different sets of interleavers.

In particular, we compare

(a) always using the MB-OFDM standard interleaver;

(b) choosing the interleaver with the lowest BER from a set consisting of 1000 randomly

generated bit-interleavers in addition to interleavers designed according to [1] with
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Figure 2.7: Average BER for different set-based adaptive interleaver and adaptive loading
schemes. MB-OFDM system with Rc = 1/2, UWB CM1 channel.

parameters D = 2 and D = 4 (we refer to this method as “best interleaver”); and

(c) choosing the interleaver with the lowest BER from a set of 10 bit-interleavers (the

9 best interleavers among random interleavers tested for another set of UWB CM1

channels, and the standard interleaver).

We also consider combined bit-loading and adaptive interleaving, where the interleaver

is selected using option (c) above.

In Figure 2.7 we plot the average BER versus 10 log10(Ēb/N0) for the different adaptive

interleaver schemes. The BER is averaged over Nc = 2000 channel realizations. As a

reference, the BER for bit-loading with the fixed standard interleaver is also shown. We

observe that adaptive interleaving without bit-loading results in a gain of about 1 dB for

the considered scenario. If we restrict the search space to only 10 pre-selected interleavers,
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Figure 2.8: Cumulative distribution function of interleaving gain G = SNRstandard −
SNRadaptive required for BER = 10−5 for different set-based adaptive interleaver schemes.
MB-OFDM system with Rc = 1/2, UWB CM1 channel.

the gain diminishes, especially for lower error rates. We note that we obtained practically

the same results if the interleavers were pre-selected based on a different UWB CM, e.g.,

CM3. Hence, we conclude the diversity of interleavers available, not the pre-selection, is

critical for the performance gains with adaptive interleaving. Furthermore, it can be seen

that the combination of adaptive interleaving and bit-loading has a small gain. It has been

said in [2] that combining bit-loading and adaptive interleaving will result in performance

loss compared to plain adaptive interleaving. On the other hand, it can be seen that our

scheme always results in performance gain, although the gain might be small.

Figure 2.8 provides further insight by showing the cumulative distribution of the adap-

tive interleaving gain G = SNRstandard − SNRadaptive, where SNRx is the SNR required to

achieve a BER of 10−5, for different adaptive interleaving schemes for Nc = 1000 channel
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Figure 2.9: 10% Outage BER for different adaptive interleaver schemes: symbol-based
adaptive interleaver [1], bit-based adaptive interleaver [2], and our iterative adaptive in-
terleaver algorithm. MB-OFDM system with Rc = 1/2, 16-QAM modulation, UWB CM1
channel.

realizations. In particular, the effect of the size of the set from which interleavers are

selected is highlighted. It can be seen that there is no performance loss using our method.

We also observe that gains of up to 4.5 dB can be expected from our proposed adaptive

interleaving scheme.

Iterative Interleaver Improvement

The outage BER for our iterative interleaver improvement algorithm for 16-QAM is plotted

in Figure 2.9, compared with the performance of the standard interleaver, symbol-based

adaptive interleaving [1], and bit-based adaptive interleaving [2]. Our iterative algorithm

starts with an initial interleaver from the bit-based adaptive algorithm. It can be seen
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Figure 2.10: Cumulative distribution function of the interleaving gain G = SNRSF −
SNRour algorithm required for BER = 10−5 for our iterative adaptive interleaver versus bit-
based adaptive interleaving (SF) [2]. MB-OFDM system with Rc = 1/2, 16-QAM modu-
lation, UWB CM1 and CM3 channels.

that our algorithm will result in 0.5 dB performance gain over the bit-based algorithm,

and approximately 1.3 dB gain over the symbol-based algorithm.

In Figure 2.10 the cumulative distribution of the gain G = SNRSF −SNRour algorithm for

our iterative interleaver improvement method is shown, where SNRSF and SNRour algorithm

are the SNRs required to achieve a BER of 10−5 for the bit-based adaptive algorithm of

Stierstorfer and Fischer (SF) [2], and for our algorithm, respectively. It can be seen that

gains of up to 2 dB can be expected from our method for both CM1 and CM3 channels.

Spatial Interleaving

The average BER for different adaptive interleaving techniques for IEEE 802.11a/g with

2 transmit and 2 receive antennas and two separate information sources are plotted in

Figure 2.11. We can see that our proposed spatial interleaving results in about 5 dB per-
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Figure 2.11: Average BER for different adaptive interleaver schemes for MIMO-SVD.
Rc = 1/2, 4-QAM modulation.

formance gain. We can also combine spatial interleaving with other adaptive interleaving

techniques. In this figure, we combine spatial interleaving with our set-based adaptive in-

terleaving technique, where the best interleaver for each resulting channel is picked among

the 10 best interleavers chosen for another set of channels. By doing so, we gain another

1.65 dB for the BER of 10−5.

2.5.4 Adaptive Coded Modulation

In this section, we show results for the proposed adaptive coded modulation scheme consid-

ering the 802.11a/g WLAN system with Trms = 250 ns and Ts = 50 ns. We consider both

the SISO system as well as 2 × 2 MIMO-SVD system with only one information source.

The set of available code rates and modulations are shown in Table 2.3, with total data
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Table 2.3: Different code rates and modulations used for the simulation results.

RT Rc Modulation

1 1/2 4-QAM
1.33 2/3 4-QAM
1.5 3/4 4-QAM
2 1/2 16-QAM
2.67 2/3 16-QAM
3 3/4 16-QAM
3 1/2 64-QAM
4 2/3 64-QAM
4.5 3/4 64-QAM

rates from 1 bit/symbol to 4.5 bit/symbol. We call each combination of modulation and

code rate a “mode”. For the results, we generate a set of 1000 channel realizations and for

each channel realization, we select the appropriate mode using our error rate approxima-

tion, send the OFDM symbol over the channel, and decode it at the receiver. This allows

us to measure the goodput (the successfully transmitted data rate) which has also been

considered in [21]. A target word error rate of 10−2 is adopted for both schemes.

The goodput versus 10 log10(Ē/N0) per subcarrier is plotted in Figure 2.12. The effect

of different numbers of modes is analyzed in this figure. The system with 9 modes denotes

the system which uses all the available code rates and constellation sizes. For 6 modes,

Rc = 2/3 is not used and for 4 modes, 4-QAM with Rc = 3/4 and 64-QAM with Rc = 1/2

are also not used. It can be seen that using more modes will result in higher goodput

because the system has more flexibility, however the resultant gain is dependent on the

SNR. This is because in the low SNR region our method tends to select the lowest possible

rate, thus having more modes does not help in this region. Simulation results for the 6

modes case are also plotted in this figure for both SISO and MIMO cases. It can be seen

that analytical and simulation results perfectly match, again confirming the accuracy of
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Figure 2.12: Comparing the goodput for different adaptive coded modulation algorithms.
IEEE 802.11a/g WLAN system, channel Trms = 250 ns and Ts = 50 ns.

the analytical results. Finally, we note that the gap to channel capacity for SISO and

MIMO OFDM is consistently about 6 dB (using 9 modes), which is a promising result

considering that convolutional codes are used.

2.6 Summary

In this chapter, we have developed a novel analytical method for BER and WER estimation

of bit-loaded coded MIMO-OFDM systems operating over frequency-selective quasi-static

channels with non-ideal interleaving. The presented numerical results illustrate that the

proposed analysis technique provides an accurate estimation of the BER of loaded BIC-

MIMO-OFDM systems. This allows for system performance analysis without resorting
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to lengthly simulations. We have put the analysis to use in three different applications,

namely bit-loading, adaptive interleaving, and adaptive coded modulation. In the case

of bit loading, we have shown that the relative performance of bit-loading algorithms for

coded OFDM is system-dependent, and thus some care should be given to the selection of

loading algorithms for coded OFDM systems. The proposed “best solution” guarantees the

best performance, at a cost of somewhat higher complexity when performing the loading.

Adaptive interleaving has been confirmed to be an interesting alternative and addition to

bit loading in coded OFDM. Finally, the application of the derived WER expressions to

adaptive coded modulation algorithm leads to goodput close to the ultimate limit, while

guaranteeing a certain target WER.
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Chapter 3

Adaptive BIC-OFDM: Performance

Analysis and Optimization

3.1 Introduction

While the analysis proposed in Chapter 2 enables us to derive the performance for bit-

loaded BIC-OFDM, the resulting expression might be too complex in some applications.

In this chapter, we present a general framework for performance evaluation of a BIC-OFDM

transmission system given a channel realization and interleaver structure. The proposed

analysis makes use of the approximations for the probability density function (PDF) of reli-

ability metrics developed in [13]. Different from the results presented in Chapter 2 and [17],

our BER expression is not based on analyzing the system for a fixed reference codeword.

Based on the derived BER expression, the BER minimization optimization problem in the

asymptotically-high signal-to-noise ratio (SNR) regime is formulated. Here, optimization

refers to simultaneous power and bit loading and code rate selection. Unfortunately, this

optimization problem cannot be solved optimally using any polynomial-time algorithm.

For this reason, we derive the expression for the BER averaged over randomly selected

interleavers. Using this newly derived BER expression, we are able to formulate BER

minimization as a margin maximization problem (MMP) [30, 31], which can be solved

using greedy type algorithms. Here, we also derive power minimization and throughput

maximization algorithms under BER constraints. Finally, we derive an asymptotic BER
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expression for the optimized system.

The rest of this chapter is organized as follows. Section 3.2 introduces the BIC-OFDM

transmission system, the approximation for the PDF of reliability metrics, and important

types of optimization problems arising in the design of such systems. In Section 3.3, we

derive the BER expression for BIC-OFDM system for a specific channel and interleaver

realization and simplify it for high SNR. Then, we calculate the BER expression averaged

over interleaver realizations and further simplify it in the high SNR regime. Section 3.4 in-

troduces computationally-efficient algorithms for solving the defined optimization problems

and also the BER expression for the performance of the optimized system. In Section 3.5,

we present a number of representative simulation results confirming the accuracy of the

proposed analysis and the performance improvement made by optimizing the transceiver.

Finally, we offer concluding remarks in Section 3.6.

3.2 Preliminaries

In this section, first the BIC-OFDM transmission system is introduced. More information

about each block can be found in Section 1.5. Then, based on the results presented in [13],

we introduce a closed-form approximation for the PDF of reliability metrics which will be

used in Section 3.3. Finally, we briefly review different optimization problems arising in

the design of BIC-OFDM systems.

3.2.1 System Model

At the transmitter, a block of B information bits b = [b1, b2, · · · , bB] is encoded into N

coded bits c = [c1, c2, · · · , cN ] using a binary encoder. In this chapter, we consider the set of

available encoders C as different puncturing patterns applied to a fixed encoder. Then, the

output of the encoder is input to a bitwise interleaver π. The result cπ = [cπ1 , c
π
2 , · · · , cπN ] is
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input to a mapper µ : {0, 1}N → X where X = X1×X2×· · ·×XL and Xi denotes the signal

constellation used for the ith OFDM subcarrier and L is the number of subcarriers. We

assume that Xi is a quadrature amplitude modulation (QAM) constellation and mapping is

done according to binary reflected Gray labeling. With the inverse fast Fourier transform at

the transmitter, fast Fourier transform at the receiver, appropriate cyclic prefix processing,

and assuming coherent reception, the equivalent baseband channel for the ith subcarrier

is given by

yi =
√
pi hi xi + zi , i = 1, · · · , L , (3.1)

where yi ∈ C denotes the received symbol, hi ∈ R+ is frequency-domain channel gain,

pi ∈ R+ is the allocated power, xi ∈ Xi is the transmitted symbol, and zi ∈ C is the noise

sample in the ith subcarrier. We assume that zi is additive white Gaussian noise (AWGN)

with E
{
‖zi‖2} = 1. Furthermore, under the quasi-static fading assumption channel gains

hi remain unchanged during the transmission of a few consecutive symbols [17, 20]. Finally,

the total power allocated to the L subcarriers is given by

L∑

i=1

pi = P . (3.2)

At the receiver, the demapper outputs Mi = log2 (|Xi|) bitwise reliability metrics, in

the form of log-likelihood ratios (LLRs), corresponding to the coded bits transmitted over

the ith subcarrier. In practice, for ease of implementation, the LLR is approximated using

the max-log simplification [19, 43]

λi,j = − min
a∈X 1

i,j

‖yi −
√
pi hi a‖2 + min

a∈X 0
i,j

‖yi −
√
pi hi a‖2 , (3.3)

where the second subscript of λi,j indicates the position of the bit in the binary label of

the constellation under consideration and X b
i,j denotes the set of symbols in Xi with the
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jth bit in the binary label fixed to b.

It is known that (3.3) provides practically maximum-likelihood (ML) decoding per-

formance [44, 45]. Therefore, we adopt this simple metric expression. In slight abuse

of terminology, we will also refer to λi,j in (3.3) as LLR. Finally, the LLRs are deinter-

leaved into λπ−1

i,j and input to the ML decoder of the binary code in order to retrieve the

information bits.

3.2.2 Analytical Approximation for the PDF of LLRs

Recently, a novel approximation for PDF of LLRs given in (3.3) has been proposed in

[13]. It is shown that this PDF approximation is accurate in the SNR range in which the

BER union bound converges to the actual performance of the transmission system, and

therefore it is useful for analyzing systems with moderate-complexity coding schemes, e.g.,

convolutional coded systems. In the following, based on the results in [13], we represent

the PDF expressions for Gray-mapped square QAM constellations. We assume that the

symmetry property holds and thus without loss of generality we consider the transmission

of cπ = 1 [19].

We define the LLR random variable Λi,j as [46]

Λi,j = log

(

Pr
(
c̃π = cπi,j

∣
∣η
)

Pr
(
c̃π = c̄πi,j

∣
∣η
)

)

, (3.4)

where η = [yi, hi, pi,Xi] and

Pr
(
c̃π = cπi,j

∣
∣η
)
∝

∑

x∈X
ci,j
i,j

exp(−|yi −
√
pihix|2) , (3.5)

and cπi,j is the interleaved coded bit transmitted in the jth position of the binary label of

the symbol transmitted over the ith subcarrier and c̄πi,j denotes its complement. Using the
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Table 3.1: Values of the parameters used in the approximation for the PDF of LLRs. Only
nonzero coefficients are shown here.

Constellation n β dmin

BPSK 1 β1,1 = 1 2

QPSK 1 β1,1 = 1, β2,1 = 1
√

2

16-QAM 2 β1,1 = 0.5, β1,2 = 0.5, β2,1 = 1, β3,1 = 0.5, β3,2 = 0.5, 2√
10

β4,1 = 1

64-QAM 3 β1,1 = 0.5, β1,2 = 0.25, β1,3 = 0.25, β2,1 = 0.75, 2√
42

β2,2 = 0.25, β3,1 = 0.5, β3,2 = 0.25, β3,3 = 0.25

result from [13], it immediately follows that we can approximate the PDF of Λi,j by

fΛi,j
(λ) =

n(Xi)∑

k=1

βXi

j,k N (λ; ai,k, 2ai,k) , (3.6)

where ai,k =
(
kdXi

min

)2
pih

2
i , d

Xi

min denotes the minimum Euclidean distance of constellation

Xi, and n (Xi) and βXi

j,k are parameters which depend on the constellation and bit position,

which we summarized in Table 3.1 for some important constellations for convenience3, and

N
(
x;µ, σ2

)
=

1√
2πσ2

exp

(

−(x− µ)2

2σ2

)

. (3.7)

3.2.3 Optimization Problems For BIC-OFDM

There are three popular classes of optimization problems for loading and code-rate selection

in OFDM as shown in Figure 3.1.

3Since Gray-mapped QAM constellations with size greater than 16 are not unique, we have used
([000, 001, 011, 111, 101, 100, 110, 010]) for 64-QAM.
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Power MinimizationBER Minimization Rate Maximization

Optimization Problems

Total Rate ≥ Bt

min
C,X ,P

BER

s. t.

min
C,X ,P

Total Power

s. t. Total Rate ≥ Bt

BER ≤ BERt

s. t. Total Power ≤ Pt

BER ≤ BERtTotal Power ≤ Pt

max
C,X ,P

Total Rate

Figure 3.1: Different optimization problems in BIC-OFDM.

BER Minimization

The BER is minimized given the power budget Pt and the target rate Bt. This BER

minimization problem can be formulated as

min
C,X ,p,π

Pb(θ)

s.t. R(C)

L∑

i=1

Mi ≥ Bt ,

L∑

i=1

pi ≤ Pt ,

(3.8)

where Pb(θ) denotes the BER given a code C, an interleaver π, a vector of constellations

X = [X1 . . .XL], a vector of powers p = [p1 . . . pL], and the channel gains h = [h1 . . . hL],

which are collected in the parameter vector θ = [C, π,X , p, h], and R(C) is the code rate.

Note that the optimization (3.8) includes the selection of the code C.
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Power Minimization

The aggregate transmitted power is to be minimized conditioned on the target rate Bt and

the BER of BERt. This power minimization problem can be formulated as

min
C,X ,p

L∑

i=1

pi

s.t. R(C)
L∑

i=1

Mi ≥ Bt ,

Pb(θ) ≤ BERt .

(3.9)

Throughput Maximization

Given a target BER and a power budget, it is desired to maximize the throughput of the

system, i.e.

max
C,X ,p

R(C)
L∑

i=1

Mi

s.t.

L∑

i=1

pi ≤ Pt ,

Pb(θ) ≤ BERt .

(3.10)

The algorithm for solving each problem is presented in Section 3.4.2.

3.3 Expressions for the Performance of BIC-OFDM

In this section, first we derive an expression for the BER of BIC-OFDM. Then, based on

this expression, the BER minimization problem (3.8) is formulated. Unfortunately, this

optimization problem is not solvable in polynomial-time in general. Therefore, we next

consider the performance of BIC-OFDM averaged over random interleavers. The resulting

BER expression leads to formulations of the optimization problems from Section 3.2.3,
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which can be solved computationally efficiently.

3.3.1 Known Interleaver

Performance Evaluation

Given a convolutional code C, an interleaver π, and vectors of constellations X , powers p,

and channel gains h, the BER union bound can be expressed as

Pb(θ) ≤
1

B2B

∑

c

∑

dH,m,n

w(C, ν)Pe(θ, c, ν) , (3.11)

where the first sum runs over all codewords c, and the second sum runs over Hamming

distances dH of error vectors, starting positions m of error events, and all error vectors for

given (m, dH). Hence, the triple ν = [dH, m, n] defines one specific error event. Furthermore,

w(C, ν) denotes the input weight for the error event specified by ν, and Pe(θ, c, ν) is the

probability of this event.

We now make the assumptions that (i) no two or more non-zero binary symbols be-

longing to an error vector are mapped to the same OFDM subcarrier and (ii) that the

interleaved coded bits mapped to a signal point are uniformly i.i.d. These assumptions

are necessary for the following analysis and are in the spirit of the usual “ideal” inter-

leaving assumption. The first assumption is easily guaranteed with practical interleavers

for short error events, which dominate the performance, and the second property is well

approximated by interleaved convolutional codes. Then we can re-write (3.11) as

Pb(θ) ≤
1

B

∑

ν

w(C, ν)
dH∏

k=1

Msk(ν)

∑

c
sk(ν)

k=1,...,dH

Pe(θ, c
sk(ν), ν) , (3.12)

where sk(ν) is the subcarrier index for the kth non-zero element of the error vector specified
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by ν and csk(ν) is the binary Msk(ν)-tuple of bits transmitted over subcarrier sk(ν).

We define bk(ν) as the position of the kth non-zero bit of the error vector specified by

ν in the binary label of Xsk(ν) and also

∆(θ, ν) =

dH∑

k=1

Λsk(ν),bk(ν) . (3.13)

It can be shown that

P̄e(θ, ν) =
1

dH∏

k=1

Msk(ν)

∑

c
sk(ν)

k=1,...,dH

Pe(θ, c
sk(ν), ν)

= Pr (∆(θ, ν) < 0) .

(3.14)

Assuming ideal interleaving, random variables Λsk(ν),bk(ν) for k = 1, · · · , dH are independent.

As a result, PDF of ∆(θ, ν) can be calculated as the convolution of the PDFs of Λsk(ν),bk(ν)

as

f∆(θ,ν)(λ) = fΛs1(ν),b1(ν)
(λ) ⊗ · · · ⊗ fΛsdH

(ν),bdH
(ν)

(λ)

=

n(Xs1(ν))
∑

l1=1

· · ·
n(XsdH

(ν))
∑

ldH
=1

[
dH∏

k=1

β
Xsk(ν)

bk(ν),lk

]

N
(

λ;

dH∑

k=1

ask(ν),lk , 2

dH∑

k=1

ask(ν),lk

)
(3.15)

where ⊗ denotes the convolution operator. By using (3.15), (3.14) can be calculated as

P̄e(θ, ν) =

∫ 0

−∞
f∆(θ,ν)(x)dx

=

n(Xs1(ν))
∑

l1=1

· · ·
n(XsdH

(ν))
∑

ldH
=1

[
dH∏

k=1

β
Xsk(ν)

bk(ν),lk

]

Q





√
√
√
√1

2

dH∑

k=1

ask(ν),lk



 .

(3.16)
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Using (3.16) in (3.12), the approximation

Pb(θ) ≤
1

B

∑

ν

w(C, ν)P̄e(θ, ν) (3.17)

for the BER union bound becomes closed form. We note that evaluation of (3.17) becomes

computationally feasible when the sum is limited to the dominant error event with small

dH.

In the high SNR regime, (3.16) converges to

P̄e(θ, ν) ≈
[

dH∏

k=1

β
Xsk(ν)

bk(ν),1

]

Q





√
√
√
√1

2

dH∑

k=1

ask(ν),1



 , (3.18)

from which we define the following parameter

dE(θ, ν)
∆
=

dH∑

k=1

ask(ν),1 (3.19)

Now we define d∗E(θ) as follows:

d∗E(θ) = min
ν
dE(θ, ν) (3.20)

and the solution of (3.20) is denoted by ν∗ which is the dominant error event. By only

using the dominant term in (3.18), Pb(θ) in high SNR regime can be estimated as

Pb(θ) ≈
1

B
w(C, ν∗)

[
dH∏

k=1

β
Xsk(ν∗)

bk(ν∗),1

]

Q

(√

1

2
d∗E(θ)

)

(3.21)
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BER Minimization

Making use of the BER expression in (3.21), the optimization problem defined in (3.8) is

equivalent to

max
C,X ,p,π

min
ν
dE(θ, ν)

s.t. R(C)
L∑

i=1

Mi ≥ Bt ,

L∑

i=1

pi ≤ Pt ,

(3.22)

where dE(θ, ν) is defined in (3.19).

The optimization problem defined in (3.22), to the best of our knowledge, cannot be

solved optimally using any polynomial-time algorithm. The only exception for which (3.22)

can be formulated as a convex optimization problem (and only for QPSK and BPSK

transmission) is the power allocation problem, cf. [27] which is not of much practical

interest, and also the computational complexity of the solution renders it unsuitable for

practical purposes [27].

3.3.2 Random Interleaver

While (3.16) and (3.17) enable a performance evaluation for a given parameter θ, it is not

directly useful for adaptive BIC-OFDM as explained earlier. A pragmatic approach to

overcome this difficulty is to consider the average performance for an ensemble of inter-

leavers which is equivalent of assuming a random interleaver. In the following, we derive

an expression for BER assuming a random interleaver.

We assume that interleavers are selected uniformly from the set of N ! possible inter-

leavers which was also considered in [20] and [26]. Hence, we are interested in an expression
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for

Pb(ξ) = Eπ{Pb(θ)} = Eπ{Pb([ξ, π])} , (3.23)

where C, X , p, and h are collected in the parameter vector ξ = [C,X , p, h]. Using (3.17)

we obtain

Pb(ξ) ≤ Eπ

{

1

B

∑

ν

w(C, ν)P̄e(θ, ν)

}

(a)
=

∑

dH

(

1

B

∑

m

∑

n

w(C, ν)
)

Eπ

{
P̄e(θ, ν)

}

=
∑

dH

w(C, dH)P̄e(dH, ξ) ,

(3.24)

where we have defined

w(C, dH) =
1

B

∑

m

∑

n

w(C, ν) , (3.25)

which is the distance spectrum of the code C, and

P̄e(dH, ξ) = Eπ

{
P̄e(θ, ν)

}
. (3.26)

To show that step (a) holds in (3.24), i.e., Eπ

{
P̄e(θ, ν)

}
is independent of parameters m

and n, we use the alternative expression of the Gaussian Q-function to write (3.16) as

P̄e(θ, ν) =
1

π

π/2∫

0

n(Xs1(ν))
∑

l1=1

· · ·
n(XsdH

(ν))
∑

ldH
=1

[
dH∏

k=1

β
Xsk(ν)

bk(ν),lk
exp

(

−ask(ν),lk

4 sin2 φ

)]

dφ

=
1

π

π/2∫

0

dH∏

k=1

n(Xsk(ν))
∑

l=1

β
Xsk(ν)

bk(ν),l exp

(

− ask(ν),l

4 sin2 φ

)]

dφ.

(3.27)

57



Chapter 3. Adaptive BIC-OFDM: Performance Analysis and Optimization

Then, (3.26) can be developed as

P̄e(dH, ξ) = Eπ

{
P̄e(θ, ν)

}

=
1

π

π/2∫

0

Eπ







dH∏

k=1

n(Xsk(ν))
∑

l=1

β
Xsk(ν)

bk(ν),l exp

(

− ask(ν),l

4 sin2 φ

)





dφ

(a)≈ 1

π

π/2∫

0

dH∏

k=1

Esk(ν),bk(ν)

{ n(Xsk(ν))
∑

l=1

β
Xsk(ν)

bk(ν),l exp

(

− ask(ν),l

4 sin2 φ

)}

dφ

(b)
=

1

π

π/2∫

0

dH∏

k=1




1

N

L∑

i=1

Mi∑

j=1

n(Xi)∑

l=1

βXi

j,l exp

(

− ai,l

4 sin2 φ

)


 dφ

(c)
=

1

π

π/2∫

0




1

N

L∑

i=1

Mi∑

j=1

n(Xi)∑

l=1

βXi

j,l exp

(

− ai,l

4 sin2 φ

)




dH

dφ

(3.28)

where (a) makes the approximation of independent assignments of interleaving positions

for each pair (sk(ν), bk(ν)), whose effect is negligible for large enough interleavers, (b) is

due to the assumption of uniform interleaving, and (c) follows from the independence of

the arguments of the product.

Expanding (3.28) using the multinomial series representation [47, p. 823], the domi-

nating terms of P̄e(dH, ξ) can be expressed as a superposition of Gaussian Q-functions:

P̄e(dH, ξ) =
L∑

i=1

(

1

N

Mi∑

j=1

βXi

j,1

)dH

Q

(√

dHai,1

2

)

, (3.29)

which can be used in (3.24) to calculate the BER union bound.

Pb(ξ) can be further simplified by only considering the dominating term of the series,

which is

max
i







(

1

N

Mi∑

j=1

βXi

j,1

)dH

Q

(√

dHai,1

2

)





, (3.30)
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and this maximization is equivalent to

min
i
{ai,1} , (3.31)

in high SNR and the solution is denoted by i∗. Consequently, we use the asymptotic BER

approximation

Pb(ξ) ≈ w(C, dfree(C))

(

1

N

Mi∗∑

j=1

β
Xi∗

j,1

)dfree(C)

Q

(√

dfree(C)ai∗,1

2

)

, (3.32)

where dfree(C) is the code’s free distance.

3.4 Solutions to the Optimization Problems

Making use of the analysis results from the previous section, in this section we first derive

a simple formula for the performance of the optimized systems. Then, we reformulate the

optimization problems defined in Section 3.2.3 and present algorithms to find the optimal

solutions for these revised problems.

3.4.1 Performance Evaluation for Optimized System

In this section, we develop a low-complexity method for performance analysis of the opti-

mized BIC-OFDM system. We will show in the next section that in the optimized system,

ai,1 is a constant which we denote by E, i.e. ai,1 = E for 1 ≤ i ≤ L. Therefore, (3.28)

becomes

P̄e(dH, ξ) =
1

π

π/2∫

0

[
lmax∑

l=1

ǫl exp

(

− l2E

4 sin2 φ

)]dH

dφ , (3.33)
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where we have defined the two parameters4

lmax = max
1≤i≤L

n(Xi) , (3.34)

ǫl =
1

N

L∑

i=1

Mi∑

j=1

βXi

j,l . (3.35)

Using the multinomial series expansion [47, p. 823], (3.33) can be written as

P̄e(dH, ξ) =
1

π

π/2∫

0

∑

k1,...,klmax
k1+...+klmax

=dH

(

dH!
∏lmax

l=1 kl!

)(
lmax∏

l=1

ǫkl

l

)

exp

(

−
[

lmax∑

l=1

kll
2

]

E

4 sin2 φ

)

dφ

=
∑

k1,...,klmax
k1+...+klmax

=dH

(

dH!
∏lmax

l=1 kl!

)(
lmax∏

l=1

ǫkl

l

)

Q





√
√
√
√

[
lmax∑

l=1

kll2

]

E

2



 . (3.36)

Taking into account the dominant term in high SNR, we reach at the following asymptotic

result

P̄e(dH, ξ)
E→∞
= ǫdH

1 Q

(√

EdH

2

)

. (3.37)

Expression (3.36) can be used in (3.24) to obtain a closed-form union bound BER

approximation for the optimized system. In the case of asymptotically high SNR, expres-

sion (3.37) is used in (3.24) considering only dH = dfree meaning that we can derive the

performance of the optimized system using a simple formula.

3.4.2 Optimization Problems

The algorithm for solving the optimization problems in Section 3.2.3 are presented here.

4Note that ai,l = l2ai,1
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Margin Maximization Problem

We start by reviewing the so called margin maximization problem (MMP) which is pro-

posed in [30, 31, 40]. The MMP can be formulated according to

min
X ,p

L∑

i=1

pi

s.t. R(C)

L∑

i=1

Mi ≥ Bt ,

Ei = Et , ∀i ∈ {1, · · · , L} .

(3.38)

where Ei denotes a parameter which solely depends on the power allocated to the subcarrier

pi and the constellation bi
5 which in our problem is

Ei = ai,1 . (3.39)

Next, we define ∆ (Pi (k)) according to

∆ (Pi (k)) =







Pi (k) −Pi (k − 1) if k ≥ 1

0 if k = 0

(3.40)

where Pi(k) (or Pi(k − 1)) is the required power such that the conditions Ei = Et and

Mi = k (or Mi = k − 1) hold.

The following gives a simple pseudo code for the algorithm which finds the optimal

solution of (3.38) as it is proposed in [30, 31, 40]

5Originally, Ei was picked as the BER of the subcarrier when coding was along each subcarrier rather
than across different subcarriers.
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set M = [0, · · · , 0]

while

L∑

i=1

Mi <
Bt

R(C)

find k s.t. ∆ (Pk (Mk + 1)) = min
i

∆ (Pi (Mi + 1))

Mk = Mk + 1

set pi = Pi(Mi) for 1 ≤ i ≤ L

Note that the condition ∆ (Pk (Mk + 1)) = min
i

∆ (Pi (Mi + 1)) results in the extra bit

being sent over the subcarrier with the least amount of extra power.

In each of the following subsections, we will show that all the proposed optimization

problems in Section 3.2.3 can be solved by using MMP. Unlike Section 3.2.3, random inter-

leaving is assumed here. Therefore, we do not optimize over π in the following subsections.

BER Minimization

Using the asymptotic BER expression given in (3.32) and noting that in the high SNR

regime, the argument of the Q-function dominates over the multiplicative coefficient, we

obtain that the BER minimization problem defined in (3.8) is equivalent to the following

optimization problem (recall that ai,1 = (dXi

min)
2pih

2
i ):

max
C,X ,p

dfree(C)(dXi∗

min)
2pi∗h

2
i∗

s.t. R(C)
L∑

i=1

Mi ≥ Bt ,

L∑

i=1

pi ≤ Pt .

(3.41)

The following lemma gives necessary conditions for the optimal solution.
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Lemma 3.4.1 The optimal solution of (3.41)
(
C∗,X ∗, p∗

)
satisfies

(
dXi

min

)2
pih

2
i =

(

d
X

î

min

)2

pîh
2
î
, i, î ∈ {1, · · · , L} ,

R(C)

L∑

i=1

M∗
i = Bt ,

L∑

i=1

p∗i = Pt .

(3.42)

Proof The goal here is to maximize the minimum of
(
dXi

min

)2
pih

2
i for i ∈ {1, · · · , L}

subject to a target rate Bt and target power Pt. Assume the values of
(
dXi

min

)2
pih

2
i for

i ∈ {1, · · · , L} are not equal for the optimal solution. Therefore, power can be given to

min
((
dXi

min

)2
pih

2
i

)

from other subcarriers which causes min
((
dXi

min

)2
pih

2
i

)

to increase and

that’s a contradiction to the optimal solution.

Due to Lemma 3.4.1, problem (3.41) can be decomposed into two consecutive optimiza-

tion problems. First, we fix the coding scheme, i.e., C, and then we optimize the power

and bit loading policy for the given code. The optimization with respect to the code C can

be done by full enumeration since usually there are only a few different coding schemes

(e.g. puncturing patterns) available. Hence, (3.41) can be written as

max
C

Edfree(C)

max
X ,p

E

s.t. :
(
dXi

min

)2
pih

2
i = E, i = 1, . . . , L,

R(C)
L∑

i=1

Mi = Bt ,

L∑

i=1

pi = Pt .

(3.43)
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Letting

Ei =
(
dXi

min

)2
pih

2
i , (3.44)

we can rewrite the inner optimization problem from (3.43) as

max
X ,p

E

s.t.

L∑

i=1

pi = Pt

L∑

i=1

Mi = Bt

Ei = E , ∀i ∈ {1, · · · , L} .

(3.45)

The following theorem shows that we can use the greedy algorithms from [30, 31, 40]

to solve the BER minimization problem.

Theorem 3.4.2 If X † and p† are the solution of (3.38), then solution X ∗ and p∗ of (3.45)

is given by

X ∗ = X † , (3.46)

p∗i =
Pt

L∑

i=1

p†i

p†i , i = 1, . . . , L . (3.47)

Proof Assume that the solution of (3.45) is X̂ and p̂ which is different from X ∗ and p∗

given in (3.46) and (3.47). Accordingly, the corresponding values for E satisfy Ê > E∗.

Since, Ei is a linear function of pi and

L∑

i=1

M̂i =
L∑

i=1

M∗
i = Bt ,
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the vector p̂ can be scaled down by the factor6 Et/ Ê which together with X̂ results in a

better optimal solution for (3.38) than X † and p† which is a contradiction.

Power Minimization

By using relation (3.32), the power minimization problem defined in (3.9) can be reformu-

lated as

min
C,X ,p

L∑

i=1

pi

s.t. R(C)

L∑

i=1

Mi ≥ Bt ,

Pb(ai∗,1, C,X ) ≤ BERt ,

(3.48)

where Pb(ai∗,1, C,X ) is the BER expression defined in (3.32). From this equation, we have

Pb(ai∗,1 + δ, C,X 1) < Pb(ai∗,1, C,X 2) , ∀X 1,X 2 ∈ Z
L . (3.49)

Note that (3.49) is independent of bit loading X .

Lemma 3.4.3 The optimal solution of (3.48) satisfies

ai,1 = aî,1 , i, î ∈ {1, · · · , L} . (3.50)

Proof Assume that the optimal solution of (3.48) does not satisfy the condition in (3.50),

then the power allocated to all subcarriers except the one with minimum ai,1 can be reduced

to the point that they do not alter the minimum value of ai,1, which is a contradiction.

6Note that Pt

L
P

i=1

p
†
i

= E
∗

Et
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According to Lemma 3.4.3 and using the same argument as in Section 3.4.2, the problem

of (3.48) can be decomposed into two problems as

min
C

Pt

min
X ,p

Pt

s.t.

L∑

i=1

pi = Pt,

R(C)

L∑

i=1

Mi = Bt ,

ai,1 = E, i = 1, . . . , L ,

Pb(E, C,X ) ≤ BERt .

(3.51)

Lemma 3.4.3 also allows us to use the approximation in (3.37) instead of the one in (3.32)

for BER calculations.

The inner problem in (3.51) is an MMP but we cannot solve it directly since the value

of E is unknown (E should be calculated from (3.37) but this expression depends on the

bit loading X which is unknown.). The following theorem explains our proposed solution.

Theorem 3.4.4 If X † and p† are the solution of (3.38), then solution X ∗ and p∗ of the

inner problem of (3.51) is given by

X ∗ = X † , (3.52)

p∗i =
E∗

Et
p†i , i = 1, . . . , L , (3.53)

where E∗ is calculated by (3.37) and using X † for bit loading.

Proof Assume that the optimal solutions are given by X̂ , p̂ and Ê rather than X ∗, p∗,

and E∗, where
∑L

i=1 p̂i <
∑L

i=1 p
∗
i . The resulting BER according to X̂ , p̂ and Ê should

be less than or equal to BERt, therefore according to (3.49) we have Ê ≥ E∗. Also, we
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can find the solution for the original MMP by multiplying p̂ by Et

Ê
. We have Et

Ê

∑L
i=1 p̂i ≤

Et

E∗

∑L
i=1 p̂i ≤ Et

E∗

∑L
i=1 p

∗
i = P † which means we found a solution for the MMP problem

which is better than (or equivalent to) the optimal solution. The case of better than

optimal results is a contradiction and the case of equivalent to optimal results is trivial.

Throughput Maximization

The throughput maximization problem defined in (3.10) can be reformulated as

max
C,X ,p

R(C)

L∑

i=1

Mi

s.t.

L∑

i=1

pi ≤ Pt ,

Pb(ai∗,1, C,X ) ≤ BERt ,

(3.54)

where Pb(ai∗,1, C,X ) is defined in (3.32).

Lemma 3.4.5 The optimal solution of (3.54) either satisfies

ai,1 = aî,1 , i, î ∈ {1, · · · , L} , (3.55)

or can be manipulated such that it satisfies this condition

Proof Assume that the optimal solution of (3.54) does not satisfy the condition in (3.55).

Then, the power allocated to all subcarriers except the one with minimum ai,1 can be

reduced to the point that they do not alter the minimum value of ai,1 (ai∗,1). This power

may be allocated to one subcarrier in order to carry one more bit and if the extra power is

not sufficient for such an action, it always can be distributed to subcarriers such that they

preserve the condition in (3.55).
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Therefore, this problem can be reformulated as

max
C

Bt

max
X ,p

Bt

s.t. R(C)
L∑

i=1

Mi = Bt

L∑

i=1

pi = Pt ,

ai,1 = E, i = 1, . . . , L ,

Pb(E, C,X ) ≤ BERt .

(3.56)

This means we can solve the inner problem of (3.56) for different values of C and choose

the one with largest Bt.

The following theorem gives the relation between the solution of MMP and rate maxi-

mization problem.

Theorem 3.4.6 Assume that the solutions of (3.38) for total rate of B to be X̃B, p̃B
and

for total rate of B + 1 to be X̃B+1, p̃B+1
. We also define

p∗B(i) =
Pt

L∑

i=1

p̃B(i)

p̃B(i) , i ∈ {1, · · · , L} , (3.57)

and

p∗B+1(i) =
Pt

L∑

i=1

p̃B+1(i)

p̃B+1(i) , i ∈ {1, · · · , L} , (3.58)

and calculate Et1 (and Et2) by inserting p∗
B

and X̃B (p∗
B+1

and X̃B+1) in (3.44). Then

X ∗ = X̃B and p∗
B

are the optimal solution of the inner problem of (3.56) if Pb(Et1, C, X̃B) ≤

BERt and Pb(Et2, C, X̃B+1) > BERt.
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Proof Assume that the optimal solution of the inner problem (3.56) when ai,1 = Ê to be

X̂ and p̂ where R(C)
∑L

i=1 M̂i ≥ B + 1. According to (3.49), Ê ≥ Et2 which is equivalent

to Et

Ê
≤ Et

Et2
. Therefore, if we scale p̂ by Et

Ê
we get a better or equivalent solution for (3.38)

than when we solve it for B + 1 bits since Et

Ê

∑L
i=1 p̂(i) ≤ Et

Et2

∑L
i=1 p

∗
B+1(i)

7. The former is

obviously a contradiction and the latter results in contradiction due to the uniqueness of

the optimal solution of (3.38).

According to Theorem 3.4.6, we solve the inner problem of (3.56) iteratively. We start

by B = 1 in (3.38) and calculate Pb by using (3.32). If the resulting Pb is less than or

equivalent to BERt, we increase B by 1 and do the whole process again. This process is

continued until Pb condition is violated.

Since for relatively high values of Pb, i.e. values above 10−6, the asymptotic expression

of (3.32) is not tight, we propose to use a backtrack algorithm using the BER union bound

(3.29). That is, after that the algorithm stopped, we compute the BER union bound at

each step and remove the bits added in a step if the BER is larger than BERt. We continue

this process until the BER condition is satisfied.

3.5 Numerical Results

In this section we present selected simulative results confirming the usefulness of the pro-

posed algorithms and the accuracy of the performance approximation. We use WLAN

IEEE 802.11a/g OFDM system with L = 48 active subcarriers [8]. The quasi-static

exponentially-decaying multipath Rayleigh fading channel model which is explained in Sec-

tion 2.2.3 with Ts = 50 ns and Trms = 150 ns is used. The ensemble of available encoders are

obtained using the quasi-standard rate-1/2 memory-6 convolutional code (generator poly-

nomials are (171, 133)8) as the mother code and applying different puncturing patterns. In

7Note that X̃B+1 and p∗
B+1

are the solution of (3.38) for Et = Et2 and
∑L

i=1
p̂(i) =

∑L

i=1
p∗B+1(i) = Pt.
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particular, the rates 1/2, 2/3, 3/4, and 1 (i.e. uncoded transmission) are used. The set of

available modulations are 4-QAM, 16-QAM, and 64-QAM. In the following, first we show

the accuracy of the proposed union bound and asymptotic BER expressions. Then, the re-

sults for BER minimization, power minimization and throughput maximization algorithms

are shown.

3.5.1 Variation of BER for the Optimized System for Different

Interleavers

Figure 3.2 shows the variation of BER versus γb for the system optimized according to

(3.43) when one information bit per subcarrier is transmitted, and γb = Pt

∑L
i=1 E{h2

i }/B

(recall that E{‖zi‖2} = 1) is a bit-wise SNR measure. A single channel realization and

N = 64, N = 256 and N = 1024 are considered, to highlight the influence of the number

of subcarriers. Each sub-figure depicts (i) the BER union bound which is computed using

(3.24) and (3.29) (ii) the asymptotic BER which is achieved using (3.24), (3.37), and

considering only the first PEP and (iii) the BER simulation results for 1000 randomly

generated interleavers. Instead of showing all BER results, at each SNR we have shown

the lowest and largest BERs. We observe that for (properly) loaded BIC-OFDM the effect

of interleaving is marginal. This corroborates the simplifications made in the derivation

of the loading algorithm, which required averaging over interleaving. It can also be seen

that the variation of BER, i.e. the difference between the lowest and largest BER at a

particular SNR, is converging to zero as the number of subcarriers grows larger.

3.5.2 BER Minimization Results

Next, BER minimization results are shown. Figure 3.3 shows the average BER over 1000

randomly generated channels, while Figure 3.4 shows the 10% outage BER for the same
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Figure 3.2: BER results for different number of subcarriers: (a) N=64, (b) N=256 and
(c) N=1024. Square marker: highest BER for each SNR for 1000 random interleavers.
Circle marker: lowest BER for each SNR for 1000 random interleavers. Solid line: union
bound derived from (3.24) and (3.29). Dashed line: asymptotic BER derive from (3.24)
and (3.37).
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Figure 3.3: Average BER versus γb for BER minimization algorithm.
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Figure 3.4: 10% outage BER versus γb for BER minimization algorithm.

1000 channels. Each figure contains (i) the BER performance of the non-adaptive system

using 4-QAM modulation with code rate 1/2, (ii) the BER performance of the optimized

system, (iii) the BER union bound, and (iv) the asymptotic BER approximation. We ob-

serve a substantial gain of the adaptive system over the non-adaptive system. Furthermore,

it can be seen that the BER union bound approximation predicts the actual performance

very accurately for target error rates of about 10−4 and below. Finally, the asymptotic

BER approximation is shown to be quite useful for a quick performance estimation. We

note that these findings are true for both average (Figure 3.3) and outage (Figure 3.4)

BER results.

3.5.3 Power Minimization Results

We now consider the power minimization algorithm. In particular, we consider the power

minimization given the constraint that the BER of the system is required to be less than

10−5 (i.e. BERt = 10−5). Again we consider the case where 1 information bit is to be
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Figure 3.5: Cumulative distribution function (CDF) of power gain G = γb,No Loading −
γb,Power Minimization of power minimization algorithm compared with no loading system for
BERt = 10−5.

transmitted over each subcarrier. Figure 3.5 shows the empirical cumulative distribution

function (CDF) of the power gain of the proposed algorithm compared to the non-adaptive

system using 4-QAM modulation G = γb,No Loading − γb,Power Minimization for 1000 randomly

generated channels. We can see a substantial gain can be achieved by using our proposed

method; for instance we can expect gains of more than 1.5 dB for 50% of channels. Also,

Figure 3.6 shows the simulated BER performance of the system along with the asymptotic

BER approximation for each channel realization. In fact, Figure 3.6 shows that the achieved

gains do not compromise the required performance of the system. Again, we can see that

the proposed asymptotic approximation is an accurate estimate for the true performance

of the system.
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Figure 3.6: BER of the power minimization algorithm along with the asymptotic BER.

3.5.4 Throughput Maximization

In this section, we consider the problem of rate maximization for BIC-OFDM. We compare

our result with the method presented in [20] and we will call their algorithm AMC-BIC-

OFDM. AMC-BIC-OFDM relies on simulative optimization of three parameters, i.e. Γ

and two auxiliary power assignments p16 and p64 for 16-QAM and 64-QAM constellations.

Γ is a parameter from which the error-rate can be computed disregarding the type of

coding and modulation. This parameter is assumed to be constant for the given target

error-rate. Furthermore, since the error rate union bound derived in [20] is not accurate

when higher order modulations like 16-QAM are used in the OFDM symbol, the authors

have proposed to use two heuristic parameters i.e. auxiliary power assignments to improve

the performance of the system.
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Figure 3.7: Comparing the average data rate for the proposed throughput maximization
algorithm, AMC-BIC-OFDM and no loading system.

According to our correspondence to the authors of [20] and considering the simulation

results section of the same paper, they did not derive these parameters analytically. In fact,

they claimed that due to the complicated nature of error-rate prediction, it is practically

impossible to come up with exact Γ for a coded system. Furthermore, they mentioned that

Γ is a heuristic parameter and it may not be corresponding to target error-rate. Therefore,

the process of determining the value of these parameters for a given target error rate is not

straightforward and requires time consuming simulative optimization [48].

Figure 3.7 compares the average rate per subcarrier of our proposed method, AMC-

BIC-OFDM and no loading system (IEEE 802.11a/g standard) for target BER of 10−5.

For AMC-BIC-OFDM, we found Γ = 9.7 dB, p16 = 0.5 dB and p64 = 0.9 dB by exhaustive
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Figure 3.8: Average BER for the proposed throughput maximization algorithm along with
the corresponding asymptotic and union bound BERs and also the BER of AMC-BIC-
OFDM.

search which results in a BER less than the target BER. It can be seen that our method

outperforms AMC-BIC-OFDM by almost 2 dB while its complexity is the same. Also,

it does not rely on complex simulative optimization method. Furthermore, Figure 3.8

shows the average BER of our proposed algorithm in comparison with AMC-BIC-OFDM.

Besides, the BER union bound and asymptotic BER are shown. We can see that the BER

for AMC-BIC-OFDM is about the target BER of 10−5 which shows our proposed values

for Γ, p16 and p64 are acceptable. Again, the accuracy of the proposed asymptotic BER

expression can be observed. Finally, Figure 3.9 shows the average usage of each code as

a function of γb for the proposed method and AMC-BIC-OFDM. We can see that our

algorithm tends to select the code rate of 2/3 more often compared to AMC-BIC-OFDM.

We also compared our algorithm for target WER of 10−2 and AMC-BIC-OFDM with Γ,
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Figure 3.9: Percentage of code rate usage for the proposed rate maximization algorithm
(line) and AMC-BIC-OFDM (dashed).

p16 and p64 as in [20] (These parameters are set for target WER of 10−2). The results were

similar to those we presented in Figures 3.7, 3.8 and 3.9 but are not shown here.

3.6 Summary

In this chapter, we have considered adaptive BIC-OFDM. In particular, we have focused

on BER minimization, power minimization and throughput maximization using bit and

power allocation and code rate selection. We have derived simplified BER expressions

considering the effect of interleaver and also assuming random interleaver using the PDF

of reliability matrics. BER expression for random interleaving enabled us to formulate

the optimization problems. Based on the derived expression, we introduced algorithms

to solve those optimization problems using known loading algorithm for uncoded OFDM
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transmission known as margin maximization problem. We have also proposed closed-form

expression for the performance of the optimized system. Selected numerical results have

confirmed significant performance improvement using the proposed methods and a good

accuracy of the performance approximation.
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Chapter 4

Using Compressed Sensing to

Mitigate Nonlinear Distortion in

OFDM Signals

4.1 Introduction

Although OFDM systems have many advantages over single carrier systems, they also

have their own drawbacks. One of the major problems of OFDM is the relatively high

peak-to-average power ratio (PAPR) of the time domain transmit signal, which is the

result of adding many signals with different frequencies. This causes nonlinear signal

distortion when the signal passes through the high-power amplifier (PA). To address this

problem, numerous techniques have appeared in the literature based on signal and/or data

modification at the transmitter [12] or mitigation of nonlinear distortion at the receiver

[49, 50, 51, 52, 53]. When there are computational complexity, power consumption, and

implementation cost limitations for the OFDM transmitter, receiver-based techniques to

reduce nonlinear distortion are highly desirable.

Assuming that the PA clipping level is known at the receiver, receiver-based techniques

[49, 50, 51, 52, 53] basically reconstruct the clipping distortion caused by the PA. These

techniques can be mainly divided into two classes: 1) the first class of techniques assumes
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that nonlinear distortion does not have an impact on channel estimation [49, 50, 51, 52],

and 2) in the second class of techniques the effect of nonlinear distortion on pilot symbols

that degrades channel estimation performance is taken into account [53]. Within the first

class, the iterative methods proposed in [49] and [50] reconstruct the clipped signal to

its original form and estimate the clipping noise and cancel it from the received signal,

respectively. The technique proposed in [52] reconstructs the clipped samples by using

other samples in an oversampled system. The problem for this method is that it requires a

bandwidth expansion between 25% to 100%. Belonging to the second class, the technique

presented in [53] employs adaptive clipping and noise filtering to avoid distorting pilots

and improve the performance of channel estimation. This technique increases PAPR and

complexity at the transmitter due to performing adaptive clipping and noise filtering.

All the above-mentioned techniques can effectively mitigate the effect of nonlinear dis-

tortion on the transmitted signal if the clipping level of the nonlinear PAs is set relatively

large [49, 50, 51, 52, 53], i.e., the probability of clipping is relatively small. In this case, the

effect of clipping can be modeled as additive impulsive noise that is sparse in time domain

[54]. This noise can significantly degrade the performance of OFDM transmission as even

a single impulse in an OFDM block can notably corrupt all symbols of the block due to

its large energy.

According to recent results in sparse signal processing, a.k.a. compressed sensing (CS)

(cf. e.g. [55]), a sparse signal can be recovered using a small number of linear projections

over a random basis that is incoherent with respect to the basis in which the signal is sparse.

CS can be employed to estimate impulsive noise at the receiver due to the inherent time-

domain sparsity of impulsive noise. This forms the main idea of the CS-based method for

impulsive noise cancellation proposed in [56]. In this method, non-modulated (null, pilot,

etc.) subcarries are used to estimate impulsive noise. In [56], it is assumed that impulsive
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noise, e.g. large nonstationary electromagnetic disturbances as they are common in digital

subscriber line and power line communication systems, occurs at the receiver. However, the

PA nonlinearity distorts the OFDM signal at the transmitter and the CS-based approach

for impulsive noise estimation and cancellation uses the received signal. Moreover, the

effect of impulsive noise on the estimated channel transfer function, that is needed for the

CS-based impulsive noise estimation and cancellation, has not been addressed in [56].

In this chapter, we propose a CS-based approach for detection of nonlinearly distorted

OFDM signals at the receiver. The proposed technique exploits pilot tones inserted in the

OFDM signal. We consider two different scenarios for the receiver-side detection, namely

perfect and imperfect channel estimation. For the case of imperfect channel estimation,

our proposed scheme first obtains an initial estimate of the channel in frequency domain

which is used to estimate nonlinear distortion by performing CS in time domain. Then,

the estimated nonlinear distortion is used to improve the channel estimation and it is also

removed from the received signal. We also modify the iterative techniques from [49] and

[50] to use the estimated distortion to refine channel estimation, which allows us to do

a direct performance comparisons. Simulation results demostrate that the proposed CS-

based technique can accurately estimate clipping noise caused by PA nonlinear distortion.

Furthermore, the proposed scheme can notably improve the BER performance over the

benchmark techniques from [49] and [50] for the case of imperfect channel estimation.

The remainder of this chapter is organized as follows. In Section 4.2, the OFDM

system model including nonlinear power amplifier is introduced and some basics of CS

theory are provided. The proposed CS-based technique is described in Section 4.3, which

also provides the extension of the iterative techniques [49] and [50] to the case of imperfect

channel estimation. Numerical results are presented and discussed in Section 4.4, and

finally concluding remarks follow in Section 4.5.
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4.2 OFDM Signaling and Compressed Sensing

In this section, we first present the formulation for OFDM transmission. In doing so, we

also describe the nonlinear PA model used in this chapter. In the second part, we review

essential facts from CS theory.

4.2.1 OFDM System Model

OFDM transmitter

We assume the frequency-domain OFDM symbol X = [X0, . . . , XL−1]
T is transmitted on

L orthogonal subcarriers. The symbol Xk sent over the kth subcarrier is selected from a

phase-shift keying (PSK) or quadrature amplitude modulation (QAM) constellation. The

complex envelope of the baseband OFDM signal, defined over the time interval t ∈ [0, Ts],

where Ts is the OFDM symbol duration, can be expressed as

x(t) =
1

L

L−1∑

k=0

Xke
j2πkt/Ts . (4.1)

In practice, JL discrete-time samples of x(t) are efficiently computed by an inverse discrete

fourier transform (IDFT) [51]

xn =
1

L

L−1∑

k=0

Xke
j2πkn/JL, n = 0, . . . , JL− 1 (4.2)

where J is the oversampling factor. A cyclic prefix of length Lg is appended to xn in order

to prevent intersymbol interference among blocks and enable simple single-tap equalization.

Using digital-to-analog conversion, x(t) is obtained from the cyclically prefixed xn. Defining
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the time-domain vector x = [x0, . . . , xJL−1]
T , (4.2) can be represented in matrix form as

x = QX , (4.3)

where Q denotes the JL × L IDFT matrix whose elements are Qn,k = 1
L
ej 2π(k−1)(n−1)

JL , 1 ≤

k ≤ L, 1 ≤ n ≤ JL.

PA nonlinearity

In order to describe the nonlinear character of the PA, we consider the oversampled discrete-

time signal. This is correct if the dynamic range of the time-domain signal is limited in the

digital domain, or a good approximation if the nonlinearity acts on the continuous-time

signal x(t)[51]. From an extension of Bussgang’s theory [57] it can be shown that the

nonlinearly distorted signal can be expressed as

x′n = βxn + dn , (4.4)

where β is chosen such that signal sequence xn and distortion sequence dn are uncorrelated.

Since the distortion is introduced to reduce the dynamic range of the transmit signal,

the distortion vector d = [d1, . . . , dJL]T is essentially a vector of impulses, resulting from

clipping events. In other words, d is sparse. This point of view will be exploited for data

detection in Section 4.3.

When presenting numerical results in Section 3.5 we consider two power amplifier mod-

els:

• Soft limiter (SL) power amplifier:
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The SL power amplifier model is defined according to

x′n =







xn , |xn| ≤ A

A
xn

|xn|
, |xn| > A

, (4.5)

where A is a predefined threshold. To measure the amount of distortion due to the

SL nonlinearity, the clipping level α is defined as

α =
A

√

E(|xn|2)
. (4.6)

• Solid State Power Amplifier (SSPA):

According to [58], x′n can be written as

x′n =
ρxn

(
1 + |ρxn

B
|2p
) 1

2p

, (4.7)

where B is the output saturation level, p controls the smoothness of the SSPA, and

ρ is the amplifier small signal gain. The amplifier saturation power is defined as

Psat = B2. In order to reduce the nonlinear distortion due to signal peaks, the

amplifier is driven with an input back-off (IBO)

IBOdB = 10 log10

(
Psat

E(|xn|2)

)

. (4.8)

It should be noted that for large values of p (typically p > 10) and ρ = 1, the SSPA

model from (4.7) approaches the SL model from (4.5).

For α≫ 1 or IBO ≫ 1 the factor β in (4.4) approaches one [51, 59]. For simplicity, we

assume β = 1 in the following.
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OFDM receiver

At the receiver and after removing the cyclic prefix, the oversampled received OFDM signal

vector can be written as

y = H(x + d) + z , (4.9)

where the vector z = [z0, . . . , zJL−1]
T denotes additive white Gaussian noise (AWGN)

with variance σ2
n, H is an (JL × JL) circulant channel matrix, whose first column is

[
h0, . . . , hLm

, 0(JL−Lm−1)×1

]T
, and hℓ, 0 ≤ ℓ ≤ Lm, is the channel impulse response. It is

assumed that Lg ≥ Lm so that successive OFDM symbols do not interfere. The discrete

frequency-domain received signal obtained after the DFT is given by

Y = ΛX + QHHd + Z , (4.10)

where

Λ = QHHQ = diag ([Λ0, . . . ,ΛL−1]) (4.11)

is the (L × L) diagonal matrix whose elements are the channel frequency response coeffi-

cients and

Z = QHz (4.12)

is the frequency-domain noise. The maximum likelihood (ML) receiver seeks an estimate

X̂ of X according to

X̂ = argmin
X̃

‖Λ̂X̃ + QHĤd̂ − Y ‖2 , (4.13)

where Λ̂, Ĥ and d̂ are estimates of the channel representations Λ and H and the clipping

noise d. The estimation of these quantities from the received signal Y based on CS
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reconstruction is explained in Section 4.3.

4.2.2 Background on CS

In a typical compressed sensing problem, the goal is to recover the signal u ∈ RN̄ which

is a ξ-sparse vector in an original basis (such as time domain) based on observation vector

v ∈ RM̄ in an observation domain (such as frequency domain). By ξ-sparse we mean that

at most ξ of its elements are nonzero. u and v are linearly related to each other based on

the following formula

v = Φu + n , (4.14)

where Φ ∈ RM̄×N̄ is called measurement matrix and n ∈ RM̄ is the observation noise with

bounded energy ‖n‖2
2 ≤ ǫ2.

The number of observations is far less than the dimension of the original signal, i.e.

M̄ ≪ N̄ . The authors in [60] showed that if there are enough observations and matrix Φ

obeys the Uniform Uncertainty Principle (UUP), then vector u can be reconstructed by

solving an optimization problem as follows

min ‖u‖1

s.t. ‖Φu − v‖2 ≤ ǫ (4.15)

The special case of Fourier measurements has been addressed in [56, 60, 61, 62]. That is,

Φ is a pruned Fourier matrix obtained by selecting M̄ rows from the Fourier matrix. While

random selection of the rows as considered in e.g. [60, 61] may not be always practical in

the considered scenario, there is recent work on deterministic selection of the rows of the

Fourier matrix [56, 62].

Definition: Assume a, b and λ be positive integers. An (a, b, λ) cyclic difference set
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Figure 4.1: Compressed sensing example.

(CDS) is defined as a set of b distinct elements of ψ = {w1, w2, . . . , wb} where a difference

η ≡ wi − wj mod a with i 6= j takes values in 1 ≤ η ≤ a− 1 exactly λ times.

It has been shown in [56] and [62] that if the M̄ rows of the N̄ × N̄ Fourier matrix

are selected from an (N̄ , M̄ , λ) CDS, then the resulting partial Fourier matrix satisfies

the UUP condition. Unfortunately, this result is not practical since there is no CDS for

practical values of N̄ like 26, 27, or 28. For this reason, random selection has been used for

numerical results of [56], and we also adopt this strategy for the numerical results presented

in Section 4.4.

As an example, consider the case presented in Figure 4.1. The goal here is to reconstruct
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Soft Limiter Power Amplifier
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Figure 4.2: Distortion estimation example.

the time domain signal U . Signal U is of length 64 but has only 2 non-zero elements.

Observation is in frequency domain and is denoted by V1 and V2. V1 is full observation

but V2 has only few Fourier coefficients (partial observation). U can be derived from V1 by

taking IFFT. Interestingly, U can also be estimated from V2 by using CS technique.

4.3 CS-based Method for Nonlinear Distortion

Mitigation

A detailed description of the proposed technique for estimation and cancellation of nonlin-

ear distortion is now presented. We distinguish between the cases of perfect and imperfect

channel estimation at the receiver. This section also presents an extension of the iterative

techniques from [49] and [50] to account for imperfect channel estimation.

As an example, consider the case presented in Figure 4.2. In this figure, the time-domain

signal is being clipped by the power amplifier resulting to transmit signal and distortion.

The goal here is to reconstruct the distortion at the receiver by using compressed sensing.
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4.3.1 Perfect Channel Estimation

The case of “perfect channel estimation” makes the idealized assumption that the channel

impulse response is perfectly known at the receiver due to channel estimation based on pre-

viously received symbols. This means that the pilot (and possibly null) subcarriers in the

current OFDM symbol can exclusively be used for mitigation of the nonlinear distortion.

Let Lp denote the number of pilots and Ip = {i1, . . . , iLp} the index set of pilot subcar-

riers, respectively. Accordingly, we define Y p = [Yi1, . . . , YiLp
]T , Xp = [Xi1 , . . . , XiLp

]T ,

Zp = [Zi1 , . . . , ZiLp
]T , Λp = QH

p HQp, where Qp is the JL × Lp matrix with columns

i1, . . . , iLp of Q. Using these definitions, the transmission equation (4.10) reads for the

pilot subcarriers

Y p = ΛpXp + QH
p Hd + Zp . (4.16)

Let us define the observation vector V p and measurement matrix Φp as

V p = Y p −ΛpXp

Φp = QH
p H . (4.17)

Then from (4.16) it follows that

V p = Φpd + Zp . (4.18)

Using (4.14), (4.15), and (4.18) d can be estimated from pilot subcarriers by

min ‖d‖1

s.t. ‖Φpd − V p‖2 ≤ ǫ1 (4.19)

The choice of ǫ1 is discussed in Appendix A.
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The optimization problem in (4.19) can be recast as the second order cone program

(SOCP)

min
JL∑

i=1

ti (4.20a)

s.t. s̃2
i + s̃2

i+JL ≤ t2i , 1 ≤ i ≤ JL (4.20b)
∥
∥
∥
∥
∥
∥
∥






Re(Φp) −Im(Φp)

Im(Φp) Re(Φp)




 s̃ −






Re(V p)

Im(V p)






∥
∥
∥
∥
∥
∥
∥

2

≤ ǫ1 , (4.20c)

where s̃ = [s̃1, . . . , s̃2JL]T ∈ R2JL. From the solution ŝ of (4.20) we obtain the estimated

receiver side distortion vector

d̂ = [ŝ1, . . . ŝJL]T + j[ŝJL+1, . . . ŝ2JL]T . (4.21)

4.3.2 Imperfect Channel Estimation

We now consider the case where the channel is estimated based on the pilot symbols in

the presently processed OFDM symbols. To this end, we consider minimum mean-square

error (MMSE) channel estimation, and we denote the available channel estimate as Ĥ .

Since Ĥ is the only information we have about H , we compute V p as

V p = Y p − Λ̂pXp

= QH
p Hd + (Λp − Λ̂p)Xp + Zp , (4.22)

where Λ̂p = QH
p ĤQp. We note that while (Λp − Λ̂p)Xp acts as additional noise for the

estimation of d from V p independent of d, writing (4.22) in terms of QH
p Ĥ would add

a “data” dependent disturbance QH
p (H − Ĥ)d, which is not amenable for an l2-norm
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constraint. We thus consider direct estimation of the receiver-side distortion

dr = Hd , (4.23)

using the measurement matrix Φ′
p = QH

p , such that (4.22) reads

V p = Φ′
pdr + (Λp − Λ̂p)Xp + Zp . (4.24)

If d is a ξ̄-sparse signal, then the number of nonzero elements of dr is in the range of ξ̄+Lm

to ξ̄(Lm + 1)8 which is still sparse, especially when L≫ Lm.

Using (4.14), (4.15), and (4.24), dr can be estimated from pilot subcarriers by

min ‖dr‖1

s.t. ‖Φ′
pdr − V p‖2 ≤ ǫ2 (4.25)

where the value of ǫ2 is calculated in Appendix A.

The estimated d̂r from (4.25) is then used to refine the channel estimate Ĥ . This is

done by subtracting the distortion from pilots according to

Ŷ p = Y p − Φ′
pd̂r , (4.26)

and using Ŷ p for channel estimation.

To obtain better results, we iterate between channel and distortion estimation, i.e., the

result of (4.25) can be used to refine the estimated channel, which then is used again in

(4.22) and (4.25). The resulting iterative algorithm is summarized in Table 4.1.

8(ξ̄ + Lm)-sparsity happens when all the nonzero elements of d are successive. ξ̄(Lm + 1)-sparsity
happens when the gap between all non-zero elements of d is greater than the channel length (Lm + 1).
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Table 4.1: The proposed CS-based algorithm for estimation of nonlinear distortion assum-
ing imperfect channel knowledge.

(a) Obtain initial channel estimate of the channel Ĥ . Set i = 1.

(b) Compute V p from (4.22).

(c) Estimate d̂r by solving the optimization problem (4.25).

(d) Obtain refined channel estimate Ĥ based on Ŷ p from (4.26).

(e) Increment the counter i = i + 1 and go to Step (b) if i is less than the predefined
value..

(f) Perform decoding according to X̂ = argmin
X̃

‖Λ̂X̃ + QH d̂r − Y ‖2.

4.3.3 Modification of Other Iterative Techniques

In this section, we consider the techniques proposed in [49] and [50], which we refer to

as decision-aided reconstruction (DAR) and iterative estimation and cancellation (IEC),

respectively. DAR and IEC were originally proposed assuming perfect knowledge of the

channel impulse response. In the following, we modify these techniques to mitigate channel

estimation errors due to clipping.

• Modified DAR:

DAR [49] attempts to reconstruct the time domain nonclipped signal x. It can be

extended to the imperfect channel estimation scenario as follows:

(a) Set i = 1 and obtain an initial estimates of the channel Λ̂
i
and Ĥ

i
. Set Ŷ

i
= Y ,

Ŷ
i

p = Y p.

(b) Obtain an unconstrained estimate of the transmitted signal as X̂ i
s,k = Ŷ i

k/Λ̂
i
k for

k = 0, . . . , L− 1.
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(c) Convert the estimates from Step (b) to the time domain using an IDFT, resulting

in x̂i
s,k for k = 0, . . . , JL− 1.

(d) Obtain decisions X̂ i
k for the transmitted signal according to

X̂ i
k = argmin

X
|Ŷ i

k − Λ̂i
kX|, k = 0, . . . , L− 1 . (4.27)

(e) Convert the decisions from Step (d) to the time domain using an IDFT, resulting

in x̂i
k for k = 0, . . . , JL− 1.

(f) Detect the clipped samples and obtain a new signal x̄i
s,k according to

x̄i
s,k =







x̂i
s,k |x̂i

k| ≤ A

x̂i
k |x̂i

k| > A
(4.28)

for k = 0, . . . , JL− 1.

(g) Estimate the distortion vector d̂
i
as d̂i

k = x̂i
s,k − x̄i

s,k for k = 0, . . . , JL− 1.

(h) Update the received signal vector according to

Ŷ
i+1

p = Ŷ
i

p − QH
p Ĥ

i
d̂

i
. (4.29)

(i) Use Ŷ
i+1

p to obtain the new channel estimation which is denoted by Λ̂
i+1

and

Ĥ
i+1

.

(j) Convert the sequence x̄i
s,k to the frequency domain signal X̄

i
s using DFT.

(k) Update Ŷ
i
as Ŷ

i+1
= Λ̂

i+1
X̄

i
s.

(l) Increment the counter i = i+ 1 and go to Step (b).

• Modified IEC:
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IEC [50] estimates the clipping noise d and cancels it from the received signal assum-

ing perfect channel estimation. Similarly, assuming imperfect channel knowledge,

modified IEC can be summarized as:

(a) Set i = 1 and obtain an initial estimates of the channel Λ̂
i
and Ĥ

i
. Set Ŷ

i
= Y ,

Ŷ
i

p = Y p.

(b) Obtain symbol decisions X̂ i
k according to

X̂ i
k = argmin

X
|Ŷ i

k − Λ̂i
kX|, k = 0, . . . , L− 1 . (4.30)

(c) Convert the decisions from Step (b) to the time domain using an IDFT, resulting

in x̂i
k for k = 0, . . . , JL− 1.

(d) Generate the clipped time-domain signal x̂i
s,k by inserting x̂i

k in (4.5) or (4.7).

(e) Convert x̂i
s to the frequency-domain signal X̂

i

s using DFT.

(f) Estimate the frequency-domain clipping noise as D̂
i
= X̂

i

s − X̂
i
.

(g) D̂
i
is converted to the time-domain using an IDFT, resulting in d̂

i
.

(h) Update Ŷ
i

p according to

Ŷ
i+1

p = Ŷ
i

p − QH
p Ĥ

i
d̂

i
. (4.31)

(i) Use Ŷ
i+1

p to obtain the new channel estimation Λ̂
i+1

and Ĥ
i+1

.

(j) Update Ŷ
i
as Ŷ

i+1
= Ŷ

i − Λ̂
i+1

D̂
i
.

(k) Increment the counter i = i+ 1 and go to Step (b).
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4.4 Numerical Results

In this section, we evaluate the performance of the proposed CS-based approach to mitigate

nonlinear distortion in OFDM transmission. The OFDM signal is oversampled by a factor

of J = 4, and QAM subcarrier modulation is employed. We consider both fixed constel-

lation sizes and also systems employing the bit loading algorithm proposed in [35], which

improves the BER subject to a given average data rate and transmit power. The number

of bits per subcarrier are chosen from the range of 0 to 6, i.e., 64QAM is the largest avail-

able constellation. In our simulations, the number of subcarriers is set to L = 64 and the

rate-1
2

convolutional encoder defined by the generator polynomials (133, 171)8 and Viterbi

decoding are used. Ēb is the average received power per bit and N0 is the one-sided noise

power spectral density. As suggested in [49] and [50], for the simulation results, the orig-

inal and modified versions of the DAR and IEC techniques have been run 3 and 2 times,

respectively.

For the frequency-selective fading channel, we adopt the quasi-static exponentially-

decaying multipath Rayleigh fading model which is explained in Section 2.2.3. Throughout

the following, we assume Tr = 50 ns, Trms = 150 ns and Lm =4.

Figure 4.3 plots the mean square error (MSE) of the proposed technique for the perfect

channel estimation scenario versus the clipping level of the SL power amplifier for different

numbers of pilot tones Lp = 8, . . . , 12. For this experiment, coded OFDM with the 64-QAM

constellation for all subcarriers is used. The simulation results suggest that increasing Lp

beyond 10 does not improve MSE in this case. A choice of Lp = 10 would seem to be

a practical solution; for example IEEE 802.11a/g, which has L = 64 subcarries, uses 16

pilots [8]. We adopt Lp = 10 for the rest of the simulation results.

Figure 4.4 compares the estimated nonlinear distortion (d̂) obtained by CS with the

original distortion (d) for 10 log10(Ēb/N0) = 8dB. An SL power amplifier model and dif-
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Figure 4.3: MSE versus clipping level (α) of SL power amplifier for systems employing dif-
ferent number of pilots (Lp). Coded OFDM with 64-QAM constellation for all subcarriers.
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Figure 4.4: The original distortion (d) and the estimated distortion (d̂) for one specific
OFDM symbol for SL power amplifier with different values of α, 10 log10(Ēb/N0) = 8dB.

ferent values of α at the transmitter and perfect channel estimation at the receiver are

assumed. We observe that the discrepancy between the true and estimated distortion be-

comes negligible for α ≥ 2.5dB, which confirms the accuracy of the CS based distortion
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estimation. The lower estimation error for increasing α, as also suggested by Figure 4.3,

is due to the smaller number of clipping events and thus sparser distortion vector in this

case.
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Figure 4.5: BER versus 10 log10(Ēb/N0) for perfect channel estimation and an SL power
amplifier with α = 3dB. Coded and bit-loaded OFDM with an average of 4 bits per
subcarrier.

In Figure 4.5, the average BER achieved with the proposed CS-based and the bench-

mark DAR and IEC techniques are plotted versus 10 log10(Ēb/N0) for the case of perfect

channel estimation and the SL power amplifier model with α = 3dB. For this figure and

Figures 4.6, 4.7, 4.8, and 4.9, coded and bit-loaded OFDM transmission with an average

of 4 bits per subcarrier is used. “Ideal PA” refers to the case where the power amplifier

does not clip the transmitted signal. It can be seen that the proposed method provides

a small advantage over the benchmark methods in this case. For the same setup but the

SSPA model with ρ = 1, p = 6 and IBO = 5dB, the BER curves are shown in Figure 4.6.

Again, all three methods accomplish effective cancellation of the nonlinear distortion, with
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Figure 4.6: BER versus 10 log10(Ēb/N0) for perfect channel estimation and an SSPA with
ρ = 1, p = 6 and IBO = 5dB. Coded and bit-loaded OFDM with an average of 4 bits per
subcarrier.

a slight advantage for the CS-based method.

We now turn to the case where the channel is estimated based on the pilot subcarriers

in the currently detected OFDM symbol. Figure 4.7 shows the MSE for channel estimation

versus 10 log10(Ēb/N0) for the modified DAR and IEC techniques and the proposed CS

method as well as for the case when an ideal power amplifier is used. The SL power

amplifier model with α = 2.5dB is applied. It can be seen that the proposed CS-based

method significantly improves the MSE compared to conventional channel estimation, and

it also proves to be superior compared to modified DAR and IEC. Figure 4.8 shows the

average BER versus 10 log10(Ēb/N0) for the three distortion mitigation methods in this

case. We observe that the CS-based method achieves notable performance gains over the

benchmark methods. Especially the modified DAR technique does not provide much gain

over detection with unprocessed distortion and falls behind compared to modified IEC
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Figure 4.7: MSE versus 10 log10(Ēb/N0) for imperfect channel estimation when MMSE
channel estimation, an SL power amplifier with α = 2.5dB, and coded and bit-loaded
OFDM with an average of 4 bits per subcarrier are used.

and CS. The CS reconstruction has been run 3 times here, but interestingly the results

almost do not change by the second and third iteration compared to the first iteration.

In Figure 4.9, the BER curves versus 10 log10(Ēb/N0) for the same system setup but the

SSPA model with ρ = 1, p = 8 and IBO = 6dB are plotted. Again, CS outperforms the

other two benchmark techniques, especially DAR.

4.5 Summary

In this chapter, we have considered the problem of mitigating the distortion experienced at

an OFDM receiver due to nonlinear power amplification at the transmitter. We have de-

veloped a compressed sensing technique making use of pilot subcarriers to estimate the dis-

tortion. Two cases of OFDM transmission have been distinguished. The first case assumes
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Figure 4.8: BER versus 10 log10(Ēb/N0) for imperfect channel estimation when MMSE
channel estimation, an SL power amplifier with α = 2.5dB, and coded and bit-loaded
OFDM with an average of 4 bits per subcarrier are used.
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Figure 4.9: BER versus 10 log10(Ēb/N0) for imperfect channel estimation when MMSE
channel estimation, an SSPA with ρ = 1, p = 8 and IBO = 6dB, and coded and bit-loaded
OFDM with an average of 4 bits per subcarrier are used.
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the receiver knows the channel perfectly. The second case considers practical channel esti-

mation scenarios when pilot tones are also distorted. The two previously proposed methods

from [49] and [50] have been modified to be applicable to the case of imperfect channel

estimation such that a fair performance comparison could be made. The presented nu-

merical results have demonstrated (i) that the proposed compressed sensing based method

can accurately estimate the clipping events for different values of clipping levels, (ii) that

our method works as good as previous techniques for perfect channel estimation, and (iii)

that our detection method notably outperforms the modified versions of [49] and [50] for

imperfect channel estimation.
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Conclusions and Future Work

In this final chapter, we summarize our results and highlight the contributions of this

dissertation. We also suggest topics and open problems for further research.

5.1 Research Contributions

This thesis focused on the analysis and design of OFDM systems, namely (1) performance

analysis of BIC-OFDM systems; (2) adaptive techniques for performance enhancement of

BIC-OFDM systems; and (3) a new technique based on compressed sensing to mitigate

the nonlinear distortion caused by the power amplifier.

In Chapter 2, we derived a novel analytical method for the performance of bit-loaded

BIC-MIMO-OFDM systems for a specific known interleaver operating over a quasi-static

fading channel. We then used this formula to design new adaptive bit-loading, adaptive

interleaving, and adaptive coded modulation techniques. In the case of bit-loading, we used

the proposed formula and calculated BER for different bit-loading techniques, which were

originally proposed for uncoded OFDM systems, and selected the one with the lowest BER.

We noticed that the best loading depends on the specific channel and system parameters.

For adaptive interleaving, we proposed three adaptive interleaving techniques: (1) In the

first technique, we select the best interleaver among a set of predefined interleavers; (2)

the second technique, uses the PEPs derived using our formula, and designs the interleaver

accordingly; and (3) in the third technique, we propose an adaptive interleaver for MIMO-
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SVD-OFDM systems. Finally, the proposed adaptive coded and modulation technique

uses our BER formula and selects the best combination of code rate and constellation size.

Numerical results confirms the accuracy of the proposed performance evaluation formula

and the usefulness of the proposed adaptive technique.

The BER formula proposed in Chapter 2 might be too complex to evaluate in some ap-

plications. Therefore, we proposed a BER formula for BIC-OFDM operating over a quasi-

static fading channel based on the PDF of the reliability metrics in Chapter 3. Then, we

simplified this BER assuming random interleaving. This formula was then used to formu-

late three main optimization problems: BER minimization, transmit power minimization,

and throughput maximization. We found optimal bit loading, power loading, and code

rate selection schemes for each case. Finally, we proposed a simple formula for the perfor-

mance of the optimized system. Numerical results showed the gains by using our adaptive

techniques.

In Chapter 4, we considered the problem of mitigating the nonlinear distortion at the

receiver caused by a nonideal power amplifier at the transmitter. We used the recently

proposed compressed sensing technique to estimate the clippings. Two scenarios were

considered. In the first scenario, it’s assumed that the channel is perfectly known at the

receiver. In the second scenario, we considered the realistic case where the channel is

estimated at the receiver using pilots and pilots are also affected by the power amplifier

nonlinearity. Numerical results showed that our proposed technique works as good as ex-

isting techniques for the case of perfect channel estimation but it significantly outperforms

those techniques for the imperfect channel case.
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5.2 Future Work

The work presented in this thesis can be extended in several ways. In the following, we

present a (by no means comprehensive) list.

The BER analysis presented in Chapters 2 and 3 can be extended to MIMO-OFDM

systems using space-time codes like V-BLAST [63]. The analysis can then be used to

design new algorithms for these systems.

The analysis presented in Chapter 2 can be extended to include the effects of practical

power amplifiers into the error rate analysis. Previous analysis of this effect (1) makes

simplified assumptions about the nonlinear distortions and the transmission channel [64]

and (2) considers only uncoded OFDM. The first step is to use our analysis to approximate

the error rate for transmission over nonlinear channels. In the second step, PAPR reduction

methods which are apt for coded transmission can be designed using the analysis. For

example, clipping of a single large signal peak is less detrimental for coded transmission

than clipping of several moderately large peaks.

A further open area is the use of compressed sensing in telecommunications. There has

been recently a plethora of research on this topic. The interested reader can refer to [65]

for a complete list. More specifically, our work in Chapter 4 can be extended to the case

when clipping is not a rare event and therefore clipping vector is not sparse. Another area

is to use the CS technique for cross-talk cancellation in xDSL systems.

As a more theoretical extension, it would be very useful to derive a deterministic method

for selecting the rows of the Fourier matrix so that the resulting matrix satisfies UUP for

practical values of the number of rows like 26, 27, or 28. As stated before, the methods

proposed in [56, 62] cannot be used for practical values of the number of rows.
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Appendix A

Closed-form Expression for ǫ1 and ǫ2

for CS Reconstruction

In this section, we derive expressions for the values of ǫ1 and ǫ2 which are used in (4.19)

and (4.25). In particular, following [66], we derive estimations for the mean and standard

deviation of the additive noise present in the CS-estimation step, based on which ǫ1 and

ǫ2 are determined.

A.1 Perfect Channel Estimation

This case is similar to the case considered in [66] except that estimation noise Zp in (4.18)

is complex-valued. Each element of Zp is complex Gaussian distributed with zero mean

and variance σ2. Therefore, ‖Zp‖2
2 has a chi-square distribution with mean 2Lpσ

2 and

standard deviation 2
√

2Lpσ
2. Then, following [66], we choose ǫ1 according to

ǫ21 = 2Lpσ
2 + λ12

√

2Lpσ
2

= 2σ2
(

Lp + λ1

√

2Lp

)

(A.1)

with λ1 = 2.
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A.2 Imperfect Channel Estimation

Different from the perfect channel estimation case, in this case the channel estimation error

is also contributing to the total noise. According to (4.22), ń = (Λp − Λ̂p)Xp + Zp is the

total estimation noise. Λ̂p = diag(Ĥp) and Ĥp is the LMMSE channel estimation given

by [67]

Ĥp = RHpHp

(

RHpHp +
τ

γs
ILp

)−1

ĤLS , (A.2)

where the Lp×Lp RHpHp is the channel autocorrelation matrix corresponding to the pilot

tones, ILp is the identity matrix of size Lp, τ is a constant which only depends on the

modulation, γs is the operating SNR, and ĤLS is the Lp × 1 least square (LS) channel

estimation given by

ĤLS =

[

Yi1

Xi1

, . . . ,
YiLp

XiLp

]T

. (A.3)

By defining Hp as the diagonal elements of Λp, ń can be rewritten as ń = diag(Xp)(Hp−

Ĥp) + Zp. Assuming that e = Hp − Ĥp and Zp are independent, ń has a multivariate

normal distribution with zero mean and covariance matrix given by

Rńń = diag(Xp)Reediag(Xp)
H + σ2ILp (A.4)

where σ2 is the variance of each element of Zp and Ree is the covariance matrix of e given

by [67]

Ree = RHpHp − RHpHp

(

RHpHp +
τ

γs
ILp

)−1

RHpHp . (A.5)

We denote the element in the ith row and jth column of Rńń by Ωi,j . Using (A.4), E (‖ń‖2
2)

can be calculated as

E
(
‖ń‖2

2

)
= trace(Rńń) , (A.6)
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and E (‖ń‖4
2) can be expressed as

E
(
‖ń‖4

2

)
=

Lp∑

i=1

Lp∑

j=1

(
Ωi,iΩj,j + ‖Ωi,j‖2

)
. (A.7)

By using (A.6) and (A.7), the standard deviation of ‖ń‖2
2 (std (‖ń‖2

2)) can be calculated

as

std
(
‖ń‖2

2

)
=

√

E (‖ń‖4
2) − (E (‖ń‖2

2))
2
. (A.8)

Using the same argument as before, ǫ2 is chosen as

ǫ22 = E
(
‖ń‖2

2

)
+ λ2std

(
‖ń‖2

2

)
(A.9)

with λ2 = 2.
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