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Abstract

The manufacturing planning of parts is currently based on experience and physical test trials. The

parts are modeled, and Numerically Controlled (NC) tool paths are generated in Computer Aided

Manufacturing (CAM) environment. The NC programs are physically tested, and if the process

faults are found, the NC program is re-generated in the CAM environment. The objective of this

thesis is to develop Virtual Turning System that predicts the part machining process ahead of costly

physical trials.

Tool–workpiece engagement geometry is calculated along the tool path by a proposed poly-

curve method. The part geometry is imported as a stereolithography (STL) model from the CAM

system, and the cross section around the turning axis is reconstructed. The tool and part cross sec-

tions are modeled by polycurves, which are constructed by series of arcs and lines. The tool–part

geometries are intersected using boolean operations to obtain the engagement conditions.

The turning process is modeled by predicting the chip area and equivalent chord angle. The

process forces are modeled proportional to the material dependent cutting force coefficients, depth

of cut and equivalent chord length that depends on the nose radius and approach angle of the tool.

The chatter stability of the process is examined using Nyquist criterion at each tool–workpiece

engagement station along the path.

The virtual turning simulation simulates the forces and detects the chatter stability, and adjusts

the feeds at each tool-part engagement station. The physical turning of parts with arbitrary geom-

etry can be simulated, and cutting conditions that leads to most optimal machining operation is

automatically determined without violating the limits of the machine tool and part.
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1 Introduction

The present manufacturing industry requires rapid and cost effective design and manufacturing

methods to produce new products in small batches. The traditional manufacturing, which requires

process planning, physical trial and re–design of the process in few iterations, is no longer suit-

able to produce parts cost effectively in short periods. Recently, the design and manufacturing

operations have been replaced by their digital simulation, i.e. virtual models, in industry.

Virtual manufacturing is classified under two categories: Geometric and physics based simu-

lations. Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) researchers

developed graphics based simulation model of the machines and workpiece geometry. The colli-

sion of the tool, fixtures and machine tool can be simulated along the tool path graphically, and

geometric errors can be corrected ahead of physical machining. The physics based simulation sys-

tems need to predict the forces, vibrations, and dynamic behavior of the machine tool and metal

cutting process along the tool path. Manufacturing Automation Laboratory at the University of

British Columbia has been one of the pioneering research centers which contributed significantly

to the virtual simulation of milling processes. This thesis introduces the first Virtual Turning Pro-

cess in the same laboratory using a new tool–part intersection model with computationally efficient

turning mechanics and dynamics models.

Virtual turning has the following modules that have to be computationally efficient with a

geometric accuracy within ten micrometers:

• Tool–part engagement computation

• Process mechanics model

1



• Chatter stability detection

• Feedrate scheduling

Each module has to be executed at each tool–part engagement station which can reach to over

100,000 on a typical aircraft engine disk.

Tool–workpiece engagement is identified by representing the symmetric – cylindrical geomet-

ric features by series of arcs and lines. Tool and part features are intersected using Boolean op-

erations. The new, two dimensional engagement method is shown to be nine fold faster than

commonly used Z–buffer methods based on solid geometry. Geometric accuracy is also improved

by analytical calculation of the tool–workpiece engagements.

The turning process is commonly modeled by digitizing the curved cutting edge into small,

differential elements, i.e. typically 20-30 segments. The chip thickness and the corresponding

cutting force, torque and power are predicted for each differential element, and digitally summed

to evaluate the total forces at each tool–workpiece engagement station which can be over 100,000.

The traditional mechanics model, which requires 20-30 fold increase in computational time due to

digital integration, is therefore not suitable to be used in virtual turning. An equivalent cutting edge

concept, which was previously introduced by Colwell [15] in 1950s, is used in rapidly evaluating

the cutting forces, torque and power in this thesis. The method is proven to have sufficient accu-

racy for virtual turning operations. The chatter is detected by applying computationally efficient

Nyquist criterion to the dynamics of the turning process at each station.

Turning of parts with arbitrary geometry can be simulated, and cutting forces, torque and power

can be predicted along the tool path by the proposed Virtual Turning System. Also, the cycle times

can be reduced by searching feed and spindle speed values that do not violate the physical limits

of the machine such as torque and power.

Henceforth, the thesis is organized as follows:

The literature related to the cutting mechanics and virtual turning is presented in Chapter 2.

The process mechanics, chatter detection and feedrate scheduling models are given in Chapter 3 for

contour turning operations. A new tool–part intersection model and its integration to the proposed

2



Virtual Turning system are presented in Chapter 4. The application and experimental verification

of Virtual Turning system is presented in Chapter 5. The thesis is concluded in Chapter 6.

3



2 Literature Review

2.1 Virtual Turning
An accurate process model has to be developed to simulate the machining performance of a speci-

fied machining process. The machining performance can be evaluated either in technical or com-

mercial aspects. Technical performance represents the physical outputs of the process such as

cutting forces, power, torque and machine tool vibrations. Commercial performance is related to

the operational costs, machining costs and productivity. The progress report of the CIRP working

group ‘Modeling of Machine Operations’ lists the main motivations for modeling metal cutting

operations as follows [4]:

• Design of Processes

• Optimization of Processes

• Control of Processes

• Simulation of Processes

• Design of Equipment

As Figure 2.1 demonstrates, the simulation of a machining process requires the definition of three

main components:

• Cutting Tool

• Workpiece
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Figure 2.1: Predictive models of machining operations for practical applications [4]

For turning operations, a virtual machining simulation was proposed by Zhou [5]. The ba-

sic user input for this virtual machining system is CAD/CAM data, which can be obtained from

available software packages. Since most processes are designed using one of these CAD/CAM

environments, this is the most convenient choice of input data for the manufacturing industry. The

workflow proposed in Figure 2.2 describes the tasks of the virtual turning system as follows:
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• Geometric modeling of the Tool–Workpiece engagements (TWE Model)

• Force prediction model

• Optimization

Conventional CAD/CAM Software (CATIA, 
Pro/E, UG) or Developed Virtual Turning 

System

Geometric Solid 
Modelling 

Tool-Workpiece 
Engagement Model 

(TWE Model)

Engagement Information
(A, A1, A2, Lc, Lc1, Lc2, q

�
	
�

Feedrate, Depth of Cut, Cutting 
Speed, Stock Diameter

Mechanistic Force 
Prediction Model 

(MF Model)

Optimization based on 
Maximum Force, Torque, 

Power, Chip Load, De!ection

Cutting forces, Power, Torque

De!ection, Chatter Stability

Figure 2.2: Virtual turning workflow [5]

The tool–workpiece engagements have to be resolved in the initial step of the virtual turning.

The second step involves computation of the cutting forces, power and torque requirements for

the given engagements. The final step evaluates errors, surface quality, stability of the cut, and

optimizes the operation.

2.1.1 Workpiece Representation

A workpiece representation should have the following characteristics:

• Displayed on the screen efficiently

• Simple creation, manipulation and modification

6



X

Z

z h

d2

d1
a) Wireframe Model
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Figure 2.3: Feature primitive representation proposed by Shengfang et al. [6]

• Easy to implement and low computational load

• Memory efficient

Some studies have defined the workpiece as a solid model, using Constructive Solid Geometry [20],

Boundary representation, as shown in Figure 2.4 [7], or Solid primitives, as shown in Figure 2.3

[6].

Solid model representations are relatively complex and have large memory requirements. These

representations are necessary when dealing with milling operations where the cutting process is de-

scribed with the tool motion in three or more axes. However, turning operations are axi–symmetric,
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Figure 2.4: Workpiece representation by iso-boundaries [7]

OP1

OP4

OP2

OP5

OP7

OP3

OP6

OP8

Figure 2.5: Workpiece representation by a 2D section obtained from a solid modeler [8]

therefore, it is possible to reduce the turning geometry into a two dimensional problem.

Model developed by Zhou et al. [8] proposed to use the cross sectional area of a given solid

model to represent the workpiece as seen in Figure 2.5. Zhou used the ACIS solid libraries to

manipulate the workpiece model. Because her approach still depends on the capabilities of the

solid modeler, it cannot take full advantage of a two-dimensional solution.
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Figure 2.6: Turning workpiece representation by the generator curve of a rotational part [9]

Figure 2.7: Workpiece representation using Dexel elements [10]

Li et al. [9] showed that the workpiece in a turning operation can be simply defined as the gen-

erator curve of a rotating geometry as demonstrated in Figure 2.6. The curve can be represented by

a polygon, an analytical curve including non-linear segments, or by non–linear parametric curves

such as splines.

A two dimensional workpiece can also be represented by dexels, which are usually used in

milling simulations as the z-buffer method as described by Zhang et al. [10], see Figure 2.7. Dexel

method can be reduced to represent two dimensional geometry by using a one-dimensional grid in-

9



stead of the two. One dimensional model can reduce the computational time spent by the intersec-

tion and modification algorithms. However, dexel based method can only represent the geometry

in a discrete manner, and suffers from visualization difficulties.

2.1.2 Tool Representation Model

Table 2.1: Insert shapes defined in ISO 13399 [1]
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It is common practice in the industry to use multiple turning tools within a single turning op-

eration, therefore, a versatile virtual turning system should be able to simulate the turning process

with a wide variety of geometrically defined cutting tools.

Kaymakci [1] has investigated the geometry of standard cutters and inserts defined by ISO

standards. Typical insert shapes mentioned in ISO 13399 standard are illustrated in Table 2.1.

The tool geometry can be represented by the outline of the cutting edge as used by Zhou [5],

see Figure 2.8. This study represents the tool profile as a series of lines and arcs which have been

analytically defined as functions of typical tool design parameters such as tool nose radius, side

and end cutting edge angles. However, this method is not generalized enough to support different
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rc  Tool nose radius
sr� Side cutting edge angle
gr� End cutting edge angle
L Tool height
W Tool width

1. Tool center position
 O(X0,Y0)
2. Tool nose arc edge e2 upper tangent point Pa
 Xa = X0 - rc cos(sr) 
 Ya = Y0 + rc sin(sr)
3. Tool nose arc edge e2 lower tangent point Pb
 Xb = X0 + rc sin(gr)  +sin(sr))] tan(sr)]
 Yd = Y0 + L - rc
5. Tool straight edge e3 upper right point P 

 u = [ W - rc(1+sin(gr)] / cos(sr+gr)
 Xe=u cos(gr) + Xb
 Ye=u sin(gr) + Yb

 

Figure 2.8: Analytical definition of the cutting tool geometry [5]

r1 r2

Figure 2.9: Outline of a grooving tool

tool geometries such as rectangular grooving tools where the cutting edge must be represented by

two circular regions, and the interconnecting cutting edge, as shown in Figure 2.9.

The cutting tool was defined as a polygon by Li et al. [9], which has the disadvantage of not

being able to define non-linear curves, but only straight lines. Polygons increase the memory usage

when a large number of small line segments are used to approximate circular regions of the tool.

Another possibility for defining the tool geometry is to use parametric non-linear curves.
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Yussefian et al. [11] proposed to use B–spline curves to represent the turning tool geometry. B–

spline curves are defined by their control points, which are arranged to form a Control Points

Polygon as shown in Figure 2.10. A clipping algorithm is employed to find the intersections of the

tool and the workpiece in order to define the chip boundaries that are used to calculate the resulting

cutting forces.

Control Points
Polygon

Control
Points

B-Spline

Figure 2.10: Modeling of the cutting edge with B-splines [11]

The cutting tool also can be represented volumetrically. It is the common approach in milling

operations to define the cutting tool as a solid model, and generate the volume swept by the tool as

it moves along the NC path [21][7].

2.1.3 Tool–Workpiece Engagements

Unlike milling operations, where cutter workpiece engagements are three dimensional problems,

turning engagements can be reduced to a two dimensional problem due to the axial symmetry

of the process. Various studies aim to calculate the tool-workpiece engagements of the turning

operation with a tool having a nose radius (rn) and side cutting angle (yr).
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Atabey et al. [12] proposed to divide the uncut chip area into geometrical regions. Assuming

a feedrate that is smaller than the nose radius of the tool, they reduced the number of possible

engagement conditions to five, and used discrete elements to calculate the uncut chip area formed

by the nose radius. Four of the five proposed configurations are shown in Figure 2.11. However,

due to discretization of the chip load this method is not computationally favorable. Also, the

configurations are defined only for straight cylindrical cuts, therefore, the solutions are not valid

for contour turning, grooving or other turning operations.

Figure 2.11: Uncut chip area configurations considered by Atabey et al. [12]

Eynian and Altintas [2] developed a geometrical model of the chip load to predict the process.

They considered two configurations, one where the cut is deeper than the nose radius, and another

for the the smaller cuts, as shown in Figure 2.12.
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Figure 2.12: Chip geometry produced by a tool having a nose radius and approach angle
during cylindrical turning [2]

Reddy et al. [13] developed geometrical models of the chip load for contour turning. Similar

to Atabey et al. [12], they divided the chip load into zones as shown in Figure 2.13. However, this

technique also relies on integration, which could be computationally costly and does not cover all

possible configurations (such as the case where the depth of cut is smaller than the tool nose radius

arc).

Zhou [5] used the ACIS kernel to define tool engagement by defining various engagement

features, that are extracted from the workpiece by boolean operations. The analytically defined

tool contour is swept along the tool path. Area swept by the tool, namely the tool swept area,

is then intersected with the workpiece. Extracted engagements are decomposed by the proposed

feature based method as illustrated in Figure 2.14. The feature decomposition is computationally

complex and the solid modeler kernel brings additional computational load.

Some research has defined the tool workpiece engagement parameters (uncut chip area and

cutting edge length) analytically, without any geometrical simulations. Ozdoganlar and Endres

[22] developed analytical formulations where the motion in both radial and axial directions are

considered. However, this approach does not account for the workpiece geometry, and does not

present any possibility to modify and update the in-process workpiece.
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Figure 2.13: Chip geometry in contour turning [13]

The method proposed by Li et al. [9] used polygons to define both the workpiece and the area

swept by the cutting tool during its motion. The intersecting area is then calculated by using a

polygon clipping algorithm.

2.1.3.1 Boolean operations on polygons

In the literature, polygon clipping and boolean operations for polygons are widely studied, and

efficient algorithms have been developed. Early work concentrated on polygon intersection prob-

lems. Shamos and Hoey [23] developed algorithms, which detect whether two given polygons

intersect or not. Continuing the work of Shamos and Hoey, Bentley and Ottmann [24] counted

the number of intersections between two polygons. Rivero and Feito [25] proposed an algorithm

which calculated the boolean results of two polygons by using simplical chains.

More complex boolean algorithms that are capable of dealing with general polygons have been

recently presented [26, 27].
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Figure 2.14: Feature decomposition method proposed by Zhou [5]

2.2 Force Model
The most prominent force models assume that the cutting forces are proportional to the uncut chip

area and the cutting edge length. The coefficients that relate the chip load to the cutting forces are

known as cutting coefficients [14]. There are several methods to evaluate the cutting coefficients,

such as orthogonal to oblique transformation or mechanistic approach.

In reality the cutting tools are not always ideal and every cutting tool has a nose radius (rn),

which thins the chip and changes the force direction. The cutting forces can be calculated by

dividing the chip load into small discrete elements, which are assumed to cut the workpiece or-

thogonally. Forces are then calculated in the tangential, radial and feed directions as shown in

Figure 2.15. These forces are transformed into measurement coordinates by using the local ap-

proach angle of each discrete element [14]. Yussefian et al. [11] proposed to use a discretization

technique similar to Altintas [14], in order to obtain an effective chip flow angle for the boring

process.
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Figure 2.15: Calculation of cutting forces with discrete orthogonal elements [14]

Colwell [15] proposed the use of an equivalent chord, to which the chip flow is assumed to

be perpendicular. The approximate chord is shown in Figure 2.16 for a straight edge tool, and in

Figure 2.12 for a tool with a nose radius.

Eynian and Altintas [2] used a force model, which utilizes the approximate chord proposed by

Colwell [15]. The approximate chord is calculated using the tool geometry and the process param-

eters such as depth of cut and feedrate as shown in Figure 2.12. The cutting forces are assumed to

be equivalent to the cut where the approximate chord acts as the cutting edge. This approximation

eliminates the necessity of using discretized elements and is proven to be sufficiently accurate by

Eynian and Altintas [2] (see Figure 2.17).

2.3 Chatter Stability
Prediction of the regenerative chatter stability is one of the most important challenges in machining

operations. Chatter instability in machining causes poor surface finish, tool wear, and damage to
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Figure 2.16: Approximate chord for a cutter with a straight edge [15]

the machine tool. Prediction of chatter stability enables the manufacturers to avoid scraped parts,

excessive tool wear, and damaged tools.

The method for obtaining the analytical stability lobes in orthogonal cutting process was de-

veloped by Tobias and Fishwick [28], Tlusty and Polacek [29], and is detailed by Altintas [14].

Ozlu and Budak [17] used this knowledge to develop a stability model for multi-dimension dy-

namic systems using a tool having a nose radius, in turning and boring. They discretized the uncut

chip by using trapezoidal elements (Figure 2.18) and used a numerical solution for the eigenvalue

problem. However, this approach does not take into account the full geometry of the chip (the cusp

area) and requires extensive computational time.

Eynian and Altintas [2] used the approximate chord model and developed two regenerative

chip models. Model I assumes a dynamically changing equivalent chip thickness. Model II defines

the cutting forces as a function of both chip area and the chord length. Model II also considers the

process damping effect. The stability of the obtained characteristic equations is evaluated by the
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Figure 2.17: Experimental verification of Colwell’s chord approximation [16]

Nyquist criterion.

2.4 Optimization Algorithms

2.4.1 Direct and Random Search

Search based algorithms use an objective function to evaluate the performance of a generated

design vectors in the design space. If the optimization problem is constrained, the feasibility of

each design vector is also checked. The optimum solution is chosen as the design vector with the

highest performance, which does not violate any constraints.

19



b d2

b d1

e1

e2

en+1=c

bnosebe

be

remaining edge of the insert,
outside the nose region

n+1st element

1st element

2nd element

nth element

Figure 2.18: Discretization of chip load by trapezoidal elements [17]

Direct search method generates and evaluates all possible design vectors within a design space,

where the design variables are bounded, and discretized with a certain resolution.

Random search method generates the design vectors by choosing a random value for each

variable.

Basic procedure of search based optimization is described by Rao [18].

1. Generate the first trial design vector.

2. Verify whether the chosen design vector satisfies the constraints. The equality constraints

are checked within a tolerance. If any constraint is violated, repeat from step 1.

3. Evaluate the objective function using the design vector. If the performance is improved in

comparison to the current solution, store the values as the current solution, if not discard the

design vector, and repeat from step 1.

4. Best design available after a specified number of trial designs is taken as the solution.

20



2.4.2 Dichotomous Search and Interval Halving Methods

A multi variable optimization problem can be reduced to a single dimensional optimization prob-

lem by fixing the rest of the design variables. The reduced problems can be solved by using simple

one dimensional algorithms such as Dichotomous Search or Interval Halving methods [18].

f(x1)

x1 x2

f(x2)

b� b�L0/2

L0

xmin xmax

Figure 2.19: Dichotomous searching method [18]

In the dichotomous search method, two sets of experiments are needed. The design variable is

set as close as possible to the mid point of the design space, separated by a chosen value d . The

value (d ) should be selected in a way that it causes a significant variation in the objective function,

that allows the interval of uncertainty to be halved with each pair of experiments, as shown in

Figure 2.19.

Another similar one-dimensional optimization algorithm is the Interval Halving method. By

dividing the interval of uncertainty into four smaller intervals at each step the interval where the

possible optimal point lies can be halved as shown in Figure 2.20.

Both of these methods are only applicable to one dimensional optimization problems with a

convex objective function. By setting one free design variable at each step, every design variable

can be optimized one by one, until an optimum solution is reached.
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Figure 2.20: Interval halving method [18]

2.4.3 Genetic Algorithms

Similar to the search based algorithms, genetic algorithms require the design spaces for each vari-

able be expressed in discrete values. The possible intervals for the design variables must be dis-

cretized with a chosen resolution which determines the computational efficiency.

Genetic algorithms use the natural phenomenons such as, reproduction, cross-over and muta-

tion. Depending on the survival of the fittest theory, the optimal solution is obtained in a defined

number of generations [18].
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3 Contour Turning Process Model

Contour turning is a kind of turning process where the cutting tool moves along a curved tool

path in the working–plane (X–Z) of the machine tool. It is used to machine free–form surfaces of

revolution as illustrated in Figure 3.1.

The process parameters, such as feedrate ( fc) and spindle speed (n), are defined in the same

manner as they are for a straight cut. However, due to the free–form nature of the operation it is

not always possible to define a static depth of cut value. This is true when the final part contour is

different than the initial workpiece surface profile.

Contour turning is chosen as an example for the generalized turning process. During contour-

ing, the cutting parameters and the uncut chip profile may vary along the tool path, therefore, it is

necessary to repeat the simulation at small time intervals, leading to a large number of simulation

steps. The development of computationally efficient algorithms is essential to reduce simulation

time when a large number of tool paths are processed.

3.1 Angle Definitions for Contour Turning
Unlike a straight axial or radial turning process, the angle of the tool motion varies during contour

turning. The instantaneous angle of the tool motion in the working plane is called the tool–motion

angle (ym), as shown in Figure 3.2.

The inclination of the workpiece surface also changes along the tool–path depending on the

in–process workpiece geometry. The local inclination angle of the surface is called the surface

angle (ys), as shown in Figure 3.2.
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Figure 3.1: Contour turning process

3.2 Tool–Workpiece Engagements
The variation of chip load along the tool path must be determined to simulate the physics of cutting

operations. The chip load is defined as the region of the tool, which is instantaneously in–cut. This

region is also equivalent to the intersection of the cutting tool and the workpiece at any given

time during cutting. These intersections are called the tool–workpiece engagements, as shown in

Figure 3.3.

In milling, the tool–workpiece engagement is the area on the tool surface, which is in contact

with the workpiece (Figure 3.4a). These 3D engagements can be mapped into a two–dimensional

coordinate system [30].

In turning processes, the engagement profile is the region on the cutting tool’s rake face, which

is currently in contact with the uncut workpiece. This contact area is also defined as area swept by

the tool edge profile during one complete spindle revolution, as shown in Figure 3.4b.

In straight turning processes, the uncut chip area is a function of the feedrate and the depth of

cut, and therefore, does not vary along the tool path.

Unlike straight turning processes, when the tool path is a contoured profile, the tool–workpiece

engagements vary along the tool path. For contour turning simulations, an effective method to
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Chapter 3. Process Simulation

45

preferred due to the smaller computational burden, deriving a generalized analytical relation is not 

always possible.

It is important to state that the calculation of the engagement zone, i.e. intersection between cutter 

and workpiece, is not among one of the objectives of this research, it is rather taken as an input 

from a CAD system. In addition to available commercial packages that provide cutter/workpiece 

intersection maps, there is also considerable amount of research conducted in this field. Takata 

[89] used the Z-buffer method to obtain the cutter/workpiece intersection for machining force pre-
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Figure 3.4: Comparison of engagement maps in milling and turning
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calculate the time varying tool–workpiece engagements is developed and presented in Chapter 4.

3.3 Cutting Force Model
One of the major objectives of turning process simulation is the prediction of cutting forces. The

cutting forces are modeled proportional to the uncut chip area, and the total length of the cutting

edge that is in–cut. Cutting forces Ft , Fn and Fr act on the tangential, normal and radial directions

respectively as shown in Figure 3.6. A widely accepted, semi-mechanistic model is presented by

Altintas [14].

Fn = KncAc +KneLc

Fr = KrcAc +KreLc (3.1)

Ft = KtcAc +KteLc

or expressed in matrix form

8
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Ft

9
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>>>>;
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77775
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>:
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9
>=

>;
(3.2)

where Ac is the total uncut chip area or in other words the area enclosed by tool–workpiece

engagement profile. Lc is the total length of the tool edge actively in cut.

The terms Ktc,Knc,Krc are the cutting force coefficients in the tangential, normal and radial

directions respectively. The cutting force coefficients account for the shearing forces during the

turning process. Kte,Kne,Kre are called the edge force coefficients which account for the forces

which do not contribute to the shearing process. The edge force coefficients are known to be

sensitive to changes in tool wear, temperature, tool coating and use of lubrication.
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3.3.1 Cutting Coefficients

3.3.1.1 Cutting force coefficients

Cutting force coefficients for a given material are obtained experimentally by conducting a series

of orthogonal cutting tests as explained in Section A.2. Cutting forces are measured to obtain

process parameters under different cutting conditions.

The material dependent properties are obtained for each workpiece material, and stored in

databases as a function of cutting parameters [31].

ts = f (Vc,hc,an)

fc = f (Vc,hc,an) (3.3)

ba = f (Vc,hc,an)

where ts , fc and ba are shear yield stress, shear angle and average friction angle respectively.

The cutting parameters are cutting speed (Vc), chip thickness (hc), and normal rake angle (an).

3.3.1.2 Edge force coefficients

Edge force coefficients are specific to each workpiece–tool material pair. The edge force coeffi-

cients are calibrated using a mechanistic approach, and their average values for a specific work-

piece material are stored in databases. The edge force coefficients for AISI 1045 steel paired with

two different tool material are presented in Section A.2.

3.3.1.3 Orthogonal cutting

In orthogonal cutting, the cutting force coefficients can be expressed as follows:
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Kt = ts
cos(ba �ar)

sinfc cos(fc +ba �ar)

Kn = ts
sin(ba �ar)

sinfc cos(fc +ba �ar)
(3.4)

Kr = 0

However, most turning tools have oblique geometry, therefore, the corresponding cutting force

coefficients are calculated by Orthogonal to Oblique Transformation method which is explained

in the following section.

3.3.2 Orthogonal to Oblique Transformation
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Figure 3.5: Geometry of an oblique turning tool [14]

For analyzing the mechanics of oblique cutting, normal rake and oblique angle of the cutting

tool must be defined. Since most tools and inserts do not have simple geometries, it is common to

define oblique angles by using equivalent angles [32]. For the tool shown in Figure 3.5, equivalent
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oblique angle (i), equivalent orthogonal angle (ao) and normal rake angle angle (an) are defined

by

tana0 = tana f cosyr + tanap sinyr

tan i = tanap cosyr + tana f sinyr (3.5)

tanan = tana0 cos i

Once all the required cutting parameters are obtained, cutting coefficients for a given material

can be calculated as follows:

Knc =
ts

sinfn cos i
sin(bn �an)q

cos2(fn +bn �an)+ tan2 h sin2 bn

Krc =
ts

sinfn

cos(bn �an) tan i� tanh sinbnq
cos2(fn +bn �an)+ tan2 h sin2 bn

(3.6)

Ktc =
ts

sinfn

cos(bn �an)+ tan i tanh sinbnq
cos2(fn +bn �an)+ tan2 h sin2 bn

where the material dependent properties, ts , fc and ba are obtained from Equation 3.3. The chip

flow angle is assumed to be equal to the oblique angle due to Stabler’s chip flow rule [33].

i = h (3.7)

Also the friction angle and the shear angle are assumed to be the same as orthogonal cutting

for oblique cutting.

bn = ba (3.8)

fn = fc (3.9)
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In contour turning operations, cutting parameters such as the cutting speed and the chip thick-

ness vary with time, therefore, the cutting coefficients are calculated at each simulation step. This

allows the cutting coefficients to vary as the chip geometry changes along the tool path.

3.3.3 Chip Flow Angle

In an ideal orthogonal turning operation with a straight cutting edge, cutting forces are generated in

two principal directions, namely the normal direction, which is perpendicular to the cutting edge,

and the tangential direction, which is the direction of the cutting speed.

Most turning tools have a nose radius and side cutting edge angle. The direction of the resultant

force is affected by the oblique geometry of the tool, therefore, the resultant force has to be ex-

pressed in a three dimensional coordinate system. In addition to the normal and tangential forces,

radial forces are considered as shown in Figure 3.6.

The oblique geometry is accounted for, by using the orthogonal to oblique transformation as

explained in Section 3.3.2. It is still necessary, however, to find the direction of the resultant force

on the rake face, or in other words the angle of the chip flow. There are numerous models to predict

the chip flow angle [17, 12]. However, most of these models discretize the chip load into small

elements, and superpose cutting forces generated by these small elements to find the direction of

the resultant cutting force. The use of discrete elements increases the computational load, which is

a major drawback for simulation purposes.

To estimate the chip flow direction in a more efficient manner, the Colwell effective chord

approximation is employed in the virtual turning system.

3.3.3.1 Effective chord approximation

In order to avoid discretizing the chip geometry into small elements, a single straight cutting edge

is assumed as proposed by Colwell [15]. He explains that the effect of the tool nose radius can be

modeled by using an approximate cutting edge, that is chosen to be the major diameter of a given

tool–workpiece engagement profile, as shown in Figure 2.16 and Figure 3.4b.

The length of the approximate chord (Le f f ) and the approximate chord angle (q ) are obtained
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Figure 3.6: Cutting forces during oblique cutting

from the engagement profile geometry. Normal force is assumed to be acting in the direction

perpendicular to the effective chord, while the radial force is assumed to be acting along the chord

(Figure 2.16).

3.3.4 Effective Chip Thickness

When the tool path is a free–form curve, as in the case of contour turning, the chip thickness varies

along the tool path, even if the depth of cut and the feedrate remain constant. The variation of

chip thickness is shown in Figure 3.7. The chip thickness (hc) is assumed to be the thickness of

the uncut chip profile measured perpendicularly to the approximate chord as suggested by Colwell

[15].

When the surface inclination angle (ys) is known, the chip thickness can be calculated as

hc =� fc sin(q +ys) (3.10)

where ys is the instantaneous surface inclination as shown in Figure 3.2.

In a general turning process it is assumed that there is no a priori knowledge about the work-
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Workpiece

Figure 3.7: Changing engagement geometry along the tool path in contour turning

piece surface profile. A more generalized method for estimating the chip thickness is used. The

effective chip thickness is calculated by dividing the uncut chip area, to the total cutting edge length

[34].

heff =
Ac

Lc
(3.11)

where Lc is the cutting edge length, and Ac is the uncut chip area.

3.4 Tool Motion Classification
For a general purpose turning simulation, the force model must be generalized enough to simulate

a range of turning operations. Depending on the tool motion, five different cutting operations

are defined, similar to the four quadrant division proposed by Reddy [13]. The type of cut is

determined by the instantaneous tool motion angle and feedrate (Figure 3.8).

The instantaneous tool motion vector is written as
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fc =

8
><

>:

fz

fx

9
>=

>;
(3.12)

where fz and fx are the axial and radial components of the feed respectively. The angle (ym)

and magnitude ( fc) of this vector in relation to the tool geometry defines the type of cut.

k fck> rn Feedrate value is larger than the tool nose radius. All three edges of the tool are in

contact with the workpiece. This type of feedrates are generally used for threading

operations.

�kr < ym < ke Tool is cutting with the tool nose radius and right edge. This type of cut is classi-

fied as a Right Handed Cut.
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Figure 3.9: Force model modification for left and right handed cuts

ke  ym  p �kr Tool is leaving the workpiece, no edges are in contact, therefore, there is no

cut.

p �kr < ym < p +ke Tool is cutting with the tool nose radius and left edge. This type of cut is

classified as a Left Handed Cut.

p +ke  ym �kr Tool is cutting with all three edges, this type of cut occurs in grooving or

parting–off processes.

In these inequalities kr and ke are the edge approach angles for left and right hand side angles

respectively, and rn is the tool nose radius.

These regions are represented by a circle of radius equivalent to the tool nose radius, rn. The

circle is split into four regions by the angles of ke and kr, as shown in Figure 3.8. By placing the

feedrate vector fc at the center of this circle, the type of cut is determined depending on the region

in which the end point lies.

The virtual turning system considers, the left and right handed cuts. The validity and applica-

bility of the models with grooving, parting-off, and threading operations must be further studied.

When using the approximate cutting edge, the cutting forces are expressed as normal, radial

and tangential directions (Fn, Fr, Ft). These forces are transformed into machine–tool coordinate

system as:
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8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= [Cnm]
T

8
>>>><

>>>>:

Fn

Fr

Ft

9
>>>>=

>>>>;

(3.13)

It can be seen from Figure 3.9 that depending on the type of cut, the transformation matrix

[Cnm]T in Equation 3.13 needs to be modified. Following the coordinate system given in Figure 3.9,

the transformation matrices for the two cases are written as:

[Cnm]
T =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

2

6666664

�cosq �sinq 0

0 0 �1

sinq �cosq 0

3

7777775
for Left Handed Cut

2

6666664

cosq �sinq 0

0 0 1

�sinq �cosq 0

3

7777775
for Right Handed Cut

(3.14)

3.5 Stability with Process Damping
The chatter stability solution for axial turning process has been developed by Eynian and Altintas

[2] who proposed two separate models. The first model considered dynamically changing chip

thickness. The second model incorporates the variance in the uncut chip area, and the effective

cutting edge during the cutting process. It also considers the process damping forces.

In order to develop a computationally efficient model, a modified version of the regenerative

chip thickness model is used to determine chatter stability. The model is modified to include

process damping forces due to flank penetration into workpiece at slow cutting speeds [2, 35, 36].

Dynamic cutting forces consist of two components; cutting and process damping forces. Cut-

ting forces are due to the chip formation process of the turning. These forces are calculated using
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the mechanistic force model explained in Section 3.3.

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= [F ]Cutting+[F ]Process Damping (3.15)

Process damping forces are expressed as a function of the vibration velocity, and the process

damping gain matrix [Jv] as follows:

[F ]Process Damping = [Jv]

8
>>>><

>>>>:

ẋ(t)

ẏ(t)

ż(t)

9
>>>>=

>>>>;

(3.16)

The calculation of process damping gains [Jv] is explained in Section 3.5.1. Replacing Equa-

tion 3.13 and Equation 3.16 in Equation 3.15:
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8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= [Cnm]
T

8
>>>><

>>>>:

Fn(t)

Fr(t)

Ft(t)

9
>>>>=

>>>>;

+[Jv]

8
>>>><

>>>>:

ẋ(t)

ẏ(t)

ż(t)

9
>>>>=

>>>>;
8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= [Cnm]
T

8
>>>><

>>>>:

Kna

Kra

Kta

9
>>>>=

>>>>;

Lchc(t)+ [Jv]

8
>>>><

>>>>:

ẋ(t)

ẏ(t)

ż(t)

9
>>>>=

>>>>;

(3.17)

The chip thickness changes due to the tool motion perpendicular to the effective chord. The

dynamic chip thickness is expressed as a function of tool motion in the X and Z directions and the

approximate chord angle. The difference between the previous vibrations and the current vibrations

gives the dynamic chip thickness equation as:

hc = csinq �{[�x(t)cosq + z(t)sinq ]� [�x(t � t)cosq + z(t � t)sinq ]} (3.18)

where t is the spindle period.

Dropping the static term, the dynamically varying chip thickness is written in the matrix form

hc =

⇢
cosq 0 �sinq

�

8
>>>><

>>>>:

x(t)� x(t � t)

y(t)� y(t � t)

z(t)� z(t � t)

9
>>>>=

>>>>;

(3.19)

replacing this term in Equation 3.17 gives

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= [Cnm]
T

8
>>>><

>>>>:

Kna

Kra

Kta

9
>>>>=

>>>>;

Lc

⇢
cosq 0 �sinq

�

8
>>>><

>>>>:

x(t)� x(t � t)

y(t)� y(t � t)

z(t)� z(t � t)

9
>>>>=

>>>>;

+[Jv]

8
>>>><

>>>>:

ẋ(t)

ẏ(t)

ż(t)

9
>>>>=

>>>>;

(3.20)
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Expressing the dynamic force equation in Laplace domain we obtain

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

= (1� e�st)[J]

8
>>>><

>>>>:

x(s)

y(s)

z(s)

9
>>>>=

>>>>;

+ s[Jv]

8
>>>><

>>>>:

x(s)

y(s)

z(s)

9
>>>>=

>>>>;
8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

=
⇥
(1� e�st)[J]+ sJv

⇤

8
>>>><

>>>>:

x(s)

y(s)

z(s)

9
>>>>=

>>>>;

(3.21)

Cutting tool vibrations can be expressed as a function of the cutting forces and the frequency

response function of the flexible structure. The tool vibrations are expressed as

8
>>>><

>>>>:

x(s)

y(s)

z(s)

9
>>>>=

>>>>;

= [F(s)]

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

(3.22)

Replacing the cutting tool vibrations into Equation 3.21 yields the equation for dynamic cutting

forces as

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

=
⇥
(1� e�st)[J]+ sJv

⇤
[F(s)]

8
>>>><

>>>>:

Fx

Fy

Fz

9
>>>>=

>>>>;

(3.23)

The characteristic equation of the system can be obtained by rearranging the above equation

det
��

[I]3⇥3 �
�
(1� e�st)[J]+ sJv

�
[F(s)]

� 
= 0 (3.24)

where

39



J = [Cnm]
T

8
>>>><

>>>>:

Kna

Kra

Kta

9
>>>>=

>>>>;

Lc

⇢
cosq 0 �sinq

�
(3.25)

The process damping gain matrix Jv is evaluated for each engagement profile, as explained in

the following section.

For every engagement profile the matrices J and Jv are calculated. When the frequency re-

sponse function F(s) is known for the flexible workpiece and tool, the stability of the charac-

teristic equation given above can be determined by using the Nyquist criterion. The frequency

response function of the structure is measured by experimental modal analysis techniques, such as

impact hammer testing. The Nyquist criterion allows the detection of chatter and possible chatter

frequencies.

3.5.1 Process Damping Gains

The process damping gain matrix is given by Eynian and Altintas [2]. After necessary coordinate

transformations, the contribution from a straight edge is given as

[Jv]line =�L2
w

KspLline

2Vc

2

66664

cos2 kr 0 sinkr coskr

�µc coskr (coskr + sinkr) 0 �µc sinkr (coskr + sinkr)

sinkr coskr 0 sin2 kr

3

77775
(3.26)

where Lline is the length and kr is the inclination angle of the straight edge.

Contribution of an arc is given as
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[Jv]arc =�L2
w

Ksp

2Vc

ˆ q1

q0

2

66664

cos2 kn 0 sinkn coskn

�µc coskn (coskn + sinkr) 0 �µc sinkn (coskn + sinkn)

sinkn coskn 0 sin2 kn

3

77775
rndkn

(3.27)

[Jv]arc =�L2
w

Ksp

2Vc

2

66664

kn
2 + sin 2kn

4 0 sin2 kn
2

�µc

⇣
kn
2 + sin 2kn

4 + sin2 kn
2

⌘
0 �µc

⇣
sin2 kn

2 + kn
2 � sin 2kn

4

⌘

sin2 kn
2 0 kn

2 � sin 2kn
4

3

77775

q1

q0

rn (3.28)

where q0 and q1 are the limit angles of an arc and rn is the radius.

Ksp is an experimentally identified contact force coefficient, Lw is the flank wear, Vc is the

cutting speed and µc is the coefficient of friction which is assumed to be 0.3 for steels [36].

The damping gain coefficients ([Jv]) are calculated by adding the contribution of each edge

segment currently in–cut. Cutting edge segments which are in–cut are obtained by using the en-

gagement model detailed in Chapter 4.

3.6 Feedrate Scheduling
The ultimate goal of virtual machining is to provide the industry with means of increasing produc-

tivity, in other words, decreasing the machining cycle times.

Conventionally, the cutting parameters are chosen based on on the experience of the machinists

and engineers, or values suggested in handbooks and catalogues by the tool manufacturers [30].

The strict tolerances and surface requirements force the industry to use conservative feeds and

speeds, causing a loss in productivity.

For contour turning, a feedrate scheduling approach is developed where feasible cutting condi-

tions, which do not violate the machine tool physics, are identified.
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3.6.1 Design Variables

• Feedrate ( fc): Large feeds increase the cutting forces, surface roughness, and chip thickness.

For each workpiece–tool pair suggested maximum feedrate values are provided by the tool

manufacturer. The amplitude of the feed mark can be limited by setting a maximum feedrate

( fc)max.

When the feed is chosen too small, cutting tool rubs against the workpiece surface, prevent-

ing chip formation. Therefore a minimum limit can be chosen by applying a minimum chip

thickness criteria.

• Spindle Speed (n): The choice of spindle speed influences the tool–life and the required

power during machining. Depending on the workpiece and cutting tool material, minimum

and maximum limits for the spindle speed are suggested by manufacturer specifications.

3.6.2 Design Space

After the boundaries for the design variables are set, the design space is generated by using a

specific resolution for each design variable. Smaller resolutions improve the simulation precision,

while increasing the computational time.

Design space is generated by

fc =

⇢
( fc)min ( fc)min +D fc . . . ( fc)max �D fc ( fc)max

�

n =

⇢
(n)min (n)min +Dn . . . (n)max �Dn (n)max

�
(3.29)

where ( fc,n)max and ( fc,n)min are the upper and lower boundaries of the variables respectively.

D fc, Dn are the resolution for each design variable.
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3.6.3 Constraints

Constraints which limit the machining operations include, chatter stability, machine tool capabil-

ities, such as maximum force, power, torque limits, and performance constraints, such as chip

breakability and form errors [30],[14].

For contour turning process, the following constraints are considered:

• Force Constraints : F  Fmax

The simulated cutting forces are compared against the maximum allowable forces, and the

solution is only accepted if the forces are smaller than the maximum allowable value.

• Power Constraint : P  Pmax

Power required during machining is calculated

P = Fy
Vc

60
(3.30)

P = Fy
2prn

60⇥103 (3.31)

where Vc is cutting speed, Fy is the tangential cutting force, n is spindle speed, and P is power

in [W].

• Torque Constraint : T  Tmax

Required spindle torque in turning can be estimated as a function of current tool position and

simulated cutting forces, as follows [14]:

T = Fy

✓
d �a

2

◆
(3.32)

where Fy is the tangential cutting force, d is the workpiece diameter, a is the depth of cut

in cylindrical turning, and T is torque in [Nm]. For process simulation, Equation 3.32 is

rewritten by replacing the workpiece diameter with the current tool position.
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T = Fy

⇣xtool
2

⌘
(3.33)

where xtool is the radial coordinate of the current tool position that is obtained by parsing the

NC-code as explained in Section 4.6.

• Chip Thickness: hmin < heff < hmax

A minimum chip thickness constraint prevents rubbing of the tool, therefore ensures chip

formation. A maximum limit is also chosen as large chip thickness values cause tool chip-

ping and tool breakage [30].

Chip thickness is approximated as

heff =
Ac

Lc
(3.34)

where Ac is uncut chip area and Lc is cutting edge length.

• Stability Constraint

Chatter stability of the cut is checked using the Nyquist criterion, as explained in Section 3.5.

The stability model allows for the detection of any cutting conditions that causes chatter

instability.

If chatter is detected at an engagement map, a new depth of cut value is recommended, by

searching for a value which leads to stable cutting conditions. NC-commands causing chatter

instability are marked for revision.

3.6.4 Direct Search Algorithm

The cutting forces in contour turning are a function of cutting speed (Vc), feedrate ( fc), depth of

cut (ac), and engagement and tool geometries:

F = f (Vc, fc,ac,Engagement Geometry,Tool Geometry) (3.35)
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The term Engagement Geometry is used to indicate that the resulting cutting forces are also a

function of the tool, workpiece and tool path geometries. It should be noted that the engagement

geometry itself is a function of the design variables.

Engagement Geometry = f ( fc,ac) (3.36)

Equation 3.35 and Equation 3.36 reveal that the cutting forces are a complex function of the

process parameters, and chatter stability is determined only for the simulated cutting conditions.

Hence, it is not possible to use conventional and linear optimization techniques. Instead, a feasible

solution is searched by using a direct search algorithm as detailed in the following section.

A direct search algorithm is used to search for the largest feedrate value, which does not violate

the machine tool constraints. The performance of the process is evaluated, and the constraints are

checked using the presented process model.

Most contour turning geometry consist of smooth and continuous features, therefore the feeds

can be modified at big intervals. Each NC command of the part program is assigned a new feedrate

value. This approach prevents sudden changes in the feedrate which may violate the dynamics of

the machine drives, and cause poor finish.

The optimization algorithm (Figure 3.11) is as follows :

1. The entire design space is generated using Equation 3.29.

2. Simulation is run with the maximum allowable feedrate value. Cutting forces, power and

torque requirements, and chip thickness are calculated, and stability is checked.

3. If the constraints are satisfied, current feedrate is assigned for the current engagement map. If

the constraints are violated, a smaller feedrate value is chosen and the procedure is repeated

until a solution, which satisfies all the constraints, is found.

After the feedrate scheduling, a secondary step searches the highest feasible spindle speed. The

direct search is repeated by using the spindle speed as the design variable.
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Figure 3.11: Direct search algorithm
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Figure 3.12: Engagement based feedrate scheduling using search based algorithm

Finally, the chatter stability is checked for the modified cutting conditions. If the cut is unstable,

the depth of cut value is gradually reduced and a new chatter–free condition is identified. The

engagement position causing chatter is marked, and the maximum feasible depth of cut value is

recommended to the NC planner for revision.

3.6.5 Engagement Based Scheduling

At every step of the search algorithm, the cutting forces, power and torque are evaluated, and

chatter stability is solved to ensure chatter–free operation, which requires the process simulation
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to be repeated a large number of times. This is not a feasible approach due to time constraints.

The most time consuming task is the calculation of the engagement profiles. Therefore, an

analytical solution for engagement modification is developed.

Initial engagements are obtained using the engagement model explained in Chapter 4. The

change in the engagement parameters is calculated as a function of the change of cutting parame-

ters, and the parameters are optimized through the direct search method.

The final solution is verified by simulating the process entirely with the chosen cutting param-

eters (Figure 3.12).

3.6.5.1 Modified engagement geometry

6wfc

6hfc

fc

6fc

^s

6wa2

6wa1

6ha2

6ha1

a) E!ect of feedrate change b) E!ect of depth of cut change

^m

ac

6ac

Figure 3.13: Modification of tool–workpiece engagement geometry

For a given engagement profile, height (h), width (w), and length (Le f f ) values of the approx-

imate chord is obtained as explained in the Section 3.3.3.1. Using the initial approximate chord

geometry, the modified chord (Figure 3.13) is calculated as follows:
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Feedrate

The difference in the height and width of the approximate chord due to the change in the feedrate

(D fc in Figure 3.13a) is approximated as:

Dw fc = D fccos(y 0
s) (3.37)

Dh fc = D fcsin(y 0
s)

with

y 0
s = p �ys

where D fc is the difference in the feedrate and (ys) represents the surface angle.

The modified approximate edge is now defined as:

w0 = Dw fc +w h0 = Dh fC +h (3.38)

L0
e f f =

p
w02 +h02 q 0 = tan�1 w0

h0

The uncut chip area is assumed to be linearly proportional to the feedrate ( fc. Therefore the

modified chip load can be calculated as

A0
c = Ac

f 0c
fc

(3.39)

Depth of cut

The difference in the height and width of the approximate chord due to the change in the depth of

cut (Dac in Figure 3.13b) is approximated as:
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Dwac1 = |Dac tan(y 0
s �kr)|cos(p �y 0

s) Dhac1 = |Dac tan(y 0
s �kr)|sin(p �y 0

s)

Dwac2 = Daccos(
3
2

p �y 0
s) Dhac2 = Dacsin(

3
2

p �y 0
s) (3.40)

Dwac = Dwac1 +Dwac2 Dhac = Dhac1 +Dhac2

Writing Equation 3.38 for depth of cut:

w0 = Dwac +w h0 = DhaC +h (3.41)

L0
e f f =

p
w02 +h02 q 0 = tan�1 w0

h0

Similar to Equation 3.39 the chip area is assumed to be linearly proportional to the depth of cut

(ac)

A0
c = Ac

a0c
ac

(3.42)

3.7 Summary
Process model for contour turning operations is presented in this chapter. Once the engagement

geometry of the cut is known, the cutting forces, power and torque requirements, and the process

stability is evaluated using a semi–mechanistic material model. Based on the presented process

model a feedrate scheduling method is proposed. Feedrate scheduling aims to improve the over-

all productivity by modifying the feedrate and spindle speed commands in the NC-code while

ensuring the physical limitations of the machine tool are not violated.
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4 Turning Simulation Model

A process model for contour turning operations is presented in Chapter 3, where the physics of

cutting is defined by the tool–workpiece engagements. Generating the engagement maps is the

essential task of turning simulations. Two methods for obtaining the engagement data are presented

in this chapter.

The first method, which is detailed in the section one of this chapter, obtains the engagement

maps by using a commercially available software. Implementation of this method is simple and

fast, since all necessary models for tool, workpiece, and numerical control are handled by the

external application. However, this approach suffers from compatibility and efficiency problems

due to the dependency on a third party software.

To eliminate this dependency a new simulation model is developed specifically for contour

turning simulations. The model is developed by considering computational implementation. Be-

cause the ultimate objective of this system is to form a process planning tool that can be used in

a computer environment, computational efficiency, ease of implementation and visualization tasks

are important.

The general geometric representation adopted by the new simulation model is presented in

section two. The workpiece and tool models are described in sections three and four, respectively.

Section five details the tool–workpiece intersection model that is based on two–dimensional

boolean operations. Process parameters that form the inputs of the force model are obtained by

processing the generated tool–workpiece engagement maps.

Section six details simulation schemes that allow the user to decide between the simulation

resolution and computational time.
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The last section of the chapter explains briefly how the NC-code is parsed by the virtual turning

system. The NC-code is used to generate the tool locations along the tool–path, as well as to

determine cutting parameters such as cutting speed, feedrate and spindle speed.

4.1 Vericut Application Program Interface
Tool–workpiece engagement profiles are obtained directly from Vericut, which is a machining

verification software capable of simulating CNC machine tools. With this software package, an

application program interface (API) library is provided under the name of Vericut Development

Tools. Version 7.0.3 of the development tools provides an API function which allows the extraction

of tool–workpiece engagements during turning operations.

A custom API is developed in C++ that runs alongside the NC–simulation. An output file is

created, which is processed by the virtual turning system, to estimate the cutting forces, torque

and power requirements. The output file created by the Virtual Turning API, contains the resulting

tool–workpiece engagement profiles for each simulation step.

The main API function which allows the engagement profile of the simulated turning operation

to be extracted is the “opapi get turning contact profile” function. Invoking this function at every

complete spindle revolution allows the correct tool–workpiece profiles to be obtained.

Output data structure The data fields of API output file are detailed as follows

Step Number: Number of the current simulation step

Loop Number: Number of closed loops defining the engagement profile

Spindle Speed: Spindle speed at the current simulation step, in rotations per minute

Feedrate: Feedrate at the current simulation step

Total Time: Total tool motion time elapsed, in seconds

xp : The X coordinate of the point or the centre point of the arc
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Figure 4.1: Polycurve entity definitions

zp : The Z coordinate of the point or the centre point of the arc

rp : If zero, the point represents a corner of the boundary, if non-zero it is the radius of the arc

Dx : The radial tool motion, in diameter coordinates

Dz : The axial tool motion

4.2 Polycurve Representation
For the new simulation model, a general two dimensional curve representation scheme is proposed

to represent the workpiece and tool geometries. Profiles are represented as series of line segments

and arcs, which form a closed curve. Inclusion of circular elements in the boundary allows the ge-

ometry to be defined accurately, and with less elements, compared to polygons. This representation

is referred to as the polycurve representation throughout this text.

Geometric models and boolean operations for polygons are extended to accommodate the in-

clusion of circular elements. Modifications to the polygon models are explained in the following

sections.

4.2.1 Entity Definitions

Polycurves are represented by using two geometric entity types; namely line segments and arcs.

Each entity is defined by geometric parameters as illustrated in Figure 4.1. Entity data is formatted
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and stored using the following data structure.

4.2.1.1 Data structure for entities

A data structure for the storage of the geometric entities is presented. The data structure combines

the geometric properties required to define an arc or line segment, and extra data fields for entity

classification.

Entity.Type Defines the type of the current entity as ’LINE’ or ’ARC’

Entity.Layer Defines if the entity is part of the workpiece contour (’IPW’), or part of the tool

contour (’TOOL’)

Entity.x (LINE) {x0,x1} X-coordinates of the end-points

Entity.x (ARC) x0 X-coordinates of the center point

Entity.y (LINE) {y0,y1}Y-coordinates of the end-points

Entity.y (ARC) y0 Y-coordinates of the center point

Entity.r (ARC) r Radius of the arc

Counter-Clockwise if r > 0

Clockwise if r < 0

Entity.t (ARC) {q1,q2} Start and end angles of the arc

Entity.Begin The beginning point of the entity regardless of type

Entity.End The ending point of the entity regardless of type
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4.3 Workpiece Model
Workpiece model is an essential component of the virtual turning. Among the variety of workpiece

representations, which were presented in Chapter 2, generator curve representation is adopted for

the virtual turning system, due to its computational simplicity and efficiency. The main advantage

of the generator curve representation is that it represents workpiece geometry in two–dimensions,

which facilitates generation, modification and visualization of the in–process workpiece .

If the workpiece is not perfectly axi–symmetric, the workpiece model is extended to accom-

modate the non-symmetric features of the workpiece as presented in Section 4.7.

4.3.1 Generator Curve Representation

Revolved solid geometries can be represented by their axis of revolution, and their cross–sections,

as shown in Figure 4.2. This representation is called the Generator Curve Representation [9].

The CAD data of the workpiece is converted to the generator curve representation, before it

is used in the virtual turning simulation. STL file format is chosen as the user input because it

is a neutral file format that generates water tight solids. STL parts consist of triangular facets,

therefore, the edges of an stl solid are linear.

The generator curve of the solid part is extracted from the solid model by intersecting the

triangular facets with the machining–plane. The axis of revolution for the generator curve repre-

sentation coincides with the spindle axis of the machine–tool (Figure 4.2).

The elements of an STL solid are triangles in three–dimensional space. Finding the intersection

of the solid model with a plane is reduced to the calculation of the intersection between a plane

and a triangular facet. The cross–section is reconstructed by collecting the resulting intersection

edges.

4.3.2 Intersection of a Triangle with a Plane

To classify the intersection problem, the vertices of the triangle must be located with respect to the

plane, by calculating the signed distance between the plane and the point (Figure 4.3).

55



Spindle Axis

Axis of Revolution

Generator Curve

Z X
Machining Plane

Figure 4.2: Generator curve for a solid part of revolution [9]
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Let T1 be the triangle with vertices Q1(x1,y1,z1), Q2(x2,y2,z2), Q3(x3,y3,z3) and P a plane in

three dimensional space (Figure 4.4).

P is defined as follows:

ax+by+ cz+d = 0 (4.1)

The distance between point i and the plane is given by the equation

D =
axi +byi + czi +dp

a2 +b2 + c2
(4.2)

The distance can also be expressed by using the dot product
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D =
|P0Qi| ⇧ n̂
kn̂k (4.3)

where n̂ is the normal vector defining the plane

n̂ =

8
>>>><

>>>>:

nx

ny

nz

9
>>>>=

>>>>;

=

8
>>>><

>>>>:

a

b

c

9
>>>>=

>>>>;

(4.4)

Location of a point with respect to the plane is defined by the sign of the distance

sign(D) = sign(|P0Qi| ⇧ n̂) (4.5)

where P0 is an arbitrary point on the plane. As a convention, this point is chosen as the

machine–tool coordinate system origin.

• sign(D)> 0 The point is on the positive side of the plane

• sign(D)< 0 The point is on the negative side of the plane

• sign(D) = 0 The point is on the plane

Once all three vertices are located, the intersection problem is solved using the cases below:

(a) Two vertices lie on one side of the plane (Q2,Q3), while the third one is on the other side (Q1).

The intersection points for the two edges that crosses from one side of the plane to the other

are calculated (Figure 4.4a).

I1 = P\ |Q1Q2| (4.6)

I2 = P\ |Q1Q3|

The intersection edge becomes
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P\T = |I1I2| (4.7)

(b) All vertices lie on one side of the plane, or they all lie on the plane itself in which case the

intersection is the entire triangular facet (Figure 4.4b). There is no apparent intersection

edge.

(c) One vertex (Q1) lies on the plane while the other two (Q3,Q2) are on the same side (Fig-

ure 4.4c).

P\T = Q1 (4.8)

Since there is only a single point on the plane, therefore, there are no apparent intersection

edges.

(d) One vertex (Q1) lies on the plane while the other two (Q2,Q3) lie on different sides . A single

intersection point (I1) is calculated. The intersection edge is the line segment between the

point on the plane and the calculated intersection point (Figure 4.4d).

I1 = P\ |Q2Q3| (4.9)

P\T = |Q1I1|

(e) Two vertices of the triangular facet lie on the plane (Q1Q3). The intersection edge is the line

segment between these two points (Figure 4.4e).

P\T = |Q1Q3| (4.10)
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4.3.2.1 Intersection of a line with a plane

For cases (a) and (c), the intersection of a line with the cross–section plane is calculated as follows.

Let the normal vector n̂ and origin P0 define a plane in three-dimensional space. Also let Pin

and Pout be two points which are on different sides of this plane.

Let P0 represent the position vector of the intersection point. Therefore, P0 is a point on both

the plane and the line. Writing in vector form,

�
P0 �P0

�
⇧ n̂ = 0 (4.11)

The parametric line equation is written

P0 = t(Pin �Pout)+Pout (4.12)

where t is the line equation parameter with

0 < t < 1

Combining Equation 4.12 with Equation 4.11

(t (Pin �Pout)+Pout �P0) ⇧ n̂ = 0

t (Pin �Pout) ⇧ n̂ = (P0 �Pout) ⇧ n̂

t =
(P0 �Pout) ⇧ n̂
(Pin �Pout) ⇧ n̂

(4.13)

Finally, intersection point (P0) is calculated by replacing t in Equation 4.12.

P0 =
(P0 �Pout) ⇧ n̂
(Pin �Pout) ⇧ n̂

(Pin �Pout)+Pout (4.14)
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4.3.2.2 Processing intersection data

When an edge lies exactly on the cross-section plane (Figure 4.4e), it appears twice in the set of

intersection edges, due to the fact that all the edges are shared by exactly two facets. The resul-

tant intersection edges are checked, and any redundant edges are removed from the cross–section

profile.

4.3.3 Generator Curve of a Turning Workpiece

In turning processes, by convention the machining takes place in X–Z plane of the machine tool

coordinates, where X-axis is the radial coordinate, and Z-axis is the axial coordinate. This plane is

called the machining–plane (Figure 4.2).

Therefore, the machining–plane is defined in the machine–tool coordinate system as

P0 = (0,0,0)

n = {0,1,0}T

where Po is the point of origin and n is the normal vector.

If the CAD data supplied by the user does not follow this convention, the input data is modified

by a model transformation. The workpiece coordinate system is re-oriented using rotations and

translations, before the generator curve is extracted.

4.3.3.1 Model transformation

Using the Euler Angles convention (Figure 4.5) rotations in the space are described by three angles

(a,b ,g). The rotation matrix is written as
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(4.15)

Therefore, the vertices of the solid model is transformed by

8
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X
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>>>>;
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8
>>>><

>>>>:

x

y

z

9
>>>>=

>>>>;

+
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>>>>:

a

b

c

9
>>>>=

>>>>;

(4.16)

where a,b and c are the translational distances in machine–tool coordinate system (X ,Y,Z) and

R is the rotational transformation matrix given in Equation 4.15.
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4.4 Tool Model

4.4.1 Parametric Tool Modeling

Primary geometry of cutting tools is defined by standard types such as diamond, round or rectangle.

The exact tool geometry is defined by parameters such as the nose radius (re), nose angle (en), and

tool size (l).

Parametric tool model follows the same tool selection concept. First, the primary tool type is

selected by the user from a list of standard geometries (Table 2.1). Depending on the tool geometry

chosen, a set of parameters is used to generate the cutting edge geometry. The oblique angles such

as side rake angle (a f ), back rake angle (ap) and approach angle (kr) are imposed by the tool

holder geometry.

Tool and tool holder specifications are available in manufacturer catalogues.

The cutting edge contour is constructed using the input parameters. As an example, the tool

generation process for rhombic inserts is given in the following section. Rhombic inserts cover all

the diamond shaped cutters with varying nose angles. ( Types C, D, E, F, M and V in Table 2.1)

4.4.1.1 Rhombic inserts

Rhombic inserts are diamond shaped tools, which are widely used for radial, axial, and contour

turning. They are classified into smaller groups according to their nose angle (en).

By defining the nose angle as one of the parameters, a general model for rhombic tools is

developed. The parameters of the model are as follows (Figure 4.6):

• en: Nose angle

• l: Tool edge length

• rn: Nose radius

• kr: Approach angle
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4.4.1.2 Definition points

Points of the cutting edge must be defined, including any point which does not directly contribute

to the geometry, but is used as a tool driven point.

For example, point P2 in Figure 4.7, which is the apparent intersection of the major and minor

cutting edges, is included in the model, although it is not a part of the cutting tool edge geometry.

This point is commonly used as a tool–driven point due to its ease of detection during part setup.

Let P1 be the origin of the tool coordinate system. The remaining control points are defined as
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follows (Figure 4.8):

P1 = P(0,0)

P2 = P
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The limit angles of the arc defining the nose radius are given by

q1 = p �kr

q2 = ke �
p
2

ke =
p
2
� (kr + en)

where, (Figure 4.7)

kr is the approach angle defined by the user

ke is the angle between the secondary edge and Z axis

en is the nose angle that defines the tool type

4.4.1.3 Cutting edge construction

The cutting edge is generated using the entities defined in Section 4.2. For simplicity, only one

half of tool edge is modeled, since practically the depth of cut in turning is much smaller than the

tool edge length (l). Entities of the tool contour are defined as (Figure 4.8):
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Figure 4.8: Geometric definition of a rhombic tool

A1 = A(P1,re ,q1,q2)

L1 = L(P3,P5)

L2 = L(P4,P6)

L3 = L(P5,P6)

4.4.2 User Defined Tool Geometry

Any tool geometry that can be converted to the polycurve representation, can be used as the cutting

tool. This allows the use of arbitrary tool geometries, provided that the CAD data is available.

When a solid model of the tool is provided, the cross–section of the tool on the machining–

plane is obtained using the intersection method explained in Section 4.3.2. Alternatively, if the

two–dimensional drawing of the tool is provided, CAD data is reformatted into polycurve repre-

sentation.
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4.5 Tool–Workpiece Engagement Model

4.5.1 Boolean Based Tool–Workpiece Engagements

Li et al. [9] proposed to use boolean operations on polygons to simulate turning process, where both

the workpiece and the tool–swept area are defined with polygons. Tool–workpiece engagements

are calculated as the intersection of two polygons.

The main disadvantage of this model is that, the arcs are discretized by lines. When a tool swept

polygon is used as one of the operands the cusp region is ignored (Figure 4.9). As a result, the

number of elements in the resulting in–process workpiece model does not increase significantly.

However, in virtual turning, the simulation is run at spindle period intervals. Feed marks left on

the workpiece are generated, therefore, a large number of elements is required by the polygon

representation.

The boolean operations are extended for profiles having circular entities to reduce the number

of elements needed in tool–workpiece engagement maps, and in–process workpiece.

4.5.1.1 Boolean operations on polycurves

The following properties on the operands are assumed.

Operand profiles
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Figure 4.10: Entity classification for boolean algorithm

• Are closed curves without any self-intersections, which is true for the cross-section of any

valid solid object.

• Can have holes.

• Can be convex or concave.

The main steps of the boolean algorithm are as follows:

1. Calculate all occurring intersections between the entities, by running intersection algorithms

for Line–Line, Line–Arc and Arc–Arc intersections. A review of these intersection algo-

rithms is presented in Section A.1.

2. Split the entities at points of intersection.

3. Classify each entity of one region as being in, out, or on the other region (see Figure 4.10).

The classification process is as follows:
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Entity classification Once all the entities are split at the intersection points, each entity is classi-

fied as outer, inner or unshared. A fourth class, shared, is possible with general boolean algorithms

but this class does not occur in machining simulations as the tool profile can not be located inside

the workpiece.

The classification is performed by choosing a test–point on the entity, which is chosen as the

mid-point, for convention. Entities of the cutting tool profile are tested against the in–process

workpiece profile and vice versa. This test classifies the entities as follows:

Outer Entity is outside the other region

Inner Entity is inside the other region

Shared Entity is on the boundary of the other region and both regions lie on the same side of the

entity

Unshared Entity is on the boundary of the other region and the regions lie on different sides of

the entity

In-Region test Point in–region test checks whether a given point lies outside, inside or on a given

region.

An arbitrary ray originating from within a closed boundary, crosses the closed boundary at

an odd number of times. Similarly, an arbitrary ray originating from outside a closed boundary,

crosses the boundary at an even number of times. Location of the test point is determined by

counting the number or intersections between the test ray and the region boundary.

In–region test yields accurate results as long as the generated ray does not intersect with any

vertex. When a polygon is represented by its vertices, which is the most common application, a

ray passing through a vertex will apparently intersect the polygon twice, resulting in the test to fail

(Figure 4.12). To tackle this problem, a test ray which crosses a vertex is assumed to be slightly at

the side of the vertex. In this case the ray is shifted by a sufficiently small amount (e).
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Figure 4.12: Errors in in-region test due to test–ray crossing vertices
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The results of the in–region test are verified in Figure 4.11, where 250 points were tested against

a sample region. In Figure 4.11a, test points form a regular grid. In Figure 4.11b, the test points

are generated randomly.

Intersection The engagement profile is the intersection of the current tool profile with the current

in–process workpiece cross-section.

The intersection of the two profiles is defined as the collection of entities that are classified

as either inner or shared from Region A, and the ones that are classified as inner from Region B

(Figure 4.13a).

A\B = A(inner)[A(shared)[B(inner) (4.17)

Difference The resulting in–process workpiece is the last workpiece profile minus the current

engagement. Therefore, the in-process workpiece profile is obtained by calculating the difference

of in–process workpiece cross-section and the cutting edge profile.

The difference of two regions is the collection of entities marked as either outer or unshared

from Region A and the entities marked as inner from Region B (Figure 4.13b).

A�B = (A(outer)[A(unshared))[B(inner) (4.18)

4.5.1.2 Numerical robustness

One of the major problems of the boolean algorithms is the floating point errors. Computer algo-

rithms are not capable of representing real numbers exactly due to memory limitations and their

binary nature [37], therefore, care must be taken during implementation, especially when defining

relational operations.

Since real numbers cannot be expressed exactly, the relational operations are defined with a

tolerance as shown in Table 4.1.
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Figure 4.13: Boolean operations supporting holes in the workpiece model

Table 4.1: Relational operations with real and floating point numbers

Relational Operation Real Numbers Floating Point
> A > B A > B+ e
< A < B A < B� e
= A = B |A�B|< e

The geometrical values can be limited to a given precision, such as the maximum number of

digits allowed by input files (i.e. stl file). All digitally calculated physical values are rounded off

to this chosen precision. e must be chosen as a value sufficiently smaller than the precision of the

simulation, and larger than the data–type precision.
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4.5.2 Processing Engagement Profiles

The engagement profiles obtained from the boolean operation are processed to obtain the parame-

ters required by the force and stability models.

4.5.2.1 Uncut chip area

The area enclosed by an engagement map is calculated using the Green’s Theorem.

Green’s theorem: Green’s theorem expresses a double integral as a line integral around its bound-

ary. A very common application of this theorem is the calculation of the area enclosed by a closed

profile. The general form of the Green’s theorem is expressed as:

ˆ ˆ
R

✓
∂ f
∂x

+
∂g
∂y

◆
dxdy =

˛
c
( f dy�gdx) (4.19)

For discrete points, such as the ones defining a closed polygon, the Green’s integral (Equa-

tion 4.19) takes the form of a summation.

Ac =
1
2

n

Â
i=1

(xiyi+1 � xi+1yi) where n+1 = 1 (4.20)

where n is the number of vertices on the polygon, and (xi,yi) are the coordinates of the ith

vertex.

This expression gives the area enclosed by a polygon, calculated as a summation of signed

triangular areas. Each triangle is formed by the origin of the coordinate system and two consecutive

vertices of the polygon (Figure 4.16b).
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Figure 4.16: Area calculation by Green’s theorem
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Area of polycurves: The area of the engagement profile represented by a polycurve (Figure 4.16a)

is calculated in two steps. The first step is to evaluate the polygon area, excluding the arc elements

(Figure 4.16b), which is calculated using Equation 4.20. Conventionally, counter–clockwise direc-

tion is chosen as positive.

In the second step, the contribution of each circular region is calculated and added to the area

of the polygon following the same positive direction convention (Figure 4.16c).

The area of the circular region is the area of the pie shaped region minus the triangular region,

as shown in Figure 4.15. The circular region’s area is calculated as follows:

Acircular = Apie�Atriangle

Acircular =
q
2p pr2 � r2 sinq

2

Acircular = r2
✓

q � sinq
2

◆
(4.21)

The total area can be expressed as the sum of the polygon area and the sum of the circular

regions.

Ac = Apolygon +Acircular

Ac =
1
2

n

Â
i=1

(xiyi+1 � xi+1yi)+
m

Â
j=1

✓
r2

j

✓
q j � sinq j

2

◆◆
(4.22)

where n is the number of vertices in the polygon and m is the number of arc elements in the

polycurve.

Due to the positive direction convention, the uncut chip area can be negative. Since there are

no self–intersections in the engagement profile, the absolute value of the uncut chip area is used.

4.5.2.2 Cutting edge length

Edges of the engagement profile are marked as originating from either the tool profile or the in–

process workpiece. Edges originating from the tool profile constitute the cutting edge currently in
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Figure 4.17: Entities originating from tool curve are in cut

cut, therefore, finding the length of the cutting edge is just a matter of calculating the total length

of these edges.

For a linear edge, the coordinates of the end points are known, therefore the edge length is

calculate as follows:

Lline =
q

(x1 � x0)2 +(y1 � y0) (4.23)

The length of an circular edge is calculated by using the limiting angles and the radius values.

Larc = (q1 �q0)r (4.24)

4.5.2.3 Approximate chord angle

The approximate chord is the major diagonal of the uncut chip area [15]. The approximate chord

angle (q) is the angle between the approximate chord and the positive Z axis of the machine

tool coordinate system. However, during software implementation, this definition is insufficient

because the direction of the effective chord is undetermined. To completely define the approximate

chord, a convention for its direction is assumed.

The orientation of the chord is given by the line connecting the vertices of the engagement

profile that are furthest away from each other, and the direction is chosen, so that it forms an acute

angle with the feed vector (Figure 4.18).
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{ fc} .
�

Ceff
 
> 0 (4.25)

where, { fc} is the feed vector and {Ceff} is the approximate chord vector.

This convention ensures that the approximate chord vector points away from the nose of the

tool, allowing the chord angle (q) to be calculated systematically.

4.6 Parsing NC-Code
NC-codes are generated by CAM systems in a machine independent form, namely the APT files.

The machine independent codes are converted to machine specific G-codes using post–processors.

Turning simulations have the ability to use either APT or G-codes.
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Figure 4.19: Flow–chart for NC-code parser algorithm

For virtual turning, G-codes are chosen as the user input. A basic, single purpose parser, which

reads NC programs stored as text files, is developed for the GN6 series controller on the Hardinge

Superslant lathe. The flow–chart for the parser algorithm is shown in Figure 4.19. Compatible

commands, and expected values are given in Section A.3.
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4.6.1 Spindle Speed and Cutting Speed

Spindle speed (n) is the rotational speed of the machine tool spindle, usually expressed in revolu-

tions per minute. Cutting speed (Vc), or the surface speed is the tangential velocity of the rotating

workpiece at the tool contact point. Modern CNC lathes support both, Constant Spindle Speed and

Constant Surface Speed modes.

Constant spindle speed mode When the constant spindle speed mode is active, the controller

keeps rotational speed of the spindle constant.

In contour operations, the tool is free to move in both axial and radial directions. Since the

cutting speed is dependent on the tool location in radial axis, it should be calculated for each step

of the simulation. Cutting speed is calculated as follows:

Vc = npd

= npxavg

= np (xstart + xend)

2
(4.26)

where Vc is cutting speed in [mm/min], n is spindle speed in [rpm]. xstart and xend are the starting

and ending locations of the tool in the radial direction of the machine tool coordinate, given in

diameter coordinates.

Constant surface speed mode The CNC controller adjusts the spindle speed to provide a constant

cutting speed. Rearranging Equation 4.26, the spindle speed is calculated for a given tool position

as follows:
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n =
pd
Vc

n =
pxavg

Vc

n =
p(xstart + xend)

Vc
(4.27)

4.7 Simulation Schemes
Turning simulations require different levels of complexities for different processes. It is possible

for the tool–workpiece engagements to remain constant, or vary in time depending on the tool

motion and workpiece geometry. In addition, workpieces can have non axi–symmetric features.

Therefore, simulation schemes that allow for a variable level of complexity in virtual turning

are proposed.

4.7.1 Constant Engagement

During linear cutting motions, it is possible that the tool–workpiece engagement remains constant,

therefore, it is redundant to simulate the cutting process at spindle period steps.

The entire linear motion command can be simulated by subtracting the tool swept region from

the in–process workpiece, which allows the process simulation to be run once for the entire NC-

command [9, 5]. The use of tool swept region also generates an in–process workpiece with a

smaller number of elements, reducing the memory requirements (Figure 4.9).

The algorithm to evaluate tool–workpiece engagement is detailed as follows (Figure 4.20):

1. For each motion command in the NC-Code, the motion is discretized into spindle period

simulation steps. However, the cutting forces are calculated only at every nth simulation

step, where n is a user-defined value, representing how small or big the time step of the

simulation is.

2. After cutting forces are calculated, the area swept by the tool in the next n steps is generated.
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Step I) Force Calculation

Total of swept region for 
the simulation intervalObtained by removing the swept 

region from the workpiece. 
Will not generate 
high number of cusp regions

Step III) In-Process Workpiece 
Generation Step II) Swept Region Generation

Calculated at chosen simulation 
step intervals

Figure 4.20: Simulation scheme for constant engagement

3. The in–process workpiece is generated by using boolean operations between the workpiece

and the generated swept area. The process is repeated until the entire tool motion is simu-

lated.

4.7.2 Non Axi–symmetric Workpiece

Simulation of a workpiece having non axi–symmetric features requires simulation steps smaller

than the spindle period to capture the changes within one revolution of the spindle.

This is achieved by running the process simulation on multiple simulation planes (Figure 4.21).

Each of these simulation planes represents the machining–plane as the spindle rotates. A separate

81



Generator 
Profile 

Simulation 
Planes 

Figure 4.21: Multiple simulation planes per spindle revolution

in–process workpiece profile is stored in memory for each simulation plane, increasing the total

computational time linearly .

4.8 Summary
In this chapter, a new simulation model based on two dimensional boolean operations is developed.

Polygon representation is expanded to include circular edges. This new representation is used to

define tool and workpiece cross–section profiles on the machining plane.

Tool–workpiece engagement is calculated as the intersection of tool and workpiece profiles,

while the in–process workpiece is defined as their difference. The boolean operations on the pro-

posed geometric representation are developed.

Controller behavior is simulated by parsing the NC program. At each simulation step, tool

location is obtained, and engagement profile is calculated by the new tool–workpiece engagement

model. Also, simulation schemes which allow the adjustment of simulation resolution is presented.
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5 Application and Experimental
Verification

A process model for contour turning is presented in Chapter 3, and simulation models for virtual

turning are presented in Chapter 4. A virtual turning simulation, which integrates these models, is

developed into a software application.

In the first section of the chapter, the details of the computer implementation is presented.

In the following sections, the validity of the virtual turning application is verified experimen-

tally. A sample part with a free–form surface geometry is machined to verify the tool–workpiece

engagements, cutting forces, and feedrate scheduling. Additionally, face turning experiments are

conducted to verify the chatter detection capabilities.

Process simulations are created in the virtual turning application, and the simulated results are

compared against the measurements.

5.1 Virtual Turning Simulation
The virtual turning application consists of six modules, which are developed in Matlab environ-

ment. Generated data is stored and transferred between the modules using the native data format

(.mat files).

Simple graphical user interfaces for each module are built using the GUIDE toolbox. Core

functions of the system are converted into C language using the CODER toolbox to increase the

computational performance.

The structure of the virtual turning application is illustrated in Figure 5.1. The following core

Matlab modules represent the developed virtual turning system.

83



VTStl generates the generator curve representation from the solid workpiece geometry, as detailed

in Section 4.3. Solid model is reoriented, and intersected with the machining plane to obtain

the cross–section.

VTTool module generates the tool data from the user input, as detailed in Section 4.4. Tool data

includes the cutting edge contour and the oblique angles of the tool holder.

NCLoader interprets the NC programs written with G-codes, as detailed in Section 4.6.

VTTurning generates the tool–workpiece engagement maps, using boolean algorithms as pre-

sented in Section 4.5. Engagement map data includes the chip load geometry and the cutting

conditions. VTTurning module is responsible for updating the in–process workpiece geom-

etry during the cut. Visualization of the in–process workpiece, tool motion and engagement

profiles, are also handled.

VTResult module calculates the cutting forces, power and torque requirements, and determines

the chatter stability using the process model presented in Chapter 3.

OptiSearch module improves the feeds and speeds, using the initial engagements generated by

the virtual turning system.

5.2 Contour Turning Experiments

5.2.1 Experimental Setup

Experiments are conducted on a Hardinge Superslant CNC lathe, which is controlled by a GN 6

Series Fanuc controller. Cutting forces are measured with a three axes Kistler 9121 dynamometer

installed on the turret of the lathe.

5.2.1.1 Cutting tools and tool holders

Sandvik Coromant VNGA 160408 inserts on a DVJNL 2020K 16 tool holder is used for the con-

tour turning experiments. The specifications of the tools and holders are presented in Table 5.1.
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Figure 5.1: Structure of the virtual turning application
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Figure 5.2: Initial workpiece geometry for contour turning experiments
Workpiece material: AISI 1045 Steel

Table 5.1: Geometric specifications of the tools used in experiments

Nose Edge Approach Side Rake Back Rake

Radius Length Angle Angle Angle

Cutting Tool Tool Holder rn l kr a f ap

CNMA120404 DCLNL 2020K 12 0.4 mm 12 mm 5� �6� �6�

CNMA 120408 DCLNL 2020K 12 0.8mm 12mm 5� �6� �6�

CNMA120416 DCLNL 2020K 12 1.6 mm 12 mm 5� �6� �6�

VNGA 160408 DVJNL 2020K 16 0.8 mm 16 mm 3� �4� �13�

5.2.1.2 Workpiece

The initial workpiece is a free–form, AISI 1045 steel part. Initial workpiece geometry is shown in

Figure 5.2. Orthogonal cutting data for the AISI 1045 steel is given in Section A.2.

The part geometry includes six geometrical features as shown in Figure 5.2:

A) Convex circular interpolation
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B) Linear cut with negative slope

C) Concave circular interpolation

D) Linear cut with positive slope

E) Convex circular interpolation with small radius (Fillet)

F) Straight axial cut

Workpiece geometry and the tool–paths are generated in UGS NX software. For Vericut simula-

tions, geometric models are saved in IGES format, while in virtual turning simulations the STL

data format is used.

5.2.1.3 Cutting parameters

Cutting parameters for contour turning experiment are chosen as

ac = 0.5 mm fc = 0.1
mm
rev

Vc = 120
m

min
(5.1)

Machining is performed in constant surface speed mode, therefore, the cutting speed (Vc) is

controlled by the CNC, while the spindle speed (n) varies during the process.

5.2.2 Tool–Workpiece Engagements

Tool–workpiece engagement maps are generated using both the Vericut API, and the boolean–

based engagement model presented in Section 4.5.

The boolean model is verified by comparing the engagement maps from two models. Figure 5.3

shows that the models generate very similar engagement maps. Small discrepancies emerge due to

the difference in geometric representation, and tool–motion interpolation.

Both models are found to generate the engagement maps of the simulated process accurately,

however, the boolean–based model is significantly faster. Computation times required by the mod-
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Table 5.2: Computational time required by the engagement models

Vericut API Boolean based
Number of engagement maps 776 783

Computation time 90 sec 10 sec

els on a standard desktop computer are compared in Table 5.2. The proposed polycurve tool–part

intersection method is nine fold faster in comparison to existing commercial code.

5.2.3 Cutting Forces

Cutting forces are simulated using the virtual turning application. Simulated forces match the

experimental data closely, as shown in Figure 5.4.

5.2.4 Feedrate Scheduling

The cycle time is reduced by using the proposed engagement–based feedrate scheduling method

detailed in Section 3.6. Workpiece, cutting tool, cutting parameters and the experimental setup are

given in Section 5.2.1.

5.2.4.1 Constraints

Maximum cutting force, torque and power constraints are applied.

Fmax = 500N Tmax = 20Nm Pmax = 1000W

5.2.4.2 Results

The highest, feasible feedrate for each NC command (Figure 5.2) is searched. The results are

shown in Table 5.3.

The total cycle time has been reduced from 33 seconds to 8 seconds after the scheduling oper-

ation, resulting in a simulated productivity improvement of approximately four times.

The simulated cutting forces, power and torque values are shown in Figure 5.5. The simula-
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Figure 5.3: Comparison of engagement model with Vericut Solution
See Figure 5.2 for the part geometry. Cutting conditions: ac = 0.5mm fc = 0.1mm/rev

Vc = 120m/min
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Figure 5.4: Cutting forces during contour turning
See Figure 5.2 for the part geometry. Workpiece material: AISI 1045 Steel. Cutting conditions:

ac = 0.5mm fc = 0.1mm/rev Vc = 120m/min

Table 5.3: Suggested feedrate values for contour turning experiment

Region Feedrate [mm/rev]
A 0.41
B 0.41
C 0.37
D 0.42
E 0.46
F 0.43
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Figure 5.5: Comparison of cutting forces before and after optimization
Initial; see Figure 5.4 for cutting conditions. After feedrate scheduling; see Table 5.3 for the

feedrate values.

tion shows that tangential cutting force and the power is maximized without violating the chosen

constraints.
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5.3 Chatter Stability Experiments
A series of face turning experiments verify the stability solution, which is presented in Section 3.5.

The frequency response of the flexible structure is obtained experimentally by impact hammer test-

ing. The engagements and stability solution by Nyquist criterion are simulated by virtual turning

application.

5.3.1 Experimental Setup

Sandvik Coromant CNMA 120408 KR inserts on a DCLNL 2020K 12 tool holder is used. Tool

specifications are given in Table 5.1.

Workpiece is an AISI 1045 steel bar, with a diameter of 41.275 mm, and an initial length of

150 mm.

Three facing experiments are conducted with increasing depth of cut values. The cutting pa-

rameters for the experiments are given in Table 5.4.

Table 5.4: Radial turning chatter experiments

Workpiece: AISI 1045 Steel. See Figure 5.6 for workpiece FRF

Experiment n Vc fc ac Chatter

[rpm] [m\min] [mm/rev] [mm] [Hz]

Radial 1 Variable 75 0.1 1 No Chatter

Radial 2 Variable 75 0.1 2 No Chatter

Radial 3 Variable 75 0.1 3 800

Radial 4 Variable 75 0.1 4 800
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5.3.2 Structural Flexibility
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Figure 5.6: Direct FRF of the workpiece with different overhang values.

AISI 1045 Steel bar with D = 41.275mm

In this set of experiments the tool holder assembly is rigidly clamped. Since the major cutting

forces in facing operations act along the rigid tool holder shaft, this component is assumed to be

fully rigid.

The workpiece is clamped with an overhang to increase the flexibility. Workpiece geometry is

given as

Dworkpiece = 41.275mm Linitial = 150mm Lfinal = 140mm (5.2)
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The flexibility of the workpiece is measured at the end of the long workpiece, where the cutting

takes place. Since the overhang of the workpiece is reduced from 150mm to 140mm during the

experiments, its FRF is measured both before and after the cut, as shown in Figure 5.6. The change

in the dynamic response of the workpiece is found to be negligible, therefore, the measurements

from the workpiece having 140mm overhang is used to simulate the process.

The dynamics of the workpiece are assumed to be identical in X and Y directions. The work-

piece is assumed to be rigid along the Z direction (spindle axis). For simplicity, the cross transfer

functions were not considered in these experiments.

5.3.3 Results

In experiment #1 (Figure 5.7), FFT of the microphone signal does not contain any vibration fre-

quencies, and the cutting forces are stable during the cut. No chatter instability is observed. This

result verifies the virtual turning simulation, which does not indicate chatter for this process.

In experiment #2 (Figure 5.8), simulation predicts small regions of instability, however, these

regions are too small for chatter to develop. Between the 7-8 seconds, no chatter is predicted by the

simulation, as verified by the amplitude spectrum of the microphone signal. Around the regions

where chatter is simulated, the FFT of the microphone signal reveals vibrations around 800 Hz,

but no growth of the cutting forces is observed. It is concluded that there are no chatter vibrations,

in accordance with the simulation results.

In experiment #3 (Figure 5.9), the simulation predicts chatter around 780 Hz, all along the cut.

FFT of the microphone signal reveals vibrations around 800Hz, which corresponds to the natural

frequency of the first bending mode of the workpiece. The cutting forces slightly grow at several

regions of the cut. It is concluded that, there are slight chatter vibrations during this cut.

In experiment #4 (Figure 5.10), the microphone signal reveals chatter around 800 Hz, along

with growing cutting forces. 800Hz is the first natural frequency of the workpiece as shown in

Figure 5.6. Under these cutting conditions the process is unstable, as predicted by the virtual

turning simulation.
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Figure 5.7: Radial turning experiment #1
Facing process of AISI 1045 steel bar. Workpiece diameter D = 41.275 Cutting conditions:

ac = 1.0mm fc = 0.1mm/rev Vc = 75m/min
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Figure 5.8: Radial turning experiment #2
Facing process of AISI 1045 steel bar. Workpiece diameter D = 41.275 Cutting conditions:

ac = 2.0mm fc = 0.1mm/rev Vc = 75m/min
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Figure 5.9: Radial turning experiment #3
Facing process of AISI 1045 steel bar. Workpiece diameter D = 41.275 Cutting conditions:

ac = 3.0mm fc = 0.1mm/rev Vc = 75m/min
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Figure 5.10: Radial turning experiment #4
Facing process of AISI 1045 steel bar. Workpiece diameter D = 41.275 Cutting conditions:

ac = 4.0mm fc = 0.1mm/rev Vc = 75m/min
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5.4 Summary
A virtual turning application is developed in Matlab environment. Machining simulations are con-

structed using the developed modules and the results are compared against experiments. Contour

turning experiments are conducted to verify cutting force simulations. The engagement maps are

generated accurately by both the third party API and the developed boolean based model, while the

latter proved to be nine fold faster. It was shown that the cutting force simulations are sufficiently

accurate. Using the engagement based optimization method the machining process was optimized.

The machining performance was almost tripled, while satisfying the machine tool and process lim-

itations. Also the chatter detection capabilities of the virtual turning application is verified by a

series of face turning experiments.
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6 Conclusion

A computationally efficient virtual turning process simulation based on a new tool–workpiece en-

gagement model is introduced in this thesis. The system has tool–workpiece engagement, process

mechanics and dynamics, and feedrate scheduling modules which constitute the main contributions

of the thesis.

Tool–workpiece engagement boundaries along the segmented tool path needs to be calculated

in order to solve the equations which describe the process physics. While solid model based algo-

rithms are most accurate, they take considerable amount of computation time which makes them

impractical to use in virtual turning. A typical turning of a gas turbine shaft may require over

100,000 tool-part engagement calculations, which can take hours unless computationally efficient

models are introduced. It has been more common to use z–buffer models which are computation-

ally faster but the engagement conditions are not identified accurately because the solid models are

digitized at discrete mesh points. Since the turning parts are modeled by the revolution of their

cross–sections, a simple but efficient polycurve method is introduced in the thesis. Workpiece

and tool edge intersection boundaries are analytically calculated by Boolean operations. Using

two dimensional analytical geometry allows nine fold increase in computational efficiency while

improving the geometric accuracy in comparison to popular z-buffer methods. With the best of

author’s knowledge, this thesis introduced the application of polycurve method first time in the

virtual machining literature.

The process forces must also be rapidly calculated in virtual machining. Past research iden-

tified the cutting force distribution along the cutting edge, which required computationally costly

digital integration of differential force distribution. Without sacrificing from the accuracy of force
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prediction, this thesis applied Colwell’s chord angle and line approximation in solving the mechan-

ics of cutting. The method has proven to predict the varying forces along a part, while avoiding

costly and slow iterative methods.

Feeds and speeds of the cutting process are improved while respecting torque, power, force and

depth of cut limits. A direct search method borrowed from the literature is adopted here.

The virtual turning system is already functional, but further research is needed before its use

in industry. Boolean operations may sometimes crash due to their numerical instabilities. The

optimization model is needed to be further enhanced.
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Appendices

A.1 Intersection Algorithms
Using two entity types there are three possible intersection types that may occur in the geometry.

• Line – Line Intersection

• Line – Arc Intersection

• Arc – Arc Intersection

Simple geometric algorithms for these intersections are widely available and relatively simple.

A.1.1 Line - Line Intersection

The intersection of the two lines are calculated [38].

Let two lines be defined by two points.

L1

L2P1(x1,y1)

P3(x3,y3)

P2(x2,y2)

P4(x4,y4)

Pint(xint,yint)

Figure A.1: Line-Line intersection
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P1 = (x1,y1) P2 = (x2,y2)

P3 = (x3,y3) P4 = (x4,y4) (A.1)

Writing the linear equations in the general form the lines are represented by

L1 ! A1x+B1y =C1

L2 ! A2x+B2y =C2 (A.2)

where

A1 = y2 � y1 B1 = x1 � x2 C1 = A1x1 +B1y1

A2 = y3 � y3 B2 = x3 � x4 C2 = A2x3 +B2y3 (A.3)

Two line equation can now be written in the matrix form as

2

64
A1 B1

A2 B2

3

75

2

64
x

y

3

75=

2

64
C1

C2

3

75 (A.4)

Solving for x and y

2

64
x

y

3

75=

2

64
A1 B1

A2 B2

3

75

�12

64
C1

C2

3

75 (A.5)

2

64
x

y

3

75=
1

A1B2 �A2B1

2

64
B2 �B1

�A2 A1

3

75

2

64
C1

C2

3

75 (A.6)

Therefore the point of intersection is

106



r1

P1

P2

P3

P4,1

P4,2

r2

a

h

b

Figure A.2: Circle-Circle intersection

Pint =

2

64
B2C1�B1C2

D
A1C2�A2C1

D

3

75 (A.7)

with

D = A1B2 �A2B1 (A.8)

A.1.2 Circle–Circle Intersection

The intersection points of two circles is calculated for two circles with centers P1(x1,y1) and

P2(x2,y2) and radii r1 and r2 respectively [39]. The distance between two circles

d =||P2 �P1||

=
q
(x2 � x1)2 +(y2 � y1)2 (A.9)
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Depending on this value the intersection conditions are checked

d � r1 + r2 ! No Intersection

d < |r1 � r2|! No Intersection

d = 0^ r1 = r2 ! Cirlces Coincident

Using the triangle

r2
1 = h2 +a2 (A.10)

r2
2 = h2 +b2 (A.11)

Since

a+b = d (A.12)

b = d �a (A.13)

it follows that

a =
(r2

2 � r2
1 �d2)

�2d
(A.14)

h =
q

r2
1 �a2 (A.15)

) P3 = (P2 �P1)
a
d
+P1 (A.16)

) P4 =

2

64
x3 ± h

d (y2 � y1)

y3 ⌥ h
d (x2 � x1)

3

75 (A.17)
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e
�

e
�

(x1,y1)
y

x

(xint1,yint1)

(xint2,yint2)

(x2,y2)

Figure A.3: Line-Circle intersection

A.1.3 Line - Arc Intersection

Intersection of a line and circle is calculated [40]. Let L1 be the line defined by its two points.

P1(x1,y1)

P2(x2,y2)

and the circle centered at the origin with a radius of r.
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dx = x2 � x1 (A.18)

dy = y2 � y1 (A.19)

dr =
q

d2
x +d2

y (A.20)

D =

�������

x1 x2

y1 y2

�������
= x1y2 � x2y1 (A.21)

The discriminant

D ⌘ r2d2
r �D2 (A.22)

defines the incidence such as

D < 0 ! No Intersection

D = 0 ! Tangent

D > 0 ! Intersection at two discrete points

and the coordinates of the intersection point is given by

x =
Ddy ± sgn⇤(dy)dx

p
r2d2

r �D2

d2
r

(A.23)

y =
�Ddx ±|dy|

p
r2d2

r �D2

d2
r

(A.24)

where the signum function is described as

sgn⇤(x)

8
>><

>>:

�1 for x < 0

1 otherwise
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A.1.4 Extension of Intersection Algorithms for Line Segments and Arcs

Since the intersection algorithms are defined only for complete circles and infinite lines, the cal-

culated intersection points must be checked to make sure they lie on the line segments or arcs

represented by the entities. This can be accomplished by verifying the intersection point Pint be-

longs to both entities.

Pint ⇢ Entity 1^Pint ⇢ Entity 2 (A.25)

A.1.4.1 Line segments

The calculated intersection point Pint(x,y) lies on the line segment if and only if

min(x1,x2) x  max(x1,x2)

min(y1,y2) x  max(x1,x2) (A.26)

For the intersection of two line segments, the intersection point must lie on both line segments

to be a valid intersection point. Therefore using the equation above,

min(x1,x2) x  max(x1,x2)^min(y1,y2) y  max(y1,y2)^ . . .

min(x3,x4) x  max(x3,x4)^min(y3,y4) y  max(y3,y4) (A.27)

which can be simplified into

max [min(x1,x2),min(x3,x4)]x  min [max(x1,x2),max(x3,x4)]

^

max [min(y1,y2),min(y3,y4)]y  min [max(y1,y2),max(y3,y4)]

(A.28)
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A.1.4.2 Arc

The arc entities are defined by a simple circle entity, and the corresponding start and end angles (qi

and q f ) respectively. Once the intersection point is located, the corresponding angular position of

the intersection point can be calculated by atan2 function.

Dx = (x� xo)

Dy = (y� y0)

q = tan�1
✓

Dy
Dx

◆
(A.29)

The point Pi lies on the arc if and only if

qi  q  q f

For Line-Arc intersection, this condition must be checked along with the check for the line

segment. For Arc-Arc intersection the same condition must be satisfied by both arcs for the inter-

section point to be valid.
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A.2 AISI 1045 Cutting Coefficients
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Figure A.4: Quadratic surface fit for shear stress (AISI 1045 Steel)

Physics of an oblique turning process can be defined by using parameters such as shear stress

(ts), friction angle (ba) and shear angle (fc). These values can be estimated by using data stored

in orthogonal cutting databases. For this purpose, the orthogonal cutting data are represented

commonly as a function of cutting parameters.

For AISI 1045 steel, these values are obtained by varying the chip thickness (hc) and cutting
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Figure A.5: Quadratic surface fit for friction angle (AISI 1045 Steel)

speed (Vc).

ts = f (hc,Vc)

ba = f (hc,Vc) (A.30)

fc = f (hc,Vc)
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Figure A.6: Quadratic surface fit for shear angle (AISI 1045 Steel)

These parameters can be modeled as a quadratic surface as given in Equation A.31 by surface

fitting over the experimental data. The coefficients in these equations are calibrated directly from

orthogonal cutting experiments [3].

[ts,ba,fc] =C1 +C2V 2
c +C3Vc +C4h2

c +C5hc (A.31)

These coefficients are obtained using a least squares method. The obtained results are shown in
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Figure A.4, Figure A.5, Figure A.6.

The coefficients for the fitted surfaces are given in Table A.1.

Table A.1: Coefficients for fitted surfaces

C1 C2 C3 C4 C5 Error
ts 639.03 0.0152 -3.094 30.34 153.04 4.81%
fc 15.82 -0.0004 0.13 1.67 25.47 3.53%
ba 37.49 0.0006 -0.20 -173.98 72.43 4.82%

A.2.1 Cutting Edge Coefficients

Cutting edge coefficients, which account for the portion of cutting forces which are not related to

the shearing process, are also calibrated by cutting experiments. However, unlike cutting coeffi-

cients which are modeled to be only workpiece material dependent, edge coefficients are specific

to the workpiece–tool material pair [14].

For AISI 1045 steel two sets of experiments were performed in previous studies. The first set

of experiments, have been conducted with Sandvik GC3205 grade inserts. The results are given in

Table A.2 [2].

Table A.2: Cutting coefficients for AISI 1045 steel with GC3205 grade tool [2]

n Vc Kf e Kf a Kre Kra Kte Kta
[rpm] [m/min] [N/mm] [MPa] [N/mm] [MPa] [N/mm] [MPa]
100 12 50 1816 10 -25 43 3512
200 25 28 2458 0 -5 32 3776
400 49 0 4359 -2 188 10 4811
600 74 31 3364 -5 172 25 4152
800 99 57 2509 10 53 37 3623

1000 123 77 1937 23 -52 46 3235
1250 154 79 1773 28 -81 46 3102
1500 185 81 1639 26 -85 39 3294
1750 216 81 1580 27 -115 44 2937
2000 247 83 1544 26 -124 44 2881
2250 278 81 1619 35 -219 41 2929
2500 308 80 1698 44 -293 37 3042

The second set of experiments were conducted by Centmayer who used AISI 1045 Steel work-
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Figure A.7: Comparison of cutting edge coefficients for AISI 1045 steel

piece with Kennametal KC8050 grade cutting tools. Experimental results are presented in Ta-

ble A.3 [3].

Since this grade of tool is very similar to the Sandvik GC6050, these coefficients are assumed

to be applicable to the GC6040 grade as well.

It can be seen that the cutting edge coefficients obtained from each study is very different as

shown in Figure A.7. Therefore it is necessary to run cutting tests for each workpiece and tool
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Table A.3: Cutting coefficients for AISI 1045 steel with KC8050 grade tool [3]

Vc Kf e Kte Kre
[m/min] [N/mm] [N/mm] [N/mm]

50 35.12 58.033 -1.2361
75 154 118.69 -8.4721

100 147.21 123.93 -9.2675
150 136.72 101.97 -9.3731

material combination. The edge coefficients are also sensitive to the tool coating, tool wear and

chipping.

In the orthogonal databases, data for commonly used workpiece - tool material pairs can be

stored. Such an process will unavoidably, increase the number of orthogonal cutting tests required

to construct an orthogonal database.

A.2.2 Curve Fitting

In order to store these experimental data in a format which can be used in a simulation system, the

acquired data is fitted with a curve. However a polynomial curve fitting does not yield satisfactory

representation of the cutting coefficients.

Therefore a function which can represent the overall shape of the curve was chosen. The fitted

curve is in the form of an arctangent function as shown in Equation A.32

Ke =C1


atan

✓
Vc �C2

C3

◆�
+C4 (A.32)

The experimental data (Table A.2 and Table A.3) are fitted by using a least squares method.

In order for the fitted curve to preserve the overall shape of the experimental values, intermediate

data points are created by interpolation between the given data points.

Also, the cutting edge coefficients were assumed to reach a value of zero when the cutting

speed goes to zero.
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Figure A.8: Curve fitting for cutting edge coefficients (GC3205 grade tool and AISI 1045
Steel)

(Ke)Vc=0 = 0 (A.33)

The resulting fitted curves are compared to the experimental values in Figure A.8 and Figure A.9

for GC3205 and KC8050 grades respectively. The coefficients for each tool grade are found as
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Figure A.9: Curve fitting for cutting edge coefficients (KC8050 grade tool and AISI 1045
Steel)

shown in Table A.4 and Table A.5 respectively.

Table A.4: Coefficients for edge coefficient of AISI 1045 steel with GC3205 grade tool

C1 C2 C3 C4
Kf e 14.060 69.967 12.979 21.711
Kte 31.833 78.128 20.653 35.946
Kre 12.642 107.350 19.143 13.690
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Table A.5: Coefficients for edge coefficient of AISI 1045 steel with KC8050 grade tool

C1 C2 C3 C4
Kf e 46.486 58.968 4.967 76.219
Kte 39.804 50.355 7.883 57.179
Kre -27.267 -102.09 110.65 21.059
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A.3 NC-Commands for Hardinge Superslant Lathe
The NC-commands and the required data formats for the Hardinge Superslant lathe are obtained

from the user manual. The commands listed in Table A.6 are implemented within the NC-parser

algorithm.

Table A.6: NC-commands implemented in the G-code parser

Command Value Type Definition

G 00 Modal Rapid Motion

G 01 Modal Linear Motion

G 02 Modal CW Circular Interpolation

G 03 Modal CCW Circular Interpolation

G 96 Modal Constant Surface Speed Mode

X XXX.xxx Position X–coordinate in diameter mode

Z XXX.xxx Position Z–coordinate

I XXXX.xxxx Position Circular interpolation arc center (X incremental)

K XXXX.xxxx Position Circular interpolation arc center (Z incremental)

F XXX.xxx Modal Feedrate

S XXXX Modal Spindle speed (or Cutting speed if CSS mode is active

T XX Modal Tool selection
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