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Abstract 

 

In genomics, a newly emerging way to learn about gene function is through growth curve 

experiments. In such experiments, different strains of yeast (Saccharomyces cerevisiae) – 

single mutants having one gene knocked out, double mutants having two knocked out – are 

grown in microtitre plates, with an automated system capturing the size of cell populations 

over time. These growth curves can provide information on the function(s) of the associated 

genes. Of particular interest are interaction effects, where the growth of a double mutant is 

surprising in light of the growth of normal yeast and its two corresponding single mutants. 

There is currently a lack of consensus on the best way to analyze growth curve data. For a 

growth curve experiment, strain fitness must be defined in some way in order to separate and 

rank strains according to their ability to grow, and it is uncertain which possible definitions 

of strain fitness have better ability to identify real interaction effects than others. After 

defining strain fitness, this quantity must be estimated for each strain through either 

parametric or non-parametric model based approaches, and the approach used can also affect 

the ability to identify interaction effects. Furthermore, different problems related to the 

experimental protocol present themselves when attempting to model growth curves, and 

these need to be accounted for as well. 

In this thesis, I will explore and compare some commonly used models and definitions of 

strain fitness when analyzing growth curves, and relate them concretely to the exponential 

and logistic models upon which they are built. I will compare and contrast multiple methods 

used when attempting to analyze growth curve experiments, and seek to propose Area Under 

the Curve as a definition of strain fitness which prompts a derived variables modeling 

strategy that performs well in ease of implementation, retains flexibility in assessment of a 

heterogeneous mix of sigmoidal and non-sigmoidal growth curves, and remains able to 

identify interaction effects. 
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Chapter 1: Introduction 

 

The genome has now been sequenced for nearly two hundred organisms, and substantial 

effort is now being dedicated to identifying functional elements within an organism’s 

sequence. The function of a gene, or more specifically, of the protein that it encodes, is of 

primary interest in genomics. We can gain insight into the function(s) of a certain gene by 

analyzing how functions in the cell are affected by the deletion of this gene. New 

technologies are helping to facilitate new experiments in which the effect of the gene deletion 

on different phenotypes of interest can be assessed. One primary phenotype of interest is the 

ability of a cell to divide and grow. If a set of genes is involved in a functional pathway that 

is necessary for normal cellular growth, then one might observe those cells with these genes 

knocked out might grow worse relative to wild type cells. 

Although the genetic function of genes in human cells is of primary interest, because many of 

the genes involved in cellular maintenance and growth are shared between human and non-

human cells, it is useful to study a simpler organism as a means of gaining information about 

genetic function for human cells. Yeast (Saccharomyces cerevisiae) is a particularly useful 

and well-behaved single celled organism that shares a large amount of genetic information 

with human cells, and is hence used as a model system for learning about human gene 

function. By analyzing the growth of mutant strains of yeast (yeast having one or more genes 

knocked out of its genome, relative to the wild type genome), we can learn about how these 

genes function in the yeast cell, and hence infer how these genes might function in a human 

cell. 

Genetic function is often learned from growth curve experiments. In these experiments, 

different strains of yeast are grown over time, with some proximate measure of the count of 

cells for a given strain observed over time. The growth curves obtained are typically 

sigmoidal in shape: growth will be approximately exponential in the earlier stages, and after 

a period of time environmental constraints will restrict the rate of growth, with growth 

leveling off at an upper asymptote called the carrying capacity. However, different genetic 

mutations coupled with different properties of the experiment itself might cause some growth 

curves obtained to be non-sigmoidal in shape. 



2 

 

To analyze a set of growth curves, first a growth phenotype measurable from the growth 

curves must be chosen and defined. The primary means of learning about genetic function 

from these growth curve experiments, then, is through estimating and comparing these 

growth phenotypes over a set of mutant strains. This measured growth phenotype for a 

particular strain is typically given the name strain fitness, and different researchers will 

choose different growth phenotypes to represent strain fitness. When a parametric growth 

model is assumed, strain fitness is usually chosen to be a parameter, or function of the 

parameters, available in that model. However, when faced with a set of growth curves that do 

not seem to conform to any particular parametric growth model, strain fitness will have to be 

defined in a model-free way. In general, strain fitness is defined such that strains of yeast 

which grow faster and/or to higher carrying capacities are assigned higher fitness scores. 

A newly emerging topic of interest in genomics is that of interaction effects. A gene-gene 

interaction, or genetic interaction, is said to occur when the strain fitness for a double mutant 

differs strongly from some notion of the expected fitness for that particular double mutant. 

For example, one might seek to identify genes that operate in compensatory pathways related 

to cell division – the singular deletions of genes A and B might only have a small effect on 

strain fitness; however, the deletion of genes A and B together in the organism might lead to 

heavily dampened growth and even lethality. This would be called synergistic interaction, as 

the observed strain fitness for this double mutant is much smaller than what one might expect 

from a combination of the singular deletion effects of genes A and B.  

Suppose we are faced with a data from a growth curve experiment in which we have single 

and double mutants obtained through pairings of a set of query genes q (genes that have 

typically already been implicated with some function of interest, eg. cancerous tumor 

growth) with another set of genes g. We want to identify any real interaction effect associated 

with the different double mutants. We will let   denote strain fitness, and   be the additive 

effect of gene deletion on strain fitness. We can model strain fitness for the double mutant as 

 , ,q g WT q g q g         
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Under this model, the effects of gene deletion on strain fitness are assumed to be additive, 

and the interaction effect between genes q and g is represented by the term 
,q g . Typically, 

the two genes are assumed to operate independently of each other, and hence prior to analysis 

we form the assumption that 
, 0q g  . Under this assumption of no interaction, we would 

expect to observe the strain fitness for a double mutant as 

 ,

neut

q g WT q g          , 0q g     

Hence, we are interested in forming a statistical test that can assess whether our growth curve 

data set gives enough evidence for us to conclude whether the different 
,q g  are significantly 

different from 0. This assumption of ‘no interaction’ in an additive model is typically given 

the name additive neutrality. Different models for the expected fitness of double mutants, or 

neutrality models, are studied and used throughout the literature, and the choice of neutrality 

model can have an impact on the results of such a study. (Mani, St Onge, Hartman, Giaever, 

& Roth, 2008) The framework for analysis of these types of experiments is fairly general, 

and may also be applied to, for example, gene-treatment experiments, in which the strength 

of a drug is different from gene to gene. (Doostzadeh, Davis, Giaever, Nislow, & Langston, 

2007) 

Medical outcomes provide a concrete motivation for growth curve experiments. Many 

experiments are designed with the hope of shedding light towards development of new 

treatments for cancer. For example, in renal and prostate cancers, it is observed that there is a 

reduced expression of the gene ctf8. To learn more about how this gene functions in 

conjunction with other genes, a growth curve experiment can be designed that examines and 

compares how the growth of strains of yeast with the gene ctf8 removed compare to both 

wild type, and also to double mutants in which ctf8 and a different, non-essential gene is 

deleted. If one were to identify a non-essential gene whose singular deletion does not impact 

cellular growth strongly, but does have a strong negative effect on the growth on its 

corresponding double mutant with ctf8, one could imagine building a treatment that 

suppresses the expression of this non-essential gene, which could effectively help to kill the 

cancerous cells while leaving non-cancerous cells relatively unharmed. 
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Depending on the assumptions made and growth curves observed, different statistical 

modeling strategies will be available for different growth curve data sets. I will begin with an 

introduction to the widely used exponential and logistic growth models, the commonly used 

definitions of strain fitness associated with these models, and the different methods of 

estimating these strain fitnesses available. However, it is common for the observed growth 

curves to depart from the commonly used growth models in different ways. I will describe 

the different departures from exponential and logistic growth observed in different growth 

curves, and the consequences these departures can have on their fitting. It is quite common 

that these departures are so severe that we are unable to use parametric models or their 

associated definitions of strain fitness. Furthermore, often we find that the growth curves 

obtained for double mutants of most interest (that is, double mutants that seem to show 

synthetic interaction) are non-sigmoidal in nature. When faced with severely non-sigmoidal 

growth curves, we are forced to use a non-parametric definition of strain fitness – a choice 

which has not been well explored in the literature. I will evaluate a few of the different 

statistical methodologies that appear commonly in the yeast growth curve literature on their 

ability to detect significant interaction effects, and propose a derived variables analysis on 

area under the curve (AUC) and area under the logged curve (AULC) as non-parametric 

modeling strategies that can effectively bridge the gap between the canonical sigmoidal 

growth curve shapes expected and the non-sigmoidal growth curves often seen in different 

growth curve experiments. We will see that many of the methodologies based on exponential 

or sigmoidal growth break down when faced with a large amount of growth curves, and 

hence the ease of implementation and scalability of this derived variables analysis, combined 

with the AUC / AULC’s conceptual soundness as a definition of strain fitness, will prove to 

be very useful when attempting to identify interaction effects from a growth curve 

experiment. 

There are two sets of growth curves that I will use throughout this thesis. 

One set of growth curves from the ‘Stoepel’ data set is almost entirely sigmoidal or 

exponential in form. In this set of data, the query gene ctf8 was knocked out in tandem with 

45 other genes, with hopes of identifying strong interaction effects. A sample set of growth 

curves from a single plate in the Stoepel dataset is plotted in Figure 1.1. It is seen that there is 
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typically a very small amount of noise between growth curves sharing the same deletion 

status; however, differences from one strain to another can be quite evident. Many of the 

definitions of strain fitness used in the literature come from the exponential and logistic 

models prompted by these well-behaved sigmoidal growth curves.  

The second set of growth curves come from the dataset hereby called McLellan. Three query 

genes associated with the progression of cancerous tumour growth, scc1-73, smc1-259, and 

scc2-4, are knocked out in combination with 31 other genes. Once again, it is hoped that 

through this experiment different therapeutic targets could be discovered. Figure 1.2 shows a 

set of growth curves from one plate of the McLellan dataset, on which scc1 and smc1 are 

knocked out in conjunction with a set of non-essential genes. We see a heterogeneous mix of 

sigmoidal and non-sigmoidal growth curves here, and the presence of these non-sigmoidal 

growth curves prompts the investigation of model-free definitions of strain fitness. 

Recalling that the primary goal is to characterize and compare the interaction effects, it is 

useful to plot point-wise averaged growth curves for the wild type, single mutants A and B, 

and double mutant together to obtain a visual representation of whether or not we are seeing 

genetic interaction. Figure 1.2 presents, from the McLellan data set, these averaged growth 

curves when inspecting the double mutant scc1, irc15 for interaction effects. The estimated 

strain fitness scores, as calculated using AUC as a definition of strain fitness, are represented 

below the figure in a dot plot to give a visual guide of the differences. Visual inspection 

shows that the singular deletion of scc1 or irc15 has a slightly positive effect on growth 

relative to wild type, while the growth of the double mutant of scc1 and irc15 is markedly 

lower than the other growth curves. This presents an example of genetic interaction. This is 

what we wish to determine, for dozens or hundreds of gene pairs at once, in the presence of 

highly heterogeneous growth curves, and in a fairly automated fashion. Of particular note is 

the non-sigmoidal nature of the scc1, irc15 double mutant. Certainly, this double mutant 

shows a relatively low level of growth representative of genetic interaction; however, the 

curve’s non-sigmoidality would cause difficulties when considering the use of an exponential 

or logistic growth model. It is the accommodation of these kinds of non-sigmoidal growth 

curves that is of primary importance in this thesis. 
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Figure 1.1    Sample set of growth curves from Stoepel data set 
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Figure 1.2    Sample set of growth curves from McLellan data set 
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Figure 1.3    Assessing interaction between irc15, scc1 



9 

 

Chapter 2: Growth Models and Strain Fitness 

 

This chapter is dedicated to the introduction of the commonly used growth models seen 

throughout the literature. We begin with a gentle introduction to exponential growth and the 

commonly used parameterizations of the exponential growth function. Logistic growth will 

then be introduced as an extension of exponential growth, with the introduction of a growth 

constraint. Exploration of these models is important as many definitions of strain fitness in 

growth curve experiments are derived from these growth models. 

2.1 Exponential Growth 

Exponential growth occurs when the derivative of a function is proportional to the current 

value of the function. Let y(t) be the value of the function at time t, generally thought of as 

population size. An exponential growth function will satisfy the following equation 

 ( ) constant ( )
d

y t y t
dt

   

Solving for y(t) yields an expression of the following functional form 

 
0( ) ty t y B  

where y0 = y(0) is the initial quantity. The quantity B can be written in two different ways, 

corresponding to different natural parameters. The first way is to express B as a base b raised 

to a power ( )r b . 

 ( )

0( ) r b ty t y b    
   

B = br (b)( ) 

We call    r(b)  the exponential growth constant and it is the natural parameter used in defining 

exponential growth this way. It is written as a function of b because its actual value depends 

on the base chosen. Most commonly, the base b is taken to be e, and I will write    r(e) = r for 

this important special case. This gives the expression 

 0( ) rty t y e  



10 

 

For an arbitrary base b, the above function may be rewritten as 

 l )

0

o (g( )

r
t

by bt y    
1

( ) log rr b b


  

So,    r(b)  and r  will differ only by a multiplicative constant. More generally, two exponential 

growth constants with arbitrary bases b  and b  can be related by the expression 

 
log

l
( ) ( )

og

b
b r b

b
r


   

The second way to parameterize exponential growth is through expressing the quantity B as 

 
1/ /( ) ( )

0( )d b dt bB b t y by      

Here,    d(b) is the time required for y to increase by a multiplicative factor of b, and we note 

that by definition, 1/r d . Henceforth I call ( )d b  the multiplicative time, and it is the time 

it takes for the function to increase from y to by. Doubling time – the time required for a 

population to double in size – is a popular concept and implies a choice of base b = 2.  This 

important special case will be specified as    d(2) = d , and gives rise to the expression 

 /

0( ) 2t dy t y  

By similar arguments used for the natural parameter   r , ( )d b  and ( )d b  will differ only by a 

multiplicative constant. 

Next, I relate the two of the most common choices in parameterization, r and d. We can 

determine the relationship between the two as follows: 

 / 1/

0 0 2 2rt t d r dy y ee      

Doing this, we can write 
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 1 log 2r d  ,   1 log 2d r  

 
2

1

logd
r

e
    

2l

1

og
d

r e
  

Given y0, exponential growth can be completely parameterized by one parameter, and 

different choices of parameterization lead to different quantities of interest. We note that the 

assumption of exponential growth leads to two of the canonical definitions of strain fitness, 

 r   ,  or  d  , 

as only one parameter (assuming y0 is known or fixed) is required to fully define an 

exponential growth function. 

2.2 Learning r and d from Exponential Growth 

Suppose that one or more points from an exponential growth function y(t) are observed, but 

the natural parameter of interest r or d is unknown. How might we use these points to 

calculate our parameter of choice? I first consider low-tech methods in the absence of error. 

These are methods commonly used in different published papers, and although in such papers 

these calculations are often formed without specific reference to the exponential growth 

model, it will be illuminating to identify how they are developed. 

2.2.1 Single Time Point 

Suppose that it is known that y(t) is growing exponentially, but only one time point t t  is 

observed. We want to try and determine r or d based on this single point. A calculation for 

each of the natural parameters can be written as 

 
0

1 ( )
logr

y t

t y
 ,   

1

*

2

0

( )
log

y t
d t

y



 
  

 
 

Note that in each case, to calculate r, we require knowledge of y0, the initial quantity. 
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2.2.2 Double Time Point 

Suppose we observe two points from an exponential growth function 

  1 2, ( ) , {1, 2},k kt y t k t t . Let 
2 1t t    be the time difference between the two points. 

We can calculate each of the natural parameters as 

 2

1

( )1
lo

(
g

)

y t
r

y t



,  

1

2
2

1

)
log

(

( )

y t
d

y t



 
 
 

  

Note the equivalence of this expression with that of the single time point expression, as 

knowledge of the point y0 is required in what we call the single time-point calculation. That 

is, this form reduces to the single time point form if we take t1 = 0, and t2 = t . The 

introduction of a second observed point eliminates the need for knowledge of the initial 

quantity y0. It is noted that the log-ratio allows us to calculate r from two data points from an 

exponential growth function – that is, when faced with exponential growth the log-ratio is a 

primary means of learning about r or d. 

The above expressions for r and d can be simplified if we choose the two time points with a 

bit more care. Suppose that two time points t1 and t2 are selected from an exponential 

function, with t2 chosen to be g generations ahead of t1. That is, 
2 1(( )) gy t b y t  . I will write 

2 1 ( )bt t    to emphasize that the length of time chosen will be a function of the base 

chosen as well. Suppose our interest was focused on multiplicative time    d(b). First, we note 

that:  

 

1

2 2

1 1

) ) ( )
( ) ( ) log log
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
 


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  
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Next, we note that we can also re-write 2 1(( )) gy t b y t   as 

 2

1

l
(

( )
og

)
b

y t
g

y t

 
 

 
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Combining the above gives the expression 
( )

( )

b
g

d b


 . Rearranging to isolate ( )d b , we get 

 
( )

( )
b

d b
g




 

We note that taking the time points to be explicitly g expressions apart greatly simplifies the 

final expression of d as a function of the time points chosen, and is often done when 

attempting to determine d through the use of two time points. (Lee et al., 2005; St Onge et al., 

2007) 

Similarly, one might want to determine ( )r b  by choosing two time points to be once again g  

generations apart. Doing this will give a similar expression, 

 ( )
( )

r b
g

b



 

Determining r and d can be done by taking bases b = e and b = 2 respectively. 

2.2.3 Error and Estimation of r 

If the exponential growth model holds exactly true, then only two points are required for 

determination of r (one if we consider the case where y0 is known). However, observed data 

never conforms to the model exactly: there will be some error in our observations of y(t), and 

these errors will propagate into errors in the estimates of r.  It is this error that prompts us to 

compare different methods of estimating these parameters. There is some notion that, with 

more data available, or more care taken in choosing the two time points, the precision of an 

estimator for r should improve. Hence, I will consider a simple model for this error. Suppose 

we model the error multiplicatively as a log-normal random variable: 

 0( ) exp )(krt

k ky t y e  ， 2 2e ) ~ (0, )xp( ( )0~ ,iid

k kL gN No     

That is, the error at any particular time point tk is independent of the error at other time 

points, and 2( )kVar   is constant over time. I will consider how this model motivates or 
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demotivates different potential estimates of r specifically; however, similar logic will 

motivate and demotivate the other available parameterizations as well. 

2.2.3.1 Error and the Distance between Two Time Points 

First, I show that choosing two time points from an exponential function far apart can 

improve the precision of an estimator of r. Recall the double time point method of calculating 

r, and let r̂  be the estimator of r. The error will propagate through this model as: 

    2 2 2
2 1 2 1

1 1 1

) exp( )1 1 1 1
ˆ log log

)

( ) (

( ) (exp( )

y t y t

y t y
r

t
r


   

    
    

We note that the first term in the expression is r, while the second term encapsulates the error 

in estimation of r. The variance of this term is 

   2

2 1 2

21
Var 

 
 




 
 

Hence, the variance of this estimator is smaller for larger  , and this provides a primary 

motivation for picking two points on an exponential growth function to be as far away as 

possible.  

2.2.3.2 Averaging Multiple Double Time Point Estimates of r 

Suppose we are once again considering the exponential growth model with multiplicative 

error, and we are interested in estimating r. For an exponential function observed at many 

points, this quantity could be estimated based on any two different time points. What if we 

imagined computing a number of estimates of r based on multiple double time point 

measures, and combined these estimates in an attempt to improve the precision in our 

estimate of r? I consider one such scenario. 

Suppose that a set of exponential growth constants are calculated sequentially over a set of 

equally spaced time points tk, {1, 2, ..., }k K . That is, 
1k k ktt     . We can estimate r 

from each duo of time points tk and tk-1 as follows: 
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ˆ log
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t  
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In the absence of error, we should have each 
k̂r  equal to r. However, in the context of error, 

each of these estimators will deviate about r, and hence we might expect that an averaging of 

these terms would lead to an improved estimate of r.  

 
2 2 1 1

)exp( )1 1
ˆ ˆ log

1

(1

( )ex )p1 (

KK
k k

k

k k k k

y t

y
r r

K K t   

 
  
    

We rearrange the above expression a bit: 

     1 1

2

ˆ ) log ( )
( 1)

1
log (

K

k k k k

k

r y t y t
K

 



  
 

  

We note that the summation term is a telescoping series, and hence the above expression 

reduces to 

     1 1
ˆ log ( ) log (

( 1)

1
)K Kr y t y t

K
  
 

  

Rearranging once again, we obtain the expression 

 
1 1

)exp( )1
ˆ log

( 1) ) ( )

(

p( ex

K Kr
K

y t

y t

 

 

We note that ( 1)K   is simply the length of time between tK and t1, and hence this 

averaging has reduced the expression to an estimation of r based on only the first and last 

time points observed. Hence, an averaging of these potential double time point estimators 
k̂r  

is equivalent to the double time point estimator based on just the first and last points 

observed, and cannot be more precise relative to that double time point estimator. 

In the context of error, it seems it would be useful to consider using more than two data 

points at a time to estimate r, as there is some expectation that the inclusion of more data 

points in different estimation methods could still lead to improved estimation of r. 
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2.2.3.3 Fitting a Line 

Suppose that exponential growth is observed for a single population, with the aforementioned 

multiplicative error model. We might want to use all the time points at once to obtain an 

estimate of r. We observe that, if we take the logarithm of y(tk), we obtain the expression: 

 
0log ( ) logk k ky t y rt    

This is the equation for a simple linear model, with intercept equal to log y0, slope equal to r, 

and random error term 
k

. We could imagine using this model to fit the logged data, and 

using the slope of the fitted line as an estimate of the exponential growth constant r, and the 

intercept as a means of estimating y0 if necessary. By including more and more data in the 

model fit, we should be able to increase the precision in our estimate of r. The value of least-

squares estimators is well understood and hence I do not further explore the mathematical 

properties of the least-squares estimate of r. 

2.2.4 Non-Parametric Definitions of Strain Fitness 

I will now begin introduce non-parametric definitions of strain fitness which are not 

necessarily developed directly from the exponential growth model. However, I will relate 

these definitions back to the exponential growth model and r where possible. These 

definitions are introduced now as we will need to consider such non-parametric definitions 

when considering departures from the exponential model. 

2.2.4.1 Specific Rate 

The specific rate (SR) of a function y(t) is calculated as the ratio of the slope the function at 

a time t divided by the value of that function at time t: 

 
(

( )

)

y

y
S

t

t
R


  

Recall that exponential growth can be defined through the expression 

 ( ) ( ) ( )
d

y t y t ry t
dt

    
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Because of this, one potential means of calculating r is through the specific rate. For the 

exponential growth function, we see that 

 
'( )

( )

y t

y t
r SR   

This quantity can be calculated at any time point from an exponentially growing function. 

Typically in growth curve experiments, exponential growth is only observed in a small 

region of the growth curve, with sub-exponential growth seen in other areas of the curve. 

Hence, r is often estimated through the specific rate as (Shah, Laws, Wardman, Zhao, & 

Hartman, 2007) 

 
(

( )
max

)
ˆ

y t

y t
r


   

It is hoped that taking the maximum will leave the estimate associated with maximal, and 

hence exponential, growth. In order to estimate these quantities then, one must consider how 

the slope of the function could be estimated, and different smoothing techniques are often 

employed before estimation of this derivative. Specific rate has seen some use in the 

literature as a means of calculating r and hence strain fitness (Shah et al., 2007), and will be 

explored later in empirical studies. 

2.2.4.2 Area Under the Curve, Area Under the Logged Curve 

Starting now, I begin to explore potential definitions of strain fitness that begin to deviate 

from the canonical parameters r and d. Exploration of these definitions will prove more 

fruitful when considering departures from the exponential growth model; however, it is 

useful to relate these quantities back to the exponential growth constant r for when the 

exponential growth model does hold. 

Suppose that an exponential growth function is measured continuously, rather than over a set 

of time points. We might hope that the area under this curve could prove a good 

characterization of strain fitness. The area under the exponential growth function between 

two time points t1 and t2 can be calculated as 
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0( )
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t

t

y
AUC y t t

e
d

r



   

It is noted that the AUC, although certainly not equal to r, is still a function of r. The AUC 

has seen some use in the literature as a definition of strain fitness, but I seek to develop it 

more thoroughly in this thesis. (Addinall et al., 2011; Hartman & Tippery, 2004) 

A second quantity I will investigate, the area under the logged curve (AULC), can be 

calculated as 

 
2

1

2

0log og) l
2

(
t

t
AULC y t dt ry  


  

As a matter of interest, we note that this expression can be rearranged to be in terms of r as 

  02

2
logr AULC y


  

The utility of these definitions of strain fitness will be explored later in empirical studies 

when we consider different departures from exponential growth. In actual experiments, 

because only a finite number of time points will be measured, the integrals will have to be 

estimated based on the observed data – this too will be discussed later. 

2.3 Comparing Two Populations 

Suppose we have two populations, or different exponential growth functions, yi(t) and yj(t). 

We might seek to calculate the difference in strain fitness i j  . How might this quantity 

be calculated, or estimated, based on the previously described methods? 

First, I consider the canonical case in which we use r as our definition of strain fitness, so 

that i j i jr r    . The previously discussed methods can provide different insights towards 

these two quantities. We will consider the case where the two populations share the same 

starting quantity, such that 0(0) (0)i jy y y  , as is common in growth curve experiments. 

This section is introduced first without considering error. 
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2.3.1 Single Time Point 

Suppose the value of two exponential functions is observed at some time t . Based on a 

single time point measure for two populations yi(t) and yj(t), it is possible to calculate ri – rj: 

 
( )1

( )
log i

i j

j

y

y

t
r r

t t
  

That is, if the difference between two exponential growth constants ri and rj is of primary 

interest, this quantity can be determined based on a single time point measure from each 

population. Notice that, assuming that y0 is shared between the two populations, knowledge 

of y0 is not required in estimating this difference. Once again, we see the log-ratio arise 

naturally as our means of calculating r. 

As a side-note, it is worth noting we can re-write the above expression as 

  log ( ) log ( )i j i jy tr tr y   

This gives a primary motivation for using a 2-way ANOVA model on the logged data 

measured as a means of performing an interaction analysis, a common technique employed in 

the literature. (McLellan et al., 2009)  This will be further explored later in the thesis. 

2.3.2 Double Time Point  

Since it is possible to determine r as long as two points are observed for a given curve yi(t), 

these r may then be compared in whichever way desired. We can consider calculating r for 

each population and taking the difference,  
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or attempting to calculate r based on an average of two single time point measures of ri – rj  

calculated at t1 and t2. 

 1 2

1 2
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log log
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It is easy to show that these expressions are equivalent.  

2.3.3 Fitting a Line  

In terms of fitting a linear model to the logarithm of y(t), one might consider introducing a 

categorical covariate so that rj – ri could be interpreted directly as a parameter in the model. 

Define the model: 

  0( ) logk i k k ky t y r tt C     

where C is a dummy variable equal to 0 if the observation belongs to population i, and 1 if 

the observation belongs to population j, and 
k

 is the random error term.   can hence be 

interpreted as rj – ri.  

2.3.4 Area Under the Curve 

By defining either AUC   or AULC  , we can easily compute the difference in strain 

fitness as: 

 i j i jAUC AUCAUC        

 i j i jAULC AULAUL CC        

Once again, it is interesting to assess the relationship between AUC, AULC and r under the 

exponential growth model. 

2.3.4.1 AUC for Two Populations 

The log ratio of two AUCs can provide insight to the difference between two exponential 

growth constants ri and rj: 

 
log log1

( )log
i ji

i j

j
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r r
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r
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r

C


  
 



 


 

  

If   is suitably large relative to log logi jr r , the second term in the above expression will 

be small, and the log ratio of AUCs will approximately isolate the difference between the 

growth constants ri and rj. This provides some motivation for calculating the total area under 
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the curve, in which we choose the time points t1 = 0, and t2 to be the highest observed time 

point available. 

2.3.4.2 AULC for Two Populations 

The difference in two AULCs between different populations can be written as 

  
2 2 2

0 0
2

log
2

lo
2

gi j i j i jAULC A y yULC r rr r
     
       
 


 

    

From this, we note that one could calculate ri – rj as 

  2

2
i j i jr AU Lr LC AU C 


  

We note that knowledge of y0 is no longer required for calculation of this quantity. 

2.3.4.3 Estimation of AUC, AULC 

To estimate the AUC / AULC, we must consider how to estimate a continuous integral based 

on a finite set of data points. In this thesis, I perform the approximation using composite 

Simpson’s rule, which is a method of approximating an integral by the area under a set of 

quadratic functions. Suppose I wish to integrate a continuous function f(x) from points a to b. 

Values from f(x) are observed at points x0, x1, …, xK-1, and xK, with lower endpoint a = x0 and 

upper endpoint b = xK.. The integral ( )
b

a
f x dx  can be approximated as   

  0
0 1 2 3 4 1( ) 4 ( ) 2 ( ) 4 ( ) 2 ( ) ... 4 ( ) ( )

3

( )K
K Kf x f x f x f

x x
x f x f x f x

K
      


  

The amount of error due to this approximation method should be very small, and its impact is 

considered negligible. Of more interest is the impact of error on estimation of AUC or AULC. 

Rather than an explicit derivation of how error might propagate when calculating the AUC, I 

opt to give a heuristic argument for why the AUC should be insensitive to random error. 

There are two forces that are reducing the effect of random error on the measure of the AUC. 

First, Simpson’s rule itself is a quadratic interpolator, and this interpolation should reduce the 

variance in the estimator of AUC, but with potential increases in bias. (Hastie & Tibshirani, 
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1990) Secondly, under the assumption that 20,~ ( )iid

k N  , the effect of positive random 

deviations on the AUC should be cancelled out, ‘on average’, by the effect of negative 

random deviations. This argument should hold true for the AULC as well, and provides the 

primary motivation for calculating the AUC / AULC over the largest range of time points 

available – typically an initial time point and a common terminal time point. 

2.3.5 A Small Comparative Study of Fitness Measures 

First, I consider estimation of strain fitness from a single exponential function with 

multiplicative error. I generate 10000 curves from the model: 

 0.2
exp( ) ( )kt

k ky t e  ,   2(0, 0.1 )~iid

k N  

Suppose y0 = 1 is known. Time points are equally spaced and taken at 49 points 

{0, 0.5, ..., 23.5, 24}kt  , similar to a 24-hour growth curve experiment. The figure below 

shows five of the generated exponential curves in colour over the true function in black. It is 

worth stating that the amount of random error in these curves, while small, is still larger than 

what we might expect to see in a growth curve experiment. However, it is still worth 

investigating empirically the performance of different estimators under such a model. 

 

Figure 2.1    Example exponential curves 
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I explicitly compare the double time point (DTP), simple linear model (LM), AUC, AULC 

and specific rate (SR) measures to compare their precision in estimation of strain fitness. 

Note that the DTP, LM, and SR methods are all methods for estimation of r; hence, I 

compare these estimators relative to the true r, while AUC and AULC are compared to the 

„true‟ values under the model. For y0 = 1, r = 0.20 and 24  , we have AUC = 607.5521 

and AULC = 57.6. The best estimation methods will be closer to their associated true strain 

fitness „on average‟; hence, I will evaluate each of these methods in terms of their coefficient 

of variation (CV): 

 
( )

(
ˆ

ˆ)
SE

CV





  

To ensure the methods are comparable, I use the knowledge that y0 = 1 in each estimation 

method. This implies, for example, that the LM approach is done with forcing the intercept to 

be log(1) = 0.  

For the specific rate, the derivative is estimated in two ways. First, I use the same method as 

calculated in Shah et al (SR1), without any pre-smoothing. The slope at time point tk is 

estimated as: 

 1

1

) ( )
( )

( k k
k

k k

yy t
y

t t

t
t 




   

Secondly, I use a cubic smoothing spline (SR2) to estimate ( )y t  through the function 

smooth.spline in R, with default values for each argument. (Hastie & Tibshirani, 1990) 

For these two scenarios, I consider estimation of r as  max '( ) / (ˆ )yr t y t .  

Finally, I consider one last estimator based on the specific rate (SR3) whereby I estimate r by 

 ˆ '( ) / ( )k kr avg y t y t , with ( )y t  estimated with smoothing splines, and avg denoting the 

mean slope taken over time points tk. 

 From the 10000 estimates produced from each method, the coefficients of variation (CV) are 

computed: 
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 DTP LM AUC AULC SR1 SR2 SR3 

CV 2.95% 0.515% 2.25% 0.601% 12.3% 52.1% 3.63% 
 

Table 2.1    Single population comparison of methods 

 

Figure 2.2    Single population comparison of methods 

 

As expected, the linear model approach performs the best in estimation of r, producing the 

estimator with lowest coefficient of variation. However, we note that AULC is a very close 

contender. The high coefficient of variation as measured for the specific rates SR1 and SR2 

suggest they may be poor estimators of r. However, SR3 seems a fairly good non-parametric 

estimator of r.  

Next, we look at comparison of two populations. Consider the same model with error as 

before, but now with two populations with growth constants r1 = 0.2 and r2 = 0.15. I generate 

10000 curves with 49 time points for each as described before and estimate the difference 

1 2r r  through the previously developed formulae for each method.  

Note that, under this model, we have 
1 2 0.05rr   , AUC1 – AUC2 = 363.5639, and  

AULC1 – AULC2 = 14.4. 

 DTP LM AUC AULC SR1 SR2 SR3 

CV 16.8% 2.90% 3.20% 3.38% 374% 78% 19.9% 
 

Table 2.2    Two population comparison of methods 
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Based on the table, we see that all methods of estimating the specific rate are fairly high in 

variance – even with smoothing. At this point, I discount SR as a potential non-parametric 

estimator of r in lieu of AUC and AULC, which will be my primary alternative definitions of 

strain fitness. 

 

Figure 2.3    Two population comparison of methods 

 

Once again, LM is the winner; however, the race is even tighter than before between LM, 

AUC, and AULC. The difference in CV between the three methods is very small, lending 

credence to their further assessment throughout the thesis. 

As a reminder, AUC and AULC are being proposed as quantities that remain useful 

definitions of strain fitness when faced with more serious model departures; however, seeing 

that their performance is quite good when the exponential growth model holds true is 

reassuring. It will be interesting to see which of the two performs better when faced with 

different kinds of departures from exponential growth. 

In reality, for a growth curve experiment, exponential growth is observed only in the earlier 

stages of the experiment; the entirety of a growth curve is typically sigmoidal in shape due to 

constraints inhibiting growth. Hence, logistic growth models are proposed next as an 

extension of the exponential growth models, allowing for this constraint on growth. 
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2.4 Logistic Growth Models 

Logistic growth is conceptualized under a similar framework to exponential growth, with the 

introduction of a growth constraint. In a growth curve experiment, as the population of yeast 

cells increases, more members must fight over a limited pool of resources, toxic buildup of 

waste dampens growth, and space constraints prevent growing beyond certain bounds. This 

provides motivation for modeling this growth constraint as a function of current population 

size. I write  

 ( ) ( ) ( )
d

y t f y y t
dt

   

to indicate the growth rate of this function depends on some non-increasing function of the 

current population size, as well as the current population size. This function f(y) should be 

approximately equal to the constant r at early time points, and should decrease as y gets 

larger. Suppose we choose to model it as a linear function of the population size, 

 ( ) yf y r    , 0   

Substituting this into the above expression gives 

 
2( ) ( )

d
y t y r y ry y

dt
      

We note two key features: for small y, /dy dt ry , and hence growth is approximately 

exponential in the early stages. We observe the derivative is zero when 0y   or /y r  , so 

we anticipate that y(t) will have horizontal asymptotes at 0 and /r  . Therefore, we introduce 

a new parameter /B r  , and rewrite the expression for the derivative as 

 ( ) ( )
d r

y t y B y
dt B

   

Solving this differential equation yields the expression, 

 log
y

B y
rt C


   
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where C is a constant of integration, whose value will be determined by imposing the initial 

condition that y(0) = y0. First, we note that at time t = 0, we can write, 

 0

0

log
y

C
B y

  

Substituting back into the previous expression, we find 

 0

0

1
log )(

B y
t

r
rt C r

y
 


   

We form the definition 

 0

0

1
logmid

B y
t

r y



 

and finally determine a final expression after solving for y(t): 

 ( )
1 exp[ ( )]mid

y t
r t t

B


 
  

This is called the simple logistic function, and is fully determined by y0, r, and B (noting that 

tmid is just a function of the other three parameters). y0 and r have the same interpretations as 

before, B is called the carrying capacity and is the upper asymptote of the curve, and tmid is 

the time at which 50% of total growth is reached. Finally, we also recall that B is a function 

of r and the growth constraint term   and hence the most natural triplet of parameters is 

0( , , )y r  . However, for interpretabilities’ sake we write the simple logistic function in terms 

of y0, r, B and tmid, with our triplet of free parameters being 
0( , , )y r B . Once again, in growth 

curve experiments it is common to fix y0 through experimental protocol so the two free 

parameters are hence r and B. 
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2.4.1 Logistic Growth Models in the Literature 

Rather than the aforementioned methods of estimating r or d, there are a number of papers 

which explicitly employ the logistic growth function in an effort to estimate strain fitness. I 

will explore two of these cases in a bit of detail, in an attempt to deconstruct the authors‟ 

definitions of strain fitness. This should also help to demonstrate to the reader the flexibility 

one has in defining strain fitness when modeling growth with the logistic function. Under the 

exponential growth model, only one parameter is necessary to fully parameterize the model, 

and hence parameter choice is a question of interpretation. Under the logistic growth model, 

the presence of new parameters opens new avenues in defining strain fitness as different 

functions of these parameters. 

2.4.1.1 Addinall et al. 

A version of the simple logistic model was fit to ensembles of growth curves, each observed 

over a set of seven to fourteen time points. Addinall et al. parameterized the model in the 

following way: 
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This expression is identical to my parameterization of the simple logistic function, with tmid 

removed as it has been replaced by its corresponding expression in terms of y0, r, and B. y0 

was set by experimental protocol to be constant across all the different growth curves 

assessed.  Estimates of y0, r and B were obtained using a least squares fit. 

Addinall et al. define strain fitness as a function of these parameters, with strain fitness being 

the product of two quantities: the maximal doubling rate MDR, and the maximal doubling 

potential MDP. These quantities are calculated as the solutions to the following two 

equations, using their parameterization of the simple logistic function: 

 

 



29 

 

 
1

0

( )
2

y MDR

y



     
0 2MDP By    

 
0

0

2(
l

)
og

2

r
MDR

B y

B y


 
 

 

,   0log log

log 2

B y
MDP


  

Note that these definitions are using ‘doubling time’ as a focus; hence, even though the 

exponential base e is used in the logistic model, the actual estimates of strain fitness that are 

of interest to the researchers are stated in base 2 terms – hence, the transformations used. 

MDR is calculated as the inverse of the minimum doubling time observed over their 

sigmoidal curve; that is, under the assumption that growth is closest to exponential growth in 

the early stages. MDP is the number of doublings the culture is inferred to have undergone, 

based on the fitted parameters obtained. It is a measure that is larger for curves that reach a 

higher upper asymptote B. Once again, it is transformed to be interpretable in base 2. 

By choosing a definition of fitness MDR MDP   , Addinall et al. seek to give high 

measures of fitness to strains which grow quickly (MDR), and strains which have undergone 

more doublings (MDP). 

One thing worth noting about the author’s definition of MDR is that, as B , the 

expression simplifies to 

 *
log 2

r
MDR   

This helps clarify that their definition of MDR is very much poking at r; more specifically, r 

transformed to be interpretable in base 2, as MDP is.  

From this short review, we see that there is some flexibility in how strain fitness is defined. 

Although the canonical way to define strain fitness in some sense remains r, because we can 

imagine that B is in fact related to a particular strain of yeast’s ability to divide and not 

entirely determined by experimental protocol, we are given new avenues into definitions of 

strain fitness that are functions of both r and B. However, the authors did not construct a 
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comparative measure of the ability of their definition of strain fitness to identify interaction 

effects relative to other measures. 

2.4.1.2 Shah et al. 

Shah et al. compared and evaluated a variety of different growth curve modeling techniques 

over a set of agar yeast culture arrays. Sigmoidal growth curves were collected from different 

strains of yeast using automated image analysis, over approximately seven generations. 

Different definitions of strain fitness were compared over three different models used for the 

growth curves: 1) raw model-free growth curves, 2) a smoothed spline model, and 3) the 

simple logistic model. The primary definition of strain fitness assessed in this paper was the 

maximum specific rate, which is calculated as 
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The slope is estimated at each time point, curve by curve, as 
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Hence, these MSR are computed over 1) the raw growth curves, 2) the spline-smoothed 

growth curves, and 3) the fitted phenotype obtained after fitting of the logistic model. The 

authors were interested if the choice of model would affect the variation across replicates in 

MSR. They note that there is a substantial reduction in this variation when the spline model is 

assumed (relative to the model free fits), and further reduction when the logistic model is 

assumed.  

The authors also included AUC as a definition of strain fitness, in order to see how it 

performed under the three different models. Interestingly, Shah et al. note that the variation 

in the measured AUCs did not change much across the different models chosen. The fact that 

the AUC can be insensitive to the choice of model gives me further justification for its use as 

a measure of strain fitness, as I seek to propose it when faced with a set of growth curves that 

do not follow a single parametric model uniformly. A strict comparison of the performance 
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of each of these measures of strain fitness in their ability to identify interaction effects was, 

however, not performed.  

2.4.2 Four Parameter Logistic Model 

A modest extension of the simple logistic function produces what is generally known as the 

four parameter logistic function. We introduce a new parameter A in order to take control of 

the lower asymptote of this function, and wish to keep our upper asymptote locked at B. The 

exponential growth constant remains unchanged as r. We accomplish this by replacing terms 

in the simple logistic function as follows: we introduce an additive factor A, the parameter B 

is replaced with B – A, and y0 is replaced with y0 – A. First, I work out the impact on tmid. 
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Hence, we obtain an equation for y(t) for the four parameter logistic function as 
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We have the restrictions A < y(t) < B, and typically restrict ourselves to r > 0 and tmid > 0. 

Once again, 
midt  is simply a function of other parameters. 

Note that the restriction A < y(t) < B also explicitly implies A < y0. Although we hope the 

values of the two are closely related under certain restrictions for parameters in this model, 

they are certainly do not represent the same quantity. 

We verify that A and B are the lower and upper asymptotes respectively. First, we note 

 exp[ (lim )]mid
t

tr t


  ,  exp[ (lim )] 0mid
t

tr t


  , 



32 

 

and use this fact to verify that 
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Finally, we note that the function is symmetric about tmid; more specifically, the function 

)( ( ) / 2midy t B At    is odd: 
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Note that the value of this function at time t = 0 is 0, and, calling the above function h(t), we 

can easily verify that 

 ( ) ( )h t h t    

Empirical studies later will show that the lower asymptote A is typically significantly greater 

than 0, hence providing evidence that including A as a parameter and using the four 

parameter logistic model, rather than the simpler three parameter logistic model, is necessary. 

Henceforth in the thesis I will be primarily referencing the four parameter logistic model and 

will opt to call the parameter 
midt  simply tmid; however, the reader is reminded that while 

midt  

and tmid are conceptually the same, they have slightly different definitions. 

2.5 Strain Fitness and the Four Parameter Logistic Function 

Strain fitness can be constructed as different functions of the parameters A, B, r and tmid. 

Recall that, in the context of exponential growth, if y0 is shared between all the growth curves 

of interest, then the only possible way that these curves could differ is through their 

exponential growth constants. This provides a primary motivation for the use of r or d as a 

definition of strain fitness. Hence, the canonical way of comparing growth curves when a 

logistic model is assumed is through comparison of the different exponential growth 

constants r. In such cases it is hoped that fitting a logistic model will improve the precision 

and reduce any potential biases in estimating r, relative to other methods that might rely on 

exponential or non-parametric models. However, one might be motivated to use tmid or B 

depending on their needs. If someone wished to assign higher fitness scores to strains with a 
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higher carrying capacity, then one might seek to compare the different B estimated. Or, as is 

often done in the literature, a fitness score can be constructed that gives higher scores to 

strains that both grow quickly and grow to a higher carrying capacity, and vice versa. 

(Addinall et al., 2011) The AUC / AULC are measures that fit these criteria, and while they 

might each be viewed as a function of the parameters fit if the four parameter logistic model 

is assumed, their utility comes in their ability to remain estimable even under growth curves 

that depart severely from the exponential or logistic growth models. 

With the exponential and logistic growth models now introduced, I next discuss growth curve 

experiments, the types of growth curves one might observe in these experiments, and the 

severity of different kinds of departures from exponential and logistic growth models 

observed in these growth curves. 
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Chapter 3: Growth Curve Experiments 

 

Before proceeding onto a number of empirical studies exploring the benefits and drawbacks 

of the various means of defining strain fitness, it is prudent to discuss the structure of a 

growth curve experiment. 

 

Figure 3.1    A 96-well microtitre plate 

 

In a typical growth curve experiment, yeast cells are grown on 812 = 96 well microtitre 

plates, with each well in a plate containing yeast cells in some growth medium that have had 

one or two genes from its genome knocked out. The experiment is typically constructed such 

that the initial quantity of yeast cells y0 in each well is the same (though not necessarily 

known explicitly), and the entire plate is run through a plate reader and measured over a set 

period of time, typically 24 hours. Over this time period, the level of growth (measured by 

the optical density of a particular wavelength of light, called the OD reading) in each well is 

measured at a certain number of equally spaced time points. The plates are run through the 

plate reader one at a time in each experiment, and depending on the pre-known or pre-

assessed average fitness of yeast strains on a particular plate, they may be grown at different 
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temperatures as to help facilitate the growth of sicker strains. Strains are typically grown in 

triplicate on a particular plate as to measure a particular strain of yeast’s growth variability. 

The following tree gives a visual summary of the structure of a growth curve experiment. 

 

From a growth curve experiment, it is hoped that strain fitness, or some measure of a 

particular strain of yeast’s ability to multiply after the deletion of certain genes or 

introduction of DNA-damaging media, could be assessed. Through these experiments, we 

can learn about how certain genes function within a cell to help with cell division, or identify 

pathways in which multiple genes operate together. 

In the absence of growth constraints, we would expect to see exponential growth for each of 

these strains of yeast – this provides motivation for comparing strains by their exponential 

growth constants r. (Recall that, under the exponential growth model with the assumption 

that y0 is shared by all the growth curves, the only way curves could differ is through r). 

However, the yeast cells are unable to grow without bound due to space constraints, 

competition for resources among the yeast cells, and altered kinetics of the cell cycle due to 

gene deletion. Because of this, the growth curves observed are typically sigmoidal in shape, 

with earlier stages well approximated by exponential growth. As the population of cells in a 

particular well increases, the rate of growth will slow until a final carrying capacity is 

reached, whereby the level of observed growth has stabilized. The carrying capacity is not 

Experiment 

Plate 1 

Strain 1 

Replicate 1 

Replicate 2 

Replicate ... 

Replicate J 

Strain 2 … Strain I 

Plate 2 … Plate P 

Figure 3.2    Structure of a growth curve experiment 
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entirely determined by external experimental factors, and can vary both from curve to curve 

and from strain to strain. The sigmoidal shape of growth curves prompts the exploration of 

sigmoidal models, with primary consideration in this thesis given to the four parameter 

logistic model. 

3.1 Parametric Modeling Choices for Growth Curves 

Given the sigmoidal shape of growth curves, it is common to fit a fully parametric model to 

the observed growth curves (Addinall et al., 2011; Kennedy et al., 2011; McLellan et al., 

2009): most commonly the three and four parameter logistic functions are employed, but 

other functions are available, such the Gompertz or Richards functions. (Kahm, Hasenbrink, 

Lichtenberg-Frat'e, Ludwig, & Kschischo, 2010) Typically, viable parametric functions have 

a lower and upper asymptote, and are approximately exponential in the early stages.  

The choice of model depends on how one chooses to model the growth constraint. The 

observed growth curves seen in this thesis will be discussed in terms of their relationship to, 

and departures from, the four parameter logistic model. However, this thesis is more 

concerned with estimating strain fitness when faced with vastly non-sigmoidal growth 

curves, and hence other sigmoidal functions are unexplored.  

3.2 Sigmoidal and Exponential Growth Curves 

I present some example sigmoidal and exponential growth curves from the Stoepel data set. 

 

Figure 3.3    Sigmoidal and exponential growth curves 
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Most parametric models one would use in a growth curve experiment would expect the above 

forms of growth curves. When faced with a body of growth curves that is entirely composed 

of exponential and logistic growth curves, then we are very strongly motivated to use r or d 

as our definition of strain fitness, and thus the primary concern is how one might best extract 

r from that body of growth curves. When faced entirely with exponential growth curves, one 

could fit an exponential growth model; when faced entirely with sigmoidal growth curves, 

one could fit a logistic growth model. More difficult is considering a modeling strategy that 

can accommodate exponential and sigmoidal growth curves together.  

3.2.1 Estimating r from a set of Exponential and Sigmoidal Growth Curves 

Suppose we have a body of growth curves in which we have a mix of well-behaved 

exponential and sigmoidal growth curves. Under the exponential or logistic growth models, 

one might choose r   as their definition of strain fitness. I briefly consider two main 

strategies for estimating r from each growth curve, and will develop them more completely 

in later chapters. 

3.2.1.1 Focusing on Exponential Growth 

To estimate r using a method predicated on the assumption of exponential growth, one must 

first isolate the portion of a sigmoidal growth curve that is indistinguishable, in some sense, 

from exponential growth. This is difficult: if one were interested in isolating the 

‘exponential’ portion of a growth curve and using one of the previously discussed methods to 

calculate r, they may have to first discard the initial censored / sub-exponential observations, 

but also pick a range of observations small enough such that the growth constraint has not 

pulled the observed growth too far from exponential growth. In other words, one must 

consider performing both left-truncation and right-truncation on the growth curves 

observed. This presents a catch-22: the region selected should be large enough as to provide a 

good estimate of r; however, the larger the region, the further the potential departures from 

exponential growth. Typically in the literature such regions have been chosen through ad-hoc 

methods which can be adequate on a project to project basis. (St Onge et al., 2007) 
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3.2.1.2 Focusing on Logistic Growth 

When we are faced with a mix of exponential and sigmoidal growth curves, the primary 

problem in fitting the logistic model is that it is now overparametrized for the exponential 

growth curves. Because the carrying capacity for these exponential growth curves has not 

been adequately observed in such data, the logistic model will be unable to obtain fitted 

parameters. The primary solution in such cases is to tether the upper asymptotes of these 

exponential growth curves to some set of the sigmoidal growth curves in the data set. For 

example, we might force any exponential growth curves to share a fitted upper asymptote B 

with the wild type curves, so that the other parameters can become estimable. Once again, 

this process is not easily automatable, but still workable on a project to project basis. 

3.2.2 Departures from the Logistic Growth Model 

There are a number of departures from the logistic growth model in these growth curve 

experiments that we should be aware of when forming an analysis. 

3.2.2.1 OD Reader Minimum Read Level Leads to Censored Observations 

The true phenotype that might be measured in the earliest stages of growth is censored due to 

the read level induced by the growth media used. When the yeast cell population in a 

particular well is very small, the contribution of growth media to the OD read obtained will 

overshadow the effect of the yeast cells. Hence, over the curve, we observe the maximum of 

this minimum read level, and the true cell population that might be observed. Furthermore, 

this implies that y0 is censored in the data as well. The plot ahead illustrates this, with the 

measured level of growth plotted in red, and the true level of growth (below the minimum 

read level) plotted in blue. This censoring of initial observations forces us to be very careful 

in interpretation of the lower asymptote A, and also notes that any estimate of y0 obtained 

from the logistic model will be difficult to interpret. 
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Figure 3.4    Early observations in a growth curve experiment are censored. 

 

3.2.2.2 Action of the Growth Constraint 

It is worth stating early that the logistic growth function does not provide a perfect model of 

the growth constraint. The effect of the growth constraint in observed growth curves is often 

quite muted in the earlier observed parts of the growth curve, but comes into effect strongly 

and sharply after a certain point. This is in contrast to the symmetric shape of the logistic 

growth function, which typically over-estimates the effect of the growth constraint in the 

earlier parts of an observed growth curve. This will be more fully explored later; however, 

this systematic departure is still quite small. 

An example of this departure is presented with a single wild type curve from the Stoepel data 

set. I fit the four parameter logistic model by non-linear least squares to this single curve and 

overlay the fitted values, using the R function nls. 
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Figure 3.5    Illustrating systematic lack of fit of logistic model 

 

Although the amount of lack of fit is small, we do see a systematic lack of fit in the 

accompanying residual plot. In particular, we notice that the growth curve levels off much 

more quickly than the fitted logistic curve, which makes a more gradual transition towards its 

upper asymptote. This is emphasized by the large peak in the residual plot observed for the 

larger fitted values. 

3.3 Non-Sigmoidal Growth Curves 

Depending on the effect of either the gene mutation or the solution in which the yeast is 

grown, the observed growth curves may not be sigmoidal at all.  

 

Figure 3.6    Non-sigmoidal growth curves  
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The two sets of non-sigmoidal growth curves are drawn from the McLellan data set. The 

curves in the left panel are smc1, rps31 double mutants, while the curves in the right panel 

are scc2, pac10 double mutants.  

It is quite apparent that, for growth curves of this shape, neither the exponential nor logistic 

growth models will be appropriate. Given a large enough data set, we will inevitably 

encounter these non-exponential, non-sigmoidal growth curves, perhaps in abundance. It is 

the presence of these kinds of growth curves in a data set that prompt investigation of model-

free definitions of strain fitness. That is, for growth curves that deviate systematically from 

the exponential / logistic growth models, the canonical parameters used in defining strain 

fitness eg. r are no longer relevant descriptors, and so we might seek a definition of strain 

fitness that can accommodate both sigmoidal and non-sigmoidal curves together, while 

remaining a conceptually sensible definition of strain fitness – hence, AUC and AULC.  

With the different kinds of growth curves introduced, I now proceed to a set of interaction 

studies to illustrate the strengths and pitfalls in employment of the logistic model, relative to 

methodology using AUC or AULC. 
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Chapter 4: Interaction Analysis Study 

 

This chapter is dedicated to the development of a complete implementation of a growth curve 

analysis. I will explore different modeling solutions that can lead to estimation of the 

interaction effects desired through the use of a microcosm of growth curves. 

4.1 Outline of Methodology  

In a growth curve analysis we seek to use measured growth curve data to identify interaction 

effects. First, I outline the road map for the analysis of a set of growth curves. 

 

Figure 4.1    Outline of growth curve analysis 

 

For example, 

1) The growth model (eg. logistic) would allow us to model growth over time, 

2) The normalization model helps to correct for the plate (nuisance) effects, and 

3) The interaction model allows us to infer directly on interaction effects; that is, the 

effect on strain fitness of the deletion of two genes in tandem.  

There are two main classes of approaches that I will attempt to develop.  

First, I attempt to develop a single model that can encompass all of the three above models 

entirely within itself. Hence, estimated interaction effects could be collected, alongside 

standard errors, directly from a single model with normalization built in. This will henceforth 

be called the single model solution. 

Secondly, as we will see in this chapter, I will have to deviate from the single model solution 

as different computational road blocks make fitting of a single model solution impractical 

Growth 
Model 

Normalization 
Model 

Interaction 
Model 
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and unfeasible. The second approach accomplishes each of the above stages in a sequential, 

step-wise process called a derived variables analysis. (Diggle, Heagerty, Liang, & Zeger, 

2002) So, one might consider fitting a growth model, extracting parameter estimates, 

discarding the standard error associated with these estimates, and then pushing these values 

themselves through the normalization and interaction models. 

Another notion hiding in this road map is the definition of strain fitness. Under a single 

model approach, the embedment of the normalization and interaction models forces us to 

restrict our definition of strain fitness to be a single parameter used in that model, eg r. 

However, under a DVA approach, we have considerably more freedom. We can assume a 

parametric model and define strain fitness to be a (function of) the parameters used: for 

example, MDR MDP  as in Addinall et al. Alternatively, we can opt to use a non-parametric 

definition of strain fitness as well: for example, AUC / AULC. 

4.1.1 Single Model Solution 

As discussed before, we would ideally want to write down a model which can model growth 

over time, plate effects, and allow for extraction of interaction effects. I will first write down 

the „ideal‟ model that, in a perfect world, would be fit in such a scenario. Let i denote strain, j 

denote culture or replicate, k denote time and p denote plate. I formulate an „ideal‟ model as: 
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For each parameter { , , , }midB r tA  in the model, we might include fixed and random 

effect terms: 

 ijp i ij p       

i  is a fixed effect denoting the mean parameter value associated with a strain i, ij  is a 

random effect term accounting for within-strain replication; that is, it allows for variation 

between replicates to be modeled for, and p  is a random effect associated with plate. 
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We will assume that the random effect terms 
ij  and 

p  are independent – that is, there is no 

link between plate-to-plate variability and the variability between replicates. 

Next, we could apply contrasts such that the interaction model we use is imbedded in our 

definition of strain fitness. Recall that, for a query gene q and a non-essential gene g, the 

strain fitness can be decomposed as 

 
, ,q g WT q g q g         

Hence, we could imbed this interaction model in the model used for each parameter ijp  as 

(decomposing index i into two terms, q and g) as: 

 
 
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q g jp WT q g jq g q g p
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  

     
 

Once again, inference on the interaction effects 
,q g  is the primary goal. 

4.1.2 Derived Variables Analysis 

The alternate route towards this final interaction model is through a derived variables 

analysis (DVA). Rather than attempting to incorporate the growth, normalization and 

interaction models in one tidy package, we might opt to perform each step sequentially. 

Hence, I outline my implementations of the three different models that will be used 

throughout this chapter. 

4.1.2.1 The Growth Model 

As before, different growth models are available in a DVA, with different models giving 

different possible definitions of strain fitness. If we specify a growth model explicitly (e.g. 

the four parameter logistic model), then strain fitness can be defined as some function of A, 

B, r and tmid. Furthermore, we can consider different allocations of fixed and random effects 

to each of the four parameters. In this regard, I will consider the four parameter logistic 

function with different allocations of fixed and random effects throughout the chapter. We 

may also neglect to specify a growth model and simply define strain fitness as some 
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calculable quantity for each growth curve – eg, AUC or AULC. However, by foregoing a 

parametric model, we are unable to include fixed and random effects explicitly.  

After defining a growth model (or choosing not to), we can define strain fitness. Once again I 

call strain fitness  , and consider next how to normalize for plate effects.  

4.1.2.2 The Normalization Model 

We can exploit the fact that wild type growth curves are grown on each plate in order to 

enact normalization. We assume that, in the absence of plate effects, the average wild type 

fitness should not vary much across plates. Hence, we use this variation in average wild type 

fitness to normalize for plate effects in the following way. Let p  be the effect for plate p, 

and let ref be the reference plate selected. All the estimates of strain fitness will be 

normalized relative to this reference plate as 

 ˆ ˆ ˆnorm

ijp ijp p    ,  ˆ ˆˆ ) ( )( ref p

p WT WTavv ga g       

where the average wild type strain fitness measured on plate p is denoted as ˆ )( p

WTavg  . After 

obtaining these normalized fitness measures, we next push them through the interaction 

model. 

4.1.2.3 The Interaction Model 

After obtaining the normalized fitness measures, we can perform a 2-way ANOVA analysis 

through use of the interaction model defined before: 

 , , ,q g WT q g q g q g         ,  
2

, ~ (0, )q g N   

From this model, we can obtain t-statistics for the interaction terms of the form 

 ,

ˆ

ˆ( )
q gT

SE




  

and with these we can then begin assessing the interaction effects for statistical significance, 

rank them, and so forth. 
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4.1.2.4 Motivating a Derived Variables Analysis 

With the DVA approach I use now introduced, I will now motivate why it should still prove a 

useful means of performing a growth curve analysis. 

In asking whether or not a DVA approach is appropriate, we are essentially asking whether 

the ANOVA model we use as our interaction model is appropriate. Let‟s outline the main 

assumptions. First, recall our interaction model: 

 , , ,q g WT q g q g q g         ,  
2

, ~ (0, )q g N   

Hence, I outline the main assumptions: 

1) Normality of residuals. While the normality assumption is perhaps overly optimistic, 

it is still more defensible than the normality of random effects terms in a single model 

approach. The distribution of residuals will be briefly explored later for different 

methods.  

2) Independence. We should be fairly comfortable in assuming independence, since the 

growth of one particular replicate should not give us information about another 

replicate. 

3) Homogeneity of variance. That is, the variation we see in replicates does not depend 

on strain; this variance is common to each strain. 

Finally, Diggle et al. note two major requirements for a derived variables analysis to be valid, 

both which are related to the homogeneity of variance assumption: there should be no 

missing values, and there should be an equal number of time point measures for each growth 

curve. (Diggle et al., 2002) In a growth curve experiment, missing values are typically very 

rare, as the entire measurement process is automated and well-controlled. However, methods 

requiring truncation would produce growth curves measured over a varying amount of time 

points, and in doing so may violate the equal variance assumption made in ANOVA.  
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4.1.3 Comparing Normalization Models for each Class of Methods 

A derived variable analysis gives us some more control over the normalization model, 

relative to a single model based solution. With DVA, normalization can be performed after 

the naïve strain fitness estimates are calculated by exploiting the fact that wild type curves 

are grown on each plate. We use the fact that, in the absence of plate effects, average wild 

type fitness should not vary much; hence, we use the variation observed between plates in 

wild type fitness to characterize the plate effects.  

For the single model solution, I explicitly consider a random plate effect. By attempting to 

include a plate effect in our single model solution, we are implicitly assuming that the 

expected average fitness of curves is equal across plates. That is, the normalization 

performed on plate effects when done within a single model is done to equalize the average 

strain fitness estimate across plates, under the assumption that these differences in average 

fitness across plates is due entirely to the plates. However, if the average fitness on a 

particular plate was particularly low due directly to the sicker strains grown on that plate, the 

embedded normalization model would incorrectly adjust strain fitness up for each strain. 

4.2 Empirical Study with a Microcosm of Growth Curves 

Recall that the growth curves measured in the Stoepel data set have the canonical sigmoidal 

form that supports the use of exponential or logistic growth models in determining strain 

fitness. Hence, these growth curves will provide a good starting point for exploration of the 

different ways to perform an interaction analysis. To begin, I select a small set of growth 

curves that are quite typical of other single- and double-mutant strains obtained in this data 

set, and of other growth curves seen in the literature. 

Throughout the thesis, R and an accompanying package nlme is used for model fitting and 

parameter estimation. (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2011) 
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Figure 4.2    A microcosm of growth curves 

I have selected three replicates each of wild type, CTF8 single mutant, YOR195W single 

mutant and CTF8 + YOR195W double mutant from a single plate, for a total of twelve 

growth curves from this plate. The three growth curves observed for the double mutant strain, 

CTF8 + YOR195W, appear noticeably „sicker‟ than the other growth curves assessed. 

Because the observed strain fitness of the double mutant seems to be, in some sense, less than 

the „combined‟ strain fitness of the other single mutants, we would likely call this a synthetic 

interaction. The variation observed between strains seems large relative to the variation 

between replicates for a given strain. Because these growth curves are collected only over a 

single plate, normalization is unnecessary and is left unconsidered throughout this section. 

First, I introduce the contenders from each class of models, and then evaluate their 

performance over some different criteria. 
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4.2.1 Single Model Solutions 

I will consider two models in particular which can encompass the entirety of the growth and 

interaction model. I will use the four parameter logistic model specifically, and seek to 

develop two different models. I will use r as my definition of strain fitness. First, I present 

the four parameter logistic model once again: 
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I consider two different models for the parameters as: 

1) ij i     (fixed strain effects only, FE) 

2) ij i ij      (fixed strain effects and random well effects, FE+RE) 

The interaction model will be embedded in the growth model, and hence all forms of error 

present will be pulled through the interaction analysis. 

4.2.2 Derived Variables Analysis Solutions 

In the DVA modeling solutions I propose, I explicitly keep the growth and interaction 

models separate. Hence, I will consider the same growth models as described before, in 

addition to a model-free solution in which strain fitness is defined as AUC and AULC. I 

encapsulate the set of methods I will assess under this DVA approach. 

Growth Model Normalization Model Interaction Model 

Logistic function, FE + RE 

ij ij i ijr      
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4.2.3 Results 

It should be noted that, although suppressed in this thesis, there is still substantial difficulty 

in successfully fitting the single model based solutions. The R function nlme is very 

sensitive to the start values chosen when fitting these models, and I found the default starting 

values chosen inadequate to fitting the models. Regardless, with some hand-holding I am 

able to coerce the models to successfully fit the data.  

First, I present fitted and residual plots from the logistic growth models used, to help give the 

reader an idea of how well these two models can fit this small set of data. The fitted growth 

curves from the model are plotted in bold colour, while the raw growth curves are underlain 

in the same colour, but with dashed lines. 

 

Figure 4.3    Plots of fitted values over raw growth curves 
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Figure 4.4    Residual plots 

 

There are two main things of interest to note from these plots. First, the inclusion of random 

effects allows us to model growth curves directly at the replicate level, and we see a 

substantial improvement in the fit via the side-by-side residual plots. However, we do note 

that there is still a small amount of systematic deviation from the logistic model, suggesting 

that one might consider exploration of different growth models if there were concerned about 

this departure. We do note that the amount of random error is nearly non-existent – almost all 

of the error left by the fixed + random effects model is systematic. 

Note that I choose to leave out DVA FE from this point on, as strain fitness is not calculated 

at the replicate level under this model. That is, all 3 replicates for a particular strain would be 

assigned the same strain fitness value. Hence, I present next t-statistics associated with the 

interaction effect ,q g  for this microcosm. 
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Figure 4.5    Barchart of t-statistics comparing single model, DVA approaches 

 

 Single Model Derived Variables Analysis 

 FE FE+RE FE+RE AUC AULC 

t-statistic -7.18 -13.14 -18.21 -5.41 -5.34 
 

Table 4.1    Statistical significance by modeling approach for microcosm of curves 

 

It seems that assuming a model when the growth curves actually do present sigmoidal growth 

greatly improves the statistical significance assessed. Comparing FE+RE approaches, we see 

that a DVA affords a higher t-statistic and hence more statistical significance than the SM 

approach. Although we do see t-statistics relatively high in magnitude for the DVA AUC / 

AULC approaches (that is, high enough to be statistical significant at most sensible cut offs), 

they are quite a bit smaller than those produced under the logistic growth model in each 

scenario. This small study suggests that, when faced with sigmoidal growth curves, we may 

be well served to take the extra effort in fitting a parametric model. 

4.3 Extending the Study – Other Microcosms of Curves 

I have picked a fairly „ideal‟ microcosm of growth curves from the Stoepel data set, which is 

essentially made up of the kinds of growth curves that the logistic model would expect. 

However, it will be interesting to see how much model fitting success I have in each 

scenario, when I consider all possible microcosms of the form produced earlier. To this end, I 

cycle through all the double mutants on all plates in the Stoepel data set to produce sets of 

data similar to seen before – 3 wild type curves, 3 curves from each of the 2 single mutants, 
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and 3 of the double mutant curves. In total, I collect 59 of these possible data sets, and 

attempt model fitting under each of the previously described approaches. 

 

Figure 4.6    Barchart – # model fit failures by method 

 

This represents the beginnings of computational difficulties one faces when using the four 

parameter logistic growth model. Even for these small sets of growth curves that follow the 

exponential / logistic models fairly closely, we begin to see a large number of model fit 

failures. This is due to a combination of nlme‟s sensitivity to initial starting values, plus the 

presence of exponential growth curves (ie, those growth curves for which the carrying 

capacity is unobserved) causing our chosen model to become overparametrized. Of course, 

the computational difficulties in a DVA approach are essentially nil, so we observe no failure 

under the AUC, AULC method.  

I next plot the t-statistics calculated under the AUC method, with different plotting symbols 

used depending on whether the SM FE+RE model was successfully fit or not. 
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Figure 4.7    Success rate of single model solution 

 

What we see here is fairly alarming. The gene pairs where we see the largest interaction 

effects are those where the logistic model is failing – that is, the interaction effects that are of 

greatest interest to us are the ones causing the logistic model the most trouble. Furthermore, 

this is with a small set of fairly well-behaved growth curves. We could imagine that scaling 

up this model to span across plates would be virtually impossible, given that we are seeing 

failure at such early stages. This reflects my experience in attempting to fit such models to 

entire sets of growth data in R. 

While I have had success in fitting the logistic growth model to an entire plate‟s worth of 

growth curves, it was not without great pains in both manually selecting suitable starting 

values, as well as tethering of the upper asymptote of sicker strains to the wild types 

observed on that plate – a task that requires manual intervention and is impractical to 

automate. Hence, we are motivated by practicality to employ a DVA approach even when 

faced with exponential and logistic growth curves. 

In the next chapter, I leave this microcosm of growth curves, and enact different DVA 

analyses on entire sets of growth curve data. There, I will further evaluate the different 

methodologies available to us in analysis of a growth curve data set. 
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Chapter 5: Large-Scale Empirical Studies 

 

This chapter is dedicated to comparing each the previously described methods of estimating 

and testing interaction effects over entire sets of growth curve data. There are two sets of 

growth curve data that I will be assessing in this chapter: the well-behaved Stoepel set of 

growth curves, in which all curves are either logistic or exponential in form, and the more 

difficult McLellan data set, where we observe a heterogeneous mix of exponential, 

sigmoidal, and non-sigmoidal growth curves. It should be noted that, for each of these data 

sets, the gene pairs assessed have been selected based on prior expectation that we should 

observe significant interaction effects. Hence, the other genes g are not randomly sampled 

from the genome, and we are not attempting to „find needles in a haystack‟ in terms of 

interacting gene pairs. 

There are two main criteria on which I will assess these methods: the number of statistically 

significant interaction effects found at some pre-defined cutoff, and the overall concordance 

between each method. Recalling the discussion in Chapter 4, all of the methodology seen 

here will be done in the context of a derived variables analysis. 

5.1 Introduction to Data 

First, I outline the structure of both the Stoepel and McLellan data sets. Although I have 

outlined different qualities of each of these data sets briefly throughout the thesis, I will state 

explicitly the structure of each data set now. 

5.1.1 Stoepel Growth Curves 

The goal in this experiment was to identify synthetic sick interactions between the query 

gene ctf8 and 45 other non-essential genes. Strains of yeast were grown on 96-well plates, 

one plate per day, over 10 different days. Each plate was grown at 26
o
C over a time period of 

24 hours, and a total of 46 observations are made over each well. Three replicates were 

included for each strain analyzed, with higher levels of replication for wild type and ctf8 

single mutants. The growth curves in this experiment are all sigmoidal or exponential in 

shape, with those exponential curves being the sicker strains that did not have enough time to 

reach carrying capacity. 
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5.1.2 McLellan Growth Curves 

The goal in this experiment was to identify synthetic sick interactions between three coheson 

query genes (scc1-73, smc1-259, scc2-4), and 28 non-essential genes. Strains of yeast were 

grown for 24 hours on 11 different plates, each run on a separate day. Of these 11 plates, five 

were grown at a temperature of 26
o
C, and six at 30

o
C. On each plate there were fifteen 

replicate wells for the wild type strain and three replicate wells for each of the other strains 

analyzed. A total of 45 observations were taken over equally-spaced time points. In this 

experiment, we observe a heterogeneous mix of sigmoidal and non-sigmoidal growth curves, 

which prompts my exploration of AUC as a definition of strain fitness. 

The effect of temperature on growth is very difficult to model as its effect seems to depend 

on the sickness of the curve assessed. Because of this, two parallel analyses will be run over 

each temperature, and interpretation of results is restricted to that particular temperature. 

5.2 Introduction to Methodology 

First, I introduce the methods I plan on using for performing the interaction analyses, as well 

as my implementations. Recall that any method of estimating r based on exponential growth 

will require identifying the „exponential‟ part of a growth curve. To this end, I use different 

heuristic strategies accompanying each method to perform this identification. Concordance 

of methods provides some evidence that they are performing equally well; however, we may 

see different estimation methods identify more significant interaction effects than others. 

5.2.1 Single Time Point 

Recall that the single time point measure of r required knowledge of y0 to compute. In these 

experiments, this quantity is unknown and difficult to estimate, so I opt to implement a 

similar single time point approach by defining fitness for a particular growth curve as 

  
1

log ( )i y t
t

   

Leaving y0 out of the expression now makes 
i  a bad estimator of ri; however, we note that 

for two populations, the difference can be written as 
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That is, because y0 is a quantity shared between the two growth curves, it falls out of the 

above expression – and by the structure of a growth experiment, this should hold for all pairs 

of growth curves. So, even if our definition of strain fitness does not capture r, it will still 

capture interaction effects of interest on the difference in r. The next question, then, is how 

t  might be chosen. 

5.2.1.1 Choosing a Suitable Time Point 

As a means of side-stepping truncation algorithms, I choose the time point for which the 

variance in growth measured at that point, across all curves and plates in the experiment, is 

maximized: 

 arg ))max ( (
kt kt Var y t  

This ensures that I choose a time point such that the growth curves are, at least according to 

this criterion, maximally distinguishable from one another. The faster growing wild type 

growth curves have had time to separate from the slower growing sick strains. Although I am 

not guaranteed to identify a point lying in the exponential-looking part of a growth curve, in 

practice this algorithm works well. 

5.2.2 Double Time Point 

The double time point method of calculating r is very dependent on the assumption of 

exponential growth. I opt to choose the time points based on a heuristic method. I will choose 

the first time point to be the one for which 20% of growth has been reached on average, and 

the second time point to be the one for which 40% of growth has been reached on average for 

all growth curves in the experiment. I call these lower and upper time points tL and tU 

respectively. These time points are chosen to reflect an example truncation one would wish 

to perform in discarding initial sub-exponential observations, as well as later non-exponential 

observations. Similar truncation rules are enacted in the literature, typically according to how 

many generations of exponential growth one sees in the experiment. (St Onge et al., 2007) 
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After truncation is performed, r can be computed according to the expression 
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where 
U Ltt   . This chosen time is common to each growth curve, and hence differences 

are discovered based on the differences in phenotype measured at these two time points. 

5.2.3 Fitting a Line 

In attempting to determine r using the linear model described previously, we are required to 

consider both left- and right-truncation of growth curves again. I opt to use the same 

truncation strategy as defined before, with all time points within that region used in the 

model fit. Hence, a linear model of the following form is fit: 

 
0log ( ) logk k ky t y rt   ,  20,~ )(iid

k N  , 

where 
1 1, , ..., , }{k L L U Ut t t tt   . 

5.2.4 Four Parameter Logistic Model 

The four parameter logistic model is used only for fitting of growth curves from the Stoepel 

data set, as fitting the logistic growth model to the McLellan growth curves is both unfeasible 

and undesirable due to the presence of non-sigmoidal growth curves. Hence, the following 

discussion is given relative to the Stoepel data set. 

Due to computational difficulties, I was not able to fit one full model for the entire set of 

growth curves. Rather, the four parameter logistic model is fit on a plate-by-plate basis, with 

a derived variables analysis planned for the estimates of r obtained. Hence, the following 

model is fit plate-by-plate, once again letting i denote strain, j denote replicate and k denote 

time: 
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 Fixed effects are used as follows: 
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1) A: A universal parameter estimate of A is assumed; hence, all growth curves on a 

particular plate contribute to one global estimate of A. This is done in the spirit of the 

fact that y0 is shared between all growth curves, even if it is censored. 

2) B: Strain-specific fixed effects are used for the carrying capacity B, such that each 

strain can obtain its own fixed-effect estimate of B. Four of the non-essential genes 

assessed (YOL138C, YJL127C, YDR161W, YEL061C) required rescuing. That is, 

because the upper asymptote B was not sufficiently observed for the growth curves 

belonging to these strains, I force these curves to share their upper asymptote with the 

wild type curves on that particular plate so that the model remains identifiable. 

3) tmid: Strain-specific fixed effects on tmid are included in the model. 

4) r: Strain-specific fixed effects on r are included in the model. 

Finally, random effects are included for both of r and tmid; although there was some desire to 

include random effects for B as well, I was unable to successfully fit the model when 

augmenting it in that way. 

The model is fit in R via the nlme function for each plate, with manually selected starting 

values chosen so that the model can be successfully fit. 

5.2.5 AUC and AULC 

The AUC and AULC are computed curve-by-curve using composite Simpson‟s rule, as 

previously described. No data manipulation or truncation is required for their computation. It 

is worth noting that there are no ad-hoc decisions to be made in the computation of AUC or 

AULC. 

5.3 Normalization and Interaction Models 

Having already introduced the normalization and interaction models, I will be brief here. The 

normalization model exploits the fact that wild type growth curves are grown over each of 

the plates in a data set. We normalize the strain fitness ijp  on plate p according to reference 

plate ref through the model: 
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Once again, ˆ )( p

WTavg   represents the mean estimated strain fitness for wild type curves on 

plate p.  Post-normalization estimates of strain fitness are then brought forward in an 

interaction analysis by fitting the ANOVA model: 
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Once again, inference on the interaction effects 
,q g  is of primary interest. In particular, I 

seek to identify interaction effects that are significantly less than zero. 

5.4 Evaluation of Different Methods of Assessing Interaction Effects 

I now apply each of the previously described methods of identifying interaction effects to 

each data set, as done through a derived variables analysis. Throughout figures in this 

section, I will use the short-hand “STP” for single time point, “DTP” for double time point, 

“Line” for the linear model fit to truncated and logged curves, “FPL” for the four parameter 

logistic model, “AUC” for area under the curve, and “AULC” for area under the logged 

curve. STP, DTP, Line and FPL will all use r as a definition of strain fitness, while AUC and 

AULC methods use AUC and AULC as definitions of strain fitness respectively.  

Because we have different definitions of strain fitness (namely, r, AUC and AULC), it makes 

most sense to consider comparison of standardized interaction effects, rather than raw 

estimates. Hence, throughout the thesis I will consider comparison of the different t-statistics 

associated with each interaction effect from the ANOVA model. 

5.4.1 Stoepel 

Because all of the growth curves in the Stoepel data set are fairly sigmoidal in shape, we 

should expect a high degree of concordance between each method of estimating strain 

fitness. Methods relying on exponential growth should see approximate exponential growth 

in the regions they are calculated, and the four parameter logistic model is coercible, with 

some hand-holding, to the exponential and sigmoidal growth curves seen. The AUC and 
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AULC, being model-free definitions of strain fitness, see no computational hiccups in their 

implementation. 

First, I plot a scatterplot matrix of the standardized interaction effects (t-statistics) produced 

for each interaction effect by each method. Pearson correlations (P) and Spearman 

correlations (S) are computed and placed in the top-left corner of each panel, to help assess 

the strength of the linear relationship between any two methods. A 45
o
 line is plotted in each 

panel to further guide the reader in assessing the relative concordance between each method. 

 

Figure 5.1    Stoepel – scatterplot matrix of t-statistics 
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The level of concordance here is very high across all methods; however, from the plot we 

cannot ascertain whether or not one method is performing better relative to the others. 

Regardless, the degree of agreement here is quite large. Next, a dot plot of t-statistics is 

presented, with significant interaction effects plotted in orange, relative to a Bonferroni 

corrected 0.05 cut-off. Dotted lines are drawn between each pair of genes to help visualize 

the degree of concordance between methods. The number of significant interaction effects is 

presented for each method as well. 

 

Figure 5.2    Stoepel – dot plot of t-statistics 

 

The dot plot of t-statistics tells the same story: with this set of growth curves, in regards to 

statistical significance, the performance of each method seems to be roughly the same. There 

is a bit of variation from method to method; however, the overall variability is similar among 

methods. Interestingly, we observe the same number of significant interaction effects for 

each of the four methods predicated on exponential growth (23), while we lose two of those 

interactions under the AUC and AULC methods (21). It is worth noting that the list of 

significant interaction effects from each of STP, DTP, Line and FPL are entirely the same in 

this situation, despite minor shuffling in ranks throughout. 
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A residual plot for each method is used to assess the ANOVA assumptions. A smoother is 

overlain in red to assess for any trend in residuals. Although there seems to be a small 

amount of heteroscedasticity in the residuals, there is certainly nothing to be alarmed about. 

 

Figure 5.3    Stoepel – residual plots 

 

Figure 5.4    Stoepel – barchart of # significant interaction effects by method 

 

As a curiosity, there seems to be three significant interaction effects as assessed by the AUC 

which disagree with the other four (exponential) methods of estimating strain fitness. 
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5.4.1.1 Which are the Mutants Lacking Concordance? 

Looking at AUC vs. FPL, the least amount of concordance between methods is seen between 

mutants with YJL127C, YML094W and YDR359C knocked out. These are all genes where 

the double mutant is highly sick, and the carrying capacity is not, if barely, observed. AUC 

has ranked these interaction effects much higher than FPL has. It seems that the AUC is 

affording more statistical significance, or lower fitness estimates, to sicker mutants; 

especially those where both the single- and double-mutants appear sick, relative to wild type 

and ctf8.  

 

Figure 5.5    Stoepel – genes ranked differently by AUC, FPL 

 

 YDR359C YJL127C YML094W 

t-stat rank by AUC 2 3 6 

t-stat rank by FPL 16 22 18 

Table 5.1    Stoepel – genes ranked differently by AUC, FPL 

 

5.4.2 McLellan 

The McLellan data sets are different from the Stoepel data set in that the growth curves 

assessed now depart from sigmoidal growth enough that fitting of the four parameter logistic 

model is no longer possible. The other methods described in estimating r and hence strain 
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fitness should still prove workable; however, with the assumption of exponential / logistic 

growth now not met over the entire body of growth curves, we are not so sure whether those 

methods will still produce sensible estimates of strain fitness, or remain capable of capturing 

a large number of interaction effects.  

First, I present scatterplot matrices of the t-statistics. I first present the t-statistics obtained 

from fitting the plates run at 26
o
C. 
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Figure 5.6    McLellan 26
o
C – scatterplot matrix of t-statistics 

 

Interestingly, we see a large amount of concordance between STP, AUC and AULC methods, 

while we see a second class of concordance between the DTP and Line methods. However, 

the amount of agreement between these two groups is quite small. 

Next, I present a scatterplot matrix of t-statistics for the data run at 30
o
C. 
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Figure 5.7    McLellan 30
o
C – scatterplot matrix of t-statistics 

 

We see the same story once again for this set of growth curves. It seems that DTP and Line 

are over-invoking the exponential assumption, which draws their estimates of strain fitness 

away from the other methods in a systematic way. 

With the two concordance classes fairly well established from the figure, I next present dot 

plots of t-statistics by method. 
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Figure 5.8    McLellan 26
o
C – dot plot of t-statistics 

 

Figure 5.9    McLellan 30
o
C – dot plot of t-statistics 

 

It is quite interesting that the single time point measure of strain fitness is so concordant with 

AUC and AULC over this set of growth curves – although we may certainly expect the 

quantities to be related, I would not expect such a scenario to arise in general. That said, this 

degree of concordance is seen in both the Stoepel and McLellan data sets. We see both a 

larger amount of variability, as well as more significant interactions, for STP, AUC and 

AULC methods, relative to DTP and Line. 
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Figure 5.10  McLellan 26
o
C – residual plots 

 

 

Figure 5.11  McLellan 30
o
C – residual plots 

 

Residual plots are used to assess the ANOVA assumptions. Although nothing is particularly 

alarming, there is perhaps some heteroscedasticity present, with the variability in residuals 

being smaller for the larger fitted values obtained. 
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Figure 5.12  McLellan 26
o
C – barchart of # significant interaction effects by method 

 

Figure 5.13  McLellan 30
o
C – barchart of # significant interaction effects by method 

 

When faced with a set of growth curves in which a number of curves showcase non-

sigmoidal growth, STP, AUC and AULC are able to identify a large amount of significant 

interaction effects. AUC and AULC have nearly identical performance with this set of curves. 

A final set of interacting and non-interacting gene pairs from the McLellan 30
o
C data set are 

presented, with AUC used as a definition of strain fitness. WT denotes wild type and NI 

denotes the expected, or neutral, interaction. We see that the cdc20-2, scc1 double mutant is 

nearly dead, even though its corresponding single mutants are not sick. As a contrast, the 
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kar3, scc1 double mutant is not sick, nor are its corresponding single mutants. Even though 

the cdc20-2, scc1 interaction is quite obvious, we should note that the non-sigmoidal / non-

exponential shape of the double mutant would cause any parametric approach to fail, once 

again hinting that a non-parametric definition of strain fitness might be preferred. 

 

Figure 5.14  Interacting, non-interacting gene pairs from McLellan 30
o
C data set 

 

5.5 Conclusions from Empirical Studies 

Exploration of the Stoepel data set seems to suggest that, when faced with growth curves that 

express exponential / sigmoidal growth quite uniformly, one may be able to identify a few 

more significant interaction effects when using a method that exploits the exponential / 

sigmoidal nature of the growth curves. In this data set, AUC and AULC still performed well, 

but were slightly outperformed by other methods. Interestingly, even simple methods like 

STP, DTP and Line were able to capture the same interaction effects as FPL, suggesting that 
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the gain in fitting more complex models might be small, and almost certainly not worth the 

extra hassle in coercing such models to fit. 

If we have a mixture of sigmoidal and non-sigmoidal growth curves as in the McLellan data 

set, the AUC and AULC gain more utility. These non-parametric definitions of strain fitness 

are able to identify far more interaction effects relative to the DTP and Line methods. 

Furthermore, because DTP and Line methods rely quite strongly on the assumption of 

exponential growth, it would be quite difficult to justify such methodology in the face on 

non-exponential growth, as r is an inadequate definition of strain fitness for such curves. 

However, the AUC/AULC will still assign higher fitness scores to strains which grow fast 

and to high carrying capacities, hence remaining valid definitions of strain fitness. 

Interestingly, a single time point calculation of strain fitness also seems to perform just as 

well as AUC and AULC for this set of growth curves; however, an image of the entire 

growth curve is still required for my implementation to pick a suitably good time point. It is 

worth recording that, for each of the sets of data, the time point used in the STP method was 

taken to be near the midpoint of the study: at the 12 hour point for Stoepel, 14 hours for 

McLellan 26
o
C and 13 hours for McLellan 30

o
C. 
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Chapter 6: Conclusion 

 

Growth curve experiments are a powerful tool for learning about genetic interaction; 

however, analysis of a growth curve data set is not trivial. I have explored the most common 

growth models used when defining strain fitness (exponential and logistic), and related 

different definitions of strain fitness to these models. However, because in a growth curve 

experiment we are often faced with a mixture of both sigmoidal and non-sigmoidal growth 

curves (notwithstanding computational difficulties in fitting the logistic growth model to an 

entire data set‟s worth of growth curves), a more flexible non-parametric modeling strategy 

may be required. I have proposed AUC and AULC as definitions of strain fitness that are 

both conceptually sound and easy to implement under both well-behaved exponential and 

logistic growth curves (Stoepel) and more difficult non-sigmoidal growth curves (McLellan).  

Interestingly, a single time point implementation seems to find a middle ground in terms of 

statistical significance, and its ease of implementation may also be very attractive to 

researchers. The empirical studies also suggest that, were someone to form a single time 

point analysis as I have, the time point should be chosen taken 12 to 14 hours after the 

beginning of the experiment. This could help to save time relative to the canonical 24-hour 

growth curve experiment. 

Future research should focus on confirmation that the methodology described in this thesis is 

capable of identifying true interaction effects with a reasonable amount of sensitivity while 

also controlling the false positive rate at some user-specified level. Because the gene pairs 

seen throughout this thesis were expected to react, one metric used in verification of the 

methodology‟s performance was the number of significant interaction effects found. But one 

cannot truly claim that one method is more powerful than another until it is established that 

both have the Type I error rate under control. One might compare these methods over a set of 

known interacting gene pairs, assessed in a pool of non-interacting gene pairs, to properly 

assess false positive and false negative rates. Although simulation studies in which the 

number of true interaction effects is known could be performed, it would be difficult to 

simulate growth curves that did not follow a parametric model easily, and thus the results 

from such a study may not be as biologically relevant. 
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