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Abstract 

 
 

Few experimental methods exist for evaluating all in-plane stress components in solid 

materials; because of the tensor nature of these quantities. Full field measurement of all three 

stress components is desirable, since plastic deformation or failure can result from any 

combination of the three. A new photoelastic stress measurement method is presented for 

evaluating all three in-plane stress components within a two-dimensional photoelastic material. 

The measurement method is based on the observation that the complex transmission factors 

that describe the optical phase changes due to stress-induced birefringence have a second order 

tensor character, similar to that of other tensor quantities such as stress and strain. The same 

transformation equations and Mohr’s circle construction can be applied to the rotation of 

optical axis. A Michelson type interferometer and phase shifting are used to quantify the 

phases of the complex transmission factors. Mohr’s circle calculation is applied to obtain the 

principal transmission factors and principal axis orientation. The principal stresses are then 

obtained from the principal transmission factors through the stresss optical relationship. The 

effectiveness of this technique is demonstrated by comparing the experimental and analytical 

results for a hollow circular ring under diametric compression.  
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Chapter 1 − Introduction 

1.1 Experimental Stress Analysis 

Experimental stress analysis provides important means of evaluating mechanical 

stresses in solid materials. In comparison with other stress analysis methods such as analytical 

stress analysis and numerical solutions, experimental stress analysis does not rely on modelling 

of the material of interest and the associated loads and boundary conditions for evaluating the 

stress distribution. However, it can often be difficult to evaluate stresses experimentally 

because of the tensor nature of stresses and their location within materials [1].  

Currently, industry practice relies heavily on numerical solutions such as Finite 

Element Analysis (FEA). One crucial drawback of using numerical solutions such as FEA is 

that the solution is highly dependent on loading and boundary conditions, which at times can 

be difficult to determine reliably [2][3]. Experimental stress analysis overcomes this drawback, 

since the boundary and loading conditions in experiments are themselves real and therefore can 

be used to verify FEA results.  

The main focus in the field of experimental stress analysis is the development of 

methods or combination of methods where more information about stresses and/or 

deformations in materials can be extracted.  Incomplete stress distribution measurements can 

only partially verify numerical solutions. Improvements in stress measurement methods can 

thus provide engineers and designers with greater confidence and quality in their design of 

components and structures. 
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1.1.1 Motivation 

Photoelasticity is a well established method of experimentally determining stress 

distributions. One of the main challenges of using such method has been its difficulty in 

determining all stress components. In the case of determining in-plane stresses in flat materials 

of uniform thickness, the classical photoelastic method can only determine two of the three 

stress components, and therefore provides an incomplete solution. A new measurement method 

is thus needed to determine all three stress components. From an engineering perspective, the 

new method should retain the convenient operations of the classical method as much as 

possible, while providing repeatable and accurate measurements. 

 

1.2 In-Plane Stress Measurement Methods 

The tensor nature of plane stress fields makes them particularly difficult to evaluate. 

Full field measurement of all three components of plane stress components is necessary, since 

plastic deformation or failure can result from any combination of the three stress components. 

All measurement methods rely on measuring either strain or displacement, from which the 

corresponding stresses are inferred.   Some measurement methods provide point-wise data 

while other can provide full-field measurements, i.e., many measurements spread over an 

extended area.  However, most methods of either kind provide specific strain or stress 

components, typically not all of them.   
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1.2.1 Strain Gauges  

Strain gauges are devices bonded to a surface of interest for measuring surface strains 

in specific directions, as below shown in figure 1. These devices rely on changes in their 

electrical resistance in response to their elongation or compression. A strain gauge is firmly 

bonded to the material specimen so that it shares the same local surface deformations. The 

elongation and compression of the conductive wires inside strain gauges alter their electrical 

resistance. This change can then be measured and translated to the strain of the electric wires. 

 

Figure 1: Strain Gauge 

 

 Strain gauges are very sensitive and accurate devices. A precisely calibrated strain 

gauge can achieve resolution in the micro-strain range, and micrometer displacement accuracy 

[4]. Signal conditioning makes them resistant to environment disturbances such as temperature 

drifts. The main limitation in conducting in-plane stress analysis using strain gauges is that 

they only provide point-wise measurements. Without full-field measurement, areas of high 

stress concentrations on the surface can be unnoticed. In addition, strain gauges measure strains 

in single directions, thus multiple strain gauges must be used if measurements in multiple 

directions are required.   
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1.2.2 Thermoelasticity  

Thermoelastic stress analysis relies on thermal imaging cameras to detect thermal 

energy changes within a material when stress is applied. The change in thermal energy is due 

to change in the intermolecular spacing of the material. During compression, the 

intermolecular spacing is reduced, causing increased vibration of the atoms or molecules and 

thus increasing the local temperature. The reverse occurs when the material is in tension, and 

local temperature is reduced. Figure 2 shows a metal plate under compression imaged by a 

thermal imaging camera. 

 

Figure 2: Thermoelastic Experiment Setup  

 

Thermoelasticity provides full field measurements, and is well suited for application 

where dynamic load is applied. In vibration measurements for example, areas of the material 

where deformation occurs at high frequencies give off high thermal energy. [5] In static 

loading applications, thermoelastic measurement can only translate to the sum of the principal 
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stresses, which is only one of the three in-plane stress components. Moreover, most materials 

have a thermoelastic coefficient of between -0.44×10
-3

 ε/ΔT and 0.33×10
-3

 ε/ΔT [6] and even 

when with modern thermal imaging cameras, sensitivity is in the milli-strain range. 

 

1.2.3 Optical Displacement Measurement Methods 

Optical displacement measurement methods such as Digital Image Correlation (DIC) 

employ image processing techniques to track changes to an object viewed from a digital 

camera, as illustrated in figure 3. Markers are used on an object or surface of interest to 

calculate the displacement and strain induced during deformation. DIC has proven to be 

effective at mapping both normal and shear strains simultaneously [7]. Even with sub-pixel 

interpolation techniques, DIC has low strain resolution. Typical applications of DIC are made 

on highly elastic materials such as plastics, where strains are large. 

 

Figure 3: Digital Image Correlation  

 

High resolution optical testing techniques such as Electronic Speckle Pattern 

Interferometry (ESPI) can also be used for full field measurement of stress and strain. This 
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technique works by creating an interference pattern from two light sources of the same 

wavelengths: one from an expanded laser source and another from the scattered light off an 

optically rough surface. Displacement changes on the optically flat surface alter the optical 

path difference between the two light sources, resulting in a change in interference pattern. The 

interference nature of light used in ESPI signifies that the displacement resolution is in the 

nanometre range, and a full sensing range of a few microns with the aid of phase unwrapping 

[8]. The main limitation in using ESPI to measure in-plane stress/strain is that the 

measurements are scalars as oppose to tensor quantities in stresses. Different ESPI 

configurations can be used to measure displacement in-plane or out-of-plane, depending on 

where the interference takes place. 

 

1.2.4 Photoelasticity 

Photoelasticity is a non-contact and full-field measurement method for analyzing stress 

distributions in transparent materials such as glass and plastic. This method is based on the 

property of optical birefringence in certain transparent materials. As illustrated in figure 4, 

when stress is induced in these materials, their tensor refractive index alters and causes the two 

polarization components of light pass through to experience relative phase retardation 

(difference in phase between the two polarization components of light existing the material). 

 Two-dimensional photoelasticity involves photoelastic materials of uniform thickness, 

where stress is uniform in the normal direction of plane deformation. In this loading condition, 

there is no rotation of principal axis within the material and the stress optical relationship is 

linear [9].  
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Figure 4: Photoelastic Induced Optical Birefringence  

1.2.4.1 Classical Photoelasticity 

Classical photoelasticity measurements consist of monochromatic light passing through 

photoelastic material under stress placed between two polarizing filters. The observed fringe 

pattern yields solutions to the principal stress differences (Isochromatics) and principal angles 

(isoclinics): that the optical birefringence effect creates a relative phase difference (retardation) 

between the two polarization components of light oscillating parallel to the principal stress 

directions, and the polarization filters allow this effect to be observed. [10] Figure 5 shows a 

rectangular specimen under four-point compression placed between two polarizing filters 

oriented parallel to one another. The shear stresses caused by the bending moment produce 

evenly spaced stress fringes in the specimen. High stress concentrations are located at the 

contact points on the specimen. The birefringence effect is wavelength dependent, resulting in 

separation of the multi-wavelength components of white light.  
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Figure 5: Photoelastic Fringe Pattern in Polariscope 

1.2.4.2 Interferometric Photoelasticity 

Interferometric photoelasticity allows measurements of absolute variations in optical 

phase, as oppose to the relative phase retardation in classical photoelasticity. The measurement 

of absolute changes in optical phase offers the possibility of evaluating all in-plane stress 

components. The experiment setup consists of placing a photoelastic specimen in a Mach-

Zehnder as shown in figure 6. Existing work relies on interpreting interference fringes and 

analyzing optical intensity measurements as oppose to optical phase measurements. The main 

challenge in interpreting intensity measurements is that they are nonlinear function of principal 

stress differences and principal stress sums, making stress separation difficult. [11] Another 

drawback of analyzing intensity instead of phase is that the interference patterns do not yield 

solution to the principal angle orientation. [12] 
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Figure 6: Interferometric Photoelastic Optical Configuration 

 

 

1.2.4.3 Photoelastic Stress Separation 

Because methods like classical and intensity measurements from interferometric 

photoelasticity do not provide all in-plane stress components, many hybrid methods have been 

proposed that involve combining two or more sets of different methods for all in-plane stress 

components. For example, thermoelasticity can only measure principal stress sums, while 

classical photoelastic method can measure principal stress differences and principal angle. [10] 

Others include numerical methods of applying equilibrium conditions to photoelastic 

measurements. [5] Combining classical photoelastic measurements with interferometric 

photoelastic measurements have shown to be the most attractive, due to their similar 

experiment equipment needs and independence from numerical calculation errors. Separation 

of the principal stress differences, sums and principal angle by combining classical photoelastic 

measurements with interferometric photoelastic intensity measurements has been proposed in 
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1964 [12] and recently demonstrated in 2005 [13]. Much of the challenge in this approach is 

that the intensity measurements are nonlinear functions of these stress components. 

 

1.3 Research Objective and Proposed Method 

A new measurement method is proposed for the measurement of plane stresses by 

directly measuring the phase changes of birefringence using phase shifting interferometry. This 

method is comparable to the interferometric photoelastic method, because of the similarities in 

equipments used. The key difference is that the discussed method relies on interpreting 

intensity measurements to solve non-linear relationships of the stress components, and the new 

method directly measures optical phase and treats the birefringence as a tensor quality, in 

which the optical stress relationships are linear. This new method offers the possibility of 

simplifying the number of measurements needed to extract the in-plane stress components. 

Tensor field quantities are normally associated with mechanical quantities such as 

stress, strain, and moments/products of inertia [14]. They can also be used to mathematically 

represent the effect of electromagnetic wave propagating in orthotropic medium. [15] 

Representing birefringence as a tensor quantity has the advantage of utilizing existing 

mathematical tools such as Mohr’s circle for processing these quantities. The birefringence 

tensor field can be characterized by two principal transmission factors and an axis orientation 

angle much like other second order tensor quantities such as mechanical stress. The 

transmission factors are mathematically complex values that characterize optical attenuation 

and phase changes. The optical behaviour of polarized light travelling in the birefringence 

tensor field can be mathematically predicted based on the Mohr’s circle relationship, shown in 

figure 7 and 8. The principal transmission factors that correlate with the principal stresses at a 
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given point form the horizontal edges of Mohr’s circle. The location of any given point on the 

circle is related by the axis angle: Rotation of the polarization angle of illumination effectively 

rotates the observation angle of the optical tensor. The resultant depolarization effect and phase 

change of in-plane polarization can then be predicted according to this relationship. 

The purpose of this research is to explore the extent in which the tensor quality of 

birefringence can be used for measuring in plane stresses in photoelastic materials of uniform 

thicknesses. By taking a number of polarized phase measurements of a specimen before and 

after loading, an optical tensor field can be constructed.  Applying the same transformation 

equations and Mohr’s Circle construction as mechanical stress tensor fields, principal optical 

axes orientations and phase changes along principal optical axes can be determined. Principal 

stress orientation corresponds with optical stress orientation, and principal stresses are linear 

combinations of phase changes along the principal axes.  

 

Figure 7: Horizontally Polarized Illumination of Birefringent Material 
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Figure 8: Optical Tensor Axis Rotation 

The research objective is to explore the practicality of the proposed method. A new 

Michelson type interferometer design with improved sensitivity and larger field of view is used 

to conduct experiments.  Phase shifting is used to quantify the optical phase changes, and 

polarization filters are used to separate specific polarization components of the birefringence. 

The effectiveness of the proposed technique can be demonstrated by measuring photoelastic 

specimens of a known stress distribution and compared the experimental results with the 

theoretical solution.  
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2 Theoretical Background 

2.1 Introduction to Polarization of Light and Birefringence  

Plane polarized light is an electromagnetic wave propagating axially.  The plane of the 

polarization can be in any given angle when viewed along the propagation direction.  

Typically, the wave is resolved into two mutually perpendicular polarization components. The 

features of monochromatic coherent light, i.e., light that consists of single frequency and a 

uniform wave-front, can be mathematically expressed using Jones Calculus. The general Jones 

vector expresses the two polarization components of the electromagnetic field of light in terms 

of two independent complex amplitudes, each consisting of a magnitude and a phase (equation 

1). Due to the monochromatic nature of light considered, the time dependency is neglected in 

Jones Calculus [16]. 

 

Equation 1 can be visualized in Figure 9, where Ux and Uy are the complex fields of the 

polarization components. Φx and Φy are the phases of the fields at given point in space.  

 

 

Figure 9: Electromagnetic Wave of Plane Polarized Light (see [16] for more details) 

(1) 
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In the case of plane polarized light, the amplitudes Ux and Uy are the directional sine and 

cosine components of the wave. The phases Φx and Φy are coincident because of the plane 

wave nature. While in the case of elliptical polarized light in figure 10 below, the phases of the 

polarization components are 90° displaced. 

 

Figure 10: Electromagnetic Wave of Elliptically Polarized Light 

Changes in the characteristics of polarized light propagating through different optical media 

can be mathematically expressed using a Jones matrix. This second order matrix characterizes 

amplitude and phase changes for each of the two polarization components of the Jones vector. 

An example is a phase retarder or wave plate. These components have different refractive 

 

indices depending on the polarization of light passing through. As illustrated in figure 11, light 

polarized in the y’ axis has a lower refractive index than in the x’ axis. The y’ and x’ axis are 

referred to as fast and slow axis respectively; the lower refractive index in the y’ axis causes 

the y’ polarization component of the beam to speed up relative to the x’ component. The 

difference in refractive index introduces a phase shift between the vertical and horizontal 

component of the field and thus change the polarization of the beam. The corresponding Jones 

(2) 
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matrix for the phase retarder is expressed in equation 2. Amplitude and depolarization changes 

are neglected from the assumption of losses transmission. 

 

Figure 11: Optical Transmission Through Wave Plate 

 

2.2 In-Plane Stress 

In many practical cases, elastic deformation can be treated as being two dimensional.  

In these situations, deformation occurs primarily within a single plane of the material, while 

little action occurs in the normal direction.  A typical example would be the membrane stresses 

within a thin plate.  The general plane stress and strain tensors for any point in a material can 

be illustrated in Figure 12 and mathematically expressed as the following:  

             

(3) 
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where σx and σy are the normal stresses acting in the x and y directions,, and τxy and τyx are 

the associated shear stresses. The corresponding strain tensor is similar, where the stress and 

strain/deformation is linearly related by Young’s modulus (E) and Poisson’s ratio (ν). [17] 

 

Figure 12: General State of Plane Stress 

 

This is illustrated in Figure 13. For every point, there is an observation angle in which 

the shear stresses are zero; in this case, the normal stresses are referred to as principal stresses 

(σ1 and σ2), and the angle of observation with respect to the reference (x, y) axis is referred to 

as principal angle (θ). The thee components of plane stress can then be defined as principal 

stresses and principal angle. Alternatively, plane stresses can also be defined as sum and 

difference of principal stresses σ1+σ2 and σ1-σ2. 

      
 

(4) 
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Figure 13: Observation axis rotation of plane stress 

 

2.3 Stress Optical Relationship 

The photoelastic effect in some transparent materials has essentially the same optical 

property as phase retarders/wave plates. The change in polarized refractive index is directly 

related to the principal stresses experienced at each point in the transparent material. In the 

case of flat photoelastic material of uniform thickness, the stress to refractive index 

relationship is described by the Maxwell Neumann Principle. The principle states that the 

optical axes orientations (i.e., the orientations of the slow and fast polarization axes) are 

oriented in the same angles as the principal stresses. [18] 
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Figure 14: Stress Optical Relationship 

 

Each point in the plane (x,y) in figure 14 experiences a different state of stress relative to its 

neighbouring point. Due to the plane stress nature of the deformation, the stress does not vary 

throigh the depth of the material. The change in refractive indexes due to stress is described in 

equation set 5, where n is the refractive index of air, n1 and n2 are the birefringent refractive 

indices of the stressed material, and n0 is the refractive index of the unstressed material before 

becoming birefringent. The polarization directions of n1 and n2 are the same as that of the 

principal stresses, associated with that particular point. The stress optical coefficients A’ and 

B’ are properties of the material.  

 

The Maxwell-Neumann Principle however does not take into consideration the dimension 

changes caused by the deformation. As illustrated in figure 15, the plane stress deformations 

cause thickness changes from Poisson’s effect. 

(5) 
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Figure 15: Plane Stress Poisson’s Effect  

As a light beam enters an unstressed photoelastic specimen (assuming material is residual 

stress free, and only becomes birefringent when stressed) in figure 15 left, the polarized 

directional phase change between the light beam entering Uin and the exiting Uout can be 

expressed below in equation 6. Φ1 and Φ2 are the absolute change in optical phase in the 

polarization directions of the principal stresses. 

 

As stress is applied to the specimen, deformation changes the specimen thickness in figure 15 

right (Δh). Most photoelastic materials exhibit isotropic linear elastic behaviour and the change 

in thickness can be modelled using Hooke’s Law below in equation set 7. [12] [18] 

 

After deformation (figure 15 right), the phase change between Uin and Uout is expressed in 

equation set 8, where Φ’1 and Φ’2 are phase changes of light travelling in a stressed material. 

(7) 

(6) 
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The new thickness (h’ term) takes in consideration of the change in refractive index from 

Maxwell Neumann Principle and also the Poisson’s effect. While the h term accounts for the 

beam that used to travel in air before loading. 

 

Substituting equation sets 5 and 7 into equation set 8, the phase change can be rearranged into 

the following: 

 

The terms in equation set 9 that are nonlinear functions of the principal stresses σ1 and σ2 can 

be neglected due to their small size compared with the other terms. [17] 

 

(8) 

(9) 

(10) 
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The relationship between the phase changes from entering to exiting the stressed photoelastic 

material can be expressed in equations 11. This relationship maintains the linear relation 

between the principal stress values and the constant coefficients in the Maxwell Neumann 

stress optical relationship in equation set 5. 

 

During the phase stepping process, the unstressed material optical path length is subtracted 

from that of the stressed material. Thus the final measured phase change from unstressed to 

stressed material can be expressed in equation set 12, where equation set 11 is combined with 

equation set 8. A and B are direct stress optical coefficients that taken into account of the 

thickness variations of the material. 

 

The principal stresses can be solved from the measured phase change by inverting equation set 

12. 

 

 

(11) 

(12) 

(13) 
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2.4 Tensor Field Character of Birefringence 

           The tensor character of birefringence phase change in photoelastic materials is 

illustrated for the case where the principal axis orientation is known in figure 11. The optical 

phase shift along the principal stress directions (x, y) follows the stress optical relationship in 

equations 12. The Jones matrix to express this change is: 

 

where u and v are the principal complex transmission factors that take into account attenuation 

and phase change due to birefringence. Since stress-optical effects only influence refractive 

index, there is no attenuation effect, and thus the complex transmission factors have unit 

magnitudes. 

 

          In the general case where the principal axis orientation is unknown, the principal axis 

inclines at an angle θ with the observation axis. The Jones matrix undergoes a geometric axis 

transformation: 

 

Equation 16 can be expanded into equation 17, which contains the familiar relationship for axis 

transformation of second-order tensor quantities [14].  For typical second-order tensor 

quantities such as stress, strain and moments/products of inertia, the terms in equation 17 are 

all real, but in the present case of phase change during light transmission, the terms are 

(14) 

(15) 

(16) 
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complex numbers Off-diagonal terms in the Jones matrix correspond to light in orthogonal 

polarization.  

 

            Placement of polarization filters in front and behind the specimen can isolate each 

element in the Jones matrix. Through the use of the Mohr’s circle relationship, the principal 

complex transmission factors u and v can then be calculated. For example by setting both 

polarization filters to the horizontal, the depolarization components and the vertical 

polarization components can be filtered and isolates only the top left element. The depolarized 

elements can be isolated by orienting the polarization filters orthogonal to each other. Such 

method is impractical due to the absence of light passing through the polarization filters. To 

solve this issue, four sets of phase measurements are taken with both polarization filters in 

front and behind the specimen oriented parallel and each measurement taken at 45° apart as 

illustrated below in figure 16. 

 

Figure 16: Polarization Measurement of Photoelatic Material 

(17) 
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C1, C2, C3, C4 are the complex transmission factors evaluated at 45° intervals. For example, C1 

corresponds with both polarization filters oriented in the x direction, while C2 corresponds with 

the polarization filters oriented 45° to the horizontal. 

          The observed complex transmission factors are mathematically related to the principal 

complex transmission factors u and v by the directional sine and cosine projection of u and v 

through the polarizing filters. This relationship is simplified as the following: 

 

Figure 17 shows the graphically representation of the relationship between the complex 

transmission factors. The features on the circle are equivalent to the mechanical analogies, and 

follow the same mathematical relationship and transformation formulas.  

 

Figure 17: Mohr’s Circle Relationship of Complex Transmission Factors  

(18) 
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Quantities p represents the isotropic component of the complex transmission factors, while q 

and t represent the deviatoric components. Analogous quantities are used in planar stress 

analysis, where p is the hydrostatic stress, t is the axial shear stress, and q is the shear stress at 

45° to the axis. [19] Equation 18 can be tabulated into matrix representation and rearranged 

into the following: 

 

Coincidentally the left side of matrix equation 19 is similar to the features on Mohr’s circle in 

figure 17. The relationship between the isotropic and deviatoric components of the 

transmission factors (p, q, and t) and the measured transmission factors is represented below in 

equation set 20. 

 

The principal complex transmission factors (u and v) and principal axis orientation (θ) can be 

solved in the same manner as principal stresses from normal and shear stress quanitites. 

 

 

(19) 

(20) 

(21) 
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2.5 Phase Stepping Interferometry 

Interferometry allows precise measurements of the phase of light beams [20].  Figure 

18 shows the interaction of two monochromatic light beams of the same wavelength, 

amplitudes and polarization. Constructive interference occurs where the waves are in phase and 

destructive interference occurs when the waves are 180° out of phase. As the relative phase 

changes between the two waves, the optical intensity of the interference changes from bright in 

the constructive interference case to dark in the destructive interference case. 

 

Figure 18: Superposition of Electromagnetic Fields 

The complex amplitude at any point in the interference pattern is the sum of the complex 

amplitudes of these two waves. Assuming one of the beams passes through an unstressed 

photoelastic specimen, while the other passes through empty space. These two waves can be 

mathematically expressed as: 

 

(22) 
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The optical intensity of a wave is the square of its electromagnetic wave amplitude. The 

intensity of the super-positioned wave is thus a function of the amplitudes |Ua| and |Ub| of the 

two separate waves and their phase difference Φa- Φb. Phase stepping algorithm is used to 

determine the phase different between the two beams (Φa- Φb). Since optical sensors can only 

detect intensity and not phase, the intensity of the super-positioned wave (I) has to be altered 

by the constant βn to create a set of unique intensity values (I1, I2, I3, I4) illustrated in figure 19. 

The value of βn exists as integer multiples of π/2.     

                              

When stress is applied to the specimen, the phase of the beam passing through changes from 

Φa to Φ’a. The constant amplitudes of the two beams means that the intensity I is a function of 

the phase difference (Φ’a- Φb) and the known phase step value βn. G is the average intensity of 

the phase stepped intensity image and G is the modulation of light from the phase stepping. 

 

Figure 19 graphically illustrates the phase stepping algorithm. Sets of phase-stepped 

images are taken before and after applying stress to the photoelastic material. After applying 

stress, the intensity I follows a different pattern due to the change in phase from Φ a to Φ’a, 

while the phase of the reference beam remains constant. 

(23) 

(24) 

(25) 
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Figure 19: Phase Stepping Algorithm   

 

The phase differences calculations between the two beams are expressed in equations sets 25 

and 26. [21] The change in phase difference between the two beams is subtracted from each 

other to create a phase map υ in equation 27. This value is the same as the one expressed in 

equation 12. With the placement of polarization filters, the measured change in phase 
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difference is that of the polarized component of the beam passing through the photoelastic 

material. 

 

 

Substituting the phase angles from equation 27 into equations 20 and 21 gives the principal 

attenuations u and v and the principal direction θ.  This calculation is applied to every pixel 

within the measured optical images and thus a full-field stress evaluation is achieved.   

 

2.6 Far Field Drift Compensation 

One of the challenges in optical phase measurements is that the refractive index of air is 

dependent on air pressure, and any differential change in air pressure causes disturbances in the 

phase measurements [22]. Even though preventative measure such as an enclosed cabinet is 

used to isolate the optical equipments, compensation technique is still necessary to correct this. 

The change in pressure is time dependent. As time passes by between the two sets of phase 

shifting measurements, the disturbance accumulates to a drift in the measurements as 

mathematically expressed below in the phase shifting equation similar to equation 28, where � 

is the drift in phase due to change in air pressure. During the phase shifting evaluation of the 

phase change 

 

(25) 

(26) 

(27) 

(28) 
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over time, both the photelastic and drift phase changes are evaluated together, resulting in an 

inaccurate measurement. A useful characteristic of this disturbance is that the effect across the 

measurement image has very low gradient, i.e. effect on each camera pixel is equal to another. 

The solution to this is to evaluate the phase changes in the far field of the sensor image as 

illustrated below in figure 20. 

 

Figure 20: Drift Compensation by Far Field Phase Subtraction   

Since the far field phase change is independent of photoelastic phase change, the phase 

change over time in those image pixels should be zero as expressed below. This allows the 

phase drift value α to be evaluated. With the value of α known, the phase values of the pixels in 

the photoelastic material can be subtracted by α to determine the correct photoelastic phase 

change. 

(29) 
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Chapter 3 − Modifications to Interferometric 

Photoelastic Measurement Method 

 
3.1 Introduction to Interferometric Photoelasticity 

 The simplicity of classical photoelasticity makes it an attractive experimental 

technique; only a pair of polarizing filters is required to observe stress induced fringes in a 

photoelastic test material. Observation of isoclinic fringes is also straightforward, although 

rather tedious. In comparison, interferometric photoelasticity requires a much more complex 

and enviromnetally sensitive optical arrangement consisting of an interferometer with precision 

mechanical alignments [23]. However, once the equipment is set up, the required 

measurements are simple and compact. 

The main advantage of using interferometric photoelasticity is that the third stress 

component of principal stress sums are present in the measurement, where they are absent in 

the classical method. Another advantage is that the polariscope arrangement can be integrated 

in a Mach-Zehnder interferometer allowing both measurements are possible with one 

experiment setup, as illustrated in figure 6 [11]. In comparison with other methods such as 

combining classical photolastic measurements with that of thermoelasticity, two separate 

experiment arrangements are needed, in order to obtain full-field stress distributions of all three 

components of in-plane stresses [13]. 

The proposed measurement method can be considered as an extension of 

interferometric photoelasicity. Treating photoelastic birefringence as a tensor quantity 

simplifies the number of measurements needed to extract all three components of in-plane 

stresses to at least three sets of phase stepped measurements. Limitations and challenges to 
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current interferometric measurement methods such as measurement sensitivity, size of field of 

view, and alignment procedures are also addressed in the proposed experiment configuration. 

 

3.2 Proposed Experiment Configuration 

To characterize the tensor quality of photoelastic birefringence, the optical path length 

changes for a stressed photoelastic material needs to be identified. To accomplish this, a 

Michelson type interferometer is proposed for this application, as illustrated in figures 21 and 

20. The optical arrangement features a two-stage beam expansion to image specimens of 

dimensions that are larger than that of the beamsplitter. A piezo-electric actuator attached to 

one of the mirrors actuates the phase shifting measurements. The placement of the polarization 

filter on the specimen arm of the interferometer allows specific polarization components of the 

phase changes to be evaluated. The phase changes correspond with that of the directional 

transmission factors illustrated in figure 16. 

Although Mach-Zehnder type interferometers have been typically used for this 

application, and both interferometers can implement phase stepping measurements to 

determine phase changes in one of their optical path lengths [20][22]. From a conceptual 

perspective, the Michelson interferometer is a folded variation of the Mach-Zehnder 

interferometer. For the application of measuring phase shift due to photoelastic birefringence, 

the Michelson setup effectively doubles the optical thickness of the photoelastic specimen and 

thus doubles the birefringence effect and the measurement sensitivity. Another advantage of 

the Michelson arrangement is the reduction of the optical components needed: only one 

beamsplitter and a pair of beam expansion lenses are required compared to two beamsplitters 

and two pairs of beam expansion lenses in the Mach-Zehnder.  
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Figure 21: Optical layout of interferometer 

 
Figure 22: Experiment optical equipment 
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3.2.1 Secondary Beam Expansion  

In typical interferometer arrangements, the field of view is limited by the size of 

beamsplitters and illumination beam diameter. The second beam expander placed in front of 

the specimen effectively resolves this problem. It allows specimens of dimensions larger than 

the beamsplitter to be imaged. The optical arrangement can also function without the second 

beam expander, allowing more detailed measurements of smaller specimens. 

The first stage beam expander expands the laser beam for both interferometer arms. A 

diode pumped solid state laser (DPSS) is used to provide stable and coherent illumination. The 

first two lenses in front of the laser expand the millimetre wide beam, while the larger convex 

lens focuses the diverging beam back into parallel form. Figure 23 shows the optical diagram 

of the lenses used, the laser beam is expanded 80 times the original diameter.  

 

Figure 23: Ray Diagram of Laser Beam Expansion 
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The second stage beam expander closely resembles the first stage expander; a convex lens 

diverges the incoming collimated beam from the beamsplitter and the concave lens collimates 

it, as schematically shown in figure 24. The returning beam reflected back from the mirror 

follows the same optical path, but in opposite direction 

 

Figure 24: Ray Diagram of Second Stage Beam Expander 

 

The second stage beam expander has a magnification power of 2.2 times. Its main purpose is to 

demonstrate that the field of view of this optical arrangement is not limited by the size of 

beamsplitter and camera lens. Cube beamsplitters are relatively expensive and difficult to 

manufacture in large sizes compared to plate beamsplitters, but they do not suffer from the 

internal reflection problems of plate beamsplitters. [23] 
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The main challenge of light beam passing twice through the specimen in the Michelson 

configuration is that the beam may not be accurately parallel. This causes a double image to 

appear on the camera sensor, as shown in figure 25. The misalignment can be corrected by 

adjusting the horizontal position offset between the center of the expanded laser beam and the 

position of the collimating lens.  

 

Figure 25: Double Image Due to Collimation Lens Misalignment 

 

3.2 .2 Optical Phase Detection  

A C-mount imagining lens attached to a digital CMOS sensor is used to measure the intensity 

change resulting from the phase change between the two arms of the interferometer. Because 

of the parallel beam arrangement within the interferometer, the beam within the camera passes 

through a focal point ahead of the sensor plane, as shown in Figure 26.  The distance d needed 

to project the collimated beam to the size of the CMOS sensor can be experimentally 

determined by placing extension tubes between the lens and camera lens mount. For the 

measurements reported here, a 10mm long extension washer gave appropriate magnification 

with focal length f=12.5mm lens and lens diameter of 75mm. 
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Figure 26: Ray Diagram of Camera Lens 

 

3.2.3 Phase Shifting Implementation 

Phase shifting is used to quantify the change in optical path length between the two arms of the 

interferometer: A piezo-electric (PZT) stack is used to actuate one of the two mirrors in the 

phase stepping measurement process described in section 2.5. The piezo stack is attached 

between the screw adjusted mount and the glass mirror as shown in figure 27. The mirror 

moves in the direction of the PZT stack, shortening or lengthening the optical path difference 

between the two beams of the interferometer in quarter of wavelength intervals. The stepping 

actuation is synchronized with the camera to produce a set of 4 phase stepped images. The 

incremental stepping process avoids the hysteresis characteristic of the actuator. 
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Figure 27: Piezo-Electric Actuated Mirror 

Figure 28 shows a set of four phase stepped images taken with the piezo-actuated mirror 

positioned at quarter wavelength apart. The disk in the center of the image is a circular disk 

shaped photoelastic specimen. These images correspond with the intensity vs. piezo position 

function described in figure 19. 

After stress is induced in the photoelastic specimen, another set of four phase shifted 

images are taken. By processing the intensity of each camera pixel according to equation 25 in 

section 2.5, each pixel’s phase change can be calculated. The calculated phase map is presented 

in figure 29. The white regions of the phase map indicate phase change in multiples of 2π 

radians, while the black regions indicate phase change in the multiples of π radians. This phase 

map is affected by the air pressure drift as described in section 2.6. To correct this, the far field 

(parts of the image that does not contain the specimen) is averaged and subtracted from the 

entire phase map, resulting in a cleaner measurement as shown in 28. 
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Figure 28: Phase Shifted Measurement Images 

 

Because of the cyclic nature of phase fringes, unwrapping is used to linearize the 

measurements [24]. The tensor character of birefringence as described in chapter 2 can be 

mathematically constructed from experimental phase measurements; by taking phase shifting 

measurements at varies polarization angles. 
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Figure 29: Computed Phase Map  

 

Figure 30: Far Field Drift Subtraction  
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3.2.4 Polarization Control 

Polarizing filters are used to both control the polarization of the beam travelling 

through the specimen and control the beam intensities of various parts of the arrangement. 

Plane polarization filters with angular position indication is used to select the desired 

polarization component to perform phase stepping measurements, as shown below in figure 31. 

 

Figure 31: Plane Polarizing Filter and Attenuator 

An attenuator is assembled by combining two polarization filters. This arrangement is used to 

adjust the intensity at the laser output and also to balance the intensity difference between the 

two interferometer arms. The attenuator on the laser is composed of one plane polarization 

filter and one circular polarization filter, with its quarter wave plate facing the outside. This 

configuration essentially unpolarizes the linear polarized output of the laser. The polarization 

filters are commercial photography filters with a diameter of 49mm. 
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The alignment of these components is offset by about two degrees to minimize 

reflection from the surfaces of the filters to the camera. Each filter has a reference mark 

indicating the direction of polarization.  Angular scales are placed around the filters for 

readout. During testing, both attenuators in front of the laser and on the reference arm can be 

adjusted to compensate for the change in intensity from the change in polarization on the 

specimen arm and the uneven polarizing property of the beamsplitter. The polarization angle of 

the polarizing filter on the specimen arm and that of the polarizing filter on the attenuator 

closer to the beam splitter must be the same because interference can only take place between 

beams of the same polarization. [16][26] 

 

3.3 Tuning and Adjustment  

In order to achieve nanometre level accurate phase shifted measurements, careful 

adjustment of the interferometer equipment is necessary [23]. The goal of the adjustment 

process is to create interference fringes between the two beams of the interferometer.  

 

  

Figure 32: Final Adjusted Two Beam Interference 



43 

   

The following is a list of alignments and adjustments necessary for high quality interference 

images. 

 

1. Laser expansion alignment is shown in figure 23, the exiting collimated beam should be 

parallel with an even intensity distribution. The divergence angle of the beam can be 

adjusted by positioning the position of the collimating lens. The center of illumination 

can be positioning by moving the first expansion lens. 

2. The beamsplitter should be placed squarely as possible, with the center of the cube 

aligned with the center of the collimated laser beam 

3. The imaging camera should be placed at an slight offset angle w.r.t. the beamsplitter to 

prevent internally reflected beam (of beamsplitter) from entering the camera 

4. Beam attenuators and polarization filter should be placed with slight offsets to prevent 

surface reflections of these optical pieces from entering into the camera lens. The 

attenuators need to be adjusted before opening the camera aperture, to prevent 

saturation and damage of the camera sensor. 

5. Mirrors on each interferometer arm should be adjusted with positioning screw for 

correct angular alignment. The centers of each beam can be determined by reducing the 

camera lens aperture. The correct alignment camera image is shown in figure 32 (left)  

6. Second stage beam expander is adjusted in the same manner as the laser beam expander 

 

Figure 32 shows the difference in interference image quality between a well tuned 

interferometer (right image) and one that is not (left). Interference fringes are clearly visible in 

the right image. The result is that phase stepping can be detected by the camera.  
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The formation of the fringes can be explained by modelling two beams as two plane 

waves intersecting at oblique angles as shown in figure 33. As the two wave intersect at a large 

angle, a large number of narrow interference fringes form [16][22]. As the oblique angle 

between the two beams decreases, the interference fringes become further apart. During phase 

shifting, movements of the interference fringes are visible throughout the image. One noticable 

feature of the fringes as shown in figure 32 is that they are very sensitive to the elastic 

deformation of the setup.  

A disadvantage of the Michelson arrangement in comparison with the Mach-Zehnder is 

the presence of internal reflection in the cube beamsplitter used. This becomes problematic 

during the alignment process of the two mirrors. The internally reflected beam can form 

interference patterns with the two main beams of the interferometer. It was found that the 

additional interference pattern causes excessive measurement noise during phase shifting. The 

practical solution is to offset the internally reflected beam on the camera senor by a few 

degrees. The slight offset creates an angle between the main beams of the interferometer with 

the internally reflected beam, and causes the noise interference to be less visible to the imaging 

sensor. 
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Figure 33: Interference of Two Oblique Plane Waves 

 

The internally reflected beam is caused by the surfaces on the back and left of the cube, 

where they partially reflect the transmitted beam and reflected beam into the direction of the 

camera. [23] This is illustrated in figure 34. The Mach-Zehnder arrangement does not suffer 

from this, because the surface of the beamsplitter with the internal reflection faces away from 

the rest of the optical components. 
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Figure 34: Beamsplitter Placement 

 

3.4 Experiment Challenges and Solution 

           Any interferometer that can measure optical path length changes with nanometre 

resolution requires the stability of a number of environmental factors such as atmospheric 

conditions, vibrations and elastic deformations. The main challenge in measuring changes in 

the refractive index of the photoelastic material is that the refractive index of air, in which the 

light beam passes through changes along with changes in atmospheric conditions: Differential 

air temperature changes alter the refractive index of air and thus it can change the effective 

path difference between the two light paths of the interferometer. This effect can be observed 

by the drift in phase measurement values over time. To solve this problem, the optical 

equipments are enclosed in a closed cabinet to prevent air movement from affecting the phase 

stepping measurements. To prevent any vibrations from altering the optical path lengths, the 
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optical table rests on a granite table that provides vibration damping. Placements of air 

bearings under the optical table support structure provide additional damping.  

         Rigid-body motion is another source of unwanted measurement disturbance during phase 

stepping measurements. Given the sensitivity range of the measurement is the same as the 

wavelength of the illumination source or 532 nanometres, any movement of the optical 

components can result in drifts and offsets in the measurement. By observing the interference 

fringe pattern, iit was found that the optical path length between the two arms of the 

interferometer arrangements changes by 20-50nm (λ/25 to λ/10) depending on the load placed 

on the specimen. 

 

Figure 35: Static Deformation of Optical Table Due to Compression 

 

         As illustrated in figure 35, the optical table deforms as force is applied and the distances 

between the optical components are rearranged. This change is consistent and measurable in 
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the change in interference fringe pattern on the camera sensor. One can observe this effect by 

simply viewing the interference fringes through the camera and pushing the optical table with 

one finger. This deformation adds around 0.2 to 0.4 radians of offset drift to the phase stepping 

measurement. Two solutions are available to counter this effect; to use offset subtraction in the 

signal processing, or by preloading the optical table. 

 

Figure 36: Deformation Compensation by Preloading 

 

        The rigid body offset is characterized to have a linear spatial gradient. Once modelled, the 

offset map can be subtracted from the measured phase map. This has been shown to be 

effective but time consuming. The second solution is to place the weight on the loading 

apparatus, without loading the specimen. This way the rigid body motion is eliminated when 

the loading is transferred through the specimen. This is illustrated in figure 36; the loading 

weight initially rests on loading structure without compressing the specimen and then 
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transferred onto the test specimen. This method is demonstrated to be as effective at treating 

rigid body deformation with manual drift compensation, without the additional signal 

processing procedure. 
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Chapter 4 − Experimental Validation 

4.1 Experiment Overview 

        In this chapter, experimental validation of the tensor field photoelastic measurement of in-

plane stresses is presented.  The performance and accuracy of the method are evaluated by 

making measurements on photoelastic specimens of known stress distributions. 

 

4.2 Photoelastic Test Specimen 

       The photoelastic material used for the tests is PMS-5 clear epoxy (Vishay, North 

Carolina). This material is manufactured to optical lens quality with highly transparent clear 

surfaces. The casting and machining processes used during manufacture are controlled to allow 

no visible residual stresses in the material.  

 

Figure 37: Circular Ring Specimen Under Compression 
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       The material was machined into specimens in the shape of ring disks with an outer 

diameter 55mm, inner diameter 27.5mm and thickness 3mm. Figure 37 illustrates the ring 

geometry.  A ring disk under diametral compression provides an interesting test specimen 

because the resulting stress distribution contains an easily visible mixture of all three 

components of in-plane stresses: normal stresses and shear stress.  In addition, it contains some 

areas of high stress concentration. A closed-form analytical solution for the stress distribution 

within the ring is available [25] and provides a comparison with the measurements from the 

proposed photoelastic tensor field method. Where ρ=R2/R1. 

 

Where the coefficients are defined as: 

(30) 

(31) 

(32) 
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The analytical stress distribution was converted from cylindrical to Cartesian coordinates using 

Mohr’s circle axis transformation. A Matlab script was used to discretize the surface area of 

the ring disk into pixels of equal resolution to that of the measured data from the camera 

sensor. The analytical stress values for each pixel are then evaluated using the provided 

mathematical relationships. Forty terms were found to more sufficient to evaluate accurately 

the convergence series within the analytical solutions in equations 30, 31 and 32.    

         Figure 38 shows the loading apparatus. It consists of a frame with guided rails and a steel 

mass placed on top. The guided rails rest on the specimen to prevent sideways motion. The 

loading procedure is explained in section 3.4. The specimen is loaded and unloaded 4 times 

during the 4 sets of phase measurements. Any rigid body motion of the specimen during the 

testing procedure will cause disturbances in the phase measurements.   

(33) 

(34) 

(35) 

(36) 

(37) 
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Figure 38: Photograph of Test Specimen and Loading Apparatus 

 

4.3 Polarized Phase Measurement of Birefringence 

        As described in section 2.5, the three in-plane stress components can be determined from 

at least three sets of phase stepped measurements. For greater computational stability and 

convenience, four sets of stepped measurements are used here, as detailed in section 3.2.3. The 

four sets of phase-shifted measurements are taken with the polarizing filters oriented at 45° 

intervals. Two attenuators are adjusted for each polarization angle, to balance the beam 

intensities and to avoid saturation of the camera sensor. Figure 39 displays the four sets of 
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phase measurements as computed fringes. The white areas of the plot indicate phase changes of 

even multiples of π and the black areas odd multiples of π. The phase values within the region 

around the outside of the specimen are averaged and subtracted from the phase values within 

the entire image. This is done to compensate for any drift in the phase measurement due to air 

temperature variations. The measured phase is “wrapped”,i.e., specified within a 2π cycle such 

as in figure 39.  The Goldstein algorithm [24] was used to unwrap the phase results into a 

continuous map.    

 

Figure 39: Polarized Phase Measurements 
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The tightly packed fringes on the top and bottom of each phase map shows high stress 

concentrations at the points of contact, while the more widely spaced fringes in other areas 

show more gradually varying stresses. The C1 and C3 measurements should be symmetrical 

because of the symmetrical position of the polarizing filter; horizontal for C1 and vertical for 

C3.  The C2 and C4 measurements have a diagonal bias because they are illuminated with 

diagonal polarizations. 

 

4.4 Calculation of Principal Transmission Factors 

        After unwrapping the computed phase maps illustrated in figure 39, a numerical 

smoothing filter is applied to reduce the image noise content. The complex transmission factors 

that characterize the birefringence (C1, C2, C3 and C4) are assigned unity amplitude because 

photoelastic birefringence causes phase changes only without attenuation. The principal 

transmission factors u and v are calculated according to equation 21 in section 2.3. The square 

root term  needs to be examined in order to determine its correct sign. A phase map 

corresponding to this term is first unwrapped, if it has an even multiple of π at a given 

pixelthen the square root term locally is positive, if an odd multiple it is negative. The principal 

transmission factors can then be determined explicitly.  The principal angle is estimated by 

computing the inverse tangent of the numerically larger of the real or imaginary components of 

the transmission factors t and q. This process occasionally gives π/2 jumps in the principal 

phase direction whenever the relative sizes of the principal stresses interchange.  This artifact is 

easily corrected by unwrapping of the principal angle (θ) map with π/2 unwrapping. Figure 40 

shows the two principal phase shifts (phase maps of u and v), and the principal angle plot, with 

the x axis as its reference and counter clockwise rotation defined as positive. 
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Figure 40: Calculated Principal Components of Birefringence  

 

4.5 Stress Optical Coefficient Evaluation 

        The stress optical coefficients of PMS-5 are experimentally determined by comparing the 

phase maps of the calculated principal transmission factors u and v with the analytical principal 

stresses. The relationship is expressed in equation set 12 of section 2.3. For the PMS-5 

material, the stress-optical coefficients A and B were found to be A=100×10
-12

 rad/Pa and 

B=130×10
-12

 rad/Pa.  
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        The stress coefficient evaluation procedure involves comparing the polarized phase maps 

shown in section 4.3 with that of the analytical solution. The stresses in the analytical solution 

is converted into optical phase values through the stress optical relationship. From there, 

forward Mohr’s circle transmformation is applied to obtain the theoretical polarized phase 

maps. The two phase maps can then be compared to determine the correct stress optical 

coefficients. In the event that the phases do not match, the values and A and B can be adjusted 

such that the analytical phase matches with the measured phase. Figure 41 below shows a close 

match between the measured C3 phase and that of the analytical solution. 

 

 

Figure 41: Cross Section Phase Comparison of C3  

 

4.6 Stress Distribution Comparison 

The principal stresses of the specimen are calculated according to equation set 12 of section 

2.3. Mohr’s circle tranformation is used to present the three in-plane stress components in 
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Cartesian representation. For more direct visual interpretation, Figure 42 presents the stress 

distributions  as “stress fringe” plots, with each fringe corresponding to an interval of 200 kPa.  

The fringes in these plots indicate contours of stress at 200 kpa intervals. The calculated stress 

distributions from measured data are presented on the left, while the analytical stress 

distributions are presented on the right. Overall, the stress components extracted from 

measured data closely correspond to the analytical solution, with some deviations in the areas 

of stress concentration at the contact points. By examining a horizontal cross section of the 

circular ring located a half the distance between the top and middle, the stress values of the 

experimental solution with the analytical, as shown in figure 43. The horizontal scales shows 

the distance away from the edge of the image. The center portion of the plots where the stress 

values are 0 represent the hollow center of the ring. The numerical cross section comparison 

shows a 10% maximum error.  
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Figure 42: In-Plane Stress Distribution Comparison 
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Figure 43: Measured and Analytical Stress Profiles Along a Horizontal Line a Quarter 

Diameter Below the Upper Contact Point. 
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Figure 43 shows a comparison of profiles of the three Cartesian stress components along an 

example horizontal line a quarter of the outside diameter below the upper contact point.  It can 

be seen that all three Cartesian stress components are evaluated separately and realistically.  

The calculation is automatic and requires no human guidance.  This individual evaluation of all 

three stress components represents a significant advance over the conventional photoelastic 

method where at best two stress components can be determined. 
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Chapter 5 − Discussions 

5.1 Comparison with Classical Photoelastic Method   

From the measurements of a known stress field presented in the last chapter, the tensor 

field photoelastic method of measuring in-plane stresses has been shown to be effective. The 

proposed method measures the absolute variation in optical phase, as opposed to the relative 

phase change in the classical photoelastic method. A typical optical arrangement for classical 

photoelastic measurement is illustrated below.  

 

Figure 44: Classical Photoelasticity Optical Arrangement 

The first polarization filter (left) polarizes light before passing through the photoelastic 

specimen. The stresses in the specimen cause each polarization component of light in the 

directions of the two principal stresses to change. This causes relative phase change between 
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the two polarization components, and in turn depolarizes the polarized light. The second 

polarization filter oriented orthogonal to the first filters out the vertically polarized 

components, while allowing the depolarized component to pass through. This optical 

arrangement produces stress fringes that are functions of the relative phase changes and the 

principal direction. [10] The measurement of the relative phase changes alters the stress optical 

relationship discussed in equations 12 of section 2.3. The classical photoelastic stress optical 

relationship expressed below. 

 

The test material used in Chapter 4 has stress coefficient values of A=100×10
-12

m
2
/N and 

B=130×10
-12

m
2
/N. The difference of these values is about one third the size of the individual 

values. Consequently, the sensitivity of the proposed method is aboutthree times greater than 

the classical method.  

      The two photoelastic measurement methods are compared by testing the same specimen 

presented in chapter 4 with the classical method. A polariscope is used, where the two 

polarization filters are placed orthogonal to each other, as illustrated in figure 44. The ring 

specimen is loaded with the same loading apparatus and performed under the same loading 

conditions.. The difference in sensitivity is between the two methods is quite clear; the fringes 

produced by the classical method are visually difficult to distinguish, whereas the computed 

fringes in figure 39 very highly visible. The benefit of increased sensitivity of the tensor 

method allows measurements using lower loads.  This reduces the deformation of specimens 

and thus reduces the effects of geometrical distortions.   

(38) 
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Figure 45: Classical Photoelastic Fringe Observation 

 

5.2 Improvements to Current Measurement Method 

          The main drawback to the demonstrated measurement method is its user inconvenience 

compared to the simpler classical photoelastic method. Currently the measurement procedure 

consists loading and unloading the specimen four times to produce the four sets of polarized 

phase measurements. Theoretically it is possible to load the specimen only once and take the 

sets of polarized phase measurements while rotating the polarization filter. It is discovered that 

this measurement procedure is not practical with the current equipment due to the manual 

polarization adjustment as elaborated in section 3.2.4. The rotation of the polarization filter 

produces noise to the phase measurements. As demonstrated by a test shown in figure 46, 
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during piezo-actuated phase measurements, the polarization filter located in front of the 

specimen is rotated incrementally (1° intervals) clockwise and then rotated back to its original 

position. The top left image shows a drift compensated phase fringe plot with no action. The 

top right image shows the polarization filter rotated by 1°. Roughness features of the polarizer 

lens appear, as their position changes. Greater rotation of the polarizer shows the same features 

followed by bulk rigid body motion, as shown on the bottom left of the figure. 

 

Figure 46: Phase Disturbance From Polarizer Movement 

When the polarizer lens is rotated back to its original position as shown on the bottom right 

image, some roughness and bulk rigid body motion features remain. This is likely due to the 
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lack of mechanical precision in the mechanical mounts. The manual adjustment only allows 

0.5° accuracy in rotation. Even though the roughness of the lens is within a quarter wavelength, 

these values are too large for phase calculations. For the application of loading the specimen 

once, the polarization filter needs to travel 45° intervals and travel back to its exact locations, 

without causing disturbances in the phase measurements. The recommended solution to the 

measurement equipment is to automate the polarization filter. Precision motion control of 

polarization rotation is necessary, because distortions can be eliminated by positioning the 

polarization filter back to its position when the initial phase shift measurements are taken. 

 

5.3 Future Work and Applications 

       This research has demonstrated the ability to measure all three components of in-plane 

stresses using tensor field photoelasticity. So far the application is limited to flat plate 

photoelastic materials. The use of a Michelson type interferometer in the optical arrangement 

provides the possibility of applying this measurement technique to reflection photoelasticity. 

Reflection photoelasticity is a well-established field, where the surface stress/strain information 

can be measured by applying thin coating of photoelastic coating to a solid surface of interest 

[5][8]. The arrangement is illustrated below in figure 47. The photoelastic material has a lower 

Young’s modulus than the material attached.  
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Figure 47: Surface Strain Measurement Using Reflection Photoelasticity 

The result is that during deformation, the strain of the material is equal to the strain of the 

photoelastic coating. Since both materials are isotropic and linearly elastic, the measured 

stresses in the photoelastic coating mathematically translate to the strain deformation of the 

solid material. 

       Currently the measurement technique used in reflection photoelasticity uses the same 

optical arrangement as classical photoelasticity [10]: where a pair of polarization filters is used 

to construct a polariscope. The same optical arrangement signifies that reflection 

photoelasticity has the same limitations as classical photoelasticity: that it cannot measure all 

in-plane stresses/strains. As illustrated below in figure 48, the Michelson interferometer 

arrangement presented in chapter 3 provides the possibility of applying the tensor field  
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Figure 48: Applying Tensor Field Measurement to Reflection Photoelastiticy 

 

measurement technique to reflection photoelasticity measurements. The advantage of this 

arrangement is to provide full field experimental data on all 3 components of stress/strain. An 

advantage of this optical arrangement is the perpendicular ray angles of both illumination beam 

and reflected beam, compared to the oblique angle in the classical reflective method. This 

reduces any measurement distortions caused by the oblique viewing angle. 

       A significant challenge exists in the proposed method; the rigid body motion caused 

during the deformation distorts the phase measurements. This issue does not exist in the 

polariscope arrangement due to the relative phase retardation nature of the measurement, i.e. 
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the difference in optical path length between the polarization components are not affected by 

the movement of the photoelastic material, whereas the absolute variation in optical path length 

in the Michelson interferometer are affected by three factors: photoelastic birefringence, rigid 

body motion and change in the refractive index of air (drifts). As illustrated in figure 48, the 

reflective coating between the photoelastic coating and the solid materials acts as a mirror for 

the interferometer. The reflective coating changes location as the solid material deforms, thus 

causing rigid body fringes in the phase measurements. A solution is thus needed to identify and 

separate the rigid body motion from the phase measurements. 
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Chapter 6 − Conclusions 

6.1 Research Summary and Contributions 

A new photoelastic stress measurement method is described and demonstrated for full-

field evaluation of all three in-plane stress components within a two-dimensional photoelastic 

material.  The measurement method is based on the observation that the complex transmission 

factors that describe optical phase changes due to stress-induced birefringence have a second 

order tensor character, similar to that of other tensor quantities such as stress and strain.  The 

same transformation equations and Mohr’s circle construction are applied to the rotation of 

optical axis. The birefringence tensor field is characterized by two principal transmission 

factors and an axis orientation angle much like other second order tensor quantities such as 

mechanical stress. A Michelson type interferometer is used to conduct phase shifting 

measurements to identify the change in absolute variation in optical phase in the photoelastic 

test specimen. The phase changes are caused by the applied stress on the specimen. A plane 

polarization filter is used to isolate specific transmission factors.  The measurement procedure 

consists of taking four sets of phase measurements with the polarization filter alignments at 45-

degree rotational increments.  Complex transmission factors characterize the optical 

attenuation and phase changes. A complex Mohr’s circle is constructed from the four measured 

transmission factors.  The principal transmission factors and principal axis orientation are then 

extracted, which in turn provide the principal stresses and corresponding angles. The 

effectiveness of this technique is demonstrated by measuring photoelastic specimens 

containing known stress distributions and comparing the experimental results with the 

theoretical solutions.  
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            The Michelson type interferometer demonstrated here has proven effective at 

measuring absolute variation of optical phase in photoelastic birefringence. The two 

advantages of this optical configuration over the existing Mach-Zehnder type interferometers 

are the double birefringence sensitivity and the enlarged field of view. By allowing light to 

pass through the photoelastic specimen twice, the stress optical sensitivity is doubled. The two-

stage beam expansion optical arrangement allows the use of specimens of larger size than the 

optical components conventionally used in an interferometer. The challenges faced in 

conducting measurements, such as air turbulence disturbance and static deformation during 

loading, are resolved through the use of drift compensation in the phase measurements and 

preloading the loading apparatus as explained in section 3.2 and 3.3. The alignment process of 

this optical arrangement is slightly more difficult than when using a Mach-Zehnder type 

interferometer: This is because the two-stage beam expansion feature requires the expanded 

laser beam to be perfectly parallel before entering the second beam expander. A divergence of 

the beam creates double edges around the specimen. 

 

6.2 Comparison with other in-plane stress measurement methods 

Full field stress measurement methods provide continuous data throughout an area of 

interest, not available to selected point-wise sampling in discrete measurements. The 

demonstrated measurement method allows all three components of in-plane stresses to be 

directly evaluated using a single test arrangement, as opposed to multiple test equipments in 

hybrid methods where multiple measurement techniques are combined. 

In comparison with the classical photoleastic measurement method, the demonstrated 

method is somewhat less convenient because of the use of a more delicate optical arrangement. 
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The demonstrated method uses a Michelson type interferometer to characterize the 

birefringence induced by the in-plane stresses that is susceptible to environmental disturbances 

such as air pressure drifts and rigid body motion, whereas classical photoelasticity utilizes a 

polariscope that is immune to these environmental factors. The main drawback of classical 

photoelastic measurement is that it cannot identify all three components of in-plane stresses. 

Another drawback is the relative phase retardation nature of the polariscope, only the 

difference in optical phase between the polarization components in the directions of the 

principal stresses is examined. The stress optical relationship thus becomes a function of the 

difference between two stress optical coefficients. In the cases where the two stress optical 

coefficients are close to equal values, the sensitivity is greatly diminished.  

In comparison with indirect methods of measuring all three components of in-plane 

stresses, such as combining classical photoelastic measurement with interferometric 

measurements, the proposed method avoids the need for stress separation and thus reduces the 

number of measurements needed. The two methods are comparable, since both use similar 

optical interferometer equipments. The key difference is that the discussed method relies on 

interpreting intensity measurements to solve non-linear relationships of the stress components, 

and the presented method directly measures optical phase and treats the birefringence as a 

tensor quality, in which the optical stress relationships are linear. As Nisida and Saito noted in 

1964, both classical and interfereometric intensity measurements contain non-linear 

relationship between the stress components [11] and this was addressed by 

Yoneyama, Morimoto, and Kawamura in 2005 [13]. Their measurement method consists of 

taking a number of intensity measurements by rotating two polarization filters and a quarter 

wave plate. The tensor field measurement method demonstrated here simplifies the number of 
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measurements needed by directly measuring optical phase changes instead of optical intensity, 

where both the tensor field transformation used and stress optical relationship are linear. This 

reduces polarization control down to one polarizing filter and the number of measurements 

required to four sets of automated phase shifted measurements. 
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