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Abstract

Robotic laparoscopic partial nephrectomy is a state-of-the-art procedure for the

excision of renal tumours. The challenges of this surgery along with the stereo-

scopic interface to the surgeon make it an ideal candidate for image guidance. We

propose bringing pre-operative computed tomography data to the patient’s coordi-

nate system using three-dimensional intraoperative back ultrasound. Since com-

puted tomography and ultrasound images represent like anatomical information

quite differently, we perform a manual segmentation of the computed tomography

before the operation and a semi-automatic segmentation of the ultrasound intra-

operatively. The segmentation of the kidney boundary facilitates a feature-based

registration strategy.

Semi-automatic segmentation of kidney ultrasound images is difficult because

the edges with large gradient values do not correspond to the capsule boundary seen

in computed tomography. The desired edges are actually quite faint in ultrasound

and poorly detected by common edge methods such as the Canny approach.

After trying a number of approaches, the best results were obtained using a

novel interacting multiple-model probabilistic data association filter to select edges

from ultrasound images that were filtered for phase congruency. The manual seg-

mentation of the prior is used to guide edge detection in ultrasound. Experiments

on seven pre-operative patient datasets and one intra-operative patient dataset re-

sulted in a mean volume error ratio of 0.80±0.13 from after registration to before

registration. These results came after the implementation and evaluation of numer-

ous other approaches, including radial edge filters, the covariance matrix adaptation

evolution strategy, and a deformable approach using geodesic active contours.

The main contribution of this work is a method for the registration of the pre-
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operative planning data from computerized tomography to the intraoperative ultra-

sound. For clinical use, this method requires some form of calibration with the la-

paroscopic camera and integration with surgical visualization tools. Through inte-

gration with emerging technologies, the approach presented here can one day aug-

ment the surgical field-of-view and guide the surgeon around important anatomical

structures to the tissue that must be excised.
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Chapter 1

Introduction

1.1 Motivation
There will be an estimated 5,100 new cases of kidney cancer in Canada in 2011

[17], up from 3,900 in 2001 [16], making it the cancer type with the seventh highest

incidence rate in men and the eleventh highest in women [17]. Laparoscopic Partial

Nephrectomies (LPNs) and Robotic LPNs (RLPNs) are increasingly being used for

treatment due to decreased patient morbidity, shorter hospital stays and comparable

oncologic outcomes with respect to open surgery [15, 38].

During surgery, the surgeon has the difficult task of laparoscopically locating

the kidney through fat and connective tissue, all while averting injury to any vessels

and nerves that are encountered. Depending on which kidney is being operated on,

it may also be necessary to mobilize the liver, spleen or pancreas as well as the

colon [79].

The surgeon has the benefit of a high-resolution 3-dimensional (3-D) Com-

puted Tomography (CT) image of the patient’s abdomen, but its utility is limited

without knowing how this data relates to the patient’s current position. Ideally,

we would like the detailed CT volume to be integrated in an augmented surgical

Field-Of-View (FOV) to provide real-time image guidance. CT is not available

in the Operating Room (OR), but we can consider bringing it into alignment with

intra-operative ultrasound (US) and the laparoscopic video using image registration

techniques (see Figure 1.1).
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Figure 1.1: Laparoscopic video (bottom left) will ideally be augmented with
intra-operative US (centre) and pre-operative CT (right) in the surgeon’s
FOV.

1.2 Objectives
This study proposes to aid the surgeon by bringing the pre-operative CT data into

the patient’s coordinate frame by registering it to an intra-operative US volume.

US is commonly used intra-operatively because it is safe, inexpensive and fast.

Although the usefulness of US images in image guidance is limited due to noise

and artefacts, features that are commonly observed in US and CT data can be used

to perform a registration of the two modalities [90]. CT to US registration makes

up the first link in the chain depicted in Figure 1.2. In order to reach the end goal of

integrated CT guidance, the method in this study will have to co-operate with other

applications that can register the US data to the laparoscopic video or the surgical

tools.

The clinical benefits will come from integration with other developing tech-

nologies, eventually leading to:

• An augmented navigation environment during LPN to improve the efficiency

and safety of the operation

• Improved identification of pathologic targets

2



Figure 1.2: This paper will deal exclusively with the CT to US registration
step (highlighted in red), but this is part of a bigger picture. Registra-
tion of the US to the surgical coordinate system and integration into an
augmented display will require the use of other techniques.

• Resection guidance tools for excision of target end-organ pathology

• Surgical preplanning tools for designing individualized approaches to oper-

ative cases

• Visualization tools that will facilitate the development of new approaches to

dealing with current pathologies

The proposed algorithm will take user-selected initialization points of the US

kidney boundary along with a pre-operative CT segmentation of the kidney, and

determine the full segmentation of the kidney in the US volume as well as the

transformation required to align the US and CT images. If the US image can be

registered to the surgical coordinate frame by other means, the anatomical infor-

mation in the CT will be mapped to actual locations in the patient in the OR.

1.3 Contributions
• A joint segmentation and registration algorithm designed to bring a pre-

operative plan into alignment with intra-operative back US during LPN.

• A rough clinical workflow, from initialization to registration, that could be

incorporated into medical user interfaces and intraoperative visualization

tools.

3



• Trials with eight patient datasets to evaluate the effectiveness of this algo-

rithm on clinical data.

• New insight into kidney segmentation in US images that conflicts with some

segmentation papers but agrees with the kidney shape and volume seen in

CT.

• An extension of the Interacting Multiple-Model Probabilistic Data Associ-

ation Filter (IMMPDAF) used for prostate segmentation that makes use of

an a priori model along with other domain-specific information to create a

specialized kidney segmentation approach.

• The application of a phase congruency filter to kidney images and an evalu-

ation of its performance.

• An exploration of other popular edge detection and registration techniques

in the context of the kidney registration problem for LPN.
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Chapter 2

Background

2.1 Laparoscopic Partial Nephrectomy

2.1.1 Partial Nephrectomy

Partial Nephrectomy (PN), the excisional form of Nephron-Sparing Surgery (NSS),

was originally performed only when required, that is, for tumours occurring in a

solitary kidney or bilaterally. However, favourable intermediate- and long-term

surgical outcomes for tumours up to 5 cm in diameter led to the inclusion of all

patients with sufficiently small tumours, as it allows better post-operative renal

function [3, 38, 70, 79]. Ten years after surgery, the incidence of renal insuffiency

and proteinuria was shown to be higher in Radical Nephrectomy (RN) patients

than PN patients. In addition, up to 10% of patients may develop a tumour in the

contralateral kidney, thus increasing the dependence on the original affected kidney

[3].

A 73% increase in CT and Magnetic Resonance (MR) use between 1986 and

1994 has led to more frequent detection of incidental tumours, which represented

13% of renal tumours in 1982 and 59% in 1997. Unsurprisingly, the mean size

of detected renal tumours decreased by 8mm from 1988 to 2002, indicating that a

greater number of patients are eligible for treatment by PN [3]. Small renal tumours

are generally less aggressive, but only tumours under 3 cm in diameter in highly

selected patients should be considered for observation instead of treatment [65].
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2.1.2 The Laparoscopic Approach

Minimally-invasive surgical options for treatment of renal tumours are preferred,

as they avoid the muscle-cutting flank incision required for open nephrectomy.

Ablative surgery, which includes cryoablation and radiofrequency (RF) ablation, is

a minimally-invasive option but lacks long-term studies to confirm its effectiveness

[3, 43].

Clinical LPN was first reported in 1993 [86]. LPN was originally indicated

only for small exophytic tumours, but has since been recommended for parenchy-

mal tumours reaching as far as the collecting system or the renal sinus, as well as

completely intrarenal tumours and even large tumours requiring heminephrectomy

[43, 79].

A 3-D CT image is taken prior to the procedure, enabling the surgeon to pre-

cisely locate the boundaries of the tumour and decide whether to use a transperi-

toneal or retroperitoneal approach [43, 79]. The transperitoneal approach is prefer-

able as it provides a larger working space and better suturing angles [79]. The

retroperitoneal approach may be advantageous in cases where the tumour is lo-

cated at one of the poles [3].

In right LPN, the liver and colon must be mobilized to expose the kidney.

Mobilization of the duodenum may also be required in some cases. For LPN on

the left kidney, the spleen, splenic flexure, pancreas and colon must be mobilized

[79]. Laparoscopic US is used to observe any changes in the location and size of

the tumour since the pre-operative CT, and measure its depth. Resection of the

tumour is performed with cold scissors after the hilum is clamped [43, 79].

2.1.3 Challenges of Laparoscopic Partial Nephrectomy

In RN, the tumour remains covered by perirenal fat throughout the surgery and

is usually untouched by the instruments. In contrast, PN carries a higher risk of

tumour perforation and spillage due to the increased contact with the surgical tools.

However, tumour seeding is avoidable when the surgeon has a good FOV and uses

safe resection margins [70].

One of the challenges of the laparoscopic procedure is hemorrhage prevention

by means of ischemia. By clamping the hilum, the surgeon is able to work with
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an essentially bloodless FOV [79]. In open surgery, cold ischemia is attainable by

applying ice. Hypothermia by this method is not feasible in laparocopic surgery,

so warm ischemia is used out of necessity. Consequently, the surgeon faces a time

constraint of 20-30 minutes to perform the tumour resection once the renal artery

has been clamped in order to avoid damage to the renal parenchyma [70]. Warm

ischemia lasting longer than 20 minutes is associated with higher incidences of

acute renal failure and chronic renal insufficiency [38].

2.1.4 Robotic LPN

Robotic surgery is a well-established method for robotic prostatectomy, and is in-

creasingly being used for RN and donor nephrectomy. An 8-patient study demon-

strated the effectiveness of RLPN with the da Vinci R© surgical system when deal-

ing with complex renal tumours such as hilar tumours, endophytic tumours and

multiple tumours. The authors cited 3-D stereoscopic vision, high Degree Of Free-

dom (DOF) instruments and motion scaling as advantages of the robotic approach,

especially during tumour resection and renal reconstruction. It was shown that

robotic assistance may allow minimally-invasive NSS in patients who would oth-

erwise be recommended for open or radical nephrectomy [73].

RLPN takes place with the patient in the flank or modified flank position with

pneumoperitoneum of 15 mmHg. The two robotic instrument ports and the camera

port form a wide “V” with sides of approximately 8 cm. One or two assistant ports

are placed near the camera port [73] (see Figure 2.1).

2.2 Ultrasound Image Segmentation
Image segmentation refers to a series of techniques for partitioning an image into

non-overlapping regions that are consistent in some way but different or separated

from each other. It is recognized as the first essential step of low-level vision.

The segmented bodies and their boundaries effectively act as a dense, symbolic

representation of significant image features [35].

US images are difficult to segment because of their low Signal-to-Noise Ratio

(SNR) [62] as well as artefacts such as shadows and speckle [63]. In addition,

acquisition is orientation-dependent and can be distorted by slight variations in
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Figure 2.1: Port placement diagram for da Vinci R© surgery. The robotic intru-
ment ports (blue) and the laparoscopic camera port (green) form a wide
V around the region of interest. One assistant port (yellow) is placed
inferior to the camera port, and a second may be placed superiorly. The
location of the patient’s kidneys is shown for reference, and the superior
direction is indicated [73].

the speed of sound in different tissues. However, improvements in US imaging

technology have led to increased use in both diagnostic and guidance applications,

leading to a greater demand for reliable image segmentation strategies [62].

2.2.1 Segmentation of the Kidney in Ultrasound Images

Kidney segmentation in US is particularly difficult, and rarely performed in a clin-

ical setting. Traditional segmentation methods often fail due to the lack of strong

gradients or intensity clusters. Classification based on texture or speckle patterns

is also difficult because of the kidney’s heterogeneous appearance in US, but some

successful experiments have been reported.
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Xie et al. [89] presented a texture-based approach for 2-dimensional (2-D) kid-

ney images that uses an atlas shape model to generate an initial estimate. Textures

were extracted by filtering the image with a bank of Gabor filters. After manual

placement of the model as the initial segmenting curve, an energy-minimization

scheme was used to find an optimal segmentation. The energy function was de-

signed to partition the image into an inside region and an outside region, such that

the inside region had high texture similarity and low texture variance, while the

outside region had high texture variance. A training pattern was provided for the

texture of the inside region. The output had a mean distance of 1 mm from expert

manual segmentations, and it was observed that the algorithm was able to detect

the kidney boundary correctly even where it did not correspond to a large inten-

sity gradient. However, the algorithm is designed for 2-D segmentation problems

and takes 40 s to run for a single US slice. Furthermore, no comparison is made

with CT data and it appears that the output may be folowing the false inner edge

boundary.

Wu and Sun [87] developed a similar method to optimize texture similarity

within a segmented region, but used dynamic programming to optimize boundary

selection between regions instead of a global energy function. Local gradient in-

formation and smoothness were considered as well. In contrast to the previous

approach, the segmentation process was initialized with a simple ellipse. Segmen-

tation results compared favourably with expert manual segmentations, but again

the algorithm and experts appear to be following the incorrect boundary. These

segmentations may be useful for US-US registration, but they are unlikely to show

enough agreement with CT segmentations to allow reliable registration.

Kidney segmentation papers are less prevalent in the literature, so this section

will also consider some segmentation approaches for soft-tissue US images in re-

lated applications. Echocardiography is a somewhat different problem as the shape

and volume of the heart changes constantly with respect to time. Hence, a large

amount of research aims to make use of 2-D+T or 3-D+T datasets. US images

of the breast have been segmented for tumour detection, but this is quite different

from segmenting an organ in the abdomen. This is also true of vascular segmen-

tation in US, where the intensity difference across the vessel walls is greater that

than seen in soft-tissue images[63, 74].
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Prostate segmentation, however, is a fairly close analogue as it involves soft-

tissue segmentation. This field has the advantage of Trans-Rectal Ultrasound (TRUS)

imaging, which enables high-quality image acquisition due to the proximity of the

probe to the Region of Interest (ROI). Many techniques attack the problem by

segmenting a series of 2-D TRUS slices.

The success of TRUS imaging has allowed the use of some classical segmen-

tation techniques, including derivative edge detection, nonlinear filtering, neural

network-based pixel classification methods, and texture classification methods.

These methods are likely to fail with kidney images where we do not have the

benefit of TRUS imaging. More recent efforts have made use of shape or speckle

models to constrain the search. Successful strategies include edge detection by the

IMMPDAF, deformable surfaces using level sets, and discrete dynamic contours.

Local phase information has been suggested as a more robust indicator of structures

of interest, but no results are reported for kidney or prostate images [63, 74].

2.2.2 The Interacting Multiple-Model Probabilistic Data Association
Filter for Edge Detection

The IMMPDAF, described by Kirubarajan et al. [40], combines the IMM approach

to hypothesis merging for dynamic multiple model systems as introduced by Blom

and Bar-Shalom [14] with Probabilistic Data Association (PDA) [9]. In 2004, a

new version of the IMMPDAF was developed for medical image segmentation by

Abolmaesumi and Sirouspour using their previous work on a PDA edge filter [1, 2].

Badiei et al. used this result to develop a prostate segmentation method designed

for trans-rectal US images [6–8].

In this technique, a Kalman Filter (KF) is used to detect edges while consid-

ering both process noise that allows deviation from the predicted trajectory, and

measurement noise that allows deviation from the detected edges. Random signals

representing process and measurement noise are characterized by Q and R, their

respective covariances. The advantage of the IMMPDAF approach is that different

system models with distinct Q and R values can interact to ensure that, at any given

time, the detected edges are being processed by the model that is most likely to be

accurate.
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2.2.3 Level Set Methods

Level Set (LS) methods were originally proposed to model natural phenomena with

curvature-dependent speed, such as propagating flames and crystal growth [64], but

they have since been adapted for image segmentation [19] and implemented in a va-

riety of medical segmentation and registration algorithms [66, 82–84, 92]. Instead

of manipulating an explicit boundary model to obtain a segmentation, the bound-

ary is represented by the zero level of an signed-distance function, also known as

the implicit surface [22]. The implicit representation of the topology allows con-

tour splitting and merging to be handled naturally, contrary to parametric contour

models [47]. The signed-distance function varies with respect to time according to

an underlying flow and the curvature of the implicit surface [64].

Caselles et al. [19] built on the work of Osher and Sethian [64] to develop an

image segmentation strategy. The underlying flow was given as g(x) = 1
1+(∇Î)2 ,

where Î is the Gaussian-smoothed image. Thus, as the implicit surface expands

according to curvature, g acts as a stopping function that dimishes the speed of the

expansion around the desired edges. Malladi et al. [53] presented a similar strategy

that added a reinitialization step and a narrow-band extension option. Reinitializa-

tion is done to cope with discontinuties in the velocity map arising from the non-

differentiable distance function. The narrow-band option allows lazy extension of

the front by only updating the signed-distance function in the neighbourhood of

the zero level set. Exclusively updating a subset of the search space imposes a

hard limit on the maximum step size, however. Caselles et al. [20] later presented

Geodesic Active Contours (GAC) and proved that this was equivalent to solving

a special case of the classical snakes method for segmentation. The authors also

extended their geodesic model to handle 3-D segmentation.

LS methods have proven themselves useful in a number of segmentation prob-

lems, but they rely on distinguishable intensity groups for gradient filtering as

in [19] and derivative works, or an alternative boundary detection strategy. This

boundary detection step can be difficult in US images of the kidney.
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2.2.4 Discrete Dynamic Contours

Discrete Dynamic Contours (DDC) are similar to LS methods in that a boundary is

propagated according to some external potential energy function that depends on

image features while minimizing a curvature constraint. However, the surface is

explicitly represented as a discrete set of points connected by straight lines, and the

forces act only on the points. This method is effective but the authors note a strong

dependence on the extraction of useful image features [49].

2.2.5 Image Features from Local Phase Information

The Local Energy Model, presented by Morrone and Burr [58], proposes that line

and edge features are perceived at points of maximum ‘local energy’ where an im-

age’s Fourier components come into phase with each other. Most feature detection

methods search for points of high local energy, but Kovesi [41] showed the feasibil-

ity of feature localization by direct calculation of phase congruency, by extending

phase calculations to two dimensions and compensating for noise. Image phase

congruency has the advantage of being a dimensionless measure of image feature

significance that is invariant to illumination and magnification.

This approach was developed into a highly-localized, contrast-invariant edge

detection operator that accounts for phase congruency information in multiple ori-

entations using a covariance matrix [41, 42]. Phase information must be preserved

using linear-phase filters, and the author selected log Gabor filters to allow an ar-

bitrarily large bandwidth with a zero DC component in the even-symmetric filter.

The ratio κ/ω0 appears in the filter’s transfer function, where ω0 represents the

centre frequency of the filter. This ratio must be held constant for varying ω0 in

order to achieve constant shape over the set of filters.

Being a normalized measure, the phase filter must make some accommodation

for image noise to avoid false positives from local noise patterns coming into phase

by chance. A noise threshold is set at k standard deviations above the mean noise

energy, where k is generally set to a higher value for noisy images.

Phase information has since been tested experimentally for feature detection

in a variety of intermodal medical image registration applications including CT to

fluoroscopy [25], US to MR [56, 91], and MR T1 to MR T2 [56]. Hacihaliloglu
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et al. [33] used phase information to localize bone surfaces in intraoperative US

to guide orthopaedic applications without the use of ionizing radiation. It has also

been used effectively to detect boundaries in echocardiography [60, 75].

2.3 Image Registration
Image registration is the process of aligning source and target images that contain

complementary information in order to augment our understanding of the scene.

A number of review papers on both general image registration and medical image

registration are available [23, 36, 37, 52, 94]. Surface-based algorithms are covered

in more detail by Audette et al. [4].

Most image registration techniques involve the following four steps: feature

detection, feature matching, transform model estimation and image resampling/-

transformation. In intensity-based methods, all pixels in the image are considered

as features. Feature-based registration methods are well-suited to problems where

most of the information is concentrated in a small area of the image [94].

2.3.1 Feature-based Registration

In feature-based registration methods, accurate registration relies on the detection

of enough common features in the reference and sensed image. Thus, registration

and segmentation problems can be closely intertwined in many applications [52].

Image features include lines, points, regions and surfaces. Line features are often

acquired by edge detection methods such as Laplacian of Gaussian filters [54] or

the Canny approach [18]. Point features include corners, regions of maximum or

minimum local intensity, and local modulus maxima of the wavelet transform. The

detection of region features require some form of segmentation [94]. Surfaces are

commonly used in medical imaging applications as they tend to be more distinct

than landmarks [36]. Some user interaction is often incorporated into feature de-

tection in order to accurately reduce the search space, thus reducing computation

time and avoiding some large mismatches [52].

Features are matched according to spatial distribution, symbolic description or

correspondences in local intensity. Spatial distribution-based methods are useful

for the registration of detected shapes. One of the most-used approaches for regis-
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tering 3-D shapes is Iterative Closest Point (ICP) [13]. Symbolic descriptors, such

as SIFT [50, 51], can be used to develop fast matching methods based on descriptor

similarity [94].

2.3.2 Intensity-based Registration

Intensity-based registration methods often use correlation-like measures of image

intensity to evaluate an alignment. Ergo, they are sensitive to image intensity

changes and susceptible to nonspecific matching of smooth image regions. These

methods are also limited by fairly flat similarity curves and high computational

complexity [94]. Furthermore, they can be highly sensitive to a small set of pixels

that disagree strongly in intensity, so they may have trouble with slight changes in

shape between images or with the addition of unexpected artefacts [36]. Intensity-

based methods are however advantageous in that they do not rely on accurate fea-

ture detection and thus do not suffer from segmentation errors [78].

It can be advantageous to apply intensity-based methods to derived images

that highlight desired features. With this strategy, registration is no longer based

on raw image intensities but instead on the intensities of the derived image. For

example, a gradient filter can be applied to the images before registration, or the

image properties in the frequency domain may be considered using Fourier-based

methods. This can allow better time efficiency and robustness to noise [36, 94].

2.3.3 Transform Model Estimation and Image Resampling

After matching, the transformation between images is estimated using either a

global or local model. Global models include rigid, similarity and affine trans-

forms. Rigid transforms preserve the size and shape of the original image by al-

lowing only rotations and translations. Similarity transforms differ only by the

addition of a scaling factor, which permits a change in size. Affine transforms al-

low a separate scaling coefficient in each dimension, and can thus represent a wider

range of mappings. More complex transformations can also be modelled by poly-

nomial fitting. Local models, by contrast, estimate transformations for subdivisions

of the image separately in order to model local deformations. In an elastic registra-

tion strategy, image regions between matched features are stretched to fit. In some
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cases, the fluid model is used to smoothly handle local deformations [36, 94].

Image resampling and transformation are required to relate the images once

the mapping is determined [36, 94]. A fusion step will often follow registration, in

which the registered images are combined to produce a new image that integrates

the information from both acquisition steps [52].

2.3.4 Validating Registration Results

Registration accuracy is best estimated by Target Registration Error (TRE), by

comparing with results from another registration method, or by expert analysis.

TRE is calculated as the difference between corresponding point features in the

source and target images that were not used to estimate the transformation. These

features should be easily localized but separate from the criteria used to determine

the registration in order to avoid deceptively low results from overfitting. A gold

standard method is an accepted best registration method for a given application

that acts as a ground truth for comparison, but any alternate proven method will

do. Expert analysis of the registration results is another alternative but is usually

limited to a qualitative assessment of performance [36, 94].

2.3.5 Medical Image Registration

In medicine, image registration is often used to integrate multiview, multitemporal

or multimodal data in order to produce an augmented image. Multiview analy-

sis allows an expanded FOV or extension into another dimension. Multitemporal

analysis highlights the differences between images taken at different times, possi-

bly under different conditions. Different sensors can detect different kinds of in-

formation, and multimodal analysis aims to combine images from diverse sources.

Alternatively, it can be used to register a scene to a model for localization or com-

parison purposes. Specific applications include combining multimodal data, ob-

serving tumour progress, verifying the effects of treatment, comparing a patient to

an anatomical atlas, and surgical guidance [36, 94].

Some steps in medical registration problems can be performed by a calibrated

system without an image basis. For instance, hand-held US can be calibrated for

registration to an immobilized patient undergoing surgery, or CT or MR image
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acquisition. Likewise, robotic surgical tools are calibrated to have a known spatial

relation to the laparoscopic camera [52].

One common source of error in medical applications is patient motion during

image acquisition. Intensity distortion, where similar tissue appears with different

intensities in different parts of the image, can also occur in some modalities [36].

Deformable Registration

Deformable registration methods can be desirable in medical applications due to

the large number of factors that can unpredictably affect the observed anatomy.

Deformations can occur due to breathing, soft tissue displacement, patient position

or pathologic changes [78]. For example, the kidney was observed to move ap-

proximately 17 mm with respiration [76]. Deformable methods are also useful for

intersubject registration [36].

The use of Finite Element Models (FEMs) has become more prevalent as it

allows the structural properties of the anatomy to be incorporated into a biome-

chanical model. The anatomical structure of interest is represented as a surface

mesh where all point elements interact with their neighbours based on the elastic

properties of the tissue [4].

Multimodal Registration

The registration of images from different modalities is often desirable in medicine

as it allows information from different sources to be integrated in an augmented

image. Alternatively, it can be used to bring planning data into a known coordinate

frame to guide an intervention.

Feature-based methods are useful here, as reducing multimodal images to their

salient features may make them more similar. A priori information should be used

where possible to constrain feature detection, feature matching or the transform es-

timation [94]. Positron Emission Tomography (PET) and Single-Photon Emission

Computed Tomography (SPECT) imaging represent a particular set of challenges

for multimodal registration as they often exclusively target pathology and thus are

sparse in terms of useful markers to use for registration [78].

Multimodal registration by intensity-based methods can be performed by re-
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mapping the intensities of one or both images such that their intensity properties

are more similar. For example, one can map high intensities to low intensities in

CT images to make them resemble MR images, where bone appears dark instead

of light [36].

Nowadays, the leading technique for intensity-based methods is Mutual Infor-

mation (MI) [85], which comes from information theory. Information is commonly

measured in terms of Shannon-Weiner entropy, H [77]:

H =−
n

∑
i

pi log pi

where pi is the probability of symbol i. In MI, the validity of the alignment is

determined based on joint entropy measures, or the amount of information in the

combined image. If the two images are entirely unrelated, their joint entropy will

be the sum of the entropies of the individual images. By contrast, similar and

well-aligned images will have reduced information in their combined images as

they are less independent of each other. In essence, MI evaluates how well a given

mapping from source to target dataset allows prediction of local intensities in the

target image from corresponding intensities in the source image. Since the analysis

does not require a linear mapping of intensity values, this approach is well-suited

to handle multimodal registration problems [36, 94].

2.3.6 Optimization Strategies

All registration strategies consist of a problem statement, a registration paradigm

and an optimization method [52]. Optimization strategies for medical image reg-

istration problems are normally iterative methods, but some simpler problems can

be analyzed for a global optimum.

One issue with iterative optimization methods is that they are sensitive to local

minima. In some cases, this may be desired, as the global minimum of the cost

function may represent a nonsensical alignment. To avoid stopping at an incorrect

local minimum, some algorithms implement a multistart strategy, where the reg-

istration is optimized from several different starting positions in order to improve

the odds of locating the correct alignment. An alternate solution is multiresolution
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registration, where a coarse registration is performed first to target the general area

where the finer, high-resolution registration should be performed [36].

Iterative Closest Point

ICP involves alternating matching and transformation steps. Matching consists

of finding the nearest model point to each data point. Next, the data points are

transformed to minimize the error between corresponding points, usually by least

squares optimization. The point sets are then matched again, and this cycle con-

tinues until the alignment error reaches some threshold. Quaternions are used to

compute the final transformation. The reliance on closest points makes this algo-

rithm particularly sensitive to local minima [4, 13, 36, 93].

Evolutionary Strategies for Registration

While ICP is a valid registration tool [13, 93], it can be sensitive to local minima.

An Evolutionary Strategy (ES) may be more robust, as a population of attempts

undergo evaluation and selection is based only on a ranking of the population [34].

These strategies minimize an objective function through adaptation, which occurs

through repeated preferential selection of random mutations of the system state

[71]. In order to achieve faster convergence, modern ESs adapt the search parame-

ters (i.e. step size in a given dimension) to the search space with Mutative Strategy

parameter Control (MSC).

Covariance Matrix Adaptation (CMA) derandomizes MSC by analyzing the

covariance matrix of the mutation distribution, essentially performing Principle

Component Analysis (PCA) on previous mutation steps to determine the current

mutation distribution. CMA has proven effective as it preserves the robustness of

general ESs while improving performance [34]. Although CMA is a generic opti-

mization strategy, it can manipulate registration parameters to optimize alignment

if it is given an appropriate cost function.

Unscented Kalman Filter-based Registration

The Unscented Kalman Filter (UKF) is a variation of the Kalman filter used to

estimate the state of a non-linear system in the presence of Gaussian noise. A
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UKF-based registration algorithm was developed by Moghari and Abolmaesumi

[57] that determines the variance of the registration parameters during registration.

This algorithm performed better than ICP on datasets perturbed by Gaussian noise.

Furthermore, data points are iteratively added to consideration, so convergence

may be possible without considering the entire point set.

Coherent Point Drift

Coherent Point Drift (CPD), proposed by Myronenko and Song [61], approaches

registration as a probability density estimation problem. The moving point set is

represented by a set of Gaussian mixture model centroids that are moved coherently

to maximize likelihood while preserving the spatial relationship between point sets.

For nonrigid registration, this is accomplished by regularizing the displacement

field and determining the optimal transformation with variational calculus. CPD

also simultaneously determines point correspondences.

GPU-based techniques

Some modern image registration techniques make use of the highly parallelizable

Graphics Processing Unit (GPU), as it generally outperforms the CPU in terms

of maximum processing performance and memory bandwidth. GPUs are also

equipped with special hardware for linear interpolation operations. However, since

they are designed specifically for graphics operations, they are not equipped to

handle random memory accesses or double-precision arithmetic. Hence, registra-

tion algorithms may require significant redesigns when they are ported to graphics

hardware [30].

The optimization stage of registration is generally not a focus of GPU-based

research as it is poorly parallelizable. Deformable registration methods are an ex-

ception however, as there are many parameters that can be determined in parallel

[30].

2.4 Related Work
Intermodal registration techniques for US images did not develop as quickly as

those for other modalities. B-mode US images typically have a lower SNR and
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more artefacts than other modalities [67]. Generic surface-based registration tech-

niques can be used if both source and target images can be segmented, as shown

by Firle et al. [28]. However, clinical viability requires US segmentation to be

automatic, and reliable segmentation methods for US images of the kidney have

been elusive thus far (see Section 2.2). The inherent challenges of soft-tissue US

segmentation often make intensity-based registration methods a more appealing

option [10].

2.4.1 3-D MR to 3-D US Registration of the Brain

Roche et al. [72] developed a registration method for MR and US images of the

brain. A bivariate extension of the Correlation Ratio (CR) that considered both

MR intensity and gradient magnitude was used with Powell’s optimization scheme

to perform rigid registration in 3-D. Registration accuracy was on the order of MR

image resolution, but this result is not examined further here as brain images are

quite different than soft-tissue images of the abdomen.

2.4.2 3-D MR to 2.5-D US Registration of the Liver

Penney et al. [67] presented a method for registering 3-D pre-operative MR to

sparse (2.5-D), intra-operative US slices. The objective of this work was to use in-

formation from MR intra-operatively to guide needle placement during RF ablation

of liver metastases. Images representing the probability of finding a vascular struc-

ture at each voxel are derived from the MR and US images, and these vessel prob-

ability images are rigidly registered using a Normalized Cross-Correlation (NCC)-

based technique. Results showed an RMS error between 2.3 and 5.5 mm.

For each patient, 15 to 28 US images were acquired at maximum exhalation

using a tracked probe. Of these, 10 images were manually selected to best represent

the internal structure of the liver. Vessel probability maps were calculated based

on image intensity and the presence of sudden dips in intensity. In the MR images,

vessel probability was calculated based on intensity alone. MR voxels that fell

outside the liver were labelled as missing data and not used in the registration. The

authors hypothesize that their method would work equally well with pre-operative

CT images.
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2.4.3 3-D CT to 2.5-D US Registration of the Kidney

Leroy et al. [44, 45] built on the work cited above to develop a method to register

a pre-operative CT volume to a sparse set of tracked intraoperative US images

of the kidney with the goal of guiding Percutaneous Renal Puncture (PRP). This

group also performed a full guidance experiment using manual segmentation and

a tracked needle to demonstrate the feasibility of their clinical goals [59]. Surface-

to-surface registration with ICP resulted in average residual distances of 1 mm, 1.4

mm and 3.6◦ from the surface, centroid and axis, respectively.

The CT volume was preprocessed with a median blur and a bi-directional So-

bel gradient in order to highlight boundaries that would be significant in US. The

vessel probability approach used by Penney et al. [67] was rejected here as the

structure of the kidney parenchyma is less discernable than that of the liver, espe-

cially in US images.

US images were first processed with a sticks filter [24] in order to reduce

speckle. Next, shadows were detected as scan lines with high correlation where

the maximum acoustic interface occurs close to the probe. This information was

used to generate a mask to remove shadows from further consideration.

The initial attitude was determined by point-based registration of anatomical

landmarks manually chosen from the CT and US images. Next, a Powell-Brent

search strategy [68] was used to optimize the CR of the overlapped images. CR

measures the functional similarity between matched pixels. CR was selected over

MI here because it provided a smoother cost function, lower computational com-

plexity and better adaptability to the Powell-Brent search algorithm.

A single dataset was used, but different sets of 5 US slices out of the collected

100 were used in each trial. The ICP alignment based on manual segmentation was

used as a gold standard. Registration took 80 s on a 1.7 GHz processor. Error was

measured as the distance between the bronze standard CT mesh and the CT mesh

after applying the detected transform in terms of average distance between surface

points, surface centroids and angle of inclination of the principal axis. Out of 20

trials, all but 2 converged to between 1 mm and 6 mm error in the centroid, with an

average residual distance of 5.36 mm.
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2.4.4 Image-guided Laparoscopic Partial Nephrectomy with
Fluoroscopy

Baumhauer et al. [11] presented a workflow for image guidance during LPN, and

tested it in vitro. Their system incorporates preoperative planning with intraop-

erative imaging to provide the surgeon with an augmented endoscopic image that

highlights cancerous tissue and risk structures.

This approach was tested on porcine kidneys in a Minimally Invasive Surgery

(MIS) training unit. Agar nodules were used to represent tumours. In order to

account for motion due to breathing or surgical manipulation, custom navigation

aids were inserted into the phantom and tracked by a monocular endoscope. A

C-arm fluoroscopic imaging device was used to acquire a 3-D cone beam image

of the kidney and navigation aids. The navigation aids and kidney surface were

segmented semi-automatically from the intra-operative image and registered to the

pre-operative planning data using the method proposed by Benincasa et al. [12].

When 50% of the organ surface is covered by the cone beam scan, the registration

achieves an accuracy less than 0.5 mm. The aligned planning data also allows

virtual 3-D scenes to be generated from arbitrary perspectives.

After this initial registration, the navigation aids are tracked by the endoscopic

camera to continuously update the alignment. Each registration used 5 of the 7

implanted navigation aids while the remaining 2 were used for validation. Sev-

eral registration algorithms were used, with OrthIt producing the best Root Mean-

Square (RMS) target visualization error at 1.36 mm.

One limitation of this approach is the requirement that 4 navigation aids must

be visible to enable tracking. This could be solved by adding redundant aids or

with the use of a model estimation technique, such as a Kalman or particle filter.

An undesirable trait of this method is its reliance on fluoroscopic imaging, thus ex-

posing the patient and surgical team to harmful radiation. In vivo trials are planned

to further explore this approach.
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Chapter 3

Experiment Design

3.1 Data Acquisition
All US data was acquired with a Sonix RP machine and a 4DC7-3/40 handheld

probe from Ultrasonix Medical Corporation. The 4DC7-3/40 is a 3-7 MHz me-

chanical convex curvilinear probe that uses a motor to rotate the transducer array

around an axis in a casing. Thus, a 3-D volume is represented as a series of ap-

proximately 80 stacked 2-D slices obtained in one sweep of the motor. Adjacent

slices were separated by a motor angle, φ , of 0.7◦.

The pre-operative US data was taken with the patient in the flank position on

the CT table with the affected kidney up. An anterior-lateral approach was used

as this was seen to provide the best quality images. Depending on the size of the

patient, pillows or a foam wedge were placed under their waist in order to mimic

the surgical position on a breaking operating table. The patient was told to hold

their breath during acquisition of the US volume.

Next, the patient held their position on the table until the end of CT imaging,

also with held breath. The CT image was taken approximately 5 minutes after

the US volume. The technicians injected 90 cc of Optiray 350 at 2.7 cc/s prior

to CT imaging, but manual segmentation confirmed that this does not affect the

observed kidney shape or volume. Optiray 350 is a non-ionic, intravenous contrast

agent with an iodine concentration of 350 mg/mL. Lower-resolution CT images

were also take prior to contrast injection but these were not used as they were more
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difficult to segment.

For the intra-operative US data, a posterior-lateral approach was used as the

placement of the da Vinci R© surgical robot made patient access difficult for the ul-

trasonographer (see Figure 3.1). Breath-hold was imposed on the patient by the

anaesthetist to minimize movement during image acquisition. US volumes were

taken prior to sterilization, prior to insufflation, and regularly afterwards until kid-

ney mobilization introduced an air boundary that made further images useless.

Figure 3.1: Approximate patient position during surgery. The position of the
robot makes US image acquisition difficult for the ultrasonographer.
The patient holds a similar position in the pre-operative phase, but the
break in the table must be simulated by pillows on the CT table.

In both pre-op and intra-op US imaging, the imaging depth was set between 11

and 15 cm, depending on the patient. All slices were saved as unconverted scan-

lines for two or three sets of up to 10 volumes in order to maximize the likelihood

of obtaining a useful image.
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3.2 Data Preparation
Pre-operative CT images were anonymized and windowed for optimal soft-tissue

contrast. The affected kidney was then manually segmented by slice in the 2-D scan

plane using Stradwin and interpolated to obtain a 3-D mesh surface for guidance

[80, 81].

For the US data, the scanlines for an entire sweep were converted to correctly

spaced slices by Vol2Strad as described in Appendix A. Manual slicewise seg-

mentation and interpolation was performed in Stradwin to produce a 3-D surface

to act as a gold standard for validation [80, 81]. Every fourth slice of the kidney

volume is used by the algorithm for edge detection, thus the effective spacing is

2.8◦. The remaining slices are ignored to reduce runtime.

3.3 Experimental Setup
The scan-converted US slices and the segmented surface from the prior are loaded

into Matlab1. The operator is asked to select a set of at least twelve initialization

through a point-and-click Graphical User Interface (GUI) (see Figure 3.2). These

points are used to set the starting point for the registration using an ellipsoid method

(see Section 4.1).

Next, edge detection is performed on the US data with guidance from the initial

alignment. The detected edges are then used to improve the registration of the

segmented prior to the US data. No further input is required from the operator

after initialization point selection.

3.4 Validating Registration
Registration results are validated by comparing the amount of overlap between the

registered CT segmentation and the gold standard segmentation from US. The

success of a given registration can be measured in terms of percent volume error:

V.E.= 1− Vintersect

Vunion
(3.1)

1Matlab R© is a registered trademark of The MathWorks, Inc.
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Figure 3.2: Simple GUI for US navigation and initialization point selection.

where Vintersect is the volume of the intersection of the two segmented surfaces

and Vunion is the volume of their union. If the two surfaces are identical, their

intersection will be equal to their union and the percent volume error will be zero.

The relationship between volume error for a kidney segmentation and the set of

rigid transformation operations is shown in Figure 3.3.

Target Registration Error (TRE) is defined as the distance between homolo-

gous non-fiducial points after registration [29]. TRE is commonly used for vali-

dating registration, but the artefacts and noise in US data make it hard to locate

any anatomical point features both accurately and precisely. It might be possible to

detect manually inserted fiducial points more easily, but this level of invasiveness

is not permissable for pre-op procedures. Kingma et al. [39] proposed a validation

method that registers CT and US images taken in the same session using an exter-

nal standoff pad containing fiducial markers visible in both modalities. However,

this would not be useful for US images taken during surgery, and the average TRE

for kidney features was too high at 14 mm.

We can also validate the registration of two surfaces by comparing the location
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Figure 3.3: Volume error relationship with each DOF of rigid motion for a
kidney segmentation

of their centroids and the alignment of their principal axes. The centroid acts as a

strongly localizable point feature, and the principal axis alignment can be used to

estimate rotational errors. Mutual information could have been used as well but it

is harder to interpret the significance of this measure.
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Chapter 4

Methods

The approaches for solving this problem can usually be broken into three stages:

initialization, segmentation and registration (see Figure 4.1). Initialization accepts

a prior CT segmentation and a set of points from the user, and produces a rough

alignment of the CT segmentation to the US volume. These points are selected

manually by the user through a Matlab1 GUI developed for this purpose (see Fig-

ure 3.2). Segmentation uses the initial alignment to guide the detection of edge

features in the US images. The registration step aligns the prior segmentation to

the detected edge features, returning the transformation that relates the original CT

and US volumes.

Figure 4.1: Basic workflow for all approaches. The first two steps are from
initialization (Section 4.1) and common to all approaches. The third and
fourth steps represent the set of segmentation (Section 4.2) and registra-
tion (Section 4.3) methods, respectively.

Several different strategies were implemented for each stage of this algorithm,

1Matlab R© is a registered trademark of The MathWorks, Inc.
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and they were combined in a modular fashion to obtain a number of registration

approaches that can handle the same input. To avoid redundancy, components for

each stage of the algorithm are presented separately in Sections 4.1 to 4.3, and their

combination is described in Section 4.4.

4.1 Initial Registration of the Prior CT Segmentation to
the Initialization Points

The initialization process brings the prior CT segmentation into rough alignment

with the US data by registration with the initialization points (see Figure 4.2). A

method published by Li and Griffiths [48] is used to return the polynomial repre-

sentation of an ellipsoid fitted to the points. This polynomial has 10 parameters, so

there is a lower bound on the number of initialization points.

Figure 4.2: Overview of the initialization process

Major translations between the CT segmentation and the ellipsoid model of

the US data are corrected by superimposing their centroids. Next, the principal

axes of the two datasets are aligned by PCA. During this stage, knowledge of

the approximate orientation of the kidney in both modalities is used to ensure that
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corresponding faces are oriented in the same direction. The CT segmentation is

then registered to the initialization points by ICP.

4.2 Edge Detection and Segmentation Methods
In all cases, the intersection of the CT-segmented prior surface in each US scan

plane is used to guide edge detection. A linear interpolator generates a set of Nr

equiangular guide points from the polar coordinates of the points in the intersec-

tion. The origin for the polar coordinate system is at the centroid of the intersection

point set. Figure 4.3 shows the prior contour and search range for a single slice of

a typical patient.

Several of the edge detection methods below take a parameter, σ , that defined

the scale of features that should be detected by the filter. In early experiments,

we observed that a σ -value of five pixels effectively targeted the desired features.

In order to preserve compatibility across a variety of platforms, this value was

later redefined as a real-world length using the image density of three pixels per

millimetre as a conversion factor. Hence, σ= 1.67 mm in most cases.

Figure 4.3: A set of 120 guide points (yellow) generated from the intersection
of the prior with the US scan plane. The origin for interpolation is
located at the centre. The search range is contained by the cyan and
magenta lines.
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4.2.1 Canny Edge Detection

For Canny edge detection, all images are pre-processed with a 2-D Canny filter

with σ= 1.67 mm. Here, “Canny filter” refers to the Matlab2 edge function that

returns a binary image indicating the Canny edges in the input image. The binary

output is used as a mask over a gradient image generated using a 2-D gradient filter

with σ= 1.67 mm. Thus, Canny edges are assigned a range of magnitudes and can

be weighted appropriately in segmentation.

The steps in this edge detection approach can be seen in Figure 4.4. The Canny

filter and gradient filter images are both generated from the original image, and the

final output is derived by using the Canny filter’s binary output as a mask over the

gradient image. The final output intensities are shown on a log scale for ease of

viewing.

4.2.2 Edge Detection Using Phase Congruency

A phase filter obtained from Kovesi [41, 42] is applied to the US images (see

Section 2.2.5). Filter parameters were set empirically, using work by Hacihaliloglu

[32, 33] as a reference. The images are processed in 8 different orientations with

3 wavelet scales. The smallest wavelength is set to 5 mm, and successive filters

increased by a factor of 2.2. k was set to 7 to handle the inherently noisy US

images, and κ/ω0 was set to 0.4.

This filter normally detects edges by finding regions where phase congruency

covariance over all orientations is at a maximum, but here we extract the phase

congruency images for each orientation. We then perform a guided edge search,

traversing the prior contour and selecting the appropriate orientation image in order

to consider only edges that are roughly parallel to the prior segmentation and fall

within a 10-mm search range. At steps where no edges are found, weak edges are

placed by interpolating the path being followed around the prior contour. A sample

phase-filtered image is shown in Figure 4.5.

2Matlab R© is a registered trademark of The MathWorks, Inc.
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(a) original US image (b) Canny filter output

(c) gradient filter output (d) final output

Figure 4.4: Canny edge detection intermediates and output

4.2.3 Radial IMMPDAF for Edge Detection in Ultrasound

The approach taken to kidney segmentation here is similar to the prostate segmen-

tation method published in [1, 7, 8] and further described in [6]. The guide points

predicted from the CT segmentation are used to determine a 10-mm radial search

range in the neighbourhood of the prior. A star filter passes around the prior con-

tour and selects Nc candidate edge points of maximum radial gradient for each

angle θ . Each candidate for a given θ is recorded as a radius, rc, measured from a

central seed point (see Figure 4.6(a)). After applying a median filter of length 1.67
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(a) original US image (b) phase-filtered image

Figure 4.5: Comparison of kidney US images before and after phase-filtering

mm to the radial data, the gradient for each point p in the search range with polar

coordinates (r,θ) is calculated according to the following formula:

gradient(r,θ) =
h−1

∑
i=0

I(r+ i,θ)−
h

∑
i=1

I(r− i,θ) (4.1)

where I refers to the image intensity at the point in question and h is half of the

4-mm filter length expressed in pixels.

An adapted KF estimates xk, the system state at step k, based on the observed

edge intensities and the past output of the algorithm. In this application,

xk =

[
rk

ṙk

]
(4.2)

where r represents the radial distance of the predicted kidney boundary from the

seed point at each angle θ . This segmentation strategy uses a constant velocity

model, so if edges are scarce at step k, the KF estimates the new radius r(k) from

r(k−1) assuming the same rate of change in radius ṙ from step k−1. In relation

to traditional KF methods, the polar traversal of the guide contours is analogous to
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the passage of time. The KF state equations for this system are as follows:

x̂(k|k) = x̂(k|k−1)+W (k)[z(k)− ẑ(k|k−1)]

x̂(k|k−1) = F(k−1)x̂(k−1|k−1)

ẑ(k|k−1) = H(k)x̂(k|k−1) (4.3)

F(k−1) =

[
1 ∆θ

0 1

]
H(k) = [ 1 0 ]

where x̂(k|k) is the estimated state at step k given measurements up to step k,

x̂(k|k− 1) is the estimated state at step k given measurements up to step k− 1,

W (k) is the filter gain, z(k) is the measurement at step k, ẑ(k|k−1) is the predicted

measurement at step k given measurements up to step k−1, and F and H describe

our model of the system.

The measurement value z is determined at each step k using a PDA filter. z(k) is

given by a weighted average of the candidate radii based on the magnitude of their

gradients, g, and their radial distance from ẑ(k|k−1), the measurement prediction

from the previous step:

z(k) =
Nc

∑
i=1

pi(k)

∑
Nc
i=1 pi(k)

ri(k) (4.4)

where ri(k) is the candidate radius i for step k, and pi(k) is a Gaussian weight

function defined by:

pi(k) =
g2

i (k)√
2πS(k)

exp
(
−(ri(k)− ẑ(k|k−1))2

2S(k)

)
(4.5)

where S(k) is the innovation covariance [9]. Thus, the weighting function favours

points of high gradient that are close to the measurement prediction from step k−1.

The KF model incorporates process and measurement noise with covariances Q

and R, respectively. A model with low process noise and high measurement noise

is likely to default to the model prediction, resulting in smooth boundaries. In

contrast, large Q and small R corresponds to an edge-following model that implies

confidence in the image quality. The IMMPDAF allows two separate models with
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(a) radial IMMPDAF

(b) prior-guided IMMPDAF

Figure 4.6: Comparison between radial and prior-guided IMMPDAF. Here,
Nc = 5. In (a), all angles and distances are defined with respect to the
seed point and the prior contour is used only to set the search range. In
(b), the prior contour defines the search path orientation, the gradient
orientation, the search range, and the origin for all distance measure-
ments.

different Q and R values to interact, enabling the algorithm to adapt its estimation

strategy to handle various levels of image noise. The smooth model was designed

with Q = 10 and R = 20, and the edge-following model with Q = 105 and R = 20.

The transition probability from one model to the other was 25%.
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4.2.4 Prior-guided IMMPDAF

Some changes were made to the radial IMMPDAF to better deal with kidney im-

ages. The edge search was performed orthogonally to the prior contours with a

range of 20 mm. Furthermore, r values were measured with respect to the prior

contours instead of a central seed point (see Figure 4.6(b)). Thus, the motion of

the contour with respect to k can be anticipated to some degree, and the constant

velocity model will default to the shape of the prior contour instead of a circle.

The seed point is not used after the guide points are generated. A damping coeffi-

cient, c, was used for velocity propagation to prevent overshooting the boundary.

So instead of a truly constant velocity model, ṙ(k) is predicted to be cṙ(k− 1). F

as defined in Equation 4.3 is thus modified as shown in Equation 4.6. A damping

coefficient of 0.99 was used in this implementation.

F(k−1) =

[
1 ∆θ

0 c

]
(4.6)

The PDA calculation was altered as well to consider the direction of the or-

thogonal gradient. This allows the algorithm to target edges that separate inner

dark patches from outer light patches, or vice-versa.

4.2.5 IMMPDAF with Maximum Intensity Filter

This version of the IMMPDAF works much the same as the techniques described

in Sections 4.2.3 and 4.2.4, although it replaces the radial or orthogonal filter, re-

spectively, with a maximum intensity search. This is not useful for unprocessed US

images, but it allows edge intensities from Canny (Section 4.2.1) and phase con-

gruency (Section 4.2.2) filters to be weighted for use in the PDA. In cases where

no edges are found, a weak edge is assigned at r(k− 1) to support the prediction

by the model.

4.2.6 Discarding Canny Edges Far from Prior

While the IMMPDAF and phase congruency filter methods automatically discard

edges outside a search range, the Canny filter described in Section 4.2.1 keeps all

edges in the image. To discard edges that are unlikely to be useful in registration,
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we can traverse the prior contour and only keep those edges that fall within a 10-

mm orthogonal search range.

4.2.7 Level Sets and Geodesic Active Contours

Canny edges are detected and weighted in each slice as in Section 4.2.1. The high-

confidence initialization points are added as edge features. Next, the prior contour

is traversed with an orthogonal maximum intensity search, rejecting edges that fall

outside the 20-mm search range. Gaps in the edge contour are filled with weak

edges, placed by interpolating the path being followed around the prior contour.

Next, the edges are filtered with a 2-D Gaussian with σ=1.67 mm to create some

descent. This edge strength function is then used to generate the edge potential

stopping function g by applying Equation 4.7:

g =
1

1+∇Î′
(4.7)

where ∇Î′ is the edge strength function after edge interpolation and smoothing.

The derivation of this stopping function for a sample image is shown in Figure 4.7.

The edge potential stopping function, shown for a single US slice plane in Figure

4.7(d), decreases in value from one to zero in the neighbourhood of detected edges

in order to halt surface contraction or expansion.

The slice-based edge potential map must then be interpolated to make a 3-D

grid to serve as input to GAC [20]. Once the boundaries of the grid are defined,

the coordinates of each gridpoint with respect to image row, image column and

angle of motor elevation are determined to allow the grid to be populated by linear

interpolation of the edge potential slices. The volumetric edge potential stopping

function is shown in Figure 4.8 as a series of isosurfaces. The mesh representation

of the prior segmentation, obtained by interpolation of the manually-segmented CT

contours (see Section 3.2), is used to create a volumetric signed-distance function

φ0 that defines the segmented surface implicitly as its zero-level set. φ is then

allowed to evolve according to the GAC approach for 3-D surfaces defined by

Caselles et al. [21]. The evolution was run for 30 expansion intervals of length

dt=0.3 with the coefficient for advection in the normal direction, v, set to 0.01.

Then, evolution was run for 30 contraction intervals with v equal to -0.01. At each

37



(a) original US image (b) Canny edge detection (see Section 4.2.1)

(c) Gaussian-filtered interpolated edges in search
range

(d) edge potential stopping function

Figure 4.7: Derivation of edge potential stopping function for LS/GAC

interval, the new signed distance function was calculated using:

∂φ

∂ t
= |∇φ |div

(
g(Î′)

∇φ

|∇φ |

)
+ vg(Î′)|∇φ | (4.8)

where ∇φ is the gradient of the signed distance function and |∇φ | is its magnitude.

The first term minimizes the curvature of the zero-level set to favour smooth bound-

aries and attracts the zero-level set to edge potential minima, while the second term

performs expansion or contraction constrained by the edge potential stopping func-
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tion.

(a) isosurface at 0.1 (b) isosurface at 0.4

(c) isosurface at 0.7 (d) isosurface at 0.99

Figure 4.8: Volumetric edge potential stopping function for LS/GAC

Re-initialization is performed to ensure the signed distance function reflects

the current position of the moving front. φ is updated according to the following

equation:
∂φ

∂ t
= Sign(φ)|∇φ | (4.9)

where:

Sign(φ) =
φ√

φ 2 + |∇φ |

The signed distance function was re-initialized every 7 intervals, as well as at

the end of expansion and the end of contraction. After evolution, the registered

surface is obtained from the zero-level set of the deformed φ function.
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4.3 Registration Methods
Registration was performed using ICP, UKF, CMA and CPD strategies.

4.3.1 Iterative Closest Point

The ICP implementation used the L-BFGS [55] optimizer to find a rigid transfor-

mation between point sets. The general workings of the ICP function are covered

in Section 2.3.6.

4.3.2 Unscented Kalman Filter-based Registration

A UKF-based registration method proposed by Moghari and Abolmaesumi [57]

was used in some cases. The specific implementation is described in [69].

4.3.3 CMA-based Surface Registration

In order to reduce sensitivity to local minima, a CMA-based registration method

was developed to register the prior segmented surface to an edge representation

from US. Two approaches were taken to evaluate the quality of a given alignment,

but in either case, the problem was essentially the same. The initial transformation

vector was set to:

[ Rα Rβ Rγ tx ty tz ] = [ 0 0 0 0 0 0 ]

with initial standard deviations of 0.1 radians for the rotational terms and 2 mm for

the translational terms. CMA was then called to iteratively update the position of

the prior after the initial alignment (Section 4.1) with rotation about the prior cen-

troid and translation. Two major cost functions were used to guide the registration:

A. Point-Surface Distance of Candidate Edges

Intuitively, we might consider the 3-D Euclidean distance from candidate edge

points to some representation of the prior surface. However, point-point distances

between candidate edges and surface vertices can be misleading if the surface is

not densely populated by vertices. Thus, this cost function considers point-surface

distance for each candidate edge instead.
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Point-surface distance is calculated by rapidly finding the closest surface points

to all candidate point using a k-D tree [26, 31], then considering the distance be-

tween each candidate point and all faces that contain its nearest neighbour [27]. In

some special cases this may not be the shortest distance between the point and the

surface, but the shortest distance to the set of faces that contain the nearest surface

vertex should be a good approximation. The cost function to be minimized is:

C =
N

∑
i=1

gidi (4.10)

where N represents the total number of candidate points over all slices, and gi and

di represent the gradient and distance of point i, respectively. Thus, a given pose

during registration is highly penalized for strong edges that are far from the prior

surface.

In order to keep the same k-D tree for all function evaluations, transformations

are actually applied to the candidate edge points during iterative refinement. After

convergence, the transformation is redefined to map the prior segmentation to the

detected edges.

B. Slice-wise Intersection of Surface with Edge Strength Image

A slice-wise technique was later developed with the goal of making the evaluation

for a given pose faster and more comprehensive. Here, an edge strength image is

filtered with a Gaussian with σ=1.67 mm to scale edges with respect to distance

and create descent. The intersection of the repositioned prior surface with each US

scan plane is determined as described at the beginning of Section 4.2. The cost

function is then redefined as:

C =−
Ns

∑
j=1

Nr

∑
i=1

I′(xi,yi, j) (4.11)

where Ns is the total number of slices, Nr is the number of points in the interpolated

contour of the segmented prior, and I′(xi,yi, j) is the value of the edge image after

Gaussian smoothing at pixel i in slice j.
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4.3.4 Coherent Point Drift

A CPD implementation by Myronenko and Song [61] was used for nonrigid point

registration and determination of correspondences after segmentation by level sets

in the deformable registration approach. This method is further described in Sec-

tion 2.3.6.

4.4 Approaches
All approaches used the same initialization procedure described in Section 4.1.

In this section, each approach will be outlined with reference to implementation

details in Sections 4.2 and 4.3.

4.4.1 Radial IMMPDAF with ICP Registration

1. Initialization (Section 4.1)

2. Edge detection around prior contour using radial IMMPDAF (Section 4.2.3)

3. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

4. Perform steps 2 and 3 again to improve alignment

4.4.2 Radial IMMPDAF with UKF-based Registration

1. Initialization (Section 4.1)

2. Edge detection around prior contour using radial IMMPDAF (Section 4.2.3)

3. UKF-based registration of prior segmentation to edge contours (Section 4.3.2)

4. Perform steps 2 and 3 again to improve alignment

4.4.3 IMMPDAF with Canny Filter and ICP Registration

1. Initialization (Section 4.1)

2. Edge detection with Canny filter (Section 4.2.1)

42



3. Contour selection with IMMPDAF maximum intensity search (Section 4.2.5)

4. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

5. Perform steps 2 to 4 again to improve alignment

4.4.4 IMMPDAF with Directional Phase Filter and ICP Registration

1. Initialization (Section 4.1)

2. Edge detection with phase congruency filter (Section 4.2.2)

3. Contour selection with IMMPDAF maximum intensity search (Section 4.2.5)

4. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

5. Perform steps 2 and 4 again to improve alignment

4.4.5 Prior-guided IMMPDAF with ICP Registration

1. Initialization (Section 4.1)

2. Edge detection around prior contour using prior-guided IMMPDAF (Section

4.2.4)

3. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

4. Perform steps 2 and 3 again to improve alignment

4.4.6 Prior-guided IMMPDAF on Canny Edges with ICP
Registration

1. Initialization (Section 4.1)

2. Edge detection with Canny filter (Section 4.2.1)
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3. Boundary detection with prior-guided IMMPDAF (Section 4.2.4)

4. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

5. Perform steps 3 and 4 again to improve alignment

4.4.7 Prior-guided IMMPDAF on Directional Phase Edges with ICP
Registration

1. Initialization (Section 4.1)

2. Edge detection with phase congruency filter (Section 4.2.2)

3. Boundary detection with prior-guided IMMPDAF (Section 4.2.4)

4. ICP rigid registration of prior segmentation to edge contours in 3-D (Section

4.3.1)

5. Perform steps 3 and 4 again to improve alignment

4.4.8 CMA Point-Surface Registration with Radial Filter Edge
Candidates

1. Initialization (Section 4.1)

2. Detection of candidate edge points around prior contours with star filter from

Section 4.2.3

3. CMA point-surface registration to optimize alignment of prior segmentation

to candidate edge points in 3-D (Section 4.3.3A)

4.4.9 CMA Slice-wise Registration with Canny Edge Map

1. Initialization (Section 4.1)

2. Edge detection with Canny filter (Section 4.2.1)

3. Discard edges outside range of prior contours (Section 4.2.6)

44



4. CMA slice-wise registration to optimize alignment of prior segmentation to

edge strength images in 3-D (Section 4.3.3B)

4.4.10 CMA Slice-wise Registration with Phase Edge Map

1. Initialization (Section 4.1)

2. Edge detection with phase congruency filter (Section 4.2.2)

3. CMA slice-wise registration to optimize alignment of prior segmentation to

edge strength images in 3-D (Section 4.3.3B)

4.4.11 Deformable Registration with LS/GAC and Canny Filter
Edges

1. Initialization (Section 4.1)

2. Segmentation of US volume by LS/GAC methods using segmented prior as

starting point (Section 4.2.7)

(a) Canny edge detection

(b) Edge interpolation to generate edge potential stopping function in each

slice

(c) 3-D interpolation to produce volumetric stopping function

(d) LS evolution using GAC to update signed distance function

(e) Extraction of deformed surface from zero-level set

3. Use CPD to perform nonrigid registration of prior segmentation to US seg-

mentation (Section 4.3.4)
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Chapter 5

Results

5.1 Initialization
The initialization procedure described in Section 4.1 was run 50 times for each

patient with a variable number of user-selected points. With eight points or fewer,

the ellipsoid was poorly constrained and the initial alignment was outside the al-

gorithm’s capture range. Initialization was generally successful when nine points

were selected, resulting in a mean volume error of 27± 8%. The alignment im-

proved with larger initialization point sets, but we would like to minimize the re-

quirement for user interaction. Results are shown in Figure 5.1.

5.2 IMMPDAF Methods

5.2.1 Radial IMMPDAF

The radial IMMPDAF approaches showed little to no improvement regardless of

the edge detection or registration strategy (see Table 5.1). All implementations

except UKF registration showed high variability in volume error plots (see Fig-

ure 5.2). On average, the phase filter implementation worked the best out of this

group, but it also resulted in worse outcomes for a significant number of trials.

The radial IMMPDAF with UKF registration was unable to converge in all

cases, so the final volume error is near the starting point. This algorithm showed
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Figure 5.1: Percent volume error after initial alignment for different numbers
of initialization points

Approach Volume Error Ratio
Radial IMMPDAF 0.90 ± 0.19
Radial IMMPDAF with UKF 0.94 ± 0.18
Radial IMMPDAF with Canny Filter 0.85 ± 0.13
Radial IMMPDAF with Phase Filter 0.81 ± 0.15
Prior-guided IMMPDAF 0.80 ± 0.15
Prior-guided IMMPDAF on Canny Edges 0.84 ± 0.14
Prior-guided IMMPDAF on Phase Edges 0.80 ± 0.13

Table 5.1: Ratio of volume error after registration to volume error at initial
alignment for radial and prior-guided IMMPDAF methods

modest improvements for poorly initialized volumes but essentially no improve-

ment where initialization was good (see Figure 5.2).

5.2.2 Prior-guided IMMPDAF

While the prior-guided IMMPDAF approaches also show fairly high variability,

the mean outcomes are better (see Table 5.1). The gains were least impressive

when the filter was applied to Canny images, but good for phase images and direct

application to US images. Prior-guided IMMPDAF on phase images performed the

best overall, as volume error improved in almost all cases. Volume error plots for
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(a) Radial IMMPDAF (b) Radial IMMPDAF with UKF

(c) Radial IMMPDAF with Canny filter (d) Radial IMMPDAF with phase filter

Figure 5.2: Volume error after registration vs. volume error after initial align-
ment for radial IMMPDAF methods

these approaches are shown in Figure 5.3, and patient-specific results are available

in Appendix C.

We also considered the distance of the surface centre of gravity or centroid

before and after registration. The initial error should not be large if the initialization

points are selected well, but we still expect to see some improvement. Results are

shown in Figure 5.4.
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(a) Prior-guided IMMPDAF (b) Prior-guided IMMPDAF on Canny edges

(c) Prior-guided IMMPDAF on phase edges

Figure 5.3: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF methods

5.3 CMA Methods
The point-surface CMA approach was only tested with radial filter edges due to its

poor performance. Convergence took over thirty minutes and resulted in little to

no improvement in the alignment. The slice-based algorithm worked faster but it

was highly variable and often led to much worse outcomes. Results are shown in

Table 5.2 and Figure 5.5.
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(a) Prior-guided IMMPDAF (b) Prior-guided IMMPDAF on Canny edges

(c) Prior-guided IMMPDAF on phase edges

Figure 5.4: Surface centroid error after registration vs. surface centroid error
after initial alignment for prior-guided IMMPDAF methods. Centroid
error is measured in mm.

5.4 Deformable LS/GAC-based Approach
The deformable registration approach described in this paper did not show signif-

icant benefits, as the mean volume error ratio was 0.98 ± 0.07. The error plot in

Figure 5.5(d) shows that there was little change in all cases.
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Approach Volume Error Ratio
Point-surface CMA with Radial Filter Edges 0.89 ± 0.10
Slice-based CMA with Canny Edge Map 1.31 ± 0.45
Slice-based CMA with Phase Edge Map 1.20 ± 0.46

Table 5.2: Ratio of volume error after registration to volume error at initial
alignment for point-surface and slice-based CMA methods

(a) CMA with radial filter edge candidates (b) CMA with Canny edge images

(c) CMA with phase edge images (d) deformable LS/GAC-based approach

Figure 5.5: Volume error after registration vs. volume error after initial align-
ment for CMA methods and deformable LS/GAC-based approach
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5.5 Intraoperative US Data
After the success of the prior-guided IMMPDAF methods, we decided to test the

registration on intraoperative US data. In many cases, the quality of kidney images

was too poor to segment due to the ultrasonographer’s limited access to the patient

or special surgical conditions such as pneumoperitoneum. There were also some

patient datasets that were missing either pre-operative of intra-operative data due to

logistical reasons. Thus, only one intra-operative patient dataset is examined here.

The algorithm performed well (see volume error in Figure 5.6 and surface centroid

error in Figure 5.7), but more datasets are needed to confirm this result.
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(a) Prior-guided IMMPDAF (b) Prior-guided IMMPDAF on Canny edges

(c) Prior-guided IMMPDAF on phase edges

Figure 5.6: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF methods on Patient 5 intra-operative
data
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(a) Prior-guided IMMPDAF (b) Prior-guided IMMPDAF on Canny edges

(c) Prior-guided IMMPDAF on phase edges

Figure 5.7: Surface centroid error after registration vs. surface centroid error
after initial alignment for prior-guided IMMPDAF methods on Patient
5 intra-operative data. Centroid error is measured in mm.
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Chapter 6

Discussion

6.1 Understanding the Ultrasound Images
The challenges of US segmentation have already been discussed (Section 2.2), but

it should be stressed that this is not a typical image analysis problem. US images

indicate the strength of echoes at different distances from the probe, where the

strongest echoes occur at interfaces between different tissues. Thus, the detected

image in some ways indicates anatomical gradients as opposed to anatomical struc-

tures. The aptitude for interface detection combined with the heterogeneity of in-

dividual tissues leads us to choose edge detection over pixel classification as our

preferred segmentation method.

6.1.1 Anatomical Significance of Visible Edges

Large volume differences between early manual segmentations of the CT and US

data suggested that different anatomical edges may be visible in the two modal-

ities (see Table 6.1). In actuality, the strongest edges in US do not represent the

true kidney boundary, and the desired edges are quite faint (see Figure 6.1). This

poses a problem as traditional methods of edge detection, such as Canny and other

gradient-based methods, tend to select the stronger edges when presented with

these images.

The desired boundary separates the kidney capsule, which covers the renal

parenchyma, from the perirenal fat. Since the nature of US images is to show tissue
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Patient Strong Edge Volume Ratio True Edge Volume Ratio
3 0.73 1.04
4 0.75 0.96
5 0.83 0.97
6 0.87 1.02
8 0.73 1.08

Table 6.1: Volume ratios between manual segmentations of US and CT data
for each patient. The second column shows that segmentations following
the strong US edges typically underestimate the volume seen in CT. The
third column shows that segmentations that use the true US edges agree
with the CT segmentations in volume.

interfaces with high intensity, the fat-capsule and capsule-parenchyma interfaces

appear together as a wide echo. Gradient-based search methods typically see the

inside of this band, when it is really the leading edge of the band that indicates the

kidney’s outer boundary.

On the concave side of the kidney, US beams pass through the interfaces in the

reverse order. Without a definitive leading edge to rely on, gold standard segmen-

tations may be more prone to errors in this region.

The magnitude of the gradient edge discrepencies appears to vary with the

orientation of the kidney edges with respect to the direction of US beam travel.

The smallest error between the strong, “expected” contour and the true boundary

occurs at the top of the image, where the kidney boundary is approximately parallel

to the direction of beam travel and echoes are strong. On either side of this region,

the error increases as the kidney boundary becomes more parallel with the US

beams.

We tried detecting the strong edges and predicting the location of the true edges

from this approximate contour, but no consistent relationship between inner and

outer edges was found. However, reducing the size of the CT prior by 5% allowed

resonable guidance at the strong edges detection stage.

6.1.2 Segmenting the Tumour

In all cases, the tumour boundary was even more difficult to segment in US images

than the kidney itself. Even when the tumour is visible in US, it shows poor cor-
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(a) unsegmented (b) strong edges

(c) true boundary

Figure 6.1: Kidney boundaries in US

respondence with the boundaries seen in CT. In addition, having extra folds in the

segmentation increases the complexity of the surface and produces incorrect local

minima for registration. For these reasons, the tumour was only segmented with

the kidney for patients 6 and 11, where it made up an integral part of the kidney

structure.
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6.1.3 Treatment of US data

In early efforts, the US data was interpolated in three dimensions to create an

isotropic volumetric dataset. These voxels could then be easily resliced in along

the x-, y- or z-axis for segmentation. However, interpolating the volume between

slices greatly reduced the image quality, as the 0.7◦ slice spacing was significantly

larger than the axial and lateral resolution.

We considered using longitudinal slices to ensure that all slices are approxi-

mately perpendicular to the kidney surface at their intersection. We later rejected

this approach when we decided that the original scan planes should be used in

analysis to maximize resolution. Furthermore, it is unclear whether the boundary

would be easier to detect with longitudinal slices, as the direction of travel of the

US beams will be unchanged.

6.2 Initialization
Unconstrained rigid registration problems essentially require global optimization,

as convexity occurs only in close proximity to the solution [10]. Optimizing the

CT-US alignment over the entire search space is not computationally feasible, so

we require the user to select a small set of initialization points. The bulk of the

work is still done computationally, however.

We use the ellipsoid fitting method proposed by Li and Griffiths [48] to gener-

ate a model from the intialization points because it provides a closed-form solution

to fitting that is robust to small errors. Although the ellipsoidal model is a sim-

plistic approximation of the kidney shape, it appears to be a reasonable starting

point. Using two overlapping ellipsoids might allow a better representation of the

kidney’s asymmetry and concave region, but this does not appear to be necessary.

The ellipsoid model is replaced in the next step by a prior CT segmentation.

Originally, the PCA alignment of the prior segmentation to the ellipsoid model

was followed by point-based registration of the CT segmentation to the points mak-

ing up the ellipsoid. Discarding the high-confidence, user-selected points in this

fashion leaves the first edge detection step with two unreliable models: the US

edges and the ellipsoid alignment. Instead, we register the CT segmentation to the

user-selected initialization points after PCA registration. These points are used di-
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rectly because they indicate areas where the user is confident in their judgement of

the kidney’s boundary.

UKF-based registration was considered as an alternative to ICP for the initial

alignment of the manual CT segmentation to the user-selected initialization points.

However, the UKF algorithm gets stuck in an infinite loop because the limited

number of points cannot specify a solution unambiguously.

The ICP step originally used the prior segmentation as the moving point set

and the initialization points as the fixed set, as it is more intuitive to consider the

CT surface moving towards the points on the US boundary. However, ICP is faster

and less prone to local minima when the moving point set is small. Thus, ICP is

now used to determine the transformation from the initialization points to the rough

PCA registration of the CT segmentation as the latter is over an order of magnitude

larger in number than the former. The calculated transformation is then inverted

before proceeding.

The results in Section 5.1 show that the initial registration step leads to an initial

volume error of 27± 8% when nine initialization points are selected. This rough

alignment should be adequate to place the CT-segmented prior into the capture

range for automatic segmentation and registration.

6.3 Edge Detection Filters

6.3.1 Canny Edge Filter

The Canny filter in Matlab1 detects a lot of noise when sigma is low enough to

detect all kidney contours. Furthermore, the output condenses edge features to

narrow lines, thus ignoring some of the subtle edges that are important in soft

tissue US images. Thus far, the low and high edge thresholds have been determined

automatically, but manual adjustment of these thresholds is unlikely to make the

filter target the true, weaker edges.

Radial or prior-guided search of the filtered images was used to constrain the

set of detected edges to those in the neighbourhood of the guide contours. There

were cases where candidate edges could not be found at some steps. This issue

1Matlab R© is a registered trademark of The MathWorks, Inc.
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was first dealt with by reducing the amount of Gaussian blurring, but this led to the

detection of many noisy edges. This technique was later refined by accepting the

measurement from the previous step in cases where no edges are found.

There were also difficulties when too many candidate edges were found in

some radial or prior-guided searches. In order to retain the best edges for consid-

eration, the binary Canny detector output was used as a mask over the Laplacian

of the Gaussian of the original image, as illustrated in Figure 4.4. The resulting

Canny edges thus had intensities corresponding to the magnitude of their gradi-

ents, allowing them to be sorted in a meaningful way.

Although there is no explicit measure of edge directionality in the Canny out-

put, the KF in IMMPDAF methods should reject most edges that are perpendicular

to the kidney surface. Initial testing of 2-D edge detection on kidney US images

gave promising results for phantom data, but the kidney contour was more difficult

to distinguish from other edges in patient data. In CMA and LS/GAC methods,

the orientation of the edges is not directly considered, so these approaches may be

susceptible to false minima around edges with the wrong orientation.

6.3.2 Phase Congruency Filter

The phase congruency filter was very effective in detecting salient features on the

kidney boundary, but it also detected some other features arising from noise or

image artefacts. Thus, approaches that were better able to differentiate the desired

edges from the background performed well with phase congruency images while

others did not. Figure 6.2 shows the phase congruency image in relation to the true

kidney boundary from manual segmentation.

6.4 Radial IMMPDAF
The radial filter works well when the 2-D shape to be segmented is approximately

circular, as is the case with prostate data. Unfortunately, this does not hold true for

kidney images.

The shape of the kidney also limits the effectiveness of the ellipsoid model.

Originally, the ellipsoid contours were used to guide the first segmentation. How-

ever, the ellipsoid is only useful as a rough approximation of kidney shape, so
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(a) unsegmented (b) true boundary

(c) phase edges

Figure 6.2: Correspondence between phase edges and true kidney boundary:
the outside edge of the bands detected by the phase filter shows good
agreement with the desired contours.

contours from the prior CT segmentation are now used to guide each edge detec-

tion step. We considered using the ellipsoid as one model for IMMPDAF and CT

as the other, but the CT contours provide better information in most cases.
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6.4.1 Performance

The first kidney phantom results, discussed in Appendix B, showed that the edge

detection filter was too biased towards smooth curves, as it was overshooting some

of the sharper turns in the boundary. Some experimentation with parameter setting

eventually led to somewhat better results.

However, it can be seen in Section 5.2.1 that radial IMMPDAF is not effective

for edge selection in this problem. The constant velocity assumption with radial

measurements is better applied to more circular targets and thus is not a good strat-

egy for segmenting the kidney. Since we are already making use of a segmented

prior, the model should be improved to integrate this information.

6.5 Prior-guided IMMPDAF
The prior-guided IMMPDAF was designed to make up for some of the shortcom-

ings of the radial method. Primarily, it replaces the flawed model of the kidney as

a circle with actual knowledge of the kidney shape from the prior CT segmenta-

tion. The IMMPDAF mechanism is essentially the same, however we consider the

orthogonal distance from the prior contour instead of the radial distance from the

contour centre.

6.5.1 Velocity damping

In initial results, the output contours were less smooth than ideal because the con-

stant velocity model causes any deviation from the model to be amplified in sub-

sequent steps. Increasing the reliance on the model by adjusting either the noise

covariances or the edge weights only led to correct edges being ignored.

Rather than require the filter to stay close to the model, we can modify the

model to assume the velocity ṙ(k) will be of slightly smaller magnitude than that

in the previous step. Thus, if r(k) is somewhat greater than r(k−1), we reject the

assumption that r continues to increase at the same rate ṙ(k) until proven otherwise.

Instead, we propagate ṙ by multiplying by a damping coefficient. Trial and error

suggests that a factor of 0.99 adequately reduces noise without preventing the filter

from responding to detected edges (Figure 6.3).
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(a) No damping (ṙ(k) = ṙ(k−1)) (b) Damping coefficient of 0.9 (ṙ(k) = 0.9ṙ(k−
1))

Figure 6.3: Kidney contours for patient segmentation trials performed with
and without velocity damping. The yellow line represents the guide
contour (segmented prior), the red line represents the output and the
green line represents the gold standard (true kidney boundary).

6.5.2 Directional edge filtering

One simple benefit of the prior-guided approach over the radial IMMPDAF is that

edge searching is performed orthogonally. An orthogonal edge search more ac-

curately targets edges parallel to the kidney boundary compared to radial edge

searching. Furthermore, the effective search range reflects the provided parameters

more accurately and consistently as it is measured orthogonal to the prior kidney

boundary.

We can also exploit the consistent orientation of step edges separating areas

of different intensities. The most reliably detected edges in kidney images are

located at the interface of the dark region inside the kidney and the bright boundary

that surrounds it, slightly inside of the true kidney boundary. Thus, by enforcing

that edge candidates are oriented with the lower-intensity region on the inside,

strong edges with the opposite orientation are easily eliminated. Increasing the

filter selectivity in this way produced better results with patient data and increased

filter robustness when dealing with a larger search range (Figure 6.4).
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(a) Ignoring directional information (b) Enforcing correct edge orientation

Figure 6.4: Kidney contours for trials performed on patient 3 with and with-
out directional selectivity. The yellow line represents the guide contour
(segmented prior), the red line represents the output and the green line
represents the gold standard (true kidney boundary).

6.5.3 Registration Based on Inner Edges

Before knowing how to detect the true kidney boundary in US, we attempted to

align the prior segmentation to the detected inner edges, relying on the strong cor-

respondence between the manual CT and US segmentations. It may be possible

to identify the true edges based on the location of the stronger inner edges, or to

perform kidney registration based on the inner edges alone. For example, the prior

surface can be scaled down by 5% to guide inner edge detection, and returned to its

original scale after registration. This works to some degree but it is not as accurate

as detecting the true kidney boundary.

The unrefined edges are noisy, so thresholding based on distance from probe

or the edge intensity near the reported contour point was tried to eliminate false

candidates. Removing weak edges improved the outcome only slightly, and the

distance from the probe turned out to be an unreliable measure of confidence in

different datasets. ICP, rigid CPD and point-surface CMA optimization all failed

to improve the initial alignment with these edges. In the end it was decided that
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that even weak contour points from the prior-guided IMMPDAF are useful in reg-

istration as the filter is designed to make the best possible prediction based on the

available edge information and the model.

6.5.4 Canny Edge Maps

In all other methods, the quality of detected edge candidates improved with the use

of a Canny filter instead of the star filter. However, the prior-guided IMMPDAF

had its worst performance when applied to Canny edge maps. Segmentation results

from Canny edges may be improved when the prior is used as the model, but with

Canny images the filter cannot take advantage of edge direction information.

6.5.5 Phase Congruency Images

Applying the prior-guided IMMPDAF to phase congruency images worked espe-

cially well. Phase-processing produces high-intensity bands around parts of the

kidney contour, and the outside of these bands roughly corresponds to the true kid-

ney edges, as seen in Figure 6.2. Thus, IMMPDAF can pick up the desired edges

with directional filtering by traversing the phase congruency image along the prior

contour and searching for light-to-dark images going from inside to outside.

Since the boundary of the US image is identified as a strong feature by the

phase congruency filter, it became necessary to explicitly track the image bound-

ary and ignore images in close proximity. This was added to the prior-guided

IMMPDAF code in response to some cases where the surface would migrate to the

edge of the image.

6.5.6 Performance

The prior-guided IMMPDAF performed the best out of all examined methods, es-

pecially when using phase congruency images (see Figure 5.3). Phase-filtering is

the slowest step in the algorithm at approximately four seconds per slice, but it may

be possible to reduce this time by optimizing the phase filtering code for speed.

The centroid error was reduced in the vast majority of cases (see Figure 5.4),

but since this is a segmentation-dependent measure, it does not accurately represent

the confidence of the registration in a clinical sense. We can also consider the
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distribution of errors over the kidney surface. It can be seen from the surface error

plots in Figures C.7 and C.8 that a large amount of the alignment error occurs on

the concave side of the kidney. This surface is poorly defined, so we might be

underestimating the quality of the registration. Alternate error measures would be

useful to determine whether this is true.

It is difficult to evaluate the effectiveness of this algorithm on intra-operative

data since only one patient set was examined. Although intra-operative images are,

in theory, no more difficult to process than pre-operative images, this is not the case

in practise. During surgery, the ultrasonographer’s access to the patient is limited

so it is difficult to obtain optimal images.

Furthermore, slight changes in patient position or physiology between the pre-

operative data acquisition phase and the surgical procedure can invalidate the as-

sumption that the CT to US transformation is rigid. Nonrigidity also reduces the

correctness of the prior-guidance model. This algorithm is likely to show better

performance for intra-operative datasets if it is extended to find a nonrigid registra-

tion.

6.6 Deformable LS/GAC-based Approach
This image segmentation approach has been proven to work well for some prob-

lems, but its effectiveness is dependent on the edge detection method used. Here,

edges were detected with the Canny method described in Section 4.2.1, which has

some shortcomings for kidney US data (see Section 6.3.1).

Besides the edge detection approach, there are more sophisticated LS evolution

methods available that may improve the accuracy of the surface propagation. The

practice of re-initialization of the signed distance function has been criticized for

its lack of theoretical basis and for causing unexpected repositioning of the zero-

level set. Li et al. [46] presented a LS evolution strategy that uses an extra energy

term to control deviation from the signed distance function, thus eliminating the

need to re-initialize.

It is difficult to evaluate the performance of this LS/GAC implementation since

we now know that it was likely misguided by the Canny filter used for edge detec-

tion. Regardless, the deformable approach to segmentation described here was not
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successful.

6.7 Registration Methods

6.7.1 Iterative Closest Point

Despite its susceptibility to local minima, ICP is a common approach to 3-D point

cloud registration problems. It was used as the default registration method in our

research and compared with other strategies.

Shape Differences

ICP can be sensitive to differences in shape between US and CT segmentations.

The kidney vasculature on the concave side makes this surface poorly defined in

US and CT, thus leading to potential shape differences. In these cases, rigid ICP

registration led to some misalignments that compensated for the disagreement be-

tween segmentations on the concave side.

One proposed solution was to use only the convex part of the kidney for regis-

tration, or to use a convex hull representation of the kidney surface. The problem

with this approach is that a significant amount of shape information is discarded.

Furthermore, the result of ICP alignment would depend heavily on the set of points

that was selected to represent the convex part of the kidney. Poor correspondence

between the sectors identified as convex could result in large rotational errors. The

mismatches were eventually corrected by adjusting the manual segmentation strat-

egy to assume minimum concavity.

Performance

ICP was the most reliable registration method used in this study, possibly because

of its narrow search range and sensitivity to local minima. A lot of case-specific in-

formation is incorporated in the initial alignment from the original scan orientations

and the initialization points, so it is appropriate to limit the search range to some

degree. US artefacts tend to create false feature positives that can mislead registra-

tion algorithms that are not anchored as tightly. Thus, ICP was a good strategy to

incrementally improve the alignment, provided that kidney features were detected
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accurately.

6.7.2 UKF-based Registration

We expected UKF-based registration to perform better than ICP as it excludes out-

liers. However, in testing it was seen that the kidney’s approximate symmetry in

some directions made the alignment a difficult problem. In all cases, the algo-

rithm’s error metric fluctuated about the initial value without converging until the

maximum number of iterations was reached. Thus, convergence did not occur with

UKF registration using the original parameters set by Moghari and Abolmaesumi

[57]. Further experimentation is required to determine the parameters for this spe-

cific application.

6.7.3 Covariance Matrix Adaptation

CMA registration strategies were considered for their robustness to local minima.

The first cost function presented here is based on point-surface distances of the

edge candidate points to the aligned surface. This method was rejected because it

did not have a smooth descent to the desired minimum. The poor behaviour of the

cost function is likely due to the fact that only the strongest candidate edges were

considered in the registration, thus weaker edges were ignored. This approach

was also slow as it had to iterate through point-surface distance calculations for all

candidate edge points for each cost function evaluation. However, this registration

algorithm produced modest improvements in alignment on average.

The slice-based version of the CMA approach was faster and more complete in

its evaluation of edges, but registration was frequently unstable. Instead of align-

ing itself with the desired edge points, the prior segmentation would migrate to

the greatest concentration of bright edges in the US volume, whether they made

a kidney shape or not. Due to this instability, the slice-based CMA approaches

examined in this report made the alignment worse on average.

In order to enforce the correct kidney shape in the detected edges, we consid-

ered using a modified cost function with a Difference-Of-Gaussian (DoG) filter or-

thogonal to the boundary of the segmented prior. This filter was used by Lowe [51]

to approximate a Laplacian of Gaussian operator. The motivation for this selection
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was that, when properly oriented, the negative tails would decrease the appeal of

randomly-oriented bright spots, instead favouring a bright kidney boundary on a

dark background. This technique might work well with a good initial alignment if

the desired edges are visible, but this is seldom the case and the negative tails of

the DoG filter prevent a smooth descent.

6.7.4 Other Registration Options

A volume-minimizing registration was also considered to bring the prior segmen-

tation into alignment with the detected edges. However, the demanding compu-

tational requirements for determining the percent of the volumes of two 3-D seg-

mentations that overlaps make this approach much slower than ICP or any of the

other registration methods considered.
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Chapter 7

Conclusions

LPN is a challenging surgical procedure for tumour excision that could benefit

from advanced image guidance techniques. Since practical intraoperative imag-

ing modalities are generally harmful (fluoroscopy) or prone to artefacts and noise

(US), we would like to bring pre-operative CT data into an intra-operative coordi-

nate system. Incorporating pre-operative data would also allow the integration of

surgical planning data. We choose to register the CT data to intraoperative back

US because it is safe, real-time and inexpensive.

This thesis presents a semi-automatic approach to this registration problem,

using edge features common to US and CT images of the kidney. The proposed

algorithm effectively performs a full segmentation of the kidney in US in order

to determine a target surface for registration of the CT. Numerous segmentation

and registration techniques were explored and tested on images from nephrectomy

patients.

Over the course of this work, we learned that the true boundary of the kidney

capsule is not detected well by common edge detection filters. However, phase

congruency filters were able to detect the structures of interest. A specialized

IMMPDAF was then used to isolate the boundaries to complete the segmentation.

We conclude that applying the prior-guided IMMPDAF to phase-filtered kidney

images in US produces an effective segmentation for feature-based registration.

ICP showed the best performance out of the registration methods examined. The

results of a small intra-operative registration experiment cannot confirm whether
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the assumption of rigidity is valid for intra-operative data.

We now revisit the contributions outlined in the introduction:

• A joint segmentation and registration algorithm designed to bring a pre-

operative plan into alignment with intra-operative back US during LPN.

• A rough clinical workflow, from initialization to registration, that could be

incorporated into medical user interfaces and intraoperative visualization

tools.

• Trials with eight patient datasets to evaluate the effectiveness of this algo-

rithm on clinical data.

• New insight into kidney segmentation in US images that conflicts with some

segmentation papers but agrees with the kidney shape and volume seen in

CT.

• An extension of the IMMPDAF used for prostate segmentation that makes

use of an a priori model along with other domain-specific information to

create a specialized kidney segmentation approach.

• The application of a phase congruency filter to kidney images and an evalu-

ation of its performance.

• An exploration of other popular edge detection and registration techniques

in the context of the kidney registration problem for LPN.

7.1 Future Work

7.1.1 Improving the Interface

A more elaborate point-selection GUI with arbitray reslicing and contour plotting

in linked 2-D and 3-D views was proposed to replace the existing interface. For

example, three windows could show the US slice, the CT segmentation and the US-

CT alignment at that slice. The initial alignment could even be computed on-the-fly

as point selection occurs. This would indicate to the operator when a successful

initial alignment has been achieved and makes initial misalignments more apparent.
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After registration, some confidence measure of the registration could be pro-

vided to tell the operator how much they can trust the result. For example, we could

use a confidence measure based on the distance of the initialization points from the

registered surface, as these points are not used beyond the initial alignment step.

7.1.2 Extending the IMMPDAF

One of the limitations of the IMM-PDA/Kalman filter is that it only accounts for

“past” information during traversal of the data, when in fact all the information

is available. If the edges rankings were pre-computed for all steps, we could in-

corporate “future” edge information in our measurement value by including these

edge candidates in the PDA step at a reduced weight. Implementing a small looka-

head may help bridge the gap smoothly between strong edge candidates that are

separated by several steps.

If all edges are pre-computed, we can go beyond a simple lookahead for each

slice. The PDA step could include edges from neighbouring slices in its weighting

of edge candidates. This may require edge processing of additional slices, but it

would enforce consistency of the segmented surface in 3-D.

7.1.3 Realistic Deformable Registration

With the success of kidney segmentation in US using the IMMPDAF, an obvi-

ous extension of this work is to discard the assumption of rigidity and perform

deformable registration of the prior segmentation to the detected surface. Some

unpublished work from our lab examines realistic surface-to-surface registration

using elasticity parameters based on the biomechanical properties of the tissue. If

we interpolate the edges from each slice to generate a closed surface, nonrigid sur-

face registration would allow this algorithm to overcome tissue deformations due

to patient position, tumour growth or manipulation during surgery.

7.1.4 Improved Error Estimation

One drawback of working with kidney data is that there are no anatomical land-

marks that can be precisely localized in both US and CT. This lack of reliable point

targets makes it difficult to estimate TRE and provide a useful confidence measure
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for the surgeon.

One solution to this issue would be to place fiducial markers that can be seen in

both US and CT on the kidney. This is not practical for patient studies, but it could

be performed with an animal model. This approach has the advantage of using

artificial markers that can be designed for optimal visibility and localizability.

Alternatively, we could use Doppler US imaging to identify the renal artery

by highlighting bloodflow. A normal renal artery has a diameter on the order of 5

mm [5], but we could likely identify the centre of this artery with better accuracy.

Integrating Doppler imaging with 3-D B-mode US would be ideal, but if this is not

possible we could simply use a 2-D Doppler image to identify the artery in the US

volume. 3-D Doppler imaging may be useful beyond error estimation as it would

provide some insight into vessel structure that could further relate the US images

to a prior segmentation.

7.1.5 Integration with Surgical Devices

In order for this registration approach to be clinically viable, it must be integrated

with medical interfaces and surgical visualization tools. One of the OR staff will

have to make point selections to initialize the algorithm. Since the proposed algo-

rithm registers the pre-operative plan to back US, futher registration or calibration

will be required to bring the planning data into the coordinate frame of the laparo-

scopic camera. Implementations using a GPU or other specialized hardware may

be developed to reduce runtime.

Once the transformation between the preoperative CT data and the camera is

known, the preoperative plan can be integrated directly in the da Vinci R© console

to provide real-time image guidance. For guidance to be effective, techniques from

the domain of Augmented Reality (AR) and information visualization will be re-

quired to draw the appropriate overlays on the surgeon’s FOV without creating too

much clutter. The desired image guidance framework may be years away, but this

thesis presents a solution to one part of this problem.
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Appendix A

Vol2Strad: a Volume Conversion
Tool

A specialized volume conversion tool, Vol2Strad, was developed to convert raw

US data into correctly spaced slices. The program takes an Ultrasonix .vol file

as an argument, and prompts the user for the desired sweep. It then reads the data

file’s header info and calculates the relative position of all slices using the known

probe parameters.

The scanlines for each slice were interpolated in 2-D using the Pando SDK and

probe parameters from Ultrasonix to produce an image in Cartesian coordinates.

Slices were then placed at the correct position in 3-D space and written to files that

can be read by Stradwin for viewing and segmentation [80, 81].

Through this work, it was discovered that the imaging depth indicated by Ul-

trasonix’s Propello interface at the time of acquisition is only a rough estimate.

For proper scan conversion, the imaging depth is calculated as:

depth = (samples/line)
(

c
2 fsamp

)
(A.1)

where c is the speed of sound in the tissue, approximated at 1540 m/s, and fsamp is

the sampling frequency of the transducer.

The converter was validated using a Model 049 QA phantom made by Com-

puterized Imaging Reference Systems. A known 20-mm sphere was segmented
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from the phantom images with negligible error.
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Appendix B

Setting IMMPDAF Parameters

B.1 Acquisition of Phantom Data
The porcine kidney phantom images used for filter calibration were acquired from

Xiang [88]. Kidneys were excised from live pigs, flushed with saline, and injected

with a gelatin contrast agent. They were then placed in a container with an agar

solution for US and CT imaging. Images from kidney 8 were used for the filter

experiments.

B.2 Parameter Manipulation Experiments
The standard IMMPDAF function for edge detection in US was parameterized

to allow fine control over edge detection. Parameters include the radial search

range (SR), the number of candidate edge points per radius (Nr), the number of

iterations (Niter), the median filter length (lmed), the gradient filter length (l f ) and

the covariances of the process noise (Q) and measurement noise (R).

An experiment was designed to determine the optimal settings for edge de-

tection in kidney images. The IMMPDAF algorithm was tried on pig phantom

data with a variety of parameter combinations, five of which are presented in Ta-

ble B.1. The first run serves as a control, the second uses two equivalent mod-

els that favour edge-following, the third uses two equivalent models that favour

smoothness (model-following), the fourth features a longer gradient filter for edge
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Trial Q R l f

control [ 10 105 ] [ 20 20 ] 6 pixels
edge [ 105 105 ] [ 1 1 ] 6 pixels
smooth [ 5000 5000 ] [ 20 20 ] 6 pixels
long [ 10 105 ] [ 20 20 ] 10 pixels
best [ 104 106 ] [ 10 1 ] 8 pixels

Table B.1: Selected parameter configurations for IMMPDAF parameter re-
finement trials

detection and the fifth is the combination that was eventually selected.

As expected, the edge-following configuration produces a noisy boundary be-

cause the filter is unable to tell the edges from the background (Figure B.1(b)). The

smooth configuration, shown in Figure B.1(c), illustrates the drawbacks of disre-

garding too many edges, as well as the limitations of the constant velocity radial

distance model. It can be seen that the filter “overshoots” the contour as it passes

the poles in its clockwise sweep. Then, as it corrects itself, it develops an inward

velocity that takes it inside the true contour until it is corrected by edge measure-

ments. These difficulties are not present in the prior-guided IMMPDAF, as the

sharp corners at the poles are predicted by the model, and the damping coefficient

reduces overshooting.

Using a longer radial gradient filter, as in Figure B.1(d), can help to reduce

the number of less significant intensity changes that attract the filter. In the end,

the best results were obtained using an intermediate filter length (Figure B.1(e)).

The process noise was increased relative to the measurement noise in order to al-

low more deviation from the model around high-curvature areas. These parameters

were mostly kept constant with the patient data, although there were some algo-

rithmic changes.
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(a) control (b) edge

(c) smooth (d) long

(e) best

Figure B.1: IMMPDAF output for the filter parameter combinations de-
scribed in Table B.1. The yellow dotted line shows the contours from
the prior segmentation, the red shows the IMMPDAF output, and the
green shows the gold standard segmentation.

87



Appendix C

Patient Results for Prior-guided
IMMPDAF Methods
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(a) patient 3 (b) patient 4

(c) patient 5 (d) patient 6

Figure C.1: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF
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(a) patient 8 (b) patient 11

(c) patient 13

Figure C.2: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF
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(a) patient 3 (b) patient 4

(c) patient 5 (d) patient 6

Figure C.3: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF on Canny edges
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(a) patient 8 (b) patient 11

(c) patient 13

Figure C.4: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF on Canny edges
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(a) patient 3 (b) patient 4

(c) patient 5 (d) patient 6

Figure C.5: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF on phase edges
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(a) patient 8 (b) patient 11

(c) patient 13

Figure C.6: Volume error after registration vs. volume error after initial align-
ment for prior-guided IMMPDAF on phase edges
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(a) patient 3 (b) patient 4

(c) patient 5 (d) patient 6

Figure C.7: Colour map showing final alignment error after prior-guided
IMMPDAF on phase images for patients 3 to 6. Error is shown in mm
for all locations on surface of gold standard.
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(a) patient 8 (b) patient 11

(c) patient 13

Figure C.8: Colour map showing final alignment error after prior-guided
IMMPDAF on phase images for patients 8 to 13. Error is shown in
mm for all locations on surface of gold standard.
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