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Abstract

The GMM estimator is widely used in the econometrics literature. This thesis
mainly focus on three aspects of the GMM technique. First, I derive the prooves
to study the asymptotic properties of the GMM estimator under certain conditions.
To my best knowledge, the original complete prooves proposed by Hansen (1982)
is not easily available. In this thesis, I provide complete prooves of consistency
and asymptotic normality of the GMM estimator under some stronger assumptions
than those in Hansen (1982). Second, I illustrate the application of GMM estimator
in linear models. Specifically, I emphasize the economic reasons underneath the
linear statistical models where GMM estimator (also referred to the Instrumental
Variable estimator) is widely used. Third, I perform several simulation studies to
investigate the performance of GMM estimator under different situations.
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Chapter 1

Introduction of GMM

In statistics, we often wish to learn about some aspects of the world from a data set.
For example, marketing researchers are often interested in analyzing what factors
affect a consumer’s decision on buying one brand versus another within a product
category. Typical consumer scanner data from stores provide a basis for such stud-
ies. In many cases, we assume an underlying model which potentially generates the
observed data. The model could come from our prior experiences, or some theo-
retical arguments. Following the previous example, marketing researchers usually
model consumers’ decisions based on the theory of utility maximization. Specifi-
cally, they assume consumers make their decision by maximizing some underlying
utility function which depends on unknown parameters (usually called preference
parameters or structural parameters in the econometrics literature). Hence, the
observed decisions are ultimately functions of observed covariates and a set of
unknown parameters of interest. One main goal of statistical inference is to esti-
mate the unknown parameters by effectively using the observed data. This domain
in statistical inference is usually called estimation. In addition, we often wish to
utilize the data to test some of our beliefs, or some implications drawn from theo-
retical models. In other words, we hope to see whether the observed data provides
inconsistent evidence against some statements. This domain in statistical inference
is usually called hypothesis testing. Both domains admit the inherent randomness
embedded in the observed data. Out of many statistical techniques, the Method
of Moment (MM) and Maximum Likelihood Estimation (MLE) are two popular
candidates used in statistical inferences. Both methods represent our knowledge or
assumptions about the mechanism that generates the observed data. For instance,
the MM method reflects our knowledge or assumptions about the moment condi-
tions belonging to the mechanism that generates the data. On the other hand, the
use of MLE method requires more knowledge about the mechanism, i.e. the joint
distribution of the observed data. The Generalized Method of Moment, from some
point of view, lies between the MM and MLE methods. It generally requires more
information about the data than MM does, yet leaving the complete joint distribu-
tion of the data unspecified.

Suggested by its name, the cornerstone of GMM is a set of population mo-
ment conditions. These conditions could come from the assumptions made by
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1.1. Method of Moment

researchers, or implications drawn from some theoretical models. From this point
of view, it is obvious that there is a strong connection between GMM and Method
of Moment (MM). Section 1.1 briefly reviews the idea of Method of Moment. It
also discusses the directions in which GMM extends the idea of MM. It is also in-
teresting to compare GMM with another popular estimation method MLE. Section
1.2 briefly reviews the idea of MLE and provides some motivations for the fact
that GMM is preferred to MLE in some cases. After Hansen’s 1982 paper, GMM
has become a widely used estimation method in econometrics, especially macroe-
conomics and finance. Section 1.3 provides an example to illustrate how moment
conditions can be used in econometrics problems.

1.1 Method of Moment

In statistical analysis, the population moments of a random variable are often func-
tions of the unknown parameters of interest. The idea of MM is simply to equate
the population moment conditions to the analogous sample moments and define the
estimates of the unknown parameters to be the solutions of the resulting equations.
To illustrate the idea, consider a simple example. Suppose we have a random sam-
ple of annual incomes in 2010 of a city (e.g. Vancouver). Denote Xi as the annual
income of the ith individual in the sample. Further assume all individual annual
incomes in the sample come from a common population distribution and they are
independent of each other. Notationally, we have

Xi
i.i.d∼ N

(
µ, σ

2) , i = 1, 2, ..., n,

where µ and σ2 are the population mean and variance, respectively. In this simple
example, our interested parameters are µ and σ2. Due to the i.i.d structure, by the
classical Law of Large Number, when the sample size n is large, we have

n−1
Σ

n
i=1xi ≈ E (X1)

n−1
Σ

n
i=1x2

i ≈ E
(
X2

1
)
,

where xi denotes the observed values of Xi. The Method of Moment involves es-
timating

(
µ, σ2

)
by the values

(
µ̂, σ̂2

)
defined as the solution to the analogous

sample moment conditions

n−1
Σ

n
i=1xi− µ̂ = 0

n−1
Σ

n
i=1x2

i − µ̂
2− σ̂

2 = 0.
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1.2. Maximum Likelihood Estimator

It follows that

µ̂ = n−1
Σ

n
i=1xi

σ̂
2 = n−1

Σ
n
i=1 (xi− µ̂)2 . (1.1)

This approach is very intuitive but not without its weaknesses. For example,
all the higher moments of the normal distribution are also functions of

(
µ, σ2

)
.

Therefore, this technique could have been applied as effectively to the third and
the fourth moments of the distribution. Yet the resulting estimators of

(
µ, σ2

)
would be different from those given by (1.1). There would be an issue on which
estimators should be used within the MM framework. On the other hand, there is
another potential weakness inherent in the MM framework. Suppose a researcher
would like to base the estimation of

(
µ, σ2

)
on the first three moments of X1, that

is the first two moment equations introduced previously plus

E
(
X3

1
)
−3E

(
X2

1
)

µ +3E (X1)µ
2−µ

3 = 0.

In this case, the three moment conditions form a system of three equations with
only two parameters. Such a system typically has no solution. Therefore, the
Method of Moment is infeasible in this case. This is one motivation for the origi-
nation of GMM, which is able to utilize information presented in a large number of
moment equations, often larger than the number of parameters. In addition, histor-
ically speaking, we usually refer the moment conditions in MM to the expectations
of the polynomial powers of a random variable that is directly observed. This
serves as another motivation for GMM in which the moment conditions are usu-
ally referred to the expectation of some general functions of the (observed) random
variables.

1.2 Maximum Likelihood Estimator

Although GMM is widely used in many econometric studies, MLE remains the
main statistical toolkit in some areas. I will first present an example of demand
analysis which is a classical topic in marketing. Some discussion about the poten-
tial weaknesses of MLE is presented next.

1.2.1 Demand Analysis

In marketing, the market share of a brand within a product category is of great
interest to the managers and the researchers. They are usually interested in the fol-
lowing questions: how does my brand’s market share change if we raise our price
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1.2. Maximum Likelihood Estimator

by one percent? How does my brand’s market share change if one of our com-
petitors decreases its price by one percent? How does my brand’s sales change if
there is a promotion? Many of this type of questions could be summarized in such
a way: how does our marketing strategy affect the profit. To answer these ques-
tions, it is crucial to understand how consumers’ purchase decisions are made. In
other words, we hope to understand what variables and how they affect consumers’
demand. The random utility model is usually employed for such analysis.

To illustrate the model, denote J as the number of brands in a product cate-
gory. Suppose a marketing researcher collects a random sample of N consumers at
a specific time. Denote Wi as the information collected from the ith consumer,
Yi as a J-dimensional vector with the jth component being one if the ith con-
sumer purchased the jth brand and zero otherwise, p as a J-dimensional vec-
tor containing the prices for all brands, and Xi as a Q dimensional vector con-
taining the demographic information of the ith consumer. Notationally, we have
{Wi = (Yi, p, Xi) , i = 1,2, ...,N}, where {Wi} are i.i.d random vectors. Further
suppose a consumer only purchases one brand at a time. The random utility model
postulates that for the ith consumer, his/her utility of consuming the jth brand (ui j)
can be expressed as follows1

ui j = α j +β · p j +δ
′
jXi + εi j, j = 1,2, ...,J,

where α j is the brand-specific parameter, β is usually called price sensitivity, δ j is
a vector containing the parameters of the demographic variables for the jth brand,
εi j contains all other factors that determine the utility. In the econometrics liter-
ature, εi j is often referred to “demand shock” which is assumed to be known by
the consumer but unobserved by the researcher. Hence, from the perspective of the
researcher, εi j is assumed to be random, which is the reason for the name “random
utility model”. It is assumed that a consumer would choose to purchase brand j if
it gives him/her the highest utility. Hence, the probability (from the perspective of
the researcher) of observing the ith consumer purchased the jth brand is

Pi j = P
{

ui j ≥ uik, for anyk 6= j
}
.

If {εi1,εi2, ...,εiJ} are i.i.d random variables across brands, which follows the Type
I Extreme Value distribution, the above probability has a closed form expression

Pi j =
exp
(

α j +β · p j +δ ′jXi

)
Σk exp

(
αk +β · pk +δ ′kXi

) . (1.2)

1The detailed specification varies from study to study. The specification presented here is just for
illustration.
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1.2. Maximum Likelihood Estimator

Further assume the demand shocks are independent across consumers. Hence, the
probability of observing the data set is

L = Πi

{
Π j

(
Pyi j

i j

)}
.

When L is viewed as a function of the unknown parameters, we call it the likelihood
function. The MLE is a statistical method in which we estimate{

α j, β , δ j, j = 1,2, ...,J
}

by {
α̂ j, β̂ , δ̂ j, j = 1,2, ...,J

}
at which the likelihood function is maximized.

There are two points worth notice in this example. First, the randomness in
the above model framework is from the perspective of the researcher not the con-
sumer. Since the demand shock (εi j) is assumed to be known by the consumer,
there is no uncertainty when the consumer is making a decision. Second, based
on the observed data, we can analyze the problem from a usual GLM multinomial
logit model and obtain the same likelihood function. Specifically, the multino-
mial response in this case is Yi and the covariates are p and Xi. If we assume the
following link function (choosing the first brand as the baseline)

log
Pi j

Pi1
= α j +β · p j +δ

′
jXi,

the choice probability Pi j can also be expressed as (1.2). So from the perspective of
the final likelihood function, the random utility model introduced above is equiva-
lent as the multinomial logit model introduced in many GLM textbooks. However,
the construction of random utility model reflects the theoretical arguments from
the economics literature and will make a difference when the underlying economic
problem becomes more complicated.

1.2.2 Potential Weakness of MLE

In general, the data set is assumed to come from a distribution family which is
indexed by a vector of unknown parameters of interest. The idea of MLE is to pick
up the point in the parameter space that maximizes the likelihood function as the
estimate. Under some regularity conditions, the MLE is optimal in the sense that
its asymptotic variance attains the Cramer-Rao lower bound. Despite its optimality,
there are some potential weaknesses of MLE, compared to GMM.
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1.3. An Example of Moment Conditions

1. The optimality of MLE stems from its basis on the joint probability distri-
bution of the data. Under certain conditions, we know that MLE is the most
efficient (asymptotically) estimator, provided the population distribution is
correctly specified. However, in some circumstances, this dependence on
the probability distribution can become a weakness. The desirable statistical
properties of MLE might not be realized if the distribution is not correctly
specified. However, an economic theory rarely provides a complete knowl-
edge of the probability distribution of the data. On the other hand, the GMM
method does not require full specification of the distribution of the data. The
cornerstone of GMM is a set of moment conditions, which might be deduced
from the economics theories or the assumed econometric model. Hence, the
GMM method is often regarded to be more robust to the MLE method, in
terms of misspecification of the joint distribution.

2. In many econometric applications, the computation of MLE could be very
cumbersome. Two types of problems tend to occur. First, the econometric
model implied by the economic theory reasonably coincides with the spec-
ified joint distribution. But the likelihood function is extremely difficult to
evaluate numerically with the current computer technology. In other cases,
the economic theory only implies some aspects of the joint distribution. But
the complete specification of the joint distribution involves some additional
parameters which must also be estimated. Often in these cases, the like-
lihood function must be maximized subject to a set of nonlinear constraints
implied by the economics model, resulting in more computational burden. In
contrast, in many econometric cases, the GMM framework provides a com-
putationally convenient method of conducting statistical inferences without
completely specifying the likelihood function.

Besides these two potential reasons, there are others that motivate the usage of
GMM instead of MLE in many econometric applications. I will provide an exam-
ples in the next section.

1.3 An Example of Moment Conditions

The method of Instrumental Variables (IV) is probably the most popular empirical
tool in econometrics. In fact, the method of IV is a special case of GMM. In this
section, I will present a simple example to illustrate the reasons accounting for the
popularity of IV in econometrics. In addition, I will briefly discuss the difficulty of
MLE encountered in this example.
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1.3. An Example of Moment Conditions

The estimation of the relationship between demand and price is a classical
problem in econometrics. In many cases, the problem can be simply described by
one sentence: does higher price cause lower demand? The keyword of the problem
is “cause”. The definition of causation varies across different subject areas, even
within a same academic area. Due to its ambiguity, I do not aim to give a precise
and rigorous definition of causation in this essay. Instead, I will present one of its
definition loosely which is accepted by many scholars in the field. In the demand
and price example, the causal effect of price in the economics literature is usually
(loosely) defined as: the units demand changes in response to a unit change of
price holding all other relevant factors fixed. In the economics literature, such
causal effect is also referred to “the ceteris paribus2 effect of price”.

With this in mind, the example proceeds as follows. Suppose a researcher col-
lects a random sample of quantity and price pairs {qi, pi} (i = 1,2, ...,N) across
N geographical markets for a specific commodity (e.g. a specific brand of coffee).
Further assume demand and price follow a linear relationship as follows

qi = α +β · pi + εi, (1.3)

where α is the intercept, β is the price sensitivity, εi contains all other demand
relevant factors in the ith market which are not observed by the researcher. Without
loss of generality, further assume E (εi) = 0. The causal parameter of interest is β ,
which captures the effect of price on demand while holding other factors constant.
Intuitively, we expect the sign of the coefficient β should be negative. However, the
OLS estimate of β based on many real data is often positive. The underlying reason
is that prices are not randomly assigned to different geographical areas. Instead,
firms in different areas set their prices according to the demand relevant factors.
In other words, firms set their prices according to εi which is not observed by the
researcher. For example, the wealth level of a city certainly affects the demand
while it is also a factor determines the firms pricing strategy. In fact, we expect the
wealthier a city is, the higher the price and the demand would be. In such case, the
positive OLS estimate of β is largely driven by the positive correlations between
price and εi, as well as between demand and εi. In statistics, we often refer such
problem to the existence of unobserved confounders. In econometrics, researchers
often refer such reason to a terminology “endogeneity”. To be more specific, the
endogeneity issue explained above can be mathematically expressed as3

E (piεi) 6= 0. (1.4)

2Ceteris paribus is a Latin phrase, literally translated as “with other things the same” or “all other
things being equal or held constant”.

3Note that this condition is equivalent to corr (pi,εi) 6= 0 under the assumption E (εi) = 0.
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1.3. An Example of Moment Conditions

One way to identify the interested parameter β is the use of instrumental variables.
Specifically, if we could find an observed variable zi, which is correlated with price
but uncorrelated with εi, then it implies the following moment condition according
to (1.3)

Cov(zi,qi)−β ·Cov(zi, pi) = 0.

If we can consistently estimate Cov(zi,qi) and Cov(zi, pi), we can also consistently
estimate β . Suppose we can find K (K > 2) such observed variables, denoted by a
vector zi = (zi1,zi2, ...,ziK). Since E (ziεi) = 0, from (1.3) we have

E (ziqi)−αE (zi)−βE (zi pi) = 0. (1.5)

(1.5) implies a system of K (K > 2) equations with only two parameters α and β .
The GMM technique introduced in latter chapters can be applied to consistently
estimate the parameters.

The economic meaning of instrumental variable is as follows. Since zi is corre-
lated with price but uncorrelated with εi, zi affects demand only through price. For
example, suppose the commodity is coffee, zi could be the price of the raw mate-
rial used in producing coffee. In such a case, the price of coffee is correlated with
zi, but most economists believe zi is uncorrelated with any other factors that affect
demand4. In the econometrics terminology, zi is said to be satisfy the “exclusion
restriction”.

The intuition for why the instrumental variable z can help to identify the causal
effect of p on q is as follows. Suppose we observe when z increases one unit, q
and p increases four and two units respectively. Then it is as if we hypothetically
“observe” when p increases one unit, q increases two units. Since z is uncorrelated
with all other factors that affect q, all other relevant factors can be treated as fixed
in the above hypothetical observation. In summary, with the help of instrumen-
tal variable, we could hypothetically observe when p increases one unit with all
other variables constant, q increases two units. The causal effect of p on q is then
identified.

To illustrate the difficulty of applying MLE in the above problem, notice that
(1.4) implies E (εi| pi) 6= 0. In general, due to the endogeneity issue, E (εi| pi) is
a highly non-linear function of pi. However, in order to apply MLE, we need to
specify the functional form of the conditional expectation which is a controversial
task. Therefore, MLE is generally not applied in the above problem.

4Whether this assumption is realistic or not is beyond the scope of this essay.
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1.4. Definition of GMM Estimator

1.4 Definition of GMM Estimator

In this section, I will formally define GMM estimator. In the next chapter, I will
continue to study its asymptotic properties. Assume the researcher has collected
data on realized values of {Xn} , n = 1, 2, ..., N, where {Xn} is a set of p× 1 i.i.d
random vectors. Denote S as the parameter space which is a subset of Rq. Consider
a function f : Rp×Rq→ Rr, for some r and we are most interested in r ≥ q. The
population model is defined through the following moment condition

E { f (X1, β )}= 0, for some β ∈ Rq.

Denote aN as a non-singular r× r matrix (possibly depends on the data), which
satisfies

aN
a.s→ a0,

where a0 is a constant r× r non-singular matrix. Denote

d (b) =
{(

aNN−1
Σ

N
i=1 f (Xi, b)

)′ (
aNN−1

Σ
N
i=1 f (Xi, b)

)}
. (1.6)

DEFINITION 1.1: The function d (b) in (1.6) is defined as the GMM objective
function.

DEFINITION 1.2: The GMM estimator is defined as

β̂ GMM
N = argminb∈Sd (b).

Note that in the above definition, the population moment condition implies a sys-
tem of r equations, containing only q (r ≥ q) parameters. If we directly form the
analogous sample moment equations, generally there does not exist a solution. To
illustrate the rationale of GMM estimator, let’s consider a simple example. Sup-
pose the population moment conditions are

E (X1)−β1 = 0

E
(
X2

1
)
−β2 = 0

E
(
X3

1
)
−3β1β2−2β

3
1 = 0.

Hence we have

[E (X1)−β1]
2 +
[
E
(
X2

1
)
−β2

]2
+
[
E
(
X3

1
)
−3β1β2−2β

3
1
]2

= 0.
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1.4. Definition of GMM Estimator

Since in general there does not exist a pair
(

β̂1, β̂2

)
such that

d
(

β̂1, β̂2

)
=

[
N−1 (

Σ
N
i=1Xi

)
− β̂1

]2
+
[
N−1 (

Σ
N
i=1X2

i
)
− β̂2

]2

+
[
N−1 (

Σ
N
i=1X3

i
)
−3β̂1β̂2−2β̂

3
1

]2

= 0,

instead the idea of GMM estimator is to minimize the above quadratic distance:(
β̂1,GMM, β̂2,GMM

)
= argmin(β1,β2)

d (β1,β2) ,

in which the weighting matrix aN is a 3×3 identity matrix.
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Chapter 2

Theoretical Development of
GMM

The Generalized Method of Moment was first proposed by Professor Hansen in
Econometrica 1982. In the original paper, Hansen studies the large sample prop-
erties of GMM estimators under the setup where the observed data is assumed to
be a realization of some stochastic process. There are four main results in the pa-
per. First, the author shows the GMM estimator is strongly consistent under some
conditions. Secondly, the GMM estimator is asymptotically normally distributed
under certain conditions. Thirdly, there is a lower bound for the asymptotic vari-
ance of GMM estimators. Fourth, the author proposed a statistical test for the va-
lidity of some economic modeling specifications based on the GMM framework5.
However, the author did not provide detailed proofs in the paper. For example, the
author only presented the main assumptions and outlined the idea of the proof. The
promised details are not easily available based on my best effort. For instance, it
is not in the technical report as we may have expected. In this section, I provide
a proof of my own. For simplicity, I will work with the situation where the ob-
served data are realizations of some i.i.d random variables. In fact, his rough proof
is very similar to Wald, Wilks and Cramer’s proofs of consistency and asymptotic
normality of MLE. The rest of this section is organized as follows. Section 2.1 pro-
vides the proof of consistency of the GMM estimator under i.i.d situation. Section
2.2 derives the proof of asymptotic normality of the GMM estimator under i.i.d
situation. Section 2.3 introduces the notion of efficient GMM.

2.1 Consistency

In this section, I discuss the proof of consistency of the GMM estimator under the
i.i.d situation. Before going into technical details, it is worthwhile to sketch the
basic idea of the proof. Similarly to Wald’s proof of consistency of the MLE, the
idea could be summarized in one sentence: the GMM estimator always picks up

5The material on this issue is beyond the scope of this essay.
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the “winner”, which coincides with the true parameter that we wish to estimate in
the limit. The main assumptions used in the proof are listed below.

ASSUMPTION 2.1.1: The model introduced in Section 1.4 is identifiable. That is,
the moment condition

E { f (X1, β )}= 0

is satisfied if and only if β = β0, where β0 ∈ Rq and is often referred to the “true”
parameter.

Under assumption 2.1.1, together with the assumption that a0 is non-singular,
a0E { f (X1, β )} = 0 holds if and only if E { f (X1, β )} = 0. Hence it implies
β = β0. Therefore, as a function of β , the following function

D(β ) = (a0E { f (X1, β )})′ (a0E { f (X1, β )}) ,

attains its lower bound zero, if and only if β = β0. Since the GMM estimator
always picks up the “winner”, which is the minimum of the sample analogue of
D(β ), the winner will eventually fall into an infinitesimal neighborhood of the true
parameter in the limit. Denote the sample analogue of D(β ) as

d (β ) =
(
aNN−1

Σ
N
i=1 f (Xi, b)

)′ (
aNN−1

Σ
N
i=1 f (Xi, b)

)
.

In fact, Hansen (1982) only proves d (β ) converges almost surely to D(β ) under
the situation where the data is a realization of some stochastic process. Now we
continue to list more assumptions.

ASSUMPTION 2.1.2: The parameter space S is compact.

ASSUMPTION 2.1.3: f (·, β ) is Borel measurable for each β in S.

ASSUMPTION 2.1.4: f (x, ·) is continuous on S for each x in Rp.

ASSUMPTION 2.1.5: limδ→0E {ε (X1, β , δ )}= 0, f or every β ∈ S, where

ε (X1, β , δ ) = sup{| f (X1, β )− f (X1, α)| : α ∈ S, ‖β −α‖< δ} .

Assumption 2.1.2 implies if S is covered by a collection of open sets, then it is
also covered by a finite sub-collection of them.. Assumption 2.1.3 is a technical
requirement. Assumption 2.1.4 means the transformation of the observed data,
when viewed as a function of the parameters, is smooth. Assumption 2.1.5 means:
in the limit, if α and β is sufficiently close, the value of E { f (X1, α)} can be
arbitrarily close to E { f (X1, β )}. Let B be a measurable subset of S. Define

12



2.1. Consistency

g(x, B) = in fβ∈B (a0 f (x, β ))′ (a0 f (x, β )) ,

and

d (B) = in fb∈B

{(
aNN−1

Σ
N
n=1 f (Xn, b)

)′ (
aNN−1

Σ
N
n=1 f (Xn, b)

)}
.

For any b ∈ S, by SLLN, we have

N−1
Σ

N
n=1 f (Xn, b) a.s→ E { f (X1, b)} .

According to the GMM definition in section 1.4, we have

aN
a.s→ a0.

Therefore, for every b ∈ S, we have

(
aNN−1

Σ
N
n=1 f (Xn, b)

)′ (
aNN−1

Σ
N
n=1 f (Xn, b)

)
a.s→ (a0E { f (X1, b)})′ (a0E { f (X1, b)}) .

Since it’s true for all b ∈ S and by the continuity of f in β (assumption 2.1.4), we
have

d (B) a.s→ E {g(X1, B)} .

The following lemma plays an important role in the proof of consistency later.

LEMMA 2.1.1: Suppose: (i) The parameter space S = ∪k
j=0B j; (ii) The true pa-

rameter is in B0 and for all j > 0, E
{

g(X1, B j)
}
> E {g(X1, β0)} = 0. Then as

N→ ∞,

Pr
(

β̂
GMM
N ∈ B0

)
→ 1.

Proof:
Denote

{
β̂ GMM

N ∈ B j, i.o.
}

as ∩∞
N=1∪∞

n=N

{
β̂ GMM

n ∈ B j

}
. We need only show

Pr
(

β̂
GMM
N ∈ B j, i.o.

)
= 0,

for each j = 1, 2, ...,k. Without loss of generality, assume k = 1 and hence j = 1.

13
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Pr
(

β̂
GMM
N ∈ B1, i.o.

)
≤ Pr (d (B1)≤ d (B0) , i.o.) .

Since

d (B1)
a.s→ E {g(X1, B1)} ,

d (B0)
a.s→ E {g(X1, B0)} ,

E {g(X1, B1)}> E {g(X1, B0)} ,

we have

Pr
(

β̂
GMM
N ∈ B1, i.o.

)
≤ 0.

It is equivalent as Pr
(

β̂ GMM
N ∈ B0, i.o.

)
= 1. Therefore Pr

(
β̂ GMM

N ∈ B0

)
→ 1.

Q.E.D.

THEOREM 2.1: Suppose Assumptions 2.1.1-2.1.5 are satisfied, the GMM estima-
tor defined in Section 1.4 converges almost surely to β0.

Proof:
For a sufficiently large r, denote B1 = {β : ‖β −β0‖> r}. we have

E {g(X1, B1)}> E {g(X1, β0)}= 0.

Hence, by Lemma 2.1.1, Pr
(

β̂ GMM
N ∈ B1, i.o.

)
= 0. For an arbitrary ε > 0, let

B2 = {β : ε ≤ ‖β −β0‖ ≤ r}. For every β ∈ B2, by Assumption 2.1.1 (identifi-
cation), Assumption 2.1.4 (continuity) and Assumption 2.1.5, we can find small
enough δβ , such that

E
{(

a0 f
(
x, β

′))′ (a0 f
(
x, β

′))}> E
{
(a0 f (x, β0))

′ (a0 f (x, β0))
}
= 0,

for all β ′ where ‖β ′−β‖ ≤ δβ . Denote Aβ =
{

β ′ : ‖β ′−β‖ ≤ δβ

}
. By As-

sumption 2.1.2 (compactness), B2 will be covered by finitely many such Aβ , say
A j, j = 1, 2, ..., m. Then by Lemma 2.1.1,

Pr
(

β̂
GMM
N ∈ A j, i.o.

)
= 0,

for j = 1, 2, ..., m. So, we have shown, for every ε > 0,

Pr
(∥∥∥β̂

GMM
N −β0

∥∥∥> ε, i.o.
)
= 0.

This implies β̂ GMM
N → β0 almost surely. Q.E.D.
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2.2 Asymptotic Normality

In this section, I derive the asymptotic distribution of the GMM estimator after
properly scaled under the i.i.d situation. Similarly to the proof of asymptotic nor-
mality of MLE, the original proof in the paper re-defines the GMM estimator to be
a sequence of solutions to the first order condition of the GMM objective function.
In my proof here, however, I simply assume the GMM estimator defined in Section
1.4 satisfies the first order condition of the GMM objective function, which means

(
N−1

Σ
N
n=1

∂ f (Xn, b)
∂b

∣∣∣∣
b=β̂ GMM

N

)′
a′NaNN−1

Σ
N
n=1 f

(
Xn, β̂

GMM
N

)
= 0. (2.1)

Recall that the GMM estimator is defined as the point that minimizes the GMM
objective function. Equation (2.1) indicates the GMM estimator being studied in
this section satisfies the necessary condition of being a minimum point. In other
words, the GMM estimator is further assumed to be the solution that equates the
first derivative of the GMM objective function to zero. Before going to the proof,
the important assumptions are listed below.

ASSUMPTION 2.2.1: S is an open subset of Rq that contains β0, which is an interior
point of S.

ASSUMPTION 2.2.2: ∂ f (Xn,b)
∂b′ (n = 1, ,2, ..., N) is Borel measurable for each b∈ S.

ASSUMPTION 2.2.3:
(

N−1ΣN
n=1

∂ f (Xn,β )
∂b′

)
p→ E

{
∂ f (X1,β0)

∂b′

}
uniformly in a small

neighborhood of β0. E
{

∂ f (X1,β0)
∂b′

}
is finite, and has full rank.

ASSUMPTION 2.2.4: E
{

f (X1, β0) f (X1, β0)
′} exists, is finite, and has full rank.

ASSUMPTION 2.2.5: The GMM estimator defined in Section 1.4, which is also
assumed to satisfy the first order condition of the GMM objective function as stated
in (2.1), is strongly consistent.

Assumption 2.2.1 rules out the possibility of boundary solution which simplifies
the proof. Assumption 2.2.2 is a technical requirement. In the original paper,
assumption 2.2.3 is obtained through a lemma under some conditions. Here, I
simply state it as an assumption. Since the proof of consistency of GMM estimator
in the previous section is based on the definition in section 1.4, assumption 2.2.5
indicates the consistency result follows in the case where (2.1) is also satisfied.
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2.2. Asymptotic Normality

THEOREM 2.2: Suppose Assumptions 2.2.1-2.2.5 are satisfied. Then the GMM
estimator defined in Section 1.4, which is also assumed to satisfy the first order
condition of the GMM objective function as stated in (2.1), converges in distribu-
tion to a normally distributed random vector after properly scaled. Specifically,
denote

V =
(
Q′a′0a0Q

)−1 Q′a′0a0Ωa′0a0Q
(
Q′a′0a0Q

)−1
,

Q = E
{

∂ f (X1, β0)

∂b′

}
,

Ω = E
{

f (X1, β0) f (X1, β0)
′} ,

then
√

N
(

β̂ GMM
N −β0

)
d→ N (0,V ).

Proof:
By assumption 2.2.5, for sufficiently large N, we can expand f

(
Xn, β̂ GMM

N

)
around

f (Xn, β0). We obtain

f
(

Xn, β̂ GMM
N

)
= f (Xn, β0)+

∂ f (Xn,β
∗)

∂b′

(
β̂ GMM

N −β0

)
,

where β ∗ is between β̂ GMM
N and β0. Substitution of the above expansion into the

first order condition (2.1) yields

0 =

N−1
Σ

N
n=1

∂ f
(

Xn, β̂ GMM
N

)
∂b′

′ a′NaNN−1
Σ

N
n=1 f (Xn, β0)

+

N−1
Σ

N
n=1

∂ f
(

Xn, β̂ GMM
N

)
∂b′

′ a′NaN

×
(

N−1
Σ

N
n=1

∂ f (Xn, β ∗)

∂b′

)(
β̂

GMM
N −β0

)
,

from which we obtain
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√
N
(

β̂
GMM
N −β0

)

= −


N−1

Σ
N
n=1

∂ f
(

Xn, β̂ GMM
N

)
∂b′

′ a′NaN

(
N−1

Σ
N
n=1

∂ f (Xn, β ∗)

∂b′

)
−1

×

N−1
Σ

N
n=1

∂ f
(

Xn, β̂ GMM
N

)
∂b′

′ a′NaN
1√
N

Σ
N
n=1 f (Xn, β0) .

Due to E { f (Xn, β0)}= 0 and the i.i.d structure of {Xn}, together with Assumption
2.2.4, applying CLT gives us

1√
N

Σ
N
n=1 f (Xn, β0)

d→ N (0, Ω) .

Under Assumption 2.2.3, when N is large enough, due to consistency of β̂ GMM
N , we

have N−1
Σ

N
n=1

∂ f
(

Xn, β̂ GMM
N

)
∂b′

 p→ Q.

Since β̂ GMM
N is consistent, as a result, β ∗

p→ β0 as well. Hence, we have(
N−1

Σ
N
n=1

∂ f (Xn, β ∗)

∂b′

)
p→ Q.

Since aN
p→ a0 by definition and the fact that (Q′a′0a0Q) is invertible due to Q and

a0 are of full rank, we have((
N−1ΣN

n=1
∂ f(Xn, β̂

GMM
N )

∂b′

)′
a′NaN

(
N−1ΣN

n=1
∂ f (Xn,β

∗)
∂b′

))−1
p→ (Q′a′0a0Q)−1,

(
N−1ΣN

n=1
∂ f(Xn, β̂

GMM
N )

∂b′

)′
a′NaN

p→ Q′a′0a0.

Then, by Slutsky’s Theorem, we have
√

N
(

β̂ GMM
N −β0

)
d→ N (0,V ). Q.E.D.
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2.3 Efficiency

From the previous sections, we could see that the asymptotic variance of the GMM
estimator after properly scaled depends on the weight matrix aN . The following
theorem gives us a lower bound and identify a situation where it is attained. I will
assume Ω (defined in theorem 2.2) is positive definite.

THEOREM 2.3: The lower bound for the asymptotic variance of the class of GMM
estimator indexed by aN is given by

(
Q′Ω−1Q

)−1. The lower bound is achieved if
a′NaN

p→Ω−1.

Proof:
The first part amounts to say that(

Q′Ω−1Q
)−1− (Q′a′0a0Q)−1 Q′a′0a0Ωa′0a0Q(Q′a′0a0Q)−1

is negative semi-definite for any a0 that has full rank. This clam is equivalent to

Q′Ω−1Q−Q′a′0a0Q
(
Q′a′0a0Ωa′0a0Q

)−1 Q′a′0a0Q ≥ 0. (2.2)

Since Ω is positive definite, we can write

Ω−1 =C′C,

for some invertible C as well. Hence, we can re-write (2.2) as

Q′C′CQ−Q′a′0a0Q
(

Q′a′0a0C−1 (C′)−1 a′0a0Q
)−1

Q′a′0a0Q

= Q′C′
[

I−
(
C′
)−1 a′0a0Q

(
Q′a′0a0C−1 (C′)−1 a′0a0Q

)−1
Q′a′0a0C−1

]
CQ.

(2.3)

Define

H =
(
C′
)−1 a′0a0Q.

Hence, (2.3) could be re-written as

Q′C′
(

I−H
(
H ′H

)−1 H ′
)

CQ.

The above matrix is positive semi-definite if I−H (H ′H)−1 H ′ is positive semi-
definite. I−H (H ′H)−1 H ′ is idempotent and, consequently, positive semi-definite.
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Thus, the first part in the theorem is proved. If a′NaN
p→ a′0a0 = Ω−1, then the

asymptotic variance becomes(
Q′Ω−1Q

)−1
Q′Ω−1

ΩΩ
−1Q

(
Q′Ω−1Q

)−1
=
(
Q′Ω−1Q

)−1
.

Hence, the second part in the theorem is proved. Q.E.D.

The intuition of this theorem is as follows. Note that

Ω = E
{

f (X1, β0) f (X1, β0)
′} ,

which represents the variation of each moment condition used in estimation. Hence,
the efficient GMM estimator is attained when each moment condition in the ob-
jective function is weighted by the corresponding inverse of its variance. Conse-
quently, the more information embedded in a moment condition, the higher weight
is assigned to it.
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Chapter 3

Application of GMM in Linear
Models

In the last chapter, I have established certain asymptotic properties of the GMM
estimator based on i.i.d observations. I focus on the application of GMM estimator
for linear models in this chapter. Linear regression model is probably the most
widely used tool in many empirical fields. In addition, GMM estimation technique
in linear regression models is probably the most widely used tool in econometrics.
In fact, when researchers apply GMM estimator in linear regression models, it is
often called the Instrumental Variable Estimator (or IV Estimator). The rest of
this section is organized as follows. Section 3.1 lays out the basic linear model
framework and illustrates the motivations of why GMM estimator is widely used
in econometrics. Section 3.2 derives the efficient GMM estimator in a linear model.
Section 3.3 gives an example of its application.

3.1 Framework and Motivations

Suppose a researcher is interested in analyzing the relationship between a response
variable Y and a vector of covariates X . He/she has collected a random sample
of N i.i.d observations. More specifically, suppose the data are observed by the
researcher but not collected through some experiment. The information of the ith

observation is denoted by Wi = (Yi, X ′i )
′ (i = 1, 2, ...,N), where Yi is a random

scalar (response), Xi = (X1i,X2i, ...,Xki)
′ is a random k× 1 vector (covariates). In

many economic applications, Yi often represents some decision of an economic
agent, Xi often contains demographic information about the agent and other rel-
evant variables which may also be decision outcomes of the same agent or even
other economic agents. For example, Yi can be the number of stores a brand is run-
ning in a geographical area, Xi contains the unit price set by the brand and its other
characteristics. In addition, Xi could also contain the number of stores running by
other brands in the same geographical area. Suppose the researcher believes Yi can
be represented by a linear function of Xi as follows
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Yi = X ′i β +Ui, (3.1)

where β is a k×1 constant parameter vector of interest and Ui is a random scalar,
containing all other factors that affect Yi but are not observed by the researcher.
Suppose Xi contains an intercept term, then the researcher can make the following
assumption without any cost

E (Ui) = 0. (3.2)

In addition, due to the nature of observational data, the researcher also believes Xi

and Ui are correlated. Under (3.2), this implies

E (XiUi) 6= 0. (3.3)

(3.3) indicates at least one covariates in Xi is correlated with Ui. Suppose only
X2i is correlated with Ui. In the econometrics literature, X2i is called endogenous;
since E (X jiUi) = 0 for j 6= 2, those covariates are usually called weakly exogenous.
In contrast, strong exogeneity requires E (Ui|Xi) = 0. In summary, (3.1) to (3.3)
together characterize a linear model that is widely used in econometrics. The key
characteristics of the above model is the endogeneity issue as indicated by (3.3).
In the following, I will discuss why this modeling framework (especially (3.3)) is
particularly important and popular in econometrics and how the condition in (3.3)
emerges in application. I will refer condition (3.3) to “endogeneity” here and there.

3.1.1 Motivations of the Framework

The motivation of such model framework can be summarized into one word: cau-
sation. Recall that in section 1.3, I’ve mentioned the main goal in many classical
econometric analyses is causal inference. The key characteristic in causal inference
is to control for all other relevant factors. In the above model framework, from the
economic agent’s perspective, Yi, Xi and Ui are real value variables instead of ran-
dom variables. Hence, (3.1) implies Yi is a deterministic function of Xi and Ui.
Following the example given at the beginning of section 3.1, from the perspective
of the brand, the number of stores is determined once the brand knows its Xi and
Ui. This economic theoretical argument underneath the above statistical model is
largely neglected in the field. To my best knowledge, few researchers explicitly
state this argument in their works. However, it is shown below this is crucial in
understanding the above model framework. For ease of illustration, suppose Xi is
not a vector but a scalar. Hence the coefficient β can be represented (from the
perspective of the agent) as
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3.1. Framework and Motivations

β =
∂Yi (Xi,Ui)

∂Xi
.

Loosely speaking, β measures the units of Yi changes in response to a unit change
in Xi holding all other relevant factors constant. Therefore, from the agent’s per-
spective, the coefficient β is the “causal effect” of Xi on Yi. Note that from the
agent’s perspective, there is no randomness in the above model. However, from the
researcher’s perspective, {Ui, i = 1,2, ...,N} are nearly always assumed to be ran-
dom variables coming from a common distribution because they are not observed.
Hence, it is fair to say that all randomness arguments in the above model are drawn
from the perspective of the researcher due to his/her inability of observing Ui. Yet,
how do these arguments lead to the formation of condition (3.3)? I will discuss this
issue later in the next sub-section.

In summary, the above model framework is suitable for causal inference in
many economics problems. Here, I briefly present another popular modeling frame-
work in statistics and econometrics, as well as compare it to the above framework.
As shown later, this framework is more suitable for non-causal inference in many
cases. Suppose a researcher is still interested in studying the relationship between
Yi and Xi. But the main focus is no longer the causal effect of Xi on Yi, instead
he/she only focuses on the correlation between Yi and Xi. In other words, the re-
searcher now is interested in the following question: if Xi is observed to increase
one unit, how many units does Yi will be observed to change on average. In this
case, the following model might be useful.

Yi = E (Yi|Xi)+ ei (3.4)

In (3.4), by construction, we have E (ei |Xi ) = 0. Intuitively, the relationship be-
tween Xi and Yi is completely captured by the conditional expectation. The “left-
overs” ei represents any other random shocks to Yi that is uncorrelated with Xi.
Furthermore, let’s assume

E (Yi|Xi) = X ′i δ . (3.5)

The above model framework, (3.4) to (3.5), is a popular linear regression model
in many areas of statistics and some areas of econometrics. The OLS estimator
of δ is consistent. The fundamental difference between two modeling framework
lies in the decomposition of the response variable. In the model of (3.4) to (3.5),
Yi is decomposed as the complete relationship with Xi and a pure random shock
that is uncorrelated with Xi. However, in model (3.1) to (3.3), Yi is decomposed as
the causal relationship with Xi and other relevant factors which might be correlated
with Xi. Mathematically
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E (XiUi) 6= 0 =⇒ E (Ui|Xi) 6= 0,

therefore

E (Yi|Xi) 6= X ′i β .

Suppose Ui is positively correlated with Xi and Yi. Then intuitively speaking, the
complete effect (represented by δ ) of a unit change of Xi on Yi comprises two
components: 1, the causal effect of Xi on Yi, represented by β ; 2, the indirect effect
of Xi on Yi through Ui, which is positive by assumption. Hence, in this case we have
δ > β . Therefore, if we are interested in β , the estimate obtained from running the
OLS regression based on the data will overestimate the causal effect. In addition,
the model framework (3.1) to (3.3) is often backed up by some economic argument
which is from the perspective of some economic agent.

3.1.2 Potential Reasons for Endogeneity

1. Missing Covariates. In many economic applications, the response variable Yi

(or decision variable) is often determined by some observed variables Xi and other
unobserved variables. For example, a salesperson’s sales performance is affected
by the salary paid to him and his effort. In general, we cannot observe a salesper-
son’s effort (denoted by Ui). In many cases, we cannot even measure the effort.
However, it is generally believed that effort is positively correlated with the salary
(reflected by E (XiUi) 6= 0). If we want to investigate whether an increase of salary
causes higher sales performance, the correlation between salary and effort needs to
be considered. Otherwise one may overestimate the causal effect of salary. In an
extreme case, if the causal effect of salary on sales performance is nearly zero while
effort is highly positively correlated with salary and sales performance, running an
OLS regression of sales performance on salary yields a significantly positive salary
coefficient. In such case, the significant positive salary coefficient is largely driven
by the fact that effort is highly positively correlated with salary and sales perfor-
mance. As a result, one may be misled to an impression that higher salary causes
higher sales performance. Hence, based on the misleading OLS regression result, a
firm’s manager may raise salary in order to increase sales. However, if one can use
the IV regression (introduced later) to estimate the true causal effect of salary on
sales performance, the manager may apply another lower-cost policy to stimulate
sales. In fact, if the manager also realizes the driving force for sales performance
is effort, he may seek to re-design a contract that pays the same amount of salary
as before but is more effective in terms of stimulating an employee’s effort, i.e.
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appropriate design of bonus and commission. This research area in economics is
often referred to “contract theory”.

2. Simultaneity. This is a jargon heavily used in the economics and economet-
rics literature. In short, simultaneity means the covariate Xi is chosen optimally
by some economic agent (partially) according to Yi. For example, Yi represents the
salary level of automobile production workers in a city and Xi denotes the num-
ber of automobile firms in the city. An important economic question is whether
higher competition (reflected by larger number of firms) leads to higher salary
level. Intuitively and also suggested by many economic models, higher compe-
tition should lead to higher salary level due to the following reason. Employees
have larger bargaining power against the firm when competition is more severe
because they have more alternatives to choose. From the perspective of the local
government, if this economic intuition is true, they may implement some policy to
attract more investors to the city. Suppose a policy maker collects a random sample
of {Yi,Xi, i = 1,2, ...,N} from N different cities. If he runs an OLS regression of
Yi on Xi, it is very likely the estimated coefficient of Xi is not significantly positive
(even negative in many cases). Based on such result, the policy maker may be mis-
led to believe that encouraging more investors is unable to increase the local salary
level. However, the policy maker may neglect the fact that firms choices of enter-
ing a city or not largely depend on the salary level of the city. Intuitively, a firm
is more likely to enter a city if the local salary level is low. How does this relate
to the unobservable Ui? It is intuitive and suggested by some economic theories
that the larger the population of a city, the cheaper its labor cost is. Hence, a firm
is more likely to enter a city if the local population is larger. Suppose the policy
maker does not collect the population data, then the unobserved Ui contains the ith

city’s population. In such case, Xi and Ui is positively correlated, i.e. E (XiUi)> 0.
However, Yi and Ui is negatively correlated. Thus, a negative OLS estimated coeffi-
cient of Xi on Yi may be largely driven by the fact that Ui is positive correlated with
Xi but negatively correlated with Yi. Based on the above argument, one can treat
simultaneity issue as a special case of missing covariates. For this example, some
researchers argue that the negative OLS estimated coefficient of Xi is generated by
the reverse causality which states that it is actually a lower salary causes a higher
number of firms in a city. From my opinion, the arguments of reverse causality is
the same as those of simultaneity in this case.

3. Measurement Error. The endogeneity issue characterized by (3.3) can also
generated in the case of measurement error. Suppose the researcher is interested in
analyzing the causal effect of Xi on Yi and the true model is

Yi = α +Xiβ + εi.
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Further assume Xi is independent of εi. However, the researcher cannot observe Xi

directly but a proxy for it

X̃i = Xi +ξi.

Hence the regression model faced by the researcher is

Yi = α + X̃iβ +Ui, whereUi =−ξiβ + εi.

Therefore X̃i is endogenous, because it is correlated with Ui through ξi.

3.1.3 Potential Difficulty of Applying MLE

For the linear regression model characterized by (3.1) to (3.3), the potential diffi-
culty of applying MLE to estimate β arises from the specification of the conditional
distribution of Ui given Xi. For ease of illustration, assume the conditional distri-
bution depends on Xi only through E (Ui|Xi). Further assume Xi is a scalar. If we
assume

E (Ui|Xi) = Xiγ,

then we have

E (Yi|Xi) = Xi (β + γ) .

Therefore, the parameters β and γ cannot be separately identified from the ob-
served data. However, if we assume

E (Ui|Xi) = X2
i τ,

it is easy to verify the parameters β and τ can be separately identified from the
data. However, such ability of identification is often criticized by the fact that it
is only due to a specific functional form assumption. From this simple example,
we can see that it is not easy to specify a convincing conditional distribution of Ui

given Xi in a real world application.

3.2 GMM Estimation

As discussed above, the information embedded in {Yi, Xi} is usually not enough to
consistently estimate the causal parameters. Some additional information may be
crucial in identifying the causal parameters. The instrumental variables discussed
below play such a role. Suppose Zi is a l×1 vector and satisfies
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E (ZiUi) = 0. (3.6)

Condition (3.6) indicates the instruments Zi are weakly exogenous. Now the ob-
served data set is augmented to be{

Yi,X ′i ,Z
′
i , i = 1,2, ...,N

}
.

Based on the moment conditions in (3.6), according to the definition of GMM
estimator in section 1.4, the population model can be defined through:

E
(
Zi
(
Yi−X ′i β

))
= 0. (3.7)

Note that (3.7) implies a system of l equations with k unknown parameters. The
rest of the section discusses about the identification issue and introduces the GMM
estimator based on (3.7). In addition, the efficient GMM estimator is also dis-
cussed.

3.2.1 Identification

According to assumption 2.1.1, the population model (3.7) is identifiable if and
only if there exists a unique β0 ∈ Rk, such that

E
(
Zi
(
Yi−X ′i β0

))
= 0.

Re-arranging (3.7), we have

E
(
ZiX ′i

)
β = E (ZiYi) . (3.8)

Note that (3.8) is a l-equation linear system with k unknown parameters. The
identification condition requires there is an unique solution to (3.8). According to
linear algebra, this is equivalent to the following condition

rank
{

E
(
ZiX ′i

)}
= k. (3.9)

(3.9) is often referred to the “rank condition” in the econometrics literature. Hence
the population model defined by (3.7) is identified if and only if the rank condition
(3.9) is satisfied. Hence, a vector Zi is said to be “valid instruments” if it satisfies
the exogeneity condition (3.7) and the rank condition (3.9). An immediate im-
plication of (3.9) is l ≥ k, since rank{E (ZiX ′i )} ≤ min(l,k). In the econometrics
literature, the necessary condition l ≥ k is often referred to “order condition”. It
means one needs to have at least as many exogenous instruments as those endoge-
nous regressors in order to identify the causal parameters. Given the rank condition
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is satisfied, when l = k, the model is said to be exactly identified; while if l > k, it
is said to be overidentified.

In order to gain some insights for the rank condition, consider the following
example. Suppose Xi = (1, X1i)

′, where X1i is a scalar random variable. Suppose
Zi = (1, Z1i)

′, where Z1i is also a scalar random variable. Note that the regressor
“1” is exogenous due to (3.2). Therefore, there is only one endogenous variable
X1i and one exogenous instrument Z1i. The rank condition implies

det
{

E
(
ZiX ′i

)}
= det

{(
1 E (X1i)

E (Z1i) E (Z1iX1i)

)}
= E (Z1iX1i)−E (X1i)E (Z1i) 6= 0,

which means the exogenous instrument needs to be correlated with the endogenous
regressor.

3.2.2 GMM Estimator

Based on the population model (3.7), the GMM objective function (according to
definition 1.1) in the linear model situation ((3.1) to (3.3)) is

d (b) =
(
aN ·N−1 ·ΣN

i=1Zi
(
Yi−X ′i b

))′ (
aN ·N−1 ·ΣN

i=1Zi
(
Yi−X ′i b

))
, (3.10)

where aN is a l× l weighting matrix satisfying the conditions listed in section 1.4.
The GMM estimator is the solution to the following equation

∂d (b)
∂b

= 0.

In this case, it is given by

β̂
GMM
N =

(
Σ

N
i=1XiZ′i

(
a′NaN

)
Σ

N
i=1ZiX ′i

)−1
Σ

N
i=1XiZ′i

(
a′NaN

)
Σ

N
i=1ZiYi. (3.11)

According to theorem 2.2, the asymptotic variance of β̂ GMM
N , after proper scaling,

is given by

V =
(
Q′a′0a0Q

)−1 Q′a′0a0Ωa′0a0Q
(
Q′a′0a0Q

)−1
,

where
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Q = E

{
∂Zi (Yi−X ′i b)

∂b′

∣∣∣∣
b=β0

}
,

Ω = E
{

Zi
(
Yi−X ′i β0

)(
Yi−X ′i β0

)′Z′i}
= E

{
ZiUiUiZ′i

}
,

aN
p→ a0.

In the linear model case, we have

Q = E
(
ZiX ′i

)
,

Ω = E
(
U2

i ZiZ′i
)
.

Their natural consistent estimators are given by

Q̂ = N−1
Σ

N
i=1ZiX ′i ,

Ω̂ = N−1
Σ

N
i=1Û2

i ZiZ′i ,

where Ûi = Yi−X ′i β̂ GMM
N .

3.2.3 Efficient GMM Estimator (General Case)

According to theorem 2.3, the lower bound of the asymptotic variance for β̂ GMM
N

under the linear model is achieved when

a′NaN
p→Ω

−1 =
(
E
(
U2

i ZiZ′i
))−1

.

The following two step procedure illustrates how to obtain an efficient GMM esti-
mator under the linear model setup.

Step 1. Set a′NaN = Il , where Il is the l× l identity matrix. Obtain the correspond-
ing GMM estimate, say β̃ GMM

N , which is inefficient but consistent. Use β̃ GMM
N to

construct a consistent estimator of Ω, which is given by

Ω̂ = N−1
Σ

N
i=1Û2

i ZiZ′i , where

Ûi = Yi−X ′i β̃
GMM
N .
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Step 2. Set a′NaN = Ω̂−1(obtained from step 1) and substitute back into (3.11),
yielding the efficient GMM estimator as

β̂
GMM∗
N

=
(

Σ
N
i=1XiZ′i

(
Σ

N
i=1Û2

i ZiZ′i
)−1

Σ
N
i=1ZiX ′i

)−1

×Σ
N
i=1XiZ′i

(
Σ

N
i=1Û2

i ZiZ′i
)−1

Σ
N
i=1ZiYi.

3.2.4 Efficient GMM Estimator (Conditional Homoscedasticity)

If we assume the conditional variance of Ui given Zi is constant (which is also
called conditional homoscedasticity)

E
(

U2
i

∣∣Zi
)
= σ

2.

Then we have

Ω = E
(
U2

i ZiZ′i
)

= E
[
E
(

U2
i ZiZ′i

∣∣Zi
)]

= E
[
E
(

U2
i

∣∣Zi
)

ZiZ′i
]

= σ
2E
(
ZiZ′i

)
.

A natural consistent estimator of E (ZiZ′i) is N−1ΣN
i=1ZiZ′i . Note that β̂ GMM

N defined
in (3.11) is invariant to a′NaN up to a constant term. Hence, in order to obtain the
efficient GMM estimator in this case, we can set

a′NaN =
(
Σ

N
i=1ZiZ′i

)−1
. (3.12)

Substituting (3.12) into (3.11), the efficient GMM estimator, also known as the
Two-Stage-Least-Square (2SLS) estimator, is given by

β̂
2SLS
N =

(
Σ

N
i=1XiZ′i

(
Σ

N
i=1ZiZ′i

)−1
Σ

N
i=1ZiX ′i

)−1
Σ

N
i=1XiZ′i

(
Σ

N
i=1ZiZ′i

)−1
Σ

N
i=1ZiYi.

Denote X = (X1,X2, ...,XN)
′, Z = (Z1,Z2, ...,ZN)

′ and Y = (Y1,Y2, ...,YN)
′. The

2SLS estimator can be expressed as

β̂
2SLS
N =

(
X ′Z

(
Z′Z
)−1 Z′X

)−1
X ′Z

(
Z′Z
)−1 Z′Y. (3.13)
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The reason for the name “Two-Stage-Least-Square” lies in the fact that (3.13) can
be obtained through the following two regression steps.

Step 1. Regress X on Z. In other words, project the matrix of regressors X orthog-
onally onto the space spanned by the instruments Z to obtain

X̃ = Z
(
Z′Z
)−1 Z′X .

Step 2. Obtain β̂ 2SLS
N by running an OLS regression of Y on X̃ , which gives

β̂
2SLS
N =

(
X̃ ′X̃

)−1 X̃ ′Y. (3.14)

It is easy to verify (3.14) is equivalent to (3.13).

3.3 Example

In this section, an example is given to illustrate the use of GMM estimator in the
linear model. Based on the example, I also discuss the potential difficulties in
applying GMM estimators in the above framework. Suppose a researcher is inter-
ested to see whether education really helps to improve a person’s wage level, after
controlling for the effects of ability. Denote Yi as the annual wage for the ith person
in the researcher’s random sample, Xi as education measured by number of years
in school, Di as ability which is unobserved by the researcher. Suppose we may
explain the wage based on the following linear model

Yi = α +β ·Xi +δ ·Di +ui,

where E (ui) = 0, ui is uncorrelated with both Xi and Di while β is the parameter of
interest. Since the researcher does not observe Di, the linear model he/she is facing
should be

Yi = α̃ +β ·Xi + εi, (3.15)

where α̃ = α +δ ·E (Di) and εi = δ ·Di−δ ·E (Di)+ui. Hence

E (εi) = 0. (3.16)

Since the number of years in school is generally correlated with a person’s ability,
we have
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E (Xiεi) 6= 0. (3.17)

Therefore, the linear model ((3.15) to (3.17)) faced by the researcher belongs
to the class of linear models characterized by (3.1) to (3.3). Hence running an OLS
regression of Yi on Xi does not provide a consistent estimate for β . In fact, the level
of education is likely to be positively correlated with ability, and ability is also
probably positively correlated with wage, the usual OLS estimate of β should be
inflated. This is a classical problem in labor economics. Historically, researchers
have proposed many instruments under different situations in order to identify the
education effect. Here I will discuss two instruments: the quarter of birth of the ith

person and the education levels of the ith person’s parents. The reason I choose to
discuss these two instruments is that they reflect two different kinds of difficulties
when applying the GMM technique developed in this section.

To be a valid instrument, the quarter of birth/parent’s education should be cor-
related with a person’s education, but not correlated with a person’s ability and any
other unobservable factors that affect wage level. For the quarter of birth instru-
ment, it is easy to rationalize that it is uncorrelated with a person’s ability and other
unobservable factors. However, it is not easy to rationalize why it is correlated with
a person’s number of years in school. Fortunately, the data can provide us evidence
to see whether quarter of birth is correlated with number of years in school. In
fact, a side-by-side boxplot of number of years in school against four quarters can
help verification. Actually, Angrist and Krueger’s (1991) show that to some extent,
these two variables are indeed correlated though not strongly correlated. In con-
trast, for the parent’s education instrument, it is easy to rationalize that it should
be correlated (or even strongly correlated) with a person’s education. However, it
is hard to rationalize the parent’s education is not correlated with a person’s ability
and any other unobserved factors that influence wage. Unfortunately, this problem
is not testable from the data. If one wants to apply such instrument, he/she can
only assume the parent’s education is exogenous.

The above discussion shows the embarrassment when applying IV regressions.
It is relatively easy to find an instrument that is correlated with the endogenous
regressor while its exogeneity is hard to rationalize. Moreover, the exogeneity re-
quirement of the instrument is not testable from the data. In contrast, it is relatively
easy to find an instrument that is exogenous (uncorrelated with the unobserved
term) while its correlation with the endogenous regressor is usually small. Fortu-
nately, the correlation between an instrument and the endogenous regressors can
be estimated from the data. In summary, to find a good instrument in reality is not
an easy task.
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Chapter 4

Simulation Studies

In this section, a series of simulation studies are conducted to investigate the per-
formance of GMM estimator under various conditions. All the simulation studies
in this section are based on the linear model introduced in Section 3. Specifically,
consider the following linear model:

Y = α +β1 ·X1 +β2 ·X2 + ε,

Z = δ ·X1 +u, W = γ ·X1 + e,

where


X1
X2
ε

u
e

∼N (µ, Σ) , µ =


µx1

µx2

0
0
0

 , Σ=


1 ρx1x2 σερx1ε ρx1u ρx1e

1 σερx2ε ρx2u ρx2e

σ2
ε σερεu σερεe

1 ρue

1

 .

Y , X1, X2, W and Z are random scalars which are assumed to be observable; while ε ,
u and e are random scalars which are assumed to be unobservable. All parameters
are pre-specified and data sets are simulated based on their values. Parameters α ,
β1 and β2 will be estimated by GMM using simulated data sets. In addition, X1 is
assumed to be endogenous and X2 is assumed to be exogenous. Both Z and W are
valid instruments for X1. In other words, the parameters δ , γ , µ and Σ are chosen
such that the following moment conditions are satisfied:

E (X1ε) 6= 0, E (X2ε) = 0,

E (Zε) = 0, E (Wε) = 0, (Instrument Exogeneity) (4.1)

E (WX1) 6= 0, E (ZX1) 6= 0(Instrument Relevance). (4.2)
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Such moment conditions imply we are not “free” to choose values of all parame-
ters. The restrictions imposed on the parameters are listed below.

ρx1ε 6= 0, ρx2ε = 0, ρεu =−δρx1ε , ρεe =−γρx1ε ,

δ
(
1+µ

2
x1

)
+ρx1u 6= 0, γ

(
1+µ

2
x1

)
+ρx1e 6= 0.

In some studies described later, I will use models with more than two instru-
ments. In those cases, Z, W , u and e could be viewed as random vectors while δ

and γ are vectors containing fixed constants correspondingly. Hence, in all simu-
lation studies, a population distribution is indexed by the following collection of
parameters

{µ,Σ,δ ,γ,α,β1,β2} . (4.3)

In addition, I assume conditional homoscedasticity of ε . Specifically

E
(
ε

2 |Z,W
)
= σ

2
ε .

Hence, in all simulation studies below, the GMM estimator is the 2SLS estimator
which has a close form expression and hence can be easily obtained.

4.1 Study 1 - Robustness to Mixed Populations

The cornerstone of GMM estimator is based on a set moment conditions that char-
acterize the data generating mechanism. The moment conditions do not completely
specify the joint distribution. Under some regularity conditions, the desired prop-
erties of GMM estimator, like consistency and asymptotic normality, hold as long
as the moment conditions are correctly specified. Study 1 is designed to investigate
the performance of GMM estimator when the observed data come from a mixture -
two different underlying distributions. Hence, there are two “parts” of the observed
data in this study. For example, 90% of the data is generated by distribution A and
the rest of the data is generated by another distribution B. Specifically, the vari-
ables {X1,X2,ε,u,e} are generated from distribution A and B respectively, based
on which (together with α , β1 and β2) the variable Y is generated accordingly. The
mixture of the observed data is characterized in two dimensions. The first one re-
lates to the degree of mixture, which is represented by the relative proportions of
distribution A and B in generating the data. The second one relates to the “differ-
ence” between distributions A and B, which is represented by the difference in the
means of regressors between two distributions. The objective of this study is to
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investigate how bias and efficiency of the GMM estimator changes in response to
changes in the above two dimensions.

The distributions generating part A and B are the same for all components in
(4.3) except for µx1 and µx2 . The values of the parameters are chosen as follows:

Para. Value Para. Value Para. Value Para. Value

α 1 ρx1x2 0.1 ρx2u 0.2 µA
x1

1

β1 2 ρx1ε 0.5 ρx2e 0.2 µA
x2

1

β2 3 ρx1u 0.2 ρεu -0.5 µB
x1

µA
x1
+µ0

δ 1 ρx1e 0.2 ρεe -0.5 µB
x2

µA
x2
+µ0

γ 1 ρx2ε 0 ρue 0.2 σA
ε 1

Table 4.1: Distributional parameter values

where µ0 varies in different simulated scenarios and captures the difference be-
tween distribution A and B. In addition, I set σB

ε = µ0 +1. By doing so, the struc-
tural part of Y (represented α + β1 ·X1 + β2 ·X2) does not dominate the random
component ε .

As discussed before, the simulation study is designed mainly in two dimen-
sions: (i) the degree of mixture characterized by a parameter pB, which is the
proportion of data coming from distribution B; (ii) the difference in means of X1
and X2 between distribution A and B, denoted by µ0. In addition, I also vary the
sample size in the simulation study. In other words, the objective of this study is
to examine the bias and efficiency of the GMM estimator when pB and µ0 change.
Every dimension has three distinct values, resulting in 27 different scenarios in
total. For each scenario, I performed 1000 Monte Carlo simulations. For each
combination of parameter values in each simulation, I first generated n vectors of
{X1,X2,ε,u,e} based on which I then generated n vectors of {Y,Z,W}. Then the
GMM estimator is estimated based on the formula of 2SLS estimator in (3.14).
The table below shows the values these three dimensions take.

n 100 500 1000

pB 0.1 0.2 0.3

µ0 (µB
x1
−µA

x1
) 3 5 10

Table 4.2: Parameter values for study 1

Although there are 27 different scenarios, I only present the results for the follow-
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ing six situations.

β̂1 (β1 = 2) β̂2 (β2 = 3)

n pB µ0 Mean SD Mean SD

100 0 —– 1.9987 0.1156 2.9962 0.1016

100 0.3 10 1.9906 1.5075 3.0483 5.7763

100 0.3 5 2.0100 0.5839 3.0167 1.8389

1000 0.3 10 1.9776 0.4914 3.0370 1.9044

1000 0.3 5 2.0001 0.1738 2.9929 0.5570

100 0.1 10 2.0134 0.9291 2.9537 3.8323

100 0.1 5 2.0128 0.3839 2.9804 1.3637

Table 4.3: Results of study 1

The means of β̂1 and β̂2 in all scenarios are very close to their true values respec-
tively. It indicates the bias of GMM estimator in this case is small even when the
sample size is small (e.g. 100). Hence, the first conclusion from this simulation
study is that mixed population (characterized in this study) has little effect on the
bias of GMM estimator.

However, the table above shows the efficiency of GMM estimator highly de-
pends on how the population is mixed. Specifically, holding all other aspects con-
stant, the higher the degree of mixture (reflected by pB), the higher the variation
of the GMM estimator. For example, when n = 100 and µ0 = 10, changing pB

from 0.1 to 0.3, the standard deviations of β̂1 (coefficient of endogenous regres-
sor) and β̂2 (coefficient of exogenous regressor) are increased by 62% and 51%
respectively. In addition, holding all other aspects fixed, the higher the difference
of mixed populations (reflected by µ0), the higher the variation of the GMM esti-
mator. For instance, when n = 100 and pB = 0.1, changing µ0 from 5 to 10, the
standard deviations of β̂1 and β̂2 are increased by 142% and 181% respectively.
The following graph visualizes the results.
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Figure 4.1: Graphical comparison for study 1

Therefore, the second conclusion of this study is that: when the degree of mixture
is higher or the difference of the mixed population is larger, the efficiency of the
GMM estimator declines significantly. The practical implication of this study is
non-trivial. Suppose a researcher is interested in the causal effect of advertisement
on sales. Therefore X1 in the study can represent the annual investment on adver-
tisement of a firm while X2 represents all other sales-relevant factors. The variation
of investment on advertisement of different firms varies a lot in the market, i.e.
large firms, particularly internationally reputed firms, spend millions of dollars for
advertising while medium or small firms spend significantly less on it. Hence, a
random sample of firms collected by the researcher is likely to contain many large,
medium and small firms. Suppose in an extreme case, for some reason, the re-
searcher intends to collect a sample with size 100 that consists of 70% small firms
(reflected by distribution A in the study) and 30% large firms (reflected by dis-
tribution B). Suppose µ0 is 10 (in millions of dollars) and the true causal effect
β1 is 2. Suggested by the simulation results above, before collecting the sample
and performing the analysis, the researcher has 25% (or 75%) chance to underes-
timate (or overestimate) the advertisement effect by 50% (the chance of β̂1 = 1 or
β̂1 = 3). What is worse is that the researcher has a 10% chance to obtain a negative
advertisement effect (the chance of β̂1 < 0).

In summary, this simulation study shows that when the sample is mixed with
two parts coming from different populations, the bias of the GMM estimator is
nearly unaffected but the efficiency decreases significantly.
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4.2 Study 2 - Robustness to Outliers

In this study, I will investigate the performance of GMM estimator when a small
proportion of the data are contaminated. By contamination, it means a small pro-
portion of the data is generated from another mechanism as opposed to the mecha-
nism that generates the majority of the data. Contaminated data happens for differ-
ent reasons in practice, i.e. incorrect record. The way I defined contaminated data
is as follows: a random disturbance term is added to the response after it was gen-
erated by the true underlying model. Suppose I generate 100 observations from a
specified distribution, a random disturbance term is then added to the last response.
As a result, the last observation is contaminated. For the perspective of data com-
position, study 1 and study 2 are similar to each other in that the observed data is
not generated from a common mechanism. The difference between two studies lies
in the following. The mixture feature of the observed data comes from different
sources. In study 1, the mixture feature comes from the question itself under inves-
tigation. In study 1, the reason of mixture comes from the fact that some firms are
of large scale while many other firms are of medium or small scale, reflected by the
difference in population means of X1. As a result, larger firms tend to have a higher
value of Y . However, in study 2, the source of mixture is out of the question under
investigation. In other words, it can often be characterized by “mistakes”, either
made by human being or machine. Since the mixture feature comes from different
sources, the characteristics of mixture in study 2 is also different from study 1.
The contamination proportion pC is usually very low (e.g. 1%). The strength of
contamination is usually not small, i.e. the mean of the random contamination dis-
turbance µC is non-trivial. For example, the data collector may accidentally input
the value “1000” instead of “100”. The difference between these two studies can
also be seen mathematically. For study 1, those exceptionally large value of Y is
attributed to the corresponding large value of X1; for study 2, it is attributed to a
large value of the intercept α .

The objective of this study is to investigate the performance of GMM estimator
under different situations of pC and µC. We use the parameter values of distribution
A in study 1 to generate the majority (uncontaminated) of data in this study. The
random contamination disturbance is specified as a normal random variable with
mean µC and unit variance. The simulation study is designed through two dimen-
sions: (i) the proportion of contaminated data (pC); (ii) the mean of the random
contamination disturbance, µC. In addition, I also vary the sample size n. For each
scenario, I performed 1000 Monte Carlo simulations. The table below shows the
values these three dimensions take.
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4.2. Study 2 - Robustness to Outliers

Sample Size (n) 100 500 1000

Contamination Proportion (pC) 0.01 0.05 0.1

Mean of Contamination (µC) ±5 ±10 ±50

Table 4.4: Parameter values of study 2

So there are 54 (3×3×6) scenarios in total. Some results are reported be-
low. The table reports the mean and standard deviation of β̂1 and β̂2 for seven
combinations of the parameter values.

β̂1 (β1 = 2) β̂2 (β2 = 3)

n pC µC Mean SD Mean SD

100 0 0 1.9987 0.1156 2.9962 0.1016

100 0.01 50 2.0029 0.6263 2.9968 0.5023

100 0.01 −50 2.0349 0.6188 2.9842 0.5197

100 0.05 50 1.9402 1.2865 3.0668 1.1255

100 0.05 −50 2.0119 1.3095 2.9652 1.1198

100 0.05 10 2.0006 0.2942 3.0105 0.2452

100 0.05 −10 1.9965 0.2832 3.0011 0.2623

Table 4.5: Results of study 2

The reason for reporting the results where µC =±50 and n = 100 lies in the intu-
ition that the distortions of the parameter estimates should be largest in these two
cases if there are any. From the table above, the bias of GMM estimator is small
in all scenarios reflected by the closeness between mean of the estimates and the
true value. In terms of the variation of the estimates, when the contamination pro-
portion pC is low (e.g. 1%) or the contamination strength µC is low (e.g. 10), the
standard deviations of β̂1 and β̂2 are relatively small. However, when both contam-
ination proportion and strength are high (e.g. 5% and 50 respectively), the standard
deviations of the estimators are high compared to their means. For example, when
n = 100, pC = 5% and µC = 50, the standard deviation of β̂1 is about 66% of its
mean. Therefore, it is suggested by the results that the efficiency of GMM es-
timator decreased significantly when both contamination proportion and strength
are high. In addition, I found no systematic effect of the sign for contamination
strength. The following graph also illustrates the results.
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4.3. Study 3 - Weak Instruments
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Figure 4.2: Graphical comparison for study 2

In summary, the conclusions of this simulation study are as follows. In terms of
bias, the GMM estimator is robust to both contamination proportion and strength.
In terms of efficiency, the GMM estimator is relatively robust to either contami-
nation proportion or strength. However, its efficiency decreases significantly when
both contamination proportion and strength are high.

4.3 Study 3 - Weak Instruments

Recall that in section 3.3, I discussed the potential difficulties of applying GMM
estimator in reality through an example. The two requirements for an instrument
to be valid are hard to satisfy simultaneously, especially given that the exogene-
ity requirement (4.1) is untestable from the data. In this study, I will study the
performance of GMM estimator when the exogenous instruments are only weakly
correlated with the endogenous regressor. Recall that to be valid instruments, Z
and W must satisfy (4.2):

E (WX1) 6= 0, E (ZX1) 6= 0.

Under our model setup, we have

E (ZX1) = E [(δX1 +u)X1] = δ
(
1+µ

2
x1

)
+ρx1u,

E (WX1) = E [(γX1 + e)X1] = γ
(
1+µ

2
x1

)
+ρx1e.
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4.3. Study 3 - Weak Instruments

In this study, I chose ρx1u = ρx1e = 0 and µx1 = 1. Hence, by varying δ and γ , I
could set the correlation between the instruments and X1 to be arbitrarily small. For
simplicity, I let δ = γ in this study. Other parameters that govern the joint distri-
bution of the data are chosen the same as those in study 1. Therefore, the objective
of this simulation study is to investigate the performance of GMM estimator, both
bias and efficiency, in response to δ which determines the correlation between the
instruments and the endogenous regressor.

The simulation study is designed through two dimensions: δ and sample size
(n). The table below shows the values these two dimensions take.

Sample Size (n) 50 100 500 1000 —–

δ 0.01 0.05 0.1 0.15 0.2

Table 4.6: Parameter values of study 3

The results for β̂1 and β̂2 are summarized in the following table.

β̂1 (β1 = 2) β̂2 (β2 = 3)

GMM Est. OLS Est. GMM Est. OLS Est.

n δ Mean SD Mean SD Mean SD Mean SD

100 1 2.0067 0.1329 2.5048 0.0899 2.9957 0.1033 2.9471 0.0901

1000 1 1.9979 0.0398 2.5039 0.0261 2.9988 0.0317 2.9488 0.0269

100 0.01 2.5271 1.3493 2.5081 0.0892 2.9449 0.2197 2.9462 0.0887

100 0.05 2.4368 1.2778 2.5036 0.0932 2.9666 0.2103 2.9551 0.0893

100 0.1 2.2980 1.3055 2.5082 0.0896 2.9746 0.1912 2.9511 0.0857

100 0.2 2.0352 1.7101 2.5028 0.0895 2.9968 0.2458 2.9522 0.0886

1000 0.05 2.2068 1.4474 2.5054 0.0275 2.9801 0.1829 2.9507 0.0281

1000 0.1 1.9894 0.3497 2.5052 0.0277 3.0007 0.0514 2.9499 0.0286

Table 4.7: Results of Study 3

Not surprisingly, the standard deviations of the GMM estimator in all scenarios
are larger than those of the OLS estimator. In fact, this is a general result although
I did not provide a proof in earlier chapters. The intuition can be explained as
follows. Remember the GMM estimator in these simulation studies is the 2SLS
estimator. Hence, the regressors X1 and X2 are projected onto the instruments Z
and W in the first stage. The projection is then used as regressors to estimate
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4.3. Study 3 - Weak Instruments

the parameters β1 and β2 in the second stage. Therefore, not all information (or
variation) embedded in the regressors is used in the estimation. Intuitively, only
the information that can be absorbed by the instruments is used in estimating the
parameters. In contrast, the OLS estimator only involves regressing the response
on the original regressors X1 and X2. Hence, it is not hard to rationalize that the
variation of the estimator is larger in GMM than OLS. When the instruments are
not weak (e.g. δ = 1), the bias of GMM estimator of both β1 and β2 are negligible.
In contrast, in such case, the bias of OLS estimator is non-trivial for β1 (roughly
25% larger than the true value) but very small bias for β2 (roughly 1.6% larger
smaller than the true value).

The above table shows that when sample size is small (e.g. 100) and the in-
struments are weakly correlated with X1 (e.g. δ = 0.01 or 0.05), the bias of GMM
estimator is roughly the same as that of the OLS estimator. In addition, the effect
of weak correlation between the instruments and the endogenous regressor spills
over to the estimate of β2 (the coefficient of the exogenous regressor X2), making
its GMM estimator slightly biased. The following graph visualize the comparison.
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Figure 4.3: Comparison of OLS and GMM estimators

Therefore, when sample size is not large and the instruments are only weakly cor-
related with the endogenous regressors, the GMM estimator is moderately biased
and has relatively large standard deviation. In such cases, the OLS estimator is not
much worse in terms of bias.

The results also show that when δ is very small, i.e. 0.05, increasing sample
size from 100 to 1000 helps to reduce the bias but not the standard deviation. Even
though sample size is 1000 (and δ = 0.05), the GMM estimator still has non-trivial
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4.3. Study 3 - Weak Instruments

bias, i.e. 10% higher than the true value. On the other hand, when δ is only mod-
erately small, i.e. 0.1, increasing the sample size from 100 to 1000 significantly
reduces the bias and standard deviation. In fact, the bias of the GMM estimator
when δ = 0.1 and n = 1000 is nearly the same as that when δ = 1 and n = 1000.
The following graph depicts these results.
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Figure 4.4: Comparison of GMM estimators under different correlations for varied
sample size

In addition, the result also shows that for a given sample size, i.e. 100, the
bias reduces when the instruments are more correlated with X1. However when
sample size is 100, standard deviations of the GMM estimator stay basically the
same when δ increases. The following plot shows this result.
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4.4. Study 4 - Mixed Strong and Weak Instruments
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Figure 4.5: Comparison of GMM estimators under different correlations for a given
sample size

In summary, when the instrument is only weakly correlated with the endoge-
nous regressor and the sample size is not large, the GMM estimator of the endoge-
nous regressor’s coefficient has non-trivial bias and large variation. In such case,
the GMM estimator of the exogenous regressor’s coefficient is also slightly affected
in terms of bias. In addition, it requires a very large sample size, i.e. larger than
1000, to reduce the bias and variation of the GMM estimator for the endogenous
regressor’s coefficient when the instruments are weak.

4.4 Study 4 - Mixed Strong and Weak Instruments

In the previous study, I investigate the performance of GMM estimator when both
instruments are weak and linear functions of the endogenous regressor X1. In this
study, I will examine the performance of GMM estimator when there are strong
and weak instruments. Specifically, there is one strong instrument (Z) and two
weak instruments in this study. In addition, one of the weak instrument (W ) is still
a linear function of X1 but the other one (Q) is a quadratic function of X1. In the
previous study, I show that weak relationship between the endogenous regressors
and the instruments may yield undesired results of GMM estimators, i.e. non-trivial
bias. In this study, the objective is twofold: (1) whether weak instruments still bias
the estimator with the presence of a strong instrument; (2) how an additional weak
instrument affect the GMM estimator’s performance with the presence of strong
and weak instruments.
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4.4. Study 4 - Mixed Strong and Weak Instruments

4.4.1 Specification of Quadratic Instrument

As discussed before, I make an instrument Q that is quadratically related to X1:

Q = aX2
1 +bX1 +ξ , where E (ξ ) = 0,Var (ξ ) = 1.

In order to ensure Q to be exogenous which means

E (Qε) = E
((

aX2
1 +bX1 +ξ

)
ε
)
= 0,

the following restrictions are imposed

E (ξ ε) =−
[
aE
(
X2

1 ε
)
+bE (X1ε)

]
⇒ ρεξ =−

[
a
(
1+µ

2
x1

)
+bρx1ε

]
.

I also make E (ξ X1) = 0. Hence another restriction (instrument relevance) for Q to
be a valid instrument is

E (QX1) = aE
(
X3

1
)
+bE

(
X2

1
)
6= 0.

Since µx1 = 1 and σ2
x1
= 1, this leads to the requirement of

E (QX1) = 4a+2b 6= 0.

In this study, I assume a = 0.5. Hence, the strength of the relationship between Q
and X1, defined as E (QX1), is affected only through b. For better illustration, we
can re-express it as

E (QX1) = 2(1+b) = 2b̃, where b̃ = 1+b.

4.4.2 Simulation Design and Results

In this case, the measurement of relationship between the linear instrument and the
endogenous variable is the same as before. The study is designed in three dimen-
sions: (i) sample size, n; (ii) δW , which describes the weak correlation between the
linear instrument (W ) and X1 while the strong instruments (Z) take value δZ = 1 in
this study; (iii) b̃, which describes the weak relation between quadratic instrument
Q and X1. The table below shows the values these three dimensions take.

n 100 500 1000
δW 0.01 0.05 0.1
b̃ 0.01 0.05 0.1

Table 4.8: Parameter values of study 4
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4.4. Study 4 - Mixed Strong and Weak Instruments

The following table reports some of the results for β̂1.

β̂1 (β1 = 2)

Only
Strong

Linear Inst.

(Z)

Strong &

Weak

Linear Inst.

(Z & W )

All Inst.

(Z, W & Q)
OLS

n δW b̃ Mean Mean Mean Mean

100 0.01 0.1 1.9975

(0.1460)

1.9997

(0.1449)

1.9425

(0.2062)

2.1016

(0.1019)
100 0.05 0.05 1.9986

(0.1520)

2.0005

(0.1503)

1.9699

(0.2035)

2.1010

(0.1023)
100 0.05 0.1 2.0021

(0.1456)

2.0039

(0.1446)

1.9468

(0.1855)

2.1029

(0.1009)
100 0.1 0.01 1.9983

(0.1467)

2.0005

(0.1453)

1.9945

(0.1965)

2.0999

(0.1050)
1000 0.01 0.1 1.9987

(0.0449)

1.9990

(0.0449)

1.9396

(0.0613)

2.1015

(0.0340)
1000 0.05 0.05 1.9962

(0.0465)

1.9965

(0.0464)

1.9664

(0.0654)

2.0996

(0.0327)
1000 0.1 0.01 2.0014

(0.0446)

2.0017

(0.0446)

1.9927

(0.0625)

2.1008

(0.0319)

Table 4.9: Results of β̂1 for study 4. Standard errors are reported in the brackets.

It is shown from the above table that the GMM estimators are basically unbi-
ased and have relatively small standard deviation (compared to their means) when
only the strong linear instrument is used. It also shows a general pattern that adding
a weak linear instrument has virtually no effect on the bias and variation of the
GMM estimator with the presence of a strong linear instrument. However, regard-
less of the sample size, when the weak linear instrument W is weakly correlated
with X1 (e.g. δW = 0.05 or 0.01), adding a weak quadratic instrument Q increases
the bias and standard deviation by roughly 2.5% and 30% respectively. The fol-
lowing graph visualizes the comparison.
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4.4. Study 4 - Mixed Strong and Weak Instruments
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Figure 4.6: Comparisons of GMM estimator with and without a weak quadratic
instrument

The first conclusion of this study is: with the presence of a strong linear instrument,
adding a weak linear instrument does not affect the GMM estimator’s performance
but adding a non-linear weak instrument increases the bias and reduce accuracy.
What’s interesting from table 4.9 is that when the added quadratic weak instrument
is extremely weak (e.g. b̃= 0.01), the variation of the GMM estimator increases but
the bias is virtually unaffected. Another pattern from table 4.9 is that the standard
deviations in all cases are small compared to those in table 4.7 where there are
only two weak linear instruments. Hence, the second conclusion is the presence of
a strong instrument reduces the variation significantly. The following table reports
some of the results for β̂2.
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4.4. Study 4 - Mixed Strong and Weak Instruments

β̂2 (β2 = 2)

Only

Strong

Linear Inst.

(Z)

Strong &

Weak

Linear Inst.

(Z & W )

All Inst.

(Z, W & Q)
OLS

n δW b̃ Mean Mean Mean Mean

100 0.01 0.1
2.9984

(0.1100)

2.9982

(0.1100)

3.0037

(0.1131)

2.9876

(0.1087)

100 0.05 0.05
3.0039

(0.1068)

3.0037

(0.1067)

3.0063

(0.1084)

2.9950

(0.1053)

100 0.05 0.1
2.9972

(0.1029)

2.9970

(0.1029)

3.0030

(0.1045)

2.9871

(0.1018)

100 0.1 0.01
3.0031

(0.1085)

3.0028

(0.1084)

3.0031

(0.1107)

2.9927

(0.1074)

1000 0.01 0.1
3.0007

(0.0309)

3.0007

(0.0309)

3.0067

(0.0315)

2.9903

(0.0306)

1000 0.05 0.05
3.0007

(0.0313)

3.0006

(0.0313)

3.0036

(0.0317)

2.9903

(0.0311)

1000 0.1 0.01
3.0009

(0.0319)

3.0009

(0.0319)

3.0018

(0.0326)

2.9908

(0.0316)

Table 4.10: Results of β̂2 for study 4. Standard errors are reported in the brackets.

Table 4.10 shows that the bias and variation of β̂2 are very small in all cases. In
contrast to the results in table 4.7, the bias of β̂2 is slightly increased when there
are only weak instruments. Therefore the last conclusion of this study is the GMM
estimator of the exogenous regressor’s coefficient has little bias and small variation
when there exists a strong instrument.
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Chapter 5

Summary

Since Hansen’s (1982) original paper on GMM estimator, it gained its popularity
rapidly in recent years not only in econometrics but also other literatures (e.g. epi-
demiology). A vast volume of published papers in economics are related to the
application of GMM estimator. Its popularity is partially attributed to the tempting
theoretical asymptotic results and the ease of application in reality. Another reason
lies in the fact that many economic models ultimately imply a set of moment condi-
tions that can be used as the cornerstone of GMM estimation. However, the GMM
estimator has its own weakness. A major concern is the so-called weak instrument
which is just weakly correlated with the endogenous regressors. In addition, the
validity of the moment conditions used in estimation is usually not testable from
the observed data. Another concern bothers many practitioners is its performance
when the sample size is small.

This thesis reviews the theoretical development of the GMM estimator and
conducts several simulation studies to examine its performance under different sit-
uations. Specifically, I derive the complete proofs of consistency and asymptotic
normality for the GMM estimator under i.i.d data structure. I then review the ap-
plication of GMM estimator in linear models. Specifically, I emphasize the moti-
vations for model formulations in econometrics, based on which the suitability of
GMM estimator in such framework is illustrated. On the other hand, I also explain
the potential difficulties of applying GMM estimator through an example. The use
of GMM estimator is, however, not restricted to linear models. In fact, it is also
widely used in the discrete choice models (described in section 1.2.1), i.e. Steven
Berry et al (1995) provides one application of GMM estimator in discrete choice
models with endogenous regressor and aggregate level data. Paul Gustafson et
al (2008) provides the application of instrumental variables in generalized linear
models in the context of epidemiological studies. In fact, the GMM technique is
heavily used in econometrics when endogeneity is a key feature of the model.

In recognition of its potential weakness, the simulation studies are designed
to investigate the performance of GMM estimator under different scenarios. The
first two studies are related to a common fact that the observed data does not come
from a single population. A general conclusion from these two studies is that under
mixed populations the bias of GMM estimator is trivial but its efficiency is sensitive
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Chapter 5. Summary

to various aspects of the mixture. The last two studies involves the presence of
weak instruments. A general conclusion is that weak instruments dramatically
increase the bias and variation of the GMM estimator even though the sample size
is moderately large.

In summary, the GMM estimator has its own theoretical desired properties but
caution is warned for its practical applications.
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