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Abstract

This dissertation studies two topics in finance. The first topic is on the firm-
level stock return volatility. The second one is on lending incentives of banks.

Chapter 2 studies idiosyncratic stock return volatility in an investment model
with convex capital adjustment costs. The model has two predictions: (1) in the
cross-section, idiosyncratic return volatility has a V-shaped relationship with the
asset growth rate; (2) in the time series, dispersion across firms in asset growth
rates positively predicts average idiosyncratic volatility. Two sources of uncer-
tainty drive the cross-sectional V-shape. Specifically, shocks to expected cash
flows cause the high return volatility of high growth firms, while innovations to
unexpected cash flows lead to the high return volatility of low (negative) growth
firms. The time series prediction follows from the cross-sectional V-shape pattern.
I document strong empirical support for the model’s predictions of the relation-
ship between the asset growth rate and idiosyncratic return volatility in both the
cross-section and time series.

Chapter 3 provides explanations to two important questions that arise from the
recent financial crisis: (i) Why don’t banks keep enough cash to meet potential
liquidity shocks and hence avoid fire sales of illiquid assets? (ii) Why do banks
keep a large amount of cash on their balance sheet without lending after large
capital injections from the government? This chapter examines both questions in
a single framework by considering the lending incentives of banks when facing
the risk of liquidity shocks. Banks make decisions based on the tradeoff between
costs (fire sales of illiquid assets) and benefits (high returns from bank loans) of
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lending. This chapter shows that it may be optimal for banks to lend out cash
and incur fire sales of assets under liquidity shocks, even if banks are endowed
with enough cash to meet liquidity shocks. That is, fire sales of assets could be
an endogenous outcome of banks’ optimal decisions. At the same time, banks
may still keep a large amount of cash after government capital injections to save
the cost of fire sales, especially when banks are endowed with a large fraction
of illiquid assets. Based on the results from the model, this study also provides
policy implications for government intervention.
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Chapter 1

Introduction

This dissertation studies two topics in finance. In the first study, I investigate
how frictions to real investment affect firm-level stock return volatility. This study
contains both theory and empirical analyses. In the second study, I develop a
theoretical model to investigate how liquidity risks affect the prices of illiquid
bank assets as well as banks’ lending incentives.

The motivation of the first study originally comes from a very interesting time
series pattern in the data: the average firm-level return volatility of U.S. firms first
increases over time and then drops down more recently. This pattern is document-
ed by two papers. Campbell et al. (2001) document that over the period from
1962-1997, there was a noticeable increase in the idiosyncratic return volatility
of U.S. firms relative to the reasonably stable market volatility. However, a more
recent study by Brandt et al. (2010) shows that the upward trend in the average
idiosyncratic volatility had been reversed by 2007.

This pattern has inspired extensive empirical studies on firm-level return volatil-
ity in both cross-section and time series. However, the existing explanations of
firm-level return volatility show explanatory power only in the cross-section or
the time series, but not in both. For example, proxies of growth options are useful
in the time series but lack power in the cross-section. As another example, firm
size and stock price have significant explanatory power in the cross-section, but
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not in the time series.
This motivates me to find a better explanation of firm-level return volatility

that should have robust explanatory power in both the cross-section and time se-
ries. In addition, we know from prior literature that firms’ real investment affects
firms’ expected stock returns. For example, Cooper et al. (2008) document that
higher growth firms earn lower future returns. Therefore, it is natural to further
investigate how real investment affects return volatility.

In the first essay of this dissertation, I develop an investment model with con-
vex capital adjustment costs. Firms operate under a technology that is decreasing-
return-to-capital. The first source of uncertainty that firms face is the demand
uncertainty, which affects the firms’ expected cash flows and investment opportu-
nities. This is quite standard in the existing literature. What is novel in my model
is that firms also face another source of uncertainty that is unrelated to the demand.
This source of uncertainty generates unexpected cash flows. For example, opera-
tional risk or stochastic depreciation can generate unexpected cash flows that are
insensitive to the firm’s demand conditions. This cash flow volatility contributes
directly to the return volatility.

The model has two predictions: (1) in the cross-section, idiosyncratic return
volatility has a V-shaped relationship with the asset growth rate; (2) in the time
series, dispersion across firms in asset growth rates positively predicts average
idiosyncratic volatility.

The intuition is as follows. As a benchmark in the model, if there is no friction
to investment, the return volatility is constant across firms. Therefore, invest-
ment frictions are the key factor to generate non-constant return volatility. More
specifically, investment frictions affect return volatility through the following two
mechanisms (or channels).

The first is a “growth channel,” in which positive growth opportunities ampli-
fy shocks to expected cash flows. According to the real options literature, a firm
value includes both the assets in place and growth options. Due to investment fric-
tions, the relative importance of growth options in the firm value can vary across
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firms. In addition, since the growth options are levered claims on assets, they are
more volatile than the assets in place. Therefore, more growth opportunities for a
firm result in higher return volatility.

The second is a “market value channel,” in which firms’ low market values
amplify shocks to unexpected cash flows. Again, due to investment frictions, the
firm’s market value can vary across firms with a given book capital. Since part of
the stock return is the unexpected cash flows divided by the firm’s market value,
a low market value amplifies cash flow volatility. Therefore, for a given cash flow
volatility, a low market value leads to high return volatility.

These two channels explain the model’s cross-sectional prediction of a V-
shaped relationship between idiosyncratic return volatility and asset growth rate.
In the right segment of the V-shape, firms have high asset growth rates, and the
growth options carry a large weight in the firm value. According to the growth
channel, these firms should have high return volatility. In the left segment of the
V-shape, firms have low/negative asset growth rates, and their market value is low
relative to capital. According to the market value channel, these firms should al-
so have high return volatility. In the middle of the V-shape, firms have moderate
asset growth rates, and neither of the two channels is strong. So these firms have
low return volatility.

The model’s time series prediction follows from the cross-sectional V-shape
pattern. If the heterogeneity in asset growth rates across firms is higher (i.e.,
more firms have either high or low growth rates), then more firms have higher
idiosyncratic volatility, which means the average idiosyncratic volatility is also
higher. This explains why a higher heterogeneity in asset growth rates predicts a
higher average idiosyncratic volatility.

I document strong empirical support for the model’s predictions. Specifically,
in the cross-section, I sort firms according to their annual asset growth rate, which
measures the firm’s broad investment rate. I find that stocks with either high or
low (negative) asset growth rates have higher idiosyncratic volatility than stocks
with moderate asset growth rates. In other words, the cross-sectional idiosyncratic
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volatility shows a V-shape pattern in asset growth rate. In the time series, I find
that the heterogeneity in asset growth rates among firms closely matches the up-
and-down movement of the average idiosyncratic volatility. These two time series
are highly positively correlated. In other words, higher heterogeneity in asset
growth rates among firms predicts higher average idiosyncratic volatility.

The contribution of this study is twofold. First, I document new and interesting
empirical relationships between idiosyncratic volatility and asset growth rates in
both the cross-section and time series. Second, I show theoretically two important
economic mechanisms that can help us understand the empirical findings in the
data.

The second essay of this dissertation is inspired by the recent financial crisis.
Specifically, I am intrigued by two important questions that arise from the crisis:
(i) Why don’t banks keep enough cash to meet potential liquidity shocks and hence
avoid fire sales of illiquid assets? (ii) Why do banks keep a large amount of
cash on their balance sheet without lending after large capital injections from the
government?

I examine both questions in a single theoretical framework by considering the
lending incentives of banks when facing the risk of liquidity shocks. The model
has three dates and two types of agents: banks and non-bank institutions (such
as hedge funds). At the initial date, banks are endowed with cash, non-tradable
but recallable bank loans, and tradable illiquid assets, such as mortgage-backed-
securities (MBS). The non-bank institutions are endowed with only cash. At the
intermediate date, banks may face a liquidity shock, such as a sudden withdraw-
al from depositors or a failure in rolling-over short-term debt. At the final date,
payoffs of assets are distributed to investors. Banks make decisions on asset sales
and lending at the initial date to maximize their equity value. The non-bank insti-
tutions make investment decisions including purchasing banks’ tradable assets to
maximize their portfolio’s expected value.

Banks make their decisions based on the tradeoff between the cost and benefit
of lending. The cost of lending comes from the premature loan liquidation and
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the fire sales of illiquid assets to raise cash when banks face a liquidity shock.
The benefit of lending is the high return from the newly issued bank loans. The
banks make their optimal decisions such that the marginal cost equals the marginal
benefit.

The first finding of the study is that fire sales of illiquid bank assets, meaning
that bank assets are sold at prices lower than the fundamental value, can be an
endogenous outcome of banks’ optimal decisions. In other words, even if banks
are endowed with enough cash to deal with the liquidity shock, they may still
choose to lend out cash such that they have to sell their illiquid assets at a discount
when hit by a liquidity shock. In other words, it may not be in the banks’ interest
to avoid fire sales of their illiquid assets.

The model also helps us understand why banks keep a large amount of cash
on their balance sheet without lending it out after large capital injections from
the government in the recent financial crisis. One direct explanation is that the
liquidity shock is large, and the fire sales are very costly, so banks keep more cash
to save the cost. This study provides another novel explanation. That is, with a
fixed size of the liquidity shock and a fixed cash endowment, a higher endowment
ratio of tradable-illiquid-assets to bank-loans makes fire sales more costly and
therefore induces banks to keep an even larger amount of cash. This explanation
is especially relevant during the recent financial crisis, in which many big banks
are reported to be ‘clogged’ with a large amount of illiquid assets (such as MBS)
on their balance sheet.

In addition, this study also generates policy implications for government inter-
vention. For example, a direct capital injection to banks always dominates buying
bank loans in terms of their effects on the real economy (i.e., total investment).
However, a direct capital injection and buying tradable illiquid bank assets (such
as MBS) can dominate each other, depending on the size of the government inter-
vention fund.

The remainder of the dissertation is organized as follows. Chapter 2 inves-
tigates how frictions to real investment affect firm-level stock return volatility.
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Chapter 3 develops a theoretical model to investigate how liquidity risks affect
the prices of illiquid bank assets as well as banks’ lending incentives. Chapter 4
concludes the dissertation.
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Chapter 2

Asset Growth and Idiosyncratic
Return Volatility 1

2.1 Introduction
Traditionally, idiosyncratic return volatility, which measures idiosyncratic risk,

has been important in understanding portfolio diversification, risk management,
and valuation of stock options. Recent empirical studies emphasize the impor-
tance of idiosyncratic return volatility in stock returns.2 Moreover, Campbell et al.
(2001) document that over the period from 1962 to 1997, there was a noticeable
increase in the idiosyncratic return volatility of U.S. firms relative to the reason-
ably stable market volatility. Accordingly, they also find that correlations among
individual stocks and the explanatory power of the market model for a typical s-
tock declined during the same period. Their finding has inspired extensive studies

1I would like to thank Jan Bena, Murray Carlson, Jason Chen, Adlai Fisher, Lorenzo Gar-
lappi, Ron Giammarino, Alan Kraus, Kevin Wang (NFA discussant), Tan Wang, Ralph Winter,
and seminar participants at Cheung Kong GSB, McGill University, Shanghai Jiaotong University,
the University of British Columbia, the University of Calgary, the University of Texas at Austin,
the University of Texas at Dallas, and the Northern Finance Association 2009 Meetings for their
valuable comments and suggestions.

2See, for example, Ang et al. (2006, 2009) and Fu (2009) for the effect of idiosyncratic return
volatility on stock returns.
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that attempt to explain idiosyncratic return volatility in both the cross-section and
time series.3

In this chapter, I study idiosyncratic return volatility in an investment model
with capital adjustment costs. The model has two predictions. First, in the cross-

section, idiosyncratic return volatility has a V-shaped relationship with the asset
growth rate. Second, in the time series, dispersion across firms in asset growth
rates positively predicts average idiosyncratic volatility. I further document strong
empirical evidence that supports both predictions.

The cross-sectional V-shape of idiosyncratic return volatility is driven by two
channels. The first is a “growth channel,” in which positive growth opportunities
amplify shocks to expected cash flows. This leads to high return volatility of
high growth firms. The growth channel is closely related to the leverage effect of
growth options on expected returns in the real options literature (see, for example,
Carlson et al. (2004)). The second is a “market value channel,” in which firms’
low market values amplify shocks to unexpected cash flows. This results in high
return volatility of negative growth firms. Moreover, the time series prediction
follows from the cross-sectional V-shape pattern. That is, a higher degree of cross-
sectional dispersion in the asset growth rates predicts a higher degree of volatility
dispersion, or equivalently, a higher average of idiosyncratic return volatility.

To analyze the two channels noted above, I develop an investment model with
convex capital adjustment costs. In the model, I assume that firms operate under a
decreasing-return-to-capital technology and face two sources of uncertainty. One
is demand uncertainty, which affects both the firm’s market value and investment
opportunities through expected cash flows. The other is the uncertainty of unex-

3Existing explanations of the upward trend in the average idiosyncratic return volatility in-
clude institutional ownership (Malkiel and Xu (2003), Bennett et al. (2003)), market composition
of firms (Bennett and Sias (2006)), new listings (Brown and Kapadia (2007), Fink et al. (2010)),
growth options (Cao et al. (2008)), product market competition (Gaspar and Massa (2006)), id-
iosyncratic volatility of fundamentals (Wei and Zhang (2006), Irvine and Pontiff (2009)), and
financial reporting quality (Rajgopal and Venkatachalam (2006)). In addition, the cross-sectional
explanations of idiosyncratic return volatility include long-term earnings growth (Malkiel and X-
u (2003)), idiosyncratic volatility of profitability (Pastor and Veronesi (2003)), and retail trading
(Brandt et al. (2010)).
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pected cash flows, which is independent of the demand uncertainty. Since this
second source of uncertainty does not affect expected cash flows, it has no effect
on either firm value or investment. However, the volatility of unexpected cash
flows contributes directly to the return volatility.

I first focus on the growth channel and consider a simple version of the mod-
el where firms only face demand uncertainty. To obtain intuition, I consider two
special cases in which the return volatilities are constant. I analytically show that
if the expected growth in demand is positive, the return volatility is lower with
infinite adjustment costs than that with no adjustment cost. In other words, in-
vestment frictions can decrease return volatility.4 The reason is that the flexibility
to invest increases return volatility while the flexibility to disinvest decreases re-
turn volatility. When the expected growth is positive, investing becomes more
important than disinvesting, and the overall effect of investment flexibility (i.e.,
less frictions) increases the return volatility in the frictionless case.

I then consider both the demand and cash flow uncertainty. In the general case
where firms face finite adjustment costs, the return volatility is not constant. With-
in the growth channel, when firms are investing, the growth opportunities increase
return volatility. On the other hand, when firms are disinvesting, the opportuni-
ties to disinvest reduce the return volatility. That is, the return volatility increases
with the investment rate in the growth channel. In the market value channel, the
low market values of negative growth firms amplify cash flow shocks. In other
words, the return volatility decreases with the investment rate in the market val-
ue channel. Consider the combination of these two channels: the market value
channel dominates for low (negative) growth firms; and the growth channel dom-
inates for high growth firms. I confirm this intuition through numerical examples
and demonstrate that there is a nonlinear, V-shaped relationship between the re-
turn volatility and asset growth rate. In addition, the model also generates time
series implications by aggregating the cross-sectional observations. For given s-

4This contrasts with the result in Kogan (2004), where investment frictions always increase
return volatility.
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lopes and meeting point of the two segments of the V-shape, a higher degree of
cross-sectional dispersion in asset growth rates predicts a higher cross-sectional
average of idiosyncratic return volatility.

In support of the model’s predictions, I document strong empirical evidence
with U.S. common stocks from 1963 to 2009. In the cross-section, the idiosyn-
cratic return volatility shows a V-shape with respect to firms’ annual asset growth
rate. That is, stocks with either high or low (i.e., negative) asset growth rates
in the past year have higher idiosyncratic volatility in the following year than s-
tocks with moderate growth. The stocks with the lowest idiosyncratic volatility
are associated with firms that have an annual asset growth rate of approximately
5%. In the time series, the cross-sectional dispersion in annual asset growth rates
positively predicts the cross-sectional average idiosyncratic return volatility in the
next year.

I further document the robustness of the empirical findings. The V-shaped
relationship in the cross-section is robust even after factors such as size and lever-
age are controlled for. In the time series, the asset growth measure is the most
important predictor (among all well-known predictors of idiosyncratic volatility)
of value-weighted, average idiosyncratic return volatility. In addition, the asset
growth effect on idiosyncratic volatility dominates alternative explanations such
as cash flow and its volatility, growth options, and forecasted long-term earnings
growth.

The contribution of this study is twofold. First, this study analytically shows
that investment frictions can decrease return volatility, which contradicts the intu-
ition that investment frictions always increase return volatility due to the inflexible
capital (see, for example, Kogan (2004)). Moreover, this study incorporates the
market value channel, which involves unexpected cash flows, in explaining the
firm-level return volatility. This extends the existing literature that emphasizes
only the importance of the growth channel, which involves expected cash flows,
in understanding the dynamics of asset returns. Second, this study is the first to
empirically document: (1) the V-shaped relationship in the cross-section between
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the idiosyncratic return volatility and asset growth rates, and (2) the robust pre-
dictive power of asset growth rates on the average idiosyncratic return volatility
in the time series.

This study is related to several steams of prior theoretical research. First,
there is a large investment literature that studies the effect of frictions, such as
irreversibility or convex adjustment costs, on firms’ investment behavior (see, for
example, Dixit and Pindyck (1994)). Another growing line of finance research,
pioneered by Berk et al. (1999), examines the effect of investment on expect-
ed stock returns.5 However, volatility of stock returns is typically not the focus of
these studies.6 In addition, existing theoretical research on return volatility mainly
studies either industry-level or aggregate market-level volatility. For example, Ko-
gan (2004) investigates the effect of investment frictions on industry-level return
volatility. David and Veronesi (2009) study the aggregate market return volatili-
ty in an endowment economy. One notable exception is the work by Pastor and
Veronesi (2003), who study firm-level return volatility in a learning framework.
However, they do not consider firms’ optimal investment and the effect of invest-
ment frictions on return volatility, which are the focus of my study.

My study is also related to a substantial empirical literature on idiosyncratic
return volatility. Note that the existing explanations of idiosyncratic return volatil-
ity have two notable shortcomings.7 First, most explanations of the observed time
trend in average idiosyncratic volatility have difficulty in explaining why average
idiosyncratic volatility falls during the period from 2000 to 2007. Brandt et al.
(2010) show that the upward trend documented by Campbell et al. (2001) during
the period from 1962 to 1997 has been reversed by 2007, falling below pre-1990s

5Other theoretical contributions include Gomes et al. (2003), Carlson et al. (2004, 2006, 2010),
Kogan (2004), Zhang (2005), and Cooper (2006). There is also a growing empirical literature that
tests investment-based models, see, for example, Cochrane (1991, 1996), Liu et al. (2009) and Li
and Zhang (2010).

6Note that Carlson et al. (2010) investigate firm-level risk dynamics, which include both beta
and total volatility, around seasoned equity offerings.

7See footnote 3 for a list of existing explanations of idiosyncratic return volatility in both the
cross-section and the time series.
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levels.8 Second, none of the existing explanation shows robust explanatory power
in both the time series and cross-section. For example, Rubin and Smith (2008)
find that the market-to-book ratio, which is used by Cao et al. (2008) to proxy
for the growth options, is useful in the time-series context but lacks power in the
cross-section. They also find that most explanatory variables in the time series
have no power after controlling for the lagged volatility. In contrast, my study
shows that the asset growth rate has robust explanatory power on the idiosyncratic
return volatility in both the cross-section and time series.

Finally, this study is also related to two empirical studies that involve asset
growth and/or idiosyncratic return volatility. Cooper et al. (2008) find that firms
with higher annual asset growth rates will experience lower future returns.9 My
findings show that the asset growth is also related to the return volatility. Lam
and Wei (2009) use the idiosyncratic return volatility as a proxy for arbitrage risks
to explain the asset growth anomaly documented by Cooper et al. (2008). They
find that the asset growth anomaly is weaker for firms with lower idiosyncratic
return volatility, which they attribute to the lower arbitrage risk of these firms.10

My analysis suggests that one should be cautious when interpreting their finding
since the asset growth and idiosyncratic return volatility are not independent of
each other.

This chapter proceeds as follows. Section 3.2 presents the model and derives
empirical implications. Section 2.3 describes the data. Section 2.4 provides main
empirical evidence which supports the predictions of the model. Section 2.5 pro-
vides comprehensive robustness checks of the main empirical findings. Section
2.6 compares my findings to three closely related, alternative explanations of id-
iosyncratic return volatility in the literature. Finally, Section 3.5 concludes the
chapter.

8Bekaert et al. (2010) also reject an upward trend in idiosyncratic volatility in 23 developed
markets.

9Also see Titman et al. (2004) for the effect of capital investment on stock returns.
10Lipson et al. (2010) also find that the asset growth effect on return is weak for stocks with low

idiosyncratic volatility.
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2.2 Model
This section studies the effect of investment frictions, namely capital adjust-

ment costs, on stock return volatility. Section 2.2.1 describes the model setup. In
Section 2.2.2, I first study a simple version of the model and consider only the
demand uncertainty, which directly affects firms’ investment opportunities. To
obtain intuition, I compare two special cases in which closed form solutions are
available. I then consider the full version of the model in Section 2.2.3, where
firms face both demand uncertainty and cash flow uncertainty. The model gen-
erates testable implications on the relationship between the stock return volatility
and the asset growth rate.

2.2.1 Model Setup
Consider a firm which produces output using capital, denoted by K, and labor.

The firm’s production follows a constant return-to-scale Cobb-Douglas function.
In addition, the firm faces an iso-elastic demand curve depending on a random
variable X , which evolves over time according to the following geometric Brow-
nian motion:

dXt

Xt
= µxdt +σxdZx

t , (2.1)

where µx and σx are constants, and Zx is a standard Brownian motion.
The firm incurs convex adjustment costs for new investment I. Following the

neoclassical investment literature (Hayashi (1982)), I assume that the adjustment
cost is homogeneous of degree one in I and K. Specifically, the adjustment cost,
denoted by φ , is quadratic in the investment-to-capital ratio:

φ(I,K) = θK
(

I
K

)2

, (2.2)

where the parameter θ ≥ 0 measures the degree of the adjustment cost. I choose
the quadratic cost function for simplicity, but the implications of the model con-
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tinue to hold for other convex cost function specifications.11

For simplicity, I assume that there is no capital depreciation, and the capital
evolves according to:

dKt = Itdt. (2.3)

The firm can costlessly and instantaneously adjust its labor input with a fixed
wage. In other words, the firm always chooses the optimal amount of labor input
without any adjustment cost. Then the firm’s operating profit, i.e., revenue minus
the labor costs, can be written compactly as follows:

π(X ,K) = hX1−αKα , (2.4)

where h > 0 scales the level of operating profit, and 0 < α < 1 captures the prop-
erties of both the firm’s production technology and its demand curve.12

The firm’s net cash flows have two components: the expected cash flow and the
unexpected cash flow. The expected cash flow equals the operating profit minus
the direct investment cost minus the adjustment cost. Conditional on the demand
state variable (X), the expected cash flow is known. However, the realized cash
flow can deviate from the expected cash flow due to the unexpected component.

There are many sources of uncertainty that may generate the unexpected com-
ponent of the cash flow. Here I provide three important ones. First, the operational

risk (e.g., software failures and product defects) or the unexpected operating cost

generates uncertainty to the operating cash flows. Second, stochastic depreciation

of capital, which may depend on exogenous factors such as weather conditions
or technological obsolescence, also leads to uncertain net cash flows.13 Third,
the stochastic non-operating income (expense), which is unrelated to a firm’s nor-
mal operations, also contributes to the unexpected cash flow. Instead of explicitly
modeling each single source of uncertainty, I capture their aggregate effect on the

11Note that the quadratic adjustment cost is widely used in the finance literature. See, for
example, Cochrane (1996), Zhang (2005), Livdan et al. (2009), and Garlappi and Yan (2010).

12See Abel and Eberly (1996) for a similar setting.
13Ambler and Paquet (1994) consider stochastic depreciation in the real business cycle models.
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cash flow volatility in a reduced form as follows.
Denote by C the cumulative net cash flow. The realized net cash flow in a short

period of time dt is given by

dCt = [π(Xt ,Kt)− It−φ(It ,Kt)]dt +σ(Xt ,Kt)dZc
t . (2.5)

The first term on the right hand side of Eq. (2.5) is the expected cash flow and the
second term is the unexpected cash flow. Here the Brownian motion Zc captures
all uncertainty that affects the unexpected cash flow, and σ(X ,K) is the level of
cash flow volatility that may depend on both the demand and capital levels. For
simplicity, assume that the two Brownian motions Zx and Zc are independent. In
other words, the uncertainty driving the unexpected cash flow is independent of
demand uncertainty which drives the expected cash flow.

Assume that firms are all equity financed. In addition, investors are risk neutral
and maximize the firms’ expected cash flows discounted at a constant rate r. The
firm value depends on both the demand and capital, denoted by V (X ,K), and it is
determined by:

V (Xt ,Kt) = max
{Is}s≥t

E
[∫

∞

t
e−r(s−t)dCs

∣∣∣∣ Xt ,Kt

]
. (2.6)

To guarantee a finite firm value, assume r > µx.
The firm’s equity return has two components: one from the change in firm

value and the other from the net cash flows. Specifically, the return in a short
period of time dt is given by

dRt =
dV (Xt ,Kt)+dCt

V (Xt ,Kt)
, (2.7)

where R is the cumulative return.
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2.2.2 Simple Version: Demand Uncertainty Only
In this section, I consider only the effect of demand uncertainty on return

volatility, and do not consider cash flow uncertainty. Therefore, I set the cash flow
volatility σ(X ,K) = 0 in the model described in Section 2.2.1. Since demand
uncertainty affects investment opportunities while cash flow uncertainty does not,
this simplification highlights the effect of investment frictions on the return volatil-
ity directly through investment.

In order to obtain intuition, I consider two special cases. In the first case,
firms can adjust their capital instantaneously without any adjustment cost (i.e.,
θ = 0). In the second case, firms face an infinite adjustment cost (i.e., θ = ∞),
and therefore cannot change their capital. The following proposition characterizes
firm values and compares the return volatility in the two cases.

Proposition 2.1 The firm value and stock return volatility in the two special cases

are given as follows.

Case 1 (θ = 0) : V1(X ,K(X)) = QK(X), Var(R1) =

(
1− 1

Q

)2

σ
2
x , (2.8)

Case 2 (θ = ∞) : V2(X ,K) = AX1−αKα , Var(R2) = (1−α)2
σ

2
x , (2.9)

where both Q and A are constants, and K(X) is proportional to X, which are all

given in Appendix A.1. Here the subscripts ‘1’ and ‘2’ represent Case 1 and Case

2, respectively.

Furthermore, if µx > 0, then firms with zero adjustment costs (Case 1) have a

higher return volatility than firms with infinite adjustment costs (Case 2), i.e.,

Var(R1)>Var(R2). (2.10)

If µx < 0, the reverse is true.

The intuition is as follows. In the frictionless case, firms can adjust their cap-
ital instantaneously. The optimal investment policy for the firms is to maintain
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a constant capital-to-demand ratio (X/K). As a result, the firm value is linear in
demand (X). This leads to constant return volatility. In other words, even if firms
have different demand, frictionless investment always adjusts the capital such that
firms are still identical after scaling by the capital (or the demand). Therefore,
return volatility should be the same across firms. In the case with infinite adjust-
ment cost, the capital level is fixed. The firm value is proportional to the operating
profit, which follows a geometric Brownian motion. That is, infinite adjustment
cost also leads to constant return volatility.

Compared with the case under infinite adjustment cost, the frictionless case
has the extra flexibility of investing and disinvesting. Therefore, it must be the
investment flexibility that drives the volatility difference between the two cases.
The effect of investment flexibility on return volatility can be understood as fol-
lows. A demand shock affects directly the value of the existing assets as in the
case with infinite adjustment cost. In the frictionless case, the flexibility of in-
vesting increases further the firm value after a positive demand shock because of
the increased investment opportunities. Similarly, the firm value drops further af-
ter a negative demand shock due to the decline in growth opportunities. That is,
flexibility of positive investment amplifies demand shocks. On the other hand, the
flexibility of disinvesting cushions the decline of firm value after a negative de-
mand shock and partially offsets the increase in firm value after a positive demand
shock. That is, flexibility of negative investment decreases the return volatility.
The overall effect of investment frictions on stock return volatility depends on the
relative importance of investing flexibility and disinvesting flexibility. In the case
where growth becomes important, i.e., firms have a positive expected growth in
demand (µx > 0), the effect of flexible investing dominates the effect of flexible
disinvesting. As a result, investment flexibility increases the stock return volatility.
In other words, investment frictions decrease the stock return volatility. However,
if firms have a negative expected growth in demand (µx < 0), the opposite is true.

Alternatively, the relative volatility in the two cases can be understood in the
real options framework. In addition to assets-in-place as in the case with infinite
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adjustment cost, the frictionless case has the extra growth options. Since the call
options (investing) are levered claims on assets, they are more volatile than assets-
in-place. On the other hand, put options (disinvesting) are less volatile than assets-
in-place. When firms have a positive expected growth in demand (µx > 0), the call
options become more important and the growth options increase the stock return
volatility. This explains the higher return volatility in the frictionless case in Eq.
(2.10). In contrast, if firms have a negative expected growth in demand (µx < 0),
the put options become more important and the growth options decrease the stock
return volatility. This explains why the reverse of Eq. (2.10) is true when firms
face a negative expected growth in demand.

It is worthwhile to discuss the difference between the result in Proposition 2.1
and that of Kogan (2004), who studies the industry-level return volatility and finds
that investment frictions always increase return volatility. In that paper, firms are
competitive and operate under a constant-return-to-capital technology. As a re-
sult, both the marginal value and the average value of capital always equal one in
the frictionless world. In other words, there is no gain or loss from frictionless in-
vestment. Therefore, firms’ return volatility is zero in the frictionless benchmark.
Any inflexibility due to frictions (irreversibility or investment rate constraints) will
lead to a deviation of the marginal value of capital from one, which in turn leads
to high return volatility. However, as discussed above, the effect of growth option-
s can be more important for monopoly firms assumed above, or more generally
for firms under imperfect competition. As demonstrated through the two special
cases in Proposition 2.1, frictions to investment can actually decrease stock return
volatility if firms’ expected growth is positive.

In the more general case with finite adjustment cost, the analytical solution is
not available. However, based on the intuition from the two special cases, one can
expect the following. When firms are investing, the call options to invest become
more important in the firm value and therefore increase the return volatility. On
the other hand, when firms are disinvesting, the put options to disinvest become
more important in the firm value and therefore decrease return volatility. As a
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result, with finite adjustment costs, the stock return volatility will increase with the
firms’ willingness to invest. In other words, the return volatility will increase with
the investment rate. In the next section, I use numerical examples to demonstrate
this intuition.

2.2.3 Full Version: Demand and Cash Flow Uncertainty
Section 2.2.2 considers only demand uncertainty. More realistically, firms face

both demand and cash flow uncertainty. In this section, I consider both sources
of uncertainty and study the effect of capital adjustment costs on return volatility
through both expected and unexpected cash flows.

The demand process is still given by Eq. (2.1). I further assume that the cash
flow volatility is linear in the capital (K) but independent of the demand (X). That
is,

σ(X ,K) = σcK, (2.11)

where σc is a constant.
The essence of this assumption is that the cash flow volatility does not de-

crease even as the demand becomes low. This is well supported by data. For
example, empirical evidence indicates that the volatility of depreciation plus the
non-operating expense as a percentage of total assets is non-decreasing as the av-
erage operating profit before depreciation becomes low (see the bottom panel of
Figure A.1 in Appendix A.2). Moreover, the implications of the model carry over
to other alternative functional forms for the cash flow volatility. For example, if
the cash flow volatility is increasing in the capital to demand ratio (K/X) as the
demand becomes low (which has direct support from the real data in Figure A.1),
then the predictions of the model still hold.

However, I choose the functional form in Eq. (2.11) because it is intuitive and
relatively easy to interpret. As discussed in Section 2.2.1, the cash flow volatili-
ty can be considered as an indirect way of capturing the uncertainty in operating
costs, capital depreciation and non-operating income (expense). These factors
grow with the size of the firm (i.e., the capital level) but are less sensitive to the
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demand conditions. For example, empirical evidence shows that the level of de-
preciation plus the non-operating expense is proportional to the capital level but
independent of the operating income before depreciation (see the top panel of Fig-
ure A.1 in Appendix A.2). Therefore, it is natural to assume that their volatility is
also proportional to the capital level.

Before showing the results for the general case with finite adjustment costs,
I provide the following remark on the return volatility in the special frictionless
case:

Remark 2.1 Under the assumptions of the full model, the return volatility in the

frictionless case is constant.

This is due to the fact that both the firm value and investment policy are inde-
pendent of the volatility of the demand process in the frictionless case. Recall that
in the frictionless case, firms maintain a constant demand-to-capital ratio (X/K)
and the firm value is proportional to capital. As a result, the cash flow volatility
scales up the return volatility by a constant. Therefore, any return volatility differ-
entiation across firms with different investment rates under finite adjustment costs
is driven by the frictions to the investment, not directly by model assumptions.

Since analytical solutions for the model with finite capital adjustment cost-
s are not available, I obtain numerical solutions using value function iterations
(see Appendix A.3 for details of the numerical solution method). For numerical
examples, I choose α = 0.8. This value is used by Eberly et al. (2009) and con-
sistent with the estimate of the average degree of returns to scale across industries
by Burnside (1996). The adjustment cost parameter is set at θ = 0.15, which is
comparable with the estimation in Eberly et al. (2009). To generate reasonable
dispersions in investment rate and return volatility, the other parameter values are
chosen as follows: h = 0.2,r = 0.1,µx = 0.06,σx = 0.8,σc = 0.7.

To demonstrate the effect of each source of uncertainty, I provide numerical
examples of the relationship between stock return volatility and investment rate
in the following two cases: (i) with demand uncertainty only (i.e., the simple
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(a) Simple version: σc=0
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(b) Full version: σc=0.7

Figure 2.1: Numerical Examples: Return Volatility vs. Investment Rate
The figure reports results of the model using numerical methods. The
common parameter values used are: α = 0.8,h = 0.2,r = 0.1,µx =
0.06,σx = 0.8,θ = 0.15.

version of the model); (ii) with both demand and cash flow uncertainty (i.e., the
full version of the model).

Panel (a) of Figure 2.1 shows that the return volatility in case (i) is monoton-
ically increasing with the investment rate, as predicted by the simple version of
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the model. The intuition is that the options to invest increase the return volatil-
ity, while the options to disinvest decrease the return volatility. When firms are
investing, the options of positive investment become more important, and there-
fore, these firms have higher return volatility. On the other hand, when firms are
disinvesting, the options of negative investment become more important, leading
to lower return volatility for these firms.

Panel (b) of Figure 2.1 shows that the return volatility in case (ii) has a V-
shaped pattern with respect to the investment rate. Adding volatility (σcK) to
the cash flow process enhances the return volatility dramatically in low (negative)
investment regions, but has a smaller effect in high growth regions. This is because
the contribution of the cash flow uncertainty to the return volatility is increasing in
the capital-to-market-value ratio (K/V (X ,K)). Since the firms’s investment rate
is decreasing in the capital-to-market-value ratio, the contribution of the cash flow
uncertainty to the return volatility is decreasing in the investment rate. Therefore,
the cash flow volatility has a strong effect on increasing the return volatility of
disinvesting firms, but it has a smaller impact on the return volatility of investing
firms.

Further numerical study shows that this nonlinear V-shaped relationship be-
tween return volatility and investment rate holds for a large range of parameter
values. For example, with lower σc values, the nonlinear V-shaped relationship
between return volatility and investment rate is similar to the case in panel (b) of
Figure 2.1, with the volatility in the left segment being slightly lower.

From the above analysis, I derive two main implications of the model. The
first states the relationship between cross-sectional stock return volatility and the
asset growth rate.

Prediction 2.1 (Cross-section) There is a nonlinear, V-shaped relationship be-

tween the stock return volatility and the asset growth rate in the cross-section.

According to the model, firms with either low (negative) or high capital growth
should have relatively high stock return volatility. On the other hand, firms with
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moderate growth rate (close to zero) should have relatively low stock return volatil-
ity. Therefore, one should expect a nonlinear relationship (a rough V-shape) be-
tween the stock return volatility and the asset growth rate, which measures the
investment rate as a percentage of capital.

It is worth noting that an alternative model with only demand uncertainty
plus operating leverage cannot quantitatively generate such a V-shape of return
volatility in asset growth rate. When the firm’s operating leverage is exogenously

specified, I confirm in Appendix A.4 the intuition as in Carlson et al. (2004) that
higher operating leverage results in higher return volatility. However, once firms
can choose endogenously their operating leverage through optimal investment, the
operating leverage effect is quantitatively dominated by the growth effect, which
still results in a low return volatility for negative growth firms.

The second prediction concerns the time series of the average stock return
volatility.

Prediction 2.2 (Time Series) The cross-sectional dispersion in asset growth rates

positively predicts the average stock return volatility.

This time series prediction builds on the cross-sectional pattern. Consider a
cross-section of firms that are ex ante identical. Under the model, stocks with
extreme growth rates will have higher return volatility. Therefore, the more dis-
persed the firms’ asset growth rates, the higher the average stock return volatility.
That is, the dispersion in the cross-sectional asset growth rates should positively
predict the average stock return volatility in the time series.

It is worth pointing out that these theoretical predictions hold for both total
volatility and idiosyncratic volatility. This is because the growth effect related to
the demand uncertainty as discussed in Section 2.2.2 is valid for both systemat-
ic and idiosyncratic demand shocks. The other source of uncertainty, the cash
flow uncertainty, is purely firm specific and therefore affects only the idiosyncrat-
ic volatility. If the firm’s demand subjects to only idiosyncratic shocks, then the
idiosyncratic return volatility is also the total return volatility. So the predictions
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apply to both. In the more general scenarios, firms subject to both systematic and
idiosyncratic demand shocks, then the predictions apply separately to both the
idiosyncratic return volatility and the total return volatility. Despite this theoreti-
cal flexibility, I will test the model’s predictions in the empirical analysis mainly
using idiosyncratic volatility, which is the focus of this paper. As a robustness
check, I will also present evidence in support of the model’s predictions using
total volatility.

2.3 Data
In this section, I first describe the data sources in Section 2.3.1. I then show

the patterns of idiosyncratic return volatility with respect to the asset growth rate
through sorting and graphing in Section 2.3.2.

2.3.1 Data Sources
I collect daily and monthly stock price and trading information from CRSP as

well as the annual accounting data from COMPUSTAT. The main analysis covers
all U.S. common stocks (CRSP share-code of 10 or 11) from 1963 to 2009. For
the robustness analysis, I also collect the forecasted long-term EPS (Earnings Per
Share) growth from IBES for the period from 1982 to 2009.

The main dependent variable is the annual idiosyncratic return volatility, which
is calculated from daily return residues within each month over every twelve non-
overlapping months. Specifically, for every year (from July to the next June) and
for each stock, I run a time series regression of daily returns on the four dai-
ly factors, that is, the three Fama-French factors plus the momentum factor.14 I
then calculate within each month the variance of return residue from the factor
regression. Finally, I average over the twelve non-overlapping months to calcu-
late the annual frequency of idiosyncratic return volatility. Note that the volatility

14I require at least 60 daily returns within one year to prevent the factor model from over-fitting.
In addition, at least 10 daily returns within one month are required to calculate the variance for
each month.
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measure is annualized, i.e., it is calculated by multiplying the daily variance by
252. In order to minimize the influence of outliers in this analysis, I winsorize
the annual idiosyncratic volatility at the 99-percent level. To aggregate volatil-
ity, I use both equal-weighting and value-weighting schemes. For example, for
value-weighting, I calculate the average idiosyncratic volatility by using market
capitalization as the weight.15 This generates a time series of annual average firm
idiosyncratic volatility, which is the focus of the time series analysis.

The central explanatory variable in this study is the asset growth rate (gTA),
which is calculated as the annual growth rate of total book assets. The main
results are insensitive to different time horizons for calculating asset growth rate.
For example, the asset growth rates calculated from the past two to three years all
yield the same inferences. In the data, there are some extreme values of the annual
growth rate of total assets; this mostly occurs in the case of small stocks. To deal
with these extreme outliers, I winsorize the asset growth rate at the 99-percent
level.16

To ensure that the asset growth effect on the idiosyncratic volatility is inde-
pendent of other effects, I control for a battery of variables that have been shown
in the literature to be related to idiosyncratic volatility. These variables include:
size, market-to-book total assets (MABA), variance of MABA (VMABA), firm
age, share price, turnover, leverage, a dividend dummy (DD), return on equity
(ROE), and variance of ROE (VROE). Specifically, size is the market equity at the
end of June. MABA is the fiscal year-end ratio of total book assets minus book
equity plus market equity to total book assets. VMABA is the variance of MABA
calculated using a past five-year rolling time series. Firm age is the number of
years since a firm first appeared in CRSP.17 Share price is the nominal price per
share of the stock. Turnover is the ratio of trading volume per month to outstand-

15The interpretation is that the value-weighted average volatility is the average volatility if one
randomly picks stocks with probabilities equal to their market equity shares. For equal-weighting,
the probability of picking any stock is equal.

16Since asset growth rate is bounded above -1, I did not winsorize from below at one percentile.
17I start my CRSP sample from January 1926 and count the number of months since a firm first

appears in CRSP.
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ing shares. Leverage is the ratio of long-term debt to total assets. DD equals one
for stocks that pay dividends and zero otherwise. ROE is the fiscal year-end ratio
of earnings to book equity. VROE is the variance of ROE calculated using a past
five-year rolling time series. Note that in regressions, I use the natural logarithms
of both size and share price.

In the cross-sectional regressions, I assign accounting and price information
to the explanatory variables that become available no later than the time at which
the dependent variable becomes available. In particular, for regressions using
average idiosyncratic volatility from July year t to June year t +1, I use the asset
growth rate over the period t−2 to t−1, size at June t, MABA at t−1, VMABA
calculated over the period t−5 to t−1, price at June t, average turnover during the
past 12 months (July t−1 to June t),18 leverage at t−1, DD at t−1, ROE at t−1,
and VROE calculated over the period t−5 to t−1. Thus, I use past information
to explain and predict future return volatility. This is very similar to the procedure
first proposed by Fama and French (1992) to predict stock returns.

2.3.2 Patterns of Idiosyncratic Volatility
To show the relationship between idiosyncratic volatility and asset growth rate

in the cross-section, I form deciles sorted by the asset growth rate for each year.
For each decile and each year, I calculate the average idiosyncratic volatility and
the average asset growth rate, as well as the other variables of interest. I then
average these variables over time, which yields time series averages of the asset
growth rate, idiosyncratic volatility, and the other variables for each decile. Table
2.1 shows the summary statistics for the asset growth sorted deciles. Note that
the raw returns of the deciles sorted by the asset growth rate are decreasing in the
asset growth rate, which is consistent with Cooper et al. (2008).

Using values from Table 2.1, I show in Fig.2.2 that the idiosyncratic volatility

18Rubin and Smith (2008) use the concurrent turnover and find significant coefficients in both
time-series and cross-sectional regressions. However, it is unclear which is the driving force.
Intuitively, high volatility will induce high trading as well. Using past trading volume mitigates
such a concern.
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Table 2.1: Summary Statistics for Asset Growth Sorted Deciles

The table reports summary statistics for portfolios sorted by asset growth rate. I first sort firms into
deciles according to the annual asset growth rate (gTA) for each year from 1963 to 2009. I then
calculate the average asset growth and the idiosyncratic volatility within each decile for each year.
Finally, I average each decile over time to calculate the time series averages. All the other variables
are calculated in the same manner. Idiosyncratic volatility (IVol) is the annualized variance that
is calculated from daily return residues of the four-factor return regression; Systematic volatility
(SVol) is the variance of the four-factor predicted returns. Return is the monthly stock raw return;
Size is the market equity; Market assets to book assets (MABA) is the ratio of book assets minus
book equity plus market equity to total assets; VMABA is the five-year rolling variance of MABA;
Age is the number of years since a firm first appears in CRSP; Price is the nominal price per share;
Turn is the turnover rate calculated as the monthly trading volume divided by outstanding shares;
Lev is the leverage, calculated as long-term debts divided by total assets; DD is the dividend
paying dummy; ROE is the return on equity; and VROE is the five-year rolling variance of ROE.

gTA Decile 1 2 3 4 5 6 7 8 9 10

(a) Equal-weighted

gTA -0.217 -0.051 0.004 0.040 0.073 0.110 0.156 0.231 0.391 1.271
IVol 0.807 0.494 0.338 0.270 0.247 0.258 0.275 0.313 0.373 0.500
SVol 0.043 0.035 0.029 0.028 0.027 0.029 0.032 0.035 0.041 0.051
Return 0.018 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.010 0.004
Size 298.5 661.4 1065 1348 1370 1566 1535 1241 989.6 690.2
MABA 1.665 1.303 1.272 1.318 1.370 1.482 1.635 1.821 2.066 2.462
VMABA 2.164 1.008 0.505 0.439 0.431 0.443 0.606 0.830 1.357 3.357
Age 11.88 15.39 17.48 17.95 17.66 16.79 14.86 12.64 10.35 7.373
Price 9.131 14.66 19.63 35.63 37.79 34.05 25.76 37.87 22.63 19.05
Turn 0.080 0.069 0.062 0.059 0.058 0.063 0.070 0.079 0.092 0.109
Lev 0.203 0.215 0.217 0.209 0.196 0.189 0.186 0.185 0.200 0.216
DD 0.258 0.457 0.721 0.772 0.740 0.747 0.673 0.637 0.459 0.433
ROE -0.521 -0.086 0.021 0.061 0.075 0.087 0.092 0.090 0.069 0.013
VROE 0.604 0.208 0.104 0.078 0.074 0.065 0.085 0.120 0.180 0.413

(b) Value-weighted

gTA -0.191 -0.046 0.006 0.041 0.073 0.109 0.155 0.231 0.386 1.131
IVol 0.188 0.111 0.079 0.065 0.065 0.066 0.075 0.092 0.122 0.178
SVol 0.040 0.036 0.032 0.029 0.033 0.032 0.037 0.045 0.048 0.061
Return 0.013 0.012 0.011 0.010 0.010 0.010 0.010 0.009 0.008 0.006
MABA 1.701 1.563 1.471 1.588 1.750 1.986 2.175 2.537 2.805 2.876
VMABA 1.728 0.984 0.414 0.321 0.428 0.354 0.578 0.767 1.237 2.833
Age 28.03 34.55 36.66 36.71 36.92 36.95 32.70 27.19 21.95 17.81
Price 36.27 39.07 43.37 394.7 398.6 259.6 85.0 483.6 113.6 141.0
Turn 0.084 0.078 0.066 0.056 0.060 0.060 0.068 0.081 0.102 0.123
Lev 0.223 0.205 0.201 0.196 0.186 0.164 0.165 0.158 0.185 0.213
DD 0.703 0.839 1.222 1.255 1.023 1.138 1.074 1.423 0.829 0.653
ROE -0.090 0.064 0.108 0.128 0.138 0.154 0.160 0.168 0.159 0.115
VROE 0.168 0.053 0.023 0.016 0.015 0.009 0.017 0.023 0.034 0.125
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Figure 2.2: Idiosyncratic Volatility for Asset Growth Deciles
The figure plots the empirical relationship between idiosyncratic
volatility and asset growth rate. First, I sort firms according to their
asset growth rate into deciles for each year (1963 to 2009). I then cal-
culate the average asset growth (gTA) and the idiosyncratic volatility
(IVol) within each decile for each year. Finally, I average over time for
each decile to calculate the time series averages.
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has a V-shape with respect to the asset growth rate. For example, under equal-
weighting, the idiosyncratic volatility decreases from 0.807 at decile 1 to its lowest
value 0.247 at decile 5, and then increases to 0.500 at decile 10. For the asset
growth rate, it increases from -21.7% at decile 1 to 7.3% at decile 5, and then
increases dramatically to 127.1% at decile 10. The volatility at deciles 1 and 10
is more than two times higher than that at decile 5. The effect is similar under
value-weighting. That is, the volatility decreases first and then increases as the
asset growth rate increases. This is consistent with the model’s first prediction
and offers a guidance in choosing specifications of the regression in Section 2.4.1.

To visualize the relationship between idiosyncratic volatility and asset growth
rate in the time series, I illustrate the time series of the average volatility and the
aggregate asset growth measure in Fig.2.3. The upper panel compares the value-
weighted average of the annual idiosyncratic volatility to the value-weighted an-
nual aggregate asset growth measure from 1963 to 2009. The lower panel shows
the equal-weighted time series. The aggregate asset growth measure (HMLgTA)
is the difference in the average growth rate between high-growth and low-growth
firms, i.e., the difference in the average asset growth rate between the two seg-
ments of the V-shape (see Section 2.4.2 for more details of constructing HML-
gTA). Observe that the asset growth rate dispersion between high-growth and low-
growth firms matches the average idiosyncratic volatility very well, especially the
rising and then falling of the average idiosyncratic volatility around year 2000.
One notable outlier is the high average idiosyncratic volatility in the year 2008
(more precisely, from July 2008 to June 2009), which involves dramatic price
movements during the recent financial crisis. Note that although value-weighted
measures are more relevant from an investment prospective, I present both equal-
weighting and value-weighting calculations in the time series to make the analysis
complete.
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Figure 2.3: Time Series Idiosyncratic Volatility and Asset Growth:
1963–2009
The figure plots the value-weighted (VW) and equal-weighted (EW)
time series of the average idiosyncratic volatility and the aggregate as-
set growth measure. The annual average idiosyncratic volatility (IVol)
is the average monthly IVol over 12 non-overlapping months. The
monthly IVol is calculated from daily residue returns from the four-
factor return regression using a 12-month non-overlapping window.
The aggregate asset growth measure, denoted by HMLgTA, is the dif-
ference in average asset growth rates between high-growth firms and
low-growth firms, with the breaking annual asset growth rate of 5%.
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2.4 Results
This section provides empirical evidence that supports the model’s prediction-

s. Sections 2.4.1 and 2.4.2 present results in the cross-section and time series, re-
spectively. Section 2.4.3 provides results from multiple regressions which control
for some other variables related to idiosyncratic volatility that have been proposed
in the prior literature.

2.4.1 Cross-sectional Analysis
To analyze the asset growth effect on stock return volatility, I adopt Fama

and MacBeth’s (1973) method for cross-sectional regressions. Specifically, for
each year (which is averaged over the months from July of year t to June of year
t + 1), I run cross-sectional regressions of idiosyncratic stock return volatility on
the previous year’s asset growth rate. To maintain robustness, all t-statistics in the
Fama-MacBeth regressions are adjusted for the first order autocorrelation of the
estimates from cross-sectional regressions.19

Table 2.2 presents the Fama-MacBeth regression results of five different re-
gression specifications in which the asset growth rate is the only independent
variable. Regression (1) runs a regression of idiosyncratic volatility on the asset
growth rate, ignoring the V-shaped relationship, which is predicted by the theoret-
ical model and observed by the simple sorting in Section 2.3.2. The coefficient is
insignificant, and the R-square is extremely low (0.85%). Regression (2) uses the
absolute value of the asset growth rate as a naive approach to capture the V-shaped
relationship between the idiosyncratic volatility and asset growth rate. Although
the coefficient is significantly positive, the R-square (1.80%) is still very low. Re-
gression (3) incorporates the asymmetric effect of the asset growth rate with a
two-segment piecewise linear model; and the R-square increases to 8.80%. If
I further allow a free breaking point between low-growth and high-growth rates

19That is, the simple t-statistic of a Fama-MacBeth regression is multiplied by a factor of√
(1−ρ)/(1+ρ), where ρ is the first order autocorrelation of time series coefficient estimates in

the cross-sectional regressions.
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Table 2.2: Asset Growth and Idiosyncratic Volatility in Cross-section

The table reports estimates from Fama-MacBeth regressions of the idiosyncrat-
ic volatility on the asset growth rate for the sample period from 1963 to 2009.
Denote by c the asset growth rate breaking point in the two-segment piecewise
linear model. LgTA equals gTA - c for asset growth rate lower than c, and zero
otherwise. HgTA equals gTA - c for asset growth rate higher than c, and zero oth-
erwise. The t-statistics are adjusted for the first order autocorrelation of coefficient
estimates from cross-sectional regressions.

gTA Abs(gTA) LgTA HgTA Breaking point: c Adj. R2 (%)

(1)
-0.019

0.85
(-0.66)

(2)
0.139

1.80
(10.5)

(3)
-1.97 0.127

Fixed at 0 8.80
(-5.99) (8.58)

(4)
-1.723 0.170 0.053

9.72
(-5.25) (9.92) (6.25)

(5)
-1.74 0.161

Fixed at 0.05 9.57
(-5.91) (10.37)

(regression (4)), the R-square increases to 9.72%. Regression (5) fixes the break-
ing point at 5%, which is approximately the breaking point fitted by regression
(4). The R-square (9.57%) is almost the same as in regression (4).

Overall, the coefficient of the low-growth segment is significantly negative,
and the coefficient of the high-growth segment is significantly positive, with the
breaking point around 5%. Moreover, the slope of the low-growth segment is
about 10 times steeper than that of the high-growth segment. The slopes of both
segments of the V-shape are highly significant in regression (5) with t-statistics of
-5.91 and 10.37, which indicates that the idiosyncratic volatility is an asymmetric
V-shape with respect to the asset growth rate. This provides formal evidence that
supports the cross-sectional prediction of my theoretical model.

Since the V-shape is piecewise linear, I can transform the nonlinear regression
models to linear ones. Such a transformation makes it much easier to implement
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regressions and saves computing time, especially in the estimation of robust s-
tandard errors. As shown in Table 2.2, the adjusted R-squares in the nonlinear
regressions (3) to (5) are very similar. This implies that the goodness-of-fit in the
cross-section is insensitive to the choice of the breaking point in the asset growth
rate. To transform the regressions into linear ones, I fix the breaking point at 5%
and split the asset growth rate (gTA) into two variables, LgTA and HgTA. If the
asset growth rate is lower than 5%, then LgTA equals gTA minus 5%; otherwise,
LgTA equals zero. If the asset growth rate is higher than 5%, then HgTA equals
gTA minus 5%; otherwise, HgTA equals zero. (Therefore, the sum of LgTA and
HgTA always equals the asset growth rate minus 5%.) These two variables, LgTA
and HgTA, capture the V-shape of volatility with respect to the asset growth rate
in standard linear models without using nonlinear estimations.

2.4.2 Time Series Analysis
To assess the time series effect of the asset growth rate on return volatility, I

form time series based on both the aggregate asset growth measure and the aggre-
gate idiosyncratic volatility. Specifically, I calculate the cross-sectional average
idiosyncratic volatility for each month. I then average over 12 months, from July
to the next June, to generate the annual measure of the aggregate idiosyncratic
volatility. Inspired by the cross-sectional result that the volatility has a V-shaped
relationship in the asset growth rate, I adopt the dispersion of the cross-sectional
asset growth rate between high-growth and low-growth firms as the annual aggre-
gate asset growth measure. The dispersion, denoted by HMLgTA, is calculated as
the average of HgTA minus the average of LgTA.20

To assess the level of residual autocorrelations, I calculate the Durbin-Watson
(DW) statistic in all time series regressions.21 Note that the t-statistics for all

20An alternative to the HMLgTA measure is the cross-sectional standard deviation of asset
growth rate, which gives the same inferences in the time series regressions. These two measures
have a correlation of 0.97.

21The deviation of the Durbin-Watson statistic from 2 shows the autocorrelation of regression
residues. Specifically, DW smaller than 2 shows positive autocorrelation, while DW larger than 2
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Table 2.3: Asset Growth and Idiosyncratic Volatility in Time Series

The table reports estimates from the time series regression of the average idiosyn-
cratic volatility on the aggregate asset growth measure for the sample period from
1963 to 2009. The time series of average idiosyncratic volatility (IVol) is cal-
culated as the cross-sectional average idiosyncratic volatility for each year. The
aggregate asset growth measure, denoted by HMLgTA, is the difference in aver-
age asset growth rates between high-growth firms and low-growth firms, with the
breaking annual asset growth rate of 5%. I use both value-weighting (panel a) and
equal-weighting (panel b) to calculate these averages. DW is the Durbin Watson
statistic. The t-statistics are calculated using Newey-West adjusted standard errors
with a lag length of 2.

HMLgTA DW Adj. R2 (%)

(a) Value-weighted
0.516

2.06 57.77
(10.4)

(b) Equal-weighted
1.94

1.21 43.03
(8.61)

annual time series regressions are adjusted for the residual autocorrelation through
Newey-West adjusted standard errors with a lag length of 2 (T 1/3/2≈ 2 with the
total observation T =47).

Consider first the case in which all aggregate variables are value-weighted.
Panel (a) of Table 2.3 shows that the aggregate asset growth measure is signifi-
cantly positive in the time series (with the t-statistic equal to 10.4). Moreover, the
aggregate asset growth measure demonstrates strong explanatory power for the
average stock idiosyncratic volatility in terms of R-square (57.77%).

Panel (b) of Table 2.3 shows the regression result for equal-weighted aggregate
measures. Again, the aggregate asset growth measure has very strong explanatory
power in the time series.

From the above results, the asset growth measure has strong explanatory power
for the idiosyncratic volatility in both equal-weighted and value-weighted time
series. These results provide formal support of the time series prediction of my

shows negative autocorrelation.
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theoretical model.

2.4.3 Multiple Regression Analysis
In this section, I further control for other variables that are related to return

volatility, such as size, age and price. Note that some variables considered in the
following analyses are highly correlated. For example, the correlation coefficient
is 0.72 between price and size, -0.5 between ROE and VROE, and 0.43 between
age and size. Therefore, it is not appropriate to include all variables in one re-
gression. Instead, I control for the lagged volatility as well as one other variable
at a time. My goal here is to demonstrate the significance of the asset growth
rate in cross-sectional idiosyncratic volatility, and show that the influence of asset
growth on idiosyncratic volatility cannot be explained by any control variables or
the lagged volatility.22

Table 2.4 presents the univariate and multiple cross-sectional regressions that
use the Fama-MacBeth approach. In the univariate regressions (panel (a) of Table
2.4), all variables except for MABA, Turnover, and Leverage are significant in
terms of the t-statistic at the 5-percent level. The results show that (1) volatility
is positively autocorrelated; (2) larger firms have lower volatility; (3) firms with
highly volatile MABA have high volatility; (4) older firms have lower volatili-
ty; (5) higher price-per-share stocks have lower volatility; (6) dividend paying
firms have lower volatility; and (7) stocks with higher return-on-equity and lower
volatility of ROE have lower volatility. In terms of R-square, the most significant
explanatory variable is lagged volatility, followed by price, size, DD and ROE.

Panel (b) of Table 2.4 first reports the pure asset growth effect and then con-
trols for the lagged idiosyncratic volatility and one of the remaining variables.
There are two major findings. First, the asset growth effect is still significant after
controlling for the lagged volatility. Second, and more important, the asset growth

22In the cross-sectional regression including all explanatory variables, HgTA is still highly sig-
nificant, while LgTA is insignificant. This still shows the explanatory power of asset growth for at
least high growth firms.
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Table 2.4: Multiple Regressions: Cross-section

The table reports Fama-MacBeth regressions in the cross-section for both univariate regressions
(panel a) and multiple regressions (panel b). The dependent variable is the idiosyncratic volatility
(IVol); and the sample covers the period from 1963 to 2009, with 47 cross-sections. LagVol is
the lagged idiosyncratic volatility. LgTA equals gTA - 5% for asset growth rate values lower
than 5%, and zero otherwise. HgTA equals gTA - 5% for asset growth rate values higher than
5%, and zero otherwise. See the description of all the other explanatory variables in Table 2.1.
The t-statistics are adjusted for the first order autocorrelation of coefficient estimates from cross-
sectional regressions. Note that the natural logarithms of both size and price are used.

LgTA HgTA LagVol Size MABA VMABA Age Price Turn Lev DD ROE VROE

(a) Univariate Regressions

Coeff. 0.814 -0.151 0.018 0.032 -0.009 -0.335 0.20 0.018 -0.215 -0.39 0.603
t-stat (19.95) (-3.90) (1.55) (6.01) (-4.05) (-3.97) (0.79) (0.40) (-5.03) (-9.06) (2.20)
Adj.R2(%) 47.16 21.95 1.66 2.79 4.42 39.29 2.24 0.24 11.12 9.00 4.21

(b) Multiple Regressions Adj.R2(%)

(1) -1.74 0.161 9.57(-5.91) (10.4)

(2) -0.42 0.064 0.797 49.27(-3.95) (5.39) (18.6)

(3) -0.26 0.057 0.723 -0.06 52.80(-2.88) (6.07) (19.0) (-3.44)

(4) -0.41 0.060 0.802 0.001 49.37(-3.78) (5.39) (18.6) (0.29)

(5) -0.41 0.053 0.801 0.006 49.86(-3.74) (7.07) (18.8) (4.12)

(6) -0.42 0.050 0.781 -0.003 49.63(-3.93) (5.40) (18.5) (-2.99)

(7) -0.062 0.049 0.61 -0.166 55.73(-0.92) (5.65) (16.9) (-3.70)

(8) -0.40 0.073 0.817 -0.33 51.46(-3.60) (4.95) (18.1) (-3.34)

(9) -0.42 0.065 0.821 0.053 49.66(-4.17) (4.17) (16.9) (2.14)

(10) -0.37 0.044 0.760 -0.097 50.05(-3.56) (4.93) (18.2) (-4.04)

(11) -0.22 0.063 0.770 -0.121 50.04(-3.50) (5.84) (18.3) (-7.94)

(12) -0.387 0.059 0.789 0.133 49.50(-3.81) (5.41) (18.5) (2.01)

is a significant predictor of stock return volatility in the cross-section even after the
lagged volatility and other volatility related variables are controlled for. The low-
growth segment has a highly significant negative coefficient, and the high-growth
segment has a highly significant positive coefficient.23

The result in Table 2.4 shows that the asset growth rate is still significant in

23The only exception is the seventh regression in panel (b) of Table 2.4 where the price is added:
while HgTA is still highly significant, LgTA is insignificant (but still has a negative coefficient).
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explaining the idiosyncratic volatility in the multiple cross-sectional regressions.
Other variables such as price-per-share and the dividend dummy also have signifi-
cant effects in the cross-section. However, if these variables are valid explanation-
s, they should be significant in the time series as well. Therefore, a supplementary
time series test is crucial, as it will distinguish the asset growth effect from other
alternative explanations.

In the time series, I construct the other aggregate variables in a similar manner
as I did for the aggregate volatility. For example, the aggregate market-to-book
assets measure is calculated as the cross-sectional average using either equal-
weighting or value-weighting of market-to-book assets. Data show that the cor-
relations among these explanatory variables are very high. For example, in the
value-weighted time series, the correlation coefficient is 0.89 between size and
VROE, 0.84 between size and turnover, and 0.80 between VMABA and VROE.
Similarly, in the equal-weighted time series, the correlation coefficient is 0.95 be-
tween size and turnover, 0.74 between VMABA and VROE, and -0.89 between
ROE and VROE. Given such high correlations among these time series, it is not
appropriate to control for several variables at the same time due to potential multi-
collinearity.24 This is especially true for relatively short time series, as I have only
47 time series observations. Therefore, I only control for the lagged volatility and
assess the explanatory power of one remaining variable at a time. My goal is to
find those variables that are still significant after the lagged volatility is controlled
for.

Table 2.5 shows the results of the univariate and multiple regressions using
value-weighted aggregate measures. There are four important results. First, the
asset growth measure is the most important explanatory variable in terms of the
adjusted R-square in both the univariate (57.77%) and bivariate (55.73%) regres-
sions. Second, the lagged volatility is not significant once the asset growth is
controlled for. This shows the superior explanatory power of the asset growth

24Even in the full regression including all the control variables, the asset growth measure is still
highly significant in the value-weighted time series, although it is insignificant in equal-weighting.
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Table 2.5: Multiple Regressions: Value-weighted Time Series

The table reports results of the time series regressions using value-weighted data from 1963 to
2009, with 47 observations. The dependent variable is the average idiosyncratic volatility (IVol).
DW is the Durbin Watson statistic. The t-statistics are calculated using Newey-West adjusted
standard errors with a lag length of 2.

HMLgTA LagVol Size MABA VMABA Age Price Turn Lev DD ROE VROE

(a) Univariate Regressions

Coeff. 0.516 0.513 0.026 0.046 0.018 0.004 0.032 0.355 -2.24 -0.007 1.03 0.814
t-stat (10.4) (2.25) (2.32) (4.34) (1.61) (0.94) (0.55) (2.32) (-2.01) (-1.00) (2.36) (2.48)
Adj.R2(%) 57.77 25.23 27.92 39.98 17.36 0.65 -0.72 15.93 15.65 -1.60 7.32 28.43
DW 2.06 1.87 1.27 1.15 1.12 1.02 0.93 1.26 1.19 0.96 1.13 1.38

Adj.
(b) Multiple Regressions DW R2(%)

(1) 0.514 0.001 2.06 55.73(5.63) (0.01)

(2) 0.322 0.017 1.79 33.13(1.20) (1.46)

(3) 0.261 0.037 1.68 44.79(1.50) (3.00)

(4) 0.398 0.008 1.74 26.35(1.60) (0.74)

(5) 0.512 0.0001 1.87 23.49(1.99) (0.03)

(6) 0.551 0.068 1.94 30.01(2.67) (1.47)

(7) 0.417 0.129 1.83 24.94(1.25) (0.62)

(8) 0.427 -1.31 1.90 28.60(2.01) (-1.59)

(9) 0.510 -0.005 1.87 23.79(2.21) (-0.90)

(10) 0.474 0.674 2.01 27.59(1.91) (1.41)

(11) 0.295 0.523 1.80 31.44(1.17) (1.34)

even compared to the lagged volatility.25 Third, all the other competing vari-
ables except MABA are not significant once the lagged volatility is added to the
regression. Lastly, even though MABA is still significant in the bivariate regres-
sion, its adjusted R-square (44.79%) is much lower than that of the asset growth

25Rubin and Smith (2008) demonstrate in a simulation that inferences in regressions with both
highly persistent dependent variable (i.e., the time series of average volatility) and independent
variables (e.g., average price or average market-to-book) suffer from a spurious regression prob-
lem, as discussed in Ferson et al. (2003). They also find that the Newey and West (1987) approach
is inadequate to correct such a problem. Instead, simply controlling for the lagged dependen-
t variable (i.e., the average volatility) gives correct inferences without eroding the power of the
tests. Notice also the large difference in the Durbin-Watson statistics between the univariate and
bivariate regressions in Table 2.5, with bivariate regressions much closer to 2.
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Table 2.6: Multiple Regressions: Equal-weighted Time Series

The table reports results of the time series regressions using equal-weighted data from 1963 to
2009, with 47 observations. The dependent variable is the average idiosyncratic volatility (IVol).
DW is the Durbin Watson statistic. The t-statistics are calculated using Newey-West adjusted
standard errors with a lag length of 2.

HMLgTA LagVol Size MABA VMABA Age Price Turn Lev DD ROE VROE

(a) Univariate Regressions

Coeff. 1.94 0.689 0.121 0.392 0.055 -0.006 -0.364 2.47 -7.76 -0.835 -1.68 0.728
t-stat (8.61) (4.98) (1.75) (3.30) (2.14) (-0.19) (-5.76) (2.40) (-2.99) (-5.06) (-4.97) (2.36)
Adj.R2(%) 43.03 47.78 11.93 24.49 7.08 -2.1 26.38 21.37 18.51 35.28 44.04 26.60
DW 1.21 2.18 0.73 0.73 0.71 0.59 0.84 0.77 0.81 1.08 1.32 0.94

Adj.
(b) Multiple Regressions DW R2(%)

(1) 1.11 0.478 2.18 56.58(2.73) (2.85)

(2) 0.645 0.037 2.14 47.74(3.69) (0.73)

(3) 0.590 0.233 2.01 55.32(4.00) (2.25)

(4) 0.712 -0.009 2.22 46.76(4.06) (-0.46)

(5) 0.691 -0.005 2.18 46.68(5.02) (-0.25)

(6) 0.589 -0.135 2.10 49.34(3.54) (-2.30)

(7) 0.604 0.878 2.07 48.85(3.12) (0.97)

(8) 0.611 -3.12 2.13 49.45(3.40) (-1.24)

(9) 0.531 -0.367 2.02 51.20(2.38) (-1.44)

(10) 0.458 -0.752 2.04 50.31(2.24) (-1.80)

(11) 0.608 0.179 2.10 47.66(3.09) (0.71)

(55.73%). This shows that the aggregate asset growth is the most significant ex-
planatory variable for the aggregate idiosyncratic volatility in the value-weighted
time series.

Table 2.6 shows both the univariate and multiple regression results for equal-
weighted time series. Three results are worth noting. First, the aggregate asset
growth rate retains its explanatory power even after the lagged volatility is con-
trolled for. Furthermore, in the bivariate regressions, the aggregate asset growth
measure gives the highest adjusted R-square (56.58%). Finally, MABA and price
are also significant after the lagged volatility is controlled for.

In sum, the results in Tables 2.4 to 2.6 show that the asset growth measure has
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significant explanatory power in both the cross-section and the time series. MABA
is the only other variable which is also significant in both the equal-weighted and
value-weighted time series. However, MABA lacks power in the cross-section.
Even in the time series, the asset growth effect is more important than MABA in
terms of R-square in explaining the average idiosyncratic volatility. This implies
that the asset growth measure is the only explanation which is significant in both
the cross-section and time series.

2.5 Robustness Checks
In this section, I provide additional checks to show that the effect of the as-

set growth on firm-specific volatility is robust. Specifically, I demonstrate that
the main result in Section 2.4 still holds (1) for alternative regression methods
(pooled cross-section regressions and panel regressions with fixed effects), (2) for
the pre-1995 time series, (3) using alternative measures of volatility, (4) using the
monthly frequency of volatility in regressions, and (5) when past stock returns are
controlled for. I then document that using alternative measures such as (6) the
lagged investment-to-assets ratio and (7) the contemporaneous asset growth rate
yield the same inferences as the lagged asset growth rate.

2.5.1 Alternative Regression Methods
In the main analysis in Section 2.4, I adopt Fama-MacBeth regressions in the

cross-section. For robustness checks, I use two alternative regression methods: (i)
pooled cross-section regressions and (ii) fixed effect panel regressions. In both
cases, the standard errors are calculated by double clustering by firm and year.26

Panel (a) of Table 2.7 presents the results from the pooled cross-section regres-
sions. Similar to the results of the main analysis, the slope is significantly negative
for low (negative) growth firms and significantly positive for high growth firms.

26See Petersen (2009) for a comprehensive study that compares different approaches to panel
data regressions in the finance literature. See Cameron et al. (2006) and Thompson (2011) for
clustered standard errors in multiple dimensions.
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Table 2.7: Alternative Regression Methods

The table reports the results using alternative regression methods. The dependent
variable is the idiosyncratic volatility (IVol). Pooled cross-section regression run-
s a single cross-section regression. The panel regression includes firm and year
fixed effects. Let the time series average of a firm’s growth rate be gTA. Then
L̂gTA equals gTA -gTA for asset growth rate values lower than gTA, and zero oth-
erwise. ĤgTA equals gTA - gTA for asset growth rate values higher than gTA, and
zero otherwise. All the t-statistics are calculated using standard errors clustered
by both firm and year.

(a) Pooled Cross-section Regression

LgTA HgTA LagVol R2(%)

(1)
-2.14 0.169

6.87
(-11.3) (12.2)

(2)
-0.586 0.072 0.714

36.68
(-5.05) (5.14) (14.3)

(b) Fixed Effect Panel Regression

L̂gTA ĤgTA LagVol R2(%)

Fixed Firm Effect:
(3)

-0.491 0.042
43.39

(-9.27) (3.63)

(4)
-0.239 0.020 0.422

49.95
(-4.74) (2.12) (9.98)

Fixed Firm and Year Effect:
(5)

-0.467 0.036
47.04

(-11.5) (4.46)

(6)
-0.236 0.020 0.420

53.08
(-6.29) (2.96) (10.7)
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This is still true after the lagged volatility is controlled for. The R-squares are
comparable to, though lower than, those of the Fama-Macbeth regressions.

To capture the potential heterogeneity among firms, i.e., firms may have dif-
ferent levels of fundamental risks (e.g., demand risks) and/or growth potentials
(e.g., the average growth rate), I run additional panel regressions with fixed firm
effects. For firms with different average growth rates, the return volatility should
be high when the growth rate is far away from each firm’s average growth rate,
and low when the growth rate is close to the firm’s average growth rate. Therefore,
I break the asset growth measure of a firm into two measures L̂gTA and ĤgTA,
using the firm’s time series average growth rate as the breaking point. Panel (b)
of Table 2.7 presents the results. Again, there is a V-shaped relationship between
the idiosyncratic volatility and the asset growth rate. With firm fixed effects (re-
gressions (3) and (4) in Table 2.7), firms that grow at a rate far away from their
normal average have higher idiosyncratic return volatility. The results are similar
if I control for both the fixed firm effect and the fixed year effect (regressions (5)
and (6) in Table 2.7).

In summary, the two alternative methods, i.e., the pooled cross-section regres-
sion and the panel regression with fixed effects, yield the same inferences as the
Fama-MacBeth regressions. After the firm heterogeneity is controlled for, firm-
s that grow at rates which are either higher or lower than their normal average
growth rate tend to have higher return volatility.

2.5.2 Pre-1995 Time Series
Rubin and Smith (2008) find that the existing explanations of the average

idiosyncratic volatility lack power in the pre-1995 period, which excludes the
episode of rising and then falling idiosyncratic volatility around year 2000. Here
I conduct time series regressions and show that the asset growth has a robust ex-
planatory power for the pre-1995 sub-sample. As shown in Section 2.4.3, MABA
is the only variable that is significant in the value-weighted time series regression
in addition to the asset growth measure and the lagged volatility. Table 2.8 re-
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Table 2.8: 1963-1995 Time Series

The table reports the time series regression results using data from 1963 to 1995,
with 33 observations. The dependent variable is the average idiosyncratic volatil-
ity (IVol). All variables are value-weighted. DW is the Durbin Watson statistic.
The t-statistics are calculated using Newey-West adjusted standard errors with a
lag length of 2.

LagVol HMLgTA MABA DW Adj.R2(%)

(1)
0.385 0.182

1.93 33.37
(2.97) (2.06)

(2)
0.548 0.004

1.88 25.37
(3.48) (0.57)

ports the time series regression result and shows that MABA is insignificant in the
pre-1995 period, which is consistent with Rubin and Smith (2008). This implies
that the explanatory power of MABA comes mostly from the short period of time
around year 2000. In contrast, the aggregate asset growth measure is still signifi-
cant in this sub-sample, even when the episode around year 2000 is excluded.

2.5.3 Alternative Measures of Volatility
So far I have defined the idiosyncratic volatility relative to the four-factor mod-

el. To show that the results are not driven by this specific choice of model, I use
alternative methods to calculate the idiosyncratic volatility. Specifically, I con-
sider alternative idiosyncratic volatility measures which are adjusted by (i) the
Fama-French three-factor model; (ii) the CAPM; and (iii) the market return with-
out beta estimations. Finally, I also look at the asset growth effect on the total
volatility, which is model-free.

It is worth noting that the systematic volatility, which equals the total volatility
minus the idiosyncratic volatility, is also reported in Table 2.1 for asset growth
rate sorted deciles. Under equal-weighting, the systematic volatility accounts for
only 10% of the total volatility. Under value-weighting, the systematic volatility
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ranges from 17% to 34% of the total volatility across the asset growth deciles.27

Similar to the idiosyncratic volatility, the systematic volatility shows a V-shape
with respect to the asset growth rate, indicating that the total volatility is also a
V-shape.

Table 2.9 shows the results of both the cross-section and time series using
different definitions of the idiosyncratic volatility as well as the total volatility.
These yield the same results as the main analysis, i.e., the four-factor adjusted
idiosyncratic volatility (compare Table 2.9 with Tables 2.2 and 2.3).

2.5.4 Monthly Frequency of Idiosyncratic Volatility
In the main analysis in Section 2.4, I use the annual frequency of idiosyncratic

volatility in the regressions, since most explanatory variables are measured annu-
ally. Alternatively, I can also run monthly frequency regressions with monthly
volatility and annual explanatory variables. That is, I can simply assign annual
measures to each of the 12 months in the following year. This approach has been
widely used in monthly expected return regressions (see, e.g., Fama and French
(1992)).

The results of the monthly cross-sectional regression (panel (a) of Table 2.10)
are similar to those of the annual regressions (Table 2.4). Also, the results of
the time series regressions with monthly data using value-weighted and equal-
weighted time series (panel (b) of Table 2.10) are similar to the results using an-
nual data (Tables 2.5 and 2.6). The only noticeable difference is an increase in
the R-squares after controlling for the lagged volatility, which is natural due to the
higher frequency of monthly volatility.

27Note that the systematic volatility as a fraction of the total volatility (i.e., the factor model
R-square) is an inverted V-shape with respect to the asset growth rate. That is, the stocks with
extreme growth have lower R-squares. In other words, the factor model explains fewer fractions
of return variations of extreme growth stocks, which also have extreme return volatility.
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Table 2.9: Alternative Measures of Volatility

The table shows the cross-secitonal and value-weighted time series regressions with each of the
following alternative measures of volatility as the dependent variable: (1) Fama-French three-
factor adjusted idiosyncratic volatility, (2) CAPM adjusted idiosyncratic volatility, (3) market ad-
justed idiosyncratic volatility, and (4) total volatility.

(a) Cross-section

LgTA HgTA LagVol Adj. R2(%)

(1) Fama-French 3-factor adjusted IVol

-1.747 0.163 9.57(-5.92) (10.4)
-0.427 0.065 0.797 49.20(-3.95) (5.39) (18.7)

(2) CAPM adjusted IVol

-1.771 0.166 9.62(-5.92) (10.5)
-0.434 0.065 0.797 49.24(-3.92) (5.49) (18.7)

(3) Market adjusted IVol

-1.786 0.169 9.69(-6.01) (10.88)
-0.440 0.065 0.797 49.27(-3.97) (5.50) (18.7)

(4) Total Volatility

-1.781 0.177 9.73(-5.84) (11.33)
-0.445 0.067 0.791 48.97(-3.96) (6.00) (19.2)

(b) Time Series

HMLgTA LagVol DW Adj.R2(%)

(1) Fama-French 3-factor adjusted IVol

0.534 2.04 58.26(10.7)
0.525 0.014 2.06 56.26(5.74) (0.11)

(2) CAPM adjusted IVol

0.578 2.07 54.68(10.4)
0.581 -0.008 2.06 52.58(6.20) (-0.07)

(3) Market adjusted IVol

0.666 2.09 53.93(9.83)
0.680 -0.024 2.06 52.00(6.39) (-0.24)

(4) Total Volatility

0.827 2.06 38.13(10.2)
0.819 0.011 2.08 35.75(8.10) (0.17)
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Table 2.10: Monthly Frequency of Idiosyncratic Return Volatility

The table reports the regression results using monthly frequency of idiosyncrat-
ic volatility as the dependent variable, with a total of 558 months. The cross-
sectional regressions correspond to the annual frequency results reported in Table
2.4. The time series regressions correspond to the annual frequency results report-
ed in Tables 2.5 and 2.6.

(a) Cross-section

LgTA HgTA LagVol Adj. R2(%)

-1.365 0.139
6.10

(-9.85) (16.94)
-0.301 0.031 0.770

61.89
(-16.0) (30.5) (141.9)

(b) Tim Series

HMLgTA LagVol DW Adj.R2(%)

Value-weighted

0.405
0.543 43.41

(6.67)
0.095 0.756

2.24 75.16
(3.47) (16.1)

Equal-weighted

1.548
0.231 37.15

(10.8)
0.184 0.889

1.91 87.49
(3.15) (28.8)

2.5.5 Controlling for Past Stock Returns
Arguably, the asset growth effect on idiosyncratic volatility can be driven by

stocks with extreme past returns, i.e., past “losers” and “winners.” The reason is as
follows. Extreme return stocks tend to have extreme concurrent asset growth and
high concurrent return volatility. Since the return volatility is highly persistent,
stocks with extreme past returns, and hence extreme past asset growth, will have
higher future return volatility. In other words, the asset growth effect documented
in this study might simply be a mechanical result of volatility persistency.
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Note first that I have taken into account the persistence of idiosyncratic volatil-
ity in the multiple regression analysis in Section 2.4.3. Although I do find that the
idiosyncratic volatility is highly persistent with a first order autocorrelation of
0.814 (see Table 2.4 for a univariate regression of the idiosyncratic volatility on
its lag), the asset growth measure is still significant when the lagged volatility is
controlled for.

To further address this concern, I double sort stocks independently on the as-
set growth and past returns. Specifically, I form portfolios for July of year t to
June of year t +1 by using returns concurrent to the asset growth measure in year
t − 1.28 For each past return quintile, I then calculate the average idiosyncratic
volatility for each asset growth decile, similar to Fig.2.2. Fig.2.4 plots the average
idiosyncratic volatility for each asset growth decile and past return quintile. Al-
though the extreme losers have much higher idiosyncratic volatility, for each past
return quintile there is a V-shaped relationship between the idiosyncratic volatil-
ity and the asset growth rate.29 This implies that the asset growth effect on the
cross-sectional idiosyncratic volatility still exists even after the past returns are
controlled for.

Since there is a similar V-shaped relationship, I follow the same procedure
to process the data as I did for the asset growth rate. In particular, I separate
the stocks into low and high past return groups, with the breaking point of 0.9%
in the monthly return. I then assign the two past return measures to each stock
accordingly. Similarly, in the time series regressions, I use the cross-sectional
dispersion in past return as the aggregate past return measure. This dispersion is
calculated as the average of the high past return measure minus the average of the
low past return measure.30

28Using returns from July t−1 to June t yields the same inference.
29Note that the extreme losers account for only 20% of the sample when using equal-weighting,

and even less when using value-weighting. Note also that the double sorting is independent. There-
fore, the number of stocks in each pair of past return and asset growth rate should not be the same
in general.

30The time series results are qualitatively the same if the cross-sectional standard deviation of
past returns is used instead.
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Figure 2.4: Idiosyncratic Volatility for Momentum and Asset Growth
Portfolios
The figure plots the average idiosyncratic volatility of portfolios dou-
ble sorted by past return and asset growth. The sorting method and
data sample are the same as those of Figure 2.2, except that past return
is also used. I double sort independently over the past 12 months log
returns (quintiles) and last year’s asset growth (deciles). Specifically, I
sort stocks for year t (July t to June t +1) according to the average log
returns of the past 12 months, over which the asset growth rate for year
t− 1 is calculated. I then sort the stocks according to the last year’s
asset growth rate.
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Table 2.11: Past Return and Idiosyncratic Return Volatility

The table reports regression results when past stock returns are controlled for. For
cross-sectional regressions, the procedure is the same as that of Table 2.4. The
definition of LReturn and HReturn is similar to that of LgTA and HgTA, except
that the breaking point for past return is set at 0.9%. Note that the past return is
calculated as the monthly average log returns for the same period in which the
asset growth rate is calculated. In the time series, HMLReturn is calculated in a
way similar to the calculation of HMLgTA.

(a) Cross-section

LgTA HgTA LagVol LReturn HReturn Adj. R2(%)

(1)
-7.14 2.06

12.82
(-4.78) (10.3)

(2)
0.829 -1.91 -0.12

51.19
(19.2) (-3.67) (-0.66)

(3)
-1.25 0.115 -5.93 1.62

17.94
(-7.08) (8.93) (-4.42) (10.2)

(4)
-0.28 0.063 0.812 -1.67 -0.35

51.69
(-4.1) (6.04) (19.1) (-3.59) (-2.27)

(b) Time Series

HMLgTA LagVol HMLReturn DW Adj.R2(%)

Value-weighted

(1)
3.66

1.47 17.78
(1.64)

(2)
0.456 0.596

1.85 23.69
(2.60) (0.27)

(3)
0.515 -0.07 0.693

2.06 54.95
(5.79) (-0.46) (0.69)

Equal-weighted

(4)
11.49

1.04 15.46
(2.78)

(5)
0.820 -5.12

2.25 48.38
(8.34) (-1.38)

(6)
1.10 0.602 -4.75

2.25 57.14
(2.99) (3.81) (-1.40)
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Panel (a) of Table 2.11 shows that although the lagged returns have explanato-
ry power in the cross-section, the asset growth measures are still highly significant
when both the lagged return and lagged volatility are controlled for. However, the
effect of past winners is not robust, as the coefficient changes from negative (re-
gressions (1) and (3)) to positive (regressions (2) and (4)). Panel (b) of Table 2.11
shows the time series results. For both value-weighted and equal-weighted time
series, the dispersion in the past return turns out to be insignificant once either
the lagged volatility or the asset growth is added into the regression. Note that,
however, the asset growth measure is still highly significant in both cases. These
results indicate that the asset growth effect on idiosyncratic volatility in the cross-
section as well as in the time series is robust and not driven by extreme past return
stocks.

2.5.6 Investment-to-assets Ratio
In the main analysis, I use the asset growth rate as the broad measure of a

firm’s investment rate. Alternatively, one can use the investment-to-assets ratio
as the measure of a firm’s investment rate. I follow Lyandres et al. (2008) and
measure investment-to-assets ratio as the annual change in net property, plant,
and equipment (PPE) plus the annual change in inventories divided by the lagged
book value of assets. I exclude financial firms (with siccd between 6000 and 6999)
for this industrial specific measure.

The results are reported in Table 2.12. The investment-to-assets ratio has a
similar relationship with the idiosyncratic volatility as the broader asset growth
measure in both the cross-section and the time series. Specifically, in the cross-
section, there is a V-shaped relationship between the idiosyncratic volatility and
the investment-to-assets ratio. In the time series, the cross-sectional standard de-
viation of investment-to-assets ratio positively explains/predicts the average id-
iosyncratic volatility.
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Table 2.12: Investment-to-assets Ratio and Idiosyncratic Volatility

The table reports the regression results using the investment-to-assets ratio as an
alternative measure of investment rate. The definition of LIA and HIA is similar to
that of LgTA and HgTA in Table 2.4, except that the breaking point for investment-
to-assets ratio (IA) is set at 4%. In the time series, the cross-sectional standard
deviation of IA ratio (sdIA) is used as an alternative measure of dispersion in
firms’ investment.

(a) Cross-section

LIA HIA LagVol Adj. R2(%)

-0.413 0.203 0.834
48.70

(-2.87) (3.63) (18.7)

(b) Time Series

sdIA LagVol DW Adj.R2(%)

Equal-weighted

1.593
0.59 4.23

(1.42)
1.164 0.698

2.27 53.21
(2.13) (5.95)

Value-weighted

0.681
0.81 15.51

(2.58)
0.424 0.575

1.81 44.81
(2.24) (3.10)

2.5.7 Contemporaneous Asset Growth
In the main analysis, I use the lagged asset growth to explain and predict the

current idiosyncratic volatility. It is also interesting to explore the relationship
between the contemporaneous growth rate and idiosyncratic volatility.

In the following regressions, I use the asset growth measure which is concur-
rent with the idiosyncratic volatility measure. Specifically, I regress the average
idiosyncratic volatility from January to December of year t on the asset growth
between year t−1 and t. Table 2.13 reports a V-shaped relationship between the
idiosyncratic volatility and the contemporaneous asset growth in the cross-section.
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It also shows a positive relationship in the time series between the average id-
iosyncratic volatility and the cross-sectional dispersion in the contemporaneous
asset growth rate. Both results are similar to the findings in the main analysis.
Furthermore, the contemporaneous asset growth has a stronger relationship with
the idiosyncratic volatility than the lagged asset growth in terms of goodness-of-fit
in the cross-section. In particular, the adjusted R-square is 13.55% with contem-
poraneous asset growth (see Table 2.13), while it is 9.57% with the lagged asset
growth measure (see Table 2.2).

2.6 Asset Growth versus Alternative Explanations
In this section, I compare the explanatory power of the asset growth with three

alternative explanations in the prior literature: (1) cash flow (profitability) and
its time series variance (Pastor and Veronesi (2003) and Wei and Zhang (2006)),
(2) growth options proxied by market-to-book assets (Cao et al. (2008)), and (3)
forecasted long-term earnings growth (Malkiel and Xu (2003)). The following
results show that the asset growth effect on the idiosyncratic volatility dominates
all these alternative explanations.

2.6.1 Asset Growth versus Cash Flow Volatility
Pastor and Veronesi (2003) examine the idiosyncratic risk in a valuation model

where investors learn about profitability. (They define profitability as the cash flow
per dollar book value of equity.) They find that younger stocks, stocks that pay
no dividends, and high market-to-book equity stocks have more volatile returns.
Wei and Zhang (2006) use return-on-equity (ROE) and its time series variance
(VROE) as the proxies of profitability and its uncertainty.

Irvine and Pontiff (2009) also study the effect of unexpected cash flow shocks
on the average idiosyncratic volatility in the time series. They interpret the in-
creasing cash flow volatility as a result of intensified competition among firms
over time. However, they do not provide cross-sectional relationship between the
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Table 2.13: Contemporaneous Asset Growth and Idiosyncratic Volatility

The table reports the regression results when the contemporaneous asset growth
rate is used as the explanatory variable instead of the lagged growth rate. The
asset growth measures are concurrent with the idiosyncratic volatility measure.
Specifically, in the cross-section, the average idiosyncratic volatility of January t
to December t is regressed on the asset growth rate between years t−1 and t. In
the time series, the cross-sectional average volatility is regressed on the concurrent
cross-sectional dispersion of asset growth (HMLgTA).

(a) Cross-section

LgTA HgTA LagVol Adj. R2(%)

-1.813 0.137
13.55

(-3.35) (8.47)
-0.944 0.035 0.705

53.01
(-2.92) (4.09) (15.2)

(b) Time Series

HMLgTA LagVol DW Adj.R2(%)

Equal-weighted

1.56
0.59 38.08

(5.39)
0.419 0.796

1.44 79.27
(2.14) (10.26)

Value-weighted

0.644
1.26 61.95

(8.79)
0.517 0.379

2.02 72.74
(6.44) (8.47)

cash flow volatility and idiosyncratic volatility. Since Wei and Zhang (2006) pro-
vides both cross-section and time series results, I follow their measures of cash
flow (i.e., ROE) and volatility of cash flow (i.e., VROE).

In the robustness analysis, I control for ROE and VROE one at a time and find
that they are both significant in the cross-sectional regressions but insignificant in
the bivariate time series regressions. To further show the significance of the asset
growth measure, I control for ROE and VROE simultaneously. Results in Table
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Table 2.14: Asset Growth vs. Cash Flow Volatility

The table reports the comparison between the asset growth effect and the cash
flow effect on the idiosyncratic volatility. The cross-sectional regression is con-
ducted similar to that of Table 2.4. The value-weighted time series regressions are
conducted similar to those in Table 2.5.

(a) Cross-section

LgTA HgTA LagVol ROE VROE Adj. R2(%)

-0.21 0.063 0.767 -0.13 0.123
50.19

(-3.34) (6.01) (18.3) (-7.92) (0.99)

(b) Time Series

HMLgTA LagVol ROE VROE DW Adj.R2(%)

0.274 0.588 0.491
1.90 32.97

(0.99) (1.28) (1.16)
0.630 0.031 0.279 -0.385

2.26 56.78
(4.99) (0.25) (0.61) (-1.72)

2.14 show that the asset growth measure is still significant in the cross-sectional
regressions. Table 2.14 also reports the result of the value-weighted time series
regressions after controlling for ROE and VROE. It turns out that the aggregate
asset growth measure is the only significant variable among the four variables (the
asset growth measure, ROE, VROE, and the lagged volatility) in the time series
regression. These results indicate that the asset growth has a stronger effect than
the cash flow and its volatility measures documented in the prior literature.

2.6.2 Asset Growth versus Growth Options
Cao et al. (2008) argue that firms with more growth options, proxied by the

market-to-book assets ratio (MABA), or with higher variations in growth options,
proxied by the time series variance of MABA (VMABA), should have higher
idiosyncratic volatility. However, they only test their explanation in a time series
without showing cross-sectional evidences. I conduct such a cross-sectional test

54



with measures in Cao et al. (2008) and do not find any support of their explanation.
As shown in Table 2.15, MABA is insignificant in the cross-sectional regression.
Note, however, that the asset growth measures are still significant in the cross-
sectional regressions after both MABA and VMABA are controlled for. Table
2.15 also shows that the aggregate asset growth measure retains its power after
controlling for both MABA and VMABA in the value-weighted time series.

It is worthwhile to point out that there also exists a V-shaped relationship be-
tween the idiosyncratic volatility and the market-to-book assets ratio.31 Note that
the V-shape of idiosyncratic volatility versus MABA is quite different from the
V-shape of idiosyncratic volatility versus asset growth rate in terms of the number
of firms in the two segments of the V-shape. In the case of the asset growth rate,
the two segments of the V-shape have almost the same number of stocks, with the
breaking point in decile 5 (see Table 2.1). However, in the case of MABA, the left
segment has much fewer stocks and the breaking point is in decile 3.

Similar to the asset growth, the V-shape with respect to MABA can be captured
by a two-segment piecewise linear model. In particular, I split the MABA into
two measures, LMABA and HMABA (similar to splitting gTA into LgTA and
HgTA).32 The results of the cross-sectional regressions are given in Table 2.15.
The pure MABA effect on the idiosyncratic volatility only delivers a relatively
low R-square of 3.02%. Recall from Table 2.4 that the pure asset growth effect
has an R-square of 9.57%. Moreover, breaking MABA into two segments does
not affect the significance of the asset growth measure. Similar to the case of asset
growth, I use the difference between the average of HMABA and the average of
LMABA in the time series regressions instead of the simple average of MABA

31I find a similar V-shape for deciles sorted by book-to-market equity ratio. This is consistent
with the findings by Carlson et al. (2004) and Chen (2009), but raises concerns on the finding
of Pastor and Veronesi (2003) that market-to-book equity has a significant and positive effect on
idiosyncratic volatility in the cross-section. Recall from the results using annual cross-sectional
regressions in Table 2.4 that MABA is not significant in the univariate cross-sectional regression
and the R-square is very low (1.66%).

32An alternative way to capture the V-shape is to add a square term of MABA in the cross-
sectional regressions; and the results are qualitatively the same.
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Table 2.15: Asset Growth vs. Growth Options

The table reports the comparison between the asset growth effect and the growth
options effect on the idiosyncratic volatility. The definition of LMABA and HMA-
BA is similar to that of LgTA and HgTA, except that the breaking point for
market-assets-to-book-assets (MABA) is set at 0.95. The dispersion of MABA
(HMLMABA) is constructed in the same way as HMLgTA. The cross-sectional
regression is conducted similar to that of Table 2.4. The value-weighted time
series regressions are conducted similar to those in Table 2.5.

(a) Cross-section–I

LgTA HgTA LagVol MABA VMABA Adj. R2(%)

-0.41 0.053 0.800 -0.004 0.007
50.00

(-3.66) (6.59) (18.7) (-0.89) (4.60)

(b) Cross-section–II

LgTA HgTA LagVol LMABA HMABA Adj. R2(%)

-1.13 0.033
3.02

(-2.51) (2.76)
-0.398 0.061 0.799 -0.236 0.004

49.49
(-3.76) (5.38) (18.6) (-2.38) (1.02)

(c) Time Series–I

HMLgTA LagVol MABA VMABA DW Adj.R2(%)

0.309 0.043 -0.006
1.76 44.65

(1.62) (2.92) (-1.15)
0.456 0.061 0.022 -0.010

2.16 58.92
(4.33) (0.48) (2.52) (-3.79)

(d) Time Series–II

LagVol HMLMABA DW Adj.R2(%)

1963–2009 Period

0.046
1.18 42.20

(5.33)
0.245 0.037

1.67 46.37
(1.47) (3.45)

1963–1995 Period

-0.005
0.90 -2.08

(-0.49)
0.545 0.004

1.88 25.26
(3.46) (0.54)
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used in the robustness analysis.33 I choose the breaking point of 0.95 for MABA,
which is obtained by fitting the breaking point in a two-segment, piecewise linear
model. Table 2.15 shows that although the cross-sectional dispersion in MABA is
significant in the full sample, it has no explanatory power in the value-weighted,
pre-1995 time series.

The above results show that the two measures used by Cao et al. (2008) (MA-
BA and VMABA) in the time series lack explanatory power in the cross-section.
In contrast, after both measures are controlled for, the asset growth maintains its
explanatory power in both the cross-section and the time series. Moreover, after
I take into account the V-shape of idiosyncratic volatility in MABA, MABA still
lacks power in the cross-section and the pre-1995 time series. This indicates that
the asset growth measure is a better explanation for idiosyncratic volatility than
MABA, the proxy of growth options.

2.6.3 Asset Growth versus Long-term Earnings’ Growth
In this section, I distinguish between the asset growth measure and the ex-

pected long-term growth, which Malkiel and Xu (2003) proxy with the expected
growth of long-term earnings, i.e., the earnings per share (EPS) growth as fore-
casted by IBES over the next 3 to 5 years. Although both the asset growth rate and
EPS growth are growth measures, they have obvious differences. First, the asset
growth rate measures the total asset growth, while the EPS growth is the growth
of earnings per share. So if a firm grows by issuing new shares without changing
its EPS, the asset growth measure still captures this growth while EPS does not.
Second, the asset growth is the realized past asset growth, while EPS growth is the
forecasted future growth. While the realized asset growth has no noise, the fore-
casted EPS growth can have substantial noises. Third, the asset growth measure
is available for almost all public firms since 1963, while EPS long-term growth is
only available from early 1980s and for relatively large stocks.

33I also use the cross-sectional standard deviations of MABA in the time series regressions. The
results are qualitatively the same.
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Nevertheless, I still separate the two types of growth in the cross-sections
where both measures are available. I collect long-term EPS growth from IBES
for the period from 1982 to 2009. I use the median of monthly forecasts to calcu-
late the annual average of the forecasted EPS long-term growth. I then match the
long-term growth rate calculated from July of year t− 1 to June of year t based
on IBES forecasts with the average monthly volatility from July of year t to June
of year t + 1. The pooled cross-sectional correlation between the asset growth
rate and long-term EPS growth is only 0.38, indicating that the two are not highly
correlated.

It is worth noting that Malkiel and Xu (2003) also find an asymmetric V-
shaped relationship between the idiosyncratic volatility and long-term EPS growth.34

I set up a two-segment, piecewise linear model of idiosyncratic volatility with
respect to the forecasted long-term EPS growth. I confirm that there indeed ex-
ists an asymmetric V-shaped relationship between the idiosyncratic volatility and
the long-term EPS growth. However, comparing regressions (1) and (2) in Table
2.16, I also find that introducing the V-shape generates a very small gain in R-
square relative to a simple linear model.35 This contrasts with my results, which
show that both the low-growth and high-growth segments are very important in
the cross-sectional idiosyncratic volatility regressions. Moreover, the long-term
EPS growth is not significant once lagged volatility is added to the regression (re-
gressions (3) and (4) in Table 2.16). Note, however, that the asset growth is highly
significant in this smaller sample (regressions (5) and (6) in Table 2.16).

More important, when the long-term EPS growth is controlled for in regres-
sions (7) to (10) in Table 2.16, the asset growth effect is still significant and has
the same asymmetric V-shape as in the main analysis. This shows that the past re-
alized asset growth has explanatory power for idiosyncratic volatility in additional

34Note that the idiosyncratic volatility in Malkiel and Xu (2003) is calculated using returns
in three years (one year before and two years after the IBES statistic period). My idiosyncratic
volatility measure is calculated using returns of 12 months after the asset growth rate is known.

35Note that Malkiel and Xu (2003) do not report their R-squares in the two-segment, piecewise
linear model (see Table 9 in Malkiel and Xu (2003)).
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Table 2.16: Asset Growth vs. Long-term EPS Growth

The table reports the comparison between the asset growth effect and the Long-
term EPS Growth effect on the idiosyncratic volatility. The long-term EPS growth
(EPSLTG) is obtained from IBES. The cross-sectional regressions use the data
from 1982 to 2009. The asset growth measures, LgTA and HgTA, are the same
as in Table 2.4. The definitions of LEPSLTG and HEPSLTG are similar to those
of LgTA and HgTA. The breaking points for gTA and EPSLTG are set at 2% and
2.5% respectively, which are obtained from the fitted breaking points in the two-
segment, piecewise linear models. The t-statistics are adjusted for the first order
autocorrelation of estimates in the cross-sectional regressions.

LgTA HgTA LagVol EPSLTG LEPSLTG HEPSLTG Adj. R2 (%)

(1)
1.054

8.13
(3.41)

(2)
-0.092 1.063

8.21
(-0.51) (3.48)

(3)
1.124 0.046

40.96
(10.3) (0.37)

(4)
1.124 0.086 0.046

40.89
(10.4) (0.39) (0.37)

(5)
-1.14 0.114

6.24
(-5.31) (7.11)

(6)
-0.161 0.022 1.119

40.56
(-2.90) (3.26) (11.2)

(7)
-1.07 0.046 p.983

11.74
(-5.65) (3.40) (3.54)

(8)
-1.07 0.044 0.310 0.987

11.81
(-5.64) (3.44) (3.24) (3.56)

(9)
-0.157 0.021 1.117 -0.001

40.87
(-2.84) (2.79) (10.3) (-0.02)

(10)
-0.160 0.020 1.118 0.145 -0.003

40.94
(-2.90) (2.67) (10.3) (0.77) (-0.03)
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to the forecasted long-term EPS growth.
To summarize the results from the comparisons in Sections 2.6.1 to 2.6.3, the

asset growth measure retains its explanatory power in both the cross-section and
the time series, even after several closely related alternative explanations are con-
trolled for. Moreover, the asset growth measure shows stronger explanatory pow-
er than these alternatives. Specifically, although cash flows and volatility of cash
flows (proxied by ROE and VROE respectively) show some explanatory power in
the cross-section, they do not show explanatory power in the value-weighted time
series. Similarly, although MABA has explanatory power in the full time series
(though not in the pre-1995 period), it lacks power in the cross-section. Final-
ly, the expected growth in long-term earnings, proxied by forecasted long-term
EPS growth, becomes insignificant once lagged volatility is added to the cross-
sectional regressions.

2.7 Conclusion
This chapter studies the effect of frictions to real investment on return volatil-

ity. The model predicts a nonlinear V-shaped relationship between the idiosyn-
cratic return volatility and the asset growth rate. The high return volatility of
low (negative) growth firms is due to the amplification of shocks to unexpected
cash flows by firms’ low market values. In contrast, the high return volatility of
high growth firms is driven by the amplification of shocks to expected cash flows
through growth opportunities. Aggregating the V-shape in each cross-section, the
model also predicts a positive correlation between the cross-sectional dispersion
in the asset growth rates and the average idiosyncratic return volatility.

This study also documents strong empirical evidence that supports the model’s
predictions. Empirical analysis confirms the V-shaped relationship between the
idiosyncratic return volatility and the asset growth rate in the cross-section. That
is, in the cross-section, stocks with either high positive or negative asset growth
rates have high idiosyncratic return volatility in the next year. In the time series,
a higher cross-sectional dispersion of the firm-level asset growth rate empirically
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predicts a higher average idiosyncratic return volatility in the next year.
This study further documents the robustness of the empirical findings. The V-

shaped relationship in the cross-section is robust even after controlling for factors
such as size and leverage. The asset growth measure turns out to be the most
important predictor of the average idiosyncratic return volatility in the value-
weighted time series. Moreover, the asset growth effect on idiosyncratic return
volatility, which is driven by investment frictions, empirically dominates alterna-
tive explanations of idiosyncratic return volatility such as cash flow and its volatil-
ity, growth options, and forecasted long-term earnings growth.
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Chapter 3

Endogenous Asset Fire Sales and
Bank Lending Incentives 1

3.1 Introduction
The financial crisis of 2007-2009, starting with the U.S. subprime mortgage

crisis, has been the worst since the Great Depression. Its global effects include
the failure and bailout of key financial institutions, the decline in consumer wealth
estimated in trillions of U.S. dollars, substantial financial commitments incurred
by many governments, and a significant decline in economic activities.2

Many illiquid assets, such as mortgage-backed securities, have been sold at
fire-sale prices due to the poor market condition during the crisis. Huge losses
from these securities have impacted the lending capacity of financial institutions
such as banks, which in turn slows economic activities. Concerns regarding the
stability of key financial institutions have driven governments around the world to

1I would like to thank Jan Bena, Adlai Fisher, Lorenzo Garlappi, Ron Giammarino, Hernan
Ortiz-Molina, Tan Wang, Ralph Winter, and seminar participants at the University of British
Columbia and the Northern Finance Association 2010 Meetings for their valuable comments and
suggestions.

2For reviews of the recent crisis, see Gorton (2008), Brunnermeier (2009), Diamond and Rajan
(2009a), Blanchard (2009), and Krishnamurthy (2009).
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provide funds to encourage lending and restore confidence in the financial system.
For example, the Troubled Asset Relief Program (“TARP”) allows the United
States Treasury to purchase or insure up to $700 billion of “troubled” assets, which
are illiquid and difficult-to-value, from banks and other financial institutions.3

One of the important goals of “TARP” is to encourage banks to resume lending at
the levels before the crisis, both to each other and to consumers and businesses.

Despite the large U.S. government injection of capital to the banking sector af-
ter September 2008, bank lending shrank dramatically. Ivashina and Scharfstein
(2009) document that new loans to large borrowers (through syndicated lending)
falls by 47% during the last quarter of 2008. Such a decline in lending is also
manifested in the aggregate flow of funds of bank loans in the U.S. commercial
banking sector. As shown in Fig. 3.1, the flow of bank loans decreases dramati-
cally from $1660B in the 3rd quarter of 2008 to -$514B in the 4th quarter, and to
-$526B and -$351B in the first two quarters of 2009. Related to the drop of bank
loans, the spread between the bank loan rate and the federal funds rate increases
during the same period. According to the Federal Reserve’s Survey of Terms of
Business Lending,4 the spread between the C&I loan rate and the federal funds
rate at U.S. domestic banks increases from 2.52% in the third quarter of 2008 to
3.13%, 3.06%, 3.06%, and 3.27% in the next four quarters (see Fig. 3.2).

On the other hand, banks seem willing to keep a large holding of cash on their
balance sheet during the same period. According to the Federal Reserve’s H.8
report (Assets and Liabilities of Commercial Banks in the U.S.), the aggregate
cash to total assets ratio of commercial banks has increased dramatically since

3As reported by SIGTARP (2009), “TARP” is just one part of a much broader U.S. Federal
Government effort to stabilize and support the financial system. Since the onset of the financial
crisis in 2007, the Federal Government, through many agencies, has implemented dozens of pro-
grams. The maximum total amount of support that Federal Government and agencies has specified
that they could provide is estimated to be as large as $20 trillion U.S. dollars.

4The Survey of Terms of Business Lending collects data on gross loan extensions made during
the first full business week in the middle month of each quarter. The authorized size for the survey
is 348 domestically chartered commercial banks and 50 U.S. branches and agencies of foreign
banks. The sample data are used to estimate the terms of loans extended during that week at all
domestic commercial banks and at all U.S. branches and agencies of foreign banks.
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Figure 3.1: Quarterly Flow of Bank Loans (annualized) of the U.S. Com-
mercial Banking Sector: 1989:Q3–2009:Q2
(Source: Flow of Funds, Federal Reserve.)

September 2008. As shown in Fig. 3.3, the cash ratio is only 2.87% in Au-
gust 2008. It then quickly increases to 3.44% (September), 5.08% (October), and
7.19% (November), and then stays roughly at 8% through December 2008 to Au-
gust 2009. As shown in Fig. 3.3, such a high cash ratio (8%) has not been seen
for the recent 20 years.

Two important questions arise from the above observations: (i) Why don’t
banks keep enough cash to meet potential liquidity shocks and hence avoid fire
sales of illiquid assets? (ii) Why do banks keep a large amount of cash on their
balance sheet without lending it out after large capital injections from the gov-
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Figure 3.2: Commercial and Industrial Loan Rates at the U.S. Domestic
Banks: 1989:Q4–2009:Q3
(Source: Survey of Terms of Business Lending, Federal Reserve.)

ernment? In this study, I use a single framework to answer both questions by
examining lending incentives of banks when they face liquidity risks.

The key ingredient of the model is the fire sales of illiquid assets when banks
face the risk of liquidity shocks. Banks are endowed with cash, non-tradable bank
loans and tradable illiquid assets such as mortgage-backed securities. The non-
tradable bank loans can be liquidated prematurely at a discounted value. The
illiquid assets can be sold to private buyers who have a limited amount of cash
available. If banks have less cash (plus outside buyers’ excess cash) than the
liquidity demand from banks’ short-term creditors, they have to liquidate some
of their loans and sell illiquid assets at a fire-sale price (a price lower than the
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Figure 3.3: Monthly Cash Holdings to Total Assets Ratio of U.S. Com-
mercial Banks: Sep. 1989 – Aug. 2009
(Source: Assets and Liabilities of Commercial Banks in the U.S. (H.8),
Federal Reserve.)

fundamental value).
Banks make decisions based on the tradeoff between the cost and benefit of

lending. The cost of lending comes from the premature loan liquidation and the
fire sales of illiquid assets to raise cash when banks face a liquidity shock. The
benefit of lending is the high return from the potential bank loans. This study
shows that it can be optimal for banks to lend out cash and therefore incur asset
fire sales under a liquidity shock, even if banks are endowed with enough cash
to meet the liquidity shock. That is, fire sales of assets could be an endogenous
outcome of banks’ optimal decisions. This provides an answer to the first question
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raised above.
At the same time, although the forgone return from the potential bank loans

might be high, the cost of potential fire sales could be even higher. As a result,
banks might want to keep a large amount of cash to save the cost of potential
fire sales. Since the cost of potential fire sales is directly linked to the severity of
the liquidity shock (e.g., the size of the shock), more severe liquidity shock will
induce a larger cash holding of banks. In addition to this direct explanation, my
model provides another important dimension to understand the cash holding of
banks. Specifically, for given severity of a liquidity shock, a higher bank illiquid
assets to loans ratio makes fire sales more costly and therefore induces banks to
keep an even larger amount of cash on their balance sheet rather than lending
out. This provides an answer to the second question raised above. This novel
explanation is especially relevant during the recent financial crisis, in which many
big banks are reported to be ‘clogged’ with a large amount of illiquid assets (such
as mortgage-backed securities) on their balance sheet.

Moreover, this study also provides implications for government policy to alle-
viate the credit crunch in the recent financial crisis. I compare three government
intervention policies, and rank them according to their effects on the real economy
and investment. Specifically, this study shows that when the government interven-
tion fund size is relatively small, buying illiquid bank assets at face values and a
direct capital injection to banks are equivalent; and both dominate buying bank
loans at the face value. As the intervention fund increases such that there is no
illiquid asset left in the case of buying assets, depending on parameter values,
buying illiquid assets can dominate or be dominated by both a direct capital in-
jection and buying bank loans. I also show that a direct capital injection (weakly)
dominates buying bank loans.

Diamond and Rajan (2009b) is the closest work to this study in terms of mod-
eling framework. They assume that banks have no cash and choose the timing of
the illiquid assets trading to meet potential liquidity shocks. One of banks’ choic-
es is to sell illiquid assets conditional on a liquidity shock, in which assets can be
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sold only at a very low fire-sale price due to the limited amount of outside liquid-
ity. Alternatively, banks can sell illiquid assets before the liquidity shock, where
the price of the illiquid assets has already incorporated the expected fire sales in
the future. Their main result is that if banks are insolvent in the future conditional
on the liquidity shock, banks might refuse to sell their illiquid assets before shocks
arrive, even if they could remain solvent by doing so. The intuition is similar to
the “debt overhang” of Myers (1977) and the “risk shifting” of Jensen and Meck-
ling (1976). The model of Diamond and Rajan (2009b) provides an explanation
to the freeze of the illiquid asset markets, such as the market of mortgage-backed
securities.

The model in this study extends Diamond and Rajan (2009b) with four key d-
ifferences. First, the focus of this study is bank lending incentives and their effect
on new bank lending and prices of illiquid asset fire sales. In contrast, Diamond
and Rajan (2009b) focus on the freeze of illiquid assets trading. Second, while in
Diamond and Rajan (2009b) the insolvency of banks under a liquidity shock is a
necessary and sufficient condition for the asset market freezing, it is only a nec-
essary but not sufficient condition in my study. Third, my study endogenizes fire
sales of illiquid assets under a liquidity shock, while Diamond and Rajan (2009b)
assume fire sales exogenously. Fourth, this study analyzes the effect of fire sales
on the lending of banks, which is the major source of funds for many businesses
and the focus of government intervention. However, Diamond and Rajan (2009b)
only discuss the effect of fire sales on lending through a non-banking channel.

Another closely related paper is Acharya et al. (2009). They also look at
banks’ endogenous choice of liquidity which involves fire sales of illiquid assets.
However, there are three major differences between my model and theirs. First,
while they only look at the choice between cash and illiquid assets, my study
breaks the illiquid assets into non-tradable bank loans and other tradable illiquid
assets. Therefore, my study yields new results such as the effect of the loan to
illiquid asset ratio on cash holding, new bank lending, and asset fire-sale prices.
Given that banks do hold both bank loans and other illiquid assets, this extension
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is important in studying the bank’s lending incentives. Second, in their model, the
benefit of holding cash is from participating in the potential fire sales of illiquid
assets of other troubled banks. In my model, however, different players have
different incentives for holding cash. For private buyers, it is the same as that in
Acharya et al. (2009). For banks, holding cash is to alleviate the potential loss
from their own fire sales of illiquid assets. Both of these motives to hold cash
should be relevant in reality. However, it seems that the precautionary motive is
more relevant for banks to hold cash during financial crises. Third, although both
my study and Acharya et al. (2009) use the “cash-in-the-market” pricing approach
of Allen and Gale (1998), the cause of fires sales is different. In Acharya et al.
(2009), fire sales of illiquid assets are linked to bank failures due to shocks to asset
values. In my study, however, fire sales are a result of liquidity shortage and bank
failures do not necessarily occur.

This chapter proceeds as follows. Section 3.2 sets up the model. Section
3.3 carries out the model analysis and derives implications on bank loans, bank
cash holdings, and illiquid asset fire-sale prices. Section 3.4 discusses the model’s
implications for government policy. Finally, Section 3.5 concludes the chapter.
The Appendix B contains all the proofs.

3.2 Model
This section describes the model. In the model, there are three dates: 0 (initial

date), 1 (intermediate date), and 2 (final date).

3.2.1 Agents
There are two types of agents: banks and non-bank institutions. Each type has

a continuum of identical agents with measure one.
Banks are financed with equity and demand deposits (or by rolling over short-

term debt). For simplicity, banks are assumed to have monopoly power in financ-
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ing and pay an interest rate of zero to their depositors.5 The objective of banks is
to maximize the expected bank equity value.

The non-bank institutions (e.g., private equity, hedge funds) are the only po-
tential buyers of banks’ tradable assets. For this reason, I refer to them as the
private buyers thereafter. These private buyers are all-equity financed. The objec-
tive for them is to maximize the expected value of their holdings.

Both banks and private buyers are risk neutral; and the universal discount rate
is zero.

3.2.2 Assets and Investment Opportunities
Banks are endowed with three types of assets: tradable but illiquid assets

(such as mortgage-backed securities), non-tradable bank loans, and cash (or cash-
equivalents). The private buyers are endowed with cash only. Both the tradable
bank assets and bank loans are assumed to be riskless in terms of their date-2
values. That is, all assets are risk-free in terms of their fundamental values.

The illiquidity of banks’ tradable assets (such as mortgage-backed securities)
is due to the fact that private buyers, who are the only potential buyers of these
assets, might have a limited amount of cash available. As a result, these assets
may trade at a price that could be much lower than the fundamental value (i.e., at
a fire-sale price).

The endowment bank loans are ex-ante identical but can be recalled prema-
turely at date 1 for values uniformly distributed between zero and the full face
value.6 However, bank loans cannot be traded directly to private buyers.7

In addition, both banks and private buyers can always choose to hold cash with
a raw return of one. This can be alternatively interpreted as granting both of them

5Therefore, depositors can claim the same amount at either date 1 or date 2.
6Existing loans cannot be recalled at date 0 due to the lack of borrower’s cash at date 0. Simi-

larly, new loans issued at date 0 cannot be recalled at date 1 due to the lack of borrower’s cash at
date 1.

7We can think of banks having a special monitoring technology which is crucial to maintain
the loan value. But private buyers lack such a skill and therefore are unwilling to buy bank loans
directly.
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the access to a risk-free storage technology.
In addition to endowments described above, both banks and buyers have in-

vestment opportunities at date 0. Banks can make new loans that mature at date 2,
with a maximum size of L. These potential loans have different but sure rates of
return ranging uniformly between [1, R̄]. Similarly, the private buyers can invest
in other long-term projects that generate cash only at date 2, with a maximum
size of I. The different but sure gross returns of these projects are also uniformly
distributed between [1, R̄]. For simplicity, new bank loans and buyers’ investment
opportunities are assumed to be independent (so they won’t compete with each
other).

3.2.3 Endowments
At date 0, banks are endowed with assets that will be worth Z in total at date 2.

Of these assets, an amount of D is financed with demand deposits and the rest by
equity. Let α , β , and γ be the fractions of tradable assets, bank loans, and cash,
respectively. That is, banks are endowed with tradable assets of αZ, bank loans of
βZ, and cash of γZ.8 Private buyers are endowed with θ amount of cash at date 0.

3.2.4 Timing of Events
The timeline of the model is shown in Fig. 3.4. At the initial date, both banks

and private buyers will decide on their own investments. The tradable bank assets
may be traded on this date.

The key event happens at the intermediate date. At date 1, banks face a liq-
uidity shock with a probability q, upon which banks have to raise f D of cash to
meet the liquidity demand. Such a liquidity demand can be interpreted as sudden

8If the total size of the bank portfolio is fixed at Z, then α + β + γ = 1. However, I would
like to keep all three variables rather than eliminating one of them. This provides extra flexibility
when I analyze the government intervention, which could potentially change the size of the banks’
portfolio (e.g., government direct capital injection to banks). In that case, α +β + γ > 1 with a
fixed Z. Moreover, it also facilitates comparative static analyses later in the study.
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Figure 3.4: Model Timeline

withdrawal from a fraction of depositors due to their personal liquidity needs,9

or alternatively, as a partial failure of short-term debt roll-over.10 If banks do not
have enough cash of their own, they have to prematurely liquidate some of their
loans, or sell a part of their tradable assets, or more likely do both.

At the final date 2, all bank loans and securities pay off. Banks’s equity-
holders pay off the deposits/debts and keep the equity value. Private buyers retain
all payoffs from their holdings. It is the expected payoff at the final date that
matters for both banks and private buyers.

3.3 Analysis
I start this section by considering the new investments made at date 0 by both

the banks and private buyers for a given cut-off rate of return. In the following, I
first formulate the agents’ optimization problems in Section 3.3.1, I then analyze
the illiquid assets trading, focusing on the timing and condition to trade in Section
3.3.2. I establish results for endogenous fire sales of illiquid assets in Section

9If deposits are insured by FDIC, then the depositors’ motive of bank run as in Diamond and
Dybvig (1983) is absent.

10Bear Stearns failed in March 2008 because it was unable to renew the short-term debt that it
used to finance long-term investments in mortgage-backed securities. Also, according to Ivashina
and Scharfstein (2009), after the failure of Lehman Brothers in September 2008 there was a run
by short-term bank creditors, making it difficult for banks to roll over their short-term debt.
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3.3.3, specify the equilibrium conditions in Section 3.3.4, and finally carry out
comparative static analyses in Section 3.3.5.

Since the sure return of available new loans is uniformly distributed between
[1, R̄], the banks would like to make loans with higher returns first, and move
downward along the return distribution as more loans are made. To arrive at a
minimum loan rate of R, where 1≤ R≤ R̄, the banks are required to lend out cash
with an amount of

L(R) =
R̄−R
R̄−1

L, (3.1)

which generates new loans with a corresponding face value of

F(R) =
L

R̄−1

∫ R̄

R
r ·dr =

L
2

R̄2−R2

R̄−1
. (3.2)

For example, if all the new loans are employed by the banks (i.e., R = 1), then
L(1) = L and F(1) = L(R̄+1)/2.

By the same argument, the new investment that the private buyers make at date
0 for a given minimum required return of R is

I(R) =
R̄−R
R̄−1

I. (3.3)

This new investment generates a value at date 2 which equals

V (R) =
I
2

R̄2−R2

R̄−1
. (3.4)

As a result, the private buyers will have [θ − I(R)]+ of cash left available for
asset trading.

3.3.1 Agents’ Optimization Problem
The banks can either sell their tradable assets when hit by the liquidity shock

at date 1 or sell earlier at date 0, anticipating the liquidity shock at date 1. If the
price of the illiquid assets is low under a liquidity shock at date 1, then the date 0
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price will incorporate such a discount in expectation as well.
The private buyers are indifferent between buying illiquid bank assets at date

0 and date 1 if they get the same expected return at date 2. Let the price of per
unit of date-2 face value of illiquid assets be P0 at date 0, and P1 at date 1 under
a liquidity shock. (Note that the price at date 1 is 1 without any liquidity shock.)
Then P0 and P1 satisfy:

1
P0

=
q
P1

+(1−q), (3.5)

where the left hand side is the return for the buyers if illiquid assets are bought
at date 0; the right hand side is the expected return of buying at date 1 (with or
without a liquidity shock). For a given date-1 price under a liquidity shock (P1),
we can find from Equation (3.5) the maximum date-0 price that the buyers are
willing to pay: P0 = 1/[q/P1 +(1−q)].

Consider first the private buyers’ optimization problem. The private buyers
will choose the cut-off rate for making new long-term investment by solving the
following maximization problem:

Private Buyers’ Optimization Problem: max
R

[
V (R)+

θ − I(R)
P0

]
, s.t. θ ≥ I(R).

(3.6)
The solution of this problem can be easily obtained. The private buyers would

like to maximize their profit by investing in those long-term projects that generate
returns at least as high as what they can get from buying the banks’ assets. That
is, the private buyers will set 1/P0 as their minimum required rate of return for
investing in the long-term project. As a result, the private buyers will have [θ −
I(1/P0)] of cash left for asset trading.11

Next, consider the banks’ optimization problem. At date 0, the banks have to
decide how many new loans to make (or equivalently, how much cash to retain
and how many assets to sell). Since the banks are endowed with cash themselves,

11In a general case, it could happen that θ < I(1/P0). In this case, the private buyers will invest
all their money in the long-term projects, which generate higher returns than buying bank assets. I
rule out this uninteresting case since there is no interaction between the private buyers and banks.
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they can always choose to use their own cash endowment first to make new loans.
However, there are potentially two cases in which the banks would like to sell
assets to the private buyers at date 0. In the first case, banks exhaust all their own
cash but still want to make additional loans. Then they need to sell illiquid assets
to the private buyers to raise additional cash for further lending. In the second
case, if it is in the banks’ own interest to hold more cash at date 0 (for example,
the banks may want to prevent the potential insolvency at date 1), the banks then
would like to sell their assets to the private buyers for cash at date 0.12

Suppose that the banks choose to make new loans at date 0 with rates of return
no lower than R (the optimal choice will be determined in the equilibrium). Then
the banks will have cash of γZ−L(R) (a negative amount of cash simply means
that the banks have to sell assets at date 0 to the private buyers to raise cash for
lending). At date 1, under the liquidity shock, the banks have to raise cash of f D

through loan liquidations and illiquid asset fire sales. To determine how many
loans should be liquidated, note that the banks would be willing to recall loans
with liquidation values equal to or greater than the illiquid asset fire-sale price.13

For every date-2 dollar of endowment loans, a fraction of 1−P1 will be liquidated
(since the liquidation value is uniformly distributed) which generates cash with an
amount of ∫ 1

P1

l ·dl =
1
2
(1−P2

1 ).

Therefore, the total cash from loan liquidations is βZ(1−P2
1 )/2.

From the above analysis, the cash constraint under a liquidity shock at date 1

12Although both the new loan making and the illiquid asset trading can happen at the same date,
we can think of banks making new loans using their own cash and then trading with the private
buyers if more cash is needed. Such an interpretation simplifies the analysis without affecting the
results.

13 It is possible that the minimum liquidation value of loans is below the fire-sale price of
illiquid assets. That is, the banks might have to liquidate loans with liquidation value less than
the asset price. Such a scenario happens when there is no benefit from lowering the asset price
(i.e., αZP1 = θ − I(1/P0)) and the cash raised is still below required. For the ease of presentation,
I ignore these special cases in the main analysis. I will return to these cases when I discuss the
effect of government intervention.
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can be written as follows:

[γZ−L(R)]+
1
2

βZ(1−P2
1 )+

[
θ − I(

1
P0

)

]
= f D, (3.7)

where the first term is the bank cash left; the second is the bank loan liquidation
cash from endowment loans; and the third term is the proceeds from bank asset
sales (at either date 0 or date 1).14

Generally, the bank equity value will depend on when the bank assets are sold.
First consider the case where the bank assets are sold only at date 1. If there is
no liquidity shock at date 1, then the date-2 bank equity value will be Z−D+

F(R)−L(R). Note that Z−D is the equity’s endowment value and F(R)−L(R)

is the NPV from the newly made loans. If there is a liquidity shock at date 1, then
the equity value at date 2 will beβZP1 +F(R)+

αZ−

[
θ − I( 1

P0
)
]

P1

− (1− f )D


+

, (3.8)

where the first term is the endowment loans left after liquidation; the second term
is the face value of the new loans; the third term is the illiquid assets left after fire
sales at P1 at date 1;15 and the last term is the banks’ liability after the liquidity
withdrawal at date 1.

As a result, the expected payoff for the bank equity if assets are traded only at

14The left hand side of (3.7) should be no less than the right hand side. For the ease of presen-
tation, in the main analysis I consider only the interior solutions (i.e., R > 1 and P1 < 1), which
satisfy equation (3.7) .

15For simplicity, I assume αZP1 > θ − I(1/P0) such that there are still some illiquid assets left
in the banks’ portfolio after fire sales. Otherwise, scenarios described in footnote 13 might occur.
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date 1 is

E1
0(R) =q

βZP1 +F(R)+

αZ−

[
θ − I( 1

P0
)
]

P1

− (1− f )D


+

+(1−q) [Z−D+F(R)−L(R)] , (3.9)

where the subscript ‘0’ means that the equity expectation value is formed at date
0, and the superscript ‘1’ indicates that asset selling only happens at date 1.

If the assets are only traded at date 0, then the cash constraint under the liquid-
ity shock will still be the same as equation (3.7). However, the expected payoff
for the bank equity should be modified as follows:

E0
0(R) =q

βZP1 +F(R)+

αZ−

[
θ − I( 1

P0
)
]

P0

− (1− f )D


+

+(1−q)
{

Z−D+F(R)−L(R)+
[

θ − I(
1
P0

)

](
1− 1

P0

)}
. (3.10)

Therefore, the banks’ optimization problem can be written compactly as fol-
lows:

Banks’ Optimization Problem: max
R,t={0,1}

Et
0(R), (3.11)

s.t. liquidity constraint (3.7),

γZ +[θ − I(
1
P0

)]≥ L(R), if t = 0,

γZ ≥ L(R), if t = 1.

That is, the banks will choose how much to lend at date 0 and whether to
trade at date 0 or date 1, subject to the liquidity constraint at date 1 and the cash
constraint at date 0.16

16For simplicity, I assume that asset trading occurs at either date 0 or date 1 (but not both).
However, the results will be similar if the banks are allowed to choose a combination of trading at
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3.3.2 Asset Trading
In this section, I analyze the banks’ illiquid asset trading based on the agents’

optimization problems developed in Section 3.3.1. I establish two results, one
regarding the timing of trading and the other on the condition of trading freeze at
date 0.

The following lemma presents results regarding the timing of the asset trading.

Lemma 3.1 Assume that the banks are always solvent and have some illiquid

assets left after selling.

(a) If the banks have enough cash to make the equilibrium amount of new loans

by using only their cash endowment, then the banks are indifferent between

trading their illiquid assets at date 0 and date 1;

(b) Otherwise, banks will prefer selling assets at date 0 and use the proceeds to

make additional new loans.

The result in (a) is intuitive. When there is no solvency issue and the banks
still have their own cash left, there is no need to trade at date 0. In addition,
the date 0 price will in expectation incorporate the date 1 fire-sale price under a
liquidity shock. At the equilibrium, both the banks and buyers will be indifferent
between the two trading dates. For most analysis in the following, I assume that
the condition in (a) holds. However, the result in (b) is important to the following
discussion on asset freeze. The intuition is as follows. If banks exhaust all their
cash to extend new loans, then it may be optimal for them to sell some of their
illiquid assets to the private buyers and then use the cash proceeds to make more
loans. This will happen if the benefit from new loans is greater than the cost of
fire sales.

Furthermore, this analysis modifies the main result of Diamond and Rajan
(2009b), who provide an explanation of the freeze of illiquid bank assets. They
find that if the banks are insolvent at date 1 under a liquidity shock, then they will

both dates.
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not sell assets at a fire-sale price at date 0, even they could be solvent by doing so.
That is, in their model the insolvency of banks under a liquidity shock at date 1 is a
necessary and sufficient condition for the illiquid asset market to freeze. However,
my model extends Diamond and Rajan (2009b) and incorporate new investment
opportunities for banks. Therefore, results in Diamond and Rajan (2009b) should
be modified as follows.

Proposition 3.1 The insolvency of the banks at date 1 under a liquidity shock is

only a necessary but not a sufficient condition for the no-trading of illiquid bank

assets at date 0. Under some other conditions (e.g., the benefit from new loans is

greater than the cost of fire sales), the banks would like to sell assets at a fire-sale

price at date 0 and use the cash proceeds to make new high yield bank loans.

Suppose that the banks become just solvent under a liquidity shock at date 1.
According to Lemma 3.1, the banks may prefer selling assets at date 0 and use
the proceeds to extend more loans. Such results will naturally continue to hold
even the banks are insolvent under a liquidity shock at date 1. Such a modification
comes from the fact that banks are granted with additional opportunities of making
new loans, while in Diamond and Rajan (2009b) the banks can only hold cash after
asset fire sales at date 0. Proposition 3.1 is illustrated through numerical examples
shown in Fig. 3.5. The figure shows that the banks may still prefer date-0 trading
even they are insolvent at date 1 under a liquidity shock.

3.3.3 Endogenous Fire Sales
In this section, I analyze endogenous fire sales of banks’ illiquid assets. Note

that the following results can be obtained without considering the equilibrium.
Intuitively, the banks would like to make new loans with high returns if the cost

of doing so is low. In the absence of tradable illiquid assets, the banks consider
the tradeoff between the return from new loans and the cost of loan liquidations.
Since the return of available new loans is much greater than 1, the banks would
always make more loans and induce endogenous loan liquidations. Now consider
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Figure 3.5: Examples of Timing of Trading
The parameter values used in these examples are as follows: q = 0.2,
R̄ = 1.3, I = 0.4, L = 0.4, Z = 2, D = 1.9, β = 0.6. From the left to
the right, f decreases from 0.3 to 0.125, θ increases from 0.4 to 0.75,
γ increases from 0.0005 to 0.235, and α = 1− γ−β .
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the case where the banks’ portfolio contains illiquid assets. Are the banks still
willing to make more new loans such that illiquid assets will be sold at a fire-sale
price?

Under some conditions, it is optimal for the banks to make new loans and
retain less cash than required under a liquidity shock even they are endowed with
enough cash for such a shock. Such an optimal choice leads to fire sales (assets
sold at a price lower than the fundamental value) endogenously. While under some
other conditions, the opposite is true: the banks would like to hold cash instead
of lending out to prevent costly fire sales of illiquid assets. The main results are
summarized in the following proposition.17

Proposition 3.2 Let the banks’ cash endowment (γZ) plus the private buyers’

cash under no fire-sale ((θ − I)+) be no less than the cash requirement under a

liquidity shock ( f D). But the banks’ cash after making all new loans (γZ−L) plus

the private buyers’ cash under no fire-sale ((θ − I)+) is smaller than the liquidity

shock ( f D). In addition, the banks are always solvent and have some of their

illiquid assets left after trading.

(i) If the private buyers are unwilling to provide cash without fire sales (i.e.,

θ ≤ I), then it is always optimal for the banks to make new loans such that

illiquid bank assets will be traded at a price lower than the fundamental

value (endogenous fire sales);

(ii) If the private buyers are willing to provide cash even without fire sales (i.e.,

θ > I) and the banks are not relying heavily on the private liquidity under

a shock (i.e., θ − I is small), then result in (i) still holds;

(iii) Otherwise, it is optimal for the banks to keep enough cash and make less

loans (even the forgone returns from new loans are much higher than 1),

17 I assume that the private buyers are always relevant in the equilibrium, such that there is
always interaction between the banks and the buyers. Otherwise, it is uninteresting because the
illiquid assets will never be traded and the private buyers will be out of the model.
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such that assets will be traded at their fare prices in stead of a fire-sale

price (no fire-sale).

The assumptions specified in the above proposition makes sure that any result-
ing fire sales of assets are endogenous (if the banks choose not to lend, then there
is no asset fire sale). It also rules out uninteresting cases where fire sales of assets
are not a concern (e.g., the banks and private buyers have enough cash to cover
both new investment opportunities and potential liquidity demand).

The intuition of the above proposition is easy to obtain. To understand result
(i), note first that it is always optimal for the banks to make loans with returns
greater than the implied cost from loan liquidations (i.e., 1/P0), if there is no
asset trading involved (i.e., the private buyers are still unwilling to provide cash).
As more loans are made, eventually the implied return from the loan liquidation
makes the private buyers marginally indifferent between investing in their own
long-term projects and buying banks’ assets. Now, if banks make an additional
infinitesimal amount of new loans, then the cost from fire sales is small enough
(as banks only need to raise additionally that infinitesimal amount of cash under
a liquidity shock), compared to the high returns from the lending. Therefore, it
is optimal for banks to lend out more and endogenously incur fire sales of their
illiquid assets.

The intuition of results (ii) and (iii) are very similar to that for (i) but with one
key difference. That is, in cases (ii) and (iii), banks depend on private buyers’
cash even without fire sales (as θ > I). Then any additional lending will result
in fire sales of illiquid assets. Although the fire-sale price could be very close to
the fundamental value, the cost of such fire sales could be large compared to the
gain from new loans. This is because a small drop in the price will affect not only
the incremental asset selling but also all existing ones, which could be large. On
the other hand, the benefit from the additional loans is always proportional to the
added size of new loans, which is small at the margin. Therefore, depending on the
size of the existing asset trading (or equivalently, the private buyers’ willingness to
provide cash) there can be endogenous fire sales (result (ii)) or no fire-sale (result
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Figure 3.6: Examples of Endogenous Fire Sales
The parameter values used in these examples are as follows: q = 0.4,
R̄ = 1.3, I = 0.2, L = 0.6, Z = 2, D = 1.8, f = 0.25, β = 0.5. The sum
of bank cash endowment and private buyer’s excess cash, γZ +(θ −
I)+, is no less than the size of the shock ( f D = 0.45). I set the γ to be
zero if the private buyer’s excess cash (θ − I) is larger than the size of
the shock. As usual, α = 1− γ−β .

(iii)).
I show numerical examples of endogenous fire sales (or no fire sales) in Fig.

3.6. These examples confirm that there are always asset fire sales if θ ≤ I. As
banks depend more and more on private buyers’ cash to meet the liquidity shock,
i.e., as θ − I becomes larger and larger, banks will switch from endogenous fire
sales to no fire-sale at all.

The above results of endogenous fire sales of banks’ illiquid assets support
the assumption in Diamond and Rajan (2009b). In their model, they assume that
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banks have no cash at date 0. As a result, the fire sales of assets are inevitable.
In other words, the fire sales of assets are assumed exogenously in Diamond and
Rajan (2009b). Proposition 3.2 shows that such fire sales can arise endogenously,
generalizing Diamond and Rajan’s assumption of exogenous asset fire sales.

3.3.4 Equilibrium
In this section, I derive equilibrium conditions which will be used in Section

3.3.5. In the following, I assume banks are always solvent and have some of their
own cash left at the equilibrium. As a result, the result (a) in Lemma 3.1 applies
and banks are indifferent between trading at date 0 and date 1. Therefore, without
loss of generality, I assume trading happens only at date 1. In addition, I assume
fire sales exist in the equilibrium (i.e., results (i) and (ii) of Proposition 3.2 hold).18

To find the equilibrium condition, compare the marginal benefit of lending
and the marginal cost of liquidation and fire sales, subject to the cash constraint
in (3.7). Alternatively, we can compare the marginal benefit and cost by decreas-
ing or increasing one additional dollar of cash at date 1 under a liquidity shock.
Specifically, I look at the marginal effect of one dollar change in the left hand side
of equation (3.7), which I refer to as “cash-under-shock”, on the expected date-2
bank equity value.

In the case of decreasing one additional dollar of cash at date 1, banks decrease
the cut-off rate of return for new loans (R) and fix the liquidation price (P1). The
marginal benefit of lending to the bank equity (for every dollar decrease in “cash-
under-shock”) is

MBL =−
∂E1

0
∂ (cash-under-shock)

∣∣∣∣
fix P1

= qR+(1−q)(R−1). (3.12)

The marginal benefit of lending is simply the expected marginal benefit in

18The same analysis can be extended to cover more general cases only with more complications.
In all the numerical examples shown in this study, I take into account the possible no fire-sale
solution (i.e., P1 = 1).
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the two states. If the cash constraint is ignored, the benefit of lending out one
additional dollar is R in the shock state and R−1 in the non-shock state.

I can find the marginal cost of liquidation/fire-sale to the bank equity similarly.
For every dollar increase in “cash-under-shock,” the banks decrease the fire-sale
price (P1) and fix the cut-off rate for new loans (R). This yields

MCS =−
∂E1

0
∂ (cash-under-shock)

∣∣∣∣
fix R

= q

[
1
P1

+
θ − I( 1

P0
)

βZP3
1 + Iq

R̄−1

]
. (3.13)

Since fire sales happen only in the shock state, the marginal cost is proportion-
al to the probability of the shock (q). When the cash constraint is ignored, the first
term in the brackets on the right hand side of (3.13) is the marginal cost of loan
liquidation and fire sales, the second term in the brackets can be interpreted as the
additional cost of the existing fire sales of assets.

Intuitively, the marginal benefit of lending and the marginal cost of liquidation
and fire sales should be the same at the equilibrium. Otherwise, banks can increase
their equity value by adjusting their lending subject to the cash constraint at date
1 under a liquidity shock. The equilibrium with fire sales is characterized in the
following proposition.19

Proposition 3.3 Assume that banks are always solvent and have some of their

own cash left at the equilibrium. Then the equilibrium asset prices (P∗1 and P∗0 )

and the minimum required rate of loans (R∗) are determined by the following

system of equations:

q

[
1
P1

+
θ − I( 1

P0
)

βZP3
1 + Iq

R̄−1

]
= R− (1−q); (3.14)

[γZ−L(R)]+
1
2

βZ(1−P2
1 )+

[
θ − I(

1
P0

)

]
= f D. (3.15)

19It is equivalent to take the first order derivative of E1
0 in Eqn. (3.9) with respect to R subject

to the cash constraint in Eqn. (3.7) (see the proof in Appendix B). The approach taken in the main
text has its advantage of easy interpretation.
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The other quantities in equilibrium are determined as follows: banks’ cash

holding at date 0 (γZ − L(R∗)), new loan face value (F(R∗)), private buyers’

cash holding (θ− I(1/P∗0 )), and private buyers’ minimum required return for new

investment (1/P∗0 ).

Note that the left hand side of Eqn. (3.14) is the marginal cost (in terms of
the equity value) of raising an additional dollar through decreasing the date-1
asset price P1. Similarly, the right hand side is the corresponding benefit from
decreasing the minimum loan rate R (i.e., making more loans). Equation (3.14)
means that in equilibrium the marginal cost of loan liquidation and fire sales of
illiquid assets equals the marginal benefit of making additional loans. In other
words, equation (3.14) gives the optimal lending condition. The second equation
is the cash constraint at date 1 under a liquidity shock. These two conditions
determine the equilibrium.

3.3.5 Comparative Statics
The comparative statics in this section provide implications on banks’ lending

incentives. The following analysis also shows the bank lending effect on illiquid
asset fire-sale prices, the minimum required returns for new bank loans and private
buyers’ new investments.

First, consider the effect of the illiquid assets to bank loan ratio in banks’
portfolio for a given cash endowment on banks’ lending incentives and other e-
quilibrium quantities.

Proposition 3.4 For a given fraction of cash endowment (γ) and all else being

equal, a higher illiquid assets to loan ratio (or equivalently, a higher α = 1− γ−
β ) in the banks’ endowment portfolio will lead to the following:

(i) Banks will lend less and require a higher minimum rate for new bank loans

at date 0;

(ii) Banks will hold more cash at hands; and the total amount of cash from

banks and buyers is larger;
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(iii) Under some further conditions (e.g., the banks do not rely heavily on the

buyers’ cash to meet the liquidity demand), the illiquid bank assets will sell

at lower fire-sale prices (at both date 0 and 1). As a result, the buyers will

also hold more cash.

The intuition of (i) and (ii) is straightforward. Fixing a cash endowment frac-
tion, a higher illiquid assets fraction leads to a less loan endowment. This in turn
leads to less cash from loan liquidation at date 1 conditional on a liquidity shock.
This makes banks acting more conservatively. The result in (iii) is due to the com-
plicated structure of marginal cost of lending on the existing asset trading (see
Eqn. (3.14)).

This result helps to explain the decrease in bank lending during the recent fi-
nancial crisis given that many big banks are reported to be ‘clogged’ with a large
amount of illiquid assets, such as mortgage-backed securities, on their balance
sheet. Banks in the recent crisis are endowed with a high fraction of illiquid assets
(i.e., a high α). Therefore, holding all other factors fixed (e.g., the exogenous liq-
uidity shock), the high fraction of illiquid assets in the banks’ portfolio contributes
to the observed decline in lending and the sharp increase in the bank cash holding.
This is a novel explanation comparing to other traditional explanations that are
based on the severity of the liquidity shock itself. This explanation is illustrated
through numerical examples as shown in Fig. 3.7. In the two cases with different
parameter values in Fig. 3.7, banks lend less and require a higher minimum rate
for new bank loans with a larger fraction of illiquid assets. As a result, the cash to
asset ratio is higher for a higher illiquid asset fraction. It also shows that the asset
price does not necessarily decrease with the illiquid asset fraction.

The following proposition summarizes the effect of cash endowment (i.e., the
fraction γ) on lending and asset prices:

Proposition 3.5 For a given fraction of loan endowment (β ) and all else being

equal, a higher fraction of cash (γ) in the banks’ endowment portfolio will lead to

the following:
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Figure 3.7: Asset Fire-sale Prices and Minimum Required Returns un-
der Different Illiquid Asset Fraction
In the left panels, the solid line represents minimum required returns
for banks to make new loans at date 0; the dotted line represents buy-
ers’ required returns corresponding to buying the assets at price P∗0 at
date 0 (or equivalently, buying at date 1 with price P∗1 ). The parameter
values used in these examples are as follows: q= 0.2, R̄= 1.2, I = 0.3,
L = 0.4, Z = 2, D = 1.6, f = 0.25, γ = 0.2, and β = 1−γ−α . θ = 0.4
in the upper two panels and θ = 0.25 in the lower two panels.
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(i) The illiquid assets will trade at a higher price at both date 0 and date 1;

(ii) Banks will lend more and require a lower minimum required loan rate;

(iii) Private buyers will invest more in their own long-term projects.

Note that the above results hold in two cases: (i) β is fixed and γ = 1−α−β

is higher; (ii) both α and β are fixed and γ is higher. A higher cash fraction can
be a result of government capital injection to the banks. Proposition 3.5 shows
that it is beneficial for the government to intervene from the social point of view.
This is not surprising given that the inefficiency in this model is driven purely by
liquidity problems. Fig. 3.8 shows numerical examples that illustrate Proposition
3.5. In figure 3.8, the banks’ minimum required rate for loans is decreasing with
the cash fraction (γ). On the other hand, the asset price is increasing with the cash
fraction.

I also conduct other comparative statics results which yield similar results. For
example, more new loans opportunities for banks (i.e., a higher L), less endow-
ment of private buyers’ cash (i.e., a lower value of θ ), and a larger liquidity shock
(i.e., a larger f D) lead to lower fire-sale price and higher the minimum required
return for new investment. Higher private buyers’ own investment opportunities
(i.e., higher I) lead to lower fire-sale prices and smaller total cash holdings. On
the other hand, a higher probability of the liquidity shock (i.e., a higher q) will
lead to higher fire sale prices and larger total cash holdings.

3.4 Policy Implication and Discussion
This section considers the model’s implications for the government interven-

tion policy. Assume that the government has a fixed amount of cash (gZ) that can
be used to intervene at date 0. Consider three alternative intervention policies:
(i) direct capital injection (DCI) to banks (assuming the government will take an
equivalent worth of equity or debt from the banks); (ii) buying the existing bank
loans (BL) at their face value; and (iii) buying bank illiquid assets (BA) at their
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Figure 3.8: Asset Fire-sale Prices and Minimum Required Returns un-
der Different Cash Endowment
In the left panels, the solid line represents minimum required returns
for banks to make new loans at date 0; the dotted line represents buy-
ers’ required returns corresponding to buying the assets at price P∗0 at
date 0 (or equivalently, buying at date 1 with price P∗1 ). The param-
eter values used in these examples are as follows: q = 0.2, R̄ = 1.2,
I = 0.3, L = 0.4, Z = 2, D = 1.6, f = 0.25, θ = 0.3, and β = 0.5.
Note that α = 1− γ−β in the examples. The results are the same if I
fix α = 0.5.

face values.20 These alternative policies will be ranked based on their effects on
the real economy, i.e., the total investment by both the banks and private buyers.21

20The results will be the same if the government intervenes using the post-intervention equi-
librium prices rather than the face values. The only difference is that there might be a transfer
of value from banks to the government if equilibrium prices are used. Such a transfer of value
does not distort banks’ incentives due to the fact that incremental government intervention always
makes them no worse off. However, the assumption that government intervene using face values
greatly simplifies the analysis.

21The results are qualitatively the same if the government uses the social values (i.e., the sum
of expected values for both banks and private buyers) as the ranking criterion. However, from a
social welfare or political point of view, government might still prefer policies that can generate
more job opportunities, which presumably depend more on the size (rather than value generated)
of the total investment in the economy.
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The government’s optimization problem is

Government’s Optimization Problem: max
DCI,BL,BA

[L(R∗)+ I(1/P∗0 )] , (3.16)

s.t. a fixed intervention fund of gZ.

where the equilibrium bank lending (L(R∗)) and the private buyers’ long-term
investment (I(1/P∗0 )) will depend on which policy the government chooses.

To rule out cases in which each individual policy cannot be carried out, assume
that the government intervention fund is no greater than the face value of either
the illiquid bank assets or the bank loans.22 However, depending on the size of
the government intervention, I consider cases in which no illiquid assets are left
after trading with the private buyers at date 0.

It is worth noting that selling bank assets to private buyers is equivalent to issu-
ing bank equities (or debts) to the private buyers. However, in the policy analysis,
these two approaches may be different depending on the size of the government
intervention. If banks sell equities to private buyers, then the government poli-
cies of direct capital injection and buying bank assets are equivalent, and both
dominate buying bank loans. On the other hand, if banks only sell assets but not
equities to private buyers, it will lead to more interesting results. The analysis
in this section under the assumption of only asset sales (but not equities) to the
private buyers is still a relevant one if I assume the government can coordinate
(or force) banks’ selling decisions, given that selling assets to private buyers can
dominate selling equities to them.23

22The analysis can be extended to cases in which banks assets or the bank loans are smaller
than the government fund by combining more than one policy. For example, if the government
fund is larger than the illiquid bank assets, the extra fund besides buying the assets can be injected
to banks directly. However, the mixed policy makes it less clear which policy is better than the
others. Moreover, such a complication brings no new insight to the main analysis.

23An alternative argument for favoring selling banks assets to private buyers over selling bank
equities involves information asymmetry over bank loans. If we modify the model such that private
buyers have less information regarding the value of bank loans, then they may refuse to buy bank
equities. However, they do not have problem to buy the illiquid bank assets. A similar argument
applies to issuing bank debt to private buyers.
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The following corollary compares buying bank loans and buying the illiquid
bank assets.

Corollary 3.1

(i) If there are still some illiquid bank assets left at date 0 after trading, then

buying illiquid bank assets leads to the following: (1) banks will lend more

at date 0 and require a lower minimum loan rate; (2) the total new invest-

ments from banks and private buyers are larger.

(ii) Otherwise, depending on parameter values, buying the bank loans and buy-

ing the illiquid bank assets can dominate each other.

Result (i) is a direct result of Proposition 3.4. Result (ii) is due to the disen-
tanglement of illiquid asset price and the marginal loan liquidation value. Specif-
ically, the asset price is higher than the marginal loan liquidation value in (ii).

It is also worth pointing out that in (i) not only the combined cash invested is
higher but also the combined value from investing is higher. This is a result of the
fact that banks make loans with returns much higher than the required return for
the private buyers.24 This implies that in (i) buying bank assets is better than buy-
ing bank loans from a social point of view, since more valuable real investments
are made.

Similarly, the following corollary compares the direct capital injection and
buying illiquid bank assets.

Corollary 3.2

(i) If there are still some illiquid bank assets left at date 0 after trading, the

direct cash injection and buying illiquid assets are equivalent;

(ii) Otherwise, depending on parameter values, buying illiquid assets and the

direct injection of capital to banks can dominate each other.
24Recall the equilibrium condition satisfies R∗ > 1/P∗0 . Therefore, for every dollar drop in the

private buyers’ investment, the banks will make more than one additional dollar of loans with
returns greater than the forgone returns of the private buyers’ investment. As a result, the total
value from new investment is also higher.
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Result (i) is straightforward. If banks have extra assets left after trading with
private buyers, taking away assets at their face values is identical to taking an
equivalent equity stake in banks. Result (ii) is again due to the fact that the illiquid
asset price is different from the marginal loan liquidation value.

Finally, the following corollary compares buying bank loans and the direct
capital injection.

Corollary 3.3

(i) If there are still asset fire sales (i.e., P1 < 1), the direct cash injection strictly

dominates buying bank loans;

(ii) Otherwise, the direct cash injection and buying bank loans are equivalent.

This results shows that the direct injection of capital to banks always weakly
dominates buying bank loans. Result (i) is due to the fact that buying bank loans
decreases the cash amount from loan liquidation. This leads to more conservative
bank actions and inefficiency occurs. If there are no asset fire sales, banks need
not liquidate loans at date 1. Therefore, buying loans does not have any negative
impact on banks compared to the direct capital injection (result (ii)).

Fig. 3.9 shows numerical examples that illustrate Corollaries 3.1, 3.2, 3.3. In
the figure, for a relative small amount of government intervention fund, buying as-
sets and the direct capital injection are equivalent, and they both dominate buying
bank loans in terms of total real investment. As the fund size increases such that
there is no asset left under the buying asset policy, buying assets first dominates
the other two policies. As the fund size increases, both buying loans and the direct
capital injection dominate buying assets. In addition, the figure also shows that
the direct capital injection weakly dominates buying bank loans for any size of
intervention fund.

The policy implications discussed above are closely related to the finding of
Philippon and Schnabl (2009), who compare the efficiency of three alternative
intervention policies: buying equity, purchasing existing assets, and providing
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Figure 3.9: New Bank Loans and Total Investment under Government
Intervention
The parameters used in these examples are as follows: q = 0.2, R̄ =
1.2, I = 0.5, L = 0.5, Z = 2, D = 1.8, f = 0.25, and θ = I + 0.25 =
0.75. The bank initial endowments are: α = 0.35, β = 0.6, and γ =
0.05.

debt guarantees. They find that all three policies are equivalent under symmet-
ric information. However, with asymmetric information between firms and the
government, buying equity dominates the other two intervention policies. Similar
to Philippon and Schnabl (2009), my study also compares the efficiency of three
government intervention policies: a direct capital injection (i.e., buying equity),
buying bank loans, and buying bank illiquid assets. However, I find that buying e-
quity and buying illiquid assets can dominate each other, depending on parameter
values as well as the intervention size. More important, this ranking of interven-
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tion efficiency does not require information asymmetry in my study contrasting to
Philippon and Schnabl (2009).

Moreover, the results in my study are also very useful to understand some
seemingly surprising developments during the recent financial crisis. For exam-
ple, Ivashina and Scharfstein (2009) find that banks cut their lending less if they
have better access to deposit financing and thus they were not as reliant on short-
term debts. I can simply explain this finding using the comparative statics present-
ed above. In the terms of my current model, banks with better access to insured
deposits and relying less on short-term debt will face a smaller liquidity shock. As
shown in the last section, a smaller liquidity shock implies that banks will make
more new loans, which is consistent to Ivashina and Scharfstein’s findings.

Another feature of the recent crisis is that many banks are “clogged” with large
holdings of illiquid assets, such as mortgage-backed securities. My model implies
that a higher fraction of illiquid assets on banks’ balance sheet will induce them
to hold more cash and lend less when facing a liquidity shock. This matches the
high cash to asset ratio of commercial banks during the past 10 months (see Fig.
3.3) as well as the sharp decline in the flow of bank loans recently (see Fig. 3.1).

3.5 Conclusion
This chapter studies banks’ lending incentives under the risk of a liquidity

shock. Banks make their lending decisions based on the tradeoff between the cost
and benefit of lending. The cost of lending comes from the fire sales of illiquid
assets to raise cash when the bank is hit by a liquidity shock. The benefit of
lending is the high returns from the new bank loans. This study shows that it may
be optimal for banks to lend out cash and therefore incur asset fire sales under a
liquidity shock, even banks are endowed with enough cash to meet the liquidity
shock. That is, fire sales of assets could be an endogenous outcome of banks’
optimal decisions.

By the same tradeoff argument, banks may be willing to keep a large amount
of cash to save the cost of potential asset fire sales. Although the forgone returns
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from the bank loans might be high, the costs of potential asset fire sales could be
even higher. In addition, a higher ratio of bank illiquid assets to bank loans can
induce banks to keep an even larger amount of cash on their balance sheet rather
than lending out. As many banks are ‘clogged’ with large holdings of illiquid
assets in the recent financial crisis, this study provides a novel explanation as to
why banks hold a large amount of cash after government capital injections.

Moreover, this study also provides implications for the government interven-
tion policy. According to the model, for a given amount of public fund for inter-
vention, a direct capital injection dominates buying bank loans. However, buying
illiquid assets and a direct injection of capital to banks can dominate each other,
depending on parameter values as well as the size of the government interven-
tion. This result can help the government to choose the most efficient intervention
policy.
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Chapter 4

Conclusions

To conclude, this dissertation covers two essays in finance, one on idiosyn-
cratic stock return volatility and the other on bank lending incentives.

Chapter 2 investigates how frictions to real investment affect firm-level stock
return volatility. The theoretical model predicts a nonlinear V-shaped relationship
between the idiosyncratic return volatility and the asset growth rate. The high re-
turn volatility of low (negative) growth firms is due to the amplification of shocks
to unexpected cash flows by firms’ low market values. In contrast, the high return
volatility of high growth firms is driven by the amplification of shocks to expected
cash flows through growth opportunities. Aggregating the V-shape in each cross-
section, the model also predicts a positive correlation between the cross-sectional
dispersion in the asset growth rates and the average idiosyncratic return volatility.
Formal empirical analysis provides strong evidence that supports these predictions
in both the cross-section and the time series.

This chapter further documents the robustness of the empirical findings. The
V-shaped relationship in the cross-section is robust even after controlling for fac-
tors such as size and leverage. The asset growth measure turns out to be the
most important predictor of the average idiosyncratic return volatility in the value-
weighted time series. Moreover, the asset growth effect on idiosyncratic return
volatility, which is driven by investment frictions, empirically dominates alterna-
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tive explanations of idiosyncratic return volatility such as cash flow and its volatil-
ity, growth options, and forecasted long-term earnings growth.

Chapter 3 develops a theoretical model to investigate how liquidity risks affect
the prices of illiquid bank assets as well as banks’ lending incentives. The first
result of this study is that fire sales of assets could be an endogenous outcome of
banks’ optimal decisions. The intuition is as follows. Banks make their lending
decisions based on the tradeoff between the cost and benefit of lending. The cost
of lending comes from the fire sales of illiquid assets to raise cash when the bank
is hit by a liquidity shock. The benefit of lending is the high returns from the
new bank loans. This chapter shows that it may be optimal for banks to lend out
cash and therefore incur asset fire sales under a liquidity shock, even banks are
endowed with enough cash to meet the liquidity shock. In other words, it may not
be in the banks’ interest to avoid fire sales of their illiquid assets.

The second result of this study is that banks may be willing to keep a large
amount of cash to save the cost of potential asset fire sales. Although the for-
gone returns from the bank loans might be high, the costs of potential asset fire
sales could be even higher. In addition to a large liquidity shock, a higher ra-
tio of bank illiquid assets to bank loans can induce banks to keep an even larger
amount of cash on their balance sheet rather than lending out. As many banks are
‘clogged’ with large holdings of illiquid assets in the recent financial crisis, this
study provides a novel explanation as to why banks hold a large amount of cash
after government capital injections.

Finally, this study also generates policy implications for the government inter-
vention. For example, for a given amount of public fund for intervention, a direct
capital injection dominates buying bank loans in terms of their effect on the total
real investment. However, buying illiquid assets and a direct injection of capital
to banks can dominate each other, depending on parameter values as well as the
size of the government intervention.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Proposition 2.1
Consider first the frictionless case. For any given value of X , the firm instan-

taneously chooses the optimal capital K(X). Let y ≡ X/K(X). Since the firm
value V (X ,K(X)) is homogeneous of degree one in X and K, I can rewrite it as
V (X ,K(X))= v(1,K(X)/X)X . Then the marginal value of capital, ∂v(1,1/y)/∂ (1/y),
equals one and is independent of X . Therefore, the ratio y has to be a constant for
any value of X . In other words, the optimal investment policy of the firm is to keep
a constant ratio of X/K. Given this optimal policy, the firm value will depend only
on the value of X . The HJB equation is

rV (X) = π(X)+µxXVx(X)+
1
2

σ
2
x X2Vxx(X)− µxX

y

= hy−αX− µxX
y

+µxXVx(X)+
1
2

σ
2
x X2Vxx(X). (A.1)

The solution of (A.1) after eliminating the bubble terms is

V (X) =
hy−α −µxy−1

r−µx
X ≡ QxX . (A.2)
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Using the marginal value of capital ∂Qx/∂ (1/y) = 1, the optimal ratio is deter-
mined as

y =
( r

αh

) 1
1−α

. (A.3)

I can then rewrite V (X ,K(X)) = QK(X), where K(X) = X/y and Q = Qxy =

(r/α−µx)/(r−µx).
In the case with infinite adjustment cost, firms do not invest and the capital is

constant. The HJB equation is

rV (X ,K) = π(X ,K)+µxXVx(X ,K)+
1
2

σ
2
x X2Vxx(X ,K)

= hX1−αKα +µxXVx(X ,K)+
1
2

σ
2
x X2Vxx(X ,K). (A.4)

The solution of (A.4) after eliminating the bubble terms is

V (X ,K) = AX1−αKα , where A =
h

r− [(1−α)µx−α(1−α)σ2
x /2]

. (A.5)

Recognize that this is the Gordon growth formula.
It is easy to obtain the volatility from firm values according to Eq. (2.7). In

the frictionless case, denote the return by R1, which follows

dR1 =
dVt +dCt

Vt
= O(dt)+

QxdXt−dXt/y
QxXt

= O(dt)+(1−1/Q)
dXt

Xt
, (A.6)

where O(dt) represents terms of the same order of magnitude as dt. Then the
volatility in Eq. (2.8) follows.

Similarly, in the infinite adjustment cost case, denote the return by R2, which
follows

dR2 =
dVt +dCt

Vt
= O(dt)+

dX1−α
t

X1−α
t

= O(dt)+(1−α)
dXt

Xt
. (A.7)

Then the volatility in Eq. (2.9) follows.
To compare the volatilities, note that Q = 1/α +µx(1/α−1)/(r−µx), which
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is greater (less) than 1/α if µx > 0 (µx < 0). The result in Eq. (2.10) follows. �

A.2 Motivating Empirical Observation on Cash
Flow Volatility

Figure A.1 plots the average and standard deviation of the non-operating cost
with respect to the earnings before interest, taxes, depreciation and amortization
(EBITDA). The non-operating cost proxies for the unexpected cash flows, and the
EBITDA proxies for the expected cash flows. The figure is generated with the
following steps:

1. Extract quarterly income statement items (OIBDPQ, PIQ) from COMPUS-
TAT (1973Q1–2009Q4).

2. Define COST=(OIBDPQ-PIQ), which includes depreciation, interest ex-
penses, nonoperating expenses, and special items. All measures are scaled
by the lagged total book assets. Winsorize the income measures at 1% and
99% for each quarter.

3. Calculate the average and standard deviation of COST and the average of
OIBDPQ within a rolling window of 20 quarters (requires at least 8 obser-
vations within the window).

4. Form deciles according to the average OIBDPQ for each quarter, and cal-
culate the equal-weighted averages of the average and standard deviation of
COST and the average of OIBDPQ for each decile and each quarter. Calcu-
late the time series averages of these measures for each decile.
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Figure A.1: Quarterly Nonoperating Cost vs. EBITDA
The non-operating cost (COST) includes depreciation, interest ex-
penses, nonoperating expenses, and special items. The Earnings Be-
fore Interest, Taxes, Depreciation and Amortization (EBITDA) are the
quarterly Operating Income Before Depreciation (OIBDPQ) in Com-
pustat. Both the COST and EBITDA are scaled by book total assets.
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A.3 Numerical Solution Method
In the full model, discretize the time into small interval ∆t. The firm value is

determined by

V (X ,K) = max
I

{[
hX1−αKα − I−φ(I,K)

]
∆t + e−r∆tE[V (X ′,K′)|X ,K]

}
,

(A.8)
where X ′ = X +∆X and K′ = K + I∆t.

Define y=X/K, i= I/K, v(y) =V (X ,K)/K. Then the above problem reduces
to

v(y) =max
i

{[
hy1−α − i−θ i2

]
∆t +(1+ i∆t)e−r∆tE[v(y′)|y]

}
, (A.9)

where y′ = y
1+µx∆t +σx∆Zx

1+ i∆t
,and ∆Zx ∼N (0,∆t). (A.10)

To solve the problem numerically, discretize y between [y, y]. Note, however,
that y′ may be off these specified grids of y for general discretization of ∆Zx (e.g.,
discretize ∆Zx into 1000 equally spaced grids within ±3

√
∆t). Therefore, I need

interpolate and extrapolate the value function v(y) when calculating the expecta-
tion E[v(y′)|y]. This can be done, for example, using the interp1 function in
Matlab.

Due to the short time interval (∆t = 1/252 for daily frequency), the discount
factor e−r∆t is close to one. This makes the convergence of the value function
iteration very slow. Therefore, I use the modified policy function iteration to
speed up the convergence with the following steps:

1. Discretize y such that ln(y) is equally distributed along [ln(y), ln(y)]. The
range is chosen such that it includes the optimal value of y in the frictionless
benchmark as given by Eq. (A.3).

2. Initialize the value function v0(y) along specified grids (e.g., 1000 grids).

3. For a given value function vn(y), find the optimal policy in(y) according to
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Eq. (A.9). Fix this policy function and iterate the value function for a given
number of times (e.g., 500). Record the resulting value function as vn+1(y).

4. Repeat step 3 until the value function converges (i.e., for a small value of ε ,
sup |(vn+1(y)− vn(y))/vn(y)| < ε), and the policy function stays the same
for a given number of policy iterations (e.g., 50). The resulting value func-
tion and the policy function are the solutions of the model.

Once the value function v(y) and the corresponding policy function i(y) have
been found, the stock return with y changing to y′ within ∆t is given by

∆R(y,y′) =

[
hy1−α − i−θ i2

]
∆t +(1+ i∆t)v(y′)+σc∆Zc

v(y)
−1, (A.11)

where y′ is random and given by Eq. (A.10).
The variance of this return (annualized) is straightforward to obtain:

σ
2(R(y)) =

Var(∆R(y,y′)|y)
∆t

. (A.12)

A.4 Operating Leverage and Idiosyncratic Return
Volatility

Carlson et al. (2004) emphasize the importance of operating leverage in ex-
plaining the book-to-market effects. The argument goes as follows. When de-
mand for a firm’s product decreases, the firm’s book-to-market ratio increases.
Assuming that fixed operating costs are proportional to capital, the riskiness of
returns increases due to higher operating leverage. That is, higher book-to-market
stocks are riskier as a result of higher operating leverage.

Even though the above argument focuses on systematic risks, it also applies
to idiosyncratic return volatility. By a similar argument, when demand for a fir-
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m’s product decreases, the operating leverage increases and the firm would like
to disinvest. This in turn will result in higher idiosyncratic return volatility for
negative growth firms. However, as discussed in the main text, negative growth
firms also have less growth options. This in turn results in lower return volatility.
Therefore, it is important to investigate whether an alternative model with oper-
ating leverage can quantitatively generate similar predictions as produced by the
model presented in the main text.

To incorporate operating leverage, I follow Carlson et al. (2004), and introduce
a fixed operating cost, which are proportional to capital ( f K). To emphasize the
importance of operating leverage, in the following I consider modification to the
simple version of the model in 2.2.2, where firms face only demand uncertainty.
After adding the fixed cost, the net cash flow is rewritten as

dCt = [π(Xt ,Kt)− It−φ(It ,Kt)− f K]dt. (A.13)

Following the same steps as in Section A.1, it is easy to obtain the return
volatility for the two special cases:

Case 1 (θ = 0) : VarR1 =

(
1− r−µx

(r+ f )/α− ( f +µx)

)2

σ
2
x , (A.14)

Case 2 (θ = ∞) : VarR2(X/K) =

[
(1−α)A(X/K)1−α

A(X/K)1−α − f/r

]2

σ
2
x , (A.15)

where A is given by Eq. (A.5).
Panel (a) of Fig.A.2 plots the return volatility with respect to the demand-to-

capital ratio (X/K). In the frictionless case, the demand-to-capital ratio is still
constant. This leads to constant operating leverage and return volatility. In the
special case with infinite adjustment cost, the firm’s capital is exogenously giv-
en. The operating leverage is therefore also exogenously given and driven by
the demand condition. Confirming the intuition as in Carlson et al. (2004), high-
er operating leverage (i.e., lower demand-to-capital ratio) results in higher return
volatility.
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Figure A.2: Operating Leverage Effect on Return Volatility
The figure reports results of an alternative model with operating lever-
age. The common parameter values used are: α = 0.8, h = 0.2, r =
0.1, µx = 0.06, σx = 0.8, f = 0.1. In panel (b), θ− = ∞ and θ+ =
0.15 for the irreversible case. In panels (c) and (d), θ− = θ+ = 0.15
for the general case.

To demonstrate the importance of endogenous choice of operating leverage, I
investigate one slight deviation of the case with infinite adjustment costs. Specif-
ically, assuming investment is irreversible but subject to a finite adjustment cost
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for positive investment. In terms of the cost parameter,

θ =

{
θ− = ∞ if I < 0;
θ+ if I ≥ 0.

(A.16)

Panel (b) of Fig.A.2 demonstrates that once the firm has the opportunity to in-
vest, which means the operating leverage is partially endogenously determined,
the threshold of demand-to-capital ratio for investment increases dramatically
from y∗ in the frictionless case to ỹ. In this case, the effect of operating lever-
age is mostly dominated by the growth effect that I discussed in the main text.
Only in the region with extremely low demand-to-capital ratio (comparing to the
investment threshold ỹ) the return volatility is slightly higher, but still much lower
than that in the high demand-to-capital regions.

Finally, if the investment is costly reversible, panel (c) of Fig.A.2 shows that
the threshold of demand-to-capital ratio for investment (ŷ) is only slightly high-
er than that of the frictionless case (y∗). Note that the parameter values except
the fixed cost ( f ) used in panel (c) of Fig.A.2 are the same as that in Fig.2.1. In
this case, the operating leverage effect is totally submerged by the growth effect
as firms have more and more put options when the demand becomes low. This
results in a low return volatility for low demand-to-capital firms. Panel (d) of
Fig.A.2 plots the same return volatility as in panel (c) but with respect to invest-
ment rate. The numerical example shows that the return volatility is increasing
with the investment rate.

Overall, the analysis presented in this section shows that the operating lever-
age effect is important only when it is exogenously specified. Once the firms can
choose endogenously their operating leverage (through investment), then the op-
erating leverage effect on the return volatility is quantitatively dominated by the
growth effect for firms with negative growth. In other words, operating leverage
cannot quantitatively explain the high return volatility of negative growth firms.
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Appendix B

Appendix for Chapter 3

B.1 Proofs
Proof of Lemma 3.1: Since date-0 trading and date-1 trading share the same

cash constraint (3.7), we only need compare the equity values directly for the two
trading schemes in Eqns. (3.9, 3.10).

E1
0 −E0

0 =

[
θ − I(

1
P0

)

][
1
P0
−
(

q
P1

+(1−q)
)]

= 0, (B.1)

where Eqn. (3.5) is used in the last step. Therefore, banks are indifferent between
date-0 and date-1 trading. This proves the first bullet.

For the second bullet, let’s first look at one special example that makes the
claim obvious. Imagine that banks have no cash, and private buyers have excess
cash (after their own investment) which is larger than the liquidity shock ( f D). At
the beginning, the asset should trade at the fare value (P0 = P1 = 1). If banks trade
at date 1, then there is no gain or loss directly from trading. However, if banks
trade at date 0, they can use the cash proceeds to make loans with a high return of
R̄ without incurring any cost (i.e., still no loan liquidation or asset fire sales). It is
obvious that banks would prefer to trade earlier. Such a special example can be
extended to more general cases, but the intuitions are still the same.
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Let’s assume that banks are required to keep the cash from the date-0 asset
trade. Then the result in Eqn. (B.1) holds. That is, the equity value would be the
same as that of the date-1 trading. Now, let’s relax the cash holding requirement.
Once the banks get cash in hands they would decide how much to lend according
to the sign of

dE0
0

dR
=
−L

R̄−1

R− 1
P0
−

q
[
θ − I( 1

P0
)
]

βZP3
1 + Iq

R̄−1

 . (B.2)

Therefore, if R> 1
P0
+

q
[
θ−I( 1

P0
)
]

βZP3
1 +

Iq
R̄−1

, then banks would prefer to lend out the cash (i.e.,

R will be lower). If the banks do not have enough cash endowment for lending at
date 0, they would have to sell assets at date 0 to get the cash for further lending,
which is beneficial for them. �

Proof of Proposition 3.1: From Lemma 3.1, if the banks are solvent at date
1 under a liquidity shock, then either they are indifferent between the two trading
dates or they prefer date-0 trading. Therefore, the insolvency of banks at date 1
under liquidity shock is a necessary condition for the asset freeze at date 0.

Imagine that banks are just solvent under a liquidity shock at date 1. Then
according to Lemma 3.1, banks might prefer date-0 trading if the available loan
rate is high relative to the cost of fire sales. Now, if banks are just insolvent, they
would also prefer date-0 trading by the same reason. Therefore, the insolvency of
banks at date 1 under a liquidity shock is not a sufficient condition to freeze the
asset market at date 0. �

Proof of Proposition 3.2: There are two cases. For case I (corresponding to
case (i) in the proposition), θ ≤ I. I would like to show that it’s always optimal
for banks to lend out cash and incur liquidation of loans and fire sales of illiquid
assets.

Using Eqns. (3.7, 3.9), the equity value changes with the amount of new loans

116



extended by banks (or equivalently, R, the cutoff rate of new loans) as follows.

dE1
0 = q

[
dF(R)− dL(R)

P1

]
+(1−q)[dF(R)−dL(R)]+q

[
θ − I( 1

P0
)
]+

P2
1

dP1.

(B.3)
At the start of the liquidation of loans (or further at the start of the fire sales),
θ ≤ I(1/P0). Combining the above equation with Eqn. (3.5), we have,

dE1
0

dR
= q

[
−RL
R̄−1

− −L
(R̄−1)P1

]
+(1−q)

[
−RL
R̄−1

+
L

R̄−1

]
=
−L

R̄−1
(R− 1

P0
).

(B.4)
At the start of liquidation (without fire sales), P0 = P1 = 1 and R > 1 (since it is
assumed that cash remaining after all investment opportunities are taken is smaller
than f D, so, when cash equals f D, R > 1). Therefore the derivative in the above
equation is negative, meaning that banks would prefer to make more loans (i.e.,
lower R). As more cash is lent out, eventually the assets will start to trade. Assume
R̃ = 1/P̃0 solves βZ(1− P̃2

1 )/2+[γZ−L(R̃)] = f D. If R̃ > I−1(θ) (see footnote
17), then R > 1/P0 at the start of fire sales (since R > R̃, and 1/P0 < 1/P̃0). As a
result, the above derivative is again negative. Therefore, it is optimal for banks to
lend out more cash and incur fire sales as well.

Case II corresponds to cases (ii) and (iii) in the proposition. In this case,
θ > I(1) ≥ I(1/P0). Note first that banks would like to lend out cash until the
combined cash from banks and the private buyers equal the liquidity shock f D, as
there is only benefit (high loan rate) but no cost (no loan liquidation and asset fire
sales) up to that point. We next look at the banks’ lending decision at that point.
Combining Eqns. (3.7, 3.9), we have,

dE1
0

dR
=
−L

R̄−1

R− 1
P0
−

q
[
θ − I( 1

P0
)
]

βZP3
1 + Iq

R̄−1

 . (B.5)

Therefore, banks’ lending decisions will depend on the sign of the above deriva-
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tive. If θ − I is small, then the derivative is negative for a large R and high prices.
That is, banks would prefer to lend more and incur both the loan liquidation and
asset fire sales (case (ii)). On the other hand, if θ − I is large enough such that the
above derivative is positive, then banks would not lend out cash any more. As a
result, there is no loan liquidation and asset fire sales (case (iii)). �

Proof of Proposition 3.3: The equilibrium conditions are derived in the main
text. Here I provide an alternative approach to derive the optimal bank lending
condition. The equilibrium must be that Eqn. (B.5) is zero. That is

R =
1
P0

+
q
[
θ − I( 1

P0
)
]

βZP3
1 + Iq

R̄−1

. (B.6)

This is equivalent to Eqn. (3.14) as specified in the proposition. �

Proof of Proposition 3.4: The system of two equations:

A1Y1 +B1Y2 +C1 = 0, (B.7)

A2Y1 +B2Y2 +C2 = 0, (B.8)

has solutions given by(
Y1

Y2

)
=

[
A1 B1

A2 B2

]−1(
−C1

−C2

)
=

−1
A1B2−A2B1

(
B2C1−B1C2

A1C2−A2C1

)
. (B.9)

Let x be the variable of interest. Take first order derivatives of equilibrium
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conditions in Eqns. (3.14, 3.15) with respect to x:

A1<0︷ ︸︸ ︷[
∂MCS

∂P1
− ∂MBL

∂P1

]
∂P∗1
∂x

+

B1<0︷ ︸︸ ︷[
∂MCS

∂R
− ∂MBL

∂R

]
∂R∗

∂x
+

C1︷ ︸︸ ︷[
∂MCS

∂x
− ∂MBL

∂x

]
= 0;

(B.10)

−

[
βZP∗1 +

Iq
(R̄−1)P∗1

2

]
︸ ︷︷ ︸

A2<0

∂P∗1
∂x

+
L

R̄−1︸ ︷︷ ︸
B2>0

∂R∗

∂x
+

∂ (cash-under-shock)
∂x︸ ︷︷ ︸
C2

= 0.

(B.11)

Since A1B2−A2B1 < 0, using the above three equations together, we have,

Sign

(
∂P∗1
∂x

∂R∗
∂x

)
= Sign

(
B2C1−B1C2

A1C2−A2C1

)
. (B.12)

Now, if x = α and β = 1−α−γ , then C1 > 0 and C2 < 0. Therefore, we have,

Sign

(
∂P∗1
∂α

∂R∗
∂α

)
= Sign

(
B2C1−B1C2

A1C2−A2C1

)
=

(
±
+

)
. (B.13)

Therefore, the equilibrium cutoff rate for new bank loans is higher the higher
the α (i.e., the higher the asset to loan ratio). That is, the banks will keep a larger
amount of cash in hands.

If ∂P∗1
∂α

< 0, then private buyers’s cash [θ − I( 1
P∗0
)] will be larger for a larger α .

So the total cash is larger. For ∂P∗1
∂α
≥ 0, note that the total cash holding of banks

and buyers is

[γZ−L(R)]+
[

θ − I(
1

P∗0
)

]
= f D− 1

2
(1−α− γ)Z(1−P∗1

2). (B.14)

Note that the RHS of the above equation increases with α . So do the total cash
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holding on the LHS.
From Eqn. (B.13), ∂P∗1

∂α
< 0 if and only if B2C1− B1C2 < 0. That is, the

necessary and sufficient condition for the asset price to decrease with α is given
by

B2︷ ︸︸ ︷
L

R̄−1

C1︷ ︸︸ ︷
q
[
θ − I( 1

P∗0
)
]

ZP∗1
3[

βZP∗1
3 + Iq

R̄−1

]2 −
B1︷︸︸︷

(−1)

C2︷ ︸︸ ︷[
−1

2
Z(1−P∗1

2)

]
< 0. (B.15)

This condition is more likely to be satisfied if the banks do not rely heavily on the
buyer’s cash to meet the liquidity demand (i.e., a small value of [θ − I( 1

P∗0
)]). �

Proof of Proposition 3.5: Follow the proof above for Proposition 3.4, but set
x = γ and fix α and β (or alternatively, set x = γ , α = 1−β − γ , and fix β ). In
both cases, C1 = 0 and C2 > 0. Therefore,

Sign

(
∂P∗1
∂γ

∂R∗
∂γ

)
= Sign

(
B2C1−B1C2

A1C2−A2C1

)
=

(
+

−

)
. (B.16)

That is, the illiquid assets will trade at a higher price, and banks will lend more
and require a lower minimum required rate for new loans with more cash endow-
ment. Similarly, the private buyers will invest more cash in their own long-term
investment opportunity. �

Proof of Corollary 3.1: The first bullet is a direct result of Propositions 3.4.
For the second bullet, we simply show the results through numerical examples in
Fig. 3.9. See also the proof of Corollary 3.2. �

Proof of Corollary 3.2: Let’s first look at the direct government capital injec-
tion (DCI) of gZ to banks as the benchmark. After the cash injection, α +β +γ =

1+g. Further assuming that government takes a stake of equity which worths gZ

in banks.
According to Lemma 3.1, banks are indifferent between trading assets at date
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0 and date 1. Without loss of generality, assume banks trade assets only at date 0.
Then the equity value for banks after subtracting government’s share is,

E0
0(DCI) =q

{
βZP1 +F(R)+

[
αZ−

θ − I( 1
P0
)

P0

]
− (1− f )D−gZ

}
(B.17)

+(1−q)
{

Z−D+F(R)−L(R)+
[

θ − I(
1
P0

)

](
1− 1

P0

)}
,

subject to

[γZ−L(R)]+
1
2

βZ(1−P2
1 )+

[
θ − I(

1
P0

)

]
= f D. (B.18)

The resulting equilibrium condition is the same as before,

R(DCI) =
q
P1

+(1−q)+q
θ − I( 1

P0
)

βZP3
1 + Iq

R̄−1

. (B.19)

Now, if the government buys illiquid assets (BA) at the face value at date 0 for
the same amount of cash, then

E0
0(BA) =q

{
βZK1 +F(R)+

[
(α−g)Z−

θ − I( 1
P0
)

P0

]
− (1− f )D

}
(B.20)

+(1−q)
{

Z−D+F(R)−L(R)+
[

θ − I(
1
P0

)

](
1− 1

P0

)}
,

and
[γZ−L(R)]+

1
2

βZ(1−K2
1 )+

[
θ − I(

1
P0

)

]
= f D, (B.21)

where I have differentiated the loan liquidation price K1 and the asset price P1.
Let’s define similarly

1
K0
≡ q

K1
+(1−q).

Notice that if (α−g)Z >
θ−I( 1

K0
)

K0
, then E0

0(DCI) = E0
0(BA) and K1 = P1. That

is, the two methods, the direct injection of capital and buying the bank illiquid
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assets, give the same equity values. More important, these two methods will have
the same effect on the bank lending and the private buyer’s own investment activ-
ities. That is, they will have the same effect on the real economy.

On the other hand, if (α − g)Z <
θ−I( 1

K0
)

K0
, then it must be that (α − g)Z =

θ−I( 1
P0
)

P0
. (We label this case as BA2.) Therefore, the minimum loan liquidation

value is smaller than the asset price at date 1 (K1(BA2)< P1(BA2)).
Since P0 is fixed for a given g, the new equilibrium condition becomes

R(BA2) =
q

K1
+(1−q). (B.22)

Combining Eqns. (B.18, B.19, B.21, B.22), it is easy to show that K1(BA2)<
P1(DCI). At the start of BA2 (P1(BA2) < 1), the total investment under BA2 is
higher than that under DCI by a similar argument that we did for (B.14). However,
as the government intervention fund increases such that P1(BA2) = 1, the above
argument might not hold any more. This is because both the banks and the private
buyers’ investment will be fixed under BA2 with the government fund crowding
out the private buyers’ cash dollar by dollar.

Therefore, depending on parameter values as well as the size of the interven-
tion, buying assets could induce banks to lend the same, more, or less new loans,
comparing to the direct capital injection to banks. This is also true for the private
buyers’ investment. Fig. 3.9 provides supporting numerical examples. �

Proof of Corollary 3.3: The equity value under buying loans (BL) is given by

E0
0(BL) =q

{
(β −g)ZP1 +F(R)+

[
αZ−

θ − I( 1
P0
)

P0

]
− (1− f )D

}
(B.23)

+(1−q)
{

Z−D+F(R)−L(R)+
[

θ − I(
1
P0

)

](
1− 1

P0

)}
,
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subject to

[γZ−L(R)]+
1
2
(β −g)Z(1−P2

1 )+

[
θ − I(

1
P0

)

]
= f D. (B.24)

If P1 = 1, then Eqns. (B.17, B.18) are equivalent to Eqns. (B.23, B.24).
Therefore, the two policies are equivalent.

If P1 < 1, then the following optimal condition holds.

R(BL) =
1
P0

+
q
[
θ − I( 1

P0
)
]

(β −g)ZP3
1 + Iq

R̄−1

. (B.25)

If R(BL)≤R(DCI), then P1(BL)<P1(DCI) (comparing (B.18) and (B.24)). Now,
if (B.19) holds, then it must be that R(BL) > R(DCI) (comparing (B.19) and
(B.25)). This leads to a contradiction. Therefore, banks will lend less under the
policy of buying bank loans.

Next, let’s look at the total investment.

DCI: L(R)+ I(
1
P0

) = γZ +θ − f D+
1
2

βZ(1−P2
1 ). (B.26)

BL: L(R)+ I(
1
P0

) = γZ +θ − f D+
1
2
(β −g)Z(1−P2

1 ). (B.27)

If P1(BL) < P1(DCI), then private buyers will also invest less under buying
loans. As a result, the total investment is also lower under buying loans. If
P1(BL) ≥ P1(DCI), then the RHS of (B.27) is smaller than the RHS of (B.26).
Therefore, the total investment is again lower under buying loans. �
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