MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF CARDIAC Ca\textsubscript{v.3.2} T-TYPE CALCIUM CHANNELS

by

Laurence Sahagun David

BSc Biology (Magna Cum Laude), Centro Escolar University, 1993
MET, Simon Fraser University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(NEUROSCIENCE)

THE UNIVERSITY OF BRITISH COLUMBIA

(VANCOUVER)

JULY 2011

© Laurence Sahagun David, 2011
ABSTRACT

T-type calcium (Ca\(^{2+}\)) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct Ca\(_v\)3 T-type Ca\(^{2+}\) channel isoforms can be generated by alternative splicing from each of three different Ca\(_v\)3 genes (Ca\(_v\)3.1, Ca\(_v\)3.2 and Ca\(_v\)3.3), although it remains to be described whether specific splice variants are associated with developmental stages and pathological conditions. Using full length cDNA generated from rat cardiac tissues, this study identified ten major regions of alternative splicing and systematically identified alternative splice variants of cardiac Ca\(_v\)3.2 channels. Quantitative real-time PCR analysis on the mRNA expression of the most common variants revealed preferential expression of Ca\(_v\)3.2(-25) splice variant channels in the newborn rat heart, whereas in the adult heart approximately equal levels of expression of both (+25) and (-25) exon variants was observed. In the adult stage of hypertensive rats, an increase in overall Ca\(_v\)3.2 mRNA expression and a shift towards the expression of Ca\(_v\)3.2(+25) containing channels as the predominant form was observed. This is the first evidence to show that cardiac Ca\(_v\)3.2 is subject to considerable splicing. Moreover, this thesis is also the first study to show developmental and pathological changes in expression of specific splice variants of the Ca\(_v\)3.2 channels.

The biophysical characteristics of cloned Ca\(_v\)3.2 splice variants and T-type Ca\(^{2+}\) currents from dissociated cultured newborn ventricular myocytes were investigated using whole cell patch clamp analysis. This study showed variant-specific voltage-dependent facilitation (VDF) of Ca\(_v\)3.2 channels attributed to the exclusion of exon 25 in Ca\(_v\)3.2 transcripts. Lastly, this thesis is the first to provide evidence on VDF of T-type currents in rat ventricular myocytes.
PREFACE

A version of Chapter 2 has been published in the journal *Channels* (David, L.S., Garcia, E., Cain, S.C., Thau, E.M., Tyson, J.R., Snutch, T.P. 2010. Splice-variant changes of the Ca\textsubscript{v}3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. *Channels* (Austin). 4(5):375-389). I designed all experiments and analyzed all results with input and feedback from my collaborators. I performed all screening and cloning of all splice variants in this thesis. Elana Thau helped me in generating cDNA libraries. Dr. Esperanza Garcia and Dr. Stuart Cain contributed to the whole cell recordings; Dr. John Tyson performed qRT-PCR and western blot analysis. I wrote the entire manuscript with subsequent editing from Dr. Terry Snutch and other authors. In Chapter 3, I also designed all experiments and analyzed all experimental results. I performed whole cell recordings and qRT-PCR analysis utilized in this chapter. Dr. Esperanza Garcia and Dr. Anamika Singh contributed to the whole cell recordings of cardiac myocytes. I wrote all of Chapter 3.

All animal procedures were performed in accordance with Canadian Council on Animal Care guidelines for animal research (UBC Animal Certificate Numbers A04-1003 and A08-0005).
TABLE OF CONTENTS

ABSTRACT .. ii

PREFACE ... iii

TABLE OF CONTENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xii

ACKNOWLEDGEMENTS .. xvi

DEDICATION ... xvii

1 INTRODUCTION ... 1

1.1 Calcium channels overview .. 1
 1.1.1 Classes and nomenclature ... 1
 1.1.2 Calcium channel biochemical composition .. 6

1.2 T-type calcium channels .. 8
 1.2.1 T-type calcium channel expression .. 8
 1.2.2 Biophysical properties .. 10
 1.2.3 T-type channel pharmacology ... 11
 1.2.4 Modulation of T-type calcium channels .. 16

1.3 Alternative splicing .. 22
 1.3.1 Overview of calcium channel alternative splicing .. 23
 1.3.2 Alternative splicing of T-type calcium channels ... 31

1.4 T-type calcium channels and the heart ... 34
 1.4.1 Expression, functional roles and modulation ... 34
 1.4.2 Developmental regulation and association in cardiac diseases .. 37

1.5 Voltage-dependent facilitation of calcium channels ... 41
 1.5.1 Voltage-dependent facilitation of high voltage-activated calcium channels 41
 1.5.2 Voltage-dependent facilitation of T-type channels .. 43

1.6 Thesis hypotheses and objectives ... 47
 1.6.1 Hypothesis 1 .. 47
 1.6.2 Hypothesis 2 .. 47
1.6.4 Hypothesis 3.. 48
1.6.5 Objectives... 48

2 SPlice-VARIANT CHANGES OF THE Ca,3.2 T-TYPE CALCIUM CHANNEL MEDIATE VOLTAGE-DEPENDENT FACILITATION AND ASSOCIATE WITH CARDIAC HYPERTROPHY AND DEVELOPMENT.. 50

2.1 Introduction... 50

2.2 Results ... 53
 2.2.1 Alternative splicing generates multiple Ca,3.2 T-type variants with differential expression across development ... 53
 2.2.2 Exclusion of exon 25 confers voltage-dependent facilitation and accelerates recovery from inactivation .. 67
 2.2.3 The effect of cAMP and Gβ2γ2 on Ca,3.2 voltage-dependent facilitation 77
 2.2.4 Differential expression of Ca,3.2 exon 25 variants in hypertension-associated cardiac hypertrophy ... 79

2.3 Discussion.. 82
 2.3.1 Splice variant specific expression of cardiac Ca,3.2 Ca2+ channels in development and hypertrophy .. 82
 2.3.2 Ca,3.2(-25) channels display faster recovery from inactivation and voltage-dependent facilitation ... 84
 2.3.3 The magnitude of VDF of Ca,3.2(-25) splice variant currents is reduced by Gβ2γ2. ... 86
 2.3.4 Potential relevance to cardiac pathophysiology ... 87

2.4 Materials and methods .. 88
 2.4.1 Animals and tissue preparation .. 88
 2.4.2 Histological staining .. 89
 2.4.3 RT-PCR and short amplicon scanning .. 90
 2.4.4 Construction of cDNA libraries and full length splice variant screening 93
 2.4.5 Cloning of full-length Ca,3.2 alternative splice variants 93
 2.4.6 Western blot analysis ... 94
 2.4.7 Quantitative real-time-PCR (qRT-PCR) .. 95
 2.4.8 Whole cell electrophysiology of transfected HEK cells 98

3 VOLTAGE-DEPENDENT FACILITATION OF T-TYPE CALCIUM CURRENTS IN NEONATAL RAT VENTRICULAR MYOCYTES ... 101

3.1 Introduction... 101

3.2 Results ... 102
 3.2.1 Expression of Ca2+ channels in neonatal rat ventricular myocytes 102
 3.2.2 Biophysical properties of T-type Ca2+ currents in isolated ventricular myocytes ... 104
 3.2.3 Voltage-dependent facilitation of T-type Ca2+ currents in rat ventricular myocytes. 109
3.3 Discussion .. 111
 3.3.1 T-type Ca\(^{2+}\) channels are expressed in neonatal rat ventricular myocytes 111
 3.3.2 Voltage-dependent facilitation of NRVM I\(_{\text{CaT}}\) is correlated with Ca\(_{\alpha3.2}(-25)\) splice
variant expression .. 112
 3.3.3 Potential significance of voltage-dependent facilitation of T-type Ca\(^{2+}\) currents in
eonatal ventricle .. 113

3.4 Materials and methods .. 117
 3.4.1 Animals and reagents .. 117
 3.4.2 Isolation of neonatal rat ventricular myocytes ... 117
 3.4.3 RNA extraction and quantitative Real-Time-PCR (qRT-PCR) 119
 3.4.4 Whole cell patch clamp analysis of isolated neonatal ventricular myocytes 120

4 CONCLUSION .. 124

 4.1 Overall significance .. 124
 4.1.1 Identification and characterization of cardiac Ca\(_{\alpha3.2}\) alternative splice variants
 ... 124
 4.1.2 Developmental and pathological expression of Ca\(_{\alpha3.2}\) alternative splice variants
 ... 126

 4.2 Splice variant specific expression of Ca\(_{\alpha3.2}\) T-type Ca\(^{2+}\) channels during development
and hypertrophy ... 129
 4.2.1 Working hypothesis ... 129
 4.2.2 Potential limitations ... 136

 4.3 Voltage-dependent facilitation of Ca\(_{\alpha3.2}\) T-type channels 137
 4.3.1 Working hypothesis ... 137
 4.3.2 Potential limitations ... 139

 4.4 Conclusion .. 140
 4.4.1 General conclusions ... 140
 4.4.2 Potential relevance of Ca\(_{\alpha3.2}\) alternative splicing in cardiac development and
hypertrophy ... 141
 4.4.3 Future directions .. 142

REFERENCES .. 145

APPENDIX 1: T-TYPE CALCIUM CHANNELS: AN EMERGING THERAPEUTIC
TARGET FOR THE TREATMENT OF PAIN ... 167

APPENDIX 2: SELECTIVE INHIBITION OF Ca\(_{\alpha3.3}\) T-TYPE CALCIUM CHANNELS
BY G\(_{\alpha_{q/11}}\)-COUPLED MUSCARINIC ACETYLCHOLINE RECEPTORS 179

APPENDIX 3: MOLECULAR MECHANISMS OF SUBTYPE-SPECIFIC INHIBITION
OF NEURONAL T-TYPE CALCIUM CHANNELS BY ASCORBATE 192
APPENDIX 4: Ca\textsubscript{2.1} P/Q-TYPE CALCIUM CHANNEL ALTERNATIVE SPLICING AFFECTS THE FUNCTIONAL IMPACT OF FAMILIAL HEMIPLEGIC MIGRAINE MUTATIONS: IMPLICATIONS FOR CALCIUM CHANNELOPATHIES.................. 199

APPENDIX 5: A Ca\textsubscript{3.2} T-TYPE CALCIUM CHANNEL POINT MUTATION HAS SPLICE-VARIANT SPECIFIC EFFECTS ON FUNCTION AND SEGREGATES WITH SEIZURE EXPRESSION IN POLYGENIC RAT MODEL OF ABSENCE EPILEPSY . 211
LIST OF TABLES

Table 1.1. Neurological agents known to inhibit T-type currents. 13
Table 2.1. Identified cardiac Ca,3.2 T-type Ca\(^{2+}\) channel variants. 61
Table 2.2. Gating properties of Ca,3.2 alternative splice variants. 71
Table 2.3. Deactivation and recovery from inactivation of Ca,3.2 alternative splice variants. ... 74
Table 2.4. Primers utilized for exon scanning amplification. .. 92
Table 2.5. Oligonucleotide primers for qRT-PCR... 97
Table 3.1. Biophysical properties of T-type Ca\(^{2+}\) currents in isolated neonatal rat ventricular myocytes ... 105
LIST OF FIGURES

Figure 1.1. Calcium channel classifications ... 5
Figure 1.2. Topographical illustration of the α1 calcium channel subunit 7
Figure 1.3. Effectors with identified modulation sites in the Ca,3.2 T-type channel 21
Figure 1.4 Mechanisms of modulation of Ca,3.2 T-type Ca²⁺ channels by G protein-coupled receptors (GPCRs) ... 22
Figure 1.5. Patterns of alternative splicing in eukaryotic mRNA 29
Figure 1.6. Functionally relevant alternative splicing events in HVA channels 30
Figure 1.7. Functionally relevant alternative splicing events in T-type channels 33
Figure 1.8. Proposed mechanisms underlying the facilitation of native T-type calcium currents .. 46
Figure 2.1. Ca²⁺ channel expression in rat cardiac tissues and identification of Ca,3.2 alternative splice variants ... 55
Figure 2.2. Topology of Ca,3.2 channel showing the location of all in-frame and truncated carboxyl terminal variants ... 59
Figure 2.3. Differential expression of Cav3.2 T-type Ca²⁺ channel alternative splice variants in newborn and adult cardiac tissues .. 64
Figure 2.4. Spatial and developmental changes in the expression of Ca,3.2(+25) and Ca,3.2(-25) exon splice variants ... 66
Figure 2.5. Representative data on the voltage-dependent properties of Ca,3.2 alternative splice variants ... 70
Figure 2.6. Alternative splicing affects the time course of recovery from inactivation and voltage-dependent facilitation of Ca,3.2 T-type macroscopic currents 72
Figure 2.7. The voltage-dependent facilitation of Ca,3.2(-25) T-type Ca²⁺ channels does not depend upon Ca²⁺ .. 75
Figure 2.8. Voltage-dependent facilitation differs in T-type Ca²⁺ channel isoforms 76
Figure 2.9. The effect of Gβγ and cAMP on voltage-dependent facilitation (VDF) of cardiac Ca,3.2 exon 25 alternative splice variants .. 78
Figure 2.10. Alteration of Ca,3.2(+25) and (-25) splice variant expression is associated with the hypertrophic SHR pathological phenotype .. 81
Figure 3.1. Expression of HVA and LVA Ca2+ channels in dissociated neonatal rat ventricular myocytes (NRVM).

Figure 3.2. Pharmacological and biophysical isolation of T-type Ca2+ currents in newborn ventricular myocytes.

Figure 3.3. The potentiated recovery from inactivation properties of NRVM T-type Ca2+ currents is comparable to the recombinant Ca\textsubscript{v}3.2(-25) alternative splice variant.

Figure 3.4. Neonatal rat ventricular myocytes display VDF properties which is correlated with high level of Ca\textsubscript{v}3.2 minus exon 25 alternative splice variant.

Figure 3.5. Potential contribution of Ca\textsubscript{v}3.2 T-type Ca2+ channel VDF in neonatal rat ventricle.

Figure 4.1. Hypothetical pathway of the signaling mechanism potentially involved in the regulation of expression of Ca\textsubscript{v}3.2 exon 25 splice variants.
LIST OF ABBREVIATIONS

ANP: atrial natriuretic peptide
AOB: aortic banded heart
AngII: angiotensin II
AP: action potentials
AT₁: angiotensin II type I receptor
AV: atrioventricular
Ba²⁺: barium
Ca²⁺: calcium
CaM: calmodulin
CaMKII: calcium/calmodulin-dependent protein kinase II
CDF: calcium-dependent facilitation
CDI: calcium-dependent inactivation
CICR: calcium-induced calcium release
C-terminus: carboxyl terminus
D: aspartate
DADs: delayed afterdepolarizations
DHP: dihydropyridines
DNA: deoxyribonucleic acid
DRG: dorsal root ganglion
DTNB: 5, 5’ dithio-bis(2-nitrobenzoic acid)
DTT: dithiothreitol
E: glutamate
EADs: early afterdepolarizations
E-C coupling: excitation-contraction coupling

ECG: electrocardiogram

ET-1: endothelin 1

FHM-1: familial hemiplegic migraine-1

GPCR: G protein-coupled receptors

GST: glutathione S-transferase

HCN: hyperpolarization-activated cyclic nucleotide gated channels

HDAC: histone deacetylase

HVA: high voltage-activated

HEK: human embryonic kidney

LVA: low voltage-activated

Mg: magnesium

mg: milligram

μg: microgram

mM: millimolar

μM: micromolar

ms: millisecond

mV: millivolt

Na: sodium

Na/Ca: sodium/calcium exchanger

NFAT: nuclear factor of activated T-cells

nM: nanomolar

NRSE: neuron-restrictive silencer element

NRSF: neuron-restrictive silencer factor
ORF: open reading frame
P: proline
PA: polyadenylation
PF: Purkinje fibers
PIP₂: phosphatidylinositol bisphosphate
PIP₃: phosphatidylinositol triphosphate
PKA: protein kinase A
PKC: protein kinase C
PMI: post-myocardial infarced heart
R: arginine
Redox: reduction – oxidation
RT-PCR: reverse transcription polymerase chain reaction
RyR: ryanodine receptors
s: second
SA: sinoatrial
SHR: Spontaneously Hypertensive rats
Sr: strontium
τ_{act}: time constant of activation
TBA: tetrabutylammonium
TEA: tetraethylammonium
τ_{inact}: time constant of inactivation
UTR: untranslated region
V_{50act}: half activation potential
V_{50inact}: half inactivation potential
VDF: voltage-dependent facilitation

VDI: voltage-dependent inactivation

WKY: Wistar Kyoto rats
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Terry Snutch for his support, understanding, guidance and direction throughout my PhD studies. Special thanks to Esperanza Garcia for teaching me electrophysiology and for her guidance, encouragement and comments in this thesis. Thank you to Dr. John Tyson for his support in molecular biology and feedback on this thesis. I would like to thank my supervisory committee, Vanessa Auld, Edwin Moore, and Brian MacVicar for their direction and advice.

Thank you to all past and present members of Snutch lab. It has been a pleasure collaborating and working with you all. I am also thankful to the Heart and Stroke Foundation of Canada and UBC W.C. Koerner Fellowship for providing me with doctoral research funding during my PhD studies.

To all my friends, thank you for your support and encouragement. I would like to thank my children for inspiring me to finish my PhD. Lastly to my late wife Con, thanks for the support, love and inspiration. This is for you!
DEDICATION

In my wife’s loving memory

To my sons, Tophy and Troy

And To my Saviour, Jesus Christ
1 INTRODUCTION

Calcium (Ca2+) ions crucially contribute to numerous physiological processes and cells have evolved multiple mechanisms to finely control Ca2+ transport. Amongst these modes of transport, voltage-gated Ca2+ channels play a major role in the cellular physiology and pathology of many tissues including the heart. In particular, cardiac T-type Ca2+ channels are thought to play significant roles during cardiac development and disease. These include contributions to cardiac pacemaking, automaticity, conduction and excitation-contraction (E-C) coupling. This thesis focused on the identification, profiling and functional characterization of alternative splice variants of Ca\textsubscript{v}3.2 T-type channels, one of the two major T-type isoforms expressed in the mammalian heart.

1.1 Calcium channels overview

Voltage-gated Ca2+ channels are ubiquitously expressed throughout cells and tissues and are involved in numerous physiological processes including neuronal firing, cardiac excitability, hormone secretion, gene expression, and cell growth and proliferation. They are also implicated in the pathogenesis in over a dozen distinct diseases of the nervous and cardiovascular systems. Phenotypically, Ca2+ channels are divided into two major classes – the high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ channels. Detailed description of various classes and biochemical composition of Ca2+ channels are discussed in this section.

1.1.1 Classes and nomenclature

There are ten known genes that encode distinct \(\alpha_1\) pore-forming subunits in the Ca2+ channel family (Figure 1.1). Historically, identification of Ca2+ channels by several laboratories
over the years has led to numerous ways of naming the channels. These include;

phenomenological nomenclature HVA versus LVA and consist of the L; T; N; P/Q; and R; types), clone nomenclature (α₁A, α₁B, α₁C, α₁H, etc.), and gene nomenclature (for example CACNA1A, CACNA1G, CACNA1H, CACNA1I) (Lory et al., 1997; Hille, 2001). In 2000, a more systematic nomenclature was adopted based on the well defined potassium channel nomenclature (Chandy and Gutman, 1993; Ertel et al., 2000). Under this naming system, Ca²⁺ channels were named using the chemical symbol of the principal permeating ion (Ca) with the principal regulator (voltage) indicated as a subscript (Caᵥ) (Ertel et al., 2000; Catterall et al., 2003). The numerical identifier corresponds to the Caᵥ channel α₁ subunit gene family (i.e., 1, 2 and 3) and the order of discovery of the α₁ subunit within that family (Figure 1.1).

According to this nomenclature, the Ca₁ family includes Ca₁.1, Ca₁.2, Ca₁.3 and Ca₁.4 which correspond to α₁S, α₁C, α₁D, and α₁F, respectively. All Ca₁ Ca²⁺ channels mediate L-type Ca²⁺ currents. On the other hand, the Ca₂ family (Ca₂.1, Ca₂.2 and Ca₂.3 previously α₁A, α₁B, and α₁E) mediate P/Q-, N- and R-type currents, respectively. Lastly, T-type Ca²⁺ channels belong to the Ca₃ family which includes Ca₃.1, Ca₃.2 and Ca₃.3 (previously α₁G, α₁H, and α₁I, respectively). Brief descriptions of the expression, functional roles, and biophysical and pharmacological properties of the ten Ca²⁺ channel subtypes are discussed in this section.

The Ca₁ channel subfamily are generally characterized by large single channel conductances, minimal voltage-dependent inactivation and significant Ca²⁺-dependent inactivation (Hille, 2001; Snutch et al., 2005). Pharmacologically, Ca₁ channels are potently blocked by phenylalkylamines, benzothiazapines and dihydropyridines (DHPs) (Fleckenstein, 1983; Fox et al., 1987; Hockerman et al., 1997). Ca₁.1 channels are primarily expressed in skeletal muscles where they act as the voltage-sensor for E-C coupling (Rios and Brum, 1987;
Tanabe et al., 1988; Bean, 1989a; Tsien et al., 1991; Miller, 1992). $\text{Ca}_v1.2$ channels are expressed in the nervous system with high level of expression detected in the olfactory bulb, cerebellum, striatum, thalamus, hypothalamus and cortex and low levels in medulla, pons and spinal cord (Snutch et al., 1991; Hell et al., 1993). $\text{Ca}_v1.2$ channels are the main Ca^{2+} channels in the heart and smooth muscles where they are known to define the shape of the action potentials (APs) and to mediate excitation and contraction (Reuter et al., 1988; Tanabe et al., 1990; Bers and Perez-Reyes, 1999; Bers, 2001). $\text{Ca}_v1.3$ channels are present in the cell bodies and proximal dendrites of the central neurons as well as in endocrine, amacrine and cochlear hair cells (Hell et al., 1993; Ihara et al., 1995; Kollmar et al., 1997; Morgans, 1999; Habermann et al., 2003; Liu et al., 2004). In the heart, $\text{Ca}_v1.3$ channels are present in atria and sino-atrial (SA) nodes where they are reported to contribute to cardiac pacemaking (Zhang et al., 2002; Mangoni et al., 2003; Mangoni and Nargeot, 2008). Lastly, $\text{Ca}_v1.4$ channels are known to have important roles in neurotransmitter release in retinal photoreceptors and bipolar cells (Koschak et al., 2003; Baumann et al., 2004; McRory et al., 2004).

Ca_v2 channels are primarily expressed in the central and peripheral nervous systems. They are primarily involved in the release of neurotransmitters in response to presynaptic APs. These channels are known to bind directly with several proteins of the presynaptic exocytotic machinery and may form part of the docking complex for synaptic vesicles (Catterall, 2000). Pharmacologically, they are relatively insensitive to DHPs but are specifically blocked with high affinity by peptide toxins from spiders and marine snails (Miljanich and Ramachandran, 1995).

$\text{Ca}_v2.1$ channels are highly expressed in the mammalian brain and peripheral nervous system (Mori et al., 1991; Starr et al., 1991) where they play an important role in neurotransmission. They are known to be potently blocked by the peptide ω-agatoxin IVA from funnel web spider venom (Randall and Tsien, 1995). The $\text{Ca}_v2.2$ channels conduct N-type Ca^{2+}
currents and are potently blocked by the peptides ω-conotoxin GVIA and ω-conotoxin MVIIA and MVIIIC (McCleskey et al., 1987; Catterall et al., 2003). N-type channels play important roles in the sensation and transmission of pain signals (McGivern and McDonough, 2004; Swayne and Bourinet, 2008; Zamponi et al., 2009). Ca$_{\text{v}}$.2.3 channels conduct R-type currents and are blocked by the synthetic peptide SNX-482 (Newcomb et al., 1998). They are expressed in the nervous, endocrine, male reproductive and gastrointestinal systems (Grabsch et al., 1999; Westenbroek and Babcock, 1999; Lu et al., 2004; Jing et al., 2005; Wakamori and Imoto, 2009). These channels play important roles in neurotransmitter release and synaptic plasticity (Kubota et al., 2001; Breustedt et al., 2003; Dietrich et al., 2003), pain sensing (Saegusa et al., 2000), hormone secretion and glucose homeostasis (Pereverzev et al., 2002).

Ca$_{\text{v}}$.3 T-type channels are generally insensitive to L-type blockers and to toxins that block Ca$_{\text{v}}$.2 channels. The three types, Ca$_{\text{v}}$.3.1, Ca$_{\text{v}}$.3.2 and Ca$_{\text{v}}$.3.3, are expressed throughout the body including nervous tissue, heart, kidney, smooth muscle, sperm, uterus and endocrine organs (reviewed in (Perez-Reyes, 2003)). The biophysical properties, functional and pathological roles of T-type Ca$^{2+}$ channels are discussed in more detail in subsequent sections.
Voltage-gated Ca2+ channels are divided into major classes – the high voltage-activated (HVA) and low voltage-activated (LVA) channels. HVA channels are further subdivided into Ca\textsubscript{v}1 and Ca\textsubscript{v}2 subfamilies and LVA comprises the Ca\textsubscript{v}3 subfamily. The Ca\textsubscript{v} nomenclature (black) is currently the official naming system for voltage-gated Ca2+ channels. Voltage-gated Ca2+ channels are also named according to the type of Ca2+ currents recorded from native tissues for instance L-, N-, P/Q-, R and T-types. Clone nomenclatures for example α\textsubscript{1A} or α\textsubscript{1E} are shown in blue. The official gene names are listed in the right panel of the figure (purple) (Lory et al., 1997; Ertel et al., 2000; Hille, 2001).
1.1.2 Calcium channel biochemical composition

Insight into the molecular basis for the differences in the functional properties of Ca\(^{2+}\) channels initially required the identification of channel protein structure. The protein composition of Ca\(^{2+}\) channels was first determined from the pioneering studies by Campbell, Catterall, Hoffman and Glossmann laboratories (Striessnig et al., 1987; Takahashi et al., 1987; Ruth et al., 1989; Jay et al., 1990). The transverse tubule membranes of skeletal muscle served as the primary biochemical preparation for studying the Ca\(^{2+}\) channel structure. Initial purification studies from this preparation revealed that skeletal L-type Ca\(^{2+}\) channels contain \(\alpha_1\), \(\beta\) and \(\gamma\) subunits (Curtis and Catterall, 1984). Subsequent studies of these L-type channels revealed a more complex protein and it is now known that they are a large multimeric complex containing an equal stoichiometric ratio of \(\alpha_1\) pore-forming subunit and auxiliary subunits \(\alpha_2\), \(\delta\), \(\beta\), and \(\gamma\) (Hosey et al., 1987; Leung et al., 1987; Striessnig et al., 1987; Takahashi et al., 1987; Catterall, 2000).

The amino acid composition of the Ca\(^{2+}\) channel \(\alpha_1\) subunits revealed similarities to the predicted transmembrane structures of the pore-forming \(\alpha_1\) subunits of sodium (Na\(^{+}\)) channels (Tanabe et al., 1987). The amino acid sequences are organized into four homologous domains (I – IV) with each domain containing six transmembrane segments (S1 to S6), and a pore-forming loop between transmembrane segments S5 and S6 (Catterall, 2000) (Figure 1.2). The fourth segment (S4) contains five to six positively charged arginine and lysine residues, and serves as the major voltage sensor component. The pore-forming loop is responsible for the selectivity and permeation properties of the channels (Kim et al., 1993). The transmembrane segments and pore regions of all 10 Ca\(_v\) subunits are well conserved. Overall, amino acid sequences of \(\alpha_1\) subunits are over 70% identical within a channel subfamily while less than 40% identical between channel subfamilies (reviewed in (Ertel et al., 2000; Catterall et al., 2003). Of Ca\(_v\) members, the
T-type channels exhibit the least amount of sequence identity compared to other classes.

Analysis of the T-type channel amino acid sequences revealed a lack of the structural motif for the β subunit binding site conserved across HVA Ca$_v$ I-II linker. Hence, the association of auxiliary subunits typically present among HVA channels is unlikely to play a significant role in native T-type channels (Dolphin et al., 1999; Dubel et al., 2004).

Figure 1.2. Topographical illustration of the α$_1$ calcium channel subunit.

All ten Ca$^{2+}$ channel α$_1$ subunits have four homologous domains (labeled I to IV). Each domain is composed of six transmembrane segments (labeled 1 to 6 in domain I). The loop located between segments 5 and 6 forms the channel pore-forming loop. The 4th transmembrane segments (green) are formed by positively charged amino acids and formed the voltage sensor. The amino (NH$_2$), C-terminus (COOH) and interdomain linkers are all intracellular.
1.2 T-type calcium channels

The Ca\textsubscript{v}3 T-type channels are widely expressed throughout the body including the heart, nervous tissue, kidney, smooth muscle and many endocrine organs. Some of the important roles that T-type channels contribute are neuronal firing, hormonal secretion and smooth muscle contraction. Importantly, they are also implicated in the pathophysiology of certain diseases such as epilepsy, chronic pain, hypertension and cardiac hypertrophy. In general, the biophysical properties of T-type channels recorded from various cell types are similar although differences have been noted in their kinetic properties, second-messenger-dependent modulation and sensitivity to pharmacological agents (Perez-Reyes, 2003, 2006). These differences can largely be explained by the existence of three main types of T-type channels: Ca\textsubscript{v}3.1, Ca\textsubscript{v}3.2 and Ca\textsubscript{v}3.3 isoforms encoded by CACNA1G, CACNA1H, and CACNA1I, respectively (Figure 1.1). Extensive studies using Northern and dot blots, in situ hybridization and RT-PCR have been used to characterize the expression of the three Ca\textsubscript{v}3 channels in various cells and tissues (Cribbs et al., 1998; Perez-Reyes et al., 1998; Talley et al., 1999; McRory et al., 2001; Perez-Reyes, 2003; Yunker and McEnery, 2003). Discussion in this section focuses on the general tissue expression, biophysical, pharmacological and modulation of T-type channel isoforms. More detailed discussions on the expression, properties, functional and pathological roles of T-type channels in the cardiovascular system are presented in section 1.4.

1.2.1 T-type calcium channel expression

All Ca\textsubscript{v}3 channels are present in the central and peripheral nervous systems. Ca\textsubscript{v}3.1 channels are highly expressed in inferior olivary neurons, thalamic relay neurons, cerebellar Purkinje neurons, subthalamic nucleus, the hippocampus, olfactory bulb, caudal thalamus, amygdala, cerebral cortex, brainstem and spinal cord (Talley et al., 1999; Monteil et al., 2000a;
McRory et al., 2001). Cav3.2 channels are reported in thalamic reticular neurons, olfactory tubercles, subthalamic nucleus, basal ganglia, hippocampus, olfactory bulb, caudal thalamus, sympathetic ganglion neurons, and dorsal root ganglia (White et al., 1989; Talley et al., 1999; McRory et al., 2001; Lee et al., 2002). Cav3.3 has been shown to be present in subthalamic nucleus, thalamic reticular neurons, basal ganglia, olfactory tubercles, nucleus accumbens and the striatum (Huguenard, 1999; Lee et al., 1999b; Talley et al., 1999; Monteil et al., 2000b; McRory et al., 2001).

T-type channels have also been found in the reproductive tissues such as the testes (Jagannathan et al., 2002; Son et al., 2002) and the uterus (Ohkubo et al., 2005). They are also reported to be present in adrenal glands (Enyeart et al., 1993; Mlinar et al., 1993; Chen et al., 1999; Schrier et al., 2001), pituitary glands (Talley et al., 1999) and in β-cells of the Islets of Langerhans in the pancreas (Ashcroft et al., 1990; Sala and Matteson, 1990; Parsey and Matteson, 1993).

Both Cav3.1 and Cav3.2 channels are expressed in the kidneys with Cav3.2 being predominantly present in renal smooth muscles and Cav3.1 in the renal tubules (Cribbs et al., 1998; Williams et al., 1999; Andreasen et al., 2000; Hansen et al., 2001). T-type Ca²⁺ currents (I_{CaT}) have been recorded in embryonic and newborn skeletal muscles (Beam and Knudson, 1988; Gonoi and Hasegawa, 1988; Berthier et al., 2002). I_{CaT} has also been recorded in smooth muscle myocytes cells isolated from the colon (Koh et al., 2001), coronary arteries (Ganitkevich and Isenberg, 1991; Mishra and Hermsmeyer, 1994; Quignard et al., 1997), aortas (Akaike et al., 1989), cerebral arteries (Hirst et al., 1986) and bronchi (Yamakage et al., 2001). RT-PCR analysis of smooth muscle myocytes has revealed the presence of both Cav3.1 and Cav3.2 channels (Gustafsson et al., 2001). Cardiac T-type channels consist of two main types: Cav3.1 and Cav3.2 (see Section 1.4).
1.2.2 Biophysical properties

The differential expression of Ca\textsubscript{v}3 channels in diverse cell types suggests that these Ca2+ channels perform unique physiological functions. For example, in the nervous system all three T-type isoforms are present whereas in the heart only Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 channels are expressed. This differential expression likely account for differences in the electrophysiological properties observed for native T-type currents recorded from various cell types.

T-type channels have single channel conductances ranging between 6 and 8 pS in the presence of isotonic (110 mM) Ca2+ or barium (Ba2+) (Carbone and Lux, 1984; Droogmans and Nilius, 1989), ~5 pS in 10 mM Ca2+ (Balke et al., 1992) and 1 pS in 2 mM Ca2+ (Huguenard, 1996) demonstrating Ca2+-concentration-dependent ionic conduction in the T-type channel pore. The conduction of divalent ions differs in all three isoforms. In recombinant Ca\textsubscript{v}3.1 channels, the current amplitude is larger in the presence of Ca2+ than in Ba2+. On the other hand, Ca2+ currents are smaller than Ba2+ currents in Ca\textsubscript{v}3.2 channels while for Ca\textsubscript{v}3.3 currents are approximately equal with Ba2+ and Ca2+ (McRory et al., 2001; Kaku et al., 2003).

The threshold for activation of T-type channels has been reported to be between -75 and -60 mV with half-maximal activation between -45 and -40 mV (McDonald et al., 1994; Huguenard, 1996; Perez-Reyes et al., 1998; Klockner et al., 1999; Kozlov et al., 1999; Perez-Reyes, 2003; Lacinova, 2005; Talavera and Nilius, 2006). At threshold potentials, T-type currents initially activate and inactivate slowly and then become faster with stronger depolarizations (Randall and Tsien, 1997; Perez-Reyes, 2003). T-type half maximal inactivation is generally between – 80 and -60 mV (Vassort and Alvarez, 1994; Huguenard, 1996; Klockner et al., 1999; Talavera and Nilius, 2006). The overlapping activation and inactivation potential of T-type channels generates currents at steady state conditions called “window” currents (Vassort
and Alvarez, 1994; Chemin et al., 2000; Perez-Reyes, 2003; Talavera and Nilius, 2006). The magnitude of window currents has been estimated in heterologous expression system (Chemin et al., 2000).

In terms of activation and inactivation kinetics, comparison of the three T-type isoforms has revealed that recombinant Ca,3.1 and Ca,3.2 channels exhibit comparable properties, while the Ca,3.3 subtype possesses distinct kinetics (Perez-Reyes et al., 1998; Klockner et al., 1999; Klugbauer et al., 1999; Kozlov et al., 1999; Lee et al., 1999b; Williams et al., 1999; McRory et al., 2001). The Ca,3.1 and Ca,3.2 isoforms have faster activation and inactivation kinetics, while the Ca,3.3 channel activation and inactivation kinetics are both significantly slower. All three T-type isoforms have characteristically slower deactivation kinetics compared to the HVA channels with Ca,3.3 being fastest and Ca,3.1 the slowest (Klockner et al., 1999; Kozlov et al., 1999; Serrano et al., 1999; Monteil et al., 2000b; Perez-Reyes, 2003; Talavera and Nilius, 2006). The rates of recovery from inactivation of T-type channels are also faster than any of the HVA channels with Ca,3.1 possessing the fastest time constants followed by Ca,3.3 and slowest for Ca,3.2 (Klockner et al., 1999; Chemin et al., 2002). Overall, the unique kinetic properties of T-type channels can serve as a valuable tool in distinguishing T-type isoforms, particularly in native cells and tissues. More importantly, their unique properties are predicted to distinctly affect intracellular Ca\(^{2+}\) influx and affect Ca\(^{2+}\) homeostasis and cellular physiology.

1.2.3 T-type channel pharmacology

With the successful cloning of the three Ca\(^{2+}\) channel genes encoding for T-type isoforms, our knowledge and understanding of the pharmacology of these channels has greatly improved. This section discusses current information concerning the pharmacology of T-type channels in both native and recombinant channels with emphasis given to neurological and
cardiovascular agents, toxins and polyvalent ions (for reviews see (Perez-Reyes, 2003; Yunker, 2003; Lacinova, 2005; Snutch and David, 2006) (Appendix 1). Although, these agents selectively target T-type channels for therapeutic purposes, these agents also block other ion channels. An understanding of the pharmacological properties of T-type channels allows the isolation of their relative contribution in native systems from that of other conductances. For example, in the heart the application of a specific blocker for Ca,3.1 channels would permit studying the properties of Ca,3.2 (and vice versa).

A number of neurological agents have been shown to block T-type channels at therapeutically-relevant levels (Table 1.1). These include antiepileptics (e.g., zonisamide, ethosuximide, and methyl-phenyl-succinimide(MPS) (Coulter et al., 1990; Kostyuk et al., 1992; Suzuki et al., 1992; Kito et al., 1996; Todorovic et al., 2000; Gomora et al., 2001), anticonvulsant (phenytoin) (Todorovic et al., 2000), diphenylbutylpiperidines neuroleptics (e.g., pimozide, flunarizine and penfluridol) (Enyeart et al., 1990a; Enyeart et al., 1990b; Opler and Feinberg, 1991; Santi et al., 2002), butyrophenone antipsychotic (haloperidol) (Santi et al., 2002) and general anaesthetics (e.g., isoflurane and propofol) (Todorovic and Lingle, 1998; Todorovic et al., 2000; Camara et al., 2001). The efficacy of these agents in blocking T-type channels indicates that T-type channels are important therapeutic targets for the treatment and management of a number of neurological conditions including epilepsy, pain and psychosis and possibly towards the management of cardiovascular disorders. Considering that T-type channels are upregulated in cardiac hypertrophy (Section 1.4.2), it would be relevant to investigate whether these agents affect the activity of T-type channels in the hypertrophic state.
In general, T-type channels have been implicated in the pathogenesis of a number of cardiovascular diseases (Vassort and Alvarez, 1994; Vassort et al., 2006). The inhibition of T-type channels has been reported to have clinical importance in the treatment and management of a variety of cardiovascular diseases including hypertension and arrhythmia. Mibefradil is widely used as an antihypertensive drug and chronic stable angina pectoris agent (Perez-Reyes, 2003; Yunker, 2003; Snutch and David, 2006). This drug blocks both HVA and LVA Ca channels with
approximate IC$_{50}$ values between 0.3 μM and 20 μM for HVA and 1 μM for LVA channels (Jimenez et al., 2000). The mechanism of the T-type channel blockade by mibefradil was originally thought to be state-dependent; however, in a study by Martin and co-authors mibefradil was shown to be insensitive to voltage, ruling out state dependence as the mechanism of drug action (Martin et al., 2000). Efonidipine, an orally active antihypertensive and antianginal agent, has also been reported to block both HVA and LVA channels (Masumiya et al., 1997; Masumiya et al., 1998). It inhibits both cloned T-type channels expressed in baby hamster kidney (BHK) cells and in Xenopus oocytes, as well as native I$_{CaT}$ in cardiac myocytes (Furukawa et al., 2004; Tanaka et al., 2004; Tanaka et al., 2008). The R(-)-enantiomer of efonidipine was reported to be more selective to block native myocardial I$_{CaT}$ than I$_{CaL}$ (85% inhibition of I$_{CaT}$ versus no effect on I$_{CaL}$ at 1 μM) (Tanaka et al., 2004). Bepridil, another widely used antiarrhythmic and antianginal agent is reported to inhibit cloned Ca$_{v}$3.2 channels with an IC$_{50}$ of ~400 nM (Uchino et al., 2005). In addition to the above compounds, recent studies have made progress towards the design and synthesis potentially selective T-type channel blockers (Yang et al., 2008; Uebele et al., 2009).

Divalent inorganic ions (e.g., Ni$^{2+}$, Zn$^{2+}$, Co$^{2+}$) were some of the first agents used to inhibit native I$_{CaT}$ (Yunker, 2003). The high sensitivity of I$_{CaT}$ to block by Ni$^{2+}$ was considered one of the defining characteristics of these Ca$_{v}$2+ channels. In confirmation, whole cell patch clamp analysis of cloned Ca$_{v}$3 channel isoforms expressed in both HEK-293 cells and Xenopus oocytes showed sensitivity to inhibition by Ni$^{2+}$ with IC$_{50}$ values ranging from 12 to 250 μM in HEK-293 cells and from 5.7 to 167 μM in oocytes (Lee et al., 1999a). Among the three T-type isoforms, Ca$_{v}$3.2 is the most sensitive to Ni$^{2+}$. Using chimeric channels and site-directed mutagenesis, the structural determinant for inhibition was identified to be dependent on a histidine residue (H191) in the Ca$_{v}$3.2 S3 and S4 loop of domain I and which is predicted to help
form a Ni\(^{2+}\) binding pocket on the extracellular surface of the channel (Kang et al., 2006; Kang et al., 2010). Both Ca\(_{v}\)3.1 and Ca\(_{v}\)3.3 channels have a glutamine residue instead of histidine at this site making them less sensitive to Ni\(^{2+}\). Trivalent cations (e.g. Y\(^{3+}\), Er\(^{3+}\), Gd\(^{3+}\), La\(^{3+}\)) also inhibit Ca\(_{v}\)3.1 channels with Y\(^{3+}\) being the most potent blocker when recorded in 2 mM Ba\(^{2+}\) (IC\(_{50}\) = 28 nM) (Beedle et al., 2002).

While toxins derived from numerous invertebrates have been utilized in the study of various HVA Ca\(^{2+}\) channels (Doering and Zamponi, 2003) relatively little is known about the sensitivity of T-type channels to peptide toxins. Kurtoxin, a peptide isolated from scorpions (Parabuthus transvaalicus), was reported to block both recombinant Ca\(_{v}\)3.1 and Ca\(_{v}\)3.2 channels (Chuang et al., 1998) and I\(_{\text{CaT}}\) recorded from thalamic neurons (Sidach and Mintz, 2002). In both cases, the kurtoxin effect was voltage-dependent and involved a modification of channel gating.

Recently, two independent groups of investigators reported two peptide toxins isolated from the tarantula, Thrixopelma pruriens, to potently inhibit cloned Ca\(_{v}\)3.1 and Ca\(_{v}\)3.2 channels (Edgerton et al., 2010; Ohkubo et al., 2010). ProTx-I blocked Ca\(_{v}\)3.1 and Ca\(_{v}\)3.2 channels with 160-fold higher potency towards Ca\(_{v}\)3.1 (IC\(_{50}\) values of approximately 0.2 \(\mu\)M for Ca\(_{v}\)3.1 and 32 \(\mu\)M for Ca\(_{v}\)3.2). Likewise, ProTx-II potently inhibited Ca\(_{v}\)3.1 channels (IC\(_{50}\) value of 0.8 \(\mu\)M) and was found to induce a positive shift in the voltage-dependence of activation and to decrease the maximum macroscopic conductance (Edgerton et al., 2010). In this regard, the application of either ProTx-I or ProTx-II could be used to study Ca\(_{v}\)3.2 currents in isolation, particularly in cardiac myocytes. Although significant progress has been made concerning the pharmacology of T-type channels, the identification of T-type isoform-specific blocker remains to be described. Eventually, this will allow for the better characterization of T-type channel properties in cells expressing multiple T-type isoforms and their alternative splice variants.
1.2.4 Modulation of T-type calcium channels

Besides the effects of pharmacological agents on T-type channel functional states, T-type channels are also regulated by interactions with various signaling molecules. T-type channels are subject to considerable subtype specific regulation by activation of various G-protein coupled receptors (GPCRs) and second messengers. For example, Rho kinase has been shown to inhibit Ca\textsubscript{v}3.1 channels (Iftinca et al., 2007) while the activation of M1 muscarinic acetylcholine receptors selectively inhibits recombinant Ca\textsubscript{v}3.3 T-type channels (Hildebrand et al., 2007) (Appendix 2). The M1 receptor inhibition is mediated by G\textsubscript{aq/11}-linked pathways independent of the involvement of downstream signaling pathways such as protein kinase C (PKC), serine/threonine kinases, tyrosine kinase, phosphatases, and phosphoinositide-3-kinase. GPCR-mediated regulation effects on T-type channel activity are predicted to alter Ca2+ entry and cellular excitability. For example, in the nervous and cardiovascular systems the inhibition of T-type channels by GPCRs could potentially reduce neuronal firing or cardiac automaticity. As this thesis focuses on Ca\textsubscript{v}3.2 channels, discussion will mainly focus on the modulation of Ca\textsubscript{v}3.2 by direct effectors with known modulation sites and activators of GPCRs (Figures 1.3 and 1.4).

The contributions of Barrett and colleagues provided an initial understanding of Ca\textsubscript{v}3.2 channel regulation. The G\textsubscript{b\gamma}-mediated inhibition of I\textsubscript{CaT} via activation of dopamine D\textsubscript{1} receptors was initially reported in rat adrenal zona glomerulosa (Drolet et al., 1997). This observation was further explored via co-expression of specific G\textsubscript{b\gamma} proteins with recombinant T-type isoforms in HEK-293 cells and it was determined that Ca\textsubscript{v}3.2 but not Ca\textsubscript{v}3.1 channels are specifically inhibited by G\textsubscript{b\gamma} and only with G\textsubscript{b\gamma} dimers containing the G\textsubscript{b2} subunits (Wolfe et al., 2003; Hu et al., 2009). Experiments using chimeric Ca\textsubscript{v}3.2 - Ca\textsubscript{v}3.1 channels and fusion proteins demonstrated that G\textsubscript{b\gamma} subunits directly bind to the domain II-III linker of the Ca\textsubscript{v}3.2 subunit (Figure 1.3). The G\textsubscript{b\gamma}-mediated inhibition of Ca\textsubscript{v}3.2 was shown to be voltage-independent and to....
be specific for G\(\beta_2\gamma_2\) dimers (Wolfe et al., 2003; DePuy et al., 2006). A cluster of 4 amino acids (P140, V178, G179 and A181) within G\(\beta_2\) were identified as critical sites for G\(\beta_2\gamma_2\) inhibition and this region has also been shown to underlie the CaMKII-mediated potentiation of Ca\(_{\text{v} 3.2}\) channels (DePuy et al., 2006).

Barrett’s group also showed that the G\(\beta\gamma\)-dependent inhibition of Ca\(_{\text{v} 3.2}\) could be mediated by activation of the dopamine (D\(_1\)) receptor (Figure 1.4) (Hu et al., 2009). They also showed that the G\(\beta\gamma\) inhibition of Ca\(_{\text{v} 3.2}\) channels is dependent on phosphorylation by protein kinase A (PKA) at Ser\(^{1107}\) in the Ca\(_{\text{v} 3.2}\) II – III cytoplasmic loop. The G\(\beta\gamma\)-mediated inhibition of recombinant Ca\(_{\text{v} 3.2}\) channels has also been reported via activation of the corticotrophin-releasing factor receptor 1 (CRF-1) (Tao et al., 2008) (Figure 1.4). Protein kinase pathways were shown not to be involved in this regulation but rather were found to be dependent upon the activation of the cholera-toxin sensitive G\(_{\alpha_s}\) pathway. Together, G\(\beta\gamma\) regulation of Ca\(_{\text{v} 3.2}\) channels occurs through either direct binding of G\(\beta\gamma\) or via activation of certain second messenger cascades. Interestingly, agonists of the CRF receptors are known to regulate sleep rhythms and T-type channels play a key role in generating thalamic oscillations; therefore it is tempting to speculate that the CRF mediated changes on T-type channel gating might play a role in regulating sleep patterns (Zoumakis et al., 2006; Tao et al., 2008; Iftinca and Zamponi, 2009).

Calcium/calmodulin-dependent protein kinase II (CaMKII) has also been implicated in I\(_{\text{CaT}}\) regulation. In canine Purkinje cells and ventricular myocytes I\(_{\text{CaT}}\) has been shown to be regulated by intracellular Ca\(^{2+}\) (Tseng and Boyden, 1991). In bovine adrenal glomerulosa cells I\(_{\text{CaT}}\) can be potentiated by increases in intracellular Ca\(^{2+}\) dependent upon CaMKII phosphorylation (Lu et al., 1994). Barrett and colleagues demonstrated that CaMKII activation underlies the Ca\(^{2+}\)-mediated potentiation of recombinant Ca\(_{\text{v} 3.2}\) currents expressed in HEK-293 cells (Wolfe et al., 2002). Using chimeric Ca\(_{\text{v} 3.2}\) - Ca\(_{\text{v} 3.1}\) channels, site-directed mutagenesis
and glutathione S-transferase (GST) fusion proteins, the same group identified the domain II – III linker as a critical region within Ca\textsubscript{v}3.2 for mediating CaMKII modulation (Figure 1.3). An 1193LRRAESL1199 recognition motif located in the domain II – III intracellular linker was implicated as the critical site for CaMKII-dependent modulation of Ca\textsubscript{v}3.2 channels (Welsby et al., 2003). Specifically, the authors attributed the phosphorylation of a serine residue (Ser1198) in the domain II – III linker as the site of CaMKII potentiation (Figure 1.3). CaMKII modulation of native Ca\textsubscript{v}3.2 channels was further explored using adrenal glomerulosa cells. Barrett and colleagues demonstrated that activation of the angiotensin II (Ang II) receptor resulted in CaMKII phosphorylation of native Ca\textsubscript{v}3.2 channels (Yao et al., 2006). Ang II receptor activation increases cytosolic Ca2+ levels to enhance synthesis and secretion of aldosterone, an identified early pathogenic stimulus that adversely influences cardiovascular homeostasis (Yao et al., 2006). In this regard, CaMKII potentiation of Ca\textsubscript{v}3.2 channels is functionally relevant in Ang II mediated increase in aldosterone release which in turn could alter cardiovascular Ca2+ homeostasis. Hence, disruption of CaMKII signaling complex in the zona glomerulosa may provide a new therapeutic approach to regulating the production of aldosterone and to the control of cardiovascular disease progression (Yao et al., 2006).

PKA has also been demonstrated to potentiate recombinant Ca\textsubscript{v}3.2 channels (Figure 1.3). Macroscopic currents from Ca\textsubscript{v}3.2 channels are augmented by PKA activity when expressed in \textit{Xenopus} oocytes and the effect can be mimicked by serotonin when co-expressed with the 5HT\textsubscript{7} receptor (Kim et al., 2006). Using chimeric Ca\textsubscript{v}3.2 and Na\textsubscript{v}1.4 subunits, a sodium channel which is not known to be regulated by PKA (Smith and Goldin, 1996), the authors identified the II-III intracellular linker as being required for the PKA-mediated potentiation of the Ca\textsubscript{v}3.2 channels (Kim et al., 2006). In CHO and HEK mammalian cell lines, PKA-mediated potentiation of exogenous Ca\textsubscript{v}3.2 currents has been reported to occur at physiological temperature (~30 – 37°C)
but not at room temperature (~22 – 27°C) (Chemin et al., 2007). The PKA-mediated potentiation is contrary to the reported PKA-dependent inhibition of Ca\textsubscript{v}3.2 currents in bovine adrenal glomerulosa cells (Hu et al., 2009).

Protein kinase C (PKC) has also been shown to modulate Ca\textsubscript{v}3.2 channels via activation of certain GPCRs (Figures 1.4). For example, activation of the neurokinin I (NK1) receptor inhibits Ca\textsubscript{v}3.2 currents via the sequential activation of G\textsubscript{aq/11}, phospholipase Cβ (PLCβ) and PKC (Rangel et al., 2010) (Figure 1.4). The NK1-mediated inhibition of Ca\textsubscript{v}3.2 can be occluded by co-expression with either a dominant-negative form of G\textsubscript{aq} or regulators of G-protein signaling proteins (such as RGS2 and RGS3T), as well as by bath application of inhibitors of PLCβ (U73122) and PKC (bisindolylmaleimide I).

Ca\textsubscript{v}3.2 channels are also regulated by nitrous oxide and redox agents (e.g. L-cysteine, dithiothreitol (DTT), 5,5’ dithio-bis(2-nitrobenzoic acid) (DTNB)) (Todorovic et al., 2001a; Todorovic et al., 2001b; Joksovic et al., 2006; Nelson et al., 2007b; Nelson et al., 2007a; Bartels et al., 2009) (Appendix 3). The putative extracellular loop connecting the third and fourth segments of domain I (IS3-IS4) of Ca\textsubscript{v}3.2 channels is implicated as the site of modulation by nitrous oxide and redox agents (Figure 1.3). In particular, using chimeric channels and site-directed mutagenesis, the structural determinant for redox modulation was identified to be dependent upon a distinct histidine residue (H191). The endogenous redox agent ascorbate (vitamin C) has also been shown to inhibit recombinant Ca\textsubscript{v}3.2 channels in HEK cells and in DRG and nRT neurons, revealing a novel mechanism of the action of vitamin C in the peripheral and central nervous systems and may function as endogenous modulator of neuronal excitability (Nelson et al., 2007b) (Appendix 3). Considering that Ca\textsubscript{v}3.2 channels are upregulated in the adult diseased heart (Section 1.4.2), the effects of vitamin C might have a protective role in cardiac disease progression.
While the modulation of Ca\textsubscript{v}3.2 channels by various effectors is starting to be well understood, multiple possible transduction pathways have been proposed (Figure 1.4). Conflicting reports on the modulation of cardiac I\textsubscript{CaT} (Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2) by GPCRs have been communicated by a number of researchers (reviewed in (Chemin et al., 2006; Vassort et al., 2006; Kang et al., 2007; Salazar et al., 2007) and briefly discussed in Section 1.4.1). The variety of reports can possibly be explained by the existence of multiple splice variants of cardiac Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 channels (Section 1.3 and Chapter 2). To date, no study has reported the effect of Ca\textsubscript{v}3.2 splice variation on the modulation of Ca\textsubscript{v}3.2 channels by GPCRs. Exploring the possibility of splice-variant differential modulation by GPCRs and elucidating the potential mechanisms may explain the reported complexity of GPCR-mediated regulation of cardiac I\textsubscript{CaT}. It is important to note that the expression of both cardiac Ca\textsubscript{v}3.2 alternative splice variants, GPCRs, as well as their downstream effectors are altered in diseased hearts ((Kang et al., 2007; Salazar et al., 2007; Sato and Ishikawa, 2010) and Chapter 2). Thus, studying GPCR modulation of Ca\textsubscript{v}3.2 variants may contribute to uncovering mechanisms underlying cardiovascular disease as well as in the development of novel therapeutic approaches.
Figure 1.3. Effectors with identified modulation sites in the Ca,3.2 T-type channel.

There are critical sites in the Ca,3.2 channel known to be directly regulated by various effectors. Redox agents are known to act on H191 of IS3–IS4 (brown line). The redox agent ascorbate causes inhibition, while reducing agents such as L-cysteine and DTT mediate potentiation. Ca,3.2 channels are inhibited by Gβ2γ2 binding to the II–III linker (red line), while phosphorylation by CaMKII (at Ser1198) at the site within the II-III linker causes potentiation of Ca,3.2 T-type channels.
Figure 1.4. Mechanisms of modulation of Ca\textsubscript{v}3.2 T-type Ca2+ channels by G protein-coupled receptors (GPCRs).

Ca\textsubscript{v}3.2 channels are modulated by GPCRs activating G-proteins and related second messenger signaling pathways. The neurokinin I receptor inhibits Ca\textsubscript{v}3.2 channel activity via PKC phosphorylation. Dopamine D1 receptor activation (G\textsubscript{q/11}) inhibits channel activation via a direct action of G\textsubscript{q11} whereas corticotropin-releasing factor 1 (CRF-1) receptor activation inhibits channel activity via G\textsubscript{q} but not involving PLC\textsubscript{β}. CRF-1-mediated inhibition is thought to be caused by G\textsubscript{βγ} binding to Ca\textsubscript{v}3.2. The pathways leading to G\textsubscript{βγ} inhibition of Ca\textsubscript{v}3.2 channels generally occur via activation of G\textsubscript{q/11} and G\textsubscript{q} proteins.

1.3 Alternative splicing

Alternative splicing of voltage-gated Ca2+ channels is an important mechanism for increasing the functional repertoire of these channels. In the cardiovascular system, it is known that alternative splicing of various Ca2+ handling proteins profoundly affects Ca2+-mediated signaling processes in both normal and diseased myocytes (Ladd et al., 2005; Liao et al., 2005; Wang et al., 2006; Liao et al., 2009a).

In general, alternative splicing is the major source of protein diversity amongst organisms (Maniatis and Tasic, 2002; Black, 2003; Stamm et al., 2005; Blencowe, 2006).
multiexonic mRNA splicing patterns can be altered via several distinct mechanisms (Figure 1.5). Most exons are constitutive; they are always either spliced out or included in the final mRNA. An alternatively spliced exon that is sometimes included or excluded is called a cassette exon (Figure 1.5A). In some cases, multiple cassette exons are mutually exclusive (Figure 1.5B), producing mRNAs that always include one of several possible exons but not all. Altering the position of one of the splice sites leads to shorter or longer exons (Figures 1.5C and 1.5D). Further, terminal exons can also be switched through the use of alternative promoter (5’ end) and alternative polyadenylation (PA) (3’) sites (Figures 1.5E and 1.5F). Overall, alternative splicing leads to three structural changes: introduction of stop codons, changes in the protein structure and/or changes in the 5’ and 3’ untranslated (UTR) regions (for reviews see (Black, 2003; Stamm et al., 2005; Blencow, 2006)). This section focuses on the identification and expression of the alternative splice variants of voltage-gated Ca\(^{2+}\) channels and their relevance to physiology and pathophysiology.

1.3.1 Overview of calcium channel alternative splicing

Alternative splicing is a versatile process and along with transcriptional regulators can generate complex genetic alterations to modulate cellular responses to developmental, physiological and pathological signals (Lopez, 1998; Garcia-Blanco et al., 2004; Gray et al., 2007). In Ca\(^{2+}\) channels, alternative splicing occurs at sites important for biophysical properties, trafficking, post-translational modification and coupling to downstream signaling pathways (Gray et al., 2007). The expression of alternative splice variants can be highly variable depending on tissue type, cell type, developmental stage and disease state.

The HVA channels are subjected to extensive alternative splicing. Figure 1.6 illustrates some of the more common alternatively spliced regions of the Ca\(_{1.2}\), Ca\(_{2.1}\) and Ca\(_{2.2}\)
channels. Functionally distinct alternative splice variants of neuronal Ca\textsubscript{2.1} P/Q-type channels have been identified (Soong et al., 2002; Chang et al., 2007). Nine exons at seven loci in the \textit{CACNA1A} gene were found to be alternatively spliced including one pair of mutually exclusive exons (37a and 37b) at the C-terminus which are important for Ca2+-dependent modulation mediated by calmodulin (EF hand) (Soong et al., 2002; Chaudhuri et al., 2004). The EF-hand-like domain controls the activity-dependent enhancement of Ca\textsubscript{2.1} channel gating mediated by calmodulin, a phenomenon referred to as Ca2+-dependent facilitation (CDF). Alternative splicing in the EF-hand-like domain acts as a molecular switch for CDF of Ca\textsubscript{2.1} channels and in mammalian brain occurs in an age- and gender-dependent manner (Chaudhuri et al., 2004; Chang et al., 2007). In both humans and rodents the exon 37b variant is predominantly expressed in early brain development and switches to the exon 37a variant in the adult brain. It is hypothesized that the regulation of expression of alternative splice variants of Ca\textsubscript{2.1} channels potentially contributes to neurophysiological specialization during brain development.

The use of an alternative 3’ acceptor site in a \textit{CACNA1A} intron upstream of the last exon (exon 47) introduces a stop codon at the beginning of exon 47 (Soong et al., 2002). As a result, the Ca\textsubscript{2.1} channel can exist in long (+47) or short (-47) isoforms. The Snutch laboratory explored the biophysical properties of the two C-terminus variants and the effects of introduced FHM-1 mutations and found that FHM-1 mutations have splice-dependent effects on voltage-dependent gating and kinetic properties (Adams et al., 2009) (Appendix 4). This result suggests a potential role of alternative splicing \textit{CACNA1A} gene in the molecular pathophysiology of FHM-1.

Alternative splicing of Ca\textsubscript{2.2} N-type channels has also been reported by Lipscombe and others (Bell et al., 2004; Thaler et al., 2004; Castiglioni et al., 2006; Lipscombe and Raingo, 2007; Raingo et al., 2007). The \textit{CACNA1B} gene has at least two sites of alternative splicing, the
domain II – III intracellular loop region (exon 18a) and the C-terminus (exons e37a and e37b). Alternative splicing in the domain II – III linker affects sensitivity to inactivation during trains of action potential waveforms. Compared with Ca\textsubscript{v}2.2 channels lacking e18a, the presence of e18a prevents the channel from entering into closed-state inactivation, leading to sustained Ca2+ influx (Thaler et al., 2004). N-type channels have been shown to play a significant role in pain processing and exon 37a appears preferentially expressed in nociceptive neurons of DRG (Bell et al., 2004). The presence of e37a produces larger whole cell N-type currents in nociceptive neurons, while exon e37b yields smaller currents. Moreover, a tyrosine residue within the alternative exon e37a has been shown to play a role in N-type channel G-protein-dependent inhibition in nociceptive neurons (Raingo et al., 2007). The inclusion of e37a in Ca\textsubscript{v}2.2 appears to create an inhibitory pathway that is voltage-independent and that substantially increases the sensitivity of N-type channels to opiates. It has been suggested that the Ca\textsubscript{v}2.2 exon e37a variant could be used as therapeutic target for pain management (Raingo et al., 2007).

The alternative splicing of Ca\textsubscript{v}1.2 L-type channels has been studied extensively, with reports showing events related to development (Diebold et al., 1992; Tang et al., 2009), disease pathology (Tiwari et al., 2006; Wang et al., 2006; Tang et al., 2008; Liao et al., 2009b) and tissue-specificity (Liao et al., 2004; Tang et al., 2004; Liao et al., 2005; Tang et al., 2007; Tang et al., 2008) expression. Alternative splicing in the \textit{CACNA1C} exons 31, 32, and 33 encoding for the IVS3 and IVS3 - S4 regions has been shown to be both tissue and developmentally regulated. The predominant splice combination for the fetal heart and brain appears to be the exclusion of exon 31 and the inclusion of exons 32 and 33 (-31, +32, +33). In the adult heart, the -31, +32, +33 combination decreases while -31, +32, -33 variant channel increase. Thus, overall exon 33 is downregulated in the adult heart. In adult brain, the -31, +32, -33 combination is lower than in adult heart suggesting tissue-specific expression. Relevant to cardiac pathology, aberrant
expression of exons 31, 32 and 33 has been reported in infarcted and failing hearts (Gidh-Jain et al., 1995; Yang et al., 2000; Liao et al., 2009b). Alternative splicing in the IVS3-IVS4 region affects the voltage-dependence of channel activation, revealing a positive shift in the voltage-dependence of activation correlated with increasing IVS3-IVS4 linker length (Tang et al., 2004). In the heart, splice variation in the IVS3-IVS4 region could potentially influence the shape and duration of ventricular APs. This suggests that Ca_{v}1.2 splice variation may play roles in the maintenance of muscle excitability and contractility and to also contribute to arrhythmogenesis.

Smooth and cardiac muscle specific expression of Ca_{v}1.2 variants have also been reported by Soong’s laboratory (Liao et al., 2004; Liao et al., 2005; Tang et al., 2007). Mutually exclusive exons 8a and 8 encoding the Ca_{v}1.2 IS6 region are distributed differentially in heart and smooth muscles (Welling et al., 1997; Liao et al., 2005). The L-type IS6 segment determines channel sensitivity to DHPs, widely used Ca_{v}1.2 antagonists to treat cardiovascular disorders (Welling et al., 1997). The smooth muscle exon 8 variant was shown to be more sensitive to inhibition by DHPs compared with exon 8a variant channels. The role of exons 8 and 8a in the severity of disorder associated with Timothy syndrome has also been reported (Splawski et al., 2004; Splawski et al., 2005). Timothy syndrome is a congenital disease affecting various organs, and due to severe cardiac arrhythmia patients do not usually reach adulthood (Liao et al., 2009a). Interestingly, CACNA1C mutations in these patients have only been identified in one of the alternatively splice exons allowing the other exon to function normally. Of note, patients with mutation in cardiac exon 8a experience severe cardiac arrhythmia while patients with mutation in smooth muscle exon 8 have a longer life span (Splawski et al., 2004; Splawski et al., 2005; Liao et al., 2009a).

The level of expression of Ca_{v}1.2 channels containing exons 9* and 21 was reported to be higher in the aorta than the heart whereas exon 22 was reported to be more common in the heart
than in aorta (Liao et al., 2004; Liao et al., 2005; Tang et al., 2007). Exon 9* is highly expressed in the smooth muscle layer of arteries and whole cell recordings of the exon 9* containing Ca\textsubscript{v}1.2 channels revealed a hyperpolarizing shift in the voltage-dependence of activation relative to Ca\textsubscript{v}1.2 lacking exon 9* (Liao et al., 2004). Exon 9* is located in the Ca\textsubscript{v}1.2 I-II linker immediately downstream of the β subunit binding site. Alternative splicing in this region could potentially affect β subunit regulation of Ca\textsubscript{v}1.2 channel function and it remains to be tested whether the addition of 25 amino acids encoded by Ca\textsubscript{v}1.2 exon 9* affects the binding and modulation of different β subunits on Ca\textsubscript{v}1.2. Further, a possible role for the high expression of exon 9* in the arteries is to allow the activation of the channels with slight depolarization and to generate sufficient tension for blood vessels to function (Liao et al., 2005). The process would contribute to Ca2+ influx that presumably triggers greater myogenic tone or more prolonged contraction of the blood vessels (Jaggar et al., 1998).

Exons 21 and 22 are mutually exclusive exons encoding for the Ca\textsubscript{v}1.2 IIIS2 region. The expression of these exons is either included or excluded in the Ca\textsubscript{v}1.2 transcripts. In the aorta, the level of expression of exon 21 is about three-fold higher than exon 22. Interestingly, in human atherosclerotic patients, upregulation of expression of exon 22 was observed (Tiwari et al., 2006). In addition, the expression of exon 22 was found to have potential association with vascular smooth muscle proliferation. Relevant to cardiac hypertrophy, comparative studies of Ca\textsubscript{v}1.2 alternative splicing between hypertrophic Spontaneously Hypertensive Rats (SHR) and normotensive Wistar Kyoto (WKY) rats has revealed significant changes in patterns of expression of alternative spliced variants (Tang et al., 2008; Liao et al., 2009a). The proportion of aberrant Ca\textsubscript{v}1.2 transcript including both exons 21 and 22 (+21/+22) is higher in hypertrophic SHR than in normotensive WKY. Conversely, in WKY the inclusion of either exon 21 or exon 22 forms the IIIS2 transmembrane segment. The presence of both exons 21 and 22 creates
dominant negative effect (i.e. unable to conduct currents) on \(\text{Ca}_{1.2} \) channels while the presence of either exon 21 or 22 produces different biophysical and pharmacological properties (Soldatov et al., 1995; Zuhlke et al., 1998; Tiwari et al., 2006; Tang et al., 2008). As \(\text{Ca}_{1.2} \) exons (+21/+22) containing channels are predominantly expressed in hypertrophic heart perhaps these channels contribute to the altered electrical activity observed in cardiac hypertrophy. Lastly, exon 22 containing channels are reported to be more sensitive to blocking by DHPs than exon 21 containing \(\text{Ca}_{1.2} \) channels (Soldatov et al., 1995; Zuhlke et al., 1998). Thus, perhaps DHPs can be effectively used for management and treatment of atherosclerosis as this disorder is associated with an upregulation of exon 22 containing alternative splice variants.

Overall, alternative splicing of the HVA channel genes changes channel protein sequence and generates novel functional and nonfunctional isoforms. The spatial and temporal expression of alternatively spliced variants likely contributes to the physiological specialization of the splice variant isoforms. In certain pathological states the amount and pattern of expression of splice variants are also altered. Questions now remain as to whether these changes in expression are causes or effects of the disease. Understanding splice variant expression changes during the normal course of development and in disease progression is a major goal of future research in defining the contributions of alternative splicing to physiology and pathophysiology.
Figure 1.5. Patterns of alternative splicing in eukaryotic mRNA.
Patterns of alternative splicing that are responsible for the generation of distinct transcripts. The types of alternative splicing are depicted above each cartoon. Blue boxes represent constitutive exons, yellow boxes denote alternative exons, bent arrows and vertical arrows correspond to alternative promoter and poly (A) sites, respectively.
Figure 1.6. Functionally relevant alternative splicing events in HVA channels.
The diagram shows functional domains (arrows) that are altered in Ca\textsubscript{v}1.2, Ca\textsubscript{v}2.1 and Ca\textsubscript{v}2.2 channels as a result of alternative splicing events in CACNA1C (blue), CACNA1B (red) and CACNA1A (green) genes, respectively. Alternative splice variants in these regions are reported to contribute to the differential channel biophysical properties and are also implicated in the pathophysiology of cardiovascular and neurological disorders (Chaudhuri et al., 2004; Thaler et al., 2004; Splawski et al., 2005; Tiwari et al., 2006; Chang et al., 2007; Raingo et al., 2007; Tang et al., 2008).
1.3.2 Alternative splicing of T-type calcium channels

T-type channel genes are known to be subject to alternative splicing (Figure 1.7). Using short amplicon PCR colony screening, Mittman and colleagues initially identified two and six alternative splice sites for the human $\text{Ca}_{\alpha3.3}$ and $\text{Ca}_{\alpha3.1}$ channels, respectively. Alternative splicing of the human $\text{Ca}_{\alpha3.3}$ channel gene was found to occur at two sites, one being the variable inclusion of exon 9 (35 amino acids) in the domain I – II linker and the other the use of an alternate acceptor in exon 33, leading to variable inclusion of 13 amino acids in the C-terminus (Mittman et al., 1999a; Mittman et al., 1999b). The splicing events affected channel activation and inactivation kinetics interdependently, suggesting a possible direct interaction between the two regions (Murbartian et al., 2004). Rat brain $\text{Ca}_{\alpha3.3}$ channels were also reported to be alternatively spliced with all six splice variants located in the C-terminus between exons 33 and 34 (Murbartian et al., 2002). The electrophysiological properties of the variants displayed similar voltage-dependent gating, but differed in their kinetic properties.

Initial study of alternative splicing in the human brain $\text{Ca}_{\alpha3.1}$ revealed broad splicing across exons 14, 25, 26, 34, 35 and 38 (Mittman et al., 1999a; Monteil et al., 2000a). Further studies using fetal and adult human brain cDNA libraries revealed nine additional sites of splice variation (Emerick et al., 2006). The majority of functional $\text{Ca}_{\alpha3.1}$ channel splicing occurs in cytoplasmic channel regions. The C-terminus variants (exons 34, 35 and 38) were shown to affect channel gating and kinetic properties. Likewise, alternative splicing in exons 25 and 26 that encode for the $\text{Ca}_{\alpha3.1}$ domain III – IV linker also affects gating, activation and inactivation kinetics as well as relative expression during development. Fetal brain transcripts predominantly express cassette exon 26 over the alternate donor exon 25C. In contrast, in the adult brain the relative expression of exon 25C is greater than exon 26. Structurally, exon 25C introduces a consensus phosphorylation site for PKA suggesting that variants resulting from alternative
splicing in the III–IV linker could be differentially regulated by cAMP-dependent mechanisms. In regards to regulation of expression of splice variants, the reciprocal relationship between cellular and molecular diversity in the developing brain suggests that splicing progresses with cell differentiation from nearly independent (stochastic) and unbiased splicing in fetal transcripts to strongly concerted (deterministic) splicing in adult transcripts (Emerick et al., 2006). Ca\textsubscript{v}3.1 alternative splice variants involving the III–IV linker were also reported in embryonic day 14 mouse heart (Cribbs et al., 2001) and human gliomas (Latour et al., 2004). Latour et al. demonstrated changes in the relative mRNA expression of Ca\textsubscript{v}3.1 transcripts between normal brain tissues and glioma biopsies suggesting potential contribution of alternative splicing to the pathophysiology of tumors (Latour et al., 2004).

Alternative splicing of Ca\textsubscript{v}3.2 T-type channels has thus far been reported in human testes (Jagannathan et al., 2002), uterus (Ohkubo et al., 2005) and fetal brain (Zhong et al., 2006) as well as in rat thalamus (Powell et al., 2009) (Appendix 5). Using a human fetal brain cDNA library, Zhong and co-workers utilized partial length cDNA (from exon 19 to the 3’-UTR) and overlapping short PCR amplicons to screen for alternative splice variants of Ca\textsubscript{v}3.2 channels (Zhong et al., 2006). The authors identified 12–14 alternative splice sites within the Ca\textsubscript{v}3.2 open reading frame (ORF), potentially generating both functional and non-functional transcripts. The majority of functional Ca\textsubscript{v}3.2 splicing occurs in cytoplasmic regions and was found to affect both current kinetics and voltage-dependence of gating (Ohkubo et al., 2005; Zhong et al., 2006; Powell et al., 2009) (Appendix 5).

The role of neuronal Ca\textsubscript{v}3.2 T-type channel alternative splice variants in the pathophysiology of epilepsy was investigated by the Snutch and O’Brien groups (Powell et al., 2009) (Appendix 5). The work demonstrated that the functional effects of a Ca\textsubscript{v}3.2 R1584P mutation in genetic absence epilepsy rats from the Strasbourg (GAERS) model are dependent
upon alternative splicing of exon 25. To date, Ca₃.2 alternative splicing in the heart has not been explored. In part, this thesis studied cardiac Ca₃.2 alternative splicing and the differential expression of alternative splice variants during maturation and cardiac hypertrophy (Chapter 2).

Figure 1.7. Functionally relevant alternative splicing events in T-type channels. The diagram shows functional domains (arrows) that are altered in Ca₃.1, Ca₃.2 and Ca₃.3 channels as a consequence of different splicing events in CACNA1G (blue), CACNA1H (green) and CACNA1I (red) genes, respectively. Alternative splicing in these regions results in differential channel biophysical properties. Importantly, Ca₃.2 alternative splice variants in the III – IV linker have been implicated in the pathophysiology of epilepsy (Zhong et al., 2006; Powell et al., 2009).
1.4 T-type calcium channels and the heart

Cardiac voltage-gated Ca\(^{2+}\) channels are known to contribute to the control of electrical activity of normal and diseased myocardium. Critically, they also play important roles in cardiac pacemaking, conduction, E-C coupling and the genesis of arrhythmias. Two distinct Ca\(^{2+}\) channel families have been identified in the heart: L- and T-type channels. L-type channels are ubiquitously expressed in the heart and are known to play important roles concerning E-C coupling and pacemaking (Bers, 2001; Bers, 2002; Mangoni et al., 2003). On the other hand, the functional role of T-type channels in cardiac physiology is not entirely clear. This section discusses the expression, modulation and physiological roles of cardiac T-type channels.

1.4.1 Expression, functional roles and modulation

There are two major T-type channel isoforms expressed in the heart; the Ca\(_v\)3.1 and Ca\(_v\)3.2 types (Cribbs et al., 1998; Demir et al., 1999; Cribbs et al., 2001; Perez-Reyes, 2003; Mangoni et al., 2006b; Rosati et al., 2007). In the adult heart, the expression of both T-type isoforms appears restricted to the SA node, atrio-ventricular node (AV) and Purkinje fibers (PF) (Hagiwara et al., 1988; Shorofsky and January, 1992; Xu and Best, 1992; Zhou and Lipsius, 1994; Bohn et al., 2000; Leuranguer et al., 2000; Marionneau et al., 2005; Mangoni et al., 2006b; Rosati et al., 2007).

I\(_{\text{CaT}}\) has been implicated in playing a role in generating pacemaker depolarization and in contributing to automaticity (Nilius, 1986; Hagiwara et al., 1988; Zhou and Lipsius, 1994; Ono and Iijima, 2005). Cardiac automaticity is a complex physiological function requiring the coordinated activity of the primary pacemaker center (SA node) and that of the conduction system (AV node and PF network) (Boyett et al., 2000; Moorman and Christoffels, 2003; Efimov et al., 2004; Mangoni et al., 2006a; Mangoni and Nargeot, 2008). Automaticity is initiated in the
SA node by primary pacemaker cells which propagate the impulse to the atria spreading to the AV node and PF enabling contraction of the entire myocardium (Mangoni et al., 2006a). Using pharmacological tools, the contribution of I_{CaT} in cardiac pacemaking was studied in SA node (Protas and Robinson, 2000; Madle et al., 2001). Using mibefradil to block I_{CaT} in the SA node, the authors showed a dose-dependent reduction of pacemaker activity, observed as the reduction in the slope of the later phase of diastolic depolarization. A similar concentration-dependent reduction of pacemaker activity was also observed with efonidipine (Masumiya et al., 1998).

Further, Ca$^{2+}$ influx through T-type channels in atrial myocytes triggers the release of Ca$^{2+}$ from the SR which in turn activates Na/Ca exchanger currents ($I_{\text{Na/Ca}}$) leading to increased Na$^+$ influx and therefore promotes automaticity (Huser et al., 2000). Taken together, the results from these studies support the notion that T-type channels play important roles in cardiac pacemaking and automaticity.

L-type Ca$^{2+}$ currents (I_{CaL}) are considered to be the primary trigger for SR Ca$^{2+}$ release to induce E-C coupling in normal adult hearts. However, the involvement of I_{CaT} in SR Ca$^{2+}$ release in amphibian and mammalian hearts was suggested initially by Morad and Cleeman (Morad and Cleemann, 1987) and supported by later studies using adult guinea pig ventricular myocytes (Sipido et al., 1998). The contribution of I_{CaT} to SR Ca$^{2+}$ release was shown to be eliminated when 50 µM Ni$^{2+}$ was added to block T-type channels. In another study examining canine cardiac Purkinje cells it was observed that I_{CaT} is capable of initiating contraction via inducing Ca$^{2+}$ release from SR (Zhou and January, 1998).

In immature hearts, cardiac contractility has been reported to be dependent mainly on transsarcolemmal Ca$^{2+}$ influx contributed by I_{CaT} and I_{CaL} and reversed mode $I_{\text{Na/Ca}}$ (Nuss and Marban, 1994; Wetzel and Klitzner, 1996; Haddock et al., 1999; Kitchens et al., 2003; Escobar et al., 2004; Tohse et al., 2004). T-tubules and SR are not fully developed in immature hearts and
I_{CaT} supplies most of the Ca^{2+} that triggers the contraction in the immature myocardium. In support, Ca^{2+} flux and contraction were increased in adult mouse ventricular myocytes overexpressing Ca_{v}3.1 T-type channels (Jaleel et al., 2008). Collectively, these studies suggest the notion that T-type channels play a role in E-C coupling, particularly in the developing heart.

Cardiac T-type channels have also been reported to play important roles in the secretion of hormones. Atrial natriuretic peptide (ANP) hormone has been shown to be important in the control of blood pressure as well as in salt and water excretion and an increase in intracellular Ca^{2+} concentration in atria and ventricles stimulates ANP secretion (Thibault et al., 1999). The role of T-type channels in the secretion of atrial ANP has been described in rabbit and rat hearts wherein an increase in Ca^{2+} flux via T-type channels stimulates atrial myocytic ANP release (Leuranguer et al., 2000; Wen et al., 2000).

Cardiac I_{CaT} is also subject to modulation by G-protein-coupled receptors. In frog atrial myocytes, activators of β-adrenergic receptors facilitate cardiac I_{CaT} (Alvarez and Vassort, 1992; Alvarez et al., 1996; Alvarez et al., 2000). Further, atrial myocyte I_{CaT} is tonically inhibited by Ga proteins. Several hormones implicated in playing important roles in cardiac remodelling including endothelin-1 (ET-1) (Furukawa et al., 1992; Izumi et al., 2003), Ang II (Ferron et al., 2003), aldosterone (Okoshi et al., 2004; Lalevee et al., 2005) and corticosteroids (Maturana et al., 2009) have been demonstrated to enhance cardiac I_{CaT} and T-type channel mRNA expression. In addition, estrogen and testosterone have been reported to affect cardiac myocyte I_{CaT} and T-type channel mRNA expression as long term pretreatment (24 to 30 hours) with testosterone on cultured ventricular myocytes increased I_{CaT} density attributed to upregulation of Ca_{v}3.1 and Ca_{v}3.2 mRNA expression and conversely, acute pretreatment (< 10 minutes) of testosterone decreased I_{CaT} (Michels et al., 2006). Contrary to the effect of long term testosterone treatment, 24 hour estrogen pretreatment resulted in decreased cardiac myocyte I_{CaT} and downregulation of
Ca,3.2 mRNA (Marni et al., 2009). This suggests that chronic treatment of estrogen and testosterone produce differential effects on the heart, and may which have cardiac implications in hormone replacement therapy.

1.4.2 Developmental regulation and association in cardiac diseases

The expression of the two main cardiac T-type isoforms is known to be differentially regulated during development. Ca,3.2 mRNA is highly expressed in the prenatal stage and reduced after birth. In the adult ventricle neither Ca,3.1 nor Ca,3.2 mRNA are detected (Leuranguer et al., 2000; Ferron et al., 2002; Larsen et al., 2002). In rat atria, the level of Ca,3.1 mRNA expression is consistently high throughout development while Ca,3.2 mRNA is highest in embryonic tissue to 3 weeks postnatal but becomes undetectable after 5 weeks (Larsen et al., 2002; Larsen et al., 2005).

In murine hearts, developmental changes in Ca,3.2/Ca,3.1 mRNA expression have been shown by several investigators. Using quantitative RT-PCR analysis on mouse cardiac ventricles, predominant Ca,3.2 mRNA expression during the whole embryonic stage has been observed while in adults Ca,3.1 mRNA expression was shown to be higher than Ca,3.2 although regardless there was no detectable I_{CaT} in ventricular myocytes (Niwa et al., 2004; Mizuta et al., 2005; Yasui et al., 2005).

While I_{CaT} has not been recorded in the human heart, both Ca,3.1 (Monteil et al., 2000a) and Ca,3.2 (Cribbs et al., 1998) transcripts have been identified. Downregulation of Ca,3.2 expression was also reported in human ventricular myocytes (Qu and Boutjdir, 2001). The reduction in expression of Ca,3.2 mRNA could be attributed to regulation by the transcriptional repressor neuron-restrictive silencer factor (NRSF), a neuron-restrictive silencer element (NRSE) binding protein. Kuwahara and colleagues demonstrated a negative correlation of expression.
between NRSF and Ca\(_{v}\)3.2 in adult and embryonic mouse ventricles (Kuwahara et al., 2003; Kuwahara et al., 2005). The authors reported that the level of NRSF expression was higher in the adult ventricle than in embryonic and fetal ventricles whereas the opposite pattern was observed in Ca\(_{v}\)3.2 mRNA (Kuwahara et al., 2001; Kuwahara et al., 2003). They also reported that the first intron of the \(CACNA1H\) gene contains NRSE-like sequences (93 – 97% identity) and are well conserved among different mammalian species (Kuwahara et al., 2003; Kuwahara et al., 2005). Taken together, the presence of high amount of NRSF in the adult ventricle perhaps represses Ca\(_{v}\)3.2 channel expression and may be the reason why Ca\(_{v}\)3.2 is much reduced or absent in adult mammalian ventricles.

T-type channels have been reported to be associated with the pathophysiology of a number of cardiovascular diseases (Lory et al., 2006; Cribbs, 2010; Ono and Iijima, 2010). Even before the cloning of T-type channels, \(I_{CaT}\) was recorded in the diseased myocardium and it had been suggested that the re-appearance of \(I_{CaT}\) in diseased hearts contributes to Ca\(^{2+}\) overload and the genesis of arrhythmias (Nuss and Houser, 1993; Sen and Smith, 1994; Bkaily et al., 1997; Cribbs, 2010). \(I_{CaT}\) is re-expressed in hypertrophied ventricles and shows relatively high Ni\(^{2+}\) sensitivity suggesting Ca\(_{v}\)3.2 as the underlying the re-expressed T-type isoform (Martinez et al., 1999). Further, in post-myocardial infarcted hearts (PMI) upregulation of Ca\(_{v}\)3.1 and Ca\(_{v}\)3.2 mRNA is reported (Huang et al., 2000; Yasui et al., 2005) and in the failing heart of Dahl-sensitive (DS) rats both \(I_{CaT}\) and Ca\(_{v}\)3.1 mRNA re-appear (Izumi et al., 2003). Thus, re-expression of T-type channels may contribute to the molecular remodeling of the diseased heart.

Although, T-type channels are implicated in cardiac hypertrophy and the pathogenesis associated with Ca\(^{2+}\) overload and arrhythmia, the mechanisms involved in the association of T-type channels with cardiac remodeling remains debatable. Ang II treatment has been extensively used to study cardiac hypertrophy in cultured cardiac myocytes. Ang II induces hypertrophy in
cardiac myocytes via binding to G-protein-coupled Ang II Type I (AT₁) receptors (see (Molkentin and Dorn, 2001; Dorn and Force, 2005; Heineke and Molkentin, 2006) for reviews). In frog atrial myocytes Ang II increases I_{CaT} (Bonvallet and Rougier, 1989) and in rat ventricular myocytes AngII both increases I_{CaT} and Ca_{v}3.1 mRNA expression (Ferron et al., 2003). On the other hand, activation of the AT₁ receptor by Ang II in neonatal rat ventricular myocytes enhanced I_{CaT} concomitant with increased expression of both Ca_{v}3.1 and Ca_{v}3.2 mRNA (Morishima et al., 2009). Recently, Chiang et al. have provided strong evidence implicating the involvement of Ca_{v}3.2 T-type channels in the pathogenesis of cardiac hypertrophy (Chiang et al., 2009). Pressure-overload cardiac hypertrophy was suppressed in Ca_{v}3.2 knockout mice (Ca_{v}3.2^{−/−}) but not in mice deficient for Ca_{v}3.1 (Ca_{v}3.1^{−/−}). Importantly, Ang II-induced cardiac hypertrophy was suppressed in Ca_{v}3.2^{−/−} mice further implicating Ca_{v}3.2 channels as a key component in Ang II hypertrophic signaling. The authors also identified calcineurin/NFAT-dependent pathways as signaling mechanisms responsible for the Ca_{v}3.2-dependent cardiac hypertrophy (Chiang et al., 2009). However, in another study examining the role of T-type channels in cardiac hypertrophy, an enhancement of cardiac hypertrophy in aortic banded Ca_{v}3.1^{−/−} mice was reported (Nakayama et al., 2009). The authors also showed that the enhanced hypertrophy in Ca_{v}3.1^{−/−} was rescued with the Ca_{v}3.1 transgene and dependent upon NOS3-mediated signaling mechanisms. Taken together, the results from the T-type channel knockout models suggest that Ca_{v}3.1 and Ca_{v}3.2 channels contribute differential roles in cardiac hypertrophy.

Mineralocorticoid and glucocorticoid hormones have also been implicated in cardiac hypertrophy and remodeling (Rossier et al., 2010). Interestingly, these hormones induce the expression of Ca_{v}3.2 mRNA and mediate positive chronotropic effect in ventricular myocytes (Rossier et al., 2003; Lalevee et al., 2005; Rossier et al., 2008; Maturana et al., 2009). It was
suggested that positive chronotropism as a result of increased Ca_{v}3.2 channel activity may predispose the ventricle to arrhythmia. In another report, the expression of Ca_{v}3.1 mRNA in neonatal rat ventricular myocytes was upregulated by dexamethasone treatment (BenMohamed et al., 2009).

Enhancement of I_{CaT} activity in cultured neonatal ventricular myocytes by ET-1, a vasoactive peptide associated with cardiac hypertrophy has been reported (Furukawa et al., 1992). Additionally, increases in I_{CaT} and Ca_{v}3.1 mRNA levels were found to be correlated with upregulated ET-1 in failing rat hearts, an observation implicating T-type channels in ET-1-induced cardiac remodeling (Izumi et al., 2003). Monocrotaline (MCT), a pyrrolizidine alkaloid, induces right ventricular hypertrophy and also upregulates I_{CaT} as well as Ca_{v}3.1 and Ca_{v}3.2 mRNA expression (Takebayashi et al., 2006). However, in a separate study, MCT-induced cardiac hypertrophy showed no significant changes in expression of Ca_{v}3.1 and Ca_{v}3.2 mRNA (Koyama et al., 2009). Interestingly, although the mRNA levels were not altered, an increase in I_{CaT} was observed, an indication that altered I_{CaT} may contribute to right atrial electrical remodeling. In chronic hypoxia in neonatal rat ventricular myocytes, downregulation of I_{CaT} and Ca_{v}3.1 mRNA expression has been observed; however, upon reoxygenation recorded currents and channel expression are restored (Pluteanu and Cribbs, 2009). The authors suggested that T-type channels play a significant role in cardiac remodeling induced by hypoxia/reoxygenation injury. Overall, alteration in the expression of T-type channels appears to alter Ca^{2+}-mediated signaling processes in the diseased heart. These modifications may affect overall cardiac contractility and electrical activity.

Although recent progress has provided insight into the developmental and pathological regulation of expression of T-type channels, there remains much to learn concerning the mechanisms and the role of these channels in the normal and diseased heart. In addition, it also
remains to be determined whether alternative splicing of cardiac T-type channels contributes to cardiac development and pathophysiology.

1.5 Voltage-dependent facilitation of calcium channels

The influx of Ca\(^{2+}\) into cardiac myocytes through the voltage-gated Ca\(^{2+}\) channels can be influenced by channel modulation, pharmacological agents and voltage-dependent mechanisms. The potentiation of Ca\(^{2+}\) currents by a prepulse depolarization is known as voltage-dependent facilitation (VDF). Facilitation of Ca\(^{2+}\) currents has been reported for both HVA and LVA channels. There are several mechanisms suggested to underlie facilitation of voltage-gated Ca\(^{2+}\) channels and this section focuses on the potentiation of Ca\(^{2+}\) currents induced by depolarizing prepulses. The first part of this section focuses on VDF of HVA Ca\(^{2+}\) channels and the second centers on the VDF of T-type channels. The reported VDF mechanisms and potential contribution to normal and diseased cells are also discussed.

1.5.1 Voltage-dependent facilitation of high voltage-activated calcium channels

The Ca\(_{v}\)2 channels are well known to display VDF through a mechanism involving the voltage-dependent relief of tonic G-protein-dependent inhibition. G-protein-dependent inhibition is characterized by a positive shift in voltage-dependence of activation, the slowing of time courses of activation and inactivation, and a reduction of peak current amplitude (Bean, 1989b; Kasai and Aosaki, 1989; Lipscombe et al., 1989). Inhibited channels are described as being `reluctant` to open and converted by strong depolarization into a `willing` state, resulting in facilitated currents (Bean, 1989b; Elmslie et al., 1990; Ikeda, 1991; Patil et al., 1996). This type of modulation has shown to be more common to N-type than P/Q-type Ca\(^{2+}\) channels (Colecraft
et al., 2000; Lee and Elmslie, 2000). Reports from various groups have demonstrated that VDF via removal of G-protein-mediated inhibition occurs specifically through Gβγ complexes (Bourinet et al., 1996; Herlitze et al., 1996; Ikeda, 1996; Meza and Adams, 1998). In one study, the structural determinants underlying the interaction between Gβγ and Ca²⁺ channels was investigated using chimeric Caᵥ2.2 - Caᵥ2.1 channels and the domain I and the C-terminus proposed to serve as major interaction sites for Gβγ (Zhang et al., 1996). Other studies used a combination of electrophysiological, molecular and biochemical techniques and identified the domain I – II linker of the Caᵥ2 subunit as the critical region for Gβγ interaction (Pragnell et al., 1994; De Waard et al., 1995; Witcher et al., 1995; De Waard et al., 1997; Herlitze et al., 1997; Zamponi et al., 1997). Whole cell patch clamp analysis of N-type currents and inclusion of purified Gβγ in the patch pipette showed direct evidence for the physical dissociation of a single Gβγ underlying the prepulse-induced facilitation (Zamponi and Snutch, 1998). In general, the facilitation of N- and P/Q-type currents plays important roles in neurotransmitter release and synaptic plasticity (Brody and Yue, 2000; Colecraft et al., 2000; Currie and Fox, 2002).

VDF of L-type currents has also been described in skeletal muscle (Scultptoreanu et al., 1993a), chromaffin cells (Artalejo et al., 1992), neurons (Bourinet et al., 1994; Sculptoreanu et al., 1995; Calin-Jageman et al., 2007) and cardiac cells (Pietrobon and Hess, 1990; Sculptoreanu et al., 1993b; Xiao et al., 1994; Kamp et al., 2000; Blaich et al., 2010). Distinct from Caᵥ2 channels, the VDF observed for L-type currents has been shown to be dependent upon phosphorylation by PKA (Scultptoreanu et al., 1993b; Sculptoreanu et al., 1993a; Xiao et al., 1994; Sculptoreanu et al., 1995) or by CaMKII (Xiao et al., 1994; Blaich et al., 2010). L-type channel VDF is characterized by a negative shift in voltage-dependent activation ascribed to an increase in open probability. Relevant to cardiac physiology, the facilitation of L-type currents has been suggested to contribute to the increase in cardiac muscle contractile force (Lee, 1987;
Fedida et al., 1988a, b). Prolonged APs, such as those observed in patients with bradycardia, could potentially lead to reactivation and facilitation of cardiac L-type Ca\(^{2+}\) channels. This would in turn result in an increase in myoplasmic Ca\(^{2+}\) promoting after-depolarizations and associated arrhythmias (January and Riddle, 1989; Kamp et al., 2000). Overall, changes in intracellular Ca\(^{2+}\) concentration as a result of VDF may lead to alteration in both inotropic and chronotropic properties of the normal and diseased heart.

1.5.2 Voltage-dependent facilitation of T-type channels

Among recombinant T-type channels, VDF has thus far been only shown for Ca\(_{v}3.3\) channels (Klockner et al., 1999; Chemin et al., 2002; Gomora et al., 2002). Facilitated human Ca\(_{v}3.3\) T-type channels show a significant increase in current amplitude (20 to 25\%) after +100 mV prepulse. Conversely, no facilitation was observed for the rat Ca\(_{v}3.1\) isoform and only weak facilitation (~5 \%) for the human Ca\(_{v}3.2\) subtype (Klockner et al., 1999). The structural determinants responsible for the human Ca\(_{v}3.3\) VDF were found to be dependent upon the last 214 amino acids of the distal C-terminus (Gomora et al., 2002).

Prepulse-induced facilitation of native I\(_{CaT}\) has been observed in guinea pig coronary smooth muscle myocytes (Ganitkevich and Isenberg, 1991), frog atrial cells (Alvarez et al., 1996; Alvarez et al., 2000), rat bone marrow cells (Publicover et al., 1995) and mouse spermatogenic cells (Arnoult et al., 1997). The facilitation of I\(_{CaT}\) has variously been proposed to be due to voltage-dependent modulation, tyrosine phosphorylation, the voltage-dependent relief of tonic inhibition by G-proteins or PKA phosphorylation. Figure 1.6 illustrates the proposed underlying mechanisms of native I\(_{CaT}\) facilitation.

Facilitation of I\(_{CaT}\) involving a pure voltage mechanism has been proposed for guinea-pig coronary smooth muscle myocytes (Ganitkevich and Isenberg, 1991) and cultured rat bone
marrow cells (Publicover et al., 1995). I_{CaT} of guinea-pig smooth muscle myocytes was potentiated twofold by 200 ms prepulse to voltages above -30 mV and saturated at -10 mV. Potentiation of I_{CaT} by longer prepulses (10 s) shifted the voltage-dependency of facilitation to a more hyperpolarized potentials such that saturation occurred at -50 mV and varying the duration of the prepulse showed peak facilitation between 160 and 320 ms. Facilitated I_{CaT} inactivated faster than the unfacilitated currents. Facilitation of I_{CaT} in cultured bone cells was approximately 100% by a 750 ms prepulse to +150 mV. Compared with smooth muscle myocytes, stronger depolarizations were required and robust facilitation was only observed from potentials positive to 0 mV. Changing the duration of the prepulse showed that half maximal potentiation occurred at 250 ms and saturated at 1000 ms. The facilitation in these cells has been suggested to be due to both a shift in gating properties and recruitment of a population of quiescent channels (Ganitkevich and Isenberg, 1991; Publicover et al., 1995).

T-type currents from mouse spermatogenic cells are increased by strong depolarizing prepulses and involving removal of a tyrosine kinase tonic inhibition (Arnoult et al., 1997). The robust facilitation of I_{CaT} in spermatocytes was observed at prepulse potentials positive to -30 mV and the authors utilized membrane permeable inhibitors of tyrosine kinases (tryphostins A47 and A25) to explore the mechanism of facilitation in sperm cells. Tyrosine kinase inhibitors increased basal I_{CaT} and had no effect on facilitated currents while application of phenylarsine oxide (protein tyrosine phosphatase inhibitor) resulted in inhibition of the basal current and prevented facilitation. Thus, facilitation in spermatogenic I_{CaT} is dependent upon the voltage-dependent relief of tyrosine kinase-mediated inhibition.

Relevant to the heart, facilitation of I_{CaT} in frog atrial myocytes was shown to be regulated by both G_{o} and G_{i} proteins (Alvarez et al., 1996). I_{CaT} was stimulated by β-adrenergic agonists to activate G_{o} increasing adenylyl cyclase activity and leading to cAMP synthesis. This
activity leads to activation of PKA and eventually phosphorylates native T-type channels. The cAMP/PKA-dependent phosphorylation leads to facilitation of I_{CaT} in atrial myocytes. The cAMP/PKA-dependent stimulation could be further enhanced by depolarizing prepulses and prevented by the intracellular application of pertussis toxin (a $G\alpha_i$ inhibitor). Thus, the facilitation of I_{CaT} in frog atrial myocytes is a result of voltage-dependent relief of the $G\alpha_i$-protein inhibitory tone (Alvarez et al., 1996). Interestingly, of the two cardiac T-type channel isoforms (Ca$_{v}$3.1 and Ca$_{v}$3.2), recombinant Ca$_{v}$3.2 T-type channels can be inhibited by G-proteins ascribed to the Ca$_{v}$3.2 channel direct interaction with G$\beta\gamma$ subunits (Wolfe et al., 2003; DePuy et al., 2006). Thus, the tonic inhibition observed in atrial cardiac myocytes might be due to direct binding of G$\beta\gamma$ subunits to native cardiovascular Ca$_{v}$3.2 channels.

Overall, the role of VDF of T-type channels in the cardiovascular system has not been elucidated. Given that cardiac T-type channels are predominantly expressed in the developing and disease hearts (Section 1.4), it is possible that the VDF of T-type channels plays distinct roles at different developmental stages and pathological conditions. For example, in the immature heart VDF may contribute to the contractility and beating frequency whereas in the diseased heart it may participate in sustaining arrhythmic electrical activity.
Multiple molecular mechanisms have been suggested to underlie facilitation of native T-type Ca$^{2+}$ currents. Facilitation has been proposed to due to (1) voltage-dependent change in gating mode (orange arrow); (2) voltage-dependent relief of G$\beta$$\gamma$-mediated inhibition (blue arrow), application of strong depolarizing prepulses removes the inhibition by G$\beta$$\gamma$ resulting to enhancement (facilitated) of Ca$^{2+}$ currents during the test pulse; (3) removal of tonic inhibition due to tyrosine kinase phosphorylation (green arrow) or (4) increase in intracellular cAMP and phosphorylation by PKA as a result of Gα_s activation (red arrow).
1.6 Thesis hypotheses and objectives

1.6.1 Hypothesis 1

While there are ten genes encoding Ca\(^{2+}\) channel \(\alpha_1\) subunits, it is predicted that there are perhaps 1000 times as many splice variants, likely with their own distinct functional properties and spatial and temporal expression patterns (Lipscombe et al., 2002; Gray et al., 2007). The structural differences resulting from alternative splicing can affect channel biophysics, drug affinity, trafficking, intracellular localization, protein stability, post translational modification, modulation and coupling to downstream signaling pathways (Stamm et al., 2005; Gray et al., 2007). All T-type channel isoforms are subject to alternative splicing with reports showing changes in expression patterns in different developmental stages and disease states. Specifically, alternative splice variants of Ca\(_{\alpha,3.2}\) T-type channels have been reported in the brain and in reproductive tissues and associated with disorders such as absence epilepsy (Jagannathan et al., 2002; Ohkubo et al., 2005; Zhong et al., 2006; Powell et al., 2009). Currently, there has been no description of Ca\(_{\alpha,3.2}\) alternative splicing in the heart. In this thesis, I specifically hypothesize:

That alternative splicing in rat cardiac Ca\(_{\alpha,3.2}\) T-type channels is a mechanism to generate functionally distinct Ca\(_{\alpha,3.2}\) channels.

1.6.2 Hypothesis 2

Recent trends in alternative splicing research have been directed to profiling functionally relevant transcripts and their role in normal physiology and diseases, particularly on how variants are coordinated on a global level to achieve cell- and tissue-specific functions (Blencow, 2006). Regulation during development, by environmental stimuli or cellular activity has been shown to contribute to changes in splice variant expression patterns (Diebold et al., 1992; Liao et al., 2004;
Schultz Jel et al., 2004; Emerick et al., 2006). Such regulation is likely intended to adapt and compensate in response to changes in the gene expression patterns of other proteins during maturation and in pathological states or to refine electrical properties of ion channels in response to the cascade of changes in the cells and tissues. Of note, developmental and pathological regulation of the expression of a number of alternative splice variants of various cardiac Ca2+ handling proteins such as CaMII\textdelta, cardiac troponin T and Ca\textsubscript{v}1.2 channels have been reported (Tang et al., 2004; Ladd et al., 2005; Xu et al., 2005; Tiwari et al., 2006; Tang et al., 2008)

In this thesis, I specifically hypothesize:

That there is a differential expression of Ca\textsubscript{v}3.2 splice variants between neonatal and adult hearts as well as between adult normotensive and hypertensive SHR rats.

1.6.4 Hypothesis 3

Biophysical characterization of native cardiac I\textsubscript{CaT} has been studied in Purkinje fibers, SA node, atria and ventricle. However, there has been no description on the correlation between the electrophysiological properties of native I\textsubscript{CaT} and the expression of alternative splice variants of T-type channels in cultured newborn rat ventricular myocytes. In this thesis, I specifically hypothesize:

That there is a correlation between the level of expression of T-type channel alternative splice variants and the biophysical properties of newborn rat ventricular myocytes I\textsubscript{CaT}.

1.6.5 Objectives

The following thesis objectives were formulated to address the above hypotheses:
1. To generate both short amplicon and full length Ca\textsubscript{v}3.2 specific cDNA libraries to determine the molecular profile of cardiac Ca\textsubscript{v}3.2 T-type channel alternative splice variants.

2. To examine the differential expression of splice variants in ventricular tissue from newborn and adult rats and to compare the relative abundance of splice variants between hypertrophic SHR and age- and sex- matched normotensive WKY rats.

3. To generate selected full-length Ca\textsubscript{v}3.2 alternative splice variants and to functionally characterize their biophysical properties after transient expression in HEK- 293 cells.

4. To investigate if the Ca\textsubscript{v}3.2 variants are differentially affected by G-protein subunits co-expression or intracellular cAMP.

5. To characterize native T-type currents in neonatal rat ventricular myocytes.
2 SPLICE-VARIANT CHANGES OF THE Ca,v3.2 T-TYPE CALCIUM CHANNEL MEDIATE VOLTAGE-DEPENDENT FACILITATION AND ASSOCIATE WITH CARDIAC HYPERTROPHY AND DEVELOPMENT

2.1 Introduction

Alternative splicing is a ubiquitous post-transcriptional mechanism for generating diversity from individual genes and significantly expands the functional repertoire of eukaryotic cells (Black, 2003; Stetefeld and Ruegg, 2005). Greater than half of known human genes are subject to alternative splicing (Modrek and Lee, 2002) and splice-variant expression patterns often correlate with specific developmental stages as well as specific physiological and pathophysiological states (Diebold et al., 1992; Lopez, 1998; Chang et al., 2007; Adams et al., 2009) (Appendix 4). Cardiovascular diseases have been associated with altered regulation of alternative splicing and changes in the expression ratio of functionally relevant proteins, including some voltage-activated Ca^{2+} channels (Warnecke et al., 1999; Tiwari et al., 2006; Shang et al., 2007; Kong et al., 2010). The expression of distinct Ca^{2+} channel subtypes contributes to mechanical and electrophysiological functioning of different regions of the heart (Mangoni et al., 2003; Hatano et al., 2006). However, the identification and temporal and spatial expression patterns of alternatively spliced variants of most Ca^{2+} channel family members expressed in cardiac tissue has yet to be reported. Low voltage-activated T-type currents play a critical role in spontaneous diastolic depolarization (Mangoni et al., 2006b) and have also been

suggested to regulate the cell cycle and differentiation of cardiac myocytes (Vassort et al., 2006).

Of the three genes encoding T-type channels in mammals, the Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 isoforms have been identified as underlying cardiac I\textsubscript{CaT} (Perez-Reyes, 2003; Rosati et al., 2007; Mangoni and Nargeot, 2008). Both the Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 T-types are expressed in atrial and ventricular tissues during embryonic and neonatal periods (Cribbs et al., 2001; Ferron et al., 2002; Niwa et al., 2004) but by the adult stage Ca\textsubscript{v}3.2 levels become significantly reduced and Ca\textsubscript{v}3.1 becomes the predominant cardiac isoform, albeit mainly being restricted to pacemaker cells (Qu and Boutjdir, 2001; Mangoni and Nargeot, 2008). In addition to developmental regulation, there is an overall increase in functional I\textsubscript{CaT} under pathological conditions such as post-myocardial infarction and cardiac hypertrophy and both Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 T-type Ca2+ channels have been reported to be re-expressed in adult ventricle of diseased hearts (Nuss and Houser, 1993; Martinez et al., 1999; Huang et al., 2000; Yasui et al., 2005; Takebayashi et al., 2006). Specific expression of the Ca\textsubscript{v}3.2 T-type channel has also been associated with the pathogenesis of pressure overload-induced cardiac hypertrophy in mice (Chiang et al., 2009).

All three T-type Ca2+ channel genes are known to be subject to alternative splicing (Mittman et al., 1999b; Monteil et al., 2000a; Chemin et al., 2001a; Chemin et al., 2001b; Cribbs et al., 2001; Jagannathan et al., 2002; Murbartian et al., 2002; Ohkubo et al., 2005; Emerick et al., 2006; Zhong et al., 2006). In human fetal and adult brains, Ca\textsubscript{v}3.1 was shown to have 15 sites subject to alternative splicing (Monteil et al., 2000a; Emerick et al., 2006), while two sites of alternative splicing have been reported to date for the human Ca\textsubscript{v}3.3 channel (Mittman et al., 1999b; Chemin et al., 2001b). Examining human fetal brain and partial length splice-variant analysis, Ca\textsubscript{v}3.2 channels were shown to be alternatively spliced at 12 to 14 sites (Zhong et al., 2006). Human uterine and testicular Ca\textsubscript{v}3.2 T- Ca2+ channels have similarly been found to be alternatively spliced, particularly in the domain III-IV linker region (Jagannathan et al., 2002;
Ohkubo et al., 2005). In a number of these instances, alternative splicing has been shown to affect T-type channel biophysical properties (Jagannathan et al., 2002; Ohkubo et al., 2005; Zhong et al., 2006). To date, there has been no report concerning cardiac Ca$_v$3.2 T-type channel alternative splicing. A goal of the current study was to describe structural and functional composition of Ca$_v$3.2 channel variation in cardiac tissue from newborn rats and to then compare that with the splice-variant profile from adult heart. Additionally, this study hypothesized that under certain pathological conditions there might be changes in Ca$_v$3.2 T-type channels in both overall expression and the level of specific splice variants. Profiling of splice variants was performed using both short amplicon scanning and full-length cDNA screening, and combined with quantitative RT-PCR (qRT-PCR) using cardiac samples from newborn and adult male Wistar rats, as well as from hypertrophic SHR and age and sex-matched normotensive WKY animals. The study demonstrates developmental changes in the expression pattern of the most abundant alternatively spliced Ca$_v$3.2 transcripts in rat atrial and ventricular tissues. Furthermore, altered transcript ratios of the predominant Ca$_v$3.2 isoforms in the left ventricle of adult SHR were found to correlate with histopathological signs and the expression of molecular markers of pathological hypertrophy. In addition to a switch in variants with a distinct recovery from inactivation, this study finds that a major characteristic of Ca$_v$3.2 splicing is the generation of T-type Ca$^{2+}$ channels that exhibit voltage-dependent facilitation (VDF).
2.2 Results

2.2.1 Alternative splicing generates multiple Ca₃.2 T-type variants with differential expression across development

Utilizing subtype-specific probes and both qRT-PCR and Western blot analyses, the expression of the Ca₃.1, Ca₃.2 and Ca₃.3 T-type isoforms as well as the high voltage-activated (HVA) Ca₁.2 L-type and Ca₂.2 N-type Ca²⁺ channels was determined in neonatal (P0) and adult atria and ventricle (relative to actin B). Figure 2.1A and 2.1B shows that the Ca₃.1 and Ca₃.2 T-types and Ca₁.2 L-type Ca²⁺ channels were robustly expressed at the mRNA and protein levels in both cardiac chambers of neonate heart. Contrastingly, in adult animals the expression of both T-type isoforms was significantly lower in the ventricle while the level of expression of the Ca₁.2 L-type remained high in both adult heart chambers. Neither the Ca₃.3 T-type nor Ca₂.2 N-type channels were expressed at appreciable levels in neonate or adult heart chambers (Figure 2.1A).

The rat Ca₃.2 genomic locus spans ~110, 000 kb on chromosome 10 (NCBI, NC 005109; Ensembl, ENSRNOT00000048392). In order to identify Ca₃.2 splice variants expressed in neonate heart, comprehensive transcript screening was initially performed using short amplicon scanning (Figure 2.1C). The reference Ca₃.2 transcript used in this study corresponds to a transcript containing 35 exons across 7862 bp and encoding 2365 amino acids (Ensembl, ENSRNOT00000048392). Distinct from previous reports examining limited portions of the Ca₃.2 channel for variability (Jagannathan et al., 2002; Ohkubo et al., 2005; Zhong et al., 2006), the entire open reading frame (ORF) of rat cardiac Ca₃.2 transcripts was subject to systematic splice-variant analysis. In the present study, a total of 11 overlapping PCR amplifications each covering at least two exons and generating products between ~450 and ~1070 base pairs were subcloned and between 40 and 203 individual cDNAs from each of the
amplicon reactions were subject to DNA sequence analysis (Figure 2.1C). Sequences were searched against available databases and aligned with rat Ca,3.2 genomic (NCBI, NC 005109 and Ensembl, ENSRNOT00000048392) and cDNA (NM_153814) sequences.
Figure 2.1. Ca2+ channel expression in rat cardiac tissues and identification of Ca\textsubscript{v}3.2 alternative splice variants.
Panel (A) shows the relative mRNA expression of the T-type Ca\textsubscript{v}3, and the high-voltage activated Ca\textsubscript{v}1.2 and Ca\textsubscript{v}2.2 channels obtained using qRT-PCR to compare the overall level of isoform expression between newborn and adult cardiac tissues. Adult thalamic tissue is shown for comparison. Cardiac tissue displays high levels of expression of Ca\textsubscript{v}1.2 and T-type Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2, whereas neuronal Ca\textsubscript{v}2.2 is negligible. Both Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 channels are expressed in cardiac tissues but a significant reduction was observed in adult ventricles, compared to newborn cardiac chambers. qRT-PCR reactions were run in triplicate and averages were determined. Relative amounts were compared to actin B and means were calculated. All experiments were done using 3-6 rats. Error bars show mean ± standard error. (B) Western blot analysis showing a significant level of Ca\textsubscript{v}1.2 isoform protein expression at both developmental stages, whereas Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 are prominently expressed only in newborn tissues. In the adult heart T-type channel proteins are moderately expressed in atria and at much lower levels in the ventricle. Panel (C) is a schematic of the Ca\textsubscript{v}3.2 protein sequence to illustrate the strategy used to identify alternative splice variants. Numbers along the peptide sequence indicate the exon number (total of 35), and numbers on filled bars correspond to the short amplicon overlapping PCR reaction sequences used for exon scanning (bottom left). Horizontal arrows at N- and C-terminus of the channel correspond to the full-length amplification (bottom right). See Section 2.4.4 for details.
Twenty five in-frame/carboxyl variants occur at 10 distinct sites in the Ca,3.2 protein (Figure 2.2 and Table 2.1). Analysis of 392 short amplicon cDNAs generated from neonate atrial RNA identified six in-frame and truncated C-terminus variants compared to the parental Ca,3.2 channel: called 8a/9a, 20a, -25, 35a, 35c and Δ210 (Figure 2.2). Further analysis of 557 short amplicon cDNAs from neonate ventricle identified 14 in-frame variants and truncated C-terminus compared to the parental Ca,3.2 channel, ten of which were unique to the neonate ventricular RNA: called variants 1a, -7, 8b, 8c, 28a/29a, 33b/34a, 35b, 35e, Δ214 and Δ304, and four of which had also been identified in neonate atria (8a/9a, 20a, -25, Δ210; Figure 2.2). In order to put the individual amplicon variants into context, full-length Ca,3.2 cDNA was amplified from both atria and ventricle neonate RNA and 56 individually isolated full-length ventricle cDNAs and 50 full-length atria cDNAs were subject to complete DNA sequencing. In addition to placing some of the amplicon variants into their larger expression context, the full-length analyses identified a further eight Ca,3.2 channel in-frame variants: called 1b, 7a/8d, 9c, 20b, 24a, 33a, 34b and 35d (Figure 2.2).

Alternative splicing mechanisms associated with the identified variants are suggested to include deletion and insertion of cassette exons, alternative donor/splice sites, splicing within exons, and retained introns (Black, 2003). In the amino-terminus, in-frame deletions within exon 1 result in removal of either 16 amino acids (variant 1a) or 8 amino acids (variant 1b). Further downstream, the domain I-II linker region possesses a high degree of variation with five distinct isoforms identified; variants 8b, 8c, 7a/8d, 8a/9a and 9c. An example of a canonical cassette-type exon is the inclusion (+) or exclusion (-) of exon 25 encoding residues in the domain III – IV linker, notable as a site of splice variation previously implicated in regulating voltage-dependent properties of Ca,3.2 channels (Jagannathan et al., 2002; Ohkubo et al., 2005; Zhong et al., 2006;
Powell et al., 2009) (Appendix 5). In this same region, further neonate cardiac variation results from the partial insertion of 24 nucleotides to the end of exon 24 (called variant 24a).

In domain III, splicing due to an alternate splice acceptor site internal to exon 20 (variant 20a) leads to a 15 amino acid deletion in the cytoplasmic IIIS2 – IIIS3 region and the partial insertion of intron 20 (20b) confers a 7 amino acid insertion (SPLPGCR) in domain IIIS3 (Figure 2.2). In domain IV, the use of alternate donor and acceptor splice sites in exons 28 and 29 respectively results in an in-frame deletion of 39 amino acids in domain IVS4 (called 28a/29a). The most extensively spliced region in Ca\textsubscript{v}3.2 channels expressed in neonate heart occurs at the carboxyl-terminus and including the parental variant could result in up to 12 distinct carboxyl-terminal isoforms. The newly identified variants include 33a, Δ214, Δ210, Δ304, 33b/34a, 34b, 35a, 35b, 35c, 35d and 35e. The first four of these terminate at the same stop codon (last four amino acids, DEPV) whereas the remaining seven result in alternative carboxyl stop sites, all of which except 33a are shorter versions of the canonical C-terminus. The 33a splice variant contains the longest C-terminus due to inclusion of 5 additional amino acids (PPSPQ) at the proximal end.

There are several contextually noteworthy aspects evident from the 106 full-length Ca\textsubscript{v}3.2 cDNAs analyzed. Variants 1b, 7a/8d, 9c, 20a, 24a, 33a and Δ214 always occurred in combination with the (-)25 exon splice variant whereas the 34b isoform occurred in combination with the (+)25 variant. Further, variant 35a was found in combination with either of the (+) or (-) exon 25 splice isoforms. In the full-length Ca\textsubscript{v}3.2 cDNA there were a number of combinations of individual exonic variants: e.g., 20b/-25/33a and 20a/-25/35d. Generally, across both the amplicon and full-length analyses the majority of the Ca\textsubscript{v}3.2 variants were found to be expressed in either atria or ventricle with a smaller portion being expressed in both chambers (8a/9a, 20a, +/-25, 35a and Δ210).
Figure 2.2. Topology of Ca_{3.2} channel showing the location of all in-frame and truncated carboxyl terminal variants.

Twenty five identified in-frame and truncated carboxyl-terminus Ca_{3.2} variants are located at 10 different sites as indicated in the diagram. The amino acid sequences (single letter code) resulting from each alteration are depicted below. Alternative splice variants are named after the alternatively spliced exons and letters after the exon number correspond to the different variants in that particular exon. (-) and (+) correspond to the absence and the presence of the indicated...
exon. The symbol Δ followed by a number (n) refer to a deletion n amino acid. When alternative splicing affects consecutive exons, the variants are named using both exon designations separated by a slash. All sequences were aligned using published rat Ca3.2 genomic and mRNA sequences (NCBI, NC 005109; Ensembl, ENSRNOT00000048392; and NM_153814). Italicized, underlined and bold indicate deletion, insertion and alternative sequences, respectively. A dash (-) in the peptide sequences correspond to the start and end of deleted amino acids. Out of frame splice variants resulting into premature chain termination, hemichannels or interdomain truncations are not shown.
Table 2.1. Identified cardiac Ca$_{\text{3.2}}$ T-type Ca$^{2+}$ channel variants.

Italicized, underlined and bold indicate deletion, insertion and alternative sequences, respectively. A slash (-) in the peptide sequences correspond to the start and end of deleted amino acids. Sequences were aligned using published rat Ca$_{\text{3.2}}$ genomic and mRNA sequences. The variants reported here are in-frame insertions and deletions as well as in-frame truncations in the carboxyl-terminus.

<table>
<thead>
<tr>
<th>Location</th>
<th>Variant</th>
<th>Nucleotide Sequence</th>
<th>Peptide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>gccg - ccgccccc - cgggggccg - cgg</td>
<td>GASP - PAPA - SPGA - PGRE</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>egcc - gggaggcc - ccgccccc - tggg</td>
<td>PAA – PVRASPS - PGA</td>
</tr>
<tr>
<td>2</td>
<td>-7</td>
<td>tctegcg - gttcatc - tctgacg</td>
<td>AIFQ - VITL - LLI - /NGSF</td>
</tr>
<tr>
<td>3</td>
<td>7a/8d</td>
<td>ecctcwta - tcacctgc - agtacct</td>
<td>FILL - IIVG - EELL - KYVG</td>
</tr>
<tr>
<td></td>
<td>8b</td>
<td>aggtactg - aagccaca - ecctccc - aggccag</td>
<td>LKYV - GHIIF - PPSP - GHGP</td>
</tr>
<tr>
<td></td>
<td>8c</td>
<td>agggccag - ggcacac - cgggaggg - agggccag</td>
<td>SPG - GPPD - CHVE - GPQE</td>
</tr>
<tr>
<td>4</td>
<td>8a/9a</td>
<td>cctatga - ggaaggccg</td>
<td>RPYE - KIGH - TPLR - KASQ</td>
</tr>
<tr>
<td></td>
<td>9c</td>
<td>ggtcatc - ccaacctg - cagttgc</td>
<td>RASS - HLSG - GTPG - HSNE</td>
</tr>
<tr>
<td>5</td>
<td>20a</td>
<td>tctgag - ggtgtac - acctacag</td>
<td>MMVK - VAL - ALQ - SSWN</td>
</tr>
<tr>
<td></td>
<td>20b</td>
<td>ggtcatg - ccctcgc - cctgactcag</td>
<td>LRRLSPLPGCVRVIS</td>
</tr>
<tr>
<td>6</td>
<td>24a</td>
<td>ggcgaggagagcccccaggtgaggggctcgag</td>
<td>ERRRSKAAPKVEAQR</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>ggcgaggagagctcctggcaccag</td>
<td>EERRRSSTPNPEAQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ggcgaggagagctcctggcaccag</td>
<td>EERRR - STFPN - KAQ</td>
</tr>
<tr>
<td>7</td>
<td>28a/29a</td>
<td>ggcctgca - catcactg - ggtctgca - tcaact</td>
<td>AALP - INPT - QALP - QVGN</td>
</tr>
<tr>
<td></td>
<td>33a</td>
<td>ccacatcg - cctcctgcc</td>
<td>PTAQQPSQESQ</td>
</tr>
<tr>
<td></td>
<td>33b34a</td>
<td>cccactgc - aggaacagt - tcacttcgc - tcactgc</td>
<td>SHPLLTRHPWSAPL - GVHPALstop</td>
</tr>
<tr>
<td></td>
<td>34b</td>
<td>ctacacag - ggcagct - ctctcgg - gctccgc</td>
<td>ETYTGISRVLPSQGQstop</td>
</tr>
<tr>
<td>8</td>
<td>35a</td>
<td>cctagagtcg - gggggagagagt - ccggggcc</td>
<td>HLESRLPAEQSISstop</td>
</tr>
<tr>
<td></td>
<td>35b</td>
<td>tgcctcc - gtgctgcc - atctggcc - ataggggc</td>
<td>MSTSQAATGAPRPSSTOP</td>
</tr>
<tr>
<td></td>
<td>35c</td>
<td>etgacgcc</td>
<td>SELEPCSQGstop</td>
</tr>
<tr>
<td></td>
<td>35d</td>
<td>gcctcaac - aggctggcc - tccacag</td>
<td>SQASTLPILSWSLWTWA - TVTKVstop</td>
</tr>
<tr>
<td></td>
<td>35e</td>
<td>cgggtag - aggctggcc - tccacag</td>
<td>IDYTGILPSRASDCQPLCLstop</td>
</tr>
<tr>
<td></td>
<td>A214</td>
<td>cgggtag - aggctggcc - tccacag</td>
<td>MSTS - QAST - ERWG - QASCR - DEPV</td>
</tr>
<tr>
<td></td>
<td>A210</td>
<td>cagagctc</td>
<td>YTEP - AENMST - CPEP - TEGR - DEPV</td>
</tr>
<tr>
<td></td>
<td>A304</td>
<td>actagacg - gagcagcc - ccagcagcc - acagaggg</td>
<td>ENMST - SQ43 - STP - PAPD - DEPV</td>
</tr>
</tbody>
</table>

\[\Delta \text{214} \] \[\Delta \text{210} \] \[\Delta \text{304}\]
From the combined short amplicon scanning and full-length cDNA analyses, six distinct variant regions were chosen for more in-depth expression analysis in newborn and adult heart chambers by qRT-PCR: Ca\textsubscript{v}3.2(8b) in the domain I – II linker, Ca\textsubscript{v}3.2(20a) between domain IIIS2 and IIIS3, Ca\textsubscript{v}3.2(±25) in the domain III – IV linker and three carboxyl-terminal variants - Ca\textsubscript{v}3.2(33a), Ca\textsubscript{v}3.2(Δ214) and Ca\textsubscript{v}3.2(35a) located at the proximal, middle and distal portions of the C-terminus (Figure 2.3).

In T-type channels the cytoplasmic regions mentioned above have been implicated in gating (Chemin et al., 2001a; Vitko et al., 2007), surface expression (Vitko et al., 2007) and G-protein-dependent regulation (Wolfe et al., 2003; DePuy et al., 2006). For some variant positions the reference isoform predominates in both neonate and adult and in both chambers (Figure 2.3), while in other instances there is clear evidence that both variants are co-expressed at different levels (e.g., +/-25, 35a vs reference). Of the six Ca\textsubscript{v}3.2 variants analyzed by qRT-PCR only the (+/-) exon 25 showed a significant difference in relative abundance across newborn and adult hearts and in both atria and ventricle (Figure 2.3C).

In the human brain, testis, and uterus the Ca\textsubscript{v}3.2 exon 26, which is homologous to the exon 25 described here, has been previously implicated in affecting activation, channel availability and recovery from inactivation (Jagannathan et al., 2002; Ohkubo et al., 2005; Zhong et al., 2006). It was therefore of interest to target this variant region for more in-depth transcript copy number analyses in the heart. Figure 2.4 shows the transcript copy numbers of Ca\textsubscript{v}3.2 (+25) and (-25) exon splice variants normalized to rat ActB. In neonate heart the exclusion of exon 25 occurred at a level 7 to 8 fold higher in atria and ventricle tissues compared to (+25) exon variant transcripts. Contrastingly, in adult atria the relative copies of (+25) exon variant transcripts were increased while adult ventricular (-25) transcripts decreased such that overall the ratio of (+25) to (-25) variants in both adult heart chambers was approximately equal (Figure 2.4). Taken
together, there appears to be a significant developmental- and chamber-specific mechanism regulating the relative expression of Ca\textsubscript{v}3.2 (+25) and (-25) variant channels.
Figure 2.3. Differential expression of Ca,3.2 T-type Ca$^{2+}$ channel alternative splice variants in newborn and adult cardiac tissues.
Relative mRNA levels of Ca\textsubscript{3.2} splice variants were obtained by qRT-PCR and compared at two developmental stages. Alternative splice variants 8b (A), \(\Delta\)214 (B), -25 (C), 35a (D), 33a (E) and 20a (F) display different levels of expression in neonatal and adult atria and ventricle. The (-25) variant is the most abundant in neonate while both (+) and (-) exon 25 variants are present in approximately equal amounts in adult heart. Experiments were performed using 3 - 6 rats for each sample and qRT-PCR reactions were performed in triplicate. Error bars correspond to standard error. A schematic representation of each splice variant is shown in each graph. Gray box represents an alternative start to a given exon, gaps represent deletions, and open boxes the reference sequence of each exon. Y axis scale represents relative expression compared to ActB. NeoA (neonatal atria), NeoV (neonatal ventricle), AdA (adult atria), AdV (adult ventricle). Each variant probe was checked for specificity against its parental cDNA before qRT-PCR analysis.
Figure 2.4. Spatial and developmental changes in the expression of Ca\(_3\).2(+25) and Ca\(_3\).2(-25) exon splice variants.

Panel (A) shows developmental differences in the relative number of transcript copies of Ca\(_3\).2 (+25) and (-25) splice variants. There is preferential expression of (-25) Ca\(_3\).2 variant channels compared to (+25) alternative splice variant in newborn ventricle and atria. Approximately the same level of mRNA expression of both exon 25 variants was observed in adult heart. The developmental shift in the proportion of exon 25 variants expressed in cardiac chambers is shown on panel B. (B) A ~7 to 8 fold difference in the ratio of (-25) over (+25) exon variant copy number was obtained using specific qRT-PCR probes and titration against quantified cDNA clones from each respective variant and then normalized relative to rActB levels. Error bars show standard error. T-tests were performed to measure significant differences. ** p<0.01. NeoA(neonatal atria), NeoV(neonatal ventricle), AdA(adult atria), AdV(adult ventricle).
2.2.2 Exclusion of exon 25 confers voltage-dependent facilitation and accelerates recovery from inactivation

The full-length cDNA screening revealed that Ca\(_{\text{v}}\)\(_{3.2}\) channel variants in neonate heart predominantly occur in the context of exclusion of exon 25 (also see Figures 2.3 and 2.4). In this regard, several full-length variants in the context of the (-25) isoform were analyzed following heterologous expression in HEK cells using whole-cell patch-clamp. Biophysical characterization was performed on the following variants identified by full-length cDNA screening: Ca\(_{\text{v}}\)\(_{3.2}\)(-7/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(20a/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(20b/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(-25), Ca\(_{\text{v}}\)\(_{3.2}\)(+25), Ca\(_{\text{v}}\)\(_{3.2}\)(24a/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(33a/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(\(\Delta\)214/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(35a/-25) and Ca\(_{\text{v}}\)\(_{3.2}\)(35a/+25). This research also analyzed the Ca\(_{\text{v}}\)\(_{3.2}\)(8b/-25) variant which was identified by short amplicon screening. Ca\(_{\text{v}}\)\(_{3.2}\)(8b/-25) splice variant is located at the I - II linker, a region implicated in controlling gating and plasma membrane surface expression (Vitko et al., 2007).

Examination of current densities from macroscopic Ca\(^{2+}\) currents showed that Ca\(_{\text{v}}\)\(_{3.2}\)(+25), Ca\(_{\text{v}}\)\(_{3.2}\)(\(\Delta\)214/-25), Ca\(_{\text{v}}\)\(_{3.2}\)(35a/-25) and Ca\(_{\text{v}}\)\(_{3.2}\)(8b/-25) variants had significantly higher current densities (30.34 ± 4.13, 31.60 ± 5.95, 38.39 ± 5.70, 66.14 ± 17.45 pA/pF, respectively) compared with the Ca\(_{\text{v}}\)\(_{3.2}\)(-25) variant (21.64 ± 1.88 pA/pF). The parameters of voltage-dependent gating properties are summarized in Table 2.2. Overall, exon 25 containing variant channels displayed small but significant differences in the voltage dependence of activation. Ca\(_{\text{v}}\)\(_{3.2}\)(8b/-25) and Ca\(_{\text{v}}\)\(_{3.2}\)(+25) showed ~10 mV and ~5 mV leftward shifts in the \(V_{50}\)\(_{\text{act}}\) relative to Ca\(_{\text{v}}\)\(_{3.2}\)(-25) (Figure 2.5A and Table 2.2). In regards to steady-state inactivation, a 10 mV hyperpolarizing shift was observed when Ca\(_{\text{v}}\)\(_{3.2}\)(8b/-25) (\(V_{50}\)\(_{\text{inact}}\) = -75.7 ± 0.3 mV) was compared with Ca\(_{\text{v}}\)\(_{3.2}\)(-25) (\(V_{50}\)\(_{\text{inact}}\) = -65.5 ± 0.3 mV) (Figure 2.5C and Table 2.2). The voltage-dependence of deactivation as well as the kinetics of Ca\(^{2+}\) currents generated by expressing the splice variants was also analyzed. The proximal C-terminus splice variant Ca\(_{\text{v}}\)\(_{3.2}\)(33a/-25) and
the alternative exon 24 variant Ca₃.2(24a/-25) were only the two alternative splice variants showing changes in the kinetics of activation and inactivation compared to Ca₃.2(-25) (Table 2.2). Ca₃.2(-7/-25) and Ca₃.2 (20a/-25) did not yield measurable Ca²⁺ currents whereas Ca₃.2(20b/-25) showed low level of expression. All eight fully characterized splice variants examined showed similar voltage-dependence of deactivation (Table 2.3).

The recovery from inactivation was investigated using a double pulse protocol (Fig. 2.6A inset) and time constants obtained by fitting a double exponential function are shown in Table 2.3. Ca₃.2(-25) channels recovered significantly faster (~ 1 second) from inactivation than Ca₃.2(+25) channels (~2.5 seconds; Figure 2.6A and Table 2.3). Interestingly, compared to Ca₃.2(+25) channels, Ca₃.2(-25) channels recover from inactivation to a level greater than 100%, suggesting facilitation (or potentiation) of this variant. The distal carboxyl-terminus variant Ca₃.2(35a) also displayed significant potentiation when expressed in combination with Ca₃.2(-25) but not when expressed in a Ca₃.2(+25) background (Figure 2.6A), suggesting that exclusion of exon 25 residues located in the domain III – IV linker are a structural determinant for the observed facilitation. Additionally, the relative proportion of the channels recovering from fast (τ₁) and slow (τ₂) inactivation was estimated by obtaining the ratio between the current amplitude of each component and the total current amplitude. The fast inactivation component (relative A₁) is predominant in Ca₃.2(-25) (Table 2.3). In contrast, the slow inactivation component (relative A₂) is higher in Ca₃.2(+25) than Ca₃.2(-25). Representative current traces of recovery from inactivation for Ca₃.2(-25) and Ca₃.2(+25) variants are shown in Figures 2.6B and 2.6C, respectively. In order to further investigate if the potentiation observed in Ca₃.2(-25) variant could be attributed to VDF, two pulse protocols were used as shown in Figure 2.6D and 2.6F. Percentage of VDF (Figure 2.6E) was measured as the ratio of current magnitude evoked by a test pulse at -30 mV applied after a strong depolarizing prepulse
(+120mV) over the current magnitude in the absence of prepulse. The time course was determined by increasing the time intervals (from 300 ms to 1500 ms) between the prepulse and the test pulse (Figure 2.6D). Voltage dependence of facilitation was then explored by applying prepulses from -120 mV to +150 mV with a constant interpulse interval of 1200 ms (Figure 2.6F). The robust VDF displayed by Ca,3.2(-25) (50-60%) was absent in the Ca,3.2(+25) splice variant (Figure 2.6E). Furthermore, Ca,3.2(35a/-25) also showed facilitation properties (50 – 60%) (data not shown), consistent with an increase in fractional recovery (Figure 2.6A) when expressed in the Ca,3.2(-25) background, but not when expressed in combination with Ca,3.2(+25), suggesting that exclusion of exon 25 in the rat Ca,3.2 III-IV linker region is associated with VDF. This property was also observed when Ba\(^{2+}\) was substituted for Ca\(^{2+}\) in the external recording solution. The degree of relative facilitation for both the Ca,3.2 (-) and (+) exon 25 splice variants showed no significant difference regardless of whether Ca\(^{2+}\) or Ba\(^{2+}\) was the charge carrier thereby affirming the facilitation as being voltage-dependent (Figure 2.7). The magnitude of facilitation elicited by strong depolarizing prepulses was also examined in stable cell lines expressing human Ca,3.1 and Ca,3.3 isoforms and compared with that observed for the Ca,3.2(+/-25) splice variant (Figure 2.8). Consistent with previous studies (Klockner et al., 1999; Gomora et al., 2002), Ca,3.3 channels display an approximate 20% VDF, significantly smaller than that reported here for Ca,3.2(-25) variant channels. Ca,3.1 T-type channel examined did not display VDF.
Figure 2.5. Representative data on the voltage-dependent properties of Ca,v3.2 alternative splice variants.

(A) Normalized current-voltage relationships (I-V) of Ca,v3.2(+25) and Ca,v3.2(8b/-25) compared with Ca,v3.2(-25) alternative splice variants. The expression of exon 25 in the III – IV linker showed a 5 mV negative shift in I-V whereas deletion of 99 amino acid in the I – II linker resulted into 10 mV negative shift. (B) Representative traces and waveforms acquired from recording I-V relationships. The current-voltage (I-V) relationships were obtained by depolarizing the membrane with 150 msec test pulses from -90 to +10 mV at 5 mV steps (Vh = -110 mV). Voltage waveforms are shown as an inset. Normalized peak amplitude of Ca,2+ currents was plotted against test pulse potential. Averaged values were fitted using a modified Boltzmann equation: I= (Gmax*(Vm-Er))/(1+exp((Vm-V50)/k)), where Gmax is the maximum value of membrane conductance, Vm is the test potential, Er is the extrapolated reversal potential, V50 is the half-activation potential, and k the slope factor. (C) Steady state inactivation curves for the three variants indicating a 10 mV hyperpolarizing shift for Ca,v3.2 (8b/-25) and no significant difference for Ca,v3.2(+25). Example of steady state inactivation recordings and waveforms are shown in (D). Steady state inactivation curves were obtained with a double pulse protocol with 5s conditioning prepulses from -120 to -10 mV in 10 mV increments. Averaged values for the normalized peak currents are plotted as a function of conditioning prepulse potential. *All variants were compared against Ca,v3.2 (-25) and significant differences were calculated using ANOVA p < 0.05.
Table 2.2. Gating properties of Ca\textsubscript{v}3.2 alternative splice variants.

<table>
<thead>
<tr>
<th></th>
<th>Activation</th>
<th></th>
<th>Inactivation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_{50\text{act}}) (mV)</td>
<td>(k) (mV)</td>
<td>(\tau_{\text{act}}) (ms)</td>
<td>(n)</td>
</tr>
<tr>
<td>Ca,3.2(-25)</td>
<td>-41.4 ± 0.5</td>
<td>-7.0 ± 0.3</td>
<td>21.8 ± 0.9</td>
<td>34</td>
</tr>
<tr>
<td>Ca,3.2(8b/-25)</td>
<td>-51.7 ± 0.4*</td>
<td>-6.5 ± 0.3</td>
<td>18.3 ± 0.9</td>
<td>9</td>
</tr>
<tr>
<td>Ca,3.2(24a/-25)</td>
<td>-44.4 ± 0.4</td>
<td>-6.9 ± 0.3</td>
<td>25.0 ± 3.7</td>
<td>10</td>
</tr>
<tr>
<td>Ca,3.2(33a/-25)</td>
<td>-39.2 ± 0.6</td>
<td>-7.7 ± 0.3</td>
<td>39.6 ± 5.5*</td>
<td>11</td>
</tr>
<tr>
<td>Ca,3.2(Δ214/-25)</td>
<td>-41.2 ± 0.6</td>
<td>-7.7 ± 0.3</td>
<td>25.5 ± 2.5</td>
<td>12</td>
</tr>
<tr>
<td>Ca,3.2(35a/-25)</td>
<td>-44.4 ± 0.5</td>
<td>-6.2 ± 0.3</td>
<td>21.0 ± 2.5</td>
<td>14</td>
</tr>
<tr>
<td>Ca,3.2(35a/+25)</td>
<td>-46.6 ± 0.4*</td>
<td>-6.0 ± 0.3</td>
<td>19.5 ± 0.6</td>
<td>10</td>
</tr>
<tr>
<td>Ca,3.2(+25)</td>
<td>-45.7 ± 0.7*</td>
<td>-6.6 ± 0.3</td>
<td>19.5 ± 2.2</td>
<td>23</td>
</tr>
</tbody>
</table>

*All variants were compared against Ca,3.2(-25) and significant differences were calculated using ANOVA \(p < 0.05\). \(\tau_{\text{act}}\) – time constant of activation; \(\tau_{\text{inact}}\) – time constant of inactivation.
Figure 2.6. Alternative splicing affects the time course of recovery from inactivation and voltage-dependent facilitation of Ca,3.2 T-type macroscopic currents.
(A) The splice variant generated by exclusion of exon 25 (Ca\textsubscript{v}3.2(-25), filled squares) displays a faster recovery from inactivation than the variant Ca\textsubscript{v}3.2(+25) variant (upright triangles) enabling Ca\textsubscript{v}3.2 channels to recover to more than 100\% after a prolonged depolarization. The contribution of carboxyl-tail domain on the recovery from inactivation was explored by expressing both the (+) and (-) 25 exon variants in combination with the (35a) variant. Maximal fraction and time course of recovery from inactivation of 35a/+25 (filled circles) and 35a/-25 (open circles) were determined by the exon 25 variant used as background. A significant increase in fractional recovery was observed when the variant 33a (a five amino acid insertion in the proximal C-terminus) was expressed in combination with the (-25) variant (Ca\textsubscript{v}3.2(33a/-25), inverted triangles). Recovery from inactivation was studied with a double-pulse protocol (inset Panel A) using a 400 ms prepulse to -30 mV from a holding potential of -110 mV. After the inactivating prepulse, a 50 ms test pulse to -30 mV was given after a varying time period (interpulse interval) between 5 and 5000 ms. The peak current from the test pulse was plotted as a ratio of maximum pre-pulse current versus interval between pulses. Average data were fitted with a double exponential function to obtain the time constants for the fast (τ_1) and slow (τ_2) components of recovery from inactivation. Representative traces are shown for Ca\textsubscript{v}3.2(+25) (B) and Ca\textsubscript{v}3.2(-25) (C). The time course of VDF was explored with the protocol shown in (D). A strong depolarization to +120 mV was applied from a holding potential of -100 mV and followed by a 200 ms test pulse to -30 mV with interpulse intervals of 300, 600, 900, 1200, 1500 ms. Representative traces illustrate VDF of Ca\textsubscript{v}3.2(-25) variant. (E) The current ratio was determined by dividing the current amplitude of the test pulses preceded by a prepulse by that of the test pulse without a prepulse. Robust voltage-dependent facilitation (VDF) was observed in the Ca\textsubscript{v}3.2(-25) splice variant (filled squares) compared with Ca\textsubscript{v}3.2(+25). VDF was observed with prepulses from 0 mV to +150 mV. Representative traces for Ca\textsubscript{v}3.2(-25) VDF and the protocol used are shown on panel (F). VDF was studied by applying a 200 ms test pulse to -30 mV following a series of depolarizing prepulses from -120 to +150 mV after a time interval of 1.2 sec.
Table 2.3. Deactivation and recovery from inactivation of Ca\textsubscript{v}3.2 alternative splice variants.

<table>
<thead>
<tr>
<th></th>
<th>Deactivation</th>
<th>Recovery from Inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ_{deact} (ms)</td>
<td>τ_1 (ms)</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(-25)</td>
<td>17.7 ± 1.0</td>
<td>36.6 ± 12.3</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(8b/-25)</td>
<td>22.2 ± 1.5</td>
<td>50.2 ± 24.2</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(24a/-25)</td>
<td>23.9 ± 1.3</td>
<td>25.3 ± 13.9</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(33a/-25)</td>
<td>19.3 ± 1.4</td>
<td>47.3 ± 14.9</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(Δ214/-25)</td>
<td>16.6 ± 0.9</td>
<td>36.9 ± 12.8</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(35a/-25)</td>
<td>20.4 ± 1.1</td>
<td>32.5 ± 12.0</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(35a/+25)</td>
<td>24.2 ± 1.7</td>
<td>31.8 ± 2.9</td>
</tr>
<tr>
<td>Ca\textsubscript{v}3.2(+25)</td>
<td>20.0 ± 0.8</td>
<td>32.3 ± 7.6</td>
</tr>
</tbody>
</table>

*All variants were compared against Ca\textsubscript{v}3.2(-25) and significant differences were calculated using ANOVA $p < 0.05$.

τ_{deact} – time constant of deactivation, τ_1 – fast time constant of recovery from inactivation, τ_2 – slow time constant of recovery from inactivation. Relative A_1 – relative current amplitude at τ_1. Relative A_1 – relative current amplitude at τ_2. The recovery from inactivation was determined at $V_h = -110$ mV.
Figure 2.7. The voltage-dependent facilitation of Ca\textsubscript{v}3.2(-25) T-type Ca2+ channels does not depend upon Ca2+.

The ionic sensitivity of voltage-dependent facilitation was explored using Ca2+ or Ba2+ as charge carriers in both the exon 25 (+) and (-) splice variants. The magnitude of relative facilitation observed in Ca\textsubscript{v}3.2(-25) (Panel A) and Ca\textsubscript{v}3.2(+25) (Panel B) showed no significant difference when currents were recorded in calcium (filled symbols) or barium (open symbols). Data were obtained using the pulse protocol shown in the insets of Figures 2.6D and 2.6F.
Figure 2.8. Voltage-dependent facilitation differs in T-type Ca2+ channel isoforms.

Percentage of facilitation as a function of prepulse potential was compared between different T-type channel isoforms. The absence of facilitation was characteristic of the Ca\textsubscript{v}3.1 isoform (filled squares). Ca2+ currents through recombinant Ca\textsubscript{v}3.2(+25) splice variant (open circles) facilitated approximately 5-7% compared to 20% observed in Ca\textsubscript{v}3.3 isoform (filled triangles). Ca\textsubscript{v}3.2(-25) splice variant (filled circles) displayed a robust facilitation (50 to 60%). VDF was calculated as the ratio of current magnitude evoked by a test pulse at -30 mV applied after strong depolarizing prepulses over the current magnitude in the absence of prepulse (see Figure 2.6 for pulse protocol). Stable cell lines expressing human Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.3 T-type channels were kindly provided by Neuromed Pharmaceuticals. HEK293 cells expressing Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.3 channels were maintained in DMEM containing zeocin (25 µg/mL) and hygromycin (300 µg/mL), respectively.
2.2.3 The effect of cAMP and Gβ2γ2 on Ca,3.2 voltage-dependent facilitation

The inclusion of exon 25 in the Ca,3.2 introduces a consensus phosphorylation site for PKA suggesting the possibility that Ca,3.2 (±) exon 25 splice variants could be differentially regulated by cAMP-dependent mechanisms. In this regard, the effect of cAMP on the Ca,3.2 VDF was examined. The effect of cAMP on VDF was studied in Ca,3.2 (±) exon 25 alternative splice variants via perfusion with 10 μM forskolin in combination with 10 mM IBMX (3-isobutyl-1-methylxanthine). Forskolin elevates cAMP via activation of adenylyl cyclase whereas IBMX prevents degradation of cAMP via inhibition of phosphodiesterase. Whole cell patch clamp analysis of HEK-293 cells on VDF of Ca,3.2 exon 25 splice variants revealed absence of significant difference between the basal and facilitated currents in treated and control cells (Figures 2.9B and 2.9C). VDF of Ca,3.2(-25) variant channel was not affected by the combined perfusion of forskolin and IBMX (Figures 2.9B and 2.9C). Similarly, a lack of VDF of forskolin/IBMX was also observed on Ca,3.2(+25) variant channels (Figure 2.9C lower panel), an indication of the absence of regulation by cAMP.

Previous studies showed that Ca,3.2 channels are inhibited by Gβγ specifically the Gβ2γ2 subunits (Drolet et al., 1997; Wolfe et al., 2003; DePuy et al., 2006). The effect of Gβγ on Ca,3.2 VDF was investigated in this study. Figures 2.9D and 2.9E illustrate the effect of co-transfected Gβ2 and Gγ2 on VDF of Ca,3.2(-25) and Ca,3.2(+25) splice variants, respectively. Co-transfection of Gβ2γ2 with the Ca,3.2(-25) variant showed an ~50% reduction of VDF positive to -30 mV (Figure 2.9D). In contrast, Ca,3.2(+25) co-transfected with Gβ2γ2 showed neither decreased nor increased VDF (Figure 2.9E).
Figure 2.9. The effect of Gβγ and cAMP on voltage-dependent facilitation (VDF) of cardiac Ca_{3.2} exon 25 alternative splice variants.

(A) Schematic representation of G_{ai} activation and Gβγ binding as well as cAMP activation/PKA phosphorylation of Ca_{3.2} channel. (B) Forskolin treatment showed no effect on the VDF properties of Ca_{3.2}(-25) alternative splice variants. (C) Representative traces for
Ca$_v$3.2(-25)(top panel) and Ca$_v$3.2(+25) (bottom panel) showed lack of effect by forskolin on basal and facilitated T-type Ca$^{2+}$ currents. Black traces represent basal currents in control cells; gray traces represent basal current in forskolin treated cells; red traces represent facilitated currents in control cells and blue traces represent facilitated currents in forskolin treated cells. (D) Ca$_v$3.2(-25) showed reduction of VDF by Gβ2γ2 from potentials positive to 0 mV. (E) Gβ2γ2 showed no effect on Ca$_v$3.2(+25).

2.2.4 Differential expression of Ca$_v$3.2 exon 25 variants in hypertension-associated cardiac hypertrophy

Both the altered expression of T-type Ca$^{2+}$ channels and electrical properties of cardiomyocytes have been reported to be associated with a number of cardiac disease states (Nuss and Houser, 1993; Martinez et al., 1999; Huang et al., 2000; Yasui et al., 2005; Takebayashi et al., 2006). In order to examine the expression profile of identified cardiac Ca$_v$3.2 splice variants in diseased heart, cardiac tissue from adult spontaneously hypertensive rats (SHR) was analyzed as described above. Figures 2.10C and 2.10D show a comparison of the quantitative mRNA analysis of Ca$_v$3.2(+/−25) splice isoforms in cardiac tissue from normotensive WKY and SHR rats. The hypertrophic phenotype of the SHR animals was confirmed using the two molecular markers SIAT7 (Cerutti et al., 2006) and Frzb (Zhao et al., 2004), known to be upregulated in pathological cardiac hypertrophy (Figure 2.10B). The pathological phenotype of SHR was further confirmed by the elevation in heart weight/body weight (HW/BW) ratio in SHR animals, compared to age- and sex-matched normotensive WKY rats (data not shown). Also, the occurrence of perivascular and focal interstitial fibrosis, determined using Masson’s trichrome technique, was used as an indicator of pathological hypertrophy in ventricular tissue from SHR hearts (Figure 2.10A). The quantitative mRNA analysis of rat rSIAT7 and rFrzb showed a ~4 -5 fold increase of mRNA levels in hypertrophic
SHR compared to normotensive WKY left ventricle (Figure 2.10B). Importantly, a significant increase in the relative amount of Ca_{v}3.2(+25) splice isoform compared to Ca_{v}3.2(-25) (Figures 2.10C and 2.10D) results in a shift in the predominant exon 25 splice isoform expressed in hypertrophic SHR, suggesting a splice-specific upregulation of Ca_{v}3.2 mRNA transcripts during pathological hypertrophic heart remodeling, in addition to an overall increase in total Ca_{v}3.2 isoform expression.
Figure 2.10. Alteration of Ca,3.2(+25) and (-25) splice variant expression is associated with the hypertrophic SHR pathological phenotype.
(A) Histopathological markers in cardiac tissue from hypertrophic SHRs. Photomicrographs of ventricular sections of cardiac tissue stained with Masson’s trichrome show perivascular (c) and interstitial (d) accumulation of fibrillar collagen in SHR heart (lower panels, c and d) compared to the age- and sex-matched normotensive WKY (upper panels, a and b). Leftmost panel calibration bar is 2 mm and a, b, c and d middle and right panels is 200 μm. Cardiac tissue was embedded in paraffin, sectioned at 5 μm and stained by the Masson’s trichrome technique. (B) Real time PCR revealed the expression of the rat Frzrb(rFrzrb) and rat SIAT7(rSIAT7) hypertrophic markers relative to rActB in cDNA samples generated from left ventricle tissue from adult hypertrophic SHR or adult normotensive WKY. Five individual animals were sampled for each group. The same cDNA samples were used to measure expression of the Ca,3.2
(+25) and (−25) exon splice variants in the SHR and WKY groups. (C) Transcript copies of (+25) and (−25) were calculated from each sample and normalized to rActB. Both variants were upregulated in hypertrophic SHR although the (+25) variant showed more pronounced upregulation indicating the preferential re-expression of (+25) splice variant in cardiac hypertrophy (D). Error bars indicate standard error. T-tests were performed to measure significant differences. **p<0.01, *p<0.05.

2.3 Discussion

The present study provides evidence for the differential regional and temporal expression of alternatively spliced Ca\(_{\text{v}3.2}\) T-type Ca\(^{2+}\) channels in rat heart. Alternative splice variants span the entire Ca\(_{\text{v}3.2}\) channel with the carboxyl-terminal region being the most extensively spliced domain. Examining cardiac regional and developmental expression patterns by qRT-PCR, the inclusion or exclusion of exon 25 in the domain III-IV linker generates the most distinct splice variant expression profile in cardiac Ca\(_{\text{v}3.2}\) channels. Further, examining hypertrophic heart from adult SHR animals, a significant overall up-regulation of Ca\(_{\text{v}3.2}\) expression was observed and occurred in the context of a change in the ratio of the exon (+/-) 25 splice variants. Heterologous expression analysis of predominant splice variants demonstrated distinct recovery from inactivation and VDF properties are associated with the exon (+/-) 25 containing variant channels. This thesis is the first comprehensive study across the full length Ca\(_{\text{v}3.2}\) channel and which also demonstrates splice variation is correlated with cardiac development and the hypertrophic state.

2.3.1 Splice variant specific expression of cardiac Ca\(_{\text{v}3.2}\) Ca\(^{2+}\) channels in development and hypertrophy

Alternative splicing of partial regions of Ca\(_{\text{v}3.2}\) T-type channels has thus far been reported from human fetal brain, testicular and pregnant uterine tissue (Jagannathan et al., 2002;
Ohkubo et al., 2005; Zhong et al., 2006). This thesis examined the entire ORF of rat heart Ca\textsubscript{v}3.2 channels using both short amplicon and full-length cDNA analyses and further examined predominant variants by qRT-PCR and exogenous expression. The results indicate that cardiac Ca\textsubscript{v}3.2 channels are subject to extensive alternative splicing, particularly in predicted cytoplasmic regions where second messenger-dependent modulatory and protein-protein interaction sites are primarily located (e.g. (Wolfe et al., 2003; DePuy et al., 2006)). The cytoplasmic regions of T-type channels are known to affect channel gating (Chemin et al., 2001a; Vitko et al., 2007), trafficking to the membrane, (Vitko et al., 2007), G-protein dependent modulation (Wolfe et al., 2003; DePuy et al., 2006; Hildebrand et al., 2007) (Appendix 2), and regulation by a number of kinases (Arnoult et al., 1997; Welsby et al., 2003; Iftinca and Zamponi, 2009) suggesting that alternative splicing in these regions has the potential for affecting the modulation and functional diversity of cardiac Ca\textsubscript{v}3.2 T-type channels.

The inclusion or exclusion of the cassette exon 25 encoding residues in the domain III-IV linker was the most common splicing event in cardiac samples. The exclusion of exon 25 is the predominant splice variant in newborn rat heart, being 7-8 fold higher than Ca\textsubscript{v}3.2(+25) variant channels in newborn cardiac tissue (Figure 2.4B). Contrastingly, in adult rat heart the expression of the two variants was approximately equal. A significant reduction in the expression of ventricular Ca\textsubscript{v}3.2(-25) splice-variant channels reported here might explain the overall down-regulation reported in previous studies for Ca\textsubscript{v}3.2 isoform in the adult (Qu and Boutjdir, 2001; Yasui et al., 2005). However, in the atria, a significant amount of both Ca\textsubscript{v}3.2 (+) or (-) exon 25 variants was detected (Figure 2.4A).

In order to determine whether Ca\textsubscript{v}3.2 alternative splicing is altered during cardiac remodeling associated with diseased heart, the hypertrophic SHR model was examined. Previous studies have shown that Ca\textsubscript{v}3.2 T-type channels are generally re-expressed in
hypertrophied heart (Nuss and Houser, 1993; Martinez et al., 1999; Takebayashi et al., 2006). The current study addresses for the first time whether there are specific changes in the profile of Ca\textsubscript{v}3.2 splice-variants in cardiac tissue from hypertension-associated hypertrophic heart. Quantitative analysis showed a preferential expression of the inclusion of (+)25 exon containing variants in the adult hypertrophic heart (Figures 2.10C and 2.10D). Moreover, the combined increase in expression levels of both exon 25 variants in hypertrophic ventricle could account for the disease-associated re-expression of T-type channels previously reported (Nuss and Houser, 1993; Martinez et al., 1999; Huang et al., 2000; Yasui et al., 2005; Takebayashi et al., 2006).

2.3.2 Ca\textsubscript{v}3.2(-25) channels display faster recovery from inactivation and voltage-dependent facilitation

Alternative splicing is known to confer distinct electrophysiological properties to T-type channels (Chemin et al., 2001a; Jagannathan et al., 2002; Ohkubo et al., 2005; Emerick et al., 2006; Zhong et al., 2006). This thesis demonstrated that the cardiac Ca\textsubscript{v}3.2 channel shows significant variant-specific changes in recovery from inactivation and VDF in association with splicing of exon 25. When compared to Ca\textsubscript{v}3.2(+25) variant channels, results showed that both potentiated recovery from inactivation and robust VDF in the rat cardiac Ca\textsubscript{v}3.2 when exon 25 is absent. The splice-variant specific VDF was also observed when macroscopic currents were recorded using Ba2+ as charge carrier, ruling out a direct Ca2+-dependent facilitation process (Figure 2.7). Of note, native I\textsubscript{CaT} from bullfrog atrial cells and guinea-pig coronary arterial myocytes have both been reported to display VDF properties (Ganitkevich and Isenberg, 1991; Alvarez et al., 1996; Alvarez et al., 2000). Conversely, Zhong and coworkers reported faster recovery kinetics associated with the homologous exon 26 region in the human fetal brain Ca\textsubscript{v}3.2 channel although neither facilitation nor potentiation (>100% fractional recovery) were observed.
VDF has been previously attributed to the cloned human Ca\textsubscript{v}3.3 (Klockner et al., 1999; Gomora et al., 2002) albeit to a much lower degree (~20%) compared to that for the Ca\textsubscript{v}3.2(−25) variant channel described here (Figures 2.6 and 2.8) (Klockner et al., 1999; Gomora et al., 2002).

It is well known that the mammalian heart undergoes significant functional and morphological changes during embryonic and postnatal development. The heart rate, configuration of action potential and excitation-contraction (E-C) coupling all differ considerably between postnatal and adult myocardial tissues (Wekstein, 1965; Adolph, 1971; Wahler et al., 1994; Ziman et al., 2010). In this regard, age-related differences in the relative expression of Ca\textsubscript{v}3.2 splice variants displaying significantly different kinetic and gating properties could contribute to the developmental regulation of cardiac Ca2+ homeostasis. As a consequence, splice-specific T-type channel mediated Ca2+ entry could participate in the regulation of important processes in the developing heart such as cardiomyocyte growth, proliferation, hormone secretion and spontaneous activity (Leuranguer et al., 2000; Vassort et al., 2006). In neonate cardiomyocytes, the strong VDF and faster recovery from inactivation of Ca\textsubscript{v}3.2(−25) channels may result in increased Ca2+ influx leading to increased electrical activity. Furthermore, predominant expression of Ca\textsubscript{v}3.2(−25) (Figure 2.4) might be relevant for E-C coupling in immature myocardium which relies mainly on trans-sarcolemmal transport of Ca2+ for the activation of contractile machinery (Nuss and Marban, 1994; Haddock et al., 1999; Artman et al., 2000; Escobar et al., 2004). Although the physiological impact of Ca\textsubscript{v}3.2 splice variation in different regions of the mammalian heart remains to be explored, our study demonstrates that alternative splicing can regulate the effect of strong depolarization on T-type Ca2+ channel gating properties as well as the time course of recovery from inactivation.
2.3.3 The magnitude of VDF of Ca\textsubscript{v}3.2(-25) splice variant currents is reduced by G\beta\gamma\textsubscript{2}

This thesis examined the potential cAMP regulation on the VDF of Ca\textsubscript{v}3.2 exon 25 variants. This was undertaken by application of forskolin (an adenylyl cyclase stimulant) in combination with IBMX (a phosphodiesterase inhibitor) in HEK-293 cells transiently transfected with Ca\textsubscript{v}3.2(-25) and Ca\textsubscript{v}3.2(+25) alternative splice variants. Contrary to a previous report on the cAMP modulation of I\textsubscript{CaT} VDF in atrial myocytes (Alvarez et al., 1996), this study showed lack of effect on VDF by cAMP (Figures 2.9B and 2.9C). In our study, I used a mammalian cell line (HEK cells) and recorded exogenous Ca\textsubscript{v}3.2 currents at room temperature (~21ºC). These experimental conditions may account for the lack of effect of cAMP on Ca\textsubscript{v}3.2 currents as previous reports have shown temperature-dependence of kinase effects (Chemin et al., 2007). On the other hand, consistent with the findings in the current study, a lack of effect by cAMP on native I\textsubscript{CaT} from various mammalian cardiovascular preparations has also been reported. These include a lack of effect on native I\textsubscript{CaT} in rabbit SA node (Hagiwara et al., 1988), ear arteries (Benham and Tsien, 1988), guinea pig ventricular myocytes (Tytgat et al., 1988), dog atrial myocytes (Bean, 1985) and canine cardiac PF cells (Hirano et al., 1989; Tseng and Boyden, 1989). Taken together, further studies are necessary to explore the VDF of cardiac Ca\textsubscript{v}3.2 alternative splice variants including whole cell patch clamp recording in a temperature controlled setting.

The VDF of I\textsubscript{CaT} from frog atrial myocytes was reported to be due to voltage-dependent relief of tonic inhibition by G\textsubscript{ai} proteins (Alvarez et al., 1996). The activation of G\textsubscript{ai} proteins results in the release of G\beta\gamma subunits allowing them to interact with ion channels (Logothetis et al., 1987). Among the three T-type isoforms, Ca\textsubscript{v}3.2 channels are reported to be selectively inhibited by G\beta\gamma\textsubscript{2} (Wolfe et al., 2003; DePuy et al., 2006).
Since the Gβγ-mediated inhibition of Ca_v,3.2 is specific to Gβ2γ2 subunits, the modulation of Gβγ to Ca_v,3.2 (±) exon 25 alternative splice variant was investigated in the present study. To test the possibility that Gβγ subunits regulate Ca_v,3.2 VDF in a splice-dependent manner, co-transfection of Gβ2 and Gγ2 with Ca_v,3.2 splice variants in HEK cells was performed. The results showed that there exists a splice-specific regulation of VDF by Gβ2γ2 (Figures 2.9D and 2.9E). In the presence of Gβ2γ2, the VDF of Ca_v,3.2(-25) was reduced by approximately 50% (Figure 2.9D), whereas Ca_v,3.2(+25) was not affected (Figure 2.9E). A lack of effect by Gβγ by strong depolarizing prepulses was also reported for the human Ca_v,3.2 T-type channel containing exon 26 (Wolfe et al., 2003) which is homologous to the rat exon 25 (the cardiac Ca_v,3.2(+25) variant identified in this thesis). To date, there has been no report of the Gβγ-mediated inhibition of VDF of Ca_v,3.2 channels hence this thesis is the first to report this type of modulation and further, that it occurs in splice-variant manner.

2.3.4 Potential relevance to cardiac pathophysiology

Splice variation associated with the cardiac HVA L-type channel encoded by Ca_v,1.2 has been extensively studied. Of note pharmacologically, splice variation in the Ca_v,1.2 IS6 segment accounts for the differential dihydropyridine sensitivity of L-type currents in smooth and cardiac tissues (Welling et al., 1997). Further, distinct Ca_v,1.2 splice variants expressed in cardiac and smooth muscle contributes to the distinct biophysical properties of native L-type currents in these tissues (Liao et al., 2004; Tang et al., 2004; Liao et al., 2005; Tang et al., 2007). Similar to the results presented here for the Ca_v,3.2 T-type channel, alternative splicing of the Ca_v,1.2 L-type channel is also suggested to be involved in molecular remodeling associated with cardiovascular disease (Tiwari et al., 2006; Liao et al., 2009b).
It is tempting to speculate that the preferential up-regulation of Ca\textsubscript{v}3.2(+25) channels in the heart of hypertrophic SHRs could potentially contribute to electrical remodeling in the hypertrophic ventricle. A higher level of expression of this particular splice variant with its hyperpolarized activation range and higher current density, could predispose the heart to pro-arrhythmogenic condition, contractile dysfunction and eventually heart failure. Interestingly, a recent study has found evidence implicating Ca\textsubscript{v}3.2 T-type channel involvement in the pathogenesis of cardiac hypertrophy via the activation of calcineurin/nuclear factor of activated T cells (NFAT) pathway (Chiang et al., 2009). The preferential up-regulation of Ca\textsubscript{v}3.2(+25) splice variant channels that I find correlated with cardiac hypertrophy in SHRs supports the notion that an enhanced Ca2+ flux associated with expression of this T-type variant might contribute to the hypertrophic signaling pathway.

In summary, this thesis finds that alternative splicing of Ca\textsubscript{v}3.2 channel results in spatially and temporally expressed T-type cardiovascular variants and that in at least one instance are also associated with the hypertrophic state. The functional variability and compartmentalization of specific Ca\textsubscript{v}3.2 splice variants potentially make significant contributions towards cardiac physiology and pathophysiology. In a broader context, it is apparent that examination of single splice variants should not be used to universally infer functional outcomes when looking across physiological and pathological conditions.

2.4 Materials and methods

2.4.1 Animals and tissue preparation

All animal procedures were performed in accordance with Canadian Council on Animal Care guidelines for animal research. Newborn (P0), adult male Wistar (Animal Care Center,
University of British Columbia, Canada) and four month old male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) (Charles River, Montreal, Canada) hearts were utilized in this study. Newborn and adult rats were anaesthetized using halothane (in closed chamber) and inactin (80 mg/kg i.p.), respectively. Rat heart chambers were dissected and washed in Krebs-Ringer solution containing (in mM) 120 NaCl, 4.8 KCl, 1.2 CaCl\(_2\), 1.3 MgSO\(_4\), 25.2 NaHCO\(_3\), 5.8 glucose, 1.2 KH\(_2\)PO\(_4\), 20 HEPES, pH 7.4. Krebs- Ringer solution was prepared in diethylpyrocarbonate(DEPC)-treated deionized water and filtered prior to use. The ratio of the heart weight (HW)/ body weight (BW) from SHR and WKY was calculated by dividing the total body weight (in grams) from the heart wet weight (in milligrams). All chemicals used in the study were purchased from Sigma-Aldrich Canada unless otherwise stated.

2.4.2 Histological staining

Four month old male SHR and WKY rats were anaesthetized using 80 mg/kg body weight inactin (Sigma, St. Louis, Mo.) administered intraperitoneally. Hearts were excised and washed through the aorta with Krebs-Ringer buffer then perfused with 10% cold buffered formalin. Hearts were fixed in formalin for at least 24 hours at 4°C. Samples were processed by Wax-It Histology Services (University of British Columbia, Vancouver, B.C., Canada). Briefly, cardiac tissues were embedded in paraffin, sectioned at 5 \(\mu\)m and stained using Masson’s trichome technique to detect interstitial fibrosis. The technique uses acid fuschin-xylidine ponceau for cytoplasmic staining (red), Weigert’s hematoxylin for nuclear staining (black) and aniline blue for collagen. High resolution images were obtained by digital scanning of whole slides using Aperio’s ScanScope system (Vista, CA).
2.4.3 RT-PCR and short amplicon scanning

Total RNA was prepared individually from five newborn, five SHR and five WKY rats. Each heart sample was homogenized in a sterile glass-Teflon homogenizer and 1 ml Trizol (Invitrogen). Homogenized samples were incubated at room temperature for 5 minutes followed by adding 200 μL chloroform and incubated at room temperature for another 3 minutes. Samples were spun in table top centrifuge at 11,000 x g for 15 minutes at 4°C. The aqueous phase of the centrifugate was immediately transferred to a clean RNAse-free eppendorf tube and 500 μL of isopropanol was added. The centrifugate/isopropanol mixture was incubated at room temperature for 10 minutes to precipitate the RNA. After the incubation, samples were spun at 11,000 x g for 10 minutes at 4°C. The precipitate was washed with 75% ethanol and spun at 7,500 x g for 5 minutes. The supernatant was removed and the final pellets were dried briefly prior to suspension in DEPC-treated deionized water.

For cDNA synthesis, one microgram total RNA was initially treated with DNAsise to avoid genomic DNA contamination during reverse transcription (RT). Superscript II reverse transcriptase (Invitrogen) was used for the RT. A total of 20 ul reaction volume was prepared containing DNAsise-treated total RNA, first strand buffer (1X), DTT (10 µM), oligodT (0.5 µg/L), dNTP mix (500 µM), RNAseOUT (40 units) and RT (200 units).

Primer pairs were used to amplify small polymerase chain reaction amplicons covering overlapping regions of the entire Ca,3.2 open reading frame. The oligonucleotides used in exon scanning are summarized in Table 2.4. There were 11 overlapping PCR amplifications with each reaction covering at least two exons and generating products of ~450 and ~1070 base pairs. PCR products were subcloned into the pGEM-T-Easy vector (Promega) and grown on agar plates for blue/white screening. Selected white colonies were grown into LB media and plasmid DNA from each culture was subjected to variant identification by size selection using agarose gel
electrophoresis. DNA sequencing was used to confirm variants and exon-exon junctions. DNA sequences were compared with published rat Ca\(_{\alpha}3.2\) cDNA sequences (NM_153814) and genomic sequences (ENSRNOT0000048392 and NC_005109).
<table>
<thead>
<tr>
<th>Oligonucleotides</th>
<th>Scanning Reaction</th>
<th>Exons Spanned</th>
<th>Expected Product Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH-1, ATGACCGAGGGCAGCGCTG</td>
<td>1</td>
<td>1, 2, 3</td>
<td>545 bp</td>
</tr>
<tr>
<td>LDH-2, CCCGCATGACAATGAAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-3, CCTGGGTCACCTGGCAA</td>
<td>2</td>
<td>4, 5, 6</td>
<td>622 bp</td>
</tr>
<tr>
<td>LDH-4, CTGGAGATGGCAATCCCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-5, CTCACAACGGTGCCATCA</td>
<td>3</td>
<td>7, 8</td>
<td>942 bp</td>
</tr>
<tr>
<td>LDH-6, CTTGTTCCTCCACCACAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-7, CCCAGACCCCCATGAGAAGA</td>
<td>4</td>
<td>9, 10, 11</td>
<td>821 bp</td>
</tr>
<tr>
<td>LDH-8, CTGAAGATGAAGATGAACAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-9, CAACGTGGCCACCTTCCTG</td>
<td>5</td>
<td>12, 13, 14, 15</td>
<td>625 bp</td>
</tr>
<tr>
<td>LDH-10, CAGAGACTTCTGGTCCCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-11, CAAAACCTGGACGTGCGCCA</td>
<td>6</td>
<td>16, 17, 18, 19</td>
<td>806 bp</td>
</tr>
<tr>
<td>LDH-12, CTTCAACCATCATCTCCAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-13, CTACATCTTCACAGCCAT</td>
<td>7</td>
<td>20, 21, 22, 23</td>
<td>571 bp</td>
</tr>
<tr>
<td>LDH-14, CTGCTGGTGATGCCCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-15, GCTGGGTAACCATCATG</td>
<td>8</td>
<td>24, 25, 26, 27</td>
<td>509 bp</td>
</tr>
<tr>
<td>LDH-16, CTGTCCTTGAAGAACCCTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-17, GCTGCAGTAAGCTGCTG</td>
<td>9</td>
<td>28, 29, 30, 31</td>
<td>454 bp</td>
</tr>
<tr>
<td>LDH-18, TCAATCACCATTCCAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-19, CTTCACTCTGGTCCAG</td>
<td>10</td>
<td>32, 33, 34</td>
<td>628 bp</td>
</tr>
<tr>
<td>LDH-20, CTGCTGACAGGTATCCAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH-21, CCGCTCTCTGAGTCTC</td>
<td>11</td>
<td>35</td>
<td>1078 bp</td>
</tr>
<tr>
<td>LDH-22, CACAGGCTCATCTCCACTG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.4 Construction of cDNA libraries and full length splice variant screening

Full-length PCR was performed with ELONGASE Enzyme Mix using the oligonucleotides 5’- GATAAGCTTTAGACCGAGGGCACG - 3’ and 5’CGCTCTAGACTACACAGGCTCATC – 3’. The reaction volume was 50 µL consisting of 2 µL cDNA, 2 mM magnesium, 200 µM each dNTP, 400 nM each primer, and 1 unit ELONGASE Enzyme Mix. PCR was run using the following cycle: 94.5°C 45 seconds, 94.5°C 20 seconds, 55°C 25 seconds, 68°C 8 minutes, 35 cycles and a final extension of 68°C for 15 minutes. The ~7 kb PCR product was purified and subcloned into the pGEM T-Easy vector. Individual splice variants from bacterial colonies obtained from short amplicon PCR products were identified via size differentiation using agarose gel electrophoresis. Between 40 and 200 colonies were screened in each of the 11 PCR reactions. For full length screening, positive full length clones were screened using HindIII and SpeI enzymes to release the ~7kb Ca₃.2 fragment. The identification and confirmation of alternatively spliced variants were performed by DNA sequencing 56 atrial and 50 ventricular full length cDNAs. All DNA sequences were aligned against published mRNA and genomic sequences (Ensembl and PubMed).

2.4.5 Cloning of full-length Ca₃.2 alternative splice variants

Eleven full-length splice variants were subcloned for subsequent biophysical characterization in HEK cells; Ca₃.2(-7/-25), Ca₃.2(8b/-25), Ca₃.2(20a/-25), Ca₃.2(20b/-25), Ca₃.2(24a/-25), Ca₃.2(-25), Ca₃.2(+25), Ca₃.2(33a/-25), Ca₃.2(∆214/-25), Ca₃.2(35a/-25) and Ca₃.2(35a/+25). From the error-free full length cDNA subcloned in pGEM T-Easy vector, all Ca₃.2 splice variants except Ca₃.2(8b/-25) were cloned by cutting the ~7 kb band with HindIII and XbaI restriction enzymes and moved to pCDNA3.1 zeo(+) (Invitrogen). Using Ca₃.2(-25) as template, Ca₃.2(8b/-25) was cloned using two-step overlapping PCR techniques.
Ca\textsubscript{3.2}(8b) alternative splice variant is a 99 amino acid deletion located in the I-II linker region within the NheI sites of Ca\textsubscript{3.2}(-25) in pCDNA3.1 zeo(+) All PCR reactions were done using Phusion Enzyme (Finnzymes, Espoo, Finland). Two overlapping PCR fragments namely NheI – 8b1 and 8b2 – NheI4 were generated. NheI – 8b1 fragment was amplified with oligonucleotides RA1HLDHNhe1- 5’ ggtctataagcagct 3’ and RA1HLDH8b1 – 5’

ctcagagctgtggccatggccatctatggagagctcc 3’, whereas, 8b2 – NheI4 fragment with primers RA1HLDH8b2 – 5’ gagctctctagatatggccatggccaccagacttgag 3’ and RA1HLDHNhe4 – 5’
tcaggcaactcagccc 3’. Products were then run in 0.8% agarose gel, excised and purified for subsequent annealing. The two fragments were annealed using the oligonucleotides RA1HLDHNhe1 – 5’ ggtctataagcagct 3’ and RA1HLDHNhe2 – 5’ cgactcactatagggagac 3’ to generate the 2.5 kb fragment possessing NheI sites for cutting. Annealed products were gel purified and the Ca\textsubscript{3.2}(-25) and the purified 8b NheI fragment were cut with NheI restriction enzymes for subsequent cloning. The 8b NheI fragment splice variant was cloned into the NheI cut Ca\textsubscript{3.2}(-25) in pCDNA3.1 zeo(+). The DNA sequence of each clone was determined prior to patch clamp analysis.

2.4.6 Western blot analysis

Protein sample extraction from heart tissue was performed by grinding frozen tissue in liquid nitrogen in extraction buffer (0.1M Tris pH 6.8, 2% sodium dodecyl sulfate (SDS), 10% Glycerol, 1% β-mercaptoethanol, 1x Proteinase inhibitor cocktail (Complete-EDTA free, Roche), 0.004% Bromophenol Blue) and followed by heating to 65°C for 10 minutes and trituration through a small gauge needle. Western Blot analysis was performed as follows: proteins were separated on NuPAGE Novex 4-12% Bis-Tris Midi gells (Invitrogen), followed by wet electro-transfer (20mmol/L Tris-base, 150mmol/L Glycine, 20% Methanol & 0.1% SDS)
onto nitrocellulose membrane (Hybond-ECL, GE Healthcare). Protein transfer was confirmed by Ponceau S staining, followed by membrane blocking with 2% skimmed milk in TBST (136 mM NaCl, 25 mM Tris-HCl (pH7.4), 2.8 mM KCl, 0.1% Tween). Antibody incubations were performed in TBST-2% milk for 1 hour and washed three times (5 minutes each) with Tris Buffered Saline(TBS) prior to incubation with secondary horseradish peroxidase(HRP) conjugated antibody. Final membrane washes were performed twice in TBST and once in TBS for 5 minute each. Proteins were detected using the SuperSignal West Pico Chemiluminescent kit (Thermo Scientific) on Hyperfilm ECL (GE Healthcare). The following antibodies used: Rabbit anti-rat \(\text{Ca}_{3.1} \) (1:10,000) (C-terminal region residues 1861-1934 (Q54898)), rabbit anti-rat \(\text{Ca}_{3.2} \) (1:5,000) (II-III linker region residues 11195-1273 (Q9EQ60)), rabbit anti-rat \(\text{Ca}_{1.2} \) (1:5,000) (C-terminal region residues 1725-11789 (P22002)), and mouse anti-ACTB (1:10,000) (Chemicon, MAB1501)

2.4.7 Quantitative real-time-PCR (qRT-PCR)

Two microgram (\(\mu \text{g} \)) of total RNA was used to synthesize cDNA using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems). Real-time-PCR reactions were performed using Applied Biosystems reagents, an Applied Biosystems AB 7500 instrument and TaqMan probes generated against the respective cDNA targets. Primer mixes used for detection of specific splice variants are listed in Table 2.5. Splice-variant specificity was confirmed using full-length cDNAs and titration curves and enabled splice-variant copy number to be calculated. A rat actin B (rActB) primer set (Applied Biosystems AB 4352340E) was run in parallel with splice-variant specific probes in all samples as a control for total cDNA input to allow comparison. The rat molecular hypertrophic markers, SIAT7 (Rn01750492_m1) and Frzb (Rn01746979_m1) were obtained from Applied Biosystems. Relative amounts of different splice

95
variants were estimated after actin B normalization. In the case of the exon +/-25 splice variants, copy numbers for each variant in each sample were calculated and then compared with rActB. Target and control probe reactions were run in triplicate and averages were determined.
<table>
<thead>
<tr>
<th>Name</th>
<th>Probe</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>H+8b*</td>
<td>CCTCAAGTATGTAGGCCACATCTTCCG</td>
<td>TCCAACGACAGCACTCT</td>
<td>GCATAAAGACGCAGGCTA</td>
</tr>
<tr>
<td>H-8b*</td>
<td>AGCTTCTCAGAGGGCCGGCA</td>
<td>TCCAACGACAGCACTCT</td>
<td>GTGGCCCCATGGCCCTACATAC</td>
</tr>
<tr>
<td>H+20a</td>
<td>ATGCCTACCTACAGAGCAGT</td>
<td>TGGAGATGATGGTAAGGTGTA</td>
<td>CCCGTCAGCACATTCGA</td>
</tr>
<tr>
<td>H-20a</td>
<td>CAAACTGCTCCTCACCACATC</td>
<td>CTACATCTTCACAGCCCATCTTGT</td>
<td>AGCCCGTCAGCACATT</td>
</tr>
<tr>
<td>H+25</td>
<td>CCAACCCAGAGGGCCAG</td>
<td>GGGCAGGAGCAGTTCCTTCC</td>
<td>GAGTGTTGTAATAGTGCTGTAAGTA</td>
</tr>
<tr>
<td>H-25</td>
<td>CTGGGCCTTTCCTCGCC</td>
<td>GGGCCGGGAGGAGAAACG</td>
<td>GAGTGTTGTAATAGTGCTGTAAGTA</td>
</tr>
<tr>
<td>H+33a*</td>
<td>AGCACAGCCTCCCTCACACAGGA</td>
<td>GCCCGCCCCCACCCTA</td>
<td>CATCCTGGAACAGATACTTTTTCG</td>
</tr>
<tr>
<td>H-33a*</td>
<td>AAGGAGGCCCCCGGAGGATGC</td>
<td>AAGCAGCTGAGAGGAGCAGA</td>
<td>GGTCCTTGGCTTTTCTGGTGC</td>
</tr>
<tr>
<td>H+35a</td>
<td>AAGAGGGCTCAGGGCCC</td>
<td>GGGACCCTGTAGCCAAAGG</td>
<td>CAGAGGCTCAAAGGCAAGTTTG</td>
</tr>
<tr>
<td>H-35a</td>
<td>ACCTAGGCTCAGGGCCC</td>
<td>TGGAACTGGATAACGGAGAAGGC</td>
<td>CAGAGGCTCAAAGGCAAGTTTG</td>
</tr>
<tr>
<td>H+Δ214</td>
<td>CACAGGCTCCTTCGAGAGCA</td>
<td>GGGACCCTGTAGAGAACAGG</td>
<td>GGCTCAGGCAAGTGGG</td>
</tr>
<tr>
<td>H-Δ214</td>
<td>ACGAGGAGGGCCCTCT</td>
<td>CATGAGCCCCCTGAAAAATGTC</td>
<td>GGCTCAGGCAAGTGGG</td>
</tr>
</tbody>
</table>

*No 3'-MGB; IB-FQ as 3'-Quencher; Source: Integrated DNA technologies (IDT). Rest from Applied Biosystems (AB). All forward oligos have 5'-FAM.
2.4.8 Whole cell electrophysiology of transfected HEK cells

Human embryonic kidney cells (HEK293; Invitrogen, #11631-017) were grown in standard Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat inactivated fetal bovine serum, 50 units/ml penicillin and 50 µg/ml streptomycin maintained at 37°C in a humidified incubator with 95% O₂ and 5% CO₂. Ca₃.2 alternative splice variants were transfected using standard calcium phosphate transfection method and left overnight at 37°C incubator. As a reporter for transfection, CD8 was used at a molar ratio of 3:1. In separate experiments involving Gβγ, cloned Ca₃.2 (±) 25 variants were co-transfected with and without Gβ₂γ₂ subunits with a stoichiometric ratio of 3:3:3:1, for channel, Gβ₂, Gγ₂, and CD8, respectively. Twelve to 18 hours later, media was replaced with fresh DMEM and cells were transferred to 28°C prior to whole cell patch clamp analysis.

Macroscopic currents were recorded using Axopatch 200B amplifiers (Axon Instruments, Foster City, CA) controlled and monitored with personal computers running with pClamp software version 9 (Axon Instruments). The external recording solution composed of the following (in mM) 2 CaCl₂, 1 MgCl₂, 92 CsCl, 10 glucose, 40 tetraethylammonium chloride, 10 HEPES, pH 7.4 and the internal pipette solution contained (in mM) 120 Cs-MeSO₃, 11 EGTA, 10 HEPES, 2 MgCl₂, 5 MgATP, pH 7.2. In some experiments using Ba²⁺ as the charge carrier, Ca²⁺ was replaced with iso-osmotic external recording solution containing Ba²⁺. In experiments involving testing the effect of cAMP, 10 µM forskolin and 10 mM IBMX were added to the external recording solution. Patch pipettes (borosilicate glass BF150-86-10; Sutter instruments, Novato, CA) were pulled using a Sutter P-87 puller and fire polished with a Narashige (Tokyo, Japan) microforge with typical resistances of 3 – 6 MΩ when filled with internal solution. The bath was grounded via a 3 mM KCl bridge. Data were low pass filtered at 2 kHz except for
measurement of tail currents that were filtered at 5 kHz with built-in Bessel filter of the amplifier, with a sampling period of 10 kHz.

Voltage dependence of activation was studied by applying 150 ms depolarizing pulses from -90 mV to +10 mV at 5 mV increments (V_h = -110 mV). Current-voltage (I-V) relationships were fitted with the modified Boltzmann equation: \(I_m = \frac{G_{\text{max}} \times (V_m - E_{\text{rev}})}{1 + \exp((V_m - V_{50\text{act}})/k_{\text{act}}))} \), where \(G_{\text{max}} \) is the maximum slope conductance; \(E_{\text{rev}} \) is the extrapolated reversal potential; \(V_m \) is the membrane potential; \(V_{50\text{act}} \) is the half activation potential; \(k_{\text{act}} \) is the slope factor of activation which reflects the voltage sensitivity. Current values were normalized to the maximum current. Steady-state inactivation was studied by applying 5 second prepulses from -120 mV to -10 mV followed by a test pulse to -30 mV for 50 ms. The current magnitude obtained during each test pulse was normalized to the maximum current and plotted as a function of the pre-pulse potential. Steady state inactivation normalized data were fitted using Boltzmann equation (\(I/I_{\text{max}} = (1 + \exp((V - V_{50\text{inact}})/k_{\text{inac}}))^{-1} \)), where \(I_{\text{max}} \) is the maximum current; \(V_{50\text{inact}} \) is the membrane potential at 50% of the channel are inactivated, \(k_{\text{inac}} \) is the slope factor of inactivation. The kinetics of activation (\(\tau_{\text{act}} \)) and inactivation (\(\tau_{\text{inact}} \)) were analyzed by fitting current recordings obtained from the I-V protocol with a single exponential standard equation \(I = Ae^{-t/\tau} \), where \(A \) is the amplitude of the current at \(t_0 \) and \(\tau \) is the time constant. Recovery from inactivation was determined by double pulse protocol, a prepulse to -30 mV for 400 ms was given and allowed to recover at different time intervals (interpulse interval) between 5 ms to 5 seconds before applying a test pulse to -30 mV for 50 ms (V_h = -110 mV). The peak current from the test pulse was plotted as ratio of maximum prepulse current versus interval between pulses. The data were fitted with a double exponential function (\(I/I_{\text{max}} = A_0 + A1*\exp(-t/\tau1) + A2*\exp(-t/\tau2) \)), where \(A_0 \) is the amplitude for inactivating component, \(A1 \) and \(A2 \) are the amplitudes for the fast and slow components of the exponential, and \(\tau1 \) and \(\tau2 \) are the time
constants for the fast and slow components, respectively. Relative current amplitude for fast component (relative A_1) was calculated using the formula $A_1 / (A_1 + A_2)$, whereas relative amplitude for slow component was estimated by using the formula $A_2 / (A_1 + A_2)$. Deactivation was also investigated by measuring tail currents, using -110 mV as holding potential and depolarizations to -30 mV after which the membrane was repolarized to different levels (-120 mV to -50 mV). The data was fitted with a single exponential function ($I = A e^{-t/\tau}$), where A is the amplitude of the current, and τ is the time constant. Fittings were plotted as a function of the repolarization potential. Voltage-dependent facilitation was studied by applying a 200 ms test pulse to -30 mV following a series of depolarizing prepulses from -120 to +150 mV after a time interval of 1.2 seconds. The percentage facilitation was obtained by dividing the currents obtained from prepulses to currents recorded at -120 mV. Averaged percentage facilitation was plotted as a function of prepulse depolarization. All recordings were performed at room temperature (~22 - 24°C).

Data analysis was performed using Clampfit software version 9.0 (Axon Instruments). All plots and statistical analysis (ANOVA) were performed using the Microcal Origin software version 7.5 (Northampton, MA). Statistical significance was tested with Student’s t-test with significance being determined at confidence interval of $p < 0.05$ and $p < 0.01$.

100
3 VOLTAGE-DEPENDENT FACILITATION OF T-TYPE CALCIUM CURRENTS IN NEONATAL RAT VENTRICULAR MYOCYTES

3.1 Introduction

T-type Ca\(^{2+}\) channels in developing hearts have been reported to contribute to pacemaking, spontaneous contractions and hormone secretion (Section 1.4). The exact contributions of T-type channels in the heart likely relies on the amount of Ca\(^{2+}\) influx necessary to regulate other myoplasmic proteins and affect the transmembrane potential of cardiac myocytes. Hence, studying the mechanisms underlying the regulation of I\(_{CaT}\) in the heart will provide a better understanding of the role of T-type channels in cardiac physiology and pathophysiology.

One mechanism of altering Ca\(^{2+}\) channel activity in the heart is through the voltage-induced facilitation of Ca\(^{2+}\) currents. Facilitation of I\(_{CaT}\) in the cardiovascular system has thus far been shown only in guinea-pig coronary arteries (Ganitkevich and Isenberg, 1991) and frog atrial cells (Alvarez et al., 1996; Alvarez et al., 2000). Facilitation in guinea-pig coronary myocytes is attributed to changes in voltage-dependent gating properties of I\(_{CaT}\) (Ganitkevich and Isenberg, 1991). On the other hand, in frog atrial cells facilitation of I\(_{CaT}\) results from voltage-dependent relief of tonic inhibition by tyrosine phosphorylation and G\(\alpha_i\) proteins (Alvarez et al., 1996; Alvarez et al., 2000).

In Chapter 2, this thesis demonstrated that heterologously expressed cloned cardiac Ca\(_v\)3.2 channel displays VDF and in a splice variant specific manner. Chapter 2 also showed that the Ca\(_v\)3.2(-25) variant is predominantly expressed in the newborn rat ventricle and I hypothesize that the native ventricular I\(_{CaT}\) displays VDF. In this chapter, I investigated whether I\(_{CaT}\) in
newborn rat ventricular myocytes displays VDF and whether VDF is correlated with the expression of the Ca,3.2(-25) alternative splice variant.

3.2 Results

3.2.1 Expression of Ca\(^{2+}\) channels in neonatal rat ventricular myocytes

Newborn rat ventricular myocytes (NRVM) were prepared from newborn (P0) Wistar rats by serial enzymatic digestion and maintained in culture for two days prior to RNA extraction and whole cell patch clamp recordings. Immediately after isolation the cells were spherical in appearance. The cells were allowed to attach overnight. Adherent cells were fusiform or triangular in shape (Figure 3.1A). After 1 to 2 days in culture, NRVMs demonstrated spontaneous contractile activity. Quantitative RT-PCR analysis was used to examine the expression of cardiac Ca\(_{\text{v}}\)1.2, Ca\(_{\text{v}}\)3.1 and Ca\(_{\text{v}}\)3.2 channels (Figure 3.1B). The mRNA expression of Ca\(_{\text{v}}\)3.2 was approximately 35% higher than Ca\(_{\text{v}}\)3.1 channels and approximately 50% higher than Ca\(_{\text{v}}\)1.2 channels. The functional expression of HVA and LVA channels in NRVM was investigated by recording macroscopic Ca\(^{2+}\) currents via whole cell patch clamp analysis. Figure 3.1C illustrates the I-V relationship for total Ca\(^{2+}\) currents recorded from a holding potential (Vh) of -90 mV. Figure 3.1E shows the I-V relationship for Ca\(^{2+}\) currents when T-type channels are inactivated (Vh of -50 mV)(I\(_{\text{CaL}}\)). Representative current traces for total Ca currents and I\(_{\text{CaL}}\) are shown in Figures 3.1D and 3.1F, respectively. L-type currents were evidently observed at more depolarized potentials and showed peak currents at 0 mV, consistent with that observed for L-type channels (Figure 3.1E). The I-V curve from a Vh of -90 mV showed a peak current at -30 mV with a second component observed at more positive potentials (Figure 3.1C). Overall, under
short term culture conditions, NRVM Ca\(^{2+}\) currents recorded from Vh of -90 mV appear mostly contributed by T-type channels and likely consisting of both Ca,3.1 and Ca,3.2 isoforms.

Figure 3.1. Expression of HVA and LVA Ca\(^{2+}\) channels in short-term cultured neonatal rat ventricular myocytes (NRVM).
(A) Neonatal rat ventricular myocytes (NRVM) 48 hours in culture. (B) qRT-PCR analysis for Ca_{v}3.1, Ca_{v}3.2 and Ca_{v}1.2 Ca^{2+} channels. The level of mRNA expression was calculated relative to rActB expression. The expression of Ca_{v}3.2 mRNA is significantly higher than Ca_{v}3.1 T-type and Ca_{v}1.2 L-type Ca^{2+} channels. Samples were from five individual total RNA preparations from five NRVM isolations. Values shown as mean ± standard error. T-test was performed to measure significant differences. *p < 0.05 and **p < 0.01. NRVM Ca currents were also recorded. (C) and (E) show the current-voltage (I-V) curves for total (L + T-type currents) and L-type Ca^{2+} currents recorded from NRVM, respectively. Representative traces for total (D) and L-type (F) macroscopic Ca^{2+} currents. Two populations of macroscopic Ca^{2+} currents exist in currents recorded from V_h of -90 mV as evidently observed in their kinetics of activation and inactivation (red trace). In V_h of -50 mV, macroscopic Ca^{2+} currents with fast activation and inactivation kinetics are eliminated. The I-V relationships of Ca^{2+} currents for ventricular myocytes were obtained by depolarizing the myocytes with 200 ms prepulse from -80 mV to +20 mV at 10 mV increments. A hyperpolarized holding potential of -90 mV recorded both Ca^{2+} currents whereas V_h of -50 mV revealed exclusively L-type.

3.2.2 Biophysical properties of T-type Ca^{2+} currents in isolated ventricular myocytes

To better isolate I_{CaT} from I_{CaL}, CdCl_2 (20 μM) was superfused to block I_{CaL}. Figure 3.2A illustrates representative current traces evoked by test pulses to -60 mV (black), -30 mV (red) and 0 mV (blue) and summarizes the subtraction strategy used in studying NRVM I_{CaT}. The top panel in Figure 3.2A shows current traces recorded from V_h = -90 mV -50 mV and the currents remaining after subtraction of the currents recorded from V_h of -90 mV to the currents recorded from V_h = -50 mV (in 2 mM Ca^{2+}). The kinetics of the subtracted currents in the absence of Cd^{2+} showed two distinct components of inactivation while Ca^{2+} currents recorded from V_h of -50 mV showed a single Cd^{2+}-sensitive component (Figure 3.2A top middle panel). The addition of Cd^{2+} totally eliminated I_{CaL} (Figure 3.2A bottom middle panel) thus the subtracted currents recorded in the presence of Cd^{2+} were taken as I_{CaT}.

I-V curves for subtracted currents in NRVM obtained in the presence and absence of Cd^{2+} in the external recording solution are shown in Figure 3.2B. Results showed a lack of significant difference between the V_{50} of activation of subtracted currents recorded in the
presence (-43.57 ± 1.06 mV, n = 8) and absence (-42.87 ± 0.68 mV, n = 9) of Cd\(^{2+}\). Isolated I\(_{CaT}\) recorded with Cd\(^{2+}\) typically showed a “criss-crossing pattern” of current traces when recorded with the I-V protocol as illustrated in Figure 3.2C. The steady-state inactivation properties of NRVM I\(_{CaT}\) was studied by applying 5 second prepulses from -120 mV to -10 mV followed by a test pulse to – 30 mV for 90 ms. Results showed that the \(V_{50inact}\) of I\(_{CaT}\) = -73.54 ± 0.38 mV (n=7) (Table 3.1). The kinetic properties were also analyzed and are summarized in Table 3.1.

Table 3.1. Biophysical properties of T-type Ca\(^{2+}\) currents in isolated neonatal rat ventricular myocytes.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean ± SE values</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{50act})</td>
<td>-43.57 ± 1.06 mV</td>
<td>9</td>
</tr>
<tr>
<td>(k_{act})</td>
<td>-5.90 ± 0.59 mV</td>
<td>9</td>
</tr>
<tr>
<td>(V_{50inact})</td>
<td>-73.54 ± 0.38 mV</td>
<td>7</td>
</tr>
<tr>
<td>(k_{inact})</td>
<td>4.47 ± 0.31 mV</td>
<td>7</td>
</tr>
<tr>
<td>(\tau_{act})</td>
<td>10.36 ± 1.59 ms</td>
<td>9</td>
</tr>
<tr>
<td>(\tau_{inact})</td>
<td>4.18 ± 0.92 ms</td>
<td>9</td>
</tr>
<tr>
<td>Recovery (\tau_1)</td>
<td>21.81 ± 7.33 ms</td>
<td>6</td>
</tr>
<tr>
<td>Recovery (\tau_2)</td>
<td>137.93 ± 50.62 ms</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 3.2. Pharmacological and biophysical isolation of T-type Ca\(^{2+}\) currents in newborn ventricular myocytes.

T-type Ca\(^{2+}\) currents (A, right panel) from newborn ventricular myocytes were isolated by subtracting currents recorded from V\(_{h}\) = -90 mV (A, left panel) to currents recorded from V\(_{h}\) = -50 mV (A, middle panel) in the presence (A, lower panel) and absence (A, top panel) of 20 \(\mu\)M Cd\(^{2+}\). Macroscopic Ca\(^{2+}\) currents recorded without Cd\(^{2+}\) (V\(_{h}\) of -90 mV) revealed L- and T-type components as evidently observed in recorded currents at 0 mV (blue traces). L-type current components showed slow kinetics of inactivation (blue traces with asterisk). Typical I\(_{CaL}\).
was recorded from Vh of -50 mV using Ca$^{2+}$ and was blocked when Cd$^{2+}$ was added (panel A, lower middle). Pure I$_{CaT}$ was obtained in the presence of 20 μM CdCl$_2$ (A, lower right panel). The inactivation kinetics observed in currents recorded at 0 mV in the presence of Cd$^{2+}$ is faster than the current inactivation when Cd$^{2+}$ is absent (blue traces in panel A, right). Panel B shows the I – V curves for NRVM I$_{CaT}$ in the presence (red circle) and absence (black circle) of Cd$^{2+}$. The inclusion of Cd$^{2+}$ reduced the subtracted current density without any significant change in V_{50} of activation. (C) Representative traces for I$_{CaT}$ obtained from I – V protocol showed a criss-crossing pattern typically observed for whole cell recordings of T-type Ca$^{2+}$ currents.

The recovery from inactivation of NRVM I$_{CaT}$ was determined using a double pulse protocol. A prepulse to -30 mV for 400 ms was given and channels allowed to recover from inactivation at different time intervals (varying interpulse interval) between 5 ms to 5 seconds before applying a test pulse to -30 mV for 50 ms from Vh of -90 mV (Figure 3.3A, bottom panel). Fractional recovery was determined by calculating the amplitude ratio between the currents evoked by second pulse and the prepulse (Figure 3.3A top panel). Calculated ratios were plotted versus interval between pulses (Figure 3.3B). Results showed that the time constants of recovery were 21.81 ± 7.33 ms (n=6) and 137.93 ± 50.62 ms for τ_1 and τ_2, respectively (Table 3.1). Of note, NRVM I$_{CaT}$ displayed potentiated fractional recovery from inactivation (Figure 3.3B).

In order to examine if the observed potentiation of NRVM I$_{CaT}$ was comparable to that observed in the recovery from inactivation profile for the recombinant Ca$_v$3.2(-25) channel (Figure 2.6), an overlay of the NRVM I$_{CaT}$ and Ca$_v$3.2 exon 25 splice variant recovery from inactivation data was performed. Results showed that both NRVM I$_{CaT}$ and Ca$_v$3.2(-25) currents revealed potentiated recovery from inactivation as well as faster recovery kinetics compared with Ca$_v$3.2(+25) (Figure 3.3D). NRVM I$_{CaT}$ and Ca$_v$3.2(-25) showed a comparable level of potentiation until 1200 ms; however an interpulse greater than 3000 ms, the ratio of current magnitude reached a value close to that obtained for the Ca$_v$3.2(+25) variant.
Figure 3.3. The potentiated recovery from inactivation properties of NRVM T-type Ca$^{2+}$ currents is comparable to the recombinant Ca$_{3.2}$(-25) alternative splice variant. (A) Representative currents obtained from the first eight traces (5 ms to 640 ms) showed complete recovery from inactivation (upper panel). The recovery from inactivation was analyzed using double pulse protocol. A -30 mV prepulse was applied for 400 ms and channels were allowed to recover at different time interval before applying a second pulse to -30 mV for 50 ms (bottom panel). (B) I_{CaT} from newborn ventricular myocytes showed potentiated fractional recovery. (C) Overlay of recovery from inactivation profiles for Ca$_{3.2}$ exon 25 alternative splice variants and NRVM I_{CaT}. Both Ca$_{3.2}$(-25) (blue circle) and
NRVM (red circle) I_{Cat} display potentiated fractional recovery but not Ca$\text{v}_{3.2(+25)}$ (black circle). The fractional recovery for NRVM at 3000 ms interpulse interval is comparable to Ca$\text{v}_{3.2(+25)}$. These results show that the potentiated recovery from inactivation property of NRVM I_{Cat} may be attributed to Ca$\text{v}_{3.2}$ minus exon 25 splice variant and the overall recovery from inactivation profile of NRVM could be a combination of both Ca$\text{v}_{3.2(\pm)}$ exon 25 splice variants. Fractional recovery was determined by calculating the amplitude ratio between the second pulse and the prepulse. Average data were fitted with a double exponential function to obtain the time constants for the fast (τ_1) and slow (τ_2) components of recovery from inactivation.

3.2.3 Voltage-dependent facilitation of T-type Ca$^{2+}$ currents in rat ventricular myocytes.

The potentiated recovery from inactivation of I_{Cat} in ventricular myocytes was further explored using the same strategy used in studying the VDF properties of cloned Ca$\text{v}_{3.2}$ alternative splice variants. Briefly, the percentage of facilitation was obtained by dividing the currents obtained at test pulses preceded by prepulses by currents recorded from -90 mV (Figure 3.4B bottom panel). Average percentage NRVM I_{Cat} facilitation was plotted as a function of prepulse potential and VDF of NRVM I_{Cat} was observed from potentials positive to 0 mV (15 to 25%) (Figure 3.4A).

The magnitude of VDF of NRVM I_{Cat} was compared against recombinant Ca$\text{v}_{3.1}$ channels and Ca$\text{v}_{3.2(\pm)}$ exon 25 variants (Figure 3.4C). The recombinant Ca$\text{v}_{3.1}$ channels do not display VDF whereas Ca$\text{v}_{3.2(-25)}$ and NRVM I_{Cat} displayed VDF. Additionally, the VDF of NRVM I_{Cat} was greater than that for the VDF of Ca$\text{v}_{3.2(+25)}$ channel. To examine the correlation of expression of Ca$\text{v}_{3.2}$ exon 25 splice variants to the observed VDF, a qRT-PCR analysis was performed. Consistent with qRT-PCR data on newborn ventricular tissues (Figure 2.4), the level of mRNA expressed in newborn rat ventricular myocytes showed predominant expression of Ca$\text{v}_{3.2(-25)}$, with 4- to 5-fold higher expression than the Ca$\text{v}_{3.2(+25)}$ splice variant.
(Figure 3.4D). This suggests that the observed VDF in newborn ventricular myocytes is predominantly contributed by Ca\textsubscript{v}3.2(-25) splice variant channels.

![Graph showing percent facilitation vs. prepulse potential (mV)](image)

Figure 3.4. Neonatal rat ventricular myocytes display VDF properties which is correlated with high level of Ca\textsubscript{v}3.2 minus exon 25 alternative splice variant. (A) I\textsubscript{CaT} in newborn rat ventricular myocytes display significant VDF. Panel B shows the representative current traces obtained from recording VDF from NRVM. The VDF of NRVM I\textsubscript{CaT} was studied by applying a 200 ms test pulse to -30 mV following a series of depolarizing prepulses from -90 to +110 mV after a time interval of 1.2 seconds (V\textsubscript{h} = -90 mV). The percentage of facilitation was obtained by dividing the currents obtained from prepulses to
currents recorded at -90 mV. Averaged percentage of facilitation was plotted as a function of prepulse potential. (C) Comparisons of the percentage VDF obtained from +30 mV test potential. Both NRVM I_{CaT} and $\text{Ca}_v3.2(-25)$ currents display robust VDF but not $\text{Ca}_v3.2(+25)$ and $\text{Ca}_v3.1$. Thus, VDF in ventricular myocytes is perhaps contributed by I_{CaT} from $\text{Ca}_v3.2$ minus 25 containing channels. (D) qRT-PCR of $\text{Ca}_v3.2$ (+25) splice variants. The expression of minus 25 was shown to be 4 to 5 fold higher than $\text{Ca}_v3.2(+25)$ splice variants. Relative mRNA expression is compared against rat actin B (rActB) mRNA. Error bars represent standard error. T-test was performed to measure significant differences. *p < 0.01.

3.3 Discussion

3.3.1 T-type Ca^{2+} channels are expressed in neonatal rat ventricular myocytes

The mRNA expression of $\text{Ca}_v1.2$ L-type and cardiac T-type isoforms ($\text{Ca}_v3.1$ and $\text{Ca}_v3.2$ channels) was determined by qRT-PCR analysis. Consistent with our previous data on Ca^{2+} channels mRNA expression in heart tissue (Figures 2.1A and 2.1B), I demonstrated the expression of all three Ca^{2+} channels in short-term cultured NRVM (48 hours). The amount of $\text{Ca}_v3.2$ mRNA expressed in cultured NRVM is significantly greater than $\text{Ca}_v3.1$ and $\text{Ca}_v1.2$ channels (Figure 3.1). The expression of $\text{Ca}_v3.2$ is two-fold higher than $\text{Ca}_v1.2$, and about one-fold higher than $\text{Ca}_v3.1$. Collectively, the mRNA expression of both cardiac T-type channels is much greater than $\text{Ca}_v1.2$ channels. This is consistent with the relative contribution of I_{CaT} to the total Ca^{2+} currents recorded from NRVM where I_{CaL} contributed to approximately 35% of the total Ca^{2+} currents recorded in newborn ventricular myocytes compared to ~65% for I_{CaT} (Figures 3.1C and 3.1E). Our results are consistent with a previous report on the prominence of I_{CaT} over I_{CaL} in neonatal rat ventricular myocytes (Wang et al., 1991). Even when $\text{Ca}_v3.1$ and $\text{Ca}_v3.2$ channels are highly expressed during heart development (Section 1.4), knockout experiments have shown that silencing either of the CACNA1G and CACNA1H genes is not lethal indicating that individually the T-type isoforms are not indispensable or that a compensatory mechanism for T-type function exists in the knockouts (Kim et al., 2001; Chen et
al., 2003; Mangoni et al., 2006b). In this regard, it would be interesting to investigate whether a double knockout of Ca$_v$3.1 and Ca$_v$3.2 significantly alters heart development.

I_{CaT} in NRVM appears contributed by the expression of both Ca$_v$3.1 and Ca$_v$3.2 channels. Alternative splicing of Ca$_v$3.1 T-type channels in cultured ventricular myocytes has been reported (Cribbs et al., 2001), however, to our knowledge, alternative splicing of Ca$_v$3.2 channels in cultured NRVM has not been explored. In Chapter 2, I demonstrated the expression of alternative splice variants of Ca$_v$3.2 channels in newborn ventricular tissues. The III – IV linker variants encoding for the inclusion and exclusion of exon 25 variants are the most abundant Ca$_v$3.2 alternative splice variants in the newborn ventricle. In this chapter, I studied the expression of Ca$_v$3.2 (±) exon 25 variants in NRVM. Consistent with our data on neonatal ventricular tissues (Figure 2.4), I observed significant expression of Ca$_v$3.2(-25) variants in short-term cultured newborn ventricular myocytes (Figure 3.4D).

3.3.2 Voltage-dependent facilitation of NRVM I_{CaT} is correlated with Ca$_v$3.2(-25) splice variant expression

One of the objectives of this work was to examine whether I_{CaT} from newborn rat ventricular myocytes displays VDF. Our results presented in Chapter 2 demonstrated that cloned Ca$_v$3.2 channels exhibit both a potentiated fractional recovery from inactivation and VDF in splice variant specific manner (Figures 2.6, 2.7 and 2.8). In this chapter I examined the biophysical and VDF properties of NRVM I_{CaT} as well as correlated the expression profile of Ca$_v$3.2(±) exon 25 splice variants to the observed properties.

Recovery from inactivation of NRVM I_{CaT} was investigated and showed a facilitated fractional recovery (Figure 3.3B). The recovery from inactivation of I_{CaT} from NRVM is more similar to the cloned Ca$_v$3.2(-25) potentiated fractional recovery compared to cloned Ca$_v$3.2(+25)
fractional recovery (Figure 3.3C). VDF property was also examined in NRVM I_{CaT}. Comparative analysis of the VDF properties of NRVM I_{CaT} and the magnitude of facilitation of Ca_{v}3.1 channels and Ca_{v}3.2 (±) exon 25 alternative splice variants showed that both NRVM I_{CaT} and Ca_{v}3.2(-25) displayed VDF but not the Ca_{v}3.1 or Ca_{v}3.2(+25) isoforms (Figure 3.4C).

Significantly, among recombinant Ca_{v}3.1 III – IV linker variants, a lack of potentiated fractional recovery (Chemin et al., 2001a; Latour et al., 2004) and VDF has also been reported (Klockner et al., 1999; Chemin et al., 2002; Gomora et al., 2002). Thus, the facilitation observed in dissociated NRVM is unlikely contributed by splice variants of Ca_{v}3.1 channels.

I also observed that the VDF of I_{CaT} in cultured NRVM is predominantly correlated to Ca_{v}3.2(-25) variant expression. Hence, Ca_{v}3.2(-25) containing channels likely contributes to the observed VDF of NRVM I_{CaT}. The magnitude of facilitation observed in NRVM is lesser than the recombinant Ca_{v}3.2(-25) (Figure 3.4C). One possible explanation might be attributed to inhibition by endogenous regulatory proteins present in ventricular myocytes. For example, G_{βγ} might be tightly bound with Ca_{v}3.2 channels potentially leading to a lower relative VDF. In support of this potential mechanism, I demonstrated that the magnitude of VDF of recombinant Ca_{v}3.2(-25) channels was reduced by G_{β2γ2} (Figure 2.9D). In the future, it would be interesting to determine whether disrupting the binding of endogenous G_{βγ} could increase the magnitude of facilitation of NRVM I_{CaT}.

3.3.3 Potential significance of voltage-dependent facilitation of T-type Ca^{2+} currents in neonatal ventricle

Prior to this research, VDF among T-type Ca^{2+} channels had been shown for recombinant Ca_{v}3.3 channels (Klockner et al., 1999; Chemin et al., 2002; Gomora et al., 2002) and native I_{CaT} in bone marrow cells as well in atrial and coronary smooth muscle myocytes (Ganitkevich and...
Isenberg, 1991; Publicover et al., 1995; Alvarez et al., 1996). Here, I showed that the cloned rat cardiac CaV3.2(-25) splice variant also displays prominent VDF (Chapter 2). Importantly, I also showed that cultured NRVM I_{CaT} exhibit VDF, correlated to the predominant expression of CaV3.2(-25) variant in these cells (Figure 3.4).

The functional implication of I_{CaT} VDF in newborn ventricle remains to be described. In the following discussion, I will examine the potential contributions of CaV3.2 VDF in the neonatal ventricle and suggest potential experiments for future studies. Figure 3.5 illustrates some functional components of a typical neonatal rat ventricular myocytes (Gaughan et al., 1998). In newborn ventricle, the resting potential is between -70 mV and -60 mV, the AP duration of approximately is 350 ms and peaks at +30 mV. I observed that at +30 mV prepulse NRVM I_{CaT} display VDF (Figure 3.4). Taking into consideration the previously reported newborn ventricular electrical properties and our current data on I_{CaT} VDF in cultured NRVM, under physiological conditions VDF in newborn ventricle might occur which would potentially lead to an increase in intracellular Ca^{2+}.

T-tubules and SR are not fully developed in immature hearts and I_{CaT} supplies most of the Ca^{2+} that triggers the contraction in the immature myocardium (Nuss and Marban, 1994; Wetzel and Klitzner, 1996; Haddock et al., 1999; Artman et al., 2000; Escobar et al., 2004; Tohse et al., 2004). It is tempting to speculate that the VDF of CaV3.2 I_{CaT} contributes to the Ca^{2+} flux leading to spontaneous beating and contractions of newborn ventricles. First, during the peak of the AP elevated Ca^{2+} from the VDF of CaV3.2 I_{CaT} is predicted to directly activate the contractile machinery to induce contraction (Figure 3.5a). Secondly, elevated intracellular Ca^{2+} from VDF would directly trigger local Na/Ca exchangers to enter into reverse mode allowing Ca^{2+} flux to further increase contraction (Figure 3.5b). Because of their low threshold of activation, CaV3.2 channels activate early during the phase between two contractions and before the onset of the
next AP. The AP duration for neonatal rat ventricle is between 200 to 350 ms (Cohen and Lederer, 1988; Gaughan et al., 1998). Current work shows that both VDF and potentiated fractional recovery occurs after ~1000 ms interval, hence facilitation of native ventricular I_{CaT} might occur after at least three APs. The resulting increased in inward I_{Ca} would potentially result in an increase in intracellular Ca^{2+} concentration sufficient to trigger spontaneous contractions. Lastly, at rest the residual Ca^{2+} from the previous VDF would perhaps result in a relatively large inward Na/Ca exchanger component which would depolarize the ventricle to allow generation of the next AP (Figure 3.5c). This perhaps contributes to a more positive resting potential for the neonatal ventricle compared to the adult ventricle (Cohen and Lederer, 1988; Gaughan et al., 1998). Overall, it would be interesting to explore these potential contributions to further elucidate the role of Ca$_v$3.2 channels in postnatal heart development. Suggested future experiments include measurement of contractility and intracellular Ca^{2+} using a combination of confocal microscopy and patch-clamp techniques on Ca$_v$3.2 $^{-/-}$ ventricular myocytes overexpressing exon 25 splice variants. Such studies may more clearly define the physiological roles of Ca$_v$3.2 exon 25 splice variant channels in the heart.
Figure 3.5. Potential contribution of $\text{Ca}_{\text{v}3.2}$ T-type Ca^{2+} channel VDF in neonatal rat ventricle.

A typical neonatal rat ventricular action potential is shown on the right. The resting potential is between -70 to -60 mV and peak AP is at +30 mV (Re-drawn from (Gaughan et al., 1998)). Proposed contributions of VDF of $\text{Ca}_{\text{v}3.2}$ T-type Ca^{2+} currents in neonatal ventricular myocytes. $\text{Ca}_{\text{v}3.2}$ T-type Ca^{2+} channels would contribute to activation of contractile machinery to induce spontaneous contraction and beating by (a) VDF of $\text{Ca}_{\text{v}3.2}$ channels would increase intracellular Ca^{2+} levels enough to directly activate myofilaments (red arrows), (b) Elevated Ca^{2+} would change the conformation of the local Na/Ca exchanger allowing it to go to reverse mode. This would increase intracellular Ca^{2+} enough to activate the contractile machinery (blue arrows) or (c) Residual Ca^{2+} from previous VDF would result in large inward Na/Ca exchanger currents. This would allow increase in Na$^+$ influx enough to depolarize the ventricle to generate the next action potential (green arrows).
3.4 Materials and methods

3.4.1 Animals and reagents

All animal procedures were performed in accordance with Canadian Council on Animal Care (CCAC) guidelines for animal research. Newborn (P0) Wistar-Kyoto rats were utilized in this research and purchased from University of British Columbia Animal Care Center, Vancouver, B.C., Canada.

All chemicals were purchased from Sigma (St. Louis, Missouri) unless otherwise stated. Culture media components were purchased from Invitrogen (Carlsbad, California).

3.4.2 Isolation of neonatal rat ventricular myocytes

One litter of newborn rats (8-12 animals) was used per experiment. Ventricular myocytes were dissociated by serial enzymatic digestion as follows: P0 rats were cervically dislocated and then decapitated using a pair of scissors. The thorax of each animal was sterilized with 95% ethanol and an incision was made into the sternum to expose the heart. The beating heart was excised and immersed in sterile ice cold 1X ADS buffer containing (in mM) 116 NaCl, 20 HEPES, 0.5 NaH$_2$PO$_4$·H$_2$O, 5.4 KCl, 0.8 MgSO$_4$ and 5.5 glucose. All hearts were collected in a 60 mm Petri dish and washed.

Ventricles were isolated by removing the atria using curved forceps and a pair of curved small scissors. The isolated ventricles were then transferred into a new Petri dish and chopped into small pieces. Using a sterile 25 mL pipette the tissue pieces were transferred to a 50 mL Falcon tube. The ventricular tissues were allowed to settle at the bottom of the tube. Once settled ADS was removed using a sterile pipette.
Ventricular tissues were then subjected to serial enzymatic digestion using collagenase Type 2 (Worthington Biochemical Corporation, Lakewood, New Jersey) and pancreatin (Sigma, St. Louis, Missouri). Initial enzymatic digestion of ventricular tissues was performed by adding 8 mL of pre-warmed enzyme solution (0.6 mg/mL pancreatin and 100 Units/mL collagenase in 1X ADS buffer) and incubated in a shaking water bath at 37°C with a speed of 65 rpm for 5 minutes. After incubation, tissues were left to settle at the bottom of the tube and the supernatant was discarded using a sterile pipette and vacuumed. Ventricular tissues were then re-digested in enzyme solution and incubated in a shaking water bath at 37°C. Digested tissues were left to settle at the bottom and supernatant was transferred into a 50 mL Falcon tube containing sterile fetal bovine serum (Sigma, St. Louis, Missouri, 20% final concentration). The supernatant from this step contained the ventricular cell suspension. This supernatant was spun in a Hettich Universal 320R centrifuge at 1200 rpm for 6 minutes at 25°C. After centrifugation, the supernatant was discarded and the pellet was resuspended in sterile 6 mL pre-plating medium (PPM) containing (in %): 68 DMEM, 17 M199, 10 horse serum, 5 fetal bovine serum. Resuspended pellets were triturred and transferred in a sterile 50 mL falcon tube and equilibrated in the 37°C incubator aerated with 5 % CO₂. Prior to centrifugation ventricular tissues were re-digested with fresh enzyme solution and incubated in a shaking water bath. The digestion and centrifugation were repeated six to eight times. The ventricular cells harvested after centrifugation were pooled in the same 50 mL falcon tube containing PPM.

Immediately after finishing all the digestion steps, cells were spun at 1200 rpm for 6 minutes at 25°C and the pellet was resuspended in 15 mL PPM. The cell suspension was gently filtered through a sterile 70 μm Falcon cell strainer (BD Biosciences, Bedford, Massachusetts). The cell suspension was divided into three 60 mm Petri dishes containing 5 mL each and pre-plated for 60 – 90 minutes in a 37°C incubator allowing the fibroblast to be attached. After pre-
plating, the dishes were transferred to the sterile hood and were tapped on top of the hood bench to dislodge attached ventricular myocytes. Using a 10 ml pipette, the media containing the myocytes were transferred in a new sterile 50 mL falcon tube. Then the Petri dishes were washed with PPM to further harvest the myocytes that remained in the dish. Washing was repeated until there were no myocytes to transfer. The media used for washing was pooled to the original cell suspension. For electrophysiological studies, ventricular myocytes were seeded in 35 mm Petri dishes containing 12 mm glass coverslips coated with 15 μg/mL laminin. NRVM were seeded at a density of 7.5 x 10^4 cells/mL. For qRT-PCR analysis, ventricular myocytes were grown in a 1% gelatin coated T25 flask at a density of 1.0 x 10^5 cells/mL. NRVM were incubated overnight at 37ºC. The following day, media was replaced with pre-warmed sterile serum-free maintenance media containing 80% DMEM, 20% M199 and 1% (v/v) penicillin/streptomycin.

3.4.3 RNA extraction and quantitative Real-Time-PCR (qRT-PCR)

After 24 hours of incubation in serum free maintenance media, total RNA from cultured NRVM was prepared. Maintenance media were discarded using a sterile pipette and vacuumed. One mL of Trizol (Invitrogen) was added to the myocytes. Using an RNAse-free plugged tip, myocytes were dislodged by pipetting up and down. NRVM/Trizol mixture was then transferred and homogenized in a sterile glass/Teflon homogenizer. Homogenized samples were incubated at room temperature (RT) for 5 minutes followed by adding 200 μL choloroform and incubated at RT for another 3 minutes. Samples were spun in a table top centrifuge at 11,000 x g for 15 minutes at 4ºC. The aqueous phase of the centrifugate was immediately transferred to a clean RNAse-free eppendorf tube and 500 μL of isopropanol was added. The centrifugate/isopropanol mixture was incubated at RT for 10 minutes to precipitate the RNA. After the incubation, samples were spun at 11,000 x g for 10 minutes at 4ºC. The precipitate was washed with 75%
ethanol and spun at 7,500 x g for 5 minutes. The supernatant was removed and final pellets were dried briefly prior to suspension in DEPC-treated deionized water.

Total RNA was used to synthesize cDNA using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems). Real-time-PCR reactions were performed using Applied Biosystems reagents; Applied Biosystems AB 7500 instrument and TaqMan probes generated against the respective cDNA targets. Primer mixes used for qRT-PCR analysis to determine the level of mRNA expression of Ca\(^{2+}\) channels were purchased from Applied Biosystems (Carlsbad, California). Relative mRNA amounts were estimated after actin B normalization. All qRT-PCR reactions were run in triplicate and averages were determined. A total of five RNA preparations from five NRVM isolations were utilized in determining the level of mRNA expression

3.4.4 Whole cell patch clamp analysis of isolated neonatal ventricular myocytes

Neonatal ventricular myocytes were maintained in serum-free maintenance media at 37°C in a humidified incubator with 95% O\(_2\) and 5% CO\(_2\) for 24 hours prior to whole cell patch clamp analysis. When the myocytes started beating which was normally 24 - 48 hours after isolation, NRVM were ready for biophysical characterization.

Macroscopic currents were recorded using Axopatch 200B amplifiers (Axon Instruments, Foster City, CA) controlled and monitored with personal computers running pClamp software version 9 (Axon Instruments). The external recording solution was composed of the following (in mM): 2 CaCl\(_2\), 1 MgCl\(_2\), 92 CsCl, 10 glucose, 40 tetraethylammonium chloride, 10 HEPES, osmolarity was adjusted to 310 mOsm with D-mannitol and pH to 7.4. The internal pipette solution contained (in mM): 120 Cs-MeSO\(_3\), 11 EGTA, 10 HEPES, 2 MgCl\(_2\), 5 MgATP, 0.3 NaGTP, osmolarity was adjusted to 290 mOsm with D-mannitol and pH to 7.2. 20 μM CdCl\(_2\) was added to the external recording solution to eliminate the I\(_{\text{CaL}}\) component. Patch pipettes
(borosilicate glass BF150-86-10; Sutter instruments, Novato, CA) were pulled using a Sutter P-87 puller and fire polished with a Narashige (Tokyo, Japan) microforge with typical resistances of 3 – 6 MΩ when filled with internal solution. The bath was grounded via a 3 mM KCl bridge. Data were filtered at 2 kHz with the built–in Bessel filter of the amplifier. The amplifier was also used for capacitance and series resistance compensation between 75 to 85% on every cell. Leak subtraction of leakage current was performed during off-line analysis.

I-V relationships of ventricular myocytes were studied using two holding potentials to determine the contribution of T- and L-type Ca\(^{2+}\) currents in these cells. A hyperpolarized holding potential of -90 mV recorded both Ca\(^{2+}\) currents whereas Vh of -50 mV revealed exclusively I\(_{\text{CaL}}\). The contribution of NRVM I\(_{\text{CaT}}\) was determined by subtracting recorded Ca\(^{2+}\) currents obtained from Vh -90 mV to Vh -50 mV both in the presence and absence of 20 \(\mu\)M CdCl\(_2\) (Figure 3.2). Voltage-dependent activation was studied by applying 200 ms depolarizing pulses from -80 mV to + 20 mV at 10 mV increments. Current densities (in pA/pF) were calculated by dividing the capacitance (in pF) of each myocyte from the current (in pA) obtained in each test potential. The values from the current densities were utilized to analyze the voltage-dependence of I\(_{\text{CaT}}\). I-V relationships were fitted with the modified Boltzmann equation:

\[
I_m = \frac{(G_{\text{max}} X (V_m-E_{\text{rev}})) / (1+\exp((V_m-V_{50\text{act}})/k_{\text{act}}))}{},
\]

where \(G_{\text{max}}\) is the maximum slope conductance; \(E_{\text{rev}}\) is the extrapolated reversal potential; \(V_m\) is the membrane potential, \(V_{50\text{act}}\) is the half activation potential; \(k_{\text{act}}\) is the slope factor of activation which reflects the voltage sensitivity.

Steady-state inactivation of NRVM I\(_{\text{CaT}}\) was studied by applying 5 second prepulses from -120 mV to -10 mV followed by a test pulse to – 30 mV for 90 ms. The current magnitude obtained during each test pulse was normalized to the maximum current and plotted as a function of the pre-pulse potential. Steady state inactivation normalized data were fitted using the Boltzmann equation (\(I/I_{\text{max}} = (1+\exp((V-V_{50\text{inac}})/k_{\text{inac}}))^{-1}\), where \(I_{\text{max}}\) is the maximum current;
V_{50\text{inact}} is the membrane potential at which 50% of the channels are inactivated, k_{\text{inac}} is the slope factor of inactivation.

NRVM I_{\text{CaT}} kinetics of activation (\tau_{\text{act}}) and inactivation (\tau_{\text{inact}}) were analyzed by fitting current recordings obtained from subtracted Ca^{2+} currents (Figure 3.2). To obtain the values for the activation and inactivation kinetics, current traces were fitted with a single exponential standard equation I = A e^{-t/\tau}, where A is the amplitude of the current at t_0, and \tau is the time constant.

Recovery from inactivation was determined by double pulse protocol; a prepulse to -30 mV for 400 ms was given and allowed to recover at different time intervals (interpulse interval) between 5 ms to 5 seconds before applying a test pulse to -30 mV for 50 ms (V_h = -90 mV). The peak current from the test pulse was plotted as ratio of maximum prepulse current versus interval between pulses. The data were fitted with a double exponential function (I/I_{\text{max}} = A_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)), where A_0 is the amplitude for inactivating component, A1 and A2 are the amplitudes for the fast and slow components of the exponential, and \tau_1 and \tau_2 are the time constants for the fast and slow components.

The VDF property of NRVM I_{\text{CaT}} was studied by applying a 200 ms test pulse to -30 mV following a series of depolarizing prepulses from -90 to +110 mV after a time interval of 1.2 seconds. The percentage of facilitation was obtained by dividing the currents obtained from prepulses to currents recorded at -90 mV. Averaged percentage of facilitation was plotted as a function of prepulse depolarization. All recordings were performed at room temperature (~22 - 24°C).

Data analysis was performed using Clampfit software version 9.0 (Axon Instruments). All plots and statistical analysis (T-test and ANOVA) were performed using the Microcal Origin.
software version 7.5 (Northampton, MA). Statistical significance was tested with Student’s *t*-test with significance being determined at confidence interval of $p < 0.05$ and $p < 0.01$.
4 CONCLUSION

4.1 Overall significance

4.1.1 Identification and characterization of cardiac Ca,3.2 alternative splice variants

Although Ca,3.2 T-type channels had been reported to be expressed in the heart, alternative splicing of cardiac Ca,3.2 channels has not yet been explored. Alternative splicing of transcript of the CACNA1H gene which encodes for the Ca,3.2 T-type channel has thus far been shown in human fetal whole brain (Zhong et al., 2006), rat thalamus (David et al., 2008; Powell et al., 2009) (Appendix 5), testis (Jagannathan et al., 2002) and uterus (Ohkubo et al., 2005). Alternative splice variants of Ca,3.2 channels have been implicated in the pathophysiology of epilepsy and sperm cell differentiation (Jagannathan et al., 2002; Zhong et al., 2006; Powell et al., 2009). However, prior to this research, the relevance of Ca,3.2 alternative splicing had not been described for the developing or diseased heart. The elucidation of cardiac Ca,3.2 alternative splice variants is predicted to provide important new insights into the contributions of Ca,3.2 channels in cardiac development and disease progression.

The first major objective of this thesis was to explore whether cardiac Ca,3.2 channels are subject to major alternative splicing. A second major objective was to functionally characterize the full-length splice variants using a heterologous expression system. This thesis utilized an experimental design that allowed comprehensive splice-variant screening via full length cDNA sequencing and colony PCR screening of possible cardiac Ca,3.2 alternative splice variants (Chapter 2). Since Ca,3.2 is predominantly expressed in the early stages of development, newborn (day 0) rat hearts were utilized for the splice variant screening.

This thesis described 25 in-frame/C-terminal alternative splice variants occurring at 10 distinct sites in the Ca,3.2 protein (Figure 2.2 and Table 2.1). Additionally, this research found
21 out-of-frame splice variants (data not shown) which resulted in premature truncations (PCTs) predicted to encode in non-functional channels. Out of frame variants are predicted to elicit nonsense–mediated decay (NMD) and/or act as dominant negative regulators of wild type channels (Wielowieyski et al., 2001; Lejeune and Maquat, 2005; Zhong et al., 2006). NMD is an important mechanism to degrade abnormal mRNAs that encode potentially deleterious truncated proteins and to achieve proper levels of gene expression (Lejeune and Maquat, 2005). Truncated Ca\textsubscript{v3.2} channels have been shown to suppress the expression of wildtype channels suggesting a functional role for PCTs (Heron et al., 2004; Mezghrani et al., 2008). Compared with the previous studies on Ca\textsubscript{v3.2} alternative splicing which utilized partial length cDNA screening, this study employed full length cardiac Ca\textsubscript{v3.2} cDNA libraries which allowed analysis of the entire Ca\textsubscript{v3.2} ORF. Notably, most alternative splicing occurs at the cytoplasmic regions of the channel (8 sites) known to be critical for channel functional properties (Figure 2.2). The cytoplasmic regions of T-type channels are known to be implicated in regulation of channel biophysical properties as well as modulation by certain GPCRs and kinases (Arnoult et al., 1997; Chemin et al., 2001a; Welsby et al., 2003; Wolfe et al., 2003; Hildebrand et al., 2007; Vitko et al., 2007; Iftinca and Zamponi, 2009) (Appendix 2). The splice variants located in six different cytoplasmic regions were subjected to more in-depth analysis via qRT-PCR and whole cell patch clamp analysis.

Among the six distinct variant regions studied, Ca\textsubscript{v3.2} domain III – IV linker splice variants encoding for the inclusion or exclusion of exon 25 revealed notable expression and biophysical profiles. The level of mRNA expression of Ca\textsubscript{v3.2}(-25) channels was found to be higher than Ca\textsubscript{v3.2}(+25) channels in the newborn hearts (Figures 2.3, 2.4 and 3.4D). Furthermore, the two variants also showed distinct biophysical properties. Examination of cardiac Ca\textsubscript{v3.2} (±) exon 25 splice variants demonstrated significant variant-specific changes in
recovery from inactivation and VDF. Exclusion of exon 25 resulted in Ca\textsubscript{v}3.2 currents with robust VDF and faster time constants for recovery from inactivation compared with Ca\textsubscript{v}3.2 plus exon 25 containing channels (Figures 2.6, 2.7, 2.8 and Table 2.3). This is the first study to report VDF of recombinant Ca\textsubscript{v}3.2 channels. Another contribution of this research was the description of a differential effect on Ca\textsubscript{v}3.2 VDF by G\beta\gamma. Co-transfected G\beta\gamma\gamma\alpha reduced the magnitude of VDF of Ca\textsubscript{v}3.2(-25) by approximately 50\% (Figure 2.9D). G\beta\gamma\gamma\alpha, however, did not have any effect on Ca\textsubscript{v}3.2(+25) variant channels (Figure 2.9E). Overall, the study found evidence of extensive splicing in intracellular loops of cardiac Ca\textsubscript{v}3.2 channels correlated with distinct biophysical properties.

4.1.2 Developmental and pathological expression of Ca\textsubscript{v}3.2 alternative splice variants

Cardiovascular T-type Ca2+ channels have been shown to be prominently expressed during early stages of development, downregulated in the adult ventricles and upregulated or re-expressed in the adult diseased ventricles. The Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 isoforms are highly expressed in immature hearts (Cribbs et al., 2001; Ferron et al., 2002; Niwa et al., 2004) but in adult hearts the expression of Ca\textsubscript{v}3.2 becomes significantly reduced and Ca\textsubscript{v}3.1 becomes the predominant isoform but mainly being restricted to pacemaker cells (Qu and Boutjdir, 2001; Mangoni and Nargeot, 2008). However in the hypertrophic adult ventricle, both the functional I\textsubscript{CaT} and mRNA expression of Ca\textsubscript{v}3.2 have been shown to be upregulated (Martinez et al., 1999; Yasui et al., 2005). Additionally, specific expression of the Ca\textsubscript{v}3.2 T-type isoform has also been associated with the pathogenesis of pressure overload-induced cardiac hypertrophy (Chiang et al., 2009). Although, regulation of Ca\textsubscript{v}3.2 expression exists during development and disease, changes in the pattern of expression of Ca\textsubscript{v}3.2 alternative splice variants have not been explored. The third
major objective of this thesis was to determine whether alteration in the pattern of expression of Ca\textsubscript{v}3.2 alternative splice variants is associated with cardiac development and hypertrophy.

This study explored changes in the relative expression of Ca\textsubscript{v}3.2 alternative splice variants in newborn and adult hearts (Chapter 2). I found that the relative expression of the domain III – IV linker variants (Cav3.2 ± 25) showed significant differences in the pattern of expression in newborn versus adult hearts (Figure 2.3). In the newborn heart the exclusion of exon 25 is predominantly expressed occurring at a level 7 to 8 fold higher than (+) 25 exon variant transcripts. Interestingly, in the adult ventricle the overall ratio of (+25) to (-25) variants was approximately equal attributed to the reduction in the expression of the minus exon 25 variant (Figures 2.3 and 2.4). These findings are the first evidence that Ca\textsubscript{v}3.2 alternative splicing is regulated in developing hearts. Interestingly, developmental regulation of expression of alternative splice variants of other Ca2+ handling proteins such as CaMKII\textdelta, cardiac troponin T and Ca\textsubscript{v}1.2 channels have also been reported (Tang et al., 2004; Ladd et al., 2005; Xu et al., 2005). Therefore, understanding the overall functional significance of postnatal changes in cardiac splicing pattern of Ca2+ handling proteins would provide insight into the contribution of these proteins in postnatal heart development.

Ca2+ influx via transient receptor potential canonical (TRPC) channels (Wu et al., 2010; Eder and Molkentin, 2011), L-type channels (Chen et al., 2011) and T-type channels (Chiang et al., 2009; Nakayama et al., 2009; Cribbs, 2010) have all been implicated in cardiac hypertrophic responses. Increase of intracellular Ca2+ is thought to be critically involved in cardiac hypertrophic signalling in part through the Ca2+-activated protein phosphatase calcineurin which leads to activation of the transcription factor NFAT (Houser and Molkentin, 2008). Interestingly, the Ca\textsubscript{v}3.2 T-type channels have been shown to be involved in the pathogenesis of cardiac hypertrophy via calcineurin/NFAT pathway (Chiang et al., 2009). Moreover, upregulation of
Ca\textsubscript{v}3.2 channels has also been demonstrated in pathological ventricular hypertrophy (Martinez et al., 1999; Yasui et al., 2005). Additionally, in Chapter 2 I provided evidence on extensive alternative splicing of cardiac Ca\textsubscript{v}3.2 channels. This prompted me to study whether the expression of Ca\textsubscript{v}3.2 alternative splice variants are altered in cardiac hypertrophy. The regulation of expression of Ca\textsubscript{v}3.2 exon 25 splice variants was investigated in ventricular hypertrophic SHR animals. The SHR is a commonly-used model in studying cardiac hypertrophy since this model closely mimics the most common pathophysiological changes in the human cardiovascular system – hypertension, cardiac hypertrophy and heart failure (Doggrell and Brown, 1998; Chen-Izu et al., 2007; Tang et al., 2008). Age- and sex-matched normotensive WKY rats were used as controls. The hypertrophic phenotype of the SHR animals was confirmed using two molecular markers known to be upregulated in pathological hypertrophy (Figure 2.10A). In addition, histological staining indicative of tissue fibrosis resulting from cardiac hypertrophy was also determined (Figure 2.10B). Overall, our data were consistent with the phenotype of pathological ventricular hypertrophy. This thesis next determined if there are splice variant-specific changes in the expression of Ca\textsubscript{v}3.2 exon 25 splice variants. An upregulation of overall expression of Ca\textsubscript{v}3.2 channels was observed in hypertrophic SHR (Figure 2.10C), a result consistent with an increase in expression of Ca\textsubscript{v}3.2 channels observed in the diseased ventricle by other investigators (Martinez et al., 1999; Yasui et al., 2005). More importantly, a significant increase in the relative amount of Ca\textsubscript{v}3.2(+25) variant compared to Ca\textsubscript{v}3.2(-25) was observed in hypertrophic SHR (Figures 2.10C and 2.10D) resulting in a shift in the predominant exon 25 splice isoform. Thus in pathological cardiac hypertrophy there appears to be a splice-specific upregulation of Ca\textsubscript{v}3.2 alternative splice variants. The potential significance of this observation is discussed in subsequent section. Overall, the study provided evidence that splice-variant
specific changes in expression of Ca,3.2 are associated with cardiac development and hypertrophy.

4.2 Splice variant specific expression of Ca,3.2 T-type Ca\(^{2+}\) channels during development and hypertrophy

4.2.1 Working hypothesis

Several splice variants exist for each of ten Ca\(^{2+}\) channel genes with evidence showing developmental and pathophysiological changes in expression patterns. Alternative splicing generates isoforms that show significant ion channel properties, localization, enzymatic activity, protein stability and post-translational modification (Stamm et al., 2005) profoundly affecting animal physiology, development and pathophysiology (reviewed in (Lopez, 1998; Grabowski and Black, 2001; Stamm et al., 2005; Blencowe, 2006; Gray et al., 2007; Swayne and Bourinet, 2008). For example, alternative splicing in the CACNA1A genes has been demonstrated to alter the functional properties of Ca\(_{v}2.1\) channels. It was reported that the expression of the mutually exclusive exons 37a and 37b (EF hand variants) determines the CDF property of Ca\(_{v}2.1\) (Soong et al., 2002; Chaudhuri et al., 2004). The expression of these variants changes the functional properties of Ca\(_{v}2.1\) channels by regulating the influx of Ca\(^{2+}\) to the cell. Interestingly, spatial and temporal regulation of expression EF hand variants was observed in human and rodent brains suggesting regional- and development-specific roles (Chang et al., 2007). Additionally, our laboratory has also shown that FHM-1 mutations introduced to the Ca\(_{v}2.1\) (+/-) exon 47 have splice-dependent effects on voltage-dependent gating and kinetic properties suggesting a role of Ca\(_{v}2.1\) alternative splicing in the molecular pathophysiology of FHM-1 (Adams et al., 2009) (Appendix 4).
Changes in the expression of Ca\textsubscript{v}1.2 alternative splice variants during development and in disease states have been demonstrated by several groups of investigators (Section 1.3.1). For instance, the level of expression of exons 9* and 33 was reported to change during maturation. Compared to the fetal brain, downregulation of exon 9* and upregulation of exon 33 was observed in the adult brain (Tang et al., 2009). Conversely, compared to the fetal heart, higher expression of exon 9* and lower expression of exon 33 were observed in the adult heart (Tang et al., 2004). Relevant to cardiovascular diseases, changes in the level of expression of Ca\textsubscript{v}1.2 of the mutually exclusive exons 21 and 22 have been reported in human atherosclerotic patients and hypertrophic SHR (Tiwari et al., 2006; Tang et al., 2008). Upregulation of exon 22 was observed in atherosclerosis whereas in cardiac hypertrophy the combination of both exons 21 and 22 are significantly expressed.

T-type channels are also subjected to alternative splicing (Section 1.3.2). Developmental regulation of expression of human Ca\textsubscript{v}3.1 channels has been reported by Emerick et al. (Emerick et al., 2006). The authors reported a switch in the predominant expression of exon 25C and 26 variants between fetal and adult brains. Exon 26 is predominantly expressed in the fetal brain whereas exon 25C is preferentially expressed in the adult brain. The neuronal Ca\textsubscript{v}3.2 channels have also been demonstrated to be subjected to alternative splicing (Zhong et al., 2006; David et al., 2008; Powell et al., 2009) (Appendix 5). Thus far, there is no report on developmental and pathological changes in the expression of Ca\textsubscript{v}3.2 alternative splice variants. However, our laboratory demonstrated that the functional effects of introduced GAERS mutations are dependent on Ca\textsubscript{v}3.2 alternative splice variants (Powell et al., 2009) (Appendix 5). Collectively, the results from the above studies provided evidence of alteration in the expression of alternative splice variants during development and disease. To date, alternative splicing in rat cardiac Ca\textsubscript{v}3.2 channels has not been studied. This study worked on the hypothesis that the cardiac Ca\textsubscript{v}3.2
channels are subjected to alternative splicing and that patterns of expression of alternative splice variants are altered during development and hypertrophy.

The results in Chapter 2 provided evidence of extensive splicing of cardiac Ca\textsubscript{v}3.2 T-type channels. Importantly, I demonstrated an alteration in the predominant expression of Ca\textsubscript{v}3.2 alternative splice variants during normal cardiac development and in pathophysiological state. I showed that the expression of Ca\textsubscript{v}3.2 minus exon 25 is predominantly expressed in the newborn atria and ventricles. In the adult ventricle, I demonstrated that the expression of Ca\textsubscript{v}3.2 minus exon 25 was significantly reduced resulting in approximately equal levels of both plus and minus exon 25 variants. However, in the adult hypertrophic ventricle from SHR, an overall upregulation of both splice variants was observed. Interestingly, I observed a shift towards the expression of Ca\textsubscript{v}3.2 plus exon 25 variants as the predominant form. Overall, my observations support my hypothesis that changes in the expression of Ca\textsubscript{v}3.2 alternative splice variants are associated with cardiac development and hypertrophy.

In general, the molecular mechanism underlying the downregulation and upregulation of Ca\textsubscript{v}3.2 channel expression in the adult normal and diseased rat ventricles is not clearly understood. I speculate that downregulation of cardiac Ca\textsubscript{v}3.2 expression during maturation could be explained by suppression by the transcriptional suppressor NRSE/NRSF. Previous reports showed that NRSF expression in the fetal heart is barely detectable but in adult heart significant expression was detected (Kuwahara et al., 2001; Kuwahara et al., 2003). With regard to the expression of Ca\textsubscript{v}3.2 channels, significant expression was reported during the early stage of development and much reduced or undetected in the adult heart (Qu and Boutjdir, 2001; Ferron et al., 2002). This shows that the expression of Ca\textsubscript{v}3.2 and NRSF is negatively correlated. This negative correlation was tested in transgenic mice expressed with a dominant negative mutant of NRSF (dnNRSF Tg). Compared with the wild type mice, Ca\textsubscript{v}3.2 mRNA were
upregulated in dnNRSF Tg mice, suggesting that the absence of NRSF allowed Ca,v,3.2 expression to proceed (Kuwahara et al., 2003; Kuwahara et al., 2005).

In this study, I also showed an upregulation of expression of Ca,v,3.2 channels in hypertrophic ventricles from SHR. This is consistent with previous reports on upregulation of Ca,v,3.2 expression in other models of cardiac hypertrophy (Martinez et al., 1999; Kuwahara et al., 2003; Yasui et al., 2005). Kuwahara and colleagues have reported negative correlation of expression of mouse cardiac Ca,v,3.2 channels and the transcriptional repressor NRSF (Kuwahara et al., 2003; Kuwahara et al., 2005). In addition, the authors also observed that dnNRSF Tg mice have a cardiac hypertrophic phenotype suggestive of the involvement of NRSE/NRSF transcriptional regulator to the hypertrophic signalling pathways (Kuwahara et al., 2003; Kuwahara et al., 2005). Therefore, it is tempting to speculate that the upregulation of rat cardiac Ca,v,3.2 expression in hypertrophic SHR could also be attributed to downregulation of NRSF.

Based upon my data on the quantitative mRNA expression analysis, I showed splice variant specific changes in the expression of cardiac Ca,v,3.2 during development and pathological hypertrophy. This study provided evidence of changes in the pattern of expression of Ca,v,3.2 exon 25 splice variants in developing and disease states. However, the pathways leading to the expression of specific splice variants in specific functional states are not explored in this thesis. Using the data obtained in this thesis and information from previous studies, I am proposing hypothetical pathways on the signalling mechanisms involved in the regulation of expression of rat cardiac Ca,v,3.2 exon 25 splice variants (Figure 4.1). These proposed pathways would be potentially good research topics for future studies.

A number of transcription factors and splicing regulators have been reported to be involved in the regulation of expression of cardiac proteins in the developing and diseased heart (Tang et al., 2004; Ladd et al., 2005; Xu et al., 2005; Houser and Molkentin, 2008). Here, I will
discuss my suggestions on the potential involvement of a number of transcription and splicing regulators in controlling the preferential expression of a specific \(\text{Ca}_v3.2 \) exon 25 splice variant in the developing and diseased heart. One potential candidate is the regulation of expression by the fox family of splicing regulators. These proteins recognize the hexanucleotide TGCATG and bind to the intron adjacent to their target exon where they generally repress splicing when bound upstream of the exon but enhance splicing from a downstream binding site (Underwood et al., 2005; Zhang et al., 2008; Zhou and Lou, 2008; Yeo et al., 2009). Upon inspection of the rat \(\text{Ca}_v3.2 \) genomic sequence (ENSRNOT00000048392 and NC_005109), a fox binding site in \(\text{Ca}_v3.2 \) intron located and identified 14 base pairs downstream of exon 25 (Figure 4.1A). Based on the presence and location of a fox binding site in the \(\text{Ca}_v3.2 \) genomic sequence, I speculate that fox proteins are good candidates as potential regulators of expression of \(\text{Ca}_v3.2 \) exon 25 splice variants.

A differential pattern of fox protein expression exists in the developing mouse heart. In the adult mouse heart, the level of expression of fox-1 was shown to be \(~10\)-fold higher than the newborn heart (Kalsotra et al., 2008). The presence of fox protein recognition site downstream of \(\text{Ca}_v3.2 \) exon 25 (Figure 4.1A) and the low level of fox protein expression in neonatal heart likely explain the observed low mRNA expression of \(\text{Ca}_v3.2(+25) \). Although a higher level of fox protein expression in the adult rat heart potentially increases the expression of the plus exon 25 variant, our data showed lack of increase in the expression of \(\text{Ca}_v3.2(+25) \) splice variant in the adult ventricle. This could be explained by an overall downregulation of \(\text{Ca}_v3.2 \) expression in the adult ventricle brought about by an increase in expression of NRSF. Taken together, NRSF/fox protein-mediated regulation of expression of \(\text{Ca}_v3.2 \) exon 25 splice variants may occur in developing rat hearts (Figure 4.1C).
A different signalling mechanism likely exists in pathological cardiac hypertrophy (Figure 4.1B) due to differential activity and expression of fox proteins and other transcription factors such as the class II histone deacetylase (HDAC) transcription factors. Compared to the newborn heart, fox proteins are prominently expressed in the adult heart. Previous studies have reported the involvement of fox proteins in the pathogenesis of human cardiac hypertrophy and failure (Hannenhalli et al., 2006). Thus, in the diseased adult ventricle, fox proteins may play an important role in cardiac disease progression. Additionally, NRSF and HDACs have also been shown to contribute to cardiac hypertrophy (Nakagawa et al., 2006; Bingham et al., 2007). Both groups demonstrated that NRSF-mediated repression has been shown to form a complex with HDAC (Nakagawa et al., 2006; Bingham et al., 2007) thereby repressing the expression of the cardiac fetal genes including the CACNA1H genes. However, in ET-1-induced ventricular hypertrophy this complex is disrupted due to increase in phosphorylation of HDACs (Bingham et al., 2007). Phosphorylation of HDACs leads to translocation of HDACs from the nucleus to the cytoplasm making them unable to form a complex with NRSF (Nakagawa et al., 2006). Once this binding is disrupted, de-repression of NRSF-mediated repression would allow the expression of fetal cardiac genes such as the CACNA1H genes. Therefore, I suggest that in hypertrophic SHR there exists an increase in fox protein and HDAC activities. This might explain why the Ca\textsubscript{v}3.2(+25) alternative splice variant is preferentially expressed in hypertrophic SHR.

The hypothetical signalling mechanism proposed here (Figure 4.1) provides an opening for future studies on elucidating the signalling pathway involved in the splice-specific changes in expression of Ca\textsubscript{v}3.2 alternative splice variants in normal heart development as well as in pathological cardiac hypertrophy. This would also potentially provide an understanding of the contribution of Ca\textsubscript{v}3.2 T-type channels in normal cardiac physiology and remodelling.
Figure 4.1. Hypothetical pathways of the signaling mechanism potentially involved in the regulation of expression of Ca,3.2 exon 25 splice variants. (A) Sequence analysis on the genomic sequence of Ca,3.2 (ENSRNOT00000048392 and NC_005109) showing the presence of fox protein binding element downstream of Ca,3.2 exon 25. (red, intron; black, exon). Fox binding element consensus sequence TGCATG was identified 14 base pairs downstream of exon 25. (B) Potential involvement of HDAC, NRSF and fox proteins in the pathological regulation of expression of Ca,3.2. (C) Developmental regulation of expression of Ca,3.2 channels (red oval, newborn; brown oval, adult). In this hypothetical model, it is suggested that the expression of Ca,3.2 exon 25 splice variants is differentially regulated during normal cardiac development and pathological hypertrophy. The transcriptional repressor NRSF would regulate the expression of Ca,3.2. Low level of NRSF would allow the expression of Ca,3.2 whereas at high amount would repress Ca,3.2 expression. Low level of fox proteins would allow the expression of minus exon 25 variants while keeping plus exon 25 variants at minimal. Conversely, in pathological cardiac hypertrophy, HDAC would de-repress NRSF-mediated repression of Ca,3.2 allowing Ca,3.2 to be upregulated or re-expressed. Fox proteins activity would increase in cardiac hypertrophy thereby increasing the expression of Ca,3.2 exon 25 variants.
4.2.2 Potential limitations

Alternative splice variants were examined across the entire ORF of neonatal rat cardiac Ca\textsubscript{v}3.2 T-type channels using a combination of overlapping short amplicon PCR screening and full length cDNA sequence analysis (Chapter 2). Approximately 1000 short amplicon and 106 full length cDNAs were utilized for splice variant screening. Although this thesis used a large sample size in the analysis, there remains the possibility that all potential splice variants were not recovered, particularly the less abundant variants. Regan et al. suggested that at least \(~2300\) clones are required to detect at least one of the lowest frequency splice variants (Regan et al., 2000). To address this, it would be ideal to utilize a large number of full length cDNA clones. In addition, instead of analyzing individual full length cDNA clone, an alternative option would be to perform high through-put sequencing of full length cDNA amplicon generated from RT-PCR. For 2 \(\mu\)g total RNA, it was suggested that \(~20,000\) to \(100,000\) full length clones could be generated (Regan et al., 2000).

Although this thesis showed extensive alternative splicing in cardiac Ca\textsubscript{v}3.2 T-type channels, analysis of full length screening in this study was focused on newborn (day 0) hearts. In the future, it would be interesting to perform a full inventory of the splice variant profile of Ca\textsubscript{v}3.2 channel in adult normal and hypertrophic hearts. This would determine whether the utilization of Ca\textsubscript{v}3.2 splice variants or their combinations are altered in pathological hypertrophy. In fact, Tang et al. have reported significant differential Ca\textsubscript{v}1.2 splicing patterns in the hearts of 18 week-old hypertrophic SHR and normotensive WKY rats (Tang et al., 2008). While this thesis did not show full length cDNA screening of Ca\textsubscript{v}3.2 splice variants in normotensive and hypertrophic hearts, this work provided strong evidence of changes in Ca\textsubscript{v}3.2 splicing pattern by demonstrating alteration in the level of expression of the predominant exon 25 splice variants in the newborn, adult and hypertrophic ventricle (Chapter 2).
Differential expression of Ca\textsubscript{v}3.2 exon 25 variants during development was demonstrated in this thesis. Two developmental stages were utilized i.e. newborn day 0 and four month old adults. In future studies, it will be interesting to characterize changes in Ca\textsubscript{v}3.2 splicing pattern in other developmental stages; perhaps it would be better to include embryonic, fetal (before birth), and juvenile, in splice variant screening. Likewise, in a disease state, profiles of various stages of cardiac diseases (pre-hypertensive, hypertensive, pre-heart failure and heart failure) would be effective ways to determine potential changes in the expression of Ca\textsubscript{v}3.2 splice variants.

4.3. Voltage-dependent facilitation of Ca\textsubscript{v}3.2 T-type channels

4.3.1 Working hypothesis

As described in Chapter 2, I identified several splice variants of Ca\textsubscript{v}3.2 channels. Thus, I further explored the hypothesis that alternative splice variants of Ca\textsubscript{v}3.2 confer functionally distinct channels. I observed that the Ca\textsubscript{v}3.2(-25) splice variant display potentiated recovery from inactivation. Previous reports showed that the recombinant Ca\textsubscript{v}3.3 is the only T-type isoform displaying VDF (Klockner et al., 1999; Gomora et al., 2002). However, in the cardiovascular system VDF of native I\textsubscript{CaT} has been shown in frog atrial and guinea pig coronary myocytes (Ganitkevich and Isenberg, 1991; Alvarez et al., 1996; Alvarez et al., 2000). Since among the three T-type isoforms the Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 channels are the only two T-type isoforms in the heart (Cribbs et al., 1998; Cribbs et al., 2001; Perez-Reyes, 2003) and I observed that Ca\textsubscript{v}3.2 revealed potentiated recovery from inactivation, I hypothesized that cardiac Ca\textsubscript{v}3.2 T-type channels display VDF.

The results in Chapter 2 showed that full-length cardiac Ca\textsubscript{v}3.2 variants cloned in the minus exon 25 background display VDF and potentiated fractional recovery. The observed
magnitude of VDF for Ca\textsubscript{v}3.2 minus exon 25 variant is between 50 and 60\% (Figure 2.6). Thus, my data supports our hypothesis that cloned Ca\textsubscript{v}3.2 channels display VDF. Moreover, I also observed significant expression of Ca\textsubscript{v}3.2(-25) in newborn rat ventricular tissues (Figure 2.4). This led me to hypothesize that I\textsubscript{CaT} in neonatal rat ventricles displays VDF. In Chapter 3, I worked on the hypothesis that native cardiac I\textsubscript{CaT} displays VDF and this property is correlated with a high expression of Ca\textsubscript{v}3.2(-25) alternative splice variant. I optimized a protocol design to dissociate NRVM and grow them in culture prior to whole cell patch clamp and qRT-PCR analyses. Indeed, biophysical analysis using prepulse-induced facilitation protocol recorded from NRVM in culture revealed significant VDF of neonatal ventricular I\textsubscript{CaT} (Figures 3.4A and 3.4C). Importantly, the observed VDF in NRVM I\textsubscript{CaT} is correlated with predominantly Ca\textsubscript{v}3.2(-25) expression (Figure 3.4D).

VDF of NRVM I\textsubscript{CaT} was compared with the VDF profiles of recombinant Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 variants. I observed that both NRVM I\textsubscript{CaT} and Ca\textsubscript{v}3.2(-25) displayed VDF, and lack of facilitation was observed for Ca\textsubscript{v}3.2(+25) and Ca\textsubscript{v}3.1 channels (Figure 3.4C). My observations are consistent with the lack of facilitation in Ca\textsubscript{v}3.1 observed by several investigators (Klockner et al., 1999; Chemin et al., 2001a; Chemin et al., 2002; Gomora et al., 2002; Latour et al., 2004). In addition, preliminary results from our laboratory also showed that homologous exon 25 splice variant of Ca\textsubscript{v}3.1 channels do not display VDF. However, it remains to be determined whether novel alternative splice variants of cardiac Ca\textsubscript{v}3.1 may display VDF. The fact that I observed VDF of I\textsubscript{CaT} in NRVM and recombinant Ca\textsubscript{v}3.2(-25) but not in recombinant Ca\textsubscript{v}3.1 affirms my hypothesis that NRVM I\textsubscript{CaT} display VDF and attributed to the exclusion of exon 25.
4.3.2 Potential limitations

This thesis has proven that alternative splicing in Ca\textsubscript{v}3.2 T-type channels confers distinct biophysical properties. This research is the first to demonstrate that the Ca\textsubscript{v}3.2 channels display VDF property, dependent on the inclusion or exclusion of exon 25 in the Ca\textsubscript{v}3.2 channel. Analysis of the Ca\textsubscript{v}3.2 VDF was first undertaken in HEK 293 cells and subsequently determined in dissociated NRVM in culture. In Chapter 2, this work presented compelling evidence of splice-variant specific Ca\textsubscript{v}3.2 VDF in HEK 293 cells. Eleven splice variants were cloned and biophysically characterized. Eight showed measurable Ca2+ currents. These eight splice variants are in combination with either plus or minus exon 25. This thesis demonstrated that only splice variants with minus exon 25 display VDF but not variants with plus exon 25. Based on significantly high levels of mRNA expression of Ca\textsubscript{v}3.2(-25) in dissociated NRVM (Chapter 3), it is tempting to suggest that the VDF property of NRVM I_{CaT} is contributed to the expression of Ca\textsubscript{v}3.2(-25) splice variant. Although this research demonstrated lack of Ca\textsubscript{v}3.1 VDF, it would be ideal to record purely Ca\textsubscript{v}3.2 I_{CaT} in NRVM. This is important to eliminate the contribution of Ca\textsubscript{v}3.1 channel splice variants potentially displaying VDF. However, unpublished data in our laboratory (Garcia, E.G. personal communication) and reports from other groups (Chemin et al., 2001a; Chemin et al., 2002; Gomora et al., 2002; Latour et al., 2004) showed that Ca\textsubscript{v}3.1 homologous exon 25 splice variants do not display VDF. Hence, it remains to be determined whether unidentified splice variants of Ca\textsubscript{v}3.1 display VDF.

One potential limitation of this research is the analysis of splice-variant specific protein expression of Ca\textsubscript{v}3.2 ± exon 25 variants. This is challenging as there is no available splice-variant specific antibody. It would be better if a target specific antibody could be made. This
would allow this research to study the protein expression and localization of specific splice variants not only in the ventricular myocytes but also in other regions of the heart.

In Chapter 2, I demonstrated an upregulation of the Ca\textsubscript{v}3.2 channels in hypertrophic SHR. Although there is a preferential upregulation of Ca\textsubscript{v}3.2(+)25 over Ca\textsubscript{v}3.2(-25) in hypertrophic SHR, it would be ideal to investigate whether I\textsubscript{CaT} from dissociated ventricular myocytes from adult hypertrophic hearts display VDF. The fact that there is also a two-fold increase in Ca\textsubscript{v}3.2(-25) (Figure 2.10C) in hypertrophic SHR makes it a likely candidate to be tested—whether I\textsubscript{CaT} from diseased ventricular myocytes display VDF.

A further potential limitation relates to the G\beta\gamma\textsubscript{2}-mediated inhibition of Ca\textsubscript{v}3.2(-25) VDF. The last part of Chapter 2 showed that co-transfection with G\beta\gamma\textsubscript{2} reduces the magnitude of facilitation of Ca\textsubscript{v}3.2(-25). The study did not show whether disrupting the binding of G\beta\gamma\textsubscript{2} to the Ca\textsubscript{v}3.2(-25) affects its VDF. In the future, it will be interesting to know whether disruption of the G\beta\gamma binding sites via site-directed mutagenesis or deletion of the consensus binding sites in the Ca\textsubscript{v}3.2(-25) splice variant have an effect on VDF. In addition, it will be appealing to investigate whether buffering G\beta\gamma via co-transfection of rod transducin (G\textsubscript{\alpha\text{T}}) reverses G\beta\gamma-mediated inhibition of VDF. G\textsubscript{\alpha\text{T}} has been reported to buffer G\beta\gamma binding (Meza et al., 2007; Rangel et al., 2010). Thus, further studies are needed to explore the effects of G\beta\gamma on the facilitation of Ca\textsubscript{v}3.2.

4.4 Conclusion

4.4.1 General conclusions

Overall, this study has shown that cardiac Ca\textsubscript{v}3.2 T-type channels are subjected to considerable splicing with the splice variants in the III–IV linker conferring for the presence or absence of exon 25 demonstrating the most notable molecular and biophysical profile. This work
also showed that there is a preferential expression of the Ca$_{v}$3.2(-25) splice variant in the newborn heart with a shift in the adult heart that results in equal levels of expression of both (+) and (-) exon 25 variants. This study also showed that in pathological cardiac hypertrophy the expression of Ca$_{v}$3.2 channels was upregulated with a shift towards the expression of Ca$_{v}$3.2(+25) as the predominant form. This thesis therefore concludes that changes in the pattern of expression of Ca$_{v}$3.2 III – IV linker exon 25 splice variants are associated with development and pathological cardiac hypertrophy.

Moreover, this thesis was the first to report VDF of Ca$_{v}$3.2 channels. This work showed that Ca$_{v}$3.2(-25) channel variant display robust VDF whereas lack of VDF was observed in Ca$_{v}$3.2(+25) channel variant. This current study also demonstrated that the VDF of I$_{CaT}$ in neonatal rat ventricular myocytes was correlated with predominant expression of Ca$_{v}$3.2(-25) splice variant. Together, this thesis concludes that Ca$_{v}$3.2 alternative splicing confers splice variant-specific VDF.

In conclusion, this thesis showed that Ca$_{v}$3.2 alternative splicing generates significant T-type Ca$^{2+}$ channel molecular and functional diversity with potential implications for cardiac development, physiology and pathophysiology.

4.4.2 Potential relevance of Ca$_{v}$3.2 alternative splicing in cardiac development and hypertrophy

The precise contribution of Ca$_{v}$3.2 T-type channels to the normal development and pathological hypertrophy of the mammalian hearts remains unresolved. This thesis showed for the first time that there are changes in splice variant patterns associated with ontogenic development and pathological hypertrophy. In one instance, the changes are associated with the expression of splice variants that mediate VDF. VDF of Ca$_{v}$3.2 channels would likely increase
intracellular Ca\(^{2+}\) thereby potentially contributing to the spontaneous contractility and conduction of APs of the newborn ventricle (Figure 3.5).

In hypertrophic hearts, the predominant splice variant was shifted to Ca\(_{\text{v}}\)3.2(+25) although Ca\(_{\text{v}}\)3.2(-25) was also upregulated. The upregulation of expression of Ca\(_{\text{v}}\)3.2 channels in cardiac hypertrophy could potentially contribute to an electrical remodelling in the hypertrophic ventricle. Importantly, the preferential expression of Ca\(_{\text{v}}\)3.2(+25) could play a big role in cardiac remodelling. A higher level expression of this variant combined with its hyperpolarized activation range and higher current density, could predispose the heart to a proarrhythmogenic condition, contractile dysfunction and eventually heart failure. Interestingly, similar predominant expression of specific alternative splice variants was also observed in the Ca\(_{\text{v}}\)1.2 Ca\(^{2+}\) channels in patients with atherosclerosis (Tiwari et al., 2006).

Taken together, alternative splicing of Ca\(_{\text{v}}\)3.2 T-type channels could potentially play important roles in normal cardiac development and remodelling. The results from this study have proven that there is a differential expression of Ca\(_{\text{v}}\)3.2 alternative splice variants in the diseased heart. This may be important for the development of target specific drugs with the exclusive intention to act on a specific splice variant. This approach is essential for better managing of disease as well as minimizing potentially adverse side effects.

4.4.3 Future directions

An important future direction of this research would be to explore a more extensive developmental profiling of Ca\(_{\text{v}}\)3.2 alternative splice variants. Suggested experiments would include analysis of the splice variant profile in embryonic, fetal (before birth) and juvenile rats. Similar experimental procedures outlined in Chapter 2 would be necessary to determine the splice variant profile present in full length cDNA libraries. In order to increase the chances of
recovering rare splice variants, high through-put DNA sequencing is recommended. However, this approach would not give information on splice variant combinations present in the Ca_v3.2 full length transcripts. Thus, it is suggested that both high through-put DNA sequencing and full length splice variant screening should be undertaken to obtain a more detailed profile of the differential pattern of expression of Ca_v3.2 alternative splice variants during development.

With regard to pathological cardiac hypertrophy, suggested future experiments should include analysis on pre-hypertensive, hypertensive, pre-heart failure and heart failure disease states. The SHR model should be used in this experiment since this model was proven to have age-specific progression of the disease phenotype (Doggrell and Brown, 1998; Chen-Izu et al., 2007; Tang et al., 2008). As recommended above, high through-put DNA sequencing and full length screening would be interesting to explore differential patterns of alternative splicing in various pathological stages. Relevant to the signalling mechanisms involved in splice variant-specific developmental and pathological regulation of expression in cardiac Ca_v3.2 channels, an important future research would be to explore this thesis’s proposed hypotheses on variant-specific regulation (Figure 4.1). To investigate this, quantitative RT-PCR analysis of the levels of expression of Ca_v3.2 (±) exon 25 variants, fox proteins, NRSF and HDAC is necessary in various stages of development and in disease states. In addition, measurement of the activities of the transcriptional regulators, HDAC and fox proteins, and other signalling molecules upstream and downstream of these regulators (Molkentin and Dorn, 2001; Dorn and Force, 2005; Heineke and Molkentin, 2006) would also be helpful to identify the regulation mechanism of cardiac Ca_v3.2 alternative splice variants.

An important future study will be to perform a biophysical characterization of I_{CaT} in adult hypertrophic SHR and compare with age- and sex matched normotensive WKY rats. Recording I_{CaT} from isolated adult ventricular myocytes would be important to determine the
electrophysiological characteristics of I_{CaT} in the hypertrophic heart. It would also be interesting to explore if VDF exists in hypertrophic myocytes as both Ca$_{v}3.2(-25)$ and Ca$_{v}3.2(+25)$ were found to both upregulated in hypertrophic SHR (Chapter 2). An additional potential future experiment is to explore the contributions of Ca$_{v}3.2$ exon 25 splice variant channels in pacemaker activity and contractility. Reports show that induction of Ca$_{v}3.2$ channels in cultured neonatal cardiomyocytes can lead to increased excitability (Levitsky and Lopez-Barneo, 2009) and accelerated spontaneous contractile activity in myocytes treated with corticosteroids (Lalevee et al., 2005; Maturana et al., 2009). Moreover, it was suggested that T-type channels play a role in E-C coupling in the newborn ventricle (Nuss and Marban, 1994; Wetzel and Klitzner, 1996; Haddock et al., 1999; Escobar et al., 2004; Tohse et al., 2004). Thus, it would be interesting to address whether Ca$_{v}3.2$ exon 25 splice variant channels play similar roles. Potential experiments include measurement of contractility, beating frequency and Ca$^{2+}$ transients in Ca$_{v}3.2^{-/-}$ ventricular myocytes overexpressing exon 25 splice variants.

Relevant to G-protein mediated effects on VDF of Ca$_{v}3.2$ exon 25 variant channels, important future studies are to disrupt the binding site and/or to buffer G$\beta\gamma$ binding. These suggested future experiments could include site-directed mutagenesis to eliminate G$\beta\gamma$ binding consensus site or co-transfection of rod transducin (G$_{aT}$) which is known to buffer G$\beta\gamma$ binding (Meza et al., 2007; Rangel et al., 2010).
REFERENCES

coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416-1418.

Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The Ca\textsubscript{v}3.2 T-type Ca2+ channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522-530.

Drolet P, Bilodeau L, Chorvatova A, Laflamme L, Gallo-Payet N, Payet MD (1997) Inhibition of the T-type Ca2+ current by the dopamine D1 receptor in rat adrenal glomerulosa cells: requirement of the combined action of the G betagamma protein subunit and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol 11:503-514.

Edgerton GB, Blumenthal KM, Hanck DA (2010) Inhibition of the activation pathway of the T-type calcium channel Ca\textsubscript{v}3.1 by ProTxII. Toxicon 56:624-636.

Enyeart JJ, Mlinar B, Enyeart JA (1993) T-type Ca2+ channels are required for adrenocorticotropic-stimulated cortisol production by bovine adrenal zona fasciculata cells. Mol Endocrinol 7:1031-1040.

Enyeart JJ, Biagi BA, Day RN, Sheu SS, Maurer RA (1990a) Blockade of low and high threshold Ca2+ channels by diphenylbutylpiperidine antipsychotics linked to inhibition of prolactin gene expression. J Biol Chem 265:16373-16379.

Enyeart JJ, Dirksen RT, Sharma VK, Williford DJ, Sheu SS (1990b) Antipsychotic pimozide is a potent Ca2+ channel blocker in heart. Mol Pharmacol 37:752-757.

Todorovic SM, Jevtovic-Todorovic V, Mennerick S, Perez-Reyes E, Zorumski CF (2001a) Ca(v)3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60:603-610.

Wielowieyski PA, Wigle JT, Salih M, Hum P, Tuana BS (2001) Alternative splicing in intracellular loop connecting domains II and III of the alpha 1 subunit of Cav1.2 Ca²⁺

APPENDIX 1: T-TYPE CALCIUM CHANNELS: AN EMERGING THERAPEUTIC TARGET FOR THE TREATMENT OF PAIN

T-Type Calcium Channels: An Emerging Therapeutic Target for the Treatment of Pain
Terrance P. Snutch* and Laurence S. David
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada

<table>
<thead>
<tr>
<th>Strategy, Management and Health Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling Technology, Genomics, Drug Delivery, Postersinae</td>
</tr>
<tr>
<td>Preclinical Development, Formulation, Drug Development, Clinical Development</td>
</tr>
<tr>
<td>Phase III Phase II Regulatory, Quality, Manufacturing</td>
</tr>
<tr>
<td>Postmarketing Phase IV</td>
</tr>
</tbody>
</table>

ABSTRACT It has become generally accepted that presynaptic high voltage-activated N-type calcium channels located in the spinal dorsal horn are a validated clinical target for therapeutic interventions associated with severe intractable pain. Low voltage-activated T-type calcium channels play a number of critical roles in nervous system function, including controlling thalamocortical bursting behaviours and the generation of spike wave discharges associated with slow wave sleep patterns. There is a growing body of evidence that T-type calcium channels also contribute in several ways to both acute and neuropathic nociceptive behaviours. In one instance, the Cav3.1 T-type channel isoform likely contributes to an anti-nociceptive function in thalamocortical neuronal signalling, possibly through the activation of inhibitory RIT neurons. In another instance, the Cav3.2 T-type calcium channel subtype acts at the level of primary afferents in a strongly pro-nociceptive manner in both acute and neuropathic models. While a number of classes of existing clinical agents non-selectively block T-type calcium channels, there are no subtype-specific drugs yet available. The development of agents selectively targeting peripheral Cav3.2 T-type calcium channels may represent an attractive new avenue for therapeutic intervention. Drug Dev. Res. 67:404–415, 2006. © 2006 Wiley-Liss, Inc.

Key words: calcium channel, T-type, Cav3.2, nociception, mibefradil, sileneomide

INTRODUCTION Twenty-five years ago, Linas and Yamn [1981a,b] first described low-threshold calcium-dependent spikes in the mammalian inferior olive, a phenomenon that has since been demonstrated in many brain nuclei including those found in the hippocampus, hypothalamus, thalamus, habenula, cortex, and globus pallidus [reviewed in Perez-Reyes, 2003]. Low-threshold calcium spikes generally act as pacemakers, helping to trigger bursts of sodium-dependent action potentials after neuronal membrane hyperpolarization [Huguenard and Prince, 1992; McCormick and Huguenard, 1992]. They also contribute to oscillatory and rebound burst firing behaviors relevant to both normal physiological functions (e.g., thalamocortical processes such as deep sleep) and to pathophysiological states (e.g., spike-wave discharges associated with absence epilepsy [reviewed in Huguenard, 1996, 2002]. Underlying low-threshold calcium-dependent spiking activity is a physiologically and pharmacologically unique class of voltage-gated calcium channel called low-voltage-activated (LVA) or T-type calcium channels [Carbone and Lux, 1984; Nowycky et al., 1985].

Grant sponsor: Canadian Institutes for Health Research.

*Correspondence to: Dr. T.P. Snutch, Rm 219–2105 East Mall, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4. E-mail: snutch@mslab.uc.ca Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ddr.20101

© 2006 Wiley-Liss, Inc.

T-type calcium channels are generally distinct from high voltage-activated (HVA) calcium channels (the L-, N-, P/Q, and R-types) in their both negative and overlapping activation (initial activation ~ -30 to -60 mV) and inactivation ($V_{\text{inact}} \sim -55$ to -95 mV) ranges, fast kinetics of inactivation ($t_{\text{inact}} \sim 10$ to 20 ms), rapid recovery from inactivation, slow deactivation (closing), and small single-channel conductance (~ 5 to 10 pS). The low-threshold calcium spikes first observed by Linas can largely be attributed to the unique properties of T-type calcium channels, which become deiniactated after inhibitory synaptic inputs and subsequently trigger calcium-dependent bursting as a result of their negative activation properties.

T-type calcium channels are expressed in many central and peripheral neurons, as well as in other tissues including the heart, smooth muscle, kidney, embryonic skeletal muscle, pituitary, pancreas, adrenal, retina, and testes [reviewed in Perez-Reyes, 2003]. In addition to their pacemaker roles in neurons, these channels also contribute to secretory processes such as hormone release, the regulation of muscle contraction, olfaction, and cellular differentiation and proliferation. The complete description of the physiological and pharmacological contributions of native T-type calcium channels has been complicated by several factors including (1) the co-expression in many cells of multiple types of HVA and LVA calcium currents with overlapping voltage-dependent and kinetic properties, and (2) a lack of specific, high-affinity T-type channel pharmacological tools. Additionally, even amongst native T-type currents there exists considerable heterogeneity in their activation, inactivation, permeation, and pharmacological properties. While historically referred to as a single class of ion channel, native T-type calcium channels are now known to be encoded by at least three distinct α_1 subunit genes (α_{1C}/Cav3.1, α_{1D}/Cav3.2, and α_{1F}/Cav3.3) and that considerable alternative splicing exists to generate further diversity (Fig. 1) [Cobbs et al., 1998; Lee et al., 1999; McBride et al., 2001; Mittman

High Voltage-Activated Calcium Channels

<table>
<thead>
<tr>
<th>Class</th>
<th>α_1 subunit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-type: Cav1.1, Cav1.2, Cav1.3, Cav 1.4</td>
<td></td>
</tr>
<tr>
<td>P/Q-type: Cav2.1</td>
<td></td>
</tr>
<tr>
<td>N-type: Cav2.2</td>
<td></td>
</tr>
<tr>
<td>R-type: Cav2.3</td>
<td></td>
</tr>
</tbody>
</table>

| β subunits: β_1, β_2, β_3, β_4 | |
| $\alpha_2\delta$ subunits: $\alpha_2\delta$-1, $\alpha_2\delta$-2, $\alpha_2\delta$-3, $\alpha_2\delta$-4 | |

| subunits: γ_1, γ_8 | |

Low Voltage-Activated Calcium Channels (T-type)

| α_1 subunits: Cav3.1, Cav3.2, Cav3.3 | |

Fig. 1. Composition of neuronal voltage-gated calcium channels. High voltage-activated (HVA) calcium channels are a heteromeric complex consisting of a large ($\sim 200-260\text{ kDa}$) pore-forming α_1 subunit that contains the voltage-sensor and pore region and is the target of known pharmacological agents. There are ten identified $\alpha_2\delta$ subunit genes in the mammalian genome. Neuronal HVA channels also contain ancillary β subunit (four genes) and γ subunit (four genes) that contribute to modulating a number of channel functions including activation, inactivation and kinetic properties, second-messenger regulation, and channel complex intracellular processing. Biochemical purification of the skeletal muscle HVA L-type calcium channel (Cav1.1) shows that it contains a fourth subunit, γ, although reconstitution of neuronal HVA channel properties does not require γ subunit and it remains to be determined whether native neuronal HVA calcium channel complexes contain this protein. Low voltage-activated (LVA or T-type) calcium channels have not yet been biochemically purified although known biophysical, pharmacological, and regulatory characteristics can be fully reconstituted with a Cav3.1 α_1 subunit alone.
Pathophysiologically, both Cav3.1 and Cav3.2 T-type calcium channels may contribute to the genesis of absence seizures: (1) the genetic absence epilepsy inbred strain of rat (GAERS) exhibits spontaneous spike-wave discharges and absence seizures that are associated with an increased basal level of thalamic reticular T-type currents (Tsakiris et al., 1995); (2) gene knock-out of the Cav3.1 T-type channel gene in mice results in animals insensitive to GABAA receptor agonist-induced spike wave discharges [D. Kim et al., 2001]; and (3) a number of point mutations have been recently identified in the Cav3.2 T-type channel gene in patients with childhood absence epilepsy and generalized idiopathic epilepsy (Chen et al., 2003; Heron et al., 2004). Introduction of some of the epilepsy mutations into the wildtype Cav3.2 channel results in biophysical changes consistent with gain-of-function alterations to channel activity and are consistent with the notion that some clinical antiepileptics act mechanistically to inhibit T-type calcium channel activity [Coulter et al., 1990, 1996; Krosnavani et al., 2004, 2005; Pelosi et al., 2006; Vitko et al., 2005].

CALCULUM CHANNELS AND PAIN

Nociceptive processes are known to be highly sensitive to intracellular calcium levels and to date there have been two distinct classes of pain therapeutics developed to target components of HVA calcium channels. In one instance, the N-type calcium channel blocking peptide, ziconotide, is a 25 amino acid synthetic peptide (α-conotoxin MVIIA) derived from the marine hunting cone snail Conus magus, which has recently been approved (Prialt™) both in the United States and in Europe for the treatment of intractable pain [Smith et al., 2005]. N-type calcium channels are highly concentrated in the cell bodies and synaptic terminals of a subset of primary afferents that terminate in the dorsal horn of the spinal cord (mainly C-fibers and Aδ fibers). In animals, block of N-type channels by the intrathecal administration of ziconotide inhibits the release of the nociceptive transmitters, substance P and CGRP, consistent mechanistically with the role of N-type channels in triggering neurotransmission at dorsal horn primary afferent terminals [Evans et al., 1996]. The activation μ-opioid receptors attenuates N-type channel activity through the direct binding of a single β3 heterodimer to the N-type channel δ subunit consistent with the notion that opioids in part mediate their analgesic effects through inhibiting presynaptic calcium channel activity [Bourinet et al., 1996; Soldo and Moses, 1998; Zampini et al., 1997; Zampini and Snutch, 1998]. Knock-out of the N-type channel genetically in mice results in animals largely resistant to the induction of neuropathic and inflammatory pain although otherwise exhibiting normal sensory and motor functions [Tao et al., 2001; C. Kim et al., 2001; Saegusa et al., 2001]. Clinically, intrathecal ziconotide (Prialt™) is highly efficacious in the treatment of morphine-refractory neuropathic and malignant pain conditions, although it exhibits a narrow therapeutic index (ratio of relative toxicity to relative efficacy) and must be titrated carefully in each patient. Interestingly, while the N-type channel is downstream in the opioid receptor pathway, the direct N-type channel blockade by ziconotide does not result in opioid-type side effects such as tolerance and addiction [Breese et al., 1997; McGuire et al., 1997; Ridgeway et al., 2000; Saats et al., 2004].

In the second instance of approved pain therapeutics targeting HVA calcium channels, the orally administered small organic molecules gabapentin and pregabalin bind to the δ subunit associated with HVA calcium channel complexes. Gabapentin and pregabalin are clinically effective anticonvulsants that while synthetic analogues of the neurotransmitter γ-aminobutyric acid (GABA), do not exert their effects via interacting with GABA receptors or transporters but rather bind with high affinity to the HVA calcium channel ancillary δ-1 and δ-2 subunits [Gee et al., 1996; Mark et al., 2001]. Peripheral nerve injury upregulates δ expression in both the DRG and spinal dorsal horn, leading to the proposal that δ subunit contributes to central sensitization [Li et al., 2004; Luo et al., 2002]. Numerous open label and double-blind clinical trials show that gabapentin is efficacious in the treatment of neuropathic pain conditions including diabetic neuropathy, postherpetic neuralgia, trigeminal neuralgia, migraine, and pain associated with cancer and multiple sclerosis [Bachmen et al., 1998; Cacciani et al., 1999; Di Trapani et al., 2000; Houtchens et al., 1997; Laird and Cidal, 2000; Rowbotham et al., 1998]. Interestingly, while the δ subunit is associated with all known HVA calcium channel δ subunits, including the L-type channels found in skeletal, smooth, and cardiac muscles, gabapentin and pregabalin exhibit relatively few motor or cardiovascular adverse effects even at high therapeutic doses. Along these lines, determination of the exact mechanism of action of gabapentin has proven elusive with reports both supporting and refuting direct inhibitory actions on HVA calcium channels [Bayer et al., 2004; Brown and Randall, 2005; Sutton and Snutch, 2002].

Is there a role for T-type calcium channels in pain processing? A significant component of neuropathic
pain related to peripheral nerve injury is thought to result from hypersensitivity and/or abnormal spontaneous firing along the primary afferent pathway. Wind-up is a frequency-dependent facilitation of spinal cord excitability mediated via afferent C-fibers and has been suggested to be linked to the central sensitization observed after peripheral nerve damage (for review see Herrero et al., 2000). As T-type calcium channels activate at sub-threshold membrane potentials, one physiological route to altering the ectopic discharge of primary afferents may involve either the altered expression and/or modulation of T-type calcium channels. Of particular relevance, reducing agents such as L-cysteine modulate both thermal and mechanical nociception when injected into peripheral receptive fields [Todorovic et al., 2001]. Redox modulation appears to occur through a mechanism involving the selective up-regulation of T-type whole cell currents in a subset of DRG [Nelson et al., 2005; Todorovic et al., 2001, 2004]. Interestingly, both in the higher CNS and spinal cord there also exists a number of similarities between the proposed physiological functions of T-type calcium channels in processes such as long-term potentiation and kindling, and those for the central sensitization associated with neuropathic pain wherein post-synaptic responses progressively increase [Ikeda et al., 2003].

Which of the three functionally distinct T-type calcium channel isoforms might be involved in nociceptive behaviors? In the periphery, a subset of small- and medium-size DRG neurons are known to express large whole cell T-type calcium currents [Schroder et al., 1990; Scroggs and Fox, 1992]. In situ hybridization and reverse-transcription PCR studies show that of the three known T-type channel subtypes, Cav3.2 (α1H) is most highly expressed in DRGs while these same cells express relatively low levels of Cav3.3 (α1G) and little to none of Cav3.1 (α1E). In D-hair cell mechanoreceptors (a subset of medium sized DRGs), the Cav3.2 T-type channel has also been shown to contribute to a slow after depolarizing potential that lowers the voltage-threshold for action potential generation. Pharmacological block of Cav3.2 in D-hair cells suggests that this T-type channel subtype is required for the normal transduction of slow-moving mechanical stimuli [Dubreuil et al., 2004; Shin et al., 2003].

Utilizing intrathecal injection of antisense oligonucleotides, Bournet et al. [2005] found that selective Cav3.2 T-type channel knock-down affects both acute and neuropathic pain behaviors in rats. An approximate 50% reduction in Cav3.2 mRNA expression resulted in a 75 to 90% decrease in whole cell T-type current density in small- and medium-size DRGs, and a concomitant increase in both the vocalization threshold and tail withdrawal latency in response to noxious acute mechanical and thermal stimuli. Similarly, a complete reversal of mechanical allodynia in the Bennett neuropathic model was noted in Cav3.2 knock-down animals. In agreement with the low levels of detectable Cav3.1 and Cav3.3 in the DRG, the intrathecal injection of antisense oligonucleotides against Cav3.1 and Cav3.3 did not significantly affect nociceptive behavior in rats. Taken together, these data are strongly suggestive for the Cav3.2 T-type calcium channel selectively contributing both to normal acute nociception and to chronic pain hypersensitive states.

While the low expression of the Cav3.1 T-type in DRG neurons suggests a minimal role for this calcium channel related to peripheral pain mechanisms, the Cav3.1 channel is highly expressed in the thalamus and appears to play a significant role in central pain processing at least as it relates to visceral pain. Kim and co-workers found that either knock-out of the Cav3.1 gene in mice or infusion of riboflavin directly into the ventroposterolateral (VPL) thalamus (to block Cav3.1 channels) act to enhance the pain response elicited by intraperitoneal administration of acetic acid or magnesium sulphate [Kim et al., 2005]. In response to visceral pain stimuli, wild type VPL neurons generate both increased single spikes and clustered bursts of action potentials. In Cav3.1 knockout mice, VPL neurons exhibit normal single spike activity but an almost total absence of burst spikes suggesting that Cav3.1-dependent bursting activity mediates a downstream inhibitory process likely involving nRT neurons. In contrast to that for the Cav3.2 channel, it therefore appears that central native Cav3.1 T-type channels act in an anti-nociceptive capacity. It remains to be determined whether the selective pharmacological blockade of this low-threshold calcium channel might have the unwanted effect of enhancing the central perception of noxious stimuli.

CLINICAL AGENTS WITH T-TYPE CALCIUM CHANNEL BLOCKING ACTIVITY

There appears a strong connection both mechanistically and pharmacologically between epilepsy, neuropathic pain, and migraine headache; thus targeting the T-type calcium channels that contribute to these pathophysiological processes is quite attractive. Although selectively targeting T-type calcium channels for therapeutic purposes has been of significant interest, to date there are no "pure" T-type channel blockers presently in clinical usage. In spite of this critical pharmacological limitation, there are a number of structurally distinct classes of drugs that more broadly interact with multiple ionic conductances.
including T-type calcium channels. These agents may provide important clues concerning the validation of the T-type channel targets, and perhaps also suggest chemical backbones relevant towards future compound-based structure-activity development.

Antiepileptics

Zonisamide (Fig. 2) is a widely utilized broad-spectrum antiepileptic. Mechanistically, zonisamide is known to variously inhibit nitric oxide formation, to increase serotonergic transmission and basal acetylcholine and gamma-aminobutyric acid (GABA) release, and to block both voltage-gated sodium channels (Kd ~1 μM) and T-type calcium channels [Minak\(\ldots\) 1990; Schauf, 1987; Zhu et al., 2002]. Zonisamide blocks T-type calcium currents in a concentration-dependent manner without altering either the voltage-dependence of activation or inactivation kinetics. In cultured neurons of rat cerebral cortex, the mean percentage reduction in T-type current is approximately 60% at 500μM with no observed block of L-type currents [Suzuki et al., 1992]. In addition, 50μM zonisamide also reduces T-type currents (by ~40%) in cultured neuroblastoma cells [Kito et al., 1996]. In the Bennett chronic constriction rat model, zonisamide relieves thermal hyperalgesia in a dose-dependent manner although it has little effect on mechanical allodynia [Hord et al., 2003]. Clinically, in a number of open-label case studies, zonisamide has been shown to be effective in a variety of treatment-refractory neuropathic pain conditions [Guay, 2003; Takahashi et al., 2004]. Additionally, in several open-label analyses of treatment-refractory migraine patients, zonisamide is also highly effective as a prophylactic agent [Drake et al., 2004]. Zonisamide is contraindicated in patients with sulfonamide allergies.

Fig. 2. Structures of compounds mentioned in the text.

and any future structure-activity relation (SAR) studies targeted at improving T-type affinity and/or selectivity might also address this limitation.

Ethosuximide

The succinimides methylphenylsuccinimide (MPS) and ethosuximide (Fig. 2) are widely utilized antiepileptics thought to be in part, at least in part, via the inhibition of cortical-thalamic T-type calcium channels involved in mediating 3Hz spike-wave discharges. MPS and ethosuximide inhibit cloned T-type calcium channels in a state-dependent manner and at concentrations considered to be clinically relevant (IC$_{50}$s: ~0.3 to 1 mM for Cav3.1, Cav3.2, and Cav3.3 subtypes vs. therapeutic plasma levels ~0.1 mM for MPS and ~0.3 to 0.7 mM for ethosuximide [Gomora et al., 2001]). In both nerve-injured and sham-operated animals, in vivo recordings show that ethosuximide applied directly to the spinal cord inhibits both mechanical and thermal-evoked responses in a dose-dependent manner [Matthews and Dickinson, 2001]. Direct spinal application of ethosuximide produces the greatest maximal inhibition on C-fibers and Aδ-fibers compared to Aβ-fibers, consistent with the notion that T-type channels are differentially expressed amongst DRG neurons and are preferentially localized to C-fibers and Aδ-fibers that convey thermal and nociceptive information and not to Aβ-fibers that subserve proprioception and responses to tactile stimuli.

Examining L5/L6 nerve-injured animals, Dogrul and colleagues found that i.p. administration of ethosuximide produces a dose-dependent inhibition of both thermal hyperalgesia (A$_{50}$ = 126 mg/kg) and mechanical allodynia (A$_{50}$ = 174 mg/kg) [Dogrul et al., 2003]. Direct intrathecal (i.t.) administration of ethosuximide is without effect, perhaps suggesting a peripheral target site of action, although the direct injection of ethosuximide into the injured paw (intraplantar) is also without effect. Ethosuximide administered i.p. also completely reverses capsaicin-induced mechanical allodynia (ED$_{50}$ = 105 mg/kg) and is antinoceptive in both the early and late phases of the formalin response as well as the acute tail flick assay [Barton et al., 2005]. Finally, i.p.-administered ethosuximide is highly efficacious in reversing paclitaxel-and vincristine-induced peripheral neuropathy [Flatters and Bennett, 2004]. In spite of these promising animal data, in the over 40 years that ethosuximide has been utilized clinically there are few if any reports of it being efficacious towards human neuropathies.

Phenytoin

Phenytoin (Fig. 2) is clinically utilized as both an anticonvulsant as well as an analgesic for neuropathic pain [McCleane, 1999]. The antinociceptive properties of phenytoin have been attributed to its ability to block both voltage-dependent sodium and calcium channels. Phenytoin blocks sodium channels from rat cortical synaptosomes (IC$_{50}$ > 500 µM) and cloned sodium channels expressed in Xenopus oocytes [Anderton et al., 2003; Lingamaneni and Hemmings, 1999; Twombly et al., 1988]. In N1E-115 neuroblastoma cells, phenytoin at concentrations of between 3 and 100 µM inhibits T-type calcium currents without altering channel activation or kinetic properties. However, the steady-state inactivation profile is shifted more hyperpolarized. Phenytoin blocks cloned α1C (Cav3.1) and α1H (Cav3.2) T-type channels expressed in HEK 293 cells at IC$_{50}$s of 140 and 8.3 µM, respectively [Todorovic et al., 2000]. In addition, in cultured dorsal root ganglia neurons (DRG), phenytoin blocks whole cell T-type calcium currents in a concentration-dependent manner (IC$_{50}$ ~ 3 µM). In a bradykinin-induced pain model in rats, phenytoin produces dose-dependent analgesic effects at an ED$_{50}$ of 3 mg/kg applied subcutaneously [Foong et al., 1982]. In a mouse acute pain model using plantar and tail pressure to evaluate acute thermal and mechanical nociception, phenytoin preferentially relieves thermal pain at dose between 2.5 to 25 mg/kg applied intraperitoneally [Sakane et al., 2004]. Clinically, in a randomized, double-blinded, placebo-controlled, crossover study, phenytoin relieves flare-ups of chronic neuropathic pain and has also been shown to significantly enhance buprenorphine analgesia in cancer patients [McCleane, 1999; Yauk et al., 1992].

Antipsychotics

The neuroleptics comprise a chemically diverse set of molecules that largely act clinically to inhibit dopamine D2 receptors although, interestingly, a subset of these agents also exhibit potent calcium channel blocking activity. In particular, the diphenylbutylpiperidines, pimozide and penfluridol (Fig. 2), block T-type channels in a variety of cell types including from adrenal, heart, neural crest, and spermatogenic tissues [Kayeart et al., 1990a,b, 1992]. Examination of pimozide and penfluridol on cloned T-type channels showed that they block all three mammalian T-type channel isoforms (Cav3.1, Cav3.2, and Cav3.3) with a higher affinity than either ethosuximide or miltefosine (K$_{i}$ s ranging from ~40 to 100 nM) [Santi et al., 2002]. Block is state dependent, shifting T-type channel steady-state inactivation profiles to more negative potentials, but does affect T-type channel activation or kinetic parameters. Interestingly, from a structure-activity perspective, the highly structurally related diphenylpiperazines,
flurazepam, and the butyrophenone antipsychotic, haloperidol, show both significantly less potent T-type channel-blocking activities (IC\(_{50}\) ranging from ~500 to 3,500 nM for Cav3.1, Cav3.2, and Cav3.3) and also exhibit distinct clinical pharmacologies in patients [Opier and Feinberg, 1991].

In one study examining a mouse formalin model of inflammatory pain, relatively low doses of pimozone (0.05–0.25 mg/kg i.p.) were not shown to be highly efficacious [Sadik and Abbott, 2000]. Interestingly, however, although pimozone has been widely used clinically as a neuroleptic to treat conditions such as schizophrenia, Tourette’s, and obsessive compulsive disorder, it has also proven efficacious in several neuropathic pain conditions. In particular, and while the pathophysiological mechanism underlying its therapeutic effects are unknown, pimozone appears to provide significant relief in the management of trigeminal neuralgia, a relatively uncommon but severe facial pain syndrome associated with repetitive action potentials [Green and Selman, 1991; Lechin et al., 1989].

Antiarrhythmics and Antihypertensives

A number of cardiovascular agents are thought to act in part mechanistically by inhibiting T-type calcium channels, either solely or as mixed T-type and L-type calcium channel blockers. None of these agents has yet to be shown efficacious in the clinical setting for pain management although given their pharmacological characteristics, there is compelling reason to examine some of these drugs in various neuropathies.

Bepridil (Fig. 2) is a widely utilized clinical antiarrhythmic agent with antianginal properties known to non-specifically inhibit a variety of ionic conductances including various sodium (IC\(_{50}\) ~30 μM) and potassium channels (IC\(_{50}\) from 1 to 30 μM) as well as the L-type calcium channel (IC\(_{50}\) from 0.5 to 30 μM) [Hollingshead et al., 1992; Li et al., 1999; Wang et al., 1999; Yatani et al., 1986]. More recently, bepridil has been shown to inhibit the Cav3.2 (α1H) T-type calcium channel with an IC\(_{50}\) ~400 nM. Block is not affected by pulse frequency but is strongly dependent upon holding potential and also shifts steady-state inactivation and activation profiles to more hyperpolarized potentials [Uchino et al., 2003].

Mibebradil

Next to ethosuximide, mibebradil (Fig. 2) is probably the most widely recognized agent generally described as a selective T-type calcium channel blocker. In fact, while this tetrabolid was originally developed by Boehr and briefly brought onto the market as an effective antihypertensive and chronic stable angina pectoris agent targeting T-type channels, mibebradil has been shown to be a somewhat non-selective blocker of both HVA calcium channels (IC\(_{50}\) values in barium recording saline; P/Q-type ~0.3 μM, R-type ~0.4 μM, L-type ~10 to 20 μM) and T-type channels (IC\(_{50}\) values ~1 μM for Cav3.1, Cav3.2, and Cav3.3) [Jimenez et al., 2000]. There are conflicting reports concerning the mechanism of mibebradil mediated T-type channel blockade with resting, inactivated-, and open-state block all being suggested, and with some evidence that reducing channel availability can increase affinity by up to tenfold [Martin et al., 2000].

In L5/L6 nerve-injured rats, i.p.-administered mibebradil effectively inhibits both tactile allodynia (A50 = 7.4 mg/kg) and thermal hyperalgesia (A50 = 12 mg/kg) [Dogru et al., 2003]. Interestingly, while the direct injection of mibebradil into the injured limb also produces a dose-dependent reversal of tactile allodynia (A50 = 92 μg) suggestive of a peripheral mechanism of action, a similar direct administration of ethanolamide (up to 500 μg) is without effect. Barton and colleagues report that while i.p.-administered mibebradil has no effect on capsaicin-induced allodynia, i.t.-administered mibebradil both potently reverses mechanical allodynia in a dose range similar to that for intrathecal morphine (ED\(_{50}\) = 9.2 and 4.1 μg for mibebradil and morphine, respectively) and is also antinoceptive in both the early and late phases of the formalin response [Barton et al., 2005]. In contrast to that for ethosuximide, mibebradil (up to 30 μg/kg i.t.) is without effect in the acute tail flick reflex. Dogru and coworkers also observed no effect of i.t.-administered mibebradil in the rat acute tail-flick assay but found that mibebradil significantly potentiates the ability of low-dose i.t. morphine to prolong response latency (a 5-fold increase in ED\(_{50}\) for morphine) and that the response is specific for the μ-opioid receptor subtype (a 30-fold increase in the ED\(_{50}\) for DAMGO) [Dogru et al., 2001]. While mibebradil was removed from the market for issues related to drug-drug interactions, it may yet represent an attractive chemical backbone for the further development of selective T-type calcium channel antagonists.

Efonidipine

Efonidipine (Fig. 2) is an orally active antihypertensive with inhibitory effects on both L- and T-type calcium channels [Masumia et al., 2001]. In baby hamster kidney (BHK) cells and Xenopus oocytes, efonidipine (mixture of R(-) and S(+)-isomers) inhibits exogenously expressed HVA α1C (L-type) calcium currents with IC\(_{50}\) values ranging from 0.5 to 2 μM (BHK cells) to 8 to 20 μM (oocytes). It also blocks the cloned Cav3.1 T-type calcium channel with similar affinities in both cell types [Furukawa et al., 2002].
T-TYPE CALCIUM CHANNELS IN PAIN TREATMENT

Interestingly, the R(-)-efodirpine isomer selectively blocks Cav3.1 T-type channels. Inhibition is frequency-dependent, with an increasing potency at higher stimulation frequencies. In fact, in myocardial cells, efodirpine was shown to inhibit native T-type calcium currents in a frequency-dependent manner with IC50 values of 13 nM, 2 μM, and 6.3 μM with stimulation frequencies of 1, 0.2, and 0.05 Hz, respectively [Masumiya et al., 2000]. Clinically, efodirpine decreases heart rate and has favourable effects on the nervous system supporting its improvement in the prognosis in patients with hypertension and its protective influence on the heart and other organs [Harada et al., 2003].

ω-3 fatty acids

The cis-polysaturated ω-3 fatty acids are essential dietary agents that exhibit a range of physiological effects including possessing both cardio-protective and neuroprotective activities. At least in part, their protective effects may result from their blockade of voltage-gated sodium channels and HVA L-type calcium channels resulting in reduced electrical excitability in cardiac muscle and neurons [for review, see van der Stelt and Di Marzo, 2005]. More recently, Enyeart and colleagues found that the ω-3 fatty acids docosahexaenoic acid (DHA; Fig 2), eicosapentaenoic acid, and α-linolenic acid also inhibit native T-type calcium channels at potencies significantly higher than that for the clinically utilized succinimides [Danthi et al., 2005]. Block of whole cell T-type currents by the ω-3 fatty acids in bovine adrenal zona fasciculata cells occurs with IC50s ranging from 2.5 to 14 μM and is accompanied by changes in T-type channel voltage-dependent and kinetic parameters. DHA in particular shows significant use-dependent inhibition, suggestive of a preferential interaction with T-type channel open or inactivated states, and a characteristic of most clinical T-type channel blocking agents that exhibit good therapeutic ratios. The major T-type channel isoform expressed in zona glomerulosa cells is reported to be Cav3.2 [Schier et al., 2001], the same subtype implicated in primary affenent nociceptive behaviour and it will, therefore, be interesting to examine the effects of DHA on both acute and neuropathic pain states. A significant number of ω-3 fatty acid derivatives have already been synthesized around this backbone and given the abundance of DHA in the human diet, both DHA and its metabolites should prove relatively safe [Itok et al., 2006].

Anandamide

Endocannabinoids are highly lipophilic molecules thought to act as retrograde messengers and to protect, in part, against excitotoxicity by modulating neuronal excitability. Anandamide (N-arachidonoyl-ethanolamine; Fig. 2) is an endogenous CBI cannabinoid receptor ligand that mimics many of the psychoactive effects of delta-9-tetrahydrocannabinol, the most widely recognized active component of marijuana [Lambert and Fowler, 2005]. Anandamide has also been shown to activate TRPV1 vanilloid and 2α-nicotine acetylcholine receptors, to inhibit Kv1.2 and TASK-1 potassium channels, and to bind to the 1,4-dihydropyridine site of L-type calcium channels, although the exact physiological consequences of these interactions remain unknown.

Independent of CBI receptors, at sub-micromolar concentrations anandamide has also been shown to block the Cav3.2 T-type calcium channel (IC50 ~300 nM for Cav3.2) and at micromolar concentrations to inhibit Cav3.1 and Cav3.3 T-type channels (IC50 ~4 μM for Cav3.1 and 1 μM for Cav3.3) [Chemin et al., 2001]. Anandamide does not affect T-type activation properties but blockade is strongly dependent upon the channel inactivation state and would therefore result in a significant decrease in the available window current. In the case of Cav3.3 channels, the potency of a block by anandamide could be increased ∼tenfold (IC50 ∼100 nM) under depolarizing waveforms that mimic thalamocortical firing activity. Of particular relevance, unlike that for the effects of cannabinoids on the high threshold N-type and P/Q-type calcium channels [Mackie and Hille, 1992], anandamide blockade of the T-type channels appears to be a result of direct binding to the channel and is independent of G-proteins, phospholipases, and protein kinases. Similar to that for DHA, it will be interesting to examine the effects of both peripherally and centrally administered anandamide on acute and neuropathic pain states. While the psychoactive effects of anandamide likely precluded the use of this agent for the treatment of pain (at least centrally), there exists considerable room for the development of structurally related derivatives.

POTENTIAL ADVERSE EFFECTS OF CAV3.2 T-TYPE CHANNEL BLOCKADE?

Implication of the Cav3.2 T-type calcium channel in pain mechanisms raises a whole new series of clinically relevant issues that may require addressing. For example, gene knockout of the Cav3.2 T-type channel gene in mice has been shown to result in abnormal cardiovascular function including constitutively constricted coronary arterioles and focal myocardial fibrosis [Chen et al., 2003a]. T-type calcium channels are known to be critically involved in early development and neurogenesis; thus, there also may be developmentally related issues of concern [Chemin et al., 2004].
T-type calcium channels are also implicated in the calcium-dependent secretion of a variety of hormones from endocrine tissues and the Caβ3.2 channel appears selectively expressed in the adrenal cortex and implicated in aldosterone secretion [Schrier et al., 2001]. What might be the physiological consequences of long-term blockade of this channel aimed at treating chronic/neuropathic pain conditions? In isolation, these issues may seem to raise a significant barrier to targeting the Caβ3.2 T-type calcium channel. In fact, as described above a number of clinical agents that non-selectively target T-type calcium channels have been used clinically, many with few apparent serious adverse effects. Additionally, as per the reality of many other clinical agents targeting voltage-gated channel isoforms (e.g., L-type calcium, sodium, and potassium channels), while many of the apparent physiological barriers in isolation might suggest the potential for serious clinical obstacles, these can often be overcome by the development of selective, state-dependent drugs that block a subset of pathophysiology relevant target molecules.

ACKNOWLEDGMENTS

We thank Ms. Cynthia Chow and Dr. Hassan Pajouhesh for help with the figures and Dr. Emmanuel Bourinet for comments on the manuscript. The authors' work at the Michael Smith Laboratories is supported by an operating grant from the Canadian Institutes for Health Research and by a Canadian Research Tier 1 Chair in Neurobiology-Genomics. L.S.D. is supported by a fellowship from the Heart and Stroke Foundation of Canada.

REFERENCES

T-TYPE CALCIUM CHANNELS IN PAIN TREATMENT

413

Huguenard JR. 2002. Block of T-Type Ca(2+)/ Channels is an important action of succinimide antiepileptic drugs. Epilepsy Curr 2:49–52.

Li CY, Sury YH, Higueras ES, Luo ZD. 2004. Spinal chord hom calcium channel alpha2delta-1 subunit upregulation contributes

Drug Dev Res DOI 10.1002/ddr

176

APPENDIX 2: SELECTIVE INHIBITION OF Ca$_{v}^{3.3}$ T-TYPE CALCIUM CHANNELS BY G$_{q/11}$-COUPLED MUSCARINIC ACETYLCHOLINE RECEPTORS

T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca$^{2+}$ channels are modulated by G$_{q}$-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca$^{2+}$ channel subtypes and muscarinic acetylcholine receptors (mAChRs), the Ca$_{v}^{3.3}$ (I,II,II,1), Ca$_{v}^{3.2}$ (IV,IV,1), and Ca$_{v}^{3.3}$ (IV,IV,2) T-type Ca$^{2+}$ channel were co-expressed with the M_{1} G$_{q}$/G$_{11}$-coupled mAChR. Perforated patch recordings demonstrate that activation of M_{1} receptors has a strong inhibitory effect on Ca$_{v}^{3.3}$ T-type Ca$^{2+}$ currents but either no effect or a moderate stimulating effect on Ca$_{v}^{3.3}$ and Ca$_{v}^{3.2}$ peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca$^{2+}$ channel variants. The inhibition of Ca$_{v}^{3.3}$ channels by M_{1} receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of G_{q} and G_{11} proteins and gain-of-function experiments with genetically encoded G_{q} subunits indicate that M_{1} receptor-mediated inhibition of Ca$_{v}^{3.3}$ occurs through G$_{q/11}$. This is supported by experiments showing that activation of the M3 and M5 G$_{q}$-coupled mAChRs also causes inhibition of Ca$_{v}^{3.3}$ channels, although G$_{q}$-coupled mAChRs (M2 and M4) have no effect. Examining Ca$_{v}^{3.3}$-Ca$_{v}^{3.3}$ chimeric channels demonstrates that two distinct regions of the Ca$_{v}^{3.3}$ channel are necessary and sufficient for complete M_{1} receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.

T-type calcium channels play critical roles in shaping the electrical, chemical, and plastic properties of neurons throughout the central and peripheral nervous systems. In thalamic reticular and relay neurons, T-type channels are involved in rhythmic rebound burst firing and spindles waves associated with slow-wave sleep (1-5). Studies on knock-out mice and a rat model of absence epilepsy indicate that altering T-type activity within thalamic cells can contribute to pathological conditions such as sleep disorders and epilepsy (1-5). Certain human epilepsies appear to be associated with T-type Ca$^{2+}$ channel point mutations conferring channel gain-of-function phenotype (6-9). T-type channels also play crucial roles in diabetic integration and C$_{a}^{2+}$ spiking in hypothesized pyramidal cells (10, 11). Within the olfactory bulb, T-type channels are implicated in modulating Ca$^{2+}$ transients and synaptic release at dendrodendritic synapses (12, 13). In the periphery, autonomic ganglions and pharmacological approaches have implicated T-type channels in contributing to both acute and chronic nociceptive behaviors (14, 15).

Previous studies have identified three main subtypes of T-type Ca$^{2+}$ channel a subunits (Ca$_{v}^{3.3}$, Ca$_{v}^{3.2}$, and Ca$_{v}^{3.3}$), which characterizes their voltage-dependent, kinetic, and pharmacological properties (16-20). Ca$_{v}^{3.3}$ and Ca$_{v}^{3.2}$ channels display typical T-type properties, including relatively small conductance, fast activation and inactivation kinetics, and slow deactivation kinetics, whereas Ca$_{v}^{3.3}$ channels uniquely display a larger conductance, much slower activation and inactivation kinetics, as well as faster deactivation kinetics (17, 19). Some of the distinct biophysical properties associated with Ca$_{v}^{3.3}$ T-type currents have been observed in certain populations of native T-type currents (6, 17, 19, 22). The biophysical differences between the T-type channels likely enable them to differently shape spiking and modulate firing patterns, with the most slowly inactivating Ca$_{v}^{3.3}$ currents able to produce longer bursts of spikes and tonic firing patterns (17, 23, 24).

Although the basic properties of both cloned and native T-type channels have now been largely characterized, there remains relatively little information concerning their modulation by GPCR-linked pathways. Neurotransmitters such as acetylcholine have been shown to either attenuate or stimulate low threshold Ca$^{2+}$ currents depending on the type of native cells examined, and sometimes multiple forms of modulation are observed.

*6 This work was supported in part by operating grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada, and a CIHR studentship to the first author. The authors declare no conflicts of interest. The work was done at the University of British Columbia.

7 To whom correspondence should be addressed. Michael Smith Laboratories, University of British Columbia, 2366 West Mall, Vancouver, British Columbia V6T 1Z4, Canada. Tel: 604-822-4901 Fax: 604-822-8490 E-mail: michael.snutch@ubc.ca

Inhibition of Cav3.3 T-type Ca²⁺ Channels by mACHRs

can be observed within the same cell type (25-29). Multiple T-type Ca²⁺ channel subtypes are expressed in most native cells (30, 31), although pharmacological tools with the specificity needed to separate these currents have not been generated. In this regard, the description of the modulation of specific T-type Ca²⁺ channels in heterologous systems will provide insights crucial toward further investigations into native systems. This approach is also well suited for GPCR studies as most neurotransmitters activate multiple receptor subtypes in neurons.

Within thalamic reticular, hippocampal pyramidal, and olfactory granule cells, there is evidence for the expression of both T-type Ca²⁺ channels and Gq₄₃₄₄-coupled muscarinic acetylcholine receptors (mACHRs) (25, 30–36). As both T-type Ca²⁺ currents and mACHRs have been independently shown to play important physiological roles within these cell types, their functional coupling could be relevant to a number of neuronal processes. Here we studied the modulatory effects of mACHRs on the three main subtypes of low threshold T-type Ca²⁺ channels expressed in the mammalian nervous system. We found the selective modulation of Cav3.3 Ca²⁺ channels by Gq₄₄₄₄-coupled mACHRs and combined pharmacological, genetic, and chimeric channel approaches to examine the G-protein-mediated pathway and structural regions responsible for the distinct Cav3.3 signaling characteristics.

Experimental Procedures

Molecular Biology—Human Cav3.1-Cav3.3 T-type Ca²⁺ channel α₁ subunit chimeras were constructed as described in detail by Hamid et al. (37).

Cell Culture and Transfection—Human embryonic kidney cells (HEK 293H, Invitrogen) were grown in standard Dulbecco’s modified Eagle’s medium (10% fetal bovine serum and 50 units/ml penicillin/streptomycin) to ~80% confluence and maintained at 37°C in a humidified incubator with 95% atmospheric and 5% CO₂. The generation of stable T-type cell lines (in HEK 293, pass 201) expressing rat brain Cav3.1, Cav3.2, or Cav3.3 α₁ subunits has been described previously (16). Stable cell lines were transiently transfected with human muscarinic M1, M2, M3, M4, or M5 cDNAs (all in pcDNA3.1) using Lipofectamine (Invitrogen). As a reporter for transfection, all transient transfections included co-transfection with either CD8 or pEGFP marker plasmids at a 1:0.25 molar ratio compared with receptor and/or channel plasmid DNA, unless otherwise indicated. Lipofectamine-mediated transfections used 1–1.25 μg of DNA/35-mm dish and 5 μl of Lipofectamine/dish. In protein experiments, stable Cav3.3 cells were co-transfected with M1 receptors and equal amounts of either MAS-GRK3ct (in pcDNA3.1), Goα (in pcDNA3.1), or IRS2 (in pEGFP) using Lipofectamine. Only MAS-GRK3ct and Goα transfections required co-transfection with marker plasmids as IRS2 expression could be indirectly detected with fluorescence. In Goα transfection experiments, stable Cav3.3 cells were transfected with constitutively active mutants of Goα, Goα₁₄₁, or Goα₂₃₂₃ (Goα₁₄₄₄₄₂₃₂₃ and Goα₁₄₂₃₂₃₂₃, respectively, all in pcDNA3.1) using Lipofectamine. Twelve to 18 h after transfection, the medium was changed from Opti-MEM I to regular Dulbecco’s modified Eagle’s medium, and cells were transferred to a 28°C incubator. The M1 to M5, Goα₁₄₁, Goα₂₃₂₃, and Goα₁₄₂₃₂₃ cDNAs were all obtained from the UMR cDNA Resource Center (Rolla, MO), and the IRS2 and MAS-GRK3ct constructs were a generous gift from Dr. Brett Adams.

In separate experiments, HEK 293H cells were co-transfected with M1 and wild type (WT) or chimeric human Cav3.1 or Cav3.3 channels using standard Ca²⁺ phosphate transfection with 2 μg of total cDNA/dish, 0.15 to 0.4 μg of channel cDNA/dish, and 0.2 μg of M1 cDNA/dish. In a subset of these experiments involving co-transfection of WT Cav3.3 and M1, either 200 μM di-C8 PI(4,5)P₂ (Echelon Biosciences Inc., Salt Lake City, UT) or 50 μg/ml PI(4,5)P₂ IgG₂₅ antibody (1:30 dilution) (Assay Designs, Ann Arbor, MI) was included in the internal solution to explore the role of PI(4,5)P₂ signaling. As the PI(4,5)P₂ antibody was supplied in a phosphate-buffered saline solution containing 10% fetal bovine serum and 0.05% sodium azide, the control Cav3.3 + M1 cells were recorded in an internal solution containing a 1:30 dilution of phosphate-buffered saline with 10% fetal bovine serum and 0.05% sodium azide. Electrophysiological recordings for all experiments were performed 24–48 h after transfection. Transfected cells were selected for CD8 or pEGFP expression using either adherence of Dynabeads (Dynal, Great Neck, NY) or fluorescence of EGFPI under UV light.

Electrophysiological Recordings and Analysis—Macroscopic currents were recorded using the perforated patch clamp technique to reduce current rundown and to preserve cytoplasmic signaling pathways. The external recording solution contained (in mM) 2 CsCl, 1 MgCl₂, 10 HEPEs, 40 tetraethylammonium chloride, 92 CsCl, 10 glucose, pH 7.4, and the internal pipette solution contained (in mM) 120 Cs⁺ methanesulfonate, 11 EGTA, 10 HEPEs, 2 MgCl₂, 75–100 μM β-escin, pH 7.2. For these perforated patch recordings, experimental recording did not begin until the series resistance was below 20 MΩ and constant, as measured by amplifier compensation. Whole-cell recordings were used for the transiently transfected WT or chimeric human Cav3.1 and Cav3.3 channel experiments as well as the Goα transfection experiments. The internal solution for these recordings contained (in mM) 120 Cs⁺ methanesulfonate, 11 EGTA, 10 HEPEs, 2 MgCl₂, 4 Mg-ATP, 0.3 sodium GTP. Macroscopic currents were recorded using Axopatch 200A and 200B amplifiers (Axon Instruments, Foster City, CA), controlled and monitored with Pentium 4 personal computers running pClamp software version 9 (Axon Instruments). Patch pipettes (borosilicate glass 150-86; 10; Sutter Instruments, Novato, CA) were pulled using a Sutter P87 puller and polished with a Narishige (Tokyo, Japan) microforge, with typical resistances of 3–6 MΩ when filled with internal solution. The bath was connected to the ground via a 3 MΩClagar bridge.

Data were low-pass filtered at 2 kHz (using the built-in Bessel filter of the amplifier, with sampling at 10 kHz). The amplifier was also used for capacitance and series resistance compensation between 70 and 85% on every cell. Leaky subtraction of capacitance and leakage current was performed off-line using a P/5 protocol or else performed with Clampfit (Axon Instruments) during offline analysis. Figures and fittings utilized the software program Microcal Origin (version...
Inhibition of Cav3.3 T-type Ca2+ Channels by mAChRs

![Diagram of Cav3.3 T-type Ca2+ channels](https://example.com/diagram)

Ensure that this variable was relatively constant, and any changes in peak current levels were not because of significant changes in series resistance. Effects of saturating concentrations of mAChR agonist (1 mM CCh) on stable T-type currents were then investigated using steps to peak potential every 5 s (0.2 Hz) from a holding potential of -110 mV. These depolarizing steps were 80 ms in duration for Cav3.1 and Cav3.2 and 200 ms in duration for Cav3.3. The -110 mV prepulse protocol for Cav3.3 included a 1-s prepulse to -140 mV to remove any accumulated channel inactivation. To quantify the percent of channel inhibition, stimulation, or washout during CCh or control solution perfusion, the peak current magnitude at equilibrium was averaged (2-5 values). When distinct effects were observed (i.e., stimulation versus no effect of M1 on Cav3.1 currents), all cells displaying a >10% modulating effect with a clear exponential time course were grouped into one group, while the rest of the cells were grouped into the "no effect" group.

Current-voltage relationships were fitted with the modified Boltzmann equation, I = (G_{max} \times (V_{m} - E_{m}))/([1 + \exp((V_{m} - V_{50})/k_{b})] + A), where V_{50} is the test potential, V_{max} is the half-activation potential, E_{m} is the extrapolated reversal potential, G_{max} is the maximum slope conductance, and k_{b} reflects the slope of the activation curve. Data from CCh concentration-response studies were fitted with the equation, V_{m} = (A_{1} - A_{2})/([1 + (k_{b} V_{m})] + A_{2}), where A_{1} is initial amplitude (-0) and A_{2} is final block value; A_{10} is IC_{50} (concentration causing 50% inhibition of currents), and P gives a measure of the steepness of the curve. The activation and inactivation rates during steps to peak potential were well described by single exponential curves to give \tau_{act} and \tau_{inact} values, respectively. Statistical significance was tested with Student’s t tests with significance being determined at a confidence interval of p < 0.02.

Solutions, Drugs, and Perfusion—A 0.25 mM stock of β-escin (in distilled H\textsubscript{2}O) was prepared fresh, with dilution to working stocks in intracellular solution. Carbocell (CCh) was added directly to the extracellular recording solution. Wurtzmann, okadaic acid, genistein, and H9 were all obtained from Tocris.
Inhibition of Cav3.3 T-type Ca\(^{2+}\) Channels by mACHRs

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of receptor activation on T-type channel kinetic and voltage-dependent properties</td>
</tr>
<tr>
<td>2 mM Ca(^{2+}) control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cav3.3 + M1 (activation)</td>
</tr>
<tr>
<td>Human Cav3.3 + M1 (whole-cell, inhibition)</td>
</tr>
<tr>
<td>Cav3.3 + M1 (M1; effect)</td>
</tr>
<tr>
<td>Cav3.3 + M1 (M1; inhibition)</td>
</tr>
<tr>
<td>Cav3.3 + M1 (M1; effect)</td>
</tr>
<tr>
<td>Cav3.3 + M1 (M1; inhibition)</td>
</tr>
<tr>
<td>Cav3.3 + Control (muscarinic)</td>
</tr>
<tr>
<td>Cav3.3 + M1 (M1; inhibition)</td>
</tr>
<tr>
<td>Human Cav3.3 + M1 (whole-cell, no effect)</td>
</tr>
</tbody>
</table>

\(p < 0.05\) \(\ast p < 0.001\)

Cookson (Ellisville, MO). (R,)₃AMP was obtained from BioMol International (Plymouth Meeting, PA). BAPTA-AM was obtained from Molecular Probes (Eugene, OR). Unless otherwise stated, all other drugs were obtained from Sigma. Drugs were dissolved in either distilled H₂O or Me₂SO, according to manufacturer's solubility data. The highest concentration of Me₂SO in the recording solution did not exceed 0.1%, a concentration that did not detectably affect T-type properties (data not shown). Gravity-driven perfusion occurred at a rate of ~740 \(\mu\)l/min, and the outputs of the manifold were placed within close proximity of the cell, resulting in the cell being bathed in new solutions with minimal delay (within 1 s).

RESULTS

Muscarinic M1 Receptors Selectively Inhibit Cav3.3 T-type Ca\(^{2+}\) Channels—To investigate the potential for T-type Ca\(^{2+}\) channel modulation by mACHRs, we transiently transfected HEK cell lines stably expressing individual subtypes of recombinant rat brain T-type channels with the human muscarinic M1 receptor. Performed patch recordings with 8-amin demonstrated that activation of M1 with 1 mM CCH caused a rapid (<30 s) and robust inhibition of exogenously expressed rat brain Cav3.3 T-type channel peak currents (−45 ± 2%, \(n = 34\)) (Fig. 1, C and D). Only a small subpopulation of stable Cav3.3 cells (<10%) was not affected by CCH application (likely representing cells untransfected with the M1 receptor).

Activation of M1 with 1 mM CCH had no significant effect (\(p > 0.05\)) on the voltage dependence of Cav3.3 currents but significantly increased both the rates of activation and inactivation (\(p < 0.001\); Table 1). In contrast to the clear inhibition of Cav3.3 T-type currents, activation of M1 receptors with 1 mM CCH largely had no effect on the peak current amplitude of either rat brain Cav3.3 (−21 ± 2%, \(n = 18\)) or Cav3.2 channels (−0.1 ± 2.5%, \(n = 17\)) (Fig. 1, A, B, D, and E). In a small subset of both Cav3.2 and Cav3.3 currents we noted a stimulation induced by M1 activation (Cav3.3: 35 ± 12%, \(n = 4\); Cav3.2: 36 ± 12%, \(n = 5\)), with a slower time course to equilibrium of greater than 1 min (\(n = 3\) and \(n = 4\), respectively). For the prevalent null effect on Cav3.1 and Cav3.2 currents, 1 mM CCH application had no significant effect on channel activation and inactivation kinetics or the voltage dependence of activation (\(p > 0.05\); Table 1).

Different Cav3.3 T-type channel isoforms with distinct carboxyl termini have been identified from both the rat and human brain (17, 19, 21, 38). To test whether inhibition of the Cav3.3 channel by M1 receptors was restricted to the rat brain short carboxyl-terminal isoform (17), we also examined the longer human Cav3.3 isoform (21) transiently co-transfected into HEK cells with the M1 receptor. Similar to that for the shorter rat brain isoform, application of 1 mM CCH resulted in significant inhibition of the human Cav3.3 peak current amplitudes (−28 ± 2%, \(n = 15\)) and also significantly increased activation and inactivation kinetics (\(p < 0.001\); Fig. 5; Table 1). Additionally, similar to that for the rat Cav3.3 T-type channel, application of 1 mM CCH to HEK cells co-transfected with the human Cav3.3 channel and M1 receptor had no significant effect on peak current amplitude (−0.3 ± 2.0%, \(n = 9\)) or channel kinetics (for 100% cells tested; \(p > 0.05\); Fig. 7B; Table 1). Overall, the differential modulation of T-type Ca\(^{2+}\) channel subtypes mediated by M1 receptors was consistent across both rat and human recombinant T-type channels.

Muscarinic M1 Receptors Dose-dependently Modulate Cav3.3 Biophysical Properties—Perforated patch recordings on stable rat Cav3.3 cells transiently transfected with M1 receptors revealed that the CCH-induced inhibition of peak current levels was reversible over a time course of about 2 min (\(n = 13\); Fig. 2, A and B). As previously mentioned, activation of M1 receptors with 1 mM CCH caused a significant (\(p < 0.001\)) increase in inactivation kinetics (control: \(\tau_{\text{inact}} = 86 ± 6\) ms, \(n = 27\)); 1 mM CCH, \(\tau_{\text{inact}} = 31 ± 2\) ms, \(n = 27\)). Along with peak current inhibition, the CCH-induced increase in Cav3.3 inactivation kinetics was reversible (Fig. 2, A and C). Both the M1 receptor-induced inhibition of Cav3.3 peak currents and the increased inactivation rate would be predicted to reduce the total amount of Ca\(^{2+}\) flowing through Cav3.3 T-type channels during a cellular depolarization. The effect of M1 receptor activation on total Ca\(^{2+}\) influx was determined by integrating the area over Cav3.3 current traces during 200-ms depolarizing pulses to peak potential before and after 1 mM CCH application. Normalizing these Ca\(^{2+}\) influx values to control levels showed a 77 ± 2% (\(n = 20\)) reduction in Ca\(^{2+}\) influx mediated by M1 receptor activation (Fig. 2D).

As activation of M1 receptors increases the kinetics of Cav3.3 activation and inactivation, it is possible that this signaling pathway modulates Cav3.3 function via acting upon the open and/or inactivated states. A protocol that involved perfusion of 1 mM CCH for 50 s (time to reach normal inhibition equilib-
Inhibition of Cav3.3 T-type Ca2+ Channels by mAChRs

![Graphs and images](image_url)

Figure 2. Mechanistic properties of inhibition of Cav3.3 currents by M1 receptors. A: Inhibition of Cav3.3 channels by M1 is reversible. Representative Cav3.3 perforated patch current traces during depolarization from −110 to −40 mV before (trace 1), during (trace 2), and after (trace 3) perfusion of 1 mM CCh. Note the increase in inactivation kinetics when CCh is applied (trace 3). B: Plot of peak current amplitude (50 ms) showing the rate of inhibition by 1 mM CCh in the absence and presence of tetrodotoxin (TTX). C: Application of 1 mM CCh increases Cav3.3 inactivation kinetics. D: Application of 1 mM CCh dramatically reduces the amount of Ca2+ influx through Cav3.3 channels. E: Inhibition of Cav3.3 currents by 1 mM CCh occurs through M1 receptor activation. F: Control experiments show elimination of the inhibition because of 1 mM CCh when a muscarinic antagonist (50 nM atropine) is co-applied or when a control vector (pBlueScript) is transiently transfected instead of M1. G: A lack of depolarizing test pulses during initial CCh perfusion, increase in test pulse frequency to 0.5 Hz, or a hyperpolarizing prepulse to −140 mV for 1 s had no significant (p > 0.02) effect on the magnitude of Cav3.3 inhibition by M1. *Indicates significance at p < 0.001 compared with control (p < 0.05). £CCh inhibited Cav3.3 currents in a dose-dependent manner. CCh concentration versus percentage block data were fitted with a Hill equation, and the IC\textsubscript{50} for CCh inhibition of Cav3.3 currents was 27 μM. All data points correspond to mean ± SE.

Inhibition of Cav3.3 Channels by M1 Receptors Requires Ga\textsubscript{q}/11. The inhibitory effect of M1 receptor activation on Cav3.3 currents occurred either through Gi/β or Ga-mediated processes. To test for the involvement of Gi/β, a membrane-targeted version of the carboxy-terminus of β-arrestin kinase, MAS-GRK3ct (41), was co-transfected with M1 receptors into the stable Cav3.3 HEK 293 cell line. Control experiments showed that the MAS-GRK3ct construct was able to completely abolish the well described Gi/β-dependent inhibition of N-type Ca2+ channels (data not shown).
Inhibition of Cav3.3 T-type Ca\(^{2+}\) Channels by mAChRs

![Graphs showing inhibition of Cav3.3 channels by M1 receptors](image)

Figure 3. Inhibition of Cav3.3 channels by M1 requires G\(_{o_{q11}}\) signaling. A, in perforated patch recordings of Cav3.3 stable cells co-transfected with M1 and a membrane-targeted form of the cytoskeletal protein lifeact (to visualize the cell surface), 1 mM CCh (100 ng/\(\mu\)g) caused inhibition of Cav3.3 currents (0.5 ± 0.4%, n = 10). B, similarly, inhibition by perfusion of 1 mM CCh (100 ng/\(\mu\)g) was observed for Cav3.3 cells co-transfected with the G\(_{o_{q11}}\) signaling construct. C, in perforated patch recordings of Cav3.3 stable cells co-transfected with M1 and RGS2 (a negative regulator of G\(_{o_{q11}}\) signaling), application of 1 mM CCh (100 ng/\(\mu\)g) predominantly had no effect (1 ± 0.5%, n = 7) on Cav3.3 currents. D, bar graph comparing various agonists and pharmacological manipulations to control conditions showed that 1 mM CCh (100 ng/\(\mu\)g) caused a 2.5 ± 1.3% (n = 7) inhibition of Cav3.3 currents.

Reduced M1-mediated Cav3.3 current inhibition (21.8 ± 3.8%, n = 10) in most cells, suggesting that inhibition is distinct from the previously reported G\(_{q}\)-mediated inhibition of N- and P/Q-type and Cav3.2 Ca\(^{2+}\) channels (42, 43) (Fig. 3, A and D). A smaller subset of MAS-GRK3 co-transfected cells displayed no effect or an inhibitory effect (9.3 ± 3.0%, n = 7). Co-expression of transducin (G\(_{o_{q11}}\), which also buffers G\(_{q}\) signaling (41), caused the same reduction in M1-mediated inhibition of Cav3.3 currents (251 ± 2.3%, n = 10), with a small number of cells not being inhibited at all (7.0 ± 0.1%, n = 3) (Fig. 3, A and D).

In contrast to the partial effect of G\(_{q}\) signaling antagonists, co-expression of the regulator of G-protein signaling 2 (RGS2), an effector antagonist for G\(_{o_{q11}}\) (44), completely prevented the M1 receptor-induced inhibition of Cav3.3 currents for all cells examined. In perforated patch recordings of Cav3.3 cells co-transfected with M1 and RGS2, application of 1 mM CCh either
Inhibition of Cav3.3 T-type Ca\(^{2+}\) Channels by mAChRs

compared with control transfactions, whereas the \(\tau_{\text{max}}\) was not significantly different for \(\text{Ge}_{11}\) [p < 0.02; Fig. 4F].

\(\text{Ge}_{11}\) Inhibits Cav3.3 Channels through an Unidentified Nonclassical Pathway

The active GTP-bound form of \(\text{Ge}_{11}\) causes the activation of PLC, which then produces inositol 1,4,5-trisphosphate and diacylglycerol. PKC-mediated signals. Various pharmacological antagonists were used to investigate the role of potential cellular signals downstream of \(\text{Ge}_{11}\). Specific inhibitors of PKC, including 10 \(\mu\)M cholinephrine \((n = 5)\) and 500 \(\mu\)M Go 6976 \((n = 6)\), had no significant \((p > 0.05)\) effect on the \(M_{\text{max}}\)-mediated inhibition of Cav3.3 currents (Fig. 3D). To ensure pharmacological activity of these antagonists, the PKC-mediated stimulation of Cav3.2 channels by 300 \(\mu\)M phorbol 12-myristate 13-acetate \((65 \pm 17\%\); \(n = 7\); see Ref. 47) was shown to be significantly \((p < 0.02)\) abolished by both 10 \(\mu\)M cholinephrine \((-15 \pm 8\%\); \(n = 5\)) and 500 \(\mu\)M Go 6976 \(\pm 5\%\); \(n = 5\)) (data not shown). Inhibitors of serine/threonine kinases \((500 \mu\text{m} \text{staurosporine, } n = 7; 50 \mu\text{m H9, } n = 6\), tyrosine kinases \((10 \mu\text{m genistein, } n = 7\)), phosphatases \((100 \mu\text{m okadaic acid, } n = 6\), phosphoinositide-3-kinases \((200 \mu\text{m wortmannin, } n = 7\), pertussis toxin-sensitive Gs proteins \((0.5 \mu\text{m} \text{pertussis toxin, } n = 6\), CAMP \((10 \mu\text{m} \text{Rp-CAMP, } n = 5\), and internal Ca\(^{2+}\) \((10 \mu\text{m} \text{BAPTA-AM, } n = 5\) also had no significant effect \((p > 0.02)\) on the inhibition of Cav3.3 currents by M1 receptors (Fig. 3D). In this regard, classical \(\text{Ge}_{11}\) downstream effectors such as PKC, CAMP-dependent protein kinase, and increased cytosolic Ca\(^{2+}\) concentration appear not to be directly involved in the M1 receptor-mediated inhibition of Cav3.3 T-type Ca\(^{2+}\) currents. Phospholipase C activity has been shown recently to directly inhibit voltage-gated ion channels through the depletion of membrane PIP\(_{2}\) levels, which are thought to stabilize active channels in the membrane (48). Dyeing cells with a PIP\(_{2}\) antibody \((50 \mu\text{g/ml})\) to reduce available PIP\(_{2}\) levels had no significant effect \((p > 0.05)\) on the M1 receptor-mediated inhibition of Cav3.3 currents (Fig. 5, B and D). Similarly, dyeing cells with a synthetic P1(4,5)P\(_{2}\) \((200 \mu\text{m} \text{di-C8 P1(4,5)P}_{2}\) to saturate membrane P1(4,5)P\(_{2}\) also had no significant effect \((p > 0.05)\) on M1 receptor-mediated inhibition of Cav3.3 currents (Fig. 5, C and D). As a positive control for di-C8 P1(4,5)P\(_{2}\) activity and as previously shown (49), dialysis of 200 \(\mu\text{m} \text{di-C8 P1(4,5)P}_{2}\) into HEK 293 cells stably expressing HIRG \(K^{\text{a}}\) channels caused a significant \((p < 0.02)\) stimulation of \(K^{\text{a}}\) channel currents \((n = 8\) compared with control recordings \((n = 5\); data not shown). Taken together, these results indicate that inhibition of Cav3.3 by M1 receptors occurs either directly through \(\text{Ge}_{11}\) or a downstream pathway that is independent of PIP\(_{2}\) metabolism and other classical effectors.

\(\text{Ge}_{11}\)-coupled Muscarinic Receptors Selectively Inhibit Cav3.3 Channels—If inhibition of Cav3.3 T-type Ca\(^{2+}\) channels by M1 receptors is primarily dependent on \(\text{Ge}_{11}\) signaling, then all \(\text{Ge}_{11}\)-coupled mAChRs should similarly inhibit Cav3.3 currents, whereas \(\text{Ge}_{2}\)-coupled mAChRs should have no effect. Indeed, activation of co-expressed \(\text{Ge}_{2}\)-coupled M2 and M4 receptors with 1 nM CCh did not affect Cav3.3 current amplitude \((M2 = -4 \pm 2\%\); \(n = 12\); M4 = -4 \pm 3\%\); \(n = 8\)) or kinetics (Fig. 6, A, C, E, and G; Table I). In contrast, upon transfection of either the \(\text{Ge}_{2}\)/\(\text{Ge}_{12}\) coupled M3 or M5 receptor subtypes into stable Cav3.3 cells, perforated patch recordings revealed a significant CCh-mediated inhibition \((M3 = -25 \pm 3\%\); \(n = 10\); M5 = -31 \pm 3\%\); \(n = 10\) as well as a concomitant increase in both activation and inactivation kinetics (Fig. 6, B, D, F, and H; Table I). Overall, experiments with genetically encoded antagonists of \(\text{Ge}_{11}\) (RS82) and GBP (MAS-GRK3ct) and genetically encoded Gs subtypes, as well as inhibition experiments with various mAChRs, all support the assertion that inhibition of Cav3.3 channels by mAChRs specifically occurs through \(\text{Ge}_{11}\).
Inhibition of Cav3.3 T-type Ca^{2+} Channels by mACHRs

A Cav3.3 + M1

B Cav3.3 + M1 + PIP_{2} Abs

C Cav3.3 + M1 + di-C8 PIP_{2}

D % Mediation of Cav3.3 by M1

Figure 5. Inhibition of Cav3.3 channels by M1 does not require PIP_{2} signaling. A, In whole-cell recordings of NRK-2B cells cotransfected with human Cav3.3 and M1, application of 1 mM CCh caused inhibition of Cav3.3 currents (−27.7 ± 1.5%, n = 15, 8) dialyzing cells with 50 μM PIP_{2} and antibody for 10 min had no effect on the inhibition of human Cav3.3 currents by M1 receptor activation (−10.8 ± 1.0%, n = 10). C, dialyzing cells with 200 μM diethylamine PIP_{2} for 5−10 min had no effect on the inhibition of human Cav3.3 currents by M1 receptor activation (−26.9 ± 1.8%, n = 10). D, bar graph showing that dialyzing PIP_{2} signaling with either di-C8 PIP_{2} antibody or M1 antagonists had no significant effect (p > 0.05) on M1-mediated inhibition compared with whole-cell recordings from control human Cav3.3 + M1 cells.

Two Distinct Cav3.3 Channel Regions Are Involved in M1-mediated Inhibition—Most modulation of Ca^{2+} channels by intracellular signaling pathways involves physical interactions between various effectors and cytoplasmic channel domains (42, 50). Chimeric T-type Ca^{2+} channels between human Cav3.3 and human Cav3.3 were generated to determine the molecular regions of the Cav3.3 channel involved in the M1 receptor-mediated inhibition (Fig. 7). The Cav3.3 and Cav3.3 full-length channels were initially divided into four approximately equal portions, and chimeric channels were constructed using restriction enzyme digestion and religation (see Ref. 37). The four channel portions were named as follows: region 1 = amino terminus + domain I; region 2 = domain II−III linker, domain II + the first 39−63 amino acids of the domain I−III linker; region 3 = remainder of the domain II−III linker + domain III; and region 4 = the domain III−IV linker, domain IV + the carboxyl terminus. Chimeric channel names were assigned based on whether the chimera contained Cav3.1 (G) or Cav3.3 (I) sequence in each of the four regions described (e.g., the chimeric Cav3.3 channel that contained region 2 from Cav3.1 is called IG1).

Co-expression of M1 receptors with chimeric IG1 and IG1G T-type channels both showed a similar degree of M1 receptor-mediated peak current inhibition compared with that of the inhibition of the WT Cav3.3 channel (III) (Fig. 7, A and E). In contrast, when the IG11 chimera was co-transfected with M1 receptors, application of 1 mM CCh resulted in a significantly attenuated degree of inhibition (−5.6 ± 2.1%, n = 11, p < 0.001) compared with the wild type III channel (−26.9 ± 2.3%, n = 9; Fig. 7F). Interestingly, although the chimeric IG1 channels exhibited lower M1 receptor-mediated inhibition, they still possessed significantly increased inactivation kinetics (p < 0.001; Table 2). Finally, although the IG11G chimeric channels showed similar degree of M1 receptor-mediated peak current inhibition compared with the wild type III channel, the rate of inactivation was notably slower (not shown). The changes in the rate of inhibition for IG1 and the significant decrease in the amount of inhibition for IG1G suggested that both regions 2 and 4 might be involved in the M1-induced inhibition of Cav3.3 channels. To explore this, a double chimera (IG11G) was co-transfected into HEK cells with M1 receptors. Fig. 7G, C and E, shows that the inhibiting effect of 1 mM CCh application on peak current amplitude was completely abolished for the IG11G chimera (0.2 ± 2.5%, n = 8). Activation of M1 with 1 mM CCh still caused a significant increase (p < 0.001) in the inactivation kinetics of IG1G, but the r_{max} decreased by less than 2% for IG1G, and it decreased by 40−65% for all the single chimeric and wild-type Cav3.3 channels (Table 2).

The chimeric channel loss-of-function experiments indicate that both regions 2 and 4 are involved in the M1-mediated inhibition of current amplitude and increase in inactivation kinetics of Cav3.3 currents. In gain-of-function experiments, substitution of either region 2 (GG1G) or region 4 (GG1G) into the Cav3.3 channel resulted in 1 mM CCh-induced inhibition (GG1G = −14.3 ± 0.8%, n = 7; GG1G = −9.1 ± 2.6%, n = 9) that was significantly different (p < 0.001 and p < 0.01, respectively) when compared with GG1G (−0.3 ± 2.2%, n = 9; Fig. 7, B and E; Table 2). In contrast, inclusion of either region 1 or region 3 of Cav3.3 into Cav3.1 resulted in no significant change (p > 0.05) in M1-mediated inhibition when compared with GG1G (Fig. 7E). Although both GG1G and GG1G were inhibited by M1, the level of inhibition was significantly lower (p < 0.001) than the inhibition of III by M1 (Fig. 7E). When the effect of 1 mM CCh application on GG1G current amplitude was tested, M1 activation was found to produce a significant level of
Inhibition of Cav3.3 T-type Ca²⁺ Channels by mACHRs

GIGi inhibition (-25.1 ± 2.4%, n = 14, p < 0.001) compared with GGGG that was not significantly (p > 0.05) different from the inhibition of III (Fig. 7, A, B, D, and E). Application of 1 mM CCh also significantly increased (p < 0.001) the rate of inactivation for the GIGi Cav3.1 chimera but not for GGGG, GGGG, or the other Cav3.1 single chimeras (Table 2). Overall, the combined substitution of regions 2 and 4 from the Cav3.3 channel into the Cav3.1 channel completely restores M1-induced inhibition together with the associated increase in channel inactivation kinetics.

DISCUSSION

In this study we systematically explored the effects of activated muscarinic GPCRs on the three main T-type Ca²⁺ channel isoforms expressed in the mammalian nervous system, and we report for the first time the differential modulation between a G-protein signaling pathway and Cav3.3 T-type Ca²⁺ channels. Most studies on T-type Ca²⁺ channel modulation have involved the Cav3.2 (α₃β₂δεγ) subtype, revealing specific modulatory responses to Gβγ, CAMKII, and redox modulation that are not observed for the Cav3.1 and Cav3.3 T-type Ca²⁺ channel isoforms (42, 51, 52). The exclusive inhibition of Cav3.3 channels by Gi/Go-coupled mACHRs is the first example of specific GPCR-mediated modulation of a T-type Ca²⁺ channel subtype other than for Cav3.2.

Differential Effects of mACHRs on T-Type Ca²⁺ Channel Isoforms—Examination of the literature shows that activation of mACHRs can result in multiple effects on native T-type Ca²⁺ currents, including causing stimulation (26, 27, 53), inhibition (28), or having no effect (64). Given the heterogeneous nature of native low-threshold Ca²⁺ currents, without investigating interactions between specific mACHR gene products and specific T-type Ca²⁺ channel isoforms, the published differences in modulation...
Inhibition of Cav3.3 T-type Ca$^{2+}$ Channels by mACHRs

A

B

C

D

E

Normalized Current

Normalized Current

Normalized Current

Normalized Current

% Modulation by M1

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

% Modulation by M1

0 10 20 30
are nearly impossible to interpret. Our results using exogenous expression of cloned T-type Ca\(^{2+}\) channels indicates that M1 receptor activation has a robust inhibitory effect on Cav3.3 currents and has either no effect or a small stimulation on both Cav3.1 and Cav3.2 currents. Similarly, experiments examining native Cav3.2 Ca\(^{2+}\) channels in NHT3 cells transiently transfected with mAChRs demonstrated that M1 receptor activation had either no effect or a stimulatory effect if a PKC inhibitor was applied (27). Active \(\beta\) subunits have been shown to specifically inhibit Cav3.2 currents (42, 55) and the lack of inhibition of Cav3.2 channels by M1 receptors in our study is likely because of the absence of any functional coupling between M1 receptors and \(\beta\) subunits (56). We also found that all G\(\alpha_q\)-coupled mAChR subtypes (M1, M3, and M5) cause attenuation of Cav3.3 currents, whereas Goq-coupled M2 and M4 receptors had no effect on Cav3.3 currents. Thus, it is likely that any stimulation of T-type Ca\(^{2+}\) currents by mAChRs in native systems does not involve Cav3.3 channels. Experiments testing the effects of recombinant M2–M5 receptors on the Cav3.2 and Cav3.3 Ca\(^{2+}\) channel isoforms in a heterologous system are required to further facilitate the possibility of interactions between these T-type channels and mAChRs.

Functional Effects of M1 Receptor Activation on Cav3.3 Currents—Activation of M1 receptors dramatically altered Cav3.3 currents by both reversibly attenuating peak currents and increasing the rate of inactivation, resulting in a significant reduction in the influx of Ca\(^{2+}\). The relationship between these effects was explored using both structural channel chimeric and classical gating property studies. In chimeric studies (see below), the activation of M1 receptors primarily caused an increase in inactivation kinetics of the E1H chimera and, conversely, primarily a decrease in peak current levels for the G1HH chimera. Both this isolation of the two specific M1 receptor-mediated effects and the gating results discussed below suggest that the effects of M1 on current amplitude and inactivation kinetics are complementary but distinct phenomena. For gating studies, reduction of Cav3.3 current magnitude by M1 receptor activation was equally robust when the Cav3.3 channels were held in various states including: 1) during a protracted hyperpolarization with no test depolarizations (channels mostly in closed state); 2) after a strong hyperpolarizing prepulse to -140 mV; and 3) during 200-ms test depolarizations to peak potential at 0.2 and 0.5 Hz. Combining this lack of use dependence with the observed reduction in peak current amplitude and the increase in activation and inactivation kinetics indicates that all states of the Cav3.3 channel are subject to modulation by M1 receptor activation. The acceleration of Cav3.3 channel kinetics by M1 receptor activation also supports the hypothesis that modulation affects channel biophysical properties and not channel density via internalization, which has recently been shown to occur for the voltage-independent, GPCR-mediated inhibition of N-type Ca\(^{2+}\) channels on a relatively fast time scale (57). Physiologically, the combined decrease in Cav3.3 peak currents and the increased activation and inactivation kinetics would be predicted to alter neuronal firing patterns and perhaps eliminate rhythmic oscillations (23, 58). In support of this notion, the concomitant reduction in peak current and increase in inactivation kinetics of Cav3.3 currents triggered by amanxulloside have been shown to completely eliminate the sustained, rhythmic Cav3.3 current during an action potential voltage clamp experiment with an oscillating thalamic waveform (59).

Signal Transduction Pathway of M1 Receptor-mediated Cav3.3 Inhibition—Use of genetically encoded antagonists of G\(\beta\)Y (MAS-GRK3ct and Goq) and G\(\alpha_q\) (RS2G) demonstrated that G\(\beta\)Y may partially contribute to the M1-mediated inhibition of Cav3.3 currents, whereas G\(\alpha_q\) is absolutely required for complete inhibition. The potential involvement of both G\(\alpha_q\) and G\(\beta\)Y in a nonclassical, voltage-independent mechanism of Ca\(^{2+}\) channel inhibition by mAChRs has been described previously for HVA Ca\(^{2+}\) channels. In rat superior cervical ganglion sympathetic neurons, application of a muscarinic agonist causes the voltage-independent inhibition of endogenous N-type Ca\(^{2+}\) channels that is abolished by co-expression of RS2G, G\(\alpha_q\), or MAS-GRK3ct and exhibits a time course similar to the Cav3.3 inhibition reported here (41). As G\(\beta\)Y is a cofactor for PLC\(\beta\) activity, a possible explanation is that sequestering G\(\beta\)Y reduces PLC\(\beta\) activity (60). Although G\(\beta\)Y may potentiate the inhibitory effect of M1 receptor activation, transduction of constitutively active G\(\alpha_q\) to human Cav3.3 channels is required and appears sufficient for M1-mediated inhibition. A, B. Left, schematic diagrams of the various chimeric channels that were constructed and expressed in HEK cells with M1. The light gray areas are domains and intrinsic regulatory regions correspond to Cav3.3 (boxed in sequence, whereas the darker transmembrane domains and intracellular regions correspond to Cav3.1 (boxed in gray sequence). Middle, effect of activating M1 receptors with 1 nM CCh on the normalized peak current levels of different channel types shown to the left. Inclusion of Cav3.1 sequence at region II and IV(26) restored M1-mediated inhibition and abrogated the effect on inactivation kinetics; whereas inclusion of Cav3.3 sequence at region II and IV(26) restored M1-mediated inhibition to a level that was not significantly different from III inhibition levels (see Table 1). Right, insert: inserts include chimeric whole-cell current traces during depolarizing pulses from -140 mV to peak potentials of -300 mV and after bath application of 1 nM CCh. Traces are representative of the various chimeras in terms of activation and inactivation kinetics as well as magnitude of inhibition. For immunocytochemistry, A and B, show histograms with G\(\alpha_q\) and G\(\alpha_q\) (light) and G\(\beta\)Y inhibition values were statistically compared with the III control and G\(\alpha_q\) and G\(\beta\)Y, G\(\alpha_q\) and G\(\beta\)Y, and G\(\alpha_q\) and G\(\beta\)Y control was compared with the control and the G\(\beta\)Y of the control is compared with G\(\alpha_q\) and G\(\beta\)Y. * indicates significant difference (p < 0.02) compared with III inhibition, and ** indicates a significant difference (p < 0.02) compared with G\(\beta\)Y inhibition levels. All data points correspond to mean ± S.E.
Inhibition of Cav3.3 T-type Ca\(^{2+}\) Channels by mACHRs

stable Cav3.3 cells demonstrated that active Go\(_{q11}\) alone is sufficient to induce the inhibition of Cav3.3 currents. In support of this notion, only Go\(_{q11}\)-coupled mACHRs (M1, M3, and M5) inhibited Cav3.3 currents, whereas Go\(_{a24}\) coupled M2 and M4 receptors that activate G\(_{q}\) signaling have no effect on Cav3.3 currents. Unlike that reported for the attenuation of Cav3.2 channels by G\(_{q}\) signaling, this novel form of T-type Ca\(^{2+}\) channel inhibition involves the Go\(_{q11}\) subunit and also affects channel kinetics. This inhibitory mechanism for the Cav3.3 T-type isoform may be applicable to all Go\(_{q11}\)-coupled receptors as we have also found a similar inhibition of Cav3.3 channels by mAChR receptors (64).

Pharmacological antagonists eliminated the potential involvement of various intracellular signals downstream of Go\(_{q11}\) activation that may be involved in the inhibition of Cav3.3 by M1 receptor activation. Abolishing the activity of PKC, serine/threonine kinases (including Ca\(^{2+}\)-dependent protein kinase), tyrosine kinases, phosphatases, phosphoinositide 3-kinases, and intracellular Ca\(^{2+}\) signaling had no effect on inhibition. This profile of M1/Go\(_{q11}\)-mediated Ca\(^{2+}\) channel inhibition resistant to common antagonists of cytoplasmic signaling is not unique and has been reported for the inhibition of L-type channels by Go\(_{q}\) coupled M1/3.5 receptors in HEK cells (62). Like the inhibition of Cav3.3 via M3 receptors, this inhibition is voltage-independent, relatively slow kinetically (\(t_{1/2} \sim 13\) s), and insensitive to antagonists of protein kinases and protein phosphatases (62).

A more recent explanation for the Go\(_{q11}\)-mediated inhibition of ion channels, including voltage-gated K\(^{+}\) channels and HVA Ca\(^{2+}\) channels, has emerged wherein channel activity is suppressed through the depletion of membrane PIP(2,4,5)P\(_3\) levels via PLC activity (46, 63, 64). In these studies, Go\(_{q11}\)-mediated inhibition was shown to be inhibited via dialysis of synthetic PIP(2,4,5)P\(_3\) or a PIP(2,4,5)P\(_3\)-specific antibody into the cytoplasm. In our experiments, adding d-lys PIP(2,4,5)P\(_3\) or the PIP(2,4,5)P\(_3\)-antibody into the internal pipette solution and dialyzing cells for up to 25 min had no significant effect on M1-mediated inhibition of Cav3.3 channels suggestive of another to-be-defined mechanism whereby Go\(_{q11}\) signaling causes the inhibition of voltage-gated ion channels. Further biophysical and biochemical experiments are required to clarify the nature of the intracellular messengers and/or scaffolding proteins that can modulate Cav3.3 T-type Ca\(^{2+}\) channels and also whether Go\(_{q11}\) can interact directly with the channel through a novel mechanism.

Go\(_{q11}\)-mediated Inhibition of Cav3.3 Involves Two Discrete Channel Regions—Replacing both regions 2 and 4 in the Cav3.3 channel with the corresponding Cav3.1 T-type Ca\(^{2+}\) channel sequences abrogated both the M1 receptor-mediated peak current inhibition and concomitant increase in inactivation kinetics. Conversely, substituting regions 2 and 4 from Cav3.3 into Cav3.1 conferred M1 receptor-mediated inhibition and increased inactivation kinetics. These data suggest that regions 2 and 4 of the Cav3.3 channel are both necessary and sufficient to recapitulate M1 receptor-mediated channel modulation. Region 2 of the Cav3.1 and Cav3.3 sequence contains the highly divergent domain I–II linker, the highly conserved domain II, and 39–53 amino acids of the domain II–III linker, and region 4 contains most of the III–IV linker, the highly conserved domain IV, and the highly divergent carboxy-terminal domains. Based on their putatively intracellular regions and their high divergence between the two T-type isoforms, the I–II linker, proximal region of the II–III linker, the III–IV linker, and the carboxy terminus are all candidates for modulation sites within regions 2 and 4. Interestingly, the only identified sites of alternative splicing within the rat and human Cav3.3 channel occur both in the I–II linker and the carboxy-terminal regions (38, 65). The effects of these splicing variations on the biophysical properties (activation kinetics) of the human Cav3.3 channel are interdependent rather than additive, suggesting a possible direct interaction between the I–II linker and carboxy-terminal regions that affects channel kinetics (24). Both the human and rat Cav3.3 channels inhibited by M1 receptor activation in our study lack exon 9 located in the I–II linker, whereas both the rat and human Cav3.3 channels have a 10-amino acid insertion in this region in a manner similar to that for the ‘‘exon 9 Cav3.3 splice variant.” Thus, several observations suggest that the I–II linker may be a target region in the inhibition of Cav3.3 by M1, and some evidence points to a possible role for the carboxy terminus. However, as multiple structural determinants contribute to the slow inactivation kinetics of Cav3.3 compared with Cav3.1, in a nearly additive manner (37), and M1 activation dramatically speeds up Cav3.3 inactivation kinetics, it is also possible that multiple intracellular loci within regions 2 and 4 of the Cav3.3 channel may be involved in the M1-mediated effect.

In summary, we find that activation of known Go\(_{q11}\)-coupled mACHRs results in the selective inhibition of Cav3.3 T-type Ca\(^{2+}\) currents with a concomitant increase in inactivation kinetics. The Go\(_{q11}\)-mediated signaling pathway appears to be mediated via two disparate regions of the Cav3.3 channel. Functional interactions between mACHRs and Cav3.3 Ca\(^{2+}\) channels could potentially impact firing patterns of various cell types, including thalamic nRT cells. Biophysical and pharmacological evidence suggests that primarily Cav3.3 channels compose dendritic T-type currents in nRT cells (22), whereas immunostaining suggests the presence of M3 receptors in these cells (33). This raises the possibility that the inhibition of Cav3.3 T-type Ca\(^{2+}\) channels by M3 receptors in the dendrites of nRT cells could be involved in cholinergic modulation of thalamic firing patterns.

Acknowledgments—We thank Dr. Brent Adams for the kind gifts of MAB-GEFS and ECDGF 86G2 and Dr. Aaron Bedell, Arnaud Montiel, and Philippe Lory for the human Cav3.1 and Cav3.3 channels used in the chimera channel experiments. We also thank Dr. Colin Thacker, Tracy Evans, Paul Adams, and Dr. John Tyson for molecular biology support, Diana Janke and Dr. David Parker for providing stable cell lines, and to Dr. Philippe Lory for comments on the manuscript.

REFERENCES

APPENDIX 3: MOLECULAR MECHANISMS OF SUBTYPE-SPECIFIC INHIBITION OF NEURONAL T-TYPE CALCIUM CHANNELS BY ASCORBATE

Geisler/Molecular

Molecular Mechanisms of Subtype-Specific Inhibition of Neuronal T-Type Calcium Channels by Ascorbate

Michael T. Nelson,4 Pavle M. Jokosvic,4 Priihan Su,4 Ho-Wun Kang,4 Amy Van Deusen,1 Joel P. Baumgart,1 Lawrence S. David,5 Terrance F. Smutick,1 Paula O. Barrett,5 Jung-Ha Lee,6 Charles F. Zorumski7,8 and Miodrag M. Todorovic4,10

Departments of Physiology, Pharmacology, Neuroscience, and Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia 22908; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W6; Department of Neuroscience and Interdisciplinary Program of Biotechnology, George University, Athens, Greece, 1174, Athens, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110.

Introduction

Ascorbate (ascorbic acid, vitamin C) is a ubiquitous redox agent present at particularly high concentrations in neurons (Duc, 2000), but its interaction with the ion channels that control neuronal excitability is poorly understood. We have shown previously that T-type Ca2+ channels (T-channels) can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca2,3 T-channels in peripheral and central neurons, as well as recombinant Ca2,3 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca2,3 channels over a wide range of membrane potentials, and inhibits Ca2,3-dependent low-threshold Ca2+ spikes as well as burst-firing in entorhinal thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of a single channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

Key words: ascorbic acid; calcium current; dorsal root ganglion; DRG; low-threshold calcium channel; oxidation; thalamic.

Materials and Methods

DRG and thalamic neurons. Adult, singly longitudinal dorsal root ganglion (DRG) cells were prepared from adolescent rats as described previously (Mohapatra, 2005). For recording, cells were cultured on uncoated glass coverslips, placed in a culture dish, and perfused with external solution. Thalamic slices were prepared from aminotransaminase to ascorbic acid (Nelson et al., 2005; Van Deusen et al., 2006; Kolesnikov et al., 2006). Ascorbate may function as an endogenous modulator of neuronal firing under physiological or pathological conditions.

scribed previously (Kang et al., 2006) and subcloned into pcDNA3 (Invitrogen). To construct the Ca$_2$C/H11C plasmid, a human Ca$_2$C cDNA (GenBank accession number AF031946) contained in pcDNA3 was subcloned using oligonucleotide primers and a QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The primers were obtained from Operon (Alameda, CA) and used without purification. The full-length cDNA was reassembled using a fragment of the mutated deoxynucleotides. The sequence corresponding to this fragment, as well as the flanking regions, was verified by automated sequencing. The full-length rat Ca$_2$C cDNA was generated by full-length RT-PCR using total RNA isolated from adult rat thalamic tissue and oligo-dT primers at 5'-GATAAGCTTACGACAGGGCACG-3' and 5'-GGCTCTAGAAGTACGACAGG-3'. The resulting ~7 kb PCR products were subcloned into pGEM T-Easy vector and then into plDNA 3.1 neo (+) (Invitrogen). The full-length thalamic cDNA was confirmed by DNA sequence analysis and compared with the reported PubMed sequence for Ca$_2$C cDNAs from multiple species as well as the rat Ca$_2$C genomic DNA sequence. The H191 residue examined in the present study is conserved across the Ca$_2$C 7 type channels in all species in the database including chicken, dog, mouse, rat and human. Cells were transiently co-transfected using Lipofectamine 2000 (Invitrogen) at a 1:1 molar ratio with a plasmid encoding CD8 antigen and incubated with polystyrene microbeads coated with anti-CD8 antibody (Invitrogen). After 48 h, cells with bound microbeads were selected for recording.

Electrophysiology. Recording electrodes were pulled from borosilicate glass microcapillary tubes (Drummond Scientific, Broomall, PA), and had resistances from 1 to 4 MΩ when filled with internal solution. Recordings were made using an Axopatch 200B patch-clamp amplifier (Molecular Devices, Foster City, CA). Digitization of membrane voltages and currents were controlled using a Digitizer 1322A interfaced with Clampex 8.2 (Molecular Devices). We analyzed data using Clampfit 6.2 (Molecular Devices) and Origin 7.0 (Microcal Software, Northampton MA). Currents were low-pass filtered at 2-5 kHz. Series resistance and capacitance values were taken directly from recordings of the amplifier after electronic subtraction of the capacitive transients. Series resistance was compensated to the maximum extent possible (usually 50-80%).

Multiple independently controlled glass syringes served as reservoirs for a gravity-driven perfusion system. The external solution for DRG and H1299 cell experiments contained (in mM) 152 tetraethylammonium (TEA)-Cl, 10 BaCl$_2$, and 10 HEPES, adjusted to pH 7.4 with TEA-OH. The external solution for thalamic slice experiments contained (in mM) 130 NaCl, 26 NaHCO$_3$, 10 glucose, 2.5 MgCl$_2$, 2 CaCl$_2$, 1.25 NaH$_2$PO$_4$, and 0.001 TTX, equilibrated with a mixture of 95% O$_2$ and 5% CO$_2$. In some experiments, TTX was omitted to study burst firing of nucleus reticularis thalami (NRT) neurons. The internal solution for voltage clamp experiments with DRG neurons and thalamic slices contained (in mM) 135 tetramethylammonium-Cl, 40 HEPES, 10 EGTA, 2 MgCl$_2$, and 7.2 with hydroxyethyl amino acid. The internal solution for voltage clamp experiments with H1299 cells contained (in mM) 110 Cs$_2$SO$_4$, 14 Cr-PO$_4$, 10 HEPES, 9 EGTA, 5 Mg-ATP, and 0.3 Tris-GTP, adjusted to pH 7.3 with CsOH. The external solution for current clamp experiments with thalamic slices contained (in mM) 132 KCl, 40 HEPES, 5 MgCl$_2$, 2 Mg-ATP, 1 EGTA, 0.1 Na$_2$GTP, adjusted to pH 7.3 with KOH.

Analysis. Statistical comparisons were made using paired or unpaired t tests or Mann-Whitney U tests where appropriate. All data are expressed as mean ± SEM and p values are reported only when statistically significant (p < 0.05). The percentage reductions in peak current in the presence and absence of Ca$^{2+}$-inhibitory concentration-response curves were used to generate concentration-response curves. Mean values were fitted to the following Hill–Langevin function:

$$p = P_{max} (1 + IC_50/[drug])^n,$$

where P_{max} is the maximal percentage inhibition of peak current, IC50 is the concentration that produces 50% inhibition, and n is the apparent Hill–Langevin coefficient for inhibition. The fitted values are reported with $>95\%$ confidence limits. The voltage dependence of activation and steady-state inactivation were described with single Boltzmann distributions of the following forms:

$$ Activation: \frac{1}{1 + e^{-(V - V_{50}) / \delta}},$$

$$ Inactivation: \frac{1}{1 + e^{-(V - V_{50}) / \delta}},$$

where I_{max} is the maximal activatable current, I_{max} is the voltage where half the current is activated or inactivated, and δ is the voltage dependence (slope) of the distribution.

Results. We used whole-cell patch-clamp recordings to determine the effects of ascorbate on voltage-gated Ca$^{2+}$ currents present in acutely dissociated DRG neurons. Ascorbate rapidly inhibited
T-currents (Fig. 1A), but had no effect on high-voltage-activated Ca2+ currents even at 50-fold higher concentrations (data not shown). T-current inhibition was dose-dependent and partial with an effective concentration (IC\textsubscript{50}) of 6.5 \mu M and a maximal reduction in peak current of 70% (Fig. 1B). The inhibition induced by brief exposure to ascorbate was partially reversible after washout, with ~75–90% recovery occurring after exposures of less than a minute; the effects of prolonged exposures were significantly less reversible (data not shown).

To assess the effects of ascorbate on the biophysical properties of DRG T-currents, we measured current–voltage (I–V) relationships in the presence and absence of ascorbate (Fig. 1C,D). Ascorbate significantly reduced T-currents at all potentials between −70 and 20 mV, but had no significant effect on the kinetics of current activation or inactivation (Fig. 1E,F). Ascorbate did induce a 5 mV rightward shift in half-maximal activation (V\textsubscript{1/2}) with a decrease in voltage dependence, as well as a 5 mV leftward shift in the V\textsubscript{1/2} of inactivation, but without an effect on voltage dependence (Fig. 1G,H).

Ca\textsubscript{3,2} is overwhelmingly the predominant T-channel isoform expressed in DRG neurons (Talley et al., 1999; Chen et al., 2003). Therefore we also examined the effects of ascorbate on intact neurons in brain slices of thalamic nuclei known to express diverse T-channels (Talley et al., 1999; Ilicovic et al., 2006). Ascorbate significantly inhibited T-currents from reticular (nRT; Ca\textsubscript{3,2} and Ca\textsubscript{3,3}), but not ventrobasal (VB; Ca\textsubscript{3,1}) or lateral dorsal (LD; Ca\textsubscript{3,1} and Ca\textsubscript{3,3}) thalamic neurons, suggesting selective inhibition of Ca\textsubscript{3,2} (Fig. 2A–C,G). We confirmed this using both recombinant human and rat T-channels heterologously expressed in HEK293 cells. Ascorbate significantly inhibited Ca\textsubscript{3,2} currents, but had no effect on either Ca\textsubscript{3,1} or Ca\textsubscript{3,3} currents even at a 1000-fold higher concentration (Fig. 2D–F,H,I). Additionally, ascorbate induced gating shifts in recombinant human Ca\textsubscript{3,2} currents (Fig. 3) that were nearly identical to those observed in native rat DRG neurons (Fig. 1).

To determine the molecular substrate for ascorbate inhibition of Ca\textsubscript{3,2}, we constructed chimeras between Ca\textsubscript{3,1} (a1G, insensitive) and Ca\textsubscript{3,2} (a1H, sensitive) and screened for sensitivity to ascorbate. The chimeras were named using letters to represent the α-subunit donor for each of the four channel domains (Fig. 4). GCHH currents were insensitive to ascorbate, whereas HHGG currents were sensitive, indicating that critical residues are located within domains 1 or 2. GHGG currents were insensitive to ascorbate whereas HGGG currents were sensitive. Thus, domain 1 of Ca\textsubscript{3,2} is required for ascorbate inhibition (Fig. 4C–E).

Notably, ascorbate inhibition of the chimeras mirrors their reported inhibition by Ni2+ (Kang et al., 2006). This is of interest because similar to ascorbate, Ni2+ is one of the few agents capable of discriminating among T-channel isoforms, as Ca\textsubscript{3,2} is ~20-fold more sensitive than Ca\textsubscript{3,1} or Ca\textsubscript{3,3} (Lee et al., 1999a; Jeong et al., 2003; Kang et al., 2006). Furthermore, mutation of a single extracellular histidine (H) residue to glutamine (Q) at position 191 (H191Q) greatly reduces the Ni2+ sensitivity of Ca\textsubscript{3,2}, indicating that H191 is part of a high-affinity Ni2+ binding site (Kang et al., 2006). Based on these observations and studies demonstrating that ascorbate-induced MCO can selectively modify histidine residues at metal-binding sites (Uchida and Kawakishi, 1996; Studman, 1995; Zhao et al., 1997; Hovorka et al., 2002), we hypothesized that H191 is also important for ascorbate inhibition of Ca\textsubscript{3,2}. Consistent with this, the effects of ascorbate were completely abolished in Ca\textsubscript{3,2}(H191Q) (Fig. 4F). The biophysical parameters of Ca\textsubscript{3,2}(H191Q) currents were similar to Ca\textsubscript{3,2}, but were unaffected by ascorbate, indicating the mutation disrupted ascorbate sensitivity, but not basic channel gating (data not shown). We next attempted to confer ascorbate sensitivity to Ca\textsubscript{3,1} by performing the analogous reverse mutation (Q172H). Figure 4F shows that Ca\textsubscript{3,1}(Q172H) currents were significantly inhibited by ascorbate, confirming the requirement of H191 for sensitivity.

Similar to Ni2+, Ca\textsubscript{3,2} is significantly more sensitive to inhibition by other divalent transition metals such as Cu2+ and Zn2+ than Ca\textsubscript{3,1} or Ca\textsubscript{3,3} (Jeong et al., 2003; Traboulsi et al., 2007). Hence, H191 may not be a Ni2+-exclusive binding site, and may also be critical for high-affinity Cu2+ and Zn2+ binding. Indeed, highly redox reactive metals such as Cu2+ and Fe2+ are much more likely to play a role in MCO than relatively redox inactive
metals such as Ni^{2+} or Zn^{2+} (Stadtman, 1991, 1993), we examined whether the Cu^{2+} sensitivity of Ca_{3.2} is also disrupted by the H191Q mutation. As shown in Figure 4G, Ca_{3.2}(H191Q) was >40-fold less sensitive to Cu^{2+} than Ca_{3.2}, supporting the hypothesis that H191 is part of a general high-affinity metal binding site located on the external surface of Ca_{3.2}.

Ascorbate generates ROS through reactions that depend on transition metals. A point that has been repeatedly demonstrated by the use of metal chelators; in particular, ascorbate inhibition of T-currents in pancreatic β-cells is completely abolished by previous application of the chelator diethylenetriaminepentaacetic acid (DTPA) (Parsey and Matteson, 1993). Of note, DTPA results in a large increase in baseline T-currents, indicating that channels are subject to tonic inhibition by trace metals (Parsey and Matteson, 1993). Similarly, we found that DTPA significantly enhanced I\textsubscript{ca} T-currents in DRG neurons, and completely occluded the effects of subsequently applied ascorbate (Fig. 5A, E). In addition to chelators, previous studies in other systems have implicated MCO as a mechanism for the effects of ascorbate by showing that catalase, which decomposes hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and thus prevents formation of ROS via MCO, protects against ascorbate (Uchida and Kawakishi, 1999; Zhao et al., 1997; Hovorka et al., 2002). We found that catalase completely prevented the inhibition of DRG T-currents by ascorbate (Fig. 5B, F), as did high concentrations of the ROS scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (cPTIO) (Fig. 5C, E). These results, in combination with our mutational studies, suggest that ascorbate likely modulates Ca_{3.2} via MCO.

In general, electrophysiological solutions contain several trace metal contaminants, with Zn^{2+} predominating (Li et al., 1996; Paolelli et al., 1997; Thio and Zhang, 2006). This implies that the observed increase in Ca_{3.2} currents after the addition of DTPA largely results from relief of tonic Zn^{2+} inhibition. This is interesting because Zn^{2+} is relatively redox inactive and does not readily participate in MCO; in fact, total replacement of Ca^{2+} with Zn^{2+} can protect against MCO in some systems (Chevilon, 1988). However, histidine residues have significantly higher af-
Figure 5. MCO underlies the effects of ascorbate on Ca$_{3.2}$. A–C. Application of DTPA (A), catalase (B), and x-PFTIO (C) includes inhibition of T-currents by ascorbate in 3 representative DRG neurones. D–F. Representative timecourse for a DRG neurone showing that the inhibition by ascorbate is increased by the addition of 300 nM Ca$^{2+}$ to the external solution. E. Average effects of the indicated agents on DRG T-currents expressed as a percentage of control. Ascorbate: 92.2 ± 5.6, p < 0.01 (from Fig. 1B), DTPA, 171.4 ± 10.6, p < 0.01, DTPA and ascorbate, 98.4 ± 2.3; catalase, 132.8 ± 3.7, p < 0.01; catalase and ascorbate, 97.3 ± 2.1; x-PFTIO, 103.5 ± 3.2; x-PFTIO and ascorbate, 98.3 ± 1.6; 300 nM Ca$^{2+}$ and ascorbate, 73.2 ± 1.4, p < 0.01 (n = 5–12). For these experiments, the steady-state effect of the first agent was considered as baseline to calculate the subsequent inhibition by ascorbate (p < 0.01).

Figure 6. Ca$_{3.2}$ (H191C) is ascorbate-insensitive, but Cu$^{2+}$-sensitive. A. Raw traces showing the lack of ascorbate effect on Ca$_{3.2}$ (H191C) currents in HEK293 cell. Similar results were obtained in experiments from five additional cells (peak current in the presence of ascorbate was 24.3 ± 1.2% of control). B, Concentration–response curve for inhibition of Ca$_{3.2}$ (H191C) by Cu$^{2+}$. Average data were fitted with Equation 1 to present the same IC$_{50}$, 0.27 ± 0.09 (n = 4–7). The solid line represents Ca$_{3.2}$ (H191C) data recorded under nearly identical conditions (HEK293 cell, 10 mM Cu$^{2+}$) (Hong et al., 2013).

The binding site. To investigate this, we made another point mutation, Ca$_{3.2}$ (H191C), because cysteine residues have metal binding abilities comparable to histidines, but are less sensitive to MCO. Figure 6 shows that Ca$_{3.2}$ (H191C) channels were ascorbate-insensitive, but highly Cu$^{2+}$-sensitive, strongly suggesting that the effects of ascorbate on Ca$_{3.2}$ are the result of the MCO of H191 and not a neighboring residue.

Last, we examined the ability of ascorbate to modulate Ca$_{3.2}$-dependent neuronal excitability in nRT neurones in intact brain slices. The ability of thalamic neurones to fire low-threshold Ca$^{2+}$ spikes (LTSs) is dependent on T-currents and contributes to the ability of these neurones to fire bursts of action potentials (APs) in response to small membrane depolarizations such as those caused by excitatory postsynaptic potentials (Perez-Reyes, 2003). As shown in Figure 7, application of ascorbate at physiologically relevant concentrations (Rico, 2000) reversibly inhibited both the isolated LTSAs as well as burst-firing in current-clamp recordings from nRT neurones, suggesting that ascorbate may function as an endogenous modulator of nRT excitability.

Discussion
Our results demonstrate the remarkably specific inhibition of Ca$_{3.2}$ channels by ascorbate. Indeed, ascorbate is the most
Figure 7. Ascorbate inhibition of LTS and burst firing in nRT neurons. A, Representative current-clamp trace from an nRT neuron (the ID) was evoked by a 250 ms, 100 pA current injection. The indicated membrane potential. Application of ascorbate reversibly reduced the amplitude of the LTS and abolished the resulting burst of APs. In similar experiments from five cells, ascorbate reduced the average number of APs occurring the LTS by 46 ± 7.7% (p < 0.01). B, Ascorbate reversibly inhibited the 80 kHz ACh in another nRT neuron. The protocol was similar to that in A, but with the addition of 1 µM TTX to block APs. In similar experiments from six cells, ascorbate reduced the amplitude of the LTS by 44.5 ± 11.4% (p < 0.05).

selective agent capable of discriminating among T-channel isoforms yet described. Thus, ascorbate may be a useful pharmacological tool for identifying the contribution of Ca_{3.2} current to total Ca^{2+} current, as well as to cellular excitability.

Additionally, our findings suggest that MGO is the likely molecular mechanism for inhibition of Ca_{3.2} channels by ascorbate. Several reactive products can result from the MGO of histidine, but the most common is 2-oxo-histidine, which is created by oxidation at the C-2 position of histidine’s imidazole ring (Uchida and Kawakishi, 1990; Stadtmann, 1993; Schoneich, 2006). The formation of 2-oxo-histidine has been demonstrated in small peptides in vitro and in vivo using high-resolution mass spectrometry (Schoneich, 2006). However, current technology is limited to small peptides and is unable to detect such small covalent modifications in larger proteins such as Ca^{2+} channels. Despite being unable to describe the precise reaction product, our data collectively implicate MGO as the mechanism underlying the effects of ascorbate on Ca_{3.2}.

One particularly interesting observation of this study was the significantly increased inhibitory potency of ascorbate toward both recombinant human and rat Ca_{3.2} channels compared with native rat Ca_{3.2} channels. This discrepancy may be attributable to the interaction of native Ca_{3.2} channels with accessory subunits or other regulatory proteins, or the presence of endogenous redox buffers that are absent or altered in heterologous systems.

Another intriguing aspect of our findings concerns the observation that the effects of brief applications of ascorbate is at least partially reversible, which is interesting given the fact that MGO is a covalent modification. However, there are numerous biological examples of reversible covalent modification serving as a mechanism for the regulation of protein function (Rabitzis, 1998; Yeat et al., 2007), including modification of ion channel gating, as exemplified by the activation of TRPA1 channels by butyric acid-containing compounds (Hinman et al., 2006). Additionally, there are several reactions involving reversible covalent modifications of histidine residues in other systems (including several mediated by ascorbate), despite the fact that the reversibility is predicted to be energetically unfavorable (Farver et al., 1998; Njoo et al., 2001). It is possible that endogenous enzymes with the ability to reverse the effects of MGO exist within neurons; however, additional experiments will be necessary to evaluate this possibility.

Ascorbate can function as a neuromodulator, is concentrated in both extra (100–500 µM) and intracellular (up to 10 mM) brain spaces, and can undergo dynamic changes in a variety of physiological and pathophysiological conditions (Rico, 2000). Thus, it is interesting to speculate on the functional significance of Ca_{3.2} modulation by ascorbate, especially considering Ca_{3.2}-dependent LTSs are crucial to the synchronization of low-amplitude oscillations in the loop of mutually interconnected nRT, thalamic relay, and cortical neurons (Perez-Reyes, 2003). Additionally, modulation of Ca_{3.2} by genetic or pharmacological means has been shown to modulate LTSs and burst firing in nRT neurons as evidenced by altered excitability in both current-clamp recordings (Jokovic et al., 2006) and in silico simulations (Vitek et al., 2005). Thus, understanding the role of ascorbate under conditions that favor MGO may have important consequences for a variety of physiological processes and pathophysiological conditions. Such conditions may include those associated with neuronal injury, epilepsy, Alzheimer’s disease, Menkes’ disease, and Wilson’s disease, where there are documented increases in extracellular (free) redox-reactive transition metal such as Cu^{2+} and Fe^{3+} (Strausak et al., 2001; Bush, 2003; Mathie et al., 2006). High levels of Cu^{2+} (200–400 µM) can also be released from synaptic terminals onto postsynaptic cells known to contain Ca_{3.2} channels in such brain areas as the hippocampus and olfactory bulb (Mathie et al., 2006). Future studies are necessary to investigate these possibilities, as well as to determine whether other ion channels such as NR1/NR2A-NMDA receptors that are known to contain high-affinity metal binding sites (Henn and Aizenman, 2004), show inhibition by ascorbate (Majewska and Bell, 1999; Majewska et al., 1999), and undergo covalent modification by free radicals (Aizenman et al., 1999) are subject to similar regulation.

References

APPENDIX 4: Ca,2.1 P/Q-TYPE CALCIUM CHANNEL ALTERNATIVE SPLICING AFFECTS THE FUNCTIONAL IMPACT OF FAMILIAL HEMIPLEGIC MIGRAINE MUTATIONS: IMPLICATIONS FOR CALCIUM CHANNELOPATHIES

Research Paper

Ca,2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations

Implications for calcium channelopathies

Paul J. Adams,1 Esperanza Garcia,1 Lawrence S. David,1 Kirk J. Mulatz,1 Sian D. Spacey1 and Terence P. Snutch1,2

1Department of Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
2Division of Neurology, University of British Columbia, Vancouver, BC, Canada

Key words: calcium channel, P/Q-type, familial hemiplegic migraine, alternative splicing

Alternative splicing is known to generate multiple functionally distinct calcium channel variants that exhibit unique spatial and temporal expression patterns. In humans, naturally occurring mutations in genes encoding calcium channel pore-forming α subunits are associated with several hereditary disorders although it remains to be described whether there exists any relationship between the physiological effects of these mutations and calcium channel splice variation. In the present study, we systematically compare the biophysical effects of three type-1 familial hemiplegic migraine (FHM-1) mutations in two predominant splice variants of the neuronal Ca,2.1 P/Q-type channel. All three FHM-1 mutations cause a greater hyperpolarizing shift in voltage-dependent properties when expressed in the short carboxyl terminus variant (Ca,2.1ΔCT) compared to the long variant (Ca,2.1 full). Furthermore, the FHM-1 mutations also exhibit differential splice variant-specific effects on recovery from inactivation and accumulation of inactivation during tonic and burst firing. Our findings provide important insight concerning the role of calcium channel alternatively spliced variants and the molecular pathophysiology of FHM-1 and potentially other calcium channelopathies.

Introduction

Voltage-gated calcium channels are important in many normal physiological processes including muscle contraction, neurotransmitter release, regulation of calcium-dependent enzymes and gene expression (reviewed in ref. 1). It is therefore perhaps not surprising that naturally occurring mutations in calcium channel genes have been implicated in a number of severe human diseases. Since the first mutation in a calcium channel was identified,2,3 over 150 individual mutations have now been reported in five of the ten genes encoding calcium channel pore-forming α1 subunits (Ca,2.1) and are associated with nine distinct hereditary disorders ("calcium channelopathies"). Over the past decade, studies using recombinant channels in various expression systems have shown that many of these mutations have significant positive or negative effects on channel gating and/or expression levels, while others result in non-functional channels or have dominant negative effects (reviewed in ref. 4). It is noteworthy that the effects of mutations on channel function have thus far only been tested in a small subset of known calcium channel variants and a direct comparison of how mutations affect channel alternative splice variants has been largely unexplored. It has been predicted that the ten genes encoding Ca,2.1 subunits have the potential to generate thousands of functionally distinct splice variants.4,5 Indeed, isolation and characterization of some variants has shown that alternative splicing can be a means to obtain specialized calcium channel function and to optimize calcium signaling regionally, temporally and under altered environmental conditions (reviewed in refs. 6–8). It is evident that mutations directly at a splice-site or in an alternate exon can have effects on pre-mRNA splicing and/or affect a subset of splice variants expressing alternate exons.4,6 However, the majority of identified mutations associated with calcium channelopathies are missense mutations in coding sequence other than splice-site and alternate exons (reviewed in ref. 4). Whether channel splice variants have different functional responses to disease-causing missense mutations has not been directly explored. We hypothesized that point mutations associated with calcium channelopathies might have splice-site specific effects with important implications for both understanding disease pathophysiology and also towards interpreting results obtained from heterologous studies using recombinant channels.

Familial Hemiplegic Migraine (FHM) is an autosomal dominant subtype of migraine characterized by an aura of hemiplegia that is associated with at least one other aura symptom such as hemianopsia, hemineglect deficit or aphasia.1,2 Approximately 20 missense mutations associated with FHM have been identified in the CACNA1A gene (called FHM-1) which encodes the

* A version of this appendix has been published. Adams, P.J., Garcia, E., David, L.S., Mulatz, K.J., Spacey, S.D., Snutch, T.P. (2009). Ca,2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: Implications for calcium channelopathies. Channels (Austin). 3(2):110-121. Reprinted with kind permission of Landes Biosciences. All rights reserved.
α1 subunit (Ca_{2.1:1}) of the P/Q-type voltage-gated calcium channel. P/Q-type calcium channels are abundantly expressed throughout mammalian brain and spinal cord where they mediate calcium influx essential for neurotransmitter release, calcium-mediated second messenger signalling and calcium-dependent gene transcription.16-20 The functional consequences of FHM-1 mutations on Ca_{2.1:1} P/Q-type channel properties have been investigated in heterologous Xenopus oocytes and mammalian expression systems, and more recently in neurons and whole brains of FHM-1 mutant R192Q and S218L knock-in mice.21-28 While there have been some noted discrepancies reported, in both heterologous and knock-in mouse systems there is a general demonstrated trend for FHM-1 mutations to exhibit gain-of-function properties: increased channel availability and increased calcium influx at lower membrane potentials resulting in a greater susceptibility to the cortical spreading depression (CSD) thought to be the underlying mechanism of aura.23-26,29-31

There are seven identified alternatively spliced sites within the Ca_{2.1:1} subunit gene and the various splice variants exhibit distinct biophysical characteristics, calcium-dependent properties, pharmacological sensitivities and subtype-specific temporal and regional localizations in human brain.16,19,23-25 However, it is not known whether the functional impact of FHM-1 mutations is similar amongst the different Ca_{2.1:1} splice variants or whether alternative splicing contributes to the spatial and temporal nature of the FHM-1 phenotype. The carboxyl terminus of Ca_{2.1:1} channels is known to affect several physiological processes and alternative splicing in this region confers functional changes in channel properties.16,32-35 The most substantial changes induced by alternative splicing in the C-terminus of Ca_{2.1:1} channels results from the use of an alternative three prime acceptor site in the intron upstream of the last exon, exon 47.32,33,50-54 Alternative splicing at exon 47 introduces a frame-shift resulting in a stop codon at the beginning of exon 47. As a result, P/Q-type channels can be of either the short form (isoform 1; Ca_{2.1:1} (Δ47)) or the long form (isoform 2; Ca_{2.1:1} (+47)). The voltage-dependent and kinetic properties of the Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) splice variants and their relative contributions concerning FHM-1 mutations has not been explored.

In the present study we compared the biophysical properties of wild-type (WT) Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) P/Q-type channel splice variants and also explored the effects of three FHM-1 mutations introduced into the two variants. We investigated two mutations, K1336E and R192Q, that are associated with an FHM-1 phenotype of pure hemiplegia and migraine without any other neurological symptoms.6,16 We further investigated the S218L FHM-1 mutation which is associated with a severe clinical phenotype wherein typical FHM-1 attacks induced by minor head trauma are often followed by a delayed cerebral edema, fever, stupor and sometimes coma (fatal in one reported instance).18-20 We find that the two P/Q-type channel carboxyl tail splice variants exhibit functionally distinct properties and also that the three FHM-1 mutations have differential splice-dependent effects on voltage-dependent and kinetic properties. We discuss the potential importance of the splice-variant differential effects in the context of FHM-1 pathophysiology as well as the implications for other calcium channelopathies.

Results

Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) variants are expressed in human cortex. Mutations in the P/Q-type channel Ca_{2.1:1} subunit underlie FHM-1 and the current consensus is that initiation of migraine attacks is in the cortex, however the expression of splice variants has not yet been described in the human cortex. In order to determine whether the Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) variants are expressed in human cortex we utilized RT-PCR to amplify a 1.1 Kbp carboxyl terminal fragment of Ca_{2.1:1} from adult human cortex RNA using oligonucleotide primers that recognize both carboxyl alternatively spliced variants in a non-biased manner. The PCR products were subsequently re-amplified using splice-variant specific primers. Figure 1 shows that the Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) splice variants are both expressed in human cortex. To determine their relative proportions, the human cortical Ca_{2.1:1} carboxyl terminal PCR products were sub-cloned and individual cDNAs analyzed using splice-variant specific primers and direct DNA sequencing. From the 53 cDNA clones analyzed we determined that the Ca_{2.1:1} (+47) and Ca_{2.1:1} (Δ47) splice variants were present in whole cortex in relative proportions of 79% and 21%, respectively.

All subsequent biophysical analyses were performed using human long Ca_{2.1:1} (+47) and short Ca_{2.1:1} (Δ47) splice-variant cDNAs cloned with either WT or FHM-1 mutant K1336E, R192Q or S218L changes introduced (see Fig. 1A for the location of the FHM-1 mutations).

FHM-1 mutations exhibit differential effects on the voltage-dependent properties of Ca_{2.1:1} splice variants. Whole cell current analysis of transiently transfected cells showed that the WT Ca_{2.1:1} (Δ47) and WT Ca_{2.1:1} (+47) variants possess similar membrane potentials at which half the channels are activated (V_{50,act} = -14.02 ± 1.49, and -15.08 ± 1.20, respectively) and similar membrane potentials at which half of the channels are inactivated (V_{50,inact} = -58.20 ± 2.04, and -62.07 ± 1.87, respectively; see Table 1 and Fig. 2). The K1336E, R192Q, and S218L mutations have been previously reported to cause a hyperpolarizing shift in the current-voltage relationship relative to WT Ca_{2.1:1} channel.24,25,27,28,29,46 Examining the FHM-1 mutations in the P/Q-type a47 and A47 carboxyl tail splice variants we found differential effects. The K1336E Ca_{2.1:1} (+47) and R192Q Ca_{2.1:1} (+47) channels both exhibited a small but significant shift in V_{50,act} relative to WT Ca_{2.1:1} (Δ47) channels (-21.53 ± 1.35 and -19.11 ± 1.11 vs. -15.08 ± 1.20, respectively; p < 0.05; ANOVA), while the S218L mutation had no significant affect on Ca_{2.1:1} (+47) channels relative to WT (Table 1 and Fig. 2). In contrast, all three FHM-1 mutations caused large significant hyperpolarizing shifts in V_{50,inact} when expressed in Ca_{2.1:1} (Δ47) variant channels (p < 0.001; ANOVA; Table 1 and Fig. 2). Similar differential splice-dependent effects of the FHM-1 mutations were apparent in examining V_{50,act}. Figure 2 shows that the R192Q and S218L mutations resulted in large (-15–17 mV) hyperpolarizing shifts in V_{50,act} in the Ca_{2.1:1} (Δ47) variant relative to WT Ca_{2.1:1} (Δ47) channels (p < 0.001; ANOVA), while
Figure 1. Human P/Q-type calcium channel topology and splice-variant expression in human cortex. (A) Schematic showing the location of the three FHM-1 mutations and the carboxyl terminal splice site in the human Ca₉.2.1 channel. In the box below the channel diagram are partial sequences of the Ca₉.2.1 (+47) and Ca₉.2.1 (+47) variants at the exon 46/exon 47 boundary. The pentameric insertion is shown in bold for the Ca₉.2.1 (+47) variant. (B) The last 1 Kb of the Ca₉.2.1 carboxyl terminus was amplified from human cortical RNA and purified. Subsequently, splice-variant specific forward primers (SP) designed to exclusively bind either Ca₉.2.1 (+47) or Ca₉.2.1 (+47) transcripts were used in PCR reactions to generate an 500 bp fragment from the purified carboxyl fragments; Ca₉.2.1 (+47)/SP and Ca₉.2.1 (+47)/SP, respectively (dotted line is above the sequence that Ca₉.2.1 (+47)/SP binds in (A)). Both splice-variant specific primers generated the expected product from the carboxyl PCR fragment of the Ca₉.2.1 cDNA obtained from human cortex, verifying both Ca₉.2.1 (+47) or Ca₉.2.1 (+47) are present in human cortex. Products were verified by direct DNA sequencing and determined to be in relative proportions of 79% Ca₉.2.1 (+47) and 21% Ca₉.2.1 (+47) (bar graph); for protocol details see Materials and Methods.

these same two FHM-1 mutations had a smaller effect on Ca₉.2.1 (+47) variant channels (p < 0.05; ANOVA; Table 1). Interestingly, the K136E mutation did not cause a significant change in V₅₀max in either splice variant. Overall, these data indicate that the impact of individual FHM-1 mutations on P/Q-type channel gating properties is differentially affected by the nature of the splice-variant background in which the mutation is expressed.

FHM-1 mutations exhibit differential effects on recovery from inactivation of Ca₉.2.1 splice variants. Analysis of WT Ca₉.2.1 (+47) and Ca₉.2.2.1 (+47) variants showed different rates of recovery from inactivation for these P/Q-type channel splice variants. WT Ca₉.2.1 (+47) channels exhibit faster rates of recovery (τ₁ = 0.67 ± 0.11 and τ₂ = 3.08 ± 0.61) than the Ca₉.2.1 (+47) variant channels (τ₁ = 0.76 ± 0.21 and τ₂ = 3.39 ± 0.84). As a result, Ca₉.2.2.1 (+47) channels show a significantly higher percentage of channels recovered at 7.5 seconds after inactivation relative to WT Ca₉.2.1 (+47) channels (69.0 ± 1.8 vs. 77.3 ± 3.8, respectively; p < 0.05; ANOVA) (Fig. 3 and Table 2).

Examining the effects of FHM-1 mutations in the Ca₉.2.1 (+47) background, Figure 3 shows that the K136E Ca₉.2.1 (+47) and R192Q Ca₉.2.1 (+47) variants exhibit a significant decrease in current recovered at 7.5 seconds relative to WT Ca₉.2.1 (+47) channels (70.4 ± 3.7% and 83.3 ± 2.3% vs. 89.0 ± 1.8%, respectively; p < 0.05; ANOVA). Contrastingly, K136E Ca₉.2.1 (+47) and R192Q Ca₉.2.1 (+47) channels showed increases in recovery relative to WT Ca₉.2.1 (+47) channels (86.8 ± 1.7 and 87.0 ± 2.0 vs. 77.3 ± 3.8, respectively; p < 0.05; ANOVA) (Fig. 3 and Table 2). The S218L mutation was found to increase the recovery in both splice variants, however, only the S218L Ca₉.2.1 (+47) channels showed a significant increase in recovery relative to WT Ca₉.2.1 (+47) channels at 7.5 seconds (94.7 ± 1.5 vs. 77.3 ± 3.8, respectively; p < 0.001; ANOVA) (Fig. 3 and Table 2).

Overall, in agreement with previous reports, we observed that both the K136E and S218L mutations can cause significant changes to recovery from inactivation and show for the first time that the R192Q mutation also changes recovery from inactivation. Importantly, we also show that the quantitative effects of the FHM-1 mutations on channel function are dependent upon the nature of the Ca₉.2.1 splice variant. We also note that the differential effects of the mutations resulted in significant changes to the functional distinction observed between the two WT channel variants; that is, while the WT Ca₉.2.1 (+47) channel variant recovered significantly faster than the WT Ca₉.2.1 (+47) channel variant, the K136E Ca₉.2.1 (+47) channels recovered significantly slower.
Table 1 Mean values for voltage-dependent activation and inactivation parameters

<table>
<thead>
<tr>
<th></th>
<th>V<sub>m</sub> Activation (mV)</th>
<th>k Activation</th>
<th>τ<sub>act</sub> (msec)</th>
<th>V<sub>0.5</sub> Inactivation (mV)</th>
<th>k Inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca<sub>2.1</sub> (+/47) Wild-type</td>
<td>-14.02 ± 1.49 (n = 10)</td>
<td>4.02 ± 0.27</td>
<td>1.42 ± 0.09</td>
<td>-58.20 ± 2.04 (n = 21)</td>
<td>7.03 ± 0.29</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/47) K<sub>1336</sub>E</td>
<td>-24.12 ± 1.53* (n = 10)</td>
<td>2.60 ± 0.26</td>
<td>1.16 ± 0.21</td>
<td>-62.27 ± 1.01 (n = 7)</td>
<td>7.23 ± 0.45</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/47) R192Q</td>
<td>-20.84 ± 0.94 (n = 10)</td>
<td>4.30 ± 0.19</td>
<td>1.31 ± 0.07</td>
<td>-73.43 ± 3.15 (n = 11)</td>
<td>7.58 ± 0.57</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/47) S218I</td>
<td>-24.10 ± 1.15 (n = 9)</td>
<td>5.53 ± 0.39</td>
<td>0.97 ± 0.11</td>
<td>-75.07 ± 3.96 (n = 10)</td>
<td>6.34 ± 0.62</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/-47) Wild-type</td>
<td>-15.08 ± 1.20 (n = 10)</td>
<td>4.33 ± 0.24</td>
<td>1.28 ± 0.07</td>
<td>-62.07 ± 1.87 (n = 10)</td>
<td>6.85 ± 0.38</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/-47) K<sub>1336</sub>E</td>
<td>-21.53 ± 1.55* (n = 9)</td>
<td>3.10 ± 0.18*</td>
<td>1.33 ± 0.10</td>
<td>-65.02 ± 1.87 (n = 8)</td>
<td>8.39 ± 0.78</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/-47) R192Q</td>
<td>-19.11 ± 1.11 (n = 10)</td>
<td>4.79 ± 0.26</td>
<td>1.43 ± 0.10</td>
<td>-70.27 ± 2.26 (n = 10)</td>
<td>7.19 ± 0.47</td>
</tr>
<tr>
<td>Ca<sub>2.1</sub> (+/-47) S218I</td>
<td>-15.08 ± 1.28 (n = 11)</td>
<td>6.26 ± 0.31*</td>
<td>1.06 ± 0.08</td>
<td>-72.54 ± 1.70 (n = 9)</td>
<td>5.92 ± 0.37</td>
</tr>
</tbody>
</table>

The voltage at which half of the channels are in the activated state (V_{1/2}act) and inactivated state (V_{1/2}inf) and the steepness of the curves for activation (k_{act}) and inactivation (k_{inf}) were obtained by fitting the data with the Boltzmann equations for the indicated number of cells in parentheses. The kinetics of activation (τ_{act}) were obtained by fitting the maximum current trace from the IV curves and H₀ with a simple exponential. Asterisks (*) and numbers sign (n) indicate significant differences relative to wild-type with p values less than 0.05 or 0.001 (one-way ANOVA), respectively.

Figure 2. FHMA mutations differentially affect voltage-dependent properties of Ca_{2.1} (+/47) and Ca_{2.1} (+/-47) P/G-type variants. (A) shows the comparison between current-voltage relationships (IV-curves) for wild-type (WT; black squares), FHMA mutant K₁₃₃₆E (KE; grey circles), R192Q (RQ; grey triangles) and S218I (SL; grey diamonds) in both the short Ca_{2.1} (+/47) (filled symbols) and long Ca_{2.1} (+/-47) (open symbols). Currents were normalized to peak current (Imax). (B) shows a comparison of normalized conductance (y/x) with normalization to different membrane potentials. (C) shows a comparison of normalized current-voltage curves with normalization to different membrane potentials. Normalized current and conductance were calculated from IV curves obtained for different membrane potentials. Normalized current was calculated as the ratio of the current at a particular membrane potential to the maximum current obtained at 80 mV. Normalized conductance was calculated as the ratio of the conductance at a particular membrane potential to the maximum conductance obtained at 80 mV. For complete statistics see Table 1 and for details of protocols see Methods.
than K1336E Ca$_{\gamma}$2.1 (+47) channels. In addition, the R192Q and S218L mutations altered recovery such that the R192Q Ca$_{\gamma}$2.1 (+47) and R192Q Ca$_{\gamma}$2.1 (+47) channels and S218L Ca$_{\gamma}$2.1 (+47) and S218L Ca$_{\gamma}$2.1 (+47) channels were not functionally distinct in this parameter (Fig. 3 and Table 2).

FHM-1 mutations exhibit differential effects on inactivation of Ca$_{\gamma}$2.1 splice variants during tonic depolarization. WT Ca$_{\gamma}$2.1 (+47) and Ca$_{\gamma}$2.1 (+47) variants exhibit functional differences with regard to accumulation of inactivation during short (3.5 msec) 25 Hz repetitive stimulations (Fig. 4). While Ca$_{\gamma}$2.1 (+47) variant channels showed 95.0 ± 1.4% of current remaining at the end of 25 pulses, Ca$_{\gamma}$2.1 (+47) variant channels had 90.0 ± 0.9% (p < 0.05; ANOVA) (Fig. 4C).

All three FHM-1 mutations significantly influenced accumulation of inactivation (Fig. 4A); however, they were contingent on the nature of the Ca$_{\gamma}$2.1 variant in which mutations were expressed. The K1336E Ca$_{\gamma}$2.1 (+47) and K1336E Ca$_{\gamma}$2.1 (+47) channels had a significant increase in accumulation of inactivation and thus a lower percent of current remaining at the end of 25 pulses relative to WT Ca$_{\gamma}$2.1 (+47) and WT Ca$_{\gamma}$2.1 (+47) (88.0 ± 2.2% and 84.0 ± 1.7% vs. 95.0 ± 1.4% and 90.0 ± 0.9%, respectively; p < 0.05; ANOVA) (Fig. 4C). The changes were such that the K1336E Ca$_{\gamma}$2.1 (+47) and K1336E Ca$_{\gamma}$2.1 (+47) variants had similar current remaining at the end of the repetitive stimulation and thus lacked the clear functional distinction observed between the WT channel variants.

In the context of the Ca$_{\gamma}$2.1 (+47) variant background the R192Q mutation caused a significant increase in accumulation of inactivation relative to WT Ca$_{\gamma}$2.1 (+47) (current remaining at end of the 25 pulses = 90.0 ± 1.6% vs. 95.0 ± 1.4%; p < 0.05; ANOVA). In contrast, R192Q Ca$_{\gamma}$2.1 (+47) channels were similar to WT Ca$_{\gamma}$2.1 (+47) channels (92 ± 1.3% vs. 90 ± 0.9%) (Fig. 4C). Similar to K1336E channels, the R192Q Ca$_{\gamma}$2.1 (+47) and R192Q Ca$_{\gamma}$2.1 (+47) channels lacked the clear functional distinction observed between the WT variants for this property.
The S218L mutation showed a large and significant increase in accumulation of inactivation and thus a lower percent of current remaining at the end of 25 pulses relative to both the WT Ca\textsubscript{2.1} (Δ47) and Ca\textsubscript{2.1} (Δ47) channel variants (81 ± 2.5% and 77 ± 1.7% vs. 95 ± 1.4% and 90 ± 0.9%, respectively; p < 0.05; ANOVA). Similar to that for R192Q and K1336E, a further overall effect of the S218L mutation is to decrease the relative difference in current remaining observed between WT Ca\textsubscript{2.1} (Δ47) and Ca\textsubscript{2.1} (Δ47) variant channels.

FHM-1 mutations exhibit differential effects on inactivation of Ca\textsubscript{2.1} splice variants during bursts of depolarization. In addition to tonic depolarizations, neurons experience various frequencies of burst firing in which brief periods of tonic firing are interspersed with silent periods as the membrane potential drops below threshold.47,51 During the tonic firing periods P/Q-type channels will inactivate and during silent periods they will have the opportunity to recover from inactivation. Based upon the above noted splice-variant changes in accumulation of inactivation and recovery from inactivation, we predicted that bursts of depolarization would also differentially affect WT and FHM-1 mutated Ca\textsubscript{2.1} (+47) and Ca\textsubscript{2.1} (Δ47) variant channels.

Figure 5 shows that WT Ca\textsubscript{2.1} (Δ47) and Ca\textsubscript{2.1} (Δ47) variants exhibit significant differences in the amount of current remaining at the end of five 25 Hz bursts given at 3.5 Hz. Current through the WT Ca\textsubscript{2.1} (Δ47) variant decayed to 73 ± 3.4% by the end of the fifth burst while current through the WT Ca\textsubscript{2.1} (Δ47) variant decayed to 88 ± 3.6% (p < 0.05; ANOVA) (Fig. 5C). The increased inactivation during the depolarizations and the reduced recovery from inactivation of WT Ca\textsubscript{2.1} (Δ47) variants discussed above likely contributed to the overall 15% decrease in current relative to the WT Ca\textsubscript{2.1} (Δ47) variant.

Figure 5 shows that during burst firing the K1336E mutation in the Ca\textsubscript{2.1} (Δ47) variant background results in an overall lower percentage of current remaining at the end of five bursts (76 ± 4.9% vs. 88 ± 3.6%, respectively; p < 0.05; ANOVA) (Fig 5C), likely resulting from the increased accumulation of inactivation and slowed recovery from inactivation of K1336E Ca\textsubscript{2.1} (Δ47) channels relative to WT Ca\textsubscript{2.1} (Δ47) (see Figs. 3 and 4). Contrarily, the K1336E mutation in the Ca\textsubscript{2.1} (Δ47) variant background did not show significant current decay relative to WT, likely due to the fact that although the K1336E Ca\textsubscript{2.1} (Δ47) variant channels exhibit a smaller increase in accumulation of inactivation during tonic stimulation (Fig. 3), they also possess an increased rate of recovery from inactivation (Fig. 3A). We note that unlike WT channel variants, the K1336E Ca\textsubscript{2.1} (Δ47) and K1336E Ca\textsubscript{2.1} (Δ47) variants did not differ significantly relative to one another.

Similar to that for the K1336E mutation in the Δ47 background, examination of burst firing effects on the R192Q mutation showed an increase in current decay during burst firing relative to WT Ca\textsubscript{2.1} (Δ47) channels (70 ± 3.6% vs. 88 ± 3.6% current remaining, respectively; p < 0.05; ANOVA) (Fig. 5C). In contrast, the R192Q mutation in the Δ47 background resulted in a higher degree of current remaining compared to WT Ca\textsubscript{2.1} (Δ47) channels (83 ± 2.7% vs. 73 ± 3.4% current remaining, respectively; p < 0.05; ANOVA). This may reflect the fact that R192Q Ca\textsubscript{2.1} (Δ47) channels exhibit increased recovery from inactivation (see Fig. 3). We note that an overall effect concerning current decay during burst firing is for R192Q Ca\textsubscript{2.1} (Δ47) channels to behave more similar to that for the WT Δ47 channels and for R192Q Ca\textsubscript{2.1} (Δ47) channels to behave more similar to those of the WT Δ47 variant.

Similar to that for the K1336E mutation, the S218L mutation only caused a significant current decay during the burst firing in the Ca\textsubscript{2.1} (Δ47) variant background (73 ± 4.0% vs. 88 ± 3.6% current remaining at the end of five bursts, respectively; p < 0.05; ANOVA). Presumably, although the S218L mutation increased accumulation of inactivation substantially in both splice variants (see Fig. 4), S218L Ca\textsubscript{2.1} (Δ47) channels had a larger increase in the rate of recovery from inactivation (Fig. 3) which likely slowed overall accumulation of inactivation during the burst firing. The S218L Ca\textsubscript{2.1} (Δ47) and S218L Ca\textsubscript{2.1} (Δ47) variants did not differ significantly relative to one another.

Table 2: Time constant values and recovery from inactivation

<table>
<thead>
<tr>
<th>Channel</th>
<th>τ\textsubscript{1} (ms)</th>
<th>τ\textsubscript{2} (ms)</th>
<th>% Recovery of 75 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) Wildtype</td>
<td>0.67 ± 0.11</td>
<td>3.90 ± 0.61</td>
<td>89.0 ± 1.0 (n = 5)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) K1336E</td>
<td>2.89 ± 0.12</td>
<td>N.A.</td>
<td>70.4 ± 3.9 (n = 8)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) R192Q</td>
<td>0.91 ± 0.19</td>
<td>4.97 ± 2.65</td>
<td>83.3 ± 2.3 (n = 7)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) S218L</td>
<td>0.617 ± 0.10</td>
<td>2.71 ± 1.18</td>
<td>91.6 ± 0.8 (n = 5)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) Wildtype</td>
<td>0.76 ± 0.21</td>
<td>3.39 ± 0.84</td>
<td>77.3 ± 3.8 (n = 7)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) K1336E</td>
<td>0.54 ± 0.13</td>
<td>2.67 ± 0.53</td>
<td>66.9 ± 1.7 (n = 5)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) R192Q</td>
<td>1.08 ± 0.20</td>
<td>5.78 ± 4.96</td>
<td>67.0 ± 2.0 (n = 6)</td>
</tr>
<tr>
<td>Ca\textsubscript{2.1} (Δ47) S218L</td>
<td>0.50 ± 0.12</td>
<td>1.71 ± 0.59</td>
<td>94.7 ± 1.5 (n = 5)</td>
</tr>
</tbody>
</table>

Time constants were determined by fitting the average percent recovery with a double exponential for all constructs except the Ca\textsubscript{2.1} (Δ47) K1336E which was best fit with a single exponential. Percent recovery is a measure of the percentage of current reduced during the test pulse, given at 7.5 seconds after the prespike, relative to the maximum current recorded during the prespike. Asterisks and roman numerals indicate significant difference between mutant and wild-type of the same variant with p-values less than either 0.05 or 0.001 (one-way ANOVA), respectively. Double asterisks indicate significant difference between the Ca\textsubscript{2.1} (Δ47) and +47 variants containing the same sequence (i.e. WT or mutant) with p-value less than 0.05 (one-way ANOVA). Number of cells recorded for each clone is indicated in parentheses; N.A. = not applicable.

Discussion

We report here that FHM-1 missense mutations confer differential effects on the biophysical properties of the Ca\textsubscript{2.1} (Δ47) and Ca\textsubscript{2.1} (Δ47) P/Q-type channel splice variants. Although the current-voltage relationships and steady-state properties of the two WT P/Q-type splice variants are similar, all three
Figure 4. Wildtype and FHM1 mutant Ca_{2.1} (+47) and Ca_{2.1} (+47) variants exhibit different current decay during 25 Hz tonic depolarizations. (A) graphs show normalized current remaining vs. time after initial onset of depolarizations. Current decay was measured for wildtype (WT; black squares), FHM1 mutant K135E (KE; gray circles), R192Q (RQ; gray triangles) and S218L (SL; gray diamonds) in both the short Ca_{2.1} (+47) (filled symbols) and long Ca_{2.1} (+47) (open symbols) C terminus splice variants. (B) to investigate current decay during repetitive stimulations we used 25 square pulses from a holding of -100 mV to a depolarizing potential of 5 mV for a duration of 3.4 ms. The test pulses were given at a rate of 25 Hz. Representative current trace and pulse protocol indicated at bottom (capacitative transients were compensated using a P/4 protocol), with single current response enlarged. (C) bar graph shows the percent of current remaining at the end of 25 pulses for each clone. Single asterisks and number signs indicate significant difference between mutant and wildtype of the same variant with p-values less than either 0.05 or 0.001 (one-way ANOVA), respectively. Double asterisks indicate significant difference between the +47 and -47 variants containing the same sequence (i.e., WT or mutant with p-value less than 0.05 one-way ANOVA). Number of cells recorded for WT Ca_{2.1} (+47) (n = 14), WT Ca_{2.1} (+47) (n = 13), KE Ca_{2.1} (+47) (n = 18), RQ Ca_{2.1} (+47) (n = 17), RQ Ca_{2.1} (-47) (n = 15), SL Ca_{2.1} (+47) (n =15), SL Ca_{2.1} (-47) (n = 14).

FHM1 mutations exhibit a greater hyperpolarizing shift when expressed in the Ca_{2.1} (+47) variant compared to the Ca_{2.1} (-47) variant (Fig. 2). In addition, we show for the first time that WT Ca_{2.1} (+47) and WT Ca_{2.1} (+47) variants have both different kinetics of recovery from inactivation and accumulation of inactivation during tonic depolarization that are likely relevant to the differential response of channel variants during bursts of depolarization (Figs. 3–5). It is known that Ca_{2.1} channels in different states possess alternative modes of gating that are reflected in biophysical properties at the whole cell current level. Furthermore, it has been shown that alternative splicing in the EF-hand region of the Ca_{2.1} carboxyl terminus can shift gating modes. It is therefore possible that WT Ca_{2.1} (+47) and WT Ca_{2.1} (+47) variants also have distinct gating modes that respond differently to FHM1 mutations which are localized near voltage sensor regions (e.g., R192Q, S218L, and similar mutations).
Figure 5. Wild-type and FHM-1 mutant Ca\textsubscript{v}2.1 (+47) and Ca\textsubscript{v}2.1 (+47) variants exhibit different current decay during bursts of depolarizations. (A) graphs show normalized current remaining vs. time after initial onset of depolarizations. Current decay was measured for wild-type (WT; black squares), FHM-1 mutant K133E (KE; grey circles), R192Q (RQ; grey triangles) and S218L (SL; grey diamonds) in both the short Ca\textsubscript{v}2.1 (+47) filled symbols) and long Ca\textsubscript{v}2.1 (+47) (open symbols) Caimannica splice variants. (B) bar graph shows the percent of current remaining at the end of 5 seconds for each clone. Single asterisks and number signs indicate a significant difference between mutant and wildtype of the same variant with p-values less than either 0.05 or 0.001 (one-way ANOVA, respectively). Double asterisks indicate significant difference between the Ca\textsubscript{v}2.1 (+47) and (+47) variants containing the same sequence (i.e., WT or mutant) with p-values less than 0.05 (one-way ANOVA). Number of cells recorded for WT Ca\textsubscript{v}2.1 (+47) (n = 8), WT Ca\textsubscript{v}2.1 (+47) (n = 7), KE Ca\textsubscript{v}2.1 (+47) (n = 8), KE Ca\textsubscript{v}2.1 (+47) (n = 10), KE Ca\textsubscript{v}2.1 (+47) (n = 9), KE Ca\textsubscript{v}2.1 (+47) (n = 7), KE Ca\textsubscript{v}2.1 (+47) (n = 8), SL Ca\textsubscript{v}2.1 (+47) (n = 8).
of miganibe.\(^{22,57}\) CSD begins within small domains of the cortex and propagates outward from a focal point. Our data supports the notion that Ca\(^{2+}\)-2.1 splice variants with greater sensitivity to hyperpolarizing shifts in the voltage-dependence of activation (e.g., Ca\(^{2+}\)-2.1 (Δ47)), could result in cortical regions with greater susceptibility to CSD and migraine initiation. Conversely, the effects of FHM-1 mutations on other Ca\(^{2+}\)-2.1 splice variants (e.g., Ca\(^{2+}\)-2.1 (+47)), expressed elsewhere in the cortex or other brain regions may be below the threshold to initiate CSD and/or other pathological effects. Future exploration of the exact regional and cellular distributions of these and other Ca\(^{2+}\)-2.1 splice variants within the cortex and throughout the human brain using in situ hybridization and/or RT-PCR analyses will be necessary to fully understand the role of Ca\(^{2+}\)-2.1 splice variants in FHM-1 pathology.

Our results examining tonic and burst firing patterns also suggests the possibility of differential effects of FHM-1 mutations on P/Q-type channel splice variants under different firing conditions. This is most clearly seen with the S218L mutation in the Ca\(^{2+}\)-2.1 (+47) variant during tonic depolarization current. Current decay is significantly faster relative to WT; yet during burst firing the S218L Ca\(^{2+}\)-2.1 (+47) variant has similar current decay to WT channels after five bursts, likely due to rapid recovery from inactivation (see Figs. 4 and 5). On the other hand, in Ca\(^{2+}\)-2.1 (Δ47) variant channels, the S218L mutation has significant effects on current decay under both tonic and burst firing conditions. Interestingly, certain modifying factors of FHM-1 attacks such as neuronal injury induced by excitotoxic stress\(^{22,14}\) are known to alter neuronal firing patterns in the brain.\(^{28,59}\) Although the exact firing conditions directly associated with precipitating factors of migraine are unknown, the epidemiological nature of the FHM-1 phenotype may in part be associated with changes in neuronal firing pattern and/or frequency that could be relevant to specific Ca\(^{2+}\)-2.1 splice variants expressed in localized brain regions.

It is likely that there exists a complex relationship between channel missense mutations and disease mechanism. While we show alternative splicing at a single Ca\(^{2+}\)-2.1 splice site can determine the functional impact of FHM-1 mutations, we recognize that across the entire brain many additional factors are likely to be involved in ultimately defining disease pathophysiology. These likely include the expression of multiple splice P/Q-type variants with distinct combinations of alternative splicing as well as the interaction with different auxiliary subunits\(^{48,69}\) and other structural and regulatory proteins. Nonetheless, our results demonstrate the relevance of alternative splicing as an important factor in considering underlying disease molecular mechanisms and also the need for a comprehensive understanding of the splice-variant profile of Ca\(^{2+}\)-2.1 channels across brain regions and developmental stages as they might relate to FHM-1 pathology.

While in the present report we show that individual FHM-1 mutations can have differential effects on the biophysical properties of the short and long P/Q-type channel splice variants, we predict this phenomenon is likely relevant to both other FHM-1 mutations and Ca\(^{2+}\)-2.1 variants and also to other types of Ca\(^{2+}\) channels and calcium channelopathies.\(^{41,42}\) Understanding the differential effects of channelopathy mutations on ion channel splice variants is likely to be important for interpreting results obtained in both heterologous and native systems, as well as for making inferences concerning disease mechanisms and phenotypes. Mutations in the Ca\(^{2+}\)-1.1 L-type channel are associated with hypokalemic periodic paralysis, the Ca\(^{2+}\)-1.2 L-type with Timothy syndrome, the Ca\(^{2+}\)-1.4 L-type with incomplete X-linked congenital stationary night blindness and X-linked cone-rod dystrophy, and the Ca\(^{2+}\)-3.2 T-type with idiopathic generalized epilepsy and autism spectrum disorder (reviewed in ref. 4). Similar to FHM-1, many of these disorders exhibit phenotypes with episodic and/or developmentally specific attributes localized to a subset of regions or tissues that express the respective channels, and like Ca\(^{2+}\)-2.1, these channels also undergo alternative splicing that generates functionally distinct channel variants (reviewed in refs. 6 and 7). The identification of specific Ca\(^{2+}\) splice variants involved in disease pathophysiology may also provide the opportunity for targeted therapeutic approaches. For example, while the Ca\(^{2+}\)-2.2 N-type channels have a central role in nociceptive signalling, distinct Ca\(^{2+}\)-2.2 splice variants are involved in the transmission of specific types of pain and has led to new strategies for splice variant-specific targeting in pain therapy.\(^{43,44}\)

Methods

Site-directed mutagenesis. Standard PCR-based in vitro mutagenesis was performed using the Pla Turbo DNA Polymerase (Stratagene, La Jolla, CA). 10 mM dNTPs (Invitrogen) and paired forward and reverse mutagenesis primers.\(^{44}\) The human Ca\(^{2+}\)-2.1 (Δ47) (isoform 2) (NCBI accession number NM.023035.1) cloned in pcDNA 3.1 Zeo (+) was used as the source for the generation of the WT short human Ca\(^{2+}\)-2.1 (Δ47) (isoform 1) cDNA (the other known six splice sites are: Δ10A, 16A/17A, ΔVEA, -NP, EFA+3A+4A). Paired forward and reverse primers were designed to adhere to the C-terminus of the Ca\(^{2+}\)-2.1 isoform 2 at the exon 46/47 boundary nucleotide number 6784 and removed the GCCAC pentanucleotide sequence creating the premature stop on exon 47 (Ca\(^{2+}\)-2.1 (Δ47)). Both Ca\(^{2+}\)-2.1 splice variant cDNAs were used in site-directed mutagenesis reactions to generate human Ca\(^{2+}\)-2.1 K1336E, R192Q and S218L mutants in the short and long variants; paired forward and reverse primers were designed to convert codon 1336 from AAA to GAA, codon 192 from CCG to CAG, and codon 218 from TCG to TTA. The integrity of all constructs generated through site-directed mutagenesis were verified by direct DNA sequencing.

Cell culture and transfection. Human embryonic kidney (HEK 293) cells were grown in standard Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (heat inactivated) and 50 U/ml penicillin-50µg/ml streptomycin. Cells were incubated at 37°C in a humidified incubator with 95% atmosphere and 5% CO\(_2\) and grown to 8-15% confluence for transfection. HEK 293 cells were transiently transfected with either WT human Ca\(^{2+}\)-2.1 (Δ47) or Ca\(^{2+}\)-2.1 (+47), or mutant K1336E, Ca\(^{2+}\)-2.1 (Δ47), R192Q Ca\(^{2+}\)-2.1 (Δ47), S218L Ca\(^{2+}\)-2.1 (Δ47) or K1336E Ca\(^{2+}\)-2.1 (+47), R192Q Ca\(^{2+}\)-2.1 (+47), S218L Ca\(^{2+}\)-2.1 (+47) in combination with calcium channel auxiliary subunits β\(_2\)L, α\(_{1D}\)-1, and the CD8 marker plasmid in a 1:1:1:10:25 molar ratio using Lipofectamine (Invitrogen, La Jolla, CA). To ensure accurate
comparisons, transfusions were performed at the same time and electrophysiological recordings alternated within the same day for all channel types.

Electrophysiological recordings. On the second day after transfection, macroscopic Ba²⁺ currents were recorded at room temperature using the whole-cell patch-clamp technique. 45 The internal pipette solution used contained: 105 mM CsCl, 25 mM TEA-Cl, 1 mM CaCl₂, 11 mM EGTA, 10 mM HEPES (pH 7.2 with CsOH); external: 5 mM BaCl₂, 1 mM MgCl₂, 10 mM HEPES, 40 mM TEA-Cl, 10 mM glucose and 87.5 mM CsCl (pH 7.4 with TEAOH). Patch pipettes (borosilicate glass BF150-86-10; Sutter Instrument Company, Novato, CA) were made using a horizontal puller (P-87; Sutter Instruments Company) and fire polished using a microforge (Narishige, Tokyo, Japan), with resistances typically of 3 to 5 MΩ when containing internal solution. External solution bath was connected to ground with a 3 M KCl agar bridge. Whole cell currents were recorded and filtered at 2–5 kHz bandwidth using an Axopatch 200A amplifier, recorded and stored on a personal computer running pClamp software package version 9. Sampling frequencies were between 2 and 10 kHz. Recordings were analyzed using Clampfit 9 and figures, fittings and statistics (ANOVA) were made using the software program Origin version 7.5 (OriginLab Corp., Northampton, MA). Data are represented as mean ± standard error (S.E.).

Recording protocols and data analysis. Current-voltage relationships were determined by measured currents obtained using a series of 90 millisecond depolarization pulses applied from a holding potential of -90 mV to membrane potentials from -50 mV to +45 mV, increasing by 5 mV increments. Current-voltage relationships were fitted, and IV curves generated, using a modified Boltzmann equation:

\[I = \frac{(G_{max} - E)}{(1 + \exp((V_m - V_{50})/k))} \]

where \(G_{max} \) is the maximum slope conductance, \(V_m \) is the test potential, \(E \) is the extrapolated reversal potential, \(V_{50} \) is the half-activation potential, and \(k \) reflects the slope of the activation curve. Activation curves were constructed by calculating conductance from the IV curves and plotting the normalized conductance as a function of the membrane potential. The data were fit with the Boltzmann equation:

\[G/G_{max} = A_2 + (A_1 - A_2)/(1 + \exp((V_m - V_{50})/k)) \]

where \(A_1 \) is minimum normalized conductance, \(A_2 \) is maximum normalized conductance, \(V_{50} \) is the test potential, \(V_{50} \) is the half-activation potential, and \(k \) reflects the slope of the activation curve (goodness of fit had R² values ≥ 0.998).

Voltage dependence of inactivation was analyzed using depolarizations to 0 mV for 80 ms following 5 s prepulses ranging from -100 to +10 mV in 10 mV increments (holding potential of -120 mV). Steady state inactivation curves were constructed by plotting the normalized maximum current during the test pulse as a function of the prepulse potential. The data were fit with the Boltzmann equation:

\[I/I_{max} = A_2 + (A_1 - A_2)/(1 + \exp((V_m - V_{50})/k)) \]

where \(A_1 \) is minimum normalized current, \(A_2 \) is the maximum normalized current, \(V_m \) is the test potential, \(V_{50} \) is the half-inactivation potential, and \(k \) reflects the slope of the inactivation curve (goodness of fit had R² values ≥ 0.998).

The kinetics of activation (\(\tau_{max} \)) were determined from currents obtained from the IV protocol. Current traces were fit to a standard single exponential equation:

\[I = A^*\exp(-t/\tau) \]

where \(A^* \) is the amplitude of the current, and \(\tau \) is the time constant.

Recovery from inactivation was determined using a double-pulse protocol. The first depolarization was to 0 mV for 2 s (the prepulse), followed by a return to the holding potential of -100 mV for variable lengths between 10 ms and 7.5 s. At the end of the variable repolarization period, a second 0 mV (the test pulse) was given for 50 ms. The time interval between sweeps was a total of 1 minute to ensure maximum recovery between sweeps. All traces were normalized to the maximum current during the prepulse for each sweep. The peak current from the test pulse was plotted as a percentage of maximum prepulse current vs. repolarization time. Average traces were fit with either a single or double exponential equation (goodness of fit had R² values ≥ 0.998).

Current decay during a tonic depolarization was examined using a 25 Hz train of 25 square pulses from a holding of -100 mV to a depolarizing potential of -5 mV for 5.4 s. Current decay curves were generated by plotting normalized maximum current during the test pulses as a function of the time of pulse onset. Current decay during bursts of depolarization was examined using square pulses to -5 mV for 3.4 msec from a holding of -100 mV. Five bursts were given with 290 msec intervals (3.5 burst firing). Each burst contained 25 pulses at a rate of 25 Hz. Current decay curves were generated by plotting normalized maximum current during the test pulses as a function of the time of pulse onset.

RT-PCR of Cav2.1 carboxyl-terminal region from human cortex RNA. Prior to reverse transcription, 1 μg total RNA from human cortex (Clontech; 63561) was treated with 1X DNase I reaction buffer and 1 unit DNase I (Invitrogen) in a final volume adjusted to 10 μl using sterile DEPC-treated H₂O. Following a 15-minute incubation period at room temperature, the reaction was inactivated by adding 1 μl of 25 mM EDTA and heating at 65°C for 10 minutes. cDNA synthesis was performed using Superscript II Reverse Transcriptase (Invitrogen) following manufacturer's instructions with slight modification. A-1.1-Kb nucleotide fragment of the carboxyl end of the Cav2.1 channel was amplified from the human cortex cDNA using standard PCR. The reaction mixture consisted of 3% DMSO, 1X Phusion enzyme buffer, 0.4 pmol/μl forward and reverse primers, 0.2 mM dNTPs, 1 μl of cDNA, and 1 unit of Phusion enzyme in a final volume of 25 μl. The forward primer (5’GGC ACA TGG AGT CCG GAC CA 3’) corresponds to nucleotide position 6130 and the reverse primer (5’GTT GTG AGC CAT GGT GCC 3’) to nucleotide position 7211 of the human Cav2.1 mRNA subunit (NCBI accession number NM_022365.1). The cycling profile included an initial activation step of 98°C for 30 s
followed by 30 cycles of 95°C for 30 s, 65°C for 30 s, 72°C for 2.5 minutes and a final extension period of 72°C for 10 minutes. As positive controls, the same PCR reaction was performed on human Ca2,1.3 (ΔT) and Ca2,1.3 (Δ7) DNA plasmids to demonstrate unbiased amplification. PCR reactions using primers for tubulin were used to verify the success of RT reactions. As negative controls, identical PCR reactions without template and containing no RT were performed. To analyze individual Ca2,1.3 amplified cDNA terminal transcripts, PCR products were ligated into pCMV- EY (Promega) and then transformed into competent XL-1 Blue® bacterid cells. Bacteria containing PCR inserts were identified by blue-white screening and collected and subject to Ca2,1.3 (Δ7) and Ca2,1.3 (Δ7) specific PCR reactions. The reverse primer (5'GGT AGT ACC CAT GTG CCCG) was used for both Ca2,1.3 (Δ7) and Ca2,1.3 (Δ7) specific PCR reactions. Forward primer (5'TGG CAC CGC CAC TGA 3') and (5' CAT GCC CCA GCC CCA GGG 3') were designed to specifically amplify Ca2,1.3 (Δ7) and Ca2,1.3 (Δ7), respectively: All PCR products were run on 1% agarose gel. In determining the percentage of each variant, only colonies positive for Ca2,1.3 (Δ7) and negative for Ca2,1.3 (Δ7), and vice versa, were included and ambiguous results discarded. Direct DNA sequence determination of several representative clones confirmed both the velocity of the splice-variant specific PCR reactions and the identity of the cloned PCR products.

Acknowledgements

This work was fund by operating grant #1H677 from the Canadian Institutes of Health Research (CIHR) and a Tier 1 Canada Research Chair in Biotechnology and Genomics-Neurobiology to Terrance P. Smurch, an operating grant from the National Ataxia Foundation and a salary award from the Vancouver Coastal Health Authority to Simon D. Spacey, graduate fellowships from the Michael Smith Foundation for Health Research to Paul J. Adam and Kirk J. Mulhan, and a doctoral fellowship from the Heart and Stroke Foundation of Canada to Laurence S. David. We thank Dr. David Parker and Luke Mally for providing the wild-type isoform 2 Ca2,1.3 human CDNA and Ms. Alton Millsan for protocol optimization.

References

APPENDIX 5: A Ca\textsubscript{v3.2} T-TYPE CALCIUM CHANNEL POINT MUTATION HAS SPLICE-VARIANT SPECIFIC EFFECTS ON FUNCTION AND SEGREGATES WITH SEIZURE EXPRESSION IN POLYGENIC RAT MODEL OF ABSENCE EPILEPSY

A Ca\textsubscript{v3.2} T-Type Calcium Channel Point Mutation Has Splice-Variant-Specific Effects on Function and Segregates with Seizure Expression in a Polygenic Rat Model of Absence Epilepsy

Kim L. Powell1,2,*, Stuart M. Cain3,2, Caroline Ng4, Shreeram Sirdesai1, Laurence S. David2, Meryn K. Kyi1,5, Esperanza Garcia2,6, John B. Tyson1, Christopher A. Reid2, Melanie Sahli7, Simon J. Foote8, Terrence P. Snutch9, and Terence J. O'Brien10

1Departments of Medicine, Surgery, and Neurology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
2MRC Centre for Neuropsychiatric Genomics, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
3School of Biomedical Sciences, University of Western Australia, Perth, Australia.
4Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.
5Department of Anesthesia and Pain Management, University of British Columbia, Vancouver, British Columbia, Canada.
6Department of Anesthesia and Pain Management, University of British Columbia, Vancouver, British Columbia, Canada.
7Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.
8Brain Research Institute, University of Melbourne, Melbourne, Victoria, Australia.
9Department of Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
10School of Biomedical Sciences, University of Western Australia, Perth, Australia.

Low-voltage-activated, or T-type, calcium (Ca2+) channels are believed to play an essential role in the generation of absence seizures in the idiopathic generalized epilepsies (IGEs). We describe a homozygous, nonsense, single nucleotide (c. 523 A > T) mutation in the Ca\textsubscript{v3.2} T-type Ca2+ channel gene (Cacna1d) in the genetic absence epilepsy rats from Strasbourg (GARES) model of IGE. The GARES Ca\textsubscript{v3.2} mutation (Jgcd) produces an arginine to proline (R > P) substitution in exon 24 of Cacna1d, encoding a portion of the III-H linker region in Ca\textsubscript{v3.2}, jgcd segregates exhaustively with the number of seizures and time to seizure activity in progeny of all F1 intercrosses. We have further identified two major thalamic Ca2+ channel splice variants, either with or without exon 25, present in normal and interictal spiking. The IHC of Ca2+ channel subunit isoforms shows similar Ca2+ channel, either with or without exon 25, present in normal and interictal spiking.

Keywords: idiopathic, generalized epilepsy; absence seizures; T-type calcium channel; splice variant; point mutation; genetic absence epilepsy rats from Strasbourg, GARES

doi: 10.1523/JNEUROSCI.2028-09.2009

Neurobiology of Disease

A Ca\textsubscript{v3.2} T-Type Calcium Channel Point Mutation Has Splice-Variant-Specific Effects on Function and Segregates with Seizure Expression in a Polygenic Rat Model of Absence Epilepsy

Kim L. Powell, Stuart M. Cain, Caroline Ng, Shreeram Sirdesai, Laurence S. David, Meryn K. Kyi, Esperanza Garcia, John B. Tyson, Christopher A. Reid, Melanie Sahli, Simon J. Foote, Terrence P. Snutch, and Terence J. O'Brien

T-type currents precede the onset of absence seizures in a SNAP-25-deficient mouse model (Zhang et al., 2004). Third, mutations in the human CACNA1H have been found in patients with childhood absence epilepsy and juvenile absence epilepsy (Chen et al., 2003; Liang et al., 2006, 2007; Heron et al., 2007) with exogenous expression of mutant human Cα3-2 channels revealed a variety of biophysical changes (Khosravi et al., 2004, 2005; Visko et al., 2005, 2007; Peloquin et al., 2006).

Here we report the first mutation with functional effects in a polygenic animal model of absence epilepsy. The GAERS Cα3-2 mutation (gen) is situated in exon 24 of Cacna1h in a region encoding a portion of the domain III-IV linker. Electrophysiological investigation revealed that gen increases the rate of recovery from channel inactivation, producing a predicted gain-of-function phenotype. The functional effects of gen are dependent on alternative splicing of exon 25, being manifested in the splice variant with this exon [Cα3-2(2+25)]. These results provide unique insight into the genetic cause of absence seizures in GAERS as well as provide new knowledge regarding the structural-functional relationship for Cα3-2 T-type Ca2+ channels. Of particular importance is the demonstration of the principle that genetic mutations may have functional effects only in certain splice variants of ion channels (Adams et al., 2007).

Materials and Methods

Production of F2 generation. The double cross mating required for this study were produced in two stages. First, GAERS rats (homozygous or +/- for the Cα3-2 gen mutation) were crossed with nonlepenticile control (NEC) rats (null or 1/- for the gen mutation) to produce an F1 generation, all of which should be heterozygous for the mutation. Then, two F1 (+/-) generation rats were mated to produce an F2 generation. On average, 25% of the F2 progeny would be expected to be homozygous for the mutation, 50% heterozygous for the mutation, and 25% null or not carrying the mutation at all.

Animal surgery. The study was approved by the Animal Ethics Committee of the Ludwig Institute for Cancer Research/Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne and conformed to National and Health and Medical Research Council guidelines for the ethical use of animals in scientific research. All surgeries were performed under deep general anaesthesia, with each rat receiving an intraperitoneal injection (5 mg/kg) of anaesthetic solution containing ketamine (75 mg/kg; Ketavet 100; Farnell Laboratories) and xylazine (10 mg/kg; Xylaxyl 2%; Troy Laboratories) in 0.9% sodium chloride. Once anaesthetized, a single midline incision was made on the scalp, from just posterior to the ears to the base of the skull. Six holes were drilled through the skull but not penetrating the dura, one on each side anterior to the bregma and two on each side posterior to the bregma. A recording electrode was screwed into each hole. Each recording electrode comprised a 1.3 mm "male" gold connector (Farnell Components) soldered onto a nickel alloy screw. The recording electrodes were fixed in position by applying Vortex dental cement around the electrodes and over the skull. The incision was then sutured (Ochrow 3/0). Immediately after surgery, each rat received an intraperitoneal injection of 1 ml/kg analgesic solution containing intraperitoneal carprofen (5 mg/kg, Rimarin, Fiezer Australia) in 0.9% sodium chloride. Polyurethane was again applied to the incision.

EEG recordings and analysis. Seven days after surgery, all rats underwent four 90 min EEG recordings over weeks 17 and 18 (two recordings per week). The rats were connected to an EEG board, and their EEG traces were recorded using Compmedics EEG acquisition software. Recordings lasted 90 min after an initial 15 min habituation period. Recordings alternated freely around their cage and were constantly monitored by an investigator to ensure that they did not fall asleep using gently finger taps on the side of the cage as necessary. Rats were allowed to rest at least 2 days between consecutive recordings. All rats were observed during the recording to confirm their seizure status. Seizure expression for the 90 min after injection EEG recording was quantified by visual inspection of the EEG recordings, blinded to the animal's genotype. Standard criteria described for adult GAERS were used to identify the seizures, i.e., an SWD burst of amplitude of more than three times baseline, a frequency of 7-12 Hz, and duration of longer than 0.5 s (Moran et al., 1992; Liew et al., 2006). The start and end of each seizure was determined by manually marking the beginning and end of each SWD on the EEG. From this, the total percentage time spent in seizure over the 90 min postinjection EEG recording was determined, the primary endpoint for comparison of the treatment effect on seizure expression.

Genomic DNA extraction and genotyping PCR. Genomic DNA was extracted from tail tips using the Promega Wizard Genomic DNA extraction kit, and genotyping PCR was performed using primers designed to amplify exon 24 (193 bp). Each 20 μl of PCR reaction contained the following: 1× TaqDNA polymerase buffer, 2.5 U of TaqDNA polymerase, 200 μM dNTPs, 500 μM forward and reverse primers, and 25 ng of genomic DNA (for primer sequences, see supplemental Table 1, available at www.neurosci.org as supplemental material). To confirm the correct size band, 5 μl of PCR reactions were run on a 2% agarose gel with molecular weight markers, and gels were stained with GelRed DNA stain (Fermentas) and visualized under UV light. PCR reactions were cleaned up using the Promega Genomic DNA Clean-up kit, and purified PCR products were sent to the Australian Genome Research Facility (Brisbane, Australia) for sequencing (for primer sequences, see supplemental Table 1, available at www.neurosci.org as supplemental material). Sequence analysis was done using Sequence Scanner version 1.0 (Applied Biosystems).

RNA extraction and cDNA synthesis. Total RNA was extracted from adult Wistar rat thalamus using Trizol reagent (Invitrogen) according to the instructions of the manufacturer. One microgram total RNA was initially treated with DNase to avoid genomic DNA contamination during reverse transcription using the Superscript II reverse transcription (Invitrogen) enzyme. A total of 20 μl of reaction volume was prepared containing DNase-treated total RNA, first strand buffer (1×), DTT (10 μM), dNTP mix (500 μM), RNaseOUT (40 U), and reverse transcriptase (200 U). Reaction mixture was incubated at 42°C for 50 min and inactivated by heating to 70°C for 15 min. Finally, 1 μl of Mouse II (2 U) was added to the mixture and incubated at 37°C for 20 min to remove the RNA complementary to the cDNA.

Slyce variant screening, cloning, and site-directed mutagenesis. Initially,
splicing variant exon scanning was performed on rat thalamic RNA to identify the existence of expressed Ca$_{4.2}$ isoforms. Overlapping primer sets were designed to amplify between two and five exons. PCR products were sequenced and compared with genomic sequence for the presence of splice sites. Subsequently, full-length Ca$_{4.2}$ cDNA libraries were made from thalamic total RNA (2 μg) using Ca$_{4.2}$-specific forward (5’-GATAAGCTTATGAAGAAGGCCAGCCG-3’) and reverse (5’-CGCTTCCTAGATAGCCCTACGT-3’) primers. The cDNA products were subcloned into the pcDNA1-Easy vector (Invitrogen), and a total of 76 full-length Ca$_{4.2}$ cDNAs were subject to complete DNA sequencing. Full-length Ca$_{4.2}$ cDNA without exon 25 alternative splice variants were moved from pGEM T-Easy to pCNA3.1 vector (+ve) (Invitrogen) using the restriction enzymes HindIII and XbaI (introduced at the 5’-end, respectively, of the Ca$_{4.2}$ cDNA). The DNA sequence of the full-length Ca$_{4.2}$ cDNA was determined using automated DNA sequencing, and sequences were aligned to available published genomic Ca$_{4.2}$ sequences. The gene was introduced into the +/− exon 25 Ca$_{4.2}$ cDNA using the QuickChange site-directed mutagenesis (SDM) procedure (Stratagene) with the GAERS-std1 (5’-AGGGGCTCCCGCGCCGGAGAGAAAACCGGT-3’) and GAERS-std2 (5’-AGCGTTTTCGCCCTAGCGAGGGC-3’) primers. Once generated, the GAERS mutation +/− exon 25 was removed by an 872 bp EcoRI-BsrFI fragment and cloned back into a nonmutagenized Ca$_{4.2}$ plasmid background to remove nonspecific mutations introduced during SDM. Physiologically, the ± exon 25 GAERS clones were then fully sequenced to confirm that no other mutation had been introduced.

Tissue collection. Adult chronically epileptic (18–21 weeks) GAERS and age-matched NEC rats were killed by a lethal dose of pentobarbital (Lethabarb) anesthetic (Vetbac), followed by rapid extracorporeal brain. The thalamic brain region was rapidly dissected and stored in RNAlater (Applied Biosystems) and frozen at −80°C.

Quantitative real-time-PCR. RNA was extracted using the RNeasy mini kit (Qiagen) and treated with DNase I (Qiagen) to remove any contaminating genomic DNA and stored at −80°C. Spectrophotometric readings were taken with the NanoDrop Spectrophotometer (NanoDrop Technologies) to determine RNA concentration and purity. For each sample, 2 μg of total RNA was used to synthesize cDNA using the High Capacity cDNA Reverse Transcription kit from Applied Biosystems. Real-time-PCR reaction was performed using Applied Biosystems reagents and TaqMan probes to the respective gene targets on an Applied Biosystems AB 7700 system. Primer/mixed set for detection of exon 25 splice variants were as follows: + exon 25 (H-Ca$_{4.2}$-2-plus25 forward, GGGAGGACACCTTTGTG; H-Ca$_{4.2}$-2-plus25 reverse, GACGGTCTAATCTGTCCCGTGTAGTA; H-Ca$_{4.2}$-2-plus25-probe, CCAGCGAGGACCGCAG1; − exon 25 (H-Ca$_{4.2}$-2-minus25 forward, GGGAGGACAGGAAAG; H-Ca$_{4.2}$-2-minus25 reverse, GACGGTCTAATCTGTCCCGTGTAGTA; H-Ca$_{4.2}$-2-minus25-probe, CCGGCGCTCTCTCGCCG). Tetracycline curves to calculate copy number parameters for each + and − exon 25 primer set were produced using splicing variant-specific full-length cDNA plasmid clones. A rat actin β (Actb) primer set (Applied Biosystems AB 4302411E) was run in parallel with the + and − exon 25 primer sets in all samples as a control for total cDNA input to allow comparison. Copy numbers for each splicing variant sample were then calculated and scaled, using relative Actb amounts, before being compared. Target and control probe reactions were run in triplicate and averaged for each sample.

Cell culture. Human embryonic kidney (HEK) 293 cells were grown at 37°C in DMEM supplemented with 10% heat-inactivated FBS, 50 μM penicillin, and 50 μg/ml streptomycin. Cells were transiently transfected with Ca$_{4.2}$ or Ca$_{4.2}$ gus (0.5 μg of cDNA per 35 mm² dish, plus 0.1 μg per dish of GFP marker) in pCDNA3.1 vector (+ve) using Lipofectamine (Invitrogen). Cells were incubated at 37°C in a humidified incubator with 5% CO$_2$ for 24–48 h before recording.

Electrophysiology. Ca$^{2+}$ currents were recorded using the whole-cell patch-clamp technique with the following two solutions (in mM): internal: 120 Cs-methanesulfonate, 11 EGTA, 10 HEPES, 2 MgCl$_2$, 5 MgATP, and 0.3 Na$_2$GTP, pH 7.2; external: 2 Ca$^{2+}$-1 MgCl$_2$, 10 HEPES, 40 tetraethylammonium-Cl, 52 CsCl, and 10 glucose, pH 7.4. Fire-polished patch pipettes (borosilicate glass) had typical resistance of 3–5 MΩ when containing internal solution. The recording chamber was grounded with an Ag/AgCl pellet. Whole-cell currents were recorded at room temperature using an Axopatch 200B amplifier (Molecular Devices). Data were acquired with Clampscope software package version 9 (Molecular Devices). Series resistance (R$_s$) was compensated by 65–75%, and seals with R$_s$ values >20 MΩ or cells with peak current <100 pA were discarded. Data analysis was performed using Clampsuite 9 (Molecular Devices) and software Origin version 7.5 (Microcal Software). Data fol-
lowed a normal distribution, and statistical significance was calculated using one-way ANOVA with Tukey's post-hoc test considering a p value < 0.05 as significant. Data were plotted as mean ± SE values.

The current-voltage (I-V) relationship was obtained by depolarizing the membrane with 150 ms pulses from a holding potential of -110 mV (current sampled at 10 kHz and filtered at 2 kHz). Test pulses from -90 to -160 mV were applied at 5 mV steps. Peak amplitude of Ca⁺⁺ current was plotted against test pulse potential, and I-V curves were fitted using a modified Boltzmann equation: I = I_{max} \times (1 + \exp(-\frac{V_m - V_0}{\Delta V})) / (1 + \exp(-\frac{V_m - V_{max}}{\Delta V})), where I_{max} is the maximum value of membrane conductance, V_{max} is the test potential, V_0 is the half-activation potential, and \Delta y is the slope constant. \Delta y equals \frac{RT}{\Delta V} \frac{1}{\Delta f}, where R is the gas constant, T is the absolute temperature, \Delta V is the voltage difference across the membrane, and \Delta f is the Faraday's constant. This reflects the voltage sensitivity. Activation curves were obtained by calculating conductance from the I-V curves and plotting the normalized conductance as a function of the membrane potential. The data were fitted with the following Boltzmann equation: G/G_{max} = A_2 + (A_1 - A_2) / (1 + \exp((V_m - V_0)/\Delta V)), where A_1 is minimum normalized conductance, A_2 is maximum normalized conductance, V_0 is the test potential, V_0 is the half-activation potential, and \Delta V is the slope of the activation curve (slope constant).

Steady-state inactivation was studied using 90 ms test pulses at -30 mV applied after 2 s conditioning prepulse ranging from -120 to -10 mV (current sampled at 10 kHz and filtered at 2 kHz). The current magnitude obtained during each test pulse was normalized to the maximum at -120 mV and plotted as a function of the prepulse potential. The data were fitted with the following Boltzmann equation: I/I_{max} = A_1 + (A_2 - A_1) / (1 + \exp((V_m - V_0)/\Delta V)))), where A_1 is minimum normalized current, A_2 is maximum normalized current, V_0 is the test potential, V_0 is the half-inactivation potential, and \Delta V is the slope of the inactivation curve (slope constant).

The time course for activation (\tau_{act}) and inactivation (\tau_{inact}) were analyzed by fitting current recordings obtained from the I-V protocol with a single-exponential standard equation: I = A \times e^{-t/\tau}, where A is the amplitude of the current, and \tau is the time constant.

Recovery from inactivation was studied using a double-pulse protocol at a holding potential of -110 mV (current sampled at 10 kHz and filtered at 2 kHz) to ensure complete deactivation of Ca₃.2 channels. The cell membrane was depolarized for 400 ms to -50 mV (prepulse) to ensure complete channel inactivation and then to -30 mV for 50 ms (test pulse) after an increasing time delay (interpulse interval) between 5 ms and 5 s. The peak current from the test pulse was plotted as a ratio of maximum prepulse current versus interpulse interval. The data were fitted with a double-exponential function: I/I_{max} = A_1 \times e^{-t/\tau_1} + A_2 \times e^{-t/\tau_2}, where A_1 and A_2 are the amplitude for the fast and slow components of the exponential, and \tau_1 and \tau_2 are the time constants for the fast and slow components, respectively.

Figure 2. The gur mutation positively correlates with the splicing phenotype in double-cosed (F2) GABRs versus NHC rats. a. Percentage of mRNA lines quantified in saline activity. Animals homozygous for the mutation gained more saline activity than animals null for the gur (p < 0.05, Mann-Whitney one-tailed test). b. Number of seizures. Animals homozygous for the gur mutation were more seizure than animals null for the mutation (p < 0.05, Mann-Whitney one-tailed test). c. The interval between the seizures was significantly shorter for animals homozygous for the mutation compared with animals null for the mutation (p < 0.05, Mann-Whitney one-tailed test). d. The length of individual seizures did not significantly differ between the genotypes (p > 0.05, Mann-Whitney one-tailed test). e. The cycle frequency of the spike and wave discharges (bottom) did not significantly differ between the genotypes (p > 0.05, Mann-Whitney one-tailed test). +/+ animals null for the gur, +/- animals have one copy of the gur, and min/male: male homozygous for the gur. Data are expressed as mean ± SEM. *p < 0.05.

Ca₃.2 activity during high-frequency burst depolarization was studied using a burst square pulse protocol at a holding potential of -70 mV (currents sampled at 10 kHz and filtered at 5 kHz). The membrane was depolarized for 4 ms to -20 mV at a frequency of 125 Hz for 80 ms to produce a high-frequency burst. Burst depolarizations were performed at a frequency of 5 Hz for 1 s. The data were analyzed by taking the integral of each burst, individually giving measurements of charge transfer (Q) carried by Ca²⁺ through Ca₃.2. Charge transfer was then divided by the peak current of the first burst to
The gcm positively correlates with the epileptic phenotype in GAERS. The epileptic phenotype that was attributable to the gcm was assessed in the progeny of an F1 cross between GAERS and NEC rats. Homozygous animals carrying either two copies of the gcm or null for the gcm were compared for the total amount of time spent in seizures during a 90 min EEG recording and also for the number, duration, and frequency of the seizures. Examples of EEG traces from an animal null for the gcm are shown in Figure 1, a and d, from an animal heterozygous for the gcm in Figure 1, b and e, and an animal homozygous for the gcm in Figure 1, c and f. More F2 animals possessing two copies of the gcm (92.5%) (n = 12) express seizures than animals possessing zero (0%) (n = 8) or one copy (66.7%) (n = 24) of the gcm (p = 0.008; m/mm vs +/-; Fisher's exact test, one tailed). A strong gcm dose effect is evident for the time spent in seizure activity, with animals homozygous for the gcm spending significantly more time in seizure activity than animals null for the gcm (3.1 ± 1.56%, n = 12 vs. 0.5 ± 0.46%, n = 8; p < 0.05) (Fig. 2a). A significant association between the presence of the gcm and the number of seizures was also seen (Fig. 2b). Animals homozygous for the mutation experienced 38.5 ± 13.6 (n = 12) seizures compared with 10.5 ± 8.1 (n = 8) seizures for animals null for the mutation (p < 0.05). Additionally, animals homozygous for the mutation had a significantly shorter interval between the seizures than animals null for the mutation (268.1 ± 5364.8 s, n = 12 vs 4048.5 ± 5321.9 s, n = 8; p < 0.05) (Fig. 2c). The length of the individual seizures did not significantly differ between the three genotypes (zero copies, 3.01 ± 0.95 s, n = 4; one copy, 3.03 ± 0.7 s, n = 16; two copies, 3.1 ± 0.87 s, n = 11; p = 0.65 null vs homozygous) (Fig. 2d). The cycle frequency (hertz) of the spike-and-wave discharges accompanying the seizures was also not affected by the gcm. Animals null for the mutation had a seizure frequency of 7.7 ± 0.2 Hertz, and animals homozygous for the mutation had a seizure frequency of 7.6 ± 0.2 Hertz (p > 0.05) (Fig. 2e). Only animals that had seizures were included in the seizure duration and cycle frequency analysis.

Although our results provide evidence that the gcm plays a significant role in the absence epilepsy phenotype, they also demonstrate that the mutation does not, by itself, account for the entire phenotype. Some of the rats that were null for the gcm displayed absence seizures but significantly less often than those with the mutation. Similarly, there were rats that were positive for the gcm that either did not experience any (1 of 12) or experienced very few (2 of 12) absence seizures during the recording period. This is consistent with the current hypothesis that the determinants of the absence seizures in patients with IGE are polygenic (Cruehnl and Lerose, 2002; Rudolf et al., 2004). A nonparametric Spearman’s rank order correlation test was performed to examine the strength of the association between the number of copies of the gcm mutation in the F2 animals with their various seizure endpoints. A significant correlation was found for the percentage time in seizures (r = 0.31, p = 0.04) and the optimised solution for the gcm-null allele is also reported.
number of seizures occurring during the recording period ($r = 0.34, p = 0.02$). No significant correlation existed for the average length of the individual seizures ($r = -0.12, p = 0.12$) or for the cycle frequency (hertz) of the spike-and-wave discharges ($r = -0.34, p = 0.05$).

Different splice variants of

Ca3 are expressed in the rat thalamus

We identified two major thalamic splice variants of the rat Cacal3 that differ with respect to the presence or absence of exon 25. Ca3.2 (−25) transcripts include exon 25, whereas Ca3.2 (−25) transcripts exclude exon 25 (Fig. 3). We hypothesized that there may be a splice-variant-specific effect of gen in (25) versus (−25) because the gen mutation is situated in the adjacent exon 24, only 13 nt upstream of the beginning of exon 25 region (Fig. 3a). The inclusion of exon 25 results in an insertion of 18 nt (6 aa) plus the substitution of a lysine to a glutamate at the beginning of exon 26. Examination of adult Wistar full-length thalamic cDNA clones screened for splice variation ($n = 76$) showed approximately equal proportions of both splice variants [Ca3.2 (25) = 51% and Ca3.2 (−25) = 48% of the total pool of Ca3.2 channels; data not shown]. Quantitative real-time-PCR analysis of the thalamus from >13-week-old NEC (n = 11) and GAERS (n = 7) animals revealed that there was no significant difference in the relative copy number of Ca3.2 mRNA [Ca3.2 (25) + Ca3.2 (−25)] between NEC and GAERS animals [NEC: 178.2 ± 23.8, n = 7; GAERS: 123.3 ± 19.8, n = 7; p = 0.09]. However, the ratio of Ca3.2 (25) to Ca3.2 (−25) splice variants was a 1.5-fold greater in GAERS animals compared with the NEC strain [NEC: Ca3.2 (25)/Ca3.2 (−25) = 0.91 ± 0.06, n = 7; GAERS: Ca3.2 (25)/Ca3.2 (−25) = 1.51 ± 0.11, n = 7; p < 0.0001].

The gen results in a splice-variant-specific gain of function effect on Ca3.2 (25)-containing channels

Ca3.2 (25) channels in the neuronally synchronous immortalized HEK293 cells transiently expressing either the Ca3.2 (25) or the Ca3.2 (−25) splice variant were gen. The gen had no significant effect on activation and inactivation kinetics, conductance, or steady-state inactivation of Ca3.2 channels in either splice variant (Fig. 4a,b, Table 2). The gen also had no significant effect on the current density of either variant (Table 2). However, the gen induced a splice-variant-specific gain of function in Ca3.2 (25) biophysical properties that could be highly relevant to neuronal burst firing. Ca3.2 (25) gen channels recovered from an inactivating prepulse at a significantly faster rate (smaller slow recovery tau: t_2) than Ca3.2 (25) channels (Fig. 4c). Conversely, the gen-mediated gain of function was not observed in the Ca3.2 (−25) splice variant, in which the Ca3.2 (−25) gen channels had a modestly slower rate of recovery (larger t_2) (Fig. 4d, Table 2). As the gen increases the rate of recovery from inactivation in Ca3.2 (25), more of these channels are available to conduct during subsequent depolarizations, resulting in significantly larger Ca2+ currents from 80 to 2560 ms interpulse interval.
Table 2. Whole-cell conductances, steady-state inactivation, and recovery from inactivation properties of Ca_{3.2} (±25) splice variants in the presence and absence of gcm.

<table>
<thead>
<tr>
<th>Conductance</th>
<th>(\text{Ca}_{3.2} (+25))</th>
<th>(\text{Ca}_{3.2} (+25)) gcm</th>
<th>(\text{Ca}_{3.2} (-25))</th>
<th>(\text{Ca}_{3.2} (-25)) gcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{0})</td>
<td>-41.2 ± 1.2</td>
<td>-42.2 ± 1.0</td>
<td>-41.9 ± 1.2</td>
<td>-42.6 ± 1.2</td>
</tr>
<tr>
<td>(k)</td>
<td>-7.3 ± 0.3</td>
<td>-6.0 ± 0.3</td>
<td>-6.0 ± 0.4</td>
<td>-7.0 ± 0.5</td>
</tr>
<tr>
<td>(E_{\text{max}})</td>
<td>7.7 ± 0.9</td>
<td>66 ± 1.0</td>
<td>97 ± 2.0</td>
<td>71 ± 1.6</td>
</tr>
<tr>
<td>Peak Current (nA/µF)</td>
<td>-32.3 ± 2.2</td>
<td>-36 ± 4.4</td>
<td>-10 ± 3.5</td>
<td>-16 ± 1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steady-state inactivation</th>
<th>(V_{0})</th>
<th>(k)</th>
<th>(E_{\text{max}})</th>
<th>Peak Current (nA/µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{0})</td>
<td>-61.1 ± 1.2</td>
<td>-96.1 ± 1.2</td>
<td>-65.2 ± 1.2</td>
<td>-67.5 ± 1.2</td>
</tr>
<tr>
<td>(k)</td>
<td>3.9 ± 0.4</td>
<td>41 ± 6.3</td>
<td>3.9 ± 0.4</td>
<td>4.4 ± 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recovery from inactivation</th>
<th>(\tau_{1})</th>
<th>(\tau_{2})</th>
<th>(\tau_{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{1})</td>
<td>27.5 ± 2.1</td>
<td>24.1 ± 3.5</td>
<td>31.3 ± 3.8</td>
</tr>
<tr>
<td>(\tau_{2})</td>
<td>76.3 ± 3.2</td>
<td>436.8 ± 17.4</td>
<td>328.5 ± 35.8</td>
</tr>
</tbody>
</table>

All values were calculated individually for each cell and the mean ±SEM taken to be the stated value (N/SEM). *p < 0.05, **p < 0.01 compared with wild-type control.

Figure 5. The gcm increases the charge transference of Ca_{3.2} (±25) during high-frequency burst depolarizing trains. a–c. Representative traces of Ca_{3.2} (±25) wild type (a) and Ca_{3.2} (±25) gcm (b) currents recorded during high-frequency depolarizing train pulses (125 Hz for 80 ms from -70 to -20 mV occurring in bursts of 5 Hz for 15 s). Charge transference of Ca_{3.2} during each burst was divided by the peak current on first pulse of the burst to account for variations in current magnitude of, in Ca_{3.2} (±25), the gcm significantly increased the charge transference factor in all subsequent bursts after one 125 Hz burst, e. In Ca_{3.2} (±25), the gcm had no significant effect. Charge transference values are represented as mean ± SEM. *p < 0.05, **p < 0.01. Significant difference between charge transference factors (ANOVA).

Discussion

Here we report the first genetic abnormality with a functional effect in any of the spontaneously epileptic rat models of absence epilepsy. We identified a mutation in GAERS (gcm) in the rat ortholog of CACNA1H, wherein mutations have been identified previously in human absence epilepsy patients (Chen et al., 2003; Liang et al., 2006, 2007; Heron et al., 2007). Examining crosses between NFR and GAERS animals, we found that the presence of the gcm mutation segregated with seizure expression in the F1 progeny. These results prove evidence that the gcm mutation plays a significant role in the absence epilepsy phenotype, but the mutation does not, by itself, account for the entire phenotype. Some rats that were null for the gcm still displayed absence seizures, albeit significantly less often than those possessing the mutation. Correlation analysis indicated that the presence of gcm accounted for approximately one-third of the variance for the percentage time in seizures and the number of seizures. These findings are consistent with the current idea that IGE is a polygenic disease (Crunelli and Lereste, 2002; Rudolf et al., 2004; Glasscock et al., 2007). Rudolf et al. (2004) mapped various seizure-related quantitative trait loci (QTL) in GAERS versus Brown Norway rat double crosses to chromosomes 4, 7, and 8. The relevant genes and genetic mutations within the regions represented by these QTLs have not been identified. Our group has reported an increase in expression of both stargazin mRNA and protein in the cortex and thalamus of GAERS (Powell et al., 2008), the gene for which (Gang2) lies within the QTL on chromosome 7. However, the genetic
Table 3. Mean ± SEM charge transference values for Ca,3,2 (±25) splice variants in the presence and absence of the genn during high-frequency bursts

<table>
<thead>
<tr>
<th>Charge, Ca,3,2 (+25)</th>
<th>Transference, Ca,3,2 (+25) μm</th>
<th>Factor, Ca,3,2 (−25)</th>
<th>G(α), Ca,3,2 (−25) genn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burs 1</td>
<td>1.15 ± 0.1</td>
<td>1.15 ± 0.7</td>
<td>14.4 ± 0.4</td>
</tr>
<tr>
<td>Burs 2</td>
<td>3.4 ± 0.4</td>
<td>3.2 ± 0.4*</td>
<td>6.3 ± 0.7</td>
</tr>
<tr>
<td>Burs 3</td>
<td>2.4 ± 0.3</td>
<td>2.7 ± 0.3*</td>
<td>4.2 ± 0.4</td>
</tr>
<tr>
<td>Burs 4</td>
<td>1.67 ± 0.2</td>
<td>1.6 ± 0.3</td>
<td>2.5 ± 0.4</td>
</tr>
<tr>
<td>Burs 5</td>
<td>1.3 ± 0.2</td>
<td>2.8 ± 0.4</td>
<td>2.3 ± 0.4</td>
</tr>
</tbody>
</table>

*RONA, *p < 0.05, **p < 0.01 compared with wild-type control

cause for this is still unknown. The Rudolf study failed to identify a QTL on chromosome 10, the location of the Ca,3,2 gene, but the primary seizure variables associated with the QTLs in this study were the duration, amplitude, and cycle frequency of the spike-and-wave discharges, which we found were not associated with the genn (Fig. 2). The only significant association found with the number of seizures expressed, the variable that we found to be most strongly associated with genn, was with the QTL on chromosome 7 in 6-month-old (but not 3-month-old) rats. The only other genetic abnormality reported in GAERS is an extra algalin residue in a polyaniline tract in the potassium channel, KCNK5 (Holter et al., 2005). However, no functional consequences of this mutation have been identified in vivo or in vitro.

Our study also identified two major Ca,3,2 channel splice variants expressed in the rat thalamus, Ca,3,2 (+25) and Ca,3,2 (−25), which differ in the presence or absence of the small exon 25. Of particular interest is the finding that the ratio of Ca,3,2 (+25) mRNA to Ca,3,2 (−25) mRNA is greater in the thalamus of GAERS animals compared with NCBS, suggesting that the relative proportion of Ca,3,2 (+25) to Ca,3,2 (−25) is subjected to transcriptional regulation. Whether the increase in relative expression of the +25 variant in GAERS is a direct effect of genn on splicing or an indirect effect on transcription is unknown.

In Ca,3,2 (+25) channels transiently expressed in H1K295 cells, the genn induces a faster rate of recovery from inactivation, thereby promoting a Ca,2+ charge transference of greater magnitude during burst firing conditions. Contrarily, in Ca,3,2 (−25) channels, the genn modestly slows recovery and has no effect on charge transference during bursts. It would appear that the genn increases the rate of recovery of Ca,3,2 (+25) channels to a rate similar to that of channels without the 25 exon segment, Ca,3,2 (−25). It is not known whether this is attributable to the separate mechanisms of genn and exon 25 acting in opposition or whether the genn acts to somehow silence the functional effect of exon 25 inclusion. Whether Ca,3,2 (+25) and Ca,3,2 (−25) splice variants are expressed selectively or coexpressed in the same cells is also unknown. If the splice variants are coexpressed within cells, there would be an expected heterologous population of both fast (-exon 25) and slow (+exon 25) recovering channels in genn +/+ animals. The occurrence of the genn in m/m animals would drive all cells expressing Ca,3,2 channels to a fast recovering type, which may increase synchrony of neuronal firing. Alternatively, if the splice variants are expressed in a mutually exclusive manner, the genn change would be predicted to produce a cell-specific increase in excitability.

T-type Ca,2+ channels undergo a low-threshold spike that plays an important role in the generation of oscillatory thalamic corticortical rhythms and in the switch between tonic and burst firing patterns (Desexhe and Sejnowski, 2001; Contreras, 2006; Ljokovic et al., 2006). Increased Ca,3,2 expression and increased T-type currents have been detected in the nRT of GAERS and WAG/Rij (Taskiridou et al., 1995; Telley et al., 2000; Kim et al., 2001; Broicher et al., 2008), suggesting that Ca,3,2 channels may be a strong candidate for contribution to SWD generation in the thalamocortical network. This is supported by computational modeling, demonstrating that increased T-type activity has the ability to promote burst firing (Chorev et al., 2006) and that temporal changes in Ca,3,2 conductance alone can synchronize oscillations (Hugenauer and Prince, 1992). Thus, the larger currents achieved by the genn in Ca,3,2 (±25) channels during high-frequency bursts alone may be sufficient to induce oscillations. The genn might render neurons of the nRT more susceptible to excitatory corticothalamic and thalamocortical inputs, producing more robust bursting activity. However, the net result of increased Ca,2+ charge transference during high-frequency bursts is difficult to discern because of the intricacy of the neuronal network involved. In addition, although it may seem logical that the genn would increase the duration of seizure activity attributable to longer-lasting Ca,2+ conductance during burst firing, there is no direct evidence as yet to confirm that Ca,3,2 channels are the molecular pacemaker controlling bursting. Aside from any direct biophysical effects of the mutation on excitability, it is also possible that increased Ca,2+ entry might enhance Ca,2+ signaling, with the potential to alter gene expression (Rudolf et al., 2006). Ca,2+ as a signaling molecule has numerous cellular effects and Ca,3,2 channels, for example, are known to induce increased expression of high-voltage-activated Ca,2+ channels and to induce neurogenesis (Chen et al., 2002).

The expression of different splice variants is now recognized as an important mechanism by which the diversity of cellular effects required for normal functions in different tissues and cell types is achieved. Splice variation in the Ca,3,3 and Ca,3,1 T-type Ca,2+ channels has also been shown to alter electrophysiological properties and provides a general molecular mechanism for the functional diversity of T-type Ca,2+ channels (Mittman et al., 1999a,b; Montell et al., 2000; Chen et al., 2001; Mubarrats et al., 2004). Genetic mutations that have physiological effects only in selected splice variants may be an important mechanism by which some disease-causing mutations exhibit their well defined temporal and spatial phenotypes (Adams et al., 2007). As previously noted, alternative splicing of exon 26 in the human Ca,3,2 gene (corresponding to the rat exon 25) alters the rate of recovery from inactivation (Ohkubo et al., 2005; Zhong et al., 2006). Our findings show that modification of rat exon 25 by the upstream genn in Ca,3,2 (±25) splice variants can also alter the rate of recovery from inactivation. Thus, the III-IV linker region of Ca,3,2 appears to be critically involved in the recovery from inactivation of T-type channels, potentially modulating the stability of the inactivated state. Consistent with our findings, there is also evidence that the III-IV linker region of
Ca$_{v}$3.1 channels contributes to T-type channel inactivation (Chermin et al., 2001; Stares et al., 2001).

Overall, the results of our study emphasize that the effects of misense mutations and the effects of alternative splicing on ion channel function must be considered together. Misense mutations that produce little or no direct changes in channel function may nevertheless interfere with regulatory sequences and lead to aberrant splicing, especially if, as found in the human Ca$_{v}$3.2 gene, some of the mutations flank splicing junctions (Liu et al., 2001; Zheng et al., 2006). Zheng et al. (2006) have described the splice variations in the human Ca$_{v}$3.2 gene and characterized their effects electrophysiologically (Zheng et al., 2006). Importantly, they demonstrated the interdependency of the effect of these variants. Our study extends this further to demonstrate that T-type channel mutations can have measurable functional effects in only certain splice variants. This provides a mechanism by which genetic mutations could produce spatial and temporal cell-type-specific effects dependent on splice variant expression patterns. This concept has potentially important implications for the pathophysiology of the IGEs wherein mild perturbations in the balance of activity between interconnected neuronal networks results in an epileptic phenotype but otherwise retains normal neurological functioning. It may also help explain both why somatic genetic mutations have been observed to result in seizures arising exclusively from topographically restricted focal brain regions (Fukata et al., 2006).

References

