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Abstract 

Feed drives are used in positioning of machine tools. The drives are actuated either by 

linear or rotary servo motors. The ball screw drives are driven by rotary motors; hence 

they have flexibility and added friction due to nut interface. Direct drives are driven by 

linear motors which have more mechanical stiffness, but less disturbance rejection due 

to missing load reduction mechanism. This thesis presents the modelling and control of 

drives with rigid and flexible structures. 

A single degree of freedom flexible oscillator is mounted on a high speed, rigid feed 

drive table for experimental illustration of system identification and the active control 

method proposed in the thesis. The rigid feed drive dynamics include the mechanical 

component of the rigid body mass and viscous damping, and the electrical component 

of the power amplifier and motor. The flexible component is modelled by springs, mass 

and damping elements. Both rigid and flexible dynamics of the system are identified 

experimentally through unbiased least square, sine sweep and impact model tests. The 

vibration of the single degree of freedom system is actively damped by an acceleration 

feedback inserted in the velocity loop. A Kalman filter is used to minimize the drift and 

noise on the acceleration measurements. The position loop is closed with a proportional 

controller. 

It is experimentally demonstrated that the vibrations of the flexible structure can be 

well damped. However, the acceleration feedback used at the resonance frequency 

greatly minimizes the bandwidth close to the vibration frequency. Further methods 

need to be used to expand the bandwidth beyond the natural frequency of the flexible 

structure by coping with the anti-resonant effect of the acceleration feedback. 
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Chapter 1. Introduction 

Precision positioning of tables in machine tools and other servo driven machines is 

essential for accurate production of parts or measurement of objects using computer 

control technology. When the mechanical structure of the drive is excited due to high 

accelerations and disturbance forces, it vibrates, leaving poor surface finish or incorrect 

measurements. This thesis presents modelling and position control of feed drives with 

rigid and flexible structures. The application of the proposed methods are rather wide, 

and can be found in machine tools, material handling, printing and assembly operations. 

The thesis covers the system modelling, parameter identification, positioning control 

techniques of a feed drive and active vibration control on a flexible feed drive. The 

flowchart shown in Figure 1.1 provides an overview of the implementation work. In 

Chapter 2, a literature survey of past researches on vibration control is presented. 

Chapter 3 provides the overview of the real time control system implementation and 

instrumentation, and the experimental setup. A theoretical model and transfer 

functions of a flexible feed drive system are presented in Chapter 4. Different 

approaches including an ad-hoc technique, unbiased linear least square technique, 

impact modal technique, and sine sweep technique with NLS optimization are applied to 

identify the system parameters in order to select a most suitable model to represent the 

actual system. Chapter 5 explains the approach to design a position controller through 

the pole placement technique and a vibration control strategy to suppress the vibrations 

on the flexible drive. This thesis is concluded in Chapter 6 with a summary of work 

implemented and recommended future work. 
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Chapter 3: Experimental Setup

Chapter 4.3: Parameters Identification

Chapter 5.2: Positioning Controller Design

Chapter 5.3: Active Vibration Controller Design

Chapter 4.2: System Modelling

 

Figure 1.1: Implementation Work Flowchart 
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Chapter 2. Literature Survey 

2.1 Chapter Overview 

The focus of this chapter is to review some of the past work by other researchers, which 

bear the relevance to the areas addressed in this thesis. Section 2.2 reviews the 

modelling and identification of flexible feed drives, which includes the components of 

the motor drive and the flexible structure. The detailed technical explanations of the 

modelling and identification methods published in the literature are presented in 

Chapter 4. In Section 2.3, the literature on various vibration control strategies are 

presented. 

 

2.2 Identification of Drive Dynamics 

Under the increasing demand for more accurate high performance motion systems, 

numerous system identification techniques appropriate for control purpose of 

mechanical systems have been proposed in the literatures. Erkorkmaz et al. [2] 

proposed the use of unbiased estimation of inertia and viscous friction in feed drives. 

This approach uses the least squares estimation method, and takes account for the 

presence of Coulomb friction in its formulation. The results from this estimation process 

are the estimated values for the combined inertia, viscous friction, and dynamic 

Coulomb friction of the system. In comparison to the simple least square technique, the 

unbiased least square technique should be more accurate. 

The other useful dynamics identification approaches suggested by Altintas [1] include 

the sine sweep and impact modal testing techniques. The sine sweep technique is 

conducted to excite the system by commanding the open loop feed drive with a 

sinusoidal input over a wide frequency band containing the system natural modes. The 

ratio of the structure displacement/acceleration and the exerted force magnitudes, and 

the phase of the structure displacement/acceleration relative to the force are measured 

at each frequency. Then the measurements are processed through a parametric fit 
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algorithm for modal analysis. While sine sweep technique can deliver excitation force at 

desired frequency and amplitude, this approach is more time consuming to set up. 

Alternatively, an impact hammer can be used in exciting the system structure. The 

impact hammer for modal testing is much easier and quicker to set up, but at the 

expense of the possible less accurate excitation of the system structure at the desired 

frequency [1]. For the impact modal testing, the impact force delivered by the hammer 

can excite a wide frequency range, which contains the system natural modes. The 

hammer excitation force and resulting vibrations are measured in time domain. Then 

the measurements are transformed into Fourier domain for modal analysis which is 

commonly done in modal analysis software. For a comprehensive analysis of the system, 

all the discussed system identification techniques are applied. The detailed 

experimental procedures of the different techniques are explained and demonstrated in 

Chapter 4. 

 

2.3 Vibration Control 

There are many different vibration control approaches available in the literatures. 

Vibration control can be broadly divided into two general streams, reference command 

shaping and active control. Command shaping is a control technique in CNC machines 

which works by creating a command signal that avoids exciting the system structure 

natural frequency in order to minimize the vibrations or creates a command signal that 

cancels its own vibration. 

Kataoka et al. [15][16] proposed a notch filter to remove the system natural frequency 

component in the command input to avoid exciting the structure. Most notch filters are 

known to cause unwanted phase delays. Whereas, the proposed notch filter minimizes 

the phase delay in the command input with an additional phase compensator gain as 

shown in Figure 2.1. This approach is a feed forward controller which does not ensure 

stability of the system. 
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Figure 2.1: Commanding Shaping Vibration Controller with Notch Filter 

 

The common shortcoming of the command shaping method is its vulnerability to reject 

any disturbance excitation since the control input is designed to only suppress vibrations 

caused by its reference command. Also, it is very sensitive to the uncertainties in the 

system model, such as the natural frequency. In comparison, the active vibration control 

works as a feedback control system, in which the feedback can generate an appropriate 

compensational control effort to suppress any vibration. Thus, the active vibration 

control is considered to be more reliable than reference command shaping in vibration 

control. 
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For active vibration control design, Mahmood et al. [17] has proposed the use of a 

resonant controller at the flexible structure feedback loop. The control scheme consists 

of two negative feedback loops as shown in Figure 2.2. The inner loop is designed to 

increase the damping of the flexible structure and the outer loop provides precise 

positioning. The proposed approach is designed to suppress vibrations for multimode 

systems. However, the use of a resonant controller can be insufficient for active 

vibration control. The system dynamics, specifically the system natural frequency, varies 

along the feed drive position. A single resonant frequency is selected in the resonant 

controller to correspond with one vibration mode. Thus, as the system natural 

frequency varies, the resonant controller cannot ensure high stability robustness. A poor 

selection of the resonant controller for active control can easily drive the system with 

more violent vibrations than the system without active control. Moreover, another 

disadvantage for this proposed control scheme is that leads to a much higher order 

system due to the resonant controller at the inner loop. Hence, the resulting high order 

system becomes more difficult to tune at the outer loop. 

 

 

Figure 2.2: Active Vibration Controller with Resonant Controller Design 
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A different active vibration control approach proposed by Verscheure et al. [10] where 

H∞ controller is used. This control scheme provides the system with good stability 

robustness and performance robustness. It combines vibration and motion control in a 

high and low authority control structure as shown in Figure 2.3. The high authority 

motion controller is built around the system with a low authority vibration controller. 

The purpose of the vibration controller is to assure that the acceleration of the flexible 

structure tracks the reference acceleration, which is taken to be zero. The motion 

controller is a simple controller used to control the position of the motor and to track a 

reference position. However, the proposed weighting function for the H∞ controller 

appears to be quite specific to their experimental setup, and is not suitable for other 

systems. 

 

 

Figure 2.3: Active Vibration Controller with H∞ Controller Design 

Low Authority Controller (Dash Dot) 

High Authority Controller (Dash) 
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Dietmair et al. [19] proposed the use of a phase compensator to form a damping 

network at the flexible drive velocity loop as shown in Figure 2.4. This approach is quite 

similar to other proposed active vibration controller designs, which consists of two 

control loop. The inner loop is designed for compensating the flexible structure phase 

delay at the resonant frequency, which effectively adds damping to the flexible 

structure. The outer loop is designed to track the position reference command. This 

proposed control strategy is favoured for its simplicity, and can be easily applied to any 

flexible systems. Therefore, this active phase compensator strategy is further 

investigated. 

 

 

Figure 2.4: Active Vibration Controller with Phase Compensator Design 
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Chapter 3. Experimental Setup 

3.1 Chapter Overview 

This chapter presents the experimental setup used in the thesis. An overview of the real 

time control system implementation and instrumentation are given in Section 3.2. In 

Section 3.3, the details on hardware components and its setup, including the linear 

motor drive and oscillator, for replicating the machine tool vibration, and the use of 

available sensors measuring the system performance are given. 

 

3.2 Control System Setup 

This section provides an overview of the real time controlled system in the experimental 

setup. An external PC is set up for controller design and provides access to dSPACE 

DS1103 controller board through ControlDesk software. The Siemens SIMODRIVE 611U 

board, a control motor driver, can be operated in either the velocity or torque operating 

mode as it commands its power module to send in the appropriate amount of current to 

operate the motor drive. When operating in the velocity mode as shown in Figure 3.1, 

the reference command is sent through the DS1103 controller board to the SIMODRIVE 

611U drive module. The system is controlled by the SIMODRIVE 611U onboard velocity 

controller to ensure a constant motor velocity output which is measured by the 

embedded motor encoder. For custom design positioning and active vibration controller 

implementation through the DS1103, the SIMODRIVE 611U board should be operating 

in torque mode. It is because the SIMODRIVE 611U onboard current controller regulates 

a constant torque (force) output from the motor. The linear encoder measurement 

signal is used as a feedback to the custom design controller on the DS1103 controller 

board to form a closed control loop as shown in Figure 3.2. The experimental setup was 

prepared by a former M.Eng. candidate in MAL and the details can be found in his 

M.Eng. project report [21]. 
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Figure 3.1: SIMODRIVE 611U in Velocity Mode Block Diagram 

 

 

Figure 3.2: SIMODRIVE 611U in Torque Mode Block Diagram with Position Control 

 

3.3 System Hardware Setup 

3.3.1 Linear Motor 

A linear electric motor has its stator and rotor lay out in parallel so the motor can 

produce a linear force along its length. A linear motor drive has fewer moving 

components than conventional linear actuator; hence it can achieve high speeds and 

accelerations with minimal backlash and friction. However, the absence of gear 

reduction between the linear motor and the table makes linear drives sensitive to the 

applied load, such as carrying load, cutting force or disturbance force on the motor.  

The singled-sided Siemens 1FN1 series linear motor mounted on the Siemens linear 

table setup is used in this experimental setup. Siemens 1FN1 linear motor is a 

permanent magnet motor which is capable of maximum thrust of 1720 N, maximum 

acceleration of 2 g (19.6 m/s2) and correspondingly a maximum free load velocity of 200 

m/min. This linear motor is considered as a high force motor at the industrial standard. 
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To ensure safety and protection of the movable part, several rubber dampers are 

installed at both ends of the linear guide rail. 

Temperature monitoring circuits are integrated in the motor for protecting the system 

against impermissible high thermal load. During operation, water of 20°C temperature 

at 4 L/min flow is directed into the cooling system to remove the heat generated by the 

motor. Under the rated conditions, the cooling system can remove up to 90% of the 

generated heat. 

Another safety feature installed on this linear motor setup is the Balluff proximity sensor 

limit switch pair. At each end of the guide rail, a limit switch is installed to detect the 

motor. Once the motor is detected by the limit switch at the end of the guide rail, this 

normally closed limit switch immediately sends a signal to the SIMODRIVE 611U board 

deactivating the linear motor drive. This can avoid the motor from launching to the end 

of the guide rail and damaging the linear motor and its supporting structure. 

 

 

Figure 3.3: Siemens Linear Motor and the SIMODRIVE 611U 
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3.3.2 Linear Encoder 

The Heidenhain LIDA 18 exposed linear encoder is used to measure the displacement of 

the linear motor. The linear encoder consists of a scale tape and a scanning head that 

operate without mechanical contact. The output of the encoder is a pair of 1 V peak-to-

peak sinusoidal analog signals which are 90 deg out of phase from each other. The 

measured signal is digitized into discrete format which can be used in the DS1103 

control module. The linear encoder feedback signal is further enhanced through the use 

of a Heidenhain IBV606 interpolation box. The resolution of the linear encoder with the 

quadrature reading after interpolation is 5 micron [21]. 

 

 

Figure 3.4: Heidenhain LIDA18 Linear Encoder 

 

3.3.3 Single Degree Oscillator 

The machine tool on a milling machine together behaves like a flexible feed drive 

system. As the motor position moves, it induces a force to the machine tool which the 

machine tool vibrates. To model and illustrate the active damping of the flexible feed 

drive system, a thin bar is used as a single degree of freedom (SDOF) oscillator and it is 

mounted on the linear motor moving platform. The thin bar structure as a SDOF 

oscillator is selected to ensure the structure flexibility only along the motor drive axis. 

Using a thin bar structure would also guarantee that its resonance is at low frequency 

region and the structure has a low mechanical damping property. For demonstration 

purpose, the oscillation and the damping of the oscillation can be easily observed. The 

thin bar SDOF oscillator is secured on the linear motor moving platform with a set of 
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custom designed brackets. As the motor moves, the thin bar should experience 

noticeable vibrations along the motor drive axis. 

 

Height (mm) Width (mm) Thickness (mm) Natural Frequency (Hz) 

328.5 14.7 1.6 8.8 

Table 3.1: Dimensions of the Aluminium SDOF Oscillator in the Experimental Setup 

 

3.3.4 Accelerometer Sensor 

Kistler 8702B500 Accelerometer has a measureable range of ±500 g (4900 m/s2). For 

measuring the acceleration of the SDOF oscillator, the accelerometer is bolted on at the 

top end of flexible structure as shown in Figure 3.5. The accelerometer output signal is 

amplified through the signal amplifier before it is fed into the DS1103 control module. 

The accelerometer has been calibrated with a calibration exciter, Bruel & Kjaer Type 

4294, so that the amplifier transducer sensitivity conversion is set to 14.4 mV/g for this 

experimental setup. In industrial machine tools, either Ferrari sensor [1] is used for 

direct measurement or double derivative of encoder signals are used for indirect 

measurement of acceleration of the drives. 

 



Chapter 3. | Experimental Setup 

14 

 

Figure 3.5: SDOF Oscillator with Accelerometer Sensor on the Linear Table 

 

3.4 Summary 

This section summarised the work discussed throughout the chapter. In Section 3.2, the 

control system overview, including the velocity and torque operating mode, is 

explained. In Section 3.3, the system hardware including the linear motor, linear 

encoder, SDOF oscillator and accelerometer sensor are described in detail. The Siemens 

linear motor is configured through the SIMODRIVE 611U module. The control command 

is processed through the DS1103 control board. A customised designed SDOF oscillator 

is mounted on the linear motor to replicate a flexible feed drive system. The linear 

encoder is used for measuring the motor position and the accelerometer is used for 

measuring the SDOF oscillator acceleration. The hardware configuration overview is 

provided in Figure 3.6. 
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Figure 3.6: Hardware Configuration Overview 

Controller (Dash Dot) 

Flexible Feed Drive System (Dash) 
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Chapter 4. Identification of Feed Drive Dynamics 

4.1 Chapter Overview 

The focus of Chapter 4 is on the system characteristic. The theoretical system model 

transfer function for a flexible motor drive is derived in Section 4.2. In Section 4.3, 

experimental procedures of the different parameter identification techniques are 

discussed. The discussion is provided in Section 4.3.5 to compare these identification 

techniques. The most suitable identified model is applied to represent the actual system 

for controller design. 

 

4.2 System Model 

The mechanical system of a single axis flexible drive is commonly modelled as a two 

degree of freedom mass, spring and damper system. In this section, the theoretical 

model is derived to obtain the two system transfer functions of interest. The first 

transfer function is between voltage input, 𝑉𝑖𝑛 , and motor position, 𝑥1. The second 

transfer function is between voltage signal, 𝑉𝑖𝑛 , and oscillator acceleration, 𝑥 2. This is 

because the motor position and oscillator acceleration are measurable quantities 

through the linear encoder and accelerometer, respectively. Then the experimentally 

measured system frequency responses can be compared directly with the derived 

transfer functions. 
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Figure 4.1: Single Degree Flexible Drive System Free Body Diagram 

𝑥1: Motor Position 

𝑥2: Oscillator Position 

𝐹𝑡 : Motor Force 

 

Consider the two degree of freedom mass, spring and damper mechanical system as 

shown in Figure 4.1. The driving motor force, 𝐹𝑡 , is moving the motor mass, 𝑚𝑡 , against 

the viscous friction force which is represented as a damper, 𝑏1, on the motor. The motor 

mass, 𝑚𝑡 , is also subjected to disturbance force, 𝐹𝑑 . The SDOF oscillator is attached on 

the motor mass. The mechanical properties of SDOF oscillator is lumped to the top 

which includes the oscillator mass, 𝑚𝑎 , damper, 𝑏2 , and stiffness, 𝑘2 . The SDOF 

oscillator is also under disturbance force, 𝐹𝑐 , which may be considered as the cutting 

force on the machine tool during machining. To simplify the model analysis, the motor 

disturbance force, 𝐹𝑑 , and oscillator disturbance force, 𝐹𝑐 , are assumed to be zero. 

The system transfer functions of interest can be derived by Laplace domain equivalent 

stiffness model. First obtain the time domain system stiffness model and then transform 

the model to Laplace domain. Each stiffness element in the Laplace domain model can 
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be treated as a spring element in the time domain. The following table provides the 

time domain and Laplace domain equivalent stiffness presentation for each element. 

 

 Time Domain Laplace Domain 

Motor Mass 𝑚𝑡  𝑚𝑡 ∙ 𝑠
2 

Motor Damper 𝑏1 𝑏1 ∙ 𝑠 

Oscillator Mass 𝑚𝑎  𝑚𝑎 ∙ 𝑠
2 

Oscillator Damper 𝑏2 𝑏2 ∙ 𝑠 

Oscillator Stiffness 𝑘2 𝑘2 

Table 4.1: Time and Laplace Domain Equivalent Stiffness 
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mt b2

k2
 

x2x1 Ft

mamt

 

Figure 4.2: Time Domain Flexible Drive Model 

 

The mass component in the model is considered to be attached to ground by a spring 

with a magnitude of its respective mass magnitude. Then the time domain stiffness is 

replaced with the Laplace domain equivalent stiffness as shown in Figure 4.3. 
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Figure 4.3: Time Domain (Left) and Laplace Domain (Right) Equivalent Stiffness Model 1 

 

The motor mass, 𝑚𝑡 , is in parallel with the motor damping, 𝑏1. The oscillator stiffness, 

𝑘2, is in parallel with the oscillator damping, 𝑏2. The parallel arrangement of the 

stiffness is the sum of each stiffness component. Then the result of this summation is 

shown in Figure 4.4. 

 

ma s2 

k2 + b2 smt s2 + b1 s

x2x1 
Ft

 

Figure 4.4: Laplace Domain Equivalent Stiffness Model 2 

 

The model in Figure 4.4 can be illustrated differently as shown in Figure 4.5, where the 

motor position, 𝑥1, is switched with the oscillator position, 𝑥2, such that obtaining the 

transfer functions between the motor force, 𝐹𝑡 , and the motor position , 𝑥1, becomes 

more obvious. Now, the stiffness model becomes the longer spring at the top and it is at 

parallel with the two shorter springs arranged in series. Then the motor force is applied 

at the end. 
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Figure 4.5: Laplace Domain Equivalent Stiffness Model 3 

 

The transfer function between the motor force and the motor position has the following 

form as shown in Eq.(4.1). 

 

𝑥1

𝐹𝑡
=

𝑚𝑎 ∙ 𝑠
2 + 𝑏2 ∙ 𝑠 + 𝑘2

 𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2 ∙  𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠 +  𝑚𝑎 ∙ 𝑠2 ∙  𝑘2 + 𝑏2 ∙ 𝑠 
 (4.1) 

 

Since the Laplace domain equivalent stiffness of the oscillator mass, 𝑚𝑎 , and damping, 

𝑏2, magnitudes are expected to be relatively small compared to the stiffness magnitude, 

𝑘2, within the frequency of interest between 1 Hz to 35 Hz, the stiffness magnitude, 𝑘2, 

should be the dominating term. This transfer function can be further simplified as 

shown in Eq.(4.2). 

 

 𝑘2 ≫  𝑚𝑎 ∙ 𝑠
2   

 𝑘2 ≫  𝑏2 ∙ 𝑠   

 

𝑥1

𝐹𝑡
=

𝑘2

 𝑘2 ∙  𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠 
=

1

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
 (4.2) 
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The transfer function between the motor force, 𝐹𝑡 , and the oscillator position, 𝑥2, can 

be obtained by rewriting the motor position, 𝑥1, term with respect to the oscillator 

position, 𝑥2, in Eq.(4.3). 

 

𝑥1 =
𝑚𝑎 ∙ 𝑠

2 + 𝑏2 ∙ 𝑠 + 𝑘2

𝑏2 ∙ 𝑠 + 𝑘2
∙ 𝑥2 (4.3) 

 

The relationship between oscillator position and the motor position is expressed in the 

following form as shown in Eq.(4.4). 

 

𝑥2

𝑥1
=

𝑏2 ∙ 𝑠 + 𝑘2

𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2
 (4.4) 

 

Since the magnitude of the oscillator damping coefficient, 𝑏2, is considered to be much 

smaller than its stiffness magnitude, 𝑘2, the numerator of Eq.(4.4) can be considered as 

a constant gain at the low frequency region of interested. 

 

 𝑘2 ≫  𝑏2 ∙ 𝑠   

 

𝑥2

𝑥1
=

𝑘2

𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2
 (4.5) 

 

Then the transfer function between the motor force and oscillator position is given by 

Eq.(4.6). 
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𝑥2

𝐹𝑡
=
𝑥1

𝐹𝑡
∙
𝑥2

𝑥1
=

1

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙

𝑘2

𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2
 (4.6) 

 

Recall that the transfer function of interest is between the motor force and the 

oscillator acceleration. Then this is rewritten as in Eq.(4.7). 

 

𝑥 2
𝐹𝑡

=
𝑥1

𝐹𝑡
∙
𝑥2 ∙ 𝑠

2

𝑥1
=

𝑘2 ∙ 𝑠
2

 𝑚𝑡 ∙ 𝑠
2 + 𝑏1 ∙ 𝑠 ∙  𝑚𝑎 ∙ 𝑠

2 + 𝑏2 ∙ 𝑠 + 𝑘2 
 (4.7) 

 

Now, the dynamics of a flexible feed drive, including the electrical and mechanical 

system, can be represented as shown in Figure 4.6. 

 

 

Figure 4.6: Flexible Drive Dynamics 

Electrical System (Dash Dot) 

Mechanical System (Dash) 

 

𝑉𝑖𝑛  (V) is the voltage input applied to the current amplifier, denoted with the gain, 𝐾𝑎  

(A/V). The amplifier produces the current 𝑖 (A) in the motor armature, resulting in the 

motor force 𝐹𝑡  (N). The motor force is directly proportional to the current 𝑖 (A) and 

motor force constant, 𝐾𝑡  (N/A). In addition to the force produced by the current running 

through the armature, the motor is also subject to a disturbance force, 𝐹𝑑  (N), which 

may include Coulomb friction from the guide rail or external applied force. 
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It should be noted that the electrical system has a much higher bandwidth than the 

mechanical system. The high amplifier bandwidth implies that at low frequencies, which 

is the mechanical system operating range, the electrical system can be approximated by 

the constant amplifier gain, 𝐾𝑎 . 

 

𝐾𝑎  Amplifier Gain Constant (A/V) 𝐾𝑡  Motor Force Gain Constant (N/A) 

1.1121 142.00 

Table 4.2: Amplifier and Motor Gain Constant 

 

The system can be now rewritten as transfer functions between the input voltage, 𝑉𝑖𝑛 , 

and the motor position, 𝑥1, and the oscillator acceleration, 𝑥 2. 

 

𝐹𝑡 = 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑉𝑖𝑛   

 

𝑥1

𝑉𝑖𝑛
=

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠

 (4.8) 

 

𝑥 2
𝑉𝑖𝑛

=
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙

𝑘2 ∙ 𝑠
2

𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2
 (4.9) 

 

4.3 Parameter Identification 

Through the theoretical model, the motor position and oscillator acceleration transfer 

function structure are obtained. Now experimental identification is required to extract 

these transfer function parameters. This section presents the procedures of three 

techniques for identifying the Coulomb friction, viscous friction and motor mass, and 

two techniques for identifying the SDOF oscillator parameters.  
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There are many types of frictional forces that arise between contacting surfaces, the 

linear type being Coulomb and viscous friction, and nonlinear type such as the Stricbeck 

effect and static friction [2]. Here, only the linear frictions are considered in the 

identification process. 

 

 

Figure 4.7: Friction Model [2] 

 

Coulomb friction force needs to be overcome to get an object moving initially and is 

constant regardless the speed of the moving object. Viscous friction, on the other hand, 

is proportional to the speed of the moving object. The Coulomb and the viscous friction 

constants have to be identified for both positive and negative direction of the linear 

motor. The results from the different identification techniques will be compared and the 

most suitable model is selected for controller design. 

 



Chapter 4. | Identification of Feed Drive Dynamics 

25 

4.3.1 Identification of Motor Dynamics by Ad-Hoc Technique 

An ad-hoc technique is applied to identify the motor system parameters. This technique 

is favourable for its simplicity and it can generally provide good estimates of the motor 

mass, viscous and Coulomb friction parameters. Consider the motor drive equation of 

motion, Eq.(4.10), derived from Figure 4.6. 

 

𝑚𝑡 ∙ 𝑥 1 𝑡 = −𝑏1 ∙ 𝑥 1 𝑡 + 𝐾𝑎 ∙ 𝐾𝑡 ∙ 𝑉𝑖𝑛  𝑡 − 𝜇𝑘  (4.10) 

 

𝑚𝑡 : Motor Mass (kg) 

𝑥 1: Motor Acceleration (m/s2) 

𝑏1: Viscous Friction (N·m/s) 

𝑥 1: Motor Velocity (m/s) 

𝐾𝑎 : Amplifier Gain Constant (A/V) 

𝐾𝑡 : Motor Torque Gain Constant (N/A) 

𝑉𝑖𝑛 : Voltage Input (V) 

𝜇𝑘 : Coulomb Friction (N) 

 

When the motor drive is moving at a constant velocity, the motor acceleration is zero. 

Then the left hand side (LHS) of the equation of motion becomes zero. Since only the 

linear viscous friction is considered, then different voltage inputs correspond to 

different motor velocity outputs, and the Coulomb friction is only a force offset. Then 

the viscous friction is identified by jogging the motor back and forth at constant 

velocities. The corresponding motor current required to generate the force to move the 

table is recorded. The results are plotted as a motor force versus speed graph and fitted 

with a linear function. The linear function slope constant is interpreted as the viscous 
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friction coefficient. By interpolation, the fitted linear function Y-intercept corresponds to 

the friction at zero velocity, which it is interpreted as the Coulomb friction, 𝜇𝑘 .  

To ensure the motor travelling at constant velocities, the SIMODRIVE 611U is selected to 

operate in the velocity mode. In this parameter identification analysis, only the mean 

values of the steady state motor current and velocity are processed. This avoids the 

nonlinear friction effect in the transit measurements coupled into the analyzed data. 

The friction identification analyzed data fitted with a linear function result is presented 

in Figure 4.8 and Table 4.3. 

 

 

Figure 4.8: Motor Force Verses Speed Experimental Result 
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Direction Slope: Viscous Friction (N·s/m) Y-Intercept: Coulomb Friction (N) 

Positive 72.6540 38.5 

Negative 72.4609 34.4 

Table 4.3: Viscous and Coulomb Friction Identification Results 

 

With the Coulomb and the viscous friction identified, the motor mass, 𝑚𝑡 , is the only 

remaining unknown in the motor drive equation of motion. To identify the motor mass, 

the motor is driven in open loop with a series of square wave commands at different 

amplitudes while the velocity is measured by the linear encoder. The measured velocity 

and corresponding voltage input signal are known variables on right hand side (RHS) of 

the motor drive equation of motion in. The motor acceleration on left hand side (LHS) of 

the motor drive equation of motion can be obtained by taking the differentiation of the 

corresponding velocity measurement. The LHS and RHS of the motor drive equation of 

motion are graphed. The motor mass, 𝑚𝑡 , parameter is adjusted until the LHS coincides 

with the RHS of the motor drive equation of motion. 

 

 

Figure 4.9: Ad-Hoc Motor Mass Identification 
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Motor Mass, 𝒎𝒕 (kg) 30.5 

Motor Viscous Friction Coefficient, 𝒃𝟏 (N·s/m) 72.6 

Positive Coulomb Friction, 𝝁+ (N) 38.5 

Negative Coulomb Friction, 𝝁− (N) 34.4 

Average Coulomb Friction, 𝝁𝒌 (N) 36.4 

Table 4.4: Motor Mass and Friction Identification Results by Ad-Hoc Technique 

 

The identified result of the motor position frequency response by the ad-hoc technique 

is plotted against the sine sweep experimental result as shown in Figure 4.10. 

 

 

Figure 4.10: Motor Position Frequency Response by Ad-Hoc Technique 

 



Chapter 4. | Identification of Feed Drive Dynamics 

29 

4.3.2 Identification of Motor Dynamics by Unbiased Least Square Technique 

The unbiased least square (ULS) technique presented by Erkorkmaz et al. [2] is a 

mathematical approach for identifying the system parameters which includes the motor 

mass, viscous and Coulomb friction. This approach works similar to a simple least square 

method which the identified parameters have the sum of the square of the errors 

minimized but also takes account for the presence of Coulomb friction in its 

formulation. Recall the motor drive position transfer function and convert it to Laplace 

domain. 

 

𝑚𝑡 ∙ 𝑥1 𝑠 ∙ 𝑠
2 = −𝑏1 ∙ 𝑥1 𝑠 ∙ 𝑠 + 𝐾𝑎 ∙ 𝐾𝑡 ∙ 𝑉𝑖𝑛  𝑡 − 𝜇𝑘  (4.11) 

 

𝑥1 𝑠 =
𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑉𝑖𝑛  𝑠 − 𝜇𝑘 𝑠 

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
 (4.12) 

 

To facilitate a disturbance estimation, Coulomb friction is assumed as an act of the input 

signal disturbance, 𝑑𝑓 , as shown in Eq.(4.13). 

 

𝜇𝑘 𝑠 = 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑑𝑓  (4.13) 

 

Now, the motor position transfer function can be expressed in terms of the voltage 

input with disturbance input as shown in Eq.(4.14), 

 

𝑥1 𝑠 =
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙  𝑉𝑖𝑛  𝑠 − 𝑑𝑓 𝑠   (4.14) 
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𝑥1 𝑠 =
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙ 𝑢 𝑠  (4.15) 

 

and the motor velocity transfer function as shown in Eq.(4.16). 

 

𝑥 1 𝑠 =
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠 + 𝑏1
∙ 𝑢 𝑠  (4.16) 

 

The voltage input command is processed through an analog to digital converter, and 

hence the velocity expression in Eq.(4.16) should be transformed into discrete time 

domain with a zero order hold at the input stage as shown in Eq.(4.17). The details of 

the derivations are given in Appendix A. 

 

𝑥 1 𝑧 =
𝐾𝑣𝑑

𝑧 − 𝑃𝑣𝑑
∙ 𝑢 𝑧  (4.17) 

 

𝐾𝑣𝑑 =
𝐾𝑣
−𝑃𝑣

∙  1 − 𝑒𝑃𝑣∙𝑇𝑠     𝑃𝑣𝑑 = 𝑒𝑃𝑣∙𝑇𝑠   

 

𝑥 1 𝑧 + 1 = 𝑃𝑣𝑑𝑥 1 𝑧 + 𝐾𝑣𝑑 ∙ 𝑢 𝑧  (4.18) 

 

𝑧 is replaced by 𝑘 ∙ 𝑇𝑠  for each sampling instance. For simplicity, 𝑘 ∙ 𝑇𝑠 is written as 𝑘. 

 

𝑥 1 𝑘 + 1 = 𝑃𝑣𝑑 ∙ 𝑥 1 𝑘 + 𝐾𝑣𝑑 ∙ 𝑢 𝑘  (4.19) 
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𝑥 1 𝑘 + 1 = 𝑃𝑣𝑑 ∙ 𝑥 1 𝑘 + 𝐾𝑣𝑑 ∙ 𝑉𝑖𝑛  𝑘 − 𝐾𝑣𝑑 ∙ 𝑑𝑓  (4.19) 

 

Since Coulomb friction is the only disturbance considered in this model, the disturbance, 

𝑑𝑓 , is a function of the motor velocity, 𝑥 1. This can be represented by the equation as 

shown in Eq.(4.20). 

 

𝑑𝑓 𝜔 𝑘  = 𝑃𝑉 𝑥 1 𝑘  ∙ 𝑑𝑓
+ + 𝑁𝑉 𝑥 1 𝑘  ∙ 𝑑𝑓

− (4.20) 

 

𝑃𝑉 =
1

2
𝜎 𝑥 1 𝑘  ∙  1 + 𝜎 𝑥 1 𝑘    (4.21) 

 

𝑁𝑉 = −
1

2
𝜎 𝑥 1 𝑘  ∙  1 − 𝜎 𝑥 1 𝑘    (4.22) 

 

𝜎 =  

0 𝑖𝑓 𝑥 1 𝑘 = 0

1 𝑖𝑓 𝑥 1 𝑘 > 0

−1 𝑖𝑓 𝑥 1 𝑘 < 0

  (4.23) 

 

Now, all output is a function of the previous states. Then all 𝑁 measurement samples 

are presented in a matrix form as shown in Eq.(4.24). 

 

𝑌 = Φ𝜃 (4.24) 

 

𝑌 =  

𝑥 1 2 

𝑥 1 3 
⋮

𝑥 1 𝑁 

     𝜃 =

 
 
 
 
𝑃𝑣𝑑
𝐾𝑣𝑑

𝐾𝑣𝑑𝑑𝑓
+

𝐾𝑣𝑑𝑑𝑓
−
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Φ =  

𝑥 1 1 𝑉𝑖𝑛 1 

𝑥 1 2 𝑉𝑖𝑛  2 
⋮

𝑥 1 𝑁 − 1 
⋮

𝑉𝑖𝑛  𝑁 − 1 

−𝑃𝑉 1 −𝑁𝑉 1 

−𝑃𝑉 2 −𝑁𝑉 2 
⋮

−𝑃𝑉 𝑁 − 1 
⋮

−𝑁𝑉 𝑁 − 1 

   

 

where 𝑌 is the output vector. Φ is the regressor matrix. 𝜃 is the parameter vector to be 

estimated. 

The objective in the parameter estimation process is to find the parameter estimate 

vector, 𝜃 , that minimizes the cost function, Eq.(4.25). 

 

𝑉 𝜃  =
1

2
 𝑌 − Φ𝜃  

𝑇
 𝑌 − Φ𝜃   (4.25) 

 

The optimal parameter estimate vector to minimize 𝑉 𝜃   is given in Eq.(4.26). 

 

𝜃 =  ΦTΦ −1ΦY (4.26) 

 

𝑃 𝑣𝑑 = 𝜃  1     𝐾 𝑣𝑑 = 𝜃  2     𝑑 𝑓
+

=
𝜃  3 

𝐾 𝑣𝑑
    𝑑 𝑓

−
=
𝜃  4 

𝐾 𝑣𝑑
  

 

The parameter estimate vector for extracting the estimate motor mass, viscous friction 

and both positive and negative Coulomb friction are shown as the following equations 

accordingly. 

 

𝑚 𝑡 =
 𝑃 𝑣𝑑 − 1 ∙ 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑇𝑠

𝐾 𝑣𝑑 ∙ ln 𝑃 𝑣𝑑 
 (4.27) 
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𝑏 1 =
 1 − 𝑃 𝑣𝑑 ∙ 𝐾𝑡 ∙ 𝐾𝑎

𝐾 𝑣𝑑
 (4.28) 

 

𝜇 + = 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑑 𝑓
+

 (4.29) 

 

𝜇 − = 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑑 𝑓
−

 (4.30) 

 

To identify the parameters, the amplitude of the input signal has been scaled with 

different gain factors, 𝐾𝑢 , such that different velocity ranges are measured. Then the 

parameters, 𝑚 𝑡 , 𝑏 1, 𝑑 𝑓
+

 and 𝑑 𝑓
−

 are estimated for the cases where sufficient excitation 

is achieved to overcome the static friction. 

 

 

Figure 4.11: Typical Voltage Input Signal Command for ULS Technique 
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Figure 4.12: Estimated Parameters by ULS Technique 

 

By increasing the scaling factor, 𝐾𝑢 , the estimated parameters converge as shown in 

Figure 4.12. Thus, the converged values are chosen to be the identified system 

parameters which are listed in Table 4.5. 

 

Motor Mass, 𝒎𝒕 (kg) 30.7 

Motor Viscous Friction Coefficient, 𝒃𝟏 (N·s/m) 156.1 

Positive Coulomb Friction, 𝝁+ (N) 45.1 

Negative Coulomb Friction, 𝝁− (N) -41.7 

Average Coulomb Friction, 𝝁𝒌 (N) 43.4 

Table 4.5: Motor Mass and Friction Identification Results by ULS Technique 

 

The identified result of the motor position frequency response by ULS technique is 

plotted against the sine sweep experimental result as shown in Figure 4.13. 
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Figure 4.13: Motor Position Frequency Response by ULS Technique 

 

4.3.3 Identification of Structural Flexibility by Impact Modal Test 

The parameter identification test for the SDOF oscillator is conducted by an impact 

modal test. An ideal impact to a structure is a perfect impulse, which has an infinitely 

small duration, creating a constant amplitude input in frequency domain. This would 

result in all modes of the system to be excited with equal energy. Thus, the impact by 

the hammer is intended to reproduce such impulse input. During the identification, the 

test hammer is required to strike the SDOF oscillator as quickly as possible since the 

excited frequency range is inversely proportional to the contact time between the test 

hammer and the SDOF oscillator [1]. The PCB Piezotronics 086C80 impulse hammer with 

the calibrated sensitivity of 22.2 mV/N is used to exert the impact force. The load cell on 

the impulse hammer obtains a recording of the impact force and the accelerometer 

sensor on the SDOF oscillator captures the structure acceleration response. CUTPRO 9.0 

software from MAL is used to process the acquired data and conduct the modal analysis 
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for estimating the SDOF oscillator modal parameters. The identified modal parameters 

are listed in Table 4.6. 

 

Oscillator Mass, 𝒎𝒂 (kg) 0.0116 

Oscillator Damping Coefficient, 𝒃𝟐 (N·s/m) 0.0041 

Oscillator Stiffness, 𝒌𝟐 (N/m) 35.5 

Table 4.6: Oscillator Identification Results by Impact Modal Test 

 

Recall the oscillator acceleration transfer function in Eq.(4.31) which is between the 

voltage input and oscillator acceleration. The sine sweep experimental measurement is 

also taken from the voltage input to oscillator acceleration. 

 

𝑥 2
𝑉𝑖𝑛

=
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠
2 + 𝑏1 ∙ 𝑠

∙
𝑘2 ∙ 𝑠

2

𝑚𝑎 ∙ 𝑠
2 + 𝑏2 ∙ 𝑠 + 𝑘2

 (4.31) 

 

In order to compare the SDOF oscillator impact modal test result with the sine sweep 

experimental result, the dynamics of the motor must also be included. As for now, the 

ULS identified parameters are used with the impact modal test identified parameters to 

form the oscillator acceleration transfer function. This oscillator acceleration transfer 

function by impact modal test is plotted against the sine sweep experiment result as 

shown in Figure 4.14. 
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Figure 4.14: Oscillator Acceleration Frequency Response by Impact Modal Test 

 

4.3.4 Identification of System Dynamics by Sine Sweep Technique with 

Nonlinear Least-Square Optimization 

Sine sweep technique with nonlinear least square (NLS) optimization is conducted by 

commanding the motor drive in open loop with a sinusoidal command input over a 

frequency range containing the system natural modes. During the experiments, the 

voltage input, motor position and oscillator acceleration are recorded to construct the 

motor position and oscillator acceleration frequency response Bode plot. The NLS 

optimization modal identification algorithm provided by the UBC Control Engineering 

Laboratory is applied to fit the experimental data and extract the system parameters. 

The advantage of this optimization algorithm is to ensure the identified parameters to 

have a real physical interpretation by restricting the parameters to be within a set that is 

determined by a priori knowledge. In this experimental setup, for instance, the 

parameters such as natural frequency and damping ratio must be positive and less than 

unity, respectively. Recall the structure of transfer functions derived in Section 4.2. 
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𝑥1

𝑉𝑖𝑛
=

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠

 (4.32) 

 

𝑥 2
𝑉𝑖𝑛

=
𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑠

2

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙

𝑘2

𝑚𝑎 ∙ 𝑠2 + 𝑏2 ∙ 𝑠 + 𝑘2
 (4.33) 

 

To process the optimization algorithm, the transfer functions are required to be 

rewritten into a different presentation form with the elements presented in a series of 

vibration modes as shown in Eq. (4.34) and Eq.(4.35). Therefore, there are five 

parameters, 𝐾1, 𝐾2, 𝑝, 𝜁𝑑 , and 𝜔𝑑 , to be identified at these transfer functions. The 

identified parameters are listed in Table 4.7. 

 

𝑥1

𝑉𝑖𝑛
=

𝐾1

𝑠 ∙  𝑠 + 𝑝𝑑 
 (4.34) 

 

𝑥 2
𝑉𝑖𝑛

=
𝐾2 ∙ 𝑠

2

𝑠 ∙  𝑠 + 𝑝𝑑 ∙  𝑠2 + 2 ∙ 𝜁𝑑 ∙ 𝜔𝑑 ∙ 𝑠 + 𝜔𝑑
2 

 (4.35) 

 

𝑲𝟏 5.3394 

𝑲𝟐 12689 

𝒑𝒅 10.7555 

𝜻𝒅 0.0089 

𝝎𝒅 55.2283 

Table 4.7: Motor and Oscillator Identification Results by Sine Sweep Technique with NLS 

Optimization 
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The identified results of the motor position and oscillator acceleration frequency 

response by sine sweep technique with NLS optimization are plotted against the sine 

sweep experiment result as shown in Figure 4.15 and Figure 4.16, respectively. 

 

 

Figure 4.15: Motor Position Frequency Response by Sine Sweep Technique with NLS 

Optimization 
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Figure 4.16: Oscillator Acceleration Frequency Response by Sine Sweep Technique with 

NLS Optimization 

 

4.3.5 Discussion 

Different techniques have been applied to identify the motor and oscillator parameters. 

In this section, the advantages and disadvantages, and challenges involved in conducting 

each identification technique are discussed. The most suitable identified model is 

selected for controller design. 

In Section 4.3.1, the presented ad-hoc technique is a simple identification method that 

is easy to apply for estimating the motor drive parameters. However, it has a crucial 

limitation in estimating the motor mass. The motor mass estimation is highly dependent 

on the user’s interpretation of the experimental data because matching the force graph 

of the LHS plot and RHS plot is done manually by the user. Thus, the accuracy of the 

motor mass estimate is limited. By inspection, the motor mass matching variation is not 

noticeable within ±0.5 kg from the experiment result. 
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In Section 4.3.2, the presented ULS technique is a mathematical approach for identifying 

the motor drive parameters. This technique does not rely on the user’s interpretation of 

the experimental result as opposed to the ad-hoc technique. During the identification 

process, the greatest challenge is the preparation of an appropriate voltage input signal 

command waveform as shown in Figure 4.11. Without a proper input command 

waveform, it is difficult to have the estimate parameters converged by increasing the 

scaling factor of the voltage input signal. If the time duration of each command 

waveform step is set too long, the high voltage input command would send the motor 

to the end of the guide rail. When the motor reaches the end of the guide rail, the 

motor triggers the limit switch which disables the amplifier and motor drive. Then the 

identification process is terminated. If the time duration of each command waveform 

step is set too short, that is same as sending in a high frequency input, then the 

estimated parameters become unreliable due to high phase delay in the motor drive. 

In Section 4.3.3, the impact modal test is applied to identify the SDOF oscillator system 

parameters. The modal parameter estimations were taken from the average of ten 

separate measurements. However, it is difficult to strike the impact hammer at the 

same small area on the oscillator during each measurement. Thus, the impact location 

variation may deteriorate the accuracy of the estimated parameters. Another drawback 

with this identification approach is that the impact excitation force is preferably applied 

at the motor moving platform to replicate the motor force. Instead, the excitation force 

is applied at the oscillator. It is because when the impact excitation force is applied at 

the motor moving platform, the test result shows a vibration mode occurring at 3 Hz as 

well. It seems like the impact force excited parts of the motor which it did not with the 

sine sweep excitation. Then the identified oscillator dynamics must be coupled with a 

previously identified motor dynamics in order to form the oscillator acceleration 

transfer function. Hence, the accuracy of the identified oscillator acceleration transfer 

function is also depended on the accuracy of the identified motor dynamics. 

In Section 4.3.4, the implementation of the sine sweep technique with NLS optimization 

is discussed. This is a practical system identification approach in determining all system 
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parameters in an efficient manner. Both the motor and oscillator parameters are 

acquired simultaneously. However, there are two minor drawbacks. The first drawback 

is that only finite input frequencies are selected in the sine sweep process. It is rare that 

the exact natural frequency point is selected to capture the maximum resonance 

response.  This also leads to the second drawback. More frequency points are usually 

selected at the proximately of the structure resonant frequency. This causes the NLS 

optimization algorithm to weight in much heavily at that frequency range for 

experimental data fitting. Thus, the optimization algorithm identified result matches 

well mostly at the resonance frequency range and shows higher discrepancy outside 

that frequency range as shown in Figure 4.15. To improve the identified result, data 

points should be taken evenly across the frequency of interest to avoid the issue with 

heavy weight in result in the frequency with more data points. 

All the motor position and oscillator acceleration identified frequency responses are 

plotted and compared against the sine sweep experimental result in Figure 4.17 and 

Figure 4.18, respectively. 

For the motor dynamics identification, the experimentally measured motor position 

frequency response magnitude matches well against all the identified magnitude 

responses. The deviations between the experimentally measured motor position 

frequency response phase and the identified phase responses are more noticeable. 

Among the three implemented techniques, the NLS optimized and ULS result display a 

better match to the experimental result. The NLS optimized result shows a better fit 

near resonance frequency. However, it has a higher phase mismatch at lower frequency 

in comparison with the ULS identified result. The ULS identified result matches well 

against the experimental result only with a small constant phase offset which should 

provide a more conservative model for controller design. Therefore, the ULS identified 

model is selected to represent the actual motor dynamics for controller design. 

It should be noted that this phase offset may due to a number of reasons. One reason 

may be the effect of the nonlinear friction along the guide way. Another reason for this 

constant phase offset can be the phase delay introduced by the measuring process. 



Chapter 4. | Identification of Feed Drive Dynamics 

43 

Nonetheless, for modelling and controller design simplicity, the small constant phase 

offset in the motor position frequency response should be acceptable. 

 

 

Figure 4.17: Motor Position Frequency Response Comparison 

 
The maximum deviations between the experimental and identified frequency responses 

are obtained by inspection. The detail results are listed in Table 4.8. 
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Implemented Technique Magnitude (dB) Phase (deg) 

Ad-Hoc +1.9 at 1 Hz -31.7 at 1 Hz 

ULS -0.2 at 1 Hz -7.3 at 6 Hz 

NLS Optimization -3.6 at 1 Hz +17.2 at 1 Hz 

Table 4.8: Motor Position Frequency Response Maximum Deviation 

 

For the oscillator acceleration dynamics identification, the sine sweep experimentally 

measured oscillator acceleration frequency response matches well against the NLS 

optimized and impact modal test result. 

Ideally, the impact modal test is capable of capturing a better frequency response of the 

SDOF oscillator at resonant since the impact force is capable of exciting the full 

frequency spectrum across the natural frequency range. However, an ideal impact is 

difficult to achieve. Also, the accuracy of the oscillator acceleration identified result is 

also limited by the identified motor dynamics that coupled with. As previously 

discussed, the identified motor dynamics is not exact. Of the two identified oscillator 

acceleration frequency responses, the frequency response obtained by the NLS 

optimized result is chosen for controller design because this identified frequency 

response shows a consistent match to the experimental result throughout the 

frequency range of interest. 
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Figure 4.18: Oscillator Acceleration Frequency Response Comparison 

 

Extended work is conducted to validate the assumption that the oscillator stiffness 

magnitude is much greater than the magnitude of its mass and damping coefficient. 

With this assumption, the transfer functions are possible for system order reduction 

simplification as presented in Section 4.2. The motor position and oscillator acceleration 

transfer function without simplification are processed through the NLS optimization 

modal identification algorithm. The NLS optimized transfer function with and without 

simplification results are compared in Figure 4.19 and Figure 4.20. The results show that 

the assumption for the system order reduction simplification is valid because the system 

with simplification matches well against the system without simplification. Between the 

two results, the magnitude difference is no more than half decibel and the phase 

difference is no more than 2 deg. 



Chapter 4. | Identification of Feed Drive Dynamics 

46 

 

Figure 4.19: Motor Position Frequency Response by Sine Sweep Technique with NLS 

Optimization with and without Order Reduction 

 

 

Figure 4.20: Oscillator Acceleration Frequency Response by Sine Sweep Technique with 

NLS Optimization with and without Order Reduction 
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4.4 Summary 

This section recaps the work discussed throughout the chapter. In Section 4.2, the 

flexible drive system is modelled as a theoretical two degree of freedom mass, spring 

and damper system. Through the theoretical model, the structure of the two transfer 

functions of interest is obtained. The first transfer function is between the voltage input 

to the motor position. The second transfer function is between the voltage input to the 

SDOF oscillator acceleration. In Section 4.3, different system identification techniques 

are presented. The identified frequency responses are analyzed and compared against 

the experimental results. The motor position frequency response model by ULS 

technique and the SDOF oscillator acceleration frequency response model by NLS 

optimization are selected for controller design. The results of the identified motor 

position and oscillator acceleration frequency response are shown in Figure 4.21 and 

Figure 4.22, respectively. 
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Figure 4.21: Motor Position Frequency Response by ULS Technique 

 

 

Figure 4.22: Oscillator Acceleration Frequency Response by Sine Sweep Technique with 

NLS Optimization 
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Chapter 5. Digital Control of Feed Drives 

5.1 Chapter Overview 

Two types of control strategies are presented in this chapter. The first strategy is the 

positioning control of a rigid body feed drive. The positioning controller and state 

observer design are shown in Section 5.2. The second strategy is the active vibration 

control of a flexible feed drive. The active controller design and implementation 

modifications are presented in Section 5.3. Both types of controlled system 

performance are validated through simulations and experiments. 

 

5.2 State Space Position Control 

The feed drive positioning performance is usually specified by the system overshoot 

percentage, settling time, and/or peak time. In this section, the focus is to design and 

implement a state space pole placement position controller to achieve the specified 

performance. The pole placement control strategy assigns the desired poles to the 

closed loop system to meet the system performance criteria. 

 

5.2.1 State Space Pole Placement Controller with Integrator Design 

The system characteristic equation defines the system poles which govern the 

performance and stability of the system. The idea of pole placement control strategy is 

to design a controller that manipulates the closed loop poles of the system in order to 

achieve the desired performance. The continuous time characteristic equation of a 

closed loop position control system is commonly presented as a second order system as 

shown in Eq.(5.1). 

 

𝐶𝐸 𝑠 =  𝑠2 + 2 ∙ 𝜁 ∙ 𝜔𝑛 ∙ 𝑠 + 𝜔𝑛
2 = 0 (5.1) 
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In Eq.(5.1), the system characteristic equation is written in terms of damping ratio, 𝜁, 

and natural frequency, 𝜔𝑛 . Then it is convenient to express the damping ratio and 

natural frequency in the characteristic equation as functions of the desired performance 

criteria, such as percentage of overshoot, settling time and/or peak time. 

The following equations provide the analytical expressions between performance 

criteria, and damping ratio, 𝜁, and/or natural frequency, 𝜔𝑛  [7]. 

  

𝑂𝑆% = 𝑒
− 

𝜋∙𝜁

 1−𝜁2
 

× 100 
(5.2) 

 

𝑇𝑠𝑒𝑡 =
− ln 0.02 ∙  1 − 𝜁2 

𝜁 ∙ 𝜔𝑛
 (5.3) 

 

𝑇𝑝𝑒𝑎𝑘 =
𝜋

𝜔𝑛 ∙  1 − 𝜁2
 (5.4) 

 

where 𝑂𝑆% is the percentage of overshoot, 𝑇𝑠𝑒𝑡  is the settling time in seconds, and 

𝑇𝑝𝑒𝑎𝑘  is the peak time in seconds. 

The system desired characteristic equation in continuous time domain, 𝐶𝐸𝑠𝑑 𝑠 , is 

expressed in a general form as shown in Eq.(5.5). 

 

𝐶𝐸𝑠𝑑 𝑠 =  𝑠2 + 2 ∙ 𝜁𝑠𝑑 ∙ 𝜔𝑠𝑑 ∙ 𝑠 + 𝜔𝑠𝑑
2 = 0 (5.5) 

 

where 𝜔𝑠𝑑  is the desired natural frequency and 𝜁𝑠𝑑  is the desired damping ratio. 

Recall the derived motor equation of motion in Chapter 4. The system is rewritten in the 

continuous time state space model form shown in Eq.(5.6) and Eq.(5.7). 
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𝑋 1 𝑡 = 𝐴1𝑠 ∙ 𝑋1 𝑡 + 𝐵1𝑠 ∙ 𝑢 𝑡  (5.6) 

 

𝑦1 𝑡 = 𝐶1𝑠 ∙ 𝑋1 𝑡 + 𝐷1𝑠 ∙ 𝑢 𝑡  (5.7) 

 

where, 

 

𝑋 1 𝑡 =  
𝑥 1 𝑡 

𝑥 1 𝑡 
     𝑋1 𝑡 =  

𝑥 1 𝑡 

𝑥1 𝑡 
     𝑢 𝑡 = 𝑉𝑖𝑛  𝑡     𝑦1 𝑡 =  𝑥1 𝑡   

 

𝐴1𝑠 =  −
𝑏1

𝑚𝑡
0

1 0

     𝐵1𝑠 =  

𝐾𝑎 ∙ 𝐾𝑡
𝑚𝑡

0

     𝐶1𝑠 =  0 1     𝐷1𝑠 = 0 

 

Since the command signal is digitised through the analog to digital converter, the 

continuous time state space model should be discretised. 

The discrete equivalent state space model as shown in Figure 5.1 includes the open loop 

system dynamics equation, Eq.(5.8), and output equation, Eq.(5.9). The detail 

discretisation calculation is available in Appendix A. 

 

𝑋1 𝑘 + 1 = 𝐴1𝑧 ∙ 𝑋1 𝑘 + 𝐵1𝑧 ∙ 𝑢 𝑘  (5.8) 

 

𝑦1 𝑘 = 𝐶1𝑧 ∙ 𝑋1 𝑘  (5.9) 
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Figure 5.1: Open Loop System State Space Model 

𝑋1(𝑘): States (Motor Velocity and Position) 

𝑦1(𝑘): Measured Output (Motor Position) 

 

For the controller design, it is desired that the controlled system output, 𝑦1(𝑘), tracks 

the reference input signal, 𝑟(𝑘), with zero steady state error. The first step is to define a 

new state 𝑥1𝑖(𝑘) that is the integral of the error between the reference and the output 

of the system as shown in Eq.(5.10). 

 

𝑥1𝑖 𝑘 + 1 = 𝑥1𝑖 𝑘 + 𝑇𝑠 ∙  𝑟 𝑘 − 𝑦1 𝑘   (5.10) 

 

It is important that the integration state, 𝑥1𝑖(𝑘), reaches steady state when the input 

signal to the integrator goes to zero. 

Now, there is an extra dynamics equation describing the error in the system. Augment 

the integration state from Eq.(5.10) into the original dynamics equation to form the new 

open loop state space model as shown in Eq.(5.11) and Eq.(5.12). 

 

𝑋1𝑛
 𝑘 + 1 = 𝐴1𝑧𝑛

∙ 𝑋1𝑛
 𝑘 + 𝐵1𝑧𝑛

∙ 𝑢 𝑘 + 𝐸1𝑧𝑛
∙ 𝑟 𝑘  (5.11) 

 

𝑦1 𝑘 = 𝐶1𝑧𝑛
∙ 𝑋1𝑛

 𝑘  (5.12) 
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where, 

 

𝑋1𝑛
 𝑘 =  

𝑋1 𝑘 

𝑥1𝑖 𝑘 
     𝐴1𝑧𝑛

=  
𝐴𝑧 0

−𝑇𝑠 ∙ 𝐶𝑧 1
     𝐵1𝑧𝑛

=  
𝐵𝑧
0
      

 

𝐸1𝑧𝑛
=  

0

𝑇
     𝐶1𝑧𝑛

=  𝐶𝑧 0  

 

The new open loop state space model, including an integral state, can be stabilized 

through performing a full state feedback control since both velocity and position state 

are accessible from measurement in this experimental setup. The control law is defined 

as shown in Eq.(5.13). 

 

𝑢 𝑘 = −𝛫𝑛 ∙ 𝑋1𝑛
 𝑘 = − 𝛫 𝛫𝑖  

𝑋1 𝑘 

𝑥1𝑖 𝑘 
  (5.13) 

 

where 𝐾 is the controller gain and 𝛫𝑖  is the integrator gain. 

In the presence of the system controller, the closed loop dynamics equation is rewritten 

in Eq.(5.14). 

 

𝑋1𝑛
 𝑘 + 1 =  𝐴1𝑧𝑛

− 𝐵1𝑧𝑛
∙ 𝛫𝑛 ∙ 𝑋1𝑛

 𝑘 + 𝐸1𝑧𝑛
∙ 𝑟 𝑘  (5.14) 

 

The new discrete time state matrix, 𝐴1𝑧𝑛
, and the new discrete time input matrix, 𝐵1𝑧𝑛

, 

are fixed system parameters, and the controller, 𝛫𝑛 , is the only adjustable parameter. 

The controller parameter, 𝛫𝑛 , is adjusted to manipulate the new system characteristic 

equation, 𝐶𝐸𝑖𝑠 𝑧 , to match with the new system desired characteristic equation, 



Chapter 5. | Digital Control of Feed Drives 

54 

𝐶𝐸𝑖𝑠𝑑  𝑧 , which contains all the system desired closed loop poles including the 

integrator pole as shown in Eq.(5.15). 

 

det  𝑧 ∙ 𝐼 −  𝐴1𝑧𝑛
− 𝐵1𝑧𝑛

∙ 𝛫𝑛  = 𝐶𝐸𝑖𝑠 = 𝐶𝐸𝑖𝑠𝑑  𝑧 = 0 (5.15) 

 

This new system desired characteristic equation, 𝐶𝐸𝑖𝑠𝑑  𝑧 , is simply the discretised form 

of the pre-defined continuous time system desired characteristic equation, 𝐶𝐸𝑠𝑑 𝑠  

together with the integrator characteristics. The new system desired characteristic 

equation, 𝐶𝐸𝑖𝑠𝑑  𝑧 , has a general form as shown in Eq.(5.16). 

 

𝐶𝐸𝑖𝑠𝑑  𝑧 = 𝑧3 + 𝛼𝑠1 ∙ 𝑧
2 + 𝛼𝑠2 ∙ 𝑧 + 𝛼𝑠3 = 0 (5.16) 

 

The second step to ensure the system output, 𝑦1 𝑘 , is equal to the reference input, 

𝑟 𝑘 , at steady state, a reference gain, 𝑁𝑟 , is introduced to scale the reference input [7]. 

The controlled input, 𝑢 𝑘 , with the reference gain, 𝑁𝑟 , is shown in Eq.(5.17). 

 

𝑢 𝑘 = −𝛫𝑛 ∙ 𝑋1𝑛
 𝑘 + 𝑁𝑟 ∙ 𝑟 𝑘  (5.17) 

 

Then choose 𝑁𝑟  with its zero lines on the closed loop integrator pole to reduce the 

effect of the integrator dynamics in the closed loop system. This ensures the integrator 

to have slow dynamics because the integrator is meant to have influence at steady state 

response for reducing the steady state error. 

The complete closed loop state space model including the pole placement controller 

with integrator is shown in Eq.(5.18) and Eq.(5.19). 

 



Chapter 5. | Digital Control of Feed Drives 

55 

𝑋1𝑛
 𝑘 + 1 =  𝐴1𝑧𝑛

− 𝐵1𝑧𝑛
∙ 𝛫𝑛 ∙ 𝑋1𝑛

 𝑘 +  𝐵1𝑧𝑛
∙ 𝑁𝑟 + 𝐸1𝑧𝑛

 ∙ 𝑟 𝑘  (5.18) 

 

𝑦 𝑘 = 𝐶1𝑧𝑛
∙ 𝑋1𝑛

 𝑘  (5.19) 

 

5.2.2 Observer Design 

The presented full state feedback pole placement controller in the previous section is 

only feasible when all the states are accessible for feedback control. However, if not all 

states are available or some of the state measurements have high noise content or poor 

accuracy, the measurements become unavailable or unreliable for feedback control. In 

this case, an observer is used to estimate the states for feedback. In this section, the 

two types of observer, time update (TU) and measurement update (MU), are discussed. 

The idea behind the observer is to place the system model in parallel with the actual 

system and to drive them both with the same input. When the model and actual system 

both have the same initial state vector, the state estimate generated by the model 

should track the actual state vector. Nevertheless, there are always uncertainties in the 

actual system and in practice, without feedback, the state estimate would diverge from 

the true state. The solution is to use the measurement output, 𝑦1 𝑘 , and to compare it 

with the model’s estimated measurement output, 𝑦 1 𝑘 . The difference between the 

two is then used to correct the state estimate. 

 

5.2.2.1 Time Update Observer 

Time update observer acts like a predictor which provides the estimate states at the 

next sampling instance, 𝑘 + 1. According to the TU observer diagram in Figure 5.2, the 

time update observer equation is obtained as in Eq.(5.20). 

 



Chapter 5. | Digital Control of Feed Drives 

56 

 

Figure 5.2: Time Update Observer Diagram 

𝑦1 𝑘 : Measured Output (Motor Position) 

𝑦1𝑒𝑠𝑡  𝑘 : TU Estimated Output (Motor Position) 𝑦 1𝑡  

𝑋1𝑒𝑠𝑡  𝑘 : TU Estimated States 𝑋 1𝑡  

 

𝑋 1𝑡 𝑘 + 1 = 𝐴1𝑧 ∙ 𝑋 1𝑡 𝑘 + 𝐵1𝑧 ∙ 𝑢 𝑘 + 𝐿𝑝 ∙  𝑦1 𝑘 − 𝐶1𝑧 ∙ 𝑋 1𝑡 𝑘   (5.20) 

 

where 𝑋 1𝑡 𝑘  is the TU estimated state vector and 𝐿𝑝  is the TU observer feedback gain. 

The TU state estimate error, 𝑋 1𝑡 𝑘 , is defined as in Eq.(5.21). Now, the TU state 

estimate error dynamics is defined at Eq.(5.22). 

 

𝑋 1𝑡 𝑘 = 𝑋1 𝑘 − 𝑋 1𝑡 𝑘  (5.21) 
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𝑋 1𝑡 𝑘 + 1 = 𝐴1𝑧 ∙  𝑋1 𝑘 − 𝑋 1𝑡 𝑘  − 𝐿𝑝 ∙ 𝐶1𝑧 ∙  𝑋1 𝑘 − 𝑋 1𝑡 𝑘   (5.22) 

 

𝑋 1𝑡 𝑘 + 1 =  𝐴1𝑧 − 𝐿𝑝 ∙ 𝐶1𝑧 ∙ 𝑋 1𝑡 𝑘  (5.23) 

 

Eq.(5.23) describes the state estimate error dynamics as the difference between the 

actual and estimated state vectors changes over time. Ideally, this error should decay to 

zero as fast as possible. Thus the poles of the error dynamics system matrix should be 

set to fast and stable. 

Define the desired error dynamics poles, 𝐶𝐸𝑜𝑑  𝑧  as Eq.(5.24). 

 

𝐶𝐸𝑜𝑑  𝑧 = 𝑧2 + 𝛼𝑜1 ∙ 𝑧 + 𝛼𝑜2 = 0 (5.24) 

 

The actual observer error dynamics poles are stated in the observer characteristic 

equation, 𝐶𝐸𝑜 , which is obtained by Eq.(5.25). 

 

det  𝑧 ∙ 𝐼 −  𝐴1𝑧 − 𝐿𝑝 ∙ 𝐶1𝑧  = 𝐶𝐸𝑜 = 0 (5.25) 

 

Then the observer characteristic equation, 𝐶𝐸𝑜 , should be adjusted to equate with the 

desired observer characteristic equation, 𝐶𝐸𝑜𝑑 , by selecting an appropriate observer 

feedback gain, 𝐿𝑝 . 

 

det  𝑧 ∙ 𝐼 −  𝐴1𝑧 − 𝐿𝑝 ∙ 𝐶1𝑧  = 𝐶𝐸𝑜 = 𝐶𝐸𝑜𝑑  𝑧  (5.26) 
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Note that 𝐿𝑝  has many elements as there are error dynamics poles which means that 

the poles can be placed anywhere as long as the system is observable through the 

output,𝑦1 𝑘 . This can be verified by checking the determinant of the observability 

matrix, Eq.(5.27), does not equal zero. For better observer performance, the observer 

poles are set to have a faster dynamics than the closed loop system. 

 

𝑂 =  

𝐶1𝑧

𝐶1𝑧 ∙ 𝐴1𝑧

⋮
𝐶1𝑧 ∙ 𝐴1𝑧

n−1

  (5.27) 

 

5.2.2.2 Measurement Update Observer 

The measurement update (MU) observer works like a corrector. It provides a state 

vector estimate at the current sampling instance, 𝑘, based on the measurement at 𝑘. 

This type of observer is expected to achieve a better estimate for feedback purpose 

since it minimizes the delay in the system. 

The MU observer design strategy is similar to TU observer design approach. At the 

current sampling instance, 𝑘 , the MU observer updates the estimate state using 

measurement 𝑦1 𝑘  as shown in Eq.(5.28). 

 

𝑋 1𝑚 𝑘 = 𝑋 1𝑡 𝑘 + 𝐿𝑐 ∙  𝑦1 𝑘 − 𝐶1𝑧 ∙ 𝑋 1𝑡 𝑘   (5.28) 

 

where 𝑋 1𝑚 𝑘  is the estimated state vector at 𝑘 using measurements up to 𝑘 and 𝐿𝑐  is 

the MU observer feedback gain. To generate the state vector at the next sampling 

instance, 𝑘 + 1, the whole process goes through the system dynamics equation as 

shown in Eq.(5.29). 
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𝑋 1𝑡 𝑘 + 1 = 𝐴1𝑧 ∙ 𝑋 1𝑚 𝑘 + 𝐵1𝑧 ∙ 𝑢 𝑘  (5.29) 

 

Note that Eq.(5.29) is similar to the TU observer equation, Eq. (5.20), since the next 

sampling instance, 𝑘 + 1 , estimate is based on measurements up to 𝑘  only. By 

substituting the MU estimated state vector, 𝑋 1𝑚 𝑘  from Eq.(5.28) into Eq.(5.29), it 

becomes obvious in how to relate the current estimator gain, 𝐿𝑐 , with the predictive 

estimator gain, 𝐿𝑝 . 

 

𝑋 1𝑡 𝑘 + 1 = 𝐴1𝑧 ∙ 𝑋 1𝑡 𝑘 + 𝐵1𝑧 ∙ 𝑢 𝑘 + 𝐴1𝑧 ∙ 𝐿𝑐 ∙  𝑦1 𝑘 − 𝐶1𝑧 ∙ 𝑋 1𝑡 𝑘   (5.30) 

 

𝐿𝑝 = 𝐴1𝑧 ∙ 𝐿𝑐  (5.31) 

 

𝐿𝑐 = 𝐴1𝑧
−1 ∙ 𝐿𝑝  (5.32) 
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Figure 5.3: Measurement Update Observer Diagram 

𝑦1(𝑘): Measured Output (Motor Position) 

𝑦1𝑒𝑠𝑡 (𝑘): MU Estimated Output (Motor Position) 𝑦 1𝑚  

𝑋1𝑒𝑠𝑡 (𝑘): MU Estimated States 𝑋 1𝑚  
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Then the pole placement controller with integrator and measurement update observer 

are combined as shown in Figure 5.4. 

 

 

Figure 5.4: Pole Placement Controller with Integrator and Measurement Update 

Observer 

𝑦1 𝑘 : Measured Output (Motor Position) 

𝑦1𝑒𝑠𝑡 (𝑘): MU Estimated Output (Motor Position) 𝑦 1𝑚  

𝑋1𝑒𝑠𝑡 (𝑘): MU Estimated States 𝑋 1𝑚  

 

5.2.3 Simulation and Experiment Result 

The pole placement controller with integrator is implemented to the linear motor drive. 

The performance of the positioning control is validated through experiments and 

simulations. In the experiment, the feedback states to the controller are estimated 

through the measurement update observer. In the simulation, the average Coulomb 
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friction identified through the ULS technique and uniformly distributed random noises 

of ±5 micron from the linear encoder are considered as the system disturbance. 

 

 

Figure 5.5: Motor Position of Experimental and Simulated Step Response for Motor 

Position Control System using Pole Placement Controller with Integrator 

 

 Desired Experiment Simulation 

Overshoot (%) 5.0 5.4 6.7 

Setting Time (sec) 0.75 0.77 0.91 

Table 5.1: Motor Position of Experimental and Simulated Step Response for Motor 

Position Control System using Pole Placement Controller with Integrator Summary 
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The position command step input response experimental and simulated result of the 

pole placement controller with integrator have been compared. As shown in Figure 5.5, 

neither of the result meets the desired controller performance criteria because of a 

number of reasons which are explained as follows. The pole placement controller is 

designed based on the desired system overshoot percentage and settling time as 

corresponds with a specified system natural frequency and damping ratio. Then the 

designed controller manipulates the system poles to obtain the specified system natural 

frequency and damping ratio in order to meet the design criteria. However, this design 

approach does not put any disturbance in consideration. Therefore, the addition of 

disturbance, such as friction force and noise, in the experiment and simulation alters the 

system performance from the designed model. For better positioning performance, a 

feedforward controller is recommended for compensating some of the disturbances. 

The system model uncertainty is also a contributing factor that causes the experimental 

and simulated result to be different from the design model. For that same reason, it can 

be seen that the experimental result does not match with simulated result as well. The 

experimental result moves much gradually compared to the simulated result. This may 

be an indication that the Coulomb friction model is not accurate. From Chapter 4, the 

identified system only considers the linear friction and discards the effect of the 

nonlinear friction behaviour, which that may underestimate the actual friction in the 

system. The experimental result shows that the actual system reaches steady state 

before the simulated system. The reason may be either the actual motor mass is less 

than the identified motor mass such that the motor is easier to slow down or the actual 

viscous friction is higher than the model such that the friction force slows down motion 

of the motor quicker. To improve the simulation accuracy, a more extensive system 

model should be included in the simulation. 

During the experiment, the oscillator acceleration measurement is also captured. The 

oscillator vibrations continue even after the motor position reaches steady state as 

shown in Figure 5.6. This vibration is a representation of the machine tool vibration 

when vibration control is not considered in the controller design. Thus, this causes poor 
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surface on a machined part. Therefore, this issue leads to the study for vibration control 

in feed drive system. 

 

 

Figure 5.6: Oscillator Acceleration of Experimental Step Response for Motor Position 

Control System using Pole Placement Controller with Integrator 

 

5.3 Active Vibration Control 

In the system without active vibration control, translating the motor position induces 

vibrations onto the SDOF oscillator which the vibrations persist for a long period of time 

as shown in the positioning controller experimental result in the previous section. The 

continuous vibrations deteriorate the accuracy and precision of the machine tool. 

Therefore, the presented active vibration control is intended to suppress the vibrations 

at the SDOF oscillator while the motor drive tracks the reference position command 

accurately. 
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The presented active vibration control is in a classic cascade control structure where it is 

divided into the velocity and position loop as shown in Figure 5.7. The velocity loop is 

designed to minimize the vibrations at the oscillator through the use of a phase 

compensator. Then a cascaded position controller is applied to track the motor position 

to its reference command. 

 

 

Figure 5.7: Active Vibration Controller with Phase Compensator Design 

Velocity Loop (Dash Dot) 

Position Loop (Dash) 

 

5.3.1 Velocity Loop Design 

To begin the velocity loop design, consider the open loop system in Figure 5.8 and the 

motor and oscillator velocity frequency response in Figure 5.9 which are derived from 

the identified transfer functions in Chapter 4. 
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Figure 5.8: Open Loop System 

 

 

Figure 5.9: Open Loop Motor Velocity (Left) and Oscillator Velocity (Right) Simulated 

Frequency Response 

 

In the velocity loop, both motor and oscillator velocity output are used as feedback 

signals. When only the motor velocity output is used as the feedback, this is known as 

the indirect velocity loop as shown in Figure 5.10. When both motor velocity and 

oscillator velocity output are used as the feedback, this is known as the direct velocity 



Chapter 5. | Digital Control of Feed Drives 

67 

loop. Here, a proportional integral (PI) velocity controller is used to ensure a fast system 

response with no steady state error in tracking the velocity command. 

 

Proportional Integral (PI) Velocity Controller Parameters 

Proportional Gain: 41.8 Integral Gain: 130.0 

Table 5.2: Proportional Integral Velocity Controller Parameters 

 

 

Figure 5.10: Indirect Velocity Loop System 
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Figure 5.11: Indirect Velocity Loop Motor Velocity (Left) and Oscillator Velocity (Right) 

Simulated Frequency Response 

 

The indirect velocity loop oscillator velocity frequency response simulation shown in 

Figure 5.11 indicates that there is a phase delay of 90 deg at the oscillator resonance. To 

minimize the oscillator resonant response, a +90 deg phase shift is needed in the direct 

velocity feedback loop. Therefore, the phase compensator for the direct velocity 

feedback loop is required to be at unity gain and +90 deg when it crosses the resonance 

frequency. Then this compensator can be designed in two methods. 

The first method is to use a combination of an all pass filter and band pass filter. The 

band pass filter limits the actuation of the phase compensator to be within the resonant 

frequency range. Then the all pass filter is a unity filter with a varying phase which is 

tuned such that the phase of the compensator reaches +90 deg at the oscillator 

resonant frequency, 𝜔0. 

The second method is the use of the 𝑠 transfer function with a phase compensator gain 

of 1/𝜔0. This method provides the +90 deg phase shift at all frequencies and the 

constant gain of 1/𝜔0 ensures the unity gain at the oscillator resonant frequency.  

The main issue with the first method is the tuning of the band pass filter and the all pass 

filter. Since the expected motor positioning operating range is up to 35 Hz, the band 

pass filter should have a narrow passband which is difficult to achieve with a low order 
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band pass filter. Then using a high order band pass filter is possible to create a narrow 

passband but the phase delay of a high order band pass changes quickly across the 

passband frequency range. Thus, when a slight variation in the resonant frequency 

occurs, the feedback phase is not guaranteed to be accurate. The feedback without an 

accurate phase at the resonant reduces the active vibration control performance and 

defeats the purpose of this phase compensation active control approach. 

The second method turns out to be easier to implement. However, there is a minor 

drawback in this method since the use of 𝑠 transfer function and the constant phase 

compensator gain of 1/𝜔0 can only ensure the unity gain at the resonant frequency, 𝜔0. 

This means that when the system operates at frequency range below the resonant 

frequency, the phase compensator gain is less than unity, and at frequency range above 

the resonant frequency, the phase compensator gain is greater than unity. Thus, when 

the system operates at frequency range away from the resonant frequency, the active 

control may perform worse than the system without active control since the phase 

compensator gain is either less or greater than unity. 

Nonetheless, as shown in simulations, the second method provides a decent active 

vibration control performance. It is because given the expected operating frequency 

range up to 35 Hz, the operating range remains close to the natural frequency range. At 

low frequency operating range as below the resonant frequency, the excitation of the 

oscillator is relatively low. Thus, the vibrations on flexible structure should be negligible. 

Then the phase compensator for active vibration control is not crucial. At high frequency 

operating range as above the resonant frequency, the magnitude of the constant phase 

compensator gain, 1/𝜔0, is greater than unity. The feedback signal becomes overly 

amplified and can cause overshoot in the system. The overly amplified signal can be 

amended by restraining the maximum feedback signal using a saturation block at the 

direct velocity feedback loop. Through simulations as shown in Figure 5.13, even 

without limiting the maximum feedback signal in the direct velocity loop, the overly 

amplified feedback signal only increases the oscillation velocity frequency response 

magnitude no more than a couple of decibels compared to the indirect velocity 
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feedback system at high frequency range. To summarize the earlier discussion, as long 

as the system operating frequency range is close to the resonance frequency range of 

the oscillator, the constant compensator gain is reasonable to apply in the active 

vibration control system. 

The result of indirect and directive velocity loop with phase compensator velocity 

frequency response simulation is compared in Figure 5.13. 

 

 

Figure 5.12: Direct Velocity Loop System with Phase Compensator 
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Figure 5.13: Direct and Indirect Velocity Loop Motor Velocity (Left) and Oscillator 

Velocity (Right) Simulated Frequency Response 

 

Since the motor and oscillator velocity are not direct measurable quantities in this 

experimental setup, it is much useful to look at the motor position and oscillator 

acceleration frequency response as shown in Figure 5.14. 

 

 

Figure 5.14: Direct and Indirect Velocity Loop Motor Position (Left) and Oscillator 

Acceleration (Right) Simulated Frequency Response 

 

It should also be noted that when the system has multiple modes, the use of band pass 

filter at the resonant frequency, 𝜔0, ensures that the phase compensation is being 
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active only around the vibration mode at 𝜔0 and decouples the control effort to other 

vibration modes [19]. The band pass filter implementation is also useful to minimize the 

drawback of using a constant phase compensator gain as previously described. It is 

because when the system is operating away from the resonant frequency, the effect of 

the improper amplified feedback signal is limited. For this experimental setup, since only 

the first resonance mode is considered for active vibration control, the use of band pass 

filter is not necessary. 

 

5.3.2 Position Loop Design 

With the completion of the velocity loop design, a cascaded position controller is 

implemented to close the position loop as shown in Figure 5.15. The motor position 

negative loop transmission (NLT) frequency response simulation shown in Figure 5.16 

indicates that the anti-resonant introduced by oscillator dynamic response may impose 

challenges to the position controller design. 
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Figure 5.15: Cascaded Position Loop with Velocity Loop 

Indirect Velocity Loop (Dash Dot) 

Direct Velocity Loop (Dash) 

 

 

Figure 5.16: Direct Velocity Loop Motor Position Simulated Frequency Response 
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At first, a loop shaping controller is designed to set the motor positioning bandwidth 

above the anti-resonant frequency and increase the phase margin to be at least 60 deg 

to ensure stability. This is not possible due to the rapid phase change between the two 

phase extrema across the anti-resonant frequency. The minimum phase must be 

increased to -120 deg in order to satisfy the +60 deg of phase margin. However, this 

leads to the loop shaping controller shifting the maximum phase above 0 deg, where the 

system becomes unstable. 

Instead, a proportional position controller is applied. In theory, a high proportional gain 

position controller can increase the motor positioning bandwidth above the anti-

resonant frequency. However, the phase margin is less than 60 deg near the anti-

resonant frequency, which the system can easily become unstable. Therefore, it is best 

to avoid extending the motor positioning bandwidth above the anti-resonant frequency. 

Now, the system bandwidth is limited by the anti-resonant behaviour since the motor 

position frequency response drops rapidly at that frequency range. 

In practice, another limitation must put into consideration which is the motor drive 

saturation. Thus, an appropriate proportional gain position controller is implemented to 

obey the motor drive saturation requirement.  

The motor position and oscillator acceleration frequency response simulation in closed 

position loop are shown in Figure 5.17. The system with direct velocity loop is denoted 

as an active control system and the system with only indirect velocity loop, equivalently 

as without direct velocity loop, is denoted as a non active control system. 
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Figure 5.17: Motor Position (Left) and Oscillator Acceleration (Right) Simulated 

Frequency Response for Active and Non Active Vibration Control System 

 

The disturbance force, which considered as Coulomb friction and external applied force, 

are included in the active control system as shown in Figure 5.18. The Coulomb friction 

is working against the motor force, and the external applied force is applied at the 

flexible oscillator. An addition feed forward controller can be used to compensate for 

the Coulomb friction, since it has been identified in the parameter identification 

process. The disturbance frequency responses are derived as shown in Figure 5.19. For 

the non active control system, it is assumed that motor position is not affected by the 

excitation applied at the oscillator. Thus, the disturbance frequency response has zero 

magnitude and does not appear on the motor position disturbance frequency response. 
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Figure 5.18: Active Control System with Disturbance Input 

 

 
  

Figure 5.19: Motor Position (Left) and Oscillator Acceleration (Right) Simulated 

Disturbance Frequency Response for Active and Non Active Vibration Control System 

 

5.3.3 Modification in Experimental Implementation  

Two types of sensor used to measure the system feedback: linear encoder for motor 

position, and accelerometer for oscillator acceleration. Since the linear encoder is a high 
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accuracy sensor, the velocity measurement obtained by taking the difference in 

positions per sampling time is reliable as a feedback signal in the indirect velocity loop. 

On the other hand, the accelerometer's high noise and DC offset cause the 

accelerometer measurement to be undesirable as a feedback signal in the direct velocity 

loop. The accelerometer noisy feedback is amplified through velocity controller which 

constantly saturates the motor drive power. Because the oscillator velocity cannot be 

measured directly, the accelerometer measurement must be numerically integrated to 

obtain the velocity measurement. The problem comes in when taking the numerical 

integration of the accelerometer signal with a DC offset, this causes the derived 

oscillator velocity signal to drift. Thus, the derived oscillator velocity signal becomes 

unsuitable as a feedback signal in the direct velocity feedback loop. For these reasons, 

modifications are made to overcome the two implementation challenges. 

 

5.3.3.1 Feedback Simplification 

The accelerometer must be fastened securely at the tip of the SDOF oscillator. However, 

the holding force of the senor may have transmitted to the sensor itself. Thus, the 

accelerometer picks up a small offset signal. By taking the numerical integration of the 

accelerometer DC offset signal introduces a drift into the derived oscillator velocity 

signal. The solution to overcome this challenge is to avoid taking numerical integration 

of the accelerometer signal. The reason for numerically integrating the acceleration 

signal is to convert the acceleration signal to velocity signal used in the direct velocity 

loop feedback. It is because the direct velocity feedback signal needs to go through a 

+90 deg phase shift by an 𝑠 transfer function at the phase compensator. This phase shift 

processed by an 𝑠  transfer function is equivalent to processing the signal by a 

differentiation operation. Now, this can be seen that these two processes are actually 

redundant operations which cancel each other. Therefore, modification can be made by 

cancelling the numerical integration with the phase shift operation, and simply scaling 

the acceleration signal with the phase compensator gain of 1/𝜔0  as the phase 
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compensated direct velocity feedback signal. Then the accelerometer sensor’s DC offset 

no longer causes the feedback signal to drift. For comparison, the original and modified 

direct velocity loop are shown in Figure 5.20 and Figure 5.21, respectively. 

 

 

Figure 5.20: Original Direct Velocity Loop 

 

 



Chapter 5. | Digital Control of Feed Drives 

79 

 

Figure 5.21: Modified Direct Velocity Loop 

 

5.3.3.2 Kalman Filter 

Another implementation issue is due to the accelerometer noisy measurement signal 

used in the direct velocity feedback loop. The amplified noisy measurement signal can 

easily saturate the motor drive power which causes the motor to overheat. The initial 

attempt is by applying a low pass filter to remove the high frequency measurement 

noise. However, using a high cut off frequency low pass filter cannot remove most of 

the noise, but using a low cut off frequency low pass filter introduces an undesirable 

phase delay at the feedback signal. The feedback signal with the addition phase delay 

deteriorates the active vibration control performance. To remove the noise at the 

accelerometer signal without scarifying the active vibration control performance, the 

Kalman filter is implemented. 

The Kalman Filter algorithm developed by R. Kalman is a recursive filter using 

measurements containing sensor noise and other inaccuracies to estimate the states of 

a linear system in time domain. The filter is applied to the states of a discretised system 
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to estimate the new states at each discrete time increment. The two independent types 

of noise considered are measurement noise and process noise. Measurement noise is 

introduced at the system output and caused by poor measurement sensors. The process 

noise is introduced at the system input and caused by model uncertainty. Through the 

Kalman filter algorithm, the filter produces a priori state estimate at sampling instance 𝑘 

given knowledge of the process prior to sampling instance 𝑘, and a posteriori state 

estimate at sampling instance 𝑘  given measurement at sampling instance 𝑘  with 

weighted average, and computes the uncertainty of the estimates. The weight of the 

weighted average is distributed between the estimate value through the time update 

process and measurement update process. More weight is given to the value with lesser 

uncertainty. The estimate produced by the filter tends to be more accurate than the 

original measurements because the weighted average value has a better estimated 

uncertainty than either of the values that went into the weighted average. 

The Kalman filter estimates a process by using a form of feedback control. The filter 

estimates the process state at each sampling instance and then obtains feedback in the 

form of noisy measurements. As such, the Kalman filter algorithm is categorised into 

two processes, time update and measurement update. The time update process is 

responsible for projecting forward the current state and error covariance estimates to 

obtain the a priori estimates for the next sampling instance, 𝑘 + 1. The measurement 

update process is responsible for the feedback for incorporating a new measurement 

into the a priori estimate to obtain an improved a posteriori estimate. The time update 

equations can also be thought of as predictor equations, while the measurement update 

equations can be thought of as corrector equations.  

The motor position and oscillator acceleration transfer function are converted into 

discrete time state space system with the consideration of the process noise, 𝑅𝑤 , and 

measurement noise, 𝑅𝑣. The detail calculation of converting the transfer functions into 

discrete time state space system is given in Appendix A. The discrete time state space 

system model is represented by the dynamics and output equation as shown in 

Eq.(5.33) and Eq.(5.34), respectively. 
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𝑋 𝑘 + 1 = 𝐴𝑧 ∙ 𝑋 𝑘 + 𝐵𝑧 ∙ 𝑢 𝑘 + 𝑅𝑤 𝑘  (5.33) 

 

𝑦 𝑘 = 𝐶𝑧 ∙ 𝑋 𝑘 + 𝑅𝑣 𝑘  (5.34) 

 

The process and measurement noise are assumed to be zero mean Gaussian white 

noise. The noise matrices are defined as the expected values of the corresponding noise 

vectors described mathematically by Eq.(5.35) and Eq.(5.36). 

 

𝑄 = 𝐸 𝑅𝑤 ∙ 𝑅𝑤
𝑇  (5.35) 

 

𝑅 = 𝐸 𝑅𝑣 ∙ 𝑅𝑣
𝑇  (5.36) 

 

where 𝑄 and 𝑅 are the covariance matrices of the process and measurement noise, 

respectively. Note that 𝑅𝑤  and 𝑅𝑣  are mutually independent, then the expected value of 

𝑅𝑤  and 𝑅𝑣  is zero. 

 

0 = 𝐸 𝑅𝑤 ∙ 𝑅𝑣
𝑇  (5.37) 

 

The Kalman filter performs the estimation in a predictor-corrector approach with time 

and measurement update. With the given system model, the a priori state estimate 

vector, 𝑋 𝑘+1|𝑘 𝑘 + 1 , at the next sampling instance is computed based on the a 

posteriori state estimate, 𝑋 𝑘|𝑘 𝑘 , at the current sampling instance through the time 

update equation as show in Eq.(5.38). 
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𝑋 𝑘+1|𝑘 𝑘 + 1 = 𝐴𝑧 ∙ 𝑋 𝑘|𝑘 𝑘 + 𝐵𝑧 ∙ 𝑢 𝑘  (5.38) 

 

where 𝑢 𝑘  is the known system input. 

The residual, 𝑅𝑟𝑒𝑠 , is defined as the difference between the sensor measurement, 𝑦 𝑘 , 

and a priori output estimate, 𝐶𝑧 ∙ 𝑋 𝑘|𝑘−1 𝑘 , as shown in Eq.(5.39). The residual reflects 

the discrepancy between the a priori output estimate and the actual output 

measurement. When the residual, 𝑅𝑟𝑒𝑠 , reaches zero, the output estimate equals to the 

actual output. 

 

𝑅𝑟𝑒𝑠  𝑘 = 𝑦 𝑘 − 𝐶𝑧 ∙ 𝑋 𝑘|𝑘−1 𝑘  (5.39) 

 

The measurement update equation uses the a priori state estimate, 𝑋 𝑘|𝑘−1 𝑘 , at the 

current sampling instance 𝑘 obtained at the previous sampling instance, 𝑘 − 1, and with 

the weighted average residual as a correction term to compute the a posteriori state 

estimate, 𝑋 𝑘|𝑘 𝑘  as shown in Eq.(5.40). 

 

𝑋 𝑘|𝑘 𝑘 = 𝑋 𝑘|𝑘−1 𝑘 + 𝐾𝑘 ∙ 𝑅𝑟𝑒𝑠  𝑘  (5.40) 

 

where 𝐾𝑘  is the weighted average Kalman gain. 

The Kalman gain is defined for minimizing the a posteriori estimate error covariance and 

thus an accurate estimation of the system states can be achieved. The a priori and a 

posteriori estimate error are defined as in Eq.(5.41) and Eq.(5.42), respectively. 

 

𝑒𝑘|𝑘−1 ≡ 𝑋 − 𝑋 𝑘|𝑘−1 (5.41) 
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𝑒𝑘|𝑘 ≡ 𝑋 − 𝑋 𝑘|𝑘  (5.42) 

 

Then the a priori and a posteriori estimate error covariance are as shown in Eq.(5.43) 

and Eq.(5.44). 

 

𝑃𝑘+1|𝑘 = 𝐸 𝑒𝑘+1|𝑘 ∙ 𝑒𝑘+1|𝑘
𝑇  (5.43) 

 

𝑃𝑘|𝑘 = 𝐸 𝑒𝑘|𝑘 ∙ 𝑒𝑘|𝑘
𝑇  (5.44) 

 

Referring to [12], the resulting function for the Kalman gain is as show in Eq.(5.45). 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1 ∙ 𝐶𝑧
𝑇 ∙  𝐶𝑧 ∙ 𝑃𝑘 |𝑘−1 ∙ 𝐶𝑧

𝑇 + 𝑅 
−1

 (5.45) 

 

At Eq.(5.45), as the measurement error covariance, 𝑅, approaches zero, the Kalman 

gain, 𝐾𝑘 , weights the residual more heavily as shown in Eq.(5.46). 

 

lim
𝑅→0

𝐾𝑘 = 𝐶𝑧
−1 (5.46) 

 

On the other hand, as the a priori estimate error covariance, 𝑃𝑘+1|𝑘 , approaches zero, 

the Kalman gain, 𝐾𝑘 , weights the residual less heavily as shown in Eq.(5.47). 

 

lim
𝑃𝑘+1|𝑘→0

𝐾𝑘 = 0 (5.47) 
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Another way of thinking about the weighting by the Kalman gain, 𝐾𝑘 , is that as the 

measurement error covariance, 𝑅, approaches zero, the actual output measurement, 

𝑦 𝑘 , is trusted more, while the a priori output estimate, 𝐶𝑧 ∙ 𝑋 𝑘|𝑘−1 𝑘 , is trusted less. 

In contrary, as the a priori estimate error covariance, 𝑃𝑘 |𝑘−1, approaches zero the actual 

output measurement, 𝑦 𝑘 , is trusted less, while the a priori output estimate, 

𝐶𝑧 ∙ 𝑋 𝑘|𝑘−1 𝑘 , is trusted more. 

The minimized a priori estimate error covariance is as shown in Eq.(5.48), 

 

𝑃𝑘+1|𝑘 = 𝐴𝑧 ∙ 𝑃𝑘|𝑘 ∙ 𝐴𝑧
𝑇 + 𝑄 (5.48) 

 

and the minimized a posteriori estimate error covariance is as shown in Eq.(5.49). 

 

𝑃𝑘|𝑘 =  𝐼 − 𝐾𝑘 ∙ 𝐶𝑧 ∙ 𝑃𝑘−1|𝑘  (5.49) 

 

Figure 5.22 provides an overview of the Kalman filter operation cycle. At first, the initial 

state and error covariance are predefined in the filter. Then the time update projects 

the current state estimate ahead in time. The measurement update adjusts the 

projected estimate by an actual measurement at that time. The cycle repeats with time 

update process and follows again with measurement update process. 
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Measurement Update
(Correct)

Time Update
(Predict)

Initial State and Covariance
 

Figure 5.22: Kalman Filter Operation Cycle 

 

Time Update (Predict) Process 

Project the state ahead 𝑋 𝑘+1|𝑘 𝑘 + 1 = 𝐴𝑧 ∙ 𝑋 𝑘|𝑘 𝑘 + 𝐵𝑧 ∙ 𝑢 𝑘  

Project the error covariance ahead 𝑃𝑘+1|𝑘 = 𝐴𝑧 ∙ 𝑃𝑘|𝑘 ∙ 𝐴𝑧
𝑇 + 𝑄 

Table 5.3: Kalman Filter Time Update Process Equations 

 

Measurement Update (Correct) Process 

Compute the Kalman gain 𝐾𝑘 = 𝑃𝑘|𝑘−1 ∙ 𝐶𝑧
𝑇 ∙  𝐶𝑧 ∙ 𝑃𝑘|𝑘−1 ∙ 𝐶𝑧

𝑇 + 𝑅 
−1

 

Update estimate with measurement 𝑋 𝑘|𝑘 𝑘 = 𝑋 𝑘|𝑘−1 𝑘 + 𝐾𝑘 ∙  𝑦 𝑘 − 𝐶𝑧 ∙ 𝑋 𝑘|𝑘−1 𝑘   

Update the error covariance 𝑃𝑘|𝑘 =  𝐼 − 𝐾𝑘 ∙ 𝐶𝑧 ∙ 𝑃𝑘−1|𝑘  

Table 5.4: Kalman Filter Measurement Update Process Equations 

 

The noise level during measurement and the accuracy of sensors together with the 

modelling uncertainties are essential to the derivation of the noise covariance matrices. 

In the actual implementation of the filter, the measurement noise covariance, 𝑅, is 

measured prior to operation of the filter. To determine the measurement error 



Chapter 5. | Digital Control of Feed Drives 

86 

covariance, 𝑅, is generally straightforward since it can be done by taking some offline 

senor measurement. 

The determination of the process noise covariance, 𝑄, is more difficult because typically 

it is not possible to directly observe the estimate process. Nevertheless, a relatively poor 

process model can still produce an acceptable result if higher uncertainty is injected into 

the process via the selection of 𝑄. 

In general, whether or not a rational approach is possible for determining the noise 

covariance parameters, strong filter performance statically speaking can be achieved by 

tuning the filter parameters 𝑄 and 𝑅. 

Thus, for this experimental setup, the measurement noise covariance, 𝑅, is set by 

computing the covariance of the offline accelerometer signal recordings. The process 

noise covariance, 𝑄, is tuned until the Kalman filter output coincides well with system 

excitation by input command and exogenous disturbance. When 𝑄 is set to too low, the 

filter output is unable to track exogenous disturbance, and when 𝑄 is set to too high, 

the filter is unable to reduce the sensor noise. The tuned noise covariance parameters 

are listed in Table 5.5. The accelerometer and Kalman filter measurement update 

output measurements and comparison summary are shown in Figure 5.23 and Table 

5.6, respectively. 

 

𝑅 Measurement Noise Covariance (m/s2)2 𝑄 Process Noise Covariance (m/s2)2 

0.0453 0.0500 

Table 5.5: Noise Covariance Parameters 
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Figure 5.23: Accelerometer Measurement and Kalman Filter Output 

 

Oscillator Acceleration Accelerometer Measurement Kalman Filter 

Mean (m/s2) -0.214 0.000205 

Covariance (m/s2)2 0.0453 0.00102 

Table 5.6: Acceleration Measurement and Kalman Filter Output Summary 

 

The use of Kalman filter has successfully reduced the offset and the covariance of the 

acceleration signal. With the implementation modifications of feedback simplification 

and Kalman filter, the active vibration control system has been implemented and 

operated properly. The accelerometer signal offset and noise no more causes feedback 

signal drift and saturation to the amplifier. 

The complete control system structure with the modifications is shown in Figure 5.24. 
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Figure 5.24: Modified Position Loop with Kalman Filter and Feedback Simplification 

 

5.3.4 Simulation and Experiment Result 

5.3.4.1 Frequency Response Simulation 

Simulations are conducted to compare the motor position and oscillator acceleration 

frequency response of the active vibration control system with different proportional 

position controller. The proportional gain magnitudes include 10, 15, 20 and 30 which 

are denoted by P10, P15, P20 and P30, respectively. 
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Figure 5.25: Simulated Frequency Response from Motor Position Input Command to 

Motor Position for Active Vibration Control System with Different Position Controller 

Proportional Gains 

 

Position Controller Gain P10 P15 P20 P30 

Bandwidth (Hz) 2.0 3.6 5.0 6.4 

Table 5.7: Simulated Frequency Response from Motor Position Input Command to 

Motor Position for Active Vibration Control System in Different Position Controller 

Proportional Gains Summary 
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Figure 5.26: Simulated Frequency Response from Motor Position Input Command to 

Oscillator Acceleration for Active Vibration Control System with Different Position 

Controller Proportional Gains 

 

Position Controller Gain P10 P15 P20 P30 

Maximum Magnitude (dB) 54.6 58.2 61.2 65.7 

Table 5.8: Simulated Frequency Response from Motor Position Input Command to 

Oscillator Acceleration for Active Vibration Control System with Different Position 

Controller Proportional Gains Summary 

 

With the flexible oscillator dynamics in the direct velocity feedback system, an anti-

resonant effect is introduced into the motor position frequency response at the 

oscillator resonant frequency. The anti-resonant frequency region imposes a great 
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limitation in extending the motor positioning bandwidth since the motor position 

frequency response magnitude drops to as much as -50 dB. The anti-resonant effect at 

the motor position frequency response occurs because the negative oscillator 

acceleration feedback signal cancels with the position command signal. Thus, there is no 

control input signal directing into the motor. 

For position controller tuning, the motor position frequency response simulation shown 

in Figure 5.25 indicates that further increase of the proportional gain of the position 

controller can only provide marginal improvement to the motor positioning bandwidth 

but at the cost of reducing the active vibration control performance. It is because with a 

higher proportional gain position controller, the magnitude of the oscillator acceleration 

frequency response increases as shown in Figure 5.26. 

 

5.3.4.2 Step Response Experiment 

The intent of the step response experiment is to replicate the induced vibrations on the 

machine flexible structure when the machine position is translated. During the 

experiment, both the motor position and SDOF oscillator acceleration response are 

measured. Two sets of step response experiment are conducted. The first experiment is 

comparing the 0.1 m position command step input response of the active vibration 

control system with different proportional position controllers. The second experiment 

is comparing the 0.1 m position command step input response of the system with and 

without active vibration control. 
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Figure 5.27: Motor Position of Experimental Step Response for Active Vibration Control 

System 

Input: Motor Position Step Input Command 

Output: Motor Position 

 

Position Controller Gain P10 P15 P20 P30 

Overshoot (%) 0.3 2.3 11.5 23.5 

Table 5.9: Motor Position of Experimental Step Response for Active Vibration Control 

System Summary 
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Figure 5.28: Oscillator Acceleration of Experimental Step Response for Active Vibration 

Control System 

Input: Motor Position Step Input Command 

Output: Oscillator Acceleration 

 

Position Controller Gain P10 P15 P20 P30 

Max Acceleration Magnitude 

(m/s2) 

24.2 32.9 40.1 47.8 

Table 5.10: Oscillator Acceleration of Experimental Step Response for Active Vibration 

Control System Summary 
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As listed in Table 5.9 and Table 5.10 experiment summary, P15 position controller 

should be the most suitable controller for this active control system. The system 

response to the step input is 2.3% of motor position overshoot and 32.9 m/sec2 of 

maximum oscillator acceleration. 

The experimental result agrees with the simulated result that setting motor positioning 

bandwidth below the oscillator resonant frequency ensures system stability. It should 

be noted that for demonstration purpose, this particular flexible oscillator is used to 

ensure that the oscillator vibrations can be easily identified. The oscillator has a low 

resonant frequency at 8 Hz which greatly limits the motor positioning bandwidth. In 

practice, the machine tool is much stiffer, corresponded to a higher resonant frequency, 

than the flexible oscillator in this experimental setup. Thus, a much higher motor 

positioning bandwidth is achievable in the actual machine. 

In Figure 5.29, the highlighted component is the phase compensator gain. When the 

gain is set to zero, the active vibration control is disabled. The system performance with 

and without active vibration control are compared. The motor position and oscillator 

acceleration step input response are shown in Figure 5.30 and Figure 5.31, respectively. 

Experimental result has verified with the simulation that the active control system 

increases the motor position overshoot compared to the system without active control. 

The oscillator acceleration response in the active control system reaches steady state 

after half free oscillation cycle and the maximum oscillator acceleration is also reduced. 

Note that the first oscillation cycle captured at the oscillator acceleration measurement 

is due to the acceleration and deceleration of positioning the motor. Thus, the oscillator 

also experiences a similar magnitude of acceleration and deceleration. In comparison, 

for the system without active control, denoted as the non active control system, the 

oscillator continues to vibrate even after the motor position reaches steady state. The 

control input comparison shown in Figure 5.32 indicates that the active control system 

requires a higher control input to control the motor position since the motor needs to 

suppress the vibrations on the oscillator at the same time. 
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Figure 5.29: Position Loop for Active Vibration Control System 

Phase Compensator Gain (Dash) 
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Figure 5.30: Motor Position of Experimental Step Response for Active and Non Active 

Vibration Control System 

Input: Motor Position Step Input Command 

Output: Motor Position 

 

Position Controller P15 Active Control Non Active Control 

Overshoot (%) 2.3 1.5 

Table 5.11: Motor Position of Experimental Step Response for Active and Non Active 

Vibration Control System Summary 
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Figure 5.31: Oscillator Acceleration of Experimental Step Response for Active and Non 

Active Vibration Control System 

Input: Motor Position Step Input Command 

Output: Oscillator Acceleration 

 

Position Controller P15 Active Control Non Active Control 

Max Acceleration Magnitude 

(m/s2) 

32.9 63.5 

Table 5.12: Oscillator Acceleration of Experimental Step Response for Active and Non 

Active Vibration Control System Summary 
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Figure 5.32: Control Input of Experimental Step Response for Active and Non Active 

Vibration Control 

Input: Motor Position Step Input Command 

Output: Control Input 

 

5.3.4.3 Disturbance Rejection Experiment 

The intent of the disturbance rejection experiment is to replicate the vibrations at the 

machine flexible structure when it comes in contact with a workpiece during operation. 

The disturbance rejection performance is conducted to compare the capacity of the 

active and non active control system to withstand external disturbance. Exogenous 

disturbance force is applied at the oscillator by tapping the tip of the oscillator. The 

active and non active control system response of the motor position response, oscillator 
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acceleration response and control input are captured and compared as shown in Figure 

5.33, Figure 5.34 and Figure 5.35, respectively. 

 

 

Figure 5.33: Motor Position of Experimental Disturbance Rejection Response for Active 

and Non Active Vibration Control 

Input: Exogenous Disturbance Force 

Output: Motor Position 

 

The active control system has small back and forth translation as a compensational 

effort to reduce the oscillator vibrations. In comparison, the non active control system 

remains stationary, such that no compensational control effort is available. 
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Figure 5.34: Oscillator Acceleration of Experimental Disturbance Rejection Response for 

Active and Non Active Vibration Control 

Input: Exogenous Disturbance Force 

Output: Oscillator Acceleration 

 

At Figure 5.34, the initial negative oscillator acceleration spike is due to the exogenous 

disturbance force applied at the oscillator tip. Even though the disturbance applied to 

the active vibration control system is higher than the non active vibration control 

system, the oscillator vibrations in the active control system have been suppressed 

immediately. The oscillator vibrations at the non active control system continue for a 

much longer time. 

The comparison between the two system control inputs is shown in Figure 5.35. There is 

no control input going into the non active control system. The non active control system 
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is not aware of the vibration at the oscillator because no accelerometer signal is fed 

back into the control loop. Since there is some noise in the accelerometer feedback 

signal which gets amplified through the controller, the active control system voltage 

input does not reach zero even at steady state. 

 

 

Figure 5.35: Control Input of Experimental Disturbance Rejection Response for Active 

and Non Active Vibration Control 

Input: Exogenous Disturbance Force 

Output: Control Input 
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5.3.4.4 Position Input Command Frequency Response Experiment 

The comparison is made between the simulated and experimental result with position 

input command frequency responses for the system with and without active control. 

The experiment is conducted by taking a sine sweep experiment from 1 Hz to 35 Hz, and 

the motor position and oscillator acceleration frequency responses are captured. As 

shown in Figure 5.36, Figure 5.37, Figure 5.38 and Figure 5.39, the simulated result 

matches well against the experimental result up until the higher frequency range above 

20 Hz. The reason for this frequency response mismatch is due to the unmodelled 

system dynamics at the higher frequency. 

The experimental result shows that the implemented active control system limits motor 

positioning bandwidth up to the oscillator resonant frequency region as shown in Figure 

5.40, and reduces the oscillator acceleration magnitude from 80 dB to 60 dB at resonant 

frequency as shown in Figure 5.41. 

 

Position Controller P15 Active Control Non Active Control 

Bandwidth (Hz) 3.6 2.5 

Table 5.13: Frequency Response from Motor Position Input Command to Motor Position 

for Active and Non Active Vibration Control System Summary 
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Figure 5.36: Experimental and Simulated Frequency Response from Motor Position 

Input Command to Motor Position for Non Active Vibration Control System 

 

 

Figure 5.37: Experimental and Simulated Frequency Response from Motor Position 

Input Command to Oscillator Acceleration for Non Active Vibration Control System 
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Figure 5.38: Experimental and Simulated Frequency Response from Motor Position 

Input Command to Motor Position for Active Vibration Control System 

 

 

Figure 5.39: Experimental and Simulated Frequency Response from Motor Position 

Input Command to Oscillator Acceleration for Active Vibration Control System 
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Figure 5.40: Experimental Frequency Response from Motor Position Input Command to 

Motor Position for Active and Non Active Vibration Control System 

 

 

Figure 5.41: Experimental Frequency Response from Motor Position Input Command to 

Oscillator Acceleration for Active and Non Active Vibration Control System 
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5.3.4.5 Disturbance Frequency Response Experiment 

The simulated and experimental disturbance to output frequency responses at the 

motor position and oscillator acceleration are captured and compared. The external 

impact force disturbance is applied at flexible oscillator with an impact force hammer. 

The impact force and time responses of motor position and oscillator acceleration are 

measured and processed through the fast Fourier transform algorithm to obtain the 

system disturbance frequency responses. Simulated and Experimental results for the 

system without active control system are compared and shown in Figure 5.42 and Figure 

5.43. Since the simulated result is based on the assumption that the motor position is 

not affected by the excitation at the oscillator, the simulated motor position disturbance 

frequency response is at zero magnitude. For this reason, the simulated motor position 

disturbance frequency response does not appear on the logarithmic scale magnitude 

graph in Figure 5.42. For the system with active control disturbance, the simulated and 

experimental frequency responses are compared and shown in Figure 5.44 and Figure 

5.45. The system with and without active control disturbance frequency responses 

experimental comparisons are shown in Figure 5.46 and Figure 5.47. In Figure 5.46, the 

active control system motor position shows a higher motor position magnitude 

response than the non active control system because the active control system provides 

compensational effort driving the motor to suppress the vibrations induced by the 

disturbance force. In Figure 5.47, the oscillator acceleration disturbance frequency 

response has been suppressed with the active control system from 70 dB to 40 dB at 

resonance frequency. 

It should be noted that the oscillator acceleration is measured with an accelerometer, 

which the measured signal is noisy and has a DC offset. This drawback becomes an issue 

because the poor measured signal remains as the predominated signal in the lower 

frequency range for below 5 Hz. Therefore, the experimental result captured at the low 

frequency range is unreliable and deviates from the simulated result. Nonetheless the 

experimental results show a strong agreement with the simulated results in the higher 

frequency range.  
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Figure 5.42: Experimental Frequency Response from Disturbance Force at the Oscillator 

to Motor Position for Non Active Control System 

 

  

Figure 5.43: Experimental and Simulated Frequency Response from Disturbance Force at 

the Oscillator to Oscillator Acceleration for Non Active Vibration Control System 
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Figure 5.44: Experimental and Simulated Frequency Response from Disturbance Force at 

the Oscillator to Motor Position for Active Vibration Control System 

 

 

Figure 5.45: Experimental and Simulated Frequency Response from Disturbance Force at 

the Oscillator to Oscillator Acceleration for Active Vibration Control System 
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Figure 5.46: Experimental Frequency Response from Disturbance Force at the Oscillator 

to Motor Position for Active and Non Active Vibration Control System 

 

 

Figure 5.47: Experimental Frequency Response from Disturbance Force at the Oscillator 

to Oscillator Acceleration for Active and Non Active Vibration Control System 
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5.4 Summary 

In this chapter, the positioning and active vibration controller implementation strategies 

are presented. In Section 5.2, the state space pole placement controller with integrator 

and the observer design are discussed. Simulations and experiments have been 

conducted to validate the system performance. The presented pole placement 

controller design approach does not consider the effect of disturbance. When the 

disturbance effects, such as Coulomb friction and noise, are included, the control system 

can no longer perform as expected. Therefore, neither the simulated nor experimental 

result achieves the desired system performance. The modelling uncertainty is the main 

reason that the simulated result differs from the experimental result. Through 

simulations and experiments, the rigid body feed drive control approach possesses a 

major drawback in ensuring an accurate positioning of the SDOF oscillator because 

vibration control on the SDOF oscillator is not possible. 

In Section 5.3, the active vibration controller is implemented. It is designed for 

suppressing the SDOF oscillator vibrations at the feed drive. This active controller works 

in a cascaded structure which includes the velocity loop and position loop. In the 

velocity loop, a phase compensator is used to compensate the phase delay of the 

oscillator at resonant which effectively increases the damping of the oscillator. Two 

implementation modifications are proposed for this active vibration controller for this 

experimental setup. The first modification is the simplification at the phase 

compensator to minimize the drift effect at the feedback signal. The second 

modification is the use of a Kalman filter to improve the sensor measurement accuracy 

and reduce the measurement noise. 

In Section 5.3.4, experimental and simulated result are presented and compared to 

validate the active vibration control performance. A trade-off between oscillator 

vibration suppression and motor positioning control performance is required. For a 

higher motor positioning bandwidth, the oscillator vibration suppression performance is 

reduced. The active vibration control system is capable of rejecting exogenous 
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disturbance at the oscillator while the non active vibration control system is sensitive to 

such disturbance as shown experimentally. The implemented active vibration control 

system reduces the oscillator acceleration by 20 dB and 30 dB at resonant compared to 

the system without active vibration control for input command frequency response and 

disturbance frequency response, respectively. For this experimental setup, the motor 

positioning bandwidth is relatively low because it is limited by the natural frequency of 

the flexible structure. In practice, the system is capable of achieving higher motor 

positioning bandwidths since the natural frequency of the flexible structure should be 

much higher. 
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Chapter 6. Conclusion 

6.1 Summary 

Vibrations reduce the positioning accuracy of machine tools; hence, their suppression by 

active control methods is important. In this thesis, a classical control method for active 

damping of machine tool drive is demonstrated on a high speed linear drive system. 

This thesis has presented the detail work of system modelling, system identification and 

active vibration controller design implementation. In system modelling, a theoretical 

model of a two degree of freedom system is used to model the flexible feed drive 

system. Different experimental identification methods are applied to find a suitable 

identified model for controller design. 

A pole placement position controller with integrator and observer are designed for a 

rigid feed drive. The presented pole placement controller has not considered the system 

disturbance in the design process. Thus, the experimental and simulated result validate 

that this positioning controller is unable to achieve the desired performance when there 

is disturbance presented in the system. Moreover, this type of positioning controller for 

rigid feed drive design approach does not have any control measure to minimize the 

flexible structure vibrations. It is shown experimentally that the flexible structure 

vibration continues even after the motor position reaches steady state. 

An active vibration damping controller is implemented using a phase compensation 

approach. The position tracking and disturbance rejection performance of the 

controllers are investigated through simulations and experiments. The results indicate 

that there is a trade-off between active vibration control and high positioning 

bandwidth. The achievable positioning bandwidth of the active vibration control system 

is limited by the flexible structure natural frequency. This is because when the flexible 

structure dynamics becomes a part of the control system, the flexible structure 

dynamics introduces an anti-resonant effect at the motor position frequency response. 

To have the active controller implemented on the experimental setup for this research, 

design modifications are made to improve the sensor signal. This requires the use of 
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Kalman filter in the control system, which it has significantly enhanced the quality of 

accelerometer measurement for the flexible structure vibration. 

 

6.2 Future Work 

Vibration control is an active research field in terms of both theoretical problems and 

practical implementation challenges. In the future, this work can be extended in the 

following directions for further improvements in active damping: 

 Introduce a more detailed system model which includes an accurate model of 

the friction force. 

 Extend the active vibration control to a multimode flexible drive system. 

 Use gain scheduled active vibration control to compensate for the changes in the 

natural frequency of the flexible drive systems. 

 Implement the same active vibration control strategy to an indirect drive system 

and investigate the performance. 

 Develop new algorithms to extend the system bandwidth beyond the resonance 

mode. 
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Appendix A. Calculations 

A.1 Unbiased Least Square 

The detail derivation of the unbiased least square (ULS) is presented in this section. 

 

𝑥1 =
𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑉𝑖𝑛 − 𝜇𝑘
𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠

 (A.1) 

 

𝜇𝑘 = 𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑑𝑓  (A.2) 

 

𝑥1 =
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠
∙  𝑉𝑖𝑛 − 𝑑𝑓 =

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠

∙ 𝑢 (A.3) 

 

𝑥1

𝑢
=

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡 ∙ 𝑠2 + 𝑏1 ∙ 𝑠

 (A.4) 

 

Then the motor position transfer function can be rewritten as voltage input with 

disturbance to motor velocity transfer function. 

 

𝐺𝑡 𝑠 =
𝑥 1
𝑢

=
𝐾𝑡 ∙ 𝐾𝑎

𝑚𝑡 ∙ 𝑠 + 𝑏1
=

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡

𝑠 +
𝑏1

𝑚𝑡

=
𝐾𝑣

𝑠 +  −𝑃𝑣 
 (A.5) 

 

Discretise the transfer function by a zero order hold transform. 
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𝐺𝑡 𝑧 =  1 − 𝑧−1 ∙ 𝑍  
𝐺𝑡 𝑠 

𝑠
  (A.6) 

 

𝐺𝑡 𝑠 

𝑠
=

1

𝑠
∙

𝐾𝑣
𝑠 +  −𝑃𝑣 

=
𝐶1

𝑠
+

𝐶2

𝑠 +  −𝑃𝑣 
 (A.7) 

 

𝐶1 and 𝐶2 can be obtained by partial fraction technique. 

 

𝐶1 = lim
𝑠→0

1

𝑠
∙

𝐾𝑣
𝑠 +  −𝑃𝑣 

∙ 𝑠 =
−𝐾𝑣
𝑃𝑣

 (A.8) 

 

𝐶2 = lim
𝑠→𝑃𝑣

1

𝑠
∙

𝐾𝑣
𝑠 +  −𝑃𝑣 

∙  𝑠 +  −𝑃𝑣  =
𝐾𝑣
𝑃𝑣

 (A.9) 

 

Take Z transform of the argument. 

 

𝐺𝑡 𝑧 =  1 − 𝑧−1 ∙ 𝑍  
−𝐾𝑣
𝑃𝑣 ∙ 𝑠

+
𝐾𝑣

𝑃𝑣 ∙  𝑠 +  −𝑃𝑣  
  (A.10) 

 

𝐺𝑡 𝑧 =
𝐾𝑣
𝑃𝑣

∙  1 − 𝑧−1 ∙ 𝑍  
−1

𝑠
+

1

𝑠 +  −𝑃𝑣 
  (A.11) 

 

𝐺𝑡 𝑧 =
𝐾𝑣
−𝑃𝑣

∙  1 − 𝑧−1 ∙  
1

1 − 𝑧−1
−

1

1 − 𝑒𝑃𝑣 ∙𝑇𝑠 ∙ 𝑧−1
  (A.12) 
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𝐺𝑡 𝑧 =
𝐾𝑣
−𝑃𝑣

∙  
1 − 𝑒𝑃𝑣∙𝑇𝑠

𝑧 − 𝑒𝑃𝑣∙𝑇𝑠
 =

𝐾𝑣𝑑
𝑧 − 𝑃𝑣𝑑

 (A.13) 

 

𝐾𝑣𝑑 =
𝐾𝑣
−𝑃𝑣

∙  1 − 𝑒𝑃𝑣∙𝑇𝑠     𝑃𝑣𝑑 = 𝑒𝑃𝑣∙𝑇𝑠   

 

𝑥 1 𝑧 

𝑢 𝑧 
= 𝐺𝑡 𝑧 =

𝐾𝑣𝑑
𝑧 − 𝑃𝑣𝑑

 (A.14) 

 

𝑥 1 𝑧 + 1 = 𝑃𝑣𝑑𝑥 1 𝑧 + 𝐾𝑣𝑑 ∙ 𝑢 𝑧  (A.15) 

 

A.2 State Space Pole Placement Controller Design 

The detail calculation of the state space model discretisation is presented in this section. 

The discretised state space model is used in the pole placement controller. Eq.(A.16) 

allows computing the state vector at time 𝑡 given the state vector at the starting 𝑡0 and 

the control input signal between 𝑡0  and 𝑡. The first term of the equation is the 

homogenous solution and the second term is the particular solution.  

For the discrete equivalent of the continuous state space model, it finds the state vector 

at the next sampling instance given the state vector and input at the current sampling 

instance. Then 𝑡0 can be represented by 𝑘 ∙ 𝑇𝑠  at current sampling instance and the next 

sampling instance at 𝑇𝑠  seconds later. 

 

𝑋 𝑡 = 𝑒𝐴𝑠∙ 𝑡−𝑡0 ∙ 𝑋 𝑡0 +  𝑒𝐴𝑠∙ 𝑡−𝜏 
𝑡

𝑡0

∙ 𝐵𝑠 ∙ 𝑢 𝜏 𝑑𝜏 (A.16) 
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Since a zero order hold circuit holds the control constant over the entire sampling 

period, the control input u(tau) and the input matrix 𝐵𝑠  can be move out of the 

integration. Changing integration variables and simplifying the equation, the equation is 

shown in Eq.(A.17). 

 

𝑋 𝑘 ∙ 𝑇𝑠 + 𝑇𝑠 = 𝑒𝐴𝑠∙𝑇𝑠 ∙ 𝑋 𝑘 ∙ 𝑇𝑠 +  𝑒𝐴𝑠∙ 𝑘∙𝑇𝑠+𝑇𝑠−𝜏 
𝑘∙𝑇𝑠+𝑇𝑠

𝑘∙𝑇𝑠

∙ 𝐵𝑠 ∙ 𝑢 𝜏 𝑑𝜏 (A.17) 

 

For simplicity, 𝑘 ∙ 𝑇𝑠  is replaced with 𝑘. 

 

𝑋 𝑘 + 1 = 𝑒𝐴𝑠∙𝑇𝑠 ∙ 𝑋 𝑘 +  𝑒𝐴𝑠∙𝜂
𝑇𝑠

0

𝑑𝜂 ∙ 𝐵𝑠 ∙ 𝑢 𝑘  (A.18) 

 

𝑋 𝑘 + 1 = 𝐴𝑧 ∙ 𝑋 𝑘 + 𝐵𝑧 ∙ 𝑢 𝑘  (A.19) 

 

𝐴𝑧 = 𝑒𝐴𝑠∙𝑇𝑠 = 𝐼 + 𝐴𝑠 ∙ 𝑇𝑠 +
 𝐴𝑠 ∙ 𝑇𝑠 

2

2!
+
 𝐴𝑠 ∙ 𝑇𝑠 

3

3!
+ ⋯ (A.20) 

 

𝐴𝑧 = 𝐼 + 𝐴𝑠 ∙ 𝑇𝑠 ∙ Ψ (A.21) 

 

Ψ = 𝐼 +
 𝐴𝑠 ∙ 𝑇𝑠 

2!
+
 𝐴𝑠 ∙ 𝑇𝑠 

2

3!
+
 𝐴𝑠 ∙ 𝑇𝑠 

3

4!
+ ⋯ (A.22) 

 

𝐵𝑧 =  𝑒𝐴𝑠∙𝜂
𝑇𝑠

0

𝑑𝜂 ∙ 𝐵𝑠  (A.23) 
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𝐵𝑧 =  𝑒𝐴𝑠 ∙𝜂
𝑇𝑠

0

𝑑𝜂 ∙ 𝐵𝑠 = 𝐴𝑠
−1 ∙  𝐴𝑧 − 𝐼 ∙ 𝐵𝑠 = 𝑇𝑠 ∙ Ψ ∙ 𝐵𝑠  (A.24) 

 

Then apply Eq.(A.20) and Eq.(A.24) to obtain the motor drive discrete equivalent state 

space model, which includes the motor dynamics and output equation as shown in 

Eq.(A.25) and Eq.(A.26), respectively. 

 

𝑋1 𝑘 + 1 = 𝐴1𝑧 ∙ 𝑋1 𝑘 + 𝐵1𝑧 ∙ 𝑢 𝑘  (A.25) 

 

𝑦 𝑘 = 𝐶1𝑧 ∙ 𝑋1 𝑘  (A.26) 

 

Ψ = 𝐼 +
 𝐴1𝑠 ∙ 𝑇𝑠 

2!
+
 𝐴1𝑠 ∙ 𝑇𝑠 

2

3!
+
 𝐴1𝑠 ∙ 𝑇𝑠 

3

4!
+ ⋯ (A.27) 

 

𝐴1𝑧 = 𝐼 + 𝐴1𝑠 ∙ 𝑇𝑠 ∙ Ψ1 (A.28) 

 

𝐵1𝑧 = 𝑇𝑠 ∙ Ψ1 ∙ 𝐵1𝑠 (A.29) 

 

𝐶1𝑧 = 𝐶1𝑠 (A.30) 

 

𝐷1𝑧 = 𝐷1𝑠 = 0 (A.31) 
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A.3 State Space Pole Placement Controller with Integrator Design 

From Figure 5.4, the close loop system has a zero according to Eq.(A.5). 

 

𝑧𝑖 = 1 +
𝑇𝑠 ∙ 𝛫𝑖
𝑁𝑟

 (A.32) 

 

Then the reference gain, 𝑁𝑟 , can be calculated as shown in Eq.(A.33). 

 

𝑁𝑟 =
𝑇𝑠 ∙ 𝛫𝑖
𝑧𝑖 − 1

 (A.33) 

 

A.4 Kalman Filter 

The detail calculation of the discretised state space model used for Kalman filter design 

is presented in this section. Eq.(A.34) is the continuous state space dynamics equation 

that includes the motor and oscillator dynamics. The first two rows are the same 

dynamics parameters used in pole placement controller design. The last three rows are 

addition parameters that describe the oscillator dynamics. Eq.(A.35) is the continuous 

state space output equation that includes the motor position and oscillator acceleration 

as output. 

 

𝑋  𝑡 = 𝐴𝑠 ∙ 𝑋 𝑡 + 𝐵𝑠 ∙ 𝑢 𝑡  (A.34) 

 

𝑦 𝑡 = 𝐶𝑠 ∙ 𝑋 𝑡 + 𝐷𝑠 ∙ 𝑢 𝑡  (A.35) 
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𝑋 𝑡 =

 
 
 

 
 
𝑥 1 𝑡 

𝑥1 𝑡 

𝑥′′′2 𝑡 

𝑥 2 𝑡 

𝑥 2 𝑡  
 
 

 
 

    𝑢 𝑡 = 𝑉𝑖𝑛  𝑡     𝑦 𝑡 =  
𝑥1 𝑡 

𝑥 2 𝑡 
  

 

𝐴𝑠 =

 
 
 
 
 
 
 −

𝑏1

𝑚𝑡
0 0 0 0

1 0 0 0 0

0 0 −
𝑏1 ∙ 𝑚𝑎 + 𝑚𝑡 ∙ 𝑏2

𝑚𝑡 ∙ 𝑚𝑎
−
𝑏1 ∙ 𝑏2 + 𝑚𝑡 ∙ 𝑘2

𝑚𝑡 ∙ 𝑚𝑎
−

𝑏1 ∙ 𝑘2

𝑚𝑡 ∙ 𝑚𝑎

0 0 1 0 0
0 0 0 1 0  

 
 
 
 
 
 

  

 

𝐵𝑠 =

 
 
 
 
 
 
 

𝐾𝑡 ∙ 𝐾𝑎
𝑚𝑡

0
𝐾𝑡 ∙ 𝐾𝑎 ∙ 𝑘2

𝑚𝑡 ∙ 𝑚𝑎

0
0  

 
 
 
 
 
 

    𝑐𝑠 =  
0 0 0 0 0
0 0 0 1 0

     𝐷𝑠 =  
0 0
0 0

   

 

Same rules from Appendix A.3 are applied to discretise the continuous state space 

model. Then the discretised state space model with the motor and oscillator dynamics 

can be obtained. 

 

𝑋 𝑘 + 1 = 𝐴𝑧 ∙ 𝑋 𝑘 + 𝐵𝑧 ∙ 𝑢 𝑘  (A.36) 

 

𝑦 𝑘 = 𝐶𝑧 ∙ 𝑋 𝑘  (A.37) 

 

𝐴𝑧 = 𝐼 + 𝐴𝑠 ∙ 𝑇𝑠 ∙ Ψ (A.38) 
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𝐵𝑧 = 𝑇𝑠 ∙ Ψ ∙ 𝐵𝑠  (A.39) 

 

𝐶𝑧 = 𝐶𝑠  (A.40) 

 

𝐷𝑧 = 𝐷𝑠 = 0 (A.41) 

 



Appendix B. | Oscillator Brackets 

124 

Appendix B. Oscillator Brackets 

 

 

Figure B.1: Oscillator Brackets Model 
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Figure B.2: Oscillator Brackets Drawing 

Note: The flexible bar used in the experiment is longer than as shown in the figure. 
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Figure B.3: Oscillator Brackets Measurements 

Units: Millimetres (mm) 

Note: The flexible bar used in the experiment is longer than as shown in the figure. 
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Appendix C. System Parameters 

The following table presents the parameters applied in the control system. 

 

Proportional Integral (PI) Velocity Controller 

P: 41.8 I: 130.0 

 

Proportional (P) Position Controller 

P: 15 

 

Compensator Gain 

𝜔0 = 55.2 𝑟𝑎𝑑/𝑠𝑒𝑐 

 

Motor Position Transfer Function Oscillator Acceleration Transfer Function 

𝑥1

𝑉𝑖𝑛
=

157.9

30.7 ∙ 𝑠2 + 156.1 ∙ 𝑠
 

𝑥 2
𝑉𝑖𝑛

=
1281.2 ∙ 𝑠

𝑠3 + 13.1 ∙ 𝑠2 + 3060.6 ∙ 𝑠 + 36962.1
 

 

Note: The above oscillator acceleration transfer function does not consider the 

dynamics coupling between the motor and oscillator. It is obtained by applying the NLS 

optimization only on the oscillator acceleration frequency response result. 


