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Abstract

The count of active lesions based on magnetic resonance imaging (MRI) is of-
ten used as a potential surrogate endpoint in phase 2 clinical trials for relapsing-
remitting multiple sclerosis (RRMS) patients. However, this surrogacy relation-
ship has not been completely validated. In this report, we study whether at the
trial level, the MRI lesion count is a good surrogate endpoint for the relapse rate,
the usual clinical endpoint for RRMS clinical trials.

Two different approaches to assess this surrogacy relationship are applied to
the dataset used by Sormani et al. [1] (SBRCMB) which contains the summary re-
sults from 23 randomized, placebo-controlled clinical trials in RRMS. The SBR-
CMB approach uses simple linear regression with weighted least squares estima-
tion, while our more comprehensive approach develops a detailed model for the
endpoints and the treatment effects to take into account estimation errors and the
correlated contrasts. Both approaches are based only on the summary results from
each clinical trial.

The shortcomings of the SBRCMB approach are discussed and the results
from the two approaches are compared. Both approaches show that the MRI le-
sion count is a good surrogate endpoint, while our more comprehensive approach
shows a nearly perfect surrogacy relationship. When the estimated surrogacy rela-
tionship is used to predict the true treatment effect on the clinical endpoint for the
trials in the SBRCBM dataset, the approaches give similar point predictions, but
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the approximate 95% prediction intervals from the comprehensive approach are
generally shorter. In practice, the estimated surrogacy relationship based on the
comprehensive approach can give a precise prediction for the true treatment effect
on the clinical endpoint if the treatment displays a large effect on the surrogate
endpoint, but may otherwise lead to an inconclusive result.
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Chapter 1

Introduction

1.1 What is a Surrogate Endpoint?
In clinical trials, a clinical endpoint generally refers to occurrence of a disease, a
symptom, a sign or a laboratory abnormality that constitutes one of the target out-
comes of the trial. It directly measures how a patient feels, functions or survives
and thus, is used to determine whether the treatment being studied is beneficial.
A surrogate endpoint is an outcome which can be used as a substitute for a clin-
ical endpoint. When assessing the treatment effect, a surrogate endpoint can be
used to generate reliable conclusions instead of using the corresponding clinical
endpoint directly. Examples of potential surrogate endpoints include CD4 cell
count for HIV-related disease progression in clinical trials of anti-HIV treatments,
progression-free survival time for survival time in clinical trials of treatments for
advanced ovarian cancer and serum cholesterol levels for survival in clinical trials
of treatments for cardiovascular disease. More examples of potential surrogate
endpoints can be found in Burzykowsky et al. [4].

Why are surrogate endpoints required? The principal reason is that in many
clinical trials, it is difficult to use the desired clinical endpoints directly. The clin-
ical endpoint may be rare, so a large number of patients would be required for
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a trial with adequate power (e.g. short-term mortality in patients with suspected
acute myocardial infarction). The clinical endpoint may need a very long follow-
up time to be detected (e.g. survival of patients in early-stage cancers), but too
many patients might then be lost to follow-up. The clinical endpoint may also be
difficult or costly to measure. In contrast, surrogates endpoints are outcomes that
occur more often or are easier to measure. The motivation for the use of a surro-
gate endpoint is therefore the possibility of a reduction in the number of required
patients or in the required trial duration.

In order to effectively substitute for a formal clinical endpoint, a surrogate
endpoint must have the potential to yield unambiguous information about differ-
ential treatment effects on a clinical endpoint. The formal definition of a surrogate
endpoint is given by Prentice [5] as “a response variable for which a test of the
null hypothesis of no relationship to the treatment groups under comparison
is also a valid test of the corresponding null hypothesis based on the clinical
endpoint”. The Prentice definition means that if a treatment has an effect on a
clinical endpoint, then the treatment also has an effect on the surrogate endpoint,
and the converse is also true. Mathematically, if S and C denote the surrogate
endpoint and the clinical endpoint respectively, and Z denotes the treatment. then
the Prentice definition can be written as:

f (S|Z) = f (S)⇔ f (C|Z) = f (C), (1.1)

where f (X) denotes the probability distribution of the random variable X and
f (X |Z) denotes the probability distribution of X conditional on the value of Z.

1.2 Surrogate Endpoints in Multiple Sclerosis
Multiple sclerosis (MS) is a chronic and often disabling disease of the central ner-
vous system. MS affects the ability of nerve cells in the brain and spinal cord
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to communicate with each other. Nerve cells communicate by sending electrical
signals called action potentials down long fibers called axons, which are wrapped
in an insulating substance called myelin. In MS, the body’s own immune system
attacks and damages the myelin. When myelin is lost, the axons can no longer
effectively conduct signals. The name multiple sclerosis refers to scars particu-
larly in the white matter of the brain and spinal cord, which is mainly composed
of myelin.

MS results in symptoms including difficulties in moving and coordination, de-
terioration of sensory functions, problems in bowel and bladder functions, among
many others. MS onset usually occurs in young adults, and it is more common in
women. Although much is known about the mechanisms involved in the disease
process, the cause remains unknown, and there is no known cure for the disease
to date.

There are several types of MS characterized by disease progression in terms of
severity of disability. Relapsing-remitting MS (RRMS), the most common type,
is characterized by unpredictable relapses followed by periods of months to years
of relative quiet (remission) with no new signs of disease activity.

Until now, the only accepted primary endpoints for pivotal clinical trials of
new treatments for RRMS are clinical outcomes, including relapse rate and ac-
cumulation of permanent disability, usually measured by the Extended Disability
Status Scale (EDSS). There is no fully validated surrogate endpoint for RRMS yet.
In RRMS clinical trials, magnetic resonance imaging (MRI) scans of the brain are
often utilized to help monitor patients’ health and the progression of their disease.
McFarland et al. [6] argue that changes in MS brain lesion patterns determined
by MRI scans, which reflect the underlying disease pathology, may be the best
candidate for a surrogate endpoint in RRMS.
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1.3 Outline of the Report
The objective of our study is to address the question: Are changes in brain lesion
patterns determined by MRI a good surrogate endpoint for the relapse rate, the
clinical endpoint in RRMS clinical trial?

This chapter has provided some background information about surrogate end-
points and MS. Chapter 2 provides a general review of how to validate a potential
surrogate endpoint. We first discuss the importance of validation and then review
different approaches, in situations where data is from a single clinical trial and
data is from multiple clinical trials respectively. In the situation of multiple clini-
cal trials, we focus on the scenario where only summary statistics for each trial are
available. We review the methods adopted in Daniels and Hughes [2] and Korn
et al. [3] in detail.

Chapter 3 considers validation in the RRMS setting. The specific potential
surrogate endpoint we will focus on is the MRI lesion count, and the correspond-
ing clinical endpoint is the annualized relapse rate. Information is presented on
the dataset of Sormani et al. [1] (hereafter referred to as SBRCMB) used to assess
the surrogacy relationship. The methodology of SBRCMB is discussed in detail,
as well as the potential drawbacks of their approach.

In Chapter 4, we develop a related but different model to assess the surrogacy
relationship. We focus on dealing with the issue of measurement error existing in
estimating the surrogate endpoint and the clinical endpoint, and the context where
data is available from several clinical trials, including some having more than two
arms. We compare the results from the SBRCMB model and from our model.
We also evaluate the prediction ability of the estimated surrogacy relationship to
determine whether the surrogate endpoint is useful in practice. Chapter 5 summa-
rizes the overall findings and discusses problems that remain to be investigated.
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Chapter 2

Literature Review: Validation of
Surrogate Endpoints

2.1 Importance of Validating a Potential Surrogate
Endpoint

It is essential to validate a potential surrogate endpoint before using it as the pri-
mary outcome in a clinical trial. A surrogate endpoint should be able to assess
the treatment effect in a clinical trial and the result obtained from the surrogate
endpoint should be consistent with that obtained from the corresponding clini-
cal endpoint. Inconsistent results will lead to an incorrect conclusion about the
treatment effect, and thus misuse of the treatment in future, which may cause in-
effective or even harmful impact on patients. For example, in some clinical trials
regarding cardiologic disorder, blood pressure is used as a surrogate endpoint for
actual survival of a patient. However, some treatments that are useful in lowering
a patient’s blood pressure have been shown to have no effect in reducing the risk
of death from myocardial infarction. More examples of misuse of potential surro-
gate endpoints can be found in Fleming and DeMets [7].
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Most potential surrogate endpoints are prognostic biomarkers, which means
there is a strong association between the biomarker and the clinical endpoint at
the level of the individual patient. Such association reflects a potential biolog-
ical relationship between the biomarker and the clinical endpoint. However, as
many studies have shown, a strong association is not enough. Surrogate endpoints
are about assessing treatment effects. This means, at the trial level, the treatment
effect obtained from a surrogate endpoint must reliably predict the treatment ef-
fect obtained from the clinical endpoint. Examples of the misuse of prognostic
biomarkers as surrogate endpoints can be found in Fleming and DeMets [7].

Focusing on the Prentice definition of a surrogate endpoint (1.1), we require
that if a treatment has an effect on a surrogate endpoint, then it also has an effect
on the clinical endpoint. However, we also require that if a treatment doesn’t have
an effect on the surrogate endpoint, then it doesn’t have an effect on the clinical
endpoint either. Biologically, this implies the surrogate endpoint is on the sole
causal pathway of the disease process to the clinical endpoint.

Figure 2.1 illustrates the perfect scenario for a surrogate as well as some im-
perfect scenarios: D, S and C stand for the disease, the surrogate endpoint and the
clinical endpoint in a clinical trial respectively, while Z stands for the treatment
applied in this clinical trial. Panel (a) shows the situation of a perfect surrogate
endpoint, in which S is on the sole causal pathway from D to C. So the entire
effect of Z on S will extend to C, and Z cannot affect C without affecting S. Panels
(b), (c) and (d) show some situations of imperfect surrogate endpoints. Note that,
in all these 3 situations, S is associated with C since they both are influenced by
the same disease process D. However, in panel (b), S is not on the causal path-
way from D to C. In the case illustrated, Z could affect S but not C, so S is not a
surrogate endpoint for C. In panel (c), there are two pathways from D to C, and
S is on one of them. If Z affects C only through X on the second pathway, then
S is not a surrogate endpoint for C; if Z can affect C through both S and X , then
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(a) (b)

(c) (d)

Figure 2.1: Scenarios of Perfect (a) and Imperfect (b,c,d) Surrogates

S is an imperfect surrogate endpoint for C. In such a case, an effect of Z on S

could imply an effect of Z on C. However, since Z can bypass S and still influence
C through X , it is possible that there is an effect on C but no effect on S. On the
other hand, the effect of Z on S and the effect of Z on X may counteract each other,
leading to no net effect of Z on C. In panel (d), it is possible that the effect of Z

on S doesn’t extend to C, but to X instead. In this case, if there is no treatment ef-
fect on S, then there is no treatment effect on C, but the converse is not always true.
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2.2 Methods of Validating Surrogate Endpoints

2.2.1 The Prentice Operational Criteria for Validation
Prentice [5] proposed 4 operational criteria to validate a potential surrogate end-
point. Recalling his definition of a surrogate endpoint (1.1): f (S|Z) = f (S) ⇔
f (C|Z) = f (C), and using the same notation, we can express the Prentice opera-
tional criteria as:

f (S|Z) ̸= f (S) (2.1)

f (C|Z) ̸= f (C) (2.2)

f (C|S) ̸= f (C) (2.3)

f (C|S,Z) = f (C|S) (2.4)

Essentially, (2.1) requires that the treatment has an effect on the surrogate end-
point, (2.2) requires that the treatment has an effect on the clinical endpoint,
(2.3) requires that different values of the surrogate endpoint result in different
values of the clinical endpoint, which means the surrogate endpoint is a prognos-
tic biomarker, and (2.4) requires that the surrogate endpoint should completely
capture the dependence of the clinical endpoint on the treatment.

In practice, (2.1) and (2.2) are considered as necessary conditions for an out-
come to be a surrogate endpoint, but not “actual” validation criteria. Note that
(1.1) is equivalent to f (S|Z) ̸= f (S)⇔ f (C|Z) ̸= f (C), so (2.1) and (2.2) need to
be satisfied or not simultaneously. Criteria (2.3) and (2.4) are the “actual” valida-
tion criteria. Usually, (2.3) is examined before (2.4), because a surrogate endpoint
is expected to be a good prognostic biomarker. Criterion (2.4) is the essential part
of the Prentice operational criteria. It means the treatment effect on the clinical
endpoint can be entirely captured by the surrogate endpoint. A common way to
examine (2.4) is to assume a regression model of form C = α +βZ + γS+ ε and
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to check if the estimated regression coefficient for S is significantly different from
0 and that for Z is not. For this approach to be valid, one has to believe that the
regression model describes the true relationship among C,S and Z.

Buyse and Molenberghs [8] show that (2.3) and (2.4) are necessary and suf-
ficient conditions to establish (1.1) when the surrogate endpoint of interest is a
binary outcome. When the surrogate endpoint is not binary, the criteria are only
sufficient but not necessary; that is, if (2.3) and (2.4) are satisfied, then a treatment
effect on the clinical endpoint ensures a treatment effect on the surrogate end-
point, but a treatment effect on the surrogate endpoint may not imply a treatment
effect on the clinical endpoint. In terms of Figure 2.1, (2.3) and (2.4) exclude the
situations (b) and (c), but not (d). (In (d), (2.3) holds because both S and C are
influenced by D, and (2.4) holds because Z cannot affect C without affecting S.)
Some counter examples are given in Buyse and Molenberghs [8] and Berger [9].

2.2.2 Validation in a Single Clinical Trial
To check the criterion (2.4), one needs to show that the statistical test for the treat-
ment effect on the clinical endpoint to be nonsignificant after adjustment for the
surrogate endpoint. However, this requirement raises a conceptual difficulty in
validation since a nonsignificant result may simply be due to insufficient power
of the statistical test. Hence, (2.4) is useful in rejecting a poor surrogate end-
point (the statistical test leads to a significant result), but is inadequate to validate
a good surrogate endpoint. To overcome this difficulty, Freedman and Graubard
[10] proposed a quantity called “proportion of the treatment effect explained by
the surrogate” (PE) to measure the quality of a potential surrogate.

Let β and βs be the parameters representing the treatment effect on the clinical
endpoint C without and with adjustment for the surrogate endpoint S respectively.
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Then PE is defined as:
PE =

β −βs

β
= 1− βs

β
. (2.5)

It is expected that βs = 0 when the surrogate is perfect; in this case, PE = 1. Nat-
urally, PE being closer to 1 implies the surrogate endpoint explains more of the
treatment effect on the clinical endpoint. In practice, β and βs are replaced by
their estimates, and the 2-sided 95% confidence interval for PE is constructed.
Freedman and Graubard [10] suggested the lower limit of the interval should be
greater than a critical value, say 0.5, for the surrogate endpoint to be considered
useful.

For example, in a clinical trial, let α and β denote the treatment effect on the
surrogate endpoint and the clinical endpoint respectively, and let S j, C j and Z j

denote the surrogate endpoint, the clinical endpoint and the treatment received for
the jth patient. Here, Z j is an indicator variable, which can be either 1 (the jth
patient is in the active arm) or 0 (the jth patient is in the control arm). We often
refer to the combination of an active arm and a control arm as a “contrast”. So, α
and β are the treatment effects obtained from the contrast in this clinical trial (i.e.,
by comparing the active arm and the control arm).

Assume the model:

S j = µs +αZ j + εs j,

C j = µc +βZ j + εc j, (2.6)

where the error terms (εsi and εc j) have a bivariate normal distribution with mean
0 and variance-covariance matrix

Σ =

(
σss σsc

σsc σcc

)
. (2.7)

Then, one can obtain the conditional distribution of C j given S j, which is param-
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eterized as:
C j|S j = µ +βsZ j + γS j + ε j, (2.8)

where βs = β − σsc
σss

α . In this model, PE is given by:

PE = 1− βs

β
=

σsc

σss

α
β
. (2.9)

Despite PE’s description as the “proportion” of the treatment effect explained
by the surrogate endpoint, it is not actually a “proportion”. Molenberghs et al. [11]
point out that the range of PE is not between 0 and 1 and discuss the interpretation
problems of PE. For instance, the PE defined by (2.9) can take any value on the
real line, because the range of α

β is unrestricted.

Buyse and Molenberghs [8] propose two quantities to replace PE in validating
a potential surrogate endpoint. The first is the “adjusted association” ρA, a mea-
sure of the association between the surrogate endpoint and the clinical endpoint
after adjustment for the treatment. In terms of model (2.6), ρA can be expressed
as:

ρA =
σsc√
σssσcc

. (2.10)

The adjusted association ρA measures how good a surrogate endpoint performs at
the level of the individual patient. In the above model, if ρA = 1, then the variance
of ε j in (2.8) is 0. So, C j becomes a linear function of S j, which means given
the value of S j, one can estimate the value of C j without error. In this case, the
surrogate endpoint and the clinical endpoint contain equivalent information about
the treatment, hence one can determine the treatment effect on the clinical end-
point exactly from the treatment effect on the surrogate endpoint, and the Prentice
definition (1.1) is satisfied [12].
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The second quantity Buyse and Molenberghs [8] propose is the “relative ef-
fect” (RE), which is defined as the ratio of the treatment effect on the clinical
endpoint to the treatment effect on the surrogate endpoint. In terms of model
(2.6), RE is defined as:

RE =
β
α
. (2.11)

The relative effect RE is useful in predicting the treatment effect on the clinical
endpoint from that on the surrogate endpoint. In practice, α and β are replaced
by their estimates and a confidence interval for RE is constructed. A narrow con-
fidence interval results in a good prediction of the treatment effect on the clinical
endpoint. For example, based on the data from the current trial, one can obtain
R̂E = β̂

α̂ . For a future trial, one can estimate its treatment effect on the surrogate
endpoint as α̂0. Then, the treatment effect on the clinical endpoint from that fu-
ture trial can be estimated as β̂0 = α̂0 · R̂E. However, to make use of RE for such
predictions, it is necessary to assume that the relationship (2.11) also holds in the
future trial. This assumption may not be correct and cannot be checked in a single
clinical trial.

2.2.3 Validation in Multiple Clinical Trials
When multiple clinical trials study the efficacy of the same treatment or treatments
with a similar mechanism on the same disease, the validation procedure can use
the information from these multiple trials. In this section, we review the methods
used when the individual patient level data is available from each trial. In the next
section, we discuss the methods used when only summary information from each
trial is available.

Buyse et al. [13] consider the situation where individual patient level data is
available and the surrogate endpoint and the clinical endpoint are both continu-
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ously, normally distributed. Let Si j, Ci j and Zi j denote the surrogate endpoint, the
clinical endpoint and the treatment received for the jth patient from the ith trial.
Assume the model:

Si j = µs +µsi +αZi j +αiZi j + εsi j,

Ci j = µc +µci +βZi j +βiZi j + εci j, (2.12)

where µs and µc are fixed intercepts, α and β are the fixed effects of treatment on
the surrogate endpoint and the clinical endpoint, µsi and µci are random intercepts
and αi and βi are the random effects of treatment on the endpoints in trial i. The
error terms εsi j and εci j are assumed to follow the joint normal distribution with
mean 0 and variance-covariance matrix given by (2.7), and the random effects
(µsi,µci,αi,βi)

T are assumed to follow a joint normal distribution with mean 0
and variance-covariance matrix D given by:

D =


dss dsc dsα dsβ

dsc dcc dcα dcβ

dsα dcα dαα dαβ

dsβ dcβ dαβ dββ

 . (2.13)

Buyse et al. [13] suggest to evaluate the surrogate endpoint at two different
levels. One is at the trial level, the other is at the individual patient level. At the
trial level, the surrogacy relationship is assessed by the conditional variance of
β +βi given µsi and αi. From (2.12) and (2.13), the conditional variance is given
by:

Var(β +βi|µsi,αi) = dββ −

(
dsβ

dαβ

)T (
dss dsα

dsα dαα

)−1(
dsβ

dαβ

)
. (2.14)
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This conditional variance describes how precisely one can predict the treatment
effect on the clinical outcome given the treatment effect on the surrogate outcome
in a certain trial. Equivalently, a proportion type measure of “trial level” surrogacy
is defined as:

R2
trial =

(
dsβ

dαβ

)T (
dss dsα

dsα dαα

)−1(
dsβ

dαβ

)
dββ

. (2.15)

Moreover, one can quantify the relationship between the treatment effects on
the surrogate endpoint and on the clinical endpoint by using the conditional ex-
pectation of β +βi given µsi and αi, which is:

E(β +βi|µsi,αi) = β +

(
dsβ

dαβ

)T (
dss dsα

dsα dαα

)−1(
µsi

αsi

)
. (2.16)

The equation (2.16) characterizes how the treatment effect on the clinical endpoint
changes with the treatment effect on the surrogate endpoint. Given a new trial, af-
ter estimating the treatment effect on the surrogate endpoint, µ̂si and α̂si, one can
predict the expected treatment effect on the clinical endpoint through (2.16). Note
that if we only have one trial, then we are not able to characterize this relationship.

At the individual patient level, the surrogacy relationship is evaluated using the
adjusted association ρA used in the single trial situation. The conditional variance
of Ci j given Si j and the random effects is σcc −σ2

csσ−1
ss . Thus, a proportion type

measure of “individual level” surrogacy is defined as:

R2
ind = ρ2

A =
σ2

cs
σssσcc

. (2.17)

A surrogate endpoint is considered to be perfect when both R2
trial and R2

ind are
equal to 1. Large values of R2

trial implies precise prediction of the treatment effect
on the clinical endpoint, while large values of R2

ind implies strong association be-
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tween the surrogate endpoint and the clinical endpoint, which is useful in patient
management. It is possible that R2

trial is large and R2
ind is small, or vice versa.

2.3 Validation in Multiple Clinical Trials with
Individual Data Unavailable

In some contexts, only summary data of each trial, not the individual patient data,
is available. For example, only results about the estimated treatment effect on
the endpoints and the corresponding estimated standard errors may be available,
not the outcomes of each patient. Then, the surrogacy relationship can only be
evaluated at the trial level. Since we don’t know the outcomes of each patient, we
cannot evaluate the strength of the association between the surrogate endpoint and
the clinical endpoint at the individual patient level (e.g., calculate Rind in (2.17)).
However, we are still able to assess the relationship between the treatment effect
on the clinical endpoint and on the surrogate endpoint.

When only summary results from each trial are available, caution must be
taken in the validation procedure because these summary results are only “esti-
mates”, which are different from the “true” quantities. For example, an estimated
treatment effect on the endpoint from one trial is different from the true treatment
effect on the endpoint from this trial. The true treatment effect is the effect ob-
tained when the clinical trial includes an infinite number of patients. In practice,
due to the limited number of patients, there always exist non-negligible estima-
tion errors between the estimated and the true effects. How to appropriately model
these estimation errors is important in assessing surrogacy relationships at the trial
level. In the following subsections, we will review papers by Daniels and Hughes
[2] (DH, hereafter) and Korn et al. [3] (KAM, hereafter), in which models are
constructed to evaluate surrogacy relationships in multiple clinical trials for the
situation when individual patient level data is unavailable.
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2.3.1 Review of Daniels and Hughes [2]
Suppose N trials are used to analyze the performance of the surrogate endpoint of
interest. In the ith trial, denote the true treatments effect on the surrogate endpoint
and on the clinical endpoint as X true

i and Y true
i respectively. Correspondingly, let

Xi and Yi denote their estimates, i.e. the summary results obtained from the ith
trial. Generally, unless the the number of patients in the ith trial is very large, Xi

and Yi are different from X true
i and Y true

i .

Given the ith trial, Xi is assumed to be normally distributed with mean X true
i

and variance δ 2
i and Yi is assumed to be normally distributed with mean Y true

i and
variance σ2

i . Furthermore, the correlation between Xi and Yi is assumed to be
ρi. Here, δ 2

i and σ2
i represent the effect of estimation error in the ith trial, and

ρi represents the correlation between the estimation errors on X true
i and Y true

i . In
mathematical form:(

Yi

Xi

)∣∣∣∣∣
(

Y true
i

X true
i

)
∼ N2

((
Y true

i

X true
i

)
,

(
σ2

i ρiσiδi

ρiσiδi δ 2
i

))
. (2.18)

The surrogacy relationship of interest is the relationship between the true treat-
ment effects Xi and Yi. DH assume the following structure:

Y true
i |X true

i ∼ N(α +βX true
i ,τ2). (2.19)

Here, β measures the association between the true treatment effects on the clinical
and the surrogate endpoint. If β = 0, then there is actually no such surrogacy re-
lationship. When β ̸= 0, a perfect surrogacy relationship also requires that α = 0
so that the treatment having no effect on the surrogate endpoint suggests no effect
on the clinical endpoint. Having α ̸= 0 implies that there is a treatment effect
on the clinical endpoint unexplained by the surrogate endpoint. The variance τ2
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represents the uncertainty of using X true
i to predict Y true

i . If τ2 = 0, then Y true
i will

be perfectly determined when X true
i is given.

At this stage, DH assume the X true
i s are fixed quantities. The reason why they

choose X true
i s as fixed rather than random is to avoid having to propose specific

distributions for the X true
i s, which they think may not be appropriate. (Though

later, they put very flat prior distributions on X true
i s when estimating the model

parameters in the Bayesian framework.) Then combining (2.18) and (2.19), we
obtain the bivariate normal model for Yi and Xi:(

Yi

Xi

)
∼ N2

((
α +βX true

i

X true
i

)
,

(
σ2

i + τ2 ρiσiδi

ρiσiδi δ 2
i

))
. (2.20)

In some clinical trials, there may be more than one active arm, in addition to
the control arm. A common situation is that different patients receive different
levels of dosage of a treatment. For example, if a treatment is applied at 2 dosage
levels, then this clinical trial consists of 3 arms. Patients on the first arm receive
treatment with dosage level one, patients on the second arm receive treatment with
dosage level two, and patients on the third arm receive control. Since the com-
bination of any active arm and a control arm yields a contrast, this clinical trial
consists of 2 contrasts.

From a clinical trial with multiple contrasts, we obtain multiple estimated
treatment effects on both endpoints. Suppose there are 3 arms in the ith trial,
which can generate 2 contrasts. Let Yi1 and Xi1 be the estimated treatment effects
on the clinical and surrogate endpoints from the first contrast, and Yi2 and Xi2 be
those from the second contrast. Correspondingly, let Y true

i1 ,X true
i1 ,Y true

i2 and X true
i2
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be the true treatment effects. Then model (2.18) can be generalized to:
Yi1

Xi1

Yi2

Xi2


∣∣∣∣∣∣∣∣∣∣


Y true

i1

X true
i1

Y true
i2

X true
i2

∼N4




Y true
i1

X true
i1

Y true
i2

X true
i2

 ,


σ2

i1 ρi11σi1δi1 ρiyσi1σi2 ρi12σi1δi2

ρi11σi1δi1 δ 2
i1 ρi21δi1σi2 ρixδi1δi2

ρiyσi1σi2 ρi21δi1σi2 σ2
i2 ρi22σi2δi2

ρi12σi1δi2 ρixδi1δi2 ρi22σi2δi2 δ 2
i2


 .

(2.21)

The off-diagonal blocks of covariance terms in (2.21) are allowed to be non-zero,
reflecting the possibility of correlations among the two pairs of estimated treat-
ment effects arising because they all involve comparisons to the same control arm.
Also, assuming X true

i1 and X true
i2 are fixed, (2.19) is generalized (M. J. Daniels, per-

sonal communication) as:(
Y true

i1

Y true
i2

)∣∣∣∣∣
(

X true
i1

X true
i2

)
∼ N2

((
α +βX true

i1

α +βX true
i2

)
,

(
τ2 0
0 τ2

))
. (2.22)

From (2.22), we can see that the marginal distributions of Y true
i1 and Y true

i2 have the
same form. This is because all the treatments included in the analysis have similar
mechanism of action; whether two contrasts are from one trial or different trials,
they should reflect the same surrogacy relationship. DH assume the covariance
between Y true

i1 and Y true
i2 is 0 in (2.22). In principle, this covariance could be non-

zero and (2.22) can be replaced by substituting the 0 by an non-zero parameter.

Combining (2.21) and (2.22), we get:
Yi1

Xi1

Yi2

Xi2

∼N4




α +βX true
i1

X true
i1

α +βX true
i2

X true
i2

 ,


σ2

i1 + τ2 ρi11σi1δi1 ρiyσi1σi2 + τ2 ρi12σi1δi2

ρi11σi1δi1 δ 2
i1 ρi21δi1σi2 ρixδi1δi2

ρiyσi1σi2 + τ2 ρi21δi1σi2 σ 2
i2 + τ2 ρi22σi2δi2

ρi12σi1δi2 ρixδi1δi2 ρi22σi2δi2 δ 2
i2


 .

(2.23)

For a clinical trial with 3 or more contrasts, a similar extension can be applied.

DH assume a joint normal structure for the summary results (estimated treat-
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ment effects) from each trial included in the study. To estimate the model pa-
rameters, they adopt a Bayesian approach. In the estimation procedure, all the
within trial variances and correlations are assumed known and replaced by their
estimates. The variance estimates for each trial are obtained from the summary re-
sults of that trial. For the correlation estimates, if the individual patient level data
for one trial is available, the correlation estimates in this trial are calculated from
the individual patient data. Otherwise, the correlation estimates for that trial are
set to the average value of the correlation estimates from trials which individual
patient level data are available. In the Bayesian procedure, priors are then placed
on α,β ,τ2 and all the true treatment effects on the surrogate endpoint (i.e. X true

i

in single contrast trials and X ture
i j s in multiple contrast trials).

To assess the surrogacy relationship, DH propose to examine if the 95% cred-
ible intervals for α,β and τ2 exclude 0. Also, DH suggest to compute Bayes
factors [14] to test if α,β and τ2 are 0. If the tests reject the null hypothesis of
β = 0 and don’t reject the null hypotheses of α = 0 and τ2 = 0, then the surrogacy
relationship is considered to be validated.

2.3.2 Review of Korn et al. [3]
KAM discuss different models to assess the surrogacy relationship for two dif-
ferent types of clinical trials. One type of trial involves unordered treatment arms
(i.e. there is no control arm in the trial), and the other type of trial involves ordered
treatment arms (i.e. there is one control arm in the trial). Since the dataset we will
use in the next chapter consists of only ordered trials, and also to make KAM’s
model comparable with DH’s model, we only discuss their model for ordered tri-
als.

In contrast to DH, KAM start their model at the arm level instead of at the con-
trast level. In the ith clinical trial, let Ci j and Si j be the observed clinical endpoint
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and the observed surrogate endpoint from the jth arm, where j = 0,1,2, ... ( j = 0
represents the control arm in the trial). Similarly, let Ctrue

i j and Strue
i j be the true

clinical and surrogate endpoints. KAM’s model begins by describing the estima-
tion errors in estimating the endpoints. Correspondingly, let ei j and fi j denote the
estimation errors in the surrogate endpoint and the clinical endpoint respectively.
Then: Si j = Strue

i j + ei j

Ci j =Ctrue
i j + fi j,

, (2.24)

Since the estimation errors happen in different arms with different patients, they
are assumed to be independent. KAM further assume that ei j

iid∼ N(0,σ2
i j) and

fi j
iid∼ N(0,δ 2

i j), and that ei j and fi j are independent.

As a next step, KAM model Strue
i j and Ctrue

i j . Let µi represent the expected level
of the true surrogate endpoint on the control arm, and µS represent the expected
difference on the true surrogate endpoint between the active and control arms.
Let mi j be the random effect representing the uncertainty in the true surrogate
endpoint for each arm. KAM express Strue

i0 and Strue
i j as:

Strue
i0 = µi +mi0 and Strue

i j = µi +µS +mi j, for j ̸= 0. (2.25)

KAM assume mi0 ∼ N(0,λ 2
0 ), mi j ∼ N(0,λ 2) ( j ̸= 0), and all mi js are indepen-

dent. Note that although mi js ( j ̸= 0) are the random effects for different active
arms, they are assumed to have the same distribution. Similarly, all mi0s are as-
sumed to have the same distribution. Furthermore, mi j is assumed to be indepen-
dent of ei j and fi j, which means the estimation errors are not affected by the value
of the true endpoints.

KAM assume there is a linear relationship between Ctrue
i j and Strue

i j , specifi-
cally:
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Ctrue
i0 = αi +βStrue

i0 +gi0 and Ctrue
i j = αi +µC +βStrue

i j +gi j, for j ̸= 0,
(2.26)

where β represents the linear relationship between Ctrue
i j and Strue

i j , and αi and
αi + µC are the intercepts in the control arms and the active arms respectively.
Here, µC represents the expected difference on the clinical endpoint between the
active and control arms that cannot be explained by the influence of the true sur-
rogate endpoint on the true clinical endpoint. The random effects gi j account for
the fact that Ctrue

i j and Strue
i j are not perfectly linearly related and are assumed to

be independent and normally distributed with mean 0 and variance τ2/2. Note
that all the gi js are assumed to have the same distributions though they are from
different arms. Since gi js are not estimation errors, gi j, ei j and fi j are assumed to
be independent.

The treatment effect is estimated as the difference between the endpoints from
the active arm and from the control arm. Let Xi j = Si j − Si0 and Yi j = Ci j −Ci0

denote the estimated treatment effects on the surrogate and on the clinical end-
points respectively ( j ̸= 0). Corresponding, let X true

i j = Strue
i j − Strue

i0 and Y true
i j =

Ctrue
i j −Ctrue

i0 denote the true treatment effects. From (2.24), (2.25) and (2.26), we
have:Xi j = X true

i j +(ei j − ei0)

Yi j = Y true
i j +( fi j − fi0)

where

X true
i j = µS +(mi j −mi0)

Y true
i j = µC +βX true

i j +(gi j −gi0)

(2.27)
From (2.27), we obtain:

E(Y true
i j |X true

i j ) = µC +βX true
i j (2.28)

Var(Y true
i j |X true

i j ) = τ2,

which describes the surrogacy relationship between the true treatment effects on
the clinical endpoint and on the surrogate endpoint. We now see the interpreta-
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tions of µC,β and τ2 in the KAM model are the same as the interpretations of
α,β and τ2 in the DH model. As before, β measures the association between the
true treatment effect on the clinical endpoint and on the surrogate endpoint.

For a trial with single contrast, from (2.27) we can obtain the joint distribution
of the estimated treatment effects:(

Yi1

Xi1

)
∼N2

((
µC +β µS

µS

)
,

(
β 2(λ 2

0 +λ 2)+ τ2 +(σ 2
i1 +σ2

i0) β (λ 2
0 +λ 2)

β (λ 2
0 +λ 2) (λ 2

0 +λ 2)+(δ 2
i1 +δ 2

i0)

))
.

(2.29)

For a trial with 2 contrasts, from (2.27), after similar calculation:

(Yi1,Xi1,Yi2,Xi2)
T ∼ N4

((
µ
µ

)
,

(
Σ1i Σ3i

Σ3i Σ2i

))
, (2.30)

where

µ =

(
µC +β µS

µS

)
and

Σ1i =

(
β 2(λ 2

0 +λ 2)+ τ2 +(σ2
i1 +σ2

i0) β (λ 2
0 +λ 2)

β (λ 2
0 +λ 2) (λ 2

0 +λ 2)+(δ 2
i1 +δ 2

i0)

)
,

Σ2i =

(
β 2(λ 2

0 +λ 2)+ τ2 +(σ2
i2 +σ2

i0) β (λ 2
0 +λ 2)

β (λ 2
0 +λ 2) (λ 2

0 +λ 2)+(δ 2
i2 +δ 2

i0)

)
,

Σ3i =

(
β 2λ 2

0 + τ2

2 +σ2
i0 βλ 2

0

βλ 2
0 λ 2

0 +σ2
i0

)
.

For a trial with 3 or more contrasts, a similar extension can be applied.

When fitting their model, KAM use the maximum likelihood estimators ob-
tained from the joint normal distributions (2.29) and (2.30). The estimation error
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terms σ2
i j and δ 2

i j are assumed known and replaced by their estimates when fitting
the model.

To assess the surrogacy relationship, in addition to evaluating the estimates
and the confidence intervals for µC,β and τ2, KAM suggest that one can use a R2-
type measure. From (2.27) and (2.29), we know Var(Y true

i j ) = β 2(λ 2
0 +λ 2)+ τ2,

and Var(Y true
i j |X true

i j ) = τ2. So, the R2-type measure is defined as:

R2
trial =

β 2(λ 2
0 +λ 2)

β 2(λ 2
0 +λ 2)+ τ2 . (2.31)

This quantity is analogous to R2
trial in (2.15). Large values of R2

trial indicate a good
surrogacy relationship.

Furthermore, to evaluate how a surrogate endpoint performs in practice, KAM
suggest to estimate the parameter E(Y true

i j |Xi j), which is useful in predicting the
true treatment effect on the clinical endpoint given the estimated treatment effect
on the surrogate endpoint. This parameter is analogous to E(β + βi|µsi,αi) in
(2.16). However, KAM suggest to condition Y true

i j on Xi j, rather than on X true
i j .

From (2.27), the parameter of interest is:

∆ = E(Y true
i j |Xi j) = (µC +β µS)+

( β (λ 2
0 +λ 2)

(λ 2
0 +λ 2)+(δ 2

i j +δ 2
i0)

)
(Xi j −µS). (2.32)

To estimate ∆, KAM plug in the estimates for (β ,µS,µC,λ 2
0 ,λ

2) and the observed
value of Xi j from a new trial and replace δ 2

i j and δ 2
i0 by their estimates from that

trial.
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2.3.3 Comparison of These Two Approaches
The first difference between DH and KAM is that their models start from different
levels: DH start directly from the treatment effects (contrast level, since treatment
effects are obtained from contrasts), where they build the model for (Yi,Xi) given
(Y true

i ,X true
i ) and for Y true

i given X true
i . In contrast, KAM start from the endpoints

(arm level, since the endpoint values are obtained from the arms), where they first
specify the joint distribution for (Si j,Ci j,Strue

i j ,Ctrue
i j ), and take the difference to

obtain the joint distribution for Yi j and Xi j. Building the model from the arm level
requires a more detailed specification. However, in (2.26), KAM assume the same
coefficient β for control arms and active arms, which implies the relationships
between the true surrogate endpoint and the true clinical endpoint are the same
regardless of the arm. This assumption may not be very realistic in some situa-
tions, where a treatment may substantially influence the association between two
endpoints and thus it may be more reasonable to assume different β s for control
and active arms. In contrast, DH don’t make assumptions about the relationship
between the endpoints but model the surrogacy relationship directly in (2.19). We
think the DH approach is more reasonable from this perspective.

Both papers deal with the estimation errors in the same way in the sense that
the estimation errors are assumed to be independent of the true treatment effects.
In (2.18), DH assume σ2

i and δ 2
i , the within trial estimation errors, do not depend

on Y true
i and X true

i . This means the estimation errors on the treatment effects are
not affected by the true treatment effects. Similarly, in (2.25), KAM assume mi j

are independent of ei j and fi j, which means the estimation errors on the endpoints
are not affected by the true endpoints. This assumption implies that (mi j−mi0) are
independent from (ei j−ei0) and ( fi j− fi0), which also means the estimation errors
on the treatment effects are not affected by the true treatment effects. However, it
is possible that a large true treatment effect is associated with a large estimation
error, while a small treatment effect is associated with a small estimation error.
Thus, this independence assumption may not hold in some clinical trials.
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To compare how these models differ in characterizing the treatment effects,
we can compare the joint distributions for the treatment effects. For example, we
can compare (2.20) with (2.29). Alternatively, from (2.27), we obtain:(

Yi1

Xi1

)∣∣∣∣∣
(Y true

i1 ,X true
i1 )

∼ N2

((
Y true

i1

X true
i1

)
,

(
σ2

i1 +σ2
i0 0

0 δ 2
i1 +δ 2

i0

))
, (2.33)

and
Y true

i1 |X true
i1 ∼ N(µC +βX true

i1 ,τ2). (2.34)

Comparing (2.33) and (2.34) with (2.18) and (2.19), it is evident that the DH
model and the KAM model are essentially the same. One difference is that X true

i1

follows a normal distribution with mean µS and variance λ 2
0 + λ 2 in the KAM

model, while DH treat X true
i as fixed when specifying their model but then give

it a prior distribution when carrying out the estimation. The prior is chosen to be
normal with mean 0 and a very large variance, meaning it is “non-informative”.
Besides this, the conditional covariance in (2.33) is 0, while the conditional co-
variance in (2.18) is allowed to be non-zero. This is because KAM assume the
within trial estimation errors ei j and fi j are independent, but DH allow a correla-
tion ρi. It is likely that the two estimation errors are correlated in general. How-
ever, without individual patient level data, it is difficult to estimate this correlation.

In the following chapters, we will discuss validation of the surrogate endpoint
in the MS context. Our dataset consists of multiple clinical trials and only sum-
mary results from these trials are available. We will discuss two approaches to
validate the surrogate endpoint of interest: the SBRCMB approach and a more
comprehensive approach. The comprehensive approach is similar in spirit to the
DH and KAM models.
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Chapter 3

Lesion Counts as a Surrogate
Endpoint in RRMS: the SBRCMB
Approach

3.1 Introduction and the SBRCMB Dataset
Recently, MRI measures of brain lesion counts on RRMS patients are widely used
in clinical trials as a potential surrogate endpoint. One important clinical endpoint
in RRMS clinical trials is the annualized relapse rate. A relapse is defined as ap-
pearance of new symptom or worsening of an existing symptom, attributable to
MS, accompanied by an appropriate new neurologic abnormality. However, the
surrogacy relationship between such MRI measures and this clinical endpoint has
remained incompletely validated. Petkau et al. [15] show that the correlation be-
tween MRI lesion counts and the annualized relapse rate at the individual level
is weak. The low degree of correlation at the individual level indicates that MRI
measures would be unreliable predictors of the annualized relapse rate for an in-
dividual patient. However, this result does not exclude the possibility that the
treatment effects on MRI measures and on the annualized relapse rate are highly
associated, which means that MRI measures may still be useful for assessing the
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treatment effect at the trial level.

To evaluate whether MRI measures are useful in assessing treatment effects,
SBRCMB collected summary information from multiple MS clinical trials. The
SBRCMB dataset includes 23 randomized, double-blind, placebo-controlled tri-
als. The treatments in the trials are believed to have similar mechanism of action.
There are 2 trials including both secondary progressive multiple sclerosis patients
and RRMS patients. The remaining 19 trials include only RRMS patients. Among
the 23 trials, there are 9 trials of 2 arms, 14 trials of 3 arms, 1 trial of 4 arms and
1 trial of 5 arms. Each trial has only 1 control arm but 1 to 4 active arms. In total,
there are 63 arms, 40 contrasts and 6591 patients. The detailed SBRCMB dataset
is included in Appendix A.
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Figure 3.1: Scatter Plot of Estimated Treatment Effects

27



The SBRCMB dataset contains no individual patient level data, only the sum-
mary results from each clinical trial. The observed clinical endpoint for an arm
is defined as the observed annualized relapse rate for this arm (it is assumed that
all the patients in the same trial have the same follow-up time) and the observed
surrogate endpoint for an arm is defined as the observed MRI lesion count per pa-
tient per scan from this arm (all the patients in the same trial are assumed to have
the same scan times). The estimated treatment effect on the clinical endpoint is
then defined as the log ratio between the observed clinical endpoints in the active
and control arms. Similarly, the estimated treatment effect on the surrogate end-
point is then defined as the log ratio between the observed surrogate endpoints in
the active and control arms. Since one contrast is formed by comparing one active
arm and one control arm, we can obtain one estimated treatment effect on the clin-
ical endpoint and one estimated treatment effect on the surrogate endpoint from
each contrast. In total, we have 40 pairs of estimated treatment effects. Figure 3.1
shows the scatter plot of these pairs of estimated treatment effects. Note that, the
observed endpoints are not equal to the true endpoints (unless the arm includes
infinite number of patients), and thus the estimated treatment effects are not equal
to the true treatment effects. The task is to assess the surrogacy relationship be-
tween the true treatment effects, which are not observable, based on the estimated
treatment effects.

3.2 The SBRCMB approach
SBRCMB adopt a simple linear regression model and use weighted least squares
(WLS) to assess the surrogacy relationship. The explanatory variable is the es-
timated treatment effect on the surrogate endpoint and the response variable is
the estimated treatment effect on the clinical endpoint. In order to account for
the influence of differences in trial size and trial duration for the contrasts, differ-
ent weights are given to different contrasts. Specifically, let wi denote the weight
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given to the ith contrast, where i = 1,2,3...,40. Then:

wi = Ncompletei
·
√

follow-up (months)i
12

, (3.1)

where follow-up (months)i is the duration of the MRI follow-up in months of the
patients in the ith contrast, and Ncompletei

is a number which SBRCMB choose to
represent the total number of patients in this contrast. For a contrast from a trial
with only 2 arms, Ncompletei

is equal to the total number of patients in these two
arms. For a contrast from a trial with more than 2 arms, Ncompletei

is obtained by
equally dividing the number of placebo patients between the treatment arms. For
example, for a trial with 20 patients on each of the 3 arms, 2 contrasts are created
with Ncompletei

= 20+ 20
2 = 30 for both contrasts.

Let Yi and Xi represent the estimated treatment effect on the clinical endpoint
and surrogate endpoint from the ith contrast. SBRCMB assume the following
regression model to describe the surrogacy relationship:

E(Yi) = α +βXi, (3.2)

and estimate the regression coefficients based on WLS; that is:

min∑wi(Yi −α −βXi)
2. (3.3)

SBRCMB also carry out a sensitivity study, an interaction study and a valida-
tion study. The sensitivity study aims to check whether the regression coefficients
are sensitive to the choice of the weights, or to the choice of the contrasts included
in the analysis. To check the sensitivity with respect to the choice of the weights,
SBRCMB refit the regression line with 2 other weights w′

i and w′′
i , where w′

i gives
more weight to the duration of the contrast:

w′
i = Ncompletei

· follow-up (months)i
12

, (3.4)
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and w′′
i is a constant weight (i.e. w′′

i ≡ 1). To check the sensitivity with respect
to the choice of the contrasts, SBRCMB divide the whole dataset into different
subsets with different features, and fits regression lines based on those subsets
separately, all using the weights in (3.1). The first subset is a “highest contrasts”
subset, which includes only data from “the active arm with the highest dose level
versus control arm” contrast. The second subset is a “RRMS contrasts” subset,
which includes data only from trials with only RRMS patients. The third subset
is a “large effect contrasts” subset, which includes only data from the contrasts
with estimated treatment effect on the clinical endpoint greater than 20%. Table
3.1 shows the results we reproduced for the sensitivity study; these are almost the
same as those from SBRCMB.

Table 3.1: Results of the Sensitivity Study

Analysis No. of trials No. of contrasts α̂∗ β̂ ∗ R2

wi 23 40 -0.02 (0.05) 0.55 (0.04) 0.80
w′

i 23 40 -0.02 (0.05) 0.58 (0.04) 0.84
w′′

i ≡ 1 23 40 0.12 (0.07) 0.50 (0.06) 0.65
highest 23 23 -0.06 (0.08) 0.53 (0.06) 0.77
RRMS 21 36 -0.03 (0.05) 0.56 (0.05) 0.80

large effect 18 25 -0.01 (0.10) 0.58 (0.07) 0.75
* estimate (estimated standard error)

The values in the R2 column are the weighted coefficients of determination:

R2 =
∑wi(ŷi − ȳ)2

∑wi(yi − ȳ)2 , (3.5)

where ŷi is the fitted value and wi can be replaced by w′
i when (3.4) is used.

In the sensitivity study, none of the α̂s are significantly different from 0 but all
the β̂ s are. Furthermore, SBRCMB claim that all the estimates of β s are close (all
between 0.50 and 0.58) and all the R2s are close (between 0.65 and 0.84). They
interpret these findings as indicating that the fitted regression line is not sensitive
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to the choice of weights or to the choice of contrasts involved.

The SBRCMB interaction study aims to check whether the regression coeffi-
cients depend on the characteristics of the trials. For example, Let Ii be an indi-
cator variable, which takes the value 1 if the ith contrast is from a trial conducted
after year 2000 and 0 otherwise. Then SBRCMB fit the following regression
model with weight wi:

E(Yi) = α +β1Xi +β2Ii +β3Ii ·Xi. (3.6)

Through assessing β2 and β3, one can see whether there is a difference in the re-
gression coefficients between the contrasts before year 2000 and after year 2000.

In addition to this “time period” factor, SBRCMB also examine the factors
“drug class” (whether a contrast is from a trial whose treatment is an interferon)
and “annualized relapse rate” (whether the observed annualized relapse rate in
the placebo arm of a contrast is larger than 1). The reproduced results of the
interaction study are shown in Table 3.2. The “P-value” column shows the P-
values of testing if the coefficient of the interaction term is 0 (e.g. test if β3 = 0 in
(3.6)).

Table 3.2: Results of the Interaction Study

indicator variable class No. of contrasts P-value

time period
> 2000 15

0.30
< 2000 25

drug class
with interferon 12

0.20
not interferon 28

annualized relapse rate
> 1 9

0.36
< 1 31

In the interaction study, as all these P-values are greater than 0.05, SBRCMB
claim that there is no indication of differences in the slope of the fitted line for
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contrasts with different characteristics, though SBRCMB also note that the power
of this test is quite low due to the limited sample size.

Finally, SBRCMB carry out a validation study, where 4 new clinical trials are
introduced, which result in 4 new contrasts (each of these trials has only 2 arms).
Their estimated treatment effects on the clinical endpoint are compared with the
predict counterpart obtained from the regression model with weight wi. The repro-
duced results of the validation study are shown in Figure 3.2, where the hollow
points represent the 40 actual contrasts used in the regression model, the solid
line is the estimated regression line with weight wi, the solid points represent the
4 new contrasts, and the bars are the 95% prediction intervals for the estimated
treatment effects on the clinical endpoint for the 4 new contrasts. The prediction
intervals are calculated by the standard regression approach: the Xis are assumed
to be fixed, and the weights wis are assumed to be proportional to the inverse of
the variance of the Yis.

It can be seen that all the solid points lie within the prediction intervals (ex-
cept for the 2nd one from the left, which is at the very edge of the prediction
interval). SBRCMB claim that the estimated regression model is able to give sat-
isfactory predictions. However, these 4 new trials use active control arms rather
than placebo-controlled arms. So, these 4 trials have different designs from the 23
trials in SBRCMB’s dataset, and may not tell us whether the estimated regression
equation can produce satisfactory predictions.

Based on all of these results, SBRCMB conclude that in RRMS, the treatment
effect on MRI lesion count can be used to predict the treatment effect on the
annualized relapse rate. They state that these results support for the use of MRI
lesion count as a surrogate endpoint in RRMS clinical trials with treatments of
analogous mechanism.
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Figure 3.2: Results of the Validation Study

3.3 Critique of the SBRCMB Approach
In this section, we discuss shortcomings of the SBRCMB approach in assessing
the surrogacy relationship. The fundamental issue is the WLS estimates may not
be appropriate for the dataset. There are several reasons.

First, the explanatory variable Xi used in the SBRCMB model is defined as the
log ratio between the observed MRI lesion counts per patient per scan in the active
and the control arms, and the response variable Yi used is defined as the log ratio
between the observed annualized relapse rates in the active and the control arms.
Since the observed endpoints are not equal to the true endpoints, Xi and Yi are just
estimates of the true treatment effects. If X true

i and Y true
i denote the corresponding

true treatment effects, then the surrogacy relationship is the relationship between
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X true
i and Y true

i , not that between Xi and Yi. The SBRCMB approach doesn’t take
into account the influence of estimation errors in both Xi and Yi, which may lead
to a biased result.

Second, 14 of the 23 trials have more than 2 arms, which leads to correlated
contrasts since the contrasts from the same trial share the same control arm. There-
fore, even if we believe the estimation errors are negligible so that the relationship
between Yi and Xi should be an excellent approximation to the relationship be-
tween Y true

i and X true
i , the WLS approach is still not appropriate because some of

the Yis are correlated.

Third, the SBRCMB choices for the weights used in the WLS estimation are
quite mysterious. SBRCMB simply state that the weights are chosen because they
reflect the information conveyed by each trial. Suppose that there is no estimation
error, and all the Yis are independent so that it is reasonable to use the WLS ap-
proach. Then are these weights appropriate?

In the following subsections, we discuss each of these potential problems. We
start with the appropriateness of the weights under the assumption that the WLS
approach is reasonable. Then we discuss the correlation issue. Finally, we discuss
the more fundamental issue of the influence of estimation errors in estimating the
surrogacy relationship.

3.3.1 The Appropriateness of the Weights
In this section, we focus on the relationship between Yi and Xi, and assume that all
the Yis are independent. Furthermore, we assume that all the Xis are fixed.
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We assume the following regression model:

Yi = α +βxi + εi, (3.7)

where E(εi) = 0, Var(εi) = τ2
i and all the εis are independent. Then theoretically,

the weight wi for Yi should be proportional to the inverse of the variance of εi, i.e.
wi ∝ τ−2

i . We use xi instead of Xi here because xis are assumed to be fixed.

In the following text, we omit the subscript i on every quantity to simplify
notation. Let Ra and Rc be the observed annualized relapse rate in the active and
the control arms respectively from a certain trial. Let Rtrue

a and Rtrue
c be the corre-

sponding true annualized relapse rates. Then Y = log Ra
Rc

and Y true = log Rtrue
a

Rtrue
c

. Note
that since Ra and Rc are from different arms with different patients, it is natural to
consider them to be independent. Similarly, we consider Rtrue

a and Rtrue
c also to be

independent.

Suppose that there are Na and Nc patients in the active and control arm re-
spectively, and assume that all Na +Nc patients have the same number of years of
follow-up for the relapse data, namely T . Then, let Fj denote the total number of
relapses of the jth patient in the active arm. We assume:

E(Fj|Rtrue
a ) = T Rtrue

a , Var(Fj|Rtrue
a ) = ϕ ·T Rtrue

a , (3.8)

where ϕ is a dispersion parameter, describing how the variance of the number of
relapses is related to its expectation. If ϕ = 1, this corresponds to a Poisson as-
sumption. We assume that ϕ is the same for all the patients in all the trials. Thus,
ϕ has neither subscript j nor subscript i.

Then, Fj
T is this patient’s annualized relapse rate. From the above assumption,

we have:
E(

Fj

T
|Rtrue

a ) = Rtrue
a , Var(

Fj

T
|Rtrue

a ) = ϕ · Rtrue
a
T

. (3.9)
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By definition, the observed annualized relapse rate in the active arm is:

Ra =
F1 +F2 + ...+FNa

T Na
. (3.10)

Then, by the delta method and the Central Limit Theorem, we obtain the following
approximation to the conditional distribution of logRa:

logRa|Rtrue
a ≈ N(logRtrue

a ,
ϕ

T NaRtrue
a

). (3.11)

Similarly, for the control arm, we have:

logRc|Rtrue
c ≈ N(logRtrue

c ,
ϕ

T NcRtrue
c

). (3.12)

Unconditionally, we have:

Var(logRa) =Var(E(logRa|Rtrue
a ))+E(Var(logRa|Rtrue

a )) (3.13)

≈Var(logRtrue
a )+ ϕ

T Na
E( 1

Rtrue
a

),

and similarly, for the control arm, we have:

Var(logRc) =Var(E(logRc|Rtrue
c ))+E(Var(logRc|Rtrue

c )) (3.14)

≈Var(logRtrue
c )+ ϕ

T Nc
E( 1

Rtrue
c

).

The independence assumption for Ra and Rc leads to:

Var(Y ) =Var(log Ra
Rc
) =Var(logRa)+Var(logRc)

≈Var(logRtrue
a )+Var(logRtrue

c )+ ϕ
T (

1
Na

E( 1
Rtrue

a
)+ 1

Nc
E( 1

Rtrue
c

)).
(3.15)

From the above formula, we can see that the variance of Y depends on the distri-
bution of Rtrue

a and Rtrue
c as well as on the unknown parameter ϕ .
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If we include the subscript i, (3.15) is actually Var(Yi) = Var(logRtrue
ai ) +

Var(logRtrue
ci )+ ϕ

Ti
( 1

Nai
E( 1

Rtrue
ai

)+ 1
Nci

E( 1
Rtrue

ci
)), for i = 1,2, ...,40. Now we assume

all the Rtrue
ai s are identically distributed. We think all the treatments included in

the SBRCMB dataset have similar mechanism of action, so the distribution of the
Rtrue

ai describes how the true clinical endpoint varies across contrasts. Similarly,
we assume all the Rture

ci s are identically distributed. As a result, the variances and
the expectations in (3.15) are constant across trials.

One way to estimate E( 1
Rtrue

a
) and E( 1

Rtrue
c

) is to average all the Ras and all the
Rcs across the contrasts and take their inverse. For the SBRCMB dataset, we ob-
tain Ê( 1

Rtrue
a

)≈ 1.43 and Ê( 1
Rtrue

c
)≈ 1.10.

Let θ denote Var(logRtrue
a )+Var(logRtrue

c ). Then the variance of Y can be
written as:

τ2 =Var(Y ) = θ +ϕ(
1.43
T Na

+
1.10
T Nc

). (3.16)

The values of T , Na and Nc all depend on the contrast leading to Y . If we let
c = 1.47

T Na
+ 1.12

T Nc
and include the subscript i, we have:

τ2
i = θ +ϕci. (3.17)

Based on (3.17), we can examine the appropriateness of the weights used in

the SBRCMB approach. If wi = Ncompletei
·
√

follow-up (months)i
12 is appropriate, then

wi should be proportional to the inverse of the variance of the estimated clinical
outcome; that is:

wi =
a
τ2

i
=

a
θ +ϕci

⇒ 1
wi

=
θ
a
+

ϕ
a

ci, (3.18)

where a is an arbitrary proportionality constant. The above result implies that if
we draw the scatter plot of (ci,

1
wi
), the points should gather around a straight line.
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Figure 3.3: Scatter Plot of (c,1/w)
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Figure (3.3) compares wis to cis and Figure (3.4) compares w′
is to cis. In both

scatter plots, the points approximately gather around a straight line. This suggests,
if the assumptions we made in this section are reasonable, then both weights used
by SBRCMB also seem reasonable. From these two plots, we would expect the
wis and w′

is to perform similarly.

3.3.2 Correlation of the Contrasts
The WLS approach is appropriate when the response variables are independent.
However, this is not the case for the SBRCMB data. As mentioned before, 14
of the 23 trials have more than 2 arms. So, if two contrasts are from the same
trial, then the estimated treatment effect on the clinical endpoint from these two
contrasts are correlated, because the two contrasts share the same control arm.

For example, let Y1 and Y2 be two estimated treatment effects on the clinical
endpoint from the same three-arm trial. Then, Y1 = log Ra1

Rc
and Y2 = log Ra2

Rc
, where

Ra1,Ra2 and Rc are the observed annualized relapse rates in the first active arm, the
second active arm and the control arm respectively. Because Ra1 and Ra2 are from
different arms with different patients, we assume they are independent. Then:

Cov(Y1,Y2) =Cov(log
Ra1

Rc
, log

Ra2

Rc
) =Var(logRc). (3.19)

Now, it is clear that Y1 and Y2 are correlated. An immediate way to address this
correlation in the regression model is to use generalized least squares. However,
from the last section, we know that:

Var(logRc)≈Var(logRtrue
c )+

ϕ
T Nc

E(
1

Rtrue
c

)≈Var(logRtrue
c )+

1.10ϕ
T Nc

. (3.20)

To make use of generalized least squares, we need to estimate the covariance be-
tween any two correlated Yi and Yj. But the estimate of that covariance requires
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an estimate of Var(logRtrue
c ), the variance of the logarithm of the true annualized

relapse rate across all the trials, and the unknown parameter ϕ . These two quan-
tities are difficult to estimate without assuming a more complicated model. We
will address this question in the next chapter by developing a more comprehen-
sive model.

3.3.3 Influence of Estimation Errors
As mentioned at the beginning of this chapter, the relationship of real interest is
between Y true

i and X true
i . However, we cannot observe Y true

i and X true
i directly, but

can only use Yi and Xi to estimate them. Suppose the true surrogacy relationship
is:

E(Y true
i |X true

i ) = α +βX true
i . (3.21)

Then, the question is: when we use Yi and Xi in place of Y true
i and X true

i to estimate
α and β as was done by SBRCMB, how good are these estimators?

In this section, we consider X true
i as random rather than fixed. We think it is a

reasonable assumption for the SBRCMB dataset. Since all the patients included in
the study received treatments that are considered to be of the same type, it is then
natural to think of all the true treatment effects from the different trials as coming
from a single probability distribution. To simplify the discussion, we assume Y true

i

and X true
i are bivariate normally distributed. The conditional expectation of Y true

i

given X true
i is given in (3.21), and the conditional variance of Y true

i given X true
i is

denoted as τ2. Also, let µX and σ2
X represent the expectation and the variance of

X true
i . Then, the bivariate normal distribution of Y true

i and X true
i is:(

Y true
i

X true
i

)
∼ N2

((
α +β µX

µX

)
,

(
β 2σ2

X + τ2 βσ 2
X

βσ2
X σ2

X

))
. (3.22)

40



If we could observe Y true
i and X true

i , then the OLS estimators based on Y true
i

and X true
i for β and α are unbiased and consistent. Because:

β̂ =
∑(X true

i − X̄ true)(Y true
i − Ȳ true)

∑(X true
i − X̄ true)2 , (3.23)

where X̄ true
i and Ȳ true

i are the averages of all X true
i s and Y true

i s included in the study,
then:

E(β̂ ) = E(E(β̂ |X true)) = E(β ) = β , (3.24)

where X true represents the collection of all X true
i s. For consistency, note that

∑(X true
i − X̄ true)

2
/n

p→Var(X true
i ) = σ2

X and ∑(X true
i − X̄ true)(Y true

i − Ȳ true)/n
p→

Cov(Y true
i ,X true

i ) = βσ 2
X , where n is the number of contrasts. So, β̂ p→ βσ2

X
σ2

X
= β .

A similar argument can be made for α̂ . Note that:

α̂ = Ȳ true − β̂ X̄ true. (3.25)

Then it is clear that E(α̂) = E(E(α̂|X true)) = E(α +β X̄ true −β X̄ true) = E(α) =

α , and α̂ p→ (α +β µX)−β µX = α .

However, if we can only observe Yi and Xi, then the OLS estimator for β
becomes:

β̃ =
∑(Xi − X̄)(Yi − Ȳ )

∑(Xi − X̄)2 , (3.26)

where X̄ and Ȳ are the average of all Xis and Yis included in the study. Conse-
quently α̃ = Ȳ − β̃ X̄ . Are these estimators still unbiased and consistent?

Consider the following simple model. Let ei and fi represent the estimation
errors on X true

i and Y true
i respectively:

Xi = X true
i + ei and Yi = Y true

i + fi. (3.27)
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We assume ei
iid∼ N(0,δ 2) and fi

iid∼ N(0,σ2). Furthermore, we assume that ei and
fi are independent and are independent of X true

i and Y true
i for all i. As a result, we

obtain the joint distribution for the estimated treatment effects:(
Yi

Xi

)
∼ N2

((
α +β µX

µX

)
,

(
βσ2

X + τ2 +σ2 βσ 2
X

βσ2
X σ2

X +δ 2

))
. (3.28)

It follows that:

E(Yi|Xi) = α +β µX +
βσ 2

X

σ2
X +δ 2 (Xi −µX)

=

(
α +β µX − βσ 2

X

σ2
X +δ 2 µX

)
+

(
β · σ2

X

σ2
X +δ 2

)
Xi. (3.29)

Analogous to (3.23) and (3.24), we now have E(β̃ ) = β · σ2
X

σ2
X+δ 2 , which means β̃

is not an unbiased estimator of β . For consistency, it is also clear that β̃ =
Sxy
Sxx

p→

β σ2
X

σ2
X+δ 2 . So, β̃ is also not a consistent estimator of β . Similar conclusions hold

for α̃ .

Note that the coefficient σ2
X

σ2
X+δ 2 is always less than 1 unless δ 2 = 0. Hence,

under this model, when there exist estimation errors in the regressor, the expecta-
tion of the OLS estimator is always smaller than its true value. This is called the
attenuation effect in regression. As demonstrated, this effect does not disappear
even when the sample size goes to infinity. So, when the estimation error is not
negligible (i.e. δ 2 is not very small relative to σ2

X ), the OLS estimator is not a
good estimator. On the other hand, we see the estimation errors in the response
variable don’t affect the unbiasedness and consistency property of the OLS esti-
mator.

For more complex situations such as when the estimation errors are not iden-
tically distributed, or the X true

i is fixed rather than random, it can be shown that
the OLS estimator is still biased and inconsistent. The WLS estimator can also
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be shown to be biased and inconsistent when there exist estimation errors in
the regressor, no matter what kind of weights are applied to the data. For the
SBRCMB dataset, since some trials included only a modest number of patients,
non-negligible estimation errors must exist in the estimated treatment effects from
those trials. Therefore, the OLS (WLS) estimator will tend to underestimate the
true regression coefficient.

Furthermore, using simple linear regression may lead to incorrect assessment
of the surrogacy relationship. For example, in the above model, if no estimation
errors exist, then the coefficient of determination R2 is the square of the sample
correlation coefficient between Y true

i and X true
i . From (3.22), we have:

R2 =
[∑(X true

i − X̄ true)(Y true
i − Ȳ true)]2

∑(X true
i − X̄ true)2 ∑(Y true

i − Ȳ true)2
p→ β 2σ4

X

σ2
X(β 2σ2

X + τ2)
. (3.30)

However, if estimation errors exist, and (3.28) is assumed, the coefficient of de-
termination becomes

R̃2 =
[∑(Xi − X̄)(Yi − Ȳ )]2

∑(Xi − X̄)2 ∑(Yi − Ȳ )2
p→ β 2σ4

X

(σ2
X +δ 2)(β 2σ2

X + τ2 +σ2)
. (3.31)

When estimation errors exist, σ2 and δ 2 are always larger than 0, so the coefficient
of determination tends to underestimate the square of the correlation coefficient
between Y true

i and X true
i , which may lead to a false conclusion about the surro-

gacy relationship. The coefficient of determination is 65% from SBRCMB with
w′′

i ≡ 1. However, the correlation between the true treatment effects on the clini-
cal endpoint and on the surrogate endpoint may be higher, which means a better
surrogacy relationship.

In the next chapter, we will re-analyze the surrogacy relationship with a more
comprehensive approach to take into account the existence of estimation errors
and the correlated contrasts in the SBRCMB dataset.
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Chapter 4

Lesion counts as a Surrogate
Endpoint in RRMS: A More
Comprehensive Approach

In this chapter, we use the SBRCMB dataset to re-analyze the surrogacy rela-
tionship between the MRI lesion count and the annualized relapse rate at the trial
level. We start with modeling the true treatment effects (the surrogacy relation-
ship) in the single-contrast clinical trials and develop the conditional distribution
of the observed endpoints given the true endpoints to account for the estimation
errors. Similar models are then generalized to the multiple-contrast trials to ad-
dress the issue of the correlated contrasts. Once all components of the model
are constructed, the model parameters are estimated based on “normal estimating
equations”. The results are then compared with those obtained from the SBR-
CMB approach and the estimated surrogacy relationship is evaluated as well as its
usefulness in practice.

In each arm, we define the true clinical endpoint as the true annualized relapse
rate, which is the expected value of the observed annualized relapse rate. In fact,
every patient in the same arm has his/her own observed annualized relapse rate,
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and we assume they all have the same probabilistic distribution whose expectation
is the true annualized relapse rate (as defined in Section 3.3.1). Similarly, we de-
fine the true surrogate endpoint as the true MRI lesion count per scan per patient,
which is the expected value of the observed MRI lesion count per scan per patient.
So, corresponding to the estimated treatment effects defined through the observed
endpoints, we define the true treatment effects on the endpoints as the log ratio
between the true endpoints in the active arm and in the control arm. We aim to
assess the relationship between these true treatment effects.

4.1 Model for the Single-contrast Clinical Trials

4.1.1 Model for the True Treatment Effects
In the SBRCMB dataset, there are 9 single-contrast trials. For each of these 9
trials, let Rtrue

a and Rtrue
c denote the true annualized relapse rates in the active

arm and in the control arm, and let Mtrue
a and Mtrue

c denote the true MRI lesion
counts per scan per patient in the active arm and in the control arm. Then the
true treatment effect on the clinical endpoint is defined as Y true = log Rtrue

a
Rtrue

c
and the

true treatment effect on the surrogate endpoint is defined as X true = log Mtrue
a

Mtrue
c

. We
assume the following bivariate normal model for these two true treatment effects:(

Y true

X true

)
∼ N2

((
µY

µX

)
,

(
σ2

Y σY X

σY X σ2
X

))
. (4.1)

Since different trials consist of different patients, we assume that the true treat-
ment effects are independent across trials. The model (4.1) is assumed to be true
for all the contrasts from all the single-contrast trials. This is reasonable because
all the trials in the dataset are included to examine the effects of treatments with
similar mechanisms of action and therefore we hope to see a similar relationship
between the true treatment effect on the the clinical endpoint and on the surrogate
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endpoint across all the trials with this type of treatment. We omit the subscript i

for the ith trial in our notation throughout the following development.

The distribution in (4.1) is specified in an unstructured form. To express the
surrogacy relationship, we represent the moments of the conditional distribution
of Y true on X true as:

E(Y true | X true) = α +βX true and Var(Y true | X true) = τ2. (4.2)

The parameter β is our primary interest, as it measures the strength of the surro-
gacy relationship. If β is 0, then the MRI lesion count is not a surrogate for the
annualized relapse rate for this type of treatment at the trial level, since knowledge
of the true treatment effect on the MRI lesion count doesn’t help to predict the true
treatment effect on the annualized relapse rate. The parameter α is also of interest
and we expect it to be small. If α is not 0, there is a part of the true treatment
effect on the annualized relapse rate that is unexplained by the true treatment ef-
fect on the MRI lesion count per patient per scan. The parameter τ2 represents the
precision of this linear relationship; that is, how precisely we can predict the true
treatment effect on the annualized relapse rate given the true treatment effect on
the MRI lesion count.

The Prentice definition (1.1) describes a prefect surrogate relationship: no
treatment effect on the surrogate endpoint implies no treatment effect on the clin-
ical endpoint and vice versa. In our context, (1.1) requires both α and τ2 to be
0, while β must not be 0; that is, the relationship between Y true and X true is de-
terministic and multiplicative: Y true = βX true. However, such a perfect surrogacy
relationship will seldom be realized in practice.
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Using the parametrization specified in (4.2), we can rewrite (4.1) as:(
Y true

X true

)
∼ N2

((
α +β µX

µX

)
,

(
β 2σ2

X + τ2 βσ 2
X

βσ2
X σ2

X

))
. (4.3)

4.1.2 Model for the Observed Annualized Relapse Rate and
MRI Lesion Count Per Patient Per Scan

Let Ra,Rc and Ma,Mc denote the observed annualized relapse rates and the ob-
served MRI lesion counts per patient per scan on the active and control arms. To
derive the probability distribution of Ra and Rc, we use the same assumptions used
in Section 3.3.1 and follow the notation used there (except we use ϕ1 now instead
of ϕ ). As a result, we have:

logRa|Rtrue
a ≈ N(logRtrue

a ,
ϕ1

T NaRtrue
a

), (4.4)

logRc|Rtrue
c ≈ N(logRtrue

c ,
ϕ1

T NcRtrue
c

). (4.5)

Similarly, for the observed MRI lesion count, let G j denote the cumulative
number of MRI lesions of the jth patient from the active arm on the K scans ob-
tained for this patient during the follow-up time T . (As in SBRCMB, we assume
the follow-up time for the MRI data is the same as the follow-up time for the re-
lapse data, all the patients in a trial have the same follow-up time T , and all the
patients in a trial have the same number of scans K.) We then assume:

E(G j|Mtrue
a ) = KMtrue

a , Var(G j|Mtrue
a ) = ϕ2 ·KMtrue

a , (4.6)
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where ϕ2 is a dispersion parameter describing how the variance of the MRI lesion
count is related to its expectation. As for ϕ1, we assume that ϕ2 is the same for all
the patients in all the trials. Thus, ϕ2 has neither subscript j nor subscript i. Then:

E(
G j

K
|Mtrue

a ) = Mtrue
a , Var(

G j

K
|Mtrue

a ) = ϕ2 ·
Mtrue

a
K

. (4.7)

By definition, the observed MRI lesion count per patient per scan is:

Ma =
G1 +G2 + ...+GNa

KNa
. (4.8)

Then, by the delta method and the Central Limit Theorem, we obtain the following
approximation to the conditional distribution of logMa:

logMa|Mtrue
a ≈ N(logMtrue

a ,
ϕ2

KNaMtrue
a

). (4.9)

Similarly, for the control arm, we have:

logMc|Mtrue
c ≈ N(logMtrue

c ,
ϕ2

KNcMtrue
c

). (4.10)

4.1.3 Model for the Estimated Treatment Effects
From (4.4), it is clear that Ra and Rtrue

a are not independent, which is reasonable
since the observed clinical endpoint should depend on the true clinical endpoint.
Now, we assume that given Rtrue

a , the conditional distribution of logRa is indepen-
dent of Rtrue

c , Mtrue
a and Mtrue

c ; that is , if we already know Rtrue
a , the additional

information of Rtrue
c , Mtrue

a and Mtrue
c does not help to predict logRa.

It is natural to think that Rtrue
c and Mtrue

c affect neither Ra nor Rtrue
a . The pa-

tients in the active arm and in the control arm are distinct, and the patients in the

48



active arm received the treatment while the patients in the control arm did not, so
it seems obvious that the behavior of the patients in the control arm should not
affect the behavior of the patients in the active arm. For Mtrue

a , we could think that
if it affects Ra, that effect would be only through Rtrue

a . Therefore, instead of (4.4),
we make the stronger assumption that:

logRa|U true = logRa|Rtrue
a ≈ N(logRtrue

a ,
ϕ1

T NaRtrue
a

), (4.11)

where U true = (Rtrue
a ,Rtrue

c ,Mtrue
a ,Mtrue

c )T . The same argument leads to the corre-
sponding results for logRc|U true, logMa|U true and logMc|U true.

Furthermore, we make the additional model assumption that logRa, logRc, logMa

and logMc are conditionally independent, given U . The motivation for this as-
sumption is the intuitive notion that each observed quantity is only affected by the
corresponding true quantity. So if all the true quantities are given, the observed
quantities are supposed to not affect each other. Then, if U = (Ra,Rc,Ma,Mc)

T ,
we have:

logU |U true ≈ N4




logRtrue
a

logRtrue
c

logMtrue
a

logMtrue
c

 ,


ϕ1

T NaRtrue
a

0 0 0

0 ϕ1
T NcRtrue

c
0 0

0 0 ϕ2
KNaMtrue

a
0

0 0 0 ϕ2
KNcMtrue

c


 .

(4.12)

Let Y = log Ra
Rc

and X = log Ma
Mc

denote the estimated treatment effects on the
clinical outcome and on the surrogate outcome respectively. We can express Y

and X in terms of U :(
Y

X

)
= A logU, where A =

(
1 −1 0 0
0 0 1 −1

)
. (4.13)

49



Combining (4.3) and (4.12), we obtain the approximations to the first two
moments of the estimated treatment effects:

E

(
Y

X

)
= E(A logU) = E(E(A logU |U true))≈ E(A logU true) =

(
α +β µX

µX

)
.

(4.14)

Var

(
Y

X

)
=Var(A logU) =Var(E(A logU |U true))+E(Var(A logU |U true))

≈

(
(β 2σ2

X + τ2)+ ϕ1
T Na

E( 1
Rtrue

a
)+ ϕ1

T Nc
E( 1

Rtrue
c

) βσ 2
X

βσ2
X σ2

X + ϕ2
KNa

E( 1
Mtrue

a
)+ ϕ2

KNc
E( 1

Mtrue
c

)

)
.

(4.15)

Unlike these marginal moments, the marginal distribution of the estimated
treatment effects is difficult to derive. In fact, to obtain the marginal distribution
of (Y,X)T , we need to make additional distributional assumptions about U true. On
the other hand, as Na and Nc, the number of patients in the active arm and in the
control arm increase, the influence of the estimation errors become small. As a
result, the observed endpoints approach the true endpoints and the estimated treat-
ment effects approach the true treatment effects. Since in (4.1) we assume that the
true treatment effects follow a joint normal distribution, we may think the normal
distribution with moments given by (4.14) and (4.15) is a reasonable approxima-
tion to the true distribution of (Y,X)T for large Na and Nc.

4.2 Model for the Multiple-contrast Clinical Trials
Besides the 9 single-contrast trials, there are 12 two-contrast trials, 1 three-contrast
trial, and 1 four-contrast trial. In each of the two-contrast trials, there is a control
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arm, a high dose arm and a low dose arm. For each of the 12 two-contrast tri-
als, let Rtrue

a1 and Rtrue
a2 represent the true annualized relapse rate in the high dose

arm and in the low dose arm respectively, and let Mtrue
a1 and Mtrue

a2 represent the
true MRI lesion count per patient per scan in the high dose arm and in the low
dose arm respectively. Then, the true treatment effects from the high dose versus
control contrast can be expressed as Y true

1 = log Rtrue
a1

Rtrue
c

and X true
1 = log Mtrue

a1
Mtrue

c
, and the

true treatment effects from the low dose versus control contrast can be expressed
as Y true

2 = log Rtrue
a2

Rtrue
c

and X true
2 = log Mtrue

a2
Mtrue

c
. Here, we also omit the subscript i for the

ith trial.

To take into account the fact that these two pairs of true treatment effects,
(Y true

1 ,X true
1 ) and (Y true

2 ,X true
2 ), are correlated, we assume a joint normal distribu-

tion for them. Focusing on (Y true
1 ,X true

1 ) or (Y true
2 ,X true

2 ) individually, the marginal
distributions of both of these pairs should be the bivariate normal distribution
(4.3). This is because we are examining the effects of treatments with similar
mechanism of action; whether two contrasts are from one trial or from different
trials, they should reflect the same surrogacy relationship. However, to determine
the joint distribution of these four quantities, we also need to specify the covari-
ance structure between (Y true

1 ,X true
1 ) and (Y true

2 ,X true
2 ).

Assuming independence among the true endpoints from different arms, we
have:

Cov(Y true
1 ,Y true

2 ) =Cov(log Rtrue
a1

Rtrue
c

, log Rtrue
a2

Rtrue
c

) =Var(logRtrue
c ), (4.16)

Cov(X true
1 ,X true

2 ) =Cov(log Mtrue
a1

Mtrue
c

, log Mtrue
a2

Mtrue
c

) =Var(logMtrue
c ), (4.17)

Cov(Y true
1 ,X true

2 ) =Cov(log Rtrue
a1

Rtrue
c

, log Mtrue
a2

Mtrue
c

) =Cov(logRtrue
c , logMtrue

c )(4.18)

Cov(Y true
2 ,X true

1 ) =Cov(log Rtrue
a2

Rtrue
c

, log Mtrue
a1

Mtrue
c

) =Cov(logRtrue
c , logMtrue

c )(4.19)

In principle, these covariances represent 3 new parameters in the joint distri-
bution of (Y true

1 ,X true
1 ,Y true

2 ,X true
2 )T in addition to the parameters α,β ,µX ,σ2

X ,τ2
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that appear in (4.3). However, note that, Var(Y true
1 )=Var(logRtrue

a1 )+Var(logRtrue
c ),

where Var(logRtrue
a1 ) represents the variability of the log of the true annualized

relapse rate in the high dose arm across trials and Var(logRtrue
c ) represents the

variability of the log of the true annualized relapse rate in the control arm across
trials. So, even though in a given trial, logRtrue

a1 and logRtrue
c may be quite differ-

ent due to the treatment effect, the two variabilities across trials may not differ too
much. To simplify our model, we assume Var(logRtrue

a1 ) =Var(logRtrue
c ). Under

this assumption, from (4.3), we obtain:

Cov(Y true
1 ,Y true

2 ) =Var(logRtrue
c ) =

1
2

Var(Y true
1 ) =

1
2
(β 2σ2

X + τ2). (4.20)

The assumption that Var(logMtrue
a1 ) =Var(logMtrue

c ) similarly leads to:

Cov(X true
1 ,X true

2 ) =Var(logMtrue
c ) =

1
2

Var(X true
1 ) =

1
2

σ2
X . (4.21)

At the same time, note that Cov(Y true
1 ,X true

1 ) =Cov(log Rtrue
a1

Rtrue
c

, log Mtrue
a1

Mtrue
c

) =

Cov(logRtrue
a1 , logMtrue

a1 )+Cov(logRtrue
c , logMtrue

c ), where Cov(logRtrue
a1 , logMtrue

a1 )

measures how closely the two true endpoints on the high dose arm are related
across trials, and Cov(logRtrue

c , logMtrue
c ) measures how closely the two true end-

points on the control arm are related across trials. Even though the true rela-
tionship between the two endpoints on the high dose arm may be quite differ-
ent from that on the control arm, the two measures of closeness may not differ
too much. Thus, to simplify our model, we assume Cov(logRtrue

a1 , logMtrue
a1 ) =

Cov(logRtrue
c , logMtrue

c ). Under this assumption, from (4.3), we obtain:

Cov(Y true
1 ,X true

2 ) =Cov(Y true
2 ,X true

1 ) =Cov(logRtrue
c , logMtrue

c ) (4.22)

= 1
2Cov(Y true

1 ,X true
1 ) = 1

2βσ2
X .

All these assumptions lead to the joint distribution of the true treatment effects
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in a two-contrast trial:
Y true

1

X true
1

Y true
2

X true
2

∼N4




α +β µX

µX

α +β µX

µX

 ,


β 2σ2

X + τ2 βσ2
X

1
2(β

2σ2
X + τ2) 1

2βσ 2
X

βσ 2
X σ2

X
1
2βσ2

X
1
2σ2

X
1
2(β

2σ2
X + τ2) 1

2βσ 2
X β 2σ2

X + τ2 βσ 2
X

1
2βσ2

X
1
2σ2

X βσ2
X σ2

X


 .

(4.23)

To derive the probabilistic structure of the estimated treatment effects in a
two-contrast trial, we first focus on the conditional distribution of the observed
endpoints given the true endpoints. Let Ũ = (Ra1,Ra2,Rc,Ma1,Ma2,Mc)

T and
Ũ true = (Rtrue

a1 ,Rtrue
a2 ,Rtrue

c ,Mtrue
a1 ,Mtrue

a2 ,Mtrue
c )T represent the observed and true

endpoints respectively. We assume that logŨ |Ũ true has the same stochastic be-
havior as logU |U true in the single-contrast trials. Then, as in (4.12), we have:

logŨ |Ũ true ≈N6(Ũ true, diag
(

ϕ1

T N1Rtrue
a1

,
ϕ1

T N2Rtrue
a2

,
ϕ1

T NcRtrue
c

,
ϕ2

T N1Mtrue
a1

,
ϕ2

T N2Mtrue
a2

,
ϕ2

T NcMtrue
c

)
),

(4.24)

where “diag” indicates a diagonal matrix.

Then, combining (4.23) and (4.24), the estimated treatment effects, Y1 = log Ra1
Rc

,
Y2 = log Ra2

Rc
, X1 = log Ma1

Mc
and X2 = log Ma2

Mc
, have the following approximations to

their first two moments:

(Y1,X1,Y2,X2)
T ≈

((
µ
µ

)
,

(
Σ1 Σ3

Σ3 Σ2

))
, (4.25)

where

µ =

(
α +β µX

µX

)
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and

Σ1 =

(β 2σ2
X + τ2)+ ϕ1

T Na1
E( 1

Rtrue
a1

)+ ϕ1
T Nc

E( 1
Rtrue

c
) βσ2

X

βσ 2
X σ2

X + ϕ2
KNa1

E( 1
Mtrue

a1
)+ ϕ2

KNc
E( 1

Mtrue
c

)

 ,

Σ2 =

(β 2σ2
X + τ2)+ ϕ1

T Na2
E( 1

Rtrue
a2

)+ ϕ1
T Nc

E( 1
Rtrue

c
) βσ2

X

βσ 2
X σ2

X + ϕ2
KNa2

E( 1
Mtrue

a2
)+ ϕ2

KNc
E( 1

Mtrue
c

)

 ,

Σ3 =

(
1
2(βσ 2

X + τ2)+ ϕ1
T Nc

E( 1
Rtrue

c
) 1

2βσ 2
X

1
2βσ 2

X
1
2σ2

X + ϕ2
KNc

E( 1
Mtrue

c
)

)
.

Similarly as in the single-contrast trial, the marginal distribution of the esti-
mated treatment effects are difficult to derive, since we need to make additional
distributional assumptions about Ũ true. As before, we may think the normal dis-
tribution with moments given by (4.25) is a reasonable approximation to the true
distribution of (Y1,X1,Y2,X2)

T for large Na1,Na2 and Nc.

For the single three-contrast trial we have 6 estimated treatment effects, and
for the single four-contrast trial we have 8 estimated treatment effects. Deriv-
ing the first two moments of those 6 and 8 estimated treatment effects proceeds
analogously to the above development for the 4 estimated treatment effects in the
two-contrast trial.

4.3 Parameter Estimation
From (4.25), we have approximations to the first two moments of the estimated
treatment effects. In order to estimate the model parameters, we use the normal
estimating equations: that is, we pretend the estimated treatment effects are multi-
variate normally distributed with the mean vector and variance covariance matrix
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given by (4.25). Then maximum likelihood estimates (MLE) of the model param-
eters are obtained by maximizing the “normal likelihood”.

In addition to the parameters of primary interest, α,β ,µX ,σ2
X ,τ2,ϕ1 and ϕ2,

there are several nuisance parameters in the covariance matrices that appear in this
“likelihood” function, namely the expectations of the reciprocal of the true relapse
rates and lesion counts such as E( 1

Rtrue
c

) and E( 1
Mtrue

c
) in (4.25). When fitting the

model, to avoid too many parameters to be estimated in the maximization proce-
dure, we treat these terms as known and replace them by estimates.

As mentioned in Section 3.3.1, we assume that all the Rtrue
a s in different con-

trasts have the same distribution and all the Rtrue
c s in different contrasts also have

the same distribution. As a result:

E(Rtrue
a ) = E(Rtrue

a1 ) = E(Rtrue
a2 ), for all the contrasts. (4.26)

Also, from (3.8), (3.9) and (3.10), we know that:

E(Ra) = E(E(Ra|Rtrue
a )) = E(Rtrue

a ). (4.27)

From the delta method, we have the rough approximation:

E(
1

Rtrue
a

)≈ 1
E(Rtrue

a )
=

1
E(Ra)

. (4.28)

This means that we can use the observed annualized relapse rates to estimate the
nuisance parameter E( 1

Rtrue
a

). From the total of 40 contrasts, we estimate E( 1
Rtrue

a
)

by the inverse of the average value of the 40 observed annualized relapse rates
on the active arms. We estimate E( 1

Rtrue
c

) similarly using the observed annualized
relapse rates on the 23 control arms. By the same argument, we estimate E( 1

Mtrue
a

)

and E( 1
Mtrue

c
) by using the observed MRI lesion counts per patient per scan from

the 40 active arms and the 23 control arms respectively. As a result, we have
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Ê( 1
Rtrue

a
)≈ 1.43, Ê( 1

Rtrue
c

)≈ 1.10, Ê( 1
Mtrue

a
)≈ 0.57 and Ê( 1

Mtrue
c

)≈ 0.41.

To maximize the “normal likelihood”, we use the R function optim. The max-
imization procedure is based on the Nelder-Mead method [16]. The optimization
process is “two-staged”: after obtaining the optimized parameter estimates from
each initial value, we set these as an initial value and run the optimization again
to obtain a final result. The reason for doing the two-stages is that the first stage
often converges to a local minimum.

To avoid negative estimates for σX and τ in the optimization, we re-parameterize
them as ηX = log(σX) and η = log(τ). The first set of initial values for α̂, β̂ , µ̂X , η̂X ,
η̂ , ϕ̂1 and ϕ̂2 were -0.02, 0.55, -0.69, -0.04, -1.21, 1.5 and 1.5. The values for α̂
and β̂ are from the SBRCMB result, the values for µ̂X , η̂X and η̂ are based on the
method of moments, and the values for ϕ̂1 and ϕ̂2 are chosen somewhat arbitrarily.

We then tried 999 different sets of random initial values, generating these ini-
tial values from independent uniform distributions. Specifically, we generate ini-
tial values for α̂, β̂ , µ̂X , η̂X , η̂ , ϕ̂1 and ϕ̂2 uniformly on (−0.5,0.5), (0,1), (−2,0),
(−4.5,0.5), (−5,0), (0.01,10) and (0.01,20) respectively. Nearly all of these
initial values led to convergence to a very similar optimization result. We choose
the estimate which returned the smallest negative log “likelihood” as the final so-
lution.

To calculate the standard errors of the parameter estimates based on the asymp-
totic normality of the MLE, we invert the negative hessian matrix of the log “like-
lihood” function and evaluate it at the parameter estimates. We also calculate
standard errors for the parameter estimates based on the jackknife method, where
we consider the 23 clinical trials as units and estimate the parameters after “leav-
ing one out”. We generate 23 different subsets of the original 23 clinical trials;
the ith subset is without the ith clinical trial. If the estimate of β from the ith
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subset is β̂(i), then the jackknife estimate of the standard error of β̂ is given by
[22

23 ∑(β̂(i)− β̂(.))
2]0.5, where β̂(.) is the average of all β̂(i)s [17]. Strictly speaking,

this is not an appropriate application of the jackknife method, since different trials
have different numbers of patients and different numbers of arms, which cause the
estimation errors in different trials to be not identical. So the resulting estimated
standard errors should be viewed as only “rough and ready” approximations.

The parameter estimates and the corresponding estimated standard errors are
shown in Table 4.1 and the estimated asymptotic correlation matrix of α̂, β̂ , µ̂X ,
σ̂2

X , τ̂2, ϕ̂1 and ϕ̂2 based on the MLE method is:

R̂ =



1.000 0.776 −0.056 −0.394 −0.002 −0.442 0.468
0.776 1.000 0.108 −0.479 −0.007 −0.414 0.444

−0.056 0.108 1.000 −0.106 −0.002 −0.158 0.194
−0.394 −0.479 −0.106 1.000 0.003 0.215 −0.410
−0.002 −0.007 −0.002 0.003 1.000 −0.001 −0.004
−0.442 −0.414 −0.158 0.215 −0.001 1.000 −0.557

0.468 0.444 0.194 −0.410 −0.004 −0.557 1.000


(4.29)

Table 4.1: Results of the Model Fit

α̂ β̂ µ̂X σ̂X
2 τ̂2 ϕ̂1 ϕ̂2

Value 0.081 0.622 -0.713 0.521 < 0.001 0.825 37.427
Normal SE 0.084 0.074 0.156 0.167 < 0.001 0.383 19.932

Jackknife SE 0.105 0.150 0.179 0.198 0.003 0.498 33.496

Although that all the jackknife standard errors are larger than the corresponding
MLE standard errors, the results of the statistical tests for significance of the esti-
mates are consistent from these two methods (except for ϕ̂1).

57



Recall that Y true = log Rtrue
a

Rtrue
c

and X true = log Mtrue
a

Mtrue
c

. When a treatment has a bene-
ficial effect, we expect a lower MRI lesion count and a smaller relapse rate, which
means Y true < 0 and X true < 0. Therefore, an increase in the true treatment ef-
fect corresponds to a decrease in Y true and in X true. So, β̂ = 0.622 means that on
average, a one unit increase in the true treatment effect on the MRI lesion count
per patient per scan is associated with a 0.622 unit increase in the true treatment
effect on the annualized relapse rate. Note this value is larger than the β̂ = 0.55
obtained with the SBRCMB approach (see Table 3.1). As the SBRCMB approach
didn’t take into account the estimation errors, their regression coefficient of 0.55
may underestimate the association between the true treatment effects due to the
attenuation effect.

Although the value for α̂ of 0.081 is larger than the α̂ = −0.02 from the
SBRCMB approach, its approximate 95% confidence interval still covers 0. The
estimate of α̂ being not significantly different from 0 is consistent with a good sur-
rogacy relationship, since there is no strong indication of part of the true treatment
effect on the annualized relapse rate being unexplained by the true treatment effect
on the MRI lesion count per patient per scan. Finally, the value for τ̂2 is almost
0, which suggests a nearly perfect linear relationship between the true treatment
effects. One can predict the true treatment effect on the annualized relapse rate al-
most without error based on the true treatment effect on the MRI lesion count per
patients per scan. As mentioned at the end of Section 4.1.1, the Prentice definition
requires that α = 0 and τ2 = 0. So, under our model assumptions, the MRI lesion
count per patient per scan appears to be a very good surrogate endpoint.

Buyse et al. [13] suggest to use R2
trial to evaluate the true surrogacy relation-

ship. Analogous to (2.14) and (2.15), β 2σ2
X +τ2 represents the uncertainty of pre-

dicting the true treatment effect on the clinical endpoint without the information
of the surrogate endpoint, and τ2 represents the uncertainty with the information
of the surrogate endpoint. Thus, the difference β 2σ2

X represents how much we
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gain from using the surrogate. From Table 4.1, we have

R̂2
trial =

β̂ 2σ̂2
X

β̂ 2σ̂2
X + τ̂2

≈ 1. (4.30)

The estimate of R2
trial of almost 1 suggests a very good surrogacy relationship.

As a result, we can say that, at the trial level, the MRI lesion count per patient per
scan has been validated as a surrogate endpoint for the annualized relapse rate in
RRMS. However, the estimate of τ2 being almost 0 or the estimate of R2

trial being
almost 1 may not guarantee a high precision in predicting the true treatment effect
on the annualized relapse rate in a new trial. In Section 4.5, we will assess this
using the estimated surrogacy relationship to make such predictions.

As noted earlier, the jackknife method may not be very appropriate since the
23 trials which we treat as units cannot be considered as a random sample. Of
course, the standard errors calculated by the MLE method is also approximate,
because we don’t have the true likelihood. In the following sections, we use the
standard errors based on the asymptotic normality of the MLE to develop our re-
sults.

4.4 Comparison between the Comprehensive
Approach and the SBRCMB Approach

In a contrast from a new clinical trial (we use the subscript “0” to denote this new
contrast), if we know the true treatment effect on the MRI lesion count per patient
per scan, X true

0 , we can use it to predict the true treatment effect on the annual-
ized relapse rate, Y true

0 . In practice, however, there are only a limited number of
patients included in any trial and we only have the estimated treatment effect X0.
So, we need to use X0 instead of X true

0 to predict Y true
0 ; that is, we want to use

the surrogacy relationship to predict the treatment effect on the clinical endpoint
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based on the estimated treatment effect on the surrogate endpoint.

To identify the relationship between Y true
0 and X0, first note that Cov(Y true

0 ,X0)=

E(Y true
0 X0)−E(Y true

0 )E(X0). We assume this new trial has similar inclusion cri-
teria and involves the same type of treatment as the 23 trials included in the SBR-
CMB dataset. So, from (4.3) and (4.14), we have E(X0)≈ E(X true

0 ). Let U true
0 =

(Rtrue
a0 ,Rtrue

c0 ,Mtrue
a0 ,Mtrue

c0 )T denote the true endpoints from the new contrast. Then,
from (4.12), we have E(Y true

0 X0) = E(E(Y true
0 X0|U true

0 )) ≈ E(Y true
0 X true

0 ). There-
fore:

Cov(Y true
0 ,X0)≈ E(Y true

0 X true
0 )−E(Y true

0 )E(X true
0 ) =Cov(Y true

0 ,X true
0 ). (4.31)

As a result, we have the following approximation to the moment structure for Y true
0

and X0:(
Y true

0

X0

)
≈

((
α +β µX

µX

)
,

(
β 2σ2

X + τ2 βσ2
X

βσ2
X σ2

X + ϕ2
K0Na0

E( 1
Mtrue

a0
)+ ϕ2

K0Nc0
E( 1

Mtrue
c0

)

))
,

(4.32)
where K0 is the total number of scans on each patient in the new trial, and Na0,Nc0

are the number of patients in the active and control arms in the new trial respec-
tively.

The point prediction for Y true
0 can be based on E(Y true

0 |X0), but determination
of a prediction interval for Y true

0 requires information on the conditional distribu-
tion of Y true

0 given X0. To derive this distribution, we use the normal distribution
with moments given by (4.32) as an approximation to the joint distribution of
Y true

0 and X0. The joint distribution is unknown, but as Na0 and Nc0, the number
of patients included in this new trial becomes larger, the estimation error on the
estimated treatment effect X0, becomes smaller, and the estimated treatment effect
approaches the true treatment effect X true

0 . We may think the bivariate normal dis-
tribution is a reasonable approximation for large Na0 and Nc0.
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Under this bivariate normal approximation, we have:

E(Y true
0 |X0) = α +β µX(1−

σ2
X

σ2
X+H0

)+
βσ2

X
σ2

X+H0
X0, (4.33)

Var(Y true
0 |X0) = β 2σ2

X(1−
σ2

X
σ2

X+H0
)+ τ2, (4.34)

where H0 =
ϕ2

K0Na0
E( 1

Mtrue
a0

)+ ϕ2
K0Nc0

E( 1
Mtrue

c0
). So, the point prediction of Y true

0 from
a future contrast, given the value of X0 = x0 from that contrast, is:

Ŷ true
0 (x0) = Ê(Y true

0 |X0 = x0) = α̂ + β̂ µ̂X(1−
σ̂2

X

σ̂2
X + Ĥ0

)+
β̂ σ̂2

X

σ̂2
X + Ĥ0

x0, (4.35)

where Ĥ0 = ϕ̂2
K0Na0

E( 1
Mtrue

a0
) + ϕ̂2

K0Nc0
E( 1

Mtrue
c0

). As earlier, E( 1
Mtrue

a0
) and (E( 1

Mtrue
c0

))

will be treated as known and replaced by the inverse of the average value of the
40 and 23 MRI lesion counts per patient per scan from the active and control arms
in the SBRCMB dataset.

The prediction interval for Y true
0 given X0 = x0 can be based on the random

variable:
W0 = Y true

0 (x0)− Ŷ true
0 (x0). (4.36)

Note that given X0 = x0, Y true
0 (x0) and Ŷ true

0 (x0) are independent, so Var(W0) =

Var(Y true
0 (x0)) +Var(Ŷ true

0 (x0)). From (4.34), we know that Var(Y true
0 (x0)) =

β 2σ2
X(1−

σ2
X

σ2
X+H0

)+ τ2. Furthermore, the delta method can be used to approxi-

mate Var(Ŷ true
0 (x0)). Specifically, let ΣW denote the asymptotic covariance matrix

of α̂, β̂ , µ̂X , σ̂2
X and ϕ̂2, and let g denote the partial derivatives of E(Y true

0 |X0 = x0)

with respect to α,β ,µX ,σ2
X and ϕ2 (see Appendix B). Then:

Var(Ŷ true
0 (x0))≈ gT ·ΣW ·g. (4.37)
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As a result,

Var(W0)≈ β 2σ2
X(1−

σ2
X

σ2
X +H0

)+ τ2 +gT ·ΣW ·g. (4.38)

Note that, W0 is asymptotically normally distributed, so the approximate 95%
prediction interval for Y true

0 (x0) can be given by:

Ŷ true
0 (x0)±1.96

√
ˆVar(W0), (4.39)

where, ˆVar(W0) = β̂ 2σ̂2
X(1−

σ̂2
X

σ̂2
X+Ĥ0

)+ τ̂2 + ĝT · Σ̂W · ĝ, and ĝ, Σ̂W are the partial
derivatives and the asymptotic variance covariance matrix of the parameter esti-
mators evaluated at their estimated values.

Figure 4.1 shows the comparison between the SBRCMB results and the com-
prehensive results in predicting Y true

0 from X0. Although the regression relation-
ship modeled in the SBRCMB approach is between the two estimated treatment
effects, for this purpose, we pretend it is between the true treatment effect on the
clinical endpoint and the estimated treatment effect on the surrogate endpoint.
The SBRCMB prediction line is y = −0.02+ 0.55x while the prediction line for
the comprehensive model is given by (4.35). To allow a specific illustration in
the figure, we fixed K0 at 6 (the median number of total scans among the 40 con-
trasts in the SBRCMB dataset) and Na0,Nc0 at 50 (the median number of patients
among 23 placebo and 40 active arms in the SBRCMB dataset); for these values,
α̂ + β̂ µ̂X(1−

σ̂2
X

σ̂2
X+Ĥ0

) ≈ 0 and β̂ σ̂2
X

σ̂2
X+Ĥ0

≈ 0.50, so (4.35) becomes y = 0.50x. The
points represent the 40 pairs of estimated treatment effects from the SBRCMB
dataset.

From Figure 4.1, we can see that for X between -4 and 1 (the range of X in the
SBRCMB dataset), the two prediction lines don’t differ much: the point predic-
tions for Y true

0 based on X0 from these two approaches are close. However, when
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Figure 4.1: Regression Prediction Lines: the SBRCMB Approach (y =
−0.02 + 0.55x) and the Comprehensive Approach with K0 = 6 and
Na0 = Nc0 = 50 (y = 0.50x).

X < 0, the prediction line from the comprehensive approach is above that from the
SBRCMB approach. Note that, when X0 < 0, the treatment in the new trial shows
a beneficial effect on the surrogate endpoint. When Y true

0 < 0, the true treatment
effect on the clinical endpoint is beneficial, and more negative Y true

0 values repre-
sent greater beneficial effects. So, Figure 4.1 implies that for a future trial with
moderate sample size (50 patients in each arm, for example) and a total of 6 scans,
if the treatment shows a beneficial effect on the surrogate endpoint, the true treat-
ment effect on the clinical endpoint predicted by the SBRCMB approach is always
slightly greater than that predicted by the comprehensive approach. This means
when prediction of the true treatment effect on the clinical endpoint is based on
the estimated treatment effect on the surrogate endpoint (on which estimation er-
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rors exist), the SBRCMB approach may slightly overestimate the true treatment
effect on the clinical endpoint.

Figure 4.2 shows another comparison between the SBRCMB results and the
comprehensive results in predicting Y true

0 from X true
0 . We pretend that the SBR-

CMB approach models the regression relationship between the two true treatment
effects; the prediction line is y = −0.02+ 0.55x. The prediction line from the
comprehensive model is also given by (4.35), but now we choose Na0 and Nc0 to
be infinity, to reflect the case that the future trial includes sufficient number of pa-
tients so that the observed treatment effect on the surrogate endpoint estimates the
true treatment effect with negligible error. When Na0 and Nc0 are infinity, (4.35)
becomes y = 0.08+0.62x.
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Figure 4.2: Regression Prediction Lines: the SBRCMB Approach (y =
−0.02 + 0.55x) and the Comprehensive Approach with K0 = 6 and
Na0 = Nc0 = ∞ (y = 0.08+0.62x).
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From Figure 4.2, we see the two prediction lines intersecting at X true
0 =−1.39.

Note that exp(X true
0 ) =

Mtrue
a0

Mtrue
c0

and exp(−1.39) = 0.25. So X true
0 = −1.39 means

the treatment leads to a 75% reduction in MRI lesion count per patient per scan in
the new trial, which is a large beneficial effect. Therefore, when the true treatment
effect on the surrogate endpoint is available, the SBRCMB approach may under-
estimate/overestimate the true treatment effect on the clinical endpoint if the true
treatment effect on the surrogate endpoint is larger/smaller than this value.

We can also compare the point predictions of the two approaches for the 40
contrasts included in the SBRCMB dataset. The SBRCMB approach still uses the
prediction line y =−0.02+0.55x to predict all of the Y true

0 s. But since each con-
trast has a different total number of scans and different numbers of patients, the
comprehensive approach yields point predictions of the Y true

0 s that are no longer
on a straight line.

Figure 4.3 and Figure 4.4 show the comparison between the SBRCMB results
and the comprehensive results in predicting Y true

0 from X0, for the 40 contrasts in
the SBRCMB dataset. In Figure 4.3, the solid points represent the point predic-
tions for the 40 contrasts from the comprehensive approach, and the transparent
points represent the pairs of estimated treatment effects. In Figure 4.4, the point
predictions from the comprehensive approach are plotted against the correspond-
ing predictions from the SBRCMB approach.

From Figure 4.3 and 4.4, we can see that the point predictions for the true
treatment effect on the clinical endpoints from the two approaches are generally
very close. However, when X0 < 0, all the predictions from the comprehensive
approach are larger than the corresponding predictions from the SBRCMB ap-
proach. So, for those contrasts where the treatments show beneficial effects on
the surrogate endpoint, the SBRCMB approach may overestimate the true treat-
ment effects on the clinical endpoint. Again, this is because none of those trials
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Figure 4.4: Comparison of Point Predictions for the 40 Contrasts
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include infinite number of patients, so estimation error exists in the measurement
of the treatment effect on the surrogate endpoint. The SBRCMB prediction may
be a little more liberal due to its failure to take into account the estimation error.
The point A in Figure 4.3 and 4.4 shows the effect of estimation error on predict-
ing the true treatment effect on the clinical endpoint clearly. Note that this point
deviates substantially from the remaining points. This point represents the single-
contrast clinical trial which has only 10 patients in each arm. So the estimation
error in the measurement of the treatment effect on the surrogate endpoint is very
large. From (4.35), we know that when Na0 and Nc0 are very small, β̂ σ̂2

X
σ̂2

X+Ĥ0
is

much smaller than β̂ . This is why the point A deviates substantially from the rest
of the points in the y direction. This means, with a large estimation error in the
measurement of the treatment effect on the surrogate endpoint, a large estimated
treatment effect on the surrogate endpoint may not be associated with a large true
treatment effect on the clinical endpoint.

We can also compare the prediction intervals of the two approaches. The
prediction interval for Y true

0 (x0) from the comprehensive approach can be calcu-
lated from (4.39), and the prediction interval from the SBRCMB approach can be
calculated from the standard regression method. (To do so, we pretend the SBR-
CMB approach models the regression relationship between the true treatment ef-
fect on the clinical endpoint and the estimated treatment effect on the surrogate
endpoint.) Table 4.2 shows the result of the approximate 95% prediction intervals
of exp(Y true

0 (x0)) for the 40 contrasts included in the SBRCMB dataset. Note that
exp(Y true

0 ) =
Rtrue

a0
Rtrue

c0
, which represents the true treatment effect on the annualized

relapse rate in a future contrast, expressed as a percentage. Table 4.2 is ordered
based on the magnitude of exp(X0) =

Ma0
Mc0

, the estimated percentage treatment ef-
fect on the surrogate endpoint. The first column is the ID of the contrast in the
SBRCMB dataset (see Appendix A).
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Table 4.2: Comparison of the Approximate 95% Prediction Intervals for
exp(Y true

0 (x0)) for the SBRCMB and Comprehensive Approaches

Contrast
exp(X0)

SBRCMB Comprehensive

ID Point Interval Point Interval

3 0.02 0.12 (0.02, 0.60) 0.29 (0.12, 0.72)

29 0.04 0.17 (0.08, 0.35) 0.23 (0.13, 0.42)

20 0.08 0.24 (0.12, 0.49) 0.27 (0.18, 0.40)

21 0.11 0.29 (0.15, 0.58) 0.32 (0.22, 0.47)

28 0.17 0.37 (0.30, 0.45) 0.38 (0.29, 0.50)

15 0.19 0.39 (0.14, 1.09) 0.45 (0.28, 0.74)

25 0.30 0.50 (0.26, 0.95) 0.53 (0.38, 0.74)

4 0.32 0.52 (0.14, 1.95) 0.60 (0.33, 1.12)

14 0.34 0.54 (0.19, 1.53) 0.59 (0.37, 0.95)

8 0.35 0.55 (0.33, 0.91) 0.58 (0.43, 0.78)

40 0.36 0.55 (0.18, 1.68) 0.62 (0.34, 1.12)

1 0.37 0.56 (0.21, 1.48) 0.63 (0.35, 1.12)

26 0.39 0.58 (0.30, 1.12) 0.61 (0.43, 0.87)

27 0.40 0.58 (0.30, 1.14) 0.62 (0.44, 0.88)

2 0.41 0.59 (0.22, 1.59) 0.65 (0.36, 1.16)

36 0.44 0.62 (0.25, 1.51) 0.66 (0.44, 0.99)

10 0.47 0.64 (0.38, 1.09) 0.68 (0.49, 0.94)

24 0.47 0.64 (0.34, 1.21) 0.68 (0.49, 0.94)

6 0.48 0.65 (0.30, 1.40) 0.69 (0.34, 1.41)

38 0.51 0.67 (0.27, 1.63) 0.71 (0.47, 1.05)

7 0.58 0.72 (0.43, 1.20) 0.77 (0.57, 1.03)
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Table 4.2: (continued)

Contrast
exp(X0)

SBRCMB Comprehensive

ID Point Interval Point Interval

5 0.67 0.78 (0.53, 1.16) 0.80 (0.49, 1.30)

33 0.67 0.78 (0.47, 1.30) 0.82 (0.58, 1.16)

18 0.69 0.79 (0.52, 1.20) 0.85 (0.66, 1.08)

9 0.76 0.84 (0.49, 1.44) 0.89 (0.64, 1.23)

19 0.82 0.88 (0.38, 2.04) 0.89 (0.56, 1.40)

30 0.88 0.91 (0.55, 1.51) 0.97 (0.73, 1.30)

39 0.91 0.93 (0.38, 2.26) 0.95 (0.63, 1.42)

11 0.92 0.93 (0.37, 2.35) 0.95 (0.62, 1.45)

23 0.96 0.95 (0.75, 1.21) 1.00 (0.71, 1.41)

32 1.04 1.00 (0.59, 1.70) 1.04 (0.72, 1.49)

16 1.06 1.01 (0.17, 5.97) 0.90 (0.48, 1.68)

37 1.11 1.03 (0.42, 2.53) 1.05 (0.70, 1.58)

22 1.16 1.06 (0.84, 1.35) 1.11 (0.78, 1.57)

17 1.27 1.11 (0.19, 6.60) 0.95 (0.51, 1.79)

13 1.35 1.15 (0.45, 2.98) 1.14 (0.73, 1.77)

31 1.47 1.21 (0.71, 2.07) 1.29 (0.94, 1.77)

34 1.61 1.27 (0.61, 2.68) 1.18 (0.71, 1.96)

35 1.69 1.31 (0.62, 2.79) 1.20 (0.71, 2.01)

12 1.74 1.33 (0.51, 3.45) 1.29 (0.82, 2.02)
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From Table 4.2, we find that the lengths of the prediction intervals from the
comprehensive approach are generally shorter than those obtained from the SBR-
CMB approach (34 out of 40 are shorter), which indicates that the comprehensive
approach gives more precise prediction. This can be explained by the existence
of estimation error in the measurement of the treatment effect on the clinical end-
point. Although we pretend that the SBRCMB approach can be used to predict
Y true

0 , it actually predicts Y0. Since in general, Y0 is more variable than Y true
0 , it

may not be surprising that the SBRCMB prediction intervals tend to be wider.

Figure 4.5 illustrates this information. The solid points and the solid lines rep-
resent the point predictions and the 95% prediction intervals from the SBRCMB
approach, while the hollow points and the dashed lines represent those from the
comprehensive approach. It is clear from the figure that most of the prediction
intervals from the comprehensive approach are shorter than those from the SBR-
CMB approach.

The second column of Table 4.2 is the estimated percentage treatment effect
on the surrogate endpoint. If X0 < 0 or equivalently, exp(X0) =

Ma0
Mc0

< 1, then
the treatment showed a beneficial effect on the surrogate endpoint in the contrast.
Among the 40 contrasts, there are 30 contrasts where Ma0

Mc0
< 1. For those contrasts,

we expect to see beneficial true treatment effects on the clinical endpoint; that is,
exp(Y true

0 ) =
Rtrue

a0
Rtrue

c0
< 1. However, based on the comprehensive approach, among

those 30 contrasts, only 14 have 95% prediction intervals that don’t contain 1.
So for the other 16 contrasts, we get inconclusive prediction results for the true
treatment effect on the clinical endpoint. The SBRCMB results are less definitive;
only 7 contrasts have 95% prediction intervals that don’t contain 1. In the next
section, we will study how the magnitude of the estimated treatment effect on the
surrogate endpoint and the number of patients influence the prediction interval of
the true treatment effect on the clinical endpoint.
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4.5 Assessment of the Estimated Surrogacy
Relationship in Practice

For the MRI lesion count per patient per scan to be a useful surrogate endpoint in
practice, it must provide precise enough information on the true treatment effect
on the annualized relapse rate. Table 4.3 investigates the influence of the magni-
tude of X0 (or exp(X0)) and the sample size Na0,Nc0 of the future contrast on the
prediction interval for Y true

0 (x0) (or exp(Y true
0 (x0))) calculated from the compre-

hensive approach. When calculating the prediction intervals, we fix K0 = 6. We
set Na0 = Nc0 = N0 and vary N0 from 10 to 600 (the number of patients in the arms
in the SBRCMB dataset range from 8 to 627). We also vary exp(X0) from 0.02
to 1.8 (the values of exp(X0) in the SBRCMB dataset range from 0.024 to 1.742).
The entries in Table 4.3 are the point predictions and approximate 95% prediction
intervals for exp(Y true

0 (x0)).

From Table 4.3, first we note that, within each column (i.e., given the value of
the estimated treatment effect on the surrogate endpoint), the length of the approx-
imate 95% prediction interval for the true treatment effect on the clinical endpoint
becomes shorter as N0 increases. This is expected, since larger N0 represents more
information on the new contrast, and the prediction will be more precise. The last
row in Table 4.3 represents the situation when a new trial includes infinite number
of patients. In such a case, the estimation error in the measurement of the treat-
ment effect on the surrogate endpoint becomes negligible. However, we see the
prediction interval for expY true

0 (X0) doesn’t shrink to a point: even if we know
the true treatment effect on the surrogate endpoint, we still cannot predict the true
treatment effect on the clinical endpoint without error. From Table 4.1, we know
that τ̂2 ≈ 0, which suggests a nearly perfect linear relationship between the true
treatment effects. Therefore, the uncertainty in the last row of Table 4.3 is due
to the fact that the surrogacy relationship is not estimated precisely enough (other
parameters such as α and β are not estimated precisely enough).
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Table 4.3: Influence of the Sample Size N0 and the Magnitude of the Estimated Treatment Effect on the Sur-
rogate Endpoint on the 95% Prediction Intervals for the True Treatment Effect on the Clinical Endpoint
for Trials with K0 = 6 Scans per Patient. The Entries are the Point Predictions and Approximate 95%
Prediction Intervals for exp(Y true

0 (x0)).

exp(X0)
N0 0.02 0.1 0.2 0.5 0.8 0.9 1.0 1.5 1.8
10 0.28 0.44 0.54 0.70 0.80 0.83 0.85 0.96 1.01

(0.11, 0.70) (0.21, 0.93) (0.27, 1.07) (0.36, 1.35) (0.41. 1.55) (0.43, 1.61) (0.44, 1.66) (0.49, 1.89) (0.51, 2.02)

20 0.20 0.37 0.49 0.70 0.84 0.88 0.92 1.08 1.16
(0.09, 0.44) (0.20, 0.70) (0.27, 0.87) (0.41, 1.21) (0.49. 1.46) (0.51, 1.53) (0.53, 1.60) (0.61, 1.91) (0.65, 2.07)

50 0.14 0.31 0.44 0.70 0.89 0.94 1.00 1.22 1.34
(0.08, 0.24) (0.20, 0.50) (0.29, 0.67) (0.47, 1.05) (0.60, 1.33) (0.63, 1.41) (0.66, 1.49) (0.81, 1.86) (0.88, 2.05)

100 0.12 0.29 0.42 0.70 0.91 0.98 1.03 1.30 1.44
(0.07, 0.19) (0.20, 0.41) (0.31, 0.58) (0.52, 0.95) (0.67, 1.25) (0.71, 1.33) (0.76, 1.42) (0.93, 1.80) (1.02, 2.02)

200 0.11 0.27 0.41 0.70 0.93 1.00 1.06 1.34 1.50
(0.07, 0.16) (0.20, 0.36) (0.32, 0.53) (0.56, 0.89) (0.73, 1.18) (0.78, 1.27) (0.82, 1.36) (1.02, 1.77) (1.12, 2.00)

600 0.10 0.26 0.40 0.70 0.94 1.01 1.07 1.38 1.54
(0.06, 0.15) (0.20, 0.34) (0.33, 0.49) (0.60, 0.83) (0.78, 1.13) (0.83, 1.22) (0.88, 1.31) (1.09, 1.74) (1.19, 1.99)

∞ 0.10 0.26 0.40 0.70 0.94 1.02 1.08 1.40 1.56
(0.06, 0.15) (0.20, 0.33) (0.34, 0.46) (0.63, 0.78) (0.82, 1.09) (0.87, 1.18) (0.92, 1.23) (1.13, 1.73) (1.23, 1.98)
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Recall that, exp(X0) =
Ma0
Mc0

and exp(Y true
0 ) =

Rtrue
a0

Rtrue
c0

. So, when a new treatment
is efficacious, we hope to observe exp(X0) < 1 and expect exp(Y true

0 ) < 1 (i.e.,
the upper bound of the approximate 95% prediction interval to be less than 1). On
the other hand, when a new treatment has a negative effect, we hope to observe
exp(X0)> 1 and expect exp(Y true

0 )> 1 (i.e., the lower bound of the approximate
95% prediction interval to be larger than 1).

The last two columns of Table 4.3 represent the situation when the treatment
shows medium or large negative effects on the surrogate endpoint (the treatment
is 50% or 80% worse than the control in terms of the observed surrogate end-
point), so we hope to see the lower bound of the prediction interval larger than
1. This only happens when N0 ≥ 200 for exp(X0) = 1.5 and when N0 ≥ 100
for exp(X0) = 1.8. So for negative observed treatment effects on the surrogate
endpoint to imply negative true treatments effects on the clinical endpoint, a new
contrast needs to include a large number of patients. For those contrasts with a
medium or small number of patients or with a less extreme observed treatment
effect on the surrogate endpoint, conclusive predictions for the true treatment on
the clinical endpoint will not be possible.

The 6th and 7th columns of Table 4.3 represent the situation when exp(X0)

is close to 1; that is, the estimated treatment effect on the surrogate endpoint is
beneficial but the magnitude is small. We see all the prediction intervals within
these two columns contain 1 even when N0 is infinite. This suggests that when a
new treatment shows only a small beneficial effect on the surrogate endpoint, we
will not be able to determine if this treatment really has an effect on the clinical
endpoint based on the estimated surrogacy relationship. In other words, the esti-
mated surrogacy relationship is not very helpful in such a situation.

The 5th column of Table 4.3 shows the situation when exp(X0) = 0.5, which
represents a medium beneficial estimated treatment effect on the surrogate end-
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point (50% reduction in the observed surrogate endpoint). However, when N0 <

100, the prediction intervals all contain 1. So, when a new treatment shows a
medium beneficial effect on the surrogate endpoint, we will only be able to con-
clude this treatment has an effect on the clinical endpoint if the new trial includes
sufficient patients.

The first 3 columns of Table 4.3 represent the situation when exp(X0) is close
to 0; that is, the estimated treatment effect on the surrogate endpoint is benefi-
cial and the magnitude is very large. When N0 ≥ 20, all the prediction intervals
exclude 1. This means we are 95% sure that an observed beneficial treatment
effect on the surrogate endpoint corresponds to a true beneficial treatment effect
on the clinical endpoint. On the other hand, how precisely we can determine the
magnitude of the true treatment effect on the clinical endpoint is also of interest.
This precision is indicated by the length of the prediction interval. Note that when
N0 ≤ 50, the lengths of all the prediction intervals are no less than 0.3 except for
the case when N0 = 50 and exp(X0) = 0.02. As N0 = 50 is a typical size for a
phase 2 clinical trial in RRMS, this suggests the prediction of the true treatment
effect on the clinical endpoint may not be very precise for a phase 2 clinical trial
of small or medium size. On the other hand, when N0 ≥ 100, all the lengths of the
prediction intervals are smaller than 0.25 except for the case when N0 = 100 and
exp(X0) = 0.2. This indicates the prediction is relatively precise when a trial has
a large number of patients.

We also investigate the relationship between N0 and the value of exp(X0) for
which the prediction interval for exp(Y true

0 ) excludes 1 (we fix K0 = 6). Burzykowsky
and Buyse [18] introduced a similar concept called the “surrogate threshold ef-
fect”. This value represents the least extreme value of the estimated treatment
effect on the surrogate endpoint from which we can obtain a conclusive predic-
tion for the true treatment effect on the clinical endpoint. In Figure 4.6 and Figure
4.7, we plot the “threshold value” of exp(X0) against N0. Figure 4.6 shows the re-
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sult when a treatment shows a beneficial effect on the surrogate endpoint (X0 < 0),
and Figure 4.7 shows the result when a treatment shows a negative effect on the
surrogate endpoint (X0 > 0).

From Figure 4.6, we see that when the treatment shows a beneficial effect on
the surrogate endpoint, the threshold value increases as N0 increases. A larger
threshold value represents a smaller estimated treatment effect on the surrogate
endpoint. So, for a contrast with large number of patients, even though we ob-
serve only a relatively small treatment effect on the surrogate endpoint, we can
still conclude that the treatment has a beneficial effect on the clinical endpoint.
The threshold value for N0 = 50 is exp(X0) = 0.46, which means in order to con-
clude that a new treatment has a beneficial effect on the clinical endpoint for a
contrast with 50 patients in each arm, this treatment has to be observed to be at
least 100%−46% = 54% better than the control on the surrogate endpoint. Simi-
larly, for N0 = 10, 20, 100, 200 and 600, the threshold values are 0.14, 0.30, 0.55,
0.61 and 0.67. Note that the asymptote for the curve is 0.71, which indicates the
threshold value obtained when N0 = ∞. So, when we try to predict the true treat-
ment effect on the clinical endpoint based on the estimated surrogacy relationship,
we require the new treatment to be at least 29% better than the control on the sur-
rogate endpoint in order to conclude that there is a true beneficial treatment effect
on the clinical endpoint.

From Figure 4.7, we see that when the treatment shows a negative effect on
the surrogate endpoint, the threshold value decreases as N0 increases. We can in-
terpret Figure 4.7 in a similar way as Figure 4.6. For example, here the threshold
value for N0 = 50 is 2.39, which means in order to conclude that a new treatment
has a negative effect on the clinical endpoint for a contrast with 50 patients in
each arm, this treatment has to be observed to be 139% worse than the control on
the surrogate endpoint. Note that the asymptote here is 1.19. So, when we try to
predict the true treatment effect on the clinical endpoint based on the estimated
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Figure 4.6: Threshold Value of exp(X0) versus Sample Size N0 when a Ben-
eficial Treatment Effect is Observed on the Surrogate Endpoint
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Figure 4.7: Threshold Value of exp(X0) versus Sample Size N0 when a Neg-
ative Treatment Effect is Observed on the Surrogate Endpoint
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surrogacy relationship, we require the new treatment to be at least 19% worse
than the control on the surrogate endpoint in order to conclude that there is a true
negative treatment effect on the clinical endpoint.

In conclusion, the estimated surrogacy relationship is useful in predicting the
true treatment effect on the clinical endpoint when the treatment shows a large
effect on the surrogate endpoint and the number of patients in the contrast is large
(e.g. exp(X0) = 0.1 and N0 = 100). However, when the treatment shows a moder-
ate beneficial effect on the surrogate endpoint (e.g. exp(X0) = 0.5), the prediction
is not very precise (the prediction interval is wide). When the treatment only
shows a small beneficial effect on the surrogate endpoint (exp(X0)> 0.71), using
the estimated surrogacy relationship will lead to an inconclusive result for the true
treatment effect on the clinical endpoint.

From (4.30), we know that the true surrogacy relationship may be very good
or nearly perfect. Nevertheless, the surrogate endpoint may not be very useful in
predicting the true treatment effect on the clinical endpoint unless the treatment
shows a large effect on the surrogate endpoint. Furthermore, even if a new trial
includes sufficient number of patients so that we can measure the treatment effect
on the surrogate endpoint perfectly, we still cannot predict the true treatment effect
on the clinical endpoint without error. These may be explained by the limited
number of trials included in the SBRCMB dataset. Since we only have 23 trials,
we may not estimate the true surrogacy relationship precisely. So, use of the
estimated surrogacy relationship may not result in a very precise prediction.
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Chapter 5

Conclusions and Discussion

In a clinical trial, a surrogate endpoint is used as a substitute for the clinical end-
point to assess the treatment effect. Using a surrogate endpoint instead of the
clinical endpoint can shorten the period of a clinical trial, or reduce the number of
patients needed in a clinical trial, and therefore reduce the cost. However, before
a potential surrogate endpoint can be formally employed in practice, it must be
validated. Use of an invalidated surrogate endpoint can lead to an incorrect con-
clusion about the treatment effect and thus use of the treatment in future may lead
to ineffective or even harmful impact on patients.

A potential surrogate endpoint can be validated in a single clinical trial or in
multiple clinical trials if the multiple trials study the same or similar treatments.
When the validation is carried on in multiple trials, the validation process can be
based on the summary information of each trial or on the individual patient data,
depending on whether the individual patient level data is available. When indi-
vidual patient level data is not available, we lose the possibility of examining how
closely a surrogate is related to the clinical endpoint in individual patients, but
retain the ability to evaluate the relationship between the treatment effects on the
surrogate and the clinical endpoints.
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In RRMS clinical trials, changes in MS brain lesion patterns determined by
MRI reflect the underlying MS disease pathology and hence may be the best can-
didate for a surrogate endpoint. In this report, we studied whether the MRI lesion
count per patient per scan can serve as a surrogate endpoint for the annualized re-
lapse rate, which is the most commonly used clinical endpoint for RRMS clinical
trials. The SBRCMB dataset only includes summary information from 23 clinical
trials. Two different approaches (the SBRCMB approach and the comprehensive
approach) are applied to the SBRCMB dataset to assess this potential surrogacy
relationship.

The SBRCMB approach discussed in Chapter 3 uses simple linear regression
with weighted least squares estimation, where the response and the explanatory
variables are the estimated treatment effects on the clinical and the surrogate end-
points from each contrast, and the weights are chosen to account for the influence
of different numbers of patients and different durations of contrasts. However,
this approach treats the estimated treatment effects as the true treatment effects
(doesn’t take into account the estimation errors) and ignores the correlation struc-
ture among contrasts from the same trial.

The comprehensive approach discussed in Chapter 4 assumes a multivariate
normal distribution for the true treatment effects to take into account the corre-
lation structure among the contrasts from the same trial, and develops the con-
ditional distribution of the estimated treatment effects given the true endpoints.
The approximated marginal moments of the estimated treatment effects are then
determined. To estimate the parameters related to the surrogacy relationship, we
use the normal estimating equations.

The β̂ from the comprehensive approach is 0.62, which is larger than 0.55
from the SBRCMB approach. So, the SBRCMB approach may underestimate the
association between the true treatment effects. Neither of the α̂s from the two
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approaches are significantly different from 0, which is consistent with a good sur-
rogacy relationship, since there is no strong indication of part of the true treatment
effect on the annualized relapse rate remaining unexplained by the true treatment
effect on the MRI lesion count per patient per scan. The SBRCMB approach ob-
tains a weighted R2 = 0.80, and the comprehensive approach obtains R̂2

trial ≈ 1.
Both indicate a good surrogacy relationship. For the comprehensive approach,
R̂2

trial ≈ 1 is equivalent to τ̂2 ≈ 0, which indicates a negligible estimated condi-
tional variance of the true treatment effect on the annualized relapse rate given
the true treatment effect on the MRI lesion count per patient per scan. Under the
assumptions of the comprehensive approach, the Prentice definition about a surro-
gate endpoint requires that α = 0 and τ = 0. So, the MRI lesion count per patient
per scan appears to be a very good surrogate endpoint for the annualized relapse
rate.

To assess how good this estimated surrogacy relationship is in practice, we
predict the true treatment effect on the clinical endpoint for the 40 contrasts in-
cluded in the SBRCMB dataset. The point predictions from the two approaches
are very close, but those from the comprehensive approach are slightly larger than
those from the SBRCMB approach for most contrasts. So, for those trials which
showed beneficial treatment effects on the surrogate endpoint, the SBRCMB ap-
proach tends to predict slightly larger treatment effects than the comprehensive
approach. The interval predictions from the two approaches are quite different
however. The length of the prediction interval from the comprehensive approach
is generally shorter (34 out of 40 are shorter), which indicates the comprehensive
approach gives more precise prediction.

For the comprehensive approach, we also study how the number of patients
per arm and the value of the estimated treatment effect on the surrogate endpoint
affect the prediction interval for the true treatment effect on the clinical endpoint.
For a new contrast with infinite number of patients in each arm (i.e. the estimation
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error in the measurement of the treatment effect on the surrogate endpoint is neg-
ligible), we require the treatment to be observed to be at least 29% better or 19%
worse than the control on the surrogate endpoint, in order to avoid inconclusive
prediction for the true treatment effect on the clinical endpoint. For a new con-
trast with limited number of patients in each arm, we require the treatment to show
more extreme effects. For a typical phase 2 clinical trial in RRMS with 50 patients
in each arm and with 6 scans for each patient, we require the treatment is at least
54% better or 139% worse. Among the 30 contrasts included in the SBRCMB
dataset where the treatments show beneficial effects on the surrogate endpoint, 20
show treatment effects greater than 54%, while among the 10 contrasts where the
treatments show negative effects on the surrogate endpoint, only 4 treatments are
139% or more worse than the control. So, the estimated surrogacy relationship
could be useful in prediction when a treatment shows an beneficial effect on the
surrogate endpoint, but may not be useful in the contrary case. In addition, when
the number of patients per arm is around 50, the prediction interval is wide and
doesn’t yield a precise prediction, unless the treatment shows a very large effect
on the surrogate endpoint (e.g. ≥ 90%).

In conclusion, the comprehensive approach shows that the underlying surro-
gacy relationship may be very good. In a typical phase 2 with around 50 patients in
each arm and with 6 scans for each patient, the estimated surrogacy relationship
can give precise prediction for the true treatment effect on the clinical endpoint
when the treatment displays a large effect on the surrogate endpoint. However,
when the treatment displays only a modest or a small effect on the surrogate end-
point, the prediction may be inconclusive or not precise enough. The reason for
this may be the limited number of trials included in the SBRCMB dataset: the
parameters related to the surrogacy relationship may not be estimated precisely
enough, which leads to a relatively wide prediction interval. To employ the surro-
gacy relationship to make predictions in practice, we may need information from
more trials to estimate the surrogacy relationship more precisely.
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The comprehensive approach we developed is in the spirit of Daniels and
Hughes [2] (DH) and Korn et al. [3] (KAM). Both construct models to assess
surrogacy relationships using summary results from multiple clinical trials. Both
DH and KAM use multivariate normal distributions for the true treatment effects
in their models to allow for correlated contrasts. However, DH starts with assump-
tions about the surrogacy relationship between the true treatment effects directly,
while KAM starts with assumptions about the true endpoints, where the influence
of the true surrogate endpoint on the true clinical endpoint is assumed to be the
same regardless of the presence of the treatment. Building the model from end-
points requires a more detailed specification and we think the KAM assumptions
may not be very appropriate in practice, so we started with assumptions about
the true treatment effects. On the other hand, both papers assume the estimation
errors in estimating the true treatment effects are independent from the true treat-
ment effects. In contrast, we assume they are dependent and large true treatment
effects are associated with small estimation errors. We think this dependence as-
sumption is more reasonable in practice. However, not making assumptions about
the true endpoints and the dependence estimation errors makes it difficult to ob-
tain the marginal distribution the estimated treatment effects in our model. If one
can find a reasonable assumption on the distribution of the true endpoints, then
the marginal distribution can be obtained, and the surrogacy relationship could
be re-estimated using the actual likelihood rather than the “approximated” like-
lihood. Furthermore, DH adopt a Bayesian approach to estimate the surrogacy
relationship. By choosing appropriate priors for the parameters, we could also
use a Bayesian approach to estimate the surrogacy relationship and compare the
results to those obtained in this study.

The SBRCMB dataset only contains summary information from each trial but
not the individual patient information. If the individual patient information is
available, one can re-analyze the surrogacy relationship using the individual pa-
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tient level data and compare the results for the estimated surrogacy relationship
with those from this study. In principle, the estimated surrogacy relationship from
the model with individual patient level data should be more precisely determined,
since this model includes more information. However, if the two results are close,
one may favor the model based on summary results. This is because it is much
easier to collect the summary results of each trial than to collect the individual
patient data from each trial, and the estimation process of the model with only
summary results may be much less computational intensive. Despite this, if the
individual patient information is available, one can assess how closely the surro-
gate endpoint is related to the clinical endpoint, (e.g. Rind from Buyse et al. [13]),
which is useful for patient management.
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Appendix A

The SBRCMB Dataset

In the table that follows, the last four columns represent the observed endpoints
from each contrast: MRI = MRI lesion count per patient per scan; ARR = an-
nualized relapse rate. The symbol “C” means “control arm” and the symbol “A”
means “active arm”. Unless otherwise noted, entries in columns 1, 2, 3, 4, 5, 11
and 12 are copied from the supplementary table accompanying the SBRCMB pa-
per. Entries in the remaining columns are extracted or calculated from the original
papers where the results of the corresponding clinical trials are reported.
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Trial
Contrast MRI SBRCMB Follow-up # of # of Patients MRI ARR

ID Outcome Weight (months) Scans C A C A C A
1 1 Active T2 a 37 24 6 17 17 0.82 0.30 1.27 1.17
1 2 Active T2 a 36 24 6 17 17 0.82 0.33 1.27 0.84
2 3 Active T2 b 14 6 6 10 10 3.37 0.08 2.00 0.34
3 4 Active T2 b 20 6 6 14 14 4.22 1.37 1.29 0.57
4 5 Active T2 b 233 24 2 82 83 2.40 1.60 0.82 0.67
5 6 New T2 59 24 2 19 23 3.65 1.75 1.31 0.45
6 7 CUA c 138 24 10 66 64 1.55 0.90 1.28 0.91
6 8 CUA c 140 24 10 66 68 1.55 0.55 1.28 0.87
7 9 CUA c 123 12 6 97 87 1.70 1.30 1.08 1.08
7 10 CUA c 124 12 6 97 85 1.70 0.80 1.08 0.81
8 11 CUA c 41 6 6 43 44 1.48 1.37 0.98 1.00
8 12 CUA c 39 6 6 43 40 1.48 2.58 0.98 1.64
8 13 CUA c 39 6 6 43 40 1.48 2.00 0.98 1.47
9 14 New Gd 32 6 6 33 32 1.22 0.42 0.88 0.90
9 15 New Gd 33 6 6 33 32 1.22 0.23 0.88 1.07

10 16 New Gd 11 9 9 10 8 3.00 3.18 0.27 0.48
10 17 New Gd 11 9 9 10 8 3.00 3.80 0.27 0.88
11 18 New T2 207 9 9 120 119 1.52 1.04 1.21 0.81
12 19 CUA c 49 6 6 34 36 2.42 1.98 1.29 1.50
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Trial
Contrast MRI SBRCMB Follow-up # of # of Patients MRI ARR

ID Outcome Weight (months) Scans C A C A C A
13 20 CUA c 74 6 6 71 68 1.62 0.13 0.51 0.09
13 21 CUA c 77 6 6 71 74 1.62 0.18 0.51 0.22
14 22 New T2 758 14 1 467 471 6.80 7.90 0.61 0.60
14 23 New T2 751 14 1 467 462 6.80 6.50 0.61 0.54
15 24 New T2 87 6 6 81 83 1.07 0.50 0.77 0.35
15 25 New T2 84 6 6 81 77 1.07 0.32 0.77 0.36
16 26 CUA c 79 9 7 61 61 2.68 1.04 0.81 0.58
16 27 CUA c 77 9 7 61 57 2.68 1.06 0.81 0.55
17 28 Active T2 b 1332 24 2 315 627 5.50 0.95 0.73 0.23
18 29 New Gd 74 6 4 35 69 1.12 0.05 0.84 0.37
19 30 New Gd 140 d 12 8 84 96 0.72 0.64 0.44 0.46
19 31 New Gd 128 d 12 8 84 87 0.72 1.06 0.44 0.60
20 32 New T2 129 9 4 102 98 2.40 2.50 0.77 0.76
20 33 New T2 136 9 4 102 106 2.40 1.60 0.77 0.52
21 34 CUA c 65 12 4 41 44 4.50 7.25 0.50 1.00
21 35 CUA c 63 12 4 41 42 4.50 7.62 0.50 0.88
22 36 New Gd 44 d 6 6 49 50 1.73 0.77 0.53 0.44
22 37 New Gd 44 d 6 6 49 50 1.73 1.91 0.53 0.52
22 38 New Gd 44 d 6 6 49 50 1.73 0.88 0.53 0.56
22 39 New Gd 44 d 6 6 49 50 1.73 1.57 0.53 0.44
23 40 New Gd 28 6 5 19 19 1.03 0.37 0.63 0.42

anew, recurrent and enlarging T2 lesions
bnew and enlarging T2 lesions
ccombined uniquely active lesions = recurrent and enlarging T2 lesions and new Gd enhancing lesions, avoiding double counting
dcalculated from the original papers; these differ from those in the SBRCMB paper
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Appendix B

Partial Derivatives of
E(Y true

0 |X0 = x0)

From (4.34), we have:

E(Y true
0 |X0 = x0) = α +β µX(1−

σ2
X

σ2
X +H0

)+β
σ2

X

σ2
X +H0

x0,

where H0 = ϕ2[
1

K0Na0
E( 1

Mtrue
a0

)+ 1
K0Nc0

E( 1
Mtrue

c0
)] = ϕ2c0 say. Let L0 =

σ2
X

σ2
X+H0

. Then:

E(Y true
0 |X0 = x0) = α +β µX(1−L0)+βL0x0.

So:

∂E
∂α

= 1,
∂E
∂β

= µX(1−L0)+L0x0,
∂E
∂ µX

= β (1−L0),

∂E
∂L0

=−β µX +βx0,
∂L0

∂σ2
X
=

H0

(σ2
X +H0)2
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The entries of the partial derivative of g is then given by:

g = (
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